APPENDIX D GEOTECHNICAL MONITORING DATA AND OBSERVATIONS

GEOTECHNICAL MONITORING DATA AND OBSERVATIONS AS-BUILT REPORT FOR THE WHATCOM WATERWAY CLEANUP IN PHASE 1 SITE AREAS

Prepared for Port of Bellingham

Prepared by

Anchor QEA, LLC 720 Olive Way, Suite 1900 Seattle, Washington 98101

September 2018

TABLE OF CONTENTS

1	SUMMARY OF GEOTECHNICAL MONITORING AND OBSERVATIONS	D-1
2	PILE INSTALLATION	D-1
3	TIEBACK ANCHORS	D-2
	3.1 Tieback Installation	D-3
	3.2 Tieback Testing	D-4
4	SUBGRADE EVALUATIONS	D-6
5	BACKFILL MATERIAL PLACEMENT	D-6

List of Tables

Table D1	Tieback Anchor Installation Schedule	. D-3
Table D2	Tieback Anchor Testing Schedule	. D-5

List of Attachments

Attachment A	Pile Installation Records
Attachment B	Tieback Installation Logs
Attachment C	TieBack Testing Record Forms
Attachment D	Compaction Testing Results

LIST OF ACRONYMS AND ABBREVIATIONS

CDF	controlled density fill
MDCI	Malcom Drilling Company, Inc.
MLLW	mean lower low water
MSB	Maple Street Bulkhead
Project	Whatcom Waterway Cleanup in Phase 1 Site Areas Project
PTI	Post-Tensioning Institute

1 SUMMARY OF GEOTECHNICAL MONITORING AND OBSERVATIONS

This appendix presents the geotechnical monitoring and observations that were completed for the Whatcom Waterway Cleanup in Phase 1 Site Areas Project (Project). The discussion includes Contractor means and methods associated with implementing geotechnical works for the Project, as well as appropriate adaptations to design requirements based on geotechnical elements that were encountered during construction. Elements of Project construction discussed in this appendix include the following:

- Pile installation (sheetpile, king pile, and dolphin and fender piles)
- Tieback anchor installation and testing
- Concrete slab and pavement subgrade evaluation
- Placement and verification of backfill material

Specific as-built information regarding installation of the sheet piles, king piles, dolphin piles, and fender piles is presented in Attachment A. Tieback installation records and testing forms are presented in Attachments B and C, respectively. Results of compaction testing for placement of backfill materials are presented in Attachment D.

2 PILE INSTALLATION

Three types of piles were installed as part of the Project: sheetpiles, king piles, and steel pipe piles. Sheetpile walls (i.e., remediation cutoff walls) were designed to serve as source control structures and were installed along the Central Waterfront Shoreline area. These structures include construction of a tieback bulkhead wall at the former Maple Street Bulkhead (MSB) located within the Colony Wharf lease area. King piles were installed (in connection to sheet pile sections) just west of the MSB to provide support for loading from a replacement barge ramp structure that will be utilized as part of the Port C Street Terminals Facility. Steel pipe piles were used to construct the dolphins and fender piles along the Central Waterfront Shoreline area. The record drawings in Appendix C present the numbering scheme used for the sheetpiles and pipe piles used by the Contractor.

Sheetpiles were advanced primarily using an APE Model 200-6 (i.e., vibratory hammer). The Contractor was unable to reach the design tip elevation for some sheets using this hammer

due to difficult driving conditions and presence of obstructions in some alignment areas. The Contractor decided to terminate installation driving of the sheetpile sections with the APE hammer (with approval provided by the Port's engineer), generally based on a rate of advancement of less than 3 inches per minute. For piles that did not reach the design tip elevation, a larger hammer (ICE 416) provided additional effort to advance the sheetpiles to the design tip elevation. The results varied in these attempts, with some piles being terminated at a tip elevation shallower than the elevation required by the design. Sheetpiles that were terminated above the design tip elevation were reviewed by the structural and geotechnical engineer prior to cutting the piles. The sheetpile section numbering scheme begins with No. 1 at the eastern extent of the alignment and increases to the western termination point. Significant debris was encountered at the eastern portion of the proposed sheetpile wall alignment, which required a minor revision to the alignment to avoid these subsurface obstructions. The record drawings in Appendix C present the alignment revision shown as the as-built condition for the wall.

King piles were advanced using the ICE 416 vibratory hammer. Three of the four king piles were terminated approximately 15 to 17 feet shallower than the design tip elevation. The Contractor decided to terminate the piles (with approval from the Port's engineer), generally based on the rate of advancement. Advancement rates were observed as low as 1 inch per hour of driving before termination. The piles with shallower embedment were reviewed and accepted by the structural and geotechnical engineer prior to cutting the piles.

Steel pipe piles (dolphin and fender piles) were installed using the APE 200-6 vibratory hammer. All piles were advanced to the design tip elevations.

3 TIEBACK ANCHORS

A replacement sheetpile and remediation wall was constructed at the former Maple Street Bulkhead location to support the Phase 1 cleanup activities while also maintaining berthing depths needed for Port operations within this area of Whatcom Waterway. The sheet pile sections were installed waterward of the existing bulkhead prior to commencing dredging activities in the vicinity of the structure. Due to the required berthing elevations (needed for waterway operations) at the face of the replacement wall, tieback anchors were required to support and stabilize the exposed section of wall. A total of 50 tieback anchors were installed between January 18 and 28, 2016, along the replacement wall alignment.

The drilling of boreholes and installation and testing of tiebacks was performed by Malcom Drilling Company, Inc. (MDCI) as a subcontractor to the American Construction Company (prime Contractor for completion of the Project). The installation and testing of the tieback anchors was observed by an Anchor QEA geotechnical engineer on site during completion of the work. The geotechnical engineer also verified that tieback materials imported to the site and installed by MDCI were consistent with Specification Section 31 68 13 – Soil and Rock Anchors and Submittal 048.02 – Tieback Anchor.

3.1 Tieback Installation

Table D1 summarizes the quantity and design requirements for the tieback anchors.

Quantity	Design Load (kips)	Unbonded Length (feet)	Bonded Length (feet)	Number of Strands	Inclination with Horizontal (degrees)
61	100	79	50	3	15
20	100	48	50	3	25
24 ²	100	60	50	3	20

Table D1Tieback Anchor Installation Schedule

Notes:

1. Quantity modified from 2 to 6 due to constructability concerns presented to the design team by MDCI

2. Quantity modified from 28 to 24 as per Note 1

The modification to adjust four anchors to a shallower inclination (i.e., 20° to 15°) and associated whaler modifications were coordinated by the Port's structural engineer and the Contractor prior to tieback installation and testing.

The drilling of the boreholes to facilitate tieback anchor installation was performed using a drill rig fixed to an overwater carriage and suspended via crane. Boreholes were drilled through the existing concrete face of the MSB, and the alignment of the drill head was

verified before and after penetration through the bulkhead. The alignment was adjusted as necessary to maintain the proposed inclination (Table D1) within a tolerance of 3 degrees.

Observations of the drill cuttings during the advancement of the boreholes was used to approximate the contact elevation of the clay unit (i.e., Bellingham Drift). The contact was estimated to be present between elevations of -9.8 and -14.8 feet mean lower low water (MLLW) but was variable along the wall alignment. Additionally, contact with wood debris, believed to be timber piles, was noted and an estimate of the contact elevation was made and recorded on the installation logs.

Tieback drilling was generally sequenced and completed to avoid consecutive boreholes being drilled during the same shift. However, five tiebacks (i.e., No. 1 through No. 5) were drilled and installed consecutively on the last day of installation. No exceptions were noted during installation that would indicate communication between these boreholes. The Contractor elected to install adjacent boreholes with a 1- to 2-degree variation for all tiebacks to help mitigate the potential for borehole communication. Boreholes remained cased during the installation and the gravity grouting of the tiebacks. Following the extraction of the drill casings, the boreholes were filled with grout. Post-grouting (via pressure injection) of the anchors was performed 1 to 2 days after the initial gravity grouting was complete. In general, post-grouting was performed until the maximum pressure of the available grouting plant was achieved; this value was observed to be approximately 900 pounds per square inch. Grout cubes were collected for materials testing at the time of grout mixing each day and were taken to a laboratory for strength testing. Results of the grout cube strength tests completed for the Project met the design requirements and are presented in Appendix I – Physical Testing Data.

3.2 Tieback Testing

Testing of the tiebacks for proof, performance, and extended creep was performed consistent with the testing procedures and acceptance criteria presented in the Post-Tensioning Institute (PTI) manual for stressing rock and soil anchors. The acceptance criteria for each test type is demonstrated on the testing records that are included as Attachment C. Anchors to be tested for performance and extended creep were selected at the discretion of Anchor QEA (based on observations made during installation as discussed above) with input from MDCI and approval from the Port's structural engineer. Table D2 summarizes the anchor testing schedule.

Test Type	Number Tested	Tieback No.	Failed Tieback No.
Proof	43	1-3, 5-13, 16-22, 23, 24, 26-39, 41, 43, 45-50	21, 39, 46
Performance	5	4, 14, 25, 40, 44	N/A
Extended Creep	2	22, 42	N/A

Table D2 Tieback Anchor Testing Schedule

In general, the proof, performance, and extended creep tests performed on the tieback anchors met the requirements of the design, indicating that the anchors will satisfy the loading requirements established for the design life of the structure. The proof testing acceptance criteria was not met for tiebacks No. 21, 39, and 46. For No. 39, the test could not be completed due to an insufficient range of the dial gauge. A larger gauge was used for the retest with acceptable results. No. 46 was retested due to an exceedance of the total displacement during the 10-minute hold at 133% of the design load. It was suspected that wind moved the dial assembly, creating false movements; therefore, the test was reinitiated at 100% of the design load. The test could not be rerun at the alignment load due to an inability to safely remove the strand grabbers at the anchor head; however, the results of the retest were acceptable. It is also noted that No. 21 did not develop the free length recommended by PTI guidance during implementation of the testing, but because the anchor did not exceed displacement during the 10-minute hold of the 133% design load, the anchor was ultimately accepted.

Following completion of proof, performance, and extended creep testing activities, all tiebacks were locked off between a load of 69 and 89 kips per the design requirements. The tieback caps were then filled with Portland cement, placed over the anchor head, and secured via a bolt to the bulkhead waler.

4 SUBGRADE EVALUATIONS

Exposure of subgrades beneath existing pavement and concrete slabs that were present along the shoreline areas resulted from shoreline excavation activities, excavation for earth pressure relief behind sheetpile walls, and other shoreline debris removal activities. In areas where voids were observed beneath the slabs and pavements, the Contractor was instructed to break the concrete slabs and pavement over the void area and fill the voids with structural fill. Replacement of the old concrete slabs and pavement with new slabs or pavement sections was performed at a later date.

The Contractor's means and methods for placing and compacting the structural fill within void areas was visually confirmed at the time work was performed. The Contractor used roller-compacted equipment where possible and hand-operated compaction equipment for smaller areas. Compaction testing was not performed to verify the prepared subgrade because engineered pavement slabs were not being constructed as part of this Project. The subgrade was generally accepted based on visual observations of the Contractor's means and methods and documented condition of the finished subgrade surface.

Additionally, soil subgrade surfaces that were prepared beneath the sheetpile wall concrete cap beams were visually inspected by the on-site inspector or geotechnical engineer prior to concrete placement. No deficiencies were observed regarding the visual appearance of the subgrade surface at the time that the inspections were performed. A summary of subgrade observations are provided in the Daily Field Reports that were prepared by the Port's construction management support inspectors for the Project.

5 BACKFILL MATERIAL PLACEMENT

Backfill material placement was primarily performed within the Central Waterfront area in relation to the completion of construction activities for the remediation/containment walls. Shoreline excavation activities were performed on the upland side of the wall to create earth pressure relief, and backfill material was placed with on-site materials deemed reusable by the field inspector or with import structural fill. At the MSB, a large void was created through the demolition and removal of the barge ramp structure, and was backfilled using quarry spalls and imported structural fill. Also at the MSB, controlled density fill (CDF) was

D-6

placed between the old and new MSB walls where the gap between the structures was less than 3 feet in width. Structural fill was placed for void spaces that were observed to be wider than 3 feet. Backfill material was also used for trench backfilling of a storm drain line running from the former clarifier tank foundation to an upland catch basin near the shoreline at the former GP West property.

The Contractor placed and compacted the fill material behind the remediation/containment walls in lifts using hand-operated equipment until the fill area was large enough for a vibratory roller. The field engineer performed a visual inspection to verify compaction.

Prior to placement of backfill material at the MSB, tieback anchors were pre-stressed to 10% to 12% of the design load to limit potential wall deflections during placement of the backfill material. The tieback anchor pre-stressing was performed with oversight by the structural engineer. Where the void space was less than 3 feet, CDF placement was performed in lifts of approximately 6 to 7 feet until final grades were achieved. Where the void was wider than 3 feet, placement and compaction of structural fill was performed in lifts using hand-operated construction equipment and verified using nuclear density tests at an approximate elevation of -2 feet MLLW. For the barge ramp void, structural fill was placed in lifts and compacted using a dozer. Compaction was also verified using nuclear density tests at an approximate elevation of -2 feet MLLW and top of grade (i.e., approximately elevation 12 feet MLLW). The minimum relative compaction requirement of 90% was achieved at all locations tested. A summary of compaction test results is included in Attachment D.

For a replacement storm drain line, running from the former clarifier foundation to an upland catch basin within the former GP West, trench backfilling activities were performed using import backfill material and a hoe-pack for compaction. The field engineer performed a visual inspection to verify compaction.

ATTACHMENT A PILE INSTALLATION RECORDS

Sheet #	Sheet Length	Тор	AB Tip	Design Tip	Alignment Issues	Notes
1.1	35	14.42	-20.58	-20		
1.2	35	14.25	-20.75	-20		
1.3	35	14.06	-20.94	-20		
1	50	12	-38	-37		
2	50	13.5	-36.5	-37		
3	50	14.25	-35.75	-37		
4	50	12	-38	-37		
4.5	50	12	-38	-37		
5	50	12	-38	-37		
6	50	12	-38	-37		
7	50	12	-38	-35		
8	50	12	-38	-35		
9	50	12	-38	-35		
10	50	12	-38	-35		
11	50	12	-38	-35		
12	50	12	-38	-35		
13	50	12	-38	-35		
14	50	12	-38	-35		
15	50	12	-38	-35		
16	50	12	-38	-35		
17	50	12	-38	-35		
18	50	12	-38	-35		
19	50	12	-38	-35		
20	50	12	-38	-35		
21	50		-38	-35		
22	50	12	-38	-35		
23	50	12	-38	-35		
24	50	12	-38	-35		
25	50	12	-38	-35		
26	50		-38	-35		
26.5	50		-38	-35		
27	60		-49	-49		
28	60		-49	-49		
29	60		-49	-49		
30	60	11	-49	-49		

Sheet #	Sheet Length	Тор	AB Tip	Design Tip	Alignment Issues	Notes
31	60	11	-49	-49		
32	60	11	-49	-49		
33	60	11	-49	-49		
34 West	60	11.68	-48.32	-49		
34 East	60	11	-49	-49		
35	60	11	-49	-49		
36	60	11	-49	-49		
37	60	11	-49	-49		
38 West	60	11	-49	-49		
38 East	60	12	-48	-49		
39	60	11	-49	-49		
40	60	11	-49	-49		
41	60	11	-49	-49		
42	60	11	-49	-49		
43	60	11	-49	-49		
44	60	11	-49	-49		
45	60	11	-49	-49		
46 West	60	11	-49	-49		
46 East	60	13	-47	-49		
47 West	60	11	-49	-49		Removed and re-sealed
47 East	60	11	-49	-49		
48	60	11	-49	-49		
49	60	11	-49	-49	5 1/4" North	
50 West	60	11.68	-48.32	-49	5" North-	
50 East	60	13	-47	-49		
51	60	11	-49	-49		
52 West	60	12.32	-47.68	-49	4 1/2" North	
52 East	60	11.68	-48.32	-49	4" North	
53 West	60	11	-49	-49	4 North-	
53 East	60	12.32	-47.68	-49	8" North-	
54 West	60	13.16	-46.84	-49	8 North	
54 East	60	17.25	-42.75	-49		
55 West	60	11.75	-48.25	-49		
55 East	60	12.75	-47.25	-49		
56 West	60	12.08	-47.92	-49		

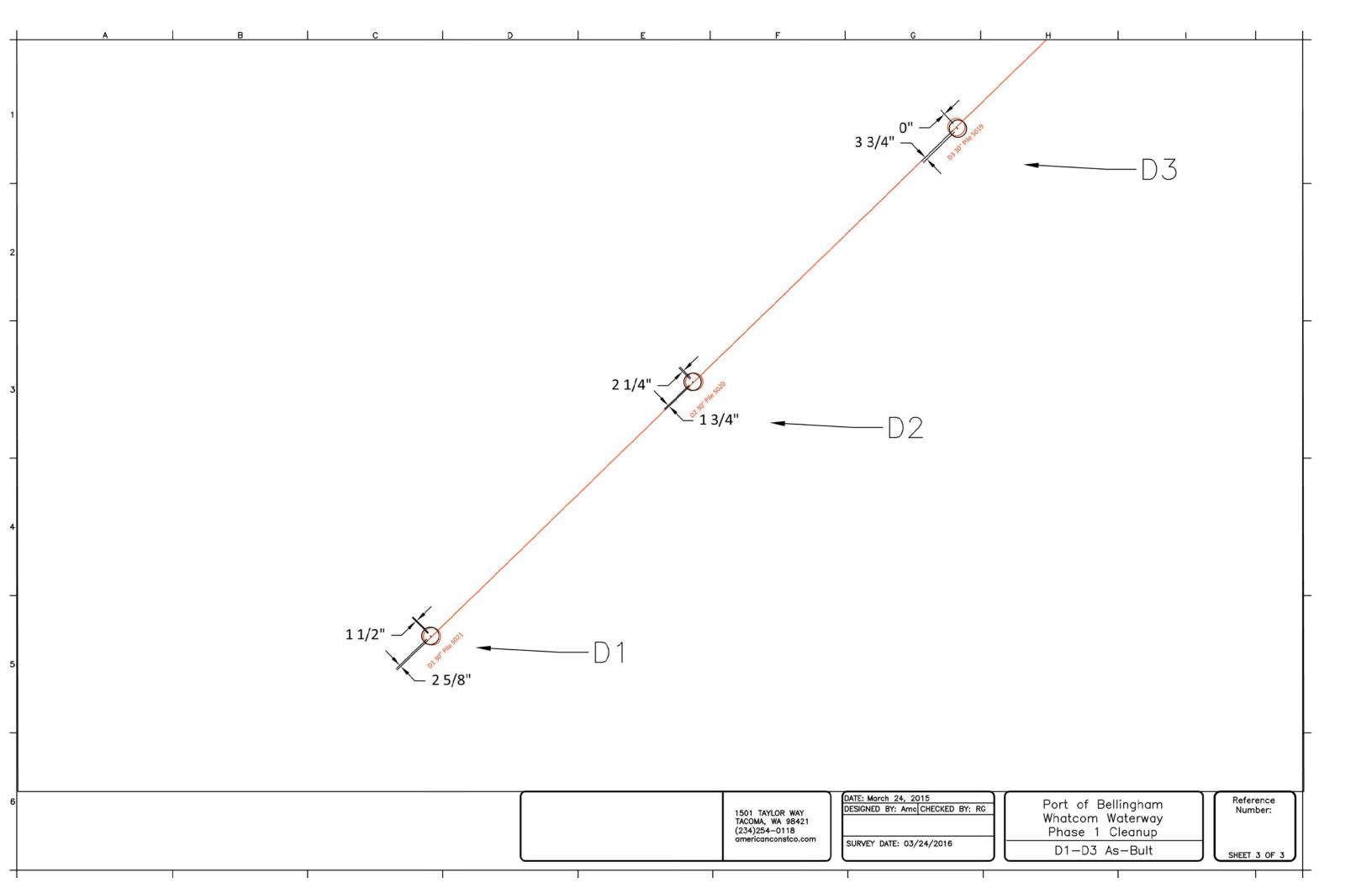
Sheet #	Sheet Length	Тор	АВ Тір	Design Tip	Alignment Issues	Notes
56 East	60	12.08	-47.92	-49		
57 West	60	12.33	-47.67	-49		
57 East	60	12.33	-47.67	-49	4 1/4" North	
58 West	60	12.08	-47.92	-49	4 1/4 NOTH	
58 East	60	11.58	-48.42	-49		
59 West	60	11.25	-48.75	-49		
59 East	60	13.08	-46.92	-49		
60 West	60	13.1	-46.9	-49		
60 East	60	14.16	-45.84	-49		
61 West	60	12.83	-47.17	-49		
61 East	60	13.92	-46.08	-49		
62	59.08	11.68	-47.4	-49	4" South	
63	60	11	-49	-49		
64 West	60	14.75	-45.25	-49		
64 East	60	11.8	-48.2	-49		
65	60	13.67	-46.33	-49		
66	60	13.5	-46.5	-49		
67 West	60	12.5	-47.5	-49	8 1/4" North	
67 East	60	13.5	-46.5	-49	7 1/2" North	
68	59.08	12.89	-46.19	-49		
69	60	11.58	-48.42	-49		
70 West	60	11.92	-48.08	-49		
70 East	60	11	-49	-49		
71	60	11	-49	-49		
72 West	60	11.16	-48.84	-49		
72 East	60	12	-48	-49		
73	60	11	-49	-49		
74	60	11	-49	-49		
75	60	11	-49	-49		
76 West	60	11.16	-48.84	-49		
76 East	60	11	-49	-49		
77 West	60	11.54	-48.46	-49		
77 East	60	11	-49	-49		
78 West	60	13.66	-46.34	-49		
78 East	60	12.5	-47.5	-49		

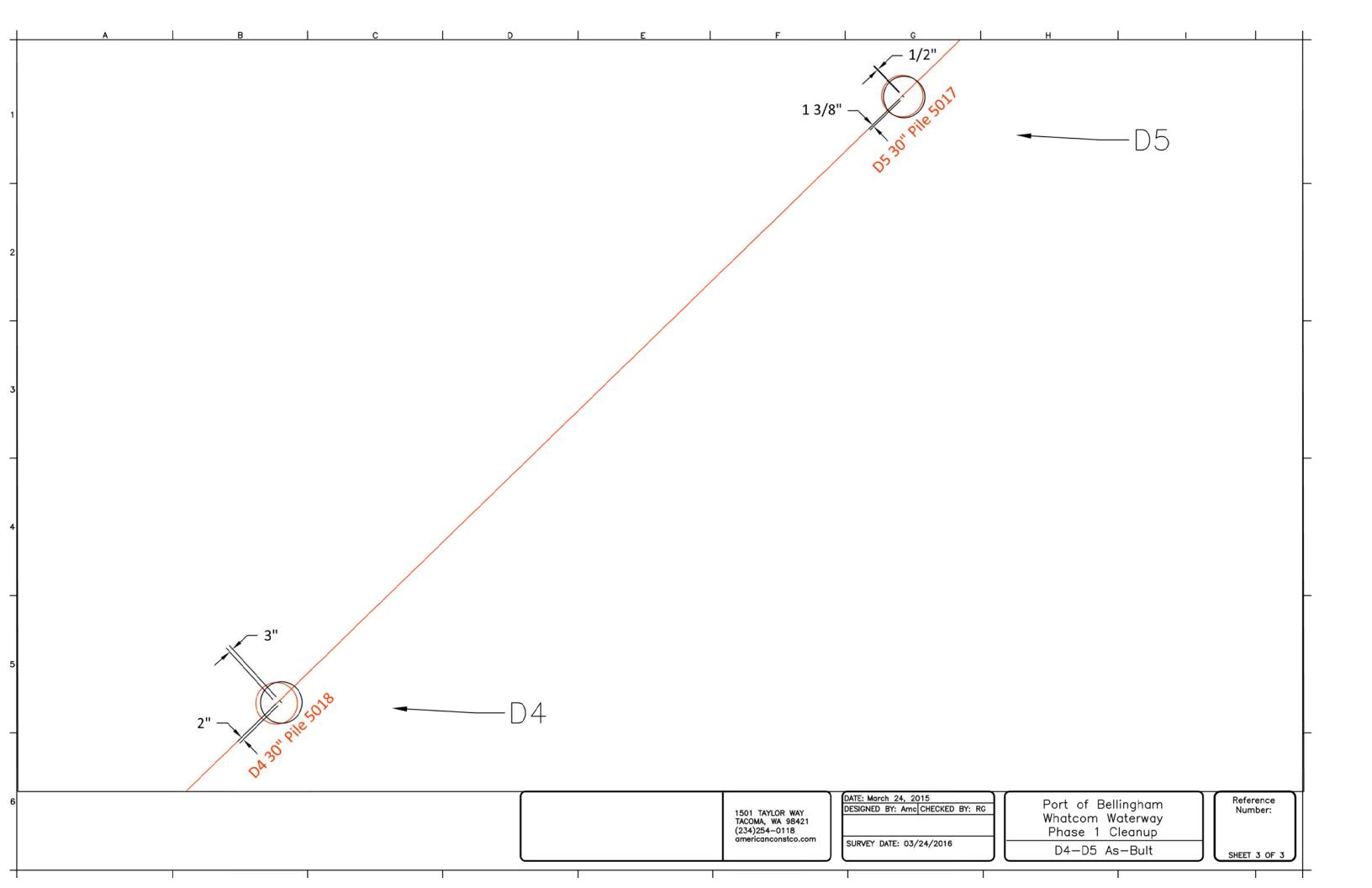
Sheet #	Sheet Length	Тор	AB Tip	Design Tip	Alignment Issues	Notes
79	60	11.25	-48.75	-49		
79.5	60	11	-49	-49		
80	45	20.05	-24.95	-22.5		
King#1	115	16.16	-98.84	-100	Advanced 7" in 15 mins of driving with King Kong	
81	45	22.74	-22.26	-22.5		
King #2	115	31.75	-83.25	-100	Advance 4" in 15 mins w/ king kong	
82	45	22.39	-22.61	-22.5		
83	45	22.92	-22.08	-22.5		
King #3	115	31	-84	-100		
84	45	23.71	-21.29	-22.5		
King #4	115	29.7	-85.3	-100	Advanced 1' in 1 hour of driving with King Kong	
85	50	18.78	-31.22	-22.5		
86	50	14.54	-35.46	-34		
87	50	14.65	-35.35	-34		
88	50	15.43	-34.57	-34		
89	50	12.79	-37.21	-34		
90	50	13.75	-36.25	-34		
91 West	50	13	-37	-34		
91 East	50	14.35	-35.65	-34		
92	50	12.1	-37.9	-34		
93	50	14.05	-35.95	-34		
94	50	12.5	-37.5	-34		
95	50	12	-38	-34		
96	50	12.1	-37.9	-34		
97	50	12	-38	-34		
98	50	16	-34	-34		
99 West	50	12.06	-37.94	-34		
99 East	50	12.26	-37.74	-34		
100	50	11.88	-38.12	-34		
101	50	13.4	-36.6	-34		
102 West	50	12.4	-37.6	-34		
102 East	50	12.48	-37.52	-34		
103	50	12.12	-37.88	-34		
104	50	13.02	-36.98	-34		
105	50		-35.6	-34		

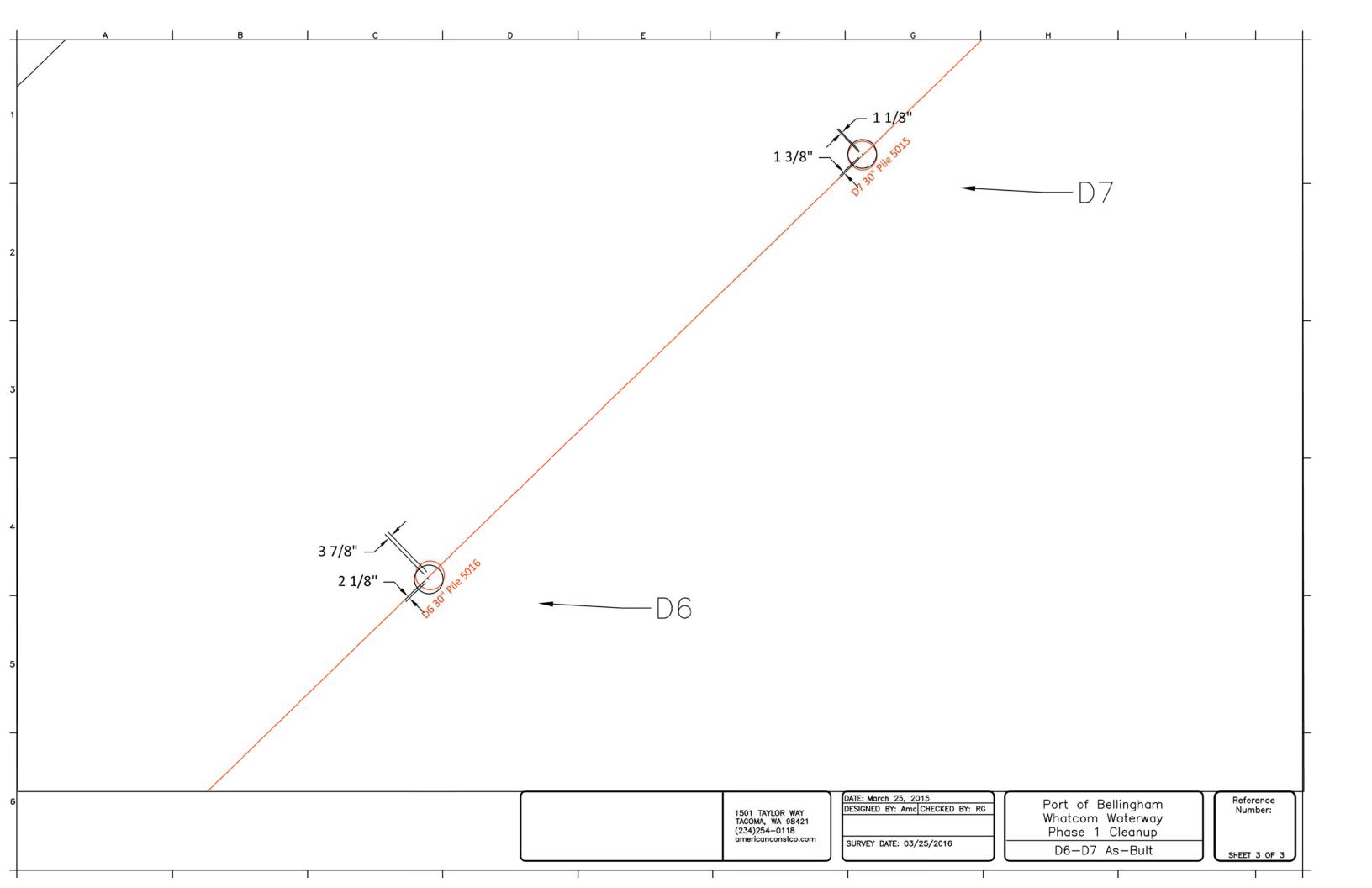
Sheet #	Sheet Length	Тор	AB Tip	Design Tip	Alignment Issues	Notes
106	50	12.1	-37.9	-34		
107 West	50	14.45	-35.55	-34		
107 East	50	13.95	-36.05	-34		
108	50	15.83	-34.17	-34		
109 West	50	13	-37	-34		
109 East	50	14.25	-35.75	-34		
110 West	50	12	-38	-34		
110 East	50	13.08	-36.92	-34		
111	50	12.6	-37.4	-34		
112	50	12	-38	-34		
113	50	12.55	-37.45	-34		
114	50	12.7	-37.3	-34		
115 West	50	12	-38	-34		
115 East	49.08	12.2	-36.88	-34		Fresh head
116	50	12	-38	-34		
117	50	14.1	-35.9	-34		
118 West	50	15.5	-34.5	-34		
118 East	50	13	-37	-34		
119 East	50	15.35	-34.65	-34		
120 West	50	12.4	-37.6	-34		
120 East	50	12.6	-37.4	-34		
121 West	50	16	-34	-34		
121 East	50	13.6	-36.4	-34		
122 West	50	12.3	-37.7	-34		
122 East	50	12.8	-37.2	-34		
123 West	50	13.1	-36.9	-34		
123 East	50	13.4	-36.6	-34		
124 West	50	12.3	-37.7	-34		
124 East	50	12.4	-37.6	-34		
125 West	50	12	-38	-34		
125 East	50	12.06	-37.94	-34		
126 West	50	12	-38	-34		
126 East	50	12	-38	-34		
127 West	50	14	-36	-34		
127 East	50	14	-36	-34		

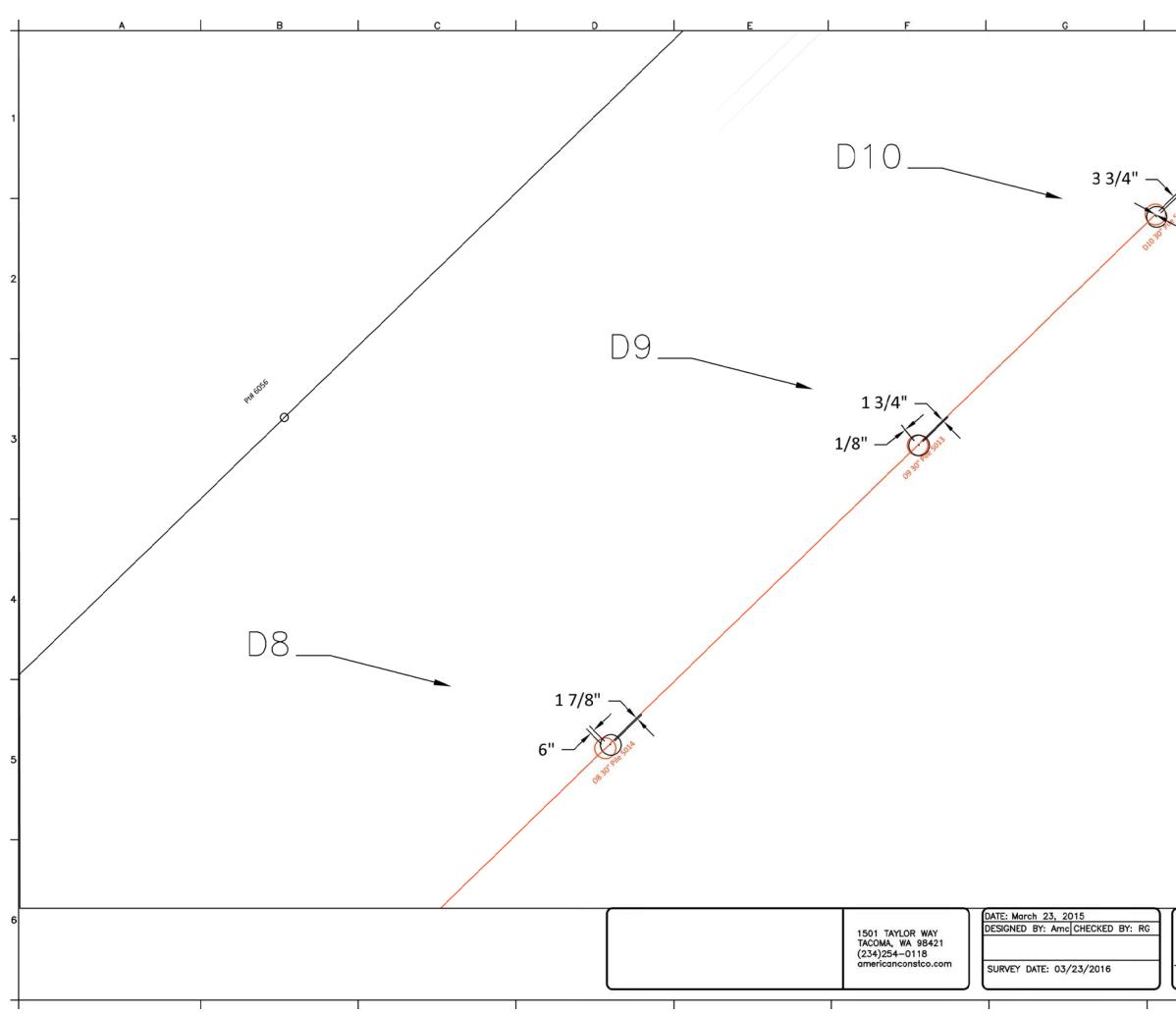
Sheet #	Sheet Length	Тор	AB Tip	Design Tip	Alignment Issues	Notes
128	50	16	-34	-34		
129	50	15.85	-34.15	-34		
130 West	50	14.95	-35.05	-34		
130 East	50	14.7	-35.3	-34		
131 West	50	15.46	-34.54	-34		
131 East	50	14.46	-35.54	-34		
132 West	50	13.3	-36.7	-34		
132 East	50	13.65	-36.35	-34		
133 West	50	14.25	-35.75	-34		
133 East	50	14.15	-35.85	-34		
134 West	50	15.55	-34.45	-34		
134 East	50	21.9	-28.1	-34	Hard driving, hit obstruction	
135 West	50	15.7	-34.3	-34		
135 East	50	13.35	-36.65	-34		
136 West	50	13.55	-36.45	-34		
136 East	50	13.65	-36.35	-34		
137 West	50	13.65	-36.35	-34		
137 East	50	21	-29	-34	Hard driving, hit obstruction	
138 West	50	15.3	-34.7	-34		
138 East	50	15.6	-34.4	-34		
139 West	50	14	-36	-34		
139 East	50	13.9	-36.1	-34		
140 West	50	14.15	-35.85	-34		
140 East	50	20	-30	-34	Hard driving, hit obstruction	
141 West	50	15.7	-34.3	-34		
141 East	50	13	-37	-34		
142 West	50	15	-35	-34		
142 East	50	14.15	-35.85	-34		
143 West	50	15.2	-34.8	-34		
143 East	50	15.2	-34.8	-34		
144 West	50	15	-35	-34		
144 East	50	14.9	-35.1	-34		
145	50	16	-34	-34		
146 West	50	17.65	-32.35	-34		
146 East	50	25.45	-24.55	-34		

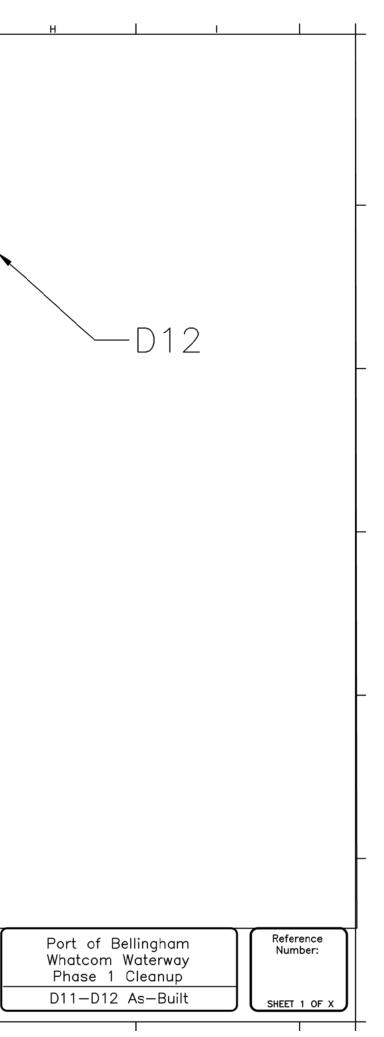
Sheet #	Sheet Length	Тор	АВ Тір	Design Tip	Alignment Issues	Notes
147 West	50	14	-36	-34		
147 East	50	14	-36	-34		
148 West	50	15.03	-34.97	-34		
148 East	50	15.1	-34.9	-34		
149 West	50	13.15	-36.85	-34		
149 East	50	13.78	-36.22	-34		
150 West	50	15.6	-34.4	-34		
150 East	50	25.45	-24.55	-34		
151	50	15.9	-34.1	-34		
152	25	15.5	-9.5	-7		
153	25	14.33	-10.67	-7		
153.5	25	13.78	-11.22	-7		
154	25	15.33	-9.67	-7		
155	25	14.5	-10.5	-7		
156	25	17.5	-7.5	-7		
157 South	25	16	-9	-7		
157 North	25	13.37	-11.63	-7		
158 South	25	16.15	-8.85	-7		
158 North	25	15.85	-9.15	-7		
159	25	15.65	-9.35	-7		
160	25	13.5	-11.5	-7		
161	25	14.5	-10.5	-7		

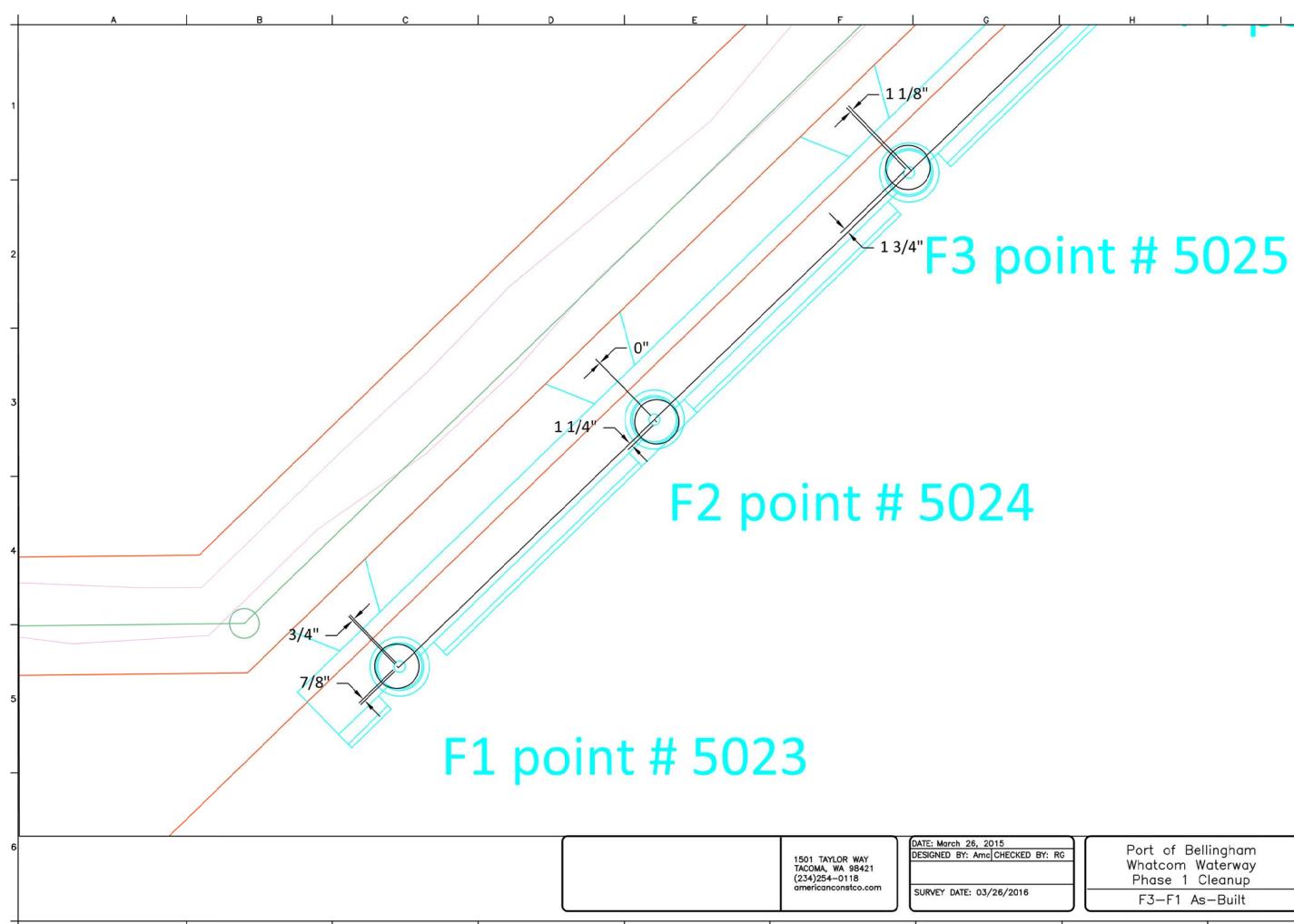

Pile #	Pile length a Top as dr	ivon	AB Tip	Docign Tin	Docing N	Design E	AB #	AB N	AB E	Top after splice	Data Drivan	Hammor	Notes
D1	85	5.52	-79.48	Design Tip -80		1240983.44	4006	642741.86		20.52	Date Driven 3/24/2016	Hammer	Design loca
D1 D2	85	5.52	-79.48	-80	642778.34	1240985.44	4000		1240985.2	20.52	· ·	•	Design loca
D2 D3	85	5.44	-79.48	-80	642814.89	1241021.12	4007		1241020.89	20.32	· ·	Ape 200-6	
D3 D4			-79.56								• •	•	Design loca
	85	5.5		-80	642851.45	1241096.48	4009		1241096.78	20.5	· · ·	•	Design loca
D5	85	5.58	-79.42	-80		1241134.17	4010		1241134.28	20.58		•	Design loca
D6	85	5.42	-79.58	-80		1241171.85	4005		1241171.75	20.42		•	Design loca
D7	85	5.49	-79.51	-80		1241209.54	4004		1241209.53	20.49		•	Design loca
D8	85	5.54	-79.46	-80	642997.66	1241247.22	4003		1241247.87	20.54	· · ·	•	Design loca
D09	85	5.6	-79.4	-80	643034.21	1241284.9	4002		1241285.08	20.6		•	Design loca
D10	85	5.58	-79.42	-80	643062.047	1241313.6	4001	643061.76		20.58	3/23/2016	Ape 200-6	Design loca
D11	85	5	-80	-80	643203.57		5137	643203.46				Ape 200-6	Design loca
D11 RFI51	85	5	-80	-80	643203.14	1241459.05	19		1241458.68	20	3/28/2016	Ape 200-6	Design loca
D12	85	5	-80	-80	643238.38	1241494.52	5136	643237.83	1241494.61			Ape 200-6	Design loca
D12 RFI51	85	4.93	-80.07	-80	643220.54	1241476.99	18	643220.29	1241477.05	19.93	3/28/2016	Ape 200-6	Design loca
D13	101	20.7	-80.3	-80	642838.69	1241605.54	4000	642837.00	1241603.4		3/22/2016	Ape 200-6	Field fit pile
18" pile	74	15	-59	-55	643264.259	1241528.28	15	643264.07	1241527.91		3/18/2016	Ape 200-6	
18" pile	74	15	-59	-55	643245.596	1241546.38	16	643245.91	1241546.69		3/18/2016	Ape 200-6	
18" pile	74	15	-59	-55	643245.068	1241560.72	18	643245.78	1241560.83		3/18/2016	Ape 200-6	
18" pile	74	15	-59	-55	643263.004	1241583.6	14	643264.4	1241583.17		3/18/2016	Ape 200-6	
18" pile	74	15	-59	-55	643254.928	1241537.33	13	643255.05	1241537.43		3/18/2016	Ape 200-6	
F1	45	13.5	-31.5	-29	643088.868	1241343.14	12	643088.88	1241343.04		3/26/2016	Ape 200-6	
F2	45	13.5	-31.5	-29	643097.223	1241351.75	11	643097.15	1241351.83		3/26/2016	Ape 200-6	
F3	45	13.5	-31.5	-29	643105.578	1241360.37	10	643105.75	1241360.33		3/26/2016	Ape 200-6	
F4	45	13.5	-31.5	-29	643113.933	1241368.98	9	643114.09	1241368.89		3/26/2016	Ape 200-6	
F5	45	13.5	-31.5	-29	643122.288	1241377.6	8	643122.44	1241377.69		3/26/2016	•	
F6	45	13.5	-31.5	-29	643130.642	1241386.21	7	643130.88	1241386.3			Ape 200-6	
F7	45	13.5	-31.5	-29		1241394.82	6				· ·	Ape 200-6	
F8	45	13.5	-31.5	-29		1241403.44	5		1241403.35			Ape 200-6	
F9	45	13.5	-31.5	-29		1241412.05	4		1241411.97		· · ·	Ape 200-6	
F10	45	13.5	-31.5	-29		1241420.66	3		1241420.65			Ape 200-6	
F11	45	13.5	-31.5	-29		1241429.28	2		1241429.33		3/25/2016	•	
F12	45	13.5	-31.5	-29			1		1241425.33			Ape 200-6	
1 1 2	45	13.3	-31.3	-29	043100.771	1241437.03	T	043100.00	1241437.07		5/25/2010	Ape 200-0	


Column1


- ocation changed in RFI 51.
- ocation changed in RFI 51, Pile hit obstruction, slid east.
- ocation changed in RFI 51


bile for gangway to land on exist dock

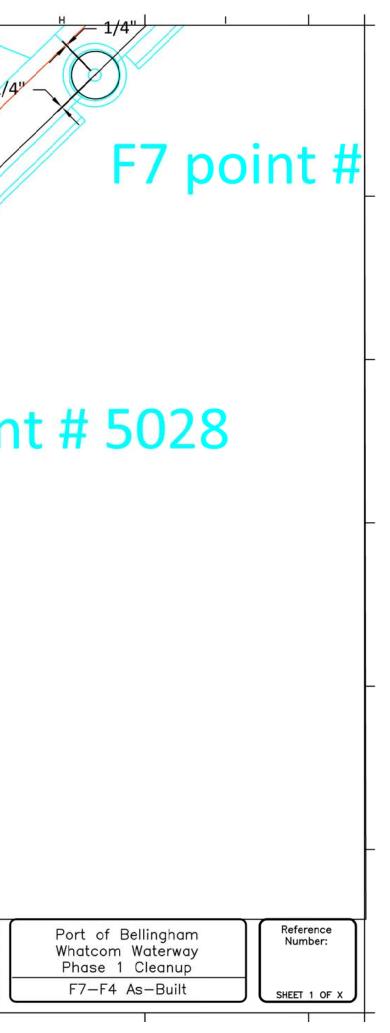

н

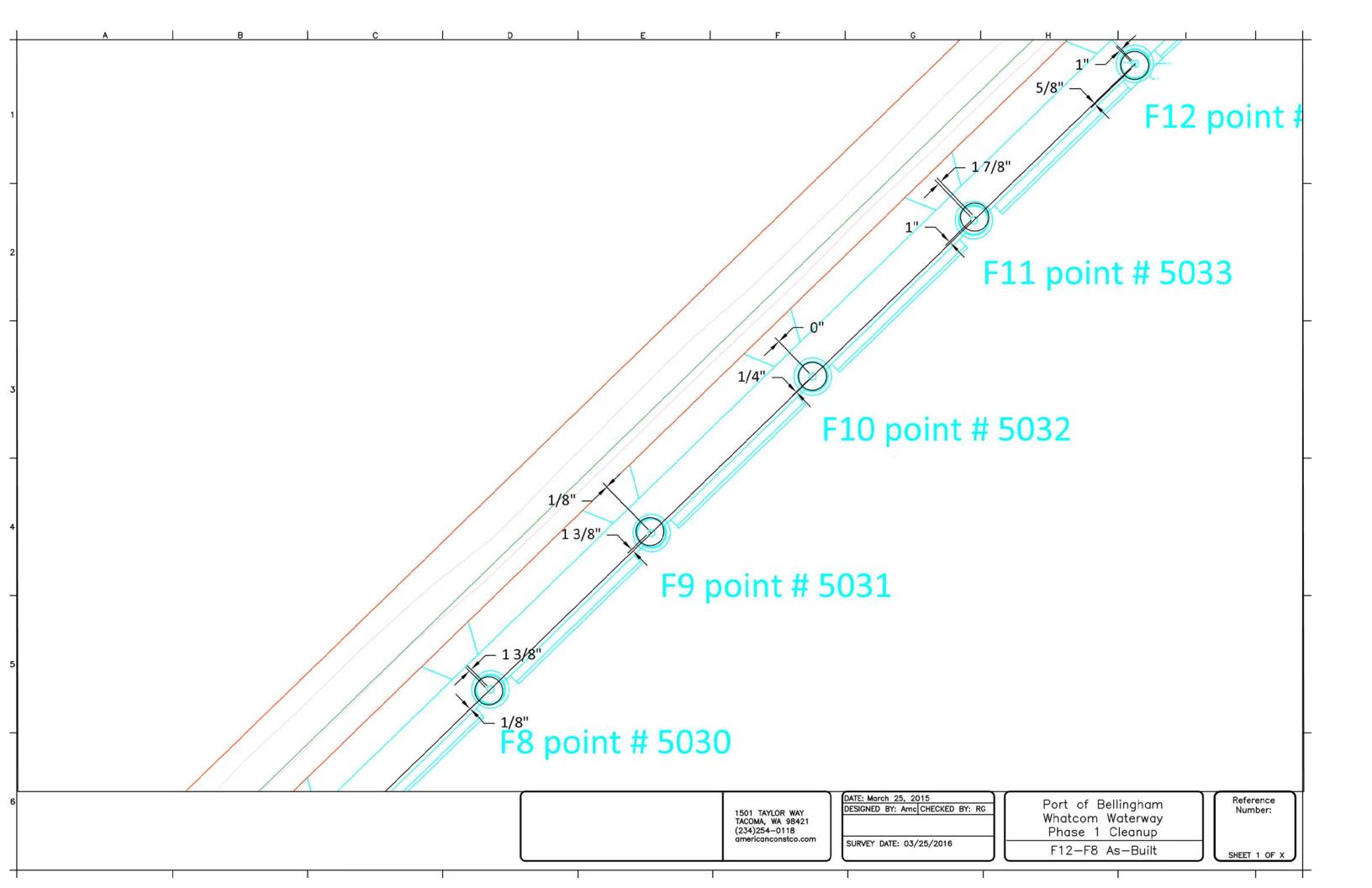

1

Port of Bellingham	
Whatcom Waterway	
Phase 1 Cleanup	
D8-D10 As-Bult	
	-

Reference Number:							
SHEET 1 OF)	,						

_	A	В	с	D	1	E I	F	G	1
1	1							15	5/8"
_								2 5/8" -	
2	2								
_									
3	3								
_									
4	4								
-		4 1/4"							
5	5	4 1/4				—D11			
-	-		2"						
6	6						1501 TAYLOR WAY TACOMA, WA 98421 (234)254–0118 americanconstco.com	DATE: March 28, 2015 DESIGNED BY: Amc CHECKED SURVEY DATE: 03/28/2016	
+				`					




Port of Bellingham Whatcom Waterway Phase 1 Cleanup F3-F1 As-Built

Reference Number:

SHEET 1 OF X

+	A B C D E F G G
1	
-	
2	-27/8"
_	11/4"
3	F6 poir
_	
4	2 1/8" - 1 /2" -
_	F5 point # 5027
5	
_	1/2"
6	1501 TAYLOR WAY TACOMA, WA 98421 (234)254-0118 americanconstco.com DATE: March 26, 2015 DESIGNED BY: Amc CHECKED BY: RG SURVEY DATE: 03/26/2016

ATTACHMENT B TIEBACK INSTALLATION LOGS

(Provided Separately)

ATTACHMENT C TIEBACK TESTING RECORD FORMS

Tieback Proof Testing

Tieback Location	Tieback No.	Date Installed	Da	ate(s) Post-Grout	ed	Test Date	Design Load (P; kips)	Lockoff Load (kips)	Elastic Mod. (E; ksi)
Row 1	1	1/28/2016	1/29/2016			3/24/2016	100.0	75.0	28800
Shaft Diameter	Number of	Total Strand	Total Tendon	Tendon Bond	Free Stressing	Tail Length	Theo. Elastic		
(in)	Strands	Area (A; in ²)	Length (L _T ; ft)	Length (L _B ; ft)	Length (L _U ; ft)	(L _e ; ft)	Elong. (in)	Recorded By	Reviewed By
6	3	0.660	103	50	52.1	0.9	4.450	ZLK	ZLK
						Elongation of	Elongation of		
						Free Stressing Length + 50% of	80% Free Stressing	Apparent Free	
			Gauge Pressure	Recorded	Elastic	Bonded Length	Length	Tendon Length $A_t E_s \delta_e /$	
	Load Testing		for Test Load	Displacement	Elongation at	$P(0.5L_B+L_u)/AE$	0.8*P(L _u)/AE	(TL-AL)	
Time (min)	Schedule	Test Load (kips)	(psi)	(in.)	Test Load (in.)	(in.)	(in.)	(ft)	Comments
	AL (0.10DL)	12	400	0.000		0.000	0.000		
	0.25DL	29	1000	0.378	0.378	0.802	0.434	127.82	
	0.50DL 0.75DL	56 81	2000 2900	1.330 2.228	1.330 2.228	2.139 3.342	1.156 1.806	47.93 51.39	
	1.00DL	106	3800	3.256	3.256	4.545	2.457	55.22	
	1.20DL	125	4500	4.056	4.056	5.481	2.963	57.04	
	1.33DL	136	4900	4.515	4.515	6.016	3.252	57.86	
1	1.33DL	136	4900	4.515		6.016	3.252		
2	1.33DL	136	4900	4.515		6.016	3.252		
3	1.33DL 1.33DL	136 136	4900 4900	4.549 4.549		6.016 6.016	3.252 3.252		< Laborer moved test
5	1.33DL	136	4900	4.549		6.016	3.252		beam
6	1.33DL	136	4900	4.551		6.016	3.252		Pump the jack
10	1.33DL	136	4900	4.552		6.016	3.252		
	AL	15	500						
	LOCKOFF	89	3200			3.743	2.023		
	t Between 1 and		0.037			Acceptability of			ASS
Maximum Total	Movement Allow	ved (in.)*:	0.040	l		Retesting Requir Sheet No. of Ret			10 /A
Addit	ional Testing for	when Max. Total	Movement is Exc	eeded	ו	Sheet No. of Net		14	//
20 min	30 min	40 min	50 min	60 min		Ram I.D.	141121		
]	Gauge I.D.	12-4		
0				Load (kips)					
		20	40	Load (kips) 60	80	100	120		140
0.00 +		20	40		80	100	120	:	140
0.00		20	40		80	100	120		
0.00		20	40		80				
0.00		20	40		80				
		20	40		80				
		20	40		80				
1.00		20	40		80				
1.00		20	40		80	100			
1.00		20	40		80	100			
1.00		20	40		80	100			
1.00		20	40		80	100			
1.00			40		80	100			
1.00 2.00			40		80	100			
1.00			40		80	100			
1.00			40		80	100			
1.00			40		80				
1.00 2.00 3.00 0.05 0.05 0.05	Recorded E	Displacement (in.)			80				
1.00 2.00 3.00 0.05 0.05 0.05	Recorded E				80				
1.00 2.00 3.00 0.05 0.05 0.05	Recorded E	Displacement (in.) n + 50% of Bond L			80				

7.00

Note: Test results were recorded by Kameron Peters of Malcolm Drilling, Inc.

Elastic Elongation at Test Load (in.)

Tieback Proof Testing

Tieback Location	Tieback No.	Date Installed	Da	ate(s) Post-Grout	ed	Test Date	Design Load (P; kips)	Lockoff Load (kips)	Elastic Mod. (E ksi)
Row 1	2	1/28/2016	1/29/2016			3/24/2016	100.0	75.0	28800
Shaft Diameter	Number of	Total Strand	Total Tendon	Tendon Bond	Free Stressing	Tail Length	Theo. Elastic		
(in)	Strands	Area (A; in ²)	Length (L_T ; ft)	Length (L_B ; ft)	Length (L_U ; ft)	(L _e ; ft)	Elong. (in)	Recorded By	Reviewed By
6	3	0.660	103	50	54.5	-1.5	4.450	KP (MDCI)	ZLK
-	-					-		· · · /	
						Elongation of	Elongation of		
						Free Stressing	80% Free	Apparent Free	
						Length + 50% of	Stressing	Tendon Length	
			Gauge Pressure	Recorded	Elastic	Bonded Length	Length	$A_t E_s \delta_e /$	
	Load Testing		for Test Load	Displacement	Elongation at	$P(0.5L_B+L_u)/AE$	0.8*P(L _u)/AE	(TL-AL)	
Time (min)	Schedule	Test Load (kips)		(in.)	Test Load (in.)	(in.)	(in.)	(ft)	Comments
	AL (0.10DL)	12	400	0.000		0.000	0.000		
	0.25DL	29	1000	0.160	0.160	0.827	0.454	112.73	
	0.50DL	56	2000	1.173	1.173	2.206	1.210	42.27	
	0.75DL 1.00DL	81 106	2900 3800	2.190 3.215	2.190 3.215	3.447 4.688	1.890 2.571	50.51 54.53	
	1.00DL 1.20DL	100	4500	4.221	4.221	5.653	3.100	59.36	
	1.33DL	136	4900	4.632	4.632	6.204	3.403	59.35	
1	1.33DL	136	4900	4.632		6.204	3.403		
2	1.33DL	136	4900	4.632		6.204	3.403		
3	1.33DL	136	4900	4.632		6.204	3.403		
4	1.33DL	136	4900	4.632		6.204	3.403		
5	1.33DL	136	4900	4.632		6.204	3.403		
6	1.33DL	136	4900	4.632		6.204	3.403		
10	1.33DL AL	136 15	4900 500	4.645		6.204	3.403		
	LOCKOFF	78	2800			3.309	1.815		
Total Movement		-	0.013			Acceptability of			ASS
Maximum Total			0.040			Retesting Requir			10
				1		Sheet No. of Ret			/A
		when Max. Total							
20 min	30 min	40 min	50 min	60 min		Ram I.D.			
					l	Gauge I.D.	12-4		
				Load (kips)					
0	2	20	40	60	80	100	120)	140
0.00 +			- · · · ·						+ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$
-									
1.00									
2.00									
les)									
nch									
t 3.00									
J.00									
ace									
00.6 Displacement (inches)									+
·S 4.00									
5.00 +	Recorded D	isplacement (in.)							
			angth						+
-		n + 50% of Bond L	ength						

Note: Test results were recorded by Kameron Peters of Malcolm Drilling, Inc.

Elastic Elongation at Test Load (in.)

80% of Free Length

6.00

7.00

Tieback Proof Testing

Tieback	Tisks I M					Test D. I	Design Load	Lockoff Load	Elastic Mod. (E;
Location	Tieback No.	Date Installed		ate(s) Post-Grout	ed	Test Date	(P; kips) 100.0	(kips) 75.0	ksi)
Row 1	3	1/28/2016	1/29/2016			3/24/2016		75.0	28800
Shaft Diameter	Number of	Total Strand	Total Tendon	Tendon Bond	Free Stressing	Tail Length	Theo. Elastic		
(in)	Strands	Area (A; in ²)	Length (L_T ; ft)	Length (L _B ; ft)	Length (L _U ; ft)	(L _e ; ft)	Elong. (in)	Recorded By	Reviewed By
6	3	0.660	103	50	52.3	0.8	4.450	KP (MDCI)	ZLK
			Gauge Pressure	Recorded	Elastic	Elongation of Free Stressing Length + 50% of Bonded Length	Elongation of 80% Free Stressing Length	Apparent Free Tendon Length $A_t E_s \delta_e /$	
	Load Testing		for Test Load	Displacement	Elongation at	$P(0.5L_B+L_u)/AE$	0.8*P(L _u)/AE	(TL-AL)	
Time (min)	Schedule	Test Load (kips)		(in.)	Test Load (in.)	(in.)	(in.)	(ft)	Comments
	AL (0.10DL)	12	400	0.000		0.000	0.000		
	0.25DL	29	1000	0.375	0.375	0.804	0.435	118.79	
	0.50DL	56	2000	1.236	1.236	2.143	1.160	44.54	
	0.75DL	81	2900	2.120	2.120	3.349	1.812	48.90	
	1.00DL	106	3800	3.172	3.172	4.555	2.465	53.80	
	1.20DL	125	4500	3.996	3.996	5.493	2.972	56.20	
	1.33DL	136	4900	4.508	4.508	6.029	3.262	57.77	
1 2	1.33DL	136	4900 4900	4.508		6.029	3.262		
3	1.33DL 1.33DL	136 136	4900	4.508 4.508		6.029 6.029	3.262 3.262		
4	1.33DL 1.33DL	136	4900	4.508		6.029	3.262		
5	1.33DL	136	4900	4.508		6.029	3.262		
6	1.33DL	136	4900	4.508		6.029	3.262		
10	1.33DL	136	4900	4.540		6.029	3.262		
	AL	15	500						
	LOCKOFF	78	2800			3.215	1.740		
Total Movement	t Between 1 and	10 Minutes (in.)	0.032			Acceptability of	Tieback:	PA	ISS
Maximum Total			0.040			Retesting Requir		N	0
						Sheet No. of Ret	est:	N	/A
		when Max. Total			-	Darry L D	1 4 1 1 2 1		
20 min	30 min	40 min	50 min	60 min	1	Ram I.D. Gauge I.D.			
					J	Gauge I.D.	12 ⁻⁴		
				Load (kips)					
0	2	20	40	60	80	100	120		L40
0.00						100		-	140
1.00									
1.00									
1.00									
2 00									
2 00									
2 00									
2 00									
2 00									
2 00									
2 00									
2.00 (juches)									
2 00									
2 00									
2.00 3.00 Disblacement Disblacement Disblacement	Recorded [Displacement (in.)							
2.00 3.00 Disblacement Disblacement Disblacement									
2.00 Displacement (inches) 3.00 0.00 5.00		Displacement (in.) n + 50% of Bond L							
2.00 3.00 Disblacement Disblacement Disblacement		n + 50% of Bond L							
2.00 Displacement (inches) 3.00 0.00 5.00	Free Length 80% of Free	n + 50% of Bond L							
2.00 Displacement (inches) 3.00 0.00 5.00		n + 50% of Bond L							

Note: Test results were recorded by Kameron Peters of Malcolm Drilling, Inc. The pressure for the lock off load was not recorded and is approximated.

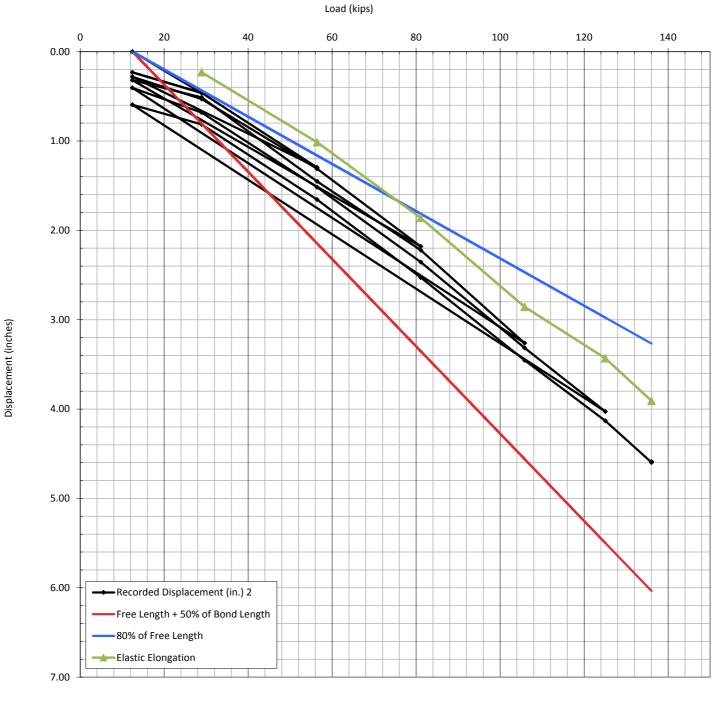
Tieback Proof Testing Record Form Whatcom Waterway Phase 1 Cleanup

Tieback Performance Test

Tieback Location	Tieback No.	Date Installed	D	ate(s) Post-Grout	od	Test Date	Design Load (P; kips)	Lockoff Load (kips)	Elastic Mod. (E; ksi)
			1/29/2016		eu		(P, KIPS) 100.0		
Row 1	4	1/28/2016	1/29/2016			3/24/2016	100.0	75.0	28800
Shaft Diameter	Number of	Total Strand	Total Tendon	Tendon Bond	Free Stressing	Tail Length	Theo. Elastic		
(in)	Strands	Area (A; in ²)	Length (L _⊤ ; ft)	Length (L _B ; ft)	Length (L _U ; ft)	(L _e ; ft)	Elong. (in)	Recorded By	Reviewed By
6	3	0.660	103	50	52	0.7	4.450	KP (MDCI)	ZLK
		0.000	100			0.7		(
						Elongation of	Elongation of		
						Free Stressing	80% Free	Apparent Free	
					Elastic	Length + 50% of	Stressing	Tendon Length	
			Gauge Pressure	Recorded	Elongation at	Bonded Length	Length	$A_t E_s \delta_e /$	
	Load Testing		for Test Load	Displacement	Load Cycle	$P(0.5L_B+L_u)/AE$	0.8*P(L _u)/AE	(TL-AL)	
Time (min)	0	Test Load (kins)	1	(in.) ²					Commonto
Time (min)	Schedule	Test Load (kips) 12	400		Maximum (in.)	(in.)	(in.) 0.000	(ft) 	Comments
	AL (0.10DL)	29	1000	0.000	0.231	0.000 0.805	0.000		
	0.25DL	12		0.463				22.20	
	AL 0.25DL	29	400 1000	0.232 0.460		0.000 0.805	0.000		
	0.25DL 0.50DL	56	2000	1.296	1.014	2.146	1.162	36.54	
	AL	12	400	0.282		0.000	0.000		
	0.25DL	29	1000	0.530		0.805	0.436		
	0.23DL 0.50DL	56	2000	1.311		2.146	1.162		
	0.30DL 0.75DL	81	2000	2.180	1.860	3.353	1.815	42.90	
	AL	12	400	0.320		0.000	0.000	42.90	
	0.25DL	29	1000	0.512		0.805	0.436		
	0.23DL 0.50DL	56	2000	1.452		2.146	1.162		
	0.75DL	81	2900	2.222		3.353	1.815		
	1.00DL	106	3800	3.262	2.857	4.560	2.469	48.45	
	AL	100	400	0.405		0.000	0.000		
	0.25DL	29	1000	0.682		0.805	0.436		
	0.50DL	56	2000	1.517		2.146	1.162		
	0.75DL	81	2900	2.356		3.353	1.815		
	1.00DL	106	3800	3.315		4.560	2.469		
	1.20DL	125	4500	4.027	3.432	5.499	2.977	48.27	
	AL	12	400	0.595		0.000	0.000		
	0.25DL	29	1000	0.815		0.805	0.436		
	0.50DL	56	2000	1.655		2.146	1.162		
	0.75DL	81	2900	2.528		3.353	1.815		
	1.00DL	106	3800	3.454		4.560	2.469		
	1.20DL	125	4500	4.132		5.499	2.977		
	1.33DL	136	4900	4.597		6.035	3.267		
1	1.33DL	136	4900	4.593					
2	1.33DL	136	4900	4.592					
3	1.33DL	136	4900	4.591					
4	1.33DL	136	4900	4.595					
5	1.33DL	136	4900	4.592					
6	1.33DL	136	4900	4.590					pump jack
10	1.33DL	136	4900	4.590	3.908			50.08	set dial @ 4"
	AL	12	400	0.682					
	LOCKOFF	81	2900			3.353	1.815		
Total Movement	Between 1 and	10 Minutes (in)	-0.003			Acceptability of	Tieback:	PA	SS
Maximum Total		. ,	0.040			Retesting Required? NO			
				I		Sheet No. of Ret		N	
Additi	onal Testing for	when Max. Total	Movement is Exc	eeded	1				

Additional Testing for when Max. Total Movement is Exceeded									
20 min 30 min 40 min 50 min 60 min									

Ram I.D. 141121 Gauge I.D. 12-4


Notes/Additional Comments:

1. Gage pressure must be maintained during testing and be held to within +/- 2%

2. Recorded displacements are to be recorded to the nearest 0.001 in.

Tieback Performance Test

Test Notes:

Note: Test results were recorded by Kameron Peters of Malcolm Drilling, Inc. The pressure for the lock off load was not recorded and is approximated.

Tieback	Tiskask Na	Data la stalla d		ata (a) Death Creat	ad	Test Data	Design Load		Elastic Mod. (E;
Location Row 1	Tieback No. 5	Date Installed 1/28/2016	1/29/2016	ate(s) Post-Grout	eu	Test Date 3/24/2016	(P; kips) 100.0	(kips) 75.0	ksi) 28800
		Total Strand						75.0	20000
Shaft Diameter (in)	Number of Strands	Area (A; in ²)	Total Tendon	Tendon Bond	Free Stressing Length (L _U ; ft)	Tail Length	Theo. Elastic	Recorded By	Reviewed By
6	3	0.660	Length (L _T ; ft) 103	Length (L _B ; ft) 50	52.4	(L _e ; ft) 0.6	Elong. (in) 4.450	KP (MDCI)	ZLK
0	5	0.000	103	50	52.4	0.0	4.450		ZLK
						Elongation of	Elongation of		
						Free Stressing	80% Free	Apparent Free	
						Length + 50% of	U	Tendon Length	
			Gauge Pressure	Recorded	Elastic	Bonded Length	Length	$A_t E_s \delta_e /$	
.	Load Testing		for Test Load	Displacement	Elongation at	$P(0.5L_B+L_u)/AE$	0.8*P(L _u)/AE	(TL-AL)	
Time (min)	Schedule AL (0.10DL)	Test Load (kips) 12	(psi) 400	(in.) 0.000	Test Load (in.)	(in.) 0.000	(in.) 0.000	(ft) 	Comments
	0.25DL	29	1000	0.500	0.500	0.806	0.436	125.71	
	0.50DL	56	2000	1.308	1.308	2.148	1.164	47.14	
	0.75DL	81	2900	2.225	2.225	3.356	1.818	51.32	
	1.00DL	106	3800	3.342	3.342	4.565	2.473	56.68	
	1.20DL 1.33DL	125 136	4500 4900	4.146 4.713	4.146	5.505 6.042	2.982 3.272	58.31 60.39	
1	1.33DL 1.33DL	136	4900	4.713	4.713	6.042	3.272		
2	1.33DL	136	4900	4.713		6.042	3.272		
3	1.33DL	136	4900	4.713		6.042	3.272		
4	1.33DL	136	4900	4.713		6.042	3.272		
5	1.33DL	136	4900	4.713		6.042	3.272		
6 10	1.33DL 1.33DL	136 136	4900 4900	4.713 4.725		6.042 6.042	3.272 3.272		
	AL	15	500	4.725					
	LOCKOFF	78	2800			3.222	1.745		
Total Movement	t Between 1 and	10 Minutes (in.)	0.012			Acceptability of	Tieback:	PA	ASS
Maximum Total	Movement Allow	/ed (in.)*:	0.040			Retesting Requir	ed?		10
۸ddit	ional Tasting for	when Max Total	Movement is Exc	aadad	n	Sheet No. of Ret	est:	N	/A
20 min	30 min	40 min	50 min	60 min		Ram I.D.	141121		
		-				Gauge I.D.			
				Load (kips)					
0	2	20	40	60	80	100	120)	140
0.00 +		+ + + + + + + + + + + + + + + + + + + +	-+					· · · · · · ·	+
1.00 -									
-									
2.00									
che.									
(in									
ta 3.00 +									
em -									
Displacement (inches)									
·S 4.00 +									
								$+\mathbf{N}+$	+
5.00 -	Recorded D	Displacement (in.)							
		n + 50% of Bond L	ength						
-									
6.00	—80% of Free	e Length							
6.00	80% of Free	e Length							

Note: Test results were recorded by Kameron Peters of Malcolm Drilling, Inc. The pressure for the lock off load was not recorded and is approximated.

Tieback Proof Testing Record Form Whatcom Waterway Phase 1 Cleanup

Tieback							Design Load	Lockoff Load	Elastic Mod. (E;
Location	Tieback No.	Date Installed		ate(s) Post-Grout	ed	Test Date	(P; kips)	(kips)	ksi)
Row 1	6	1/27/2016	1/29/2016			3/24/2016	100.0	75.0	28800
Shaft Diameter	Number of	Total Strand	Total Tendon	Tendon Bond	Free Stressing	Tail Length	Theo. Elastic		
(in)	Strands	Area (A; in ²)	Length (L _T ; ft)	Length (L _B ; ft)	Length (L _U ; ft)	(L _e ; ft)	Elong. (in)	Recorded By	Reviewed By
6	3	0.660	103	50	51.8	1.3	4.450	KP (MDCI)	ZLK
						Flowertien of			
						Elongation of Free Stressing	Elongation of 80% Free		
						Length + 50% of		Apparent Free	
			Gauge Pressure	Recorded	Elastic	Bonded Length	Length	$\begin{array}{l} \text{Tendon Length} \\ A_t E_s \delta_e / \end{array}$	
	Load Testing		for Test Load	Displacement	Elongation at	$P(0.5L_B+L_u)/AE$	0.8*P(L _u)/AE	(TL-AL)	
Time (min)	Schedule	Test Load (kips)		(in.)	Test Load (in.)	(in.)	(in.)	(ft)	Comments
	AL (0.10DL)	12	400	0.000		0.000	0.000		
	0.25DL	29	1000	0.405	0.405	0.799	0.431	116.77	
	0.50DL	56	2000	1.215	1.215	2.130	1.149	43.79	
	0.75DL	81	2900	2.154	2.154	3.328	1.795	49.68	
	1.00DL	106	3800	3.247	3.247	4.525	2.441	55.07	
	1.20DL 1.33DL	125 136	4500 4900	4.024 4.517	4.024 4.517	5.457 5.990	2.944 3.231	56.59 57.88	
1	1.33DL 1.33DL	136	4900	4.517	4.317	5.990	3.231		
2	1.33DL	136	4900	4.517		5.990	3.231		
3	1.33DL	136	4900	4.517		5.990	3.231		
4	1.33DL	136	4900	4.517		5.990	3.231		
5	1.33DL	136	4900	4.517		5.990	3.231		
6	1.33DL	136	4900	4.517		5.990	3.231		
10	1.33DL	136	4900	4.528		5.990	3.231		
	AL LOCKOFF	15 78	500 2800			3.194	1.723		
Total Movement Maximum Total			0.011 0.040			Acceptability of Retesting Requir			ASS IO
Iviaximum rotar	Movement Allow	/eu (iii.) .	0.040	I		Sheet No. of Ret			/A
Additi	ional Testing for	when Max. Total		eeded]				
20 min	30 min	40 min	50 min	60 min		Ram I.D.			
					l	Gauge I.D.	12-4		
				Load (kips)					
0	2	:0	40	60	80	100	120)	140
0.00 +			- · · · ·		<u> </u>				+ + + - + - 1
-									
1.00 +									
-									
-									
2.00									
hes									
00.4 Displacement (inches)									
t 3.00									
eme									
lace									
ds 4.00									
5.00 +	Pocordad D	isplacement (in.)							
	Recorded D	isplacement (in.)							
• [-]	Free Length	+ 50% of Bond L	ength						
6.00	80% of Free	length							
El 1	00/001126	- congen							
- [-]	Elastic Elon	gation at Test Loa	ıd (in.)						
7.00									

7.00 Ĺ

Note: Test results were recorded by Kameron Peters of Malcolm Drilling, Inc. The pressure for the lock off load was not recorded and is approximated.

Location Treat/ND Date Instance Tendore Tendore Tendore (tip) (ks) SNAT 7 7/37/16 7/37/36 7/37/36 7/37/36 <th>Tieback</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>Design Load</th> <th></th> <th>Elastic Mod. (E;</th>	Tieback							Design Load		Elastic Mod. (E;
Shart Diemeter (n) Number of Stradis Total Tendon Aces (A, inf) Total Tendon (Leg/h (L_2/h) Tenes (Leg/h (L_2/h) Tai Leng/h (L_2/h) Theo, Elastic (Leg/h, L_2/h) Recorded by Reviewed by 6 3 0.600 103 50 52.0 1.0 4450 Reviewed by 7 a.600 103 50 52.0 1.0 4450 Reviewed by 7 a.600 103 50 52.0 1.0 4450 Reviewed by 7 a.410.1001 132 400 0.000 0.000 0.000 0.000 0.000 0.000 0.000					ate(s) Post-Grout	ed			1	, í
Implicit Strands Area (A: In*) Length (f ₀ ; ft) Length (f ₀ ; ft) <thlength (f_0)<="" th=""> <thlength (f_0)<="" th=""></thlength></thlength>									73.0	20000
6 3 0.600 103 50 52.0 1.0 4.450 KP (MDCI) ZIX Image: State of the second colspan="4">Image: State of the second colspan= the second colspan="4" Image: State of the second colspan="4" I									Descent 10	Device 10
Image: Constraint of the second of									,	
Image Gauge Pressue Recorded Institution Prec Stressing Length + 50% of Bond Length + 1172 Apparent Tree Tree Langth Length + 1172 Apparent Tree Tree Lingth + 1172 Apparent Tree Tree Lingth + 1172 Apparent Tree Tree Lingth + 1172 Apparent + 1172 Apparent + 1172	6	3	0.660	103	50	52.0	1.0	4.450	KP (MDCI)	ZLK
Load Testing For Test Load (lipp) For Test Load (l							Free Stressing Length + 50% of	80% Free Stressing	Tendon Length	
$ \frac{\text{Tme}(\text{min})}{} \frac{\text{Schealle}'}{14,(0.1001)} \frac{12}{12} \frac{\text{Mos}}{12} \frac{(\text{ma})}{12} \frac{(\text{ma})}{12} \frac{(\text{ma})}{12} \frac{(\text{ma})}{12} \frac{(\text{ma})}{12} \frac{(\text{ma})}{12} \frac{(\text{ma})}{12} \frac{(\text{ma})}{12} \frac{(\text{ma})}{12} \frac{(\text{ma})}{122} \frac{(\text{ma})$		Logid Toothers		-						
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Time (min)		Test Load (kins)		•	U U				Commonte
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $										Comments
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $										
		1.00DL	106	3800	3.051		4.540	2.453	51.74	
1 1.330L 136 4900 4.248 6.009 3.246 2 1.330L 136 4900 4.248 6.009 3.246 3 1.330L 136 4900 4.248 6.009 3.246 4 1.330L 136 4900 4.248 6.009 3.246 5 1.330L 136 4900 4.248 6.009 3.246 6 1.330L 136 4900 4.248 6.009 3.246 10 1.330L 136 4900 4.248 6.009 3.246 AL 15 500 3.235 1.731 AL 15 500 3.205 1.731 Maximum Total Movement Allowed (in.)*: 0.041										
2 1.330L 136 4900 4.248 6.009 3.246 3 1.330L 136 4900 4.248 6.009 3.246 4 1.330L 136 4900 4.248 6.009 3.246 5 1.330L 136 4900 4.248 6.009 3.246 10 1.330L 136 4900 4.248 6.009 3.246 AL 15 500 6.009 3.246 10 1.330L 136 4900 4.248 6.009 3.246 AL 15 500 3.205 1.731 Total Movement Between 1 and 10 Minutes (in.) 0.040 3.205 1.731 NO Somm 20 min 30 min 40 min 50 min 60 min 3.205 1.731 10 <td></td> <td></td> <td></td> <td></td> <td></td> <td>4.248</td> <td></td> <td></td> <td>54.43</td> <td></td>						4.248			54.43	
3 1.33DL 136 4900 4.248 6.009 3.246 4 1.33DL 136 4900 4.248 6.009 3.246 5 1.33DL 136 4900 4.248 6.009 3.246 10 1.33DL 136 4900 4.248 6.009 3.246 110 1.33DL 136 4900 4.248 6.009 3.246 AL 15 500 6.009 3.246 AL 15 500 6.009 3.246 AL 15 500 7.00										
4 1.33DL 136 4900 4.248 6.009 3.246 5 1.33DL 136 4900 4.248 6.009 3.246 10 1.33DL 136 4900 4.248 6.009 3.246 110 1.33DL 136 4900 4.248 8.009 1.00 1.01 1.										
5 1.330L 136 4900 4.248 6.009 3.246 10 1.330L 136 4900 4.248 6.009 3.246 10 1.330L 136 4900 4.248 6.009 3.246 AL 15 500 AL 15 500 3.205 1.731 Total Movement Between 1 and 10 Munutes (in.) 0.006 3.205 1.731 Additional Testing for when Max. Total Movement is Exceeded										
6 1.330L 136 4900 4.248 6.009 3.246 10 1.330L 136 4900 4.254 6.009 3.246 AL 15 500 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>										
10 1360 4900 4.254 6.000 3.246 AL 15 500										
Image: constraint of the second displacement (in.) Soon Image: constraint of the second displacement (in.) Image: constraint of the seco	-									
Image: constraint of the constr					7.237					
Total Movement Between 1 and 10 Minutes (in.) 0.006 Maximum Total Movement Allowed (in.)*: 0.040 Additional Testing for when Max. Total Movement is Exceeded PASS Steek No. of Retest: NA Base No. Retesting Required? NO Steek No. of Retest: NA Count Steek No. Retesting Required? NO Base No. Retesting Required? NO Steek No. Steek No. Retesting Required? NO Steek No. Gauge I.D. 141121 Gauge I.D. 120 Output Output Steek No. Steek No. Retesting Required? NO Steek No. Steek No. Steek No. Retesting Required? NO Output Steek No. Steek No. Retesting Required? NO Steek No. Steek No. Steek No. Retesting Required? NO Output Steek No. Steek No. Retesting Required? NO Steek No. Steek No. Steek No. Steek No. Retesting Required? NO Steek No. Steek No. Steek No.							3.205	1.731		
Maximum Total Movement Allowed (in.)*: 0.040 Additional Testing for when Max. Total Movement is Exceeded N/A 20 min 30 min 40 min 50 min 0 20 40 60 80 100 120 140 0 0 20 40 60 80 100 120 140 0 0 20 40 60 80 100 120 140 1.00 0 0 0 120 140 100 100 120 140 1.00 0	Total Movement	Between 1 and	10 Minutes (in.)	0.006			Acceptability of	Tieback:	P/	SS
Sheet No. of Retest: N/A Colspan="2">Rem I.D. 141121 Gauge I.D. 12:4 Colspan="2">Colspan="2" Colspan="2" Colspan="2" Colspan="2" Colspan="2" Colspan="2" Colspan="2" Colspan="2"							Retesting Requir	ed?		
20 min <u>30 min 40 min 50 min 60 min</u> Ram I.D. 141121 Gauge I.D. 12-4 Load (kips) 0 0 0 0 0 0 0 0 0 0 0 0 0						_			N	/A
Gauge I.D. 12-4 Load (kips) 0 20 40 60 80 100 120 140 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0										
Load (kips) 60 80 10 120 140 100 00 00 120 140 100 00 00 00 00 00 00 00 00 00 00 00 00	20 min	30 min	40 min	50 min	60 min					
0 20 40 60 80 100 120 140 140 100 100 100 100 100 10						J	Gauge I.D.	12-4		
0.00 0.00					Load (kips)					
1.00 2.00 3.00 4.00 5.00 6.00 free Length free Length	0	2	0	40	60	80	100	120)	140
2.00 3.00 4.00 5.00 6.00 Free Length + 50% of Bond Length - Elastic Elongation at Test Load (in.)	0.00									
2.00 3.00 4.00 5.00 6.00 Free Length + 50% of Bond Length - Elastic Elongation at Test Load (in.)										
2.00 3.00 4.00 5.00 6.00 Free Length + 50% of Bond Length - Elastic Elongation at Test Load (in.)	-									
3.00 3.00 4.00 4.00 5.00 Free Length + 50% of Bond Length 6.00 80% of Free Length	1.00 +									
3.00 3.00 4.00 4.00 5.00 Free Length + 50% of Bond Length 6.00 80% of Free Length										
3.00 3.00 4.00 4.00 5.00 Free Length + 50% of Bond Length 6.00 80% of Free Length										
5.00	2.00									
5.00	hes									
5.00	(inc									
5.00	토 3.00									
5.00	- me									
5.00	lace									
5.00	S 4 00									
6.00 Free Length + 50% of Bond Length 										+
6.00 Free Length + 50% of Bond Length	-									
6.00 - 80% of Free Length - Elastic Elongation at Test Load (in.)	5.00		isplacement (in.)							
6.00 - 80% of Free Length - Elastic Elongation at Test Load (in.)	-			ength						
Elastic Elongation at Test Load (in.)	6.00									
	FI .			ad (in.)						
	7.00		_							

Note: Test results were recorded by Kameron Peters of Malcolm Drilling, Inc. The pressure for the lock off load was not recorded and is approximated.

Tieback	Tiskask Na	Data kastalla d	De	ta(a) Deat Crowt	ad	Test Data	Design Load	Lockoff Load	Elastic Mod. (E;
Location Row 1	Tieback No. 8	Date Installed 1/27/2016	1/29/2016	ate(s) Post-Grout	ed	Test Date 3/24/2016	(P; kips) 100.0	(kips) 75.0	ksi) 28800
								75.0	20000
Shaft Diameter	Number of	Total Strand	Total Tendon	Tendon Bond	Free Stressing	Tail Length	Theo. Elastic		
(in)	Strands	Area (A; in ²)	Length (L_T ; ft)	Length (L _B ; ft)	Length (L_U ; ft)	(L _e ; ft)	Elong. (in)	Recorded By	Reviewed By
6	3	0.660	103	50	54.9	-1.9	4.450	KP (MDCI)	ZLK
						Elongation of	Elongation of		
						Free Stressing	80% Free	Apparent Free	
						Length + 50% of	Stressing	Tendon Length	
			Gauge Pressure	Recorded	Elastic	Bonded Length	Length	$A_t E_s \delta_e /$	
	Load Testing		for Test Load	Displacement	Elongation at	$P(0.5L_B+L_u)/AE$	0.8*P(L _u)/AE	(TL-AL)	
Time (min)	Schedule	Test Load (kips)		(in.)	Test Load (in.)	(in.)	(in.)	(ft)	Comments
	AL (0.10DL)	12	400	0.000		0.000	0.000		
	0.25DL	29	1000	0.423	0.423	0.832	0.457	125.13	
	0.50DL	56	2000	1.302	1.302	2.217	1.219	46.92	
	0.75DL 1.00DL	81 106	2900 3800	2.224 3.302	2.224 3.302	3.465 4.712	1.905 2.590	51.30 56.00	
	1.00DL 1.20DL	106	4500	4.072	4.072	5.682	3.124	57.27	
	1.33DL	136	4900	4.541	4.541	6.237	3.429	58.19	
1	1.33DL	136	4900	4.541		6.237	3.429		
2	1.33DL	136	4900	4.541		6.237	3.429		
3	1.33DL	136	4900	4.541		6.237	3.429		
4	1.33DL	136	4900	4.541		6.237	3.429		
5	1.33DL	136	4900	4.541		6.237	3.429		
6 10	1.33DL 1.33DL	136 136	4900 4900	4.541 4.556		6.237 6.237	3.429 3.429		
	AL	15	500	4.550		0.237			
	LOCKOFF	78	2800			3.326	1.829		
Total Movement	t Between 1 and	10 Minutes (in.)				Acceptability of	Tieback:	PA	\SS
Total Movement Maximum Total			0.015 0.040			Acceptability of Retesting Requir			ASS IO
Maximum Total	Movement Allow	ved (in.)*:	0.015 0.040				ed?	Ν	
Maximum Total Additi	Movement Allow	ved (in.)*: when Max. Total	0.015 0.040 Movement is Exc			Retesting Requir Sheet No. of Ret	ed? est:	Ν	10
Maximum Total	Movement Allow	ved (in.)*:	0.015 0.040	eeded 60 min		Retesting Requir Sheet No. of Ret Ram I.D.	ed? est: 141121	Ν	10
Maximum Total Additi	Movement Allow	ved (in.)*: when Max. Total	0.015 0.040 Movement is Exc	60 min		Retesting Requir Sheet No. of Ret	ed? est: 141121	Ν	10
Maximum Total Additi 20 min	Movement Allow ional Testing for 30 min	ved (in.)*: when Max. Total 40 min	0.015 0.040 Movement is Exc 50 min	60 min Load (kips)		Retesting Requir Sheet No. of Ret Ram I.D. Gauge I.D.	ed? est: 141121 12-4	N N	10 /A
Maximum Total Additi 20 min 0	Movement Allow ional Testing for 30 min	ved (in.)*: when Max. Total	0.015 0.040 Movement is Exc	60 min	80	Retesting Requir Sheet No. of Ret Ram I.D.	ed? est: 141121	N N	10
Maximum Total Additi 20 min	Movement Allow ional Testing for 30 min	ved (in.)*: when Max. Total 40 min	0.015 0.040 Movement is Exc 50 min	60 min Load (kips)	80	Retesting Requir Sheet No. of Ret Ram I.D. Gauge I.D.	ed? est: 141121 12-4	N N	10 /A
Maximum Total Additi 20 min 0	Movement Allow ional Testing for 30 min	ved (in.)*: when Max. Total 40 min	0.015 0.040 Movement is Exc 50 min	60 min Load (kips)	80	Retesting Requir Sheet No. of Ret Ram I.D. Gauge I.D.	ed? est: 141121 12-4	N N	10 /A
Maximum Total Additi 20 min 0 0.00	Movement Allow ional Testing for 30 min	ved (in.)*: when Max. Total 40 min	0.015 0.040 Movement is Exc 50 min	60 min Load (kips)	80	Retesting Requir Sheet No. of Ret Ram I.D. Gauge I.D.	ed? est: 141121 12-4	N N	10 /A
Maximum Total Additi 20 min 0	Movement Allow ional Testing for 30 min	ved (in.)*: when Max. Total 40 min	0.015 0.040 Movement is Exc 50 min	60 min Load (kips)	80	Retesting Requir Sheet No. of Ret Ram I.D. Gauge I.D.	ed? est: 141121 12-4	N N	10 /A
Maximum Total Additi 20 min 0 0.00	Movement Allow ional Testing for 30 min	ved (in.)*: when Max. Total 40 min	0.015 0.040 Movement is Exc 50 min	60 min Load (kips)	80	Retesting Requir Sheet No. of Ret Ram I.D. Gauge I.D.	ed? est: 141121 12-4	N N	10 /A
Maximum Total Additi 20 min 0 0.00 1.00	Movement Allow ional Testing for 30 min	ved (in.)*: when Max. Total 40 min	0.015 0.040 Movement is Exc 50 min	60 min Load (kips)	80	Retesting Requir Sheet No. of Ret Ram I.D. Gauge I.D.	ed? est: 141121 12-4	N N	10 /A
Maximum Total Additi 20 min 0 0.00 1.00 2.00	Movement Allow ional Testing for 30 min	ved (in.)*: when Max. Total 40 min	0.015 0.040 Movement is Exc 50 min	60 min Load (kips)	80	Retesting Requir Sheet No. of Ret Ram I.D. Gauge I.D.	ed? est: 141121 12-4	N N	10 /A
Maximum Total Additi 20 min 0 0.00 1.00 2.00	Movement Allow ional Testing for 30 min	ved (in.)*: when Max. Total 40 min	0.015 0.040 Movement is Exc 50 min	60 min Load (kips)	80	Retesting Requir Sheet No. of Ret Ram I.D. Gauge I.D.	ed? est: 141121 12-4	N N	10 /A
Maximum Total Additi 20 min 0 0.00 1.00 2.00	Movement Allow ional Testing for 30 min	ved (in.)*: when Max. Total 40 min	0.015 0.040 Movement is Exc 50 min	60 min Load (kips)	80	Retesting Requir Sheet No. of Ret Ram I.D. Gauge I.D.	ed? est: 141121 12-4	N N	10 /A
Maximum Total Additi 20 min 0 0.00 1.00 2.00	Movement Allow ional Testing for 30 min	ved (in.)*: when Max. Total 40 min	0.015 0.040 Movement is Exc 50 min	60 min Load (kips)	80	Retesting Requir Sheet No. of Ret Ram I.D. Gauge I.D.	ed? est: 141121 12-4	N N	10 /A
Maximum Total Additi 20 min 0 0.00 1.00 2.00	Movement Allow ional Testing for 30 min	ved (in.)*: when Max. Total 40 min	0.015 0.040 Movement is Exc 50 min	60 min Load (kips)	80	Retesting Requir Sheet No. of Ret Ram I.D. Gauge I.D.	ed? est: 141121 12-4	N N	10 /A
Maximum Total Additi 20 min 0 0.00 1.00 2.00	Movement Allow ional Testing for 30 min	ved (in.)*: when Max. Total 40 min	0.015 0.040 Movement is Exc 50 min	60 min Load (kips)	80	Retesting Requir Sheet No. of Ret Ram I.D. Gauge I.D.	ed? est: 141121 12-4	N N	10 /A
Maximum Total Additi 20 min 0 0.00 1.00 22.00	Movement Allow ional Testing for 30 min	ved (in.)*: when Max. Total 40 min	0.015 0.040 Movement is Exc 50 min	60 min Load (kips)	80	Retesting Requir Sheet No. of Ret Ram I.D. Gauge I.D.	ed? est: 141121 12-4	N N	10 /A
Maximum Total Additi 20 min 0 0.00 1.00 2.00	Movement Allow ional Testing for 30 min	ved (in.)*: when Max. Total 40 min	0.015 0.040 Movement is Exc 50 min	60 min Load (kips)	80	Retesting Requir Sheet No. of Ret Ram I.D. Gauge I.D.	ed? est: 141121 12-4	N N	10 /A
Maximum Total Additi 20 min 0 0.00 1.00 2.00	Movement Allow ional Testing for 30 min	ved (in.)*: when Max. Total 40 min	0.015 0.040 Movement is Exc 50 min	60 min Load (kips)	80	Retesting Requir Sheet No. of Ret Ram I.D. Gauge I.D.	ed? est: 141121 12-4	N N	10 /A
Maximum Total Additi 20 min 0 0 0.00 1.00 2.00 1.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Movement Allow ional Testing for 30 min 2	ved (in.)*:	0.015 0.040 Movement is Exc 50 min	60 min Load (kips)	80	Retesting Requir Sheet No. of Ret Ram I.D. Gauge I.D.	ed? est: 141121 12-4	N N	10 /A
Maximum Total Additi 20 min 0 0 0.00 1.00 2.00 1.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Movement Allow ional Testing for 30 min 2	ved (in.)*: when Max. Total 40 min 20 20 20 20 20 20 20 20 20 20	0.015 0.040 Movement is Exc 50 min 40	60 min Load (kips)	80	Retesting Requir Sheet No. of Ret Ram I.D. Gauge I.D.	ed? est: 141121 12-4	N N	10 /A
Maximum Total Additi 20 min 0 0 0.00 1.00 2.00 1.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Movement Allow ional Testing for 30 min 2	ved (in.)*:	0.015 0.040 Movement is Exc 50 min 40	60 min Load (kips)	80	Retesting Requir Sheet No. of Ret Ram I.D. Gauge I.D.	ed? est: 141121 12-4	N N	10 /A
Maximum Total Additi 20 min 0 0 0.00 1.00 2.00 1.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Movement Allow ional Testing for 30 min 2	ved (in.)*: when Max. Total 40 min 20 20 20 20 20 20 20 20 20 20	0.015 0.040 Movement is Exc 50 min 40	60 min Load (kips)	80	Retesting Requir Sheet No. of Ret Ram I.D. Gauge I.D.	ed? est: 141121 12-4	N N	10 /A

Note: Test results were recorded by Kameron Peters of Malcolm Drilling, Inc. The pressure for the lock off load was not recorded and is approximated.

