

Final Feasibility Study Report Kaiser Trentwood Facility Spokane Valley, Washington

Volume II Appendices A - I

Prepared for Kaiser Aluminum Washington, LLC

May 2012 2644-125

VOLUME I

ES.1 INTRODUCTION	ES-1
ES.1.1 Purpose	ES-2
ES.2 RECOMMENDED TECHNOLOGY-BASED REMEDIATION ALTERNATIVES	ES-3
ES.2.1 Near-Surface Soil ES.2.2 Deep Vadose Zone Soil ES.2.3 Petroleum Hydrocarbon Plumes and Associated Smear Zone Soil ES.2.4 Remelt/Hot Line PCB Plume and Associated Smear Zone Soil	ES-3 ES-4 ES-5 ES-7
ES.3 AREA-BASED REMEDIATION ALTERNATIVES FOR THE KAISER FACILITY	ES-9
ES.3.1 Most Appropriate Remedial Alternatives for the Oil House Area ES.3.2 Most Appropriate Remedial Alternatives for the Wastewater	ES-10
Treatment Area ES.3.3 Most Appropriate Remedial Alternatives for the ORB Area ES.3.4 Most Appropriate Remedial Alternatives for the Remelt/Hot Line	ES-11 ES-12
Area ES.3.5 Most Appropriate Remedial Alternatives for Other AOCs at the Kaiser Facility	ES-13 ES-15
ES.3.6 Estimated Cost of the Recommended Alternatives	ES-17
1.0 INTRODUCTION	1-1
1.1 PURPOSE	1-2
1.2 REPORT ORGANIZATION	1-3
1.3 LIMITATIONS	1-5
2.0 REMEDIATION ALTERNATIVES FOR NEAR-SURFACE SOIL	2-1
2.0.1 Development of Cleanup Standards for the Kaiser Facility	2-2

Page

2.1 DESCRIPTION OF REMEDIAL ALTERNATIVES FOR NEAR-SURFACE SOIL	2-4
2.1.1 Alternative A1: Institutional Controls, Monitoring, and Monitored Natural Attenuation	2-5
2.1.2 Alternative A2: Institutional Controls, Monitoring, Monitored Natural Attenuation, and Containment	2-17
2.1.3 Alternative A3: Alternative A2 Plus Soil Vapor Extraction with Off-Gas Treatment	2-27
2.1.4 Alternative A4: Alternative A1 or A2 Plus Excavation and Off-Site Disposal	2-36
2.1.5 Alternatives A5a and A5b: Alternative A1 or A2 Plus Excavation and On-Site Treatment (Biotreatment or Thermal Treatment)	2-42
2.1.6 Alternative A6: Alternative A1 or A2 Plus Excavation and Off-Site Incineration	2-47
2.2 EVALUATION OF REMEDIAL ALTERNATIVES FOR NEAR-SURFACE SOIL	2-50
2.2.1 Description of the Evaluation Criteria	2-51
2.2.2 Remedial Action Objectives for Near-Surface Soil	2-57
2.2.3 Evaluation of Remedial Alternative A1: Institutional Controls,	
Monitoring, and Monitored Natural Attenuation	2-60
2.2.4 Evaluation of Remedial Alternative A2: Institutional Controls,	
Monitoring, Monitored Natural Attenuation, and Containment	2-63
2.2.5 Evaluation of Remedial Alternative A3: Institutional Controls,	
Monitoring, Monitored Natural Attenuation, Containment, and SVE	2-71
2.2.6 Evaluation of Alternative A4: Institutional Controls, Monitoring,	
Monitored Natural Attenuation, Excavation, and Off-Site Disposal	2-76
2.2.7 Evaluation of Alternative A5: Alternative A1 or A2 Plus Excavation	/
and On-Site Treatment (Biotreatment or Thermal Treatment)	2-81
2.2.8 Evaluation of Remedial Alternative A6: Institutional Controls,	
Incineration	2-87
2.3 COMPARATIVE ANALYSIS OF ALTERNATIVES FOR NEAR-SURFACE	
SOIL	2-93
2.3.1 The Disproportionate Cost Analysis Procedure	2-94
2.3.2 Comparative Analysis of Alternatives Applicable to VOCs	2-95
2.3.3 Comparative Analysis of Alternatives Applicable to SVOCs	2-102
2.3.4 Comparative Analysis for Alternatives Applicable to PCBs	2-111
2.3.5 Comparative Analysis of Alternatives Applicable to Metals	2-120

TABLES

- 2-1 Soil Screening Level and Preliminary Cleanup Level Concentrations
- 2-2 Environmental Upgrades at the Remelt/Hot Line Area Casting Complexes
- 2-3 Summary of Monitoring Requirements for Remedial Alternative A1: Institutional Controls, Monitoring, and MNA
- 2-4 Summary of Monitoring Requirements for Remedial Alternative A2: Institutional Controls, Monitoring, MNA, and Containment
- 2-5 Summary of Monitoring Requirements for Remedial Alternative A3: SVE with Off-Gas Treatment for Near-Surface Soil
- 2-6 Summary of Monitoring Requirements for Remedial Alternative A4: Excavation and Off-Site Disposal
- 2-7 Summary of Monitoring Requirements for Remedial Alternative A5a: Excavation and On-Site Biotreatment
- 2-8 Summary of Monitoring Requirements for Remedial Alternative A5b: Excavation and On-Site Thermal Treatment
- 2-9 Summary of Monitoring Requirements for Remedial Alternative A6: Excavation and Off-Site Incineration
- 2-10 Summary of Detailed Analysis of Alternatives Applicable to VOCs in Near-Surface Soil at the Kaiser Facility
- 2-11 Summary of Detailed Analysis of Alternatives Applicable to SVOCs in Near-Surface Soil at the Kaiser Facility
- 2-12 Summary of Detailed Analysis of Alternatives Applicable to PCBs in Near-Surface Soil at the Kaiser Facility
- 2-13 Summary of Detailed Analysis of Alternatives Applicable to Metals in Near-Surface Soil at the Kaiser Facility

FIGURES

- 2-1 Site Plan and Near-Surface Soil Areas of Interest
- 2-1a DC-1 through DC-8 Casting Pit Location Plan
- 2-2 Protection and Performance Monitoring Well Location Plan
- 2-3 Near-Surface Soil AOCs Potential Capping, Excavation, or Pavement Repair Areas
- 2-4 Near-Surface Soil AOCs Potential Capping, Excavation, or Pavement Repair Areas, Oil Reclamation Building and Surrounding Areas
- 2-5 Near-Surface Soil AOCs Potential Capping, Excavation, or Pavement Repair Areas, Wastewater Treatment/Rail Car Unloading (RCU) Areas
- 2-6 Near-Surface Soil AOCs Potential Capping Areas, Chromium Transfer Line

FIGURES (Continued)

- 2-7 Near-Surface Soil AOCs Potential Capping, Excavation, or Pavement Repair Areas, Tank Farm Kensol Spill Area
- 2-8 Near-Surface Soil AOCs Potential Capping or Excavation Areas, Former South Discharge Ravine
- 2-9 Near-Surface Soil AOCs Potential Capping or Excavation Areas, Former West Discharge Ravine
- 2-10 Near-Surface Soil AOCs Potential Capping or Pavement Repair Areas, Truck Shop Area
- 2-11 Alternative A3 Site Plan for SVE Treatment of VOC-Impacted Near-Surface Soil, ORB and Surrounding Areas
- 2-12 Alternative A3 Site Plan for SVE Treatment of VOC-Impacted Near-Surface Soil, 20,000-Gallon Leaded Gasoline UST Excavation
- 2-13 Alternative A3 Typical Soil Vapor Extraction Process Flow Diagram
- 2-14 Alternative A3 SVE Treatment Train Sampling Location Plan
- 2-15 Alternative A5a On-Site Biotreatment Layout
- 2-16 Alternative A5a Typical Landfarm Design
- 2-17 Alternative A5b On-Site Thermal Treatment Layout
- 2-18 Alternative A5b Process Flow Diagram for Thermal Desorption
- 2-19 Alternative A6 Process Flow Diagram for Incineration

3.0 REMEDIATION ALTERNATIVES FOR DEEP VADOSE ZONE SOIL 3-1

3.1 DESCRIPTION OF REMEDIAL ALTERNATIVES FOR DEEP VADOSE ZONE SOIL

3.1.1 Alternative B1: Institutional Controls, Monitoring, and Monitored	
Natural Attenuation	3-4
3.1.2 Alternative B2: Institutional Controls, Monitoring, Monitored Natural	
Attenuation, and Containment	3-5
3.1.3 Alternative B3: Alternative B2 Plus Soil Vapor Extraction with Off-Gas	
Treatment	3-8
3.1.4 Alternative B4: Alternative B2 Plus In Situ Treatment	3-16
3.1.5 Alternative B5: Containment of Non-Comingled PCB AOCs	3-23
3.2 EVALUATION OF REMEDIAL ALTERNATIVES FOR DEEP VADOSE	
ZONE SOIL	3-24
3.2.1 Remedial Action Objectives for Deep Vadose Zone Soil	3-24

3-3

3.2.2 Evaluation of Remedial Alternative B1: Institutional Controls, Monitoring. and MNA	3-25
3.2.3 Evaluation of Remedial Alternative B2: Institutional Controls.	
Monitoring, MNA, and Containment	3-29
3.2.4 Evaluation of Alternative B3: Institutional Controls, Monitoring,	
Monitored Natural Attenuation, Containment, and SVE	3-37
3.2.5 Evaluation of Alternative B4: Alternative B2 Plus In Situ Treatment (Chemical Ovidation)	3-12
326 Evaluation of Remedial Alternative R5: Containment of Non-Comingled	J-42
PCB AOCs	3-49
3.3 COMPARATIVE ANALYSIS OF ALTERNATIVES FOR DEEP VADOSE	
ZONE SOIL	3-55
3.3.1 Comparative Analysis of Alternatives Applicable to VOCs	3-56
3.3.2 Comparative Analysis of Alternatives Applicable to SVOCs	3-63
3.3.3 Comparative Analysis for Alternatives Applicable to Non-Comingled	
PCBs	3-69
3.3.4 Comparative Analysis of Alternatives Applicable to Metals	3-70

TABLES

- 3-1 Summary of Monitoring Requirements for Remedial Alternative B4: In Situ Treatment
- 3-2 Summary of Detailed Analysis of Alternatives Applicable to VOCs in Deep Vadose Zone Soil at the Kaiser Facility
- 3-3 Summary of Detailed Analysis of Alternatives Applicable to SVOCs in Deep Vadose Zone Soil at the Kaiser Facility
- 3-4 Summary of Detailed Analysis of Alternatives Applicable to Metals in Deep Vadose Zone Soil at the Kaiser Facility

FIGURES

- 3-1 Alternative B2 Potential Capping or Pavement Repair Areas
- 3-2 Alternative B2 Potential Capping or Pavement Repair Areas, Hoffman Tank and Wastewater Treatment/Rail Car Unloading (RCU) Areas
- 3-3 Alternative B2 Potential Capping or Pavement Repair Areas, Tank Farm Kensol Spill Area
- 3-4 Alternative B2 Potential Capping or Pavement Repair Areas, Oil House Tank Area
- 3-5 Alternative B2- Potential Capping or Pavement Repair Areas, Truck Shop Area
- 3-6 Alternative B3 Site Plan for SVE Treatment, Tank Farm Kensol Spill Area
- 3-7 Alternative B3 Site Plan for SVE Treatment, Oil House Drum Storage and French Drain Area

Page

FIGURES (Continued)

- 3-8 Alternative B4 Potential In Situ Treatment Areas Deep Vadose Zone Soil AOCs
- 3-9 Alternative B4 Process Flow Diagram for Ozonation
- 3-10 Alternative B4 Injection/Extraction Well Location Plan, Man-Made Depressions
- 3-11 Alternative B4 Injection/Extraction Well Location Plan, Rail Car Unloading (RCU) Area
- 3-12 Alternative B4 Injection/Extraction Well Location Plan, Oil House Tank Area
- 3-13 Alternative B4 Injection/Extraction Well Location Plan, Tank Farm Kensol Spill Area
- 3-14 Alternative B4 Injection/Extraction Well Location Plan, Eight USTs Excavation
- 3-15 Alternative B4 Injection/Extraction Well Location Plan, Oil House Drum Storage and French Drain Area
- 3-16 Alternative B4 Injection/Extraction Well Location Plan, Hoffman Tank Excavation
- 3-17 Alternative B4 Injection/Extraction Well Location Plan, Remelt/Hot Line Area

4.0 REMEDIATION ALTERNATIVES FOR PETROLEUM HYDROCARBON GROUNDWATER PLUMES AND ASSOCIATED SMEAR ZONE SOIL	4-1
4.0.1 Development of Cleanup Standards for the Kaiser Facility	4-4
4.1 DESCRIPTION OF REMEDIAL ALTERNATIVES FOR PETROLEUM HYDROCARBON GROUNDWATER PLUMES AND ASSOCIATED SMEAR ZONE SOIL	4-5
4.1.1 Alternative C1: Institutional Controls, Monitoring, Monitored Natural Attenuation, and Groundwater IRM System Operation 4.1.2 Alternative C2: Institutional Controls, Monitoring, MNA, Containment,	4-6
and Expanded FPP Recovery	4-18
<i>4.1.3 Alternative C3: Alternative C2 Plus In Situ Treatment</i> <i>4.1.4 Alternative C4: Alternative C2 Plus Groundwater Extraction with</i>	4-26
Ex Situ Treatment	4-43
4.2 EVALUATION OF REMEDIAL ALTERNATIVES FOR PETROLEUM HYDROCARBON GROUNDWATER PLUMES AND ASSOCIATED SMEAR ZONE SOIL	1-53
4.2.1 Remedial Action Objectives for Smear Zone Soil and Petroleum	-55
Hydrocarbon Groundwater Plumes	4-53
4.2.2 Evaluation of Remedial Alternative C1: Institutional Controls, Monitoring, MNA, and Groundwater IRM System Operation	4-55
4.2.3 Evaluation of Remedial Alternative C2: Institutional Controls, Monitoring, MNA, Containment, and Expanded FPP Recovery	4-71

CONTENTS (Continued)	<u>Page</u>
4.2.4 Evaluation of Remedial Alternative C3: Alternative C2 Plus In Situ	1-84
4.2.5 Evaluation of Remedial Alternative C4: Alternative C2 Plus Groundwater Extraction with Ex Situ Treatment	4-93
4.3 COMPARATIVE ANALYSIS OF ALTERNATIVES FOR PETROLEUM HYDROCARBON GROUNDWATER PLUMES AND ASSOCIATED SMEAR	4 1 0 2
4.3.1 Comparative Analysis of Alternatives Applicable to SVOCs and to	4-103
PCBs Comingled with SVOCs	4-104

4.3.2 Comparative Analysis of Alternatives Applicable to Metals 4-120

TABLES

- 4-1 Groundwater Screening Level and Preliminary Cleanup Level Concentrations
- 4-2 Revised Estimated SVOC Groundwater Concentrations in Petroleum Hydrocarbon Plumes
- 4-3 Groundwater IRM System Components and Operation Status
- 4-4 Summary of Monitoring Requirements for Remedial Alternative C1: Institutional Controls, Monitoring, and MNA
- 4-5 Summary of Monitoring Requirements for Remedial Alternative C2: Institutional Controls, Monitoring, MNA, and Containment
- 4-6 FPP Volumes Based on 2009 Groundwater Data
- 4-7 Alternative C3 Estimated Mass Removal
- 4-8 Summary of Monitoring Requirements for Remedial Alternative C3: In Situ Treatment
- 4-9 Alternative C4 Estimated Extraction Flow Rates and Initial Concentrations for Petroleum Hydrocarbon Groundwater Plumes
- 4-10 Physical and Chemical Screening of *Ex Situ* Groundwater Treatment Technologies for the Petroleum Hydrocarbon Groundwater Plumes
- 4-11 Implementability of *Ex Situ* Groundwater Treatment Technologies for the Petroleum Hydrocarbon Groundwater Plumes (Extended Aeration Basin)
- 4-12 Implementability of *Ex Situ* Groundwater Treatment Technologies for the Petroleum Hydrocarbon Groundwater Plumes (Sequential Batch Reactors [SBRs])
- 4-13 Implementability of *Ex Situ* Groundwater Treatment Technologies for the Petroleum Hydrocarbon Groundwater Plumes (Trickling Filter)
- 4-14 Implementability of *Ex Situ* Groundwater Treatment Technologies for the Petroleum Hydrocarbon Groundwater Plumes (Rotating Biological Contactors [RBCs])
- 4-15 Implementability of *Ex Situ* Groundwater Treatment Technologies for the Petroleum Hydrocarbon Groundwater Plumes (Fixed Bed Reactors)
- 4-16 Implementability of *Ex Situ* Groundwater Treatment Technologies for the Petroleum Hydrocarbon Groundwater Plumes (Fluidized Bed Reactors [FBRs])

- 4-17 Implementability of *Ex Situ* Groundwater Treatment Technologies for the Petroleum Hydrocarbon Groundwater Plumes (Chemical Oxidation)
- 4-18 Implementability of *Ex Situ* Groundwater Treatment Technologies for the Petroleum Hydrocarbon Groundwater Plumes (Carbon Adsorption)
- 4-19 Implementability of *Ex Situ* Groundwater Treatment Technologies for the Petroleum Hydrocarbon Groundwater Plumes (Sedimentation Tanks)
- 4-20 Implementability of *Ex Situ* Groundwater Treatment Technologies for the Petroleum Hydrocarbon Groundwater Plumes (Depth Filtration)
- 4-21 Implementability of *Ex Situ* Groundwater Treatment Technologies for the Petroleum Hydrocarbon Groundwater Plumes (Surface Filtration)
- 4-22 Reliability of *Ex Situ* Groundwater Treatment Technologies for the Petroleum Hydrocarbon Groundwater Plumes (Sequential Batch Reactors [SBRs])
- 4-23 Reliability of *Ex Situ* Groundwater Treatment Technologies for the Petroleum Hydrocarbon Groundwater Plumes (Trickling Filter)
- 4-24 Reliability of *Ex Situ* Groundwater Treatment Technologies for the Petroleum Hydrocarbon Groundwater Plumes (Rotating Biological Contactors [RBCs])
- 4-25 Reliability of *Ex Situ* Groundwater Treatment Technologies for the Petroleum Hydrocarbon Groundwater Plumes (Fixed Bed Reactors)
- 4-26 Reliability of *Ex Situ* Groundwater Treatment Technologies for the Petroleum Hydrocarbon Groundwater Plumes (Fluidized Bed Reactors)
- 4-27 Reliability of *Ex Situ* Groundwater Treatment Technologies for the Petroleum Hydrocarbon Groundwater Plumes (Chemical Oxidation)
- 4-28 Reliability of *Ex Situ* Groundwater Treatment Technologies for the Petroleum Hydrocarbon Groundwater Plumes (Carbon Adsorption)
- 4-29 Reliability of *Ex Situ* Groundwater Treatment Technologies for the Petroleum Hydrocarbon Groundwater Plumes (Sedimentation Tanks)
- 4-30 Reliability of *Ex Situ* Groundwater Treatment Technologies for the Petroleum Hydrocarbon Groundwater Plumes (Depth Filtration)
- 4-31 Reliability of *Ex Situ* Groundwater Treatment Technologies for the Petroleum Hydrocarbon Groundwater Plumes (Surface Filtration)
- 4-32 Summary of *Ex Situ* Groundwater Treatment Technologies for the Petroleum Hydrocarbon Groundwater Plumes
- 4-33 Design Criteria and Equipment Information for the *Ex Situ* Treatment System
- 4-34 Summary of Monitoring Requirements for Remedial Alternative C4: Groundwater Extraction with *Ex Situ* Treatment for Petroleum Hydrocarbon Groundwater Plumes
- 4-35 Summary of Detailed Analysis of Alternatives Applicable to SVOCs in Petroleum Hydrocarbon Groundwater Plumes at the Kaiser Facility
- 4-36 Summary of Detailed Analysis of Alternatives Applicable to SVOCs in Smear Zone Soil at the Kaiser Facility

FIGURES

- 4-1 Site Plan Groundwater IRM System, Petroleum Hydrocarbon Plumes, Free Phase Petroleum, and Smear Zone Soil AOCs
- 4-2 Diesel/Heavy Oil and Free Phase Petroleum in Groundwater and SVOC Smear Zone Soil, West Area
- 4-3 Diesel/Heavy Oil and Free Phase Petroleum in Groundwater and SVOC Smear Zone Soil, East Area
- 4-4 Total PCB Concentrations Associated with Petroleum Hydrocarbons in Groundwater, West Area – Most Recently Measured
- 4-5 Total PCB Concentrations Associated with Petroleum Hydrocarbons in Groundwater, East Area – Most Recently Measured
- 4-6 Existing and Proposed FPP Recovery Location Plan, West Area
- 4-7 Existing and Proposed FPP Recovery Location Plan, East Area
- 4-8 Alternative C2 Proposed Groundwater Extraction Well Location Plan for Scenarios C2b and C2c, West Area
- 4-9 Alternative C2 Proposed Groundwater Extraction Well Location Plan for Scenarios C2b and C2c, East Area
- 4-10 Alternative C3 Typical *In Situ* Treatment Configuration for Petroleum Groundwater Plume and Associated Smear Zone Soil AOCs
- 4-11 Alternative C3 In Situ Bioremediation Injection Well Location Plan, West Area
- 4-12 Alternative C3 In Situ Bioremediation Injection Well Location Plan, East Area
- 4-13 Alternative C4 Proposed Groundwater Extraction Well Location Plan, West Area
- 4-14 Alternative C4 Proposed Groundwater Extraction Well Location Plan, East Area
- 4-15 Alternative C4 *Ex Situ* Treatment System Process Flow Diagram

5.0 REMEDIATION ALTERNATIVES FOR THE REMELT/HOT LINE GROUNDWATER PLUME AND ASSOCIATED SMEAR ZONE SOIL	5-1
5.0.1 Development of Cleanup Standards for the Kaiser Facility	5-2
5.1 DESCRIPTION OF REMEDIAL ALTERNATIVES FOR THE REMELT/HOT LINE GROUNDWATER PLUME AND ASSOCIATED SMEAR ZONE SOIL	5-4
5.1.1 Characteristics of PCBs in the Remelt/Hot Line Groundwater Plume 5.1.2 Recent Footprint of the Remelt/Hot Line Groundwater Plume –	5-5
Shallow Groundwater	5-7
5.1.3 Groundwater Quality of the Deeper Aquifer 5.1.4 Alternative D1: Institutional Controls, Monitoring, and Monitored Natural Attenuation (MNA)	5-14 5-15
Natural Attendation (IMAA)	5-15

CONTENTS (Continued)	<u>Page</u>
5.1.5 Alternative D2: Alternative D1 Plus Containment	5-18
Ex Situ Treatment	5-28
5.1.7 Alternative D4: Alternative D1 Plus Groundwater Extraction with Ex Situ Treatment	5-44
5.2 EVALUATION OF REMEDIAL ALTERNATIVES FOR THE REMELT/HOT LINE PCB PLUME AND ASSOCIATED SMEAR ZONE SOIL	5-50
5.2.1 Remedial Action Objectives for the Remelt/Hot Line PCB Plume and Associated Smear Zone Soil 5.2.2 Evaluation of Remedial Alternative D1: Institutional Controls	5-50
Monitoring, and MNA	5-52
5.2.3 Evaluation of Remedial Alternative D2: Alternative D1 Plus Containment	5-64
5.2.4 Evaluation of Remedial Alternative D3: Alternative D2 Plus Groundwater Extraction with Ex Situ Treatment	5-83
5.2.5 Evaluation of Remedial Alternative D4: Alternative D1 Plus Ex Situ Groundwater Extraction with Ex Situ Treatment	5-96
5.3 COMPARATIVE ANALYSIS OF ALTERNATIVES FOR THE REMELT/ HOT LINE PCB PLUME AND ASSOCIATED SMEAR ZONE SOIL	5-110
5.3.1 Comparative Analysis of Alternatives Applicable to PCBs	5-111

TABLES

5-1	PCB Results for	Groundwater near	Leading Edge	of PCB Plume
-----	-----------------	------------------	--------------	--------------

- 5-2 Statistical Summary for Groundwater Samples near Leading Edge of PCB Plume
- 5-3 PCB Analytical Results for Deep Groundwater
- 5-4 Estimated PCB Mass Removal for the Remelt/Hot Line Plume
- 5-5 Summary of Monitoring Requirements for Remedial Alternative D2: Institutional Controls, Monitoring, MNA, and Containment
- 5-6 Alternative D3 *Ex Situ* Treatment System for the Remelt/Hot Line Plume per 500 gpm
- 5-7 Summary of Monitoring Requirements for Remedial Alternative D3: Groundwater Extraction with *Ex Situ* Treatment for the Remelt/Hot Line PCB Plume
- 5-8 Alternative D4 *Ex Situ* Treatment System Summary
- 5-9 Summary of Detailed Analysis of Alternatives Applicable to PCBs in the Remelt/Hot Line Groundwater Plume and Associated Smear Zone Soils at the Kaiser Facility

FIGURES

5-1	Site Plan – Remelt/Hot Line Area PCB Groundwater Plume and Associated Smear Zone AOC	Soil
5-2	April 2009 Groundwater Elevation and PCB Concentration Contour Map	
5-3	October 2009 Groundwater Elevation and PCB Concentration Contour Map	
5-4	April 2010 Groundwater Elevation and PCB Concentration Contour Map	
5-5	Pump House River Gage Elevation Data, January 2002 – June 2010	
5-6	Alternatives D2 and D3 – Proposed Groundwater Extraction Well and <i>Ex Situ</i> Treatment System Locations, Remelt/Hot Line Groundwater Plume	
5-7	Alternative D3 – Proposed <i>Ex Situ</i> Treatment Process Flow Diagram, Remelt/Hot Line Groundwater Plume	
6.0	PROPOSED REMEDIATION ALTERNATIVES FOR THE KAISER FACILITY	6-1
6.1	SUMMARY OF THE MOST APPROPRIATE TECHNOLOGY-BASED REMEDIATION ALTERNATIVES SELECTED IN SECTIONS 2 THROUGH 5	6-2
6.1.	1 Near-Surface Soil	6-2
6.1.	2 Deep Vadose Zone Soil	6-4
6.1. 6.1.	3 Petroleum Hydrocarbon Plumes and Associated Smear Zone Soil 4 Remelt/Hot Line PCB Plume and Associated Smear Zone Soil	6-5 6-8
6.2	PROCESS USED TO ASSEMBLE TECHNOLOGY-BASED REMEDIATION ALTERNATIVES INTO ALTERNATIVES APPROPRIATE FOR EACH AREA OF THE KAISER FACILITY	6-11
6.2		
0.3	FACILITY	6-12
6.3. 6.3.	1 Most Appropriate Remedial Alternatives for the Oil House Area 2 Most Appropriate Remedial Alternatives for the Wastewater Treatment	6-12
	Area	6-14
6.3.	3 Most Appropriate Remedial Alternatives for the ORB Area	6-15
6.3. 6.3.	<i>4 Most Appropriate Remedial Alternatives for the Remelt/Hot Line Area</i> 5 Most Appropriate Remedial Alternatives for Other AOCs of the Kaiser	6-16
	Facility	6-17
6.4	ROM COST OF THE PREFERRED REMEDIATION ALTERNATIVES FOR THE KAISER FACILITY	6-20

6.5 EVALUATION OF THE PREFERRED AREA-BASED REMEDIATION ALTERNATIVES SELECTED FOR THE KAISER FACILITY 6-22

6.5.1	Threshold	Criteria	
	-	_	

6.5.2 Other Requirements

TABLES

- 6-1 Summary of Selected Technology-Based Remedial Alternatives
- 6-2 Index of Text, Tables, and Figures for Near-Surface Soil AOCs
- 6-3 Index of Text, Tables, and Figures for Deep Vadose Zone Soil AOCs
- 6-4 Index of Text, Tables, and Figures for the Petroleum Hydrocarbon Plumes and Associated Smear Zone Soil
- 6-5 Index of Text, Tables, and Figures for the Remelt/Hot Line PCB Plume and Associated Smear Zone Soil
- 6-6 Identification of the Technology-Based Remediation Alternatives Judged to be Appropriate for Operating Areas of the Facility
- 6-7 ROM (-30/+50%) Cost Estimate for the Recommended Remediation Alternatives for the Kaiser Facility

FIGURES

- 6-1 Oil House Area: Proposed Containment Surfaces
- 6-2 Oil House Area: Groundwater Plumes and Associated Smear Zone Soil Extent
- 6-3 Wastewater Treatment/Rail Car Unloading (RCU) Areas: Proposed Excavation Areas and Containment Surfaces
- 6-4 Wastewater Treatment Area: Groundwater Plumes and Associated Smear Zone Soil Extent
- 6-5 Oil Reclamation Building Area: Proposed Excavation Areas and Containment Surfaces
- 6-6 Oil Reclamation Building Area: Groundwater Plume and Associated Smear Zone Soil Extent
- 6-7 Remelt/Hot Line Area: Proposed Containment Surfaces
- 6-8 Remelt/Hot Line Area: Groundwater Plume and Associated Smear Zone Soil Extent
- 6-9 Cold Mill/Finishing Area: Proposed Containment Surfaces
- 6-10 Cold/Mill Finishing Area: Groundwater Plume and Associated Smear Zone Soil Extent
- 6-11 Truck Shop Area: Proposed Containment Surfaces
- 6-12 Former South Discharge Ravine Area: Proposed Excavation Areas
- 6-13 Former West Discharge Ravine Area: Proposed Excavation Areas and Containment Surfaces

7.0 REFERENCES

Page xii

<u>Page</u>

6-23

6-37

VOLUME II

APPENDIX A COST ESTIMATES FOR NEAR-SURFACE SOIL REMEDIAL ALTERNATIVES

TABLES

- A-1 Estimated Cost Comparison for Near-Surface Soil Remedial Alternatives
- A-2 Alternative A1 Estimated Cost Summary
- A-3 Alternative A2 Estimated Cost Summary
- A-4 Alternative A3 Estimated Cost Summary
- A-5 Alternative A4a Estimated Cost Summary
- A-6 Alternative A4b Estimated Cost Summary
- A-7 Alternative A5a Estimated Cost Summary
- A-8 Alternative A5b Estimated Cost Summary
- A-9 Alternative A6 Estimated Cost Summary
- A-10 Monitoring Cost Backup
- A-11 Institutional Controls Cost Backup
- A-12 Professional Services Cost Backup
- A-13 Containment Cost Backup
- A-14 SVE Periodic Cost Backup
- A-15 SVE Treatment System Annual Operation and Maintenance Cost Backup
- A-16 SVE Well Installation and Well Abandonment Cost Backup
- A-17 Vapor Extraction and Treatment System Installation Cost Backup
- A-18 SVE Monitoring Cost Backup
- A-19 Excavation and Screening Cost Backup
- A-20 On-Site Biotreatment Cost Backup
- A-21 On-Site Thermal Treatment Cost Backup
- A-22 Hart Crowser and Analytical Rates Cost Backup

APPENDIX B COST ESTIMATES FOR DEEP VADOSE ZONE SOIL REMEDIAL ALTERNATIVES

TABLES

- B-1 Estimated Cost Comparison for Deep Vadose Zone Soil Remedial Alternatives
- B-2 Alternative B1 Estimated Cost Summary
- B-3 Alternative B2 Estimated Cost Summary
- B-4 Alternative B3 Estimated Cost Summary
- B-5 Alternative B4 Estimated Cost Summary

TABLES (Continued)

- B-6 Alternative B5 Estimated Cost Summary
- B-7 Monitoring Cost Backup
- B-8 Institutional Controls Cost Backup
- B-9 Professional Services Cost Backup
- B-10 Containment Cost Backup
- B-11 SVE Periodic Cost Backup
- B-12 SVE Treatment System Annual Operation and Maintenance Cost Backup
- B-13 SVE Well Installation and Well Abandonment Cost Backup
- B-14 Vapor Extraction and Treatment System Installation Cost Backup
- B-15 SVE Monitoring Cost Backup
- B-16 In Situ Treatment Cost Backup
- B-17 Hart Crowser and Analytical Rates Cost Backup

APPENDIX C COST ESTIMATES FOR PETROLEUM HY

COST ESTIMATES FOR PETROLEUM HYDROCARBON GROUNDWATER PLUME AND ASSOCIATED SMEAR ZONE SOIL REMEDIAL ALTERNATIVES

TABLES

- C-1 Estimated Cost Comparison for Petroleum Hydrocarbon Groundwater Plume and Smear Zone Soil Remedial Alternatives
- C-2 Alternative C1 Estimated Cost Summary
- C-3 Alternative C2 Estimated Cost Summary Scenario C2a
- C-4 Alternative C2 Estimated Cost Summary Scenario C2b
- C-5 Alternative C2 Estimated Cost Summary Scenario C2c
- C-6 Alternative C3 Estimated Cost Summary
- C-7 Alternative C4 Estimated Cost Summary
- C-8 Monitoring Cost Backup
- C-9 Institutional Controls Cost Backup
- C-10 Professional Services Cost Backup
- C-11 Containment Cost Backup
- C-12 Skimming System Capital and Annual Operation and Maintenance Cost Backup
- C-13 Skimming Periodic Cost Backup
- C-14 In Situ Treatment Cost Backup
- C-15 Ex Situ Treatment Cost Backup
- C-16 Hart Crowser and Analytical Rates Cost Backup
- C-17 Weighted Average of Estimated Restoration Time Frames

APPENDIX D COST ESTIMATES FOR THE REMELT/HOT LINE GROUNDWATER PLUME AND ASSOCIATED SMEAR ZONE SOIL REMEDIAL ALTERNATIVES

TABLES

- D-1 Estimated Cost Comparison for Remelt/Hot Line PCB Plume and Associated Smear Zone Soil Remedial Alternatives
- D-2 Alternative D1 Estimated Cost Summary
- D-3 Alternative D2 Estimated Cost Summary Scenario D2a
- D-4 Alternative D2 Estimated Cost Summary Scenario D2b
- D-5 Alternative D3 Estimated Cost Summary
- D-6 Alternative D4 Estimated Cost Summary
- D-7 Monitoring Cost Backup
- D-8 Institutional Controls Cost Backup
- D-9 Professional Services Cost Backup
- D-10 Containment Cost Backup
- D-11 Ex Situ Treatment Cost Backup
- D-12 Ex Situ Treatment Cost Backup
- D-13 Hart Crowser and Analytical Rates Cost Backup

APPENDIX E GROUNDWATER MODELING AND PCB ATTENUATION ANALYSIS

E.1 PURPOSE AND SCOPE	E-1
E.2 GROUNDWATER MODELING	E-1
E.2.1 Model Construction E2.2 Calibration and Verification	E-1 E-4
E.3 CAPTURE ZONE ANALYSIS	E-7
E.4 REMEDIAL ALTERNATIVE SCENARIO EVALUATIONS	E-8
E.5 GROUNDWATER FLUX AND FLUSH RATES	E-13
E.6 RESTORATION TIME FRAME – REMELT/HOT LINE PCB PLUME	E-15

E.7 PCB GROUNDWATER ATTENUATION FACTOR	E-18
E.8 REFERENCES FOR APPENDIX E	E-21

E.8 REFERENCES FOR APPENDIX E

TABLES

- E-1 Historical Groundwater Extraction Rates
- E-2 Summary of Calibration Statistics
- F-3 Petroleum Hydrocarbon Scenario Pumping and Infiltration Rates
- F-4 PCB Scenario Pumping and Infiltration Rates
- E-5 Calculated Groundwater Flux and Volume of Contaminant Plumes
- E-6 Scenario Travel Time Estimates from Particle Tracking
- E-7 Summary of Total PCBs Concentrations - Remelt Plume
- E-8 **Results of Regression Analysis**
- E-9 Predicated PCB concentrations at the River from RM-MW-17S Source Area
- E-10 Predicated PCB Concentrations at the River from Injection Sources

FIGURES

- E-1 Regional Model Grid
- **F-**2 Local Model Grid
- E-3 Cross Section A-A'
- E-4 Cross Section B-B'
- E-5 Capture Zone by Reverse Particle Tracking - Alternative C1: Existing IRM
- E-6 Capture Zone by Forward Particle Tracking - Alternative C1: Existing IRM
- E-7 Capture Zone by Reverse Particle Tracking - Alternative C2 Scenario C2a: Enhanced IRM
- E-8 Capture Zone by Forward Particle Tracking - Alternative C2 Scenario C2a: Enhanced IRM
- F-9 Capture Zone by Reverse Particle Tracking - Alternative C2 Scenario C2b: Existing IRM with ORB Containment
- E-10 Capture Zone by Forward Particle Tracking - Alternative C2 Scenario C2b: Existing IRM with ORB Containment
- E-11 Capture Zone by Forward Particle Tracking - Alternative C2 Scenario C2c: Plume Specific Hydraulic Containment
- E-12 Capture Zone by Forward Particle Tracking - Alternative C4: Pump and Treat
- E-13 Capture Zone by Forward Particle Tracking - Alternative D2a Leading Edge PCB Plume Containment
- E-14 Capture Zone by Forward Particle Tracking - Alternative D2b: PCB Plume Containment
- E-15 Capture Zone by Forward Particle Tracking - Alternative D3: PCB Plume Containment with Remelt Injection

FIGURES (Continued)

- E-16 Capture Zone by Forward Particle Tracking Alternative D4: PCB Plume Containment
- E-17 Capture Zone by Forward Particle Tracking Preferred System Containment
- E-18 PCB Concentrations along the Centerline of the Remelt Plume
- E-19 Regression Analysis of Mean PCB Concentrations Remelt Plume
- E-20 Expotentional Regression Best Fit Curve Centerline Remelt Plume.

APPENDIX F NATURAL ATTENUATION AT THE KAISER FACILITY

F.1 INTRODUCTION	F-1
F.2 NATURAL ATTENUATION OF PETROLEUM AT THE KAISER FACILITY	F-1
F.2.1 What Is the Status of the Petroleum Groundwater Plume at the Site?	F-2
F.2.2 Are Chemical or Biological Degradation Substantial Mechanisms for	
Natural Attenuation of Petroleum at the Site?	F-5
F.2.3 What Is the Estimated Restoration Time Frame?	F-7
F.2.4 Will the Use of Natural Attenuation Be Protective of Human Health and	
the Environment During the Estimated Restoration Time Frame?	F-7
F.2.5 Has Source Control Been Conducted to the Maximum Extent	
Practicable?	F-8
F.3 NATURAL ATTENUATION OF PCBS AND PCBS COMINGLED WITH	
PETROLEUM	F-9
F.3.1 Biodegradation of PCBs in the Environment	F-10
F.3.2 Aerobic Biodegradation of PCBs in the Environment	F-11
F.3.3 Anaerobic Biodegradation of PCBs in the Environment	F-12
F.3.4 Biodegradation in the Oil House and Wastewater Treatment Areas	F-13
F.3.5 Biodegradation/Chemical Degradation in the Remelt Groundwater	
Plume	F-14
F.4 REFERENCES FOR APPENDIX F	F-16

FIGURES

- F-1 Dissolved Oxygen Concentrations in Groundwater Most Recently Measured
- F-2 Oxidation-Reduction Potential in Groundwater Most Recently Measured
- F-3 Iron Concentrations in Groundwater Most Recently Measured
- F-4 Manganese Concentrations in Groundwater Most Recently Measured
- F-5 Arsenic Concentrations in Groundwater Most Recently Measured

APPENDIX G IDENTIFICATION OF POTENTIAL APPLICABLE OR RELEVANT AND APPROPRIATE REQUIREMENTS

G.1 CONTAMINANT-SPECIFIC ARARS	G-1
G.1.1 Constituents of Concern and Screening Levels for Soil	G-2
G.1.2 Constituents of Concern and Screening Levels for Groundwater	G-4
G.1.3 Preliminary Cleanup Levels Established by Ecology	G-6
G.2 ACTION-SPECIFIC REQUIREMENTS	G-8
G.2.1 Soil Requirements	G-9
G.2.2 Groundwater Requirements	G-9
G.2.3 Surface Water Requirements	G-11
G.2.4 Water Rights	G-12
G.2.5 Air Requirements	G-12
G.2.6 Waste Management Requirements	G-12
G.2.7 Other Requirements	G-14
G.3 LOCATION-SPECIFIC REQUIREMENTS	G-14
G.4 REFERENCES FOR APPENDIX G	G-16

TABLES

- G-1 Soil Screening Level ConcentrationsG-2 Groundwater Screening Level ConcentrationsG-3 Potential Action-Specific ARARs for the Kaiser Facility
- G-4 Potential Location-Specific ARARs for the Kaiser Facility

APPENDIX H TECHNOLOGY EVALUATION FOR FREE PHASE PRODUCT REMOVAL H.1 DESCRIPTION OF THE CURRENT FPP PLUMES 1 H.2 FPP RECOVERY TECHNOLOGIES 2

H.2.1 Belt Skimmers2H.2.2 Dual-Phase Vacuum Extraction (DVE)3H.2.3 Water Table Depression4H.2.4 Oil/Water Separation6H.3 REFERENCES FOR APPENDIX H7

APPENDIX I RESTORATION TIME FRAME MEMORANDA

SOLUBILITY OF PCBS AND COMINGLED PCB RESTORATION TIME FRAME MEMO

PCB RESTORATION TIME FRAME EVALUATION MEMO

PETROLEUM HYDROCARBON AREAS OF CONCERN MEMO

ACRONYMS AND ABBREVIATIONS

AOC	area of concern
ARAR	applicable or relevant and appropriate requirement
ATSDR	Agency for Toxic Substances and Disease Registry
BACT	best available control technology
BCY	bank cubic yards
bgs	below ground surface
BMP	best management practice
CAP	Cleanup Action Plan
CCPL	Continuous Can Process Line
COC	constituent of concern
COPC	constituent of potential concern
cPAH	carcinogenic polycyclic aromatic hydrocarbon
CQAP	Construction Quality Assurance Plan
CUL	cleanup level
CWA	Clean Water Act
CY	cubic yards
DCA	disproportionate cost analysis
DW	dangerous waste
FCT	Field-Constructed Tanks
FPP	free phase product
FS	feasibility study
FSTM	Feasibility Study Technical Memorandum
GAC	granular activated carbon
gpd	gallons per day
gpm	gallons per minute
HASP	Health and Safety Plan
HDPE	high-density polyethylene
HHERA	Final Human Health and Ecological Risk Assessments
HMA	hot-mix asphalt
IRM	interim remedial measure
LCY	loose cubic yards
LF	linear feet
LNAPL	light non-aqueous phase liquid
MCL	maximum contaminant limit
MGD	million gallons per day
mg/L	milligrams per liter
mmHg	millimeters of mercury
MNA	monitored natural attenuation
MTCA	Model Toxics Control Act
ng/L	nanograms per liter

NPV	net present value
NTU	nephelometric turbidity unit
O&M	operation and maintenance
ORB	Oil Reclamation Building
PAC	powdered activated carbon
РСВ	polychlorinated biphenyl
PCUL	preliminary cleanup level
PFD	process flow diagram
POC	point of compliance
PPE	personal protective equipment
psig	pounds per square inch, gauge
RAO	remedial action objective
RBSL	risk-based screening level
RCRA	Resource Conservation and Recovery Act
RCU	Former Rail Car Unloading area
RI	remedial investigation
SAP	Sampling and Analysis Plan
SBR	sequencing batch reactor
scfm	standard cubic feet per minute
SDR	South Discharge Ravine
SDWA	Safe Drinking Water Act
SL	screening level
SPCC Plan	Spill Prevention Control and Countermeasure Plan
sq ft	square feet
SRCAA	Spokane Regional Clean Air Agency
SVE	soil vapor extraction
SVOC	semivolatile organic compound
SWPPP	Stormwater Pollution Prevention Plan
TAP	toxic air pollutant
TCLP	toxicity characteristic leaching procedure
TMDL	total maximum daily load
TSCA	Toxic Substances Control Act
TSS	total suspended solids
UIC	Underground Injection Control (Program)
UV	ultraviolet
VOC	volatile organic compound
WDR	West Discharge Ravine
WWTP	Wastewater Treatment Plant
μm	micrometer (micron)

L:\Jobs\2644125\Final FS 05-2012_Cover_Signature_TOC pages\Combined TOC Volume II.doc

APPENDIX A COST ESTIMATES FOR NEAR-SURFACE SOIL REMEDIAL ALTERNATIVES

CONTENTS

APPENDIX A COST ESTIMATES FOR NEAR-SURFACE SOIL REMEDIAL ALTERNATIVES

TABLES

- A-1 Estimated Cost Comparison for Near-Surface Soil Remedial Alternatives
- A-2 Alternative A1 Estimated Cost Summary
- A-3 Alternative A2 Estimated Cost Summary
- A-4 Alternative A3 Estimated Cost Summary
- A-5 Alternative A4a Estimated Cost Summary
- A-6 Alternative A4b Estimated Cost Summary
- A-7 Alternative A5a Estimated Cost Summary
- A-8 Alternative A5b Estimated Cost Summary
- A-9 Alternative A6 Estimated Cost Summary
- A-10 Monitoring Cost Backup
- A-11 Institutional Controls Cost Backup
- A-12 Professional Services Cost Backup
- A-13 Containment Cost Backup
- A-14 SVE Periodic Cost Backup
- A-15 SVE Treatment System Annual Operation and Maintenance Cost Backup
- A-16 SVE Well Installation and Well Abandonment Cost Backup
- A-17 Vapor Extraction and Treatment System Installation Cost Backup
- A-18 SVE Monitoring Cost Backup
- A-19 Excavation and Screening Cost Backup
- A-20 On-Site Biotreatment Cost Backup
- A-21 On-Site Thermal Treatment Cost Backup
- A-22 Hart Crowser and Analytical Rates Cost Backup

L:\Jobs\2644125\Final FS 05-2012\03 Appendices\Appendix A\Appendix A TOC.doc

Table A-1 - Estimated Cost Comparison for Near-Surface Soil Remedial Alternatives

Location:	Kaiser Trentwo	ood Facility	/	Description: Cost comparison of the net present value and incremental cost of						
	Spokane Valle	y, WA		Alternative A1 through A6 for remediation of						
Phase:	Feasibility Stud	dy (-35% to	o +50%)	nea	il-Sullace Soll.					
Base Year:	2010									
Date:	July 2011									
DES	CRIPTION	NE	TOTAL T PRESENT VALUE	II	NCREMENTAL COST	COST TABLE REFERENCE				
Alternative A	1	\$	13,600,000		Baseline Cost	Table A-2				
Alternative A	2	\$	15,800,000	\$	2,200,000	Table A-3				
Alternative A	3	\$	16,300,000	\$	500,000	Table A-4				
Alternative A	4a	\$	18,700,000	\$	5,100,000	Table A-5				
Alternative A	4b	\$	20,900,000	\$	5,100,000	Table A-6				
Alternative A	5a (with A1)	\$	19,100,000	\$	5,500,000	Table A-7				
Alternative A	5a (with A2)	\$	21,400,000	\$	5,600,000	Table A-7				
Alternative A	5b (with A1)	\$	19,900,000	\$	6,300,000	Table A-8				
Alternative A	5b (with A2)	\$	22,200,000	\$	6,400,000	Table A-8				
Alternative A	6 (with A1)	\$	39,000,000	\$	25,400,000	Table A-9				
Alternative A	6 (with A2)	\$	41,300,000	\$	25,500,000	Table A-9				

Note:

Present value analysis uses a 30-year discount rate of 7%.

Table A-2 - Alternative A1 Estimated Cost Summary

Feasibility Study (-35% to +50%)

Location: Kaiser Trentwood Facility Spokane Valley, WA

Phase:

Description: Alternative A1 consists of institutional controls, monitoring, and monitored natural attenuation (MNA) and is common to all of the alternatives that will be evaluated for the remediation of near-surface soil at the Kaiser Facility. Alternative A1 assumes an operating period of 30 years in the development of this cost estimate.

Base Year: 2010							
Date: July 2011							
	OUANTITY	UNIT				τοτλι	NOTES
DESCRIPTION	QUANTIT	UNIT	01	11 0031		TOTAL	NOTES
Institutional Controls							
Institutional control plans	1	EA	\$	46,548	\$	46,548	See Table A-11.
Pending upgrades in casting complex	1	LS	\$	1,076,073	\$	1,076,073	See Table A-11.
Restrictive covenant preparation	1	LS	\$	24,970	\$	24,970	See Table A-11.
Institutional Controls Subtotal					\$	1,147,591	
Contingency	10%				\$	114,759	Scope and bid contingency. Percentage of institutional controls
Professional/Technical Services							
Project management	6%				\$	75,741	Percentage of capital cost + contingency. EPA 540-R-00-002.
Ecology oversight	1	YR	\$	22,000	\$	22,000	Year 0. Kaiser mean annual Ecology costs 2007-2009.
Professional/Technical Services Subtotal					\$	97,741	
TOTAL CAPITAL COST					\$	1,360,091	
ANNUAL O&M COSTS							
DESCRIPTION	QUANTITY	UNIT	U	NIT COST		TOTAL	NOTES
Monitoring, Sampling, Testing, and Analysis							
Protection monitoring	1	YR	\$	44,683	\$	44,683	See Table A-10.
Data management	1		¢ 2	223,417	ф ¢	223,417	HC estimate Data validation: maintain database
Monitoring, Sampling, Testing, and Analysis Su	ibtotal		Ψ	23,340	\$	298.048	no estimate. Data validation, maintain database.
inomionig, camping, roomig, and rualyoic co					•	200,010	
Institutional Controls (Annual Update and Main	tenance)						
Institutional control plans	1	YR	\$	30,018	\$	30,018	See Table A-11.
Institutional controls maintenance	1	YR	\$	259,604	\$	259,604	See Table A-11.
Outfall & treatment plant monitoring	1	YR	\$	101,946	\$	101,946	See Table A-11. Required by NPDES permit and Ecology orders
Site information database	4	VD	¢	E 740	¢	E 740	(see Section 2.1.1.1).
Site information database	1	ĨŔ	Þ	5,743	\$	5,743	See Table A-11.
Institutional Controls Subtotal					φ	397,311	
Contingency	10%				\$	69.536	Scope and bid contingency. Percentage of monitoring and
					•	,	institutional controls annual cost.
Professional/Technical Services							
Project management	10%				\$	76,489	Percentage of annual + contingency costs. EPA 540-R-00-002.
Feelegy everyight	10%		¢		\$	76,489	EPA 540-R-00-002.
Reporting	1		¢ 2	22,000	¢ ¢	22,000	Report to Kaiser & Ecology quarterly: EIM reporting
Professional/Technical Services Subtotal			Ψ	10,102	ŝ	191 161	Report to Raiser & Ecology quarterly, Elivi reporting.
					Ŷ	101,101	
TOTAL ANNUAL O&M COST					\$	956,055	
PERIODIC COSTS	OUANTITY					TOTAL	NOTES
DESCRIPTION	QUANTITY	UNIT	U	VII COST		TOTAL	NOTES
Monitoring, Sampling, Testing, and Analysis							
MNA performance monitoring	1	LS	\$	19,257	\$	19,257	Years 5, 10, 15, 20, 25, 30. See Table A-12.
Data management	1	LS	\$	4,500	\$	4,500	Years 5, 10, 15, 20, 25, 30. See Table A-12.
Monitoring, Sampling, Testing, and Analysis Su	ıbtotal				\$	23,757	
Institutional Controls (Periodic Update and Main	ntenance)		•	0.470	•	0.470	
Resulctive covenants	1	LA	¢ ¢	6,470	¢	6,470 45.000	Tears 0, 10, 15, 20, 25, 30. See Table A-11.
Final acute and chronic toxicity testing	1	1.5	¢ \$	45,000	¢ ¢	43,000	Years 5, 10, 15, 20, 25, 30, See Table A-11
Institutional Controls Subtotal	•		¥	,040	\$	66.410	
					ŕ	,	
Contingency	10%				\$	9,017	Scope and bid contingency. Percentage of periodic costs.
Professional/Technical Services	4	F •	~	0 770	c	A 774	
Five-year reviews	1	EA	\$	9,770	\$ ¢	9,770	Tears 5, 10, 15, 20, 25, 30. See Table A-12.
Closure report	1	LS FA	ф Ф	7,000 41 180	¢ Ø	7,000 ⊿1 180	Tears 5, 10, 15, 20, 25, 50. See Table A-12. Year 30 See Table A-12
Professional/Technical Services Subtotal		L A	Ψ	-1,100	\$	57.950	
					Ŧ	01,000	

Sheet 1 of 2

Table A-2 - Alternative A1 Estimated Cost Summary

										-			
Location:	Kaiser Trentwood	l Faci	ility	D th	escription: Alternetives the	rnative A1 consist at will be evaluated	s of I for	institutional con the remediatio	trols, monitoring, and monitored natural attenuation (MNA) and is common to all of n of near-surface soil at the Kaiser Facility. Alternative A1 assumes an operating				
	Spokane Valley,	WA		р	period of 30 years in the development of this cost estimate.								
Phase:	Feasibility Study	(-35%	6 to +50%)										
Base Year:	2010												
Date:	July 2011												
PRESENT VA	ALUE ANALYSIS												
Discount rate Total years	7.0% 30												
COST TYPE	YEAR		TOTAL COST		TOTAL COST PER YEAR	DISCOUNT FACTOR	NE	T PRESENT VALUE	NOTES				
Capital	0	\$	1,405,091	9	1,405,091	1.000	\$	1,405,091					
Annual O&M	1 - 30	\$	28,681,662	9	956,055	12.409	\$	11,863,731					
Periodic	5	\$	115,954	9	115,954	0.713	\$	82,673					
Periodic	10	\$	115,954	9	115,954	0.508	\$	58,945					
Periodic	15	\$	115,954	9	115,954	0.362	\$	42,027					
Periodic	20	\$	115,954	9	115,954	0.258	\$	29,965					
Periodic	25	\$	115,954	9	115,954	0.184	\$	21,364					
Periodic	30	\$	107,634	9	5 107,634	0.131	\$	14,140					
		\$	30,774,155				\$	13,517,936					
TOTAL NET	PRESENT VALUE	OF	ALTERNATIV	/E	A1		\$	13,517,936					

Notes: Costs taken from RSMeans have been adjusted by Spokane location adjustment factor of 0.93. Costs from previous work greater than 1 year old have been adjusted using historical cost index factors provided by 2010 RSMeans (p. 671). Present value analysis uses a 30-year discount rate of 7.0%.

Sheet 2 of 2

Table A-3 - Alternative A2 Estimated Cost Summary

Location: Kaiser Trentwood Facility

Description: Alternative A2 includes the elements of Alternative A1 plus containment. The containment options considered in Alternative A2 include capping using asphalt, concrete, or multi-layer caps.

	Spokane Valley, WA			controlete	.,,			
Phase:	Feasibility Study (-35% to +50%)							
Base Year:	2010							
Date:	Luly 2011							
Dute.	00ly 2011							
CAPITAL CO	DSTS DESCRIPTION	QUANTITY	UNIT	UN	IIT COST		TOTAL	NOTES
Cap Installar Permits	tion	1	LS	\$	40,000	\$	40,000	Previous project experience. SEPA checklist; designated
Asphalt cap	p installation	5,741	SY	\$	43	\$	248,276	See Table A-13.
Concrete c	ap installation	1,013	SY	\$	80	\$	81,195	See Table A-13.
Hoffman Ta	cap installation ank area cap extension	2,434	SY	\$ \$	66 149	\$ \$	159,501 29,408	See Table A-13. Extension of existing multi-laver cap. See Table A-13.
Cap Installa	tion Subtotal			•		\$	558,381	
Contingenc	у	15%				\$	83,757	Scope and bid contingency. Percentage of cap installation costs.
Professiona Project ma	I/Technical Services nagement	6%				\$	38,528	Percentage of sum of capital cost and contingency. EPA 540-R-00-002. Includes reports referenced in WAC 173-340- 400(6)(b)
Remedial d	lesign	12%				\$	77,057	EPA 540-R-00-002.
Constructio	on management	8%				\$	51,371	EPA 540-R-00-002. Includes reports referenced in WAC 173-340-
Ecology ov Professiona	ersight I/Technical Services Subtotal	10%				\$ \$	2,200 169,156	Assume 10% of Alt. A1 Ecology oversight cost to include cap.
Institutional Institutional	Controls I controls plan	50%				\$	23,274	New institutional controls for containment portion of Alt. A2. Assume 50% of Alt. A1 institutional control plan cost to include
Restrictive	covenants	25%				\$	6,243	cap. Assume 25% of Alt. A1 restrictive covenant preparation cost to include can
Institutional	Controls Subtotal					\$	29,517	
TOTAL CAP	ITAL COST					\$	840,810	
ANNUAL O8	M COSTS							
	DESCRIPTION	QUANTITY	UNIT	UN	пт соѕт		TOTAL	NOTES
Containmen	DESCRIPTION It Operation, Maintenance, and Mor	QUANTITY	UNIT	UN	IIT COST		TOTAL	NOTES
Containmen Cap inspec	DESCRIPTION at Operation, Maintenance, and Mor tion	QUANTITY nitoring 0.4	UNIT WK	UN \$	II T COST 5,375	\$	TOTAL 2,150	NOTES Assume annual inspection, 2 days HC staff at HC rates. See Table A-22.
Containmen Cap inspec Cap sampli Cap mainte	DESCRIPTION at Operation, Maintenance, and Mon tion ing and laboratory analysis anance	QUANTITY nitoring 0.4 1 5%	UNIT WK YR 	UN \$ \$	15,375 15,320 	\$ \$ \$	TOTAL 2,150 15,320 42,041	NOTES Assume annual inspection, 2 days HC staff at HC rates. See Table A-22. See Table A-13. Assume 20 year cap life. Assume 5% of cap to be replaced annually. Use 5% of cap installation total capital cost as maintenance cost
Containmen Cap inspec Cap sampli Cap mainte Data mana Containmen	DESCRIPTION at Operation, Maintenance, and Mon tion ing and laboratory analysis nance gement tt Operation, Maintenance, and Mon	QUANTITY nitoring 0.4 1 5% 1 nitoring Subtotal	UNIT WK YR YR	UN \$ \$	5,375 15,320 3,620	\$ \$ \$ \$	TOTAL 2,150 15,320 42,041 <u>3,620</u> 63,130	NOTES Assume annual inspection, 2 days HC staff at HC rates. See Table A-22. See Table A-13. Assume 20 year cap life. Assume 5% of cap to be replaced annually. Use 5% of cap installation total capital cost as maintenance cost. See Table A-13.
Containmen Cap inspec Cap sampli Cap mainte Data mana Containmen Contingenc	DESCRIPTION at Operation, Maintenance, and Mon tion ing and laboratory analysis enance gement t Operation, Maintenance, and Mon y	QUANTITY nitoring 0.4 1 5% 1 nitoring Subtotal 15%	UNIT WK YR YR	UN \$ \$	5,375 15,320 3,620 	\$ \$ \$ \$ \$	2,150 15,320 42,041 <u>3,620</u> 63,130 9,470	NOTES Assume annual inspection, 2 days HC staff at HC rates. See Table A-22. See Table A-13. Assume 20 year cap life. Assume 5% of cap to be replaced annually. Use 5% of cap installation total capital cost as maintenance cost. See Table A-13. Scope and bid contingency. Percentage of annual operation, maintenance, and monitoring costs.
Containmen Cap inspec Cap sampli Cap mainte Data mana Containmen Contingency	DESCRIPTION at Operation, Maintenance, and Mon tion ing and laboratory analysis anance gement at Operation, Maintenance, and Mon y I/Technical Services	QUANTITY nitoring 0.4 1 5% 1 nitoring Subtotal 15%	UNIT WK YR YR 	UN \$ \$	5,375 -15,320 3,620 	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	TOTAL 2,150 15,320 42,041 <u>3,620</u> 63,130 9,470	NOTES Assume annual inspection, 2 days HC staff at HC rates. See Table A-22. See Table A-13. Assume 20 year cap life. Assume 5% of cap to be replaced annually. Use 5% of cap installation total capital cost as maintenance cost. See Table A-13. Scope and bid contingency. Percentage of annual operation, maintenance, and monitoring costs. Percentage of sum of annual cost and contingency.
Containmen Cap inspec Cap sampli Cap mainte Data mana Containmen Contingency Professiona Professiona	DESCRIPTION at Operation, Maintenance, and Mon- tion ing and laboratory analysis enance gement tt Operation, Maintenance, and Mon y I/Technical Services nagement support	QUANTITY nitoring 0.4 1 5% 1 nitoring Subtotal 15% 10%	UNIT WK YR YR 	UN \$ \$	IT COST 5,375 15,320 3,620 	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$	TOTAL 2,150 15,320 42,041 3,620 63,130 9,470 7,260 7,260	NOTES Assume annual inspection, 2 days HC staff at HC rates. See Table A-22. See Table A-13. Assume 20 year cap life. Assume 5% of cap to be replaced annually. Use 5% of cap installation total capital cost as maintenance cost. See Table A-13. Scope and bid contingency. Percentage of annual operation, maintenance, and monitoring costs. Percentage of sum of annual cost and contingency. EPA 540-R-00-002. EPA 540-R-00-002.
Containmen Cap inspec Cap sampli Cap mainte Data mana Containmen Contingency Professiona Professiona Technical s Ecology ov	DESCRIPTION at Operation, Maintenance, and Mon- tion ing and laboratory analysis enance gement at Operation, Maintenance, and Mon y I/Technical Services nagement support ersight	QUANTITY nitoring 0.4 1 5% 1 nitoring Subtotal 15% 10% 10%	UNIT WK 'R 'YR '' 	UN \$ \$	IT COST 5,375 15,320 3,620 	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	TOTAL 2,150 15,320 42,041 3,620 63,130 9,470 7,260 7,260 2,200	NOTES Assume annual inspection, 2 days HC staff at HC rates. See Table A-22. See Table A-13. Assume 20 year cap life. Assume 5% of cap to be replaced annually. Use 5% of cap installation total capital cost as maintenance cost. See Table A-13. Scope and bid contingency. Percentage of annual operation, maintenance, and monitoring costs. Percentage of sum of annual cost and contingency. EPA 540-R-00-002. EPA 540-R-00-002. Assume 10% of Alt. A1 Ecology oversight cost.
Containmen Cap inspec Cap sampli Cap mainte Data mana Containmen Contingency Professiona Project mai Technical s Ecology ov Reporting Professiona	DESCRIPTION at Operation, Maintenance, and Mon tion ing and laboratory analysis nance gement t Operation, Maintenance, and Mon y I/Technical Services support ersight	QUANTITY nitoring 0.4 1 5% 1 nitoring Subtotal 15% 10% 10% 10% 10% 10% 10% 1	UNIT VR YR YR	UN \$ \$ \$	IT COST 5,375 15,320 3,620 5,820	% % % % % % % % % % % % % % %	TOTAL 2,150 15,320 42,041 3,620 63,130 9,470 7,260 7,260 7,260 2,200 5,820 2,2540	NOTES Assume annual inspection, 2 days HC staff at HC rates. See Table A-22. See Table A-13. Assume 20 year cap life. Assume 5% of cap to be replaced annually. Use 5% of cap installation total capital cost as maintenance cost. See Table A-13. Scope and bid contingency. Percentage of annual operation, maintenance, and monitoring costs. Percentage of sum of annual cost and contingency. EPA 540-R-00-002. EPA 540-R-00-002. Assume 10% of Alt. A1 Ecology oversight cost. See Table A-13.
Containmen Cap inspec Cap sampli Cap mainte Data mana Containmen Contingence Professiona Project mai Technical s Ecology ov Reporting Professiona Institutional	DESCRIPTION at Operation, Maintenance, and Mon at operation, Maintenance, and Mon ing and laboratory analysis mance gement t Operation, Maintenance, and Mon y //Technical Services nagement support ersight //Technical Services Subtotal Controls (Annual Update and Main Locatories Iden	QUANTITY nitoring 0.4 1 5% 1 nitoring Subtotal 15% 10% 10% 10% 10% 10% 10% 10% 10	UNIT WK YR YR YR	UN \$ \$ \$	IT COST 5,375 15,320 3,620 5,820	\$ \$\$ \$ \$ \$\$\$\$\$	TOTAL 2,150 15,320 42,041 3,620 63,130 9,470 7,260 7,260 7,260 2,200 5,820 22,540	NOTES Assume annual inspection, 2 days HC staff at HC rates. See Table A-22. See Table A-13. Assume 20 year cap life. Assume 5% of cap to be replaced annually. Use 5% of cap installation total capital cost as maintenance cost. See Table A-13. Scope and bid contingency. Percentage of annual operation, maintenance, and monitoring costs. Percentage of sum of annual cost and contingency. EPA 540-R-00-002. EPA 540-R-00-002. Assume 10% of Alt. A1 Ecology oversight cost. See Table A-13.
Containmen Cap inspec Cap sampli Cap mainte Data mana Containmen Contingency Professiona Project mai Technical s Ecology ov Reporting Professiona Institutional Institutional	DESCRIPTION at Operation, Maintenance, and Mon ation ing and laboratory analysis mance gement at Operation, Maintenance, and Mon y I/Technical Services nagement support ersight I/Technical Services Subtotal Controls (Annual Update and Mair I controls plan ation database	QUANTITY nitoring 0.4 1 5% 1 nitoring Subtotal 15% 10% 10% 10% 10% 1 1 1 5%	UNIT WK YR -	UN \$ \$	IT COST 5,375 15,320 3,620 5,820 	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	TOTAL 2,150 15,320 42,041 3,620 63,130 9,470 7,260 7,260 7,260 2,200 5,820 22,540 15,009 1,436	NOTES Assume annual inspection, 2 days HC staff at HC rates. See Table A-22. See Table A-13. Assume 20 year cap life. Assume 5% of cap to be replaced annually. Use 5% of cap installation total capital cost as maintenance cost. See Table A-13. Scope and bid contingency. Percentage of annual operation, maintenance, and monitoring costs. Percentage of sum of annual cost and contingency. EPA 540-R-00-002. EPA 540-R-00-002. Assume 10% of Alt. A1 Ecology oversight cost. See Table A-13. Assume 50% of Alt. A1 institutional control plan cost to include cap.
Containmen Cap inspec Cap sampli Cap mainte Data mana Containmen Contingenc; Professiona Project mai Technical s Ecology ov Reporting Professiona Institutional Institutional	DESCRIPTION It Operation, Maintenance, and Mon tion Ing and laboratory analysis anance gement It Operation, Maintenance, and Mon y I/Technical Services nagement support ersight I/Technical Services Subtotal Controls (Annual Update and Main I controls plan ation database	QUANTITY nitoring 0.4 1 5% 1 nitoring Subtotal 15% 10% 10% 10% 1 1 ntenance) 50% 25%	UNIT VK YR YR YR 	UN \$ \$	IT COST 5,375 15,320 3,620 5,820 	\$ \$ \$ \$ \$ \$ \$ \$	TOTAL 2,150 15,320 42,041 3,620 63,130 9,470 7,260 7,260 7,260 7,260 7,260 2,200 5,820 22,540 15,009 1,436	NOTES Assume annual inspection, 2 days HC staff at HC rates. See Table A-22. See Table A-13. Assume 20 year cap life. Assume 5% of cap to be replaced annually. Use 5% of cap installation total capital cost as maintenance cost. See Table A-13. Scope and bid contingency. Percentage of annual operation, maintenance, and monitoring costs. Percentage of sum of annual cost and contingency. EPA 540-R-00-002. EPA 540-R-00-002. Assume 10% of Alt. A1 Ecology oversight cost. See Table A-13.
Containmen Cap inspec Cap sampli Cap mainte Data mana Containmen Contingency Professiona Project mai Technical s Ecology ov Reporting Professiona Institutional Institutional Site informa	DESCRIPTION at Operation, Maintenance, and Mon tion ang and laboratory analysis enance gement at Operation, Maintenance, and Mon y I/Technical Services nagement support ersight I/Technical Services Subtotal Controls (Annual Update and Main controls plan ation database Controls Subtotal	QUANTITY nitoring 0.4 1 5% 1 nitoring Subtotal 15% 10% 10% 10% 10% 1 ntenance) 50% 25%	UNIT VK YR YR YR 	UN \$ \$	IT COST 5,375 15,320 3,620 5,820 	\$ \$\$ \$ \$ \$ \$\$\$\$\$	TOTAL 2,150 15,320 42,041 3,620 63,130 9,470 7,260 7,260 2,200 5,820 22,540 15,009 1,436 16,445	NOTES Assume annual inspection, 2 days HC staff at HC rates. See Table A-22. See Table A-13. Assume 20 year cap life. Assume 5% of cap to be replaced annually. Use 5% of cap installation total capital cost as maintenance cost. See Table A-13. Scope and bid contingency. Percentage of annual operation, maintenance, and monitoring costs. Percentage of sum of annual cost and contingency. EPA 540-R-00-002. EPA 540-R-00-002. Assume 10% of Alt. A1 Ecology oversight cost. See Table A-13.
Containmen Cap inspec Cap sampli Cap mainte Data mana Containmen Contingency Professiona Project mai Technical s Ecology ov Reporting Professiona Institutional Institutional Site inform: Institutional	DESCRIPTION It Operation, Maintenance, and Mon tion ing and laboratory analysis anance gement It Operation, Maintenance, and Mon y I/Technical Services nagement support ersight I/Technical Services Subtotal Controls (Annual Update and Main controls plan ation database Controls Subtotal IUAL O&M COST	QUANTITY nitoring 0.4 1 5% 1 nitoring Subtotal 15% 10% 10% 10% 1 1 1 1 50% 25%	UNIT WK YR YR YR -	UN \$ \$	IT COST 5,375 15,320 3,620 5,820 	\$ \$\$ \$ \$ \$\$ \$\$	TOTAL 2,150 15,320 42,041 3,620 63,130 9,470 7,260 7,260 7,260 7,260 2,200 5,820 22,540 15,009 1,436 16,445 111,584	NOTES Assume annual inspection, 2 days HC staff at HC rates. See Table A-22. See Table A-13. Assume 20 year cap life. Assume 5% of cap to be replaced annually. Use 5% of cap installation total capital cost as maintenance cost. See Table A-13. Scope and bid contingency. Percentage of annual operation, maintenance, and monitoring costs. Percentage of sum of annual cost and contingency. EPA 540-R-00-002. EPA 540-R-00-002. Assume 10% of Alt. A1 Ecology oversight cost. See Table A-13. Assume 50% of Alt. A1 institutional control plan cost to include cap.
Containmen Cap inspec Cap sampli Cap mainte Data mana Containmen Contingency Professiona Project mai Technicals Ecology ov Reporting Professiona Institutional Institutional Site informa Institutional TOTAL ANN PERIODIC C	DESCRIPTION at Operation, Maintenance, and Mon tion ing and laboratory analysis anance gement at Operation, Maintenance, and Mon y I/Technical Services nagement support ersight I/Technical Services Subtotal Controls (Annual Update and Main I controls plan ation database Controls Subtotal UAL 0&M COST COSTS DESCRIPTION	QUANTITY nitoring 0.4 1 5% 1 nitoring Subtotal 15% 10% 10% 1 1 ntenance) 50% 25%	UNIT WK YR YR YR 	UN \$ \$ \$	IT COST	\$\$\$\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	TOTAL 2,150 15,320 42,041 3,620 63,130 9,470 7,260 7,260 2,200 5,820 22,540 15,009 1,436 16,445 111,584 TOTAL	NOTES Assume annual inspection, 2 days HC staff at HC rates. See Table A-22. See Table A-13. Assume 20 year cap life. Assume 5% of cap to be replaced annually. Use 5% of cap installation total capital cost as maintenance cost. See Table A-13. Scope and bid contingency. Percentage of annual operation, maintenance, and monitoring costs. Percentage of sum of annual cost and contingency. EPA 540-R-00-002. EPA 540-R-00-002. Assume 10% of Alt. A1 Ecology oversight cost. See Table A-13. Assume 50% of Alt. A1 institutional control plan cost to include cap. NOTES
Containmen Cap inspec Cap sampli Cap mainte Data mana Containmen Contingency Professiona Project mai Technicals Ecology ov Reporting Professiona Institutional Institutional Site informa Distitutional TOTAL ANN PERIODIC C Professiona	DESCRIPTION t Operation, Maintenance, and Mon tion ing and laboratory analysis anance gement tt Operation, Maintenance, and Mon y //Technical Services nagement support ersight //Technical Services Subtotal Controls (Annual Update and Main ation database Controls Subtotal IUAL O&M COST ::STS DESCRIPTION //Technical Services eviews	QUANTITY nitoring 0.4 1 5% 1 nitoring Subtotal 15% 10% 10% 10% 1 1 solution 25% QUANTITY	UNIT WK YR YR YR -	UN \$ \$ \$ UN \$	IT COST 5,375 15,320 5,820 5,820 	\$ \$\$ \$ \$ \$ \$\$\$\$\$	TOTAL 2,150 15,320 42,041 3,620 63,130 9,470 7,260 7,260 7,260 7,260 7,260 7,260 1,200 5,820 22,540 15,009 1,436 16,445 111,584 TOTAL 19,540	NOTES Assume annual inspection, 2 days HC staff at HC rates. See Table A-22. See Table A-13. Assume 20 year cap life. Assume 5% of cap to be replaced annually. Use 5% of cap installation total capital cost as maintenance cost. See Table A-13. Scope and bid contingency. Percentage of annual operation, maintenance, and monitoring costs. Percentage of sum of annual cost and contingency. EPA 540-R-00-002. EPA 540-R-00-002. Assume 10% of Alt. A1 Ecology oversight cost. See Table A-13. Assume 50% of Alt. A1 institutional control plan cost to include cap. NOTES Years 5, 10, 15, 20, 25, 30. Assume same cost as in Alt. A1. See Table A-12
Containmen Cap inspec Cap sampli Cap mainte Data mana Containmen Contingency Professiona Project mai Technical s Ecology ov Reporting Professiona Institutional Institutional Site informa DTAL ANN PERIODIC C Professiona Five-year r Closure rep	DESCRIPTION t Operation, Maintenance, and Mon tion ing and laboratory analysis mance gement tt Operation, Maintenance, and Mon y I/Technical Services nagement support ersight I/Technical Services Subtotal Controls (Annual Update and Main ation database Controls Subtotal IUAL O&M COST COSTS DESCRIPTION I/Technical Services eviews soot I/Technical Services Subtotal I/Technical Services eviews	QUANTITY nitoring 0.4 1 5% 1 nitoring Subtotal 15% 10% 10% 10% 1 1 ntenance) 50% 25% QUANTITY 1 1	UNIT WK YR -	UN \$ \$ \$ UN \$ \$	IT COST 5,375 15,320 5,820 	* * * * * * * * * * * * * * * * * * *	TOTAL 2,150 15,320 42,041 3,620 63,130 9,470 7,260 7,260 7,260 7,260 7,260 7,260 1,200 5,820 22,540 15,009 1,436 16,445 111,584 TOTAL 19,540 20,590 40,130	NOTES Assume annual inspection, 2 days HC staff at HC rates. See Table A-22. See Table A-13. Assume 20 year cap life. Assume 5% of cap to be replaced annually. Use 5% of cap installation total capital cost as maintenance cost. See Table A-13. Scope and bid contingency. Percentage of annual operation, maintenance, and monitoring costs. Percentage of sum of annual cost and contingency. EPA 540-R-00-002. EPA 540-R-00-002. Assume 10% of Alt. A1 Ecology oversight cost. See Table A-13. Assume 50% of Alt. A1 institutional control plan cost to include cap. NOTES Years 5, 10, 15, 20, 25, 30. Assume same cost as in Alt. A1. See Table A-12. Year 30. See Table A-12.

Table A-3 - Alternative A2 Estimated Cost Summary

Location:	Kaiser Trentwo	od Fac	ility	Desc A2 in	cription: Alter	mative A2 include	s th	e elements of Alte	ernative A1 plus containment.	. The containment options considered in Alternative
	Spokane Valley	, WA		/ 2 II	oldde odppling	doing doprial, oo			caps.	
Phase:	Feasibility Stud	y (-35%	% to +50%)							
Base Year:	2010									
Date:	July 2011									
PRESENT V		6								
Discount rate Total years	7.0% 30									
COST TYPE	YEAR		TOTAL COST	TO P	TAL COST ER YEAR	DISCOUNT FACTOR	N	ET PRESENT VALUE		NOTES
Capital	0	\$	840,810	\$	840,810	1.000	\$	840,810		
Annual O&M	1 - 30	\$	3,347,528	\$	111,584	12.409	\$	1,384,654		
Periodic	5	\$	19,540	\$	19,540	0.713	\$	13,932		
Periodic	10	\$	19,540	\$	19,540	0.508	\$	9,933		
Periodic	15	\$	19,540	\$	19,540	0.362	\$	7,082		
Periodic	20	\$	19,540	\$	19,540	0.258	\$	5,050		
Periodic	25	\$	19,540	\$	19,540	0.184	\$	3,600		
Periodic	30	\$	40,130	\$	40,130	0.131	\$	5,272		
		\$	4,326,168				\$	2,270,332	Net present	value of elements unique to Alternative A2.

\$ 13,517,936

\$ 15,788,268

Notes: Costs taken from RSMeans have been adjusted by Spokane location adjustment factor of 0.93. Costs from previous work greater than 1 year old have been adjusted using historical cost index factors provided by 2010 RSMeans (p. 671). Present value analysis uses a 30-year discount rate of 7.0%.

TOTAL NET PRESENT VALUE OF ALTERNATIVE A2

Total Net Present Value of Alternative A1

Sheet 2 of 2

Table A-4 - Alternative A3 Estimated Cost Summary

Location:	Kaiser Trent Spokane Va	wood Facility			Description: soil. Alternat	: Alternat tive A3 as	ive A3 incl ssumes an	udes Al operati	ternative A2 ing period of	plus s one o	oil vapor extraction r two years for eac	n (SVE) and off-gas treatment for remediation of VOCs in near-surface h VOC AOC. There are four near-surface soil VOC AOCs that will be
Phase:	Eposibility S	tudy (- 35% to	+50%)									
Page Veer	2010	luuy (-55 /8 ll	, +30 /8)									
Date:	2010											
CAPITAL C	DSTS DES	CRIPTION			QUANTIT	Y	UNIT	ı	JNIT COST		TOTAL	NOTES
Submittala	Plana Sita P	operation										
Pre- and p plans	ost-constructio	n submittals,	implement	tation	1		LS	\$	10,000)\$	10,000	SAP, HASP, work plan, stormwater pollution prevention plan, as-built drawings, O&M manual, QA/QC documentation. Based on previous HC estimate.
Permits Submittals,	Plans, Site Pi	eparation S	ubtotal		1		LS	\$	10,000	\$ \$	10,000 20,000	HC estimate based on previous work.
Installation	and Startup							•	10.00		10.001	
Vapor extr	action and trea	tment syster	n installatio	n	1		LS	э \$	46,094	5 5	46,094 48,245	See Table A-16 for backup calculations.
System sta	artup and testir	g			17.5%					\$	16,509	Percentage of SVE installation capital costs. Average percentage of SVE
Installation	and Startup S	ubtotal								\$	110,848	
Contingenc	у				17.5%					\$	22,898	Percentage of capital costs. Average percent of SVE contingency and general bid (EPA 540-R-00-002).
Professiona Project ma	I/Technical S nagement	ervices			8%					\$	12,300	Percentage of sum of capital cost and contingency. EPA 540-R-00-002. Includes reports referenced in WAC 173-340- 400(6)(b).
Remedial Construction	design on managemer	nt			15% 10%					\$ \$	23,062 15,375	EPA 540-R-00-002. EPA 540-R-00-002. Includes reports referenced in WAC 173-340-
Ecology ov Professiona	rersight I I/Technical S	ervices Sub	total		10%					\$ \$	2,200 50,736	Assume 10% of Alt. A1 Ecology oversight cost.
TOTAL CAF	ITAL COST									\$	204,483	
ANNUAL O	M COSTS DES	CRIPTION			QUANTIT	Υ	UNIT	ι	JNIT COST		TOTAL	NOTES
System Ope	eration and Mo	onitoring										
Treatment Monitoring System Ope	system operat , sampling, tes ration and Me	ion and main ting, and ana onitoring Su	tenance Iysis btotal		1 1		YR YR	\$ \$	21,120 15,440) \$) \$ \$	21,120 15,440 36,561	See Table A-15 for backup calculations. See Table A-18 for backup calculations.
Contingenc	у				17.5%					\$	6,398	% of annual costs. Average percent of SVE contingency and general bid (EPA 540-R-00-002).
Professiona Project ma Technical	II/Technical S nagement support	ervices			10% 15%					\$ \$	4,296 6,444	% of sum of annual cost and contingency. EPA 540-R-00-002. % of sum of annual cost and contingency. O&M technical support %
Professiona	l/Technical S	ervices Sub	total							\$	10.740	(EPA 540-R-00-002).
TOTAL ANN	IUAL O&M CC	ST								\$	53,698	
PERIODIC (OSTS DES	CRIPTION									TOTAL	NOTES
Periodic Co	st - Years 1 a	nd 2								\$	29.166	See Table A-14 for backup calculations.
Periodic Co	st - Year 3									\$	5,186	
Periodic Co	st - Year 4									\$	10,694	See Table A-14 for backup calculations.
Periodic Co	st - Year 5									\$	65,507	See Table A-14 for backup calculations.
PRESENT V	ALUE ANALY	SIS										
Discount rate Total years	e 7.0% 4											
COST TYPE	YEAR		TOTAL COST		TOTAL CO PER YEA	IST D R	FACTOR	NE	T PRESENT VALUE	ſ		NOTES
Capital	0	\$		204,483	\$ 204,	483	1.0	000 \$	204,483	3		
Periodic	1 1	э \$		214,794 29,166	\$ 29,	166	0.9	935 \$	27,258	, 3		
Periodic	2	\$		29,166	\$ 29,	166	0.8	373 \$	25,475	5		
Periodic Periodic	3	\$ \$		5,186 10.694	> 5, \$ 10.0	100 694	U.8 0.7	763 \$	4,233))		
Periodic	5	\$		65,507	\$ 65,	507	0.7	13 \$	46,706	6		
		\$		558,997				\$	498,202	2		Net present value of elements unique to Alternative A3.
Total Net Pre	esent Value of	Alternative A	2					\$	15,788,268	3		
TOTAL NET	PRESENT V	ALUE OF AL	TERNATI	/E A3				\$	16,286,470)		

Notes: Costs taken from RSMeans have been adjusted by Spokane location adjustment factor of 0.93. Costs from previous work greater than 1 year old have been adjusted using historical cost index factors provided by 2010 RSMeans (p. 671). Present value analysis uses a 30-year discount rate of 7.0%.

Description: Alternative A1 plus excavation and off-site disposal. Alternative A4a assumes an operating period of 30 years in the development Location. Kaiser Trentwood Facility of this cost estimate. Elements unique to Alternative A4a are expected to be completed in one year and include only capital costs. Refer to Spokane Valley, WA Table A-19 for details. Feasibility Study (-35% to +50%) Phase: Base Year: 2010 Date: July 2011 CAPITAL COSTS DESCRIPTION QUANTITY UNIT COST UNIT TOTAL NOTES Soil Excavation and Screening Mobilization/demobilization LS 8,000 \$ 8,000 \$ Previous project experience. Permits LS \$ 10,000 \$ 10.000 Previous project experience. SEPA checklist, etc. 11 \$ 2 CY backhoe, 2010 RSMeans 31 23 16.16 6060. Local adjustment Excavation/stockpile 33.340 CY \$ 370.524 actor for Spokane, WA applied (2010 RSMeans p. 696). Hauling/screening/stockpile 46,676 ton \$ 7 \$ 331,630 Cost for previous work provided by Kaiser. Adjusted from 2009 to 2010 basis (2010 RSMeans p. 671). 835.637 Clean structural fill. Cost for previous work provided by Kaiser. CY Acquire, transport, place backfill 38.341 \$ 22 Soil Excavation and Screening Subtotal 1,555,792 \$ Off-Site Disposal Transport & dispose of soil at Subtitle D landfill \$ 54 \$ Cost for previous work provided by Kaiser. Adjusted from 2009 to 30,696 1,651,254 ton 2010 basis (2010 RSMeans p. 671). Transport & dispose of soil at Subtitle C landfill 163 \$ 322,246 Cost for previous work provided by Kaiser. Adjusted from 2007 to 1.978 ton \$ 2010 basis (2010 RSMeans p. 671). Off-Site Disposal Subtotal \$ 1,973,500 Monitoring, Sampling, Testing, and Analysis (for components not included in A1 or A2) Excavation monitoring and sampling 49 WΚ \$ 5,375 \$ 263,395 1 FTE for length of excavation (refer to Table A-22). Includes construction observation, confirmation soil sample collection, dust monitoring. Analysis of confirmation samples 1 1.5 \$ 61 905 \$ 61.905 Side wall and bottom of excavation samples (analytical costs only). See Table A-19. Screening sampling and analysis LS \$ 14,900 \$ 14,900 Visual inspections of screen/sampling under tears. See Table A-19. 1 Stockpile sampling and analysis LS \$ 20,495 \$ 20,495 Characterization for disposal. See Table A-19. 5% of sampling costs. 4.865 Data managemen 5% Monitoring, Sampling, Testing, and Analysis Subtotal Ŝ 365.560 \$ Contingency 10% 389,485 Scope and bid contingency. Percentage of capital costs. Professional/Technical Services Percentage of sum of capital cost and contingency. Project management 5% \$ 214,217 EPA 540-R-00-002. Includes reports referenced in WAC 173-340-400(6)(b). \$ 342,747 EPA 540-R-00-002. Remedial design 8% Construction management 6% \$ 257,060 EPA 540-R-00-002. Includes reports referenced in WAC 173-340----400(6)(b). Assume 10% of Alt. A1 Ecology oversight cost. Ecology oversight 10% 2,200 Professional/Technical Services Subtotal Ŝ 816.224 TOTAL CAPITAL COST \$ 5,100,560 ANNUAL O&M COSTS DESCRIPTION QUANTITY UNIT UNIT COST TOTAL NOTES TOTAL ANNUAL O&M COST \$ No annual O&M costs for elements unique to Alternative A4a. PERIODIC COSTS DESCRIPTION QUANTITY UNIT UNIT COST TOTAL NOTES TOTAL PERIODIC COSTS \$ No periodic costs for elements unique to Alternative A4a. PRESENT VALUE ANALYSIS 7.0% Discount rate Total years 30 COST YEAR ΤΟΤΑΙ TOTAL COST DISCOUNT NET PRESENT FACTOR NOTES TYPE COST PER YEAR VALUE Capital 0 5.100.560 \$ 5,100,560 1 000 \$ 5,100,560 \$ Annual O&M 1 - 30 12.409 \$ No annual O&M costs for elements unique to Alternative A4a. \$ 0.713 \$ Periodic 5 g No periodic costs for elements unique to Alternative A4a. \$ 5,100,560 \$ 5,100,560 Net present value of elements unique to Alternative A4a. Total Net Present Value of Alternative A1 \$ 13.517.936 TOTAL NET PRESENT VALUE OF ALTERNATIVE A4a 18,618,496 \$

Notes:

Costs taken from RSMeans have been adjusted by Spokane location adjustment factor of 0.93.

Costs from previous work greater than 1 year old have been adjusted using historical cost index factors provided by 2010 RSMeans (p. 671).

Present value analysis uses a 30-year discount rate of 7.0%.

Description: Alternative A2 plus excavation and off-site disposal. Alternative A4b assumes an operating period of 30 years in the development Location. Kaiser Trentwood Facility of this cost estimate. Elements unique to Alternative A4b are expected to be completed in one year and include only capital costs. Refer to Spokane Valley, WA Table A-19 for details. Feasibility Study (-35% to +50%) Phase: Base Year: 2010 Date: July 2011 CAPITAL COSTS DESCRIPTION QUANTITY UNIT UNIT COST TOTAL NOTES Soil Excavation and Screening 8,000 \$ Mobilization/demobilization LS \$ 8,000 Previous project experience. Previous project experience. SEPA checklist, etc. Permits LS \$ 10,000 \$ 10.000 33,340 CY \$ 2 CY backhoe, 2010 RS Means 31 23 16.16 6060. Local adjustment Excavation/stockpile \$ 370,524 11 actor for Spokane, WA, applied (2010 RSMeans p. 696). 46,676 7 \$ Cost for previous work provided by Kaiser. Adjusted from 2009 to Hauling/screening/stockpile ton \$ 331,630 2010 basis (2010 RSMeans p. 671). Acquire, transport, place backfill 835.637 Clean structural fill. Cost for previous work provided by Kaiser. 38.341 CY \$ 22 1,555,792 Soil Excavation and Screening Subtotal Off-Site Disposal Transport & dispose of soil at Subtitle D landfill 30.696 ton \$ 54 \$ 1,651,254 Cost for previous work provided by Kaiser (adjusted from 2009 to 2010 basis) 163 \$ Transport & dispose of soil at Subtitle C landfill 1,978 ton \$ 322,246 Cost for previous work provided by Kaiser (adjusted from 2007 to 2010 asis). Off-Site Disposal Subtotal \$ 1,973,500 Monitoring, Sampling, Testing, and Analysis (for components not included in A1 or A2) Excavation monitoring and sampling 49 WΚ \$ 5,375 \$ 263,395 1 FTE for length of excavation (refer to Table A-22). Includes construction observation, confirmation soil sample collection, dust nonitoring. Analysis of confirmation samples 1 LS \$ 61,905 \$ 61,905 Sidewall and bottom of excavation samples (analytical costs only). See Table A-19. Screening sampling and analysis LS \$ 14,900 \$ 14,900 Visual inspections of screen/sampling under tears. See Table A-19. 1 Stockpile sampling and analysis LS 20,495 Characterization for disposal. See Table A-19. \$ \$ 20,495 Data management 5% 4 865 5% of sampling costs. Monitoring, Sampling, Testing, and Analysis Subtotal Ŝ 365.560 Contingency 10% \$ 389.485 Scope and bid contingency. Percentage of capital costs. Professional/Technical Services Percentage of sum of capital cost and contingency. Project management 5% \$ 214,217 EPA 540-R-00-002. Includes reports referenced in WAC 173-340-400(6)(b). EPA 540-R-00-002. Remedial design 8% \$ 342,747 Construction management 6% ---\$ 257,060 EPA 540-R-00-002. Includes reports referenced in WAC 173-340-400(6)(b). Ecology oversight 10% 2 200 Assume 10% of Alt. A1 Ecology oversight cost. Professional/Technical Services Subtotal Ŝ 816,224 TOTAL CAPITAL COST \$ 5,100,560 ANNUAL O&M COSTS DESCRIPTION QUANTITY UNIT UNIT COST ΤΟΤΑΙ NOTES TOTAL ANNUAL O&M COST \$ No annual O&M costs for elements unique to Alternative A4b. PERIODIC COSTS DESCRIPTION QUANTITY UNIT UNIT COST NOTES TOTAL TOTAL PERIODIC COSTS \$ No periodic costs for elements unique to Alternative A4b. PRESENT VALUE ANALYSIS 7.0% Discount rate Total years 30 COST YEAR TOTAL TOTAL COST DISCOUNT NET PRESENT VALUE NOTES COST FACTOR TYPE PER YEAR Capital 0 \$ 5 100 560 \$ 5 100 560 1 000 \$ 5 100 560 Annual O&M 1 - 30 12.409 \$ No annual O&M costs for elements unique to Alternative A4b. \$ 9 0.713 \$ No periodic costs for elements unique to Alternative A4b. Periodic 5 \$ \$ \$ 5,100,560 \$ 5,100,560 Net present value of elements unique to Alternative A4b. Total Net Present Value of Alternative A1 \$ 13.517.936 Net present value of elements unique to Alternative A1. Total Net Present Value of Alternative A2 2,270,332 Net present value of elements unique to Alternative A2. \$ TOTAL NET PRESENT VALUE OF ALTERNATIVE A4b 20.888.828 \$

Notes

Costs taken from RSMeans have been adjusted by Spokane location adjustment factor of 0.93. Costs from previous work greater than 1 year old have been adjusted using historical cost index factors provided by 2010 RSMeans (p. 671). Present value analysis uses a 30-year discount rate of 7.0%.

Table A-7 - Alternative A5a Estimated Cost Summary

Description: Alternative A1 or A2 plus excavation and on-site biotreatment. On-site biotreatment includes a landfarm. Alternative A5a assumes an operating period of 30 years in the development of this cost estimate. Elements unique to Alternative A5a are expected to be complete in 2 years and include capital costs and one year of O&M. Refer to Tables A-19 and A-20 for details.

Base Year: 2010							
Date: July 2011							1
CAPITAL COSTS							
DESCRIPTION	QUANTITY	UNIT	U	NIT COST		TOTAL	NOTES
Soil Excavation and Screening							
Mobilization/demobilization	1	LS	\$	8,000	\$	8,000	Previous project experience.
Permits Excavation/stockoile	1 33 340	LS CY	¢ ¢	10,000	\$ ¢	10,000 370 524	Previous project experience. SEPA checklist, etc.
Excavation/stockpile	00,040	01	Ψ		Ψ	010,024	factor for Spokane, WA, applied (2010 RSMeans p. 696).
Hauling/screening/stockpile	46,676	ton	\$	7.10	\$	331,630	Cost for previous work provided by Kaiser. Adjusted from 2009 to 2010 basis (2010 RSMeans p. 671).
Acquire, transport, place backfill	38,341	CY	\$	22	\$	835,637	Clean structural fill. Cost for previous work provided by Kaiser.
Soil Excavation and Screening Subtotal					\$	1,555,792	
On-Site Biotreatment							
Nutrient amendments	1	LS	\$	72,204	\$	72,204	Ammonium nitrate and tetrapotassium phosphate.
Landfarm construction	1	LS	\$	1,323,387	\$	1,323,387	See Table A-20.
Periodic tilling	1	LS	\$	49,000	\$	49,000	Biweekly tilling for 1 year.
Leachate collection	1	LS	\$	211,596	\$	211,596	See Table A-20.
On-Site Biotreatment Subtotal					\$	1,656,187	
Monitoring, Sampling, Testing, and Analysis (for c	components not inc	luded in A1 c	or A2)				
Excavation monitoring and sampling	49	WK	\$	5,375	\$	263,395	1 FTE for length of excavation (refer to Table A-22). Includes construction observation, confirmation soil sample collection, dust
Analysis of confirmation samples	1	LS	\$	61,905	\$	61,905	Monitoring. Side wall and bottom of excavation samples (analytical costs only).
Screening sampling and analysis	1	LS	\$	14.900	\$	14,900	Visual inspections of screen/sampling under tears. See Table A-19.
Landfarm performance sampling	1	LS	\$	99,880	\$	99,880	See Table A-20.
Data management	5%				\$	8,834	5% of sampling costs.
Monitoring, Sampling, Testing, and Analysis Subt	otal				\$	448,914	
Contingency	20%				\$	732,179	Scope and bid contingency. Percentage of capital costs.
Professional/Technical Services							Percentage of sum of capital cost and contingency.
Project management	5%				\$	219,654	EPA 540-R-00-002. Includes reports referenced in WAC 173-340-
Deve dial desire	00/					054 440	400(6)(b).
Construction management	8%				¢ ¢	351,446	EPA 540-R-00-002 Includes reports referenced in WAC 173-340-
Construction management	078				Ψ	203,304	400(6)(b).
Ecology oversight	10%				\$	2,200	Assume 10% of Alt. A1 Ecology oversight cost.
Treatability study	1	LS	\$	50,000	\$	50,000	Engineer's estimate.
Professional/Technical Services Subtotal					\$	886,884	
TOTAL CAPITAL COST					\$	5,279,955	
ANNUAL O&M COSTS							
DESCRIPTION	QUANTITY	UNIT	U	NIT COST		TOTAL	NOTES
Question Quesestion and Marsharing							
System Operation and Monitoring	1	18	¢	20.000	¢	20.000	See Table A 20 for backup calculations
Landfarm performance sampling and monitoring	1	1.5	э S	99,880	ŝ	99,880	Performance soil sampling. See Table A-20
Leachate collection sampling and monitoring	1	LS	ŝ	33.010	ŝ	33.010	
Data management	5%				\$	6,644	
System Operation and Monitoring Subtotal					\$	178,534	
Contingency	15%				\$	26,780	Scope and bid contingency. Percentage of capital costs.
Professional/Technical Services							
Project management	10%				\$	20.531	EPA 540-R-00-002.
Technical support	10%				\$	20,531	EPA 540-R-00-002.
Ecology oversight	10%				\$	2,200	Assume 10% of Alt. A1 Ecology oversight cost.
Professional/Technical Services Subtotal					\$	43,263	
TOTAL ANNUAL O&M COST					\$	248,577	
DESCRIPTION	QUANTITY	UNIT	u	NIT COST		TOTAL	NOTES
TOTAL PERIODIC COSTS					\$	-	No periodic costs for elements unique to Alternative A5a.

Table A-7 - Alternative A5a Estimated Cost Summary

Location:	Kaiser Trentwo	ility	Description: Alternative A1 or A2 plus excavation and on-site biotreatment. On-site biotreatment includes a landfarm. Alternative A5a as expected to be										
	Spokane Valley		complete in 2 years and include capital costs and one year of O&M. Refer to Tables A-19 and A-20 for details.										
Phase:	Feasibility Stud	5 to +50%)											
Base Year:	2010												
Date:	July 2011												
PRESENT VALUE ANALYSIS													
Discount rate	7.0%												
Total years	1												
COST TYPE	YEAR		TOTAL COST	TOTAL PER	L COST YEAR	DISCOUNT FACTOR	NE	T PRESENT VALUE	NOTES				
Capital Annual O&M	0 1	\$	5,279,955 248,577	\$5, \$	279,955 248,577	1.000 0.935	\$	5,279,955 232,315					
Periodic	5	\$		\$	-	0.713	\$		No periodic costs for elements unique to Alternative A5a.				
		\$	5,279,955				\$	5,512,270	Net present value of elements unique to Alternative A5a.				
Total Net Present Value of Alternative A1 \$ Total Net Present Value of Alternative A2 \$								13,517,936 2,270,332	Net present value of elements unique to Alternative A1. Net present value of elements unique to Alternative A2.				
TOTAL NET	A5a with	A1		\$	19,030,206								
TOTAL NET PRESENT VALUE OF ALTERNATIVE A5a with A2 \$							\$	21,300,538					

Notes: Costs taken from RSMeans have been adjusted by Spokane location adjustment factor of 0.93. Costs from previous work greater than 1 year old have been adjusted using historical cost index factors provided by 2010 RSMeans (p. 671). Present value analysis uses a 30-year discount rate of 7.0%.

Table A-8 - Alternative A5b Estimated Cost Summary

Description: Alternative A1 or A2 plus excavation and on-site thermal treatment. Alternative A5b assumes an operating period of 30 years in Location: Kaiser Trentwood Facility the development of this cost estimate. Elements unique to Alternative 54b are expected to be completed in one year and include only capital osts. Refer to Tables A-19 and A-21 for details. Spokane Valley, WA Feasibility Study (-35% to +50%) Phase: Base Year: 2010 July 2011 CAPITAL COSTS DESCRIPTION QUANTITY UNIT UNIT COST TOTAL NOTES Soil Excavation and Screening Mobilization/demobilization LS \$ 8,000 \$ 8,000 1 Previous project experience. Previous project experience. SEPA checklist, etc. Permits LS \$ \$ 10,000 \$ 10,000 2 CY backhoe, 2010 RSMeans 31 23 16.16 6060. Local adjustment factor for Spokane, WA, applied (2010 RSMeans p. 696). Excavation/stockpile 33.340 CY 11 \$ 370,524 \$ 7.10 \$ Hauling/screening/stockpile 46,676 331,630 Cost for previous work provided by Kaiser. Adjusted from 2009 to ton 2010 basis (2010 RSMeans p. 671). Clean structural fill. Cost for previous work provided by Kaiser. Acquire, transport, place backfill 38.341 CY \$ 22 835,637 1,555,792 Soil Excavation and Screening Subtotal On-Site Thermal Treatment Haul soil to treatment area 23.338 CY \$ 2.02 \$ 70 \$ 47.098 See Table A-21. Thermal desorption treatment 32,673 ton \$ 70 2,287,124 Conservative end of vendor quotation Remove, haul soil to final destination 23.338 CY \$ 7.42 173.233 See Table A-21. On-Site Thermal Treatment Subtotal 2.287.124 Monitoring, Sampling, Testing, and Analysis (for components not included in A1 or A2) Excavation monitoring and sampling 49 ŴΚ \$ 5 375 \$ 263.395 1 FTE for length of excavation (refer to Table A-22). Includes construction observation, confirmation soil sample collection, dust monitoring. Side wall and bottom of excavation samples (analytical costs only). Analysis of confirmation samples LS \$ 61,905 \$ 61,905 1 See Table A-19 Screening sampling and analysis LS \$ 14,900 \$ 14.900 /isual inspections of screen/sampling under tears. See Table A-19. 1 178,880 \$ Performance monitoring, sampling, and analysis LS \$ 178,880 Treated soil and emmison sampling. See Table A-21. Data management 5% 12,784 5% of sampling costs. \$ Monitoring, Sampling, Testing, and Analysis Subtotal 531.864 20% \$ Scope and bid contingency. Percentage of capital costs. Contingency 874.956 Percentage of sum of capital cost and contingency. Professional/Technical Services Project management 5% \$ 262.487 EPA 540-R-00-002. Includes reports referenced in WAC 173-340-400(6)(b). Remedial design 8% 419.979 EPA 540-R-00-002. EPA 540-R-00-002. EPA 540-R-00-002. Includes reports referenced in WAC 173-340----\$ \$ Construction management 314,984 6% 400(6)(b). Assume 10% of Alt. A1 Ecology oversight cost. 10% Ecology oversight 2.200 Treatability study LS \$ 75,000 75 000 Engineer's estimate Professional/Technical Services Subtotal \$ 1.074.650 TOTAL CAPITAL COST \$ 6.324.386 ANNUAL O&M COSTS DESCRIPTION QUANTITY UNIT UNIT COST TOTAL NOTES TOTAL ANNUAL O&M COST \$ No annual O&M costs for elements unique to Alternative A5b. PERIODIC COSTS DESCRIPTION QUANTITY UNIT UNIT COST TOTAL NOTES TOTAL PERIODIC COSTS No periodic costs for elements unique to Alternative A5b. \$ PRESENT VALUE ANALYSIS 7.0% Discount rate Total vears 30 DISCOUNT NET PRESENT COST YEAR TOTAL TOTAL COST PER YEAR FACTOR VALUE NOTES COST Capital 0 \$ 6,324,386 \$ 6,324,386 1.000 \$ 6,324,386 Annual O&M 1 - 30 \$ 12.409 \$ No annual O&M costs for elements unique to Alternative A5b. 0.713 \$ No periodic costs for elements unique to Alternative A5b. Periodic 5 \$ \$ \$ 6,324,386 \$ 6,324,386 Net present value of elements unique to Alternative A5b. Total Net Present Value of Alternative A1 \$ 13,517,936 Net present value of elements unique to Alternative A1. Total Net Present Value of Alternative A2 \$ 2.270.332 Net present value of elements unique to Alternative A2. TOTAL NET PRESENT VALUE OF ALTERNATIVE A5b with A1 \$ 19.842.321 TOTAL NET PRESENT VALUE OF ALTERNATIVE A5b with A2 \$ 22,112,654

Notes:

Costs taken from RSMeans have been adjusted by Spokane location adjustment factor of 0.93. Costs from previous work greater than 1 year old have been adjusted using historical cost index factors provided by 2010 RSMeans (p. 671).

Present value analysis uses a 30-year discount rate of 7.0%.

Location:

Description: Alternative A1 or A2 plus excavation and off-site incineration. Alternative A6 assumes an operating period of 30 years in the Kaiser Trentwood Facility development of this cost estimate. Elements unique to Alternative A6 are expected to be completed in one year and include only capital costs. Spokane Valley, WA Refer to Table A-19 for details.

Phase: Feasibility Study (-35% to +50%)						
Base Year: 2010						
Date: July 2011						
DESCRIPTION	QUANTITY	UNIT	UNIT COST		TOTAL	NOTES
Soil Excavation and Screening						
Mobilization/demobilization	1	LS	\$ 8,000	\$	8,000	Previous project experience.
Permits	1	LS	\$ 10,000	\$	10,000	Previous project experience. SEPA checklist, etc.
Excavation/stockpile	33,340	CT	φ II	¢	370,524	factor for Spokane, WA, applied (2010 RSMeans p. 696).
Hauling/screening/stockpile	46,676	ton	\$ 7	\$	331,630	Cost for previous work provided by Kaiser. Adjusted from 2009 to 2010 basis (2010 RSMeans p. 671)
Acquire, transport, place backfill Soil Excavation and Screening Subtotal	38,341	CY	\$ 22	\$ \$	835,637 1,555,792	Clean structural fill. Cost for previous work provided by Kaiser.
Off-Site Treatment and Disposal						
Transport	32,673	ton	\$ 140	\$	4,574,248	Quote from Clean Harbors. Assume transport to Utah.
Incinerate & dispose of soil	32,673	ton	\$ 628	\$	20,518,770	Quote from Clean Harbors.
Off-Site Treatment and Disposal Subtotal				\$	20,518,770	
Monitoring, Sampling, Testing, and Analysis (for	components not inc	luded in A1 or A	42)			
Excavation monitoring and sampling	49	WK	\$ 5,375	\$	263,395	1 FTE for length of excavation (refer to Table A-22). Includes construction observation, confirmation soil sample collection, dust monitoring.
Analysis of confirmation samples	1	LS	\$ 61,905	\$	61,905	Side wall and bottom of excavation samples (analytical costs only). See Table A-19.
Screening sampling and analysis	1	LS	\$ 14,900	\$	14,900	Visual inspections of screen/sampling under tears. See Table A-19.
Data management Monitoring, Sampling, Testing, and Analysis Sub	5% total			\$ \$	3,840 344,040	5% of sampling costs.
Contingency	10%			\$	2,241,860	Scope and bid contingency. Percentage of capital costs.
Professional/Technical Services						
Project management	-			\$	214,217	Values from Alt. A4, incineration increases overall costs; however, does not require an increase in professional/technical services. See
						Table A-5.
Remedial design	-			\$	342,747	Values from Alt. A4, incineration increases overall costs; however, does not require an increase in professional/technical services. See
Construction management	-			\$	257,060	Values from Alt. A4, incineration increases overall costs; however,
						Table A-5.
Ecology oversight Professional/Technical Services Subtotal	10%			\$ \$	2,200 816,224	Assume 10% of Alt. A1 Ecology oversight cost.
TOTAL CAPITAL COST				\$	25,476,686	
DESCRIPTION	QUANTITY	UNIT	UNIT COST		TOTAL	NOTES
TOTAL ANNUAL O&M COST				\$	-	No annual O&M costs for elements unique to Alternative A6.
PERIODIC COSTS	QUANTITY				TOTAL	NOTES
TOTAL PERIODIC COSTS	QUANTIT	UNIT	UNITCOST	\$	-	No periodic costs for elements unique to Alternative A6.
						1
Discount rate 7.0% Total years 1						
COST YEAR TOTAL	TOTAL COST	DISCOUNT	NET PRESENT			
TYPE COST	PER YEAR	FACTOR	VALUE			NOTES
Capital 0 \$ 25,476,68	6 \$ 25,476,686	1.00	0 \$ 25,476,686			
Annual O&M \$ Periodic \$	\$- \$-	0.93	5\$- 0\$-	2		No periodic costs for elements unique to Alternative A6.
\$ 25,476,680	- 1 3		\$ 25,476,686	-		Net present value of elements unique to Alternative A6.
Total Net Present Value of Alternative A1			\$ 13,517,936			Net present value of elements unique to Alternative A1.
Total Net Present Value of Alternative A2			\$ 2,270,332			Net present value of elements unique to Alternative A2.
TOTAL NET PRESENT VALUE OF ALTERNATIVE	A6 with A1		\$ 38,994,621			

\$ 41,264,954

Notes:

Costs taken from RSMeans have been adjusted by Spokane location adjustment factor of 0.93. Costs from previous work greater than 1 year old have been adjusted using historical cost index factors provided by 2010 RSMeans (p. 671). Present value analysis uses a 30-year discount rate of 7.0%.

TOTAL NET PRESENT VALUE OF ALTERNATIVE A6 with A2
Table A-10 - Monitoring Cost Backup

DESCRIPTION	QUANTITY	UNIT	UN	пт соѕт		TOTAL	NOTES
Alternative A1							
Protection & performance monitoring							Protection and performance monitoring costs based on previous
							project experience.
Labor	1	yr	\$	107,960	\$	107,960	Includes well and equipment maintenance labor. Excludes project
							management labor.
Equipment, supplies, computer	1	yr	\$	17,480	\$	17,480	Includes well and equipment maintenance.
Travel	1	yr	\$	24,108	\$	24,108	
Sample shipping	1	yr	\$	10,000	\$	10,000	Previous project experience.
Laboratory analysis	1	yr	\$	108,552	\$	108,552	
Subtotal					\$	268,100	
Total qty. of wells sampled	114						See SAP, as amended (Hart Crowser 2007a, Kaiser 2010).
Protection monitoring wells	19						See SAP, as amended (Hart Crowser 2007a, Kaiser 2010).
Performance monitoring wells	95						See SAP, as amended (Hart Crowser 2007a, Kaiser 2010).
Protection monitoring annual total	16.7%				\$	44,683	Percentage = protection wells sampled/total wells sampled. Annual total. Monitoring events occur guarterly.
Performance monitoring annual total	83.3%				\$	223,417	Percentage = performance wells sampled/total wells sampled.
							Annual total. Monitoring events occur quarterly.
Data management	1	vr	\$	29.948	\$	29.948	Data validation: database management.
Reporting	1	vr	\$	16,182	\$	16,182	Report to Kaiser & Ecology guarterly: EIM reporting.
		<i>.</i>	Ψ		7	,	······································

Alternative A1 protection and performance monitoring notes:

- Two 2-person teams plus sample custodian on site during each sample event (5 people total).

- Assumed each sample team can sample 7 wells per day on average.

- Assumed water levels take an entire day with 4 people measuring.

- Assumed 10-hour field days.

- Assumed EIM submittal included for groundwater data plus any additional soil or soil gas data collected during previous 6 months.

- Assumed 2 vehicles for each sampling event.

- Actual well and equipment maintenance costs will depend on upcoming needs.

Monitored Natural Attenuation (MNA) - Perio	dic Costs				
Total AOC area	82,532 S	SF			Total area of near-surface soil AOCs, excluding AOCs beneath
					existing pavement and floor slabs.
Drilling location density	10,000 S	SF			One location per 10,000 square feet of AOC area.
Drilling locations	8				
Drilling depth	20 ft	t			
Drilling contractor	160	ft	\$ 77	\$ 12,299	12 locations to 20-ft depth. Unit cost based on vendor quote. Includes mob/demob, drilling, materials, 8.7% sales tax.
Labor	0.4	WK	\$ 5,375	\$ 2,150	Assume 2 days HC staff at HC rates. Includes travel. See Table A-22.
Equipment, supplies, computer	2.6%			\$ 460	% of GW monitoring labor. % = (MNA samples/number of wells)/4 quarters per year.
Sample shipping	2.6%			\$ 263	% of GW monitoring labor. % = (MNA samples/number of wells)/4 quarters per year.
Laboratory analysis					
TPH-G - soil	2	samples	\$ 60	\$ 120	Sample quantity estimate based on 8 sampling locations and relative occurrence of VOCs (TPH-G) and SVOCs (TPH-D, PAHs) in near-surface soil AOCs.
TPH-D - soil	9	samples	\$ 60	\$ 540	Sample quantity estimate based on 8 sampling locations and relative occurrence of VOCs (TPH-G) and SVOCs (TPH-D, PAHs) in near-surface soil AOCs.
PAHs - soil	1	samples	\$ 215	\$ 215	Sample quantity estimate based on 8 sampling locations and relative occurrence of VOCs (TPH-G) and SVOCs (TPH-D, PAHs) in near-surface soil AOCs.
Subtotal				\$ 16,047	
Project management	10%			\$ 1.605	
Technical support	10%			\$ 1,605	
Total				\$ 19,257	
Data management	1	yr	\$ 4,500	\$ 4,500	Assume work conducted by HC staff at HC rates. See Table A-12.
Reporting	1	yr	\$ 7,000	\$ 7,000	Assume work conducted by HC staff at HC rates. See Table A-12.

Alternative A1 monitored natural attenuation (MNA) notes:

- Assume monitoring conducted once every five years.

- Assume one exploration per 10,000 sq ft of area per AOC. One sample collected per 10 feet of impacted depth for each analysis (TPH-G, TPH-D, PAHs).

- TPH-G: gasoline-range petroleum hydrocarbons.

- TPH-D: diesel- and heavy oil-range petroleum hydrocarbons.

- PAHs: polycyclic aromatic hydrocarbons.

DESCRIPTION	QUANTITY	UNIT	UN	IT COST		TOTAL	NOTES
Alternative A1							
New Institutional Controls	ployog						Pending itoms and approx, easts provided by Kaisar
Replace melter furnace door jambs	piexes 5	locations	\$	20,000	\$	100,000	DC-1, DC-2W, DC-3, DC-8E, DC-8W. Provided by Kaiser, May
Contain hydraulics/lubrication	1	locations	\$	151.000	\$	151.000	23, 2011. DC-2. Unit cost per Kaiser, April 19, 2010.
Overflow lines to sewer	7	locations	\$	50,000	\$	350,000	DC-2 through DC-8.
Seal DC-7/DC-8 control house sump	1	location	\$	15,000	\$	15,000	Excludes equipment removal cost (approx. \$15k). Unit cost per
							Kaiser, April 19, 2010.
Slip line storm sewers MH 2 to MH 3	133	ft	¢	371	\$	49 386	Works - Trentwood Plant Storm Sewer - Scheme "O" General
MH 9 to MH 3	280	ft	\$	371	\$	103.971	Arrangement March 8, 1967. Unit cost based on cost of slip lining
MH 3 to MH 5	366	ft	\$	371	\$	135,905	from MH 7B to MH 9 (approx. \$120,100 for total length of 390 ft.) in
MH 5 to MH 6	460	ft	\$	371	\$	170,810	2005, adjusted to 2010 dollars (2010 RSMeans p.671).
Subtotal					\$	460,073	-
Total					\$	1,076,073	
Preparation of institutional control O&M and mon	itoring plans						Assume work performed by Hart Crowser staff.
Principal	8	hr	\$	180	\$	1,440	
Sr. Project	16	hr	\$	130	\$	2,080	
Sr. Staff	60	hr	\$	90	\$	5,400	
Staff	60	hr	\$	75	\$	4,500	
Sr. Dratter	8	hr	\$	100	\$	800	
Clerical	8	nr	\$ ¢	60 566	\$ ¢	480	Accume 2 day site visit
Computer	1	ea	ф \$	250	φ S	250	Assume 2-day site visit.
Subtotal		ou	Ψ	200	ŝ	15 516	Cost per plan
Quantity of plans to prepare	3				Ŷ	10,010	
Total					\$	46,548	Assume 3 plans in total (e.g., plans for Facility pavement, engineered controls, air emission control system).
Preparation of restrictive covenant							Assume work performed by Hart Crowser staff. Includes attorney
							fees.
Attorney fees	40	hr	\$	300	\$	12,000	
Principal Sr. Broject	24	nr br	\$ ¢	180	\$ ¢	4,320	
Sr. Staff	24 40	hr	Ф \$	90	ֆ Տ	3,120	
Staff	16	hr	\$	75	\$	1.200	
Clerical	8	hr	\$	60	\$	480	
Computer	1	ea	\$	250	\$	250	
Total					\$	24,970	-
Institutional Controls Annual Costs							
Environmental upgrades at casting complexes							
Verify pit/sump integrity	9	locations	\$	1,000	\$	9,000	DC-1 through DC-8 plus DC-7/DC-8 control house sump.
Other upgrade maintenance	5%			'	\$	53,804	Assume percentage of environmental upgrade capital cost above.
							_
Subtotal					\$	62,804	
Maintenance of physical measures and BMPs							Assume maintenance of signs, fences, gates, access control,
							existing training programs, waste handling guidance, and BMPs
							defined in SPCC Plan and SWPPP.
Labor	1920	nr br	\$	110	\$	144,000	Assume 1 Individual.
Subtotal	400	111	Φ	110	ф \$	52,600 196,800	
Cubicital					Ψ	150,000	
Total					\$	259,604	
Institutional control O&M and monitoring plans - a	annual update	and mainten	ance	1			
Principal Sr. Brainat	4	hr	\$	180	\$	720	
Sr. Project Sr. Staff	8	nr br	¢ ¢	130	¢ 2	1,040	
Staff	01 8	hr	φ \$	75	Ψ \$	600	
Sr. Drafter	4	hr	\$	100	\$	400	
Clerical	2	hr	\$	60	\$	120	
Travel	1	ea	\$	433	\$	433	Assume 1-day site visit.
Computer	1	ea	\$	250	\$	250	<u>-</u>
Subtotal	-				\$	5,003	Cost per plan.
Quantity of plans to maintain	6				_	00.01-	
I OTAI					\$	30,018	Assume 6 plans in total. Includes existing WDR Restoration

118 Assume 6 plans in total. Includes existing WDR Restoration Monitoring Plan, SPCC Plan, and SWPPP plus institutional control, O&M, and monitoring plans given above.

DESCRIPTION	QUANTITY	UNIT	UNI	T COST		TOTAL	NOTES
Site information database - annual undate and m	aintenance						Assume work performed by Hart Crowser staff
Principal		hr	¢	180	\$	720	Assume work performed by Hart Crowser stan.
Sr. Project	4	br	φ ¢	130	φ	1 040	
Sr. Stoff	24	br	φ 2	00	φ	2 160	
Staff	12	br	φ ¢	30 75	φ	2,100	
Clerical	12	hr	¢ ¢	60	¢	240	
Travel		60	¢ ¢	433	¢ ¢	433	Assume 1-day site visit
Computer	1	60	¢ 2	250	φ 2	250	Assume 1 day site visit.
Total		ca	Ψ	200	¢	5 7/3	•
					ψ	3,743	
Institutional Controls - Periodic Costs							
Restrictive covenant periodic update and mainte	nance						Assume work performed by Hart Crowser staff. Includes attorney
Attorney fees	8	hr	\$	300	\$	2,400	lees.
Principal	8	hr	\$	180	\$	1,440	
Sr. Project	4	hr	\$	130	\$	520	
Sr. Staff	16	hr	\$	90	\$	1.440	
Staff	4	hr	\$	75	\$	300	
Clerical	2	hr	\$	60	\$	120	
Computer	1	ea	\$	250	\$	250	
Total					\$	6,470	•
NPDES Permit and Ecology Order Required I	Monitoring - A	nnual Cost	s				Required by NPDES Permit No. WA-000089-2 (Ecology 1997), Ecology Agreed Order No. 02WQER-3487 (Ecology 2002), and Ecology Amended Order No. 2868 (Ecology 2005). See Section 2.1.1.1.
NPDES permit - monitoring laboratory analysis							
Sample quantity							Based on weekly sampling frequency.
Outfall 001	104	samples					
Outfall 002	104	samples					
Outfall 003	52	samples					
Plant intake	104	samples					
Laboratory analysis							Unit prices based on laboratory quote.
Outfall 001							
Oil and grease	104	samples	\$	50	\$	5,200	
TSS	104	samples	\$	18	\$	1,872	
Total Al, Cr, Zn, P	104	samples	\$	50	\$	5,200	Aluminum, chromium, recoverable zinc, phosphorous.
Cyanide	104	samples	\$	40	\$	4,160	
Hardness	104	samples	\$	25	\$	2,600	_
Subtotal					\$	19,032	-
Outfall 002							
Oil and grease	260	samples	\$	50	\$	13,000	
TSS	104	samples	\$	18	\$	1,872	
Orthophosphate	104	samples	\$	20	\$	2,080	
Total Al, Cr, Zn, P	104	samples	\$	50	\$	5,200	Aluminum, chromium, zinc, phosphorous.
Hexavalent chromium	104	samples	\$	50	\$	5,200	
Cyanide Subtotal	104	samples	\$	40	\$ \$	4,160 31,512	
Outfall 003							
	50	samples	•		~	0.015	
	52	samples	\$	45	\$	2,340	
188	52	samples	\$	18	\$	936	
Fecal collform Subtotal	52	samples	Ф	35	ծ \$	5,096	
Diant intolea						, -	
Plant Intake			¢		¢	F 000	
Oli and grease	104	samples	\$	50	\$	5,200	
ISS Tatalaatala	52	samples	\$	18	\$	936	
	104	samples	Ф	50	\$	5,200	Auminum, chromium, recoverable zinc.
ISTOTAL					\$	11,336	
NPDES permit laboratory analysis subtotal					\$	66,976	

DESCRIPTION	QUANTITY	UNIT	UN	IT COST		TOTAL	NOTES
Ecology Order - monitoring laboratory analysis							
Sample quantity							Based on biweekly sampling frequency.
Outfall 001	26	samples					
Plant lagoon emuent	26	samples					
Plant lagoon initident	20	samples					
Laboratory analysis							
For 3 locations given above							
PCBs - ultra-low level	78	samples	\$	175	\$	13,650	
Subtotal					\$	13,650	
Ecology Order Jaboratory analysis subtotal					¢	13 650	
					Ψ	13,030	
Sampling labor - NPDES permit and Ecology Or	der required mo	onitoring					
Labor	208	hr	\$	75	\$	15,600	Assume 1 FTE.
Supervisor	52	nr	\$	110	\$	5,720	Assume 0.25 FTE.
Labor subiotal					Φ	21,320	
Total Annual Cost					\$	101,946	
NPDES Permit Required Monitoring - Period	ic Costs						Required by NPDES Permit No. WA-000089-2 (Ecology 1997).
· -							See Section 2.1.1.1.
Initial acute toxicity testing							Assume conducted quarterly for one year, once per permit cycle.
Sample quantity							Assume 5-year permit cycle.
River intake	4	samples					Assume conducted in years 0, 5, 10, 15, 20, and 25.
Final effluent	4	samples					Unit prices based on laboratory quote.
Laboratory analysis							
Fathead minnow (96-hr static-renewal test)	8	samples	\$	850	\$	6,800	
Daphnid (48-hr static test)	8	samples	\$	700	\$	5,600	
Subtotal					\$	12,400	
Sampling and reporting labor	10		•		•		
Labor	40	nr br	\$	110	\$	3,000	Assume 1 individual performs sampling and reporting.
Labor subtotal	10	111	Φ	110	¢	1,100	Assume 25% of labor enort.
					φ	4,100	
Initial acute toxicity testing total					\$	16,500	
Final acute toxicity testing							Assume conducted once in the last summer, once in the last
I mai doute toxicity tooting							winter, of the permit cycle.
Sample quantity							Assume 5-year permit cycle.
Final effluent	2	samples					Assume conducted in years 5, 10, 15, 20, 25, and 30.
Laboratory analysis	0		¢	050	¢	4 700	
Daphaid (48-br static test)	2	samples	¢	000 700	ф р	1,700	
Subtotal	2	samples	Ψ	700	\$	3 100	•
Odbiola					Ψ	0,100	
Sampling and reporting labor							
Labor	28	hr	\$	75	\$	2,100	Assume 1 individual performs sampling and reporting.
Supervisor	7	hr	\$	110	\$	770	Assume 25% of labor effort.
Labor subtotal					\$	2,870	
Final acute toxicity testing total					\$	5.970	
					•	-,	
Initial chronic toxicity testing							Assume conducted quarterly for one year, once per permit cycle.
Sample quantity							Assume 5-year permit cycle.
River intake	4	samples					Assume conducted in years 0, 5, 10, 15, 20, and 25.
Final effluent	4	samples					Unit prices based on laboratory quote.
Laboratory analysis							
Fathead minnow (7-day, full dilution test)	8	samples	\$	1,575	\$	12,600	
Water flea (7-day, full dilution test)	8	samples	\$	1,475	\$	11,800	
Subtotal					\$	24,400	
Sampling and reporting labor	40	k	¢	75	¢	2 000	Assume 1 individual performs constitute and exactly a
Labor Supervisor	40	nr br	¢	75 110	¢	3,000	Assume 1 individual performs sampling and reporting.
Labor subtotal	10		Ψ	110	φ \$	4 100	
					Ψ	.,100	

Initial chronic toxicity testing total

\$ 28,500

QUANTITY	UNIT	UN	IT COST		TOTAL	NOTES
						Assume conducted once in the last summer, once in the last winter, of the permit cycle.
						Assume 5-year permit cycle.
2	samples					Assume conducted in years 5, 10, 15, 20, 25, and 30.
2	samples	\$	1,575	\$	3,150	
2	samples	\$	1,475	\$	2,950	
				\$	6,100	-
28	hr	\$	75	\$	2,100	Assume 1 individual performs sampling and reporting.
7	hr	\$	110	\$	770	Assume 25% of labor effort.
				\$	2,870	
				\$	8,970	
	QUANTITY 2 2 2 2 2 2 2 7	QUANTITYUNIT2samples2samples2samples28hr7hr	QUANTITYUNITUN2samples\$2samples\$2samples\$2samples\$2hr\$2hr\$	QUANTITYUNITUNIT COST2samples\$2samples\$2samples\$2samples\$2hr\$28hr\$7hr\$110	QUANTITY UNIT UNIT COST COST <thcost< th=""> COST COST</thcost<>	QUANTITY UNIT UNIT COST TOTAL 2 samples \$ 1,575 \$ 3,150 2 samples \$ 1,475 \$ 3,150 2 samples \$ 1,475 \$ 3,150 28 hr \$ 75 \$ 2,100 7 hr \$ 110 \$ 770 \$ 2,870 \$ 8,970 \$ 8,970

Table A-12 - Professional Services Cost Backup

DESCRIPTION	QUANTITY	UNIT	UN	IT COST		TOTAL	NOTES
Alternative A1 - Periodic Costs							Assessed as from the line of the second second
Five-year review periodic cost							Assume work performed by Hart Crowser staff.
							Historical mean non-zero quarterly Ecology cost at Kaiser 2007-
Ecology oversight	1	IS	\$	7,500	\$	7,500	2009.
Principal	16	hr	\$	180	\$	2,880	
Sr. Project	16	hr	\$	130	\$	2,080	
Sr. Staff	40	hr	\$	90	\$	3,600	
Staff	40	nr	\$ ¢	75	\$	3,000	
	8	nr	Ф	60	\$	480	-
lotal					Ф	19,540	
Closure report periodic cost							Assume work performed by Hart Crowser staff
							Historical mean non-zero quarterly Ecology cost at Kaiser 2007-
Ecology oversight	1	ls	\$	7,500	\$	7,500	2009.
Principal	40	hr	\$	180	\$	7,200	
Sr. Project	80	hr	\$	130	\$	10,400	
Sr. Staff	80	hr	\$	90	\$	7,200	
Staff	80	hr	\$	75	\$	6,000	
Sr. Drafter	24	hr	\$	100	\$	2,400	
Clerical	8	hr	\$	60	\$	480	
Total					\$	41,180	
MNA - data management periodic cost							Assume work performed by Hart Crowser staff.
Principal	2	hr	\$	180	\$	360	
Sr. Associate	4	hr	\$	160	\$	640	
Sr. Project	8	hr	\$	130	\$	1,040	
Sr. Staff	16	hr	\$	90	\$	1,440	
Staff	12	hr	\$	75	\$	900	
Clerical	2	hr	\$	60	\$	120	-
lotal					\$	4,500	
MNIA reporting pariadia aget							Assume work performed by Hort Crowser stoff
MINA - reporting periodic cost	0	hr	¢	100	¢	1 1 1 0	Assume work performed by Hart Crowser stan.
Sr. Accociato	0	hr	¢ ¢	160	¢ ¢	220	
Sr. Project	12	br	ф Ф	130	¢	1 560	
Sr. Stoff	12	br	ф Ф	130	¢	1,500	
Staff	10	br	¢ ¢	30 75	Ψ ¢	1 200	
Sr. Drafter	8	hr	s S	100	\$	800	
Clerical	4	hr	ŝ	60	ŝ	240	
Total	·		Ŷ		\$	7 000	=
					Ŷ	1,000	
Alternative A2 - Annual Costs							
Containment monitoring - data management			•		•		Assume work performed by Hart Crowser staff.
Principal	2	hr	\$	180	\$	360	
Sr. Associate	4	nr	þ	160	¢	640	
Sr. Project	4	nr br	¢	130	¢	1 090	
SI. Stall	12	lii hr	¢ ⊅	90 75	¢	1,060	
Clerical	12	br	¢ ¢	60	¢ ¢	120	
Total	2	111	Ψ	00	φ	3 620	-
1 otal					Ψ	0,020	
Containment monitoring - reporting							Assume work performed by Hart Crowser staff
Principal	8	hr	\$	180	\$	1 440	
Sr Associate	2	hr	ŝ	160	ŝ	320	
Sr. Project	8	hr	ŝ	130	\$	1.040	
Sr. Staff	12	hr	\$	90	\$	1.080	
Staff	12	hr	\$	75	\$	900	
Sr. Drafter	8	hr	\$	100	\$	800	
Clerical	4	hr	\$	60	\$	240	
Total			-		\$	5,820	-
Alternative A2 - Periodic Costs							
Five-vear reviews	50%				\$	9.770	Assume 50% of Alt. A1 five-year review cost to include
. ,	20,5				*	2,0	containment system.
Closure report	50%				\$	20,590	Assume 50% of Alt. A1 remedial action report cost to include
							containment system.

