Appendix C Chemistry Laboratory Reports and Chain-of-Custody Forms

(provided electronically on CD)

Appendix C-1 Chemistry Laboratory Reports

Table of Contents: ARI Job RA17, RA18, RA23, RA31

Client: Science Applications, Intl.

Project: Fidalgo Bay/ Custom Plywood Dioxin

	Page From:	Page To:
Inventory Sheet		
Cover Letter		
Chain of Custody Documentation	_ 2_	_12_
Case Narrative, Data Qualifiers, Control Limits	_13_	21
General Chemistry Analysis		_
Report and Summary QC Forms	_22_	90
Geotechnical Analysis	<i>a</i> :	
Report and Summary QC Forms	9/	121
General Chemistry Raw Data		
Analyst Notes and Raw Data	_122_	242
Geotechnical Raw Data		
Analyst Notes and Raw Data	243	_301_

Signature Signature

June-28-2010

Date

June 28, 2010

Tim Hammermeister SAIC 18912 North Creek Parkway, Suite 101 Bothell, WA 98011

RE: Project: Fidalgo Bay / Custom Plywood Dioxin Study ARI Job No: RA17, RA18, RA23, & RA31

Dear Tim:

Please find enclosed the Chain-of-Custody (COC) records, sample receipt documentation, and the final data package for samples from the project referenced above.

Sample receipt and details of the analyses are discussed in the Case Narrative.

An electronic copy of this data and associated raw data will be kept on file with ARI. Should you have any questions or problems, please feel free to contact me at any time.

Sincerely,

ANALYTICAL RESOURCES, INC.

Cheronne Oreiro Project Manager (206) 695-6214 cheronneo@arilabs.com

Enclosures

cc: eFile RA17/RA18/RA23/RA31

P	age	1	of	1	
•	~,		•		

Chain of Custody Documentation

ARI Job ID: RA17, RA18, RA23, RA31

KA17
SAIC.
From Science to Solutions

18912 North Creek Parkway, Suite 101 Bothell, Washington 98011 TEL: 425.485.5800 • FAX: 425.485.5566										Ana	lyses	/ Test	Shipping Information	
From Science to So	lutions	TEL:	425.485.58	800 • FAX	: 425.485.55 	66								Number of Shipping Containers:
CHAIN OF CUSTODY RECORD							-							Date Shipped:
Project No.: Project Mgr: The Hommermeister Project Name: Fidolgo Bay / Custon Plywood Dioxh study										53				
Project Location: hidok) by								,	Solids	Sulfides				Carrier:
Sample Collectors: Will Horney 7im Hammahalsky Chris HmT Client Name: ECO109y							A 5126				~			Waybill No.:
Sample ID	Depth	Matrix	Date	Time	# of Conta	ainers	6 rah	70/	Toral	Total	Arc			Comments
SDS-PB-01	0-10cm	ક્ ઢે	6/7/10	1307	4		X,	\mathbf{x}	X	X	X			
SOS-PB-02	0-10cm	5 6∂	6/7/10	1345	4)	X,	X.	X	X	X			
SOS-PB-03	0-10cm	500	6/7/10	1407	4		\times	X,	X	X	X			
505-PB-04	0-Dcm	Sed	6/7/10	1434	4)	X ;	×	X	X	X			
SB-PB-05	0-10cm	562	6/7/10	1450	4		X :	Χ	X	X	X			
SDS-PB-05-D	0-10cm	Sed	6/7/10	1450	3	,	X,	\times	×	X				
SDS-PB-05-T	0-10cm	500	6/7/10	F 0	3	2	× .	X	X	X				
SDS-PB-06	0-10cm	562	6/7/10	1524	4		× :	\times	X	X	X			
SDS-PB-07	0-10cm	562	6/7/10	1550	4	}	×	×	×	X	X			
				·										
									·					
RELINQUISHED BY:	vat	-/	VED BY:	2		ELINQUISHEI							 EIVE	
Signature: This batter Signature: 6/11/10	lor.	Signati	ure: <u> </u>	lin in		ignature: ate/Time:								
Affiliation: SAIC		Affiliat		21		ffiliation:							liation	

Cooler Receipt Form

ARI Client: SAIC	Project Name: <u>F1 dalgo Bay/aus</u>	tom pyw
COC No(s):(NA)	Delivered by: Fed-Ex UPS Courier Hand Delivered Ot	• 5
Assigned ARI Job No: RA17	Tracking No:	(NA)
Preliminary Examination Phase:		
Were intact, properly signed and dated custody seals attached t	to the outside of to cooler?	(NO)
Were custody papers included with the cooler?		NO
Were custody papers properly filled out (ink, signed, etc.)		NO
Temperature of Cooler(s) (°C) (recommended 2.0-6.0 °C for che		<u></u>
	emistry) <u>4,4 3.6 5.1 5,2 1.</u> Temp Gun ID#: <i>90</i>	
If cooler temperature is out of compliance fill out form 00070F	· · · · · · · · · · · · · · · · · · ·	077130
Cooler Accepted by: + V	Date: <u> </u>	
	s and attach all shipping documents	
Log-In Phase:		
Was a temperature blank included in the cooler?	YES	S (NO)
What kind of packing material was used? (Bubble Wra	ap Wet Ice Gel Packs Baggies Foam Block Paper Other:	
Was sufficient ice used (if appropriate)?	NA VES	NO NO
Were all bottles sealed in individual plastic bags?	YES	s (NO)
Did all bottles arrive in good condition (unbroken)?		
Were all bottle labels complete and legible?		
Did the number of containers listed on COC match with the num		1
Did all bottle labels and tags agree with custody papers?		-
Were all bottles used correct for the requested analyses?		***************************************
Do any of the analyses (bottles) require preservation? (attach p	\widetilde{c} .	
Were all VOC vials free of air bubbles?		•
Was sufficient amount of sample sent in each bottle?		s) NO
Date VOC Trip Blank was made at ARI	\sim	
Was Sample Split by ARI: (NA) YES Date/Time:	Equipment: Split I	by:
Samples Logged by:Dat	te: 6/11/10 Time: 111	
	ger of discrepancies or concerns **	
	•	
Sample ID on Bottle Sample ID on COC	Sample ID on Bottle Sample ID on	1 COC
Additional Notes, Discrepancies, & Resolutions:	1 L SDS-PB-75-D	
XEXTRAJOY (DIOXINS)ON SUS -PD-O	is a except suificles partime is	5
Additional Notes, Discrepancies, & Resolutions: XEX+YAJAY (DIOXINS) ON SDS -PB-OX *ON SDS-PB-O4 TIMPON BOHLOS IS IS COVYECT AT 1434	MONTENCED / COMMISSION	
By: AV Date: 6/1/10 Small Air Bubbles Peabubbles LARGE Air Bubbles	Swall A "cm"	
Small Air Bubbles Peabubbles LARGE Air Bubbles 2-4 mm > 4 mm	Small → "sm" Peabubbles → "pb"	
• • • • • • • • •	Large > "Ig"	
	Headsnace → "hs"	

Cooler Receipt Form

Revision 014

holk.

е и,
Ø

5 A	
From Science to	Solutions

18912 North Creek Parkway, Suite 101 Bothell, Washington 98011										Ana	lyses	/ Tests	Shipping Information			
From Science to So			_		(: 425.4 85.55	566										Number of Shipping Containers:
	СНА	IN OF CUS	TODY REC	ORD		·									ţ	 Date Shipped:
Project No.: Project Mgr: Tim Hommernelstv																
Project No.: Project No.: Project Name: Fidalcy Bay / Custon Physical Dioths tray Project Location: Fidalcy Bay Sample Collectors: Will Figure The Hount Fuels Julie Waves							536		501165	Sulfides					ľ	Carrier:
Sample Collectors: V Client Name:	VIII FEGRAN	17m	Howmer	w648	Julie Wa	NES	1				ArchINE	-				Waybill No.:
Sample ID	Depth	Matrix	Date	Time	# of Con	tainers	Grann	72	Taro	ارسعا	Arch					Comments
SUS-PB-08	0-10cm	Std	6/8/10	1521	4		X	X	\times	X	\times					
505-PB-09	0-10cm	5t d	6/4/10	1558	4		X	X	X	X	X					
SDS-PB-10	0-10cm	Sed	6/966/3/6		4		X	X	X	X	X					
505-FB-01	D-10cm	Std	6/8/10	1003	4		×	×	X	X	X					
SDS-FB-02	0-10cm	se d	6/8/10	1021	4		×	ス	X	X	X					
505-FB-03	9-12m	Sed	6/4/10	1052	4		X	X	X	X	X					
505-FB-04	0-10cm	sed	6/4/10	1152	4		Χ	X	X	X	X					
505-FB-05	0-10cm	569	6/4/10	1348	4		X	X	X	X	X					
505-FB-06	0-10cm	sed	6/8/10	1114	4		X	X	×	X	X					
SOS-FB-07	Olocon	sed	6/6/19	1045	4		X	X	X	X	X					
505-FB-07-D	0-10cm	562	6/8/10	1045	3		X	X	X	X						
SDS- PB-07-T	0-10cm	56टे	6/8/10	1045	3		×		X							
RELINQUISHED BY: Signature:		Signat				RELINQUISH Signature:		_					_ Signa	EIVED ature:		
Date/Time: 6/11/1	0 " 10 1 C		ime: <u>(0/11)</u> tion: AK	110 10 21		Date/Time: _ Affiliation:							_	Time: ation:		

est i
2 6
Ø
S

Affiliation:

18912 North Creek Parkway, Suite 101 Bothell, Washington 98011										Analyses / Tests							Shipping Information
From Science to Solutions TEL: 425.485.5800 • FAX: 425.485.5566																	Number of Shipping Containers:
Project No.: Project Name: Flago Bay / Custom Plywood Diash Stray Project Location: Flago Bay																Date Shi	Date Shipped:
							シ光		solbs	SNA366		:			Carrier:		
Sample Collectors: Client Name: E4	Will the	ituóv 1	Im Hamm	b/md/90/	Julie Wants		Crop "	ر ر			Archive					Waybill No.:	Waybill No.:
Sample ID	Depth	Matrix	Date	Time	# of Containe	ers	Ć	10(TOO	Local	Λŀ						Comments
S05-FB-08	0-10cm	562	6/8/10	1133	4		Χ	X	\times	X	X						
505-FB-09	0-10cm	562	6/8/10	1435	4		X	X	X	χ	λ						
SDS-FB-10	0-10cm	Sed	6/8/10	1453	4		X	X	X	X	X						
					,												
RELINQUISHED BY: Signature:	Hit	Signa	ture:		Sign	INQUISHE ature:							s	RECEIN Signatu	ıre:		
IDoto/Timo: / [a/ li / lit	1 / 1/0	· Im Date/	Timo: (2/8/	'IA IAI	Date	/Time:							ח	ato/Ti	mo.		

Affiliation: ___

• White Lab	Dofurne to	Originator Unon	Receipt of Samples

Affiliation: _

Cooler Receipt Form

ARI Client: SAIC		Project Name: <u>F10</u> 44	30 Bay/C	ustom pyux
COC No(s):	(NA)	Delivered by: Fed-Ex UPS Cou		• •
Assigned ARI Job No:	18	Tracking No:		(NA)
Preliminary Examination Phase:	_			
Were intact, properly signed and o	tated custody seals attached to	the outside of to cooler?	YI	ES (NO)
Were custody papers included wit			 <i>A</i> i	
				S NO
Were custody papers properly fille				<i>→</i>
Temperature of Cooler(s) (°C) (red		mistry) <u>4,4</u> <u>3,6</u> §		1.9 1.9
If cooler temperature is out of com	ipliance fill out form 00070F		Temp Gun ID#:	7007-1950
Cooler Accepted by:	HV	Date: <u> </u>	: <u>1010 </u>	
	Complete custody forms	and attach all shipping documents		
Log-In Phase:				_
Was a temperature blank included	d in the cooler?			YES NO
What kind of packing material w	vas used? Bubble Wra	Wet Ice Gel Packs Baggies Foam	Block Paper Oth	ier:
Was sufficient ice used (if appropr	riate)?		NA	YES NO
Were all bottles sealed in individu	al plastic bags?			YES NO
Did all bottles arrive in good condi	ition (unbroken)?		(YES NO
Were all bottle labels complete an	nd legible?		(YES NO
Did the number of containers liste	d on COC match with the num	ber of containers received?		YES NO
Did all bottle labels and tags agree	e with custody papers?			YES (NO)
Were all bottles used correct for the	he requested analyses?			YES NO
Do any of the analyses (bottles) re	equire preservation? (attach pr	eservation sheet, excluding VOCs)	NA	YES NO
Were all VOC vials free of air bub	bles?		NA	YES NO
Was sufficient amount of sample	sent in each bottle?			YES NO
Date VOC Trip Blank was made a	at ARI		(NA)	
Was Sample Split by ARI:	YES Date/Time:	Equipment:		Split by:
Samples Logged by:	JW Date	e: <u>6/11/10</u> Time:	1120	
,	** Notify Project Manage	er of discrepancies or concerns **		
	0 ID 000	Sample ID on Bottle	Sampla	ID on COC
Sample ID on Bottle	Sample ID on COC	Sample ID On Bottle	Sample	10 01 000
			 	
Additional Notes, Discrepancie	es, & Resolutions:	<u> </u>		
Samples SDS-F	B-07, SDS-FB	,-07-0, & SDS-FB-0	7-T (ex	y says
sampled @ 1045	, all bottles s	ay 1405,		,
By: Tw Da	ate: 6/11/10			
Small Air Bubbles Peabubb	les' LARGE Air Bubbles	Small → "sm"		
-2mm 2-4 mm	m > 4 mm	Peabubbles → "pb"		
	• • • •	Large → "lg"		
wheelesing (COnstant)		Headspace → "hs"		

Cooler Receipt Form

Revision 014

þaði

5 0
Ö
Ö

RA23

Ecology

Depth

0-10cm

0+Dcm

0-10cm

0-10cm

0-10cm

OHOun

0-1am

Sample Collectors: TM

Sample ID

Project No.: -Project Name: Project Location:

Client Name:

18912 North Creek Parkway, Suite 101 Bothell, Washington 98011 TEL: 425.485.5800 • FAX: 425.485.5566 CHAIN OF CUSTODY RECORD Project Mgr: The Hammer moisser Bay / Custom Plymood Dioth Sudy	Shipping Information Number of Shipping Containers: Date Shipped:
CHAIN OF CUSTODY RECORD Project Mgr: The Homine molisites	Containers:
Project Mgr: The Hommormossion	Date Shipped:
Project Mgr: The Hommer morester	I
ideoloxy Bay	Carrier:
alma Morsier Will Honor Shife World	Waybill No.:
oth Matrix Date Time # of Containers	Comments
m Sed 6/10/10 1057 4 XXXX	
cm Sed 6/10/10 1116 4 XXXXX	
km Sed 6/10/10 1130 4 XXXX	
m Sed 6/10/10 1144 4 XXXXX	
cm 502 6/10/10 1200 4 XXXXX	
un Sod 6/10/10 1212 4 XXXX	
tm Sed 6/10/10 1223 4 XXXXX	
RECEIVED BY: RECEIVED BY: RECEIVED BY:	<u></u>

RELINQUISHED BY: RECEIVED BY	RELINQUISHED BY:	RECEIVED BY:
Signature: Signature:	Signature:	Signature:
Date/Time: 6/11/16 0 10 Date/Time: 6/11/10 0/10	Date/Time:	Date/Time:
Affiliation: SIAIC Affiliation: AFT	Affiliation:	Affiliation:

Cooler Receipt Form

ARI Client: SAIC		Project Name: Fidal	go Bay,	lcusto	m piyuxo
COC No(s):	(NA)	Delivered by: Fed-Ex UPS Cou	rie Hand Deli	vered Other:	
Assigned ARI Job No:	193_	Tracking No:			(NA)
Preliminary Examination Phase:		-			
Were intact, properly signed and dated	custody seals attached to the	he outside of to cooler?		YES	(NO)
Were custody papers included with the	·			(FS)	NO
Were custody papers properly filled out				X=3	NO
) (, <i>O</i> I
Temperature of Cooler(s) (°C) (recomm		stry) <u>4.4</u> 3.6 5	. •	<u>1.9</u>	1, 1
If cooler temperature is out of complian	n_{Λ} .	: 1 /.	Temp Gun II)#: <u>_7025-</u> 7	17750
Cooler Accepted by:	AV	Date: <u>U/////</u> Time	= <u>1010</u>		
	omplete custody forms an	d attach all shipping documents			
Log-In Phase:					
Was a temperature blank included in th	e cooler?			YES	(NO)
What kind of packing material was us		Vet Ice Gel Packs Baggies Foam	Block Paper	Other:	
Was sufficient ice used (if appropriate)?			NA	(YES)	NO
Were all bottles sealed in individual pla				YES	(NO)
Did all bottles arrive in good condition (unbroken)?			(YES)	NO
Were all bottle labels complete and leg				YES	NO
Did the number of containers listed on	r of containers received?		(YES)	NO	
Did all bottle labels and tags agree with	custody papers?			(YES)	NO
Were all bottles used correct for the rec				(YES)	NO
Do any of the analyses (bottles) require	preservation? (attach prese	ervation sheet, excluding VOCs)	(NA)	YES	NO
Were all VOC vials free of air bubbles?			(NA)	YES	NO
Was sufficient amount of sample sent in	n each bottle?		_	(YES)	NO
Date VOC Trip Blank was made at ARI			(NA)		
Was Sample Split by ARI: (NA)	YES Date/Time:	Equipment:		Split by:	
Samples Logged by:	Date:	Time:	1230	<u> </u>	
Sample ID on Bottle	Sample ID on COC	Sample ID on Bottle	Samp	le ID on CO	<u> </u>
	 .				
Additional Notes, Discrepancies, & F	Resolutions:				
, and the state of					
By: Date:					
Small Air Bubbles Peabubbles'	LARGE Air Bubbles S	Small → "sm"			<u> </u>
-2mm 2-4 mm	>4 mm	Peabubbles → "pb"			
		Large → "lg"	· · · · · · · · · · · · · · · · · · ·		
A P A P A P A P A P A P A P A P A P A P		Headspace → "hs"			

0016F 3/2/10 Cooler Receipt Form

Revision 014

tindi ₋	
4 2	

RAZI
SAIF
From Science to Solutions

18912 North Creek Parkway, Suite 101 Bothell, Washington 98011 TEL: 425.485.5800 • FAX: 425.485.5566										Ana	lyses	Shipping Information				
From Science to Sol	utions	TEL:	425.485.58	800 • FAX	(: 425.485.5566 ——————	5								Number of Shipping Containers:		
	СНА	IN OF CUS	TODY REC	ORD										Date Shipped:		
Project Location:	ject Name: Hoaky Boy / Custan Flywood Diosh Study ject Location: Floolop Boy								sollels	ગેલ્ડ	des	gęs				Carrier:
Sample Collectors: _/ Client Name:	VIII Holiver	iday TM	n Houn	WWESTV	- Uhr/5 Mm	<i>ΔΤ</i>	in 526			5	Arahve			Waybill No.:		
Sample ID	Depth	Matrix	Date	Time	# of Contain	ners	G103th	100	Total	act	Avr			Comments		
505-CPD-01	0-Dcm	Sed	6/9/10	940	4		X	×	X	X	X					
505-CPD-02	0-10cm	4 2	6/9/10	1001	4		X	X	X	X	X					
505-UPD-03	0-10cm	Sed	6/9/10	1046	4		X	X	X	X	X					
5DS-CPD-04	0-10cm	Sed	6/9/10	1107	4		X	Χ	X	X	X					
SDS-UPO-07	0-10cm	569	6/9/10	1135	4		X	X	X	X	X					
505-CPD-04	0-1000	562	6/9/10	1144	4					X						
505-CPD-06-D	0-10cm	769	6/9/10	1144	3		X	X	X	χ						
SOS-UPD-08-T	Olam	502	6/9/10	1146	3		X		X	X						
SOS-CPD-10	0-10cm	Sed	6/9/10	1312	4		X	X	X	X	X					
SOS-4PD-13	0-10cm	56	6/9/10	1320	4		X	×	X	X	X					
SDS-CPD-16	0-10cm	Sod	6/9/10	1331	4-		X	X	×	X	X					
SDS-CPD-17	0-10cm	Sid	6/9/10	1343	4		×	×	,	X	[
RELINQUISHED BY:	Kift	Signat	VED BY:		Sig	_INQUISHE nature:						RECEI Signat		<u>/:</u>		
Date/Time://///CAffiliation:	ડ/ હિં ૯ -	(lO Date/T	ime: <u>(<i>of 11 f</i></u>	10 10		e/Time: _						 Date/Ti				
Affiliation: SIAI		Amiliat	ion:	T-1	Atti	liation: _						 Affiliat	ЮП:			

D
su si lik
to A
10 11
O
G
ļa ļa

<i>5</i> 41			18912 North Creek Parkway, Suite 101 Bothell, Washington 98011							Ana	ılyse	Shipping Information						
From Science to Sc			425.485.5		(: 425.485.5 	5566									Number of Shipping Containers:			
· · · · · · · · · · · · · · · · · · ·		AIN OF CUS			\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	ka/									Date Shipped:			
Project No.: Project Mgr: The Hammer and Selver Project Name: Fidalgo Bay Custom Plymoad byoth Study Project Location: Fidalgo Bay							6	6				solies	1. Acts			Carrier:		Carrier:
Sample Collectors: _ Client Name:	WII Hohe Ecolo		: Herwine	VinobleV	Chris A	Hunt	An 5126	10C	os la	Total &	Archive				Waybill No.:			
Sample ID	Depth	Matrix	Date	Time	# of Co	ntainers	Grain	+	Total	1	Æ				Comments			
505-40-18	0-10cm	Sto	6/9/10	1400	4	<u> </u>	X	X	X	X	X							
SDS-CPD-19	0-10 cm	ક હ્યુ	6/9/10	1411	4		X	X	X	X	X							
SDS-CPD-20	0-10cm	Sed	6/9/10	1425	4		X	X	X	X	X							
SDS-CPD-21	0-10cm	562	6/9/10	1440	4		X	ス	بح	X	X							
														:				
		-																
RELINQUISHED BY:	11/14	RECE	IVED BY:	<u>)</u>	<u> </u>	RELINQUISH	ED B	<u>Y:</u>				REC	EIVE	BY:				
Signature:	1/4/01-	Signat	ture: A	Julia	1010	Signature:												
Date/Time: 6/11/1 Affiliation: SIA-1		Date/ī Affilia	Λ.	711/10 EX	1010	Date/Time: _ Affiliation: _						 _ Date _ Affi	e/Time liation	:				

Cooler Receipt Form

ARI Client: SAIC	Project Name: Fidalgo Bay/austom Piyu
COC No(s):(NA)	Delivered by: Fed-Ex UPS Courier Hand Delivered Other:
Assigned ARI Job No: RASI	Tracking No:
reliminary Examination Phase:	
Vere intact, properly signed and dated custody seals attached to	the outside of to cooler?
Were custody papers included with the cooler?	
Were custody papers properly filled out (ink, signed, etc.)	
Temperature of Cooler(s) (°C) (recommended 2.0-6.0 °C for cher	mistry) <u>4.4 3.6 5.1 5.2 1.9 1.9</u> Temp Gun ID#: <i>9087-795</i> .2
f cooler temperature is out of compliance fill out form 00070F	, ,
poler Accepted by:	
	and attach all shipping documents
og-In Phase:	
Was a temperature blank included in the cooler?	YES (NO)
What kind of packing material was used? Bubble Wrap	Wet Ice Gel Packs Baggies Foam Block Paper Other:
Was sufficient ice used (if appropriate)?	
Were all bottles sealed in individual plastic bags?	YES (NO)
Did all bottles arrive in good condition (unbroken)?	(ES) NO
Were all bottle labels complete and legible?	YES NO
Did the number of containers listed on COC match with the numb	ber of containers received? YES NO
Did all bottle labels and tags agree with custody papers?	
Were all bottles used correct for the requested analyses?	
Do any of the analyses (bottles) require preservation? (attach pre	eservation sheet, excluding VOCs) (NA) YES NO
Were all VOC vials free of air bubbles?	
Was sufficient amount of sample sent in each bottle?	(YES) NO
Date VOC Trip Blank was made at ARI	NA)
Was Sample Split by ARI: (NA) YES Date/Time:	Equipment: Split by:
	e: <u>16/11/10</u> Time: <u>1547</u>
** Notify Project Manage	er of discrepancies or concerns **
Sample ID on Bottle Sample ID on COC	Sample ID on Bottle Sample ID on COC
Additional Notes, Discrepancies, & Resolutions:	
By: Date:	
Smell Air Bubbles Peabubbles LARGE Air Bubbles 2-4 mm > 4 mm	Small → "sm"
	Peabubbles → "pb" Large → "lg"

0016F 3/2/10 Cooler Receipt Form

Revision 014

Case Narrative, Data Qualifiers, Control Limits

ARI Job ID: RA17, RA18, RA23, RA31

Case Narrative

Client: SAIC

Project: Fidalgo Bay / Custom Plywood Dioxin Study

ARI Job No.: RA17, RA18, RA23, & RA31

Sample Receipt

Forty-seven sediment samples were received June 11, 2010 under ARI jobs RA17, RA18, RA23, and RA31. The cooler temperatures measured by IR thermometer following ARI SOP were 1.9, 1.9, 3.6, 4.4, 5.1, and 5.2°C. Select sample containers were archived frozen upon receipt. For further details regarding sample receipt, please refer to the Cooler Receipt Forms.

General Chemistry Parameters (TOC/TS)

The samples were prepared and analyzed within method recommended holding times.

The method blanks were clean at the reporting limits. The LCS percent recoveries were within control limits.

The SRM percent recoveries were within limits.

The matrix spike percent recoveries of sulfide were outside the control limits for samples **SDS-CPD-05** and **SDS-CDP-01**. All other QC parameters were within control limits. No corrective action was taken.

The replicate RPD/RSDs were within control limits.

Geotechnical Parameters

Laboratory-specific case narratives follow.

Page 1 of 1

ARI Job No.: RA17

Client Project: Fidalgo Bay/ Custom Plywood Dioxin

Case Narrative

1. Nine samples were submitted for grain size analysis according to Puget Sound Estuary Protocol (PSEP) methodology on June 11, 2010.

2. The samples were run in a single batch and one sample from another job, SDS-CPD-14, was chosen for triplicate analysis. The triplicate data is reported on the QA summary.

3. Three samples, SDS-PB-02, SDS-PB-04 and SDS-PB-06, did not contain the required 5 grams of fines for the pipette portion of the analysis. The analytical balance has a capacity of about 200 grams (by 0.0001 grams) and a sample that would yield 5 grams of fines could not be split and stay within the capacity of the balance.

4. Samples SDS-PB-01, SDS-PB-05, SDS-PB-05-D, SDS-PB-05-T and SDS-PB-07 contained woody or other organic matter, which may have broken down during the sieving process affecting grain size analysis.

5. Samples SDS-PB-02, SDS-PB-06, and SDS-PB-07contained shell fragments.

6. The data is provided in summary tables and plots.

7. There were no other noted anomalies in this project.

Approved by:

Geotechnical Laboratory Manager

Date

ARI Job No.: RA18

Client Project: Fidalgo/Padilla Bay

Case Narrative

1. Fifteen samples were submitted for grain size analysis according to Puget Sound Estuary Protocol (PSEP) methodology on June 11, 2010.

2. The samples were run in a single batch and one sample from this job, SDS-PB-10, was chosen for triplicate analysis. The triplicate data is reported on the QA summary.

3. One sample, SDS-PB-09, did not contain the required 5 grams of fines for the pipette portion of the analysis. The analytical balance has a capacity of about 200 grams (by 0.0001 grams) and a sample that would yield 5 grams of fines could not be split and stay within the capacity of the balance.

4. Samples SDS-PB-10, SDS-PB-08, and SDS-FB-06 contained woody or other organic matter, which may have broken down during the sieving process affecting grain size analysis.

5. Samples SDS-PB-09, SDS-FB-01, SDS-FB-03, SDS-FB-06, SDS-FB-07, and SDS-FB-07 contained shell fragments.

6. The data is provided in summary tables and plots.

7. There were no other noted anomalies in this project.

Approved by:

Geotechnical Laboratory Manager

Date: 6/21/10

ARI Job No.: RA23

Client Project: Fidalgo Bay/ Custom Plywood Dioxin

Case Narrative

1. Seven samples were submitted for grain size analysis according to Puget Sound Estuary Protocol (PSEP) methodology on June 11, 2010.

2. The samples were run in a single batch and one sample from this job, SDS-CPD-14, was chosen for triplicate analysis. The triplicate data is reported on the QA summary.

3. Samples SDS-CPD-14, SDS-CPD-05, SDS-CPD-09, SDS-CPD-15 and SDS-CPD-06 contained woody or other organic matter, which may have broken down during the sieving process affecting grain size analysis.

4. All of the samples contained shell fragments.

5. The data is provided in summary tables and plots.

6. There were no other noted anomalies in this project.

Approved by:

Geotechnical Laboratory Manager

Date

ARI Job No.: RA31

Client Project: Fidalgo Bay/ Custom Plywood Dioxin

Case Narrative

1. Sixteen samples were submitted for grain size analysis according to Puget Sound Estuary Protocol (PSEP) methodology on June 11, 2010.

2. The samples were run in a single batch and one sample from this job, SDS-CPD-01, was chosen for triplicate analysis. The triplicate data is reported on the QA summary.

3. Samples SDS-CPD-07, SDS-CPD-10, SDS-CPD-13, and SDS-CPD-21 contained woody or other organic matter, which may have broken down during the sieving process affecting grain size analysis.

4. Samples SDS-CPD-01, SDS-CPD-02, SDS-CPD-03, SDS-CPD-04, SDS-CPD-08, SDS-CPD-08-D, SDS-CPD-08-T, SDS-CPD-16, SDS-CPD-18, and SDS-CPD-20 contained shell fragments.

5. The data is provided in summary tables and plots.

6. There were no other noted anomalies in this project.

Approved by:

Geotechnical Laboratory Manager

Date

Data Reporting Qualifiers Effective 7/10/2009

Inorganic Data

- U Indicates that the target analyte was not detected at the reported concentration
- Duplicate RPD is not within established control limits
- B Reported value is less than the CRDL but ≥ the Reporting Limit
- N Matrix Spike recovery not within established control limits
- NA Not Applicable, analyte not spiked
- H The natural concentration of the spiked element is so much greater than the concentration spiked that an accurate determination of spike recovery is not possible
- L Analyte concentration is ≤5 times the Reporting Limit and the replicate control limit defaults to ±1 RL instead of the normal 20% RPD

Organic Data

- U Indicates that the target analyte was not detected at the reported concentration
- * Flagged value is not within established control limits
- B Analyte detected in an associated Method Blank at a concentration greater than one-half of ARI's Reporting Limit or 5% of the regulatory limit or 5% of the analyte concentration in the sample.
- J Estimated concentration when the value is less than ARI's established reporting limits
- D The spiked compound was not detected due to sample extract dilution
- E Estimated concentration calculated for an analyte response above the valid instrument calibration range. A dilution is required to obtain an accurate quantification of the analyte.
- Q Indicates a detected analyte with an initial or continuing calibration that does not meet established acceptance criteria (<20%RSD, <20%Drift or minimum RRF).
- S Indicates an analyte response that has saturated the detector. The calculated concentration is not valid; a dilution is required to obtain valid quantification of the analyte

- NA The flagged analyte was not analyzed for
- NR Spiked compound recovery is not reported due to chromatographic interference
- NS The flagged analyte was not spiked into the sample
- M Estimated value for an analyte detected and confirmed by an analyst but with low spectral match parameters. This flag is used only for GC-MS analyses
- M2 The sample contains PCB congeners that do not match any standard Aroclor pattern. The PCBs are identified and quantified as the Aroclor whose pattern most closely matches that of the sample. The reported value is an estimate.
- N The analysis indicates the presence of an analyte for which there is presumptive evidence to make a "tentative identification"
- Y The analyte is not detected at or above the reported concentration. The reporting limit is raised due to chromatographic interference. The Y flag is equivalent to the U flag with a raised reporting limit.
- C The analyte was positively identified on only one of two chromatographic columns. Chromatographic interference prevented a positive identification on the second column
- P The analyte was detected on both chromatographic columns but the quantified values differ by ≥40% RPD with no obvious chromatographic interference

Geotechnical Data

- A The total of all fines fractions. This flag is used to report total fines when only sieve analysis is requested and balances total grain size with sample weight.
- F Samples were frozen prior to particle size determination
- SM Sample matrix was not appropriate for the requested analysis. This normally refers to samples contaminated with an organic product that interferes with the sieving process and/or moisture content, porosity and saturation calculations
- SS Sample did not contain the proportion of "fines" required to perform the pipette portion of the grain size analysis
- W Weight of sample in some pipette aliquots was below the level required for accurate weighting

Laboratory Quality Assurance Plan

Page 131 of 155

Version 13-000 8/17/09

PAIT: 0002A

Spike Recovery Control Limits for Conventional Wet Chemistry Effective 5/1/09

Control limits are updated periodically. Assure that you have ARI's current control limits by downloading the files at the time of use. http://www.arilabs.com/portal/downloads/ARI-CLs.zip

	ARi's Co	ntrol Limits
Sample Matrix:	Water	Soil / Sediment
Matrix Spike Recoveries	% Recovery	% Recovery
Ammonia	75 - 125	75 - 125
Bromide	75 125	75 - 125
Chloride	75 125	75 - 125
Cyanide	75 - 125	75 - 125
Ferrous Iron	75 - 125	75 - 125
Fluoride	75 - 125	75 - 125
Formaldehyde	75 - 125	75 - 125
Hexane Extractable Material		78 - 114
Hexavalent Chromium	75 - 125	75 - 125
Nitrate/Nitrite	75 - 125	75 - 125
Oil and Grease	75 - 125	75 - 125
Phenol	75 - 125	75 - 125
Phosphorous	75 - 125	75 - 125
Sulfate	75 - 125	75 - 125
Sulfide	75 - 125	75 - 125
Total Kjeldahl Nitrogen	75 - 125	75 - 125
Total Organic Carbon	75 - 125	75 - 125
Duplicate RPDs		
Acidity	±20%	±20%
Alkalinity	±20%	±20%
BOD	±20%	±20%
Cation Exchange	±20%	±20%
COD	±20%	±20%
Conductivity	±20%	±20%
Salinity	±20%	±20%
Solids	±20%	±20%
Turbidity	±20%	±20%

General Chemistry Analysis

ARI Job ID: RA17, RA18, RA23, RA31

General Chemistry Analysis Report and Summary QC Forms

ARI Job ID: RA17, RA18, RA23, RA31

Matrix: Sediment

Data Release Authorized: Reported: 06/24/10

Project: Fidalgo Bay/ Custom Plywood

Event: NA

Date Sampled: 06/07/10 Date Received: 06/11/10

Client ID: SDS-PB-01 ARI ID: 10-14040 RA17A

Analyte	Date	Method	Units	RL	Sample
Total Solids	06/14/10 061410#1	EPA 160.3	Percent	0.01	64.40
Preserved Total Solids	06/11/10 061110#1	EPA 160.3	Percent	0.01	61.20
Sulfide	06/11/10 061110#1	EPA 376.2	mg/kg	3.09	39.2
Total Organic Carbon	06/22/10 062210#1	Plumb,1981	Percent	0.020	0.679

RLAnalytical reporting limit

U Undetected at reported detection limit

Matrix: Sediment

Data Release Authorized: Reported: 06/24/10

Project: Fidalgo Bay/ Custom Plywood

Event: NA

Date Sampled: 06/07/10 Date Received: 06/11/10

Client ID: SDS-PB-02 ARI ID: 10-14041 RA17B

Analyte	Date	Method	Units	RL	Sample
Total Solids	06/14/10 061410#1	EPA 160.3	Percent	0.01	76.40
Preserved Total Solids	06/11/10 061110#1	EPA 160.3	Percent	0.01	73.20
Sulfide	06/11/10 061110#1	EPA 376.2	mg/kg	2.47	27.6
Total Organic Carbon	06/22/10 062210#1	Plumb,1981	Percent	0.020	0.171

RL Analytical reporting limit

Undetected at reported detection limit

Matrix: Sediment

Data Release Authorized: Reported: 06/24/10

Project: Fidalgo Bay/ Custom Plywood

Event: NA

Date Sampled: 06/07/10 Date Received: 06/11/10

Client ID: SDS-PB-03 ARI ID: 10-14042 RA17C

Analyte	Date	Method	Units	RL	Sample
Total Solids	06/14/10 061410#1	EPA 160.3	Percent	0.01	46.90
Preserved Total Solids	06/11/10 061110#1	EPA 160.3	Percent	0.01	53.70
Sulfide	06/11/10 061110#1	EPA 376.2	mg/kg	35.5	324
Total Organic Carbon	06/22/10 062210#1	Plumb, 1981	Percent	0.020	1.20

RLAnalytical reporting limit

U Undetected at reported detection limit

Matrix: Sediment

Data Release Authorized: Reported: 06/24/10

Project: Fidalgo Bay/ Custom Plywood

Event: NA

Date Sampled: 06/07/10 Date Received: 06/11/10

Client ID: SDS-PB-04 ARI ID: 10-14043 RA17D

Analyte	Date	Method	Units	RL	Sample
Total Solids	06/14/10 061410#1	EPA 160.3	Percent	0.01	74.50
Preserved Total Solids	06/11/10 061110#1	EPA 160.3	Percent	0.01	72.90
Sulfide	06/11/10 061110#1	EPA 376.2	mg/kg	1.34	< 1.34 U
Total Organic Carbon	06/22/10 062210#1	Plumb, 1981	Percent	0.020	0.984

Analytical reporting limit RĹ

U Undetected at reported detection limit

Matrix: Sediment

Data Release Authorized

Reported: 06/24/10

Project: Fidalgo Bay/ Custom Plywood

Event: NA

Date Sampled: 06/07/10 Date Received: 06/11/10

Client ID: SDS-PB-05 ARI ID: 10-14044 RA17E

Analyte	Date	Method	Units	RL	Sample
Total Solids	06/14/10 061410#1	EPA 160.3	Percent	0.01	63.40
Preserved Total Solids	06/11/10 061110#1	EPA 160.3	Percent	0.01	64.90
Sulfide	06/11/10 061110#1	EPA 376.2	mg/kg	2.86	48.6
Total Organic Carbon	06/22/10 062210#1	Plumb, 1981	Percent	0.020	0.190

RL Analytical reporting limit

U Undetected at reported detection limit

Matrix: Sediment

Data Release Authorized: Reported: 06/24/10

Project: Fidalgo Bay/ Custom Plywood

Event: NA

Date Sampled: 06/07/10 Date Received: 06/11/10

Client ID: SDS-PB-05-D ARI ID: 10-14045 RA17F

Analyte	Date	Method	Units	RL	Sample
Total Solids	06/14/10 061410#1	EPA 160.3	Percent	0.01	62.25
Preserved Total Solids	06/11/10 061110#1	EPA 160.3	Percent	0.01	62.70
Sulfide	06/11/10 061110#1	EPA 376.2	mg/kg	2.94	48.1
Total Organic Carbon	06/22/10 062210#1	Plumb,1981	Percent	0.020	0.426

RLAnalytical reporting limit

U Undetected at reported detection limit

Matrix: Sediment

Data Release Authorized: Reported: 06/24/10

Project: Fidalgo Bay/ Custom Plywood

Event: NA

Date Sampled: 06/07/10 Date Received: 06/11/10

Client ID: SDS-PB-05-T ARI ID: 10-14046 RA17G

Analyte	Date	Method	Units	RL	Sample
Total Solids	06/14/10 061410#1	EPA 160.3	Percent	0.01	62.50
Preserved Total Solids	06/11/10 061110#1	EPA 160.3	Percent	0.01	64.00
Sulfide	06/11/10 061110#1	EPA 376.2	mg/kg	2.82	32.2
Total Organic Carbon	06/22/10 062210#1	Plumb, 1981	Percent	0.020	0.377

RLAnalytical reporting limit

U Undetected at reported detection limit

Matrix: Sediment

Data Release Authorized: (1/

Reported: 06/24/10

Project: Fidalgo Bay/ Custom Plywood

Event: NA

Date Sampled: 06/07/10 Date Received: 06/11/10

Client ID: SDS-PB-06 ARI ID: 10-14047 RA17H

Analyte	Date	Method	Units	RL	Sample
Total Solids	06/14/10 061410#1	EPA 160.3	Percent	0.01	78.90
Preserved Total Solids	06/11/10 061110#1	EPA 160.3	Percent	0.01	73.40
Sulfide	06/11/10 061110#1	EPA 376.2	mg/kg	1.34	< 1.34 U
Total Organic Carbon	06/22/10 062210#1	Plumb,1981	Percent	0.020	0.215

RL Analytical reporting limit

U Undetected at reported detection limit

Matrix: Sediment

Data Release Authorized

Reported: 06/24/10

Project: Fidalgo Bay/ Custom Plywood

Event: NA

Date Sampled: 06/07/10 Date Received: 06/11/10

Client ID: SDS-PB-07 ARI ID: 10-14048 RA17I

Analyte	Date	Method	Units	RL	Sample
Total Solids	06/14/10 061410#1	EPA 160.3	Percent	0.01	73.10
Preserved Total Solids	06/11/10 061110#1	EPA 160.3	Percent	0.01	71.90
Sulfide	06/11/10 061110#1	EPA 376.2	mg/kg	1.23	13.0
Total Organic Carbon	06/22/10 062210#1	Plumb,1981	Percent	0.020	0.422

U Undetected at reported detection limit

Matrix: Sediment

Data Release Authorized Reported: 06/24/10

Project: Fidalgo Bay/ Custom Plywood

Event: NA

Date Sampled: 06/07/10 Date Received: 06/11/10

Analyte	Date	Units	Sample	Spike	Spike Added	Recovery
ARI ID: RA17A Client ID:	SDS-PB-01					
Sulfide	06/11/10	mg/kg	39.2	290	245	102.4%
Total Organic Carbon	06/22/10	Percent	0.679	1.67	0.822	120.6%

Matrix: Sediment

Data Release Authorized Reported: 06/24/10

Project: Fidalgo Bay/ Custom Plywood

Event: NA

Date Sampled: 06/07/10 Date Received: 06/11/10

Analyte	Date	Units	Sample	Replicate(s)	RPD/RSD
ARI ID: RA17A Client ID	: SDS-PB-01				
Total Solids	06/14/10	Percent	64.40	64.60 63.80	0.6%
Preserved Total Solids	06/11/10	Percent	61.20	60.80	0.7%
Sulfide	06/11/10	mg/kg	39.2	41.6	5.9%
Total Organic Carbon	06/22/10	Percent	0.679	0.784 0.623	11.8%

LAB CONTROL RESULTS-CONVENTIONALS RA17-Science Applications, Intl.

Matrix: Sediment

Data Release Authorized Reported: 06/24/10

Project: Fidalgo Bay/ Custom Plywood

Event: NA

Date Sampled: NA Date Received: NA

Analyte/Method	QC ID	Date	Units	LCS	Spike Added	Recovery
Sulfide EPA 376.2	PREP	06/11/10	mg/kg	6.95	8.13	85.5%
Total Organic Carbon Plumb,1981	ICVL	06/22/10	Percent (0.090	0.100	90.0%

METHOD BLANK RESULTS-CONVENTIONALS RA17-Science Applications, Intl.

Matrix: Sediment

Data Release Authorized

Reported: 06/24/10

Project: Fidalgo Bay/ Custom Plywood

Event: NA

Date Sampled: NA Date Received: NA

Analyte	Date	Units	Blank
Total Solids	06/14/10	Percent	< 0.01 U
Preserved Total Solids	06/11/10	Percent	< 0.01 U
Sulfide	06/11/10	mg/kg	< 1.00 U
Total Organic Carbon	06/22/10	Percent	< 0.020 U

STANDARD REFERENCE RESULTS-CONVENTIONALS RA17-Science Applications, Intl.

Matrix: Sediment

Data Release Authorized Reported: 06/24/10

Project: Fidalgo Bay/ Custom Plywood

Event: NA

Date Sampled: NA Date Received: NA

Analyte/SRM ID	Date	Units	SRM	True Value	Recovery
Total Organic Carbon NIST #8704	06/22/10	Percent	3.09	3.35	92.2%

Soil Standard Reference Report-RA17

RA17:00037

Matrix: Sediment

Data Release Authorized Reported: 06/24/10

Project: Fidalgo/Padilla Bay

Event: NA

Date Sampled: 06/08/10 Date Received: 06/11/10

Client ID: SDS-PB-08 ARI ID: 10-14049 RA18A

Analyte	Date	Method	Units	RL	Sample
Total Solids	06/15/10 061510#1	EPA 160.3	Percent	0.01	55.70
Preserved Total Solids	06/16/10 061610#1	EPA 160.3	Percent	0.01	62.00
Sulfide	06/12/10 061210#1	EPA 376.2	mg/kg	15.1	231
Total Organic Carbon	06/22/10 062210#1	Plumb,1981	Percent	0.020	0.467

U Undetected at reported detection limit

Matrix: Sediment

Data Release Authorized Reported: 06/24/10

Project: Fidalgo/Padilla Bay

Event: NA

Date Sampled: 06/08/10 Date Received: 06/11/10

Client ID: SDS-PB-09 ARI ID: 10-14050 RA18B

Analyte	Date	Method	Units	RL	Sample
Total Solids	06/15/10 061510#1	EPA 160.3	Percent	0.01	78.10
Preserved Total Solids	06/16/10 061610#1	EPA 160.3	Percent	0.01	76.50
Sulfide	06/12/10 061210#1	EPA 376.2	mg/kg	1.16	1.60
Total Organic Carbon	06/22/10 062210#1	Plumb,1981	Percent	0.020	0.253

U Undetected at reported detection limit

Matrix: Sediment

Data Release Authorized:

Reported: 06/24/10

Project: Fidalgo/Padilla Bay

Event: NA

Date Sampled: 06/08/10 Date Received: 06/11/10

Client ID: SDS-PB-10 ARI ID: 10-14051 RA18C

Analyte	Date	Method	Units	RL	Sample
Total Solids	06/15/10 061510#1	EPA 160.3	Percent	0.01	52.00
Preserved Total Solids	06/16/10 061610#1	EPA 160.3	Percent	0.01	60.20
Sulfide	06/12/10 061210#1	EPA 376.2	mg/kg	82.7	1,150
Total Organic Carbon	06/22/10 062210#1	Plumb, 1981	Percent	0.020	0.941

U Undetected at reported detection limit

Matrix: Sediment

Data Release Authorized

Reported: 06/24/10

Project: Fidalgo/Padilla Bay

Event: NA
Date Sampled: 06/08/10 Date Received: 06/11/10

Client ID: SDS-FB-01 ARI ID: 10-14052 RA18D

Analyte	Date	Method	Units	RL	Sample
Total Solids	06/15/10 061510#1	EPA 160.3	Percent	0.01	69.90
Preserved Total Solids	06/16/10 061610#1	EPA 160.3	Percent	0.01	68.80
Sulfide	06/12/10 061210#1	EPA 376.2	mg/kg	1.41	6.79
Total Organic Carbon	06/22/10 062210#1	Plumb, 1981	Percent	0.020	0.349

Undetected at reported detection limit

Matrix: Sediment

Data Release Authorized Reported: 06/24/10

Project: Fidalgo/Padilla Bay

Event: NA

Date Sampled: 06/08/10 Date Received: 06/11/10

Client ID: SDS-FB-02 ARI ID: 10-14053 RA18E

Analyte	Date	Method	Units	RL	Sample
Total Solids	06/15/10 061510#1	EPA 160.3	Percent	0.01	72.00
Preserved Total Solids	06/16/10 061610#1	EPA 160.3	Percent	0.01	71.50
Sulfide	06/12/10 061210#1	EPA 376.2	mg/kg	1.29	5.61
Total Organic Carbon	06/22/10 062210#1	Plumb,1981	Percent	0.020	0.305

Undetected at reported detection limit

Matrix: Sediment

Data Release Authorized

Reported: 06/24/10

Project: Fidalgo/Padilla Bay

Event: NA

Date Sampled: 06/08/10 Date Received: 06/11/10

Client ID: SDS-FB-03 ARI ID: 10-14054 RA18F

Analyte	Date	Method	Units	RL	Sample
Total Solids	06/15/10 061510#1	EPA 160.3	Percent	0.01	70.50
Preserved Total Solids	06/16/10 061610#1	EPA 160.3	Percent	0.01	69.10
Sulfide	06/12/10 061210#1	EPA 376.2	mg/kg	1.39	7.40
Total Organic Carbon	06/22/10 062210#1	Plumb,1981	Percent	0.020	0.477

U Undetected at reported detection limit

Matrix: Sediment

Data Release Authorized \(\)

Reported: 06/24/10

Project: Fidalgo/Padilla Bay

Event: NA

Date Sampled: 06/08/10 Date Received: 06/11/10

Client ID: SDS-FB-04 ARI ID: 10-14055 RA18G

Analyte	Date	Method Units		RL	Sample
Total Solids	06/15/10 061510#1	EPA 160.3	Percent	0.01	60.70
Preserved Total Solids	06/16/10 061610#1	EPA 160.3	Percent	0.01	65.30
Sulfide	06/12/10 061210#1	EPA 376.2	mg/kg	28.8	380
Total Organic Carbon	06/22/10 062210#1	Plumb, 1981	Percent	0.020	0.654

U Undetected at reported detection limit

Matrix: Sediment

Data Release Authorized: Reported: 06/24/10

Project: Fidalgo/Padilla Bay

Event: NA

Date Sampled: 06/08/10 Date Received: 06/11/10

Client ID: SDS-FB-05 ARI ID: 10-14056 RA18H

Analyte	Date	Method	Units	RL	Sample
Total Solids	06/15/10 061510#1	EPA 160.3	Percent	0.01	63.90
Preserved Total Solids	06/16/10 061610#1	EPA 160.3	Percent	0.01	64.30
Sulfide	06/12/10 061210#1	EPA 376.2	mg/kg	1.49	15.1
Total Organic Carbon	06/22/10 062210#1	Plumb,1981	Percent	0.020	0.842

Undetected at reported detection limit

Matrix: Sediment

Data Release Authorized: Reported: 06/24/10

Project: Fidalgo/Padilla Bay

Event: NA

Date Sampled: 06/08/10 Date Received: 06/11/10

Client ID: SDS-FB-06 ARI ID: 10-14057 RA18I

Analyte	Date	Method	Units	RL	Sample
Total Solids	06/15/10 061510#1	EPA 160.3	Percent	0.01	69.30
Preserved Total Solids	06/16/10 061610#1	EPA 160.3	Percent	0.01	71.10
Sulfide	06/12/10 061210#1	EPA 376.2	mg/kg	1.27	1.61
Total Organic Carbon	06/22/10 062210#1	Plumb,1981	Percent	0.020	0.525

U Undetected at reported detection limit

Matrix: Sediment

Data Release Authorized: Reported: 06/24/10

Project: Fidalgo/Padilla Bay

Event: NA

Date Sampled: 06/08/10 Date Received: 06/11/10

Client ID: SDS-FB-07 ARI ID: 10-14058 RA18J

Analyte	Date Method U		Units	RL	Sample	
Total Solids	06/15/10 061510#1	EPA 160.3	Percent	0.01	53.20	
Preserved Total Solids	06/16/10 061610#1	EPA 160.3	Percent	0.01	60.90	
Sulfide	06/12/10 061210#1	EPA 376.2	mg/kg	29.1	477	
Total Organic Carbon	06/22/10 062210#1	Plumb,1981	Percent	0.020	0.912	

Undetected at reported detection limit

Matrix: Sediment

Data Release Authorized

Reported: 06/24/10

Project: Fidalgo/Padilla Bay

Event: NA

Date Sampled: 06/08/10 Date Received: 06/11/10

Client ID: SDS-FB-07-D ARI ID: 10-14059 RA18K

Analyte	Date	Method	Units	RL	Sample	
Total Solids	06/15/10 061510#1	EPA 160.3	Percent	0.01	53.50	
Preserved Total Solids	06/16/10 061610#1	EPA 160.3	Percent	0.01	60.50	
Sulfide	06/12/10 061210#1	EPA 376.2	mg/kg	31.8	516	
Total Organic Carbon	06/22/10 062210#1	Plumb,1981	Percent	0.020	0.807	

U Undetected at reported detection limit

Matrix: Sediment

Data Release Authorized

Reported: 06/24/10

Project: Fidalgo/Padilla Bay

Event: NA

Date Sampled: 06/08/10 Date Received: 06/11/10

Client ID: SDS-FB-07-T ARI ID: 10-14060 RA18L

Analyte	Date	Method	Units	RL	Sample
Total Solids	06/15/10 061510#1	EPA 160.3	Percent	0.01	53.40
Preserved Total Solids	06/16/10 061610#1	EPA 160.3	Percent	0.01	59.80
Sulfide	06/12/10 061210#1	EPA 376.2	mg/kg	16.0	276
Total Organic Carbon	06/22/10 062210#1	Plumb,1981	Percent	0.020	1.22

U Undetected at reported detection limit

Matrix: Sediment

Data Release Authorized

Reported: 06/24/10

Project: Fidalgo/Padilla Bay

Event: NA

Date Sampled: 06/08/10 Date Received: 06/11/10

Client ID: SDS-FB-08 ARI ID: 10-14061 RA18M

Analyte	Date	Method	od Units RL		Sample
Total Solids	06/15/10 061510#1	EPA 160.3	Percent	0.01	58.10
Preserved Total Solids	06/16/10 061610#1	EPA 160.3	Percent	0.01	64.50
Sulfide	06/12/10 061210#1	EPA 376.2	mg/kg	28.9	272
Total Organic Carbon	06/22/10 062210#1	Plumb, 1981	Percent	0.020	0.741

U Undetected at reported detection limit

Matrix: Sediment

Data Release Authorized: Reported: 06/24/10

Project: Fidalgo/Padilla Bay

Event: NA

Date Sampled: 06/08/10 Date Received: 06/11/10

Client ID: SDS-FB-09 ARI ID: 10-14062 RA18N

Analyte	Date	Method	Units	RL	Sample
Total Solids	06/15/10 061510#1	EPA 160.3	Percent	0.01	54.60
Preserved Total Solids	06/16/10 061610#1	EPA 160.3	Percent	0.01	61.10
Sulfide	06/12/10 061210#1	EPA 376.2	mg/kg	15.8	192
Total Organic Carbon	06/22/10 062210#1	Plumb, 1981	Percent	0.020	0.819

Undetected at reported detection limit

Matrix: Sediment

Data Release Authorized: Reported: 06/24/10

Project: Fidalgo/Padilla Bay

Event: NA

Date Sampled: 06/08/10 Date Received: 06/11/10

Client ID: SDS-FB-10 ARI ID: 10-14063 RA180

Analyte	Date	Method	Units	RL	Sample
Total Solids	06/15/10 061510#1	EPA 160.3	Percent	0.01	50.30
Preserved Total Solids	06/16/10 061610#1	EPA 160.3	Percent	0.01	54.40
Sulfide	06/12/10 061210#1	EPA 376.2	mg/kg	88.2	713
Total Organic Carbon	06/22/10 062210#1	Plumb,1981	Percent	0.020	1.35

U Undetected at reported detection limit

Matrix: Sediment

Data Release Authorized Reported: 06/24/10

Project: Fidalgo/Padilla Bay
 Event: NA

Date Sampled: 06/08/10 Date Received: 06/11/10

Analyte	Date	Units	Sample	Spike	Spike Added	Recovery
ARI ID: RA18A Client ID:	SDS-PB-08					
Sulfide	06/12/10	mg/kg	231	512	255	110.2%
Total Organic Carbon	06/22/10	Percent	0.467	1.43	0.786	122.5%

Matrix: Sediment

Data Release Authorized: Reported: 06/24/10

Project: Fidalgo/Padilla Bay

Event: NA

Date Sampled: 06/08/10 Date Received: 06/11/10

Analyte	Date	Units	Sample	Replicate(s)	RPD/RSD
ARI ID: RA18A Client ID	: SDS-PB-08				
Total Solids	06/15/10	Percent	55.70	55.30 55.70	0.4%
Preserved Total Solids	06/16/10	Percent	62.00	62.70	1.1%
Sulfide	06/12/10	mg/kg	231	269 258	7.7%
Total Organic Carbon	06/22/10	Percent	0.467	0.475 0.447	3.1%

LAB CONTROL RESULTS-CONVENTIONALS RA18-Science Applications, Intl.