Tieback Proof Testing Record Form Whatcom Waterway Phase 1 Cleanup

7.00

Elastic Elongation at Test Load (in.)

	ack	Tickerskelt	Data last-ll-		ato(c) Post Creat	od	Test Date	Design Load	Lockoff Load	Elastic Mod. (E;
Locat Row	1	Tieback No. 9	Date Installed 1/28/2016	1/29/2016	ate(s) Post-Grout	ea	Test Date 3/24/2016	(P; kips) 100.0	(kips) 75.0	ksi) 28800
			Total Strand		-				73.0	20000
Shaft Dia (in)		Number of Strands	Area (A; in ²)	Total Tendon Length (L _⊤ ; ft)	Tendon Bond Length (L _B ; ft)	Free Stressing Length (L _U ; ft)	Tail Length (L _e ; ft)	Theo. Elastic Elong. (in)	Recorded By	Reviewed By
6		3	0.660	103	50	51.8	1.2	4.450	KP (MDCI)	ZLK
0	,	5	0.000	105	50	51.0	1.2	4.430		ZER
							Elongation of	Elongation of		
							Free Stressing	80% Free	Apparent Free	
							Length + 50% of		Tendon Length	
				Gauge Pressure	Recorded	Elastic	Bonded Length	Length	$A_t E_s \delta_e /$	
,		Load Testing		for Test Load	Displacement	Elongation at	$P(0.5L_B+L_u)/AE$	0.8*P(L _u)/AE	(TL-AL)	
Time (I		Schedule AL (0.10DL)	Test Load (kips) 12	(psi) 400	(in.) 0.000	Test Load (in.)	(in.) 0.000	(in.) 0.000	(ft)	Comments
		0.25DL	29	1000	0.185	0.185	0.799	0.431	87.36	
	-	0.50DL	56	2000	0.909	0.909	2.132	1.151	32.76	
	-	0.75DL	81	2900	1.716	1.716	3.331	1.798	39.58	
	-	1.00DL	106	3800	2.771	2.771	4.530	2.445	47.00	
		1.20DL	125	4500	3.590	3.590	5.463	2.948	50.49	
		1.33DL 1.33DL	136 136	4900 4900	4.092 4.092	4.092	5.996 5.996	3.236 3.236	52.43	
2		1.33DL 1.33DL	136	4900	4.092		5.996	3.236		
3		1.33DL	136	4900	4.092		5.996	3.236		
4		1.33DL	136	4900	4.092		5.996	3.236		
5		1.33DL	136	4900	4.092		5.996	3.236		
6 10		1.33DL 1.33DL	136 136	4900 4900	4.092 4.098		5.996 5.996	3.236 3.236		
		AL	15	500	4.098		5.990	5.230		
		LOCKOFF	78	2800			3.198	1.726		
Total Mo	ovement	Between 1 and	10 Minutes (in.)	0.006		•	Acceptability of	Tieback:	PA	ISS
Maximun	m Total I	Movement Allow	/ed (in.)*:	0.040			Retesting Requir	ed?		10
	A dditi	anal Tasting for	when Max Total	Movement is Eve	aadad	1	Sheet No. of Ret	est:	I N	/A
20 m				Movement is Exc 50 min]			I IN	/A
20 m		onal Testing for 30 min	when Max. Total 40 min	Movement is Exc 50 min	eeded 60 min		Ram I.D. Gauge I.D.	141121	I N	/A
20 m					60 min]	Ram I.D.	141121	<u> N</u>	/Α
20 m	nin	30 min	40 min	50 min	60 min Load (kips)	80	Ram I.D. Gauge I.D.	141121 12-4		
		30 min			60 min	80	Ram I.D.	141121		140
	nin 0	30 min	40 min	50 min	60 min Load (kips)	80	Ram I.D. Gauge I.D.	141121 12-4		
	nin 0	30 min	40 min	50 min	60 min Load (kips)	80	Ram I.D. Gauge I.D.	141121 12-4		
0.0	nin 0	30 min	40 min	50 min	60 min Load (kips)	80	Ram I.D. Gauge I.D.	141121 12-4		
0.0	0 00	30 min	40 min	50 min	60 min Load (kips)	80	Ram I.D. Gauge I.D.	141121 12-4		
0.0	0 00	30 min	40 min	50 min	60 min Load (kips)	80	Ram I.D. Gauge I.D.	141121 12-4		
0.0	0 00 00	30 min	40 min	50 min	60 min Load (kips)	80	Ram I.D. Gauge I.D.	141121 12-4		
0.0	0 00 00	30 min	40 min	50 min	60 min Load (kips)	80	Ram I.D. Gauge I.D.	141121 12-4		
0.0	0 00 00	30 min	40 min	50 min	60 min Load (kips)	80	Ram I.D. Gauge I.D.	141121 12-4		
0.0	0 00 00	30 min	40 min	50 min	60 min Load (kips)	80	Ram I.D. Gauge I.D.	141121 12-4		
0.0	0 00 00 00	30 min	40 min	50 min	60 min Load (kips)	80	Ram I.D. Gauge I.D.	141121 12-4		
0.0	0 00 00 00 00	30 min	40 min	50 min	60 min Load (kips)	80	Ram I.D. Gauge I.D.	141121 12-4		
0.0 1.0 2.0 (juches)	0 00 00 00 00	30 min	40 min	50 min	60 min Load (kips)	80	Ram I.D. Gauge I.D.	141121 12-4		
0.0	0 00 00 00	30 min	40 min	50 min	60 min Load (kips)	80	Ram I.D. Gauge I.D.	141121 12-4		
0.0 1.0 2.0 3.0 3.0 4.0	0 00 00 00 00	30 min	40 min	50 min	60 min Load (kips)	80	Ram I.D. Gauge I.D.	141121 12-4		
0.0	0 00 00 00 00 00	30 min	40 min	50 min	60 min Load (kips)	80	Ram I.D. Gauge I.D.	141121 12-4		
0.0 1.0 2.0 Disblacement (inches) 3.0 0.0	0 00 00 00 00 00	30 min 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	40 min	40	60 min Load (kips)	80	Ram I.D. Gauge I.D.	141121 12-4		
0.0 1.0 2.0 Disblacement (inches) 3.0 0.0	0 00 00 00 00 00 00 00 00	30 min 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	40 min 0 10 10 10 10 10 10 10 10 10 10 10 10 1	40	60 min Load (kips)	80	Ram I.D. Gauge I.D.	141121 12-4		
0.0 1.0 2.0 3.0 Displacement 1.0 0.0 0.0 0.0 5.0	0 00 00 00 00 00 00 00 00	30 min 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	40 min 0 10 10 10 10 10 10 10 10 10 10 10 10 1	40	60 min Load (kips)	80	Ram I.D. Gauge I.D.	141121 12-4		
0.0 1.0 2.0 3.0 Displacement 1.0 0.0 0.0 0.0 5.0	0 00 00 00 00 00 00 00 00	30 min 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	40 min 0 10 10 10 10 10 10 10 10 10 10 10 10 1	40 40 ength	60 min Load (kips)	80	Ram I.D. Gauge I.D.	141121 12-4		

Note: Test results were recorded by Kameron Peters of Malcolm Drilling, Inc. The pressure for the lock off load was not recorded and is approximated.

Tieback							Design Load	Lockoff Load	Elastic Mod. (E;
Location	Tieback No.	Date Installed		ate(s) Post-Grout	ed	Test Date	(P; kips)	(kips)	ksi)
Row 1	10	1/27/2016	1/29/2016			3/24/2016	100.0	75.0	28800
Shaft Diamete	r Number of	Total Strand	Total Tendon	Tendon Bond	Free Stressing	Tail Length	Theo. Elastic		
(in)	Strands	Area (A; in ²)	Length (L _T ; ft)	Length (L _B ; ft)	Length (L _U ; ft)	(L _e ; ft)	Elong. (in)	Recorded By	Reviewed By
6	3	0.660	103	50	50.5	2.5	4.450	KP (MDCI)	ZLK
						Elongation of	Elongation of		
						Free Stressing Length + 50% of	80% Free	Apparent Free	
				Descrided	Fleatio	Bonded Length	Stressing Length	Tendon Length	
	Lood Testing		Gauge Pressure		Elastic	$P(0.5L_B+L_u)/AE$	0.8*P(L _u)/AE	$A_t E_s \delta_e /$	
Time (min)	Load Testing Schedule	Test Load (kins)	for Test Load	Displacement	Elongation at			(TL-AL)	Commonte
Time (min)	AL (0.10DL)	Test Load (kips) 12	(psi) 400	(in.) 0.000	Test Load (in.)	(in.) 0.000	(in.) 0.000	(ft) 	Comments
	0.25DL	29	1000	0.160	0.160	0.786	0.420	94.86	
	0.50DL	56	2000	0.987	0.987	2.095	1.121	35.57	
	0.75DL	81	2900	1.906	1.906	3.273	1.752	43.96	
	1.00DL	106	3800	3.091	3.091	4.452	2.382	52.42	
	1.20DL	125	4500	3.919	3.919	5.368	2.873	55.12	
	1.33DL	136	4900	4.410	4.410	5.892	3.153	56.51	
1	1.33DL	136	4900	4.410		5.892	3.153		
2	1.33DL	136	4900	4.410		5.892	3.153		
3	1.33DL	136	4900	4.410		5.892	3.153		
4	1.33DL	136	4900	4.410		5.892	3.153		
5	1.33DL	136	4900	4.410		5.892	3.153		
6	1.33DL	136	4900	4.410		5.892	3.153		
10	1.33DL AL	136 15	4900 500	4.420		5.892	3.153		
	LOCKOFF	78	2800			3.142	1.681		
	nt Between 1 and		0.010]		Acceptability of			ASS
Total Woverne	ni between 1 and	TO Minutes (III.)	0.010			Acceptability of	HEDACK.	F/	433
Maximum Tota	al Movement Allov	ved (in.)*:	0.040			Retesting Requir		N	10
Maximum Tota	al Movement Allov	ved (in.)*:	0.040]		Retesting Requir Sheet No. of Ret	ed?		I/A
Add	litional Testing for			eeded]	Sheet No. of Ret	ed? est:		
				eeded 60 min		Sheet No. of Ret Ram I.D.	ed? est: 141121		
Add	litional Testing for	when Max. Total	Movement is Exc			Sheet No. of Ret	ed? est: 141121		
Add	litional Testing for	when Max. Total	Movement is Exc	60 min		Sheet No. of Ret Ram I.D.	ed? est: 141121		
Add	itional Testing for 30 min	when Max. Total	Movement is Exc		80	Sheet No. of Ret Ram I.D.	ed? est: 141121	N	
Add 20 min	itional Testing for 30 min	when Max. Total 40 min	Movement is Exc 50 min	60 min Load (kips)	80	Sheet No. of Ret Ram I.D. Gauge I.D.	red? est: 141121 12-4	N	I/A
Add 20 min	itional Testing for 30 min	when Max. Total 40 min	Movement is Exc 50 min	60 min Load (kips)	80	Sheet No. of Ret Ram I.D. Gauge I.D.	red? est: 141121 12-4	N	I/A
Add 20 min	itional Testing for 30 min	when Max. Total 40 min	Movement is Exc 50 min	60 min Load (kips)	80	Sheet No. of Ret Ram I.D. Gauge I.D.	red? est: 141121 12-4	N	I/A
Add 20 min 0 0.00	itional Testing for 30 min	when Max. Total 40 min	Movement is Exc 50 min	60 min Load (kips)	80	Sheet No. of Ret Ram I.D. Gauge I.D.	red? est: 141121 12-4	N	I/A
Add 20 min	itional Testing for 30 min	when Max. Total 40 min	Movement is Exc 50 min	60 min Load (kips)	80	Sheet No. of Ret Ram I.D. Gauge I.D.	red? est: 141121 12-4	N	I/A
Add 20 min 0 0.00	itional Testing for 30 min	when Max. Total 40 min	Movement is Exc 50 min	60 min Load (kips)	80	Sheet No. of Ret Ram I.D. Gauge I.D.	red? est: 141121 12-4	N	I/A
Add 20 min 0 0.00 1.00	itional Testing for 30 min	when Max. Total 40 min	Movement is Exc 50 min	60 min Load (kips)	80	Sheet No. of Ret Ram I.D. Gauge I.D.	red? est: 141121 12-4	N	I/A
Add 20 min 0 0.00 1.00	itional Testing for 30 min	when Max. Total 40 min	Movement is Exc 50 min	60 min Load (kips)	80	Sheet No. of Ret Ram I.D. Gauge I.D.	red? est: 141121 12-4	N	I/A
Add 20 min 0 0.00 1.00	itional Testing for 30 min	when Max. Total 40 min	Movement is Exc 50 min	60 min Load (kips)	80	Sheet No. of Ret Ram I.D. Gauge I.D.	red? est: 141121 12-4	N	I/A
Add 20 min 0 0.00 1.00	itional Testing for 30 min	when Max. Total 40 min	Movement is Exc 50 min	60 min Load (kips)	80	Sheet No. of Ret Ram I.D. Gauge I.D.	red? est: 141121 12-4	N	I/A
Add 20 min 0 0.00 1.00	itional Testing for 30 min	when Max. Total 40 min	Movement is Exc 50 min	60 min Load (kips)	80	Sheet No. of Ret Ram I.D. Gauge I.D.	red? est: 141121 12-4	N	I/A
Add 20 min 0 0.00 1.00	itional Testing for 30 min	when Max. Total 40 min	Movement is Exc 50 min	60 min Load (kips)	80	Sheet No. of Ret Ram I.D. Gauge I.D.	red? est: 141121 12-4	N	I/A
Add 20 min 0 0.00 1.00	itional Testing for 30 min	when Max. Total 40 min	Movement is Exc 50 min	60 min Load (kips)	80	Sheet No. of Ret Ram I.D. Gauge I.D.	red? est: 141121 12-4	N	I/A
Add 20 min 0 0.00 1.00 2.00	itional Testing for 30 min	when Max. Total 40 min	Movement is Exc 50 min	60 min Load (kips)	80	Sheet No. of Ret Ram I.D. Gauge I.D.	red? est: 141121 12-4	N	I/A
Add 20 min 0 0.00 1.00	itional Testing for 30 min	when Max. Total 40 min	Movement is Exc 50 min	60 min Load (kips)	80	Sheet No. of Ret Ram I.D. Gauge I.D.	red? est: 141121 12-4	N	I/A
Add 20 min 0 0.00 1.00	itional Testing for 30 min	when Max. Total 40 min	Movement is Exc 50 min	60 min Load (kips)	80	Sheet No. of Ret Ram I.D. Gauge I.D.	red? est: 141121 12-4	N	I/A
Add 20 min 0 0.00 1.00 2.00 2.00 0 0 0.00 0 0 0 0 0 0 0 0 0	litional Testing for 30 min	when Max. Total 40 min 20	40	60 min Load (kips)	80	Sheet No. of Ret Ram I.D. Gauge I.D.	red? est: 141121 12-4	N	I/A
Add 20 min 0 0.00 1.00	litional Testing for 30 min	when Max. Total 40 min	40	60 min Load (kips)	80	Sheet No. of Ret Ram I.D. Gauge I.D.	red? est: 141121 12-4	N	I/A
Add 20 min 0 0.00 1.00 2.00 2.00 0 0 0.00 0 0 0 0 0 0 0 0 0	itional Testing for 30 min	when Max. Total 40 min 20	40 40	60 min Load (kips)	80	Sheet No. of Ret Ram I.D. Gauge I.D.	red? est: 141121 12-4	N	I/A
Add 20 min 0 0.00 1.00 2.00 2.00 3.00 4.00 5.00	itional Testing for 30 min	when Max. Total 40 min 20	40 40	60 min Load (kips)	80	Sheet No. of Ret Ram I.D. Gauge I.D.	red? est: 141121 12-4	N	I/A
Add 20 min 0 0.00 1.00 2.00 2.00 0 0 0.00 0 0 0 0 0 0 0 0 0	itional Testing for 30 min	when Max. Total 40 min 20	40 40	60 min Load (kips)	80	Sheet No. of Ret Ram I.D. Gauge I.D.	red? est: 141121 12-4	N	I/A
Add 20 min 0 0.00 1.00 2.00 2.00 3.00 4.00 5.00	itional Testing for 30 min 30 min 3	when Max. Total 40 min 20 20 20 20 20 20 20 20 20 20 20 20 20	40 40 ength	60 min Load (kips)	80	Sheet No. of Ret Ram I.D. Gauge I.D.	red? est: 141121 12-4	N	I/A
Add 20 min 0 0.00 1.00 2.00 2.00 3.00 4.00 5.00	itional Testing for 30 min 30 min 3	when Max. Total 40 min 20	40 40 ength	60 min Load (kips)	80	Sheet No. of Ret Ram I.D. Gauge I.D.	red? est: 141121 12-4	N	I/A

Note: Test results were recorded by Kameron Peters of Malcolm Drilling, Inc. The pressure for the lock off load was not recorded and is approximated.

Tieback							Design Load	Lockoff Load	Elastic Mod. (E;
Location Row 1	Tieback No. 11	Date Installed 1/28/2016	1/29/2016	ate(s) Post-Grout	ea	Test Date 3/24/2016	(P; kips) 100.0	(kips) 75.0	ksi) 28800
								75.0	28800
Shaft Diameter	Number of	Total Strand	Total Tendon	Tendon Bond	Free Stressing	Tail Length	Theo. Elastic		
(in)	Strands	Area (A; in ²)	Length (L_T ; ft)	Length (L _B ; ft)	Length (L _U ; ft)	(L _e ; ft)	Elong. (in)	Recorded By	Reviewed By
6	3	0.660	103	50	52.3	0.7	4.450	KP (MDCI)	ZLK
						Elongation of	Elongation of		
						Free Stressing	80% Free	Apparent Free	
						Length + 50% of	Stressing	Tendon Length	
			Gauge Pressure	Recorded	Elastic	Bonded Length	Length	$A_t E_s \delta_e /$	
	Load Testing		for Test Load	Displacement	Elongation at	P(0.5L _B +L _u)/AE	0.8*P(L _u)/AE	(TL-AL)	
Time (min)	Schedule	Test Load (kips)		(in.)	Test Load (in.)	(in.)	(in.)	(ft)	Comments
	AL (0.10DL)	12	400	0.000		0.000	0.000		
	0.25DL 0.50DL	29 56	1000 2000	0.130	0.130	0.805	0.436	98.12 36.80	
	0.30DL 0.75DL	81	2900	1.880	1.880	3.353	1.815	43.36	
	1.00DL	106	3800	2.881	2.881	4.560	2.469	48.86	
	1.20DL	125	4500	3.520	3.520	5.499	2.977	49.51	
	1.33DL	136	4900	4.110	4.110	6.035	3.267	52.67	
1	1.33DL	136	4900	4.110		6.035	3.267		
2	1.33DL 1.33DL	136 136	4900 4900	4.110 4.110		6.035 6.035	3.267 3.267		
4	1.33DL	136	4900	4.110		6.035	3.267		
5	1.33DL	136	4900	4.110		6.035	3.267		
6	1.33DL	136	4900	4.110		6.035	3.267		
10	1.33DL	136	4900	4.115		6.035	3.267		
	AL	15	500						
	LOCKOFF	78	2800			3.219	1.743		
	t Between 1 and Movement Allow		0.005 0.040			Acceptability of Retesting Requir			ASS IO
Maximum rotar	Wovement Allow	/eu (iii.) .	0.040			Sheet No. of Ret			/A
	ional Testing for	when Max. Total						•	
20 min	30 min	40 min	50 min	60 min		Ram I.D.			
					J	Gauge I.D.	12-4		
				Load (kips)					
0	2	20	40	60	80	100	120)	140
0.00									
-									
1.00									
<u>ନ</u> 2.00									
L Che									
t (ir									
10.00									
cer									
00.6 Displacement (inches)									+
ia 4.00									
1									+
5.00		isplacement (in.)							
5.00			ength						
- - - -		1 + 50% of Bond L	ength						
5.00		1 + 50% of Bond L	ength						
- - - -	Free Length 80% of Free	a + 50% of Bond L e Length							
- - - -	Free Length 80% of Free	1 + 50% of Bond L							

Note: Test results were recorded by Kameron Peters of Malcolm Drilling, Inc. The pressure for the lock off load was not recorded and is approximated.

Tieback Location	Tieback Number	Date Installed	Da	ate(s) Post-Grout	ed	Test Date	Design Load (P; kips)	Lockoff Load (kips)	Elastic Mod. (E; ksi)
Row 1	12	1/28/2016	1/29/2016			3/23/2016	100.0	75.0	28800
Shaft Diameter	Number of	Total Strand	Total Tendon	Tendon Bond	Free Stressing	Tail Length	Theo. Elastic		
(in)	Strands	Area (A; in ²)	Length (L _T ; ft)	Length (L _B ; ft)	Length (L _U ; ft)	(L _e ; ft)	Elong. (in)	Recorded By	Reviewed By
6	3	0.660	139	50	92.3	-3.3	7.473	ZLK	ZLK
						Elongation of	Elongation of		
						Free Stressing	80% Free	Apparent Free	
						Length + 50% of	U	Tendon Length	
			Gauge Pressure	Recorded	Elastic	Bonded Length	Length	$A_t E_s \delta_e /$	
	Load Testing		for Test Load	Displacement	Elongation at	P(0.5L _B +L _u)/AE	0.8*P(L _u)/AE	(TL-AL)	
Time (min)	Schedule	Test Load (kips)		(in.)	Test Load (in.)	(in.)	(in.)	(ft)	Comments
	AL (0.10DL)	12	400	0.000		0.000	0.000		
	0.25DL	25	900	0.349	0.349	1.014	0.638	210.37	
	0.50DL	50	1800	1.820	1.820	2.840	1.788	75.13	
	0.75DL	75	2700	3.172	3.172	4.666	2.937	79.70	
	1.00DL	99	3600	3.527	3.527	6.492	4.086	63.70	
	1.20DL	121	4400	4.972	4.972	8.115	5.108	71.84	
	1.33DL	132	4800	5.624	5.624	8.927	5.619	73.87	
1	1.33DL	132	4800	5.621		8.927	5.619		
2	1.33DL	132	4800	5.622		8.927	5.619		
3	1.33DL	132	4800	5.624		8.927	5.619		
4	1.33DL 1.33DL	132	4800	5.628		8.927	5.619		
5		132 132	4800	5.635		8.927	5.619		 Distation ad
10	1.33DL 1.33DL	132	4800 4800	5.640 5.662		8.927 8.927	5.619 5.619		< Dial slipped
	AL	132	4800	0.000			5.019		on test plate
	LOCKOFF	69	2500			4.260	2.682		
Total Movement				0.022					ASS
Maximum Total N			0.041 0.040	0.022	< 6 to 10 min	Acceptability of Retesting Requir			10
Maximum rotari	Movement Allow		0.040			Sheet No. of Ret			/A
Additi	onal Testing for	when Max. Total	Movement is Exc	eeded	ן				
20 min	30 min	40 min	50 min	60 min		Ram I.D.	2681		
]	Gauge I.D.	16-3		
				Load (kips)					
0	-	20	40	60	80	100	120		140
-	-	.0	40	00	80	100	120)	140
0.00									
1.00									
2.00									+
-									
⊊ 3.00									
incl									
는 4.00 +									
uer mer									
a 2 2 5.00									
A.00 D									

Note: False displacements occurred due to high winds that caused movements of the dial on the testing plate particularly for the 1.33DL hold times.

Tieback Proof Testing Record Form Whatcom Waterway Phase 1 Cleanup

Recorded Displacement (in.)

80% of Free Length

Elastic Elongation

Free Length + 50% of Bond Length

7.00

8.00

9.00

10.00

Tieback Proof Testing

	ïeback	Tieback						Design Load	Lockoff Load	Elastic Mod. (E;
	ocation	Number	Date Installed	1	Date(s) Post-Grout	ed	Test Date	(P; kips)	(kips)	ksi)
	Row 1	13	1/27/2016	1/29/2016			3/23/2016	100.0	75.0	28800
Shaft	Diameter	Number of	Total Strand	Total Tendon	Tendon Bond	Free Stressing	Tail Length	Theo. Elastic		
	(in)	Strands	Area (A; in ²)	Length (L _T ; ft)	Length (L _B ; ft)	Length (L _U ; ft)	(L _e ; ft)	Elong. (in)	Recorded By	Reviewed By
	6	3	0.660	139	50	91.3	-2.3	7.473	ZLK	ZLK
							Elongation of Free Stressing	Elongation of 80% Free	Apparent Free	
		Load Testing		Gauge Pressur for Test Load	Displacement	Elastic Elongation at	Length + 50% of Bonded Length $P(0.5L_B+L_u)/AE$	Length 0.8*P(L _u)/AE	Tendon Length A _t E _s δ _e / (TL-AL)	
Tin	ne (min)	Schedule AL (0.10DL)	Test Load (kips)	(psi) 400	(in.) 0.000	Test Load (in.)	(in.) 0.000	(in.) 0.000	(ft)	Comments
		0.25DL	12 25	900	0.261	0.261	1.006	0.632	 152.81	
		0.50DL	50	1800	1.322	1.322	2.816	1.768	54.57	
		0.75DL	75	2700	3.345	3.345	4.626	2.905	84.05	
		1.00DL	99	3600	4.930	4.930	6.437	4.042	89.04	
		1.20DL	118	4300	5.988	5.988	7.845	4.926	88.74	
		1.33DL	132	4800	6.863	6.863	8.851	5.558	90.14	
	1	1.33DL	132	4800	6.866		8.851	5.558		
	2	1.33DL 1.33DL	132 132	4800 4800	6.867 6.860		8.851 8.851	5.558 5.558		
	4	1.33DL	132	4800	6.868		8.851	5.558		Pump the jack
	5	1.33DL	132	4800	6.872		8.851	5.558		r amp the just
	6	1.33DL	132	4800	6.876		8.851	5.558		Pump the jack
	10	1.33DL	132	4800	6.882		8.851	5.558		
		AL	12	400	0.000					
		LOCKOFF	69	2500			4.224	2.653		
		Between 1 and Movement Allow		0.016	_		Acceptability of			ASS
IVIAXII	num rotar	NOVELLETT ATOM								
			/eu (m.) .	0.040			Retesting Requir Sheet No. of Ret			10 /A
		ional Testing for			ceeded	ı	Sheet No. of Ret			/A
2					cceeded 60 min		Sheet No. of Ret Ram I.D.	2681		
2	Additi	ional Testing for	when Max. Total	Movement is Ex]	Sheet No. of Ret	2681		
2	Additi	ional Testing for	when Max. Total	Movement is Ex	60 min		Sheet No. of Ret Ram I.D.	2681		
2	Additi	ional Testing for 30 min	when Max. Total 40 min	Movement is Ex		80	Sheet No. of Ret Ram I.D.	2681	N	
2	Additi 20 min	ional Testing for 30 min	when Max. Total	Movement is Ex 50 min	60 min Load (kips)	80	Sheet No. of Ret Ram I.D. Gauge I.D.	est: 2681 16-3	N	/Α
2	Additi 20 min 0	ional Testing for 30 min	when Max. Total 40 min	Movement is Ex 50 min	60 min Load (kips)	80	Sheet No. of Ret Ram I.D. Gauge I.D.	est: 2681 16-3	N	/Α
2	Additi 20 min 0 0.00	ional Testing for 30 min	when Max. Total 40 min	Movement is Ex 50 min	60 min Load (kips)	80	Sheet No. of Ret Ram I.D. Gauge I.D.	est: 2681 16-3	N	/Α
2	Additi 20 min 0	ional Testing for 30 min	when Max. Total 40 min	Movement is Ex 50 min	60 min Load (kips)	80	Sheet No. of Ret Ram I.D. Gauge I.D.	est: 2681 16-3	N	/Α
2	Additi 20 min 0 0.00 1.00	ional Testing for 30 min	when Max. Total 40 min	Movement is Ex 50 min	60 min Load (kips)	80	Sheet No. of Ret Ram I.D. Gauge I.D.	est: 2681 16-3	N	/Α
2	Additi 20 min 0 0.00	ional Testing for 30 min	when Max. Total 40 min	Movement is Ex 50 min	60 min Load (kips)	80	Sheet No. of Ret Ram I.D. Gauge I.D.	est: 2681 16-3	N	/Α
	Additi 20 min 0 0.00 1.00 2.00	ional Testing for 30 min	when Max. Total 40 min	Movement is Ex 50 min	60 min Load (kips)	80	Sheet No. of Ret Ram I.D. Gauge I.D.	est: 2681 16-3	N	/Α
	Additi 20 min 0 0.00 1.00	ional Testing for 30 min	when Max. Total 40 min	Movement is Ex 50 min	60 min Load (kips)	80	Sheet No. of Ret Ram I.D. Gauge I.D.	est: 2681 16-3	N	/Α
	Additi 20 min 0 0.00 1.00 2.00 3.00	ional Testing for 30 min	when Max. Total 40 min	Movement is Ex 50 min	60 min Load (kips)	80	Sheet No. of Ret Ram I.D. Gauge I.D.	est: 2681 16-3	N	/Α
	Additi 20 min 0 0.00 1.00 2.00	ional Testing for 30 min	when Max. Total 40 min	Movement is Ex 50 min	60 min Load (kips)	80	Sheet No. of Ret Ram I.D. Gauge I.D.	est: 2681 16-3	N	/Α
	Additi 20 min 0 0.00 1.00 2.00 3.00 4.00	ional Testing for 30 min	when Max. Total 40 min	Movement is Ex 50 min	60 min Load (kips)	80	Sheet No. of Ret Ram I.D. Gauge I.D.	est: 2681 16-3	N	/Α
	Additi 20 min 0 0.00 1.00 2.00 3.00	ional Testing for 30 min	when Max. Total 40 min	Movement is Ex 50 min	60 min Load (kips)	80	Sheet No. of Ret Ram I.D. Gauge I.D.	est: 2681 16-3	N	/Α
	Additi 20 min 0 0.00 1.00 2.00 3.00 4.00	ional Testing for 30 min	when Max. Total 40 min	Movement is Ex 50 min	60 min Load (kips)	80	Sheet No. of Ret Ram I.D. Gauge I.D.	est: 2681 16-3	N	/Α
Displacement (inches)	Additi 20 min 0 0.00 1.00 2.00 3.00 4.00	ional Testing for 30 min	when Max. Total 40 min	Movement is Ex 50 min	60 min Load (kips)	80	Sheet No. of Ret Ram I.D. Gauge I.D.	est: 2681 16-3	N	/Α
	Additi 20 min 0 0.00 1.00 2.00 3.00 4.00 5.00	ional Testing for 30 min	when Max. Total 40 min	Movement is Ex 50 min	60 min Load (kips)	80	Sheet No. of Ret Ram I.D. Gauge I.D.	est: 2681 16-3	N	/Α
	Additi 20 min 0 0.00 1.00 2.00 3.00 4.00 5.00 6.00	ional Testing for 30 min	when Max. Total 40 min 20	40	60 min Load (kips)	80	Sheet No. of Ret Ram I.D. Gauge I.D.	est: 2681 16-3	N	/Α
	Additi 20 min 0 0.00 1.00 2.00 3.00 4.00 5.00 6.00	ional Testing for 30 min	when Max. Total 40 min 20	40	60 min Load (kips)	80	Sheet No. of Ret Ram I.D. Gauge I.D.	est: 2681 16-3	N	/Α
	Additi 20 min 0 0.00 1.00 2.00 3.00 4.00 5.00 6.00	ional Testing for 30 min 2 2 A A A A A A A A A A A A A	when Max. Total 40 min 20	A0	60 min Load (kips)	80	Sheet No. of Ret Ram I.D. Gauge I.D.	est: 2681 16-3	N	/Α
	Additi 20 min 0 0.00 1.00 2.00 3.00 4.00 5.00 6.00	ional Testing for 30 min 2 2 2 30 min 2 2 2 2 30 min 2 2 30 min 2 2 30 min 2 30 min 2 30 min 2 30 min 30 min 3	when Max. Total 40 min 20	A0	60 min Load (kips)	80	Sheet No. of Ret Ram I.D. Gauge I.D.	est: 2681 16-3	N	/Α
	Additi 20 min 0 0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00	ional Testing for 30 min 2 2 A A A A A A A A A A A A A	when Max. Total 40 min 20	A0	60 min Load (kips)	80	Sheet No. of Ret Ram I.D. Gauge I.D.	est: 2681 16-3	N	/Α
	Additi 20 min 0 0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00	ional Testing for 30 min 2 2 2 30 min 2 2 2 2 30 min 2 2 30 min 2 2 30 min 2 30 min 2 30 min 2 30 min 30 min 3	when Max. Total 40 min 20 20 20 20 20 20 20 20 20 20 20 20 20	A0	60 min Load (kips)	80	Sheet No. of Ret Ram I.D. Gauge I.D.	est: 2681 16-3	N	/Α

F 10.00

Note: False displacements occurred due to high winds that caused movements of the dial on the testing plate particularly for the 1.33DL hold times.

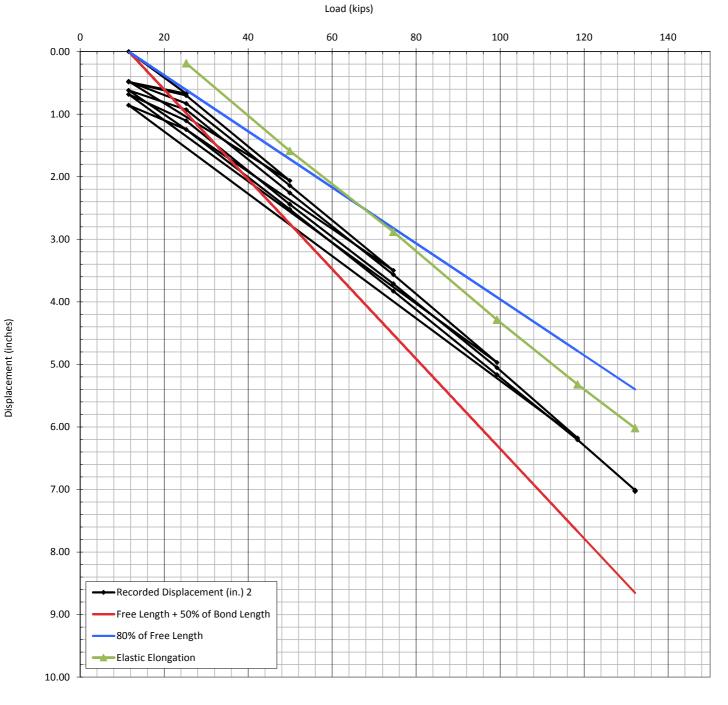
Tieback Proof Testing Record Form Whatcom Waterway Phase 1 Cleanup

Tieback Performance Test

Tieback Location	Tieback Number	Date Installed	Da	ate(s) Post-Grout	ed	Test Date	Design Load (P; kips)	Lockoff Load (kips)	Elastic Mod. (E; ksi)
Row 1	14	1/25/2016	1/27/2016			3/23/2016	100.0	75.0	28800
								73.0	28800
Shaft Diameter	Number of	Total Strand	Total Tendon	Tendon Bond	Free Stressing	Tail Length	Theo. Elastic		
(in)	Strands	Area (A; in ²)	Length (L _T ; ft)	Length (L _B ; ft)	Length (L _U ; ft)	(L _e ; ft)	Elong. (in)	Recorded By	Reviewed By
6	3	0.660	139	50	88.7	0.3	7.473	ZLK	ZLK
						Elongation of	Elongation of		
						Free Stressing	80% Free	Apparent Free	
					Elastic	Length + 50% of	Stressing	Tendon Length	
			Gauge Pressure	Recorded	Elongation at	Bonded Length	Length	$A_t E_s \delta_e /$	
	Load Testing	Actual Test	for Test Load	Displacement	Load Cycle	$P(0.5L_B+L_u)/AE$	0.8*P(L _u)/AE	(TL-AL)	
Time (min)	Schedule	Load (kips)	(psi) ¹	(in.) ²	Maximum (in.)	(in.)	(in.)	(ft)	Comments
	AL (0.10DL)	12	400	0.000		0.000	0.000		
	0.25DL	25	900	0.673	0.187	0.983	0.614	21.61	
	AL	12	400	0.486		0.000	0.000		
	0.25DL	25	900	0.702		0.983	0.614		
	0.50DL	50	1800	2.064	1.589	2.753	1.718	65.60	
	AL	12	400	0.475		0.000	0.000		
	0.25DL	25	900	0.830		0.983	0.614		
	0.50DL	50	1800	2.142		2.753	1.718		
	0.75DL	75	2700	3.499	2.880	4.524	2.823	72.37	
	AL	12	400	0.619		0.000	0.000		
	0.25DL	25	900	0.929		0.983	0.614		
	0.50DL	50	1800	2.258		2.753	1.718		
	0.75DL	75	2700	3.565		4.524	2.823		
	1.00DL AL	99 12	3600 400	4.970 0.684	4.286	6.294 0.000	3.928 0.000	77.41	
	0.25DL	25	900	1.105		0.983	0.614		
	0.50DL	50	1800	2.442		2.753	1.718		
	0.75DL	75	2700	3.711		4.524	2.823		
	1.00DL	99	3600	5.053		6.294	3.928		
	1.20DL	118	4300	6.177	5.320	7.670	4.787	78.84	
	AL	12	400	0.857		0.000	0.000		
	0.25DL	25	900	1.247		0.983	0.614		
	0.50DL	50	1800	2.523		2.753	1.718		
	0.75DL	75	2700	3.829		4.524	2.823		
	1.00DL	99	3600	5.166		6.294	3.928		
	1.20DL	118	4300	6.205		7.670	4.787		
	1.33DL	132	4800	7.011		8.654	5.400		
1	1.33DL	132	4800	7.022					< Movement
2	1.33DL	132	4800	7.022					due to wind
3	1.33DL	132	4800	7.023					
4	1.33DL	132	4800	7.020					
5	1.33DL	132	4800	7.030					
6	1.33DL	132	4800	7.030					Pump the jack
10	1.33DL	132	4800	7.030	6.018			72.46	
	AL	1	0	1.012					
	LOCKOFF	83	3000			5.114	3.191		
Total Movement	Between 1 and 2	10 Minutes (in.)	0.008			Acceptability of	Tieback:	PA	ASS .
Maximum Total I	Movement Allow	ved (in.):	0.040			Retesting Requir	ed?		10
		when Max. Total				Sheet No. of Ret	est:	N	/A

Additional Testing for when Max. Total Movement is Exceeded											
20 min	30 min	40 min	50 min	60 min							

Ram I.D. 2681 Gauge I.D. 16-3


Notes/Additional Comments:

1. Gage pressure must be maintained during testing and be held to within +/- 2%

2. Recorded displacements are to be recorded to the nearest 0.001 in.

Tieback Performance Test

Test Notes:

1. The larger, 135 ton ram requires set up a riser that results in an additional length added to the tail.

2. False displacements occurred due to high winds that caused movements of the dial on the testing plate particularly for the 1.33DL hold times.

Т	ieback	Tieback						Design Load	Lockoff Load	Elastic Mod. (E;
	ocation	Number	Date Installed		ate(s) Post-Grout	ed	Test Date	(P; kips)	(kips)	ksi)
ł	Row 1	15	1/26/2016	1/27/2016			3/23/2016	100.0	75.0	28800
Shaft	t Diameter	Number of	Total Strand	Total Tendon	Tendon Bond	Free Stressing	Tail Length	Theo. Elastic		
	(in)	Strands	Area (A; in ²)	Length (L _T ; ft)	Length (L _B ; ft)	Length (L _∪ ; ft)	(L _e ; ft)	Elong. (in)	Recorded By	Reviewed By
	6	3	0.660	115	50	64.1	0.9	5.458	ZLK	ZLK
							Elongation of	Elongation of		
							Free Stressing	80% Free	Apparent Free	
							Length + 50% of		Tendon Length	
				Gauge Pressure	Recorded	Elastic	Bonded Length	Length	$A_t E_s \delta_e /$	
		Load Testing		for Test Load	Displacement	Elongation at	$P(0.5L_B+L_u)/AE$	0.8*P(L _u)/AE	(TL-AL)	
Tin	ne (min)	Schedule	Test Load (kips)	(psi)	(in.) 0.000	Test Load (in.)	(in.)	(in.) 0.000	(ft)	Comments
		AL (0.10DL) 0.25DL	16 30	500 1000	0.000	0.348	0.000 0.761	0.000	 158.40	
		0.50DL	54	1900	1.354	1.354	2.132	1.227	56.57	
		0.75DL	79	2800	2.380	2.380	3.503	2.016	60.53	
		1.00DL	106	3800	3.641	3.641	5.026	2.892	64.54	
		1.20DL	125	4500	4.162	4.162	6.092	3.506	60.86	
		1.33DL	138	5000	5.180	5.180	6.853	3.944	67.33	
	2	1.33DL 1.33DL	138 138	5000 5000	5.180 5.185		6.853 6.853	3.944 3.944		Pump the jack
	3	1.33DL	138	5000	5.178		6.853	3.944		Pump the jack
	4	1.33DL	138	5000	5.182		6.853	3.944		·
	5	1.33DL	138	5000	5.182		6.853	3.944		
	6	1.33DL	138	5000	5.185		6.853	3.944		Pump the jack
	10	1.33DL AL	138 16	5000	5.185		6.853	3.944		
		LOCKOFF	87	500 3100	0.000		3.960	2.279		
Total		t Between 1 and		0.005	1		Acceptability of			ASS
		Movement Allow		0.000			Retesting Requir			10
							Sheet No. of Ret			/A
		tional Testing for						444420		
	20 min	30 min	40 min	50 min	60 min		Ram I.D. Gauge I.D.			
						1	Guuge I.D.	12 1		
					Load (kips)					
	0	2	:0	40	60	80	100	120)	140
	0.00									
	-									
	1.00									
	-									
	-									
	2.00									
es)	_									
Displacement (inches)	3.00									
nt (i										
mer	Ŀ									
ace	4.00									
ispl	-									
Δ	5.00									
	3.00 T									
	FF		Displacement (in.)							
	6.00 +	Recorded L	nsplacement (In.)							
	F		n + 50% of Bond L	ength						
	7.00		Longth							
	7.00 +		e Length							
	F	Elastic Elon	gation							

8.00

Note: False displacements occurred due to high winds that caused movements of the dial on the testing plate particularly for the 1.33DL hold times.

Tieback Proof Testing Record Form Whatcom Waterway Phase 1 Cleanup

1

Tieback Location	Tieback Number	Date Installed	Da	ate(s) Post-Grout	ed	Test Date	Design Load (P; kips)	Lockoff Load (kips)	Elastic Mod. (E; ksi)
Row 1	16	1/25/2016	1/27/2016			3/23/2016	100.0	75.0	28800
Shaft Diameter	Number of	Total Strand	Total Tendon	Tendon Bond	Free Stressing	Tail Length	Theo. Elastic		
(in)	Strands	Area (A; in ²)	Length (L_T ; ft)	Length (L_B ; ft)	Length (L _U ; ft)	(L _e ; ft)	Elong. (in)	Recorded By	Reviewed By
6	3	0.660	115	50	63.8	1.3	5.458	ZLK	ZLK
						Elongation of Free Stressing	Elongation of 80% Free	Apparent Free	
			Gauge Pressure	Recorded	Elastic	Length + 50% of Bonded Length	Stressing Length	Tendon Length	
	Load Testing		for Test Load	Displacement	Elongation at	$P(0.5L_B+L_u)/AE$	0.8*P(L _u)/AE	A _t E _s δ _e / (TL-AL)	
Time (min)	Schedule	Test Load (kips)		(in.)	Test Load (in.)	(in.)	(in.)	(ft)	Comments
	AL (0.10DL)	12	400	0.000		0.000	0.000		
	0.25DL	29	1000	0.202	0.202	0.923	0.531	130.61	
	0.50DL	56	2000	1.359	1.359	2.463	1.415	48.98	
	0.75DL	81	2900	2.481	2.481	3.848	2.211	57.22	
	1.00DL	106	3800	3.715	3.715	5.233	3.007	63.01	
	1.20DL 1.33DL	125 139	4500 5000	4.717 5.423	4.717 5.423	6.310 7.080	3.626 4.068	66.34 67.98	
1	1.33DL 1.33DL	139	5000	5.423	5.423	7.080	4.068		
2	1.33DL	139	5000	5.438		7.080	4.068		Pump the jack
3	1.33DL	139	5000	5.438		7.080	4.068		
4	1.33DL	139	5000	5.438		7.080	4.068		
5	1.33DL	139	5000	5.438		7.080	4.068		
6	1.33DL	139	5000	5.441		7.080	4.068		Pump the jack
10	1.33DL	139	5000	5.441		7.080	4.068		
	AL	15	500	0.000					
	LOCKOFF	84	3000			4.002	2.300		
Total Movement			0.017			Acceptability of			ASS
Maximum Total	Movement Allow	/ed (in.)*:	0.040			Retesting Requir Sheet No. of Ret			10 /A
Additi	ional Testing for	when Max. Total	Movement is Exc	eeded	1	Sheet No. of Ket	51.	1	/ .
20 min	30 min	40 min	50 min	60 min		Ram I.D.	141121		
						Gauge I.D.	12-4		
				Load (kips)					
0 0.00 +	2	20	40	60	80	100	120) :	140
0.00									
-									
1.00									
-									
2.00									
(si									
- Che									
iii 3.00									
lent									
4.00									
Displacement (inches)									
Dis									
5.00									
6.00	Recorded D	Displacement (in.)							
F-1	Europe Laurant								

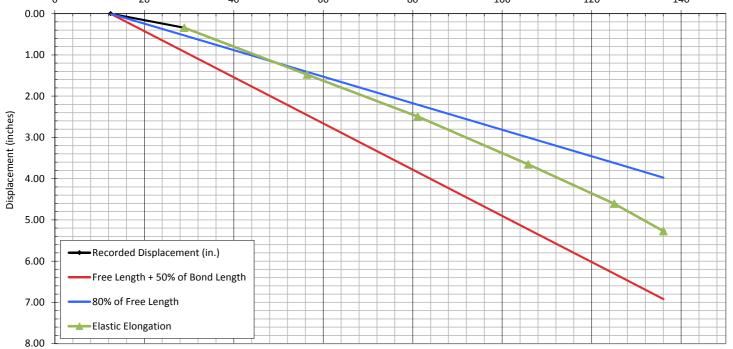
7.00

8.00

Free Length + 50% of Bond Length

80% of Free LengthElastic Elongation

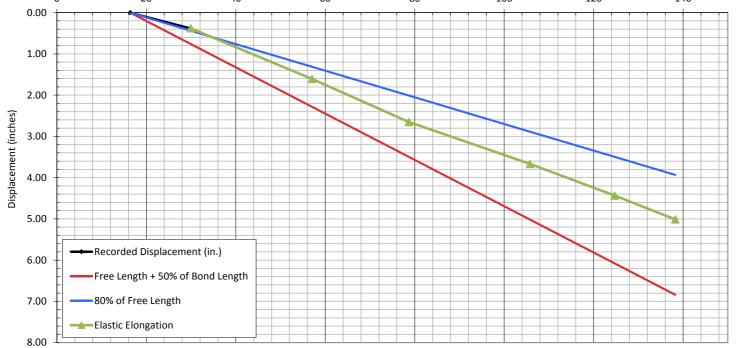
Tieback Proof Testing


Tieback Location	Tieback Number	Date Installed	Da	ate(s) Post-Grout	ed	Test Date	Design Load (P; kips)	Lockoff Load (kips)	Elastic Mod. (E; ksi)
Row 1	17	1/26/2016	1/27/2016			3/23/2016	100.0	75.0	28800
Shaft Diame	er Number of	Total Strand	Total Tendon	Tendon Bond	Free Stressing	Tail Length	Theo. Elastic		
(in)	Strands	Area (A; in ²)	Length (L_T ; ft)	Length (L_B ; ft)	Length (L _u ; ft)	(L _e ; ft)	Elong. (in)	Recorded By	Reviewed By
6	3	0.660	115	50	63.8	1.3	5.458	ZLK	ZLK
						Elongation of Free Stressing	Elongation of 80% Free		
						Length + 50% of		Apparent Free	
			Gauge Pressure	Recorded	Elastic	Bonded Length	Length	Tendon Length A _t E _s δ _e /	
	Load Testing		for Test Load	Displacement	Elongation at	$P(0.5L_B+L_u)/AE$	0.8*P(L _u)/AE	(TL-AL)	
Time (min		Test Load (kips)	(psi)	(in.)	Test Load (in.)	(in.)	(in.)	(ft)	Comments
	AL (0.10DL)	16	500	0.000		0.000	0.000		
	0.25DL	30	1000	0.362	0.362	0.759	0.436	160.62	
	0.50DL	54 79	1900	1.373	1.373	2.124	1.221	57.37	
	0.75DL 1.00DL	106	2800 3800	2.348 3.367	2.348 3.367	3.490 5.007	2.005 2.877	59.71 59.68	
	1.20DL	125	4500	4.179	4.179	6.069	3.488	61.11	
	1.33DL	138	5000	5.062	5.062	6.828	3.924	65.80	
1	1.33DL	138	5000	5.062		6.828	3.924		
2	1.33DL	138	5000	5.062		6.828	3.924		
3	1.33DL 1.33DL	138 138	5000 5000	5.062 5.062		6.828 6.828	3.924 3.924		
5	1.33DL	138	5000	5.062		6.828	3.924		
6	1.33DL	138	5000	5.068		6.828	3.924		Pump the jack
10	1.33DL	138	5000	5.074		6.828	3.924		
	AL	16	500						
	LOCKOFF	81	2900			3.641	2.093		
		-						-	
	ent Between 1 and		0.012			Acceptability of			ASS
	ent Between 1 and tal Movement Allov		0.012 0.040			Retesting Requir	ed?	N	10
Maximum To		ved (in.)*:	0.040	eeded			ed?	N	
Maximum To	tal Movement Allov	ved (in.)*:	0.040	eeded 60 min		Retesting Requir Sheet No. of Ret Ram I.D.	ed? est: 141120	N	10
Maximum To	tal Movement Allow	ved (in.)*: when Max. Total	0.040 Movement is Exc			Retesting Requir Sheet No. of Ret	ed? est: 141120	N	10
Maximum To	tal Movement Allow	ved (in.)*: when Max. Total	0.040 Movement is Exc			Retesting Requir Sheet No. of Ret Ram I.D.	ed? est: 141120	N	10
Maximum To	tal Movement Allov ditional Testing for 30 min	ved (in.)*: when Max. Total	0.040 Movement is Exc	60 min	80	Retesting Requir Sheet No. of Ret Ram I.D.	ed? est: 141120	N N	10
Maximum To Ac 20 min	tal Movement Allov ditional Testing for 30 min	ved (in.)*: when Max. Total 40 min	0.040 Movement is Exc 50 min	60 min Load (kips)		Retesting Requir Sheet No. of Ret Ram I.D. Gauge I.D.	ed? est: 141120 12-1	N N	10 /A
Maximum To	tal Movement Allov ditional Testing for 30 min	ved (in.)*: when Max. Total 40 min	0.040 Movement is Exc 50 min	60 min Load (kips)		Retesting Requir Sheet No. of Ret Ram I.D. Gauge I.D.	ed? est: 141120 12-1	N N	10 /A
Maximum To 20 min 0.00	tal Movement Allov ditional Testing for 30 min	ved (in.)*: when Max. Total 40 min	0.040 Movement is Exc 50 min	60 min Load (kips)		Retesting Requir Sheet No. of Ret Ram I.D. Gauge I.D.	ed? est: 141120 12-1	N N	10 /A
Maximum To	tal Movement Allov ditional Testing for 30 min	ved (in.)*: when Max. Total 40 min	0.040 Movement is Exc 50 min	60 min Load (kips)		Retesting Requir Sheet No. of Ret Ram I.D. Gauge I.D.	ed? est: 141120 12-1	N N	10 /A
Maximum To 20 min 0.00	tal Movement Allov ditional Testing for 30 min	ved (in.)*: when Max. Total 40 min	0.040 Movement is Exc 50 min	60 min Load (kips)		Retesting Requir Sheet No. of Ret Ram I.D. Gauge I.D.	ed? est: 141120 12-1	N N	10 /A
Maximum To 20 min 0.00	tal Movement Allov ditional Testing for 30 min	ved (in.)*: when Max. Total 40 min	0.040 Movement is Exc 50 min	60 min Load (kips)		Retesting Requir Sheet No. of Ret Ram I.D. Gauge I.D.	ed? est: 141120 12-1	N N	10 /A
Maximum Tc 20 min 0.00 - 1.00 - 2.00 -	tal Movement Allov ditional Testing for 30 min	ved (in.)*: when Max. Total 40 min	0.040 Movement is Exc 50 min	60 min Load (kips)		Retesting Requir Sheet No. of Ret Ram I.D. Gauge I.D.	ed? est: 141120 12-1	N N	10 /A
Maximum Tc 20 min 0.00 - 1.00 - 2.00 -	tal Movement Allov ditional Testing for 30 min	ved (in.)*: when Max. Total 40 min	0.040 Movement is Exc 50 min	60 min Load (kips)		Retesting Requir Sheet No. of Ret Ram I.D. Gauge I.D.	ed? est: 141120 12-1	N N	10 /A
Maximum Tc 20 min 0.00 - 1.00 - 2.00 -	tal Movement Allov ditional Testing for 30 min	ved (in.)*: when Max. Total 40 min	0.040 Movement is Exc 50 min	60 min Load (kips)		Retesting Requir Sheet No. of Ret Ram I.D. Gauge I.D.	ed? est: 141120 12-1	N N	10 /A
Maximum Tc 20 min 0.00 - 1.00 - 2.00 -	tal Movement Allov ditional Testing for 30 min	ved (in.)*: when Max. Total 40 min	0.040 Movement is Exc 50 min	60 min Load (kips)		Retesting Requir Sheet No. of Ret Ram I.D. Gauge I.D.	ed? est: 141120 12-1	N N	10 /A
Maximum Tc 20 min 0.00 - 1.00 - 2.00 -	tal Movement Allov ditional Testing for 30 min	ved (in.)*: when Max. Total 40 min	0.040 Movement is Exc 50 min	60 min Load (kips)		Retesting Requir Sheet No. of Ret Ram I.D. Gauge I.D.	ed? est: 141120 12-1	N N	10 /A
Maximum Tc 20 min 0.00 - 1.00 - 2.00 -	tal Movement Allov ditional Testing for 30 min	ved (in.)*: when Max. Total 40 min	0.040 Movement is Exc 50 min	60 min Load (kips)		Retesting Requir Sheet No. of Ret Ram I.D. Gauge I.D.	ed? est: 141120 12-1	N N	10 /A
Maximum To Ac 20 min 0.00 - 1.00 - 2.00 - 3.00 - 4.00 -	tal Movement Allov ditional Testing for 30 min	ved (in.)*: when Max. Total 40 min	0.040 Movement is Exc 50 min	60 min Load (kips)		Retesting Requir Sheet No. of Ret Ram I.D. Gauge I.D.	ed? est: 141120 12-1	N N	10 /A
Maximum Tc 20 min 0.00 - 1.00 - 2.00 -	tal Movement Allov ditional Testing for 30 min	ved (in.)*: when Max. Total 40 min	0.040 Movement is Exc 50 min	60 min Load (kips)		Retesting Requir Sheet No. of Ret Ram I.D. Gauge I.D.	ed? est: 141120 12-1	N N	10 /A
Maximum To Ac 20 min 0.00 - 1.00 - 2.00 - 3.00 - 4.00 -	tal Movement Allov ditional Testing for 30 min	ved (in.)*:	0.040 Movement is Exc 50 min 40	60 min Load (kips)		Retesting Requir Sheet No. of Ret Ram I.D. Gauge I.D.	ed? est: 141120 12-1	N N	10 /A
Maximum To Ac 20 min 0.00 - 1.00 - 2.00 - 3.00 - 4.00 -	tal Movement Allov ditional Testing for 30 min	ved (in.)*: when Max. Total 40 min	0.040 Movement is Exc 50 min 40	60 min Load (kips)		Retesting Requir Sheet No. of Ret Ram I.D. Gauge I.D.	ed? est: 141120 12-1	N N	10 /A
Maximum To 20 min 0.00 - 1.00 - 2.00 - 3.00 - 4.00 - 5.00 -	tal Movement Allov	ved (in.)*:	0.040 Movement is Exc 50 min 40	60 min Load (kips)		Retesting Requir Sheet No. of Ret Ram I.D. Gauge I.D.	ed? est: 141120 12-1	N N	10 /A
Maximum To 20 min 0.00 - 1.00 - 2.00 - 3.00 - 4.00 - 5.00 -	tal Movement Allov	ved (in.)*: when Max. Total 40 min 20 20 20 20 20 20 20 20 20 20	0.040 Movement is Exc 50 min 40	60 min Load (kips)		Retesting Requir Sheet No. of Ret Ram I.D. Gauge I.D.	ed? est: 141120 12-1	N N	10 /A

8.00

Elastic Elongation

Tieback Location	Tieback Number	Date Installed	Da	ite(s) Post-Grout	ed	Test Date	Design Load (P; kips)	Lockoff Load (kips)	Elastic Mod. (E; ksi)
Row 1	18	1/25/2016	1/26/2016			3/23/2016	100.0	75.0	28800
Shaft Diameter	Number of	Total Strand	Total Tendon	Tendon Bond	Free Stressing	Tail Length	Theo. Elastic		
(in)	Strands	Area (A; in ²)	Length (L_T ; ft)	Length (L_B ; ft)	Length (L _u ; ft)	(L _e ; ft)	Elong. (in)	Recorded By	Reviewed By
6	3	0.660	115	50	63.7	1.3	5.458	ZLK	ZLK
						Elongation of	Elongation of		
						Free Stressing	80% Free	Apparent Free	
						Length + 50% of	Stressing	Tendon Length	
			Gauge Pressure	Recorded	Elastic	Bonded Length	Length	$A_t E_s \delta_e /$	
	Load Testing		for Test Load	Displacement	Elongation at	$P(0.5L_B+L_u)/AE$	0.8*P(L _u)/AE	(TL-AL)	
Time (min)	Schedule	Test Load (kips)	(psi)	(in.)	Test Load (in.)	(in.)	(in.)	(ft)	Comments
	AL (0.10DL)	12	400	0.000		0.000	0.000		
	0.25DL	29	1000	0.343	0.343	0.923	0.530	141.95	
	0.50DL	56	2000	1.477	1.477	2.460	1.413	53.23	
	0.75DL	81	2900	2.495	2.495	3.844	2.208	57.55	
	1.00DL	106	3800	3.656	3.656	5.228	3.003	62.00	
	1.20DL	125	4500	4.607	4.607	6.304	3.622	64.79	
	1.33DL	136	4900	5.272	5.272	6.920	3.975	67.56	
1	1.33DL	136	4900	5.272		6.920	3.975		
2	1.33DL	136	4900	5.272		6.920	3.975		
3	1.33DL	136	4900	5.275		6.920	3.975		Pump the jack
4	1.33DL	136	4900	5.275		6.920	3.975		
5	1.33DL	136	4900	5.276		6.920	3.975		
6	1.33DL	136	4900	5.276		6.920	3.975		
10	1.33DL	136	4900	5.277		6.920	3.975		
	AL	15	500	0.000					
	LOCKOFF	87	3100			4.152	2.385		
Total Movement			0.005			Acceptability of			ASS
Maximum Total I	Movement Allow	ved (in.)*:	0.040			Retesting Requir			10
۵ ما ما نه:	anal Tasting for	where May Tatal			1	Sheet No. of Ret	est:	N	/A
20 min	30 min	when Max. Total 40 min	50 min	60 min		Ram I.D.	1/1171		
20 11111	50 11111	40 11111	50 11111	00 11111		Gauge I.D.			
					I	eauge ind.			
				Load (kips)					
0	2	20	40	60	80	100	120) 1	140
0.00									
									+
1.00 -									


Tieback Location	Tieback Number	Date Installed	D	Pate(s) Post-Grout	ed	Test Date	Design Load (P; kips)	Lockoff Load (kips)	Elastic Mod. (E; ksi)
Row 1	19	1/26/2016	1/27/2016			3/23/2016	100.0	75.0	28800
Shaft Diameter	Number of	Total Strand	Total Tendon	Tendon Bond	Free Stressing	Tail Length	Theo. Elastic		
(in)	Strands	Area (A; in ²)	Length (L_T ; ft)	Length (L_B ; ft)	Length (L _U ; ft)	(L _e ; ft)	Elong. (in)	Recorded By	Reviewed By
6	3	0.660	115	50	64.3	0.8	5.458	ZLK	ZLK
							Elemention of		
						Elongation of Free Stressing	Elongation of 80% Free	Apparent Free	
						Length + 50% of		Tendon Length	
			Gauge Pressure	Recorded	Elastic	Bonded Length	Length	$A_t E_s \delta_e /$	
	Load Testing		for Test Load	Displacement	Elongation at	P(0.5L _B +L _u)/AE	0.8*P(L _u)/AE	(TL-AL)	
Time (min)	Schedule	Test Load (kips)		(in.)	Test Load (in.)	(in.)	(in.)	(ft)	Comments
	AL (0.10DL) 0.25DL	12 29	400 1000	0.000	0.297	0.000 0.929	0.000	 136.28	
	0.50DL	56	2000	1.418	1.418	2.476	1.426	51.10	
	0.75DL	81	2900	2.456	2.456	3.869	2.228	56.65	
	1.00DL	106	3800	3.547	3.547	5.262	3.031	60.16	
	1.20DL 1.33DL	125 136	4500 4900	4.435 4.960	4.435 4.960	6.346 6.965	3.655 4.011	62.37 63.56	
1	1.33DL	136	4900	4.960	4.900	6.965	4.011		
2	1.33DL	136	4900	4.960		6.965	4.011		
3	1.33DL	136	4900	4.960		6.965	4.011		
4 5	1.33DL 1.33DL	136 136	4900 4900	4.960 4.960		6.965 6.965	4.011 4.011		Pump the jack
6	1.33DL	136	4900	4.920		6.965	4.011		<dial moved<="" td=""></dial>
10	1.33DL	136	4900	4.910		6.965	4.011		on pump of
	AL	15	500	0.000					jack
	LOCKOFF	87	3100			4.179	2.407		
Iotal Movement Maximum Total	t Between 1 and Movement Allow		-0.050 0.040	-		Acceptability of Retesting Require			ASS IO
			01010	-	_	Sheet No. of Ret			/A
		when Max. Total				Dama I D	4 4 4 4 7 4		
20 min	30 min	40 min	50 min	60 min		Ram I.D. Gauge I.D.			
					1	00080			
0	-	.0	40	Load (kips) 60	80	100	120		140
0.00 +		.0	40				120	· · · · · · · · · · · · · · · · · · ·	+
1.00 +									
-									
2.00									
e s)									
che									
00.6 ji t									
nen									
ag 4.00									
Displacement (inches)									
5.00									
5.00									
LT.) isplacement (in.)							
6.00 +									
El ·		n + 50% of Bond L	ength						
7.00	—80% of Free	e Length							
		-							

8.00

Elastic Elongation

Tieback Location	Tieback Number	Date Installed	Da	ate(s) Post-Grout	ed	Test Date	Design Load (P; kips)	Lockoff Load (kips)	Elastic Mod. (E; ksi)
Row 1	20	1/25/2016	1/27/2016			3/23/2016	100.0	75.0	28800
Shaft Diameter	Number of	Total Strand	Total Tendon	Tendon Bond	Free Stressing	Tail Length	Theo. Elastic		
(in)	Strands	Area (A; in ²)	Length (L _T ; ft)	Length (L _B ; ft)	Length (L _U ; ft)	(L _e ; ft)	Elong. (in)	Recorded By	Reviewed By
6	3	0.660	115	50	63.9	1.1	5.458	ZLK	ZLK
Ū	5	0.000	115	50	03.5	1.1	5.450		
						Elongation of	Elongation of		
						Free Stressing	80% Free	Apparent Free	
						Length + 50% of	Stressing	Tendon Length	
			Gauge Pressure	Recorded	Elastic	Bonded Length	Length	-	
	Load Testing		for Test Load	Displacement	Elongation at	$P(0.5L_B+L_u)/AE$	0.8*P(L _u)/AE	$A_t E_s \delta_e /$	
Time (min)	Schedule	Test Load (kips)		(in.)	Test Load (in.)	(in.)	(in.)	(TL-AL) (ft)	Comments
	AL (0.10DL)	16	500	0.000		0.000	0.000		comments
	0.25DL	30	1000	0.380	0.380	0.760	0.437	187.88	
	0.50DL	57	2000	1.606	1.606	2.280	1.311	62.63	
	0.75DL	79	2800	2.650	2.650	3.496	2.011	67.39	
	1.00DL	106	3800	3.668	3.668	5.016	2.885	65.02	
	1.20DL	125	4500	4.435	4.435	6.080	3.497	64.85	
	1.33DL	138	5000	5.013	5.013	6.841	3.934	65.16	
1	1.33DL	138	5000	5.013		6.841	3.934		
2	1.33DL	138	5000	5.013		6.841	3.934		
3	1.33DL	138	5000	5.013		6.841	3.934		Pump the jack
4	1.33DL	138	5000	5.014		6.841	3.934		
5	1.33DL	138	5000	5.014		6.841	3.934		
6	1.33DL	138	5000	5.014		6.841	3.934		
10	1.33DL	138	5000	5.014		6.841	3.934		
	AL	16	500						
	LOCKOFF	81	2900			3.648	2.098		
Total Movement	Between 1 and	10 Minutes (in.)	0.001			Acceptability of	Tieback:	PA	ASS
Maximum Total	Movement Allow	ved (in.)*:	0.040			Retesting Requir	ed?	N	10
						Sheet No. of Ret	est:	N	/A
		when Max. Total							
20 min	30 min	40 min	50 min	60 min		Ram I.D.			
					l	Gauge I.D.	12-1		
				Load (kips)					
0	2	20	40	60	80	100	120)	140
0.00 +			-						+

Tieback

Tieback

Tieback Proof Testing

Elastic Mod. (E;

Design Load

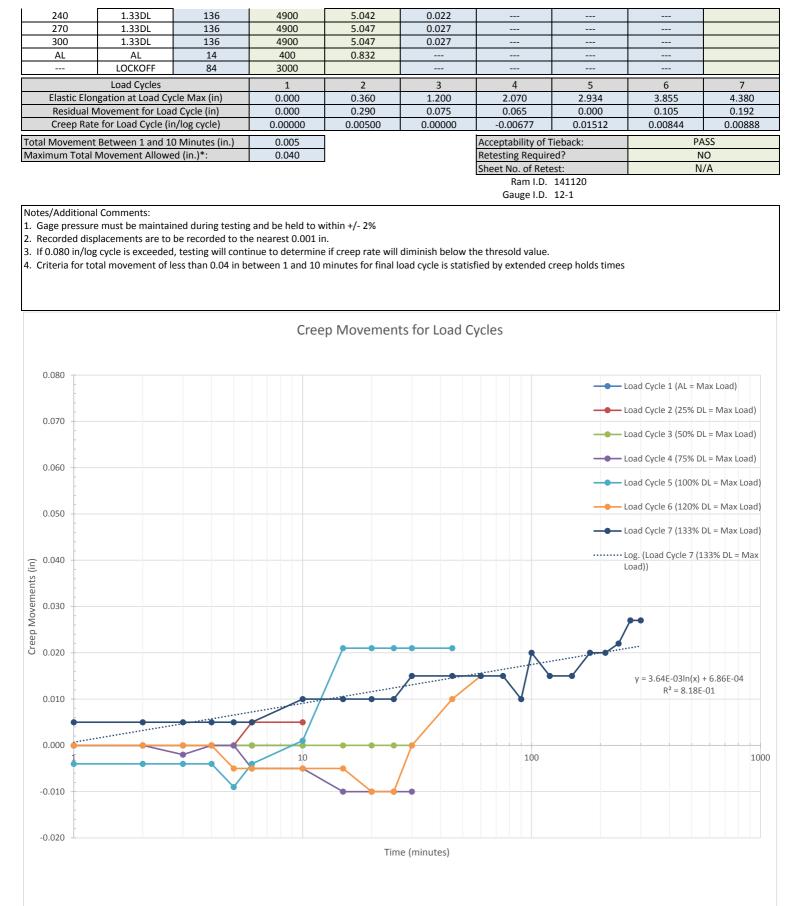
Lockoff Load

	ocation	Number	Date Installed	Da	ate(s) Post-Grout	ed	Test Date	(P; kips)	(kips)	ksi)
1	Row 1	21	1/26/2016	1/27/2016			3/23/2016	100.0	75.0	28800
	D : 1		Total Strand							
Shaft	Diameter	Number of		Total Tendon	Tendon Bond	Free Stressing	Tail Length	Theo. Elastic	Descended Dec	Devision of Dev
	(in)	Strands	Area (A; in ²)	Length (L_T ; ft)	Length (L _B ; ft)	Length (L _U ; ft)	(L _e ; ft)	Elong. (in)	Recorded By	Reviewed By
	6	3	0.660	115	50	64.4	0.6	5.458	ZLK	ZLK
							-	-		
							Elongation of	Elongation of		
							Free Stressing	80% Free	Apparent Free	
							Length + 50% of	Stressing	Tendon Length	
				Gauge Pressure	Recorded	Elastic	Bonded Length	Length	$A_t E_s \delta_e /$	
		Load Testing		for Test Load	Displacement	Elongation at	$P(0.5L_B+L_u)/AE$	0.8*P(L _u)/AE	(TL-AL)	
Tin	ne (min)	Schedule	Test Load (kips)		(in.)	Test Load (in.)	(in.)	(in.)	(ft)	Comments
		AL (0.10DL)	16	500	0.000		0.000	0.000		
		0.25DL	30	1000	0.235	0.235	0.764	0.441	97.10	
		0.50DL	57	2000	0.830	0.830	2.293	1.322	32.37	
		0.75DL	79	2800	1.421	1.421	3.516	2.026	36.14	
		1.00DL	106	3800	2.060	2.060	5.045	2.907	36.51	
		1.20DL	125	4500	2.617	2.617	6.115	3.524	38.27	
		1.33DL	138	5000	3.096	3.096	6.879	3.965	40.24	
	1	1.33DL	138	5000	3.096		6.879	3.965		
	2	1.33DL	138	5000	3.102		6.879	3.965		
	3	1.33DL	138	5000	3.102		6.879	3.965		
	4	1.33DL	138	5000	3.120		6.879	3.965		
	5	1.33DL	138	5000	3.122		6.879	3.965		
	6	1.33DL	138	5000	3.122		6.879	3.965		
	10	1.33DL	138	5000	3.124		6.879	3.965		
		AL	16	500						
		LOCKOFF	81	2900			3.669	2.114		
		t Between 1 and		0.028			Acceptability of		FA	AIL
Maxir	num Total	Movement Allow	/ed (in.)*:	0.040			Retesting Requir		N	
	۸ ما ما ۲	ional Tasting for	when May Tatal		andad	1	Sheet No. of Ret	est:	N	/A
		ional Testing for		wovement is exc	eeded					
			40 min	50 min	60 min		PamID	1/1120		
	20 min	30 min	40 min	50 min	60 min		Ram I.D. Gauge I.D.			
		30 min	40 min	50 min	60 min		Ram I.D. Gauge I.D.			
	20 min	30 min	40 min	50 min	60 min Load (kips)					
	<u>20 min</u> 0		40 min	50 min		80) 1	.40
					Load (kips)	80	Gauge I.D.	12-1) 1	40
	0				Load (kips)	80	Gauge I.D.	12-1		40
	0				Load (kips)	80	Gauge I.D.	12-1		40
	0				Load (kips)	80	Gauge I.D.	12-1		40
	0.00				Load (kips)	80	Gauge I.D.	12-1		40
	0.00				Load (kips)	80	Gauge I.D.	12-1		40
	0.00				Load (kips)	80	Gauge I.D.	12-1		40
(s)	00.00				Load (kips)	80	Gauge I.D.	12-1		40
ches)	00.00				Load (kips)	80	Gauge I.D.	12-1		40
(inches)	00.00				Load (kips)	80	Gauge I.D.	12-1		40
int (inches)	00.00				Load (kips)	80	Gauge I.D.	12-1		40
ment (inches)	0 0.00 1.00 2.00 3.00				Load (kips)	80	Gauge I.D.	12-1		40
acement (inches)	00.00				Load (kips)	80	Gauge I.D.	12-1		40
splacement (inches)	0 0.00 1.00 2.00 3.00				Load (kips)	80	Gauge I.D.	12-1		40
Displacement (inches)	0 0.00 1.00 2.00 3.00 4.00				Load (kips)	80	Gauge I.D.	12-1		40
Displacement (inches)	0 0.00 1.00 2.00 3.00				Load (kips)	80	Gauge I.D.	12-1		
Displacement (inches)	0 0.00 1.00 2.00 3.00 4.00				Load (kips)	80	Gauge I.D.	12-1		40
Displacement (inches)	0 0.00 1.00 2.00 3.00 4.00		0	40	Load (kips)	80	Gauge I.D.	12-1		
Displacement (inches)	0 0.00 1.00 2.00 3.00 4.00			40	Load (kips)	80	Gauge I.D.	12-1		
Displacement (inches)	0 0.00 1.00 2.00 3.00 4.00	22 → Recorded D	0	40	Load (kips)	80	Gauge I.D.	12-1		
Displacement (inches)	0 0.00 1.00 2.00 3.00 4.00 6.00	2 → Recorded D → Free Length	0 bisplacement (in.) n + 50% of Bond L	40	Load (kips)	80	Gauge I.D.	12-1		
Displacement (inches)	0 0.00 1.00 2.00 3.00 4.00	22 → Recorded D	0 bisplacement (in.) n + 50% of Bond L	40	Load (kips)	80	Gauge I.D.	12-1		
Displacement (inches)	0 0.00 1.00 2.00 3.00 4.00 6.00	2 2 2 2 2 2 2 2 2 2 2 2 2 2	0 bisplacement (in.) n + 50% of Bond L e Length	40	Load (kips)	80	Gauge I.D.	12-1		
Displacement (inches)	0 0.00 1.00 2.00 3.00 4.00 6.00	2 → Recorded D → Free Length	0 bisplacement (in.) n + 50% of Bond L e Length	40	Load (kips)	80	Gauge I.D.	12-1		

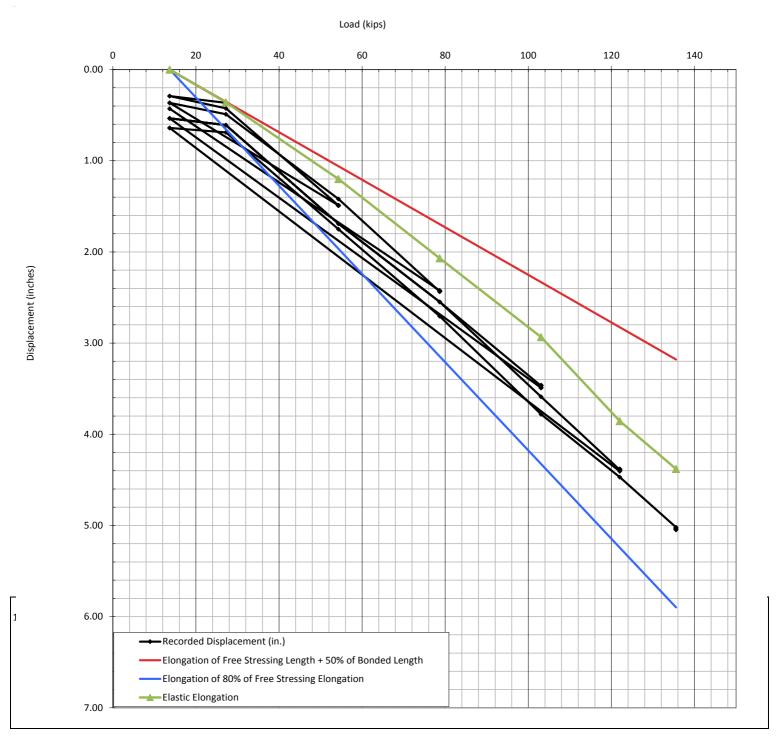
Tieback Proof Testing Record Form Whatcom Waterway Phase 1 Cleanup

Tieback Extended Creep Testing

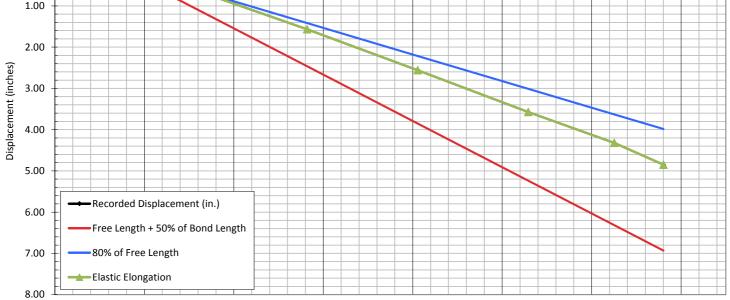
Tieback							Design Load	Lockoff Load	Elastic Mod.
Location	Tieback No.	Date Installed		ate(s) Post-Grout	ed	Test Date	(P; kips)	(kips)	(E; ksi)
Row 1	141121	1/20/2016	1/21/2016			3/24/2016	100.0	75.0	28800
Shaft Diameter	Number of	Total Strand	Total Tendon	Tendon Bond	Free Stressing	Jacking Length	Max. Elastic		
(in)	Strands	Area (A; in ²)	Length (L _⊤ ; ft)	Length (L _B ; ft)	Length (L _U ; ft)	(L _J ; ft)	Elong. (in)	Recorded By	Reviewed By
6	3	0.660	103	50	51.7	1.3	8.760	KH (MDCI)	ZLK
-						-			I
						Elongation of			
						Free Stressing	Elongation of	Apparent Free	
						Length + 50% of		Tendon Length	
			Gauge Pressure	Recorded		Bonded Length	Stressing Length	$A_t E_s \delta_e /$	
<u> </u>	Load Testing		for Test Load	Displacement	Creep	$P(0.5L_B+L_u)/AE$	0.8*P(L _u)/AE	(TL-AL)	
Time (min)	Schedule	Test Load (kips)	(psi)	(in.)	Movement	(in.)	(in.)	(ft)	Comments
	AL (0.10DL)	14	400	0.000	AL = Max Load)	0.000	0.000		[
1	AL (0.10DL) AL	14	400	0.000	0.000	0.000	0.000		
2	AL	14	400	0.000	0.000				
3	AL	14	400	0.000	0.000				
4	AL	14	400	0.000	0.000				
5	AL	14	400	0.000	0.000				
6	AL	14	400	0.000	0.000				
10	AL	14	400	0.000	0.000				
	AL	14	400	0.000					
			100		% DL = Max Load)	0.000	0.000		[
	AL	14	400	0.000		0.000	0.000		
1	0.25DL 0.25DL	27 27	900 900	0.360	0.000	0.655	0.353	42.12	
2	0.25DL	27	900	0.360	0.000				
3	0.25DL	27	900	0.360	0.000				
4	0.25DL	27	900	0.360	0.000				
5	0.25DL	27	900	0.360	0.000				
6	0.25DL	27	900	0.365	0.005				
10	0.25DL	27	900	0.365	0.005				
	AL	14	400	0.290					
			100		% DL = Max Load)	0.000	0.000		Г
	AL 0.25DI	14 27	400 900	0.290		0.000 0.655	0.000 0.353	 15.79	
	0.25DL 0.50DL	54	1900	1.490		1.966	1.060	46.79	
1	0.50DL	54	1900	1.490	0.000				
2	0.50DL	54	1900	1.490	0.000				
3	0.50DL	54	1900	1.490	0.000				
4	0.50DL	54	1900	1.490	0.000				
5	0.50DL	54	1900	1.490	0.000				
6	0.50DL	54	1900	1.490	0.000				
10	0.50DL	54	1900	1.490	0.000				
15	0.50DL	54	1900	1.490	0.000				Duran that I
20 25	0.50DL	54	1900	1.490 1.490	0.000				Pump the jack
30	0.50DL 0.50DL	54 54	1900 1900	1.490	0.000				
	AL	14	400	0.365					
					% DL = Max Load)	1	1		
	AL	14	400	0.365		0.000	0.000		
	0.25DL	27	900	0.490		0.655	0.353	14.62	
	0.50DL	54	1900	1.420		1.966	1.060	41.14	
	0.75DL	79	2800	2.435		3.146	1.696	50.45	
1	0.75DL	79	2800	2.435	0.000				
2	0.75DL	79	2800	2.435	0.000				
3	0.75DL	79	2800	2.433	-0.002				
4	0.75DL 0.75DL	79 79	2800 2800	2.435 2.435	0.000				
6	0.75DL 0.75DL	79	2800	2.435	-0.005				Pump the jack
10	0.75DL	79	2800	2.430	-0.005				
15	0.75DL	79	2800	2.430	-0.010				
20	0.75DL	79	2800	2.425	-0.010				
	0.75DL	79	2800	2.425	-0.010				
25	0.750L								

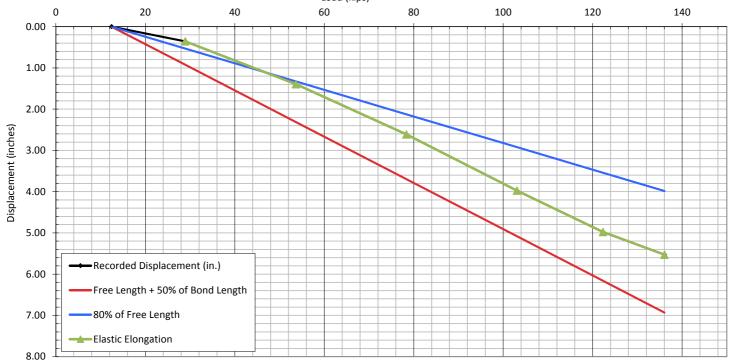


Tieback Extended Creep Testing


1	· · ·	1	100	0.400					
	AL	14	400	0.430					
				Load Cycle 5 (100	% DL = Max Load)				
	AL	14	400	0.535		0.000	0.000		
	0.25DL	27	900	0.609		0.655	0.353	8.66	
	0.50DL	54	1900	1.690		1.966	1.060	45.04	
	0.75DL	79	2800	2.548		3.146	1.696	49.06	
	1.00DL	103	3700	3.469		4.325	2.332	52.01	
1	1.00DL	103	3700	3.465	-0.004				
2	1.00DL	103	3700	3.465	-0.004				
3	1.00DL	103	3700	3.465	-0.004				
4	1.00DL	103	3700	3.465	-0.004				
5	1.00DL	103	3700	3.460	-0.009				
6	1.00DL	103	3700	3.465	-0.004				
10	1.00DL	103	3700	3.470	0.001				
15	1.00DL	103	3700	3.490	0.021				
20	1.00DL	103	3700	3.490	0.021				
25	1.00DL	103	3700	3.490	0.021				
30	1.00DL	103	3700	3.490	0.021				Pump the jack
45	1.00DL	103	3700	3.490	0.021				
					0.021				
	AL	14	400	0.535					
			1	· · ·)% DL = Max Load)		1		
	AL	14	400	0.535		0.000	0.000		
	0.25DL	27	900	0.609		0.655	0.353	8.66	
	0.50DL	54	1900	1.690		1.966	1.060	45.04	
	0.75DL	79	2800	2.548		3.146	1.696	49.06	
	1.00DL								
		103	3700	3.588		4.325	2.332	54.12	
	1.20DL	122	4400	4.390		5.243	2.827	56.37	
1	1.20DL	122	4400	4.390	0.000				
2	1.20DL	122	4400	4.390	0.000				
3	1.20DL	122	4400	4.390	0.000				
4	1.20DL	122	4400	4.390	0.000				
5	1.20DL	122	4400	4.385	-0.005				
					1				
6	1.20DL	122	4400	4.385	-0.005				
10	1.20DL	122	4400	4.385	-0.005				
15	1.20DL	122	4400	4.385	-0.005				
20	1.20DL	122	4400	4.380	-0.010				
25	1.20DL	122	4400	4.380	-0.010				
									Duran the isola
30	1.20DL	122	4400	4.390	0.000				Pump the jack
45	1.20DL	122	4400	4.400	0.010				Pump the jack
60	1.20DL	122	4400	4.405	0.015				
	AL	14	400	0.640					
		•		Load Cycle 7 (133	% DL = Max Load)			•	•
	AL	14	400	0.640		0.000	0.000		
	0.25DL	27	900	0.690	-	0.655	0.353	5.85	
	0.50DL	54	1900	1.750		1.966	1.060	43.29	
	0.75DL	79	2800	2.705		3.146	1.696	50.33	
	1.00DL	103	3700	3.780		4.325	2.332	55.66	
	1.20DL	122	4400	4.470		5.243	2.827	56.01	
	1.33DL	136	4900	5.020		5.898	3.180	56.93	
1	1.33DL	136	4900	5.025	0.005				
2	1.33DL	136	4900	5.025	0.005				
3	1.33DL	136	4900	5.025	0.005				
4	1.33DL	136	4900	5.025	0.005				
5	1.33DL	136	4900	5.025	0.005				
6	1.33DL	136	4900	5.025	0.005				
10	1.33DL	136	4900	5.030	0.010				Pump the jack
15	1.33DL	136	4900	5.030	0.010				
20	1.33DL	136	4900	5.030	0.010				
25	1.33DL	136	4900	5.030	0.010				
30	1.33DL	136	4900	5.035	0.015				Pump the jack
45	1.33DL	136	4900	5.035	0.015				
60	1.33DL	136	4900	5.035	0.015				
								1	
75	1.33DL	136	4900	5.035	0.015				
90	1.33DL	136	4900	5.030	0.010				
100	1.33DL	136	4900	5.040	0.020				Pump the jack
120	1.33DL	136	4900	5.035	0.015				
150	1.33DL	136	4900	5.035	0.015				
130	1.33DL	136	4900	5.040	0.020				
								1	
210	1.33DL	136	4900	5.040	0.020				

Tieback Extended Creep Testing





Tieback Location	Tieback Number	Date Installed	Da	ate(s) Post-Grout	ed	Test Date	Design Load (P; kips)	Lockoff Load (kips)	Elastic Mod. (E; ksi)
Row 1	23	1/26/2016	1/27/2016			3/23/2016	100.0	75.0	28800
Shaft Diameter (in)	Number of Strands	Total Strand Area (A; in ²)	Total Tendon Length (L _T ; ft)	Tendon Bond Length (L _B ; ft)	Free Stressing Length (L _U ; ft)	Tail Length (L _e ; ft)	Theo. Elastic Elong. (in)	Recorded By	Reviewed By
6	3	0.660	115	50	63.8	1.2	5.458	ZLK	ZLK
			Gauge Pressure	Recorded	Elastic	Elongation of Free Stressing Length + 50% of Bonded Length	Elongation of 80% Free Stressing Length	Apparent Free Tendon Length	
	Load Testing		for Test Load	Displacement	Elongation at	$P(0.5L_B+L_u)/AE$	0.8*P(L _u)/AE	A _t E _s δ _e / (TL-AL)	
Time (min)	Schedule	Test Load (kips)		(in.)	Test Load (in.)	(in.)	(in.)	(TL-AL) (ft)	Comments
	AL (0.10DL)	12	400	0.000		0.000	0.000		connents
	0.25DL	29	1000	0.525	0.525	0.924	0.531	150.69	
	0.50DL	56	2000	1.568	1.568	2.465	1.417	56.51	
	0.75DL	81	2900	2.559	2.559	3.851	2.214	59.02	
	1.00DL	106	3800	3.572	3.572	5.238	3.011	60.58	
	1.20DL	125	4500	4.320	4.320	6.316	3.631	60.76	
	1.33DL	136	4900	4.849	4.849	6.933	3.985	62.13	
1	1.33DL	136	4900	4.849		6.933	3.985		
2	1.33DL	136	4900	4.849		6.933	3.985		
3	1.33DL	136	4900	4.849		6.933	3.985		
4	1.33DL	136	4900	4.849		6.933	3.985		
5	1.33DL	136	4900	4.851		6.933	3.985		
6	1.33DL	136	4900	4.852		6.933	3.985		Pump the jack
10	1.33DL	136	4900	4.852		6.933	3.985		
	AL	15	500	0.000					
	LOCKOFF	87	3100			4.160	2.391		
Total Movement Maximum Total			0.003 0.040			Acceptability of Retesting Requir Sheet No. of Ret	ed?	N	ASS IO /A
Additi	onal Testing for	when Max. Total	Movement is Exc	eeded	ן				
20 min	30 min	40 min	50 min	60 min		Ram I.D. Gauge I.D.			
0	2	20	40	Load (kips) 60	80	100	120		140
0.00									

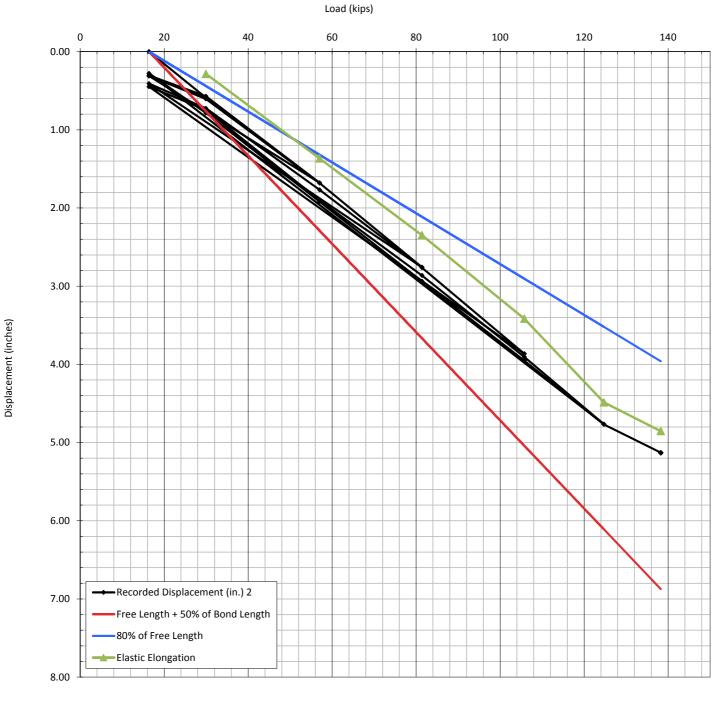
Tieback Location	Tieback Number	Date Installed	D	ate(s) Post-Grout	ad	Test Date	Design Load (P; kips)	Lockoff Load (kips)	Elastic Mod. (E; ksi)
Row 1	24				eu		(P, KIPS) 100.0	75.0	28800
ROW 1	24	1/25/2016	1/26/2016			3/23/2016	100.0	75.0	28800
Shaft Diameter	Number of	Total Strand	Total Tendon	Tendon Bond	Free Stressing	Tail Length	Theo. Elastic		
(in)	Strands	Area (A; in ²)	Length (L _T ; ft)	Length (L _B ; ft)	Length (L _u ; ft)	(L _e ; ft)	Elong. (in)	Recorded By	Reviewed By
6	3	0.660	115	50	63.8	1.2	5.458	ZLK	ZLK
		1						I	
						Elongation of	Elongation of		
						Free Stressing	80% Free	Apparent Free	
						Length + 50% of	Stressing	Tendon Length	
			Gauge Pressure	Recorded	Elastic	Bonded Length	Length	$A_t E_s \delta_e /$	
	Load Testing		for Test Load	Displacement	Elongation at	$P(0.5L_B+L_u)/AE$	0.8*P(L _u)/AE	(TL-AL)	
Time (min)	Schedule	Test Load (kips)		(in.)	Test Load (in.)	(in.)	(in.)	(ft)	Comments
	AL (0.10DL)	12	400	0.000		0.000	0.000		
	0.25DL	29	1000	0.357	0.357	0.924	0.531	134.07	
	0.50DL	54	1900	1.395	1.395	2.311	1.328	53.63	
	0.75DL	78	2800	2.612	2.612	3.697	2.125	62.76	
	1.00DL	103	3700	3.975	3.975	5.084	2.923	69.46	
	1.20DL	122	4400	4.979	4.979	6.162	3.542	71.78	
	1.33DL	136	4900	5.530	5.530	6.933	3.985	70.86	
1	1.33DL	136	4900	5.530		6.933	3.985		
2	1.33DL	136	4900	5.530		6.933	3.985		
3	1.33DL	136	4900	5.530		6.933	3.985		
4	1.33DL	136	4900	5.530		6.933	3.985		
5	1.33DL	136	4900	5.540		6.933	3.985		Pump the jack
6	1.33DL	136	4900	5.545		6.933	3.985		
10	1.33DL	136	4900	5.565		6.933	3.985		Pump the jack
	AL	15	500	0.000					
	LOCKOFF	81	2900			3.851	2.214		
Total Movement	Between 1 and	10 Minutes (in.)	0.035			Acceptability of	Tieback:	PA	\SS
Maximum Total	Movement Allow	/ed (in.)*:	0.040			Retesting Requir	ed?		10
						Sheet No. of Ret	est:	N	/A
		when Max. Total							
20 min	30 min	40 min	50 min	60 min		Ram I.D.			
						Gauge I.D.	12-4		
				Load (kips)					
0	2	0	40	60	80	100	120)	140
0.00 +		1							

Tieback Performance Test

Tieback	Tieback	Dete la stelle d	D		a d	Test Data	Design Load	Lockoff Load	Elastic Mod.
Location	Number	Date Installed		ate(s) Post-Grout	ea	Test Date	(P; kips)	(kips)	(E; ksi)
Row 1	25	1/26/2016	1/27/2016			3/23/2016	100.0	75.0	28800
Shaft Diameter	Number of	Total Strand	Total Tendon	Tendon Bond	Free Stressing	Tail Length	Theo. Elastic		
(in)	Strands	Area (A; in ²)	Length (L _T ; ft)	Length (L _B ; ft)	Length (L _∪ ; ft)	(L _e ; ft)	Elong. (in)	Recorded By	Reviewed By
6	3	0.660	115	50	64.3	0.7	5.458	ZLK	ZLK
						Elongation of	Elongation of		
						Free Stressing	80% Free	Apparent Free	
					Elastic	Length + 50% of	Stressing	Tendon Length	
			Gauge Pressure	Recorded	Elongation at	Bonded Length	Length	$A_t E_s \delta_e /$	
	Load Testing	Actual Test	for Test Load	Displacement	Load Cycle	$P(0.5L_B+L_u)/AE$	0.8*P(L _u)/AE	(TL-AL)	
Time (min)	Schedule	Load (kips)	(psi) ¹	(in.) ²	, Maximum (in.)	(in.)	(in.)	(ft)	Comments
	AL (0.10DL)	16	500	0.000		0.000	0.000		
	0.25DL	30	1000	0.590	0.285	0.764	0.440	33.34	
	AL	16	500	0.305		0.000	0.000		
	0.25DL	30	1000	0.570		0.764	0.440		
	0.50DL	57	2000	1.678	1.366	2.291	1.320	53.27	
	AL	16	500	0.312		0.000	0.000		
	0.25DL	30	1000	0.605		0.764	0.440		
	0.50DL	57	2000	1.682		2.291	1.320		
	0.75DL	81	2900	2.757	2.348	3.665	2.112	57.23	
	AL	16	500	0.409		0.000	0.000		
	0.25DL	30	1000	0.725		0.764	0.440		
	0.50DL	57	2000	1.768		2.291	1.320		
	0.75DL	81	2900	2.763		3.665	2.112		
	1.00DL AL	106 16	3800 500	3.864 0.449	3.415	5.040	2.904	60.53	
	0.25DL	30	1000	0.449		0.000 0.764	0.000		
	0.50DL	57	2000	1.901		2.291	1.320		
	0.75DL	81	2900	2.862		3.665	2.112		
	1.00DL	106	3800	3.905		5.040	2.904		
	1.20DL	125	4500	4.764	4.485	6.109	3.519	65.59	
	AL	16	500	0.279		0.000	0.000		
	0.25DL	30	1000	0.784		0.764	0.440		
	0.50DL	57	2000	1.920		2.291	1.320		
	0.75DL	81	2900	2.936		3.665	2.112		
	1.00DL	106	3800	3.952		5.040	2.904		
	1.20DL	125	4500	4.767		6.109	3.519		
	1.33DL	138	5000	5.129		6.873	3.959		
1	1.33DL	138	5000	5.129					
2	1.33DL	138	5000	5.129					
3	1.33DL	138	5000	5.129					
4	1.33DL	138	5000	5.129					
5	1.33DL	138	5000	5.134					a
6	1.33DL	138	5000	5.134					Pump the jack
10	1.33DL	138	5000	5.132	4.853			63.08	
	AL LOCKOFF	16	500	0.279					
		85	3050			3.894	2.244		
Total Movement Between 1 and 10 Minutes (in.) 0.003						Acceptability of Tieback: PASS			
Maximum Total Movement Allowed (in.): 0.040						Retesting Requir			0
			Movement is Exc		1	Sheet No. of Ret	est:	N.	/A

Additional Testing for when Max. Total Movement is Exceeded											
20 min	30 min	40 min	50 min	60 min							

Ram I.D. 141120 Gauge I.D. 16-1


Notes/Additional Comments:

1. Gage pressure must be maintained during testing and be held to within +/- 2%

2. Recorded displacements are to be recorded to the nearest 0.001 in.

Tieback Performance Test

Testing Notes:

1. Final displacement at AL was not recorded. Value recorded for 1.20DL Load Cycle is assumed.

Tieback	Tieback						Design Load	Lockoff Load	Elastic Mod. (E;
Location	Number	Date Installed	Da	ate(s) Post-Grout	ed	Test Date	(P; kips)	(kips)	ksi)
Row 1	26	1/22/2016	1/25/2016			3/22/2016	100.0	75.0	28800
Chaft Diamatan	Niversham of	Total Strand		T 1 D 1	-	T 11 1 11	These Classic		
Shaft Diameter	Number of	-	Total Tendon	Tendon Bond	Free Stressing	Tail Length	Theo. Elastic	Decended Du	Deviewed Du
(in)	Strands	Area (A; in ²)	Length (L_T ; ft)	Length (L _B ; ft)	Length (L_U ; ft)	(L _e ; ft)	Elong. (in)	Recorded By	Reviewed By
6	3	0.660	115	50	63.5	1.5	5.458	ZLK	ZLK
						Elengation of	Elengation of		
						Elongation of Free Stressing	Elongation of 80% Free		
						Length + 50% of	Stressing	Apparent Free	
				Decorded	Elastic	Bonded Length	Length	Tendon Length	
	Load Testing		Gauge Pressure for Test Load	Recorded		$P(0.5L_B+L_u)/AE$	0.8*P(L _u)/AE	$A_t E_s \delta_e /$	
Time (min)	Load Testing	Test Load (kins)		Displacement	Elongation at			(TL-AL)	Commonts
Time (min)	Schedule AL (0.10DL)	Test Load (kips) 16	(psi) 500	(in.) 0.000	Test Load (in.)	(in.) 0.000	(in.) 0.000	(ft)	Comments
	0.25DL	30	1000	0.555	0.555	0.756	0.434	191.27	
	0.50DL	57	2000	1.635	1.635	2.269	1.303	63.76	
	0.75DL	79	2800	2.820	2.820	3.480	1.997	71.72	
	1.00DL	106	3800	3.957	3.957	4.993	2.866	70.14	
	1.20DL	125	4500	4.782	4.782	6.052	3.474	69.93	
	1.33DL	138	5000	5.353	5.353	6.808	3.908	69.58	
1	1.33DL	138	5000	5.353		6.808	3.908		Pump the jack
2	1.33DL	138	5000	5.353		6.808	3.908		
3	1.33DL	138	5000	5.353		6.808	3.908		
4	1.33DL	138	5000	5.353		6.808	3.908		
5	1.33DL 1.33DL	138	5000	5.353		6.808	3.908		
6 10		138 138	5000 5000	5.353 5.353		6.808 6.808	3.908 3.908		
	1.33DL AL	138	500	5.555		0.808	3.908		
	LOCKOFF	84	3000			3.782	2.171		
	t Between 1 and	-	0.000			Acceptability of			ASS
	Movement Allov		0.000			Retesting Requir			10
			01010			Sheet No. of Ret			/A
Addit	ional Testing for	when Max. Total		eeded]				
20 min	30 min	40 min	50 min	60 min		Ram I.D.			
					l	Gauge I.D.	12-1		
				Load (kips)					
0	5	20	40	60	80	100	120		140
0.00 +		+							+
1.00 -									
-									
2.00 -									
(s									
che									
je 3.00									
ent									
e de la contra de									
<u>8</u> 4.00									
Displacement (inches)									
5.00									
5.00									
F	• De	Namla againt (*)							
6.00 +		Displacement (in.)							
E.		n + 50% of Bond L	ength						
	0.1		-						+ + + - + - 1

80% of Free LengthElastic Elongation

7.00

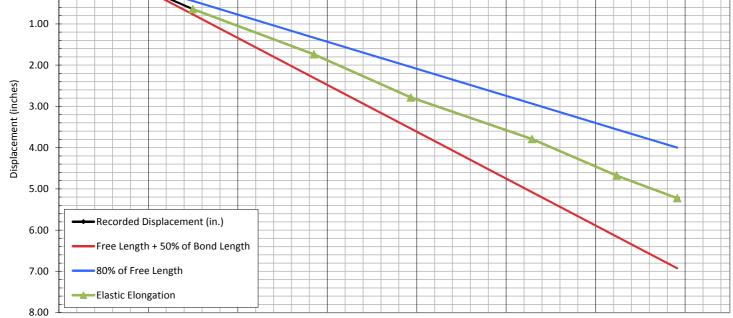
8.00

Tieback Location	Tieback Number	Date Installed	Da	ate(s) Post-Grout	ed	Test Date	Design Load (P; kips)	Lockoff Load (kips)	Elastic Mod. (E; ksi)
Row 1	27	1/25/2016	1/26/2016			3/22/2016	100.0	75.0	28800
Shaft Diameter (in) 6	Number of Strands 3	Total Strand Area (A; in ²) 0.660	Total Tendon Length (L _T ; ft) 115	Tendon Bond Length (L _B ; ft) 50	Free Stressing Length (L _U ; ft) 64.5	Tail Length (L _e ; ft) 0.5	Theo. Elastic Elong. (in) 5.458	Recorded By ZLK	Reviewed By ZLK
Time (min)	Load Testing Schedule	Test Load (kips)	Gauge Pressure for Test Load (psi)	Recorded Displacement (in.)	Elastic Elongation at Test Load (in.)	Elongation of Free Stressing Length + 50% of Bonded Length P(0.5L _B +L _u)/AE (in.)	Elongation of 80% Free Stressing Length 0.8*P(L _u)/AE (in.)	Apparent Free Tendon Length A _t E _s δ _e / (TL-AL) (ft)	Comments
	AL (0.10DL) 0.25DL	16 30	500 1000	0.000	0.440	0.000 0.765	0.000	 177.23	
	0.23DL 0.50DL	57	2000	1.515	1.515	2.295	1.323	59.08	
	0.30DL 0.75DL	79	2800	2.498	2.498	3.519	2.029	63.53	
	1.00DL	106	3800	3.498	3.498	5.049	2.911	62.00	
	1.20DL	125	4500	4.280	4.280	6.120	3.529	62.59	
	1.33DL	138	5000	4.752	4.752	6.885	3.970	61.77	
1	1.33DL	138	5000	4.753		6.885	3.970		
2	1.33DL	138	5000	4.769		6.885	3.970		Pump the jack
3	1.33DL	138	5000	4.771		6.885	3.970		< Movement
4	1.33DL	138	5000	4.783		6.885	3.970		from wind
5	1.33DL	138	5000	4.784		6.885	3.970		Pump the jack
6	1.33DL	138	5000	4.784		6.885	3.970		
10	1.33DL	138	5000	4.784		6.885	3.970		
	AL	16	500						
	LOCKOFF	84	3000			3.825	2.205		
	t Between 1 and		0.031			Acceptability of			ASS
Maximum Total	Movement Allov	ved (in.)*:	0.040			Retesting Requir			10
٨ddit	ional Tosting for	when Max. Total	Movement is Eve	oodod	1	Sheet No. of Ret	est:	IN	/A
20 min	30 min	40 min	50 min	60 min		Ram I.D.	141120		
20 11111	50 1111		50 1111	00 1111		Gauge I.D.			
					1	8			
				Load (kips)					
0	2	20	40	60	80	100	120)	140
0.00									
1.00									
1.00									
-									
2.00									
-									
les)									
3.00									
Displacement (inches)									
hen									
5 4.00									
bla									
Dis									
5.00									
-									

6.00

7.00

8.00


Recorded Displacement (in.)