DESCRIPTION	QUANTITY	UNIT	UN	т созт		TOTAL	NOTES
Alternative A2							
l otal area to be capped	82,692	SF					Lotal excludes Hoffman Lank area multi-layer cap extension.
Multi-laver cap area	21.903	SF					FCT. WDR. and SDR areas.
Asphalt cap area	51,671	SF					Assume 85% of net remaing area to be asphalt capped (total
							area minus multi-layer cap area).
Concrete cap area	9,118	SF					Assume 15% of net remaing area to be concrete capped (total
Hoffman Tank area multi-laver can extension	1 782	SF					area minus multi-layer cap area). Extension of existing multi-layer cap (see Section 2.1.2.1)
	1,102	0.					Assumes dimensions of 22 ft x 81 ft.
Sales tax	8.7%						Effective rate for Spokane Valley, WA, 4/1/10 to 6/30/10. See
							http://dor.wa.gov/Docs/forms/ExcsTx/LocSalUseTx/LocalSIsUs
	0.00						
RSMeans location adjustment factor	0.93						Cost adjustment factor for Spokane, WA (2010 RSMeans
							cost guide.
							÷
Asphalt Capping							
Asphalt cap material quantities							
Compaction ratio	75%						Assume 75%.
Aggregate base course compacted thickness	3	in					
Asphalt base layer compacted thickness	2	in					
Asphalt intermediate layer compacted thickness	2	in					
Asphalt wearing layer compacted thickness	2	in L OV					
Aggregate base course volume (loose)	638	LCY					LCY = loose cubic yards
Railroad track length	402	LCT					For railroad track removal
Railroad ballast depth	402	ft					
Railroad ballast width	6	ft					
Railroad ballast volume	89	CY					
Asphalt can installation							
Mob/demob	1	IS	\$	4 053	\$	4 053	Previous project experience Adjusted from 2008 to 2010 basis
	·	20	Ŷ	1,000	Ŷ	1,000	(2010 RSMeans p. 671).
Railroad track removal							
Ties and track	402	LF	\$	10.93	\$	4,393	2010 RSMeans 02 41 13.33 3500.
Ballast	89	CY	\$	5.44	\$	486	2010 RSMeans 02 41 13.33 3600.
Subgrade preparation	5,741	SY	\$	1.75	\$	10,038	Prepare and roll. 2010 RSMeans 32 11 23.23 7000.
Paving materials hauling	1,914	LCY	\$	4.64	\$	8,881	12 CY trucks, 25 MPH ave., cycle 4 ml. 2010 RSMeans 31 23 23 20 1040
Aggregate base course	5,741	SY	\$	4.61	\$	26,483	Crushed 3/4-in. stone, compacted, 3 in. deep. 2010 RSMeans
						,	32 11 23.23 0050.
Asphalt base layer	5,741	SY	\$	8.37	\$	48,054	Binder course, 2-in. thick. 2010 RSMeans 32 12 16.13 0120.
Asphalt intermediate layer	5,741	SY	\$	8.37	\$	48,054	Binder course, 2-in. thick. 2010 RSMeans 32 12 16.13 0120.
Asphalt wearing layer	5,741	SY	\$	9.35	\$	53,660	Wearing course, 2-in. thick. 2010 RSMeans 32 12 16.13 0380.
Sealing	5,741	SY	\$	1.64	\$	9,397	Tack coat, emulsion 0.10 gal. per SY. 2010 RSMeans 32 01
C C							13.62 3270.
Sales tax	8.7%				\$	12,208	Assume sales tax charged on cost of materials.
Subtotal	400/				\$	225,706	
Cap installation quality control	10%				\$	248 276	Assume QC conducted to ensure appropriate impermeability.
Total unit cost		SY	\$	43.24	Ψ	240,270	
Concrete Capping							
Concrete cap material quantities							
Compaction ratio	75%						Assume 75%.
Aggregate base course compacted thickness	3	in					
Concrete thickness	6	in					
Aggregate base course volume (loose)	113	LCY					LCY = loose cubic yards
Concrete volume	169	CY					
Concrete paving pass length	24	LF					

DESCRIPTION	QUANTITY	UNIT	UN	T COST		TOTAL	NOTES
Concrete cap installation							
Mob/demob	1	LS	\$	4,053	\$	4,053	Previous project experience. Adjusted from 2008 to 2010 basis (2010 RSMeans p. 671)
Subgrade preparation	1 013	SY	\$	1 75	\$	1 771	Prepare and roll area 2010 RSMeans 32 11 23 23 7000
Base course material hauling	113	LCY	\$	4.64	\$	522	12 CY trucks, 25 MPH ave., cycle 4 mi. 2010 RSMeans 31 23
-							23.20 1040.
Aggregate base course	1,013	SY	\$	4.61	\$	4,673	Crushed 3/4-in. stone, compacted, 3 in. deep. 2010 RSMeans
	4.040	0)/	•	0.04	•	0.005	32 11 23.23 0050.
Reinforcing steel for rigid paving	1,013	SY	\$ ¢	6.84 2.04	\$ ¢	6,925	12 Ibs/SY. 2010 RSMeans 32 13 13.23 0530.
Dowels	351	LA	Ψ	2.34	ψ	2,734	10.60.2410
Concrete delivery	169	CY	\$	102	\$	17,274	Normal weight concrete, ready mix, 3,500 psi. Includes local
						,	aggregate, sand, Portland cement, and water. 2010 RSMeans
							03 31 05.35 0200.
Concrete paving	1,013	SY	\$	21	\$	21,671	Includes joints, finishing, curing. Fixed form, 24-ft pass, 6-in
Mater stars	054		¢	C 00	¢	0.544	thickness. 2010 RSMeans 32 13 13.23 0410.
water stops	951	LF	Φ	0.00	Φ	6,544	PVC, fibbed, w/ center bub, 6 in. wide, 3/6 in. thick. 2010 RSMeans 03 15 13 50 0550
Joint filler	951	LF	\$	2.45	\$	2.326	Butvl rubber filler, 1/2 x 1/2 in. 2010 RSMeans 07 91 26.10
			·		•	,	4365.
Joint seal	951	LF	\$	1.30	\$	1,238	Silicone, room temp vulcanizing foam seal, 1/2 x 1/2 in. 2010
							RSMeans 07 91 26.10 5610.
Sales tax	8.7%				\$	4,021	Assume sales tax charged on cost of materials.
Subtotal	109/				\$	73,814	Assume OC conducted to ansure appropriate importmentility
Total	10%				ф Ф	81 195	Assume QC conducted to ensure appropriate impermeability.
Total unit cost		SY	\$	80.14	Ψ	01,100	
Multi-Layer Capping							
Compaction ratio	75%						Assume 75%
Aggregate base course compacted thickness	3	in					
Intermediate layer thickness	12	in					
Top layer thickness	12	in					
Excavation depth	27	in					
Excavation volume	1,825	BCY					BCY = bank cubic yards
Aggregate base course volume	270	LCY					LCY = loose cubic yards
Top laver volume	811						Assume not compacted
	011	LOT					Assume not compacted.
Multi-layer cap installation							
Mob/demob	1	LS	\$	4,053	\$	4,053	Previous project experience. Adjusted from 2008 to 2010 basis
Class and much land	0.00		¢	0.054	¢	4 0 47	(2010 RSMeans p. 671).
Clear and grub land	0.26	acre	Ф	6,254	Ф	1,647	IN WDR and SDR areas only. Clear and grub brush including
Earthwork							stumps. 2010 Koweans 31 11 10.10 0100.
Excavator	1,825	BCY	\$	2.69	\$	4,916	Excavator, hydraulic, crawler mounted, 2 CY capacity. For
							heavy soil added 60%. 2010 RSMeans 31 23 16.42 0260.
Bulldozer	1,825	BCY	\$	2.49	\$	4,549	300 HP, 150-ft haul, sand & gravel. 2010 RSMeans 31 23
					•		16.46 5200.
Stockpiling	15%				\$	737	Add 15% of excavator cost. 2010 RSMeans 31 23 16.42 0011-
Finish grading	2 4 3 4	SY	\$	2 35	\$	5 726	Grade subgrade for base course small irregular areas 2010
r mor graang	2,101	01	Ψ	2.00	Ψ	0,720	RSMeans 31 22 16.10 1050.
Cap material hauling	1,082	LCY	\$	4.64	\$	5,020	12 CY trucks, 25 MPH ave., cycle 4 mi. 2010 RSMeans 31 23
							23.20 1040. Assume reuse of native material for top layer.
Aggregate base course	2,434	SY	\$	4.61	\$	11,226	Crushed 3/4-in. stone, compacted, 3 in. deep. 2010 RSMeans
	04.000	05	•	4.00	•	00.054	32 11 23.23 0050.
Liner	21,903	SF	¢ ¢	1.39	¢ ¢	30,351	PVC, 80-mil liner. 2010 RSMeans 02 56 13.10 0620.
internediate layer	011	LOT	Ψ	43	ψ	33,303	RSMeans 02 56 13 10 1120
Top layer	811	LCY	\$	40	\$	32,290	Assume reuse of native material. 2010 RSMeans 02 56 13.10
							1110, excluding material cost.
Seeding	2,434	SY	\$	0.47	\$	1,132	Mechanical seeding, 44 lb. per 1,000 SY. 2010 RSMeans 32 92
							19.13 0100.
vvater drainage and collection system	64	LF	\$	8.34	\$	535	Assume similar to foundation underdrain system. 4-in diam.
							2010 RSMeans assembly A1010 310 1000
Sales tax	8.7%				\$	2.835	Assume sales tax charged on cost of materials.
Subtotal	/0				\$	145,001	
Cap installation quality control	10%				\$	14,500	
Total				_	\$	159,501	
I otal unit cost		SY	\$	65.54			

Sheet 2 of 4

DESCRIPTION	QUANTITY	UNIT	UN	IT COST		TOTAL	NOTES
Hoffman Tank Area Multi-Layer Cap Extension Multi-layer cap material quantities							
Compaction ratio	75%						Assume 75%.
Aggregate base course compacted thickness	3	in					
Intermediate layer thickness	12	in					
Top layer thickness	12	in					
Excavation depth	27	in					
Excavation volume	149	BCY					BCY = bank cubic yards
Aggregate base course volume	22	LCY					LCY = loose cubic yards
Intermediate layer volume	66	LCY					Assume not compacted.
Top layer volume	66	LCY					Assume not compacted.
AST secondary containment length	39	ft					
AST secondary containment width	15	ft					
AST secondary containment height	4	ft					Wall height varies; estimated average height used.
AST secondary containment thickness	6	IN CV					Assume 6-in siab and wall thickness.
AST secondary containment concrete volume	19	Cĭ					
Multi-laver cap installation							
Mob/demob	1	LS	\$	4,053	\$	4,053	Previous project experience. Adjusted from 2008 to 2010 basis
			•	,	•	,	(2010 RSMeans p. 671).
Temporary relocation of surface structures							
Remove steam line	90	LF	\$	3.40	\$	306	Steel pipe w/ insulation, 3/4 in. to 4 in. 2010 RSMeans 02 41
							13.46 0100.
Relocate AST	1	day	\$	1,535	\$	1,535	Move AST for cap installation; return AST to original location
							after installation. Temporary crane, 25-ton. 2010 RSMeans 01
							54 19.50 0200.
Remove secondary containment	19	CY	\$	134	\$	2,522	Concrete demolition, average reinforcing. 2010 RSMeans 03
							05 05.10 0060.
Reconstruct secondary containment	19	CY	\$	173	\$	3,258	Slab on grade (3,500 psi), not including finish, 6-in thickness.
Poplace steem line	00	15	¢	26	¢	2 222	2010 RSMeans 03 30 53.40 4700.
Replace steam line	90	LF	φ	30	φ	3,222	sleepers 2010 RSMeans 33 61 13 10 1030
Earthwork							
Excavator	149	BCY	\$	2.69	\$	400	Excavator, hydraulic, crawler mounted, 2 CY capacity. For
							heavy soil added 60%. 2010 RSMeans 31 23 16.42 0260.
Bulldozer	149	BCY	\$	2.49	\$	370	300 HP, 150-ft haul, sand & gravel. 2010 RSMeans 31 23
							16.46 5200.
Stockpiling	15%				\$	60	Add 15% of excavator cost. 2010 RSMeans 31 23 16.42 0011-
							0020.
Finish grading	198	SY	\$	2.35	\$	466	Grade subgrade for base course, small irregular areas. 2010
							RSMeans 31 22 16.10 1050.
Cap material hauling	88	LCY	\$	4.64	\$	408	12 CY trucks, 25 MPH ave., cycle 4 mi. 2010 RSMeans 31 23
							23.20 1040. Assume reuse of native material for top layer.
Aggregate base course	198	sv	\$	4 61	\$	013	Crushed 3/4-in stone compacted 3 in deep 2010 RSMeans
Aggregate base course	150	01	Ψ	4.01	Ψ	515	32 11 23 23 0050
Liner	1 782	SF	\$	1 39	\$	2 469	PVC 80-mil liner 2010 RSMeans 02 56 13 10 0620
Intermediate laver	66	LCY	\$	49	\$	3.253	Bank sand. Ballast cover w/ common borrow material. 2010
			Ŧ		*	-,	RSMeans 02 56 13.10 1120.
Top layer	66	LCY	\$	40	\$	2,627	Assume reuse of native material. 2010 RSMeans 02 56 13.10
							1110, excluding material cost.
Seeding	198	SY	\$	0.47	\$	92	Mechanical seeding, 44 lb. per 1,000 SY. 2010 RSMeans 32 92
							19.13 0100.
Water drainage and collection system	18	LF	\$	8.34	\$	152	Assume similar to foundation underdrain system. 4-in diam.
							perf. PVC pipe. Pipe bedding, graded gravel 3/4 to 1/2 in.
Solos tox	0 70/				¢	600	2010 Koweans assembly A1010 310 1000.
Sales lax Subtotal	0.1%				¢ ¢	26 724	Assume sales lax charged on cost of materials.
Cap installation quality control	10%				¢	20,134	
Total	1076				φ \$	29 408	
Total unit cost		SY	\$	148.52	Ψ	20,400	
			· ·				

Containment Operation, Maintenance, and Monitoring

Cap annual sampling and laboratory analysis					
Drilling contractor	87.5%			\$ 10,762	Use % of MNA drilling contractor cost (see monitoring backup worksheet). % = cap sampling locations/MNA sampling locations.
Labor	0.6	WK	\$ 5,375	\$ 3,225	Assume 3 days HC staff at HC rates. Includes travel. See Table A-22.
Equipment, supplies	87.5%			\$ 403	Use % of MNA equipment & supplies cost (see monitoring backup worksheet). % = cap sampling locations/MNA sampling locations.
Sample shipping	87.5%			\$ 230	Use % of MNA sample shipping cost (see monitoring backup worksheet). % = cap sampling locations/MNA sampling locations.

Sheet 3 of 4

DESCRIPTION	QUANTITY	UNIT	UNI	UNIT COST		TOTAL	NOTES	
Laboratory analysis								
Sampling density	10,000	SF					Asphalt and concrete caps only.	
Permeability	7	samples	\$	100	\$	700	ASTM Method D 5084. Assume 1 sample per 10,000 SF. Unit	
							cost is engineer's estimate.	
Subtotal					\$	15,320		
Data management	1	yr	\$	3,620	\$	3,620	Assume work conducted by HC staff at HC rates. See Table A-	
							12.	
Reporting	1	yr	\$	5,820	\$	5,820	Assume work conducted by HC staff at HC rates. See Table A-	
							12.	

Table A-14 - SVE Periodic Cost Backup

DESCRIPTION	QUANTITY	UNIT	UN	п созт	TOTAL	NOTES
Periodic Costs - Years 1 and 2						
Carbon changeout, transport and regeneration	1	ea	\$	5,580	\$ 5,580	Includes replacement, removal, regeneration, and labor for carbon changeout for one 2,000-lb bed. Based on vendor quote for existing HC project. Price adjusted per 2010 RSMeans cost index. Assume to occur at end of year.
Mobilization/demobilization	1	LS	\$	1,000	\$ 1,000	LS price for contractor mobilization based on previous Kaiser vendor cost estimate. Cost accounts for moving of treatment unit. Assume to occur at end of year.
HC oversight	0.6	wk	\$	5,375	\$ 3,225	Assume 3 days of oversight for treatment system move. See Table A-22 for backup calculation.
Startup performance monitoring	1	LS	\$	5,186	\$ 5,186	See Table A-18 for backup calculations.
Confirmational air sampling	1	LS	\$	5,694	\$ 5,694	See Table A-18 for backup calculations.
Contingency	17.5%				\$ 3,620	Percentage of capital costs. Average percent of SVE contingency and general bid (EPA 540-R-00-002).
Project management	10%				\$ 2,431	Percentage of sum of periodic cost and contingency. EPA 540- R-00-002.
Technical support	10%				\$ 2,431	Percentage of sum of periodic cost and contingency. EPA 540- R-00-002.
Periodic Costs - Years 1 and 2					\$ 29,166	
Periodic Costs - Year 3						
Startup performance monitoring	1	LS	\$	5,186	\$ 5,186	See Table A-18 for backup calculations.
Periodic Costs - Year 3					\$ 5,186	
Periodic Costs - Year 4						
Equipment and appurtenances repair/replacement	1	LS	\$	5,000	\$ 5,000	Cost of blower. Price obtained from vendor.
Confirmational air sampling					\$ 5,694	See Table A-18 for backup calculations.
Periodic Costs - Year 4					\$ 10,694	
Demobilization of Treatment System/Professional	and Technical	Service	es - Year	5		
Contractor mobilization/demobilization	1	LS	\$	1,000	\$ 1,000	LS price for contractor mobilization based on previous Kaiser vendor cost estimate.
Carbon transport and regeneration	1	ea	\$	2,790	\$ 2,790	Assume 50% of carbon changeout, transport, and regeneration cost.
Treatment unit shipping	1	LS	\$	2,000	\$ 2,000	Shipping treatment system from the Facility. Assume same cost as shipping to Facility. Price obtained from SVE vendor.
Piping demolition	385	ft	\$	3.87	\$ 1,490	2-in steel piping demolition cost from 2010 RSMeans 22 05 05.10 2050. Location factor adjustment for Spokane, WA, 2010 RSMeans, p. 696.
Well abandonment					\$ 12,680	See Table A-16 for backup calculations.
Soil sampling					\$ 26,499	See Table A-18 for backup calculations.
Contingency	17.5%				\$ 8,130	Percentage of capital costs. Average percent of SVE contingency and general bid (EPA 540-R-00-002).
Project management	10%				\$ 5,459	Percentage of sum of periodic cost and contingency. EPA 540- R-00-002.
Technical support	10%				\$ 5,459	Percentage of sum of periodic cost and contingency. EPA 540- R-00-002.
Periodic Cost - Year 5					\$ 65,507	-

Table A-15 - SVE Treatment System Annual Operation and Maintenance Cost Backup

DESCRIPTION	QUANTITY	UNIT	UN	IT COST	TOTAL	NOTES
Treatment System Operation and Maintenance						
Maintenance labor	50	hr	\$	110	\$ 5,500	Assume 5 days of HC project level staff.
Equipment maintenance	1	LS	\$	2,000	\$ 2,000	Based on previous HC estimate.
Spare parts and supplies	1	LS	\$	1,000	\$ 1,000	Assume 50% of equipment maintenance.
Equipment rental	12	mo	\$	1,000	\$ 12,000	600-SCFM blower, moisture separator, vessels for 2 x 2,000-lb GAC beds, process control, sensors & instrumentation, system enclosure per SVE vendor estimate.
Utilities	13,140	kWh	\$	0.05	\$ 620	Based on 1.5 kW demand (600-SCFM motor, 6-8 in mmHg [All- Star RB9 Series]), continuous operation. Cost of electricity based on estimate provided by Kaiser.
Treatment System Operation and Maintenance Sub	ototal				\$ 21,120	-

Sheet 1 of 1

Table A-16 - SVE Well Installation and Well Abandonment Cost Backup

DESCRIPTION	QUANTITY	UNIT	UN	іт созт	TOTAL	NOTES
Drilling - well installation 2-in Well Materials	380	ft	\$	77	\$ 29,260	19 locations to 20-ft depth. Unit cost based on Kaiser vendor previous cost estimate. Includes mob/demob, drilling, materials, 8.7% sales tax. Prices for well materials based on Kaiser vendor previous cost
						estimate. Costs adjusted from 2009 to 2010 dollars with 2010 RSMeans historical cost index adjustment (2010 RSMeans p. 671).
SCH 40 PVC screen 2-in diam. x 10 ft, .020 in	166	ft	\$	5.45	\$ 905	In ORB area there are 16 x 2-in wells with screen interval 5-15 feet bgs. In Oil House area there are 3 x 2-in wells with screen interval 18-20 feet bgs.
SCH 40 PVC 2-in diam. x 10 ft	214	ft	\$	3.54	\$ 758	See note above.
SCH 40 ends 2-in diam.	19	ea	\$	14	\$ 259	
Flush monument 8-in	19	ea	\$	237	\$ 4,503	8-in monument.
Sand	120	bag	\$	19	\$ 2,243	Quote for number of bags provided by Kaiser vendor.
Drums	15	ea	\$	86	\$ 1,288	Quote for number of drums provided by Kaiser vendor.
Bentonite	35	bag	\$	15	\$ 512	Estimated number of bags based on previous Kaiser vendor cost estimate.
Well permits - WA	19	ea	\$	76	\$ 1,439	_
2-in Well Materials Subtotal					\$ 11,907	-
Additional Costs for Well Installation						
Transport & dispose of soil at Subtitle D landfill	5.7	ton	\$	54	\$ 308	Cost for disposal based on previous Kaiser work and adjusted using 2010 RSMeans historical cost index. Based on cost of 15 drums for disposal. Number of drums generated based on estimate from Kaiser vendor.
HC oversight	0.8	wk	\$	5,375	\$ 4,300	For logging well information and protection monitoring. See Table A-16 for backup calculations.
Equipment rental	4	day	\$	80	\$ 320	HC equipment cost.
Additional Costs for Well Installation Subtotal		-			\$ 4,928	
SVE Well Installation Subtotal					\$ 46,094	
Well Abandonment						
Ecology filing	19	per well	\$	65	\$ 1,235	
Labor	76	hr	\$	110	\$ 8,360	4 hrs/well per HC estimate. Assume HC project level staff.
Bentonite chips	19	per well	\$	39	\$ 741	3 bags at \$13 per HC estimate.
Truck 1/2 day	8	day	\$	85	\$ 680	
Additional mileage cost					\$ 300	See Table A-22 for backup calculations.
Per diem	8	day	\$	133	\$ 1,064	
Trip per diem	2	ea	\$	150	\$ 300	See Table A-22 for backup calculations.
Well Abandonment Subtotal					\$ 12,680	

Table A-17 - Vapor Extraction and Treatment System Installation Cost Backup

Pipe Trenching Subtotal

DESCRIPTION	QUANTITY	UNIT	UN	іт соѕт		TOTAL	NOTES
Treatment System Installation							
Contractor mobilization/demobilization	1	LS	\$	1,000	\$	1,000	LS price for contractor mobilization (based on previous cost estimate from Kaiser vendor).
Treatment unit shipping	1	LS	\$	2,000	\$	2,000	Shipping treatment unit to the Facility. Based on SVE vendor cost estimate.
Piping conveyance installation	1	LS	\$	15,890	\$	15,890	See SVE conveyance backup calculation below.
Pipe trenching	1	LS	\$	4,980	\$	4,980	See pipe trenching backup calculation below.
Carbon	1	LS	\$	4,000	\$	4,000	For 2 x 2,000-lb. beds. Cost from SVE vendor.
HC oversight	1	wk	\$	5,375	\$	5,375	Assume 1 week of HC oversight during installation of SVE treatment systemt. See Table A-22 for backup calculations.
Power hookup	3	ea	\$	5,000	\$	15,000	Power hookup cost provided by vendor.
Treatment System Installation Subtotal					\$	48,245	
SVE Piping Conveyance							
Contractor mobilization/demobilization	1	LS	\$	1,000	\$	1,000	LS price for contractor mobilization based on previous cost
2-in SCH 40 PVC piping - wells	285	ft	\$	8 51	\$	2 425	Assume 20 ft per well Pipe cost from 2010 RSMeans 22 11
	200	'n	Ŷ	0.01	Ŷ	2,120	13.74 4216. Subtract cost of coupling and clevis hanger assembly 2010 RSMeans 22 11 13.74 4530. Location factor adjustment for Spokane, WA, 2010 RSMeans, p. 696.
2-in SCH 40 PVC piping - header	100	ft	\$	8.51	\$	851	Distance between AOCs and proposed treatment unit as shown on Figures 2-11 and 2-12. Pipe cost from 2010 RSMeans 22 11 13.74 4216. Subtract cost of coupling and clevis hanger assembly 2010 RSMeans 22 11 13.74 4530. Location factor adjustment for Spokane, WA, 2010 RSMeans, p. 696.
2-in SCH 40 coupling	39	ea	\$	47	\$	1,814	Assume per 10 feet of piping, 2010 RSMeans 22 11 13.76 0410. Location factor adjustment for Spokane, WA, 2010
2-in SCH 40 90 degree elbows	19	ea	\$	115	\$	2,191	Assume 1 per well, 2010 RSMeans 22 11 13.76 0090. Location factor adjustment for Spokane, WA, 2010 RSMeans, p. 696.
2-in SCH 40 tee	19	ea	\$	99	\$	1,873	Assume 1 per well, 2010 RSMeans 22 11 13.76 0290. Location factor adjustment for Spokane, WA, 2010 RSMeans, p. 696.
2-in SCH 40 ball valve	19	ea	\$	115	\$	2,191	Assume 1 per well. Assume same cost as 90-degree elbow.
2-in SCH 40 pressure gage	19	ea	\$	115	\$	2,191	Assume 1 per well. Assume same cost as 90-degree elbow.
Extra piping, fittings	10%				\$	1,354	Assume 10% of materials and labor listed above.
SVE Fiping Conveyance Subtotal					φ	15,690	
Pipe Trenching							
Quantities for Trench Excavation							
Description	QTY	Unit	Con	nments			
Length of pipe	385 f	t					
Width of trench	1.5 f	t					
Depth of trench	3 f	t	Ass	ume 4 ft l	ogs i	for utilities. D	o not want to disturb other utilities
Base course thickness	6 i	n	Ass	umed			
Asphalt thickness	4 i	n	Ass	umed			
Pipe bedding thickness (crushed rock)	12 i	n	assi	umed			
Backfill thickness	1.17 t	t	assi	ume usin	g ex	cavated mate	rials
Volume of soil around per vault (2x2x3 ft)	39% 12 (f					
DESCRIPTION	QUANTITY	UNIT	UN	IT COST		TOTAL	NOTES
Removal of pavement	64	SY	\$	7.91	\$	507	2010 RSMeans 02 41 13.17 5050 with location factor correction.
Trenching	68	BCY	\$	7.30	\$	498	4 to 6-in-thick pavement. 2010 RSMeans 31 23 16.13 6050 with location factor correction. Sand & gravel with no sheeting or dewatering included, 1 to 4 ft
Pipe bedding	28	LCY	\$	36	\$	1,020	deep, 3/8 CY excavator. 2010 RSMeans 31 23 23.16 0049 with location factor correction.
							crushed or screened bank run gravel. Assume 75% compaction ratio.
Pipe bedding compaction	21	ECY	\$	4.61	\$	99	2010 RSMeans 31 23 23.16 0050 with location factor correction.
Backfilling	29	LCY	\$	2.36	\$	68	2010 RSMeans 31 23 16.13 3000 with location factor correction. Backfill trench, F.E. loader, wheel mtd., 1 CY bucket, minimal
Backfilling compaction	25	ECY	\$	4.70	\$	117	 ASSUME 15% DURING Factor. 2010 RSMeans 31 23 23.13 0600 with location factor correction. Compaction in 6-in layers, vibrating plate
Base course	64	SY	\$	5.02	\$	322	2010 RSMeans 32 11 23.23 0350 with location factor correction. Bank run gravel, spread and compacted, 6 in deep.
Repaving roadway	64	SY	\$	17	\$	1,062	2010 RSMeans 32 11 26.13 0500 with location factor correction. Roadways and large paved areas. Bitumous concrete, 4-in thick
Soil disposal	24	ton	\$	54	\$	1,287	Cost for disposal based on previous Kaiser work and adjusted using 2010 RSMeans historical cost index. Assume 25% of soil excavated for trench will be disposed of.

\$4,980

Table A-18 - SVE Monitoring Cost Backup

									Cost i	n Do	llars				
		Labor Hou Senior	rs Senior		abor Subtotal		ravel xpense ncludes per em)		iquipment & supplies		ab Analysis + hipping	Subcontractor			Task
	Principal	Project	Staff		Ľ	ł	工品のあ		шõ		ى ت		ō		Subtotal
Startup System Performance (1st 2 weeks of operation Daily system monitoring Weekly vapor monitoring Startup Subtotal) 2 2 4	4 2 6	28 8 36	\$ \$ \$	3,560 1,400 4,960			\$ \$	180 180					\$	5,186
Annual Performance Monitoring Monthly system monitoring visits for one year Quarterly vapor monitoring Annual Performance Monitoring Subtotal	12 4 16	24 8 32	24 18 42	\$\$ \$ \$	7,680 3,510 11,190			\$ \$	2,760 2,760	\$ \$	1,490 1,490			\$	15,440
Confirmational Sampling Vapor monitoring - before treatment unit is moved Soil confirmational sampling Confirmational Sampling Subtotal	3 2 5 \$ 190	6 4 10	13.5 27 40.5	\$ \$ \$	2,633 3,465 6,098	\$	1,254 1,254	\$ \$	1,944 1,944	\$ \$	1,118 1,794 2,912	\$ \$	19,986 19,986	\$ \$ \$	5,694 26,499 32,194

DESCRIPTION	QUANTITY	UNIT	UNI	т соѕт	Т	OTAL	NOTES
Startup Equipment Costs							
Colormetric tubes	16	ea	\$	10	\$	160	HC equipment costs. Conservatively assumed measuring for benzene and toluene.
Hand pump	2	day	\$	10	\$	20	HC equipment costs.
Startup Equipment Costs Subtotal					\$	180	-
Annual Equipment and Laboratory Costs							
Colormetric tubes	264	ea	\$	10	\$	2,640	HC equipment costs. Conservatively assumed measuring for benzene and toluene
Hand nump	12	dav	\$	10	\$	120	HC equipment costs
BTEX analysis for Summa cannister samples	4	ea	\$	324	\$	1,296	Based on previous HC estimate from 2007. Cost adjusted using historical cost index from 2010 RSMeans p. 671.
Sample shipping	15%				\$	194	Assumed percentage of sample analysis cost for Summa cannister samples.
Annual Equipment and Laboratory Costs Subtotal					\$	4,056	
Air Confirmational Sampling							Verification that point of diminishing returns has been reached.
BTEX analysis for summa cannisters	3	ea	\$	324	\$	972	Based on previous HC estimate from 2007. Cost adjusted using historical cost index from 2010 PSMeans p. 671
Sample shipping	15%				\$	146	
Air Confirmational Sampling Subtotal	10,0				\$	972	-
Soil Confirmational Sampling							
Drilling contractor	260	ft	\$	77	\$	19,986	13 locations to 20-ft depth. Unit cost based on Kaiser vendor previous cost estimate. Includes mob/demob, drilling, materials, 8.7% sales tax.
Laboratory analysis	26	samples	\$	60	\$	1.560	TPH-G - soil.
Sample shipping	15%				\$	234	Assumed percentage of sample analysis cost.
Soil Confirmational Sampling Subtotal					\$	21,546	

Table A-19 - Excavation and Screening Cost Backup

Choot	1	of	1	
Sneet	1	OT	1	

Excavation		
Locations	21 AOCs	
Area	75,471 SF	
Depth	various	See FSTM.
Volume	33,340 CY	Volume does not account for side slopes.
Overburden volume	5,863 CY	Volume does not account for side slopes.
Bulking factor	1.15 CY/CY	
Volume to haul	38,341 CY	Haul to screening area.
Bulk density	1.4 ton/CY	-
Bulk mass	46,676 ton	
Screening		
Gross volume excavated	33,340 CY	
Screening efficiency	70%	
Net volume	23,338 CY	
Bulk density	1.4 ton/CY	
Bulk mass	32,673 ton	
Disposal		
Subtitle C percentage	6%	2018 CY of lead in MMD
Subtitle D percentage	94%	
Mass to dispose	32,673 ton	Post screening.
Subtitle C mass	1,978 ton	
Subtitle D mass	30,696 ton	
Excavation Oversight		
Total excavated volume	39,203 CY	
Daily output for excation	160 CY/day	2 CY backhoe, 2010 RSMeans 31 23 16.16 6060. Output decreased 20% to account for coordination and excavated 21 unique
Duration of excavation	245 days	areas.
Duration of excavation	49 weeks	

Analysis of Confirmational Samples from Excavations

Assume labor for sampling is part of excavation oversight.											
Bottom samples	302 :	samples	1 s	ample/ 2	50 s	sq ft.					
Side wall samples	84 :	samples	Mir	nimum 4 :	sam	nples/exca	avation area.				
	quantity	unit	unit cost			total	notes				
Equipment/shipping	1	S	\$	10,000	\$	10,000	Engineer's estimate.				
TPH-Dx	270 :	samples	\$	60	\$	16,200	Assume 70% of samples.				
PCBs	116 :	samples	\$	175	\$	20,300	Assume 30% of samples.				
cPAHs	39 :	samples	\$	215	\$	8,385	Assume 10% of samples.				
Metals	39 :	samples	\$	180	\$	7,020	Assume 10% of samples.				
Subtotal					\$	61,905	-				

Screening Operations Monitoring

Number of samples

2 weeks of oversight	10,750 dollars	Assume HC
Analytical costs/sample	415 \$/sample	TPH-Dx, PB
Number of samples	10 samples	Assume up te
Subtotal	\$ 14.900	

57 samples

Assume HC Senior Staff. See Table A-22. PH-Dx, PBCs, metals. Assume up to 10 tears in liner.

Stockpile Characterization Sampling and Analysis

> 2000 CY soil, 10 samples plus 1 for each additional 500 cy (Ecology 1991).

	quantity unit	un	it cost	total	notes
Oversight	2 weeks	\$	5,375	\$ 10,750	2 weeks of oversight (see Table A-22).
Equipment/shipping	1 LS	\$	2,000	\$ 2,000	Engineer's estimate.
TPH-Dx	40 samples	\$	60	\$ 2,400	Assume 70% of samples.
PCBs	17 samples	\$	175	\$ 2,975	Assume 30% of samples.
cPAHs	6 samples	\$	215	\$ 1,290	Assume 10% of samples.
Metals	6 samples	\$	180	\$ 1,080	Assume 10% of samples.
Subtotal				\$20,495	

Table A-20 - On-Site Biotreatment Cost Backup

Landfarm Footprint Volume of soil to be treated	23,338	су	Scr	een volu	ime	from Table	A-19.
Footprint of landfarm at 1 foot thick Footprint (acres)	630,126 14.47	sf acres					
Nutrient Addition Calculations							
Average SVOC concentration	4,704	mg/kg					
Total soil mass	32,673	ton	Pos	st-screer	ning	soil mass.	See Table A-19.
Lotal soil mass	29,641,127	kg ma/ka	Acc			concentrati	on
Desired C:N:P	100:15:1	ratio of nutrients	733	une ov	00	concentiati	01.
N needed	705.6	mg/kg					
P needed	47.04	mg/kg	_				
Total N needed (kg)	20,915	kg N					
Total N needed (lbs)	46,109	lbs N					
N Source Weight fraction - nitrogen	NH4NU3 0.35	Ib N/Ib NH4NO3					
Ammonium nitrate needed	131.748	lbs NH4NO3					
Total P needed (kg)	1,394	kg P	-				
Total P needed (lbs)	3,074	lbs P					
P source	K4P2O7	tetrapotassium pyro	pho	sphate			
Weight fraction - phosphorus	0.19	Ib P/Ib K4P2O7					
K source	K4P2O7	tetrapotassium pyro	nho	snhata			
Weight fraction - potassium	0.47	lb K/lb K4P2O7	prio	opnate			
Tetrapotassium pyrophosphate used	16,392	lbs K4P2O7					
Total K (lbs)	7,760	lbs K	-				
Nutrient Addition	quantity	unit	un	nit cost		total	notes
Ammonium nitrate	131,748	LBS	\$ ¢	0.36	\$ ¢	47,259	Unit price from vendor quotation, 8.7% sales tax.
Total putrient cost	10,392	LDO	φ	1.52	¢	24,945 72 204	Onit price from vendor quotation, 8.7% sales tax.
					Ψ	12,204	
Landfarm Construction/Earthwork	quantity	unit	un	nit cost		total	notes
Liner	630,126	SF	\$	0.99	\$	624,261	60 mil HDPE, 2010 RSMeans 02 56 13.10 0722.
• "							8.7% sales tax.
Grading	70,014	SY	\$	0.94	\$	65,764	Grade subgrade for base course 2010 RSMeans 31
Berm	874	CY	\$	1 98	\$	1 732	22 156.10 1020 .
Beim	0/4	01	Ψ	1.50	Ψ	1,752	end loader, front-end loader track mtd, 1-1/2 CT cap.
							2010 RSMeans 31 23 16.42 1200.
Clean crushed rock base	11,669	CY	\$	25	\$	295,615	6-in thick layer for leachate collection unit cost
							provided by Kaiser.
Hauling & soil placement in landfarm	23,338	CY	\$	6.98	\$	162,783	Bulldozer, 200 hp, 300-ft haul, common earth, 2010
Remove soil from landfarm	23 338	CY	\$	1 94	\$	45 178	RSMeans 31 23 10.40 4420. Excavator 2-CV cap 2010 RSMeans 31 23 16 42
Keniove soil norn landiann	20,000	01	Ψ	1.54	Ψ	45,170	0260, 15% added for loading into trucks.
Haul soil to final destination	23,338	CY	\$	5.49	\$	128,056	8-CY truck, 15 MPH, cycle 2 miles, 2010 RSMeans 31
							23 23.20 0018.
Subtotal					\$	1,323,387	
Periodic Tilling							
Purchase roto-tiller tractor	\$ 10.000	Engineer's estimate					
Labor	\$ 39,000	Laborer at \$75/hr, 2	10 hc	ours eve	ry tw	o weeks fo	r year.
Subtotal	\$ 49,000						
Leachate Collection	quantity	<u>unit</u>	un ¢	hit cost	¢	total	notes
Piping	12,603	π	Ф	11	Ф	142,088	33 46 16 30 2110 8 7% sales tax
Pumps	4	ea	\$	425	\$	1.698	1-1/2-in discharge. 1/4-hp submersible sump pump.
·			Ŧ		•	.,	2010 RSMeans 22 14 29.16 7180. 8.7 % sales tax.
Misc fittings/etc.	1	LS	\$	5,000	\$	5,000	Engineer's estimate.
Storage tanks	2	ea	\$	14,600	\$	29,200	Engineer's estimate.
Oversight	6	wk	\$	5,375	\$	32,250	1/2 week/month.
Leachate water sampling	24	ea	\$ ¢	24	\$ ¢	5/6	Monthly sampling of each tank for phosphorus.
Oundes	3,000	KVVII	φ	0.05	φ	104	pump efficiency 70% motor efficiency 1 hp =
							0.7457kW). Operation 25% of the time. Cost of
							electricity based on estimate provided by Kaiser.
Subtotal					\$	211,596	
Landtarm Performance Monitoring	quantity	unit	¢	5 27F	¢	total 21 500	notes
Fauipment/shipping	4	WK LS	φ \$	2,000	ф Я	21,500	Fngineer's estimate
Analytical costs/sample	228	ea	\$	335	\$	76,380	Quarterly sampling for TPH-Dx and conventionals, # of
							samples/month based on volume, > 2000 CY soil, 10
							samples plus 1 for each additional 500 CY (Ecology
Subtotol					¢	00.000	1991).
Sudial					Ъ	99,880	

Volume of soil to be treated	23,338 C	Y					
Mass of soil to be treated	32,673 to	ns					
Earthwork/Transport Material	quantity	unit	un	it cost		total	notes
Haul soil to treatment area	23,338	CY	\$	2.02	\$	47,098	Front-end loader, 2-1/2-CY cap, 2010 RSMeans 31 23 16.42 1250.
Remove soil from stockpile	23,338	CY	\$	1.94	\$	45,178	Excavator, 2-CY cap, 2010 RSMeans 31 23 16.42 0260, 15% added for loading into trucks.
Haul soil to final destination	23,338	CY	\$	5.49	\$	128,056	8-CY truck, 15 MPH, cycle 2 miles, 2010 RSMeans 31 23 23.20 0018.
Thermal Performance Monitoring	quantity	unit	un	it cost		total	notes
Thermal Performance Monitoring Oversight	quantity 24	unit wk	un \$	<u>it cost</u> 5,375	\$	total 129,000	notes Assume 6 months of oversight. See Table A-22.
Thermal Performance Monitoring Oversight Equipment/shipping	quantity 24 1	unit wk LS	<u>un</u> \$ \$	<u>iit cost</u> 5,375 2,000	\$	total 129,000 2,000	notes Assume 6 months of oversight. See Table A-22. Engineer's estimate.
Thermal Performance Monitoring Oversight Equipment/shipping Soil analytical	quantity 24 1 120	unit wk LS ea	un \$ \$ \$	iit cost 5,375 2,000 275	\$ \$ \$	total 129,000 2,000 33,000	notes Assume 6 months of oversight. See Table A-22. Engineer's estimate. 10 samples/2000 CY soil (Ecology 1991).
Thermal Performance Monitoring Oversight Equipment/shipping Soil analytical Air monitoring (daily monitoring)	quantity 24 1 120 24	unit wk LS ea wk	un \$ \$ \$ \$	it cost 5,375 2,000 275 420	\$ \$ \$	total 129,000 2,000 33,000 10,080	notes Assume 6 months of oversight. See Table A-22. Engineer's estimate. 10 samples/2000 CY soil (Ecology 1991). Weekly rental of air monitoring equipment (multi- parameter meter).
Thermal Performance Monitoring Oversight Equipment/shipping Soil analytical Air monitoring (daily monitoring) Air monitoring (weekly)	quantity 24 1 120 24 24	unit wk LS ea wk ea	un \$ \$ \$ \$	it cost 5,375 2,000 275 420 200	\$ \$ \$ \$	total 129,000 2,000 33,000 10,080 4,800	notes Assume 6 months of oversight. See Table A-22. Engineer's estimate. 10 samples/2000 CY soil (Ecology 1991). Weekly rental of air monitoring equipment (multi- parameter meter). Weekly emissions monitoring for TPH, cPAHs (Summa canister).

Table A-22 - Hart Crowser and Analytical Rates Cost Backup

HC Kaiser Rates		
Sr. Principal	\$ 190	
Principal	\$ 180	
Sr. Associate	\$ 160	
Associate	\$ 145	
Sr. Project	\$ 130	
Project	\$ 110	
Sr. Staff	\$ 90	
Staff	\$ 75	
Sr. Drafter	\$ 100	
Drafter	\$ 77	
Clerical	\$ 60	
Sub Markup	12%	
Communication fee	0%	
Mileage	\$0.50/mi.	Fed rate (2010)
Truck Rental	\$ 85	+ mileage for over 50 mi./day (due to gas prices)
Safety (\$ per hr.)	\$ 5	per field labor hour
Trip per diem	\$ 150	each way
Per diem	\$ 133	Fed rate for Spokane

Weekly Cost for HC oversight (staff)

Labor	\$ 3,600	5 days (9 hr) for staff level, plus safety costs
Truck	\$ 810	5 days truck plus travel day, plus \$300 for miles over 50
Travel	\$ 300	
Per diem	\$ 665	
Subtotal	\$ 5,375	per week

Columbia Analytical Services and Advanced Analytical Laboratory Costs

Assume same price for water/soil.

Parameter	Cos	t / Analysis
NWTPH-HCID	\$	55
TPH-Dx	\$	60
TPH-G	\$	60
PCBs - Ultra-Low Level	\$	175
VOCs	\$	130
PAHs (8270 SIM)	\$	215
Metals (10)	\$	180
Arsenic	\$	26
Chromium	\$	24
Manganese	\$	26
Iron	\$	24
Antimony	\$	26
TSS	\$	18
Chloride	\$	18
Nitrate/Nitrite	\$	24
Hardness	\$	25
TDS	\$	18
Alkalinity	\$	18
Sulfate	\$	18
Total arsenic,	\$	50
chromium, zinc, and		
phosphorous		
Hexavalent chromium	\$	50
Orthophosphate	\$	20
Cyanide	\$	40
BOD	\$	45
Fecal coliform	\$	35
Oil & grease	\$	50

APPENDIX B COST ESTIMATES FOR DEEP VADOSE ZONE SOIL REMEDIAL ALTERNATIVES

CONTENTS

APPENDIX B COST ESTIMATES FOR DEEP VADOSE ZONE SOIL REMEDIAL ALTERNATIVES

TABLES

- B-1 Estimated Cost Comparison for Deep Vadose Zone Soil Remedial Alternatives
- B-2 Alternative B1 Estimated Cost Summary
- B-3 Alternative B2 Estimated Cost Summary
- B-4 Alternative B3 Estimated Cost Summary
- B-5 Alternative B4 Estimated Cost Summary
- B-6 Alternative B5 Estimated Cost Summary
- B-7 Monitoring Cost Backup
- B-8 Institutional Controls Cost Backup
- B-9 Professional Services Cost Backup
- B-10 Containment Cost Backup
- B-11 SVE Periodic Cost Backup
- B-12 SVE Treatment System Annual Operation and Maintenance Cost Backup
- B-13 SVE Well Installation and Well Abandonment Cost Backup
- B-14 Vapor Extraction and Treatment System Installation Cost Backup
- B-15 SVE Monitoring Cost Backup
- B-16 In Situ Treatment Cost Backup
- B-17 Hart Crowser and Analytical Rates Cost Backup

L:\Jobs\2644125\Final FS 05-2012\03 Appendices\Appendix B\Appendix B TOC.doc

Table B-1 - Estimated Cost Comparison for Deep Vadose Zone Soil Remedial Alternatives

Location:	Kaiser Trentwood	l Fac	cility	Description: Cost comparison of the net present value and incremental cost of Alternative B1 through						
	Spokane Valley, V	ΝA		B5 for remediation of deep vadose zone soil.						
Phase:	Feasibility Study	(-35%	% to +50%)							
Base Year:	2010									
Date:	July 2011									
DES	CRIPTION	٢	TOTAL IET PRESENT VALUE	I	NCREMENTAL COST	COST TABLE REFERENCE				
Alternative B	1	\$	13,600,000		Baseline Cost	Table B-2				
Alternative B	2	\$	14,700,000	\$	1,100,000	Table B-3				
Alternative B	3	\$	15,300,000	\$	600,000	Table B-4				
Alternative B	4	\$	23,200,000	\$	Table B-5					
Alternative B	5	\$	13,600,000	\$	-	Table B-6				

Note:

Present value analysis uses a 30-year discount rate of 7%.

Table B-2 - Alternative B1 Estimated Cost Summary

Feasibility Study (-35% to +50%)

Location: Kaiser Trentwood Facility

Phase:

Spokane Valley, WA

Description: Alternative B1 consists of institutional controls, monitoring, and monitored natural attenuation (MNA) and is common to each of the alternatives that will be evaluated for the remediation of deep vadose zone soil at the Kaiser Facility. Alternative B1 assumes an operating period of 30 years in the development of this cost estimate.

Sheet 1 of 2

Base Year: 2010							
Date: July 2011							
CAPITAL COSTS							
DESCRIPTION	QUANTITY	UNIT	U	NIT COST		TOTAL	NOTES
Institutional Controls							
Institutional control plans	1	EA	\$	46,548	\$	46,548	See Table B-8.
Pending upgrades in casting complex	1	LS	\$	1,076,073	\$	1,076,073	See Table B-8.
Restrictive covenant preparation	1	LS	\$	24,970	\$	24,970	See Table B-8.
Institutional Controls Subtotal					\$	1,147,591	
Contingency	10%				\$	114,759	Scope and bid contingency. Percentage of institutional controls cost.
Brofossional/Technical Services							
Project management	6%				\$	75 741	EPA 540-R-00-002
Ecology oversight	1	YR	\$	22,000	\$	22,000	Year 0. Kaiser mean annual Ecology costs 2007-2009.
Professional/Technical Services Subtotal					\$	97,741	
TOTAL CAPITAL COST					\$	1,360,091	
DESCRIPTION	QUANTITY	UNIT	U	NIT COST		TOTAL	NOTES
Protection monitoring	1	YR	\$	44 683	\$	44 683	See Table B-7
Performance monitoring	1	YR	\$	223,417	\$	223,417	See Table B-7.
Data management	1	YR	\$	29,948	\$	29,948	HC estimate. Data validation; maintain database.
Monitoring, Sampling, Testing, and Analysis Su	ubtotal				\$	298,048	See Table B-7.
Institutional control plans	1	YR	\$	30 018	\$	30 018	See Table B-8
Institutional controls maintenance	1	YR	\$	259,604	\$	259,604	See Table B-8.
Outfall & treatment plant monitoring	1	YR	\$	101,946	\$	101,946	See Table B-8. Required by NPDES permit and Ecology orders
Site information database	1	YR	\$	5 743	\$	5 743	(see Section 2.1.1.1). See Table B-8
Institutional Controls Subtotal	,		Ψ	0,140	\$	397,311	
Contingency	10%				\$	69,536	Scope and bid contingency. Percentage of monitoring and institutional controls annual cost.
Professional/Technical Services							
Project management	10%				\$	76,489	EPA 540-R-00-002.
Technical support	10%				\$	76,489	EPA 540-R-00-002.
Ecology oversight	1	YR	\$	22,000	\$	22,000	Kaiser mean annual Ecology costs 2007-2009.
Reporting	1	YR	\$	16,182	\$	16,182	B-7.
Professional/Technical Services Subtotal					\$	191,161	
TOTAL ANNUAL O&M COST					\$	956,055	
PERIODIC COSTS							
DESCRIPTION	QUANTITY	UNIT	U	NIT COST		TOTAL	NOTES
Monitoring, Sampling, Testing, and Analysis							
MNA performance monitoring	1	LS	\$	16,857	\$	16,857	Years 5, 10, 15, 20, 25, 30. See Table B-7.
Data management	1	LS	\$	4,500	\$	4,500	Years 5, 10, 15, 20, 25, 30. See Table B-7.
Monitoring, Sampling, Testing, and Analysis Su	ubtotal				\$	21,357	
Institutional Controls (Periodic Update and Mai	ntenance)						
Restrictive covenants	1	EA	\$	6,470	\$	6,470	Years 5, 10, 15, 20, 25, 30. See Table B-8.
Initial acute and chronic toxicity testing	1	LS	\$ ¢	45,000	\$ ¢	45,000	Years 0, 5, 10, 15, 20, 25. See Table B-8.
Institutional Controls Subtotal	I	13	φ	14,940	\$	66,410	
Contingency	10%				\$	8,777	Scope and bid contingency. Percentage of periodic costs.
Brofossional/Tachnical Samilara							Project management and technical support cost included in
Froressional/ Lechnical Services	1	F۵	\$	19 5/0	\$	10 5/0	packup tables Years 5, 10, 15, 20, 25, 30, See Table B-9
MNA reporting	1	LS	\$	7,000	\$	7,000	Years 5, 10, 15, 20, 25, 30. See Table B-7.
Closure report	1	EA	\$	41,180	\$	41,180	Year 30. See Table B-9.
Professional/Technical Services Subtotal					\$	67,720	
							1

Table B-2 - Alternative B1 Estimated Cost Summary

Location:	: Kaiser Trentwood Facility Description: Alt				cription: Alter	ription: Alternative B1 consists of institutional controls, monitoring, and monitored natural attenuation (MNA) and is common to each e alternatives that will be evaluated for the remediation of deep vadose zone soil at the Kaiser Facility. Alternative B1 assumes an							
	Spokane Valley	/, WA		ope	rating period of	30 years in the de	evel	lopment of this c	sost estimate.				
Phase:	Feasibility Stud	y (-35%	6 to +50%)										
Base Year:	2010												
Date:	July 2011												
PRESENT V		s											
Discount rate Total years	7.0% 30												
COST TYPE	YEAR		TOTAL COST	тс I	OTAL COST PER YEAR	DISCOUNT FACTOR	NE	ET PRESENT VALUE	NOTES				
Capital	0	\$	1,409,591	\$	1,409,591	1.000	\$	1,409,591					
Annual O&M	1 - 30	\$	28,681,662	\$	956,055	12.409	\$	11,863,731					
Periodic	5	\$	123,084	\$	123,084	0.713	\$	87,757					
Periodic	10	\$	123,084	\$	123,084	0.508	\$	62,569					
Periodic	15	\$	123,084	\$	123,084	0.362	\$	44,611					
Periodic	20	\$	123,084	\$	123,084	0.258	\$	31,807					
Periodic	25	\$	123,084	\$	123,084	0.184	\$	22,678					
Periodic	30	\$	114,764	\$	114,764	0.131	\$	15,076					
		\$	30,821,436				\$	13,537,821					
TOTAL NET	PRESENT VALU	JE OF	ALTERNATIVE	E B1			\$	13,537,821					

Notes:

Costs taken from RSMeans have been adjusted by Spokane location adjustment factor of 0.93. Costs from previous work greater than 1 year old have been adjusted using historical cost index factors provided by 2010 RSMeans (p. 671). Present value analysis uses a 30-year discount rate of 7.0%.

Table B-3 - Alternative B2 Estimated Cost Summary

Location: Kaiser Trentwood Facility

Phase:

Spokane Valley, WA Feasibility Study (-35% to +50%)

Description: Alternative B2 includes the elements of Alternative B1 plus containment for remediation of deep vadose zone soil. The containment options considered in Alternative B2 include capping using asphalt, concrete, and multi-layer construction. Alternative B2 assumes an operating period of 30 years in the development of this cost estimate.

Sheet 1 of 2

Date: July 2011							
CAPITAL COSTS DESCRIPTION	QUANTITY	UNIT	UN	IT COST		TOTAL	NOTES
Cap Installation							
Permits	1	LS	\$	40,000	\$	40,000	Previous project experience.
Concrete cap installation	268	SY	\$ \$	40	ф S	70,268 25,506	See Table B-10. See Table B-10
Hoffman Tank area cap extension	408	SY	φ \$	111	\$	45.422	Extension of existing multi-laver cap. See Table B-10.
Cap Installation Subtotal					\$	181,196	
Contingency	20%				\$	36,239	Scope and bid contingency. Percentage of cap installation costs.
Professional/Technical Services					•	17.005	Percentage of sum of capital cost and contingency.
Project management	8%				\$	17,395	EPA 540-R-00-002. Includes reports referenced in WAC 173-340- 400(6)(b).
Remedial design	15%				\$	32,615	EPA 540-R-00-002.
Construction management	10%				\$	21,744	EPA 540-R-00-002. Includes reports referenced in WAC 173-340-
Ecology oversight	10%				\$	2.200	Assume 10% of Alt. B1 Ecology oversight cost to include cap.
Professional/Technical Services Subtotal					\$	73,954	
Institutional Controls							New institutional controls for containment portion of Alt. B2.
Institutional controls plan	50%				\$	23,274	Assume 50% of Alt. B1 institutional control plan cost to include
Restrictive covenants	25%				\$	6,243	Assume 25% of Alt. B1 restrictive covenant preparation cost to
Institutional Controls Subtotal					\$	29,517	include cap.
TOTAL CAPITAL COST					\$	320,906	
ANNUAL O&M COSTS DESCRIPTION	QUANTITY	UNIT	UN	IT COST		TOTAL	NOTES
Containment Operation Maintenance and M	onitoring						
Cap inspection	0.2	WK	\$	5,375	\$	1,075	Assume annual inspection, 1 day HC staff at HC rates. See Table
Cap sampling and laboratory analysis	1	YR	\$	1 387	¢	4 387	B-17. See Table B-10.
Con maintenance				7.007	J D		
Cap maintenance	5%		Ψ		\$	16,045	Assume 20 year cap life. Assume 5% of cap to be replaced annually. Use 5% of cap installation total capital cost as maintenance cost
Data management	5%	 YR	\$	2,160	\$ \$	2,160	Assume 20 year cap life. Assume 5% of cap to be replaced annually. Use 5% of cap installation total capital cost as maintenance cost. See Table B-10.
Data management Containment Operation, Maintenance, and M	5% 1 Ionitoring Subtotal	 YR	\$	2,160	\$ \$ \$	2,160 23,667	Assume 20 year cap life. Assume 5% of cap to be replaced annually. Use 5% of cap installation total capital cost as maintenance cost. See Table B-10.
Data management Containment Operation, Maintenance, and M Contingency	5% 1 Ionitoring Subtotal 20%	 YR 	\$	- 2,160	\$ \$ \$	2,160 23,667 4,733	Assume 20 year cap life. Assume 5% of cap to be replaced annually. Use 5% of cap installation total capital cost as maintenance cost. See Table B-10. Scope and bid contingency. Percentage of annual operation, maintenance, and monitoring costs.
Data management Containment Operation, Maintenance, and M Contingency Professional/Technical Services	5% 1 Ionitoring Subtotal 20%	 YR 	\$	-, 2,160	\$ \$ \$	2,160 23,667 4,733	Assume 20 year cap life. Assume 5% of cap to be replaced annually. Use 5% of cap installation total capital cost as maintenance cost. See Table B-10. Scope and bid contingency. Percentage of annual operation, maintenance, and monitoring costs. Percentage of sum of annual cost and contingency.
Data management Containment Operation, Maintenance, and M Contingency Professional/Technical Services Project management	5% 1 onitoring Subtotal 20% 10%	 YR 	\$	-,307 2,160 	\$ \$ \$	2,160 23,667 4,733 2,840	Assume 20 year cap life. Assume 5% of cap to be replaced annually. Use 5% of cap installation total capital cost as maintenance cost. See Table B-10. Scope and bid contingency. Percentage of annual operation, maintenance, and monitoring costs. Percentage of sum of annual cost and contingency. EPA 540-R-00-002.
Data management Containment Operation, Maintenance, and M Contingency Professional/Technical Services Project management Technical support	5% 1 onitoring Subtotal 20% 10% 10%	 YR 	\$	-,307 2,160 	\$ \$ \$ \$ \$	2,160 23,667 4,733 2,840 2,840	Assume 20 year cap life. Assume 5% of cap to be replaced annually. Use 5% of cap installation total capital cost as maintenance cost. See Table B-10. Scope and bid contingency. Percentage of annual operation, maintenance, and monitoring costs. Percentage of sum of annual cost and contingency. EPA 540-R-00-002. EPA 540-R-00-002.
Data management Containment Operation, Maintenance, and M Contingency Professional/Technical Services Project management Technical support Ecology oversight Benotion	5% 1 onitoring Subtotal 20% 10% 10% 10%	 YR 	\$ \$\$	-, 5, 820	• • • • • • • • • • • • • • • • • • •	2,160 23,667 4,733 2,840 2,840 2,200 5,820	Assume 20 year cap life. Assume 5% of cap to be replaced annually. Use 5% of cap installation total capital cost as maintenance cost. See Table B-10. Scope and bid contingency. Percentage of annual operation, maintenance, and monitoring costs. Percentage of sum of annual cost and contingency. EPA 540-R-00-002. EPA 540-R-00-002. Assume 10% of Alt. B1 Ecology oversight cost.
Data management Containment Operation, Maintenance, and M Contingency Professional/Technical Services Project management Technical support Ecology oversight Reporting Professional/Technical Services Subtotal	5% 1 onitoring Subtotal 20% 10% 10% 10% 1	 YR YR	\$	-,307 2,160 5,820	3 \$\$ \$ \$\$ \$\$ \$\$ \$\$ \$	2,160 23,667 4,733 2,840 2,840 2,200 5,820 13,700	Assume 20 year cap life. Assume 5% of cap to be replaced annually. Use 5% of cap installation total capital cost as maintenance cost. See Table B-10. Scope and bid contingency. Percentage of annual operation, maintenance, and monitoring costs. Percentage of sum of annual cost and contingency. EPA 540-R-00-002. EPA 540-R-00-002. Assume 10% of Alt. B1 Ecology oversight cost. See Table B-10.
Data management Containment Operation, Maintenance, and M Contingency Professional/Technical Services Project management Technical support Ecology oversight Reporting Professional/Technical Services Subtotal Institutional Controls (Annual Update and Ma Institutional Controls plan	5% 1 conitoring Subtotal 20% 10% 10% 10% 1 1 aintenance) 50%	 YR YR	\$	-,307 -,160 5,820	ን ው ው ው ው ው ው ው ው ው ው ው ው ው ው ው ው ው ው ው	2,160 23,667 4,733 2,840 2,840 2,200 5,820 13,700	Assume 20 year cap life. Assume 5% of cap to be replaced annually. Use 5% of cap installation total capital cost as maintenance cost. See Table B-10. Scope and bid contingency. Percentage of annual operation, maintenance, and monitoring costs. Percentage of sum of annual cost and contingency. EPA 540-R-00-002. EPA 540-R-00-002. Assume 10% of Alt. B1 Ecology oversight cost. See Table B-10.
Data management Containment Operation, Maintenance, and M Contingency Professional/Technical Services Project management Technical support Ecology oversight Reporting Professional/Technical Services Subtotal Institutional Controls (Annual Update and Ma Institutional controls plan	5% 1 20% 20% 10% 10% 10% 1 3 aintenance) 50%	 YR YR 	\$	-,307 2,160 5,820 	ን	2,160 23,667 4,733 2,840 2,840 2,200 5,820 13,700 15,009 1 436	Assume 20 year cap life. Assume 5% of cap to be replaced annually. Use 5% of cap installation total capital cost as maintenance cost. See Table B-10. Scope and bid contingency. Percentage of annual operation, maintenance, and monitoring costs. Percentage of sum of annual cost and contingency. EPA 540-R-00-002. EPA 540-R-00-002. Assume 10% of Alt. B1 Ecology oversight cost. See Table B-10. Assume 50% of Alt. B1 institutional control plan cost to include cap.
Data management Containment Operation, Maintenance, and M Contingency Professional/Technical Services Project management Technical support Ecology oversight Reporting Professional/Technical Services Subtotal Institutional Controls (Annual Update and Ma Institutional controls plan Site information database	5% 1 onitoring Subtotal 20% 10% 10% 10% 1 sintenance) 50% 25%	 YR YR 	\$	-,307 -, 2,160 5,820 	3 03 03 03 03 03 03 03 03 03 03 03 03 03	2,160 23,667 4,733 2,840 2,840 2,200 5,820 13,700 15,009 1,436	Assume 20 year cap life. Assume 5% of cap to be replaced annually. Use 5% of cap installation total capital cost as maintenance cost. See Table B-10. Scope and bid contingency. Percentage of annual operation, maintenance, and monitoring costs. Percentage of sum of annual cost and contingency. EPA 540-R-00-002. EPA 540-R-00-002. Assume 10% of Alt. B1 Ecology oversight cost. See Table B-10. Assume 50% of Alt. B1 institutional control plan cost to include cap. Assume 25% of Alt. B1 site information database cost to include cap.
Data management Containment Operation, Maintenance, and M Contingency Professional/Technical Services Project management Technical support Ecology oversight Reporting Professional/Technical Services Subtotal Institutional Controls (Annual Update and Ma Institutional controls plan Site information database Institutional Controls Subtotal	5% 1 conitoring Subtotal 20% 10% 10% 10% 1 aintenance) 50% 25%	 YR YR 	\$	-,307 -, 2,160 5,820 	3 49 49 49 49 49 49 49 49 49 49 49 49 49	2,160 23,667 4,733 2,840 2,840 2,200 5,820 13,700 15,009 1,436 16,445	Assume 20 year cap life. Assume 5% of cap to be replaced annually. Use 5% of cap installation total capital cost as maintenance cost. See Table B-10. Scope and bid contingency. Percentage of annual operation, maintenance, and monitoring costs. Percentage of sum of annual cost and contingency. EPA 540-R-00-002. EPA 540-R-00-002. Assume 10% of Alt. B1 Ecology oversight cost. See Table B-10. Assume 50% of Alt. B1 institutional control plan cost to include cap. Assume 25% of Alt. B1 site information database cost to include cap.
Data management Containment Operation, Maintenance, and M Contingency Professional/Technical Services Project management Technical support Ecology oversight Reporting Professional/Technical Services Subtotal Institutional Controls (Annual Update and Ma Institutional controls plan Site information database Institutional Controls Subtotal TOTAL ANNUAL 0&M COST	5% 1 20% 10% 10% 10% 1 25%	 YR YR 	\$	-,307 2,160 5,820 	3 \$\$ \$ \$ \$\$ \$\$ \$\$ \$\$ \$ \$ \$\$ \$	16,045 2,160 23,667 4,733 2,840 2,840 2,200 5,820 13,700 15,009 1,436 16,445 58,546	Assume 20 year cap life. Assume 5% of cap to be replaced annually. Use 5% of cap installation total capital cost as maintenance cost. See Table B-10. Scope and bid contingency. Percentage of annual operation, maintenance, and monitoring costs. Percentage of sum of annual cost and contingency. EPA 540-R-00-002. EPA 540-R-00-002. Assume 10% of Alt. B1 Ecology oversight cost. See Table B-10. Assume 50% of Alt. B1 institutional control plan cost to include cap. Assume 25% of Alt. B1 site information database cost to include cap.
Data management Containment Operation, Maintenance, and M Contingency Professional/Technical Services Project management Technical support Ecology oversight Reporting Professional/Technical Services Subtotal Institutional Controls (Annual Update and Ma Institutional controls plan Site information database Institutional Controls Subtotal TOTAL ANNUAL 0&M COST PERIODIC COSTS	5% 1 conitoring Subtotal 20% 10% 10% 10% 1 sintenance) 50% 25%	 YR YR 	\$	2,160 2,160 5,820 	ት ዓ ዓ ዓ ዓ ዓ ዓ ዓ ዓ ዓ ዓ ዓ ዓ ዓ ዓ ዓ ዓ ዓ ዓ ዓ	16,045 2,160 23,667 4,733 2,840 2,840 2,200 5,820 13,700 15,009 1,436 16,445 58,546	Assume 20 year cap life. Assume 5% of cap to be replaced annually. Use 5% of cap installation total capital cost as maintenance cost. See Table B-10. Scope and bid contingency. Percentage of annual operation, maintenance, and monitoring costs. Percentage of sum of annual cost and contingency. EPA 540-R-00-002. EPA 540-R-00-002. Assume 10% of Alt. B1 Ecology oversight cost. See Table B-10. Assume 50% of Alt. B1 institutional control plan cost to include cap. Assume 25% of Alt. B1 site information database cost to include cap.
Data management Containment Operation, Maintenance, and M Contingency Professional/Technical Services Project management Technical support Ecology oversight Reporting Professional/Technical Services Subtotal Institutional Controls (Annual Update and Ma Institutional Controls (Annual Update and Ma Institutional controls plan Site information database Institutional Controls Subtotal TOTAL ANNUAL 0&M COST PERIODIC COSTS DESCRIPTION	5% 1 20% 10% 10% 10% 10% 1 aintenance) 50% 25% QUANTITY	 YR YR 	\$ \$ UN	2,160 5,820 	ን	16,045 2,160 23,667 4,733 2,840 2,840 2,200 5,820 13,700 15,009 1,436 16,445 58,546 TOTAL	Assume 20 year cap life. Assume 5% of cap to be replaced annually. Use 5% of cap installation total capital cost as maintenance cost. See Table B-10. Scope and bid contingency. Percentage of annual operation, maintenance, and monitoring costs. Percentage of sum of annual cost and contingency. EPA 540-R-00-002. EPA 540-R-00-002. Assume 10% of Alt. B1 Ecology oversight cost. See Table B-10. Assume 50% of Alt. B1 institutional control plan cost to include cap. Assume 25% of Alt. B1 site information database cost to include cap.
Data management Containment Operation, Maintenance, and M Contingency Professional/Technical Services Project management Technical support Ecology oversight Reporting Professional/Technical Services Subtotal Institutional Controls (Annual Update and Ma Institutional Controls (Annual Update and Ma Institutional Controls plan Site information database Institutional Controls Subtotal TOTAL ANNUAL O&M COST PERIODIC COSTS DESCRIPTION Professional/Technical Services	5% 1 20% 10% 10% 10% 1 aintenance) 50% 25% QUANTITY	 YR YR 	\$	2,160 2,160 5,820 	ት ዓ ዓ <mark>ዓ ዓ ዓ ዓ ዓ ዓ ዓ ዓ ዓ ዓ ዓ ዓ ዓ ዓ</mark>	16,045 2,160 23,667 4,733 2,840 2,840 2,200 5,820 13,700 15,009 1,436 16,445 58,546 TOTAL	Assume 20 year cap life. Assume 5% of cap to be replaced annually. Use 5% of cap installation total capital cost as maintenance cost. See Table B-10. Scope and bid contingency. Percentage of annual operation, maintenance, and monitoring costs. Percentage of sum of annual cost and contingency. EPA 540-R-00-002. EPA 540-R-00-002. Assume 10% of Alt. B1 Ecology oversight cost. See Table B-10. Assume 50% of Alt. B1 institutional control plan cost to include cap. Assume 25% of Alt. B1 site information database cost to include cap. NOTES Project management and technical support cost included in backup tables
Data management Containment Operation, Maintenance, and M Contingency Professional/Technical Services Project management Technical support Ecology oversight Reporting Professional/Technical Services Subtotal Institutional Controls (Annual Update and Ma Institutional Controls (Annual Update and Ma Institutional Controls plan Site information database Institutional Controls Subtotal TOTAL ANNUAL O&M COST PERIODIC COSTS DESCRIPTION Professional/Technical Services Five-year reviews	5% 1 20% 10% 10% 10% 10% 1 aintenance) 50% 25% QUANTITY 1	 YR YR UNIT EA	\$ \$ UN \$	2,160 2,160 5,820 5,820 IT COST 9,770	ን	16,045 2,160 23,667 4,733 2,840 2,840 2,200 5,820 13,700 15,009 1,436 16,445 58,546 TOTAL 9,770	Assume 20 year cap life. Assume 5% of cap to be replaced annually. Use 5% of cap installation total capital cost as maintenance cost. See Table B-10. Scope and bid contingency. Percentage of annual operation, maintenance, and monitoring costs. Percentage of sum of annual cost and contingency. EPA 540-R-00-002. EPA 540-R-00-002. Assume 10% of Alt. B1 Ecology oversight cost. See Table B-10. Assume 50% of Alt. B1 institutional control plan cost to include cap. Assume 25% of Alt. B1 site information database cost to include cap. NOTES Project management and technical support cost included in backup tables Years 5, 10, 15, 20, 25, 30. Assume same cost as in Alt. B1. See
Data management Containment Operation, Maintenance, and M Contingency Professional/Technical Services Project management Technical support Ecology oversight Reporting Professional/Technical Services Subtotal Institutional Controls (Annual Update and Ma Institutional Controls plan Site information database Institutional Controls Subtotal TOTAL ANNUAL 0&M COST PERIODIC COSTS DESCRIPTION Professional/Technical Services Five-year reviews Closure report	5% 1 conitoring Subtotal 20% 10% 10% 10% 1 aintenance) 50% 25% QUANTITY 1 1	 YR YR UNIT EA EA	\$ \$ UN \$ \$	2,160 2,160 5,820 IT COST 9,770 20,590	ን	16,045 2,160 23,667 4,733 2,840 2,200 5,820 13,700 1,5,009 1,436 16,445 58,546 TOTAL 9,770 20,590	Assume 20 year cap life. Assume 5% of cap to be replaced annually. Use 5% of cap installation total capital cost as maintenance cost. See Table B-10. Scope and bid contingency. Percentage of annual operation, maintenance, and monitoring costs. Percentage of sum of annual cost and contingency. EPA 540-R-00-002. EPA 540-R-00-002. Assume 10% of Alt. B1 Ecology oversight cost. See Table B-10. Assume 50% of Alt. B1 institutional control plan cost to include cap. Assume 25% of Alt. B1 site information database cost to include cap. MOTES Project management and technical support cost included in backup tables Years 5, 10, 15, 20, 25, 30. Assume same cost as in Alt. B1. See Table B-9. Year 30. Assume same cost as in Alt. B1. See Table B-9.

Table B-3 - Alternative B2 Estimated Cost Summary

Location:	Kaiser Trentwo	od Fac	ility	cont	ainment option	s considered in A	ng using asphalt, concrete, and multi-layer construction. Alternative B2		
	Spokane Valley	, WA		assu	mes an operat	ting period of 30 y	ears	in the development of	f this cost estimate.
Phase:	Feasibility Stud	y (-35%	% to +50%)						
Base Year:	2010								
Date:	July 2011								
PRESENT V		5							
Discount rate Total years	7.0% 30								
COST TYPE	YEAR		TOTAL COST	то Р	TAL COST ER YEAR	DISCOUNT FACTOR	N	ET PRESENT VALUE	NOTES
Capital	0	\$	320,906	\$	320,906	1.000	\$	320,906	
Annual O&M	1 - 30	\$	1,756,376	\$	58,546	12.409	\$	726,498	
Periodic	5	\$	9,770	\$	9,770	0.713	\$	6,966	
Periodic	10	\$	9,770	\$	9,770	0.508	\$	4,967	
Periodic	15	\$	9,770	\$	9,770	0.362	\$	3,541	
Periodic	20	\$	9,770	\$	9,770	0.258	\$	2,525	
Periodic	25	\$	9,770	\$	9,770	0.184	\$	1,800	
Periodic	30	\$	30,360	\$	30,360	0.131	\$	3,988	
		\$	2,156,492				\$	1,071,191	Net present value of elements unique to Alternative B2.
Total Net Pre	sent Value of Alte	ernativ	e B1				\$	13,537,821	
TOTAL NET	PRESENT VALU	JE OF	ALTERNATIV	E B2			\$	14,609,012	

Notes: Costs taken from RSMeans have been adjusted by Spokane location adjustment factor of 0.93. Costs from previous work greater than 1 year old have been adjusted using historical cost index factors provided by 2010 RSMeans (p. 671). Present value analysis uses a 30-year discount rate of 7.0%.

Table B-4 - Alternative B3 Estimated Cost Summary

Location:	Kaiser Trentwoo	Duraciiity	soil. Alternative E	33 assumes an o	des Alterna perating pe	ariod of one	us soil vapor extract e vear for each VOC	Ion and off-gas treatment for remediation of VOCs in deep vadose zone CAOC. There are three deep vadose zone VOC AOCs.
	Spokane Valley	, WA			portaing pe			
Phase:	Feasibility Study	/ (-35% to +50%)						
Base Year:	2010							
Date:	July 2011							
CAPITAL CO	OSTS DESC	RIPTION	QUANTITY	UNIT	UNIT	COST	TOTAL	NOTES
Submittals, Pre- and po	Plans, Site Prepa	aration ubmittals, implementatior	plans 1	LS	\$	10,000	\$ 10,00	0 SAP, HASP, work plan, SWPPP, as-built drawings, O&M manual,
Permits			1	LS	\$	10,000	\$ 10,00	 OHC estimate based on previous work. Building permits will be
Submittals,	Plans, Site Prepa	aration Subtotal				-	\$ 20,00	required.
Installation	and Startup							
SVE well in Vapor extra	nstallation action and treatme	ent system installation	1	LS	\$ \$	115,439 38,465	\$ 115,43 \$ 38.46	9 See Table B-13 for backup calculations. 5 See Table B-14 for backup calculations
System sta	artup and testing		17.5%		÷ -	-	\$ 26,93	Percentage of SVE installation capital costs. Average percentage of
Installation	and Startup Subt	total				-	\$ 180,83	5VE contingency and general bid (EPA 540-R-00-002).
Contingenc	у		17.5%			- :	\$ 35,14	7 Percentage of capital costs. Average percentage of SVE contingency and general bid (EPA 540-R-00-002).
Professiona Project ma	al/Technical Servi inagement	ices	8%		-	- :	\$ 18,87	Percentage of sum of capital cost and contingency. 9 EPA 540-R-00-002. Includes reports referenced in WAC 173-340-
Remedial of Construction	design on management		15% 10%			-	\$ 35,39 \$ 23,59	8 EPA 540-R-00-002. 8 EPA 540-R-00-002. 8 EPA 540-R-00-002. Includes reports referenced in WAC 173-340-
Ecology ov Professiona	versight al/Technical Servi	ices Subtotal	10%		-		\$ 2,20 \$ 77,87	400(6)(b). Assume 10% of Alt. B1 Ecology oversight cost. 5
TOTAL CAP	PITAL COST					:	\$ 313,85	8
ANNUAL O	&M COSTS DESC	RIPTION	QUANTITY	UNIT	UNIT	соѕт	TOTAL	NOTES
System Ope Treatment	eration and Monit system operation	and maintenance	1	YR	\$	21,120	\$ 21,12 \$ 14.12	0 See Table B-12 for backup calculations.
System Ope	eration and Monit	oring Subtotal	I	IK	φ	14,120	\$ 35,24	
Contingenc	У		17.5%		-	- :	\$ 6,16	7 % of annual costs. Average percentage of SVE contingency and general bid (EPA 540-R-00-002).
Professiona	/Technical Servi							Percentage of sum of annual cost and contingency.
Project ma	inagement	ices	10%		-	- :	\$ 4,14 \$ 4.14	1 EPA 540-R-00-002. 1 EPA 540-P-00-002
Project ma Technical s Professiona	anagement support al/Technical Servi	ices ices Subtotal	10% 10%		-		\$ 4,14 \$ 4,14 \$ 8,28	1 EPA 540-R-00-002. 1 EPA 540-R-00-002. 2
Project ma Technical s Professiona	Inagement support II/Technical Servi	ices Subtotal	10% 10%		-		\$ 4,14 \$ 4,14 \$ 8,28 \$ 49,68	1 EPA 540-R-00-002. 1 EPA 540-R-00-002. 2 9
Project ma Technical s Professiona TOTAL ANN PERIODIC C	All Control Servi Inagement Support IUAL O&M COST COSTS	ices Subtotal	10% 10%			- : - <u>:</u>	\$ 4,14 \$ 4,14 \$ 8,28 \$ 49,68	1 EPA 540-R-00-002. 1 EPA 540-R-00-002. 9 NOTES
Project ma Technical s Professiona TOTAL ANN PERIODIC C	All Technical Servi support AUAL O&M COST COSTS DESC	ices Subtotal	10% 10%		-		\$ 4,14 \$ 4,14 \$ 8,28 \$ 49,68 TOTAL	1 EPA 540-R-00-002. 1 EPA 540-R-00-002. 2 9 NOTES
Project ma Technical s Professiona TOTAL ANN PERIODIC C	All rechnical Servi support AL/Technical Servi AUAL O&M COST COSTS DESC st - Year 1	ices Subtotal	10% 10%	-	-	- : - <u>:</u>	\$ 4,14 <u>\$ 4,14</u> \$ 8,28 \$ 49,68 TOTAL \$ 29,05	NOTES See Table B-11 for backup calculations.
Project ma Technical s Professiona TOTAL ANN PERIODIC C Periodic Co: Periodic Co:	AUTECHNICAL SERVI support al/Technical Servi AUAL 0&M COST COSTS DESC st - Year 1 st - Year 2 ST - Year 2	ices Subtotal	10% 10%			- : - <u>:</u> :	\$ 4,14 \$ 4,14 \$ 8,28 \$ 49,68 TOTAL \$ 29,05 \$ 36,92 \$ 36,92 \$ 36,92	NOTES See Table B-11 for backup calculations.
Project ma Technical s Professiona TOTAL ANN PERIODIC C Periodic Co: Periodic Co: Periodic Co: Periodic Co:	All Ferninal Servi support al/Technical Servi AUAL 0&M COST COSTS DESC st - Year 1 st - Year 2 st - Year 3 st - Year 4	ices Subtotal	10% 10%			- ! - ! ! ! ! !	\$ 4,14 \$ 4,14 \$ 8,28 \$ 49,68 TOTAL \$ 29,05 \$ 36,92 \$ 22,27 \$ 130,33	I EPA 540-R-00-002. I EPA 540-R-00-002. 9 NOTES 3 See Table B-11 for backup calculations. 1 See Table B-11 for backup calculations. 8 See Table B-11 for backup calculations. 8 See Table B-11 for backup calculations. 6 See Table B-11 for backup calculations.
Project ma Technical s Professiona TOTAL ANN PERIODIC Co Periodic Co Periodic Co Periodic Co Periodic Co Periodic Co	All Contract Servi ALAL O&M COST ALAL O&M COST COSTS DESC St - Year 1 St - Year 2 St - Year 3 St - Year 4 	ices Subtotal RIPTION	10%			- : : - <u>:</u> : : : : : : : : : : : : : : : : : :	\$ 4,14 \$ 4,14 \$ 8,28 \$ 49,68 TOTAL \$ 29,05 \$ 36,92 \$ 22,27 \$ 130,33	I EPA 540-R-00-002. I EPA 540-R-00-002. 9 NOTES 3 See Table B-11 for backup calculations. 1 See Table B-11 for backup calculations. 8 See Table B-11 for backup calculations. 6 See Table B-11 for backup calculations.
Project ma Technical s Professiona TOTAL ANN PERIODIC Co Periodic Co: Periodic Co: Periodic Co: Periodic Co: Periodic Co: Periodic Co: Present V Discount rate Total years	All Constant and Servi ALAL O&M COST ALAL O&M COST COSTS DESC St - Year 1 St - Year 2 St - Year 3 St - Year 3 St - Year 4 ALUE ANALYSIS P 7.0% 3	ices Subtotal	10%		-	- ! - <u></u> ! !	\$ 4,14 \$ 4,14 \$ 8,28 \$ 49,68 TOTAL \$ 29,05 \$ 36,92 \$ 22,27 \$ 130,33	I EPA 540-R-00-002. I EPA 540-R-00-002. 9 NOTES 3 See Table B-11 for backup calculations. 1 See Table B-11 for backup calculations. 8 See Table B-11 for backup calculations. 6 See Table B-11 for backup calculations.
Project ma Technical s Professiona TOTAL ANN PERIODIC Co Periodic Co: Periodic Co: Periodic Co: Periodic Co: Periodic Co: Present V Discount rate Total years COST TYPE	All Control of the second seco	ices Subtotal RIPTION	10% 10% TOTAL COST PER YEAR	 DISCOUNT FACTOR	- - NET PR VAI	RESENT	\$ 4,14 \$ 4,14 \$ 8,28 \$ 49,68 TOTAL \$ 29,05 \$ 36,92 \$ 22,27 \$ 130,33	I EPA 540-R-00-002. I EPA 540-R-00-002. 9 NOTES 3 See Table B-11 for backup calculations. 1 See Table B-11 for backup calculations. 8 See Table B-11 for backup calculations. 6 See Table B-11 for backup calculations. 6 See Table B-11 for backup calculations. NOTES
Project ma Technical s Professiona TOTAL ANN PERIODIC Co Periodic Co: Periodic Co: Periodic Co: Periodic Co: Periodic Co: Present V Discount rate Total years COST TYPE Capital	All Control of the second seco	ices Subtotal RIPTION	10% 10% TOTAL COST PER YEAR 313,858 \$ 313,858	 DISCOUNT FACTOR 1.00	NET PR VAI	RESENT LUE 313,858	\$ 4,14 \$ 4,14 \$ 8,28 \$ 49,68 TOTAL \$ 29,05 \$ 36,92 \$ 22,27 \$ 130,33	I EPA 540-R-00-002. I EPA 540-R-00-002. 9 NOTES 3 See Table B-11 for backup calculations. 1 See Table B-11 for backup calculations. 8 See Table B-11 for backup calculations. 6 See Table B-11 for backup calculations. 6 See Table B-11 for backup calculations. 7 NOTES
Project ma Technical s Professiona TOTAL ANN PERIODIC Co Periodic Co: Periodic Co: Periodic Co: Periodic Co: Periodic Co: Periodic Co: Periodic Co: Periodic Co: Periodic Co: Periodic Co: Present V Discount rate Total years COST TYPE Capital Annual 0&M	All terminal servi support al/Technical Servi AUAL 0&M COST COSTS DESC st - Year 1 st - Year 2 st - Year 3 st - Year 3 st - Year 4 /ALUE ANALYSIS e 7.0% 3 YEAR 1 1,3	ces ces Subtotal RIPTION TOTAL COST \$ \$	10% 10% 10%	 DISCOUNT FACTOR 1.00 2.662	NET PF VAI 0 \$ 4 \$	RESENT LUE 313,858 130,400 7,462	\$ 4,14 \$ 4,14 \$ 8,28 \$ 49,68 TOTAL \$ 29,05 \$ 36,92 \$ 22,27 \$ 130,33	I EPA 540-R-00-002. I EPA 540-R-00-002. 9 NOTES 3 See Table B-11 for backup calculations. 1 See Table B-11 for backup calculations. 8 See Table B-11 for backup calculations. 6 See Table B-11 for backup calculations. NOTES
Project ma Technical s Professiona TOTAL ANN PERIODIC Co Periodic Co: Periodic Co: Periodic Co: Periodic Co: Periodic Co: Present V Discount rate Total years COST TYPE Capital Annual O&M Periodic	All terminal servi support al/Technical Servi AUAL 0&M COST COSTS DESC st - Year 1 st - Year 2 st - Year 3 st - Year 3 st - Year 3 st - Year 4 /ALUE ANALYSIS e 7.0% 3 YEAR 1 1 - 3 1 2	ices Subtotal RIPTION TOTAL COST S S S	10% 10% 10%	 DISCOUNT FACTOR 1.00 2.62 0.93 0.87	NET PR VAI 0 \$ 4 \$ 5 \$ 3 \$	RESENT LUE 313,858 130,400 27,153 32,248	\$ 4,14 \$ 4,14 \$ 8,28 \$ 49,68 TOTAL \$ 29,05 \$ 36,92 \$ 22,27 \$ 130,33	I EPA 540-R-00-002. I EPA 540-R-00-002. 9 NOTES 3 See Table B-11 for backup calculations. 1 See Table B-11 for backup calculations. 8 See Table B-11 for backup calculations. 6 See Table B-11 for backup calculations. NOTES
Project ma Technical s Professiona TOTAL ANN PERIODIC Co Periodic Co Periodic Co Periodic Co Periodic Co Periodic Co Pressent V Discount rate Total years COST TYPE Capital Annual O&M Periodic Periodic Periodic Periodic Periodic Periodic	All Control of the second seco	ices Subtotal RIPTION TOTAL COST S S S S S S S	10% 10%	 DISCOUNT FACTOR 1.00 2.66 0.93 0.87 0.83 0.76	NET PR VAI 0 \$ 4 \$ 5 \$ 3 \$ 3 \$ 6 \$ 3 \$	RESENT LUE 313,858 130,400 27,153 32,248 18,186 18,186	\$ 4,14 \$ 4,14 \$ 8,28 \$ 49,68 TOTAL \$ 29,05 \$ 36,92 \$ 22,27 \$ 130,33	I EPA 540-R-00-002. I EPA 540-R-00-002. 9 NOTES 3 See Table B-11 for backup calculations. 1 See Table B-11 for backup calculations. 8 See Table B-11 for backup calculations. 6 See Table B-11 for backup calculations. NOTES
Project ma Technical s Professiona TOTAL ANN PERIODIC Co Periodic Co Periodic Co Periodic Co Periodic Co Present V Discount rate Total years Cost TYPE Capital Annual O&M Periodic Periodic Periodic Periodic	All Control of the second seco	ices ices Subtotal RIPTION TOTAL COST \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	10% 10%	 BISCOUNT FACTOR 1.00 2.62 0.93 0.87 0.87 0.87 0.76	NET PR VAI 0 \$ 5 \$ 3 \$ 6 \$ 3 \$ 3 \$ 5 \$	ESENT UE 313,858 130,400 27,153 32,248 18,186 99,433 621,279	\$ 4,14 \$ 4,14 \$ 8,28 \$ 49,68 TOTAL \$ 29,05 \$ 36,92 \$ 22,27 \$ 130,33	I EPA 540-R-00-002. I EPA 540-R-00-002. 9 NOTES 3 See Table B-11 for backup calculations. 1 See Table B-11 for backup calculations. 8 See Table B-11 for backup calculations. 6 See Table B-11 for backup calculations. NOTES
Project ma Technical s Professiona TOTAL ANN PERIODIC C Periodic Co: Periodic Co: Periodic Co: Periodic Co: Periodic Co: Periodic Co: PRESENT V Discount rate Total years COST TYPE Capital Annual O&M Periodic Periodic Periodic Periodic	All Control of Allo All Costs - Year 1 St - Year 2 St - Year 3 St - Year 3 St - Year 4 ALUE ANALYSIS e 7.0% 3 YEAR 0 1 1 - 3 1 2 3 4 Second Value of Allo	ices ices Subtotal RIPTION S TOTAL COST S S S S S S S S S S S S S	10% 10%	 BISCOUNT FACTOR 1.00 2.62 0.93 0.87 0.83 0.76	NET PR VAI 0 \$ 4 \$ 5 \$ 3 \$ 6 \$ 3 \$ 5 \$ 3 \$ 5 \$ 3 \$ 5 \$ 3 \$ 5 \$ 5 \$ 3 \$ 5	ESENT UE 313,858 130,400 27,153 32,248 18,186 99,433 621,279 609 012	\$ 4,14 \$ 4,14 \$ 8,28 \$ 49,68 TOTAL \$ 29,05 \$ 36,92 \$ 22,27 \$ 130,33	I EPA 540-R-00-002. I See Table B-11 for backup calculations. I NOTES NOTES NOTES
Project ma Technical s Professiona TOTAL ANN PERIODIC Co Periodic Co: Periodic Co: Periodic Co: Periodic Co: PrESENT V Discount rate Total years CoST TYPE Capital Annual O&M Periodic Periodic Periodic Periodic Periodic Periodic Periodic Periodic	All rechnical Servi support al/Technical Servi AUAL 0&M COST COSTS DESC st - Year 1 st - Year 2 st - Year 3 st - Year 3 st - Year 4 VALUE ANALYSIS e 7.0% 3 YEAR 0 1 1 - 3 1 2 3 4 essent Value of Alter PRESENT VALUE	ices ices Subtotal RIPTION TOTAL COST S S S S S S S S S S S S S	10% 10%	 FACTOR 1.00 2.62 0.93 0.87 0.81 0.76	NET PR VAI 0 \$ 5 \$ 3 \$ 3 \$ 3 \$ 5 \$ 3 \$ 5 \$ 3 \$ 5 \$ 3 \$ 5 \$ 3 \$ 5 \$ 5 \$ 3 \$ 5 \$ 5 \$ 3 \$ 5	ESENT LUE 313,858 18,186 18,186 621,279 609,012 230,291	\$ 4,14 \$ 4,14 \$ 8,28 \$ 49,68 TOTAL \$ 29,05 \$ 36,92 \$ 22,27 \$ 130,33	I EPA 540-R-00-002. I EPA 540-R-00-00

Notes: Costs taken from RSMeans have been adjusted by Spokane location adjustment factor of 0.93. Costs from previous work greater than 1 year old have been adjusted using historical cost index factors provided by 2010 RSMeans (p. 671). Present value analysis uses a 30-year discount rate of 7.0%.

Table B-5 - Alternative B4 Estimated Cost Summary

Location:	Kaiser Trentwood Facility	This alternative incl	udos in situ o	zonation	and soil vapor	ovtro	action Refer t	xidalion.
	Spokane Valley, WA	Alternative B4 assu	mes an opera	ting perio	od of 30 years i	n the	development	o this cost estimate.
Phase:	Feasibility Study (-35% to +50%)	Elements unique to	Alternative B4	4 include	capital costs a	nd 2	6 years of sys	tem operation.
Page Veer	2010	System decommiss	ioning occurs	in Year 2	27.			
Dase real:	2010							
Date:	July 2011							
CAPITAL CO	OSTS							
	DESCRIPTION	QUANTITY	UNIT	ι	JNIT COST		TOTAL	NOTES
Submittale	Plans Site Prenaration							
Pre- and p	ost-construction submittals	1	LS	\$	30,000	\$	30,000	SAP, HASP, work plan, as-built drawings, O&M manual, QA/QC
								documentation. Based on previous project experience.
Permits Submittals	Plans, Site Proparation Subtotal	1	LS	\$	30,000	\$	30,000	Previous project experience. SEPA checklist, UIC, etc.
Submittais,	Fians, Site Freparation Subtotal					φ	00,000	
System Inst	tallation and Startup							
Injection/ex	xtraction well installation	1	LS	\$ ¢	938,315	\$ ¢	938,315	See Table B-16.
System Inst	tallation and Startup Subtotal	1	L3	φ	1,020,001	ہ \$	1.966.996	See Table B-16.
-,						•	.,,	
Monitoring,	Sampling, Testing, and Analysis (for components not in	cluded in B1	or B2)	00 404	¢	00.404	Marthly such as a sociation of the Table 2.4 is this FO for the social
System sta	artup monitoring	1	LS	Þ	20,424	Ф	20,424	frequency. See Table B-16.
Performan	ce soil sampling and analysis	1	LS	\$	79,494	\$	79,494	Annual soil sampling and analysis of AOCs. See Table B-16.
Data mana	agement	5%				\$	3,975	5% of sampling costs.
Monitoring,	Sampling, Testing, and Analysis S	Subtotal				\$	103,893	
Contingenc	:y	20%				\$	426,178	Scope and bid contingency. Percentage of capital costs.
	·							
Project ma	al/ l echnical Services	5%				\$	127 853	Percentage of sum of capital cost and contingency. EPA 540-R-00-002 Includes reports referenced in WAC 173-340-
i rojeot ma		070				Ψ	127,000	400(6)(b).
Remedial of	design	8%				\$	204,565	EPA 540-R-00-002.
Constructio	on management	6%				\$	153,424	EPA 540-R-00-002. Includes reports referenced in WAC 173-340-
Pilot-scale	study	1	LS	\$	207,089	\$	207,089	10% of Installation and Monitoring costs.
Professiona	al/Technical Services Subtotal					\$	692,931	
						¢	3 249 998	
						Ψ	3,243,330	
ANNUAL O	&M COSTS DESCRIPTION	QUANTITY	UNIT	ı	JNIT COST		TOTAL	NOTES
ANNUAL O&	&M COSTS DESCRIPTION	QUANTITY	UNIT	ι	JNIT COST		TOTAL	NOTES
ANNUAL O&	&M COSTS DESCRIPTION eration and Monitoring	QUANTITY	UNIT	l	JNIT COST	¢	TOTAL	NOTES
ANNUAL OS System Oper Operation Maintenan	M COSTS DESCRIPTION eration and Monitoring	QUANTITY 1	UNIT LS LS	נ \$ \$	99,667 59.625	\$	TOTAL 99,667 59,625	NOTES See Table B-16. See Table B-16.
ANNUAL O8 System Operation Maintenand System pe	& COSTS DESCRIPTION eration and Monitoring ce uformance monitoring	QUANTITY 1 1 1	UNIT LS LS LS	L \$ \$ \$	99,667 59,625 56,482	\$ \$ \$	TOTAL 99,667 59,625 56,482	NOTES See Table B-16. See Table B-16. Monthly system monitoring. See Table 3-1 in this FS for type and
ANNUAL O8 System Ope Operation Maintenan System pe	M COSTS DESCRIPTION eration and Monitoring ce informance monitoring	QUANTITY 1 1	UNIT LS LS LS	۱ \$ \$	99,667 59,625 56,482	\$\$\$	TOTAL 99,667 59,625 56,482	NOTES See Table B-16. See Table B-16. Monthly system monitoring. See Table 3-1 in this FS for type and frequency. See Table B-16.
ANNUAL OB System Operation Maintenand System pe Performand Data mana	& COSTS DESCRIPTION eration and Monitoring ce uformance monitoring ce soil sampling and analysis agement	QUANTITY 1 1 1 5%	UNIT LS LS LS LS	ւ \$ \$ \$ \$	99,667 59,625 56,482 79,494	\$ \$ \$ \$	TOTAL 99,667 59,625 56,482 79,494 6,799	NOTES See Table B-16. See Table B-16. Monthly system monitoring. See Table 3-1 in this FS for type and frequency. See Table B-16. Annual soil sampling and analysis of AOCs. See Table B-16.
ANNUAL OF System Ope Operation Maintenand System pe Performand Data mana System Ope	A COSTS DESCRIPTION eration and Monitoring ce rformance monitoring ce soil sampling and analysis agement eration and Monitoring Subtotal	QUANTITY 1 1 1 5%	UNIT LS LS LS 	ע \$ \$ \$ \$	99,667 59,625 56,482 79,494 	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	TOTAL 99,667 59,625 56,482 79,494 6,799 302,066	NOTES See Table B-16. See Table B-16. Monthly system monitoring. See Table 3-1 in this FS for type and frequency. See Table B-16. Annual soil sampling and analysis of AOCs. See Table B-16.
ANNUAL OS System Ope Operation Maintenan System pe Performan Data mana System Ope	A COSTS DESCRIPTION eration and Monitoring ce urformance monitoring ce soil sampling and analysis agement eration and Monitoring Subtotal	QUANTITY 1 1 1 5%	UNIT LS LS LS LS 	ע \$ \$ \$	99,667 59,625 56,482 79,494 	\$ \$ \$ \$ \$ \$	TOTAL 99,667 59,625 56,482 79,494 6,799 302,066	NOTES See Table B-16. See Table B-16. Monthly system monitoring. See Table 3-1 in this FS for type and frequency. See Table B-16. Annual soil sampling and analysis of AOCs. See Table B-16.
ANNUAL OS System Ope Operation Maintenan System pe Performan Data mana System Ope Contingenc	A COSTS DESCRIPTION eration and Monitoring ce informance monitoring ce soil sampling and analysis agement eration and Monitoring Subtotal	QUANTITY 1 1 1 5% 20%	UNIT LS LS LS 	s \$ \$ \$	99,667 59,625 56,482 79,494 	\$\$\$\$ \$\$ \$ \$ \$	TOTAL 99,667 59,625 56,482 79,494 6,799 302,066 60,413	NOTES See Table B-16. See Table B-16. Monthly system monitoring. See Table 3-1 in this FS for type and frequency. See Table B-16. Annual soil sampling and analysis of AOCs. See Table B-16. Scope and bid contingency.
ANNUAL OB System Ope Operation Maintenand System pe Performand Data mana System Ope Contingenc Professiona	M COSTS DESCRIPTION eration and Monitoring ce informance monitoring ce soil sampling and analysis agement eration and Monitoring Subtotal cy al/Technical Services	QUANTITY 1 1 1 5% 20%	UNIT LS LS LS 	\$ \$ \$ \$	99,667 59,625 56,482 79,494 	\$ \$ \$ \$ \$ \$	TOTAL 99,667 59,625 56,482 79,494 6,799 302,066 60,413	NOTES See Table B-16. See Table B-16. Monthly system monitoring. See Table 3-1 in this FS for type and frequency. See Table B-16. Annual soil sampling and analysis of AOCs. See Table B-16. Scope and bid contingency. Percentage of sum of annual cost and contingency.
ANNUAL OB System Ope Operation Maintenand System pe Performand Data mana System Ope Contingenc Professiona Professiona	A COSTS DESCRIPTION eration and Monitoring ce informance monitoring ce soil sampling and analysis agement eration and Monitoring Subtotal eration and Monitoring Subtotal eration and Monitoring Subtotal	QUANTITY 1 1 1 5% 20%	UNIT LS LS LS 	\$ \$ \$ \$	99,667 59,625 56,482 79,494 	\$ \$ \$ \$ \$	TOTAL 99,667 59,625 56,482 79,494 6,799 302,066 60,413 36,248	NOTES See Table B-16. See Table B-16. Monthly system monitoring. See Table 3-1 in this FS for type and frequency. See Table B-16. Annual soil sampling and analysis of AOCs. See Table B-16. Scope and bid contingency. Percentage of sum of annual cost and contingency. EPA 540-R-00-002.
ANNUAL OS System Ope Operation Maintenand System pe Performand Data mana System Ope Contingenc Professiona Project ma Technical 3 Ecology op	A COSTS DESCRIPTION eration and Monitoring ce rformance monitoring ce soil sampling and analysis agement eration and Monitoring Subtotal eration and Monitoring Subtotal cy al/Technical Services unagement support	QUANTITY 1 1 1 5% 20% 10% 10%	UNIT LS LS LS 	ւ Տ Տ Տ	JNIT COST 99,667 59,625 56,482 79,494 		TOTAL 99,667 59,625 56,482 79,494 6,799 302,066 60,413 36,248 36,248 36,248 2,200	NOTES See Table B-16. See Table B-16. Monthly system monitoring. See Table 3-1 in this FS for type and frequency. See Table B-16. Annual soil sampling and analysis of AOCs. See Table B-16. Scope and bid contingency. Percentage of sum of annual cost and contingency. EPA 540-R-00-002. EPA 540-R-00-002. Assume 10% of Alt B1 Ecology oversight cost
ANNUAL OS System Ope Operation Maintenand System pe Performand Data mana System Ope Contingenc Professiona Professiona Technical s Ecology ov Professiona	A COSTS DESCRIPTION eration and Monitoring ce rformance monitoring ce soil sampling and analysis agement eration and Monitoring Subtotal cy al/Technical Services support versight Al/Technical Services Subtotal	QUANTITY 1 1 1 5% 20% 10% 10% 10%	UNIT LS LS LS 	ւ ՏՏՏ Տ	JNIT COST 99,667 59,625 56,482 79,494 		TOTAL 99,667 59,625 56,482 79,494 6,799 302,066 60,413 36,248 36,248 36,248 2,200 74,696	NOTES See Table B-16. See Table B-16. Monthly system monitoring. See Table 3-1 in this FS for type and frequency. See Table B-16. Annual soil sampling and analysis of AOCs. See Table B-16. Scope and bid contingency. Percentage of sum of annual cost and contingency. EPA 540-R-00-002. EPA 540-R-00-002. Assume 10% of Alt. B1 Ecology oversight cost.
ANNUAL OS System Ope Operation Maintenand System pe Performand Data mana System Ope Contingenc Professiona Project ma Technical s Ecology ov Professiona	& COSTS DESCRIPTION eration and Monitoring ce rformance monitoring ce soil sampling and analysis agement eration and Monitoring Subtotal cy al/Technical Services support versight al/Technical Services Subtotal	QUANTITY 1 1 1 5% 20% 10% 10%	UNIT LS LS LS 	\$ \$ \$ \$	JNIT COST 99,667 59,625 56,482 79,494 	\$\$\$\$ \$\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	TOTAL 99,667 59,625 56,482 79,494 6,799 302,066 60,413 36,248 36,248 36,248 2,200 74,696	NOTES See Table B-16. See Table B-16. Monthly system monitoring. See Table 3-1 in this FS for type and frequency. See Table B-16. Annual soil sampling and analysis of AOCs. See Table B-16. Scope and bid contingency. Scope and bid contingency. Percentage of sum of annual cost and contingency. EPA 540-R-00-002. EPA 540-R-00-002. Assume 10% of Alt. B1 Ecology oversight cost.
ANNUAL OS System Ope Operation Maintenand System pe Performand Data mana System Ope Contingenc Professiona Professiona Technical s Ecology ov Professiona ToTAL ANN	& COSTS DESCRIPTION eration and Monitoring ce rformance monitoring ce soil sampling and analysis agement eration and Monitoring Subtotal eration and Monitoring Subtotal al/Technical Services support versight al/Technical Services Subtotal WUAL O&M COST	QUANTITY 1 1 1 5% 20% 10% 10%	UNIT LS LS LS 	\$ \$ \$ \$	JNIT COST 99,667 59,625 56,482 79,494 	• • • • • • • • • • • • • • • • • • •	TOTAL 99,667 59,625 56,482 79,494 6,799 302,066 60,413 36,248 36,248 36,248 36,248 2,200 74,696 437,175	NOTES See Table B-16. See Table B-16. Monthly system monitoring. See Table 3-1 in this FS for type and frequency. See Table B-16. Annual soil sampling and analysis of AOCs. See Table B-16. Scope and bid contingency. Scope and bid contingency. Percentage of sum of annual cost and contingency. EPA 540-R-00-002. EPA 540-R-00-002. Assume 10% of Alt. B1 Ecology oversight cost.
ANNUAL OS System Ope Operation Maintenan System pe Performan Data mana System Ope Contingenc Professiona Technical s Ecology ov Professiona TOTAL ANN	A COSTS DESCRIPTION eration and Monitoring ce informance monitoring ce soil sampling and analysis agement support Al/Technical Services unagement support versight al/Technical Services Subtotal	QUANTITY 1 1 1 5% 20% 10% 10%	UNIT LS LS LS 	\$ \$ \$ \$	JNIT COST 99,667 59,625 56,482 79,494 	\$\$\$\$\$ \$\$ \$\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	TOTAL 99,667 59,625 56,482 79,494 6,799 302,066 60,413 36,248 36,248 36,248 36,248 2,200 74,696 437,175	NOTES See Table B-16. See Table B-16. Monthly system monitoring. See Table 3-1 in this FS for type and frequency. See Table B-16. Annual soil sampling and analysis of AOCs. See Table B-16. Scope and bid contingency. Percentage of sum of annual cost and contingency. EPA 540-R-00-002. EPA 540-R-00-002. Assume 10% of Alt. B1 Ecology oversight cost.
ANNUAL OB System Ope Operation Maintenan System pe Performan- Data mana System Ope Contingenc Professiona Project ma Technical s Ecology ov Professiona TOTAL ANN PERIODIC C	A COSTS DESCRIPTION eration and Monitoring ce informance monitoring ce soil sampling and analysis agement eration and Monitoring Subtotal agement support versight al/Technical Services support versight al/Technical Services Subtotal MUAL O&M COST COSTS	QUANTITY 1 1 1 5% 20% 10% 10% 10%	UNIT LS LS LS 	\$ \$ \$ \$	JNIT COST 99,667 59,625 56,482 79,494 	\$\$\$\$ \$\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	TOTAL 99,667 59,625 56,482 79,494 6,799 302,066 60,413 36,248 36,248 36,248 2,200 74,696 437,175	NOTES See Table B-16. Monthly system monitoring. See Table 3-1 in this FS for type and frequency. See Table B-16. Annual soil sampling and analysis of AOCs. See Table B-16. Scope and bid contingency. Percentage of sum of annual cost and contingency. EPA 540-R-00-002. EPA 540-R-00-002. Assume 10% of Alt. B1 Ecology oversight cost.
ANNUAL OB System Ope Operation Maintenan System pe Performan Data mana System Ope Contingenc Professiona Project ma Ecology ov Professiona Tochnical is Ecology ov Professiona	A COSTS DESCRIPTION eration and Monitoring ce urformance monitoring ce soil sampling and analysis agement eration and Monitoring Subtotal agement support AI/Technical Services support versight AI/Technical Services Subtotal MUAL O&M COST	QUANTITY 1 1 1 5% 20% 10% 10% 10% 10%	UNIT LS LS LS 	ע \$ \$ \$	JNIT COST 99,667 59,625 56,482 79,494 JNIT COST	ት ት ት ት ት ት ት ት ት ት ት ት ት ት ት ት ት ት ት	TOTAL 99,667 59,625 56,482 79,494 6,799 302,066 60,413 36,248 36,248 2,200 74,696 437,175 TOTAL	NOTES See Table B-16. See Table B-16. Monthly system monitoring. See Table 3-1 in this FS for type and frequency. See Table B-16. Annual soil sampling and analysis of AOCs. See Table B-16. Scope and bid contingency. Per contingency. PPA 540-R-00-002. EPA 540-R-00-002. Assume 10% of Alt. B1 Ecology oversight cost.
ANNUAL OB System Ope Operation Maintenan System pe Performan Data mana System Ope Contingenc Professiona Professiona Technical s Ecology ov Professiona TOTAL ANN PERIODIC C	AM COSTS DESCRIPTION eration and Monitoring ce urformance monitoring ce soil sampling and analysis agement eration and Monitoring Subtotal agement support versight al/Technical Services Support versight al/Technical Services Subtotal MUAL O&M COST COSTS DESCRIPTION eration and Closeout	QUANTITY 1 1 1 5% 20% 10% 10% 10% 10%	UNIT LS LS LS UNIT	ע \$ \$ \$	JNIT COST 99,667 59,625 56,482 79,494 JNIT COST	••••••••••••••••••••••••••••••••••••••	TOTAL 99,667 59,625 56,482 79,494 6,799 302,066 60,413 36,248 36,248 36,248 2,200 74,696 437,175 TOTAL	NOTES See Table B-16. Monthly system monitoring. See Table 3-1 in this FS for type and frequency. See Table B-16. Annual soil sampling and analysis of AOCs. See Table B-16. Scope and bid contingency. Percentage of sum of annual cost and contingency. EPA 540-R-00-002. EPA 540-R-00-002. Assume 10% of Alt. B1 Ecology oversight cost.
ANNUAL OB System Ope Operation Maintenan System pe Performan Data mana System Ope Contingenc Professiona Professiona Technical s Ecology ov Professiona TOTAL ANN PERIODIC C System Ope Major equi	AM COSTS DESCRIPTION eration and Monitoring ce urformance monitoring ce soil sampling and analysis agement eration and Monitoring Subtotal eration and Monitoring Subtotal agement support cersight al/Technical Services Subtotal MUAL O&M COST COSTS DESCRIPTION eration and Closeout pment replacement/repair	QUANTITY 1 1 1 5% 20% 10% 10% 10% 10% 1	UNIT LS LS UNIT LS	s \$ \$ \$	JNIT COST 99,667 59,625 56,482 79,494 JNIT COST 200,000	4) 49 49 49 49 49 49 49 49 49 49 49 49	TOTAL 99,667 59,625 56,482 79,494 6,799 302,066 60,413 36,248 36,248 36,248 2,200 74,696 437,175 TOTAL 200,000	NOTES See Table B-16. Monthly system monitoring. See Table 3-1 in this FS for type and frequency. See Table B-16. Annual soil sampling and analysis of AOCs. See Table B-16. Scope and bid contingency. Percentage of sum of annual cost and contingency. EPA 540-R-00-002. EPA 540-R-00-002. Assume 10% of Alt. B1 Ecology oversight cost. NOTES Year 15. Assume cost of one ozone generator and one SVE system.
ANNUAL OB System Ope Operation Maintenan System pe Performan Data mana System Ope Contingenc Professiona Technical s Ecology ov Professiona TOTAL ANN PERIODIC C System Ope Major equij	AM COSTS DESCRIPTION eration and Monitoring ce urformance monitoring ce soil sampling and analysis agement eration and Monitoring Subtotal agement support cresight al/Technical Services Subtotal Al/Technical Services Subtotal Al/Technical Services Subtotal Al/Technical Services Subtotal Al/Technical Services Subtotal Al/Technical Services Subtotal DESCRIPTION eration and Closeout prent replacement/repair	QUANTITY 1 1 1 5% 20% 10% 10% 10% 0% 0% 110% 1 1 1	UNIT LS LS LS LS LS	ر چ چ	JNIT COST 99,667 59,625 56,482 79,494 JNIT COST 200,000 102,600	9 99 99 99 99 99 99 99 99 99 99 99 99 9	TOTAL 99,667 59,625 56,482 79,494 6,799 302,066 60,413 36,248 36,248 36,248 2,200 74,696 437,175 TOTAL 200,000 102,600	NOTES See Table B-16. See Table B-16. Monthly system monitoring. See Table 3-1 in this FS for type and frequency. See Table B-16. Annual soil sampling and analysis of AOCs. See Table B-16. Scope and bid contingency. Percentage of sum of annual cost and contingency. EPA 540-R-00-002. EPA 540-R-00-002. Assume 10% of Alt. B1 Ecology oversight cost. NOTES Year 15. Assume cost of one ozone generator and one SVE system. Year 27. See Table B-16
ANNUAL OB System Ope Operation Maintenand System pe Performand Data mana System Ope Contingenc Professiona Technical s Ecology ov Professiona TOTAL ANN PERIODIC C System Ope Major equi Well aband System de	AM COSTS DESCRIPTION eration and Monitoring ce urformance monitoring ce soil sampling and analysis agement eration and Monitoring Subtotal eration and Monitoring Subtotal al/Technical Services support erright al/Technical Services Subtotal Al/Technical Services Subtotal Al/Technical Services Subtotal Al/Technical Services Subtotal Al/Technical Services Subtotal COSTS DESCRIPTION eration and Closeout pment replacement/repair donment mobilization	QUANTITY 1 1 1 5% 20% 10% 10% 10% 10% 10% 1 1 1 1	UNIT LS LS LS UNIT LS LS LS	\$ \$ \$ \$ \$ \$	JNIT COST 99,667 59,625 56,482 79,494 JNIT COST 200,000 102,600 10,000		TOTAL 99,667 59,625 56,482 79,494 6,799 302,066 60,413 36,248 3,200 74,696 437,175 TOTAL 200,000 102,600 10,000	NOTES See Table B-16. Monthly system monitoring. See Table 3-1 in this FS for type and frequency. See Table B-16. Scope and bid contingency. Percentage of sum of annual cost and contingency. EPA 540-R-00-002. EPA 540-R-00-002. Assume 10% of Alt. B1 Ecology oversight cost. NOTES Year 15. Assume cost of one ozone generator and one SVE system. Year 27. See Table B-16. Year 27. Remove piping, units, etc.
ANNUAL OB System Ope Operation Maintenand System pe Performand Data mana System Ope Contingenc Professiona Project ma Technical s Ecology ov Professiona TOTAL ANN PERIODIC C System Ope Major equi Well aband System Ope	AM COSTS DESCRIPTION eration and Monitoring ce informance monitoring ce soil sampling and analysis agement eration and Monitoring Subtotal eration and Monitoring Subtotal al/Technical Services support errsight al/Technical Services Subtotal AVAL O&M COST DESCRIPTION eration and Closeout pment replacement/repair donment imobilization eration and Closeout Subtotal	QUANTITY 1 1 1 5% 20% 10% 10% 10% 0% QUANTITY 1 1 1 1	UNIT LS LS LS UNIT LS LS LS LS	\$ \$ \$ \$ \$ \$ \$	JNIT COST 99,667 59,625 56,482 79,494 JNIT COST 200,000 102,600 10,000	6 6 6 6 6 6 6 6 6 6	TOTAL 99,667 59,625 56,482 79,494 6,799 302,066 60,413 36,248 3,200 74,696 437,175 TOTAL 200,000 102,600 10,000 312,600	NOTES See Table B-16. See Table B-16. Monthly system monitoring. See Table 3-1 in this FS for type and frequency. See Table B-16. Scope and bid contingency. Percentage of sum of annual cost and contingency. EPA 540-R-00-002. EPA 540-R-00-002. Assume 10% of Alt. B1 Ecology oversight cost. NOTES Year 15. Assume cost of one ozone generator and one SVE system. Year 27. See Table B-16. Year 27. Remove piping, units, etc.
ANNUAL OB System Ope Operation Maintenand System pe Performand Data mana System Ope Contingenc Professiona Technical a Ecology ov Professiona TOTAL ANN PERIODIC C System Ope Major equi Well aband System de System Ope	AM COSTS DESCRIPTION eration and Monitoring ce informance monitoring ce soil sampling and analysis agement eration and Monitoring Subtotal eration and Monitoring Subtotal al/Technical Services support ersight al/Technical Services Subtotal AUAL O&M COST DESCRIPTION eration and Closeout prment replacement/repair donment imobilization eration and Closeout Subtotal eration and Closeout Subtotal	QUANTITY 1 1 1 5% 20% 10% 10% 10% 0% QUANTITY 1 1 1 10%	UNIT LS LS UNIT LS LS LS LS	\$ \$ \$ \$ \$ \$ \$	JNIT COST 99,667 59,625 56,482 79,494 JNIT COST 200,000 102,600 10,000	••••••••••••••••••••••••••••••••••••••	TOTAL 99,667 59,625 56,482 79,494 6,799 302,066 60,413 36,248 36,248 36,248 2,200 74,696 437,175 TOTAL 200,000 102,600 102,600 102,600 21,260	NOTES See Table B-16. See Table B-16. Monthly system monitoring. See Table 3-1 in this FS for type and frequency. See Table B-16. Scope and bid contingency. Percentage of sum of annual cost and contingency. EPA 540-R-00-002. EPA 540-R-00-002. Assume 10% of Alt. B1 Ecology oversight cost. NOTES Year 15. Assume cost of one ozone generator and one SVE system. Year 27. See Table B-16. Year 27. Remove piping, units, etc. Scope and bid contingency. Percentage of periodic costs
ANNUAL OS System Ope Operation Maintenand System pe Performani Data mana System Ope Contingenc Professiona Technical Eccology ov Professiona TOTAL ANN PERIODIC C System Ope Major equi Well abanco System Ope Contingenc	AM COSTS DESCRIPTION eration and Monitoring ce informance monitoring ce soil sampling and analysis agement eration and Monitoring Subtotal eration and Monitoring Subtotal and Monitoring Subtotal eration and Cose Subtotal preservices DESCRIPTION eration and Closeout preservices domment imobilization eration and Closeout Subtotal eration and Closeout Subtotal	QUANTITY 1 1 1 5% 20% 10% 10% 10% 0 QUANTITY 1 1 1 1 10%	UNIT LS LS UNIT LS LS LS LS 	\$ \$ \$ \$ \$ \$	JNIT COST 99,667 59,625 56,482 79,494 200,000 102,600 10,000 	•••••••••••••••••• ••••••	TOTAL 99,667 59,625 56,482 79,494 6,799 302,066 60,413 36,248 36,248 36,248 32,200 74,696 437,175 TOTAL 200,000 10,000 312,600 31,260	NOTES See Table B-16. See Table B-16. Monthly system monitoring. See Table 3-1 in this FS for type and frequency. See Table B-16. Annual soil sampling and analysis of AOCs. See Table B-16. Scope and bid contingency. Percentage of sum of annual cost and contingency. EPA 540-R-00-002. EPA 540-R-00-002. Assume 10% of Alt. B1 Ecology oversight cost. NOTES Year 15. Assume cost of one ozone generator and one SVE system. Year 27. See Table B-16. Year 27. Remove piping, units, etc. Scope and bid contingency. Percentage of periodic costs.
ANNUAL OS System Ope Operation Maintenand System pe Performand Data mana System Ope Contingenc Professiona Total ANN PERIODIC C System Ope Major equi Well aband System Ope Contingenc Professiona	AM COSTS DESCRIPTION eration and Monitoring ce informance monitoring ce soil sampling and analysis agement support ersight al/Technical Services subtotal AUAL O&M COST COSTS DESCRIPTION eration and Closeout prent replacement/repair donment mobilization eration and Closeout Subtotal eration and Closeout Subtotal autors and Closeout Subtotal eration and Closeout Subtotal	QUANTITY 1 1 1 5% 20% 10% 10% 10% QUANTITY 1 1 1 10%	UNIT LS LS LS UNIT LS LS LS LS 	\$ \$ \$ \$ \$ \$	JNIT COST 99,667 59,625 56,482 79,494 JNIT COST 200,000 102,600 10,000		TOTAL 99,667 59,625 56,482 79,494 6,799 302,066 60,413 36,248 37,175 102,600 31,2600 31,260	NOTES See Table B-16. See Table B-16. Monthly system monitoring. See Table 3-1 in this FS for type and frequency. See Table B-16. Scope and bid contingency. Percentage of sum of annual cost and contingency. EPA 540-R-00-002. EPA 540-R-00-002. Assume 10% of Alt. B1 Ecology oversight cost. NOTES Year 15. Assume cost of one ozone generator and one SVE system. Year 27. See Table B-16. Year 27. Remove piping, units, etc. Scope and bid contingency. Percentage of periodic costs.
ANNUAL OB System Ope Operation Maintenan System pe Performan- Data mana System Ope Contingenc Professiona Project ma Technical s Ecology ov Professiona TOTAL ANN PERIODIC C System Ope Major equi Well abanc System Ope Contingenc Professiona Project ma Technical s	AM COSTS DESCRIPTION eration and Monitoring ce informance monitoring ce soil sampling and analysis agement eration and Monitoring Subtotal agement support ersight al/Technical Services Subtotal AUAL O&M COST COSTS DESCRIPTION eration and Closeout pment replacement/repair donment mobilization eration and Closeout Subtotal eration and Closeout Subtotal gy al/Technical Services support	QUANTITY 1 1 1 5% 20% 10% 10% 10% 10% 1 1 1 10% 10%	UNIT LS LS LS LS LS LS LS 	\$ \$ \$ \$ \$ \$ \$	JNIT COST 99,667 59,625 56,482 79,494 200,000 102,600 10,000 		TOTAL 99,667 59,625 56,482 79,494 6,799 302,066 60,413 36,248 3,6,248 2,200 74,696 437,175 TOTAL 200,000 102,600 10,000 312,600 312,600 312,600 34,386 24,386	NOTES See Table B-16. See Table B-16. Monthly system monitoring. See Table 3-1 in this FS for type and frequency. See Table B-16. Annual soil sampling and analysis of AOCs. See Table B-16. Scope and bid contingency. Percentage of sum of annual cost and contingency. EPA 540-R-00-002. PASSUME 10% of Alt. B1 Ecology oversight cost. NOTES Year 15. Assume cost of one ozone generator and one SVE system. Year 27. See Table B-16. Year 27. Remove piping, units, etc. Scope and bid contingency. Percentage of periodic costs. EPA 540-R-0-002. EPA 540-R-0-002. EPA 540-R-0-002.
ANNUAL OB System Ope Operation Maintenan System pe Performana System Ope Contingenc Professiona Project ma Ecology ov Professiona ToTAL ANN PERIODIC C System Ope Major equij Well aband System Ope Contingenc Professiona Trofessiona Froject ma Ecology ov Professiona System Ope System Ope Contingenc	AM COSTS DESCRIPTION eration and Monitoring ce informance monitoring ce soil sampling and analysis agement eration and Monitoring Subtotal agement support Al/Technical Services subtotal AL/Technical Services Subtotal AL/Technical Services Subtotal AL/Technical Services Subtotal COSTS DESCRIPTION eration and Closeout prent replacement/repair donment imobilization eration and Closeout Subtotal comment support eration and Closeout Subtotal eration and Closeout Subtotal	QUANTITY 1 1 1 5% 20% 10% 10% 10% 10% 1 1 1 1 1 10% 10%	UNIT LS LS LS 	د چ چ چ چ چ	JNIT COST 99,667 59,625 56,482 79,494 200,000 102,600 10,000 102,600 10,000		TOTAL 99,667 59,625 56,482 79,494 6,799 302,066 60,413 36,248 36,248 2,200 74,696 437,175 TOTAL 200,000 102,600 10,000 312,600 312,600 34,386 34,386 24,425	NOTES See Table B-16. See Table B-16. Monthly system monitoring. See Table 3-1 in this FS for type and frequency. See Table B-16. Annual soil sampling and analysis of AOCs. See Table B-16. Scope and bid contingency. Percentage of sum of annual cost and contingency. EPA 540-R-00-002. PASsume 10% of Alt. B1 Ecology oversight cost. NOTES Year 15. Assume cost of one ozone generator and one SVE system. Year 27. See Table B-16. Year 27. Remove piping, units, etc. Scope and bid contingency. Percentage of periodic costs. EPA 540-R-00-002. EPA 540-R-00-002. FPA 540-R-00-002. Percentage of periodic costs. EPA

Table B-5 - Alternative B4 Estimated Cost Summary

Location:	Kaiser Trentwo	od Fac	ility	Des	Description: Alternative B4 includes Alternative B2 plus <i>in situ</i> chemical oxidation. This alternative includes <i>in situ</i> ozonation and soil vapor extraction. Refer to Table B-16 for detailed calculations.							
	Spokane Valley	y, WA		Alte	rnative B4 assu	umes an operating	g pe	eriod of 30 years in the d	levelopment of this cost estimate.			
Phase:	Feasibility Stud	ly (-35%	% to +50%)	Elei Svs	ments unique to tem decommis:	o Alternative B4 in sioning occurs in \	cluo Yea	de capital costs and 26 y ir 27.	years of system operation.			
Base Year:	2010			-,-								
Date:	July 2011											
PRESENT VA	ALUE ANALYSI	5										
Discount rate Total years	7.0% 26											
COST TYPE	YEAR		TOTAL COST	T(I	OTAL COST PER YEAR	DISCOUNT FACTOR	I	NET PRESENT VALUE	NOTES			
Capital	0	\$	3,249,998	\$	3,249,998	1.000	\$	3,249,998				
Annual O&M	1 - 26	\$	11,366,555	\$	437,175	11.826	\$	5,169,937				
Periodic	5	\$	4,885	\$	4,885	0.713	\$	3,483				
Periodic	10	\$	4,885	\$	4,885	0.508	\$	2,483				
Periodic	15	\$	268,885	\$	268,885	0.362	\$	97,456				
Periodic	20	\$	4,885	\$	4,885	0.258	\$	1,262				
Periodic	25 27	\$ \$	4,885 148,632	\$ \$	4,885 148,632	0.184 0.161	\$ \$	900 23,919				
		\$	15,053,609				\$	8,549,439	Net present value of elements unique to Alternative B4.			
Total Net Pres	sent Value of Alt	ernativ	e B2				\$	14,609,012				
TOTAL NET	PRESENT VALU	JE OF	ALTERNATIVE	B4			\$	23,158,451				

Notes: Costs taken from RSMeans have been adjusted by Spokane location adjustment factor of 0.93. Costs from previous work greater than 1 year old have been adjusted using historical cost index factors provided by 2010 RSMeans (p. 671). Present value analysis uses a 30-year discount rate of 7.0%.

