Port of Bellingham Harris Avenue Shipyard RI/FS

April 17, 2019

Site Location

Bellingham, Washington

Cleanup Process

- The Model Toxics Control Act (MTCA) is Washington's environmental cleanup law.
 - **Direction**: MTCA directs the investigation, cleanup, and prevention of sites that are contaminated by hazardous substances.
 - **Protection:** It works to protect people's health and the environment and to preserve natural resources for the future.
 - **Funding:** Matching grant funding may be available for eligible parties. The Port of Bellingham is eligible for up to 50%.

Site Background

- Site is about 10 acres in size: 5 acres of uplands, 5 acres of aquatic land
- Property ownership is a combination of State and Port-owned land
- More than 100 years of industrial activities including fish processing facilities, ship building, and ship repair
- Current site use: shipyard

Current Site Use

Used for dry docking and support services

Vessel maintenance and repair activities

Cleanup Management

March 2010—Ecology and the Port entered into an Agreed Order (No. 7342) for site-wide cleanup of upland and sediment

July 2016—Amended the Agreed Order to include implementation of an

Interim Action

May 2017 to November 2018— Interim Action conducted

- **December 2018**—Public Review Draft RI/FS submitted to Ecology
- **April 2019**—Public Comment Period for the Public Review Draft RI/FS

Interim Action

- Completed between May 2017 and November 2018
 - Excavated ~1,200 CY of contaminated soil
 - Dredged ~9,900 CY of contaminated subtidal and intertidal sediment
 - Demolished Carpenter Building and wooden portion of Harris Avenue Pier
 - Removed approximately 540 treated timber piles
 - Constructed new concrete pier with steel piling and installed new utilities

RI/FS Goals

- Identify and evaluate cleanup options that protect human health and the environment
- Identify the alternative that achieves cleanup goals to the maximum extent practicable
- Confirm the cost of the cleanup is not disproportionate to the benefit it provides
- Allow for shipyard operations to continue throughout design and construction of the cleanup

Remedial Investigation Process

- By collecting samples and analyzing them in the lab, determine the types, concentration, and extents of chemicals in soil, groundwater and sediment
- Determine all the possible ways people, plants, and animals can be exposed to the chemicals
- **Identify the Contaminants** of Concern (COCs) and associated Cleanup Levels (CULS)
- Determine areas that require cleanup

Contaminants of Concern

SOIL

- Metals
 - o Arsenic
 - o Copper
 - o Zinc
- Total Petroleum Hydrocarbons
 - o TPH

GROUNDWATER

- Metals
 - o Arsenic
 - Copper
 - o Zinc
- Total Petroleum Hydrocarbons
 - o TPH
 - o 1-Methylnaphthalene

SEDIMENT

- Metals
 - Arsenic
 - o Cadmium
 - Copper
 - o Zinc
- Semivolatile Organic Compounds
 - o Fluoranthene
 - o Pyrene
 - Polycyclic Aromatic Hydrocarbons
- Polychlorinated Biphenyls
 - Total PCBs

Exposure Pathways and Receptors

Surface Water

Protected Exposure Point:

- **Human Seafood** Consumption
- Aquatic Life Direct Contact/Ingestion

- Worker Direct Contact
- **Ecological Species Direct** Contact/Ingestion

Aquatic Life Seafood Consumption

Contaminant Transport Pathway

Extent of Contaminated Soil

- RIFS identified three Areas of Concern (AOCs) in soil
- AOCs are based on the contaminants present

AOC 2A:

Arsenic

AOC 2B:

- Arsenic
- Copper
- o Zinc

AOC 3:

- o Arsenic
- o TPH

Extent of Contaminated Groundwater

- Groundwater compliance measured at the shoreline wells
 - Arsenic
 - Copper
 - o Zinc
 - o TPH
 - o 1-Methylnaphthalene

Extent of Contaminated Sediment

- Sediment area divided into 11 Sediment Management Units (SMUs)
- SMU delineation based on:
 - Extent of the Completed Interim Action
 - Intertidal vs. subtidal zones
 - Overwater structures and operational areas

Feasibility Study Process

- Develop site-wide cleanup alternatives that comply with MTCA and SMS regulation.
- Determine the relative benefits for each alternative based on MTCA and SMS criteria.
- Estimate the cost to implement each alternative including construction, agency oversight, and long-term maintenance.
- Identify a preferred remedy that is the most practicable permanent solution.

Criteria for Disproportionate Cost Analysis

Upland Alternatives Evaluated

- Alternative 1: Containment—\$4.1 million
 - Excavate 6 inches of contaminated soil across the site and replace with a gravel cap
 - Leave existing buildings and pavement in place as a cap
 - Alternative 2: Partial Removal and Containment—\$5.9 million
 - Excavate 2 feet of contaminated soil and place gravel cap or excavate 1 foot of contaminated soil and place asphalt cap (with stormwater collection)
 - Remove deeper contaminated soil in limited hotspot areas
 - Leave existing buildings and pavement in place as a cap
- Alternative 3: Full Removal—\$12.6 million
 - Full removal of all contaminated soil (approx. 2–8 feet bgs) including demolition and rebuilding of all structures within the remediation area

PREFERRED

0.2

Alt 1

Alt 2

Alt 3

Sediment Alternatives Evaluated

- Alternative 1: Capping—\$18.9 million
 - Place granular (sand) cap

PREFERRED

 Dredge as necessary in intertidal areas to maintain existing mudline

Alternative 2: Dredging & Capping— \$22.2 million

- Dredge to cleanup levels in open water areas
- If necessary, place a 6-inch layer
 of sand for Enhanced Natural Recovery
- Place granular cap in SMUs with overwater/inwater structures
- Alternative 3: Full Dredging—\$35.1 million
 - Full removal of contaminated sediment including demolition and rebuilding of all structures within remediation area

Preferred Alternative

Next Steps

Timeframe	Task
Spring 2019	Finalize RI/FS following public comment
Fall 2019-Spring 2020	Prepare Cleanup Action Plan Public
2020	 Amend Agreed Order Comment Comment Comment
2021	 Prepare Engineering Design Report Prepare Construction Documents Acquire Permits
2022–2023	Develop Consent DecreeRemedial Action Construction

How to Comment

Comment Period: April 1 – 30, 2019

Go online: www.bit.ly/Ecology-HarrisAveShipyard-Comments

www.bit.ly/Ecology-HarrisAveShipyard

Use comment card on sign-in table

Mail to:

John Guenther, Site Manager 913 Squalicum Way, Unit 101 Bellingham, WA 98225

Questions?