Matrix: Sediment

Data Release Authorized

Reported: 06/24/10

Project: Fidalgo/Padilla Bay Event: NA Date Sampled: NA Date Received: NA

Analyte/Method	QC ID	Date	Units	LCS	Spike Added	Recovery
Sulfide EPA 376.2	PREP	06/12/10	mg/kg	8.13	8.13	100.0%
Total Organic Carbon Plumb,1981	ICVL	06/22/10	Percent	0.090	0.100	90.0%

METHOD BLANK RESULTS-CONVENTIONALS RA18-Science Applications, Intl.

Matrix: Sediment
Data Release Authorized:
Reported: 06/24/10

Project: Fidalgo/Padilla Bay Event: NA Date Sampled: NA

Date Received: NA

Analyte	Date	Units	Blank
Total Solids	06/15/10	Percent	< 0.01 U
Preserved Total Solids	06/16/10	Percent	< 0.01 U
Sulfide	06/12/10	mg/kg	< 1.00 U
Total Organic Carbon	06/22/10	Percent	< 0.020 U

RA17:00056

STANDARD REFERENCE RESULTS-CONVENTIONALS RA18-Science Applications, Intl.

Matrix: Sediment

Data Release Authorized: Reported: 06/24/10

Project: Fidalgo/Padilla Bay

Event: NA Date Sampled: NA Date Received: NA

Analyte/SRM ID	Date	Units	SRM	True Value	Recovery
Total Organic Carbon NIST #8704	06/22/10	Percent	3.09	3.35	92.2%

Matrix: Sediment

Data Release Authorized:

Reported: 06/23/10

Project: Fidalgo Bay/ Custom Plywood Event: NA Date Sampled: 06/10/10

Date Received: 06/11/10

Client ID: SDS-CPD-05 ARI ID: 10-14079 RA23A

Analyte	Date	Method Units		RL	Sample
Total Solids	06/14/10 061410#1	EPA 160.3	Percent	0.01	56.40
Preserved Total Solids	06/16/10 061610#1	EPA 160.3	Percent	0.01	59.50
Sulfide	06/15/10 061510#1	EPA 376.2	mg/kg	32.8	461
Total Organic Carbon	06/17/10 061710#1	Plumb, 1981	Percent	0.020	0.554

RL Analytical reporting limit

RA17:00058

U Undetected at reported detection limit

Matrix: Sediment

Data Release Authorized:

Reported: 06/23/10

Project: Fidalgo Bay/ Custom Plywood

Event: NA

Date Sampled: 06/10/10 Date Received: 06/11/10

Client ID: SDS-CPD-06 ARI ID: 10-14080 RA23B

Analyte	Date	Method	Units	RL	Sample
Total Solids	06/14/10 061410#1	EPA 160.3	Percent	0.01	50.80
Preserved Total Solids	06/16/10 061610#1	EPA 160.3	Percent	0.01	59.60
Sulfide	06/15/10 061510#1	EPA 376.2	mg/kg	1.59	27.4
Total Organic Carbon	06/17/10 061710#1	Plumb,1981	Percent	0.020	0.573

U Undetected at reported detection limit

Matrix: Sediment

Data Release Authorized: Reported: 06/23/10

Project: Fidalgo Bay/ Custom Plywood

Event: NA
Date Sampled: 06/10/10
Date Received: 06/11/10

Client ID: SDS-CPD-09 ARI ID: 10-14081 RA23C

Analyte	Date	Method Units		RL	Sample	
Total Solids	06/14/10 061410#1	EPA 160.3	Percent	0.01	47.80	
Preserved Total Solids	06/16/10 061610#1	EPA 160.3	Percent	0.01	57.80	
Sulfide	06/15/10 061510#1	EPA 376.2	mg/kg	1.67	24.6	
Total Organic Carbon	06/17/10 061710#1	Plumb,1981	Percent	0.020	0.988	

Analytical reporting limit RL

RA17:00060

U Undetected at reported detection limit

Matrix: Sediment

Data Release Authorized

Reported: 06/23/10

Project: Fidalgo Bay/ Custom Plywood

Event: NA

Date Sampled: 06/10/10 Date Received: 06/11/10

Client ID: SDS-CPD-11 ARI ID: 10-14082 RA23D

Analyte	Date	Method	Units	RL	Sample
Total Solids	06/14/10 061410#1	EPA 160.3	Percent	0.01	53.80
Preserved Total Solids	06/16/10 061610#1	EPA 160.3	Percent	0.01	57.40
Sulfide	06/15/10 061510#1	EPA 376.2	mg/kg	1.66	28.1
Total Organic Carbon	06/17/10 061710#1	Plumb, 1981	Percent	0.020	0.485

U Undetected at reported detection limit

Matrix: Sediment

Data Release Authorized Reported: 06/23/10

Project: Fidalgo Bay/ Custom Plywood

Event: NA

Date Sampled: 06/10/10 Date Received: 06/11/10

Client ID: SDS-CPD-12 ARI ID: 10-14083 RA23E

Analyte	Date	Method Units		RL	Sample
Total Solids	06/14/10 061410#1	EPA 160.3	Percent	0.01	55.60
Preserved Total Solids	06/16/10 061610#1	EPA 160.3	Percent	0.01	63.00
Sulfide	06/15/10 061510#1	EPA 376.2	mg/kg	1.56	27.5
Total Organic Carbon	06/17/10 061710#1	Plumb, 1981	Percent	0.020	0.863

U Undetected at reported detection limit

Matrix: Sediment

Data Release Authorized Reported: 06/23/10

Project: Fidalgo Bay/ Custom Plywood

Event: NA

Date Sampled: 06/10/10 Date Received: 06/11/10

Client ID: SDS-CPD-14 ARI ID: 10-14084 RA23F

Analyte	Date	Method Units		RL	Sample	
Total Solids	06/14/10 061410#1	EPA 160.3	Percent	0.01	52.30	
Preserved Total Solids	06/16/10 061610#1	EPA 160.3	Percent	0.01	59.70	
Sulfide	06/15/10 061510#1	EPA 376.2	mg/kg	1.60	30.7	
Total Organic Carbon	06/17/10 061710#1	Plumb,1981	Percent	0.020	1.15	

U Undetected at reported detection limit

Matrix: Sediment

Data Release Authorized

Reported: 06/23/10

Project: Fidalgo Bay/ Custom Plywood

Event: NA

Date Sampled: 06/10/10 Date Received: 06/11/10

Client ID: SDS-CPD-15 ARI ID: 10-14085 RA23G

Analyte	Date	Method Units		RL	Sample
Total Solids	06/14/10 061410#1	EPA 160.3	Percent	0.01	53.20
Preserved Total Solids	06/16/10 061610#1	EPA 160.3	Percent	0.01	59.20
Sulfide	06/15/10 061510#1	EPA 376.2	mg/kg	33.1	506
Total Organic Carbon	06/17/10 061710#1	Plumb,1981	Percent	0.020	1.10

RL Analytical reporting limit

RA17:00064

U Undetected at reported detection limit

MS/MSD RESULTS-CONVENTIONALS RA23-Science Applications, Intl.

Matrix: Sediment

Data Release Authorized:

Reported: 06/23/10

Project: Fidalgo Bay/ Custom Plywood

Event: NA

Date Sampled: 06/10/10 Date Received: 06/11/10

Analyte	Date	Units	Sample	Spike	Spike Added	Recovery
ARI ID: RA23A	Client ID: SDS-CPD-05					
Sulfide	06/15/10	mg/kg	461	807	254	136.2%

REPLICATE RESULTS-CONVENTIONALS RA23-Science Applications, Intl.

Matrix: Sediment

Data Release Authorized:

Reported: 06/23/10

Project: Fidalgo Bay/ Custom Plywood

Event: NA

Date Sampled: 06/10/10 Date Received: 06/11/10

Analyte	Date	Units	Sample	Replicate(s)	RPD/RSD
ARI ID: RA23A	Client ID: SDS-CPD-05				
Sulfide	06/15/10	mg/kg	461	478	3.6%

LAB CONTROL RESULTS-CONVENTIONALS RA23-Science Applications, Intl.

Matrix: Sediment

Data Release Authorized Reported: 06/23/10

Project: Fidalgo Bay/ Custom Plywood

Event: NA

Date Sampled: NA Date Received: NA

Analyte/Method	QC ID	Date	Units	LCS	Spike Added	Recovery
Sulfide EPA 376.2	PREP	06/15/10	mg/kg	7.82	7.59	103.0%
Total Organic Carbon Plumb,1981	ICVL	06/17/10	Percent	0.094	0.100	94.0%

METHOD BLANK RESULTS-CONVENTIONALS RA23-Science Applications, Intl.

Matrix: Sediment

Data Release Authorized

Reported: 06/23/10

Project: Fidalgo Bay/ Custom Plywood

Event: NA

Date Sampled: NA Date Received: NA

Analyte	Date	Units	Blank
Total Solids	06/14/10	Percent	< 0.01 U
Preserved Total Solids	06/16/10 06/16/10	Percent	< 0.01 U < 0.01 U
Sulfide	06/15/10	mg/kg	< 1.00 U
Total Organic Carbon	06/17/10	Percent	< 0.020 U

STANDARD REFERENCE RESULTS-CONVENTIONALS RA23-Science Applications, Intl.

Matrix: Sediment

Data Release Authorized:

Reported: 06/23/10

Project: Fidalgo Bay/ Custom Plywood

Event: NA

Date Sampled: NA Date Received: NA

Analyte/SRM ID	Date	Units	SRM	True Value	Recovery
Total Organic Carbon NIST #8704	06/17/10	Percent	3.10	3.35	92.5%

Matrix: Sediment

Data Release Authorized:

Reported: 06/23/10

Project: Fidalgo Bay/ Custom Plywood
Event: NA

Date Sampled: 06/09/10 Date Received: 06/11/10

Client ID: SDS-CPD-01 ARI ID: 10-14127 RA31A

Analyte	Date	Method	Units	RL	Sample
Total Solids	06/15/10 061510#1	EPA 160.3	Percent	0.01	55.50
Preserved Total Solids	06/16/10 061610#1	EPA 160.3	Percent	0.01	61.60
Sulfide	06/14/10 061410#1	EPA 376.2	mg/kg	33.0	508
Total Organic Carbon	06/17/10 061710#1	Plumb,1981	Percent	0.020	0.937

RL Analytical reporting limit

U Undetected at reported detection limit

Matrix: Sediment

Data Release Authorized: Reported: 06/23/10

Project: Fidalgo Bay/ Custom Plywood

Event: NA

Date Sampled: 06/09/10 Date Received: 06/11/10

Client ID: SDS-CPD-02 ARI ID: 10-14128 RA31B

Analyte	Date	Method	Units	RL	Sample
Total Solids	06/15/10 061510#1	EPA 160.3	Percent	0.01	57.50
Preserved Total Solids	06/16/10 061610#1	EPA 160.3	Percent	0.01	60.60
Sulfide	06/14/10 061410#1	EPA 376.2	mg/kg	31.3	318
Total Organic Carbon	06/16/10 061610#1	Plumb,1981	Percent	0.020	0.752

RLAnalytical reporting limit

U Undetected at reported detection limit

Matrix: Sediment

Data Release Authorized Reported: 06/23/10

Project: Fidalgo Bay/ Custom Plywood

Event: NA
Date Sampled: 06/09/10
Date Received: 06/11/10

Client ID: SDS-CPD-03 ARI ID: 10-14129 RA31C

Analyte	Date	Method	Units	RL	Sample
Total Solids	06/15/10 061510#1	EPA 160.3	Percent	0.01	52.00
Preserved Total Solids	06/16/10 061610#1	EPA 160.3	Percent	0.01	54.10
Sulfide	06/14/10 061410#1	EPA 376.2	mg/kg	35.0	562
Total Organic Carbon	06/16/10 061610#1	Plumb, 1981	Percent	0.020	1.38

RLAnalytical reporting limit

U Undetected at reported detection limit

Matrix: Sediment
Data Release Authorized:
Reported: 06/23/10

Project: Fidalgo Bay/ Custom Plywood

Event: NA

Date Sampled: 06/09/10 Date Received: 06/11/10

Client ID: SDS-CPD-04 ARI ID: 10-14130 RA31D

Analyte	Date	Method	Units	RL	Sample
Total Solids	06/15/10 061510#1	EPA 160.3	Percent	0.01	52.00
Preserved Total Solids	06/16/10 061610#1	EPA 160.3	Percent	0.01	60.50
Sulfide	06/14/10 061410#1	EPA 376.2	mg/kg	34.2	326
Total Organic Carbon	06/16/10 061610#1	Plumb, 1981	Percent	0.020	0.848

RLAnalytical reporting limit

U Undetected at reported detection limit

Matrix: Sediment

Data Release Authorized Reported: 06/23/10

Project: Fidalgo Bay/ Custom Plywood

Event: NA

Date Sampled: 06/09/10 Date Received: 06/11/10

Client ID: SDS-CPD-07 ARI ID: 10-14131 RA31E

Analyte	Date	Method	Units	RL	Sample
Total Solids	06/15/10 061510#1	EPA 160.3	Percent	0.01	48.20
Preserved Total Solids	06/16/10 061610#1	EPA 160.3	Percent	0.01	53.10
Sulfide	06/14/10 061410#1	EPA 376.2	mg/kg	37.7	606
Total Organic Carbon	06/16/10 061610#1	Plumb, 1981	Percent	0.020	1.24

Analytical reporting limit RL

Undetected at reported detection limit

Matrix: Sediment

Data Release Authorized: Reported: 06/23/10

Project: Fidalgo Bay/ Custom Plywood

Event: NA
Date Sampled: 06/09/10 Date Received: 06/11/10

Client ID: SDS-CPD-08 ARI ID: 10-14132 RA31F

Analyte	Date	Method	Units	RL	Sample
Total Solids	06/15/10 061510#1	EPA 160.3	Percent	0.01	53.60
Preserved Total Solids	06/16/10 061610#1	EPA 160.3	Percent	0.01	60.00
Sulfide	06/14/10 061410#1	EPA 376.2	mg/kg	33.7	382
Total Organic Carbon	06/16/10 061610#1	Plumb,1981	Percent	0.020	1.12

RLAnalytical reporting limit

U Undetected at reported detection limit

Matrix: Sediment

Data Release Authorized:

Reported: 06/23/10

Project: Fidalgo Bay/ Custom Plywood

Event: NA

Date Sampled: 06/09/10 Date Received: 06/11/10

Client ID: SDS-CPD-08-D ARI ID: 10-14133 RA31G

Analyte	Date	Method	Units	RL	Sample
Total Solids	06/15/10 061510#1	EPA 160.3	Percent	0.01	54.70
Preserved Total Solids	06/16/10 061610#1	EPA 160.3	Percent	0.01	59.70
Sulfide	06/14/10 061410#1	EPA 376.2	mg/kg	32.1	317
Total Organic Carbon	06/16/10 061610#1	Plumb,1981	Percent	0.020	1.27

Analytical reporting limit RL

Undetected at reported detection limit

Matrix: Sediment

Data Release Authorized:

Reported: 06/23/10

Project: Fidalgo Bay/ Custom Plywood

Event: NA

Date Sampled: 06/09/10 Date Received: 06/11/10

Client ID: SDS-CPD-08-T ARI ID: 10-14134 RA31H

Analyte	Date	Method	Units	RL	Sample
Total Solids	06/15/10 061510#1	EPA 160.3	Percent	0.01	55.40
Preserved Total Solids	06/16/10 061610#1	EPA 160.3	Percent	0.01	61.10
Sulfide	06/14/10 061410#1	EPA 376.2	mg/kg	36.9	335
Total Organic Carbon	06/16/10 061610#1	Plumb,1981	Percent	0.020	0.447

RL Analytical reporting limit

U Undetected at reported detection limit

Matrix: Sediment

Data Release Authorized

Reported: 06/23/10

Project: Fidalgo Bay/ Custom Plywood

Event: NA

Date Sampled: 06/09/10 Date Received: 06/11/10

Client ID: SDS-CPD-10 ARI ID: 10-14135 RA31I

Analyte	Date	Method	Units	RL	Sample
Total Solids	06/15/10 061510#1	EPA 160.3	Percent	0.01	45.80
Preserved Total Solids	06/16/10 061610#1	EPA 160.3	Percent	0.01	49.90
Sulfide	06/14/10 061410#1	EPA 376.2	mg/kg	40.2	407
Total Organic Carbon	06/16/10 061610#1	Plumb, 1981	Percent	0.020	1.91

RL Analytical reporting limit

U Undetected at reported detection limit

Matrix: Sediment

Data Release Authorized

Reported: 06/23/10

Project: Fidalgo Bay/ Custom Plywood

Event: NA

Date Sampled: 06/09/10 Date Received: 06/11/10

Client ID: SDS-CPD-13 ARI ID: 10-14136 RA31J

Analyte	Date	Method	Units	RL	Sample
Total Solids	06/15/10 061510#1	EPA 160.3	Percent	0.01	49.20
Preserved Total Solids	06/16/10 061610#1	EPA 160.3	Percent	0.01	55.50
Sulfide	06/14/10 061410#1	EPA 376.2	mg/kg	34.8	391
Total Organic Carbon	06/16/10 061610#1	Plumb,1981	Percent	0.020	1.60

RL Analytical reporting limit

U Undetected at reported detection limit

Matrix: Sediment

Data Release Authorized Reported: 06/23/10

Project: Fidalgo Bay/ Custom Plywood

Event: NA

Date Sampled: 06/09/10 Date Received: 06/11/10

Client ID: SDS-CPD-16 ARI ID: 10-14137 RA31K

Analyte	Date	Date Method		RL	Sample	
Total Solids	06/15/10 061510#1	EPA 160.3	Percent	0.01	41.20	
Preserved Total Solids	06/16/10 061610#1	EPA 160.3	Percent	0.01	48.00	
Sulfide	06/14/10 061410#1	EPA 376.2	mg/kg	108	845	
Total Organic Carbon	06/16/10 061610#1	Plumb,1981	Percent	0.020	1.66	

Analytical reporting limit RL

U Undetected at reported detection limit

Matrix: Sediment

Data Release Authorized Reported: 06/23/10

Project: Fidalgo Bay/ Custom Plywood

Event: NA
Date Sampled: 06/09/10
Date Received: 06/11/10

Client ID: SDS-CPD-17 ARI ID: 10-14138 RA31L

Analyte	Date	Date Method		RL	Sample	
Total Solids	06/15/10 061510#1	EPA 160.3	Percent	0.01	47.20	
Preserved Total Solids	06/16/10 061610#1	EPA 160.3	Percent	0.01	52.20	
Sulfide	06/14/10 061410#1	EPA 376.2	mg/kg	36.9	515	
Total Organic Carbon	06/17/10 061710#1	Plumb,1981	Percent	0.020	0.893	

RLAnalytical reporting limit

Undetected at reported detection limit

Matrix: Sediment

Data Release Authorized:

Reported: 06/23/10

Project: Fidalgo Bay/ Custom Plywood

Event: NA

Date Sampled: 06/09/10 Date Received: 06/11/10

Client ID: SDS-CPD-18 ARI ID: 10-14139 RA31M

Analyte	Date	Method	Units	RL	Sample	
Total Solids	06/15/10 061510#1	EPA 160.3	Percent	0.01	47.80	
Preserved Total Solids	06/16/10 061610#1	EPA 160.3	Percent	0.01	54.80	
Sulfide	06/14/10 061410#1	EPA 376.2	mg/kg	38.7	475	
Total Organic Carbon	06/17/10 061710#1	Plumb,1981	Percent	0.020	1.36	

RL Analytical reporting limit

U Undetected at reported detection limit

Matrix: Sediment

Data Release Authorized

Reported: 06/23/10

Project: Fidalgo Bay/ Custom Plywood

Event: NA
Date Sampled: 06/09/10
Date Received: 06/11/10

Client ID: SDS-CPD-19 ARI ID: 10-14140 RA31N

Analyte	Date	Method	Units	RL	Sample
Total Solids	06/15/10 061510#1	EPA 160.3	Percent	0.01	45.60
Preserved Total Solids	06/16/10 061610#1	EPA 160.3	Percent	0.01	52.40
Sulfide	06/14/10 061410#1	EPA 376.2	mg/kg	93.2	861
Total Organic Carbon	06/17/10 061710#1	Plumb,1981	Percent	0.020	1.29

RLAnalytical reporting limit

Undetected at reported detection limit

Matrix: Sediment

Data Release Authorized: Reported: 06/23/10

Project: Fidalgo Bay/ Custom Plywood

Event: NA
Date Sampled: 06/09/10 Date Received: 06/11/10

Client ID: SDS-CPD-20 ARI ID: 10-14141 RA310

Analyte 	Date	Method	Units	RL	Sample	
Total Solids	06/15/10 061510#1	EPA 160.3	Percent	0.01	51.30	
Preserved Total Solids	06/16/10 061610#1	EPA 160.3	Percent	0.01	59.80	
Sulfide	06/14/10 061410#1	EPA 376.2	mg/kg	32.4	529	
Total Organic Carbon	06/17/10 061710#1	Plumb, 1981	Percent	0.020	0.391	

Analytical reporting limit RL

Soil Sample Report-RA31

U Undetected at reported detection limit

Matrix: Sediment

Data Release Authorized: $\langle \lambda \rangle$

Reported: 06/23/10

Project: Fidalgo Bay/ Custom Plywood

Event: NA

Date Sampled: 06/09/10 Date Received: 06/11/10

Client ID: SDS-CPD-21 ARI ID: 10-14142 RA31P

Analyte	Date	Method	Units	RL	Sample	
Total Solids	06/15/10 061510#1	EPA 160.3	Percent	0.01	45.50	
Preserved Total Solids	06/16/10 061610#1	EPA 160.3	Percent	0.01	51.10	
Sulfide	06/14/10 061410#1	EPA 376.2	mg/kg	38.4	721	
Total Organic Carbon	06/17/10 061710#1	Plumb, 1981	Percent	0.020	1.24	

RL Analytical reporting limit

U Undetected at reported detection limit

Matrix: Sediment
Data Release Authorized
Reported: 06/23/10

Project: Fidalgo Bay/ Custom Plywood

Event: NA

Date Sampled: 06/09/10 Date Received: 06/11/10

Analyte	Date		Sample	Spike	Spike Added	Recovery
ARI ID: RA31A Client ID:	SDS-CPD-01					
Sulfide	06/14/10	mg/kg	508	606	246	39.8%
Total Organic Carbon	06/17/10	Percent	0.937	2,27	1.15	115.6%

Matrix: Sediment

Data Release Authorized: Reported: 06/23/10

Project: Fidalgo Bay/ Custom Plywood

Event: NA

Date Sampled: 06/09/10 Date Received: 06/11/10

Analyte	Date	Date Units		Replicate(s)	RPD/RSD
ARI ID: RA31A Client ID	: SDS-CPD-01				
Total Solids	06/15/10	Percent	55.50	55.60 55.70	0.2%
Preserved Total Solids	06/16/10	Percent	61.60	61.60	0.0%
Sulfide	06/14/10	mg/kg	508	430	16.6%
Total Organic Carbon	06/17/10	Percent	0.937	0.924 0.847	5.4%

LAB CONTROL RESULTS-CONVENTIONALS RA31-Science Applications, Intl.

Matrix: Sediment
Data Release Authorized:
Reported: 06/23/10

Project: Fidalgo Bay/ Custom Plywood

Event: NA Date Sampled: NA

Date Received: NA

Analyte/Method	QC ID	Date	Units	LCS	Spike Added	Recovery
Sulfide EPA 376.2	PREP	06/14/10	mg/kg	6.55	7.96	82.3%
Total Organic Carbon Plumb,1981	ICVL ICVL	06/16/10 06/17/10	Percent	0.091 0.094	0.100 0.100	91.0% 94.0%

METHOD BLANK RESULTS-CONVENTIONALS RA31-Science Applications, Intl.

Matrix: Sediment

Data Release Authorized: Reported: 06/23/10

Project: Fidalgo Bay/ Custom Plywood

Event: NA
Date Sampled: NA Date Received: NA

Analyte	Date	Units	Blank
Total Solids	06/15/10	Percent	< 0.01 U
Preserved Total Solids	06/16/10	Percent	< 0.01 U
Sulfide	06/14/10	mg/kg	< 1.00 U
Total Organic Carbon	06/16/10 06/17/10	Percent	< 0.020 U < 0.020 U

STANDARD REFERENCE RESULTS-CONVENTIONALS RA31-Science Applications, Intl.

Matrix: Sediment

Data Release Authorized

Reported: 06/23/10

Project: Fidalgo Bay/ Custom Plywood

Event: NA
Date Sampled: NA
Date Received: NA

Analyte/SRM ID	Date	Units	SRM	True Value	Recovery
Total Organic Carbon	06/16/10	Percent	3.04	3.35	90.7%
NIST #8704	06/17/10		3.10	3.35	92.5%

Geotechnical Analysis

ARI Job ID: RA17, RA18, RA23, RA31

Geotechnical Analysis Report and Summary QC Forms

ARI Job ID: RA17, RA18, RA23, RA31

Science Applications, Intl.

Fidalgo Bay/Custom Plywood Dioxin

Apparent Grain Size Distribution Summary Percent Finer Than Indicated Size

Sample No.		Gravel		Very Coarse Sand	Coarse Sand	Medium Sand	Fine Sand	Very Fine Sand		S	ilt		CI	ay
Phi Size	-3	-2	-1	0	1	2	3	4	5	6	7	8	9	10
Sieve Size (microns)	3/8"	#4 (4750)	#10 (2000)	#18 (1000)	#35 (500)	#60 (250)	#120 (125)	#230 (63)	31.00	15.60	7.80	3.90	2.00	1.00
	100.0	100.0	99.5	99.3	99.0	98.4	97.3	91.7	62.7	37.8	24.9	18.8	14.8	10.5
SDS-CPD-14	100.0	100.0	99.9	99.8	99.4	98.8	97.8	92.7	59.6	36.0	24.4	18.3	14.6	10.2
	100.0	100.0	99.5	99.3	99.0	98.4	97.3	92.2	57.1	34.2	22.9	17.1	13.4	9.5
SDS-PB-01	100.0	99.9	99.8	99.3	96.4	77.1	31.1	14.3	8.6	6.4	5.2	4.3	3.6	2.8
SDS-PB-02	100.0	100.0	99.7	95.5	63.4	10.9	1.9	1.8	NA	NA	NA	NA	NA	NA
SDS-PB-03	100.0	100.0	99.9	99.1	97.9	94.8	84.7	68.0	49.0	33.9	25.6	20.0	15.5	11.1
SDS-PB-04	100.0	99.7	98.1	91.9	63.8	7.8_	2.1	2.0	NA NA	NA	NA	NA	NA	NA
SDS-PB-05	100.0	100.0	100.0	99.8	99.3	97.3	74.3	25.7	16.7	12.4	9.9	8.0	6.4	4.3
SDS-PB-05-D	100.0	100.0	100.0	99.8	99.2	97.0	73.9	25.8	16.6	12.6	10.0	8.2	6.4	4.6
SDS-PB-05-T	100.0	100.0	100.0	99.8	99.2	97.0	74.9	26.5	17.3	12.9	10.5	8.4	6.8	4.8
SDS-PB-06	100.0	99.5	98.4	92.8	63.1	6.8	1.5	1.4	NA	NA	NA	NA	NA	NA
SDS-PB-07	100.0	99.9	99.8	95.2	80.9	52.9	14.7	7.5	5.8	4.5	3.7	3.0	2.4	1.7

^{1.} Organic matter was not removed prior to testing, thus the reported values are the "apparent" grain size distribution. See narrative for discussion of the testing.

Science Applications, Intl.

Fidalgo Bay/Custom Plywood Dioxin

Apparent Grain Size Distribution Summary Percent Retained in Each Size Fraction

Sample No.	Gravel	Very Coarse Sand	Coarse Sand	Medium Sand	Fine Sand	Very Fine Sand	Coarse Silt	Medium Silt	Fine Silt	Very Fine Silt		Clay		Total Fines
Phi Size	> -1	-1 to 0	0 to 1	1 to 2	2 to 3	3 to 4	4 to 5	5 to 6	6 to 7	7 to 8	8 to 9	9 to 10	< 10	<4
Sieve Size (microns)	> #10 (2000)	10 to 18 (2000-1000)	18-35 (1000-500)	35-60 (500-250)	60-120 (250-125)	120-230 (125-62)	62.5-31.0	31.0-15.6	15.6-7.8	7.8-3.9	3.9-2.0	2.0-1.0	<1.0	<230 (<62)
	0.5	0.2	0.3	0.6	1.1	5.7	29.0	24.9	12.9	6.1	4.1	4.3	10.5	91.7
SDS-CPD-14	0.1	0.1	0.3	0.6	1.0	5.1	33.1	23.6	11.6	6.1	3.7	4.5	10.2	92.7
	0.5	0.2	0.3	0.6	1.1	5.1	35.1	22.8	11.3	5.8	3.8	3.8	9.5	92.2
SDS-PB-01	0.2	0.4	2.9	19.2	46.0	16.8	5.7	2.2	1.3	0.8	0.7	0.8	2.8	14.3
SDS-PB-02	0.3	4.2	32.1	52.5	9.0	0.2	NA	NA	NA	NA	NA	NA	NA	1.8
SDS-PB-03	0.1	0.9	1.1	3.1	10.1	16.8	18.9	15.1	8.3	5.6	4.5	4.5	11.1	68.0
SDS-PB-04	1.9	6.1	28.1	56.0	5.7	0.1	NA	NA	NA	NA	NA	NA	NA	2.0
SDS-PB-05	0.0	0.2	0.5	1.9	23.1	48.6	9.0	4.3	2.6	1.9	1.6	2.1	4.3	25.7
SDS-PB-05-D	0.0	0.2	0.6	2.2	23.0	48.2	9.2	4.0	2.6	1.8	1.7	1.9	4.6	25.8
SDS-PB-05-T	0.0	0.2	0.6	2.2	22.0	48.4	9.2	4.4	2.5	2.0	1.6	2.0	4.8	26.5
SDS-PB-06	1.6	5.6	29.7	56.3	5.3	0.1	NA	NA	NA	NA	NA	NA	NA	1.4
SDS-PB-07	0.2	4.7	14.3	28.0	38.3	7.2	1.7	1.2	0.9	0.7	0.6	0.7	1.7	7.5

^{1.} Organic matter was not removed prior to testing, thus the reported values are the "apparent" grain size distribution. See narrative for discussion of the testing.

QA SUMMARY

Client: Science Applications, Intl. RA23F

ARI Trip. Sample ID:

Client Project:

Batch No.:

Fidalgo Bay/Custom Plywood Dioxin

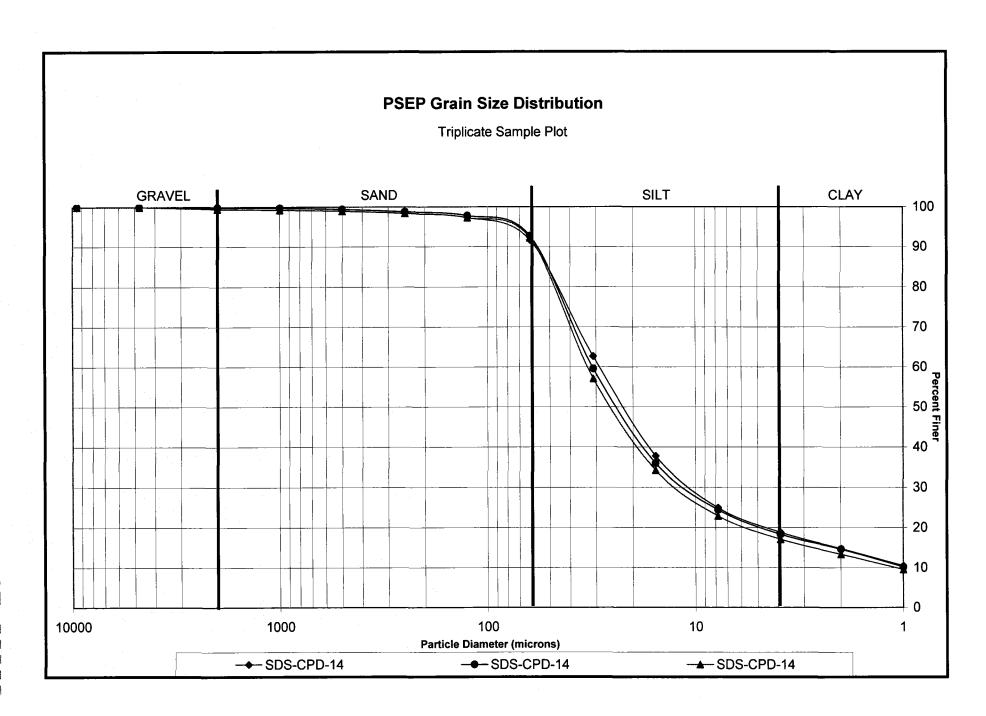
RA17-1

SDS-CPD-14 Client Trip. Sample ID:

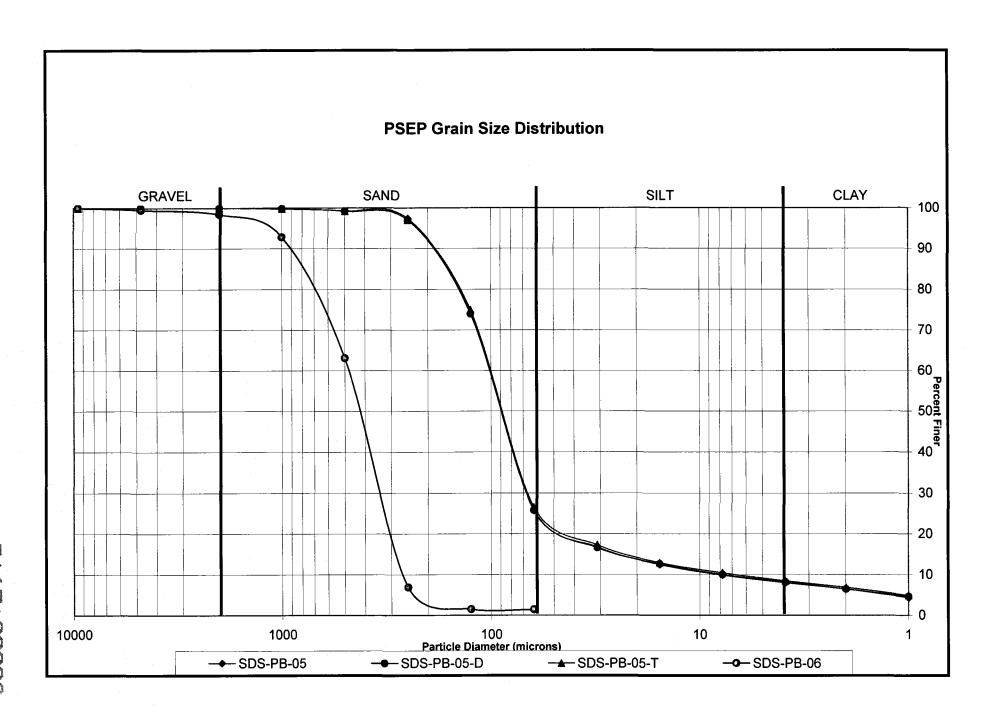
Page:

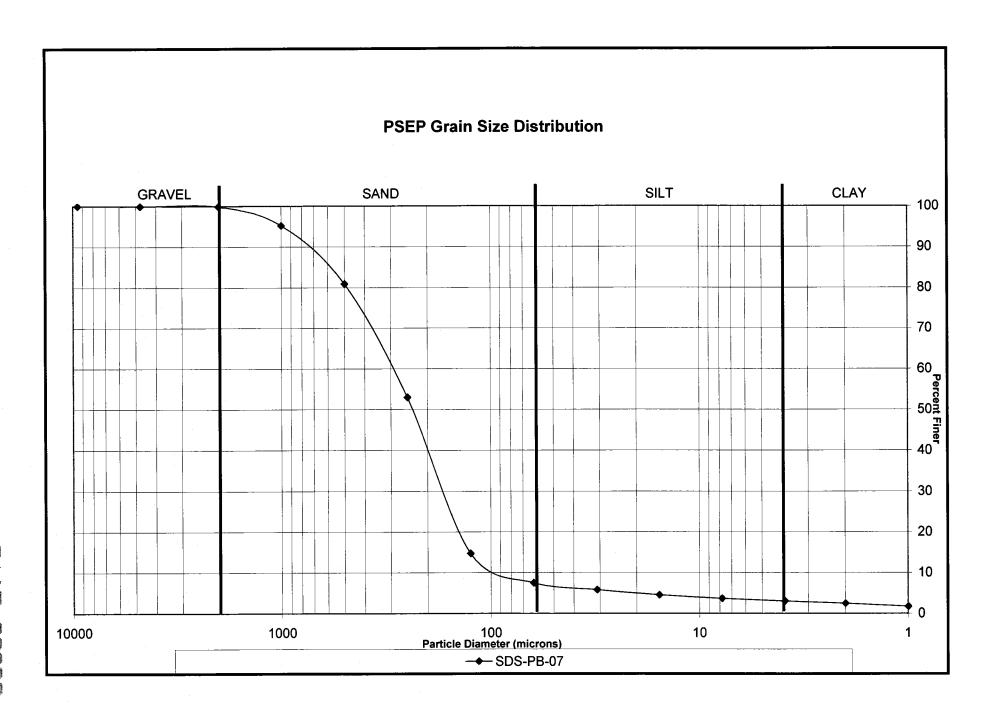
1 of 1

Relative Standard Deviation, By Phi Size


Sample ID	-3	-2	-1	0	1	2	3	4	5	6	7	8	9	10
	100.0	100.0	99.5	99.3	99.0	98.4	97.3	91.7	62.7	37.8	24.9	18.8	14.8	10.5
SDS-CPD-14	100.0	100.0	99.9	99.8	99.4	98.8	97.8	92.7	59.6	36.0	24.4	18.3	14.6	10.2
100	100.0	100.0	99.5	99.3	99.0	98.4	97.3	92.2	57.1	34.2	22.9	17.1	13.4	9.5
AVE	NA	100.00	99.62	99.44	99.12	98.54	97.49	92.19	59.78	35.99	24.07	18.09	14.25	10.08
STDEV	NA	0.00	0.22	0.28	0.27	0.26	0.29	0.53	2.80	1.77	1.05	0.88	0.78	0.48
%RSD	NA	0.00	0.22	0.28	0.27	0.26	0.30	0.58	4.68	4.91	4.37	4.86	5.46	4.78

The Triplicate Applies To The Following Samples


Client ID	Date Sampled	Date Extracted	Date Complete	QA Ratio (95-105)	Data Qualifiers	Pipette Portion (5.0 25.0g)
	6/10/2010	6/21/2010	6/22/2010	103.9		13.1
SDS-CPD-14	6/10/2010	6/21/2010	6/22/2010	101.0		11.8
	6/10/2010	6/21/2010	6/22/2010	95.3		12.9
SDS-PB-01	6/7/2010	6/21/2010	6/22/2010	100.7		10.5
SDS-PB-02	6/7/2010	6/21/2010	6/22/2010	100.8	SS	2.1
SDS-PB-03	6/7/2010	6/21/2010	6/22/2010	100.6		13.5
SDS-PB-04	6/7/2010	6/21/2010	6/22/2010	101.0	SS	2.2
SDS-PB-05	6/7/2010	6/21/2010	6/22/2010	100.4		15.8
SDS-PB-05-D	6/7/2010	6/21/2010	6/22/2010	99.3		6.6
SDS-PB-05-T	6/7/2010	6/21/2010	6/22/2010	100.3		7.1
SDS-PB-06	6/7/2010	6/21/2010	6/22/2010	100.2	SS	1.2
SDS-PB-07	6/7/2010	6/21/2010	6/22/2010	100.1		8.2


^{*} ARI Internal QA limits = 95-105%

^{1.} Organic matter was not removed prior to testing, thus the reported values are the "apparent" grain size distribution. See narrative for discussion of the testing.

Science Applications, Intl.

Fidalgo/Padilla Bay

Apparent Grain Size Distribution Summary Percent Finer Than Indicated Size

Sample No.	Gravel			Very Coarse Sand	Coarse Sand	Medium Sand	Fine Sand	Very Fine Sand	Silt				Clay	
Phi Size	-3	-2	-1	0	1	2	3	4	5	6	7	8	9	10
Sieve Size	3/8"	#4	#10	#18	#35	#60	#120	#230	31.00	15.60	7.80	3.90	2.00	1.00
(microns)	3/6	(4750)	(2000)	(1000)	(500)	(250)	(125)	(63)	31.00	15.00	7.00	3.90	2.00	1.00
	100.0	100.0	100.0	99.3	98.0	96.2	86.8	57.1	36.8	25.0	18.3	13.9	10.5	7.1
SDS-PB-10	100.0	100.0	100.0	99.3	98.2	96.6	86.4	56.7	37.3	25.1	18.5	13.8	10.6	7.2
	100.0	100.0	100.0	99.4	98.3	96.6	85.7	55.3	36.7	24.5	18.2	13.8	10.4	7.1
SDS-PB-08	100.0	100.0	99.9	99.2	98.1	96.1	64.9	26.8	15.2	10.7	8.3	6.6	5.3	3.8
SDS-PB-09	100.0	99.5	92.3	74.6	42.2	9.8	4.9	3.9	NA	NA	NA	NA	NA	NA
SDS-FB-01	100.0	100.0	99.8	98.8	96.9	89.3	19.4	7.2	5.7	4.8	4.0	3.4	2.9	2.2
SDS-FB-02	100.0	100.0	100.0	99.8	99.0	86.9	18.8	6.0	4.9	4.1	3.5	2.9	2.4	1.7
SDS-FB-03	100.0	99.2	97.9	95.8	92.3	73.0	18.6	9.8	8.5	6.8	5.6	4.5	3.5	2.3
SDS-FB-04	100.0	100.0	99.9	99.6	98.9	97.6	83.1	42.9	27.7	19.5	14.3	11.4	9.0	6.4
SDS-FB-05	100.0	100.0	100.0	99.8	99.3	93.0	31.2	17.2	13.3	10.4	8.3	6.7	5.3	3.5
SDS-FB-06	100.0	98.9	96.3	94.6	92.6	74.9	19.5	10.8	8.4	6.7	5.5	4.5	3.6	2.4
SDS-FB-07	100.0	99.4	99.3	98.9	98.3	97.3	89.3	53.2	34.2	22.9	16.2	12.4	9.7	6.8
SDS-FB-07-D	100.0	100.0	100.0	99.6	98.9	97.8	88.9	52.0	34.9	22.8	16.4	12.4	9.5	6.7
SDS-FB-07-T	100.0	99.6	99.6	99.2	98.6	97.8	90.3	53.8	35.3	23.1	16.5	12.5	9.6	6.7
SDS-FB-08	100.0	100.0	99.8	99.4	98.6	97.1	74.9	40.9	27.3	20.1	15.6	12.1	9.5	6.5
SDS-FB-09	100.0	100.0	99.9	99.6	98.8	97.7_	93.4	62.6	36.3	21.8	15.4	11.6	9.3	6.5
SDS-FB-10	100.0	98.5	98.5	98.2	97.8	96.9	94.6	85.5	61.9	39.7	27.0	20.4	15.7	11.1

^{1.} Organic matter was not removed prior to testing, thus the reported values are the "apparent" grain size distribution. See narrative for discussion of the testing.

Science Applications, Intl.

Fidalgo/Padilla Bay

Apparent Grain Size Distribution Summary Percent Retained in Each Size Fraction

Sample No.	Gravel	Very Coarse Sand	Coarse Sand	Medium Sand	Fine Sand	Very Fine Sand	Coarse Silt	Medium Silt	Fine Silt	Very Fine Silt		Clay		Total Fines
Phi Size	> -1	-1 to 0	0 to 1	1 to 2	2 to 3	3 to 4	4 to 5	5 to 6	6 to 7	7 to 8	8 to 9	9 to 10	< 10	<4
Sieve Size (microns)	> #10 (2000)	10 to 18 (2000-1000)	18-35 (1000-500)	35-60 (500-250)	60-120 (250-125)	120-230 (125-62)	62.5-31.0	31.0-15.6	15.6-7.8	7.8-3.9	3.9-2.0	2.0-1.0	<1.0	<230 (<62)
	0.0	0.7	1.3	1.8	9.5	29.6	20.3	11.8	6.7	4.5	3.4	3.3	7.1	57.1
SDS-PB-10	0.0	0.7	1.1	1.6	10.2	29.8	19.4	12.2	6.6	4.6	3.3	3.3	7.2	56.7
	0.0	0.6	1.1	1.6	10.9	30.4	18.6	12.2	6.3	4.4	3.4	3.3	7.1	55.3
SDS-PB-08	0.1	0.7	1.0	2.0	31.2	38.1	11.6	4.5	2.4	1.7	1.4	1.5	3.8	26.8
SDS-PB-09	7.7	17.8	32.3	32.5	4.9	1.0	NA	NA	NA	NA	NA	NA	NA	3.9
SDS-FB-01	0.2	0.9	1.9	7.6	69.9	12.2	1.5	0.9	0.7	0.6	0.5	0.7	2.2	7.2
SDS-FB-02	0.0	0.1	0.8	12.1	68.1	12.8	1.2	0.7	0.7	0.6	0.5	0.6	1.7	6.0
SDS-FB-03	2.1	2.0	3.5	19.3	54.4	8.8	1.3	1.8	1.2	1.1	1.0	1.1	2.3	9.8
SDS-FB-04	0.1	0.4	0.7	1.2	14.5	40.2	15.3	8.2	5.1	2.9	2.4	2.7	6.4	42.9
SDS-FB-05	0.0	0.2	0.5	6.3	61.7	14.0	3.9	3.0	2.1	1.5	1.4	1.8	3.5	17.2
SDS-FB-06	3.7	1.7	2.0	17.7	55.4	8.7	2.4	1.6	1.2	1.0	0.9	1.2	2.4	10.8
SDS-FB-07	0.7	0.5	0.6	1.0	8.0	36.1	19.0	11.3	6.7	3.7	2.7	2.9	6.8	53.2
SDS-FB-07-D	0.0	0.4	0.6	1.1	9.0	36.9	17.1	12.1	6.4	4.0	2.9	2.8	6.7	52.0
SDS-FB-07-T	0.4	0.4	0.6	8.0	7.5	36.5	18.5	12.2	6.6	4.0	3.0	2.9	6.7	53.8
SDS-FB-08	0.2	0.4	0.8	1.5	22.2	34.0	13.7	7.2	4.6	3.5	2.6	3.0	6.5	40.9
SDS-FB-09	0.1	0.3	0.8	1.1	4.3	30.8	26.3	14.5	6.3	3.8	2.3	2.8	6.5	62.6
SDS-FB-10	1.5	0.3	0.4	0.9	2.2	9.1	23.6	22.2	12.7	6.6	4.6	4.6	11.1	85.5

^{1.} Organic matter was not removed prior to testing, thus the reported values are the "apparent" grain size distribution. See narrative for discussion of the testing.

QA SUMMARY

Client: Science Applications, Intl.

ARI Trip. Sample ID:

RA18C

Client Project:

Fidalgo/Padilla Bay

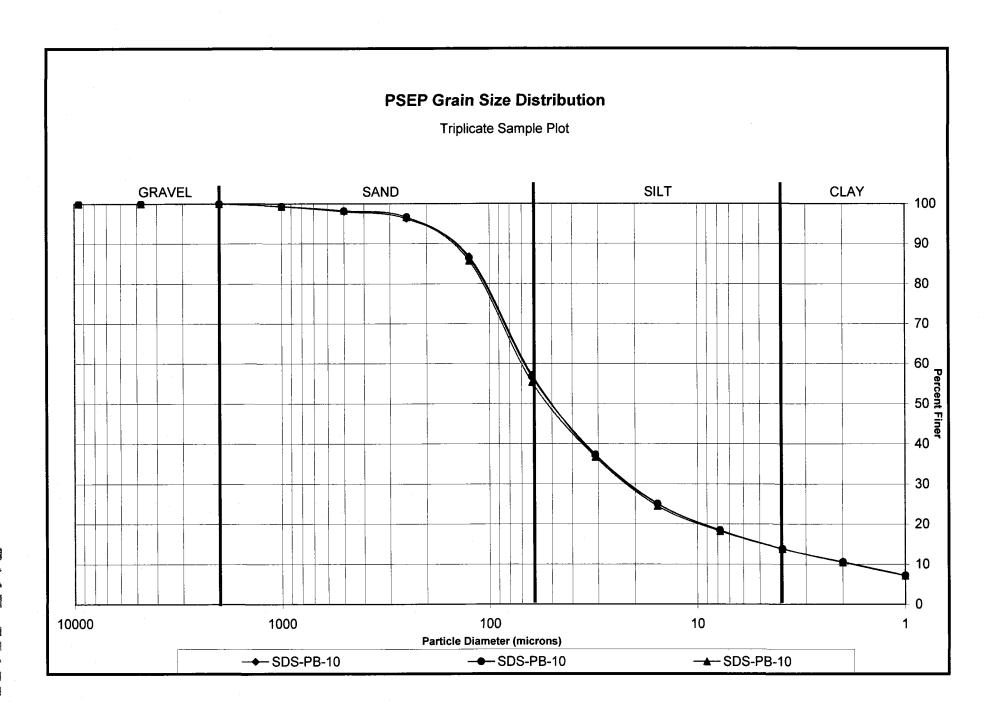
Batch No.: RA18-1

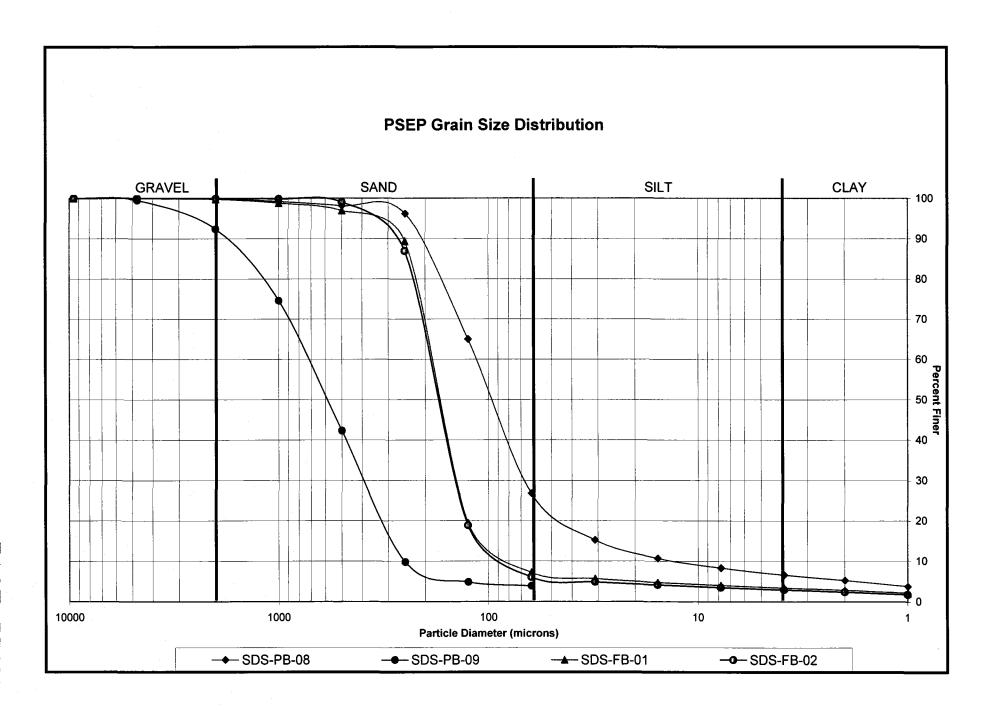
Client Trip. Sample ID: SDS-PB-10

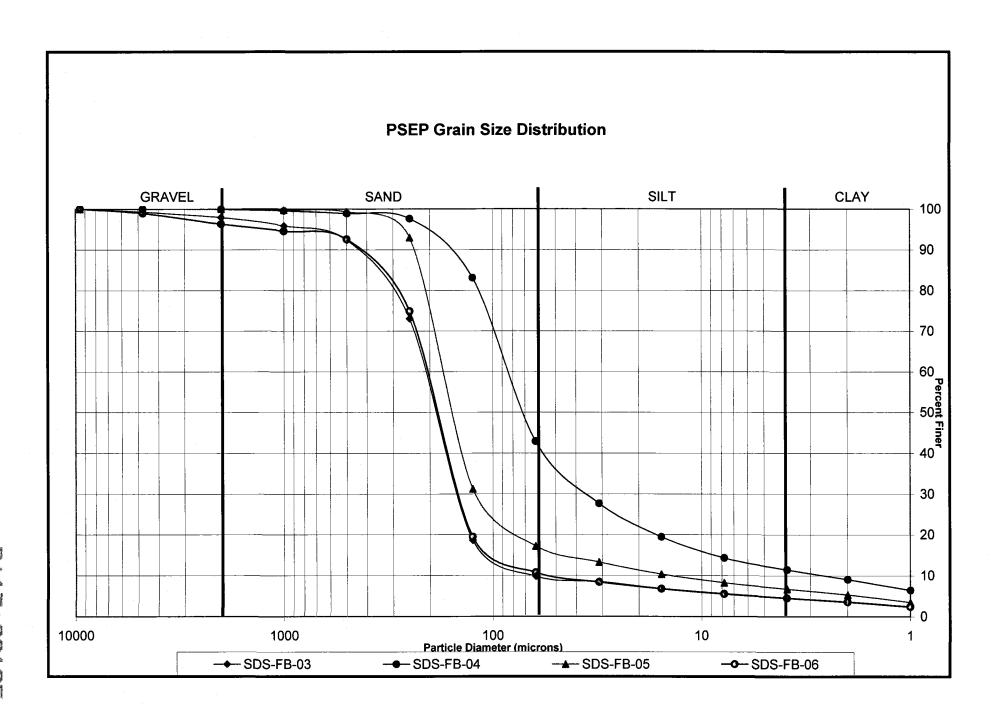
Page:

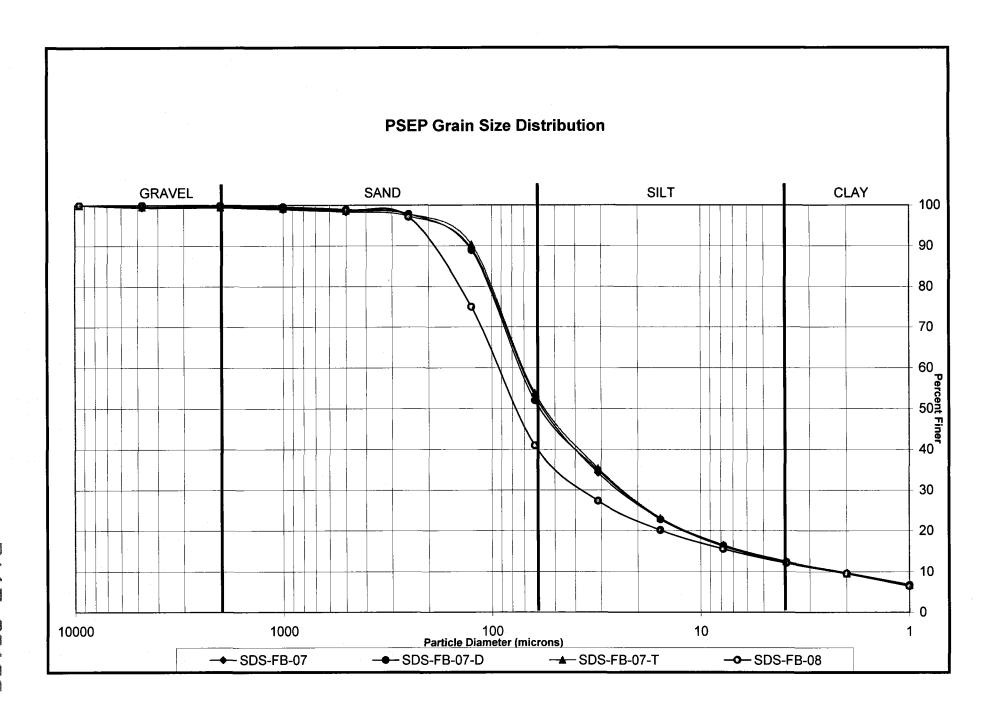
1 of 1

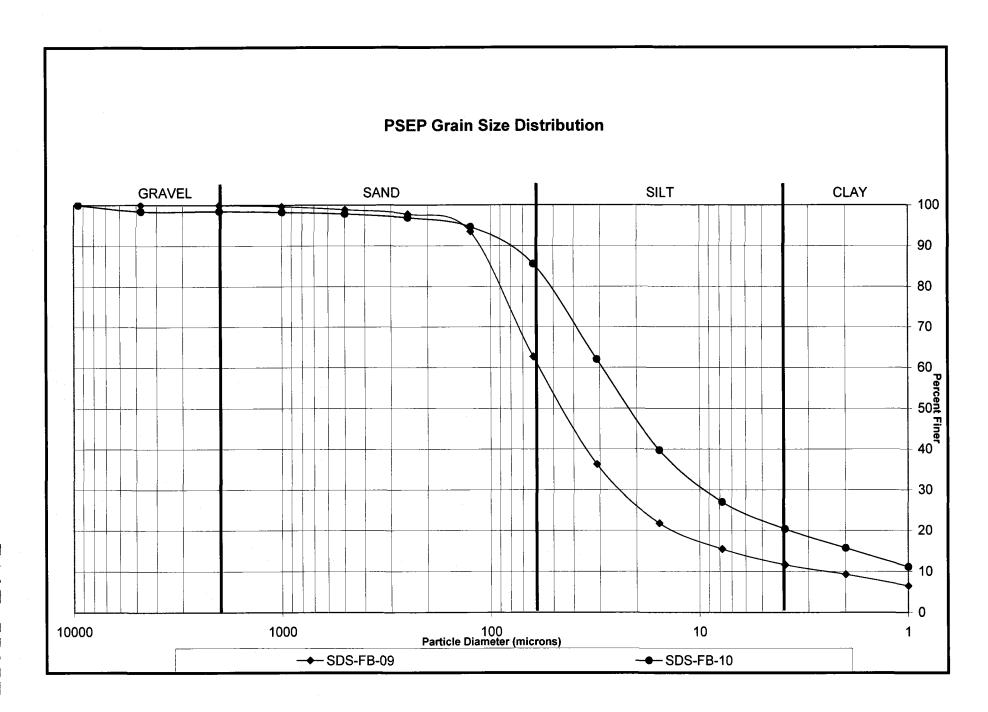
Relative Standard Deviation, By Phi Size


Sample ID	-3	-2	-1	0	1	2	3	4	5	6	7	8	9	10
	100.0	100.0	100.0	99.3	98.0	96.2	86.8	57.1	36.8	25.0	18.3	13.9	10.5	7.1
SDS-PB-10	100.0	100.0	100.0	99.3	98.2	96.6	86.4	56.7	37.3	25.1	18.5	13.8	10.6	7.2
	100.0	100.0	100.0	99.4	98.3	96.6	85.7	55.3	36.7	24.5	18.2	13.8	10.4	7.1
AVE	NA	100.00	99.98	99.32	98.15	96.50	86.30	56.37	36.92	24.87	18.34	13.83	10.48	7.17
STDEV	NA	0.00	0.03	0.04	0.15	0.24	0.53	0.95	0.33	0.30	0.12	0.04	0.07	0.05
%RSD	NA	0.00	0.03	0.04	0.15	0.25	0.62	1.68	0.89	1.22	0.66	0.26	0.63	0.68


The Triplicate Applies To The Following Samples


Client ID	Date Sampled	Date Extracted	Date Complete	QA Ratio (95-105)	Data Qualifiers	Pipette Portion (5.0- 25.0g)
	6/8/2010	6/17/2010	6/18/2010	98.7		14.9
SDS-PB-10	6/8/2010	6/17/2010	6/18/2010	101.6		14.4
	6/8/2010	6/17/2010	6/18/2010	99.9	ĺ	13.9
SDS-PB-08	6/8/2010	6/17/2010	6/18/2010	98.4		8.1
SDS-PB-09	6/8/2010	6/17/2010	6/18/2010	101.8	SS	3.8
SDS-FB-01	6/8/2010	6/17/2010	6/18/2010	99.6		5.2
SDS-FB-02	6/8/2010	6/17/2010	6/18/2010	100.0		6.7
SDS-FB-03	6/8/2010	6/17/2010	6/18/2010	99.1		7.1
SDS-FB-04	6/8/2010	6/17/2010	6/18/2010	100.1		14.7
SDS-FB-05	6/8/2010	6/17/2010	6/18/2010	99.4		8.6
SDS-FB-06	6/8/2010	6/17/2010	6/18/2010	99.6		7.5
SDS-FB-07	6/8/2010	6/17/2010	6/18/2010	99.5		16.0
SDS-FB-07-D	6/8/2010	6/17/2010	6/18/2010	99.5		17.4
SDS-FB-07-T	6/8/2010	6/17/2010	6/18/2010	98.3		17.0
SDS-FB-08	6/8/2010	6/17/2010	6/18/2010	100.3	1	13.2
SDS-FB-09	6/8/2010	6/17/2010	6/18/2010	99.7	1	20.5
SDS-FB-10	6/8/2010	6/17/2010	6/18/2010	99.9		23.3


^{*} ARI Internal QA limits = 95-105%


^{1.} Organic matter was not removed prior to testing, thus the reported values are the "apparent" grain size distribution. See narrative for discussion of the testing.