Table B-6 - Alternative B5 Estimated Cost Summary

Location: Kaiser Trenty Spokane Val	vood Facility ley, WA	Description: Alternative B5 includes the elements of Alternative B1 plus containment for the PCB AOCs in the Kaiser Facility Remelt/Hot Line area only, where PCBs are not comingled with SVOCs. These AOCs are located beneath the existing building floor slab, which is assumed to be suitable as a containment cap in its current condition. Thus, installation of new cap will not be required under Alternative B5. Because the institutional controls element of Alternative B1 includes annual and beriodic costs related to floor slab O&M and monitoring.										
Phase: Feasibility St	udy (-35% to +50%)	these costs are not	included as uniq	ue elements of Alt	ernativ	e B5.						
Base Year: 2010												
Date: July 2011												
CAPITAL COSTS DESCRIF	TION	QUANTITY	UNIT	UNIT COST	٦	TOTAL	NOTES					
Institutional Controls Floor slab O&M and main Restrictive covenant Institutional Controls Subt	tenance plans				\$ \$		Included in institutional controls element of Alternative B1. Included in institutional controls element of Alternative B1.					
TOTAL CAPITAL COST					\$	-	No capital cost elements unique to Alternative B5.					
ANNUAL O&M COSTS DESCRIF	TION	QUANTITY	UNIT	UNIT COST	٦	TOTAL	NOTES					
Containment Operation, M	aintenance, and Mon	itoring			¢		Included in institutional controls clament of Alternative D4					
Floor slab maintenance					ծ \$	-	Included in institutional controls element of Alternative B1.					
Data management	aintonanco, and Mon	itoring Subtotal			\$ ¢	-	Included in institutional controls element of Alternative B1.					
Institutional Controls (Apr	wal Undate and Main	ionanco)			φ	-						
Institutional controls plan		enancej			\$	-	Included in institutional controls element of Alternative B1.					
Site information database Institutional Controls Sub	otal				\$ \$	-	Included in institutional controls element of Alternative B1.					
					•							
TOTAL ANNUAL O&M CO	ST				\$	-	No annual O&M cost elements unique to Alternative B5.					
PERIODIC COSTS DESCRIF	TION	QUANTITY	UNIT	UNIT COST	٦	TOTAL	NOTES					
Professional/Technical Se Five-year reviews Closure report Professional/Technical Se	rvices rvices Subtotal				\$ \$ \$	-	Included in institutional controls element of Alternative B1. Included in institutional controls element of Alternative B1.					
Institutional Controls (Per Restrictive covenant Institutional Controls Subr	iodic Update and Mai cotal	ntenance)			\$ \$	-	Included in institutional controls element of Alternative B1.					
PRESENT VALUE ANALY	SIS											
Discount rate 7.0% Total years 30												
COST YEAR TYPE	TOTAL COST	TOTAL COST PER YEAR	DISCOUNT FACTOR	NET PRESENT VALUE			NOTES					
Capital0Annual O&M1 - 30Periodic1 - 30	\$	- \$	1.000 12.409 0.000	\$- \$- \$-								
	\$			\$-			Net present value of elements unique to Alternative B5.					
Total Net Present Value of A	Alternative B1			\$ 13,537,821								
TOTAL NET PRESENT VA		/E B5		\$ 13,537,821								

Notes:

Costs taken from RSMeans have been adjusted by Spokane location adjustment factor of 0.93. Costs from previous work greater than 1 year old have been adjusted using historical cost index factors provided by 2010 RSMeans (p. 671). Present value analysis uses a 30-year discount rate of 7.0%.

DESCRIPTION	QUANTITY	QUANTITY UNIT UNIT COST		TOTAL	NOTES	
Alternative B1						
Protection & Performance Monitoring						Protection and performance monitoring costs based on previous
						project experience.
Labor	1	yr	\$	107,960	\$ 107,960	Includes well and equipment maintenance labor. Excludes project
						management labor.
Equipment, supplies, computer	1	yr	\$	17,480	\$ 17,480	Includes well and equipment maintenance.
Travel	1	yr	\$	24,108	\$ 24,108	Previous project experience.
Sample shipping	1	yr	\$	10,000	\$ 10,000	Previous project experience.
Laboratory analysis	1	yr	\$	108,552	\$ 108,552	Previous project experience.
Subtotal					\$ 268,100	
Total atv. of wells sampled	114					See SAP, as amended (Hart Crowser 2007a, Kaiser 2010)
Protection monitoring wells	19					See SAP as amended (Hart Crowser 2007a, Kaiser 2010).
Performance monitoring wells	95					See SAP as amended (Hart Crowser 2007a, Kaiser 2010).
r enormance monitoring weils	33					See SAL, as amended (mar clowsel 2007a, Raisel 2010).
Protection monitoring annual total	16.7%				\$ 44,683	Percentage = protection wells sampled/total wells sampled. Annual
Ū.						total. Monitoring events occur quarterly.
Performance monitoring annual total	83.3%				\$ 223,417	Percentage = performance wells sampled/total wells sampled.
_						Annual total. Monitoring events occur quarterly.
			•			
Data management	1	yr	\$	29,948	\$ 29,948	Data validation; database management. Based on previous project
—						experience.
Reporting	1	yr	\$	16,182	\$ 16,182	Report to Raiser & Ecology quarterly; EIM reporting. Based on
						previous project experience.

Alternative B1 protection and performance monitoring notes:

- Two 2 person teams plus sample custodian on site during each sample event (5 people total).

- Assumed each sample team can sample 7 wells per day on average.

- Assumed water levels take an entire day with 4 people measuring.

- Assumed 10 hour field days.

- Assumed EIM submittal included for groundwater data plus any additional soil or soil gas data collected during previous 6 months.

- Assumed 2 vehicles for each sampling event.

- Actual well and equipment maintenance costs will depend on upcoming needs.

Manitarad Natural Attanuation (MNA) Da	viadia Casta				
Total AOC area	16,600 S	F			Area of deep vadose zone soil AOCs excluding AOCs beneath
					existing pavement and floor slabs.
Drilling location density	10,000 S	F			One location per 10,000 square feet of AOC area.
Drilling locations	2				
Drilling depth	68 ft				
Drilling contractor	136	ft	\$ 77	\$ 10,454	2 locations to max. 68-ft depth. Unit cost based on vendor quote.
					Includes mob/demob, drilling, materials, 8.7% sales tax.
Labor	0.4	wk	\$ 5,375	\$ 2,150	Assume 2 days HC staff at HC rates. Includes travel. See Table B- 17.
Equipment, supplies, computer	2.6%			\$ 460	% of GW monitoring labor. % = (MNA samples/number of wells)/4 quarters per year.
Sample shipping	2.6%			\$ 263	% of GW monitoring labor. % = (MNA samples/number of wells)/4 guarters per year.
Laboratory analysis					
TPH-G - soil	2	samples	\$ 60	\$ 120	Sample quantity estimate based on 2 sampling locations and relative occurrence of VOCs (TPH-G) and SVOCs (TPH-D) in deep vadose zone soil AOCs.
TPH-D - soil	10	samples	\$ 60	\$ 600	Sample quantity estimate based on 2 sampling locations and relative occurrence of VOCs (TPH-G) and SVOCs (TPH-D) in deep vadose zone soil AOCs.
Subtotal				\$ 14,047	
Project management	10%			\$ 1,405	
Technical support	10%			\$ 1,405	
Total				\$ 16,857	•
Data management	1	yr	\$ 4,500	\$ 4,500	Assume work conducted by HC staff at HC rates. See Table B-17.
Reporting	1	yr	\$ 7,000	\$ 7,000	Assume work conducted by HC staff at HC rates. See Table B-17.

Alternative B1 monitored natural attenuation (MNA) notes:

- Assume monitoring conducted once every five years.

- Assume one exploration per 10000 sq ft of area per AOC. One sample collected per 10 feet of impacted depth for each analysis (TPH-G, TPH-D).

- TPH-G: gasoline-range petroleum hydrocarbons.

- TPH-D: diesel- and heavy-oil-range petroleum hydrocarbons.

Quantity of plans to maintain

Total

6

	DESCRIPTION	QUANTITY	UNIT	UN	IIT COST		TOTAL	NOTES
Alternative B1								
New Institution	al Controls							
Replace mel	mental upgrades at casting comp ter furnace door jambs	blexes 5	locations	\$	20,000	\$	100,000	Pending items and approx. costs provided by Kaiser. DC-1, DC-2W, DC-3, DC-8E, DC-8W. Provided by Kaiser, May 23, 2011
Contain hydr	aulics/lubrication	1	locations	\$	151,000	\$	151,000	DC-2. Unit cost per Kaiser, April 19, 2010.
Overflow line	s to sewer	7	locations	\$	50,000	\$	350,000	DC-2 through DC-8.
Seal DC-7/D	C-8 control nouse sump	1	locations	\$	15,000	\$	15,000	Excludes equipment removal cost (approx. \$15k). Unit cost per Kaiser, April 19, 2010.
Slip line stori MH 2 to MI	n sewers ⊣ 3	133	ft	\$	371	\$	49 386	Pipe lengths from Kaiser storm sewer plan dwg. "Aluminum Works - Trentwood Plant, Storm Sewer - Scheme "O", General
MH 9 to MI	13	280	ft	\$	371	\$	103,971	Arrangement" March 8, 1967. Unit cost based on cost of slip lining
MH 3 to MI	H 5	366	ft	\$	371	\$	135,905	from MH 7B to MH 9 (approx. \$120,100 for total length of 390 ft.) in
MH 5 to MI	46	460	ft	\$	371	\$	170,810	2005, adjusted to 2010 dollars (2010 RSMeans p.671).
Subtotal Total						\$ \$	460,073	
Descention of in						Ť	.,	
Preparation of in Principal	stitutional control O&M and moni	toring plans	hr	\$	180	\$	1 440	Assume work performed by Hart Crowser staff.
Sr. Project		16	hr	\$	130	\$	2,080	
Sr. Staff		60	hr	\$	90	\$	5,400	
Staff		60	hr	\$	75	\$	4,500	
Sr. Drafter		8	hr	\$	100	\$	800	
Clerical		8	hr	\$	60	\$	480	
Travel		1	ea	\$	566	\$	566	Assume 2-day site visit.
Computer		1	ea	\$	250	\$	250	Cost non slop
Subtotal Quantity of pla	ns to prepare	3				\$	15,516	Cost per plan.
Total		5				\$	46,548	Assume 3 plans in total (e.g., plans for Facility pavement, engineered controls, air emission control system).
Preparation of re	estrictive covenant							Assume work performed by Hart Crowser staff. Includes attorney
								fees.
Attorney fee	3	40	hr	\$	300	\$	12,000	
Principal Sr. Brojoct		24	hr	\$ ¢	180	\$ ¢	4,320	
Sr. Staff		24 40	hr	ф Ф	90	ф ¢	3,120	
Staff		40	hr	\$	30 75	φ \$	1.200	
Clerical		8	hr	\$	60	\$	480	
Computer		1	ea	\$	250	\$	250	
Total						\$	24,970	-
Institutional Co Environmental u Verify pit/sur	ntrols - Annual Costs pgrades at casting complexes	9	locations	\$	1.000	\$	9.000	DC-1 through DC-8 plus DC-7/DC-8 control house sump.
Other upgrad	de maintenance	5%		Ŷ		\$	53,804	Assume percentage of environmental upgrade capital cost above.
Subtotal						\$	62,804	-
Maintenance of	physical measures and BMPs							Assume maintenance of signs, fences, gates, access control, existing training programs, waste handling guidance, and BMPs defined in SPCC Plan and SWPPP
Labor		1920	hr	\$	75	\$	144.000	Assume 1 individual.
Supervisor		480	hr	\$	110	\$	52,800	Assume 25% of labor effort.
Subtotal						\$	196,800	-
Total						\$	259,604	
Institutional cont	rol O&M and monitoring plans - a	nnual update a	nd maintena	ince				Assume work performed by Hart Crowser staff.
Principal		4	hr	\$	180	\$	720	· · · · · · · · · · · · · · · · · · ·
Sr. Project		8	hr	\$	130	\$	1,040	
Sr. Staff		16	hr	\$	90	\$	1,440	
Staff		8	hr	\$	75	\$	600	
Sr. Drafter		4	hr	\$	100	\$	400	
Clerical		2	nr	\$	60	\$	120	Assume 1 day site visit
Computer		1	69	ф 2	433 250	ф 2	433	Assume 1-udy sile visil.
Subtotal		'	ou	Ψ	200	\$	5.003	Cost per plan.

\$

30,018 Assume 6 plans in total. Includes existing WDR Restoration Monitoring Plan, SPCC Plan, and SWPPP plus institutional control O&M and monitoring plans given above.

DESCRIPTION	QUANTITY	UNIT	UNI	T COST		TOTAL	NOTES
Site information database as a study of the state	aintanar						Assume work performed by Hort Crowser atoff
Site information database - annual update and m	aintenance	k -	¢	400	¢	700	Assume work performed by Hart Crowser staff.
	4	nr	\$	180	\$	720	
Sr. Project	8	hr	\$	130	\$	1,040	
Sr. Staff	24	nr	\$	90	\$	2,160	
Staff	12	hr	\$	75	\$	900	
Clerical	4	hr	\$	60	\$	240	
Iravel	1	ea	\$	433	\$	433	Assume 1-day site visit.
Computer	1	ea	\$	250	\$	250	
Total					\$	5,743	
Institutional Controls - Periodic Costs Restrictive covenant periodic update and mainter	nance						Assume work performed by Hart Crowser staff. Includes attorney
Attorney fees	8	hr	¢	300	¢	2 400	lees.
Principal	8	hr	ф Ф	180	¢	2,400	
Sr. Project	0	hr	φ	130	φ	520	
Sr. Floject Sr. Stoff	4	hr	¢ ¢	130	¢ ¢	1 4 4 0	
Stoff	10	hr	¢ ¢	90 75	¢ ¢	200	
Clarical	4	lli br	ф Ф	75	¢	120	
Cierical	2	nr	Þ	00	¢	120	
	1	ea	Ф	250	þ þ	250	
lotal					\$	6,470	
NPDES Permit and Ecology Order Required N	lonitoring - Ani	nual Costs					Required by NPDES Permit No. WA-000089-2 (Ecology 1997), Ecology Agreed Order No. 02WQER-3487 (Ecology 2002), and Ecology Amended Order No. 2868 (Ecology 2005). See Section 2.1.1.1.
Sample quantity							Record on weakly compling froquency
	104	aamalaa					based on weekly sampling nequency.
Outfall 001	104	samples					
	104	samples					
Outrall 003	52	samples					
Plant Intake	104	samples					
Laboratory analysis Outfall 001							Unit prices based on laboratory quote.
Oil and grease	104	samples	\$	50	\$	5,200	
TSS	104	samples	\$	18	\$	1.872	
Total Al. Cr. Zn. P	104	samples	\$	50	\$	5.200	Aluminum, chromium, recoverable zinc, phosphorous,
Cvanide	104	samples	\$	40	\$	4,160	· · · · · · · · · · · · · · · · · · ·
Hardness	104	samples	\$	25	ŝ	2 600	
Subtotal			Ť		\$	19,032	
Outfall 002							
Oil and grease	260	samples	\$	50	\$	13,000	
TSS	104	samples	\$	18	\$	1,872	
Orthophosphate	104	samples	\$	20	\$	2,080	
Total Al, Cr, Zn, P	104	samples	\$	50	\$	5,200	Aluminum, chromium, zinc, phosphorous.
Hexavalent chromium	104	samples	\$	50	\$	5,200	
Cyanide	104	samples	\$	40	\$	4,160	
Subtotal					\$	31,512	
Outfall 003							
BOD-	52	samples	¢	45	¢	0.040	
TOO	52	Jumpico	ን ድ	45	¢	2,340	
ISS Facel as Marrie	52	samples	\$	18	\$	936	
recal coliform	52	samples	\$	35	\$	1,820	
Subtotal					\$	5,096	
Plant intake							
Oil and grease	104	samples	\$	50	\$	5,200	
TSS	52	samples	\$	18	\$	936	
Total metals	104	samples	\$	50	\$	5,200	Aluminum, chromium, recoverable zinc.
Subtotal					\$	11,336	,
NPDES permit laboratory analysis subtotal					\$	66,976	
Ecology Order - monitoring laboratory analysis Sample quantity							Based on biweekly sampling frequency.
Outfall 001	26	samples					· · · · · · · · · · · · · · · · · · ·
Plant lagoon effluent	26	samples					
Plant lagoon influent	26	samples					
	20	50pi00					

Hart Crowser L:\Jobs\2644125\Final FS 05-2012\03 Appendices\Appendix B\Appendix B - Section 3 Cost Estimates - institutional controls

Sheet 3 of 4

DESCRIPTION	QUANTITY	UNIT	UNIT	COST	т	OTAL	NOTES
Laboratory analysis							
For 3 locations given above							
PCBs - ultra-low level	78	samples	\$	175	\$	13,650	
Subtotal		-			\$	13,650	
Ecology Order laboratory analysis subtotal					\$	13,650	
Sampling labor - NPDES permit and Ecology Orde	er required mor	hitoring	•		•		A
Labor	208	hr	\$	75	\$	15,600	Assume 1 individual.
Supervisor	52	hr	\$	110	\$	5,720	Assume 25% of labor effort.
Labor subtotal					\$	21,320	
Total Appual Cost					¢	101 0/6	
					Ψ	101,940	
NRDEC Devenić Devujivod Menićevinev - Deviedio	Casta						Demined by NDDEC Demin No. WA 000000 2 (Eastern 4007). Con
NFDES Fernini Required Monitoring - Feriodic	Cosis						Section 2.1.1.1
Initial acute toxicity testing							Assume conducted quarterly for one year, once per permit cycle
Sample quantity							Assume 5-year permit cycle
River intake	4	samples					Assume conducted in Years 0 5 10 15 20 and 25
Final effluent	4	samples					Linit prices based on laboratory quote
		oumpioo					onic photo babba on laboratory quoto.
Laboratory analysis							
Eathead minnow (96-hr static-renewal test)	8	samples	\$	850	\$	6 800	
Danhnid (48-br static test)	8	samples	¢	700	ŝ	5,600	
Subtotal	0	Sampies	Ψ	100	¢ \$	12 400	
Subiolai					Ψ	12,400	
Sampling and reporting labor							
Labor	40	hr	¢	75	¢	3 000	Assume 1 individual performs campling and reporting
Supervisor	40	br	¢ ¢	110	Ψ ¢	1 100	Assume 25% of labor effort
	10		φ	110	¢ ¢	1,100	Assume 25 % of labor enore.
Labor Subtotal					φ	4,100	
Initial acute toxicity testing total					\$	16,500	
Final acute toxicity testing							Assume conducted once in the last summer, once in the last winter,
Sample quantity							Accume 5 year permit cycle.
Final offluant	2	complex					Assume conducted in Voore 5, 10, 15, 20, 25, and 20
Fillar endent	2	samples					Assume conducted in Tears 5, 10, 15, 20, 25, and 50.
Laboratory analysis							
Eablead minnow (96-br static-renewal test)	2	samnles	\$	850	\$	1 700	
Danhnid (48-br static test)	2	samples	¢	700	¢ ¢	1 400	
Subtotal	2	Sampies	Ψ	100	¢	3 100	
Subtotal					Ψ	3,100	
Sampling and reporting labor							
Labor	28	hr	\$	75	\$	2 100	Assume 1 individual performs sampling and reporting
Supervisor	7	hr	\$	110	ŝ	770	Assume 25% of labor effort
Labor subtotal	,		Ψ		\$	2 870	
					Ψ	2,010	
Final acute toxicity testing total					\$	5,970	
						,	
Initial chronic toxicity tooting							Assume conducted quarterly for any year and not normit and
Sample quantity							Assume 5-year permit cycle
Sample quantity	4	aamalaa					Assume style permit cycle.
Final offluant	4	samples					List prices based on laboratory quete
Final enluent	4	samples					Unit prices based on laboratory quote.
Laboratory analysis							
Eaboratory analysis Eathoad minnow (7 day, full dilution tost)	8	complex	¢	1 575	¢	12 600	
Motor flop (7 day, full dilution test)	0	samples	¢ ¢	1,375	φ	11 900	
Subtetel	0	Samples	Ψ	1,475	ψ	24,400	
Subtotal					φ	24,400	
Compling and reporting labor							
Sampling and reporting labor	10	h.	¢	75	¢	2 000	Accume 1 individual performs complian and reporting
Supervisor	40	111 br	¢	110	¢	3,000	Assume 1 inuvidual periornis sampling and reporting.
	10	111	Φ	110	ф Ф	1,100	
Lador Sudioial					Φ	4,100	
Initial chronic toxicity testing total					¢	28 500	
ווווומו טוויטווט וטאטונץ ופגוווש וטומו					φ	20,500	
Final chronic toxicity testing							Assume conducted once in the last summer, once in the last winter
							of the permit cycle
Sample quantity							Assume 5-year permit cycle
Final effluent	2	samples					Assume conducted in Years 5, 10, 15, 20, 25, and 30
	2	Sampios					

Sheet 4 of 4

DESCRIPTION	QUANTITY	UNIT	UNIT COST		TOTAL	NOTES
Laboratory analysis						
Fathead minnow (7-day, full dilution test)	2	samples	\$	1,575	\$ 3,150	
Water flea (7-day, full dilution test)	2	samples	\$	1,475	\$ 2,950	
Subtotal					\$ 6,100	
Sampling and reporting labor						
Labor	28	hr	\$	75	\$ 2,100	Assume 1 individual performs sampling and reporting.
Supervisor	7	hr	\$	110	\$ 770	Assume 25% of labor effort.
Labor subtotal					\$ 2,870	
Final chronic toxicity testing total					\$ 8,970	

Table B-9 - Professional Services Cost Backup

DESCRIPTION	QUANTITY	UNIT	UNIT COST		TOTAL		NOTES	
Alternative B1 - Periodic Costs							Assume work performed by Hart Crowser staff	
Five-year review periodic cost							Assume work performed by Hart Crowser start.	
Ecology oversight	1	LS	\$	7 500	\$	7 500	2009	
Principal	16	hr	\$	180	\$	2,880	2000.	
Sr. Project	16	hr	\$	130	\$	2.080		
Sr. Staff	40	hr	\$	90	\$	3.600		
Staff	40	hr	\$	75	\$	3,000		
Clerical	8	hr	\$	60	\$	480		
Total					\$	19,540	-	
Closure report periodic cost							Assume work performed by Hart Crowser staff.	
Ecology oversight	1	15	\$	7 500	\$	7 500	Historical mean non-zero quarteriy Ecology cost at Kalser 2007-	
Principal	40	L3 hr	ф Ф	180	¢ ¢	7,500	2009.	
Sr. Project	40 80	hr	Ψ \$	130	φ \$	10 400		
Sr. Staff	80	hr	\$	90	\$	7 200		
Staff	80	hr	\$	75	ŝ	6,000		
Sr. Drafter	24	hr	\$	100	ŝ	2 400		
Clerical	8	hr	\$	60	\$	480		
Total			+		\$	41.180	-	
					•	,		
MNA - data management periodic cost							Assume work performed by Hart Crowser staff.	
Principal	2	hr	\$	180	\$	360		
Sr. Associate	4	hr	\$	160	\$	640		
Sr. Project	8	hr	\$	130	\$	1,040		
Sr. Staff	16	hr	\$	90	\$	1,440		
Staff	12	hr	\$	75	\$	900		
Clerical	2	hr	\$	60	\$	120	_	
Total					\$	4,500		
MNA - reporting periodic cost			•	400	•		Assume work performed by Hart Crowser staff.	
	8	nr	\$ ¢	180	\$	1,440		
Sr. Associate	2	nr	\$ ¢	160	\$	320		
Sr. Project	12	nr	\$ ¢	130	\$	1,560		
Sr. Statt	16	nr	\$ ¢	90	\$	1,440		
Stall	10	nr he	¢ ⊅	100	¢	1,200		
Sr. Draiter	8	nr br	¢	100	¢ ¢	800		
Total	4	111	φ	00	¢ ¢	7 000	-	
					Ψ	7,000		
Alternative P2 Annual Casta								
Containment monitoring - data management							Assume work performed by Hart Crowser staff	
Principal	2	hr	¢	180	¢	360	Assume work performed by Hart Crowser stan.	
Sr. Associate	2	hr	ф Ф	160	¢ ¢	160		
Sr. Project	2	hr	¢	130	φ	260		
Sr. Staff	8	hr	¢	90	¢ ¢	720		
Staff	8	hr	ŝ	75	ŝ	600		
Clerical	1	hr	ŝ	60	ŝ	60		
Total	·		Ψ	00	¢	2 160	-	
					Ψ	2,100		
Containment monitoring - reporting							Assume work performed by Hart Crowser staff.	
Principal	8	hr	\$	180	\$	1,440		
Sr. Associate	2	hr	\$	160	\$	320		
Sr. Project	8	hr	\$	130	\$	1,040		
Sr. Staff	12	hr	\$	90	\$	1,080		
Staff	12	hr	\$	75	\$	900		
Sr. Drafter	8	hr	\$	100	\$	800		
Clerical	4	hr	\$	60	\$	240		
Total					\$	5,820	-	
Alternative B2 - Periodic Costs								
Five-year reviews	50%				\$	9,770	Assume 50% of Alt. B1 five-year review cost to include	
							containment system.	
Closure report	50%				\$	20,590	Assume 50% of Alt. B1 remedial action report cost to include	
							containment system.	
Table B-10 - Containment Cost Backup

DESCRIPTION	QUANTITY	UNIT	UN	іт соѕт	٦	TOTAL	NOTES
Alternative B2							
Total exposed AOC area	16,560	SF					See Section 3.1.2.1.
Hoffman Tank area SVOC AOC exposed area	467	SF					
Multi-layer cap area	3,675	SF					Extension of existing multi-layer cap in Hoffman Tank area (see Section 3.1.2). Assumes dimensions of 25 ft x 147 ft.
Total area to be capped	19,768	SF					,
Asphalt cap area	13,679	SF					Assume 85% of net remaining area to be asphalt capped (total
							area minus multi-layer cap area).
Concrete cap area	2,414	SF					Assume 15% of net remaining area to be concrete capped (total
Sales tax	8.7%						area minus multi-layer cap area). Effective rate for Spokane Valley, WA, 4/1/10 to 6/30/10. See http://dor.wa.gov/Docs/forms/ExcsTx/LocSalUseTx/LocalSIsUse
							Fiyei_10_Q2_aipna.pul.
RSMeans location adjustment factor	0.93						Cost adjustment factor for Spokane, WA (2010 RSMeans p. 696). Applied to estimated costs originating from RSMeans cost guide.
Asnhalt Canning							
Asphalt cap material quantities							
Compaction ratio	75%						Assume 75%
Aggregate base course compacted thickness	3	in					
Asphalt base layer compacted thickness	2	in					
Asphalt intermediate layer compacted thickness	2	in					
Asphalt wearing layer compacted thickness	2	in					
Aggregate base course volume (loose)	169	LCY					LCY = "loose cubic yards"
Asphalt volume (loose)	338	LCY					
Railroad track length	201	LF					For railroad track removal.
Railroad ballast depth	1	ft					
Railroad ballast width	6	ft					
Railroad ballast volume	45	CY					
Asphalt can installation							
Mob/demob	1	15	\$	4 053	\$	4 053	Previous project experience Adjusted from 2008 to 2010 basis
Mob/demob	1	20	Ψ	4,000	Ψ	4,000	(2010 RSMeans n. 671)
Railroad track removal							
Ties and track	201	LF	\$	10.93	\$	2,196	2010 RSMeans 02 41 13.33 3500.
Ballast	45	CY	\$	5.44	\$	243	2010 RSMeans 02 41 13.33 3600.
Subgrade preparation	1,520	SY	\$	1.75	\$	2,657	Prepare and roll. 2010 RSMeans 32 11 23.23 7000.
Paving materials hauling	507	LCY	\$	4.64	\$	2,351	12 CY trucks, 25 MPH ave., cycle 4 mi. 2010 RSMeans 31 23 23 20 1040
Aggregate base course	1,520	SY	\$	4.61	\$	7,011	Crushed 3/4-in. stone, compacted, 3 in. deep. 2010 RSMeans
A such all has a larger	4 500	0)/	•	0.07	•	40 704	32 11 23.23 0050.
Asphalt base layer	1,520	SY	\$ ¢	8.37	\$	12,721	Binder course, 2-in. thick. 2010 RSMeans 32 12 16.13 0120.
Asphalt Intermediate layer	1,520	SI	¢	8.37	ф Ф	14,721	Binder course, 2-In. thick. 2010 RSWeans 32 12 16.13 0120.
Asphalt wearing layer	1,520	51	Ф	9.35	Ф	14,206	wearing course, 2-in. thick. 2010 RSMeans 32 12 16.13 0380.
Sealing	1,520	SY	\$	1.64	\$	2,488	Tack coat, emulsion 0.10 gal. per SY. 2010 RSMeans 32 01 13.62 3270.
Sales tax	8.7%				\$	3.232	Assume sales tax charged on cost of materials.
Subtotal					\$	63,880	
Cap installation quality control	10%				\$	6,388	Assume QC conducted to ensure appropriate impermeability.
Total					\$	70,268	
Total unit cost		SY	\$	46.23			
Concrete Capping							
Compaction ratio	750/						Assume 75%
Aggregate base course compacted thickness	10%	in					
Concrete thickness	6	in					
Aggregate base course volume (loose)	30	LCY					LCY = "loose cubic vards"
Concrete volume	45	CY					
Concrete paving pass length	24	LF					

Table B-10 - Containment Cost Backup

DESCRIPTION	QUANTITY	UNIT	UN	T COST		TOTAL	NOTES
Concrete cap installation Mob/demob	1	LS	\$	4,053	\$	4,053	Previous project experience. Adjusted from 2008 to 2010 basis
Subgrade preparation	268	SY	\$	1.75	\$	469	Prepare and roll area, 2010 RSMeans 32 11 23.23 7000.
Base course material hauling	30	LCY	\$	4.64	\$	138	12 CY trucks, 25 MPH ave., cycle 4 mi. 2010 RSMeans 31 23
Aggregate base course	268	SY	\$	4.61	\$	1,237	Crushed 3/4-in. stone, compacted, 3 in. deep. 2010 RSMeans 32 11 23.23 0050.
Reinforcing steel for rigid paving	268	SY	\$	6.84	\$	1,833	12 lb/SY. 2010 RSMeans 32 13 13.23 0530.
Dowels	299	EA	\$	2.94	\$	880	2 ft long, deformed, #4. 1-ft spacing. 2010 RSMeans 03 21
Concrete delivery	45	CY	\$	102	\$	4,573	10.60 2410. Normal weight concrete, ready mix, 3,500 psi. Includes local aggregate, sand, Portland cement, and water. 2010 RSMeans
Concrete paving	268	SY	\$	21	\$	5,737	03 31 05.35 0200. Includes joints, finishing, curing. Fixed form, 24-ft pass, 6-in
Water stops	299	LF	\$	6.88	\$	2,061	Thickness. 2010 RSMeans 32 13 13.23 0410. PVC, ribbed, w/ center bulb, 6 in. wide, 3/8 in. thick. 2010 RSMeans 03 15 13 50 0550
Joint filler	299	LF	\$	2.45	\$	732	Butyl rubber filler, 1/2 x 1/2 in. 2010 RSMeans 07 91 26.10
Joint seal	299	LF	\$	1.30	\$	390	Silicone, room temp vulcanizing foam seal, 1/2 x 1/2 in. 2010 SSMeans 07 91 26 10 5610
Sales tax	8.7%				\$	1.083	Assume sales tax charged on cost of materials.
Subtotal					\$	23,187	••••••••••••••••••••••••••••••••••••••
Cap installation quality control	10%				\$	2,319	Assume QC conducted to ensure appropriate impermeability.
Total					\$	25,506	· · · · · · · ·
Total unit cost		SY	\$	95.10			
Multi-Layer Capping							
Multi-layer cap material quantities	750/						Accurace 75%
Compaction ratio	75%	in					Assume 75%.
Intermediate laver thickness	12	in					
Top laver thickness	12	in					
Excavation depth	27	in					
Excavation volume	306	BCY					BCY = bank cubic yards
Aggregate base course volume	45	LCY					LCY = loose cubic yards
Intermediate layer volume	136	LCY					Assume not compacted.
Top layer volume	136	LCY					Assume not compacted.
AST secondary containment length	39	ft					
AST secondary containment width	15	ft 4					Well beight regions actionated arrange beight read
AST secondary containment height	4	IT in					Assume 6 in alab and wall thickness
AST secondary containment concrete volume	19	CY					
Multi-layer cap installation							
Mob/demob	1	LS	\$	4,053	\$	4,053	Previous project experience. Adjusted from 2008 to 2010 basis (2010 RSMeans p. 671).
lemporary relocation of surface structures Remove steam line	150	LF	\$	3.40	\$	511	Steel pipe w/ insulation, 3/4 in. to 4 in. 2010 RSMeans 02 41
Relocate AST	1	day	\$	1,535	\$	1,535	Move AST for cap installation; return AST to original location after installation. Temporary crane, 25-ton. 2010 RSMeans 01
Remove secondary containment	19	CY	\$	134	\$	2,522	54 19.50 0200. Concrete demolition, average reinforcing. 2010 RSMeans 03 05
Reconstruct secondary containment	19	CY	\$	173	\$	3,258	05.10 0060. Slab on grade (3,500 psi), not including finish, 6-in thickness.
Replace steam line	150	LF	\$	36	\$	5,371	2010 RSMeans 03 30 53.40 4700. 2-in diam. black steel pipe w/ 2-in insulation, align & tackweld on
Earthwork							sieepers. 2010 Romeans 33 61 13.10 1030.
Excavator	306	BCY	\$	2.69	\$	825	Excavator, hydraulic, crawler mounted, 2 CY capacity. For heavy soil added 60%. 2010 RSMeans 31 23 16.42 0260.
Bulldozer	306	BCY	\$	2.49	\$	763	300 HP, 150-ft haul, sand & gravel. 2010 RSMeans 31 23 16.46 5200.
Stockpiling	15%				\$	124	Add 15% of excavator cost. 2010 RSMeans 31 23 16.42 0011-0020.
Finish grading	408	SY	\$	2.35	\$	961	Grade subgrade for base course, small irregular areas. 2010 RSMeans 31 22 16.10 1050.
Cap material hauling	181	LCY	\$	4.64	\$	842	12 CY trucks, 25 MPH ave., cycle 4 mi. 2010 RSMeans 31 23 23.20 1040. Assume reuse of native material for top laver.
Aggregate base course	408	SY	\$	4.61	\$	1,884	Crushed 3/4-in. stone, compacted, 3 in. deep. 2010 RSMeans 32 11 23.23 0050.
Liner Intermediate layer	3,675 136	SF LCY	\$ \$	1.39 49	\$ \$	5,092 6,709	PVC, 80-mil liner. 2010 RSMeans 02 56 13.10 0620. Bank sand. Ballast cover w/ common borrow material. 2010 RSMeans 02 56 13.10 1120.

Table B-10 - Containment Cost Backup

DESCRIPTION	QUANTITY	UNIT	UN	IIT COST	TOTAL	NOTES
Top layer	136	LCY	\$	40	\$ 5,418	Assume reuse of native material. 2010 RSMeans 02 56 13.10
						1110, excluding material cost.
Seeding	408	SY	\$	0.47	\$ 190	Mechanical seeding, 44 lb. per 1,000 SY. 2010 RSMeans 32 92 19.13 0100.
Water drainage and collection system	26	LF	\$	8.34	\$ 219	Assume similar to foundation underdrain system. 4-in diam. perf. PVC pipe. Pipe bedding, graded gravel 3/4 to 1/2 in. 2010 RSMeans assembly A1010 310 1000.
Sales tax	8.7%				\$ 1,018	Assume sales tax charged on cost of materials.
Subtotal					\$ 41,293	
Cap installation quality control	10%				\$ 4,129	
Total					\$ 45,422	
Total unit cost		SY	\$	111.24		
Containment Operation, Maintenance, and Monitor	ring					
Cap sampling location density	10,000	SF				One location per 10000 square feet of new asphalt and concrete cap area.
Cap sampling locations	2	samples				
Cap annual sampling and laboratory analysis	29%		\$	15,355	\$ 4,387	Use % of Alt. A2 cap annual sampling and laboratory analysis cost (see Tables A-3 and A-13). % = Alt. B2 sampling locations/Alt. A2 sampling locations.
Data management	1	yr	\$	2,160	\$ 2,160	Assume work conducted by HC staff at HC rates. See Table B-9.
Reporting	1	yr	\$	5,820	\$ 5,820	Assume work conducted by HC staff at HC rates. See Table B-9.

Table B-11 - SVE Periodic Cost Backup

DESCRIPTION	QUANTITY	UNIT	UNIT	COST		TOTAL	NOTES
Pariadia Casta Vasa 4							
Carbon changeout, transport and regeneration	1.0	ea	\$	5,580	\$	5,580	Includes replacement, removal, regeneration, and labor for carbon changeout for one 2,000-lb bed. Based on vendor quote for existing HC project. Price adjusted per 2010 RSMeans Cost
Mobilization/demobilization	1	LS	\$	1,000	\$	1,000	LS price for contractor mobilization based on previous Kaiser vendor cost estimate. Cost accounts for moving of skid unit
HC oversight	0.6	wk	\$	5,375	\$	3,225	Assume 3 days of oversight for treatment system move. See Table 8-17 for backup calculation
Startup performance monitoring	1	LS	\$	5,106	\$	5,106	See Table B-15 for backup calculations.
Confirmational air sampling	1 17.5%	LS	\$	5,694	\$ ¢	5,694 3,606	See Table B-15 for backup calculations.
Comingency	17.5%				φ	3,000	contingency and general bid (EPA 540-R-00-002).
Project management	10%				\$	2,421	Percentage of sum of periodic cost and contingency. EPA 540-R-00-002.
Technical Support	10%				\$	2,421	Percentage of sum of periodic cost and contingency. EPA 540- R-00-002.
Periodic Costs - Year 1					\$	29,053	
Periodic Costs - Year 2							
Carbon changeout, transport and regeneration	2.0	EA	\$	5,580	\$	11,160	Includes replacement, removal, regeneration, and labor for carbon changeout for one 2,000 lb bed. Based on vendor quote
							for existing HC project. Price adjusted per 2010 RSMeans Cost Index. Assume to occur at end of year.
Mobilization/demobilization	1	LS	\$	1,000	\$	1,000	LS price for contractor mobilization based on previous Kaiser vendor cost estimate. Cost accounts for moving of skid unit.
HC oversight	0.6	wk	\$	5,375	\$	3,225	Assume to occur at end of year. Assume 3 days of oversight for treatment system move. See
Startup performance monitoring	1	IS	\$	5 106	\$	5 106	Table B-17 back up calculation. See Table B-15 for backup calculations
Confirmational air sampling	1	LS	\$	5,694	\$	5,694	See Table B-15 for backup calculations.
Contingency	17.5%				\$	4,582	Percentage of capital costs. Average percent of SVE
Project management	10%				\$	3,077	Contingency and general bid (EPA 540-R-00-002). Percentage of sum of periodic cost and contingency. EPA 540- P. 00.002
Technical Support	10%				\$	3,077	Percentage of sum of periodic cost and contingency. EPA 540-
Periodic Costs - Year 2					\$	36,921	r-00-002.
Periodic Costs - Year 3							
Equipment and appurtenances repair/replacement	1	LS	\$	5,000	\$	5,000	Cost of blower. Price obtained from vendor.
Startup performance monitoring	1	LS	\$	5,106	\$	5,106	See Table B-15 for backup calculations.
Confirmational air sampling Contingency	1 17.5%	LS 	\$	5,694	\$ \$	5,694 2 765	See Table B-15 for backup calculations. Percentage of capital costs Average percent of SVF
Containgonoy	11.070				Ψ	2,700	contingency and general bid (EPA 540-R-00-002).
Project management	10%				\$	1,857	Percentage of sum of periodic cost and contingency. EPA 540- R-00-002.
Technical Support	10%				\$	1,857	Percentage of sum of periodic cost and contingency. EPA 540- R-00-002.
Periodic Costs - Year 3					\$	22,278	
Demobilization of Treatment System/Professional	and Technical	Services	- Year 5	i			
Contractor mobilization/demobilization	1	LS	\$	1,000	\$	1,000	LS price for contractor mobilization based on previous Kaiser vendor cost estimate
Carbon transport and regeneration	1	ea	\$	2,790	\$	2,790	Assume 50% of carbon changeout, transport, and regeneration cost
Treatment unit shipping	1	LS	\$	2,000	\$	2,000	Shipping treatment system from the Facility. Assume same cost as shipping to Facility. Price obtained from SVE vendor.
Piping demolition	475	ft	\$	3.87	\$	1,838	2-in steel piping demolition cost from 2010 RSMeans 22 05 05.10 2050. Location factor adjustment for Spokane, WA, 2010
Well abandonment	1	LS	\$	15.846	\$	15.846	RSMeans, p. 696. See Table B-13 for backup calculations.
Soil sampling	1	LS	\$	68,963	\$	68,963	See Table B-15 for backup calculations.
Contingency	17.5%				\$	16,177	Percentage of capital costs. Average percent of SVE contingency and general bid (EPA 540-R-00-002).
Project management	10%				\$	10,861	Percentage of sum of periodic cost and contingency. EPA 540- R-00-002.
Technical Support	10%				\$	10,861	Percentage of sum of periodic cost and contingency. EPA 540- R-00-002.
Periodic Cost - Year 5					\$	130,336	-

Table B-12 - SVE Treatment System Annual Operation and Maintenance Cost Backup

DESCRIPTION	QUANTITY	UNIT	UN	IT COST	TOTAL	NOTES
Treatment System Operation and Maintenance						
Maintenance labor	50	hr	\$	110	\$ 5,500	Assume 5 days of HC project level staff.
Equipment maintenance	1	LS	\$	2,000	\$ 2,000	Based on previous HC estimate.
Spare parts and supplies	1	LS	\$	1,000	\$ 1,000	Assume 50% of equipment maintenance.
Equipment rental	12	mo	\$	1,000	\$ 12,000	600 SCFM blower, knock-out pot, vessels for 2 x 2,000 lb GAC
						beds, process control, sensors & instrumentation, system enclosure per SVE vendor estimate.
Utilities	13,140	kWh	\$	0.05	\$ 620	Based on 1.5 kW demand (600 SCFM motor, 6-8" Hg [All-Star
						RB9 Series]), continuous operation. Cost of electricity based on estimate provided by Kaiser.
Treatment System Operation and Maintenance Sub	ototal				\$ 21,120	-

Table B-13 - SVE Well Installation and Well Abandonment Cost Backup

DESCRIPTION	QUANTITY	UNIT	UNI	IT COST	TOTAL	NOTES
Drilling - well installation	1088	ft	\$	77	\$ 83,776	16 locations to 68-ft depth (9 extraction wells, 7 vent wells).
						Unit cost based on vendor quote. Includes mob/demob, drilling,
2" Well Materials						Prices for well materials based on Kaiser vendor previous cost
						estimate. Costs adjusted from 2009 to 2010 dollars with
						RSMeans 2010 historical cost index adjustment (2010
						RSMeans p. 671).
SCH 40 PVC screen 2" x 10' .020	271	ft	\$	5.45	\$ 1,474	In Tank Farm area there are 9 x 2-in wells with screen interval
						41 to 68 ft bgs. In Oil House Area there are 5 x 2-in wells with
						screen interval 62.5 to 68 ft bgs.
SCH 40 PVC 2" x 10'	682	ft	\$	3.54	\$ 2,413	See note above.
SCH 40 ends 2"	16	ea	\$	14	\$ 218	
Flush monument 8"	7	ea	\$	237	\$ 1,659	8-in monument for vent wells. Extraction wells will have vault.
Cost of vault (to protect wells)	9	ea	\$	1,000	\$ 9,000	9 extraction wells. Estimate provided by vendor. Includes
						labor, equipment, and materials.
Sand	137	bag	\$	19	\$ 2,561	Quote for number of bags provided by Kaiser vendor.
Drums	5	ea	\$	86	\$ 429	Quote for number of drums provided by Kaiser vendor.
Bentonite	259	bag	\$	15	\$ 3,792	Estimated number of bags based on previous Kaiser vendor
						cost estimate.
Well permits - WA	16	EA	\$	76	\$ 1,212	
2" Well Materials Subtotal		ea			\$ 22,758	
Additional Costs for Well Installation						
Transport & dispose of soil at Subtitle D landfill	15.2	ton	\$	54	\$ 821	Cost for disposal based on previous Kaiser work and adjusted
						using RSMeans 2010 historical cost index. Based on cost on
						35 drums of disposal. Number of drums generated based on
						estimate from Kaiser vendor.
HC oversight	1.4	wk	\$	5,375	\$ 7,525	For logging well information and protection monitoring. See
						Table B-17 for backup calculations.
Equipment rental	7	day	\$	80	\$ 560	HC equipment cost.
Additional Costs for Well Installation Subtotal					\$ 8,906	-
SVE Well Installation Subtotal					\$ 115,439	
Well Abandonment						
Ecology filing	16	per well	\$	65	\$ 1,040	
Labor	96	hr	\$	110	\$ 10,560	6 hr/well per HC estimate, assume HC project level staff.
Bentonite chips	16	per well	\$	78	\$ 1,248	Per HC estimate 6 bags per well at \$13/bag.
Truck 1/2 day	11	day	\$	85	\$ 935	Based on labor hours above and nine hour work day.
Additional mileage cost					\$ 300	See Table B-17 for backup calculations.
Per diem	11	day	\$	133	\$ 1,463	·
Trip per diem	2	ea	\$	150	\$ 300	See Table B-17 for backup calculations.
Well Abandonment Subtotal					\$ 15,846	· ·

Table B-14 - Vapor Extraction and Treatment System Installation Cost Backup

DESCRIPTION	QUANTITY	UNIT	UNI	T COST	1	TOTAL	NOTES
Freatment System Installation							
Contractor mobilization/demobilization	1	LS	\$	1,000	\$	1,000	LS price for contractor mobilization (based on previous cost estimate from Kaiser vendor).
Treatment unit shipping	1	LS	\$	2,000	\$	2,000	Shipping treatment unit to the Facility. Based on SVE vendo
Piping conveyance installation	1	LS	\$	11.047	\$	11.047	See SVE conveyance backup calculation below.
Pipe trenching	1	LS	ŝ	5.043	\$	5.043	See pipe trenching backup calculation below.
Carbon	1	LS	Ŝ	4.000	\$	4.000	For 2 x 2.000-lb beds. Cost from SVE vendor.
HC oversight	1	wk	\$	5,375	\$	5,375	Assume 1 week of HC oversight during installation of SVE
							treatment system. See Table B-17 for backup calculations.
Power hookup	2	EA	\$	5,000	\$	10,000	Power hookup cost provided by vendor.
reatment System Installation Subtotal					\$	38,465	-
SVE Piping Conveyance							
Contractor mobilization/demobilization	1	LS	\$	1,000	\$	1,000	LS price for contractor mobilization based on previous cost estimate from Kaiser vendor.
2-in SCH 40 PVC piping - wells	180	LF	\$	8.51	\$	1,532	Assume 20 ft per well. Pipe cost from 2010 RSMeans 22 1 13.74 4216. Subtract cost of coupling and clevis hanger assembly (2010 RSMeans 22 11 13.74 4530). Location fac adjustment for Spokane, WA (2010 RSMeans, p. 696).
2-in SCH 40 PVC piping - header	210	LF	\$	8.51	\$	1,787	Distance between AOCs and proposed treatment unit as sh on Figures 2-10 and 2-11. Pipe cost from 2010 RSMeans 2 11 13.74 4216. Subtract cost of coupling and clevis hanger assembly 2010 RSMeans 22 11 13.74 4530. Location facto adjustment for Spokane, WA (2010 RSMeans, p. 696).
2-in SCH 40 coupling	39	EA	\$	47	\$	1,814	Assume per 10 ft of piping. Cost from 2010 RSMeans 22 1 13.76 0410. Location factor adjustment for Spokane, WA (2 RSMeans, p. 696).
2-in SCH 40 90 degree elbows	9	EA	\$	115	\$	1,038	Assume 1 per extraction well. Cost from 2010 RSMeans 22 13.76 0090. Location factor adjustment for Spokane, WA (2 RSMeans p. 696)
2-in SCH 40 tee	9	EA	\$	99	\$	887	Assume 1 per extraction well. Cost from 2010 RSMeans 22 13.76 0290. Location factor adjustment for Spokane, WA (2 RSMeans, p. 696).
2-in SCH 40 ball valve	9	EA	\$	115	\$	1,038	Assume 1 per well. Assume same cost as 90-degree elbow
2-in SCH 40 pressure gage	9	EA	\$	115	\$	1,038	Assume 1 per well. Assume same cost as 90-degree elbow
Extra piping, fittings	10%				\$	913	Assume 10% of materials and labor listed above.
SVE Piping Conveyance Subtotal					\$	11.047	

Pipe Trenching

Quantities for Trench Excavation							
Description	QTY	Unit	Comm	nents			
Length of pipe	390	ft					
Width of trench	1.5	ft					
Depth of trench	3	ft	Assum	ne 4 ft bgs	for	utilities.	
Base course thickness	6	in	Assum	ned thickn	ess.		
Asphalt thickness	4	in	Assum	ned thickno	ess.		
Pipe bedding thickness (crushed rock)	12	in	Assum	ned thickno	ess.		
Backfill thickness	1.17	ft	Assum	ne using e	xcav	ated mate	rials.
Fraction soil reused as backfill	39%			0			
Volume of soil around per vault (2x2x3 ft)	12	cf					
DESCRIPTION	QUANTITY	UNIT		r cost		TOTAL	NOTES
Removal of pavement	65	SY	\$	7.91	\$	514	2010 RSMeans 02 41 13.17 5050 with location factor
							correction. 4- to 6-in-thick pavement.
Trenching	69	BCY	\$	7.30	\$	504	2010 RSMeans 31 23 16.13 6050 with location factor
							correction. Sand & gravel with no sheeting or dewatering
							included, 1 to 4 ft deep, 3/8 CY excavator.
Pipe bedding	29	LCY	\$	36	\$	1,033	2010 RSMeans 31 23 23.16 0049 with location factor
							correction. Utility bedding for pipe & conduit not included.
							Compaction, crushed or screened bank run gravel. Assume
		501	•		•		75% compaction ratio.
Pipe bedding compaction	22	ECY	\$	4.61	\$	100	2010 RSMeans 31 23 23.16 0050 with location factor
		1.01/	•		•		correction. Compacting bedding in trench.
Backfilling	29	LCY	\$	2.36	\$	69	2010 RSMeans 31 23 16.13 3000 with location factor
							correction. Backfill trench, F.E. loader, wheel mtd., 1 CY
Deal (III)	05	FOV	<u>_</u>	4 70	•	440	bucket, minimal naul. Assume 15% bulking factor.
Backfilling compaction	25	ECY	\$	4.70	\$	119	2010 RSMeans 31 23 23.13 0600 with location factor
Roop course	6E	ev	¢	E 02	¢	226	2010 RSMoone 22 11 22 22 0250 with leasting plate.
Base course	05	31	φ	5.02	φ	320	2010 RSINEARS 52 11 23.23 0350 With location lactor
							conection. Bank run gravel, spread and compacted, 6 in deep.
Repaying readway	65	ev	¢	17	¢	1 076	2010 PSMoons 22 11 26 12 0500 with location factor
Repaying roadway	05	31	φ	17	φ	1,070	correction Roadways and large payed areas. Bitumous
							concrete 1 in thick
Soil disposal	24	ton	\$	54	\$	1 303	Cost for disposal based on previous Kaiser work and adjusted
	24	ton	Ψ	04	Ψ	1,000	using 2010 RSMeans historical cost index Assume 25% of soil
							excavated for trench will be disposed of
Pine Trenching Subtetal					¢	5.042	
The menoring Subtotal					φ	3,043	

Table B-15 - SVE Monitoring Cost Backup

										Cost i	n Do	ollars				
						ubtotal		s per		ent & s		alysis + J		tractor		
		Labor Hou	irs			S		el E ide		lies		Ana		out		
	Principal	Senior Project		Senior Staff		Labo		Trav (inclu diem		Equi Supp		Lab / Ship		Subc		Task Subtotal
Start Up System Performance (1st 2 weeks of operation)	0				_	0 500										
Daily system monitoring	2	4		28	\$	3,560			~	400						
vveekiy vapor monitoring	2	2		8	\$	1,400			\$	100					•	- 100
Start Op Subtotal	4	6		36	\$	4,960			\$	100					\$	5,106
Annual Performance Monitoring																
Monthly system monitoring visits for one year	12	24		24	\$	7.680										
Quarterly vapor monitoring	4	8		18	\$	3,510			\$	1,440	\$	1,490				
Annual Performance Monitoring Subtotal	16	32		42	\$	11,190			\$	1,440	\$	1,490			\$	14,120
Confirmational Sampling					1											
Vapor monitoring - before treatment unit is moved	3	6		13.5	\$	2 633			\$	1 944	\$	1 118			\$	5 694
Soil confirmational sampling	2	4		27	ŝ	3 465	s	1 254	Ŷ	.,	ŝ	1 518	\$	62 726	ŝ	68,963
Confirmational Sampling Subtotal	5	10		40.5	\$	6,098	\$	1,254	\$	1,944	\$	2,636	\$	62,726	\$	74,657
	¢ 100	¢ 400	¢	05												
Labor rates	\$ 190	\$ 130	¢	95												
DESCRIPTION	QUANTITY	UNIT	U	NIT COST		TOTAL						NOTES				
Startup Equipment Costs	0		¢	10	¢	80	ц		oto	Concerve	****	ly occurre	1	ouring for	hon	ana and
Colormetric tubes	0	ea	φ	10	φ	60	to	luene.	SIS.	Conserva	alive	iy assume	1 mea	asuning ior	Denz	ene anu
Hand pump	2	day	\$	10	\$	20	H	C equipment co	sts.							
Startup Equipment Costs Subtotal		,			\$	100										
Annual Equipment and Laboratory Costs																
Colormetric tubes	132	ea	\$	10	\$	1,320	H	C equipment co	sts.	Conserva	ative	ly assume	d mea	asuring for	benz	ene and
							to	luene.								
Hand pump	12	day	\$	10	\$	120	H	C equipment co	sts.							
BTEX analysis for Summa cannister samples	4	ea	\$	324	\$	1,296	Ba	ased on previou	IS HO	C estimate	e fro 71	m 2007. C	ost a	djusted usi	ng h	storical cost
Sample shipping	15%				\$	194	As	ssumed percent	ade	of sample	ana	alvsis cost	for Si	umma canr	nister	samples.
Annual Equipment and Laboratory Costs Subtotal					\$	2,736	-									
							.,									
Air Confirmational Sampling	0		•	004	•	070	Ve	erification that p	oint	of diminish	hing	returns ha	s bee	en reached		
BIEX analysis for summa cannisters	3	ea	\$	324	\$	972	Ba	ased on previou	S HU	estimate	e fro 71	m 2007. C	ost a	ajustea usi	ng n	storical cost
Sample shipping	15%				\$	146		000101120101		ieans p. o.	<i>r</i> 1.					
Air Confirmational Sampling Subtotal					\$	972										
Call Cardianational Complian																
Son Confirmational Sampling	040		•		•	00 700										
Drilling contractor	816	tt	\$	77	\$	62,726	12	2 locations to 68	s m	epth. Unit	t COS dril	st based or lling mater	ials 9	ser vendor	prev tax	ious cost
Laboratory analysis	22	samples	\$	60	\$	1 320	TF	PH-G - soil.	5 110	ob/demob.	, uni	ing, mater	uio, (/0 Jaies	an.	
Sample shipping	15%		Ŷ		ŝ	198	A	ssumed percent	ade	of sample	ana	alvsis cost.				
Soil Confirmational Sampling Subtotal					\$	64,046			0.							

Table B-16 - In Situ Treatment Cost Backup

DESCRIPTION	QUANTITY	UNIT	UN	IIT COST		TOTAL	NOTES
CAPITAL COSTS							
Injection/Extraction Well Installation							
Drilling	7905	ft	\$	77	\$	608,685	Assume wells are 68 ft deep in AOCs except for Hoffman Tank
-							excavation where wells are 55 ft deep. Screens placed through
							vertical extent of contamination. Unit cost based on vendor
							quote. Includes mob/demob, drilling, materials, 8.7% sales tax.
Well construction materials	114	ea	\$	1,946	\$	221,813	Unit cost based on vendor quote. Includes screen, casing,
							vaults, sand, hole plug, well permits, 8.7% sales tax.
Installation oversight	19	wk	\$	5,375	\$	102,125	Assume HC oversight, 6 wells per week.
Transport & dispose soil at Subtitle D landfill	105	ton	\$	54	\$	5,692	Cost for disposal based on previous Kaiser work and adjusted
0.11111					•	000.045	using RSMeans 2010 historical cost index.
Subtotal					Ф	938,315	
Ozona Generation/SVE							
Mobilization	1	1.5	\$	4 000	\$	4 000	Engineer's estimate
	4	E0 ea	\$	125 000	ŝ	500,000	Four units generating 50 lb ozone/day Vendor guote
SVF unit	4	ea	ŝ	75 000	\$	300,000	Four units
Carbon units	1	IS	ŝ	16,000	\$	16,000	Two 2 000-lb bed per unit Cost from SVE Vendor
Nickel catalyst unit	4	ea	ŝ	10,000	\$	40.000	Vendor quote.
Conveyance piping	1	LS	\$	48,490	\$	48,490	Conveyance for 4 systems, assume underground piping.
3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3			•	-,		-,	Assumed 4x SVE (see Table B-14 for backup calculations).
Power Hookup	4	ea	\$	5,000	\$	20,000	Engineer's estimate.
Installation oversight	4	wk	\$	5,375	\$	21,500	Assume 4 weeks of HC oversight during installation of treatment
5				,			system. See Table B-17 for backup.
Sales Tax	8.7%				\$	78,691	Assume sales tax charged on cost of materials.
Subtotal					\$	1,028,681	-
System Monitoring							
Startup system performance	1	LS	\$	20,424	\$	20,424	Assumed 4x SVE monitoring costs. See Table B-15 for backup.
OFM COSTS							
0am 20313							
Annual Performance Monitoring	1	LS	\$	56.482	\$	56.482	Assumed 4x SVE monitoring costs. See Table B-15 for backup.
j				, -	•	, -	······
Performance Soil Sampling							
Drilling	612	ft	\$	77	\$	47,124	Assume 1 locations per AOC to 68 ft bgs. Unit cost vendor
							quote. Includes mob/demob, drilling, materials, 8.7% sales tax.
Labor	2		¢	E 075	¢	10 750	Assume 2 weeks everight
Sampling and Analysis	2	WK	¢ ¢	5,575	¢ ¢	10,750	Assume 4 samples/boring Sample for SVOCs VOCs PCBs
Sampling and Analysis	36	ea	φ	545	φ	19,020	and metals analyses
Equipment/shipping	1	15	\$	2 000	\$	2 000	Engineer's estimate
Subtotal		20	Ψ	2,000	\$	79,494	
					+	,	
Operations							
Operation labor	480	hr	\$	75	\$	36,000	Assume 0.25 FTE.
Carbon changeout	4	ea	\$	5,580	\$	22,320	Includes replacement, removal, regeneration, and labor for
							carbon changeout for one 2,000-lb bed. Based on vendor quote
							for existing HC project. Price adjusted per 2010 RSMeans Cost
							Index. Assume to occur at end of year.
Utilities	876000	kWh	\$	0.05	\$	41,347	Based on 25-kW demand per unit, continuous operation. Cost
0.1444					-	00.007	of electricity based on estimate provided by Kaiser.
Subtotal					\$	99,667	
Maintanango							
Mantainance labor	102	hr	\$	75	\$	14 400	
Equipment repair	1	1.5	\$	45 225	ŝ	45 225	Assume 5% of equipment costs
Subtotal	1	20	Ψ	10,220	\$	59.625	
					Ŧ	20,020	
PERIODIC COSTS							
Well abandonment	114	ea	\$	900	\$	102,600	Previous HC experience. Unit cost includes Ecology filing,
							materials, labor, travel.

Table B-17 - Hart Crowser and Analytical Rates Cost Backup

HC Kaiser Rates		
Sr. Principal	\$ 190	
Principal	\$ 180	
Sr. Associate	\$ 160	
Associate	\$ 145	
Sr. Project	\$ 130	
Project	\$ 110	
Sr. Staff	\$ 90	
Staff	\$ 75	
Sr. Drafter	\$ 100	
Drafter	\$ 77	
WP/PA	\$ 60	
Sub MU	12%	
Communication fee	0%	
Mileage	\$0.50/mi.	Fed rate (2010)
Truck Rental	\$ 85	+ mileage for over 50 mi./day (due to gas prices)
Safety (\$ per hr.)	\$ 5	per field labor hour
Trip per diem	\$ 150	each way
Per diem	\$ 133	Fed rate for Spokane

Weekly Cost for HC oversight (staff)

Labor	\$ 3,600	5 - 9 hr days for staff level, plus safety costs
Truck	\$ 810	5 days truck plus travel day, plus \$300 for miles over 50
Travel	\$ 300	
Per diem	\$ 665	
Subtotal	\$ 5,375	per week

Columbia Analytical Services and Advanced Analytical Laboratory Costs

Assume same price for water/soil.

Parameter	Co	st / Analysis
NWTPH-HCID	\$	55
TPH-Dx	\$	60
TPH-G	\$	60
PCBs - Ultra-Low Level	\$	175
VOCs	\$	130
PAHs (8270 SIM)	\$	215
Metals (10)	\$	180
Arsenic	\$	26
Chromium	\$	24
Manganese	\$	26
Iron	\$	24
Antimony	\$	26
TSS	\$	18
Chloride	\$	18
Nitrate/Nitrite	\$	24
Hardness	\$	25
TDS	\$	18
Alkalinity	\$	18
Sulfate	\$	18
Total aresenic, chromium,	\$	50
zinc, and phosphorous		
Hexavalent chromium	\$	50
Orthophosphate	\$	20
Cyanide	\$	40
BOD	\$	45
Fecal coliform	\$	35
Oil & grease	\$	50

APPENDIX C COST ESTIMATES FOR PETROLEUM HYDROCARBON GROUNDWATER PLUME AND ASSOCIATED SMEAR ZONE SOIL REMEDIAL ALTERNATIVES

APPENDIX C COST ESTIMATES FOR PETROLEUM HYDROCARBON GROUNDWATER PLUME AND ASSOCIATED SMEAR ZONE SOIL REMEDIAL ALTERNATIVES

TABLES

- C-1 Estimated Cost Comparison for Petroleum Hydrocarbon Groundwater Plume and Smear Zone Soil Remedial Alternatives
- C-2 Alternative C1 Estimated Cost Summary
- C-3 Alternative C2 Estimated Cost Summary Scenario C2a
- C-4 Alternative C2 Estimated Cost Summary Scenario C2b
- C-5 Alternative C2 Estimated Cost Summary Scenario C2c
- C-6 Alternative C3 Estimated Cost Summary
- C-7 Alternative C4 Estimated Cost Summary
- C-8 Monitoring Cost Backup
- C-9 Institutional Controls Cost Backup
- C-10 Professional Services Cost Backup
- C-11 Containment Cost Backup
- C-12 Skimming System Capital and Annual Operation and Maintenance Cost Backup
- C-13 Skimming Periodic Cost Backup
- C-14 In Situ Treatment Cost Backup
- C-15 Ex Situ Treatment Cost Backup
- C-16 Hart Crowser and Analytical Rates Cost Backup
- C-17 Weighted Average of Estimated Restoration Time Frames

L:\Jobs\2644125\Final FS 05-2012\03 Appendices\Appendix C\Appendix C TOC.doc

Table C-1 - Estimated Cost Comparison for Petroleum Hydrocarbon Groundwater Plume and Smear Zone Soil Remedial Alternatives

Location: Phase:	Kaiser Trentwood Spokane Valley, V Feasibility Study (-	Facil VA -35%	lity to +50%)	De pre Alte sm grc	Description: Cost comparison of the net present value and incremental cost of Alternative C1 through C4 for remediation of smear zone soil and petroleum hydrocarbon groundwater plumes.				
Base Year:	2010								
Date:	July 2011								
DES	CRIPTION	N	TOTAL IET PRESENT VALUE	I	NCREMENTAL COST	COST TABLE REFERENCE			
Alternative C	1	\$	21,000,000		Baseline Cost	Table C-2			
Alternative C	2 (Scenario C2a)	\$	22,900,000	\$	1,900,000	Table C-3			
Alternative C	2 (Scenario C2b)	\$	22,900,000	\$	1,900,000	Table C-4			
Alternative C	2 (Scenario C2c)	\$	21,900,000	\$	900,000	Table C-5			
Alternative C	3	\$	\$	5,200,000	Table C-6				
Alternative C	4	\$	41,000,000	\$	18,100,000	Table C-7			

Note:

Present value analysis uses a 30-year discount rate of 7%.

Table C-2 - Alternative C1 Estimated Cost Summary

Location: Kaiser Trentwood Facility Spokane Valley, WA Phase: Feasibility Study (-35% to +50%) **Description:** Alternative C1 consists of institutional controls, monitoring, and monitored natural attenuation (MNA) and is common to each of the alternatives that will be evaluated for the remediation of the petroleum hydrocarbon groundwater plumes and associated smear zone soil at the Kaiser Facility. Alternative C1 includes the operation of the existing groundwater Interim Remedial Measure (IRM) and assumes an operating period of 30 years in the development of this cost estimate.

Base Year: 2010							
Date: July 2011							
CAPITAL COSTS DESCRIPTION	QUANTITY	UNIT	U	NIT COST		TOTAL	NOTES
Institutional Controls			•				
Institutional control plans Pending upgrades in casting complex	1	EA LS	\$ \$	46,548 1.076.073	\$ \$	46,548 1.076.073	See Table C-9. See Table C-9.
Restrictive covenant preparation	1	LS	\$	24,970	\$	24,970	See Table C-9.
Institutional Controls Subtotal					\$	1,147,591	
Contingency	10%				\$	114,759	Scope and bid contingency. Percentage of institutional controls cost.
Professional/Technical Services							
Project management	6%				\$	75,741	Percentage of capital cost + contingency. EPA 540-R-00-002.
Ecology oversight Professional/Technical Services Subtotal	1	YR	\$	22,000	\$	22,000 97,741	Year 0. Kaiser mean annual Ecology costs 2007-2009.
					Ŷ	51,141	
TOTAL CAPITAL COST					\$	1,360,091	
ANNUAL 0&M COSTS DESCRIPTION	QUANTITY	UNIT	U	NIT COST		TOTAL	NOTES
Monitoring, Sampling, Testing, and Analysis			•				
Protection monitoring Performance monitoring	1	YR YR	\$ \$	44,683 223,417	\$ \$	44,683 223,417	See Table C-8. See Table C-8.
Additional groundwater MNA monitoring	1	YR	\$	34,633	\$	34,633	See Table C-8.
Data management	1	YR	\$	29,948	\$	29,948	HC estimate. Data validation; maintain database. See Table C-8.
MNA monitoring data management	1	YR	\$	4,729	\$	4,729	HC estimate. Data validation; maintain database. See Table C-8.
Monitoring, Sampling, Testing, and Analysis Su	ıbtotal				\$	337,410	
Institutional Controls (Annual Update and Main	tenance)						
Institutional control plans	1	YR	\$	30,018	\$	30,018	See Table C-9.
Institutional controls maintenance Outfall & treatment plant monitoring	1	YR YR	\$ \$	259,604 101,946	\$ \$	259,604	See Table C-9. See Table C-9. Required by NPDES permit and Ecology orders
	·		Ŷ	101,010	Ŷ	101,010	(see Section 2.1.1.1).
Site information database Institutional Controls Subtotal	1	YR	\$	5,743	\$ \$	5,743 397,311	See Table C-9.
Groundwater IRM System O&M							
Electricity	7,230,423	kWh	\$	0.05	\$	361,521	Groundwater extraction pump operation. See Table C-11.
Containment system maintenance	4	YR	э \$	8,333 54,998	э \$	33,333 54,998	Includes labor, parts, supplies. See Table C-11.
Groundwater IRM System O&M Subtotal				. ,	\$	449,852	
Contingency	10%				\$	118,457	Scope and bid contingency. Percentage of monitoring, institutional controls, and IRM sytem O&M annual cost.
Professional/Technical Services							
Project management	6%				\$	78,182	Percentage of annual cost + contingency. EPA 540-R-00-002.
Lechnical support Ecology oversight	10% 1	 YR	\$	22.000	\$ \$	130,303	EPA 540-R-00-002. Kaiser mean annual Ecology costs 2007-2009.
Reporting	1	YR	\$	16,182	\$	16,182	Report to Kaiser & Ecology quarterly; EIM reporting. See Table C-
MNA reporting	1	YR	\$	2,555	\$	2,555	8. Report to Kaiser & Ecology quarterly; EIM reporting. See Table C- a
Professional/Technical Services Subtotal					\$	249,222	с.
TOTAL ANNUAL O&M COST					\$	1,552,252	
PERIODIC COSTS							
DESCRIPTION	QUANTITY	UNIT	U	NIT COST		TOTAL	NOTES
Institutional Controls (Periodic Update and Main	ntenance)		•				
Restrictive covenants Initial acute and chronic toxicity testing	1	EA LS	\$ \$	6,470 45,000	\$ \$	6,470 45,000	Years 5, 10, 15, 20, 25, 30. See Table C-9. Years 0, 5, 10, 15, 20, 25. See Table C-9
Final acute and chronic toxicity testing	1	LS	\$	14,940	\$	14,940	Years 5, 10, 15, 20, 25, 30. See Table C-9.
Institutional Controls Subtotal					\$	66,410	
Groundwater IRM System Periodic Maintenance	•						
Groundwater extraction system	4	EA	\$	30,896	\$	123,583	Years 10, 20, 30. Major equipment & infrastructure repair/replacement, 4 extraction locations. Assume equivalent to extraction equipment installation capital cost, per vendor quote
EPP recovery system (years 5 and 15)	1	10	¢	13 506	¢	13 500	(see Tables C-4 and C-5). Years 5, 15, See Table C-13
FPP recovery system (year 10)	1	LS	\$	15,972	φ \$	15,972	Year 10. See Table C-13.
Groundwater IRM System Periodic Maintenance	e Subtotal				\$	153,151	
Contingency	10%				\$	21,956	Scope and bid contingency. Percentage of periodic costs.

Table C-2 - Alternative C1 Estimated Cost Summary

Sheet 2 of 2

Location:	Kaiser Trentwo	od Facility	Description: Alte	rnative C1 consists of the transition of the tra	of institutional co or the remediatio	ntrols, monitoring, on of the petroleum	and monitored natural attenuation (MNA) and is common to each of hydrocarbon groundwater plumes and associated smear zone soil
L.	opokane valley	, wA	operating period of	 Alternative C1 In 30 years in the dev 	elopment of this	cost estimate.	y groundwater interim Kemediai weasure (IKW) and assumes an
Phase:	Feasibility Stud	y (-35% to +50%)		2	·		
Base Year:	2010						
Date:	July 2011						1
Professional/ Five-year re Closure repo Professional/ PRESENT VA	/Technical Serv eviews fort /Technical Serv	ices ices Subtotal - Alternative C1 w	1 1 vith IRM System Hy	EA \$ EA \$	5 19,540 5 41,180	\$ 19,540 \$ 41,180 \$ 60,720	Years 5, 10, 15, 20, 25, 30. See Table C-10. Year 30. See Table C-10.
Discount rate	7.00/						
Time period	7.0%	Vears					Assumed time period for fixed appual and periodic costs
RTF	27	years					Weighted average restoration time frame applied to variable
FPP recovery	20	years					annual costs. See Table C-17. Accounts for FPP recovery periods of less than 30 years.
COST	YEAR	TOTAL	TOTAL COST	DISCOUNT 1	NET PRESENT		
TYPE		COST	PER YEAR	FACTOR	VALUE		NOTES
Capital	0	\$ 1 409 591	\$ 1 409 591	1 000 \$	1 409 591		
Annual O&M	1 - 30	\$ 44.324.990	\$ 1,477,500	12.409 \$	18.334.354		Annual O&M for fixed costs.
Annual O&M	1 - 27	\$ 1.422.930	53,486	11.924 \$	637,780		Annual O&M for variable costs.
Annual O&M	1 - 20	\$ 425.328	3 \$ 21.266	10.594 \$	225.297		Annual O&M for FPP recovery less than 30 years.
Periodic	5	\$ 107.547	s 107.547	0.713 \$	76.679		
Periodic	10	\$ 246,101	\$ 246,101	0.508 \$	125,105		
Periodic	15	\$ 107,547	\$ 107,547	0.362 \$	38,980		
Periodic	20	\$ 228,532	2 \$ 228,532	0.258 \$	59,057		
Periodic	25	\$ 92,591	\$ 92,591	0.184 \$	5 17,060		
Periodic	30	\$ 220,212	2 \$ 220,212	0.131 \$	28,929		
		\$ 48 585 370		¢	20 952 833		
	PRESENT VALL		VE C1	۹ ۹	20,952,833		
with IRM Sys	stem Hydraulic (Containment Opera	ating	•			
PRESENT VA	ALUE ANALYSIS	6 - Alternative C1 w	vith IRM System Hy	draulic Containme	nt Shut Off		
Discount rate	7.0%						
Time period	30	years					Assumed time period for fixed annual and periodic costs.
RTF	27	years					Weighted average restoration time frame applied to variable
FPP recovery	20	years					annual costs. See Table C-17. Accounts for FPP recovery periods of less than 30 years.
COST TYPE	YEAR	TOTAL COST	TOTAL COST PER YEAR	DISCOUNT I FACTOR	NET PRESENT VALUE		NOTES
Capital	0	\$ 1,409.591	\$ 1,409,591	1.000 \$	1,409,591		This present value analysis assumes that IRM system hydraulic
Annual O&M	1 - 30	\$ 28.380.626	\$ 946.021	12.409 \$	5 11,739.212		containment is shut off and exludes annual electricity (\$361.521)
Annual O&M	1 - 27	\$ 1,422,930	\$ 53,486	11.924 \$	637,780		and maintenance (\$54,998) costs associated with system
Annual O&M	1 - 20	\$ 425,328	3 \$ 21,266	10.594 \$	225,297		operation, and excludes adjustments for contingency (10%),
Periodic	5	\$ 107,547	\$ 107,547	0.713 \$	5 76,679		project management (6%), and technical support (10%) for these
Periodic	10	\$ 110,160	\$ 110,160	0.508 \$	56,000		annual cost items.
Periodic	15	\$ 107,547	\$ 107,547	0.362 \$	38,980		Groundwater extraction system periodic maintenance cost
Periodic	20	\$ 92,591	\$ 92,591	0.258 \$	23,927		(\$123,583) and its contingency adjustment (10%) are excluded
Periodic	25	\$ 92,591	\$ 92,591	0.184 \$	5 17,060		(years 10, 20, and 30).
renoaic	30	۵ 84,271	¢ 84,271	0.131 \$	5 11,070		
		\$ 32,233,182	2	9	14,235,597		
TOTAL NET I with IRM Sys	PRESENT VALU stem Hydraulic (IE OF ALTERNATI Containment Shut	VE C1 Off	\$	5 14,235,597		This cost is used specifically for estimating Alternative C2, Scenario C2c, net present value. See Table C-5.

Notes: Costs taken from RSMeans have been adjusted by Spokane location adjustment factor of 0.93. Costs from previous work greater than 1 year old have been adjusted using historical cost index factors provided by 2010 RSMeans (p. 671). Present value analysis uses a 30-year discount rate of 7.0%.

Table C-3 - Alternative C2 Estimated Cost Summary - Scenario C2a

Location: Kaiser Trentwood Facility Spokane Valley, WA Phase: Feasibility Study (-35% to +50%) Base Year: 2010 Date: Luky 2011 **Description:** Scenario C2a of Alternative C2 expands the hydraulic containment and FPP recovery provided in Alternative C1 by adding the operation of existing groundwater extraction well WW-EW-3 (currently shut off) to the existing groundwater IRM system. This scenario expands the plume capture zone of the existing IRM system to hydraulically contain the ORB area petroleum hydrocarbon groundwater plume. Additional FPP skimming wells will be installed and operated in this alternative. A 30-year operating period is assumed in the development of this cost estimate.

Date: July 2011							
CAPITAL COSTS DESCRIPTION	QUANTITY	UNIT	U	IT COST		TOTAL	NOTES
Submittals, Plans, Site Preparation							
Pre- and post-construction submittals	1	LS	\$	10,000	\$	10,000	Previous project experience.
Permits Submittals, Plans, Site Preparation Subtotal	1	LS	\$	10,000	\$ \$	10,000 20,000	Previous project experience.
IRM System Expansion							Add operation of WW-EW-3; start 3 new FPP skimming locations.
Extraction system repair/replacement	1	FΔ	¢	77 230	¢	77 230	Linit cost scaled from vendor quote in Scenario C2h (see Table
	I	EA	Ψ	11,200	Ψ	11,235	C-4). Scaling based on ratio of WW-EW-3 modeled flow rate (1.5 MGD) to ORB-FEW-1 modeled flow rate (0.6 MGD) (Appendix E, Table E-3).
Skimming well construction	95	ft	\$	371	\$	35,241	Unit cost based on vendor quote.
Belt skimmer installation	1	LS	\$	9,020	\$	9,020	See Table C-12.
Restart existing skimming wells	2	EA	\$	2,570	\$ ¢	5,140	See Table C-12. Provious project experience. One location (new skimming well
Electrical connection	I	EA	φ	50,000	φ	50,000	near WW-MW-6). Assume other location have existing power supply (WW-FW-3, WW-SK-2, OH-SK-1)
IRM System Expansion Subtotal					\$	176,641	
Contingency	10%				\$	19,664	Scope and bid contingency. Percentage of institutional controls cost.
Professional/Technical Services Project management	8%				\$	17,304	Percentage of sum of capital cost and contingency. EPA 540-R-00-002. Includes reports referenced in WAC 173-340- 400(6)(h)
Remedial design	15%				\$	32,446	EPA 540-R-00-002.
Construction management	10%				\$	21,630	EPA 540-R-00-002. Includes reports referenced in WAC 173-340-
Ecology oversight Professional/Technical Services Subtotal	10%				\$ \$	2,200 73,581	Assume 10% of Alt. C1 Ecology oversight cost.
Institutional Controls							New institutional controls for IRM system expansion
Institutional controls plan	50%				\$	23,274	Assume 50% of Alt. C1 institutional control plan cost to include IRM system containment and FPP recovery expansion, based on 4:8
Restrictive covenants	50%				\$	12,485	Assume 50% of Alt. C1 restrictive covenant preparation cost to include IRM system containment and FPP recovery expansion,
Institutional Controls Subtotal					\$	35,759	based on 4.6 wen quantity ratio.
TOTAL CAPITAL COST					\$	325,644	
ANNUAL O&M COSTS DESCRIPTION	QUANTITY	UNIT	U	IT COST		TOTAL	NOTES
System Operation, Maintenance, and Monitoring	I						
Electricity	653,233	kWh	\$	0.05	\$	32,662	Groundwater extraction pump operation. See Table C-11.
FPP recovery	3	wells	\$	8,333	\$	25,000	See Table C-12.
Containment system maintenance	25%				\$	13,750	Assume 25% of Alt. C1 annual maintenance cost, based on 1:4
Additional GW monitoring	2%				\$	5,362	Assume approx. 2% of Alt. C1 annual monitoring cost, based on
Data management	1	YR	\$	4,500	\$	4,500	See Table C-10.
System Operation, Maintenance, and Monitoring	Subtotal				\$	81,273	
Contingency	10%				\$	8,127	Scope and bid contingency. Percentage of monitoring, institutional controls, and IRM sytem O&M annual cost.
Professional/Technical Services							
Project management	10%				\$	8,940	Percentage of annual cost + contingency. EPA 540-R-00-002.
Technical support	10%				\$	8,940	EPA 540-R-00-002.
Ecology oversight	10%		¢	7 000	\$	2,200	Assume 10% of Alt. C1 Ecology oversight cost.
Professional/Technical Services Subtotal	1	ĨŔ	φ	7,000	\$	27,080	
Institutional Controls (Annual Undate and Maint	000000)						New institutional controls for IDM system synansian
Institutional controls plan	50%				\$	15,009	Assume 50% of Alt. C1 institutional control plan cost to include IRM system containment and FPP recovery expansion, based on 4:8
Site information database	50%				\$	2,872	Wen quantity fatto. Assume 50% of Alt. C1 site information data base cost to include IRM system containment and FPP recovery expansion, based on
Institutional Controls Subtotal					\$	17,881	4:8 weii quantity fatio.
TOTAL ANNUAL O&M COST					\$	134,361	

Table C-3 - Alternative C2 Estimated Cost Summary - Scenario C2a

Location:	Kaiser Trentwo Spokane Valley	od Facil /, WA	cription: Scer dding the opera system. This s	nario C2a of Alter ation of existing g scenario expands	nati rour the	ve C2 expands ndwater extract plume capture	the tion zoi	hydraulic cont well WW-EW-	ainment and FPP recovery provided in Alternative C1 3 (currently shut off) to the existing groundwater ng IRM system to hydraulically contain the ORB area		
Phase:	Feasibility Stud	y (-35%	to +50%)	petro	oleum hydrocai	rbon groundwater	plu	me. Additional	FP	P skimming we	Ils will be installed and operated in this alternative.
Base Year:	2010			A 30	-year operating	g period is assum	ied i	in the developn	nent	of this cost es	timate.
Date:	July 2011										
PERIODIC C	OSTS DESCRIPTI	ON		c	UANTITY	UNIT		UNIT COST		TOTAL	NOTES
Groundwate Groundwat	er IRM System Po er extraction syst	eriodic æm	Maintenanc	e	1	EA	\$	77,239	\$	77,239	Years 10, 20, 30. Major equipment and infrastructure repair/replacement, 1 extraction location (WW-EW-3). Assume
FPP recove Groundwate	ery system er IRM System Pe	eriodic	Maintenanc	e Sub	1 ototal	LS	\$	27,390	\$ \$	27,390 104,629	equivalent of extraction system repair/replacement capital cost. Year 5. See Table C-13.
Contingency	у				10%				\$	10,463	Scope and bid contingency. Percentage of periodic costs.
Professional/Technical Services Five-year reviews Closure report Professional/Technical Services Subtotal				1 1	EA EA	\$ \$	9,770 20,590	\$ \$	9,770 20,590 30,360	Years 5, 10, 15, 20, 25, 30. See Table C-10. Year 30. See Table C-10.	
PRESENT V	ALUE ANALYSIS	6									
Discount rate	e 7.0%										
Time period RTF	30 27	year year	s s								Assumed time period for fixed annual and periodic costs. Weighted average restoration time frame applied to variable annual costs. See Table C-17
FPP recovery	y 25 y 10	year year	s s								Accounts for FPP recovery periods of less than 30 years. Accounts for FPP recovery periods of less than 30 years.
COST TYPE	YEAR		TOTAL COST	TC F	OTAL COST PER YEAR	DISCOUNT FACTOR	N	ET PRESENT VALUE			NOTES
Capital Annual O&M Annual O&M Annual O&M Periodic Periodic Periodic Periodic Periodic Periodic Periodic	0 1 - 30 1 - 27 1 - 25 1 - 10 5 10 15 20 25 30	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	325,644 812,415 1,976,146 549,994 109,999 94,733 9,770 94,733 9,770 30,360	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	325,644 27,081 74,281 22,000 11,000 39,899 94,733 9,770 94,733 9,770 30,360	1.000 12.409 11.924 11.654 7.024 0.713 0.508 0.362 0.258 0.184 0.131	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	325,644 336,043 885,741 256,376 77,259 28,447 48,158 3,541 24,481 1,800 3,988	_		Annual O&M for fixed costs. Annual O&M for variable costs. Annual O&M for FPP recovery less than 30 years. Annual O&M for FPP recovery less than 30 years.
		\$	4,053,463				\$	1,991,478			Net present value of elements unique to Alternative C2, Scenario C2a.
Cost Savings	s from Reduced F	PP Rec	overy Period	Appli	ied to Alternativ	ve C1					
Original FPP	recovery costs fr	om Alt.	C1	•	04 000	10,100	•				0
Annual O&M Annual O&M Subtotal	1 - 30 1 - 20	\$ \$	637,993 425,328	\$ \$	21,266 21,266	12.409 10.594	\$ \$	263,896 225,297 489,193	-		2 wells 2 wells
Reduced FPI	P recovery operat	ting time	e applied to w	ells fi \$	om Alt. C1	11 654	\$	247 830			2 wells
Annual O&M	1 - 10	\$	212,664	\$	21,266	7.024	\$	149,366	_		2 wells
Subtotal							\$	397,197	-		
Total savings	3						\$	91,996			
Total Net Present Value of Alternative C1						\$	20,952,833				
	Cost Savings Applied to Alt. C1						\$	20,860,836			
TOTAL NET	TAL NET PRESENT VALUE OF ALTERNATIVE C2, SCENARIO C2a						\$	22,944,310			
	With Cost Savings Applied to Alt. C1						\$	22,852,314			

Notes: Costs taken from RSMeans have been adjusted by Spokane location adjustment factor of 0.93. Costs from previous work greater than 1 year old have been adjusted using historical cost index factors provided by 2010 RSMeans (p. 671). Present value analysis uses a 30-year discount rate of 7.0%.

Table C-4 - Alternative C2 Estimated Cost Summary - Scenario C2b

Location: Kaiser Trentwood Facility Spokane Valley, WA Phase: Feasibility Study (-35% to +50%) Base Year: 2010 **Description:** Scenario C2b of Alternative C2 expands the hydraulic containment and FPP recovery provided in Alternative C1 through the operation of the existing groundwater IRM system plus the installation and operation of a new groundwater extraction well to hydraulically contain the ORB area petroleum hydrocarbon groundwater plume. Additional FPP skimming wells will be installed and operated in this alternative. A 30-year operating period is assumed in the development of this cost estimate.

Date: July 2011							
Date: July 2011							
CAPITAL COSTS DESCRIPTION	QUANTITY	UNIT	UN	ит созт		TOTAL	NOTES
Submittals, Plans, Site Preparation							
Pre- and post-construction submittals	1	LS	\$	10,000	\$	10,000	Previous project experience.
Permits Submittals Plans Site Prenaration Subtotal	1	LS	\$	10,000	\$	10,000	Previous project experience.
oublinitials, Fians, one Freparation Subtotal					Ŷ	20,000	
IRM System Expansion							1 new extraction well; 3 new FPP skimming locations.
Extraction well construction	195	ft	\$	286	\$	55,764	Unit cost based on vendor quote. One extraction well.
Extraction system installation	1	EA	\$ ¢	51 205	ې د	30,896	Unit cost based on vendor quote.
Deep monitoring well construction	100	ft	\$	112	\$	11,200	Depth based on well OH-MW-26 (see Table 4-3). Unit cost based
							on vendor quote.
Skimming well construction	95	ft	\$	371	\$	35,241	Unit cost based on vendor quote. One skimming well.
Belt skimmer installation	1	EA	\$	9,020	\$	9,020	See Table C-12.
Electrical connection	2	EA EA	e A	2,570	¢ ¢	5,140	See Table C-12. Previous project experience Two locations (extraction well ORB-
Licenser connection	2	273	Ψ	00,000	Ψ	100,000	FEW-1; new skimming well near WW-MW-6). Assume other
IRM System Expansion Subtotal					\$	298 656	locations have existing power supply (WW-SK-2, OH-SK-1).
					Ŷ	200,000	
Contingency	10%				\$	31,866	Scope and bid contingency. Percentage of institutional controls cost.
Professional/Technical Services							Percentage of sum of capital cost and contingency
Project management	8%				\$	28,042	EPA 540-R-00-002. Includes reports referenced in WAC 173-340-
							400(6)(b).
Remedial design	15%				\$	52,578	EPA 540-R-00-002.
Construction management	10%				\$	35,052	EPA 540-R-00-002. Includes reports referenced in WAC 173-340- 400(6)(b)
Ecology oversight	10%				\$	2,200	Assume 10% of Alt. C1 Ecology oversight cost.
Professional/Technical Services Subtotal					\$	117,872	
Institutional Controls							New institutional controls for IRM system expansion.
Institutional controls plan	50%				\$	23,274	Assume 50% of Alt. C1 institutional control plan cost to include IRM
							system containment and FPP recovery expansion, based on 4:8
Restrictive covenants	50%				\$	12 485	Assume 50% of Alt. C1 restrictive covenant preparation cost to
	0070				Ψ	12,400	include IRM system containment and FPP recovery expansion,
							based on 4:8 well quantity ratio.
Institutional Controls Subtotal					\$	35,759	
TOTAL CAPITAL COST					\$	504,153	
ANNUAL O&M COSTS							
DESCRIPTION	QUANTITY	UNIT	UN	IIT COST		TOTAL	NOTES
System Operation, Maintenance, and Monitorir	na						
Electricity	489,925	kWh	\$	0.05	\$	24,496	Groundwater extraction pump operation. See Table C-11.
FPP recovery	3	wells	\$	8,333	\$	25,000	See Table C-12.
Containment system maintenance	25%				\$	13,750	Assume 25% of Alt. C1 annual maintenance cost, based on 1:4
Additional GW monitoring	2%				\$	5,362	Assume approx. 2% of Alt. C1 annual monitoring cost, based on
, , , , , , , , , , , , , , , , , , ,							2:114 well quantity ratio.
Data management System Operation Maintenance and Monitorin	1 Subtotal	YR	\$	4,500	\$	4,500 73 108	See Table C-10.
System Operation, Maintenance, and Monitorn	ig Subtotal				Ψ	75,100	
Contingency	10%				\$	7,311	Scope and bid contingency. Percentage of monitoring, institutional controls, and IRM sytem O&M annual cost.
Brafansianal/Tashnisal Camilana							
Project management	10%				\$	8 042	Percentage of annual cost + contingency EPA 540-R-00-002
Technical support	10%				\$	8,042	EPA 540-R-00-002.
Ecology oversight	10%				\$	2,200	Assume 10% of Alt. C1 Ecology oversight cost.
Reporting	1	YR	\$	7,000	\$	7,000	See Table C-10.
Professional/Technical Services Subtotal					\$	25,284	
Institutional Controls (Annual Update and Mair	ntenance)						New institutional controls for IRM system expansion.
Institutional controls plan	50%				\$	15,009	Assume 50% of Alt. C1 institutional control plan cost to include IRM
							system containment and FPP recovery expansion, based on 4:8
Site information database	50%				\$	2,872	Assume 50% of Alt. C1 site information data base cost to include
						·	IRM system containment and FPP recovery expansion, based on
la ditutional Controls C. L. C.					_		4:8 well quantity ratio.
institutional Controls Subtotal					\$	17,881	
TOTAL ANNUAL O&M COST					\$	123,582	
1							1

Table C-4 - Alternative C2 Estimated Cost Summary - Scenario C2b

Location:	Kaiser Trentwo	od Facili	ity	Description: Scenario C2b of Alternative C2 expands the hydraulic containment and FPP recovery provided in Alternative C1 through the operation of the existing groundwater PIM system plus the installation and operation of a new groundwater extraction well to by draulically.							
	Spokane Valley	y, WA		contain th	e ORB a	rea petroleum h	nydroc	carbon groundv	vater	plume. Additi	onal FPP skimming wells will be installed and operated in this
Phase:	Feasibility Stud	ly (-35%	to +50%)	alternativ	e. A 30-y	/ear operating p	eriod	is assumed in	the c	development of	this cost estimate.
Base Year:	2010										
Date:	July 2011										
PERIODIC CO	OSTS										
	DESCRIPTI	ON		QUAN	τιτγ	UNIT		UNIT COST		TOTAL	NOTES
Groundwater	r IRM System P	eriodic I	Maintenance								
Groundwate	er extraction syst	tem		1		EA	\$	30,896	\$	30,896	Years 10, 20. Major equipment & infrastructure repair/replacement, 1 extraction location (ORB-FEW-1). Assume
FPP recove Groundwater	ry system r IRM System Po	eriodic I	Maintenance	1 e Subtotal		LS	\$	27,390	\$ \$	27,390 58,286	equivalent of extraction system installation capital cost. Year 5. See Table C-13.
Contingency				10	%				\$	5,829	Scope and bid contingency. Percentage of periodic costs.
Professional	/Technical Serv	ices									
Five-year re	Five-year reviews			1		EA	\$	9,770	\$	9,770	Years 5, 10, 15, 20, 25, 30. See Table C-10.
Closure repo	Closure report			1		EA	\$	20,590	\$	20,590	Year 30. See Table C-10.
FIDIESSIDIIal		lices Su	biotai						φ	30,300	
PRESENT VALUE ANALYSIS											
Discount rate	7.0%										
Time period	30	years	3								Assumed time period for fixed annual and periodic costs.
RIF	27	years	6								annual costs. See Table C-17.
FPP recovery FPP recovery	25 10	years years	3								Accounts for FPP recovery periods of less than 30 years. Accounts for FPP recovery periods of less than 30 years.
COST TYPE	YEAR		TOTAL COST	TOTAL PER Y	COST 'EAR	DISCOUNT FACTOR	N	IET PRESENT VALUE			NOTES
Capital	0	\$	504 153	\$ f	04 153	1.0	00 \$	504 153			
Annual O&M	1 - 30	\$	812,415	\$	27,081	12.4	09 \$	336,043			Annual O&M for fixed costs.
Annual O&M	1 - 27	\$	1,689,402	\$	63,502	11.9	24 \$	757,217			Annual O&M for variable costs.
Annual O&M Annual O&M	1 - 25 1 - 10	\$ \$	549,994 109,999	\$ \$	22,000	11.6 7.0	54 \$ 24 \$	256,376			Annual O&M for FPP recovery less than 30 years. Annual O&M for FPP recovery less than 30 years
Periodic	5	\$	39,899	\$	39,899	0.7	13 \$	28,447			
Periodic	10	\$	43,755	\$	43,755	0.5	08 \$	22,243			
Periodic	15	\$	9,770	\$ ¢	9,770	0.3	62 \$	3,541			
Periodic	20	э 5	43,755	э \$	43,755 9,770	0.2	эо э 84 \$	1 800			
Periodic	30	\$	30,360	\$	30,360	0.1	31 <u>\$</u>	3,988	_		
		\$	3,843,272	_			\$	2,002,375	_		Net present value of elements unique to Alternative C2, Scenario C2b.
Cost Savings	from Reduced F	PP Reco	overy Period	Applied to	Alternati	ve C1					
Original FPP r	recovery costs fr	rom Alt. (C1								
Annual O&M	1 - 30	\$	637,993	\$	21,266	12.4	09 \$	263,896			2 wells
Annual O&M Subtotal	1 - 20	\$	425,328	\$	21,266	10.5	94 <u>\$</u> \$	225,297 489,193	-		2 wells
Reduced FPP	recovery operation	ting time	applied to w	ells from A	lt. C1						
Annual O&M	1 - 25	\$	531,661	\$	21,266	11.6	54 \$	247,830			2 wells
Annual O&M Subtotal	1 - 10	\$	212,664	\$	21,266	7.0	24 \$	397 197	-		2 wells
Total savings							\$	91,996			
Total Net Pres	Total Net Present Value of Alternative C1						\$	20,952,833			
	Cost Savings Applied to Alt. C1						\$	20,860,836			
TOTAL NET I	DTAL NET PRESENT VALUE OF ALTERNATIVE C2, SCENARIO C2b					C2b	\$	22,955,207			
	With Cost Savings Applied to Alt. C1						\$	22,863,211			

Notes: Costs taken from RSMeans have been adjusted by Spokane location adjustment factor of 0.93. Costs from previous work greater than 1 year old have been adjusted using historical cost index factors provided by 2010 RSMeans (p. 671). Present value analysis uses a 30-year discount rate of 7.0%.

Table C-5 - Alternative C2 Estimated Cost Summary - Scenario C2c

Location: Kaiser Trentwood Facility Spokane Valley, WA Phase: Feasibility Study (-35% to +50%) Base Year: 2010 Date: July 2011 **Description:** Scenario C2c of Alternative C2 provides focused containment of the petroleum hydrocarbon groundwater plumes with the hydraulic containment portion of the groundwater IRM system shut off. This scenario assesses localized hydraulic containment of each of the petroleum groundwater plumes at the Facility through installation and operation of extraction wells at the leading edge of each plume, in lieu of providing hydraulic control through operation of the IRM system. Additional FPP skimming wells will be installed and operated in this alternative to expand the FPP recovery portion of the IRM system. A 30-year operating period is assumed in the development of this cost estimate.

Date: July 2011							
DESCRIPTION	OUANTITY	UNIT				τοται	NOTES
DESCRIPTION	QUANTITI	UNIT	01	11 0031		TOTAL	NOTES
Submittals, Plans, Site Preparation							
Pre- and post-construction submittals	1	LS	\$	10,000	\$	10,000	Previous project experience.
Permits	1	LS	\$	10,000	\$	10,000	Previous project experience.
Submittals, Plans, Site Preparation Subtotal					\$	20,000	
IRM System Expansion							11 new extraction wells; 3 new FPP skimming locations.
Extraction well construction	1,939	ft	\$	286	\$	554,496	11 wells. See Table C-11 for well depths. Unit cost based on
							vendor quote.
Extraction system installation	11	EA	\$	30,896	\$	339,853	For 11 wells. Unit cost based on vendor quote.
Indoor piping installation	1	LS	\$	25,001	\$	25,001	See Table C-11.
Outdoor piping installation	1	LS	\$	270,340	\$	270,340	See Table C-11.
Deep monitoring well construction	800	ft	\$	112	\$	89,600	8 wells, 100-ft depth each. Depth based on average depth of wells
							OH-MW-26 and WW-MW-17 (see Table 4-3). Unit cost based on
			•				vendor quote.
Skimming well construction	95	ft	\$	371	\$	35,241	Unit cost based on vendor quote.
Belt skimmer installation	1	EA	\$	9,020	\$	9,020	Engineer's estimate. Includes labor and equipment.
Restart existing skimming wells	2	EA	\$	2,570	\$	5,140	Engineer's estimate.
Electrical connection	5	EA	\$	50,000	\$	250,000	Previous project experience. Four extraction well groups
							(wastewater Treatment, ORB, Oil House, Cold Mill areas) plus one
							here existing neuron supply (MM/ SK 2, OH SK 1)
IDM Custom Evenneign Cubtotal					-	4 570 004	nave existing power supply (www-SK-2, OH-SK-1).
IRM System Expansion Subtotal					\$	1,578,691	
Contingency	10%				\$	159.869	Scope and bid contingency. Percentage of institutional controls
·······					•	,	cost.
Professional/Technical Services							Percentage of sum of capital cost and contingency.
Project management	6%				\$	105,514	EPA 540-R-00-002. Includes reports referenced in WAC 173-340-
							400(6)(b).
Remedial design	12%				\$	211,027	EPA 540-R-00-002.
Construction management	8%				\$	140,685	EPA 540-R-00-002. Includes reports referenced in WAC 173-340-
							400(6)(b).
Ecology oversight	10%				\$	2,200	Assume 10% of Alt. C1 Ecology oversight cost.
Professional/Technical Services Subtotal					\$	459,426	
Institutional Controls							New institutional controls for IRM system synamics
Institutional controls plan	1	FΔ	¢	46 548	¢	46 548	Assume equivalent to Alt C1 institutional control plan cost
Restrictive covenants	1	LA	¢ ¢	40,540	¢ ¢	40,540	Assume equivalent to Alt. C1 institutional control plan cost.
Restletive coveriants		10	Ψ	24,370	Ψ	24,370	Assume equivalent to Ait. OT restrictive coveriant preparation cost.
Institutional Controls Subtotal					\$	71.518	
					•		
TOTAL CAPITAL COST					\$	2,289,504	
ANNUAL O&M COSTS							
DESCRIPTION	QUANTITY	UNIT	U	NIT COST		TOTAL	NOTES
System Operation, Maintenance, and Monitorin	g						
Electricity	3,607,270	kWh	\$	0.05	\$	180,363	Groundwater extraction pump operation. See Table C-11.
FPP recovery	3	wells	\$	8,333	\$	25,000	See Table C-12.
Containment system maintenance	275%				\$	151,245	Assume 275% of Alt. C1 annual maintenance cost, based on 11:4
							extraction well quantity ratio.
Additional GW monitoring	17%				\$	44,773	Assume approx. 2% of Alt. C1 annual monitoring cost, based on
Data management	1	VP	¢	4 500	¢	4 500	See Table C-10
System Operation, Maintenance, and Monitorin	a Subtotal		Ψ	4,000	ŝ	405 881	
	goustotu				Ŷ	400,001	
Contingency	10%				\$	40,588	Scope and bid contingency. Percentage of monitoring, institutional
							controls, and IRM sytem O&M annual cost.
Professional/Technical Services	1001				~		
Project management	10%				\$	44,647	Percentage of annual cost + contingency. EPA 540-R-00-002.
i ecnnical support	10%				\$	44,647	EPA 540-R-00-002.
Ecology oversight	10%		•		\$	2,200	Assume 10% of Alt. C1 Ecology oversight cost.
Reporting	1	YR	\$	7,000	\$	7,000	
Professional/ Lechnical Services Subtotal					\$	98,494	
Institutional Controls (Annual Undate and Main	tenance)						New institutional controls for IRM system expansion
Institutional controls (Annual opuate and Main	125%				¢	37 523	Assume 125% of Alt C1 institutional control plan cost to include
Institutional controls plan	12376				φ	57,525	containment and FPP recovery elements unique to Scenario C2c
							based on 10:8 well quantity ratio.
Site information database	125%				\$	7,179	Assume 125% of Alt. C1 site information database cost to include
							containment and FPP recovery elements unique to Scenario C2c,
							based on 10:8 well quantity ratio.
Institutional Controls Subtotal					\$	44,701	
					¢	500 664	
TOTAL ANNOAL DAW COOT					ф	569,004	

Table C-5 - Alternative C2 Estimated Cost Summary - Scenario C2c

Location: Phase: Base Year: Date:	Kaiser Trentwo Spokane Valley Feasibility Stud 2010 July 2011	Des hydi the lieu altei estii	cription: Scer raulic containme petroleum grou of providing hy- rnative to expan- mate.	nario C2c of Alter ent portion of the ndwater plumes a draulic control thr nd the FPP recov	nativ grou at the oug ery	ve C2 provides undwater IRM : e Facility throu h operation of portion of the I	foc syst gh i the RM	cused containm tem shut off. Th installation and IRM system. A system. A 30-y	ent of the petroleum hydrocarbon groundwater plumes with the vis scenario assesses localized hydraulic containment of each of operation of extraction wells at the leading edge of each plume, in dditional FPP skimming wells will be installed and operated in this year operating period is assumed in the development of this cost		
PERIODIC C	OSTS DESCRIPTI	ION		c	QUANTITY	UNIT		UNIT COST		TOTAL	NOTES
Groundwate Groundwat	er IRM System P er extraction syst	eriodic tem	Maintenance	•	11	EA	\$	30,896	\$	339,853	Year 10. Major equipment and infrastructure repair/replacement, 11 extraction locations. Assume equivalent of extraction system installation canital cost per location
FPP recove Groundwate	ery system er IRM System P	eriodic	Maintenance	e Sul	1 Dtotal	LS	\$	27,390	\$ \$	27,390 367,243	Year 5. See Table C-13.
Contingency	y				10%				\$	36,724	Scope and bid contingency. Percentage of periodic costs.
Professiona Five-year re Closure rep Professiona	I/Technical Serv eviews port I/Technical Serv	vices vices Su	btotal		1 1	EA EA	\$	24,425 51,475	\$ \$ \$	24,425 51,475 75,900	Years 5, 10, 15, 20, 25. See Table C-10. Year 12. See Table C-10.
PRESENT V	ALUE ANALYSI	s									
Discount rate Time period RTF FPP recovery	e 7.0% 30 12 y 25	year: year: year:	s s								Assumed time period for fixed annual and periodic costs. Weighted average restoration time frame applied to variable annual costs. See Table C-17. Accounts for FPP recovery periods of less than 30 years.
FPP recovery	y 10 YEAR	year	TOTAL	тс	DTAL COST	DISCOUNT	N				Accounts for FPP recovery periods of less than 30 years.
Capital Annual O&M Annual O&M Annual O&M Periodic Periodic Periodic Periodic Periodic Periodic Periodic Periodic	$\begin{array}{c} 0\\ 1 - 30\\ 1 - 12\\ 1 - 25\\ 1 - 10\\ 5\\ 10\\ 12\\ 15\\ 20\\ 25\\ 30\\ \end{array}$	***	2,289,504 1,617,038 6,264,847 549,994 109,999 54,554 398,263 51,475 24,425 24,425 24,425	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	2,289,504 53,901 502,764 22,000 11,000 54,554 398,263 51,475 24,425 24,425 24,425 24,425	1.000 12.409 8.137 11.654 7.024 0.713 0.508 0.430 0.362 0.258 0.184 0.131	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	2,289,504 668,863 4,091,189 256,376 77,259 38,896 202,457 22,154 8,853 6,312 4,500			Annual O&M for fixed costs. Annual O&M for variable costs. Annual O&M for FPP recovery less than 30 years. Annual O&M for FPP recovery less than 30 years.
		\$	11,408,949				\$	7,666,363			Net present value of elements unique to Alternative C2, Scenario C2c.
Cost Savings Original FPP Annual O&M Annual O&M Subtotal	s from Reduced F recovery costs fi 1 - 30 1 - 20	FPP Rec rom Alt. \$ \$	overy Period C1 637,993 425,328	Appl \$ \$	ied to Alternativ 21,266 21,266	ve C1 12.409 10.594	\$ \$	263,896 225,297 489,193			2 wells 2 wells
Reduced FPI Annual O&M Annual O&M Subtotal	P recovery opera 1 - 25 1 - 10	ating time \$ \$	e applied to w 531,661 212,664	ells f \$ \$	rom Alt. C1 21,266 21,266	11.654 7.024	\$ \$	247,830 149,366 397,197	•		2 wells 2 wells
Total savings Total Net Pre Containment	s esent Value of Alt Shut Off	ernative	C1 with IRM	Syst	em Hydraulic		\$ \$	91,996 14,235,597			Assumes hydraulic containment portion of IRM system is shut off.
Cost Savings Applied to Alt. C1						\$	14,143,600				
TOTAL NET	TOTAL NET PRESENT VALUE OF ALTERNATIVE C2, SCENARIO C2c					C2c	\$	21,901,959			
	With Cost Sav	vings Ap	plied to Alt.	C1			\$	21,809,963			

Notes: Costs taken from RSMeans have been adjusted by Spokane location adjustment factor of 0.93. Costs from previous work greater than 1 year old have been adjusted using historical cost index factors provided by 2010 RSMeans (p. 671). Present value analysis uses a 30-year discount rate of 7.0%.

Table C-6 - Alternative C3 Estimated Cost Summary

Sheet 1 of 2

Location:	Kaiser Trentwood Facility	Description: Alter smear zone soil. A	native C3 inclu Iternative C3 a	ides Alte ssumes	rnative C2 p an operating	lus <i>i</i> per	in situ enhance iod of 30 years	ed bioremediation for petroleum groundwater plumes and associated s in the development of this cost estimate. Refer to Table C-14 for
	Spokane Valley, WA	details.						
Phase:	Feasibility Study (-35% to +50%)							
Base Year:	2010							
Date:	July 2011							I
CAPITAL C	OSTS							
	DESCRIPTION	QUANTITY	UNIT	U	NIT COST		TOTAL	NOTES
Submittals,	Plans, Site Preparation							
Pre- and p	oost-construction submittals	1	LS	\$	50,000	\$	50,000	SAP, HASP, work plan, as-built drawings, O&M manual, QA/QC documentation. Based on previous project experience.
Permits Submittals,	Plans, Site Preparation Subtotal	1	LS	\$	50,000	\$ \$	50,000 100,000	Previous project experience. SEPA checklist, UIC, etc.
System Inst	tallation and Startup							
Injection w	vell installation	1	LS	\$	1,152,598	\$	1,152,598	See Table C-14.
Treatment	equipment and setup	1	LS	\$	205,326	\$	205,326	Tanks, pumps, conveyance piping and installation. See Table
Utilities		13,806	kWh	\$	0.05	\$	652	Based on 5-kW demand per unit, continuous operation, for 1 day a month. Cost of electricity based on estimate provided by Kaiser.
Amendme	nts	1	15	\$	90 377	\$	90 377	See Table C-14. Year Zero See Table C-14
System Inst	tallation and Startup Subtotal	ŗ	20	Ψ	30,311	\$	1,448,953	
Contingenc	:y	20%				\$	309,791	Scope and bid contingency. Percentage of capital costs.
Professiona Project ma	al/Technical Services anagement	5%				\$	92,937	EPA 540-R-00-002. Includes reports referenced in WAC 173-340
Remedial	design	8%				\$	148,699	EPA 540-R-00-002.
Constructi	on management	6%				\$	111,525	EPA 540-R-00-002. Includes reports referenced in WAC 173-340
Pilot-scale	study	1	LS	\$	144,895	\$	144,895	400(6)(b). 10% of Installation and startup costs.
Professiona	al/Technical Services Subtotal					\$	498,057	
TOTAL CAP	PITAL COST					\$	2,356,800	
	&M COSTS							
	DESCRIPTION	QUANTITY	UNIT	U	NII COST		TOTAL	NOTES
System Ope	eration and Monitoring							
Operation		1	LS	\$ \$	127,029 25,109	\$ \$	127,029 25 109	See Table C-14. See Table C-14
Performan	ice groundwater sampling & analysis	1	LS	\$	11,919	\$	11,919	See Table C-14.
System Ope	eration and Monitoring Subtotal					\$	164,056	
Contingenc	ey -	20%				\$	32,811	Scope and bid contingency.
Professiona	al/Technical Services					ć		
Project ma	anagement	10%				\$ ¢	19,687	EPA 540-R-00-002. EPA 540-R-00-002
Ecology ov	versight	10%				\$	2,200	Assume 10% of Alt. C1 Ecology oversight cost.
Professiona	al/Technical Services Subtotal					\$	41,573	
TOTAL ANN	NUAL O&M COST					\$	238,441	
PERIODIC (COSTS							
	DESCRIPTION	QUANTITY	UNIT	U	NIT COST		TOTAL	NOTES
System Ope Major equi	eration and Closeout ipment replacement/repair eration and Closeout Subtotal	1	LS	\$	26,772	\$	26,772	Year 15. 25% of equipment costs. See Table C-14.
Contingenc	:y	10%				\$	2,677	Scope and bid contingency. Percentage of periodic costs.
Professions	al/Technical Services							
Five-year	reviews	1	EA	\$	4,885	\$	4,885	Years 5, 10, 15, 20, 25. See Table C-10.
Closure re	port NGCochnical Services Subtatel	1	EA	\$	10,295	\$	10,295	Year 25. See Table C-10.
Protessiona	an rechnical Services Subtotal					ф	15,180	

Table C-6 - Alternative C3 Estimated Cost Summary

Location:	Kaiser Trentwo	od Faci	lity	Des sme	cription: Alter	rnative C3 include Alternative C3 ass	es A ume	Iternative C2 plus in a sea operating perior	situ enhanced bioremediation for petroleum groundwater plumes and associated d of 30 years in the development of this cost estimate. Refer to Table C-14 for
	Spokane Valley	y, wa		deta	.IIS.				
Phase:	Feasibility Stud	ły (-35%	5 to +50%)						
Base Year:	2010								
Date:	July 2011								
PRESENT V		S							
Discount rate Time period RTF	7.0% 30 25	year year	'S 'S						Assumed time period for fixed annual and periodic costs. Weighted average restoration time frame applied to variable annual costs. See Table C-17.
COST TYPE	YEAR		TOTAL COST	TC F)TAL COST PER YEAR	DISCOUNT FACTOR	N	ET PRESENT VALUE	NOTES
Capital	0	\$	2,356,800	\$	2,356,800	1.000	\$	2,356,800	Appual ORM for fixed posts
	1 - 30	¢ ¢	5 038 752	¢ Q	238 //1	12.409	¢ ¢	2 774 712	Annual O&M for variable costs
Periodic	5	s S	4 885	ŝ	4 885	0 713	\$	3 483	
Periodic	10	ŝ	4.885	ŝ	4,885	0.508	Ŝ	2,483	
Periodic	15	\$	29,449	\$	29,449	0.362	\$	10,674	
Periodic	20	\$	4,885	\$	4,885	0.258	\$	1,262	
Periodic	25	\$	15,180	\$	15,180	0.184	\$	2,797	
Periodic	30	\$		\$	-	0.131	\$	-	
		\$	8,354,837				\$	5,152,212	Net present value of elements unique to Alternative C3.
Total Net Pres	sent Value of Alt	ernative	e C2				\$	22,863,211	Scenario C2b
TOTAL NET	PRESENT VAL	UE OF A		E C3	ł		\$	28,015,423	

Notes: Costs taken from RSMeans have been adjusted by Spokane location adjustment factor of 0.93. Costs from previous work greater than 1 year old have been adjusted using historical cost index factors provided by 2010 RSMeans (p. 671). Present value analysis uses a 30-year discount rate of 7.0%.