80% of Free LengthElastic Elongation

Free Length + 50% of Bond Length

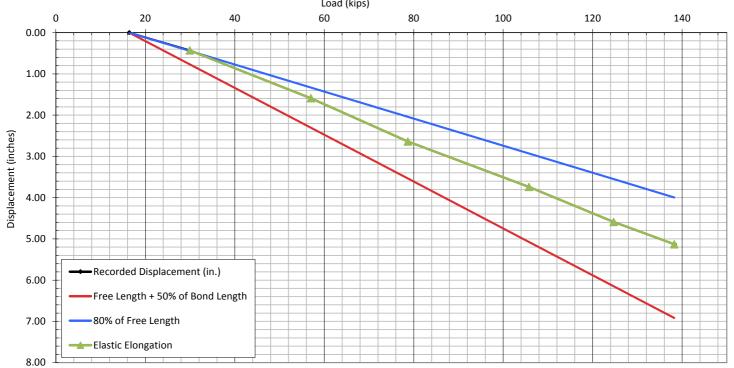
Tieback Location	Tieback Number	Date Installed	Da	ate(s) Post-Grout	ed	Test Date	Design Load (P; kips)	Lockoff Load (kips)	Elastic Mod. (E; ksi)
Row 1	28	1/22/2016	1/25/2016			3/22/2016	100.0	75.0	28800
Shaft Diameter	Number of	Total Strand	Total Tendon	Tendon Bond	Free Stressing	Tail Length	Theo. Elastic		
(in)	Strands	Area (A; in ²)	Length (L _⊤ ; ft)	Length (L _B ; ft)	Length (L _U ; ft)	(L _e ; ft)	Elong. (in)	Recorded By	Reviewed By
6	3	0.660	115	50	65.0	0.0	5.458	ZLK	ZLK
						Elemention of	Elemention of		
						Elongation of	Elongation of		
						Free Stressing	80% Free	Apparent Free	
						Length + 50% of	Stressing	Tendon Length	
			Gauge Pressure	Recorded	Elastic	Bonded Length	Length	$A_t E_s \delta_e /$	
	Load Testing		for Test Load	Displacement	Elongation at	$P(0.5L_B+L_u)/AE$	0.8*P(L _u)/AE	(TL-AL)	
Time (min)	Schedule	Test Load (kips)	(psi)	(in.)	Test Load (in.)	(in.)	(in.)	(ft)	Comments
	AL (0.10DL)	16	500	0.000		0.000	0.000		
	0.25DL	30	1000	0.642	0.642	0.769	0.444	203.21	
	0.50DL	57	2000	1.737	1.737	2.308	1.333	67.74	
	0.75DL	79	2800	2.782	2.782	3.539	2.045	70.75	
	1.00DL	106	3800	3.791	3.791	5.078	2.934	67.20	
	1.20DL	125	4500	4.677	4.677	6.155	3.556	68.39	
	1.33DL	138	5000	5.225	5.225	6.924	4.000	67.92	
1	1.33DL	138	5000	5.225		6.924	4.000		
2	1.33DL	138	5000	5.225		6.924	4.000		
3	1.33DL	138	5000	5.245		6.924	4.000		Pump the jack
4	1.33DL	138	5000	5.245		6.924	4.000		
5	1.33DL	138	5000	5.245		6.924	4.000		
6	1.33DL	138	5000	5.245		6.924	4.000		
10	1.33DL	138	5000	5.245		6.924	4.000		
	AL	16	500						
	LOCKOFF	87	3100			4.000	2.311		
Total Movement	Between 1 and	10 Minutes (in.)	0.020			Acceptability of	Tieback:	PA	ASS
Maximum Total	Movement Allow	ved (in.)*:	0.040			Retesting Requir	ed?	N	10
						Sheet No. of Ret	est:	N	/A
	onal Testing for	when Max. Total	Movement is Exc	eeded					
20 min	30 min	40 min	50 min	60 min		Ram I.D.			
						Gauge I.D.	12-1		
				Load (kips)					
0	2	20	40	60	80	100	120)	140
0.00	T T T 🏊						- r · r · †		

Tieback

Tieback

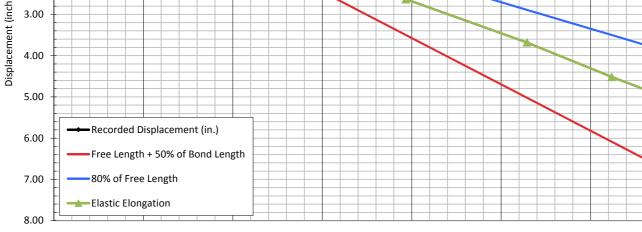
Tieback Proof Testing

Design Load Lockoff Load Elastic Mod. (E;


Location	Number	Date Installed	D	ate(s) Post-Grout	ed	Test Date	(P: kips)	(kips)	ksi)
Row 1	29	1/21/2016	1/25/2016		eu	3/22/2016	(P; kips) 100.0	75.0	28800
KOW 1	29					3/22/2010	100.0	75.0	28800
Shaft Diameter (in)	Number of Strands	Total Strand Area (A; in ²)	Total Tendon Length (L _⊤ ; ft)	Tendon Bond Length (L _B ; ft)	Free Stressing Length (L _∪ ; ft)	Tail Length (L _e ; ft)	Theo. Elastic Elong. (in)	Recorded By	Reviewed By
6	3	0.660	115	50	64.2	0.8	5.458	ZLK	ZLK
						Elongation of Free Stressing Length + 50% of	Elongation of 80% Free Stressing	Apparent Free Tendon Length	
			Gauge Pressure	Recorded	Elastic	Bonded Length	Length	$A_t E_s \delta_e /$	
	Load Testing		for Test Load	Displacement	Elongation at	P(0.5L _B +L _u)/AE	0.8*P(L _u)/AE	(TL-AL)	
Time (min)	Schedule	Test Load (kips)		(in.)	Test Load (in.)	(in.)	(in.)	(ft)	Comments
	AL (0.10DL)	16	500	0.000		0.000	0.000		
	0.25DL	30	1000	0.590	0.590	0.762	0.439	196.65	
	0.50DL	57	2000	1.681	1.681	2.287	1.316	65.55	
	0.75DL	79	2800	2.796	2.796	3.506	2.018	71.11	
	1.00DL	106	3800	3.919	3.919	5.030	2.896	69.47	
	1.20DL	125 138	4500	4.816	4.816	6.098	3.510	70.43	
1	1.33DL 1.33DL	138	5000 5000	5.568 5.568	5.568	6.860 6.860	3.949 3.949	72.38	
2	1.33DL 1.33DL	138	5000	5.568		6.860	3.949		
3	1.33DL 1.33DL	138	5000	5.568		6.860	3.949		
4	1.33DL	138	5000	5.568		6.860	3.949		
5	1.33DL	138	5000	5.568		6.860	3.949		
6	1.33DL	138	5000	5.568		6.860	3.949		Pump the jack
10	1.33DL	138	5000	5.568		6.860	3.949		
	AL	16	500	0.000					
	LOCKOFF	84	3000			3.811	2.194		
Total Movement	Between 1 and	10 Minutes (in)	0.000	1		Acceptability of	Tiehack:	PA	\SS
Maximum Total			0.040			Retesting Requir			0
		· ·				Sheet No. of Ret		N	/A
		when Max. Total							
20 min	30 min	40 min	50 min	60 min		Ram I.D.			
					J	Gauge I.D.	12-1		
				Load (kips)					
0 0.00 	2	20	40	60	80	100	120)	140
0.00									
-									
1.00									
-									
-									
2.00									
_									
hes									
<u> </u>									
jt [
Juer									
<u>9</u> 4.00									
Displacement (inches)									
Di									
5.00									+ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$
LT.		Displacement (in.)							
6.00 -	- Necolued L								+ + + + + + + + + + + + + + + + + + + +
		n + 50% of Bond L	ength						
E			-						
7.00 +	——80% of Free	e Length							+

8.00

Elastic Elongation



Tieback Location	Tieback Number	Date Installed	Da	ate(s) Post-Grout	od	Test Date	Design Load (P; kips)	Lockoff Load (kips)	Elastic Mod. (E; ksi)
Row 1	30	1/22/2016	1/25/2016	112(3)1031-01001	eu	3/22/2016	100.0	75.0	28800
								, 5.0	20000
Shaft Diameter	Number of	Total Strand	Total Tendon	Tendon Bond	Free Stressing	Tail Length	Theo. Elastic		
(in)	Strands	Area (A; in ²)	Length (L _T ; ft)	Length (L _B ; ft)	Length (L _U ; ft)	(L _e ; ft)	Elong. (in)	Recorded By	Reviewed By
6	3	0.660	115	50	64.9	0.1	5.458	ZLK	ZLK
						Elongation of	Elongation of		
						Free Stressing	80% Free	Apparent Free	
						Length + 50% of	Stressing	Tendon Length	
			Gauge Pressure	Recorded	Elastic	Bonded Length	Length	$A_t E_s \delta_e /$	
	Load Testing		for Test Load	Displacement	Elongation at	$P(0.5L_B+L_u)/AE$	0.8*P(L _u)/AE	(TL-AL)	
Time (min)	Schedule	Test Load (kips)	(psi)	(in.)	Test Load (in.)	(in.)	(in.)	(ft)	Comments
	AL (0.10DL)	16	500	0.000		0.000	0.000		
	0.25DL	30	1000	0.431	0.431	0.769	0.444	186.01	
	0.50DL	57	2000	1.590	1.590	2.306	1.332	62.00	
	0.75DL	79	2800	2.638	2.638	3.536	2.042	67.09	
	1.00DL	106	3800	3.741	3.741	5.073	2.930	66.31	
	1.20DL	125	4500	4.589	4.589	6.149	3.551	67.11	
	1.33DL	138	5000	5.129	5.129	6.917	3.995	66.67	
1	1.33DL	138	5000	5.129		6.917	3.995		
2	1.33DL	138	5000	5.130		6.917	3.995		
3	1.33DL	138	5000	5.130		6.917	3.995		
4	1.33DL	138	5000	5.130		6.917	3.995		
5	1.33DL	138	5000	5.130		6.917	3.995		
6	1.33DL	138	5000	5.156		6.917	3.995		< movement
10	1.33DL	138	5000	5.169		6.917	3.995		from wind
	AL	16	500						
	LOCKOFF	79	2800			3.536	2.042		
Total Movement	Between 1 and	10 Minutes (in.)	0.040			Acceptability of	Tieback:	PA	ASS
Maximum Total			0.040			Retesting Requir		Ν	10
E						Sheet No. of Ret	est:	N	/A
		when Max. Total]				
20 min	30 min	40 min	50 min	60 min		Ram I.D.			
					J	Gauge I.D.	12-1		
				Load (kips)					
0	2	20	40	60	80	100	120)	140

Tieback Location	Tieback Number	Date Installed	Da	ate(s) Post-Grout	ed	Test Date	Design Load (P; kips)	Lockoff Load (kips)	Elastic Mod. (E; ksi)
Row 1	31	1/21/2016	1/25/2016			3/22/2016	100.0	75.0	28800
Shaft Diameter (in) 6	Number of Strands 3	Total Strand Area (A; in ²) 0.660	Total Tendon Length (L _T ; ft) 115	Tendon Bond Length (L _B ; ft) 50	Free Stressing Length (L _U ; ft) 64.0	Tail Length (L _e ; ft) 1.0	Theo. Elastic Elong. (in) 5.458	Recorded By ZLK	Reviewed By ZLK
Time (min) 	Load Testing Schedule AL (0.10DL) 0.25DL 0.50DL 0.75DL 1.00DL	Test Load (kips) 16 30 57 79 106	Gauge Pressure for Test Load (psi) 500 1000 2000 2800 3800	Recorded Displacement (in.) 0.000 0.509 1.607 2.632 3.680	Elastic Elongation at Test Load (in.) 0.509 1.607 2.632 3.680	Elongation of Free Stressing Length + 50% of Bonded Length P(0.5L _B +L _u)/AE (in.) 0.000 0.761 2.282 3.500 5.021	Elongation of 80% Free Stressing Length 0.8*P(L _u)/AE (in.) 0.000 0.438 1.313 2.013 2.889	Apparent Free Tendon Length A _t E _s δ _e / (TL-AL) (ft) 188.00 62.67 66.94 65.23	Comments
 1 2	1.20DL 1.33DL 1.33DL 1.33DL	125 138 138 138	4500 5000 5000 5000	4.517 5.069 5.124 5.124	4.517 5.069 	6.086 6.847 6.847 6.847	3.501 3.939 3.939 3.939 3.939	66.05 65.89 	
3 4 5 6 10	1.33DL 1.33DL 1.33DL 1.33DL 1.33DL	138 138 138 138 138 138	5000 5000 5000 5000 5000	5.124 5.124 5.124 5.124 5.124 5.124	 	6.847 6.847 6.847 6.847 6.847 6.847	3.939 3.939 3.939 3.939 3.939 3.939	 	Pump the jack Pump the jack
 Total Movement Maximum Total			500 2800 0.000 0.040			3.500 Acceptability of Retesting Requir Sheet No. of Ret	ed?	N	ASS IO /A
Additi 20 min	onal Testing for 30 min	when Max. Total 40 min	Movement is Exc 50 min	eeded 60 min		Ram I.D. Gauge I.D.	141120		
0.00	2	20	40	Load (kips) 60	80	100	120		140
1.00									
2.00									

*

5.00

6.00

7.00

Tieback Proof Testing

Tieback Location	Tieback Number	Date Installed		ate(s) Post-Grout	ed	Test Date	Design Load (P; kips)	Lockoff Load (kips)	Elastic Mod. (E; ksi)
Row 1	32	1/22/2016	1/25/2016			3/22/2016	100.0	75.0	28800
Shaft Diameter	Number of	Total Strand	Total Tendon	Tendon Bond	Free Stressing	Tail Length	Theo. Elastic		
(in)	Strands	Area (A; in ²)	Length (L _T ; ft)	Length (L _B ; ft)	Length (L _U ; ft)	(L _e ; ft)	Elong. (in)	Recorded By	Reviewed By
6	3	0.660	115	50	64.8	0.3	5.458	ZLK	ZLK
						Elongation of	Elongation of		
						Free Stressing	80% Free	Apparent Free	
						Length + 50% of	Stressing	Tendon Length	
			Gauge Pressure	Recorded	Elastic	Bonded Length	Length	$A_t E_s \delta_e /$	
	Load Testing		for Test Load	Displacement	Elongation at	P(0.5L _B +L _u)/AE	0.8*P(L _u)/AE	(TL-AL)	
Time (min)	Schedule	Test Load (kips)	(psi)	(in.)	Test Load (in.)	(in.)	(in.)	(ft)	Comments
	AL (0.10DL)	16	500	0.000		0.000	0.000		
	0.25DL	30	1000	0.436	0.436	0.767	0.443	177.82	
	0.50DL	57	2000	1.520	1.520	2.302	1.328	59.27	
	0.75DL	79	2800	2.524	2.524	3.529	2.037	64.19	
	1.00DL	106	3800	3.567	3.567	5.063	2.922	63.23	
	1.20DL	125	4500	4.440	4.440	6.137	3.542	64.93	
	1.33DL	138	5000	5.069	5.069	6.905	3.985	65.89	
1	1.33DL	138	5000	5.074		6.905	3.985		
2	1.33DL	138	5000	5.074		6.905	3.985		
3	1.33DL	138	5000	5.075		6.905	3.985		
4	1.33DL	138	5000	5.095		6.905	3.985		Pump the jack
5	1.33DL	138	5000	5.095		6.905	3.985		
6	1.33DL	138	5000	5.095		6.905	3.985		
10	1.33DL	138	5000	5.103		6.905	3.985		< moved by
	AL	16	500						laborer bump
	LOCKOFF	79	2800			3.529	2.037		
Total Movement			0.029			Acceptability of			ASS
Maximum Total	Movement Allov	ved (in.)*:	0.040			Retesting Requir			10
۸dditi	onal Testing for	when Max. Total	Movement is Exc	aadad	1	Sheet No. of Ret	est:	IN	/A
20 min	30 min	40 min	50 min	60 min		Ram I.D.	141120		
2011111	50 1111	- to min	50 mm	00 11111		Gauge I.D.			
					1				
				Load (kips)					
0	2	20	40	60	80	100	120)	140
0.00									
1.00									
-									
2.00									
(sa									
ché									
<u>ij</u> 3.00									
ent									
E E									
Displacement (inches)									
Disp									

Recorded Displacement (in.)

80% of Free Length

Free Length + 50% of Bond Length

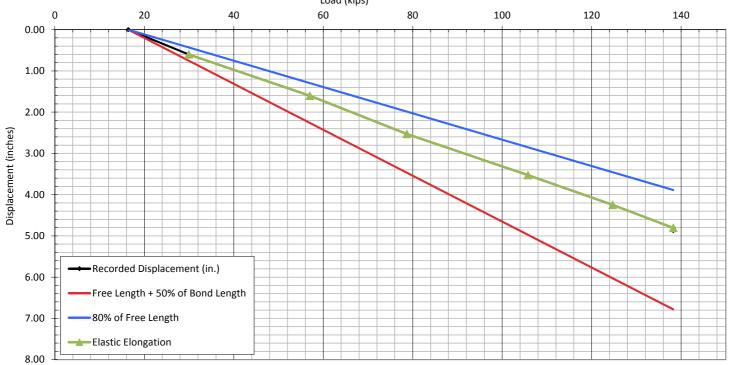
Tieback Location	Tieback Number	Date Installed	Da	ate(s) Post-Grout	ed	Test Date	Design Load (P; kips)	Lockoff Load (kips)	Elastic Mod. (E ksi)
Row 1	33	1/21/2016	1/25/2016			3/22/2016	100.0	75.0	28800
Shaft Diameter	Number of	Total Strand	Total Tendon	Tendon Bond	Free Stressing	Tail Length	Theo. Elastic		
(in)	Strands	Area (A; in ²)	Length (L _T ; ft)	Length (L _B ; ft)	Length (L _U ; ft)	(L _e ; ft)	Elong. (in)	Recorded By	Reviewed By
6	3	0.660	115	50	64.8	0.3	5.458	ZLK	ZLK
						Elongation of	Elongation of		
						Free Stressing	80% Free		
						Length + 50% of	Stressing	Apparent Free	
			Gauge Pressure	Recorded	Elastic	Bonded Length	Length	Tendon Length	
	Load Testing		for Test Load	Displacement	Elongation at	$P(0.5L_B+L_u)/AE$	0.8*P(L _u)/AE	$A_t E_s \delta_e /$	
Time (min)	Schedule	Test Load (kips)	(psi)	(in.)	Test Load (in.)	(in.)	(in.)	(TL-AL)	Commonts
nne (mn)	AL (0.10DL)	16	500	0.000	Test Load (III.)	0.000	0.000	(ft)	Comments
	0.25DL	30	1000	0.566	0.566	0.767	0.443	188.23	
	0.50DL	57	2000	1.609	1.609	2.302	1.328	62.74	
	0.75DL	79	2800	2.600	2.600	3.529	2.037	66.12	
	1.00DL	106	3800	3.705	3.705	5.063	2.922	65.67	
	1.20DL	125	4500	4.587	4.587	6.137	3.542	67.08	
	1.33DL	138	5000	5.190	5.190	6.905	3.985	67.46	
1	1.33DL	138	5000	5.190		6.905	3.985		
2	1.33DL	138	5000	5.190		6.905	3.985		
3	1.33DL	138	5000	5.190		6.905	3.985		
4	1.33DL	138	5000	5.190		6.905	3.985		
5	1.33DL	138	5000	5.190		6.905	3.985		
6	1.33DL	138	5000	5.219		6.905	3.985		
10	1.33DL	138	5000	5.223		6.905	3.985		
	AL	16	500						
	LOCKOFF	90	3200			4.143	2.391		
otal Movement	Between 1 and	10 Minutes (in.)	0.033			Acceptability of	Tieback:	PA	ASS
/laximum Total	Movement Allow	wed (in.)*:	0.040			Retesting Requir	ed?		10
				-	•	Sheet No. of Ret	est:	N	/A
		when Max. Total							
20 min	30 min	40 min	50 min	60 min		Ram I.D.			
					J	Gauge I.D.	12-1		
				Load (kips)					
0	:	20	40	60	80	100	120)	140
0.00	T T T 🏊								
									+
1.00									
2.00									
es)									
Displacement (inches)									
<u>ii</u> 3.00									
ent									
e de la									
<u>8</u> 4.00									
lisp									

Recorded Displacement (in.)

80% of Free Length Elastic Elongation

Free Length + 50% of Bond Length

5.00


6.00

7.00

8.00

Tieback Location	Tieback Number	Date Installed	Da	ate(s) Post-Grout	ed	Test Date	Design Load (P; kips)	Lockoff Load (kips)	Elastic Mod. (E; ksi)
Row 1	34	1/20/2016	1/25/2016			3/22/2016	(P, KIPS) 100.0	75.0	28800
KOW I	54		1/23/2010			3/22/2010	100.0	75.0	28800
Shaft Diameter	Number of	Total Strand	Total Tendon	Tendon Bond	Free Stressing	Tail Length	Theo. Elastic		
(in)	Strands	Area (A; in ²)	Length (L_T ; ft)	Length (L _B ; ft)	Length (L _u ; ft)	(L _e ; ft)	Elong. (in)	Recorded By	Reviewed By
6	3	0.660	115	50	63.2	1.8	5.458	ZLK	ZLK
						Elongation of	Elongation of		
						Free Stressing	80% Free	Apparent Free	
						Length + 50% of	Stressing	Tendon Length	
			Gauge Pressure	Recorded	Elastic	Bonded Length	Length	$A_t E_s \delta_e /$	
	Load Testing		for Test Load	Displacement	Elongation at	$P(0.5L_B+L_u)/AE$	0.8*P(L _u)/AE	(TL-AL)	
Time (min)	Schedule	Test Load (kips)	(psi)	(in.)	Test Load (in.)	(in.)	(in.)	(ft)	Comments
	AL (0.10DL)	16	500	0.000		0.000	0.000		
	0.25DL	30	1000	0.602	0.602	0.754	0.432	187.53	
	0.50DL	57	2000	1.603	1.603	2.261	1.296	62.51	
	0.75DL	79	2800	2.528	2.528	3.467	1.987	64.29	
	1.00DL	106	3800	3.528	3.528	4.974	2.851	62.53	
	1.20DL	125	4500	4.247	4.247	6.029	3.456	62.11	
	1.33DL	138	5000	4.805	4.805	6.783	3.888	62.46	
1	1.33DL	138	5000	4.810		6.783	3.888		
2	1.33DL	138	5000	4.810		6.783	3.888		
3	1.33DL	138	5000	4.815		6.783	3.888		
4	1.33DL	138	5000	4.830		6.783	3.888		Pump the jack
5	1.33DL	138	5000	4.865		6.783	3.888		< laborer
6	1.33DL	138	5000	4.865		6.783	3.888		bumped test
10	1.33DL	138	5000	4.865		6.783	3.888		apparatus
	AL	16	500						(not tieback
	LOCKOFF	79	2800			3.467	1.987		movement)
Total Movement	Between 1 and	10 Minutes (in.)	0.055			Acceptability of	Tieback:	PA	ASS
Maximum Total	Movement Allow	/ed (in.)*:	0.040			Retesting Requir	ed?		10
						Sheet No. of Ret	est:	N	/A
	Additional Testing for when Max. Total Movement is Exceeded								
20 min	nin 30 min 40 min 50 min 60 min			60 min		Ram I.D.			
				l	Gauge I.D.	12-1			
				Load (kips)					
0	2	0	40	60	80	100	120)	140
0.00									

Tieback	Tieback						Design Load	Lockoff Load	Elastic Mod. (E;
Location	Number	Date Installed		Date(s) Post-Grouted			(P; kips)	(kips)	ksi)
Row 1	35	1/21/2016	1/25/2016			3/22/2016	100.0	75.0	28800
Shaft Diameter	Number of	Total Strand	Total Tendon	Tendon Bond	Free Stressing	Tail Length	Theo. Elastic		
(in)	Strands	Area (A; in ²)	Length (L _T ; ft)	Length (L _B ; ft)	Length (L _U ; ft)	(L _e ; ft)	Elong. (in)	Recorded By	Reviewed By
6	3	0.660	115	50	67.9	-2.9	5.458	ZLK	ZLK
						Elongation of	Elongation of		
						Free Stressing	80% Free	Apparent Free	
						Length + 50% of	Stressing	Tendon Length	
			Gauge Pressure	Recorded	Elastic	Bonded Length	Length	$A_t E_s \delta_e /$	
	Load Testing		for Test Load	Displacement	Elongation at	P(0.5L _B +L _u)/AE	0.8*P(L _u)/AE	(TL-AL)	
Time (min)	Schedule	Test Load (kips)		(in.)	Test Load (in.)	(in.)	(in.)	(ft)	Comments
	AL (0.10DL)	16	500	0.000		0.000	0.000		
	0.25DL	30	1000	0.488	0.488	0.794	0.464	180.63	
	0.50DL	57	2000	1.544	1.544	2.383	1.393	60.21	
	0.75DL 1.00DL	79 106	2800 3800	2.459 3.603	2.459 3.603	3.654 5.242	2.136 3.065	62.54 63.86	
	1.20DL	100	4500	4.618	4.618	6.354	3.716	67.53	
	1.33DL	138	5000	5.391	5.391	7.148	4.180	70.08	
1	1.33DL	138	5000	5.391		7.148	4.180		
2	1.33DL	138	5000	5.391		7.148	4.180		Pump the jack
3	1.33DL	138	5000	5.391		7.148	4.180		
4	1.33DL	138	5000	5.395		7.148	4.180		Pump the jack
5	1.33DL	138	5000	5.395		7.148	4.180		
6	1.33DL	138	5000	5.395		7.148	4.180		
10	1.33DL	138	5000	5.395		7.148	4.180		
	AL LOCKOFF	16 84	500 3000			3.971	2.322		
		-							ASS
	t Between 1 and Movement Allov		0.004 0.040			Acceptability of Retesting Require			455
Maximum rotar	Novement Anov		0.040			Sheet No. of Ret			/A
Addit	ional Testing for	when Max. Total	Movement is Exc	eeded	ן				
20 min	30 min	40 min	50 min	60 min		Ram I.D.			
					l	Gauge I.D.	12-1		
				Load (kips)					
0		20	40	60	80	100	120)	140
0.00 +		+				, , , , , , , ,			+
1.00									
-									
2.00									
(sa									
Jen -									
· 4.00 -									
Displacement (inches)									
Dis									
5.00									+
E E									
==		Displacement (in.)							
6.00 +									
		n + 50% of Bond L	ength						
11									

80% of Free LengthElastic Elongation

7.00

8.00

Tieback Location	Tieback Number	Date Installed		Date(s) Post-Grout	ed	Test Date	Design Load (P; kips)	Lockoff Load (kips)	Elastic Mod. (E; ksi)
Row 1	36	1/20/2016	1/22/2016			3/22/2016	100.0	75.0	28800
Shaft Diameter (in)	Number of Strands	Total Strand Area (A; in ²)	Total Tendon Length (L _T ; ft)	Tendon Bond Length (L _B ; ft)	Free Stressing Length (L _U ; ft)	Tail Length (L _e ; ft)	Theo. Elastic Elong. (in)	Recorded By	Reviewed By
6	3	0.660	115	50	63.3	1.7	5.458	ZLK	ZLK
						Elongation of Free Stressing	Elongation of 80% Free		
			Gauge Pressur	e Recorded	Elastic	Length + 50% of Bonded Length		Apparent Free Tendon Length	
	Load Testing		for Test Load	Displacement	Elongation at	$P(0.5L_B+L_u)/AE$	0.8*P(L _u)/AE	A _t E _s δ _e / (TL-AL)	
Time (min)	Schedule	Test Load (kips)		(in.)	Test Load (in.)	(in.)	(in.)	(ft)	Comments
	AL (0.10DL)	16	500	0.000		0.000	0.000		
	0.25DL 0.50DL	30 57	1000 2000	0.338	0.338	0.755 2.265	0.433	157.58 52.53	
	0.30DL 0.75DL	79	2800	2.302	2.302	3.473	1.992	58.54	
	1.00DL	106	3800	3.364	3.364	4.983	2.858	59.63	
	1.20DL	125	4500	4.139	4.139	6.041	3.465	60.53	
	1.33DL 1.33DL	138 138	5000 5000	4.676 4.676	4.676	6.796 6.796	3.898 3.898	60.78	
1 2	1.33DL 1.33DL	138	5000	4.676		6.796	3.898		
3	1.33DL	138	5000	4.676		6.796	3.898		
4	1.33DL	138	5000	4.693		6.796	3.898		Pump the jack
5	1.33DL	138	5000	4.695		6.796	3.898		
6 10	1.33DL 1.33DL	138 138	5000 5000	4.695 4.695		6.796 6.796	3.898 3.898		
	AL	16	500						
	LOCKOFF	84	3000			3.775	2.165		
Total Movement			0.019			Acceptability of			ASS
Maximum Total	Movement Allov	ved (in.)*:	0.040			Retesting Requir Sheet No. of Ret			10 /A
Additi	onal Testing for	when Max. Total	Movement is Ex	ceeded]	Sheet No. of het			
20 min	30 min	40 min	50 min	60 min		Ram I.D.			
					J	Gauge I.D.	12-1		
				Load (kips)					
0	2	20	40	60	80	100	120)	140
0.00									
-									
1.00									
-									
2.00 -									
les)									
ے 									
ut (
Displacement (inches)									
4.00									
dsic									
5.00									
ļŢ.	Recorded D	Displacement (in.)							
6.00 +									
El ·	Free Lengt	n + 50% of Bond L	ength						
H	000/ of Eng	alongth							
7.00 +		ellengtn							

Elastic Elongation

8.00

	eback cation	Tieback Number	Date Installed	Da	ate(s) Post-Grout	ed	Test Date	Design Load (P; kips)	Lockoff Load (kips)	Elastic Mod. (E; ksi)
R	low 1	37	1/21/2016	1/22/2016			3/22/2016	100.0	75.0	28800
	Diameter (in)	Number of Strands	Total Strand Area (A; in ²)	Total Tendon Length (L _T ; ft)	Tendon Bond Length (L _B ; ft)	Free Stressing Length (L _U ; ft)	Tail Length (L _e ; ft)	Theo. Elastic Elong. (in)	Recorded By	Reviewed By
	6	3	0.660	115	50	64.8	0.2	5.458	ZLK	ZLK
							Elongation of Free Stressing	Elongation of 80% Free	Apparent Free	
				Gauge Pressure	Recorded	Elastic	Length + 50% of Bonded Length		Tendon Length $A_t E_s \delta_e /$	
		Load Testing		for Test Load	Displacement	Elongation at	P(0.5L _B +L _u)/AE	0.8*P(L _u)/AE	(TL-AL)	
Tim	ie (min)	Schedule	Test Load (kips)		(in.)	Test Load (in.)	(in.)	(in.)	(ft)	Comments
		AL (0.10DL) 0.25DL	16 30	500 1000	0.000 0.473	0.473	0.000 0.768	0.000 0.443	 187.88	
		0.50DL	57	2000	1.606	1.606	2.304	1.330	62.63	
		0.75DL	79	2800	2.706	2.706	3.532	2.039	68.82	
		1.00DL	106	3800	3.748	3.748	5.068	2.926	66.43	
		1.20DL 1.33DL	125 138	4500 5000	4.646 5.255	4.646 5.255	6.143 6.911	3.547 3.990	67.94 68.31	
	1	1.33DL 1.33DL	138	5000	5.255	5.255	6.911	3.990		
	2	1.33DL	138	5000	5.257		6.911	3.990		
	3	1.33DL	138	5000	5.258		6.911	3.990		Pump the jack
	4 5	1.33DL 1.33DL	138 138	5000 5000	5.258 5.258		6.911 6.911	3.990 3.990		
	5 6	1.33DL 1.33DL	138	5000	5.258		6.911	3.990		
	10	1.33DL	138	5000	5.258		6.911	3.990		
		AL	16	500						
		LOCKOFF	84	3000			3.839	2.217		
		Between 1 and		0.003			Acceptability of	Tieback:	PA	ASS
	num Total	Movement Allow	und (in)*:	0.040					N	0
IVIdXIII	num Total	Movement Allov	ved (in.)*:	0.040]		Retesting Requir Sheet No. of Ret	ed?		10 /A
	Additi	ional Testing for	when Max. Total	Movement is Exc			Retesting Requir Sheet No. of Ret	ed? est:		
					eeded 60 min		Retesting Requir Sheet No. of Ret Ram I.D.	ed? est: 141120		
	Additi	ional Testing for	when Max. Total	Movement is Exc	60 min		Retesting Requir Sheet No. of Ret	ed? est: 141120		
	Additi 0 min	ional Testing for 30 min	when Max. Total 40 min	Movement is Exc 50 min	60 min Load (kips)		Retesting Requir Sheet No. of Ret Ram I.D. Gauge I.D.	red? est: 141120 12-1	N	/Α
20	Additi 0 min 0	ional Testing for 30 min	when Max. Total	Movement is Exc	60 min	80	Retesting Requir Sheet No. of Ret Ram I.D.	ed? est: 141120	N	
20	Additi 0 min	ional Testing for 30 min	when Max. Total 40 min	Movement is Exc 50 min	60 min Load (kips)	80	Retesting Requir Sheet No. of Ret Ram I.D. Gauge I.D.	red? est: 141120 12-1	N	/Α
20	Additi 0 min 0	ional Testing for 30 min	when Max. Total 40 min	Movement is Exc 50 min	60 min Load (kips)	80	Retesting Requir Sheet No. of Ret Ram I.D. Gauge I.D.	red? est: 141120 12-1	N	/Α
20	Additi 0 min 0	ional Testing for 30 min	when Max. Total 40 min	Movement is Exc 50 min	60 min Load (kips)	80	Retesting Requir Sheet No. of Ret Ram I.D. Gauge I.D.	red? est: 141120 12-1	N	/Α
20	Additi 0 min 0 0.00	ional Testing for 30 min	when Max. Total 40 min	Movement is Exc 50 min	60 min Load (kips)	80	Retesting Requir Sheet No. of Ret Ram I.D. Gauge I.D.	red? est: 141120 12-1	N	/Α
20	Additi 0 min 0 0.00 1.00	ional Testing for 30 min	when Max. Total 40 min	Movement is Exc 50 min	60 min Load (kips)	80	Retesting Requir Sheet No. of Ret Ram I.D. Gauge I.D.	red? est: 141120 12-1	N	/Α
20	Additi 0 min 0 0.00	ional Testing for 30 min	when Max. Total 40 min	Movement is Exc 50 min	60 min Load (kips)	80	Retesting Requir Sheet No. of Ret Ram I.D. Gauge I.D.	red? est: 141120 12-1	N	/Α
20	Additi 0 min 0 0.00 1.00	ional Testing for 30 min	when Max. Total 40 min	Movement is Exc 50 min	60 min Load (kips)	80	Retesting Requir Sheet No. of Ret Ram I.D. Gauge I.D.	red? est: 141120 12-1	N	/Α
20	Additi 0 min 0 0.00 1.00	ional Testing for 30 min	when Max. Total 40 min	Movement is Exc 50 min	60 min Load (kips)	80	Retesting Requir Sheet No. of Ret Ram I.D. Gauge I.D.	red? est: 141120 12-1	N	/Α
20	Additi 0 min 0 0.00 1.00 2.00	ional Testing for 30 min	when Max. Total 40 min	Movement is Exc 50 min	60 min Load (kips)	80	Retesting Requir Sheet No. of Ret Ram I.D. Gauge I.D.	red? est: 141120 12-1	N	/Α
20	Additi 0 min 0 0.00 1.00 2.00 3.00	ional Testing for 30 min	when Max. Total 40 min	Movement is Exc 50 min	60 min Load (kips)	80	Retesting Requir Sheet No. of Ret Ram I.D. Gauge I.D.	red? est: 141120 12-1	N	/Α
20	Additi 0 min 0 0.00 1.00 2.00	ional Testing for 30 min	when Max. Total 40 min	Movement is Exc 50 min	60 min Load (kips)	80	Retesting Requir Sheet No. of Ret Ram I.D. Gauge I.D.	red? est: 141120 12-1	N	/Α
ment (inches)	Additi 0 min 0 0.00 1.00 2.00 3.00	ional Testing for 30 min	when Max. Total 40 min	Movement is Exc 50 min	60 min Load (kips)	80	Retesting Requir Sheet No. of Ret Ram I.D. Gauge I.D.	red? est: 141120 12-1	N	/Α
Displacement (inches)	Additi 0 min 0 0.00 1.00 2.00 3.00	ional Testing for 30 min	when Max. Total 40 min	Movement is Exc 50 min	60 min Load (kips)	80	Retesting Requir Sheet No. of Ret Ram I.D. Gauge I.D.	red? est: 141120 12-1	N	/Α
Displacement (inches)	Additi 0 min 0 0.00 1.00 2.00 3.00	ional Testing for 30 min	when Max. Total 40 min	Movement is Exc 50 min	60 min Load (kips)	80	Retesting Requir Sheet No. of Ret Ram I.D. Gauge I.D.	red? est: 141120 12-1	N	/Α
Displacement (inches)	Additi 0 min 0 0.00 1.00 2.00 3.00 4.00	onal Testing for 30 min	when Max. Total 40 min	40	60 min Load (kips)	80	Retesting Requir Sheet No. of Ret Ram I.D. Gauge I.D.	red? est: 141120 12-1	N	/Α
Displacement (inches)	Additi 0 min 0 0.00 1.00 2.00 3.00	onal Testing for 30 min	when Max. Total 40 min 20	40	60 min Load (kips)	80	Retesting Requir Sheet No. of Ret Ram I.D. Gauge I.D.	red? est: 141120 12-1	N	/Α
Displacement (inches)	Additi 0 min 0 0.00 1.00 2.00 3.00 4.00	onal Testing for 30 min	when Max. Total 40 min 20	40	60 min Load (kips)	80	Retesting Requir Sheet No. of Ret Ram I.D. Gauge I.D.	red? est: 141120 12-1	N	/Α

Elastic Elongation

8.00

Tieback

Tieback

Tieback Proof Testing

Lockoff Load Elastic Mod. (E;

Design Load

	ocation	Number	Date Installed	Da	ate(s) Post-Grout	ed	Test Date	(P; kips)	(kips)	ksi)
	Row 1	38	1/20/2016	1/22/2016			3/22/2016	100.0	75.0	28800
		50	1/20/2010	1/22/2010			3/22/2010	100.0	73.0	28800
Shaft	t Diameter	Number of	Total Strand	Total Tendon	Tendon Bond	Free Stressing	Tail Length	Theo. Elastic		
	(in)	Strands	Area (A; in ²)	Length (L _T ; ft)	Length (L _B ; ft)	Length (L _U ; ft)	(L _e ; ft)	Elong. (in)	Recorded By	Reviewed By
	6	3	0.660	115	50	63.7	1.3	5.458	ZLK	ZLK
	v	3	0.000	115		03.7	1.5	5.150	ELIX	220
							Elongation of	Elongation of		
							Free Stressing	80% Free		
									Apparent Free	
							Length + 50% of	Stressing	Tendon Length	
				Gauge Pressure	Recorded	Elastic	Bonded Length	Length	$A_t E_s \delta_e /$	
		Load Testing		for Test Load	Displacement	Elongation at	P(0.5L _B +L _u)/AE	0.8*P(L _u)/AE	(TL-AL)	
Tim	ne (min)	Schedule	Test Load (kips)		(in.)	Test Load (in.)	(in.)	(in.)	(ft)	Comments
		AL (0.10DL)	16	500	0.000		0.000	0.000		
		0.25DL	30	1000	0.423	0.423	0.758	0.435	171.39	
		0.50DL	57	2000	1.465	1.465	2.274	1.306	57.13	
		0.75DL	79	2800	2.357	2.357	3.486	2.003	59.94	
		1.00DL	106	3800	3.255	3.255	5.002	2.873	57.70	
		1.20DL	125	4500	4.005	4.005	6.063	3.483	58.57	
		1.33DL	138	5000	4.508	4.508	6.821	3.918	58.60	
	1	1.33DL	138	5000	4.508		6.821	3.918		Pump the jack
	2	1.33DL	138	5000	4.508		6.821	3.918		
	3	1.33DL	138	5000	4.508		6.821	3.918		
	4	1.33DL	138	5000	4.508		6.821	3.918		
	5	1.33DL	138	5000	4.508		6.821	3.918		
	6	1.33DL	138	5000	4.508		6.821	3.918		
	10	1.33DL	138	5000	4.508		6.821	3.918		
		AL	16	500						
		LOCKOFF	81	2900			3.638	2.090		
Tatal										
		t Between 1 and Movement Allow		0.000 0.040			Acceptability of Retesting Requir	I IEDack:	PA N	
IVIdXII	num rotar	Novement Allow	/eu (m.) · .	0.040			Recessing Requir	eur	IN	0
									N	/ \
	itibba	ional Testing for		Movement is Exc	eeded	1	Sheet No. of Ret		N	/A
			when Max. Total	Movement is Exc			Sheet No. of Ret	est:	N	/A
	Additi 20 min	ional Testing for 30 min		Movement is Exc 50 min	eeded 60 min		Sheet No. of Reto Ram I.D.	est: 141120	N.	/Α
			when Max. Total		60 min		Sheet No. of Ret	est: 141120	N.	/A
			when Max. Total				Sheet No. of Reto Ram I.D.	est: 141120	N	/Α
		30 min	when Max. Total		60 min	80	Sheet No. of Reto Ram I.D.	est: 141120		/A
	20 min	30 min	when Max. Total 40 min	50 min	60 min Load (kips)	80	Sheet No. of Ret Ram I.D. Gauge I.D.	est: 141120 12-1		
	20 min 0	30 min	when Max. Total 40 min	50 min	60 min Load (kips)	80	Sheet No. of Ret Ram I.D. Gauge I.D.	est: 141120 12-1		
	20 min 0	30 min	when Max. Total 40 min	50 min	60 min Load (kips)	80	Sheet No. of Ret Ram I.D. Gauge I.D.	est: 141120 12-1		
	0 0.00	30 min	when Max. Total 40 min	50 min	60 min Load (kips)	80	Sheet No. of Ret Ram I.D. Gauge I.D.	est: 141120 12-1		
	20 min 0	30 min	when Max. Total 40 min	50 min	60 min Load (kips)	80	Sheet No. of Ret Ram I.D. Gauge I.D.	est: 141120 12-1		
	0 0.00	30 min	when Max. Total 40 min	50 min	60 min Load (kips)	80	Sheet No. of Ret Ram I.D. Gauge I.D.	est: 141120 12-1		
	0 0.00 1.00	30 min	when Max. Total 40 min	50 min	60 min Load (kips)	80	Sheet No. of Ret Ram I.D. Gauge I.D.	est: 141120 12-1		
2	0 0.00	30 min	when Max. Total 40 min	50 min	60 min Load (kips)	80	Sheet No. of Ret Ram I.D. Gauge I.D.	est: 141120 12-1		
2	0 0.00 1.00	30 min	when Max. Total 40 min	50 min	60 min Load (kips)	80	Sheet No. of Ret Ram I.D. Gauge I.D.	est: 141120 12-1		
2	0 0.00 1.00 2.00	30 min	when Max. Total 40 min	50 min	60 min Load (kips)	80	Sheet No. of Ret Ram I.D. Gauge I.D.	est: 141120 12-1		
2	0 0.00 1.00	30 min	when Max. Total 40 min	50 min	60 min Load (kips)	80	Sheet No. of Ret Ram I.D. Gauge I.D.	est: 141120 12-1		
2	0 0.00 1.00 2.00	30 min	when Max. Total 40 min	50 min	60 min Load (kips)	80	Sheet No. of Ret Ram I.D. Gauge I.D.	est: 141120 12-1		
2	0 0.00 1.00 2.00 3.00	30 min	when Max. Total 40 min	50 min	60 min Load (kips)	80	Sheet No. of Ret Ram I.D. Gauge I.D.	est: 141120 12-1		
2	0 0.00 1.00 2.00	30 min	when Max. Total 40 min	50 min	60 min Load (kips)	80	Sheet No. of Ret Ram I.D. Gauge I.D.	est: 141120 12-1		
2	0 0.00 1.00 2.00 3.00	30 min	when Max. Total 40 min	50 min	60 min Load (kips)	80	Sheet No. of Ret Ram I.D. Gauge I.D.	est: 141120 12-1		
	0 0.00 1.00 2.00 3.00	30 min	when Max. Total 40 min	50 min	60 min Load (kips)	80	Sheet No. of Ret Ram I.D. Gauge I.D.	est: 141120 12-1		
2	0 0.00 1.00 2.00 3.00	30 min	when Max. Total 40 min	50 min	60 min Load (kips)	80	Sheet No. of Ret Ram I.D. Gauge I.D.	est: 141120 12-1		
2	0 0.00 1.00 2.00 3.00	30 min	when Max. Total 40 min	40	60 min Load (kips)	80	Sheet No. of Ret Ram I.D. Gauge I.D.	est: 141120 12-1		
2	0 0.00 1.00 2.00 3.00 5.00	30 min	when Max. Total 40 min	40	60 min Load (kips)	80	Sheet No. of Ret Ram I.D. Gauge I.D.	est: 141120 12-1		
2	0 0.00 1.00 2.00 3.00	30 min 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	when Max. Total 40 min 0	40	60 min Load (kips)	80	Sheet No. of Ret Ram I.D. Gauge I.D.	est: 141120 12-1		
2	0 0.00 1.00 2.00 3.00 5.00	30 min 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	when Max. Total 40 min	40	60 min Load (kips)	80	Sheet No. of Ret Ram I.D. Gauge I.D.	est: 141120 12-1		
2	0 0.00 1.00 2.00 3.00 5.00	30 min 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	when Max. Total 40 min 00 Displacement (in.) n + 50% of Bond L	40	60 min Load (kips)	80	Sheet No. of Ret Ram I.D. Gauge I.D.	est: 141120 12-1		
2	0 0.00 1.00 2.00 3.00 5.00	30 min 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	when Max. Total 40 min 00 Displacement (in.) n + 50% of Bond L	40	60 min Load (kips)	80	Sheet No. of Ret Ram I.D. Gauge I.D.	est: 141120 12-1		
2	0 0.00 1.00 2.00 3.00 5.00	30 min 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	when Max. Total 40 min 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	40	60 min Load (kips)	80	Sheet No. of Ret Ram I.D. Gauge I.D.	est: 141120 12-1		
2	0 0.00 1.00 2.00 3.00 5.00	30 min 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	when Max. Total 40 min 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	40	60 min Load (kips)	80	Sheet No. of Ret Ram I.D. Gauge I.D.	est: 141120 12-1		

Tieback Location	Tieback Number	Date Installed	Da	ate(s) Post-Grout	ed	Test Date	Design Load (P; kips)	Lockoff Load (kips)	Elastic Mod. (E; ksi)
Row 1	39	1/19/2016	1/21/2016			3/22/2016	100.0	75.0	28800
Shaft Diameter	Number of	Total Strand	Total Tendon	Tendon Bond	Free Stressing	Tail Length	Theo. Elastic		
(in)	Strands	Area (A; in ²)	Length (L_T ; ft)	Length (L_B ; ft)	Length (L_U ; ft)	(L _e ; ft)	Elong. (in)	Recorded By	Reviewed By
6	3	0.660	139	50	91.2	-2.2	7.473	ZLK	ZLK
						Elongation of Free Stressing	Elongation of 80% Free	Apparent Free	
	Load Testing		Gauge Pressure for Test Load	Recorded Displacement	Elastic Elongation at	Length + 50% of Bonded Length P(0.5L _B +L _u)/AE	Stressing Length 0.8*P(L _u)/AE	Tendon Length $A_t E_s \delta_e /$ (TL-AL)	
Time (min)	Schedule	Test Load (kips)	(psi)	(in.)	Test Load (in.)	(in.)	(in.)	(TL-AL) (ft)	Comments
	AL (0.10DL)	16	500	0.000		0.000	0.000		
	0.25DL	30	1000	0.612	0.612	0.993	0.623	249.06	
	0.50DL	57	2000	2.129	2.129	2.979	1.870	83.02	
	0.75DL	81	2900	3.591	3.591	4.766	2.992	87.52	
	1.00DL	106	3800	5.064	5.064	6.554	4.115	89.76	
	1.20DL					-1.202	-0.754		< Throw on
	1.33DL					-1.202	-0.754		ram is maxed
1	1.33DL					-1.202	-0.754		out
2	1.33DL					-1.202	-0.754		
3	1.33DL					-1.202	-0.754		
4	1.33DL					-1.202	-0.754		
5	1.33DL 1.33DL					-1.202 -1.202	-0.754 -0.754		
10	1.33DL 1.33DL					-1.202	-0.754		
	AL						-0.754		
	LOCKOFF					-1.202	-0.754		
Total Movement	Between 1 and	10 Minutes (in)	0.000			Acceptability of		TEST INC	OMPLETE
Maximum Total			0.040			Retesting Requir			ES
						Sheet No. of Ret		39	9-1
Additi	ional Tasting for								
			Movement is Exc						
20 min	30 min	when Max. Total 40 min	Movement is Exc 50 min	eeded 60 min		Ram I.D.			
20 min						Ram I.D. Gauge I.D.			
20 min									
20 min	30 min			60 min	80)	140
	30 min	40 min	50 min	60 min Load (kips)	80	Gauge I.D.	12-1)	140
0	30 min	40 min	50 min	60 min Load (kips)	80	Gauge I.D.	12-1)	140
0	30 min	40 min	50 min	60 min Load (kips)	80	Gauge I.D.	12-1		140
0.00	30 min	40 min	50 min	60 min Load (kips)	80	Gauge I.D.	12-1		140
0	30 min	40 min	50 min	60 min Load (kips)	80	Gauge I.D.	12-1		
0.00	30 min	40 min	50 min	60 min Load (kips)	80	Gauge I.D.	12-1		
00.00	30 min	40 min	50 min	60 min Load (kips)	80	Gauge I.D.	12-1		
0 0.00 + 1.00 + 2	30 min	40 min	50 min	60 min Load (kips)	80	Gauge I.D.	12-1		
0 0.00 + 1.00 + 2	30 min	40 min	50 min	60 min Load (kips)	80	Gauge I.D.	12-1		
0 0.00 + 1.00 + 2	30 min	40 min	50 min	60 min Load (kips)	80	Gauge I.D.	12-1		
0 0.00 + 1.00 + 2	30 min	40 min	50 min	60 min Load (kips)	80	Gauge I.D.	12-1		
0 0.00 + 1.00 + 2	30 min	40 min	50 min	60 min Load (kips)	80	Gauge I.D.	12-1		
0 0.00 + 1.00 + 2	30 min	40 min	50 min	60 min Load (kips)	80	Gauge I.D.	12-1		
0 0.00 + 1.00 + 2	30 min	40 min	50 min	60 min Load (kips)	80	Gauge I.D.	12-1		
0 0.00 1.00 \$50 550	30 min	40 min	50 min	60 min Load (kips)	80	Gauge I.D.	12-1		
0 0.00 + 1.00 + 2	30 min	40 min	50 min	60 min Load (kips)	80	Gauge I.D.	12-1		
0 0.00 1.00 2.00 0.1 0 2.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	30 min	40 min	40	60 min Load (kips)	80	Gauge I.D.	12-1		
0 0.00 1.00 2.00 0.1 0 2.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	30 min	40 min	40	60 min Load (kips)	80	Gauge I.D.	12-1		
0 0.00 1.00 2.00 0.1 0 2.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	30 min	40 min	40	60 min Load (kips)	80	Gauge I.D.	12-1		
0 0.00 1.00 2.00 3.00 0 0.00 0 0 0 0 0 0 0 0 0 0 0 0	30 min 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	40 min 20 Displacement (in.) n + 50% of Bond L	40	60 min Load (kips)	80	Gauge I.D.	12-1		
0 0.00 1.00 2.00 0.1 0 2.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	30 min	40 min 20 Displacement (in.) n + 50% of Bond L	40	60 min Load (kips)	80	Gauge I.D.	12-1		
0 0.00 1.00 2.00 3.00 0 0.00 0 0 0 0 0 0 0 0 0 0 0 0	30 min 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	40 min 20 Displacement (in.) n + 50% of Bond L e Length	40	60 min Load (kips)	80	Gauge I.D.	12-1		
0 0.00 1.00 2.00 3.00 0 0.00 0 0 0 0 0 0 0 0 0 0 0 0	30 min 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	40 min 20 Displacement (in.) n + 50% of Bond L e Length	40	60 min Load (kips)	80	Gauge I.D.	12-1		

Note: The throw on the ram is maxed out and the test can not be completed. The tieback is locked off and testing will restart with a larger ram.

Tieback	Tieback						Design Load	Lockoff Load	Elastic Mod. (E;
Location	Number	Date Installed	Da	ate(s) Post-Grout	ed	Test Date	(P; kips)	(kips)	ksi)
Row 1	39	1/19/2016	1/21/2016			3/23/2016	100.0	75.0	28800
Shaft Diameter	Number of	Total Strand	Total Tendon	Tendon Bond	Free Stressing	Tail Length	Theo. Elastic		
(in)	Strands	Area (A; in ²)	Length (L _T ; ft)	Length (L _B ; ft)	Length (L _U ; ft)	(L _e ; ft)	Elong. (in)	Recorded By	Reviewed By
6	3	0.660	139	50	91.2	-2.2	7.473	ZLK	ZLK
						Elemention of	Elemention of		
						Elongation of	Elongation of		
						Free Stressing	80% Free	Apparent Free	
						Length + 50% of	Stressing	Tendon Length	
			Gauge Pressure	Recorded	Elastic	Bonded Length	Length	$A_t E_s \delta_e /$	
	Load Testing		for Test Load	Displacement	Elongation at	P(0.5L _B +L _u)/AE	0.8*P(L _u)/AE	(TL-AL)	
Time (min)	Schedule	Test Load (kips)	(psi)	(in.)	Test Load (in.)	(in.)	(in.)	(ft)	Comments
	AL (0.10DL)	16	500	0.000		0.000	0.000		
	0.25DL	30	1000	0.612	0.612	0.993	0.623	249.06	3/22/2016
	0.50DL	57	2000	2.129	2.129	2.979	1.870	83.02	3/22/2016
	0.75DL	81	2900	3.591	3.591	4.766	2.992	87.52	3/22/2016
	1.00DL	106	3800	5.064	5.064	6.554	4.115	89.76	3/22/2016
	1.20DL	121	4400	6.454	6.454	7.685	4.825	97.56	< dial set to
	1.33DL	132	4800	7.087	7.087	8.489	5.330	96.98	0 at 1.00*DL
1	1.33DL	132	4800	7.159		8.489	5.330		< movement
2	1.33DL	132	4800	7.159		8.489	5.330		from wind
3	1.33DL	132	4800	7.159		8.489	5.330		
4	1.33DL	132	4800	7.179		8.489	5.330		< movement
5	1.33DL	132	4800	7.174		8.489	5.330		from wind
6	1.33DL	132	4800	7.194		8.489	5.330		
10	1.33DL	132	4800	7.250		8.489	5.330		< movement
	AL	12	400						from wind
	LOCKOFF	86	3100			5.072	3.184		
Total Movement	Between 1 and 1	10 Minutes (in.)	0.091			Acceptability of	Fieback:	PA	ASS
Maximum Total Movement Allowed (in.)*: 0.040				Retesting Required? NO			-		
		where Mary Tatal	N			Sheet No. of Ret	est:	N	/A

Additional Testing for when Max. Total Movement is Exceeded											
20 min	20 min 30 min 40 min 50 min 60 min										

2011111	50 11111	40 11111	50 11111	00 11111	Gauge I.D. 16-3					
0) 2	0	40	Load (kips) 60	80	100	120	140		
0.00										
1.00 -										
2.00										
inches)										
Displacement (inches) 0.5 0.5 0.5										
Displac Displac										
6.00 -		ionlocoment (in)								
7.00 -	Recorded D Free Length	isplacement (in.) i + 50% of Bond L								
8.00 -										
9.00	Elastic Elong	gation								

Ram I.D. 2681

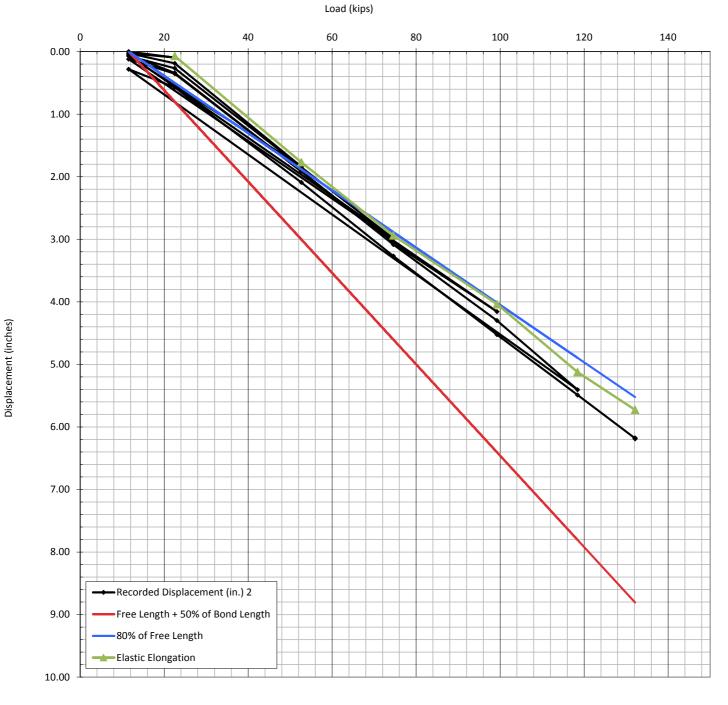
Note: Test results are added to values from sheet 39. False displacements occurred due to high winds that caused movements of the dial on the testing plate.

Tieback Performance Test

Tieback Location	Tieback Number	Date Installed	D	ate(s) Post-Grout	od	Test Date	Design Load (P; kips)	Lockoff Load (kips)	Elastic Mod. (E; ksi)
Row 1	40	1/21/2016	1/22/2016		eu	3/23/2016	(P, KIPS) 100.0	(KIPS) 75.0	
KUW I	40		1/22/2010			3/23/2010	100.0	73.0	28800
Shaft Diameter	Number of	Total Strand	Total Tendon	Tendon Bond	Free Stressing	Tail Length	Theo. Elastic		
(in)	Strands	Area (A; in ²)	Length (L _T ; ft)	Length (L _B ; ft)	Length (L _U ; ft)	(L _e ; ft)	Elong. (in)	Recorded By	Reviewed By
6	3	0.660	139	50	90.7	-1.7	7.473	ZLK	ZLK
						Elongation of	Elongation of		
						Free Stressing	80% Free	Apparent Free	
					Elastic	Length + 50% of	Stressing	Tendon Length	
			Gauge Pressure	Recorded	Elongation at	Bonded Length	Length	$A_t E_s \delta_e /$	
	Load Testing	Actual Test	for Test Load	Displacement	Load Cycle	P(0.5L _B +L _u)/AE	0.8*P(L _u)/AE	(TL-AL)	
Time (min)	Schedule	Load (kips)	(psi) ¹	(in.) ²	Maximum (in.)	(in.)	(in.)	(ft)	Comments
	AL (0.10DL)	12	400	0.000		0.000	0.000		
	0.25DL	23	800	0.095	0.069	0.801	0.502	9.97	
	AL	12	400	0.026		0.000	0.000		
	0.25DL	23	800	0.188		0.801	0.502		
	0.50DL	53	1900	1.840	1.769	3.002	1.883	68.16	
	AL	12	400	0.071		0.000	0.000		
	0.25DL	23	800	0.266		0.801	0.502		
	0.50DL	53	1900	1.850		3.002	1.883		
	0.75DL	75	2700	2.988	2.938	4.603	2.887	73.82	
	AL	12	400	0.050		0.000	0.000		
	0.25DL	23	800	0.340		0.801	0.502		
	0.50DL	53	1900	1.915		3.002	1.883		
	0.75DL	75	2700	3.062		4.603	2.887		
	1.00DL	99	3600	4.157	4.037	6.404	4.016	72.91	
	AL	12	400	0.120		0.000	0.000		
	0.25DL	23	800	0.353		0.801	0.502		
	0.50DL	53	1900	1.915		3.002	1.883		
	0.75DL	75	2700	3.085		4.603	2.887		
	1.00DL	99	3600	4.300		6.404	4.016		
	1.20DL AL	118 12	4300 400	5.405 0.282	5.123	7.805 0.000	4.895 0.000	75.92	
	0.25DL	23	800	0.282		0.801	0.502		
	0.50DL	53	1900	2.092		3.002	1.883		
	0.75DL	75	2700	3.270		4.603	2.887		
	1.00DL	99	3600	4.525		6.404	4.016		
	1.20DL	118	4300	5.490		7.805	4.895		
	1.33DL	132	4800	6.182		8.806	5.522		
1	1.33DL	132	4800	6.180					
2	1.33DL	132	4800	6.180					
3	1.33DL	132	4800	6.180					
4	1.33DL	132	4800	6.180					
5	1.33DL	132	4800	6.180					
6	1.33DL	132	4800	6.185					
10	1.33DL	132	4800	6.190	5.726			75.21	
	AL	12	400	0.464					Dial slipped off
	LOCKOFF	77	2800			4.803	3.012		test plate at AL
Total Movement	Between 1 and	10 Minutes (in)	0.010			Accentability of	Tieback:	DA	ISS
Maximum Total			0.040			Acceptability of Tieback: Retesting Required?		PASS	
	movement Anow		0.040	I		Sheet No. of Ret			/A
١	onal Testing for	when Max Total	Movement is Exc	eeded	ו	eneer no. of net			

Additional Testing for when Max. Total Movement is Exceeded										
20 min	20 min 30 min 40 min 50 min 60 min									

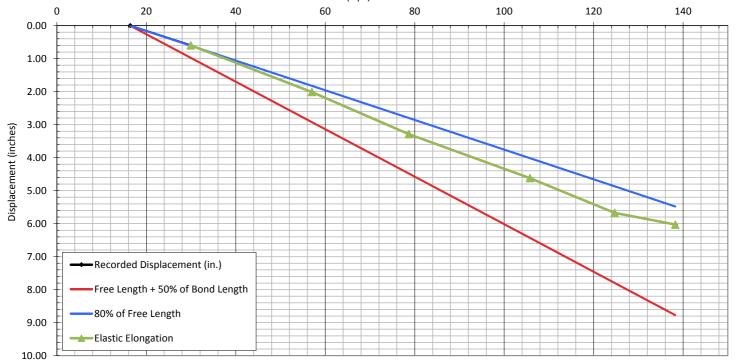
Ram I.D. 2681 Gauge I.D. 16-3


Notes/Additional Comments:

1. Gage pressure must be maintained during testing and be held to within +/- 2%

2. Recorded displacements are to be recorded to the nearest 0.001 in.

Tieback Performance Test



Test Notes:

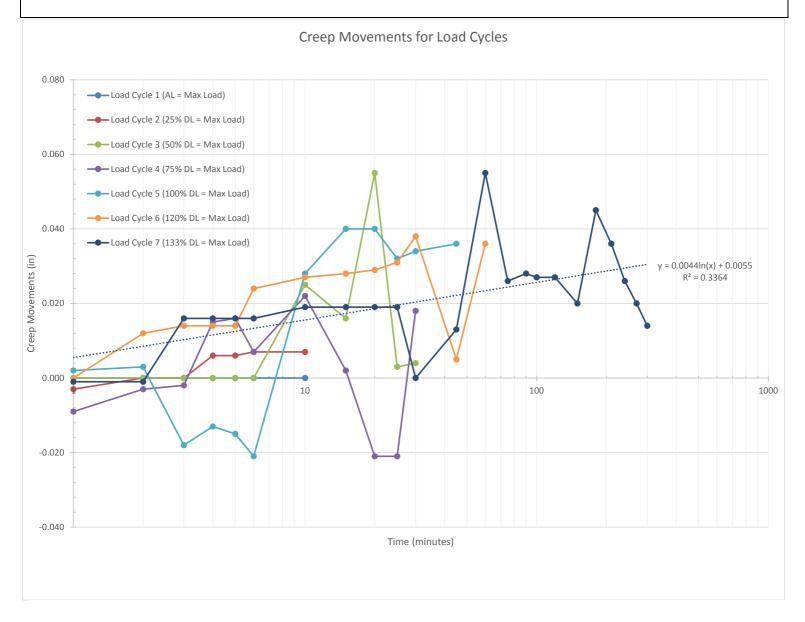
1. The larger, 135 ton ram requires set up a riser that results in an additional length added to the tail.

Tieback Location	Tieback Number	Date Installed	Da	ate(s) Post-Grout	ed	Test Date	Design Load (P; kips)	Lockoff Load (kips)	Elastic Mod. (E; ksi)
Row 1	41	1/21/2016	1/21/2016		cu	3/22/2016	100.0	75.0	28800
NOW 1			1/21/2010			3/22/2010	100.0	75.0	28800
Shaft Diameter	Number of	Total Strand	Total Tendon	Tendon Bond	Free Stressing	Tail Length	Theo. Elastic		
(in)	Strands	Area (A; in ²)	Length (L_T ; ft)	Length (L _B ; ft)	Length (L _u ; ft)	(L _e ; ft)	Elong. (in)	Recorded By	Reviewed By
6	3	0.660	139	50	89.0	0.0	7.473	ZLK	ZLK
						Elongation of	Elongation of		
						Free Stressing	80% Free	Apparent Free	
						Length + 50% of	Stressing	Tendon Length	
			Gauge Pressure	Recorded	Elastic	Bonded Length	Length	$A_t E_s \delta_e /$	
	Load Testing		for Test Load	Displacement	Elongation at	$P(0.5L_B+L_u)/AE$	0.8*P(L _u)/AE	(TL-AL)	
Time (min)	Schedule	Test Load (kips)	(psi)	(in.)	Test Load (in.)	(in.)	(in.)	(ft)	Comments
	AL (0.10DL)	16	500	0.000		0.000	0.000		
	0.25DL	30	1000	0.596	0.596	0.974	0.609	235.26	
	0.50DL	57	2000	2.011	2.011	2.923	1.826	78.42	
	0.75DL	79	2800	3.288	3.288	4.483	2.800	83.62	
	1.00DL	106	3800	4.620	4.620	6.432	4.017	81.89	
	1.20DL	125	4500	5.673	5.673	7.796	4.869	82.96	< dial maxed
	1.33DL	138	5000	6.030	6.030	8.770	5.478	78.38	< reset dial
1	1.33DL	138	5000	6.034		8.770	5.478		
2	1.33DL	138	5000	6.037		8.770	5.478		Pump the jack
3	1.33DL	138	5000	6.037		8.770	5.478		
4	1.33DL	138	5000	6.044		8.770	5.478		
5	1.33DL	138	5000	6.044		8.770	5.478		
6	1.33DL	138	5000	6.043		8.770	5.478		Pump the jack
10	1.33DL	138	5000	6.041		8.770	5.478		Pump the jack
	AL	16	500						
	LOCKOFF	84	3000			4.872	3.043		
Total Movement			0.007			Acceptability of	Tieback:	PA	\SS
Maximum Total	Movement Allow	/ed (in.)*:	0.040			Retesting Requir	ed?	N	10
						Sheet No. of Ret	est:	N	/A
		when Max. Total				_			
20 min	30 min	40 min	50 min	60 min		Ram I.D.			
					l	Gauge I.D.	12-1		
				Load (kips)					
0	2	20	40	60	80	100	120)	140
0.00 +	r i i i i i i i i i i i i i i i i		- 						+ , , ,

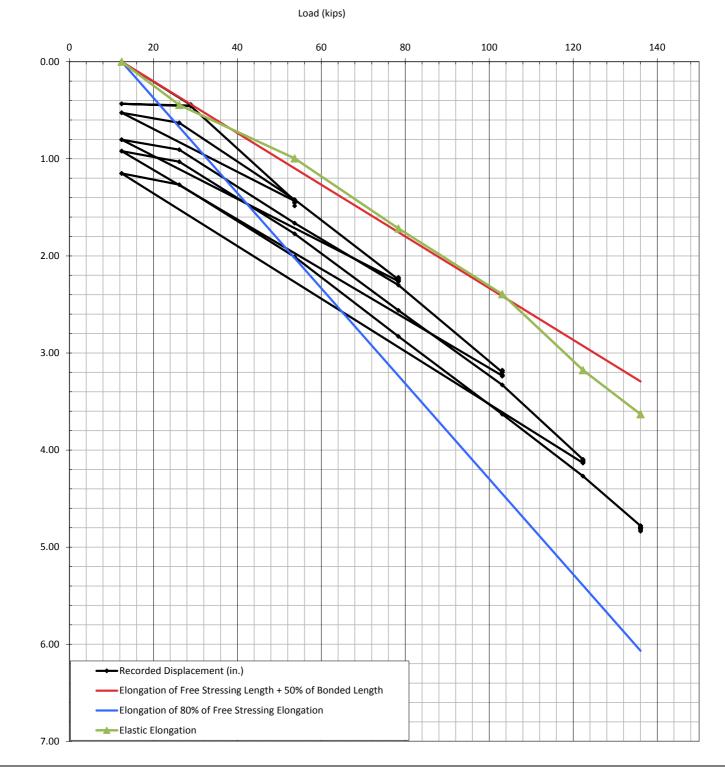
Tieback							Design Load	Lockoff Load	Elastic Mod.
Location	Tieback No.	Date Installed		ate(s) Post-Grout	ed	Test Date	(P; kips)	(kips)	(E; ksi)
Row 1	141121	1/20/2016	1/21/2016			3/22/2016	100.0	75.0	28800
Shaft Diameter	Number of	Total Strand	Total Tendon	Tendon Bond	Free Stressing	Jacking Length	Max. Elastic		
(in)	Strands	Area (A; in ²)	Length (L _⊤ ; ft)	Length (L _B ; ft)	Length (L _U ; ft)	(L _J ; ft)	Elong. (in)	Recorded By	Reviewed By
6	3	0.660	103	50	52.8	0.3	8.669	KH (MDCI)	ZLK
						Elongation of	Elemention of		
						Free Stressing Length + 50% of	Elongation of	Apparent Free	
			C	Descuded		Bonded Length	80% Free Stressing Length	Tendon Length	
			Gauge Pressure	Recorded	Crean	$P(0.5L_B+L_u)/AE$	0.8*P(L _u)/AE	· ·(-s-e/	
Time (min)	Load Testing Schedule	Test Load (kins)	for Test Load	Displacement (in.)	Creep Movement	(in.)	(in.)	(TL-AL)	Commonts
	Schedule	Test Load (kips)	(psi)		AL = Max Load)	(111.)	(111.)	(ft)	Comments
	AL (0.10DL)	12	400	0.000		0.000	0.000		
1	AL	12	400	0.000	0.000				
2	AL	12	400	0.000	0.000				
3	AL	12	400	0.000	0.000				
4	AL	12	400	0.000	0.000				
5	AL	12	400	0.000	0.000				
6	AL	12	400	0.000	0.000				
10	AL	12	400	0.000	0.000				
	AL	12	400	0.000	 % DL = Max Load)				
	AL	12	400	0.000		0.000	0.000		1
	0.25DL	29	1000	0.445		0.809	0.439	42.77	
1	0.25DL	29	1000	0.442	-0.003				
2	0.25DL	29	1000	0.445	0.000				
3	0.25DL	29	1000	0.445	0.000				
4	0.25DL	29	1000	0.451	0.006				
5	0.25DL	29	1000	0.451	0.006				
6	0.25DL	29	1000	0.452	0.007				
10	0.25DL	29 12	1000	0.452	0.007				
	AL	12	400		 % DL = Max Load)				
	AL	12	400	0.434		0.000	0.000		
	0.25DL	29	1000	0.458		0.809	0.439	2.31	
	0.50DL	54	1900	1.430		2.023	1.098	38.29	
1	0.50DL	54	1900	1.430	0.000				
2	0.50DL	54	1900	1.430	0.000				
3	0.50DL	54	1900	1.430	0.000				
4	0.50DL	54	1900	1.430	0.000				
5	0.50DL	54	1900	1.430	0.000				
6	0.50DL	54	1900	1.430	0.000				
10 15	0.50DL 0.50DL	54 54	1900 1900	1.455 1.446	0.025 0.016				
20	0.50DL	54	1900	1.440	0.015				Pump the jack
25	0.50DL	54	1900	1.433	0.003				i any the juck
30	0.50DL	54	1900	1.434	0.004				
	AL	12	400	0.525					
				, ,	% DL = Max Load)	1			
	AL	12	400	0.525		0.000	0.000		
	0.25DL	26	900	0.630		0.674	0.366	12.11	
	0.50DL	54	1900	1.420		2.023	1.098	34.41	
1	0.75DL 0.75DL	78 78	2800 2800	2.243 2.234		3.236	1.756	41.28	
2	0.75DL 0.75DL	78	2800	2.234	-0.009				
3	0.75DL	78	2800	2.240	-0.003				
4	0.75DL	78	2800	2.258	0.015				
5	0.75DL	78	2800	2.259	0.015				
6	0.75DL	78	2800	2.250	0.007				Pump the jack
10	0.75DL	78	2800	2.265	0.022				
15	0.75DL	78	2800	2.245	0.002				
20	0.75DL	78	2800	2.222	-0.021				
25	0.75DL	78	2800	2.222	-0.021				change to .2
30	0.75DL	78	2800	2.261	0.018				change to .2

	AL	12	400	0.803					
				Load Cycle 5 (100	% DL = Max Load				
	AL	12	400	0.803		0.000	0.000		
	0.25DL	26	900	0.906		0.674	0.366	11.88	
	0.50DL	54	1900	1.663		2.023	1.098	33.06	
	0.75DL	78	2800	2.301		3.236	1.756	35.99	
	1.00DL	103	3700	3.198		4.450	2.415	41.85	
1	1.00DL	103	3700	3.200	0.002				Pump the jack
2	1.00DL	103	3700	3.201	0.003				
3	1.00DL	103	3700	3.180	-0.018				
4	1.00DL	103	3700	3.185	-0.013				
5	1.00DL	103	3700	3.183	-0.015				
6	1.00DL	103	3700	3.177	-0.021				
10	1.00DL	103	3700	3.226	0.028				Pump the jack
15	1.00DL	103	3700	3.238	0.040				
20	1.00DL	103	3700	3.238	0.040				
25	1.00DL	103	3700	3.230	0.032				
30	1.00DL	103	3700	3.232	0.034				
45	1.00DL	103	3700	3.234	0.036				Pump the jack
	AL	12	400	0.920					
			100		% DL = Max Load		<u> </u>	<u> </u>	
	AL	12	400	0.920		0.000	0.000		
	0.25DL	26	900	1.030		0.674	0.366	12.69	
	0.50DL	54	1900	1.772		2.023	1.098	32.75	
	0.30DL 0.75DL	78	2800	2.561		3.236	1.756	39.43	
	1.00DL	103	3700	3.329		4.450	2.415	42.09	
	1.20DL	103	4400	4.096		5.393	2.927	42.03	
1	1.20DL 1.20DL	122	4400	4.096	0.000		2.927	43.78	
2	1.20DL	122	4400	4.108	0.000				
3	1.20DL 1.20DL	122		4.108					
4	1.20DL	122	4400 4400		0.014				
				4.110					
5	1.20DL	122	4400	4.110	0.014				
6	1.20DL	122	4400	4.120	0.024				
10	1.20DL	122	4400	4.123	0.027				
15	1.20DL	122	4400	4.124	0.028				
20	1.20DL	122	4400	4.125	0.029				
25	1.20DL	122	4400	4.127	0.031				
30	1.20DL	122	4400	4.134	0.038				
45	1.20DL	122	4400	4.101	0.005				
60	1.20DL	122	4400	4.132	0.036				
	AL	12	400	1.150					
					% DL = Max Load			1	1
	AL	12	400	1.150		0.000	0.000		
	0.25DL	26	900	1.267		0.674	0.366	13.49	
	0.50DL	54	1900	2.010		2.023	1.098	33.06	
	0.75DL	78	2800	2.830		3.236	1.756	40.36	
	1.00DL	103	3700	3.630		4.450	2.415	43.33	
	1.20DL	122	4400	4.268		5.393	2.927	44.95	
	1.33DL	136	4900	4.781		6.068	3.293	46.53	
1	1.33DL	136	4900	4.780	-0.001				
2	1.33DL	136	4900	4.780	-0.001				
3	1.33DL	136	4900	4.797	0.016				Pump the jack
4	1.33DL	136	4900	4.797	0.016				
5	1.33DL	136	4900	4.797	0.016				
6	1.33DL	136	4900	4.797	0.016				
10	1.33DL	136	4900	4.800	0.019				Pump the jack
15	1.33DL	136	4900	4.800	0.019				
20	1.33DL	136	4900	4.800	0.019				
25	1.33DL	136	4900	4.800	0.019				
30	1.33DL	136	4900	4.781	0.000				Pump the jack
45	1.33DL	136	4900	4.794	0.013				Pump the jack
60	1.33DL	136	4900	4.836	0.055				Pump the jack
75	1.33DL	136	4900	4.807	0.026				
90	1.33DL	136	4900	4.809	0.028				Pump the jack
100	1.33DL	136	4900	4.808	0.027				
120	1.33DL	136	4900	4.808	0.027				
150	1.33DL	136	4900	4.801	0.020				Pump the jack
180	1.33DL	136	4900	4.826	0.045				
_00					0.010				

210	1.33DL	136	4900	4.817	0.036				
240	1.33DL	136	4900	4.807	0.026				
270	1.33DL	136	4900	4.801	0.020				
300	1.33DL	136	4900	4.795	0.014				
AL	AL	12	400	1.275					
	LOCKOFF	78	2800						
	Load Cycles		1	2	3	4	5	6	7
Elastic Elon	gation at Load Cy	cle Max (in)	0.000	0.445	0.996	1.718	2.395	3.176	3.631
Residual N	lovement for Loa	d Cycle (in)	0.000	0.434	0.091	0.278	0.117	0.230	0.125
Creep Rate	e for Load Cycle (ii	n/log cycle)	0.00000	0.01000	0.00271	0.01828	0.02057	0.02025	0.00606
Total Movement	Between 1 and 1	0 Minutes (in.)	0.020			Acceptability of 1	Fieback:	PA	SS
Maximum Total I	Movement Allowe	ed (in.)*:	0.040			Retesting Requir	ed?	N	0
						Sheet No. of Rete	est:	N	/A
						Ram I.D.	141121		
						Gauge I.D.	12-4		


Notes/Additional Comments:

1. Gage pressure must be maintained during testing and be held to within +/- 2%


2. Recorded displacements are to be recorded to the nearest 0.001 in.

3. If 0.080 in/log cycle is exceeding, testing will continue to determine if creep rate will diminish below the thresold value.

4. Criteria for total movement of less than 0.04 in between 1 and 10 minutes for final load cycle is statisfied by extended creep holds times

Testing Notes:

Displacement (inches)

1. Test results were recorded by Kevin Hagen of Malcolm Drilling, Inc.

Tieback Location	Tieback No.	Date Installed	Da	ate(s) Post-Grout	ed	Test Date	Design Load (P; kips)	Lockoff Load (kips)	Elastic Mod. (E; ksi)
Row 1	43	1/19/2016	1/21/2016			3/21/2016	100.0	75.0	28800
Shaft Diameter	Number of	Total Strand	Total Tendon	Tendon Bond	Free Stressing	Tail Length	Theo. Elastic		
(in)	Strands	Area (A; in ²)	Length (L_T ; ft)	Length (L_B ; ft)	Length (L_U ; ft)	(L _e ; ft)	Elong. (in)	Recorded By	Reviewed By
6	3	0.660	103	50	52.1	0.9	4.450	ZLK	ZLK
						Elongation of Free Stressing Length + 50% of		Apparent Free Tendon Length	
			Gauge Pressure	Recorded	Elastic	Bonded Length	Length 0.8*P(L _u)/AE	$A_t E_s \delta_e /$	
Time (min)	Load Testing Schedule	Test Load (kips)	for Test Load (psi)	Displacement (in.)	Elongation at Test Load (in.)	P(0.5L _B +L _u)/AE (in.)	(in.)	(TL-AL)	Comments
	AL (0.10DL)	16	500	0.000		0.000	0.000	(ft) 	Comments
	0.25DL	30	1000	0.358	0.358	0.659	0.356	127.28	
	0.50DL	57	2000	1.088	1.088	1.977	1.068	42.43	
	0.75DL	79	2800	1.767	1.767	3.031	1.638	44.94	
	1.00DL	106	3800	2.605	2.605	4.349	2.351	46.17	
	1.20DL	125	4500	3.380	3.380	5.271	2.849	49.43	
1	1.33DL 1.33DL	138 138	5000 5000	3.814 3.814	3.814	5.930 5.930	3.205 3.205	49.58	
2	1.33DL	138	5000	3.814		5.930	3.205		
3	1.33DL	138	5000	3.818		5.930	3.205		
4	1.33DL	138	5000	3.818		5.930	3.205		
5	1.33DL	138	5000	3.818		5.930	3.205		
6	1.33DL	138	5000	3.818		5.930	3.205		
10	1.33DL	138 16	5000 500	3.818 0.000		5.930	3.205		
	AL LOCKOFF	76	2700			2.899	1.567		
Total Movement		-	0.004			Acceptability of			ASS
Maximum Total I			0.040			Retesting Requir			0
						Sheet No. of Ret		N	/A
Additi 20 min	onal Testing for v 30 min	when Max. Total 40 min	Movement is Exc 50 min	eeded 60 min		Ram I.D.	141120		
2011111	50 11111	40 11111	50 11111	00 11111		Gauge I.D.			
0	2	0	40	Load (kips) 60	80	100	120)	140
0.00									
-									
1.00									
1.00									
2.00									
es)									
Displacement (inches)									
ti 3.00									
J.00									
ace									
dsic 4.00									
□ ^{4.00}									
									+
5.00 -	Recorded D	isplacement (in.)							
	Free Length	n + 50% of Bond L	ength						
	The Length								
6.00	80% of Free	e Length							
-	Elactic Flore	ation							
	Elastic Elon	gation							+
7.00									

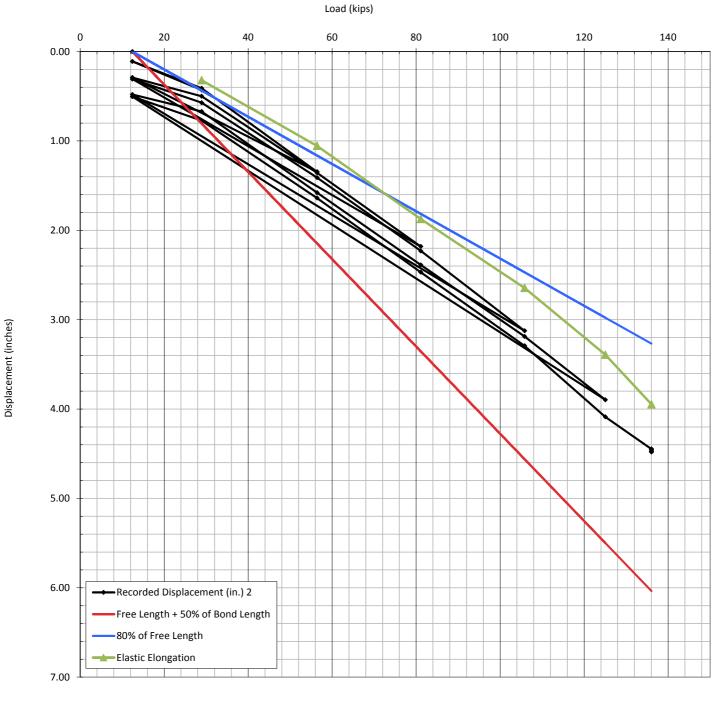
Note: No reset of dial needed however, dial was "sticking" during 1.33DL hold times.

Tieback Performance Test

Tieback Location	Tieback No.	Date Installed	Da	ite(s) Post-Grout	ed	Test Date	Design Load (P; kips)	Lockoff Load (kips)	Elastic Mod. (E; ksi)
Row 1	25	1/20/2016	1/21/2016			3/21/2016	100.0	75.0	28800
Chaft Diamatan	Number of	Total Strand		T 1 6 1	5 C 1 ·		The Classic		
Shaft Diameter	Number of	Area (A; in ²)	Total Tendon	Tendon Bond	Free Stressing	Tail Length	Theo. Elastic	Decorded Dv	Deviewed Dv
(in)	Strands		Length (L _T ; ft)	Length (L _B ; ft)	Length (L _U ; ft)	(L _e ; ft)	Elong. (in)	Recorded By	Reviewed By
6	3	0.660	103	50	52	0.7	4.450	ZLK	ZLK
						Elemention of	Elemention of		
						Elongation of	Elongation of		
						Free Stressing	80% Free	Apparent Free	
				Decended	Elastic	Length + 50% of	Stressing	Tendon Length	
			Gauge Pressure for Test Load	Recorded	Elongation at	Bonded Length	Length	$A_t E_s \delta_e /$	
	Load Testing			Displacement	Load Cycle	$P(0.5L_B+L_u)/AE$	0.8*P(L _u)/AE	(TL-AL)	
Time (min)	Schedule	Test Load (kips)	(psi) ¹	(in.) ²	Maximum (in.)	(in.)	(in.)	(ft)	Comments
	AL (0.10DL)	12	400	0.000		0.000	0.000		
	0.25DL	29	1000	0.430	0.320	0.805	0.436	30.75	
	AL	12	400	0.110		0.000	0.000		
	0.25DL	29	1000	0.410	1.054	0.805	0.436		
	0.50DL AL	56 12	2000 400	1.344 0.290	1.054	2.146 0.000	1.162 0.000	37.99	
	0.25DL	29	1000	0.500		0.805	0.000		
	0.23DL 0.50DL	56	2000	1.355		2.146	1.162		
	0.75DL	81	2900	2.180	1.873	3.353	1.815	43.20	
	AL	12	400	0.307		0.000	0.000		
	0.25DL	29	1000	0.572		0.805	0.436		
	0.50DL	56	2000	1.410		2.146	1.162		
	0.75DL	81	2900	2.230		3.353	1.815		
	1.00DL	106	3800	3.124	2.644	4.560	2.469	44.84	
	AL	12	400	0.480		0.000	0.000		
	0.25DL	29	1000	0.670		0.805	0.436		
	0.50DL	56	2000	1.578		2.146	1.162		
	0.75DL	81	2900	2.387		3.353	1.815		
	1.00DL	106	3800	3.187		4.560	2.469		
	1.20DL	125	4500	3.896	3.392	5.499	2.977	47.71	< may have
	AL	12	400	0.504		0.000	0.000		maxed out dial
	0.25DL	29	1000	0.772		0.805	0.436		
	0.50DL	56	2000	1.638		2.146	1.162		
	0.75DL	81	2900	2.469		3.353	1.815		
	1.00DL	106	3800	3.292		4.560	2.469		set dial to 0"
	1.20DL	125	4500	4.087		5.499	2.977		
	1.33DL	136	4900	4.447		6.035	3.267		
1	1.33DL	136	4900	4.451					
2	1.33DL	136	4900	4.451					numn ia di
3	1.33DL 1.33DL	136 136	4900 4900	4.469					pump jack
5	1.33DL 1.33DL	136	4900	4.474					
6	1.33DL 1.33DL	136	4900	4.474					pump jack
10	1.33DL	136	4900	4.480	3.947			50.58	set dial @ 4"
	AL	130	4900	0.531					Set that to 4
	LOCKOFF	81	2900	0.331		3.353	1.815		
Total Movement			0.027			Acceptability of			ASS
Maximum Total I	viovement Allow	/ea (in.):	0.040			Retesting Requir			10
		when Max. Total	м		1	Sheet No. of Ret	est:	N	/A

Additional Testing for when Max. Total Movement is Exceeded								
20 min	30 min	40 min	50 min	60 min				

Ram I.D. 141121 Gauge I.D. 12-4


Notes/Additional Comments:

1. Gage pressure must be maintained during testing and be held to within +/- 2%

2. Recorded displacements are to be recorded to the nearest 0.001 in.

Tieback Performance Test

Test Notes:

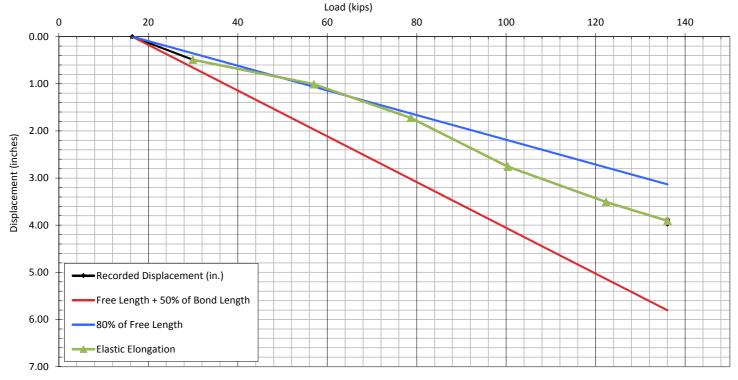
1. Dial had to be reset for all testing of 1.33DL and to unload to 1.20DL. Dial was set to 0.000" at 3800 psi. Dial was reset to 4.000" at 3800 psi after 1.33DL testing. Final movement was 1.010".

Tieback Proof Testing

Tieback	Tieback						Design Load	Lockoff Load	Elastic Mod. (E;
Location	No. 45	Date Installed		ate(s) Post-Grout	ed	Test Date	(P; kips)	(kips)	ksi)
Row 1		1/19/2016	1/21/2016			3/21/2016	100.0	75.0	28800
Shaft Diameter		Total Strand	Total Tendon	Tendon Bond	Free Stressing	Tail Length	Theo. Elastic	Described	Devision 1 D
(in)	Strands	Area (A; in ²)	Length (L_T ; ft)	Length (L _B ; ft)	Length (L _U ; ft)	(L _e ; ft)	Elong. (in)	Recorded By	Reviewed By
6	3	0.660	103	50	50.5	2.5	4.450	ZLK	ZLK
						Elongation of	Elongation of		
						Free Stressing	80% Free	Apparent Free	
						Length + 50% of	Stressing	Tendon Length	
			Gauge Pressure	Recorded	Elastic	Bonded Length	Length	$A_t E_s \delta_e /$	
	Load Testing		for Test Load	Displacement	Elongation at	P(0.5L _B +L _u)/AE	0.8*P(L _u)/AE	(TL-AL)	
Time (min)	Schedule	Test Load (kips)		(in.)	Test Load (in.)	(in.)	(in.)	(ft)	Comments
	AL (0.10DL) 0.25DL	12 29	400 1000	0.000		0.000 0.786	0.000	 116.19	
	0.23DL	56	2000	1.209	0.348	2.095	1.121	43.57	
	0.75DL	81	2900	2.018	2.018	3.273	1.752	46.55	
	1.00DL	106	3800	3.030	3.030	4.452	2.382	51.39	
	1.20DL	125	4500	3.721	3.721	5.368	2.873	52.33	
	1.33DL	136	4900	4.231	4.231	5.892	3.153	54.22	Rest dial @ 0
1 2	1.33DL 1.33DL	136 136	4900 4900	4.229 4.229		5.892 5.892	3.153 3.153		
3	1.33DL 1.33DL	136	4900	4.229		5.892	3.153		
4	1.33DL	136	4900	4.225		5.892	3.153		
5	1.33DL	136	4900	4.229		5.892	3.153		
6	1.33DL	136	4900	4.233		5.892	3.153		
10	1.33DL	136	4900	4.235		5.892	3.153		
	AL LOCKOFF	15 84	500 3000	0.000		 3.404	 1.822		
	It Between 1 and	-	0.006			Acceptability of			ASS
	Movement Allow		0.040			Retesting Requir	ed?		10
						Sheet No. of Ret	est:		/A
	tional Testing for					De ve I D	4 4 4 4 7 4		
20 min	30 min	40 min	50 min	60 min		Ram I.D. Gauge I.D.			
					1	Cuuge			
_		-		Load (kips)					
0	2	:0	40	60	80	100	120) 1	140
0.00									
1.00									
1.00									
2.00									
(sei									
inch									
t 3.00									
ame									
00.4 Displacement (inches)							+		+ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$
s 4.00									
									+
5.00 -		isplacement (in)							
5.00		isplacement (in.)							
5.00		isplacement (in.) + 50% of Bond L	ength						
5.00		ı + 50% of Bond L	ength						
	Free Length 80% of Free	+ 50% of Bond L Length							
	Free Length 80% of Free	ı + 50% of Bond L							

Note: At 1.20DL, insufficent throw of the dial remained therefore the dial was reset to 0 @ 1.20DL and displacement differentials were added

	ieback						-	Design Load	Lockoff Load	Elastic Mod. (E;
	ocation	Tieback No.	Date Installed		ate(s) Post-Grout	ed	Test Date	(P; kips)	(kips)	ksi)
H	Row 1	46	1/18/2016	1/21/2016			3/21/2016	100.0	75.0	28800
Shaft	Diameter	Number of	Total Strand	Total Tendon	Tendon Bond	Free Stressing	Tail Length	Theo. Elastic		
	(in)	Strands	Area (A; in ²)	Length (L _T ; ft)	Length (L _B ; ft)	Length (L _U ; ft)	(L _e ; ft)	Elong. (in)	Recorded By	Reviewed By
	6	3	0.660	103	50	51.8	1.2	4.450	ZLK	ZLK
							Elongation of	Elongation of		
							Free Stressing	80% Free		
							Length $+$ 50% of	Stressing	Apparent Free Tendon Length	
				Gauge Pressure	Recorded	Elastic	Bonded Length	Length	$A_t E_s \delta_e /$	
		Load Testing		for Test Load	Displacement	Elongation at	$P(0.5L_B+L_u)/AE$	0.8*P(L _u)/AE	(TL-AL)	
Tim	ne (min)	Schedule	Test Load (kips)	(psi)	(in.)	Test Load (in.)	(in.)	(in.)	(ft)	Comments
		AL (0.10DL)	16	500	0.000		0.000	0.000		
		0.25DL	30	1000	0.490	0.490	0.657	0.354	118.16	
		0.50DL 0.75DL	57 79	2000 2800	1.010 1.724	1.010	1.970	1.063	39.39 43.84	
		1.00DL	106	3800	2.757	1.724 2.757	3.021 4.335	1.630 2.339	43.84	
		1.20DL	125	4500	3.392	3.392	5.254	2.836	49.60	
		1.33DL	138	5000	3.568	3.568	5.911	3.190	46.38	
	1	1.33DL	138	5000	3.569		5.911	3.190		
	2	1.33DL	138	5000	3.569		5.911	3.190		
	3	1.33DL	138	5000	3.602		5.911	3.190		Pump the jack
	4 5	1.33DL 1.33DL	138 138	5000 5000	3.636 3.695		5.911 5.911	3.190 3.190		Pump the jack Pump the jack
	6	1.33DL	138	5000	3.744		5.911	3.190		Pump the jack
	10	1.33DL	138	5000	3.748		5.911	3.190		T unp the juck
		AL	16	500	0.000					
		LOCKOFF	81	2900			3.152	1.701		
		Between 1 and		0.179			Acceptability of			AIL
Maxin	mum Total	Movement Allow	/ed (in.)*:	0.040			Retesting Requir			ES 5-1
	Additi	onal Testing for	when Max. Total	Movement is Exc	eeded	1	Sheet No. of Ret	est.	40)- I
2	20 min	30 min	40 min	50 min	60 min		Ram I.D.	141120		
]	Gauge I.D.	12-1		
					Load (kips)					
	0	2	0	40	60	80	100	120)	140
	0.00 +	~		- · · · ·						+ + + 1
	-									
	1.00									
	_									
~	2.00									
hes										
(inc										
ent	3.00									
eme	_									
Displacement (inches)										
Disp	4.00									
	_									
										+
	5.00) isplacement (in.)							
	E-1									
		Free Length	n + 50% of Bond L	ength						
	6.00	80% of Free	length							
	Ħ	- 00/0011100	Lengui							
	E .	Elastic Elon	gation							
	7.00									


Note: Jack was unable to hold pressure during 1.33DL holds. Malcolm changed out the jack after testing of this tieback.

Tieback	Ticheck No	Data Installed	Da	ite(s) Post-Grout	od	Test Data	Design Load	Lockoff Load	Elastic Mod. (E;
Location	Tieback No.	Date Installed		ite(s) Post-Grout	ea	Test Date	(P; kips)	(kips)	ksi)
Row 1	46	1/18/2016	1/21/2016			3/24/2016	100.0	75.0	28800
Shaft Diameter	Number of	Total Strand	Total Tendon	Tendon Bond	Free Stressing	Tail Length	Theo. Elastic		
(in)	Strands	Area (A; in ²)	Length (L _T ; ft)	Length (L _B ; ft)	Length (L _U ; ft)	(L _e ; ft)	Elong. (in)	Recorded By	Reviewed By
6	3	0.660	103	50	51.8	1.2	4.450	ZLK	ZLK
						Flammation of	Elemention of		
						Elongation of	Elongation of		
						Free Stressing	80% Free	Apparent Free	
						Length + 50% of	Stressing	Tendon Length	
			Gauge Pressure	Recorded	Elastic	Bonded Length	Length	$A_t E_s \delta_e /$	
	Load Testing		for Test Load	Displacement	Elongation at	$P(0.5L_B+L_u)/AE$	0.8*P(L _u)/AE	(TL-AL)	
Time (min)	Schedule	Test Load (kips)	(psi)	(in.)	Test Load (in.)	(in.)	(in.)	(ft)	Comments
	AL (0.10DL)	16	500	0.000		0.000	0.000		from 3/21/16
	0.25DL	30	1000	0.490	0.490	0.657	0.354	118.16	from 3/21/16
	0.50DL	57	2000	1.010	1.010	1.970	1.063	39.39	from 3/21/16
	0.75DL	79	2800	1.724	1.724	3.021	1.630	43.84	from 3/21/16
	1.00DL	100	3600	2.757	2.757	4.072	2.198	52.02	from 3/21/16
	1.20DL	122	4400	3.507	3.507	5.138	2.773	52.44	
	1.33DL	136	4900	3.907	3.907	5.804	3.133	51.72	
1	1.33DL	136	4900	3.877		5.804	3.133		
2	1.33DL	136	4900	3.977		5.804	3.133		
3	1.33DL	136	4900	3.887		5.804	3.133		
4	1.33DL	136	4900	3.887		5.804	3.133		Pump the jack
5	1.33DL	136	4900	3.889		5.804	3.133		Pump the jack
6	1.33DL	136	4900	3.893		5.804	3.133		Pump the jack
10	1.33DL	136	4900	3.898		5.804	3.133		
	AL	15	500	0.000					
	LOCKOFF	76	2700			2.873	1.550		
Total Movement	Between 1 and 1	10 Minutes (in.)	0.021			Acceptability of	Tieback:	PA	ASS
Maximum Total I	Movement Allow	/ed (in.)*:	0.040			Retesting Requir			10
		when May Tatal				Sheet No. of Ret	est:	N	/A

Addit	Additional Testing for when Max. Total Movement is Exceeded							
20 min	30 min	40 min	50 min	60 min				

Ram I.D. 141120 for AL to 1.00DL; 141121 thereafter Gauge I.D. 12-1; 12-4

Note: Jack was unable to hold pressure during 1.33DL holds. Malcolm changed out the jack after testing of this tieback.