Science Applications, Intl.

Fidalgo Bay/Custom Plywood Dioxin

Apparent Grain Size Distribution Summary Percent Finer Than Indicated Size

Sample No.		Gravel	ı	Very Coarse Sand	Coarse Sand	Medium Sand	Fine Sand	Very Fine Sand		S	Clay			
Phi Size	-3	-2	-1	0	1	2	3	4	5	6	7	8	9	10
Sieve Size (microns)	3/8"	#4 (4750)	#10 (2000)	#18 (1000)	#35 (500)	#60 (250)	#120 (125)	#230 (63)	31.00	15.60	7.80	3.90	2.00	1.00
	100.0	100.0	99.5	99.3	99.0	98.4	97.3	91.7	62.7	37.8	24.9	18.8	14.8	10.5
SDS-CPD-14	100.0	100.0	99.9	99.8	99.4	98.8	97.8	92.7	59.6	36.0	24.4	18.3	14.6	10.2
	100.0	100.0	99.5	99.3	99.0	98.4	97.3	92.2	57.1	34.2	22.9	17.1	13.4	9.5
SDS-CPD-05	100.0	98.9	98.8	98.7	98.4	97.9	96.4	81.3	46.1	28.2	19.2	14.8	11.7	8.4
SDS-CPD-06	100.0	100.0	99.9	99.7	99.1	98.5	96.5	78.8	47.4	29.6	19.9	15.3	12.1	8.6
SDS-CPD-09	100.0	100.0	99.6	99.2	97.2	96.2	94.5	78.9	46.7	29.5	19.8	15.6	12.2	8.6
SDS-CPD-11	100.0	98.7	98.3	98.0	97.4	96.7	95.3	81.5	52.0	31.8	21.1	16.2	12.6	8.9
SDS-CPD-12	100.0	97.0	96.6	96.3	95.4	94.4	92.0	73.9	42.8	26.0	17.1	13.4	10.8	7.8
SDS-CPD-15	100.0	100.0	99.7	99.1	98.2	97.1	95.0	81.3	48.7	29.7	19.6	15.1	12.1	8.8

^{1.} Organic matter was not removed prior to testing, thus the reported values are the "apparent" grain size distribution. See narrative for discussion of the testing.

Science Applications, Intl.

Fidalgo Bay/Custom Plywood Dioxin

Apparent Grain Size Distribution Summary Percent Retained in Each Size Fraction

Sample No.	Gravel	Very Coarse Sand	Coarse Sand	Medium Sand	Fine Sand	Very Fine Sand	Coarse Silt	Medium Silt	Fine Silt	Very Fine Silt		Clay		Total Fines
Phi Size	> -1	-1 to 0	0 to 1	1 to 2	2 to 3	3 to 4	4 to 5	5 to 6	6 to 7	7 to 8	8 to 9	9 to 10	< 10	<4
Sieve Size (microns)	>#10 (2000)	10 to 18 (2000-1000)	18-35 (1000-500)	35-60 (500-250)	60-120 (250-125)	120-230 (125-62)	62.5-31.0	31.0-15.6	15.6-7.8	7.8-3.9	3.9-2.0	2.0-1.0	<1.0	<230 (<62)
	0.5	0.2	0.3	0.6	1.1	5.7	29.0	24.9	12.9	6.1	4.1	4.3	10.5	91.7
SDS-CPD-14	0.1	0.1	0.3	0.6	1.0	5.1	33.1	23.6	11.6	6.1	3.7	4.5	10.2	92.7
	0.5	0.2	0.3	0.6	1.1	5.1	35.1	22.8	11.3	5.8	3.8	3.8	9.5	92.2
SDS-CPD-05	1.2	0.1	0.2	0.6	1.5	15.1	35.2	17.9	9.0	4.4	3.1	3.3	8.4	81.3
SDS-CPD-06	0.1	0.3	0.6	0.6	2.0	17.7	31.4	17.8	9.7	4.6	3.2	3.5	8.6	78.8
SDS-CPD-09	0.4	0.3	2.1	1.0	1.7	15.6	32.2	17.2	9.7	4.3	3.4	3.6	8.6	78.9
SDS-CPD-11	1.7	0.2	0.6	0.7	1.4	13.8	29.5	20.2	10.7	4.9	3.6	3.7	8.9	81.5
SDS-CPD-12	3.4	0.3	0.9	0.9	2.4	18.1	31.1	16.9	8.8	3.8	2.6	3.1	7.8	73.9
SDS-CPD-15	0.3	0.5	0.9	1.1	2.0	13.8	32.6	19.0	10.1	4.5	3.0	3.3	8.8	81.3

^{1.} Organic matter was not removed prior to testing, thus the reported values are the "apparent" grain size distribution. See narrative for discussion of the testing.

QA SUMMARY

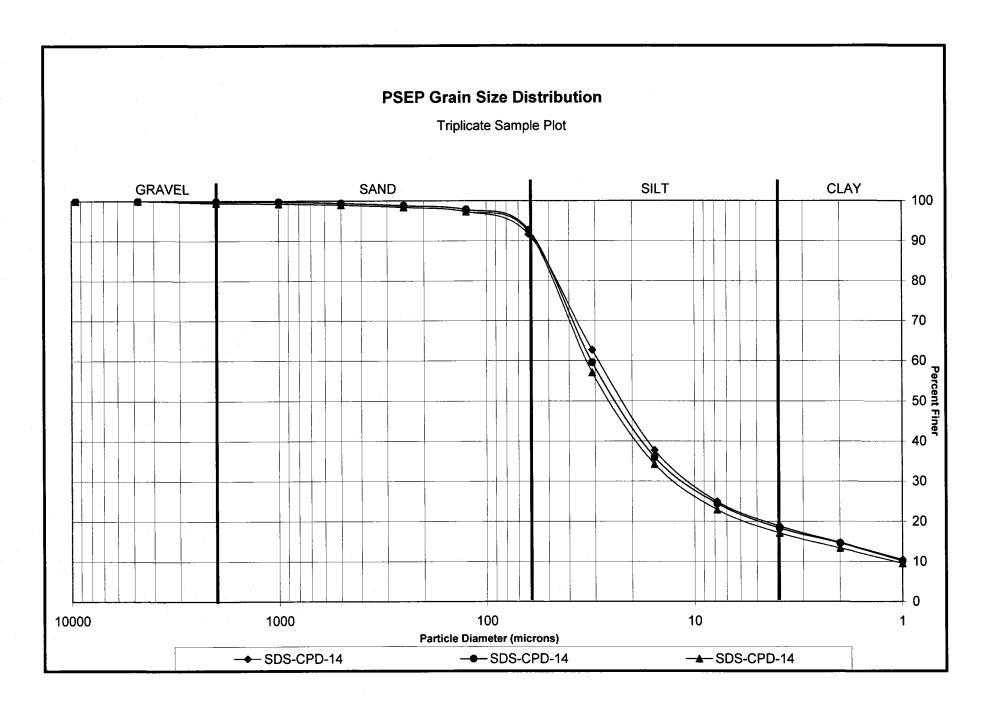
Client: Science Applications, Intl.

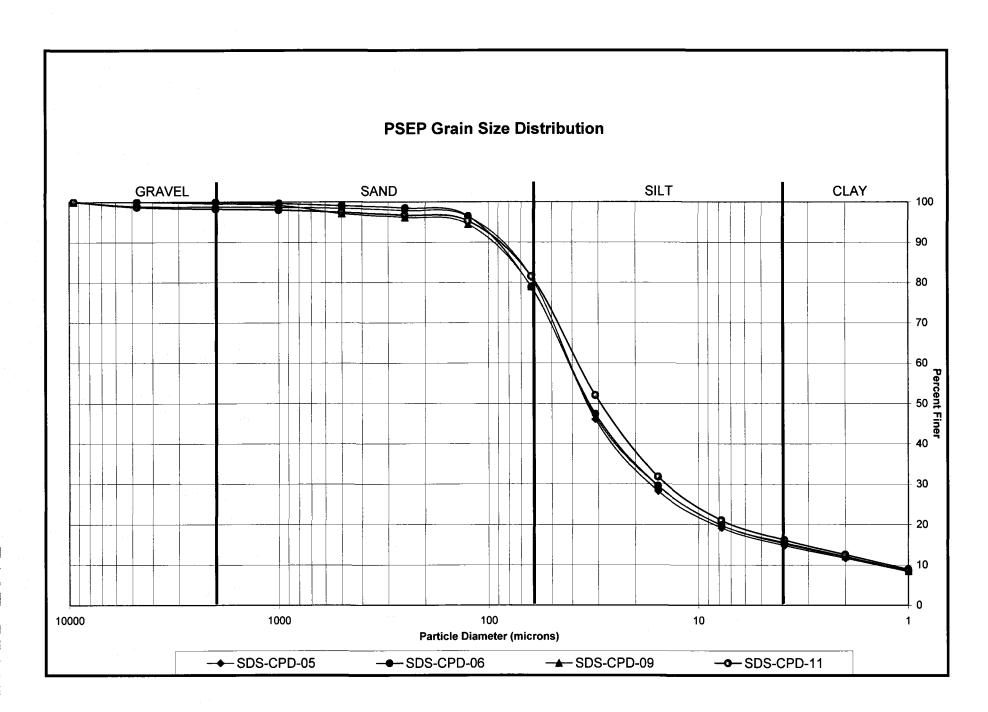
Client Project: Fidalgo Bay/Custom Plywood Dioxin

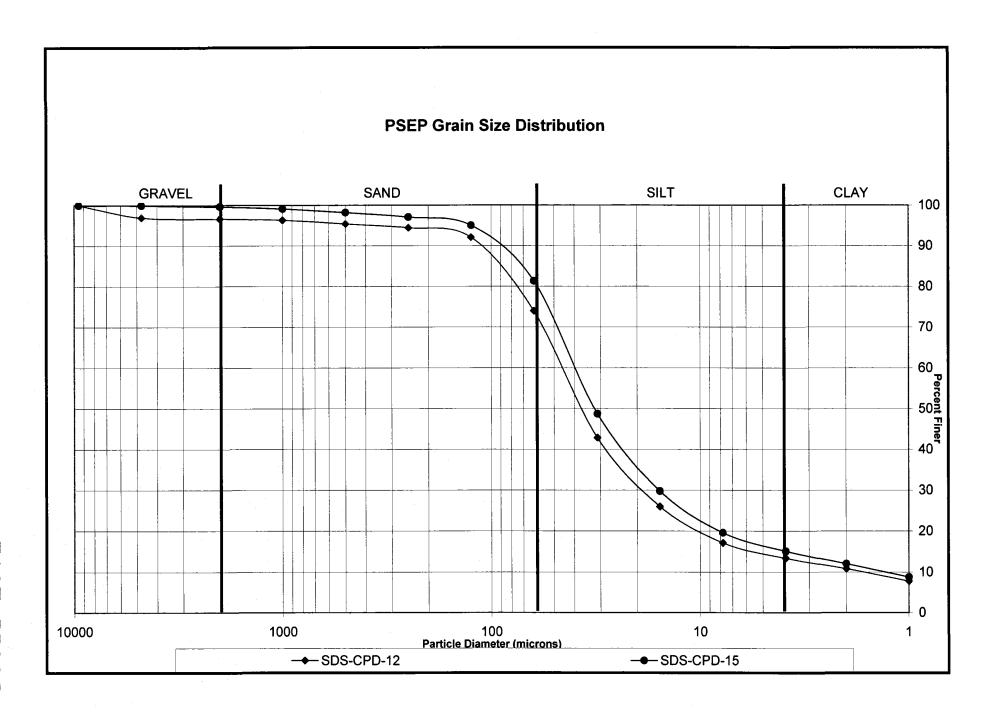
ARI Trip. Sample ID: RA23F Batch No.: RA23-1

Client Trip. Sample ID: SDS-CPD-14 Page: 1 of 1

Relative Standard Deviation, By Phi Size


	_					idii to otaliio		, <i></i> ,						
Sample ID	-3	-2	-1	0	1	2	3	4	5	6	7	8	9	10
	100.0	100.0	99.5	99.3	99.0	98.4	97.3	91.7	62.7	37.8	24.9	18.8	14.8	10.5
SDS-CPD-14	100.0	100.0	99.9	99.8	99.4	98.8	97.8	92.7	59.6	36.0	24.4	18.3	14.6	10.2
	100.0	100.0	99.5	99.3	99.0	98.4	97.3	92.2	57.1	34.2	22.9	17.1	13.4	9.5
AVE	NA	100.00	99.62	99.44	99.12	98.54	97.49	92.19	59.78	35.99	24.07	18.09	14.25	10.08
STDEV	NA	0.00	0.22	0.28	0.27	0.26	0.29	0.53	2.80	1.77	1.05	0.88	0.78	0.48
%RSD	NA	0.00	0.22	0.28	0.27	0.26	0.30	0.58	4.68	4.91	4.37	4.86	5.46	4.78


The Triplicate Applies To The Following Samples


Client ID	Date Sampled	Date Extracted	Date Complete	QA Ratio (95-105)	Data Qualifiers	Pipette Portion (5.0- 25.0g)
	6/10/2010	6/21/2010	6/22/2010	103.9		13.1
SDS-CPD-14	6/10/2010	6/21/2010	6/22/2010	101.0		11.8
	6/10/2010	6/21/2010	6/22/2010	95.3		12.9
SDS-CPD-05	6/10/2010	6/21/2010	6/22/2010	103.6		19.5
SDS-CPD-06	6/10/2010	6/21/2010	6/22/2010	104.0	Ì	17.5
SDS-CPD-09	6/10/2010	6/21/2010	6/22/2010	99.1		14.7
SDS-CPD-11	6/10/2010	6/21/2010	6/22/2010	104.9		19.3
SDS-CPD-12	6/10/2010	6/21/2010	6/22/2010	98.7	i	15.4
SDS-CPD-15	6/10/2010	6/21/2010	6/22/2010	100.9		18.6

^{*} ARI Internal QA limits = 95-105%

^{1.} Organic matter was not removed prior to testing, thus the reported values are the "apparent" grain size distribution. See narrative for discussion of the testing.

Science Applications, Intl.

Fidalgo Bay/Custom Plywood Dioxin

Apparent Grain Size Distribution Summary Percent Finer Than Indicated Size

Sample No.		Gravel		Very Coarse Sand	Coarse Sand	Medium Sand	Fine Sand	Very Fine Sand		s	Clay			
Phi Size	-3	-2	-1	0	1	2	3	4	5	6	7	8	9	10
Sieve Size (microns)	3/8"	#4 (4750)	#10 (2000)	#18	#35	#60	#120 (125)	#230	31.00	15.60	7.80	3.90	2.00	1.00
· · · · · · · · · · · · · · · · · · ·	400.0	(4750)	(2000)	(1000)	(500)	(250)	97.6	(63) 87.3	43.9	25.6	16.0	40.4	10.1	7.1
SDS-CPD-01	100.0	100.0	99.2	99.0 99.8	98.7	98.2	98.7	89.7	43.9	27.0	16.9	13.1		7.1
SDS-CPD-01	100.0	100.0	99.9		99.6	99.2	98.6				17.8	13.3	10.2	7.0
000 000 00	100.0	100.0	100.0	99.8	99.6	99.2	98.2	88.6 85.3	44.6	26.2	17.6	13.3	10.4	7.2
SDS-CPD-02	100.0	100.0	99.9	99.7	99.4	98.9			44.8	26.3	17.7	13.6	10.6	7.5
SDS-CPD-03	100.0	100.0	99.8	99.0	98.0	96.7	94.5	84.0	50.6	31.4	21.0	15.5	11.6	7.7
SDS-CPD-04	100.0	98.9	97.8	97.3	96.3	95.2	93.7	75.0	37.6	21.5	14.0	10.5	7.9	5.6
SDS-CPD-07	100.0	100.0	98.9	97.8	96.3	94.1	91.6	81.7	47.8	30.8	20.7	15.4	11.6	7.9
SDS-CPD-08	100.0	100.0	99.8	99.3	98.4	97.3	95.7	81.0	46.5	28.0	18.9	14.2	11.0	7.8
SDS-CPD-08-D	100.0	100.0	99.7	99.3	98.3	96.9	94.8	79.3	44.1	26.5	17.9	13.6	10.6	7.6
SDS-CPD-08-T	100.0	99.7	99.4	98.9	98.1	97.0	95.5	81.1	44.2	27.8	18.4	14.2	10.8	7.7
SDS-CPD-10	100.0	98.9	97.7	96.3	94.1	91.3	88.6	81.2	54.7	34.3	22.1	16.1	11.8	8.2
SDS-CPD-13	100.0	99.8	98.3	97.4	95.9	93.9	92.0	84.9	49.0	33.1	21.2	14.9	10.8	7.2
SDS-CPD-16	100.0	100.0	99.5	98.7	98.0	97.1	95.4	89.6	58.7	36.3	22.8	15.9	11.6	7.8
SDS-CPD-17	100.0	99.6	99.3	98.0	96.6	92.9	86.2	80.5	52.9	33.2	21.6	15.5	11.5	8.0
SDS-CPD-18	100.0	99.6	99.2	98.5	97.5	95.8	93.0	84.3	51.9	33.7	22.3	16.3	12.0	8.3
SDS-CPD-19	100.0	99.2	99.2	98.6	97.9	97.1	95.5	84.5	57.8	39.4	26.2	18.9	13.8	9.6
SDS-CPD-20	100.0	100.0	100.0	99.6	99.1	98.6	97.0	78.8	54.0	33.4	23.5	17.3	13.3	9.4
SDS-CPD-21	100.0	100.0	99.4	98.3	97.3	96.0	94.1	87.7	55.8	38.9	25.0	17.6	12.9	9.1

^{1.} Organic matter was not removed prior to testing, thus the reported values are the "apparent" grain size distribution. See narrative for discussion of the testing.

Science Applications, Intl.

Fidalgo Bay/Custom Plywood Dioxin

Apparent Grain Size Distribution Summary Percent Retained in Each Size Fraction

Sample No.	Gravel	Very Coarse Sand	Coarse Sand	Medium Sand	Fine Sand	Very Fine Sand	Coarse Silt	Medium Silt	Fine Silt	Very Fine Silt	_	Clay		Total Fines
Phi Size	> -1	-1 to 0	0 to 1	1 to 2	2 to 3	3 to 4	4 to 5	5 to 6	6 to 7	7 to 8	8 to 9	9 to 10	< 10	<4
Sieve Size (microns)	> #10 (2000)	10 to 18 (2000-1000)	18-35 (1000-500)	35-60 (500-250)	60-120 (250-125)	120-230 (125-62)	62.5-31.0	31.0-15.6	15.6-7.8	7.8-3.9	3.9-2.0	2.0-1.0	<1.0	<230 (<62)
	0.8	0.2	0.3	0.5	0.6	10.3	43.5	18.2	8.7	3.8	3.0	3.1	7.1	87.3
SDS-CPD-01	0.1	0.1	0.2	0.4	0.5	8.9	45.0	17.8	9.2	4.5	3.1	3.2	7.0	89.7
ľ	0.0	0.1	0.3	0.4	0.6	10.0	44.0	18.5	8.5	4.3	3.0	3.2	7.2	88.6
SDS-CPD-02	0.1	0.1	0.4	0.5	0.6	13.0	40.5	18.5	8.5	4.2	3.0	3.1	7.5	85.3
SDS-CPD-03	0.2	0.8	1.0	1.3	2.1	10.5	33.4	19.2	10.4	5.5	4.0	3.9	7.7	84.0
SDS-CPD-04	2.2	0.5	1.0	1.1	1.6	18.7	37.4	16.1	7.5	3.5	2.6	2.3	5.6	75.0
SDS-CPD-07	1.1	1.1	1.6	2.2	2.5	9.9	33.9	17.0	10.2	5.3	3.8	3.7	7.9	81.7
SDS-CPD-08	0.2	0.5	0.9	1.1	1.6	14.6	34.6	18.5	9.2	4.7	3.2	3.2	7.8	81.0
SDS-CPD-08-D	0.3	0.5	1.0	1.4	2.1	15.5	35.1	17.7	8.5	4.3	3.0	3.0	7.6	79.3
SDS-CPD-08-T	0.6	0.4	0.9	1.1	1.5	14.4	36.9	16.4	9.4	4.1	3.4	3.1	7.7	81.1
SDS-CPD-10	2.3	1.5	2.2	2.8	2.7	7.5	26.5	20.4	12.2	6.1	4.3	3.5	8.2	81.2
SDS-CPD-13	1.7	0.9	1.5	2.0	1.9	7.1	35.9	15.9	11.9	6.3	4.1	3.6	7.2	84.9
SDS-CPD-16	0.5	0.8	0.6	1.0	1.7	5.8	30.8	22.4	13.5	6.9	4.3	3.8	7.8	89.6
SDS-CPD-17	0.7	1.2	1.5	3.7	6.7	5.7	27.6	19.6	11.7	6.1	4.0	3.5	8.0	80.5
SDS-CPD-18	0.8	0.7	1.1	1.6	2.9	8.7	32.4	18.1	11.4	6.1	4.3	3.8	8.3	84.3
SDS-CPD-19	0.8	0.6	0.7	0.8	1.6	11.0	26.8	18.3	13.3	7.3	5.1	4.2	9.6	84.5
SDS-CPD-20	0.0	0.4	0.5	0.5	1.6	18.2	24.8	20.6	9.9	6.1	4.0	4.0	9.4	78.8
SDS-CPD-21	0.6	1.1	1.0	1.4	1.8	6.4	32.0	16.9	13.9	7.4	4.7	3.8	9.1	87.7

^{1.} Organic matter was not removed prior to testing, thus the reported values are the "apparent" grain size distribution. See narrative for discussion of the testing.

QA SUMMARY

Client: Science Applications, Intl.

ARI Trip. Sample ID:

RA31A

Client Project:

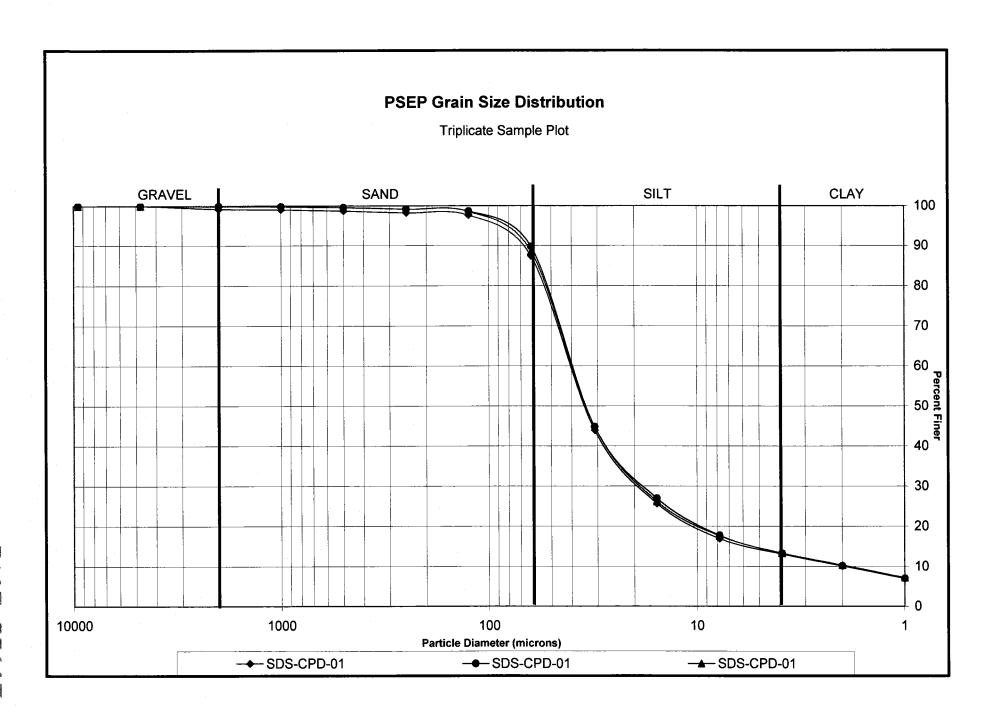
Fidalgo Bay/Custom Plywood Dioxin

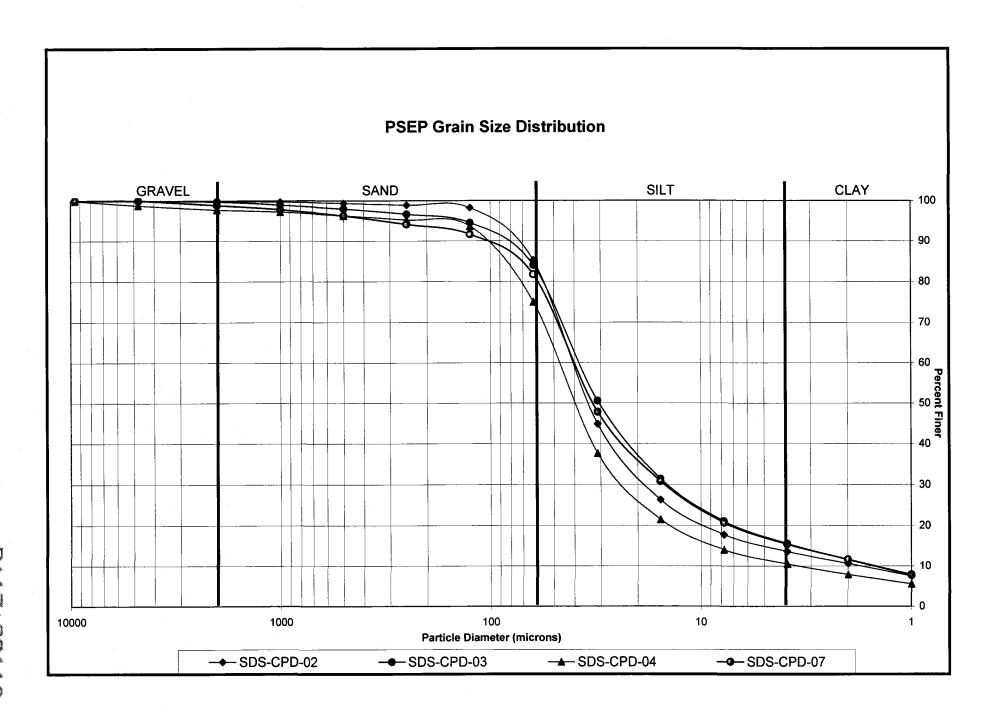
Batch No.: RA31-1

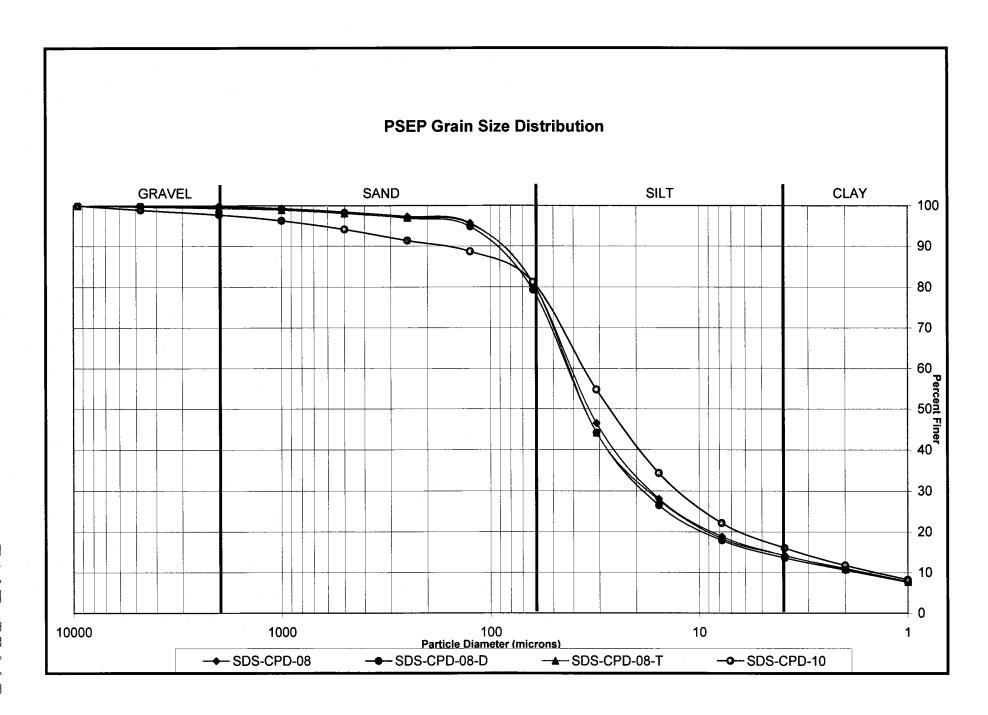
Client Trip. Sample ID: SDS-CPD-01

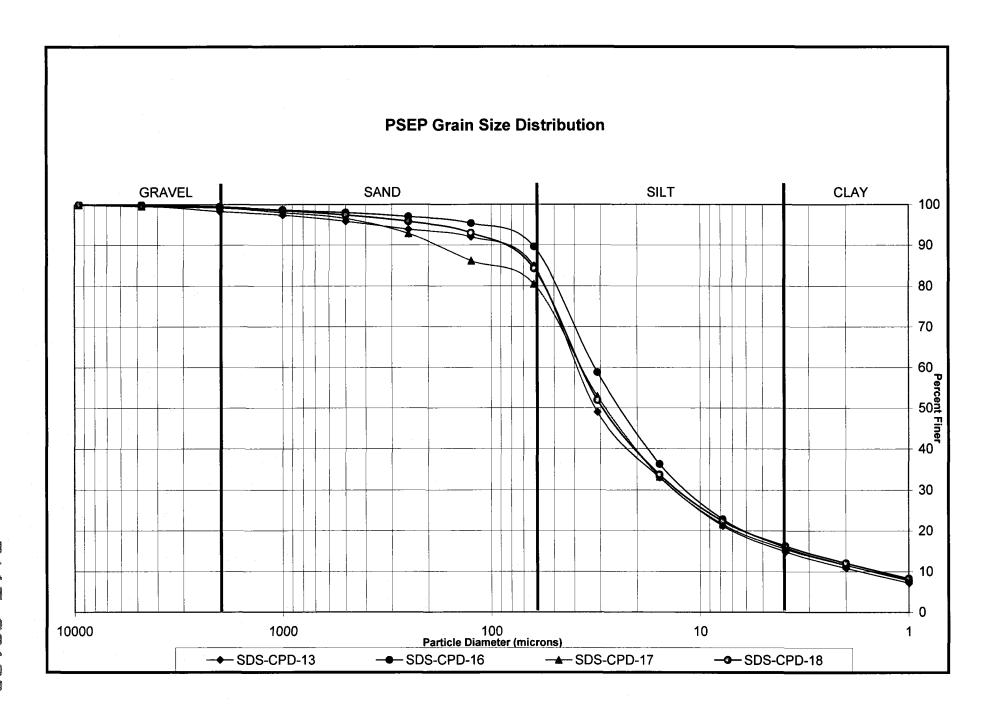
Page: 1 of 1

Relative Standard Deviation, By Phi Size


Sample ID	-3	-2	-1	0	1	2	3	4	5	6	7	8	9	10
	100.0	100.0	99.2	99.0	98.7	98.2	97.6	87.3	43.9	25.6	16.9	13.1	10.1	7.1
SDS-CPD-01	100.0	100.0	99.9	99.8	99.6	99.2	98.7	89.7	44.7	27.0	17.8	13.3	10.2	7.0
	100.0	100.0	100.0	99.8	99.6	99.2	98.6	88.6	44.6	26.2	17.6	13.3	10.4	7.2
AVE	NA	100.00	99.69	99.56	99.30	98.86	98.28	88.55	44.41	26.25	17.42	13.24	10.22	7.09
STDEV	NA	0.00	0.44	0.47	0.52	0.55	0.58	1.22	0.48	0.66	0.45	0.12	0.13	0.10
%RSD	NA	0.00	0.44	0.47	0.52	0.56	0.59	1.37	1.08	2.52	2.60	0.91	1.24	1.45


The Triplicate Applies To The Following Samples


Client ID	Date Sampled	Date Extracted	Date Complete	QA Ratio (95-105)	Data Qualifiers	Pipette Portion (5.0- 25.0g)
	6/9/2010	6/15/2010	6/23/2010	101.0		16.1
SDS-CPD-01	6/9/2010	6/15/2010	6/23/2010	103.7		16.8
	6/9/2010	6/15/2010	6/23/2010	102.0		17.0
SDS-CPD-02	6/9/2010	6/15/2010	6/23/2010	102.8		17.4
SDS-CPD-03	6/9/2010	6/15/2010	6/23/2010	101.5	1	16.0
SDS-CPD-04	6/9/2010	6/16/2010	6/23/2010	101.2	1	17.8
SDS-CPD-07	6/9/2010	6/16/2010	6/23/2010	102.0		14.3
SDS-CPD-08	6/9/2010	6/16/2010	6/23/2010	104.6	1	19.1
SDS-CPD-08-D	6/9/2010	6/16/2010	6/23/2010	99.6		18.7
SDS-CPD-08-T	6/9/2010	6/16/2010	6/23/2010	102.2	1	20.0
SDS-CPD-10	6/9/2010	6/16/2010	6/23/2010	104.4		17.7
SDS-CPD-13	6/9/2010	6/16/2010	6/23/2010	99.8		17.9
SDS-CPD-16	6/9/2010	6/16/2010	6/23/2010	101.4		17.6
SDS-CPD-17	6/9/2010	6/16/2010	6/23/2010	105.0		17.7
SDS-CPD-18	6/9/2010	6/16/2010	6/23/2010	101.8		17.9
SDS-CPD-19	6/9/2010	6/16/2010	6/23/2010	100.6		17.0
SDS-CPD-20	6/9/2010	6/16/2010	6/24/2010	101.3	1	17.5
SDS-CPD-21	6/9/2010	6/16/2010	6/23/2010	99.0		16.6


^{*} ARI Internal QA limits = 95-105%

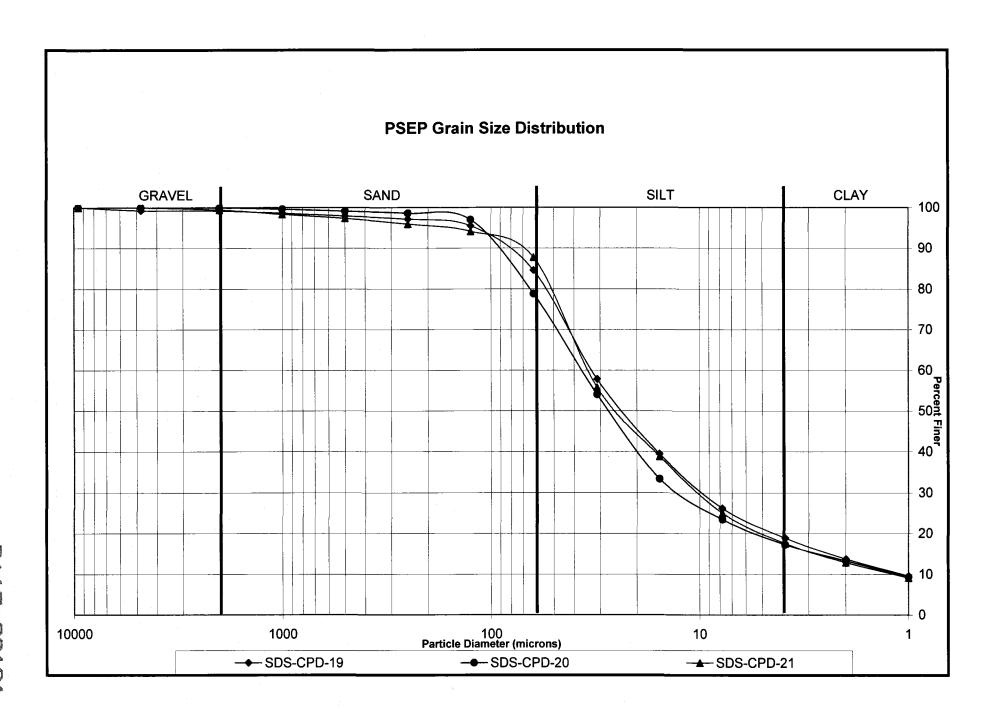

^{1.} Organic matter was not removed prior to testing, thus the reported values are the "apparent" grain size distribution. See narrative for discussion of the testing.

Table of Contents: ARI Job RA55

Client: Science Applications, Intl.

Project: Fidalgo Bay/Custom Plywood Dioxin S

	Page From:	Page To:
Inventory Sheet		
Cover Letter		
Chain of Custody Documentation	2	<u> </u>
Case Narrative, Data Qualifiers, Control Limits	5	8
General Chemistry Analysis		
Report and Summary QC Forms	9	<u> 2 </u>
Geotechnical Analysis		
Report and Summary QC Forms		29
General Chemistry Raw Data	_	<u>-</u> -
Analyst Notes and Raw Data	<u> 30</u>	54
Geotechnical Raw Data		/ =
Analyst Notes and Raw Data	<u> 55</u>	65

<u>July-02-2010</u> Date

Signature

July 2, 2010

Tim Hammermeister SAIC 18912 North Creek Parkway, Suite 101 Bothell, WA 98011

RE: Project: Fidalgo Bay / Custom Plywood Dioxin Study

ARI Job No: RA55

Dear Tim:

Please find enclosed the Chain-of-Custody (COC) record, sample receipt documentation, and the final data package for samples from the project referenced above.

Sample receipt and details of the analyses are discussed in the Case Narrative.

An electronic copy of this data and associated raw data will be kept on file with ARI. Should you have any questions or problems, please feel free to contact me at any time.

Sincerely,

ANALYTICAL RESOURCES, INC.

Cheronne Oreiro Project Manager (206) 695-6214

cheronneo@arilabs.com

Enclosures

cc: eFile RA55

Chain of Custody Documentation

ARI Job ID: RA55

45346

	写人	
From Science to Solutions	From Science I	o Solutions

<i>5</i> 41					Ana	lyses	/ Tes	sts			Shipping Information					
From Science to So	lutions	TEL:	425.485.58	800 • FAX	: 425.485.556	66										Number of Shipping Containers:
	CHA	AIN OF CUS	TODY REC	ORD												Date Shipped:
Project No.: Project Name: Float		-/- Pro	oject Mgr:	Tim H	mmeme!	5.Te/		, ,								6/15/10
Project Name: F. onl Project Location:	go bay	1 Custon	awyld				3	sufficks		lds						6/15/10 Carrier: SATC
Project Name: Project Location: Sample Collectors: Client Name:	WH Y	CHECOL	aw Ji	N DK			M Size			al Sallds	Archive					Waybill No.:
Sample ID	Depth	Matrix	Date	Time	# of Conta	iners	erain	Toral	72	Tos	Are				į	Comments
SDS-CT-OIA	0-10cm	56 d	6/14/10	1047	4		X	×	×	X	X					
SOS-CT-OIB	0-10cm	Sed	6/14/10	1115	4		X	X	×	X	×					No.
SDS-CT-02	0-Dun	sed	61410	1147	4		X	X	X	×	X					
SDS-CT-03	OfDem	sed	6/14/10	1230	4		×	X	X	×	X					
5DS-CT-04	0-10cm	Sed	6/14/10	1331	4		X	X	X	X	X					
505-CT-05	0-10cm	sed		1306	4		X	X	X	X	X					
(40)																
													T.			
-																
RELINQUISHED BY:	111	RECE	IVED BY:	1 101	A RE	LINQUISHI						•	RI	ECEIVE	D BY	<u> </u>
Signature: 1 56/15/12	KN/FT - 141	Signa Signa	ture: 6/15/	0 1000	Signal Signal	gnature: _										
Date/Time: 66/15/2 Affiliation: SALC	210 17	レン Date/I Affilia	tion:	RI	Da <u>د ص </u> Af	ite/Time: _ filiation: _										

Cooler Receipt Form

ARI Client: SAIC		Project Name: Findalg	Baull	ucton	Plywood
COC No(s):		Delivered by: Fed-Ex UPS Co	The same of the sa		
PAGE					2
Assigned ARI Job No:		Tracking No:			(NA)
-				\/=0	
Were intact, properly signed and dated custod	-			YES	(NO)
Were custody papers included with the cooler				YES	NO
Were custody papers properly filled out (ink, s				(YES)	NO
Temperature of Cooler(s) (°C) (recommended	2.0-6.0 °C for cher	mistry) <u>2.2</u>		_	
If cooler temperature is out of compliance fill of	out form 00070F		-	1D#: <u>9090</u>	41619
Cooler Accepted by:	ಎ	Date: <u> </u>	ie:14c	<u>'S</u>	
Comple	te custody forms	and attach all shipping documents			
_og-In Phase:					
Was a temperature blank included in the cool	er?			YES	(NO)
What kind of packing material was used?			n Block Paper		000
Was sufficient ice used (if appropriate)?			NA	YES	NO NO
Were all bottles sealed in individual plastic ba				YES	(NO)
Did all bottles arrive in good condition (unbrok				YES	NO
Were all bottle labels complete and legible?				YES	NO
Did the number of containers listed on COC m				YES	NO
Did all bottle labels and tags agree with custo	dy papers?			(YES	NO
Were all bottles used correct for the requested				YES	NO
Do any of the analyses (bottles) require prese			(NA)	YES	NO
Were all VOC vials free of air bubbles?		•••••	(NA)	YES	NO
Was sufficient amount of sample sent in each	bottle?			(YES)	NO
Date VOC Trip Blank was made at ARI			(NA)		
Was Sample Split by ARI : (NA) YES	Date/Time:	Equipment:		Split by:_	
$\mathcal{T}(\cdot)$		11-1-	10-11		
Samples Logged by:			1516		
** Noti	fy Project Manage	er of discrepancies or concerns **			
Sample ID on Bottle Sam	ple ID on COC	Sample ID on Bottle	Sam	ple ID on CO	C
			 		
			1		
Additional Notes Discourse & Barrier	41			-	
Additional Notes, Discrepancies, & Resolu	นบกร:				
By: Date:					
Small Air Bubbles Peabubbles' LA	RGE Air Bubbles	Small → "sm"			
2mm 2-4 mm	> 4 mm	Peabubbles → "pb"			
••••		Large → "lg"			
	A Province And Province And Province And Province And Province And Annual Andrews And Annual	Headspace → "hs"			

0016F 3/2/10 Cooler Receipt Form

Revision 014

RASS: 00004

Case Narrative, Data Qualifiers, Control Limits

ARI Job ID: RA55

RASS: 00005

Case Narrative

Client: SAIC

Project: Fidalgo Bay / Custom Plywood Dioxin Study

ARI Job No.: RA55

Sample Receipt

Six sediment samples were received June 15, 2010 under ARI job RA55. The cooler temperature measured by IR thermometer following ARI SOP was 2.2°C. Select sample containers were archived frozen upon receipt. For further details regarding sample receipt, please refer to the Cooler Receipt Forms.

General Chemistry Parameters (TOC/TS)

The samples were prepared and analyzed within method recommended holding times.

The method blanks were clean at the reporting limits. The LCS percent recoveries were within control limits.

The SRM percent recovery was within limits.

The matrix spike percent recovery and replicate RPD/RSDs were within control limits.

Geotechnical Parameters

A laboratory-specific case narrative follows.

Case Narrative RA55 Page 1 of 1

RASS: ØØØØ6

Client: Science Applications International Corp.

ARI Job No.: RA55

Client Project: Fidalgo Bay/ Custom Plywood Dioxin S

Case Narrative

- 1. Six samples were submitted for grain size analysis according to Puget Sound Estuary Protocol (PSEP) methodology on June 15, 2010.
- 2. The samples were run in a single batch and one sample from this job, SDS-CT-03, was chosen for triplicate analysis. The triplicate data is reported on the QA summary.
- 3. Samples SDS-CT-01A and SDS-CT-02 contained woody or other organic matter, which may have broken down during the sieving process affecting grain size analysis.
- 4. Samples SDS-CT-01B, SDS-CT-02, SDS-CT-04, and SDS-CT-05 contained shell fragments.
- 5. Samples SDS-CT-01A, SDS-CT-02, and SDS-CT-04 displayed an oily sheen and a fuel-like odor. Organic contaminates may skew the grain size data.
- 6. The data is provided in summary tables and plots.
- 7. There were no other noted anomalies in this project.

Approved by:

Geotechnical Laboratory Manager

Date

Spike Recovery Control Limits for Conventional Wet Chemistry Effective 5/1/09

Control limits are updated periodically. Assure that you have ARI's current control limits by downloading the files at the time of use. http://www.arilabs.com/portal/downloads/ARI-CLs.zip

	ARI's Control Limits		
Sample Matrix:	Water	Soil / Sediment	
Matrix Spike Recoveries	% Recovery	% Recovery	
Ammonia	75 - 125	75 - 125	
Bromide	75 125	75 - 125	
Chloride	75 125	75 - 125	
Cyanide	75 - 125	75 - 125	
Ferrous Iron	75 - 125	75 - 125	
Fluoride	75 - 125	75 - 125	
Formaldehyde	75 - 125	75 - 125	
Hexane Extractable Material		78 - 114	
Hexavalent Chromium	75 - 125	75 - 125	
Nitrate/Nitrite	75 - 125	75 - 125	
Oil and Grease	75 - 125	75 - 125	
Phenol	75 - 125	75 - 125	
Phosphorous	75 - 125	75 - 125	
Sulfate	75 - 125	75 - 125	
Sulfide	75 - 125	75 - 125	
Total Kjeldahl Nitrogen	75 - 125	75 - 125	
Total Organic Carbon	75 - 125	75 - 125	
Duplicate RPDs			
Acidity	±20%	±20%	
Alkalinity	±20%	±20%	
BOD	±20%	±20%	
Cation Exchange	±20%	±20%	
COD	±20%	±20%	
Conductivity	±20%	±20%	
Salinity	±20%	±20%	
Solids	±20%	±20%	
Turbidity	±20%	±20%	

General Chemistry Analysis

ARI Job ID: RA55

General Chemistry Analysis Report and Summary QC Forms

ARI Job ID: RA55

Matrix: Sediment

Data Release Authorized: Reported: 07/02/10

Project: Fidalgo Bay/Custom Plywood D

Event: NA

Date Sampled: 06/14/10 Date Received: 06/15/10

Client ID: SDS-CT-01A ARI ID: 10-14254 RA55A

Analyte	Date	Method	Method Units		Sample	
Total Solids	06/17/10 061710#1	EPA 160.3	Percent	0.01	41.30	
Preserved Total Solids	06/17/10 061710#1	EPA 160.3	Percent	0.01	35.10	
Sulfide	06/15/10 061510#1	EPA 376.2	mg/kg	278	2,480	
Total Organic Carbon	07/01/10 070110#1	Plumb, 1981	Percent	0.020	5.56	

RLAnalytical reporting limit

RASS:00011

U Undetected at reported detection limit

Matrix: Sediment

Project: Fidalgo Bay/Custom Plywood D

Event: NA

Date Sampled: 06/14/10

Date Received: 06/15/10

Data Release Authorized Reported: 07/02/10

> Client ID: SDS-CT-01B ARI ID: 10-14255 RA55B

Analyte	Date	Method Units		RL	Sample
Total Solids	06/17/10 061710#1	EPA 160.3	Percent	0.01	75.00
Preserved Total Solids	06/17/10 061710#1	EPA 160.3	Percent	0.01	79.60
Sulfide	06/15/10 061510#1	EPA 376.2	mg/kg	24.8	484
Total Organic Carbon	07/01/10 070110#1	Plumb,1981	Percent	0.020	1.89

Analytical reporting limit RĻ

U Undetected at reported detection limit

Matrix: Sediment

Data Release Authorized Reported: 07/02/10

Project: Fidalgo Bay/Custom Plywood D

Event: NA

Date Sampled: 06/14/10 Date Received: 06/15/10

Client ID: SDS-CT-02 ARI ID: 10-14256 RA55C

Analyte	Date	Method	Units	RL	Sample	
Total Solids	06/17/10 061710#1	EPA 160.3	Percent	0.01	60.10	
Preserved Total Solids	06/17/10 061710#1	EPA 160.3	Percent	0.01	45.90	
Sulfide	06/15/10 061510#1	EPA 376.2	mg/kg	43.5	534	
Total Organic Carbon	07/01/10 070110#1	Plumb, 1981	Percent	0.020	1.30	

RLAnalytical reporting limit

RASS: 00013

U Undetected at reported detection limit

Matrix: Sediment

Project: Fidalgo Bay/Custom Plywood D

Event: NA

Date Sampled: 06/14/10 Date Received: 06/15/10

Data Release Authorized: Reported: 07/02/10

Client ID: SDS-CT-03 ARI ID: 10-14257 RA55D

Analyte	Date	Method Units		RL	Sample	
Total Solids	06/17/10 061710#1	EPA 160.3	Percent	0.01	72.70	
Preserved Total Solids	06/17/10 061710#1	EPA 160.3	Percent	0.01	75.60	
Sulfide	06/15/10 061510#1	EPA 376.2	mg/kg	25.5	271	
Total Organic Carbon	07/01/10 070110#1	Plumb, 1981	Percent	0.020	0.823	

RL Analytical reporting limit

U Undetected at reported detection limit

Matrix: Sediment

Data Release Authorized:

Reported: 07/02/10

Project: Fidalgo Bay/Custom Plywood D

Event: NA

Date Sampled: 06/14/10 Date Received: 06/15/10

Client ID: SDS-CT-04 ARI ID: 10-14258 RA55E

Analyte	Date	Method	Units	RL	Sample	
Total Solids	06/17/10 061710#1	EPA 160.3	Percent	0.01	72.70	
Preserved Total Solids	06/17/10 061710#1	EPA 160.3	Percent	0.01	71.60	
Sulfide	06/15/10 061510#1	EPA 376.2	mg/kg	12.8	235	
Total Organic Carbon	07/01/10 070110#1	Plumb, 1981	Percent	0.020	1.05	

RL Analytical reporting limit

U Undetected at reported detection limit

Matrix: Sediment

Data Release Authorized Reported: 07/02/10

Project: Fidalgo Bay/Custom Plywood D

Event: NA

Date Sampled: 06/14/10 Date Received: 06/15/10

Client ID: SDS-CT-05 ARI ID: 10-14259 RA55F

Analyte	Date	Method Units		RL	Sample	
Total Solids	06/17/10 061710#1	EPA 160.3	Percent	0.01	67.90	
Preserved Total Solids	06/17/10 061710#1	EPA 160.3	Percent	0.01	68.70	
Sulfide	06/15/10 061510#1	EPA 376.2	mg/kg	27.9	329	
Total Organic Carbon	07/01/10 070110#1	Plumb,1981	Percent	0.020	1.44	

Analytical reporting limit RL

RASE: 00016

U Undetected at reported detection limit

Matrix: Sediment

Data Release Authorized Reported: 07/02/10

Project: Fidalgo Bay/Custom Plywood D

Event: NA

Date Sampled: 06/14/10 Date Received: 06/15/10

Analyte	Date	Units	Sample	Spike	Spike Added	Recovery
ARI ID: RA55A Client ID:	SDS-CT-01A					
Total Organic Carbon	07/01/10	Percent	5.56	13.5	8.84	89.8%

REPLICATE RESULTS-CONVENTIONALS RA55-Science Applications, Intl.