Sheet 2 of 2

Table C-7 - Alternative C4 Estimated Cost Summary

Location: Kaiser Trentwood Facility	Description: Alter to the treatment ele	mative C4 adds	s <i>ex situ</i> treatment of d by Alternative C2 (i	grou nstitu	undwater extra utional control:	cted from the petroelum groundwater plumes at the Kaiser Facility s, monitoring, MNA, and containment).
Spokane Valley, WA						
Phase: Feasibility Study (-35% to +50%)						
Base Year: 2010						
Date: July 2011						
CAPITAL COSTS DESCRIPTION	QUANTITY	UNIT	UNIT COST		TOTAL	NOTES
Submittals, Plans, Site Preparation						
Pre- and post-construction submittals	1	LS	\$ 50,000	\$	50,000	SAP, HASP, work plan, as-built drawings, O&M manual, QA/QC documentation. Based on previous project experience.
Permits Submittals, Plans, Site Preparation Subtotal	1	LS	\$ 30,000	\$ \$	30,000 80,000	Previous project experience. SEPA checklist, etc.
Ex Situ Treatment System Construction						
External Components				\$ ¢	3,050,970	See Table C-15.
Treatment System Construction				э \$	671,599	See Table C-15.
Extraction wells				\$	210,380	See Table C-15.
Ex situ Treatment System Construction Subto	tal			\$	5,901,894	
Contingency	10%			\$	598,189	Scope and bid contingency. Percentage of capital costs.
Professional/Technical Services Project management	5%			\$	295,095	EPA 540-R-00-002. Includes reports referenced in WAC 173-340-
Remedial design	8%			\$	472.151	400(6)(b). EPA 540-R-00-002.
Construction management	6%			\$	354,114	EPA 540-R-00-002. Includes reports referenced in WAC 173-340-
Ecology oversight Professional/Technical Services Subtotal	10%			\$ \$	2,200	400(6)(b). Assume 10% of Alt. C1 Ecology oversight cost.
TOTAL CAPITAL COST				\$	7,703,643	
ANNUAL O&M COSTS DESCRIPTION	QUANTITY	UNIT	UNIT COST		TOTAL	NOTES
System Operation, Maintenance, and Monitorin Monitoring and maintenance labor	ng 1,920	hr	\$ 75	\$	144,000	Assumed 1 FTE for monitoring, equipment repair and replacement annually
Monitoring and maintenance supervisor	480	hr	\$ 110	\$	52,800	Assume 25% of monitoring and maintenance labor.
Carbon change-out, transport, and regeneration	70,000	lb	\$ 2.79	\$	195,300	Includes replacement, removal, regeneration, and labor for carbon change-out. Based on vendor quote for existing HC project. Price adjusted per 2010 RSMeans cost index. Assume one GAC bed change-out per year.
Surface filter change-out	96	EA	\$ 2,000	\$	192,000	Assume one change-out per vessel per month. Cost of filter is engineer's estimate.
Electricity	2,939,549	kWh	\$ 0.05	\$	138,747	1 hp = 0.7457 kW. Assumes continuous operation of 6 x 25 hp
Sampling and lab analysis	132	EA	\$ 253	\$	33,396	TPH-Dx, PCBs, pH @ each well (5), upstream of each unit process (4), downstream of each carbon bed (6), and combined effluent (1).
System Operation, Maintenance, and Monitori	ng Subtotal			\$	756,243	
Contingency	10%			\$	75,624	Scope and bid contingency. Percentage of annual cost. EPA 540-
Professional/Technical Services						
Project management	10%			\$	83,187	Percentage of annual cost + contingency. EPA 540-R-00-002.
Professional/Technical Services Subtotal	10%			\$ \$	83,187 166,373	EMA 340-K-00-002.
	1070					
TOTAL ANNUAL O&M COST	1075			\$	998,240	
TOTAL ANNUAL O&M COST				\$	998,240	
TOTAL ANNUAL O&M COST PERIODIC COSTS DESCRIPTION	QUANTITY	UNIT	UNIT COST	\$	998,240 TOTAL	NOTES
TOTAL ANNUAL O&M COST PERIODIC COSTS DESCRIPTION 10-year major system maintenance	QUANTITY 10%	UNIT 	UNIT COST	\$ \$	998,240 TOTAL 770,364	NOTES Year 10. Engineer's Estimate. Assume 10% of capital cost.
TOTAL ANNUAL O&M COST PERIODIC COSTS DESCRIPTION 10-year major system maintenance Professional/Technical Services	QUANTITY 10%	UNIT 	UNIT COST	\$ \$	998,240 TOTAL 770,364	NOTES Year 10. Engineer's Estimate. Assume 10% of capital cost.
TOTAL ANNUAL O&M COST PERIODIC COSTS DESCRIPTION 10-year major system maintenance Professional/Technical Services Five-year reviews Closure report	QUANTITY 10% 1	UNIT EA EA	UNIT COST \$ 14,655 \$ 30,885	\$ \$ \$	998,240 TOTAL 770,364 14,655 30,885	NOTES Year 10. Engineer's Estimate. Assume 10% of capital cost. Years 5, 10, 15, 20. See Table C-10. Year 18. See Table C-10.

Table C-7 - Alternative C4 Estimated Cost Summary

Sheet	2	of	2

Location:	Kaiser Trentwo	od Fac	ility	Des to th	Description: Alternative C4 adds ex situ treatment of groundwater extracted from the petroelum groundwater plumes at the Kaiser Facility to the treatment elements provided by Alternative C2 (institutional controls, monitoring, MNA, and containment)									
	Spokane Valle	y, WA		.0			<i>.</i> , <i>.</i>							
Phase:	Feasibility Stud	dy (-35%	% to +50%)											
Base Year:	2010													
Date:	July 2011													
PRESENT V	ALUE ANALYSI	s												
Discount rate	7.0%													
Time period RTF	30 18	yea yea	rs rs						Assumed time period for fixed annual and periodic costs. Weighted average restoration time frame applied to variable annual costs. See Table C-17.					
COST TYPE	YEAR		TOTAL COST	TO P	TAL COST ER YEAR	DISCOUNT FACTOR	NE	T PRESENT VALUE	NOTES					
Capital	0	\$	7,703,643	\$	7,703,643	1.000	\$	7,703,643						
Annual O&M	1 - 30	\$	-	\$	-	12.409	\$	-	Annual O&M for fixed costs.					
Annual O&M	1 - 18	\$	17,779,185	\$	998,240	10.005	\$	9,986,950	Annual O&M for variable costs.					
Periodic	5	\$	14,655	\$	14,655	0.713	\$	10,449						
Periodic	10	\$	785,019	\$	785,019	0.508	\$	399,064						
Periodic	15	\$	14,655	\$	14,655	0.362	\$	5,312						
Periodic	18	\$	30,885	\$	30,885	0.300	\$	9,256						
Periodic	20	\$	14,655	\$	14,655	0.258	\$	3,787						
Periodic	25	ъ Э	-	¢	-	0.184	¢	-						
Periodic	30	Þ	-	. Ф	-	0.131	þ	-						
		\$	26,342,697				\$	18,118,460	Net present value of elements unique to Alternative C4.					
Total Net Pre	sent Value of Alt	ernative	e C2				\$	22,863,211	Scenario C2b					
TOTAL NET	PRESENT VAL	UE OF .	ALTERNATIV	E C4			\$	40,981,671						

Notes: Costs taken from RSMeans have been adjusted by Spokane location adjustment factor of 0.93. Costs from previous work greater than 1 year old have been adjusted using historical cost index factors provided by 2010 RSMeans (p. 671). Present value analysis uses a 30-year discount rate of 7.0%.

DESCRIPTION	QUANTITY	UNIT	UN	IT COST		TOTAL	NOTES
Alternative C1							
Protection & Performance Monitoring - Ann	nual Costs						Protection and performance monitoring costs based on previous
							project experience.
Labor	1	yr	\$	107,960	\$	107,960	Includes well and equipment maintenance labor. Excludes project
							management labor.
Equipment, supplies, computer	1	yr	\$	17,480	\$	17,480	Includes well and equipment maintenance.
Travel	1	yr	\$	24,108	\$	24,108	
Sample shipping	1	yr	\$	10,000	\$	10,000	Previous project experience.
Laboratory analysis	1	yr	\$	108,552	\$	108,552	_
Subtotal					\$	268,100	-
Total qty. of wells sampled	114						See SAP, as amended (Hart Crowser 2007a, Kaiser 2010).
Protection monitoring wells	19						See SAP, as amended (Hart Crowser 2007a, Kaiser 2010).
Performance monitoring wells	95						See SAP, as amended (Hart Crowser 2007a, Kaiser 2010).
Protection monitoring annual total	16.7%				\$	44,683	Percentage = protection wells sampled/total wells sampled. Annual
	00.00/				¢	000 447	Descente as a seference wells accord duarterly.
Performance monitoring annual total	83.3%				Ф	223,417	Annual total. Monitoring events occur quarterly.
Data management	1	vr	\$	29.948	\$	29.948	Data validation: database management.
Reporting	1	yr	\$	16,182	\$	16,182	Report to Kaiser and Ecology quarterly; EIM reporting.
Reporting	1	yr	\$	16,182	\$	16,182	Report to Kaiser and Ecology quarterly; EIM reporting.

Alternative C1 protection and performance monitoring notes:

- Two 2-person teams plus sample custodian on site during each sample event (5 people total).

- Assumed each sample team can sample 7 wells per day on average.

- Assumed water levels take an entire day with 4 people measuring.

- Assumed 10-hour field days.

- Assumed EIM submittal included for groundwater data plus any additional soil or soil gas data collected during previous 6 months.

- Assumed 2 vehicles for each sampling event.

- Actual well and equipment maintenance costs will depend on upcoming needs.

Monitored Natural Attenuation (MNA) - Petroleu Costs	m Hydrocai	rbon Groun	dwat	er Pl	ume	s - A	nnual	Assume MNA samples collected as part of protection and performance monitoring described above.
Total qty. of wells sampled	36							
Sampling frequency	2							Assume semi-annual frequency.
Annual MNA monitoring cost								
Labor	16%					\$	17,046	Assume % of groundwater protection and performance monitoring labor cost, based on 72:456 annualized well quantity ratio. Labor includes additional sample collection and handling.
Equipment, supplies, computer	16%					\$	2,760	Assume % of groundwater protection and performance monitoring labor cost, based on 72:456 annualized well quantity ratio.
Sample shipping	16%					\$	1,579	Assume % of groundwater protection and performance sample shipping cost, based on 72:456 annualized well quantity ratio.
Laboratory analysis - groundwater								See unit costs in Table C-16.
Nitrate	72	samples	\$		24	\$	1,728	
Sulfate	72	samples	\$		18	\$	1,296	
Phosphate	72	samples	\$		20	\$	1,440	
Ammonia	72	samples	\$		24	\$	1,728	Assume same unit cost as for nitrate.
Iron	72	samples	\$		24	\$	1,728	
Manganese	72	samples	\$		26	\$	1,872	
Potassium	72	samples	\$		24	\$	1,728	Assume same unit cost as for iron.
Magnesium	72	samples	\$		24	\$	1,728	Assume same unit cost as for iron.
Total						\$	34,633	-
Data management	16%					\$	4,729	Assume % of groundwater protection and performance monitoring data management cost, based on 72:456 annualized well quantity ratio
Reporting	16%					\$	2,555	Assume % of groundwater protection and performance monitoring reporting cost, based on 72:456 annualized well quantity ratio.

Table C-9 - Institutional Controls Cost Backup

DESCRIPTION	QUANTITY	UNIT	UN	IIT COST		TOTAL	NOTES
Alternative C1							
New Institutional Controls							
Pending environmental upgrades at casting com	plexes		•		•	100.000	Pending items and approx. costs provided by Kaiser.
Replace melter furnace door jambs	5	locations	\$	20,000	\$	100,000	DC-1, DC-2W, DC-3, DC-8E, DC-8W. Provided by Kaiser, May
Contain hydraulics/lubrication	1	locations	\$	151 000	\$	151 000	23, 2011. DC-2 Unit cost per Kaiser April 19, 2010
Overflow lines to sewer	7	locations	\$	50.000	\$	350.000	DC-2 through DC-8.
Seal DC-7/DC-8 control house sump	1	location	\$	15,000	\$	15,000	Excludes equipment removal cost (approx. \$15k). Unit cost per
·						,	Kaiser, April 19, 2010.
Slip line storm sewers							Pipe lengths from Kaiser storm sewer plan dwg titled: Aluminum
MH 2 to MH 3	133	ft	\$	371	\$	49,386	Works - Trentwood Plant, Storm Sewer - Scheme "O", General
MH 9 to MH 3	280	ft	\$	371	\$	103,971	Arrangement March 8, 1967. Unit cost based on cost of slip lining
MH 3 to MH 5	366	Π 4	\$ ¢	371	\$ ¢	135,905	from MH 7B to MH 9 (approx. \$120,100 for total length of 390 ft.) In
NIT 5 10 NIT 6 Subtotal	460	п	Φ	3/1	¢ Q	460.073	
Total					φ \$	1 076 073	
l ottal					Ψ	1,010,010	
Preparation of institutional control O&M and mor	nitoring plans						Assume work performed by Hart Crowser staff.
Principal	8	hr	\$	180	\$	1,440	
Sr. Project	16	hr	\$	130	\$	2,080	
Sr. Staff	60	hr	\$	90	\$	5,400	
Staff	60	hr	\$	/5	\$	4,500	
Sr. Dratter	8	nr br	ф Ф	100	¢ ¢	490	
Travel	0	- EA	ф \$	566	φ S	400 566	Assume 2-day site visit
Computer	1	ea	\$	250	\$	250	
Subtotal			•		\$	15,516	Cost per plan.
Quantity of plans to prepare	3					-,	
Total					\$	46,548	Assume 3 plans in total (e.g., plans for Facility pavement,
							engineered controls, air emission control system).
Preparation of restrictive covenant							Assume work performed by Hart Crowser staff. Includes attorney
Attorney fees	40	hr	¢	200	¢	12.000	tees.
Alloiney lees Principal	40	br	ф Ф	180	ф р	4 320	
Sr. Project	24	hr	\$	130	\$	3 120	
Sr. Staff	40	hr	\$	90	\$	3,600	
Staff	16	hr	\$	75	\$	1,200	
Clerical	8	hr	\$	60	\$	480	
Computer	1	ea	\$	250	\$	250	_
Total					\$	24,970	
Institutional Controls - Annual Costs							
Environmental upgrades at casting complexes							
Verify pit/sump integrity	9	locations	\$	1,000	\$	9,000	DC-1 through DC-8 plus DC-7/DC-8 control house sump.
Other upgrade maintenance	5%				\$	53,804	Assume percentage of environmental upgrade capital cost above.
							_
Subtotal					\$	62,804	-
Maintenance of physical measures and BMPs							Assume maintenance of signs, fences, gates, access control,
							existing training programs, waste nandling guidance, and BMPs
Labor	1920	hr	\$	75	\$	144 000	Assume 1 FTF
Supervisor	480	hr	\$	110	\$	52.800	Assume 25% of labor effort.
Subtotal			•		\$	196.800	
					·		
Total					\$	259,604	
Institutional control O&M and monitoring plans -	annual update	and mainten	ance	400	¢	700	Assume work performed by Hart Crowser staff.
Principal Sr. Project	4	nr br	¢ ¢	180	¢ ¢	1 040	
Sr. Staff	16	hr	\$	90	\$	1,040	
Staff	8	hr	\$	75	\$	600	
Sr. Drafter	4	hr	\$	100	\$	400	
Clerical	2	hr	\$	60	\$	120	
Travel	1	ea	\$	433	\$	433	Assume 1-day site visit.
Computer	1	ea	\$	250	\$	250	<u>-</u>
Subtotal	-				\$	5,003	Cost per plan.
Quantity of plans to maintain	6				_		• • • • • • • • • • • • • • • • • • •
I OTAL					\$	30,018	Assume 6 plans in total. Includes existing WDR Restoration
							O&M and monitoring plans given above

Hart Crowser L:\Jobs\2644125\Final FS 05-2012\03 Appendices\Appendix C\Appendix C - Section 4 Cost Estimates - institutional controls

Table C-9 - Institutional Controls Cost Backup

DESCRIPTION	QUANTITY	UNIT	UN	IT COST	1	TOTAL	NOTES
Site information database - annual update and r	maintenance						Assume work performed by Hart Crowser staff.
Principal	4	hr	\$	180	\$	720	
Sr. Project	8	hr	\$	130	\$	1,040	
Sr. Staff	24	hr	\$	90	\$	2,160	
Staff	12	hr	\$	75	\$	900	
Clerical	4	hr	\$	60	\$	240	
Travel	1	ea	\$	433	\$	433	Assume 1-day site visit.
Computer	1	ea	\$	250	\$	250	-
Total					\$	5,743	
Institutional Controls - Periodic Costs							
Restrictive covenant periodic update and mainte	enance						Assume work performed by Hart Crowser staff. Includes attorney fees.
Attorney fees	8	hr	\$	300	\$	2,400	
Principal	8	hr	\$	180	\$	1,440	
Sr. Project	4	hr	\$	130	\$	520	
Sr. Staff	16	hr	\$	90	\$	1,440	
Staff	4	hr	\$	75	\$	300	
Clerical	2	hr	\$	60	\$	120	
Computer	1	ea	\$	250	\$	250	-
Total					\$	6,470	
NPDES Permit and Ecology Order Required	Monitoring - A	nnual Cost	s				Required by NPDES Permit No. WA-000089-2 (Ecology 1997), Ecology Agreed Order No. 02WQER-3487 (Ecology 2002), and Ecology Amended Order No. 2868 (Ecology 2005). See Section
NDDES parmit manitaring laboratory analysis							2.1.1.1.
NPDES permit - monitoring laboratory analysis							Pasad on weakly compling frequency
Outfall 001	104	samples					Based off weekly sampling frequency.
Outfall 001	104	samples					
Outfall 002	52	samples					
Plant intake	104	samples					
	104	bampioo					
Laboratory analysis							Unit prices based on laboratory quote.
Outfall 001			•	50	•	F 000	
Oil and grease	104	samples	¢ ¢	50	¢	5,200	
	104	samples	¢	10	¢	5 200	Aluminum abramium racquarable zina abaaabaraya
Dital Al, Cr, Zh, P	104	samples	¢	50	¢	5,200	Aluminum, chromium, recoverable zinc, phosphorous.
Hardness	104	samples	¢ 2	40 25	¢ ¢	2 600	
Subtotal	104	Samples	Ψ	25	φ Φ	10.032	•
Gubiotal					Ψ	15,052	
Outfall 002							
Oil and grease	260	samples	\$	50	\$	13,000	
TSS	104	samples	\$	18	\$	1,872	
Orthophosphate	104	samples	\$	20	\$	2,080	
Total Al, Cr, Zn, P	104	samples	\$	50	\$	5,200	Aluminum, chromium, zinc, phosphorous.
Hexavalent chromium	104	samples	\$	50	\$	5,200	
Cyanide	104	samples	\$	40	\$	4,160	-
Subtotal					\$	31,512	
Outfall 003							
BOD₅	52	samples	¢	45	¢	2 340	
TSS	52	samples	φ ¢	18	¢ ¢	2,040	
Fecal coliform	52	samples	ŝ	35	ŝ	1 820	
Subtotal	02	oumpioo	Ψ	00	¢	5,096	
Gubiotal					Ψ	5,050	
Plant intake							
Oil and grease	104	samples	\$	50	\$	5,200	
TSS	52	samples	\$	18	\$	936	
Total metals	104	samples	\$	50	\$	5,200	Aluminum, chromium, recoverable zinc.
Subtotal					\$	11,336	
NDDES permit laboratory analysis subtotal					¢	66 076	
					Ψ	00,970	
Ecology Order - monitoring laboratory analysis							Deard an binned the serve line from the
Sample quantity							Based on biweekly sampling frequency.
Outfall 001 Plant lagoon offluent	26	samples					
Plant lagoon enluent	26 26	samples samples					
	20	campioo					
Laboratory analysis							
For 3 locations given above							
PCBs - ultra-low level	78	samples	\$	175	\$	13,650	
Subtotal					\$	13,650	
Ecology Order laboratory analysis subtotal					\$	13,650	

Hart Crowser L:\Jobs\2644125\Final FS 05-2012\03 Appendices\Appendix C\Appendix C - Section 4 Cost Estimates - institutional controls

Table C-9 - Institutional Controls Cost Backup

DESCRIPTION	QUANTITY	UNIT	UNI	т соѕт	-	TOTAL	NOTES
Sampling labor - NPDES permit and Ecology Or	der required mo	onitoring	¢	75	¢	45 000	Assume 1 individual
Supervisor	208 52	hr	ъ S	75 110	ֆ Տ	5 720	Assume 1 Individual Assume 25% of labor effort
Labor subtotal	52		Ψ	110	\$	21.320	
					•	,	
Total Annual Cost					\$	101,946	
NPDES Permit Required Monitoring - Period	ic Costs						Required by NPDES Permit No. WA-000089-2 (Ecology 1997).
Initial acute toxicity testing							Assume conducted quarterly for one year, once per permit cycle.
Sample quantity							Assume 5-year permit cycle.
River intake	4	samples					Assume conducted in Years 0, 5, 10, 15, 20, and 25.
Final effluent	4	samples					Unit prices based on laboratory quote.
Laboratory analysis							
Fathead minnow (96-hr static-renewal test)	8	samples	\$	850	\$	6,800	
Daphnid (48-hr static test)	8	samples	\$	700	\$	5,600	
Subtotal					\$	12,400	
Sampling and reporting labor							
Labor	40	hr	\$	75	\$	3,000	Assume 1 individual performs sampling and reporting.
Supervisor	10	hr	\$	110	\$	1,100	Assume 25% of labor effort.
Labor subtotal					\$	4,100	
Initial acute toxicity testing total					\$	16,500	
First state in the second							
Final acute toxicity testing							Assume conducted once in the last summer, once in the last winter, of the permit cycle
Sample quantity							Assume 5-vear permit cycle.
Final effluent	2	samples					Assume conducted in Years 5, 10, 15, 20, 25, and 30.
Laboratory analysis	2	aamalaa	¢	950	¢	1 700	
Daphnid (48-br static test)	2	samples	ֆ Տ	850 700		1,400	
Subtotal		oumpiee	Ŷ		\$	3,100	•
Sampling and reporting labor	00	h-1	¢	75	¢	0.400	Assume diadicidual assessment association
Labor Supervisor	28	nr br	¢ ¢	75 110	ъ ¢	2,100	Assume 1 individual performs sampling and reporting.
Labor subtotal	1		Ψ	110	\$	2,870	
Final coute toxicity testing total					¢	5.070	
					φ	5,970	
Initial chronic toxicity testing							Assume conducted quarterly for one year, once per permit cycle
Sample quantity							Assume 5-year permit cycle.
River intake	4	samples					Assume conducted in Years 0, 5, 10, 15, 20, and 25.
Final effluent	4	samples					Unit prices based on laboratory quote.
l aboratory analysis							
Fathead minnow (7-day, full dilution test)	8	samples	\$	1,575	\$	12,600	
Water flea (7-day, full dilution test)	8	samples	\$	1,475	\$	11,800	
Subtotal					\$	24,400	
Sampling and reporting labor							
Labor	40	hr	\$	75	\$	3,000	Assume 1 individual performs sampling and reporting.
Supervisor	10	hr	\$	110	\$	1,100	Assume 25% of labor effort.
Labor subtotal					\$	4,100	
Initial chronic toxicity testing total					\$	28,500	
Final chronic toxicity testing							Assume conducted once in the last summer, once in the last
Sample quantity							winter, of the permit cycle. Assume 5-year permit cycle
Final effluent	2	samples					Assume conducted in Years 5, 10, 15, 20, 25, and 30.
Eaboratory analysis Fathead minnow (7-day, full dilution test)	2	samples	\$	1 575	\$	3 150	
Water flea (7-day, full dilution test)	2	samples	\$	1,475	\$	2,950	
Subtotal		•			\$	6,100	
Sampling and reporting labor							
Labor	28	hr	\$	75	\$	2,100	Assume 1 individual performs sampling and reporting.
Supervisor	7	hr	\$	110	\$	770	Assume 25% of labor effort.
Labor subtotal					\$	2,870	
Final chronic toxicity testing total					\$	8,970	

Table C-10 - Professional Services Cost Backup

DESCRIPTION	QUANTITY	UNIT	UNI	т соѕт		TOTAL	NOTES
Alternative C1 - Periodic Costs							
Five-year review periodic cost							Assume work performed by Hart Crowser staff.
			•				Historical mean non-zero quarterly Ecology cost at Kaiser 2007-
Ecology oversight	1	IS	\$	7,500	\$	7,500	2009.
Principal Sr. Broject	16	nr br	¢ ¢	180	¢ ¢	2,880	
Sr. Staff	40	hr	\$	90	φ \$	3 600	
Staff	40	hr	\$	75	\$	3.000	
Clerical	8	hr	\$	60	\$	480	
Total					\$	19,540	
Closure report periodic cost							Assume work performed by Hart Crowser staff.
Ecology oversight	1	ls	\$	7 500	\$	7 500	2009
Principal	40	hr	\$	180	\$	7,000	2003.
Sr. Project	80	hr	\$	130	\$	10,400	
Sr. Staff	80	hr	\$	90	\$	7,200	
Staff	80	hr	\$	75	\$	6,000	
Sr. Drafter	24	hr	\$	100	\$	2,400	
Clerical	8	hr	\$	60	\$	480	
Total					\$	41,180	
Alternative C2 - Annual Costs	.1						Assume work performed by Llort Comments of the
Containment monitoring - data management annua	ai cost	k -	¢	400	¢	000	Assume work performed by Hart Crowser staff.
Principal Sr. Accession	2	nr br	\$ ¢	180	\$ ¢	360	
Sr. Project	4	hr	¢	100	¢	1 040	
Sr. Staff	16	hr	\$	90	\$	1,040	
Staff	12	hr	\$	75	\$	900	
Clerical	2	hr	\$	60	\$	120	
Total					\$	4,500	
Containment monitoring - reporting annual cost			•	400	•		Assume work performed by Hart Crowser staff.
Principal Sr. Accession	8	nr br	¢ ¢	180	¢ ¢	1,440	
Sr. Project	12	hr	ф S	130	φ S	1 560	
Sr. Staff	16	hr	\$	90	\$	1,440	
Staff	16	hr	\$	75	\$	1,200	
Sr. Drafter	8	hr	\$	100	\$	800	
Clerical	4	hr	\$	60	\$	240	-
Total					\$	7,000	
Alternative C2 - Periodic Costs							
Five-year reviews - Scenario C2a, C2b	50%				\$	9,770	Assume 50% of Alt. C1 five-year review cost to include IRM
							system containment and FPP recovery expansion, based on 4:8
Closure report - Scenario C2a, C2b	50%				\$	20 590	Assume 50% of Alt. C1 closure report cost to include IRM system
	0070				Ψ	20,000	containment and FPP recovery expansion, based on 4:8 well
							quantity ratio.
Five-year reviews - Scenario C2c	125%				\$	24,425	Assume 125% of Alt. C1 five-year review cost to include
							containment and FPP recovery elements unique to Scenario C2c,
Closure report - Scenario C2c	125%				\$	51 475	Assume 125% of Alt. C1 closure report cost to include containment
	12070				Ψ	01,470	and FPP recovery elements unique to Scenario C2c, based on
							10:8 well quantity ratio.
Alternative C3 - Periodic Costs							
Five-year reviews	25%				\$	4,885	Assume 25% of Alt. C1 five-year review cost to include
							containment and FPP recovery elements unique to Alt. C3.
Closure report	25%				\$	10,295	Assume 25% of Alt. C1 closure report cost to include containment
							and FPP recovery elements unique to Alt. C3.
Alternative C4 - Periodic Costs					¢	44.05-	
rive-year reviews	75%				\$	14,655	Assume 75% of Alt. C1 five-year review cost to include
							on 6:8 well quantity ratio
Closure report	75%				\$	30.885	Assume 75% of Alt. C1 closure report cost to include containment
						,	and FPP recovery elements unique to Alt. C4, based on 6:8 well
							quantity ratio.

Conveyance piping - outdoor Branch from extraction well

Subtotal

Total

Sales tax

1,050

8.7%

LF

--

\$

46 \$

\$

\$

\$

48,337

51,395

DESCRIPTION	QUANTITY	UNIT	UNIT COST	TOTAL	NOTES
Alternative C1 - Existing IRM System An Groundwater extraction	nual O&M Costs				
OH-EW-1					
Pump motor input power	100	hp			Existing pump, 100 hp (Hart Crowser 2003).
Pump motor input power	74.6	kW			
WW-EW-1					
Pump motor input power	400	hp			Existing pump, 400 hp (Hart Crowser 2003).
Pump motor input power	298.3	kW			
WW-EW-2					
Pump motor input power	400.0	hp			Existing pump, 400 hp (Hart Crowser 2003).
Pump motor input power	298.3	kW			
WW-UVB-1					Neglect friction, velocity head, and minor losses.
Pump efficiency	80%				Approximation based on average of range (Lindeburg 2003).
Motor efficiency	70%				
Elevation head	151	ft			Assume elevation head equal to well depth.
Flow rate	3,035	gpm			
Specific gravity	1.0				
Hydraulic power	115.8	hp			
Hydraulic power	86.4	kW			1 hp = 0.7457 kW.
Brake pump power	144.8	hp			
Brake pump power	108.0	kW			Existing pump power rating not available. Pump power
Pump motor input power	206.9	hp			requirement estimate based on modeled flow rate (Appendix E,
Pump motor input power	154.3	kW			Table E-3) and elevation head (151 feet).
Annual electricity usage and cost					
Total motor input power	825.4	kW			Sum of OH-EW-1, WW-EW-1, WW-EW-2, and WW-UVB-1.
Total operating time	8,760	hr			Assume continuous operation.
Total electricity consumption	7,230,423	kWh			
Electricity unit cost	\$ 0.05	\$/kWh			Cost of electricity based on estimate provided by Kaiser.
Total annual electricity cost	\$ 361,521	\$/yr			
IRM system maintenance annual cost					labor, parts, supplies. Use same labor unit costs as for inst. controls.
Labor	416	hr	\$ 75	\$ 31,200	Assume 0.2 FTE.
Supervisor	104	hr	\$ 110	\$ 11,440	Assume 25% of labor effort.
Parts, supplies	10%		\$ 123,583	\$ 12,358	Assume 10% of extraction system installation cost (see Tables C-4 and C-5), 4 locations.
Total				\$ 54,998	
Alternative C2 - Scenario C2a Annual O8 Groundwater extraction WW-EW-3 Pump motor input power Pump motor input power	AM Costs 100 74.6	hp kW			Existing pump, 100 hp (Hart Crowser 2003).
Annual electricity usage and cost	74 6	L\\/			
Total motor input power	74.0 9.760	KVV br			Assume continuous operation
Total electricity consumption	653 233	LII k\//b			Assume continuous operation.
Electricity upit cost	¢ 0.05	\$/k\\/b			Cost of electricity based on estimate provided by Kaiser
Total annual electricity cost	\$ 32,662	\$/yr			Cost of cloundry based on estimate provided by Naiser.
Alternative C2 - Scenario C2b Annual O8	&M Costs				
Groundwater extraction					
Pump motor input power	75	hn			75 hp per vendor quote.
Pump motor input power	55.9	kW			
Annual electricity usage and cost	<i></i>	1.1.47			
Total motor input power	55.9	KVV k			Accume continuous operation
Total operating time	8,760	nr Lvvr			Assume continuous operation.
Floatricity unit cost	489,925 ¢ 0.05	КVVП Ф/L\\/ь			Cost of electricity based on estimate provided by Keiser
Electricity unit cost	\$ 0.05 \$ 04.406	φ/ΚVVΠ ¢/\/r			Cost of electricity based on estimate provided by Naiser.
i otai annuai electricity cost	J 24,496	⊅/yr			

Sheet 1 of 4

3,058 Assume sales tax charged on cost of materials.

RSMeans 33 61 13.10 1060.

48,337 Conveyance to WWTP. Steel pipe, black, with 2-in polyurethane insulation, align and tackweld on sleepers, 4-in diameter. 2010

Table C-11 - Containment Cost Backup

DESCRIPTION	QUANTITY	UNIT	UNIT COST	TOTAL	NOTES
Alternative C2 - Scenario C2c A	nnual O&M Costs				
Groundwater extraction - calculate	ed power requirements				Pump power requirement estimate based on modeled flow rate
Pump efficiency Motor efficiency	80% 70%				(Appendix E, Table E-3) and elevation head. Assumes that elevation head is equal to well depth. Estimate neglects friction,
					velocity head, and minor losses.
WW-FEW-1 Elevation head	190	ft			Assume well depth similar to WW-EW-1 (190 feet, see Table 4-3).
Flow rate	1.05	MGD			
Flow rate	729	apm			
Specific gravity	1.0	90			
Hydraulic power	35.0	hp			
Hydraulic power	26.1	kŴ			1 hp = 0.7457 kW.
Brake pump power	43.8	hp			
Brake pump power	32.6	kŴ			
Motor input power	62.5	hp			
Motor input power	46.6	kW			
WW-FEW-2	100				
Elevation head	190	ft			Assume well depth similar to WW-EW-1 (190 feet, see Table 4-3).
Flow rate	1.35	MGD			
Flow rate	938	gpm			
Specific gravity	1.0				
Hydraulic power	45.0	hp			
Hydraulic power	33.6	kW			1 hp = 0.7457 kW.
Brake pump power	56.3	hp			
Brake pump power	42.0	kW			
Motor input power	80.4	hp			
Motor input power	60.0	kW			
WW-FEW-3 Elevation head	190	ft			Assume well depth similar to WW-EW-1 (190 feet, see Table 4-3).
Flow rate	1 12	MGD			
Flow rate	778	apm			
Specific gravity	10	gpin			
Hydraulic power	37.4	hp			
Hydraulic power	27.9	kW			1 hp = 0.7457 kW.
Brake pump power	46.7	hp			···
Brake pump power	34.8	kŴ			
Motor input power	66.7	hp			
Motor input power	49.7	kŴ			
Elevation head	190	ft			Assume well depth similar to WW-EW-1 (190 feet, see Table 4-3).
Flow rate	0.97	MGD			
Flow rate	674	qpm			
Specific gravity	1.0				
Hydraulic power	32.4	hp			
Hydraulic power	24.1	kW			1 hp = 0.7457 kW.
Brake pump power	40.4	hp			
Brake pump power	30.2	kW			
Motor input power	57.8	hp			
Motor input power	43.1	kVV			
CM-FEW-1					
Elevation head	133	ft			Assume well depth similar to OH-EW-1 (133 feet, see Table 4-3).
Flow rate	0.79	MGD			
Flow rate	549	gpm			
Specific gravity	1.0				
Hydraulic power	18.4	hp			
Hydraulic power	13.8	kW			1 hp = 0.7457 kW.
Brake pump power	23.1	np			
Motor input nowor	17.2	KVV hrs			
Motor input power	32.9 24.6	hp kW			
		÷			
CM-FEW-2	400	f+			Accume well depth similar to OLI EW 4 (400 fact, acc. Table 4.0)
Elevation nead	133				Assume well depth similar to OH-EW-1 (133 feet, see 1 able 4-3).
Flow rate	0.79	apm			
Specific gravity	10	9Pm			
Hydraulic power	18.4	hn			
Hydraulic power	13.8	kW			1 hp = 0.7457 kW.
Brake pump power	23.1	hp			,
Brake pump power	17.2	kŴ			
Motor input power	32.9	hp			
Motor input power	24.6	kW			

Table C-11 - Containment Cost Backup

DESCRIPTION	QUANTITY	UNIT	UNIT COS	т	TOTAL	NOTES
ORB-FEW-1	100					
Elevation head	133					Assume well depth similar to OH-EW-1 (133 feet, see 1 able 4-3).
Flow rate	521	apm				
Specific gravity	1.0	gpin				
Hydraulic power	17.5	hp				
Hydraulic power	13.1	kŴ				1 hp = 0.7457 kW.
Brake pump power	21.9	hp				•
Brake pump power	16.3	kW				
Motor input power	31.3	hp				
Motor input power	23.3	kW				
Elevation head	195	ft				Assume well depth similar to OH-EW-2 (195 feet see Table 4-3)
Flow rate	0.82	MGD				
Flow rate	569	apm				
Specific gravity	1.0	01				
Hydraulic power	28.1	hp				
Hydraulic power	20.9	kW				1 hp = 0.7457 kW.
Brake pump power	35.1	hp				
Brake pump power	26.2	kW				
Notor input power	50.1	np				
Motor input power	37.4	KVV				
OH-FEW-2						
Elevation head	195	ft				Assume well depth similar to OH-EW-2 (195 feet, see Table 4-3).
Flow rate	0.90	MGD				· · · · · · · · · · · · · · · · · · ·
Flow rate	625	gpm				
Specific gravity	1.0					
Hydraulic power	30.8	hp				
Hydraulic power	23.0	kW				1 hp = 0.7457 kW.
Brake pump power	38.5	hp				
Brake pump power	28.7	KVV hr				
Motor input power	55.0 41.0	rip k/W				
	41.0	N V V				
OH-FEW-3						
Elevation head	195	ft				Assume well depth similar to OH-EW-2 (195 feet, see Table 4-3).
Flow rate	0.60	MGD				
Flow rate	417	gpm				
Specific gravity	1.0					
Hydraulic power	20.5	hp				
Hydraulic power	15.3	KVV				1 np = 0.7457 kW.
Brake pump power	20.7	LIN LIN				
Motor input power	36.7	hn				
Motor input power	27.3	kW				
OH-FEW-4						
Elevation head	195	ft				Assume well depth similar to OH-EW-2 (195 feet, see Table 4-3).
Flow rate	0.75	MGD				
Flow rate	521	gpm				
Specific gravity	1.0	ho				
Hydraulic power	20.7	rip k/W				1 bp – 0 7457 kW
Brake pump power	32.1	hp				11p = 0.7457 kW.
Brake pump power	23.9	kW				
Motor input power	45.8	hp				
Motor input power	34.2	kŴ				
Annual electricity usage and cost						
Total motor input power	411.8	kW				Sum of WW-FEW-1, WW-FEW-2, WW-FEW-3, WW-FEW-4, CM-
						FEW-1, CM-FEW-2, ORB-FEW-1, OH-FEW-1, OH-FEW-2, OH-
Total operating time	8 760	br				Assume continuous operation
Total electricity consumption	3 607 270	kWb				Assume continuous operation.
Electricity unit cost	\$ 0.05	\$/kWh				Cost of electricity based on estimate provided by Kaiser.
Total annual electricity cost	\$ 180,363	\$/yr				
·						
Conveyance piping - indoor						
Branch from extraction well	360	LF	\$6	6\$	23,938	For extraction wells inside Cold Mill area building. Steel pipe,
						black, sch. 40, 4-in diameter, threaded, with couplings and clevis
Subtotal				¢	22.000	nanger assemblies. 2010 RSMeans 22 11 13.44 0650.
Sublotal Sales tax	8 7 %			ф Ф	∠3,938 1.063	Assume sales tax charged on cost of materials
Total	0.7 /0			÷	25 001	
				Ψ	20,001	

Table C-11 - Containment Cost Backup

DESCRIPTION	QUANTITY	UNIT	UNIT COST		TOTAL		NOTES
Conveyance piping - outdoor							
Branch from extraction well	2,100	LF	\$	46	\$	96,674	Conveyance to header. Steel pipe, black, with 2-in polyurethane insulation, align and tackweld on sleepers, 4-in diameter. 2010 RSMeans 33 61 13.10 1060.
Header	1,725	LF	\$	93	\$	160,425	Conveyance to WWTP or plant process. Steel pipe, black, with 2- in polyurethane insulation, align and tackweld on sleepers, 8-in diameter. 2010 RSMeans 33 61 13.10 1090.
Subtotal Sales tax Total	8.7%				\$ \$	257,099 13,242 270,340	Assume sales tax charged on cost of materials.

Table C-12 - Skimming System Capital and Annual Operation and Maintenance Cost Backup

DESCRIPTION	QUANTITY	UNIT	UNI	т соѕт		TOTAL	NOTES
Skimming System Capital Costs Belt skimmer installation							
Equipment	1	LS	\$	8,200	\$	8,200	Skimmer motor (explosion proof), poly belt, tank, float switch, enclosure. Based on vendor quote
Labor	8	hr	\$	75	\$	600	Assume 1 individual.
Supervisor	2	hr	\$	110	\$	220	Assume 25% of labor effort.
Total per belt skimmer					\$	9,020	-
Restart existing skimming wells							
Parts, supplies	1	LS	\$	1,750	\$	1,750	Based on vendor quote.
Labor	8	hr	\$	75	\$	600	Assume 1 individual.
Supervisor	2	hr	\$	110	\$	220	Assume 25% of labor effort.
Total per skimming well					\$	2,570	-
Skimming System Operation and Maintone	nee (ner well)						
Maintenance labor	lince (per weil)						
Labor	50	hr	\$	75	¢	3 750	Assume 1 individual 5 days per year
Supervisor	12.5	hr	¢ ¢	110	φ	1 375	Assume 25% of labor effort
	12.5	19	¢ 2	2 000	φ ¢	2 000	Based on previous HC estimate
Spare parts and supplies	1	19	¢ ¢	1 000	φ	1 000	Assume 50% of equipment maintenance cost
Waste disposal	1	ton	φ	1,000	φ	1,000	Estimate 300 gallons/year from existing IPM (Section 4.1.1.2)
waste disposal	I	lon	φ	54	φ	54	Assume specific gravity = 0.8 . Cost for disposal based on
							previous Kaiser work and adjusted using 2010 RSMeans historical
	0.000		•	0.05	•	454	cost index.
Utilities	3,266	кWh	\$	0.05	\$	154	Assume 1/2 np motor per vendor specification.
I reatment System Operation and Maintena	ance Subtotal				\$	8,333	Per skimming well.

Table C-13 - Skimming Periodic Cost Backup

DESCRIPTION	QUANTITY	UNIT	UN	IT COST	1	TOTAL	NOTES
For Alternative C1							
Periodic Costs - Years 5, 15							
Relt	4	FΔ	\$	1 500	\$	6 000	Cost of belt. Price obtained from vendor
HC oversight/labor	0.8	WK	¢	5 375	¢	4 300	Assume 4 days for skimming belt replacement (1 day/well) See
	0.0	WIX	Ψ	5,575	Ψ	4,500	worksheet HC rate for backup calculation.
Contingency	10%				\$	1,030	Scope and bid contingency (EPA 540-R-00-002).
Project management	10%				\$	1,133	Percentage of sum of periodic cost and contingency. EPA 540-R-00-002.
Technical Support	10%				\$	1,133	Percentage of sum of periodic cost and contingency. EPA 540-R-00-002.
Periodic Costs - Years 5, 15					\$	13,596	Per year.
Periodic Costs - Years 10							
Belt	2	EA	\$	1,500	\$	3,000	Cost of belt. Price obtained from vendor.
Motor	2	EA	\$	250	\$	500	Cost of motor. Price obtained from vendor.
HC oversight/labor	1.6	WK	\$	5,375	\$	8,600	Assume 4 days for skimming belt and motor replacement (2 days/well). See worksheet HC rate for backup calculation.
Contingency	10%				\$	1.210	Scope and bid contingency (EPA 540-R-00-002).
Project management	10%				\$	1,331	Percentage of sum of periodic cost and contingency. EPA 540-R-00-002.
Technical Support	10%				\$	1,331	Percentage of sum of periodic cost and contingency. EPA 540-R-00-002.
Periodic Costs - Years 10					\$	15,972	-
For Alternative C2							
Periodic Costs - Year 5							
Belt	6	EA	\$	1,500	\$	9,000	Cost of belt skimmer. Assume replace of belts at OH-SK-02 and OH-SK-04 (currently running per IRM) and four belts in wastewater (new and existing IRM locations). Price obtained from vendor.
Motor	4	EA	\$	250	\$	1,000	Cost of motor. Price obtained from vendor. Assume motor replacement for four skimmers in wastewater.
HC oversight/labor	2	WK	\$	5,375	\$	10,750	Assume 1 for belt-only replacement and 2 days for belt and motor replacement. See worksheet HC rate for backup calculation.
Contingency	10%				\$	2,075	Scope and bid contingency (EPA 540-R-00-002).
Project management	10%				\$	2,283	Percentage of sum of periodic cost and contingency. EPA 540-R-00-002.
Technical Support	10%				\$	2,283	Percentage of sum of periodic cost and contingency. EPA 540-R-00-002.
Periodic Costs - Year 5					\$	27,390	-
Table C-14 - In Situ Treatment Cost Backup

DESCRIPTION	QUANTITY	UNIT	UN	IT COST		TOTAL	NOTES
Injection Well Installation							
Drilling	9,878	ft	\$	77	\$	760,617	117 wells. Assume wells are 90 ft deep in AOCs except for Wastewater Treatment area where wells are 75 ft deep. Screens placed through vertical extent of contamination (20 ft). Unit cost
							based on vendor quote. Includes mob/demob, drilling, materials,
Well construction materials	117	ea	\$	1,946	\$	227,650	Unit cost based on vendor quote. Includes screen, casing, monument sand hole plug well permits 8.7% sales tax
Installation oversight	29	wk	\$	5 375	\$	157 219	Assume HC oversight 4 wells per week. See Table C-16
Transport & dispose soil at Subtitle D landfill	132	ton	ŝ	54	ŝ	7 112	Cost for disposal based on previous Kaiser work and adjusted
	102	ton	Ψ	01	Ŷ	7,112	using RSMeans 2010 historical cost index.
Subtotal					\$	1,152,598	
Treatment Equipment and Setup			•		•		
Mobilization	1	LS	\$	4,000	\$	4,000	Previous project experience.
Nutrient Mixing Tanks	6	ea	\$	489	\$	2,935	200 gallon applicator tanks. Unit cost based on vendor quote. 8.7% sales tax.
Pumps	9	ea	\$	1,182	\$	10,634	3-hp centrifugal pumps. Flow rates 35 - 170 gpm. Unit cost based
Conveyance piping	3 340	1 F	\$	28	\$	93 520	Cost per linear foot estimated from Table B-14
Conveyance piping installation	3,340	LF	\$	13	\$	43,420	Assume 3-ft-deep trench for underground piping installation. Cost
Dewer heeldup	1	10	¢	20.000	¢	20,000	per linear foot estimated from Table B-14.
Power nookup	1	LO	¢	20,000	¢	20,000	Assume 4 weeks of HC oversight during installation of treatment
installation oversignt	4	WK	φ	5,575	φ	21,500	system. See Table C-16.
Sales Tax	8.7%				\$	9,317	Assume sales tax charged on cost of materials.
Subtotal					\$	205,326	
Amendments - Annual Use							
Ammonium nitrate	701	lbs	\$	0.33	\$	231	C:N:P ratio of 100:10:1. Unit cost from vendor quotation. 8.7%
Tetrapotassium pyrophosphate	130	lbs	\$	1.40	\$	181	C:N:P ratio of 100:10:1. Unit cost from vendor quotation. 8.7%
Hydrogen peroxide	192	nal	\$	3 45	\$	662	50% by weight 1 Init cost from vendor quotation
Surfactant	802	nal	ŝ	100	ŝ	80 229	Vendor quote
Sales Tax	8.7%		Ψ		ŝ	7 073	Assume sales tax charged on cost of materials
Shipping	1	15	\$	2 000	ŝ	2 000	Engineer's estimate
Subtotal	·	20	Ŷ	2,000	\$	90,377	
O&M COSTS							
Performance GW Sampling							
Labor	1	wk	\$	5,375	\$	5,375	Assume 1 week oversight. See Table C-16.
Laboratory analysis	14	ea	\$	284	\$	3,976	2 wells/small AOCs, 5 wells/large AOC. Sample for nitrogen,
Equipment/shipping	1	LS	\$	2,000	\$	2,000	Engineer's estimate.
Data management	5%				\$	568	Engineer's estimate.
Subtotal					\$	11,919	
Operation							
Operation labor	480	hr	\$	75	\$	36,000	Assume 0.25 FTE.
Amendments	1	LS	\$	90,377	\$	90,377	See above.
Utilities	13,806	kWh	\$	0.05	\$	652	Based on 5-kW demand per pump (3 HP, 60% pump efficiency, 70% motor efficiency, $1hp = 0.7457kW$), continuous operation for 1 day a month. Cost of electricity based on estimate provided by Kaiser.
Subtotal					\$	127,029	
Maintenance							
Maintenance labor	192	hr	\$	75	\$	14,400	Assume 0.1 FTE.
Equipment repair/replacement	1	LS	\$	10,709	\$	10,709	10% of equipment costs.
Subtotal					\$	25,109	

Table C-15 - Ex Situ Treatment Cost Backup

DESCRIPTION	QUANTITY	UNIT	UN	NIT COST	TOTAL	NOTES
Ex Situ Treatment System Construction External Components						
Oil-water separator	1	EA	\$	171,120	\$ 171,120	100,000-gal steel water storage tank. 2010 RSMeans 33 16 13.13 0910 (p. 458).
Depth filters	5	EA	\$	421,290	\$ 2,106,450	1/2-MG prestressed concrete aboveground water utility storage
Surface filters	8	EA	\$	3,650	\$ 29,202	1,000-gal capacity, 1/4-in-thick shell, single-wall, steel fuel-oil tanks. 2010 RSMeans 23 13 13.09 5520 (p.254).
GAC vessels	6	EA	\$	11,532	\$ 69,192	10,000-gal capacity, 1/4-in-thick shell, single-wall, steel fuel-oil tanks. 2010 RSMeans 23 13 13.09 5560 (p.254).
Transfer pumps	8	EA	\$	24,645	\$ 197,160	Domestic water pump, general utility, 75 hp, to 2,500 gpm. 2010 RSMeans 22 11 23.10 3190 (p.237). Assume 4 in operation (along treatment train) and a spare for each.
Treatment shed	1	LS	\$	100.000	\$ 100.000	Engineer's estimate.
Misc. equipment	5%		·		\$ 133.656	Percentage of system equipment cost.
Sales tax	8.7%				\$ 244,190	
External Components Total					\$ 3,050,970	-
Treatment System Construction						
Equipment transportation	1	LS	\$	20,000	\$ 20,000	Vendor quote.
Electrical connection	1	LS	\$	20,000	\$ 20,000	Previous project experience.
Conveyance piping - straight pipe	1,144	LF	\$	86	\$ 98,363	Based on estimated unit cost derived in Table 5-9. Includes material, labor, and equipment costs for trenching, bedding, backfill, compaction, and 16-in-diameter, black steel, plain end, welded, 1/4-in wall pipe, 4 ft deep. Includes sales tax on bedding
						and pipe materials. See Table D-9.
Installation labor for vessels	30%				\$ 915,291	Percentage of system equipment. Engineer's estimate.
Heavy equipment for installing vessels	30%				\$ 915,291	Percentage of system equipment. Engineer's estimate.
System Construction Subtotal					\$ 1,968,945	
Treatment System Consumables						
Depth filtration media - sand and anthracite	12,994	ton	\$	14	\$ 181,913	Cost from previous project. Assume sand is 1.4 ton/CY.
Depth filtration media - gravel (underdrain)	4,331	CY	\$	29	\$ 124,870	Bank run gravel. 2010 RSMeans 31 05 16.10 0100 (p.237).
Surface filtration media	8	EA	\$	2.000	\$ 16.000	Cost of filter is engineer's estimate.
GAC	70,000	lb	\$	1.00	\$ 70,000	Based on vendor pricing from previous HC project.
Heavy equipment for installation	30%				\$ 117,835	Percentage of internals. Engineer's estimate.
Addition materials for installation	10%				\$ 51.062	Percentage of internals. Engineer's estimate.
Shipping	10%				\$ 56,168	Engineer's Estimate
Sales tax	8.7%				\$ 53,753	3
Treatment System Consumables Subtotal					\$ 671,599	-
Extraction Wells						
Extraction well construction	482	ft	\$	286	\$ 137,838	Unit cost based on vendor quote. 12-in-diameter well with 0.6 MGD production.
Electrical connection	1	LS	\$	20,000	\$ 20,000	Previous project experience.
Extraction pumps	6	EA	\$	7,324	\$ 43,943	6 wells each with 6-in submersible pump, 25 to 150 ft deep, 25 hp, 249 to 297 gpm. 2010 RSMeans 33 21 13.10 3000 (p.459).
Shipping	10%				\$ 4,394	Engineer's Estimate
Sales tax	8.7%				\$ 4,205	
Extraction Wells Subtotal					\$ 210,380	-

Sheet 1 of 1

Table C-16 - Hart Crowser and Analytical Rates Cost Backup

HC Kaiser Rates		
Sr. Principal	\$ 190	
Principal	\$ 180	
Sr. Associate	\$ 160	
Associate	\$ 145	
Sr. Project	\$ 130	
Project	\$ 110	
Sr. Staff	\$ 90	
Staff	\$ 75	
Sr. Drafter	\$ 100	
Drafter	\$ 77	
Clerical	\$ 60	
Sub Markup	12%	
Communication fee	0%	
Mileage	\$0.50/mi.	Fed rate (2010)
Truck Rental	\$ 85	+ mileage for over 50 mi./day (due to gas prices)
Safety (\$ per hr.)	\$ 5	per field labor hour
Trip per diem	\$ 150	each way
Per diem	\$ 133	Fed rate for Spokane

Weekly Cost for HC oversight (staff)

Labor	\$	3,600	5 days (9 hr) for staff level, plus safety costs
Truck	\$	810	5 days truck plus travel day, plus \$300 for miles over 50
Travel	\$	300	
Per diem	\$	665	
Subtotal	\$	5,375	per week

Columbia Analytical Services and Advanced Analytical Laboratory Costs

Assume same price for water/soil.

Parameter	Cos	t / Analysis
NWTPH-HCID	\$	55
TPH-Dx	\$	60
TPH-G	\$	60
PCBs - Ultra-Low Level	\$	175
VOCs	\$	130
PAHs (8270 SIM)	\$	215
Metals (10)	\$	180
Arsenic	\$	26
Chromium	\$	24
Manganese	\$	26
Iron	\$	24
Antimony	\$	26
TSS	\$	18
Chloride	\$	18
Nitrate/Nitrite	\$	24
Hardness	\$	25
TDS	\$	18
Alkalinity	\$	18
Sulfate	\$	18
Total arsenic,	\$	50
chromium, zinc, and		
phosphorous		
Hexavalent chromium	\$	50
Orthophosphate	\$	20
Cyanide	\$	40
BOD	\$	45
Fecal coliform	\$	35
Oil & grease	\$	50

Table C-17 - Weighted Average of Estimated Restoration Time Frames

	Estimated TPH Mass to Be Treated in Soil			RTF (ir	ı Years)		
AOC	(in Pounds)	C1	C2a	C2b	C2c	C3	C4
OH North	272,054	28	28	28	13	27	18
OH South	22,318	4	4	4	2	4	3
WW North	224,844	34	34	34	17	30	24
WW South	29,761	11	11	11	7	11	8
CM - Total	141,244	19	19	19	7	19	12
Total	690,221						
Min		4	4	4	2	4	3
Max		34	34	34	17	30	24
Weighted Average	RTF	27	27	27	12	25	18

Notes:

Estimated restoration time frames (RTFs) and TPH mass to be treated from Section 4, Table 4-7.

APPENDIX D COST ESTIMATES FOR THE REMELT/HOT LINE GROUNDWATER PLUME AND ASSOCIATED SMEAR ZONE SOIL REMEDIAL ALTERNATIVES

CONTENTS

APPENDIX D COST ESTIMATES FOR THE REMELT/HOT LINE GROUNDWATER PLUME AND ASSOCIATED SMEAR ZONE SOIL REMEDIAL ALTERNATIVES

TABLES

- D-1 Estimated Cost Comparison for Remelt/Hot Line PCB Plume and Associated Smear Zone Soil Remedial Alternatives
- D-2 Alternative D1 Estimated Cost Summary
- D-3 Alternative D2 Estimated Cost Summary Scenario D2a
- D-4 Alternative D2 Estimated Cost Summary Scenario D2b
- D-5 Alternative D3 Estimated Cost Summary
- D-6 Alternative D4 Estimated Cost Summary
- D-7 Monitoring Cost Backup
- D-8 Institutional Controls Cost Backup
- D-9 Professional Services Cost Backup
- D-10 Containment Cost Backup
- D-11 Ex Situ Treatment Cost Backup
- D-12 Ex Situ Treatment Cost Backup
- D-13 Hart Crowser and Analytical Rates Cost Backup

L:\Jobs\2644125\Final FS 05-2012\03 Appendices\Appendix D\Appendix D TOC.doc

Table D-1 - Estimated Cost Comparison for Remelt/Hot Line PCB Plume and Associated Smear Zone Soil Remedial Alternatives

Location:	Kaiser Trentwood	Faci	lity	Description: Cost comparison of the net present value and incremental cost of						
	Spokane Valley, V	NA		Alternatives D1 through D4 for remediation of						
Phase:	Feasibility Study (-35%	to +50%)	ass	associated smear zone soil.					
Base Year:	2010									
Date:	July 2011									
TOTAL NET PRESENT DESCRIPTION VALUE					NCREMENTAL COST	COST TABLE REFERENCE				
Alternative D	1	\$	19,800,000		Baseline Cost	Table D-2				
Alternative D	2 (Scenario D2a)	\$	22,900,000	\$	3,100,000	Table D-3				
Alternative D	2 (Scenario D2b)	\$	23,100,000	\$	3,300,000	Table D-4				
Alternative D3 ^a \$ 50,200,000					28,100,000	Table D-5				
Alternative D	4	\$	27,000,000	\$	7,200,000	Table D-6				

Note:

Present value analysis uses a 30-year discount rate of 7%.

(a) The Alternative D3 incremental cost is based on a modified net present value cost of \$22.3 million for Alternative D2 (Scenario D2b). The modification excludes items from the baseline cost that are not part of Alternative D3. See Table D-4.

Table D-2 - Alternative D1 Estimated Cost Summary

Location: Kais

Kaiser Aluminum Washington, LLC Spokane Valley, WA

Phase: Feasibility Study (-35% to +50%)

Base Year: 2010							
Date: July 2011							
CAPITAL COSTS DESCRIPTION	QUANTITY	UNIT	U	NIT COST		TOTAL	NOTES
Institutional Controls							
Institutional control plans	1	EA	\$	46,548	\$	46,548	See Table D-8.
Pending upgrades in casting complex	1	LS	\$	1,076,073	\$	1,076,073	See Table D-8.
Restrictive covenant preparation	1	LS	\$	24.970	Ŝ	24,970	See Table D-8.
Institutional Controls Subtotal					\$	1,147,591	
Contingency	10%				\$	114,759	Scope and bid contingency. Percentage of institutional controls cost.
Professional/Technical Services							
Project management	6%				\$	75,741	Percentage of capital cost + contingency. EPA 540-R-00-002.
Ecology oversight	1	YR	\$	22,000	\$	22,000	Year 0. Kaiser mean annual Ecology costs 2007-2009.
Professional/Technical Services Subtotal					\$	97,741	
TOTAL CAPITAL COST					\$	1,360,091	
ANNUAL O&M COSTS DESCRIPTION	QUANTITY	UNIT	U	NIT COST		TOTAL	NOTES
Manitarian Complian Tasting and Analysia							
Protection monitoring	1	VP	¢	11 692	¢	11 692	See Table D 7
Protection monitoring Performance monitoring	1		¢ 2	44,683	¢ ¢	44,683	See Table D-7.
MNA analysis			φ		s S	- 223,417	MNA analysis included in protection and performance monitoring
in transford					Ŷ		cost.
Data management	1	YR	\$	29,948	\$	29,948	Data validation; maintain database. See Table D-7.
Monitoring, Sampling, Testing, and Analysis S	Subtotal				\$	298,048	
Institutional Controls (Annual Update and Mai	ntenance)						
Institutional control plans	1	YR	\$	30,018	\$	30,018	See Table D-8.
Institutional controls maintenance	1	YR	\$	259,604	\$	259,604	See Table D-8.
Outfall & treatment plant monitoring	1	YR	\$	101,946	\$	101,946	See Table D-8. Required by NPDES permit and Ecology orders
Site information database	1	VD	¢	E 740	¢	E 740	(see Section 2.1.1.1).
Institutional Controls Subtotal	I	ĨŔ	Φ	5,743	\$	397,311	
Groundwater IRM System Q&M							
Electricity	7,230,423	kWh	\$	0.05	\$	361,521	Groundwater extraction pump operation. See Table D-10.
Containment system maintenance	1	YR	\$	54,998	\$	54,998	Includes labor, parts, supplies. See Table D-10.
Groundwater IRM System O&M Subtotal					\$	416,519	T
Contingency	10%				\$	111,188	Scope and bid contingency. Percentage of monitoring, institutional
							controls, and IRM sytem O&M annual cost.
Professional/Technical Services							
Project management	6%				\$	73,384	Percentage of annual cost + contingency. EPA 540-R-00-002.
Technical support	10%				\$	122,307	EPA 540-R-00-002.
Ecology oversight	1	YR	\$	22,000	\$	22,000	Kaiser mean annual Ecology costs 2007-2009.
Reporting	1	YR	\$	16,182	\$	16,182	Report to Kaiser & Ecology quarterly; EIM reporting. See Table D-
Professional/Technical Services Subtotal					\$	233,873	
TOTAL ANNUAL O&M COST					\$	1,456,938	
PERIODIC COSTS DESCRIPTION	QUANTITY	UNIT		NIT COST		τοται	NOTES
	2010111	•	•				
Institutional Controls (Periodic Update and Ma	aintenance)	F •	*	0.470	¢	o 4==	
Restrictive covenants	1	EA	\$	6,470	\$	6,470	Years 5, 10, 15, 20, 25, 30. See Table D-8.
Final acute and chronic toxicity testing	1	LS	ф Ф	45,000	¢ ¢	45,000	Tears 5, 0, 10, 10, 20, 20, 300 Table D-8.
Institutional Controls Subtotal	1	LO	Φ	14,940	\$	66,410	1 Cars 5, 10, 13, 20, 20, 30. See Table D-6.
Groundwater IRM System Periodic Maintenan	ce	EA	¢	20.000	¢	100 500	Vegra 10, 20, 20, Major aquipment & infrastructur-
Groundwater extraction system	4	EA	\$	30,896	\$	123,583	reas T0, 20, 30. Major equipment & Infrastructure
							Table C-2 in Appendix C for groundwater extraction system
							maintenance.
Groundwater IRM System Periodic Maintenan	ce Subtotal				\$	123,583]
Contingency	10%				¢	18 000	Scope and hid contingency. Percentage of periodic costs
gonoy	1070				φ	10,999	recept and bid contingency. I creentage of periodic coals.

Table D-2 - Alternative D1 Estimated Cost Summary

Location:	Kaiser Alumir	onitored natural attenuation (MNA) and is common to each of									
	Spokane Vall	ey, WA		and	operating period	d of 30 years in the	e de	evelopment of t	his c	ost estimate.	
Phase:	Feasibility St	udy (-35	i% to +50%)								
Base Year:	2010										
Date:	July 2011										
Professional Five-year re Closure rep Professional	I/Technical Se eviews port I/Technical Se	rvices rvices \$	Subtotal	-	1 1	EA EA	\$ \$	19,540 41,180	\$ \$	19,540 Yea 41,180 Yea 60,720	rs 5, 10, 15, 20, 25, 30. See Table D-9. r 30. See Table D-9.
PRESENT V	ALUE ANALYS	SIS									
Discount rate Total years	7.0% 30										
COST TYPE	YEAR		TOTAL COST	то	OTAL COST PER YEAR	DISCOUNT FACTOR	NE	ET PRESENT VALUE			NOTES
Capital Annual O&M Periodic Periodic Periodic Periodic Periodic Periodic	0 1 - 30 5 10 15 20 25 30	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	1,409,591 43,708,153 92,591 228,532 92,591 228,532 92,591 220,212	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	1,409,591 1,456,938 92,591 228,532 92,591 228,532 92,591 220,212	1.000 12.409 0.713 0.508 0.362 0.258 0.184 0.131	\$ \$ \$ \$ \$ \$ \$ \$	1,409,591 18,079,209 66,016 116,174 33,559 59,057 17,060 28,929			
TOTAL NET	PRESENT VA	\$ LUE OF	46,072,794 • ALTERNATIV	E D1	1		\$ \$	19,809,595 19,809,595			

Notes: Costs taken from RSMeans have been adjusted by Spokane location adjustment factor of 0.93. Costs from previous work greater than 1 year old have been adjusted using historical cost index factors provided by 2010 RSMeans (p. 671). Present value analysis uses a 30-year discount rate of 7.0%.

Table D-3 - Alternative D2 Estimated Cost Summary - Scenario D2a

Sheet 1 of 2

Location: Kaiser Aluminum Washington, LLC Spokane Valley, WA Phase: Feasibility Study (-35% to +50%)

 Kaiser Aluminum Washington, LLC
 Description: Scenario D2a of Alternative D2 adds hydraulic containment of the Remelt/Hot Line PCB plume to Alternative D1 through the installation and operation of a new groundwater extraction well (PCB-FEW-1) at the leading edge of the plume. Extracted groundwater will be conveyed to an infiltration gallery located upgradient of the Oil House area. A 30-year operating period is assumed in the development of this cost estimate.

Base Year: 2010							
Date: July 2011							
CAPITAL COSTS DESCRIPTION	QUANTITY	UNIT	UN	IT COST		TOTAL	NOTES
Submittals, Plans, Site Preparation	1	15	¢	10.000	¢	10.000	Provinus project experience
Permits	1	LS	φ \$	10,000	s S	10,000	Previous project experience.
Submittals, Plans, Site Preparation Subtotal		20	Ŷ	10,000	\$	20,000	
Groundwater Extraction and Infiltration System	m Installation						
Extraction well construction	130	ft	\$	477	\$	61,960	One extraction well, 20-in diameter. Unit cost scaled from vendor quote for 12-in diameter well, based on 20:12 diameter ratio.
Extraction system installation	1	EA	\$	62,112	\$	62,112	Approx. 150 hp. Unit cost scaled from vendor quote for 75 hp system, based on 150:75 power requirement ratio.
Electrical connection	1	EA	\$	50,000	\$	50,000	Previous project experience. One location (extraction well PCB-FEW-1).
Buried pipe installation	5,150	LF	\$	86	\$	443,833	See Table D-10.
Infiltration gallery construction	200	LF	\$	83	\$	16,579	See Table D-10.
Groundwater Extraction and Infiltration System	m Installation Subtotal				\$	634,484	
Contingency	10%				\$	65,448	Scope and bid contingency. Percentage of institutional controls cost.
Professional/Technical Services							Percentage of sum of capital cost and contingency.
Project management	6%				\$	43,196	EPA 540-R-00-002. Includes reports referenced in WAC 173-340-
Remedial design	12%				\$	86 392	400(0)(0). EPA 540-R-00-002
Construction management	8%				\$	57,595	EPA 540-R-00-002. Includes reports referenced in WAC 173-340-
-							400(6)(b).
Ecology oversight Professional/Technical Services Subtotal	10%				\$ \$	2,200 189,382	Assume 10% of Alt. D1 Ecology oversight cost.
Institutional Controls							New institutional controls for extraction/infiltration system
Institutional controls plan	50%				\$	23,274	Assume 50% of Alt. D1 institutional control plan cost to include roundwater extraction and infiltration system
Restrictive covenants	50%				\$	12,485	Assume 50% of Alt. D1 restrictive covenant preparation cost to include groundwater extraction and infiltration system.
Institutional Controls Subtotal					\$	35,759	
TOTAL CAPITAL COST					\$	945,074	
ANNUAL O&M COSTS						70741	10750
DESCRIPTION	QUANTITY	UNIT	UN	III COSI		TOTAL	NOTES
System Operation, Maintenance, and Monitori	ng		¢	0.05	¢	40.047	
Electricity	984,933	KWN	Ф	0.05	Ф	49,247	Table D-10.
System maintenance	1	YR	\$	50,509	\$	50,509	See Table D-10.
Data management	1 na Subtotol	YR	\$	4,500	\$	4,500	See Table D-9.
System Operation, Maintenance, and Moniton	ng Subiotai				Þ	104,256	
Contingency	10%				\$	10,426	Scope and bid contingency. Percentage of annual O&M and monitoring cost.
Professional/Technical Services							
Project management	10%				\$	11,468	Percentage of annual cost + contingency. EPA 540-R-00-002.
Feelogy oversight	10%				¢ ¢	11,468	EPA 540-R-00-002. Assume 10% of Alt. D1 Ecology oversight cost
Reporting	1	YR	\$	7.000	\$	7.000	See Table D-9.
Professional/Technical Services Subtotal			Ŧ	.,	\$	32,136	
Institutional Controls (Annual Update and Mai	ntenance)						New institutional controls for extraction/infiltration system.
Institutional controls plan	50%				\$	15,009	Assume 50% of Alt. D1 institutional control plan annual update and maintenance cost to include groundwater extraction and infiltration
Site information database	50%				\$	2,872	system. Assume 50% of Alt. D1 site information database annual update
							and maintenance cost to include groundwater extraction and infiltration system.
Institutional Controls Subtotal					\$	17,881	
TOTAL ANNUAL O&M COST					\$	164,698	

Table D-3 - Alternative D2 Estimated Cost Summary - Scenario D2a

Location:	Kaiser Alumin Spokane Valle	um Was ey, WA	shington, LLC	Descrip installat be conv	Description: Scenario D2a of Alternative D2 adds hydraulic containment of the Remelt/Hot Line PCB plume to Alternative D1 through the installation and operation of a new groundwater extraction well (PCB-FEW-1) at the leading edge of the plume. Extracted groundwater will be conveyed to an infiltration gallery located upgradient of the Oil House area. A 30-year operating period is assumed in the development of this cost extincted.											
Phase:	Feasibility Stu	dy (-35	% to +50%)	this cos	st estimate.											
Base Year:	2010															
Date:	July 2011															
PERIODIC C	OSTS DESCRIPT	TION		QUA	ANTITY	UNIT	I	UNIT COST		TOTAL	NOTES					
Groundwate Groundwat	er Extraction ar	n d Infilt stem	ration System	Periodi	ic Maintena 1	ance EA	\$	62,112	\$	62,112	Years 10, 20, 30. Major equipment & infrastructure repair/replacement, 1 extraction location (PCB-FEW-1). Assume equivalent of extraction system installation capital cost.					
Piping and	infiltration galler	у		1	10%				\$	46,041	Years 10, 20, 30. Major infrastructure repair/replacement for buried pipeline and infiltration gallery. Assume 10% of capital cost of pipeline and infiltration gallery installation.					
Groundwate	er Extraction ar	nd Infilt	ration System	Period	ic Maintena	ance Subtotal			\$	108,153						
Contingenc	у			1	10%				\$	10,815	Scope and bid contingency. Percentage of periodic costs.					
Professiona Five-year r Closure rep Professiona	II/Technical Ser eviews port II/Technical Ser	vices vices S	ubtotal		1 1	EA EA	\$ \$	9,770 20,590	\$ \$	9,770 20,590 30,360	Years 5, 10, 15, 20, 25, 30. See Table D-9. Year 30. See Table D-9.					
PRESENT V	ALUE ANALYS	IS														
Discount rate Total years	e 7.0% 30															
COST TYPE	YEAR		TOTAL COST	TOTA PER	AL COST R YEAR	DISCOUNT FACTOR	N	ET PRESENT VALUE	NOTES							
Capital Annual O&M Periodic Periodic Periodic Periodic Periodic	0 1 - 30 5 10 15 20 25 30	\$ \$ \$ \$ \$ \$ \$ \$	945,074 4,940,942 9,770 128,738 9,770 128,738 9,770 149,328	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$	945,074 164,698 9,770 128,738 9,770 128,738 9,770 149,328	1.0 12.4 0.7 0.5 0.3 0.2 0.1 0.1	00 \$ 09 \$ 13 \$ 08 \$ 62 \$ 58 \$ 84 \$ 31 <u>\$</u>	945,074 2,043,745 6,966 65,444 3,541 33,268 1,800 19,617								
		\$	6,322,132				\$	3,119,456			Net present value of elements unique to Alternative D2, Scenario D2a.					
Total Net Pre	esent Value of A	Iternativ	e D1				\$	19,809,595								
TOTAL NET	PRESENT VAL	UE OF	ALTERNATIV	'E D2, S	CENARIO I	D2a	\$	22,929,051								

Notes: Costs taken from RSMeans have been adjusted by Spokane location adjustment factor of 0.93. Costs from previous work greater than 1 year old have been adjusted using historical cost index factors provided by 2010 RSMeans (p. 671). Present value analysis uses a 30-year discount rate of 7.0%.

Table D-4 - Alternative D2 Estimated Cost Summary - Scenario D2b

Kaiser Aluminum Washington, LLC Location: Spokane Valley, WA

Phase:

Description: Scenario D2b of Alternative D2 adds hydraulic containment of the Remelt/Hot Line PCB plume to Alternative D1 through the Extracted groundwater will be conveyed to an infiltration gallery located upgradient of the Oil House area. A 30-year operating period is assumed in the development of this cost estimate. Feasibility Study (-35% to +50%)

Base Year: 2010							
Date: July 2011							
CAPITAL COSTS DESCRIPTION	QUANTITY	UNIT	UN	IT COST		TOTAL	NOTES
Submittals, Plans, Site Preparation							
Pre- and post-construction submittals	1	LS	\$	10,000	\$	10,000	Previous project experience.
Permits	1	LS	\$	10,000	\$	10,000	Previous project experience.
Submittals, Plans, Site Preparation Subtotal					\$	20,000	
Groundwater Extraction and Infiltration System	n Installation						
Extraction well construction	390	ft	\$	381	\$	148,704	Three extraction wells, 16-in diameter, 130-ft depth. Unit cost scaled from vendor quote for 12-in diameter well, based on 16:12 diameter ratio
Extraction system installation	3	EA	\$	30.896	\$	92.687	Unit cost based on vendor quote. One system per well.
Electrical connection	3	EA	\$	50,000	\$	150,000	Previous project experience. Three locations (extraction wells PCB-FEW-2, PCB-FEW-3, PCB-FEW-4).
Buried pipe installation	4,430	LF	\$	86	\$	381,782	See Table D-10.
Infiltration gallery construction	200	LF	\$	83	\$	16,579	See Table D-10.
Groundwater Extraction and Infiltration System	n Installation Subtotal				\$	789,753	
Contingency	10%				\$	80,975	Scope and bid contingency. Percentage of institutional controls cost.
Professional/Trackwisel Commission							
Project management	6%				\$	53,444	EPA 540-R-00-002. Includes reports referenced in WAC 173-340-
							400(6)(b).
Remedial design	12%				\$	106,887	EPA 540-R-00-002.
Construction management	8%				\$	71,258	EPA 540-R-00-002. Includes reports referenced in WAC 173-340-
Feelenu evereight	1.00/				¢	2 200	400(6)(b).
Professional/Technical Services Subtotal	10%				\$	2,200	Assume 10% of Ait. DT Ecology oversight cost.
Institutional Controls	500/				•	00.074	New institutional controls for extraction/infiltration system.
Institutional controls plan	50%				\$	23,274	Assume 50% of Alt. D1 institutional control plan cost to include
Restrictive covenants	50%				\$	12,485	Assume 50% of Alt. D1 restrictive covenant preparation cost to include
Institutional Controls Subtotal					\$	35.759	groundwater extraction and infiltration system.
TOTAL CAPITAL COST					\$	1,160,277	
					•	.,,	
ANNUAL O&M COSTS DESCRIPTION	QUANTITY	UNIT	UN	IT COST		TOTAL	NOTES
System Operation, Maintenance, and Monitorin	na						
Electricity	806,580	kWh	\$	0.05	\$	40,329	Groundwater extraction pump operation (approx. 3.0 MGD). See Table D-10.
System maintenance	1	YR	\$	53,567	\$	53,567	See Table D-10.
Data management	1	YR	\$	4,500	\$	4,500	See Table D-9.
System Operation, Maintenance, and Monitorin	ng Subtotal				\$	98,396	
Contingency	10%				\$	9,840	Scope and bid contingency. Percentage of annual O&M and monitoring cost.
Professional/Technical Services							
Project management	10%				\$	10 824	Percentage of annual cost + contingency EPA 540-R-00-002
Technical support	10%				ŝ	10,824	EPA 540-R-00-002.
Ecology oversight	10%				\$	2,200	Assume 10% of Alt. D1 Ecology oversight cost.
Reporting	1	YR	\$	7,000	\$	7,000	See Table D-9.
Professional/Technical Services Subtotal					\$	30,847	
Institutional Controls (Annual Update and Main	tenance)						New institutional controls for extraction/infiltration system.
Institutional controls plan	50%				\$	15,009	Assume 50% of Alt. D1 institutional control plan annual update and
					ć	-,	maintenance cost to include groundwater extraction and infiltration
							system.
Site information database	50%				\$	2,872	Assume 50% of Alt. D1 site information database annual update and
							maintenance cost to include groundwater extraction and infiltration
Institutional Controls Subtotal					\$	17,881	oyotom.
TOTAL ANNUAL O&M COST					\$	156 963	
					-		

Sheet 1 of 2

Table D-4 - Alternative D2 Estimated Cost Summary - Scenario D2b

Sheet 2 of 2

				-						
Location:	Kaiser Aluminur	n Washingt	on, LLC	Description: Scen	nario D2b of Alter	nativ	e D2 adds hyd	raul	ic containment	of the Remelt/Hot Line PCB plume to Alternative D1 through the
	Spokane Valley	WA		Extracted groundw	ater will be conve	ew g eved	to an infiltration	ract n da	llerv located up	paradient of the Oil House area. A 30-year operating period is assumed
Phase	Ecosibility Study	/ 25% to 1	50%)	in the developmen	t of this cost estin	nate.		5	.,	5 ···· 5 ···
Dees Veen		/ (-55 /0 10 1	-30 /0)							
Base Year:	2010									
Date:	July 2011									
PERIODIC C	OSTS									
	DESCRIPTIC	N		QUANTITY	UNIT		UNIT COST		TOTAL	NOTES
Groundwate	er Extraction and	Infiltration	System F	eriodic Maintenar	ice					
Groundwat	ter extraction syste	m		1	EA	\$	92,687	\$	92,687	Years 10, 20, 30. Major equipment & infrastructure repair/replacement, 3 extraction locations (PCB-FEW-2, PCB-FEW-3, PCB-FEW-4). Assume equivalent of extraction system installation
Piping and	infiltration gallery			10%				\$	39,836	capital cost. Years 10, 20, 30. Major infrastructure repair/replacement for buried pipeline and infiltration gallery. Assume 10% of capital cost of pipeline and infiltration gallery installation.
Groundwate	er Extraction and	Infiltration	System F	eriodic Maintenar	ce Subtotal			\$	132,523	
			-	100/						
Contingency	у			10%				\$	13,252	Scope and bid contingency. Percentage of periodic costs.
Professiona Five-year r	I /Technical Servi o eviews	ces		1	EA	\$	9,770	\$	9,770	Years 5, 10, 15, 20, 25, 30. See Table D-9.
Closure rep Professiona	port I/Technical Servic	res Subtot	al	1	EA	\$	20,590	\$	20,590	Year 30. See Table D-9.
Tronessiona								Ŷ	00,000	
PRESENT V	ALUE ANALYSIS	- Including	Pineline	and Infiltration Ga	llery Costs					
					,					
Discount rate Total years	e 7.0% 30									
rotar yours	00									
COST TYPE	YEAR	TO CC	TAL DST	TOTAL COST PER YEAR	DISCOUNT FACTOR	N	ET PRESENT VALUE			NOTES
Capital	0	\$ 1	,160,277	\$ 1,160,277	1.000	\$	1,160,277			
Annual O&M	I 1-30	\$ 4 ¢	,708,882	\$ 156,963 \$ 0.770	12.409) \$ 	1,947,757			
Periodic	10	э \$	9,770 155,546	\$ 9,770 \$ 155,546	0.713	ээ 3\$	79,072			
Periodic	15	\$	9,770	\$ 9,770	0.362	2 \$	3,541			
Periodic Periodic	20 25	\$ \$	155,546	\$ 155,546 \$ 9,770	0.258	3 \$	40,196			
Periodic	30	\$	176,136	\$ 176,136	0.131	i \$	23,138			
		\$6	,385,695			\$	3,262,747			Net present value of elements unique to Alternative D2, Scenario D2b.
Total Net Pre	esent Value of Alte	mative D1				\$	19,809,595			
					2 6		22 072 242			
Including Pi	peline and Infiltra	tion Galler	y Costs	DZ, SCENARIO D	20	ş	23,072,342			
PRESENT V	ALUE ANALYSIS	- Excluding	g Pipeline	and Infiltration G	allery Costs					
Discount rate	e 7.0%				-					
Total years	30									
COST TYPE	YEAR	TO CC	TAL DST	TOTAL COST PER YEAR	DISCOUNT FACTOR	N	ET PRESENT VALUE			NOTES
Capital	0	\$	608,148	\$ 608,148	1.000) \$	608,148			associated with buried pipeline (\$381,782) and infiltration gallery
Annual O&M	I 1-30	\$ 3	,699,834	\$ 123,328	12.409) \$	1,530,380			(\$41,608) installation, and associated adjustments for contingency
Periodic	5 10	ъ \$	9,770	\$ 9,770 \$ 111,726	0.713	5	56,796			construction management (8%). Annual costs exclude infiltration
Periodic	15	\$	9,770	\$ 9,770	0.362	2 \$	3,541			gallery maintenance (\$25,481) and associated adjustments for
Periodic	20	\$ ¢	111,726	\$ 111,726	0.258	3\$	28,872			contingency (10%), project management (10%), and technical support (10%). Periodic maintenance cost for the piping and infiltration and infiltration
Periodic	25 30	э \$	9,770 132,316	\$ 9,770 \$ 132,316	0.131	+ ⊅ \$	17,382			(\$42,339) and contingency adjustment (10%) are excluded (years 10,
				•				•		20, and 30).
		\$4	,693,059			\$	2,253,884			Net present value of elements unique to Alternative D2, Scenario D2b, excluding pipeline and infiltration gallery costs.
Total Net Pre	esent Value of Alte	rnative D1				\$	19,809,595			
TOTAL NET	PRESENT VALUE	E OF ALTE	RNATIVE	D2. SCENARIO D	2b	s	22,063,480			This cost is used specifically for estimating Alternative D3 net present
Excluding P	ipeline and Infiltra	ation Galle	ry Costs	_ 1, 0010700 D		Ť	,000,400			value. See Table D-5.

Notes: Costs taken from RSMeans have been adjusted by Spokane location adjustment factor of 0.93. Costs from previous work greater than 1 year old have been adjusted using historical cost index factors provided by 2010 RSMeans (p. 671). Present value analysis uses a 30-year discount rate of 7.0%.

Table D-5 - Alternative D3 Estimated Cost Summary Description: Alternative D3 includes Alternative D2 (Scenario D2b, excluding pipeline and infiltration gallery) plus ex situ groundwater Location: Kaiser Aluminum Washington, LLC treatment. Alternative D3 assumes an operating period of 30 years in the development of this cost estimate. Refer to Table D-10 for details. Spokane Valley, WA Feasibility Study (-35% to +50%) Phase: Base Year: 2010 July 2011 Date: CAPITAL COSTS DESCRIPTION QUANTITY UNIT UNIT COST TOTAL NOTES Submittals, Plans, Site Preparation Pre- and post-construction submittals LS \$ 50,000 \$ 50,000 SAP, HASP, work plan, as-built drawings, O&M manual, QA/QC 1 documentation. Based on previous project experience. 30,000 \$ Permits LS \$ 30,000 Previous project experience. SEPA checklist, etc. 1 Submittals, Plans, Site Preparation Subtotal ¢ 80.000 System Installation and Startup Treatment system equipment 1 LS \$ 1.665.401 \$ 1 665 401 See Table D-11. LS 1,129,731 1,129,731 See Table D-11. Treatment system construction \$ \$ 1 Treatment system consumables LS \$ 136,598 \$ 136,598 Year Zero. See Table D-11. Buried pipe installation 3.350 LF \$ 86 \$ 288,707 From extraction wells to treatment system and treatment systen to infiltration gallery. See Table D-10 for unit cost. Infiltration gallery construction LF See Table D-10. 200 \$ 83 16,579 System Installation and Startup Subtotal \$ 3,237,015 20% \$ 663,403 Scope and bid contingency. Percentage of capital costs. Contingency --Professional/Technical Services EPA 540-R-00-002. Includes reports referenced in WAC 173-340-Project management 5% \$ 199,021 ---400(6)(b). EPA 540-R-00-002. Remedial design 8% ------\$ \$ 318,433 Construction management 238,825 EPA 540-R-00-002. Includes reports referenced in WAC 173-340-6% 400(6)(b). Pilot-scale study 1 LS \$ 323,702 323,702 10% of Installation costs. Professional/Technical Services Subtotal \$ 1.079.981 TOTAL CAPITAL COST \$ 5,060,400 ANNUAL O&M COSTS DESCRIPTION QUANTITY UNIT UNIT COST TOTAL NOTES System Operation and Monitoring Labor LS \$ 144.000 \$ 144.000 See Table D-11. 1 LS 119,270 See Table D-11. Equipment repair/replacement \$ 119.270 \$ Consumables LS \$ 1,209,636 \$ 1,209,636 See Table D-11. Performance groundwater sampling & analysis IS \$ 25.654 25 654 See Table D-11. 1 System Operation and Monitoring Subtotal \$ 1,498,560 Contingency 10% \$ 149,856 Scope and bid contingency. Professional/Technical Services Project management 5% \$ 82.421 EPA 540-R-00-002. ---Technical support 5% ---\$ 82,421 EPA 540-R-00-002. ---Assume 10% of Alt. D1 Ecology oversight cost. Ecology oversight 10% 2,200 --Professional/Technical Services Subtotal \$ 167.042 TOTAL ANNUAL O&M COST \$ 1,815,457 PERIODIC COSTS DESCRIPTION QUANTITY UNIT UNIT COST TOTAL NOTES

\$

\$

9 770 \$

20,590 \$

50.604

9 770

20,590

10%

10%

1

1

FA

EA

\$

\$

Major treatment system maintenance

rofessional/Technical Services

Contingency

Five-year reviews

Closure report

506,040 Years 10, 20, 30. 10% of system capital costs.

Year 30. See Table D-9.

Years 5, 10, 15, 20, 25, 30, See Table D-9,

Scope and bid contingency. Percentage of periodic costs.

Table D-5 - Alternative D3 Estimated Cost Summary

Location:	Kaiser Aluminun	n Was	shington, LLC	Des trea	cription: Alter tment. Alternat	rnative D3 include tive D3 assumes a	s Al an c	Iternative D2 (So operating period	enario D2b, excluding pipeline and infiltration gallery) plus ex situ groundwater of 30 years in the development of this cost estimate. Refer to Table D-10 for details.
	Spokane Valley,	, WA							
Phase:	Feasibility Study	/ (-359	% to +50%)						
Base Year:	2010								
Date:	July 2011								
PRESENT VA	ALUE ANALYSIS								
Discount rate Total years	7.0% 30								
COST TYPE	YEAR		TOTAL COST	TC F	OTAL COST PER YEAR	DISCOUNT FACTOR	N	ET PRESENT VALUE	NOTES
Capital	0	\$	5,060,400	\$ ¢	5,060,400	1.000	\$ ¢	5,060,400	
Periodic	5	ф \$	9,770	ф \$	9,770	0.713	գ Տ	6,966	
Periodic	10	\$	566,414	\$	566,414	0.508	\$	287,936	
Periodic	15	\$	9,770	\$	9,770	0.362	\$	3,541	
Periodic	20	\$	566,414	\$	566,414	0.258	\$	146,372	
Periodic	25	\$	9,770	\$	9,770	0.184	\$	1,800	
Periodic	30	\$	587,004	\$	587,004	0.131	\$	77,113	
		\$	61,273,256				\$	28,112,211	Net present value of elements unique to Alternative D3.
Total Net Pres	sent Value of Alte	rnativ	e D2, Scenario	D2b)		\$	22,063,480	Cost excludes pipeline and infiltration gallery costs from D2b. See Table D-4.
TOTAL NET	PRESENT VALU	E OF	ALTERNATIV	E D3	\$		\$	50,175,690	

Notes: Costs taken from RSMeans have been adjusted by Spokane location adjustment factor of 0.93. Costs from previous work greater than 1 year old have been adjusted using historical cost index factors provided by 2010 RSMeans (p. 671). Present value analysis uses a 30-year discount rate of 7.0%.

Table D-6 - Alternative D4 Estimated Cost Summary

Sheet 1 of 2

Location: Phase: Base Year: Date:	Kaiser Trentwood Facility Spokane Valley, WA Feasibility Study (-35% to +50%) 2010 July 2011	Description: Alter operating period of	native D4 inclu 30 years in the	ude Alter e develoj	native D1 and pment of this	d ext cost	traction and e: t estimate. Re	x s <i>itu</i> treatment of 300,00 gpd. Alternative D4 assumes an fer to Table D-12 for details.
CAPITAL C	OSTS DESCRIPTION	QUANTITY	UNIT	U	NIT COST		TOTAL	NOTES
Submittals, Pre- and p	Plans, Site Preparation ost-construction submittals	1	LS	\$	50,000	\$	50,000	SAP, HASP, work plan, as-built drawings, O&M manual, QA/QC documentation. Based on previous project experience.
Permits Submittals,	Plans, Site Preparation Subtotal	1	LS	\$	30,000	\$ \$	30,000 80,000	Previous project experience. SEPA checklist, etc.
Groundwate Extraction	er Extraction and Infiltration Systen well construction	n Installation 130	ft	\$	381	\$	49,568	One extraction wells, 16-in diameter, 130-ft depth. Unit cost scale from vendor quote for 12-in diameter well, based on 16:12
Extraction Electrical o	system installation connection	1 1	EA EA	\$ \$	30,896 50,000	\$ \$	30,896 50,000	diameter ratio. See Table D-10. Unit cost based on vendor quote. One system per well. Previous project experience. Three locations (extraction wells
Buried pipe	e installation	3,350	LF	\$	86	\$	288,707	PCB-FEW-2, PCB-FEW-3, PCB-FEW-4). From extraction wells to treatment system and treatment system to infiltration gallery. See Table D-10 for unit cost.
Groundwate	er Extraction and Infiltration System	n Installation Subto	tal	¢	03	\$	435,750	
Treatment Treatment Treatment System Inst	system equipment system construction system consumables tallation and Startup Subtotal	1 1 1	LS LS LS	\$ \$ \$	398,196 340,099 34,150	\$ \$ \$ \$	398,196 340,099 34,150 772,445	See Table D-12. See Table D-12. Year Zero. See Table D-12.
Contingenc Profession	y al/Technical Services	20%				\$	257,639	Scope and bid contingency. Percentage of capital costs.
Project ma	design	5% 8%				\$ \$	77,291.67	EPA 540-R-00-002. Includes reports referenced in WAC 173-340 400(6)(b). EPA 540-R-00-002.
Construction Pilot-scale	on management	6%	 LS	\$	 77.244	\$ \$	92,750.00	EPA 540-R-00-002. Includes reports referenced in WAC 173-340 400(6)(b). 10% of Installation costs.
Professiona	al/Technical Services Subtotal	·	20	Ŷ		\$ \$	370,953	
ANNUAL O	&M COSTS DESCRIPTION	QUANTITY	UNIT	U			TOTAL	NOTES
System Ope	eration and Monitoring Well Electricity	239 578	kWh	\$	0.05	\$	11 979	Groundwater extraction nump operation (approx_0.3 MGD) See
Labor Equipment	t repair/replacement	1	LS LS	\$	108,000 58,284	\$ \$	108,000 58,284	Table D-12. See Table D-12. See Table D-12.
Consumation Performan System Ope	oles ice groundwater sampling & analysis eration and Monitoring Subtotal	1 1	LS LS	\$ \$	148,119 14,133	\$ \$ \$	148,119 14,133 328,536	See Table D-12. See Table D-12.
Contingenc	y	10%				\$	32,854	Scope and bid contingency.
Project ma Project ma Technical Ecology ov Professiona	au rechnical Services anagement support versight al/Technical Services Subtotal	5% 5% 10%	 		 	\$ \$ \$	18,069 18,069 2,200 38,339	EPA 540-R-00-002. EPA 540-R-00-002. Assume 10% of Alt. D1 Ecology oversight cost.
TOTAL ANN	NUAL O&M COST					\$	399,728	
PERIODIC (COSTS DESCRIPTION	QUANTITY	UNIT	U	NIT COST		TOTAL	NOTES
Groundwate Groundwa	er Extraction and Infiltration Systen ter extraction system	n Periodic Maintena 1	nce EA	\$	30,896	\$	30,896	Years 10, 20, 30. Major equipment & infrastructure repair/replacement, 3 extraction locations (PCB-FEW-2, PCB-FEV 3, PCB-FEW-4). Assume equivalent of extraction system installation capital cost.
Piping and	I inflitration gallery	10%				\$	30,529	Years 10, 20, 30. Major infrastructure repair/replacement for buried pipeline and infiltration gallery. Assume 10% of capital cos of pipeline and infiltration gallery installation.
Major treatr	nent system maintenance	10%				\$	191,679	Year 10, 20, 30. 10% of system capital costs.
Contingenc Professiona	y al/Technical Services	10%				\$	25,310	Scope and bid contingency. Percentage of periodic costs.
Five-year r Closure re	reviews port	1 1	EA EA	\$ \$	9,770 20,590	\$ \$	9,770 20,590	Years 5, 10, 15, 20, 25, 30. See Table D-9. Year 30. See Table D-9.

Table D-6 - Alternative D4 Estimated Cost Summary

Location:	Kaiser Trentwo	od Fac	ility	Des ope	scription: Alte rating period of	rnative D4 include f 30 years in the de	Alte	ernative D1 and ex lopment of this cos	xtraction and ex situ treatment of 300,00 gpd. Alternative D4 assumes an st estimate. Refer to Table D-12 for details.
	Spokane Valley	, WA			•	-			
Phase:	Feasibility Stud	y (-35%	% to +50%)						
Base Year:	2010								
Date:	July 2011								
PRESENT V	ALUE ANALYSIS	6							
Discount rate Total years	7.0% 30								
COST TYPE	YEAR		TOTAL COST	то	OTAL COST PER YEAR	DISCOUNT FACTOR	N	ET PRESENT VALUE	NOTES
Capital	0	\$	1,916,786	\$	1,916,786	1.000	\$	1,916,786	
Annual O&M	1 - 30	\$	11,991,853	\$	399,728	12.409	\$	4,960,246	
Periodic	5	\$	9,770	\$	9,770	0.713	\$	6,966	
Periodic	10	\$	288,183	\$	288,183	0.508	\$	146,498	
Periodic	15	\$	9,770	\$	9,770	0.362	\$	3,541	
Periodic	20	\$	288,183	\$	288,183	0.258	\$	74,472	
Periodic	25	\$	9,770	\$	9,770	0.184	\$	1,800	
Periodic	30	\$	308,773	\$	308,773	0.131	\$	40,563	
		\$	14,823,089				\$	7,150,872	Net present value of elements unique to Alternative D3.
Total Net Pre	sent Value of Alte	ernativ	e D1				\$	19,809,595	
TOTAL NET	PRESENT VALU	JE OF	ALTERNATIV	E D4	4		\$	26.960.467	

Notes:

Costs taken from RSMeans have been adjusted by Spokane location adjustment factor of 0.93. Costs from previous work greater than 1 year old have been adjusted using historical cost index factors provided by 2010 RSMeans (p. 671). Present value analysis uses a 30-year discount rate of 7.0%.

Sheet 2 of 2

DESCRIPTION	QUANTITY	UNIT	UN	NIT COST	TOTAL	NOTES
Alternative D1						
Protection & Performance Monitoring - Ann	nual Costs					Protection and performance monitoring costs based on previous
						project experience.
Labor	1	yr	\$	107,960	\$ 107,960	Includes well and equipment maintenance labor. Excludes project
						management labor.
Equipment, supplies, computer	1	yr	\$	17,480	\$ 17,480	Includes well and equipment maintenance.
Travel	1	yr	\$	24,108	\$ 24,108	
Sample shipping	1	yr	\$	10,000	\$ 10,000	Previous project experience.
Laboratory analysis	1	yr	\$	108,552	\$ 108,552	
Subtotal					\$ 268,100	
Total qty. of wells sampled	114					See SAP, as amended (Hart Crowser 2007a, Kaiser 2010a).
Protection monitoring wells	19					See SAP, as amended (Hart Crowser 2007a, Kaiser 2010a).
Performance monitoring wells	95					See SAP, as amended (Hart Crowser 2007a, Kaiser 2010a).
Protection monitoring annual total	16.7%				\$ 44,683	Percentage = protection wells sampled/total wells sampled. Annual total. Monitoring events occur quarterly.
Performance monitoring annual total	83.3%				\$ 223,417	Percentage = performance wells sampled/total wells sampled. Annual total. Monitoring events occur quarterly.
Data management	1	yr	\$	29,948	\$ 29,948	Data validation; database management.
Reporting	1	yr	\$	16,182	\$ 16,182	Report to Kaiser & Ecology quarterly; EIM reporting.

Alternative D1 protection and performance monitoring notes:

Two 2-person teams plus sample custodian on site during each sample event (5 people total).
Assumed each sample team can sample 7 wells per day on average.

- Assumed water levels take an entire day with 4 people measuring.

- Assumed 10-hour field days.

- Assumed EIM submittal included for groundwater data plus any additional soil or soil gas data collected during previous 6 months.

- Assumed 2 vehicles for each sampling event.

- Actual well and equipment maintenance costs will depend on upcoming needs.

DESCRIPTION	QUANTITY	UNIT	UN	IT COST		TOTAL	NOTES
Alternative D1							
New Institutional Controls							Pending itoms and approx, easts provided by Kaisar
Replace melter furnace door jambs	ipiexes 5	locations	\$	20,000	\$	100,000	DC-1, DC-2W, DC-3, DC-8E, DC-8W. Provided by Kaiser, May
Contain bydraulics/lubrication	1	locations	\$	151 000	\$	151 000	23, 2011. DC-2 Unit cost per Kaiser April 19, 2010
Overflow lines to sewer	7	locations	\$	50,000	\$	350,000	DC-2 through DC-8.
Seal DC-7/DC-8 control house sump	1	location	\$	15,000	\$	15,000	Excludes equipment removal cost (approx. \$15k). Unit cost per
							Kaiser, April 19, 2010.
Slip line storm sewers	400	<i>.</i> .	•	074	•	40.000	Pipe lengths from Kaiser storm sewer plan dwg titled: Aluminum
MH 2 to MH 3	133	Π 4	\$ ¢	371	\$ ¢	49,386	Works - Trentwood Plant, Storm Sewer - Scheme "O", General
MH 3 to MH 5	366	ft	ф \$	371	ф S	135 905	from MH 7B to MH 9 (approx \$120 100 for total length of 390 ft) in
MH 5 to MH 6	460	ft	\$	371	\$	170,810	2005, adjusted to 2010 dollars (2010 RSMeans p.671).
Subtotal					\$	460,073	
Total					\$	1,076,073	
Preparation of institutional control O&M and mor	nitoring plans						Assume work performed by Hart Crowser staff.
Principal	8	hr	\$	180	\$	1,440	
Sr. Project	16	hr	\$	130	\$	2,080	
Sr. Staff	60	hr	\$	90	\$	5,400	
Stall Sr. Droftor	60	nr br	\$ ¢	100	\$ ¢	4,500	
Clerical	8	hr	ф \$	60		480	
Travel	1	ea	\$	566	\$	566	Assume 2-day site visit.
Computer	1	ea	\$	250	\$	250	
Subtotal					\$	15,516	Cost per plan.
Quantity of plans to prepare	3						_
Total					\$	46,548	Assume 3 plans in total (e.g., plans for Facility pavement, engineered controls, air emission control system).
Preparation of restrictive covenant							Assume work performed by Hart Crowser staff. Includes attorney
							fees.
Attorney fees	40	hr	\$	300	\$	12,000	
Principal Sr. Project	24	nr br	¢ ¢	180	¢ ¢	4,320	
Sr. Staff	24 40	hr	ф \$	90	ф S	3,120	
Staff	16	hr	\$	75	\$	1,200	
Clerical	8	hr	\$	60	\$	480	
Computer	1	ea	\$	250	\$	250	_
Total					\$	24,970	
Institutional Controls - Annual Costs							
Environmental upgrades at casting complexes							
Verify pit/sump integrity	9	locations	\$	1,000	\$	9,000	DC-1 through DC-8 plus DC-7/DC-8 control house sump.
Other upgrade maintenance	5%				\$	53,804	Assume percentage of environmental upgrade capital cost above.
						00.004	-
Subtotal					\$	62,804	
Maintenance of physical measures and BMPs							Assume maintenance of signs, fences, gates, access control,
							existing training programs, waste handling guidance, and BMPs
Labor	4000	h.,	•		•	444.000	defined in SPCC Plan and SWPPP.
Labor Supervisor	1920	nr br	\$ ¢	75 110	\$ ¢	144,000	Assume 1 FTE. Assume 25% of labor effort
Subtotal	400		ψ	110	\$	196,800	
Total					\$	259,604	
Institutional control O&M and monitoring plans -	annual update	and mainten	ance		•		Assume work performed by Hart Crowser staff.
Principal Sr. Project	4	nr br	\$ ¢	180	ъ ¢	1 040	
Sr. Staff	o 16	hr	φ \$	90	φ \$	1.440	
Staff	.0	hr	\$	75	\$	600	
Sr. Drafter	4	hr	\$	100	\$	400	
Clerical	2	hr	\$	60	\$	120	
Travel	1	ea	\$	433	\$	433	Assume 1-day site visit.
Computer	1	ea	\$	250	\$	250	
Subiotal Quantity of plans to maintain	6				\$	5,003	Cost per plan.
Total	0				2	30.019	Assume 6 plans in total Includes existing WDR Restoration
1000					Ψ	50,010	Acount o plans in total. Includes existing WDN Restordtion

118 Assume 6 plans in total. Includes existing WDR Restoration Monitoring Plan, SPCC Plan, and SWPPP plus institutional control, O&M, and monitoring plans given above.

DESCRIPTION	QUANTITY	UNIT	UNI	т соѕт		TOTAL	NOTES
Site information database - annual update and m	aintenance						Assume work performed by Hart Crowser staff
Principal	4	hr	\$	180	\$	720	Assume work performed by harr browser stan.
Sr. Project	ч 8	br	¢ ¢	130	Ψ ¢	1 040	
Sr. Staff	24	hr	ŝ	90	\$	2,160	
Staff	12	hr	\$	75	\$	900	
Clerical	4	hr	\$	60	\$	240	
Travel	1	ea	\$	433	\$	433	Assume 1-day site visit.
Computer	1	ea	\$	250	\$	250	
Total					\$	5,743	-
Institutional Controls - Periodic Costs Restrictive covenant periodic update and mainter	nance						Assume work performed by Hart Crowser staff. Includes attorney
Attorney fees	8	hr	\$	300	\$	2,400	lees.
Principal	8	hr	\$	180	\$	1,440	
Sr. Project	4	hr	\$	130	\$	520	
Sr. Staff	16	hr	\$	90	\$	1,440	
Staff	4	hr	\$	75	\$	300	
Clerical	2	hr	\$	60	\$	120	
Computer	1	ea	\$	250	\$	250	
Total					\$	6,470	
NPDES Permit and Ecology Order Required I	Monitoring - Al	nnual Cost	S				Required by NPDES Permit No. WA-000089-2 (Ecology 1997), Ecology Agreed Order No. 02WQER-3487 (Ecology 2002), and Ecology Amended Order No. 2868 (Ecology 2005). See Section 2.1.1.1.
NPDES permit - monitoring laboratory analysis							
Sample quantity	104	aamalaa					Based on weekly sampling frequency.
Outrall 001	104	samples					
Outfall 002	104	samples					
Outrall 003 Plant inteka	5Z	samples					
	104	samples					
Laboratory analysis							Unit prices based on laboratory quote.
Outrail 001	101		¢	50	¢	F 000	
	104	samples	¢	10	¢ ¢	5,200	
Total AL Cr. Zn. B	104	samples	¢ ¢	50	¢ ¢	5 200	Aluminum chromium recoverable zine phoephoreus
Cvanide	104	samples	¢ ¢	40	¢	5,200 4 160	Aluminum, chiomium, recoverable zinc, prosphorous.
Hardness	104	samples	ŝ	25	φ S	2 600	
Subtotal	104	oumpieo	Ŷ	20	\$	19,032	•
						-,	
Outfall 002			•		•		
Oil and grease	260	samples	\$	50	\$	13,000	
ISS	104	samples	\$	18	\$	1,872	
Orthophosphate	104	samples	\$	20	\$	2,080	Alexiana character size characterize
Total AI, Cr, Zn, P	104	samples	\$ ¢	50	\$	5,200	Aluminum, chromium, zinc, phosphorous.
Hexavalent chromium	104	samples	¢ ¢	50	¢	5,200	
Subtotal	104	samples	Φ	40	э \$	4,160	
					Ť		
Outfall 003	_						
BOD ₅	52	samples	\$	45	\$	2,340	
TSS	52	samples	\$	18	\$	936	
Fecal coliform	52	samples	\$	35	\$	1,820	
Subtotal					\$	5,096	-
Plant intake							
Oil and grease	104	samples	\$	50	\$	5.200	
TSS	52	samples	\$	18	\$	936	
Total metals	104	samples	\$	50	\$	5,200	Aluminum, chromium, recoverable zinc.
Subtotal					\$	11,336	
NPDES permit laboratory analysis subtotal					\$	66,976	
Ecology Order - monitoring laboratory analysis							
Sample quantity							Based on biweekly sampling frequency
Outfall 001	26	samples					
Plant lagoon effluent	26	samples					
Plant lagoon influent	26	samples					

DESCRIPTION	QUANTITY	UNIT	UNI	т соѕт	Т	OTAL	NOTES
Laboratory analysis							
For 3 locations given above	78	samples	\$	175	\$	13 650	
Subtotal	10	Sampies	Ψ	115	\$	13,650	•
Ecology Order laboratory analysis subtotal					\$	13,650	
Sampling labor - NDDES permit and Ecology Ord	ler required mo	nitoring					
Labor	208	hr	\$	75	\$	15.600	Assume 1 individual
Supervisor	52	hr	\$	110	\$	5,720	Assume 25% of labor effort.
Labor subtotal					\$	21,320	
Total Annual Cost					\$	101,946	
NPDES Permit Required Monitoring - Periodic	: Costs						Required by NPDES Permit No. WA-000089-2 (Ecology 1997).
Initial acute toxicity testing							Assume conducted quarterly for one year, once per permit cycle.
Sample quantity							Assume 5-year permit cycle.
River intake	4	samples					Assume conducted in Years 0, 5, 10, 15, 20, and 25.
Final effluent	4	samples					Unit prices based on laboratory quote.
Laboratory analysis							
Fathead minnow (96-hr static-renewal test)	8	samples	\$	850	\$	6,800	
Daphnid (48-hr static test)	8	samples	\$	700	\$	5,600	
Subtotal					\$	12,400	
Sampling and reporting labor							
Labor	40	hr	\$	75	\$	3,000	Assume 1 individual performs sampling and reporting.
Supervisor	10	hr	\$	110	\$	1,100	Assume 25% of labor effort.
Labor subtotal					\$	4,100	
Initial acute toxicity testing total					\$	16,500	
Final acute toxicity testing							Assume conducted once in the last summer, once in the last winter, of the permit cycle.
Sample quantity							Assume 5-year permit cycle.
Final effluent	2	samples					Assume conducted in Years 5, 10, 15, 20, 25, and 30.
Laboratory analysis							
Fathead minnow (96-hr static-renewal test)	2	samples	\$	850	\$	1,700	
Daphnid (48-hr static test)	2	samples	\$	700	\$	1,400	
Subtotal					\$	3,100	
Sampling and reporting labor							
Labor	28	hr	\$	75	\$	2,100	Assume 1 individual performs sampling and reporting.
Supervisor	7	hr	\$	110	\$	770	Assume 25% of labor effort.
Labor subtotal					\$	2,870	
Final acute toxicity testing total					\$	5,970	
Initial chronic toxicity testing							Assume conducted quarterly for one year, once per permit cycle.
Sample quantity							Assume 5-year permit cycle.
River Intake Final effluent	4	samples					Assume conducted in Years 0, 5, 10, 15, 20, and 25.
	т	Sampies					onit prices based on laboratory quote.
Laboratory analysis							
Fathead minnow (7-day, full dilution test)	8	samples	\$	1,575	\$	12,600	
Subtotal	8	samples	Ф	1,475	ф ¢	24 400	
Custola					Ψ	24,400	
Sampling and reporting labor							
Labor	40	hr	\$	75	\$	3,000	Assume 1 individual performs sampling and reporting.
Supervisor	10	nr	\$	110	\$ ¢	1,100	Assume 25% of lador emort.
					φ	4,100	
Initial chronic toxicity testing total					\$	28,500	
Final chronic toxicity testing							Assume conducted once in the last summer, once in the last winter, of the permit cycle.
Sample quantity	0	complex					Assume 5-year permit cycle.
	2	samples					Assume conducted in reals 5, 10, 13, 20, 23, dilu 30.

DESCRIPTION	QUANTITY	UNIT	UNI	T COST	1	OTAL	NOTES
Laboratory analysis							
Fathead minnow (7-day, full dilution test)	2	samples	\$	1,575	\$	3,150	
Water flea (7-day, full dilution test)	2	samples	\$	1,475	\$	2,950	
Subtotal					\$	6,100	
Sampling and reporting labor							
Labor	28	hr	\$	75	\$	2,100	Assume 1 individual performs sampling and reporting.
Supervisor	7	hr	\$	110	\$	770	Assume 25% of labor effort.
Labor subtotal					\$	2,870	
Final chronic toxicity testing total					\$	8,970	

Table D-9 - Professional Services Cost Backup

DESCRIPTION	QUANTITY	UNIT	UNI	т созт		TOTAL	NOTES
Alternative D1 - Periodic Costs							
Five-year review periodic cost							Assume work performed by Hart Crowser staff.
							Historical mean non-zero quarterly Ecology cost at Kaiser 2007-
Ecology oversight	1	ls	\$	7,500	\$	7,500	2009.
Principal	16	hr	\$	180	\$	2.880	
Sr. Project	16	hr	\$	130	ŝ	2 080	
Sr Staff	40	hr	ŝ	90	ŝ	3,600	
Staff	40	br	¢	75	¢	3 000	
Clarical	40	br	φ Φ	60	φ	3,000	
	0		Ψ	00	ψ	400	-
lotal					Ф	19,540	
Closure report periodic cost							Assume work performed by Hart Crowser staff
							Historical mean non-zero quarterly Ecology cost at Kaiser 2007-
Ecology oversight	1	le	¢	7 500	¢	7 500	
Dringing	1	10	φ ¢	1,500	φ	7,300	2003.
	40	111	¢ Þ	100	¢	7,200	
Sr. Project	80	nr	ъ Э	130	\$	10,400	
Sr. Staff	80	hr	\$	90	\$	7,200	
Staff	80	hr	\$	75	\$	6,000	
Sr. Drafter	24	hr	\$	100	\$	2,400	
Clerical	8	hr	\$	60	\$	480	
Total					\$	41,180	-
Alternative D2 - Annual Costs							
System monitoring - data management annual co	st						Assume work performed by Hart Crowser staff.
Principal	2	hr	\$	180	\$	360	
Sr. Associate	4	hr	\$	160	\$	640	
Sr. Project	8	hr	\$	130	\$	1,040	
Sr. Staff	16	hr	\$	90	\$	1,440	
Staff	12	hr	\$	75	ŝ	900	
Clerical	2	hr	ŝ	60	ŝ	120	
Total	-		Ŷ	00	¢	4 500	-
1 otal					Ψ	4,500	
System monitoring - reporting appual cost							Assume work performed by Hart Crowser staff
Principal	8	br	¢	180	¢	1 4 4 0	Assume work performed by that browser start.
Principal Sr. Associate	0	iii hr	φ ¢	160	φ	1,440	
SI. ASSociate	2	111	ф Ф	100	¢ ¢	320	
	12	ni L	ф Ф	130	ф Ф	1,500	
Sr. Staff	16	hr	\$	90	\$	1,440	
Staff	16	hr	\$	75	\$	1,200	
Sr. Drafter	8	hr	\$	100	\$	800	
Clerical	4	hr	\$	60	\$	240	_
Total					\$	7,000	-
Alternative DO Designic Conte							
Alternative D2 - Periodic Costs					•		
Five-year reviews - Scenario D2a, D2b	50%				\$	9,770	Assume 50% of Alt. D1 five-year review cost to include
							groundwater extraction and infiltration system.
Closure report - Scenario D2a, D2b	50%				\$	20,590	Assume 50% of Alt. D1 remedial action report cost to include
							groundwater extraction and infiltration system.
Alternative D3 - Periodic Costs							
Five-vear reviews	50%				\$	9,770	Assume additional 50% of Alt. D1 five-year review cost to include
	0070				¥	0,0	ex situ treatment system
Closure report	50%				\$	20 590	Assume additional 50% of Alt D1 remedial action report cost to
	50%			-	φ	20,530	include av situ treatment system
							nordo oz ola iroainoni system.

DESCRIPTION	QUANTITY	UNIT	UN	IIT COST		TOTAL	NOTES
Alternative D1 - Existing IRM System Annual	O&M Costs	-				-	
Groundwater extraction							
OH-EW-1							
Pump motor input power	100	hp					Existing pump, 100 hp (Hart Crowser 2003).
Pump motor input power	74.6	kW					
Pump motor input power	400	hn					Existing pump, 400 bp (Hart Crowsor 2003)
Pump motor input power	298.3	τιρ kW					Existing pump, 400 mp (mart crowser 2003).
	200.0						
WW-EW-2							
Pump motor input power	400	hp					Existing pump, 400 hp (Hart Crowser 2003).
Pump motor input power	298.3	kW					
WW-UVB-1	900/						Neglect friction, velocity nead, and minor losses.
Motor efficiency	00% 70%						Approximation based on average of range (Lindeburg 2003).
Elevation head	151	ft					Assume elevation head equal to well depth
Flow rate	3.035	apm					
Specific gravity	1.0	31-11					
Hydraulic power	115.8	hp					
Hydraulic power	86.4	kŴ					1 hp = 0.7457 kW.
Brake pump power	144.8	hp					
Brake pump power	108.0	kW					Existing pump power rating not available. Pump power
							requirement estimate based on modeled flow rate (Appendix E,
	000.0						Table E-3) and elevation head (151 feet).
Pump motor input power	206.9	np					
Fump motor input power	104.5	KVV					
Annual electricity usage and cost							
Total motor input power	825.4	kW					Sum of OH-EW-1. WW-EW-1. WW-EW-2. and WW-UVB-1.
Total operating time	8,760	hr					Assume continuous operation.
Total electricity consumption	7,230,423	kWh					
Electricity unit cost	\$ 0.05	\$/kWh					Cost of electricity based on estimate provided by Kaiser.
Total annual electricity cost	\$ 361,521	\$/yr					
IRM system maintenance annual cost							labor, parts, supplies. Use same labor unit costs as for inst.
Labor	416	br	¢	75	\$	31 200	Δssume 0.2 FTF
Supervisor	104	hr	ŝ	110	ŝ	11 440	Assume 25% of labor effort.
Parts, supplies	10%		\$	123,583	\$	12,358	Based on parts and supplies cost used in Table C-11 in Appendix
							_C.
Total					\$	54,998	
Alternative D2 - Scenario D2a Canital Costs							
Pipeline length	5.150	LF					
Infiltration gallery length	200	LF					
Infiltration gallery width	3	ft					
Infiltration gallery depth	10	ft					
Infiltration gallery volume (bank)	222	BCY					
Bulking factor	1.15						
Infiltration gallery volume (loose)	256	LCY					
Sales tax	8.7%						Effective rate for Spokane Valley, WA, 4/1/10 to 6/30/10. See
							ver 10 O2 alpha pdf
Location adjustment factor	0.93						Cost adjustment factor for Spokane, WA (2010 RSMeans p. 696).
							Applied to estimated costs originating from RSMeans cost guide.
Estimate unit cost for 16-in diameter pine							Cost data for 16-in diameter steel nine not available in 2010
							RSMeans. Unit cost for 16-in pipe estimated from 2010 RSMeans
							cost data for 12-in pipe and 18-in pipe below.
12-in diameter pipe		IF	\$	63			Black steel plain end welded 1/4-in wall 2010 RSMeans 33 11
			Ψ	03			13.40 1020.
18-in diameter nine			¢	80			Black steel plain and welded 1/4-in well 2010 PSMaana 22.11
to in diameter pipe		LF	φ	00			13.40 1030.
Estimated 16-in diameter pipe unit cost			¢	74			Result of interpolation of 12-in and 18-in nine unit costs
Loundidu To in diameter pipe unit cost			Ψ	74			resear or merpolation of 12 in and 10-in pipe unit costs.

Table D-10 - Containment Cost Backup

DESCRIPTION	QUANTITY	UNIT	UN	IT COST		TOTAL	NOTES
Estimate unit cost for buried 16-in diameter pipe i	installation						Cost data for 16-in-diameter steel pipe installation not available in 2010 RSMeans. Unit cost for 16-in pipe installation estimated from 2010 RSMeans cost data for 12-in pipe installation below.
Trenching, bedding, backfill, compaction, 12-in pipe unit cost		LF	\$	78			12-in, 1/4-in wall black steel pipe, 4 ft deep. 2010 RSMeans assembly G3010 122 2550.
Subtract 12-in diameter pipe unit cost		LF	\$	(63)			Black steel, plain end, welded, 1/4-in wall. 2010 RSMeans 33 11 13.40 1020.
Trenching, bedding, backfill, compaction without 12-in pipe		LF	\$	15			
Add estimated unit cost for 16-in diameter pipe		LF	\$	74			Result of interpolation of 12-in and 18-in pipe unit costs above.
Estimated unit cost for trenching, bedding, backfill, compaction with 16-in pipe		LF	\$	89	•		
Apply location cost adjustment factor		LF	\$	82			
Material unit cost for sales tax calculation							
12-in diameter pipe material unit cost		LF	\$	34			Black steel. 1/4-in wall. 2010 RSMeans 33 11 13.40 1020.
18-in diameter pipe material unit cost		LF	\$	45			Black steel, 1/4-in wall. 2010 RSMeans 33 11 13.40 1030.
Estimated 16-in diameter pipe material unit cost		LF	\$	41			Result of interpolation of 12-in and 18-in pipe material unit costs.
Bedding material unit cost		LF	\$	6.74			Crushed stone. 2010 RSMeans p. 601.
Total material unit cost		LF	\$	48			·
Apply location cost adjustment factor		LF	\$	45			
Sales tax unit cost	8.7%	LF	\$	3.88			Sales tax per linear foot of pipe.
Buried pipeline installation cost	5,150	LF	\$	86	\$	443,833	Based on estimated unit cost derived above. Includes material, labor, and equipment costs for trenching, bedding, backfill, compaction, and 16-in-diameter, black steel, plain end, welded, 1/4- in wall pipe, 4 ft deep. Includes sales tax on bedding and pipe materials.
Infiltration gallery construction							
Trench excavation	222	BCY	\$	6.32	\$	1,405	Sand and gravel, 10 ft deep, 3/4 CY excavator. 2010 RSMeans 31 23 16.13 6140.
Loading excavated soil	15%				\$	211	Loading onto trucks. 2010 RSMeans 31 23 16.42 0020.
Hauling excavated soil	256	LCY	\$	3.39	\$	867	Two 12-CY trucks, 20 MPH ave, cycle 1 mile, 15-min wait/load/unload. 2010 RSMeans 31 23 23.20 1028. Assume soil is clean and stockniled on site
Drainage material	222	CY	¢	33	\$	7 440	Round river stone 2010 RSMeans 03 05 13 25 1055
Backfill trench	222	CY	\$	7.44	\$	1,653	Front-end loader, wheel-mounted, 2-1/4-CY bucket, 200-ft min. haul. 2010 RSMeans 31 23 16.13 3100.
Access tees	4	ea	\$	316	\$	1,265	Galvenized, uncoated, 12-in diameter, 16 gauge. 2010 RSMeans 33 41 13.40 2728.
End section	1	ea	\$	194	\$	194	Galvenized, uncoated, 12-in diameter, 16 gauge. 2010 RSMeans 33 41 13.40 2790.
Utility boxes	4	ea	\$	688	\$	2,753	Hand hole, precast concrete, 1.5-in thick, light duty, 1 ft x 2 ft x 1.75 ft. 2010 RSMeans 33 05 16.13 0400.
Sales tax	8.7%				\$	790	Assume sales tax charged on cost of materials.
Total					\$	16,579	-
Total unit cost		LF	\$	83			

Alternative D2 - Scenario D2a Annual O&M Costs

Groundwater extraction PCB-FEW-1			
Pump efficiency	80%		
Motor efficiency	70%		
Elevation head	130	ft	
Flow rate	3.7	MGD	
Flow rate	2,569	gpm	
Specific gravity	1.0		
Hydraulic power	84.4	hp	
Hydraulic power	63.0	kW	
Brake pump power	105.5	hp	
Brake pump power	78.7	kW	
Pump motor input power	150.8	hp	
Pump motor input power	112.4	kW	

Neglect friction, velocity head, and minor losses. Efficiency approximation based on average of range (Lindeburg 2003).

Assume elevation head equal to well depth.

1 hp = 0.7457 kW.

Pump power requirement estimate based on modeled flow rate (Appendix E, Table E-4) and elevation head (130 feet).