Tieback Location	Tieback No.	Date Installed	Da	ate(s) Post-Grout	ed	Test Date	Design Load (P; kips)	Lockoff Load (kips)	Elastic Mod. (E; ksi)
Row 1	47	1/19/2016	1/21/2016		eu	3/21/2016	100.0	75.0	28800
Shaft Diameter	Number of	Total Strand	Total Tendon	Tendon Bond	Free Stressing		Theo. Elastic		
(in)	Strands	Area (A; in ²)	Length (L_T ; ft)	Length (L_B ; ft)	Free Stressing Length (L _U ; ft)	Tail Length (L _e ; ft)	Elong. (in)	Recorded By	Reviewed By
6	3	0.660	103	50	51.0	2.0	4.450	ZLK	ZLK
Ŭ	,	0.000	103		51.0	Elongation of Free Stressing	Elongation of 80% Free		LLK
						Length + 50% of	Stressing	Apparent Free Tendon Length	
			Gauge Pressure	Recorded	Elastic	Bonded Length	Length	$A_t E_s \delta_e /$	
	Load Testing		for Test Load	Displacement	Elongation at	$P(0.5L_B+L_u)/AE$	0.8*P(L _u)/AE	(TL-AL)	
Time (min)	Schedule	Test Load (kips)	(psi)	(in.)	Test Load (in.)	(in.)	(in.)	(ft)	Comments
	AL (0.10DL)	12	400	0.000		0.000	0.000		
	0.25DL	29	1000	0.425	0.425	0.791	0.425	115.33	
	0.50DL	56	2000	1.200	1.200	2.109	1.132	43.25	
	0.75DL 1.00DL	81 106	2900 3800	2.153 3.102	2.153 3.102	3.295 4.481	1.769 2.406	49.66 52.61	
	1.20DL	100	4500	3.805	3.805	5.404	2.901	53.51	
	1.33DL	136	4900	4.308	4.308	5.931	3.184	55.20	Rest dial @ 0
1	1.33DL	136	4900	4.308		5.931	3.184		
2	1.33DL	136	4900	4.308		5.931	3.184		
3	1.33DL	136	4900	4.301		5.931	3.184		
4	1.33DL	136	4900	4.306		5.931	3.184		
5	1.33DL 1.33DL	136 136	4900 4900	4.306 4.306		5.931 5.931	3.184 3.184		
10	1.33DL	136	4900	4.306		5.931	3.184		
	AL	150	500	0.000					
	LOCKOFF	81	2900			3.295	1.769		
Total Movement	t Between 1 and :	10 Minutes (in.)	-0.002			Acceptability of	Tieback:	PA	SS
	Movement Allow		0.040			Retesting Requir		N	0
						Sheet No. of Ret	est:	N	/A
Additi 20 min	ional Testing for	whon May Intal							
						Pam I D	1/1121		
20 11111	30 min	40 min	50 min	eeded 60 min		Ram I.D. Gauge I.D.			
20 1111				60 min		Ram I.D. Gauge I.D.			
	30 min	40 min	50 min	60 min Load (kips)		Gauge I.D.	12-4		
0	30 min			60 min	80			1	.40
	30 min	40 min	50 min	60 min Load (kips)	80	Gauge I.D.	12-4		40
0	30 min	40 min	50 min	60 min Load (kips)	80	Gauge I.D.	12-4		40
0.00	30 min	40 min	50 min	60 min Load (kips)	80	Gauge I.D.	12-4		40
0	30 min	40 min	50 min	60 min Load (kips)	80	Gauge I.D.	12-4		40
0.00	30 min	40 min	50 min	60 min Load (kips)	80	Gauge I.D.	12-4		
00.00	30 min	40 min	50 min	60 min Load (kips)	80	Gauge I.D.	12-4		
0 0.00 1.00 2.00	30 min	40 min	50 min	60 min Load (kips)	80	Gauge I.D.	12-4		
0 0.00 1.00 2.00	30 min	40 min	50 min	60 min Load (kips)	80	Gauge I.D.	12-4		
0 0.00 1.00 2.00	30 min	40 min	50 min	60 min Load (kips)	80	Gauge I.D.	12-4		
0 0.00 1.00 2.00	30 min	40 min	50 min	60 min Load (kips)	80	Gauge I.D.	12-4		
0 0.00 1.00 2.00	30 min	40 min	50 min	60 min Load (kips)	80	Gauge I.D.	12-4		
0 0.00 1.00 2.00	30 min	40 min	50 min	60 min Load (kips)	80	Gauge I.D.	12-4		
0 0.00 1.00 2.00	30 min	40 min	50 min	60 min Load (kips)	80	Gauge I.D.	12-4		
0 0.00 1.00 2.00	30 min	40 min	50 min	60 min Load (kips)	80	Gauge I.D.	12-4		
0 0.00 1.00 2.00	30 min	40 min	50 min	60 min Load (kips)	80	Gauge I.D.	12-4		
0 0.00 1.00 2.00 3.00 0 3.00 0 0 0 0 0 0 0 0 0 0 0 0	30 min	40 min	40	60 min Load (kips)	80	Gauge I.D.	12-4		
0 0.00 1.00 2.00 2.00 0 3.00 0 0 4.00	30 min 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	40 min 0	40	60 min Load (kips)	80	Gauge I.D.	12-4		
0 0.00 1.00 2.00 3.00 0 4.00 5.00	30 min 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	40 min	40	60 min Load (kips)	80	Gauge I.D.	12-4		
0 0.00 1.00 2.00 3.00 0 4.00	30 min 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	40 min 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	40	60 min Load (kips)	80	Gauge I.D.	12-4		
0 0.00 1.00 2.00 3.00 0 4.00 5.00	30 min 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	40 min 0 isplacement (in.) + 50% of Bond L	40 40 ength	60 min Load (kips)	80	Gauge I.D.	12-4		
0 0.00 1.00 2.00 3.00 0 4.00 5.00	30 min 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	40 min 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	40 40 ength	60 min Load (kips)	80	Gauge I.D.	12-4		

Note: At 1.20DL, insufficent throw of the dial remained therefore the dial was reset to 0 @ 1.20DL and displacement differentials were added

Tieback Location	Tieback No.	Date Installed	Da	ate(s) Post-Grout	ed	Test Date	Design Load (P; kips)	Lockoff Load (kips)	Elastic Mod. (E; ksi)
Row 1	48	1/18/2016	1/21/2016			3/21/2016	100.0	75.0	28800
Shaft Diameter	Number of	Total Strand	Total Tendon	Tendon Bond	Free Stressing	Tail Length	Theo. Elastic		
(in)	Strands	Area (A; in ²)	Length (L_T ; ft)	Length (L_B ; ft)	Length (L_U ; ft)	(L _e ; ft)	Elong. (in)	Recorded By	Reviewed By
6	3	0.660	103	50	51.0	2.0	4.450	ZLK	ZLK
						Elongation of Free Stressing	Elongation of 80% Free		
						Length + 50% of	Stressing	Apparent Free Tendon Length	
			Gauge Pressure	Recorded	Elastic	Bonded Length	Length	$A_t E_s \delta_e /$	
	Load Testing		for Test Load	Displacement	Elongation at	$P(0.5L_B+L_u)/AE$	0.8*P(L _u)/AE	(TL-AL)	
Time (min)	Schedule	Test Load (kips)	(psi)	(in.)	Test Load (in.)	(in.)	(in.)	(ft)	Comments
	AL (0.10DL)	16	500	0.003		0.000	0.000		
	0.25DL	30	1000	0.100	0.100	0.650	0.349	96.40	
	0.50DL	57	2000	0.824	0.824	1.949	1.046	32.13	
	0.75DL	79	2800	1.722	1.722	2.988	1.604	43.79	
	1.00DL 1.20DL	106 125	3800 4500	2.600 3.439	2.600	4.288 5.197	2.302 2.790	46.09 50.29	
	1.33DL	138	5000	4.421	3.439 4.421	5.847	3.139	57.47	reset dial @ 0
1	1.33DL	138	5000	4.421	4.421	5.847	3.139		
2	1.33DL	138	5000	4.420		5.847	3.139		
3	1.33DL	138	5000	4.426		5.847	3.139		
4	1.33DL	138	5000	4.428		5.847	3.139		
5	1.33DL	138	5000	4.434		5.847	3.139		
6	1.33DL	138	5000	4.441		5.847	3.139		
10	1.33DL	138	5000	4.439		5.847	3.139		pressure bled
	AL LOCKOFF	16 81	500			3.118	1.674		
		-	2900						
	nt Between 1 and I Movement Allow		0.018 0.040			Acceptability of Retesting Requir		PA	0
	I WOVEITIETIL AITOW	/eu (iii.) .	0.040			Sheet No. of Ret		N	
Addit	tional Testing for	when Max. Total	Movement is Exc	eeded	ו				
20 min	30 min	40 min	50 min	60 min		Ram I.D.			
					J	Gauge I.D.	12-1		
				Load (kips)					
0	2	20	40	60	80	100	120	1	40
0.00 +			-						
-								· · · · · ·	+ , ,
1 00									
1.00									
1.00									
2 00									
2 00									
2 00									
2 00									
2 00									
2 00									
2 00									
00.2 (jucches) 00.5 00.6									
2 00									
Displacement (inches)									
2 00		Displacement (in.)							
Displacement (inches)									
2.00 2.00 3.00 0.00		n + 50% of Bond L							
2.00 Displacement (inches)		n + 50% of Bond L							
2.00 2.00 3.00 0.00	Free Length	n + 50% of Bond L e Length	ength						
2.00 Displacement 3.00 Displacement 0.00 5.00	Free Length	n + 50% of Bond L	ength						

Note: At 1.20DL, insufficent throw of the dial remained therefore the dial was reset to 0 @ 1.20DL and displacement differentials were added

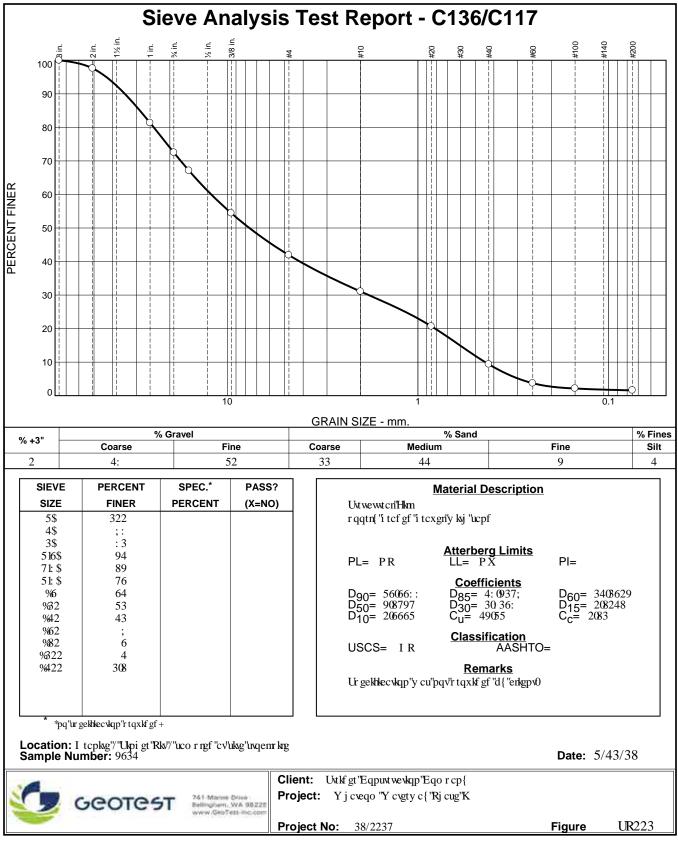
Tieback	Tieback						Design Load	Lockoff Load	Elastic Mod. (E;
Location	No.	Date Installed		ate(s) Post-Grout	ed	Test Date	(P; kips)	(kips)	ksi)
Row 1	49	1/19/2016	1/21/2016			3/21/2016	100.0	75.0	28800
Shaft Diameter	Number of	Total Strand	Total Tendon	Tendon Bond	Free Stressing	Tail Length	Theo. Elastic		
(in)	Strands	Area (A; in ²)	Length (L _T ; ft)	Length (L _B ; ft)	Length (L _U ; ft)	(L _e ; ft)	Elong. (in)	Recorded By	Reviewed By
6	3	0.660	103	50	51.0	2.0	4.450	ZLK	ZLK
						Elongation of	Elongation of		
						Free Stressing	80% Free	Apparent Free	
						Length + 50% of	Stressing	Tendon Length	
			Gauge Pressure	Recorded	Elastic	Bonded Length	Length	$A_t E_s \delta_e /$	
Time (min)	Load Testing	Test Les d (Line)	for Test Load	Displacement	Elongation at	$P(0.5L_B+L_u)/AE$	0.8*P(L _u)/AE	(TL-AL)	Commente
Time (min)	Schedule	Test Load (kips) 12	(psi) 400	(in.) 0.000	Test Load (in.)	(in.) 0.000	(in.) 0.000	(ft)	Comments
	AL (0.10DL) 0.25DL	29	1000	0.274	0.274	0.791	0.425	103.60	
	0.50DL	56	2000	1.078	1.078	2.109	1.132	38.85	
	0.75DL	81	2900	1.963	1.963	3.295	1.769	45.28	
	1.00DL	106	3800	2.951	2.951	4.481	2.406	50.05	
	1.20DL	125	4500	3.631	3.631	5.404	2.901	51.07	
	1.33DL	136	4900	3.802	3.802	5.931	3.184	48.72	reset dial @ 0
1	1.33DL	136	4900	3.802		5.931	3.184		
2	1.33DL	136	4900	3.802		5.931	3.184		
3	1.33DL	136	4900	3.802		5.931	3.184		
4	1.33DL	136	4900	3.802		5.931	3.184		
5	1.33DL	136	4900	3.893		5.931	3.184		< movement
6 10	1.33DL	136 136	4900	3.893		5.931	3.184 3.184		in test
	1.33DL AL	15	4900 500	3.893 0.000		5.931	5.164		apparatus
	LOCKOFF	89	3200			3.690	1.981		
	t Between 1 and		0.091			Acceptability of			ASS
	Movement Allow		0.040			Retesting Requir			10
		()				Sheet No. of Ret			/A
		when Max. Total							
20 min	30 min	40 min	50 min	60 min		Ram I.D.			
					J	Gauge I.D.	12-4		
				Load (kips)					
0	2	20	40	60	80	100	120)	140
0.00 +			- 						+
-									
1.00									
-									
2.00									
es)									
Displacement (inches)									
te 3.00									
- ceu									
pla –									
<u>is</u> 4.00 –									
-									
5.00		visplacement (in.)							+ $+$ $+$ $+$ $+$ $+$
E1									
· [-]		n + 50% of Bond L	ength					+ $+$ $+$	+ + + 1
6.00		longth							
	80% of Free	e Length							
EL.		gation at Test Loa	ad (in.)						
7.00									
7.00									

Note: Movement in testing assmebly causes displacement values to jump at 5 min. hold. Was previously holding at a consistent value.

Tieback							Design Load	Lockoff Load	Elastic Mod. (E;
Location	Tieback No.	Date Installed		ate(s) Post-Grout	ed	Test Date	(P; kips)	(kips)	ksi)
Row 1	50	1/18/2016	1/21/2016			3/21/2016	100.0	75.0	28800
Shaft Diameter	Number of	Total Strand	Total Tendon	Tendon Bond	Free Stressing	Tail Length	Theo. Elastic		
(in)	Strands	Area (A; in ²)	Length (L _T ; ft)	Length (L _B ; ft)	Length (L _U ; ft)	(L _e ; ft)	Elong. (in)	Recorded By	Reviewed By
6	3	0.660	103	50	51.0	2.0	4.450	ZLK	ZLK
						Elongation of	Elongation of		
						Free Stressing	80% Free	Apparent Free	
						Length + 50% of	Stressing	Tendon Length	
			Gauge Pressure	Recorded	Elastic	Bonded Length	Length	$A_t E_s \delta_e /$	
	Load Testing		for Test Load	Displacement	Elongation at	$P(0.5L_B+L_u)/AE$	0.8*P(L _u)/AE	(TL-AL)	
Time (min)	Schedule	Test Load (kips)	(psi)	(in.)	Test Load (in.)	(in.)	(in.)	(ft)	Comments
	AL (0.10DL)	16	500	0.000		0.000	0.000		
	0.25DL	30	1000	0.214	0.214	0.650	0.349	108.10	
	0.50DL	57	2000	0.924	0.924	1.949	1.046	36.03	
	0.75DL	79	2800	1.632	1.632	2.988	1.604	41.50	
	1.00DL	106	3800	2.451	2.451	4.288	2.302	43.44	
	1.20DL	125	4500	3.076	3.076	5.197	2.790	44.98	
	1.33DL	138	5000	3.565	3.565	5.847	3.139	46.34	reset dial @ 0
1	1.33DL	138	5000	3.562		5.847	3.139		
2	1.33DL	138	5000	3.560		5.847	3.139		
3	1.33DL	138	5000	3.562		5.847	3.139		
4	1.33DL	138	5000	3.560		5.847	3.139		
5	1.33DL	138	5000	3.559		5.847	3.139		< Dial slipped
6	1.33DL	138	5000	3.649		5.847	3.139		on jack pump
10	1.33DL	138	5000	3.645		5.847	3.139		pressure bled
	AL	16	500	0.000					
	LOCKOFF	77	2750			2.923	1.569		
Total Movement	Between 1 and	10 Minutes (in.)	0.083			Acceptability of	Tieback:	PA	ASS
Maximum Total	Movement Allow	/ed (in.)*:	0.040			Retesting Requir			10
						Sheet No. of Ret	est:	N	/A
		when Max. Total							
20 min	30 min	40 min	50 min	60 min		Ram I.D.			
						Gauge I.D.	12-1		
					-				
0				Load (kips)					
	2	20	40	Load (kips) 60	80	100	120)	140
0.00 +	2	20	40		80	100	120)	140
0.00	2	:0	40		80	100	120		140
0.00	2	0	40		80	100	120		140
	2	0	40		80		120		
0.00	2	0	40		80				
	2	0	40		80				
1.00	2		40		80				
1.00	2		40		80				
1.00			40		80	100			
1.00	2		40		80	100	120		
1.00			40		80		120		
1.00			40		80				
1.00			40		80				
1.00			40		80	100			
1.00 2.00			40		80	100			
1.00			40		80	100			
1.00			40		80				
1.00 2.00 3.00 0.05 0.04 0.04			40		80				
1.00 2.00 3.00 0.05 0.04 0.04	Recorded D	isplacement (in.)			80				
1.00 2.00 3.00 0.05 0.04 0.04	Recorded D				80				
1.00 2.00 3.00 0.05 0.04 0.04	← Recorded D Free Length	isplacement (in.) + 50% of Bond L			80				
1.00 2.00 3.00 0 2.00 0 3.00 0 5.00	Recorded D	isplacement (in.) + 50% of Bond L			80				
1.00 2.00 3.00 0 2.00 0 3.00 0 5.00	Recorded D Free Length 80% of Free	isplacement (in.) + 50% of Bond Le	ength		80				
1.00 2.00 3.00 0 2.00 0 3.00 0 5.00	Recorded D Free Length 80% of Free	isplacement (in.) + 50% of Bond L	ength		80				

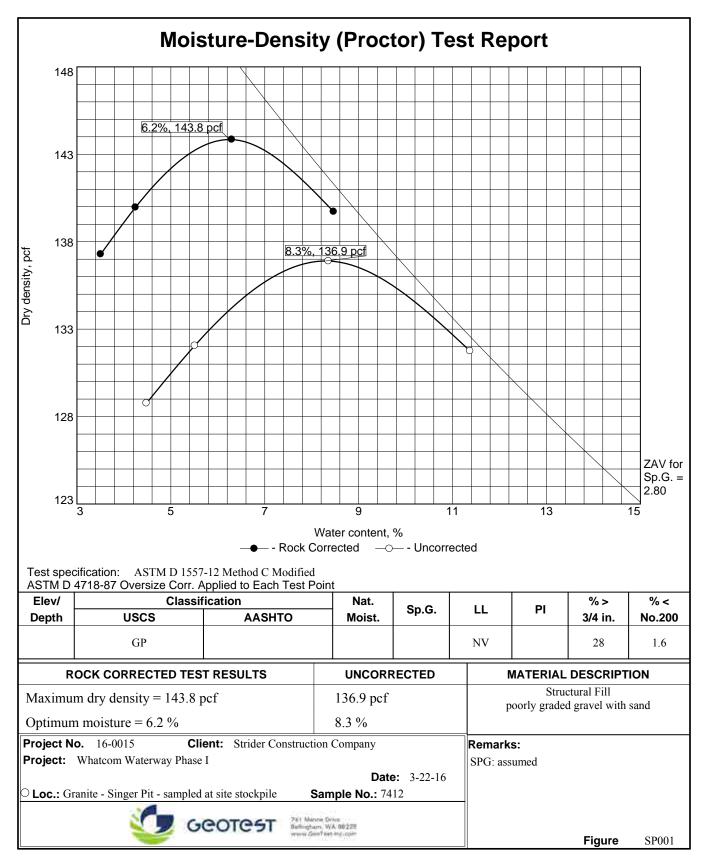
Note: At 1.20DL, insufficent throw of the dial remained therefore the dial was reset to 0 @ 1.20DL and displacement differentials were added

ATTACHMENT D COMPACTION TESTING RESULTS



741 Marine Drive, Bellingham, WA 98225
20611 67th Ave. NE. Unit A. Arlington, WA 98223
phone: (360) 733.7318 toll free: (888) 251.5276

www.geotest-inc.com


fax: (360) 733.7418

ADDI PERI CLIE CON ⁻ Comp	TRACT baction	Whatcom Waterwa Bellingham, WA Strider Construction					JOE	3 #:		16-0015		
PERI CLIE CON Comp	MIT #: NT: TRACT paction	Bellingham, WA Strider Constructior										
PERI CLIE CON Comp	MIT #: NT: TRACT paction	Strider Construction					REG	PORT #:		FD001		
CLIE CON Comp	NT: TRACT							-				
CON Comp	TRACT baction						DAT			3/21/2016	i	
Comp	paction							E #:	- .	1 of 1		
							INS	PECTO	:	Sean Rog	erson	
	Datas	Of: Structural Fill for Site	Dackilli									
Field	Data:			Depth/	DT/	Wet	Field	Dry		Com	naction	
Fest		Location		Elev	BS		Moisture	-	Lab	Compaction %		Pass
#				(ft)	(in)	(pcf)	(%)	(pcf)	#	Attained	Required	Fail
1	Barge Ra	amp Backfill		TOG	DT/12	143.3	5.2	136.2	1	95	90	Р
	0	amp Backfill		-2	DT/12	140.3	4.2	134.6	1	94	90	Р
		ile Wall Backfill, East of Barge Rar		-2	DT/12	139.4	4.7	133.1	1	93	90	Р
		ile Wall Backfill, South of Barge Ra	•	-2	DT/12	138.7	5.3	131.7	1	92	90	P
5	Sheet Pi	ile Wall Backfill, North of Barge Ra	mp	-2	DT/12	139.4	4.8	133.1	1	93	90	Р
La	b			1		Max. D	ry Opt	imum	Ret	ained		
Sam		Soil Type	So	urce		Densi	-	isture		n #4	Test	
# 1-7412		PGG w/ Sand	Granite - Singer			(pcf) 143.8		(%) 6.2	-	%) 58 AS	Method TM D1557/D47	
2-						0.0				Noi		
3-						0.0				Noi	ne	
Gauge	Make/Mo	odel/Serial#: Troxler 3440P /	60560		M/D Sta	andard Cou	unt: 694 /	2527				
Com	ments	: TOG - Top of Grade										
Geo	Fost w	as on site as requested	to perform cor	mnactio	n tostir	na on st	ructural t	fill at th	a ahi	ove-menti	oned	
	ions.			npaolio	11 100111	ig on st	laotarar	ini at th			onea	
										0		
All te 3.041		et the compaction requir	ement of 90%	per pro	ject sp	ecificati	ions divis	sion 02	11 0	U Section		
0.0												
											-	
COPIES	S: Strider C	Construction Co. Anchor QEA							7	Reviewed I	с	_
		This report sh	all not be reproduced e	except in full,	without the	written appr	roval of GeoTe	est Services	Inc.			

Tested By: MC

Checked By: DL

Tested By: MC

Checked By: DL

APPENDIX E WATER QUALITY MONITORING DATA

WATER QUALITY MONITORING DATA AS-BUILT REPORT FOR THE WHATCOM WATERWAY CLEANUP IN PHASE 1 SITE AREAS

Prepared for Port of Bellingham

Prepared by

Anchor QEA, LLC 720 Olive Way, Suite 1900 Seattle, Washington 98101

September 2018

TABLE OF CONTENTS

1	IN	TRODUCTION	E-1
2	W	ATER QUALITY MONITORING	E-1
	2.1	Water Quality Criteria	E-1
	2.1	1.1 Conventional Criteria	E-1
	2.1	1.2 Chemical Criteria	E-1
	2.2	Monitoring Locations and Depths	E-2
	2.3	Monitoring Methods and Equipment	E-2
	2.4	Monitoring Frequency	E-3
	2.5	Water Quality Compliance Determination	E-3
3			
0	M	ONITORING RESULTS	E-4
5	М С 3.1	ONITORING RESULTS Conventional Monitoring Results	
5			E-4
3	3.1	Conventional Monitoring Results	E-4 E-11
J	3.1 3.2	Conventional Monitoring Results Chemical Monitoring Results	E-4 E-11 E-12
4	3.1 3.2 3.3 3.4	Conventional Monitoring Results Chemical Monitoring Results Visual Monitoring Results	E-4 E-11 E-12 E-12
-	3.1 3.2 3.3 3.4 DE	Conventional Monitoring Results Chemical Monitoring Results Visual Monitoring Results Fish Monitoring Results	E-4 E-11 E-12 E-12 E-12

List of Tables

Table E1	Analytical Methods and Detection Limits for Chemical Testing	.E-4
Table E2	Summary of Water Quality Monitoring Observations	.E-6
Table E3	Water Chemistry Results and Screening Levels	2-11

List of Figures

Figure 1 Water Quality Monitoring Example Locations

List of Attachments

Attachment A	Data Validation Report
Attachment B	Laboratory Report

LIST OF ACRONYMS AND ABBREVIATIONS

µg/L r	microgram per liter
AS A	Acute Compliance Station
BMP b	best management practice
BG b	background station
CM C	Construction Manager
CS (Chronic Compliance Station
DRET d	dredging elutriate test
Ecology	Washington State Department of Ecology
mg/L r	milligram per liter
NTU r	nephelometric turbidity unit
Port I	Port of Bellingham
Project V	Whatcom Waterway Cleanup in Phase 1 Site Areas Project
TCDD t	tetrachlorodibenzo-p-dioxin
WAC V	Washington Administrative Code
WQMP V	Water Quality Monitoring Plan

E-ii

1 INTRODUCTION

This appendix documents water quality monitoring performed by the Port of Bellingham (Port) during the Whatcom Waterway Cleanup in Phase 1 Site Areas Project (Project) in Bellingham, Washington. This report describes water quality monitoring that occurred from August 2015 through March 2016 in accordance with the Water Quality Monitoring Plan (WQMP) contained in the Engineering Design Report (EDR; Anchor QEA 2015) approved by the Washington State Department of Ecology (Ecology).

2 WATER QUALITY MONITORING

Monitoring activities were conducted according to the Ecology-approved WQMP. The monitoring activities and results are described in this section.

2.1 Water Quality Criteria

The waters of Bellingham Bay are designated as excellent quality marine waters by the State of Washington (Washington Administrative Code [WAC] 173-201A). Applicable criteria exist for both conventional and chemical parameters as described in Sections 2.2 and 2.3.

2.1.1 Conventional Criteria

Turbidity and dissolved oxygen were monitored as the primary indicators of water quality. For marine waterbodies classified as excellent, turbidity shall not exceed 5 nephelometric turbidity units (NTU) over background turbidity when the background turbidity is 50 NTU or less, or there shall not be more than a 10% increase in turbidity when the background turbidity is more than 50 NTU. The lowest 1-day minimum for dissolved oxygen in marine waterbodies designated as excellent is 6.0 milligrams per liter (mg/L) [WAC 173-201A-200(1)(d) and (e)].

2.1.2 Chemical Criteria

Acute and chronic water quality standards established under the Washington State Surface Water Quality Standards [WAC 173-201A-240(3)] are listed in Attachment 1 of the WQMP along with the findings of the reasonable potential analysis. That analysis compared the findings of the dredging elutriate test (DRET) evaluation to the water quality criteria to evaluate potential dredging-related chemical concentrations that could occur during Project construction. Though exceedances of water quality criteria were not considered reasonable to expect, contingent chemical monitoring was included for both mercury and dioxin.

During in-water construction activities, the acute criteria were applicable at the 150-foot compliance boundary as measured using an exposure period of 1 hour. Chronic criteria were applied at the 300-foot compliance boundary as measured using an exposure period of 4 days.

For mercury, the acute and chronic criteria were 1.8 micrograms per liter (μ g/L) and 0.025 μ g/L, respectively. For dioxin, acute and chronic water quality criteria were 0.0001 μ g/L and 0.00001 μ g/L, respectively.

2.2 Monitoring Locations and Depths

The monitoring locations for water quality measurements were at specific distances from the respective construction activities, measured using radii of 100 feet (Early Warning Station), 150 feet (Acute Compliance Stations [AS]) and 300 feet (Chronic Compliance Stations [CS]). Measurements at the 100-foot distance served as an "early warning" indicator, allowing for modification of the activity to potentially avoid exceedances at the compliance boundary. In addition, monitoring was performed at one or two reference locations located at least 500 feet from the respective construction activities in areas unaffected by the active work. The background station (BG) was selected by the field team after visually observing the water flow direction and taking the tidal stage into account.

Each monitoring event included measuring turbidity and dissolved oxygen at three depths at all stations. The monitoring depths were 3 feet below the water surface (surface), 3 feet above the bottom (bottom), and at the mid-point of the water column (mid-depth). Measurements at stations located near in-water work were compared to those monitored at reference stations.

2.3 Monitoring Methods and Equipment

Monitoring was conducted from Anchor QEA's vessel, and actual sampling locations were determined using a handheld global positioning system unit. Water column depth was

determined at each monitoring location using a lead line or the vessel's fathometer. In situ turbidity and dissolved oxygen were measured with a YSI 6920V2 multi-probe water quality sonde. Station locations, water depth, and water quality data for each monitoring event and respective location were recorded on field logs.

2.4 Monitoring Frequency

Compliance monitoring was conducted at one of two frequencies, depending on in-water work activities and previous monitoring results. As described in the WQMP, monitoring was conducted according to intensive (every 4 hours) or routine (twice daily) frequencies, as summarized below:

- Intensive: Collection of turbidity and dissolved oxygen measurements every 4 hours during in-water work
- Routine: Collection of turbidity and dissolved oxygen measurements twice daily during in-water work, or if turbidity plumes become visually evident

Monitoring was required to be conducted on an intensive schedule for the first 4 days of in-water work. Consistent with the WQMP, if no exceedances occurred during the intensive monitoring, monitoring was reduced to a routine schedule. A confirmed exceedance measured at any time during monitoring triggered the intensive schedule to start over.

2.5 Water Quality Compliance Determination

Sample measurements from each of the three depths at the early warning (100-foot), acute compliance (150-foot), and chronic compliance (300-foot) locations were compared to each of the three corresponding depths at the background station(s). If turbidity or dissolved oxygen at any station failed to meet water quality criteria, measurements were re-collected 10 to 15 minutes afterward to confirm the exceedance. If a confirmed exceedance was measured at a 100-foot early warning station, the Construction Manager (CM) was notified. If turbidity or dissolved oxygen was confirmed to exceed water quality criteria at a 150-foot or 300-foot compliance station, the Port and Ecology were notified and the Contractor was required to implement additional best management practices (BMPs). Water quality measurements were re-measured 30 to 60 minutes following implementation of BMPs.

Water samples were collected for analytical testing following the methods listed in Table E1 if exceedances were measured again.

Analytical Meth	nods and Detection Limits for Cl	nemical Testing

Table E1

Chemical Parameter	Analytical Method	Target Detection Limit
Total Suspended Solids	SM 2540D	1.0 mg/L
Mercury	EPA 7470A	0.02 μg/L
Dioxin	EPA 1613B	0.005 ng/L

Notes:

µg/L = microgram per liter mg/L = milligram per liter ng/L = nanogram per liter

3 MONITORING RESULTS

Water quality monitoring was performed between August 10, 2015, and March 21, 2016. Monitoring took place during pile removal, capping, and dredging activities consistent with the requirements of the WQMP.

3.1 Conventional Monitoring Results

During the 8 months of monitoring, over 2,125 compliance measurements of dissolved oxygen and turbidity were taken. Of the 2,125 turbidity readings taken, confirmed exceedances of the background-based total suspended solids limit were observed during only five events (see Table E2):

- Three events (September 21, 25, and 30, 2015) were short-term exceedances of background turbidity levels at the AS-1 station only. At the 1-hour recheck after the Contractor implemented additional BMPs, turbidity returned to background levels.
- One event (September 29, 2015) was a short-term exceedance of background turbidity levels at the AS-1 and CS-1 station. At the 1-hour recheck after the Contractor implemented additional BMPs, turbidity returned to background levels.
- One event (October 27, 2015) included a 2-hour turbidity exceedance at the AS-1 station. Turbidity returned to background levels within 3 hours.

All of the exceedances took place during low tide or slack tide while dredging the Inner Waterway. These exceedances were attributable to the shallow-water conditions and challenging dredging conditions in these areas. However, application of additional BMPs by the Contractor were sufficient to return conditions to required levels.

No confirmed dissolved oxygen criteria exceedances attributable to construction activities were observed during the Project. Low-oxygen conditions were noted at compliance and background stations during 16 monitoring events between August and mid-September. However, all low-oxygen conditions were attributable to low background dissolved oxygen levels, not to construction activities.

Table E2
Summary of Water Quality Monitoring Observations

			Exceedances	Noted? ^{2,3}	
Date	Primary Activity	Type of Monitoring ¹	150-foot Acute Compliance Station	300-foot Chronic Compliance Station	Notes
8/10/2015	Structure Removal	Intensive	No ²	No ²	Background turbidity levels ²
8/11/2015	Structure Removal	Intensive	No ²	No ²	Background turbidity levels ²
8/12/2015	Structure Removal	Intensive	No ²	No ²	Background turbidity levels ²
8/20/2015	Structure Removal	Routine	No ²	No ²	Background turbidity levels ²
8/27/2015	Dredging	Intensive	No ²	No ²	Background turbidity levels ²
8/28/2015	Dredging	Intensive	No ²	No ²	Background turbidity levels ²
8/29/2015	Dredging	Intensive	No ²	No ²	Background turbidity levels ²
8/31/2015	Dredging	Intensive	No ²	No ²	Background turbidity levels ²
9/9/2015	Structure Removal	Routine	No ²	No ²	Background turbidity levels ²
9/14/2015	Structure Removal	Routine	No ²	No ²	Background turbidity levels ²
9/21/2015	Dredging	Routine	Yes ³	No ²	One short-term exceedance of background turbidity levels at 150-foot station (but not at the 300-foot station). Contractor implemented additional BMPs and turbidity returned to background levels at 1-hour recheck.
9/22/2015	Dredging	Intensive	No ²	No ²	Background turbidity levels ²
9/23/2015	Dredging	Intensive	No ²	No ²	Background turbidity levels ²
9/24/2015	Dredging	Intensive	No ²	No ²	Background turbidity levels ²

			Exceedances	Noted? ^{2,3}	
Date	Primary Activity	Type of Monitoring ¹	150-foot Acute Compliance Station	300-foot Chronic Compliance Station	Notes
9/25/2015	Dredging	Intensive	Yes ³	No ²	One short-term exceedance of background turbidity levels at 150-foot station (but not at the 300-foot station). Dredging terminated within 1 hour of exceedance. BMPs adjusted for following day of dredging, resulting in no exceedances.
9/26/2015	Dredging	Intensive	No ²	No ²	Background turbidity levels ²
9/28/2015	Dredging	Intensive	No ²	No ²	Background turbidity levels ²
9/29/2015	Dredging	Intensive	Yes ³	Yes ³	One short-term exceedance of background turbidity levels at 150-foot station and the 300-foot station (elevated turbidity did not extend to the 500-foot station located near the Roeder Avenue bridge). Contractor terminated dredging shortly after measurement and turbidity returned to background levels at 1-hour recheck.
9/30/2015	Dredging	Intensive	Yes ³ No ²		One short-term exceedance of background turbidity levels at 150-foot station (but not at the 300-foot station). Contractor implemented additional BMPs and turbidity returned to background levels before the 1-hour recheck.
10/1/2015	Dredging	Intensive	No ²	No ²	Background turbidity levels ²
10/2/2015	Dredging	Intensive	No ²	No ²	Background turbidity levels ²
10/3/2015	Dredging	Intensive	No ²	No ²	Background turbidity levels ²

			Exceedances	Noted? ^{2,3}						
Date	Primary Activity	Type of Monitoring ¹	150-foot Acute Compliance Station	300-foot Chronic Compliance Station	Notes					
10/5/2015	Dredging	Intensive	No ²	No ²	Background turbidity levels ²					
10/13/2015	Dredging	Routine	No ²	No ²	Background turbidity levels ²					
10/19/2015	Dredging and Capping	Routine/Intensive 4,5	No ²	No ²	Background turbidity levels ²					
10/20/2015	Capping	Intensive ⁵	No ²	No ²	Background turbidity levels ²					
10/27/2015	Dredging	Routine	Yes ³	No ²	One exceedance of background turbidity levels at 150-foot station (but not at the 300-foot station). Water quality testing samples were collected at the 150-foot and background stations and submitted for chemical analysis. Mercury and dioxin not detected. Turbidity returned to background levels within 3 hours.					
10/28/2015	Dredging	Intensive	No ²	No ²	Background turbidity levels ²					
10/29/2015	Dredging	Intensive	No ²	No ²	Background turbidity levels ²					
11/2/2015	Dredging and Capping	Intensive/Intensive ^{5,6}	No ²	No ²	Background turbidity levels ²					
11/3/2015	Dredging and Capping	Intensive/Intensive ^{5,6}	No ²	No ²	Background turbidity levels ²					
11/14/2015	Dredging	Intensive ⁷	No ²	No ²	Background turbidity levels ²					
11/18/2015	Capping	Routine	No ²	No ²	Background turbidity levels ²					
11/19/2015	Dredging	Intensive	No ²	No ²	Background turbidity levels ²					
11/20/2015	Dredging	Intensive	No ²	No ²	Background turbidity levels ²					
11/21/2015	Dredging	Intensive	No ²	No ²	Background turbidity levels ²					
11/30/2015	Dredging	Routine	No ²	No ²	Background turbidity levels ²					

			Exceedances	Noted? ^{2,3}	
Date	Primary Activity	Type of Monitoring ¹	150-foot Acute Compliance Station	300-foot Chronic Compliance Station	Notes
12/4/2015	Capping	Routine	No ²	No ²	Background turbidity levels ²
12/7/2015	Dredging	Routine	No ²	No ²	Background turbidity levels ²
12/15/2015	Dredging	Routine	No ²	No ²	Background turbidity levels ²
12/28/2015	Dredging	Routine	No ²	No ²	Background turbidity levels ²
1/5/2016	Dredging and Capping	Routine	No ²	No ²	Background turbidity levels ²
1/11/2016	Dredging	Routine	No ²	No ²	Background turbidity levels ²
1/12/2016	Capping	Routine	No ²	No ²	Background turbidity levels ²
1/20/2016	Dredging and Capping	Routine	No ²	No ²	Background turbidity levels ²
1/26/2016	Capping	Routine	No ²	No ²	Background turbidity levels ²
1/28/2016	Dredging	Routine	No ²	No ²	Background turbidity levels ²
2/3/2016	Capping	Routine	No ²	No ²	Background turbidity levels ²
2/4/2016	Dredging	Routine	No ²	No ²	Background turbidity levels ²
2/8/2016	Dredging and Capping	Routine	No ²	No ²	Background turbidity levels ²
2/9/2016	Capping	Intensive ⁵	No ²	No ²	Background turbidity levels ²
2/10/2016	Capping	Intensive ⁵	No ²	No ²	Background turbidity levels ²
2/16/2016	Dredging and Capping	Routine	No ²	No ²	Background turbidity levels ²
2/17/2016	Intertidal Capping	Routine	No ²	No ²	Background turbidity levels ²
2/22/2016	Capping	Routine	No ²	No ²	Background turbidity levels ²
2/29/2016	Capping	Routine	No ²	No ²	Background turbidity levels ²
3/7/2016	Capping	Routine	No ²	No ²	Background turbidity levels ²
3/15/2016	Capping	Routine	No ²	No ²	Background turbidity levels ²

			Exceedances	Noted? ^{2,3}	
Date	Primary Activity	Type of Monitoring ¹	150-foot Acute Compliance Station	300-foot Chronic Compliance Station	Notes
3/21/2016	Capping	Routine	No ²	No ²	Background turbidity levels ²

Notes:

- 1. Water quality monitoring activities were performed using either intensive or routine monitoring schedules as required by the Water Quality Monitoring Plan (WQMP). Intensive monitoring was performed for the first 2 days of structure removal or capping, and for the first 4 days of dredging in each site area (e.g., Inner Waterway, Bellingham Shipping Terminal). Measurements were taken every 4 hours during intensive monitoring. Routine monitoring was resumed during work in a different site area, or after an exceedance was confirmed during monitoring.
- 2. Turbidity levels were within 5 nephelometric turbidity units (NTU) of background conditions at each monitoring event on this date.
- 3. A "Yes" indicates that an exceedance (defined as a turbidity level 5 NTU greater than the measured background turbidity level measured at the 500-foot background stations) was noted during one discrete monitoring event on the indicated day. When an exceedance was confirmed, the contractor was notified to implement additional best management practices (BMPs) to correct the exceedance, and Ecology was notified. Turbidity levels were re-checked within 1 hour of implementing additional BMPs during continued operations.
- 4. Routine monitoring performed for dredging, and intensive monitoring performed during first 2 days of capping consistent with WQMP requirements.
- 5. Intensive monitoring performed during first 2 days of capping consistent with WQMP requirements.
- 6. Intensive monitoring continued for dredging and intensive monitoring performed during first 2 days of in-water capping consistent with WQMP requirements.
- 7. Change in dredge area from Inner Waterway to Bellingham Shipping Terminal triggered a return to intensive monitoring.

3.2 Chemical Monitoring Results

Consistent with the WQMP, chemistry samples were collected when an exceedance of turbidity criteria was sustained for more than 1 hour. Turbidity exceeded criteria at AS-1 for more than 1 hour during one event (October 27, 2015). Water samples were collected at AS-1 and BG-1 and submitted for chemical testing in accordance with the WQMP. Chemical analysis did not detect any mercury or dioxin (Table E3).

		Task	WWP1_Construct	WWP1_Construct
		Location ID	AS-1	BG-1
			WW-AS-COMP-	WW-BG-COMP-
		20151027	20151027	
		Sample Date	10/27/2015	10/27/2015
		Depth	Composite	Composite
		Sample Type	Ν	N
		Matrix	WS	WS
		Easting (feet)	1241516	1240921
		Northing (feet)	643036	642477
		WQMP Screening Value		
Parameters		(Acute)		
Conventional Parameters (mg/L)			
Total suspended solids	SM2540D	BG + 10	16.9	8.8
Dissolved Metals (µg/L)				
Mercury	SW7470A	1.8	0.02 U	0.02 U
Dioxin Furans (ng/L)				
2,3,7,8-TCDD	E1613B	0.1	0.000434 U	0.000472 U

Table E3 Water Chemistry Results and Screening Levels

Notes:

Northings and eastings are provided in NAD83 Washington State Plane North, U.S. feet.

 μ g/L = microgram per liter

mg/L = milligram per liter

ng/L = nanogram per liter

TCDD = tetrachlorodibenzo-p-dioxin

3.3 Visual Monitoring Results

Visual monitoring for turbidity plumes was conducted by the water quality team and/or CM in accordance with the WQMP. No turbidity plumes were observed from construction activities.

3.4 Fish Monitoring Results

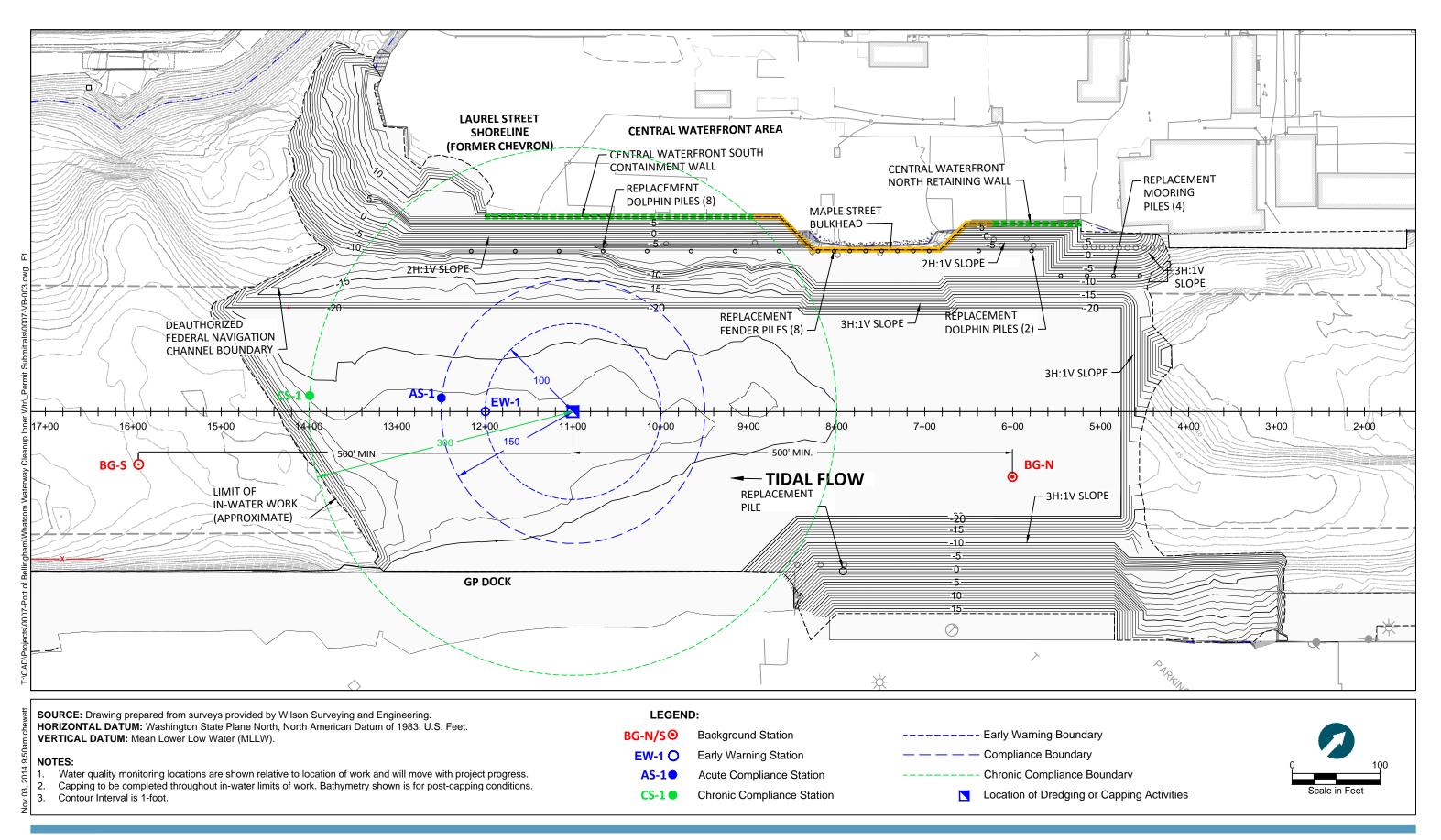
Monitoring for distressed fish was performed by the water quality team, CM, and/or the dredge contractor during construction activities. No dead or distressed fish were observed during the Project.

4 DEVIATIONS FROM THE WATER QUALIY MONITORING PLAN

There were two minor deviations from the WQMP:

- A second background station was added to better represent conditions in the waterway. Whatcom Waterway connects Whatcom Creek to Bellingham Bay. These adjacent waterbodies impact the conditions of the creek, and factors such as tidal conditions (height, strength, and direction), creek flow rate, weather conditions, existing bathymetry, and winds contribute to ambient environment of Whatcom Waterway. A second background station provided better documentation of background conditions.
- Background station nomenclature was updated to facilitate data reduction and interpretation. Background station nomenclature was changed from 'U' (up-current) and 'D' (down-current) to 'N' (north) and 'S' (south) in relation to construction activities.

5 QUALITY ASSURANCE


In accordance with the WQMP, the water quality instrument was calibrated and/or verified against standards of known concentration daily prior to use, and standard instrument operation procedures were followed.

A Stage 2B validation (U.S. Environmental Protection Agency 2009) was performed following National Functional Guidelines for data validation. All data were found to be valid and usable for all purposes.

6 REFERENCES

- Anchor QEA, 2015. Water Quality Monitoring Plan, Whatcom Waterway Final Engineering Design Report, Appendix L. Whatcom Waterway Cleanup in Phase 1 Site Areas. February 2015.
- U.S. Environmental Protection Agency, 2009. Guidance for Labeling Externally Validated Laboratory Analytical Data for Superfund Use. EPA 540-R-08-005. January 2009.

FIGURE

Figure 1

Example Water Quality Monitoring Locations Appendix E- Water Quality Monitoring Port of Bellingham, WA

ATTACHMENT A DATA VALIDATION REPORT

Anchor QEA, LLC 720 Olive Way, Suite 1900 Seattle, WA 98101 ATTN: Ms. Joy Dunay December 9, 2015

SUBJECT: Whatcom Waterway, Data Validation

Dear Ms. Dunay,

Enclosed is the final validation report for the fractions listed below. This SDG was received on November 23, 2015. Attachment 1 is a summary of the samples that were reviewed for each analysis.

LDC Project #35445:

- SDG # Fraction
- APK1 Mercury, Total Suspended Solids, Dioxins/Dibenzofurans

The data validation was performed under Stage 2B guidelines. The analyses were validated using the following documents, as applicable to each method:

- USEPA Contract Laboratory National Functional Guidelines for Inorganic Superfund Data Review, January 2010
- USEPA Contract Laboratory Program National Functional Guidelines for Chlorinated Dibenzo-p-Dioxins and Chlorinated Dibenzofurans Data Review, September 2011
- EPA SW 846, Third Edition, Test Methods for Evaluating Solid Waste, update 1, July 1992; update IIA, August 1993; update II, September 1994; update IIB, January 1995; update III, December 1996; update IIIA, April 1998; IIIB, November 2004; Update IV, February 2007

Please feel free to contact us if you have any questions.

Sincerely,

Christina Rink Project Manager/Chemist

	HC															men	_					· · · · · · · · · · · · · · · · · · ·							Aug. 447-244							
(alaa) (alaa)	EDD 2B			L	DC	#3	544	5 (/	And	cho	rΕ	nvi	ron	me	enta	I-S	eat	tle	WA	(/)	Nha	atco	om	Wa	iter	way	y)								S. 4	
DC	SDG#	DATE REC'D	(3) DATE DUE	ТС	otal DD 13B)	l F	ss. Ig 70A)	Т (254	SS 40D)																											
latrix:	Water/Sedime	nt	ar jar Arrain Arrain	w	s			w	s	w	s	w	s	w	s	w	S	w	s	w	s	w	s	w	s	w	s	w	s	w	s	w	s	w	s	w
A	APK1	11/23/15	12/16/15	2	0	2	0	2	0	<u> </u>	<u> </u>			<u> </u>	 								 	_												
+					-	-	$\left \right $																													
_					+		+		+	┼─-	\vdash											-														
						+			$\left \right $																											
	····																																			
	·			\square		1		1	1	<u>├</u>	1	1	1									1		<u>†</u>	-											
					ļ		1			<u> </u>												ļ								-						
				<u> </u>						<u> </u>		<u> </u>									L			 												
						<u> </u>				┣			_	ļ																						
+						-		-		-													1													
+	<u></u>											-										-														
+		-				+				-	\vdash											-		+												
	·					+				-	-	<u> </u>	<u> </u>																							
							1																													
\square	. <u></u>			<u> </u>	1			<u> </u>		<u> </u>			<u> </u>											<u> </u>					<u> </u>							
			 			<u> </u>		<u> </u>			<u> </u>	<u> </u>												ļ												
_				1		-		<u> </u>	<u> </u>													<u> </u>		<u> </u>					<u> </u>							
					-	-		-											<u> </u>		-			┣					<u> </u>							
				-	+	+	-		-			$\left \right $	-		-						<u> </u>									<u> </u>						
+	<u></u>	+		+-	1	+		\vdash		+		1																	<u> </u>							
						\square						<u> </u>										<u> </u>														
									1	<u> </u>	1	1	1											1												
otal	A/CR			2	0	2	0	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:	Whatcom Waterway
--------------------	------------------

LDC Report Date: December 1, 2015

Parameters: Mercury

Validation Level:Stage 2B

Laboratory: Analytical Resources, Inc.

Sample Delivery Group (SDG): APK1

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
WW-AS-COMP-20151027	APK1A	Water	10/27/15
WW-BG-COMP-20151027	APK1B	Water	10/27/15
WW-AS-COMP-20151027MS	APK1AMS	Water	10/27/15
WW-AS-COMP-20151027DUP	APK1ADUP	Water	10/27/15

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines (CLPNFG) for Inorganic Superfund Data Review (January 2010). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Mercury by Environmental Protection Agency (EPA) SW 846 Method 7470A

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to nonconformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition.

All technical holding time requirements were met.

II. Instrument Calibration

Initial and continuing calibrations were performed as required by the method.

The initial calibration verification (ICV) and continuing calibration verification (CCV) standards were within QC limits.

III. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

IV. Field Blanks

No field blanks were identified in this SDG.

V. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits.

VI. Duplicate Sample Analysis

Duplicate (DUP) sample analysis was performed on an associated project sample. Results were within QC limits.

VII. Laboratory Control Samples

Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

VIII. Field Duplicates

No field duplicates were identified in this SDG.

IX. Sample Result Verification

Raw data were not reviewed for Stage 2B validation.

X. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

The quality control criteria reviewed were met and are considered acceptable. Based upon the data validation all results are considered valid and usable for all purposes.

Whatcom Waterway Mercury - Data Qualification Summary - SDG APK1

No Sample Data Qualified in this SDG

Whatcom Waterway Mercury - Laboratory Blank Data Qualification Summary - SDG APK1

No Sample Data Qualified in this SDG

ALIDATION	COMPL	ETENESS	WORKSHEET
-----------	-------	---------	-----------

Stage 2B

LDC #: <u>35445A4c</u> V SDG #: <u>APK1</u> Laboratory: Analytical Resources Date:<u>12-1-</u>15 Page:<u>1_of_1</u> Reviewer:<u>MG</u> 2nd Reviewer:<u>C</u>

Laboratory: Analytical Resources, Inc.

METHOD: Mercury (EPA SW 846 Method 7470A)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
Ι.	Sample receipt/Technical holding times	A	
11.	Instrument Calibration	A	
111.	Laboratory Blanks	A	
IV.	Field Blanks	N	
V.	Matrix Spike/Matrix Spike Duplicates	A	MS
VI.	Duplicate sample analysis	A	PUP
VII.	Laboratory control samples	A	LCS
VIII.	Field Duplicates	N	
IX.	Sample Result Verification	N	
L x	Overall Assessment of Data	A	

Note:

A = Acceptable N = Not provided/applicable SW = See worksheet ND = No compounds detected R = Rinsate FB = Field blank D = Duplicate TB = Trip blank EB = Equipment blank SB=Source blank OTHER:

	Client ID	Lab ID	Matrix	Date	
1	WW-AS-COMP-20151027	APK1A	Water	10/27/15	
2	WW-BG-COMP-20151027	APK1B	Water	10/27/15	
3	WW-AS-COMP-20151027MS	APK1AMS	Water	10/27/15	
4	WW-AS-COMP-20151027DUP	APK1ADUP	Water	10/27/15	
5					
6					
7					
8					
9					
10					
11					
12					
13					
14					
15	PBW				
Vote	Notes:				

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:	Whatcom Waterway
LDC Report Date:	December 1, 2015
Parameters:	Total Suspended Solids
Validation Level:	Stage 2B
Laboratory:	Analytical Resources, Inc.

Sample Delivery Group (SDG): APK1

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
WW-AS-COMP-20151027	APK1A	Water	10/27/15
WW-BG-COMP-20151027	APK1B	Water	10/27/15

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines (CLPNFG) for Inorganic Superfund Data Review (January 2010). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Total Suspended Solids by Standard Method 2540D

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to nonconformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition.

All technical holding time requirements were met.

II. Initial Calibration

All criteria for the initial calibration were met.

III. Continuing Calibration

Continuing calibration frequency and analysis criteria were met.

IV. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

V. Field Blanks

No field blanks were identified in this SDG.

VI. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) analyses were not required by the method.

VII. Duplicates

The laboratory has indicated that there were no duplicate (DUP) analyses specified for the samples in this SDG, and therefore duplicate analyses were not performed for this SDG.

VIII. Laboratory Control Samples

Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

IX. Field Duplicates

No field duplicates were identified in this SDG.

X. Sample Result Verification

Raw data were not reviewed for Stage 2B validation.

XI. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

The quality control criteria reviewed were met and are considered acceptable. Based upon the data validation all results are considered valid and usable for all purposes.

Whatcom Waterway Total Suspended Solids - Data Qualification Summary - SDG APK1

No Sample Data Qualified in this SDG

Whatcom Waterway

Total Suspended Solids - Laboratory Blank Data Qualification Summary - SDG APK1

No Sample Data Qualified in this SDG

Stage 2B

Laboratory: Analytical Resources, Inc.

LDC #: 35445A6

SDG #: APK1

METHOD: (Analyte) Total Suspended Solids(SM2540D)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
Ι.	Sample receipt/Technical holding times	A	
Ш	Initial calibration	A	
III.	Calibration verification	A	
IV	Laboratory Blanks	A	PBonly
v	Field blanks	N	
VI.	Matrix Spike/Matrix Spike Duplicates	N	not required
VII.	Duplicate sample analysis	N	not required client specified
VIII.	Laboratory control samples	A	LCS
IX.	Field duplicates	N	
X .	Sample result verification	N	
	Overall assessment of data	A	

Note: A = Acceptable N = Not provided/applicable SW = See worksheet

ND = No compounds detected R = Rinsate FB = Field blank D = Duplicate TB = Trip blank EB = Equipment blank SB=Source blank OTHER:

ï٦

	Client ID	Lab ID	Matrix	Date
1	WW-AS-COMP-20151027	APK1A	Water	10/27/15
2	WW-BG-COMP-20151027	APK1B	Water	10/27/15
3				
4				
5				
6				
7				
8				
9				
10				
11				
12				
13				
14	PBW			
Note	S:			

1

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:	Whatcom Waterway
--------------------	------------------

LDC Report Date: December 8, 2015

Parameters: Dioxins/Dibenzofurans

Validation Level: Stage 2B

Laboratory: Analytical Resources, Inc.

Sample Delivery Group (SDG): APK1

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
WW-AS-COMP-20151027	APK1A	Water	10/27/15
WW-BG-COMP-20151027	APK1B	Water	10/27/15

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the USEPA Contract Laboratory Program (CLP) National Functional Guidelines for Chlorinated Dibenzo-p-Dioxins (CDDs) and Chlorinated Dibenzofurans (CDFs) Data Review (September 2011). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Polychlorinated Dioxins/Dibenzofurans by Environmental Protection Agency (EPA) Method 1613B for Total TCDD

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to nonconformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered not detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. HRGC/HRMS Instrument Performance Check

Instrument performance was checked at the required frequency.

Retention time windows were established for all homologues. The chromatographic resolution between 2,3,7,8-TCDD and peaks representing any other unlabeled TCDD isomer was less than or equal to 25%.

The static resolving power was at least 10,000 (10% valley definition).

III. Initial Calibration and Initial Calibration Verification

A five point initial calibration was performed as required by the method.

The percent relative standard deviations (%RSD) were less than or equal to 20% for unlabeled compounds and less than or equal to 35% for labeled compounds.

The ion abundance ratios for all PCDDs/PCDFs were within method and validation criteria.

The percent differences (%D) of the initial calibration verification (ICV) standard were within the QC limits for unlabeled compounds and labeled compounds.

IV. Continuing Calibration

Continuing calibration was performed at the required frequencies.

All of the continuing calibration results were within the QC limits for unlabeled compounds and labeled compounds.

The ion abundance ratios for all PCDDs and PCDFs were within method and validation criteria.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

VI. Field Blanks

No field blanks were identified in this SDG.

VII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

VIII. Ongoing Precision & Recovery Samples

Ongoing precision and recovery (OPR) samples were reviewed for each matrix as applicable. The percent recoveries (%R) were within the QC limits.

IX. Field Duplicates

No field duplicates were identified in this SDG.

X. Internal Standards

All internal standard recoveries (%R) were within QC limits.

XI. Compound Quantitation

All compound quantitations were within validation criteria with the following exceptions:

Sample	Compound	Flag	A or P
WW-AS-COMP-20151027	All compounds reported as estimated maximum possible concentration (EMPC).	J (all detects)	А

Raw data were not reviewed for Stage 2B validation.

XII. Target Compound Identifications

Raw data were not reviewed for Stage 2B validation.

XIII. System Performance

Raw data were not reviewed for Stage 2B validation.

XIV. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

Due to results reported by the laboratory as EMPCs, data were qualified as estimated in one sample.

The quality control criteria reviewed, other than those discussed above, were met and are considered acceptable. Sample results that were found to be estimated (J) are usable for limited purposes only. Based upon the data validation all other results are considered valid and usable for all purposes.

Whatcom Waterway Dioxins/Dibenzofurans - Data Qualification Summary - SDG APK1

Sample	Compound	Flag	A or P	Reason
WW-AS-COMP-20151027	Total TCDD	J (all detects)	A	Compound quantitation (EMPC)

Whatcom Waterway

Dioxins/Dibenzofurans - Laboratory Blank Data Qualification Summary - SDG APK1

No Sample Data Qualified in this SDG

VALIDATION COMPLETENESS WORKSHEET

Stage 2B

Date:	12-7-15
Page:_	<u></u> of
Reviewer:	<u>On</u>
2nd Reviewer:	à

Laboratory: Analytical Resources, Inc.

LDC #: 35445A21

SDG #: APK1

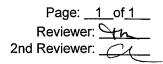
METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA Method 1613B) - TCDD only

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
<u> </u>	Sample receipt/Technical holding times	AIA	
١١.	HRGC/HRMS Instrument performance check	A	
111.	Initial calibration/ICV	A/A	E20/35 ICV QC/imits OClimits
IV.	Continuing calibration	A	Oclimits
V.	Laboratory Blanks	A	
VI.	Field blanks	N	
VII.	Matrix spike/Matrix spike duplicates	N	C.S.
VIII.	Laboratory control samples	LA	OPR
IX.	Field duplicates	N	
Х.	Internal standards	A	
XI.	Compound quantitation RL/LOQ/LODS	SW	
XII.	Target compound identification	N	
XIII.	System performance	N	
XIV.	Overall assessment of data	A	

Note:	A = Acceptable N = Not provided/applicable SW = See worksheet	ND = No compounds detected R = Rinsate FB = Field blank	D = Duplicate TB = Trip blank EB = Equipment blank	SB=Source b OTHER:	olank
	Client ID		Lab ID	Matrix	Date
1	WW-AS-COMP-20151027		APK1A	Water	10/27/15
2 3 4 5 6 7	WW-BG-COMP-20151027		APK1B	Water	10/27/15
3	· · · · · · · · · · · · · · · · · · ·				
4					
5		·····			
6					
7		· · · · · · · · · · · · · · · · · · ·			
8					
9					
10		<u></u>			
Note					
	MB-103015				

VALIDATION FINDINGS WORKSHEET


METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA Method 1613B)

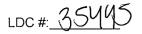
A. 2,3,7,8-TCDD	F. 1,2,3,4,6,7,8-HpCDD	K. 1,2,3,4,7,8-HxCDF	P. 1,2,3,4,7,8,9-HpCDF	U. Total HpCDD
B. 1,2,3,7,8-PeCDD	G. OCDD	L. 1,2,3,6,7,8-HxCDF	Q. OCDF	V. Total TCDF
C. 1,2,3,4,7,8-HxCDD	H. 2,3,7,8-TCDF	M. 2,3,4,6,7,8-HxCDF	R. Total TCDD	W. Total PeCDF
D. 1,2,3,6,7,8-HxCDD	I. 1,2,3,7,8-PeCDF	N. 1,2,3,7,8,9-HxCDF	S. Total PeCDD	X. Total HxCDF
E. 1,2,3,7,8,9-HxCDD	J. 2,3,4,7,8-PeCDF	O. 1,2,3,4,6,7,8-HpCDF	T. Total HxCDD	Y. Total HpCDF

Notes:_____

VALIDATION FINDINGS WORKSHEET Compound Quantitation and Reported RLs

1

METHOD: GC/MS Dioxins/Dibenzofurans (Method 1613B) -TCDD Only


Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Were the correct internal standard (IS), quantitation ions and relative response factors (RRF) used to quantitate the compound? Compound quantitation and RLs were adjusted to reflect all sample dilutions and dry weight factors (if necessary).

#	Date	Compound	Finding	Associated Samples	Qualifications
			EMPC results	1	Jdets/A (P
		·		· · · · · · · · · · · · · · · · · · ·	
				-	

Comments: See sample-calculation-verification worksheet for recalculations-

EDD POPULATION COMPLETENESS WORKSHEET

Date:_/2/
Page: 1 of
2 nd Reviewer:

The LDC job number listed above was entered by

	EDD Process	Y/N	Init	Comments/Action
I.	EDD Completeness	-		
la.	- All methods present?	Ŋ	Ŵ	
lb.	- All samples present/match report?	4	a	
lc.	- All reported analytes present?	19	Cb)	
ld	-10% verification of EDD?	$ \eta $	Sd	
п.	EDD Preparation/Entry			
lla.	- QC Level applied? (EPAStage2) or EPAStage4)	4	CQ	
llb.	- Laboratory EMPC qualified results qualified (J with reason code 23)?	10	4	T
ра (1999) 1997 - Парадор (1997) 1997 - Пара		U		
	Reasonableness Checks	-		
Illa.	- Do all qualified ND results have ND qualifier (i.e. UJ)?	M	4	
IIIb.	- Do all qualified detect results have detect qualifier (i.e. J)?	4	de	2
IIIc.	 If reason codes used, do all qualified results have reason code field populated, and vice versa? 	5	6	
IIId.	- Do blank concentrations in report match EDD, where data was qualified due to blank?	M	e	\
Ille.	 Were any results reported above calibration range? If so, were results qualified appropriately? 	NIM	B	
IIIf.	 Are all results marked reportable "Yes" unless rejected for overall assessment in the data validation report? 	g	Ð	-
IIIg.	-Are there any lab "R" qualified data? / Are the entry columns blank for these results?	NNA	6	
lllh.	- Is the detect flag set to "N" for all "U" qualified blank results?	MA	9	-

Notes: *see readme

<u>File</u>	<u>Format</u>	<u>Description</u>	nt).
1) Readme_Whatcom_120915.doc	MS Word 2003	A "Readme" file (this documer	
2) LDC35445_APK1_VEDD_20151130.xlss		A spreadsheet for the following APK1	SDG(s): 35445A

No discrepancies were observed between the hardcopy data packages and the electronic data deliverables during EDD population of validation qualifiers. A 100% verification of the EDD was not performed.

Please contact Christina Rink at (760) 827-1100 if you have any questions regarding this electronic data submittal.

ATTACHMENT B LABORATORY REPORT

(Provided Separately)

APPENDIX F AIR QUALITY MONITORING DATA

This appendix documents air quality monitoring activities that were performed during implementation of the Whatom Waterway Cleanup in Phase 1 Site Areas Project (Project).

Air monitoring was not planned for the Project because Whatcom Waterway site contaminants did not include volatile organic compounds and the wet nature of sediment minimizes the potential for dust emissions. However, a limited air monitoring program was implemented during dredging activities in the Inner Waterway out of an abundance of caution, to ensure that safety was maintained for construction workers, Port of Bellingham tenants, or other waterfront users.

Two comprehensive air monitoring events were conducted. The surveys were conducted during dredging and materials handling activities. The first event was conducted on December 30, 2015, and the second was conducted on January 13, 2016. Each event included air quality measurements at 19 stations (AM-1 to AM-19; Figure 1). The stations include locations adjacent to Whatcom Waterway and stations next to stockpile areas and haul routes used during the Project.

Air quality monitoring was performed using a calibrated photo ionization detector (PID). The PID screens volatile organic hydrocarbons.

Results of both rounds of air monitoring are presented in Table F1. All PID readings were below typical ambient levels (0.2 parts per million), confirming that dredging and stockpiling activities were not adversely impacting air quality within or adjacent to the Whatcom Waterway site.

Figure 1 Whatcom Waterway Air Monitoring Locations

Table F1 Air Monitoring Summary

		PID Readi	PID Reading (ppm)	
Station ID	Air Monitoring Location Description	12/30/2015	1/13/2016	
AM-1	GP West Stockpile Area	0.0	0.2	
AM-2	GP West Stockpile Area	0.0	0.0	
AM-3	GP West South Shoreline Cutback	0.0	0.0	
AM-4	GP West South Shoreline Cutback	0.0	0.0	
AM-5	GP West Bunker C Excavation Area	0.0	0.0	
AM-6	GP West Log Pond Shoreline	0.0	0.0	
AM-7	GP West Log Pond Shoreline	0.0	0.0	
AM-8	Central Waterfront Shoreline/Beach Area	0.0	0.1	
AM-9	Central Waterfront Stockpiling Area	0.0	0.0	
AM-10	Central Waterfront Stockpiling Area	0.0	0.1	
AM-11	Central Waterfront Shoreline/Ramp Area	0.0	0.1	
AM-12	Colony Wharf Ramp - Public Access	0.0	0.1	
AM-13	Colony Wharf Ramp - Public Access	0.0	0.0	
AM-14	C Street	0.0	0.0	
AM-15	C Street	0.0	0.0	
AM-16	Central Avenue (downwind)	0.0	0.0	
AM-17	Roeder Avenue Bridge (downwind)	0.0	0.0	
AM-18	Cornwall Avenue at Laurel Street Bridge	0.0	0.0	
AM-19	Cornwall Avenue	0.0	0.0	

Notes:

PID = photo ionization detector

ppm = parts per million

APPENDIX G ENVIRONMENTAL MONITORING DATA

ENVIRONMENTAL MONITORING DATA AS-BUILT REPORT FOR THE WHATCOM WATERWAY CLEANUP IN PHASE 1 SITE AREAS

Prepared for Port of Bellingham

Prepared by

Anchor QEA, LLC 720 Olive Way, Suite 1900 Seattle, Washington 98101

September 2018

TABLE OF CONTENTS

1	IN	TRODUCTION	G-1
2	TES	STING DATA FOR REMOVED MATERIALS	G-2
	2.1	Materials from the Central Waterfront Site Shoreline	G-2
	2.1	1.1 Partial Reuse of Relief Trench Soil	G-2
	2.1	1.2 Reuse of Soil from the C Street Area	G-3
	2.1	1.3 Waters Generated During Barge Ramp Area Dewatering	G-3
	2.2	Materials from the GP West Site Shoreline	G-4
	2.2	2.1 Solids Removed from Foam Tank and Associated Piping	G-4
	2.2	2.2 Soil Removed During Clarifier Area Cutback	G-4
	2.2	2.3 Soil Removed During Log Pond Shoreline Cutback	G-5
3	TES	STING OF IMPORTED CAP MATERIAL	G-6
4	CO	ONSTRUCTION AREA SEDIMENT MONITORING DATA	G-7
	4.1	Inner Waterway Subsurface Sediments Prior to Capping	G-7
	4.2	Outer Waterway Testing (Unit 1C)	G-7
	4.2	2.1 Un-dredged Sediments Following Dredging	G-8
	4.2	2.2 Post-Dredging Residuals	G-8
	4.2	2.3 Surface Sediments Following Residuals Management	G-9
5	PO	OST-CONSTRUCTION TISSUE MONITORING	G-13
	5.1	Adult Crab	G-13
	5.2	Juvenile Crab	G-13
	5.3	Caged Clams and Associated Testing	G-14
6	QU	JALITY ASSURANCE/QUALITY CONTROL	G-16
	6.1	Field Instruments	G-16
	6.2	Laboratory Instruments	G-16
	6.3	Data Validation	G-16
7	RE	FERENCES	G-18

List of Tables	
Table G2-1	Central Waterfront Relief Trench Soil Reused as Backfill
Table G2-2	Central Waterfront Site C Street Area Soil Reused as Clarifier Subgrade
	Backfill
Table G2-3	Barge Ramp Dewatering Water Managed by ASB Treatment
Table G2-4	Stormwater/Wastewater Solids Removed from Foam Tank and Associated
	Piping
Table G2-5	Log Pond Shoreline Cutback Soil Reused as Clarifier Subgrade Backfill
Table G3-1	Summary of Cap Material Testing Data
Table G4-1	Inner Waterway Post-Dredge Samples in Areas Subsequently Capped
Table G4-2	Unit 1C Post-Dredging Samples of Un-Dredged Sediments
Table G4-3	Unit 1C Post-Dredging Samples of Dredging Residuals Layer
Table G4-4	Unit 1C Surface Sediment Testing After Residuals Management
Table G4-5	SMS Bioassay Testing Interpretive Criteria
Table G4-6	Results of Sediment Confirmational Bioassays (Station P1PM-05)
Table G4-7	Results of Confirmational Bioassay Testing (E. estuarius)
Table G4-8	Results of Confirmational Bioassay Testing (N. arenaceodentata)
Table G4-9	Results of Confirmational Bioassay Testing (M. galloprovincialis)
Table G5-1	Results of Tissue Testing (Adult Dungeness Crab)
Table G5-2	Results of Tissue Testing (Juvenile Dungeness Crab)
Table G5-3	Results Summary for Co-Located Caged Clam Tissue, Porewater, and
	Surface Sediment Grabs
Table G6-1	Summary of Laboratory Testing Data Packages and Completed Data
	Validation

List of Figures

Figure G1	Soil and Water Sampling Locations
Figure G2	Sediment and Tissue Environmental Monitoring Stations
Figure G3	Reference Area Sampling Locations
Figure G4	Mercury Concentrations in Adult Dungeness Crab Tissue
Figure G5	Mercury Concentrations in Juvenile Dungeness Crab Tissue
Figure G6	Mercury Concentrations in Clam Tissue and Porewater

List of Attachments

Attachment A	Data Validation Reports
Attachment B	Bioassay Data Validation
Attachment C	Laboratory Data Packages

LIST OF ACRONYMS AND ABBREVIATIONS

BSTBellingham Shipping TerminalcmcentimeterD/Fdioxin/furanEcologyWashington State Department of EcologyEDRFinal Engineering Design ReportGP WestGeorgia-Pacific West, Inc.mg/kgmilligram per kilogrammg/Lmilligram per literMHHWmean higher high waterng/kgnanogram per kilogramPAHpolycyclic aromatic hydrocarbonPsEPPuget Sound Estuary ProgramQA/QCquality assurance/quality controlSMSSediment Management StandardsSQAPPsediment quality standard	ASB	aerated stabilization basin
D/Fdioxin/furanEcologyWashington State Department of EcologyEDRFinal Engineering Design ReportGP WestGeorgia-Pacific West, Inc.mg/kgmilligram per kilogrammg/Lmilligram per literMHHWmean higher high waterng/kgnanogram per kilogramPAHpolycyclic aromatic hydrocarbonPSEPNget Sound Estuary ProgramQA/QCquality assurance/quality controlSMSSediment Management StandardsSQAPPsediment quality standard	BST	Bellingham Shipping Terminal
EcologyWashington State Department of EcologyEDRFinal Engineering Design ReportGP WestGeorgia-Pacific West, Inc.mg/kgmilligram per kilogrammg/Lmilligram per literMHHWmean higher high waterng/kgnanogram per kilogramPAHpolycyclic aromatic hydrocarbonProjectWhatcom Waterway Cleanup in Phase 1 Site Areas ProjectPSEPpuget Sound Estuary ProgramQA/QCquality assurance/quality controlSMSSediment Management StandardsSQAPPsediment quality Assurance Project PlanSQSsediment quality standard	cm	centimeter
EDRFinal Engineering Design ReportGP WestGeorgia-Pacific West, Inc.mg/kgmilligram per kilogrammg/Lmilligram per literMHHWmean higher high waterng/kgnanogram per kilogramPAHpolycyclic aromatic hydrocarbonProjectWhatcom Waterway Cleanup in Phase 1 Site Areas ProjectPSEPPuget Sound Estuary ProgramQA/QCquality assurance/quality controlSMSSediment Management StandardsSQAPPSampling and Quality Assurance Project PlanSQSsediment quality standard	D/F	dioxin/furan
GP WestGeorgia-Pacific West, Inc.mg/kgmilligram per kilogrammg/Lmilligram per literMHHWmean higher high waterng/kgnanogram per kilogramPAHpolycyclic aromatic hydrocarbonProjectWhatcom Waterway Cleanup in Phase 1 Site Areas ProjectPSEPPuget Sound Estuary ProgramQA/QCquality assurance/quality controlSMSSediment Management StandardsSQAPPSampling and Quality Assurance Project PlanSQSsediment quality standard	Ecology	Washington State Department of Ecology
mg/kgmilligram per kilogrammg/Lmilligram per literMHHWmean higher high waterng/kgnanogram per kilogramPAHpolycyclic aromatic hydrocarbonProjectWhatcom Waterway Cleanup in Phase 1 Site Areas ProjectPSEPPuget Sound Estuary ProgramQA/QCquality assurance/quality controlSMSSediment Management StandardsSQAPPSampling and Quality Assurance Project PlanSQSsediment quality standard	EDR	Final Engineering Design Report
mg/Lmilligram per literMHHWmean higher high waterng/kgnanogram per kilogramPAHpolycyclic aromatic hydrocarbonProjectWhatcom Waterway Cleanup in Phase 1 Site Areas ProjectPSEPPuget Sound Estuary ProgramQA/QCquality assurance/quality controlSMSSediment Management StandardsSQAPPSampling and Quality Assurance Project PlanSQSsediment quality standard	GP West	Georgia-Pacific West, Inc.
MHHWmean higher high waterng/kgnanogram per kilogramPAHpolycyclic aromatic hydrocarbonProjectWhatcom Waterway Cleanup in Phase 1 Site Areas ProjectPSEPPuget Sound Estuary ProgramQA/QCquality assurance/quality controlSMSSediment Management StandardsSQAPPSampling and Quality Assurance Project PlanSQSsediment quality standard	mg/kg	milligram per kilogram
ng/kgnanogram per kilogramPAHpolycyclic aromatic hydrocarbonProjectWhatcom Waterway Cleanup in Phase 1 Site Areas ProjectPSEPPuget Sound Estuary ProgramQA/QCquality assurance/quality controlSMSSediment Management StandardsSQAPPSampling and Quality Assurance Project PlanSQSsediment quality standard	mg/L	milligram per liter
PAHpolycyclic aromatic hydrocarbonProjectWhatcom Waterway Cleanup in Phase 1 Site Areas ProjectPSEPPuget Sound Estuary ProgramQA/QCquality assurance/quality controlSMSSediment Management StandardsSQAPPSampling and Quality Assurance Project PlanSQSsediment quality standard	MHHW	mean higher high water
ProjectWhatcom Waterway Cleanup in Phase 1 Site Areas ProjectPSEPPuget Sound Estuary ProgramQA/QCquality assurance/quality controlSMSSediment Management StandardsSQAPPSampling and Quality Assurance Project PlanSQSsediment quality standard	ng/kg	nanogram per kilogram
PSEPPuget Sound Estuary ProgramQA/QCquality assurance/quality controlSMSSediment Management StandardsSQAPPSampling and Quality Assurance Project PlanSQSsediment quality standard	PAH	polycyclic aromatic hydrocarbon
QA/QCquality assurance/quality controlSMSSediment Management StandardsSQAPPSampling and Quality Assurance Project PlanSQSsediment quality standard	Project	Whatcom Waterway Cleanup in Phase 1 Site Areas Project
SMSSediment Management StandardsSQAPPSampling and Quality Assurance Project PlanSQSsediment quality standard	PSEP	Puget Sound Estuary Program
SQAPPSampling and Quality Assurance Project PlanSQSsediment quality standard	QA/QC	quality assurance/quality control
SQS sediment quality standard	SMS	Sediment Management Standards
	SQAPP	Sampling and Quality Assurance Project Plan
	SQS	sediment quality standard
IEQ toxicity equivalent	TEQ	toxicity equivalent

G-iv

1 INTRODUCTION

This appendix provides a detailed summary of certain environmental monitoring data collected during the Whatcom Waterway Cleanup in Phase 1 Site Areas Project (Project) in Bellingham, Washington.

The environmental monitoring data described in this appendix were collected between August 2015 and July 2016 in accordance with the Sampling and Quality Assurance Project Plan (SQAPP; Anchor QEA 2016) as approved by the Washington State Department of Ecology (Ecology).

The sections of this appendix present the data collected during the following monitoring activities:

- Chemical testing data for soil and water disposed of during the Project (Section 2)
- Chemical testing data for imported capping materials (Section 3)
- Sediment and residuals monitoring data during construction, and post-construction (Section 4)
- Post-construction monitoring of crab and clam tissue (Section 5)

This appendix does not replicate data presented in other appendices of the As-Built Report for the Project. Data presented in those other appendices include the following:

- Geotechnical monitoring data (Appendix B)
- Water quality monitoring data (Appendix E)
- Air quality monitoring data (Appendix F)
- Supplement coring program data for Unit 1C (Appendix H)
- Physical testing data (Appendix I)

2 TESTING DATA FOR REMOVED MATERIALS

Most sediment and soil requiring landfill disposal, as well as bank cutback soil, were managed in accordance with approved disposal profiles. This section describes supplemental testing data collected for certain soil and groundwater removed during the Project.

Upland soil monitoring activities were conducted to determine soil reuse suitability in accordance with the Final Engineering Design Report (EDR; Anchor QEA 2015) and applicable state and federal laws and regulations. Figure G1 identifies the locations from which the data described in this section were collected.

2.1 Materials from the Central Waterfront Site Shoreline

Testing was performed for soil and water generated during source control activities performed along the Central Waterfront Site shoreline.

2.1.1 Partial Reuse of Relief Trench Soil

Screening of soil for potential reuse was conducted during excavation of relief trenches behind the containment walls installed along the Central Waterfront Site shoreline. Most of the soil generated from these trenches was determined to be unsuitable for reuse due to high silt/clay content, presence of treated wood debris, high debris content, and/or the presence of visual or olfactory indications of petroleum contamination. The unsuitable soil was managed by disposal at an approved Subtitle D landfill in accordance with the EDR.

A small quantity of soil (approximately 200 cubic yards) was generated that was potentially suitable for reuse. This soil was tested for petroleum hydrocarbons in accordance with the EDR. Testing data for the reused soil is summarized in Table G2-1. Petroleum hydrocarbon concentrations were below applicable cleanup levels. Therefore, the soil was reused as relief trench backfill. The soil was placed and compacted, then covered with an orange-colored geotextile, before imported structural fill was placed and compacted to the finish grade.

2.1.2 Reuse of Soil from the C Street Area

Approximately 400 cubic yards of reusable soil was generated during bank cutback activities in the C Street area of the Central Waterfront Site. This soil consisted of clean soil that had been stockpiled at the site by the previous tenant, and soil generated during debris removal and bank cutback for cap placement.

At the time that the soil was generated, additional material was required for backfilling the clarifier foundation on the GP West Site shoreline. After consultation with Ecology, additional soil testing data were collected to document contaminant concentrations in the materials. This included multiple samples tested for petroleum hydrocarbons and a composite sample tested for semivolatile organic compounds and heavy metals.

Results of soil testing data are presented in Table G2-2. Results demonstrated compliance with most GP West Site cleanup levels for unsaturated zone soils. Exceedances were detected for carcinogenic polycyclic aromatic hydrocarbon (PAH) compounds and copper. However, the detected concentrations were within the range of existing subsurface soils adjacent to the clarifier area.

After reviewing soil testing data, Ecology approved use of the soil for backfill of the clarifier foundation. The soil was placed as backfill above mean higher high water (MHHW) elevation (e.g., +8.5 feet MLLW) and was covered with an orange-colored geotextile, which was covered with 2 feet of clean imported structural fill and aggregate ballast to the finish grade.

2.1.3 Waters Generated During Barge Ramp Area Dewatering

Dewatering activities were required during completion of the barge ramp removal and backfill. In accordance with the Ecology Non-Routine Discharge Approval¹, construction dewatering of the barge ramp cavity was pre-treated and discharged into the Port's National Pollutant Discharge Elimination System-permitted aerated stabilization basin (ASB) for final

G-3

¹ Ecology approved a request for non-routine discharge of construction-generated water to the Port's ASB, by letter, on June 2, 2015.

treatment and disposal. Prior to generating the dewatering water, water sampling was conducted to verify the composition of the water was consistent with previous groundwater testing data on which the discharge approval was based.²

Results of the dewatering water testing are included in Table G2-3. The data were similar to previous findings, with detections of petroleum and related constituents.

2.2 Materials from the GP West Site Shoreline

Testing of soil and other solids was performed during structure removals and bank cutbacks along the south shoreline of the Whatcom Waterway, adjacent to the GP West Site.

2.2.1 Solids Removed from Foam Tank and Associated Piping

A small quantity (less than 10 cubic yards) of historical wastewater solids and recent stormwater solids were identified in the foam tank and associated piping located along the GP West Site shoreline near the clarifier. Removal of the solids was required prior to the demolition and removal of these structures.

Solids from the tank and associated piping were sampled and tested to verify consistency with disposal profiling. Table G2-4 summarizes the results of testing. The removed solids were managed by disposal at an approved Subtitle D landfill.

2.2.2 Soil Removed During Clarifier Area Cutback

During cutback of the shoreline behind the former clarifier area bulkhead, soil was screened for potential reuse. Soil determined to be suitable for reuse as subgrade backfill within the clarifier foundation (i.e., granular soils and gravel free of bricks, plastic or treated wood debris) was placed directly in the clarifier foundation.

Most cutback soil was determined to be unsuitable for reuse due to silt/clay content or presence of treated wood debris. This soil was managed by Subtitle D landfill disposal in accordance with the EDR.

² Water sampling occurred during the Central Waterfront Site – Chevron Area Interim Action Project in 2013.

2.2.3 Soil Removed During Log Pond Shoreline Cutback

Approximately 60 cubic yards of soil were removed from the Log Pond shoreline during a bank cutback conducted to optimize cap placement. The soil was generated from the top of slope adjacent to the existing asphalt paving.

This soil was sampled and analyzed for heavy metals, petroleum, and PAHs (Table G2-5 summarizes the results). Ecology approved reuse of the soil as subgrade backfill within the clarifier foundation.

G-5

3 TESTING OF IMPORTED CAP MATERIAL

Imported sand and filter materials proposed for use in the construction of the engineered sediment caps were tested, per the requirements of the Contract³, to verify that they were free of chemical contamination.

Initial testing data were provided by the Contractor. Supplemental testing was performed by Anchor QEA for parameters with raised reporting limits. Results from both sets of tests are summarized in Table G3-1.

All concentrations were less than maximum levels defined in the Contract. Materials were approved for use in the engineered sediment capping work.

G-6

³ Table 35 20 26-2 from the Project Specifications – Section 35 20 26 – Engineered Sediment Capping.

4 CONSTRUCTION AREA SEDIMENT MONITORING DATA

This section describes sediment testing conducted during and immediately following construction activities in portions of the Inner Waterway, and in Unit 1C of the Outer Waterway, located adjacent to the Bellingham Shipping Terminal (BST). Sample locations described in this section are shown in Figure G2.

4.1 Inner Waterway Subsurface Sediments Prior to Capping

Dredging activities in these Inner Waterway areas were not expected to reach clean native sediments. The dredged areas were subsequently capped consistent with the project design.

Following completion of remedial dredging within the Inner Waterway, samples of the remaining undredged subsurface sediments were collected to document the concentrations of contaminants in the sediments to be capped. Sampling locations are shown in Figure G2.

Results of testing are shown in Table G4-1. Analysis showed concentrations similar to previously measured values as documented in the Remedial Investigation/Feasibility Study (RETEC 2006) and in the Pre-Remedial Design Investigation Report (Anchor QEA 2010):

- Mercury concentrations ranged from 0.18 to 3.19 milligrams per kilogram (mg/kg).
- Concentrations of 2,4-dimethylphenol and/or 4-methylphenol exceeded sediment quality standard (SQS) values in four of the five samples.
- PAH concentrations were elevated in two of the five samples.
- Dioxin/furan (D/F) concentrations exceeded surface sediment regional background concentrations (15 ng /kg toxicity equivalent [TEQ]) in four of the five analyzed samples.

4.2 Outer Waterway Testing (Unit 1C)

Surface sediment was collected at six stations in Unit 1C, located adjacent to BST (Figure G2). Testing was performed during two monitoring events. The first event was conducted after completion of dredging, and prior to residuals management. The second event was conducted following completion of residuals management.

4.2.1 Un-dredged Sediments Following Dredging

Samples were collected by Van Veen sampler on February 4, 2016, at six locations in Unit 1C following the completion of dredging activities. These samples were collected prior to management of dredging residuals to verify that dredging had removed all of the contaminated sediments.

Samples of sediment retrieved in the Van Veen sampler were inspected and segregated vertically into the apparent dredging residuals layer (see Section 4.2.2) and the layer of apparent undredged material. This separation was conducted based on visual inspection of the sediment. Dredging residuals were identified as a thin layer of flocculent material. The underlying undredged materials were identified based on their color, texture, and density.

Results of testing of the undredged materials are summarized in Table G4-2. Results confirmed that dredging had reached the layer of clean sediments as defined in the EDR:

- Total solids concentrations ranged from 61% to 79%, compared to 36% to 48% for the overlying dredging residuals layer (see Table G4-3).
- Concentrations of mercury in all six samples were below the SQS (0.41 mg/kg), with concentrations ranging from 0.0088 to 0.19 mg/kg.
- Concentrations of D/F in all six samples were below natural background concentrations (4 ng TEQ/kg), with concentrations ranging from 0.17 to 2.7 nanograms per kilogram (ng/kg).

4.2.2 Post-Dredging Residuals

Samples of dredging residuals were collected using a Van Veen sampler from Unit 1C following the completion of dredging activities as described in Section 4.2.1. The dredging residuals were tested for their thickness and chemical composition to verify that these parameters did not exceed the values contemplated in the EDR. Results are summarized in Table G4-3.

The thickness of the dredging residuals layer was within the anticipated range. The thickness varied from 1 to 7 centimeters (cm) in depth, averaging 3.7 cm.

Chemical concentrations were within expected ranges. Mercury concentrations ranged from 0.75 to 2.3 mg/kg, averaging 1.5 mg/kg. The D/F concentrations ranged from 2.1 to 26.2 ng/kg, with an average of 15.1 ng TEQ/kg.

4.2.3 Surface Sediments Following Residuals Management

Following residuals management activities in Unit 1C (i.e., placement of sand cover materials to mix with the residuals), six surface sediment samples were collected at the testing locations shown in Figure G2.

Chemical testing was performed at six stations, and confirmational bioassay testing was performed at one station in compliance with the SQAPP. Results were used to verify that the final contaminant concentrations in surface sediments of Unit 1C complied with the cleanup levels and other expectations defined in the Consent Decree and EDR.

Results of chemical testing are summarized in Table G4-4.

- At five of six sampling locations, mercury testing results were below the SQS, with concentrations ranging from 0.03 to 0.33 mg/kg.
- At the sixth sampling location (station P1PM-05), the mercury concentration slightly exceeded the SQS (0.41 mg/kg), with a measured concentration of 0.65 mg/kg. Sediment from this station was recollected and analyzed for mercury. Results (0.66 mg/kg) were consistent with the original analysis. The recollected sample was analyzed for confirmational bioassay testing consistent with the SQAPP. Results of that testing are summarized in Tables G4-5 though G4-9. Results confirmed compliance with SQS interpretive criteria for biological testing.
- The average mercury concentration within Unit 1C was 0.22 mg/kg, which is very similar to the natural background concentration of mercury determined by Ecology for Puget Sound sediments (0.2 mg/kg).
- D/F concentrations in the six samples ranged from 0.93 to 16.3 ng TEQ/kg (Table G4-4). The average D/F concentration measured within Unit 1C was 3.9 ng TEQ/kg. This value was well below the regional background concentration of D/F (15 ng/kg) determined by Ecology for Bellingham Bay, and is consistent with the natural

background concentration of D/F determined by Ecology for Puget Sound sediments (15 ng TEQ/kg).

For additional details regarding the bioassay testing performed for station P1PM-05, refer to Tables G4-5 through G4-9. Testing was performed by Ramboll Environ in Port Gamble, Washington, on June 9, 2016. The tests were initiated on August 8, 2013, well within the 56-day holding time. The sediment was tested against a clean reference sample collected by Ramboll Environ from Carr Inlet. Test methods followed guidance provided by the Puget Sound Estuary Program (PSEP 1995), the Sediment Cleanup User's Manual II (Ecology 2015), and the various updates presented during the Sediment Management Annual Review Meeting. The following describes the tests and species used, along with key observations from data validation:

- **10-day amphipod mortality** (*Eohaustorius estuaries*): Water quality conditions were maintained to ensure optimal health of the organisms before and during testing. Temperature, dissolved oxygen, salinity, pH, ammonia, and sulfides were measured in the overlying water of one replicate test container per treatment on days 0 and 10. Temperature, dissolved oxygen, salinity, and pH were also measured daily. Temperature, dissolved oxygen, salinity, pH, ammonia, and sulfides were measured in the porewater from the bulk sediment prior to test initiation. Water quality parameters were within protocol-specified ranges with minor deviations in temperature and salinity. Given the lack of significant mortality observed in all test treatments, these deviations did not negatively affect test results. Interstitial bulk sediment values for ammonia-N ranged from 1.61 to 16.2 milligrams per liter (mg/L). Interstitial bulk sediment values for sulfide ranged from 0.06 to 1.26 mg/L. The test met the survival acceptability criteria specified in the test protocol with 4.0% mean control mortality. The reference toxicant test was conducted using potassium chloride resulting in a 96-hour median lethal concentration (LC50) of 155.0 mg/L. This reference toxicant test was within the control chart warning limit of 69.4 to 242.2 mg/L. No problems were found with the test organisms or the testing procedure, and it was concluded that the test developed fully acceptable data for use in management decisions.
- **20-day juvenile polychaete survival and growth** (*Neanthes arenaceodentata*): The test organisms were obtained from Aquatic Toxicology Support, Bremerton, Washington.

Testing was initiated on August 3, 2016, within the appropriate holding time. Water quality conditions were maintained to ensure optimal health of the test organisms before and during testing. Temperature, dissolved oxygen, salinity, pH, ammonia, and sulfides were measured in the overlying water of one replicate test container per treatment on days 0 and 20. Temperature, dissolved oxygen, salinity, and pH were also measured daily. Temperature, dissolved oxygen, salinity, pH, ammonia, and sulfides were measured in the porewater from the bulk sediment prior to test initiation. Water quality parameters were within acceptable limits. Interstitial bulk sediment values for ammonia-N ranged from less than 0.5 to 8.1 mg/L. Interstitial bulk sediment values for sulfide ranged from 0.02 to 1.26 mg/L. The test met the survival and weight acceptability criteria specified in the test protocol with 0% mean control mortality and a control individual mean ash-free dry weight of 0.781 mg per individual, exceeding the 0.72 mg per individual requirement. The reference toxicant test was conducted using potassium chloride. The reference toxicant (positive control) LC50 result was 130.8 mg/L. This reference toxicant test was within the control chart warning limit of 67.07 to 242.9 mg/L, and the test data were determined to be suitable for making management decisions.

48-hour benthic larval development (*Mytilus galloprovincialis*): The test organisms were shipped to Ramboll Environ from Taylor Shellfish in Shelton, Washington. Testing was initiated on August 3, 2016, within the appropriate holding time. Water quality conditions were maintained to ensure optimal health of the organisms before and during testing. Temperature, dissolved oxygen, salinity, pH, ammonia, and sulfides were measured in the overlying water of one replicate test container per treatment on days 0 and 2. Temperature, dissolved oxygen, salinity, and pH were also measured daily. Water quality parameters were within protocol-specified ranges. Overlying water values for ammonia-N ranged from 0.01 to 0.267 mg/L. Overlying water values for sulfide ranged from 0.0 to 0.05 mg/L. The test met the survival acceptability criteria specified in the test protocol with 104.5 % mean control normal survival. Mean normal survival of the reference sediment was 93.8%, which meets the acceptability criteria of greater than or equal to 65%. A reference-toxicant test was conducted using potassium chloride resulting in a 96-hour median lethal concentration (LC50) of 4.73 mg/L. This reference toxicant test was within the control chart warning limit of 0.34 to 10.16 mg/L. No problems were found with the

test organisms or the testing procedure, and it was concluded that the test developed fully acceptable data for use in management decisions. Mean and percent survival and mean individual growth rate in the reference sediments were not significantly lower than those endpoints in the control sediment. Test sediment did not have a mean percent survival value or mean individual growth rate significantly lower than in the control or in the corresponding reference sediment.

5 POST-CONSTRUCTION TISSUE MONITORING

This section describes post-construction tissue monitoring performed in accordance with the SQAPP (Anchor QEA 2016). This monitoring was conducted during June and July 2016, and included the following activities:

- Testing of tissue mercury levels in adult Dungeness crabs *(Metacarcinus magister)* collected from the Site and from the Samish Bay clean reference area
- Testing of tissue mercury levels in juvenile Dungeness crabs collected from the Log Pond and from a clean reference area
- Testing of tissue mercury levels in caged clams, sediment, and porewater from locations within the Site and collection of corresponding data from the Samish Bay reference area

Locations of samples described in this section are presented in Figure G2 (Site samples) and Figure G3 (reference area samples).

5.1 Adult Crab

Adult crab were collected using crab traps deployed at three locations within the Site (Figure G2) and at two locations within the Samish Bay reference areas (Figure G3). Three adult male Dungeness crabs with a carapace width of 16.5 cm or greater were collected at each station. Two replicate samples for each station were created by homogenizing sternal plate, leg, and claw muscle tissue, resulting in a total of six composite samples from the Site and six composite samples from the Samish Bay reference area.

Table G5-1 summarizes the tissue monitoring data collected for adult crab for both the Site and the reference area stations. These results are discussed in Section 4 of the As-Built Report. As described in that report, tissue mercury levels detected in Site crab were well below those measured previously in 1991 and 1997. However, tissue levels remain slightly higher than those in crab collected from the Samish Bay reference area.

5.2 Juvenile Crab

Juvenile crab were collected using crab traps deployed along the shoreline of the Log Pond (Figure G2) and at a clean reference site located near Brant and Portage Islands (Figure G3).

Juvenile crab tissue from these locations was previously sampled for mercury concentrations during 2001, 2002, and 2005 after completion of the Log Pond Interim Action.

At each location, crab were collected by baited ring traps. Multiple crab were collected at each location and used to form two whole-body composite samples. Five replicate samples from each composite were submitted to the chemical testing laboratory for analysis of total solids, lipids, and mercury concentrations. The reference area was created from whole-body composites prior to analysis at the laboratory. Please see Table G5-2.

Mercury concentration data for the juvenile crab are summarized in Table G5-2. These results are discussed in Section 4 of the As-Built Report. Reference area tissue mercury concentrations (0.024 mg/kg wet weight) were within the range measured historically for the reference area (0.0199 to 0.0365 mg/kg wet weight). The average mercury concentration in crabs from the Log Pond was 0.031 mg/kg, approximately 30% higher than the 2016 reference area samples. However, it was within the range measured in 2005 for the Log Pond (0.0194 to 0.0375 mg/kg wet weight).

5.3 Caged Clams and Associated Testing

Monitoring activities included an in situ bioaccumulation testing using caged clams. Clams were placed at designated Site and reference area test locations. Co-located testing of mercury in porewater and sediment was performed in parallel with the tissue testing.

Five test stations were located within the Site (Figure G2) and five stations were located in the Samish Bay reference area (Figure G3). Two of the test stations established at the Site were located in Phase 1 construction areas, and three were located in Site areas being managed by monitored natural recovery. Sample collection, processing, and analysis were conducted in accordance with the methods described in the SQAPP (Anchor QEA 2016).

Three replicate cages (each containing 30 clams) were deployed at every station. Cages were buried 10 cm into the sediment surface and left in situ for 30 days in accordance with ASTM Method E2122-02. Following retrieval, clams were depurated for 24 hours. Soft body tissue

samples were then composited from each cage separately and then an overall station composite was created for analysis.

Porewater samples were collected from each station using nylon mesh diffusion samplers. These samplers were deployed using a 120 µm mesh size. Samplers were retrieved after 30 days of incubation. Porewater samples were analyzed for total and dissolved mercury.

Surface sediment samples were collected at each deployment area by diver. These samples were tested for total solids, total organic carbon, and total mercury.