Matrix: Sediment

Data Release Authorized:

Reported: 07/02/10

Project: Fidalgo Bay/Custom Plywood D

Event: NA

Date Sampled: 06/14/10 Date Received: 06/15/10

Analyte	Date	Units	Sample	Replicate(s)	RPD/RSD
ARI ID: RA55A Client ID	: SDS-CT-01A				
Total Solids	06/17/10	Percent	41.30	41.50 41.00	0.6%
Preserved Total Solids	06/17/10	Percent	35.10	35.90	2.3%
Total Organic Carbon	07/01/10	Percent	5.56	5.72 4.34	14.5%

RASS: 00018

LAB CONTROL RESULTS-CONVENTIONALS RA55-Science Applications, Intl.

Matrix: Sediment

Data Release Authorized Reported: 07/02/10

Project: Fidalgo Bay/Custom Plywood D

Event: NA

Date Sampled: NA Date Received: NA

Analyte/Method	QC ID	Date	Units	LCS	Spike Added	Recovery
Sulfide EPA 376.2	PREP	06/15/10	mg/kg	7.82	7.59	103.0%
Total Organic Carbon Plumb,1981	ICVL	07/01/10	Percent	0.093	0.100	93.0%

RA55:00019

METHOD BLANK RESULTS-CONVENTIONALS RA55-Science Applications, Intl.

Matrix: Sediment

Data Release Authorized: Reported: 07/02/10

Project: Fidalgo Bay/Custom Plywood D

Event: NA

Date Sampled: NA Date Received: NA

Analyte	Date	Units	Blank
Total Solids	06/17/10	Percent	< 0.01 U
Preserved Total Solids	06/17/10	Percent	< 0.01 U
Sulfide	06/15/10	mg/kg	< 1.00 U
Total Organic Carbon	07/01/10	Percent	< 0.020 U

RASS: 00020

STANDARD REFERENCE RESULTS-CONVENTIONALS RA55-Science Applications, Intl.

Matrix: Sediment

Data Release Authorized Reported: 07/02/10

Project: Fidalgo Bay/Custom Plywood D

Event: NA

Date Sampled: NA Date Received: NA

Analyte/SRM ID	Date	Units	SRM	True Value	Recovery
Total Organic Carbon	07/01/10	Percent	3.21	3.35	95.8%

2433 20024

Geotechnical Analysis

ARI Job ID: RA55

RA55:00022

Geotechnical Analysis Report and Summary QC Forms

ARI Job ID: RA55

RA55:00023

Science Applications International, Corp.

Fidalgo Bay/Custom Plywood Dioxin S

Apparent Grain Size Distribution Summary Percent Finer Than Indicated Size

Sample No.		Gravel	:	Very Coarse Sand	Coarse Sand	Medium Sand	Fine Sand	Very Fine Sand		S	ilt		CI	ay
Phi Size	-3	-2	-1	0	1	2	3	4	5	6	7	8	9	10
Sieve Size (microns)	3/8"	#4 (4750)	#10 (2000)	#18 (1000)	#35 (500)	#60 (250)	#120 (125)	#230 (63)	31.00	15.60	7.80	3.90	2.00	1.00
	100.0	97.9	96.8	96.1	94.6	82.2	23.8	11.3	8.3	6.2	5.0	4.0	2.7	1.8
SDS-CT-03	100.0	98.8	97.8	96.8	95.3	82.5	23.2	11.0	8.2	6.2	5.0	3.7	2.6	1.9
	100.0	93.9	92.5	91.8	90.3	78.5	21.9	9.4	8.0	6.2	4.9	3.8	2.6	1.9
SDS-CT-01A	100.0	97.3	92.4	89.5	84.0	60.7	38.5	24.4	14.1	8.7	6.8	5.8	5.2	4.4
SDS-CT-01B	100.0	65.2	45.2	31.0	18.6	9.7	6.8	6.0	4.3	3.4	2.6	1.9	1.4	0.9
SDS-CT-02	100.0	95.2	91.8	88.7	85.2	77.8	52.9	19.2	14.9	11.3	8.7	6.9	5.4	3.7
SDS-CT-04	100.0	97.8	95.3	94.1	92.1	79.5	23.9	8.8	6.7	5.4	4.3	3.3	2.4	1.8
SDS-CT-05	100.0	98.6	97.1	95.6	92.5	71.2	31.7	19.4	13.1	9.8	7.7	6.1	4.7	3.1

Notes to the Testing:

1. Organic matter was not removed prior to testing, thus the reported values are the "apparent" grain size distribution. See narrative for discussion of the testing.

Science Applications International, Corp.

Fidalgo Bay/Custom Plywood Dioxin S

Apparent Grain Size Distribution Summary Percent Retained in Each Size Fraction

Sample No.	Gravel	Very Coarse Sand	Coarse Sand	Medium Sand	Fine Sand	Very Fine Sand	Coarse Silt	Medium Silt	Fine Silt	Very Fine Silt		Clay		Total Fines
Phi Size	> -1	-1 to 0	0 to 1	1 to 2	2 to 3	3 to 4	4 to 5	5 to 6	6 to 7	7 to 8	8 to 9	9 to 10	< 10	<4
Sieve Size (microns)	> #10 (2000)	10 to 18 (2000-1000)	18-35 (1000-500)	35-60 (500-250)	60-120 (250-125)	120-230 (125-62)	62.5-31.0	31.0-15.6	15.6-7.8	7.8-3.9	3.9-2.0	2.0-1.0	<1.0	<230 (<62)
	3.2	0.8	1.5	12.4	58.4	12.5	3.0	2.1	1.2	1.0	1.3	0.9	1.8	11.3
SDS-CT-03	2.2	1.0	1.6	12.8	59.3	12.2	2.8	2.0	1.2	1.3	1.2	0.7	1.9	11.0
	7.5	0.7	1.4	11.9	56.6	12.5	1.3	1.9	1.2	1.1	1.3	0.7	1.9	9.4
SDS-CT-01A	7.6	2.9	5.6	23.3	22.2	14.1	10.3	5.3	2.0	0.9	0.6	0.8	4.4	24.4
SDS-CT-01B	54.8	14.2	12.4	8.9	3.0	0.8	1.7	0.8	0.8	0.7	0.5	0.5	0.9	6.0
SDS-CT-02	8.2	3.1	3.5	7.4	25.0	33.7	4.3	3.6	2.6	1.8	1.5	1.7	3.7	19.2
SDS-CT-04	4.7	1.1	2.0	12.6	55.6	15.1	2.1	1.4	1.0	1.0	0.9	0.7	1.8	8.8
SDS-CT-05	2.9	1.4	3.1	21.3	39.5	12.3	6.3	3.4	2.1	1.6	1.4	1.5	3.1	19.4

Notes to the Testing:

^{1.} Organic matter was not removed prior to testing, thus the reported values are the "apparent" grain size distribution. See narrative for discussion of the testing.

QA SUMMARY

Client: Science Applications International, Corp.

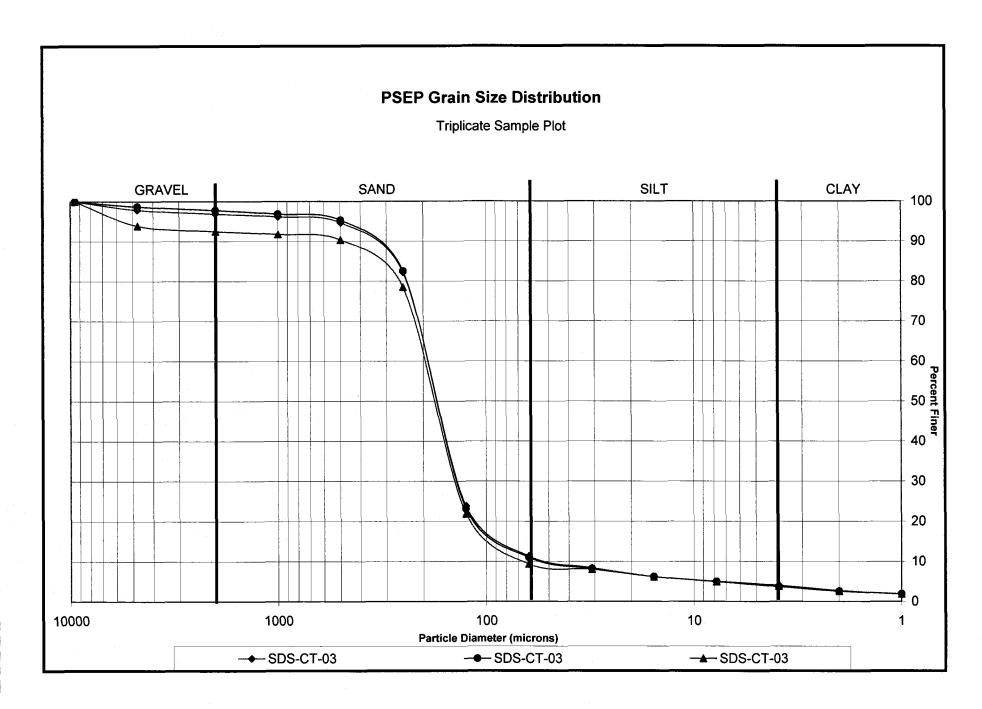
Client Project: Fidalgo Bay/Custom Plywood Dioxin S

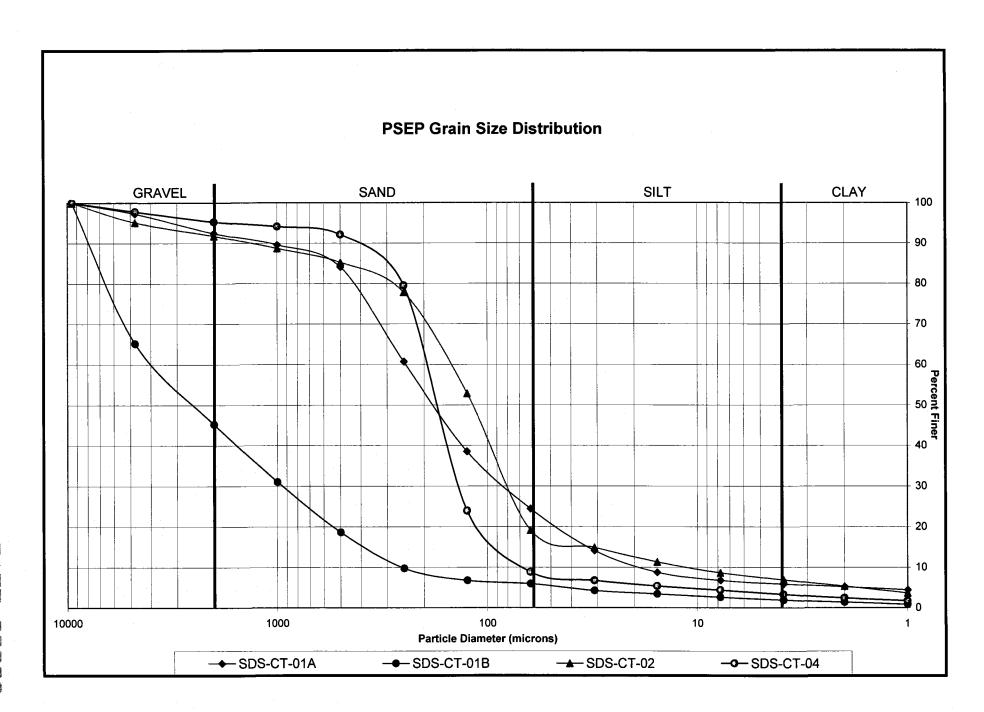
ARI Trip. Sample ID: RA55D Batch No.: RA55-1

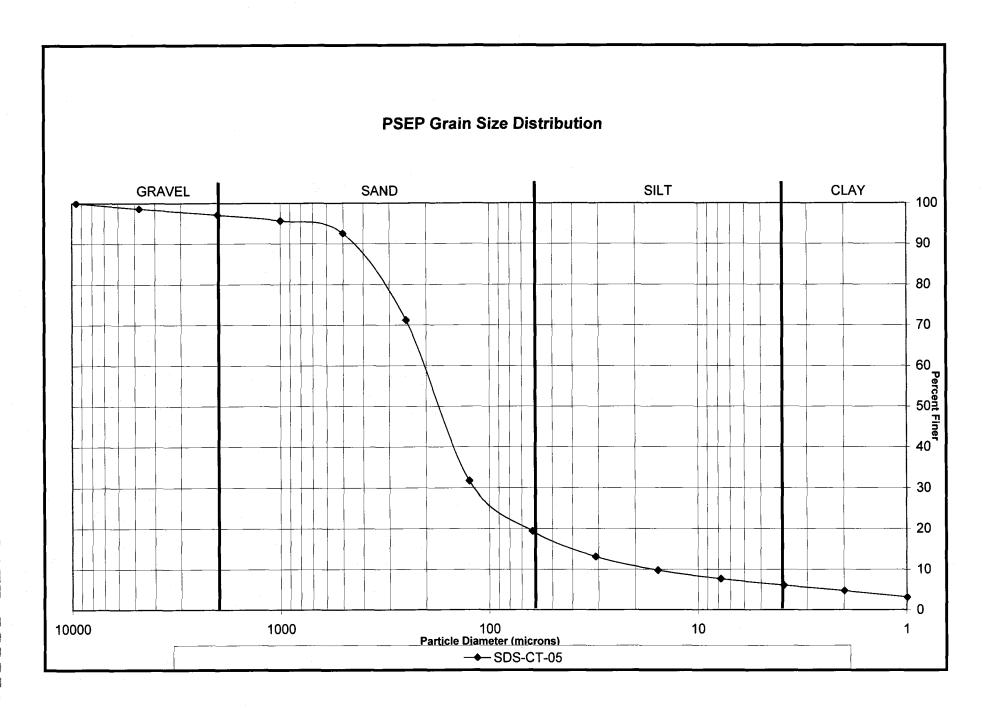
Client Trip. Sample ID: SDS-CT-03 Page: 1 of 1

Relative Standard Deviation, By Phi Size

Sample ID	-3	-2	-1	0	1	2	3	4	5	6	7	8	9	10
	100.0	97.9	96.8	96.1	94.6	82.2	23.8	11.3	8.3	6.2	5.0	4.0	2.7	1.8
SDS-CT-03 [100.0	98.8	97.8	96.8	95.3	82.5	23.2	11.0	8.2	6.2	5.0	3.7	2.6	1.9
	100.0	93.9	92.5	91.8	90.3	78.5	21.9	9.4	8.0	6.2	4.9	3.8	2.6	1.9
AVE	NA	96.83	95.71	94.89	93.40	81.05	22.95	10.56	8.19	6.20	4.98	3.85	2.60	1.88
STDEV	NA	2.59	2.82	2.72	2.67	2.23	0.95	1.05	0.16	0.03	0.04	0.15	0.07	0.04
%RSD	NA	2.68	2.94	2.87	2.86	2.76	4.12	9.91	1.95	0.53	0.87	3.94	2.83	1.99


The Triplicate Applies To The Following Samples


Client ID	Date Sampled	Date Extracted	Date Complete	QA Ratio (95-105)	Data Qualifiers	Pipette Portion (5.0- 25.0g)
	6/14/2010	6/24/2010	6/25/2010	100.9		8.1
SDS-CT-03	6/14/2010	6/24/2010	6/25/2010	100.4		7.8
	6/14/2010	6/24/2010	6/25/2010	99.1		6.7
SDS-CT-01A	6/14/2010	6/24/2010	6/25/2010	97.9		8.1
SDS-CT-01B	6/14/2010	6/24/2010	6/25/2010	101.3		7.6
SDS-CT-02	6/14/2010	6/24/2010	6/25/2010	99.1		5.5
SDS-CT-04	6/14/2010	6/24/2010	6/25/2010	99.7		8.4
SDS-CT-05	6/14/2010	6/24/2010	6/25/2010	102.1		7.7


* ARI Internal QA limits = 95-105%

Notes to the Testing:

^{1.} Organic matter was not removed prior to testing, thus the reported values are the "apparent" grain size distribution. See narrative for discussion of the testing.

BATCH SUMMARY

Batch ID:		WG33444	Date:	24-Aug-2010
Analysis Typ	be: Dioxin/Furan		Matrix 7	<i>ype:</i> Aqueous
		BATCH MAK	EUP	
Contract: Samples:	4406		Blank:	WG33444-101
L14873-1	SDS-FB-RB			
L14873-2	SDS-FB-ER			
L14873-3	SDS-PB-ER			
L14873-4	SDS-CPD-ER			
			Referen	ce or Spike: WG33444-102

Comments:

RESUBMISSION 08-SEP-10: Disregard all previous submissions. All data remain unchanged except for the following:

- 1- The samples SDS-FB-RB, SDS-FB-ER, and SDS-CPD-ER (AXYS ID: L14873-1, -2, and -4, respectively) are reported for all compounds except for TCDD data. The TCDD data did not meet method specifications and are reported in WG33704.
- 2- The percent recovery of surrogate ¹³C-2,3,7,8-TCDF in the sample SDS-FB-RB (AXYS ID: L14873-1) was observed to be below the method lower limit and is flagged with a 'V' on the report form. As the isotope dilution method of quantification produces data that are recovery corrected, the slight variances from the method acceptance criteria are deemed not to affect the quantification of these analytes. Percent surrogate recoveries are used as general method performance indicator only.
- 3- All client sample extract volumes have been revised to 10 uL on the report forms.

There are no data available for samples SDS-FB-RB, SDS-FB-ER and SDS-CPD-ER (Axys IDs: L14873-1,-2,-4). These samples were set for a repeat analysis in another batch. Data will be available in another database.

- 1- Data are not blank corrected
- 2- The percent recovery value of native 1,2,3,7,8,9 HxCDD in the OPR (AXYS ID: WG33444-102) was slightly above the method control limit and has been flagged with an 'N'. This compound was not detected in any samples and data are considered not significantly affected by this variance.
- 3- The recoveries of several ¹³C-labeled-surrogates in the Spiked Matrix sample (AXYS ID WG33444-102) were slightly outside the method acceptance criteria; these compounds have been flagged with a 'V'. As the isotope dilution method of quantification produces data that are recovery corrected, the slight variances from the method acceptance criteria are deemed not to affect the quantification of these analytes. Percent surrogate recoveries are used as general method performance indicator only.

Form 1A PCDD/PCDF ANALYSIS REPORT

CLIENT SAMPLE NO. SDS-FB-RB Sample Collection: 08-Jun-2010 11:55

AXYS ANALYTICAL SERVICES

Matrix:

Sample Receipt Date:

Extraction Date:

Analysis Date:

Extract Volume (uL):

Concentration Units:

1,2,3,4,7,8,9-HPCDF

TOTAL TETRA-DIOXINS

TOTAL PENTA-DIOXINS

TOTAL TETRA-FURANS

TOTAL PENTA-FURANS

TOTAL HEPTA-FURANS

TOTAL HEXA-FURANS

TOTAL HEXA-DIOXINS TOTAL HEPTA-DIOXINS

OCDF

2045 MILLS RD., SIDNEY, B.C., CANADA V8L 5X2 TEL (250) 655-5800 FAX (250) 655-5811

4406 Contract No.:

AQUEOUS

10

pg/L

17-Jun-2010

23-Jul-2010

12-Aug-2010 Time: 19:48:29

Injection Volume (uL): 1.0

Dilution Factor: N/A Project No.

Lab Sample I.D.:

FIDALGO BAY, CUSTOM PLYWOOD DX STUDY

L14873-1

0.516 L

Sample Size:

Initial Calibration Date: 30-Jul-2010

Instrument ID: HR GC/MS

GC Column ID: DB5

Sample Data Filename: DX0M_106E S: 34

Blank Data Filename: DX0M_106E S: 24

Cal. Ver. Data Filename: DX0M_106E S: 31

0.969

0.969

0.969

0.969

0.969

2.40

0.969

0.969

0.969

2.00

1.002

COMPOUND	LAB FLAG ¹	CONCENTRATION FOUND	DETECTION LIMIT	ION ABUND. RATIO ²	RRT ²
2,3,7,8-TCDD	X				
1,2,3,7,8-PECDD ³	U		0.969		
1,2,3,4,7,8-HXCDD	U		0.969		
1,2,3,6,7,8-HXCDD	U		0.969		
1,2,3,7,8,9-HXCDD	U		0.969		
1,2,3,4,6,7,8-HPCDD	U		0.969		
OCDD	KBJ	1.80	0.969	1.35	1.000
2,3,7,8-TCDF	U		2.40		
1,2,3,7,8-PECDF	U		0.969		
2,3,4,7,8-PECDF	U		0.969		
1,2,3,4,7,8-HXCDF	U		0.969		
1,2,3,6,7,8-HXCDF	U		0.969		
1,2,3,7,8,9-HXCDF	U		0.969		
2,3,4,6,7,8-HXCDF	U		0.969		
1,2,3,4,6,7,8-HPCDF	U		0.969		

1.08

4.04

U

KBJ

Х U

U

U

U

These data are validated and reported as accurate,	true and compliant with AX	YS Analytical Services Ltd. quality	y assurance processes.
Signed:	Bryan Alor	nzo	

For Axys Internal Use Only [XSL Template: Form1A.xsl; Created: 08-Sep-2010 12:54:43; Application: XMLTransformer-1.10.25; Report Filename: 1613_DIOXINS_1613DB5_L14873-1_Form1A_DX0M_106ES34_SJ1180388.html; Workgroup: WG33444; Design ID: 1402]

⁽¹⁾ Where applicable, custom lab flags have been used on this report; U = not detected; K = peak detected but did not meet quantification criteria, result reported represents the estimated maximum possible concentration; B = analyte found in sample and the associated blank; J = concentration less than LMCL; X = result reported separately.

⁽²⁾ Contract-required limits for RRTs and ion abundance ratios are specified in Tables 2 and 9, respectively, Method 1613.

⁽³⁾ Alternate confirmation and quantitation ions used for native and labeled PECDD.

These pages are part of a larger report that may contain information necessary for full data evaluation. Results reported relate only to the sample tested. Results are compliant with NELAP where specific accreditation is held.

Form 1A PCDD/PCDF ANALYSIS REPORT

CLIENT SAMPLE NO. SDS-FB-RB Sample Collection: 08-Jun-2010 11:55

FIDALGO BAY, CUSTOM

PLYWOOD DX STUDY

L14873-1 Ri

30-Jul-2010

HR GC/MS

DB5

0.428 L

AXYS ANALYTICAL SERVICES

2045 MILLS RD., SIDNEY, B.C., CANADA V8L 5X2 TEL (250) 655-5800 FAX (250) 655-5811

4406 Contract No.:

AQUEOUS Matrix:

Sample Receipt Date: 17-Jun-2010

Extraction Date: 20-Aug-2010

Analysis Date:

Extract Volume (uL): 10

Injection Volume (uL): 1.0

Dilution Factor: N/A

01-Sep-2010 Time: 21:03:52

GC Column ID: Sample Data Filename:

Blank Data Filename:

Initial Calibration Date:

Project No.

Lab Sample I.D.:

Sample Size:

Instrument ID:

Cal. Ver. Data Filename:

DX0M_114 S: 29 DX0M_116 S: 2

DX0M_116 S: 6

Concentration Units: pg/L

COMPOUND	LAB FLAG ¹	CONCENTRATION FOUND	DETECTION LIMIT	ION ABUND. RATIO ²	RRT ²
2,3,7,8-TCDD	U		1.17		
1,2,3,7,8-PECDD ³	X				
1,2,3,4,7,8-HXCDD	Χ				
1,2,3,6,7,8-HXCDD	X				
1,2,3,7,8,9-HXCDD	X				
1,2,3,4,6,7,8-HPCDD	X				
OCDD	X				
2,3,7,8-TCDF	X				
1,2,3,7,8-PECDF	X				
2,3,4,7,8-PECDF	X				
1,2,3,4,7,8-HXCDF	X				
1,2,3,6,7,8-HXCDF	X				
1,2,3,7,8,9-HXCDF	X				
2,3,4,6,7,8-HXCDF	X				
1,2,3,4,6,7,8-HPCDF	X				
1,2,3,4,7,8,9-HPCDF	X				
OCDF	X				
TOTAL TETRA-DIOXINS	U		1.17		
TOTAL PENTA-DIOXINS	X				
TOTAL HEXA-DIOXINS	X				
TOTAL HEPTA-DIOXINS	X				
TOTAL TETRA-FURANS	X				
TOTAL PENTA-FURANS	X				
TOTAL HEXA-FURANS	X				
TOTAL HEPTA-FURANS	X				

⁽¹⁾ Where applicable, custom lab flags have been used on this report; U = not detected; X = result reported separately.

These data are validated and reported as accurate	e, true and compliant wit	h AXYS Analytical Services Ltd	. quality assurance processes.
Signed:	Bryan A	lonzo	

For Axys Internal Use Only [XSL Template: Form1A.xsl; Created: 08-Sep-2010 14:02:43; Application: XMLTransformer-1.10.25; Report Filename: 1613_DIOXINS_1613DB5_L14873-1_Form1A_DX0M_116S6_SJ1187555.html; Workgroup: WG33704; Design ID: 1402]

⁽²⁾ Contract-required limits for RRTs and ion abundance ratios are specified in Tables 2 and 9, respectively, Method 1613.

⁽³⁾ Alternate confirmation and quantitation ions used for native and labeled PECDD.

Form 1A PCDD/PCDF ANALYSIS REPORT

CLIENT SAMPLE NO. SDS-FB-ER Sample Collection: 08-Jun-2010 12:00

AXYS ANALYTICAL SERVICES

2045 MILLS RD., SIDNEY, B.C., CANADA V8L 5X2 TEL (250) 655-5800 FAX (250) 655-5811

Contract No.: 4406

Matrix: AQUEOUS

Sample Receipt Date: 17-Jun-2010

Extraction Date: 23-Jul-2010

Analysis Date: 12-Aug-2010 **Time:** 20:43:31

pg/L

Extract Volume (uL): 10

Injection Volume (uL): 1.0

Dilution Factor: N/A

Project No.

Lab Sample I.D.:

FIDALGO BAY, CUSTOM PLYWOOD DX STUDY

L14873-2

0.525 L

Sample Size: 0.525

Initial Calibration Date: 30-Jul-2010

Instrument ID: HR GC/MS

GC Column ID: DB5

Sample Data Filename: DX0M_106E S: 35

Blank Data Filename: DX0M_106E S: 24

Cal. Ver. Data Filename: DX0M_106E S: 31

Concentration Units:

COMPOUND	LAB FLAG ¹	CONCENTRATION FOUND	DETECTION LIMIT	ION ABUND. RATIO ²	RRT ²
2,3,7,8-TCDD	X				
1,2,3,7,8-PECDD ³	U		0.952		
1,2,3,4,7,8-HXCDD	U		0.952		
1,2,3,6,7,8-HXCDD	U		0.952		
1,2,3,7,8,9-HXCDD	U		0.952		
1,2,3,4,6,7,8-HPCDD	U		0.952		
OCDD	BJ	1.19	0.952	0.80	1.000
2,3,7,8-TCDF	U		0.952		
1,2,3,7,8-PECDF	U		0.952		
2,3,4,7,8-PECDF	U		0.952		
1,2,3,4,7,8-HXCDF	U		0.952		
1,2,3,6,7,8-HXCDF	U		0.952		
1,2,3,7,8,9-HXCDF	U		0.952		
2,3,4,6,7,8-HXCDF	U		0.952		
1,2,3,4,6,7,8-HPCDF	U		0.952		
1,2,3,4,7,8,9-HPCDF	U		0.952		
OCDF	U		0.952		
TOTAL TETRA-DIOXINS	X				
TOTAL PENTA-DIOXINS	U		0.952		
TOTAL HEXA-DIOXINS	U		0.952		
TOTAL HEPTA-DIOXINS	U		0.952		
TOTAL TETRA-FURANS	U		0.952		
TOTAL PENTA-FURANS	U		0.952		
TOTAL HEXA-FURANS	U		0.952		
TOTAL HEPTA-FURANS	U		0.952		

⁽¹⁾ Where applicable, custom lab flags have been used on this report; U = not detected; B = analyte found in sample and the associated blank; J = concentration less than LMCL; X = result reported separately.

These data are validated and reported as accurate,	true and compliant	with AXYS Analytical	Services Ltd. quality	assurance processes.
Signed:	Bryan	Alonzo		

For Axys Internal Use Only [XSL Template: Form1A.xsl; Created: 08-Sep-2010 12:54:43; Application: XMLTransformer-1.10.25; Report Filename: 1613_DIOXINS_1613DB5_L14873-2_Form1A_DX0M_106ES35_SJ1180389.html; Workgroup: WG33444; Design ID: 1402]

⁽²⁾ Contract-required limits for RRTs and ion abundance ratios are specified in Tables 2 and 9, respectively, Method 1613.

⁽³⁾ Alternate confirmation and quantitation ions used for native and labeled PECDD.

Form 1A PCDD/PCDF ANALYSIS REPORT

CLIENT SAMPLE NO. SDS-FB-ER Sample Collection: 08-Jun-2010 12:00

AXYS ANALYTICAL SERVICES

2045 MILLS RD., SIDNEY, B.C., CANADA V8L 5X2 TEL (250) 655-5800 FAX (250) 655-5811

4406 Contract No.:

AQUEOUS Matrix:

Sample Receipt Date: 17-Jun-2010

Extraction Date: 20-Aug-2010

28-Aug-2010 Time: 09:46:12 Analysis Date:

Extract Volume (uL): 10

Injection Volume (uL): 1.0

Dilution Factor: N/A

Concentration Units: pg/L Project No.

FIDALGO BAY, CUSTOM PLYWOOD DX STUDY

L14873-2 R Lab Sample I.D.:

0.431 L Sample Size:

Initial Calibration Date: 30-Jul-2010

HR GC/MS Instrument ID:

GC Column ID:

Sample Data Filename: DX0M_114 S: 42

DB5

Blank Data Filename: DX0M_114 S: 29

Cal. Ver. Data Filename: DX0M_114 S: 34

COMPOUND	LAB FLAG ¹	CONCENTRATION FOUND	DETECTION LIMIT	ION ABUND. RATIO ²	RRT ²
2,3,7,8-TCDD	U		1.16		
1,2,3,7,8-PECDD ³	X				
1,2,3,4,7,8-HXCDD	Χ				
1,2,3,6,7,8-HXCDD	Χ				
1,2,3,7,8,9-HXCDD	Χ				
1,2,3,4,6,7,8-HPCDD	Χ				
OCDD	Χ				
2,3,7,8-TCDF	X				
1,2,3,7,8-PECDF	X				
2,3,4,7,8-PECDF	X				
1,2,3,4,7,8-HXCDF	Χ				
1,2,3,6,7,8-HXCDF	X				
1,2,3,7,8,9-HXCDF	Χ				
2,3,4,6,7,8-HXCDF	X				
1,2,3,4,6,7,8-HPCDF	X				
1,2,3,4,7,8,9-HPCDF	X				
OCDF	X				
TOTAL TETRA-DIOXINS	U		1.16		
TOTAL PENTA-DIOXINS	X				
TOTAL HEXA-DIOXINS	X				
TOTAL HEPTA-DIOXINS	X				
TOTAL TETRA-FURANS	X				
TOTAL PENTA-FURANS	X				
TOTAL HEXA-FURANS	X				
TOTAL HEPTA-FURANS	Χ				

⁽¹⁾ Where applicable, custom lab flags have been used on this report; U = not detected; X = result reported separately.

These data are validated and reported as accurate,	true and compliant with	AXYS Analytical Services Ltd.	. quality assurance processes.
Signed:	Bryan Al	.onzo	

For Axys Internal Use Only [XSL Template: Form1A.xsl; Created: 08-Sep-2010 14:02:43; Application: XMLTransformer-1.10.25; Report Filename: 1613_DIOXINS_1613DB5_L14873-2_Form1A_DX0M_114S42_SJ1186853.html; Workgroup: WG33704; Design ID: 1402]

⁽²⁾ Contract-required limits for RRTs and ion abundance ratios are specified in Tables 2 and 9, respectively, Method 1613.

⁽³⁾ Alternate confirmation and quantitation ions used for native and labeled PECDD.

Form 1A PCDD/PCDF ANALYSIS REPORT

CLIENT SAMPLE NO. SDS-PB-ER Sample Collection: 08-Jun-2010 16:20

AXYS ANALYTICAL SERVICES

2045 MILLS RD., SIDNEY, B.C., CANADA V8L 5X2 TEL (250) 655-5800 FAX (250) 655-5811

Contract No.: 4406

Matrix: AQUEOUS

Sample Receipt Date: 17-Jun-2010

Extraction Date: 23-Jul-2010

N/A

pg/L

12-Aug-2010 Time: 21:38:34

Analysis Date:

Dilution Factor:

Concentration Units:

Extract Volume (uL): 10

Injection Volume (uL): 1.0

Project No.

Lab Sample I.D.:

GC Column ID:

FIDALGO BAY, CUSTOM PLYWOOD DX STUDY

L14873-3

DB5

Sample Size: 0.503 L

Initial Calibration Date: 30-Jul-2010

Instrument ID: HR GC/MS

Sample Data Filename: DX0M_106E S: 36

Blank Data Filename: DX0M_106E S: 24

Cal. Ver. Data Filename: DX0M_106E S: 31

COMPOUND	LAB FLAG ¹	CONCENTRATION FOUND	DETECTION LIMIT	ION ABUND. RATIO ²	RRT ²
2,3,7,8-TCDD	U		0.994		
1,2,3,7,8-PECDD ³	U		0.994		
1,2,3,4,7,8-HXCDD	U		0.994		
1,2,3,6,7,8-HXCDD	U		0.994		
1,2,3,7,8,9-HXCDD	U		0.994		
1,2,3,4,6,7,8-HPCDD	U		0.994		
OCDD	KBJ	1.03	0.994	0.72	1.000
2,3,7,8-TCDF	U		0.994		
1,2,3,7,8-PECDF	U		0.994		
2,3,4,7,8-PECDF	U		0.994		
1,2,3,4,7,8-HXCDF	U		0.994		
1,2,3,6,7,8-HXCDF	U		0.994		
1,2,3,7,8,9-HXCDF	U		0.994		
2,3,4,6,7,8-HXCDF	U		0.994		
1,2,3,4,6,7,8-HPCDF	U		0.994		
1,2,3,4,7,8,9-HPCDF	U		0.994		
OCDF	U		0.994		
TOTAL TETRA-DIOXINS	U		0.994		
TOTAL PENTA-DIOXINS	U		0.994		
TOTAL HEXA-DIOXINS	U		0.994		
TOTAL HEPTA-DIOXINS	U		0.994		
TOTAL TETRA-FURANS	U		0.994		
TOTAL PENTA-FURANS	U		0.994		
TOTAL HEXA-FURANS	U		0.994		
TOTAL HEPTA-FURANS	U		0.994		

⁽¹⁾ Where applicable, custom lab flags have been used on this report; U = not detected; K = peak detected but did not meet quantification criteria, result reported represents the estimated maximum possible concentration; B = analyte found in sample and the associated blank; J = concentration less than LMCL.

These data are validated and reported as accurate	e, true and compliant	with AXYS Analytical Services Ltd. quality assurance processes.
Signed:	Bryan	Alonzo

For Axys Internal Use Only [XSL Template: Form1A.xsl; Created: 08-Sep-2010 12:54:43; Application: XMLTransformer-1.10.25; Report Filename: 1613_DIOXINS_1613DB5_L14873-3_Form1A_DX0M_106ES36_SJ1180390.html; Workgroup: WG33444; Design ID: 1402]

⁽²⁾ Contract-required limits for RRTs and ion abundance ratios are specified in Tables 2 and 9, respectively, Method 1613.

⁽³⁾ Alternate confirmation and quantitation ions used for native and labeled PECDD.

These pages are part of a larger report that may contain information necessary for full data evaluation. Results reported relate only to the sample tested. Results are compliant with NELAP where specific accreditation is held.

Form 1A PCDD/PCDF ANALYSIS REPORT

CLIENT SAMPLE NO. SDS-CPD-ER Sample Collection: 09-Jun-2010 12:08

AXYS ANALYTICAL SERVICES

Matrix:

2045 MILLS RD., SIDNEY, B.C., CANADA V8L 5X2 TEL (250) 655-5800 FAX (250) 655-5811

4406 Contract No.:

AQUEOUS

17-Jun-2010

23-Jul-2010

10

N/A

pg/L

01-Sep-2010 Time: 20:11:39

Injection Volume (uL): 1.0

Dilution Factor:

Sample Receipt Date:

Extract Volume (uL):

Extraction Date:

Analysis Date:

Concentration Units:

Project No.

FIDALGO BAY, CUSTOM PLYWOOD DX STUDY

L14873-4 i Lab Sample I.D.:

0.498 L Sample Size:

Initial Calibration Date: 30-Jul-2010

HR GC/MS Instrument ID:

GC Column ID: DB5

Sample Data Filename: DX0M_116 S: 5

Blank Data Filename: DX0M_106E S: 24

Cal. Ver. Data Filename: DX0M_116 S: 2

COMPOUND	LAB FLAG ¹	CONCENTRATION	DETECTION

COMPOUND	LAB FLAG ¹	CONCENTRATION FOUND	DETECTION LIMIT	ION ABUND. RATIO ²	RRT ²
2,3,7,8-TCDD	X				
1,2,3,7,8-PECDD ³	U		1.01		
1,2,3,4,7,8-HXCDD	U		1.01		
1,2,3,6,7,8-HXCDD	U		1.01		
1,2,3,7,8,9-HXCDD	U		1.01		
1,2,3,4,6,7,8-HPCDD	U		1.01		
OCDD	KBJ	3.47	1.01	1.04	1.000
2,3,7,8-TCDF	U		1.01		
1,2,3,7,8-PECDF	U		1.01		
2,3,4,7,8-PECDF	U		1.01		
1,2,3,4,7,8-HXCDF	U		1.01		
1,2,3,6,7,8-HXCDF	U		1.01		
1,2,3,7,8,9-HXCDF	U		1.01		
2,3,4,6,7,8-HXCDF	U		1.01		
1,2,3,4,6,7,8-HPCDF	U		1.01		
1,2,3,4,7,8,9-HPCDF	U		1.01		
OCDF	U		1.01		
TOTAL TETRA-DIOXINS	X				
TOTAL PENTA-DIOXINS	U		1.01		
TOTAL HEXA-DIOXINS	U		1.01		
TOTAL HEPTA-DIOXINS	U		1.01		
TOTAL TETRA-FURANS	U		1.01		
TOTAL PENTA-FURANS	U		1.01		
TOTAL HEXA-FURANS	U		1.01		
TOTAL HEPTA-FURANS	U		1.01		

⁽¹⁾ Where applicable, custom lab flags have been used on this report; U = not detected; K = peak detected but did not meet quantification criteria, result reported represents the estimated maximum possible concentration; B = analyte found in sample and the associated blank; J = concentration less than LMCL; X = result reported separately.

These data are validated and reported as accurate	e, true and compliant	with AXYS Analytical Services Ltd. quality assurance processes.
Signed:	Bryan	Alonzo

For Axys Internal Use Only [XSL Template: Form1A.xsl; Created: 08-Sep-2010 12:54:43; Application: XMLTransformer-1.10.25; Report Filename: 1613_DIOXINS_1613DB5_L14873-4_Form1A_DX0M_116S5_SJ1187528.html; Workgroup: WG33444; Design ID: 1402]

⁽²⁾ Contract-required limits for RRTs and ion abundance ratios are specified in Tables 2 and 9, respectively, Method 1613.

⁽³⁾ Alternate confirmation and quantitation ions used for native and labeled PECDD.

Form 1A PCDD/PCDF ANALYSIS REPORT

CLIENT SAMPLE NO. SDS-CPD-ER Sample Collection: 09-Jun-2010 12:08

AXYS ANALYTICAL SERVICES

2045 MILLS RD., SIDNEY, B.C., CANADA V8L 5X2 TEL (250) 655-5800 FAX (250) 655-5811

4406 Contract No.:

AQUEOUS Matrix:

Sample Receipt Date: 17-Jun-2010

Extraction Date: 20-Aug-2010

28-Aug-2010 Time: 10:41:14 Analysis Date:

Extract Volume (uL): 10

Injection Volume (uL): 1.0

Dilution Factor: N/A Project No.

GC Column ID:

FIDALGO BAY, CUSTOM

PLYWOOD DX STUDY

30-Jul-2010

L14873-4 R Lab Sample I.D.:

0.447 L Sample Size:

Initial Calibration Date:

HR GC/MS Instrument ID:

DB5

Sample Data Filename: DX0M_114 S: 43

Blank Data Filename: DX0M_114 S: 29

Cal. Ver. Data Filename: DX0M_114 S: 34

Concentration Units: pg/L

COMPOUND	LAB FLAG ¹	CONCENTRATION FOUND	DETECTION LIMIT	ION ABUND. RATIO ²	RRT ²
2,3,7,8-TCDD	U		1.12		
1,2,3,7,8-PECDD ³	X				
1,2,3,4,7,8-HXCDD	Χ				
1,2,3,6,7,8-HXCDD	Χ				
1,2,3,7,8,9-HXCDD	X				
1,2,3,4,6,7,8-HPCDD	X				
OCDD	X				
2,3,7,8-TCDF	X				
1,2,3,7,8-PECDF	X				
2,3,4,7,8-PECDF	X				
1,2,3,4,7,8-HXCDF	X				
1,2,3,6,7,8-HXCDF	X				
1,2,3,7,8,9-HXCDF	X				
2,3,4,6,7,8-HXCDF	X				
1,2,3,4,6,7,8-HPCDF	X				
1,2,3,4,7,8,9-HPCDF	X				
OCDF	X				
TOTAL TETRA-DIOXINS	U		1.12		
TOTAL PENTA-DIOXINS	X				
TOTAL HEXA-DIOXINS	X				
TOTAL HEPTA-DIOXINS	X				
TOTAL TETRA-FURANS	X				
TOTAL PENTA-FURANS	X				
TOTAL HEXA-FURANS	X				
TOTAL HEPTA-FURANS	X				

⁽¹⁾ Where applicable, custom lab flags have been used on this report; U = not detected; X = result reported separately.

These data are validated and reported as accurate	, true and compliant w	vith AXYS Analytical S	ervices Ltd. quality	assurance processes.
Signed:	Bryan .	Alonzo		

For Axys Internal Use Only [XSL Template: Form1A.xsl; Created: 08-Sep-2010 14:02:43; Application: XMLTransformer-1.10.25; Report Filename: 1613_DIOXINS_1613DB5_L14873-4_Form1A_DX0M_114S43_SJ1186854.html; Workgroup: WG33704; Design ID: 1402]

⁽²⁾ Contract-required limits for RRTs and ion abundance ratios are specified in Tables 2 and 9, respectively, Method 1613.

⁽³⁾ Alternate confirmation and quantitation ions used for native and labeled PECDD.

Form 1A PCDD/PCDF ANALYSIS REPORT

CLIENT SAMPLE NO. Lab Blank Sample Collection: N/A

WG33444-101:5PT

AXYS ANALYTICAL SERVICES

Sample Receipt Date:

2045 MILLS RD., SIDNEY, B.C., CANADA V8L 5X2 TEL (250) 655-5800 FAX (250) 655-5811

Contract No.: 4406

Project No.

Lab Sample I.D.:

Sample Size:

Instrument ID:

Matrix: AQUEOUS

Initial Calibration Date: 30-Jul-2010

Extraction Date: 23-Jul-2010

HR GC/MS

0.500 L

N/A

Analysis Date: 12-Aug-2010 **Time:** 10:21:28

GC Column ID: DB5

Extract Volume (uL): 20

Sample Data Filename: DX0M_106E S: 24

Injection Volume (uL): 1.0

Blank Data Filename: DX0M_106E S: 24

Dilution Factor: N/A Cal. Ver. Data Filename: DX0M

DX0M_106E S: 20

Concentration Units: pg/L

COMPOUND	LAB FLAG ¹	CONCENTRATION FOUND	DETECTION LIMIT	ION ABUND. RATIO ²	RRT ²
2,3,7,8-TCDD	U		1.00		
1,2,3,7,8-PECDD ³	U		1.00		
1,2,3,4,7,8-HXCDD	U		1.20		
1,2,3,6,7,8-HXCDD	U		1.20		
1,2,3,7,8,9-HXCDD	U		1.20		
1,2,3,4,6,7,8-HPCDD	KJ	1.04	1.01	0.83	1.000
OCDD	KJ	2.42	1.00	1.22	1.000
2,3,7,8-TCDF	U		1.00		
1,2,3,7,8-PECDF	U		1.00		
2,3,4,7,8-PECDF	U		1.00		
1,2,3,4,7,8-HXCDF	U		1.00		
1,2,3,6,7,8-HXCDF	U		1.00		
1,2,3,7,8,9-HXCDF	U		1.00		
2,3,4,6,7,8-HXCDF	U		1.00		
1,2,3,4,6,7,8-HPCDF	U		1.00		
1,2,3,4,7,8,9-HPCDF	U		1.00		
OCDF	J	1.57	1.00	0.97	1.002
TOTAL TETRA-DIOXINS	U		1.00		
TOTAL PENTA-DIOXINS	U		1.00		
TOTAL HEXA-DIOXINS	U		1.20		
TOTAL HEPTA-DIOXINS	U		1.01		
TOTAL TETRA-FURANS	U		1.00		
TOTAL PENTA-FURANS	U		1.00		
TOTAL HEXA-FURANS	U		1.00		
TOTAL HEPTA-FURANS	U		1.00		

⁽¹⁾ Where applicable, custom lab flags have been used on this report; U = not detected; K = peak detected but did not meet quantification criteria, result reported represents the estimated maximum possible concentration; J = concentration less than LMCL.

These data are validated and reported as accurate,	, true and complian	t with AXYS Analytical	Services Ltd.	quality assurance processes.
Signed:	Celine	Vaillant		

For Axys Internal Use Only [XSL Template: Form1A.xsl; Created: 24-Aug-2010 13:33:21; Application: XMLTransformer-1.10.25; Report Filename: $1613_DIOXINS_1613DB5_WG33444-101_Form1A_DX0M_106ES24_SJ1180324.html$; Workgroup: WG33444; Design ID: 1402]

These pages are part of a larger report that may contain information necessary for full data evaluation. Results reported relate only to the sample tested. Results are compliant with NELAP where specific accreditation is held.

⁽²⁾ Contract-required limits for RRTs and ion abundance ratios are specified in Tables 2 and 9, respectively, Method 1613.

⁽³⁾ Alternate confirmation and quantitation ions used for native and labeled PECDD.

Form 8A PCDD/PCDF ONGOING PRECISION AND RECOVERY (OPR)

AXYS ANALYTICAL SERVICES

2045 MILLS RD., SIDNEY, B.C., CANADA V8L 5X2 TEL (250) 655-5800 FAX (250) 655-5811

Contract No.: 4406 OPR Data Filename: DX0M_106E S: 21

Matrix: AQUEOUS Lab Sample I.D.: WG33444-102:5PT

Extraction Date: 23-Jul-2010 **Analysis Date:** 12-Aug-2010 **Time:** 07:39:03

ALL CONCENTRATIONS REPORTED ON THIS FORM ARE CONCENTRATIONS IN EXTRACT, BASED ON A 20 uL EXTRACT VOLUME.

COMPOUND	LAB FLAG ¹	ION ABUND. RATIO ²	SPIKE CONC. (ng/mL)	CONC. FOUND (ng/mL)	OPR CONC. LIMITS ³ (ng/mL)	% RECOVERY
2,3,7,8-TCDD		0.71	10.0	9.84	6.70 - 15.8	98.4
1,2,3,7,8-PECDD 4		0.57	52.0	52.3	36.4 - 73.8	101
1,2,3,4,7,8-HXCDD		1.26	56.5	51.0	39.6 - 92.7	90.2
1,2,3,6,7,8-HXCDD		1.21	55.5	56.5	42.2 - 74.4	102
1,2,3,7,8,9-HXCDD	N	1.26	54.0	119	34.6 - 87.5	220
1,2,3,4,6,7,8-HPCDD		0.97	47.5	48.5	33.3 - 66.5	102
OCDD		0.82	100	96.2	78.0 - 144	96.2
2,3,7,8-TCDF		0.76	10.7	11.3	8.03 - 16.9	105
1,2,3,7,8-PECDF		1.56	46.0	50.9	36.8 - 61.6	111
2,3,4,7,8-PECDF		1.51	47.0	53.0	32.0 - 75.2	113
1,2,3,4,7,8-HXCDF		1.23	50.0	57.0	36.0 - 67.0	114
1,2,3,6,7,8-HXCDF		1.17	47.5	50.1	39.9 - 61.8	105
1,2,3,7,8,9-HXCDF		1.20	52.5	56.1	41.0 - 68.3	107
2,3,4,6,7,8-HXCDF		1.12	53.0	57.2	37.1 - 82.7	108
1,2,3,4,6,7,8-HPCDF		1.00	50.0	54.3	41.0 - 61.0	109
1,2,3,4,7,8,9-HPCDF		1.00	50.0	52.3	39.0 - 69.0	105
OCDF		0.79	104	71.4	65.5 - 177	68.6

- (1) Where applicable, custom lab flags have been used on this report; N = authentic recovery is not within method/contract control limits.
- (2) Contract-required Ion Abundance Ratios are specified in Table 9, Method 1613.
- (3) Contract-required concentration range as determined from the percent of the test concentration in Table 6, Method 1613, under OPR.
- (4) Alternate confirmation and quantitation ions used for native and labeled PECDD.

These data are validated and reported as accurate,	true and compliant	t with AXYS Analytical	Services Ltd. quality	assurance processes.
Signed:	Celine	Vaillant		

For Axys Internal Use Only [XSL Template: Form8A.xsl; Created: 24-Aug-2010 13:33:21; Application: XMLTransformer-1.10.25; Report Filename: 1613_DIOXINS_1613DB5_WG33444-102_Form8A_SJ1180319.html; Workgroup: WG33444; Design ID: 1402]

BATCH SUMMARY

Batch ID:	Wo	33418 Date: 20-Aug-2010			
Analysis Typ	e: Dioxin/Furan	Matrix Type: Solid			
	BATCH MAKEUP				
Contract: Samples:	4406	Blank: WG33418-101			
L14884-4 L14884-11 L14884-14 L14884-15	SDS-CPD-04 SDS-PB-01 SDS-PB-04 SDS-PB-05				
L14884-16 L14884-17 L14884-18 L14884-19 L14884-23 L14884-25	SDS-PB-05-D SDS-PB-06 SDS-PB-07 SDS-CPD-05 SDS-CPD-12 SDS-CPD-15	Reference or Spike: WG33418-102 WG33418-104			
		Duplicate: WG33418-103			

Comments:

- 1. Data are not blank corrected.
- 2. The CRM (AXYS ID WG33418-104) recovered well, however for some compounds the recovery fell outside the certified range.
- 3. The lock mass signal in the vicinity of native and labeled 1,2,3,7,8-PeCDD was observed in the Lab Blank, OPR, sample duplicate, and CRM (AXYS ID: WG33418-101, -102, -103, -104, respectively). The compound 1,2,3,7,8-PECDD and its surrogate are flagged with a 'G' on the report form. The data are not considered significantly affected by these fluctuations.
- 4. The surrogate recoveries in the duplicate sample SDS-PB-01 (Duplicate) (AXYS ID: WG33418-103) fell below the lower method control limit, and are flagged with a 'V' on the report form. The duplication analysis demonstrates that the low recoveries have a negligible impact on the data. The replicates agree well for congeners quantified against exact labeled analogs, and for congeners quantified against surrogates whose recoveries are within the control limits.
- 5. Percent recovery of clean up standard 37CL-2,3,7,8-TCDD in the several samples and several surrogate recoveries in the Lab Blank, sample SDS-PB-06, and SDS-CPD-15 (AXYS ID: WG33418-101, L14884-17, and -25, respectively) were observed to be slightly outside the method limits and have been flagged with a 'V' on the report form. As the isotope dilution method of quantification produces data that are recovery corrected, the slight variances from the method acceptance criteria are deemed not to affect the quantification of these analytes. Percent surrogate recoveries are used as general method performance indicator only.
- 6. The analysis of samples SDS-CPD-01, SDS-CPD-03, SDS-CPD-16, SDS-PB-02, SDS-PB-03 and SDS-CPD-09 (AXYS ID: L14884-1, -3, -10, -12, -13, -21) was not successful and data is not available in this batch summary

Form 1A PCDD/PCDF ANALYSIS REPORT

CLIENT SAMPLE NO. SDS-CPD-04 Sample Collection: 09-Jun-2010 11:07

FIDALGO BAY, CUSTOM

PLYWOOD DX STUDY

L14884-4

9.63 g (dry)

05-Aug-2010

HR GC/MS

DX0B_170 S: 9

DX0B_170 S: 5

DX0B_170 S: 1

DB5

AXYS ANALYTICAL SERVICES

2045 MILLS RD., SIDNEY, B.C., CANADA V8L 5X2 TEL (250) 655-5800 FAX (250) 655-5811

Contract No.: 4406

Matrix: SOLID

Sample Receipt Date: 17-Jun-2010

Extraction Date: 22-Jul-2010

Analysis Date: 06-Aug-2010 **Time:** 15:03:04

Extract Volume (uL): 20

Injection Volume (uL): 1.0

Dilution Factor: N/A

Concentration Units:

20

pg/g (dry weight basis)

Blank Data Filename:

Project No.

Lab Sample I.D.:

Initial Calibration Date:

Sample Size:

Instrument ID:

GC Column ID:

Cal. Ver. Data Filename:

Sample Data Filename:

% Moisture:

40.4

COMPOUND	LAB FLAG ¹	CONCENTRATION FOUND	DETECTION LIMIT	ION ABUND. RATIO ²	RRT ²
2,3,7,8-TCDD	КВЈ	0.220	0.0519	0.59	1.001
1,2,3,7,8-PECDD ³	ΚJ	0.714	0.0519	0.47	1.001
1,2,3,4,7,8-HXCDD	J	0.936	0.108	1.08	1.000
1,2,3,6,7,8-HXCDD	J	3.44	0.108	1.19	1.000
1,2,3,7,8,9-HXCDD	J	2.52	0.108	1.38	1.010
1,2,3,4,6,7,8-HPCDD	В	41.4	0.110	1.06	1.000
OCDD	В	274	0.0606	0.89	1.000
2,3,7,8-TCDF		1.80	0.0519	0.80	1.002
1,2,3,7,8-PECDF	J	0.328	0.0519	1.70	1.000
2,3,4,7,8-PECDF	BJ	0.515	0.0519	1.73	1.000
1,2,3,4,7,8-HXCDF	J	0.678	0.0942	1.24	1.000
1,2,3,6,7,8-HXCDF	ΚJ	0.471	0.0942	1.50	1.000
1,2,3,7,8,9-HXCDF	U		0.0942		
2,3,4,6,7,8-HXCDF	J	0.572	0.0942	1.16	1.000
1,2,3,4,6,7,8-HPCDF		11.3	0.0747	1.06	1.000
1,2,3,4,7,8,9-HPCDF	J	0.757	0.0747	1.12	1.000
OCDF		39.6	0.0519	0.88	1.002
TOTAL TETRA-DIOXINS	В	21.1	0.0519		
TOTAL PENTA-DIOXINS		17.1	0.0519		
TOTAL HEXA-DIOXINS		55.0	0.108		
TOTAL HEPTA-DIOXINS	В	100	0.110		
TOTAL TETRA-FURANS		11.4	0.0519		
TOTAL PENTA-FURANS		7.49	0.0519		
TOTAL HEXA-FURANS		13.4	0.0942		
TOTAL HEPTA-FURANS		34.3	0.0747		

⁽¹⁾ Where applicable, custom lab flags have been used on this report; U = not detected; K = peak detected but did not meet quantification criteria, result reported represents the estimated maximum possible concentration; B = analyte found in sample and the associated blank; J = concentration less than LMCL.