Table D-10 - Containment Cost Backup

Sheet	3	of	3	
-------	---	----	---	--

DESCRIPTION	QUANTITY	UNIT	UN	IIT COST		TOTAL	NOTES
Annual electricity usage and cost							
Total motor input power	112.4	kW					
Total operating time	8,760	hr					Assume continuous operation.
Total electricity consumption	984 933	kWh					
Electricity unit cost	\$ 0.05	\$/kWh					Cost of electricity based on estimate provided by Kaiser
Total appual electricity cost	\$ 49.247	\$/vr					
	ψ 45,247	φ/yi					
Extraction and infiltration system maintenance ar	nual cost						labor, parts, supplies. Use same labor unit costs as for inst. controls.
Labor	416	hr	\$	75	\$	31,200	Assume 0.2 FTE.
Supervisor	104	hr	Ŝ	110	Ŝ	11,440	Assume 25% of labor effort.
Parts supplies	10%		ŝ	78 691	ŝ	7 869	Assume 10% of extraction and infiltration system installation costs
·,			•		•	.,	(see Table D-3). 1 location.
Total					\$	50,509	- · · · · · · · · · · · · · · · · · · ·
Alternative D2 - Scenario D2b Capital Costs							
Pipeline length	4,430	LF					
Buried pipeline installation cost	4,430	LF	\$	86	\$	381,782	Based on estimated unit cost derived above for Scenario D2a. Includes material, labor, and equipment costs for trenching, bedding, backfill, compaction, and 16-in-diameter, black steel, plain and welded 1/4 in wall pipe 4 ft deep. Includes cales tay on
		. –					bedding and pipe materials.
Infiltration gallery construction	200	LF	\$	83	\$	16,579	Assume same capital cost as in Scenario D2a.
Alternative D2 - Scenario D2b Annual O&M C PCB-FEW-2, PCB-FEW-3, and PCB-FEW-4 Pump efficiency	osts 80%						Neglect friction, velocity head, and minor losses. Efficiency approximation based on average of range (Lindeburg 2003).
Motor efficiency	70%						
Elevation head per well	130	ft/well					Assume elevation head equal to well depth. Three wells.
Total flow rate	3.03	MGD					
Total flow rate	2,104	gpm					
Total flow rate per well	701	gpm/well					Assume equivalent flow rate for each well.
Specific gravity	1.0						
Hydraulic power per well	23.0	hp/well					
Hydraulic power per well	17.2	kW/well					1 hp = 0.7457 kW.
Brake pump power per well	28.8	hp/well					
Brake pump power per well	21.5	kW/well					
Pump motor input power per well	41.2	hp/well					Pump power requirement estimate based on modeled flow rate
Pump motor input power per well	30.7	kW/well					(Appendix E, Table E-4) and elevation head (130 feet).
Total pump motor input power	92.1	kW					
Annual electricity usage and cost							
Total motor input power	92.1	kW					
Total operating time	8,760	hr					Assume continuous operation.
Total electricity consumption	806 580	kWh					
Electricity unit cost	\$ 0.05	\$/kWh					Cost of electricity based on estimate provided by Kaiser.
Total annual electricity cost	\$ 40,329	\$/yr					
Extraction and infiltration system maintenance ar	nual cost	-					labor, parts, supplies. Use same labor unit costs as for inst. controls.
Labor	416	hr	\$	75	\$	31.200	Assume 0.2 FTE.
Supervisor	104	hr	\$	110	\$	11.440	Assume 25% of labor effort.
Parts, supplies	10%		\$	109,266	\$	10,927	Assume 10% of extraction and infiltration system installation costs
							(see Table D-4), 3 locations.
Total					\$	53,567	

Alternative D3 - CAPITAL COSTS

DESCRIPTION	QUANTITY	UNIT	UN	IT COST		TOTAL	NOTES
Treatment System Equipment							
Rapid mixing tank	8	ea	\$	4,563	\$	36,503	1,000-gal capacity, 7 gauge shell, single-wall, steel fuel-oil tanks. 2010 RSMeans 23 13 13.09 5520 (p.254). Assume 25% markup for impeller
Flocculation tanks	8	62	\$	45 000	\$	360.000	21 000-gal flocculation tanks. Unit cost from vendor quote
Sand filter unit	4	ea	\$	4,800	\$	19,200	4-vessel sand filter unit. Each sand filter bed approximately has
Cartridge filter unit	20	ea	\$	32,000	\$	640,000	Duplex cartridge unit, five units per 500 gal. Each cartridge unit carries 20 cartridge filters. 40 in long.
GAC units	8	ea	\$	11,532	\$	92,256	10,000-gal capacity, 1/4-in-thick shell, single-wall, steel fuel-oil tanks. 2010 RSMeans 23 13 13.09 5560 (p.254).
Metering pumps	12	ea	\$	1,300	\$	15,600	Metering injection pumps for coagulant, acid, and base addition. Unit cost from vendor quote.
HCI holding tank	4	ea	\$	14,415	\$	57,660	10,000-gal capacity, 1/4-in-thick shell, single-wall, steel fuel-oil tanks. 2010 RSMeans 23 13 13.09 5560 (p.254). Will hold approximately monthly supply of HCI. Add 25% markup so tank is
NaOH holding tank	4	ea	\$	4,563	\$	18,251	1,000-gal capacity, 7 gauge shell, single-wall, steel fuel-oil tank. 2010 RSMeans 23 13 13.09 5520 (p.254). Add additional 25% to tank system parts are NaOH compatible.
Instrumentation associated with acid and base addition systems	1	LS	\$	20,000	\$	20,000	Engineer's estimate. Instrumentation that will be used to monitor and inject acid or base to reach target pH.
Conveyance numps	8	62	\$	12 460	\$	99 680	30-bp pumps Unit cost from vendor
Treatment shed	1	IS	ŝ	100,000	ŝ	100,000	Engineer's estimate
Misc. equipment	5%		Ψ		ŝ	72 957	Percentage of system equipment cost
Sales tax	8.7%				ŝ	133 293	r oroontago or oyotonn oquipmont oooti
Equipment Subtotal	0.1770				\$ [•]	1,665,401	-
Treatment System Construction							
Equipment transportation	1	LS	\$	20,000	\$	20,000	Vendor quote.
Electrical connection	1	LS	\$	20,000	\$	20,000	Previous project experience.
Conveyance piping - straight pipe	1,050	LF	\$	86	\$	90,490	See Table D-10 for unit cost.
Installation labor for vessels	30%				\$	499,620	Percentage of system equipment. Engineer's estimate.
Heavy equipment for installing vessels	30%				\$	499,620	Percentage of system equipment. Engineer's estimate.
System Construction Subtotal					\$ ´	1,129,731	-
Treatment System Consumables							
Cartridge filters - 10 μm	160	ea	\$	9.00	\$	1,440	4 treatment trains. Per treatment train, one 10-µm duplex cartridge unit. Each unit carries 40 cartridge filters (or 20 cartridge filters per vessel). Specification sheet for duplex cartridge unit from vendor. Price per cartridge filter from vendor.
Cartridge filters - 5 µm	160	ea	\$	9.00	\$	1,440	See description for "Cartridge filters - 10 µm" above.
Cartridge filters - 2 µm	160	ea	\$	9.00	\$	1,440	See description for "Cartridge filters - 10 µm" above.
Cartridge filters - 1 µm	160	ea	\$	9.00	\$	1,440	See description for "Cartridge filters - 10 µm" above.
Cartridge filters - 0.5 µm	160	ea	\$	9.00	\$	1,440	See description for "Cartridge filters - 10 µm" above.
Granular activated carbon	80,000	lbs	\$	1.35	\$	108,000	4 carbon treatment units. Each unit has two vessels that hold 10,000 pounds of carbon. Cost of carbon from vendor.
Shipping	10%				\$	11,376	Engineer's estimate.
Sales tax	8.7%				\$	10,022	•
Consumables Subtotal					\$	136,598	-

Table D-11 - Ex Situ Treatment Cost Backup

Alternative D3 - ANNUAL COSTS DESCRIPTION	QUANTITY	UNIT	UN	іт соѕт		TOTAL	NOTES
Labor							
Operation labor	1,920	hr	\$	75	\$	144,000	Assume 1 FTE.
Equipment repair/replacement							
Maintenance labor	480	hr	\$	75	\$	36,000	Assume 0.25 FTE.
Equipment repair/replacement	1	LS	\$	83,270	\$	83,270	5% of equipment costs.
Equipment Subtotal					\$	119,270	
Consumables - Coagulant, filter media, cartri	dge filters car	bon					
Coagulant	48	tote	\$	2,500	\$	120,000	Assume 1 tote per month per treatment train. 275-gal totes of chitosan 1%, price from vendor.
Depth filtration media	29	ton	\$	14	\$	409	Cost from previous project experience. Each sand filter unit holds 14,500 pounds of sand.
Cartridge filters - 10 μm	4,160	ea	\$	9.00	\$	37,440	4 treatment trains. Per treatment train, one 10µm duplex cartridge unit. Each unit carries 40 cartridge filters (or 20 cartridge filters per vessel). Specification sheet for duplex cartridge unit from vendor. Assume 1 change-out of 1 vessel per week. Price per cartridge filter from vendor.
Cartridge filters - 5 µm	4,160	ea	\$	9.00	\$	37,440	See description for "Cartridge filters - 10 µm" above.
Cartridge filters - 2 µm	4,160	ea	\$	9.00	\$	37,440	See description for "Cartridge filters - 10 µm" above.
Cartridge filters - 1 µm	4,160	ea	\$	9.00	\$	37,440	See description for "Cartridge filters - 10 µm" above.
Cartridge filters - 0.5 µm	4,160	ea	\$	9.00	\$	37,440	See description for "Cartridge filters - 10 µm" above.
Carbon	40,000	lbs	\$	1.35	\$	54,000	One bed per treatment train replaced each year. Cost of carbon from vendor
Shipping	10%				\$	36,161	Engineer's estimate.
Sales tax	8.7%				ŝ	31 460	
Consumables - Coagulant, filter media, cartrie	dge filters car	bon Subto	tal		\$	429,230	-
Consumables - Other							
Acid	351,860	gal	\$	0.98	\$	346,230	Actual acid used and addition rate required will be determined during bench- and pilot-scale testing. Assume approximately 960 gpd based on theoretical quantity of acid required to lower pH from 7.7 to 4.8 (average alkalinity of 158 mg/L). Assume 31% hydrochloric acid is used (liquid) to raise pH. Vendor cost on delivery.
Base	73,730	gal	\$	4.86	\$	358,328	Actual base used and addition rate required will be determined during bench- and pilot-scale testing. Assume approximately 202 gpd based on based upon theoretical equilibrium equations to raise pH from 4.8 to 7. Assume 50% sodium hydroxide solution used to raise pH. Vendor cost on delivery.
Utilities	1,606,954	kWh	\$	0.05	\$	75,848	12 metering pumps (assumed 1/2 hp) and 8 conveyance pumps (30 hp).
Consumables - Other Subtotal					\$	780,406	
Consumables Total					\$	1,209,636	
Performance GW Sampling Laboratory analysis - combined influent and	24	ea	\$	247	\$	5,928	PCBs, pH, TSS, TDS, alkalinity. Sample points include combined
emuent Laboratory analysis - each treatment train	64	ea	\$	211	\$	13,504	For each treatment train will sample at GAC beds (upstream, interface downstream) and treatment train sills ample at GAC beds (upstream, interface) and treatment train officiant (div 4 - 42)
							Assume quarterly sampling.
Equipment/shipping	1	LS	\$	5,000	\$	5,000	Engineer's estimate.
Data management	5%				\$	1,222	Engineer's estimate.
Sampling Subtotal					\$	25,654	

Alternative D4 - CAPITAL COSTS

DESCRIPTION	QUANTITY	UNIT	UN	T COST		TOTAL	NOTES
Treatment System Equipment							
Rapid mixing tank	2	ea	\$	3,023	\$	6,045	500-gal capacity, 7 gauge shell, single-wall, steel fuel-oil tanks. 2010 RSMeans 23 13 13.09 5520 (p.254). Assume 25% markup for impeller.
Elocculation tanks	2	ea	\$	45 000	\$	90,000	21 000-gal flocculation tanks. Unit cost from vendor quote
Sand filter unit	1	ea	\$	3,600	\$	3,600	3-vessel sand filter unit. Each sand filter bed approximately has 3,600 lb
Cartridge filter unit	5	ea	\$	32,000	\$	160,000	Duplex cartridge unit. Cartridge unit carries 20 cartridge filters, 40 in
GAC units	2	ea	\$	11,532	\$	23,064	10,000-gal capacity, 1/4-in-thick shell, single-wall, steel fuel-oil tanks. 2010 RSMeans 23 13 13 09 5560 (p 254)
Metering pumps	3	ea	\$	1,300	\$	3,900	Metering injection pumps for coagulant, acid, and base addition. Unit cost from vendor quote.
HCI holding tank	1	ea	\$	4,563	\$	4,563	1,000-gal capacity, 1/4-in-thick shell, single-wall, steel fuel-oil tanks. 2010 RSMeans 23 13 13.09 5560 (p.254). Will hold approximately months supply of HCI. Add 25% markup for HCI compatibility.
NaOH holding tank	1	ea	\$	2,790	\$	2,790	500-gal capacity, 7 gauge shell, single-wall, steel fuel-oil tank. 2010 RSMeans 23 13 13.09 5520 (p.254). Add additional 25% to tank system parts are NaOH compatible.
Instrumentation associated with acid and base addition systems	1	LS	\$	5,000	\$	5,000	Engineer's estimate. Instrumentation that will be used to monitor and inject acid or base to reach target oH.
Conveyance pumps	2	ea	\$	12,460	\$	24,920	30-hp pumps. Unit cost from vendor
Treatment shed	1	LS	\$	25,000	\$	25,000	Engineer's estimate.
Misc. equipment	5%		+		ŝ	17 444	Percentage of system equipment cost
Sales tax	8.7%				\$	31,870	r oroonago or oyotom oquipmont ooon
Equipment Subtotal					\$	398,196	•
Treatment System Construction							
Equipment transportation	1	LS	\$	7,500	\$	7,500	Vendor quote.
Electrical connection	1	LS	\$	7,500	\$	7,500	Previous project experience.
Conveyance piping - straight pipe	1,000	LF	\$	86	\$	86,181	See Table D-10 for unit cost.
Installation labor for vessels	30%				\$	119,459	Percentage of system equipment. Engineer's estimate.
Heavy equipment for installing vessels	30%				\$	119,459	Percentage of system equipment. Engineer's estimate.
System Construction Subtotal					\$	340,099	
Treatment System Consumables							
Cartridge filters - 10 µm	40	ea	\$	9.00	\$	360	Unit carries 40 cartridge filters (or 20 cartridge filters per vessel). Specification sheet for duplex cartridge unit from vendor. Price per cartridge filter from vendor.
Cartridge filters - 5 um	40	ea	\$	9.00	\$	360	See description for "Cartridge filters - 10 µm" above.
Cartridge filters - 2 µm	40	ea	\$	9.00	\$	360	See description for "Cartridge filters - 10 µm" above.
Cartridge filters - 1 um	40	ea	\$	9.00	\$	360	See description for "Cartridge filters - 10 um" above.
Cartridge filters - 0.5 µm	40	ea	\$	9.00	\$	360	See description for "Cartridge filters - 10 µm" above.
Granular activated carbon	20.000	lb	\$	1.35	\$	27.000	Two vessels that hold 10.000 lb of carbon. Cost of carbon from vendor.
Shinning	109/		Ŧ		¢	2 0 4 4	
Salaa tay	10%				¢	2,044	Engineers estimate.
Consumables Subtotal	0.1%				ъ \$	2,506 34,150	

Alternative D4 - ANNUAL COSTS DESCRIPTION	QUANTITY	UNIT	UNI	т соѕт		TOTAL	NOTES
Extraction Well Electricity and O&M Pump efficiency	80%						Neglect friction, velocity head, and minor losses. Efficiency approximation based on average of range (Lindeburg 2003).
Motor efficiency Elevation head per well Total flow rate Total flow rate Specific gravity	70% 130 0.3 208 1.0	ft/well MGD gpm					Assume elevation head equal to well depth. Three wells.
Hydraulic power per well Hydraulic power per well Brake pump power per well Brake pump power per well	6.8 5.1 8.6 6.4	hp/well kW/well hp/well kW/well					1 hp = 0.7457 kW.
Pump motor input power per well Pump motor input power per well Total pump motor input power	12.2 9.1 27.3	hp/well kW/well kW					Pump power requirement estimate based on modeled flow rate (Appendix E, Table E-4) and elevation head (130 feet).
Annual electricity usage and cost Total motor input power Total operating time Total electricity consumption	27.3 8,760 239.578	kW hr kWh					Assume continuous operation.
Electricity unit cost Total annual electricity cost	\$ 0.05 \$ 11,979	\$/kWh \$/yr					Cost of electricity based on estimate provided by Kaiser.
Labor Operation labor	1,440	hr	\$	75	\$	108,000	Assume 0.75 FTE.
Equipment repair/replacement Maintenance labor Equipment repair/replacement	480 1	hr LS	\$ \$	75 22,284	\$ \$	36,000 22,284	Assume 0.25 FTE for extraction and treatment system. 5% of equipment costs for extraction and treatment system.
Equipment Subtotal					\$	58,284	
Consumables - Coagulant, filter media, cart Coagulant	ridge filters carb 6	tote	\$	2,500	\$	15,000	Assume 1 tote per month per treatment train. 275-gal totes of chitosan 1%, price from vendor.
Depth filtration media	5	ton	\$	14	\$	76	Cost from previous project experience. Sand filter unit holds 10,800 lb sand.
Cartridge filters - 10 µm	480	ea	\$	9.00	\$	4,320	Unit carries 40 cartridge filters (or 20 cartridge filters per vessel). Specification sheet for duplex cartridge unit from vendor. Assume 2 change-outs per month. Price per cartridge filter from vendor.
Cartridge filters - 5 µm	480	ea	\$ ¢	9.00	\$ ¢	4,320	See description for "Cartridge filters - 10 µm" above.
Cartridge filters - 2 pm	480	ea	э \$	9.00	э \$	4,320	See description for "Cartridge filters - 10 µm" above.
Cartridge filters - 0.5 µm	480	ea	\$	9.00	\$	4,320	See description for "Cartridge filters - 10 µm" above.
Carbon	10,000	lb	\$	1.35	\$	13,500	One bed replaced each year. Cost of carbon from vendor.
Shipping	10%				\$	5,018	Engineer's estimate.
Sales tax	8.7% ridge filters earb	on Subtat	a l		\$	4,365	
	nuge mers car.		ai		φ	59,559	
Consumables - Other Acid	34,675	gal	\$	0.98	\$	34,120	Actual acid used and addition rate required will be determined during bench- and pilot-scale testing. Assume approximately 95 gpd based on theoretical quantity of acid required to lower pH from 7.7 to 4.8 (average alkalinity of 158 mg/L). Assume 31% hydrochloric acid is used (liquid) to raise pH. Vendor cost on delivery.
Base	7,300	gal	\$	4.86	\$	35,478	Actual base used and addition rate required will be determined during bench- and pilot-scale testing. Assume approximately 20 gpd based on based on theoretical equilibrium equations to raise pH from 4.8 to 7. Assume 50% sodium hydroxide solution used to raise pH. Vendor cost
Utilities	401,738	kWh	\$	0.05	\$	18,962	on delivery. 12 metering pumps (assumed 1/2 hp) and 8 conveyance pumps (30 hp).
Consumables - Other Subtotal					\$	88,560	
Consumables Total					\$	148,119	
Performance GW Sampling Laboratory analysis - influent and effluent	24	ea	\$	247	\$	5,928	PCBs, pH, TSS, TDS, alkalinity. Sample points include influent and
Laboratory analysis - carbon tanks	12	ea	\$	211	\$	2,532	Sample at GAC beds (upstream, interbed, downstream). Assume
Equipment/shipping Data management Sampling Subtotal	1 5%	LS 	\$	5,000 	\$ \$ \$	5,000 673 14,133	quarteriy sampling. Engineer's estimate. Engineer's estimate.

Table D-13 - Hart Crowser and Analytical Rates Cost Backup

HC Kaiser Rates		
Sr. Principal	\$ 190	
Principal	\$ 180	
Sr. Associate	\$ 160	
Associate	\$ 145	
Sr. Project	\$ 130	
Project	\$ 110	
Sr. Staff	\$ 90	
Staff	\$ 75	
Sr. Drafter	\$ 100	
Drafter	\$ 77	
Clerical	\$ 60	
Sub Markup	12%	
Communication fee	0%	
Mileage	\$0.50/mi.	Fed rate (2010)
Truck Rental	\$ 85	+ mileage for over 50 mi./day (due to gas prices)
Safety (\$ per hr.)	\$ 5	per field labor hour
Trip per diem	\$ 150	each way
Per diem	\$ 133	Fed rate for Spokane

Weekly Cost for H	IC oversight (staff)		
Labor	\$ 3	,600,	5 days (9 hr) for staff level, plus safety costs
Truck	\$	810	5 days truck plus travel day, plus \$300 for miles over 50
Travel	\$	300	
Per diem	\$	665	
Subtotal	\$5	,375	per week

Columbia Analytical Services and Advanced Analytical Laboratory Costs

Assume same price for water/soil.

Parameter	Cost	/ Analysis
NWTPH-HCID	\$	55
TPH-Dx	\$	60
TPH-G	\$	60
PCBs - Ultra-Low Level	\$	175
VOCs	\$	130
PAHs (8270 SIM)	\$	215
Metals (10)	\$	180
Arsenic	\$	26
Chromium	\$	24
Manganese	\$	26
Iron	\$	24
Antimony	\$	26
TSS	\$	18
Chloride	\$	18
Nitrate/Nitrite	\$	24
Hardness	\$	25
TDS	\$	18
Alkalinity	\$	18
Sulfate	\$	18
Total arsenic, chromium, zinc,	\$	50
and phosphorous		
Hexavalent chromium	\$	50
Orthophosphate	\$	20
Cyanide	\$	40
BOD	\$	45
Fecal coliform	\$	35
Oil & grease	\$	50

APPENDIX E GROUNDWATER MODELING AND PCB ATTENUATION ANALYSIS

CONTENTS	<u>Page</u>
E.1 PURPOSE AND SCOPE	E-1
E.2 GROUNDWATER MODELING	E-1
E.2.1 Model Construction E2.2 Calibration and Verification	E-1 E-4
E.3 CAPTURE ZONE ANALYSIS	E-6
E.4 REMEDIAL ALTERNATIVE SCENARIO EVALUATIONS	E-8
E.5 GROUNDWATER FLUX AND FLUSH RATES	E-13
E.6 RESTORATION TIME FRAME – REMELT/HOT LINE PCB PLUME	E-14
E.7 PCB GROUNDWATER ATTENUATION FACTOR	E-18
E.8 REFERENCES FOR APPENDIX E	E-21

TABLES

E-1	Historical	Groundwater	Extraction Rates
	· motorrear	OI & all all all all of	End dour off flatter

- E-2 Summary of Calibration Statistics
- E-3 Petroleum Hydrocarbon Scenario Pumping and Infiltration Rates
- E-4 PCB Scenario Pumping and Infiltration Rates
- E-5 Calculated Groundwater Flux and Volume of Contaminant Plumes
- E-6 Scenario Travel Time Estimates from Particle Tracking
- E-7 Summary of Total PCBs Concentrations Remelt Plume
- E-8 Results of Regression Analysis
- E-9 Predicated PCB concentrations at the River from RM-MW-17S Source Area
- E-10 Predicated PCB Concentrations at the River from Injection Sources

CONTENTS

FIGURES

- E-1 Regional Model Grid
- E-2 Local Model Grid
- E-3 Cross Section A-A'
- E-4 Cross Section B-B'
- E-5 Capture Zone by Reverse Particle Tracking Alternative C1: Existing IRM
- E-6 Capture Zone by Forward Particle Tracking Alternative C1: Existing IRM
- E-7 Capture Zone by Reverse Particle Tracking Alternative C2 Scenario C2a: Enhanced IRM
- E-8 Capture Zone by Forward Particle Tracking Alternative C2 Scenario C2a: Enhanced IRM
- E-9 Capture Zone by Reverse Particle Tracking Alternative C2 Scenario C2b: Existing IRM with ORB Containment
- E-10 Capture Zone by Forward Particle Tracking Alternative C2 Scenario C2b: Existing IRM with ORB Containment
- E-11 Capture Zone by Forward Particle Tracking Alternative C2 Scenario C2c: Plume Specific Hydraulic Containment
- E-12 Capture Zone by Forward Particle Tracking Alternative C4: Pump and Treat
- E-13 Capture Zone by Forward Particle Tracking Alternative D2a Leading Edge PCB Plume Containment
- E-14 Capture Zone by Forward Particle Tracking Alternative D2b: PCB Plume Containment
- E-15 Capture Zone by Forward Particle Tracking Alternative D3: PCB Plume Containment with Remelt Injection
- E-16 Capture Zone by Forward Particle Tracking Alternative D4: PCB Plume Containment
- E-17 Capture Zone by Forward Particle Tracking Preferred System Containment
- E-18 PCB Concentrations along the Centerline of the Remelt Plume
- E-19 Regression Analysis of Mean PCB Concentrations Remelt Plume
- E-20 Expotentional Regression Best Fit Curve Centerline Remelt Plume.

APPENDIX E GROUNDWATER MODELING AND PCB ATTENUATION ANALYSIS

E.1 PURPOSE AND SCOPE

This appendix documents groundwater modeling, capture zone analysis, and PCB attenuation analysis are used to evaluate groundwater containment remedial alternatives in support of the 2012 Feasibility Study (FS) for the Facility.

E.2 GROUNDWATER MODELING

For the FS, we used groundwater modeling to evaluate the hydraulic performance of the existing groundwater system and groundwater remedial alternatives involving groundwater extraction, hydraulic containment, recirculation, infiltration and reinjection of water within the aquifer beneath the Facility. The groundwater modeling was the basis for capture zone analysis and supported the evaluation of restoration time frames.

The general process of groundwater modeling completed for this FS includes the following tasks:

- Review the regional site-wide groundwater modeling developed for earlier RI/FS studies by Hart Crowser;
- Develop a local model from the regional site-wide groundwater model using telescoping mesh refinement (TMR) methods;
- Modify the local model to reflect current groundwater extraction and infiltration systems, and incorporate the latest vertical and horizontal survey datum;
- Verify the calibration of the local groundwater model using water level data collected in the spring and fall of 2008; and
- Use the local model to evaluate the hydraulic performance of various remedial alternatives evaluated in the FS.

E.2.1 Model Construction

The site-wide groundwater model was first developed in 1996 (Hart Crowser 1996). The model was updated in 2001 and 2003 (Hart Crowser 2001, 2003) to incorporate additional data and/or changes in Facility conditions (e.g.,

installation of additional pumping wells). The development of the site-wide groundwater flow model is documented in these three reports. The site-wide groundwater flow model was developed using the USGS MODFLOW code (McDonald and Harbaugh 1988). Figure E-1 illustrates the site-wide groundwater model grid in plan view.

For the FS, groundwater modeling was conducted using USGS MODFLOW 2000 (Harbaugh et al. 2000) an updated version of MODFLOW. Groundwater Vistas 5 (ESI 2007) was used for developing the model input files and for post processing the model output files. MODFLOW 2000 was selected primarily because of its ability to simulate wells that extend across multiple model layers (referred to as multiple node wells [MNW]) (Konikow et al. 2009).

Groundwater modeling analysis for the FS was conducted using a submodel or "local" model taken from the regional site-wide groundwater flow model. This TMR allows use of a small, detailed model in the area of interest by taking boundary conditions from a larger model that encompasses the model in the area of interest (Ward et al. 1987, Leake and Claar 1999). For this report, the terms "regional model" and "local model" are used to refer to the larger site-wide model and smaller embedded model, respectively. The local model allows the use of a finer grid, which provides for a more accurate representation of the extraction wells and infiltration galleries, while reducing the data handling, computer storage, and computation time that would be involved if a finer grid was used in the larger regional model.

E.2.1.1 Local Model Grid and Layers

Figure E-2 presents the local model grid in plan view. Figures E-3 and E-4 schematically illustrate the layout of the local grid in cross section.

The Spokane Valley Aquifer is represented by eight vertical layers. Layer 1 spans the water table. The no-flow boundary forming the bottom of Layer 8 represents the basement bedrock complex. The purpose of the multiple layers developed in the regional model is to allow for more accurate representation of the effects of pumping Facility groundwater extraction wells. The configuration of the local model layers inherited from the regional model was not modified except that an adjustment of 3 feet was added to the elevations to account for a change in the vertical datum.

The local model used a finer grid spacing than the regional model. The regional model used a grid with 106 columns, 83 rows, and 8 layers for a total of 70,384 cells. The local model uses 204 columns, 193 rows, and 8 layers for a total of
314,976 finite-difference cells. Local grid spacing ranges from 20 feet within the interior of the model to 120 feet along its margins.

The models were run under steady state conditions.

E.2.1.2 Boundary Conditions

The local model grid is bounded by a combination of constant head boundaries and no flow boundaries inherited from the regional model. No-flow or inactive cells are used to represent bedrock outcrops along the western edge of the model grid beneath the area of Mirabeau Point Park. Boundary conditions are shown in plan on Figure E-2, and in cross section on Figures E-3 and E-4.

A review of potentiometric data collected from nested wells indicates that there is no significant difference in vertical head between wells screened in different layers within the model domain. Therefore, differences in vertical head between model layers were not incorporated into the boundary conditions.

The constant head boundaries inherited from the regional model were adjusted to reflect water level conditions in spring and fall of 2008.

E.2.1.3 Spokane River

The effect of the Spokane River on groundwater flow near the Facility was simulated in both the regional and local models using the river package in MODFLOW. To do this, river nodes were specified along the track of the Spokane River in the regional model as shown on Figure E-1 and the local model shown on Figure E-2.

For the local model, the river bottom elevation, riverbed conductance, and a single constant value for river stage were specified for each river cell based on the Kaiser staff gage readings collected in April and October 2008, and spatial river-level trends used in the regional model. The river bottom elevation was assumed to be 5 feet below the October 2008 river stage. A high riverbed conductance was used so any restrictions on flow between the aquifer and river were minimized.

E.2.1.4 Baseline Pumping Wells and Infiltration Galleries

Kaiser IRM Extraction Wells. As part of an Interim Remedial Measure (IRM), Kaiser has installed various extraction wells at the Facility (e.g., WW-EW-1, WW-EW-2, OH-EW-1, WW-UVB-1). The wells are treated as extraction wells pumping from multiple layers. The pumping rates between model layers are allocated by the MNW package in MODFLOW-2000. Flow through the well bore of an MNW is distributed dynamically based on transmissivity and hydraulic head differences between the respective model layers. Drawdown constraints are specified, which are set to the top of screen for each well withdrawal if the hydraulic head drops to the top of the screen. Because of the high transmissivity of the aquifer, most of the pumping from each well is allocated by the model to the top layer that the well is assigned to. Historical pumping wells and associated pumping rates are presented in Table E-1.

Kaiser Water Supply Wells. Potable water is currently supplied to Kaiser from the North Water Supply Well. In the model, the North Water Supply Well is assigned a constant pumping rate of 0.26 million gallons per day (MGD).

Off-Site Wells. No off-site pumping wells are located within the local model domain.

Infiltration Galleries. A series of infiltration galleries are used to infiltrate groundwater extracted from WW-UVB-1. These infiltration galleries are designated WW-UVB-1-HSS, WW-UVB-1-HSM, and WW-UVB-1-HSN. The infiltration galleries are simulated by defining a series of injection wells in cells along the alignment of the galleries. The infiltration volume is divided equally among the injections wells. The total volume of infiltration groundwater is equal to the total volume of groundwater extracted from WW-UVB-1 in 2008, which for modeling purposes is about 3.35 MGD.

E2.2 Calibration and Verification

Calibration is defined by the ASTM as "the process of refining the model representation of the hydrogeologic framework, hydraulic properties, and boundary conditions to achieve a desired degree of correspondence between the model simulations and observations of the groundwater flow system" (ASTM 1993). Calibration of a flow model is a demonstration that the model is capable of reproducing measured heads and flows. Calibration is accomplished by finding a set of parameters and boundary conditions that produce simulated heads and fluxes that match field-measured values within an acceptable range of error. The regional model was calibrated using a time-drawdown data from pumping tests data from wells TF-EW-1, OH-EW-2, and WW-EW-1. The development, calibration, and verification of the regional model are documented in the 2003 RI/FS (Hart Crowser 2003).

Verification is a process in which the calculated heads are compared to observed head values collected from a period of time different from the observations used in calibration. The process of verification is very similar to the calibration process except that changes to the model are limited to those parameters that can be expected to change with time. The verification process also provides a measure of the model's ability to simulate differing hydrologic conditions. The regional model calibration was verified using an 18-month (Feb 1994-Sept 1995) transient simulation of monthly water level data from 10 wells. The verification procedure indicated that the calibrated model adequately represents groundwater flow conditions at Facility (Hart Crowser 2003).

E.2.2.1 Local Model Verification

Procedure. Verification of the local model under steady state conditions was achieved using groundwater level data collected in April and October 2008. During the verification process, model layers, hydraulic conductivity, and recharge were not changed from those values established during calibration of the regional model. The pumping rates of extraction wells active during the verification period were assigned the average 2008 pumping rates and were not changed during the verification process. Note that extraction wells WW-EW-2 and the WW-UVB-1 extraction and injection systems were not operational when the regional model was calibrated. The river stage and constant head conditions were adjusted during the verification to reflect seasonal changes in the hydrologic system. The head values observed in April 2008 were consistently higher, in the range of 4 to 5 feet, than heads observed in October. Adjustments were made to the constant head boundary values to reasonably reflect the overall higher groundwater elevations.

Model verification is based on target head values from groundwater levels measured in monitoring wells within the model grid. A target is defined as a field-measured value that is used to compare with model-computed values. The target heads were derived from manual water level measurements taken from a wide variety of monitoring, skimming, and pumping wells. No attempt was made to exclude water levels from wells that are suspected to have potential errors because of inconsistent survey datum (e.g., WW-MW-017 and WW-SKI-1). Table E-2 provides a list of the wells included as verification targets.

The verification results are considered successful if a reasonable match between the calculated head values and the observed target head values are achieved based on residual statistics. Large differences in observed and model-predicted heads were noted in several wells, which could not be accommodated without significantly modifying the aquifer properties. No attempt was made in developing the local model to change model layers, hydraulic conductivity, and recharge. The differences between the observed and model-predicted heads can also be caused by local variations such as recharge (e.g., leaking sewers), aquifer parameters (e.g., subsurface high permeability channels or low permeability silt lenses), proximity to pumping wells (e.g., local variations caused by a cone of depression and/or rapid changes in gradient), or errors in head (e.g., measurement error and/or inconsistent survey datum).

The residual is the difference between the observed value of head in a monitoring well and the calculated value of head from the model cell containing the monitoring well. According to the sign convention established in Groundwater Vistas, a residual is considered positive when the calculated value of head is less than the observed head value. Several simple statistical measures were used to evaluate the residuals, including mean, absolute mean, standard deviation, and sum of squared residuals.

While there are no absolute measures for verification of a groundwater model, the author of Groundwater Vistas has suggested that a good calibration of the model is achieved when the ratio for the residual standard deviation to the total change in head is less than 10 percent; and the residual standard deviation is \pm 5 percent of the range in head (ESI 2007).

Verification Results. The model statistics for the April and October 2008 verification simulations are presented in Table E-2. The head residual for both the April and October 2008 simulations had a mean value of less than 1.50 feet. The residual mean standard deviation was less than 1.00, and the ratio of standard deviation to total head change of about 5 percent (Table E-2). In general the model tends to predict lower heads than the corresponding field measurements. The maximum difference between the calculated and observed heads for the April and October 2008 simulations was only 3.58 and 3.84 feet, respectively. Also, the corresponding range of observations was less than 18 feet within the modeled area. The residual statistics indicate a good calibration of the local model has been achieved.

The verification analysis using 2008 water levels indicates that the initial model calibration is very robust for use in reproducing groundwater conditions many years after the regional model was first calibrated. Based on the local model ability to represent groundwater level data collected in 2008, the local model is considered to be a reliable tool for use in evaluating groundwater remedies at the Facility.

E.3 CAPTURE ZONE ANALYSIS

Hydraulic containment is one of the primary objectives of groundwater extraction at the Facility. Capture zone analysis was performed to determine the effectiveness of the current IRM for hydraulic containment at the Facility and to evaluate various groundwater containment remedial alternatives evaluated as part of the FS.

Capture zone refers to the three-dimensional region that contributes the groundwater extracted by one or more wells or drains. A capture zone in this context is equivalent to the "zone of hydraulic containment." If a contaminant plume is hydraulically contained, contaminants moving with the groundwater will not spread beyond the capture zone.

Capture zone analysis was performed using the following procedure.

Step 1. Review site geology and hydrogeology data, site conceptual model, and remedy objectives.

Step 2. Define target capture zone based on containment-specific, 3-dimensional (3-D) plume dimensions.

Step 3. Define pumping rates to achieve hydraulic containment using site-specific groundwater flow model in combination with particle tracking.

Six petroleum plumes and one PCB plume were identified that will potentially require hydraulic containment. These plumes are located in the following areas of the site:

- Oil House Area North Plume;
- Oil House Area South Plume;
- Wastewater Treatment Area North Plume;
- Wastewater Treatment Area South Plume;
- Cold Mill Area Plume;
- Oil Reclamation Building (ORB) Area Plume; and
- Remelt/Hot Line PCB Plume

The footprint of each plume is based on the extent of contamination, shown on Figures 4-1 through 4-3. The local model was used to evaluate the capture zone of the existing IRM and to estimate the pumping rates required to hydraulically contain the contaminant plumes for various remedial alternatives.

Particle tracking was used to evaluate the capture zone created by the existing IRM and hypothetical extraction wells. Particle tracking was performed using a version of MODPATH 3.0 provided with Groundwater Vistas. Particle tracking helps to visualize the groundwater flow field, evaluate capture zones, and to track contaminant flow paths. The following general procedures were used for particle tracking analysis. One particle was assigned to each model cell in the

defined capture zone. Particles were placed at the midpoint of each layer. For all MODPATH simulations, particles were specified to stop as they enter a weak sink cell.

Particle tracking was conducted using two methods. The first method used a forward tracking approach. At the beginning of the simulation, clouds of particles corresponding to the footprint of each plume requiring capture were released and allowed to migrate toward the extraction wells. One particle was assigned to each model cell within the footprint of the contaminant plume. Particles were placed at the midpoint of each layer and were specified to stop as they enter the cell containing an extraction well or boundary cell. Forward particle tracking is the preferred method of determining hydraulic containment of the footprint of a plume. Containment was considered successful if at least 98 percent of the particles defining the capture zone were captured by a well.

The second method used a reverse tracking approach. At the beginning of the simulation, particles are introduced into a well and are tracked backward along flow path lines to their source or point of origin. Reverse particle tracking is the preferred method for determining the capture zone for an individual well. The number of particles introduced into an individual well varied from 20 to 40. A larger number of particles were used (e.g., WW-EW-1) when necessary to enhance the definition of the capture zone around the upgradient side of a well.

E.4 REMEDIAL ALTERNATIVE SCENARIO EVALUATIONS

The local model was used to quantitatively assess hydraulic containment and capture zones under various scenarios of well placement and operation. Details of each model scenario are summarized in Table E-3.

E.4.1 Petroleum Hydrocarbon Model Scenarios

Scenario 1— Alternative C1: Existing IRM

Scenario 1 represents the baseline IRM featuring extraction from the four operating groundwater extraction wells WW-EW-1, WW-EW-2, WW-UVB-1, and OH-EW-1, currently operating at the Facility. These wells pump groundwater from deep in the aquifer and do not contain detectable contamination such as that detected in the shallow portion of the aquifer. Scenario 1 is equal to FS Alternative C1. The extraction rates assigned to the extraction wells are based on the 2008 values presented in Table E-3. Groundwater from extraction wells WW-EW-1, WW-EW-2 and OH-EW-1 is either used on site as process water or discharged to the Wastewater Treatment area outfall without treatment prior to

discharge to the Spokane River. Groundwater from WW-UVB-1 is discharged to the horizontal infiltration galleries WW-UVB-1-HSN, WW-UVB-1-HSM, and WW-UVB-1-HSS in the Wastewater Treatment area. The UVB horizontal infiltration galleries were treated as a series of injections wells. Figure E-5 shows the layout of the extraction wells and horizontal infiltration galleries defined for the baseline Scenario 1.

The modeled extent of the hydraulic containment defined by reverse particle tracking provided by the baseline IRM is shown on Figure E-5. Figure E-6 demonstrates the containment of petroleum hydrocarbons plumes by forward particle tracking. The capture zone of the baseline IRM provides hydraulic containment for the Oil House, Cold Mill, and Wastewater Treatment areas petroleum hydrocarbon plumes but not the ORB petroleum hydrocarbon plume.

Scenario 2— Alternative C2 Scenario C2a Expanded IRM (WW-EW-3)

Scenario 2 is FS Alternative C2 Scenario C2a. This scenario features the baseline IRM groundwater extraction wells, infiltration galleries for WW-UVB-1, plus pumping from extraction well WW-EW-3. In addition to the four wells included in Scenario 1, WW-EW-3 extracts groundwater at a rate of 1.5 MGD (Table E-3). Under this alternative, oxygenated water from WW-UVB-1 and WW-EW-3 are discharged to vertical and horizontal screens in the Wastewater Treatment area. The water from WW-EW-3 is discharged to infiltration galleries WW-EW-3-HS. Figure E-7 shows the well and horizontal screen layout used for this scenario.

The capture zone of the expanded IRM defined by reverse particle tracking under Scenario 2 is shown on Figure E-7. Figure E-8 shows the containment of petroleum hydrocarbons plumes by forward particle tracking. The capture zone of the expanded IRM provides containment for the Oil House, Cold Mill, and Wastewater Treatment areas petroleum hydrocarbon plumes as well as ORB area plume.

Scenario 3— Alternative C2 Scenario C2b Baseline IRM with ORB Containment

This scenario features the baseline IRM groundwater extraction wells, infiltration galleries, and pumping from hypothetical wells to provide hydraulic containment for the ORB petroleum plume. Scenario 3 is equal to FS Alternative C2 Scenario C2b. In addition to the four wells included in baseline Scenario 1, an extraction well ORB-FEW-1 was added to provide hydraulic containment of the ORB petroleum plume. The pumping rate for ORB-FEW-1 was adjusted until the capture zone incorporated the lateral extent of the ORB petroleum hydrocarbon plume. ORB-FEW-1 was assigned a final rate pumping rate of 0.6 MGD. Under

this scenario, oxygenated water from WW-UVB-1 is discharged to vertical and horizontal screens in the Wastewater Treatment area and the water from ORB-FEW-1 is pumped to the Wastewater Lagoon prior to discharge to the Spokane River. Figure E-9 shows the well and horizontal screen layout used for this scenario.

The capture zone of the Scenario 3 system defined by reverse particle tracking is shown on Figure E-9. Figure E-10 demonstrates the containment of petroleum hydrocarbons plumes by forward particle tracking. The capture zone of the Scenario 3 system provides containment for the Oil House, Cold Mill, Wastewater Treatment, and ORB areas petroleum hydrocarbon plumes.

Scenario 4— Alternative C2 Scenario C2c Plume Specific Containment

Scenario 4 is FS Alternative C2 Scenario C2c. Scenario 4 evaluates the pumping requirements to provide plume-specific containment without operation of the baseline IRM groundwater extraction wells. Forward particle tracking was used to evaluate hydraulic containment under Scenario 4. Initially, one extraction well was placed at the downgradient edge of each petroleum plume. Additional wells were added to provide containment and minimize pumping rates. The pumping rates were adjusted until the particles used to define the plume were captured by extraction well(s). One extraction well was sufficient to hydraulically contain the four smaller plumes (ORB, Cold Mill, Oil House South, and Wastewater Treatment South) and three wells were necessary to contain the larger Oil House North and Wastewater Treatment North plumes. The pumping rates to achieve hydraulic containment for each of the plumes are summarized in Table E-3. Under this scenario, extracted water is treated before disposal into the Spokane River or some other off-site location. Figure E-11 shows the well layout used for Scenario 4 and illustrates the containment of the petroleum hydrocarbon plumes using forward particle tracking.

Scenario 5— Alternative C4 Baseline IRM with Plume Pump and Treat

Scenario 5 includes the baseline IRM groundwater extraction wells and pumping from hypothetical wells to provide enhanced groundwater treatment of the petroleum hydrocarbon plumes. Scenario 5 is Alternative C4. One additional extraction well was placed in the center of the six plumes. The extraction rates for the hypothetical Scenario 5 wells were set at the flow rate of groundwater passing through each plume. The basis for estimates of groundwater flow for each plume is presented in Table E-4. The IRM and Scenario 5 extraction well rates are summarized in Table E-3. Under this alternative, groundwater extracted from the new pump and treat wells is treated before being discharged into the Spokane River or some other off-site location. Figure E-12 shows the well and infiltration gallery layout used for Scenario 5 and also demonstrates the containment of the petroleum hydrocarbon plumes using forward particle tracking methods.

E.4.2 PCB Model Scenarios

Five model scenarios were evaluated for containment of the Remelt/Hot Line PCB plume. To demonstrate containment of the Remelt/Hot Line PCB plume groundwater particles were assigned to cells corresponding to the plume footprint in Layers 2, 3, and 4. Water from the new PCB plume containment wells was infiltrated into a horizontal gallery upgradient of the Oil House area. Infiltration was simulated by assigning recharge values to model cells in Layer 1 equal to the amount of water from the extraction wells.

Baseline – Alternative D1

The baseline conditions representing the baseline IRM was evaluated as Scenario 1. Scenario 1 does not provide containment for the Remelt/Hot Line PCB plume (see Figures E-5 and E-6).

Scenario 6— Alternative D2a Leading Edge of the PCB Containment

Scenario 6 represents the baseline IRM provided in Scenario 1 and containment at the leading edge of the Remelt/Hot Line PCB plume. One hypothetical pumping well PCB-FEW-1 was located at the leading edge of the PCB plume and assigned to Model Layer 2. Scenario 6 is FS Alternative D2a. The pumping rate for PCB-FEW-1 was adjusted until the capture zone incorporated the lateral and vertical footprint (Model Layers 1 through 4) of the Remelt/Hot Line PCB plume. PCB-FEW-1 was assigned a final rate pumping rate of 3.76 MGD. Water from PCB-FEW-1 is infiltrated in a horizontal gallery upgradient of the Oil House area specified as 10 recharge cells in Layer 1. The recharge rate to simulate infiltration of water from the PCB extraction wells is 84.48 inches per day. Figure E-13 shows the layout of the extraction wells and horizontal infiltration galleries defined for Scenario 6. Baseline pumping rates are presented in Table E-4.

Figure E-13 demonstrates the complete containment of Remelt/Hot Line PCB plume under Scenario 6 by forward particle tracking.

Scenario 7— Alternative D2b - Containment of the PCB Plume.

This scenario features the baseline IRM groundwater extraction wells, infiltration galleries, and pumping from three hypothetical wells (PCB-FEW-2, PCB-FEW-3

and PCB-FEW-4) assigned to Model Layer 2 to provide hydraulic containment of the Remelt/Hot Line PCB plume. Scenario 7 is essentially equivalent to FS Alternative D2b. The pumping wells were located at the leading edge of the deeper portion of the PCB plume, which is located historically between deep wells HL-MW-24DD (<5 ng/L) and HL-MW-28DD (20 ng/L). The pumping rates for PCB wells were adjusted until the capture zone incorporated the lateral and vertical (Model Layers 1 through 4) extent of the Remelt/Hot Line PCB plume. The total extraction rate is 3.03 MGD. Under this scenario, water from PCB extraction wells is discharged to horizontal infiltration galleries upgradient of the Oil House area specified as 10 recharge cells in Layer 1. The recharge rate to simulate infiltration from the PCB extraction wells is 69.29 inches per day. Figure E-14 shows the well and horizontal screen layout used for this scenario.

Figure E-14 demonstrates containment of Remelt/Hot Line PCB plume under Scenario 7 by forward particle tracking. The capture zone of the Scenario 7 system provides containment for the Remelt/Hot Line PCB plume east of the PCB extraction wells.

Scenario 8— Alternative D3 PCB Containment with Treatment, and Reinjection Upgradient of the Remelt Building

Scenario 8 is the same as Scenario 7 except that extracted PCB containment water is infiltrated into the ground in an area upgradient of the Remelt building.

Under this scenario, water from PCB extraction wells are discharged to horizontal infiltration galleries upgradient of the Remelt building specified as five recharge cells in Layer 1. The recharge rate to simulate infiltration from the PCB extraction wells is 139.66 inches per day. Figure E-15 shows the well and horizontal screen layout used for this scenario.

Figure E-15 demonstrates containment of Remelt/Hot Line PCB plume under Scenario 7 by forward particle tracking. The capture zone of the Scenario 7 system provides containment for the Remelt/Hot Line PCB plume east of the PCB extraction wells.

Scenario 9 - Alternative D4 Baseline IRM with Partial Source Removal

This scenario features the baseline IRM groundwater extraction wells, infiltration galleries, and pumping from a hypothetical well (PCB-FEW-6) assigned to Model Layer 2 located near the source area to provide partial contaminant mass removal of PCBs. Scenario 9 is FS Alternative D4. The pumping well is located close to the source area but outside the Remelt building. The total extraction rate is 300,000 gpd. Under this scenario, water from PCB extraction wells are

discharged to horizontal infiltration galleries upgradient of the Remelt building specified as five recharge cells in Layer 1. The recharge rate to simulate infiltration from the PCB extraction well is 13.79 inches per day.

Figure E-16 shows the well and horizontal screen layout used for Scenario 9. Table E-4 summarizes the pumping and infiltration rates under Scenario 9.

Figure E-16 presents the area of containment of Remelt PCB plumes by reverse particle tracking. The capture zone of the Scenario 9 system provides partial containment for the Remelt/Hot Line PCB plume.

Scenario 10 - Preferred Alternative D2b Baseline IRM with PCB Containment and Infiltration

Figure E-17 shows the well and horizontal screen layout used for the Preferred Alternative which is essentially equal to Scenario 7 (Alternative D2b). Table E-4 summarizes the pumping and infiltration rates under Scenario 7. Figure E-17 also presents the area of containment of the Preferred Alternative by reverse particle tracking.

E.5 GROUNDWATER FLUX AND FLUSH RATES

Groundwater flux rates through the petroleum hydrocarbon and PCB plumes were calculated for existing (baseline) conditions and for each of the remedial alternatives using a particle tracking approach using MODPATH simulations of the various scenarios. MODPATH is program that takes the output of groundwater flow distribution generated by MODFLOW to calculate the groundwater velocity distribution throughout the groundwater system, which then is used to determine flow paths or pathlines of particles. The pathlines of these particles that can be used to visualize groundwater flow system and calculate groundwater travel times.

The baseline groundwater flux conditions were calculated from average hydraulic conductivity of 3,000 ft/day, gradients from 2008 groundwater contour maps, and dimensions of the plumes as observed in isoconcentration maps from data collected through 2010. Baseline groundwater volume and flux calculations for each of the petroleum hydrocarbon and PCB plumes are presented in Table E-5.

The change in groundwater flux generated by the various model scenario simulations was evaluated using particle tracking methods. The faster a modeled particle moves through the plume the greater the groundwater flux. It was assumed that particle travel time through a plume is inversely proportional to change in groundwater flux. Varying the volume of groundwater extraction and to a lesser extent the number and location of extraction wells can influence the particle travel time. For example, increasing the volume of groundwater extraction will decrease the particle travel time. Adding extraction wells can also decrease the travel time by increasing the groundwater flux through a plume. By measuring the changes in particle travel times the average change in groundwater flux generated by the various scenarios can be compared.

To evaluate the change in groundwater flux created by the various scenarios, the change in particle travel times were compared to baseline groundwater travel times though each plume. For example, under baseline conditions the longest travel time it takes a particle to travel through the Oil House area North plume is 20 days. For Scenario 4 groundwater travel time through the same plume is just 9 days. Assuming that the decrease in travel time is inversely proportional to groundwater flux rate, the effective groundwater flux through the Oil House area North plume is increased by 122 percent compared to baseline under Scenario 4.

Particle travel times were measured during a combination of reverse and forward tracking methods. For the forward tracking, a line of particles was placed on the upgradient side of the plume. The time it took the particles to either be captured by a pumping well or pass completely through the plume was recorded. Reverse tracking, where particles are place in the pumping well and the flow is reversed, was also used to record travel times. Results of the two methods were used to determine the travel times through the plumes. The travel times through the plumes using particle tracking is presented in Table E-6.

E.6 RESTORATION TIME FRAME – REMELT/HOT LINE PCB PLUME

The time required to meet the groundwater cleanup goals for the Remelt/Hot Line PCB plume was estimated using a mass balance approach to model the mass transfer from smear zone soil to groundwater. The method is discussed below.

Colloidal transport of PCBs in the Remelt/Hot Line PCB plume is suspected (Hart Crowser 2012). However, the effect of colloidal particles on the mass transfer of PCBs is not well understood. For the purposes of this FS, the sole mechanism for reducing the mass of PCBs in smear zone soil is assumed to be through leaching of PCBs from smear zone soil into groundwater. The time required to meet the groundwater preliminary cleanup levels (PCULs) for PCBs in the Remelt/Hot Line plume (Section 5) was estimated by analyzing the

relationship between the contaminant concentration in smear zone soil and the contaminant concentration in groundwater. The analysis was completed under the following assumptions:

- The equilibrium relationship between soil and groundwater contaminant concentrations is linear;
- Equilibrium between the sorbed and aqueous phases is attained virtually instantaneously;
- There are no continuing sources of mobile contamination, such as residual oil, in the unsaturated zone, and that the contaminant mass in smear zone soil acts as the sole source of contaminants that could leach into groundwater;
- Based on the high water content of the saturated zone and the low vapor pressure of the contaminant, the contaminant concentration in the gaseous phase is negligible;
- The PCB mass in the smear zone is 100 percent leachable; and
- Restoration of groundwater is complete once the concentration of PCBs in smear zone soil are below the calculated concentration judged to be protective of groundwater and/or surface water (although groundwater will ultimately be considered to meet CULs once it is empirically demonstrated to do so).

These assumptions result in an estimated optimistic restoration time frame. Longer time frames would result if the following were considered, such as the amount of time that is actually required for contaminant in smear zone soil and groundwater to reach equilibrium.

Additionally, as the water table fluctuates through the smear zone, the contaminants at the top of the smear zone are in contact with groundwater for a very short time and may continue to act as an ongoing source long after the majority of the contaminant mass that is in contact with groundwater has been removed.

The equilibrium groundwater contaminant concentration is related to soil contaminant concentration on a macroscopic scale by a soil/water partitioning coefficient (in L/kg) (K_d), assuming a linear relationship between groundwater (C_w) and soil contaminant concentration (C_s) according to the following equation:

$$C_s = K_d \cdot C_w \tag{5}$$

The dynamics of the groundwater and smear zone soil system were analyzed using a mass balance approach, in which the rate of mass entering the system is defined as being equal to the rate of mass leaving the system plus accumulation of mass in the system.

$$input = output + accumulation \tag{6}$$

Substituting parameters specific to the groundwater and smear zone soil system results in the following differential equation:

$$Q \cdot C_{w1} = Q \cdot C_{w2} + \frac{dm_s}{dt}$$
⁽⁷⁾

where:

- Q is the volumetric groundwater flow rate through the system (L/day);
- C_{wI} is the groundwater contaminant concentration entering the system (ng/L);
- $C_{\scriptscriptstyle W2}$ is the groundwater contaminant concentration leaving the system (ng/L); and
- dm_s/dt is the differential change in contaminant mass in the system per time (ng/day).

Volumetric flow rate is defined in units of volume per time. Groundwater concentration is defined as contaminant mass per unit volume of groundwater. The contaminant concentration entering the system is assumed to be zero, and, therefore, the equation reduces to the following differential equation:

$$\frac{dm_s}{dt} = -Q \cdot C_{w2} \tag{8}$$

Thus, the rate of change of contaminant mass in the system is equal to the concentration of contaminant leaving the system (for example, through groundwater extraction or biological degradation) multiplied by the groundwater flow rate through the system.

The mass of contaminant in the system is defined as residing in the sorbed phase in smear zone soil. For contaminant mass to leave the system, contaminant mass must transfer from the sorbed phase into the groundwater that flows through the system. This evaluation assumes that this transfer occurs virtually instantaneously and is defined on a macroscopic scale by the soil/water partitioning relationship defined in equation (5). This is accounted for by substituting equation (5) into equation (9) for $C_{w_{2}}$ which results in equation (9):

$$\frac{dm_s}{dt} = -Q \cdot \frac{C_s}{K_d} \tag{9}$$

The units of contaminant concentration in soil (C_s) are defined as mass of contaminant (m_s) per unit mass of soil (M). Substituting this definition into equation (9) gives:

$$\frac{dm_s}{dt} = -Q \cdot \frac{m_s}{K_d M} \tag{10}$$
where:

M is the mass of the soil (kg).

Solving equation (10) results in the following first-order decay relationship:

$$m(t) = m_0 \cdot e^{\frac{-Q}{K_d M}t} \tag{11}$$

where:

m(t) is the contaminant mass at time t (grams); and m_0 is the initial contaminant mass in the system (grams).

The change in contaminant mass over time in the groundwater and smear zone soil system is described as a first-order decay process, where the mass decreases at a rate proportional to its value at time t (i.e., the lower the mass, the slower the mass removal rate), as shown in equation (10) above.

Equation (11) can be rearranged to solve for the restoration time frame:

$$t = \frac{-K_d M}{Q} \ln\left(\frac{m(t)}{m_o}\right)$$
(12)

where:

t is the restoration time frame (days); and m(t) is the mass in smear zone soil that is protective of groundwater.

The relationship shown in equation (12) is used to estimate the restoration time frames for the COCs discussed in Section 5 of this FS. Results of these estimates are presented in Table 2 of the PCB Restoration Time Frame Memorandum in Appendix I.

E.7 PCB GROUNDWATER ATTENUATION FACTOR

The Remelt/Hot Line PCB plume extends to the west southwest from one or more sources areas in the Remelt area. PCB concentrations show a steady decline from a high of 2,000 ng/L to less than 5 ng/L within 500 feet of the Spokane River. The cause of this steady decline in PCB concentrations is not known but is presumed to be caused by processes such as colloidal transport, biodegradation, sorption, and dispersion. To predict the PCBs concentration at the Spokane River from the Remelt/Hot Line PCB plume and to support the development of remedial alternatives, the historical attenuation of PCB in the plume was modeled using regression analysis. This approach assumes that attenuation processes act equally and predictably along the entire length of the plume.

Regression models are statistical models that describe the variation in one variable (in this case PCBs) when another variable (distance) varies. A plot of the average concentration of total PCBs from indicator wells along the centerline of the plume is shown on Figure E-18. Indicator wells located along the centerline of the plume are considered to be representative of trends in PCB within the Remelt/Hot Line PCB plume. The wells are:

- RM-MW-17S represents source area concentrations;
- HL-MW-29S is located a distance of 450 feet from the source;
- HL-MW-14S is located a distance of 950 feet from the source;
- HL-MW-30S is located a distance of 1,450 feet from the source; and
- HL-MW-32S is located a distance of 1,810 feet from the source.

Historical PCB concentrations from the wells along the centerline of the Remelt/Hot Line PCB plume are presented in Table E-7. For reference the eastern bank of the Spokane River is located approximately 2,300 feet from the source (RM-MW-17S).

Regression analysis was conducted on mean PCB data from the indicator wells along the Remelt/Hot Line plume alignment. A variety of curves were fitted to the data including linear, log, power, polynomial (3-order), and exponential (Figure E-19). The regression analysis was completed using the programs EXCEL and CurveExpert. The sample correlation coefficient (r) values for the various curves presented in Table E-8 ranged from 0.8361 to 0.9987.

Curve Type	Correlation	Coefficient of	Standard Error (S)
	Coefficient (r)	Determination (R2)	
Logarithm	0.9987	0.9974	51
Exponential	0.9968	0.9936	82
Polynomial (3-order)	0.9984	0.9968	100
Geometric	0.9951	0.9902	101
Power	0.9867	0.9736	166
Linear	0.8361	0.6991	563

Table E-8 - Results of Regression Analysis

The decline in PCB concentrations along the plume alignment is best represented by an exponential curve (Figure E-20). Although the logarithm and polynomial curves have higher r values than the exponential curve fit, the Type 1 error analysis shows that difference in r values between the logarithm, polynomial and exponential curve matches are not significant. The logarithm and polynomial curve fit equations were not selected because extrapolated concentrations can be negative, which is impossible in nature. Predicated PCB concentrations using the exponential curve fitted equation are unlikely to be negative.

The exponential regression is represented by the following equation:

 $y = b exp^{(mx)}$

Where

y is the concentration;

x is the distance from source;

b is the PCB concentration in the source area (y intercept); and

m is the slope of the line.

Exponential regression curves were generated to the following PCB datasets (Table E-8).

Mean total PCB concentrations;

- April 2010 total PCB concentrations; and
- October 2010 total PCB concentration.

The best fit exponential regression equations are presented below

- Mean total PCBs
 - $y = 2158.37 \exp^{-0.00298345x}$ (13)
- April 2010 PCBs
 - $y = 1994.7 \exp^{-0.0031x}$ (14)
- October 2010 PCBs

 $y = 1153.5 \exp^{-0.0025x}$ (15)

Plots of the best fit exponential regression curves are shown on Figure E-19.

Using the exponential regression equations, the predicted concentrations as a function of distance from the source area are shown in Table E-9. Based on extrapolation of the regression curves, the total PCB concentration in groundwater at the shoreline of the Spokane River is predicted to be between 2 to 3 ng/L (Table E-9). Predications from regression equations are most reliable for data interpolated within the range of the data. Predications of PCB concentrations extrapolated downgradient of HL-MW-32A must be used with some caution since predications outside the range of the regression data are less certain than predications made within the range of data.

Using the regression equation based on the mean total PCB concentration predications were made for a combination of starting concentrations, distances from the river, and PCB concentrations at the Spokane River. These include the following:

- The PCB source concentrations at RM-MW-17S (approximately 2,300 feet from the river), which does not exceed at concentrations of 0.0064 ng/L at the river. This concentration is predicted to be 60 ng/L (Table E-9).
- The starting PCB concentrations at two injection trenches (located approximately 2,870 and 3,250 feet from the river), which does not exceed the 0.0064 ng/L at the river. These concentrations are predicted to be 325 and 1,035 ng/L, respectively (Table E-10).

E.8 REFERENCES FOR APPENDIX E

American Society for Testing and Materials (ASTM), 1993. Standard Guide for Comparing Ground-Water Flow Model Simulations to Site-Specific Information, D 5490-93. West Conshochoken, Pennsylvania.

Bolke, E.L., and J.J. Vaccaro, 1981. Digital-Model Simulation of the Hydrologic Flow System, With Emphasis on Ground Water, In the Spokane Valley, Washington and Idaho, USGS Open-File Report 80-1300.

Brusseau, M., 1996. Evaluation of Simple Methods of Estimating Contaminant Removal by Flushing Groundwater. Ground Water 34:19-22.

Environmental Simulations, Inc. (ESI), 2007. Guide to Using Groundwater Vistas. Version 5. ESI, Herndon, Virginia.

EPA, 1988c. Guidance on Remedial Actions for Contaminated Ground Water at Superfund Sites. Environmental Protection Agency, Office of Solid Waste and Emergency Response.

EPA, 1996j. Soil Screening Guidance: Technical Background Document. EPA/540/R95/128.

EPA, 2010. EPA Regional Screening Level Tables.

Harbaugh, A.W., Banta, E.R., Hill, M.C., and McDonald, M.G., 2000. MODFLOW-2000, the U.S. Geological Survey modular ground-water model – User guide to modularization concepts and the Ground-Water Flow Process: U.S. Geological Survey Open-File Report 00-92, 121 p.

Hart Crowser, 1996c. Draft Groundwater Remedial Investigation/Feasibility Study, Kaiser Trentwood Facility, Spokane, Washington, J-2644-58. September 1996.

Hart Crowser, 2001. Draft Groundwater Remedial Investigation/Feasibility Study, Kaiser Trentwood Facility, Spokane, Washington, 2644-73. July 12, 2001.

Hart Crowser, 2003. Draft Groundwater Remedial Investigation/Feasibility Study, Kaiser Trentwood Facility, Spokane, Washington, J-2644-76. Modified July 2003. Hart Crowser, 2012. Final Site-Wide Groundwater Remedial Investigation, Kaiser Trentwood Facility, Spokane Valley, Washington. Prepared for Kaiser Aluminum Washington, LLC, by Hart Crowser, Inc. May 2012.

Hill, M.C., 1998. Methods and Guidelines for Effective Model Calibration. United States Geological Survey Water-Resources Investigation Report 98-4005.

Konikow, L.F., Hornberger, G.Z., Halford, K.J., and Hanson, R.T., 2009. Revised multi-node well (MNW2) package for MODFLOW ground-water flow model: U.S. Geological Survey Techniques and Methods 6–A30, p. 67.

Leake, S.A., and Claar, D.V., 1999. Procedures and computer programs for telescopic mesh refinement using MODFLOW: U.S. Geological Survey Open-File Report 99-238, p. 53.

McDonald, M.G., and A.W. Harbaugh, 1988. *MODFLOW, A Modular Three-Dimensional Finite-Difference Ground-Water Flow Model,* United States Geological Survey, Open-File Report 83-875.

National Research Council, 1994. Alternatives for Ground Water Cleanup. Washington D.C.: National Academy Press p. 315

Pankow, J.F., and J.A. Cherry, 1996. Dense Chlorinated Solvents and other DNAPLs in Groundwater. Portland, Oregon: Waterloo Press. p. 522.

Pollock, D.W., 1989. Documentation of Computer Programs to Compute and Display Pathlines Using Results from the U.S. Geological Survey Modular Three-Dimensional Finite-Difference Ground-Water Flow Model, U.S.G.S. Open File Report 89-381.

Pollock, D.W., 1994. User's Guide for MODPATH/MODPATH-PLOT, Version 3: A Particle Tracking Post-Processing Package for MODFLOW, the U.S. Geological Survey Finite- Difference Ground-Water Flow Model. United States Geological Survey, Reston, Virginia. September 1994.

Ward, D.S., Buss, D.R., Mercer, J.W., and Hughes, S.S., 1987. Evaluation of a groundwater corrective action at the Chem-Dyne hazardous waste site using a telescope mesh refinement modeling approach: Water Resources Research, v. 23, no. 4, p. 603–617.

L:\Jobs\2644125\Final FS 05-2012\03 Appendices\Appendix E\Kaiser FS Appendix E.doc

Year	OH-EW-01		WW-EW-01		wv	WW-EW-02		WW-EW-03		-UVB-01	North Supply Well	
	MGD	ft ³ /d	MGD	ft ³ /d	MGD	ft ³ /d	MGD	ft ³ /d	MGD	ft ³ /d	MGD	ft ³ /d
2002	1.27	169,786	5.03	672,460	5.06	676,471	2.38	318,182	2.49	332,888	0.26	34,759
2003	1.17	156,417	3.57	477,273	5.76	770,053	1.48	197,861	0.66	88,235	0.26	34,759
2004	1.26	168,449	4.17	557,487	7.62	1,018,717	0.00	0	0	0	0.26	34,759
2005	1.13	151,070	3.19	426,471	5.10	681,818	0.00	0	0	0	0.26	34,759
2006	1.27	169,786	4.42	590,909	4.14	553,476	1.56	208,556	0.00	0	0.26	34,759
2007	1.29	172,460	2.31	308,824	6.40	855,615	1.10	147,059	1.67	223,262	0.26	34,759
2008	1.28	171,123	4.42	590,909	7.32	978,610	1.17	156,417	3.35	447,861	0.26	34,759

Table E-1 - Historical Groundwater Extraction Pumping Rates

Notes:

Pumping rates are average annual rates in million gallons per day (MGD).

WW-EW-03 was shut down in the summer of 2008.

Table E-2 - Summary of Verification Statistics

			Apr-08			Oct-08	
Name	Layer	Observed	Computed	Residual	Observed	Computed	Residual
CM-MW-01S	1	1940.24	1939.10	1.14	1936.50	1935.11	1.39
CM-MW-02S	1	1940.13	1939.05	1.08	1936.40	1935.06	1.34
CM-MW-03S	1	1940.12	1939.13	0.99	1936.40	1935.14	1.26
CM-MW-04S	1	1938.61	1937.52	1.09	1934.74	1933.53	1.21
CM-MW-05S	1	1938.65	1937.59	1.06	1934.77	1933.60	1.17
CM-MW-06S	1	1938.91	1937.72	1.19	1934.99	1933.73	1.26
CM-MW-07S	1	1940.34	1939.34	1.00	1936.69	1935.36	1.33
CM-MW-08S	1				1936.79	1935.56	1.23
FO-MW-01S	1	1934.13	1932.96	1.17	1929.90	1928.94	0.96
HL-MW-01	1	1934.55	1933.48	1.07	1930.28	1929.46	0.82
HL-MW-02	1	1935.12	1933.36	1.76	1931.23	1929.35	1.88
HL-MW-04	1	1934.76	1933.21	1.55	1930.97	1929.19	1.78
HL-MW-05	1	1934.85	1933.09	1.76	1931.03	1929.07	1.96
HL-MW-06A	1	1933.72	1931.87	1.85	1929.79	1927.85	1.94
HL-MW-07S	1	1934.21	1932.34	1.87	1930.46	1928.32	2.14
HL-MW-08D	1	1934.23	1932.32	1.91	1930.42	1928.31	2.11
HL-MW-10S	1	1933.21	1931.52	1.69	1928.87	1927.49	1.38
HL-MW-12S	1	1934.46	1932.65	1.81	1930.72	1928.64	2.08
HL-MW-14S	1	1933.30	1931.21	2.09	1929.45	1927.19	2.26
HL-MW-16S	1	1935.05	1933.10	1.95	1931.23	1929.08	2.15
HL-MW-17S	1	1936.00	1934.82	1.18	1932.33	1930.82	1.51
HL-MW-18S	1	1935.77	1934.57	1.20	1931.98	1930.57	1.41
HL-MW-19S	1	1935.58	1934.41	1.17	1931.76	1930.40	1.36
HL-MW-20S	1	1935.35	1933.84	1.51	1931.52	1929.83	1.69
HL-MW-21S	1	1934.75	1933.22	1.53	1930.63	1929.20	1.43
HL-MW-22S	1	1935.23	1934.29	0.94	1931.10	1930.28	0.82
HL-MW-23S	1	1929.15	1928.20	0.95	1924.45	1924.19	0.26
HL-MW-24DD	4	1933.47	1931.15	2.32	1929.61	1927.13	2.48
HL-MW-25S	1	1930.79	1931.75	-0.96	1929.99	1927.73	2.26
HL-MW-26S	1	1934.84	1933.14	1.70	1931.12	1929.13	1.99
HL-MW-28DD	3	1934.56	1932.42	2.14	1930.75	1928.41	2.34
HL-MW-29S	1	1934.85	1933.13	1.72	1931.05	1929.12	1.93
HL-MW-30S	1	1931.33	1929.33	2.00	1927.06	1925.31	1.75
MW-02	1	1928.27	1926.29	1.98	1922.65	1922.30	0.35
MW-04	1	1943.02	1944.54	-1.52	1940.15	1940.54	-0.39
MW-05	1	1941.53	1939.92	1.61	1937.52	1935.93	1.59
MW-08	1	1932.21	1931.57	0.64	1927.42	1927.56	-0.14
MW-09	1	1931.13	1930.40	0.73	1926.41	1926.39	0.02
MW-10	1	1942.47	1942.40	0.07	1938.93	1938.41	0.52
MW-12A	1	1928.43	1926.65	1.78	1922.49	1922.65	-0.16
MW-13	1	1929.87	1929.58	0.29	1925.13	1925.57	-0.44
MW-14	1	1928.42	1927.38	1.04	1922.78	1923.38	-0.60
MW-15	1	1928.05	1926.56	1.49	1922.09	1922.57	-0.48
MW-16	1	1929.77	1927.27	2.50	1925.40	1923.28	2.12
MW-17S	1	1928.92	1927.68	1.24	1924.28	1923.67	0.61
MW-18D	1	1928.94	1927.71	1.23	1924.29	1923.70	0.59
MW-19S	1	1929.20	1928.89	0.31	1923.93	1924.88	-0.95
MW-20D	1	1929.24	1928.92	0.32	1923.96	1924.90	-0.94
MW-21S	1	1928.16	1926.98	1.18	1922.35	1922.98	-0.63
MW-22D	1	1928.13	1927.00	1.13	1922.40	1923.00	-0.60
MW-23S	1	1927.98	1926.13	1.85	1921.74	1922.14	-0.40
MW-24D	1	1928.02	1926.17	1.85	1921.79	1922.17	-0.38
MW-25S	1	1928.66	1926.85	1.81	1923.93	1922.86	1.07
MW-26D	1	1928.66	1926.85	1.81	1923.90	1922.86	1.04

Sheet 1 of 2

Table E-2 - Summary of Verification Statistics

			Apr-08			Oct-08	
Name	Layer	Observed	Computed	Residual	Observed	Computed	Residual
OH-MW-03	1	1937.31	1936.74	0.57	1933.50	1932.73	0.77
OH-MW-05	1				1933.37	1932.46	0.91
OH-MW-08	1				1935.16	1934.18	0.98
OH-MW-10	1	1937.32	1936.69	0.63	1933.58	1932.69	0.89
OH-MW-13	1	1936.92	1936.44	0.48	1932.87	1932.44	0.43
OH-MW-18	1	1936.37	1935.55	0.82	1932.49	1931.55	0.94
OH-MW-24	1	1936.91	1936.31	0.60	1933.07	1932.30	0.77
OH-MW-25	1				1933.31	1932.44	0.87
OH-MW-26	1	1936.99	1936.39	0.60	1933.16	1932.35	0.81
OH-MW-27	1	1935.19	1935.54	-0.35	1932.11	1931.54	0.57
OH-SK-02	1				1934.42	1932.33	2.09
OH-SK-03	1				1932.50	1931.75	0.75
RM-MW-01S	1	1937.71	1934.13	3.58	1931.83	1930.13	1.70
RM-MW-03S	1	1936.73	1935.77	0.96	1933.10	1931.77	1.33
RM-MW-04D	4	1936.74	1935.76	0.98	1933.26	1931.76	1.50
RM-MW-05S	1	1937.91	1937.51	0.40	1934.57	1933.52	1.05
RM-MW-08S	1	1937.51	1936.68	0.83	1933.92	1932.69	1.23
RM-MW-09S	1	1938.88	1938.42	0.46	1935.51	1934.42	1.09
RM-MW-10S	1	1936.93	1936.02	0.10	1933 36	1932.02	1 34
RM-MW-100	1	1937.61	1936.84	0.01	1934.08	1932.84	1.04
RM-MW-13S	1	1937 15	1936.22	0.93	1933.60	1932.22	1.24
RM-MW-14S	1	1936 73	1935 79	0.00	1033 12	1002.22	1.00
RM-MW-140	1	1936.62	1035.73	1.05	1032.08	1031.73	1.00
RM-MW-165	1	1936.39	1935.21	1.00	1932.30	1931.20	1.41
RM-MW-100	1	1936.21	1034.80	1.10	1032.77	1930.88	1.57
TE-MW/-02	1	1000.21	1004.00	1.02	1034 74	1033.67	1.04
TE MW/ 02	1				1025 12	1022.95	1.07
	1	1028.04	1027 20	0.65	1034 22	1022.20	0.92
	1	1025.95	1025.24	0.05	1031 //	1031.34	0.03
	1	1021 /2	1030.03	1.40	1026.80	1025.07	0.10
	1	1931.43	1930.03	0.06	1920.00	1021 59	0.03
TS-WW-013	1	1026 22	1035.00	0.90	1032.05	1021.00	1.07
13-WW-023	1	1930.32	1933.42	0.90	1932.40	1931.42	0.29
	1				1923.23	1924.07	0.30
	1	1022.62	1020.76	1 07	1920.49	1925.72	0.77
	1	1932.03	1930.70	1.07	1920.10	1920.72	1.44
	1	1932.13	1930.44	1.09	1927.79	1920.39	1.40
VVVV-IVIVV-09	1	1931.39	1929.94	1.43	1920.90	1925.90	1.00
	1	1932.74	1931.14	1.60	1926.31	1927.10	1.21
	1	1920.00	1927.93	0.93	1923.00	1923.91	-0.25
VVVV-IVIVV-12	1	1929.12	1926.42	0.70	1924.34	1924.30	0.16
VVVV-IVIVV-13	2	1920.43	1927.00	0.93	1922.90	1923.00	-0.54
	<u> </u>	1920.04	1925.95	2.91	1923.91	1921.00	2.05
	1	1920.79	1927.90	0.04	1923.39	1923.93	-0.56
	1	1929.69	1926.51	1.10	1924.67	1924.41	0.40
WW-SK-02	1	1020.62	1020.24	1 20	1925.30	1924.02	0.46
WW-SK-04		1929.02	1920.34	1.20	1924.09	1924.20	0.41
Residual Mean (I	<u> (M)</u>			1.21			1.01
Absolute Residua	al. Mean (ARM)		1.27			1.16
Residual. Std. De	ev. (RSD)			0.73			0.86
Sum of Squares	(55)			180.61			1/7.60
KIVIS Error				1.41			1.33
IVIIN. Residual				-1.52			-0.95
IVIAX. Residual		2)		3.58			3.80
Range in Observ	ations (RI	U)		15.04			18.41
KSD/RIO				0.05			0.05
Scaled Abs. Mea	n			0.08			0.06
Scaled RMS				0.09			0.07
Number				90			101

Sheet 2 of 2

		Pumping/Ir	jection Rate		Model Lo	cation		Top Screen
			-			Тор	Bottom	Elevation
Scenario	Name	in MGD	in ft ³ /day	Row	Column	Layer	Layer	in feet
	OH-EW-01	-1.28	-171,123	85	143	1	3	1910
	WW-EW-01	-4.42	-590,909	122	77	4	7	1860
	WW-EW-02	-7.32	-978,610	121	78	4	7	1864
1	WW-UVB-01	-3.35	-447,861	131	68	3	5	1953
(Alternative	North Supply Well	-0.26	-34,759	51	177	7	7	NA
(Alternative	Total Extraction	-16.63	-2,223,262					
01)	WW-UVB-01-HSN	1.62	216,580	(a)	(a)	1	1	NA
	WW-UVB-01-HSM	0.97	129,678	(b)	(b)	1	1	NA
	WW-UVB-01-HSS	1.78	237,966	(C)	(c)	1	1	NA
	Total Injection	4.37	584,224					
	Baseline IRM Extraction	-16.63	-2,223,262					
2	Baseline IRM Injection	4.37	584,224					
Z (Altornativo	WW-EW-03	-1.50	-200,000	110	67	1	5	1966
	WW-EW-03-HS	1.50	200,000	(d)	(d)	1	1	NA
C2, C2a)	Total Extraction	-18.13	-2,423,262					
	Total Injection	5.87	784,224					
	Baseline IRM Extraction	-16.63	-2,223,262					
3	Baseline IRM Injection	4.37	584,224					
(Alternative	ORB-FEW-1	-0.75	-100,000	77	107	1	1	NA
C2, C2b)	Total Extraction	-17.38	-2,323,262					
	Total Injection	4.37	584,224					
	WW-FEW-1	-1.05	-140,000	113	67	1	1	NA
	WW-FEW-2	-1.35	-180,000	117	67	1	1	NA
	WW-FEW-3	-1.12	-150,000	123	68	1	1	NA
	WW-FEW-4	-0.97	-130,000	130	76	1	1	NA
	CM-FEW-1	-0.79	-105,000	109	167	1	1	NA
4	CM-FEW-2	-0.79	-105,000	114	160	1	1	NA
4 (Alterrative	ORB-FEW-1	-0.75	-100,000	77	107	1	1	NA
(Alternative	OH-FEW-1	-0.82	-110,000	85	134	1	1	NA
C2, C2C)	OH-FEW-2	-0.90	-120,000	92	135	1	1	NA
	OH-FEW-3	-0.60	-80,000	96	134	1	1	NA
	OH-FEW-4	-0.75	-100,000	104	142	1	1	NA
	North Supply Well	-0.26	-34,759	51	177	7	7	NA
	Total Extraction	-9.87	-1,354,759					
	Total Injection	0.00	0					
	Baseline IRM Extraction	-16.63	-2,223,262					
	Baseline IRM Injection	4.37	584,224					
	WW-FEW-5	-1.18	-157,500	113	83	1	1	NA
-	WW-FEW-6	-0.59	-78,750	131	80	1	1	NA
C (Alta un atta a	CM-FEW-3	-0.56	-75,000	103	145	1	1	NA
(Alternative	ORB-FEW-1	-0.60	-80,000	77	107	1	1	NA
C4)	OH-FEW-5	-0.73	-97,500	87	140	1	1	NA
	OH-FEW-6	-0.43	-57,000	103	145	1	1	NA
	Total Extraction	-20.71	-2,769,012					
	Total Injection	4.37	584,224					

Table E-3 - Petroleum Hydrocarbon Scenario Groundwater Pumping and Injection Rates

Notes

(a) - WW-UVB-01-HSN is simulated by 17 wells injecting at a rate of 12,740 ft³/day (0.1 MGD)

(b) - WW-UVB-01-HSM is simulated by 6 wells injecting at a rate of 21,613 ft³/day (0.16 MGD)

(c) - WW-UVB-01-HSS is simulated by 6 wells injecting at a rate of 39,661 ft³/day (0.3 MGD)

(d) - WW-EW-03-HS is simulated by 16 wells injecting at a rate of 12,500 ${\rm ft}^3\!/{\rm day}$

MODFLOW convention extraction shown by negative pumping rates and injection shown by positive pumping rates

NA - not applicable

Scenario Name in MGD in ft ² /day Row Column Layer Elevation in fest Muser OH-EW-01 -1.28 -171,123 85 143 1 3 1910 WW-EW-01 -4.42 -590,909 122 77 4 7 1860 Baseline WW-UVB-01 -3.35 -447,861 131 68 3 5 1953 System North Supply Well -0.26 -34,759 51 177 7 NA WW-UVB-01+RSN 1.62 216,580 (a) (a) 1 NA WW-UVB-01-HSN 1.62 216,580 (a) (a) 1 NA WW-UVB-01-HSN 1.62 216,783 (b) (b) 1 NA WW-UVB-01-HSN 0.62 223,262 - - - - - Baseline Extraction -16.63 -2223,262 - - - - PCB-3 -1.23 -165,000			Pumping/Ir	jection Rate		Model Lo	cation		Top Screen
Scenario Name in MGD in ft²/day Row Column Layer in feet OH-EW-01 -1.28 -171,123 85 143 1 3 1910 WW-EW-01 -4.42 -550,090 122 77 4 7 1860 WW-UVB-01 -3.35 -447,861 131 68 3 5 1953 System North Supply Well -0.26 -34,759 51 177 7 NA UN-UVB-01-HSN 1.62 216,580 (a) (a) 1 1 NA WW-UVB-01-HSN 1.62 216,580 (a) (a) 1 1 NA WW-UVB-01-HSN 1.62 216,580 (a) (a) 1 1 NA WW-UVB-01-HSN 1.63 -2223,282				Í			Тор	Bottom	Elevation
OH-EW-01 -1.28 -1.71,123 85 143 1 3 1910 WW-EW-01 -4.42 -590,909 122 77 4 7 1860 Baseline WW-UVB-01 -3.35 -447,861 131 68 3 5 1953 KMH-EW-02 -7.32 -978,610 121 78 4 7 1860 KMH-UVB-01 -3.35 -447,861 131 68 3 5 1953 MW-UVB-01 -3.35 -447,861 131 68 3 5 1953 MW-UVB-01-HSN 1.62 -216,580 (a) 1 1 NA WW-UVB-01-HSN 1.62 -2123,262 1 1 NA Total Injection 4.37 584,224 1 1 NA Baseline Extraction -16.63 -2,23,262 1 1 NA D2a) Total Injection 8.07 490,000 1	Scenario	Name	in MGD	in ft ³ /day	Row	Column	Layer	Layer	in feet
WW-EW-01 -4.42 -590.909 122 77 4 7 1860 Baseline WW-EW-02 -7.32 -978.610 121 78 4 7 1860 System North Supply Well -0.26 -34.759 51 177 7 NA D1 North Supply Well -0.26 -34.759 51 177 7 NA D1 WW-UVB-01-HSN 1.62 216,580 (a) (a) 1 1 NA Total Extraction -16.63 -2,223,262 - - - - - - - - - - - - - - - - -		OH-EW-01	-1.28	-171,123	85	143	1	3	1910
Baseline WW-EW-02 -7.32 -978.610 121 78 4 7 1868 System North Supply Well -0.26 -34,759 51 177 7 NA D1 WW-UVB-01-HSN 1.6.2 216,580 (a) (a) 1 NA WW-UVB-01-HSN 1.6.2 216,580 (a) (a) 1 NA WW-UVB-01-HSN 0.97 129.678 (b) (b) 1 1 NA WW-UVB-01-HSN 1.62 216,580 (a) (a) 1 1 NA WW-UVB-01-HSN 1.62 216,580 (a) (a) 1 1 NA WW-UVB-01-HSN 0.97 129.678 (b) (b) 1 1 NA MW-UVB-01-HSN 0.97 7 68 2 2 NA D2a) Total Injection 4.37 584,224 2 NA PCB-1 PCB-3 -1.23		WW-EW-01	-4.42	-590,909	122	77	4	7	1860
Baseline (Alternative D2a) WW-UVB-01 -3.35 -447,861 131 66 3 5 1953 (Alternative D1) Total Extraction -0.26 -34,759 51 177 7 NA (Alternative D1) Total Extraction -16.63 -2,223,262		WW-EW-02	-7.32	-978,610	121	78	4	7	1864
System (Alternative D1) North Supply Well -0.26 -34.759 51 177 7 NA D1) Total Extraction -16.63 -2,223,262	Baseline	WW-UVB-01	-3.35	-447,861	131	68	3	5	1953
Total Extraction -16.63 -2,223,262 VW-UVB-01-HSN 1.62 216,580 (a) (a) 1 1 NA WW-UVB-01-HSN 0.97 129,678 (b) (b) 1 1 NA WW-UVB-01-HSS 1.78 237,966 (c) (c) 1 1 NA WW-UVB-01-HSS 1.78 237,966 (c) (c) 1 1 NA WW-UVB-01-HSS 1.78 237,966 (c) (c) 1 1 NA Total Injection 4.37 584,224	System	North Supply Well	-0.26	-34,759	51	177	7	7	NA
D1) WW-UVB-01-HSN 1.62 216,580 (a) (a) 1 1 NA WW-UVB-01-HSN 0.97 129,678 (b) (b) 1 1 NA WW-UVB-01-HSS 1.78 237,966 (c) (c) 1 1 NA Maseline Extraction -16.63 -2,223,262 -	(Alternative	Total Extraction	-16.63	-2,223,262					
WW-UVB-01-HSM 0.97 129,678 (b) (b) 1 1 NA Total Injection 4.37 584,224 NA 6 (Atternative D2a) Formation -16.63 -2,223,262 NA 7 PCB-1 -3.67 -490,000 89 66 2 2 NA 7 PCB Injection 4.37 584,224 7 PCB Injection 8.04 1,074,224	D1)	WW-UVB-01-HSN	1.62	216,580	(a)	(a)	1	1	NA
WW-UVB-01-HSS 1.78 237,966 (c) (c) 1 1 NA Total Injection 4.37 584,224 6 PCB-1 -3.67 -490,000 89 66 2 2 NA 7 PCB-1 -3.67 -490,000 89 66 2 2 NA Baseline Extraction -20.30 -2,713,262		WW-UVB-01-HSM	0.97	129,678	(b)	(b)	1	1	NA
Total Injection 4.37 584,224 Image: Constraint of the second		WW-UVB-01-HSS	1.78	237,966	(C)	(C)	1	1	NA
Baseline Extraction -16.63 -2,223,262 PCB-1 -3.67 -490,000 89 66 2 2 NA Atternative D2a) Total Extraction -20.30 -2,713,262		Total Injection	4.37	584,224					
6 (Alternative D2a) PCB-1 -3.67 -490,000 89 66 2 2 NA 7 PCB Injection System 3.67 490,000		Baseline Extraction	-16.63	-2,223,262					
b (Alternative D2a) Total Extraction -20.30 -2,713,262 Date -PCB Injection 4.37 584,224	0	PCB-1	-3.67	-490,000	89	66	2	2	NA
Baseline Injection 4.37 584,224 PCB Injection System 3.67 490,000 Total Injection 8.04 1,074,224 Baseline Extraction -16.63 -2,232,262 PCB-2 -0.90 -120,000 65 85 2 2 NA PCB-3 -1.23 -165,000 68 87 2 2 NA PCB-4 -0.90 -120,000 73 89 2 2 NA PCB-3 -1.23 -165,000 68 87 2 2 NA PCB-4 -0.90 -120,000 73 89 2 2 NA D2b) Total Extraction -19.66 -2,628,262	0 (Alterractive	Total Extraction	-20.30	-2,713,262					
D2a) PCB Injection System 3.67 490,000 Total Injection 8.04 1,074,224 Baseline Extraction -16.63 -2,223,262 PCB-2 -0.90 -120,000 65 85 2 2 NA PCB-3 -1.23 -165,000 68 87 2 2 NA (Alternative D2b) New Extraction -3.03 -405,000 73 89 2 2 NA (Alternative D2b) New Extraction -19.66 -2,628,262	(Alternative	Baseline Injection	4.37	584,224					
Total Injection 8.04 1,074,224 Baseline Extraction -16.63 -2,223,262 PCB-2 -0.90 -120,000 65 85 2 2 NA PCB-3 -1.23 -165,000 68 87 2 2 NA PCB-4 -0.90 -120,000 73 89 2 2 NA Alternative New Extraction -3.03 -405,000 - - - - - - NA D2b) Total Extraction -19.66 -2,628,262 -<	D2a)	PCB Injection System	3.67	490,000					
Baseline Extraction -16.63 -2.223,262 PCB-2 -0.90 -120,000 65 85 2 2 NA PCB-3 -1.23 -166,000 68 87 2 2 NA PCB-4 -0.90 -120,000 73 89 2 2 NA (Alternative New Extraction -3.03 -405,000 73 89 2 2 NA D2b) Total Extraction -19.66 -2,628,262		Total Injection	8.04	1,074,224					
PCB-2 -0.90 -120,000 65 85 2 2 NA 7 PCB-3 -1.23 -165,000 68 87 2 2 NA (Alternative New Extraction -3.03 -405,000 73 89 2 2 NA D2b) Total Extraction -1.966 -2,628,262		Baseline Extraction	-16.63	-2.223.262					
PCB-3 -1.23 -165,000 68 87 2 2 NA 7 PCB-4 -0.90 -120,000 73 89 2 2 NA Alternative New Extraction -3.03 -405,000		PCB-2	-0.90	-120.000	65	85	2	2	NA
7 PCB-4 -0.90 -120,000 73 89 2 2 NA (Alternative D2b) New Extraction -3.03 -405,000		PCB-3	-1.23	-165,000	68	87	2	2	NA
New Extraction -3.03 -405,000 D2b) Total Extraction -19.66 -2,628,262 Baseline Injection 4.37 584,224 PCB Injection System 3.03 405,000 Total Injection 7.40 989,224 Baseline Extraction -16.63 -2,223,262 PCB-2 -0.90 -120,000 65 85 2 2 NA PCB-3 -1.23 -166,000 68 87 2 2 NA PCB-4 -0.90 -120,000 73 89 2 2 NA (Alternative New Extraction -3.03 -405,000 73 89 2 NA (Alternative New Extraction -19.66 -2,628,262 D3) Total Extraction -16.63 -2,223,262	7	PCB-4	-0.90	-120,000	73	89	2	2	NA
D2b) Total Extraction -19.66 -2,628,262 Baseline Injection 4.37 584,224 PCB Injection System 3.03 405,000 Total Injection 7.40 989,224 Baseline Extraction -16.63 -2,223,262 PCB-2 -0.90 -120,000 65 85 2 2 NA PCB-3 -1.23 -165,000 68 87 2 2 NA PCB-4 -0.90 -120,000 73 89 2 2 NA (Alternative D3) New Extraction -3.03 -405,000	(Alternative	New Extraction	-3.03	-405,000					
Baseline Injection 4.37 584,224 PCB Injection System 3.03 405,000 Total Injection 7.40 989,224 Baseline Extraction -16.63 -2,223,262 PCB-2 -0.90 -120,000 65 85 2 2 NA PCB-3 -1.23 -165,000 68 87 2 2 NA PCB-3 -1.23 -165,000 68 87 2 2 NA PCB-4 -0.90 -120,000 73 89 2 2 NA (Alternative New Extraction -3.03 -405,000 -<	D2b)	Total Extraction	-19.66	-2,628,262					
PCB Injection System 3.03 405,000 Total Injection 7.40 989,224 Baseline Extraction -16.63 -2,223,262 PCB-2 -0.90 -120,000 65 85 2 2 NA PCB-3 -1.23 -165,000 68 87 2 2 NA Rependence PCB-4 -0.90 -120,000 73 89 2 2 NA Rependence New Extraction -3.03 -405,000 73 89 2 2 NA D3) Total Extraction -19.66 -2,628,262	, ,	Baseline Injection	4.37	584,224					
Total Injection 7.40 989,224 Baseline Extraction -16.63 -2,223,262 PCB-2 -0.90 -120,000 65 85 2 2 NA PCB-3 -1.23 -165,000 68 87 2 2 NA PCB-3 -1.23 -165,000 68 87 2 2 NA (Alternative D3) New Extraction -3.03 -405,000		PCB Injection System	3.03	405,000					
Baseline Extraction -16.63 -2,223,262 PCB-2 -0.90 -120,000 65 85 2 2 NA PCB-3 -1.23 -165,000 68 87 2 2 NA PCB-4 -0.90 -120,000 73 89 2 2 NA PCB-4 -0.90 -120,000 73 89 2 2 NA PCB-4 -0.90 -120,000 73 89 2 2 NA New Extraction -3.03 -405,000		Total Injection	7.40	989,224					
B PCB-2 -0.90 -120,000 65 85 2 2 NA PCB-3 -1.23 -165,000 68 87 2 2 NA PCB-4 -0.90 -120,000 73 89 2 2 NA PCB-4 -0.90 -120,000 73 89 2 2 NA PCB-4 -0.90 -120,000 73 89 2 2 NA D3) New Extraction -3.03 -405,000		Baseline Extraction	-16.63	-2.223.262					
B PCB-3 -1.23 -165,000 68 87 2 2 NA 8 PCB-4 -0.90 -120,000 73 89 2 2 NA New Extraction -3.03 -405,000 73 89 2 2 NA D3) Total Extraction -19.66 -2,628,262		PCB-2	-0.90	-120.000	65	85	2	2	NA
8 PCB-4 -0.90 -120,000 73 89 2 2 NA (Alternative D3) New Extraction -3.03 -405,000 -40,000 53 108 2 2 NA -405,000 -40,000 53 108 2 2 NA -405,000 -40,000 53 108 2 2 NA -405,000 -40,000 -40,000 -40,000 -40,000 -40,000 -40,000 -40,000 -40,000 -40,000 -40,000 <td></td> <td>PCB-3</td> <td>-1.23</td> <td>-165.000</td> <td>68</td> <td>87</td> <td>2</td> <td>2</td> <td>NA</td>		PCB-3	-1.23	-165.000	68	87	2	2	NA
(Alternative D3) New Extraction -3.03 -405,000 Total Extraction -19.66 -2,628,262 Baseline Injection 4.37 584,224 PCB Injection System 3.03 405,000 Total Injection 4.37 584,224 PCB Injection System 3.03 405,000 Total Injection 4.37 989,224 Baseline Extraction -16.63 -2,223,262 PCB-6 -0.30 -40,000 53 108 2 2 NA Total Extraction -16.93 -2,263,262	8	PCB-4	-0.90	-120.000	73	89	2	2	NA
D3) Total Extraction -19.66 -2,628,262 Baseline Injection 4.37 584,224 PCB Injection System 3.03 405,000 Total Injection 4.37 989,224 PCB-6 -0.30 -40,000 53 108 2 2 NA PCB-6 -0.30 -40,000 53 108 2 2 NA PCB-6 -0.30 -52,263,262	(Alternative	New Extraction	-3.03	-405,000					
Baseline Injection 4.37 584,224 PCB Injection System 3.03 405,000 Total Injection 4.37 989,224 Baseline Extraction -16.63 -2,223,262 PCB-6 -0.30 -40,000 53 108 2 2 NA PCB-6 -0.30 -2,263,262	D3)	Total Extraction	-19.66	-2,628,262					
PCB Injection System 3.03 405,000 Total Injection 4.37 989,224 9 Baseline Extraction -16.63 -2,223,262 PCB-6 -0.30 -40,000 53 108 2 2 NA 7 Total Extraction -16.93 -2,223,262	,	Baseline Injection	4.37	584.224					
Total Injection 4.37 989,224 9 Baseline Extraction -16.63 -2,223,262 PCB-6 -0.30 -40,000 53 108 2 2 NA Total Extraction -16.93 -2,223,262 NA NA NA NA NA		PCB Injection System	3.03	405.000					
9 Baseline Extraction -16.63 -2,223,262 PCB-6 -0.30 -40,000 53 108 2 2 NA (Alternative D4) Baseline Injection 4.37 584,224 PCB Injection System 0.30 40,000 53 108 2 2 NA		Total Injection	4.37	989,224					
9 (Alternative D4) PCB-6 -0.30 -40,000 53 108 2 2 NA 9 (Alternative D4) Total Extraction -16.93 -2,263,262		Baseline Extraction	-16.63	-2.223.262					
9 Total Extraction -16.93 -2,263,262 D4) Baseline Injection 4.37 584,224 PCB Injection System 0.30 40,000		PCB-6	-0.30	-40.000	53	108	2	2	NA
(Alternative D4) Baseline Injection 4.37 584,224 PCB Injection System 0.30 40,000	9	Total Extraction	-16.93	-2.263.262					
PCB Injection System 0.30 40,000	(Alternative	Baseline Injection	4.37	584.224					
	D4)	PCB Injection System	0.30	40.000					
Total Injection 4.67 624,224		Total Injection	4.67	624,224					

Table E-4 - PCBs Scenario Groundwater Pumping and Injection Rates

Notes

(a) - WW-UVB-01-HSN is simulated by 17 wells injecting at a rate of 12,740 ft3/day (0.1 MGD)

(b) - WW-UVB-01-HSM is simulated by 6 wells injecting at a rate of 21,613 ft3/day (0.16 MGD)

(c) - WW-UVB-01-HSS is simulated by 6 wells injecting at a rate of 39,661 ft3/day (0.3 MGD)

MODFLOW convention extraction shown by negative pumping rates and injection shown by positive pumping rates NA - not applicable

|--|

			GW Flux	Depth of	Width of	GW Flux (6)		Length of	Footprint of	Plume	
	Gradient	HC in	in	Plume	Plume				Plume in	Plume in ft ²	Volume
Name	in ft/ft (1)	ft/day (2)	ft ³ /day/ft ²	in feet (4)	in feet (5)	in ft ³ /day	in MGD	in gpm	feet (7)	(8)	in ft ³ (9)
Oil House North	0.0033	3,000	9.9	30	325	96,525	0.72	501	825	191,500	1,723,500
Oil House South	0.0033	3,000	9.9	30	190	56,430	0.42	293	250	33,900	305,100
Wastewater North	0.0050	3,000	15.0	30	350	157,500	1.18	818	1,000	309,000	2,781,000
Wastewater South	0.0050	3,000	15.0	30	175	78,750	0.59	409	325	40,900	368,100
Cold Mill	0.0027	3,000	8.1	30	300	72,900	0.55	379	350	81,000	729,000
ORB	0.0036	3,000	10.8	30	200	64,800	0.48	337	250	37,400	336,600
Remelt PCB	0.0030	3,000	9.0	30	350	94,500	0.71	491	2,200	223,700	2,013,300

Notes

(1) gradient based on plume-specific values observed in October 2008

(2) hydraulic conductivity based on value assigned to Layer 1 in area of plume

(3) flux calculated from gradient x hydraulic conductivity x area of 1 ft^2

(4) depth is the average saturated thickness of model layer 1

(5) width based on measured maximum width of plume based on data in 2010.

(6) groundwater flux = flux (ft^2) x depth x width of plume.

(7) measured length of plume based on data in 2010.

(8) footprint determined from map area of plumes based on data in 2010.

(9) plume volume = footprint (ft^2) x depth (ft) x porosity of 0.3

HC = hydraulic conductivity; GW = groundwater

	Scenario 1 (Alts C1 - D1)		Scenario 2 (Alt C2a)		Scenario 3 (Alt C2b)		Scenario 4 (Alt C2c)		Scen (Alt	ario 5 : C3)	Scen (Alt	ario 6 D2a)	Scenarios 7 & 8 (Alt D2b)	
Name	Travel Time in days	Increase from Baseline	Travel Time in days	Increase from Baseline	Travel Time in days	Increase from Baseline	Travel Time in days	Increase from Baseline	Travel Time in days	Increase from Baseline	Travel Time in days	Increase from Baseline	Travel Time in days	Increase from Baseline
Oil House North	20	NA	20	0	20	0	9	122	14	43	NÁ	NA	NĂ	NA
Oil House South	7	NA	7	0	7	0	3	133	6	17	NA	NA	NA	NA
Wastewater North	20	NA	20	0	20	0	10	100	15	38	NA	NA	NA	NA
Wastewater South	3	NA	3	0	3	0	2	50	2	30	NA	NA	NA	NA
Cold Mill	11	NA	11	0	11	0	4	175	7	57	NA	NA	NA	NA
ORB	6	NA	6	0	4	50	4	50	4	50	NA	NA	NA	NA
Remelt PCB Plume	73	NA	NA	NA	NA	NA	NA	NA	NA	NA	46	59	43	71

Table E-6 - Scenario Travel Time Estimates from Particle Tracking

Notes

NA - not applicable

Increase from baseline is in percent

Sample Date	RM-MW-17S	HL-MW-29S	HL-MW-14S	HL-MW-30S	HL-MW-32S
Oct-2003			220 JP		
Mar-2004			200		
Jun-2004			150		
Oct-2004			120		
Jul-2005			120		
Oct-2005			120		
Jan-2006			99		
Apr-2006			210		
Jul-2006			230 J		
Oct-2006	1800		150		
Feb-2007	2000		180		
Apr-2007	3400		160		
Jul-2007	2500	520	230	160 JP	
Oct-2007	990	440	170	110	
Jan-2008	1700	400 JP	280	120	
Apr-2008	2300	240	160	100 JP	
Jul-2008	1900	1000	170	150	
Oct-2008	2200	510	290	120 JP	
Jan-2009	2500	400	270	140	
Apr-2009	4500	410	240	170	
Jul-2009	1700	1000	400	140	
Oct-2009	1800	460	240	110	10 U
Feb-2010				190	10 U
Apr-2010	2000	420	240	180	10 U
May-2010				220	10
Jul-2010				130 J	7.1
Oct-2010	1100	330	140	26 J	11
Jan-2011				150	5 U
Distance From					
Source in Feet	0	450	950	1450	1810
Statistics					
Mean	2159	511	200	139	9
Median	2000	430	190	140	10
Geomean	2018	470	189	128	9
Std Deviation	868	240	69	44	2
Min	990	240	99	26	5
Max	4500	1000	400	220	11
Count	15	12	24	16	7

Table E-7 Summary of Total PCBs Concentrations - Remelt/Hot Line PCB Plume

Notes

Total PCB concentrations in ng/L

	Tota	I PCB Con	centration	in ng/L
Distance				
from				
Source in				
Feet	Mean	April	October	Mean Data
1	2,157	1,993	1,153	2159
100	1,601	1,468	889	
200	1,188	1,082	685	
300	881	797	528	
400	654	587	407	411
500	485	432	314	
600	360	319	242	
700	267	235	187	
800	198	173	144	
900	147	127	111	200
1,000	109	94	86	
1,100	81	69	66	
1,200	60	51	51	
1,300	45	37	39	
1,400	33	28	30	139
1,500	25	20	23	
1,600	18	15	18	
1,700	14	11	14	
1,800	10	8	11	9
1,900	7.4	6.0	8.2	
2,000	5.5	4.4	6.4	
2,100	4.1	3.3	4.9	
2,200	3.0	2.4	3.8	
2,300	2.3	1.8	2.9	

Table E-9 Predicated PCB Concentrations - Remelt/Hot Line PCB Plume

Notes:

Expotential regression based on Mean, April 2010 and October 2010 data

		S	tarting PCI	3 Concentr	ation at So	ource in ng	L	
Distance								
from								
Source in								
Feet	50	60	100	200	500	1000	2000	4000
0.1	49.985	59.982	99.970	199.940	499.851	999.702	1999.403	3998.807
100	37.093	44.511	74.186	148.371	370.929	741.857	1483.715	2967.429
200	27.526	33.031	55.052	110.103	275.258	550.517	1101.033	2202.066
300	20.426	24.512	40.853	81.705	204.263	408.527	817.053	1634.106
400	15.158	18.190	30.316	60.632	151.579	303.159	606.318	1212.635
500	11.248	13.498	22.497	44.994	112.484	224.968	449.935	899.871
600	8.347	10.017	16.694	33.389	83.472	166.944	333.888	667.775
700	6.194	7.433	12.389	24.777	61.943	123.885	247.771	495.542
800	4.597	5.516	9.193	18.387	45.966	91.933	183.865	367.731
900	3.411	4.093	6.822	13.644	34.111	68.221	136.443	272.885
1000	2.531	3.038	5.063	10.125	25.313	50.626	101.251	202.502
1100	1.878	2.254	3.757	7.514	18.784	37.568	75.136	150.273
1200	1.394	1.673	2.788	5.576	13.939	27.879	55.757	111.514
1300	1.034	1.241	2.069	4.138	10.344	20.688	41.376	82.752
1400	0.768	0.921	1.535	3.070	7.676	15.352	30.704	61.409
1500	0.570	0.684	1.139	2.279	5.696	11.393	22.785	45.570
1600	0.423	0.507	0.845	1.691	4.227	8.454	16.908	33.817
1700	0.314	0.376	0.627	1.255	3.137	6.274	12.547	25.095
1800	0.233	0.279	0.466	0.931	2.328	4.656	9.311	18.622
1900	0.173	0.207	0.345	0.691	1.727	3.455	6.910	13.819
2000	0.128	0.154	0.256	0.513	1.282	2.564	5.127	10.255
2100	0.095	0.114	0.190	0.380	0.951	1.902	3.805	7.610
2200	0.071	0.085	0.141	0.282	0.706	1.412	2.824	5.647
2300	0.052	0.063	0.105	0.210	0.524	1.048	2.095	4.191
2400	0.039	0.047	0.078	0.155	0.389	0.777	1.555	3.110
2500	0.029	0.035	0.058	0.115	0.289	0.577	1.154	2.308
2600	0.021	0.026	0.043	0.086	0.214	0.428	0.857	1.713
2700	0.016	0.019	0.032	0.064	0.159	0.318	0.636	1.271
2750	0.014	0.016	0.027	0.055	0.137	0.274	0.548	1.095
2800	0.012	0.014	0.024	0.047	0.118	0.236	0.472	0.943
2850	0.010	0.012	0.020	0.041	0.102	0.203	0.406	0.813
2900	0.009	0.011	0.018	0.035	0.088	0.175	0.350	0.700
2950	0.008	0.009	0.015	0.030	0.075	0.151	0.302	0.603
3000	0.006	0.008	0.013	0.026	0.065	0.130	0.260	0.519
3050	0.006	0.007	0.011	0.022	0.056	0.112	0.224	0.447
3100	0.005	0.006	0.010	0.019	0.048	0.096	0.193	0.385
3150	0.004	0.005	0.008	0.017	0.042	0.083	0.166	0.332
3200	0.004	0.004	0.007	0.014	0.036	0.072	0.143	0.286
3300	0.003	0.003	0.005	0.011	0.027	0.053	0.106	0.212
3400	0.002	0.002	0.004	0.008	0.020	0.039	0.079	0.158
3500	0.001	0.002	0.003	0.006	0.015	0.029	0.058	0.117
3600	0.001	0.001	0.002	0.004	0.011	0.022	0.043	0.087
3700	0.001	0.001	0.002	0.003	0.008	0.016	0.032	0.064
3800	0.001	0.001	0.001	0.002	0.006	0.012	0.024	0.048
3900	0.000	0.001	0.001	0.002	0.004	0.009	0.018	0.035
4000	0.000	0.000	0.001	0.001	0.003	0.007	0.013	0.026

 Table E-10 Predicated PCB Concentrations based on Mean PCB Regression Equation

Basemap: Greenacres USGS Topographic Quadrangle, 7.5 Minute Series (1986).

Schematic Finite Difference Grid Cross Section A-A'

2644-125 Figure E-3

KNRT

TROWSER 5/12

Schematic Finite Difference Grid Cross Section B-B'

2644-125 Figure E-4

ROWSER 5/12

Figure E-6

Figure E-7

North Supply Well 🗶 🏾 **P** BPA Substation ORB-FEW-1 QQÛ OH-EW-37 Ľ WW-UVB-1-HSN WW-VKB WW-UVB-1-HSM WW-UVB-1-HSS Kaiser Trentwood Works

Capture Zone by Forward Particle Tracking - Alternative C2 Scenario C2c: Plume-Specific Hydraulic Containment

Basemap: Greenacres USGS Topographic Quadrangle, 7.5 Minute Series (1986).

2644-125 Figure E-11 5/12

Capture Zone by Forward Particle Tracking - Alternative C4: Pump and Treat

Figure E-13

Capture Zone by Forward Particle Tracking - Alternative D2a Leading Edge PCB Plume Containment

Ν Approximate Location of New Horizontal Screen CO North Supply Well 🗶 ¹ PCB-FEW-2 PCB-FEW-3 PCB-FEW-4 BPA ЛП Substation QQÛ <u>L'</u> OH-EW-1 R ħ][00 0 WW-EW-1 **WW-EW-2** -WW-UVB-1-HSN ww-uvb-1 WW-UVB-1-HSM WW-UVB-1-HSS Kaiser Trentwood Works

Capture Zone by Forward Particle Tracking - Alternative D3 PCB Plume Containment with Remelt Injection

PCB Concentrations Indicator Wells Centerline of Remelt Plume

EAL 05/14/12 2644125-AC.cdr

Regression Analysis of Mean PCB Concentrations Remelt Plume

2644-125 Figure E-19

5/12

Exponential Regression Best Fit Curve - Centerline Remelt Plume

APPENDIX F NATURAL ATTENUATION AT THE KAISER FACILITY

CONTENTS

F.1 INTRODUCTION	F-1
F.2 NATURAL ATTENUATION OF PETROLEUM AT THE KAISER FACILITY	F-1
F.2.1 What Is the Status of the Petroleum Groundwater Plume at the Site?	F-2
F.2.2 Are Chemical or Biological Degradation Substantial Mechanisms for	
Natural Attenuation of Petroleum at the Site?	F-5
F.2.3 What Is the Estimated Restoration Time Frame?	F-7
F.2.4 Will the Use of Natural Attenuation Be Protective of Human Health and	
the Environment During the Estimated Restoration Time Frame?	F-7
F.2.5 Has Source Control Been Conducted to the Maximum Extent	
Practicable?	F-8
F.3 NATURAL ATTENUATION OF PCBS AND PCBS COMINGLED WITH	
PETROLEUM	F-9
F.3.1 Biodegradation of PCBs in the Environment	F-10
F.3.2 Aerobic Biodegradation of PCBs in the Environment	F-11
F.3.3 Anaerobic Biodegradation of PCBs in the Environment	F-12
F.3.4 Biodegradation in the Oil House and Wastewater Treatment Areas	F-13
F.3.5 Biodegradation/Chemical Degradation in the Remelt Groundwater	
Plume	F-14
F.4 REFERENCES FOR APPENDIX F	F-16

FIGURES

- F-1 Dissolved Oxygen Concentrations in Groundwater Most Recently Measured
- F-2 Oxidation-Reduction Potential in Groundwater Most Recently Measured
- F-3 Iron Concentrations in Groundwater Most Recently Measured
- F-4 Manganese Concentrations in Groundwater Most Recently Measured
- F-5 Arsenic Concentrations in Groundwater Most Recently Measured

<u>Page</u>

APPENDIX F NATURAL ATTENUATION AT THE KAISER FACILITY

F.1 INTRODUCTION

This appendix assesses the occurrence of natural attenuation of petroleum hydrocarbons in groundwater at the Kaiser Facility. This assessment is based on published information on chemical, physical, and biological breakdown of petroleum as well as data from years of monitoring at the Facility. This appendix also presents a summary of published information on the chemical, physical, and biological breakdown of PCBs and PCBs comingled with petroleum products.

F.2 NATURAL ATTENUATION OF PETROLEUM AT THE KAISER FACILITY

Natural attenuation of petroleum hydrocarbons in groundwater can occur through physical, chemical, and biological processes. Physical processes such as advection, diffusion, and dilution typically reduce contaminant concentrations for more effective treatment through biological and chemical processes. Biological and chemical processes destroy hydrocarbon mass, reducing both concentrations and plume dimensions. The following paragraphs focus on biological processes and related lines of evidence for monitored natural attenuation (MNA) as a remedial approach at the Kaiser Facility.

The Final Site-Wide Groundwater Remedial Investigation (Hart Crowser 2012a) and the Final Site-Wide Soil Remedial Investigation (Hart Crowser 2012b) were used to develop the lines of evidence for determining whether natural attenuation has historically occurred, is currently occurring, and will continue to occur in the future at the Facility. Data used include the groundwater flux through the Facility, site-specific contaminant characteristics, biological indicators of natural attenuation, and ongoing groundwater recovery. In general, there is good evidence that natural attenuation is occurring at the Facility.

Ecology has published a guidance document titled Guidance on Remediation of Petroleum-Contaminated Ground Water by Natural Attenuation (Ecology 2005b). This guidance identifies five factors that should be considered and evaluated to consider MNA as a cleanup alternative. This section is organized into the following subsections to reflect the Ecology guidance:

■ F.2.1 What Is the Status of the Petroleum Groundwater Plume at the Site?

- F.2.2 Are Chemical or Biological Degradation Substantial Mechanisms of Natural Attenuation of Petroleum at the Site?
- F.2.3 What is the Estimated Restoration Time Frame?
- F.2.4 Will the Use of Natural Attenuation Be Protective of Human Health and the Environment during the Estimated Restoration Time Frame?
- F.2.5 Has Source Control Been Conducted to the Maximum Extent Practicable?

F.2.1 What Is the Status of the Petroleum Groundwater Plume at the Site?

Groundwater velocities average 33 feet per day throughout the Facility (Hart Crowser 2012a, Section 7.1). This average groundwater velocity typically results in expanding plumes through diffusion and dispersion, smearing hydrocarbons downgradient of source areas. The Facility has six dissolved petroleum plume areas that are composed of high-molecular-weight hydrocarbons with defined extent, which are discussed individually below (refer to Figures 4-1 through 4-3). High-molecular-weight petroleum hydrocarbons are naturally hydrophobic and are thermodynamically driven to adhere to the soil matrix. Generally, as the molecular weight of the hydrocarbon increases, mobility decreases. These physical characteristics of diesel and heavy oil constituents, combined with the significant flux of native electron acceptors (oxygen and nitrate) transported through the area, improve the viability of MNA. Dissolved oxygen (DO) readings have been collected consistently throughout the Facility, and nitrate data are primarily limited to the extraction wells (Hart Crowser 2012a). Other naturally occurring electron acceptors used by microbes include iron, manganese, and arsenic.

Groundwater is currently being extracted from the Oil House (OH-EW-1) and the Wastewater Treatment (WW-EW-1, WW-EW-2, and WW-UVB-1) areas. A portion of the groundwater that is extracted is used for process water at the Facility, and it is assumed that this will continue for the foreseeable future; for the purposes of this FS, a period of 30 years is assumed. The physical and chemical characteristics of the contamination mentioned above, combined with evidence of current natural attenuation discussed in the following paragraphs, support the conclusion that the current site conditions are resulting in shrinking plumes.

The extent of the free phase product (FPP) plumes has decreased by 82 and 94 percent in the Wastewater Treatment and Oil House areas, respectively, from historical highs (Table 5-6 in Hart Crowser 2012a; Figures 4-6 through 4-8 in Hart

Crowser 2012c). More than 4,000 gallons of FPP have been removed by pumps and belt skimmers from the source areas at the Facility (Hart Crowser 2012a, Table 5-4). Seasonal variations in groundwater elevations have allowed FPP to adsorb to the soil matrix generating a smear zone that is very conservatively estimated to contain approximately 1.58 million pounds of hydrocarbons (see Section 4 of this FS). Adsorption to the soil matrix is likely responsible for removing the bulk of the FPP from the surface of the groundwater in the FPP source areas. These soils seasonally adsorb and demobilize FPP onto the soil matrix. As FPP is trapped in certain areas, hydrocarbon mass is dissolved and released into groundwater in other areas, temporarily increasing local hydrocarbon concentrations. These dissolved concentrations are then degraded through biological mechanisms, which are discussed in more detail in the following sections.

F.2.1.1 Oil House Area

The dissolved plume in the Oil House area appears to be shrinking and is now considered to consist of two smaller plumes (refer to Figure 4-3), based on the comparison of the maximum historical lateral extent of hydrocarbons to the recent extent (2008) (Hart Crowser 2012a, Figures 5.1 through 5.4). The groundwater concentrations within this plume have also decreased over the past decade (Hart Crowser 2012a, Table 5-4).

The aquifer at the Facility is naturally oxidative, with a DO concentration of more than 8 milligrams per liter (mg/L) and an oxidation-reduction potential (ORP) of more than 50 millivolts (mV). One line of evidence for the activity of biological mechanisms within the Oil House area is based on DO and ORP readings that are consistently lower than the background conditions. This is indicative of biological activity that is degrading the hydrocarbon mass in the groundwater. The relatively lower DO concentrations and ORP measurements at wells within the plume areas are shown on Figures F-1 and F-2, respectively. Other lines of evidence supporting the reduction of hydrocarbon mass through biological activity include general increases in iron, manganese, and arsenic concentrations within the plume (i.e., iron greater than 300 micrograms per liter [μ g/L], manganese greater than 50 μ g/L, or arsenic greater than 5 μ g/L), as shown on Figures F-3, F-4, and F-5, respectively. Background concentrations outside of the plumes are generally lower and in many cases below the detection limit.

DO concentrations of more than 8 mg/L (shown on Figure F-1) and nitrate concentrations of 2 mg/L (well OH-EW-1, Hart Crowser 2012a) are migrating through Facility groundwater. This influx of groundwater continues to provide electron acceptors that are likely responsible for feeding microbes that are destroying hydrocarbons and creating a shrinking plume. Local iron

concentrations in excess of 9 mg/L (Figure F-3) confirm that iron continues to be an important electron donor within the plumes.

F.2.1.2 Cold Mill Area

The plume in the Cold Mill area appears to be shrinking based on the maximum lateral extent of hydrocarbons compared to the current extent (Hart Crowser 2012a, Figures 5-1 through 5-4). The shrinking status is somewhat less certain for this plume primarily because of the limited number of monitoring wells and apparent increases in hydrocarbon concentrations at a few locations within the plume (Hart Crowser 2012a, Table 5-4). However, biological breakdown of lower-mobility, longer-chain hydrocarbons may be responsible for mobilizing hydrocarbons from the soil matrix, resulting in higher groundwater concentrations of these breakdown products, which are more mobile than the parent hydrocarbons. In general, groundwater data indicate the Cold Mill plume is shrinking and wells within the Cold Mill area will continue to be monitored to further substantiate this downward trend in petroleum concentrations.

Lines of evidence that confirm the presence of biological processes include increases in iron, manganese, and arsenic concentrations, as compared to the background well concentrations (CM-MW-7S and CM-MW-8S) immediately upgradient, as shown on Figures F-3, F-4, and F-5, respectively. The lack of reduction in measured DO concentrations may be attributed to the groundwater flux containing highly oxidative groundwater that may be outpacing the rate at which the microbes are able to reduce DO concentrations in this portion of the aquifer. The ORP measurement at CM-MW-3S of -20 mV (compared to background measurements immediately upgradient at CM-MW-7S and CM-MW-8S, of 70 and 100 mV, respectively) is indicative of biological processes that are creating a reducing environment by destroying petroleum hydrocarbons and coincides with the footprint of the plume in this area.

F.2.1.3 Wastewater Treatment Area

The dissolved plume in the Wastewater Treatment area appears to be shrinking and is now considered to be two smaller plumes (refer to Figure 4-2), based on the comparison of the historical maximum lateral extent of hydrocarbons and the recent extent (2008) (Hart Crowser 2012a, Figures 5-1 through 5-4,). The groundwater concentrations within this plume have also decreased over the past decade (Hart Crowser 2012a, Table 5-4).

The line of evidence for biological mechanisms within the Wastewater Treatment area is based on the reduced DO and ORP at wells within the plume area and are shown on Figures F-1 and F-2, respectively. Other indirect lines of evidence supporting the reduction of hydrocarbon mass through biological activity include general increases in iron of more than 2 mg/L (WW-MW-19), and more moderate increases of manganese and arsenic concentrations within the plume shown on Figures F-3, F-4, and F-5, respectively. The lower DO concentrations (in wells HL-MW-1 and FO-MW-1S) between the Oil House area and the Wastewater Treatment area suggest that microbes in the presence of hydrocarbons are using DO as an electron acceptor, or that much of the DO was consumed in the Oil House area. Approximately 2 mg/L of nitrates (estimated from nitrate concentrations from nearby extraction wells) are flowing into the Wastewater Treatment source area. Both DO and nitrates are providing the microbes with electron acceptors that are likely responsible for the shrinking plumes.

F.2.1.4 Oil Reclamation Building Area

The plume in the Oil Reclamation Building (ORB) area appears to be shrinking based on the maximum lateral extent of hydrocarbons compared to the 2008 extent (Hart Crowser 2012a, Figures 5-1 through 5-4). Hydrocarbon concentrations within the plume are also lower for the same period (Hart Crowser 2012a).

Lines of evidence to support the presence of biological activity in this area include a reduction in DO and ORP concentrations within the ORB plume area at wells HL-MW-2, HL-MW-20S, and HL-MW-21S (Figures F-1 and F-2). Other lines of evidence that biological mechanisms are occurring include increases in iron, manganese, and arsenic concentrations (Figures F-3, F-4, and F-5).

F.2.2 Are Chemical or Biological Degradation Substantial Mechanisms for Natural Attenuation of Petroleum at the Site?

Biological destruction of contaminants involves the microbially mediated transfer of electrons from petroleum hydrocarbons (electron donors) to one of numerous electron acceptors. In groundwater systems, electron acceptors include dissolved oxygen (DO), nitrates, manganese (IV), arsenic (IV), iron (III), sulfates, and carbon dioxide. The source of these electron acceptors can be either natural or enhanced through manual addition. For MNA, the natural presence and ongoing flux of these electron acceptors into the various plume areas is necessary for contamination remediation.

For natural attenuation to be viable, a healthy population of microbes is necessary to destroy contamination. Viable microbial populations rely on energy-yielding reactions between electron donors and electron acceptors for survival. These reactions require various nutrients to support cellular growth, repair, and enzyme production. Nutrients are divided broadly into macro- and micro-type categories based on prevalence and demand. Macronutrients include nitrogen, phosphorous, potassium, and sulfur. Micronutrients include elements such as iron, chromium, manganese, and selenium. Greater biological availability of these nutrients increases microbial viability and the ability to support robust natural attenuation.

Soil and groundwater concentrations of electron acceptors, electron donors, and nutrients can be used to assess the potential for microbial activity. Absence of any of these elements will limit the effectiveness of MNA. By comparing the electron acceptors within the petroleum plumes' extent, the natural flux of groundwater into impacted areas, and hydrocarbon analytical data, it can be established whether biological processes appear to be degrading petroleum hydrocarbons.

The first line of evidence for natural attenuation of Facility petroleum hydrocarbons in groundwater is the presence and consumption of native electron acceptors. This can be inferred through changes in iron, arsenic, and manganese concentrations. ORP in areas outside of the plumes is generally oxidative (Figure F-2). In their oxidized state, iron, arsenic, and manganese exist as mineral salts within the soil matrix, which reduces their dissolved concentrations. In the presence of electron donors, such as petroleum hydrocarbons, these metals are reduced. The reduced form of iron, arsenic, and manganese are much more water soluble. Thus, increases in groundwater concentrations of these metals (Figures F-3, F-4, and F-5), concurrent with low ORP measurements (Figure F-2), suggest that microbes are actively degrading petroleum hydrocarbons at the Facility.

As groundwater moves out of hydrocarbon-impacted areas, a process termed "redox recovery" occurs in which reduced metals reoxidize through various biotic or abiotic mechanisms and readsorb to the soil matrix. Facility groundwater data are consistent with the pattern of biological use of native metals as terminal electron acceptors for the degradation of petroleum hydrocarbons, coupled with subsequent redox recovery and demobilization. The line of evidence is shown on Figures F-3, F-4, and F-5 as non-detect metal concentrations and higher ORP readings (Figure F-2) downgradient of the hydrocarbon plumes.

In addition to the extensive metals data collected at the Facility, nitrate is detected in extracted groundwater. Nitrate yields more energy for microbes than metals reduction, and thus is a preferred electron acceptor compared to iron, manganese, or arsenic. Positive detection of nitrate (approximately 2 mg/L at OH-EW-1, WW-EW-1, and North Supply Well, for example, (Hart Crowser

2012a) in extracted groundwater, combined with the velocity of groundwater at the Facility (33 feet per day), suggests significant nitrate mass is continually entering the plume areas. Since microbes yield more energy from using oxygen and nitrates than from iron, manganese, or arsenic, and it has been shown in previous paragraphs that microbes are using these metals as electron acceptors, the microbes must be using both oxygen and nitrates at the Facility for ongoing dissolved-phase hydrocarbon attenuation.

F.2.3 What Is the Estimated Restoration Time Frame?

The restoration time frame for MNA is difficult to estimate based on the variety of physical, chemical, and biological activities at the Facility, but the time frame is likely to be long. Based on the conservative estimated mass of more than 1.58 million pounds of petroleum hydrocarbons in the soil smear zone, the physical process of adsorption is likely responsible for removing much of the FPP from the groundwater in the FPP source areas, even though FPP skimming operations are ongoing in the Wastewater Treatment and Oil House areas. These soils seasonally adsorb and demobilize FPP, changing the mass of hydrocarbons available for diffusion into groundwater as the groundwater table fluctuates. At the same time that FPP is trapped in certain areas, hydrocarbon mass is dissolved, or mobilized, through biological processes discussed above, and released into groundwater in other areas, temporarily increasing local hydrocarbon concentrations. These dissolved concentrations are then degraded through biological mechanisms, as described above. The mass of SVOCs in smear zone soil is likely to provide a source for SVOCs in groundwater for some time. The expected restoration time frame for each petroleum groundwater plume has been estimated. The restoration time frame varies from approximately 4 years for the South plume in the Oil House area to approximately 34 for the North plume years in the Wastewater Treatment area (refer to Appendix I).