Table G5-3 presents the mercury concentrations reported in clam tissue, porewater, and sediment by area type and station. Results of testing demonstrated comparable levels of mercury in clam tissues and porewater collected from the Site and reference areas, despite differences in sediment total mercury concentrations.

6 QUALITY ASSURANCE/QUALITY CONTROL

This section describes quality assurance/quality control (QA/QC) actions and procedures taken by Anchor QEA to ensure quality and usability of all data collected during the Project.

QA/QC requirements included the collection of field samples as well as laboratory testing. Field sampling activities were assessed by rinsate blanks and field duplicates. The quality of laboratory data was assessed by precision, accuracy, representativeness, comparability, completeness, and sensitivity. Chemical laboratory QA/QC samples included method blanks, laboratory control samples, matrix spike/matrix spike duplicates, and matrix duplicates. Toxicity laboratory QA/QC included negative and positive controls, water quality measurements, reference sediments, and reference toxicant tests.

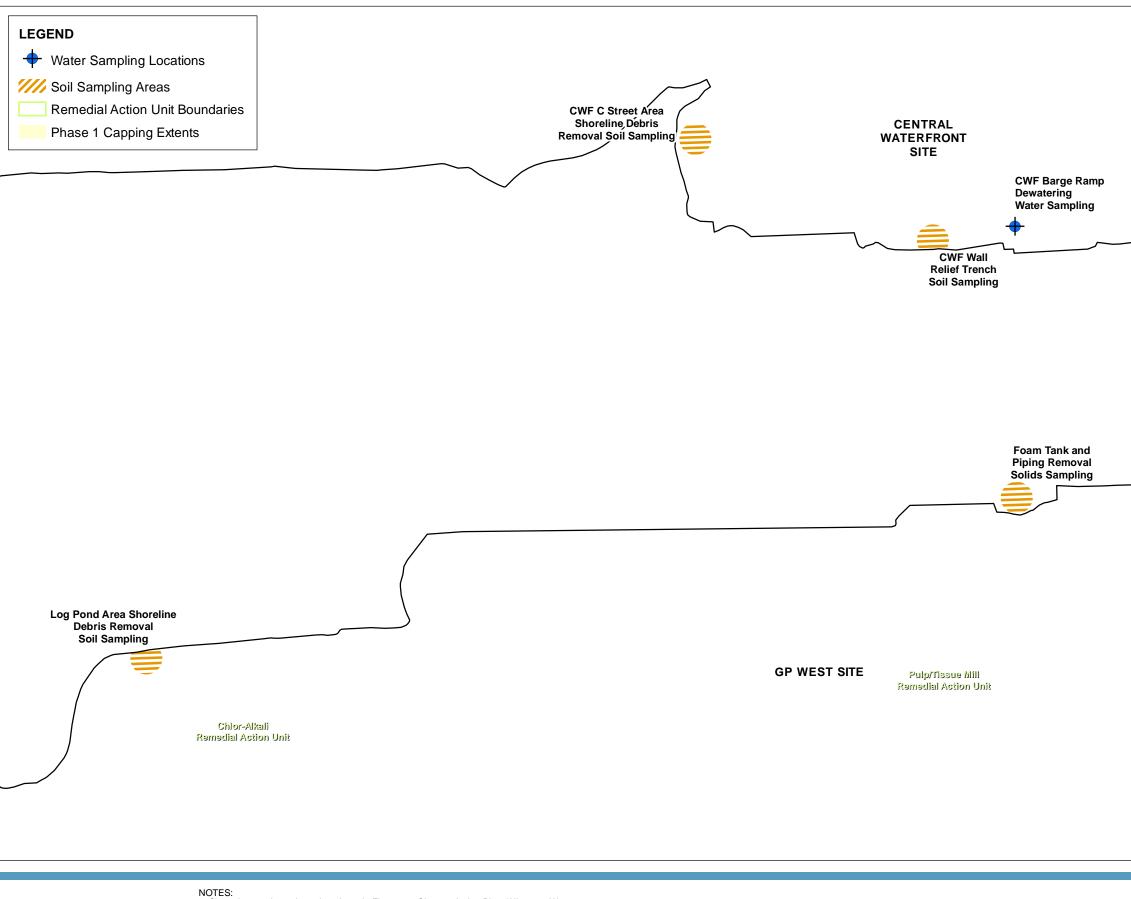
6.1 Field Instruments

In accordance with the SQAPP (Anchor QEA 2016), standard instrument operation procedures were followed for all sampling activities. Field equipment, including all sampling devices and navigation equipment, was inspected for damage/wear by experienced field staff and maintained based on the manufacturer's recommendations and/or previous experience with the equipment.

6.2 Laboratory Instruments

Analytical instrument testing, inspection, maintenance, setup, and calibration was conducted by each laboratory in accordance with the requirements identified in the laboratory's standard operating procedures and manufacturer instructions. In addition, each of the specified analytical methods provides protocols for proper instrument setup, tuning, and critical operating parameters. Instrument maintenance and repair was documented in the maintenance log or record book.

6.3 Data Validation


All chemical and bioassay data were validated prior to use. Data validation reports for each analytical laboratory batch are identified in Table G6-1.

- Attachment A contains data validation reports for the chemical testing data. All chemical testing data generated by Anchor QEA as part of construction monitoring were validated prior to use. Stage 2B validation (U.S. Environmental Protection Agency 2009) was performed following National Functional Guidelines for data validation. Validation was performed by a third-party independent validation company and results were subject to a 10% backcheck of data for accuracy. All data was found to be valid and useable for all purposes.
- Attachment B contains the data validation report for the bioassay testing data.
 Bioassay data were validated by Anchor QEA against applicable Puget Sound Estuary Program guidance and applicable Ecology guidance.
- Attachment C (available on disk) contains copies of raw laboratory reports and chain of custody documentation.

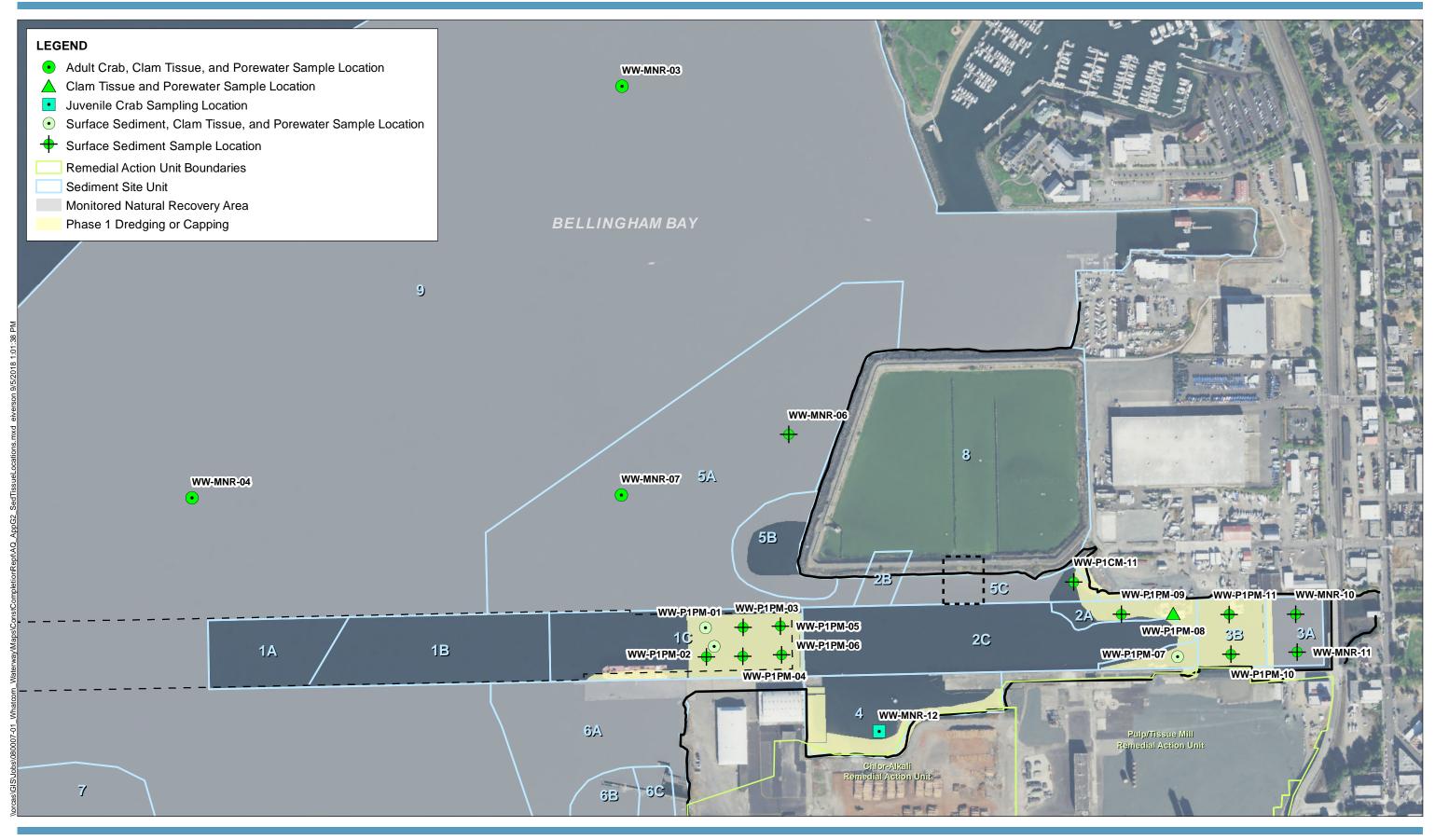
7 REFERENCES

- Anchor QEA, 2010. Pre-Remedial Design Investigation Data Report, Whatcom Waterway Site Cleanup. Prepared for the Port of Bellingham. August 2010.
- Anchor QEA, 2015. Final Engineering Design Report. Whatcom Waterway Cleanup in Phase 1 Site Areas. Prepared for the Port of Bellingham. February 2015.
- Anchor QEA, 2016. Sampling and Quality Assurance Project Plan for Compliance Monitoring, Whatcom Waterway Cleanup in Phase 1 Site Areas. Prepared for the Port of Bellingham. March 2016.
- Ecology (Washington State Department of Ecology), 2015. Sediment Management Standards; Washington Administrative Code 173-204 as revised February, 2015.
- PSEP (Puget Sound Estuary Program), 1995. Puget Sound Protocols and Guidelines. Puget Sound Estuary Program. Puget Sound Water Quality Action Team, Olympia, Washington.
- RETEC (The RETEC Group), 2006. Supplemental Remedial Investigation and Feasibility Study for the Whatcom Waterway Site. Prepared for the Port of Bellingham.
- U.S. Environmental Protection Agency, 2009. Guidance for Labeling Externally Validated Laboratory Analytical Data for Superfund Use. EPA 540-R-08-005. January 2009.

FIGURES

9/5/2018 1:01:11 PM

AQ_AppG1_


NOTES: 1. Site units are shown based on those in Figure 2-3 Cleanup Action Plan, Whatcom Waterway Site, September 2007. Unit 9 boundary updated based on PRDI findings. 2. Soil sampling areas (hatches) are approximate in size and location. 3. CWF = Central Waterfront Site 4. Horizontal datum: Washington State Plane North, NAD 83 U.S. Survey Feet. 5. Aerial imagery from National Agriculture Imagery Program (NAIP), September 2, 2017.

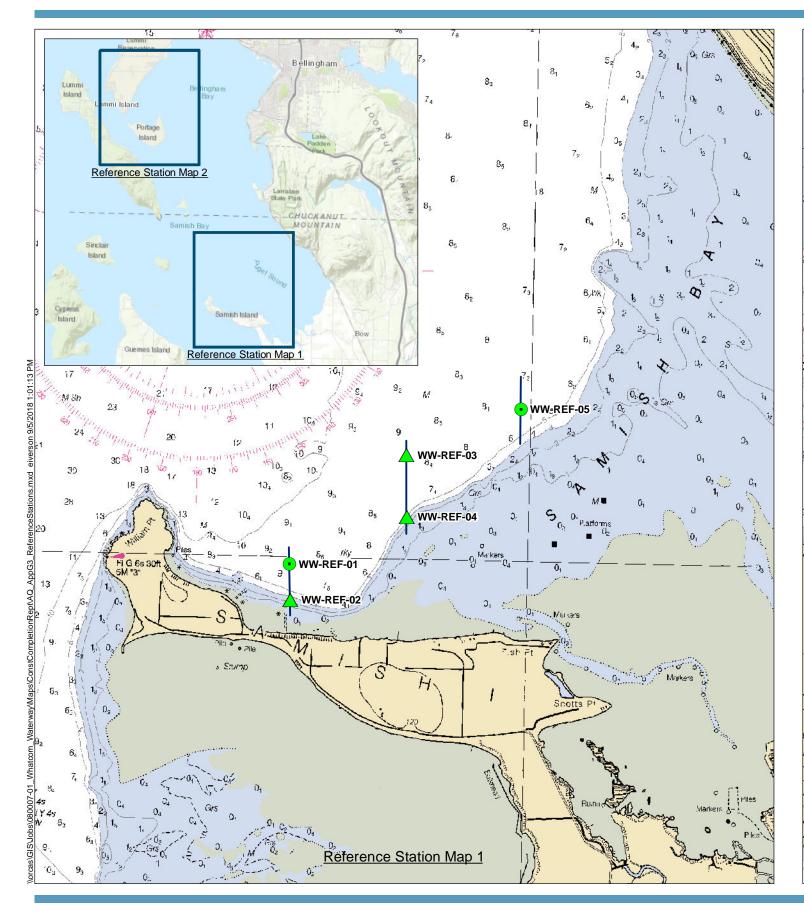
0 75 150

Feet

Soil and Water Sampling Locations Appendix G to the As-built Report Whatcom Waterway Cleanup in Phase 1 Site Areas

Figure G1

NOTES: 1. Site units are shown based on those in Figure 2-3 Cleanup Action Plan, Whatcom Waterway Site, September 2007. Unit 9 boundary updated based on PRDI findings. 2. Horizontal datum: Washington State Plane North, NAD 83 U.S. Survey Feet.


3. Aerial imagery from National Agriculture Imagery Program (NAIP), September 2, 2017.

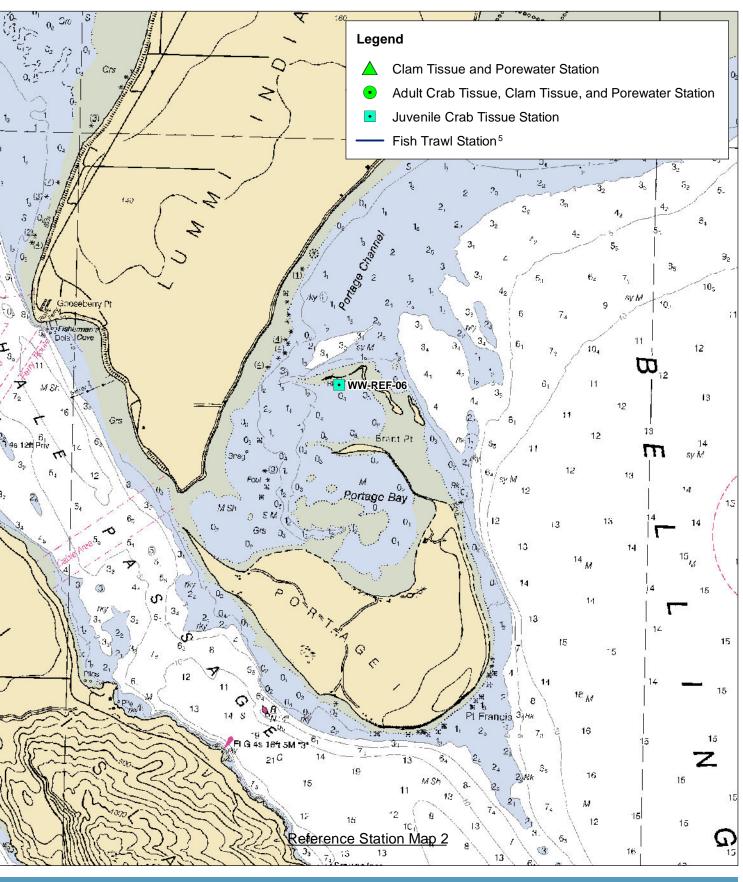
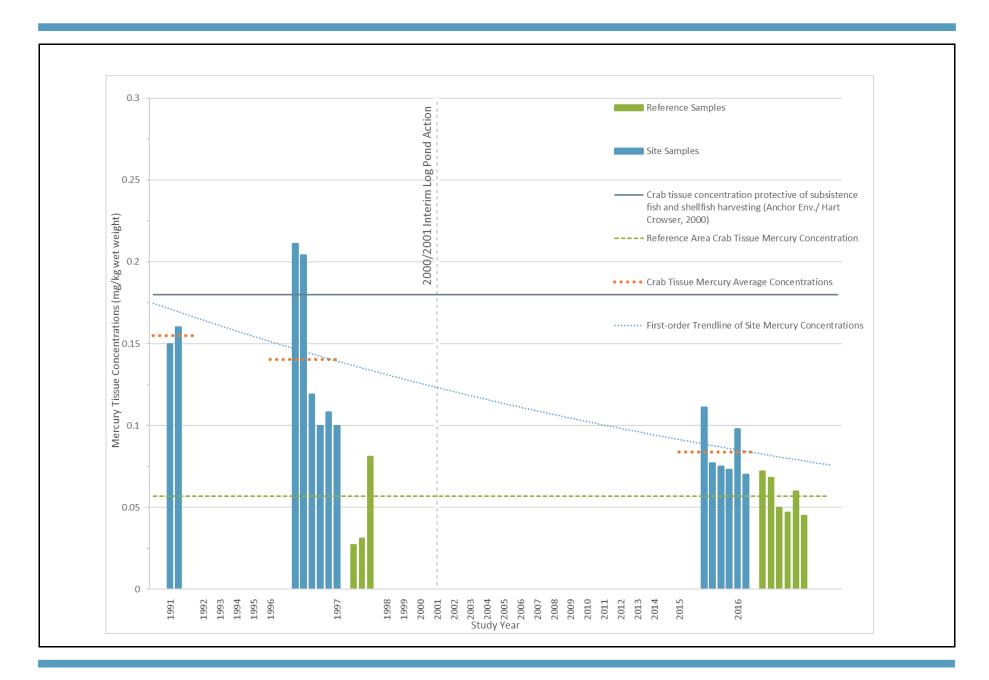

Feet

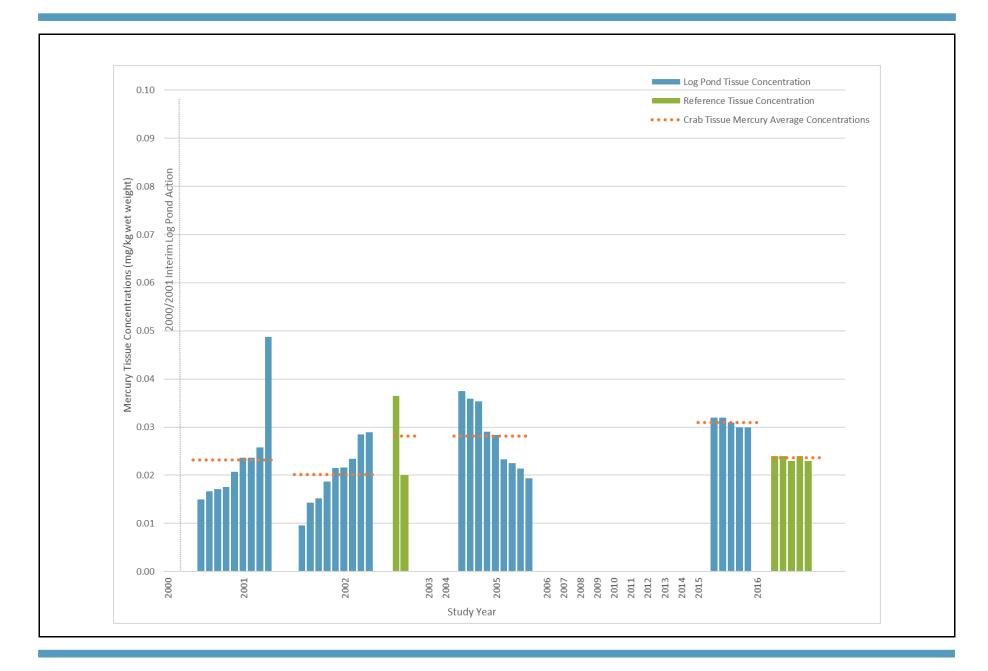
Figure G2

Sediment and Tissue Environmental Monitoring Stations Appendix G to the As-built Report Whatcom Waterway Cleanup in Phase 1 Site Areas

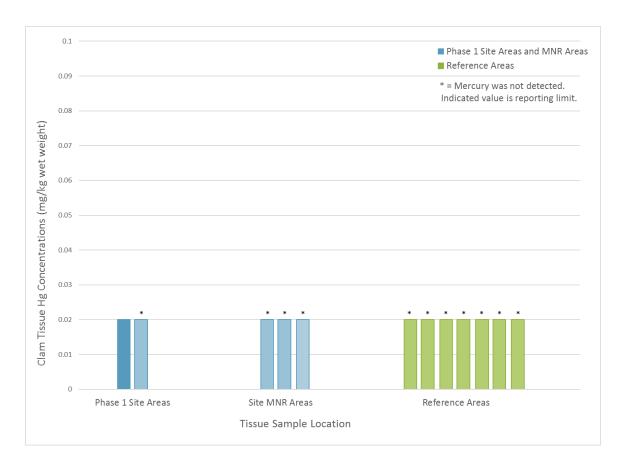

NOTES: 1. Site units are shown based on those in Figure 2-3 Cleanup Action Plan, Whatcom Waterway Site, September 2007. Unit 9 boundary updated based on PRDI findings. 2. Fish trawl locations are approximate. Actual locations will be dependent upon abundances observed during the monitoring effort.

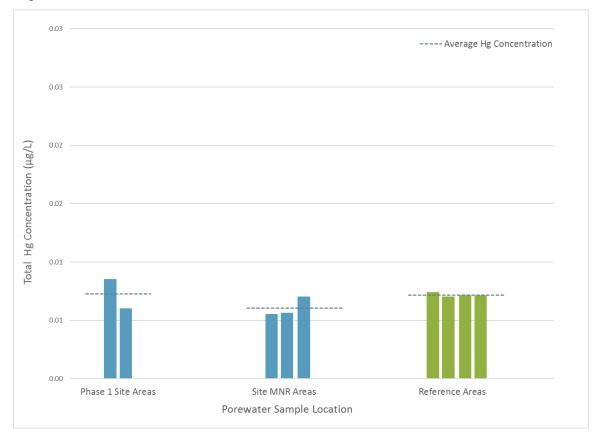
 Crab station locations may be adjusted based on field conditions encountered.
 Horizontal datum: Washington State Plane North, NAD 83 U.S. Survey Feet.
 Vertical datum: Mean Lower Low Water (MLLW).

Figure G3

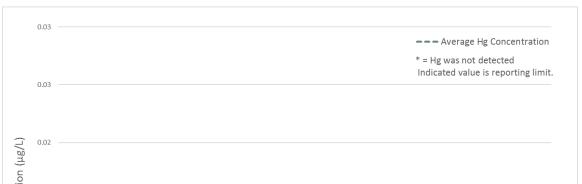

Reference Area Sampling Locations Appendix G to the As-built Report Whatcom Waterway Cleanup in Phase 1 Site Areas

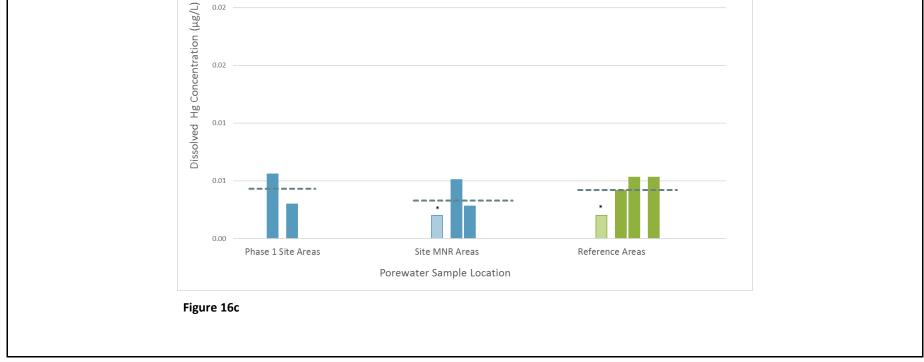
Mercury Concentrations in Adult Dungeness Crab Tissue Appendix G to the As-Built Report Whatcom Waterway Cleanup in Phase 1 Site Areas




Figure G5

Mercury Concentrations in Juvenile Dungeness Crab Tissue Appendix G to the As-Built Report Whatcom Waterway Cleanup in Phase 1 Site Areas





V ANCHOR QEA

Figure G6

Mercury Concentrations in Clam Tissue and Porewater Appendix G to the As-Built Report Whatcom Waterway Cleanup in Phase 1 Site Areas

TABLES

Table G2-1Central Waterfront Relief Trench Soil Reused as Backfill

		Description Sample ID Sample Date Sample Type Matrix	WW-CWWR-151204 12/4/2015
Parameter	Test Method	GP West Cleanup Levels for Unsaturated Zone Soils	
Total Petroleum Hydrocarbons (mg/kg)		•	
Diesel range hydrocarbons	NWTPHD	2000	71
Motor oil range hydrocarbons	NWTPHD	2000	180
Total Diesel and Oil (U = 0)	NWTPHD	2000	251

Notes:

Detected concentration is greater than WW_GP_West_UnsaturatedSoil screening level

Bold = Detected result

J = Estimated value

U = Compound analyzed, but not detected above detection limit

UJ = Compound analyzed, but not detected above estimated detection limit

ID = identification

kg = kilogram

mg = milligram

 Table G2-2

 Central Watefront Site C Street Area Soil Reused as Clarifier Subgrade Backfill

		Description			Initial Samples of	Reusable Soils			Comp	osite Sample
		Sample ID	WW-CW-W-150807	WW-CW-W1-1-150819	WW-CW-W2-1-150819	WW-CWF-G1-151229	WW-CWF-G2-151229	WW-CWF-G3-151229	WW-CWF-G-COMP	WW-CWF-COMP1-151229
		Sample Date	8/7/2015	8/19/2015	8/19/2015	12/29/2015	12/29/2015	12/29/2015	12/29/2015	12/29/2015
		Sample Type	N	N	N	N	Ν	N	N	N
		Matrix	SO	so	SO	so	SO	SO	SO	SO
		GP West Cleanup Levels for								
Parameter	Test Method	Unsaturated Zone Soils								
Conventional Parameters (pct)	-									
Total solids	SM2540G									87.38
Metals (mg/kg)	-	·		•						•
Arsenic	SW6010C	20							10	
Barium	SW6010C								93.3 J	
Cadmium	SW6010C	1.2							0.196 J	
Chromium	SW6010C	5200							24.9	
Chromium VI	SW7196									0.454 UJ
Copper	SW6010C	36							60.3 J	
Lead	SW6010C	250							37	
Mercury	SW7471A	2							0.23 J	
Nickel	SW6010C	48							26 J	
Selenium	SW6010C	7.4							2.5 J	
Silver	SW6010C	0.32							0.3 U	
Zinc	SW6010C	100							97 J	
Semivolatile Organics (µg/kg)	-	·		•						•
1-Methylnaphthalene	SW8270D	35000							200	
2-Methylnaphthalene	SW8270D	320000							360	
Acenaphthene	SW8270D	5200							64 U	
Acenaphthylene	SW8270D								43 J	
Anthracene	SW8270D	71000							56 J	
Benzo(a)anthracene	SW8270D	1400							99	
Benzo(a)pyrene	SW8270D	140							110	
Benzo(b,j,k)fluoranthenes	SW8270D								220	
Benzo(g,h,i)perylene	SW8270D								69	
Chrysene	SW8270D	2600							160	
Dibenzo(a,h)anthracene	SW8270D	140							64 U	
Dibenzofuran	SW8270D								92	
Fluoranthene	SW8270D	52000							280	
Fluorene	SW8270D	7400							43 J	
Indeno(1,2,3-c,d)pyrene	SW8270D	1400							55 J	
Naphthalene	SW8270D	32000							290	
Phenanthrene	SW8270D								320	
Pyrene	SW8270D	330000							240	
Total cPAH TEQ (7 minimum CAEPA 2005) (U = 0)		140							149 J	

Table G2-2 Central Watefront Site C Street Area Soil Reused as Clarifier Subgrade Backfill

		Description				Composite Sample				
	Sample ID			WW-CW-W1-1-150819	WW-CW-W2-1-150819	WW-CWF-G1-151229	WW-CWF-G2-151229	WW-CWF-G3-151229	WW-CWF-G-COMP	WW-CWF-COMP1-151229
Sample Date			8/7/2015	8/19/2015	8/19/2015	12/29/2015	12/29/2015	12/29/2015	12/29/2015	12/29/2015
Sample Type			Ν	N	N	N	N	N	N	N
	Matrix			SO	SO	SO	SO	SO	SO	SO
		GP West Cleanup Levels for								
Parameter	Test Method	Unsaturated Zone Soils								
Total Petroleum Hydrocarbons (mg/kg)										
Diesel range hydrocarbons	NWTPHD	2000	52	48	50	57	98	65		
Motor oil range hydrocarbons	NWTPHD	2000	120	81	260	130	180	160		
Total Diesel and Oil (U = 0)			172	129	310	187	278	225		

Notes:

Detected concentration is greater than WW_GP_West_UnsaturatedSoil screening level, but were within the range of existing contaminant concentrations in the clarifier area of the GP West Site.

Bold = Detected result

J = Estimated value

U = Compound analyzed, but not detected above detection limit

UJ = Compound analyzed, but not detected above estimated detection limit

cPAH = carcinogenic polycyclic aromatic hydrocarbon GP West = Georgia-Pacific West, Inc. ID = identification kg = kilogram mg = milligram pct = percent TEQ = toxic equivalents

Table G2-3Barge Ramp Dewatering Water Managed by ASB Treatment

		Description Sample ID Sample Date Sample Type	Testing Data for Barge Ramp Dewatering Water (Managed by ASB Treatment WW-CW-BR-160115 1/15/2016 N
Parameter	Test Method	Matrix Central Waterfront Site RI Groundwater Screening Levels	WST
/olatile Organics (μg/L)			
1,1,1,2-Tetrachloroethane	SW8260C	7.4	0.2 U
1,1,1-Trichloroethane	SW8260C	11000	0.2 U
1,1,2,2-Tetrachloroethane 1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	SW8260C SW8260C	4 1100	0.2 U 0.2 U
1,1,2-Trichloroethane	SW8260C	7.9	0.2 U
1,1-Dichloroethane	SW8260C	2300	0.2 U
1,1-Dichloroethene	SW8260C	3.2	0.2 U
1,1-Dichloropropene	SW8260C	-	0.2 U
1,2,3-Trichlorobenzene	SW8260C	-	0.5 UJ
1,2,3-Trichloropropane	SW8260C	-	0.5 U
1,2,4-Trichlorobenzene	SW8260C	0.48	0.5 UJ
1,2,4-Trimethylbenzene	SW8260C	24	7.9
1,2-Dibromo-3-chloropropane	SW8260C		0.5 U
1,2-Dichlorobenzene 1,2-Dichloroethane	SW8260C SW8260C	6.1	0.2 U 0.2 U
1,2-Dichloroethene, cis-	SW8260C	4.2	0.2 U
1,2-Dichloroethene, trans-	SW8260C	130	0.2 U
1,2-Dichloropropane	SW8260C	15	0.2 U
1,3,5-Trimethylbenzene (Mesitylene)	SW8260C	25	3
1,3-Dichlorobenzene	SW8260C	960	0.2 U
1,3-Dichloropropane	SW8260C	-	0.2 U
1,3-Dichloropropene, cis-	SW8260C	-	0.2 U
1,3-Dichloropropene, trans-	SW8260C	-	0.2 U
1,4-Dichloro-2-butene, trans-	SW8260C	-	1 U
1,4-Dichlorobenzene	SW8260C	5	0.2 U
2,2-Dichloropropane	SW8260C	-	0.2 U
2-Chloroethylvinyl ether 2-Chlorotoluene	SW8260C	-	1 U
2-Chlorotoluene 2-Hexanone (Methyl butyl ketone)	SW8260C SW8260C	-	0.2 UJ 5 U
4-Chlorotoluene	SW8260C	-	0.2 U
4-Methyl-2-pentanone (Methyl isobutyl ketone)	SW8260C	11000	<u> </u>
Acetone	SW8260C		<u> </u>
Acrolein	SW8260C	20	5 U
Acrylonitrile	SW8260C	5	1 U
Benzene	SW8260C	2.4	10
Bromobenzene	SW8260C	-	0.2 U
Bromochloromethane	SW8260C	-	0.2 U
Bromodichloromethane	SW8260C	0.5	0.2 U
Bromoform (Tribromomethane)	SW8260C	140	0.2 U
Bromomethane (Methyl bromide)	SW8260C	13	10
Carbon disulfide Carbon tetrachloride (Tetrachloromethane)	SW8260C SW8260C	400 0.5	0.2 0.2 U
Chlorobenzene	SW8260C	100	0.2 U
Chloroethane	SW8260C	12	0.2 U
Chloroform	SW8260C	1.2	0.2 U
Chloromethane	SW8260C	5.2	0.34 J
Cymene, p- (4-Isopropyltoluene)	SW8260C	-	0.35
Dibromochloromethane	SW8260C	0.5	0.2 U
Dibromomethane	SW8260C		0.2 U
Dichloromethane (Methylene chloride)	SW8260C	94	10
Ethyl bromide (Bromoethane)	SW8260C		0.2 U
Ethylbenzene Ethylene dibromide (1,2-Dibromoethane)	SW8260C SW8260C	2100	26 0.2 U
Hexachlorobutadiene (Hexachloro-1,3-butadiene)	SW8260C	0.2	0.2 U 0.5 UJ
Isopropylbenzene (Cumene)	SW8260C	720	5.7
m,p-Xylene	SW8260C		11
Methyl ethyl ketone (2-Butanone)	SW8260C	350000	8.6
Methyl iodide (Iodomethane)	SW8260C		1 U
Naphthalene	SW8260C	83	350 J
n-Butylbenzene	SW8260C	-	1.6 J
n-Propylbenzene	SW8260C	-	15
o-Xylene	SW8260C	440	3
sec-Butylbenzene	SW8260C	-	1.4

Whatcom Waterway Cleanup in Phase 1 Site Areas

Table G2-3Barge Ramp Dewatering Water Managed by ASB Treatment

		Description Sample ID Sample Date Sample Type Matrix	Testing Data for Barge Ramp Dewatering Water (Managed by ASB Treatment) WW-CW-BR-160115 1/15/2016 N WST
		Central Waterfront Site RI	
Parameter	Test Method	Groundwater Screening Levels	
tert-Butylbenzene	SW8260C	-	0.11 J
Tetrachloroethene (PCE)	SW8260C	3.3	0.2 U
Toluene	SW8260C	7300	3.1
Trichloroethene (TCE)	SW8260C	1.6	0.2 U
Trichlorofluoromethane (Fluorotrichloromethane)	SW8260C	120	0.2 U
Vinyl acetate	SW8260C	7800	0.2 U
Vinyl chloride	SW8260C	0.5	0.2 U
Total Petroleum Hydrocarbons (mg/L)			
Gasoline range hydrocarbons	NWTPHG	0.8	2.5
Diesel range hydrocarbons	NWTPHD	0.5	1.5
Motor oil range hydrocarbons	NWTPHD	0.5	1.4
Total Diesel, and Oil (U = 0)		0.8	5.4

Notes:

Detected concentration is greater than the groundwater screening levels from the draft Central Waterfront Remedial Investigation

Bold = Detected result

J = Estimated value

U = Compound analyzed, but not detected above detection limit

UJ = Compound analyzed, but not detected above estimated detection limit

μg = microgram ASB = aerated stabilization basin ID = identification L = liter mg = milligram RI = Remedial Investigation

As-Built Report Whatcom Waterway Cleanup in Phase 1 Site Areas

Table G2-4 Stormwater/Wastewater Solids Removed from Foam Tank and Associated Piping

		Description	Testing Data for Wast (Managed by Landf		
		Sample ID Sample Date	WW-FMTK-S02-160105-160307 3/7/2016	WW-FMTK-SO1-160105 1/5/2016	
		Sample Type Matrix	N SO	N SO	
Parameter	Test Method	GP West Cleanup Levels for Unsaturated Soils	30	30	
Conventional Parameters (pct)					
Total organic carbon	Plumb 1981		26.2		
Total solids	SM2540G		38.84		
Metals (mg/kg)					
Arsenic	SW6010C SW6010C	20	<u>20</u> 470	40 46	
Barium Cadmium	SW6010C SW6010C	1.2	3.3	46 0.37 J	
Chromium	SW6010C	5200		306 J	
Lead	SW6010C	250	55	340 J	
Mercury	SW7471A	2	1	6.8	
Selenium	SW6010C	7.4	4 J	6 J	
Silver	SW6010C	0.32	0.28 J	1.4 J	
Metals (SW1311) (μg/L) Arsenic	SW6010C		200 U	200 U	
Barium	SW6010C SW6010C		<u> </u>	480	
Cadmium	SW6010C		10 U	10 U	
Chromium	SW6010C		20 U	20 U	
Lead	SW6010C		100 U	100 U	
Mercury	SW7470A		0.1 U	0.1 U	
Selenium	SW6010C		200 U	200 U	
Silver	SW6010C		20 U	20 U	
Semivolatile Organics (µg/kg)	SW8270D			10.11	
1,2,4-Trichlorobenzene 1,2-Dichlorobenzene	SW8270D SW8270D			19 U 19 U	
1,3-Dichlorobenzene	SW8270D			19 U	
1,4-Dichlorobenzene	SW8270D			19 U	
1-Methylnaphthalene	SW8270D	35000		120	
2,2'-Oxybis (1-chloropropane)	SW8270D			19 U	
2,4,5-Trichlorophenol	SW8270D			97 U	
2,4,6-Trichlorophenol	SW8270D			97 U	
2,4-Dichlorophenol	SW8270D			97 U 97 U	
2,4-Dimethylphenol 2,4-Dinitrophenol	SW8270D SW8270D			197 UJ	
2,4-Dinitrotoluene	SW8270D			97 U	
2,6-Dinitrotoluene	SW8270D			97 U	
2-Chloronaphthalene	SW8270D			19 U	
2-Chlorophenol	SW8270D			19 U	
2-Methylnaphthalene	SW8270D	320000		130	
2-Methylphenol (o-Cresol)	SW8270D			14 J	
2-Nitroaniline	SW8270D SW8270D			97 U 19 U	
2-Nitrophenol 3,3'-Dichlorobenzidine	SW8270D SW8270D			97 UJ	
3-Nitroaniline	SW8270D			97 U	
4-Bromophenyl-phenyl ether	SW8270D			19 U	
4-Chloro-3-methylphenol	SW8270D			97 U	
4-Chloroaniline	SW8270D			97 U	
4-Chlorophenyl phenyl ether	SW8270D			19 U	
4-Methylphenol (p-Cresol)	SW8270D			24	
4-Nitroaniline	SW8270D SW8270D			97 U 97 U	
4-Nitrophenol Acenaphthene	SW8270D SW8270D	5200		640	
Acenaphthylene	SW8270D	5200		92	
Anthracene	SW8270D	71000		350	
Benzo(a)anthracene	SW8270D	1400		590	
Benzo(a)pyrene	SW8270D	140		460	
Benzo(b,j,k)fluoranthenes	SW8270D			1200	
Benzo(g,h,i)perylene	SW8270D			160	
Benzoic acid Benzyl alcohol	SW8270D SW8270D			150 J 19 UJ	
bis(2-Chloroethoxy)methane	SW8270D			19 U	
bis(2-Chloroethyl)ether	SW8270D			19 U	
bis(2-Ethylhexyl)phthalate	SW8270D			790	
Butylbenzyl phthalate	SW8270D			19 U	
Carbazole	SW8270D			100	
Chrysene	SW8270D	2600		1100	
Dibenzo(a,h)anthracene	SW8270D	140		75	
Dibenzofuran	SW8270D SW8270D			440 19 U	
Diethyl phthalate Dimethyl phthalate	SW8270D SW8270D	+		19 0 72	

As-Built Report

Whatcom Waterway Cleanup in Phase 1 Site Areas

Table G2-4 Stormwater/Wastewater Solids Removed from Foam Tank and Associated Piping

	Description Sample ID Sample Date Sample Type Matrix GP West Cleanup Levels for						
		GP West Cleanup Levels for					
Parameter	Test Method	Unsaturated Soils					
Di-n-butyl phthalate	SW8270D			19 U			
Dinitro-o-cresol (4,6-Dinitro-2-methylphenol)	SW8270D			190 U			
Di-n-octyl phthalate	SW8270D			19 U			
Fluoranthene	SW8270D	52000		1500			
Fluorene	SW8270D	7400		450 J			
Hexachlorobenzene	SW8270D			19 U			
Hexachlorobutadiene (Hexachloro-1,3-butadie	SW8270D			19 U			
Hexachlorocyclopentadiene	SW8270D			97 U			
Hexachloroethane	SW8270D			19 U			
Indeno(1,2,3-c,d)pyrene	SW8270D	1400		160			
Isophorone	SW8270D			19 U			
Naphthalene	SW8270D	32000		670			
Nitrobenzene	SW8270D			19 U			
n-Nitrosodi-n-propylamine	SW8270D			19 U			
n-Nitrosodiphenylamine	SW8270D			19 U			
Pentachlorophenol	SW8270D			84 J			
Phenanthrene	SW8270D			890			
Phenol	SW8270D			24			
Pyrene	SW8270D	330000		2500			
Total cPAH TEQ (7 minimum CAEPA 2005) (U = 0)	140		673.5			

Notes:

Detected concentration is greater than WW_GP_West_UnsaturatedSoil screening level

Bold = Detected result

J = Estimated value

- U = Compound analyzed, but not detected above detection limit
- UJ = Compound analyzed, but not detected above estimated detection limit

μg = microgram cPAH = carcinogenic polycyclic aromatic hydrocarbon GP West = Georgia-Pacific West, Inc. ID = identification kg = kilogram L = liter mg = milligram pct = percent TEQ = toxic equivalents

As-Built Report Whatcom Waterway Cleanup in Phase 1 Site Areas

Table G2-5Log Pond Shoreline Cutback Soil Reused as Clarifier Subgrade Backfill

		Description Sample ID Sample Date Sample Type Matrix	(Reused as Clarifier WW-LP-COMP1-151229 12/29/2015 N	nd Shoreline Cutback Soil r Subgrade Backfill) WW-LP-151204 12/4/2015 N SO
Parameter	Test Method	GP West Cleanup Levels for Unsaturated Soils	30	30
Metals (mg/kg)	rest wethou	Unsaturated Solis		
Arsenic	SW6010C	20	8.5 J	10 U
Barium	SW6010C	20	60.4 J	79.1
Cadmium	SW6010C	1.2	0.366 J	0.5 U
Chromium	SW6010C	5200	27 J	<u> </u>
Lead	SW6010C	250	11	
Mercury	SW7471A	230	0.28 J	1.39 J
Selenium	SW6010C	7.4	2 J	10 U
Silver	SW6010C	0.32	0.8 U	0.8 U
Semivolatile Organics (µg/kg)	51100100	0.02	0.0 0	0.00
2-Methylnaphthalene	SW8270D	320000	5.4 J	
Acenaphthene	SW8270D	5200	18 U	
Acenaphthylene	SW8270D		18 U	
Anthracene	SW8270D	71000	18 U	
Benzo(a)anthracene	SW8270D	1400	14 J	
Benzo(a)pyrene	SW8270D	140	12 J	
Benzo(b,j,k)fluoranthenes	SW8270D		36	
Benzo(g,h,i)perylene	SW8270D		20	
Chrysene	SW8270D	2600	40	
Dibenzo(a,h)anthracene	SW8270D	140	18 U	
Fluoranthene	SW8270D	52000	42	
Fluorene	SW8270D	7400	18 U	
Indeno(1,2,3-c,d)pyrene	SW8270D	1400	11 J	
Naphthalene	SW8270D	32000	9.8 J	
Phenanthrene	SW8270D		27	
Pyrene	SW8270D	330000	36	
Total cPAH TEQ (7 minimum CAEPA 2005) (U = 0)		140	18.5 J	
Total Petroleum Hydrocarbons (mg/kg)				
Diesel range hydrocarbons	NWTPHD	2000	8.4	
Motor oil range hydrocarbons	NWTPHD	2000	94	

Detected concentration is greater than WW_GP_West_UnsaturatedSoil screening level

Bold = Detected result

J = Estimated value U = Compound analyzed, but not detected above detection limit

μg = microgram cPAH = carcinogenic polycyclic aromatic hydrocarbon GP West = Georgia-Pacific West, Inc. ID = identification kg = kilogram mg = milligram TEQ = toxic equivalents

As-Built Report Whatcom Waterway Cleanup in Phase 1 Site Areas

Table G3-1 Summary of Cap Material Testing Data

	Contractor-Provided Testing Data Supplemental Testing								
			Backfill	Backfill	Sandy Fill/Cover	Cup			
		Sample ID	Material	Material	Material	Sample ID	S-02-150819-A	S-02-150819-D	
		Sample Date	10/28/2014	11/13/2014	4/21/2015	Sample Date	8/19/2015	8/19/2015	
		Sample Type	N	N	N	Sample Type	Ν	N	
	Contract	Matrix	SO	SO	SO	Matrix	SO	SO	
	Contract-								
	Specified								
Parameter	Maximum	Test Method				Test Method			
	Level	rest method							
Metals (mg/kg) Arsenic	57	SW6020B	3.2						
Cadmium	5.1	SW6020B	0.50 U						
Chromium	260	SW6020B	0.50 0 17						
Copper	390	SW6020B	34						
Lead	450	SW6020B	3.6						
Mercury	0.1	SW7471B	0.028						
Silver	6.1	SW6020B	0.50 U						
Zinc	410	SW6020B	72						
Semivolatile Organics (µg/kg)				-					
1,2,4-Trichlorobenzene	31	SW8270D	100 U			SW8270DSIM	4.7 U	4.7 U	
1,2-Dichlorobenzene	35	SW8270D	100 U			SW8270DSIM	1.7 J	4.7 U	
1,4-Dichlorobenzene 2,4-Dimethylphenol	110 29	SW8270D SW8270D	100 U 100 U	 24 U		SW8270DSIM SW8270DSIM	1.9 J 24 U	4.7 U 24 U	
2-Methylnaphthalene	670	SW8270D	250 U			SW8270D31101 SW8270D	19 U	19 U	
2-Methylphenol (o-Cresol)	63	SW8270D	100 U			SW8270DSIM	4.7 U	4.7 U	
4-Methylphenol (p-Cresol)	670	SW8270D				SW8270DSIM	4.7 U	4.7 U	
Acenaphthene	500	SW8270D	100 U			SW8270D	19 U	19 U	
Acenaphthylene	560	SW8270D	100 U			SW8270D	19 U	19 U	
Anthracene	960	SW8270D	100 U			SW8270D	19 U	19 U	
Benzo(a)anthracene	1300	SW8270D	100 U			SW8270D	19 U	19 U	
Benzo(a)pyrene	1600	SW8270D	100 U			SW8270D	19 U	19 U	
Benzo(b,j,k)fluoranthenes	670	C14/00700				SW8270D	38 U	38 U	
Benzo(g,h,i)perylene Benzoic acid	670 650	SW8270D SW8270D	100 U 1000 U	 190 U		SW8270D SW8270D	7.6 J 190 U	19 U 190 U	
Benzolc acid Benzyl alcohol	650 57	SW8270D SW8270D	1000 U 100 U			SW8270D SW8270D	190 U 19 U	190 U 19 U	
bis(2-Ethylhexyl)phthalate	1300	SW8270D	100 U			SW8270D	47 U	47 U	
Butylbenzyl phthalate	63	SW8270D	100 U			SW8270DSIM	2.4 J	4.7 U	
Chrysene	1400	SW8270D	100 U			SW8270D	5.7 J	19 U	
Dibenzo(a,h)anthracene	230	SW8270D	100 U			SW8270D	19 U	19 U	
Dibenzofuran	540	SW8270D	100 U			SW8270D	19 U	19 U	
Diethyl phthalate	200	SW8270D	100 U			SW8270D	30 U	45 U	
Dimethyl phthalate	71	SW8270D	100 U			SW8270DSIM	3.1 J	2.3 J	
Di-n-butyl phthalate	1400	SW8270D	100 U 100 U			SW8270D	11 J 19 U	8.5 J 19 U	
Di-n-octyl phthalate Fluoranthene	6200 1700	SW8270D SW8270D	100 U 100 U			SW8270D SW8270D	19 U 19 U	19 U 19 U	
Fluorene	540	SW8270D SW8270D	100 U			SW8270D SW8270D	19 U	19 U	
Indeno(1,2,3-c,d)pyrene	600	SW8270D	100 U			SW8270D	19 U	19 U	
Naphthalene	2100	SW8270D	100 U			SW8270D	19 U	19 U	
n-Nitrosodiphenylamine	28	SW8270D	100 U			SW8270DSIM	4.7 U	4.7 U	
Pentachlorophenol	400	SW8270D	500 U			SW8270D	95 U	94 U	
Phenanthrene	1500	SW8270D	100 U			SW8270D	11 J	12 J	
Phenol	420	SW8270D	100 U			SW8270D	12 J	19 U	
Pyrene	2600	SW8270D	100 U			SW8270D	19 U	19 U	
Total Benzofluoranthenes (U = 0)	3200						38 U	38 U	
Total HPAH (9 of 16) (U = 0) Total LPAH (7 of 16) (U = 0)	12000 5200						13.3 J 11 J	38 U 12 J	
Pesticides (µg/kg)	5200							12 J 	
Hexachlorobenzene	22	SW8081B	100 U						
Hexachlorobutadiene	11	SW8081B	10 U						
PCB Aroclors (µg/kg)									
Aroclor 1016		SW8082A	100 U						
Aroclor 1221		SW8082A	100 U						
Aroclor 1232		SW8082A	100 U						
Aroclor 1242	 	SW8082A	100 U						
Aroclor 1248		SW8082A	100 U						
Aroclor 1254		SW8082A	100 U						
Aroclor 1260 Total PCB Aroclors (U = 0)	130	SW8082A 130	100 U 						
Dioxins and Furans (ng/kg)	130	130	-						
Total 2,3,7,8-TCDD TEQ (ND=0)	1 ng/kg TEQ	SW8315			0.01				
Total 2,3,7,8-TCDD TEQ (ND=0)		SW8315 SW8316			0.01				
101a12,5,7,0-1CDD 1EQ (ND=1/2 EDL)	1 ng/kg TEQ	346910			0.11				

Non-detected concentration is above one or more identified screening levels

Bold = Detected result

J = Estimated value U = Compound analyzed, but not detected above detection limit

μg = microgram PCB = polychlorinated biphenyl ID = identification kg = kilogram mg = milligram TEQ = toxic equivalents ng = nanogram HPAH = high molecular weight polycyclic aromatic hydrocarbon LPAH = low molecular weight polycyclic aromatic hydrocarbon

 Table G4-1

 Inner Waterway Post-Dredge Samples in Areas Subsequently Capped

			Data Set		nner Waterway Subsurface Sed	liments Following Completion	of Drodging and Briar to Canni	22
			Location ID		WW-P1PM-08_20160113	WW-P1PM-09_20160113	WW-P1PM-10_20160113	WW-P1PM-11_20151023
				_	WW-P1PM-08_20160113 WW-P1PM-08-UD-20160113	_	-	
			Sample Date	1/13/2016	1/13/2016	1/13/2016	1/13/2016	10/23/2015
			Depth	2 - 13 cm	2 - 11 cm	2 - 12 cm	2 - 13 cm	2 - 13 cm
			Sample Type		N N			2 - 13 CIII
			Matrix	N SE	SE	N SE	N SE	SE
			ividul iX	1241513	1241349	1241145	1241713	1241568
			~ V	642835	642984	642795	643030	643180
			1	042035	042904	042795	045050	043180
			Other Reference					
		sqs	Values					
Conventional Parameters (pct)		545	- Talues					
Total organic carbon	Plumb 1981			104	5.1	6.4	7.4	0.6 J
Total solids	SM2540G			30.2	42.7	33.4	36.0	66.9
Metals (mg/kg)	514125400	1	1	50.2	74.7			00.5
Copper	E200.8	390		92 J	77 J	80 J	111 J	47.5
Mercury	SW7471A	0.41	1.2 (BSL)	3.19	1.66	1.88	2.19	0.18 J
Zinc	E200.8	410	1.2 (DJL)	240	172	180	200	82
Semivolatile Organics (µg/kg)	2200.0	410		240	1/2	100	200	02
2,4-Dimethylphenol	SW8270D	29		490 U	97 U	99 U	110	96 UJ
2,4-Dimethylphenol	SW8270DSIM	29		77 J	37	21 J	120	24 UJ
2-Methylnaphthalene	SW8270D	25		1200	620	400	3900	70
2-Methylphenol (o-Cresol)	SW8270D	63		99 U	14 J	22	84	19 U
4-Methylphenol (p-Cresol)	SW8270D	670		14000	3400	6000	8100	210
Acenaphthene	SW8270D	0/0		800	590	330	6700	45
Acenaphthylene	SW8270D			250	77	60	240	14 J
Anthracene	SW8270D			470	390	560	3200	25
Benzo(a)anthracene	SW8270D			440	380	360	3200	45
Benzo(a)pyrene	SW8270D			240	240	250	1300	30
Benzo(b,j,k)fluoranthenes	SW8270D			680	580	590	3600	83
Benzo(g,h,i)perylene	SW8270D			260	170	140	390	28
Chrysene	SW8270D			700	530	580	3800	59
Dibenzo(a,h)anthracene	SW8270D		1	64 J	48	54	210	19 U
Fluoranthene	SW8270D		1	2100	1500	1000	15000	150
Fluorene	SW8270D			670 J	630 J	470 J	6900 J	49
Indeno(1,2,3-c,d)pyrene	SW8270D			150	130	110	370	17 J
Naphthalene	SW8270D			6700	1900	730	8400	110
Pentachlorophenol	SW8270D	360		320 J	73 J	52 J	130	96 UJ
Phenanthrene	SW8270D			3400	2200	1400	24000	200
Phenol	SW8270D	420		450	180	180	390	34
Pyrene	SW8270D	-		2900	1300	1700	11000	120
Semivolatile Organics (mg/kg-OC)			•					-
2-Methylnaphthalene	SW8270D	38		18	12	6	53	11
Acenaphthene	SW8270D	16		12	12	5	91	7
Acenaphthylene	SW8270D	66	1	4	2	1	3	2 J
Anthracene	SW8270D	220	1	7	8	9	43	4
Benzo(a)anthracene	SW8270D	110		7	7	6	43	7
Benzo(a)pyrene	SW8270D	99		4	5	4	18	5

Table G4-1 Inner Waterway Post-Dredge Samples in Areas Subsequently Capped

			Data Set	Inner Waterway Subsurface Sediments Following Completion of Dredging and Prior to Capping						
			Location ID		WW-P1PM-08_20160113	WW-P1PM-09_20160113	WW-P1PM-10 20160113	WW-P1PM-11_20151023		
				WW-P1PM-07-UD-20160113	_	_	WW-P1PM-10-UD-20160113	_		
			Sample Date	1/13/2016	1/13/2016	1/13/2016	1/13/2016	10/23/2015		
			Depth	2 - 13 cm	2 - 11 cm	2 - 12 cm	2 - 13 cm	2 - 13 cm		
			Sample Type	N	N	N	N	N		
			Matrix	SE	SE	SE	SE	SE		
			x	1241513	1241349	1241145	1241713	1241568		
			v	642835	642984	642795	643030	643180		
		I		042000	012301	042755	043030	043100		
			Other Reference							
		sqs	Values							
Benzo(g,h,i)perylene	SW8270D	31		4	3	2	5	4		
Chrysene	SW8270D	110		10	10	9	52	9		
, Dibenzo(a,h)anthracene	SW8270D	12		1 J	1	1	3	3 U		
Fluoranthene	SW8270D	160		31	29	16	203	24		
Fluorene	SW8270D	23		10 J	12 J	7 J	94 J	8		
Indeno(1,2,3-c,d)pyrene	SW8270D	34		2	3	2	5	3 J		
Naphthalene	SW8270D	99		99	37	11	114	18		
Phenanthrene	SW8270D	100		50	43	22	326	32		
Pyrene	SW8270D	1000		43	25	27	149	19		
Total Benzofluoranthenes (b,j,k) (U = 0)		230		10	11	9	49	13		
Total HPAH (SMS) (U = 0)		960		112 J	95	75	528	85 J		
Total LPAH (SMS) (U = 0)		370		182 J	113 J	56 J	672 J	71 J		
Dioxin Furans (ng/kg)		I	1		1		1			
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD)	E1613B			10.9	4.7	9.2	5.4	0.38 J		
1,2,3,7,8-Pentachlorodibenzo-p-dioxin (PeCDD)	E1613B			58.7	20.8	13.3	23.9	1		
1,2,3,4,7,8-Hexachlorodibenzo-p-dioxin (HxCDD)	E1613B			174	55	27.1	36.7	1.9		
1,2,3,6,7,8-Hexachlorodibenzo-p-dioxin (HxCDD)	E1613B			417	196	132	254	9		
1,2,3,7,8,9-Hexachlorodibenzo-p-dioxin (HxCDD)	E1613B			277	96.9	54.9	109	3.3		
1,2,3,4,6,7,8-Heptachlorodibenzo-p-dioxin (HpCDD)	E1613B			5830	3190	3120	7170	215		
1,2,3,4,6,7,8,9-Octachlorodibenzo-p-dioxin (OCDD)	E1613B			49600 J	25300	31100	69800 J	2330		
Total Tetrachlorodibenzo-p-dioxin (TCDD)	E1613B			13300 J	2980 J	1060 J	1640 J	75.4 J		
Total Pentachlorodibenzo-p-dioxin (PeCDD)	E1613B			13200 J	3170 J	1100	1750 J	80.7 J		
Total Hexachlorodibenzo-p-dioxin (HxCDD)	E1613B			16400 J	4980 J	1860 J	4000 J	171		
Total Heptachlorodibenzo-p-dioxin (HpCDD)	E1613B			11100	6330	6290	20700	541		
2,3,7,8-Tetrachlorodibenzofuran (TCDF)	E1613B			124	46.2	54.3	75	1.9		
1,2,3,7,8-Pentachlorodibenzofuran (PeCDF)	E1613B			26.9 J	14.4	12.7	25.3 J	0.6 J		
2,3,4,7,8-Pentachlorodibenzofuran (PeCDF)	E1613B			28.1	16.3	14.1	19.1	0.6 J		
1,2,3,4,7,8-Hexachlorodibenzofuran (HxCDF)	E1613B			68.8 J	40.4 J	44.7 J	60.4 J	2.3 J		
1,2,3,6,7,8-Hexachlorodibenzofuran (HxCDF)	E1613B			28.6	16.6	15.4	19.1	0.9 J		
1,2,3,7,8,9-Hexachlorodibenzofuran (HxCDF)	E1613B			19.5	13.2	11.7	19.2 J	0.7 J		
2,3,4,6,7,8-Hexachlorodibenzofuran (HxCDF)	E1613B			24.6	14.8	11.9	12.7	1.7		
1,2,3,4,6,7,8-Heptachlorodibenzofuran (HpCDF)	E1613B			762	408	470	680	54.6		
1,2,3,4,7,8,9-Heptachlorodibenzofuran (HpCDF)	E1613B			49.2	25.4	31.7	33	2.73 J		
1,2,3,4,6,7,8,9-Octachlorodibenzofuran (OCDF)	E1613B			3030	1130	2120	1750	161		
Total Tetrachlorodibenzofuran (TCDF)	E1613B			855 J	326 J	235 J	321 J	16.7 J		
Total Pentachlorodibenzofuran (PeCDF)	E1613B			578 J	290 J	247 J	293 J	26.8 J		
Total Hexachlorodibenzofuran (HxCDF)	E1613B			1440 J	867 J	889 J	1270 J	72.9 J		

 Table G4-1

 Inner Waterway Post-Dredge Samples in Areas Subsequently Capped

			Data Set	Inner Waterway Subsurface Sediments Following Completion of Dredging and Prior to Capping					
	Location ID					WW-P1PM-09_20160113	WW-P1PM-10_20160113	WW-P1PM-11_20151023	
	Sample ID V					WW-P1PM-09-UD-20160113	WW-P1PM-10-UD-20160113	WW-P1PM-11-UD-20151023	
	Sample Date					1/13/2016	1/13/2016	10/23/2015	
	Depth	2 - 13 cm	2 - 11 cm	2 - 12 cm	2 - 13 cm	2 - 13 cm			
	Sample Type	N	N	N	N	N			
Matrix				SE	SE	SE	SE	SE	
			х	1241513	1241349	1241145	1241713	1241568	
	_		Y	642835	642984	642795	643030	643180	
		SQS	Other Reference Values						
Total Heptachlorodibenzofuran (HpCDF)	E1613B			3080 J	1460	1820 J	2150 J	209 J	
Total Dioxin/Furan TEQ 2005 (Mammal) (U = 1/2)				274 J	123 J	108 J	195 J	7 J	
Total Dioxin/Furan TEQ 2005 (Mammal) (U = 0)				274 J	124 J	109 J	196 J	L 8	

Detected concentration is greater than SMS_Marine_SCO_SCUMII screening level

Detected concentration is greater than WhatcomWW_Other_BSL screening level

Non-detected concentration is above one or more identified screening levels

Bold = Detected result

J = Estimated value

U = Compound analyzed, but not detected above detection limit

UJ = Compound analyzed, but not detected above estimated detection limit

Total LPAH are the total of acenaphthene, acenaphthylene, anthracene, fluorene, naphthalene, and phenanthrene. 2-Methylnapthalene is not included in the sum of LPAHs. Total HPAH are the total of benzo(a)anthracene, benzo(a)pyrene, benzo(x)fluoranthenes, benzo(g,h,i)perylene, chrysene, dibenzo(a,h)anthracene, fluoranthene, indeno(1,2,3-c,d)pyrene, and pyrene.

Table G4-2 Unit 1C Post-Dredging Samples of Un-Dredged Sediments

			Data Set		Samples	s of Undredged Materials - Uni	t 1C Following Completion of I	Dredging	
			Location ID	WW-P1PM-01_20160204	WW-P1PM-02_20160204	WW-P1PM-03_20160204	WW-P1PM-04_20160204	WW-P1PM-05_20160204	WW-P1PM-06_20160204
			Sample ID			_	- WW-P1PM-04-US-20160204		- WW-P1PM-06-US-20160204
			Sample Date	2/4/2016	2/4/2016	2/4/2016	2/4/2016	2/4/2016	2/4/2016
			Depth	7 - 23 cm	4 - 22 cm	3 - 28 cm	2 - 22 cm	5 - 30 cm	1 - 27 cm
			Sample Type	Ν	N	N	Ν	N	Ν
			Matrix	SE	SE	SE	SE	SE	SE
			х	1239589	1239698	1239735	1239839	1239875	1239984
			Y	641257	641148	641390	641280	641527	641421
			Other Reference						
		SQS	Values						
Conventional Parameters (pct)									
Total solids	TANash_solids			79.1	71.3	73.9	77.4	68.2	61.6
Metals (mg/kg)									
Mercury	SW7471A	0.41	1.2 (BSL)	L 8800.0	0.055 J	0.19 J	0.03 J	0.036 J	0.077 J
Dioxin Furans (ng/kg)									
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD)	E1613B			0.097 U	0.142 U	0.0987 U	0.1 U	0.0767 U	0.0926 U
1,2,3,7,8-Pentachlorodibenzo-p-dioxin (PeCDD)	E1613B			0.0876 U	0.11 U	0.282 J	0.123 U	0.106 U	0.36 J
1,2,3,4,7,8-Hexachlorodibenzo-p-dioxin (HxCDD)	E1613B			0.0868 U	0.0846 U	0.616 J	0.1 U	0.0975 U	0.652 J
1,2,3,6,7,8-Hexachlorodibenzo-p-dioxin (HxCDD)	E1613B			0.0883 U	0.125 J	3.18	0.0977 U	0.171 J	0.633 J
1,2,3,7,8,9-Hexachlorodibenzo-p-dioxin (HxCDD)	E1613B			0.0953 U	0.0977 U	1.15 J	0.109 U	0.113 U	0.571 J
1,2,3,4,6,7,8-Heptachlorodibenzo-p-dioxin (HpCDD)	E1613B			1.48 J	1.86 J	72.3	1.06 J	2.31 J	8.7
1,2,3,4,6,7,8,9-Octachlorodibenzo-p-dioxin (OCDD)	E1613B			16.5	13.7	710	10.1	19.5	42.6
2,3,7,8-Tetrachlorodibenzofuran (TCDF)	E1613B			0.0835 U	0.134 J	1.15	0.0858 U	0.103 U	1.35
1,2,3,7,8-Pentachlorodibenzofuran (PeCDF)	E1613B			0.0581 U	0.09 U	0.619 J	0.0625 U	0.0805 U	0.628 J
2,3,4,7,8-Pentachlorodibenzofuran (PeCDF)	E1613B			0.0586 U	0.0838 U	1.09 J	0.0533 U	0.0702 U	1.01 J
1,2,3,4,7,8-Hexachlorodibenzofuran (HxCDF)	E1613B			0.0536 U	0.0538 U	1.93 J	0.0502 U	0.0477 U	0.395 J
1,2,3,6,7,8-Hexachlorodibenzofuran (HxCDF)	E1613B			0.0522 U	0.0574 U	0.53 J	0.0509 U	0.0483 U	0.333 J
1,2,3,7,8,9-Hexachlorodibenzofuran (HxCDF)	E1613B			0.0815 U	0.0827 U	0.623 J	0.0784 U	0.0726 U	0.188 J
2,3,4,6,7,8-Hexachlorodibenzofuran (HxCDF)	E1613B			0.0546 U	0.0586 U	0.731 J	0.0531 U	0.051 U	0.353 J
1,2,3,4,6,7,8-Heptachlorodibenzofuran (HpCDF)	E1613B			0.239 J	0.296 J	16.7	0.089 U	0.51 J	1.3 J
1,2,3,4,7,8,9-Heptachlorodibenzofuran (HpCDF)	E1613B			0.106 U	0.0808 U	1.07 J	0.11 U	0.0993 U	0.0682 U
1,2,3,4,6,7,8,9-Octachlorodibenzofuran (OCDF)	E1613B			0.832 J	0.836 J	47.2	0.483 J	1.37 J	2.14 J
Total Dioxin/Furan TEQ 2005 (Mammal) (U = 1/2)			4 (Nat Backgd)	0.2 J	0.2 J	2.7 J	0.17 J	0.2 J	1.3 J
Total Dioxin/Furan TEQ 2005 (Mammal) (U = 0)			4 (Nat Backgd)	0.02 J	0.05 J	2.7 J	0.01 J	0.05 J	1.2 J

Detected concentration is greater than SMS_Marine_SCO_SCUMII screening level Detected concentration is greater than WhatcomWW_Other_BSL screening level Non-detected concentration is above one or more identified screening levels

Bold = Detected result

BSL = Whatcom Waterway bioaccumulation screening level (1.2 mg mercury/kg dry weight)

Nat Backgd = Natural background levels for sediments in Puget Sound

J = Estimated value

U = Compound analyzed, but not detected above detection limit

cm = centimeter ID = identification mg = milligram ng = nanogram pct = percent SQS = sediment quality standard TEQ = toxic equivalents

Table G4-3 Unit 1C Post-Dredging Samples of Dredging Residuals Layer

			Data Set	Unit 1C Post-Dredging Residuals							
			Location ID	WW-P1PM-01_20160204	WW-P1PM-02_20160204	WW-P1PM-03_20160204	WW-P1PM-04_20160204	WW-P1PM-05_20160204	WW-P1PM-06_20160204		
			Sample ID	-	- WW-P1PM-02-RE-20160204	- WW-P1PM-03-RE-20160204	- WW-P1PM-04-RE-20160204	- WW-P1PM-05-RE-20160204	- WW-P1PM-06-RE-20160204		
			Sample Date	2/4/2016	2/4/2016	2/4/2016	2/4/2016	2/4/2016	2/4/2016		
			Depth	0 - 7 cm	0 - 4 cm	0 - 3 cm	0 - 2 cm	0 - 5 cm	0 - 1 cm		
			Sample Type	N	N	N	N	N	Ν		
			Matrix	SE	SE	SE	SE	SE	SE		
			х	1239589	1239698	1239735	1239839	1239875	1239983.950		
			Y	641257	641148	641390	641280	641527	641421.034		
			Other Reference								
		SQS	Values								
Residuals Thickness (cm)											
Thickness	Field Measurement			7	4	3	2	5	1		
Conventional Parameters (pct)											
Total solids	TANash_solids			39.4	41.7	48.4	41.3	36.1	39.6		
Metals (mg/kg)											
Mercury	SW7471A	0.41	1.2 (BSL)	1.6 J	0.75 J	2.3 J	0.92 J	2.2 J	1.2 J		
Dioxin Furans (ng/kg)											
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD)	E1613B			0.0908 U	0.428 J	0.95	0.487 J	1.08	0.61		
1,2,3,7,8-Pentachlorodibenzo-p-dioxin (PeCDD)	E1613B			0.31 J	1.82 J	2.43 J	1.32 J	3.17	2.37 J		
1,2,3,4,7,8-Hexachlorodibenzo-p-dioxin (HxCDD)	E1613B			0.865 J	5.39	5.32	3.33	7.58	5.91		
1,2,3,6,7,8-Hexachlorodibenzo-p-dioxin (HxCDD)	E1613B			2.45 J	18.9	24.9	9.16	29.4	19.2		
1,2,3,7,8,9-Hexachlorodibenzo-p-dioxin (HxCDD)	E1613B			1.09 J	8.35	8.74	3.96	11.90	8.59		
1,2,3,4,6,7,8-Heptachlorodibenzo-p-dioxin (HpCDD)	E1613B			52.6	508	596	160	664	385		
1,2,3,4,6,7,8,9-Octachlorodibenzo-p-dioxin (OCDD)	E1613B			497	4240	5320	1090	7500 J	3100		
2,3,7,8-Tetrachlorodibenzofuran (TCDF)	E1613B			1.47	6.65	11	5.92	12.7	9.32		
1,2,3,7,8-Pentachlorodibenzofuran (PeCDF)	E1613B			0.467 J	2.26 J	5.29	1.74 J	4.83	2.95		
2,3,4,7,8-Pentachlorodibenzofuran (PeCDF)	E1613B			0.664 J	4.03	8.59	3.22	9.21	5.18		
1,2,3,4,7,8-Hexachlorodibenzofuran (HxCDF)	E1613B			0.888 J	5.67	12	4.34	11.5	6.21		
1,2,3,6,7,8-Hexachlorodibenzofuran (HxCDF)	E1613B			0.318 J	2.16 J	3.76	1.42 J	3.89	2.32 J		
1,2,3,7,8,9-Hexachlorodibenzofuran (HxCDF)	E1613B			0.359 J	2.03 J	3.7	1.44 J	3.89	2.33 J		
2,3,4,6,7,8-Hexachlorodibenzofuran (HxCDF)	E1613B			0.403 J	2.91	4.88	1.75 J	5.63	3.12		
1,2,3,4,6,7,8-Heptachlorodibenzofuran (HpCDF)	E1613B			8.65	63.9	130	24.7	129	53.2		
1,2,3,4,7,8,9-Heptachlorodibenzofuran (HpCDF)	E1613B			0.579 J	3.93	8.07	2.52	8.46	3.95		
1,2,3,4,6,7,8,9-Octachlorodibenzofuran (OCDF)	E1613B			27	202	642	76.4	471	166		
Total Dioxin/Furan TEQ 2005 (Mammal) (U = 1/2)				2.1 J	15.8 J	22.7J	8.2 J	26.2 J	15.7 J		
Total Dioxin/Furan TEQ 2005 (Mammal) (U = 0)				2.1 J	15.8 J	22.7 J	8.2 J	26.2 J	15.7 J		

Notes:

Detected concentration is greater than SMS_Marine_SCO_SCUMII screening level Detected concentration is greater than WhatcomWW_Other_BSL screening level Detected concentration is greater than Interpretive Framework screening level Non-detected concentration is above one or more identified screening levels **Bold = Detected result**

J = Estimated value

U = Compound analyzed, but not detected above detection limit

BSL = bioaccumulation site level cm = centimeter ID = identification mg = milligram ng = nanogram pct = percent SQS = sediment quality standard TEQ = toxic equivalents

 Table G4-4

 Unit 1C Surface Sediment Testing After Residuals Management

			Data Set			Unit	1C Surface Sediments Fo	ollowing Residuals Mar	nagement			
			Location ID	P1PM-01_201604	P1PM-02_201604	P1PM-03_201604	P1PM-04_201604	P1PM-05_201604	WW-P1PM-05_20160608	P1PM-06_201604	P1PM-06_201604	
			Sample ID	P1PM-01-SS-160401	P1PM-02-SS-160401	P1PM-03-SS-160401	P1PM-04-SS-160406		- WW-P1PM-05-060816	P1PM-06-SS-160406		
			Sample Date	4/1/2016	4/1/2016	4/1/2016	4/6/2016	4/6/2016	6/8/2016	4/6/2016	4/6/2016	
			Depth	0 - 10 cm	0 - 8 cm	0-10 cm	0 - 10 cm	0 - 10 cm				
			Sample Type	N	N	N	N	N	N	N	FD	Area-Wide Average
			Matrix	SE	SE	SE	SE	SE	SE	SE	SE	Concentration [2]
			x	1239601	1239699	1239734	1239831	1239874	1241344	1239980	1239980	
			Y	641269	641147	641393	641283	641526	642989	641431	641431	
		SMS_Marine		012200	011217	012050	011200	011010	012000	012102	011101	
			Other Reference									
			Values									
Conventional Parameters (pct)	1	-11	I		1	1	1		1			
Total organic carbon	Plumb 1981			0.52 J	0.595 J	0.425 J	0.343 J	2.15 J	1.4 J	1.02 J	0.893 J	
Total solids	SM2540G			86.04	78.16	81.59	90.67	66.58	71.8	79.25	77.33	
Metals (mg/kg)		· •	•						•		-	
Mercury	SW7471A	0.41	1.2	0.23	0.33	0.1	0.03	0.65 [1]	0.66 [1]	0.11	0.08	0.22
Dioxin Furans (ng/kg)												
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD)	E1613B			0.219 J	0.281 J	0.145 J	0.112 J	0.687 J		0.172 J	0.222 J	
1,2,3,7,8-Pentachlorodibenzo-p-dioxin (PeCDD)	E1613B			0.336 U	0.721 J	0.181 U	0.0518 U	4.95		0.355 U	0.396 U	
1,2,3,4,7,8-Hexachlorodibenzo-p-dioxin (HxCDD)	E1613B			0.358 U	1.08 J	0.279 U	0.0677 U	3.81		0.583 J	0.686 J	
1,2,3,6,7,8-Hexachlorodibenzo-p-dioxin (HxCDD)	E1613B			2.05	4.91	1.28	0.122 J	17.3		2.16	2.22 J	
1,2,3,7,8,9-Hexachlorodibenzo-p-dioxin (HxCDD)	E1613B			0.937 J	2.28 J	0.572 U	0.12 U	7.07		1.1	1.35	
1,2,3,4,6,7,8-Heptachlorodibenzo-p-dioxin (HpCDD)	E1613B			41.4	138	29.2	2.57 U	403		50.6	46.5	
1,2,3,4,6,7,8,9-Octachlorodibenzo-p-dioxin (OCDD)	E1613B			370	1360	265	25 U	3540		485	448	
Total Tetrachlorodibenzo-p-dioxin (TCDD)	E1613B			13.3 J	35.7 J	10.6 J	0.973 J	116 J		17.8 J	19.6 J	
Total Pentachlorodibenzo-p-dioxin (PeCDD)	E1613B			13.3 J	36.9 J	10.2 J	0.538 J	173		17.3 J	21 J	
Total Hexachlorodibenzo-p-dioxin (HxCDD)	E1613B			23.1 J	68.4 J	18.1 J	1.92 J	673 J		28.8	36.9 J	
Total Heptachlorodibenzo-p-dioxin (HpCDD)	E1613B			84.8 J	333 J	60.5 J	6.39 J	1880		110	100 J	
2,3,7,8-Tetrachlorodibenzofuran (TCDF)	E1613B			0.734 J	1.61	0.467 J	0.0199 J	4.04		0.597 J	0.552 J	
1,2,3,7,8-Pentachlorodibenzofuran (PeCDF)	E1613B			0.509 J	0.725 J	0.227 J	0.0319 U	1.6 J		0.255 J	0.236 J	
2,3,4,7,8-Pentachlorodibenzofuran (PeCDF)	E1613B			0.29 J	0.527 J	0.167 J	0.0319 U	1.26		0.198 J	0.19 J	
1,2,3,4,7,8-Hexachlorodibenzofuran (HxCDF)	E1613B			1.01 J	1.82	0.512 J	0.0558 J	4.47		0.875 J	0.625 J	
1,2,3,6,7,8-Hexachlorodibenzofuran (HxCDF)	E1613B			0.324 J	0.645 J	0.165 J	0.0498 U	1.56		0.327 J	0.259 J	
1,2,3,7,8,9-Hexachlorodibenzofuran (HxCDF)	E1613B			0.341 J	0.668 J	0.179 J	0.0717 J	1.38		0.291 J	0.272 J	
2,3,4,6,7,8-Hexachlorodibenzofuran (HxCDF)	E1613B			0.39 J	0.91 J	0.217 J	0.0518 U	2.4		0.422 J	0.344 J	
1,2,3,4,6,7,8-Heptachlorodibenzofuran (HpCDF)	E1613B			8.92	24.4	6.1	0.33 J	83.1		9.07	7.28	
1,2,3,4,7,8,9-Heptachlorodibenzofuran (HpCDF)	E1613B			0.684 J	1.34	0.414 J	0.0538 U	3.58		0.495 J	0.425 J	
1,2,3,4,6,7,8,9-Octachlorodibenzofuran (OCDF)	E1613B			30.3	91.8	19.1	0.981 J	224		25.8	23.1	
Total Tetrachlorodibenzofuran (TCDF)	E1613B			2.78 J	11.3 J	2.35 J	0.0759 J	23.8 J		3.27 J	3.19 J	
Total Pentachlorodibenzofuran (PeCDF)	E1613B			4.33 J	9.78 J	2.54 J	0.0562 J	23.8 J		3.15 J	3.03 J	
Total Hexachlorodibenzofuran (HxCDF)	E1613B			13.8 J	30.6 J	8.29 J	0.564 J	84.6 J		12.9 J	11.4 J	
Total Heptachlorodibenzofuran (HpCDF)	E1613B			33.5 J	95.6 J	22.1 J	1.09	285		30.6 J	25.5 J	
Total Dioxin/Furan TEQ 2005 (Mammal) (U = 1/2)			15 [2]	1.7 J	4.6 J	1.1 J	0.2 J	16.3 J		1.8 J	1.8 J	3.93
Total Dioxin/Furan TEQ 2005 (Mammal) (U = 0)				1.5 J	4.6 J	0.93 J	0.1 J	16.3 J		1.6 J	1.6 J	

Bold = Detected result

1. Confirmational bioassays were performed at location P1PM-05. Results demonstrated compliance with SMS interpretive criteria. Therefore, detected mercury levels do not represent an exceedance of the Site cleanup level.

2. Surface-weighted average concentrations were calculated for bioaccumulative compounds (mercury and dioxin/furans). Average concentrations for mercury and dioxin/furans were approximately equal to the respective natural background levels of these two compounds (0.2 mg/kg and 4 ng/kg) respectively.

J = Estimated value	cm = centimeter	mg = milligram
U = Compound analyzed, but not detected above detection limit	ID = identification	ng = nanogram

pct = percent SMS = Sediment Management Standards

Table G4-5

SMS Bioassay Testing Interpretive Criteria¹

Biological Test	Performan	ce Standard		Cleanup
Endpoint	Control	Reference	SQS	Screening Level
	Eol	haustorius estuarius	5	
			$M_T - M_C > 25\%$ and	$M_{T} - M_{C} > 30\%$
10-day mortality	M _C < 10%	M _R < 25%	M_T vs. M_R SD (p =	and $M_T vs. M_R SD$
			0.05)	(p = 0.05)
	Nean	thes arenaceodente	ata	
20-day growth and mortality	M _C < 10% and MIG _F > 0.72 mg/individual∙day	MIG _R /MIG _C > 0.80	$MIG_{T}/MIG_{R} < 0.85$ and $MIG_{T}/MIG_{R}SD$ (p = 0.05)	$MIG_{T}/MIG_{R} < 0.50$ and MIG_{T}/MIG_{R}SD (p = 0.05)
	Myt	ilus galloprovincial	is	
Larval Development	N _c /I > 0.70	N _R /N _C ≥ 0.65	N _T / N _R < 0.85 and N _T vs. N _R SD (p = 0.10)	$N_T / N_R > 0.70$ and N_T vs. N_R SD ($p = 0.10$)

Notes:

Source: Ecology 2015

1. These tests and parameters were developed based on SCUM II (2015) protocols.

C = control

F = final

I = stocking density

M = mortality

mg = milligram

MIG = mean individual growth at time final

R = reference

SD = significant difference

T = test

Table G4-6Results of Sediment Confirmational Bioassays (Station P1PM-05)

	Eohaustoriu	s estuarius	Ne	eanthes are	naceodenta	ıta	Mytilus galloprovincialis		
	10-Day Mortality (%)		20-Day Mortality (%)		-	Growth idual/day) ¹	Mean Normal Survival (%)		
Control	3	Pass QA	0	Pass QA	0.45	Pass QA	104.8	Pass QA	
Reference	3	Pass QA	0	Pass QA	0.44	Pass QA	98.2	Pass QA	
P1PM-05	4	Pass SCO	0	Pass SQS	0.43	Pass SQS	90.3	Pass SQS	

Notes:

Bioassay results were evaluated using SQS and/or CSL criteria, as defined in the Sediment Management Standards, Chapter 173-204 WAC and underlying guidance.

A summary of bioassay results, including all supporting laboratory reports and a QA summary, are included in this Appendix.

1. Growth as measured by ash-free dry weight. See bioassay lab report for full details.

CSL = cleanup screening level

mg = milligram

N/A = not applicable

QA = quality assurance

SCO = sediment cleanup objective

SQS = sediment quality standard

 Table G4-7

 Results of Confirmational Bioassay Testing (E. estuarius)

Sample	Replicate	Number Initiated	Number Surviving	Number Missing or Dead	Percentage Survival	Mean Survival (%)	SD	Mean Mortality (%)*	Mortality Comparison to Reference M _T - M _{R (%)}	Statistically Different than Reference (p = 0.05)	Fails SQS? ¹ >25%	Fails CSL? ² >30%
	1	20	20	0	100							
	2	20	19	1	95							
Positive Control	3	20	19	1	95	97.0	2.7	3.0				
	4	22	22	0	100							
	5	20	19	1	95							
	1	20	19	1	95							
	2	20	20	0	100							
Carr Inlet Reference Area	3	20	19	1	95	96.0	2.2	4.0				
	4	20	19	1	95							
	5	20	19	1	95							
	1	20	18	2	90							
	2	20	20	0	100							
WW-P1PM-05	3	20	19	1	95	96.0	4.2	4.0	0.0	No	No	No
	4	20	19	1	95]						
	5	22	22	0	100							

Test was performed according to PSEP with SCUM II and SMARM revision

Species used was Eohaustorius estuarius

1. SQS: Statistical Significance and M_T >25%

2. CSL: Statistical Significance and M_T - M_R >30%

CSL = cleanup screening level

M_c = Control Mortality

M_R = Reference Mortality

M_T = Treatment Mortality

PSEP = Puget Sound Estuary Program

SCUM II = Sediment Cleanup User's Manual II

SD = standard deviation

SMARM = Sediment Management Annual Review Meeting

SQS = sediment quality standard

 Table G4-8

 Results of Confirmational Bioassay Testing (N. arenaceodentata)

										Indiv	vidual Grow	th (mg/ind	/day)					
Sample	Replicate	Number Initiated	Number Surviving	Mean Mortality	Dry Weight	Mean	Standard Deviation	Statisically Less than Reference? (p=0.05)	MIG Relative to Reference MIG _T /MIG _R	Fails SCO? ¹ <0.70	Fails CSL? ² <0.50	AFDW	Mean	Standard Deviation	Statisically Less than Reference? (p=0.05)	MIG ¹ Relative to Reference MIG _T /MIG _R	Fails SQS? ² <0.70	Fails CSL? ³ <0.50
	1	5	5		0.710							0.349						
	2	5	5		0.736							0.443						
Positive Control	3	5	5	0	0.699	0.781	0.117					0.398	0.450	0.088				
	4	5	5		0.983							0.580						
	5	5	5		0.779							0.480						
	1	5	5		0.592							0.394						
	2	5	5		0.780							0.540						
Carr Inlet Reference Area	3	5	5	0	0.768	0.651	0.116					0.501	0.444	0.072				
	4	5	5		0.522							0.373						
	5	5	5		0.593 0.628							0.413 0.444						
	2	5	5		0.626							0.444						
WW-P1PM-05	3	5	5	0	0.516	0.591	0.073	No	0.907	No	No	0.382	0.430	0.032	No	0.967	No	No
	4	5	5		0.683	0.571	0.075	NO	0.707	NO		0.464	0.430	0.052	NO	0.707	NU	NO
	5	5	5		0.610							0.443						

Test was performed according to PSEP with SCUM II and SMARM revision Test was performed using *Neathes arenaceodentata*

1. SQS: Statistical Significance and $MIG_T/MIG_R < 70\%$

2. CSL: Statistical Significance and $MIG_T / MIG_R < 50\%$

AFDW = Ash Free Dry Weight

CSL = cleanup screening level

ind = individual

mg = milligrams

MIG = Mean Individual Growth

MIG_R = Reference Mean Individual Growth

MIG_T = Treatment Mean Individual Growth

PSEP = Puget Sound Estuary Program

SCUM II = Sediment Cleanup User's Manual II

SD = significant difference

SMARM = Sediment Management Annual Review Meeting

SQS = sediment quality standard

Table G4-9Results of Confirmational Bioassay Testing (*M. gallaprovincialis*)

Sample	Replicate	Number Normal	Number Abnormal	Mean Normal (N)	Standard Deviation	N _T / N _R	Statistically Less than Reference? (p=0.10)	Fails SQS? ¹ <0.85	Fails CSL? ² <0.70
	1	289	7						
	2	296	5						
Positive Control	3	268	2	271.0	21.3				
	4	256	6						
	5	246	1						
	1	255	3						
	2	281	2						
Carr Inlet Reference Area	3	219	2	254.2	22.5				
	4	262	4						
	5	254	10						
	1	253	2						
	2	214	9						
WW-P1PM-05	3	214	9	233.6	18.3	0.92	No	No	No
	4	243	8]					
	5	244	7						

Test was performed according to PSEP with SCUM II and SMARM revision Test was performed using *Mytilus galloprovincialis*

1. SQS: Statistical Significance and $N_T/N_R < 0.85$

2. CSL: Statistical Significance and $N_T / N_R < 0.70$

CSL = cleanup screening level

I = Mean initial count (stocking density); 258.6

N = Number Normal

N_c = Mean Control Normal

N_R = Mean Reference Normal

PSEP = Puget Sound Estuary Program

SCUM II = Sediment Cleanup User's Manual II

SMARM = Sediment Management Annual Review Meeting

SQS = sediment quality standard

Table G5-1 Results of Tissue Testing (Adult Dungeness Crab)

	Testing Area			Whatcom Wat	erway Site Area		
	Location ID	WW-MNR-03_20160610	WW-MNR-03_20160610	WW-MNR-04_20160610	WW-MNR-04_20160610	WW-MNR-07_20160610	WW-MNR-07_20160610
	Sample ID	WW-MNR-03-CM-COMP1-160610	WW-MNR-03-CM-COMP2-160610	WW-MNR-04-CM-COMP1-160610	WW-MNR-04-CM-COMP2-160610	WW-MNR-07-CM-COMP1-160610	WW-MNR-07-CM-COMP2-160610
	Sample Date	6/10/2016	6/10/2016	6/10/2016	6/10/2016	6/10/2016	6/10/2016
	Sample Type	Ν	N	N	N	N	N
	Matrix	ТА	ТА	ТА	ТА	ТА	ТА
	х	1237324	1237324	1237148	1237148	1238791	1238791
	Y	643042	643042	639909	639909	641464	641464
Conventional Pa	rameters (pct)						
Lipids	BLIGH&DYER	0.339 J	0.329 J	0.48 J	0.319 J	0.4 J	0.408 J
Total solids	SM2540G	21.4	21.1	21.52	21.38	22.46	21.96
Metals (mg/kg w	vet weight)						
Mercury	SW7471A	0.07	0.077	0.075	0.073	0.098	0.111

Bold = Detected result

J = Estimated value

ID = identification

kg = kilogram

mg = milligram

pct = percent

Table G5-1 Results of Tissue Testing (Adult Dungeness Crab)

	Testing Area			Samish Bay R	eference Area		
	Location ID	WW-REF-01_20160610	WW-REF-01_20160610	WW-REF-01_20160610	WW-REF-05_20160610	WW-REF-05_20160610	WW-REF-05_20160610
	Sample ID	WW-REF-01-CM-COMP1-160610	WW-REF-01-CM-COMP2-160610	WW-REF-01-CM-COMP3-160610	WW-REF-05-CM-COMP1-160610	WW-REF-05-CM-COMP2-160610	WW-REF-05-CM-COMP3-160610
	Sample Date	6/10/2016	6/10/2016	6/10/2016	6/10/2016	6/10/2016	6/10/2016
	Sample Type	N	N	N	N	N	N
	Matrix	ТА	ТА	ТА	ТА	ТА	ТА
	х	1228732	1228732	1228732	1236803	1236803	1236803
	Y	581841	581841	581841	587227	587227	587227
Conventional Pa	arameters (pct)						
Lipids	BLIGH&DYER	0.418 J	0.378 J	0.41 J	0.419 J	0.479 J	0.359 J
Total solids	SM2540G	21.98	22.2	22.22	19.8	20.38	19.1
Metals (mg/kg v	wet weight)						
Mercury	SW7471A	0.045	0.05	0.047	0.068	0.06	0.072

Bold = Detected result

J = Estimated value

ID = identification

kg = kilogram

mg = milligram

pct = percent

Table G5-2 Results of Tissue Testing (Juvenile Dungeness Crab)

	Task	WWP1_PostConstruct	WWP1_PostConstruct	WWP1_PostConstruct	WWP1_PostConstruct	WWP1_PostConstruct
	Location ID	WW-P1CM-12_20160610	WW-P1CM-12_20160610	WW-P1CM-12_20160610	WW-P1CM-12_20160610	WW-P1CM-12_20160610
	Sample ID	P1CM-12-CM-COMP1-160610	P1CM-12-CM-COMP2-160610	P1CM-12-CM-COMP3-160610	P1CM-12-CM-COMP4-160610	P1CM-12-CM-COMP5-160610
	Sample Date	6/10/2016	6/10/2016	6/10/2016	6/10/2016	6/10/2016
	Sample Type	N	N	N	N	N
	Matrix	ТА	ТА	ТА	ТА	ТА
	х	1240847	1240847	1240847	1240847	1240847
	Y	642753	642753	642753	642753	642753
Conventional Pa	arameters (pct)					
Lipids	BLIGH&DYER	1.53	1.55	1.47	1.35	1.25
Total solids	SM2540G	29.86	25	26.09	26.38	26.54
Metals (mg/kg)						
Mercury	SW7471A	0.032	0.031	0.03	0.032	0.03

Bold = Detected result

ID = identification

kg = kilogram

mg = milligram

pct = percent

WWP1_PostConstruct WWP1_PostConstruct WWP1_PostConstruct Task WWP1_PostConstruct Location ID WW-RE-06_20160610 WW-RE-06_20160610 WW-RE-06_20160610 WW-RE-06_20160610 Sample ID WW-RE-06-CM-COMP1-160610 WW-RE-06-CM-COMP2-160610 WW-RE-06-CM-COMP3-160610 WW-RE-06-CM-COMP4-16061 6/10/2016 6/10/2016 Sample Date 6/10/2016 6/10/2016 Sample Type Ν Ν Ν Ν Matrix ΤА ΤА ΤА ΤА 1207176 1207176 1207176 1207176 Х 634851 634851 634851 634851 γ **Conventional Parameters (pct)** Lipids BLIGH&DYER 0.448 0.499 0.469 0.466 Total solids SM2540G 26.34 26.35 26.67 26.55 Metals (mg/kg) Mercury SW7471A 0.024 0.024 0.023 0.024

Table G5-2 Results of Tissue Testing (Juvenile Dungeness Crab)

Notes:

Bold = Detected result

ID = identification

kg = kilogram

mg = milligram

pct = percent

	WWP1_PostConstruct
	WW-RE-06_20160610
510	WW-RE-06-CM-COMP5-160610
	6/10/2016
	N
	ТА
	1207176
	634851
	0.498
	26.65
	0.023

Table G5-3Results Summary for Co-Located Caged Clam Tissue, Porewater, and Surface Sediment Grabs

	Data Type				Clam Tissue Data							
	Data Set	Initial Clam Tissue		Site MNR Areas		Phase 1 Construction Areas						
	Location ID	T0_REF	WW-MNR-03	WW-MNR-04	WW-MNR-07	WW-P1CM-01	WW-P1CM-07	WW-P1CM-07				
	Sample ID	WW-CLAM-T0-060616	WW-MNR-03-CL-160707	WW-MNR-04-CL-160707	WW-MNR-07-CL-160707	WW-P1CM-01-CL-160707	WW-P1CM-07-CL-160707	-				
	Sample Date	6/6/2016	7/7/2016	7/7/2016	7/7/2016	7/7/2016	7/7/2016	-				
	Sample Type	N	N	N	N	N	N	-				
	Х	-	1237324	1237148	1238791	1239694	1241344	1241344				
	Y	-	643042	639909	641464	641212	642989	642989				
Conventional Parameters (p	ct)											
Lipids	BLIGH&DYER	0.814	1.19	1.29	1.1	0.857	0.797	-				
Total solids	SM2540G	12.69	15	15.66	14.59	12.58	12.48	-				
Metals (mg/kg wet weight)												
Mercury	SW7471A	0.02 U	0.02 U	0.02 U	0.02 U	0.02	0.02 U	-				

	Data Type				Co-Located Sediment Da	ta							
	Data Set	Initial Clam Tissue		Site MNR Areas		Phase 1 Construction Areas							
	Sample ID	-	WW-MNR-03-SS-160602	WW-MNR-04-SS-160602	WW-MNR-07-SS-160602	WW-P1CM-01-SS-160602	- [2]	-					
	Sample Date	-	6/2/2016	6/2/2016	6/2/2016	6/2/2016	-	-					
	Depth	-	0 - 10 cm	0 - 10 cm	0 - 10 cm	0 - 10 cm	-	-					
	Sample Type	-	N	N	Ν	N	-	-					
Conventional Parameters (p	oct)												
Total organic carbon	Plumb 1981	-	1.95	2.2	2.02	1.39	-	-					
Total solids	SM2540G	-	51.58	44.39	47.75	68.99	-	-					
Metals (mg/kg wet weight)													
Mercury	SW7471A	-	0.26	0.19	0.64 [1]	0.18	-	-					

	Data Type				Co-Located Sediment Data Initial Clam Tissue Site MNR Areas Phase 1 Construction Areas													
	Data Set	Initial Clam Tissue		Phase 1 Construction Areas														
	Sample ID	-	WW-MNR-03-160613	WW-MNR-04-160613	WW-MNR-07-160613	WW-P1CM-01-160613	WW-P1CM-07-160613	WW-P1CM-57-160613										
	Sample Date	-	6/14/2016	6/14/2016	6/14/2016	6/14/2016	6/14/2016	6/14/2016										
	Sample Type	-	N	N	Ν	Ν	Ν	FD										
Metals (porewater) (µg/L)	·		-															
Mercury	SW7470A	-	0.0055 J	0.0056 J	0.007 J	0.0085 J	0.006 J	0.0058 J										
Metals, Dissolved (porewa	ter) (µg/L)																	
Mercury SW7470A		-	0.02 U	0.0051 J	0.0028 J	0.0056 J	0.003 J	0.0038 J										

Notes:

Bold = Detected result

1. Mercury levels at this station exceeded the SCO (0.41 mg/kg) but were lower than previous sediment mercury concentrations measured in this area during the RIFS. Samples collected from these areas have been previously shown to pass confirmational bioassay testing.

2. Surface sediment sample at location P1PM-07 was comprised of subangular gravel, presumptively capping material. Because of surface composition, gravel was caught in the jaws of the sampler and no sample was collected after multiple attempts.