These data are validated and reported as accurate,	true and compliant with AXYS Analytical Services Ltd. quality assurance processes.
Signed:	Bryan Alonzo

For Axys Internal Use Only [XSL Template: Form1A.xsl; Created: 20-Aug-2010 11:43:30; Application: XMLTransformer-1.10.25; Report Filename: 1613_DIOXINS_1613DB5_L14884-4_Form1A_DX0B_170S9_SJ1178297.html; Workgroup: WG33418; Design ID: 699]

⁽²⁾ Contract-required limits for RRTs and ion abundance ratios are specified in Tables 2 and 9, respectively, Method 1613.

⁽³⁾ Alternate confirmation and quantitation ions used for native and labeled PECDD.

These pages are part of a larger report that may contain information necessary for full data evaluation. Results reported relate only to the sample tested. Results are compliant with NELAP where specific accreditation is held.

Form 1A PCDD/PCDF ANALYSIS REPORT

CLIENT SAMPLE NO. SDS-CPD-04 Sample Collection: 09-Jun-2010 11:07

AXYS ANALYTICAL SERVICES

2045 MILLS RD., SIDNEY, B.C., CANADA V8L 5X2 TEL (250) 655-5800 FAX (250) 655-5811

Contract No.: 4406

Project No.

FIDALGO BAY, CUSTOM PLYWOOD DX STUDY

L14884-4

Matrix: SOLID

Sample Size:

Lab Sample I.D.:

9.63 g (dry)

Sample Receipt Date: 17-Jun-2010

Initial Calibration Date:

13-Jul-2010

Extraction Date:

22-Jul-2010

Instrument ID:

HR GC/MS

Analysis Date:

04-Aug-2010 Time: 21:20:54

GC Column ID:

DB225

Extract Volume (uL):

20

Sample Data Filename:

DB03_102 S: 4

Injection Volume (uL): 2.0

Blank Data Filename:

DX0B_170 S: 5

Dilution Factor:

COMPOUND

N/A

Cal. Ver. Data Filename:

DB03_102 S: 2

Concentration Units: p

pg/g (dry weight basis)

% Moisture: 40.4

ION ADUND

COMPOUND	LAB FLAG '	FOUND	LIMIT	RATIO ²	RRT ²
2,3,7,8-TCDF	J	0.791	0.239	0.70	1.001

ONCENTE ATION

These data are validated and reported as accurate	, true and compliant	with AXYS Analytical Ser	rvices Ltd. quality assurance processes.
Signed:	Bryan	Alonzo	_

For Axys Internal Use Only [XSL Template: Form1A.xsl; Created: 20-Aug-2010 11:42:50; Application: XMLTransformer-1.10.25; Report Filename: 1613_DIOXINS_1613DB225_L14884-4_Form1A_DB03_102S4_SJ1178901.html; Workgroup: WG33418; Design ID: 699]

⁽¹⁾ Where applicable, custom lab flags have been used on this report; J = concentration less than LMCL.

⁽²⁾ Contract-required limits for RRTs and ion abundance ratios are specified in Tables 2 and 9, respectively, Method 1613.

Form 1A PCDD/PCDF ANALYSIS REPORT **CLIENT SAMPLE NO.** SDS-PB-01 Sample Collection: 07-Jun-2010 13:07

AXYS ANALYTICAL SERVICES

2045 MILLS RD., SIDNEY, B.C., CANADA V8L 5X2 TEL (250) 655-5800 FAX (250) 655-5811

4406 Contract No.:

Matrix: **SOLID**

Sample Receipt Date: 17-Jun-2010

Extraction Date: 22-Jul-2010

06-Aug-2010 Time: 16:52:40 **Analysis Date:**

Extract Volume (uL): 20

Injection Volume (uL): 1.0

Dilution Factor: N/A

Concentration Units:

Project No.

FIDALGO BAY, CUSTOM PLYWOOD DX STUDY

L14884-11 (A) Lab Sample I.D.:

Sample Size:

Initial Calibration Date:

Instrument ID:

HR GC/MS

DB5

10.8 g (dry)

05-Aug-2010

Sample Data Filename:

Cal. Ver. Data Filename:

GC Column ID:

DX0B_170 S: 11 DX0B_170 S: 5

Blank Data Filename:

DX0B_170 S: 1

% Moisture:

28.0

COMPOUND	LAB FLAG ¹	CONCENTRATION FOUND	DETECTION LIMIT	ION ABUND. RATIO ²	RRT ²
2,3,7,8-TCDD	KBJ	0.074	0.0463	0.33	1.001
1,2,3,7,8-PECDD ³	ΚJ	0.089	0.0463	0.74	1.001
1,2,3,4,7,8-HXCDD	ΚJ	0.096	0.0774	0.92	1.000
1,2,3,6,7,8-HXCDD	J	0.576	0.0774	1.16	1.000
1,2,3,7,8,9-HXCDD	ΚJ	0.423	0.0774	1.97	1.010
1,2,3,4,6,7,8-HPCDD	BJ	3.55	0.0463	1.03	1.000
OCDD	В	20.4	0.0560	0.89	1.000
2,3,7,8-TCDF	J	0.351	0.0463	0.75	1.001
1,2,3,7,8-PECDF	U		0.0563		
2,3,4,7,8-PECDF	BJ	0.082	0.0563	1.52	1.000
1,2,3,4,7,8-HXCDF	J	0.091	0.0504	1.12	1.001
1,2,3,6,7,8-HXCDF	KJ	0.084	0.0504	0.97	1.000
1,2,3,7,8,9-HXCDF	U		0.0504		
2,3,4,6,7,8-HXCDF	J	0.083	0.0504	1.31	1.000
1,2,3,4,6,7,8-HPCDF	ΚJ	0.821	0.0506	0.82	1.000
1,2,3,4,7,8,9-HPCDF	U		0.0506		
OCDF	J	1.70	0.0463	0.83	1.002
TOTAL TETRA-DIOXINS	В	0.261	0.0463		
TOTAL PENTA-DIOXINS		0.731	0.0463		
TOTAL HEXA-DIOXINS		4.18	0.0774		
TOTAL HEPTA-DIOXINS	В	8.45	0.0463		
TOTAL TETRA-FURANS		1.47	0.0463		
TOTAL PENTA-FURANS		0.384	0.0563		
TOTAL HEXA-FURANS		1.09	0.0504		
TOTAL HEPTA-FURANS		1.20	0.0506		

⁽¹⁾ Where applicable, custom lab flags have been used on this report; U = not detected; K = peak detected but did not meet quantification criteria, result reported represents the estimated maximum possible concentration; B = analyte found in sample and the associated blank; J = concentration less than LMCL.

pg/g (dry weight basis)

These data are validated and reported as accurate,	true and compliant w	ith AXYS Analytical	Services Ltd.	quality assurance	processes.
Signed:	Bryan <i>I</i>	Alonzo			

For Axys Internal Use Only [XSL Template: Form1A.xsl; Created: 20-Aug-2010 11:43:30; Application: XMLTransformer-1.10.25; Report Filename: 1613_DIOXINS_1613DB5_L14884-11_Form1A_DX0B_170S11_SJ1178299.html; Workgroup: WG33418; Design ID: 699]

⁽²⁾ Contract-required limits for RRTs and ion abundance ratios are specified in Tables 2 and 9, respectively, Method 1613.

⁽³⁾ Alternate confirmation and quantitation ions used for native and labeled PECDD.

Form 1A PCDD/PCDF ANALYSIS REPORT

CLIENT SAMPLE NO. SDS-PB-01 Sample Collection: 07-Jun-2010 13:07

13-Jul-2010

HR GC/MS

DB03_102 S: 6

DX0B_170 S: 5

DB03_102 S: 2

DB225

AXYS ANALYTICAL SERVICES

2045 MILLS RD., SIDNEY, B.C., CANADA V8L 5X2 TEL (250) 655-5800 FAX (250) 655-5811

4406 Contract No.:

Matrix: **SOLID**

Sample Receipt Date: 17-Jun-2010

Extraction Date: 22-Jul-2010

Extract Volume (uL): 20

Injection Volume (uL): 2.0

Dilution Factor: N/A

Concentration Units:

COMPOUND

Analysis Date:

Project No. FIDALGO BAY, CUSTOM PLYWOOD DX STUDY

Lab Sample I.D.: L14884-11 (A)

Sample Size: 10.8 g (dry)

Initial Calibration Date:

Instrument ID:

GC Column ID:

Sample Data Filename:

Blank Data Filename:

Cal. Ver. Data Filename:

% Moisture:

LIMIT

DETECTION ION ABUND. RATIO²

28.0

RRT²

2,3,7,8-TCDF U 0.201

04-Aug-2010 Time: 22:34:03

(1) Where applicable, custom lab flags have been used on this report; U = not detected.

pg/g (dry weight basis)

LAB FLAG 1

(2) Contract-required limits for RRTs and ion abundance ratios are specified in Tables 2 and 9, respectively, Method 1613.

CONCENTRATION

FOUND

These data are validated and reported as accurate, true and compliant with AXYS Analytical Services Ltd. quality assurance processes. _Bryan Alonzo_{_} Signed: _

For Axys Internal Use Only [XSL Template: Form1A.xsl; Created: 20-Aug-2010 11:42:50; Application: XMLTransformer-1.10.25; Report Filename: 1613_DIOXINS_1613DB225_L14884-11_Form1A_DB03_102S6_SJ1178902.html; Workgroup: WG33418; Design ID: 699]

Form 1A
PCDD/PCDF ANALYSIS REPORT

CLIENT SAMPLE NO. SDS-PB-04 Sample Collection: 07-Jun-2010 14:39

AXYS ANALYTICAL SERVICES

2045 MILLS RD., SIDNEY, B.C., CANADA V8L 5X2 TEL (250) 655-5800 FAX (250) 655-5811

Contract No.: 4406

Matrix: SOLID

Sample Receipt Date: 17-Jun-2010

Extraction Date: 22-Jul-2010

Analysis Date: 10-Aug-2010 **Time:** 12:18:42

Extract Volume (uL): 20

Injection Volume (uL): 1.0

Dilution Factor: N/A

Concentration Units:

Project No.

Lab Sample I.D.:

FIDALGO BAY, CUSTOM PLYWOOD DX STUDY

L14884-14 i

Sample Size: 10.3 g (dry)

Initial Calibration Date: 05-Aug-2010

Instrument ID: HR GC/MS

GC Column ID: DB5

Sample Data Filename: DX0B_177 S: 6

Blank Data Filename: DX0B_170 S: 5

Cal. Ver. Data Filename: DX0B_177 S: 1

% Moisture: 17.6

COMPOUND	LAB FLAG ¹	CONCENTRATION FOUND	DETECTION LIMIT	ION ABUND. RATIO ²	RRT ²
2,3,7,8-TCDD	КВЈ	0.069	0.0504	0.50	1.001
1,2,3,7,8-PECDD ³	U		0.0486		
1,2,3,4,7,8-HXCDD	U		0.0607		
1,2,3,6,7,8-HXCDD	KJ	0.117	0.0607	0.99	1.000
1,2,3,7,8,9-HXCDD	U		0.0607		
1,2,3,4,6,7,8-HPCDD	KBJ	0.428	0.0486	0.85	1.000
OCDD	KBJ	2.07	0.0593	1.08	1.000
2,3,7,8-TCDF	KJ	0.134	0.0486	0.47	1.001
1,2,3,7,8-PECDF	KJ	0.053	0.0486	2.23	1.001
2,3,4,7,8-PECDF	KBJ	0.080	0.0486	1.80	1.001
1,2,3,4,7,8-HXCDF	U		0.0486		
1,2,3,6,7,8-HXCDF	ΚJ	0.049	0.0486	0.85	1.001
1,2,3,7,8,9-HXCDF	U		0.0486		
2,3,4,6,7,8-HXCDF	ΚJ	0.050	0.0486	1.92	1.000
1,2,3,4,6,7,8-HPCDF	J	0.153	0.0689	0.90	1.000
1,2,3,4,7,8,9-HPCDF	U		0.0689		
OCDF	ΚJ	0.150	0.0486	0.56	1.001
TOTAL TETRA-DIOXINS	U		0.0504		
TOTAL PENTA-DIOXINS	U		0.0486		
TOTAL HEXA-DIOXINS		0.533	0.0607		
TOTAL HEPTA-DIOXINS	U		0.0486		
TOTAL TETRA-FURANS	U		0.0486		
TOTAL PENTA-FURANS	U		0.0486		
TOTAL HEXA-FURANS		0.157	0.0486		
TOTAL HEPTA-FURANS		0.332	0.0689		

⁽¹⁾ Where applicable, custom lab flags have been used on this report; U = not detected; K = peak detected but did not meet quantification criteria, result reported represents the estimated maximum possible concentration; B = analyte found in sample and the associated blank; J = concentration less than LMCL.

pg/g (dry weight basis)

These data are validated and reported as accurate,	true and compliant with AXYS Analytica	al Services Ltd. quality assurance processes.
Signed:	Brvan Alonzo	

For Axys Internal Use Only [XSL Template: Form1A.xsl; Created: 20-Aug-2010 11:43:30; Application: XMLTransformer-1.10.25; Report Filename: 1613_DIOXINS_1613DB5_L14884-14_Form1A_DX0B_177S6_SJ1178584.html; Workgroup: WG33418; Design ID: 699]

⁽²⁾ Contract-required limits for RRTs and ion abundance ratios are specified in Tables 2 and 9, respectively, Method 1613.

⁽³⁾ Alternate confirmation and quantitation ions used for native and labeled PECDD.

These pages are part of a larger report that may contain information necessary for full data evaluation. Results reported relate only to the sample tested. Results are compliant with NELAP where specific accreditation is held.

Form 1A PCDD/PCDF ANALYSIS REPORT

CLIENT SAMPLE NO. SDS-PB-04 Sample Collection: 07-Jun-2010 14:39

AXYS ANALYTICAL SERVICES

Matrix:

Analysis Date:

Dilution Factor:

COMPOUND

2045 MILLS RD., SIDNEY, B.C., CANADA V8L 5X2 TEL (250) 655-5800 FAX (250) 655-5811

4406 Contract No.:

SOLID

Sample Receipt Date: 17-Jun-2010

Extraction Date: 22-Jul-2010

Extract Volume (uL): 20

Injection Volume (uL):

Concentration Units:

N/A

LAB FLAG 1

2.0

pg/g (dry weight basis)

05-Aug-2010 Time: 01:00:24

Project No.

Lab Sample I.D.:

Sample Size:

FIDALGO BAY, CUSTOM PLYWOOD DX STUDY

L14884-14

10.3 g (dry)

13-Jul-2010

HR GC/MS

DB03_102 S: 10

DX0B_170 S: 5

DB03_102 S: 2

Initial Calibration Date:

Instrument ID:

GC Column ID: **DB225**

Sample Data Filename:

Blank Data Filename:

Cal. Ver. Data Filename:

% Moisture:

17.6

DETECTION LIMIT

ION ABUND. RATIO²

RRT²

0.247 2,3,7,8-TCDF U

(1) Where applicable, custom lab flags have been used on this report; U = not detected.

(2) Contract-required limits for RRTs and ion abundance ratios are specified in Tables 2 and 9, respectively, Method 1613.

CONCENTRATION

FOUND

These data are validated and reported as accurate, true and compliant with AXYS Analytical Services Ltd. quality assurance processes. _Bryan Alonzo_{_} Signed: _

For Axys Internal Use Only [XSL Template: Form1A.xsl; Created: 20-Aug-2010 11:42:50; Application: XMLTransformer-1.10.25; Report Filename: 1613_DIOXINS_1613DB225_L14884-14_Form1A_DB03_102S10_SJ1178904.html; Workgroup: WG33418; Design ID: 699]

Form 1A
PCDD/PCDF ANALYSIS REPORT

CLIENT SAMPLE NO. SDS-PB-05 Sample Collection: 07-Jun-2010 14:50

AXYS ANALYTICAL SERVICES

2045 MILLS RD., SIDNEY, B.C., CANADA V8L 5X2 TEL (250) 655-5800 FAX (250) 655-5811

Contract No.: 4406

Matrix: SOLID

Sample Receipt Date: 17-Jun-2010

Extraction Date: 22-Jul-2010

10-Aug-2010 Time: 13:13:31

pg/g (dry weight basis)

Extract Volume (uL): 20

Analysis Date:

Injection Volume (uL): 1.0

Dilution Factor: N/A

Concentration Units:

Project No.

FIDALGO BAY, CUSTOM PLYWOOD DX STUDY

05-Aug-2010

DX0B_177 S: 7

DX0B_170 S: 5

DX0B_177 S: 1

Lab Sample I.D.: L14884-15 i

Sample Size: 10.9 g (dry)

Initial Calibration Date:

Instrument ID: HR GC/MS

Sample Data Filename:

Blank Data Filename:

Cal. Ver. Data Filename:

% Moisture:

GC Column ID:

29.9

DB5

COMPOUND	LAB FLAG ¹	CONCENTRATION FOUND	DETECTION LIMIT	ION ABUND. RATIO ²	RRT ²
2,3,7,8-TCDD	KBJ	0.157	0.0652	0.97	1.002
1,2,3,7,8-PECDD ³	J	0.214	0.0462	0.59	1.000
1,2,3,4,7,8-HXCDD	J	0.164	0.0605	1.38	1.000
1,2,3,6,7,8-HXCDD	ΚJ	0.853	0.0605	1.78	1.000
1,2,3,7,8,9-HXCDD	J	0.582	0.0605	1.07	1.010
1,2,3,4,6,7,8-HPCDD	В	6.03	0.0480	1.10	1.000
OCDD	В	38.7	0.0711	0.89	1.000
2,3,7,8-TCDF	J	0.547	0.0668	0.73	1.001
1,2,3,7,8-PECDF	KJ	0.078	0.0461	2.47	1.001
2,3,4,7,8-PECDF	KBJ	0.181	0.0461	1.90	1.001
1,2,3,4,7,8-HXCDF	KJ	0.152	0.0605	1.02	1.000
1,2,3,6,7,8-HXCDF	J	0.080	0.0605	1.25	1.000
1,2,3,7,8,9-HXCDF	U		0.0605		
2,3,4,6,7,8-HXCDF	KJ	0.134	0.0605	0.62	1.000
1,2,3,4,6,7,8-HPCDF	J	2.07	0.0493	0.95	1.000
1,2,3,4,7,8,9-HPCDF	KJ	0.074	0.0493	0.53	1.000
OCDF	J	3.65	0.0553	0.89	1.002
TOTAL TETRA-DIOXINS	В	0.297	0.0652		
TOTAL PENTA-DIOXINS		0.907	0.0462		
TOTAL HEXA-DIOXINS		6.39	0.0605		
TOTAL HEPTA-DIOXINS	В	16.1	0.0480		
TOTAL TETRA-FURANS		1.68	0.0668		
TOTAL PENTA-FURANS		1.35	0.0461		
TOTAL HEXA-FURANS		0.967	0.0605		
TOTAL HEPTA-FURANS		4.81	0.0493		

⁽¹⁾ Where applicable, custom lab flags have been used on this report; U = not detected; K = peak detected but did not meet quantification criteria, result reported represents the estimated maximum possible concentration; B = analyte found in sample and the associated blank; J = concentration less than LMCL.

These data are validated and reported as accurate,	true and compliant with AXYS Analytical Services Ltd. quality assurance processes	3.
Signed:	Bryan Alonzo	

For Axys Internal Use Only [XSL Template: Form1A.xsl; Created: 20-Aug-2010 11:43:30; Application: XMLTransformer-1.10.25; Report Filename: 1613_DIOXINS_1613DB5_L14884-15_Form1A_DX0B_177S7_SJ1178585.html; Workgroup: WG33418; Design ID: 699]

⁽²⁾ Contract-required limits for RRTs and ion abundance ratios are specified in Tables 2 and 9, respectively, Method 1613.

⁽³⁾ Alternate confirmation and quantitation ions used for native and labeled PECDD.

These pages are part of a larger report that may contain information necessary for full data evaluation. Results reported relate only to the sample tested. Results are compliant with NELAP where specific accreditation is held.

Form 1A PCDD/PCDF ANALYSIS REPORT

CLIENT SAMPLE NO. SDS-PB-05 Sample Collection: 07-Jun-2010 14:50

AXYS ANALYTICAL SERVICES

Matrix:

Analysis Date:

Injection Volume (uL):

2045 MILLS RD., SIDNEY, B.C., CANADA V8L 5X2 TEL (250) 655-5800 FAX (250) 655-5811

Contract No.: 4406

SOLID

2.0

Sample Receipt Date: 17-Jun-2010

Extraction Date: 22-Jul-2010

Extract Volume (uL): 20

Dilution Factor: N/A

Concentration Units: pg/g (dry weight basis)

Project No.

FIDALGO BAY, CUSTOM

13-Jul-2010

DX0B_170 S: 5

DB03_102 S: 2

PLYWOOD DX STUDY

Lab Sample I.D.: L14884-15

Sample Size: 10.9 g (dry)

Initial Calibration Date:

Instrument ID: HR GC/MS

GC Column ID: DB225

Sample Data Filename: DB03_102 S: 11

Blank Data Filename:

Cal. Ver. Data Filename:

% Moisture: 2

29.9

COMPOUND	LAB FLAG ¹	CONCENTRATION FOUND	DETECTION LIMIT	ION ABUND. RATIO ²	RRT ²
2,3,7,8-TCDF	J	0.450	0.238	0.71	1.001

(1) Where applicable, custom lab flags have been used on this report; J = concentration less than LMCL.

05-Aug-2010 Time: 01:36:58

These data are validated and reported as accurate, true and compliant with AXYS Analytical Services Ltd. quality assurance processes.

Signed: _____Bryan Alonzo_____

For Axys Internal Use Only [XSL Template: Form1A.xsl; Created: 20-Aug-2010 11:42:50; Application: XMLTransformer-1.10.25; Report Filename: 1613_DIOXINS_1613DB225_L14884-15_Form1A_DB03_102S11_SJ1178905.html; Workgroup: WG33418; Design ID: 699]

⁽²⁾ Contract-required limits for RRTs and ion abundance ratios are specified in Tables 2 and 9, respectively, Method 1613.

Form 1A PCDD/PCDF ANALYSIS REPORT

CLIENT SAMPLE NO. SDS-PB-06 Sample Collection: 07-Jun-2010 15:24

FIDALGO BAY, CUSTOM

PLYWOOD DX STUDY

AXYS ANALYTICAL SERVICES

2045 MILLS RD., SIDNEY, B.C., CANADA V8L 5X2 TEL (250) 655-5800 FAX (250) 655-5811

Contract No.: 4406

Matrix: SOLID

Sample Receipt Date: 17-Jun-2010

Extraction Date: 22-Jul-2010

Analysis Date: 09-Aug-2010 **Time:** 15:04:20

Extract Volume (uL): 20

Injection Volume (uL): 1.0

Dilution Factor: N/A

Concentration Units:

pg/g (dry weight basis)

Sample Size:

Lab Sample I.D.:

Project No.

10.2 g (dry)

L14884-17

- 5 (-

Initial Calibration Date:

Instrument ID:

05-Aug-2010 HR GC/MS

DB5

GC Column ID:

Sample Data Filename:

DX0B_175A S: 7

Blank Data Filename:

DX0B_170 S: 5

Cal. Ver. Data Filename:

DX0B_175A S: 1

% Moisture:

20.2

COMPOUND	LAB FLAG ¹	CONCENTRATION FOUND	DETECTION LIMIT	ION ABUND. RATIO ²	RRT ²
2,3,7,8-TCDD	KBJ	0.076	0.0591	0.35	1.001
1,2,3,7,8-PECDD ³	ΚJ	0.073	0.0493	0.09	1.001
1,2,3,4,7,8-HXCDD	U		0.0753		
1,2,3,6,7,8-HXCDD	U		0.0753		
1,2,3,7,8,9-HXCDD	U		0.0753		
1,2,3,4,6,7,8-HPCDD	KBJ	0.463	0.0493	0.77	1.000
OCDD	BJ	2.44	0.0493	0.98	1.000
2,3,7,8-TCDF	ΚJ	0.101	0.0493	1.10	1.001
1,2,3,7,8-PECDF	U		0.0493		
2,3,4,7,8-PECDF	BJ	0.057	0.0493	1.74	1.001
1,2,3,4,7,8-HXCDF	U		0.0493		
1,2,3,6,7,8-HXCDF	U		0.0493		
1,2,3,7,8,9-HXCDF	U		0.0493		
2,3,4,6,7,8-HXCDF	U		0.0493		
1,2,3,4,6,7,8-HPCDF	ΚJ	0.105	0.0507	0.87	1.000
1,2,3,4,7,8,9-HPCDF	U		0.0507		
OCDF	J	0.256	0.0493	0.99	1.002
TOTAL TETRA-DIOXINS	U		0.0591		
TOTAL PENTA-DIOXINS	U		0.0493		
TOTAL HEXA-DIOXINS		0.584	0.0753		
TOTAL HEPTA-DIOXINS	В	0.694	0.0493		
TOTAL TETRA-FURANS	U		0.0493		
TOTAL PENTA-FURANS		0.057	0.0493		
TOTAL HEXA-FURANS		0.088	0.0493		
TOTAL HEPTA-FURANS		0.163	0.0507		

⁽¹⁾ Where applicable, custom lab flags have been used on this report; U = not detected; K = peak detected but did not meet quantification criteria, result reported represents the estimated maximum possible concentration; B = analyte found in sample and the associated blank; J = concentration less than LMCL.

These data are validated and reported as accurate,	true and compliant w	ith AXYS Analytical	Services Ltd.	quality assurance	processes.
Signed:	Bryan <i>I</i>	Alonzo			

For Axys Internal Use Only [XSL Template: Form1A.xsl; Created: 20-Aug-2010 11:43:30; Application: XMLTransformer-1.10.25; Report Filename: 1613_DIOXINS_1613DB5_L14884-17_Form1A_DX0B_175AS7_SJ1178310.html; Workgroup: WG33418; Design ID: 699]

⁽²⁾ Contract-required limits for RRTs and ion abundance ratios are specified in Tables 2 and 9, respectively, Method 1613.

⁽³⁾ Alternate confirmation and quantitation ions used for native and labeled PECDD.

Form 1A PCDD/PCDF ANALYSIS REPORT

CLIENT SAMPLE NO. SDS-PB-06 Sample Collection: 07-Jun-2010 15:24

L14884-17

10.2 g (dry)

13-Jul-2010

HR GC/MS

DB03_102 S: 13

DX0B_170 S: 5

DB03_102 S: 2

DB225

FIDALGO BAY, CUSTOM PLYWOOD DX STUDY

AXYS ANALYTICAL SERVICES

2045 MILLS RD., SIDNEY, B.C., CANADA V8L 5X2 TEL (250) 655-5800 FAX (250) 655-5811

4406 Contract No.:

SOLID

17-Jun-2010

05-Aug-2010 Time: 02:50:10

Extraction Date: 22-Jul-2010

Analysis Date: Extract Volume (uL):

Sample Receipt Date:

Matrix:

20

2.0

N/A

Dilution Factor:

Concentration Units:

COMPOUND

Injection Volume (uL):

pg/g (dry weight basis)

LAB FLAG 1

Project No.

Lab Sample I.D.:

Sample Size:

Initial Calibration Date:

Instrument ID:

GC Column ID:

Sample Data Filename:

Blank Data Filename:

Cal. Ver. Data Filename:

DETECTION

LIMIT

% Moisture:

20.2

ION ABUND. RATIO²

RRT²

2,3,7,8-TCDF U 0.239

(1) Where applicable, custom lab flags have been used on this report; U = not detected.

(2) Contract-required limits for RRTs and ion abundance ratios are specified in Tables 2 and 9, respectively, Method 1613.

CONCENTRATION

FOUND

These data are validated and reported as accurate, true and compliant with AXYS Analytical Services Ltd. quality assurance processes. _Bryan Alonzo_{_} Signed: _

For Axys Internal Use Only [XSL Template: Form1A.xsl; Created: 20-Aug-2010 11:42:50; Application: XMLTransformer-1.10.25; Report Filename: 1613_DIOXINS_1613DB225_L14884-17_Form1A_DB03_102S13_SJ1178906.html; Workgroup: WG33418; Design ID: 699]

Form 1A PCDD/PCDF ANALYSIS REPORT

CLIENT SAMPLE NO. SDS-PB-07 Sample Collection: 07-Jun-2010 15:47

AXYS ANALYTICAL SERVICES

2045 MILLS RD., SIDNEY, B.C., CANADA V8L 5X2 TEL (250) 655-5800 FAX (250) 655-5811

4406 Contract No.:

Matrix: **SOLID**

Sample Receipt Date: 17-Jun-2010

Extraction Date: 22-Jul-2010

09-Aug-2010 Time: 15:59:08

Extract Volume (uL): 20

Analysis Date:

Injection Volume (uL): 1.0

Dilution Factor: N/A

Concentration Units: pg/g (dry weight basis) Project No.

FIDALGO BAY, CUSTOM PLYWOOD DX STUDY

05-Aug-2010

L14884-18 Lab Sample I.D.:

Sample Size: 10.2 g (dry)

Initial Calibration Date:

HR GC/MS Instrument ID:

GC Column ID: DB5

Sample Data Filename: DX0B_175A S: 8

Blank Data Filename: DX0B_170 S: 5

Cal. Ver. Data Filename: DX0B_175A S: 1

% Moisture: 24.2

COMPOUND	LAB FLAG ¹	CONCENTRATION FOUND	DETECTION LIMIT	ION ABUND. RATIO ²	RRT ²
2,3,7,8-TCDD	KBJ	0.092	0.0655	0.32	1.001
1,2,3,7,8-PECDD ³	ΚJ	0.114	0.0489	0.34	1.001
1,2,3,4,7,8-HXCDD	ΚJ	0.061	0.0491	1.86	1.000
1,2,3,6,7,8-HXCDD	J	0.280	0.0491	1.22	1.001
1,2,3,7,8,9-HXCDD	J	0.217	0.0491	1.21	1.010
1,2,3,4,6,7,8-HPCDD	KBJ	1.80	0.0489	0.86	1.000
OCDD	В	9.92	0.0489	0.87	1.000
2,3,7,8-TCDF	ΚJ	0.192	0.0489	0.90	1.001
1,2,3,7,8-PECDF	ΚJ	0.061	0.0489	2.09	1.001
2,3,4,7,8-PECDF	BJ	0.093	0.0489	1.62	1.000
1,2,3,4,7,8-HXCDF	ΚJ	0.056	0.0489	1.66	1.000
1,2,3,6,7,8-HXCDF	U		0.0489		
1,2,3,7,8,9-HXCDF	U		0.0489		
2,3,4,6,7,8-HXCDF	ΚJ	0.055	0.0489	0.48	1.000
1,2,3,4,6,7,8-HPCDF	J	0.387	0.0601	1.12	1.000
1,2,3,4,7,8,9-HPCDF	U		0.0601		
OCDF	J	0.722	0.0489	0.91	1.002
TOTAL TETRA-DIOXINS	U		0.0655		
TOTAL PENTA-DIOXINS		0.104	0.0489		
TOTAL HEXA-DIOXINS		2.14	0.0491		
TOTAL HEPTA-DIOXINS	В	2.27	0.0489		
TOTAL TETRA-FURANS		0.169	0.0489		
TOTAL PENTA-FURANS		0.211	0.0489		
TOTAL HEXA-FURANS		0.468	0.0489		
TOTAL HEPTA-FURANS		0.866	0.0601		

⁽¹⁾ Where applicable, custom lab flags have been used on this report; U = not detected; K = peak detected but did not meet quantification criteria, result reported represents the estimated maximum possible concentration; B = analyte found in sample and the associated blank; J = concentration less than LMCL.

These data are validated and reported as accurate,	true and compliant with AXYS Analytical Services Ltd. quality assurance processes.
Signed:	Bryan Alonzo

For Axys Internal Use Only [XSL Template: Form1A.xsl; Created: 20-Aug-2010 11:43:30; Application: XMLTransformer-1.10.25; Report Filename: 1613_DIOXINS_1613DB5_L14884-18_Form1A_DX0B_175AS8_SJ1178311.html; Workgroup: WG33418; Design ID: 699]

⁽²⁾ Contract-required limits for RRTs and ion abundance ratios are specified in Tables 2 and 9, respectively, Method 1613.

⁽³⁾ Alternate confirmation and quantitation ions used for native and labeled PECDD.

These pages are part of a larger report that may contain information necessary for full data evaluation. Results reported relate only to the sample tested. Results are compliant with NELAP where specific accreditation is held.

Form 1A PCDD/PCDF ANALYSIS REPORT

Project No.

Lab Sample I.D.:

Initial Calibration Date:

Sample Data Filename:

Cal. Ver. Data Filename:

Sample Size:

Instrument ID:

GC Column ID:

CLIENT SAMPLE NO. SDS-PB-07 Sample Collection: 07-Jun-2010 15:47

L14884-18

10.2 g (dry)

13-Jul-2010

HR GC/MS

DB03_102 S: 14

DX0B_170 S: 5

DB03_102 S: 2

DB225

FIDALGO BAY, CUSTOM PLYWOOD DX STUDY

AXYS ANALYTICAL SERVICES

2045 MILLS RD., SIDNEY, B.C., CANADA V8L 5X2 TEL (250) 655-5800 FAX (250) 655-5811

4406 Contract No.:

Matrix: **SOLID**

Sample Receipt Date: 17-Jun-2010

Extraction Date: 22-Jul-2010

Analysis Date: 05-Aug-2010 Time: 03:26:44

Extract Volume (uL): 20

Injection Volume (uL): 2.0

Dilution Factor: N/A

Concentration Units:

COMPOUND

LAB FLAG 1

Blank Data Filename:

pg/g (dry weight basis)

% Moisture:

CONCENTRATION **FOUND**

DETECTION

LIMIT

ION ABUND. RATIO²

24.2

RRT²

2,3,7,8-TCDF U 0.149

(1) Where applicable, custom lab flags have been used on this report; U = not detected.

(2) Contract-required limits for RRTs and ion abundance ratios are specified in Tables 2 and 9, respectively, Method 1613.

These data are validated and reported as accurate, true and compliant with AXYS Analytical Services Ltd. quality assurance processes. _Bryan Alonzo_{_} Signed: _

For Axys Internal Use Only [XSL Template: Form1A.xsl; Created: 20-Aug-2010 11:42:50; Application: XMLTransformer-1.10.25; Report Filename: 1613_DIOXINS_1613DB225_L14884-18_Form1A_DB03_102S14_SJ1178907.html; Workgroup: WG33418; Design ID: 699]

Form 1A PCDD/PCDF ANALYSIS REPORT

CLIENT SAMPLE NO. SDS-CPD-05 Sample Collection: 10-Jun-2010 10:57

AXYS ANALYTICAL SERVICES

2045 MILLS RD., SIDNEY, B.C., CANADA V8L 5X2 TEL (250) 655-5800 FAX (250) 655-5811

Contract No.: 4406

Matrix: SOLID

Sample Receipt Date: 17-Jun-2010

Extraction Date: 22-Jul-2010

Analysis Date: 09-Aug-2010 **Time:** 16:53:56

Extract Volume (uL): 20

Injection Volume (uL): 1.0

Dilution Factor: N/A

Concentration Units:

Project No.

FIDALGO BAY, CUSTOM PLYWOOD DX STUDY

05-Aug-2010

Lab Sample I.D.: L14884-19

Sample Size: 9.59 g (dry)

Initial Calibration Date:

Instrument ID: HR GC/MS

GC Column ID: DB5

Sample Data Filename: DX0B_175A S: 9

Blank Data Filename: DX0B_170 S: 5

Cal. Ver. Data Filename: DX0B_175A S: 1

% Moisture: 42.4

COMPOUND	LAB FLAG ¹	CONCENTRATION FOUND	DETECTION LIMIT	ION ABUND. RATIO ²	RRT ²
2,3,7,8-TCDD	KBJ	0.253	0.157	0.43	1.001
1,2,3,7,8-PECDD ³	KJ	0.761	0.0712	0.48	1.001
1,2,3,4,7,8-HXCDD	ΚJ	0.731	0.0902	1.54	1.000
1,2,3,6,7,8-HXCDD	J	2.30	0.0902	1.15	1.000
1,2,3,7,8,9-HXCDD	J	1.90	0.0902	1.09	1.010
1,2,3,4,6,7,8-HPCDD	В	19.7	0.0926	1.06	1.000
OCDD	В	126	0.0521	0.89	1.000
2,3,7,8-TCDF		2.98	0.0872	0.77	1.001
1,2,3,7,8-PECDF	J	0.511	0.0521	1.50	1.000
2,3,4,7,8-PECDF	ВJ	0.633	0.0521	1.66	1.000
1,2,3,4,7,8-HXCDF	J	0.612	0.0893	1.22	1.000
1,2,3,6,7,8-HXCDF	J	0.399	0.0893	1.06	1.000
1,2,3,7,8,9-HXCDF	U		0.0893		
2,3,4,6,7,8-HXCDF	J	0.318	0.0893	1.27	1.000
1,2,3,4,6,7,8-HPCDF	J	5.19	0.117	1.01	1.000
1,2,3,4,7,8,9-HPCDF	ΚJ	0.418	0.117	1.27	1.000
OCDF		13.3	0.0671	0.88	1.002
TOTAL TETRA-DIOXINS	В	21.6	0.157		
TOTAL PENTA-DIOXINS		15.4	0.0712		
TOTAL HEXA-DIOXINS		21.0	0.0902		
TOTAL HEPTA-DIOXINS	В	54.9	0.0926		
TOTAL TETRA-FURANS		15.0	0.0872		
TOTAL PENTA-FURANS		5.76	0.0521		
TOTAL HEXA-FURANS		7.21	0.0893		
TOTAL HEPTA-FURANS		13.9	0.117		

⁽¹⁾ Where applicable, custom lab flags have been used on this report; U = not detected; K = peak detected but did not meet quantification criteria, result reported represents the estimated maximum possible concentration; B = analyte found in sample and the associated blank; J = concentration less than LMCL.

pg/g (dry weight basis)

These data are validated and reported as accurate,	true and compliant w	ith AXYS Analytical	Services Ltd.	quality assurance	processes.
Signed:	Bryan <i>I</i>	Alonzo			

For Axys Internal Use Only [XSL Template: Form1A.xsl; Created: 20-Aug-2010 11:43:30; Application: XMLTransformer-1.10.25; Report Filename: 1613_DIOXINS_1613DB5_L14884-19_Form1A_DX0B_175AS9_SJ1178312.html; Workgroup: WG33418; Design ID: 699]

⁽²⁾ Contract-required limits for RRTs and ion abundance ratios are specified in Tables 2 and 9, respectively, Method 1613.

⁽³⁾ Alternate confirmation and quantitation ions used for native and labeled PECDD.

These pages are part of a larger report that may contain information necessary for full data evaluation. Results reported relate only to the sample tested. Results are compliant with NELAP where specific accreditation is held.

Form 1A PCDD/PCDF ANALYSIS REPORT

CLIENT SAMPLE NO. SDS-CPD-05 Sample Collection: 10-Jun-2010 10:57

AXYS ANALYTICAL SERVICES

2045 MILLS RD., SIDNEY, B.C., CANADA V8L 5X2 TEL (250) 655-5800 FAX (250) 655-5811

Contract No.: 4406

Project No.

Lab Sample I.D.:

FIDALGO BAY, CUSTOM PLYWOOD DX STUDY

L14884-19

Matrix: SOLID

Sample Size:

9.59 g (dry)

Sample Receipt Date: 17-Jun-2010

Initial Calibration Date:

13-Jul-2010

Extraction Date:

22-Jul-2010

Instrument ID:

HR GC/MS

Analysis Date:

05-Aug-2010 Time: 04:03:19

GC Column ID:

DB225

Extract Volume (uL):

20

Sample Data Filename:

DB03_102 S: 15

Injection Volume (uL): 2.0

DX0B_170 S: 5

Dilution Factor:

N/A

Cal. Ver. Data Filename:

Blank Data Filename:

DB03_102 S: 2

42.4

Concentration Units: pg/g (dry weight basis) % Moisture:

COMPOUND	LAB FLAG ¹	CONCENTRATION FOUND	DETECTION LIMIT	ION ABUND. RATIO ²	RRT ²
2,3,7,8-TCDF	KJ	0.980	0.408	0.53	1.002

⁽¹⁾ Where applicable, custom lab flags have been used on this report; K = peak detected but did not meet quantification criteria, result reported represents the estimated maximum possible concentration; J = concentration less than LMCL.

These data are validated and reported as accurate	true and compliant with AXYS Analytical Services Ltd. quality assurance processes.
Signed:	Bryan Alonzo

For Axys Internal Use Only [XSL Template: Form1A.xsl; Created: 20-Aug-2010 11:42:50; Application: XMLTransformer-1.10.25; Report Filename: 1613_DIOXINS_1613DB225_L14884-19_Form1A_DB03_102S15_SJ1178908.html; Workgroup: WG33418; Design ID: 699]

⁽²⁾ Contract-required limits for RRTs and ion abundance ratios are specified in Tables 2 and 9, respectively, Method 1613.

Form 1A PCDD/PCDF ANALYSIS REPORT **CLIENT SAMPLE NO.** SDS-CPD-15 Sample Collection: 10-Jun-2010 12:23

AXYS ANALYTICAL SERVICES

2045 MILLS RD., SIDNEY, B.C., CANADA V8L 5X2 TEL (250) 655-5800 FAX (250) 655-5811

4406 Contract No.:

Matrix: SOLID

Sample Receipt Date: 17-Jun-2010

Extraction Date: 22-Jul-2010

09-Aug-2010 Time: 19:38:20 **Analysis Date:**

Extract Volume (uL): 20

Injection Volume (uL): 1.0

Dilution Factor: N/A

Concentration Units: pg/g (dry weight basis) Project No.

Lab Sample I.D.:

Sample Size:

FIDALGO BAY, CUSTOM

PLYWOOD DX STUDY

L14884-25

10.0 g (dry)

Initial Calibration Date: 05-Aug-2010

HR GC/MS Instrument ID:

GC Column ID: DB5

Sample Data Filename: DX0B_175A S: 12

Blank Data Filename: DX0B_170 S: 5

Cal. Ver. Data Filename:

DX0B_175A S: 1

42.9 % Moisture:

COMPOUND	LAB FLAG ¹	CONCENTRATION FOUND	DETECTION LIMIT	ION ABUND. RATIO ²	RRT ²
2,3,7,8-TCDD	KBJ	0.194	0.0544	0.32	1.001
1,2,3,7,8-PECDD ³	J	0.599	0.0573	0.55	1.000
1,2,3,4,7,8-HXCDD	J	0.688	0.0770	1.09	1.000
1,2,3,6,7,8-HXCDD	J	2.71	0.0770	1.22	1.000
1,2,3,7,8,9-HXCDD	J	2.20	0.0770	1.18	1.010
1,2,3,4,6,7,8-HPCDD	В	27.1	0.0703	1.06	1.000
OCDD	В	171	0.0499	0.88	1.001
2,3,7,8-TCDF		1.73	0.0752	0.84	1.002
1,2,3,7,8-PECDF	ΚJ	0.336	0.0683	2.19	1.000
2,3,4,7,8-PECDF	BJ	0.243	0.0683	1.30	1.010
1,2,3,4,7,8-HXCDF	KJ	0.607	0.0722	1.60	1.000
1,2,3,6,7,8-HXCDF	KJ	0.320	0.0722	1.02	1.000
1,2,3,7,8,9-HXCDF	U		0.0722		
2,3,4,6,7,8-HXCDF	J	0.457	0.0722	1.11	1.000
1,2,3,4,6,7,8-HPCDF		7.62	0.0894	1.09	1.000
1,2,3,4,7,8,9-HPCDF	KJ	0.454	0.0894	0.83	1.000
OCDF	_	19.9	0.0793	0.87	1.002
TOTAL TETRA-DIOXINS	В	7.85	0.0544		
TOTAL PENTA-DIOXINS		7.70	0.0573		
TOTAL HEXA-DIOXINS	5	28.1	0.0770		
TOTAL HEPTA-DIOXINS	В	70.7	0.0703		
TOTAL TETRA-FURANS		8.10	0.0752		
TOTAL PENTA-FURANS		4.04	0.0683		
TOTAL HEXA-FURANS		8.08	0.0722		
TOTAL HEPTA-FURANS		19.3	0.0894		

⁽¹⁾ Where applicable, custom lab flags have been used on this report; U = not detected; K = peak detected but did not meet quantification criteria, result reported represents the estimated maximum possible concentration; B = analyte found in sample and the associated blank; J = concentration less than LMCL.

These data are validated and reported as accurate,	true and compliant	with AXYS Analytical	Services Ltd.	quality assurance	e processes.
Signed:	Brvan	Alonzo			

For Axys Internal Use Only [XSL Template: Form1A.xsl; Created: 20-Aug-2010 11:43:30; Application: XMLTransformer-1.10.25; Report Filename: 1613_DIOXINS_1613DB5_L14884-25_Form1A_DX0B_175AS12_SJ1178315.html; Workgroup: WG33418; Design ID: 699]

⁽²⁾ Contract-required limits for RRTs and ion abundance ratios are specified in Tables 2 and 9, respectively, Method 1613.

⁽³⁾ Alternate confirmation and quantitation ions used for native and labeled PECDD.

Form 1A PCDD/PCDF ANALYSIS REPORT

CLIENT SAMPLE NO. SDS-CPD-15 Sample Collection: 10-Jun-2010 12:23

AXYS ANALYTICAL SERVICES

2045 MILLS RD., SIDNEY, B.C., CANADA V8L 5X2 TEL (250) 655-5800 FAX (250) 655-5811

Contract No.: 4406

Project No.

Lab Sample I.D.:

FIDALGO BAY, CUSTOM PLYWOOD DX STUDY

L14884-25

Matrix: SOLID

Sample Size: 10.0 g (dry)

Sample Receipt Date: 17-Jun-2010

Initial Calibration Date:

13-Jul-2010

Extraction Date:

22-Jul-2010

Instrument ID:

HR GC/MS

Analysis Date:

•

GC Column ID:

DB225

Extract Volume (uL):

20

Sample Data Filename:

DB03_102 S: 18

Injection Volume (uL):

2.0

Blank Data Filename:

DX0B_170 S: 5

Dilution Factor:

N/A

Cal. Ver. Data Filename:

DB03_102 S: 2

42.9

Concentration Units:

pg/g (dry weight basis)

05-Aug-2010 Time: 05:53:05

% Moisture:

 COMPOUND
 LAB FLAG 1
 CONCENTRATION FOUND
 DETECTION LIMIT
 ION ABUND. RATIO 2

 2,3,7,8-TCDF
 K J
 0.908
 0.357
 0.91
 1.002

These data are validated and reported as accurate	, true and compliant with AXYS Analytical Services Ltd. quality assurance processes.
Signed:	Bryan Alonzo

For Axys Internal Use Only [XSL Template: Form1A.xsl; Created: 20-Aug-2010 11:42:50; Application: XMLTransformer-1.10.25; Report Filename: 1613_DIOXINS_1613DB225_L14884-25_Form1A_DB03_102S18_SJ1178909.html; Workgroup: WG33418; Design ID: 699]

⁽¹⁾ Where applicable, custom lab flags have been used on this report; K = peak detected but did not meet quantification criteria, result reported represents the estimated maximum possible concentration; J = concentration less than LMCL.

⁽²⁾ Contract-required limits for RRTs and ion abundance ratios are specified in Tables 2 and 9, respectively, Method 1613.

Form 1A PCDD/PCDF ANALYSIS REPORT

CLIENT SAMPLE NO. SDS-PB-01 (Duplicate) Sample Collection: 07-Jun-2010 13:07

AXYS ANALYTICAL SERVICES

2045 MILLS RD., SIDNEY, B.C., CANADA V8L 5X2 TEL (250) 655-5800 FAX (250) 655-5811

4406 Contract No.:

Matrix: SOLID

Sample Receipt Date: 17-Jun-2010

Extraction Date: 22-Jul-2010

06-Aug-2010 Time: 17:47:29

pg/g (dry weight basis)

Extract Volume (uL): 20

Injection Volume (uL): 1.0

Dilution Factor: N/A

Concentration Units:

Analysis Date:

Project No.

Lab Sample I.D.:

FIDALGO BAY, CUSTOM PLYWOOD DX STUDY

WG33418-103 (DUP L14884-11)

Sample Size: 10.6 g (dry)

Initial Calibration Date:

Instrument ID:

GC Column ID:

HR GC/MS

DB5

05-Aug-2010

Sample Data Filename:

DX0B_170 S: 12

Blank Data Filename:

DX0B_170 S: 1

DX0B_170 S: 5

Cal. Ver. Data Filename:

27.3 % Moisture:

COMPOUND	LAB FLAG ¹	CONCENTRATION FOUND	DETECTION LIMIT	ION ABUND. RATIO ²	RRT ²
2,3,7,8-TCDD	КВЈ	0.075	0.0711	0.46	1.000
1,2,3,7,8-PECDD ³	U G		0.117		
1,2,3,4,7,8-HXCDD	J	0.190	0.0698	1.17	1.000
1,2,3,6,7,8-HXCDD	KJ	0.578	0.0698	1.60	1.000
1,2,3,7,8,9-HXCDD	J	0.533	0.0698	1.35	1.010
1,2,3,4,6,7,8-HPCDD	BJ	3.45	0.0488	1.13	1.000
OCDD	В	20.4	0.0952	0.91	1.000
2,3,7,8-TCDF	J	0.343	0.0571	0.85	1.001
1,2,3,7,8-PECDF	U		0.158		
2,3,4,7,8-PECDF	U		0.158		
1,2,3,4,7,8-HXCDF	ΚJ	0.105	0.0816	3.22	1.000
1,2,3,6,7,8-HXCDF	J	0.107	0.0816	1.34	1.000
1,2,3,7,8,9-HXCDF	U		0.0816		
2,3,4,6,7,8-HXCDF	ΚJ	0.118	0.0816	0.57	1.000
1,2,3,4,6,7,8-HPCDF	J	0.911	0.131	1.16	1.000
1,2,3,4,7,8,9-HPCDF	U		0.131		
OCDF	J	1.61	0.0520	0.93	1.002
TOTAL TETRA-DIOXINS	U		0.0711		
TOTAL PENTA-DIOXINS		0.561	0.117		
TOTAL HEXA-DIOXINS		4.29	0.0698		
TOTAL HEPTA-DIOXINS	В	8.45	0.0488		
TOTAL TETRA-FURANS		0.954	0.0571		
TOTAL PENTA-FURANS	U		0.158		
TOTAL HEXA-FURANS		0.993	0.0816		
TOTAL HEPTA-FURANS		1.86	0.131		

⁽¹⁾ Where applicable, custom lab flags have been used on this report; U = not detected; K = peak detected but did not meet quantification criteria, result reported represents the estimated maximum possible concentration; B = analyte found in sample and the associated blank; J = concentration less than LMCL; G = lock mass interference present.

These data are validated and reported as accurate,	true and compliant with AXYS Analytica	al Services Ltd. quality assurance processes.
Signed:	Brvan Alonzo	

For Axys Internal Use Only [XSL Template: Form1A.xsl; Created: 20-Aug-2010 11:43:30; Application: XMLTransformer-1.10.25; Report Filename: 1613_DIOXINS_1613DB5_WG33418-103_Form1A_DX0B_170S12_SJ1178300.html; Workgroup: WG33418; Design ID: 699]

⁽²⁾ Contract-required limits for RRTs and ion abundance ratios are specified in Tables 2 and 9, respectively, Method 1613.

⁽³⁾ Alternate confirmation and quantitation ions used for native and labeled PECDD.

Form 1A PCDD/PCDF ANALYSIS REPORT

CLIENT SAMPLE NO. SDS-PB-01 (Duplicate) Sample Collection: 07-Jun-2010 13:07

AXYS ANALYTICAL SERVICES

2045 MILLS RD., SIDNEY, B.C., CANADA V8L 5X2 TEL (250) 655-5800 FAX (250) 655-5811

4406 Contract No.:

Matrix: **SOLID**

Sample Receipt Date: 17-Jun-2010

Extraction Date: 22-Jul-2010

Analysis Date:

COMPOUND

Extract Volume (uL): 20

Injection Volume (uL): 2.0

Dilution Factor: N/A

Concentration Units: pg/g (dry weight basis)

LAB FLAG 1

Project No.

Lab Sample I.D.:

FIDALGO BAY, CUSTOM

PLYWOOD DX STUDY

WG33418-103 (DUP L14884-11)

Sample Size: 10.6 g (dry)

Initial Calibration Date:

Instrument ID:

13-Jul-2010 HR GC/MS

DB03_102 S: 7

ION ABUND.

RATIO²

RRT²

GC Column ID: **DB225**

Sample Data Filename:

Blank Data Filename:

DX0B_170 S: 5

Cal. Ver. Data Filename:

DB03_102 S: 2

27.3 % Moisture:

DETECTION

LIMIT

2,3,7,8-TCDF U 0.284

04-Aug-2010 Time: 23:10:40

(1) Where applicable, custom lab flags have been used on this report; U = not detected.

(2) Contract-required limits for RRTs and ion abundance ratios are specified in Tables 2 and 9, respectively, Method 1613.

CONCENTRATION

FOUND

These data are validated and reported as accurate, true and compliant with AXYS Analytical Services Ltd. quality assurance processes. _Bryan Alonzo_{_} Signed: _

For Axys Internal Use Only [XSL Template: Form1A.xsl; Created: 20-Aug-2010 11:42:50; Application: XMLTransformer-1.10.25; Report Filename: 1613_DIOXINS_1613DB225_WG33418-103_Form1A_DB03_102S7_SJ1178903.html; Workgroup: WG33418; Design ID: 699]

PCDD/PCDF ANALYSIS REPORT RELATIVE PERCENT DIFFERENCE

AXYS ANALYTICAL SERVICES

2045 MILLS RD., SIDNEY, B.C., CANADA V8L 5X2 TEL (250) 655-5800 FAX (250) 655-5811

Contract No.: 4406

Client ID: SDS-PB-01

Project No.

FIDALGO BAY, CUSTOM PLYWOOD DX STUDY

Concentration Units: pg/g (dry weight basis)

	L1488	4-11 (A)	WG334	418-103		
COMPOUND	LAB FLAG ¹	CONC. FOUND	LAB FLAG ¹	CONC. FOUND	MEAN	RELATIVE PERCENT DIFFERENCE
2,3,7,8-TCDD	ΚJ	0.074	ΚJ	0.075		
1,2,3,7,8-PECDD	ΚJ	0.089	UG			
1,2,3,4,7,8-HXCDD	ΚJ	0.096	J	0.190		
1,2,3,6,7,8-HXCDD	J	0.576	ΚJ	0.578		
1,2,3,7,8,9-HXCDD	ΚJ	0.423	J	0.533		
1,2,3,4,6,7,8-HPCDD	J	3.55	J	3.45	3.50	2.94
OCDD		20.4		20.4	20.4	0.108
2,3,7,8-TCDF	U		U			
1,2,3,7,8-PECDF	U		U			
2,3,4,7,8-PECDF	J	0.082	U			
1,2,3,4,7,8-HXCDF	J	0.091	ΚJ	0.105		
1,2,3,6,7,8-HXCDF	ΚJ	0.084	J	0.107		
1,2,3,7,8,9-HXCDF	U		U			
2,3,4,6,7,8-HXCDF	J	0.083	ΚJ	0.118		
1,2,3,4,6,7,8-HPCDF	ΚJ	0.821	J	0.911		
1,2,3,4,7,8,9-HPCDF	U		U			
OCDF	J	1.70	J	1.61	1.65	5.75

(1) Where applicable, custom lab flags have been used on this report; U = not detected; K = peak detected but did not meet quantification criteria, result reported represents the estimated maximum possible concentration; J = concentration less than LMCL; G = lock mass interference present.