Based on the continuing influx of electron acceptors, microbes will continue to oxidize and degrade dissolved-phase petroleum hydrocarbons and reduce overall hydrocarbon mass. Hydrocarbon destruction through biological processes is maximized in the seasons with high groundwater elevations to provide electron acceptors to the entire smear zone.

F.2.4 Will the Use of Natural Attenuation Be Protective of Human Health and the Environment During the Estimated Restoration Time Frame?

The previous sections have shown that natural attenuation processes appear to be effectively degrading petroleum hydrocarbon mass at the Facility, creating shrinking hydrocarbon plumes and contributing to reductions in FPP under existing site conditions. These site conditions include a groundwater recirculation system, recovering groundwater for Facility processes, and the continuous availability of native electron acceptors for biological oxidative processes. Groundwater recovery at the Facility will continue for the foreseeable future (30+ years) during the restoration time frame. This recovery has slowed the transport of dissolved hydrocarbons and is likely aiding the biological processes that are creating shrinking plumes.

Based on FPP still present on the groundwater, the extensive smear zone mass (approximately 1.58 million pounds), and the fluctuating groundwater elevations, it is difficult to estimate how long the FPP will remain, and how long it will take to reduce the concentrations through biological process. An estimate of the amount of time needed to remove FPP is provided in Section 4 of this FS and in Appendix I.

MNA is protective of human health during the restoration time frame, as the smear zone soil and groundwater are approximately 70 feet below the ground surface and groundwater is not being used as drinking water source. Under the current conditions at the Facility, MNA is also protective of ecological receptors. Sampling conducted as part of the 2008 Groundwater Remedial Investigation (Hart Crowser 2012a), and more recent riverside groundwater well data show that no SVOCs are migrating to the Spokane River. However, this approach by itself may not be protective of the ecological receptors in the Spokane River if the groundwater recirculation or recovery is reduced from the current volumes. A long-term monitoring program would be required to verify that conditions remain protective, with enhanced monitoring if groundwater recovery is reduced. This long-term monitoring program is part of Alternatives C1 through C4 discussed in Section 4 of this FS.

F.2.5 Has Source Control Been Conducted to the Maximum Extent Practicable?

Known ongoing releases of petroleum to soil and groundwater have been eliminated at the Facility. Existing source areas include smear zone soil and groundwater containing FPP at approximately 70 feet below the ground surface. Belt skimmers have removed more than 4,000 gallons of FPP and have become less effective as FPP thickness is reduced and the recovery volumes become asymptotic. Groundwater recovery and recirculation are anticipated to continue for the foreseeable future (30+ years) and appear to be retarding the dissolved plume migration as biological processes destroy dissolved-phase hydrocarbons, resulting in shrinking plumes.

Several remedial alternatives for the petroleum groundwater plumes are being reviewed as part of this FS to determine the most appropriate approach for each

of the source areas. Detailed discussions of these alternatives are provided in Section 4 (and summarized in Section 6). Source area control will be conducted to the maximum extent practicable as part of the remedial alternative that is selected for implementation at the Facility.

F.3 NATURAL ATTENUATION OF PCBS AND PCBS COMINGLED WITH PETROLEUM

The fate of PCBs in the environment has been investigated for many years. This fate is a function of a number of chemical, physical, and biological processes and properties. These processes and properties related to groundwater conditions at the Facility include: water solubility, octanol/water partitioning coefficient, vapor pressure, Henry's law constant, volatility from water, adsorption (sorption) to soils and sediments, hydrolysis, oxidation in water, and biodegradation (Leifer 1983).

In general, the persistence of PCBs in the environment increases with the degree of chlorination (i.e., the number of chlorine atoms added to the biphenyl molecule). Mono-, di-, and trichlorinated biphenyls biodegrade relatively rapidly. Tetra-chlorinated biphenyls degrade more slowly, and more highly chlorinated biphenyls are resistant to biodegradation (Borja 2005, Pieper 2008).

PCB soil adsorption increases with the degree of chlorination. PCBs do not leach significantly in aqueous soil systems, with the more highly chlorinated PCBs having a lower tendency to leach than the less chlorinated PCBs. In water, PCBs adsorb to sediments and suspended matter. Adsorption can immobilize PCBs for relatively long periods of time; although, the eventual re-dissolution into the water column has been shown to occur. Less chlorinated PCBs have a much greater water solubility than more highly chlorinated PCBs (refer to Table 2-4 of the FSTM).

Volatilization of PCBs is an important transport process. Henry's law constants for PCBs range from approximately 1 to 400 Pa m³/mol (refer to Table 2-4 of the FSTM). Vapor loss of PCBs from soil surfaces appears to be an important fate mechanism, with the rate of volatilization decreasing with increasing chlorination (Ecology 2011).

Recently, evidence for the widespread dechlorination of PCBs has been documented in wastewater collection systems, groundwater, and landfill leachate. In wastewater collection systems, dechlorination occurs after the stormwater (and presumably wastewater) enters the collection system and before it reaches the treatment plant. Anaerobic treatment occurs in the sewer, which reduces the chlorination level of the PCBs, followed by aerobic treatment in the activated sludge or other aerobic treatment process. In groundwater that contains TPH and PCBs, it is thought that the presence of TPH and other hydrocarbons speed the transition to methanogenic conditions and provide an energy source for dechlorinating bacteria to become active. Landfill leachate contains the less chlorinated breakdown products of the biodegradation of highly chlorinated PCBs that were not known to be present in the materials placed in the landfill (Rodenburg 2010).

Aerobic and anaerobic bacteria are known to degrade PCBs in groundwater, soil, and sediment. Biodegradation of PCBs depends in large part on the availability of microorganisms. Only compounds in the aqueous phase can be degraded through biological processes. As with other physical and chemical processes mentioned above, the rate of a specific biological processes is dependent on the degree of PCB chlorination. These biodegradation processes are discussed below.

F.3.1 Biodegradation of PCBs in the Environment

Bioavailability is one of the major limiting factors in bioremediation processes, and a number of factors influence the bioavailability of PCBs or other COCs: (1) diffusion limitation from sequestration of the COC in micropores; (2) binding to soil minerals by ionic or electrostatic interactions; (3) oxidative covalent coupling of the COC with soil organic matter via enzymic or chemical catalysis; and (4) partition/dissolution of the COCs into soil organic matter. There is a scientific consensus that partitioning/dissolution of organic COCs to organic matter is the most important mechanism reducing the bioavailability of organic COCs, in organic-rich soil and sediment. When the organic carbon fraction declines to less than approximately 0.4 percent organic carbon, the catalytic effect of soil minerals may result in greater proportion of pollutant immobilization via oxidative covalent coupling with soil organic matter (Head 1998).

Since biodegradation is an aqueous phase process, the solubility of PCBs becomes an important factor in estimating the potential for biological degradation. The solubility of PCBs decreases as the degree of chlorination increases (refer to Table 2-4 of the FSTM). Thus, penta-chlorinated biphenyls are much less likely to be available for bioremediation in aqueous media than mono-chlorinated biphenyls, and would exhibit much slower degradation rates.

The tendency for PCBs (particularly highly chlorinated PCBs) to adsorb to the soil matrix and organic matter also reduces their availability for biodegradation. The presence of petroleum or other oils with the PCBs could also reduce the

availability of PCBs, since PCBs would preferentially partition to the oil phase, rather than dissolve in the aqueous phase (Jonker 2006, Zwiernik 1999).

Pollutant concentration is a major factor affecting biodegradation. In general, a low pollutant concentration may not provide a sufficient energy source for degradative enzymes or to sustain growth of competent organisms. On the other hand, a very high concentration may render the compound toxic to organisms. At low concentrations, degradation increases linearly with increase in concentration until such time as the rate essentially becomes constant regardless of further increase in pollutant concentration. Other factors affecting degradation are temperature, pH, presence of toxic or inhibitory substances and competing substrates; availability of suitable electron acceptors, micro-, and macronutrients; and interactions among organisms (Borja 2005).

F.3.2 Aerobic Biodegradation of PCBs in the Environment

The aerobic biodegradation of PCBs is widely known and has been well studied (Clark 1979, Furukawa 1979, Mohn 1997, Di Toro 2006, Pieper 2005, Pieper 2008, Strand 2008). As a general rule, aerobic biodegradation of PCBs proceeds more slowly with increased degree of chlorination. Half lives of 1 to 2 days for activated sludge processes, 2 to 4 days for fresh water, and 6 to 10 days for soil have been reported for the aerobic bioremediation of mono- and dichlorinated biphenyls. Longer half lives of 2 to 5 days for activated sludge processes, 1 week to 2 months for fresh water, and 12 to 30 days for soil have been reported for tri- and tetra-chlorinated biphenyls (Liefer 1983).

Several microorganisms have been isolated that can aerobically degrade PCBs (Clark 1979, Furukawa 1978, Di Toro 2006, Barriault 1998, Pieper 2008). One aerobic process that has been identified includes degradation by 2,3-dioxygenase and metacleavage to form benzoates (Strand 2008).

Some of these aerobic organisms can degrade PCBs directly while other organisms rely on the presence of other organisms to be able to degrade PCBs. Cometabolism is the process by which a contaminant is fortuitously degraded by an enzyme or cofactor produced during the microbial metabolism of another compound. Methanotrophs, methane oxidizing bacteria, produce methane monooxygenase, which can oxidize recalcitrant compounds such as PCBs (probably mono- and di-chlorinated PCBs) (Hazen 2006). This cometabolic pathway may be present in the Oil House and Wastewater Treatment area groundwater plumes that contain PCBs comingled with SVOCs, and may be a means by which mono- to tri-chlorinated biphenyls are degraded in smear zone soil and groundwater in these areas. In another example of aerobic cometabolism, an increase in the rate of degradation of dilute concentrations of PCBs was noted when a secondary energy source (sodium acetate) was added. The microorganisms used acetate for growth, while oxidizing the PCBs (Clark 1979).

F.3.3 Anaerobic Biodegradation of PCBs in the Environment

The anaerobic dechlorination of Aroclors 1242, 1248, 1254, and 1260 (with approximately three, four, five and six chlorines, respectively) obtained from sediments in the Hudson River, and from sediments obtained from near Silver Lake, Massachusetts, was demonstrated as early as 1990 (Quensen 1990). These PCBs are frequently present in contaminated sediments. Based on relative bioavailablity, the dechlorination rate of Aroclors 1254 and 1260 was less than rates measured for Aroclors 1242 and 1248.

Similar results were obtained when sediments obtained from Lake Hartwell, South Carolina, were evaluated (Pakdeesusuk 2003). These sediments contained primarily Aroclors 1016 and 1254. These sediments contained microbial communities that were able to anaerobically dechlorinate the PCBs. The microbial communities dechlorinated the hexachlorobiphenyl to a pentachlorobiphenyl, and the pentachlorobiphenyl to a tetrachlorobiphenyl, and so on. The concentration of PCBs shifted from predominantly more chlorinated to less chlorinated PCBs as biodegradation proceeded. These results were confirmed by other investigators (Furukawa 2008).

Discussions of the microbial communities that have been shown to be able to dechlorinate Aroclor 1260 have been published (Furukawa 2008, Field 2008, Bedard 2007). These microbial communities were obtained from the Housatonic River near Lenox, Massachusetts, and from other sediments containing PCBs.

PCB-dechlorinating microorganisms can be present in PCB-free environments (Abramowicz 1995). This suggests that PCB-dechlorinating activity may be the result of a common reductive pathway present in many different anaerobic microbes located throughout the environment.

The microbial strain dehalococcoides (Dhc) is capable of dechlorinating chlorinated ethenes in reducing environments and has also been identified as an anaerobic dechlorinator of PCBs (Bedard 2007). Dhc strains appear very commonly throughout the United States. In one study, the Dhc strains were identified at all 26 locations from unique sites across the country using biotraps (Ogles et al. 2008). Another study conducted at 10 Air Force Bases (AFBs) identified Dhc in 14 of the 16 wells under anaerobic conditions (Lu 2006). The

Dhc strain was also identified in five wells at Tinker and Dover AFBs under aerobic conditions. Another study of 24 sites across the country and Europe contained naturally occurring Dhc at 21 of the sites (Hendrickson et al. 2002). These results suggest the Dhc strain is common in nearly all sites, includes a variety of geologic settings and geochemical conditions, and can potentially survive in non-favorable conditions.

PCB dechlorination in sediments probably results from the action of multiple distinct PCB-dechlorinating populations interacting with non-dechlorinating microorganisms in syntropic communities (Wu 1996).

Cometabolic biodegradation has been used for over 20 years on some of the most recalcitrant compounds known, including chlorinated ethenes, PAHs, halogenated aliphatics and aromatics, explosives, dioxanes, PCBs, and pesticides (Hazen 2009).

Fungi strains have been shown to be very effective in degrading both less chlorinated and more highly chlorinated PCBs through cometabolic processes (Strand 2008). These fungi can degrade highly chlorinated PCBs but only at low concentrations (less than 500 μ g/L), while aerobic bacteria are able to degrade PCBs at concentrations up to 10 mg/L.

F.3.4 Biodegradation in the Oil House and Wastewater Treatment Areas

The free-phase and high dissolved-phase petroleum concentrations within the Oil House and Wastewater Treatment areas correspond very closely to the negative ORP values in these areas. A negative ORP is the most reliable indicator of favorable conditions for anaerobic degradation and dechlorination processes. These ORP values increase a short distance from the source area as the groundwater flux containing high DO concentrations continues to provide electron acceptors to the area (refer to Figure F-2). As the ORP values increase, anoxic conditions make anaerobic processes less favorable, until positive ORP conditions and other indicators (e.g., DO, nitrates) continue to increase, and eventually only aerobic degradation processes are possible.

PCBs originating from the center of the Oil House area could be dechlorinated under anaerobic conditions, as the ORP values in this area are negative. As mentioned above, mono- and dichlorobiphenyls are more available for biodegradation and are easier to dechlorinate than the trichlorobiphenyls and more chlorinated PCBs. This should result in a higher ratio of trichlorobiphenyls and more highly chlorinated PCBs compared to mono- and dichlorobiphenyls in this area. As PCBs migrate toward the Wastewater Treatment area, ORP values increase and become positive. This aerobic zone would provide a favorable environment for aerobic degradation through several processes. If aerobic biodegradation of PCBs is occurring in this area at concentrations in the parts per trillion (ppt) range, the byproduct (benzoate) concentrations would not be detected using current PAH analysis methods and would be difficult to verify.

Aerobic processes are also much more effective in destroying mono-, di-, and trichlorobiphenyls than more highly chlorinated PCBs, which would result in increased ratios of more highly chlorinated PCBs compared to less chlorinated PCBs detected in groundwater.

High concentrations of PCBs were detected only in areas of negative ORP or anaerobic conditions within the Oil House area, and were not detected at any downgradient locations that had positive ORPs. Based on the groundwater flux through the area, it is not likely that the aerobes would be capable of providing sufficient degradation to both less chlorinated and more chlorinated PCBs in a distance less than a few hundred feet. Since biodegradation of highly chlorinated PCBs is relatively slow, it is reasonable to assume that a much longer PCB plume, similar to the plume in the Remelt area would be created. Since there is no evidence that this plume exists, it suggests that the PCBs are highly sorbed to the smear zone soil and FPP in the Oil House area, are not bioavailable, and are not migrating beyond the limited area of a few wells where FPP has been encountered, or are being degraded as the PCBs partition to the aqueous phase. These FPP well locations are also consistent with the extent of negative ORPs in the presence of FPP.

F.3.5 Biodegradation/Chemical Degradation in the Remelt Groundwater Plume

PCBs are located on the upgradient edge of the Remelt area within an aerobic portion of the site as indicated by positive ORP values. If biodegradation of PCBs is occurring in this area, it is through aerobic processes for the first 500 to 600 feet of downgradient migration. PCBs originating from the upgradient edge of the Remelt area could be degraded through a variety of aerobic degradation processes, such as by 2,3-oxygenase and metacleavage, as the ORP values in this area are positive (Strand 2008). As mentioned above, mono- and dichlorobiphenyls are more available for biodegradation and are easier to degrade than the trichlorobiphenyls and more chlorinated PCBs. This would result in trichlorobiphenyls and more highly chlorinated PCBs would also tend to adsorb to the soil matrix, retarding downgradient migration.

There is some unsupported indication that the PCB-containing hydraulic oil used at the Kaiser Facility may have been a Monsanto product trademarked as Pydraul. There were many formulations of this hydraulic oil, and it is not known which one(s) may have been used at the Kaiser Facility. In general, Pydraul formulations consisted of various mixtures of PCB Aroclors and organophosphate carriers. If Pydraul is a carrier for PCBs within the Remelt area, this would reduce the bioavailability of PCBs to microbes, since PCBs would preferentially partition to the oil phase, rather than dissolve in the aqueous phase (Jonker 2006, Zwiernik 1999).

Within the Remelt building, the ORP values can become slightly negative, and dissolved oxygen concentrations are lower at wells RM-MW-14S and RM-MW-17S. At this point, aerobic processes slow, and anoxic or anaerobic processes may become more favorable. This area may be classified as anoxic (containing both characteristics of aerobic and anaerobic conditions), based on variations in ORP throughout the PCB plume. This can be beneficial, as both aerobes and anaerobes are capable of degrading hydrocarbons and PCBs through a variety of processes in these conditions. The anoxic conditions persist for approximately 1,600 feet downgradient of HL-MW-23S. During the migration of PCBs in the anoxic zone, concentrations reduce from approximately 2,000 ppt to less than 250 ppt. This may be the result of a combination of anaerobic, aerobic, and cometabolic processes, and other physical and chemical processes that could reduce PCB concentrations to PCULs over time.

At these low concentrations, PCBs are not likely to provide a large enough energy source to sustain a population of dechlorinators. However, it is possible that microbes are producing enzymes during the metabolism of other hydrocarbons that are capable of degrading PCBs through cometabolic processes (Hazen 2009). These species can release enzymes that neither benefit from, nor rely on the PCBs for energy, so a minimum concentration of PCBs is not required for this degradation pathway. Certain fungi have been identified as cometabolic PCB degraders (Strand 2008) but require aerobic or anoxic conditions.

As mentioned above, mono- and di-chlorinated biphenyls are both more available for biodegradation and are easier to degrade than trichlorobiphenyls and more chlorinated PCBs. This should result in increased ratios of trichlorobiphenyls and more highly chlorinated PCBs in this area. Reviewing the data at downgradient locations (MW-17S, MW-12A, HL-MW-23S, HL-MW-30S, and HL-MW-32S), the data clearly show that the trichlorobiphenyls and more highly chlorinated biphenyls account for more than 90 percent of the entire remaining PCB mass in the groundwater samples. The aquifer becomes highly aerobic (ORP greater than 100 mV) in the remaining few hundred feet to the Spokane River. It is likely that several aerobic degradation processes could be occurring in this location. Because of the extremely low concentrations remaining in this area, it is likely these processes would be limited to cometabolism, as the amount of energy available from PCB concentrations could not in itself sustain an anaerobic dechlorinating microbial population.

Based on the short distance from the downgradient wells to the river, it is likely that other physical and chemical processes are also responsible for the fate of PCBs in this area. These may include increased dispersion and adsorption of the remaining PCBs. Other immobilization processes affecting PCBs may be occurring in this area, such as catalytic effects from soil minerals, as discussed above.

The reduction of PCB concentrations along the length of the plume is likely a result of several biological, physical, and chemical processes occurring at the Facility. Since there is no continuing source for PCBs, it is also likely that these concentrations will continue to decrease with time.

F.4 REFERENCES FOR APPENDIX F

Abraham, W., et al., 2002. Polychlorinated Biphenyl-Degrading Microbial Communities in Soils and Sediments. Current Opinion in Microbiology, 5:246-253.

Abramowicz, D.A., 1995. Aerobic and Anaerobic PCB Biodegradation in the Environment. Environ. Health Perspectives, 103:97-99.

Barriault, D., et al., 1998. Degradation of Polychlorinated Biphenyls Metabolites by Naphthalene-Catabolizing Enzymes. App. and Environ. Microbiology, 64:4637-4642.

Bedard, D.L., et al., 2007. The *Dehalococcoides* Population in Sediment-Free Mixed Cultures Metabolically Dechlorinates the Commercial Polychlorinated Biphenyl Mixture Aroclor 1260. App. and Environ. Microbiology, 73:2513-2521.

Bedard, D.L., 2008. A Case Study for Microbial Biodegradation: Anaerobic Bacterial Reductive Dechlorination of Polychlorinated Biphenyls-from Sediment to Defined Medium. Annual Rev. Microbiol.. 62:253-270.

Borja, J., et al., 2005. Polychlorinated Biphenyls and Their Biodegradation. Process Biochemistry, 40:1999-2013.

Clark, R.R., et al., 1979. Degradation of Polychlorinated Biphenyls by Mixed Microbial Cultures. App. and Environ. Microbiology, 37:680-685.

Di Toro, S., et al., 2006. Intensification of The Aerobic Bioremediation of an Actual Site Soil Historically Contaminated by PCBs through Bioaugmentation with Non-Acclimated, Complex Source of Microorganisms. Microbial Cell Factories, 5:1.

Ecology, 2011. Spokane River PCB Source Assessment 2003–2007. Toxics Studies Unit, Environmental Assessment Program, Washington State Department of Ecology. Publication No. 11-03-013. April 2011.

Field, J.A., and R. Sierra-Alvarez, 2008. Microbial Transformation and Degradation of Polychlorinated Biphenyls. Environmental Pollution, 155:1-12.

Furukawa, K., and H. Fujihara, 2008. Microbial Degradation of Polychlorinated Biphenyls: Biochemical and Molecular Features. J. of Bioscience and Bioengineering, 5:433-449.

Furukawa, K., et al., 1978. Effect of Chlorine Substitution on the Biodegradability of Polychlorinated Biphenyls. App. and Environ. Microbiology, 35:223-227.

Furukawa, K., et al., 1979. Effect of Chlorine Substitution on the Bacterial Metabolism of Various Polychlorinated Biphenyls. App. and Environ. Microbiology, 38:301-310.

Hart Crowser, 2012a. Final Site-Wide Groundwater Remedial Investigation, Kaiser Trentwood Facility, Spokane Valley, Washington. Prepared for Kaiser Aluminum Washington, LLC, by Hart Crowser, Inc. May 2012.

Hart Crowser, 2012b. Final Site-Wide Soil Remedial Investigation, Kaiser Trentwood Facility, Spokane Valley, Washington. Prepared for Kaiser Aluminum Washington, LLC, by Hart Crowser, Inc. May 2012.

Hazen, T.C., 2006. Cometabolic Bioremediation. Lawrence Berkeley National Laboratory. U.S. DOE Contract No. DE-AC02-05CH11231.

Head, I.M., 1998. Bioremediation: Towards a Credible Technology. Microbiology, 144:599-608.

Iwamoto, T., and M. Nasu, 2001. Current Bioremediation Practice and Perspective. J. of Bioscience and Bioeng. 92:1-8.

Jonker, M.T.O., and A. Barendregt, 2006. Oil is a Sedimentary Supersorbent for Polychlorinated Biphenyls. Environ. Sci. and Technology, 40:3829-3835.

LaJoie, C.A., et al., 1994. Cometabolic Oxidation of Polychlorinated Biphenyls in Soil with a Surfactant-Based Field Application Vector. App. and Environ. Microbiology, 60:2826-2833.

Leifer, A., et al., 1983. Environmental Transport and Transformation of Polychlorinated Biphenyls. EPA 560/5-83-025. December 1983.

Mikszewski, A., 2004. Emerging Technologies for the In-situ Remediation of PCB-Contaminated Soils and Sediments: Bioremediation and Nanoscale Zero-Valent Iron. EPA OSWER.

Mohn, W.W., et al., 1997. Aerobic Biodegradation of Biphenyl and Polychlorinated Biphenyl by Arctic Soil Microorganisms. App. and Environ. Microbiology, 63:3378-3384.

Pakdeesusuk, U., et al., 2003. Reductive Dechlorination of Polychlorinated Biphenyls in Sediment from the Twelve Mile Creek Arm of Lake Hartwell, South Carolina, USA. Environ. Tox. And Chemistry. 22:1214-1220.

Pieper, D.H., 2005. Aerobic Degradation of Polychlorinated Biphenyls. Appl. Microbiol. Biotechnol., 67:170-191.

Pieper, D.H., and M. Seeger, 2008. Bacterial Metabolism of Polychlorinated Biphenyls. J Mol. Microbiol. Biotechnology, 15:121-138.

Quensen, J.F., et al., 1990. Dechlorination of Four Commercial Polychlorinated Biphenal Mixtures (Aroclors) by Anaerobic Microorganisms from Sediment. App. and Environ. Microbiology, 56:2360-2369.

Renner, R., 1998. Natural Remediation of DDT, PCBs Debated. Environ. Sci. and Technology, 32:360A-363A.

Rodenburg, L.A., et al., 2010. Evidence of Widespread Dechlorination of Polychlorinated Biphenyls in Groundwater, Landfills, and Wastewater Collection Systems. Environ. Sci. and Technology, 44:7534-7540. Van Dort, H.M., and D.L. Bedard, 1991. Reductive *ortho* and *meta* Dechlorination of a Polychlorinated Biphenyl Congener by Anaerobic Microorganisms. App. and Environ. Microbiology, 57:1576-1578.

Wu, Q,, et al., 1996. Influence of Incubation Temperature on the Microbial Reductive Dechlorination of 2,3,4,6-Tetrachlorobiphenyl in Two Freshwater Sediments. App. and Environ. Microbiology, 62:4174-4179.

Zwiernik, M.J., et al., 1999. Residual Petroleum in Sediments Reduces the Bioavailability and Rate of Reductive Dechlorination of Aroclor 1242. Environ. Sci. and Technology, 33:3574-3578.

L:\Jobs\2644125\Final FS 05-2012\03 Appendices\Appendix F\Kaiser FS Appendix F.doc

Dissolved Oxygen Concentrations in Groundwater - Most Recently Measured

Oxidation-Reduction Potential in Groundwater - Most Recently Measured

Iron Concentrations in Groundwater - Most Recently Measured

Manganese Concentrations in Groundwater - Most Recently Measured

Arsenic Concentrations in Groundwater - Most Recently Measured

APPENDIX G IDENTIFICATION OF POTENTIAL APPLICABLE OR RELEVANT AND APPROPRIATE REQUIREMENTS

CONTENTS	<u>Page</u>
G.1 CONTAMINANT-SPECIFIC ARARS	G-1
G.1.1 Constituents of Concern and Screening Levels for Soil	G-2
G.1.2 Constituents of Concern and Screening Levels for Groundwater	G-4
G.1.3 Preliminary Cleanup Levels Established by Ecology	G-6
G.2 ACTION-SPECIFIC REQUIREMENTS	G-8
G.2.1 Soil Requirements	G-9
G.2.2 Groundwater Requirements	G-9
G.2.3 Surface Water Requirements	G-11
G.2.4 Water Rights	G-12
G.2.5 Air Requirements	G-12
G.2.6 Waste Management Requirements	G-12
G.2.7 Other Requirements	G-13
G.3 LOCATION-SPECIFIC REQUIREMENTS	G-14
G.4 REFERENCES FOR APPENDIX G	G-16

TABLES

G-1	Soil Screening Level Concentrations
G-2	Groundwater Screening Level Concentrations
G-3	Potential Action-Specific ARARs for the Kaiser Facility

G-4 Potential Location-Specific ARARs for the Kaiser Facility

APPENDIX G IDENTIFICATION OF POTENTIAL APPLICABLE OR RELEVANT AND APPROPRIATE REQUIREMENTS

This appendix identifies and discusses potential applicable or relevant and appropriate requirements (ARARs) to be used in assessing and implementing remedial actions at the Kaiser Facility. Specific potential requirements pertaining to waste management, remediation of contaminated media, and surface water protection are presented. The potential ARARs focus on federal or state statutes, regulations, criteria, and guidelines. The specific types of potential ARARs evaluated include contaminant-, location-, and action-specific ARARs. Each type of ARAR is evaluated for the Kaiser Facility and discussed in the sections that follow.

Contaminant-Specific ARARs are usually health- or risk-based numerical values or methodologies that, when applied to site-specific conditions, result in the establishment of numerical contaminant values that are generally recognized by the regulatory agencies as allowable to protect human health and the environment.

Action-Specific ARARs are pertinent to particular remediation methods and technologies, and to actions conducted to support cleanup.

Location-Specific ARARs are restrictions placed on the presence of hazardous substances, or the conduct of activities, solely because they occur in specific locations.

In general, only the substantive requirements of ARARs are applied to Model Toxics Control Act (MTCA) cleanup sites being conducted under a legally binding agreement with the Washington State Department of Ecology (Ecology) (WAC 173-340-710[9][b]). Thus, cleanup actions under a formal agreement with Ecology are exempt from the administrative and procedural requirements specified in state and federal laws. This exemption also applies to permits or approvals required by local governments.

G.1 CONTAMINANT-SPECIFIC ARARS

A contaminant-specific requirement sets concentration limits in various environmental media for specific hazardous substances, pollutants, or contaminants. The potential federal and state contaminant-specific ARARs for the Kaiser Facility are summarized below. The determination of contaminant-specific ARARs for the Facility was implemented beginning with the development of constituents of potential concern (COPCs), constituents of concern (COCs), and screening levels (SLs) in Section 1 of the Final Feasibility Study Technical Memorandum (FSTM) (Hart Crowser 2012c) (see Tables G-1 and G-2). Preliminary cleanup levels (PCULs) for the soil and groundwater COCs were subsequently determined by Ecology during preparation of this FS (Ecology 2010a and 2010b) (see Tables 2-1 and 4-1 in the main body of this FS). Cleanup levels and points of compliance (POCs) will be finalized in the Cleanup Action Plan (CAP) prepared by Ecology.

COPCs were identified in the Final Groundwater RI (Hart Crowser 2012a), the Final Soil RI (Hart Crowser 2012b), and the Final Human Health and Ecological Risk Assessments (HHERA) (Pioneer 2012). See Section 1 of the FSTM for detailed discussion of the identification of COPCs and the specific criteria used to evaluate COPCs. In general, the COPCs were identified by (1) comparison to background concentrations; (2) evaluation of the frequency of detection; and (3) the risk-based screening summarized in the Final Groundwater RI, the Final Soil RI, and the Final HHERA.

SLs for soil and groundwater at the Kaiser Facility were established following MTCA regulations. The establishment of SLs for the COPCs in each environmental medium included consideration of site-specific conditions, such as land use, and comparison of the risk-based MTCA SLs with other chemical-specific ARARs. The SLs for soil and groundwater are summarized in Tables G-1 and G-2, respectively.

G.1.1 Constituents of Concern and Screening Levels for Soil

G.1.1.1 Screening Levels for Soil

Screening levels for soil were derived under MTCA by considering the following pathways:

- Protection of human health during the ingestion of or direct exposure to the upper 15 feet of the soil horizon (refer to the HHERA [Pioneer 2012]);
- Protection of groundwater resources based on potential leaching of chemicals from soil to groundwater (refer to the Final Soil RI [Hart Crowser 2012b]);
- Protection of workplace air (VOCs only); and

Protection of wildlife during the ingestion of soil or the ingestion of COPCs that have accumulated in the food that they consume.

The site-specific information that was relevant in the development of the SLs for soil is described in detail in Section 1.2.1 of the FSTM. Table G-1 lists the COPCs for soil at the Facility and their risk-based MTCA screening levels that were derived based on one of the following pathways:

- Ingestion/Direct Contact with Soil. Concentrations were derived using the procedures and default exposure assumptions for industrial sites as defined in WAC 173-340-745.
- Protection of Wildlife. The HHERA (Pioneer 2012) determined that the risk to wildlife was below the ecological risk criteria that were established.
- Protection of Groundwater. Concentrations were derived using the Fixed Parameter 3-Phase Partitioning model (WAC 173-340-747[4] and MTCA Method B CULs, or limitations established by the Clean Water Act [CWA] or Maximum Contaminant Levels [MCLs] established by the Safe Drinking Water Act [SDWA], whichever was lower for groundwater). This pathway was determined to have the most impact on the SLs established for soil at the Facility.
- Protection of Workplace Air. Potential adverse effects caused by the inhalation of soil gas vapors were evaluated and compared to Washington State Industrial Safety and Health Act (WISHA) permissible exposure levels (PELs) in the HHERA (Pioneer 2012, Section 7.8) and to MTCA Method B ambient air CULs.

Adjustment of the soil CUL may be necessary based on natural or area background, multiple exposure pathways, or multiple constituents per WAC 173-340-740(5) (unrestricted site use) or WAC 173-340-745(6) (industrial site use).

G.1.1.2 Constituents of Concern for Soil

The COPCs that were identified for soil are listed in Table G-1. When the concentration of a COPC exceeded the SL, it was then further evaluated to determine whether it is a COC. Each of the COPCs that exceeded SLs was examined to determine whether it was contributing to an actual risk to human health and the environment and whether it should be carried forward as a soil COC.

The following COCs were identified for soil for all or portions of the Kaiser Facility:

- Diesel and heavy oil;
- Gasoline and Stoddard solvent;
- PCBs (total);
- cPAHs;
- Metals causing potential human or ecological health risk (arsenic, chromium, and lead); and
- Metals causing potential adverse secondary (aesthetic) effects to groundwater (iron and manganese).

G.1.1.3 Point of Compliance for Soil

The standard point of compliance (POC) for soil under MTCA is defined as throughout the Facility for protection of groundwater and workplace air. The POC for soil cleanup levels based on human exposure through direct contact (WAC 173-340-740[6][b,c,d]) and wildlife exposure through the ingestion of Facility soil is from the ground surface to 15 feet below ground surface (bgs).

G.1.2 Constituents of Concern and Screening Levels for Groundwater

G.1.2.1 Screening Levels for Groundwater

The maximum beneficial uses of groundwater in the alluvial aquifer at the Kaiser Facility are as a potential drinking water source and as a discharge to the Spokane River; therefore, cleanup levels for groundwater are derived under MTCA by considering the following pathways:

- Humans, flora, or fauna consuming groundwater from a potential well installed within the area of groundwater contamination; and
- Humans, flora, or fauna exposed to surface water downgradient of the Facility if COCs were to reach the Spokane River.

Protection of Drinking Water

MTCA groundwater cleanup standards are defined in WAC 173-340-720. The standards must be at least as protective as the requirements established by the following state and federal statutes and regulations:

■ Federal Safe Drinking Water Act MCL (40 CFR part 141);

- State Safe Drinking Water MCLs (WAC 246-290-310);
- Federal Safe Drinking Water Act secondary MCLs for non-carcinogens based on aesthetic effects(40 CFR Part 143) to the extent that Ecology has established human health or environmental protection based standards for the constituents;
- MTCA Methods A and B (WAC 173-340-720[3,4]); and
- MTCA Surface Water Standards (WAC 173-340-730), unless it can be shown that the COPCs are not likely to reach surface water. (Some PCBs, free phase petroleum, iron, manganese, and arsenic may not reach the Spokane River via groundwater, according to the Final Groundwater RI, Section 6 [Hart Crowser 2012a].)

In addition, for those COPCs for which there is no value in MTCA Table 720-1, or in applicable state or federal laws, the CUL cannot be higher than the calculated values using Equations 720-1 (non-carcinogens) and 720-2 (carcinogens). Adjustments to the total risk are required when there are multiple pathways or multiple constituents per WAC 173-340-720(7)(a). CULs established under state and federal law may also need to be adjusted downward if they exceed a hazard quotient of 1 (non-carcinogens) or an excess cancer risk of 1:100,000 per WAC 173-340-720(7)(b). Additional adjustments can be made to CULs based on state-wide or area background concentrations (e.g., some metals and ubiquitous organics).

Protection of Surface Water

Surface water SLs at the Kaiser Facility were established based on consideration of the following regulatory criteria:

- EPA National Recommended Water Quality Criteria (National Toxics Rule) (40 CFR Part 131) for protection of aquatic species in fresh water;
- EPA National Recommended Water Quality Criteria (National Toxics Rule) (40 CFR Part 131) for protection of human health through the consumption of aquatic species;
- Washington Surface Water Quality Standards (Chapter 173-201A WAC);
- Clean Water Act Section 304 Standards for Freshwater Human Health and Chronic Aquatic Life; and

 MTCA Method B cleanup criteria for the protection of human health through the consumption of aquatic species (WAC 173-340-730[3]).

Adjustment of the surface water CULs may be necessary based on natural or area background, multiple exposure pathways, or multiple constituents per WAC 173-340-730(5).

Protection of Workplace Air

Groundwater at the Kaiser Facility is more than 70 feet bgs, and the occurrence of volatile constituents in groundwater is so low (refer to Final Groundwater RI, Section 5.2 [Hart Crowser 2012a]) that protection of the groundwater to air pathway was not considered for volatile organic compounds (VOCs).

G.1.2.2 Constituents of Concern for Groundwater

The COPCs that were identified for groundwater are listed in Table G-2. When the concentration of a COPC exceeded the SL, it was then evaluated to determine whether it is a COC. Each of the COPCs that exceeded SLs was examined to determine whether it was contributing to an actual risk to human health and the environment and whether it should it should be carried forward as a groundwater COC.

The following COCs were identified for groundwater for the Kaiser Facility:

- Diesel and heavy oil;
- Gasoline and Stoddard solvent (select areas of the Facility);
- PCBs (total);
- cPAHs; and
- Metals (arsenic, iron, and manganese).

G.1.3 Preliminary Cleanup Levels Established by Ecology

The remediation alternatives in the FS are developed for the areas of concern (AOCs) that are defined for each COC. The AOCs for each near-surface soil COC at the Facility were defined in Section 2 of the FSTM, and are consolidated on Figure 2-3 of this FS. These AOCs were developed using the SLs that were originally identified in Section 1 of the FSTM. During preparation of the FS, Ecology developed preliminary cleanup levels (PCULs) for unsaturated soil, saturated soil, and groundwater at the Kaiser Facility. Soil SLs and PCULs for the Facility are compared in Table 2-1 in this FS, and those for groundwater are compared in Table 4-1.

MTCA authorizes Ecology to adopt standards for cleanup actions at sites impacted by hazardous substances. Chapter 173-340 WAC (MTCA Cleanup Regulation) describes a process for developing and selecting cleanup standards for environmental media (e.g., groundwater, surface water), and these standards are considered potential ARARs. Under the MTCA regulations, cleanup standards may be established by one of three methods:

- Method A may be used if a routine cleanup action, as defined in WAC 173-340-200, is being conducted at the site or relatively few hazardous substances are involved for which Method A cleanup standards have been specified in the regulation. This method is designed to be protective for unrestricted site use (e.g., residential sites).
- Under Method B, an excess cancer risk level of 10⁻⁶ and a hazard quotient of 1 (non-carcinogen) are established, and risk-based calculations of cleanup levels are developed for individual constituents and pathways present at the site using residential use assumptions.
- Method C industrial soil cleanup levels represent concentrations that are protective of human health and the environment based on industrial site use assumptions. Method C industrial soil cleanup levels may be established for qualifying industrial sites. The Kaiser Trentwood Facility qualifies for the use of these industrial soil cleanup levels. However, soil cleanup levels at industrial sites must also be protective of other environmental media (e.g., groundwater, surface water) and exposure pathways. For media other than soil (e.g., surface water and groundwater), Method C may be used in certain instances (see WAC 173-340-706[1]). In such cases where Method C is approved by Ecology, the CULs must meet applicable state and federal laws and be protective of human health and the environment. Generally, Method C is used to establish Remediation Levels or when Methods A or B cannot be achieved.

Because the Kaiser Facility qualifies as an industrial site per WAC 173-340-745(1), development of soil cleanup levels included an evaluation of industrial soil cleanup levels. The unsaturated and saturated soil PCULs were developed using standard MTCA soil Method C criteria, which incorporated the preliminary groundwater cleanup levels that were developed. Groundwater PCULs were established using standard MTCA Method B criteria, which include consideration of criteria protective of both drinking water and surface water because site groundwater discharges into the Spokane River.

During the development of the PCULs for soil, chromium and lead were eliminated from consideration because of the low detection frequencies of these substances (Ecology 2010b). Therefore, PCULs were not developed for these COCs.

Groundwater and soil PCULs were developed for both a standard POC and conditional POC (Ecology 2010a). If a conditional POC is granted, cleanup levels for groundwater COCs that are based on the protection of surface water should be met at the point or points where groundwater discharges into surface water. Concentrations for groundwater COCs elsewhere throughout the Facility may exceed surface water standards but would be required to meet drinking water standards, which are typically higher concentrations than surface water standards. (For example, the surface water standard for total PCBs is 6.4 x 10^{-5} µg/L, but the drinking water standard is 0.22 µg/L [see Table 4-1].)

Similarly, if a conditional POC is granted, soil COC concentrations would have to be protective of surface water at or near the vicinity of the point of discharge to surface water; however, elsewhere throughout soil at the Facility, COC concentrations should not exceed the concentrations that are protective of drinking water. The decision to grant a conditional POC will be made in the CAP, in which final cleanup standards (i.e., cleanup levels and points at which these levels must be met) for the Facility will be determined.

The selected remedy for the Facility could leave hazardous substances behind in excess of cleanup levels. Then the cleanup action would be considered to comply with cleanup standards provided that the remedy (e.g., containment) is permanent to the maximum extent practicable using the procedures in WAC 173-340-360; that a compliance monitoring program demonstrates the long-term integrity of the containment system; and that institutional controls are in place (WAC 173-340-740 [6][f]).

G.2 ACTION-SPECIFIC REQUIREMENTS

Action-specific ARARs are requirements that may need to be satisfied during the performance of specific remedial actions because they prescribe how certain activities (e.g., treatment and disposal practices, media monitoring programs) must occur. Indeed, several of the potential contaminant- and location-specific ARARs discussed in this appendix also include provisions for potential action-specific ARARs to be applied once a remedial action is selected. Typically, action-specific ARARs are not fully defined until a preferred response action has been selected and the corresponding remedial action can be more completely refined. However, preliminary consideration of the range of potential action-specific ARARs may help focus the process of selecting a preferred response action and remedial action alternatives. Table G-3 presents

the significant potential action-specific ARARs that may apply to the various response actions being considered for the Kaiser Facility. Brief summaries of the requirements associated with these potential action-specific ARARs are provided below.

G.2.1 Soil Requirements

PCB-impacted soil at low concentrations may be left in place under the Toxic Substances Control Act (TSCA). However, if PCB-impacted soil is left in place, remediation requirements pertaining to institutional controls, capping, and cleanup must be met, as discussed in Section 2.3 of the FSTM (Hart Crowser 2012c) and in Section 2.1.2.2 of this FS. These requirements depend further on future land use of the AOC.

G.2.2 Groundwater Requirements

Chapter 90.48 RCW, the Washington State Water Pollution Control Act, establishes programs for regulating and controlling pollutants in waters of the State of Washington, which includes groundwater. Among other mandates, the law requires use of all known, available, and reasonable treatment technologies (AKART) for treating pollutants prior to discharge to groundwater. Implementing regulations appear principally in Chapter 173-216 WAC (State Waste Discharge Permit Program). Chapter 173-218 WAC (Underground Injection Control Program) addresses underground injection of materials into the subsurface.

Remedial actions (such as pump and treat) that involve pumping water to the surface of the ground and discharge to groundwater may need to meet the substantive requirements of the State Waste Discharge Permit requirements (Chapter 173-216 WAC and Chapter 173-220 WAC). This activity may also be required to employ treatment technologies to prevent or minimize the presence of pollutants and achieve AKART prior to discharge. In addition, return of treated water that is brought to the surface and is injected into the ground may be subject to requirements of the underground injection control (UIC) program (e.g., registration of the injection well[s], removal and treatment of constituents).

If contaminated groundwater is maintained entirely under the ground and does not breach the surface of the soil, the State Waste Discharge Permit requirements would not apply. In such cases, the water remains below the ground surface and as such it does not constitute a *discharge into* groundwater (emphasis added). The use of the word "into" in the regulatory prohibition indicates that a discharge of waste materials must break the surface of the ground to constitute a "discharge ... <u>into</u> waters of the state." Alternatives where groundwater does not breach the surface of the soil do not fall under this program because they would move entirely underground and will not break the ground surface.

The State Waste Discharge Program requires that discharges to waters of the state be treated using AKART. If the State Waste Discharge Program applied to an action at the Kaiser Facility, it would also need to address the AKART requirement. Groundwater within the Remelt/Hotline PCB plume at the Facility presents a unique situation. PCBs are present in extremely low concentrations and there is compelling evidence that colloidal transport is a significant transport mechanism. There is no known treatment method for low concentrations of PCBs that are a mixture of dissolved and colloidal phases. Because of this unique situation, there are no known and available methods of treatment. As such, the Pollution Control Hearings Board (PCHB) specifically has stated that AKART does not authorize the use of testing to identify a treatment method, and Ecology has relied upon the PCHB's decision in its Permit Writer's Manual. Since there is no known technology to treat such low levels of PCBs consisting of both dissolved and colloidal phases, any alternative that requires treatment cannot be AKART.

In addition to not being applicable, the unique situation presented by the Remelt/Hot Line PCB plume would also cause the State Waste Discharge requirements (including AKART) to not be relevant and appropriate in that the requirements do not address problems or situations that are "sufficiently similar to those encountered at the site that their use is well suited to the particular site." For example, there is not known treatment for dilute dissolved and colloidal PCBs in water.

Similarly, groundwater that is maintained entirely under the surface is not a regulated discharge under the UIC program (Chapter 173-218 WAC). Again, it would not be discharged *into* the groundwater (emphasis added). In addition, for the UIC program to apply the system would need to meet the definition of a UIC well. Systems that do not employ screened wells or that are otherwise without perforated pipe do not meet this definition.

Installation of groundwater wells is regulated under Chapter 173-160 WAC, and these requirements are potential ARARs for any monitoring and withdrawal wells installed at the Kaiser Facility. The licensing and regulation of well contractors and operators is established under RCW 18.104 and addressed in Chapter 173-162 WAC.

G.2.3 Surface Water Requirements

Regulations adopted pursuant to the CWA under the National Pollutant Discharge Elimination System (NPDES) mandate use of best available treatment (BAT) technologies prior to discharging contaminants to surface waters. Pertinent regulations appear in 40 CFR 129.105 (specifically for PCBs) and 40 CFR Part 467 (for aluminum forming operations). Chapter 90.48 RCW also establishes programs for regulating and controlling surface water quality in Washington State. Chapters 173-216 and 173-220 WAC require application of AKART prior to discharges of pollutants to surface waters. NPDES requirements could constitute potential ARARs for remedial actions that would result in discharge of treated wastewaters to the Spokane River. Thus, associated treatment and/or pretreatment systems could be required to use BAT and/or AKART (e.g., precipitation, decanting, separation) to prevent or minimize the presence of pollutants prior to discharge.

Certain remedial actions may result in the release of total phosphorous to the Spokane River. Examples may include *in situ* bioremediation through nutrient addition to enhance biodegradation, and pump and treat systems that use phosphorous in the treatment system. Actions that result in the generation of water that contains phosphorous will be restricted if these waters are discharged to the Spokane River because of the Total Maximum Daily Load (TMDL) imposed by the State Surface Water Quality Standards (WAC 173-201A-602). Actions that result in the generation of water that contains cadmium, lead, or zinc will need to be evaluated by Ecology because of the TMDL for metals, but as long as the concentrations are less than the chronic standards described in the TMDL, restrictions are not expected.

The Spokane County Shoreline Master Plan is promulgated and authorized pursuant to Chapter 173-19 WAC, the Shoreline Management Act of 1971 – State Master Program. In keeping with the policies and objectives of the Spokane County Master Plan, remedial actions that may impact the shoreline (e.g., if a new discharge outfall must be constructed) should be designed and implemented in a manner that will minimize loss of shoreline, stabilize existing and remaining shoreline areas, and retain a property configuration that encourages water-dependent uses.

Similarly, if new outfalls, diffusers, or other discharge units will need to be constructed in conjunction with a selected remedial action (e.g., as part of a pump and treat alternative), U.S. Army Corps of Engineers requirements for construction in navigable waters (33 CFR Part 322) may be potential ARARs. In general, new discharge units (if needed) would need to avoid impacts on navigation within the Spokane River.

G.2.4 Water Rights

Water rights are required for removal and use of waters of the state. This includes groundwater under the Kaiser Facility and any water withdrawals from the Spokane River. Chapter 173-150 WAC is intended to ensure that available water sources are not exhausted and that water withdrawals do not adversely affect other water rights holders. Kaiser is currently withdrawing water from the Spokane River in addition to groundwater, as allowed under its current water right. This potential ARAR may limit the amount of groundwater that could be withdrawn under remedial action alternatives that involve extraction of groundwater for treatment.

G.2.5 Air Requirements

Toxic air pollutant regulations for new air emission sources, promulgated in Chapter 173-460 WAC, require use of best available control technology for air toxics (T-BACT). The toxic air pollutant regulations may be potential ARARs for remedial actions selected for the Facility. VOCs are not typically encountered in groundwater at the Facility. Minor detections of VOCs in groundwater are 35 to 80 feet below ground surface, and the groundwater to air pathway is not a viable pathway. However, implementation of technologies to treat VOC impacts in soil (such as soil vapor extraction [SVE]) may trigger discharge requirements established by the Spokane Regional Clean Air Agency (SRCAA), which would regulate treatment system emissions to the atmosphere and necessary emission controls.

G.2.6 Waste Management Requirements

Although we do not anticipate that it will be necessary at the Kaiser Facility, to the extent that any wastewater from groundwater treatment is discharged to a sanitary sewer, several potential ARARs may apply. Discharges to the sanitary sewer may need to meet substantive pretreatment requirements addressed under Chapters 173-216 and 173-240 WAC, and 40 CFR Parts 403 and 467. In addition, it may be necessary to obtain the approval of the sewage treatment plant operator so that the sewage treatment plant may receive project wastewaters without violating pretreatment or other conditions of the plant's permit. Satisfaction of the substantive discharge limits should allow approval to be obtained.

During remedial actions at the Facility, wastes and recovered products may be generated that will need to be treated, stored, recycled, or disposed of. At this time we do not anticipate generating regulated hazardous or dangerous waste as defined by EPA and Washington State. However, regulations adopted pursuant to the Resource Conservation and Recovery Act (RCRA) describe numerous action-specific requirements may be potential ARARs if wastes are hazardous or otherwise subject to the recycling provisions of the RCRA regulations, including hazardous waste management under RCRA Subtitle C (40 CFR Parts 260 to 279). In addition, solid waste land disposal restrictions described in 40 CFR 268 and WAC 173-303-140 may be potential ARARs for management of waste. Recovered product may be subject to the used oil recycling requirements.

EPA regulations promulgated under RCRA Subtitle D set forth management standards for municipal and solid wastes (40 CFR Parts 257 and 258) and Washington State regulations describe management standards for solid waste in Chapter 173-350 WAC and for municipal solid waste landfills in Chapter 173-351 WAC. Some of these management standards may be potential ARARs for non-hazardous solid wastes generated during remedial actions at the Facility.

Federal regulations at 40 CFR Part 761 describe management requirements for PCB wastes and materials. If PCB-affected wastes are generated, the PCB management standards may be potential ARARs for such wastes.

In general, the kinds of action-specific requirements that may apply to wastes and recovered product may involve the following actions and precautions:

- Packaging, labeling, placarding, and manifesting of off-site waste shipments;
- Inspecting waste management areas to ensure proper performance and safe conditions;
- Preparation of plans and procedures to train personnel and respond to emergencies; and
- Management standards for containers, tanks, and treatment units.

Many of these requirements will depend on the particular remedial actions undertaken, the types of waste and/or recovered product generated, and their methods of disposition.

G.2.7 Other Requirements

Other potential ARARs may exist that pertain to the construction of the remedial action. Implementation of some remedial actions may need to meet permitting requirements, such as meeting the requirements of the Construction Stormwater General Permit established by Title 33 USC, 1251 and RCW 90.48, and

complying with substantive requirement of grading activities necessary for soil work.

Implementation of the remedial actions will need to observe the requirements of the WISHA regulations described in Chapter 296-24 WAC.

G.3 LOCATION-SPECIFIC REQUIREMENTS

Location-specific ARARs are restrictions placed on the concentration of hazardous substances or the conduct of activities solely because they are in a specific location. Some examples of special locations include floodplains, wetlands, historic sites, and sensitive ecosystems or habitats. Table G-4 catalogs the location-specific standards identified in existing federal and state requirements, and indicates which of these may be potential ARARs. The "Comments" column of Table G-4 states the rationale for a requirement being, or not being, identified as a potential ARAR. In summary, the following requirements have been identified as potential location-specific ARARs:

- Groundwater. The Kaiser Facility is located in the vicinity of the Spokane Valley Sole Source Aquifer. Because of this sole source designation, activities that may affect the aquifer are potentially subject to various restrictions (e.g., prohibition of waste disposal, limits on discharges that could enter the aquifer). Thus, the sole source aquifer standards may be potential ARARs. Another state regulation limits withdrawal of groundwater to prevent potential depletion or excessive level decline of the aquifer. Since the proposed remedial actions at the Facility may involve substantial groundwater withdrawal, this regulation would constitute a potential ARAR.
- Shorelines and Surface Waters. A number of requirements constrain activities in proximity to shorelines and surface waters. Remedial actions at the Facility may occur in proximity to shorelines or in the floodplain associated with the Spokane River. Potential ARARs would require that precautions (e.g., ensure no net loss of shoreline, preserve beneficial values of floodplain) be taken to minimize adverse effects.

The Spokane River adjacent to the Facility has a TMDL for dissolved oxygen as required by WAC 173-201A. Kaiser and other dischargers are under an allocation that restricts the pounds of phosphorous, ammonia, and carbonaceous biological oxygen demand (CBOD) the Facility can discharge in a day. Because of Kaiser's location along the river reach covered by the dissolved oxygen TMDL, restrictions may be placed on activities that result in increased loadings of these parameters to the river.

- Water Rights. Water rights are required for removal and use of waters of the state. This includes the groundwater under the Kaiser Facility and any water withdrawals from the Spokane River.
- Cadmium, Lead, and Zinc TMDL. In August 1999, Ecology issued TMDLs for cadmium, lead, and zinc in the Spokane River. The TMDLs were initiated as a result of high metals concentrations entering Washington from mining operations in Idaho, which have resulted in exceedances of water quality standards for these three metals in the river. The TMDLs prohibit discharge of cadmium, lead, and zinc at concentrations that exceed the hardnessbased water quality standard at the end of the discharge pipe. The limits for any individual discharger may be performance-based. Existing wastewater dischargers are not allowed to discharge these three metals at concentrations that are statistically above what their treatment system can consistently achieve, even if it is well below the water quality standard. Kaiser has recently been issued a facility-specific permit limit incorporating the revised metal TMDL approach for its NPDES permit discharge. It is not likely, however, that groundwater discharges to the Spokane River from the Facility will be affected by the TMDLs for cadmium, lead, and zinc. The Kaiser and area-wide concentrations of these metals in groundwater are less than the water quality standards. However, any groundwater remedial action conducted by Kaiser that results in an increase in the concentration of these three metals in discharges to the river would need to be evaluated by Ecology in consideration of the TMDLs.
- Polychlorinated Biphenyls. A draft TMDL for PCB was issued by Ecology in June 2006, but it has not been finalized. Because there are a variety of known PCB sources to the river, and others that may be identified by the regulatory agencies, Ecology is in the process of implementing a toxics reduction strategy for the Spokane River. This strategy includes PCB source identification and reduction activities. A TMDL for PCBs may eventually be established for the Spokane River in the future. This TMDL, if established, will be an ARAR for the Facility.
- Air. The Facility is located in the Spokane Valley airshed. The Spokane Valley airshed has been in nonattainment for particulate matter (PM10) and carbon monoxide (CO) in the past but is current meeting attainment for both of these parameters. If the airshed were to become a nonattainment area for one or more parameter in the future, sources of air emissions would typically be subject to greater restrictions in these areas. Thus, these restrictions may be potential ARARs for remedial actions at the Facility that could result in emissions of PM10 or CO.

G.4 REFERENCES FOR APPENDIX G

Ecology, 1994. Natural Background Soil Metals Concentrations in Washington State. Toxics Cleanup Program, Washington State Department of Ecology. Publication no. 94-115, October 1994.

Ecology, 1998. Cadmium, Lead, and Zinc in the Spokane River Recommendations for Total Maximum Daily Loads and Waste Load Allocations. Washington State Department of Ecology Publication No. 98-329. September 1998.

Ecology, 2001. Model Toxics Control Act Cleanup Levels and Risk Calculations (CLARC 3) Update. Washington State Department of Ecology Publication No. 94-145. August 2001.

Ecology, 2010a. Kaiser Trentwood Site Draft Cleanup Standards. Issued to Kaiser Aluminum Washington, LLC, by the Washington State Department of Ecology. May 2010.

Ecology, 2010b. Kaiser Trentwood Site – Ecology's Responses to Kaiser's June 17, 2010 Comments on May 2010 Draft Cleanup Standards. Letter to Bernard P. Leber, Jr., Kaiser Aluminum Fabricated Products, LLC., from Dr. Teresita Bala, Washington State Department of Ecology. August 17, 2010.

Hart Crowser, 2012a. Final Site-Wide Groundwater Remedial Investigation, Kaiser Trentwood Facility, Spokane Valley, Washington. Prepared for Kaiser Aluminum Washington, LLC, by Hart Crowser, Inc. May 2012.

Hart Crowser, 2012b. Final Site-Wide Soil Remedial Investigation, Kaiser Trentwood Facility, Spokane Valley, Washington. Prepared for Kaiser Aluminum Washington, LLC, by Hart Crowser, Inc. May 2012.

Hart Crowser, 2012c. Final Feasibility Study Technical Memorandum, Kaiser Trentwood Facility, Spokane Valley, Washington. Prepared for Kaiser Aluminum Washington, LLC, by Hart Crowser, Inc. May 2012.

Pioneer, 2012. Final Kaiser Trentwood Facility Human Health and Ecological Risk Assessments, Pioneer Technologies Corporation. May 2012.

L:\Jobs\2644125\Final FS 05-2012\03 Appendices\Appendix G\Kaiser FS Appendix G.doc

Table G-1 - Soil Screening Level Concentrations

	Unsaturated Soil	Ingestion/Direct	Protection of	Protection of	Groundwater	Screening Levels		
	Background	Contact with Soil	Wildlife	Unsaturated Soil	Saturated Soil	Unsaturated Soil	Saturated Soil	
COPCs	in mg/kg (5)	in mg/kg (1)	in mg/kg (2)	in mg/kg (3)	in mg/kg (4)	in mg/kg (6)	in mg/kg (6)	Reason for Proposed SLs
Metals								
Antimony	3.1 - 7.6	140	NA	5.42	NA			
Arsenic	1.13 - 10.32	9 (a)	7 (c)	0.0341	0.0017	10.32	10.32	natural background concentration
Cadmium	0.125 - 0.685	350	14	0.7	0.0349	(g)	(g)	
Chromium III		N.A.	NA	2,000	100			
Chromium VI		1,050	67	NA	NA			
Copper	4.04 - 29.03	12,950	NA	260	NA			
Iron	9,670 - 27,000	NA	NA	NA	NA	(j)	(j)	
Lead	6.75 - 16	1,000 (b)	118	250 (f)	250 (f)	1,000 (i)	NA	Human health risk is present (i)
Manganese	354.5 - 769.5	49,000	1,500	52.2	3	769.5 (j)	769.5 (j)	natural background concentration
Selenium	0.1 - 0.4362	1750	0.3	5	NA	(h)		
Zinc	29.7 - 71	105,000	NA	5,970	NA			
PCBs								
Total PCBs		6.6	0.34 (d)	0.272	0.014	0.272	0.014	Lowest of soil SLs
Aroclor 1248		6.6	0.34 (d)	0.272	0.014	0.272	0.014	Lowest of soil SLs
Aroclor 1254		6.6	0.34 (d)	0.272	0.014	0.272	0.014	Lowest of soil SLs
PAHs								
cPAH - TEQ		0.42	12 (e)	0.233	0.012	0.233	0.012	Lowest of soil SLs
Other SVOCs								
2-Methylnapthalene		NA	NA	2,190	0.112	(q)	(q)	
N-Nitrosodiphenvlamine		NA	NA	536	NA	(a)	(0)	
						(5)		
TPH								
Gasoline/Stoddard Solvent		2.909	5.000	100 (f)	100 (f)	100 (i)(a)	100 (i)(a)	Lowest of soil SLs
Diesel		2,667	6,000	2,000 (f)	2,000 (f)	2,000	2,000	Lowest of soil SLs
Heavy Oil		98.000	6.000	2.000 (f)	2.000 (f)	2.000	2.000	Lowest of soil SLs
			- /	1 VI	/*** \/	1	1	
VOCs								
Benzene		136	NA	0.005	NA	0.005 (a)	NA	Lowest of soil SLs
Ethyl Benzene		NA	NA	5.99	NA	(g)		
Methylene Chloride		NA	NA	0.022	NA	(g)		
PCE		3.500	NA	0.9	0.00005	(a)	0.00005 (a)	Lowest of soil SLs
TCE		1,010	NA	NA	NA	NA	NA	· · · · · · · · ·
Total Xylenes		NA	NA	14.500	NA	(a)		

Notes:

Table adapted from FSTM Table 1-2 (Hart Crowser 2012c).

Bolded text indicates that the criteria have been exceeded at the Facility (refer to the appropriate RI document for the screening criteria that were used).

NA - Not detected, or detected at a frequency of less than 5 percent of samples analyzed.

(1) Refer to HHERA Tables 4.2 and 4.3 (Pioneer 2012). Human health risk above criteria found for Aroclor 1248 (Oil House French drain area), diesel (Hoffman

Tank area), and for lead (ORB Man-Made Depressions area).

(2) Refer to HHERA Tables 11.1 and 11.2 (Pioneer 2012). No risk to wildlife above criteria was identified.

(3) Refer to the Kaiser Final Site-Wide Soil RI Table 1.1 (Hart Crowser 2012b).

(4) Refer to the Kaiser Final Site-Wide Soil RI Table 1.2 (Hart Crowser 2012b).

(5) The natural background concentration ranges from Ecology 1994 were used except for background concentrations for antimony and selenium, which

were derived using methods described in WAC 173-340-709 (refer to HHERA Appendix C [Pioneer 2012]).

(6) Lowest concentration for which an exceedance was observed.

(a) Natural background concentration (refer to HHERA Appendix C [Pioneer 2012]).

(b) MTCA Method A - Industrial properties (Table 745-1E).

(c) MTCA indicator soil concentration (ISC) value for As(III) used (Table 749-3).

(d) Site-specific ISC value (shrew) for total PCBs used (refer to the HHERA Table 11-6 [Pioneer 2012]).

(e) MTCA ISC value of benzo(a)pyrene used.

(f) MTCA Method A (Table 740-1).

(g) Not considered a groundwater COPC. Refer to Kaiser Final Site-Wide Groundwater RI Section 5.2 (Hart Crowser 2012a).

(h) Refer to HHERA Section 11 (Pioneer 2012).

(i) COC present only in some areas of the site: lead in the ORB Man-Made Depressions area, and gasoline in Oil House, ORB, Truck Shop, and G-1 Transfer Line areas.

(j) Considered a COC in the Kaiser Final Groundwater RI Section 5.2 (Hart Crowser 2012a) for potential adverse secondary (aesthetic) effects.

Table G-2 - Groundwater Screening Level Concentrations

		Protection of Drinking Water			Protection of Surface Water									
										National ⁻	Toxics Rule			
		Federal and	Federal		MTCA N	lethod B		Clean Wate	er Act §304	40 CI	FR 131	MTCA N	Aethod B	
		State Safe	Safe								Human			
		Drinking	Drinking								Health			
		Water Act	Water Act					Freshwater	Freshwater	Aquatic	Consumption			
	Screening	Primary	Secondary	MTCA		Non-	Ch. 173-	Aquatic Life	Human	Species in	of Aquatic		Non-	
	Level	MCL	MCL	Method A	Carcinogen	Carcinogen	201A WAC	Chronic	Health	Fresh Water	Species	Carcinogen	Carcinogen	PQL
COPC	in µg/L	in µg/L	in µg/L	in µg/L	in µg/L	in µg/L	in µg/L ^a	in µg/L	in µg/L	in µg/L	in µg/L	in µg/L	in µg/L	in µg/L
Conventionals														
Nitrate	10.000	10.000							10.000					
Metals (Total and Dissolved)														
Antimony	6	6				6.4			5.6		14		1,000	0.05
Arsenic	0.018	10		5	0.058	4.8	190	150	0.018	190	0.018	0.098	18	0.5
Cadmium	0.25	5		5		8	0.37	0.25		1			20	0.05
Chromium	50	100		50										0.2
Copper	3.50	1,300	1,000			590	3.5	9		11			2,700	
Iron	300		300					1,000	300					20
Lead	0.54	15		15			0.54	2.5		2.5				0.02
Manganese	50		50			2,200			50					0.05
Zinc	32		5,000			4,800	32	120	7,400	100	-		17,000	
cPAHs														
TEQ ^b	0.0028	0.2		0.100	0.012				0.0038		0.0028	0.030		0.02
Volatiles														
1,2-Dichloroethane (EDC)	0.38	5		5	0.48	160			0.38		0.38	59	43,000	
Benzene	0.8	5		5	0.8	32			2.2		1.2	23	2,000	
Tetrachloroethene	0.081	5		5	0.081	80			0.690		0.8	0.390	840	
Trichloroethene (TCE)	0.49	5		5	0.49	2.4			2.5		2.7	6.7	71	
Destisides (DCDs														
Pesticides/PCBs	0.000004	0.5		0.4	0.044		0.014	0.014		0.1.1	0.00017	0.00044		0.005
Total PCBs	0.000064	0.5		0.1	0.044		0.014	0.014	0.000064	0.14	0.00017	0.00011		0.005
трн														
Gasoline	800			800/1.000 ^c										
Diesel	500			500										
Heavy Oil	500			500										

Notes:

Table adapted from FSTM Table 1-3 (Hart Crowser 2010).

MCL = Maximum contaminant level.

PQL = Practical quantitation limit.

-- = No data.

*Based on state MCL. No federal MCL for constitue

Bold value represents the most conservative value and is used as the screening level. Analytes in bold type are considered to be COCs for groundwater at the Kaiser Facility.

(a) Calculations for hardness-dependent metals were based on a hardness of 25.

Individual formulas are as follows:

Cadmium

≤ (0.909)(e(0.7852[In(hardness]-3.490)) at hardness = 100. Conversions factor (CF) of 0.909 is hardness dependent. CF is calculated for other hardnesses as follows: CF = 1.101672 - [(In hardness)(0.041838)].

Chromium III

≤ (0.860)e(0.8190[ln(hardness)]+ 1.561) Copper

Coppe

 \leq (0.960)(e(0.8545[ln(hardness)] - 1.465))

Lead

≤ (0.791)(e(1.273[In(hardness)] - 4.705)) at hardness = 100. Conversion factor (CF) of 0.791 is hardness dependent. CF is calculated for other hardnesses as follows: CF = 1.46203 - [(In hardness)(0.145712)].

(b) Screening levels are based on mixtures of cPAH values based on Toxicity Equivalency Quotient (TEQ) calculation from WAC 173-304-708 as calculated in FSTM Table 1-4 (Hart Crowser 2010).

The reference compound for Total cPAHs is benzo(a)pyrene (BaP).

(c) Benzene present/no benzene present.

Sheet 1 of 4

Response Action	Potential Action-Specific ARARs	Citation	ARAR?	Comments
Institutional Controls	Long-term groundwater monitoring consistent with MTCA.	Chapter 173-340 WAC	Yes	Groundwater monitoring system with quarterly sampling and analysis; potential 30-year (typical for post-closure care) monitoring time period.
	Groundwater well construction and maintenance consistent with state requirements.	Chapters 173-160 and 173-162 WAC	Yes	Construction and maintenance of monitoring wells to prevent adverse impacts to groundwater.
Monitored Natural Attenuation (MNA)	Natural attenuation as a remedial action consistent with expectations defined by MTCA.	WAC 173-340-370(7)	Yes	Ecology expects that natural attenuation may be appropriate at sites where source control has been conducted to the maximum practicable extent; remaining impacts do not pose an unacceptable risk to human health or the environment; there is evidence that natural attenuation is occurring; and appropriate monitoring is conducted.
Surface Containment/ Capping	Capping of soil containing PCBs consistent with federal TSCA requirements.	40 CFR 761	Potential	PCB-impacted soil at low concentrations may be left in place under TSCA; however, remediation requirements such as institutional controls, capping, and cleanup must be met.
Hydraulic Containment	Groundwater withdrawal consistent with groundwater right requirements.	Chapter 173-150 WAC	Yes	Withdrawal of groundwater consistent with existing water right and in a manner that will avoid impacts on other water right holders.
	Groundwater well construction and maintenance consistent with state requirements.	Chapters 173-160 and 173-162 WAC	Yes	Construction and maintenance of withdrawal well(s) to prevent adverse impacts on groundwater.
In Situ Treatment	Construction, operation, and maintenance of soil and groundwater <i>in</i> <i>situ</i> treatment systems consistent with State Waste Discharge Standards.	Chapter 173-216 WAC	Potential	Treatment system must be constructed and function in a manner that will not degrade groundwater quality.
	Construction, operation, and maintenance of soil and groundwater <i>in</i> <i>situ</i> treatment systems consistent with Underground Injection Control (UIC) Program requirements.	Chapter 173-218 WAC	Potential	The injection of materials into the subsurface from aboveground locations may require registration with the UIC Program if the injection points are classified as UIC wells.
	Groundwater well construction and maintenance consistent with state requirements.	Chapters 173-160 and 173-162 WAC	Yes	Treatment system well(s) must be constructed and maintained to prevent adverse groundwater impacts.

Response Action	Potential Action-Specific ARARs	Citation	ARAR?	Comments
Groundwater Extraction and <i>Ex Situ</i> Treatment				
Extraction	Groundwater withdrawal consistent with groundwater right requirements.	90-54 RCW; Chapter 173-150 WAC	Yes	Withdrawal of groundwater consistent with existing water right and in a manner that will avoid impacts on other water right holders.
	Groundwater well construction and maintenance consistent with state requirements.	Chapters 173-160 and 173-162 WAC	Yes	Construction and maintenance of extraction well(s) to prevent adverse impacts to groundwater.
<i>Ex Situ</i> Treatment	Treatment of extracted groundwater consistent with state Groundwater Quality Standards.	Chapter 173-200 WAC	No	Does not apply to cleanup actions approved by Ecology under MTCA.
	Treatment of extracted groundwater consistent with State Waste Discharge Standards.	Chapter 173-216 WAC	Potential	The effluent of groundwater treatment systems may be considered a waste material in some situations.
	Treatment of extracted groundwater consistent with UIC Program requirements.	Chapter 173-218 WAC	Potential	Prevention of the discharge of fluids into UIC wells that will endanger groundwater, requiring the use of all known, available, and reasonable methods of prevention, control, and treatment (AKART) to the discharge of fluids and waste fluids into the waters of the state.
	Construction, operation, and maintenance of treatment system consistent with wastewater treatment facility requirements.	Chapter 173-240 WAC	Potential	Treatment system must be constructed and function in a manner that will not degrade groundwater and surface water quality.
Discharge/ Reinfiltration	Discharge of treated effluent consistent with State Groundwater Quality Standards.	Chapter 173-200 WAC	No	Does not apply to cleanup actions approved by Ecology under MTCA.
	Discharge of treated effluent to surface water must be in accordance with State Surface Water Quality Standards.	WAC 173-201A-602	Potential	Treated water discharged to surface water must meet discharge requirements. Will be applicable if discharge to surface water is used during cleanup.
	Discharge of treated effluent to surface water (if any) consistent with NPDES requirements and Kaiser's NPDES permit.	40 CFR 129.105 and 467; Chapter 173-220 WAC; Kaiser's NPDES permit	Potential	Treated water discharged to the Spokane River would have to achieve applicable NPDES treatment limits for the effluent. Will be applicable if discharge to surface water is used during cleanup.

Sheet 2 of 4

Sheet 3 of 4

Response Action	Potential Action-Specific ARARs	Citation	ARAR?	Comments
	Discharge of treated effluent consistent with State Waste Discharge Permit Program.	Chapter 173-216 WAC	Potential	The effluent of groundwater treatment systems may be considered a waste material in some situations.
	Effluent discharges to sanitary sewer system (if any) consistent with applicable pretreatment standards.	40 CFR 403 and 467; Chapters 173-216 and 173-240 WAC	No	Treated water discharged to the sanitary sewer system must meet pretreatment standards.
	Discharge of treated effluent must be in accordance with the Spokane River Phosphorous Management Plan.	Spokane River Phosphorous TMDL	Potential	Minimum 259 kg phosphorous/day in Long Lake. Kaiser must not exceed their phosphorous allocation. No new sources of phosphorous.
	Discharge of treated effluent consistent with Underground Injection Control (UIC) Program.	Chapter 173-218 WAC	Potential	The injection of materials into the subsurface from aboveground locations may require registration with the UIC Program if the injection points are classified as UIC wells.
	Construction of effluent dischargers (if any) consistent with Spokane County shoreline management plan and Army Corps standards for work in navigable waters.	33 CFR 322; WAC 173-19-400	No	Pipelines, diffusers, or other discharge units (if any) to be constructed for effluent discharge must be protective of shoreline and not interfere with navigation in the Spokane River.
Free Phase Product Recoverv				
Extraction	Groundwater well construction and maintenance consistent with state requirements.	Chapters 173-160 and173-162 WAC	Yes	Construction and maintenance of extraction well(s) to prevent adverse impacts on groundwater.
Recovery/ Discharge	Construction, operation, and maintenance of recovery system consistent with State Waste Discharge Standards.	Chapter 173-216 WAC	Potential	Recovery system must be constructed and function in a manner that will not degrade groundwater and surface water quality.
	Recycling, reuse, and management of recovered product consistent with state and federal requirements.	40 CFR Part 761; Chapters 173-303, 173-304, and 173-351 WAC	Yes	Recovered product must be stored, treated, and recycled/disposed of as appropriate for the type of waste (e.g., used oil, PCB-contaminated oil).
	Management of excess/residual water consistent with treatment and disposal standards appropriate for selected method of disposal.	40 CFR 129.105, 467, and 761; Chapter 173-220 WAC; Kaiser's NPDES permit	Yes	Treatment and discharge of excess/residual water generated during product recovery must satisfy requirements for type of management method employed (e.g., NPDES for discharge to Spokane River, pretreatment for discharge to sewer, TSCA for management and disposal if >50 ppm PCBs).

Response Action	Potential Action-Specific ARARs	Citation	ARAR?	Comments
Excavation and Off-Site Disposal	Transportation of impacted soil or hazardous materials consistent with state and federal requirements.	49 CFR 100 and 177; Chapter 446-50 WAC	Yes	Transportation of hazardous waste or materials required to meet state and federal requirements.
	Management of excavated soil consistent with solid waste handling and disposal facility requirements.	40 CFR 241 and 257; Chapters 173-350 and 173-351 WAC	Yes	Handling and disposal of solid waste required to meet state and federal requirements.
	Management of excavated soil consistent with solid waste land disposal restrictions.	40 CFR 268; WAC 173-303-140	Potential	Best management practices for dangerous wastes required to meet state and federal requirements.
	Disposal of waste consistent with RCRA Subtitle C requirements for management of hazardous waste.	40 CFR 260 to 279	Potential	Off-site disposal of impacted soil meeting hazardous waste criteria may require disposal at Subtitle C landfill.
	Disposal of waste consistent with RCRA Subtitle D requirements for management of solid waste.	40 CFR 257 and 258	Potential	Disposal of impacted soil not defined as hazardous waste may be disposed of at Subtitle D landfill.
Soil Vapor Extraction (SVE) and Off-Gas Treatment	Discharge of effluent from SVE systems consistent with Spokane Regional Clean Air Agency (SRCAA) requirements.	SRCAA Regulation I	No	SVE system effluent emitted to the atmosphere required to meet SRCAA discharge requirements.
Construction of Response Action	Implementation of response action consistent with occupational health and safety requirements.	Chapter 296-24 WAC	Yes	Worker and visitor health and safety requirements established by the Washington Industrial Safety and Health Act (WISHA) will be met during implementation of the response action.
	Implementation of response action consistent with local permitting requirements.	City of Spokane Valley Ordnance	Yes	Appropriate substantive requirements to be met for implementation of response action (for example, meeting runoff quality requiremnts for grading activities).
	Implementation of response action consistent with construction stormwater general permit.	Title 33 USC, 1251 RCW 90.48	Potential	Appropriate permitting requirements to be met during implementation of response action.

Geological

Location	Requirement	Prerequisite	Citation	ARAR?	Comments
On or adjacent to a fault	Solid waste landfills and	Waste management within 200 feet	40 CFR 264.18	No	No solid or hazardous waste
displaced in Holocene	hazardous waste facilities	(solid waste) or 500 feet (hazardous	WAC 173-303-282, and WAC		management facilities will be
time	prohibited.	waste) of a Holocene fault.	173-351-130		established.
Seismic impact zones and	Solid and hazardous waste	Solid and hazardous waste	WAC 173-303-282,	No	No solid or hazardous waste
subsidence areas	facilities prohibited in areas	management activities in seismic	WAC 173-304-130, and		management facilities will be
	with potential for impacts	impact zones and unstable areas.	WAC 173-351-130		established.
	during seismic events.				
Slopes	Solid and hazardous waste	Solid or hazardous waste	WAC 173-303-282 and WAC	No	No solid or hazardous waste
	facilities prohibited from areas	management on an unstable slope or	173-304-130		management facilities will be
	with unstable slopes or soils.	soil.			established.
Salt dome and salt bed	Placement of	Hazardous waste placement in salt	40 CFR 264.18	No	No bulk liquid hazardous waste
formations, underground	non-containerized or bulk	dome, salt bed, mine, or cave.			will be managed.
mines, and caves	liquid hazardous wastes is				
	prohibited.				

Drinking Water Supply

Location	Requirement	Prerequisite	Citation	ARAR?	Comments
Drinking water supply well	Solid waste management prohibited near drinking water supply well.	Solid waste management within 1,000 feet or 90-day travel time upgradient of drinking water supply well.	WAC 173-304-130 and WAC 173-351-140	No	No drinking water supply wells are within 1,000 feet downgradient of project.
Water supply intake	Hazardous waste management facilities prohibited near surface water and groundwater intake for domestic use.	Hazardous waste management within 500 feet (non land-based) or 1/4 mile (land-based) of intake.	WAC 173-303-282	Potential	If hazardous waste is encountered during cleanup, management activities will need to be conducted in accordance with the state set back requirements.
Watershed	Solid and hazardous waste management areas prohibited within a watershed used by a public water supply system for municipal drinking water.	Solid and hazardous waste management within a public watershed.	WAC 173-303-282, WAC 173-304-130, and WAC 173-351-140	No	No solid or hazardous waste management will occur within a designated watershed used for water supply.

Groundwater

Location	Requirement	Prerequisite	Citation	ARAR?	Comments
Sole-source aquifer	Solid and hazardous waste land based management facilities prohibited over a sole-source aquifer.	Disposal or land based management over a sole source aquifer.	WAC 173-303-282, WAC 173-304-130, and WAC 173-351-140	Potential	Actions may occur in the vicinity of the Spokane Sole-Source Aquifer.
Aquifer	Prevent depletion, excessive level decline, and/or reduction in water quality of the aquifer.	Withdrawal of groundwater from the aquifer.	Chapter 173-154 WAC	Potential	Actions may involve withdrawal of groundwater from the aquifer.
	Bottom of lowest liner of solid waste disposal facility must be at least 10 feet above seasonal high water in the aquifer (5 feet if hydraulic gradient controls installed).	Solid waste disposal within 10 feet above aquifer.	WAC 173-304-130 and WAC 173-351-140	No	No solid waste disposal facility will be established.
	Hazardous waste management facilities prohibited in close proximity to aquifer.	Hazardous waste management within 10 feet (non-land based) or 50 feet (land based) above aquifer.	WAC 173-303-282	No	No hazardous waste management facility will be established
Aquifer Protection Areas	Activities restricted within designated Aquifer Protection Areas.	Activities within an Aquifer Protection Area.	RCW 36.36	Future Potential	No Aquifer Protection Area has been designated yet. This may occur in the future.
Groundwater Management Areas	Activities restricted within Groundwater Management Areas.	Activities within a Groundwater Management Area.	Chapter 173-100 WAC; WAC 173-303-282	Future Potential	No Groundwater Management Area has been defined. This may occur in the future.
Special Protection Areas	Activities restricted within Special Protection Areas.	Activities within a Special Protection Area. Hazardous waste management facilities prohibited.	WAC 173-200-090 and WAC 173-303-282	Future Potential	No Special Protection Area has been defined. This may occur in the future.
Wellhead Protection Areas	Activities restricted within Wellhead Protection Areas.	Activities within a Wellhead Protection Area.	WAC 246-290-135	Future Potential	Wellhead Protection program has not been established. Such a program, which may integrate the sole source aquifer, aquifer protection, and special protection programs may be established in the future.
Groundwater use	Water right required for groundwater use.	Withdrawal of groundwater requires a right.	RCW 90.54; Chapter 173-150 WAC	Yes	Kaiser has a water right for groundwater withdrawal.

Surface Water

Location	Requirement	Prerequisite	Citation	ARAR?	Comments
Rivers and streams	Avoid diversion, channeling, or other actions that modify streams or rivers, or adversely affect fish or wildlife habitats and water resources.	Actions modifying a stream or river and affecting fish or wildlife.	Chapters 220-110 and 232-14 WAC	No	No modification or diversion of rivers or streams will occur,
Shorelines/Surface waters	Actions prohibited near shorelines of statewide significance unless permitted,	Actions within 200 feet of shorelines.	RCW 90.58; Chapters 173-14 and 173-16 WAC	Potential	Actions may occur within 200 feet of the Spokane River,
	Solid waste facilities prohibited near surface water.	Solid waste disposal within 200 feet of surface water (stream, lake, pond, river, saltwater body).	WAC 173-304-130 and WAC173-351-140	No	No solid waste disposal facility will be established within 200 feet of a surface water.
Floodplains	Hazardous waste management facilities prohibited near perennial surface water bodies.	Hazardous waste management within 500 feet (non land-based) or 1/4 mile (land-based) of water body.	WAC 173-303-282	No	No hazardous waste management facility will be established.
	Restrictions on dissolved oxygen loading to the Spokane River	TMDL for dissolved oxygen restricts pounds of phosphorous, ammonia, and carbonaceous BOD. No new sources are allowed. Kaiser cannot exceed its current allocation.	Chapter 173-201A WAC; Dissolved oxygen TMDL	Yes	No exceedence of dissolved oxygen TMDL.
	Restrictions on cadmium, lead, and zinc loading in the Spokane River.	TMDLs for these metals cannot be exceeded.	Ecology 1998	Yes	Not likely to be a limiting factor for soil or groundwater remediation at the Kaiser Facility.
	Solid and hazardous waste facilities must be designed, built, operated, and maintained to prevent washout.	Solid or hazardous waste management in a 100-year floodplain.	40 CFR 264.18; WAC 173-303-282, WAC 173-304-460, and WAC 173-351-130	No	No solid or hazardous waste management facility will be established.
	Hazardous waste land-based facilities prohibited in 500-year floodplain.	Hazardous waste disposal/land-based management in a 500-year floodplain.	WAC 173-303-282	No	No hazardous waste disposal facility will be established.
	Avoid adverse effects, minimize potential harm, restore/preserve natural and beneficial values in floodplains.	Actions occurring in a floodplain.	Chapters 173-16 and 173-158 WAC	Potential	Actions may occur within a designated floodplain.

Location	Requirement	Prerequisite	Citation	ARAR?	Comments
Wetlands	Solid waste facilities prohibited	Solid waste management in a	WAC 173-304-130 and WAC	No	No delineated wetlands located
	in wetlands.	wetland (swamps, marshes, bogs,	173-351-130		in vicinity of project.
		estuaries, and similar areas).			
	Hazardous waste facilities	Hazardous waste management withir	WAC 173-303-282	No	No delineated wetlands located
	prohibited near wetlands.	500 feet (non land-based) or 1/4 mile			in vicinity of project.
		(land-based) of wetlands			
	Work or structures in	Work or construction in navigable	40 CFR 230 to 233;	No	No actions within navigable
	navigable waters prohibited	waters; discharges to wetlands.	33 CFR 322 to 323		waters. No discharges to
	without permit. Discharge of				delineated wetlands.
	dredged or fill materials into				
	wetlands prohibited without a				
	permit.				
	Minimize potential harm, avoid	Construction or management of	Chapters 173-16 and 173-22	No	No delineated wetlands located
	adverse effects, preserve and	property in wetlands.	WAC		in vicinity of project.
	enhance wetlands.				

Air

Location	Requirement	Prerequisite	Citation	ARAR?	Comments
Non-attainment areas	Spokane Valley has been	Activities within a designated	40 CFR 51 and 52;	Potential	Would only apply if Spokane
	nonattainment for PM10 and	non-attainment area and Class I PSD	Chapter 173-400 WAC and		Valley becomes a nonattainment
	CO in the past but is mow	Air Quality Zones.	WAC 173-303-282		area again. In such cases
	meeting attainment. If the				actions at Kaiser may occur
	restrictions on air emissions				within a designated non-
	would be required if				attainment area.
	nonattainment were to reoccur				
	under state and federal air				
	quality programs.				

Land Use

Location	Requirement	Prerequisite	Citation	ARAR?	Comments
Neighboring properties	Solid and hazardous waste management prohibited near Facility's property line.	Solid waste management within 100 feet of Facility's property line; hazardous waste management within 200 feet (non land-based) or 500 feet (land-based) of Facility property line.	WAC 173-304-130, WAC 173-351-140, and WAC 173-303-282	No	No solid or hazardous waste management facilities will be established.
	No solid waste management areas within 250 feet of property line of residential zone properties.	Solid waste management within 250 feet of property line of residential property.	WAC 173-304-130 and WAC 173-351-140	No	No residential zone properties in vicinity of project.
	Hazardous waste management prohibited near residences or public gathering places.	Hazardous waste management withir 500 feet (non land-based) or 1/4 mile (incineration and land-based) of residences or public gathering places.	WAC 173-303-282	No	No hazardous waste management facility will be established.
Farmland	Hazardous waste management prohibited near prime farmland.	Hazardous waste management withir 500 feet (non land-based) or 1/4 mile (land-based) of prime farmland	WAC 173-303-282	No	No prime farmland in vicinity of project.
Proximity to airports	Disposal of solid waste that could attract birds prohibited near airport runways.	Solid waste disposal within 5,000 fee (piston-type aircraft) or 10,000 feet (turboiet aircraft) of airport runways.	WAC 173-304-130	No	No airport runways in vicinity of project.

Sensitive Environments

Location	Requirement	Prerequisite	Citation	ARAR?	Comments
Endangered/threatened	Solid waste management	Solid waste management within	WAC 173-304-130,	No	No actions will occur within a
species habitats	prohibited from areas	critical habitats.	173-351-140		critical habitat.
	designated by US Fish and				
	Wildlife Service as critical				
	habitats for endangered or				
	threatened species.				
	Hazardous waste	Hazardous waste management withir	WAC 173-303-282	No	No critical or essential habitats in
	management prohibited near	500 feet (non land-based) or 1/4 mile			vicinity of project.
	critical habitats and habitats	(land-based) of critical and essential			
	essential for recovery of state	habitats.			
	threatened or endangered				
	species.				
	Actions within critical habitats	Activities where endangered or	50 CFR 17, 222 to 227, 402,	No	No actions will occur within a
	must conserve endangered	threatened species exist.	and 424;		critical habitat or affect
	and threatened species.		Chapter 232-12 WAC		endangered/threatened species.

management prohibited near

natural area preserves.

Location	Requirement	Prerequisite	Citation	ARAR?	Comments
Parks/Recreation	Solid waste management	Solid waste management within	WAC 173-304-130 and WAC	No	No solid waste management
areas/Monuments	prohibited near state or national park.	1,000 feet of state/national park.	173-351-140		facilities will be established.
	Hazardous waste	Hazardous waste management within	WAC 173-303-282	No	No hazardous waste
	management prohibited near	500 feet (non land-based) or 1/4 mile			management facilities will be
	state or federal park,	(land-based) of state or federal park,			established.
	recreation area, or national	recreation area, or national			
	monument.	monument.			
	Restrictions on activities in	Activities within state parks or	Chapter 352-32 WAC	No	No actions will occur within state
	areas that are designated	recreation/conservation areas.			parks or recreation/conservation
	state parks, or				areas.
	recreation/conservation areas.				
Wilderness areas	Actions within designated	Activities within designated	50 CFR 35	No	No wilderness areas in vicinity of
	wilderness areas must ensure	wilderness areas.			project.
	area is preserved and not				
	impaired.				
	Hazardous waste	Hazardous waste management within	WAC 173-303-282	No	No wilderness areas in vicinity of
	management prohibited near	500 feet (non land-based) or 1/4 mile			project.
	wilderness areas.	(land-based) of wilderness area			
Wildlife refuge	Restrictions on actions in	Activities within designated wildlife	50 CFR 27	No	No wildlife refuges in vicinity of
	areas that are part of the	refuges.			project.
	National Wildlife Refuge				
	System.				
	Hazardous waste	Hazardous waste management within	WAC 173-303-282	No	No wildlife refuges, preserves, or
	wildlife refuge preserve or	(land-based) of wildlife refuge			vicinity of project
	bald eagle protection area.	preserve, or bald eagle protection			
		area.			
Natural area preserves	Activities restricted in areas	Activities within identified natural	Chapter 332-60 WAC	No	No natural area preserve in
	designated as having special	area preserve.			vicinity of project.
	habitat value (Natural Heritage				
	kesources).				
	Hazardous waste	Hazardous waste management within	WAC 173-303-282	No	No natural area preserve in

500 feet (non land-based) or 1/4 mile

(land-based) of natural area

preserve.

vicinity of project.

Location	Requirement	Prerequisite	Citation	ARAR?	Comments
Wild, scenic, or	Avoid actions that would have	Activities near wild, scenic, and	16 USC 1261 et seq.;	No	No designated wild, scenic, or
recreational rivers	adverse effects on designated	recreational rivers; hazardous waste	RCW 79.72;		recreational rivers in vicinity of
	wild, scenic, or recreational	management facilities prohibited	WAC 173-303-282		project.
	rivers.	within viewshed.			

Unique Lands and Properties

Location	Requirement	Prerequisite	Citation	ARAR?	Comments
Natural resource	Restrictions on activities within	Activities within designated	RCW 79.71	No	No conservation areas in vicinity
conservation areas	designated conservation	conservation areas.			of project.
	areas.				
Forest lands	Activities restricted within state	Activities within state forest lands.	Chapter 332-24 WAC	No	Project is not within state forest
	forest lands to minimize fire				land.
	hazards and other adverse				
	impacts.				
	Restrictions on activities in	Activities within state and federal	16 USC 1601 et seq.;	No	Project is not within state or
	state and federal forest lands.	forest lands.	RCW 76.09		federal forest land.
Public lands	Activities on public lands are	Activities on state-owned lands.	RCW 79.01	No	No actions will occur on state-
	restricted, regulated, or				owned land.
	proscribed.				
Scenic vistas	Restrictions on activities that	Activities within designated scenic	RCW 47.42	No	Project is not within scenic vista
	can occur in designated scenic	vista area.			area.
	areas.				
Historic areas	Actions must be taken to	Activities that could affect historic or	16 USC 469, 470 et seq.;	No	No known historic or
	preserve and recover	archaeologic sites or artifacts;	36 CFR 65 and 800;		archaeologic sites or artifacts in
	significant artifacts, preserve	hazardous waste management	RCW 27.34, 27.44, 27.48,		vicinity of project.
	historic and archaeologic	facilities prohibited in archaeologic	27.53, and 27.58;		
	properties and resources, and	and historic sites.	Chapters 25-46 and 25-48		
	minimize harm to national		WAC,		
	landmarks.		and WAC 173-303-282		

APPENDIX H TECHNOLOGY EVALUATION FOR FREE PHASE PRODUCT REMOVAL
CONTENTS	Page
H.1 DESCRIPTION OF THE CURRENT FPP PLUMES	H-1
H.2 FPP RECOVERY TECHNOLOGIES	H-2
H.2.1 Belt Skimmers H.2.2 Dual-Phase Vacuum Extraction (DVE) H.2.3 Water Table Depression H.2.4 Oil/Water Separation	H-2 H-3 H-4 H-5
H.3 REFERENCES FOR APPENDIX H	H-7

APPENDIX H TECHNOLOGY EVALUATION FOR FREE PHASE PRODUCT REMOVAL

Free phase product (FPP) recovery is a part of Alternatives C1 through C4. This appendix evaluates the FPP recovery technologies that were carried forward as potentially implementable and reliable by the FSTM (Hart Crowser 2012b), and identifies the FPP technology judged to be appropriate for each alternative.

Several FPP recovery technologies were retained from the FSTM for application in the petroleum hydrocarbon groundwater plume and associated smear zone soil AOCs. As discussed below, these recovery technologies are further evaluated in this appendix, based on physical and chemical applicability, implementability, and reliability to determine which technologies should be retained for use at the Kaiser Facility. These retained technologies are applied in combination with Alternatives C1 through C4.

The discussion below describes the FPP plumes, and further evaluates the potential FPP recovery technologies identified in the FSTM.

H.1 DESCRIPTION OF THE CURRENT FPP PLUMES

FPP continues to be observed on occasion during late summer and fall at the Oil House and the Wastewater Treatment areas (refer to Figures 4-6 and 4-7 in Section 4). As discussed in the Final Site-Wide Groundwater Remedial Investigation (RI) Report (Hart Crowser 2012a), over the past 20 years there have been significant reductions in the areal extent and thickness of petroleum in these areas from FPP removal measures and natural attenuation processes.

An evaluation of the quantities of FPP present in the Oil House and Wastewater Treatment AOCs was conducted using the 2009 groundwater monitoring data. In 2009, five areas with FPP were identified in the Oil House and Wastewater Treatment AOCs: three areas in the Oil House area and two in the Wastewater Treatment area (see Figures 4-6 and 4-7). Product thickness measurements were taken in select wells during groundwater monitoring events in 2009. Average FPP thicknesses were calculated for the five areas. Where no FPP was measured, one half of the oil/water interface probe's detection limit was used to calculate average FPP thickness (0.005 foot). In the five FPP areas in 2009, average product thickness was less than 1 inch.

To estimate the volume of FPP present, the average product thickness was multiplied by the estimated area of each plume and by the effective soil porosity.

An effective porosity of 0.3, as defined in Section 4 of the Final Site-Wide Groundwater RI (Hart Crowser 2012b), was used in the FPP volume calculations. The same method was used in the FSTM to calculate FPP volumes based on 2008 data.

Approximately 4,700 gallons were estimated to be present in 2009, and approximately 80 percent of this volume is located in the Wastewater Treatment area. The volume of FPP estimated to be present in 2008 was 5,600 gallons (FSTM Table 4-21). Table 4-6 in Section 4 presents the estimated FPP volume in each area based on measurements in 2009. The volumes in this table are used to evaluate the cost and restoration time frame for FPP recovery at the Kaiser Facility.

H.2 FPP RECOVERY TECHNOLOGIES

FPP recovery technologies were discussed in Sections 4 and 5 of the FSTM for the petroleum hydrocarbon groundwater plumes and associated smear zone soil. Belt skimmers, dual vacuum extraction (DVE), FPP recovery with water table depression, and *ex situ* oil/water separation were retained as potential technologies for FPP recovery from the petroleum groundwater plumes associated smear zone soil.

H.2.1 Belt Skimmers

A belt skimmer uses a continuous loop (a "belt") of material that attracts petroleum hydrocarbons and slowly cycles down into and out of the recovery well, removing FPP as the belt moves through the oil/water interface at the water table surface. As the belt reaches the skimming unit installed above the well, the product is skimmed from the belt and collected in a holding tank before that section of the belt goes back into the well. These skimmers are simple mechanical systems that can operate in 4-inch or larger diameter wells. Belt skimmers are able to skim even thin FPP layers, but the FPP removal rate can be low in such cases. Belt skimmers can be used in conjunction with water table depression to improve FPP recovery (EPA 1996).

Skimming systems alone remove small volumes of FPP and are often used during emergency or short-term remedial actions. Typically, skimming equipment alone is applicable in settings where hydraulic control of the dissolved hydrocarbon plume is not required. Skimmers are typically located in permeable conduits where significant product is present (EPA 1996).

The capital cost of standalone skimming systems is relatively low. Belt skimming system installation and startup typically require a few days and involve installing equipment at appropriate levels in the wells, inspecting mechanical and electrical components of the skimmers and FPP collection systems, and inspecting the collected liquids for water content and emulsified oil. Annual O&M costs for these systems are relatively low and consist of electricity required to operate the belt skimmers, monitoring FPP thicknesses in the wells, recording the total amount of product recovery at each recovery point, inspecting belt skimmer electrical and mechanical components, completing necessary maintenance and repair of the equipment, and transferring and disposing of the FPP from the collection tank if necessary (EPA 1996). Periodic costs include major equipment replacement such as belts and motors.

Skimming is typically terminated when FPP recovery is no longer cost effective. However, since there is a chance of FPP rebound, wells should be monitored on a regular basis after system shutoff for recurrence of FPP accumulation. Typically, a threshold criterion is set to restart skimming activities (for example, a product thickness greater than 0.1 foot). System operation may be finally terminated when monitoring measurements do not show product accumulations above threshold requirements over a continuous time period (for example, for two years monitored on a quarterly basis) (EPA 1996).

There are other types of FPP recovery technologies, which include mechanical skimming systems, such as floating skimmers, and pneumatic pumps. These technologies were discussed in the FSTM but screened out on the basis of reliability, since belt skimmers are currently being used successfully at the Kaiser Facility. For this reason, belt skimmers are retained as the most appropriate means of FPP recovery from the petroleum groundwater plumes and associated smear zone soil.

H.2.2 Dual-Phase Vacuum Extraction (DVE)

Dual-phase vacuum extraction (DVE) simultaneously extracts a combination of two of the following: soil vapor, separate-phase hydrocarbons, or groundwater from the subsurface, using a vacuum. There are several ways that DVE technology can be installed. In one type of installation, called vapor extraction/groundwater extraction (VE/GE), the suction point for vapor extraction is different from the suction point for liquid extraction. A surfacemounted vacuum pump or regenerative blower extracts vapor, and a submersible pump extracts groundwater. These systems are designed to expose the smear zone and the capillary fringe by pumping groundwater while simultaneously volatilizing the residual petroleum hydrocarbons in the smear zone with vacuum extraction. VE/GE systems are typically used after other FPP recovery methods have removed as much mobile product as feasible. These systems are ineffective for non-volatile hydrocarbons and are typically used for fine-grained soil with moderate to low permeability, for aquifers with thicker capillary zones, and where conventional pumping techniques have become ineffective (EPA 1996).

Based on the physical and chemical characteristics of soil and FPP at the Kaiser Facility, VE/GE is not considered a viable technology for FPP recovery. VE/GE is not considered applicable because there is still mobile product present at the Facility, the soil matrix is gravelly and porous (prone to short circuiting), and FPP at Kaiser consists mostly of longer-chain, semivolatile hydrocarbons in the diesel-to heavy oil-range (Hart Crowser 2012b).

Another setup option for DVE involves a single extraction point. The suction point may be at the water table to extract groundwater and FPP or may be set at the air and FPP interface. If the extraction suction point is located at the air/FPP interface, the technology is commonly called "bioslurping." Based on the location of the extraction point in bioslurping, air circulation is facilitated, which helps bioactivity in vadose zone soil. Bioslurping can improve FPP recovery efficiency without extracting large quantities of groundwater. DVE with a single extraction point is most applicable to media with low to medium permeability, media with thin saturated thickness, locations where the water table is at 5 to 20 feet bgs or in situations where settings for conventional pumping are inappropriate or ineffective (EPA 1996).

DVE with a single extraction point is eliminated based on physical characteristics of soil and the groundwater table at the Facility. The subsurface consists of a very permeable gravelly soil matrix, and the water table is deeper than 20 feet. As stated in the FSTM, the average water table depth in the Wastewater Treatment area is 55 feet bgs and, in the eastern portion of the Facility, is 68 feet bgs.

H.2.3 Water Table Depression

This method of recovery uses shallow groundwater extraction to create a cone of depression and direct FPP toward pumping wells within the plume area. Both FPP and groundwater are extracted during recovery using this method. Product recovery systems using water table depression are most applicable when hydraulic control of the hydrocarbon plume is necessary. These systems are used for a wide range of soil permeabilities and geologic media. However, because of the costs associated with the separation and treatment of dissolved hydrocarbons, these systems are better suited for formations of moderate to high permeability (greater than 10^{-4} cm/s). Typically, FPP recovery with water table depression is used in long-term operations (greater than one year). Typical configurations are single- and dual-pump systems (EPA 1996).

In single-pump systems, one pump extracts groundwater and product simultaneously. Aboveground treatment is required to separate oil and water (see oil/water separation discussion below). Emulsified oil may require other levels of treatment. In two-pump recovery systems, one pump extracts groundwater to create a cone of depression in the water table, and a second pump is used to collect FPP. This two-pump system optimizes product recovery while minimizing smearing and prevents mixing of FPP with water. By carefully balancing the extraction rates for groundwater and FPP, product recovery becomes more efficient, and efforts for oil/water separation minimize. It is likely that groundwater will need to be treated for residual contamination. For product recovery in two-pump systems, a product pump can be used or an equivalent FPP technology can be employed (such as floating skimmers, pneumatic pumps, or belt skimmers) (EPA 1996).

At the Kaiser Facility, the current IRM system installation could be considered a modified two-pump system, since extraction pumps WW-EW-1 and WW-EW-2 are in the vicinity of skimming well WW-SK-1, and extraction pump OH-EW-1 is in the vicinity of skimming well OH-SK-2. However, the main purpose of these extraction pumps is to provide hydraulic containment of the TPH plume and not to create a cone of depression. The hydraulic containment system is discussed in Section 4.1.1.2. Any cone of depression created by the extraction wells is incidental to groundwater pumping. Based on pumping test data from the Facility, a significant cone of depression is not created by the IRM extraction pumps (Hart Crowser 2003 and 2012a).

Water table depression meets physical and chemical screening criteria for the Kaiser Facility, since the soil matrix is permeable and the groundwater matrix can be pumped. Based on the existing groundwater extraction, it is assumed that a water table depression system could be installed and operated at the Facility. However, based on the high groundwater flow and porous matrix, it is likely that high groundwater extraction rates would be needed to create a significant cone of depression, and extracted groundwater would require treatment. It is judged inappropriate to extract groundwater just to recover FPP. The extracted FPP would have to be recovered by an oil/water separator or by other means, in any event.

H.2.4 Oil/Water Separation

Oil/water separators are used to remove oil and grease from wastewater. Oil may be present as a free phase or as emulsified oil. The separation of free phase

oil occurs by gravity and normally occurs by allowing oil to float to the surface of the water, where the oil is skimmed off by mechanical means. Sludges accumulate at the bottom of the separator and periodically need to be removed.

In the FSTM, two types of oil/water separation technologies were retained: American Petroleum Institute (API) separators and dissolved air flotation (DAF) processes. The design of an API separator is based on settling velocities and the density and size of an oil particle. In the API separator, the wastewater stream enters a retention tank that creates a quiescent zone. In this part of the separator, oil droplets and lighter particulate matter rise to the surface, and heavier material settles to the bottom of the tank. Floating product and settled solids periodically have to be removed from the tank. Typically, treated water exits the tank by flowing around a baffle designed to prevent product from leaving the tank. For example, water may have to flow under a baffle that holds product back in the quiescent zone where it can periodically be skimmed off. The API separator is an established technology and commonly used for oil/water separation (Metcalf and Eddy 2003, Suthersan 1997).

In the DAF process, product is separated from wastewater through attachment to air bubbles, which transport the product to the water surface. DAF is typically used to separate suspended solids and emulsified oil mixtures. The process involves several steps. First, the wastewater stream is pressurized to several atmospheres, compressed air is added, and the mixture is held in a vessel to allow the air to dissolve into the wastewater. Second, from the pressurized vessel, the pressurized wastewater stream passes through a pressure-reducing valve into a floatation tank that is open to the atmosphere. Here, the dissolved air comes out of solution, and product and particulate matter attach to the resulting bubbles, which together rise to the water surface. From the water surface, the floating product and particulate matter can be skimmed off and collected. DAF systems, at a minimum, require a pump, a pressure vessel, and a compressed air source (Metcalf and Eddy 2003, Suthersan 1997).

The API separator is retained for this FS because it is an established technology and it is assumed that the extracted groundwater and FPP mixture could be separated using this technology; however, bench-scale studies may be required to determine how to efficiently separate oil from groundwater at the Facility. Since the design and operation of an API separator is relatively simple and is currently in use at the Kaiser Facility at the Wastewater Lagoon, it is judged likely that this technology can be implemented and operated reliably at the Kaiser Facility.

The DAF system is eliminated for reliability and implementability reasons. The O&M of the DAF system will be more complex than the O&M of an API

separator, since the DAF system requires pumps to pressurize the wastewater stream, a compressed air source, and a vessel that can operate at high pressures.

To summarize, belt skimmers for the *in situ* recovery of FPP from smear zone soil and from groundwater, and API oil/water separators for the *ex situ* recovery of FPP from extracted groundwater are retained for use in this FS.

H.3 REFERENCES FOR APPENDIX H

EPA, 1996. How to Effectively Recover Free Product At Leaking Underground Storage Tank Sites: A Guide For State Regulators. 510-R-96-001. September.

Hart Crowser, 2003. Draft Groundwater Remedial Investigation/Feasibility Study, Kaiser Trentwood Facility, Spokane, Washington. Prepared for Kaiser Aluminum & Chemical Corporation by Hart Crowser, Inc. Modified July 2003.

Hart Crowser, 2012a. Final Site-Wide Groundwater Remedial Investigation, Kaiser Trentwood Facility, Spokane Valley, Washington. Prepared for Kaiser Aluminum Washington, LLC, by Hart Crowser, Inc. May 2012.

Hart Crowser, 2012b. Final Feasibility Study Technical Memorandum, Kaiser Trentwood Facility, Spokane Valley, Washington. Prepared for Kaiser Aluminum Washington, LLC, by Hart Crowser, Inc. May 2012.

Metcalf & Eddy, 2003. Wastewater Engineering – Treatment and Reuse, 4th Edition. Metcalf & Eddy, Inc. G. Tchobanoglous, F.L. Burton, and H.D. Stensel, revisors. San Francisco. McGraw-Hill.

Suthersan, S., 1997. Remediation Engineering Design Concepts. Boca Raton, Florida. CRC Press, Inc.

L:\Jobs\2644125\Final FS 05-2012\03 Appendices\Appendix H\Kaiser FS Appendix H.doc

APPENDIX I RESTORATION TIME FRAME MEMORANDA

SOLUBILITY OF PCBS AND COMINGLED PCB RESTORATION TIME FRAME MEMO

MEMORANDUM

DATE:	July 20, 2011
TO:	Bud Leber, PE, Kaiser Aluminum Washington, LLC
FROM:	Will Abercrombie, Hart Crowser, Inc.
	Peter Smiltins, PE, Hart Crowser, Inc.
	Roy Jensen, LHG, Hart Crowser, Inc.
	Dan McCarthy, PE, ECS
RE:	Solubility of PCBs and Comingled PCB Restoration Time Frame
	Kaiser Aluminum Washington, LLC
	Spokane Valley, Washington
	2644-125

This memorandum presents our evaluation of the solubility of PCBs in petroleum products and the restoration time frame for comingled PCBs.

Solubility of PCBs in Petroleum Products

Polychlorinated biphenyls (PCBs) are highly hydrophobic compounds that exhibit low solubility in water but are freely soluble in relatively nonpolar organic solvents such as petroleum products (ATSDR 2000, EPA 1980, EPA 1983). In a setting where water and other phases are present (e.g., solids, immiscible organic liquids, petroleum products), these properties are evident in the strong tendency that PCBs display for partitioning into the non-aqueous phase in much greater proportion than the dissolved phase. The degree to which PCBs preferentially partition into the non-aqueous phase is demonstrated by their high partition coefficient values (log K_{ow}) and low aqueous solubilities, as shown in Table 4-3 (attached) for select Aroclors (ATSDR 2000). The partitioning coefficients and solubilities of PCBs are compared to those present in petroleum hydrocarbons in Table 2-4 of the FSTM (Hart Crowser 2010). In the natural aqueous environment, for example in waterways or in groundwater, the hydrophobic properties of PCBs translate into an affinity for adsorbing to soil particle surfaces, organic carbon, or associating with sediments rather than entering the dissolved phase.

The hydrophobic behavior of PCBs has been observed at the Kaiser Facility in the Oil House and Wastewater Treatment areas, where PCBs are comingled with free phase petroleum (FPP) at the

Kaiser Aluminum Washington, LLC November 2011

water table. The Oil House and Wastewater Treatment areas were designed and constructed for the management of petroleum hydrocarbons in the form of used product and in wastewater mixtures. As a result, the PCBs detected in the Oil House and Wastewater Treatment areas were in contact with petroleum before being released to the environment. It is logical to assume that, because of the presence of petroleum, the PCBs would have had ample opportunity to comingle with the carbon source.

PCBs present in groundwater samples from Oil House and Wastewater Treatment area wells are associated with FPP or dissolved petroleum products. When petroleum hydrocarbons are absent, PCBs have not been detected in groundwater from the Oil House and Wastewater Treatment areas. It is believed that the lack of PCBs in groundwater in these two areas is a direct result of comingling effects of PCBs and petroleum. Sorption to soil and/or degradation are also factors that reduce the mobility of PCBs into the aquifer.

The most recently measured groundwater PCB concentrations in the Wastewater Treatment and Oil House areas are presented respectively on Figures 1 and 2, attached (Draft Final FS Figures 4-4 and 4-5 updated to 2011). These figures include the most recent analytical results for PCBs between 1991 and January 2011. PCB detection limits for analysis of groundwater samples using EPA Method 8082 have generally been 50 nanograms per liter (ng/L) before 2000 and 5 to 10 ng/L after 2000. Historically, PCBs have been detected in 11 monitoring wells in the Wastewater Treatment area at concentrations ranging from 6.3 to 17,000,000 ng/L, and PCBs have been detected in 17 monitoring wells in the Oil House area at concentrations ranging from 210 to 130,000,000 ng/L. In each case, when PCBs are detected in samples from these wells, FPP or dissolved petroleum has been present.

Downgradient wells have been sampled and analyzed periodically and show that migration of PCBs associated with petroleum from the Oil House and Wastewater Treatment areas has not occurred. For example, wells immediately downgradient of the Wastewater Treatment area (i.e., MW-14S, MW-15, MW-21S) have been sampled more than 100 times without detecting PCBs, except for one tentative detection of PCBs in well MW-15 (1.9 T ng/L) in July 2007. (Note that the "T" qualifier indicates the PCB detection is between the detection limit and the quantification limit and represents an estimate.)

Restoration Time Frame Evaluation

Because of the properties of PCBs, one can assume that, over time, PCBs will remain associated with the FPP present, and that the removal rate of FPP from the smear zone would be a factor in the restoration time frame for comingled PCBs. The presence of FPP would be indicated by the residual saturation default value of 2,000 mg/kg for petroleum hydrocarbons in soil. It can be assumed that

Kaiser Aluminum Washington, LLC November 2011 2644-125 Page 3

comingled PCBs may still be present if the petroleum hydrocarbon concentration in the soil exceeds this default value, and that the estimated restoration time frame for comingled PCBs may be associated with the time needed for the concentration of petroleum hydrocarbons to decline to this value.

The estimated recovery time for FPP in Alternative C2 is estimated to be approximately 10 years in the Oil House area and 25 years in the Wastewater Treatment area of the Facility (refer to Section 4.1.3.4 of the Draft Final FS). The restoration time frame for comingled PCBs may be associated with these time frames for the removal of FPP, but may also be associated with the restoration time frame for SVOCs in the petroleum plumes and associated smear zone soil to attain screening levels (SLs) and preliminary cleanup levels (PCULs) by natural attenuation. The SL and PCUL for SVOCs in smear zone soil is 2,000 mg/kg, which is the default residual saturation value for diesel and heavy oil. Petroleum hydrocarbon concentrations in soil above the residual saturation value may indicate the presence of free phase product. The concentration of SVOCs in smear zone soil is expected to be below 2,000 mg/kg for petroleum hydrocarbons at the end of the restoration time frames for the petroleum plumes, which range from approximately 4 years (Oil House area South plume) to 34 years (Wastewater Treatment area North plume) (see Table 4-7 in the Draft Final FS).

It can be assumed that comingled PCBs may still be present if the petroleum hydrocarbon concentration in the soil exceeds the residual saturation default value of 2,000 mg/kg, and that the estimated restoration time frame for comingled PCBs may be associated with the time needed for the concentration of petroleum hydrocarbons to decline to this value. However, considering the potential for non-recoverable product to remain in the subsurface (even if the concentration of SVOCs declines to below 2,000 mg/kg), the restoration time frame for comingled PCBs may be longer.

The available evidence indicates that the estimated restoration time frame for PCBs that are comingled with SVOCs for Alternative C2 will be approximately the same as the estimated restoration time frame for SVOCs alone.

Kaiser Aluminum Washington, LLC November 2011

References

ATSDR, 2000. Toxicological Profile for Polychlorinated Biphenyls (PCBs). U.S. Department of Health and Human Services, Agency for Toxic Substances and Disease Registry. November 2000.

EPA, 1980. Ambient Water Quality Criteria for Polychlorinated Biphenyls. U.S. Environmental Protection Agency, Office of Water Regulations and Standards, Criteria and Standards Division. EPA 540/5-80-068. October 1980.

EPA, 1983. Environmental Transport and Transformation of Polychlorinated Biphenyls. U.S. Environmental Protection Agency, Office of Pesticides and Toxic Substances. EPA 560/5-83-025. December 1983.

Hart Crowser, 2010. Draft Final Feasibility Study Technical Memorandum, Kaiser Trentwood Facility, Spokane Valley, Washington. Job 2644-120. March 2010.

Hart Crowser, 2011. Draft Final Feasibility Study Report, Kaiser Trentwood Facility, Spokane Valley, Washington. Job 2644-125.

Attachments:

 Table 4-3 – Physical and Chemical Properties of Some Aroclors (from ATSDR 2000)

 Table 2-4 – Chemical and Physical Properties of COPCs (from Hart Crowser 2010)

Figure 1 – PCB Concentrations Associated with Petroleum Hydrocarbons in Groundwater, West Area – Most Recently Measured

Figure 2 – Total PCB Concentrations Associated with Petroleum Hydrocarbons in Groundwater, East Area – Most Recently Measured

L:\Jobs\2644125\Draft Final FS 11-2011\03 Appendices\Appendix I\01 Comingled PCB\01 Comingled PCB Memo.doc

Property	Aroclor 1016	Aroclor 1221	Aroclor 1232	Aroclor 1242
Molecular weight ^b	257.9°	200.7°	232.2°	266.5°
Color	Clear	Clear	Clear	Clear
Physical state	Oil	Oil	Oil	Oil
Melting point, ∙€	No data	1 ^d	No data	No data
Boiling point, ∙€	325–356	275–320	290–325	325–366
Density, g/cm³ at 25 ∙€	1.37	1.18	1.26	1.38
Odor	No data	No data	No data	Mild hydrocarbon ^d
Odor threshold: Water Air	No data No data	No data No data	No data No data	No data No data
Solubility: Water, mg/L	0.42 (25 • €) ^e	0.59 (24 • €) ^f	0.45 (25 • €) Verv soluble ⁹	0.24 ^c ; 0.34 (25 • €) ^e 0.10 (24 • €) ^f Very soluble ^g
Partition coefficients: Log K _{ow} ^h Log K _{oc}	5.6 No data	4.7 No data	5.1 No data	5.6 No data
Vapor pressure, mm Hg at 25 ∙€	4x10 ^{-4 c}	6.7x10 ^{-3 c}	4.06x10 ^{-3 c}	4.06x10 ^{-4 c}
Henry's law constant, atm-m³/mol at 25 $ullet {f C}^i$	2.9x10 ⁻⁴	3.5x10 ⁻³	No data	5.2x10 ⁻⁴
Autoignition temperature	No data	No data	No data	No data
Flashpoint, $ullet {f C}$ (Cleveland open cup)	170	141–150	152–154	176–180
Flammability limits, ∙€	None to boiling point	176	328	None to boiling point
Conversion factors Air (25 • €) ⁱ	1 mg/m³=0.095 ppm	1 mg/m ³ =0.12 ppm	1 mg/m³=0.105 ppm	1 mg/m³=0.092 ppm
Explosive limits	No data	No data	No data	No data

Table 4-3. Physical and Chemical Properties of Some Aroclors^a

PCBs

Property	Aroclor 1254	Aroclor 1260	Aroclor 1262	Aroclor 1268
Molecular weight ^b	328°	357.7°	389	453
Color	Light yellow	Light yellow	No data	Clear ^ĸ
Physical state	Viscous liquid	Sticky resin	No data	Viscous liquid ^k
Melting point	No data	No data	No data	No data
Boiling point, ∙€	365–390	385–420	390–425	435–450
Density, g/cm³ at 25 ∙€	1.54	1.62	1.64	1.81
Odor	Mild hydrocarbon ^d	No data	No data	No data
Odor threshold: Water Air	No data No data	No data No data	No data No data	No data No data
Solubility: Water, mg/L Organic solvent(s)	0.012 ^c ; 0.057 (24 ∙€) Very soluble ^g	0.0027°;0.08 (24 ∙€) ^f Very soluble ^g	0.052 (24 ∙ €) ^f No data	0.300 (24 ∙ €) ^f Soluble
Partition coefficients: Log K _{ow} Log K _{oc}	6.5 No data	6.8 No data	No data No data	No data No data
Vapor pressure, mm Hg at 25 ∙€	7.71x10 ^{-5 c}	4.05x10 ^{-5 c}	No data	No data
Henry's law constant, atm-m³/mol at 25 $ullet {f C}^i$	2.0x10 ⁻³	4.6x10 ⁻³	No data	No data
Autoignition temperature	No data	No data	No data	No data
Flashpoint • ${f c}$ (Cleveland open cup)	No data	No data	195• •C	195• •C

Table 4-3. Physical and Chemical Properties of Some Aroclors^a (continued)

PCBs

Table 4-3. Physical and Chemical Properties of Some Aroclors^a (continued)

Property	Aroclor 1254	Aroclor 1260	Aroclor 1262	Aroclor 1268
Flammability limits, ∙€	None to boiling point	None to boiling point	None to boiling point	None to boiling point
Conversion factors, Air $(25 \cdot \mathbb{C})^j$	1 mg/m³=0.075 ppm	1 mg/m³=0.065 ppm	1 mg/m ³ =0.061 ppm	1 mg/m ³ =0.052 ppm
Explosive limits	No data	No data	No data	No data

^aAll information obtained from Monsanto Chemical Company 1985 and Hutzinger et al. 1974 unless otherwise noted.

^bAverage weight from Table 3-3.

^cEPA 1979h; data on temperature not available.

^dNIOSH 1997

^eParis et al. 1978

^fHollifield 1979

⁹EPA 1985b

^hThese log K_{ow} values represent an average value for the major components of the individual Aroclor. Experimental values for the individual components were obtained from Hansch and Leo 1985.

ⁱThese Henry's law constants were estimated by dividing the vapor pressure by the water solubility. The first water solubility given in this table was used for the calculation. The resulting estimated Henry's law constant is only an average for the entire mixture; the individual chlorobiphenyl isomers vary significantly from the average. Burkhard et al. (1985) estimated the following Henry's law constants (atm-m³/mol) for various Aroclors at 25 • \mathbb{C} : 1221 (2.28x10⁻⁴), 1242 (3.43x10⁻⁴), 1248 (4.4x10⁻⁴), 1254 (2.83x10⁻⁴), and 1260 (4.15x10⁻⁴).

ⁱThese air conversion factors were calculated by using the average molecular weight and ideal gas law.

^kChemical Health and Safety Data; National Toxicology Program (http://ntp-server.niehs.nih.gov)

			<u> </u>	Melting						9982355-149924455,04887446492828299 ⁴⁴ 998254997549992624539925992592592592542464955955855555929999999	Partitioning Coefficient	
	CAS	Molecular Weight	Boiling Point	Point	Specific	Form at	Vapor Pressure		Aqueous Solubility	Henry's Law Constant	Organic Carbon to Water	Mobility
Analyte	Number	in g/mol	in °C	in °C	Gravity	20°C	in atm	Volatile ^c	in mg/L	in atm-m ³ /mol	(Koc) in L/kg	in Water
Selected Petroleum Hydroca	rbon Constit	uents ^a				der verstenden ander der der der der der der der der der	Le ne na	-			here we have a second	
Benzene	71432	78	80 ^b	5.5 ^b	0.88	líquid	0.1	moderate	1,750	5.56E-03	62	high
Toluene	108883	92	111 ^b	-95 ^b	0.87	liquid	0.03	moderate	526	6.63E-03	140	high
Ethylbenzene	100414	106	136 ^b	-94 ^b	0.87	liquid	0.009	low	169	7.88E-03	204	moderate
Total Xylenes	NA	106			0.88	liquid	2. (1997) 1997 - Angel State (1997) 1997 - Angel State (1997)	low	171	6.80E-03	233	moderate
n-Hexane	110543	86	69 ^d	-95 ^d	0.66	liquid	0.2	moderate	9.5	1.80E+00	3.410	low
Kensol 51 ^e	64741442		> 271	-12	0.82	liquid	<1 mmHa	not volatile	insoluble		NA	insoluble
Selected cPAH constituents	d		demonstration								<u> 1</u>	
Benzo(b)fluoranthene	205992	252.3	NA	168	NA	solid	6.58E-10	not volatile	1.40E-02	2.47E-07	357 537 ^d	insoluble
Benzo(a)pyrene	50328	252.32	495	179	1.35	solid	7.22E-12	not volatile	3.80E-03	2.17E-07	968.774 ^d	insoluble
Chrysene	218019	228.3	448	258.2	1.27	solid	8.30E-12	not volatile	2.00E-03	7.26E-10	1,860,000 ^e	insoluble
Aliphatics Hydrocarbons ^f							de en acconstance a constantino de la constantino de la constante de la constante de la constante de la constan La constante de la constante de					
EC > 5-6		81			0.67	liquid		moderate	3.60E+01	8.05E-01	800	low
EC > 6-8		100			0.70	liquid		moderate	5.40E+00	1.22E+00	3,800	low
EC > 8-10		130			0.73	liquid		low	4.30E-01	1.95E+00	30,200	insoluble
EC > 10-12		160			0.75	liquid		low	3.40E-02	2.93E+00	234,000	insoluble
EC > 12-16		200			0.77	liquid		low	7.60E-04	1.27E+01	5,370,000	insoluble
EC > 16-21		270			0.78	liquid		low	1.30E-06	1.20E+02	9,550,000,000	insoluble
EC > 21-34		400			0.79	liquid		low	1.50E-11	2.44E+03	10,700,000,000	insoluble
Aromatic Hydrocarbons [†]			-									
EC > 8-10		120	-		0.87	liquid		moderate	6.50E+01	1.17E-02	1,580	low
EC > 10-12		130			0.90	liquid		moderate	2.50E+01	3.41E-03	2,510	low
EC > 12-16		150			1.00	liquid		moderate	5.80E+00	1.29E-03	5,010	insoluble
EC > 16-21		190			1.16	liquid		low	5.10E-01	3.17E-04	15,800	insoluble
EC > 21-34		240			1.30	liquid		low	6.60E-03	1.63E-05	126,000	insoluble
PCB Congener ^{g,h}												
Monochlorobiphenyls						solid	1.82E-06 to 1.38E-05	not volatile	1.34E+00 to 4.83E+00	5.73E-04 to 7.36E-04	25,119 to 33,113	insoluble
Trichlorobiphenyl						solid	1.36E-07 to 1.38E-06	not volatile	4.44E-02 to 4.00E-01	1.00E-04 to 2.50E-04	1 to 181,970	insoluble
Pentachlorobiphenyls	and the second					solid	8.59E-09 to 1.47E-07	not volatile	2.62E-03 to 5.42E-02	4.70E-05 to 1.20E-04	1 to 891,251	insoluble
Heptachlorobiphenyls						solid	8.26E-10 to 7.16E-09	not volatile	3.14E-04 to 4.54E-03	1.30E-06 to 3.33E-05	1 to 4,570,882	insoluble
Decachlorobiphenyl						solid	1.39E-10	not volatile	7.43E-06	2.18E-06	1	insoluble

Notes:

a) Molecular Weight, Density, Solubility, Henry's Law Constant and Koc derived from Table 747-4 (Petroleum EC Fraction Physical/Chemical Values) in WAC 173-340-900 and from Ecology 2007a, Part IX Tables. b) From CRC Handbook of Chemistry and Physics published by Cleveland Chemical and Rubber Company.

c) Volatile designation determined by vapor pressure: not volatile <0.001 atm, low 0.001 to 0.01 atm, moderate 0.01 to 0.2 atm, high >0.2 atm

d) From Montgomery Groundwater Chemicals Desk Reference, 1996

e) From Material Safety Data Sheet (MSDS)

f) Table derived from Table 747-4 (Petroleum EC Fraction Physical/Chemical Values) in WAC 173-340-900 and from Ecology 2007a, Part IX Tables.

g) Koc data from Hansen et al. 1999 and Solubility, Vapor pressure, Henry's Law Constant data from Oberg 2001. Some Solubility, Vapor Pressure, and Henry's Law Constant values are based on predicted or calculated value.
 h) Congeners are individual PCB compounds. Aroclors are a mixture of different congeners. The following lists selected Aroclors with their respective average number of chlorine atoms per molecule: Aroclor 1221, 1.15; Aroclor 1242, 3.1; Aroclor 1262, 6.8. Note that Aroclors are not solids at room temperature.