3. Porewater was not collected at stations REF-02 and REF-04 because NMDS sampler screens were damaged while in-situ.

J = Estimated value

U = Compound analyzed, but not detected above detection limit

μg = microgram	ID = identification	L = liter	MNR = monitored natural recovery
cm = centimeter	kg = kilogram	mg = milligram	pct = percent

Table G5-3 Results Summary for Co-Located Caged Clam Tissue, Porewater, and Surface Sediment Grabs

	Data Type			Clam Tissue Data		
	Data Set		Sa	amish Bay Reference Area		
	Location ID	WW-REF-01	WW-REF-02	WW-REF-03	WW-REF-04	V
	Sample ID	WW-REF-01-CL-160711	WW-REF-02-CL-160711	WW-REF-03-CL-160711	WW-REF-04-CL-160711	WW-R
	Sample Date	7/11/2016	7/11/2016	7/11/2016	7/11/2016	
	Sample Type	Ν	N	N	N	
	Х	1228732	1228772	1232815	1232822	
	Y	581841	580603	585638	583483	
Conventional Parameter	rs (pct)					
Lipids	BLIGH&DYER	0.929	1.36	0.959	1.06	
Total solids	SM2540G	13.13	15.98	13.39	13.94	
Metals (mg/kg wet weig	;ht)					
Mercury	SW7471A	0.02 U	0.02 U	0.02 U	0.02 U	

	Data Type		C	o-Located Sediment Data		
	Data Set		Sa	mish Bay Reference Area		
	Sample ID	WW-REF-01-SS-060816	WW-REF-02-SS-160601	WW-REF-03-SS-060816	WW-REF-04-SS-160601	WW-R
	Sample Date	6/8/2016	6/1/2016	6/8/2016	6/1/2016	1
	Depth	0 - 10 cm	0 - 10 cm	0 - 10 cm	0 - 10 cm	1
	Sample Type	Ν	N	N	N	
Conventional Parameters (p	oct)					
Total organic carbon	Plumb 1981	1.78 J	0.408	2.14 J	0.774	
Total solids	SM2540G	43.91	75.42	40.21	70.46	
Metals (mg/kg wet weight)						
Mercury	SW7471A	0.09	0.03 U	0.1	0.04 U	

	Data Type		Co	o-Located Sediment Data		
	Data Set		Sa	mish Bay Reference Area		
	Sample ID	WW-REF-01-160628	- [3]	WW-REF-03-160628	- [3]	WW-
	Sample Date	6/28/2016	-	6/28/2016	-	6
	Sample Type	Ν	-	Ν	-	
Metals (porewater) (µg/L)	-					
Mercury	SW7470A	0.0074 J	-	0.007 J	-	
Metals, Dissolved (porewat	er) (µg/L)					
Mercury	SW7470A	0.02 U	-	0.0042 J	-	

WW-REF-05
W-REF-05-CL-160711
7/11/2016
N
1236803
587227
0.984
14.05
0.02 U
0.02 0
W-REF-05-SS-060816
6/8/2016
0 - 10 cm
N
1.7 J
44.93
44.75
0.1
0.1
/W-REF-05-160628
6/28/2016
N
0.0071 J

0.0053 J

Table G6-1Summary of Laboratory Testing Data Packages and Completed Data Validation

	Matrix			Lab Report		Validator	Validation	Validation	Validation
Sample Date(s)	Туре	Task Name	Laboratory Name	Number	Lab Report Location	Name	Number	Location	Level
Soil and Water Testi	ng			·	-	-	-	-	-
10/28/2014	Soil	Cap sediment testing (imported source material)	ALS Environmental	EV14100185	Attachment C (Disk)	Note 1			
11/13/2014	Soil	Cap sediment testing (imported source material)	Analytical Resources Inc.	ZK23	Attachment C (Disk)	Note 1			
4/21/2015	Soil	Cap sediment testing (imported source material)	Analytical Resources Inc.	AES8	Attachment C (Disk)	Note 1			
8/7/2015	Soil	Soil sampling from shoreline debris removal at Laurel Street Area	Analytical Resources Inc.	AKL4	Attachment C (Disk)	LDC	36153B	Attachment A	Stage2A/2B
8/19/2015	Soil	Soil sampling from shoreline debris removal at Laurel Street Area	Analytical Resources Inc.	ALC4	Attachment C (Disk)	LDC	36153E	Attachment A	Stage2A/2B
8/19/2015	Soil	Cap sediment testing (imported source material)	Analytical Resources Inc.	ALC4	Attachment C (Disk)	LDC	36153E	Attachment A	Stage2A/2B
12/4/2015	Soil	Soil sampling from shoreline areas of Central Waterfront site	Analytical Resources Inc.	ASF1	Attachment C (Disk)	LDC	35571	Attachment A	EPAStage2B
12/4/2015	Soil	Soil sampling from shoreline areas of Log Pond Area	Analytical Resources Inc.	ASF1	Attachment C (Disk)	LDC	35571	Attachment A	EPAStage2B
12/29/2015	Soil	Soil sampling from shoreline areas of Central Waterfront site	Analytical Resources Inc.	ATM7	Attachment C (Disk)	LDC	36153G	Attachment A	Stage2A/2B
12/29/2015	Soil	Soil sampling from shoreline areas of Log Pond Area	Analytical Resources Inc.	ATM7	Attachment C (Disk)	LDC	36153G	Attachment A	Stage2A/2B
12/29/2015	Soil	Soil sampling from shoreline areas of Central Waterfront site	Analytical Resources Inc.	AUG3	Attachment C (Disk)	LDC	361531	Attachment A	Stage2A/2B
1/5/2016	Soil	Soil sampling from Foam Tank demolition and removal	Analytical Resources Inc.	ATT7	Attachment C (Disk)	LDC	36153H	Attachment A	Stage2A/2B
1/15/2016	Water	Water sampling from Barge Ramp dewatering	Analytical Resources Inc.	AUH8	Attachment C (Disk)	LDC	36153L	Attachment A	Stage2A/2B
3/7/2016	Soil	Soil sampling from Foam Tank demolition and removal	Analytical Resources Inc.	AXD6	Attachment C (Disk)	LDC	36153N	Attachment A	Stage2A/2B
Sediment Sampling									
10/23/2015	Sediment	Inner Waterway Sediment Sampling	Analytical Resources Inc.	API0	Attachment C (Disk)	LDC	36153F	Attachment A	Stage2A/2B
1/13/2016	Sediment	Inner Waterway Sediment Sampling	Analytical Resources Inc.	AUC7	Attachment C (Disk)	LDC	35882	Attachment A	EPAStage2B
2/4/2016	Sediment	Post-Dredge Sediment Sampling in BST (D/F only)	Vista Analytical Laboratory	1600098	Attachment C (Disk)	LDC	36153X	Attachment A	Stage2A/2B
2/4/2016	Sediment	Post-Dredge Sediment Sampling in BST (D/F only)	Vista Analytical Laboratory	1600099	Attachment C (Disk)	LDC	36153Y	Attachment A	Stage2A/2B
2/4/2016	Sediment	Post-Dredge Sediment Sampling in BST	Test America	580-57120-1	Attachment C (Disk)	LDC	36153W	Attachment A	Stage2A/2B
4/1/2016	Sediment	Post-Cap Sediment Sampling in BST	Analytical Resources Inc.	AYV2	Attachment C (Disk)	LDC	36382	Attachment A	EPAStage2B
6/8/2016	Sediment	P1PM-05 Sediment Grab	Analytical Resources Inc.	BBT9	Attachment C (Disk)	LDC	37027	Attachment A	EPAStage2B
6/9/2016	Sediment	P1PM-05 Sediment Grab Bioassay Data	Ramboll Environ	90716.01	Attachment C (Disk)	AQ	-	Attachment B	Other
2/2/2016	Water	Rinse Blank for Post-Dredge Sediment Sampling in BST (D/F only)	Test America	580-57024-2	Attachment C (Disk)	LDC	36153T	Attachment A	Stage2A/2B
Crab Tissue Testing									
6/10/2016	Tissue	Adult Dungeness Crab Tissue	Analytical Resources Inc.	BBW0	Attachment C (Disk)	LDC	36690	Attachment A	EPAStage2B
6/10/2016	Tissue	Juvenile Dungeness Crab Tissue	Analytical Resources Inc.	BCB2	Attachment C (Disk)	LDC	36690	Attachment A	EPAStage2B
Co-located Porewate	er, Sediment	, and Clam Tissue Testing							
6/13/2016	Porewater	Co-located Porewater Sampling	Analytical Resources Inc.	BBY4	Attachment C (Disk)	LDC	37027	Attachment A	EPAStage2B
6/13/2016	Porewater	Co-located Porewater Sampling	Analytical Resources Inc.	BCS7	Attachment C (Disk)	LDC	36716	Attachment A	EPAStage2B
6/8/2016	Sediment	Co-located Sediment Sampling	Analytical Resources Inc.	BBS7	Attachment C (Disk)	LDC	36703	Attachment A	EPAStage2B
6/1/2016-6/2/2016	Sediment	Co-located Sediment Sampling	Analytical Resources Inc.	BBO6	Attachment C (Disk)	LDC	37027	Attachment A	EPAStage2B
7/11/2016	Tissue	Co-located Clam Tissue from Reference Areas	Analytical Resources Inc.	BDG1	Attachment C (Disk)	LDC	36859	Attachment A	EPAStage2B
6/6/2016	Tissue	Clam Tissue Time Zero	Analytical Resources Inc.	BDH4	Attachment C (Disk)	LDC	36859	Attachment A	EPAStage2B
7/7/2016	Tissue	Co-located Clam Tissue from Site and MNR Areas	Analytical Resources Inc.	BDH5	Attachment C (Disk)	LDC	36859	Attachment A	EPAStage2B

Note

1. Contractor submittal; not subject to data validation requirements.

ATTACHMENT A DATA VALIDATION REPORTS

Anchor QEA, LLC 720 Olive Way, Suite 1900 Seattle, WA 98101 ATTN: Ms. Joy Dunay August 2, 2016

SUBJECT: Whatcom Waterway, Data Validation

Dear Ms. Dunay,

Enclosed is the final validation report for the fractions listed below. This SDG was received on July 18, 2016. Attachment 1 is a summary of the samples that were reviewed for each analysis.

LDC Project #36703:

SDG # Fraction

BBS7 Mercury, Wet Chemistry

The data validation was performed under Stage 2B guidelines. The analyses were validated using the following documents, as applicable to each method:

- USEPA Contract Laboratory National Functional Guidelines for Inorganic Superfund Data Review, January 2010
- EPA SW 846, Third Edition, Test Methods for Evaluating Solid Waste, update 1, July 1992; update IIA, August 1993; update II, September 1994; update IIB, January 1995; update III, December 1996; update IIIA, April 1998; IIIB, November 2004; Update IV, February 2007; Update V, July 2014

Please feel free to contact us if you have any questions.

Sincerely,

Christina Rink Project Manager/Chemist

	HC		Desarra da												_	nent		<u></u>	1			Tanas.						Adda		ala at	a e ^t ali a	Falls.	10.4.1.43	11.00		
	EDD Sta	ge 2B			C	#36	703	3 (A	ncl	nor	Er	vire	onr	ner	tal	-Se	att	le \	NA	1 1	Vha	itco)m	Wa	ter	way	y)									
DC	SDG#	DATE REC'D	(3) DATE DUE	H (747	lg 71A)	тс (Plu		To Sol (254	ids	4 4 10																										
Matrix:	Water/Sedime	ent		W	s	w	s	w	s	w	s	w	s	w	s	w	s	w	s	w	s	w	s	w	s	w	s	w	s	w	s	w	s	w	s	w
A	BBS7	07/18/16	08/08/16	0	3	0	4	0	4																										\square	
																																				-
																																			_	_
																																				\neg
															_																					
_				-									-																							_
																																			 	
otal	J/CR			0	3	0	4	0	4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Shaded cells indicate Stage 4 validation (all other cells are Stage 2B validation). These sample counts do not include MS, MSD, or DUP's.

L:\Anchor\Whatcom\36703ST.wpd

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name: Whatcom Waterway

LDC Report Date: August 2, 2016

Parameters: Mercury

Validation Level: Stage 2B

Laboratory: Analytical Resources, Inc.

Sample Delivery Group (SDG): BBS7

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
WW-REF-01-SS-060816	BBS7C	Sediment	06/08/16
WW-REF-03-SS-060816	BBS7D	Sediment	06/08/16
WW-REF-05-SS-060816	BBS7E	Sediment	06/08/16
WW-REF-01-SS-060816MS	BBS7CMS	Sediment	06/08/16
WW-REF-01-SS-060816DUP	BBS7CDUP	Sediment	06/08/16

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines (CLPNFG) for Inorganic Superfund Data Review (January 2010). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Mercury by Environmental Protection Agency (EPA) SW 846 Method 7471A

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to nonconformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition.

All technical holding time requirements were met.

II. Instrument Calibration

Initial and continuing calibrations were performed as required by the method.

The initial calibration verification (ICV) and continuing calibration verification (CCV) standards were within QC limits.

III. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks with the following exceptions:

Blank ID	Analyte	Maximum Concentration	Associated Samples
PB (prep blank)	Mercury	0.0025 mg/Kg	All samples in SDG BBS7

Data qualification by the laboratory blanks was based on the maximum contaminant concentration in the laboratory blanks in the analysis of each analyte. The sample concentrations were either not detected or were significantly greater (>5X blank contaminants) than the concentrations found in the associated laboratory blanks.

IV. Field Blanks

No field blanks were identified in this SDG.

V. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits.

VI. Duplicate Sample Analysis

Duplicate (DUP) sample analysis was performed on an associated project sample. Results were within QC limits.

VII. Laboratory Control Samples

Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

VIII. Field Duplicates

No field duplicates were identified in this SDG.

IX. Sample Result Verification

Raw data were not reviewed for Stage 2B validation.

X. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

The quality control criteria reviewed were met and are considered acceptable. Based upon the data validation all results are considered valid and usable for all purposes.

Whatcom Waterway Mercury - Data Qualification Summary - SDG BBS7

No Sample Data Qualified in this SDG

Whatcom Waterway Mercury - Laboratory Blank Data Qualification Summary - SDG BBS7

No Sample Data Qualified in this SDG

ALIDATION COMPLETENESS	WORKSHEET
------------------------	-----------

Stage 2B

Laboratory: Analytical Resources, Inc

LDC #: 36703A4c

SDG #: BBS7

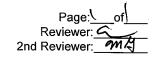
METHOD: Mercury (EPA SW 846 Method 7471A)

۷

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
١.	Sample receipt/Technical holding times	A,A	
11.	Instrument Calibration	A	
Ш.	Laboratory Blanks	SW	
IV.	Field Blanks	N	
V.	Matrix Spike/Matrix Spike Duplicates	A	MS
VI.	Duplicate sample analysis	A	<u>Of</u>
VII.	Laboratory control samples	A	LCS
VIII.	Field Duplicates	\mathbb{N}	
IX.	Sample Result Verification	N/	
x	Overall Assessment of Data	IA	

Note:


A = Acceptable N = Not provided/applicable SW = See worksheet ND = No compounds detected R = Rinsate FB = Field blank D = Duplicate TB = Trip blank EB = Equipment blank SB=Source blank OTHER:

	Client ID	Lab ID	Matrix	Date
1	WW-REF-01-SS-060816	BBS7C	Sediment	06/08/16
2	WW-REF-03-SS-060816	BBS7D	Sediment	06/08/16
2 3 4	WW-REF-05-SS-060816	BBS7E	Sediment	06/08/16
4	Al ms	XIMS	1	
5	AL DUQ	LOÚP	2	
6				
7				
8				
9				
10				
11				
12				
13				
14				
14 15 16				
16				
Notes				

VALIDATION FINDINGS WORKSHEET <u>PB/ICB/CCB QUALIFIED SAMPLES</u>

All

METHOD: Trace metals (EPA SW 864 Method 6010B/6020/7000) Sample Concentration units, unless otherwise noted: <u>mg/Kg</u> Soil preparation factor applied: _____ Associated Samples:

Second Second	an Annae an Annae Annae an Annae	na se la factoria de la composición de La composición de la c		No. Anna Million	an tarihi di Marina	and Salaman (Sec. 1997)	s	ample Identifi	cation		
Analyte	Maximum PB ^a (mg/Kg)	Maximum ICB/CCB ^a (ug/L)		No qualifiers (≥5x)							
Hg	0.0025		0.0125								

Samples with analyte concentrations within five times the associated ICB, CCB or PB concentration are listed above with the identifications from the Validation Completeness Worksheet. These sample results were qualified as not detected, "U".

Note: a - The listed analyte concentration is the highest ICB, CCB, or PB detected in the analysis of each element.

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name: Whatcom Waterway

LDC Report Date: July 29, 2016

Parameters: Wet Chemistry

Validation Level: Stage 2B

Laboratory: Analytical Resources, Inc.

Sample Delivery Group (SDG): BBS7

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
WW-P1PM-05-060816	BBS7B	Sediment	06/08/16
WW-REF-01-SS-060816	BBS7C	Sediment	06/08/16
WW-REF-03-SS-060816	BBS7D	Sediment	06/08/16
WW-REF-05-SS-060816	BBS7E	Sediment	06/08/16
WW-P1PM-05-060816MS	BBS7BMS	Sediment	06/08/16
WW-P1PM-05-060816DUP	BBS7BDUP	Sediment	06/08/16
WW-P1PM-05-060816TRP	BBS7BTRP	Sediment	06/08/16

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines (CLPNFG) for Inorganic Superfund Data Review (January 2010). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following methods:

Total Solids by Standard Method 2540G Total Organic Carbon by Plumb Method

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to nonconformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition.

All technical holding time requirements were met.

II. Initial Calibration

All criteria for the initial calibration of each method were met.

III. Continuing Calibration

Continuing calibration frequency and analysis criteria were met for each method when applicable.

IV. Laboratory Blanks

Laboratory blanks were analyzed as required by the methods. No contaminants were found in the laboratory blanks.

V. Field Blanks

No field blanks were identified in this SDG.

VI. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits with the following exceptions:

Spike ID (Associated Samples)	Analyte	%R (Limits)	Flag	A or P
WW-P1PM-05-060816MS (All samples in SDG BBS7)	Total organic carbon	68.9 (75-125)	J (all detects)	A

VII. Triplicate Sample Analysis

Triplicate (TRP) sample analysis was performed on an associated project sample. Results were within QC limits with the following exceptions:

TRP ID (Associated Samples)	Analyte	%RSD (Limits)	Difference (Limits)	Flag	A or P
WW-P1PM-05-060816TRP (All samples in SDG BBS7)	Total organic carbon	21.4 (≤20)	-	J (all detects)	A

VIII. Laboratory Control Samples/ Standard Reference Materials

Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

Standard reference materials (SRM) were analyzed as required by the methods. The results were within QC limits.

IX. Field Duplicates

No field duplicates were identified in this SDG.

X. Sample Result Verification

Raw data were not reviewed for Stage 2B validation.

XI. Overall Assessment of Data

The analysis was conducted within all specifications of the methods. No results were rejected in this SDG.

Due to MS %R and TRP %RSD, data were qualified as estimated in four samples.

The quality control criteria reviewed, other than those discussed above, were met and are considered acceptable. Sample results that were found to be estimated (J) are usable for limited purposes only. Based upon the data validation all other results are considered valid and usable for all purposes.

Whatcom Waterway Wet Chemistry - Data Qualification Summary - SDG BBS7

Sample	Analyte	Flag	A or P	Reason
WW-P1PM-05-060816 WW-REF-01-SS-060816 WW-REF-03-SS-060816 WW-REF-05-SS-060816	Total organic carbon	J (all detects)	A	Matrix spike (%R)
WW-P1PM-05-060816 WW-REF-01-SS-060816 WW-REF-03-SS-060816 WW-REF-05-SS-060816	Total organic carbon	J (all detects)	A	Triplicate sample analysis (%RSD)

Whatcom Waterway Wet Chemistry - Laboratory Blank Data Qualification Summary - SDG BBS7

No Sample Data Qualified in this SDG

LDC #: 36703A6	VALIDATION COMPLETENESS WORKSHEET	Date: 7/22/16
SDG #: <u>BBS7</u>	Stage 2B	Page:_(of
Laboratory: Analytical Resour	ces, Inc	Reviewer: <u>A</u> 2nd Reviewer: <u>MK</u>
	en	2nd Reviewer:

METHOD: (Analyte) TOC (Plumb), Total Solids (2540G)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
١.	Sample receipt/Technical holding times	A,A	
11	Initial calibration	A	
.	Calibration verification	A	
IV	Laboratory Blanks	A	
V	Field blanks	N	
VI.	Matrix Spike/Matrix Spike Duplicates	SW.	
VII.	Duplicate sample analysis	5	
VIII.	Laboratory control samples	AA	LCS SRM
IX.	Field duplicates	Ň	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
X .	Sample result verification	Ņ	
Lxı	Overall assessment of data	A	

Note: A = Acceptable

N = Not provided/applicable SW = See worksheet ND = No compounds detected R = Rinsate FB = Field blank D = Duplicate TB = Trip blank EB = Equipment blank SB=Source blank OTHER:

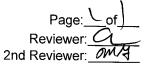
	Client ID	Lab ID	Matrix	Date
1	WW-P1PM-05-060816	BBS7B	Sediment	06/08/16
2	WW-REF-01-SS-060816	BBS7C	Sediment	06/08/16
3	WW-REF-03-SS-060816	BBS7D	Sediment	06/08/16
4	WW-REF-05-SS-060816	BBS7E	Sediment	06/08/16
5	XIMS	AIMS		_
6	WI DUP	1 DUP		
7	* ITRP	LTRP		
3				
9				
10				
11	4			
12				
13				
14				

LDC #: 3670346

F

VALIDATION FINDINGS WORKSHEET Sample Specific Analysis Reference

All circled methods are applicable to each sample.



Sample ID	Parameter
1-4	ph TDS CI F NO3 NO, SO4 0-PO4 AIK CN NH3 TKN (FOC Cr6+ CIO4 (TS)
<u>_</u>	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
ar:5	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC $Cr6+ClO_4$
6,7	pH TDS CI F NO, NO, SO, O-PO, Alk CN NH, TKN(TOC)Cr6+ CIO, (TS)
	pH TDS CI F NO3 NO, SO4 0-PO4 Alk CN NH3 TKN TOC Cr6+ CIO4
	pH TDS CI F NO3 NO2 SO4 O-PO4 Alk CN NH3 TKN TOC Cr6+ ClO4
	pH TDS CI F NO3 NO2 SO4 O-PO4 Alk CN NH3 TKN TOC Cr6+ ClO4
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₇ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
•.	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	DH TDS CLF NO, NO, SO, O-PO, AIK CN NH, TKN TOC Cr6+ CIO,

omments:_____

LDC #: 3670

VALIDATION FINDINGS WORKSHEET <u>Matrix Spike Analysis</u>

METHOD: Inorganics, Method See cover

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

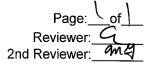
<u>(1) n n/a</u> Y*A*N N/A

Y N/N/À

Was a matrix spike analyzed for each matrix in this SDG?

Were matrix spike percent recoveries (%R) within the control limits of (75-125)(85-115% for Method 300.0)? If the sample concentration exceeded the spike concentration by a factor of 4 or more, no action was taken.

LEVEL VONLY:


Were recalculated results acceptable? See Level IV Recalculation Worksheet for recalculations.

#	Date	Matrix_Spike ID	Matrix	Analyte_	%R	Associated Samples	Qualifications
		5	5	TOC	68,9	All	JUJIA (OCC)
						·	<u>_</u>
		· · · · · · · · · · · · · · · · · · ·					
							
L				<u> </u>	1	<u></u>	
			· · · · · · · · · · · · · · · · · · ·	·			
	·						
	<u> </u>		 				
			<u> </u>				
┣─							
⊫	 						
		l		<u> </u>		<u> </u>	l

Comments:

LDC #:

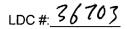
VALIDATION FINDINGS WORKSHEET <u>Duplicate Analysis</u>

sel an METHOD: Inorganics, Method

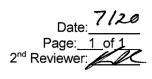
Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

N/A Was a duplicate sample analyzed for each matrix in this SDG?

<u>YN N/A</u> YN N/A


Were all duplicate sample relative percent differences (RPD) \leq 20% for water and \leq 35% for soil samples (\leq 10% for Method 300.0)? If no, see qualification below. A control limit of ±CRDL (±2X CRDL for soil) was used for samples that were \leq 5X the CRDL, including when only one of the duplicate sample values were \leq 5X the CRDL. If field blanks were used for laboratory duplicates, see overall assessment.

LEVEL VONLY:


Y N/N/A) Were recalculated results acceptable? See Level IV Recalculation Worksheet for recalculations.

#	Date	Duplicate ID	Matrix	Analyte	RSD RPD (Limits)	Difference (Limits)	Associated Samples	Qualifications
		7		TOC	31.4(420)		AII	JUJA(Ad)
							· · · · · · · · · · · · · · · · · · ·	
							- 	
			l	. <u>.</u>				
							- <u>-</u>	
┣───								
1								
 								
			1					
	1				·			
					I	I		

Comments:_

EDD POPULATION COMPLETENESS WORKSHEET

	EDD Process		Comments/Action
1.	EDD Completeness	-	
la.	- All methods present?	Y	
lb.	- All samples present/match report?	У	
Ic.	- All reported analytes present?	У	
ld.	-10% or 100% verification of EDD?	Y	
<u>II.</u>	EDD Preparation/Entry	-	
lla.	- Carryover U/J?		
llb.	- Reason Codes used? If so, note which codes	У	LDC
IIc.	-Additional Information (QC Level, Validator, Date, Validated Y/N, etc.)	Y	LDC QCLevl
- 111.	Reasonableness Checks		
IIIa.	- Do all qualified ND results have ND qualifier (i.e. UJ)?	-	
IIIb.	- Do all qualified detect results have detect qualifier (i.e. J)?	Y	
IIIc.	- If reason codes used, do all qualified results have reason code field populated?	У	
ilid.	-Does the detect flag require changing for blank qualifiers? If so, are all U results marked ND?	Y1-	
Ille.	- Do blank concentrations in report match EDD, where data was qualified due to blank?	-	
IIIf.	- Were any results rejected for overall assessment? If so, were results changed to nonreportable?	N'_	· · · · · · · · · · · · · · · · · · ·
illg.	- Is the readme complete? If applicable, were edits or discrepancies listed in the readme?	Y	

Notes: _____

Anchor QEA, LLC 720 Olive Way, Suite 1900 Seattle, WA 98101 ATTN: Ms. Joy Dunay August 2, 2016

SUBJECT: Whatcom Waterway, Data Validation

Dear Ms. Dunay,

Enclosed is the final validation report for the fraction listed below. This SDG was received on July 20, 2016. Attachment 1 is a summary of the samples that were reviewed for each analysis.

LDC Project #36716:

- SDG # Fraction
- BCS7 Mercury

The data validation was performed under Stage 2B guidelines. The analyses were validated using the following documents, as applicable to each method:

- USEPA Contract Laboratory National Functional Guidelines for Inorganic Superfund Data Review, January 2010
- EPA SW 846, Third Edition, Test Methods for Evaluating Solid Waste, update 1, July 1992; update IIA, August 1993; update II, September 1994; update IIB, January 1995; update III, December 1996; update IIIA, April 1998; IIIB, November 2004; Update IV, February 2007; Update V, July 2014

Please feel free to contact us if you have any questions.

Sincerely,

Christina Rink Project Manager/Chemist

LDC #36716 (Anchor Environmental-Seattle WA / Whatcom Waterway) LDC DATE 0AT 0AT<		Attachment 1 LDC #36716 (Anchor Environmental-Seattle WA / Whatcom Waterway)																													HC						
LDC DATE REC'D DATE DUE Hg (7470A)									y)	way	ter	Vat	N I	om	itco	Vha	/ V	WA	le	eat	I-S	nta	mei	oni	vir	En	nor	ncl	i (A	716	¥36)C ‡			2B	EDD Stage	
							-															1								g '0A)	H (747	(A0	(747	DATE		SDG#	LDC
A BCS7 07/20/16 3 0 3 0 1 <th< td=""><td>s w s</td><td>w</td><td>s</td><td>w</td><td>s</td><td>w</td><td>s</td><td>w</td><td>s</td><td>w</td><td>s</td><td>N</td><td><u> </u>v</td><td>s</td><td>w</td><td>s</td><td>W</td><td>s</td><td>w</td><td>s</td><td>w</td><td>s</td><td>w</td><td>s</td><td>w</td><td>S</td><td>w</td><td>s</td><td>w</td><td></td><td>W</td><td></td><td></td><td></td><td></td><td></td><td>Matrix</td></th<>	s w s	w	s	w	s	w	s	w	s	w	s	N	<u> </u> v	s	w	s	W	s	w	s	w	s	w	s	w	S	w	s	w		W						Matrix
		┢━━╇					ļ]		_																		0	3	0	3	08/10/16	07/20/16	BCS7	A
	╀╌╂╌╂	┢━━╇		┢──┤		 	 	<u> </u>			-	+	+	 									<u> </u>						i								
	┼╌┼╌┼╴	┢──╋			┝─┥		┨──					+	+																-								
	┼╌┼╌╬╴	┢──╋		\square	\vdash								┥─									-															
							<u> </u>					+	+																								
					\Box																																
		\vdash		\square																<u> </u>				<u> </u>													
	+	┢──╊		\vdash	\square		<u> </u>																			ļ											<u> </u>
		┟──╂	┢──┥		-	<u> </u>	<u> </u>					-	_		<u>.</u>						├	 															
		┢──╋			\vdash																																
	╁┈┼╌┼╴	┢━─╂		┢──┤	┝─┦			\vdash				+	╈																							· · ·	
Image: Solution of the state of the sta													╈																			1					
Image: Series of the series																																					
												_			<u> </u>							 	ļ			ļ											
		\vdash	\mid	\square		<u> </u>	<u> </u>	-				\downarrow	_								· · ·	_	 														
		\vdash	\mid	\vdash	$\left - \right $	<u> </u>		-				+	+	┝						<u> </u>		<u> </u>															
		\vdash	┝─┤	\vdash	$\left - \right $							+	+	-										-							<u> </u>						
	+ $+$ $+$	\vdash	\square	\vdash	\vdash	\vdash		+				+	+	\vdash						\vdash		-				1											╟──┼
	+ $+$ $+$					1		1				╈	╈	\square								1															
												\square																									
		\square		\square		<u> </u>	<u> </u>		<u> </u>			\square			<u> </u>				•	 	┣—	 	 	 			 	<u> </u>		<u> </u>	 	L	<u> </u>				
╠┈┼───┼──┼╶┼╌┼╌┼┽┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼	+ $+$ $+$	$\left - \right $	$\left - \right $.							_		<u> </u>	<u> </u>					┞		<u> </u>					 	<u> </u>		 		ļ				╞┈╼╇
	╉╋	\vdash	$\left - \right $	\vdash	$\left - \right $	\vdash	-					+	+	-	1	 		-				<u> </u>															┣—-┠
Total T/CR 3 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0	0				0	n	<u> </u>						h	0	0	0	<u>ہ</u>	<u>م</u>	1	<u>م</u>	<u>م</u>	<u> </u>	<u>ہ</u>	0		h		0	0	2		2			TICR	Total

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:	Whatcom Waterway
--------------------	------------------

LDC Report Date: August 2, 2016

Parameters: Mercury

Validation Level: Stage 2B

Laboratory: Analytical Resources, Inc.

Sample Delivery Group (SDG): BCS7

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
WW-REF-01-160628	BCS7A	Water	06/28/16
WW-REF-03-160628	BCS7B	Water	06/28/16
WW-REF-05-160628	BCS7C	Water	06/28/16
WW-REF-01-160628F	BCS7D	Water	06/28/16
WW-REF-03-160628F	BCS7E	Water	06/28/16
WW-REF-05-160628F	BCS7F	Water	06/28/16
WW-REF-01-160628MS	BCS7AMS	Water	06/28/16
WW-REF-01-160628DUP	BCS7ADUP	Water	06/28/16
WW-REF-01-160628FMS	BCS7DMS	Water	06/28/16
WW-REF-01-160628FDUP	BCS7DDUP	Water	06/28/16

Samples appended with "F" were analyzed as dissolved

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines (CLPNFG) for Inorganic Superfund Data Review (January 2010). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Mercury by Environmental Protection Agency (EPA) SW 846 Method 7470A

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to nonconformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition.

All technical holding time requirements were met.

II. Instrument Calibration

Initial and continuing calibrations were performed as required by the method.

The initial calibration verification (ICV) and continuing calibration verification (CCV) standards were within QC limits.

III. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

IV. Field Blanks

No field blanks were identified in this SDG.

V. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits.

VI. Duplicate Sample Analysis

Duplicate (DUP) sample analysis was performed on an associated project sample. Results were within QC limits.

VII. Laboratory Control Samples

Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

VIII. Field Duplicates

No field duplicates were identified in this SDG.

IX. Sample Result Verification

Raw data were not reviewed for Stage 2B validation.

X. Overall Assessment of Data

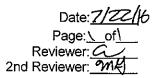
The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

The quality control criteria reviewed were met and are considered acceptable. Based upon the data validation all results are considered valid and usable for all purposes.

١

Whatcom Waterway Mercury - Data Qualification Summary - SDG BCS7

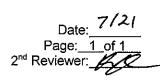
No Sample Data Qualified in this SDG


Whatcom Waterway Mercury - Laboratory Blank Data Qualification Summary - SDG BCS7

No Sample Data Qualified in this SDG

LDC #:_	36716A4c	
SDG #:_	BCS7	
Laborato	ory: Analytical F	Resources, Inc

ALIDATION COMPLETENESS WORKSHEET


Stage 2B

METHOD: Mercury (EPA SW 846 Method 7470A)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area			Comme	nts	
<u> </u>	Sample receipt/Technical holding times	AIA				
11.	Instrument Calibration	A				
111.	Laboratory Blanks	A				
IV.	Field Blanks	$\lfloor N$				
V .	Matrix Spike/Matrix Spike Duplicates	A	ms			
VI.	Duplicate sample analysis	A	DYR			
VII.	Laboratory control samples	A	LCS			
VIII.	Field Duplicates	\mathcal{N}	_			
IX.	Sample Result Verification	N.				
x	Overall Assessment of Data	<u> /t</u>				
Note: Sample	N = Not provided/applicable R = Rin	lo compounds isate ield blank	s detected	D = Duplicate TB = Trip blank EB = Equipment blank	SB=Source OTHER:	blank
	Client ID			Lab ID	Matrix	Date
1	WW-REF-01-160628			BCS7A	Water	06/28/16
2	WW-REF-03-160628			BCS7B	Water	06/28/16
3	WW-REF-05-160628			BCS7C	Water	06/28/16
4	WW-REF-01-160628F	·····		BCS7D	Water	06/28/16
5	WW-REF-03-160628F			BCS7E	Water	06/28/16
6	WW-REF-05-160628F			BCS7F	Water	06/28/16
7	WW-REF-01-160628MS			BCS7AMS	Water	06/28/16
8	WW-REF-01-160628DUP			BCS7ADUP	Water	06/28/16
9	WW-REF-01-160628FMS			BCS7DMS	Water	06/28/16
10	WW-REF-01-160628FDUP			BCS7DDUP	Water	06/28/16
11						
12						
13						
14						
15						
16						
Votes	•					

The LDC job	o number listed abov	/e was	entered by	KK	•

	EDD Process	<u> </u>	Comments/Action
١.	EDD Completeness	-	
la.	- All methods present?	Y_	
lb.	- All samples present/match report?	Y	
lc.	- All reported analytes present?	Y	
ld.	-10% or 100% verification of EDD?	10	
П.	EDD Preparation/Entry		
lla.	- Carryover U/J?		·
llb.	- Reason Codes used? If so, note which codes	4	100
llc.	-Additional Information (QC Level, Validator, Date, Validated Y/N, etc.)	Y	LDC QC Level
III.	Reasonableness Checks		
Illa.	- Do all qualified ND results have ND qualifier (i.e. UJ)?	1	
IIIb.	- Do all qualified detect results have detect qualifier (i.e. J)?	Y	
IIIc.	- If reason codes used, do all qualified results have reason code field populated?	ļ	
IIId.	-Does the detect flag require changing for blank qualifiers? If so, are all U results marked ND?	Y 1-	
IIIe.	- Do blank concentrations in report match EDD, where data was qualified due to blank?	/	
INf.	- Were any results rejected for overall assessment? If so, were results changed to nonreportable?	N ,_	
llig.	- Is the readme complete? If applicable, were edits or discrepancies listed in the readme?	У _	

Notes: _____

Anchor QEA, LLC 720 Olive Way, Suite 1900 Seattle, WA 98101 ATTN: Ms. Joy Dunay August 31, 2016

SUBJECT: Whatcom Waterway, Data Validation

Dear Ms. Dunay,

Enclosed is the final validation report for the fractions listed below. This SDG was received on August 11, 2016. Attachment 1 is a summary of the samples that were reviewed for each analysis.

LDC Project #36859:

SDG # Fraction

BDG1/BDH4/BDH5 Mercury, Wet Chemistry

The data validation was performed under Stage 2B guidelines. The analyses were validated using the following documents, as applicable to each method:

- USEPA Contract Laboratory National Functional Guidelines for Inorganic Superfund Data Review, January 2010
- EPA SW 846, Third Edition, Test Methods for Evaluating Solid Waste, update 1, July 1992; update IIA, August 1993; update II, September 1994; update IIB, January 1995; update III, December 1996; update IIIA, April 1998; IIIB, November 2004; update IV, February 2007; update V, July 2014

Please feel free to contact us if you have any questions.

Sincerely,

Christina Rink Project Manager/Chemist

	HC													Att	achr	nent	:1																				
	EDD Stage	Stage 2B LDC #36859 (Anchor Environmental-Seattle WA / Whatcom (3) Total															om	Wa	ter	wa	y)																
LDC	SDG#	DATE REC'D	(3) DATE DUE	H (74)	ig 71A)		lids	Lip	% oids 8D)														·														
	ix: Water/Tissue		,	w	· · ·	w		W	1	W	т	w	Т	W	Т	W	Т	W	Ţ	W	Т	w	Т	R	т	W	Т	W	Т	w	Т	<u>w</u>	т	W	т	w	т
	BDG1/BDH4/BDH5	<u>08/11/16</u>	09/01/16	0	11	0	11	0	11	_−	[[
		<u> </u>			┼──·	-	-			┣─		<u> </u>			i																				-+		-
			- <u>-</u>			┢┅──				┼──																									-+		
						1				1																									-+		
						<u> </u>	<u> </u>						[Ĺ—																
				<u> </u>		<u> </u>		<u> </u>		<u> </u>												<u> </u>															
							╢	\vdash			╞											i										-				-	-
	· · · · ·								\vdash	├─																							·		-		
								\square	<u> </u>									-																			
				<u> </u>	<u> </u>	 	<u> </u>	<u> </u>	Ļ	 _	<u> </u>		<u> </u>								<u> </u>											_					$- \ $
		<u></u>			<u> </u>		-		<u> </u>		<u> </u>		<u> </u>								<u> </u>											<u> </u>					
										┣─		<u> </u>																<u> </u>									-
	,,			<u>†</u>	1		\vdash	┢─		├──																									-+		-
	 				1					1																											
														[[_										
				<u> </u>	<u> </u>	<u> </u>	ļ	<u> </u>		┣_											└──									<u> </u>							\parallel
		<u> </u>			-		┢	╂		┣—		<u> </u>	 								<u>-</u>														<u> </u>		$- \parallel$
$\left\ - \right\ $				<u>}</u>	1	+	╞	-	╢──	┣	-							h .																			
					+	\vdash	┼─	$\left \right $					\vdash																<u> </u>	-							
				<u> </u>		<u> </u>	┝	1	<u> </u>	<u> </u>											┣—							 _ _		<u> </u>							_
				┣—	┣	_	┣			┣-	-											[
Total		<u> </u>		0	11	0	11	0	11	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	33

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:	Whatcom Waterway
--------------------	------------------

LDC Report Date: August 31, 2016

Parameters: Mercury

Validation Level: Stage 2B

Laboratory: Analytical Resources, Inc.

Sample Delivery Group (SDG): BDG1/BDH4/BDH5

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
WW-REF-01-CL-160711	BDG1A	Tissue	07/11/16
WW-REF-02-CL-160711	BDG1B	Tissue	07/11/16
WW-REF-03-CL-160711	BDG1C	Tissue	07/11/16
WW-REF-04-CL-160711	BDG1D	Tissue	07/11/16
WW-REF-05-CL-160711	BDG1E	Tissue	07/11/16
WW-CLAM-T0-060616	BDH4A	Tissue	06/06/16
WW-MNR-03-CL-060707	BDH5A	Tissue	07/07/16
WW-MNR-04-CL-060707	BDH5B	Tissue	07/07/16
WW-MNR-07-CL-060707	BDH5C	Tissue	07/07/16
WW-P1CM-01-CL-060707	BDH5D	Tissue	07/07/16
WW-P1CM-07-CL-060707	BDH5E	Tissue	07/07/16
WW-REF-01-CL-160711MS	BDG1AMS	Tissue	07/11/16
WW-REF-01-CL-160711DUP	BDG1ADUP	Tissue	07/11/16

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines (CLPNFG) for Inorganic Superfund Data Review (January 2010). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Mercury by Environmental Protection Agency (EPA) SW 846 Method 7471A

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to nonconformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition.

All technical holding time requirements were met.

II. Instrument Calibration

Initial and continuing calibrations were performed as required by the method.

The initial calibration verification (ICV) and continuing calibration verification (CCV) standards were within QC limits.

III. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

IV. Field Blanks

No field blanks were identified in this SDG.

V. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits.

VI. Duplicate Sample Analysis

Duplicate (DUP) sample analysis was performed on an associated project sample. Results were within QC limits.

VII. Laboratory Control Samples

Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

VIII. Field Duplicates

No field duplicates were identified in this SDG.

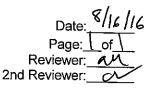
IX. Sample Result Verification

Raw data were not reviewed for Stage 2B validation.

X. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

The quality control criteria reviewed were met and are considered acceptable. Based upon the data validation all results are considered valid and usable for all purposes.


Whatcom Waterway Mercury - Data Qualification Summary - SDG BDG1/BDH4/BDH5

No Sample Data Qualified in this SDG

Whatcom Waterway Mercury - Laboratory Blank Data Qualification Summary - SDG BDG1/BDH4/BDH5

No Sample Data Qualified in this SDG

LDC #: <u>36859A4c</u>	VALIDATION COMPLETENESS WORKSHEET
SDG #: BDG1/BDH4/BDH5	Stage 2B
Laboratory: Analytical Resourc	es, Inc

METHOD: Mercury (EPA SW 846 Method 7471A)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
Ι.	Sample receipt/Technical holding times	A,A	
II.	Instrument Calibration	A	
_ 111.	Laboratory Blanks A	NA SO	-a
IV.	Field Blanks	N	
V.	Matrix Spike/Matrix Spike Duplicates	A	MSHD-a MS
VI.	Duplicate sample analysis	Nã	DUP
VII.	Laboratory control samples	A	LCS
VIII.	Field Duplicates	N	
IX.	Sample Result Verification	N	
x	Overall Assessment of Data	<u> </u>	

Note:

A = Acceptable N = Not provided/applicable SW = See worksheet ND = No compounds detected R = Rinsate FB = Field blank D = Duplicate TB = Trip blank EB = Equipment blank SB=Source blank OTHER:

	Client ID	Lab ID	Matrix	Date
1	WW-REF-01-CL-160711	BDG1A	Tissue	07/11/16
2	WW-REF-02-CL-160711	BDG1B	Tissue	07/11/16
3	WW-REF-03-CL-160711	BDG1C	Tissue	07/11/16
4	WW-REF-04-CL-160711	BDG1D	Tissue	07/11/16
5	WW-REF-05-CL-160711	BDG1E	Tissue	07/11/16
6	WW-CLAM-T0-060616	BDH4A	Tissue	06/06/16
7	WW-MNR-03-CL-060707	BDH5A	Tissue	07/07/16
8	WW-MNR-04-CL-060707	BDH5B	Tissue	07/07/16
9	WW-MNR-07-CL-060707	BDH5C	Tissue	07/07/16
10	WW-P1CM-01-CL-060707	BDH5D	Tissue	07/07/16
11	WW-P1CM-07-CL-060707	BDH5E	Tissue	07/07/16
12	WW-REF-01-CL-160711MS	BDG1AMS	Tissue	07/11/16
13	WW-REF-01-CL-160711DUP	BDG1ADUP	Tissue	07/11/16
14				
15				
16		<u> </u>		

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:	Whatcom Waterway
--------------------	------------------

LDC Report Date: August 31, 2016

Parameters: Wet Chemistry

Validation Level: Stage 2B

Laboratory: Analytical Resources, Inc.

Sample Delivery Group (SDG): BDG1/BDH4/BDH5

	Laboratory Sample		Collection
Sample Identification	Identification	Matrix	Date
WW-REF-01-CL-160711	BDG1A	Tissue	07/11/16
WW-REF-02-CL-160711	BDG1B	Tissue	07/11/16
WW-REF-03-CL-160711	BDG1C	Tissue	07/11/16
WW-REF-04-CL-160711	BDG1D	Tissue	07/11/16
WW-REF-05-CL-160711	BDG1E	Tissue	07/11/16
WW-CLAM-T0-060616	BDH4A	Tissue	06/06/16
WW-MNR-03-CL-060707	BDH5A	Tissue	07/07/16
WW-MNR-04-CL-060707	BDH5B	Tissue	07/07/16
WW-MNR-07-CL-060707	BDH5C	Tissue	07/07/16
WW-P1CM-01-CL-060707	BDH5D	Tissue	07/07/16
WW-P1CM-07-CL-060707	BDH5E	Tissue	07/07/16
WW-REF-02-CL-160711DUP	BDG1BDUP	Tissue	07/11/16
WW-MNR-07-CL-060707DUP	BDH5CDUP	Tissue	07/07/16

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines (CLPNFG) for Inorganic Superfund Data Review (January 2010). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following methods:

Percent Lipids by Bligh and Dyer Method Total Solids by Standard Method 2540G

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to nonconformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition.

All technical holding time requirements were met.

II. Initial Calibration

All criteria for the initial calibration of each method were met.

III. Continuing Calibration

Continuing calibration frequency and analysis criteria were met for each method when applicable.

IV. Laboratory Blanks

Laboratory blanks were analyzed as required by the methods. No contaminants were found in the laboratory blanks with the following exceptions:

Blank ID	Analyte	Maximum Concentration	Associated Samples
PB (prep blank)	Percent lipids	0.07 %	All samples in SDG BDG1/BDH4/BDH5

Data qualification by the laboratory blanks was based on the maximum contaminant concentration in the laboratory blanks in the analysis of each analyte. The sample concentrations were either not detected or were significantly greater (>5X blank contaminants) than the concentrations found in the associated laboratory blanks.

V. Field Blanks

No field blanks were identified in this SDG.

VI. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) analysis were not required by the method.

VII. Duplicate Sample Analysis

Duplicate (DUP) sample analysis was performed on an associated project sample. Results were within QC limits.

VIII. Laboratory Control Samples

Laboratory control samples were not required by the method.

IX. Field Duplicates

No field duplicates were identified in this SDG.

X. Sample Result Verification

Raw data were not reviewed for Stage 2B validation.

XI. Overall Assessment of Data

The analysis was conducted within all specifications of the methods. No results were rejected in this SDG.

The quality control criteria reviewed were met and are considered acceptable. Based upon the data validation all results are considered valid and usable for all purposes.

Whatcom Waterway Wet Chemistry - Data Qualification Summary - SDG BDG1/BDH4/BDH5

No Sample Data Qualified in this SDG

Whatcom Waterway Wet Chemistry - Laboratory Blank Data Qualification Summary - SDG BDG1/BDH4/BDH5

No Sample Data Qualified in this SDG

 VALIDATION	COMPLETENESS	WORKSHEET

Stage 2B

Date:	8/16/16
Page:_ Reviewer:	
2nd Reviewer:	
Λ.	

Laboratory: Analytical Resources, Inc.

368<u>59A6</u>

SDG #: BDG1/BDH4/BDH5

METHOD: (Analyte) Percent Lipds (Bligh&Dyer), Total Solids (SM2540G)

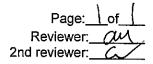
The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
Ι.	Sample receipt/Technical holding times	A,A	
11	Initial calibration	A	
111.	Calibration verification	À	
IV	Laboratory Blanks	SW	
v	Field blanks	N	
VI.	Matrix Spike/Matrix Spike Duplicates	N	Not applicable required
VII.	Duplicate sample analysis	A	
VIII.	Laboratory control samples	N	Not applicable a required
IX.	Field duplicates	N	
Х.	Sample result verification	N	
X	Overall assessment of data	H	

Note:

LDC #:

A = Acceptable N = Not provided/applicable SW = See worksheet ND = No compounds detected R = Rinsate FB = Field blank


D = Duplicate	
TB = Trip blank	
EB = Equipment b	lank

SB=Source blank OTHER:

	Client ID	Lab ID	Matrix	Date
1	WW-REF-01-CL-160711	BDG1A	Tissue	07/11/16
2	WW-REF-02-CL-160711	BDG1B	Tissue	07/11/16
3	WW-REF-03-CL-160711	BDG1C	Tissue	07/11/16
4	WW-REF-04-CL-160711	BDG1D	Tissue	07/11/16
5	WW-REF-05-CL-160711	BDG1E	Tissue	07/11/16
6	WW-CLAM-T0-060616	BDH4A	Tissue	06/06/16
7	WW-MNR-03-CL-060707	BDH5A	Tissue	07/07/16
8	WW-MNR-04-CL-060707	BDH5B	Tissue	07/07/16
9	WW-MNR-07-CL-060707	BDH5C	Tissue	07/07/16
10	WW-P1CM-01-CL-060707	BDH5D	Tissue	07/07/16
11	WW-P1CM-07-CL-060707	BDH5E	Tissue	07/07/16
12	WW-REF-02-CL-160711DUP	BDG1BDUP	Tissue	07/11/16
13	WW-MNR-07-CL-060707DUP	BDH5CDUP	Tissue	07/07/16
14				
15				
16		l		
Vote	s:			

F

VALIDATION FINDINGS WORKSHEET Sample Specific Analysis Reference

All circled methods are applicable to each sample.

Somple ID	Matrix	Parameter
Sample ID	Tisshe	Parameter
1-11	(15)40	pH (FBS) CI F NO3 NO2 SO4 PO4 ALK CN NH3 TKN TOC CR6+ CIO4 (1025) (15
		pH TDS CI F NO ₃ NO ₂ SO ₄ PO ₄ ALK CN ^{\cdot} NH ₃ TKN TOC CR ⁶⁺ CIO ₄
QC 12	Tissue	$pH ft DS CI F NO_3 NO_2 SO_4 PO_4 ALK CN NH_3 TKN TOC CR6+ CIO_4 (A)$
		pH TDS CI F NO3 NO2 SO4 PO4 ALK CN NH3 TKN TOC CR6+ CIO4
QCB	Tissue	ph TDS CI F NO3 NO2 SO4 PO4 ALK CN NH3 TKN TOC CR6+ CIO4 (Lipble) (TS
		pH TDS CI F NO ₃ NO ₂ SO ₄ PO ₄ ALK CN ⁻ NH ₃ TKN TOC CR ⁶⁺ ClO ₄ \longrightarrow
		pH TDS CI F NO3 NO2 SO4 PO4 ALK CN NH3 TKN TOC CR6+ CIO4
		pH TDS CI F NO3 NO2 SO4 PO4 ALK CN NH3 TKN TOC CR ⁶⁺ CIO4
3		pH TDS CI F NO ₃ NO ₂ SO ₄ PO ₄ ALK CN ⁻ NH ₃ TKN TOC CR ⁶⁺ CIO ₄
		pH TDS CI F NO ₃ NO ₂ SO ₄ PO ₄ ALK CN ⁻ NH ₃ TKN TOC CR ⁶⁺ ClO ₄
		pH TDS CI F NO ₃ NO ₂ SO ₄ PO ₄ ALK CN ⁻ NH ₃ TKN TOC CR ⁶⁺ CIO ₄
		pH TDS CI F NO ₃ NO ₂ SO ₄ PO ₄ ALK CN ⁻ NH ₃ TKN TOC CR ⁶⁺ ClO ₄
		pH TDS CI F NO ₃ NO ₂ SO ₄ PO ₄ ALK CN ⁻ NH ₃ TKN TOC CR ⁶⁺ CIO ₄
		pH TDS CI F NO ₃ NO ₂ SO ₄ PO ₄ ALK CN ⁻ NH ₃ TKN TOC CR ⁶⁺ CIO ₄
		pH TDS CI F NO ₃ NO ₂ SO ₄ PO ₄ ALK CN ⁻ NH ₃ TKN TOC CR ⁶⁺ CIO ₄
		pH TDS CI F NO ₃ NO ₂ SO ₄ PO ₄ ALK CN ⁻ NH ₃ TKN TOC CR ⁵⁺ CIO ₄
		pH TDS CI F NO ₃ NO ₂ SO ₄ PO ₄ ALK CN ⁻ NH ₃ TKN TOC CR ⁶⁺ ClO ₄
		pH TDS CI F NO ₃ NO ₂ SO ₄ PO ₄ ALK CN ⁻ NH ₃ TKN TOC CR ⁶⁺ ClO ₄
		pH TDS CI F NO ₃ NO ₂ SO ₄ PO ₄ ALK CN ⁻ NH ₃ TKN TOC CR ⁶⁺ ClO ₄
		pH TDS CI F NO ₃ NO ₂ SO ₄ PO ₄ ALK CN ⁻ NH ₃ TKN TOC CR ⁶⁺ CIO ₄
		pH TDS CI F NO ₃ NO ₂ SO ₄ PO ₄ ALK CN ^{\circ} NH ₃ TKN TOC CR ⁶⁴ CIO ₄
		pH TDS CI F NO ₃ NO ₂ SO ₄ PO ₄ ALK CN ⁻ NH ₃ TKN TOC CR ⁶⁺ CIO ₄
		pH TDS CI F NO ₃ NO ₂ SO ₄ PO ₄ ALK CN ⁻ NH ₃ TKN TOC CR ⁶⁺ CIO ₄
		pH TDS CI F NO ₃ NO ₂ SO ₄ PO ₄ ALK CN ⁻ NH ₃ TKN TOC CR ⁶⁺ CIO ₄
		pH TDS CLF NO2 NO2 SO4 PO4 ALK CN NH2 TKN TOC CR6+ CIO4

Comments:

LDC #: <u>36859A56</u>

VALIDATION FINDINGS WORKSHEET Blanks

Page: 1_of 1 Reviewer: <u>AM</u> 2nd Reviewer: <u>O</u>1____

METHOD: Inorganics, Method See Cover

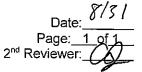
Conc. unit	s: <u>%</u>	Associated Samples: <u>All</u>										
Analyte	Blank ID	Blank ID	Blank						· · · · ·			
	PB	ICB/CCB (mg/L)	Action Limit	No Qualifiers								
% Lipids	0.07%		0.0035									

CIRCLED RESULTS WERE NOT QUALIFIED. ALL RESULTS NOT CIRCLED WERE QUALIFIED BY THE FOLLOWING STATEMENT: All contaminants within five times the method blank concentration were qualified as not detected, "U".

08/31/16

<u>File</u> 1) Readme_Whatcom_083116.doc Format MS Word 2003 Description A "Readme" file (this document).

			MS Excel 2007
2) LDC36859_	BDG1,BDH4,BDH5	VEDD	_20160822.xlsx


A spreadsheet for the following SDG(s): BDG1/BDH4/BDH5 36859A

No discrepancies were observed between the hardcopy data packages and the electronic data deliverables during EDD population of validation qualifiers. A 100% verification of the EDD was not performed.

Please contact Christina Rink at (760) 827-1100 if you have any questions regarding this electronic data submittal.

EDD POPULATION COMPLETENESS WORKSHEET

Anchor	
--------	--

The LDC job number listed above was entered by _____.

	EDD Process	Y/N	Init	Comments/Action
I.	EDD Completeness	-		
la.	- All methods present?	Y	KIK	
lb.	- All samples present/match report?	Y	KK	
lc.	- All reported analytes present?	Y	KIK	
ld	-10% verification of EDD?	Y	KIR	
11.	EDD Preparation/Entry	-		
lla.	- QC Level applied? (EPAStage2B or EPAStage4)	У	KIR	EPAStage 2B only
llb.	- Laboratory EMPC qualified results qualified (J with reason code 23)?	-	KK	
14 M				
	Reasonableness Checks			
_ilia.	- Do all qualified ND results have ND qualifier (i.e. UJ)?	Y	KIR	
IIIb.	- Do all qualified detect results have detect qualifier (i.e. J)?	¥	KK	
IIIc.	 If reason codes used, do all qualified results have reason code field populated, and vice versa? 	Y	WR	
IIId.	- Do blank concentrations in report match EDD, where data was qualified due to blank?	<i>v</i> A	KIL.	
lile.	- Were any results reported above calibration range? If so, were results qualified appropriately?	Nti_	KK	
IIIf.	- Are all results marked reportable "Yes" unless rejected for overall assessment in the data validation report?	Y	KK	
lilg.	-Are there any lab "R" qualified data? / Are the entry columns blank for these results?	N1_	KIL	
lilh.	- Is the detect flag set to "N" for all "U" qualified blank results?	Y	KV-	

Notes: *see readme

Anchor QEA, LLC 720 Olive Way, Suite 1900 Seattle, WA 98101 ATTN: Ms. Joy Dunay

Dunay

SUBJECT: Whatcom Waterway, Data Validation

Dear Ms. Dunay,

Enclosed are the final validation reports for the fractions listed below. These SDGs were received on September 8, 2016. Attachment 1 is a summary of the samples that were reviewed for each analysis.

LDC Project #37027:

SDG # Fraction

BBO6, BBT9, BBY4 Mercury, Wet Chemistry

The data validation was performed under Stage 2B guidelines. The analyses were validated using the following documents, as applicable to each method:

- USEPA Contract Laboratory National Functional Guidelines for Inorganic Superfund Data Review, January 2010
- EPA SW 846, Third Edition, Test Methods for Evaluating Solid Waste, update 1, July 1992; update IIA, August 1993; update II, September 1994; update IIB, January 1995; update III, December 1996; update IIIA, April 1998; IIIB, November 2004; update IV, February 2007; update V, July 2014

Please feel free to contact us if you have any questions.

Sincerely,

Christing Rink

Christina Rink Project Manager/Chemist

EDD Stage 28 LDC #37027 (Anchor Environmental-Seattle WA / Whatcom Waterway) LDC BATE (3) (Hg bits) Hg bits Hg	1	171 pages-SF	:												Att	achr	nent	t 1									_											
LDC DATE REC'D DATE DUE Of/TOTAL POINT Hg (7470A) TOC (Plumb) Solids (2540G) Image: Constraint of the point of the p	E	EDD Stag	ge 2B		LC	DC	#37	'02ï	7 (A	١nc	hoi	r Er	vir	oni	mei	nta	l-Se	eat	tle \	WA	. / V	Vha	atco	om	Wa	ter	wa	y)										
A BBO6 09/08/16 09/30/16 0 6 - 0 6 0 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6 0		SDG#		DATE	(74	70A	H H	łq	Т((Ріс	OC Imb)	So	lids																										
B BBT9 09/08/16 09/30/16 0 1	ix: _V	Nater/Sedime	ent	.	w	s	w	s	w	s	w	s	w	s	w	s	w	s	w	s	w	s	w	s	w	s	W	S	W	s	w	s	w	S	w	s	w	s
		BBO6	09/08/16	09/30/16	0	6		-	0	6	0	6																										
C BBY4 00/06/16 0 <td< td=""><td></td><td>BBT9</td><td>09/08/16</td><td>09/30/16</td><td>0</td><td>1</td><td>-</td><td>-</td><td>-</td><td></td><td>-</td><td><u> </u></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>		BBT9	09/08/16	09/30/16	0	1	-	-	-		-	<u> </u>																										
		BBY4	09/08/16	09/30/16	6	0	6	0	-	-	-	-																										
				<u> </u>																		_																
				ļ																																_		
				ļ									<u> </u>					L_	_																			
			_	ļ								ļ	<u> </u>																									
				<u> </u>									<u> </u>																								_	
													<u> </u>																									
				 				<u> </u>	_		<u> </u>	 																		·		 						
									_																					<u> </u>								
													ļ																	<u> </u>								
										1			ļ	<u> </u>				<u> </u>												<u> </u>								
								<u> </u>			<u> </u>		<u> </u>		<u> </u>			<u> </u>													<u> </u>							
		<u> </u>								<u> </u>	<u> </u>		<u> </u>					<u> </u>																				
						<u> </u>	ļ	1			<u> </u>	<u> </u>	<u> </u>																									
				<u> </u>	<u> </u>	<u> </u>		<u> </u>				1	<u> </u>	<u> </u>				 _						<u> </u>							1	<u> </u>	<u> </u>				$ \downarrow$	
							\square	<u> </u>		ļ	<u> </u>		<u> </u>		ļ			<u> </u>							·													
					<u> </u>		1	_					<u> </u>					L							 								Ĺ					
							<u> </u>	╞		<u> </u>	<u> </u>		<u> </u>		<u> </u>																	<u> </u>						
								_			<u> </u>		<u> </u>	ļ	<u> </u>														L									
	<u> </u>			 	<u> </u>	<u> </u>	 	ــــ				ļ	_	<u> </u>															L	L	<u> </u>	<u> </u>		<u> </u>				
				ļ	<u> </u>	<u> </u>	\perp		<u> </u>		<u> </u>	<u> </u>	↓	┨				 _	 		ļ		<u> </u>						L	 		1	<u> </u>					
║ ╸┥╸╶╶┥╶┥┥┥┥┊╎╷┥┥╎┥┥┥┥	<u> </u>		_	ļ	<u> </u>	<u> </u>	\vdash	1		<u> </u>	-	 	↓	<u> </u>	<u> </u>			<u> </u>	<u> </u>			 		L	<u> </u>				L		<u> </u>	<u> </u>	<u> </u>	_			\square	
	 .	<i>~</i>	_				<u> </u>	\vdash	<u> </u>			<u> </u>	╂—	<u> </u>				 			<u> </u>			<u> </u>					L	<u> </u>	<u> </u>		 	<u> </u>				
	<u> </u>			<u> </u>	<u> </u>	<u> </u>	┢	+			<u> </u>	_	╂—	<u> </u>	<u> </u>			┣					<u> </u>		<u> </u>				<u> </u>		 	<u> </u>	_				-	
╽╟╾╄╾╾╸╴╺╬╾╾╴╄╴╴╄╴╀╴╬╶┽╴┽╴┽╺┽╴┽╴┽╺┽╺┽╸┽╶┽╶┽╶┽╴┽╶┽╴┽╶┽╴┽╶┽╴┽╶┽╴┽╸┽╴┥		<u> </u>			<u> </u>	1		╂		1	-		╂—	_	<u> </u>	<u> </u>		┣	<u> </u>				 	┣—					 _		<u> </u>	 	┨	<u> </u>			-+	
╽╟╴┼╍╴╶┼╴╴┼╾╸┥╾┼╶┼╶┼╶┼╶┼╶┼╶┼╶┼╶┼╶┼╶┼╶┼╶┼╶┼╶┼╶┼╶┼╶┼╶┼╶						<u> </u>	╀	+	_			<u> </u>	<u> </u>			<u> </u>		┣							<u> </u>					<u> </u>	<u> </u>	<u> </u>	<u> </u>				-+	
Total T/CR 6 7 6 0 0 6 0 6 0 0 0 0 0 0 0 0 0 0 0 0		T/CR		<u> </u>	6	7	6	0	0	6	0	6	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	31

Shaded cells indicate Stage 4 validation (all other cells are Stage 2B validation). These sample counts do not include MS, MSD, or DUP's.

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:	Whatcom Waterway
--------------------	------------------

LDC Report Date: September 27, 2016

Parameters: Mercury

Validation Level: Stage 2B

Laboratory: Analytical Resources, Inc.

Sample Delivery Group (SDG): BBO6

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
WW-P1CM-01-SS-160602	BBO6A	Sediment	06/02/16
WW-MNR-07-SS-160602	BBO6B	Sediment	06/02/16
WW-MNR-03-SS-160602	BBO6C	Sediment	06/02/16
WW-MNR-04-SS-160602	BBO6D	Sediment	06/02/16
WW-REF-02-SS-160601	BBO6E	Sediment	06/01/16
WW-REF-04-SS-160601	BBO6F	Sediment	06/01/16
WW-P1CM-01-SS-160602MS	BBO6AMS	Sediment	06/02/16
WW-P1CM-01-SS-160602DUP	BBO6ADUP	Sediment	06/02/16

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines (CLPNFG) for Inorganic Superfund Data Review (January 2010). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Mercury by Environmental Protection Agency (EPA) SW 846 Method 7471A

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to nonconformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition.

All technical holding time requirements were met.

II. Instrument Calibration

Initial and continuing calibrations were performed as required by the method.

The initial calibration verification (ICV) and continuing calibration verification (CCV) standards were within QC limits.

III. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks with the following exceptions:

Blank ID	Analyte	Maximum Concentration	Associated Samples
PB (prep blank)	Mercury	0.0100 mg/Kg	All samples in SDG BBO6

Data qualification by the laboratory blanks was based on the maximum contaminant concentration in the laboratory blanks in the analysis of each analyte. The sample concentrations were either not detected or were significantly greater (>5X blank contaminants) than the concentrations found in the associated laboratory blanks with the following exceptions:

Sample	Analyte	Reported Concentration	Modified Final Concentration
WW-REF-02-SS-160601	Mercury	0.03 mg/Kg	0.03U mg/Kg
WW-REF-04-SS-160601	Mercury	0.04 mg/Kg	0.04U mg/Kg

IV. Field Blanks

No field blanks were identified in this SDG.

V. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits.

VI. Duplicate Sample Analysis

Duplicate (DUP) sample analysis was performed on an associated project sample. Results were within QC limits.

VII. Laboratory Control Samples

Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

VIII. Field Duplicates

No field duplicates were identified in this SDG.

IX. Sample Result Verification

Raw data were not reviewed for Stage 2B validation.

X. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

Due to laboratory blank contamination, data were qualified as not detected in two samples.

The quality control criteria reviewed, other than those discussed above, were met and are considered acceptable. Based upon the data validation all other results are considered valid and usable for all purposes.

Whatcom Waterway Mercury - Data Qualification Summary - SDG BBO6

No Sample Data Qualified in this SDG

Whatcom Waterway Mercury - Laboratory Blank Data Qualification Summary - SDG BBO6

Sample	Analyte	Modified Final Concentration	A or P
WW-REF-02-SS-160601	Mercury	0.03U mg/Kg	A
WW-REF-04-SS-160601	Mercury	0.04U mg/Kg	A

ALIDATION	COMPL	ETENESS	WORKSHEET
-----------	-------	---------	-----------

Stage 2B

Page: ___of__ Reviewer: MG

Laboratory: Analytical Resources, Inc.

LDC #: 37027A4c

SDG #: BBO6

METHOD: Mercury (EPA SW 846 Method 7471A)

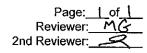
٧

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

L	Validation Area				<u>Com</u> me	nts	
<u> </u>	Sample receipt/Technical holding times	5	A				
11.	Instrument Calibration		Á				
	Laboratory Blanks		SW				
IV.	Field Blanks		N				
_ v.	Matrix Spike/Matrix Spike Duplicates		A	MS			
VI.	Duplicate sample analysis		A	DUP			
VII.	Laboratory control samples		A	LCS			
<u>viii.</u>	Field Duplicates		N				
_IX.	Sample Result Verification		N				
<u>X</u>	Overall Assessment of Data		<u> </u>				
Note:	A = Acceptable N = Not provided/applicable SW = See worksheet	ND = No R = Rins FB = Fie		s detected	D = Duplicate TB = Trip blank EB = Equipment blank	SB=Sourc OTHER:	e blank
	Client ID				Lab ID	Matrix	Date
1	1404/-B1CM-01-SS-160602				BBOGA	Sediment	06/02/16

		LabiD	Matrix	
1	WW-P1CM-01-SS-160602	BBO6A	Sediment	06/02/16
2	WW-MNR-07-SS-160602	BBO6B	Sediment	06/02/16
3	WW-MNR-03-SS-160602	BBO6C	Sediment	06/02/16
4	WW-MNR-04-SS-160602	BBO6D	Sediment	06/02/16
5	WW-REF-02-SS-160601	BBO6E	Sediment	06/01/16
6	WW-REF-04-SS-160601	BBO6F	Sediment	06/01/16
7	WW-P1CM-01-SS-160602MS	BBO6AMS	Sediment	06/02/16
8	WW-P1CM-01-SS-160602DUP	BBO6ADUP	Sediment	06/02/16
9				
10				
11				
12				
13				
<u>14</u>				
15				
16	PBS			

2nd Reviewer:


LDC #: 37027A4c

SDG #: See Cover

METHOD: Trace metals (EPA SW 864 Method 7471A) Sample Concentration units, unless otherwise noted: mg/kg

VALIDATION FINDINGS WORKSHEET <u>PB/ICB/CCB QUALIFIED SAMPLES</u>

Soil preparation factor applied: 250x Associated Samples: all _

Analyte	Maximum PBª (mg/Kg)	Maximum PBª (ug/L)	Maximum ICB/CCB ^a (ug/L)	Action	5	6				
Hg	0.0100			0.0500	0.03U	0.04U		 		

Samples with analyte concentrations within five times the associated ICB, CCB or PB concentration are listed above with the identifications from the Validation Completeness Worksheet. These sample results were qualified as not detected, "U".

Note: a - The listed analyte concentration is the highest ICB, CCB, or PB detected in the analysis of each element.

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:	Whatcom Waterway
--------------------	------------------

LDC Report Date: September 27, 2016

Parameters: Wet Chemistry

Validation Level: Stage 2B

Laboratory: Analytical Resources, Inc.

Sample Delivery Group (SDG): BBO6

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
WW-P1CM-01-SS-160602	BBO6A	Sediment	06/02/16
WW-MNR-07-SS-160602	BBO6B	Sediment	06/02/16
WW-MNR-03-SS-160602	BBO6C	Sediment	06/02/16
WW-MNR-04-SS-160602	BBO6D	Sediment	06/02/16
WW-REF-02-SS-160601	BBO6E	Sediment	06/01/16
WW-REF-04-SS-160601	BBO6F	Sediment	06/01/16
WW-P1CM-01-SS-160602MS	BBO6AMS	Sediment	06/02/16
WW-P1CM-01-SS-160602DUP	BBO6ADUP	Sediment	06/02/16
WW-PICM-01-SS-160602TRP	BB06ATRP	Sediment	06/02/16

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines (CLPNFG) for Inorganic Superfund Data Review (January 2010). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following methods:

Total Organic Carbon by Plumb Method Total Solids by Standard Method 2540G

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to nonconformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition.

All technical holding time requirements were met.

II. Initial Calibration

All criteria for the initial calibration of each method were met.

III. Continuing Calibration

Continuing calibration frequency and analysis criteria were met for each method when applicable.

IV. Laboratory Blanks

Laboratory blanks were analyzed as required by the methods. No contaminants were found in the laboratory blanks.

V. Field Blanks

No field blanks were identified in this SDG.

VI. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits.

VII. Triplicate Sample Analysis

Triplicate (TRP) sample analysis was performed on an associated project sample. Results were within QC limits.

VIII. Laboratory Control Samples/Standard Reference Materials

Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

Standard reference materials (SRM) were analyzed as required by the method. The results were within QC limits.

IX. Field Duplicates

No field duplicates were identified in this SDG.

X. Sample Result Verification

Raw data were not reviewed for Stage 2B validation.

XI. Overall Assessment of Data

The analysis was conducted within all specifications of the methods. No results were rejected in this SDG.

The quality control criteria reviewed were met and are considered acceptable. Based upon the data validation all results are considered valid and usable for all purposes.

Whatcom Waterway Wet Chemistry - Data Qualification Summary - SDG BBO6

No Sample Data Qualified in this SDG

Whatcom Waterway Wet Chemistry - Laboratory Blank Data Qualification Summary - SDG BBO6

No Sample Data Qualified in this SDG

LDC #:_	370 <u>27</u> A6	VALIDATION COMPLETENESS WORKSHEET	Date: 9-26-16
SDG #:	BBO6	Stage 2B	Page: of
Laborato	ory: Analytical Resource	es, Inc.	Reviewer: <u>M</u> G
	• — •		2nd Reviewer:

METHOD: (Analyte) TOC (Plumb), Total Solids (SM2540G)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
1.	Sample receipt/Technical holding times	A	
- 11	Initial calibration	A	
111.	Calibration verification	A	
IV	Laboratory Blanks	A	
v	Field blanks	N	
VI.	Matrix Spike/Matrix Spike Duplicates	A	MS
VII.	Duplicate sample analysis	A	Trip
VIII.	Laboratory control samples	A	LCS / SRM
IX.	Field duplicates	N	
X.	Sample result verification	N	
XI	Overall assessment of data	A	

Note: A = Acceptable N = Not provided/applicable SW = See worksheet ND = No compounds detected R = Rinsate FB = Field blank

SB=Source blank OTHER:

	Client ID	Lab ID	Matrix	Date
1	WW-P1CM-01-SS-160602	BBO6A	Sediment	06/02/16
2	WW-MNR-07-SS-160602	BBQ6B	Sediment	06/02/16
3	WW-MNR-03-SS-160602	BBO6C	Sediment	06/02/16
4	WW-MNR-04-SS-160602	BBO6D	Sediment	06/02/16
5	WW-REF-02-SS-160601	BBO6E	Sediment	06/01/16
6	WW-REF-04-SS-160601	BBO6F	Sediment	06/01/16
7	WW-P1CM-01-SS-160602MS	BBO6AMS	Sediment	06/02/16
8	WW-P1CM-01-SS-160602DUP	BBO6ADUP	Sediment	06/02/16
9	WW-PICM-01-95-160602 TRP	BBUGA TRP	Sediment	6/2/16
10				
11				
12				
13				
14				
15	PBS			
Jote				

LDC #: 37027A6

VALIDATION FINDINGS WORKSHEET Sample Specific Analysis Reference

Page:___of__ Reviewer:____MC 2nd reviewer:_____ - -

All circled methods are applicable to each sample.

Sample ID	Matrix	Parameter
	Sed	
QC 7		pH TDS CI F NO ₃ NO ₂ SO ₄ PO ₄ ALK CN ⁻ NH ₃ TKN (TOC) CR ⁵⁺ CIO ₄ (TS)
1 8,9		pH TDS CI F NO ₃ NO ₂ SO ₄ PO ₄ ALK CN ⁻ NH ₃ TKN (TOC) CR ⁶⁺ CIO ₄
	•	pH TDS CI F NO, NO, SO, PO, ALK CN' NH, TKN (CC) CR ⁶⁺ CIO, (5)
		pH TDS CI F NO ₃ NO ₂ SO ₄ PO ₄ ALK CN ⁻ NH ₃ TKN TOC CR ⁶⁺ CIO ₄
		pH TDS CI F NO ₃ NO ₂ SO ₄ PO ₄ ALK CN ⁻ NH ₃ TKN TOC CR ⁶⁺ ClO ₄
		pH TDS CI F NO ₃ NO ₂ SO ₄ PO ₄ ALK CN ⁻ NH ₃ TKN TOC CR ⁶⁺ ClO ₄
		_ pH TDS CI F NO ₃ NO ₂ SO ₄ PO ₄ ALK CN ^{\cdot} NH ₃ TKN TOC CR ⁶⁺ ClO ₄
		pH TDS CI F NO ₃ NO ₂ SO ₄ PO ₄ ALK CN ^{\cdot} NH ₃ TKN TOC CR ⁶⁺ ClO ₄
		pH TDS CI F NO ₃ NO ₂ SO ₄ PO ₄ ALK CN ⁻ NH ₃ TKN TOC CR ⁵⁺ ClO ₄
		pH TDS CI F NO ₃ NO ₂ SO ₄ PO ₄ ALK CN ^{\cdot} NH ₃ TKN TOC CR ⁶⁺ ClO ₄
		pH TDS CI F NO ₃ NO ₂ SO ₄ PO ₄ ALK CN ^{\cdot} NH ₃ TKN TOC CR ^{$6+$} ClO ₄
		pH TDS CI F NO ₃ NO ₂ SO ₄ PO ₄ ALK CN ^{\cdot} NH ₃ TKN TOC CR ⁵⁺ ClO ₄
		pH TDS CI F NO3 NO2 SO4 PO4 ALK CN NH3 TKN TOC CR6+ CIO4
		pH TDS CI F NO ₃ NO ₂ SO ₄ PO ₄ ALK CN ⁻ NH ₃ TKN TOC CR^{6+} CIO ₄
		pH TDS CI F NO ₃ NO ₂ SO ₄ PO ₄ ALK CN ⁻ NH ₃ TKN TOC CR ⁶⁺ CIO ₄
		pH TDS CI F NO ₃ NO ₂ SO ₄ PO ₄ ALK CN ^{\cdot} NH ₃ TKN TOC CR ⁶⁺ CIO ₄
		pH TDS CI F NO ₃ NO ₂ SO ₄ PO ₄ ALK CN ^{\cdot} NH ₃ TKN TOC CR ⁶⁺ ClO ₄
		pH TDS CI F NO ₃ NO ₂ SO ₄ PO ₄ ALK CN ⁻ NH ₃ TKN TOC CR ⁶⁺ ClO ₄
		pH TDS CI F NO3 NO2 SO4 PO4 ALK CN NH3 TKN TOC CR5+ CIO4
		pH TDS CI F NO3 NO2 SO4 PO4 ALK CN NH3 TKN TOC CR ⁵⁺ CIO4
		pH TDS CI F NO ₃ NO ₂ SO ₄ PO ₄ ALK CN ⁻ NH ₃ TKN TOC CR ⁶⁺ CIO ₄
		pH TDS CI F NO ₃ NO ₂ SO ₄ PO ₄ ALK CN ⁻ NH ₃ TKN TOC CR^{6+} CIO ₄
		pH TDS CI F NO3 NO2 SO4 PO4 ALK CN NH3 TKN TOC CR6+ CIO4
		pH TDS CI F NO ₃ NO ₂ SO ₄ PO ₄ ALK CN ⁻ NH ₃ TKN TOC CR ⁶⁺ CIO ₄
		pH TDS CI F NO ₃ NO ₂ SO₄ PO₄ ALK CN ⁻ NH₃ TKN TOC CR ⁶⁺ CiO₄
		pH TDS CI F NO ₃ NO ₂ SO ₄ PO ₄ ALK CN ⁻ NH ₃ TKN TOC CR ⁶⁺ ClO ₄
		pH TDS CI F NO ₃ NO ₂ SO ₄ PO ₄ ALK CN ⁻ NH ₃ TKN TOC CR ⁶⁺ ClO ₄
		pH TDS CI F NO ₃ NO ₂ SO ₄ PO ₄ ALK CN ^{\cdot} NH ₃ TKN TOC CR ⁶⁺ ClO ₄
		pH_TDS_CL_F_NO_NO_SO_PO_ALK_CN ⁻ NH_TKN_TOC_CR ⁶⁺ CIO_
<u></u> .	J.	$-\underline{PP_{1}}_{0} \underline{P}_{0} \underline{P}_{1} \underline{P}_{0} \underline{P}_{1} \underline{P}$

Comments:

METHODS.6

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name: Whatcom Waterway

LDC Report Date: September 27, 2016

Parameters: Mercury

Validation Level: Stage 2B

Laboratory: Analytical Resources, Inc.

Sample Delivery Group (SDG): BBT9

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
WW-P1PM-05-060816	BBT9A	Sediment	06/08/16
WW-P1PM-05-060816MS	BBT9AMS	Sediment	06/08/16
WW-P1PM-05-060816DUP	BBT9ADUP	Sediment	06/08/16

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines (CLPNFG) for Inorganic Superfund Data Review (January 2010). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Mercury by Environmental Protection Agency (EPA) SW 846 Method 7471A

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to nonconformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition.

All technical holding time requirements were met.

II. Instrument Calibration

Initial and continuing calibrations were performed as required by the method.

The initial calibration verification (ICV) and continuing calibration verification (CCV) standards were within QC limits.

III. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks with the following exceptions:

Błank ID	Analyte	Maximum Concentration	Associated Samples
PB (prep blank)	Mercury	0.0075 mg/Kg	All samples in SDG BBT9

Data qualification by the laboratory blanks was based on the maximum contaminant concentration in the laboratory blanks in the analysis of each analyte. The sample concentrations were either not detected or were significantly greater (>5X blank contaminants) than the concentrations found in the associated laboratory blanks.

IV. Field Blanks

No field blanks were identified in this SDG.

V. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits.

VI. Duplicate Sample Analysis

Duplicate (DUP) sample analysis was performed on an associated project sample. Results were within QC limits.

VII. Laboratory Control Samples

Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

VIII. Field Duplicates

No field duplicates were identified in this SDG.

IX. Sample Result Verification

Raw data were not reviewed for Stage 2B validation.

X. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

The quality control criteria reviewed were met and are considered acceptable. Based upon the data validation all results are considered valid and usable for all purposes.

Whatcom Waterway Mercury - Data Qualification Summary - SDG BBT9

No Sample Data Qualified in this SDG

Whatcom Waterway Mercury - Laboratory Blank Data Qualification Summary - SDG BBT9

No Sample Data Qualified in this SDG

ALIDATION	COMPL	ETENESS	WORKSHEET
-----------	-------	----------------	-----------

Stage 2B

LDC #: <u>37027B4c</u>

,

SDG #: <u>BBT9</u> Laboratory: <u>Analytical Resources</u>, inc

· _____

Date:<u>9 - 26</u>-16 Page:<u>lof</u> Reviewer:<u>MG</u> 2nd Reviewer:<u></u>

METHOD: Mercury (EPA SW 846 Method 7471A)

٧

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area			Comments
- i.	Sample receipt/Technical holding times	A		
11.	Instrument Calibration	A		
111.	Laboratory Blanks	SW		
IV.	Field Blanks	N		
V.	Matrix Spike/Matrix Spike Duplicates	A	MS	
VI.	Duplicate sample analysis	A	DUP	
VII.	Laboratory control samples	A	LCS	
VIII.	Field Duplicates	N		
<u> </u>	Sample Result Verification	N		
L x	Overall Assessment of Data	<u> </u>		

A = Acceptable N = Not provided/applicable SW = See worksheet

Note:

ND = No compounds detected R = Rinsate FB = Field blank D = Duplicate TB = Trip blank EB = Equipment blank SB=Source blank OTHER:

	Client ID	Lab ID	Matrix	Date
1	WW-P1PM-05-060816	BBT9A	Sediment	06/08/16
2	WW-P1PM-05-060816MS	BBT9AMS	Sediment	06/08/16
3	WW-P1PM-05-060816DUP	BBT9ADUP	Sediment	06/08/16
4				
5				
6				
7				
8				
9				
10				
11				
12				
13				
14				
15				
16	PBS			
lotes	3:			

LDC #: 37027B4c

SDG #: <u>See Cover</u> **METHOD:** Trace metals (EPA SW 864 Method 7471A) Sample Concentration units, unless otherwise noted: mg/kg

VALIDATION FINDINGS WORKSHEET <u>PB/ICB/CCB QUALIFIED SAMPLES</u> Soil preparation factor applied: 250x

Page: ____of ___ Reviewer: _____ 2nd Reviewer: _____

Sample Cor			otherwise not			amples: <u>all</u>		 		
Analyte	Maximum PB ^a (mg/Kg)	Maximum PBª (ug/L)	Maximum ICB/CCB ^a (ug/L)	Action Limit	No Qual's.					
Hg	0.0075			0.0375			- 11			

Samples with analyte concentrations within five times the associated ICB, CCB or PB concentration are listed above with the identifications from the Validation Completeness Worksheet. These sample results were qualified as not detected, "U".

Note: a - The listed analyte concentration is the highest ICB, CCB, or PB detected in the analysis of each element.

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name: V	Vhatcom Waterway
----------------------	------------------

LDC Report Date: September 27, 2016

Parameters: Mercury

Validation Level: Stage 2B

Laboratory: Analytical Resources, Inc.

Sample Delivery Group (SDG): BBY4

	Laboratory Sample		Collection
Sample Identification	Identification	Matrix	Date
WW-P1CM-07-160613	BBY4A	Water	06/14/16
WW-P1CM-57-160613	BBY4B	Water	06/14/16
WW-P1CM-01-160613	BBY4C	Water	06/14/16
WW-MNR-07-160613	BBY4D	Water	06/14/16
WW-MNR-03-160613	BBY4E	Water	06/14/16
WW-MNR-04-160613	BBY4F	Water	06/14/16
WW-P1CM-07-160613F	BBY4G	Water	06/14/16
WW-P1CM-57-160613F	BBY4H	Water	06/14/16
WW-P1CM-01-160613F	BBY4I	Water	06/14/16
WW-MNR-07-160613F	BBY4J	Water	06/14/16
WW-MNR-03-160613F	BBY4K	Water	06/14/16
WW-MNR-04-160613F	BBY4L	Water	06/14/16
WW-MNR-07-160613MS	BBY4DMS	Water	06/14/16
WW-MNR-07-160613DUP	BBY4DDUP	Water	06/14/16
WW-P1CM-01-160613MS	BBY4IMS	Water	06/14/16
WW-P1CM-01-160613DUP	BBY4IDUP	Water	06/14/16

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines (CLPNFG) for Inorganic Superfund Data Review (January 2010). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Mercury by Environmental Protection Agency (EPA) SW 846 Method 7470A

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to nonconformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition.

All technical holding time requirements were met.

II. Instrument Calibration

Initial and continuing calibrations were performed as required by the method.

The initial calibration verification (ICV) and continuing calibration verification (CCV) standards were within QC limits.

III. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

IV. Field Blanks

No field blanks were identified in this SDG.

V. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits.

VI. Duplicate Sample Analysis

Duplicate (DUP) sample analysis was performed on an associated project sample. Results were within QC limits.

VII. Laboratory Control Samples

Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

VIII. Field Duplicates

Samples WW-P1CM-07-160613 and WW-P1CM-57-160613 and samples WW-P1CM-07-160613F and WW-P1CM-57-160613F were identified as field duplicates. No results were detected in any of the samples with the following exceptions:

		ation (ng/L)	
Analyte	WW-P1CM-07-160613	WW-P1CM-57-160613	RPD
Mercury	6.00	5.80	3

	Concentr	ation (ng/L)	
Analyte	WW-P1CM-07-160613F	WW-P1CM-57-160613F	RPD
Mercury	3.00	3.80	24

IX. Sample Result Verification

Raw data were not reviewed for Stage 2B validation.

X. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

The quality control criteria reviewed were met and are considered acceptable. Based upon the data validation all results are considered valid and usable for all purposes.

Whatcom Waterway Mercury - Data Qualification Summary - SDG BBY4

No Sample Data Qualified in this SDG

Whatcom Waterway Mercury - Laboratory Blank Data Qualification Summary - SDG BBY4

No Sample Data Qualified in this SDG

VALIDATION COMPLETENESS WORKSHEET

Stage 2B

SDG #: BBY4

Laboratory: Analytical Resources, Inc.

METHOD: Mercury (EPA SW 846 Method 7470A)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area			Comments			
ι.	Sample receipt/Technical holding times	A					
11.	Instrument Calibration	Á					
Ш.	Laboratory Blanks	A					
IV.	Field Blanks	N					
v .	Matrix Spike/Matrix Spike Duplicates	A	M5				
VI.	Duplicate sample analysis	A	DUP				
VII.	Laboratory control samples	A	LCS				
VIII	Field Duplicates	SW	DF1+2	D"= 7	1+8		
IX.	Sample Result Verification	N		,			
Lx	Overall Assessment of Data	A					
Note: Sampl	and the second					SB≂Source b OTHER:	lank
	Client ID			Lab ID		Matrix	Date
1	WW-P1CM-07-160613 D1			BBY4A		Water	06/14/16
2	WW-P1CM-57-160613 D1			BBY4B		Water	06/14/16
3	WW-P1CM-01-160613			BBY4C		Water	06/14/16
4	WW-MNR-07-160613			BBY4D		Water	06/14/16
₅	WW-MNR-03-160613			BBY4E		Water	06/14/16
₆	WW-MNR-04-160613			BBY4F		Water	06/14/16
72	WW-P1CM-07-160613F Ø2			BBY4G		Water	06/14/16
8 2	WW-P1CM-57-160613F 🛛 🖗 🤉			BBY4H		Water	06/14/16
92	WW-P1CM-01-160613F			BBY4I		Water	06/14/16
10 J	WW-MNR-07-160613F			BBY4J		Water	06/14/16
11	WW-MNR-03-160613F			BBY4K		Water	06/14/16
12 2	WW-MNR-04-160613F			BBY4L		Water	06/14/16
₁₃ (WW-MNR-07-160613MS			BBY4DMS		Water	06/14/16
₁₄ [WW-MNR-07-160613DUP			BBY4DDUP		Water	06/14/16
15 2	WW-P1CM-01-160613MS			BBY4IMS		Water	06/14/16
16 J	WW-P1CM-01-160613DUP			BBY4IDUP		Water	06/14/16
17				· · · · · · · · · · · · · · · · · · ·			
₁₈ (PBWI						
197	PBW2						

Page: 1 of 1 Reviewer: MG 2nd Reviewer:

LDC #: 37027C4c

LDC#:<u>37027C4c</u>

VALIDATION FINDINGS WORKSHEET Field Duplicates

	Page:	of
	Reviewer:	MG
2nd	Reviewer:	UT.
		/

METHOD: Metals (EPA Method 7470A)

<u>YN NA</u>

Were field duplicate pairs identified in this SDG? Were target analytes detected in the field duplicate pairs?

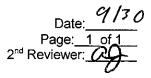
	Concentra			
Analyte	1	2	RPD	
Mercury	6.00	5.80	3	

V:\FIELD DUPLICATES\FD_inorganic\37027C4c.WPD

	Concentra	tion (ng/L)		
Analyte	7	8	RPD	
Mercury	3.00	3.80	24	

V:\FIELD DUPLICATES\FD_inorganic\37027C4c.WPD

<u>File</u> 1) Readme_Whatcom_093016.doc Format MS Word 2003 Description A "Readme" file (this document).


MS Excel 2007 2) LDC37027_BBO6,BBT9,BBY4_VEDD_20160930_rev.xlsx A spreadsheet for the following SDG(s): BBO6, BBT9, BBY4 37027A

No discrepancies were observed between the hardcopy data packages and the electronic data deliverables during EDD population of validation qualifiers. A 100% verification of the EDD was not performed.

Please contact Christina Rink at (760) 827-1100 if you have any questions regarding this electronic data submittal.

EDD POPULATION COMPLETENESS WORKSHEET

Anchor

The LDC job number listed above was entered by $\underline{\mathcal{KK}}$.

	EDD Process	Y/N	Init	Comments/Action
t.	EDD Completeness	_		
la.	- All methods present?	Y	KR	
lb.	- All samples present/match report?	4	KK	
Ic,	- All reported analytes present?	<u> </u>	KK	
ld	-10% verification of EDD?	Y_	KK	
11.	EDD Preparation/Entry			
lla.	- QC Level applied? (EPAStage2B or EPAStage4)	Y	KK	
llb.	- Laboratory EMPC qualified results qualified (J with reason code 23)?	NA	КK	
			• .	
<u> </u>	Reasonableness Checks	-		
llla.	- Do all qualified ND results have ND qualifier (i.e. UJ)?	Y	КK	
ilib.	- Do all qualified detect results have detect qualifier (i.e. J)?	·۲	KK	
IIIc.	 If reason codes used, do all qualified results have reason code field populated, and vice versa? 	Y	KK	
llid.	- Do blank concentrations in report match EDD, where data was qualified due to blank?	Y	KK	
Ille.	 Were any results reported above calibration range? If so, were results qualified appropriately? 	$\nu_{i_{-}}$	KK	
llif.	 Are all results marked reportable "Yes" unless rejected for overall assessment in the data validation report? 	٠Y	KK	
IIIg.	-Are there any lab "R" qualified data? / Are the entry columns blank for these results?	W-	RV	-
lilh.	- Is the detect flag set to "N" for all "U" qualified blank results?	Y	KVR	

Notes: *see readme

ATTACHMENT B BIOASSAY DATA VALIDATION

720 Olive Way Seattle, WA 98101 Phone 206.903.9130 www.anchorgea.com

MEMORANDUM

То:	Brian Gouran	Date:	June 30, 2017
	Port of Bellingham		
From:	Sara Potter, Anchor QEA, LLC	Project:	Whatcom Waterway
Re:	2016 Sediment Bioassay Validation		

INTRODUCTION

This memorandum provides a quality assurance/quality control (QA/QC) review of the bioassay analysis results for tests conducted by Anchor QEA, LLC, in August 2016 at the Whatcom Waterway Site (Site) in Bellingham, Washington. The sampling was conducted on behalf of the Port of Bellingham as part of the Whatcom Waterway Phase 1 Cleanup.

The purpose of the 2016 sampling and analysis was to characterize sediment quality postcapping in Unit 1C. The goals of the study¹ were as follows:

- Meet the sediment monitoring requirements established by the Washington State Department of Ecology (Ecology) that support the Consent Decree
- Assess the overall quality of the surface sediments, as defined by the Ecology Sediment Management Standards (SMS; Chapter 173-204 Washington Administrative Code [WAC])

The contents and structure of this report follow guidance provided in the Sediment Cleanup User's Manual II (SCUM II; Ecology 2015) and are consistent with the *Sampling and Quality Assurance Project Plan* (SQAPP; Anchor QEA 2016) approved by Ecology prior to sampling.

Station P1PM-05 was sampled for analytical chemistry as part of the initial Unit 1C postcapping sampling effort on April 6, 2016. Sample P1PM-05 did not meet SMS standards for mercury, and was consequently resampled June 8, 2016, and submitted for analytical chemistry results. An archived sediment sample from this sampling event was submitted to Ramboll Environ (Ramboll) in Port Gamble, Washington, for potential bioassay testing,

¹ The complete scope of sampling and analyses is described in the *Sampling and Quality Assurance Project Plan* (SQAPP; Anchor QEA 2016), which was approved by Ecology in 2016.

which was triggered on the basis of analytical chemistry results. Standard chain-of-custody procedures were followed for sample transfers.

Details on sediment sampling, handling, and analysis are provided in Appendix G of the As-built Report. Briefly, the bioassay sample was stored in a cooler with ice to keep samples at 4 degrees Celsius (°C) plus or minus (±) 2 °C prior to delivery to the laboratories.

Bioassay testing was performed by Ramboll in Port Gamble, Washington, on a surface sediment sample collected from the 0- to 10-centimeter (cm) interval at a single location (P1PM-05). This station exceeded the SMS freshwater cleanup screening levels (CSLs) for total mercury, triggering bioassay testing based on a collaborative evaluation with Ecology. This sample did not exceed the site-specific bioaccumulation screening level (BSL) for mercury. To evaluate the impacts to the benthic invertebrate community, the following three types of bioassay tests were performed:

- 10-day amphipod (*Eohaustorius estuarius*) mortality test
- 20-day juvenile polychaete (*Neanthes arenacedentata*) mortality and growth test
- 48-hour bivalve (*Mytilus galloprovincialis*) larval development test

Test methods followed guidance provided by the Puget Sound Estuary Program (PSEP 1995), SCUM II (Ecology 2015), and the various updates presented during the Sediment Management Annual Review Meeting (SMARM). General biological testing procedures and specific procedures for each sediment bioassay are summarized in the associated laboratory report.

BIOLOGICAL TESTING RESULTS

Test samples were received on June 9, 2016, and the tests were initiated on August 8, 2013, which meets the 56-day holding time. Sample material was collected and stored in accordance with SCUM II. Surface sediments from the 0- to 10-cm interval were tested at Station P1PM-05, where an SMS CSL was exceeded for mercury, triggering confirmation bioassay testing based on evaluation of the data with Ecology.

Three bioassays, a 10-day amphipod test, 20-day juvenile polychaete survival and growth test, and the 48-hour benthic larval development test, were performed on the sediment. The results of the bioassay testing were received in report form on October 24, 2016. Biological testing was performed in compliance with the Puget Sound Estuary Program (PSEP 1995), SCUM II (Ecology 2015), and the various updates presented during the SMARM.

The test interpretive criteria are shown in Table 1. The results of the three tests are summarized in Table 2 and in the following subsections.

Amphipod Mortality Bioassay

The purpose of this test was to characterize sediment toxicity to amphipods using a 10-day exposure. At the conclusion of the test, P1PM-05 was determined to have no significant biological effect. Results are summarized in Table 2.

Water quality conditions were maintained to ensure optimal health of the organisms before and during testing. Temperature, dissolved oxygen, salinity, pH, ammonia, and sulfides were measured in the overlying water of one replicate test container per treatment on days 0 and 10. Temperature, dissolved oxygen, salinity, and pH were also measured daily. Temperature, dissolved oxygen, salinity, pH, ammonia, and sulfides were measured in the porewater from the bulk sediment prior to test initiation. Water quality parameters were within protocol-specified ranges with minor deviations in temperature and salinity. Given the lack of significant mortality observed in all test treatments, these deviations did not negatively affect test results. Interstitial bulk sediment values for ammonia-N ranged from 1.61 to 16.2 milligrams per liter (mg/L). Interstitial bulk sediment values for sulfide ranged from 0.06 to 1.26 mg/L.

The test met the survival acceptability criteria specified in the test protocol with 3.0% mean control mortality. The reference toxicant test was conducted using potassium chloride, resulting in a 96-hour median lethal concentration (LC₅₀) of 155.0 mg/L. This reference toxicant test was within the control chart warning limit of 69.4 to 242.2 mg/L. No problems were found with the test organisms or the testing procedure, and it was concluded that the test developed fully acceptable data for use in management decisions.

Juvenile Polychaete Mortality and Growth Bioassay

The purpose of this test was to characterize chronic sediment toxicity to juvenile polychaetes using a 20-day exposure. At the conclusion of the 20-day test, Station P1PM-05 was determined to have no significant biological effects. Results are summarized in Table 2.

Water quality conditions were maintained to ensure optimal health of the test organisms before and during testing. Temperature, dissolved oxygen, salinity, pH, ammonia, and sulfides were measured in the overlying water of one replicate test container per treatment on days 0 and 20. Temperature, dissolved oxygen, salinity, and pH were also measured daily. Temperature, dissolved oxygen, salinity, pH, ammonia, and sulfides were measured in the porewater from the bulk sediment prior to test initiation. Water quality parameters were within acceptable limits. Interstitial bulk sediment values for ammonia-N ranged from less than 0.5 to 8.1 mg/L. Interstitial bulk sediment values for sulfide ranged from 0.02 to 1.26 mg/L.

The test met the survival and weight acceptability criteria specified in the test protocol with 0 percent mean control mortality and a control individual mean ash-free dry weight (AFDW) of 0.781 milligrams (mg) per individual, exceeding the 0.72 mg per individual requirement.

The reference toxicant test was conducted using potassium chloride. The reference toxicant (positive control) LC_{50} result was 130.8 mg/L. This reference toxicant test was within the control chart warning limit of 67.07 to 242.9 mg/L, and the test data were determined to be suitable for making management decisions.

Benthic Larval Development Test

The purpose of this test was to characterize sediment toxicity to benthic larvae using a 48-hour exposure. At the conclusion of the test, Station P1PM-05 was determined to have no significant biological effect. Results are summarized in Table 2.

Water quality conditions were maintained to ensure optimal health of the organisms before and during testing. Temperature, dissolved oxygen, salinity, pH, ammonia, and sulfides were measured in the overlying water of one replicate test container per treatment on days 0 and 2. Temperature, dissolved oxygen, salinity, and pH were also measured daily. Water quality parameters were within protocol-specified ranges. Overlying water values for ammonia-N ranged from 0.01 to 0.267 mg/L. Overlying water values for sulfide ranged from 0.0 to 0.05 mg/L.

The test met the survival acceptability criteria specified in the test protocol with 104.5 percent mean control survival. Mean normal survival of the reference sediment was 93.8%, which meets the acceptability criteria of greater than or equal to 65%. A reference-toxicant test was conducted using potassium chloride, resulting in a 96-hour median lethal concentration (LC₅₀) of 4.73 mg/L. This reference toxicant test was within the control chart warning limit of 0.34 to 10.16 mg/L. No problems were found with the test organisms or the testing procedure, and it was concluded that the test developed fully acceptable data for use in management decisions.

SUMMARY

One sediment sample was collected in June 2016 from P1PM-05 in Unit 1C as a follow up to analytical chemistry results from post-cap material placement monitoring in that area. Based on the analytical test results, the CSL was exceeded for mercury. This chemical criteria exceedance triggered bioassay testing to confirm sediment quality. Biological testing was performed in compliance with PSEP 1995, SCUM II, and the various updates presented during the SMARM, and met all QA/QC requirements. The data generated by both tests were determined to be suitable for making management decisions. Biological criteria were met for the 20-day juvenile polychaete survival and growth test, and the 48-hour benthic larval development test. Based on these data, sediment from station P1PM-05 is of acceptable quality post-construction.

REFERENCES

Anchor QEA, 2016. Sampling and Quality Assurance Project Plan for Compliance Monitoring, Whatcom Waterway Cleanup in Phase 1 Site Areas. Prepared for the Port of Bellingham. March 2016.

- Ecology (Washington State Department of Ecology), 2015. Sediment Cleanup Users Manual II: Appendices. Guidance for Implementing the Sediment Management Standards, Chapter 173-204 WAC. March 2015.
- PSEP (Puget Sound Estuary Program), 1995. Recommended guidelines for conducting laboratory bioassays on Puget Sound sediments. Interim Final Report. Puget Sound Estuary Program, U.S. Environmental Protection Agency Region 10, Seattle, Washington.

TABLES

Table 1Summary of Sediment Management PerformanceStandards and Biological Effects Criteria

Biological Test Performance		ce Standard	Sediment Cleanup	Cleanup Screening	
Endpoint	Control ¹	Reference ²	Objective ³	Level ³	
	Eo	haustorius estuarius			
			$M_{T} - M_{C} > 25\%$ and	$M_T - M_C > 30\%$	
10-day mortality	M _C < 10%	M _R < 25%	M_T vs. M_R SD (p =	and M_T vs. M_R SD (p	
			0.05)	= 0.05)	
	Near	thes arenaceodenta	ta		
	$M_{\rm C}$ < 10% and MIG _F		$MIG_T/MIG_R < 0.85$	$MIG_T/MIG_R < 0.50$	
20-day growth and	> 0.72	$MIG_{R}/MIG_{C} > 0.80$	and MIG _T /MIG _R SD	and MIG _T /MIG _R SD	
mortality	mg/individual·day		(<i>p</i> = 0.05)	(<i>p</i> = 0.05)	
	My	tilus galloprovinciali	s		
			$N_T / N_R < 0.85$ and	$N_T / N_R > 0.70$ and	
Larval Development	N _c /I > 0.70	$N_R/N_C \ge 0.65$	N_T vs. N_R SD (p =	N_T vs. N_R SD ($p =$	
			0.10)	0.10)	

Notes:

1 = These tests and parameters were developed based on SCUM II (2015) protocols.

Source: Ecology 2015

C = control

F = final

I = stocking density

M = mortality

mg = milligram

MIG = mean individual growth at time final

R = reference

SD = significant difference

T = test

Table 2Results of Sediment Confirmational Bioassays

	Eohaustori	us estuarius		Neanthes are	naceodentata		Mytilus gallo	oprovincialis
	-	Aortality %)	•	Mortality %)	-	Growth idual/day) ¹	Mean Numbe	er Normal (%)
Control	3	Pass QA	0	Pass QA	0.45	Pass QA	104.8	Pass QA
Reference	3	Pass QA	0	Pass QA	0.44	Pass QA	98.2	Pass QA
P1PM-05	4	Pass SCO	0	Pass SCO	0.43	Pass SCO	90.3	Pass SCO

Notes:

Bioassay results were screened using SCO and/or CSL criteria, as defined in the Sediment Management Standards, Chapter 173-204 WAC, Final Rule.

A summary of bioassay results, including all supporting laboratory reports and a QA summary, are included in this Appendix.

1 = Growth as measured by ash-free dry weight. See bioassay laboratory report for full details.