These data are validated and reported as accurate,	true and compliant with AXYS Analytical	Services Ltd. quality assurance processes.
Signed:	Bryan Alonzo	

For Axys Internal Use Only [XSL Template: RPD.xsl; Created: 20-Aug-2010 11:44:27; Application: XMLTransformer-1.10.25; Report Filename: RPD_DIOXINS_1613-RPD_WG33418-103_L14884-11_.html; Workgroup: WG33418; Design ID: 699]

Form 1A PCDD/PCDF ANALYSIS REPORT

CLIENT SAMPLE NO. Lab Blank Sample Collection: N/A

AXYS ANALYTICAL SERVICES

2045 MILLS RD., SIDNEY, B.C., CANADA V8L 5X2 TEL (250) 655-5800 FAX (250) 655-5811

Contract No.: 4406

SOLID

Sample Receipt Date:

Matrix:

Extraction Date: 22-Jul-2010

06-Aug-2010 Time: 11:23:42 **Analysis Date:**

Extract Volume (uL): 20

Injection Volume (uL): 1.0

Dilution Factor: N/A

pg/g

Concentration Units:

Project No. N/A

Lab Sample I.D.: WG33418-101

Sample Size: 10.0 g

Initial Calibration Date: 05-Aug-2010

Instrument ID: HR GC/MS

GC Column ID: DB5

Sample Data Filename: DX0B_170 S: 5

Blank Data Filename: DX0B_170 S: 5

Cal. Ver. Data Filename: DX0B 170 S: 1

COMPOUND	LAB FLAG ¹	CONCENTRATION FOUND	DETECTION LIMIT	ION ABUND. RATIO ²	RRT ²
2,3,7,8-TCDD	J	0.114	0.0500	0.73	1.001
1,2,3,7,8-PECDD ³	U G		0.0500		
1,2,3,4,7,8-HXCDD	U		0.0500		
1,2,3,6,7,8-HXCDD	U		0.0500		
1,2,3,7,8,9-HXCDD	U		0.0500		
1,2,3,4,6,7,8-HPCDD	J	0.052	0.0500	1.13	1.000
OCDD	ΚJ	0.088	0.0500	0.42	1.000
2,3,7,8-TCDF	U		0.0500		
1,2,3,7,8-PECDF	U		0.0500		
2,3,4,7,8-PECDF	ΚJ	0.062	0.0500	1.02	1.001
1,2,3,4,7,8-HXCDF	U		0.0500		
1,2,3,6,7,8-HXCDF	U		0.0500		
1,2,3,7,8,9-HXCDF	U		0.0500		
2,3,4,6,7,8-HXCDF	U		0.0500		
1,2,3,4,6,7,8-HPCDF	U		0.0500		
1,2,3,4,7,8,9-HPCDF	U		0.0500		
OCDF	U		0.0500		
TOTAL TETRA-DIOXINS		0.114	0.0500		
TOTAL PENTA-DIOXINS	U		0.0500		
TOTAL HEXA-DIOXINS	U		0.0500		
TOTAL HEPTA-DIOXINS		0.052	0.0500		
TOTAL TETRA-FURANS	U		0.0500		
TOTAL PENTA-FURANS	U		0.0500		
TOTAL HEXA-FURANS	U		0.0500		
TOTAL HEPTA-FURANS	U		0.0500		

⁽¹⁾ Where applicable, custom lab flags have been used on this report; U = not detected; K = peak detected but did not meet quantification criteria, result reported represents the estimated maximum possible concentration; J = concentration less than LMCL; G = lock mass interference present.

These data are validated and reported as accurate, true and compliant with AXYS Analytical Services Ltd. quality assurance processes. Signed: Bryan Alonzo

 $For Axys \ Internal \ Use \ Only \ [\ XSL\ Template: Form 1A.xsl; Created: 20-Aug-2010\ 11:43:30; Application: XMLTransformer-1.10.25; Application: Application: XMLTransformer-1.10.25; Application: Application:$ Report Filename: 1613_DIOXINS_1613DB5_WG33418-101_Form1A_DX0B_170S5_SJ1178292.html; Workgroup: WG33418; Design ID: 699]

⁽²⁾ Contract-required limits for RRTs and ion abundance ratios are specified in Tables 2 and 9, respectively, Method 1613. (3) Alternate confirmation and quantitation ions used for native and labeled PECDD.

Form 8A PCDD/PCDF ONGOING PRECISION AND RECOVERY (OPR)

AXYS ANALYTICAL SERVICES

2045 MILLS RD., SIDNEY, B.C., CANADA V8L 5X2 TEL (250) 655-5800 FAX (250) 655-5811

Contract No.: 4406 OPR Data Filename: DX0B_170 S: 2

Matrix: SOLID Lab Sample I.D.: WG33418-102

Extraction Date: 22-Jul-2010 **Analysis Date:** 06-Aug-2010 **Time:** 08:39:11

ALL CONCENTRATIONS REPORTED ON THIS FORM ARE CONCENTRATIONS IN EXTRACT, BASED ON A 20 uL EXTRACT VOLUME.

	LAB	ION ABUND.	SPIKE CONC.	CONC. FOUND	OPR CONC. LIMITS ³	
COMPOUND	FLAG ¹	RATIO ²	(ng/mL)	(ng/mL)	(ng/mL)	% RECOVERY
2,3,7,8-TCDD		0.80	10.0	10.5	6.70 - 15.8	105
1,2,3,7,8-PECDD ⁴	G	0.62	52.0	52.4	36.4 - 73.8	101
1,2,3,4,7,8-HXCDD		1.26	56.5	57.4	39.6 - 92.7	102
1,2,3,6,7,8-HXCDD		1.24	55.5	57.6	42.2 - 74.4	104
1,2,3,7,8,9-HXCDD		1.26	54.0	53.4	34.6 - 87.5	98.8
1,2,3,4,6,7,8-HPCDD		1.06	47.5	46.4	33.3 - 66.5	97.8
OCDD		0.89	100	99.8	78.0 - 144	99.8
2,3,7,8-TCDF		0.80	10.7	11.1	8.03 - 16.9	104
1,2,3,7,8-PECDF		1.57	46.0	46.6	36.8 - 61.6	101
2,3,4,7,8-PECDF		1.55	47.0	49.2	32.0 - 75.2	105
1,2,3,4,7,8-HXCDF		1.25	50.0	49.2	36.0 - 67.0	98.5
1,2,3,6,7,8-HXCDF		1.25	47.5	46.7	39.9 - 61.8	98.4
1,2,3,7,8,9-HXCDF		1.26	52.5	51.7	41.0 - 68.3	98.4
2,3,4,6,7,8-HXCDF		1.27	53.0	51.3	37.1 - 82.7	96.8
1,2,3,4,6,7,8-HPCDF		1.06	50.0	51.5	41.0 - 61.0	103
1,2,3,4,7,8,9-HPCDF		1.05	50.0	49.7	39.0 - 69.0	99.4
OCDF		0.91	104	109	65.5 - 177	104

- (1) Where applicable, custom lab flags have been used on this report; G = lock mass interference present.
- (2) Contract-required Ion Abundance Ratios are specified in Table 9, Method 1613.
- (3) Contract-required concentration range as determined from the percent of the test concentration in Table 6, Method 1613, under OPR.
- (4) Alternate confirmation and quantitation ions used for native and labeled PECDD.

These data are validated and reported as accurate	, true and compliant	with AXYS Analytical	Services Ltd. quality assurance processes
Signed:	Bryan	Alonzo	

For Axys Internal Use Only [XSL Template: Form8A.xsl; Created: 20-Aug-2010 11:43:30; Application: XMLTransformer-1.10.25; Report Filename: $1613_DIOXINS_1613DB5_WG33418-102_Form8A_SJ1178288.html$; Workgroup: WG33418; Design ID: 699]

Form 8G

PCDD/PCDF CERTIFIED REFERENCE MATERIAL (CRM) REPORT FOR NIST SRM 1944

AXYS ANALYTICAL SERVICES

2045 MILLS RD., SIDNEY, B.C., CANADA V8L 5X2 TEL (250) 655-5800 FAX (250) 655-5811

4406 Contract No.: Lab Sample I.D.: WG33418-104 Matrix: SOLID Sample Size: 1.00 g (dry) **Extraction Date:** 22-Jul-2010 **Initial Calibration Date:** 05-Aug-2010 **Analysis Date:** 06-Aug-2010 Time: 12:18:29 Instrument ID: HR GC/MS Extract Volume (uL): 20 GC Column ID: DB5

Injection Volume (uL):1.0CRM Data Filename:DX0B_170 S: 6Dilution Factor:N/ABlank Data Filename:DX0B_170 S: 5Concentration Units:pg/g (dry weight basis)Cal. Ver. Data Filename:DX0B_170 S: 1

COMPOUND	LAB FLAG ¹	DETERMINED	CERTIFIED / REFERENCE
2,3,7,8-TCDD		132	133 +/- 9
1,2,3,7,8-PECDD ²	G	18.6	19 +/- 2
1,2,3,4,7,8-HXCDD		28.8	26 +/- 3
1,2,3,6,7,8-HXCDD		67.7	56 +/- 6
1,2,3,7,8,9-HXCDD		75.8	53 +/- 7
1,2,3,4,6,7,8-HPCDD		794	800 +/- 70
OCDD		5820	5800 +/- 700
2,3,7,8-TCDF		175	39 +/- 15
1,2,3,7,8-PECDF		44.8	45 +/- 7
2,3,4,7,8-PECDF		43.3	45 +/- 4
1,2,3,4,7,8-HXCDF		200	220 +/- 30
1,2,3,6,7,8-HXCDF		86.3	90 +/- 10
1,2,3,7,8,9-HXCDF		2.83	19 +/- 18
2,3,4,6,7,8-HXCDF		49.0	54 +/- 6
1,2,3,4,6,7,8-HPCDF		965	1000 +/- 100
1,2,3,4,7,8,9-HPCDF		43.4	40 +/- 6
OCDF		1080	1000 +/- 100

⁽¹⁾ Where applicable, custom lab flags have been used on this report; G = lock mass interference present.

These data are validated and reported as accurate,	true and compliant with AXYS Analytica	Services Ltd. quality assurance processes.
Signed:	Brvan Alonzo	

For Axys Internal Use Only [XSL Template: Form8G.xsl; Created: 20-Aug-2010 11:43:30; Application: XMLTransformer-1.10.25; Report Filename: 1613_DIOXINS_1613DB5_WG33418-104_Form8G_SJ1178294.html; Workgroup: WG33418; Design ID: 699]

⁽²⁾ Alternate confirmation and quantitation ions used for native and labeled PECDD.

Form 8G

PCDD/PCDF CERTIFIED REFERENCE MATERIAL (CRM) REPORT FOR NIST SRM 1944

	YTICAL	

2045 MILLS RD., SIDNEY, B.C., CANADA V8L 5X2 TEL (250) 655-5800 FAX (250) 655-5811

Contract No.: 4406 Lab Sample I.D.: WG33418-104 Matrix: SOLID Sample Size: 1.00 g (dry) **Extraction Date:** 22-Jul-2010 **Initial Calibration Date:** 13-Jul-2010 **Analysis Date:** 04-Aug-2010 Time: 11:23:22 Instrument ID: HR GC/MS Extract Volume (uL): 20 GC Column ID: DB225

Injection Volume (uL):2.0CRM Data Filename:DB03_101 S: 7Dilution Factor:N/ABlank Data Filename:DX0B_170 S: 5Concentration Units:pg/g (dry weight basis)Cal. Ver. Data Filename:DB03_101 S: 2

COMPOUND LAB DETERMINED CERTIFIED / FLAG 1 REFERENCE

2,3,7,8-TCDF K 29.2 39 +/- 15

(1) Where applicable, custom lab flags have been used on this report; K = peak detected but did not meet quantification criteria, result reported represents the estimated maximum possible concentration.

These data are validated and reported as accurate,	true and compliant with AXYS Analytical Services Ltd. quality assurance processes.
Signed:	Bryan Alonzo

For Axys Internal Use Only [XSL Template: Form8G.xsl; Created: 20-Aug-2010 11:42:50; Application: XMLTransformer-1.10.25; Report Filename: 1613_DIOXINS_1613DB225_WG33418-104_Form8G_SJ1178844.html; Workgroup: WG33418; Design ID: 699]

BATCH SUMMARY

Batch ID:	WG3:	3410	Date: 27-Aug-2010	
	pe: Dioxin/Furan		Matrix Type: Solid	
	Е	BATCH MAKEUP		
Contract: Samples:	4406		Blank: WG33419-101	
L14884-27 L14884-29 L14884-30 L14884-32 L14884-37 L14884-38 L14884-40 L14884-41 L14884-45	SDS-CT-01B SDS-CT-03 SDS-CT-04 SDS-CPD-17 SDS-PB-08 SDS-PB-09 SDS-FB-01 SDS-FB-02 SDS-FB-06		Reference or Spike: WG33419-102 WG33419-104	
			Duplicate: WG33419-103	

Comments:

- 1. Data are not blank corrected.
- 2. Percent surrogate recovery of 13C-2,3,7,8-TCDD in the Lab Blank (AXYS ID: WG33419-101) was below the range required for accurate quantification. As a result the surrogate and its associated analytes have been flagged 'NQ' on the report form.
- 3. The lock mass signal in the vicinity of native and labeled 1,2,3,7,8-PeCDD was observed in the sample SDS-FB-02 (AXYS ID: L14884-41). The compound 1,2,3,7,8-PECDD and its surrogate are flagged with a 'G' on the report form. The data are not considered significantly affected by these fluctuations.
- 4. The surrogate recoveries in the duplicate sample SDS -PB-09 (Duplicate) (AXYS ID: WG33419-103) fell below the lower method control limit, and are flagged with a 'V' on the report form. The duplication analysis demonstrates that the low recoveries have a negligible impact on the data. For target analytes whose concentrations are lower than ten times that of the corresponding detection limit, greater percent differences were observed but overall, there was good agreement in target analyte concentrations between the duplicate samples. The replicates agree well for congeners quantified against exact labeled analogs, and for congeners quantified against surrogates whose recoveries are within the control limits.
- 5. The analysis of samples SDS-CT-01A, SDS-CT-02, SDS-CT-05, SDS-PB-10, SDS-FB-03, SDS-FB-04 and SDS-FB-05 (AXYS ID: L14884-26, -28, -31, -39, -42, -43, and -44, respectively) was not successful and data is not available in this batch summary.

Form 1A PCDD/PCDF ANALYSIS REPORT

CLIENT SAMPLE NO. SDS-CT-01B Sample Collection: 14-Jun-2010 11:15

AXYS ANALYTICAL SERVICES

2045 MILLS RD., SIDNEY, B.C., CANADA V8L 5X2 TEL (250) 655-5800 FAX (250) 655-5811

Contract No.: 4406

Matrix: SOLID

Sample Receipt Date: 17-Jun-2010

Extraction Date: 22-Jul-2010

Analysis Date: 06-Aug-2010 **Time:** 01:36:03

Extract Volume (uL): 20

Injection Volume (uL): 1.0

Dilution Factor: N/A

Concentration Units:

Project No.

FIDALGO BAY, CUSTOM PLYWOOD DX STUDY

Lab Sample I.D.: L14884-27

Sample Size: 9.91 g (dry)

Initial Calibration Date: 05-Aug-2010

Instrument ID: HR GC/MS

GC Column ID: DB5

Sample Data Filename: DX0B_169B S: 5

Blank Data Filename: DX0B_169B S: 4

Cal. Ver. Data Filename: DX0B_169 S: 1

% Moisture: 23.7

COMPOUND	LAB FLAG ¹	CONCENTRATION FOUND	DETECTION LIMIT	ION ABUND. RATIO ²	RRT ²
2,3,7,8-TCDD	КJ	0.390	0.0505	0.61	1.001
1,2,3,7,8-PECDD ³	J	3.50	0.0505	0.59	1.000
1,2,3,4,7,8-HXCDD	J	5.66	0.0705	1.28	1.000
1,2,3,6,7,8-HXCDD		23.9	0.0705	1.26	1.000
1,2,3,7,8,9-HXCDD		13.0	0.0705	1.26	1.010
1,2,3,4,6,7,8-HPCDD	В	287	0.230	1.05	1.000
OCDD	В	1950	0.0505	0.88	1.000
2,3,7,8-TCDF	J	1.06	0.0505	0.78	1.002
1,2,3,7,8-PECDF	J	0.684	0.0505	1.75	1.001
2,3,4,7,8-PECDF	BJ	0.922	0.0505	1.71	1.000
1,2,3,4,7,8-HXCDF	J	2.58	0.0694	1.27	1.000
1,2,3,6,7,8-HXCDF	J	1.90	0.0694	1.24	1.000
1,2,3,7,8,9-HXCDF	ΚJ	0.169	0.0694	0.94	1.000
2,3,4,6,7,8-HXCDF	J	2.10	0.0694	1.23	1.000
1,2,3,4,6,7,8-HPCDF		44.9	0.0695	1.02	1.001
1,2,3,4,7,8,9-HPCDF	J	2.08	0.0695	0.99	1.000
OCDF	В	128	0.0505	0.89	1.002
TOTAL TETRA-DIOXINS		6.09	0.0505		
TOTAL PENTA-DIOXINS		16.1	0.0505		
TOTAL HEXA-DIOXINS		109	0.0705		
TOTAL HEPTA-DIOXINS		553	0.230		
TOTAL TETRA-FURANS	_	6.69	0.0505		
TOTAL PENTA-FURANS	В	21.0	0.0505		
TOTAL HEXA-FURANS		82.0	0.0694		
TOTAL HEPTA-FURANS		151	0.0695		

⁽¹⁾ Where applicable, custom lab flags have been used on this report; K = peak detected but did not meet quantification criteria, result reported represents the estimated maximum possible concentration; B = analyte found in sample and the associated blank; J = concentration less than LMCL.

(3) Alternate confirmation and quantitation ions used for native and labeled PECDD.

pg/g (dry weight basis)

These data are validated and reported as accurate, true and compliant with AXYS Analytical Services Ltd. quality assurance processes.

Signed: _____Bryan Alonzo_____

For Axys Internal Use Only [XSL Template: Form1A.xsl; Created: 27-Aug-2010 11:52:06; Application: XMLTransformer-1.10.25; Report Filename: 1613_DIOXINS_1613DB5_L14884-27_Form1A_DX0B_169BS5_SJ1179396.html; Workgroup: WG33419; Design ID: 699]

⁽²⁾ Contract-required limits for RRTs and ion abundance ratios are specified in Tables 2 and 9, respectively, Method 1613.

Form 1A PCDD/PCDF ANALYSIS REPORT

CLIENT SAMPLE NO. SDS-CT-01B Sample Collection: 14-Jun-2010 11:15

L14884-27 i

9.91 g (dry)

13-Jul-2010

HR GC/MS

DB03_110 S: 8

DB03_110 S: 5

DB03_110 S: 2

DB225

FIDALGO BAY, CUSTOM PLYWOOD DX STUDY

AXYS ANALYTICAL SERVICES

Matrix:

Analysis Date:

Dilution Factor:

COMPOUND

2,3,7,8-TCDF

2045 MILLS RD., SIDNEY, B.C., CANADA V8L 5X2 TEL (250) 655-5800 FAX (250) 655-5811

Contract No.: 4406

SOLID

Sample Receipt Date: 17-Jun-2010

Extraction Date: 22-Jul-2010

Extract Volume (uL): 20

Injection Volume (uL): 2.0

Concentration Units:

11-Aug-2010 **Time:** 00:42:30

N/A

LAB FLAG 1

J

Didlik

pg/g (dry weight basis) %

Sample Data Filename:

Blank Data Filename:

Initial Calibration Date:

Cal. Ver. Data Filename:

% Moisture:

Project No.

Lab Sample I.D.:

Sample Size:

Instrument ID:

GC Column ID:

re: 23.7

DETECTION

LIMIT

0.292

ION ABUND. RRT²

RATIO²

0.84

1.001

(1) Where applicable, custom lab flags have been used on this report; J = concentration less than LMCL.

(2) Contract-required limits for RRTs and ion abundance ratios are specified in Tables 2 and 9, respectively, Method 1613.

CONCENTRATION

FOUND

0.449

These data are validated and reported as accurate, true and compliant with AXYS Analytical Services Ltd. quality assurance processes.

Signed: _____Bryan Alonzo_____

For Axys Internal Use Only [XSL Template: Form1A.xsl; Created: 27-Aug-2010 11:49:42; Application: XMLTransformer-1.10.25; Report Filename: 1613_DIOXINS_1613DB225_L14884-27_Form1A_DB03_110S8_SJ1179598.html; Workgroup: WG33419; Design ID: 699]

Form 1A PCDD/PCDF ANALYSIS REPORT

CLIENT SAMPLE NO. SDS-CT-03 Sample Collection: 14-Jun-2010 12:30

AXYS ANALYTICAL SERVICES

2045 MILLS RD., SIDNEY, B.C., CANADA V8L 5X2 TEL (250) 655-5800 FAX (250) 655-5811

Contract No.: 4406

Matrix: SOLID

Sample Receipt Date: 17-Jun-2010

Extraction Date: 22-Jul-2010

Analysis Date: 06-Aug-2010 **Time:** 02:30:56

Extract Volume (uL): 20

Injection Volume (uL): 1.0

Dilution Factor: N/A

Concentration Units: pg/g (dry weight basis)

Project No.

FIDALGO BAY, CUSTOM PLYWOOD DX STUDY

Lab Sample I.D.: L14884-29

Sample Size: 10.8 g (dry)

Initial Calibration Date: 05-Aug-2010

Instrument ID: HR GC/MS

GC Column ID: DB5

Sample Data Filename: DX0B_169B S: 6

Blank Data Filename: DX0B_169B S: 4

Cal. Ver. Data Filename: DX0B_169 S: 1

% Moisture: 24.9

COMPOUND	LAB FLAG ¹	CONCENTRATION FOUND	DETECTION LIMIT	ION ABUND. RATIO ²	RRT ²
2,3,7,8-TCDD	КJ	0.139	0.0465	0.49	1.001
1,2,3,7,8-PECDD ³	ΚJ	0.562	0.0465	0.71	1.000
1,2,3,4,7,8-HXCDD	J	0.807	0.0465	1.38	1.000
1,2,3,6,7,8-HXCDD	J	3.37	0.0465	1.20	1.000
1,2,3,7,8,9-HXCDD	J	2.08	0.0465	1.31	1.010
1,2,3,4,6,7,8-HPCDD	В	52.5	0.0818	1.05	1.000
OCDD	В	394	0.0465	0.89	1.000
2,3,7,8-TCDF	J	0.547	0.0465	0.77	1.001
1,2,3,7,8-PECDF	J	0.211	0.0465	1.37	1.000
2,3,4,7,8-PECDF	BJ	0.344	0.0465	1.36	1.000
1,2,3,4,7,8-HXCDF	J	0.771	0.0465	1.27	1.000
1,2,3,6,7,8-HXCDF	J	0.472	0.0465	1.23	1.000
1,2,3,7,8,9-HXCDF	ΚJ	0.111	0.0465	0.94	1.000
2,3,4,6,7,8-HXCDF	J	0.555	0.0465	1.42	1.000
1,2,3,4,6,7,8-HPCDF		17.8	0.0589	1.04	1.000
1,2,3,4,7,8,9-HPCDF	J	1.20	0.0589	0.99	1.000
OCDF	В	71.6	0.0465	0.90	1.002
TOTAL TETRA-DIOXINS		2.42	0.0465		
TOTAL PENTA-DIOXINS		5.23	0.0465		
TOTAL HEXA-DIOXINS		29.6	0.0465		
TOTAL HEPTA-DIOXINS		112	0.0818		
TOTAL TETRA-FURANS		3.58	0.0465		
TOTAL PENTA-FURANS	В	5.55	0.0465		
TOTAL HEXA-FURANS		18.7	0.0465		
TOTAL HEPTA-FURANS		57.9	0.0589		

⁽¹⁾ Where applicable, custom lab flags have been used on this report; K = peak detected but did not meet quantification criteria, result reported represents the estimated maximum possible concentration; B = analyte found in sample and the associated blank; J = concentration less than LMCL.

(3) Alternate confirmation and quantitation ions used for native and labeled PECDD.

These data are validated and reported as accurate, true and compliant with AXYS Analytical Services Ltd. quality assurance processes.

Signed: _____Bryan Alonzo_____

For Axys Internal Use Only [XSL Template: Form1A.xsl; Created: 27-Aug-2010 11:52:06; Application: XMLTransformer-1.10.25; Report Filename: 1613_DIOXINS_1613DB5_L14884-29_Form1A_DX0B_169BS6_SJ1179397.html; Workgroup: WG33419; Design ID: 699]

⁽²⁾ Contract-required limits for RRTs and ion abundance ratios are specified in Tables 2 and 9, respectively, Method 1613.

Form 1A PCDD/PCDF ANALYSIS REPORT

CLIENT SAMPLE NO. SDS-CT-03 Sample Collection: 14-Jun-2010 12:30

AXYS ANALYTICAL SERVICES

2045 MILLS RD., SIDNEY, B.C., CANADA V8L 5X2 TEL (250) 655-5800 FAX (250) 655-5811

Contract No.: 4406

SOLID

Lab Sample I.D.:
Sample Size:

Project No.

FIDALGO BAY, CUSTOM PLYWOOD DX STUDY

L14884-29 i

Sample Receipt Date: 17-Jun-2010

Initial Calibration Date:

10.8 g (dry) 13-Jul-2010

Extraction Date: 22-Jul-2010

Instrument ID:

HR GC/MS

Analysis Date:

Matrix:

11-Aug-2010 Time: 01:55:42

GC Column ID:

DB225

Extract Volume (uL):

20

Sample Data Filename:

DB03_110 S: 10

Injection Volume (uL): 2.0

Blank Data Filename:

DB03_110 S: 5

Dilution Factor:

N/A

Cal. Ver. Data Filename:

DB03_110 S: 2

24.9

Concentration Units: pg/g (dry weight basis)

% Moisture:

COMPOUND	LAB FLAG ¹	CONCENTRATION FOUND	DETECTION LIMIT	ION ABUND. RATIO ²	RRT ²
2,3,7,8-TCDF	КJ	0.317	0.180	0.95	1.001

⁽¹⁾ Where applicable, custom lab flags have been used on this report; K = peak detected but did not meet quantification criteria, result reported represents the estimated maximum possible concentration; J = concentration less than LMCL.

These data are validated and reported as accurate,	, true and complian	t with AXYS Ana	alytical Services Ltd.	quality assurance processes.
Signed:	Bryan	Alonzo_		

For Axys Internal Use Only [XSL Template: Form1A.xsl; Created: 27-Aug-2010 11:49:42; Application: XMLTransformer-1.10.25; Report Filename: 1613_DIOXINS_1613DB225_L14884-29_Form1A_DB03_110S10_SJ1179600.html; Workgroup: WG33419; Design ID: 699]

⁽²⁾ Contract-required limits for RRTs and ion abundance ratios are specified in Tables 2 and 9, respectively, Method 1613.

Form 1A PCDD/PCDF ANALYSIS REPORT

CLIENT SAMPLE NO. SDS-CT-04 Sample Collection: 14-Jun-2010 13:31

AXYS ANALYTICAL SERVICES

2045 MILLS RD., SIDNEY, B.C., CANADA V8L 5X2 TEL (250) 655-5800 FAX (250) 655-5811

Contract No.: 4406

Matrix: SOLID

Sample Receipt Date: 17-Jun-2010

Extraction Date: 22-Jul-2010

06-Aug-2010 Time: 03:25:50

pg/g (dry weight basis)

Analysis Date:

Extract Volume (uL): 20

Injection Volume (uL): 1.0

Dilution Factor: N/A

Concentration Units:

Project No.

FIDALGO BAY, CUSTOM PLYWOOD DX STUDY

Lab Sample I.D.: L14884-30

Sample Size: 10.3 g (dry)

Initial Calibration Date: 05-Aug-2010

Instrument ID: HR GC/MS

GC Column ID: DB5

Sample Data Filename: DX0B_169B S: 7

Blank Data Filename: DX0B_169B S: 4

Cal. Ver. Data Filename: DX0B_169 S: 1

% Moisture: 24.1

COMPOUND	LAB FLAG ¹	CONCENTRATION FOUND	DETECTION LIMIT	ION ABUND. RATIO ²	RRT ²
2,3,7,8-TCDD	КJ	0.100	0.0484	0.58	1.001
1,2,3,7,8-PECDD ³	J	0.328	0.0484	0.69	1.000
1,2,3,4,7,8-HXCDD	J	0.464	0.0601	1.09	1.000
1,2,3,6,7,8-HXCDD	J	1.57	0.0601	1.20	1.000
1,2,3,7,8,9-HXCDD	J	1.06	0.0601	1.40	1.010
1,2,3,4,6,7,8-HPCDD	В	22.4	0.0714	1.08	1.000
OCDD	В	146	0.0484	0.90	1.000
2,3,7,8-TCDF	J	0.431	0.0484	0.75	1.002
1,2,3,7,8-PECDF	J	0.127	0.0484	1.73	1.000
2,3,4,7,8-PECDF	KBJ	0.199	0.0484	1.19	1.000
1,2,3,4,7,8-HXCDF	J	0.349	0.0484	1.37	1.000
1,2,3,6,7,8-HXCDF	J	0.225	0.0484	1.08	1.000
1,2,3,7,8,9-HXCDF	J	0.051	0.0484	1.23	1.000
2,3,4,6,7,8-HXCDF	J	0.320	0.0484	1.28	1.000
1,2,3,4,6,7,8-HPCDF		8.82	0.0637	1.06	1.000
1,2,3,4,7,8,9-HPCDF	J	0.488	0.0637	1.09	1.000
OCDF	В	28.7	0.0484	0.86	1.002
TOTAL TETRA-DIOXINS		1.90	0.0484		
TOTAL PENTA-DIOXINS		3.69	0.0484		
TOTAL HEXA-DIOXINS		15.1	0.0601		
TOTAL HEPTA-DIOXINS		48.8	0.0714		
TOTAL TETRA-FURANS		2.43	0.0484		
TOTAL PENTA-FURANS	В	3.29	0.0484		
TOTAL HEXA-FURANS		9.43	0.0484		
TOTAL HEPTA-FURANS		24.8	0.0637		

⁽¹⁾ Where applicable, custom lab flags have been used on this report; K = peak detected but did not meet quantification criteria, result reported represents the estimated maximum possible concentration; B = analyte found in sample and the associated blank; J = concentration less than LMCL.

These data are validated and reported as accurate, true and compliant with AXYS Analytical Services Ltd. quality assurance processes.

Bryan Alonzo

For Axys Internal Use Only [XSL Template: Form1A.xsl; Created: 27-Aug-2010 11:52:06; Application: XMLTransformer-1.10.25; Report Filename: 1613_DIOXINS_1613DB5_L14884-30_Form1A_DX0B_169BS7_SJ1179398.html; Workgroup: WG33419; Design ID: 699]

⁽²⁾ Contract-required limits for RRTs and ion abundance ratios are specified in Tables 2 and 9, respectively, Method 1613. (3) Alternate confirmation and quantitation ions used for native and labeled PECDD.

Form 1A PCDD/PCDF ANALYSIS REPORT

CLIENT SAMPLE NO. SDS-CT-04 Sample Collection: 14-Jun-2010 13:31

13-Jul-2010

DB03_110 S: 11

DB03_110 S: 5

DB03_110 S: 2

DB225

24.1

AXYS ANALYTICAL SERVICES

2045 MILLS RD., SIDNEY, B.C., CANADA V8L 5X2 TEL (250) 655-5800 FAX (250) 655-5811

4406 Contract No.:

Matrix: **SOLID**

Sample Receipt Date: 17-Jun-2010

Extraction Date: 22-Jul-2010

Analysis Date:

Extract Volume (uL): 20

Injection Volume (uL): 2.0

Dilution Factor: N/A

Concentration Units:

Project No.

FIDALGO BAY, CUSTOM PLYWOOD DX STUDY

L14884-30 i Lab Sample I.D.:

Sample Size: 10.3 g (dry)

Initial Calibration Date:

Instrument ID: HR GC/MS

GC Column ID:

Sample Data Filename:

Blank Data Filename:

Cal. Ver. Data Filename:

% Moisture:

COMPOUND	LAB FLAG ¹	CONCENTRATION FOUND	DETECTION LIMIT	ION ABUND. RATIO ²	RRT ²
2,3,7,8-TCDF	KJ	0.237	0.215	1.04	1.001

⁽¹⁾ Where applicable, custom lab flags have been used on this report; K = peak detected but did not meet quantification criteria, result reported represents the estimated maximum possible concentration; J = concentration less than LMCL.

These data are validated and reported as accurate	, true and compliant with AXYS Analytical Services Ltd. quality assurance processes.
Signed:	Bryan Alonzo

For Axys Internal Use Only [XSL Template: Form1A.xsl; Created: 27-Aug-2010 11:49:42; Application: XMLTransformer-1.10.25; Report Filename: 1613_DIOXINS_1613DB225_L14884-30_Form1A_DB03_110S11_SJ1179601.html; Workgroup: WG33419; Design ID: 699]

11-Aug-2010 Time: 02:32:21

pg/g (dry weight basis)

⁽²⁾ Contract-required limits for RRTs and ion abundance ratios are specified in Tables 2 and 9, respectively, Method 1613.

Form 1A
PCDD/PCDF ANALYSIS REPORT

CLIENT SAMPLE NO. SDS-CPD-17 Sample Collection: 09-Jun-2010 13:43

AXYS ANALYTICAL SERVICES

2045 MILLS RD., SIDNEY, B.C., CANADA V8L 5X2 TEL (250) 655-5800 FAX (250) 655-5811

Contract No.: 4406

Matrix: SOLID

Sample Receipt Date: 17-Jun-2010

Extraction Date: 22-Jul-2010

11-Aug-2010 Time: 13:09:43

pg/g (dry weight basis)

Extract Volume (uL): 20

Analysis Date:

Injection Volume (uL): 1.0

Dilution Factor: N/A

Concentration Units:

Project No.

FIDALGO BAY, CUSTOM PLYWOOD DX STUDY

Lab Sample I.D.: L14884-32

Sample Size: 9.78 g (dry)

Initial Calibration Date:

Instrument ID:

GC Column ID:

DB5

05-Aug-2010

HR GC/MS

Sample Data Filename: DX0B_179 S: 7

Blank Data Filename:

DX0B_169B S: 4

Cal. Ver. Data Filename:

DX0B_179 S: 1

% Moisture: 48.7

COMPOUND	LAB FLAG ¹	CONCENTRATION FOUND	DETECTION LIMIT	ION ABUND. RATIO ²	RRT ²
2,3,7,8-TCDD	КJ	0.281	0.0511	0.60	1.001
1,2,3,7,8-PECDD ³	J	1.09	0.0511	0.68	1.000
1,2,3,4,7,8-HXCDD	J	1.48	0.0948	1.33	1.000
1,2,3,6,7,8-HXCDD		5.73	0.0948	1.29	1.000
1,2,3,7,8,9-HXCDD	J	3.80	0.0948	1.21	1.010
1,2,3,4,6,7,8-HPCDD	В	74.7	0.152	1.04	1.000
OCDD	В	504	0.0511	0.89	1.000
2,3,7,8-TCDF		2.37	0.0902	0.79	1.001
1,2,3,7,8-PECDF	J	0.442	0.0511	1.41	1.001
2,3,4,7,8-PECDF	BJ	0.694	0.0511	1.67	1.000
1,2,3,4,7,8-HXCDF	J	1.23	0.103	1.16	1.000
1,2,3,6,7,8-HXCDF	J	0.732	0.103	1.22	1.000
1,2,3,7,8,9-HXCDF	U		0.103		
2,3,4,6,7,8-HXCDF	J	1.03	0.103	1.28	1.000
1,2,3,4,6,7,8-HPCDF		24.0	0.0977	1.05	1.000
1,2,3,4,7,8,9-HPCDF	J	1.38	0.0977	1.06	1.000
OCDF	В	76.1	0.0511	0.88	1.002
TOTAL TETRA-DIOXINS		15.2	0.0511		
TOTAL PENTA-DIOXINS		16.7	0.0511		
TOTAL HEXA-DIOXINS		51.5	0.0948		
TOTAL HEPTA-DIOXINS		174	0.152		
TOTAL TETRA-FURANS		15.1	0.0902		
TOTAL PENTA-FURANS	В	13.1	0.0511		
TOTAL HEXA-FURANS		29.1	0.103		
TOTAL HEPTA-FURANS		70.5	0.0977		

⁽¹⁾ Where applicable, custom lab flags have been used on this report; U = not detected; K = peak detected but did not meet quantification criteria, result reported represents the estimated maximum possible concentration; B = analyte found in sample and the associated blank; J = concentration less than LMCL.

These data are validated and reported as accurate,	true and compliant with AXYS Analytica	al Services Ltd. quality assurance processes.
Signed:	Brvan Alonzo	

For Axys Internal Use Only [XSL Template: Form1A.xsl; Created: 27-Aug-2010 11:52:06; Application: XMLTransformer-1.10.25; Report Filename: 1613_DIOXINS_1613DB5_L14884-32_Form1A_DX0B_179S7_SJ1179445.html; Workgroup: WG33419; Design ID: 699]

⁽²⁾ Contract-required limits for RRTs and ion abundance ratios are specified in Tables 2 and 9, respectively, Method 1613.

⁽³⁾ Alternate confirmation and quantitation ions used for native and labeled PECDD.

These pages are part of a larger report that may contain information necessary for full data evaluation. Results reported relate only to the sample tested. Results are compliant with NELAP where specific accreditation is held.

Form 1A PCDD/PCDF ANALYSIS REPORT

CLIENT SAMPLE NO. SDS-CPD-17 Sample Collection: 09-Jun-2010 13:43

AXYS ANALYTICAL SERVICES

2045 MILLS RD., SIDNEY, B.C., CANADA V8L 5X2 TEL (250) 655-5800 FAX (250) 655-5811

Contract No.: 4406

Matrix: SOLID

Sample Receipt Date: 17-Jun-2010

Extraction Date: 22-Jul-2010

Analysis Date:

Extract Volume (uL): 20

Injection Volume (uL): 2.0

Dilution Factor: N/A

Concentration Units:

Project No.

lo. FIDALGO BAY, CUSTOM PLYWOOD DX STUDY

Lab Sample I.D.: L14884-32 i

Sample Size: 9.78 g (dry)

Initial Calibration Date:

Instrument ID:

13-Jul-2010 HR GC/MS

GC Column ID: DB225

Sample Data Filename:

Blank Data Filename:

DB03_110 S: 5

DB03_110 S: 13

DB03_110 S: 2

Cal. Ver. Data Filename:

40 -

pg/g (dry weight basis) % Moisture: 48.7

COMPOUND	LAB FLAG ¹	CONCENTRATION FOUND	DETECTION LIMIT	ION ABUND. RATIO ²	RRT ²
2,3,7,8-TCDF		1.18	0.176	0.86	1.001

⁽¹⁾ Where applicable, custom lab flags have been used on this report.

11-Aug-2010 Time: 03:45:33

These data are validated and reported as accurate, true and compliant with AXYS Analytical Services Ltd. quality assurance processes.

Signed: _____Bryan Alonzo_____

For Axys Internal Use Only [XSL Template: Form1A.xsl; Created: 27-Aug-2010 11:49:42; Application: XMLTransformer-1.10.25; Report Filename: 1613_DIOXINS_1613DB225_L14884-32_Form1A_DB03_110S13_SJ1179603.html; Workgroup: WG33419; Design ID: 699]

⁽²⁾ Contract-required limits for RRTs and ion abundance ratios are specified in Tables 2 and 9, respectively, Method 1613.

Form 1A PCDD/PCDF ANALYSIS REPORT

CLIENT SAMPLE NO. SDS-PB-08 Sample Collection: 08-Jun-2010 15:21

AXYS ANALYTICAL SERVICES

2045 MILLS RD., SIDNEY, B.C., CANADA V8L 5X2 TEL (250) 655-5800 FAX (250) 655-5811

Contract No.: 4406

Matrix: SOLID

Sample Receipt Date: 17-Jun-2010

Extraction Date: 22-Jul-2010

Analysis Date: 10-Aug-2010 **Time:** 15:03:07

Extract Volume (uL): 20

Injection Volume (uL): 1.0

Dilution Factor: N/A

Concentration Units: pg/g (dry weight basis)

Project No.

FIDALGO BAY, CUSTOM PLYWOOD DX STUDY

Lab Sample I.D.: L14884-37

Sample Size: 11.1 g (dry)

Initial Calibration Date: 05-Aug-2010

Instrument ID: HR GC/MS

GC Column ID: DB5

Sample Data Filename: DX0B_177 S: 9

Blank Data Filename: DX0B_169B S: 4

Cal. Ver. Data Filename: DX0B_177 S: 1

% Moisture: 30.3

COMPOUND	LAB FLAG ¹	CONCENTRATION FOUND	DETECTION LIMIT	ION ABUND. RATIO ²	RRT ²
2,3,7,8-TCDD	КJ	0.083	0.0449	0.27	1.001
1,2,3,7,8-PECDD ³	KJ	0.118	0.0449	0.39	1.001
1,2,3,4,7,8-HXCDD	KJ	0.143	0.0568	1.57	1.000
1,2,3,6,7,8-HXCDD	KJ	0.427	0.0568	1.66	1.000
1,2,3,7,8,9-HXCDD	KJ	0.378	0.0568	0.99	1.010
1,2,3,4,6,7,8-HPCDD	BJ	3.52	0.0449	1.02	1.000
OCDD	В	22.7	0.0886	0.92	1.000
2,3,7,8-TCDF	J	0.306	0.0449	0.86	1.001
1,2,3,7,8-PECDF	ΚJ	0.077	0.0449	2.11	1.000
2,3,4,7,8-PECDF	KBJ	0.126	0.0449	1.31	1.000
1,2,3,4,7,8-HXCDF	ΚJ	0.112	0.0478	1.59	1.000
1,2,3,6,7,8-HXCDF	ΚJ	0.068	0.0478	1.61	1.000
1,2,3,7,8,9-HXCDF	U		0.0478		
2,3,4,6,7,8-HXCDF	ΚJ	0.087	0.0478	2.03	1.000
1,2,3,4,6,7,8-HPCDF	J	0.855	0.0738	1.12	1.000
1,2,3,4,7,8,9-HPCDF	KJ	0.090	0.0738	0.83	1.000
OCDF	BJ	1.79	0.0631	0.99	1.002
TOTAL TETRA-DIOXINS		0.799	0.0449		
TOTAL PENTA-DIOXINS		0.654	0.0449		
TOTAL HEXA-DIOXINS		3.43	0.0568		
TOTAL HEPTA-DIOXINS		9.95	0.0449		
TOTAL TETRA-FURANS		0.995	0.0449		
TOTAL PENTA-FURANS	В	0.768	0.0449		
TOTAL HEXA-FURANS		0.805	0.0478		
TOTAL HEPTA-FURANS		2.10	0.0738		

⁽¹⁾ Where applicable, custom lab flags have been used on this report; U = not detected; K = peak detected but did not meet quantification criteria, result reported represents the estimated maximum possible concentration; B = analyte found in sample and the associated blank; J = concentration less than LMCL.

These data are validated and reported as accurate,	true and compliant with AXYS Analytica	al Services Ltd. quality assurance processes.
Signed:	Brvan Alonzo	

For Axys Internal Use Only [XSL Template: Form1A.xsl; Created: 27-Aug-2010 11:52:06; Application: XMLTransformer-1.10.25; Report Filename: $1613_DIOXINS_1613DB5_L14884-37_Form1A_DX0B_177S9_SJ1179428.html$; Workgroup: WG33419; Design ID: 699]

⁽²⁾ Contract-required limits for RRTs and ion abundance ratios are specified in Tables 2 and 9, respectively, Method 1613.

⁽³⁾ Alternate confirmation and quantitation ions used for native and labeled PECDD.

These pages are part of a larger report that may contain information necessary for full data evaluation. Results reported relate only to the sample tested. Results are compliant with NELAP where specific accreditation is held.

Form 1A PCDD/PCDF ANALYSIS REPORT

CLIENT SAMPLE NO. SDS-PB-08 Sample Collection: 08-Jun-2010 15:21

AXYS ANALYTICAL SERVICES

2045 MILLS RD., SIDNEY, B.C., CANADA V8L 5X2 TEL (250) 655-5800 FAX (250) 655-5811

Contract No.: 4406

Lab Sample I.D.:

FIDALGO BAY, CUSTOM PLYWOOD DX STUDY

L14884-37 i

Matrix: SOLID

47 1 ... 0040

11-Aug-2010 Time: 10:43:20

Sample Size: 11.1 g (dry)

Sample Receipt Date: 17-Jun-2010

Initial Calibration Date: 13-Jul-2010

Extraction Date:

22-Jul-2010

Instrument ID:

Project No.

HR GC/MS

Analysis Date:

•

GC Column ID:

DB225

Extract Volume (uL):

20

Sample Data Filename:

DB03_111 S: 5

Injection Volume (uL):

2.0

Blank Data Filename:

DB03_110 S: 5

Dilution Factor:

N/A

Cal. Ver. Data Filename:

DB03_111 S: 2

30.3

Concentration Units:

pg/g (dry weight basis)

% Moisture:

RRT²

COMPOUND

2,3,7,8-TCDF

LAB FLAG 1

ΚJ

FOUND 0.198

CONCENTRATION

0.169

DETECTION

LIMIT

0.30

ION ABUND.

1.000

(1) Where applicable, custom lab flags have been used on this report; K = peak detected but did not meet quantification criteria, result reported represents the estimated maximum possible concentration; J = concentration less than LMCL.

(2) Contract-required limits for RRTs and ion abundance ratios are specified in Tables 2 and 9, respectively, Method 1613.

These data are validated and reported as accurate	e, true and compliant with AXYS Analytical	Services Ltd. quality assurance processes
Signed:	Bryan Alonzo	

For Axys Internal Use Only [XSL Template: Form1A.xsl; Created: 27-Aug-2010 11:49:42; Application: XMLTransformer-1.10.25; Report Filename: 1613_DIOXINS_1613DB225_L14884-37_Form1A_DB03_111S5_SJ1179614.html; Workgroup: WG33419; Design ID: 699]

Form 1A PCDD/PCDF ANALYSIS REPORT

CLIENT SAMPLE NO. SDS-PB-09 Sample Collection: 08-Jun-2010 15:58

FIDALGO BAY, CUSTOM

PLYWOOD DX STUDY

L14884-38 (A)

10.7 g (dry)

05-Aug-2010

HR GC/MS

DX0B_169B S: 8

DX0B_169B S: 4

DX0B_169 S: 1

DB5

AXYS ANALYTICAL SERVICES

2045 MILLS RD., SIDNEY, B.C., CANADA V8L 5X2 TEL (250) 655-5800 FAX (250) 655-5811

4406 Contract No.:

SOLID Matrix:

Sample Receipt Date: 17-Jun-2010

Extraction Date:

Analysis Date:

Extract Volume (uL): 20

Injection Volume (uL): 1.0

Dilution Factor: N/A

Concentration Units:

22-Jul-2010

pg/g (dry weight basis)

06-Aug-2010 Time: 04:20:44

GC Column ID:

Sample Data Filename:

Initial Calibration Date:

Blank Data Filename:

Cal. Ver. Data Filename:

% Moisture:

Project No.

Lab Sample I.D.:

Sample Size:

Instrument ID:

16.4

COMPOUND	LAB FLAG ¹	CONCENTRATION FOUND	DETECTION LIMIT	ION ABUND. RATIO ²	RRT ²
2,3,7,8-TCDD	U		0.0466		
1,2,3,7,8-PECDD ³	J	0.054	0.0466	0.60	1.000
1,2,3,4,7,8-HXCDD	U		0.0466		
1,2,3,6,7,8-HXCDD	KJ	0.103	0.0466	0.98	1.000
1,2,3,7,8,9-HXCDD	KJ	0.102	0.0466	0.76	1.009
1,2,3,4,6,7,8-HPCDD	ВЈ	0.636	0.0466	1.00	1.000
OCDD	BJ	3.51	0.0466	0.88	1.000
2,3,7,8-TCDF	KJ	0.078	0.0466	0.61	1.001
1,2,3,7,8-PECDF	U		0.0466		
2,3,4,7,8-PECDF	BJ	0.056	0.0466	1.60	1.001
1,2,3,4,7,8-HXCDF	U		0.0466		
1,2,3,6,7,8-HXCDF	U		0.0466		
1,2,3,7,8,9-HXCDF	U		0.0466		
2,3,4,6,7,8-HXCDF	ΚJ	0.057	0.0466	1.86	1.000
1,2,3,4,6,7,8-HPCDF	J	0.225	0.0466	0.93	1.000
1,2,3,4,7,8,9-HPCDF	U		0.0466		
OCDF	BJ	0.378	0.0466	0.88	1.002
TOTAL TETRA-DIOXINS	U		0.0466		
TOTAL PENTA-DIOXINS		0.054	0.0466		
TOTAL HEXA-DIOXINS		0.553	0.0466		
TOTAL HEPTA-DIOXINS		1.49	0.0466		
TOTAL TETRA-FURANS	U		0.0466		
TOTAL PENTA-FURANS	В	0.132	0.0466		
TOTAL HEXA-FURANS		0.185	0.0466		
TOTAL HEPTA-FURANS		0.429	0.0466		

⁽¹⁾ Where applicable, custom lab flags have been used on this report; U = not detected; K = peak detected but did not meet quantification criteria, result reported represents the estimated maximum possible concentration; B = analyte found in sample and the associated blank; J = concentration less than LMCL.

These data are validated and reported as accurate,	true and compliant	with AXYS Analytical	Services Ltd. q	uality assurance	orocesses.
Signed:	Bryan	Alonzo			

For Axys Internal Use Only [XSL Template: Form1A.xsl; Created: 27-Aug-2010 11:52:06; Application: XMLTransformer-1.10.25; Report Filename: 1613_DIOXINS_1613DB5_L14884-38_Form1A_DX0B_169BS8_SJ1179399.html; Workgroup: WG33419; Design ID: 699]

⁽²⁾ Contract-required limits for RRTs and ion abundance ratios are specified in Tables 2 and 9, respectively, Method 1613.

⁽³⁾ Alternate confirmation and quantitation ions used for native and labeled PECDD.

These pages are part of a larger report that may contain information necessary for full data evaluation. Results reported relate only to the sample tested. Results are compliant with NELAP where specific accreditation is held.

Form 1A PCDD/PCDF ANALYSIS REPORT

CLIENT SAMPLE NO. SDS-PB-09 Sample Collection: 08-Jun-2010 15:58

AXYS ANALYTICAL SERVICES

2045 MILLS RD., SIDNEY, B.C., CANADA V8L 5X2 TEL (250) 655-5800 FAX (250) 655-5811

Contract No.: 4406

Matrix: SOLID

Sample Receipt Date: 17-Jun-2010

Extraction Date: 22-Jul-2010

Analysis Date:

Extract Volume (uL): 20

Injection Volume (uL): 2.0

Dilution Factor: N/A

Concentration Units: pg/g (dry weight basis)

Project No.

Instrument ID:

% Moisture:

FIDALGO BAY, CUSTOM

PLYWOOD DX STUDY

Lab Sample I.D.: L14884-38 i (A)

Sample Size: 10.7 g (dry)

Initial Calibration Date:

HR GC/MS

GC Column ID: DB225

Sample Data Filename:

Blank Data Filename:

DB03_110 S: 5

DB03_110 S: 2

DB03_110 S: 14

13-Jul-2010

Cal. Ver. Data Filename:

16.4

COMPOUND LAB FLAG 1 CONCENTRATION DETECTION ION ABUND. RRT 2 FOUND LIMIT RATIO 2

2,3,7,8-TCDF U 0.134

11-Aug-2010 Time: 04:22:11

(1) Where applicable, custom lab flags have been used on this report; U = not detected.

(2) Contract-required limits for RRTs and ion abundance ratios are specified in Tables 2 and 9, respectively, Method 1613.

These data are validated and reported as accurate, true and compliant with AXYS Analytical Services Ltd. quality assurance processes.

Signed: _____Bryan Alonzo______

For Axys Internal Use Only [XSL Template: Form1A.xsl; Created: 27-Aug-2010 11:49:42; Application: XMLTransformer-1.10.25; Report Filename: 1613_DIOXINS_1613DB225_L14884-38_Form1A_DB03_110S14_SJ1179604.html; Workgroup: WG33419; Design ID: 699]

Form 1A PCDD/PCDF ANALYSIS REPORT

CLIENT SAMPLE NO. SDS-FB-01 Sample Collection: 08-Jun-2010 10:03

AXYS ANALYTICAL SERVICES

2045 MILLS RD., SIDNEY, B.C., CANADA V8L 5X2 TEL (250) 655-5800 FAX (250) 655-5811

4406 Contract No.:

SOLID Matrix:

Sample Receipt Date: 17-Jun-2010

Extraction Date: 22-Jul-2010

10-Aug-2010 Time: 16:52:44 **Analysis Date:**

pg/g (dry weight basis)

Extract Volume (uL): 20

Injection Volume (uL): 1.0

Dilution Factor: N/A

Concentration Units:

Lab Sample I.D.:

Project No.

FIDALGO BAY, CUSTOM PLYWOOD DX STUDY

L14884-40

05-Aug-2010

HR GC/MS

DX0B_169B S: 4

Sample Size: 10.8 g (dry)

Initial Calibration Date:

Instrument ID:

GC Column ID: DB5

Sample Data Filename:

DX0B_177 S: 11

Blank Data Filename:

Cal. Ver. Data Filename: DX0B_177 S: 1

% Moisture:

25.3

COMPOUND	LAB FLAG ¹	CONCENTRATION FOUND	DETECTION LIMIT	ION ABUND. RATIO ²	RRT ²
2,3,7,8-TCDD	КJ	0.081	0.0464	0.56	1.001
1,2,3,7,8-PECDD ³	ΚJ	0.144	0.0464	0.47	1.000
1,2,3,4,7,8-HXCDD	ΚJ	0.129	0.0464	1.70	1.000
1,2,3,6,7,8-HXCDD	KJ	0.691	0.0464	1.03	1.000
1,2,3,7,8,9-HXCDD	J	0.477	0.0464	1.18	1.010
1,2,3,4,6,7,8-HPCDD	BJ	4.23	0.0464	1.13	1.000
OCDD	В	23.5	0.0464	0.91	1.000
2,3,7,8-TCDF	J	0.414	0.0464	0.70	1.002
1,2,3,7,8-PECDF	ΚJ	0.063	0.0464	1.22	1.001
2,3,4,7,8-PECDF	BJ	0.120	0.0464	1.40	1.000
1,2,3,4,7,8-HXCDF	J	0.103	0.0464	1.09	1.000
1,2,3,6,7,8-HXCDF	ΚJ	0.071	0.0464	1.04	1.000
1,2,3,7,8,9-HXCDF	U		0.0464		
2,3,4,6,7,8-HXCDF	ΚJ	0.081	0.0464	1.72	1.000
1,2,3,4,6,7,8-HPCDF	J	1.02	0.0464	0.95	1.000
1,2,3,4,7,8,9-HPCDF	ΚJ	0.089	0.0464	1.53	1.000
OCDF	BJ	1.58	0.0464	0.91	1.002
TOTAL TETRA-DIOXINS		0.362	0.0464		
TOTAL PENTA-DIOXINS		0.670	0.0464		
TOTAL HEXA-DIOXINS		4.63	0.0464		
TOTAL HEPTA-DIOXINS		9.95	0.0464		
TOTAL TETRA-FURANS		1.57	0.0464		
TOTAL PENTA-FURANS	В	1.09	0.0464		
TOTAL HEXA-FURANS		1.12	0.0464		
TOTAL HEPTA-FURANS		2.39	0.0464		

⁽¹⁾ Where applicable, custom lab flags have been used on this report; U = not detected; K = peak detected but did not meet quantification criteria, result reported represents the estimated maximum possible concentration; B = analyte found in sample and the associated blank; J = concentration less than LMCL.

These data are validated and reported as accurate,	true and compliant with AXYS Analytica	al Services Ltd. quality assurance processes.
Signed:	Brvan Alonzo	

For Axys Internal Use Only [XSL Template: Form1A.xsl; Created: 27-Aug-2010 11:52:06; Application: XMLTransformer-1.10.25; Report Filename: 1613_DIOXINS_1613DB5_L14884-40_Form1A_DX0B_177S11_SJ1179430.html; Workgroup: WG33419; Design ID: 699]

⁽²⁾ Contract-required limits for RRTs and ion abundance ratios are specified in Tables 2 and 9, respectively, Method 1613.

⁽³⁾ Alternate confirmation and quantitation ions used for native and labeled PECDD.