EC - Equivalent carbon.

Shaded area indicates data are not available or not applicable.

Sheet 1 of 1

			<u> </u>	Melting						9982355-1490-1490-1490-1490-12902 ⁹⁻⁴⁻¹ 4925549-1590-1990-1990-1990-1990-1990-1990-199	Partitioning Coefficient	
	CAS	Molecular Weight	Boiling Point	Point	Specific	Form at	Vapor Pressure		Aqueous Solubility	Henry's Law Constant	Organic Carbon to Water	Mobility
Analyte	Number	in g/mol	in °C	in °C	Gravity	20°C	in atm	Volatile ^c	in mg/L	in atm-m ³ /mol	(Koc) in L/kg	in Water
Selected Petroleum Hydroca	rbon Constit	uents ^a				der verstenden ander der der der der der der der der der	Le ne na	-			here and the second	
Benzene	71432	78	80 ^b	5.5 ^b	0.88	líquid	0.1	moderate	1,750	5.56E-03	62	high
Toluene	108883	92	111 ^b	-95 ^b	0.87	liquid	0.03	moderate	526	6.63E-03	140	high
Ethylbenzene	100414	106	136 ^b	-94 ^b	0.87	liquid	0.009	low	169	7.88E-03	204	moderate
Total Xylenes	NA	106			0.88	liquid	2. (1997) 1997 - Angel State (1997) 1997 - Angel State (1997)	low	171	6.80E-03	233	moderate
n-Hexane	110543	86	69 ^d	-95 ^d	0.66	liquid	0.2	moderate	9.5	1.80E+00	3.410	low
Kensol 51 ^e	64741442		> 271	-12	0.82	liquid	<1 mmHa	not volatile	insoluble		NA	insoluble
Selected cPAH constituents	d		demonstration								<u> 1</u>	
Benzo(b)fluoranthene	205992	252.3	NA	168	NA	solid	6.58E-10	not volatile	1.40E-02	2.47E-07	357 537 ^d	insoluble
Benzo(a)pyrene	50328	252.32	495	179	1.35	solid	7.22E-12	not volatile	3.80E-03	2.17E-07	968.774 ^d	insoluble
Chrysene	218019	228.3	448	258.2	1.27	solid	8.30E-12	not volatile	2.00E-03	7.26E-10	1,860,000 ^e	insoluble
Aliphatics Hydrocarbons ^f							de en acconstance a constantino de la constantino de la constante de la constante de la constante de la constan La constante de la constante de					
EC > 5-6		81			0.67	liquid		moderate	3.60E+01	8.05E-01	800	low
EC > 6-8		100			0.70	liquid		moderate	5.40E+00	1.22E+00	3,800	low
EC > 8-10		130			0.73	liquid		low	4.30E-01	1.95E+00	30,200	insoluble
EC > 10-12		160			0.75	liquid		low	3.40E-02	2.93E+00	234,000	insoluble
EC > 12-16		200			0.77	liquid		low	7.60E-04	1.27E+01	5,370,000	insoluble
EC > 16-21		270			0.78	liquid		low	1.30E-06	1.20E+02	9,550,000,000	insoluble
EC > 21-34		400			0.79	liquid		low	1.50E-11	2.44E+03	10,700,000,000	insoluble
Aromatic Hydrocarbons [†]			-									
EC > 8-10		120	-		0.87	liquid		moderate	6.50E+01	1.17E-02	1,580	low
EC > 10-12		130			0.90	liquid		moderate	2.50E+01	3.41E-03	2,510	low
EC > 12-16		150			1.00	liquid		moderate	5.80E+00	1.29E-03	5,010	insoluble
EC > 16-21		190			1.16	liquid		low	5.10E-01	3.17E-04	15,800	insoluble
EC > 21-34		240			1.30	liquid		low	6.60E-03	1.63E-05	126,000	insoluble
PCB Congener ^{g,h}												
Monochlorobiphenyls						solid	1.82E-06 to 1.38E-05	not volatile	1.34E+00 to 4.83E+00	5.73E-04 to 7.36E-04	25,119 to 33,113	insoluble
Trichlorobiphenyl						solid	1.36E-07 to 1.38E-06	not volatile	4.44E-02 to 4.00E-01	1.00E-04 to 2.50E-04	1 to 181,970	insoluble
Pentachlorobiphenyls	And Addition					solid	8.59E-09 to 1.47E-07	not volatile	2.62E-03 to 5.42E-02	4.70E-05 to 1.20E-04	1 to 891,251	insoluble
Heptachlorobiphenyls						solid	8.26E-10 to 7.16E-09	not volatile	3.14E-04 to 4.54E-03	1.30E-06 to 3.33E-05	1 to 4,570,882	insoluble
Decachlorobiphenyl						solid	1.39E-10	not volatile	7.43E-06	2.18E-06	1	insoluble

Notes:

a) Molecular Weight, Density, Solubility, Henry's Law Constant and Koc derived from Table 747-4 (Petroleum EC Fraction Physical/Chemical Values) in WAC 173-340-900 and from Ecology 2007a, Part IX Tables. b) From CRC Handbook of Chemistry and Physics published by Cleveland Chemical and Rubber Company.

c) Volatile designation determined by vapor pressure: not volatile <0.001 atm, low 0.001 to 0.01 atm, moderate 0.01 to 0.2 atm, high >0.2 atm

d) From Montgomery Groundwater Chemicals Desk Reference, 1996

e) From Material Safety Data Sheet (MSDS)

f) Table derived from Table 747-4 (Petroleum EC Fraction Physical/Chemical Values) in WAC 173-340-900 and from Ecology 2007a, Part IX Tables.

g) Koc data from Hansen et al. 1999 and Solubility, Vapor pressure, Henry's Law Constant data from Oberg 2001. Some Solubility, Vapor Pressure, and Henry's Law Constant values are based on predicted or calculated value.
 h) Congeners are individual PCB compounds. Aroclors are a mixture of different congeners. The following lists selected Aroclors with their respective average number of chlorine atoms per molecule: Aroclor 1221, 1.15; Aroclor 1242, 3.1; Aroclor 1262, 6.8. Note that Aroclors are not solids at room temperature.

EC - Equivalent carbon.

Shaded area indicates data are not available or not applicable.

Sheet 1 of 1

Total PCB Concentrations Associated with Petroleum Hydrocarbons in Groundwater West Area - Most Recently Measured

Exploration Location and Number

OH-EW-1 ⊙	Extraction Well
OH-MW-03 🚱	Monitoring Well
TL-MW-3 🚱	Abandoned Monitoring Well
OH-SK-1)	Skimming Well
TF-EW-1-US 🛞	Upper Screen Well
North Supply Well ●	Supply Well
West Supply Well 🌘	Backup Supply Well
(3.0)	Total PCB Concentration in ng/L
J	Estimated Value
Р	GC Confirmation Criteria was Exceeded
т	Value is between the MDL and MRI
(ND)	Not Detected
(2004)	Year Data was Collected
	Inferred Extent of PCB Concentration

 Inferred Extent of PCB Concentrations Exceeding Screening Level Associated with Petroleum Hydrocarbons. PCB Concentrations Are Associated with Petroleum and Are Not Dissolved in Groundwater.

Notes:

- 1. PCBs associated with the Remelt plume are discussed in Section 5.
- 2. Total PCB concentrations are from 2008. If not sampled in 2008, then the sampling year is provided.

Total PCB Concentrations Associated with Petroleum Hydrocarbons in Groundwater East Area - Most Recently Measured

Exploration Location and Number

OH-EW-1 ⊙ Extraction Well

он-мw-03 🛛 Monitoring Well

TL-MW-3 S Abandoned Monitoring Well

он-sк-1 Skimming Well

TF-EW-1-US
Upper Screen Well

North Supply Well Supply Well

West Supply Well
Backup Supply Well

- (3.0) Total PCB Concentration in ng/L
- J Estimated Value
- P GC Confirmation Criteria was Exceeded
- T Value is between the MDL and MRL
- (2006) Year Data was Collected

 Inferred Extent of PCB Concentrations Exceeding Screening Level Associated with Petroleum Hydrocarbons. PCB Concentrations Are Associated with Petroleum and Are Not Dissolved in Groundwater.

Notes:

- 1. PCBs associated with the Remelt plume are discussed in Section 5.
- 2. Total PCB concentrations are from 2008. If not sampled in 2008, then the sampling year is provided.

Ņ

PCB RESTORATION TIME FRAME EVALUATION MEMO

MEMORANDUM

DATE:	July 20, 2011
TO:	Bud Leber, Kaiser Aluminum Washington, LLC
FROM:	William Abercrombie, Hart Crowser, Inc. Roy Jensen LHG, Hart Crowser, Inc. Kimberly Reinauer, EIT, LEED, Hart Crowser, Inc. Peter Smiltins, PE, Hart Crowser, Inc. Dan McCarthy, PE, ECS
RE:	PCB Restoration Time Frame Evaluation Remelt/Hot Line Plume Kaiser Aluminum Washington, LLC 2644-125

This memo presents our revised evaluation of the restoration time frames for the various alternatives for the Remelt/Hot Line PCB plume and associated smear zone soil. The original restoration time frames for Alternatives D2 and D3 are presented in Table 5-4 of the Draft Feasibility Study (FS) (Hart Crowser 2010b).

Alternative D4 has been added to the Draft Final FS at the request of Ecology (Ecology 2011). This alternative was developed to evaluate the impacts of the extraction and treatment of a portion of the Remelt/Hot Line PCB plume. Alternative D3 extracts and treats the entire plume through three extraction wells as shown on Figure 5-6 of the Draft Final FS. Alternative D4 includes the installation of one extraction well at a location in the centerline of the Remelt/Hot Line PCB plume just to the southwest of the Remelt building as shown on Figure 5-6 of the Draft Final FS. Alternative D4 extracts groundwater at a rate of approximately 300,000 gallons per day (gpd) (approximately 10 percent of the extraction rate associated with Alternative D3). The extracted water in Alternative D4 will be treated by the same treatment methods that were summarized in the Draft Final FS for Alternative D3.

Restoration time frames were calculated using the first order method described in Section E.6 in the Draft Final FS. The inputs and assumptions are described below.

PCB CLEANUP CRITERIA

Ecology has established preliminary cleanup levels (PCULs) for total PCBs for a standard point of compliance (POC) and for a conditional POC (Ecology 2010). If a conditional POC is granted, CULs for PCBs that are based on the protection of surface water should be met at the point or points of discharge to the surface water. Concentrations of PCBs everywhere else at the Facility may exceed surface water standards but must meet drinking water standards and MTCA threshold requirements.

Standard Groundwater Point of Compliance

The PCUL for the standard groundwater POC established by Ecology is 0.000064 μ g/L, which is based on the criteria for the protection of surface water published under Section 304 of the Clean Water Act for protection of human health from water and fish ingestion. Ecology adjusted this value to 0.0045 μ g/L, the method detection limit (MDL) for the analytical method used to measure PCB concentrations in groundwater, modified Method 8082 (Ecology 2010). The MDL may be subject to further discussions. Under a standard POC, this PCUL would need to be met throughout the Facility from the uppermost level of the saturated zone extending vertically to the lowest depth which could potentially be affected by constituents of concern (COCs) at the Facility.

Conditional Groundwater Point of Compliance

If a conditional groundwater POC is granted, the PCUL is 0.000064 μ g/L (adjusted up to 0.0045 μ g/L, the MDL based on modified Method 8082) at the points where the groundwater flows into the surface water, and 0.22 μ g/L (adjusted down from 0.44 μ g/L, the drinking water criterion to bring total cancer risk down to 0.5 x 10⁻⁵) and MTCA threshold requirements everywhere else throughout the Facility (Ecology 2010).

Upgradient Groundwater Concentration Protective of the Spokane River

The PCB concentration in the Remelt/Hot Line PCB plume declines from a high of 2 μ g/L in the Remelt area to less than 0.005 μ g/L within 650 feet of the Spokane River. The groundwater concentration in the source area that will be protective of the PCUL at the point where the groundwater flows into the surface water was calculated with the knowledge that some attenuation is occurring as the groundwater travels from the source area to the river. This attenuation is likely from a variety of factors including adsorption, dispersion, and degradation. The regression analysis is described in Section E.7 in the Draft Final FS.

The PCB source concentration at well RM-MW-17S (approximately 2,300 feet from the Spokane River), that would not exceed a concentration of 0.000064 μ g/L at the river is predicted to be 0.06 μ g/L (Table E-9 of the Draft Final FS).

Soil Concentrations Protective of PCULs

Soil concentrations protective of groundwater PCULs were calculated using the soil/water partitioning coefficient (in L/kg) (K_d), assuming a linear relationship between groundwater (C_w) and soil contaminant concentration (C_s) according to the following equation:

$$C_s = K_d C_w \tag{1}$$

The K_d value was calculated by multiplying the organic carbon partition coefficient (K_{oc}) for total PCBs from the CLARC database (310,000 L/kg) by the fraction of organic carbon (f_{oc}) value of 0.001. A f_{oc} value of 0.001 was used because this is the representative value for subsurface soil reported in the Draft Final Groundwater RI (Hart Crowser 2009a).

Soil concentrations considered protective of groundwater PCULs are presented in Table 2.

MASS TRANSFER MECHANISM

Mass of PCBs

The PCB area of concern in the Remelt area smear zone soil was described in Appendix D of the FSTM (Hart Crowser 2010a). The mass of PCBs in the smear zone soil was estimated to be 40 pounds (Table D-1 in the FSTM) based on assumptions that were designed to be conservative.

The soil matrix at the Facility consists mostly of gravel and cobbles (Hart Crowser 2009b). The PCBs in the sample were associated with the silt (when present), sand, and organic material (if any) that were present in the sample. The gravel and cobble portion of the sample was either not sent to or not analyzed by the laboratory since cobbles would not fit in the sample jar and gravel would have to be pulverized in the laboratory prior to analysis. As a result, the concentration of PCBs reported by the laboratory is an overestimate of the actual *in situ* concentration of PCBs in smear zone soil. Nonetheless, the laboratory values were reported in the Draft Final Soil RI (Hart Crowser 2009b) since they represent a conservative estimate of the actual concentration of PCBs present at the site, and contribute to a conservative approach to estimating risks to human health and the environment posed by PCBs. Site data indicate that at least 30 percent of Facility soil is greater than

2 inches in diameter. Grain size distribution data from the Facility indicates that an average of 54 percent of the material is retained on a No. 4 sieve (0.187 inch) (Hart Crowser 2009b).

A revised PCB mass was calculated based on the following assumptions:

- The PCB concentrations measured in Remelt area smear zone soil was reduced by 54 percent to develop a more accurate estimate of PCB mass in the Remelt area smear zone soil (refer to Table 1).
- Only areas where smear zone soil and groundwater plumes overlap (refer to Figure 5-1 in the Draft Final FS) were included in the calculation of mass (i.e., if no groundwater plume is present in an area, then the mass present in the smear zone in that area was not included in the calculation, refer to Table 1).
- PCBs leaching from smear zone soil into groundwater is assumed to occur only within the approximately 10-foot-thick smear zone.

Based on these modified assumptions, the revised estimate of the PCB mass within the smear zone in the Remelt area is approximately 11 pounds (Table 1).

Groundwater Flux

The groundwater flux for the Remelt/Hot Line plume under the existing condition with no additional pumping was presented in Table E-5 for the Draft Final FS as 9 ft³/day/ft² (67.3 gal/day/ft²). The groundwater flux through the smear zone increases with downgradient groundwater extraction. Based on a vertical depth of 30 feet, the groundwater flux through the Remelt area plume under existing conditions is estimated to be approximately 1 million gallons per day (MGD).

The groundwater flux though the Remelt/Hot Line plume was calculated for Alternatives D2, D3, and D4 accounting for the increase in pumping. The groundwater extraction rate for Alternatives D2 and D3 is based on hydraulic containment of the Remelt/Hot Line plume from the results of groundwater modeling (Appendix E Draft Final FS). The extraction rate for D4 is based on a pumping rate of 300,000 gpd from a well located in vicinity of the plume source area.

The change in groundwater flux generated by the various alternatives was evaluated from the results of groundwater modeling using changes in travel time as a proxy for changes in groundwater flux. The faster a modeled particle moves through the groundwater the greater the groundwater flux. It was assumed that particle travel time in a plume is inversely proportional to change in groundwater flux. The groundwater flux for Alternatives D2 and D3 are discussed in Section E.5 of the Draft Final

FS. The flux for Alternative D2a increases by a factor of 1.6, while the flux for Alternatives D2b and D3 increases by a factor of 1.7. Because Alternative D4 does not include complete containment it was not possible to calculate the increase in flux from the particle tracking method. Under Alternative D4 we estimated that the flux will increase by about 200,000 gpd or a factor of 1.2 from the baseline case.

Mass Transfer

In the first order method (Section E.5.2 in the Draft Final FS), groundwater that enters the smear zone upgradient of the Remelt building is assumed to contain no PCBs (i.e., background PCBs in groundwater entering the Kaiser Facility are not considered). As the groundwater flows through the smear zone, PCBs are transferred from the soil to the groundwater. PCB leaching from smear zone soil into groundwater is assumed to occur only within the approximately 10-foot-thick smear zone. The predicted PCB concentration of the groundwater leaving the smear zone is calculated using the K_d value.

The groundwater flow rate through smear zone soil was calculated by multiplying the groundwater flux (gpd/square foot) by the cross sectional area of the smear zone normal to the groundwater flow direction. The cross sectional area was conservatively estimated by multiplying the widest portion of the smear zone, perpendicular to groundwater flow, by the thickness of the smear zone (about 10 feet).

The mass of PCBs transferred from the smear zone soil to the groundwater is calculated by multiplying the predicted concentration of PCBs in groundwater leaving the smear zone by the groundwater flow rate.

ESTIMATED RESTORATION TIME FRAMES

Estimated restoration time frames to meet the standard POC for the Remelt/Hot Line PCB plume are relatively long. To put these evaluation criteria into perspective we have estimated restoration time frames for both a standard and conditional POC for Alternatives D1 through D4.

For the purposes of this evaluation, the sole mechanism for reducing the mass of PCBs in smear zone soil is assumed to be through leaching of PCBs from smear zone soil into groundwater. Colloidal transport of PCBs in the Remelt/Hot Line PCB plume is suspected (Hart Crowser 2009a). However, the effect of colloidal particles on the mass transfer of PCBs is not well understood.

The restoration time frame was estimated by establishing a mass balance for the smear zone soil and groundwater in the Remelt/Hot Line area. The calculations used to establish this mass balance are provided in Appendix E of the Draft Final FS (Hart Crowser 2010b). The calculations are based upon the following assumptions:

- The PCB concentrations in groundwater and soil reach equilibrium instantaneously;
- A K_d value of 310 L/kg is representative of the K_d values associated with the distribution of PCBs present in the smear zone soil in the Remelt area. (A K_d of 78.1 L/kg (for Aroclor 1242) was used in the Draft FS);
- There is a linear equilibrium relationship (proportional to the K_d value) between the PCB concentration in soil and PCB concentration in groundwater;
- The PCB mass in the smear zone is 100 percent leachable; and
- Restoration of groundwater is complete once the concentration of PCBs in smear zone soil declines to a concentration that would result in a groundwater concentration below the PCUL (although groundwater will ultimately be considered to meet CULs once it is empirically demonstrated to do so).

Restoration time frames are presented in Table 2 for both a standard and conditional POC.

Estimation of Restoration Time Fame for Alternative D1

The estimated restoration time frame for Alternative D1 for the standard POC is approximately 280 years to reach the modified Method 8082 MDL of 0.0045 μ g/L and soil to groundwater PCUL of 0.0014 mg/kg and 590 years to reach 0.000064 μ g/L. If a conditional POC is granted, it is expected to take 6 years for the PCB concentration in the plume to be less than the PCUL of 0.22 μ g/L and the concentration of PCBs in the smear zone soil in the Remelt area to decline to 0.068 mg/kg (Table 2). PCBs are not currently reaching the Spokane River from the Remelt/Hot Line plume at concentrations above the current PCUL (modified Method 8082 MDL of 0.0045 μ g/L).

If the PCUL for a conditional POC is established as 0.000064 μ g/L, the PCB concentration in groundwater in the Remelt source area would need to be approximately 0.060 μ g/L (with a smear zone soil concentration of approximately 0.019 mg/kg) for the concentration to decline to 0.000064 μ g/L by the time the PCBs reach the Spokane River (see above). It is expected to take

about 100 years for the PCB concentrations in groundwater and smear zone soil to decline to these values.

Estimation of Restoration Time Fame for Alternative D2a

The estimated restoration time frame for a standard POC for Alternative D2a is approximately 180 years to reach a groundwater concentration of 0.0045 μ g/L and 370 years to reach a groundwater concentration of 0.00064 μ g/L (Table 2).

If a conditional POC is granted, it is expected to take approximately 4 years for the PCB concentration in the plume to be less than the PCUL of 0.22 μ g/L, and the concentration of PCBs in the smear zone soil in the Remelt area to decline to 0.068 mg/kg (Table 2). PCBs are not currently reaching the Spokane River from the Remelt/Hot Line plume at concentrations above the current PCUL (modified Method 8082 MDL of 0.0045 μ g/L).

If the PCUL for a conditional POC is established as 0.000064 μ g/L at the groundwater/surface water interface, the PCB concentration in groundwater in the Remelt source area would need to be approximately 0.060 μ g/L (with a smear zone soil concentration of approximately 0.019 mg/kg) for the concentration to decline to 0.000064 μ g/L by the time the PCBs reach the Spokane River (see above). It is expected to take about 60 years for the PCB concentrations to decline to these values (Table 2). The hydraulic containment provided by Alternative D2a will prevent PCBs at concentrations above 0.000064 μ g/L from reaching the Spokane River during this time.

Estimation of Restoration Time Frame for Alternatives D2b and D3

The estimated restoration time frame for a standard POC for Alternatives D2b and D3 is approximately 180 years for the soil concentration in the Remelt area to decline to 0.0014 mg/kg, and the concentration of PCBs in the groundwater plume to decline to 0.0045 μ g/L, and 370 years to reduce PCB concentrations in the plume to 0.000064 μ g/L.

The restoration time frame for the conditional POC is estimated to be approximately 4 years (time for the soil concentration in the Remelt area to decline to 0.068 mg/kg, and the concentration of PCBs in the groundwater plume to decline to 0.22 μ g/L for protection of drinking water use). PCBs are not currently reaching the Spokane River from the Remelt/Hot Line plume at concentrations above the MDL (0.0045 μ g/L).

If the PCUL for a conditional POC is established as 0.000064 μ g/L at the groundwater/surface water interface, the PCB concentration in groundwater in the Remelt source area would need to be approximately 0.060 μ g/L for the concentration to decline to 0.000064 μ g/L by the time the PCBs

reach the Spokane River (see above). It is expected to take about 60 years for the PCB concentrations to decline to this value. The hydraulic containment provided in these alternatives will prevent PCBs at concentrations above 0.000064 μ g/L from reaching the Spokane River during this time.

Restoration Time Frame for Alternative D4

The estimated restoration time frame for the standard POC for Alternative D4 is approximately 240 years for concentrations to decline to the PCULs of 0.0045 μ g/L and PCUL for the soil to groundwater pathway of 0.0014 mg/kg; and 490 years to reduce PCB concentrations in the plume to 0.000064 μ g/L.

It is expected to take approximately 5 years for the PCB concentration in the plume to decline to less than 0.22 μ g/L, and the concentration of PCBs in groundwater to decline to 0.068 mg/kg (Table 2).

If the PCUL for a conditional POC is established as 0.000064 μ g/L at the groundwater/surface water interface, the PCB concentration in groundwater in the Remelt source area would need to be approximately 0.060 μ g/L (with a smear zone soil concentration of approximately 0.019 mg/kg) for the concentration to decline to 0.000064 μ g/L by the time the PCBs reach the Spokane River (see above). It is expected to take about 80 years for the PCB concentrations in groundwater and smear zone soil to decline to these values.

EXTRACTED GROUNDWATER CHARACTERISTICS

The PCB concentration in groundwater is expected to decrease over time as the PCB mass is extracted by the groundwater flowing through the Remelt area. The extracted groundwater will have a lower concentration than the predicted plume concentration, because the extraction pumps draw from groundwater areas that are not contaminated in addition to contaminated groundwater areas. The initial concentration of PCBs in extracted groundwater can be predicted by dividing the mass transferred from the soil to the groundwater flowing through the smear zone (predicted groundwater PCB concentration times flow rate through the smear zone) by the extraction pumping rate.

The estimated initial extracted groundwater concentration for Alternatives D2a and D3 is 30 ng/L, and the estimated concentration for Alternative D4 is 70 ng/L (Table 2). The concentrations estimated for Alternatives D2a and D3 are less than the concentrations presented in the Draft FS (Section 5.1.5.2) because of the reduced estimation of total mass of PCBs in the smear zone soil.

Alternatives D2a and D3 place three extraction wells along a transect located near wells HL-MW-14S, HL-MW-24 DD and HL-MW9D, and HL-MW6A (refer to Figure 5-6 in the Draft Final FS). The extraction wells are designed to remove groundwater from the upper 30 feet of the aquifer. Thus, wells HL-MW-14S and HL-MW6A are the closest wells to the proposed extraction points. The average value of the PCB data collected from these wells (taken from Figures 5-2, 5-3, and 5-4 of the Draft FS) in CY 2009 and in April 2010 is approximately 135 ng/L.

The extraction well proposed for Alternative D4 is located south of well HL-MW-31S. The average value of the PCB data collected from this well (taken from Figures 5-2, 5-3, and 5-4 of the FS) during October 2009 and in April 2010 is approximately 265 ng/L.

Estimated extracted water concentrations will be updated from pilot studies and/or treatability studies and will ultimately be determined from site performance data.

REFERENCES

Ecology, 2010. Kaiser Trentwood Site, Development of Draft Cleanup Standards. Department of Ecology. May 2010.

Ecology, 2011. Kaiser Trentwood Site – Ecology's Review Comments of the September 8, 2010 Draft Feasibility Study Report. Letter to Bernard P. Leber, Jr., Kaiser Aluminum Fabricated Products, LLC, from Teresita Bala, Washington State Department of Ecology. January 19, 2011.

Hart Crowser, 2009a. Draft Final Site-Wide Groundwater Remedial Investigation, Kaiser Trentwood Facility, Spokane Valley, Washington. Prepared for Kaiser Aluminum Fabricated Products, LLC, by Hart Crowser, Inc. November 2009.

Hart Crowser, 2009b. Draft Final Site-Wide Soil Remedial Investigation, Kaiser Trentwood Facility, Spokane Valley, Washington. Prepared for Kaiser Aluminum Fabricated Products, LLC, by Hart Crowser, Inc. November 2009.

Hart Crowser, 2010a. Draft Final Feasibility Study Technical Memorandum, Kaiser Trentwood Facility, Spokane Valley, Washington. Prepared for Kaiser Aluminum Fabricated Products, LLC, by Hart Crowser, Inc. March 2010.

Hart Crowser, 2010b. Draft Feasibility Study Report, Kaiser Trentwood Facility, Spokane Valley, Washington. Prepared for Kaiser Aluminum Fabricated Products, LLC, by Hart Crowser, Inc. September 2010.

2644-125 Page 10

Hart Crowser, 2011. Draft Final Feasibility Study Report, Kaiser Trentwood Facility, Spokane Valley, Washington. Prepared for Kaiser Aluminum Fabricated Products, LLC, by Hart Crowser, Inc. July 2011.

Attachments:

Table 1 - Updated PCB Mass Calculation in the Remelt/Hot Line Area Table 2 - PCB Restoration Time Frame Calculations

L:\Jobs\2644125\Draft Final FS 11-2011\03 Appendices\Appendix I\PCB Memo.doc

Table 1 - Updated PCB Mass in Remelt/Hot Line Area

Wells/Borings ^a	Depth in	Date	Concentra	tion	Adjuste Concentra	ed ation	
Weils/Bornigs	Feet	Collected	in mg/kg		in mg/kg ^b		
RM-MW-1S S-1	75-80	10/6/2003	0.022	J	0.010	J	
RM-MW-2D S-1	75 to 80	10/5/2003	0.2	U	0.100	U	
RM-MW-3S S-5	75 to 75.9	9/27/2003	0.19	U	0.095	U	
RM-MW-8S/S-11	75 to 75.8	3/2/2005	0.2	U	0.100	U	
RM-MW-10S S-4	70.5-71	9/20/2004	0.11		0.051		
RMSW-MW-11S-S10	70	4/23/2005	0.55		0.253		
RMSW-MW-11S-S10	80	4/23/2005	0.55		0.253		
RM-MW-13S-S11	75	4/27/2005	0.2	U	0.100	U	
RM-MW-15S/S-7	70 to 71.5	9/18/2006	0.012		0.006		
RM-MW-15S/S-8	80 to 81.5	9/18/2006	0.012		0.006		
RM-MW-16S/S-8	80 to 81.5	9/15/2006	0.0056	J	0.003	J	
RM-MW-16S/S-7	70-70.6	9/15/2006	0.061		0.028		
RM-MW-17S/S-7	70-71.5	9/14/2006	0.072		0.033		
RM-MW-17S/S-8	80-81.5	9/14/2006	0.1		0.046		
RM-F4-SB-1 S-11	76-76.5	9/16/2004	0.059		0.027		
AVERA	GE				0.074		

U	pdated	Average	Concentration	Calculation
-	paaroa	/ o. ago	•••••••	• ale alatient

Updated Mass Calculation

Area overlap plume and	148,672
smear zone (feet ²) ^c	
Depth Interval (feet)	10
ROM Volume (feet ³)	1,486,720
ROM Volume (CY)	55,064
ROM Mass Soil (tons)	77,089
Avg. Conc. (mg/kg)	0.074
ROM Mass of PCBs in	11.4
Impacted Soil (pounds)	

Notes:

- J Estimated value.
- U Not detected at the value noted.

ROM: Rough Order of Magnitude

(a) Only wells/borings within the footprint of the Remelt/Hot Line groundwater plume are included.

(b) Concentrations were reduced by 54 percent to account for gravel and cobbles. One half of the reporting limit was used for non-detect samples to calculate the average concentration.

(c) Area modified from Table D-1 in the FSTM to account only for groundwater plume and smear zone soil overlap.

Preliminary Cleanup Criteria:

		Groundwater	
		Concentration in	Soil Concentration in
	Soil Concentration	Source Zone to be	Source that is
	Protective of PCUL	Protective of PCUL at	Protective of PCUL at
PCUL (ug/L)	(mg/kg) ^a	River (ug/L) ^b	River (mg/kg) ^a
0.0045	0.0014	0.22	0.068
0.000064	0.00002	0.06	0.019

System Inputs:

Depth (ft)	10
Width (ft) ^c	327
Kd (L/kg)	310
Average soil concentration (mg/kg) d	0.07
Predicted GW concentration (ug/L) ^e	0.24
Initial PCB Mass in Soil (lb)	11.4
Mass of Soil (tons) ^f	77089

	Flux (gal/day/ft2) ^g	Flow rate (gpd) ⁽ⁱ⁾
Alternative D1	67.3	220,071
Alternative D2a	107.7	352,114
Alternative D2b	114.41	374,121
Alternative D3	114.41	374,121
Alternative D4	80.76	264.085

Restoration Time Frame:

	Standarad POC		Conditional POC		
	Restoration Time Frame (years)		Restoration Time Frame (years) ⁽⁾⁾		
	River and Groundwater POC		Time to reduce groundwater	Groundwater restoration time frame to be protective of river	
			concentration in	for a PCUL =	for a PCUL =
	PCUL = 0.0045 ug/L	PCUL = 0.000064 ug/L	source to 0.22 ug/L	0.0045 ug/L ^(k)	0.000064 ug/L ^(I)
Alternative D1	283	586	6	0	98
Alternative D2a	177	367	4	0	62
Alternative D2b	167	345	4	0	58
Alternative D3	167	345	4	0	58
Alternative D4	236	489	5	0	82

Extracted GW Characteristics:

		Initial Concentration of	Extracted mass
	Pumping Rate (MGD)	Extracted GW (ng/L)	(gram/day)
Alternative D1	NA	NA	NA
Alternative D2a	3.7	23	0.32
Alternative D2b	3.0	29	0.34
Alternative D3	3.0	29	0.34
Alternative D4	0.3	210	0.24

Notes:

(a) Based on soil/water partitioning.

(b) Groundwater concentration in source area (0.06 ug/L) that was predicted to be protective of PCUL at the River based on equation 13 developed in Appendix E. Under a conditional POC groundwater in the source will need to be protective of the drinking water PCUL (0.22 ug/L) this concentration is predicted to be protective of the drinking water PCUL (0.22 ug/L) this concentration is predicted to be protective of the drinking water PCUL (0.22 ug/L) this concentration is predicted to be protective of the drinking water PCUL (0.22 ug/L) this concentration is predicted to be protective of the drinking water PCUL (0.22 ug/L) this concentration is predicted to be protective of the drinking water PCUL (0.22 ug/L) this concentration is predicted to be protective of the drinking water PCUL (0.22 ug/L) this concentration is predicted to be protected to be prot

(0.22 ug/L), this concentration is predicted to be protective of the MDL (0.0045 ug/L) at the River.

(d) The maximum width of the plume.

(e) From Table 2.

(f) Based on soil/water partitioning using average soil concentration and Kd.

(g) Adjusted from Table D-1 in the FSTM to account for the reduced area.

(h) Flux for Alternative D1 from FSTM Table E-5. Extraction pumping increases the flux for Alternative D2a by a factor of 2.2,

Alternatives D2b and D3 by a factor of 2, and Alternative D4 by a factor of 1.2.

(i) Groundwater flow rate through 10-foot smear zone.

(j) Restoration timeframe calculated by first order decay equation (Equation 12) in Appendix E.

(k) Equation results is negative numbers indicating the PCB concentration at the river is estimated to be protective of the PCUL of 0.0045 ug/L with attenuation as described in Appendix E.

(I) For Alternatives D2 and D3, which employ containment, the concentration of PCBs at the River is expected to be below 0.000064 ug/L shortly after the containment system is in place.

PETROLEUM HYDROCARBON AREAS OF CONCERN MEMO

MEMORANDUM

DATE:July 20, 2011TO:Bud Leber, Kaiser Aluminum Washington, LLCFROM:Will Abercrombie, Hart Crowser, Inc.
Craig Dockter, Hart Crowser, Inc.
Kimberly Reinauer, PE, LEED, Hart Crowser, Inc.
Roy Jensen, LHG, Hart Crowser, Inc.
Dan McCarthy, PE, ECSRE:Petroleum Hydrocarbon Areas of Concern
Restoration Time Frame Evaluation
Kaiser Trentwood

2644-125

This memo presents our restoration time frame evaluation for petroleum hydrocarbon (TPH) groundwater areas of concern (AOCs) at the Kaiser Trentwood Facility. The restoration time frame evaluation for the PCB groundwater AOCs is provided in a separate technical memorandum.

TPH Cleanup Criteria

Cleanup Levels and Point of Compliance

Ecology has established preliminary cleanup levels (PCULs) for petroleum hydrocarbons as diesel and heavy oil for a standard point of compliance (POC) (Ecology 2010). The PCULs for the standard POC established by Ecology are based on MTCA Method A cleanup levels. The PCULs for both diesel and heavy oil is 500 micrograms per liter (μ g/L). Also, the sum of diesel and heavy oil concentrations cannot exceed 500 μ g/L.

Under a standard POC, this PCUL would need to be met throughout the Facility from the uppermost level of the saturated zone extending vertically to the lowest depth which could potentially be affected by constituents of concern (COCs) at the Facility.

Soil Concentrations Protective of PCULs

Ecology-established soil cleanup levels protective of groundwater were calculated using MTCA's 4-phase model (Ecology 2010a). The saturated soil concentration of TPH (total) protective of drinking water established by Ecology is 2,000 mg/kg (Ecology 2010b). The actual smear zone soil concentrations that are protective of groundwater will ultimately be those concentrations that will result in meeting groundwater cleanup levels.

Soil concentrations protective of groundwater PCULs throughout the Facility were calculated using the soil/water partitioning coefficient (in L/kg) (K_d), assuming a linear relationship between groundwater (C_w) and soil contaminant concentration (C_s) according to the following equation:

$$C_s = K_d C_w$$

The K_d values from site-specific tests are 2,250 L/kg for diesel and 1,987 L/kg for heavy oil were reported in the Draft Final Groundwater RI (Hart Crowser 2009).

Soil concentrations protective of the groundwater PCUL of 500 μ g/L throughout the Facility were calculated by multiplying the K_dvalues by 500 μ g/L in each AOC and are presented in Table 1.

Mass of TPH

The TPH smear zone soil AOCs were described in Appendix D of the Draft Feasibility Study Technical Memorandum (FSTM) (Hart Crowser 2010a). The TPH mass has been recalculated based on the soil/water partitioning coefficient discussed above and the results are provided in Table 1. The revised TPH mass was calculated based on the following assumptions:

- The TPH in AOCs at this Facility are present in mature groundwater plumes that have established equilibrium between the COCs in the smear zone soils and the groundwater. Therefore, groundwater concentrations measured in each AOC are representative of the TPH distribution and mass within the soil matrix.
- The average groundwater concentrations (Table 1) used in calculating the TPH mass in each AOC are based on the maximum concentration for each well measured in four

2644-125 Page 3

quarters of 2009 and the first two quarters of 2010, as reported in Table 4-2 of the Draft Final Feasibility Study (FS) (Hart Crowser 2011).

• The average groundwater diesel concentration in the Oil House area North plume was higher than the solubility limit for diesel fuel. We initially estimated the mass of COCs in the Oil House area North plume by using a solubility limit of 1.75 mg/L, based on a site-specific K_d of 2,250 L/kg. The estimated TPH mass in the Oil House area North plume that was calculated based on a groundwater TPH concentration of 1.75 mg/L is approximately 415,000 pounds (refer to Table 1 of the April 24, 2011, restoration time frame memorandum for petroleum AOCs).

As we have discussed, the soil at the Facility contain approximately 30 percent materials that are greater than 2 inches in diameter. In addition to these cobble materials, Facility soil also contains a total of approximately 24 percent of materials that are less than 2 inches in diameter but retained on a #4 sieve (0.187 inch) (Hart Crowser 2009). These two larger grain size materials can be classified as cobbles and gravels. The cobble and gravel portion of soil samples were either not sent to or not analyzed by the laboratory, since cobbles would not fit in the sample jar and the laboratory does not pulverize gravel prior to analysis. Thus, the laboratory analytical results overestimate the concentration of COCs in soil by at least 54 percent. Refer to the FSTM, Section 2.6, for a more detailed discussion of this topic, and for a discussion of additional reasons why the concentration values reported by the laboratory and contained in the Draft Final FS are still conservatively high.

The resulting estimated mass of TPH in the Oil House area smear zone soil associated with the North plume is approximately 272,000 pounds. The corresponding value of TPH concentration in the groundwater is 1.32 mg/L (Table 1).

- The groundwater flux and plume dimension values used to calculate mass were reported in Draft Final FS Appendix E, Table E-5. The average width of the plume was calculated using the footprint of the plume and dividing it by the length of the plume.
- The K_d value from site-specific tests of 2,250 for diesel and 1,987 L/kg for oil reported in the FSTM are appropriate values for calculating the soil concentration by using the following equation: $C_s = K_d C_w$

2644-125 Page 4

- The TPH mass in pounds being reduced in soil was calculated for each AOC using the average groundwater concentration minus the PCUL of 0.5 mg/L, the appropriate K_d value (diesel and heating oil), soil bulk density (110 pounds/cubic foot), effective porosity of 30 percent, treatment area volume of soil in cubic feet, and converting from milligrams to kilograms as shown in the equation:
 - $(C_{wo} C_{wpcul}) \cdot K_{d} \cdot 110 \cdot (1 0.30) \cdot (width \cdot length \cdot height) / 1,000,000$
- The TPH mass in pounds being reduced in groundwater was calculated for each AOC using the average groundwater concentration minus the PCUL of 0.5 mg/L, volume of groundwater in the treatment area in cubic feet, effective porosity of 30 percent, converting cubic feet to liters by multiplying by 28.32, converting milligrams to kilograms, and converting kilograms to pounds as shown in the equation:
 - (C_{wo}-C_{wpcul}) (width length height) 0.30 28.32 / 1,000,000 2.2
- The TPH mass shown in Tables 1 and 2 represents the mass of TPH that has to be treated to reduce the concentration of TPH in smear zone soil to a concentration of 1,125 mg/kg. This mass was calculated by using the average groundwater concentration and subtracting the PCUL concentration of 500 ug/L.
- Only areas where smear zone soil and groundwater plumes overlap were included in the calculation of mass (i.e., if no groundwater plume is present in an area, then the mass present in the smear zone in that area was not included in the calculation). The inputs used in calculating the TPH mass for each AOC is presented in Attachment A.

Based on these assumptions, the revised estimate of the TPH mass within the smear zone at the Facility is summarized in Table 1.

Biodegradation Mechanism

The biodegradation mechanism and approach used in calculating the restoration time frame in each AOC is based on hydrogen equivalents for moles of hydrogen/electron donors (petroleum hydrocarbons) and hydrogen/electron acceptors (dissolved oxygen [DO], nitrates, and sulfates). The restoration is considered complete when the groundwater entering the plume provides the same number of moles of hydrogen/electron acceptors as

the calculated moles of hydrogen/electron donors of petroleum hydrocarbons in the soil and groundwater for each AOC.

The estimated TPH mass to be treated described above is used to calculate the moles of hydrogen/electron donor. The model assumes that 20 percent of the TPH are completely oxidized to CO_2 and H_2O , and the remaining 80 percent of hydrogen moles are converted to volatile fatty acids and biomass that further enhances the destruction of electron donors (petroleum hydrocarbons). The value used in calculating complete oxidation typically ranges from 10 to 20 percent based on the plume maturity. The more mature the plume, the more opportunity the microbes have had to adapt to site conditions, and the more petroleum hydrocarbons that are converted to biomass for an increased efficiency. Although the plumes are very mature, we have assumed the more conservative value of 20 percent complete oxidation for our calculations.

The model also assumes the following:

- The TPH mass to be treated calculated in the previous section for each AOC is appropriate for calculating the moles of electron donors (petroleum hydrocarbons).
- Groundwater flow through each of the AOCs is based on the results of groundwater flow modeling (Appendix E in the Draft Final FS) and the assumption that groundwater is in contact with the 10-foot smear zone 60 percent of the year.
- Inputs for the DO, nitrate, and sulfate concentrations were taken from site-specific analytical results immediately upgradient of each AOC when possible (refer to Figures F-1, F-2, and F-3 in Appendix F of the Draft Final FS).
- The number of moles for the electron donors (TPH) in soil and groundwater was calculated for each AOC using the pounds of TPH calculated above, converting pounds to kilograms, converting kilograms to grams, dividing by the molecular weight (grams per mole), and multiplying by the number of moles of hydrogen to oxidize one mole of TPH, as shown in the equation:
 - Pounds TPH / 2.2 1,000 / g TPH/mole TPH moles H2/mole TPH
- Electron acceptors are available for biodegradation, and the electron acceptors are the limiting factor in biological processes at the Facility.

- The electron acceptors are used to oxidize the TPH or convert the mass to fatty acids and biomass.
- The number of moles for the native electron acceptors in groundwater was calculated for each AOC using the concentration of electron acceptor in mg/L, converting milligrams to grams, dividing by the molecular weight (grams per mole), and multiplying by the number of moles of hydrogen to reduce one mole of electron acceptor, and multiplying by the total flow in liters moving through the treatment area during the restoration time frame, as shown in the equation:
 - C_w / 1,000 / g TPH/mole TPH moles H2/mole TPH liters

Groundwater Flow Rate

The groundwater flow rates for Alternatives C2 (Scenarios C2a, C2b, and C2c) and C4 were calculated from the results of groundwater modeling using changes in travel time as a proxy for changes in groundwater flux (Table E-6, Appendix E Draft Final FS). Alternative C1 (Model Scenario 1) was considered the existing or baseline condition. The groundwater flux (changes in travel time) for the individual AOCs under Alternatives C2 (Scenarios C2a, C2b, and C2c) and C4 (Model Scenarios 2 through 4) were adjusted relative to the baseline case. The adjusted flux values are presented in the individual alternative restoration time frame estimates below.

Estimated Restoration Time Frames

Estimated restoration time frames to meet the cleanup standard for TPH plumes are based on reducing the existing average groundwater TPH concentration in each AOC to the PCUL of 500 ug/L. The average TPH concentration, extent of each AOC, and electron donors available in each AOC make for highly variable results in the restoration time frame calculations.

The restoration for the Oil Reclamation Building (ORB) area is considered complete, since the current average groundwater concentrations for diesel and heavy oil are less than $500 \mu g/L$.

The restoration time frame was estimated to be the point at which the mass balance of moles of hydrogen/electron donor and hydrogen/electron acceptor is achieved. The model

2644-125 Page 7

inputs used to calculate the mass balance are provided in Attachment A. The calculations are based upon the following assumptions:

- The TPH concentrations in groundwater and soil reach equilibrium instantaneously;
- A K_d value of 2,250 L/kg for diesel and 1,987 L/kg for oil is representative of the K_d values associated with the distribution of TPH present in the smear zone soils in each of the AOCs.
- The TPH mass in soil and groundwater is destroyed through biological processes resulting in a shrinking plume;
- Groundwater is in contact with the smear zone 60 percent of the time; and
- Restoration of groundwater is considered complete once the concentration of TPH in smear zone soil declines to a concentration that would result in a groundwater concentration below the PCUL.

The input parameters and results for each AOC are detailed in Attachment A and the restoration time frames are summarized in Table 2.

Estimation of Restoration Time Frame for Alternative C1

Alternative C1 consists of institutional controls, monitoring, and monitored natural attenuation (MNA), and operation of the existing groundwater Interim Remedial Measure (IRM) system for the remediation of the petroleum hydrocarbon and free phase product (FPP) groundwater plumes and associated smear zone soil at the Kaiser Facility.

The restoration time frames for Alternative C1 range from 4 years for the Oil House area South plume to 34 years for the Wastewater Treatment area North plume. The input parameters and results for each AOC are detailed in Attachment A and summarized in Table 2.

Estimation of Restoration Time Frame for Alternative C2, Scenario C2a

Scenario C2a of Alternative C2 adds the additional protection of hydraulic containment from EW-3 to Alternative C1. Scenario C2a extends the containment footprint but does increase the groundwater flux through the AOCs.

The restoration time frames for Scenario C2a are the same as Alternative C1. The restoration time frames for Scenario C2a range from 4 years for the Oil House area South plume to 34 years for the Wastewater Treatment area North plume. The input parameters and results for each AOC are detailed in Attachment A and summarized in Table 2.

Estimation of Restoration Time Frame for Alternative C2, Scenario C2b

Scenario C2b of Alternative C2 adds hydraulic containment to the ORB AOC to Alternative C1. The restoration time frames for Scenario C2b are generally the same as for Alternative C1. The input parameters and results for each AOC are detailed in Attachment A and summarized in Table 2.

Estimation of Restoration Time Frame for Alternative C2, Scenario C2c

Scenario C2c of Alternative C2 provides plume-specific hydraulic containment for the petroleum plumes without the baseline IRM containment system operating. To simulate the effect of plume-specific hydraulic containment, the groundwater flux was increased based on the increases in travel time presented in Appendix E, Table E-6, in the Draft Final FS. The flux increase from Alternative C1 to Scenario C2c for selected AOCs is as follows:

- 122 percent for the Oil House area North plume;
- 133 percent for the Oil House area South plume;
- 100 percent for the Wastewater Treatment area North plume;
- 50 percent for the Wastewater Treatment area South plume;
- 175 percent for the Cold Mill area; and
- 50 percent for the ORB area.

2644-125 Page 9

The restoration time frames for Scenario C2c range from 2 years for the Oil House area South plume to 17 years for the Wastewater Treatment area North plume. The input parameters and results for each AOC are detailed in Attachment A and summarized in Table 2.

Estimation of Restoration Time Frame for Alternative C3

Alternative C3 adds *in situ* treatment using *in situ* biodegradation for AOCs where TPH is present in smear zone soil and/or in petroleum-contaminated groundwater at concentrations above screening levels.

The *in situ* biodegradation treatment consists of injecting hydrogen peroxide (H_2O_2) and nutrients into the petroleum hydrocarbon groundwater plumes. Hydrogen peroxide adds additional oxygen for biodegradation of TPH. Additional nutrients would be added to each plume because existing nutrients may be present in the subsurface at concentrations that are insufficient for adequate biodegradation.

Assuming a DO concentration of 9 mg/L in upgradient groundwater, there would be sufficient DO in the groundwater entering the petroleum groundwater plumes to degrade the SVOCs present, based on the predicted concentrations of SVOCs for each plume (see Table 1). However, the DO concentration would decline as groundwater travels the length of the plumes, and the larger plumes (i.e., Oil House area North and Wastewater Treatment area North plumes) may require replenishment of DO at their midpoints to promote biodegradation of SVOCs at the downgradient end of the plumes. Hydrogen peroxide solution would be injected at a concentration of 200 mg/L at the midpoint of the larger plumes. Based on this concentration, and AOC-specific daily injection rates (Attachment A), the moles of H_2O_2 (electron acceptors) were calculated and added to the daily flux of naturally occurring electron acceptors (DO, nitrate and sulfate). The restoration time frame was considered complete when the mass balance of electron donors (petroleum hydrocarbons) and all electron acceptors were equal.

The mass injection rate of H_2O_2 in pounds per day was calculated by multiplying the volumetric rate of solution injected (in gallons per day) by the concentration (200 mg/L), converting gallons to liters, converting milligrams to kilograms, and converting kilograms to pounds, as shown in the equation:

• H_2O_2 (gallons per day) • C_w • 3.78 / 1,000,000 • 2.2

2644-125 Page 10

The number of moles of hydrogen peroxide (electron acceptors) injected was calculated for each AOC using the mass injection rate (in pounds per day) calculated above, multiplying by the number of injection days, multiplying by the number of moles of hydrogen to reduce one pound of H_2O_2 , and dividing by the assumed metabolic efficiency as shown in the equation:

■ H_2O_2 (pounds per day) • days • moles H_2 / pound H_2O_2 / 0.20

The restoration time frames for Alternative C3 range from 4 years for the Oil House area South plume to 30 years for the Wastewater Treatment area North plume. The input parameters and results for each AOC are detailed in Attachment A and summarized in Table 2.

Estimation of Restoration Time Frame for Alternative C4

Alternative C4, incorporates Alternative C1 and employs additional groundwater extraction and *ex situ* treatment for remediation of the petroleum hydrocarbon groundwater plumes at the Kaiser Facility. To simulate the effect of additional groundwater extraction, the flux was increased based on the pore volume flush rates presented in Appendix E, Table E-6, in the Draft Final FS. The flux increase from Alternative C1 to C4 for selected AOCs is as follows:

- 43 percent for the Oil House area North plume;
- 17 percent for the Oil House area South plume;
- 38 percent for the Wastewater Treatment area North plume;
- 30 percent for the Wastewater Treatment area South plume;
- 57 percent for the Cold Mill area diesel and heavy oil plumes; and
- 50 percent for the ORB area diesel and heavy oil range plumes.

The restoration time frames for Alternative C4 range from 3 years for the Oil House area South plume to 24 years for the Wastewater Treatment area North plume. The input parameters and results for each AOC are detailed in Attachment A and summarized in Table 2.

2644-125 Page 11

REFERENCES

Ecology 2010a. Kaiser Trentwood Draft Cleanup Standards. Washington Department of Ecology. May 19, 2010.

Ecology 2010b. Kaiser Trentwood Site – Ecology's Responses to Kaiser's June 17, 2010 Comments on May 2010 Draft Cleanup Standards. August 17, 2010.

Hart Crowser 2009. Draft Final Site-Wide Groundwater Remedial Investigation, Kaiser Trentwood Facility, Spokane Valley, Washington. Job 2644-114. November 2009.

Hart Crowser 2010a. Draft Final Feasibility Study Technical Memorandum, Kaiser Trentwood Facility, Spokane Valley, Washington. Job 2644-120. March 2010.

Hart Crowser 2011. Draft Final Feasibility Study Report, Kaiser Trentwood Facility, Spokane Valley, Washington. Job 2644-121.

Attachments

Table 1 – TPH Concentrations and Mass Based on Groundwater Concentrations Table 2 – Restoration Time Frame for Petroleum Plumes Based on Electron Donor Demands Attachment A – AOC Restoration Time Frame Based on Electron Donor Demand Calculations

L:\Jobs\2644125\Draft Final FS 11-2011\03 Appendices\Appendix I\TPH Memo.doc

Table 1 : TPH Concentrations and Mass Based on Groundwater ConcentrationsKaiser Aluminum Washington FacilitySpokane Valley, Washington

		Groundwater (Concentration ^a	TPH Soil Con Calculated Concen	ncentrations I from GW tration ^b	TPH Mass Calc Concen	ulated from GW tration ^c
Area of Concern	Petroleum Hydrocarbon Range	PCUL GW Concentration in mg/L	Average GW Concentration in mg/L	PCUL Soil Concentration Protective of GW in mg/kg	Estimated TPH Soil Concentration in mg/kg	Estimated TPH Mass to be Treated in GW in Pounds	Estimated TPH Mass to be Treated in Soil in Pounds
Oil House area North plume	Diesel	0.50	1.32	1,125	2,970	29.4	272,054
Oil House area South plume	Diesel	0.50	0.88	1,125	1,980	2.4	22,318
Wastewater area North plume	Diesel	0.50	0.92	1,125	2,070	24.3	224,844
Wastewater area South plume	Diesel/Heavy Oil	0.50	0.92	994	1,828	3.2	29,761
Cold Mill area	Diesel	0.50	1.48	1,125	3,330	14.8	137,526
Cold Mill area	Heavy Oil	0.50	0.53	994	1,053	0.5	3,718
ORB area	Diesel	0.50	0.25	1,125	563	1.7	16,199
ORB area	Heavy Oil	0.50	0.25	994	497	1.7	14,305

Notes:

(a) Average GW Concentrations from FS Table 4-2.

(b) TPH soil concentrations calculated using partitioning coefficient (K_a) and the average TPH GW concentration.

(c) TPH mass to be treated calculated using partitioning coefficient (K_d) and the difference between the average TPH GW concentration and the PCUL of 0.50 mg/L.

TPH - Total Petroleum Hydrocarbons; PCUL - Preliminary Cleanup Level; GW - groundwater; ORB - Oil Reclamation Building

mg/L - milligrams per liter; mg/kg - milligrams per kilogram; lbs - pounds, L/kg - liters per kilogram

 K_d - Diesel = 2250 L/kg; Heavy Oil = 1,987 L/kg

GW flux and plume dimensions from FS Table E-5

Table 2 : Restoration Time Frame for Petroleum Plumes Based on Electron Donor DemandsKaiser Aluminum Washington FacilitySpokane Valley, Washington

Area of Concern	TPH Range	Average GW Concentration in mg/L ^a	Estimated TPH Mass to be Treated in GW ^b in Pounds	Estimated TPH Mass to be Treated in Soil ^a in Pounds		Rest	oration Tim	e Frame in `	Years	
					C1	C2a	C2b	C2c	C3	C4
Oil House area North plume	Diesel	1.32	29.4	272,054	28	28	28	13	27	18
Oil House area South plume	Diesel	0.88	2.4	22,318	4	4	4	2	4	3
Wastewater area North plume	Diesel	0.92	24.3	224,844	34	34	34	17	30	24
Wastewater area South plume	Diesel/Heavy Oil	0.92	3.2	29,761	11	11	11	7	11	8
Cold Mill area	Diesel	1.48	14.8	137,526	10	10	10	7	10	10
Cold Mill area	Heavy Oil	0.53	0.5	3,718	19	19	19	7	19	١Z
ORB area	Meets Cleanup Cri	teria - NFA								

Notes:

(a) Average GW Concentrations from FS Table 4-2.

(b) TPH mass to be treated calculated using partitioning coefficient (K_d) and the difference between the average TPH GW concentration and the PCUL of 0.50 mg/L.

TPH - Total Petroleum Hydrocarbons; PCUL - Preliminary Cleanup Level; GW - groundwater; ORB - Oil Reclamation Building; NFA - No Further Action

mg/L - milligrams per liter; mg/kg - milligrams per kilogram; lbs - pounds, L/kg - liters per kilogram

 K_d - Diesel = 2250 L/kg; Heavy Oil = 1,987 L/kg

GW flux and plume dimensions from FS Table E-5

GW Cleanup level = 0.5 mg/L

ATTACHMENT A AOC RESTORATION TIME FRAME BASED ON ELECTRON DONOR DEMAND CALCULATIONS

Table A-1 - Cold Mill Plume - Alternative C1 Reduce Groundwater Concentration for Diesel from 1.48 to 0.5 mg/L and Heavy Oil from 0.53 to 0.5 mg/L Restoration Time Frame Based on Electron Donor Demand Calculations

Treatment Target Area Specifications	6	Ope	rational Assum	ptions	
Vertical Treatment (ft)	10) Ground	dwater Velocity (ft/d)	28	
Treatment Width (ft)	231	Extracti	on / Flux Rate (gpd)	145,411	Based on daily groundwater flow through the Cold Mill Area.
Treatment Length (ft) (parallel to GW flow)	350	Extraction /	Flux Duration (days)	6,935	Adjusted until a minimum of 100 percent treatment was achieved.
Effective Porosity	0.30				
Average Diesel Concentration (mg/L)	1.48	3			
Diesel Kd (L/kg)	2,250				
Average Oil in Groundwater (mg/L)	0.53	3			
Oil Kd (L/kg)	1,987	Extraction	on Duration (years)	19	
Density (lbs/ft ³)	110	Treatme	nt Flux Volume (gal)	605,056,003	Assumes groundwater is in contact with 10 feet of smear zone 60 percent of the time.
Effective Flux Treatment Duration	60%	Treatm	ent Flux Volume (L)	2,293,162,252	Assumes groundwater is in contact with 10 feet of smear zone 60 percent of the time.
Hydrogen/Electron Donor Availability	/				
Constituent	COC Mass (pounds)	Molecular Weight (g/mol)	Moles of H ₂ to Oxidize / Mole Analyte	Moles of H ₂ Donor In Treatment Area	
Native Electron Donors		<u> </u>	-	<u> </u>	
Estimated Total Soil TPH-D	x 137,526	226	49	13,553,433	Based on reducing the estimated groundwater diesel concentration from 1.48 to 0.5 mg/L.
Estimated Total Groundwater TPH-D	x 14.8	226	49	1,462	Based on reducing the estimated groundwater diesel concentration from 1.48 to 0.5 mg/L.
Estimated Total Soil TPH-O	x 3,718	400	86	363,338	Based on reducing the estimated groundwater oil-range concentration from 0.53 to 0.5 mg/L.
Estimated Total Groundwater TPH-O	x 0.5	400	86	44	Based on reducing the estimated groundwater oil-range concentration from 0.53 to 0.5 mg/L.
Estimated Moles of	Hydrogen Don	or Available for	Treatment (20%)	2,783,655	Assumes 20% of TPH completely oxidized to CO2/H2O, 80% to volatile fatty acids and biomass incorporation (not completely oxidi
Hydrogen/Electron Donor Removed	by Groundwat	er Extraction	System		
TPH-Dx (mg/L)	0				
	Estimated Mole	es of Hydrogen	Donor Extracted:	0	
Hydrogen/Electron Acceptors					
Constituent	Groundwater Concentration (mg/L)	Molecular Weight (g/mol)	Moles of H ₂ to Reduce Mole Analyte	Moles of H₂ Through Treatment Area	
Native Electron Acceptors	1	1	1		
Dissolved Oxygen	9.6	32	2	1,375,897	Based on upgradient groundwater concentrations at CM-MW-2S and CM-MW-7S.
Nitrate (as Nitrogen)	1.7	62	3	835,636	Based on upgradient groundwater concentrations at CM-MW-2S and CM-MW-7S.
Sulfate	6.0	96.1	4	572,694	Based on typical reduction from background concentrations across the site.
Hydrogen Acceptor Based on Flux of System Operation and Duration			ion and Duration	2,784,227	
Added Electron Acceptor	Amendment Added (pounds)	Assumed Metabolic Efficiency	Moles H ₂ /Lb.	Moles H ₂ Acceptor Added	
	0	10%	11.6	0	
AnoxEA-aq™	0				
AnoxEA-aq™	0	Added Hydrogen	Acceptor Subtotal	0	
AnoxEA-aq™	Estimat	Added Hydrogen ed Moles of Hyd	Acceptor Subtotal Irogen Acceptor:	0 2,784,227	

NOTES:

L = liters; ft=feet; gal = gallons; 1ft3 = 28.32 L,mg/L = milligrams per liter; gpd = gallons per day; H2 = hydrogen.

Electron and hydrogen equivalents per Principles and Practices of Enhanced Anaerobic Bioremediation of Chlorinated

Solvents, Air Force Center for Environmental Excellence, August 2004.

Green boxes are treatment option variables for input.

Table A-2 - Cold Mill Area Plume - Alternative C2, Scenario C2a Reduce Groundwater Concentration for Diesel from 1.48 to 0.5 mg/L and Heavy Oil from 0.53 to 0.5 mg/L Restoration Time Frame Based on Electron Donor Demand Calculations

Vertical Transmitting 10 Or underset Veologi (10) 23 Transmitting 201 Envirosion (File, Kale (gras)) 6,500 Market Length (I) (parallel GW flow) 330 Envirosion (File, Kale (gras)) 6,500 Avvegage Desid Concentration (mgl) 11,40 Envirosion (File, Kale (gras)) 100 Desins (I) (Lag) 2,230 Presented Work 100 Avvegage Dill Goundhater (mgl) 0,33 Extraction Duration (years) 100 Desins (I) (Lag) 110 Transmitt File, Volume (Lag) 000000000000000000000000000000000000	Treatment Target Area Specifications	i	Ope	rational Assum	ptions	
Training Wath (h) 21 Exaction / Pice Rate (gap) 148,411 Based on daily groundwater flow through the Cold Mill Area. Training Length (h) 336 Exaction / Pice Cold Mill Area. 5335 Adjusted unit a minimum of 100 percent treatment was achieved. Verage Diese Construction (mgL) 4.84 5335 Adjusted unit a minimum of 100 percent treatment was achieved. Verage Diese Construction (mgL) 3.835 Adjusted unit a minimum of 100 percent treatment was achieved. Verage Diese Construction (mgL) 3.635 Adjusted unit a minimum of 100 percent treatment was achieved. Density (Enth) 1.697 Treatment Flux Volume (gat) 0.535 Density (Enth) 1.697 Treatment Flux Volume (gat) 2.291 (E23) Marker Electron Donor Availability Maker of h, h Additity Make Area h Additity Make Area h Elemented Total Goundwater Flux (Same B) 0.66 3.253,453 Makeed on reducing the estimated groundwater fiesel concentration from 1.48 to 0.5 mgL. Elemented Total Goundwater Flux (Same B) 0.53 0.6 2.201 (E23) Addition of h, holice of h, holice of h Elemented Total Goundwater Flux (Same B) 0.53 0.5 mgL. Elemented Tot	Vertical Treatment (ft)	10	Ground	dwater Velocity (ft/d)	28	3
Interfacture Lungth (ft) gamalies Low Haves Estimate Councertation (mpL) 0.350 Average Disel Concertation (mpL) 0.350 1.480 Desk Kd (Lung) 0.350 OK Kd (Lung) <td< td=""><td>Treatment Width (ft)</td><td>231</td><td>Extracti</td><td>on / Flux Rate (gpd)</td><td>145,411</td><td>Based on daily groundwater flow through the Cold Mill Area.</td></td<>	Treatment Width (ft)	231	Extracti	on / Flux Rate (gpd)	145,411	Based on daily groundwater flow through the Cold Mill Area.
Effective Provage 0.33 Average Diese Concentration (mg1) 0.34 Average Diese Concentration (mg1) 0.35 Average Diese Concentration (mg1) 0.35 Oit Kd (Lva) 0.36 Densit (chan) 0.36 Densit (chan) 0.36 Densit (chan) 0.36 Densit (chan) 0.36 Phydrogen/Electron Donor Availability 2.283,162.284 Hydrogen/Electron Donor Availability 0.00000000000000000000000000000000000	Treatment Length (ft) (parallel to GW flow)	350	Extraction /	Flux Duration (days)	6,935	Adjusted until a minimum of 100 percent treatment was achieved.
Average Diseal Concentration (mg/L) 1.48 Oreacle 164 (L/A) 2.280 Average Oli In Gendwater (mg/L) 0.03 Orick (L/A) 1.987 Extraction Duration (peers) 0.05 Orick (L/A) 1.987 Extraction Duration (peers) 0.05 Moreage Oli In Gendwater (mg/L) 0.05 Orick (L/A) 0.00 Teatment Flux Volume (u) 0.05 Hydrogen/Electron Donor Availability Noles of H, io Estimated Total Sull Thelos 197.528 228 49 19.565.568.388 Estimated Total Sull Thelos 197.528 228 49 19.565.568.388 Estimated Total Sull Thelos 57.58 328 40 1.868 Estimated Total Sull Thelos 57.58 400 66 488 208 400 488 208 400 66 393.588 Estimated Total Sull Thelos 57.50 400 66 488 208 408 1.468 <t< td=""><td>Effective Porosity</td><td>0.30</td><td></td><td></td><td></td><td></td></t<>	Effective Porosity	0.30				
Desk (1, kg) 2, 28 Wange (1) (1, kg) 1, 98 Desk (1, kg) 1, 98 De	Average Diesel Concentration (mg/L)	1.48	8			
Average Dirin Groundwater (ing1) 0.03 Dirid (L/R) 110 Densely (Sech) 110 Densely (Sech) 100 Effective Flux Treatmer Flux Volume (gal) 000000000 Retrice Flux Visiter Treatmer Flux Volume (gal) 000000000000000000000000000000000000	Diesel Kd (L/kg)	2,250				
Oli Kd (Ma) Density (Each) 1,187 (Ma) Extraction Duration (vgera) 0005 0605 0005 0005 0005 0005 0005 0005	Average Oil in Groundwater (mg/L)	0.53	8			
Density (beth) feature Flux Volume (a) treatmer Flux Volume (b) treatmer Flux Volume (b) 2,239,162.25 Assumes groundwater is in contact with 10 feet of smear zone 60 percent of the time.Hydrogen/Electron Donor Volume Elux Volume (b)Molecular Volume (b) Volume (b) Volume (b) 	Oil Kd (L/kg)	1,987	Extraction	on Duration (years)) 19	
Itentime Duation Iten of the flux frame of the flux fra	Density (lbs/ft ³)	110	Treatme	nt Flux Volume (gal)	605,056,003	Assumes groundwater is in contact with 10 feet of smear zone 60 percent of the time.
Hydrogen/Electron Donor Availability Solves and management of a solves and manageme	Effective Flux Treatment Duration	60%	Treatm	ent Flux Volume (L)	2,293,162,252	Assumes groundwater is in contact with 10 feet of smear zone 60 percent of the time.
Constituent COC Mass (pound) Moles of H ₁ to Donor in Suites / Moles of H ₂ to Donor in Teament of the Suite / Moles of H ₂ to Donor in Teament of Estimated Total Soi TPH-05, 137.828 Moles of H ₂ to Donor in Teament of Suites / Moles of H ₂ to Donor in Teament of the Suite / Moles of H ₂ to Donor in Teament of Estimated Total Soi TPH-05, 137.828 Moles of H ₂ to Suites / Moles of H ₂ (pound) Moles of H ₂ to Donor in Teament of Suites / Moles of H ₂ (pound) Moles of H ₂ to Suites / Moles of H ₂ (pound) Moles of H ₂ to Suites / Moles of H ₂ (pound) Moles d ₁ (pound) Moles H ₂ (pound) Moles H ₂ (p	Hydrogen/Electron Donor Availability	,				
Native Electron Donors Image: Construent of Construent of Construent of Construent Con	Constituent	COC Mass (pounds)	Molecular Weight (g/mol)	Moles of H ₂ to Oxidize / Mole Analyte	Moles of H ₂ Donor In Treatment Area	
Estimated Total Soil TPH-Dx 137.526 226 49 13.553,433 Based on reducing the estimated groundwater diesel concentration from 1.48 to 0.5 mg/L. Estimated Total Groundwater (TPH-Dx 14.8 226 49 1,425 Based on reducing the estimated groundwater diesel concentration from 1.48 to 0.5 mg/L. Estimated Total Groundwater (TPH-Ox 0.5 400 66 443 Based on reducing the estimated groundwater oil-range concentration from 0.53 to 0.5 mg/L. Estimated Moles of Hydrogen Donor Available for Treatment (20%) 2,783,855 Assume 20% of TPH completely oxidized to CO2/H2O, 80% to volatile fatty acids and biomass incorporation (not completely oxidized to CO2/H2O, 80% to volatile fatty acids and biomass incorporation (not completely oxidized to CO2/H2O, 80% to volatile fatty acids and biomass incorporation (not completely oxidized to CO2/H2O, 80% to volatile fatty acids and biomass incorporation (not completely oxidized to CO2/H2O, 80% to volatile fatty acids and biomass incorporation (not completely oxidized to CO2/H2O, 80% to volatile fatty acids and biomass incorporation (not completely oxidized to CO2/H2O, 80% to volatile fatty acids and biomass incorporation (not completely oxidized to CO2/H2O, 80% to volatile fatty acids and biomass incorporation (not completely oxidized to CO2/H2O, 80% to volatile fatty acids and biomass incorporation (not completely oxidized to CO2/H2O, 80% to volatile fatty acids and biomass incorporation (not completely oxidized to CO2/H2O, 80% to volatile fatty acids and biomass incorporation (not completely oxidized to CO2/H2O, 80% to volatile fatty acids and biomass incorporation (not completely oxidized to CO2/H2O, 80% to volatile fatty acids and biomass incorporation (not completely oxidized to	Native Electron Donors					
Estimated Total Groundwater TPH-Dx 14.8 226 49 1,462 Estimated Total Groundwater TPH-Dx 3,718 400 86 388 ased on reducing the estimated groundwater oil-range concentration from 0.53 to 0.5 mg/L. Estimated Total Groundwater TPH-Dx 0.5 400 86 48 Based on reducing the estimated groundwater oil-range concentration from 0.53 to 0.5 mg/L. Estimated Moles of Hydrogen Donor Available for Treatment (20%) 2,783,655 Assumes 20% of TPH completely oxidized to CO2/H2O, 80% to volatile fatty acids and biomass incorporation (not completely oxidized to CO2/H2O, 80% to volatile fatty acids and biomass incorporation (not completely oxidized to CO2/H2O, 80% to volatile fatty acids and biomass incorporation (not completely oxidized to CO2/H2O, 80% to volatile fatty acids and biomass incorporation (not completely oxidized to CO2/H2O, 80% to volatile fatty acids and biomass incorporation (not completely oxidized to CO2/H2O, 80% to volatile fatty acids and biomass incorporation (not completely oxidized to CO2/H2O, 80% to volatile fatty acids and biomass incorporation (not completely oxidized to CO2/H2O, 80% to volatile fatty acids and biomass incorporation (not completely oxidized to CO2/H2O, 80% to volatile fatty acids and biomass incorporation (not completely oxidized to CO2/H2O, 80% to volatile fatty acids and biomass incorporation (not completely oxidized to CO2/H2O, 80% to volatile fatty acids and biomass incorporation (not completely oxidized to CO2/H2O, 80% to volatile fatty acids and biomass incorporation (not completely oxidized to CO2/H2O, 80% to volatile fatty acids and biomass incorporation (not completely oxidized to CO2/H2O, 80% to volatile fatty acids and biomass incor	Estimated Total Soil TPH-D	137,526	226	49	13,553,433	Based on reducing the estimated groundwater diesel concentration from 1.48 to 0.5 mg/L.
Estimated Total Soil TPH-Ox 3.718 400 86 363,338 Based on reducing the estimated groundwater oil-range concentration from 0.53 to 0.5 mg/L. Estimated Total Groundwater TPH-Ox 0.5 400 86 44 Based on reducing the estimated groundwater oil-range concentration from 0.53 to 0.5 mg/L. Hydrogen/Electron Donor Removed by Groundwater Extraction System 2,783,655 Assumes 20% of TPH completely oxidized to CO2/H2O, 80% to volatile fatty acids and biomass incorporation (not completely oxidized to CO2/H2O, 80% to volatile fatty acids and biomass incorporation (not completely oxidized to CO2/H2O, 80% to volatile fatty acids and biomass incorporation (not completely oxidized to CO2/H2O, 80% to volatile fatty acids and biomass incorporation (not completely oxidized to CO2/H2O, 80% to volatile fatty acids and biomass incorporation (not completely oxidized to CO2/H2O, 80% to volatile fatty acids and biomass incorporation (not completely oxidized to CO2/H2O, 80% to volatile fatty acids and biomass incorporation (not completely oxidized to CO2/H2O, 80% to volatile fatty acids and biomass incorporation (not completely oxidized to CO2/H2O, 80% to volatile fatty acids and biomass incorporation (not completely oxidized to CO2/H2O, 80% to volatile fatty acids and biomass incorporation (not completely oxidized to CO2/H2O, 80% to volatile fatty acids and biomass incorporation (not completely oxidized to CO2/H2O, 80% to volatile fatty acids and biomass incorporation (not completely oxidized to CO2/H2O, 80% to volatile fatty acids and biomass incorporation (not completely oxidized to CO2/H2O, 80% to volatile fatty acids and biomass incorporation (not completely oxidized to CO2/H2O, 80% to volatile fatty acids and biomass incorporation (not completely oxidized to CO2/H	Estimated Total Groundwater TPH-D>	14.8	226	49	1,462	Based on reducing the estimated groundwater diesel concentration from 1.48 to 0.5 mg/L.
Estimated Total Groundwater TPH-Ox 0.5 400 86 40 Based on reducing the estimated groundwater oil-range concentration from 0.53 to 0.5 mg/L. Estimated Moles of Hydrogen/Electron Donor Removed by Groundwater Extraction System Assumes 20% of TPH completely oxidized to CO2/H2O, 80% to volatile fatty acids and biomass incorporation (not complete by direct the completely oxidized to CO2/H2O, 80% to volatile fatty acids and biomass incorporation (not complete by direct the completely oxidized to CO2/H2O, 80% to volatile fatty acids and biomass incorporation (not complete by direct the completely oxidized to CO2/H2O, 80% to volatile fatty acids and biomass incorporation (not complete by direct the completely oxidized to CO2/H2O, 80% to volatile fatty acids and biomass incorporation (not complete by direct the completely oxidized to CO2/H2O, 80% to volatile fatty acids and biomass incorporation (not complete by direct the completely oxidized to CO2/H2O, 80% to volatile fatty acids and biomass incorporation (not complete by direct the completely oxidized to CO2/H2O, 80% to volatile fatty acids and biomass incorporation (not complete by direct the completely oxidized to CO2/H2O, 80% to volatile fatty acids and biomass incorporation (not complete by direct the completely oxidized to CO2/H2O, 80% to volatile fatty acids and biomass incorporation (not complete by direct the completely oxidized to CO2/H2O, 80% to volatile fatty acids and biomass incorporation (not complete by direct the completely oxidized to CO2/H2O, 80% to volatile fatty acids and biomass incorporation (not complete by direct the completely direct the completely oxidized to CO2/H2O, 80% to volatile fatty acids and biomass incorporation (not complete by direct the completely d	Estimated Total Soil TPH-O	3,718	400	86	363,338	Based on reducing the estimated groundwater oil-range concentration from 0.53 to 0.5 mg/L.
Estimated Moles of Hydrogen Donor Available for Treatment (20%) 2,783,655 Assumes 20% of TPH completely oxidized to CO2/H2O, 80% to volatile fatty acids and biomass incorporation (not completely oxidized to CO2/H2O, 80% to volatile fatty acids and biomass incorporation (not completely oxidized to CO2/H2O, 80% to volatile fatty acids and biomass incorporation (not completely oxidized to CO2/H2O, 80% to volatile fatty acids and biomass incorporation (not completely oxidized to CO2/H2O, 80% to volatile fatty acids and biomass incorporation (not completely oxidized to CO2/H2O, 80% to volatile fatty acids and biomass incorporation (not completely oxidized to CO2/H2O, 80% to volatile fatty acids and biomass incorporation (not completely oxidized to CO2/H2O, 80% to volatile fatty acids and biomass incorporation (not completely oxidized to CO2/H2O, 80% to volatile fatty acids and biomass incorporation (not completely oxidized to CO2/H2O, 80% to volatile fatty acids and biomass incorporation (not completely oxidized to CO2/H2O, 80% to volatile fatty acids and biomass incorporation (not completely oxidized to CO2/H2O, 80% to volatile fatty acids and biomass incorporation (not completely oxidized to CO2/H2O, 80% to volatile fatty acids and biomass incorporation (not completely oxidized to CO2/H2O, 80% to volatile fatty acids and biomass incorporation (not completely oxidized to CO2/H2O, 80% to volatile fatty acids and biomass incorporation (not completely oxidized to CO2/H2O, 80% to volatile fatty acids and biomass incorporation (not completely oxidized to CO2/H2O, 80% to volatile fatty acids and biomass incorporation (not completely oxidized to CO2/H2O, 80% to volatile fatty acids and biomass incorporation (not completely oxidized to CO2/H2O, 80% to volatile fatty acids and biomass incorporation (not completely oxidized to CO2/H2O, 80% to volatile fatty acids and biomass incorporation for fatty acids and biomass incorp	Estimated Total Groundwater TPH-O	0.5	400	86	44	Based on reducing the estimated groundwater oil-range concentration from 0.53 to 0.5 mg/L.
Mydrogen/Electron Donor Removed by Groundwater Extraction System TPH-Dx (mg/L) 0 Testimated Moles of Hydrogen Donor Extracted: 0 Mydrogen/Electron Acceptors Constituent Groundwater Concentration One of Concentration (mg/L) Moles of Hy to Reduce Moles of Hy to Reduce Moles of Hy to Reduce Moles of Hy to Based on upgradient groundwater concentrations at CM-MW-2S and CM-MW-7S. Native Electron Acceptors Dissolved Oxygen 9.6 3.2 1,375,897 Native Electron Acceptors	Estimated Moles of	Hydrogen Don	or Available for	Treatment (20%)	2,783,655	Assumes 20% of TPH completely oxidized to CO2/H2O, 80% to volatile fatty acids and biomass incorporation (not completely oxid
TPH-Dx (mg/L) 0 Estimated Moles of Hydrogen Duror Extracted: 0 Hydrogen/Electron Acceptors Moles of H ₂ to Reduce Mole Moles of H ₂ to Reduce Mole Markyte Moles of H ₂ to Trough Analyte Native Electron Acceptors Moles of H ₂ to Reduce Mole Markyte Moles H ₂ Acceptor Addeed Metabolic Efficient Acceptor Metabolic Efficient Acceptor Subtool I (pound) Assumed Moles H ₂ Acceptor Addeed Metabolic Efficient Moles H ₂ Acceptor Addeed Moles H ₂ Acceptor Addeed Moles H ₂ Acceptor Addeed AnoxEA-aq TM 0 10% 11.6 0 0 2,784,227 Estimated Duichting Terreter Woles of Hydrogen Acceptor Subtool Addeed 0 11.6 0 0 0,784,227 Added [Lectron Acceptor Command Markytorgen Acceeptor Subtool A 0 <t< td=""><td>Hydrogen/Electron Donor Removed b</td><td>y Groundwat</td><td>er Extraction S</td><td>System</td><td></td><td></td></t<>	Hydrogen/Electron Donor Removed b	y Groundwat	er Extraction S	System		
Estimated Moles of Hydrogen Doror Extracted: 0 Hydrogen/Electron Acceptors Groundwater Constituent Groundwater (mg/L) Moles of Hy to Reduce Mole Analyte Moles of Hy Through Teatment Area Native Electron Acceptors S 32 2 1,375,897 Based on upgradient groundwater concentrations at CM-MW-2S and CM-MW-7S. Nitrate (as Nitrogen) 1.7 62 3 835,638 Based on upgradient groundwater concentrations at CM-MW-2S and CM-MW-7S. Suffate Moles of Hydrogen Acceptor 2.784,227 Added Electron Acceptor Amendment (pounds) Moles HyLb. Efficiency Moles HyLb. Moles HyLb. Efficiency Moles HyLb. Ceeptor Added Moles HyLb. Acceptor Added Moles HyLb. Acceptor Added Moles HyLb. Ceeptor Added Moles HyLb. Acceptor Added Moles HyLb. Ceeptor Added Moles HyLb. Acceptor Added Moles HyLb. Ceeptor Added	TPH-Dx (mg/L)	0				
Hydrogen/Electron Acceptors Groundwater Concentration (mg/L) Moles of Hz to Reduce Mole Analyte Moles of Hz Through Through Through Through Threater Area Native Electron Acceptors 9.6 3.2 2 1,375,897 Nitrate (as Nitrogen) 9.6 3.2 2 1,375,897 Sulfate 6.0 96.1 4 572,694 Based on upgradient groundwater concentrations at CM-MW-2S and CM-MW-7S. Based on upgradient groundwater concentrations at CM-MW-2S and CM-MW-7S. Sulfate 6.0 96.1 4 572,694 Added Electron Acceptor Amendment Assumed Metabolic (pounds) 2,784,227 Based on typical reduction from background concentrations across the site. AnoxEA-aq TM 0 10% 11.6 Moles Hz Lo Concentration from background concentrations across the site. Feiting Concentration dollarities Moles Hz Lo Concentration for the solution from background concentrations across the site. 2,784,227 Added Electron Acceptor Added Hydrogen Acceptor Subter Jon Toins Concentration for the solution from background concentration solution from background concentrations across the site. 2,784,227 Added Hydrogen Acceptor Concentration for the solution for		Estimated Mole	es of Hydrogen	Donor Extracted:	0	
ConstituentGroundwater (ng/L)Moles of H2 to Reduce Mole AnalyteMoles of H2 to Reduce Mole AnalyteNative Electron AcceptorsDissolved Oxygen9.69.63221.76238.8640 upgradient groundwater concentrations at CM-MV-2S and CM-MV-7S. Based on upgradient groundwater concentrations at CM-MV-2S and CM-MV-7S.Nitrate (as Nitrogen)1.76.096.146.096.147.7623.836.66Sulfate6.09.69.64.096.1Added (pounds)9.6Added Electron AcceptorAmendment Efficiency010%11.6AnoxEA-aq TM 0010%11.60010%11.60010%11.6010%11.6010%11.6011.60011.6011.60011.60011.6011.6011.6011.70011.80011.800011.70000 <t< td=""><td>Hydrogen/Electron Acceptors</td><td></td><td></td><td></td><td></td><td></td></t<>	Hydrogen/Electron Acceptors					
Native Electron Acceptors Image: Constraint of the system of the sys	Constituent	Groundwater Concentration (mg/L)	Molecular Weight (g/mol)	Moles of H₂ to Reduce Mole Analyte	Moles of H₂ Through Treatment Area	
Dissolved Oxygen 9.6 32 2 1,375,897 Based on upgradient groundwater concentrations at CM-MW-2S and CM-MW-7S. Nitrate (as Nitrogen) 1.7 62 3 835,636 Based on upgradient groundwater concentrations at CM-MW-2S and CM-MW-7S. Sulfate 6.0 96.1 4 572,694 Based on upgradient groundwater concentrations at CM-MW-2S and CM-MW-7S. Hydrogen Acceptor Based on Flux of System Operation and Duration 2,784,227 Based on upgradient groundwater concentrations across the site. Added Electron Acceptor Amendment Added (pounds) Assumed Metabolic Efficiency Moles H ₂ /Lb. Moles H ₂ Acceptor Added AnoxEA-aq TM 0 11.6 0 0 Estimated Moles of Hydrogen Acceptor Subtatal Control Control Co	Native Electron Acceptors	1	1	1		
Nitrate (as Nitrogen) 1.7 62 3 835,636 Based on upgradient groundwater concentrations at CM-MW-2S and CM-MW-7S. Sulfate 6.0 96.1 4 572,694 Based on upgradient groundwater concentrations at CM-MW-2S and CM-MW-7S. Hydrogen Acceptor Based on Flux of System Operation and Duration 2,784,227 Based on upgradient groundwater concentrations across the site. Added Electron Acceptor Amendment Added (pounds) Assumed Metabolic Efficiency Moles H ₂ /Lb. Moles H ₂ Acceptor Added AnoxEA-aq TM 0 11.6 0 0 2,784,227 Acided Hydrogen Acceptor Subtatia 0 2,784,227 0 0 Estimated Oxidation Transmet Based on Upgradient Parameter Based on upgradient groundwater concentrations across the site. 0 Display Moles H ₂ /Lb. Moles H ₂ Acceptor Added 11.6 0 Estimated Oxidation Transmet Based on Explay to the transmetion State S	Dissolved Oxygen	9.6	32	2	1,375,897	Based on upgradient groundwater concentrations at CM-MW-2S and CM-MW-7S.
Sulfate 6.0 96.1 4 572,694 Hydrogen Acceptor Based on Flux of System Operation and Duration 2,784,227 Added Electron Acceptor Amendment Added (pound) Assumed Metabolic Efficiency Moles H ₂ /Lb. Moles H ₂ Acceptor Added AnoxEA-aq TM 0 10% 11.6 0 Image: Comparison of Hydrogen Acceptor Subtoal 0 0 0 Estimated Oxidation Transformed Providentian Device Acceptor 2,784,227 0	Nitrate (as Nitrogen)	1.7	62	3	835,636	Based on upgradient groundwater concentrations at CM-MW-2S and CM-MW-7S.
Hydrogen Acceptor Based on Flux of System Operation and Duration 2,784,227 Added Electron Acceptor Amendment Added (pounds) Assumed Metabolic Efficiency Moles H ₂ /Lb. AnoxEA-aq TM 0 10% 11.6 U Jobs of Hydrogen Acceptor Subtotal 0 Estimated Ouridation Environment Depresson Booles of Hydrogen Acceptor 2,784,227	Sulfate	6.0	96.1	4	572,694	Based on typical reduction from background concentrations across the site.
Added Electron Acceptor Amendment Added (pounds) Assumed Metabolic Efficiency Moles H ₂ Acceptor Added AnoxEA-aq TM 0 10% 11.6 0 Image: Comparison of the system	Hydrogen Acceptor Based on Flux of System Operation and Duration			ion and Duration	2,784,227	
AnoxEA-aq™ 0 10% 11.6 0 Added Hydrogen Acceptor Subtotal Estimated Moles of Hydrogen Acceptor:	Added Electron Acceptor	Amendment Added (pounds)	Assumed Metabolic Efficiency	Moles H ₂ /Lb.	Moles H ₂ Acceptor Added	
Added Hydrogen Acceptor Subtotal 0 Estimated Moles of Hydrogen Acceptor: 2,784,227	AnoxEA-aq™	0	10%	11.6	0	
Estimated Moles of Hydrogen Acceptor: 2,784,227			Added Hydrogen	Acceptor Subtotal	0	
Estimated Oxidative Tradmant Dramas Decad on Decime Accumutions (400)		Estimat	ed Moles of Hyd	rogen Acceptor:	2,784,227	1
Estimated Uxidative Treatment Progress Based on Design Assumptions: 100%	Estimated Oxidative Treat	ment Progress	Based on Desig	on Assumptions:	100%	1

NOTES:

L = liters; ft=feet; gal = gallons; 1ft3 = 28.32 L,mg/L = milligrams per liter; gpd = gallons per day; H2 = hydrogen.

Electron and hydrogen equivalents per Principles and Practices of Enhanced Anaerobic Bioremediation of Chlorinated

Solvents, Air Force Center for Environmental Excellence, August 2004.

Green boxes are treatment option variables for input.

Table A-3 - Cold Mill Area Plume - Alternative C2, Scenario C2b Reduce Groundwater Concentration for Diesel from 1.48 to 0.5 mg/L and Heavy Oil from 0.53 to 0.5 mg/L Restoration Time Frame Based on Electron Donor Demand Calculations

Vertical Treatment (ft) 10 Groundwater Velocity (ft/d) 28 Treatment Width (ft) 231 Extraction / Flux Rate (gpd) 145,411 Based on daily groundwater Treatment Length (ft) (parallel to GW flow) 350 Extraction / Flux Duration (days) 6,935 Adjusted until a minimum
Treatment Width (ft) 231 Extraction / Flux Rate (gpd) 145,411 Based on daily gro Treatment Length (ft) (parallel to GW flow) 350 Extraction / Flux Duration (days) 6,935 Adjusted until a mi
Treatment Length (ft) (parallel to GW flow) 350 Extraction / Flux Duration (days) 6,935 Adjusted until a minim
Effective Porosity 0.30
Average Diesel Concentration (mg/L) 1.48
Diesel Kd (L/kg) 2,250
Average Oil in Groundwater (mg/L) 0.53
Oil Kd (L/kg) 1,987 Extraction Duration (years) 19
Density (lbs/lt ³) Treatment Flux Volume (gal) 605,056,003 Assumes groundwater is in contact with 1
Effective Flux Treatment Duration 60% Treatment Flux Volume (L) 2,293,162,252 Assumes groundwater is in contact with 10 f
Hydrogen/Electron Donor Availability
COC Mase Molecular Moles of H ₂ to Moles of H ₂
Constituent (pounds) Weight (gmail) Oxidize / Mole Donor In
Analyte Ireatment Area
Native Electron Donors
Estimated Total Soil TPH-Dx 137,526 226 49 13,553,433 Based on reducing the estimated groundwater
Estimated Total Groundwater TPH-Dx 14.8 226 49 1,462 Based on reducing the estimated groundwater of the stimated groundwater of the stimate groundwate
Estimated Total Soil TPH-Ox 3.718 400 86 363,338 Based on reducing the estimated groundwater of
Estimated Total Groundwater TPH-Ox 0.5 400 86 44 Based on reducing the estimated groundwater oi
Estimated Moles of Hydrogen Donor Available for Treatment (20%) 2,783,655 Assumes 20% of TPH completely oxidized to C
Hydrogen/Electron Donor Removed by Groundwater Extraction System
TPH-Dx (mg/L) 0
Estimated Moles of Hydrogen Donor Extracted: 0
Hydrogen/Electron Acceptors
Groundwater Moles of H ₂ to Moles of H ₂
Constituent Concentration Molecular Reduce Mole Through
(mg/L) Analyte Treatment Area
Native Electron Acceptors
Dissolved Oxygen 9.6 32 2 1,375,897 Based on upgradient groundwater concentrations at (
Nitrate (as Nitrogen) 1.7 62 3 835,636 Based on upgradient groundwater concentrations at 0
Sulfate 6.0 96.1 4 572,694 Based on typical reduction from background concent
Hydrogen Acceptor Based on Flux of System Operation and Duration 2,784,227
Amendment Assumed Moles H.
Added Electron Acceptor Added Metabolic Moles H ₂ /Lb. Acceptor Added
(pounds) Efficiency
AnoxEA-aq™ 0 10% 11.6 0
Added Hydrogen Acceptor Subtotal 0
Estimated Moles of Hydrogen Acceptor: 2,784,227
Estimated Oxidative Treatment Progress Based on Design Assumptions: 100%

NOTES:

L = liters; ft=feet; gal = gallons; 1ft3 = 28.32 L,mg/L = milligrams per liter; gpd = gallons per day; H2 = hydrogen.

Electron and hydrogen equivalents per Principles and Practices of Enhanced Anaerobic Bioremediation of Chlorinated

Solvents, Air Force Center for Environmental Excellence, August 2004.

Green boxes are treatment option variables for input.

Table A-4 - Cold Mill Area Plume - Alternative C2, Scenario C2c Reduce Groundwater Concentration for Diesel from 1.48 to 0.5 mg/L and Heavy Oil from 0.53 to 0.5 mg/L Restoration Time Frame Based on Electron Donor Demand Calculations

Treatment Target Area Specifications Operational Assump			ptions	
Vertical Treatment (ft)	10) Ground	dwater Velocity (ft/d)	77
Treatment Width (ft)	231	Extracti	on / Flux Rate (gpd)	399,881
Treatment Length (ft) (parallel to GW flow)	350	Extraction /	Flux Duration (days)	2,555
Effective Porosity	0.30	0		
Average Diesel Concentration (mg/L)	1.48	3		
Diesel Kd (L/kg)	2,250			
Average Oil in Groundwater (mg/L)	0.53	3		
Oil Kd (L/kg)	1,987	Extraction	on Duration (years)	7
Density (lbs/ft ³)	110	Treatme	nt Flux Volume (gal)	613,017,266
Effective Flux Treatment Duration	60%	5 Treatm	ent Flux Volume (L)	2,323,335,440
Hydrogen/Electron Donor Availability	,			
	COC Mass	Molecular	Moles of H ₂ to	Moles of H ₂
Constituent	(pounds)	Weight (g/mol)	Oxidize / Mole Analyte	Donor In Treatment Area
Native Electron Donors			,, to	
	107 506	226	40	10 555 10
Estimated Total Soil TPH-Dx	137,520	220	49	13,553,433
Estimated Total Groundwater TPH-Dx	14.8	220	49	1,462
Estimated Total Soil TPH-Ox	3,718	400	86	363,338
Estimated Total Groundwater TPH-Ox	0.5	400	00	44
Estimated Moles of	Hydrogen Don	or Available for	Treatment (20%)	2,783,655
Hydrogen/Electron Donor Removed b	y Groundwat	er Extraction S	System	
TPH-Dx (mg/L)	0			
I	Estimated Mole	es of Hydrogen I	Donor Extracted:	0
Hydrogen/Electron Acceptors				
	Groundwater		Moles of H ₂ to	Moles of H ₂
Constituent	Concentration	Molecular Weight (g/mol)	Reduce Mole	Through
	(mg/L)	weigin (g/mol)	Analyte	Treatment Area
Native Electron Acceptors				
Dissolved Oxygen	9.6	32	2	1,394,001
Nitrate (as Nitrogen)	1.7	62	3	846,631
Sulfate	6.0	96.1	4	580,229
Hydrogen Acceptor Based on Flux of System Operation and Duration			2,820,862	
	Amendment	Assumed	Malaa H // 5	Moles H ₂
Added Electron Acceptor	Added (pounds)	Efficiency	woles H ₂ /LD.	Acceptor Added
AnoxEA-ag™	0	10%	11.6	0
· · · · · · · · · · · · · · · · · · ·	Ŭ	Added Hydrogen	Acceptor Subtotal	0
	Estimat	ed Moles of Hyd	Irogen Acceptor:	2,820,862
Estimated Oxidative Treat	ment Progress	Based on Desig	an Assumptions	101%
Estimated exidative freat		Lasca on Desig	g	10170

NOTES:

L = liters; ft=feet; gal = gallons; 1ft3 = 28.32 L,mg/L = milligrams per liter; gpd = gallons per day; H2 = hydrogen.

Electron and hydrogen equivalents per Principles and Practices of Enhanced Anaerobic Bioremediation of Chlorinated

Solvents, Air Force Center for Environmental Excellence, August 2004.

Green boxes are treatment option variables for input.

Table A-5 - Cold Mill Area Plume - Alternative C3 Reduce Groundwater Concentration for Diesel from 1.48 to 0.5 mg/L and Heavy Oil from 0.53 to 0.5 mg/L Restoration Time Frame Based on Electron Donor Demand Calculations

Treatment Target Area Specifications			ational Assum	otions	
Vertical Treatment (ft)	10	Ground	lwater Velocity (ft/d)	28	
Treatment Width (ft)	231	Extractio	on / Flux Rate (gpd)	145,411	Based on daily groundwater flow through the Cold Mill Area.
Treatment Length (ft) (parallel to GW flow)	350	Extraction / F	Flux Duration (days)	6,935	Adjusted until a minimum of 100 percent treatment was achieved.
Effective Porosity	0.30	Injection Treat	tment Volume (gpd)	0	Total groundwater reinjection in gallons per day
Average Diesel Concentration (mg/L)	1.48	Solution C	oncentration (mg/L)	0	Concentration of electron acceptor in milligrams per liter
Diesel Kd (L/kg)	2,250				
Average Oil in Groundwater (mg/L)	0.53				
Oil Kd (L/kg)	1,987	Extraction/ Flu	x Duration (years)	19.0	
Bulk Density (lbs/ft ³)	110	Treatmen	nt Flux Volume (gal)	605,056,003	Assumes groundwater is in contact with 10 feet of smear zone 60 percent of the time.
Effective Flux Treatment Duration	60%	Treatm	ent Flux Volume (L)	2,293,162,252	Assumes groundwater is in contact with 10 feet of smear zone 60 percent of the time.
Hydrogen/Electron Donor Availability					
Constituent	TPH Mass (pounds)	Molecular Weight (g/mol)	Moles of H ₂ to Oxidize / Mole Analyte	Moles of H ₂ Donor In Treatment Area	
Native Electron Donors					
Estimated Total Soil TPH-Dx	137,526	226	49	13,553,433	Based on reducing the estimated groundwater diesel concentration from 1.48 to 0.5 mg/L.
Estimated Total Groundwater TPH-Dx	14.8	226	49	1,462	Based on reducing the estimated groundwater diesel concentration from 1.48 to 0.5 mg/L.
Estimated Total Soil TPH-Ox	3,718	400	86	363,338	Based on reducing the estimated groundwater oil-range concentration from 0.53 to 0.5 mg/L.
Estimated Total Groundwater TPH-Ox	0.5	400	86	44	Based on reducing the estimated groundwater oil-range concentration from 0.53 to 0.5 mg/L.
Estimated Moles of	Hydrogen Dor	or Available for	Treatment (20%)	2,783,655	Assumes 20% of TPH completely oxidized to CO2/H2O, 80% to volatile fatty acids and biomass incorporation (not completely oxidized).
Hydrogen/Electron Donor Removed by	/ Groundwate	r Extraction Sy	vstem		
TPH-Dx (mg/L)	0				
	Estimated Mole	es of Hydrogen I	Donor Extracted:	0	
Hydrogen/Electron Acceptors					
Constituent	Groundwater Concentration (mg/L)	Molecular Weight (g/mol)	Moles of H ₂ to Reduce Mole Analyte	Moles of H₂ Through Treatment Area	
Native Electron Acceptors					
Dissolved Oxygen	9.6	32	2	1,375,897	Based on upgradient groundwater concentrations at CM-MW-2S and CM-MW-7S.
Nitrate (as Nitrogen)	1.7	62	3	835,636	Based on upgradient groundwater concentrations at CM-MW-2S and CM-MW-7S.
Sulfate	6.0	96.1	4	572,694	Based on typical reduction from background concentrations across the site.
Hydrogen Acceptor Based on Flux of System Operation and Duration					
Added Electron Acceptor	Amendment Added (pounds/day)	Assumed Metabolic Efficiency	Moles H ₂ /Lb.	Moles H ₂ Acceptor Added	
Hydrogen Peroxide	0	20%	6.5	0	Assumes no injection of Hydrogen Peroxide.
AnoxEA-aq™	0	10%	11.6	0	
		Added Hydrogen	Acceptor Subtotal	0	
	Estimat	ed Moles of Hyd	rogen Acceptor:	2,784,227	
Estimated Oxidative Treatment Progress Based on Design Assumptions:				100%	

NOTES:

L = liters; ft=feet; gal = gallons; 1ft3 = 28.32 L,mg/L = milligrams per liter; gpd = gallons per day; H2 = hydrogen.

Electron and hydrogen equivalents per Principles and Practices of Enhanced Anaerobic Bioremediation of Chlorinated

Solvents, Air Force Center for Environmental Excellence, August 2004.

Green boxes are treatment option variables for input.

Table A-6 - Cold Mill Area Plume - Alternative C4 Reduce Groundwater Concentration for Diesel from 1.48 to 0.5 mg/L and Heavy Oil from 0.53 to 0.5 mg/L Restoration Time Frame Based on Electron Donor Demand Calculations

version version Gourdwater Velocity (in) 440 researced flux by CP percent free models conditions. Treatment Version (in) 330 Extractor / Flux Duration (kgy) 4.411 Adjusted util a minimum of 100 percent treatment was achieved. Average Diset Concertation (mg) 318 Extractor / Flux Duration (kgy) 4.411 Adjusted util a minimum of 100 percent treatment was achieved. Average Diset Concertation (mg) 318 Extractor / Flux Duration (kgr) 11 Bub Diset Concertation (mg) 318 Extractor / Flux Duration (kgr) 12 Bub Diset Concertation (mg) 319 Extractor / Flux Duration (kgr) 10 Treatment Duration 000 Treatment Plux Volume (kgr) 10 Constituent 100 Status (Ling) Note Status	Treatment Target Area Specifications Operation			rational Assum	otions	
Transmet Wath (II) Generation / Fax Rate (gon) 228 208 Based on daky groundwater flow through the Cold MA Area. Effective Poculary Gond Seculary / Fax Duration (Vigon) 4.44 Adjusted until a minutum of 100 percent transmet rule with a different was achieved. Adjusted until a minutum of 100 percent transmet rule with a different with a	Vertical Treatment (ft)	10	Ground	dwater Velocity (ft/d)	44	Increased flux by 57 percent from baseline conditions.
Testers Parallel Cargh (fi) (sealed to Vf too) 40.00 (field of the field of the fie	Treatment Width (ft)	231	Extracti	on / Flux Rate (gpd)	228,296	Based on daily groundwater flow through the Cold Mill Area.
Effective Ponsity 0.30 Average Dies Constraints (mg) 0.35 Dies (A, Mg) 1.97 Bit Deuts (kith) 1.97 Bit Deuts (kith) 0.95 Treatment Flux Volume (pit) 0.45.00.466 Ausumes groundwater is in contact with 10 feet of smaar zone 80 parcent of the time. Hydrogen/Electron Door Availability Weight (gind) Bit Deuts (kith) 197.06 Estimated Total Soi TPH:Ds 197.06 Attack 226 40 1.66 13.660.466 Estimated Total Soi TPH:Ds 197.06 1.66 197.06 1.66 197.06 1.66 197.06 1.66 197.06 1.66 10.66 1.66 197.06 1.66 197.06 1.66 10.66 1.66 10.66 <	Treatment Length (ft) (parallel to GW flow)	350	Extraction /	Flux Duration (days)	4,417	Adjusted until a minimum of 100 percent treatment was achieved.
Average Direst Grosswatzer (mgL) 1.48 Desk 14 (1/42) 2.282 3.03 Average Dir Grosswatzer (mgL) 0.33 0.054,807,484 Termeter Flax Volume (age 1) 100,5480,484 Termeter Flax Volume (age 2) 100,5480,484 Termeter Flax Volume (age 2) 100,5480,494 Termeter Volumer (age 2) 100,5480,494 Termeter Volume (age 2) 10	Effective Porosity	0.30				
Description 2,230 werage 01 in GA(ha) 01 kd (ha) 01 kd (ha) 1980 2,232 Exclusion / Flux Duration / Flux Usation (Flux Usation (Vex) 1980 14 0,490,004 (ha) 1980 40,490,004 1980 40,490,004 1980,004 1980,004,004 1980 40,490,004 1980	Average Diesel Concentration (mg/L)	1.48				
wrange Oil n Gloandwater (mg1) Oil K4 (L, k) Buk Dows (Ns ⁴) 0.25 1 100 Teatment Flux Uution (year) 12 040 480.48 Assumes groundwater is in contact with 10 feet of smear zone 60 percent of the time. Hydrogen/Electron Donor Availability Teatment Flux Vutime (year) 04180.48 Assumes groundwater is in contact with 10 feet of smear zone 60 percent of the time. Hydrogen/Electron Donor Availability Moles of H, in the simaled groundwater is in contact with 10 feet of smear zone 60 percent of the time. Native Electron Donors Teatment Availability Moles of H, in the simaled groundwater field concentration from 1.48 to 0.5 mg1. Estimated Total Gunthwater TH+00 145.8 228 40 13.853.483 Estimated Total Gunthwater TH+00 145.8 228 40 14.862 Estimated Total Gunthwater TH+00 145.8 228 40 14.862 Estimated Total Gunthwater TH+00 145.8 228 40 14.862 Estimated Total Gunthwater TH+00 137.8 288 488 288 Estimated Total Gunthwater TH+00 138.0 58.0 58.0 58.0 Hydrogen/Electron Acceptors Teatment Area 288 488 888 488 888 480.0 <td>Diesel Kd (L/kg)</td> <td>2,250</td> <td></td> <td></td> <td></td> <td></td>	Diesel Kd (L/kg)	2,250				
Ol Kd //bil 11 and Bib Denaily (Ueb*) 11 and 00% 11 and 00% 11 and 00% 12 and 12 and 10% 00 and 10% 12 and 12 and 10% 12 and 00% 12 and 10% 12 and 10	Average Oil in Groundwater (mg/L)	0.53				
Buk Denay (beh) 110 Teammer Flux (values (a) 60.490.0484 Teammer (but o) Summer (but o) Operation (b) Operation (b) Teammer (b) Constituent Teammer (b) Constituent Moles of H, to Moles of H, to Suitzer / Mol Moles of H, to Analytice Moles of H, to Suitzer / Mol Moles of H, to Analytice Moles of H, to Suitzer / Mol Moles of H, to Analytice Moles of H, to Suitzer / Mol Moles of H, to Analytice Mol	Oil Kd (L/kg)	1,987	Extraction / Fl	ux Duration (years)	12	
Effect or plasmer Plan Volume (L) Zegg 200174 Assumes groundwater is in contact with 10 feet of smear 2one 60 percent of the time. Hydrogen/Electron Donor Availability Moles of H ₁ to groundy Moles of H ₁ to Moles of H ₁ to Analyse Moles of H ₁ to Moles of H ₁ to Analyse Moles of H ₁ to Moles of H ₁ to Analyse Moles of H ₁ to Analyse	Bulk Density (lbs/ft ³)	110	Treatme	nt Flux Volume (gal)	604,960,468	Assumes groundwater is in contact with 10 feet of smear zone 60 percent of the time.
Hydrogen/Electron Donor Availability TPH Mass (ground) Molecular Weight (ground) Molecular Docidize / Mulecular Weight (ground) Molecular Docidize / Mulecular Seturated Total Scil TPH-Do 137.526 2.25 49 13,553,433 Based on reducing the estimated groundwater disel concentration from 1.48 to 0.5 mg/L. Estimated Total Scil TPH-Do 137.526 2.26 49 1,622 Based on reducing the estimated groundwater disel concentration from 1.48 to 0.5 mg/L. Estimated Total Scil TPH-Do 14.8 2.26 49 1,622 Based on reducing the estimated groundwater disel concentration from 1.48 to 0.5 mg/L. Estimated Total Scil TPH-Do 14.8 2.26 49 1,622 Based on reducing the estimated groundwater disel concentration from 0.50 to 0.5 mg/L. Estimated Total Scil TPH-Do 14.8 2.26 2.783,655 Based on reducing the estimated groundwater disel concentration from 0.50 to 0.5 mg/L. Estimated Total Scil TPH-Do 0.5 HV 1.600 Based on reducing the estimated groundwater oil-ange concentration from 0.51 to 0.5 mg/L. Hydrogen/Electron Acceptors TPH-Da: (mg/L) 0 Through returned row scill returned row s	Effective Flux Treatment Duration	60%	Treatm	ent Flux Volume (L)	2,292,800,174	Assumes groundwater is in contact with 10 feet of smear zone 60 percent of the time.
Constituent TPH Mass (pounds) Molecular Weight (g/mol) Moles of H, Data Moles of H, Dance In Native Electron Donors Moles of H, Teatment Fee Semander Total Soil TPH-Dx 137,558 228 49 1,552,833 Based on reducing the estimated groundwater diesel concentration from 1.48 to 0.5 mg/L. Estimated Total Soil TPH-Dx 137,558 228 49 1,463 Based on reducing the estimated groundwater diesel concentration from 1.48 to 0.5 mg/L. Estimated Total Soil TPH-Dx 3,718 400 66 263,238 Based on reducing the estimated groundwater diesel concentration from 0.33 to 0.5 mg/L. Estimated Total Goordwater TPH-Dx 0.5 400 66 243,835 Based on reducing the estimated groundwater diesel concentration from 0.33 to 0.5 mg/L. Estimated Moles of Hydrogen Donor Available for Treatment (20%) 2,783,655 Assumes 20% of TPH completely oxidized to CO2/H20, 80% to volatile fatty acids and biomass incorporation (not completely oxidize for concentration from 0.48 to 0.5 mg/L. Hydrogen/Electron Acceptors TPH-Dx (mg/L) 0 Moles of H, Traveryb Traveryb Treatment Area Suitate 6.0 9.8.1 4 572,063 Based on upgradient groundwater concentrations at CM-MW-25 and CM-MW-75. Suitate 6.0<	Hydrogen/Electron Donor Availability					
Native Electron Donors 137.526 226 49 13,553,433 Based on reducing the estimated groundwater diesel concentration from 1.48 to 0.5 mg/L. Estimated Total Conductore TPH-00 3.718 400 86 303,333 Based on reducing the estimated groundwater diesel concentration from 1.48 to 0.5 mg/L. Estimated Total Conductore TPH-00 3.718 400 86 40 31,622 Estimated Total Conductore TPH-00 3.718 400 86 40 40 Estimated Total Conductore TPH-00 3.718 400 86 40 40 Estimated Moles of Hydrogen Donor Available for Treatment (20%) 2,783,655 Assumes 20% of TPH completely oxidized to CO2/H2O, 80% to volatile faity acids and biomass incorporation (not completely oxidized to CO2/H2O, 80% to volatile faity acids and biomass incorporation (not completely oxidized to CO2/H2O, 80% to volatile faity acids and biomass incorporation (not completely oxidized to CO2/H2O, 80% to volatile faity acids and biomass incorporation (not completely oxidized to CO2/H2O, 80% to volatile faity acids and biomass incorporation (not completely oxidized to CO2/H2O, 80% to volatile faity acids and biomass incorporation (not completely oxidized to CO2/H2O, 80% to volatile faity acids and biomass incorporation (not completely oxidized to CO2/H2O, 80% to volatile faity acids and biomass incorporation (not completely oxidized to CO2/H2O, 80% to volatile faity acids and biomass incorporation (not completely oxidized to CO2/H2O, 80% to volatile faity acids and biomass incorporation	Constituent	TPH Mass (pounds)	Molecular Weight (g/mol)	Moles of H ₂ to Oxidize / Mole Analyte	Moles of H ₂ Donor In Treatment Area	
Estimated Total Sol TPH-Dx 137.526 226 49 13.553.32 Based on reducing the estimated groundwater diseal concentration from 1.48 to 0.5 mg/L. Estimated Total Groundwater TPH-Dx 14.8 226 49 1.462 Based on reducing the estimated groundwater diseal concentration from 0.53 to 0.5 mg/L. Estimated Total Groundwater TPH-Dx 0.5 400 86 448 Based on reducing the estimated groundwater oil-range concentration from 0.53 to 0.5 mg/L. Estimated Total Groundwater TPH-Dx 0.5 400 86 448 Estimated Total Groundwater TPH-Dx 0.5 400 86 448 Estimated Moles of Hydrogen Donor Available for Treatment (20%) 2,783,655 Assumes 20% of TPH completely oxidized to CO2/H2O, 80% to volatile fatty acids and biomass incorporation (not completely oxidized to CO2/H2O, 80% to volatile fatty acids and biomass incorporation (not completely oxidized for CO2/H2O, 80% to volatile fatty acids and biomass incorporation (not completely oxidized for CO2/H2O, 80% to volatile fatty acids and biomass incorporation (not completely oxidized for CO2/H2O, 80% to volatile fatty acids and biomass incorporation (not completely oxidized for CO2/H2O, 80% to volatile fatty acids and biomass incorporation (not completely oxidized for CO2/H2O, 80% to volatile fatty acids and biomass incorporation (not completely oxidized for CO2/H2O, 80% to volatile fatty acids and biomass incorporation (not completely oxidized for CO2/H2O, 80% to volatile fatty acids and biomass incorporation (not completely oxidized for CO2/H2O, 80% to volatile fatty acids and biomass incorporation (not completely oxidized for CO2/H2O	Native Electron Donors					
Estimated Total Groundwater TPH-Dox 14.8 228 49 1,462 Based on reducing the estimated groundwater diesel concentration from 1.48 to 0.5 mg/L. Estimated Total Groundwater TPH-Dox 0.5 400 86 383.38 Based on reducing the estimated groundwater oil-range concentration from 0.53 to 0.5 mg/L. Estimated Total Groundwater TPH-Dox 0.5 400 86 48 Based on reducing the estimated groundwater oil-range concentration from 0.53 to 0.5 mg/L. Estimated Total Groundwater TPH-Dox 0.5 400 2,783,655 Assumes 20% of TPH completely oxidized to CO2/H2O, 80% to volatile fatty acids and biomass incorporation (not completely oxidized to CO2/H2O, 80% to volatile fatty acids and biomass incorporation (not completely oxidized to CO2/H2O, 80% to volatile fatty acids and biomass incorporation (not completely oxidized to CO2/H2O, 80% to volatile fatty acids and biomass incorporation (not completely oxidized to CO2/H2O, 80% to volatile fatty acids and biomass incorporation (not completely oxidized to CO2/H2O, 80% to volatile fatty acids and biomass incorporation (not completely oxidized to CO2/H2O, 80% to volatile fatty acids and biomass incorporation (not completely oxidized to CO2/H2O, 80% to volatile fatty acids and biomass incorporation for the stimated for the stimated for the stimated for the stimated fatty acids and biomass incorporation for the stimated for the	Estimated Total Soil TPH-Dx	137,526	226	49	13,553,433	Based on reducing the estimated groundwater diesel concentration from 1.48 to 0.5 mg/L.
Estimated Total Soil TPH-Ox 3.718 400 86 393338 Based on reducing the estimated groundwater oil-range concentration from 0.53 to 0.5 mg/L. Estimated Moles of Hydrogen Donor Available for Treatment (20%) 2,783,655 Assume 20% of TPH completely oxidized to CO2/H2O, 80% to volatile fatty acids and biomass incorporation (not completely oxidized to CO2/H2O, 80% to volatile fatty acids and biomass incorporation (not completely oxidized to CO2/H2O, 80% to volatile fatty acids and biomass incorporation (not completely oxidized to CO2/H2O, 80% to volatile fatty acids and biomass incorporation (not completely oxidized to CO2/H2O, 80% to volatile fatty acids and biomass incorporation (not completely oxidized to CO2/H2O, 80% to volatile fatty acids and biomass incorporation (not completely oxidized to CO2/H2O, 80% to volatile fatty acids and biomass incorporation (not completely oxidized to CO2/H2O, 80% to volatile fatty acids and biomass incorporation (not completely oxidized to CO2/H2O, 80% to volatile fatty acids and biomass incorporation (not completely oxidized to CO2/H2O, 80% to volatile fatty acids and biomass incorporation (not completely oxidized to CO2/H2O, 80% to volatile fatty acids and biomass incorporation (not completely oxidized to CO2/H2O, 80% to volatile fatty acids and biomass incorporation (not completely oxidized to CO2/H2O, 80% to volatile fatty acids and biomass incorporation (not completely oxidized to CO2/H2O, 80% to volatile fatty acids and biomass incorporation (not completely oxidized to CO2/H2O, 80% to volatile fatty acids and biomass incorporation (not completely oxidized to CO2/H2O, 80% to volatile fatty acids and biomass incorporation (not completely oxidized to CO2/H2O, 80% to volatile fatty acids and biomass incorporation (not completely oxidized to CO2/H2O, 80% to volatity fatty completely oxidized to CO2/H2O, 80% to vola	Estimated Total Groundwater TPH-Dx	14.8	226	49	1,462	Based on reducing the estimated groundwater diesel concentration from 1.48 to 0.5 mg/L.
Estimated Total Groundwater TPH-Qx 0.5 400 86 446 Based on reducing the estimated groundwater oil-range concentration from 0.53 to 0.5 mg/L. Hydrogen/Electron Donor Removed by Groundwater Extraction System Assumes 20% of TPH completely oxidized to CO2/H2O, 80% to volatile fatty acids and biomass incorporation (not completely oxidized to CO2/H2O, 80% to volatile fatty acids and biomass incorporation (not completely oxidized to CO2/H2O, 80% to volatile fatty acids and biomass incorporation (not completely oxidized to CO2/H2O, 80% to volatile fatty acids and biomass incorporation (not completely oxidized to CO2/H2O, 80% to volatile fatty acids and biomass incorporation (not completely oxidized to CO2/H2O, 80% to volatile fatty acids and biomass incorporation (not completely oxidized to CO2/H2O, 80% to volatile fatty acids and biomass incorporation (not completely oxidized to CO2/H2O, 80% to volatile fatty acids and biomass incorporation (not completely oxidized to CO2/H2O, 80% to volatile fatty acids and biomass incorporation (not completely oxidized to CO2/H2O, 80% to volatile fatty acids and biomass incorporation (not completely oxidized to CO2/H2O, 80% to volatile fatty acids and biomass incorporation (not completely oxidized to CO2/H2O, 80% to volatile fatty acids and biomass incorporation (not completely oxidized to CO2/H2O, 80% to volatile fatty acids and biomass incorporation (not completely oxidized to CO2/H2O, 80% to volatile fatty acids and biomass incorporation (not completely oxidized to CO2/H2O, 80% to volatile fatty acids and biomass incorporation (not completely oxidized to CO2/H2O, 80% to volatile fatty acids and biomass incorporation (not completely oxidized to CO2/H2O, 80% to volatile fatty acids and biomass incorporation (not completely oxidized to CO2/H2O, 80% to volatile fatty acids and biomass incorporation (not completely oxidized to CO2/H	Estimated Total Soil TPH-Ox	3,718	400	86	363,338	Based on reducing the estimated groundwater oil-range concentration from 0.53 to 0.5 mg/L.
Estimated Moles of Hydrogen Donor Available for Treatment (20%) 2,783,855 Assumes 20% of TPH completely oxidized to CO2/H2O, 80% to volatile fatty acids and biomass incorporation (not completely oxidized to CO2/H2O, 80% to volatile fatty acids and biomass incorporation (not completely oxidized to CO2/H2O, 80% to volatile fatty acids and biomass incorporation (not completely oxidized to CO2/H2O, 80% to volatile fatty acids and biomass incorporation (not completely oxidized to CO2/H2O, 80% to volatile fatty acids and biomass incorporation (not completely oxidized to CO2/H2O, 80% to volatile fatty acids and biomass incorporation (not completely oxidized to CO2/H2O, 80% to volatile fatty acids and biomass incorporation (not completely oxidized to CO2/H2O, 80% to volatile fatty acids and biomass incorporation (not completely oxidized to CO2/H2O, 80% to volatile fatty acids and biomass incorporation (not completely oxidized to CO2/H2O, 80% to volatile fatty acids and biomass incorporation (not completely oxidized to CO2/H2O, 80% to volatile fatty acids and biomass incorporation (not completely oxidized to CO2/H2O, 80% to volatile fatty acids and biomass incorporation (not completely oxidized to CO2/H2O, 80% to volatile fatty acids and biomass incorporation (not completely oxidized to CO2/H2O, 80% to volatile fatty acids and biomass incorporation (not completely oxidized to CO2/H2O, 80% to volatile fatty acids and biomass incorporation (not completely oxidized to CO2/H2O, 80% to volatile fatty acids and biomass incorporation (not completely oxidized to CO2/H2O, 80% to volatile fatty acids and biomass incorporation (not completely oxidized to CO2/H2O, 80% to volatile fatty acids and biomass incorporation (not completely oxidized to CO2/H2O, 80% to volatile fatty acids and biomass incorporation (not completely oxidized to CO2/H2O, 80% to volatile fatty acids and biomass incorporation (not completely oxidized to CO2/H2O, 80% to volatile fatty acids	Estimated Total Groundwater TPH-Ox	0.5	400	86	44	Based on reducing the estimated groundwater oil-range concentration from 0.53 to 0.5 mg/L.
Hydrogen/Electron Donor Removed by Groundwater Extraction System TPH-Dx (mg/L) 0 Estimated Moles of Hydrogen Donor Extracted: 0 Hydrogen/Electron Acceptors Constituent Groundwater Concentration (mg/L) Moles of H ₂ to Reduce Mole Analyte Moles H ₂ /Lo Moles H ₂ /Lo <td>Estimated Moles of</td> <td>Hydrogen Don</td> <td>or Available for</td> <td>Treatment (20%)</td> <td>2,783,655</td> <td>Assumes 20% of TPH completely oxidized to CO2/H2O, 80% to volatile fatty acids and biomass incorporation (not completely oxidized)</td>	Estimated Moles of	Hydrogen Don	or Available for	Treatment (20%)	2,783,655	Assumes 20% of TPH completely oxidized to CO2/H2O, 80% to volatile fatty acids and biomass incorporation (not completely oxidized)
TPH-Dx (mg/L) 0 Estimated Moles of Hydrogen Donor Extracted: 0 Hydrogen/Electron Acceptors 0 Gonstituent Groundwater (mg/L) Moles of Hy to Reduce Mole Analyte Moles of Hy Treatment Area Native Electron Acceptors Moles of Signation (mg/L) Moles of Hy to Reduce Mole Analyte Moles of Hy Treatment Area Dissolved Oxygen 9.6 32 2 1,375,680 Based on upgradient groundwater concentrations at CM-MW-2S and CM-MW-7S. Nitrate (as Nitrogen) 1.7 622 3 885,064 Based on upgradient groundwater concentrations at CM-MW-2S and CM-MW-7S. Sulfate 6.0 96.1 4 572,664 Based on typical reduction from background concentrations at CM-MW-2S and CM-MW-7S. Hydrogen Acceptor Based on Flux of System Operation and Duration (pounds) Q.783,787 Moles Hy Acceptor Added Added Electron Acceptor Amedment Added Hydrogen Acceptor Subtotal (pounds) Moles Hy/Lb. Added Hydrogen Acceptor Subtotal CEfficiency Moles Hy Acceptor Added Added Hydrogen Acceptor Estimated Moles of Hydrogen Acceptor 2,783,787 Estimated Oxidative Treatment Prooress Based on Design Assumptions: 100%	Hydrogen/Electron Donor Removed b	y Groundwat	er Extraction	System		
Estimated Moles of Hydrogen Donor Extracted: 0 Hydrogen/Electron Acceptors Groundwater Constituent Groundwater Concentration (mg/L) Moles of H ₂ to Reduce Mole Analyte Moles of H ₂ Through Treatment Area Native Electron Acceptors Moles of 3.32 2 1.375,660 Based on upgradient groundwater concentrations at CM-MW-2S and CM-MW-7S. Dissolved Oxygen 9.6 3.2 2 1.375,660 Based on upgradient groundwater concentrations at CM-MW-2S and CM-MW-7S. Nitrate (as Nitrogen) 1.7 62 3 835,504 Based on upgradient groundwater concentrations at CM-MW-2S and CM-MW-7S. Suifate 6.0 96.1 4 527,604 Based on typical reduction from background concentrations across the site. Hydrogen Acceptor Based on Flux of System Operation and Duration (pound) Assumed Moles H ₂ Added (pound) Moles H ₂ Life Moles H ₂ Acceptor Added AnoxEA-aq TM 0 10% 11.6 0 0 2,783,787 Estimated Oxidative Treatment Progress Based on Design Assumptions Xitte Zite Xitte Zite Xitte Estimated Oxidative Treatment Progress Based on Design Assumptions 1100% 100% Moles H ₂ Zite Xitte Xitte Xitte<	TPH-Dx (mg/L)	0				
Hydrogen/Electron Acceptors Constituent Groundwater (ong/L) Moles of H2 to Reduce Mole Analyte Moles of H2 to Through Treatment Acceptors Native Electron Acceptors	E	Estimated Mole	s of Hydrogen	Donor Extracted:	0	
Constituent Groundwater Concentration (mg/L) Moles of H ₂ to Reduce Moles Analyte Moles of H ₂ to Through Treatment Area Native Electron Acceptors	Hydrogen/Electron Acceptors	-				
Native Electron Acceptors 9.6 32 2 1,375,680 Based on upgradient groundwater concentrations at CM-MW-2S and CM-MW-7S. Nitrate (as Nitrogen) 1.7 62 3 835,504 Based on upgradient groundwater concentrations at CM-MW-2S and CM-MW-7S. Sulfate 6.0 96.1 4 572,604 Based on upgradient groundwater concentrations at CM-MW-2S and CM-MW-7S. Hydrogen Acceptor Based on Flux of System Operation and Duration Added (pounds) Moles H ₂ /Lb. Moles H ₂ Acceptor Adceptor Added Added Electron Acceptor Amendment Added Metabolic Efficiency Moles H ₂ Acceptor Added AnoxEA-aq TM 0 10% 11.6 0 0 Estimated Oxidative Treatment Progress Based on Design Assumptions:	Constituent	Groundwater Concentration (mg/L)	Molecular Weight (g/mol)	Moles of H ₂ to Reduce Mole Analyte	Moles of H₂ Through Treatment Area	
Dissolved Oxygen 9.6 32 2 1,375,680 Based on upgradient groundwater concentrations at CM-MW-2S and CM-MW-7S. Nitrate (as Nitrogen) 1.7 62 3 835,504 Based on upgradient groundwater concentrations at CM-MW-2S and CM-MW-7S. Sulfate 6.0 96.1 4 572,604 Based on upgradient groundwater concentrations at CM-MW-2S and CM-MW-7S. Hydrogen Acceptor Based on Flux of System Operation and Duration 2,783,787 Moles H2 Added (pounds) Moles H2/Lb. Moles H2 Added Electron Acceptor 0 10% 11.6 0 0 0 10% 11.6 0 AnoxEA-aq TM 0 10% 11.6 0 0 0 2,783,787 Estimated Oxidative Treatment Progress Based on Design Assumptions: 100% 2,783,787 0 0	Native Electron Acceptors			l.		
Nitrate (as Nitrogen) 1.7 62 3 835,504 Based on upgradient groundwater concentrations at CM-MW-2S and CM-MW-7S. Sulfate 6.0 96.1 4 572,604 Based on typical reduction from background concentrations across the site. Hydrogen Acceptor Based on Flux of System Operation and Duration 2,783,787 Moles H₂ Added Added Electron Acceptor Amendment Added Assumed Metabolic Efficiency Moles H₂/Lb. Moles H₂ AnoxEA-aq™ 0 10% 11.6 0 0 Estimated Oxidative Treatment Progress Based on Design Assumptions: 100% 100%	Dissolved Oxygen	9.6	32	2	1,375,680	Based on upgradient groundwater concentrations at CM-MW-2S and CM-MW-7S.
Sulfate 6.0 96.1 4 572,804 Based on typical reduction from background concentrations across the site. Hydrogen Acceptor Based on Flux of System Operation and Duration 2,783,787 Moles H ₂ Added Electron Acceptor Amendment Added Assumed Metabolic Efficiency Moles H ₂ Moles H ₂ AnoxEA-aq TM 0 10% 11.6 0 0 2,783,787 Estimated Oxidative Treatment Progress Based on Design Assumptions: 10% 10% 10% 10%	Nitrate (as Nitrogen)	1.7	62	3	835,504	Based on upgradient groundwater concentrations at CM-MW-2S and CM-MW-7S.
Hydrogen Acceptor Based on Flux of System Operation and Duration 2,783,787 Added Electron Acceptor Amendment Added (pounds) Assumed Metabolic Efficiency Moles H ₂ /Lb. Efficiency Moles H ₂ Acceptor Added AnoxEA-aq TM 0 10% 11.6 0 Estimated Oxidative Treatment Progress Based on Design Assumptions: 2,783,787 10%	Sulfate	6.0	96.1	4	572,604	Based on typical reduction from background concentrations across the site.
Added Electron Acceptor Amendment Added (pounds) Assumed Metabolic Efficiency Moles H ₂ Acceptor Added AnoxEA-aq TM 0 10% 11.6 0 AnoxEA-aq TM 0 10% 20 Estimated Oxidative Treatment Progress Based on Design Assumptions: 10% 10%	Hydrogen Acceptor Based on Flux of System Operation and Duration			ion and Duration	2,783,787	
AnoxEA-aq™ 0 10% 11.6 0 Added Hydrogen Acceptor Subtotal 0 Estimated Moles of Hydrogen Acceptor: 2,783,787 Estimated Oxidative Treatment Progress Based on Design Assumptions: 100%	Added Electron Acceptor	Amendment Added (pounds)	Assumed Metabolic Efficiency	Moles H ₂ /Lb.	Moles H ₂ Acceptor Added	
Added Hydrogen Acceptor Subtotal 0 Estimated Moles of Hydrogen Acceptor: 2,783,787 Estimated Oxidative Treatment Progress Based on Design Assumptions: 100%	AnoxEA-aq™	0	10%	11.6	0	
Estimated Moles of Hydrogen Acceptor: 2,783,787 Estimated Oxidative Treatment Progress Based on Design Assumptions: 100%			Added Hydrogen	Acceptor Subtotal	0	
Estimated Oxidative Treatment Progress Based on Design Assumptions: 100%		Estimate	ed Moles of Hyd	Irogen Acceptor:	2,783,787	
	Estimated Oxidative Treat	ment Progress	Based on Desig	gn Assumptions:	100%]

NOTES:

L = liters; ft=feet; gal = gallons; 1ft3 = 28.32 L,mg/L = milligrams per liter; gpd = gallons per day; H2 = hydrogen.