CSL = cleanup screening level

mg = milligram

N/A = not applicable

QA = quality assurance

SCO = sediment cleanup objective

ATTACHMENT C LABORATORY DATA PACKAGES

(Provided separately on DVD)

APPENDIX H SUPPLEMENTAL CORING PROGRAM FOR BST

SUPPLEMENTAL CORING PROGRAM FOR BST AS-BUILT REPORT FOR THE WHATCOM WATERWAY CLEANUP IN PHASE 1 SITE AREAS

Prepared for

Port of Bellingham

Prepared by

Anchor QEA, LLC 720 Olive Way, Suite 1900 Seattle, Washington 98101

September 2018

TABLE OF CONTENTS

1	INTRODUCTION	H-1
2	INVESTIGATION METHODS	H-1
3	RESULTS	H-2
4	DREDGE PRISM REDESIGN	H-2

List of Tables

Table H1	Analytical Results – Mercury and Dioxin/Furan TEQ
Table H2	Analytical Results – Dioxin/Furan Congeners

List of Figures

Figure 1	Existing Mercury Analytical Data and Progress Survey 16 Bathymetry
Figure 2	2016 Dredge Prism Refinement Analytical Data
Figure 3	Refined Dredge Prism Contours

List of Attachments

Attachment A	Sediment Core Logs
Attachment B	Analytical Data Packages
Attachment C	Data Validation Memos

LIST OF ACRONYMS AND ABBREVIATIONS

BST	Bellingham Shipping Terminal
EDR	Engineering Design Report
Ecology	Washington State Department of Ecology
mg/kg	milligram per kilogram
MLLW	mean lower low water
TEQ	toxic equivalents quotient

1 INTRODUCTION

During dredging activities in a portion of the Outer Waterway adjacent to the Bellingham Shipping Terminal (BST), American Construction (the Whatcom Waterway dredge operator) encountered a hard layer of native (i.e., not previously dredged) sediment in a portion of Unit 1C. The native material was located within the northwestern quadrant of the Unit 1C dredging prism (Figure 1).

Target neat-line elevations for dredging in this northwest portion of Unit 1C were set at -36 feet mean lower low water (MLLW) in the Engineering Design Report (EDR). The native sediments were found at elevations of approximately -34 feet MLLW.

The presence of the shallow native material was discussed with the Washington State Department of Ecology (Ecology) on January 11. The area of hard material was delineated during dredge operations and extended approximately 30 feet to the east of the boundary of the planned -36 feet MLLW dredge prism based on Progress Survey 16 (Figure 1). A supplemental sediment coring program was then implemented to verify the contact elevation between clean and contaminated sediments. This appendix describes the findings of that testing program.

2 INVESTIGATION METHODS

Proposed sediment coring locations and methods were provided to Ecology on January 12, 2016. Ecology subsequently approved the coring methods and locations.

The coring program included a total of ten vibracore locations as shown in Figure 2:

- Four core locations were placed in the northwestern quadrant of Unit 1C, where the hard native material was encountered.
- Six core locations were placed in the adjacent northeastern portion of Unit 1C.

Sediment coring was conducted on January 13 and 14, 2016. Vertical control was established using lead-lines at the time of coring, and tidal elevation corrections were conducted using an on-site tide gauge established as part of the dredging activities. Cores were compaction-corrected, and cores were segmented into 1-foot intervals (in situ basis) for chemical analysis.

Sediment samples from the cores were submitted for chemical analysis of mercury and dioxin/furans. Results were compared against cleanup levels for the Whatcom Waterway Cleanup in Phase 1 Site Areas Project, and multiple rounds of archive samples were submitted for analysis. Logs are attached for each of the cores (Attachment A).

3 RESULTS

Figure 2 and Table H1 summarize the results of testing for mercury and dioxin/furans. Dioxin/furan results are summarized using the toxic equivalents quotient (TEQ) basis. The analytical data package and the data validation report are included in Attachments B and C, respectively.

- Within the northwest quadrant (cores WWCC-01 to WWCC-04), a consistent layer of poorly graded sandy sediment containing shell debris was encountered at an average elevation of -34.25 feet MLLW. This sand layer coincides with the dredger's observation of hard dredging at approximately -34 feet. All samples collected from within this layer were free of anthropogenic contamination. Mercury results from that layer were below natural background levels (< 0.2 milligram per kilogram [mg/kg]), as were the dioxin/furan TEQ levels (<4 nanograms TEQ/kg). Based on the shallower depth of clean native sediment in this area, a revision to the planned dredge prism was implemented.
- In the northeast quadrant (cores WWCC-05 to WWCC-10), sand layers were not encountered above elevations of approximately -40 feet MLLW. Samples collected from elevations shallower than -40 feet exceeded the mercury Sediment Quality Standard (0.41 mg/kg). This was consistent with the planned dredging neat-line elevation for this area (-40 feet MLLW plus applicable overdredge allowances). Therefore, no changes to the dredging prism for the northeastern quadrant were warranted.

4 DREDGE PRISM REDESIGN

Based on the results of the supplemental coring program, Ecology provided the Port of Bellingham with approval to modify the dredge prism in the northwestern portion of Unit 1C. That approval was provided by electronic mail on January 25, 2016. The adjustments to the dredge prism included the following:

- Anchor QEA revised the planned neat-line dredge elevation in the northwestern quadrant from -36 feet MLLW to -34.5 feet MLLW (plus applicable overdredge allowances). This avoided unnecessary dredging-related disturbances associated with removal of this clean native material.
- The boundary between the -34.5 feet MLLW area and the slope transition to -40 feet MLLW was also moved 20 feet to the east (from Station 32+00 to 31+80) to coincide with the inner-most edge of the shallow sand layer as seen on Figure 3.

H-3

The foregoing change represented a reduction in planned dredging of approximately 1,600 cubic yards in comparison to the previous plan.

TABLES

Table H1Analytical Results – Mercury and Dioxin/Furan TEQ

		Task	WWP1_Construct	WWP1_Construct	WWP1_Construct	WWP1_Construct	WWP1_Construct
		Location ID	WWCC-01	WWCC-01	WWCC-02	WWCC-02	WWCC-03
		Sample ID	WWCC-01-A-160114	WWCC-01-B-160114	WWCC-02-A-160114	WWCC-02-B-160114	WWCC-03-A-160115
		Sample Date	1/14/2016	1/14/2016	1/14/2016	1/14/2016	1/15/2016
	Depth -32			-33.234.2 ft MLLW	-34.835.9 ft MLLW	-35.936.9 ft MLLW	-3334 ft MLLW
		Sample Type	Ν	N	N	Ν	N
		Matrix	SE	SE	SE	SE	SE
		х	1239556.314	1239556.314	1239588.973	1239588.973	1239634.372
		Y	641283.016	641283.016	641238.215	641238.215	641354.986
		SQAPP Screening Value					
Metals (mg/kg)							
Mercury	SW7471A	0.41	9.6	0.0072 J	0.06	0.0193 U	48.5
Dioxin Furans (ng/kg)	-	-		-	-	-	-
Total Dioxin/Furan TEQ 2005 (Mammal) (U = 1/2)		4		0.08671245 J	1.30843 J	0.0438 U	
Total Dioxin/Furan TEQ 2005 (Mammal) (U = 0)		4		0.039283 J	1.26888 J	0.0438 U	
Notes:	•						

Notes:

Detected concentration is greater than SQAPP screening level

Non-detected concentration is above one or more identified screening levels

Bold = Detected result

J = Estimated value

U = Compound analyzed, but not detected above detection limit

UJ = Compound analyzed, but not detected above estimated detection limit

FD = field duplicate

J = estimated value

mg/kg = milligrams per kilogram

N = normal sample

ng/kg = nanograms per kilogram

SQAPP = Sampling and Quality Assurance Project Plan

TEQ = Toxic Equivalents Quotient

U = compound analyzed, but not detected above detection limit

USEPA = U.S. Environmental Protection Agency

Table H1Analytical Results – Mercury and Dioxin/Furan TEQ

		_					
		Task	WWP1_Construct	WWP1_Construct	WWP1_Construct	WWP1_Construct	WWP1_Construct
		Location ID	WWCC-03	WWCC-03	WWCC-04	WWCC-04	WWCC-05
		Sample ID	WWCC-03-B-160115	WWCC-03-C-160115	WWCC-04-A-160114	WWCC-04-B-160114	WWCC-05-A-160115
	Sample Date Depth -:			1/15/2016	1/14/2016	1/14/2016	1/15/2016
				-3535.2 ft MLLW	-3334 ft MLLW	-3435 ft MLLW	-39.540.3 ft MLLW
		Sample Type	Ν	N	N	N	N
		Matrix	SE	SE	SE	SE	SE
		х	1239634.372	1239634.372	1239673.612	1239673.612	1239702.716
		Y	641354.986	641354.986	641318.741	641318.741	641427.896
		SQAPP Screening Value					
Metals (mg/kg)							
Mercury	SW7471A	0.41	7.8	0.0095 U	0.48	0.0126 J	2.81
Dioxin Furans (ng/kg)	-	-		-			-
Total Dioxin/Furan TEQ 2005 (Mammal) (U = 1/2)		4		0.3068385 J		0.143188 J	47.6506 J
Total Dioxin/Furan TEQ 2005 (Mammal) (U = 0)		4		0.210261 J		0.056404 J	47.6506 J
Notaci							

Notes:

Detected concentration is greater than SQAPP screening level

Non-detected concentration is above one or more identified screening levels

Bold = Detected result

J = Estimated value

U = Compound analyzed, but not detected above detection limit

UJ = Compound analyzed, but not detected above estimated detection limit

FD = field duplicate

J = estimated value

mg/kg = milligrams per kilogram

N = normal sample

ng/kg = nanograms per kilogram

SQAPP = Sampling and Quality Assurance Project Plan

TEQ = Toxic Equivalents Quotient

U = compound analyzed, but not detected above detection limit

USEPA = U.S. Environmental Protection Agency

Table H1Analytical Results – Mercury and Dioxin/Furan TEQ

		_					
		Task	WWP1_Construct	WWP1_Construct	WWP1_Construct	WWP1_Construct	WWP1_Construct
		Location ID	WWCC-06	WWCC-06	WWCC-06	WWCC-07	WWCC-07
		Sample ID	WWCC-06-B-160114	WWCC-06-C-160114	WWCC-06-D-160114	WWCC-07-A-160115	WWCC-07-B-160115
	Sample Date Depth -38			1/14/2016	1/14/2016	1/15/2016	1/15/2016
				-39.340.3 ft MLLW	-40.341.3 ft MLLW	-38.339 ft MLLW	-3940 ft MLLW
		Sample Type	Ν	N	N	N	N
		Matrix	SE	SE	SE	SE	SE
		х	1239759.337	1239759.337	1239759.337	1239782.841	1239782.841
		Y	641403.075	641403.075	641403.075	641506.208	641506.208
		SQAPP Screening Value					
Metals (mg/kg)							
Mercury	SW7471A	0.41	3.21	0.44	0.0154 U	4.4	2.93
Dioxin Furans (ng/kg)	•			-		-	-
Total Dioxin/Furan TEQ 2005 (Mammal) (U = 1/2)		4			0.234269 J		58.51 J
Total Dioxin/Furan TEQ 2005 (Mammal) (U = 0)		4			0.159524 J		58.51 J
Notes:	-						

Detected concentration is greater than SQAPP screening level

Non-detected concentration is above one or more identified screening levels

Bold = Detected result

J = Estimated value

U = Compound analyzed, but not detected above detection limit

UJ = Compound analyzed, but not detected above estimated detection limit

FD = field duplicate

J = estimated value

mg/kg = milligrams per kilogram

N = normal sample

ng/kg = nanograms per kilogram

SQAPP = Sampling and Quality Assurance Project Plan

TEQ = Toxic Equivalents Quotient

U = compound analyzed, but not detected above detection limit

USEPA = U.S. Environmental Protection Agency

Table H1Analytical Results – Mercury and Dioxin/Furan TEQ

		Task	WWP1_Construct	WWP1_Construct	WWP1_Construct	WWP1_Construct	WWP1_Construct
		Location ID	WWCC-08	WWCC-08	WWCC-09	WWCC-09	WWCC-09
		Sample ID	WWCC-08-B-160114	WWCC-08-C-160114	WWCC-09-A-160115	WWCC-09-B-160115	WWCC-09-C-160115
		Sample Date	1/14/2016	1/14/2016	1/15/2016	1/15/2016	1/15/2016
		Depth	-39.340.3 ft MLLW	-40.341.3 ft MLLW	-41.542.5 ft MLLW	-42.543.5 ft MLLW	-4445 ft MLLW
		Sample Type	Ν	N	Ν	N	N
		Matrix	SE	SE	SE	SE	SE
		Х	1239821.373	1239821.373	1239839.486	1239839.486	1239839.486
		Y	641463.288	641463.288	641564.530	641564.530	641564.530
		SQAPP Screening Value					
Metals (mg/kg)							
Mercury	SW7471A	0.41	0.48	0.06	0.014 U	0.0242 J	0.05
Dioxin Furans (ng/kg)	-	-		-		-	-
Total Dioxin/Furan TEQ 2005 (Mammal) (U = 1/2)		4		0.53451055 J	0.20629 J		
Total Dioxin/Furan TEQ 2005 (Mammal) (U = 0)		4		0.51163 J	0.006035 J		
Notes							

Notes:

Detected concentration is greater than SQAPP screening level

Non-detected concentration is above one or more identified screening levels

Bold = Detected result

J = Estimated value

U = Compound analyzed, but not detected above detection limit

UJ = Compound analyzed, but not detected above estimated detection limit

FD = field duplicate

J = estimated value

mg/kg = milligrams per kilogram

N = normal sample

ng/kg = nanograms per kilogram

SQAPP = Sampling and Quality Assurance Project Plan

TEQ = Toxic Equivalents Quotient

U = compound analyzed, but not detected above detection limit

USEPA = U.S. Environmental Protection Agency

Table H1 Analytical Results – Mercury and Dioxin/Furan TEQ

		Task	WWP1_Construct	WWP1_Construct
		Location ID	wwcc-10	wwcc-59
		Sample ID	WWCC-10-A-160115	WWCC-59-A-160115
		Sample Date	1/15/2016	1/15/2016
		Depth	-39.740.2 ft MLLW	-41.542.5 ft MLLW
		Sample Type	Ν	FD
		Matrix	SE	SE
		Х	1239896.040	1239839.486
		Y	641532.899	641564.530
		SQAPP Screening Value		
Metals (mg/kg)				
Mercury	SW7471A	0.41	1.33	0.0128 J
Dioxin Furans (ng/kg)				-
Total Dioxin/Furan TEQ 2005 (Mammal) (U = 1/2)		4	34.9316 J	
Total Dioxin/Furan TEQ 2005 (Mammal) (U = 0)		4	34.9316 J	

Notes:

Detected concentration is greater than SQAPP screening level

Non-detected concentration is above one or more identified screening levels

Bold = Detected result

J = Estimated value

U = Compound analyzed, but not detected above detection limit

UJ = Compound analyzed, but not detected above estimated detection limit

FD = field duplicate

J = estimated value

mg/kg = milligrams per kilogram

N = normal sample

ng/kg = nanograms per kilogram

SQAPP = Sampling and Quality Assurance Project Plan

TEQ = Toxic Equivalents Quotient

U = compound analyzed, but not detected above detection limit

USEPA = U.S. Environmental Protection Agency

			-	-		1	
		WWP1_Construct	WWP1_Construct	WWP1_Construct	WWP1_Construct	WWP1_Construct	WWP1_Construct
		WWCC-01	WWCC-02	WWCC-02	WWCC-03	WWCC-04	WWCC-05
		WWCC-01-B-160114	WWCC-02-A-160114	WWCC-02-B-160114	WWCC-03-C-160115	WWCC-04-B-160114	WWCC-05-A-160115
		1/14/2016	1/14/2016	1/14/2016	1/15/2016	1/14/2016	1/15/2016
		-33.234.2 ft MLLW	-34.835.9 ft MLLW	-35.936.9 ft MLLW	-3535.2 ft MLLW	-3435 ft MLLW	-39.540.3 ft MLLW
		N	N	N	N	N	N
		SE	SE	SE	SE	SE	SE
		1239556.314	1239588.973	1239588.973	1239634.372	1239673.612	1239702.716
		641283.016	641238.215	641238.215	641354.986	641318.741	641427.896
Dioxin Furans (ng/kg)							
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD)	E1613B	0.035 U	0.0586 U	0.0259 U	0.0577 U	0.0318 U	1.98
1,2,3,7,8-Pentachlorodibenzo-p-dioxin (PeCDD)	E1613B	0.0292 J	0.259 J	0.0438 U	0.0748 J	0.0577 U	5.95
1,2,3,4,7,8-Hexachlorodibenzo-p-dioxin (HxCDD)	E1613B	0.0447 U	0.582 J	0.0578 U	0.0755 U	0.0616 U	9.2
1,2,3,6,7,8-Hexachlorodibenzo-p-dioxin (HxCDD)	E1613B	0.0505 U	1.53	0.0618 U	0.274 U	0.193 J	53.9
1,2,3,7,8,9-Hexachlorodibenzo-p-dioxin (HxCDD)	E1613B	0.0777 J	0.921 J	0.0618 U	0.239 J	0.0473 J	18
1,2,3,4,6,7,8-Heptachlorodibenzo-p-dioxin (HpCDD)	E1613B	0.898 U	32.2	0.773 U	5.48 U	4.06 U	1340
1,2,3,4,6,7,8,9-Octachlorodibenzo-p-dioxin (OCDD)	E1613B	11.4 U	278	7.82 U	45.4 U	37.3 U	13200 J
Total Tetrachlorodibenzo-p-dioxin (TCDD)	E1613B	0.165 J	22.5 J	0.282 J	0.715 J	0.311 J	333 J
Total Pentachlorodibenzo-p-dioxin (PeCDD)	E1613B	0.0293 J	22 J	0.0454 J	0.878 J	0.376 J	312 J
Total Hexachlorodibenzo-p-dioxin (HxCDD)	E1613B	0.567 J	34.8 J	0.383 J	3.05 J	1.43 J	624
Total Heptachlorodibenzo-p-dioxin (HpCDD)	E1613B	2.05 J	74.3 J	1.89 J	12.3 J	9.41 J	2950
2,3,7,8-Tetrachlorodibenzofuran (TCDF)	E1613B	0.0272 U	0.676 J	0.0279 U	0.0457 U	0.0258 U	21.9
1,2,3,7,8-Pentachlorodibenzofuran (PeCDF)	E1613B	0.0583 J	0.197 J	0.0299 U	0.0835 J	0.0616 J	9.72 J
2,3,4,7,8-Pentachlorodibenzofuran (PeCDF)	E1613B	0.0428 U	0.176 J	0.0299 U	0.298 J	0.0417 J	7.09
1,2,3,4,7,8-Hexachlorodibenzofuran (HxCDF)	E1613B	0.033 U	0.467 J	0.0299 U	0.0596 U	0.0974 UJ	28.2 J
1,2,3,6,7,8-Hexachlorodibenzofuran (HxCDF)	E1613B	0.0311 U	0.199 J	0.0299 U	0.0577 U	0.0358 J	8.46
1,2,3,7,8,9-Hexachlorodibenzofuran (HxCDF)	E1613B	0.101 U	0.205 U	0.0717 U	0.0897 U	0.0865 U	7.36
2,3,4,6,7,8-Hexachlorodibenzofuran (HxCDF)	E1613B	0.033 U	0.322 J	0.0299 U	0.0596 U	0.0378 U	11.1
1,2,3,4,6,7,8-Heptachlorodibenzofuran (HpCDF)	E1613B	0.231 U	6.61	0.0737 U	1.77	1.38 J	351
1,2,3,4,7,8,9-Heptachlorodibenzofuran (HpCDF)	E1613B	0.0564 J	0.364 J	0.0618 U	0.0855 U	0.0636 J	20.3
1,2,3,4,6,7,8,9-Octachlorodibenzofuran (OCDF)	E1613B	0.863 U	21.1	0.282 U	6.52	4.56 U	1390
Total Tetrachlorodibenzofuran (TCDF)	E1613B	0.0754 J	3.04 J	0.0659 J	0.117	0.126	129 J
Total Pentachlorodibenzofuran (PeCDF)	E1613B	0.0578 J	2.77 J	0.0299 U	1.34 J	0.337 J	144 J
Total Hexachlorodibenzofuran (HxCDF)	E1613B	0.253 J	8.63 J	0.0711 J	1.55 J	1.64 J	464 J
Total Heptachlorodibenzofuran (HpCDF)	E1613B	0.683 J	23.7 J	0.186 J	6.18	4.99 J	1430 J

Table H2 Analytical Results – Dioxin/Furan Congeners

Notes:

Bold = Detected result

J = Estimated value

U = Compound analyzed, but not detected above detection limit

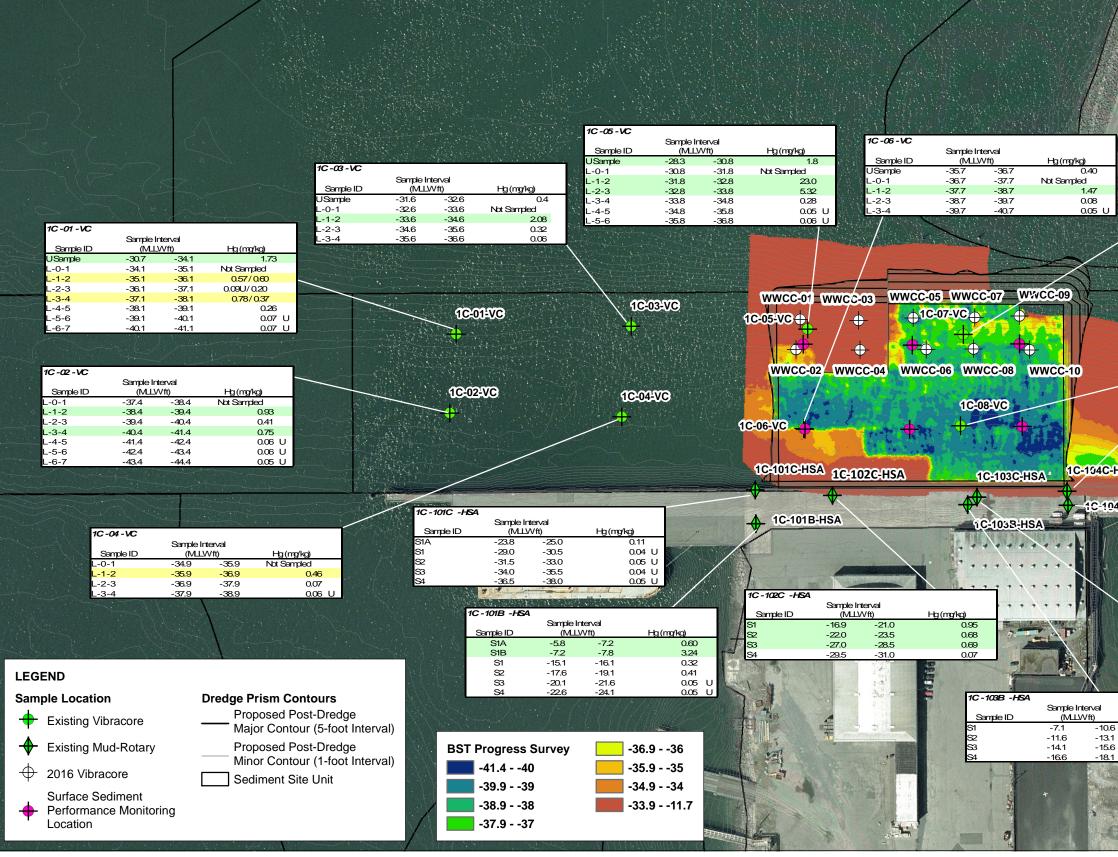
UJ = Compound analyzed, but not detected above estimated detection limit

WWP1_Construct WWP1_Construct WWP1_Construct WWP1_Construct WWCC-06 WWCC-07 WWCC-08 **WWCC-09** WWCC-06-D-160114 WWCC-07-B-160115 WWCC-08-C-160114 WWCC-09-A-160115 1/14/2016 1/15/2016 1/14/2016 1/15/2016 -40.3 - -41.3 ft MLLW -39 - -40 ft MLLW -40.3 - -41.3 ft MLLW -41.5 - -42.5 ft MLLW Ν Ν Ν Ν SE SE SE SE 1239759.337 1239782.841 1239821.373 1239839.486 641403.075 641506.208 641463.288 641564.530 Dioxin Furans (ng/kg) 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) E1613B 0.0333 U 2.4 0.177 J 0.099 U E1613B 0.0902 J 7.04 0.111 U 1,2,3,7,8-Pentachlorodibenzo-p-dioxin (PeCDD) 0.196 J 1,2,3,4,7,8-Hexachlorodibenzo-p-dioxin (HxCDD) E1613B 0.1 J 9.87 0.177 J 0.182 U E1613B 0.245 U 68.3 0.0497 U 0.194 U 1,2,3,6,7,8-Hexachlorodibenzo-p-dioxin (HxCDD) 1,2,3,7,8,9-Hexachlorodibenzo-p-dioxin (HxCDD) E1613B 0.169 J 21.7 0.264 J 0.194 U 1,2,3,4,6,7,8-Heptachlorodibenzo-p-dioxin (HpCDD) E1613B 4.38 U 1630 2.76 U 2.01 U 1,2,3,4,6,7,8,9-Octachlorodibenzo-p-dioxin (OCDD) E1613B 39.2 U 17000 J 15.3 U 28.9 U Total Tetrachlorodibenzo-p-dioxin (TCDD) E1613B 1.48 J 345 J 7.72 J 0.142 J Total Pentachlorodibenzo-p-dioxin (PeCDD) E1613B 1.34 J 327 5.25 J 0.111 U Total Hexachlorodibenzo-p-dioxin (HxCDD) E1613B 2.99 J 681 6.79 J 0.762 J E1613B 10.2 J 3640 5.72 J Total Heptachlorodibenzo-p-dioxin (HpCDD) 5.06 J E1613B 0.0667 J 25.6 0.292 J 0.0871 U 2,3,7,8-Tetrachlorodibenzofuran (TCDF) 1,2,3,7,8-Pentachlorodibenzofuran (PeCDF) E1613B 0.116 J 11.3 J 0.156 J 0.125 U 2,3,4,7,8-Pentachlorodibenzofuran (PeCDF) 0.0471 U 0.111 J E1613B 9.13 0.129 U 1,2,3,4,7,8-Hexachlorodibenzofuran (HxCDF) E1613B 0.129 J 35.7 J 0.0869 J 0.123 U 1,2,3,6,7,8-Hexachlorodibenzofuran (HxCDF) E1613B 0.0725 J 11.7 0.0895 J 0.121 U 1,2,3,7,8,9-Hexachlorodibenzofuran (HxCDF) E1613B 0.171 U 10 0.0775 U 0.143 U E1613B 16 2,3,4,6,7,8-Hexachlorodibenzofuran (HxCDF) 0.049 U 0.0676 J 0.127 U 1,2,3,4,6,7,8-Heptachlorodibenzofuran (HpCDF) E1613B 0.982 405 0.295 J 0.533 J 1,2,3,4,7,8,9-Heptachlorodibenzofuran (HpCDF) E1613B 0.135 J 22.9 0.0636 U 0.218 U 1,2,3,4,6,7,8,9-Octachlorodibenzofuran (OCDF) E1613B 3.18 1420 0.717 U 2.35 Total Tetrachlorodibenzofuran (TCDF) E1613B 0.239 J 145 J 5.35 J 0.0871 U E1613B 0.322 J 185 J 1.44 J 0.129 U Total Pentachlorodibenzofuran (PeCDF) 1.44 J 610 J 0.804 J 0.126 J Total Hexachlorodibenzofuran (HxCDF) E1613B Total Heptachlorodibenzofuran (HpCDF) E1613B 3.4 J 1570 J 0.718 J 1.4 J

Table H2 Analytical Results – Dioxin/Furan Congeners

Notes:

Bold = Detected result


J = Estimated value

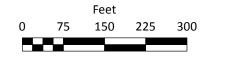
U = Compound analyzed, but not detected above detection limit

UJ = Compound analyzed, but not detected above estimated detection limit

WWP1_Construct
WWCC-10
WWCC-10-A-160115
1/15/2016
-39.740.2 ft MLLW
Ν
SE
1239896.040
641532.899
1.4 J
5.42
12.2
42.8
19
958
8810 J
551 J
525
834 J
2160
20.9
4.92 J
3.94
14.2 J
5.06
4.06
7.41
171
9.64
632
96.9 J
81.5 J
251 J
656

FIGURES

NOTES:

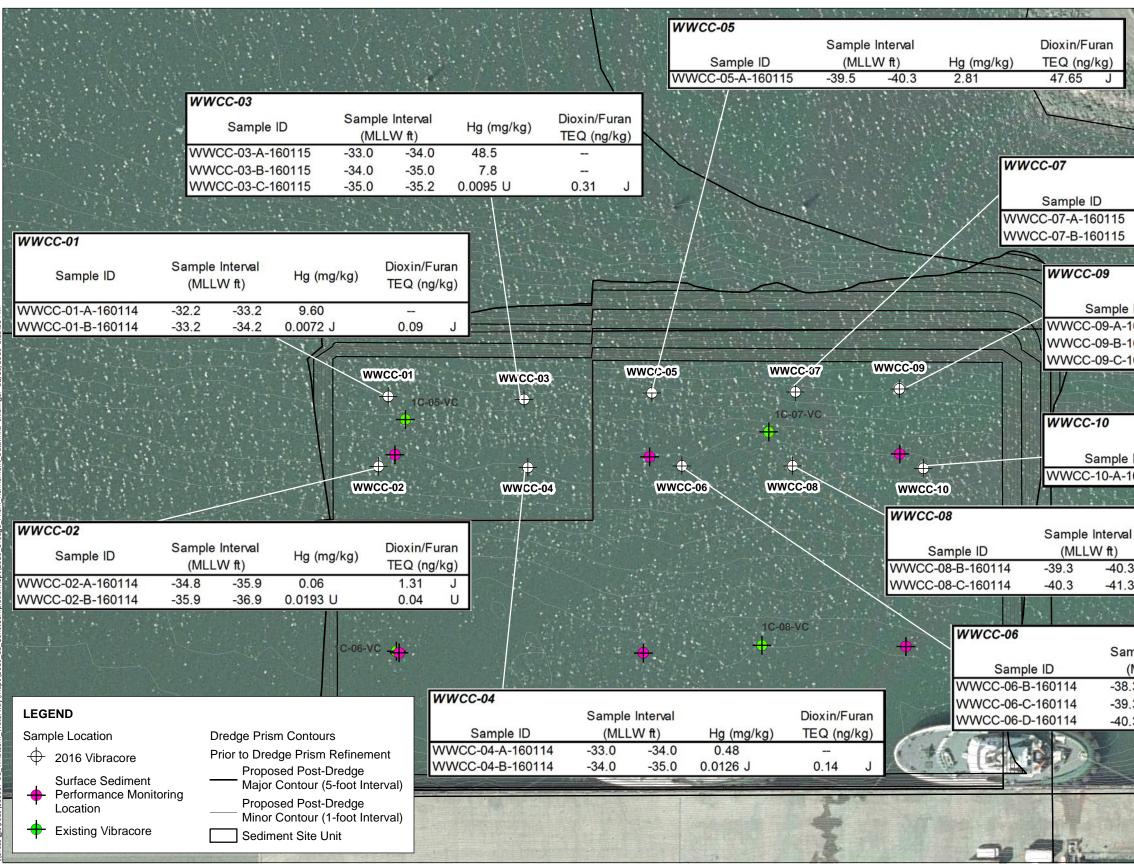

- 1. 2008 Mercury results presented as mg/kg, see tables 17a & 17b for testing results. 2. Station 1C-102B-HSA was not sampled due to refusal.
- 3. Results of duplicate analyses are averaged to assess
- compliance with numeric screening levels.

4. Sample intervals presented as Mean Lower Low Water (MLLW) elevation.

5. Sediment Site Units and boundaries source: Figure 4-6,

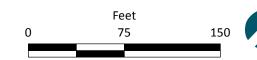
Cleanup Action Plan, Whatcom Waterway Site, September 2007.

6. BST stations 1C-101B-HSA and 1C-101C-HSA included co-located mud-rotary and diver core sampling. 7. Horizontal datum: Washington State Plane North, NAD 27/98. 8. Aerial photo taken in 2004.



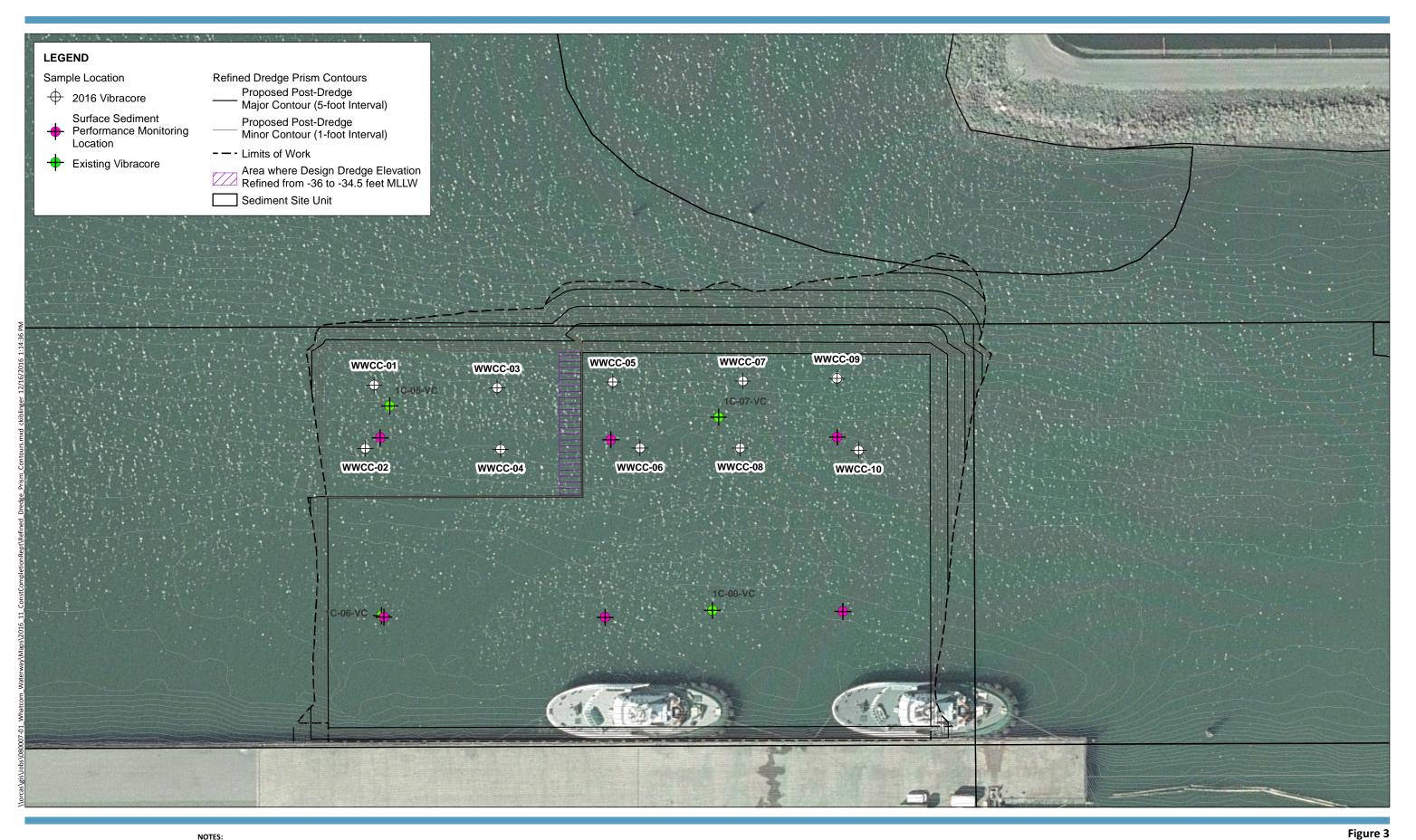
QEA CEC

	H	1C-07-VC	•	mple li	nterval		•		
		Sample ID USample		(ML)		Hg (mg/l			
		L-0-1	-2 -3		-33.1	Not Sampl	6.3 ed		
1		L-1-2 <mark>L-2-3</mark>	-3 -3		-34.1 -35.1		0.7 0.46	1	11
annin	in the second	L-3-4 L-4-5	-3	5.1	-36.1		0.55	Index and	
	-	L-5-6	-30 -31	7.1	-37.1 -38.1		0.56 0.44		
		L-6-7	-3	3.1	-39.1		0.36		
		1C -08 - VC Sample ID	Se		nterval ⊥Wft)	Hg (mg/	ka)		
		USample L-0-1		6.3 7.3	-37.3 -38.3		0.65		
		L-1-2	-3	8.3	-39.3	Not Samp	1.99		
	And the second	L-2-3 L-3-4		9.3 0.3	-40.3 -41.3		0.67 0.09		
		L-4-5	-4	1.3	-42.3		0.04 U	\sim	
	1. 1. 1.	N. T.							
	/	1 C - 104C - F Sample ID			Interval _Wft)	Hg (mg/	'kg)	· / · ·	
		ମ ସ୍ଥ		0.5 6.5	-25.5 -28.0		0.19 0.06		
		S3	-2	9.0	-30.5		0.05 U		
ISA		S4	-3	1.5	-33.0		0.05 U		
		5						-	
B-HS	SA	1C-104B-H	E-A						
					nterval			A	
		Sample ID S1	-6	(MLL 6.9		Hg (mg/	kg) 6.5	1	D
		SZ SZ		1.5	-13.0	Not Collect	0.60		
		33 S4	-1	- 9.0	-20.5	Not Collect	0.17		
						170		-	
	1C-1	031C -HSA	Osessia in				1		al
		nple ID	Sample Ir (MLL)	∕Vft)		Hg (mg/kg)	111		
	S1 S2		-22.8 -25.3		14.3 16.8	0.23 0.18		+	
	S3 S4		-27.8 -30.3		9.3 1.8	0.08 0.13	1 and		BT
	01		00.0				14		
	Hg(r	ng/kg) 0.23	7	12.5		JU			
1		0.25 0.36 0.21 0.04 U		T	× W.	II.	1.0	hi	
	Rates	121		Non and	1		L		


Figure 1

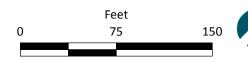
Existing Mercury Analytical Data and Progress Survey 16 Bathymetry Appendix H - Supplemental Coring Program for BST As-Built Report Whatcom Waterway Cleanup in Phase 1 Site Areas

NOTES: 1. Horizontal Datum: WA State Plane North NAD 83 (Feet) 2. Sample intervals presented as Mean Lower Low Water (MLLW) elevation. 3. Toxic equivalency (TEQ) values were calculated for the validated dioxin/furan congeners using the 2005 World Health Organization's toxic equivalency factors for mammals. Undetected congeners were assigned a concentration equal to 1/2 the detection limit (ND=1/2). 4. Aerial photo is 2004.



		e Interval LW ft)	Hg ((mg/kg)		/Furan (ng/kg)	
5	-38.3 -39.0	-39.0 -40.0	4. 2.9		 58.5	1 J	
e ID -1601 -1601	15	Sample I (MLLV -41.5 -42.5	V ft) -42.5 -43.5	Hg (mg 0.014 L 0.0242 J 0.05	J	Dioxin/F TEQ (ng 0.21	
-1601		-44.0	-45.0	0.05			
e ID -1601	15	Sample I (MLLV -39.7		Hg (mg 1.33	/kg)	Dioxin/F TEQ (ng 34.9	and the second se
al	Hg (r	ng/kg)	Dioxin/F TEQ (ng	Sala Para Sala		· · · · · · · · · · · · · · · · · · ·	
.3 .3	0.48 0.06		 0.53	J			
			A.		٠		
	Interva Wft) -39.3	Hg	(mg/kg)	Dioxin/ TEQ (r	1.		
9.3 0.3	-40.3 -41.3	3 0.4	14		J		Z

Figure 2



2016 Dredge Prism Refinement Analytical Data Appendix H - Supplemental Coring Program for BST As-Built Report Whatcom Waterway Cleanup in Phase 1 Site Areas

NOTES: 1. Horizontal Datum: WA State Plane North NAD 83 (Feet). 2. Aerial photo is 2004.

3

Refined Dredge Prism Contours Appendix H - Supplemental Coring Program for BST As-Built Report Whatcom Waterway Cleanup in Phase 1 Site Areas

ATTACHMENT A SEDIMENT CORE LOGS

		Sediment C	•		Shee	et 1 of 1
Project	²² Whatcom Waterway	Estimated Mudline Elevation (ft, MI	LLW): -27.9	Method/Core Diameter:	Vibracore/	/4.0"
Project	:#: 080007-01.04	Tidal Elevation (MLLW): +8.8		Penetration Depth (ft): 7	.0	
Client:	Port of Bellingham	Lead Line: - 36.7		Field Recovery Length (ft	:): 4.46	
Collect	ion Date: 1/13/2016	Northing: 48 44.76672 N	Easting: 122 29.69001 W	Process Date: 1/14/20	16	
Contra	ctor: Marine Sampling Services	Horizontal Datum: NAD83 WA SP N	N Feet	Percent Recovery: 64%		
Logged	1 By: LH	Vertical Datum: MLLW (feet)		Location: Bellingham, V	VA	
Recovered Depth (ft)	Samples		Soil Description descriptions are in recovered assification scheme: USCS	depths.	Graphic Log (Expanded Depth (ft))	Estimated Mudline Elevation (feet, MLLW)

		SILT (ML): @0.0-1.2ft: Black, soft, wet, 100% fines (non-plastic), trace fine sand; trace organics (wood twigs up to 2 inches); trace H2S-like odor.	-28
2	No sample	SILT (ML): @1.2-3.5ft: Dark gray, medium stiff, wet, 95% fines (non-plastic), 5% fine to medium sand, trace organics (wood fragments up to 1.25 inches and hair-like fragments); trace H2S-like odor.	-30
3	WWCC-01-A-160114	@2.8ft: Wood fragment (red-brown, 3x3.5 inches).	-32
4	WWCC-01-B-160114	POORLY GRADED SAND (SP): @3.5-4.1ft: Dark gray, medium dense, moist, 95% fine to medium sand, 5% fines; occasional biota (shell fragments up to 1 inch).	
		End of sediment core @ 4.1ft.	-35
5			-36
6			-37
7			-38
			-39
8			-40
9			-42
			-43

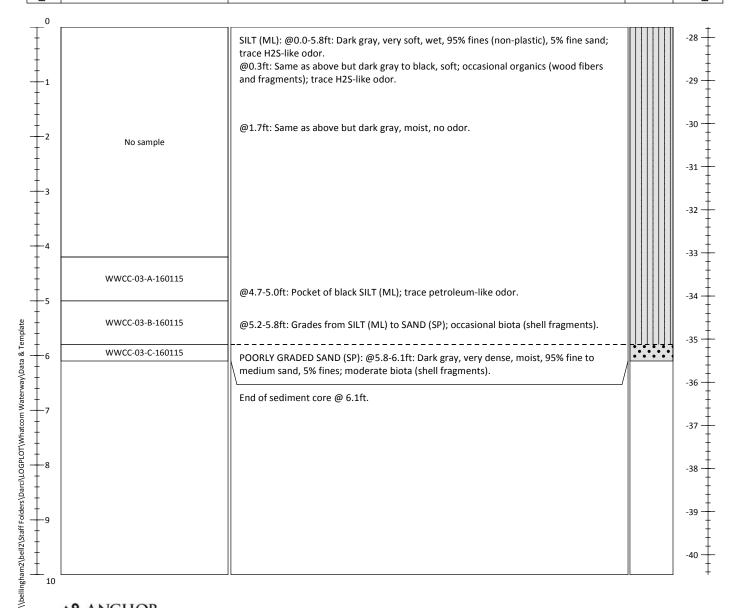
View ANCHOR OEA CONTROL 720 Olive Way Seattle, WA 98101 (206) 903-9130

Notes: 1. Tidal elevations were provided by American Construction from their on-site tide gauge.
2. The core catcher was not retained during sampling so the field recovery length does not match the recovered depth.

	Sediment Core Log wwcc-02				
Project	¹ Whatcom Waterway	Estimated Mudline Elevation (ft, MLLW): -34.8	Method/Core Diameter: Vibracore/4.0"		
Project	#: 080007-01.04	Tidal Elevation (MLLW): +5.9	Penetration Depth (ft): 7.0		
Client:	Port of Bellingham	Lead Line: - 40.7	Field Recovery Length (ft): 5.58		
Collection Date: 1/14/2016		Northing: 48 44.75947 N Easting: 122 29.68165	<i>N</i> Process Date: 1/14/2016		
Contractor: Marine Sampling Services		Horizontal Datum: NAD83 WA SP N Feet	Percent Recovery: 80%		
Logged	l By: LH	Vertical Datum: MLLW (feet)	Location: Bellingham, WA		
Recovered Depth (ft)	Samples	Soil Description Samples and descriptions are in recov Classification scheme: USC			

Ţ		POORLY GRADED SAND (SP): @0.0-5.1ft: Dark gray, loose, wet, 95% fine to medium	-35 —
ŧ	WWCC-02-A-160114	sand, 5% fines; trace biota (shell fragments up to 1 inch).	Į
<u>+</u> 1		@0.8ft: Same as above but medium dense, moist.	-36 +
Į	WWCC-02-B-160114		ŧ
-2			-37 +
+			-
+		@2.5ft: Two large biota shell fragments (light brown up to 2x3 inches).	-38
3			-39 +
ļ	No sample		ļ
4			-40 +
+		@4.2ft: Same as above but occasional biota (light brown shell fragments up to 1 inch).	+
-5			-41 +
nplate		End of sediment core @ 5.1ft.	+
9 + 6			-42 +
vay\Dai			-43 +
7 Mater			10
hatcom			-44
лот\W			ļ
8 + ci/roge			-45 +
lers/Dai			ŧ
9 + 9			-46 +
bell2\Si			,
lingham2(bell2\Staff Folders\Darci\LOGPLOT\Whatcom Waterway\Data & Template)		-47 +

\\bellingham2\bell2\Staff Folders\Da


0

Notes: 1. Tidal elevations were provided by American Construction from their on-site tide gauge. 2. The core catcher was not retained during sampling so the field recovery length does not match the recovered depth.

720 Olive Way Seattle, WA 98101 (206) 903-9130

	Sediment Core Log wwcc-03				
Project	[:] Whatcom Waterway	Estimated Mudline Elevation (ft, MLLW): -27.7	Method/Core Diameter: Vibracore/4.0"		
Project	#: 080007-01.04	Tidal Elevation (MLLW): +5.1	Penetration Depth (ft): 8.0		
Client:	Port of Bellingham	Lead Line: -32.8	Field Recovery Length (ft): 6.33		
Collection Date: 1/14/2016		Northing: 48 44.77883 N Easting: 122 29.67099 W	Process Date: 1/15/2016		
Contra	ctor: Marine Sampling Services	Horizontal Datum: NAD83 WA SP N Feet	Percent Recovery: 79%		
Logged	l By: LH	Vertical Datum: MLLW (feet)	Location: Bellingham, WA		
Recovered Depth (ft)	Samples	Soil Description Samples and descriptions are in recovere Classification scheme: USCS	Graphic Log (Expanded Depth (ft)) Estimated Mudline		

R ANCHOR QEA 😂 720 Olive Way Seattle, WA 98101

Notes: 1. Tidal elevations were provided by American Construction from their on-site tide gauge. 2. The core catcher was not retained during sampling so the field recovery length does not match the recovered depth.

(206) 903-9130

	Sediment Core Log wwcc-04				
Project	[:] Whatcom Waterway	Estimated Mudline Elevation (ft, MLLW): -29.4	Method/Core Diameter: Vibracore/4.0"		
Project	#: 080007-01.04	Tidal Elevation (MLLW): +6.4	Penetration Depth (ft): 7.0		
Client:	Port of Bellingham	Lead Line: -35.8	Field Recovery Length (ft): 4.83		
Collecti	on Date: 1/13/2016	Northing: 48 44.77301 N Easting: 122 29.66104	W Process Date: 1/14/2016		
Contractor: Marine Sampling Services		Horizontal Datum: NAD83 WA SP N Feet	Percent Recovery: 69%		
Logged	Ву: LH	Vertical Datum: MLLW (feet)	Location: Bellingham, WA		
Recovered Depth (ft)	Samples	Soil Description Samples and descriptions are in recov Classification scheme: USC			

		SILT (ML): @0.0-3.1ft: Dark gray, soft, wet, 100% fines (non-plastic), trace fine sand; trace organics (wood fibers and fragments); moderate H2S-like odor.	-3
-1	No sample	@1.5ft: Same as above but medium stiff, moist; occasional organics (wood fibers and fragments up to 2 inches); occasional biota (shell fragments up to 1.5 inches).	-3 -3
-3	WWCC-04-A-160114		-3
	WWCC-04-B-160114	POORLY GRADED SAND (SP): @3.1-4.65ft: Dark gray, dense, moist, 100% fine to medium sand, trace fines; moderate biota (white shell fragments up to 1.5x1.5 inches).	-3
-4	WWCC-04-C-160114	 @3.85-4.2ft: Same as above but sand is fine, no biota. @4.2-4.65ft: Same as above but substantial biota (light brown shell fragments up to 0.5 inches). 	
-5		End of sediment core @ 4.65ft.	-1
-6			-
-7			-
·8			-
-9			-
10			

720 Olive Way Seattle, WA 98101 (206) 903-9130

Notes: 1. Tidal elevations were provided by American Construction from their on-site tide gauge.
2. The core catcher was not retained during sampling so the field recovery length does not match the recovered depth.

	Sediment Core Log wwcc-05				
Project	[:] Whatcom Waterway	Estimated Mudline Elevation (ft, MLLW): -39.5	Method/Core Diameter: Vibracore/4.0"		
Project	#: 080007-01.04	Tidal Elevation (MLLW): +8.3	Penetration Depth (ft): 7.0		
Client:	Port of Bellingham	Lead Line: -47.8	Field Recovery Length (ft): 6.42		
Collect	ion Date: 1/14/2016	Northing: 48 44.79106 N Easting: 122 29.65439 W	Process Date: 1/15/2016		
Contractor: Marine Sampling Services		Horizontal Datum: NAD83 WA SP N Feet	Percent Recovery: 92%		
Logged	i By: LH	Vertical Datum: MLLW (feet)	Location: Bellingham, WA		
Recovered Depth (ft)	Samples	Soil Description Samples and descriptions are in recovered Classification scheme: USCS	Graphic Log (Expanded Depth (ft)) Estimated Mudline Elevation (feet, MLLW)		

WWCC-05-A-160115	SILT (ML): @0.0-0.8ft: Gray, very soft, wet, 95% fines (non-plastic), 5% fine sand; trace organics (wood fibers).	
No sample	 POORLY GRADED SAND (SP): @0.8-1.4ft: Dark gray, medium dense, moist, 95% fine to medium sand, 5% fines; trace organics (wood fragments). @0.8-1.4ft: Pockets of SILT (ML), gray-brown, medium stiff, 95% fines, 5% sand. POORLY GRADED SAND (SP): @1.4-6.0ft: Gray, medium dense to dense, moist, 95% fine to medium sand, 5% fines; occasional biota (shell fragments up to 2 inches). @2.8-5.4ft: Same as above but substantial biota (white to light brown shell fragments up to 2.5 inches). 	
	End of sediment core @ 6.0ft.	

\\bellingham2\bell2\Staff Folders\Darci\LOGPLOT\Whatcom Waterway\Data & Template

Notes: 1. Tidal elevations were provided by American Construction from their on-site tide gauge.
2. The core catcher was not retained during sampling so the field recovery length does not match the recovered depth.

	Sediment Core Log wwcc-06				
Project	¹ Whatcom Waterway	Estimated Mudline Elevation (ft, MLLW): -38.0	Method/Core Diameter: Vibracore/4.0"		
Project	#: 080007-01.04	Tidal Elevation (MLLW): +6.2	Penetration Depth (ft): 7.0		
Client:	Port of Bellingham	Lead Line: -44.2	Field Recovery Length (ft): 5.75		
Collection Date: 1/13/2016		Northing: 48 44.78718 N Easting: 122 29.64018 W	Process Date: 1/14/2016		
Contractor: Marine Sampling Services		Horizontal Datum: NAD83 WA SP N Feet	Percent Recovery: 82%		
Logged	l By: LH	Vertical Datum: MLLW (feet)	Location: Bellingham, WA		
Recovered Depth (ft)	Samples	Soil Description Samples and descriptions are in recovere Classification scheme: USCS	Graphic Log (Expanded Depth (ft)) Estimated Mulline		

WWCC-06-A-160114	CHT (MI), CO O O 24, Deel, having suggest the OFO(fines (see al. 11)) FO(fines d	
WWCC-06-B-160114	SILT (ML): @0.0-0.3ft: Dark brown, very soft, wet, 95% fines (non-plastic), 5% fine sand; trace H2S-like odor.	
	SILT (ML): @0.3-1.2ft: Dark gray-olive, medium stiff, moist, 95% fines (non-plastic), 5% fine sand; trace organics (wood fibers).	
 WWCC-06-C-160114	POORLY GRADED SAND (SP): @1.2-5.0ft: Dark gray, dense, moist, 95% fine to medium sand, 5% fines; occasional biota (white and light brown shell fragments up to 1 inch).	
WWCC-06-D-160114		
	@3.0-3.3ft: Pocket of substantial biota (light brown, shell fragments, clam-like up to 2 inches).	
No sample		
	End of sediment core @ 5.0ft.	

\\bellingham2\bell2\Staff Folders\Darci\LOGPLOT\Whatcom Waterway\Data & Template

Notes: 1. Tidal elevations were provided by American Construction from their on-site tide gauge.
2. The core catcher was not retained during sampling so the field recovery length does not match the recovered depth.

	Sediment Core Log wwcc-07				
Project	²² Whatcom Waterway	Estimated Mudline Elevation (ft, MLLW): -38.3	Method/Core Diameter: Vibracore/4.0"		
Project	:#: 080007-01.04	Tidal Elevation (MLLW): +9.5	Penetration Depth (ft): 7.0		
Client:	Port of Bellingham	Lead Line: -47.8	Field Recovery Length (ft): 4.5		
Collection Date: 1/14/2016		Northing: 48 44.80422 N Easting: 122 29.63489 W	Process Date: 1/15/2016		
Contractor: Marine Sampling Services		Horizontal Datum: NAD83 WA SP N Feet	Percent Recovery: 64%		
Logged	1 By: LH	Vertical Datum: MLLW (feet)	Location: Bellingham, WA		
Recovered Depth (ft)	Samples	Soil Description Samples and descriptions are in recovered Classification scheme: USCS	Graphic Log (Expanded Depth (ft)) Estimated Mudline Elevation (feet, MLLW)		

		-39 -
WWCC-07-B-160115	occasional organic (wood fragments up to 2 inches); trace H2S-like odor; trace rainbow sheen (florets up to 1/8 inch).	-35
	@0.9ft: Same as above but soft.	-40 -
	POORLY GRADED SAND WITH SILT (SP-SM): @1.1-2.3ft: Dark gray, medium dense, wet, 90% fine to medium sand, 10% fines; moderate biota (shell fragments up to 4 inches); moderate organics (wood fragments up to 3 inches).	-41 -
No sample	POORLY GRADED SAND (SP): @2.3-4.35ft: Dark gray, dense, moist, 95% fine to medium sand, 5% fines; moderate biota (light brown shell fragments up to 2 inches); trace organics (wood fragments).	-42 ·
	@4.0ft: Same as above but medium sand and shell fragments up to 0.5 inches.	-44
	End of sediment core @ 4.35ft.	-45
		-46
		-47
		-48
		-49
		-50
		-51
		-52
		-53
-	No sample	No sample POORLY GRADED SAND WITH SILT (SP-SM): @1.1-2.3ft: Dark gray, medium dense, wet, 90% fine to medium sand, 10% fines; moderate biota (shell fragments up to 4 inches); moderate organics (wood fragments up to 3 inches). POORLY GRADED SAND (SP): @2.3-4.35ft: Dark gray, dense, moist, 95% fine to medium sand, 5% fines; moderate biota (light brown shell fragments up to 2 inches); trace organics (wood fragments). @4.0ft: Same as above but medium sand and shell fragments up to 0.5 inches.

\\bellingham2\bell2\Staff Folders\Darci\LOGPLOT\Whatcom Waterway\Data & Template

0

Notes: 1. Tidal elevations were provided by American Construction from their on-site tide gauge.
 2. The core catcher was not retained during sampling so the field recovery length does not match the recovered depth.

Sediment Core Log Sheet WWCC-08				
Project	[:] Whatcom Waterway	Estimated Mudline Elevation (ft, MLLW): -39.1	Method/Core Diameter: Vibracore/4.0"	
Project	#: 080007-01.04	Tidal Elevation (MLLW): +6.7	Penetration Depth (ft): 7.0	
Client:	Port of Bellingham	Lead Line: -45.8	Field Recovery Length (ft): 5.1	
Collect	ion Date: 1/13/2016	Northing: 48 44.79730 N Easting: 122 29.62508 W	Process Date: 1/14/2016	
Contractor: Marine Sampling Services		Horizontal Datum: NAD83 WA SP N Feet	Percent Recovery: 73%	
Logged	l By: LH	Vertical Datum: MLLW (feet)	Location: Bellingham, WA	
Recovered Depth (ft)	Samples	Soil Description Samples and descriptions are in recovered Classification scheme: USCS	Graphic Log (Expanded Depth (ft)) Estimated Mudline Elevation (feet, MLLW)	

V	VWCC-08-A-160114	SILT (ML): @0.0-0.65ft: Dark gray-olive, very soft, wet, 95% fines (non-plastic), 5% fine	
v	VWCC-08-B-160114	to medium sand.	
v	VWCC-08-C-160114	SILT (ML): @0.65-1.1ft: Dark gray-olive, soft, wet 95% fines (non-plastic), 5% fine sand;	
		POORLY GRADED SAND (SP): @1.1-4.8ft: Dark gray-brown, medium dense, moist, 95% fine to medium sand, 5% fines; occasional biota (shell fragments up to 1 inch). @1.9-2.4ft: Pockets of SILTY SAND (SM).	
		@2.6-2.9ft: Substantial biota (shell fragments).	
	No sample	@3.65ft: Same as above @ 1.1ft but medium sand, trace fine gravel (subrounded).	
		End of sediment core @ 4.8ft.	

//bellingham2/bell2/Staff Folders/Darci/LOGPLOT/Whatcom Watt

Notes: 1. Tidal elevations were provided by American Construction from their on-site tide gauge. 2. The core catcher was not retained during sampling so the field recovery length does not match the recovered depth.

		Sediment Core Log wwcc-09	Sheet 1 of	
Project: Whatcom Waterway		Estimated Mudline Elevation (ft, MLLW): -39.9	Method/Core Diameter: Vibracore/4.0"	
Project	#: 080007-01.04	Tidal Elevation (MLLW): +6.9	Penetration Depth (ft): 7.0	
Client: Port of Bellingham		Lead Line: -46.8	Field Recovery Length (ft): 6.25	
Collection Date: 1/14/2016		Northing: 48 44.81401 N Easting: 122 29.62112 W	Process Date: 1/15/2016	
Contractor: Marine Sampling Services		Horizontal Datum: NAD83 WA SP N Feet	Percent Recovery: 89%	
Logged	i By: LH	Vertical Datum: MLLW (feet)	Location: Bellingham, WA	
Recovered Depth (ft)	Samples	Soil Description Samples and descriptions are in recovered Classification scheme: USCS	Graphic Log (Expanded Depth (ft))	

	No sample	SILT (ML): @0.0-1.0ft: Dark gray with black mottling, soft, wet, 95% fines (non-plastic), 5% fine to medium sand; trace organics (wood fibers); trace H2S-like odor. POORLY GRADED SAND WITH SILT (SP-SM): @1.0-3.5ft: Dark gray-olive, dense, wet, 90% fine to medium sand, 10% fines; occasional biota (shell fragments up to 2 inches).	-40 — - - -41 —
	WWCC-09-A-160115	@1.6ft: Same as above but substantial biota (shell fragments up to 1.5 inches).	-42 — -42 —
	WWCC-09-B-160115		-43 — -43 —
	No sample	LEAN CLAY (CL): @3.5-6.05ft: Gray, very stiff, moist, 100% fines (medium-high	-44 —
	WWCC-09-C-160115	plasticity, can be rolled to 1/8 inch). @3.9-4.2ft: Pocket of SILT WITH SAND (ML).	- - -45 —
5	WWCC-09-D-160115		-46 —
-6	No sample		-
+ + + + 7		End of sediment core @ 6.05ft.	-47 — - -
			-48 —
8 			-49 —
9 			-50
			-

\\bellingham2\bell2\Staff Folders\Da 0

Notes: 1. Tidal elevations were provided by American Construction from their on-site tide gauge. 2. The core catcher was not retained during sampling so the field recovery length does not match the recovered depth.

		Sediment Co wwcc-10	U		Shee	et 1 of 1
Project: Whatcom Waterway		Estimated Mudline Elevation (ft, MLLW): -39.7		Method/Core Diameter: Vibracore/4.0"		
Project #: 080007-01.04		Tidal Elevation (MLLW): +10.1		Penetration Depth (ft): 7	.0	
Client: Port of Bellingham		Lead Line: -49.8		Field Recovery Length (ft): 5.67		
Collection Date: 1/14/2016		Northing: 48 44.80901 N Eas	sting: 122 29.60689 W	Process Date: 1/15/2016		
Contractor: Marine Sampling Services		Horizontal Datum: NAD83 WA SP N Feet		Percent Recovery: 81%		
Logged	i By: LH	Vertical Datum: MLLW (feet)		Location: Bellingham, WA		
Recovered Depth (ft)	Samples	Samples and desc	oil Description riptions are in recovered ication scheme: USCS	depths.	Graphic Log (Expanded Depth (ft))	Estimated Mudline Elevation (feet, MLLW)

WWCC-10-A-16011	5 SILT (ML): @0.0-1.0ft: Dark gray, very soft, wet, 100% fines (non-plastic), trace sand.	-4
1	SILT (ML): @1.0-4.25ft: Dark gray, soft to medium stiff, moist, 100% fines (non-plastic); trace organics (wood fibers).	-4
2		-4
.3 No sample		-4
4		-4
-4	└────────────────────────────────────	
-5	POORLY GRADED SAND (SP): @4.35-5.5ft: Gray, medium dense, moist, 95% fine to medium sand, 5% fines; occasional biota (white shell fragments up to 1 inch).	-4
.6	End of sediment core @ 5.5ft.	-4
7		-4
		-4
8		-5
9		-5
10		

0

C ANCHOR 720 Olive Way Seattle, WA 98101 (206) 903-9130

Notes: 1. Tidal elevations were provided by American Construction from their on-site tide gauge. 2. The core catcher was not retained during sampling so the field recovery length does not match the recovered depth.

ATTACHMENT B ANALYTICAL DATA PACKAGES

(Provided Separately)

ATTACHMENT C DATA VALIDATION MEMOS

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:	Whatcom Waterway
LDC Report Date:	April 23, 2016
Parameters:	Mercury
Validation Level:	Stage 2B

Laboratory: Analytical Resources, Inc.

Sample Delivery Group (SDG): AUH2

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
WWCC-01-34-35	AUH2A	Sediment	01/14/16
WWCC-01-35-36	AUH2B	Sediment	01/14/16
WWCC-04-34-35	AUH2C	Sediment	01/14/16
WWCC-04-35-36	AUH2D	Sediment	01/14/16
WWCC-06-38-39	AUH2E	Sediment	01/14/16
WWCC-06-39-40	AUH2F	Sediment	01/14/16
WWCC-08-39-40	AUH2G	Sediment	01/14/16
WWCC-07-39.3-40	AUH2H	Sediment	01/15/16
WWCC-03-34-35	AUH2I	Sediment	01/15/16
WWCC-03-35-36	AUH2J	Sediment	01/15/16
WWCC-09-42.5-43.5	AUH2K	Sediment	01/15/16
WWCC-09-43.5-44.5	AUH2L	Sediment	01/15/16
WWCC-09-45-46	AUH2M	Sediment	01/15/16
WWCC-59-42.5-43.5	AUH2N	Sediment	01/15/16
WWCC-01-34-35MS	AUH2AMS	Sediment	01/14/16
WWCC-01-34-35DUP	AUH2ADUP	Sediment	01/14/16

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines (CLPNFG) for Inorganic Superfund Data Review (January 2010). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Mercury by Environmental Protection Agency (EPA) SW 846 Method 7471A

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to nonconformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition.

All technical holding time requirements were met.

II. Instrument Calibration

Initial and continuing calibrations were performed as required by the method.

The initial calibration verification (ICV) and continuing calibration verification (CCV) standards were within QC limits.

III. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

IV. Field Blanks

No field blanks were identified in this SDG.

V. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) sample analysis was performed on an associated project sample. For WWCC-01-34-35MS, no data were qualified for Mercury percent recoveries (%R) outside the QC limits since the parent sample results were greater than 4X the spike concentration.

VI. Duplicate Sample Analysis

Duplicate (DUP) sample analysis was performed on an associated project sample. Results were within QC limits.

VII. Laboratory Control Samples

Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

VIII. Field Duplicates

Samples WWCC-09-42.5-43.5 and WWCC-59-42.5-43.5 were identified as field duplicates. No results were detected in any of the samples with the following exceptions:

	Concentration (mg/Kg)			
Analyte	WWCC-09-42.5-43.5	WWCC-59-42.5-43.5	RPD	
Mercury	0.0072	0.0128	56	

IX. Sample Result Verification

Raw data were not reviewed for Stage 2B validation.

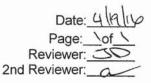
X. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

The quality control criteria reviewed were met and are considered acceptable. Based upon the data validation all results are considered valid and usable for all purposes.

Whatcom Waterway Mercury - Data Qualification Summary - SDG AUH2

No Sample Data Qualified in this SDG


Whatcom Waterway Mercury - Laboratory Blank Data Qualification Summary - SDG AUH2

No Sample Data Qualified in this SDG

LDC #: <u>36153J4c</u> VALIE SDG #: <u>AUH2</u> Laboratory: <u>Analytical Resources</u>, Inc.

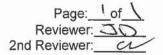
VALIDATION COMPLETENESS WORKSHEET

Stage 2A'B

METHOD: Mercury (EPA SW 846 Method 7471A)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
١.	Sample receipt/Technical holding times	A	1/14-15/10
II.	Instrument Calibration	NA	
111.	Laboratory Blanks	A	
IV.	Field Blanks	N	
V.	Matrix Spike/Matrix Spike Duplicates	A	MS = (15) = Hg 74X
VI.	Duplicate sample analysis	A	DUR
VII.	Laboratory control samples	A	LCS
VIII.	Field Duplicates	SW	FO=(11,114)
IX.	Sample Result Verification	N	,
x	Overall Assessment of Data	A	


Note:

A = Acceptable N = Not provided/applicable SW = See worksheet ND = No compounds detected R = Rinsate FB = Field blank D = Duplicate TB = Trip blank EB = Equipment blank SB=Source blank OTHER:

Client ID Lab ID Matrix Date Sediment 01/14/16 1 WWCC-01-34-35 AUH2A 2 WWCC-01-35-36 AUH2B Sediment 01/14/16 Sediment 01/14/16 3 WWCC-04-34-35 AUH2C Sediment 01/14/16 4 WWCC-04-35-36 AUH2D AUH2E 5 WWCC-06-38-39 Sediment 01/14/16 6 WWCC-06-39-40 AUH2F Sediment 01/14/16 7 WWCC-08-39-40 AUH2G Sediment 01/14/16 AUH2H Sediment 01/15/16 8 WWCC-07-39.3-40 9 WWCC-03-34-35 AUH2I Sediment 01/15/16 10 WWCC-03-35-36 AUH2J Sediment 01/15/16 11 WWCC-09-42.5-43.5 AUH2K Sediment 01/15/16 12 WWCC-09-43.5-44.5 AUH2L Sediment 01/15/16 13 WWCC-09-45-46 AUH2M 01/15/16 Sediment Sediment WWCC-59-42.5-43.5 AUH2N 01/15/16 14 WWCC-01-34-35MS 01/14/16 15 AUH2AMS Sediment 16 WWCC-01-34-35DUP AUH2ADUP 01/14/16 Sediment 17 18 19

LDC#: 36153J4c

VALIDATION FINDINGS WORKSHEET Field Duplicates

METHOD: Metals (EPA Method 6010B/7000)

YN NA YN NA Were field duplicate pairs identified in this SDG? Were target analytes detected in the field duplicate pairs?

	Concentrat	tion (mg/Kg)	
Analyte	11	14	RPD
Mercury	0.0072	0.0128	56

DUPLICATES\FD_inorganic\36153J4c.wpd

\\LDCFILESERVER\Validation\FIELD

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:	Whatcom Waterway		
LDC Report Date:	April 20, 2016		
Parameters:	Dioxins/Dibenzofurans		
Validation Level:	Stage 2B		
Laboratory:	Analytical Resources, Inc.		

Sample Delivery Group (SDG): AUH5

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
WWCC-01-B-160114	AUH5B	Sediment	01/14/16
WWCC-04-B-160114	AUH5D	Sediment	01/14/16

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the USEPA Contract Laboratory Program (CLP) National Functional Guidelines for Chlorinated Dibenzo-p-Dioxins (CDDs) and Chlorinated Dibenzofurans (CDFs) Data Review (September 2011). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Dioxins/Dibenzofurans by Environmental Protection Agency (EPA) Method 1613B

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered not detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. HRGC/HRMS Instrument Performance Check

Instrument performance was checked at the required frequency.

Retention time windows were established for all homologues. The chromatographic resolution between 2,3,7,8-TCDD and peaks representing any other unlabeled TCDD isomer was less than or equal to 25%.

The static resolving power was at least 10,000 (10% valley definition).

III. Initial Calibration and Initial Calibration Verification

A five point initial calibration was performed as required by the method.

The percent relative standard deviations (%RSD) were less than or equal to 20.0% for unlabeled compounds and less than or equal to 35.0% for labeled compounds.

The ion abundance ratios for all PCDDs and PCDFs were within validation criteria.

The percent differences (%D) of the initial calibration verification (ICV) standard were within the QC limits for unlabeled compounds and labeled compounds with the following exceptions:

Date	Compound	Concentration (Limits)	Associated Samples	Affected Compound	Flag	A or P
10/15/15	1,2,3,4,7,8-HxCDF	56.905 pg (45-56)	WWCC-04-B-160114	1,2,3,4,7,8-HxCDF Total HxCDF	J (all detects) J (all detects)	Р
10/15/15	1,2,3,4,7,8-HxCDF	56.905 pg (45-56)	WWCC-01-B-160114	1,2,3,4,7,8-HxCDF Total HxCDF	NA	-

IV. Continuing Calibration

Continuing calibration was performed at the required frequencies.

All of the continuing calibration results were within the QC limits for unlabeled compounds and labeled compounds.

The ion abundance ratios for all PCDDs and PCDFs were within validation criteria.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks with the following exceptions:

Blank ID	Extraction Date	Compound	Concentration	Associated Samples
MB-011916	01/19/16	1,2,3,4,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF 1,2,3,4,7,8-HxCDD 1,2,3,4,7,8-HxCDD 1,2,3,4,6,7,8-HpCDF 1,2,3,4,6,7,8-HpCDD OCDF OCDD Total TCDD Total TCDD Total PeCDD Total HxCDD Total HxCDD Total HxCDF Total HpCDF	0.0310 pg/g 0.0222 pg/g 0.0880 pg/g 0.0458 pg/g 0.207 pg/g 1.21 pg/g 1.28 pg/g 1.28 pg/g 0.0728 pg/g 0.0326 pg/g 0.0326 pg/g 0.444 pg/g 2.76 pg/g 0.169 pg/g 0.544 pg/g	All samples in SDG AUH5

Sample concentrations were compared to concentrations detected in the laboratory blanks. The sample concentrations were either not detected or were significantly greater (>5X blank contaminants) than the concentrations found in the associated laboratory blanks with the following exceptions:

Sample	Compound	Reported Concentration	Modified Final Concentration
WWCC-01-B-160114	1,2,3,7,8,9-HxCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,6,7,8-HpCDD OCDF OCDD Total TCDD Total PeCDD Total HxCDD Total HxCDD Total HxCDF Total HpCDF	0.101 pg/g 0.231 pg/g 0.898 pg/g 0.863 pg/g 11.4 pg/g 0.165 pg/g 0.0293 pg/g 0.567 pg/g 2.05 pg/g 0.253 pg/g 0.683 pg/g	0.101U pg/g 0.231U pg/g 0.898U pg/g 0.863U pg/g 11.4U pg/g 0.165J pg/g 0.293J pg/g 0.567J pg/g 2.05J pg/g 0.253J pg/g 0.683J pg/g
WWCC-04-B-160114	1,2,3,4,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF 1,2,3,4,6,7,8-HpCDD OCDF OCDD Total TCDD Total TCDD Total HxCDD Total HpCDD	0.0974 pg/g 0.0378 pg/g 0.0865 pg/g 4.06 pg/g 4.56 pg/g 37.3 pg/g 0.311 pg/g 1.43 pg/g 9.41 pg/g	0.0974U pg/g 0.0378U pg/g 0.0865U pg/g 4.06U pg/g 4.56U pg/g 37.3U pg/g 0.311J pg/g 1.43J pg/g 9.41J pg/g

VI. Field Blanks

No field blanks were identified in this SDG.

VII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

VIII. Ongoing Precision Recovery

Ongoing precision recovery (OPR) samples were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

IX. Field Duplicates

No field duplicates were identified in this SDG.

X. Internal Standards

All internal standard recoveries (%R) were within QC limits.

XI. Compound Quantitation

All compound quantitations were within validation criteria with the following exceptions:

Sample	Compound	Flag	A or P
All samples in SDG AUH5	All compounds reported as estimated maximum possible concentration (EMPC).	J (all detects)	A

Raw data were not reviewed for Stage 2B validation.

XII. Target Compound Identifications

Raw data were not reviewed for Stage 2B validation.

XIII. System Performance

Raw data were not reviewed for Stage 2B validation.

XIV. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

Due to ICV %D and results reported by the laboratory as EMPCs, data were qualified as estimated in two samples.

Due to laboratory blank contamination, data were qualified as estimated or not detected in two samples.

The quality control criteria reviewed, other than those discussed above, were met and are considered acceptable. Sample results that were found to be estimated (J) are usable for limited purposes only. Based upon the data validation all other results are considered valid and usable for all purposes.

Whatcom Waterway Dioxins/Dibenzofurans - Data Qualification Summary - SDG AUH5

Sample	Compound	Flag	A or P	Reason
WWCC-04-B-160114	1,2,3,4,7,8-HxCDF Total HxCDF	J (all detects) J (all detects)	Р	Initial calibration verification (%D)
WWCC-01-B-160114 WWCC-04-B-160114	All compounds reported as estimated maximum possible concentration (EMPC).	J (all detects)	A	Compound quantitation (EMPCs)

Whatcom Waterway Dioxins/Dibenzofurans - Laboratory Blank Data Qualification Summary - SDG AUH5

Sample	Compound	Modified Final Concentration	A or P
WWCC-01-B-160114	1,2,3,7,8,9-HxCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,6,7,8-HpCDD OCDF OCDD Total TCDD Total PeCDD Total HxCDD Total HpCDD Total HpCDF	0.101U pg/g 0.231U pg/g 0.898U pg/g 0.863U pg/g 11.4U pg/g 0.165J pg/g 0.0293J pg/g 0.567J pg/g 2.05J pg/g 0.253J pg/g 0.683J pg/g	A
WWCC-04-B-160114	1,2,3,4,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF 1,2,3,4,6,7,8-HpCDD OCDF OCDD Total TCDD Total HxCDD Total HpCDD	0.0974U pg/g 0.0378U pg/g 0.0865U pg/g 4.06U pg/g 4.56U pg/g 37.3U pg/g 0.311J pg/g 1.43J pg/g 9.41J pg/g	A

Stage 2B

Date: 04/14/16 Page: _____of____ Reviewer: ______ 2nd Reviewer: ______

SDG #: <u>AUH5</u> Laboratory: <u>Analytical Resources, Inc.</u>

LDC #: 36153K21

METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA Method 1613B)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area			Comments
1.	Sample receipt/Technical holding times	A/A		
11.	HRGC/HRMS Instrument performance check	A		
Ш.	Initial calibration/ICV	A,SW	\$ 20/35	ICV: OC limits
IV.	Continuing calibration	X	QClimit	
V.	Laboratory Blanks	SW		
VI.	Field blanks	N		
VII.	Matrix spike/Matrix spike duplicates	N	C.S.	
VIII.	Laboratory control samples	A	OPIZ	
IX.	Field duplicates	N		
Х.	Internal standards	A		
XI.	Compound quantitation RL/L-OQ/LODs	SW		
XII.	Target compound identification	N		
XIII.	System performance	N		
XIV.	Overall assessment of data	A		

Note:	A = Acceptable N = Not provided/applicable SW = See worksheet	ND = No compounds detected R = Rinsate FB = Field blank	D = Duplicate TB = Trip blank EB = Equipment blank	SB=Sour OTHER:	ce blank
	Client ID	····	Lab ID	Matrix	Date
1	WWCC-01-B-160114		AUH5B	Sediment	01/14/16
2	WWCC-04-B-160114		AUH5D	Sediment	01/14/16
3 4					
4					
5					
6					
7 8					
8					
9					
10_		· · · · · · · · · · · · · · · · · · ·			
Note	S:				

MB-011916		

VALIDATION FINDINGS WORKSHEET

METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA Method 1613B)

A. 2,3,7,8-TCDD	F. 1,2,3,4,6,7,8-HpCDD	K. 1,2,3,4,7,8-HxCDF	P. 1,2,3,4,7,8,9-HpCDF	U. Total HpCDD	
B. 1,2,3,7,8-PeCDD	G. OCDD	L. 1,2,3,6,7,8-HxCDF	Q. OCDF	V. Total TCDF	
C. 1,2,3,4,7,8-HxCDD	H. 2,3,7,8-TCDF	M. 2,3,4,6,7,8-HxCDF	R. Total TCDD	W. Total PeCDF	
D. 1,2,3,6,7,8-HxCDD	I. 1,2,3,7,8-PeCDF	N. 1,2,3,7,8,9-HxCDF	S. Total PeCDD	X. Total HxCDF	
E. 1,2,3,7,8,9-HxCDD	J. 2,3,4,7,8-PeCDF	O. 1,2,3,4,6,7,8-HpCDF	T. Total HxCDD	Y. Total HpCDF	

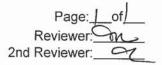
Notes:

LDC #: 36153K21

VALIDATION FINDINGS WORKSHEET Initial Calibration Verification

Page:_	of
Reviewer:_	m
2nd Reviewer:_	9

METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA Method 1613B)


Date 0/15/15	<u>Standard ID</u> 15101510	<u>Compound</u> K	Finding (Limit: pg) 56.905 (45-56)	Associated Samples all	Qualifications Jdets/P (+X) (2 = dlet)
0/15/15	15101510	K	56.905 (45-56)		$\int Jdets/P(+X) \left(\partial = dlt \right)$
				enserved and the second s	and the second s

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A". $\underline{V N N/A}$ Was an initial calibration verification standard analyzed after each ICAL for each instrument? Were results within the QC limits for the method?

VALIDATION FINDINGS WORKSHEET Blanks

Associated samples:

all

METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA Method 1613B)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

<u>MNNA</u> Were all samples associated with a method blank?

Was a method blank performed for each matrix and whenever a sample extraction was performed?

YN N/A Was the method blank contaminated?

Blank extraction date: 01/19/16 Blank analysis date: 01/21/16

Conc. units: pg/g

<u></u>										
Compound	Blank ID			r		Sample Ident	ification			
	MB-011916	5x	1	2						
к	0.0310	0.155		0.0974* /U						
M	0.0222	0.111		0.0378* /U				-		
N	0.0880	0.440	0.101* /U	0.0865 /U						
с	0.0458	0.229								
0	0.207	1.04	0.231 /U							
F	1.21	6.05	0.898 /U	4.06 /U						
Q	1.28	6.40	0.863 /U	4.56 /U						
G	18.3	91.5	11.4 /U	37.3 /U						
R	0.0728	0.364	0.165* /J	0.311*/J						
s	0.0326	0.163	0.0293* /J						-	
Т	0.444*	2.22	0.567* /J	1.43* /J						
U	2.76	13.8	2.05 /J	9.41 /J						
x	0.169*	0.845	0.253* /J							
Y	0.544	2.72	0.683* /J							
						1				

*EMPC

CIRCLED RESULTS WERE NOT QUALIFIED. ALL RESULTS NOT CIRCLED WERE QUALIFIED BY THE FOLLOWING STATEMENT: All contaminants within five times the method blank concentration were qualified as not detected, "U".

VALIDATION FINDINGS WORKSHEET Compound Quantitation and Reported RLs

Page: 1	_of_1
Reviewer:	th
2nd Reviewer:	a

METHOD: GC/MS Dioxins/Dibenzofurans (Method 1613B)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Were the correct internal standard (IS), quantitation ions and relative response factors (RRF) used to quantitate the compound? Compound quantitation and RLs were adjusted to reflect all sample dilutions and dry weight factors (if necessary).

#	Date	Compound	Finding	Associated Samples	Qualifications
			EMPC results	all	Jdets/A
					a
			n an		and a subscription of a subscription
					The second second
		- 19 ² 4600			a uizer ar
<u> </u>	-				the second s

Comments: See sample calculation verification worksheet for recalculations

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:	Whatcom Waterway
LDC Report Date:	February 25, 2016
Parameters:	Dioxins/Dibenzofurans
Validation Level:	Stage 2B
Laboratory:	Analytical Resources, Inc.

Sample Delivery Group (SDG): AUK5

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
WWCC-06-D-160114	AUK5A	Sediment	01/14/16
WWCC-05-A-160115	AUK5B	Sediment	01/15/16
WWCC-08-C-160114	AUK5C	Sediment	01/14/16
WWCC-02-A-160114	AUK5D	Sediment	01/14/16
WWCC-02-B-160114	AUK5E	Sediment	01/14/16
WWCC-07-B-160115	AUK5F	Sediment	01/15/16
WWCC-03-C-160115	AUK5G	Sediment	01/15/16
WWCC-09-A-160115	AUK5H	Sediment	01/15/16
WWCC-10-A-160115	AUK5I	Sediment	01/15/16
WWCC-06-D-160114DUP	AUK5ADUP	Sediment	01/14/16

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the USEPA Contract Laboratory Program (CLP) National Functional Guidelines for Chlorinated Dibenzo-p-Dioxins (CDDs) and Chlorinated Dibenzofurans (CDFs) Data Review (September 2011). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Polychlorinated Dioxins/Dibenzofurans by Environmental Protection Agency (EPA) Method 1613B

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to nonconformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered not detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. HRGC/HRMS Instrument Performance Check

Instrument performance was checked at the required frequency.

Retention time windows were established for all homologues. The chromatographic resolution between 2,3,7,8-TCDD and peaks representing any other unlabeled TCDD isomer was less than or equal to 25%.

The static resolving power was at least 10,000 (10% valley definition).

III. Initial Calibration and Initial Calibration Verification

A five point initial calibration was performed as required by the method.

The percent relative standard deviations (%RSD) were less than or equal to 20% for unlabeled compounds and less than or equal to 35% for labeled compounds.

The ion abundance ratios for all PCDDs/PCDFs were within method and validation criteria.

The percent differences (%D) of the initial calibration verification (ICV) standard were within the QC limits for unlabeled compounds and labeled compounds with the following exceptions:

Date	Compound	Concentration (Limits)	Associated Samples	Affected Compound	Flag	A or P
10/15/15	1,2,3,4,7,8-HxCDF	56.905 pg (45-56)	WWCC-06-D-160114 WWCC-05-A-160115 WWCC-08-C-160114 WWCC-02-A-160114 WWCC-07-B-160115 WWCC-10-A-160115	1,2,3,4,7,8-HxCDF Total HxCDF	J (all detects) J (all detects)	Р
10/15/15	1,2,3,4,7,8-HxCDF	56.905 pg (45-56)	WWCC-02-B-160114 WWCC-03-C-160115 WWCC-09-A-160115	1,2,3,4,7,8-HxCDF Total HxCDF	NA	-

IV. Continuing Calibration

Continuing calibration was performed at the required frequencies.

All of the continuing calibration results were within the QC limits for unlabeled compounds and labeled compounds.

The ion abundance ratios for all PCDDs and PCDFs were within method and validation criteria.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks with the following exceptions:

Biank ID	Extraction Date	Compound	Concentration	Associated Samples
MB-012816	01/28/16	1,2,3,7,8,9-HxCDF 1,2,3,6,7,8-HxCDD 1,2,3,4,6,7,8-HpCDF 1,2,3,4,6,7,8-HpCDD OCDF OCDD Total TCDD Total TCDD Total HxCDD Total HpCDD Total HpCDF	0.0700 pg/g 0.0980 pg/g 0.0520 pg/g 1.24 pg/g 0.430 pg/g 9.96 pg/g 0.0734 pg/g 0.975 pg/g 3.42 pg/g 0.0704 pg/g 0.163 pg/g	All samples in SDG AUK5

Sample concentrations were compared to concentrations detected in the laboratory blanks. The sample concentrations were either not detected or were significantly greater (>5X blank contaminants) than the concentrations found in the associated laboratory blanks with the following exceptions:

Sample	Compound	Reported Concentration	Modified Final Concentration
WWCC-06-D-160114	1,2,3,7,8,9-HxCDF	0.171 pg/g	0.171U pg/g
	1,2,3,6,7,8-HxCDD	0.245 pg/g	0.245U pg/g
	1,2,3,4,6,7,8-HpCDD	4.38 pg/g	4.38U pg/g
	OCDD	39.2 pg/g	39.2U pg/g
	Total HxCDD	2.99 pg/g	2.99J pg/g
	Total HpCDD	10.2 pg/g	10.2J pg/g
WWCC-08-C-160114	1,2,3,7,8,9-HxCDF	0.0775 pg/g	0.0775U pg/g
	1,2,3,4,6,7,8-HpCDD	2.76 pg/g	2.76U pg/g
	OCDF	0.717 pg/g	0.717U pg/g
	OCDD	15.3 pg/g	15.3U pg/g
	Total HpCDD	5.72 pg/g	5.72J pg/g
	Total HpCDF	0.718 pg/g	0.718J pg/g
WWCC-02-A-160114	1,2,3,7,8,9-HxCDF	0.205 pg/g	0.205U pg/g

Sample	Compound	Reported Concentration	Modified Final Concentration
WWCC-02-B-160114	1,2,3,7,8,9-HxCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,6,7,8-HpCDD OCDF OCDD Total TCDD Total HxCDD Total HxCDD Total HxCDF Total HpCDF	0.0717 pg/g 0.0737 pg/g 0.773 pg/g 0.282 pg/g 7.82 pg/g 0.282 pg/g 0.282 pg/g 0.383 pg/g 1.89 pg/g 0.0711 pg/g 0.186 pg/g	0.0717U pg/g 0.0737U pg/g 0.773U pg/g 0.282U pg/g 7.82U pg/g 0.282J pg/g 0.283J pg/g 0.383J pg/g 1.89J pg/g 0.0711J pg/g 0.186J pg/g
WWCC-03-C-160115	1,2,3,7,8,9-HxCDF 1,2,3,6,7,8-HxCDD 1,2,3,4,6,7,8-HpCDD OCDD Total HxCDD Total HpCDD	0.0897 pg/g 0.274 pg/g 5.48 pg/g 45.4 pg/g 3.05 pg/g 12.3 pg/g	0.0897U pg/g 0.274U pg/g 5.48U pg/g 45.4U pg/g 3.05J pg/g 12.3J pg/g
WWCC-09-A-160115	1,2,3,4,6,7,8-HpCDD OCDD Total TCDD Total HxCDD Total HpCDD Total HpCDD Total HxCDF	2.01 pg/g 28.9 pg/g 0.142 pg/g 0.762 pg/g 5.06 pg/g 0.126 pg/g	2.01U pg/g 28.9U pg/g 0.142J pg/g 0.762J pg/g 5.06J pg/g 0.126J pg/g

VI. Field Blanks

No field blanks were identified in this SDG.

VII. Matrix Spike/Matrix Spike Duplicates/Duplicate Sample Analyses

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

Duplicate (DUP) sample analysis was performed on an associated project sample. Results were within QC limits.

VIII. Ongoing Precision & Recovery Samples

Ongoing precision and recovery (OPR) samples were reviewed for each matrix as applicable. The percent recoveries (%R) were within the QC limits.

IX. Field Duplicates

No field duplicates were identified in this SDG.

X. Internal Standards

All internal standard recoveries (%R) were within QC limits.

XI. Compound Quantitation

All compound quantitations were within validation criteria with the following exceptions:

Sample	Compound	Flag	A or P
All samples in SDG AUK5	All compounds reported as estimated maximum possible concentration (EMPC).	J (all detects)	A

Sample	Finding	Flag	A or P
WWCC-05-A-160115 WWCC-08-C-160114 WWCC-02-A-160114 WWCC-07-B-160115 WWCC-10-A-160115	All compounds flagged "X" due to DiPhenylEther interference	J (all detects)	P

Sample	Compound	Finding	Criteria	Flag	A or P
WWCC-05-A-160115 WWCC-07-B-160115 WWCC-10-A-160115	OCDD	Sample result exceeded calibration range.	Reported result should be within calibration range.	J (all detects)	Ρ

Raw data were not reviewed for Stage 2B validation.

XII. Target Compound Identifications

Raw data were not reviewed for Stage 2B validation.

XIII. System Performance

Raw data were not reviewed for Stage 2B validation.

XIV. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

Due to ICV %D, results reported by the laboratory as EMPCs, DiPhenylEther Interference, and results exceeding the calibration range, data were qualified as estimated in nine samples.

Due to laboratory blank contamination, data were qualified as not detected or estimated in six samples.

The quality control criteria reviewed, other than those discussed above, were met and are considered acceptable. Sample results that were found to be estimated (J) are usable for limited purposes only. Based upon the data validation all other results are considered valid and usable for all purposes.

Whatcom Waterway Dioxins/Dibenzofurans - Data Qualification Summary - SDG AUK5

Sample	Compound	Flag	A or P	Reason
WWCC-06-D-160114 WWCC-05-A-160115 WWCC-08-C-160114 WWCC-02-A-160114 WWCC-07-B-160115 WWCC-10-A-160115	1,2,3,4,7,8-HxCDF Total HxCDF	J (all detects) J (all detects)	Ρ	Initial calibration verification (%D)
WWCC-06-D-160114 WWCC-05-A-160115 WWCC-08-C-160114 WWCC-02-A-160114 WWCC-02-B-160114 WWCC-07-B-160115 WWCC-03-C-160115 WWCC-09-A-160115	All compounds reported as estimated maximum possible concentration (EMPC).	J (all detects)	A	Compound quantitation (EMPC)
WWCC-05-A-160115 WWCC-08-C-160114 WWCC-02-A-160114 WWCC-07-B-160115 WWCC-10-A-160115	All compounds flagged "X" due to DiPhenylEther interference	J (all detects)	Ρ	Compound quantitation (DiPhenylEther interference)
WWCC-05-A-160115 WWCC-07-B-160115 WWCC-10-A-160115	OCDD	J (all detects)	Ρ	Compound quantitation (exceeded range)

Whatcom Waterway

Dioxins/Dibenzofurans - Laboratory Blank Data Qualification Summary - SDG AUK5

Sample	Compound	Modified Final Concentration	A or P
WWCC-06-D-160114	1,2,3,7,8,9-HxCDF 1,2,3,6,7,8-HxCDD 1,2,3,4,6,7,8-HpCDD OCDD Total HxCDD Total HpCDD	0.171U pg/g 0.245U pg/g 4.38U pg/g 39.2U pg/g 2.99J pg/g 10.2J pg/g	A
WWCC-08-C-160114	1,2,3,7,8,9-HxCDF 1,2,3,4,6,7,8-HpCDD OCDF OCDD Total HpCDD Total HpCDF	0.0775U pg/g 2.76U pg/g 0.717U pg/g 15.3U pg/g 5.72J pg/g 0.718J pg/g	A
WWCC-02-A-160114	1,2,3,7,8,9-HxCDF	0.205U pg/g	A

Sample	Compound	Modified Final Concentration	A or P
WWCC-02-B-160114	1,2,3,7,8,9-HxCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,6,7,8-HpCDD OCDF OCDD Total TCDD Total HxCDD Total HxCDD Total HpCDD Total HpCDF	0.0717U pg/g 0.0737U pg/g 0.773U pg/g 0.282U pg/g 7.82U pg/g 0.282J pg/g 0.383J pg/g 1.89J pg/g 0.0711J pg/g 0.186J pg/g	A
WWCC-03-C-160115	1,2,3,7,8,9-HxCDF 1,2,3,6,7,8-HxCDD 1,2,3,4,6,7,8-HpCDD OCDD Total HxCDD Total HpCDD	0.0897U pg/g 0.274U pg/g 5.48U pg/g 45.4U pg/g 3.05J pg/g 12.3J pg/g	A
WWCC-09-A-160115	1,2,3,4,6,7,8-HpCDD OCDD Total TCDD Total HxCDD Total HxCDD Total HxCDF	2.01U pg/g 28.9U pg/g 0.142J pg/g 0.762J pg/g 5.06J pg/g 0.126J pg/g	A

.

LDC #: 35882B21

SDG #: AUK5

VALIDATION COMPLETENESS WORKSHEET

Stage 2B

Date: 2-20-16
Page: 1 of
Reviewer:
2nd Reviewer:

Laboratory: Analytical Resources, Inc.

METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA Method 1613B)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
Ι.	Sample receipt/Technical holding times	A,A	
11.	HRGC/HRMS Instrument performance check	A	
111.	Initial calibration/ICV	A,SW	320/35 ICV QC limits
IV.	Continuing calibration	A	QClinuts
V.	Laboratory Blanks	SW	
VI.	Field blanks	N	
VII.	Matrix spike/Matrix spike duplicates	N/A	C.S/ D=1+10 (all -5xPL)
VIII.	Laboratory control samples	A	OPR
IX.	Field duplicates	N	
Х.	Internal standards	A	
XI.	Compound quantitation RL/LOQ/LODs-	SW	
XII.	Target compound identification	N	
XIII.	System performance	N	
XIV.	Overall assessment of data	A	

Note:	A = Acceptable N = Not provided/applicable SW = See worksheet	ND = No compounds detected R = Rinsate FB = Field blank	D = Duplicate TB = Trip blank EB = Equipment blank	SB=Sour OTHER:	ce blank
	Client ID		Lab ID	Matrix	Date
1	WWCC-06-D-160114	in the second	AUK5A	Sediment	01/14/16
2	WWCC-05-A-160115		AUK5B	Sediment	01/15/16
3	WWCC-08-C-160114		AUK5C	Sediment	01/14/16
4	WWCC-02-A-160114		AUK5D	Sediment	01/14/16
5	WWCC-02-B-160114		AUK5E	Sediment	01/14/16
6	WWCC-07-B-160115		AUK5F	Sediment	01/15/16
7	WWCC-03-C-160115		AUK5G	Sediment	01/15/16
8	WWCC-09-A-160115		AUK5H	Sediment	01/15/16
9	WWCC-10-A-160115		AUK5I	Sediment	01/15/16
10	WWCC-06-D-160114DUP		AUK5ADUP	Sediment	01/14/16
10 11					
12					
13 14					
14					
15	MB-012816				

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name: Whatcom Waterway

LDC Report Date: April 23, 2016

Parameters: Mercury

Validation Level: Stage 2B

Laboratory: Analytical Resources, Inc.

Sample Delivery Group (SDG): AUK6

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
WWCC-08-C-160114	AUK6A	Sediment	01/14/16
WWCC-02-A-160114	AUK6B	Sediment	01/14/16
WWCC-02-B-160114	AUK6C	Sediment	01/14/16
WWCC-07-B-160115	AUK6D	Sediment	01/15/16
WWCC-06-D-160115	AUK6E	Sediment	01/14/16
WWCC-05-A-160115	AUK6F	Sediment	01/15/16
WWCC-03-C-160115	AUK6G	Sediment	01/15/16
WWCC-09-A-160115	AUK6H	Sediment	01/15/16
WWCC-10-A-160115	AUK6I	Sediment	01/15/16
WWCC-08-C-160114MS	AUK6AMS	Sediment	01/14/16
WWCC-08-C-160114DUP	AUK6ADUP	Sediment	01/14/16

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines (CLPNFG) for Inorganic Superfund Data Review (January 2010). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Mercury by Environmental Protection Agency (EPA) SW 846 Method 7471A

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to nonconformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition.

All technical holding time requirements were met.

II. Instrument Calibration

Initial and continuing calibrations were performed as required by the method.

The initial calibration verification (ICV) and continuing calibration verification (CCV) standards were within QC limits.

III. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks with the following exceptions:

Blank ID	Analyte	Maximum Concentration	Associated Samples
PB (prep blank)	Mercury	0.0100 mg/Kg	All samples in SDG AUK6

Data qualification by the laboratory blanks was based on the maximum contaminant concentration in the laboratory blanks in the analysis of each analyte. The sample concentrations were either not detected or were significantly greater (>5X blank contaminants) than the concentrations found in the associated laboratory blanks with the following exceptions:

Sample	Analyte	Reported Concentration	Modified Final Concentration
WWCC-02-B-160114	Mercury	0.0193 mg/Kg	0.0193U mg/Kg
WWCC-06-D-160115	Mercury	0.0154 mg/Kg	0.0154U mg/Kg
WWCC-03-C-160115	Mercury	0.0095 mg/Kg	0.0095U mg/Kg
WWCC-09-A-160115	Mercury	0.0140 mg/Kg	0.0140U mg/Kg

IV. Field Blanks

No field blanks were identified in this SDG.

V. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits.

VI. Duplicate Sample Analysis

Duplicate (DUP) sample analysis was performed on an associated project sample. Results were within QC limits.

VII. Laboratory Control Samples

Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

VIII. Field Duplicates

No field duplicates were identified in this SDG.

IX. Sample Result Verification

Raw data were not reviewed for Stage 2B validation.

X. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

Due to laboratory blank contamination, data were qualified as not detected in four samples.

The quality control criteria reviewed, other than those discussed above, were met and are considered acceptable. Based upon the data validation all other results are considered valid and usable for all purposes.

Whatcom Waterway Mercury - Data Qualification Summary - SDG AUK6

No Sample Data Qualified in this SDG

Whatcom Waterway Mercury - Laboratory Blank Data Qualification Summary - SDG AUK6

Sample	Analyte	Modified Final Concentration	A or P
WWCC-02-B-160114	Mercury	0.0193U mg/Kg	A
WWCC-06-D-160115	Mercury	0.0154U mg/Kg	A
WWCC-03-C-160115	Mercury	0.0095U mg/Kg	A
WWCC-09-A-160115	Mercury	0.0140U mg/Kg	A

VALIDATION COMPLETENESS WORKSHEET

Stage 2B

SDG #: <u>AUK6</u> Laboratory: <u>Analytical Resources</u>, Inc.

LDC #: 36153M4c

Date: <u>4||A||></u> Page: <u>of</u> Reviewer: <u>SD</u> 2nd Reviewer: <u>A</u>

METHOD: Mercury (EPA SW 846 Method 7471A)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
١.	Sample receipt/Technical holding times	A	
Ш.	Instrument Calibration	A	
	Laboratory Blanks	SW	
IV.	Field Blanks	N	
V.	Matrix Spike/Matrix Spike Duplicates	A	MS
VI.	Duplicate sample analysis	A	DUP
VII.	Laboratory control samples	A	LCS
VIII.	Field Duplicates	N	
IX.	Sample Result Verification	N	
x	Overall Assessment of Data	IA	

Note:

A = Acceptable N = Not provided/applicable SW = See worksheet ND = No compounds detected R = Rinsate FB = Field blank D = Duplicate TB = Trip blank EB = Equipment blank SB=Source blank OTHER:

	Client ID	Lab ID	Matrix	Date
1	WWCC-08-C-160114 K	AUK6A	Sediment	01/14/16
2	WWCC-02-A-160114 >	AUK6B	Sediment	01/14/16
3	> WWCC-02-B-160114	AUK6C	Sediment	01/14/16
4	WWCC-07-B-160115 ×	AUK6D	Sediment	01/15/16
5	WWCC-06-D-160115 *	AUK6E	Sediment	01/14/16
6	WWCC-05-A-160115 >	AUK6F	Sediment	01/15/16
7	WWCC-03-C-160115	AUK6G	Sediment	01/15/16
8	WWCC-09-A-160115	AUK6H	Sediment	01/15/16
9	WWCC-10-A-160115	AUK6I	Sediment	01/15/16
10	WWCC-08-C-160114MS	AUK6AMS	Sediment	01/14/16
11	WWCC-08-C-160114DUP	AUK6ADUP	Sediment	01/14/16
12				
13				
14				
15				

LDC #: 36153M4c

VALIDATION FINDINGS WORKSHEET PB/ICB/CCB QUALIFIED SAMPLES

Soil preparation factor applied:

Page: 1_of_1 Reviewer: JD 2nd Reviewer:

METHOD: Metals (EPA SW 864 Method 6010/6020/7000) Sample Concentration units, unless otherwise noted:

Sample C	concentratio	n units, unle	ess otherwi	se noted:	mg/k	g	As	sociated Sam	ples:	<u>All</u>	
	A. 61-41					A AND			Sampleulder	กมีมีครณ์กระ	
Analyte	Maximum PB ^a (mg/Kg)	Maximum PBª (ug/L)	Maximum ICB/CCB ^a (ug/L)		3	5	7	8			
Hg	0.0100			0.0500	0.0193	0.0154	0.0095	0.0140			

Samples with analyte concentrations within five times the associated ICB, CCB or PB concentration are listed above with the identifications from the Validation Completeness Worksheet. These sample results were qualified as not detected, "U".