Form 1A PCDD/PCDF ANALYSIS REPORT

CLIENT SAMPLE NO. SDS-FB-01 Sample Collection: 08-Jun-2010 10:03

AXYS ANALYTICAL SERVICES

2045 MILLS RD., SIDNEY, B.C., CANADA V8L 5X2 TEL (250) 655-5800 FAX (250) 655-5811

Contract No.: 4406

Project No.

FIDALGO BAY, CUSTOM PLYWOOD DX STUDY

L14884-40 i

Matrix: SOLID

17 Jun 2010

Sample Size:

Lab Sample I.D.:

10.8 g (dry)

Sample Receipt Date: 17-Jun-2010

Initial Calibration Date:

13-Jul-2010

Extraction Date:
Analysis Date:

22-Jul-2010

Instrument ID:

HR GC/MS

GC Column ID:

DB225

Extract Volume (uL):

20

Sample Data Filename:

DB03_111 S: 7

Injection Volume (uL):

2.0

Blank Data Filename:

DB03_110 S: 5

ION ADUND

Dilution Factor:

N/A

Cal. Ver. Data Filename:

DB03_111 S: 2

25.3

Concentration Units:

COMPOUND

pg/g (dry weight basis)

11-Aug-2010 Time: 11:56:32

% Moisture:

COMPOUND	LAB FLAG '	FOUND	LIMIT	RATIO ²	RRT ²
2,3,7,8-TCDF	КJ	0.201	0.138	1.02	1.001

ONCENTE ATION

These data are validated and reported as accurate	, true and compliant	with AXYS Analytical Ser-	vices Ltd. quality assuran	ce processes.
Signed:	Bryan	Alonzo		

For Axys Internal Use Only [XSL Template: Form1A.xsl; Created: 27-Aug-2010 11:49:42; Application: XMLTransformer-1.10.25; Report Filename: 1613_DIOXINS_1613DB225_L14884-40_Form1A_DB03_111S7_SJ1179616.html; Workgroup: WG33419; Design ID: 699]

⁽¹⁾ Where applicable, custom lab flags have been used on this report; K = peak detected but did not meet quantification criteria, result reported represents the estimated maximum possible concentration; J = concentration less than LMCL.

⁽²⁾ Contract-required limits for RRTs and ion abundance ratios are specified in Tables 2 and 9, respectively, Method 1613.

Form 1A
PCDD/PCDF ANALYSIS REPORT

CLIENT SAMPLE NO. SDS-FB-02 Sample Collection: 08-Jun-2010 10:21

AXYS ANALYTICAL SERVICES

2045 MILLS RD., SIDNEY, B.C., CANADA V8L 5X2 TEL (250) 655-5800 FAX (250) 655-5811

Contract No.: 4406

Matrix: SOLID

Sample Receipt Date: 17-Jun-2010

Extraction Date: 22-Jul-2010

Extract Volume (uL): 20

Injection Volume (uL): 1.0

Dilution Factor: N/A

Concentration Units:

Analysis Date:

pg/g (dry weight basis)

20-Aug-2010 Time: 11:49:21

Project No.

Lab Sample I.D.:

GC Column ID:

FIDALGO BAY, CUSTOM PLYWOOD DX STUDY

L14884-41 L

Sample Size: 9.96 g (dry)

Initial Calibration Date:

Instrument ID: HR GC/MS

Sample Data Filename: DX0M_110 S: 18

Blank Data Filename:

DB5

Cal. Ver. Data Filename:

DX0M_110 S: 13

DX0B_169B S: 4

30-Jul-2010

% Moisture: 27.0

COMPOUND	LAB FLAG ¹	CONCENTRATION FOUND	DETECTION LIMIT	ION ABUND. RATIO ²	RRT ²
2,3,7,8-TCDD	КJ	0.087	0.0502	0.23	1.003
1,2,3,7,8-PECDD ³	KJG	0.107	0.0502	0.39	1.000
1,2,3,4,7,8-HXCDD	KJ	0.129	0.0857	2.05	1.001
1,2,3,6,7,8-HXCDD	J	0.488	0.0857	1.18	1.001
1,2,3,7,8,9-HXCDD	J	0.273	0.0857	1.15	1.000
1,2,3,4,6,7,8-HPCDD	BJ	4.49	0.0680	1.12	1.000
OCDD	В	33.7	0.170	0.94	1.000
2,3,7,8-TCDF	K	1.48	0.0502	0.60	1.001
1,2,3,7,8-PECDF	ΚJ	0.221	0.0858	1.06	1.002
2,3,4,7,8-PECDF	BJ	0.518	0.0858	1.46	1.000
1,2,3,4,7,8-HXCDF	ΚJ	0.174	0.171	2.57	1.000
1,2,3,6,7,8-HXCDF	U		0.171		
1,2,3,7,8,9-HXCDF	U		0.171		
2,3,4,6,7,8-HXCDF	U		0.171		
1,2,3,4,6,7,8-HPCDF	ΚJ	1.05	0.0502	1.37	1.000
1,2,3,4,7,8,9-HPCDF	ΚJ	0.208	0.0502	0.43	1.001
OCDF	KBJ	3.89	0.0502	0.74	1.002
TOTAL TETRA-DIOXINS	J	0.143	0.0502		
TOTAL PENTA-DIOXINS	J	0.102	0.0502		
TOTAL HEXA-DIOXINS	J	2.25	0.0857		
TOTAL HEPTA-DIOXINS		10.4	0.0680		
TOTAL TETRA-FURANS		3.64	0.0502		
TOTAL PENTA-FURANS	BJ	2.24	0.0858		
TOTAL HEXA-FURANS	J	0.646	0.171		
TOTAL HEPTA-FURANS	J	2.09	0.0502		

⁽¹⁾ Where applicable, custom lab flags have been used on this report; U = not detected; K = peak detected but did not meet quantification criteria, result reported represents the estimated maximum possible concentration; B = analyte found in sample and the associated blank; J = concentration less than LMCL; G = lock mass interference present.

These data are validated and reported as accurate,	true and compliant with AXYS Analytical Services Ltd. quality assurance processes.
Signed:	Bryan Alonzo

For Axys Internal Use Only [XSL Template: Form1A.xsl; Created: 27-Aug-2010 11:52:06; Application: XMLTransformer-1.10.25; Report Filename: 1613_DIOXINS_1613DB5_L14884-41_Form1A_DX0M_110S18_SJ1181972.html; Workgroup: WG33419; Design ID: 699]

⁽²⁾ Contract-required limits for RRTs and ion abundance ratios are specified in Tables 2 and 9, respectively, Method 1613.

⁽³⁾ Alternate confirmation and quantitation ions used for native and labeled PECDD.

These pages are part of a larger report that may contain information necessary for full data evaluation. Results reported relate only to the sample tested. Results are compliant with NELAP where specific accreditation is held.

Form 1A PCDD/PCDF ANALYSIS REPORT

CLIENT SAMPLE NO. SDS-FB-02 Sample Collection: 08-Jun-2010 10:21

AXYS ANALYTICAL SERVICES

2045 MILLS RD., SIDNEY, B.C., CANADA V8L 5X2 TEL (250) 655-5800 FAX (250) 655-5811

4406 Contract No.:

Matrix: **SOLID**

Sample Receipt Date: 17-Jun-2010

Extraction Date: 22-Jul-2010

Analysis Date:

Extract Volume (uL): 20

Injection Volume (uL): 2.0

Dilution Factor: N/A

Concentration Units: pg/g (dry weight basis) Project No.

Sample Size:

GC Column ID:

Lab Sample I.D.:

FIDALGO BAY, CUSTOM

PLYWOOD DX STUDY L14884-41 L

DB225

DB03_114A S: 16

DB03_110 S: 5

DB03_114A S: 2

9.96 g (dry)

Initial Calibration Date: 13-Jul-2010

Instrument ID:

HR GC/MS

Sample Data Filename:

Blank Data Filename:

Cal. Ver. Data Filename:

% Moisture: 27.0

COMPOUND	LAB FLAG ¹	CONCENTRATION FOUND	DETECTION LIMIT	ION ABUND. RATIO ²	RRT ²
2,3,7,8-TCDF	J	0.835	0.282	0.88	1.000

(1) Where applicable, custom lab flags have been used on this report; J = concentration less than LMCL.

20-Aug-2010 Time: 05:10:43

(2) Contract-required limits for RRTs and ion abundance ratios are specified in Tables 2 and 9, respectively, Method 1613.

These data are validated and reported as accurate,	true and compliant	with AXYS Analytical	Services Ltd. quality	assurance processes.
Signed:	Bryan	Alonzo		

For Axys Internal Use Only [XSL Template: Form1A.xsl; Created: 27-Aug-2010 11:49:42; Application: XMLTransformer-1.10.25; Report Filename: 1613_DIOXINS_1613DB225_L14884-41_Form1A_DB03_114AS16_SJ1184599.html; Workgroup: WG33419; Design ID: 699]

Form 1A PCDD/PCDF ANALYSIS REPORT

CLIENT SAMPLE NO. SDS-FB-06 Sample Collection: 08-Jun-2010 11:14

AXYS ANALYTICAL SERVICES

2045 MILLS RD., SIDNEY, B.C., CANADA V8L 5X2 TEL (250) 655-5800 FAX (250) 655-5811

Contract No.: 4406

Matrix: SOLID

Sample Receipt Date: 17-Jun-2010

Extraction Date: 22-Jul-2010

Analysis Date: 11-Aug-2010 **Time:** 11:20:07

Extract Volume (uL): 20

Injection Volume (uL): 1.0

Dilution Factor: N/A

Concentration Units: pg/g (dry weight basis)

Project No.

Lab Sample I.D.:

Initial Calibration Date:

Blank Data Filename:

Sample Size:

Instrument ID:

% Moisture:

FIDALGO BAY, CUSTOM PLYWOOD DX STUDY

PLIWOOD

L14884-45

9.87 g (dry)

05-Aug-2010

F

HR GC/MS

GC Column ID: DB5

Sample Data Filename: DX0B_179 S: 5

DX0B_169B S: 4

DX0B_179 S: 1

Cal. Ver. Data Filename: DX0

24.2

COMPOUND LAB FLAG 1 CONCENTRATION DETECTION

COMPOUND	LAB FLAG ¹	CONCENTRATION FOUND	DETECTION LIMIT	ION ABUND. RATIO ²	RRT ²
2,3,7,8-TCDD	KJ	0.120	0.0507	0.60	1.001
1,2,3,7,8-PECDD ³	ΚJ	0.157	0.0507	0.79	1.000
1,2,3,4,7,8-HXCDD	J	0.144	0.0520	1.17	1.000
1,2,3,6,7,8-HXCDD	J	0.594	0.0520	1.15	1.000
1,2,3,7,8,9-HXCDD	KJ	0.365	0.0520	1.49	1.010
1,2,3,4,6,7,8-HPCDD	BJ	3.68	0.0610	1.01	1.000
OCDD	В	22.9	0.0507	0.92	1.000
2,3,7,8-TCDF	J	0.340	0.0507	0.81	1.001
1,2,3,7,8-PECDF	J	0.057	0.0507	1.64	1.001
2,3,4,7,8-PECDF	KBJ	0.127	0.0507	1.04	1.000
1,2,3,4,7,8-HXCDF	ΚJ	0.093	0.0507	1.52	1.000
1,2,3,6,7,8-HXCDF	J	0.094	0.0507	1.20	1.000
1,2,3,7,8,9-HXCDF	U		0.0507		
2,3,4,6,7,8-HXCDF	ΚJ	0.051	0.0507	1.82	1.000
1,2,3,4,6,7,8-HPCDF	J	0.863	0.0583	1.07	1.000
1,2,3,4,7,8,9-HPCDF	ΚJ	0.096	0.0583	1.48	1.000
OCDF	BJ	1.71	0.0507	0.81	1.002
TOTAL TETRA-DIOXINS		0.646	0.0507		
TOTAL PENTA-DIOXINS		0.614	0.0507		
TOTAL HEXA-DIOXINS		4.39	0.0520		
TOTAL HEPTA-DIOXINS		8.62	0.0610		
TOTAL TETRA-FURANS		1.22	0.0507		
TOTAL PENTA-FURANS	В	0.426	0.0507		
TOTAL HEXA-FURANS		0.936	0.0507		
TOTAL HEPTA-FURANS		1.91	0.0583		

⁽¹⁾ Where applicable, custom lab flags have been used on this report; U = not detected; K = peak detected but did not meet quantification criteria, result reported represents the estimated maximum possible concentration; B = analyte found in sample and the associated blank; J = concentration less than LMCL.

These data are validated and reported as accurate,	true and compliant with AXYS Analytica	al Services Ltd. quality assurance processes.
Signed:	Brvan Alonzo	

For Axys Internal Use Only [XSL Template: Form1A.xsl; Created: 27-Aug-2010 11:52:06; Application: XMLTransformer-1.10.25; Report Filename: 1613_DIOXINS_1613DB5_L14884-45_Form1A_DX0B_179S5_SJ1179443.html; Workgroup: WG33419; Design ID: 699]

⁽²⁾ Contract-required limits for RRTs and ion abundance ratios are specified in Tables 2 and 9, respectively, Method 1613.

⁽³⁾ Alternate confirmation and quantitation ions used for native and labeled PECDD.

Form 1A PCDD/PCDF ANALYSIS REPORT

CLIENT SAMPLE NO. SDS-FB-06 Sample Collection: 08-Jun-2010 11:14

AXYS ANALYTICAL SERVICES

Matrix:

2045 MILLS RD., SIDNEY, B.C., CANADA V8L 5X2 TEL (250) 655-5800 FAX (250) 655-5811

Contract No.: 4406

SOLID

SOLID

17-Jun-2010 22-Jul-2010

Analysis Date: 03-Aug-2010 Time: 16:13:06

Extract Volume (uL): 20

Injection Volume (uL): 2.0

Dilution Factor: N/A

Concentration Units:

COMPOUND

Sample Receipt Date:

Extraction Date:

LAB FLAG 1

pg/g (dry weight basis)

Project No.

FIDALGO BAY, CUSTOM PLYWOOD DX STUDY

13-Jul-2010

HR GC/MS

DB03_099 S: 13

DB03_110 S: 5

DB03_099 S: 3

24.2

Lab Sample I.D.: L14884-45

Sample Size: 9.87 g (dry)

Initial Calibration Date:

Instrument ID:

GC Column ID: DB225

Sample Data Filename:

Blank Data Filename:

iank Data i nename.

Cal. Ver. Data Filename:

% Moisture:

ture:

DETECTION LIMIT

ION ABUND. RATIO ² RRT²

2,3,7,8-TCDF U 0.244

(1) Where applicable, custom lab flags have been used on this report; U = not detected.

(2) Contract-required limits for RRTs and ion abundance ratios are specified in Tables 2 and 9, respectively, Method 1613.

CONCENTRATION

FOUND

These data are validated and reported as accurate, true and compliant with AXYS Analytical Services Ltd. quality assurance processes.

Signed: _____Bryan Alonzo______

For Axys Internal Use Only [XSL Template: Form1A.xsl; Created: 27-Aug-2010 11:49:42; Application: XMLTransformer-1.10.25; Report Filename: 1613_DIOXINS_1613DB225_L14884-45_Form1A_DB03_099S13_SJ1179588.html; Workgroup: WG33419; Design ID: 699]

Form 1A PCDD/PCDF ANALYSIS REPORT

CLIENT SAMPLE NO. SDS-PB-09 (Duplicate) Sample Collection: 08-Jun-2010 15:58

AXYS ANALYTICAL SERVICES

2045 MILLS RD., SIDNEY, B.C., CANADA V8L 5X2 TEL (250) 655-5800 FAX (250) 655-5811

4406 Contract No.:

Matrix: **SOLID**

Sample Receipt Date: 17-Jun-2010

Extraction Date: 22-Jul-2010

06-Aug-2010 Time: 05:15:34 **Analysis Date:**

Extract Volume (uL): 20

Injection Volume (uL): 1.0

Dilution Factor: N/A

Concentration Units: pg/g (dry weight basis) Project No.

Lab Sample I.D.:

FIDALGO BAY, CUSTOM PLYWOOD DX STUDY

WG33419-103 (DUP L14884-38)

Sample Size: 10.9 g (dry)

Initial Calibration Date: 05-Aug-2010

HR GC/MS Instrument ID:

GC Column ID: DB5

Sample Data Filename: DX0B_169B S: 9

Blank Data Filename: DX0B_169B S: 4

Cal. Ver. Data Filename: DX0B_169 S: 1

% Moisture: 14.5

COMPOUND	LAB FLAG ¹	CONCENTRATION FOUND	DETECTION LIMIT	ION ABUND. RATIO ²	RRT ²
2,3,7,8-TCDD	KJ	0.060	0.0523	0.53	1.001
1,2,3,7,8-PECDD ³	J	0.118	0.0458	0.53	1.000
1,2,3,4,7,8-HXCDD	J	0.110	0.0851	1.38	1.000
1,2,3,6,7,8-HXCDD	KJ	0.120	0.0851	0.83	1.000
1,2,3,7,8,9-HXCDD	J	0.140	0.0851	1.26	1.010
1,2,3,4,6,7,8-HPCDD	BJ	0.571	0.0458	0.98	1.000
OCDD	BJ	3.37	0.0702	0.79	1.000
2,3,7,8-TCDF	J	0.084	0.0458	0.83	1.001
1,2,3,7,8-PECDF	KJ	0.116	0.0458	0.90	1.001
2,3,4,7,8-PECDF	KBJ	0.123	0.0458	1.12	1.000
1,2,3,4,7,8-HXCDF	KJ	0.103	0.0529	1.56	1.000
1,2,3,6,7,8-HXCDF	J	0.067	0.0529	1.38	1.000
1,2,3,7,8,9-HXCDF	KJ	0.083	0.0529	2.36	1.000
2,3,4,6,7,8-HXCDF	J	0.105	0.0529	1.10	1.001
1,2,3,4,6,7,8-HPCDF	KJ	0.192	0.0657	1.21	1.000
1,2,3,4,7,8,9-HPCDF	KJ	0.094	0.0657	0.69	1.000
OCDF	BJ	0.396	0.0539	0.96	1.002
TOTAL TETRA-DIOXINS	U		0.0523		
TOTAL PENTA-DIOXINS		0.118	0.0458		
TOTAL HEXA-DIOXINS		0.250	0.0851		
TOTAL HEPTA-DIOXINS		1.22	0.0458		
TOTAL TETRA-FURANS		0.084	0.0458		
TOTAL PENTA-FURANS	U		0.0458		
TOTAL HEXA-FURANS		0.248	0.0529		
TOTAL HEPTA-FURANS	U		0.0657		

⁽¹⁾ Where applicable, custom lab flags have been used on this report; U = not detected; K = peak detected but did not meet quantification criteria, result reported represents the estimated maximum possible concentration; B = analyte found in sample and the associated blank; J = concentration less than LMCL.

These data are validated and reported as accurate,	true and compliant with AXYS Analytical Services Ltd. quality assurance processes.
Signed:	Bryan Alonzo

For Axys Internal Use Only [XSL Template: Form1A.xsl; Created: 27-Aug-2010 11:52:06; Application: XMLTransformer-1.10.25; Report Filename: 1613_DIOXINS_1613DB5_WG33419-103_Form1A_DX0B_169BS9_SJ1179400.html; Workgroup: WG33419; Design ID: 699]

⁽²⁾ Contract-required limits for RRTs and ion abundance ratios are specified in Tables 2 and 9, respectively, Method 1613.

⁽³⁾ Alternate confirmation and quantitation ions used for native and labeled PECDD.

These pages are part of a larger report that may contain information necessary for full data evaluation. Results reported relate only to the sample tested. Results are compliant with NELAP where specific accreditation is held.

Form 1A PCDD/PCDF ANALYSIS REPORT

CLIENT SAMPLE NO. SDS-PB-09 (Duplicate) Sample Collection: 08-Jun-2010 15:58

AXYS ANALYTICAL SERVICES

Matrix:

2045 MILLS RD., SIDNEY, B.C., CANADA V8L 5X2 TEL (250) 655-5800 FAX (250) 655-5811

Contract No.: 4406

Lab Sample I.D.:

Project No.

FIDALGO BAY, CUSTOM PLYWOOD DX STUDY

PLYWOOD DX STUDY WG33419-103 i (DUP L14884-38)

Sample Size: 10.9 g (dry)

Sample Receipt Date: 17-Jun-2010

SOLID

Initial Calibration Date: 13-Jul-2010

Extraction Date: 22-Jul-2010 **Instrument ID:** HR GC/MS

Analysis Date: 11-Aug-2010 **Time:** 04:58:45 **GC Column ID:** DB225

Extract Volume (uL): 20 Sample Data Filename: DB03_110 S: 15

Injection Volume (uL): 2.0 Blank Data Filename: DB03_110 S: 5

Dilution Factor: N/A Cal. Ver. Data Filename: DB03_110 S: 2

Concentration Units: pg/g (dry weight basis) % Moisture: 14.5

COMPOUND	LAB FLAG ¹	CONCENTRATION FOUND	DETECTION LIMIT	ION ABUND. RATIO ²	RRT ²
2,3,7,8-TCDF	U		0.390		

(1) Where applicable, custom lab flags have been used on this report; U = not detected.

(2) Contract-required limits for RRTs and ion abundance ratios are specified in Tables 2 and 9, respectively, Method 1613.

These data are validated and reported as accurate,	true and compliant	with AXYS Analytical Serv	vices Ltd. quality a	issurance processes.
Signed:	Bryan	Alonzo		

For Axys Internal Use Only [XSL Template: Form1A.xsl; Created: 27-Aug-2010 11:49:42; Application: XMLTransformer-1.10.25; Report Filename: 1613_DIOXINS_1613DB225_WG33419-103_Form1A_DB03_110S15_SJ1179605.html; Workgroup: WG33419; Design ID: 699]

PCDD/PCDF ANALYSIS REPORT RELATIVE PERCENT DIFFERENCE

AXYS ANALYTICAL SERVICES

2045 MILLS RD., SIDNEY, B.C., CANADA V8L 5X2 TEL (250) 655-5800 FAX (250) 655-5811

Contract No.: 4406

Client ID: SDS-PB-09

Project No. FIDALGO BAY, CUSTOM PLYWOOD DX STUDY

Concentration Units: pg/g (dry weight basis)

	L14884	4-38 (A)	WG334	119-103		
COMPOUND	LAB FLAG ¹	CONC. FOUND	LAB FLAG ¹	CONC. FOUND	MEAN	RELATIVE PERCENT DIFFERENCE
2,3,7,8-TCDD	U		ΚJ	0.060		
1,2,3,7,8-PECDD	J	0.054	J	0.118	0.086	74.4
1,2,3,4,7,8-HXCDD	U		J	0.110		
1,2,3,6,7,8-HXCDD	ΚJ	0.103	ΚJ	0.120		
1,2,3,7,8,9-HXCDD	ΚJ	0.102	J	0.140		
1,2,3,4,6,7,8-HPCDD	J	0.636	J	0.571	0.604	10.8
OCDD	J	3.51	J	3.37	3.44	4.16
2,3,7,8-TCDF	U		U			
1,2,3,7,8-PECDF	U		ΚJ	0.116		
2,3,4,7,8-PECDF	J	0.056	ΚJ	0.123		
1,2,3,4,7,8-HXCDF	U		ΚJ	0.103		
1,2,3,6,7,8-HXCDF	U		J	0.067		
1,2,3,7,8,9-HXCDF	U		ΚJ	0.083		
2,3,4,6,7,8-HXCDF	ΚJ	0.057	J	0.105		
1,2,3,4,6,7,8-HPCDF	J	0.225	ΚJ	0.192		
1,2,3,4,7,8,9-HPCDF	U		ΚJ	0.094		
OCDF	J	0.378	J	0.396	0.387	4.65

(1) Where applicable, custom lab flags have been used on this report; U = not detected; K = peak detected but did not meet quantification criteria, result reported represents the estimated maximum possible concentration; J = concentration less than LMCL.

These data are validated and reported as accurate,	true and compliant with AXYS Analytica	Services Ltd. quality assurance processes.
Signed:	Brvan Alonzo	

For Axys Internal Use Only [XSL Template: RPD.xsl; Created: 27-Aug-2010 11:59:08; Application: XMLTransformer-1.10.25; Report Filename: RPD_DIOXINS_1613-RPD_WG33419-103_L14884-38_.html; Workgroup: WG33419; Design ID: 699]

Form 1A
PCDD/PCDF ANALYSIS REPORT

Project No.

CLIENT SAMPLE NO. Lab Blank Sample Collection: N/A

N/A

WG33419-101

AXYS ANALYTICAL SERVICES

2045 MILLS RD., SIDNEY, B.C., CANADA V8L 5X2 TEL (250) 655-5800 FAX (250) 655-5811

Contract No.: 4406 Lab Sample I.D.:

Matrix: SOLID Sample Size: 10.0 g

Sample Receipt Date: N/A Initial Calibration Date: 05-Aug-2010

Extraction Date: 22-Jul-2010 **Instrument ID:** HR GC/MS

Analysis Date: 06-Aug-2010 **Time:** 00:41:14 **GC Column ID:** DB5

Extract Volume (uL): 20 Sample Data Filename: DX0B_169B S: 4

Injection Volume (uL): 1.0 Blank Data Filename: DX0B_169B S: 4

Dilution Factor: N/A Cal. Ver. Data Filename: DX0B_169 S: 1

Concentration Units: pg/g

COMPOUND	LAB FLAG ¹	CONCENTRATION FOUND	DETECTION LIMIT	ION ABUND. RATIO ²	RRT ²
2,3,7,8-TCDD	NQ				
1,2,3,7,8-PECDD ³	U		0.0500		
1,2,3,4,7,8-HXCDD	U		0.0500		
1,2,3,6,7,8-HXCDD	U		0.0500		
1,2,3,7,8,9-HXCDD	U		0.0500		
1,2,3,4,6,7,8-HPCDD	KJ	0.078	0.0500	0.71	1.000
OCDD	J	0.332	0.0500	0.90	1.000
2,3,7,8-TCDF	U		0.0500		
1,2,3,7,8-PECDF	U		0.0500		
2,3,4,7,8-PECDF	J	0.061	0.0500	1.75	1.000
1,2,3,4,7,8-HXCDF	U		0.0500		
1,2,3,6,7,8-HXCDF	U		0.0500		
1,2,3,7,8,9-HXCDF	U		0.0500		
2,3,4,6,7,8-HXCDF	U		0.0500		
1,2,3,4,6,7,8-HPCDF	U		0.0500		
1,2,3,4,7,8,9-HPCDF	U		0.0500		
OCDF	J	0.069	0.0500	0.82	1.002
TOTAL TETRA-DIOXINS	NQ				
TOTAL PENTA-DIOXINS	U		0.0500		
TOTAL HEXA-DIOXINS	U		0.0500		
TOTAL HEPTA-DIOXINS	U		0.0500		
TOTAL TETRA-FURANS	U		0.0500		
TOTAL PENTA-FURANS		0.061	0.0500		
TOTAL HEXA-FURANS	U		0.0500		
TOTAL HEPTA-FURANS	U		0.0500		

⁽¹⁾ Where applicable, custom lab flags have been used on this report; U = not detected; K = peak detected but did not meet quantification criteria, result reported represents the estimated maximum possible concentration; J = concentration less than LMCL; NQ = data not quantifiable.

These data are validated and reported as accurate,	, true and compliant with AXYS Analytical Services Ltd. quality assurance process	es.
Signed:	Bryan Alonzo	

For Axys Internal Use Only [XSL Template: Form1A.xsl; Created: 27-Aug-2010 11:52:06; Application: XMLTransformer-1.10.25; Report Filename: $1613_DIOXINS_1613DB5_WG33419$ - $101_Form1A_DX0B_169BS4_SJ1179394$.html; Workgroup: WG33419; Design ID: 699]

These pages are part of a larger report that may contain information necessary for full data evaluation. Results reported relate only to the sample tested. Results are compliant with NELAP where specific accreditation is held.

⁽²⁾ Contract-required limits for RRTs and ion abundance ratios are specified in Tables 2 and 9, respectively, Method 1613.

⁽³⁾ Alternate confirmation and quantitation ions used for native and labeled PECDD.

Form 8A PCDD/PCDF ONGOING PRECISION AND RECOVERY (OPR)

AXYS ANALYTICAL SERVICES

2045 MILLS RD., SIDNEY, B.C., CANADA V8L 5X2 TEL (250) 655-5800 FAX (250) 655-5811

Contract No.: 4406 OPR Data Filename: DX0B_169B S: 1

Matrix: SOLID Lab Sample I.D.: WG33419-102 i

Extraction Date: 22-Jul-2010 **Analysis Date:** 05-Aug-2010 **Time:** 21:56:51

ALL CONCENTRATIONS REPORTED ON THIS FORM ARE CONCENTRATIONS IN EXTRACT, BASED ON A 20 uL EXTRACT VOLUME.

COMPOUND	LAB FLAG ¹	ION ABUND. RATIO ²	SPIKE CONC. (ng/mL)	CONC. FOUND (ng/mL)	OPR CONC. LIMITS ³ (ng/mL)	% RECOVERY
COMI COND	ILAG	KATIO	(lig/liiL)	(lig/iiiL)	(lig/iiiL)	70 KLOOVEKT
2,3,7,8-TCDD		0.83	10.0	9.08	6.70 - 15.8	90.8
1,2,3,7,8-PECDD 4		0.62	52.0	50.3	36.4 - 73.8	96.7
1,2,3,4,7,8-HXCDD		1.28	56.5	56.4	39.6 - 92.7	99.7
1,2,3,6,7,8-HXCDD		1.27	55.5	56.2	42.2 - 74.4	101
1,2,3,7,8,9-HXCDD		1.27	54.0	54.2	34.6 - 87.5	100
1,2,3,4,6,7,8-HPCDD		1.06	47.5	45.9	33.3 - 66.5	96.6
OCDD		0.90	100	99.2	78.0 - 144	99.2
2,3,7,8-TCDF		0.78	10.7	11.0	8.03 - 16.9	103
1,2,3,7,8-PECDF		1.57	46.0	47.0	36.8 - 61.6	102
2,3,4,7,8-PECDF		1.57	47.0	48.9	32.0 - 75.2	104
1,2,3,4,7,8-HXCDF		1.24	50.0	48.3	36.0 - 67.0	96.6
1,2,3,6,7,8-HXCDF		1.25	47.5	46.4	39.9 - 61.8	97.6
1,2,3,7,8,9-HXCDF		1.26	52.5	50.7	41.0 - 68.3	96.6
2,3,4,6,7,8-HXCDF		1.26	53.0	51.6	37.1 - 82.7	97.3
1,2,3,4,6,7,8-HPCDF		1.04	50.0	54.4	41.0 - 61.0	109
1,2,3,4,7,8,9-HPCDF		1.02	50.0	49.7	39.0 - 69.0	99.4
OCDF		0.91	104	96.4	65.5 - 177	92.7

⁽¹⁾ Where applicable, custom lab flags have been used on this report.

- (2) Contract-required Ion Abundance Ratios are specified in Table 9, Method 1613.
- (3) Contract-required concentration range as determined from the percent of the test concentration in Table 6, Method 1613, under OPR.
- (4) Alternate confirmation and quantitation ions used for native and labeled PECDD.

These data are validated and reported as accurate,	, true and compliant	with AXYS Analytical	Services Ltd. qua	ality assurance processes.
Signed:	Bryan	Alonzo		

For Axys Internal Use Only [XSL Template: Form8A.xsl; Created: 27-Aug-2010 11:52:06; Application: XMLTransformer-1.10.25; Report Filename: $1613_DIOXINS_1613DB5_WG33419-102_Form8A_SJ1177649.html$; Workgroup: WG33419; Design ID: 699]

Form 8G

PCDD/PCDF CERTIFIED REFERENCE MATERIAL (CRM) REPORT FOR NIST SRM 1944

AXYS ANALYTICAL SERVICES

2045 MILLS RD., SIDNEY, B.C., CANADA V8L 5X2 TEL (250) 655-5800 FAX (250) 655-5811

4406 Contract No.: Lab Sample I.D.: WG33419-104 Matrix: SOLID Sample Size: 1.01 g (dry) **Extraction Date:** 22-Jul-2010 **Initial Calibration Date:** 05-Aug-2010 **Analysis Date:** 11-Aug-2010 Time: 10:25:19 Instrument ID: HR GC/MS Extract Volume (uL): GC Column ID: DB5

Injection Volume (uL):1.0CRM Data Filename:DX0B_179 S: 4Dilution Factor:N/ABlank Data Filename:DX0B_169B S: 4Concentration Units:pg/g (dry weight basis)Cal. Ver. Data Filename:DX0B_179 S: 1

COMPOUND	LAB DETERMINED FLAG ¹	CERTIFIED / REFERENCE
2.2.7.9 TCDD	133	122 1/ 0
2,3,7,8-TCDD		133 +/- 9
1,2,3,7,8-PECDD ²	20.5	19 +/- 2
1,2,3,4,7,8-HXCDD	27.0	26 +/- 3
1,2,3,6,7,8-HXCDD	63.4	56 +/- 6
1,2,3,7,8,9-HXCDD	61.6	53 +/- 7
1,2,3,4,6,7,8-HPCDD	765	800 +/- 70
OCDD	5800	5800 +/- 700
2,3,7,8-TCDF	182	39 +/- 15
1,2,3,7,8-PECDF	51.3	45 +/- 7
2,3,4,7,8-PECDF	48.3	45 +/- 4
1,2,3,4,7,8-HXCDF	206	220 +/- 30
1,2,3,6,7,8-HXCDF	89.7	90 +/- 10
1,2,3,7,8,9-HXCDF	3.24	19 +/- 18
2,3,4,6,7,8-HXCDF	48.9	54 +/- 6
1,2,3,4,6,7,8-HPCDF	931	1000 +/- 100
1,2,3,4,7,8,9-HPCDF	36.1	40 +/- 6
OCDF	1150	1000 +/- 100

⁽¹⁾ Where applicable, custom lab flags have been used on this report.

These data are validated and reported as accurate,	true and compliant	with AXYS Analytical	Services Ltd. q	uality assurance processes.
Signed:	Bryan	Alonzo		

For Axys Internal Use Only [XSL Template: Form8G.xsl; Created: 27-Aug-2010 11:52:06; Application: XMLTransformer-1.10.25; Report Filename: 1613_DIOXINS_1613DB5_WG33419-104_Form8G_SJ1179442.html; Workgroup: WG33419; Design ID: 699]

⁽²⁾ Alternate confirmation and quantitation ions used for native and labeled PECDD.

Form 8G

PCDD/PCDF CERTIFIED REFERENCE MATERIAL (CRM) REPORT FOR NIST SRM 1944

AXYS	ANAI	_YTICAL	SERVI	CES
------	------	---------	-------	-----

2045 MILLS RD., SIDNEY, B.C., CANADA V8L 5X2 TEL (250) 655-5800 FAX (250) 655-5811

Contract No.: 4406 Lab Sample I.D.: WG33419-104 i Matrix: SOLID Sample Size: 1.01 g (dry) **Extraction Date:** 22-Jul-2010 **Initial Calibration Date:** 13-Jul-2010 **Analysis Date:** 10-Aug-2010 Time: 23:29:13 Instrument ID: HR GC/MS Extract Volume (uL): 20 GC Column ID: DB225

Injection Volume (uL):2.0CRM Data Filename:DB03_110 S: 6Dilution Factor:N/ABlank Data Filename:DB03_110 S: 5Concentration Units:pg/g (dry weight basis)Cal. Ver. Data Filename:DB03_110 S: 2

COMPOUND LAB DETERMINED CERTIFIED / FLAG 1 REFERENCE

2,3,7,8-TCDF 32.5 39 +/- 15

(1) Where applicable, custom lab flags have been used on this report.

These data are validated and reported as accurate	, true and compliant with AX	(YS Analytical Services Ltd. quality	assurance processes.
Signed:	Bryan Alo	nzo	

 $For Axys Internal Use Only [XSL Template: Form8G.xsl; Created: 27-Aug-2010 11:49:42; Application: XMLTransformer-1.10.25; Report Filename: 1613_DIOXINS_1613DB225_WG33419-104_Form8G_SJ1179596.html; Workgroup: WG33419; Design ID: 699]$

BATCH SUMMARY

Batch ID: WG33420 Date: 09-Sep-2010 Analysis Type: Dioxin/Furan Matrix Type: Solid

BATCH MAKEUP

4406 Samples: L14884-50 SDS-FB-10 L15027-7 10654011 10654015 L15027-9 L15027-10 10654021 L15027-11 10654022

Blank:

WG33420-101

Reference or Spike: WG33420-102

Comments:

Contract:

- 1. The results are not blank-corrected.
- 2. The recoveries of the cleanup standard 37CI-2,3,7,8-TCDD in the method blank and in samples 10654011, 10654021, 10654015 fell below the lower method control limit, and are flagged "V" accordingly. The cleanup standard is used to monitor the performance of the extract cleanup, and no analytes are quantified against it.
- 3. The recoveries of 13C-labeled TCDF, 1,2,3,4,7,8-HxCDD, and 1,2,3,7,8,9-HxCDF in sample 10654015 fell below the lower method control limits, and are flagged "V" accordingly. The results are recovery-corrected, the labeled compound recoveries, although below the lower method control limit, are sufficient for accurate quantification.

Copyright AXYS Analytical Services Ltd February 1993

Form 1A PCDD/PCDF ANALYSIS REPORT

CLIENT SAMPLE NO. SDS-FB-10 Sample Collection: 08-Jun-2010 14:53

AXYS ANALYTICAL SERVICES

2045 MILLS RD., SIDNEY, B.C., CANADA V8L 5X2 TEL (250) 655-5800 FAX (250) 655-5811

Contract No.: 4406

Matrix: SOLID

Sample Receipt Date: 17-Jun-2010

Extraction Date: 23-Jul-2010

Analysis Date: 26-Aug-2010 **Time:** 01:06:43

Extract Volume (uL): 20

Injection Volume (uL): 1.0

Dilution Factor: N/A

Concentration Units: pg/g (dry weight basis)

Project No.

Lab Sample I.D.:

FIDALGO BAY, CUSTOM PLYWOOD DX STUDY

L14884-50 i2

DB5

Sample Size: 10.2 g (dry)

Initial Calibration Date: 30-Jul-2010

Instrument ID: HR GC/MS

GC Column ID:

Sample Data Filename: DX0M_112 S: 19

Blank Data Filename: DX01_175A S: 5

Cal. Ver. Data Filename: DX0M_112 S: 13

% Moisture: 44.4

COMPOUND	LAB FLAG ¹	CONCENTRATION FOUND	DETECTION LIMIT	ION ABUND. RATIO ²	RRT ²
2,3,7,8-TCDD	J	0.269	0.0543	0.68	1.002
1,2,3,7,8-PECDD ³	BJ	0.720	0.0617	0.65	1.001
1,2,3,4,7,8-HXCDD	ΚJ	0.649	0.0907	1.85	1.000
1,2,3,6,7,8-HXCDD	J	2.83	0.0907	1.15	1.001
1,2,3,7,8,9-HXCDD	J	2.18	0.0907	1.19	1.000
1,2,3,4,6,7,8-HPCDD	В	29.8	0.209	1.02	1.000
OCDD	В	205	0.282	0.88	1.000
2,3,7,8-TCDF		1.85	0.0587	0.73	1.001
1,2,3,7,8-PECDF	ΚJ	0.205	0.103	0.84	1.002
2,3,4,7,8-PECDF	J	0.470	0.103	1.39	1.001
1,2,3,4,7,8-HXCDF	J	0.243	0.115	1.13	1.001
1,2,3,6,7,8-HXCDF	ΚJ	0.344	0.115	0.46	1.001
1,2,3,7,8,9-HXCDF	U		0.115		
2,3,4,6,7,8-HXCDF	BJ	0.371	0.115	1.41	1.000
1,2,3,4,6,7,8-HPCDF	В	6.33	0.134	0.90	1.000
1,2,3,4,7,8,9-HPCDF	KBJ	0.475	0.134	0.80	1.001
OCDF	В	16.5	0.150	0.82	1.002
TOTAL TETRA-DIOXINS		8.39	0.0543		
TOTAL PENTA-DIOXINS		7.76	0.0617		
TOTAL HEXA-DIOXINS		33.8	0.0907		
TOTAL HEPTA-DIOXINS		116	0.209		
TOTAL TETRA-FURANS		7.50	0.0587		
TOTAL PENTA-FURANS		3.83	0.103		
TOTAL HEXA-FURANS		4.56	0.115		
TOTAL HEPTA-FURANS	В	16.8	0.134		

⁽¹⁾ Where applicable, custom lab flags have been used on this report; U = not detected; K = peak detected but did not meet quantification criteria, result reported represents the estimated maximum possible concentration; B = analyte found in sample and the associated blank; J = concentration less than LMCL.

These data are validated and reported as accurate,	true and compliant v	with AXYS Analytical	Services Ltd. quality	assurance processes.
Signed:	Brian	Watson		

For Axys Internal Use Only [XSL Template: Form1A.xsl; Created: 09-Sep-2010 14:48:07; Application: XMLTransformer-1.10.25; Report Filename: 1613_DIOXINS_1613DB5_L14884-50_Form1A_DX0M_112S19_SJ1185655.html; Workgroup: WG33420; Design ID: 699]

⁽²⁾ Contract-required limits for RRTs and ion abundance ratios are specified in Tables 2 and 9, respectively, Method 1613.

⁽³⁾ Alternate confirmation and quantitation ions used for native and labeled PECDD.

These pages are part of a larger report that may contain information necessary for full data evaluation. Results reported relate only to the sample tested. Results are compliant with NELAP where specific accreditation is held.

Form 1A PCDD/PCDF ANALYSIS REPORT

CLIENT SAMPLE NO. SDS-FB-10 Sample Collection: 08-Jun-2010 14:53

AXYS ANALYTICAL SERVICES

2045 MILLS RD., SIDNEY, B.C., CANADA V8L 5X2 TEL (250) 655-5800 FAX (250) 655-5811

Contract No.: 4406

Lab Sample I.D.:

FIDALGO BAY, CUSTOM PLYWOOD DX STUDY

L14884-50

Matrix: SOLID

17-Jun-2010

Sample Size: 10.2 g (dry)

Initial Calibration Date:

13-Jul-2010

Extraction Date: 23-Jul-2010

Instrument ID:

Project No.

HR GC/MS

Analysis Date:

Sample Receipt Date:

06-Aug-2010 Time: 14:13:55

GC Column ID:

DB225

Extract Volume (uL):

20

Sample Data Filename:

DB03_105 S: 12

Injection Volume (uL): 2

2.0

Blank Data Filename:

DB03_105 S: 5

Dilution Factor: N/A

Cal. Ver. Data Filename:

DB03_105 S: 2

Concentration Units: pg/g (dry weight basis)

% Moisture:

44.4

COMPOUND	LAB FLAG ¹	CONCENTRATION FOUND	DETECTION LIMIT	ION ABUND. RATIO ²	RRT ²
2,3,7,8-TCDF	KJ	0.840	0.594	0.54	1.001

⁽¹⁾ Where applicable, custom lab flags have been used on this report; K = peak detected but did not meet quantification criteria, result reported represents the estimated maximum possible concentration; J = concentration less than LMCL.

These data are validated and reported as accurate,	, true and compliant	with AXYS Analytica	l Services Ltd. qι	uality assurance p	rocesses.
Signed:	Brian	Watson			

For Axys Internal Use Only [XSL Template: Form1A.xsl; Created: 09-Sep-2010 14:50:36; Application: XMLTransformer-1.10.25; Report Filename: 1613_DIOXINS_1613DB225_L14884-50_Form1A_DB03_105S12_SJ1179464.html; Workgroup: WG33420; Design ID: 699]

⁽²⁾ Contract-required limits for RRTs and ion abundance ratios are specified in Tables 2 and 9, respectively, Method 1613.

Form 1A PCDD/PCDF ANALYSIS REPORT

CLIENT SAMPLE NO. 10654011 Sample Collection: 04-Sep-2008 10:59

AXYS ANALYTICAL SERVICES

2045 MILLS RD., SIDNEY, B.C., CANADA V8L 5X2 TEL (250) 655-5800 FAX (250) 655-5811

Contract No.: 4406

Matrix: SOLID

Sample Receipt Date: 16-Jul-2010

Extraction Date: 23-Jul-2010

Analysis Date: 07-Aug-2010 **Time:** 17:10:44

Extract Volume (uL): 20

Injection Volume (uL): 1.0

Dilution Factor: N/A

Concentration Units:

Project No.

Lab Sample I.D.:

FIDALGO BAY, CUSTOM PLYWOOD DX STUDY

L15027-7

-

Sample Size: 10.1 g (dry)

Initial Calibration Date: 06-Aug-2010

Instrument ID: HR GC/MS

GC Column ID: DB5

Sample Data Filename: DX01_176D S: 5

Blank Data Filename: DX01_175A S: 5

Cal. Ver. Data Filename: DX01_176D S: 1

% Moisture: 39.2

COMPOUND	LAB FLAG ¹	CONCENTRATION FOUND	DETECTION LIMIT	ION ABUND. RATIO ²	RRT ²
2,3,7,8-TCDD	КJ	0.392	0.0495	0.47	1.000
1,2,3,7,8-PECDD ³	ВЈ	1.69	0.0495	0.61	1.000
1,2,3,4,7,8-HXCDD	J	2.65	0.467	1.17	1.000
1,2,3,6,7,8-HXCDD		13.5	0.467	1.38	1.000
1,2,3,7,8,9-HXCDD		6.60	0.467	1.30	1.010
1,2,3,4,6,7,8-HPCDD	В	262	0.565	1.08	1.000
OCDD	В	1950	0.111	0.91	1.000
2,3,7,8-TCDF		2.35	0.115	0.88	1.002
1,2,3,7,8-PECDF	KJ	0.777	0.0495	1.20	1.001
2,3,4,7,8-PECDF	J	1.13	0.0495	1.50	1.000
1,2,3,4,7,8-HXCDF	J	3.11	0.132	1.40	1.000
1,2,3,6,7,8-HXCDF	KJ	1.75	0.132	1.01	1.001
1,2,3,7,8,9-HXCDF	U		0.132		
2,3,4,6,7,8-HXCDF	BJ	2.13	0.132	1.23	1.000
1,2,3,4,6,7,8-HPCDF	В	75.0	0.167	1.05	1.001
1,2,3,4,7,8,9-HPCDF	KBJ	4.36	0.167	0.88	1.001
OCDF	В	344	0.0495	0.90	1.002
TOTAL TETRA-DIOXINS		23.3	0.0495		
TOTAL PENTA-DIOXINS		20.0	0.0495		
TOTAL HEXA-DIOXINS		119	0.467		
TOTAL HEPTA-DIOXINS		562	0.565		
TOTAL TETRA-FURANS		14.5	0.115		
TOTAL PENTA-FURANS		21.0	0.0495		
TOTAL HEXA-FURANS	_	82.8	0.132		
TOTAL HEPTA-FURANS	В	269	0.167		

⁽¹⁾ Where applicable, custom lab flags have been used on this report; U = not detected; K = peak detected but did not meet quantification criteria, result reported represents the estimated maximum possible concentration; B = analyte found in sample and the associated blank; J = concentration less than LMCL.

pg/g (dry weight basis)

These data are validated and reported as accurate,	true and compliant v	with AXYS Analytical	Services Ltd. quality	assurance processes.
Signed:	Brian	Watson		

For Axys Internal Use Only [XSL Template: Form1A.xsl; Created: 09-Sep-2010 14:48:07; Application: XMLTransformer-1.10.25; Report Filename: 1613_DIOXINS_1613DB5_L15027-7_Form1A_DX01_176DS5_SJ1179239.html; Workgroup: WG33420; Design ID: 699]

⁽²⁾ Contract-required limits for RRTs and ion abundance ratios are specified in Tables 2 and 9, respectively, Method 1613.

⁽³⁾ Alternate confirmation and quantitation ions used for native and labeled PECDD.

These pages are part of a larger report that may contain information necessary for full data evaluation. Results reported relate only to the sample tested. Results are compliant with NELAP where specific accreditation is held.

Form 1A PCDD/PCDF ANALYSIS REPORT

CLIENT SAMPLE NO. 10654011 Sample Collection: 04-Sep-2008 10:59

FIDALGO BAY, CUSTOM PLYWOOD DX STUDY

AXYS ANALYTICAL SERVICES

2045 MILLS RD., SIDNEY, B.C., CANADA V8L 5X2 TEL (250) 655-5800 FAX (250) 655-5811

Contract No.: 4406

SOLID

Sample Size:

10.1 g (dry)

L15027-7

Sample Receipt Date: 16-Jul-2010

Initial Calibration Date:

13-Jul-2010

Extraction Date: 23-Jul-2010

Instrument ID:

Project No.

Lab Sample I.D.:

HR GC/MS

Analysis Date:

Matrix:

06-Aug-2010 Time: 22:45:38

GC Column ID:

DB225

Extract Volume (uL):

20

Sample Data Filename:

DB03_106 S: 6

Injection Volume (uL): 2.0

Blank Data Filename:

DB03_105 S: 5

Dilution Factor:

N/A

Cal. Ver. Data Filename:

DB03_106 S: 2

Concentration Units: pg/g (dry weight basis)

% Moisture:

39.2

COMPOUND	LAB FLAG ¹	CONCENTRATION FOUND	DETECTION LIMIT	ION ABUND. RATIO ²	RRT ²
2,3,7,8-TCDF		1.28	0.218	0.86	1.002

(1) Where applicable, custom lab flags have been used on this report.

(2) Contract-required limits for RRTs and ion abundance ratios are specified in Tables 2 and 9, respectively, Method 1613.

These data are validated and reported as accurate,	true and compliant	with AXYS Analytical	Services Ltd. quality	assurance processes.
Signed:	Brian	Watson		

For Axys Internal Use Only [XSL Template: Form1A.xsl; Created: 09-Sep-2010 14:50:36; Application: XMLTransformer-1.10.25; Report Filename: 1613_DIOXINS_1613DB225_L15027-7_Form1A_DB03_106S6_SJ1179477.html; Workgroup: WG33420; Design ID: 699]

Form 1A PCDD/PCDF ANALYSIS REPORT

CLIENT SAMPLE NO. 10654015 Sample Collection: 04-Sep-2008 14:19

FIDALGO BAY, CUSTOM

PLYWOOD DX STUDY

L15027-9 L

10.0 g (dry)

30-Jul-2010

HR GC/MS

DX0M_115 S: 54

DX01_175A S: 5

DX0M_115 S: 44

DB5

AXYS ANALYTICAL SERVICES

2045 MILLS RD., SIDNEY, B.C., CANADA V8L 5X2 TEL (250) 655-5800 FAX (250) 655-5811

Contract No.: 4406

Matrix: SOLID

Sample Receipt Date: 16-Jul-2010

Extraction Date: 23-Jul-2010

Extract Volume (uL): 20

Injection Volume (uL): 1.0

Dilution Factor: N/A

Concentration Units:

Analysis Date:

... ...

01-Sep-2010 Time: 13:25:48

pg/g (dry weight basis)

25:48 GC Column ID:

Sample Data Filename:

Initial Calibration Date:

Blank Data Filename:

Cal. Ver. Data Filename:

% Moisture:

Project No.

Lab Sample I.D.:

Sample Size:

Instrument ID:

43.1

COMPOUND	LAB FLAG ¹	CONCENTRATION FOUND	DETECTION LIMIT	ION ABUND. RATIO ²	RRT ²
2,3,7,8-TCDD	J	0.500	0.184	0.74	1.000
1,2,3,7,8-PECDD ³	BJ	1.21	0.275	0.70	1.001
1,2,3,4,7,8-HXCDD	J	1.73	0.434	1.12	1.000
1,2,3,6,7,8-HXCDD		5.91	0.434	1.26	1.000
1,2,3,7,8,9-HXCDD	J	4.83	0.434	1.36	1.000
1,2,3,4,6,7,8-HPCDD	В	95.9	0.668	0.98	1.000
OCDD	В	651	0.569	0.88	1.000
2,3,7,8-TCDF		5.96	0.281	0.76	1.001
1,2,3,7,8-PECDF	J	0.925	0.599	1.57	1.002
2,3,4,7,8-PECDF	J	1.67	0.599	1.50	1.001
1,2,3,4,7,8-HXCDF	J	1.92	0.830	1.23	1.001
1,2,3,6,7,8-HXCDF	ΚJ	0.836	0.830	0.68	1.001
1,2,3,7,8,9-HXCDF	U		0.830		
2,3,4,6,7,8-HXCDF	KBJ	1.32	0.830	0.79	1.001
1,2,3,4,6,7,8-HPCDF	В	25.7	0.571	0.90	1.000
1,2,3,4,7,8,9-HPCDF	BJ	1.48	0.571	0.92	1.001
OCDF	В	81.7	0.548	0.82	1.002
TOTAL TETRA-DIOXINS		11.6	0.184		
TOTAL PENTA-DIOXINS		13.1	0.275		
TOTAL HEXA-DIOXINS		61.3	0.434		
TOTAL HEPTA-DIOXINS		234	0.668		
TOTAL TETRA-FURANS		29.4	0.281		
TOTAL PENTA-FURANS		15.7	0.599		
TOTAL HEXA-FURANS		29.3	0.830		
TOTAL HEPTA-FURANS	В	82.8	0.571		

⁽¹⁾ Where applicable, custom lab flags have been used on this report; U = not detected; K = peak detected but did not meet quantification criteria, result reported represents the estimated maximum possible concentration; B = analyte found in sample and the associated blank; J = concentration less than LMCL.

These data are validated and reported as accurate,	true and compliant v	with AXYS Analytical	Services Ltd. quality	assurance processes.
Signed:	Brian	Watson		

For Axys Internal Use Only [XSL Template: Form1A.xsl; Created: 09-Sep-2010 14:48:07; Application: XMLTransformer-1.10.25; Report Filename: 1613_DIOXINS_1613DB5_L15027-9_Form1A_DX0M_115S54_SJ1187789.html; Workgroup: WG33420; Design ID: 699]

⁽²⁾ Contract-required limits for RRTs and ion abundance ratios are specified in Tables 2 and 9, respectively, Method 1613.

⁽³⁾ Alternate confirmation and quantitation ions used for native and labeled PECDD.

These pages are part of a larger report that may contain information necessary for full data evaluation. Results reported relate only to the sample tested. Results are compliant with NELAP where specific accreditation is held.

Form 1A PCDD/PCDF ANALYSIS REPORT

CLIENT SAMPLE NO. 10654015 Sample Collection: 04-Sep-2008 14:19

AXYS ANALYTICAL SERVICES

2045 MILLS RD., SIDNEY, B.C., CANADA V8L 5X2 TEL (250) 655-5800 FAX (250) 655-5811

Contract No.: 4406

Project No.

Sample Size:

FIDALGO BAY, CUSTOM

PLYWOOD DX STUDY

Lab Sample I.D.: L15027-9

Matrix: SOLID

Jul 2010 Initial Calibration

10.0 g (dry)

Sample Receipt Date: 16-Jul-2010

Initial Calibration Date:

13-Jul-2010

Extraction Date: 23-Jul-2010

Instrument ID:

HR GC/MS

Analysis Date:

06-Aug-2010 Time: 23:58:51

GC Column ID:

DB225

Extract Volume (uL):

Sample Data Filename:

DB03_106 S: 8

Injection Volume (uL): 2.0

Blank Data Filename:

DB03_105 S: 5

Dilution Factor: N/A

Cal. Ver. Data Filename:

DB03_106 S: 2

Concentration Units: pg/g (dry weight basis)

20

% Moisture: 43.1

COMPOUND	LAB FLAG ¹	CONCENTRATION FOUND	DETECTION LIMIT	ION ABUND. RATIO ²	RRT ²
2,3,7,8-TCDF		1.09	0.654	0.80	1.001

⁽¹⁾ Where applicable, custom lab flags have been used on this report.

These data are validated and reported as accurate,	true and compliant	with AXYS Analytical	Services Ltd. quality	assurance processes.
Signed:	Brian	Watson		

For Axys Internal Use Only [XSL Template: Form1A.xsl; Created: 09-Sep-2010 14:50:36; Application: XMLTransformer-1.10.25; Report Filename: 1613_DIOXINS_1613DB225_L15027-9_Form1A_DB03_106S8_SJ1179479.html; Workgroup: WG33420; Design ID: 699]

⁽²⁾ Contract-required limits for RRTs and ion abundance ratios are specified in Tables 2 and 9, respectively, Method 1613.