Electron and hydrogen equivalents per Principles and Practices of Enhanced Anaerobic Bioremediation of Chlorinated

Solvents, Air Force Center for Environmental Excellence, August 2004.

Green boxes are treatment option variables for input.

Table A-7 - Oil House Area North Plume - Alternative C1 Reduce Groundwater Diesel Concentration from 1.32 to 0.5 mg/L Restoration Time Frame Based on Electron Donor Demand Calculations

Treatment Target Area Specifications Operational Assumptions		ptions			
Vertical Treatment (ft)	10	Ground	water Velocity (ft/d)	33	3
Treatment Width (ft)	232	Extractio	on / Flux Rate (gpd)	171,890	Based on daily groundwater flow through the Oil House North plume area.
Treatment Length (ft) (parallel to GW flow)	825	Extraction / F	lux Duration (days)	10,330	Adjusted until a minimum of 100 percent treatment was achieved.
Average Groundwater Concentration (mg/L)	1.32				1
Effective Porosity	0.30				
Kd (L/kg)	2,250	Extractio	n Duration (years)	28	3
Density (lbs/ft ³)	110	Treatmen	t Flux Volume (gal)	1,065,325,132	Assumes groundwater is in contact with 10 feet of smear zone 60 percent of the time.
Effective Flux Treatment Duration	60%	Treatme	ent Flux Volume (L)	4,037,582,251	Assumes groundwater is in contact with 10 feet of smear zone 60 percent of the time.
Hydrogen/Electron Donor Availability					
Constituent	COC Mass (pounds)	Molecular Weight (g/mol)	Moles of H ₂ to Oxidize / Mole Analyte	Moles of H ₂ Donor In Treatment Area	
Native Electron Donors		1		1	1
Estimated Total Soil TPH-Dx	272,054	226	49	26,811,483	Based on reducing the estimated groundwater concentration from 1.32 to 0.5 mg/L.
Estimated Total Groundwater TPH-Dx	29.4	226	49	2,893	Based on reducing the estimated groundwater concentration from 1.32 to 0.5 mg/L.
Estimated Moles of	Hydrogen Don	or Available for	Treatment (20%) 5,362,875	Assumes 20% of TPH completely oxidized to CO2/H2O, 80% to volatile fatty acids and biomass incorporati
Hydrogen/Electron Donor Removed b	v Groundwat	er Extraction S	System	2	
TPH-Dx (mg/l)	o		ystem		-
11 11-DX ((IIG/L)	otimated Male		Damar Extracted		
E	sumated more	s of Hydrogen i	DONOT EXTRACTED.	. 0	
Hydrogen/Electron Acceptors					
Constituent	Groundwater Concentration (mg/L)	Molecular Weight (g/mol)	Moles of H ₂ to Reduce Mole Analyte	Moles of H₂ Through Treatment Area	
Native Electron Acceptors					
Dissolved Oxygen	9.5	32	2	2,389,744	Based on upgradient groundwater concentrations at CM-MW-7S.
Nitrate (as Nitrogen)	2.3	62	3	1,990,593	Based on upgradient groundwater concentrations at OH-MW-8.
Sulfate	6.0	96.1	4	1,008,345	Based on reduction of average groundwater concentrations at HL-MW-1.
Hydrogen Acceptor Ba	sed on Flux of	f System Operat	tion and Duration	5,388,682	
Added Electron Acceptor	Amendment Added (pounds)	Assumed Metabolic Efficiency	Moles H₂/Lb.	Moles H ₂ Acceptor Added	r
AnoxEA-aq™	0	10%	11.6	0	
		Added Hydrogen	Acceptor Subtotal	0	
	Estimate	ed Moles of Hyd	Irogen Acceptor:	5,388,682	
Estimated Oxidative Treat	ment Progress	Based on Desi	an Assumptions	100%	1
		- Labou on Deal	g	. 10070	3

NOTES:

L = liters; ft=feet; gal = gallons; 1ft3 = 28.32 L,mg/L = milligrams per liter; gpd = gallons per day; H2 = hydrogen.

Electron and hydrogen equivalents per Principles and Practices of Enhanced Anaerobic Bioremediation of Chlorinated

Solvents, Air Force Center for Environmental Excellence, August 2004.

Green boxes are treatment option variables for input.

Yellow boxes are treatment option outputs.

 Table A-8 - Oil House Area North Plume - Alternative C2, Scenario C2a

 Reduce Groundwater Diesel Concentration from 1.32 to 0.5 mg/L

 Restoration Time Frame Based on Electron Donor Demand Calculations

Treatment Target Area Specifications Operational Assumpt		ptions		
Vertical Treatment (ft)	10	Ground	water Velocity (ft/d)	33
Treatment Width (ft)	232	Extractio	on / Flux Rate (gpd)	171,890
Treatment Length (ft) (parallel to GW flow)	825	Extraction / F	Flux Duration (days)	10,330
Average Groundwater Concentration (mg/L)	1.32			
Effective Porosity	0.30			
Kd (L/kg)	2,250	Extractio	on Duration (years)	28
Density (lbs/ft ³)	110	Treatmen	nt Flux Volume (gal)	1,065,325,132
Effective Flux Treatment Duration	60%	Treatme	ent Flux Volume (L)	4,037,582,251
Hydrogen/Electron Donor Availability				
Constituent	COC Mass (pounds)	Molecular Weight (g/mol)	Moles of H ₂ to Oxidize / Mole Analyte	Moles of H ₂ Donor In Treatment Area
Native Electron Donors				
Estimated Total Soil TPH-Dx	272,054	226	49	26,811,483
Estimated Total Groundwater TPH-Dx	29.4	226	49	2,893
Estimated Moles of	Hydrogen Don	or Available for	Treatment (20%) 5,362,875
Hydrogen/Electron Donor Removed b	v Groundwat	er Extraction S	System	
TPH-Dx (mg/L)	0		Jyotom	
(iiig/2)	etimatod Mole	s of Hydrogon I	Donor Extracted	0
	-stimated wore	s of flydrogen i	Donor Extracted.	U
Hydrogen/Electron Acceptors				1
Constituent	Groundwater Concentration (mg/L)	Molecular Weight (g/mol)	Moles of H ₂ to Reduce Mole Analyte	Moles of H ₂ Through Treatment Area
Native Electron Acceptors				
Dissolved Oxygen	9.5	32	2	2,389,744
Nitrate (as Nitrogen)	2.3	62	3	1,990,593
Sulfate	6.0	96.1	4	1,008,345
Hydrogen Acceptor Ba	sed on Flux of	f System Operat	tion and Duration	5,388,682
Added Electron Acceptor	Amendment Added (pounds)	Assumed Metabolic Efficiency	Moles H₂/Lb.	Moles H ₂ Acceptor Added
AnoxEA-aq™	0	10%	11.6	0
		Added Hydrogen	Acceptor Subtotal	0
	Estimat	ed Moles of Hyd	lrogen Acceptor:	5,388,682
Estimated Oxidative Treat	ment Progress	Based on Desi	gn Assumptions	: 100%

NOTES:

L = liters; ft=feet; gal = gallons; 1ft3 = 28.32 L,mg/L = milligrams per liter; gpd = gallons per day; H2 = hydrogen.

Electron and hydrogen equivalents per Principles and Practices of Enhanced Anaerobic Bioremediation of Chlorinated

Solvents, Air Force Center for Environmental Excellence, August 2004.

Green boxes are treatment option variables for input.

Yellow boxes are treatment option outputs.

 Table A-9 - Oil House Area North Plume - Alternative C2, Scenario C2b

 Reduce Groundwater Diesel Concentration from 1.32 to 0.5 mg/L

 Restoration Time Frame Based on Electron Donor Demand Calculations

Treatment Target Area Specifications	i	Operational Assumptions			
Vertical Treatment (ft)	10	Ground	lwater Velocity (ft/d)	33	
Treatment Width (ft)	232	Extractio	on / Flux Rate (gpd)	171,890	Based on daily groundwater flow through the Oil House North plume area.
Treatment Length (ft) (parallel to GW flow)	825	Extraction / F	Flux Duration (days)	10,330	Adjusted until a minimum of 100 percent treatment was achieved.
Average Groundwater Concentration (mg/L)	1.32				
Effective Porosity	0.30				
Kd (L/kg)	2,250	Extractio	on Duration (years)	28	
Density (lbs/ft ³)	110	Treatmen	nt Flux Volume (gal)	1,065,325,132	Assumes groundwater is in contact with 10 feet of smear zone 60 percent of the time.
Effective Flux Treatment Duration	60%	Treatm	ent Flux Volume (L)	4,037,582,251	Assumes groundwater is in contact with 10 feet of smear zone 60 percent of the time.
Hydrogen/Electron Donor Availability					
Constituent	COC Mass (pounds)	Molecular Weight (g/mol)	Moles of H ₂ to Oxidize / Mole Analyte	Moles of H ₂ Donor In Treatment Area	
Native Electron Donors			1	1	
Estimated Total Soil TPH-Dx	272,054	226	49	26,811,483	Based on reducing the estimated groundwater concentration from 1.32 to 0.5 mg/L.
Estimated Total Groundwater TPH-Dx	29.4	226	49	2,893	Based on reducing the estimated groundwater concentration from 1.32 to 0.5 mg/L.
Estimated Moles of	Hydrogen Don	or Available for	Treatment (20%)) 5,362,875	Assumes 20% of TPH completely oxidized to CO2/H2O, 80% to volatile fatty acids and biomass incorporation (not completely oxidized
Hydrogen/Electron Donor Removed b	y Groundwat	er Extraction S	System		
TPH-Dx (mg/L)	0		-		
	Estimated Mole	es of Hydrogen	Donor Extracted:	0	
Hydrogen/Electron Acceptors					
Constituent	Groundwater Concentration (mg/L)	Molecular Weight (g/mol)	Moles of H ₂ to Reduce Mole Analyte	Moles of H ₂ Through Treatment Area	
Native Electron Acceptors					
Dissolved Oxygen	9.5	32	2	2,389,744	Based on upgradient groundwater concentrations at CM-MW-7S.
Nitrate (as Nitrogen)	2.3	62	3	1,990,593	Based on upgradient groundwater concentrations at OH-MW-8.
Sulfate	6.0	96.1	4	1,008,345	Based on reduction of average groundwater concentrations at HL-MW-1.
Hydrogen Acceptor Based on Flux of System Operation and Duration 5,388,682			tion and Duration	5,388,682	
Added Electron Acceptor	Amendment Added (pounds)	Assumed Metabolic Efficiency	Moles H₂/Lb.	Moles H ₂ Acceptor Added	
AnoxEA-aq™	0	10%	11.6	0	
		Added Hydrogen	Acceptor Subtotal	0	
	Estimat	ed Moles of Hyd	drogen Acceptor:	5,388,682	
Estimated Oxidative Treat	tment Progress	Based on Desi	ign Assumptions	: 100%	
	~		- •		-

NOTES:

L = liters; ft=feet; gal = gallons; 1ft3 = 28.32 L,mg/L = milligrams per liter; gpd = gallons per day; H2 = hydrogen.

Electron and hydrogen equivalents per Principles and Practices of Enhanced Anaerobic Bioremediation of Chlorinated

Solvents, Air Force Center for Environmental Excellence, August 2004.

Green boxes are treatment option variables for input.

Yellow boxes are treatment option outputs.

 Table A-10 - Oil House Area North Plume - Alternative C2, Scenario C2c

 Reduce Groundwater Diesel Concentration from 1.32 to 0.5 mg/L

 Restoration Time Frame Based on Electron Donor Demand Calculations

Treatment Target Area Specifications Operational Assumption		ptions			
Vertical Treatment (ft)	10	Ground	water Velocity (ft/d)	73	Increased flux by 122 percent from baseline conditions.
Treatment Width (ft)	232	Extractio	on / Flux Rate (gpd)	381,597	Based on daily groundwater flow through the Oil House North plume area.
Treatment Length (ft) (parallel to GW flow)	825	Extraction / F	- lux Duration (days)	4,745	Adjusted until a minimum of 100 percent treatment was achieved.
Average Groundwater Concentration (mg/L)	1.32				
Effective Porosity	0.30				
Kd (L/kg)	2,250	Extractio	on Duration (years)	13	
Density (lbs/ft ³)	110	Treatmer	nt Flux Volume (gal)	1,086,405,771	Assumes groundwater is in contact with 10 feet of smear zone 60 percent of the time.
Effective Flux Treatment Duration	60%	Treatm	ent Flux Volume (L)	4,117,477,871	Assumes groundwater is in contact with 10 feet of smear zone 60 percent of the time.
Hydrogen/Electron Donor Availability					
Constituent	COC Mass (pounds)	Molecular Weight (g/mol)	Moles of H ₂ to Oxidize / Mole Analyte	Moles of H ₂ Donor In Treatment Area	
Native Electron Donors			I	I	
Estimated Total Soil TPH-Dx	272,054	226	49	26,811,483	Based on reducing the estimated groundwater concentration from 1.32 to 0.5 mg/L.
Estimated Total Groundwater TPH-Dx	29.4	226	49	2,893	Based on reducing the estimated groundwater concentration from 1.32 to 0.5 mg/L.
Estimated Moles of Hydrogen Donor Available for Treatment (20%) 5,362			Treatment (20%)	5,362,875	Assumes 20% of TPH completely oxidized to CO2/H2O, 80% to volatile fatty acids and biomass incorporation (not completely oxidized).
Hydrogen/Electron Donor Removed b	y Groundwat	er Extraction S	System		
TPH-Dx (mg/L)	0				
	Estimated Mole	es of Hydrogen	Donor Extracted:	0	
Hydrogen/Electron Acceptors					
Constituent	Groundwater Concentration (mg/L)	Molecular Weight (g/mol)	Moles of H ₂ to Reduce Mole Analyte	Moles of H ₂ Through Treatment Area	
Native Electron Acceptors			P		
Dissolved Oxygen	9.5	32	2	2,437,032	Based on upgradient groundwater concentrations at CM-MW-7S.
Nitrate (as Nitrogen)	2.3	62	3	2,029,983	Based on upgradient groundwater concentrations at OH-MW-8.
Sulfate	6.0	96.1	4	1,028,298	Based on reduction of average groundwater concentrations at HL-MW-1.
Hydrogen Acceptor Based on Flux of System Operation and Duration 5,495,314			tion and Duration	5,495,314	
Added Electron Acceptor	Amendment Added (pounds)	Assumed Metabolic Efficiency	Moles H₂/Lb.	Moles H ₂ Acceptor Added	
AnoxEA-aq™	0	10%	11.6	0	
		Added Hydrogen	Acceptor Subtotal	0	
	Estimat	ed Moles of Hyd	lrogen Acceptor:	5,495,314	
Estimated Oxidative Treat	ment Progress	Based on Desi	gn Assumptions	102%	
	~		- •		-

NOTES:

L = liters; ft=feet; gal = gallons; 1ft3 = 28.32 L,mg/L = milligrams per liter; gpd = gallons per day; H2 = hydrogen.

Electron and hydrogen equivalents per Principles and Practices of Enhanced Anaerobic Bioremediation of Chlorinated

Solvents, Air Force Center for Environmental Excellence, August 2004.

Green boxes are treatment option variables for input.

Yellow boxes are treatment option outputs.

Table A-11 - Oil House Area North Plume - Alternative C3 Reduce Groundwater Diesel Concentration from 1.32 to 0.5 mg/L Restoration Time Frame Based on Electron Donor Demand Calculations

Treatment Target Area Specifications		Оре	rational Assum	ptions	
Vertical Treatment (ft)	10	Ground	water Velocity (ft/d)	33	
Treatment Width (ft)	232	Extraction	on / Flux Rate (gpd)	171,890	Based on daily groundwater flow through the Oil House North plume area.
Treatment Length (ft) (parallel to GW flow)	825	Extraction / F	Flux Duration (days)	9,746	Adjusted until a minimum of 100 percent treatment was achieved.
Average Groundwater Concentration (mg/L)	1.32	Injection Treat	tment Volume (gpd)	544	Total groundwater reinjection in gallons per day
Effective Porosity	0.30	Solution C	oncentration (mg/L)	200	Concentration of electron acceptor in milligrams per liter
Kd (L/kg)	2,250	Extraction/ Flu	ux Duration (years)	27	
Bulk Density (lbs/ft ³)	110	Treatmer	nt Flux Volume (gal)	1,005,094,736	Assumes groundwater is in contact with 10 feet of smear zone 60 percent of the time.
Effective Flux Treatment Duration	60%	Treatm	ent Flux Volume (L)	3,809,309,049	Assumes groundwater is in contact with 10 feet of smear zone 60 percent of the time.
Hydrogen/Electron Donor Availability					
Constituent	TPH Mass (pounds)	Molecular Weight (g/mol)	Moles of H ₂ to Oxidize / Mole Analyte	Moles of H₂ Donor In Treatment Area	
Native Electron Donors			I	1	
Estimated Total Soil TPH-Dx	272,054	226	49	26,811,483	Based on reducing the estimated groundwater concentration from 1.32 to 0.5 mg/L.
Estimated Total Groundwater TPH-Dx	29.4	226	49	2,893	Based on reducing the estimated groundwater concentration from 1.32 to 0.5 mg/L.
Estimated Moles of	Hydrogen Don	or Available for	Treatment (20%)	5,362,875	Assumes 20% of TPH completely oxidized to CO2/H2O, 80% to volatile fatty acids and biomass incorporation (not completely oxidized)
Hydrogen/Electron Donor Removed by	/ Groundwate	r Extraction Sv	/stem		
TPH-Dx (mg/L)	0				
E	Estimated Mole	es of Hydrogen I	Donor Extracted:	0	
Hydrogen/Electron Acceptors					
Constituent	Groundwater Concentration (mg/L)	Molecular Weight (g/mol)	Moles of H ₂ to Reduce Mole Analyte	Moles of H ₂ Through Treatment Area	
Native Electron Acceptors					
Dissolved Oxygen	9.5	32	2	2,254,635	Based on upgradient groundwater concentrations at CM-MW-7S.
Nitrate (as Nitrogen)	2.3	62	3	1,878,051	Based on upgradient groundwater concentrations at OH-MW-8.
Sulfate	6.0	96.1	4	951,336	Based on reduction of average groundwater concentrations at HL-MW-1.
Hydrogen Acceptor Based on Flux of System Operation and Duration 5,084,022					
Added Electron Acceptor	Amendment Added (pounds/day)	Assumed Metabolic Efficiency	Moles H₂/Lb.	Moles H ₂ Acceptor Added	
Hydrogen Peroxide	0.90	20%	6.5	286,570	Assumes injecting 544 gallons of water per day at a H2O2 concentration of 200 mg/L for 27 years years.
AnoxEA-aq™	0	10%	11.6	C	
		Added Hydrogen	Acceptor Subtotal	286,570	
	Estimat	ed Moles of Hyd	Irogen Acceptor:	5,370,592	
Estimated Oxidative Treat	ment Progress	Based on Desig	n Assumptions:	100%]

NOTES:

L = liters; ft=feet; gal = gallons; 1ft3 = 28.32 L,mg/L = milligrams per liter; gpd = gallons per day; H2 = hydrogen.

Electron and hydrogen equivalents per Principles and Practices of Enhanced Anaerobic Bioremediation of Chlorinated

Solvents, Air Force Center for Environmental Excellence, August 2004.

Green boxes are treatment option variables for input.

Yellow boxes are treatment option outputs.

Reduction for oil range hydrocarbons was not calculated since the current concentration of 0.25 mg/L is less than MTCA standards,

and the diesel range hydrocarbons would be preferentially reduced.

Table A-12 - Oil House Area North Plume - Alternative C4 Reduce Groundwater Diesel Concentration from 1.32 to 0.5 mg/L Restoration Time Frame Based on Electron Donor Demand Calculations

Variation (h)10Concritication (Horison (Treatment Target Area Specifications	pecifications Operational Assumptions		ptions		
Instant With (h) 222 Exactor / Flux Rate (a) 226/30 38-ased on daily groundwater flow through the OI House North jume area. Instant Unit (h) 328 Exactor / Flux Duration (days) 7.158 Adjusted unit a minimum of 100 percent treatment was achieved. Instant Entexts Prova 0.30 Exactor / Flux Duration (days) 7.158 Adjusted unit a minimum of 100 percent treatment was achieved. Visit (Job) 0.30 Exactor / Flux Duration (days) 7.158 Adjusted unit a minimum of 100 percent treatment was achieved. Visit (Job) 0.30 Exactor / Flux Duration (days) 7.158 Adjusted unit a minimum of 100 percent treatment was achieved. Visit (Job) 0.00 Exactor / Flux Duration (days) 3.089.334.753 Adjusted unit a minimum of 100 percent treatment was achieved. Marke Electron Donor Availability Treatment Plux Values (Jih, Doord Moles of H, Doord Treatment Area Anaahye Assumes groundwater is in contact with 10 feet of smear zone 60 percent of the time. Estimated Moles of Hydrogen Donor X 282.4 28.9 4.9 2.88 Assumes groundwater concentration from 1.32 to 0.5 mgL Estimated Moles of Hydrogen Concert X analyse Assumes groundwater concentration from 1.32 to 0.5 mgL Assumes groundwater co	Vertical Treatment (ft)	10	Ground	water Velocity (ft/d)	47	7 Increased flux by 43 percent from baseline conditions.
Instant Langh, P(t) guardial to CWI flow) 882 Litraction / Flux Duration (right) 7,155 Litraction / Flux Duration (right) 7,155 Litraction / Flux Duration (right) 7,155 Litraction / Flux Duration (right) 7,155 Adjusted until a minimum of 100 percent treatment was achieved. Very and Count web Count with Count of the Iman. 0.000 1.000.233.447 Assumes groundwater is in contact with 10 feet of smear zone 60 percent of the Iman. Iterative Flux Treatment Duration 0.001 Treatment Flux Volume () 3.099.333.475 Hydrogen/Electron Donor Availability Molec of H ₁ on Moles of H	Treatment Width (ft)	232	Extractio	n / Flux Rate (gpd)	245,803	Based on daily groundwater flow through the Oil House North plume area.
Average Groundwater Concentration (mp1) 1.32 Effective Provision 0.30 Kill (Xa) 2.260 Denaty (Berly 0.00 Treatment Flux Volume (g) 1.399.334,763 Assumes groundwater is in contact with 10 feet of smear zone 60 percent of the time. Hydrogen/Electron Donor Availability Treatment Flux Volume (g) 3.999.334,763 Kettive Electron Donor Availability Moles of H, too Noles of H, too Estimated Total Soundwater Flux Volume (g) 0.568 / 474 2.66 Estimated Total Soundwater Flux Volume (g) 3.992.334,763 Assumes groundwater is in contact with 10 feet of smear zone 60 percent of the time. Kative Electron Donors Treatment Flux Volume (g) 0.568 / 474 2.66 Estimated Total Soundwater Flux Conton Street 2.26 49 2.883 Based on reducing the estimated groundwater concentration from 1.32 to 0.5 mg1. Estimated Total Soundwater Flux Conton Street 2.26 49 2.883 Based on reducing the estimated groundwater concentration from 1.32 to 0.5 mg1. Hydrogen/Electron Acceptors Estimated Moles of Hydrogen Donor Extracted: 0 Moles of H, Toeogh Moles of H, Toeogh Groundwater (groundwater Streegen) 0.5 2 2	Treatment Length (ft) (parallel to GW flow)	825	Extraction / F	lux Duration (days)	7,155	Adjusted until a minimum of 100 percent treatment was achieved.
Effective Purceive 0.30 (d) (L) Density (beht) 0.30 (d) (L) Density (beht) Extraction Duration (years) 0.30 (d) 1.055.233.447 Assumes groundwater is in contact with 10 feet of smear zone 60 percent of the time. Hydrogen/Electron Donor Availability meter Flux Volume (L) Treatment Flux Volume (L) (gounds) 3.980.333.447 (Moles of H, to Native Flux Volume (L) (gounds) Moles of H, to Native Flux Volume (L) (gounds) Saude on reducing the estimated groundwater concentration from 1.32 to 0.5 mgL. Estimated Moles of Hydrogen Donor Available for Treatment (20%) (mgL) Saude on reducing the estimated groundwater concentration from 1.32 to 0.5 mgL. Hydrogen/Electron Acceptors Fradmet Moles of H, to (mgL) Moles of H, to Native Flux Volume (mgL) Moles of H, to Native Flux Volume (Gounds) Moles H, to Native Flux	Average Groundwater Concentration (mg/L)	1.32				
kd (Ag) Density (ber) 2.260 Testement Flux Volume (b) Treatment Flux Volume (c) 3.399.334,763 3 Hydrogen/Electron Donor Availability Treatment Flux Volume (c) 3.399.334,763 Assumes groundwater is in contact with 10 feet of smear zone 60 percent of the time. Hydrogen/Electron Donor Availability Molecular (cound) Molecular Weight (g/mo) Molecular Size / Volume (c) Analyte Moles of Hy to Analyte Based on reducing the estimated groundwater concentration from 1.32 to 0.5 mg/L. Estimated Tool Source 272.054 226 49 2.883 Based on reducing the estimated groundwater concentration from 1.32 to 0.5 mg/L. Estimated Tool Source 272.054 226 49 2.883 Based on reducing the estimated groundwater concentration from 1.32 to 0.5 mg/L. Estimated Moles of Hydrogen Donor Available for Treatment (20%) 5.362.875 Assumes 20% of TPH completely oxidized to CO2/H2O, 80% to volatile faty acids and biomass incorporation (not completely or freatment Area Hydrogen/Electron Acceptors Treatment Area Treatment Area Treatment Area Native Electron Acceptors Moles of Hydrogen Donor Extracted: 0 Moles of Hydrogen Acceptor 3.37,536 Moles of hydrogen Acceptor 3.37,536 Nat	Effective Porosity	0.30				
Density (bsth ²) Teatment Flux Volume (gu) 10.552.33.47 Assumes groundwater is in contract with 10 feet of smear zone 60 percent of the time. Hydrogen/Electron Donor Availability Treatment Flux Volume (g) 10.552.33.47 Assumes groundwater is in contract with 10 feet of smear zone 60 percent of the time. Hydrogen/Electron Donor Availability Molecular (gound) Molecular (South Analyte) Moles of H ₂ Donor Analyte Moles Donor Analyte	Kd (L/kg)	2,250	Extractio	n Duration (years)	20	
Effective Plux Treatment Duration 00% Treatment Plux Valume (U) 3.999_334_763 Assumes groundwater is in contact with 10 feet of smear zone 60 percent of the time. Hydrogen/Electron Donor Availability Constituent Constituent Molecular Moles of H ₃ to (pound) Moles (pound) Moles (pound) Moles (poun	Density (lbs/ft ³)	110	Treatmen	t Flux Volume (gal)	1,055,233,447	Assumes groundwater is in contact with 10 feet of smear zone 60 percent of the time.
Hydrogen/Electron Donor Availability Use Use Solution in Treatment Area Native Electron Donors Analyte Analyte Estimated Total Sol TPH-Dx 272.054 228 49 228.314.85 Based on reducing the estimated groundwater concentration from 1.32 to 0.5 mg/L. Estimated Total Sou TPH-Dx 274.054 228 49 28.83 Estimated Total Groundwater TPH-Dx 274.054 228 49 28.83 Based on reducing the estimated groundwater concentration from 1.32 to 0.5 mg/L. Estimated Total Groundwater TPH-Dx 274.054 228 49 28.83 Based on reducing the estimated groundwater concentration from 1.32 to 0.5 mg/L. Hydrogen/Electron Door Remoted by Corundwater TPH-Dx (mg/L) 0 TPH-Dx (mg/L) 0 TPH-Dx (mg/L) 0 TPH-Dx (mg/L) 0 Transpin 0 TPH-Dx (mg/L) <	Effective Flux Treatment Duration	60%	Treatme	ent Flux Volume (L)	3,999,334,763	Assumes groundwater is in contact with 10 feet of smear zone 60 percent of the time.
Constituent COC Mass (pounds) Moles of H ₁ to Dialize / Moles (pounds) Moles of H ₂ to Dialize / Moles / H ₂ to Dialize / Mol	Hydrogen/Electron Donor Availability	1				
Native Electron Donors 272,054 226 49 26,811,463 Estimated Total Soil TPH-Dx 224 226 49 2,833 Based on reducing the estimated groundwater concentration from 1.32 to 0.5 mg/L. Estimated Moles of Hydrogen Donor Available for Treatment (20%) 5,362,875 Hydrogen/Electron Donor Removed by Groundwater Extraction System TPH-Dx (mg/L) 0 Estimated Moles of Hydrogen Donor Extracted: 0 Hydrogen/Electron Acceptors Moles of Hydrogen One Extracted: 0 Native Electron Acceptors Moles of Hydrogen (groundwater concentration (mg/L) Moles of Hydrogen (groundwater concentration st CM-MW-75, 200, 200, 200, 200, 200, 200, 200, 20	Constituent	COC Mass (pounds)	Molecular Weight (g/mol)	Moles of H ₂ to Oxidize / Mole Analyte	Moles of H ₂ Donor In Treatment Area	
Estimated Total Soil TPH-Dx 272.054 226 49 2.883 Estimated Total Groundwater TPH-Dx 29.4 226 49 2.883 Based on reducing the estimated groundwater concentration from 1.32 to 0.5 mg/L. Based on reducing the estimated groundwater concentration from 1.32 to 0.5 mg/L. Hydrogen/Electron Door Removed by Groundwater Extraction System 5,362,875 TPH-Dx (mg/L) 0 Estimated Moles of Hydrogen Donor Extracted: 0 Hydrogen/Electron Acceptors Moles of H, to remember (gm/L) Constituent Groundwater (gm/L) Moles of H, to remember Area Native Electron Acceptors Moles of H, to remember Area Dissolved Dxygen 9.5 32 2 2,367,106 Native Electron Acceptors	Native Electron Donors					
Estimated Total Groundwater TPH-Dx 29.4 22.6 49 2,803 Based on reducing the estimated groundwater concentration from 1.32 to 0.5 mg/L. Estimated Moles of Hydrogen Donor Available for Treatment (20%) 5,362,875 Hydrogen/Electron Donor Removed by Groundwater Extraction System TPH-Dx (mg/L) 0 Estimated Moles of Hydrogen Donor Extracted: 0 Hydrogen/Electron Acceptors 0 Image: Constituent Groundwater Concentration (mg/L) Moles of H, to Reduce Mole Analyte (g/mol) Native Electron Acceptors 0 Dissoved Oxygen 9.5 32 2 1 2.3 62 3 1 4 998,733 Sulfate 6.0 96.1 4 Hydrogen Acceptor Based on Flux of System Operation and Duration 5,337,636 Moles Hyt.b. Moles Hyt.b. Moles Hyt.b. Added Electron Acceptor Amendment Added Metabolic (pounds) Moles Hyt.b. Added Electron Acceptor Amendment Added Metabolic (friction and Duration 6, 5,337,636 Moles Hyt.b. Estimated Moles of Hydrogen Acceptor 5,337,636 Estimated Oxidative Treatment Progress Based on Degin Assumptions: 10%	Estimated Total Soil TPH-Dx	272,054	226	49	26,811,483	Based on reducing the estimated groundwater concentration from 1.32 to 0.5 mg/L.
Estimated Moles of Hydrogen Donor Available for Treatment (20%) 5,362,875 Assumes 20% of TPH completely oxidized to CO2/H2O, 80% to volatile fatty acids and biomass incorporation (not completely or completely oxidized to CO2/H2O, 80% to volatile fatty acids and biomass incorporation (not completely or completely oxidized to CO2/H2O, 80% to volatile fatty acids and biomass incorporation (not completely or completely oxidized to CO2/H2O, 80% to volatile fatty acids and biomass incorporation (not completely or completely oxidized to CO2/H2O, 80% to volatile fatty acids and biomass incorporation (not completely or completely oxidized to CO2/H2O, 80% to volatile fatty acids and biomass incorporation (not completely or completely oxidized to CO2/H2O, 80% to volatile fatty acids and biomass incorporation (not completely or completely oxidized to CO2/H2O, 80% to volatile fatty acids and biomass incorporation (not completely or completely oxidized to CO2/H2O, 80% to volatile fatty acids and biomass incorporation (not completely or completely oxidized to CO2/H2O, 80% to volatile fatty acids and biomass incorporation (not completely or completely oxidized to CO2/H2O, 80% to volatile fatty acids and biomass incorporation (not completely or completely oxidized to CO2/H2O, 80% to volatile fatty acids and biomass incorporation (not completely or completely oxidized to CO2/H2O, 80% to volatile fatty acids and biomass incorporation (not completely oxidized to CO2/H2O, 80% to volatile fatty acids and biomass incorporation (not completely oxidized to CO2/H2O, 80% to volatile fatty acids and biomass incorporation (Not completely oxidized to CO2/H2O, 80% to volatile fatty acids and biomass incorporation (Not completely oxidized to CO2/H2O, 80% to volatile fatty acids and biomass incorporation (Not completely oxidized to CO2/H2O, 80% to volatile fatty acids and biomass incorpoxidicad to Procepoxide (Note) (Notes H, to completely o	Estimated Total Groundwater TPH-Dx	29.4	226	49	2,893	Based on reducing the estimated groundwater concentration from 1.32 to 0.5 mg/L.
Hydrogen/Electron Donor Removed by Groundwater Extraction System TPH-Dx (mg/L) 0 Estimated Moles of Hydrogen Donor Extracted: 0 Hydrogen/Electron Acceptors Constituent Groundwater Concentration (mg/L) Moles of Hydrogen Acceptors Based on upgradient groundwater concentrations at CM-MW-7S. Dissolved Oxygen 9.5 3.2 2.367.060 Native Electron Acceptors Based on upgradient groundwater concentrations at CM-MW-7S. Nitrate (as Nitrogen) 2.3 62 3 1.971.737 Based on reduction of average groundwater concentrations at OH-MW-8. Based on reduction of average groundwater concentrations at HL-MW-1. Hydrogen Acceptor Based on Flux of System Operation and Duration Added Electron Acceptor Amendment Added Metabolic Efficiency Moles HyLc. Moles HyLc. Efficiency Moles HyLc. Signare Acceptor Subtotal O Moles HyLc. Acceptor Added Hydrogen Acceptor Subtotal Estimated Moles of Hydrogen Acceptor Signare Based on Design Asceptor: 5,337,636 Disolved Colspan="2">Operation and Duration Added Hydrogen Acceptor Subtotal Disolved Colladitive Treatment Progress Based on Design Asceptor: 5,337,636	Estimated Moles of	Hydrogen Dor	nor Available for	Treatment (20%) 5,362,875	Assumes 20% of TPH completely oxidized to CO2/H2O, 80% to volatile fatty acids and biomass incorporation (not completely oxi
TPH-Dx (mg/L) 0 Estimated Moles of Hydrogen Donor Extracted: 0 Hydrogen/Electron Acceptors Moles of H ₂ to Reduce Mole Analyte Moles of H ₂ to Through Treatment Area Native Electron Acceptors Moles of H ₂ to (mg/L) Moles of H ₂ to Reduce Mole Analyte Based on upgradient groundwater concentrations at CM-MW-7S. Dissolved Oxygen 9.5 32 2 2,367,106 Based on upgradient groundwater concentrations at CM-MW-7S. Nitrate (as Nitrogen) 2.3 62 3 1,971,737 Based on upgradient groundwater concentrations at CM-MW-7S. Suifate 6.0 96.1 4 998,733 Based on reduction of average groundwater concentrations at HL-MW-1. Hydrogen Acceptor Based on Flux of System Operation and Duration Added Hydrogen Acceptor Subtotal Moles H ₂ Lb. Moles H ₂ Lcceptor Added Moles H ₂ Lcceptor S,337,636 Moles H ₂ Acceptor S,337,636 AmoxEA-aq TM 0 10% 11.6 0 Added Hydrogen Acceptor Subtotal 0 0 5,337,636 Estimated Oxidative Treatment Progress Based on Design Assumptions: 100% 0	Hydrogen/Electron Donor Removed b	ov Groundwat	er Extraction S	ovstem		
Estimated Moles of Hydrogen Donor Extracted: 0 Hydrogen/Electron Acceptors Groundwater Constituent Molecular Concentration (mg/L) Moles of H ₂ to Reduce Mole Analyte Moles of H ₂ to Reduce Mole Analyte Moles of H ₂ to Through Treatment Area Native Electron Acceptors 0 0 0.5 32 2 2,367,106 Dissolved Oxygen 9.5 32 2 2,367,106 Based on upgradient groundwater concentrations at CM-MW-7S. Nitrate (as Nitrogen) 2.3 62 3 1,971,737 Based on upgradient groundwater concentrations at OH-MW-8. Sulfate 6.0 96.1 4 998,793 Based on reduction of average groundwater concentrations at HL-MW-1. Hydrogen Acceptor Based on Flux of System Operation and Duration Added (pounds) 5,337,636 Moles H ₂ Acceptor Added Moles H ₂ Acceptor Added AnoxEA-aq TM 0 10% 11.6 0 Estimated Moles of Hydrogen Acceptor Subtatal Distanted Moles of Hydrogen Acceptor: 5,337,636	TPH-Dx (mg/L)	0				1
Hydrogen/Electron Acceptors Constituent Groundwater Concentration (mg/L) Moles of H ₂ to Reduce Mole Analyte Moles of H ₂ to Through Treatment Area Native Electron Acceptors Moles of H ₂ to Dissolved Oxygen 9.5 3.2 2.367,106 Nitrate (as Nitrogen) 2.3 6.0 9.6 3.2 2.367,106 Based on upgradient groundwater concentrations at CM-MW-7S. Based on upgradient groundwater concentrations at CM-MW-7S. Sulfate 6.0 9.1 4 998,793 Hydrogen Acceptor Based on Flux of System Operation and Duration Added Metabolic (pounds) Amendment Added Metabolic Efficiency Moles H ₂ Lb. Moles H ₂ Acceptor Added AnoxEA-aq TM 0 10% 11.6 0 0 0 1.6 0 0 1.6 0 0 5,337,636 5,337,636 5,337,636 5,337,636 5,337,636 5,337,636 5,337,636 5,337,636 5,337,636 5,337,636 5,337,636 5,337,636 5,337,636 5,337,636 5,337,636		Estimated Mole	es of Hydrogen [Donor Extracted:	0	
Constituent Groundwater Concentration (mg/L) Molecular Weight (g/mol) Moles of H ₂ Reduce Mole Analyte Through Treatment Area Native Electron Acceptors 9.5 32 2 2,367,106 Based on upgradient groundwater concentrations at CM-MW-7S. Dissolved Oxygen 9.5 32 2 2,367,106 Based on upgradient groundwater concentrations at CM-MW-7S. Nitrate (as Nitrogen) 2.3 62 3 1,971,737 Based on upgradient groundwater concentrations at OH-MW-8. Sulfate 6.0 96.1 4 998,793 Hydrogen Acceptor Based on Flux of System Operation and Duration Added Lipctron Acceptor Amendment Added Assumed Metabolic Efficiency Moles H ₂ Lb. AnoxEA-aq TM 0 10% 11.6 0 Estimated Moles of Hydrogen Acceptor: 5,337,636	Hydrogen/Electron Acceptors					
Native Electron Acceptors 9.5 32 2 2,367,106 Based on upgradient groundwater concentrations at CM-MW-7S. Nitrate (as Nitrogen) 2.3 62 3 1,971,737 Based on upgradient groundwater concentrations at OH-MW-8. Sulfate 6.0 96.1 4 998,793 Hydrogen Acceptor Based on Flux of System Operation and Duration 5,337,636 Added Electron Acceptor Amendment Added (pounds) Assumed Metabolic Efficiency Moles H ₂ /Lb. Moles H ₂ /Lb. AnoxEA-aq TM 0 10% 11.6 0 Conceptor Estimated Moles of Hydrogen Acceptor Subtotal 0 0 Estimated Moles of Hydrogen Acceptors: 5,337,636 0	Constituent	Groundwater Concentration (mg/L)	Molecular Weight (g/mol)	Moles of H ₂ to Reduce Mole Analyte	Moles of H ₂ Through Treatment Area	
Dissolved Oxygen 9.5 32 2 2,367,106 Based on upgradient groundwater concentrations at CM-MW-7S. Nitrate (as Nitrogen) 2.3 62 3 1,971,737 Based on upgradient groundwater concentrations at OH-MW-8. Sulfate 6.0 96.1 4 998,793 Hydrogen Acceptor Based on Flux of System Operation and Duration 5,337,636 Based on reduction of average groundwater concentrations at HL-MW-1. Added Electron Acceptor Amendment Added (pounds) Moles H _z /Lb. Efficiency Moles H _z /Lb. Efficiency Moles H _z /Lb. Moles H _z Acceptor Added AnoxEA-aq TM 0 10% 11.6 0 0 0 0 0 0 Estimated Moles of Hydrogen Acceptors 5,337,636 0 0 0 0 0 0 0 Estimated Oxidative Treatment Progress Based on Design Assumptions: 100% 10% 100% 100% 100%	Native Electron Acceptors					1
Nitrate (as Nitrogen) 2.3 62 3 1,971,737 Based on upgradient groundwater concentrations at OH-MW-8. Sulfate 6.0 96.1 4 998,793 Based on reduction of average groundwater concentrations at HL-MW-1. Hydrogen Acceptor Based on Flux of System Operation and Duration 5,337,636 Moles H ₂ /Lb.	Dissolved Oxygen	9.5	32	2	2,367,106	Based on upgradient groundwater concentrations at CM-MW-7S.
Sulfate 6.0 96.1 4 998,793 Based on reduction of average groundwater concentrations at HL-MW-1. Hydrogen Acceptor Based on Flux of System Operation and Duration 5,337,636 Moles H _z Acceptor Added Added Electron Acceptor Amendment Added (pounds) Assumed Metabolic Efficiency Moles H _z /Lb. Moles H _z Acceptor Added AnoxEA-aq TM 0 10% 11.6 0 Estimated Moles of Hydrogen Acceptor: 5,337,636 5,337,636 Estimated Oxidative Treatment Progress Based on Design Assumptions: 100%	Nitrate (as Nitrogen)	2.3	62	3	1,971,737	Based on upgradient groundwater concentrations at OH-MW-8.
Hydrogen Acceptor Based on Flux of System Operation and Duration 5,337,636 Added Electron Acceptor Amendment Added (pounds) Assumed Metabolic Efficiency Moles Hz/Lb. Moles Hz Acceptor Added AnoxEA-aq TM 0 10% 11.6 0 Added Hydrogen Acceptor Subtotal 0 Estimated Moles of Hydrogen Acceptor: 5,337,636 Estimated Moles of Hydrogen Acceptor: 5,337,636	Sulfate	6.0	96.1	4	998,793	Based on reduction of average groundwater concentrations at HL-MW-1.
Added Electron Acceptor Amendment Added (pounds) Assumed Metabolic Efficiency Moles H₂ Acceptor Added AnoxEA-aq™ 0 10% 11.6 0 Added Hydrogen Acceptor Subtotal 0 5,337,636 0 Estimated Oxidative Treatment Progress Based on Design Assumptions: 100% 100%	Hydrogen Acceptor B	ased on Flux o	f System Operat	ion and Duration	5,337,636	
AnoxEA-aq™ 0 10% 11.6 0 Added Hydrogen Acceptor Subtotal 0 Estimated Moles of Hydrogen Acceptor: 5,337,636 Estimated Oxidative Treatment Progress Based on Design Assumptions: 100%	Added Electron Acceptor	Amendment Added (pounds)	Assumed Metabolic Efficiency	Moles H ₂ /Lb.	Moles H ₂ Acceptor Added	r
Added Hydrogen Acceptor Subtotal 0 Estimated Moles of Hydrogen Acceptor: 5,337,636 Estimated Oxidative Treatment Progress Based on Design Assumptions: 100%	AnoxEA-aq™	0	10%	11.6	0	
Estimated Moles of Hydrogen Acceptor: 5,337,636 Estimated Oxidative Treatment Progress Based on Design Assumptions: 100%			Added Hydrogen A	Acceptor Subtotal	0	
Estimated Oxidative Treatment Progress Based on Design Assumptions: 100%		Estimat	ed Moles of Hyd	rogen Acceptor:	5,337,636	
	Estimated Oxidative Trea	tment Progress	Based on Desig	gn Assumptions	: 100%	1

NOTES:

L = liters; ft=feet; gal = gallons; 1ft3 = 28.32 L,mg/L = milligrams per liter; gpd = gallons per day; H2 = hydrogen.

Electron and hydrogen equivalents per Principles and Practices of Enhanced Anaerobic Bioremediation of Chlorinated

Solvents, Air Force Center for Environmental Excellence, August 2004.

Green boxes are treatment option variables for input.

Yellow boxes are treatment option outputs.

Table A-13 - Oil House Area South Plume - Alternative C1 Reduce Groundwater Diesel Concentration from 0.88 to 0.5 mg/L Restoration Time Frame Based on Electron Donor Demand Calculations

Treatment Target Area Specifications		Oper	Operational Assumptions		
Vertical Treatment (ft)	10	Ground	water Velocity (ft/d)	33	
Treatment Width (ft)	136	Extracti	on / Flux Rate (gpd)	100,415	Based on daily groundwater flow through the Oil House South plume area.
Treatment Length (ft) (parallel to GW flow)	250	Extraction / I	- lux Duration (days)	1,460	Adjusted until a minimum of 100 percent treatment was achieved.
Average Groundwater Concentration (mg/L)	0.88				
Effective Porosity	0.30				
Kd (L/kg)	2,250	Extractio	on Duration (years)	4	
Density (lbs/ft ³)	110	Treatme	nt Flux Volume (gal)	87,963,113	Assumes groundwater is in contact with 10 feet of smear zone 60 percent of the time.
Effective Flux Treatment Duration	60%	Treatm	ent Flux Volume (L)	333,380,196	Assumes groundwater is in contact with 10 feet of smear zone 60 percent of the time.
Hydrogen/Electron Donor Availability					
Constituent	COC Mass (pounds)	Molecular Weight (g/mol)	Moles of H ₂ to Oxidize / Mole Analyte	Moles of H ₂ Donor In Treatment Area	
Native Electron Donors					
Estimated Total Soil TPH-Dx	22,318	226	49	2,199,488	Based on reducing the estimated groundwater concentration from 0.88 to 0.5 mg/L.
Estimated Total Groundwater TPH-Dx	2.4	226	49	237	Based on reducing the estimated groundwater concentration from 0.88 to 0.5 mg/L.
Estimated Moles of	Hydrogen Don	or Available fo	r Treatment (20%) 439,945	Assumes 20% of TPH completely oxidized to CO2/H2O, 80% to volatile fatty acids and biomass incorporation (not completely oxidized
Hydrogen/Electron Donor Removed b	y Groundwat	er Extraction	System		
TPH-Dx (mg/L)	0				
	Estimated Mole	es of Hydrogen	Donor Extracted	0	
Hydrogen/Electron Acceptors					
Constituent	Groundwater Concentration (mg/L)	Molecular Weight (g/mol)	Moles of H ₂ to Reduce Mole Analyte	Moles of H ₂ Through Treatment Area	
Native Electron Acceptors					
Dissolved Oxygen	9.5	32	2	197,319	Based on upgradient groundwater concentrations at CM-MW-7S.
Nitrate (as Nitrogen)	2.3	62	3	164,362	Based on upgradient groundwater concentrations at OH-MW-8.
Sulfate	6.0	96.1	4	83,258	Based on reduction of average groundwater concentrations at HL-MW-1.
Hydrogen Acceptor Ba	ased on Flux of	f System Opera	tion and Duration	444,940	
Added Electron Acceptor	Amendment Added (pounds)	Assumed Metabolic Efficiency	Moles H ₂ /Lb.	Moles H ₂ Acceptor Added	
AnoxEA-aq™	0	10%	11.6	0	
		Added Hydrogen	Acceptor Subtotal	0	
	Estimat	ed Moles of Hy	drogen Acceptor	444,940	
Estimated Oxidative Treat	ment Progress	s Based on Des	ign Assumptions	: 101%]
NOTES: L = liters: ft=feet: gal = gallons: 1ft3 = 28.32 L.mg/L =	= milligrams per liter	r: gpd = gallons per g	dav: H2 = hvdrogen		

Electron and hydrogen equivalents per Principles and Practices of Enhanced Anaerobic Bioremediation of Chlorinated

Solvents, Air Force Center for Environmental Excellence, August 2004.

Green boxes are treatment option variables for input.

Yellow boxes are treatment option outputs.

 Table A-14 - Oil House Area South Plume - Alternative C2, Scenario C2a

 Reduce Groundwater Diesel Concentration from 0.88 to 0.5 mg/L

 Restoration Time Frame Based on Electron Donor Demand Calculations

Treatment Target Area Specifications		Oper	ational Assum	otions	
Vertical Treatment (ft)	10	Ground	lwater Velocity (ft/d)	33	
Treatment Width (ft)	136	Extracti	on / Flux Rate (gpd)	100,415	Based on daily groundwater flow through the Oil House South plume area.
Treatment Length (ft) (parallel to GW flow)	250	Extraction / F	- lux Duration (days)	1,460	Adjusted until a minimum of 100 percent treatment was achieved.
Average Groundwater Concentration (mg/L)	0.88				
Effective Porosity	0.30				
Kd (L/kg)	2,250	Extractio	on Duration (years)	4	
Density (lbs/ft ³)	110	Treatmer	nt Flux Volume (gal)	87,963,113	Assumes groundwater is in contact with 10 feet of smear zone 60 percent of the time.
Effective Flux Treatment Duration	60%	Treatm	ent Flux Volume (L)	333,380,196	Assumes groundwater is in contact with 10 feet of smear zone 60 percent of the time.
Hydrogen/Electron Donor Availability					
Constituent	COC Mass (pounds)	Molecular Weight (g/mol)	Moles of H ₂ to Oxidize / Mole Analyte	Moles of H ₂ Donor In Treatment Area	
Native Electron Donors					
Estimated Total Soil TPH-Dx	22,318	226	49	2,199,488	Based on reducing the estimated groundwater concentration from 0.88 to 0.5 mg/L.
Estimated Total Groundwater TPH-Dx	2.4	226	49	237	Based on reducing the estimated groundwater concentration from 0.88 to 0.5 mg/L.
Estimated Moles of	Hydrogen Don	or Available for	r Treatment (20%) 439,945	Assumes 20% of TPH completely oxidized to CO2/H2O, 80% to volatile fatty acids and biomass incorporation (not completely oxidized
Hydrogen/Electron Donor Removed b	y Groundwat	er Extraction	System		
TPH-Dx (mg/L)	0				
E	Estimated Mole	es of Hydrogen	Donor Extracted	0	
Hydrogen/Electron Acceptors					
Constituent	Groundwater Concentration (mg/L)	Molecular Weight (g/mol)	Moles of H ₂ to Reduce Mole Analyte	Moles of H₂ Through Treatment Area	
Native Electron Acceptors					
Dissolved Oxygen	9.5	32	2	197,319	Based on upgradient groundwater concentrations at CM-MW-7S.
Nitrate (as Nitrogen)	2.3	62	3	164,362	Based on upgradient groundwater concentrations at OH-MW-8.
Sulfate	6.0	96.1	4	83,258	Based on reduction of average groundwater concentrations at HL-MW-1.
Hydrogen Acceptor Ba	sed on Flux of	f System Opera	tion and Duration	444,940	
Added Electron Acceptor	Amendment Added (pounds)	Assumed Metabolic Efficiency	Moles H ₂ /Lb.	Moles H ₂ Acceptor Added	
AnoxEA-aq™	0	10%	11.6	0	
		Added Hydrogen	Acceptor Subtotal	0	
	Estimat	ed Moles of Hyd	drogen Acceptor	444,940	
Estimated Oxidative Treat	ment Progress	Based on Desi	ign Assumptions	: 101%	
NOTES:			less 110 budes ere		

Electron and hydrogen equivalents per Principles and Practices of Enhanced Anaerobic Bioremediation of Chlorinated

Solvents, Air Force Center for Environmental Excellence, August 2004.

Green boxes are treatment option variables for input.

Yellow boxes are treatment option outputs.

Table A-15 - Oil House Area South Plume - Alternative C2, Scenario C2b Reduce Groundwater Diesel Concentration from 0.88 to 0.5 mg/L Restoration Time Frame Based on Electron Donor Demand Calculations

Treatment Target Area Specifications		Oper	ational Assum	otions	
Vertical Treatment (ft)	10	Ground	lwater Velocity (ft/d)	33	
Treatment Width (ft)	136	Extracti	on / Flux Rate (gpd)	100,415	Based on daily groundwater flow through the Oil House South plume area.
Treatment Length (ft) (parallel to GW flow)	250	Extraction / F	- lux Duration (days)	1,460	Adjusted until a minimum of 100 percent treatment was achieved.
Average Groundwater Concentration (mg/L)	0.88				
Effective Porosity	0.30				
Kd (L/kg)	2,250	Extractio	on Duration (years)	4	
Density (lbs/ft ³)	110	Treatmer	nt Flux Volume (gal)	87,963,113	Assumes groundwater is in contact with 10 feet of smear zone 60 percent of the time.
Effective Flux Treatment Duration	60%	Treatm	ent Flux Volume (L)	333,380,196	Assumes groundwater is in contact with 10 feet of smear zone 60 percent of the time.
Hydrogen/Electron Donor Availability					
Constituent	COC Mass (pounds)	Molecular Weight (g/mol)	Moles of H ₂ to Oxidize / Mole Analyte	Moles of H ₂ Donor In Treatment Area	
Native Electron Donors					
Estimated Total Soil TPH-Dx	22,318	226	49	2,199,488	Based on reducing the estimated groundwater concentration from 0.88 to 0.5 mg/L.
Estimated Total Groundwater TPH-Dx	2.4	226	49	237	Based on reducing the estimated groundwater concentration from 0.88 to 0.5 mg/L.
Estimated Moles of	Hydrogen Don	or Available for	r Treatment (20%) 439,945	Assumes 20% of TPH completely oxidized to CO2/H2O, 80% to volatile fatty acids and biomass incorporation (not completely oxidized
Hydrogen/Electron Donor Removed b	y Groundwat	er Extraction	System		
TPH-Dx (mg/L)	0				
E	Estimated Mole	es of Hydrogen	Donor Extracted	0	
Hydrogen/Electron Acceptors					
Constituent	Groundwater Concentration (mg/L)	Molecular Weight (g/mol)	Moles of H ₂ to Reduce Mole Analyte	Moles of H₂ Through Treatment Area	
Native Electron Acceptors					
Dissolved Oxygen	9.5	32	2	197,319	Based on upgradient groundwater concentrations at CM-MW-7S.
Nitrate (as Nitrogen)	2.3	62	3	164,362	Based on upgradient groundwater concentrations at OH-MW-8.
Sulfate	6.0	96.1	4	83,258	Based on reduction of average groundwater concentrations at HL-MW-1.
Hydrogen Acceptor Ba	sed on Flux of	f System Opera	tion and Duration	444,940	
Added Electron Acceptor	Amendment Added (pounds)	Assumed Metabolic Efficiency	Moles H ₂ /Lb.	Moles H ₂ Acceptor Added	
AnoxEA-aq™	0	10%	11.6	0	
		Added Hydrogen	Acceptor Subtotal	0	
	Estimat	ed Moles of Hyd	drogen Acceptor	444,940	
Estimated Oxidative Treat	ment Progress	Based on Desi	ign Assumptions	: 101%	
NOTES:			less 110 budes ere		

Electron and hydrogen equivalents per Principles and Practices of Enhanced Anaerobic Bioremediation of Chlorinated

Solvents, Air Force Center for Environmental Excellence, August 2004.

Green boxes are treatment option variables for input.

Yellow boxes are treatment option outputs.

 Table A-16 - Oil House Area South Plume - Alternative C2, Scenario C2c

 Reduce Groundwater Diesel Concentration from 0.88 to 0.5 mg/L

 Restoration Time Frame Based on Electron Donor Demand Calculations

Treatment Target Area Specifications		Operational Assumptions			
Vertical Treatment (ft)	10	Ground	lwater Velocity (ft/d)	77	Increased flux by 133 percent from baseline conditions.
Treatment Width (ft)	136	Extracti	on / Flux Rate (gpd)	233,966	Based on daily groundwater flow through the Oil House South plume area.
Treatment Length (ft) (parallel to GW flow)	250	Extraction / I	- lux Duration (days)	639	Adjusted until a minimum of 100 percent treatment was achieved.
Average Groundwater Concentration (mg/L)	0.88				
Effective Porosity	0.30				
Kd (L/kg)	2,250	Extractio	on Duration (years)	2	
Density (lbs/ft ³)	110	Treatme	nt Flux Volume (gal)	89,667,398	Assumes groundwater is in contact with 10 feet of smear zone 60 percent of the time.
Effective Flux Treatment Duration	60%	Treatm	ent Flux Volume (L)	339,839,438	Assumes groundwater is in contact with 10 feet of smear zone 60 percent of the time.
Hydrogen/Electron Donor Availability					
Constituent	COC Mass (pounds)	Molecular Weight (g/mol)	Moles of H ₂ to Oxidize / Mole Analyte	Moles of H₂ Donor In Treatment Area	
Native Electron Donors	I				
Estimated Total Soil TPH-Dx	22,318	226	49	2,199,488	Based on reducing the estimated groundwater concentration from 0.88 to 0.5 mg/L.
Estimated Total Groundwater TPH-Dx	2.4	226	49	237	Based on reducing the estimated groundwater concentration from 0.88 to 0.5 mg/L.
Estimated Moles of	Hydrogen Don	or Available fo	r Treatment (20%) 439,945	Assumes 20% of TPH completely oxidized to CO2/H2O, 80% to volatile fatty acids and biomass incorporation (not completely oxidized).
Hydrogen/Electron Donor Removed b	v Groundwat	er Extraction	Svstem		
TPH-Dx (mg/L)	0		,		
E	Estimated Mole	s of Hydrogen	Donor Extracted:	0	
Hydrogen/Electron Acceptors					
Constituent	Groundwater Concentration (mg/L)	Molecular Weight (g/mol)	Moles of H ₂ to Reduce Mole Analyte	Moles of H ₂ Through Treatment Area	
Native Electron Acceptors					
Dissolved Oxygen	9.5	32	2	201,142	Based on upgradient groundwater concentrations at CM-MW-7S.
Nitrate (as Nitrogen)	2.3	62	3	167,546	Based on upgradient groundwater concentrations at OH-MW-8.
Sulfate	6.0	96.1	4	84,871	Based on reduction of average groundwater concentrations at HL-MW-1.
Hydrogen Acceptor Ba	Hydrogen Acceptor Based on Flux of System Operation and Duration			453,560	
Added Electron Acceptor	Amendment Added (pounds)	Assumed Metabolic Efficiency	Moles H₂/Lb.	Moles H ₂ Acceptor Added	
AnoxEA-aq™	0	10%	11.6	0	
		Added Hydrogen	Acceptor Subtotal	0	
	Estimat	ed Moles of Hy	drogen Acceptor:	453,560	
Estimated Oxidative Treat	ment Progress	Based on Des	ign Assumptions	: 103%	
NOTES:	- milligrams per liter	and - dallons por	lav: H2 – hydrogen		

L = liters; ft=feet; gal = gallons; 1ft3 = 28.32 L,mg/L = milligrams per liter; gpd = gallons per day; H2 = hydrogen. Electron and hydrogen equivalents per Principles and Practices of Enhanced Anaerobic Bioremediation of Chlorinated

Solvents, Air Force Center for Environmental Excellence, August 2004.

Green boxes are treatment option variables for input.

Yellow boxes are treatment option outputs.

Table A-17 - Oil House Area South Plume - Alternative C3 Reduce Groundwater Diesel Concentration from 0.88 to 0.5 mg/L Restoration Time Frame Based on Electron Donor Demand Calculations

Treatment Target Area Specifications		Operational Assumptions			
Vertical Treatment (ft)	10	Ground	water Velocity (ft/d)	33	
Treatment Width (ft)	136	Extracti	on / Flux Rate (gpd)	100,415	Based on daily groundwater flow through the Oil House South plume area.
Treatment Length (ft) (parallel to GW flow)	250	Extraction /	Flux Duration (days)	1,460	Adjusted until a minimum of 100 percent treatment was achieved.
Average Groundwater Concentration (mg/L)	0.88	Injection Trea	tment Volume (gpd)	0	Total groundwater reinjection in gallons per day
Effective Porosity	0.30	Solution C	oncentration (mg/L)	0	Concentration of electron acceptor in milligrams per liter
Kd (L/kg)	2,250	Extraction / Flu	ux Duration (years)	4.0	
Bulk Density (lbs/ft ³)	110	Treatme	nt Flux Volume (gal)	87,963,113	Assumes groundwater is in contact with 10 feet of smear zone 60 percent of the time.
Effective Flux Treatment Duration	60%	Treatm	ent Flux Volume (L)	333,380,196	Assumes groundwater is in contact with 10 feet of smear zone 60 percent of the time.
Hydrogen/Electron Donor Availability					
Constituent	TPH Mass (pounds)	Molecular Weight (g/mol)	Moles of H ₂ to Oxidize / Mole Analyte	Moles of H ₂ Donor In Treatment Area	
Native Electron Donors	1	1	L		
Estimated Total Soil TPH-Dx	22,318	226	49	2,199,488	Based on reducing the estimated groundwater concentration from 0.88 to 0.5 mg/L.
Estimated Total Groundwater TPH-Dx	2.4	226	49	237	Based on reducing the estimated groundwater concentration from 0.88 to 0.5 mg/L.
Estimated Moles of	Hydrogen Don	or Available for	Treatment (20%)	439,945	Assumes 20% of TPH completely oxidized to CO2/H2O, 80% to volatile fatty acids and biomass incorporation (not completely oxidized).
Hydrogen/Electron Donor Removed by	Groundwate	r Extraction S	/stem		
TPH-Dx (mg/L)	0				
	Estimated Mole	es of Hydrogen I	Donor Extracted:	0	
Hydrogen/Electron Acceptors					
Constituent	Groundwater Concentration (mg/L)	Molecular Weight (g/mol)	Moles of H₂ to Reduce Mole Analyte	Moles of H₂ Through Treatment Area	
Native Electron Acceptors	1				
Dissolved Oxygen	9.5	32	2	197,319	Based on upgradient groundwater concentrations at CM-MW-7S.
Nitrate (as Nitrogen)	2.3	62	3	164,362	Based on upgradient groundwater concentrations at OH-MW-8.
Sulfate	6.0	96.1	4	83,258	Based on reduction of average groundwater concentrations at HL-MW-1.
Hydrogen Acceptor Based on Flux of System Operation and Duration					
Added Electron Acceptor	Amendment Added (pounds)	Assumed Metabolic Efficiency	Moles H₂/Lb.	Moles H ₂ Acceptor Added	
Hydrogen Peroxide	0	20%	6.5	0	Assumes no hydrogen peroxide is injected.
AnoxEA-aq™	0	10%	11.6	0	
		Added Hydrogen	Acceptor Subtotal	0	
	Estimat	ed Moles of Hyd	lrogen Acceptor:	444,940	
Estimated Oxidative Treat	ment Progress	Based on Desig	n Assumptions:	101%]

NOTES:

L = liters; ft=feet; gal = gallons; 1ft3 = 28.32 L,mg/L = milligrams per liter; gpd = gallons per day; H2 = hydrogen.

Electron and hydrogen equivalents per Principles and Practices of Enhanced Anaerobic Bioremediation of Chlorinated

Solvents, Air Force Center for Environmental Excellence, August 2004.

Green boxes are treatment option variables for input.

Yellow boxes are treatment option outputs.

Reduction for oil range hydrocarbons was not calculated since the current concentration of 0.25 mg/L is less than MTCA standards,

and the diesel range hydrocarbons would be preferentially reduced.

Table A-18 - Oil House Area South Plume - Alternative C4 Reduce Groundwater Diesel Concentration from 0.88 to 0.5 mg/L **Restoration Time Frame Based on Electron Donor Demand Calculations**

Treatment Target Area Specifications	6	Operational Assumptions			
Vertical Treatment (ft)	10	Ground	water Velocity (ft/d)	39	Increased flux by 17 percent from baseline conditions.
Treatment Width (ft)	136	Extractio	on / Flux Rate (gpd)	117,485	Based on daily groundwater flow through the Oil House South plume area.
Treatment Length (ft) (parallel to GW flow)	250	Extraction / F	Flux Duration (days)	1,252	Adjusted until a minimum of 100 percent treatment was achieved.
Average Groundwater Concentration (mg/L)	0.88				
Effective Porosity	0.30				
Kd (L/kg)	2,250	Extraction / Flu	x Duration (years)	3	
Bulk Density (lbs/ft ³)	110	Treatmer	nt Flux Volume (gal)	88,251,192	Assumes groundwater is in contact with 10 feet of smear zone 60 percent of the time.
Effective Flux Treatment Duration	60%	Treatm	ent Flux Volume (L)	334,472,017	Assumes groundwater is in contact with 10 feet of smear zone 60 percent of the time.
Hydrogen/Electron Donor Availability	/				
Constituent	TPH Mass (pounds)	Molecular Weight (g/mol)	Moles of H ₂ to Oxidize / Mole Analyte	Moles of H₂ Donor In Treatment Area	
Native Electron Donors			I		
Estimated Total Soil TPH-D	22,318	226	49	2,199,488	Based on reducing the estimated groundwater concentration from 0.88 to 0.5 mg/L.
Estimated Total Groundwater TPH-D>	2.4	226	49	237	Based on reducing the estimated groundwater concentration from 0.88 to 0.5 mg/L.
Estimated Moles of	Hydrogen Don	or Available for	Treatment (20%) 439,945	Assumes 20% of TPH completely oxidized to CO2/H2O, 80% to volatile fatty acids and biomass incorporation (not completely ox
Hydrogen/Electron Donor Removed	ov Groundwat	er Extraction S	Svstem		
TPH-Dx (mg/L)	0				
· · · ·	Estimated Mole	es of Hydrogen	Donor Extracted:	0	
Hydrogen/Electron Acceptors					
Constituent	Groundwater Concentration (mg/L)	Molecular Weight (g/mol)	Moles of H ₂ to Reduce Mole Analyte	Moles of H ₂ Through Treatment Area	
Native Electron Acceptors	1	1	1		
Dissolved Oxygen	9.5	32	2	197,966	Based on upgradient groundwater concentrations at CM-MW-7S.
Nitrate (as Nitrogen)	2.3	62	3	164,900	Based on upgradient groundwater concentrations at OH-MW-8.
Sulfate	6.0	96.1	4	83,531	Based on reduction of average groundwater concentrations at HL-MW-1.
Hydrogen Acceptor B	Hydrogen Acceptor Based on Flux of System Operation and Duration 446,397				
	Amendment	Assumed Metabolic	Moles H ₂ /Lb.	Moles H ₂ Acceptor Added	
Added Electron Acceptor	(pounds)	Efficiency			
Added Electron Acceptor	(pounds)	Efficiency 10%	11.6	0	
Added Electron Acceptor AnoxEA-aq™	(pounds)	Efficiency 10% Added Hydrogen	11.6 Acceptor Subtotal	0	
Added Electron Acceptor AnoxEA-aq™	(pounds) 0 Estimat	Efficiency 10% Added Hydrogen ed Moles of Hyd	11.6 Acceptor Subtotal Irogen Acceptor:	0 0 446,397	

L = liters; ft=feet; gal = gallons; 1ft3 = 28.32 L,mg/L = milligrams per liter; gpd = gallons per day; H2 = hydrogen. Electron and hydrogen equivalents per Principles and Practices of Enhanced Anaerobic Bioremediation of Chlorinated

Solvents, Air Force Center for Environmental Excellence, August 2004. Green boxes are treatment option variables for input.

Yellow boxes are treatment option outputs.

Table A-19 - Wastewater Treatment Area North Plume - Alternative C1 Reduce Groundwater Diesel Concentration from 0.92 to 0.5 mg/L **Restoration Time Frame Based on Electron Donor Demand Calculations**

Treatment Target Area Specifications		Operational Assumptions			
Vertical Treatment (ft)	10	Ground	water Velocity (ft/d)	50	
Treatment Width (ft)	309	Extractio	on / Flux Rate (gpd)	346,698	Based on daily groundwater flow through the Waste Water area.
Treatment Length (ft) (parallel to GW flow)	1,000	Extraction / F	lux Duration (days)	12,337	Adjusted until a minimum of 100 percent treatment was achieved.
Average Groundwater Concentration (mg/L)	0.92				
Effective Porosity	0.30				
Kd (L/kg)	2,250	Extractio	n Duration (years)	34	
Density (lbs/ft ³)	110	Treatmer	nt Flux Volume (gal)	2,566,327,936	Assumes groundwater is in contact with 10 feet of smear zone 60 percent of the time.
Effective Flux Treatment Duration	60%	Treatm	ent Flux Volume (L)	9,726,382,876	Assumes groundwater is in contact with 10 feet of smear zone 60 percent of the time.
Hydrogen/Electron Donor Availability					
Constituent	COC Mass (pounds)	Molecular Weight (g/mol)	Moles of H ₂ to Oxidize / Mole Analyte	Moles of H ₂ Donor In Treatment Area	
Native Electron Donors	I	r.			
Estimated Total Soil TPH-Dx	224,844	226	49	22,158,787	Based on reducing the estimated groundwater concentration from 0.92 to 0.5 mg/L.
Estimated Total Groundwater TPH-Dx	24.3	226	49	2,391	Based on reducing the estimated groundwater concentration from 0.92 to 0.5 mg/L.
Estimated Moles of Hydrogen	Donor Availab	le for Treatmen	t (20% Efficiency) 4,432,235	Assumes 20% of TPH completely oxidized to CO2/H2O, 80% to volatile fatty acids and biomass incorporation (not completely oxidized).
Hydrogen/Electron Donor Removed b	y Groundwat	er Extraction S	System		
TPH-Dx (mg/L)	0				Assumes no TPH is being physically removed by the groundwater extraction system.
E	Estimated Mole	es of Hydrogen	Donor Extracted:	0	
Hydrogen/Electron Acceptors					
Constituent	Groundwater Concentration (mg/L)	Molecular Weight (g/mol)	Moles of H₂ to Reduce Mole Analyte	Moles of H ₂ Through Treatment Area	
Native Electron Acceptors					
Dissolved Oxygen	4.0	32	2	2,431,596	Based on upgradient groundwater concentrations at WW-MW-7 and WW-MW-10.
Nitrate (as Nitrogen)	0.2	62	3	416,979	Based on upgradient groundwater concentrations at WW-MW-7 and WW-MW-10.
Sulfate	4.0	96.1	4	1,619,377	Based on typical reduction from background concentrations across the site.
Hydrogen Acceptor Based on Flux of System Operation and Duration			tion and Duration	4,467,952	
Added Electron Acceptor	Amendment Added (pounds)	Assumed Metabolic Efficiency	Moles H₂/Lb.	Moles H ₂ Acceptor Added	
AnoxEA-aq™	0	10%	11.6	0	
		Added Hydrogen	Acceptor Subtotal	0	
	Estimate	ed Moles of Hyd	Irogen Acceptor:	4,467,952	
Estimated Oxidative Treat	ment Progress	Based on Desi	gn Assumptions	: 101%	
NOTES:					

L = liters; ft=feet; gal = gallons; 1ft3 = 28.32 L,mg/L = milligrams per liter; gpd = gallons per day; H2 = hydrogen. Electron and hydrogen equivalents per Principles and Practices of Enhanced Anaerobic Bioremediation of Chlorinated

Solvents, Air Force Center for Environmental Excellence, August 2004. Green boxes are treatment option variables for input.

Yellow boxes are treatment option outputs.

 Table A-20 - Wastewater Treatment Area North Plume - Alternative C2, Scenario C2a

 Reduce Groundwater Diesel Concentration from 0.92 to 0.5 mg/L

 Restoration Time Frame Based on Electron Donor Demand Calculations

Treatment Target Area Specifications		Opera	ational Assump	otions	
Vertical Treatment (ft)	10	Ground	water Velocity (ft/d)	50	
Treatment Width (ft)	309	Extractio	on / Flux Rate (gpd)	346,698	Based on daily groundwater flow through the Waste Water area.
Treatment Length (ft) (parallel to GW flow)	1,000	Extraction / F	lux Duration (days)	12,337	Adjusted until a minimum of 100 percent treatment was achieved.
Average Groundwater Concentration (mg/L)	0.92				
Effective Porosity	0.30				
Kd (L/kg)	2,250	Extractio	n Duration (years)	34	
Density (lbs/ft ³)	110	Treatmen	t Flux Volume (gal)	2,566,327,936	Assumes groundwater is in contact with 10 feet of smear zone 60 percent of the time.
Effective Flux Treatment Duration	60%	Treatme	ent Flux Volume (L)	9,726,382,876	Assumes groundwater is in contact with 10 feet of smear zone 60 percent of the time.
Hydrogen/Electron Donor Availability		•			
Constituent	COC Mass (pounds)	Molecular Weight (g/mol)	Moles of H ₂ to Oxidize / Mole Analyte	Moles of H₂ Donor In Treatment Area	
Native Electron Donors		1		1	
Estimated Total Soil TPH-Dx	224,844	226	49	22,158,787	Based on reducing the estimated groundwater concentration from 0.92 to 0.5 mg/L.
Estimated Total Groundwater TPH-Dx	24.3	226	49	2,391	Based on reducing the estimated groundwater concentration from 0.92 to 0.5 mg/L.
Estimated Moles of Hydrogen	Donor Availab	le for Treatment	t (20% Efficiency) 4,432,235	Assumes 20% of TPH completely oxidized to CO2/H2O, 80% to volatile fatty acids and biomass incorporation (not completely oxic
Hydrogen/Electron Donor Removed b	v Groundwat	er Extraction S	Svstem		
TPH-Dx (mg/L)	0		,		Assumes no TPH is being physically removed by the groundwater extraction system.
E	Estimated Mole	es of Hydrogen I	Donor Extracted:	0	
Hydrogen/Electron Acceptors					
Constituent	Groundwater Concentration (mg/L)	Molecular Weight (g/mol)	Moles of H ₂ to Reduce Mole Analyte	Moles of H ₂ Through Treatment Area	
Native Electron Acceptors					
Dissolved Oxygen	4.0	32	2	2,431,596	Based on upgradient groundwater concentrations at WW-MW-7 and WW-MW-10.
Nitrate (as Nitrogen)	0.2	62	3	416,979	Based on upgradient groundwater concentrations at WW-MW-7 and WW-MW-10.
Sulfate	4.0	96.1	4	1,619,377	Based on typical reduction from background concentrations across the site.
Hydrogen Acceptor Ba	sed on Flux of	f System Operat	tion and Duration	4,467,952	
Added Electron Acceptor	Amendment Added (pounds)	Assumed Metabolic Efficiency	Moles H ₂ /Lb.	Moles H ₂ Acceptor Added	
AnoxEA-aq™	0	10%	11.6	0	
		Added Hydrogen	Acceptor Subtotal	0	1
	Estimat	ed Moles of Hyd	lrogen Acceptor:	4,467,952	
Estimated Oxidative Treat	ment Progress	Based on Desi	gn Assumptions	: 101%	
NOTES					-

L = liters; ft = feet; gal = gallons; 1ft3 = 28.32 L, mg/L = milligrams per liter; gpd = gallons per day; H2 = hydrogen.

Electron and hydrogen equivalents per Principles and Practices of Enhanced Anaerobic Bioremediation of Chlorinated

Solvents, Air Force Center for Environmental Excellence, August 2004.

Green boxes are treatment option variables for input.

Yellow boxes are treatment option outputs.

 Table A-21 - Wastewater Treatment Area North Plume - Alternative C2, Scenario C2b

 Reduce Groundwater Diesel Concentration from 0.92 to 0.5 mg/L

 Restoration Time Frame Based on Electron Donor Demand Calculations

Treatment Target Area Specifications		Opera	ational Assump	otions	
Vertical Treatment (ft)	10	Ground	water Velocity (ft/d)	50	
Treatment Width (ft)	309	Extractio	on / Flux Rate (gpd)	346,698	Based on daily groundwater flow through the Waste Water area.
Treatment Length (ft) (parallel to GW flow)	1,000	Extraction / F	lux Duration (days)	12,337	Adjusted until a minimum of 100 percent treatment was achieved.
Average Groundwater Concentration (mg/L)	0.92				
Effective Porosity	0.30				
Kd (L/kg)	2,250	Extractio	n Duration (years)	34	
Density (lbs/ft ³)	110	Treatmen	t Flux Volume (gal)	2,566,327,936	Assumes groundwater is in contact with 10 feet of smear zone 60 percent of the time.
Effective Flux Treatment Duration	60%	Treatme	ent Flux Volume (L)	9,726,382,876	Assumes groundwater is in contact with 10 feet of smear zone 60 percent of the time.
Hydrogen/Electron Donor Availability		•			
Constituent	COC Mass (pounds)	Molecular Weight (g/mol)	Moles of H ₂ to Oxidize / Mole Analyte	Moles of H₂ Donor In Treatment Area	
Native Electron Donors		1		1	
Estimated Total Soil TPH-Dx	224,844	226	49	22,158,787	Based on reducing the estimated groundwater concentration from 0.92 to 0.5 mg/L.
Estimated Total Groundwater TPH-Dx	24.3	226	49	2,391	Based on reducing the estimated groundwater concentration from 0.92 to 0.5 mg/L.
Estimated Moles of Hydrogen	Donor Availab	le for Treatment	t (20% Efficiency) 4,432,235	Assumes 20% of TPH completely oxidized to CO2/H2O, 80% to volatile fatty acids and biomass incorporation (not completely oxic
Hydrogen/Electron Donor Removed b	v Groundwat	er Extraction S	Svstem		
TPH-Dx (mg/L)	0		,		Assumes no TPH is being physically removed by the groundwater extraction system.
E	Estimated Mole	es of Hydrogen I	Donor Extracted:	0	
Hydrogen/Electron Acceptors					
Constituent	Groundwater Concentration (mg/L)	Molecular Weight (g/mol)	Moles of H ₂ to Reduce Mole Analyte	Moles of H ₂ Through Treatment Area	
Native Electron Acceptors					
Dissolved Oxygen	4.0	32	2	2,431,596	Based on upgradient groundwater concentrations at WW-MW-7 and WW-MW-10.
Nitrate (as Nitrogen)	0.2	62	3	416,979	Based on upgradient groundwater concentrations at WW-MW-7 and WW-MW-10.
Sulfate	4.0	96.1	4	1,619,377	Based on typical reduction from background concentrations across the site.
Hydrogen Acceptor Ba	sed on Flux of	f System Operat	tion and Duration	4,467,952	
Added Electron Acceptor	Amendment Added (pounds)	Assumed Metabolic Efficiency	Moles H ₂ /Lb.	Moles H ₂ Acceptor Added	
AnoxEA-aq™	0	10%	11.6	0	
		Added Hydrogen	Acceptor Subtotal	0	1
	Estimat	ed Moles of Hyd	lrogen Acceptor:	4,467,952	
Estimated Oxidative Treat	ment Progress	Based on Desi	gn Assumptions	: 101%	
NOTES					-

L = liters; ft = feet; gal = gallons; 1ft3 = 28.32 L, mg/L = milligrams per liter; gpd = gallons per day; H2 = hydrogen.

Electron and hydrogen equivalents per Principles and Practices of Enhanced Anaerobic Bioremediation of Chlorinated

Solvents, Air Force Center for Environmental Excellence, August 2004.

Green boxes are treatment option variables for input.

Yellow boxes are treatment option outputs.

Table A-22 - Wastewater Treatment Area North Plume - Alternative C2, Scenario C2c Reduce Groundwater Diesel Concentration from 0.92 to 0.5 mg/L Restoration Time Frame Based on Electron Donor Demand Calculations

Treatment Target Area Specifications	Specifications Operational Assumptions			otions	
Vertical Treatment (ft)	10	Groundy	water Velocity (ft/d)	100	Increased flux by 100 percent from baseline conditions.
Treatment Width (ft)	309	Extractio	n / Flux Rate (gpd)	693,396	Based on daily groundwater flow through the Waste Water area.
Treatment Length (ft) (parallel to GW flow)	1,000	Extraction / Fl	lux Duration (days)	6,205	Adjusted until a minimum of 100 percent treatment was achieved.
Average Groundwater Concentration (mg/L)	0.92				
Effective Porosity	0.30				
Kd (L/kg)	2,250	Extraction	n Duration (years)	17	
Density (lbs/ft ³)	110	Treatment	t Flux Volume (gal)	2,581,513,308	Assumes groundwater is in contact with 10 feet of smear zone 60 percent of the time.
Effective Flux Treatment Duration	60%	Treatme	ent Flux Volume (L)	9,783,935,437	Assumes groundwater is in contact with 10 feet of smear zone 60 percent of the time.
Hydrogen/Electron Donor Availability					
Constituent	COC Mass (pounds)	Molecular Weight (g/mol)	Moles of H ₂ to Oxidize / Mole Analyte	Moles of H ₂ Donor In Treatment Area	
Native Electron Donors	l.	1			
Estimated Total Soil TPH-Dx	224,844	226	49	22,158,787	Based on reducing the estimated groundwater concentration from 0.92 to 0.5 mg/L.
Estimated Total Groundwater TPH-Dx	24.3	226	49	2,391	Based on reducing the estimated groundwater concentration from 0.92 to 0.5 mg/L.
Estimated Moles of Hydrogen	Donor Availab	le for Treatment	(20% Efficiency) 4,432,235	Assumes 20% of TPH completely oxidized to CO2/H2O, 80% to volatile fatty acids and biomass incorporation (not completely oxidized).
Hydrogen/Electron Donor Removed b	y Groundwat	er Extraction S	ystem		
TPH-Dx (mg/L)	0				Assumes no TPH is being physically removed by the groundwater extraction system.
I	Estimated Mole	s of Hydrogen D	Oonor Extracted:	0	
Hydrogen/Electron Acceptors					
Constituent	Groundwater Concentration (mg/L)	Molecular Weight (g/mol)	Moles of H ₂ to Reduce Mole Analyte	Moles of H ₂ Through Treatment Area	
Native Electron Acceptors	1				
Dissolved Oxygen	4.0	32	2	2,445,984	Based on upgradient groundwater concentrations at WW-MW-7 and WW-MW-10.
Nitrate (as Nitrogen)	0.2	62	3	419,447	Based on upgradient groundwater concentrations at WW-MW-7 and WW-MW-10.
Sulfate	4.0	96.1	4	1,628,959	Based on typical reduction from background concentrations across the site.
Hydrogen Acceptor Ba	ased on Flux of	System Operat	ion and Duratior	4,494,390	
Added Electron Acceptor	Amendment Added (pounds)	Assumed Metabolic Efficiency	Moles H ₂ /Lb.	Moles H ₂ Acceptor Added	
AnoxEA-aq™	0	10%	11.6	0	
		Added Hydrogen A	Acceptor Subtotal	0	
	Estimate	ed Moles of Hyd	rogen Acceptor:	4,494,390	
Estimated Oxidative Treat	ment Progress	Based on Desig	gn Assumptions	: 101%	
NOTES:					

L = liters; ft=feet; gal = gallons; 1ft3 = 28.32 L, mg/L = milligrams per liter; gpd = gallons per day; H2 = hydrogen.

Electron and hydrogen equivalents per Principles and Practices of Enhanced Anaerobic Bioremediation of Chlorinated

Solvents, Air Force Center for Environmental Excellence, August 2004.

Green boxes are treatment option variables for input. Yellow boxes are treatment option outputs.

reliow boxes are treatment option outputs.

Table A-23 - Wastewater Treatment Area North Plume - Alternative C3 Reduce Groundwater Diesel Concentration from 0.92 to 0.5 mg/L Restoration Time Frame Based on Electron Donor Demand Calculations

Treatment Target Area Specifications		Operational Assumptions			
Vertical Treatment (ft)	10	Groundwater Velocity (ft/d)		50	
Treatment Width (ft)	309	Extraction / Flux Rate (gpd)		346,698	Based on daily groundwater flow through the Waste Water area.
Treatment Length (ft) (parallel to GW flow)	1,000	Extraction / Flux Duration (days)		10,950	Adjusted until a minimum of 100 percent treatment was achieved.
Average Groundwater Concentration (mg/L)	0.92	Injection Treatment Volume (gpd)		769	Total groundwater reinjection in gallons per day
Effective Porosity	0.30	Solution Concentration (mg/L)		200	Concentration of electron acceptor in milligrams per liter
Kd (L/kg)	2,250	Extraction / Flux Duration (years)		30	
Bulk Density (lbs/ft ³)	110	Treatment Flux Volume (gal)		2,277,805,860	Assumes groundwater is in contact with 10 feet of smear zone 60 percent of the time.
Effective Flux Treatment Duration	60%	Treatment Flux Volume (L)		8,632,884,209	Assumes groundwater is in contact with 10 feet of smear zone 60 percent of the time.
Hydrogen/Electron Donor Availability					
Constituent	TPH Mass (pounds)	Molecular Weight (g/mol)	Moles of H ₂ to Oxidize / Mole Analyte	Moles of H ₂ Donor In Treatment Area	
Native Electron Donors					
Estimated Total Soil TPH-Dx	224,844	226	49	22,158,787	Based on reducing the estimated groundwater concentration from 0.92 to 0.5 mg/L.
Estimated Total Groundwater TPH-Dx	24.3	226	49	2,391	Based on reducing the estimated groundwater concentration from 0.92 to 0.5 mg/L.
Estimated Moles of Hydrogen Donor Available for Treatment (20% Efficiency) 4,432,235					Assumes 20% of TPH completely oxidized to CO2/H2O, 80% to volatile fatty acids and biomass incorporation (not completely oxidized).
Hvdrogen/Electron Donor Removed by Groundwater Extraction System					
TPH-Dx (mg/L) 0					Assumes no TPH is being physically removed by the groundwater extraction system.
Estimated Moles of Hydrogen Donor Extracted:				0	
Hydrogen/Electron Acceptors					
Constituent	Groundwater Concentration (mg/L)	Molecular Weight (g/mol)	Moles of H₂ to Reduce Mole Analyte	Moles of H ₂ Through Treatment Area	
Native Electron Acceptors					
Dissolved Oxygen	4.0	32	2	2,158,221	Based on upgradient groundwater concentrations at WW-MW-7 and WW-MW-10.
Nitrate (as Nitrogen)	0.2	62	3	370,100	Based on upgradient groundwater concentrations at WW-MW-7 and WW-MW-10.
Sulfate	4.0	96.1	4	1,437,317	Based on typical reduction from background concentrations across the site.
Hydrogen Acceptor Based on Flux of System Operation and Duration 3,965,638				3,965,638	
Added Electron Acceptor	Amendment Added (pounds/day)	Assumed Metabolic Efficiency	Moles H₂/Lb.	Moles H ₂ Acceptor Added	3
Hydrogen Peroxide	1.28	20%	6.5	455,164	Assumes injecting 769 gallons of water per day at a H2O2 concentration of 200 mg/L for 30 years.
AnoxEA-aq™	0	10%	11.6	C	
Added Hydrogen Acceptor Subtotal 455,1					
	Estimat	ed Moles of Hyd	Irogen Acceptor:	4,420,802	
Estimated Oxidative Treatment Progress Based on Design Assumptions: 100%]

NOTES:

L = liters; ft=feet; gal = gallons; 1ft3 = 28.32 L,mg/L = milligrams per liter; gpd = gallons per day; H2 = hydrogen.

Electron and hydrogen equivalents per Principles and Practices of Enhanced Anaerobic Bioremediation of Chlorinated

Solvents, Air Force Center for Environmental Excellence, August 2004.

Green boxes are treatment option variables for input.

Yellow boxes are treatment option outputs.

Reduction for oil range hydrocarbons was not calculated since the current concentration of 0.25 mg/L is less than MTCA standards,

and the diesel range hydrocarbons would be preferentially reduced.
Table A-24 - Wastewater Treatment Area North Plume - Alternative C4
 Reduce Groundwater Diesel Concentration from 0.92 to 0.5 mg/L

 Restoration Time Frame Based on Electron Donor Demand Calculations

Treatment Target Area Specifications		Operational Assumptions		otions	
Vertical Treatment (ft)	10	Ground	water Velocity (ft/d)	69	Increased flux by 38 percent from baseline conditions.
Treatment Width (ft)	309	Extractio	on / Flux Rate (gpd)	478,443	Based on daily groundwater flow through the Waste Water area.
Treatment Length (ft) (parallel to GW flow)	1,000	Extraction / F	lux Duration (days)	8,833	Adjusted until a minimum of 100 percent treatment was achieved.
Average Groundwater Concentration (mg/L)	0.92				
Effective Porosity	0.30				
Kd (L/kg)	2,250	Extraction / Flu	x Duration (years)	24	
Bulk Density (lbs/ft ³)	110	Treatmen	t Flux Volume (gal)	2,535,653,483	Assumes groundwater is in contact with 10 feet of smear zone 60 percent of the time.
Effective Flux Treatment Duration	60%	Treatm	ent Flux Volume (L)	9,610,126,702	Assumes groundwater is in contact with 10 feet of smear zone 60 percent of the time.
Hydrogen/Electron Donor Availability					
Constituent	TPH Mass (pounds)	Molecular Weight (g/mol)	Moles of H ₂ to Oxidize / Mole Analyte	Moles of H₂ Donor In Treatment Area	
Native Electron Donors	I.	I			
Estimated Total Soil TPH-Dx	224,844	226	49	22,158,787	Based on reducing the estimated groundwater concentration from 0.92 to 0.5 mg/L.
Estimated Total Groundwater TPH-Dx	24.3	226	49	2,391	Based on reducing the estimated groundwater concentration from 0.92 to 0.5 mg/L.
Estimated Moles of Hydrogen	Donor Availab	le for Treatmen	t (20% Efficiency) 4,432,235	Assumes 20% of TPH completely oxidized to CO2/H2O, 80% to volatile fatty acids and biomass incorporation (not completely oxidized).
Hydrogen/Electron Donor Removed b	y Groundwat	er Extraction S	System		
TPH-Dx (mg/L) 0					Assumes no TPH is being physically removed by the groundwater extraction system.
	Estimated Mole	s of Hydrogen	Donor Extracted:	0	
Hydrogen/Electron Acceptors					
Constituent	Groundwater Concentration (mg/L)	Molecular Weight (g/mol)	Moles of H₂ to Reduce Mole Analyte	Moles of H ₂ Through Treatment Area	
Native Electron Acceptors					
Dissolved Oxygen	4.0	32	2	2,402,532	Based on upgradient groundwater concentrations at WW-MW-7 and WW-MW-10.
Nitrate (as Nitrogen)	0.2	62	3	411,995	Based on upgradient groundwater concentrations at WW-MW-7 and WW-MW-10.
Sulfate	4.0	96.1	4	1,600,021	Based on typical reduction from background concentrations across the site.
Hydrogen Acceptor Based on Flux of System Operation and Duration				4,414,548	
Added Electron Acceptor	Amendment Added (pounds)	Assumed Metabolic Efficiency	Moles H ₂ /Lb.	Moles H ₂ Acceptor Added	
AnoxEA-aq™	0	10%	11.6	0	
Added Hydrogen Acceptor Subtotal					
	Estimat	ed Moles of Hyd	Irogen Acceptor:	4,414,548	
Estimated Oxidative Treat	ment Progress	Based on Desi	gn Assumptions	: 100%	
NOTES:					

L = liters; ft=feet; gal = gallons; 1ft3 = 28.32 L,mg/L = milligrams per liter; gpd = gallons per day; H2 = hydrogen.

Electron and hydrogen equivalents per Principles and Practices of Enhanced Anaerobic Bioremediation of Chlorinated

Solvents, Air Force Center for Environmental Excellence, August 2004.

Green boxes are treatment option variables for input.

Yellow boxes are treatment option outputs.

Reduction for oil range hydrocarbons was not calculated since the current concentration of 0.25 mg/L is less than MTCA standards, and the diesel range hydrocarbons would be preferentially reduced.

 Table A-25 - Wastewater Treatment Area South Plume - Alternative C1

 Reduce Groundwater Diesel Concentration from 0.92 to 0.5 mg/L

 Restoration Time Frame Based on Electron Donor Demand Calculations

Treatment Target Area Specifications		Operational Assumptions			
Vertical Treatment (ft)	10	Ground	water Velocity (ft/d)	50	
Treatment Width (ft)	126	Extraction	on / Flux Rate (gpd)	141,199	Based on daily groundwater flow through the Waste Water area.
Treatment Length (ft) (parallel to GW flow)	325	Extraction / F	lux Duration (days)	3,979	Adjusted until a minimum of 100 percent treatment was achieved.
Average Groundwater Concentration (mg/L)	0.92				
Effective Porosity	0.30				
Kd (L/kg)	2,250	Extractio	n Duration (years)	11	
Density (lbs/ft ³)	110	Treatmer	nt Flux Volume (gal)	337,057,051	Assumes groundwater is in contact with 10 feet of smear zone 60 percent of the time.
Effective Flux Treatment Duration	60%	Treatm	ent Flux Volume (L)	1,277,446,223	Assumes groundwater is in contact with 10 feet of smear zone 60 percent of the time.
Hydrogen/Electron Donor Availability					
Constituent	COC Mass (pounds)	Molecular Weight (g/mol)	Moles of H ₂ to Oxidize / Mole Analyte	Moles of H ₂ Donor In Treatment Area	
Native Electron Donors	1	1	L		
Estimated Total Soil TPH-Dx	29,761	226	49	2,932,991	Based on reducing the estimated groundwater concentration from 0.92 to 0.5 mg/L.
Estimated Total Groundwater TPH-Dx	3.2	226	49	316	Based on reducing the estimated groundwater concentration from 0.92 to 0.5 mg/L.
Estimated Moles of	Hydrogen Don	or Available for	Treatment (20%) 586,662	Assumes 20% of TPH completely oxidized to CO2/H2O, 80% to volatile fatty acids and biomass incorporation (not completely oxidized).
Hydrogen/Electron Donor Removed b	v Groundwat	er Extraction S	Svstem		
TPH-Dx (mg/L)	0				Assumes no TPH is being removed by the groundwater extraction system.
E	Estimated Mole	es of Hydrogen	Donor Extracted	0	
Hydrogen/Electron Acceptors					
Constituent	Groundwater Concentration (mg/L)	Molecular Weight (g/mol)	Moles of H ₂ to Reduce Mole Analyte	Moles of H ₂ Through Treatment Area	
Native Electron Acceptors					
Dissolved Oxygen	4.0	32	2	319,362	Based on upgradient groundwater concentrations at WW-MW-7 and WW-MW-10.
Nitrate (as Nitrogen)	0.2	62	3	54,765	Based on upgradient groundwater concentrations at WW-MW-7 and WW-MW-10.
Sulfate	4.0	96.1	4	212,686	Based on typical reduction from background concentrations across the site.
Hydrogen Acceptor Based on Flux of System Operation and Duration					
Added Electron Acceptor	Amendment Added (pounds)	Assumed Metabolic Efficiency	Moles H₂/Lb.	Moles H ₂ Acceptor Added	
AnoxEA-aq™	0	10%	11.6	0	
Added Hydrogen Acceptor Subtotal					
	Estimat	ed Moles of Hyd	Irogen Acceptor:	586,813	
Estimated Oxidative Treat	ment Progress	Based on Desi	gn Assumptions	: 100%	
NOTES:					

L = liters; ft=feet; gal = gallons; 1ft3 = 28.32 L, mg/L = milligrams per liter; gpd = gallons per day; H2 = hydrogen.

Electron and hydrogen equivalents per Principles and Practices of Enhanced Anaerobic Bioremediation of Chlorinated

Solvents, Air Force Center for Environmental Excellence, August 2004.

Green boxes are treatment option variables for input.

Yellow boxes are treatment option outputs.

Table A-26 - Wastewater Treatment Area South Plume - Alternative C2, Scenario C2a Reduce Groundwater Diesel Concentration from 0.92 to 0.5 mg/L Restoration Time Frame Based on Electron Donor Demand Calculations

Treatment Target Area Specifications		Operational Assumptions		tions	
Vertical Treatment (ft)	10	Ground	lwater Velocity (ft/d)	50	
Treatment Width (ft)	126	Extracti	on / Flux Rate (gpd)	141,199	Based on daily groundwater flow through the Waste Water area.
Treatment Length (ft) (parallel to GW flow)	325	Extraction / F	- lux Duration (days)	3,979	Adjusted until a minimum of 100 percent treatment was achieved.
Average Groundwater Concentration (mg/L)	0.92				
Effective Porosity	0.30				
Kd (L/kg)	2,250	Extractio	on Duration (years)	11	
Density (lbs/ft ³)	110	Treatmen	nt Flux Volume (gal)	337,057,051	Assumes groundwater is in contact with 10 feet of smear zone 60 percent of the time.
Effective Flux Treatment Duration	60%	Treatm	ent Flux Volume (L)	1,277,446,223	Assumes groundwater is in contact with 10 feet of smear zone 60 percent of the time.
Hydrogen/Electron Donor Availability					
Constituent	COC Mass (pounds)	Molecular Weight (g/mol)	Moles of H ₂ to Oxidize / Mole Analyte	Moles of H ₂ Donor In Treatment Area	
Native Electron Donors	1	1	1	1	
Estimated Total Soil TPH-Dx	29,761	226	49	2,932,991	Based on reducing the estimated groundwater concentration from 0.92 to 0.5 mg/L.
Estimated Total Groundwater TPH-Dx	3.2	226	49	316	Based on reducing the estimated groundwater concentration from 0.92 to 0.5 mg/L.
Estimated Moles of	Hydrogen Don	or Available for	r Treatment (20%) 586,662	Assumes 20% of TPH completely oxidized to CO2/H2O, 80% to volatile fatty acids and biomass incorporation (not completely oxidized).
Hydrogen/Electron Donor Removed b	v Groundwat	er Extraction	Svstem		
TPH-Dx (mg/L) 0					Assumes no TPH is being removed by the groundwater extraction system.
	Estimated Mole	s of Hydrogen	Donor Extracted:	0	
Hydrogen/Electron Acceptors					
Constituent	Groundwater Concentration (mg/L)	Molecular Weight (g/mol)	Moles of H ₂ to Reduce Mole Analyte	Moles of H ₂ Through Treatment Area	
Native Electron Acceptors					
Dissolved Oxygen	4.0	32	2	319,362	Based on upgradient groundwater concentrations at WW-MW-7 and WW-MW-10.
Nitrate (as Nitrogen)	0.2	62	3	54,765	Based on upgradient groundwater concentrations at WW-MW-7 and WW-MW-10.
Sulfate	4.0	96.1	4	212,686	Based on typical reduction from background concentrations across the site.
Hydrogen Acceptor Based on Flux of System Operation and Duration 586,813					
Added Electron Acceptor	Amendment Added (pounds)	Assumed Metabolic Efficiency	Moles H ₂ /Lb.	Moles H ₂ Acceptor Added	
AnoxEA-aq™	0	10%	11.6	0	
Added Hydrogen Acceptor Subtotal					
	Estimat	ed Moles of Hyd	drogen Acceptor:	586,813	
Estimated Oxidative Treat	ment Progress	Based on Desi	ign Assumptions	: 100%	
NOTES					

L = liters; ft=feet; gal = gallons; 1ft3 = 28.32 L,mg/L = milligrams per liter; gpd = gallons per day; H2 = hydrogen.

Electron and hydrogen equivalents per Principles and Practices of Enhanced Anaerobic Bioremediation of Chlorinated

Solvents, Air Force Center for Environmental Excellence, August 2004.

Green boxes are treatment option variables for input.

Yellow boxes are treatment option outputs.

Table A-27 - Wastewater Treatment Area South Plume - Alternative C2, Scenario C2b Reduce Groundwater Diesel Concentration from 0.92 to 0.5 mg/L Restoration Time Frame Based on Electron Donor Demand Calculations

Treatment Target Area Specifications		Operational Assumptions			
Vertical Treatment (ft)	10	Ground	lwater Velocity (ft/d)	50	
Treatment Width (ft)	126	Extracti	on / Flux Rate (gpd)	141,199	Based on daily groundwater flow through the Waste Water area.
Treatment Length (ft) (parallel to GW flow)	325	Extraction / F	- lux Duration (days)	3,979	Adjusted until a minimum of 100 percent treatment was achieved.
Average Groundwater Concentration (mg/L)	0.92				
Effective Porosity	0.30				
Kd (L/kg)	2,250	Extractio	on Duration (years)	11	
Density (lbs/ft ³)	110	Treatmen	nt Flux Volume (gal)	337,057,051	Assumes groundwater is in contact with 10 feet of smear zone 60 percent of the time.
Effective Flux Treatment Duration	60%	Treatm	ent Flux Volume (L)	1,277,446,223	Assumes groundwater is in contact with 10 feet of smear zone 60 percent of the time.
Hydrogen/Electron Donor Availability					
Constituent	COC Mass (pounds)	Molecular Weight (g/mol)	Moles of H ₂ to Oxidize / Mole Analyte	Moles of H ₂ Donor In Treatment Area	
Native Electron Donors	I.			I.	
Estimated Total Soil TPH-Dx	29,761	226	49	2,932,991	Based on reducing the estimated groundwater concentration from 0.92 to 0.5 mg/L.
Estimated Total Groundwater TPH-Dx	3.2	226	49	316	Based on reducing the estimated groundwater concentration from 0.92 to 0.5 mg/L.
Estimated Moles of	Hydrogen Don	or Available for	Treatment (20%)) 586,662	Assumes 20% of TPH completely oxidized to CO2/H2O, 80% to volatile fatty acids and biomass incorporation (not completely oxidized).
Hydrogen/Electron Donor Removed b	y Groundwat	er Extraction	System		
TPH-Dx (mg/L) 0					Assumes no TPH is being removed by the groundwater extraction system.
I	Estimated Mole	es of Hydrogen	Donor Extracted:	0	
Hydrogen/Electron Acceptors					
Constituent	Groundwater Concentration (mg/L)	Molecular Weight (g/mol)	Moles of H ₂ to Reduce Mole Analyte	Moles of H₂ Through Treatment Area	
Native Electron Acceptors	1				
Dissolved Oxygen	4.0	32	2	319,362	Based on upgradient groundwater concentrations at WW-MW-7 and WW-MW-10.
Nitrate (as Nitrogen)	0.2	62	3	54,765	Based on upgradient groundwater concentrations at WW-MW-7 and WW-MW-10.
Sulfate	4.0	96.1	4	212,686	Based on typical reduction from background concentrations across the site.
Hydrogen Acceptor Ba	ased on Flux of	f System Opera	tion and Duratior	586,813	
Added Electron Acceptor	Amendment Added (pounds)	Assumed Metabolic Efficiency	Moles H₂/Lb.	Moles H ₂ Acceptor Added	
AnoxEA-aq™	0	10%	11.6	0	
		Added Hydrogen	Acceptor Subtotal	0	
	Estimat	ed Moles of Hyd	drogen Acceptor:	586,813	
Estimated Oxidative Treat	ment Progress	Based on Desi	ign Assumptions	: 100%	
NOTES:					

L = liters; ft=feet; gal = gallons; 1ft3 = 28.32 L,mg/L = milligrams per liter; gpd = gallons per day; H2 = hydrogen.

Electron and hydrogen equivalents per Principles and Practices of Enhanced Anaerobic Bioremediation of Chlorinated

Solvents, Air Force Center for Environmental Excellence, August 2004.

Green boxes are treatment option variables for input.

Yellow boxes are treatment option outputs.

 Table A-28 - Wastewater Treatment Area South Plume - Alternative C2, Scenario C2c

 Reduce Groundwater Diesel Concentration from 0.92 to 0.5 mg/L

 Restoration Time Frame Based on Electron Donor Demand Calculations

Treatment Target Area Specifications		Operational Assumptions			
Vertical Treatment (ft)	10	Ground	water Velocity (ft/d)	75	Increased flux by 50 percent from baseline conditions.
Treatment Width (ft)	126	Extractio	on / Flux Rate (gpd)	211,799	Based on daily groundwater flow through the Waste Water area.
Treatment Length (ft) (parallel to GW flow)	325	Extraction / F	lux Duration (days)	2,701	Adjusted until a minimum of 100 percent treatment was achieved.
Average Groundwater Concentration (mg/L)	0.92				
Effective Porosity	0.30				
Kd (L/kg)	2,250	Extraction Duration (years)		7	
Density (lbs/ft ³)	110	Treatmer	nt Flux Volume (gal)	343,241,584	Assumes groundwater is in contact with 10 feet of smear zone 60 percent of the time.
Effective Flux Treatment Duration	60%	Treatm	ent Flux Volume (L)	1,300,885,604	Assumes groundwater is in contact with 10 feet of smear zone 60 percent of the time.
Hydrogen/Electron Donor Availability					
Constituent	COC Mass (pounds)	Molecular Weight (g/mol)	Moles of H ₂ to Oxidize / Mole Analyte	Moles of H ₂ Donor In Treatment Area	
Native Electron Donors		I.			
Estimated Total Soil TPH-Dx	29,761	226	49	2,932,991	Based on reducing the estimated groundwater concentration from 0.92 to 0.5 mg/L.
Estimated Total Groundwater TPH-Dx	3.2	226	49	316	Based on reducing the estimated groundwater concentration from 0.92 to 0.5 mg/L.
Estimated Moles of	Hydrogen Don	or Available for	Treatment (20%) 586,662	Assumes 20% of TPH completely oxidized to CO2/H2O, 80% to volatile fatty acids and biomass incorporation (not completely oxidized).
Hydrogen/Electron Donor Removed b	y Groundwat	er Extraction S	System		
TPH-Dx (mg/L)	0		•		Assumes no TPH is being removed by the groundwater extraction system.
E	stimated Mole	es of Hydrogen	Donor Extracted:	0	
Hydrogen/Electron Acceptors					
Constituent	Groundwater Concentration (mg/L)	Molecular Weight (g/mol)	Moles of H ₂ to Reduce Mole Analyte	Moles of H₂ Through Treatment Area	
Native Electron Acceptors		1	1		
Dissolved Oxygen	4.0	32	2	325,221	Based on upgradient groundwater concentrations at WW-MW-7 and WW-MW-10.
Nitrate (as Nitrogen)	0.2	62	3	55,770	Based on upgradient groundwater concentrations at WW-MW-7 and WW-MW-10.
Sulfate	4.0	96.1	4	216,589	Based on typical reduction from background concentrations across the site.
Hydrogen Acceptor Ba	ised on Flux of	f System Opera	tion and Duration	597,580	
Added Electron Acceptor	Amendment Added (pounds)	Assumed Metabolic Efficiency	Moles H₂/Lb.	Moles H ₂ Acceptor Added	
AnoxEA-aq™	0	10%	11.6	0	
Added Hydrogen Acceptor Subtotal					
	Estimat	ed Moles of Hyd	Irogen Acceptor:	597,580	
Estimated Oxidative Treat	ment Progress	Based on Desi	gn Assumptions	: 102%	
NOTES:					

L = liters; ft=feet; gal = gallons; 1ft3 = 28.32 L,mg/L = milligrams per liter; gpd = gallons per day; H2 = hydrogen.

Electron and hydrogen equivalents per Principles and Practices of Enhanced Anaerobic Bioremediation of Chlorinated

Solvents, Air Force Center for Environmental Excellence, August 2004.

Green boxes are treatment option variables for input.

Yellow boxes are treatment option outputs.

Table A-29 - Wastewater Treatment Area South Plume - Alternative C3 Reduce Groundwater Diesel Concentration from 0.92 to 0.5 mg/L Restoration Time Frame Based on Electron Donor Demand Calculations

Treatment Target Area Specifications		Operational Assumptions			
Vertical Treatment (ft)	10	Groundwater Velocity (ft/d)		50	
Treatment Width (ft)	126	Extracti	on / Flux Rate (gpd)	141,199	Based on daily groundwater flow through the Waste Water area.
Treatment Length (ft) (parallel to GW flow)	325	Extraction /	Flux Duration (days)	4,015	Adjusted until a minimum of 100 percent treatment was achieved.
Average Groundwater Concentration (mg/L)	0.92	Injection Trea	tment Volume (gpd)	0	Total groundwater reinjection in gallons per day
Effective Porosity	0.30	Solution C	oncentration (mg/L)	0	Concentration of electron acceptor in milligrams per liter
Kd (L/kg)	2,250	Extraction / Fl	ux Duration (years)	11	
Bulk Density (lbs/ft ³)	110	Treatme	nt Flux Volume (gal)	340,149,318	Assumes groundwater is in contact with 10 feet of smear zone 60 percent of the time.
Effective Flux Treatment Duration	60%	Treatm	ent Flux Volume (L)	1,289,165,913	Assumes groundwater is in contact with 10 feet of smear zone 60 percent of the time.
Hydrogen/Electron Donor Availability					
Constituent	TPH Mass (pounds)	Molecular Weight (g/mol)	Moles of H ₂ to Oxidize / Mole Analyte	Moles of H ₂ Donor In Treatment Area	
Native Electron Donors	I.		L.		
Estimated Total Soil TPH-Dx	29,761	226	49	2,932,991	Based on reducing the estimated groundwater concentration from 0.92 to 0.5 mg/L.
Estimated Total Groundwater TPH-Dx	3.2	226	49	316	Based on reducing the estimated groundwater concentration from 0.92 to 0.5 mg/L.
Estimated Moles of Hydrogen	Donor Availab	e for Treatment	(20% Efficiency)	586,662	Assumes 20% of TPH completely oxidized to CO2/H2O, 80% to volatile fatty acids and biomass incorporation (not completely oxidized).
Hydrogen/Electron Donor Removed by	y Groundwate	r Extraction S	ystem		
TPH-Dx (mg/L)	0				Assumes no TPH is being physically removed by the groundwater extraction system.
	Estimated Mole	es of Hydrogen	Donor Extracted:	0	
Hydrogen/Electron Acceptors					
Constituent	Groundwater Concentration (mg/L)	Molecular Weight (g/mol)	Moles of H₂ to Reduce Mole Analyte	Moles of H₂ Through Treatment Area	
Native Electron Acceptors					
Dissolved Oxygen	4.0	32	2	322,291	Based on upgradient groundwater concentrations at WW-MW-7 and WW-MW-10.
Nitrate (as Nitrogen)	0.2	62	3	55,268	Based on upgradient groundwater concentrations at WW-MW-7 and WW-MW-10.
Sulfate	4.0	96.1	4	214,637	Based on typical reduction from background concentrations across the site.
Hydrogen Acceptor Based on Flux of System Operation and Duration					
Added Electron Acceptor	Amendment Added (pounds/day)	Assumed Metabolic Efficiency	Moles H ₂ /Lb.	Moles H ₂ Acceptor Added	
Hydrogen Peroxide AnoxEA-aq™	0.00 0	20% 10%	6.5 11.6	0	Assumes no hydrogen peroxide is injected.
		Added Hydrogen	Acceptor Subtotal	0	
	Estimat	ed Moles of Hyd	Irogen Acceptor:	592,197	
Estimated Oxidative Treatment Progress Based on Design Assumptions:]

NOTES:

L = liters; ft=feet; gal = gallons; 1ft3 = 28.32 L,mg/L = milligrams per liter; gpd = gallons per day; H2 = hydrogen.

Electron and hydrogen equivalents per Principles and Practices of Enhanced Anaerobic Bioremediation of Chlorinated

Solvents, Air Force Center for Environmental Excellence, August 2004.

Green boxes are treatment option variables for input.

Yellow boxes are treatment option outputs.

Reduction for oil range hydrocarbons was not calculated since the current concentration of 0.25 mg/L is less than MTCA standards,

and the diesel range hydrocarbons would be preferentially reduced.

 Table A-30 - Wastewater Treatment Area South Plume - Alternative C4
 Reduce Groundwater Diesel Concentration from 0.92 to 0.5 mg/L

 Restoration Time Frame Based on Electron Donor Demand Calculations

Treatment Target Area Specifications		Operational Assumptions		otions	
Vertical Treatment (ft)	10	Ground	water Velocity (ft/d)	65	Increased flux by 30 percent from baseline conditions.
Treatment Width (ft)	126	Extractio	on / Flux Rate (gpd)	183,559	Based on daily groundwater flow through the Waste Water area.
Treatment Length (ft) (parallel to GW flow)	325	Extraction / F	lux Duration (days)	3,066	Adjusted until a minimum of 100 percent treatment was achieved.
Average Groundwater Concentration (mg/L)	0.92				
Effective Porosity	0.30				
Kd (L/kg)	2,250	Extraction / Flu	x Duration (years)	8	
Bulk Density (lbs/ft ³)	110	Treatmen	nt Flux Volume (gal)	337,675,504	Assumes groundwater is in contact with 10 feet of smear zone 60 percent of the time.
Effective Flux Treatment Duration	60%	Treatme	ent Flux Volume (L)	1,279,790,161	Assumes groundwater is in contact with 10 feet of smear zone 60 percent of the time.
Hydrogen/Electron Donor Availability					
Constituent	TPH Mass (pounds)	Molecular Weight (g/mol)	Moles of H ₂ to Oxidize / Mole Analyte	Moles of H ₂ Donor In Treatment Area	
Native Electron Donors	I.	I			
Estimated Total Soil TPH-Dx	29,761	226	49	2,932,991	Based on reducing the estimated groundwater concentration from 0.92 to 0.5 mg/L.
Estimated Total Groundwater TPH-Dx	3.2	226	49	316	Based on reducing the estimated groundwater concentration from 0.92 to 0.5 mg/L.
Estimated Moles of	Hydrogen Don	or Available for	Treatment (20%) 586,662	Assumes 20% of TPH completely oxidized to CO2/H2O, 80% to volatile fatty acids and biomass incorporation (not completely oxidized).
Hydrogen/Electron Donor Removed b	y Groundwat	er Extraction S	System		
TPH-Dx (mg/L)	0		•		Assumes no TPH is being physically removed by the groundwater extraction system.
E	Estimated Mole	s of Hydrogen	Donor Extracted:	0	
Hydrogen/Electron Acceptors					
Constituent	Groundwater Concentration (mg/L)	Molecular Weight (g/mol)	Moles of H ₂ to Reduce Mole Analyte	Moles of H ₂ Through Treatment Area	
Native Electron Acceptors					
Dissolved Oxygen	4.0	32	2	319,948	Based on upgradient groundwater concentrations at WW-MW-7 and WW-MW-10.
Nitrate (as Nitrogen)	0.2	62	3	54,866	Based on upgradient groundwater concentrations at WW-MW-7 and WW-MW-10.
Sulfate	4.0	96.1	4	213,076	Based on typical reduction from background concentrations across the site.
Hydrogen Acceptor Based on Flux of System Operation and Duration				587,890	
Added Electron Acceptor	Amendment Added (pounds)	Assumed Metabolic Efficiency	Moles H₂/Lb.	Moles H ₂ Acceptor Added	
AnoxEA-aq™	0	10%	11.6	0	
Added Hydrogen Acceptor Subtotal				0	
Estimated Moles of Hydrogen Acceptor: 587,890				587,890	
Estimated Oxidative Treat	ment Progress	Based on Desi	gn Assumptions	: 100%	
NOTES:					

L = liters; ft = feet; gal = gallons; 1ft3 = 28.32 L, mg/L = milligrams per liter; gpd = gallons per day; H2 = hydrogen.

Electron and hydrogen equivalents per Principles and Practices of Enhanced Anaerobic Bioremediation of Chlorinated

Solvents, Air Force Center for Environmental Excellence, August 2004.

Green boxes are treatment option variables for input.

Yellow boxes are treatment option outputs.