Note: a - The listed analyte concentration is the highest ICB, CCB, or PB detected in the analysis of each element.

APPENDIX I PHYSICAL TESTING DATA

PHYSICAL TESTING DATA AS-BUILT REPORT FOR THE WHATCOM WATERWAY CLEANUP IN PHASE 1 SITE AREAS

Prepared for Port of Bellingham

Prepared by

Anchor QEA, LLC 720 Olive Way, Suite 1900 Seattle, Washington 98101

September 2018

TABLE OF CONTENTS

1	INT	IRODUCTION	I-1
2	IM	PORTED MATERIAL TESTING	I-1
	2.1	Structural Fill Material Testing	I-1
	2.2	Engineered Sediment Cap Material Testing	I-2
3	BU	LKHEAD PILECAP TESTING	I-2
	3.1	Weld Coupon Test	I-2
	3 2	Pilecap Concrete Testing	I-2
	0.2	Thecap Gonerete Testing	2

List of Attachments

Attachment A	Imported Structural Fill Sieve Analysis
Attachment B	Imported Structural Fill Proctor Test
Attachment C	Imported Structural Fill Nuclear Gauge Test (for Compaction)
Attachment D	Imported Cap Material – Type 1 Sand and Residuals Management Cover
	Sieve Analysis
Attachment E	Imported Cap Material – Type 2 Sand Sieve Analysis
Attachment F	Imported Cap Material – Type 1 Filter Sieve Analysis
Attachment G	Imported Cap Material – Type 2 Filter Sieve Analysis
Attachment H	Imported Cap Material – Armor Rock Aggregate Source Approval
	Report
Attachment I	Cutoff Wall Weld Coupon Test
Attachment J	ECWW Pilecap Concrete Testing
Attachment K	WCWW Pilecap Concrete Testing
Attachment L	MSB Pilecap Concrete Testing
Attachment M	WMSW Pilecap Concrete Testing
Attachment N	LCW Replacement Concrete Slab Concrete Testing

LIST OF ACRONYMS AND ABBREVIATIONS

ECWW	East Central Waterfront Wall
LCW	The Landings at Colony Wharf
MSB	Maple Street Bulkhead
Project	Whatcom Waterway Cleanup in Phase 1 Site Areas Project
rebar	reinforcing bar
WCWW	West Central Waterfront Wall
WMSW	West Maple Street Wall
WSDOT	Washington State Department of Transportation

1 INTRODUCTION

This appendix documents the various physical tests conducted on construction materials during the Whatcom Waterway Cleanup in Phase 1 Site Areas Project (Project). Specifically, this appendix documents the physical testing of the following:

- Sieve analyses for the imported material used in the engineered sediment cap
- Sieve analysis, proctor test, and compaction testing for imported structural fill
- Field welding for the Central Waterfront cutoff wall
- Concrete testing for the construction of the cutoff wall pilecap and replacement concrete slabs adjacent to the cutoff wall

2 IMPORTED MATERIAL TESTING

Physical testing was completed on soil to confirm that the imported materials met the material specification of the design. Physical testing completed on imported soils is summarized in the following sections.

2.1 Structural Fill Material Testing

Structural fill was required for upland backfill in various locations. Imported structural fill underwent a sieve analysis, a proctor test, and nuclear gauge test for compaction, described as follows:

- A **sieve analysis** was conducted for the imported structural fill source (Attachment A); the sieve analysis passed the substantive requirements of the material specification.
- A **proctor test**—used for measuring density with moisture—was conducted on the imported structural fill prior to its use as backfill in the former barge ramp area on the Central Waterfront Site (Attachment B); the test was used as the basis for determining the appropriate compaction effort required.
- A **nuclear gauge compaction test** was conducted on the imported structural fill that was used as backfill in the former barge ramp area on the Central Waterfront Site (Attachment C). The nuclear gauge test was conducted at multiple locations—two within the former barge ramp area and three within backfill against the cutoff wall (e.g., sheet pile wall); all passed the required criteria.

I-1

2.2 Engineered Sediment Cap Material Testing

Various imported materials were required for the construction of the different engineered sediment cap types; sieve analyses were conducted for the different material types and an aggregate source approval report was obtained for the source material.

- Type 1 Sand and Residuals Management Cover Materials: A sieve analysis was conducted for the imported material (Attachment D); the material was approved for use as both the Type 1 Sand and the Residuals Management Cover.
- **Type 2 Sand:** A sieve analysis was conducted for the imported sand (Attachment E); the material was approved for use.
- **Type 1 Filter:** A sieve analysis was conducted for the imported material (Attachment F); the material was approved for use.
- **Type 2 Filter:** A sieve analysis was conducted for the imported material (Attachment G); the material was approved for use.
- Armor Rock: A Washington State Department of Transportation (WSDOT) Aggregate Source Approval Report was submitted for the imported armor rock (Attachment H); the material was approved for use.

3 BULKHEAD PILECAP TESTING

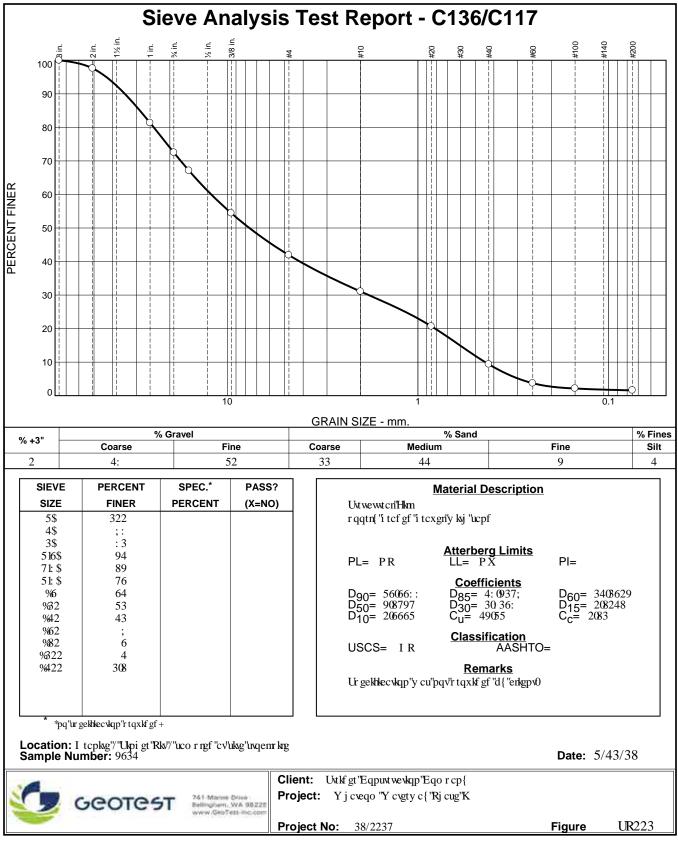
Physical testing was completed on field welding and the concrete placement to confirm that the imported materials met the specifications of the design. Physical testing completed on the cutoff wall bulkhead pilecap is summarized in the following sections.

3.1 Weld Coupon Test

Physical testing of field welding was conducted to confirm that welding processes met the specifications of the design. A weld coupon test was completed to verify that the steel reinforcing bar (rebar) was correctly welded to the steel sheetpile cutoff wall (Attachment I); the test passed the required criteria.

3.2 Pilecap Concrete Testing

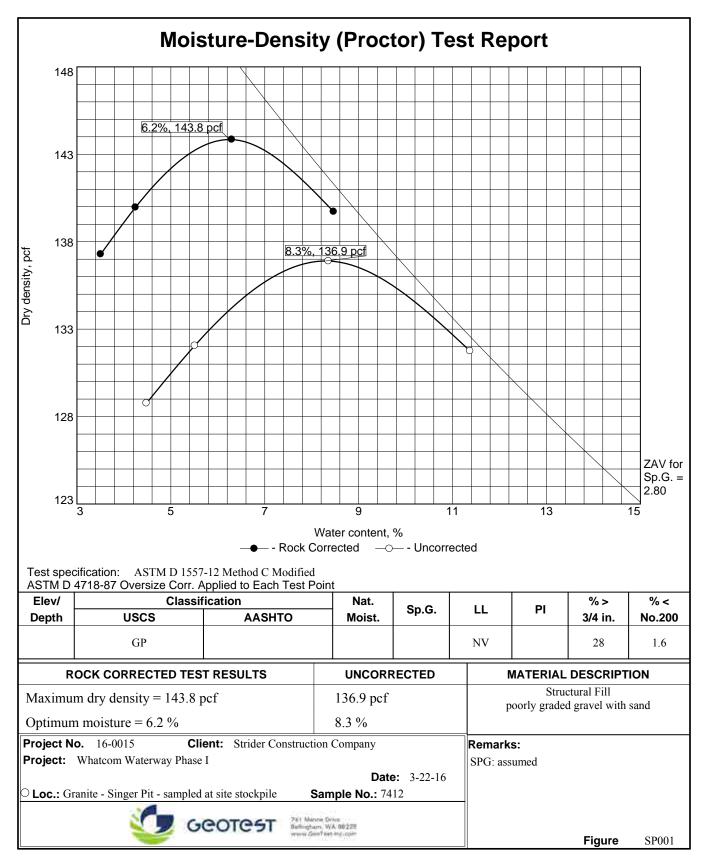
Concrete testing was completed for the concrete pilecap construction on the cutoff bulkhead, described as follows:


- East Central Waterfront Wall (ECWW): Concrete inspection and testing were conducted prior to and during the concrete placement for the ECWW pilecap (Attachment J); the pre-concrete pour inspection met the design and the concrete testing met the required specifications.
- West Central Waterfront Wall (WCWW): Concrete inspection and testing were conducted prior to and during the concrete placement for each of the west and east halves of the WCWW pilecap (Attachment K); the pre-concrete pour inspections met the design and the concrete testing met the required specifications.
- Maple Street Bulkhead (MSB): Concrete inspection and testing were conducted prior to and during the concrete placement for each of the west and east halves of the MSB pilecap (Attachment L); the pre-concrete pour inspections met the design and the concrete testing met the required specifications.
- West Maple Street Wall (WMSW): Concrete inspection and testing were conducted prior to and during the concrete placement for the WMSW pilecap (Attachment M); the pre-concrete pour inspection met the design and the concrete testing met the required specifications.

4 UPLAND CONCRETE TESTING

Concrete testing was completed for the replacement concrete slab construction adjacent to the ECWW, described as follows:

• **Concrete Slab:** Concrete testing was conducted during the concrete placement for the replacement concrete slab near the ECWW pilecap (Attachment N); the concrete testing met the required specifications.


ATTACHMENT A IMPORTED STRUCTURAL FILL SIEVE ANALYSIS

Tested By: MC

Checked By: DL

ATTACHMENT B IMPORTED STRUCTURAL FILL PROCTOR TEST

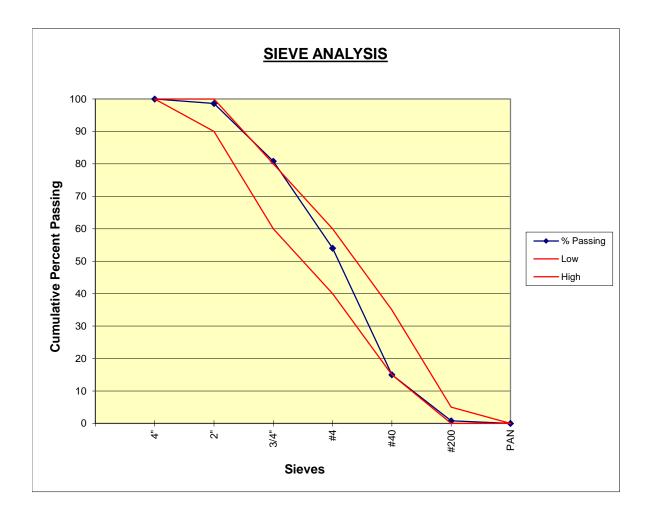
Tested By: MC

Checked By: DL

ATTACHMENT C IMPORTED STRUCTURAL FILL NUCLEAR GAUGE TEST (FOR COMPACTION)

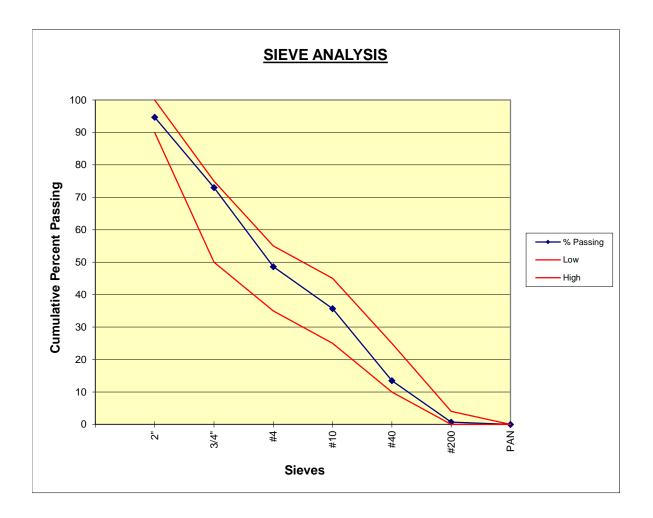
741 Marine Drive, Bellingham, WA 98225
20611 67th Ave. NE. Unit A. Arlington, WA 98223
phone: (360) 733.7318 toll free: (888) 251.5276

www.geotest-inc.com

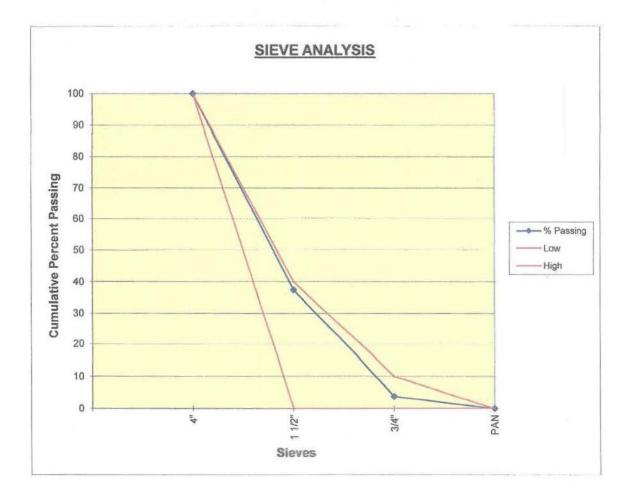

fax: (360) 733.7418

ADDI PERI CLIE		: Whatcom Waterwa	Nuclear	Judg		- I IVI I						
PERI CLIE	RESS		Phase I - Strid	ler Const	truction		JOE	8 #:		16-0015		
PERI CLIE		PROJECT: Whatcom Waterway Phase I - Strider Construction ADDRESS: Bellingham, WA						PORT #:		FD001		
CLIE		•						-				
			0				DAT			3/21/2016	i	
		Strider Construction						E #:	- .	1 of 1		
	-	TOR: Strider Construction					INS	PECTO	:	Sean Rog	erson	
		n Of: Structural Fill for Site	Dackilli									
Field	Data:			Depth/	DT/	Wet	Field	Dry		Com	naction	
Fest		Location		Elev	BS		Moisture	-	Lab			Fail P
#				(ft)	(in)	(pcf)	(%)	(pcf)	#	Attained	Required	Fail
1	Barge	Ramp Backfill		TOG	DT/12	143.3	5.2	136.2	1	95	90	Ρ
		Ramp Backfill		-2	DT/12	140.3	4.2	134.6	1	94	90	-
		Pile Wall Backfill, East of Barge Rar		-2	DT/12	139.4	4.7	133.1	1			-
4		Pile Wall Backfill, South of Barge Ra	•	-2	DT/12	138.7	5.3	131.7	1	-	001 1/2016 1 In Rogerson Compaction % Pass/ Fail 95 90 P 94 90 P 93 90 P 92 90 P 93 90 P 94 90 P 95 90 P 95 90 P 95 90 P 95 90 P 95 90 P 95 90 P 96 90 P 97 90 P 98 90 P 99 90 P 99 90 P 90 P 90 P 90 P 91 90 P 93 90 P 93 90 P 93 90 P 93 90 P 94 90 P 95 90 P 95 90 P 95 90 P 96 90 P 97 90 P 98 90 P 90 P 9	
5	Sheet	Pile Wall Backfill, North of Barge Ra	mp	-2	DT/12	139.4	4.8	133.1	1	93	90	Р
La	ıb			1		Max. D	ry Opt	imum	Ret	ained		<u>.</u>
Sam		Soil Type	So	urce		Densi	-	isture		n #4		
# 1-7412		PGG w/ Sand	Granite - Singer			(pcf) 143.8		(%) 6.2	-	%) 58 AS		18
2-						0.0						-
3-						0.0				None		
Gauge	Make/I	Model/Serial#: Troxler 3440P /	60560		M/D Sta	andard Cou	unt: 694 /	2527				
Com	ment	s: TOG - Top of Grade										
Geo	Test v	was on site as requested	to perform cor	mnactio	n tostir	na on st	ructural	fill at th	a ahi	ove-menti	oned	
	ions.			npaolio		ig on or	laotarai	ini at th			onea	
A 11 (-										0		
All te 3.04		net the compaction requir	ement of 90%	per pro	ject sp	ecificati	ions divis	sion 02	11 0	U Section		
0.0												
COPIES	S: Stride	r Construction Co. Anchor QEA							7	Reviewed I	с	_
		This report sl	all not be reproduced e	except in full,	without the	written appr	roval of GeoTe	est Services	Inc.			

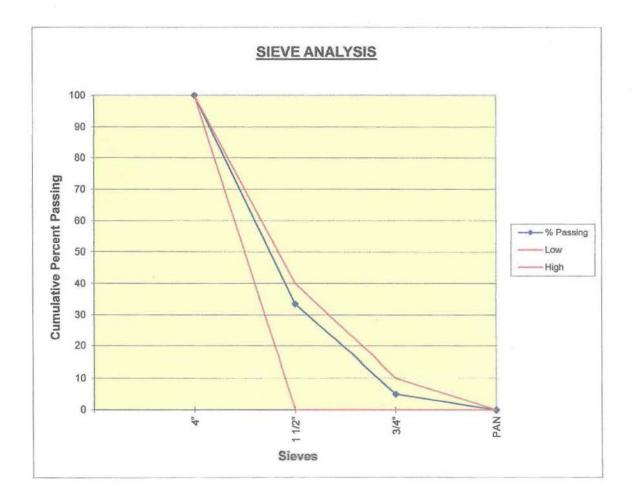
ATTACHMENT D IMPORTED CAP MATERIAL – TYPE 1 SAND AND RESIDUALS MANAGEMENT COVER SIEVE ANALYSIS


COWDEN TYPE 1 SA	F-160 AND & RESIDU	JAL COVER		Sample: Date:	DREDGE 1-Jun-15	
Sieve	Weight Retained	Percent Retained	Cumulative % Retained	Cumulative % Passing	AS C Low	
4" 2" 3/4" #4 #40 #200 PAN				100.00 98.60 80.8 54 15 0.78 0.00	100 90 60 40 15 0 0	100 100 80 60 35 5 0
Total	0.0					

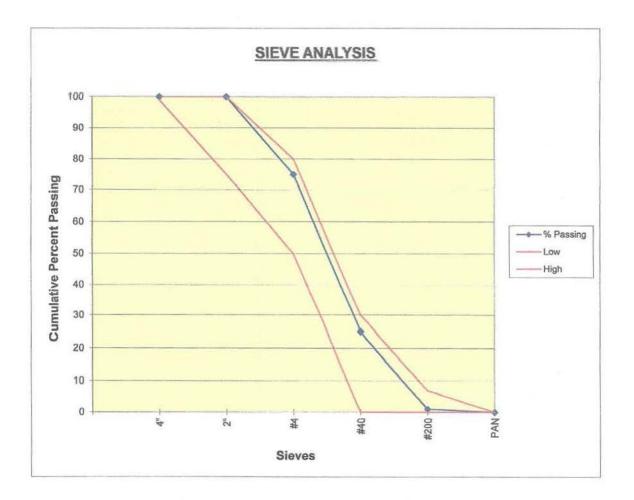
ATTACHMENT E IMPORTED CAP MATERIAL – TYPE 2 SAND SIEVE ANALYSIS


COWDEN TYPE 2 SA				Sample: Date:	Dredge + 10 3-Aug-15	% Cobble
	Weight	Percent	Cumulative	Cumulative	AS C	33
Sieve	Retained	Retained	% Retained	% Passing	Low	High
2" 3/4" #4 #10 #40 #200 PAN				94.70 73.00 48.6 35.7 13.5 0.70 0.00	90 50 35 25 10 0 0	100 75 55 45 25 4 0
Total	0.0					

ATTACHMENT F IMPORTED CAP MATERIAL – TYPE 1 FILTER SIEVE ANALYSIS


COWDEN TYPE 1 FIL	F-136 LTER (COBBL	ES)		Sample: Date:	COBBLES 1-Jun-15		
	Weight	Percent	Cumulative	Cumulative	ASTM C 33		
Sieve	Retained	Retained	% Retained	% Passing	Low	High	
4 "				100.00	100	100	
1 1/2"				37.45	0	40	
3/4"				3.83	0	10	
PAN				0.00	0	0	
otal	0.0						

3463 Cedarville Road, Bellingham, WA 98226 • (360) 592-4200 • Fax (360) 592-4302 www.cowdeninc.com


COWDEN TYPE 1 FII	F-180 LTER (COBBL	ES)		Sample: Date:	COBBLES 1-Jun-15	
	Weight	Percent	Cumulative	Cumulative	ASTM C 33	
Sieve	Retained	Retained	% Retained	% Passing	Low	High
4"				100.00	100	100
1 1/2"				33.50	0	40
3/4"				5.00	0	10
PAN				0.00	0	0
Total	0.0					

ATTACHMENT G IMPORTED CAP MATERIAL – TYPE 2 FILTER SIEVE ANALYSIS

COWDEN TYPE 2 FII	F-160 LTER (BORRO	DVV)		Sample: Date:	BORROW 1-Jun-15	
	Weight	Percent	Cumulative	Cumulative	AS C	
Sieve	Retained	Retained	% Retained	% Passing	Low	High
4"				100.00	99	100
2" #4				100.00	75	100
#4				75.00	50	80
#40				25.00	0	30
#200				1.00	0	7
PAN				0.00	0	0
Fotal	0.0					

3463 Cedarville Road, Bellingham, WA 98226 • (360) 592-4200 • Fax (360) 592-4302 www.cowdeninc.com

ATTACHMENT H IMPORTED CAP MATERIAL – ARMOR ROCK AGGREGATE SOURCE APPROVAL REPORT

Aggregate Source Approval Report

Washington State Department of Transportation WSDOT MATERIALS LAB

06/30/2015

Aggregate Source Approval Report

Owner: Cowden, Inc. Lessee: Siper Quarry LLC Located in: SW 1/4 SE 1/4 Section 15 T39N R4E Aggregate Source: QS-F-207 Known as: Siper Quarry County: Whatcom

Remarks:

RR, QS & RRW tested 05/28/2015..LA=12 / Deg= 48 / Bulk SSD=2.907 / BSG=2.888 / App. SG= 2.945 / Abs.=0.67...Approved for 1 year. Expiration Date: 05/28/2016..GSW.

Pit Run Materials:

	er, preliminary samples for Gradation an meet the specification for the intended (d Sand Equivalent tests may be performed to use:
Backfill for Rock Wall	Backfill for Sand Drains	Bedding Material for Rigid Pipe
Bedding Material for Thermoplastic Pipe	Foundation Material for Classes A, B or C	Gravel Backfill for Drains and Drywells
Gravel Backfill for Foundation Class B	Gravel Backfill for Pipe Zone Bedding	Gravel Backfill for Walls
Gravel Borrow	Sand Drainage Blanket	Select or Common Borrow

No Preliminary Tests are required to be performed by the State Materials Lab

Gravel Base:	Test Date:	Expiration Date:
Drainage:	R Value:	Swell Pressure:

Contact the Regional Materials Office to request PRELIMINARY SAMPLES be acquired. Evaluation and approval of this site as a source of GRAVEL BASE is required prior to use.

Mineral Agg. and Surfacing		Test Date: 06/13/2014	Expiration Date: 06/13/2019
Absorption: 0.54	Apparent Sp. G.: 2.924	Bulk Sp. G. (SSD): 2.894	Bulk Sp. G.: 2.878
Deg: 38	LA: 13		

Currently approved as a source of aggregate for:

ATB	Ballast	BST Crushed Cover Stone
BST Crushed Screenings	Crushed Surfacing Base Course	Crushed Surfacing Key Stone
Crushed Surfacing Top Course	Gravel Backfill for Foundation Class A	HMA Other Courses
HMA Wearing Course	Maintenance Rock	Permeable Ballast

Acceptance tests need to be performed as necessary.

Portland Cement Cond	rete Aggregates:	Test Date:	Expiration Date:	
ASR - 14 Day :	ASR - One Year.	CCA Absorption:	CCA Sp.G:	
FCA Absorption:	FCA Organics:	FCA Sp. G:	LA:	
Mortar Strength:	Petrographic Analysis:			

Contact the Regional Materials Office to request PRELIMINARY SAMPLES be acquired. Evaluation and approval of this site as a source of AGGREGATES for PCC is required prior to use.

Riprap and Quarry Spalls:	Test Date:	Expiration Date:
Please see Remarks for Riprap and Quarry Spalls results.		

Contact the Regional Materials Office to request PRELIMINARY SAMPLES be acquired. Evaluation and approval of this site as a source of RIP RAP AND QUARRY SPALLS is required prior to use.

ATTACHMENT I CUTOFF WALL WELD COUPON TEST

www.geotest-inc.com

fax: (360) 733.7418

Inspection Report						
PROJECT:	Whatcom Waterway Phase I - Strider Construction	JOB #:	16-0015			
ADDRESS:	Bellingham, WA	REPORT #:	IR001			
PERMIT #:		DATE:	1/13/2016			
CLIENT:	Strider Construction Co.	PAGE #:	1 of 1			
CONTRACTOR:	Strider Construction Co.	INSPECTOR:	Dan Weaver			
	Isld Courses for Tool According Choose Dile to #0. A 700 Deinfording Choose		in the Martinel up Desition 20 /			

INSPECTION OF: Weld Coupon for Test Assembly Sheet Pile to #9 A-706 Reinforcing Steel By FCAW Process in the Vertical up Position 3G / A 5/16" Flare J Fillet Weld 6" Long

GeoTest was on site to perform a visual weld inspection for the above test coupon. The test piece was done in same manner as the production welding. The sample was taken to Mistras for macro-etch testing. The testing of the sample will be done in accordance with the requirements on specification 32000 3.04 section D and the AWS D1.4.

Completed Weld Test Coupon

COPIES: Strider Construction Co. Anchor QEA

Reviewed by

This report shall not be reproduced except in full, without the written approval of GeoTest Services, Inc.

ATTACHMENT J ECWW PILECAP CONCRETE TESTING

www.geotest-inc.com

fax: (360) 733.7418

PROJECT: ADDRESS: PERMIT #:	: \			ction &	Compres	sive S	Strength Tes	st Report	
PERMIT #:		Whatcom Waterway Phase I - Strider Construction JC						16-0015	
	: E	Bellingham, WA					REPORT #:	CB001	
	:						DATE:	2/1/2016	
CLIENT:	5	Strider Cons	truction Co.				PAGE #:	1 of 1	
	TOR: S	Strider Cons	truction Co.				INSPECTO	R: Dan Weaver	
Placement	t Locatio	n: Pile Cap	at East Cer	ntral Waterfr	ont Wall				
Sample Lo	ocation:	1st Truc	k, 10 Cubic	Yard Load					
Field Data:	:								Eq. No
Supplier		Cowden Grav	el & Ready M	lix	:	Slump, ir	n. (C143)	5.50	13
Mix #		5000PSI40			1	Air Conte	ent, % (C231)	5.8	4
Mix Descripti	tion	6.5 Sk, Slag A	Ash, WRA, HF	RWRA, AE &	3/4" Agg. 🛛 🛛	Unit Weig	ght, pcf (C138)	N/T	
Truck/Ticket	#	7 / 117734				Air Temp	erature,°F	39	
Strength Req	quired	4000 psi at 28	3 days		1	Mix Tem	perature,°F (C1064)	53	C31
Quantity Plac	ced, cy	40			1	Field Cur	e Temperature, °F	nt	
Time Batche	ed	8:22 AM			l v	Water Ac	lded on Job, gals	10	
Time Sample	ed	9:15 AM			l l	Water Re	equested by	CRM	
Laboratory	y Data:						-		I
	Test Ag	e Test	Total Loa		Compress			Remarks	
No.	(Days)	Date	(lbs)	(in²)	Strength (p	osi)		Nethal KS	
51898	4	02-05	38370	12.57	3050	TY	PE 5:		
51899	7	02-08	48080	12.69	3790	TY	PE 5:		
51900	28	02-29	72520	12.63	5740	TY	PE 5:		
	28	02-29	76980	12.63	6100	TY	PE 5:		
51901			67700	12.63	5360	TY	'PE 3:		
51901 51902	28	02-29	01100						
	28 Hold	02-29	0	0.00	0				
51902 51903	Hold	00-00	0	0.00				(III) / 2"	
51902	Hold	00-00 ection	0 Yes		blicable		Specimen Size	4" X 8" ASTM C31/C39	

ATTACHMENT K WCWW PILECAP CONCRETE TESTING

www.geotest-inc.com

fax: (360) 733.7418

		Concret	e Inspect	tion & (Compressi	ve Strength Te	st Report	
PROJE	CT:	Whatcom Wa	aterway Phase	e I Cleanu	р	JOB #:	15-0589	
	SS:	Bellingham,	WA			REPORT #	CB001	
PERMIT	「#:	BLD15-0021	8			DATE:	3/22/2016	
		Anchor QEA	-			PAGE #:	1 of 1	
-	ACTOR:					INSPECTO		nmidt
Placemo	ent Locati	on: West Ce	entral Wall Pile	e Cap at 1	45' West End			
Sample	Location	: 3rd Truc	k, Mid Load					
Field Da	ata:							Eq. No
Supplier		Cowden Grav	/el & Ready Mix	(Slu	mp, in. (C143)	3.75	131
Mix #		5000PSI40			Air	Content, % (C231)	4.7	9
Mix Desc	ription	6.5 Sack, 0.4	0 W/C Ratio, w/	′ Air	Uni	it Weight, pcf (C138)	NT	
Truck/Tic	ket #	4 / 98289			Air	Temperature,°F	65.1	
Strength	Required	4000 psi at 28	8 days		Mix	Temperature,°F (C1064)	73.6	18-15
Quantity	Placed, cy	~50			Fie	ld Cure Temperature, °F	58-71	
Time Bat	ched	12:01 PM			Wa	ter Added on Job, gals	10	
Time San	npled	1:00 PM			Wa	ter Requested by	Strider	
Laborat	ory Data:	·						·
Lab	Test A	-	Total Load		Compressive		Remarks	
Lab No.	(Days	b) Date	(lbs)	(in²)	Strength (psi		Remarks	
Lab No. 53765	(Days	Date 03-25	(lbs) 33580	(in²)	Strength (psi 2670	TYPE 5:	Remarks	
Lab No. 53765 53766	(Days 3 7	Date 03-25 03-29	(lbs) 33580 47910	(in ²) 12.57 12.63	Strength (psi 2670 3790	TYPE 5: TYPE 5:	Remarks	
Lab No. 53765 53766 53767	(Days 3 7 28	Date 03-25 03-29 04-19	(lbs) 33580 47910 68950	(in ²) 12.57 12.63 12.57	Strength (psi 2670 3790 5490	TYPE 5: TYPE 5: TYPE 5: TYPE 5:	Remarks	
Lab No. 53765 53766 53767 53768	(Days 3 7 28 28	Date 03-25 03-29 04-19 04-19	(lbs) 33580 47910 68950 68950	(in ²) 12.57 12.63 12.57 12.57	Strength (psi 2670 3790 5490 5490	TYPE 5: TYPE 5: TYPE 5: TYPE 5: TYPE 5: TYPE 5:	Remarks	
Lab No. 53765 53766 53767 53768 53769	(Days 3 7 28 28 28 28	Date 03-25 03-29 04-19 04-19 04-19	(lbs) 33580 47910 68950 68950 69980	(in ²) 12.57 12.63 12.57 12.57 12.57 12.57	Strength (psi 2670 3790 5490 5490 5570	TYPE 5: TYPE 5: TYPE 5: TYPE 5:	Remarks	
Lab No. 53765 53766 53767 53768	(Days 3 7 28 28	Date 03-25 03-29 04-19 04-19	(lbs) 33580 47910 68950 68950	(in ²) 12.57 12.63 12.57 12.57	Strength (psi 2670 3790 5490 5490	TYPE 5: TYPE 5: TYPE 5: TYPE 5: TYPE 5: TYPE 5:	Remarks	
Lab No. 53765 53766 53767 53768 53769 53770	(Days 3 7 28 28 28 28	Date 03-25 03-29 04-19 04-19 04-19 04-19 04-19 04-19 04-19 04-19 04-19	(lbs) 33580 47910 68950 68950 69980 0	(in ²) 12.57 12.63 12.57 12.57 12.57 12.57	Strength (psi 2670 3790 5490 5490 5570 0	TYPE 5: TYPE 5: TYPE 5: TYPE 5: TYPE 5: TYPE 5:	Remarks	
Lab No. 53765 53766 53767 53768 53769 53770 Reinford	(Days 3 7 28 28 28 28 Hold	Date 03-25 03-29 04-19 04-19 04-19 04-19 04-19 04-19 04-19 04-19 04-19 04-19 04-19 04-19 04-19 04-19 00-00	(lbs) 33580 47910 68950 68950 69980 0 0 NT n.	(in²) 12.57 12.63 12.57 12.57 12.57 12.57 0.00	Strength (psi 2670 3790 5490 55490 5570 0	TYPE 5: TYPE 5: TYPE 5: TYPE 5: TYPE 3:		
Lab No. 53765 53766 53767 53768 53769 53770 Reinforc Reinforc	(Days 3 7 28 28 28 Hold cement Ins	Date 03-25 03-29 04-19 04-19 04-19 04-19 04-19 04-19 pection	(Ibs) 33580 47910 68950 68950 69980 0 0 NT n, NT n,	(in²) 12.57 12.63 12.57 12.57 12.57 0.00 /a: not app /t: not tes	Strength (psi 2670 3790 5490 5490 5570 0	TYPE 5: TYPE 5: TYPE 5: TYPE 5: TYPE 5: TYPE 3: Specimen Size Test Reference	4" X 8" ASTM C31/C39	
Lab No. 53765 53766 53767 53768 53769 53770 Reinforc Reinforc	(Days 3 7 28 28 28 Hold cement Ins	Date 03-25 03-29 04-19 04-19 04-19 04-19 04-19 04-19 pection	(Ibs) 33580 47910 68950 68950 69980 0 0 NT n, NT n,	(in²) 12.57 12.63 12.57 12.57 12.57 0.00 /a: not app /t: not tes	Strength (psi 2670 3790 5490 5490 5570 0	TYPE 5: TYPE 5: TYPE 5: TYPE 5: TYPE 3: Specimen Size	4" X 8" ASTM C31/C39	
Lab No. 53765 53766 53767 53768 53769 53770 Reinforc Reinforc Reinforc	(Days 3 7 28 28 28 Hold cement Ins cement Co cement w	Date 03-25 03-29 04-19 04-19 04-19 04-19 04-19 04-19 01-19 10-19 10-19 <td>(Ibs) 33580 47910 68950 68950 69980 0 0 NT n, NT n, site as reque</td> <td>(in²) 12.57 12.63 12.57 12.57 12.57 0.00 /a: not app /t: not tes ested to p</td> <td>Strength (psi 2670 3790 5490 5490 5570 0 0 Dicable ted</td> <td>TYPE 5: TYPE 5: TYPE 5: TYPE 5: TYPE 5: TYPE 3: Specimen Size Test Reference</td> <td>4" X 8" ASTM C31/C39 ncrete test cylin</td> <td>iders.</td>	(Ibs) 33580 47910 68950 68950 69980 0 0 NT n, NT n, site as reque	(in²) 12.57 12.63 12.57 12.57 12.57 0.00 /a: not app /t: not tes ested to p	Strength (psi 2670 3790 5490 5490 5570 0 0 Dicable ted	TYPE 5: TYPE 5: TYPE 5: TYPE 5: TYPE 5: TYPE 3: Specimen Size Test Reference	4" X 8" ASTM C31/C39 ncrete test cylin	iders.
Lab No. 53765 53766 53767 53768 53769 53770 Reinforc Reinforc Reinforc Reinforc	(Days 3 7 28 28 28 28 Hold cement Ins cement Co cement w /17/16 fo	Date 03-25 03-29 04-19 05-00 1 1 1 1 1 1 1 1 1 1 1	(Ibs) 33580 47910 68950 68950 69980 0 0 0 0 0 0 0 0 0 0 0 0 0	(in²) 12.57 12.63 12.57 12.57 12.57 0.00 /a: not app /t: not tes ested to p and was in details.	Strength (psi 2670 3790 5490 5490 5570 0 0 Dicable ted	TYPE 5: TYPE 5: TYPE 5: TYPE 5: TYPE 3: Specimen Size Test Reference re testing and cast co	4" X 8" ASTM C31/C39 ncrete test cylin	iders.
Lab No. 53765 53766 53767 53768 53769 53770 Reinforc Reinforc Reinforc Reinforc	(Days 3 7 28 28 28 28 Hold cement Ins cement Co cement w /17/16 fo	Date 03-25 03-29 04-19 05-00 1 1 1 1 1 1 1 1 1 1 1	(Ibs) 33580 47910 68950 68950 69980 0 0 0 0 0 0 0 0 0 0 0 0 0	(in²) 12.57 12.63 12.57 12.57 12.57 0.00 /a: not app /t: not tes ested to p and was in details.	Strength (psi 2670 3790 5490 5490 5570 0 0 Dicable ted	TYPE 5: TYPE 5: TYPE 5: TYPE 5: TYPE 3: Specimen Size Test Reference re testing and cast co orm. See GeoTest's In	4" X 8" ASTM C31/C39 ncrete test cylin	iders.
Lab No. 53765 53766 53767 53768 53769 53770 Reinforc Reinforc Reinforc Reinforc	(Days 3 7 28 28 28 28 Hold cement Ins cement Co cement w /17/16 fo	Date 03-25 03-29 04-19 05-00 1 1 1 1 1 1 1 1 1 1 1	(Ibs) 33580 47910 68950 68950 69980 0 0 0 0 0 0 0 0 0 0 0 0 0	(in²) 12.57 12.63 12.57 12.57 12.57 0.00 /a: not app /t: not tes ested to p and was in details.	Strength (psi 2670 3790 5490 5490 5570 0 0 Dicable ted	TYPE 5: TYPE 5: TYPE 5: TYPE 5: TYPE 3: Specimen Size Test Reference re testing and cast co orm. See GeoTest's In	4" X 8" ASTM C31/C39 ncrete test cylin	iders.

This report shall not be reproduced except in full, without the written approval of GeoTest Services, Inc. The above test results relate to the sample (or location) tested.

www.geotest-inc.com

fax: (360) 733.7418

	aterway Phas		••••••••••••••••••••••••••••••••••••••	ve Strength Te	SINEPUIL	
Bellingham, '		se I - Stride	r Construction	JOB #:	16-0015	
	Bellingham, WA REPORT					
				DATE:	3/31/2016	6
Strider Cons	truction Co.			PAGE #:	1 of 1	-
Strider Cons				INSPECTO		ver
on: West Ce	entral Bulkhea	ad Pile Cap	Wall East Half			
1st Truc	k 11 Cubic Ya	ards				
						Eq. No
Cowden Grav	/el & Ready Mi	x	Slu	ımp, in. (C143)	4.25	13
5000PSI40			Air	Content, % (C231)	4.9	4
6.5 Sack, AE, WR	A, HRWRA, Hot Wa	ater & Slag Ash	Un	it Weight, pcf (C138)	NT	
8 / 119230			Air	Temperature,°F	60	
4000 psi at 2	8 days		Mi	c Temperature,°F (C1064)	72	C31
53					NT	
11:41 AM					10	
12:27 PM					Cowden	
				. ,	1	I
je Test	Total Load	d Area	Compressiv	e	Bomarka	
Date	(lbs)	(in²)	Strength (ps	i)	Remarks	
04-07	45640	12.63	3610	TYPE 5:		
04-28	61090	12.75	4790	TYPE 3:		
04-28	60850	12.75	4770	TYPE 5:		
04-28	59960	12.75	4700	TYPE 5:		
00-00	0	0.00	0			
ection	Yes r	n/a: not app	blicable	Specimen Size	4" X 8"	
		n/t: not tes		Test Reference	ASTM C31/C3	
	1st Truck Cowden Grav 5000PSI40 6.5 Sack, AE, WR 8 / 119230 4000 psi at 28 53 11:41 AM 12:27 PM e Test Date 04-07 04-28 04-28 04-28	1st Truck 11 Cubic Y Cowden Gravel & Ready Mi 5000PSI40 6.5 Sack, AE, WRA, HRWRA, Hot W 8 / 119230 4000 psi at 28 days 53 11:41 AM 12:27 PM Test Total Loar Date (Ibs) 04-07 45640 04-28 61090 04-28 59960	Truck 11 Cubic Yards Sack, AE, WRA, HRWRA, Hot Water & Slag Ash 8 / 119230 4000 psi at 28 days 4000 psi at 28 days 53 11:41 AM 12:27 PM It colspan="2">Fortal Load (lbs) Area (in2) 04-07 45640 12.63 04-07 45640 12.75 04-28 60850 12.75 04-28 59960 12.75	Cowden Gravel & Ready Mix Slu 5000PSI40 Air 6.5 Sack, AE, WRA, HRWRA, Hot Water & Slag Ash Un 8 / 119230 Air 4000 psi at 28 days Mix 53 Fie 11:41 AM Wa 12:27 PM Wa e Test Date Total Load (lbs) Area (in²) Compressive Strength (psi Str	1st Truck 11 Cubic Yards Slump, in. (C143) Air Content, % (C231) 000PSI40 6.5 Sack, AE, WRA, HRWRA, Hot Water & Slag Ash Nuit Weight, pcf (C138) 8 / 119230 Air Temperature, °F 4000 psi at 28 days Sack, AE, WRA, HRWRA, Hot Water & Slag Ash Mix Temperature, °F 4000 psi at 28 days Sack, AE, WRA, HRWRA, Hot Water & Slag Ash Mix Temperature, °F 4000 psi at 28 days Sack, AE, WRA, HRWRA, Hot Water & Slag Ash Mix Temperature, °F Sack, AE, WRA, HRWRA, Hot Water & Slag Ash Mix Temperature, °F Volspan="2">Value Temperature, °F Volspan="2">Value Temperature, °F Value	1st Truck 11 Cubic Yards Cowden Gravel & Ready Mix Slump, in. (C143) 4.25 5000PS140 Air Content, % (C231) 4.9 6.5 Sack, AE, WRA, HRWRA, Hot Water & Slag Ash Unit Weight, pcf (C138) NT 8 / 119230 Air Temperature, °F 60 4000 psi at 28 days Mix Temperature, °F (C1064) 72 53 Field Cure Temperature, °F NT 11:41 AM Water Added on Job, gals 10 12:27 PM Vater Requested by Cowden Veget Requested by Remarks 9 04-07 45640 12.63 3610 TYPE 5: Veget Size 9 04-28 60850 12.75 4770 TYPE 5: Veget Size Veget Size 9 04-28 59960 12.75 4700 TYPE 5: Veget Size 9 04-28 60850 12.75 4700 TYPE 5: Veget Size Veget Size 9 04-28 59960 12.75 4700 TYPE 5: Veget Size Veget Size 9 04-28 59960 <td< td=""></td<>

This report shall not be reproduced except in full, without the written approval of GeoTest Services, Inc. The above test results relate to the sample (or location) tested.

ATTACHMENT L MSB PILECAP CONCRETE TESTING

www.geotest-inc.com

fax: (360) 733.7418

PROJECT: ADDRESS:		e Inspec	ction &	Compres	siv	e Strength Tes	st R	leport	
	Whatcom W	aterway Pha	ise I Cleanu	р		JOB #:		15-0589	
ADDREGG.	Bellingham,	WA				REPORT #:		CB002	
PERMIT #:	BLD15-0021	8				DATE:		4/27/2016	
CLIENT:	Anchor QEA	ι.				PAGE #:		1 of 3	
CONTRACTOR:	American Co	onstruction				INSPECTO	R:	Waine Aynes	
Placement Loca	t ion : Maple S	itreet Bulk H	ead Wall						
Sample Location	n: Mid Loa	d First Truck	⟨ ~ W4 Firs	st Lift					
Field Data:									Eq. No
Supplier	Cowden Grav	vel & Ready N	1ix		Slum	o, in. (C143)	5.50	I	34
Mix #	5000PSI40				Air Co	ontent, % (C231)	4.5		6
Mix Description	3/4 Agg. 6.5 SK N	/lid Range & High I	Range & Air		Unit V	Veight, pcf (C138)	NT		
Truck/Ticket #	3 / 120069				Air Te	emperature,°F	58		
Strength Required	4000 psi at 2	8 days			Mix T	emperature,°F (C1064)	71		602
Quantity Placed, cy	10				Field	Cure Temperature, °F	NT		
Time Batched	8:48 AM				Wate	Added on Job, gals	25		
Time Sampled	9:45 AM				Wate	Requested by	Cow	rden QC	
Laboratory Data	:				I		I		
Lab Test A	ge Test	Total Loa	ad Area	Compress	sive		_		
No. (Day	-	(lbs)	(in²)	Strength (Ren	narks	
55241 7	05-04	48950	12.63	3880		TYPE 5:			
55242 28	05-25	0	12.50	0		sample damaged			
55243 28	05-25	70080	12.50	5610		TYPE 5:			
	05-25	67470	12.50	5400		TYPE 5:			
55244 28		0	0.00	0					
55244 28 55245 Hold	00.00	+							
55245 Hold			n/a: not as			Specimon Sizo		" Y 8"	
	spection		n/a: not app n/t: not tes			Specimen Size Test Reference		" X 8" FM C31/C39	

COPIES: Anchor QEA

Reviewed by

This report shall not be reproduced except in full, without the written approval of GeoTest Services, Inc. The above test results relate to the sample (or location) tested.

fax: (360) 733.7418

www.geotest-inc.com

Concrete Inspection & Compressive Strength Test Report

PROJECT:	Whatcom Waterway Phase I Cleanup	JOB #:	15-0589
CLIENT:	Anchor QEA	REPORT #:	CB002
CONTRACTOR:	American Construction	PAGE #:	2 of 3

www.geotest-inc.com

fax: (360) 733.7418

Concrete Inspection & Compressive Strength Test Report

PROJECT:	Whatcom Waterway Phase I Cleanup	JOB #:	15-0589
CLIENT:	Anchor QEA	REPORT #:	CB002
CONTRACTOR:	American Construction	PAGE #:	3 of 3

www.geotest-inc.com

fax: (360) 733.7418

PROJECT: ADDRESS: PERMIT #: CLIENT: CONTRACTOR:	Bellingh Strider (aterway Pha NA	se I - Stride	r Constructio	n		16-0015	
PERMIT #: CLIENT: CONTRACTOR:	Strider (nam, N	NA			///	JOB #:	10-0015	
CLIENT: CONTRACTOR:							REPORT #:	CB003	
CONTRACTOR:							DATE:	5/10/2016	
		Const	ruction Co.				PAGE #:	1 of 3	
			ruction Co.				INSPECTO		s
Diacomont Looo									-
	tion: Map	ple St	. Bulk Head						
Sample Locatio	n: ~ W	V4.5 F	From Pump	Hose, Mid L	oad				
Field Data:									Eq. No
Supplier	Cowden	n Grav	el & Ready M	lix		Slump	o, in. (C143)	6.50	34
Mix #	5000PS	6140				Air Co	ntent, % (C231)	4.9	6
Mix Description	6.5 Sacl	k, AE,	WRA, HRWF	र		Unit W	/eight, pcf (C138)	NT	
Truck/Ticket #	8 / 1205	530				Air Te	mperature,°F	71	
Strength Required	4000 ps	si at 28	8 days			Mix Te	emperature,°F (C1064)	68	13-15
Quantity Placed, cy	66					Field 0	Cure Temperature, °F	55-98	
Time Batched	7:23 AM	/				Water	Added on Job, gals	25	
Time Sampled	8:25 AM	1				Water	Requested by	Driver	
Laboratory Data	:								I
Lab Test	Age Te	est	Total Loa	d Area	Compress	sive		Domestra	
No. (Day		ate	(lbs)	(in²)	Strength ((Remarks	
(24)	S) Da		. ,			(psi)			
1101 (Duly 55710 7		5-17	45160	12.57	3590		TYPE 5:		
	05	5-17 6-07	45160 66260	12.57 12.63			TYPE 5: TYPE 5:		
55710 7	05				3590				
55710 7 55711 28	05	6-07	66260	12.63	3590 5250		TYPE 5:		
55710 7 55711 28 55712 28	05 06 06 06	6-07 6-07	66260 67320	12.63 12.63	3590 5250 5330		TYPE 5: TYPE 5:		
55710 7 55711 28 55712 28 55713 28	05 06 06 06	5-07 5-07 5-07	66260 67320 66910	12.63 12.63 12.63	3590 5250 5330 5300		TYPE 5: TYPE 5:		
55710 7 55711 28 55712 28 55713 28 55714 Hole	05 06 06 06 1 00	5-07 5-07 5-07	66260 67320 66910 0	12.63 12.63 12.63 0.00	3590 5250 5330 5300 0		TYPE 5: TYPE 5: TYPE 5:		
55710 7 55711 28 55712 28 55713 28	05 06 06 06 0 0 0 0 0 0 0 0 0 0 0 0 0 0	5-07 5-07 5-07	66260 67320 66910 0 Yes	12.63 12.63 12.63	3590 5250 5330 5300 0		TYPE 5: TYPE 5:	4" X 8" ASTM C31/C39	

This report shall not be reproduced except in full, without the written approval of GeoTest Services, Inc. The above test results relate to the sample (or location) tested.

www.geotest-inc.com

fax: (360) 733.7418

Concrete Inspection & Compressive Strength Test Report

PROJECT:	Whatcom Waterway Phase I - Strider Construction	JOB #:	16-0015
CLIENT:	Strider Construction Co.	REPORT #:	CB003
CONTRACTOR:	Strider Construction Co.	PAGE #:	2 of 3

www.geotest-inc.com

fax: (360) 733.7418

Concrete Inspection & Compressive Strength Test Report

PROJECT:	Whatcom Waterway Phase I - Strider Construction	JOB #:	16-0015
CLIENT:	Strider Construction Co.	REPORT #:	CB003
CONTRACTOR:	Strider Construction Co.	PAGE #:	3 of 3

ATTACHMENT M WMSW PILECAP CONCRETE TESTING

www.geotest-inc.com

fax: (360) 733.7418

PROJECT:		0110101	e inspe	ction &	Compress	sive	Strength Tes	st Report	
	Wh	natcom Wa	aterway Pha	ase I - Stride	er Construction	l	JOB #:	16-0015	
ADDRESS:	Be	llingham, \	WA				REPORT #:	CB004	
PERMIT #:							DATE:	5/25/2016	
CLIENT:	Str	ider Const	truction Co.				PAGE #:	1 of 1	
CONTRACTO	R: Str	ider Const	truction Co.				INSPECTO	R: Zach Click	
Placement Lo	cation:	Maple St	treet Wall						
Sample Locat	ion:	Mid Load	d, 1st Truck						
Field Data:									Eq. No
Supplier	Co	wden Grav	el & Ready N	/lix	5	Slump,	in. (C143)	5.50	
Mix #	50	00PSI40			ļ	Air Con	tent, % (C231)	5.2	
Mix Description	6.5	5 Sack, Air,	HRWRA, Sla	ag Ash	ι	Jnit We	eight, pcf (C138)	NT	
Truck/Ticket #	7/	121069			ļ	Air Terr	nperature,°F	70	
Strength Require	d 40	00 psi at 28	3 days		1	Mix Ter	mperature,°F (C1064)	75	
Quantity Placed	cy 16	i			F	Field C	ure Temperature, °F	65.3-85.5	
Time Batched	11	:29 AM			\	Nater A	Added on Job, gals	15	
Time Sampled	12	:15 PM			1	Nater F	Requested by	Contractor	
Laboratory Da	ta:								
	t Age	Test Date	Total Loa (lbs)	ad Area (in ²)	Compressi Strength (p			Remarks	
56296	ays) 7	06-01	43930	12.69	3460	-	YPE 5:		
	28	06-22	65440	12.63	5180		YPE 5:		
	28	06-22	65340	12.63	5170		TPE 5:		
	28	06-22	62230	12.63	4930		TPE 5:		
	old	00-22	02230	0.00	4930		TFE 5.		
30300 T		00-00	0	0.00	0				
Reinforcement	Inspec	tion	Yes	n/a: not app	blicable		Specimen Size	4" X 8"	
Reinforcement	Confor	ms	Yes	n/t: not tes	ted		Test Reference	ASTM C31/C39	
Reinforceme	nt was	inspected	d on the pr	evious date		und to	ed for the Maple S o conform to the pl ated.		ons.
								- Se	

ATTACHMENT N LCW REPLACEMENT CONCRETE SLAB CONCRETE TESTING

www.geotest-inc.com

fax: (360) 733.7418

			-		r Construction	IVE Strength Te	16-00 ²		
			·					-	
ADDRE	SS:	Bellingham,	WA			REPORT #	t: CB005	5	
PERMIT	#:					DATE:	6/17/2	016	
CLIENT	:	Strider Cons	truction Co.			PAGE #: 1 of 1			
CONTR	ACTOR:	Strider Cons	truction Co.			INSPECTO	DR: Dan W	/eaver	
Placeme	ent Locatio	on: Paving (Concrete Sla	b Section a	t Gangway and	Dock Entrance			
Sample	Location:	1st Truc	k, 10 Cubic `	Yard Load					
Field Da	ata:	1						Eq. No	
Supplier		Cowden Grav	el & Ready M	lix	-	ump, in. (C143)	3.50	13	
Mix #		5000PSI40				Content, % (C231)	4.4	4	
Mix Desc	•	6.5 Sack, AE,	Slag Ash & 3	/4" Agg.		it Weight, pcf (C138)	NT		
Truck/Tic		10 / 121863				Temperature,°F	50		
-	Required	4000 psi at 28	3 days			x Temperature,°F (C1064) 70	C31	
-	Placed, cy	57			-	eld Cure Temperature, °F			
Time Bate		7:25 AM				ater Added on Job, gals	0		
Time San	-	8:15 AM			Wa	ater Requested by			
	ory Data:								
Lab No.	Test Ag (Days)		Total Loa (lbs)	d Area (in ²)	Compressiv Strength (ps		Remarks		
57079	7	06-24	49230	12.50	3940	TYPE 2:			
57080	10	06-27	52420	12.50	4190	TYPE 3:			
57081	28	07-15	72450	12.69	5710				
57082	28	07-15	68470	12.69	5400	TYPE 3:			
57083	Hold	00-00	0	0.00	0				
	ement Incr	pection	NT	n/a: not app	blicable	Specimen Size	4" X 8"		
Reinforc	ement mot		NT	n/t: not tes	ted	Test Reference	ASTM C31	/C39	
	ement Cor	nforms				lest iverence	//011//001/		
Reinforc Comme	ement Cor ents: Geo]	Fest was on	site to sam		st concrete pla	aced at the above loc sed. Sample was tak	ations. The		
Reinforc Comme placed	ement Cor ents: Geo] via a 47 m	Fest was on	site to sam pump and a		st concrete pla	aced at the above loc	cations. The en at the pu		

APPENDIX J DISPOSAL DOCUMENTATION

DISPOSAL DOCUMENTATION AS-BUILT REPORT FOR THE WHATCOM WATERWAY CLEANUP IN PHASE 1 SITE AREAS

Prepared for Port of Bellingham

Prepared by Anchor QEA, LLC 720 Olive Way, Suite 1900 Seattle, Washington 98101

September 2018

TABLE OF CONTENTS

1	INTRODUCTION	. J-1
2	MATERIALS GENERATED AND REMOVED FROM PROJECT SITE	. J-1
3	DISPOSAL PERMITS AND USE AUTHORIZATIONS	. J-2
4	CONTRACTOR-IMPLEMENTED DISPOSAL MEASURES AND PRACTICES	. J-3
5	COMPLIANCE WITH PERMITS AND REGULATIONS	. J-4

List of Attachments

Attachment A Certificate of Disposal

LIST OF ACRONYMS AND ABBREVIATIONS

ASB	aerated stabilization basin
Ecology	Washington State Department of Ecology
GP West	Georgia-Pacific West, Inc.
NPDES	National Pollutant Discharge Elimination System
Port	Port of Bellingham
POTW	Public-Owned Treatment Works
Project	Whatcom Waterway Cleanup in Phase 1 Site Areas Project
TTD	transload, transport, and disposal
WDP	NPDES Waste Discharge Permit
GP West NPDES Port POTW Project TTD	Georgia-Pacific West, Inc. National Pollutant Discharge Elimination System Port of Bellingham Public-Owned Treatment Works Whatcom Waterway Cleanup in Phase 1 Site Areas Project transload, transport, and disposal

1 INTRODUCTION

This appendix provides an overview of disposal activities and requirements implemented as part of the Whatcom Waterway Cleanup in Phase 1 Site Areas Project (Project). The following elements are included in this appendix:

- 1. A description of the different categories of materials that were generated and then removed for disposal
- 2. An overview of disposal permits and use authorizations that were required to complete the work
- 3. A summary of Contractor-implemented measures and practices for disposal of the materials
- 4. A discussion of the means and methods (including tracking) for compliance with permits and regulations

2 MATERIALS GENERATED AND REMOVED FOR DISPOSAL

Tracking and disposal activities were managed separately for the following media:

- Soil: Upland and shoreline soils were generated as part of shoreline soil/debris removal, excavation associated with construction of the containment wall (constructed at Central Waterfront Site shoreline), structure removal activities, and layback of the shoreline slope at the former clarifier location at the GP West Site. These soils were evaluated for suitability for re-use or landfill disposal through completion of environmental and physical testing.
- Sediment: Sediment and debris entrained in the sediment were generated by completion of dredging activities within the Inner Waterway and Outer Waterway areas.
- **Debris:** Debris (e.g., treated timber, sediment- or soil-impacted debris or refuse) was generated by completion of activities described above for the generation of soil material. Additionally, some debris material was segregated from dredged material depending on the nature and size of debris.
- **Construction-generated water:** Construction water was collected from upland/shoreline excavation areas and dredged sediment water was generated at the sediment offloading facility.

Some materials (i.e., concrete and scrap metal) were also generated during the Project and were stockpiled for re-use or recycled. The Port of Bellingham (Port) collected intact concrete debris and crushed the material for stockpiling on the GP West Site for future use. The Contractor hauled scrap metal to a recycling facility.

3 DISPOSAL PERMITS AND USE AUTHORIZATIONS

The Contractor managed the disposal of soil, sediment, debris, and construction-generated water from the Project effective June 25, 2015,¹ through the completion of the Project. Disposal permits were utilized and use authorizations were obtained for the media as summarized below:

- **Soil:** Project-generated soil determined unsuitable for reuse was disposed of in an approved, permitted Subtitle D landfill.²
- **Sediment:** Dredged sediment was disposed of at an approved, permitted Subtitle D landfill.³
- **Debris:** Project-generated debris was managed in the same manner as soil; see above.
- Upland construction-generated water: Upland construction-generated water, such as stormwater and excavation dewatering water, was collected, pre-treated, and conveyed to the Port's aerated stabilization basin (ASB) in accordance with the National Pollutant Discharge Elimination System (NPDES) Waste Discharge Permit (WDP) WA0001091 and a Non-Routine Discharge Approval⁴ from the Washington State Department of Ecology (Ecology).
- Sediment offloading facility construction-generated water: Construction-generated water, such as dredged sediment water and sediment contact-stormwater, was collected, pre-treated, and discharged in accordance with the sediment offloading

¹ Contractor received written Notice to Proceed from the Port on June 25, 2015.

² Chelan-Douglas Health District Combined Operating Permit for Municipal Solid Waste Landfilling and Solid Waste Handling Facility, Greater Wenatchee Regional Landfill and Recycling Center.

³ State of Oregon Department of Environmental Quality Solid Waste Disposal Site Permit No. 391 issued to

Waste Management Disposal Services of Oregon, Inc. at the Columbia Ridge Landfill and Recycling Center. ⁴ Ecology approved a request for the non-routine discharge of on-site construction-generated waters to the ASB, by letter, on June 2, 2015. The approval is a requirement of the WDP WA0001091.

facility's transload, transport, and disposal (TTD) work plan. The work plan included an approval to utilize Marine Vacuum Service, in accordance with a King County Waste Discharge Permit⁵, for treatment, testing, and discharge to the County Public-Owned Treatment Works (POTW).

4 CONTRACTOR-IMPLEMENTED DISPOSAL MEASURES AND PRACTICES

Disposal of the generated materials described in Sections 2 and 3 was managed by the Contractor with various measures and practices as described below. The specific methods of material tracking for disposal are described in Section 5.

- Soil: Project-generated soil determined unsuitable for reuse was loaded into truck and trailer combinations and hauled to an approved, permitted Subtitle D landfill.
 Loading occurred either during excavation (direct loading) or at the designated staging and stockpiling areas, which were managed for impacted soil containment and water management. The Contractor provided weight tickets for all material transported to the landfill.
- Sediment: Dredged material (sediment and debris) was direct-loaded into barges , transported to a permitted upland offloading facility (located on the Duwamish River in Seattle, Washington), stabilized for upland transportation, and then transloaded onto railcars for transport to and disposal at the approved, permitted Subtitle D landfill. Material was tracked for transport and disposal via collection of barge displacement measurement and weight tickets for rail cars traveling from the offloading facility to the landfill.
- **Debris:** Project-generated debris was generally loaded into sealed containers that were then loaded onto trucks for disposal at the approved, permitted Subtitle D landfill. Loading occurred at the designated staging and stockpiling areas, which were managed for impacted debris. The Contractor provided weight tickets for all material transported to the landfill.
- Upland construction-generated water: Upland construction-generated water was managed separately from non-contact stormwater and was generally collected and then pre-treated using temporary pre-treatment systems to reduce turbidity and remove oils

⁵ King County Department of Natural Resources and Parks Industrial Waste Program Waste Discharge Permit No. 7676-05, issued to Marine Vacuum Services.

and sheens prior to discharge into the Port's ASB. The temporary pre-treatment systems included weir tanks, oil absorbent floating booms, and an oil/water separator. The systems were operated by the Contractor with monitoring by the Contractor and the Port's construction management support staff.

• Sediment offloading facility construction-generated water: Dredged sediment water (collected from the transport barges) and contact stormwater at the approved offloading facility was collected and pre-treated in a temporary purpose-built treatment system utilizing settling tanks, weir tanks, multiple series of canister bag filters, a pressure sand filter process, a granular activated carbon vessel process, and surge tanks. The system was operated by the Contractor at the offloading facility with periodic oversight by the Port's construction management support staff. The pre-treated water was monitored for compliance with permit requirements prior to loading the treated water into sealed trucks and delivery of the treated water to a third-party operator for further treatment, monitoring, and discharge into the King County POTW.

5 COMPLIANCE WITH PERMITS AND REGULATIONS

Permit and regulation compliance for disposal of the materials generated as part of the Project varied by media and specific requirements associated with the various receiving facilities.

Soil: generated soil transported for landfill disposal was determined as unsuitable for re-use by either direct observation⁶ or by chemical analyses.⁷ Material segregation and tracking was conducted to minimize the potential for material cross-contamination and to ensure that all unsuitable soil reached the approved, permitted Subtitle D landfill. Soil material was tracked using Contractor-generated truck tickets for all material transported to the landfill facility. The Port used these truck tickets to establish measurement and payment for completed work. The landfill facility did not reject soil or raise a non-compliance issue during the course of the Project.

⁶ Criteria for determining unsuitability for on-site reuse included one or a combination of: the presence of a sheen or a strong petroleum odor or geotechnical unsuitability (e.g., excessive amounts of organics, clay content, debris).

⁷ Chemical analyses were compared against established cleanup levels or screening levels for unrestricted land use for unsaturated soils.

 A total of 9,899.46 tons of unsuitable soil was generated as part of implementation of the Project and taken to the landfill facility for final disposal. A breakdown of soil disposal by month is provided in Table J1.

Month	Pay Quantity (tons)				
September 2015	219.48				
October 2015	499.61				
November 2015	1088.62				
December 2015	1730.48				
January 2016	4044.16				
February 2016	2014.59				
March 2016	42.15				
April 2016	260.37				
Total:	9,899.46				

Table JI
Bid Item 7: Upland Excavation, Handling, and Off-site Landfill Disposal –
Pay Quantity Summary

Table 14

- Sediment: Dredged sediment (and dredge debris) was tracked from the dredge source to the landfill to ensure that all material reached the approved, permitted Subtitle D landfill. Tracking the material was completed in multiple fashions; barge displacement measurements were collected to determine the approximate tonnage of dredge material loaded onto the barge prior to the barge departing the Site and upon arrival at the offloading facility to account for no loss of material during in-water transport to the offloading facility. Railcar load tickets were then generated as cars were loaded at the offloading facility and were also obtained upon delivery of the rail cars at the landfill. The landfill did not reject sediment or raise a non-compliance issue during the course of the Project.
 - A total of 171,807.9 tons of dredge material⁸ (sediment and dredge debris) was generated as part of implementation of the Project and taken to the landfill facility

⁸ Reported tonnage also includes weight of material added to the dredge material for stabilization before transport.

for final disposal. A copy of the final Certificate of Disposal is provided as Attachment A to this appendix.

- Debris: Debris was segregated and tracked to minimize the potential for material cross-contamination and to ensure that all debris transported for disposal reached the approved, permitted Subtitle D landfill. Debris material was tracked using Contractor-generated truck tickets for all material transported to the landfill facility. The Port used these truck tickets to establish measurement and payment for completed work. The landfill did not reject debris or raise a non-compliance issue during the course of the Project.
 - A total of 62.57 tons of debris were generated as part of implementation of the Project and taken to the landfill facility for final disposal. A breakdown of debris disposal by month is provided in Table J2.

Month	Pay Quantity (tons)
August 2015	24.92
September 2015	6.44
October 2015	11.44
November 2015	1.66
December 2015	36.75
January 2016	0.00
February 2016	18.03
March 2016	0.00
April 2016	-36.66
Total:	62.57

Table J2

Bid Item 8: Shoreline Debris Removal, Handling, and Off-site Landfill Disposal – Pay Quantity Summary

Notes:

1. The final quantity for Bid Item 8 was reconciled during the April 2016 pay estimate to account for material that was reclassified during the course of the Project.

• Upland construction-generated water: Upland construction-generated water was monitored by the Contractor and the Port's construction management staff. Ecology staff conducted site inspections to identify compliance with permit requirements and

to verify that best management practices were performing as intended. No discharge occurred from the ASB to waters of the State during or following the completion of the Project. No compliance issues occurred or were identified during or following completion of the Project.

- Sediment offloading facility construction-generated water: Dredged sediment water (collected from the transport barges) and contact stormwater at the approved offloading facility were monitored by the Contractor and the Port's construction management support staff. Ecology staff also conducted site inspections at the offloading facility to identify compliance with facility permit requirements. Treated water test results were reviewed by the Contractor for compliance with permit requirements both at the offloading facility and following further treatment at the third-party treatment facility prior to discharge into the King County POTW. Test results were also provided to King County as part of permit requirements and to document appropriate conditions for disposal of the treated water. No compliance issues were raised by King County during the Project.
 - Quantities of offloading facility construction-generated water were not calculated for the purposes of material tracking associated with the Project. The acceptability for their handling, treatment, and disposal is documented through coordination with the Contractor (and subcontractor) reporting to King County.

ATTACHMENT A CERTIFICATE OF DISPOSAL

WASTE MANAGEMENT

March 23, 2016

Port of Bellingham 1801 Reoder Avenue Bellingham, Washington 98226

CERTIFICATE OF DISPOSAL

Waste Management, Inc. dba Columbia Ridge Landfill has received Dewatered Dredge Sediments with Petroleum for ultimate disposal Columbia Ridge Landfill.

Dates of Disposed:	9/25/2015-3/18/2016
Profile #:	119375OR
Total Tons:	171,807.9
Waste Type:	Dewatered Dredge Sediments with Petroleum

I certify, on behalf of the above listed facility, that the above-described non hazardous waste was managed in compliance with all applicable laws.

K. Castner

Kristin Castner Waste Management Waste Approvals Manager – PNW

APPENDIX K STORMWATER MEASURES SUMMARY

STORMWATER MEASURES SUMMARY AS-BUILT REPORT FOR THE WHATCOM WATERWAY CLEANUP IN PHASE 1 SITE AREAS

Prepared for Port of Bellingham

Prepared by Anchor QEA, LLC 720 Olive Way, Suite 1900 Seattle, Washington 98101

September 2018

TABLE OF CONTENTS

1	INTRODUCTION	K-1
2	STORMWATER PERMITS AND USE AUTHORIZATIONS	K-1
3	STORMWATER MANAGEMENT	K-1
4	CONTRACTOR-IMPLEMENTED BMPS	K-3
5	PROJECT CLOSEOUT	K-4

LIST OF ACRONYMS AND ABBREVIATIONS

ASB	aerated stabilization basin
BMP	best management practice
CSGP	Construction Stormwater General Permit (by Ecology)
Ecology	Washington State Department of Ecology
EPP	Environmental Protection Plan
GP West	Georgia-Pacific West, Inc.
NOT	Notice of Termination
NPDES	National Pollutant Discharge Elimination System
Port	Port of Bellingham
Project	Whatcom Waterway Cleanup in Phase 1 Site Areas Project
SWPPP	Stormwater Pollution Prevention Plan
TESC	Temporary Erosion and Sediment Control
WDP	NPDES Waste Discharge Permit

K-ii

1 INTRODUCTION

This appendix summarizes stormwater management procedures as implemented during completion of the Whatcom Waterway Cleanup in Phase 1 Site Areas Project (Project).

2 STORMWATER PERMITS AND USE AUTHORIZATIONS

Prior to the start of construction, the Port of Bellingham (Port) obtained coverage under the National Pollutant Discharge Elimination System (NPDES) Construction Stormwater General Permit (CSGP).¹ This coverage was transferred from the Port to the Contractor on July 17, 2015. As required by the Contract, the Contractor managed the Project stormwater beginning June 25, 2015,² through the completion of the Project and termination of the CSGP. The Contractor submitted a Notice of Termination (NOT) of the CSGP on July 6, 2016.

In addition to coverage under the CSGP, the Port obtained from the Washington State Department of Ecology (Ecology) a non-routine discharge approval³, under their NPDES Waste Discharge Permit (WDP)⁴, to manage contact stormwater, construction dewatering, and other construction-generated water using existing conveyance and treatment facilities. These facilities included stormwater drainage lines, the main pump sump and pump station, and the aerated stabilization basin (ASB).⁵ No discharges occurred from the ASB to Bellingham Bay during the course of the Project.

3 STORMWATER MANAGEMENT

As required by the CSGP, WDP, and the Contract, the Contractor developed and implemented an Environmental Protection Plan (EPP), which included a Stormwater Pollution Prevention Plan (SWPPP) and Temporary Erosion and Sediment Control (TESC)

¹ CSGP No. WAR302834; coverage obtained on April 16, 2015.

² Contractor received written Notice to Proceed from the Port on June 25, 2015.

³ Ecology approved a request for non-routine discharge of construction-generated water to the ASB, by letter, on June 2, 2015.

⁴ NPDES Waste Discharge Permit WA0001091; issued on December 17, 2014; modified on November 12, 2015.

⁵ The ASB is the secondary treatment facility of the former GP West Mill Site and continues to be utilized as a stormwater detention pond.

Plan. The SWPPP and TESC Plan provided best management practices (BMPs) including operational and engineering controls to minimize erosion, prevent sediment migration, and prevent stormwater pollution. BMPs implemented by the Contractor are discussed in the following section.

For work on the GP West Site, stormwater management under the WDP required the Contractor to utilize portions of the existing stormwater system with the following procedures:

- Non-contact stormwater that did not infiltrate was collected and conveyed using the existing catch basins and stormwater piping to the Dockside Pump Station, which conveys stormwater to the ASB.
- Contact stormwater (e.g., stormwater that contacted impacted soil and debris stockpiles) was managed separately. This contact stormwater collected in a temporary purpose-built contained basin designated for impacted material stockpiling. The contact stormwater was pre-treated⁶ prior to its discharge into the ASB in accordance with the WDP non-routine discharge approval.

Stormwater management activites at the Central Waterfront Site included the following procedures:

- Non-contact stormwater generally infiltrated the pervious areas.
- Non-contact stormwater on impervious areas was managed with contact stormwater, which involved pre-treatment⁷ prior to its discharge into the ASB in accordance with the WDP non-routine discharge approval.

Stormwater solids managed during the Project were collected and disposed of in an approved Subtitle D landfill along with contaminated soils and sediments generated during the Project.

⁶ The temporary water pre-treatment system at the former GP West Mill Site work area included a multi-cell weir tank with oil absorbent booms.

⁷ The temporary water pre-treatment system at the Central Waterfront Site work areas included a settling tank with oil absorbent booms, an oil/water separator, and a surge tank.

4 CONTRACTOR-IMPLEMENTED BMPS

The Contractor implemented its TESC Plan and SWPPP during the Project. BMPs implemented by the Contractor included, but were not limited to, the following:

- Pavement sweeping: Conducted as needed, on both the Central Waterfront Site and GP West Site work areas, as well as haul routes beyond the work areas. The sweepings were collected, added to the impacted soil stockpiles, and transported to an approved Subtitle D landfill.
- Catch basin inserts: Deployed on the existing catch basins along C Street on the Central Waterfront Site and on the GP West Site work areas where the majority of soil and material stockpiling and haul vehicle activity occurred. Catch basin inserts were maintained as needed.
- Stockpile covering: Implemented as necessary to contain soils or materials that would remain unworked for an extended period of time.
- Use of stabilized construction entrances: Two types of stabilized construction entrances were utilized during the Project. Rumble strips were installed at the west end of C Street, which was the entrance to the north staging and stockpiling area and the Central Waterfront Site work areas. A temporary wash off and stabilized entrance pad was constructed at the west end of the GP West Site. Haul vehicles used this pad as needed to manage sediment track-out from the work areas. Accumulated sediment at these entrances was collected, added to the impacted soil stockpiles, and transported to an approved Subtitle D landfill.
- Use of silt fencing: A silt fence was installed along the top of slope at the west end of the Central Waterfront Site work areas where shoreline debris removal and grading activities occurred. The silt fence was maintained and modified, as needed, to remain operational and functional.

The Contractor regularly inspected stormwater conditions, maintained BMPs, and adjusted operations or BMPs as necessary to manage stormwater in accordance with the stormwater management requirements.

The Contractor managed submittals to Ecology as required by the CSGP.

The Port and Anchor QEA also regularly inspected work areas and stormwater management measures.

Ecology staff reviewed the Contractor-developed SWPPP and conducted site visits during the Project. During a pre-construction site visit and review of the Contractor's SWPPP, Ecology provided feedback on BMPs proposed by the Contractor to manage soil loading and track-out of sediment. These BMPs were implemented during the Project.

No enforcement actions occurred during the course of the Project.

5 PROJECT CLOSEOUT

Following completion of construction, the following closeout activities were completed:

- The Contractor cleaned sediment from catch basins and completed a final sweeping of paved areas at the Central Waterfront Site and GP West Site work areas, and haul routes beyond the work areas.
- Except for installing new catch basin inserts along the designated haul route on the GP West Site, all other temporary BMPs were removed by the Contractor.
- The staging and stockpile areas were cleaned to their pre-construction condition.
- The temporary water pre-treatment systems were decontaminated and removed from the work areas.
- As required by the CSGP, the Contractor submitted a NOT application, and coverage under the CSGP was terminated on August 12, 2016.

APPENDIX L DEMOBILIZATION DOCUMENTATION

DEMOBILIZATION DOCUMENTATION AS-BUILT REPORT FOR THE WHATCOM WATERWAY CLEANUP IN PHASE 1 SITE AREAS

Prepared for Port of Bellingham

Prepared by Anchor QEA, LLC 720 Olive Way, Suite 1900 Seattle, Washington 98101

September 2018

TABLE OF CONTENTS

1	INTRODUCTIONI	Լ-1
2	FORMER GP WEST SITE WORK AREAS I	L-1
3	CENTRAL WATERFRONT SITE WORK AREASI	L-3
4	LAFARGE FACILITY I	L-4

LIST OF ACRONYMS AND ABBREVIATIONS

ASB	aerated stabilization basin
BMP	best management practice
GP West	Georgia-Pacific West, Inc.
NPDES	National Pollutant Discharge Elimination System
Port	Port of Bellingham
Project	Whatcom Waterway Cleanup in Phase 1 Cleanup Site Areas Project
SSA	staging and stockpiling area

1 INTRODUCTION

This appendix documents certain demobilization activities conducated at the conclusion of the Whatcom Waterway Cleanup in Phase 1 Site Areas Project (Project). Specifically, this appendix documents the work conducted to remove staging and stockpiling areas (SSAs) used for management of debris and contaminated media, and work conducted to restore conditions at the facility used for offloading of contaminated sediments prior to rail transport and landfill disposal.

2 GP WEST SITE WORK AREAS

Four SSAs, temporary stormwater facilities, and designated haul routes were established on the GP West Site for various work activities as described below.

- **GP West Site SSA:** This SSA included several material-specific designated stockpile locations established on top of existing asphalt pavement areas. The stockpiles were used for management of imported soils and rock, impacted soils, potentially impacted soils, treated wood debris, metal debris, concrete debris, and other debris. A temporary containment basin was constructed for the temporary stockpiling of treated wood debris, potentially impacted soils, and impacted soils. This containment basin was built to isolate impacted materials from non-impacted materials and to manage contact stormwater runoff separately from non-contact stormwater runoff.
- South Shoreline SSA: This SSA included several material-specific designated stockpile locations that were established on top of existing asphalt pavement areas and former concrete foundations. The stockpiles were used for management of concrete debris, metal debris, and other debris resulting primarily from the demolition of the former clarifier structure.
- Cap Material Barge Loading SSA: This SSA was an extension of the GP West Site SSA, and was used for the temporary stockpiling of clean imported engineered cap materials in support of the in-water engineered cap construction. The stockpiles were established on top of existing asphalt pavement areas, and the cap materials included sands, cobbles, and armor rock. A temporary conveyor system assembled on the former GP Dock was used to load the clean imported cap materials onto barges for the in-water cap construction work.

- Log Pond Area SSA: This SSA was also an extension of the GP West Site SSA, and was used for the temporary stockpiling of clean imported engineered cap materials in support of the engineered cap construction work in the Log Pond Area. The stockpiles were established on top of existing asphalt pavement areas and the cap materials included sands, cobbles, and armor rock.
- **Temporary Stormwater Facilities:** The temporary stormwater facilities included minor modifications to the existing stormwater system at the GP West Site and the operation of a water pretreatment system for contact stormwater and soil dewatering. Modifications to the stormwater system included the temporary plugging of an existing catch basin to isolate contact stormwater and soil dewatering from non-contact stormwater that was managed separately using the existing stormwater system.
- Haul routes on the GP West Site: The haul routes were used to transport equipment, materials, and supplies to and from work areas and SSAs and to transport materials and supplies to and from the Site. The main haul routes used during the Project occurred along existing asphalt paved travel ways. Various best management practices (BMPs) were used to minimize erosion and sediment track-out. BMPs included a stabilized construction entrance/wash pad, pavement sweeping, installation of catch basin inserts, stockpile containment, and proper stormwater management.

Cleanup and demobilization of the affected work areas at the GP West Site occurred over the duration of the Project as individual work activities were completed. See below for a brief description of the cleanup and demobilization activities at the various SSAs and haul routes.

• **GP West Site SSA:** Demobilization at this SSA was conducted following final disposition of materials stockpiled in the SSA. The stockpile areas were cleaned and swept. The temporary containment basin¹ was deconstructed, and the SSA was returned to its pre-construction condition.

¹ The temporary containment basin was constructed on top of existing concrete pavement and the perimeter was constructed of concrete jersey barriers that were sealed along the bottom and sides. The low point in the basin allowed for the collection of contact stormwater and soil dewatering and contains a stormwater catch basin that was modified (temporarily plugged) for the duration of the project to enable the Contractor to isolate material dewatering and contact stormwater separately from other stormwater runoff.

- South Shoreline SSA: Once all stockpiled materials were removed from the SSA, these areas were swept and returned to their pre-construction condition.
- **Cap Material Barge Loading SSA:** This SSA was cleaned up and demobilized following the completion of the in-water engineered cap construction. Demobilization of this SSA involved removing the conveyor from the dock, removing remaining materials, and sweeping the pavement surfaces.
- Log Pond Area SSA: Demobilization of this SSA was completed following completion of the engineered cap construction work in the Log Pond Area. The asphalt pavement areas were swept and returned to their pre-construction condition.
- **Temporary Stormwater Facilities:** The temporary stormwater facilities were demobilized following the cleanup and demobilization of the temporary containment basin in the GP West Site SSA. The temporary modifications to the stormwater system were removed and the pretreatment system was disassembled, cleaned, and removed.
- Haul Routes on the GP West Site: The haul routes were swept clean and select catch basin inserts were replaced to match the pre-construction condition.

3 CENTRAL WATERFRONT SITE WORK AREAS

One SSA, a temporary water pretreatment system, and designated haul routes were established on the Central Waterfront Site.

- **Central Waterfront Site SSA:** This SSA was established for the temporary staging and stockpiling of non-contaminated equipment, material, and supplies. The SSA was established on top of existing gravel surfaces.
- **Temporary Water Pretreatment System:** This system was assembled to manage contact stormwater and excavation dewatering. The system comprised three tanks, above-ground piping, and a series of pumps. The pretreated water was discharged into the Port of Bellingham's (Port's) aerated stabilization basin (ASB) in accordance with the National Pollutant Discharge Elimination System (NPDES) Waste Discharge Permit Non-Routine Discharge Approval by the Washington State Department of Ecology.²

L-3

² NPDES Waste Discharge Permit No. WA0001091; approval for non-routine discharge was provided by letter, dated June 2, 2015.

• Haul routes on the Central Waterfront Site: The haul routes were used to transport equipment, materials, and supplies to and from work areas and SSA and to transport materials and supplies to and from the Site. The main haul routes used during the Project occurred along gravel surfaces, except for traversing C Street and the concrete pavements along the east portion of the work areas. Various BMPs were used to minimize erosion and sediment track-out. BMPs included stabilized construction entrances, pavement sweeping, installation of catch basin inserts, stockpile containment, and proper stormwater management.

Similar to the GP West Site work areas, the Central Waterfront Site work areas were cleaned and demobilized following completion of associated work elements:

- **Central Waterfront Site SSA:** Demobilization at this SSA was completed following the completion of pilecap construction and the replacement concrete slabs at the east end of the work area. Demobilization of this SSA involved final grading of the gravel-surfaced areas, pavement sweeping, and removal of temporary erosion and sediment controls.³
- **Temporary Water Pretreatment System:** This pretreatment system was cleaned and removed.
- Haul Routes: Haul routes and C Street were swept clean and were returned to their pre-construction condition.

4 LAFARGE FACILITY

Demobilization activities were completed at the sediment offloading facility (Lafarge Seattle Cement Plant) following final rail shipment of the Project sediments:

- Barges were offloaded and cleaned.
- The sediment containment vault was emptied and cleaned after all sediment was loaded into railcars.
- All loading equipment, including the waterfront crane, was cleaned after sediment was loaded into rail cars.

L-4

³ Temporary erosion and sediment controls included a silt fence installation along the west end of the work area, stabilized construction entrances at the west end of C Street, and catch basin protections.

- All water generated during decontamination was collected, processed through the Lafarge water treatment facility, and transferred to Marine Vacuum, Inc. for final treatment and disposal.
- The Lafarge water treatment facility dedicated to treating water from Project sediment was dismantled and all solid material was loaded into rail cars.
- The bermed dredge material offload and handling area was cleaned and all solid material was loaded into rail cars.

APPENDIX M CONSTRUCTION PHOTOGRAPHS

CONSTRUCTION PHOTOGRAPHS AS-BUILT REPORT FOR THE WHATCOM WATERWAY CLEANUP IN PHASE 1 SITE AREAS

Prepared for Port of Bellingham

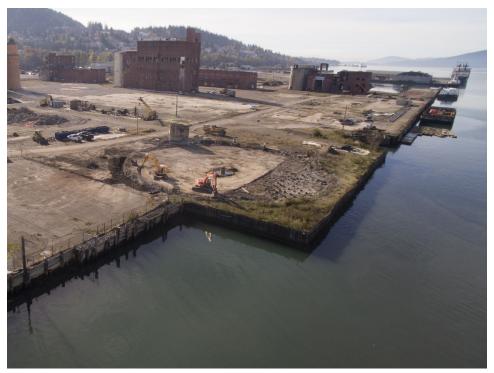
Prepared by

Anchor QEA, LLC 720 Olive Way, Suite 1900 Seattle, Washington 98101

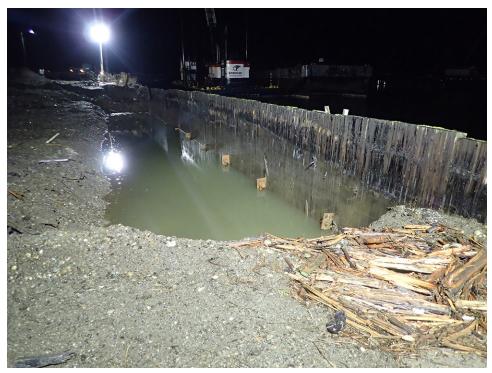
September 2018

LIST OF ACRONYMS AND ABBREVIATIONS

BST	Bellingham Shipping Terminal
ECWW	East Central Waterfront Wall
GP	Georgia-Pacific
GP West	Georgia-Pacific West, Inc.
MSB	Maple Street Bulkhead
SSA	staging and stockpiling area
WCWW	West Central Waterfront Wall


CONSTRUCTION PHOTOGRAPH INDEX

No.	Photographed Area	Construction Activity
1.	GP West; South shoreline, Central Ave Pier	Pre-removal of shoreline debris and structures
2.	GP West; South shoreline, aerial	Demolition of clarifier
3.	GP West; South shoreline, bulkhead	Demolition and removal of steel sheetpile bulkhead
4.	GP West; South shoreline, bulkhead	Removal of steel sheetpile bulkhead
5.	GP West; South shoreline, bulkhead	Post-removal of timber bulkhead
6.	GP West; South shoreline	Capping of south shoreline
7.	GP West; South shoreline, clarifier area	Capping of clarifier area
8.	GP West; South shoreline, west of Central Ave Pier	Capping of south shoreline
9.	GP West; South shoreline, west of Central Ave Pier	Post-capping of south shoreline
10.	GP West; South shoreline, aerial	Post-capping of south shoreline and clarifier area
11.	GP West; Foam tank area, waterside	Pre-removal of shoreline debris and structures
12.	GP West; Foam tank area, GP Dock	Post-removal of debris and structures, during
		construction of replacement stormwater conveyance
13.	GP West; Foam tank area, GP Dock	Capping of foam tank area shoreline
14.	GP West; Former GP West SSA, containment cell	Pre-construction condition of the containment cell
15.	GP West; Former GP West SSA, containment cell	Stockpiling of impacted soil and debris
16.	GP West; Former GP West SSA, stockpile	Stockpiling of concrete debris
17.	GP West; Former GP West SSA, stockpile	Concrete reduction and sorting
18.	GP West; Former GP West SSA, containment cell	Cleanup of containment cell during demobilization
19.	GP West; Former GP West SSA, weight scale	Material management
20.	GP West; Former GP West SSA, weight scale	Material management
21.	GP West; Log pond area, shoreline	Removal of shoreline debris
22.	GP West; Log pond area, shoreline	Removal of shoreline debris
23.	GP West; Log pond area, aerial	Dredging
24.	GP West; Log pond area, shoreline	Capping of shoreline
25.	GP West; Log pond area, shoreline	Capping of shoreline


No.	Photographed Area	Construction Activity
26.	GP West; Log pond area, aerial	Capping of shoreline
27.	GP West; Log pond area	Water quality monitoring operations
28.	GP West; cap material stockpile	Stockpiling of imported cap materials
29.	Inner Waterway; ECWW	Dredging along Central Waterfront bulkhead
30.	Inner Waterway; ECWW	Silt curtain deployment
31.	Inner Waterway; aerial	Dredging in Inner Waterway
32.	Inner Waterway; WCWW	Dredging in Inner Waterway
33.	Inner Waterway; WCWW	Capping in Inner Waterway
34.	Inner Waterway	Water quality monitoring operations
35.	BST Area from Log Pond Area	Dredging in BST area
36.	BST Area	Capping in BST area
37.	Dredge sediment transload facility	Unloading dredge sediment from barge
38.	Dredge sediment transload facility	Loading railcars with dredge sediment
39.	Central Waterfront; MSB	Demolition of barge ramp
40.	Central Waterfront; MSB	Backfill of barge ramp area
41.	Central Waterfront; WCWW	Sheetpile wall installation
42.	Central Waterfront; Chevron Pier	Demolition and removal of the former Chevron Pier
43.	Central Waterfront; WCWW	Post-demolition of the former Chevron Pier
44.	Central Waterfront; WCWW	WCWW relief excavation for dredging
45.	Central Waterfront; WCWW	Backfill of WCWW after dredging and capping
46.	Central Waterfront; MSB fender system	MSB fender system construction
47.	Central Waterfront; WCWW	WCWW concrete pilecap construction
48.	Central Waterfront; WCWW, monopile dolphins	Monopile dolphin installation
49.	Central Waterfront; WCWW, monopile dolphins	Monopile dolphin installation
50.	Central Waterfront; WCWW	WCWW concrete pilecap construction

Photograph 1: South shoreline before removal of shoreline debris and structures. Facing west.

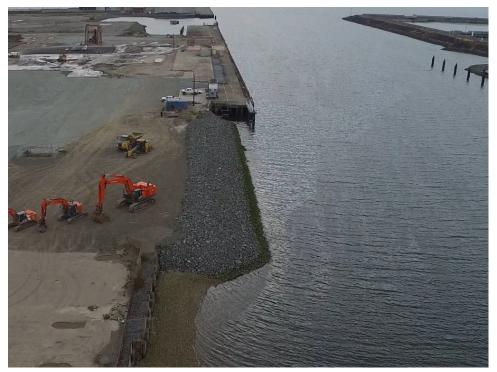
Photograph 2: South shoreline after demolition of the clarifier and before removal of the timber bulkhead. Facing southwest.

Photograph 3: South shoreline during removal of the steel sheetpile bulkhead. Facing west.

Photograph 4: South shoreline during removal of the steel sheetpile bulkhead. Facing east.

Photograph 5: South shoreline following removal of the steel sheetpile bulkhead and timber bulkhead. Facing east.

Photograph 6: South shoreline during capping. Facing east.


Photograph 7: South shoreline during capping of former clarifier area. Facing west.

Photograph 8: South shoreline during capping. Facing east.

Photograph 9: South shoreline after capping. Facing east.

Photograph 10: South shoreline after capping. Facing west.

Photograph 11: Foam tank area before removal of shoreline debris and structures. Facing west.

Photograph 12: Foam tank area stormwater conveyance replacement. Facing east.

Photograph 13: Foam tank area during capping. Facing east.

Photograph 14: Former GP West SSA containment cell during mobilization. Facing southwest.

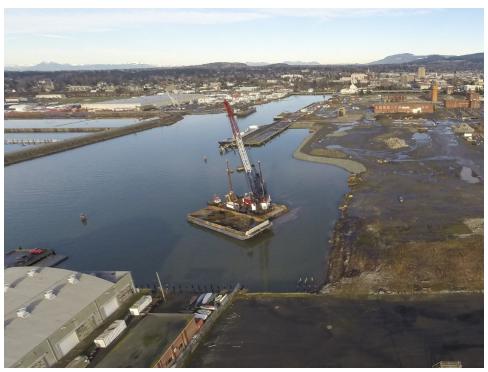
Photograph 15: Former GP West SSA containment cell during construction. Facing southeast.

Photograph 16: Former GP West SSA stockpile of concrete debris from Central Waterfront work areas. Facing south.

Photograph 17: Former GP West SSA concrete reduction and sorting. Facing south.

Photograph 18: Former GP West SSA containment cell after cleanup during demobilization. Facing north.

Photograph 19: Temporary weight scale at the Former GP West SSA. Facing south.


Photograph 20: Temporary weight scale at the Former GP West SSA. Facing southeast.

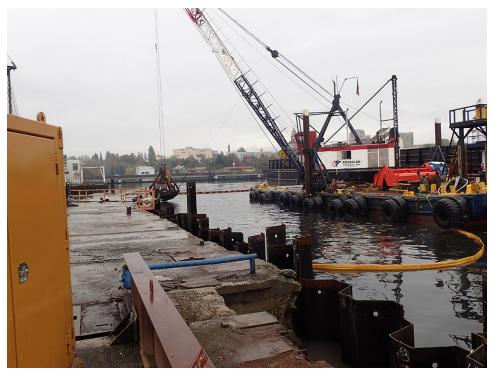
Photograph 21: Log Pond Area shoreline debris removal. Facing east.

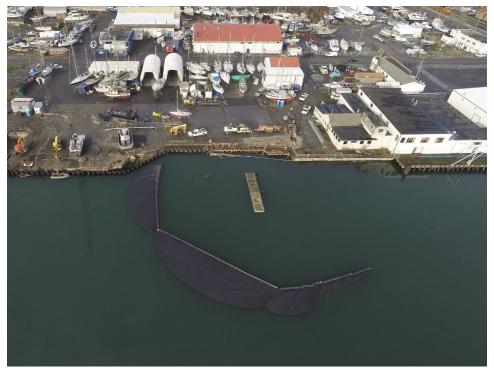
Photograph 22: Log Pond Area dolphin and piling removal. Facing northeast.

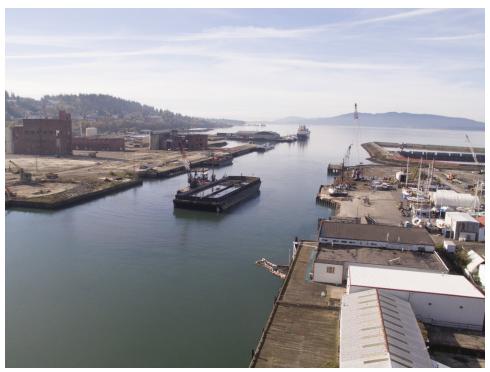
Photograph 23: Log Pond Area dredging operations. Facing east.

Photograph 24: Log Pond Area shoreline capping. Facing northeast.

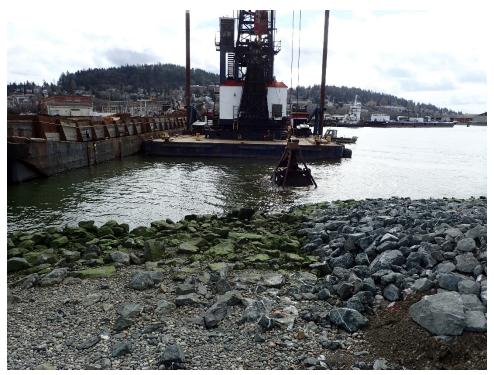
Photograph 25: Log Pond Area shoreline capping. Facing northeast.


Photograph 26: Log Pond Area shoreline after capping. Facing east.

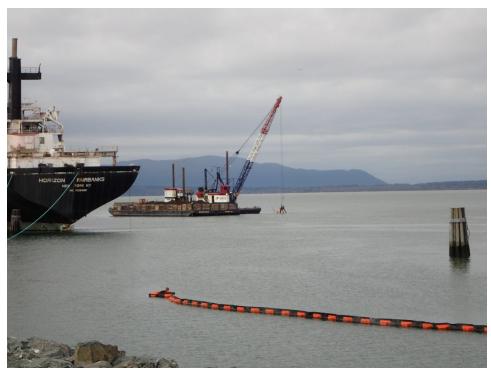

Photograph 27: Log Pond Area water quality monitoring operations. Facing north.


Photograph 28: Cap material stockpiling area on the GP West site. Facing north.

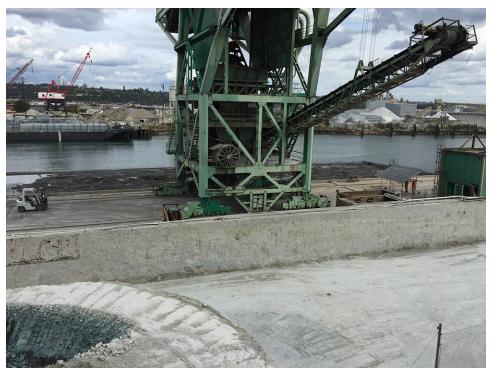
Photograph 29: Inner Waterway dredging operations; debris booms deployed. Facing east.


Photograph 30: Inner Waterway silt curtain deployment. Facing south.


Photograph 31: Inner Waterway dredging operations. Facing west.


Photograph 32: Inner Waterway dredging operations. Facing south.

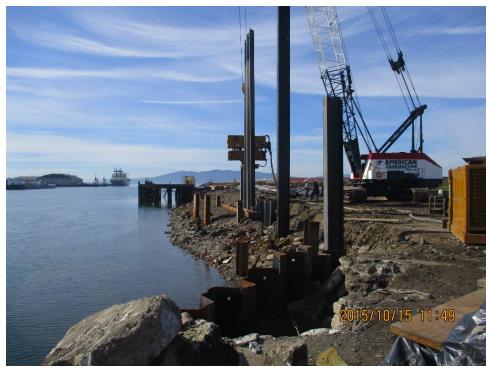
Photograph 33: Inner Waterway capping operations. Facing southwest.


Photograph 34: Inner Waterway water quality monitoring operations. Facing northeast.

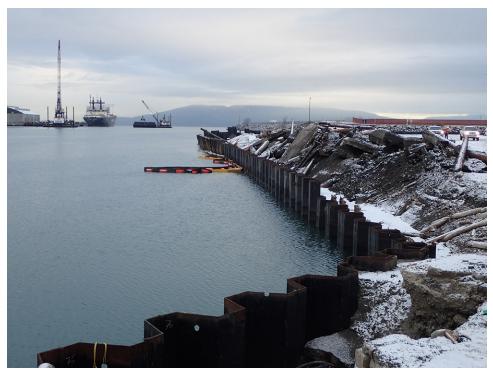
Photograph 35: BST Area dredging operations. Facing northwest.

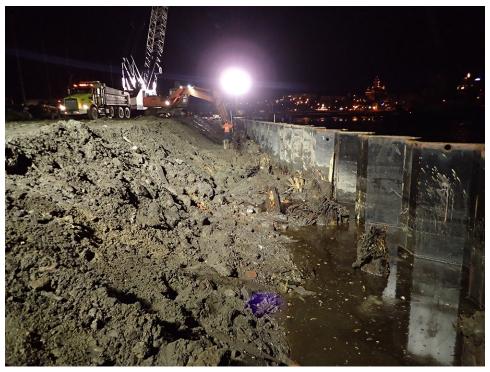
Photograph 36: BST capping operations. Facing northeast.

Photograph 37: Dredge sediment barge unloading operations. Facing east.


Photograph 38: Dredge sediment railcar loading operations. Facing north.

Photograph 39: Central Waterfront barge ramp demolition at the Maple Street Bulkhead. Facing south.


Photograph 40: Central Waterfront backfilled barge ramp at the Maple Street Bulkhead. Facing south.


Photograph 41: Central Waterfront sheetpile installation: West Central Waterfront Wall. Facing west.

Photograph 42: Central Waterfront demolition of Former Chevron Pier area. Facing west.

Photograph 43: Central Waterfront: Post-demolition of the former Chevron Pier. Facing west.

Photograph 44: Central Waterfront: Relief excavation prior to dredging along WCWW. Facing east.


Photograph 45: Central Waterfront: WCWW backfilled after dredging and capping. Facing east.

Photograph 46: Central Waterfront: MSB with fender system. Facing west.

Photograph 47: Central Waterfront: WCWW concrete pilecap construction. Facing west.

Photograph 48: Central Waterfront: WCWW concrete pilecap. Facing west.

Photograph 49: Central Waterfront: Monopile dolphin construction. Facing west.

Photograph 50: Central Waterfront: Monopile dolphin construction. Facing west.