Form 1A PCDD/PCDF ANALYSIS REPORT

CLIENT SAMPLE NO. 10654021 Sample Collection: 05-Sep-2008 09:23

AXYS ANALYTICAL SERVICES

2045 MILLS RD., SIDNEY, B.C., CANADA V8L 5X2 TEL (250) 655-5800 FAX (250) 655-5811

Contract No.: 4406

Matrix: SOLID

Sample Receipt Date: 16-Jul-2010

Extraction Date: 23-Jul-2010

Analysis Date: 01-Sep-2010 **Time:** 11:35:48

Extract Volume (uL): 50

Injection Volume (uL): 1.0

Dilution Factor: 2.5

Concentration Units: pg/g (dry weight basis)

Project No.

Lab Sample I.D.:

GC Column ID:

FIDALGO BAY, CUSTOM PLYWOOD DX STUDY

L15027-10 W

Sample Size: 10.1 g (dry)

Initial Calibration Date:

Instrument ID:

30-Jul-2010 HR GC/MS

DB5

-

Sample Data Filename:

Blank Data Filename:

DX0M_115 S: 52DX01_175A S: 5

Cal. Ver. Data Filename:

DX0M_115 S: 44

% Moisture: 48.7

COMPOUND	LAB FLAG ¹	CONCENTRATION FOUND	DETECTION LIMIT	ION ABUND. RATIO ²	RRT ²
2,3,7,8-TCDD	DJ	1.60	1.34	0.67	0.999
1,2,3,7,8-PECDD ³	BDJ	3.47	1.48	0.66	1.000
1,2,3,4,7,8-HXCDD	DJ	3.69	1.45	1.40	1.000
1,2,3,6,7,8-HXCDD	D	14.0	1.45	1.31	1.000
1,2,3,7,8,9-HXCDD	DJ	6.19	1.45	1.36	1.000
1,2,3,4,6,7,8-HPCDD	B D	238	1.46	0.99	1.000
OCDD	B D	1590	1.89	0.85	1.000
2,3,7,8-TCDF	D	3.14	0.958	0.79	1.003
1,2,3,7,8-PECDF	UD		1.54		
2,3,4,7,8-PECDF	UD		1.54		
1,2,3,4,7,8-HXCDF	KDJ	4.25	2.03	0.99	1.000
1,2,3,6,7,8-HXCDF	UD		2.03		
1,2,3,7,8,9-HXCDF	UD		2.03		
2,3,4,6,7,8-HXCDF	KBDJ	2.90	2.03	0.80	1.000
1,2,3,4,6,7,8-HPCDF	B D	78.1	1.53	0.93	1.000
1,2,3,4,7,8,9-HPCDF	BDJ	4.66	1.53	1.00	1.000
OCDF	B D	278	2.97	0.83	1.002
TOTAL TETRA-DIOXINS	D	33.4	1.34		
TOTAL PENTA-DIOXINS	D	31.7	1.48		
TOTAL HEXA-DIOXINS	D	127	1.45		
TOTAL HEPTA-DIOXINS	D	517	1.46		
TOTAL TETRA-FURANS	D	20.3	0.958		
TOTAL PENTA-FURANS	D	23.4	1.54		
TOTAL HEXA-FURANS	D	60.3	2.03		
TOTAL HEPTA-FURANS	B D	226	1.53		

⁽¹⁾ Where applicable, custom lab flags have been used on this report; U = not detected; K = peak detected but did not meet quantification criteria, result reported represents the estimated maximum possible concentration; B = analyte found in sample and the associated blank; D = dilution data; J = concentration less than LMCL.

These data are validated and reported as accurate,	true and compliant	with AXYS Analytical	Services Ltd. quality	assurance processes.
Signed:	Brian	Watson		

For Axys Internal Use Only [XSL Template: Form1A.xsl; Created: 09-Sep-2010 14:48:07; Application: XMLTransformer-1.10.25; Report Filename: 1613_DIOXINS_1613DB5_L15027-10_Form1A_DX0M_115S52_SJ1187787.html; Workgroup: WG33420; Design ID: 699]

⁽²⁾ Contract-required limits for RRTs and ion abundance ratios are specified in Tables 2 and 9, respectively, Method 1613.

⁽³⁾ Alternate confirmation and quantitation ions used for native and labeled PECDD.

These pages are part of a larger report that may contain information necessary for full data evaluation. Results reported relate only to the sample tested. Results are compliant with NELAP where specific accreditation is held.

Form 1A PCDD/PCDF ANALYSIS REPORT

CLIENT SAMPLE NO. 10654021 Sample Collection: 05-Sep-2008 09:23

AXYS ANALYTICAL SERVICES

2045 MILLS RD., SIDNEY, B.C., CANADA V8L 5X2 TEL (250) 655-5800 FAX (250) 655-5811

4406 Contract No.:

Project No.

Sample Size:

FIDALGO BAY, CUSTOM

PLYWOOD DX STUDY

L15027-10 Lab Sample I.D.:

Matrix: **SOLID**

16-Jul-2010

Initial Calibration Date:

10.1 g (dry)

Extraction Date: 23-Jul-2010 Instrument ID:

13-Jul-2010 HR GC/MS

Analysis Date:

Sample Receipt Date:

07-Aug-2010 Time: 00:35:29

GC Column ID:

Extract Volume (uL):

20

DB225

Injection Volume (uL): 2.0 Blank Data Filename:

Sample Data Filename:

DB03_106 S: 9 DB03_105 S: 5

Dilution Factor:

N/A

Cal. Ver. Data Filename:

DB03_106 S: 2

48.7

Concentration Units:

pg/g (dry weight basis)

% Moisture:

COMPOUND	LAB FLAG ¹	CONCENTRATION FOUND	DETECTION LIMIT	ION ABUND. RATIO ²	RRT ²
2,3,7,8-TCDF		1.62	0.412	0.84	1.001

(1) Where applicable, custom lab flags have been used on this report.

These data are validated and reported as accurate,	true and compliant	with AXYS Analytical	Services Ltd. quality	assurance processes.
Signed:	Brian	Watson		

For Axys Internal Use Only [XSL Template: Form1A.xsl; Created: 09-Sep-2010 14:50:36; Application: XMLTransformer-1.10.25; Report Filename: 1613_DIOXINS_1613DB225_L15027-10_Form1A_DB03_106S9_SJ1179480.html; Workgroup: WG33420; Design ID: 699]

⁽²⁾ Contract-required limits for RRTs and ion abundance ratios are specified in Tables 2 and 9, respectively, Method 1613.

Form 1A PCDD/PCDF ANALYSIS REPORT

CLIENT SAMPLE NO. 10654022 Sample Collection: 05-Sep-2008 10:15

FIDALGO BAY, CUSTOM

PLYWOOD DX STUDY

L15027-11 W

10.2 g (dry)

30-Jul-2010

HR GC/MS

DX0M_115 S: 53

DX01_175A S: 5

DX0M_115 S: 44

DB5

AXYS ANALYTICAL SERVICES

2045 MILLS RD., SIDNEY, B.C., CANADA V8L 5X2 TEL (250) 655-5800 FAX (250) 655-5811

4406 Contract No.:

Matrix: **SOLID**

Sample Receipt Date: 16-Jul-2010

Extraction Date: 23-Jul-2010

Analysis Date:

Extract Volume (uL): 50

Injection Volume (uL): 1.0

Dilution Factor: 2.5

Concentration Units:

pg/g (dry weight basis)

01-Sep-2010 Time: 12:30:51

GC Column ID:

Project No.

Lab Sample I.D.:

Sample Size:

Instrument ID:

Sample Data Filename:

Initial Calibration Date:

Blank Data Filename:

Cal. Ver. Data Filename:

% Moisture:

39.9

COMPOUND	LAB FLAG ¹	CONCENTRATION FOUND	DETECTION LIMIT	ION ABUND. RATIO ²	RRT ²
2,3,7,8-TCDD	U D		0.301		
1,2,3,7,8-PECDD ³	BDJ	0.913	0.359	0.67	1.001
1,2,3,4,7,8-HXCDD	DJ	1.80	0.320	1.25	1.000
1,2,3,6,7,8-HXCDD	KDJ	4.68	0.320	0.94	1.000
1,2,3,7,8,9-HXCDD	DJ	3.83	0.320	1.31	1.000
1,2,3,4,6,7,8-HPCDD	B D	73.3	0.525	1.03	1.000
OCDD	B D	482	0.789	0.85	1.000
2,3,7,8-TCDF	DJ	1.89	0.332	0.75	1.001
1,2,3,7,8-PECDF	U D		0.347		
2,3,4,7,8-PECDF	DJ	0.847	0.347	1.42	1.001
1,2,3,4,7,8-HXCDF	DJ	1.12	0.216	1.13	1.002
1,2,3,6,7,8-HXCDF	DJ	0.929	0.216	1.10	1.001
1,2,3,7,8,9-HXCDF	U D		0.216		
2,3,4,6,7,8-HXCDF	BDJ	0.684	0.216	1.24	1.001
1,2,3,4,6,7,8-HPCDF	B D	21.5	0.523	1.03	1.000
1,2,3,4,7,8,9-HPCDF	KBDJ	2.18	0.523	0.81	1.000
OCDF	B D	69.3	0.693	0.81	1.002
TOTAL TETRA-DIOXINS	D	15.8	0.301		
TOTAL PENTA-DIOXINS	D	16.1	0.359		
TOTAL HEXA-DIOXINS	D	52.8	0.320		
TOTAL HEPTA-DIOXINS	D	176	0.525		
TOTAL TETRA-FURANS	D	11.6	0.332		
TOTAL PENTA-FURANS	D	8.14	0.347		
TOTAL HEXA-FURANS	D	16.4	0.216		
TOTAL HEPTA-FURANS	B D	63.1	0.523		

⁽¹⁾ Where applicable, custom lab flags have been used on this report; U = not detected; K = peak detected but did not meet quantification criteria, result reported represents the estimated maximum possible concentration; B = analyte found in sample and the associated blank; D = dilution data; J = concentration less than LMCL.

These data are validated and reported as accurate,	true and compliant v	with AXYS Analytical	Services Ltd. quality	assurance processes.
Signed:	Brian	Watson		

For Axys Internal Use Only [XSL Template: Form1A.xsl; Created: 09-Sep-2010 14:48:07; Application: XMLTransformer-1.10.25; Report Filename: 1613_DIOXINS_1613DB5_L15027-11_Form1A_DX0M_115S53_SJ1187788.html; Workgroup: WG33420; Design ID: 699]

⁽²⁾ Contract-required limits for RRTs and ion abundance ratios are specified in Tables 2 and 9, respectively, Method 1613.

⁽³⁾ Alternate confirmation and quantitation ions used for native and labeled PECDD.

These pages are part of a larger report that may contain information necessary for full data evaluation. Results reported relate only to the sample tested. Results are compliant with NELAP where specific accreditation is held.

Form 1A PCDD/PCDF ANALYSIS REPORT

CLIENT SAMPLE NO. 10654022 Sample Collection: 05-Sep-2008 10:15

AXYS ANALYTICAL SERVICES

2045 MILLS RD., SIDNEY, B.C., CANADA V8L 5X2 TEL (250) 655-5800 FAX (250) 655-5811

Contract No.: 4406

Project No.

Sample Size:

FIDALGO BAY, CUSTOM

PLYWOOD DX STUDY

Lab Sample I.D.: L15027-11

Matrix: SOLID

10.2 g (dry)

Sample Receipt Date: 16-Jul-2010

Initial Calibration Date:

13-Jul-2010

Extraction Date:

23-Jul-2010

Instrument ID:

HR GC/MS

Analysis Date:

07-Aug-2010 **Time:** 01:12:07

GC Column ID:

DB225

Extract Volume (uL):

20

Sample Data Filename:

DB03_106 S: 10

Injection Volume (uL):

2.0

Blank Data Filename:

DB03_105 S: 5

Dilution Factor:

N/A

Cal. Ver. Data Filename:

DB03_106 S: 2

Concentration Units:

pg/g (dry weight basis)

% Moisture:

39.9

COMPOUND	LAB FLAG ¹	CONCENTRATION FOUND	DETECTION LIMIT	ION ABUND. RATIO ²	RRT ²
2,3,7,8-TCDF	K	1.16	0.206	1.03	1.002

⁽¹⁾ Where applicable, custom lab flags have been used on this report; K = peak detected but did not meet quantification criteria, result reported represents the estimated maximum possible concentration.

These data are validated and reported as accura	ate, true and compliant v	with AXYS Analytical	Services Ltd. quality	y assurance processes
Signed:	Brian	Watson		

For Axys Internal Use Only [XSL Template: Form1A.xsl; Created: 09-Sep-2010 14:50:36; Application: XMLTransformer-1.10.25; Report Filename: 1613_DIOXINS_1613DB225_L15027-11_Form1A_DB03_106S10_SJ1179481.html; Workgroup: WG33420; Design ID: 699]

⁽²⁾ Contract-required limits for RRTs and ion abundance ratios are specified in Tables 2 and 9, respectively, Method 1613.

Form 1A PCDD/PCDF ANALYSIS REPORT

CLIENT SAMPLE NO. Lab Blank Sample Collection: N/A

AXYS ANALYTICAL SERVICES

2045 MILLS RD., SIDNEY, B.C., CANADA V8L 5X2 TEL (250) 655-5800 FAX (250) 655-5811

Contract No.: 4406

Matrix: SOLID

Sample Receipt Date: N/A

Extraction Date: 23-Jul-2010

Analysis Date: 06-Aug-2010 **Time:** 23:13:55

Extract Volume (uL): 20

Injection Volume (uL): 1.0

Dilution Factor: N/A

Concentration Units: pg/g

Project No. N/A

Lab Sample I.D.: WG33420-101

Sample Size: 10.0 g

Initial Calibration Date: 06-Aug-2010

Instrument ID: HR GC/MS

GC Column ID: DB5

Sample Data Filename: DX01_175A S: 5

Blank Data Filename: DX01_175A S: 5

Cal. Ver. Data Filename: DX01 175A S: 1

COMPOUND	LAB FLAG ¹	CONCENTRATION FOUND	DETECTION LIMIT	ION ABUND. RATIO ²	RRT ²
2,3,7,8-TCDD	U		0.0500		
1,2,3,7,8-PECDD ³	KJ	0.077	0.0500	2.91	1.000
1,2,3,4,7,8-HXCDD	U		0.0800		
1,2,3,6,7,8-HXCDD	U		0.0800		
1,2,3,7,8,9-HXCDD	U		0.0800		
1,2,3,4,6,7,8-HPCDD	KJ	0.141	0.0500	0.73	1.000
OCDD	KJ	0.302	0.0500	1.28	1.000
2,3,7,8-TCDF	U		0.0500		
1,2,3,7,8-PECDF	U		0.0800		
2,3,4,7,8-PECDF	U		0.0800		
1,2,3,4,7,8-HXCDF	U		0.0500		
1,2,3,6,7,8-HXCDF	U		0.0500		
1,2,3,7,8,9-HXCDF	U		0.0500		
2,3,4,6,7,8-HXCDF	ΚJ	0.106	0.0500	1.85	1.000
1,2,3,4,6,7,8-HPCDF	ΚJ	0.126	0.0500	1.67	1.000
1,2,3,4,7,8,9-HPCDF	J	0.117	0.0500	1.09	1.000
OCDF	J	0.242	0.0500	1.01	1.002
TOTAL TETRA-DIOXINS	U		0.0500		
TOTAL PENTA-DIOXINS	U		0.0500		
TOTAL HEXA-DIOXINS	U		0.0500		
TOTAL HEPTA-DIOXINS	U		0.0500		
TOTAL TETRA-FURANS	U		0.0500		
TOTAL PENTA-FURANS	U		0.0500		
TOTAL HEXA-FURANS	U		0.0500		
TOTAL HEPTA-FURANS		0.117	0.0500		

⁽¹⁾ Where applicable, custom lab flags have been used on this report; U = not detected; K = peak detected but did not meet quantification criteria, result reported represents the estimated maximum possible concentration; J = concentration less than LMCL.

These data are validated and reported as accurate	, true and compliant	with AXYS Analytical	Services Ltd.	quality assurance processes.
Signed:	Brian	Watson		

For Axys Internal Use Only [XSL Template: Form1A.xsl; Created: 09-Sep-2010 14:48:07; Application: XMLTransformer-1.10.25; Report Filename: 1613_DIOXINS_1613DB5_WG33420-101_Form1A_DX01_175AS5_SJ1179202.html; Workgroup: WG33420; Design ID: 699]

These pages are part of a larger report that may contain information necessary for full data evaluation. Results reported relate only to the sample tested. Results are compliant with NELAP where specific accreditation is held.

⁽²⁾ Contract-required limits for RRTs and ion abundance ratios are specified in Tables 2 and 9, respectively, Method 1613.

⁽³⁾ Alternate confirmation and quantitation ions used for native and labeled PECDD.

Form 8A PCDD/PCDF ONGOING PRECISION AND RECOVERY (OPR)

AXYS ANALYTICAL SERVICES

2045 MILLS RD., SIDNEY, B.C., CANADA V8L 5X2 TEL (250) 655-5800 FAX (250) 655-5811

Contract No.: 4406 OPR Data Filename: DX01_175A S: 2

Matrix: SOLID Lab Sample I.D.: WG33420-102

Extraction Date: 23-Jul-2010 **Analysis Date:** 06-Aug-2010 **Time:** 20:29:51

ALL CONCENTRATIONS REPORTED ON THIS FORM ARE CONCENTRATIONS IN EXTRACT, BASED ON A 20 uL EXTRACT VOLUME.

COMPOUND	LAB FLAG ¹	ION ABUND. RATIO ²	SPIKE CONC. (ng/mL)	CONC. FOUND (ng/mL)	OPR CONC. LIMITS ³ (ng/mL)	% RECOVERY
			(9)	(9)	(g//	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
2,3,7,8-TCDD		0.79	10.6	9.60	7.10 - 16.7	90.6
1,2,3,7,8-PECDD 4		0.66	56.6	48.3	39.6 - 80.4	85.4
1,2,3,4,7,8-HXCDD		1.24	59.2	53.6	41.4 - 97.1	90.5
1,2,3,6,7,8-HXCDD		1.25	51.8	54.0	39.4 - 69.4	104
1,2,3,7,8,9-HXCDD		1.24	56.7	50.4	36.3 - 91.9	88.8
1,2,3,4,6,7,8-HPCDD		1.08	50.0	45.0	35.0 - 70.0	90.0
OCDD		0.93	108	88.6	84.2 - 155	82.1
2,3,7,8-TCDF		0.81	10.9	10.3	8.18 - 17.2	94.2
1,2,3,7,8-PECDF		1.57	50.0	44.4	40.0 - 67.0	88.8
2,3,4,7,8-PECDF		1.58	50.0	46.0	34.0 - 80.0	92.0
1,2,3,4,7,8-HXCDF		1.28	54.4	48.7	39.2 - 72.9	89.5
1,2,3,6,7,8-HXCDF		1.25	50.0	45.9	42.0 - 65.0	91.8
1,2,3,7,8,9-HXCDF		1.22	50.0	54.9	39.0 - 65.0	110
2,3,4,6,7,8-HXCDF		1.23	53.1	51.6	37.2 - 82.8	97.2
1,2,3,4,6,7,8-HPCDF		1.03	50.0	49.9	41.0 - 61.0	99.8
1,2,3,4,7,8,9-HPCDF		1.02	50.0	50.1	39.0 - 69.0	100
OCDF		0.93	109	89.5	68.4 - 185	82.4

⁽¹⁾ Where applicable, custom lab flags have been used on this report.

- (2) Contract-required Ion Abundance Ratios are specified in Table 9, Method 1613.
- (3) Contract-required concentration range as determined from the percent of the test concentration in Table 6, Method 1613, under OPR.
- (4) Alternate confirmation and quantitation ions used for native and labeled PECDD.

These data are validated and reported as accurate	, true and compliant	with AXYS Analytical Serv	vices Ltd. quality assurance processes.
Signed:	Brian	Watson	_

For Axys Internal Use Only [XSL Template: Form8A.xsl; Created: 09-Sep-2010 14:48:07; Application: XMLTransformer-1.10.25; Report Filename: 1613_DIOXINS_1613DB5_WG33420-102_Form8A_SJ1179198.html; Workgroup: WG33420; Design ID: 699]

BATCH SUMMARY

Batch ID:	WG3	Date: 10-Sep-2010
Analysis Typ	e: Dioxin/Furan	Matrix Type: Solid
	E	SATCH MAKEUP
Contract: Samples:	4406	Blank: WG33623-101
L14884-1 L14884-3 L14884-10 L14884-12 L14884-16 L14884-21 L14884-23	SDS-CPD-01 SDS-CPD-03 SDS-CPD-16 SDS-PB-02 SDS-PB-05-D SDS-CPD-09 SDS-CPD-12	Reference or Spike: WG33623-102 WG33623-104
		Duplicate:

Comments:

- 1. Data are not blank corrected.
- 2. Elevated levels of 2,3,7,8-TCDF, 1,2,3,7,8-PeCDF and 2,3,4,7,8-PeCDF were observed in the Lab Blank (AXYS ID WG33622-101). Cautions should be taken in evaluation of sample data for these congeners which concentrations were not significantly greater than those of the Lab Blank. However, TEQ values for all client samples except for sample SDS-PB-02 (AXYS ID L14884-12) were significantly greater than that of the Lab Blank, indicating TEQ values were not impacted by the variances for these samples.
- 3. A disturbance of the mass ions used to monitor instrument performance (lock-mass) was observed at the retention time corresponding to 1,2,3,6,7-PeCDD (a non-2,3,7,8-PeCDD) in samples SDS-CPD-01, SDS-CPD-03, SDS-CPD-16, SDS-PB-05-D and the Lab Blank (AXYS ID L14881-1, -3, -10, -16 and WG33623-101, respectively). This congener is flagged with a 'G' on the quantification summary accompanying the chromatograms when it is detected. As the interference only affected congener that was non-2,3,7,8-PeCDD and a small contributor to the overall total Penta-Dioxins, data are not considered affected by the variance.

Copyright AXYS Analytical Services Ltd February 1993

Form 1A PCDD/PCDF ANALYSIS REPORT

CLIENT SAMPLE NO. SDS-CPD-01 Sample Collection: 09-Jun-2010 09:40

AXYS ANALYTICAL SERVICES

2045 MILLS RD., SIDNEY, B.C., CANADA V8L 5X2 TEL (250) 655-5800 FAX (250) 655-5811

Contract No.: 4406

Matrix: SOLID

Sample Receipt Date: 17-Jun-2010

Extraction Date: 13-Aug-2010

Analysis Date: 27-Aug-2010 **Time:** 13:52:07

Extract Volume (uL): 20

Injection Volume (uL): 1.0

Dilution Factor: N/A

Concentration Units: pg/g (dry weight basis)

Project No.

Lab Sample I.D.:

Sample Size:

FIDALGO BAY, CUSTOM PLYWOOD DX STUDY

L14884-1 R

10.7 g (dry)

Initial Calibration Date: 26-Aug-2010

Instrument ID: HR GC/MS

GC Column ID: DB5

Sample Data Filename: DX0B_199A S: 6

Blank Data Filename: DX0B_199A S: 5

Cal. Ver. Data Filename: DX0B_199A S: 1

% Moisture: 39.4

COMPOUND	LAB FLAG ¹	CONCENTRATION FOUND	DETECTION LIMIT	ION ABUND. RATIO ²	RRT ²
2,3,7,8-TCDD	KBJ	0.238	0.0468	0.52	1.001
1,2,3,7,8-PECDD ³	BJ	1.12	0.0468	0.57	1.001
1,2,3,4,7,8-HXCDD	J	1.46	0.0983	1.34	1.000
1,2,3,6,7,8-HXCDD	В	5.27	0.0983	1.24	1.000
1,2,3,7,8,9-HXCDD	BJ	3.82	0.0983	1.34	1.010
1,2,3,4,6,7,8-HPCDD	В	70.8	0.144	1.06	1.000
OCDD	В	452	0.0468	0.89	1.000
2,3,7,8-TCDF	В	2.42	0.0468	0.78	1.001
1,2,3,7,8-PECDF	BJ	0.382	0.0468	1.45	1.000
2,3,4,7,8-PECDF	BJ	0.660	0.0468	1.59	1.000
1,2,3,4,7,8-HXCDF	BJ	1.02	0.0509	1.17	1.000
1,2,3,6,7,8-HXCDF	J	0.594	0.0509	1.28	1.000
1,2,3,7,8,9-HXCDF	J	0.086	0.0509	1.17	1.000
2,3,4,6,7,8-HXCDF	BJ	0.641	0.0509	1.32	1.000
1,2,3,4,6,7,8-HPCDF		16.8	0.0810	1.05	1.000
1,2,3,4,7,8,9-HPCDF	J	1.10	0.0810	1.11	1.000
OCDF	В	59.7	0.0468	0.86	1.002
TOTAL TETRA-DIOXINS		57.7	0.0468		
TOTAL PENTA-DIOXINS	В	63.5	0.0468		
TOTAL HEXA-DIOXINS		94.6	0.0983		
TOTAL HEPTA-DIOXINS	В	166	0.144		
TOTAL TETRA-FURANS	В	14.7	0.0468		
TOTAL PENTA-FURANS	В	10.2	0.0468		
TOTAL HEXA-FURANS	В	20.8	0.0509		
TOTAL HEPTA-FURANS		58.5	0.0810		

⁽¹⁾ Where applicable, custom lab flags have been used on this report; K = peak detected but did not meet quantification criteria, result reported represents the estimated maximum possible concentration; B = analyte found in sample and the associated blank; J = concentration less than LMCL.

These data are validated and reported as accurate, true and compliant with AXYS Analytical Services Ltd. quality assurance processes.

Signed: Matthew Ou

For Axys Internal Use Only [XSL Template: Form1A.xsl; Created: 11-Sep-2010 15:46:20; Application: XMLTransformer-1.10.25; Report Filename: 1613_DIOXINS_1613DB5_L14884-1_Form1A_DX0B_199AS6_SJ1187168.html; Workgroup: WG33623; Design ID: 699]

⁽²⁾ Contract-required limits for RRTs and ion abundance ratios are specified in Tables 2 and 9, respectively, Method 1613.

⁽³⁾ Alternate confirmation and quantitation ions used for native and labeled PECDD.

Form 1A PCDD/PCDF ANALYSIS REPORT

CLIENT SAMPLE NO. SDS-CPD-01 Sample Collection: 09-Jun-2010 09:40

AXYS ANALYTICAL SERVICES

2045 MILLS RD., SIDNEY, B.C., CANADA V8L 5X2 TEL (250) 655-5800 FAX (250) 655-5811

Contract No.: 4406

Project No.

FIDALGO BAY, CUSTOM PLYWOOD DX STUDY

L14884-1 R

Matrix: SOLID

Sample Size:

Lab Sample I.D.:

10.7 g (dry)

Sample Receipt Date: 17-Jun-2010

Initial Calibration Date:

24-Aug-2010

Extraction Date:

13-Aug-2010

Instrument ID:

HR GC/MS

Analysis Date:

28-Aug-2010 Time: 04:52:03

GC Column ID:

DB225

Extract Volume (uL):

20

Sample Data Filename:

DB03_123A S: 13

Injection Volume (uL):

2.0

Blank Data Filename:

DB03_132 S: 5

Dilution Factor:

N/A

Cal. Ver. Data Filename:

DB03_123A S: 2

39.4

Concentration Units:

pg/g (dry weight basis)

% Moisture:

COMPOUND	LAB FLAG ¹	CONCENTRATION FOUND	DETECTION LIMIT	ION ABUND. RATIO ²	RRT ²
2,3,7,8-TCDF	В	1.19	0.0542	0.84	1.002

⁽¹⁾ Where applicable, custom lab flags have been used on this report; B = analyte found in sample and the associated blank.

These data are validated and reported as accurate	, true and compliant with A	XYS Analytical Se	ervices Ltd. quality	assurance processes.
Signed:	Matthew	Ou	_	

For Axys Internal Use Only [XSL Template: Form1A.xsl; Created: 11-Sep-2010 15:47:12; Application: XMLTransformer-1.10.25; Report Filename: 1613_DIOXINS_1613DB225_L14884-1_Form1A_DB03_123AS13_SJ1188788.html; Workgroup: WG33623; Design ID: 699]

⁽²⁾ Contract-required limits for RRTs and ion abundance ratios are specified in Tables 2 and 9, respectively, Method 1613.

Form 1A PCDD/PCDF ANALYSIS REPORT

CLIENT SAMPLE NO. SDS-CPD-03 Sample Collection: 09-Jun-2010 10:46

AXYS ANALYTICAL SERVICES

2045 MILLS RD., SIDNEY, B.C., CANADA V8L 5X2 TEL (250) 655-5800 FAX (250) 655-5811

Contract No.: 4406

Matrix: SOLID

Sample Receipt Date: 17-Jun-2010

Extraction Date: 13-Aug-2010

27-Aug-2010 Time: 14:47:02

Analysis Date:

Extract Volume (uL): 20

Injection Volume (uL): 1.0

Dilution Factor: N/A

Concentration Units: pg/g (dry weight basis)

Project No.

Lab Sample I.D.:

FIDALGO BAY, CUSTOM PLYWOOD DX STUDY

L14884-3 R

Sample Size: 10.9 g (dry)

Initial Calibration Date: 26-Aug-2010

Instrument ID: HR GC/MS

GC Column ID: DB5

Sample Data Filename: DX0B_199A S: 7

Blank Data Filename: DX0B_199A S: 5

Cal. Ver. Data Filename: DX0B_199A S: 1

% Moisture: 42.6

COMPOUND	LAB FLAG ¹	CONCENTRATION FOUND	DETECTION LIMIT	ION ABUND. RATIO ²	RRT ²
2,3,7,8-TCDD	KBJ	0.306	0.0460	0.55	1.001
1,2,3,7,8-PECDD ³	BJ	1.20	0.0460	0.53	1.001
1,2,3,4,7,8-HXCDD	J	1.72	0.0587	1.25	1.000
1,2,3,6,7,8-HXCDD	В	7.77	0.0587	1.29	1.000
1,2,3,7,8,9-HXCDD	ВJ	4.48	0.0587	1.24	1.010
1,2,3,4,6,7,8-HPCDD	В	139	0.341	1.05	1.000
OCDD	В	1000	0.0460	0.89	1.000
2,3,7,8-TCDF	В	2.38	0.0460	0.76	1.001
1,2,3,7,8-PECDF	BJ	0.539	0.0460	1.48	1.000
2,3,4,7,8-PECDF	ВJ	0.991	0.0460	1.67	1.000
1,2,3,4,7,8-HXCDF	ВJ	1.83	0.0670	1.25	1.000
1,2,3,6,7,8-HXCDF	J	1.10	0.0670	1.32	1.000
1,2,3,7,8,9-HXCDF	J	0.139	0.0670	1.11	1.000
2,3,4,6,7,8-HXCDF	BJ	1.27	0.0670	1.35	1.000
1,2,3,4,6,7,8-HPCDF		41.0	0.105	1.03	1.000
1,2,3,4,7,8,9-HPCDF	J	2.23	0.105	0.93	1.000
OCDF	В	154	0.0460	0.89	1.002
TOTAL TETRA-DIOXINS		15.2	0.0460		
TOTAL PENTA-DIOXINS	В	16.3	0.0460		
TOTAL HEXA-DIOXINS		74.1	0.0587		
TOTAL HEPTA-DIOXINS	В	327	0.341		
TOTAL TETRA-FURANS	В	15.4	0.0460		
TOTAL PENTA-FURANS	В	16.4	0.0460		
TOTAL HEXA-FURANS	В	45.5	0.0670		
TOTAL HEPTA-FURANS		154	0.105		

⁽¹⁾ Where applicable, custom lab flags have been used on this report; K = peak detected but did not meet quantification criteria, result reported represents the estimated maximum possible concentration; B = analyte found in sample and the associated blank; J = concentration less than LMCL.

These data are validated and reported as accurate, true and compliant with AXYS Analytical Services Ltd. quality assurance processes.

Signed: Matthew Ou

For Axys Internal Use Only [XSL Template: Form1A.xsl; Created: 11-Sep-2010 15:46:20; Application: XMLTransformer-1.10.25; Report Filename: 1613_DIOXINS_1613DB5_L14884-3_Form1A_DX0B_199AS7_SJ1187169.html; Workgroup: WG33623; Design ID: 699]

⁽²⁾ Contract-required limits for RRTs and ion abundance ratios are specified in Tables 2 and 9, respectively, Method 1613. (3) Alternate confirmation and quantitation ions used for native and labeled PECDD.

Form 1A PCDD/PCDF ANALYSIS REPORT

CLIENT SAMPLE NO. SDS-CPD-03 Sample Collection: 09-Jun-2010 10:46

AXYS ANALYTICAL SERVICES

2045 MILLS RD., SIDNEY, B.C., CANADA V8L 5X2 TEL (250) 655-5800 FAX (250) 655-5811

Contract No.: 4406

Matrix: SOLID

Sample Receipt Date: 17-Jun-2010

Extraction Date: 13-Aug-2010

Analysis Date:

Extract Volume (uL): 20

Injection Volume (uL): 2.0

Dilution Factor: N/A

Concentration Units: pg/g (dry weight basis)

Project No.

FIDALGO BAY, CUSTOM

PLYWOOD DX STUDY

Lab Sample I.D.: L14884-3 R

Sample Size: 10.9 g (dry)

Initial Calibration Date: 24-Aug-2010

Instrument ID: HR GC/MS

GC Column ID: DB225

Sample Data Filename:

Blank Data Filename:

Cal. Ver. Data Filename:

DB03_132 S: 5

DB03_123A S: 14

DB03_123A S: 2

% Moisture: 42.6

COMPOUND	LAB FLAG ¹	CONCENTRATION FOUND	DETECTION LIMIT	ION ABUND. RATIO ²	RRT ²
2,3,7,8-TCDF	В	1.04	0.149	0.87	1.002

⁽¹⁾ Where applicable, custom lab flags have been used on this report; B = analyte found in sample and the associated blank.

These data are validated and reported as accurate	, true and compliant with A	XYS Analytical Se	ervices Ltd. quality	assurance processes.
Signed:	Matthew	Ou	_	

For Axys Internal Use Only [XSL Template: Form1A.xsl; Created: 11-Sep-2010 15:47:12; Application: XMLTransformer-1.10.25; Report Filename: 1613_DIOXINS_1613DB225_L14884-3_Form1A_DB03_123AS14_SJ1188789.html; Workgroup: WG33623; Design ID: 699]

28-Aug-2010 Time: 05:28:40

⁽²⁾ Contract-required limits for RRTs and ion abundance ratios are specified in Tables 2 and 9, respectively, Method 1613.

Form 1A PCDD/PCDF ANALYSIS REPORT

CLIENT SAMPLE NO. SDS-CPD-16 Sample Collection: 09-Jun-2010 13:31

AXYS ANALYTICAL SERVICES

2045 MILLS RD., SIDNEY, B.C., CANADA V8L 5X2 TEL (250) 655-5800 FAX (250) 655-5811

Contract No.: 4406

Matrix: SOLID

Sample Receipt Date: 17-Jun-2010

Extraction Date: 13-Aug-2010

Analysis Date: 27-Aug-2010 **Time:** 15:42:03

Extract Volume (uL): 20

Injection Volume (uL): 1.0

Dilution Factor: N/A

pg/g (dry weight basis)

Concentration Units:

Project No.

FIDALGO BAY, CUSTOM PLYWOOD DX STUDY

Lab Sample I.D.: L14884-10 R

Sample Size: 10.7 g (dry)

Initial Calibration Date: 26-Aug-2010

Instrument ID: HR GC/MS

GC Column ID: DB5

Sample Data Filename: DX0B_199A S: 8

Blank Data Filename: DX0B_199A S: 5

Cal. Ver. Data Filename: DX0B_199A S: 1

% Moisture: 47.8

COMPOUND	LAB FLAG ¹	CONCENTRATION FOUND	DETECTION LIMIT	ION ABUND. RATIO ²	RRT ²
2,3,7,8-TCDD	KBJ	0.282	0.0468	0.52	1.001
1,2,3,7,8-PECDD ³	BJ	1.02	0.0468	0.59	1.001
1,2,3,4,7,8-HXCDD	J	1.10	0.0723	1.22	1.000
1,2,3,6,7,8-HXCDD	BJ	4.64	0.0723	1.31	1.000
1,2,3,7,8,9-HXCDD	BJ	3.35	0.0723	1.16	1.010
1,2,3,4,6,7,8-HPCDD	В	64.8	0.189	1.04	1.000
OCDD	В	421	0.0468	0.89	1.000
2,3,7,8-TCDF	В	2.54	0.0468	0.81	1.001
1,2,3,7,8-PECDF	BJ	0.460	0.0468	1.64	1.000
2,3,4,7,8-PECDF	BJ	0.703	0.0468	1.61	1.001
1,2,3,4,7,8-HXCDF	BJ	1.05	0.0468	1.18	1.000
1,2,3,6,7,8-HXCDF	J	0.676	0.0468	1.41	1.000
1,2,3,7,8,9-HXCDF	J	0.081	0.0468	1.27	1.000
2,3,4,6,7,8-HXCDF	BJ	0.773	0.0468	1.28	1.000
1,2,3,4,6,7,8-HPCDF		18.2	0.0881	1.05	1.000
1,2,3,4,7,8,9-HPCDF	ΚJ	1.15	0.0881	0.80	1.000
OCDF	В	71.8	0.0468	0.87	1.002
TOTAL TETRA-DIOXINS		18.1	0.0468		
TOTAL PENTA-DIOXINS	В	17.8	0.0468		
TOTAL HEXA-DIOXINS		56.1	0.0723		
TOTAL HEPTA-DIOXINS	В	155	0.189		
TOTAL TETRA-FURANS	В	13.9	0.0468		
TOTAL PENTA-FURANS	В	10.3	0.0468		
TOTAL HEXA-FURANS	В	21.2	0.0468		
TOTAL HEPTA-FURANS		59.0	0.0881		

⁽¹⁾ Where applicable, custom lab flags have been used on this report; K = peak detected but did not meet quantification criteria, result reported represents the estimated maximum possible concentration; B = analyte found in sample and the associated blank; J = concentration less than LMCL.

These data are validated and reported as accurate, true and compliant with AXYS Analytical Services Ltd. quality assurance processes.

Signed: Matthew Ou

For Axys Internal Use Only [XSL Template: Form1A.xsl; Created: 11-Sep-2010 15:46:20; Application: XMLTransformer-1.10.25; Report Filename: 1613_DIOXINS_1613DB5_L14884-10_Form1A_DX0B_199AS8_SJ1187170.html; Workgroup: WG33623; Design ID: 699]

⁽²⁾ Contract-required limits for RRTs and ion abundance ratios are specified in Tables 2 and 9, respectively, Method 1613. (3) Alternate confirmation and quantitation ions used for native and labeled PECDD.

Form 1A PCDD/PCDF ANALYSIS REPORT

CLIENT SAMPLE NO. SDS-CPD-16 Sample Collection: 09-Jun-2010 13:31

AXYS ANALYTICAL SERVICES

2045 MILLS RD., SIDNEY, B.C., CANADA V8L 5X2 TEL (250) 655-5800 FAX (250) 655-5811

Contract No.: 4406

Project No.

Lab Sample I.D.:

Sample Size:

FIDALGO BAY, CUSTOM PLYWOOD DX STUDY

L14884-10 R

Matrix: SOLID

17-Jun-2010

•

10.7 g (dry)

Sample Receipt Date:

Extraction Date:

13-Aug-2010

Initial Calibration Date:

24-Aug-2010

Analysis Date:

28-Aug-2010 Time: 06:05:19

Instrument ID:

GC Column ID:

HR GC/MS

DB225

Extract Volume (uL):

20

DB03_123A S: 15

Injection Volume (uL):

2.0

Blank Data Filename:

Sample Data Filename:

DB03_132 S: 5

Dilution Factor: N/A

Cal. Ver. Data Filename:

DB03_123A S: 2

47.8

Concentration Units:

pg/g (dry weight basis)

% Moisture:

COMPOUND	LAB FLAG ¹	CONCENTRATION FOUND	DETECTION LIMIT	ION ABUND. RATIO ²	RRT ²
2,3,7,8-TCDF	В	1.34	0.172	0.76	1.001

⁽¹⁾ Where applicable, custom lab flags have been used on this report; B = analyte found in sample and the associated blank.

These data are validated and reported as accurate	, true and compliant with A	XYS Analytical Servi	ices Ltd. quality assurance process	ses.
Signed:	Matthew	Ou		

For Axys Internal Use Only [XSL Template: Form1A.xsl; Created: 11-Sep-2010 15:47:12; Application: XMLTransformer-1.10.25; Report Filename: 1613_DIOXINS_1613DB225_L14884-10_Form1A_DB03_123AS15_SJ1188790.html; Workgroup: WG33623; Design ID: 699]

⁽²⁾ Contract-required limits for RRTs and ion abundance ratios are specified in Tables 2 and 9, respectively, Method 1613.

Form 1A
PCDD/PCDF ANALYSIS REPORT

CLIENT SAMPLE NO. SDS-PB-02 Sample Collection: 07-Jun-2010 13:45

AXYS ANALYTICAL SERVICES

2045 MILLS RD., SIDNEY, B.C., CANADA V8L 5X2 TEL (250) 655-5800 FAX (250) 655-5811

Contract No.: 4406

Matrix: SOLID

Sample Receipt Date: 17-Jun-2010

Extraction Date: 13-Aug-2010

Analysis Date: 08-Sep-2010 **Time:** 00:18:53

Extract Volume (uL): 20

Injection Volume (uL): 1.0

Dilution Factor: N/A

Concentration Units: pg/g (dry weight basis)

Project No.

GC Column ID:

Sample Data Filename:

FIDALGO BAY, CUSTOM PLYWOOD DX STUDY

Lab Sample I.D.: L14884-12 Ri

Sample Size: 10.2 g (dry)

Initial Calibration Date: 26-Aug-2010

Instrument ID: HR GC/MS

Blank Data Filename: DX0B_199A S: 5

DB5

DX0B_205E S: 6

Cal. Ver. Data Filename: DX0B_205E S: 1

% Moisture: 21.2

COMPOUND	LAB FLAG ¹	CONCENTRATION FOUND	DETECTION LIMIT	ION ABUND. RATIO ²	RRT ²
2,3,7,8-TCDD	КВЈ	0.054	0.0489	0.24	1.001
1,2,3,7,8-PECDD ³	U		0.0489		
1,2,3,4,7,8-HXCDD	KJ	0.049	0.0489	0.80	1.000
1,2,3,6,7,8-HXCDD	KBJ	0.088	0.0489	1.90	1.000
1,2,3,7,8,9-HXCDD	KBJ	0.081	0.0489	0.93	1.010
1,2,3,4,6,7,8-HPCDD	BJ	0.369	0.0489	1.16	1.000
OCDD	BJ	1.49	0.0489	0.87	1.000
2,3,7,8-TCDF	BJ	0.943	0.0489	0.77	1.001
1,2,3,7,8-PECDF	BJ	0.135	0.0489	1.58	1.001
2,3,4,7,8-PECDF	BJ	0.298	0.0489	1.57	1.001
1,2,3,4,7,8-HXCDF	BJ	0.052	0.0489	1.06	1.001
1,2,3,6,7,8-HXCDF	J	0.049	0.0489	1.19	1.001
1,2,3,7,8,9-HXCDF	U		0.0489		
2,3,4,6,7,8-HXCDF	BJ	0.055	0.0489	1.37	1.000
1,2,3,4,6,7,8-HPCDF	J	0.097	0.0489	1.16	1.000
1,2,3,4,7,8,9-HPCDF	U		0.0489		
OCDF	KBJ	0.150	0.0489	1.15	1.002
TOTAL TETRA-DIOXINS		0.058	0.0489		
TOTAL PENTA-DIOXINS	В	0.074	0.0489		
TOTAL HEXA-DIOXINS		0.141	0.0489		
TOTAL HEPTA-DIOXINS	В	0.840	0.0489		
TOTAL TETRA-FURANS	В	2.86	0.0489		
TOTAL PENTA-FURANS	В	1.26	0.0489		
TOTAL HEXA-FURANS	В	0.155	0.0489		
TOTAL HEPTA-FURANS		0.097	0.0489		

⁽¹⁾ Where applicable, custom lab flags have been used on this report; U = not detected; K = peak detected but did not meet quantification criteria, result reported represents the estimated maximum possible concentration; B = analyte found in sample and the associated blank; J = concentration less than LMCL.

These data are validated and reported as accurate,	true and compliant with AXYS Analytical Services Ltd. quality assurance proce	sses.
Signed:	Matthew Ou	

For Axys Internal Use Only [XSL Template: Form1A.xsl; Created: 11-Sep-2010 15:46:20; Application: XMLTransformer-1.10.25; Report Filename: 1613_DIOXINS_1613DB5_L14884-12_Form1A_DX0B_205ES6_SJ1188685.html; Workgroup: WG33623; Design ID: 699]

⁽²⁾ Contract-required limits for RRTs and ion abundance ratios are specified in Tables 2 and 9, respectively, Method 1613.

⁽³⁾ Alternate confirmation and quantitation ions used for native and labeled PECDD.

Form 1A PCDD/PCDF ANALYSIS REPORT

CLIENT SAMPLE NO. SDS-PB-02 Sample Collection: 07-Jun-2010 13:45

AXYS ANALYTICAL SERVICES

2045 MILLS RD., SIDNEY, B.C., CANADA V8L 5X2 TEL (250) 655-5800 FAX (250) 655-5811

Contract No.: 4406

Project No.

FIDALGO BAY, CUSTOM PLYWOOD DX STUDY

L14884-12 R

Matrix: **SOLID**

17-Jun-2010

Sample Size:

Lab Sample I.D.:

10.2 g (dry)

Sample Receipt Date:

Initial Calibration Date:

24-Aug-2010

Extraction Date:

13-Aug-2010

Instrument ID:

HR GC/MS

Analysis Date:

28-Aug-2010 Time: 06:41:56

GC Column ID:

DB225

Extract Volume (uL):

20

Sample Data Filename:

DB03_123A S: 16

Injection Volume (uL):

2.0

Blank Data Filename:

DB03_132 S: 5

Dilution Factor:

N/A

Cal. Ver. Data Filename:

DB03_123A S: 2

Concentration Units:

pg/g (dry weight basis)

% Moisture:

21.2

COMPOUND	LAB FLAG ¹	CONCENTRATION FOUND	DETECTION LIMIT	ION ABUND. RATIO ²	RRT ²
2,3,7,8-TCDF	КВЈ	0.615	0.0660	0.91	1.001

(1) Where applicable, custom lab flags have been used on this report; K = peak detected but did not meet quantification criteria, result reported represents the estimated maximum possible concentration; B = analyte found in sample and the associated blank; J = concentration less than LMCL. (2) Contract-required limits for RRTs and ion abundance ratios are specified in Tables 2 and 9, respectively, Method 1613.

These data are validated and reported as accurate,	true and compliant with A	AXYS Analytical	Services Ltd. quali	ty assurance processes
Signed:	Matthew	Ou		

For Axys Internal Use Only [XSL Template: Form1A.xsl; Created: 11-Sep-2010 15:47:12; Application: XMLTransformer-1.10.25; Report Filename: 1613_DIOXINS_1613DB225_L14884-12_Form1A_DB03_123AS16_SJ1188791.html; Workgroup: WG33623; Design ID: 699]

Form 1A PCDD/PCDF ANALYSIS REPORT

CLIENT SAMPLE NO. SDS-PB-05-D Sample Collection: 07-Jun-2010 14:50

AXYS ANALYTICAL SERVICES

2045 MILLS RD., SIDNEY, B.C., CANADA V8L 5X2 TEL (250) 655-5800 FAX (250) 655-5811

Contract No.: 4406

Matrix: SOLID

Sample Receipt Date: 17-Jun-2010

Extraction Date: 13-Aug-2010

Analysis Date: 27-Aug-2010 **Time:** 17:31:53

Extract Volume (uL): 20

Injection Volume (uL): 1.0

Dilution Factor: N/A

Concentration Units:

Project No.

FIDALGO BAY, CUSTOM PLYWOOD DX STUDY

Lab Sample I.D.: L14884-16 R

Sample Size: 10.4 g (dry)

Initial Calibration Date: 26-Aug-2010

Instrument ID: HR GC/MS

GC Column ID: DB5

Sample Data Filename: DX0B_199A S: 10

Blank Data Filename: DX0B_199A S: 5

Cal. Ver. Data Filename: DX0B_199A S: 1

% Moisture: 28.2

COMPOUND	LAB FLAG ¹	CONCENTRATION FOUND	DETECTION LIMIT	ION ABUND. RATIO ²	RRT ²
2,3,7,8-TCDD	КВЈ	0.089	0.0479	0.55	1.001
1,2,3,7,8-PECDD ³	KBJ	0.162	0.0479	0.80	1.000
1,2,3,4,7,8-HXCDD	J	0.197	0.0479	1.25	1.000
1,2,3,6,7,8-HXCDD	ВЈ	0.940	0.0479	1.30	1.000
1,2,3,7,8,9-HXCDD	BJ	0.677	0.0479	1.13	1.010
1,2,3,4,6,7,8-HPCDD	В	7.04	0.0514	1.05	1.000
OCDD	В	41.2	0.0479	0.89	1.000
2,3,7,8-TCDF	В	1.14	0.0479	0.77	1.002
1,2,3,7,8-PECDF	KBJ	0.168	0.0479	1.30	1.000
2,3,4,7,8-PECDF	BJ	0.331	0.0479	1.42	1.000
1,2,3,4,7,8-HXCDF	ВЈ	0.194	0.0479	1.16	1.000
1,2,3,6,7,8-HXCDF	ΚJ	0.117	0.0479	1.65	1.000
1,2,3,7,8,9-HXCDF	U		0.0479		
2,3,4,6,7,8-HXCDF	BJ	0.151	0.0479	1.16	1.000
1,2,3,4,6,7,8-HPCDF	J	1.46	0.0479	1.10	1.000
1,2,3,4,7,8,9-HPCDF	J	0.119	0.0479	0.96	1.000
OCDF	BJ	2.81	0.0479	0.86	1.002
TOTAL TETRA-DIOXINS		1.99	0.0479		
TOTAL PENTA-DIOXINS	В	1.85	0.0479		
TOTAL HEXA-DIOXINS		7.86	0.0479		
TOTAL HEPTA-DIOXINS	В	18.6	0.0514		
TOTAL TETRA-FURANS	В	4.65	0.0479		
TOTAL PENTA-FURANS	В	2.29	0.0479		
TOTAL HEXA-FURANS	В	2.22	0.0479		
TOTAL HEPTA-FURANS		4.00	0.0479		

⁽¹⁾ Where applicable, custom lab flags have been used on this report; U = not detected; K = peak detected but did not meet quantification criteria, result reported represents the estimated maximum possible concentration; B = analyte found in sample and the associated blank; J = concentration less than LMCL.

pg/g (dry weight basis)

These data are validated and reported as accurate,	true and compliant with AXYS Analytical Services Ltd. quality assurance proce	sses.
Signed:	Matthew Ou	

For Axys Internal Use Only [XSL Template: Form1A.xsl; Created: 11-Sep-2010 15:46:20; Application: XMLTransformer-1.10.25; Report Filename: 1613_DIOXINS_1613DB5_L14884-16_Form1A_DX0B_199AS10_SJ1187172.html; Workgroup: WG33623; Design ID: 699]

⁽²⁾ Contract-required limits for RRTs and ion abundance ratios are specified in Tables 2 and 9, respectively, Method 1613.

⁽³⁾ Alternate confirmation and quantitation ions used for native and labeled PECDD.

These pages are part of a larger report that may contain information necessary for full data evaluation. Results reported relate only to the sample tested. Results are compliant with NELAP where specific accreditation is held.

Form 1A PCDD/PCDF ANALYSIS REPORT

CLIENT SAMPLE NO. SDS-PB-05-D Sample Collection: 07-Jun-2010 14:50

AXYS ANALYTICAL SERVICES

2045 MILLS RD., SIDNEY, B.C., CANADA V8L 5X2 TEL (250) 655-5800 FAX (250) 655-5811

4406 Contract No.:

SOLID Matrix:

Sample Receipt Date: 17-Jun-2010

Extraction Date: 13-Aug-2010

28-Aug-2010 Time: 07:18:43

pg/g (dry weight basis)

Analysis Date:

Extract Volume (uL): 20

Injection Volume (uL): 2.0

Dilution Factor: N/A

Concentration Units:

Project No.

FIDALGO BAY, CUSTOM PLYWOOD DX STUDY

HR GC/MS

DB03_123A S: 17

DB03_132 S: 5

DB03_123A S: 2

L14884-16 R Lab Sample I.D.:

Sample Size: 10.4 g (dry)

Initial Calibration Date: 24-Aug-2010

Instrument ID:

GC Column ID: **DB225**

Sample Data Filename:

Blank Data Filename:

Cal. Ver. Data Filename:

% Moisture:

28.2

COMPOUND	LAB FLAG ¹	CONCENTRATION FOUND	DETECTION LIMIT	ION ABUND. RATIO ²	RRT ²
2,3,7,8-TCDF	ВЈ	0.647	0.0683	0.81	1.001

(1) Where applicable, custom lab flags have been used on this report; B = analyte found in sample and the associated blank; J = concentration less than

(2) Contract-required limits for RRTs and ion abundance ratios are specified in Tables 2 and 9, respectively, Method 1613.

These data are validated and reported as accurate	, true and compliant with AXYS Ana	ılytical Services Ltd. quality a	ssurance processes
Signed:	Matthew Ou		

For Axys Internal Use Only [XSL Template: Form1A.xsl; Created: 11-Sep-2010 15:47:12; Application: XMLTransformer-1.10.25; Report Filename: 1613_DIOXINS_1613DB225_L14884-16_Form1A_DB03_123AS17_SJ1188792.html; Workgroup: WG33623; Design ID: 699]

Form 1A PCDD/PCDF ANALYSIS REPORT

CLIENT SAMPLE NO. SDS-CPD-09 Sample Collection: 10-Jun-2010 11:30

AXYS ANALYTICAL SERVICES

2045 MILLS RD., SIDNEY, B.C., CANADA V8L 5X2 TEL (250) 655-5800 FAX (250) 655-5811

Contract No.: 4406

Matrix: SOLID

Sample Receipt Date: 17-Jun-2010

Extraction Date: 13-Aug-2010

Analysis Date: 27-Aug-2010 **Time:** 22:33:13

Extract Volume (uL): 20

Injection Volume (uL): 1.0

Dilution Factor: N/A

Concentration Units: pg/g (dry weight basis)

Project No.

FIDALGO BAY, CUSTOM PLYWOOD DX STUDY

Lab Sample I.D.: L14884-21 R

Sample Size: 10.7 g (dry)

Initial Calibration Date: 26-Aug-2010

Instrument ID: HR GC/MS

GC Column ID: DB5

Sample Data Filename: DX0B_200 S: 4

Blank Data Filename: DX0B_199A S: 5

Cal. Ver. Data Filename: DX0B_200 S: 1

% Moisture: 41.5

COMPOUND	LAB FLAG ¹	CONCENTRATION FOUND	DETECTION LIMIT	ION ABUND. RATIO ²	RRT ²
2,3,7,8-TCDD	KBJ	0.225	0.0466	0.61	1.001
1,2,3,7,8-PECDD ³	ВJ	0.814	0.0466	0.67	1.001
1,2,3,4,7,8-HXCDD	J	1.11	0.0532	1.12	1.000
1,2,3,6,7,8-HXCDD	ВЈ	3.22	0.0532	1.33	1.000
1,2,3,7,8,9-HXCDD	ВЈ	2.45	0.0532	1.21	1.010
1,2,3,4,6,7,8-HPCDD	В	32.8	0.114	1.05	1.000
OCDD	В	186	0.0466	0.90	1.000
2,3,7,8-TCDF	В	2.84	0.0466	0.76	1.001
1,2,3,7,8-PECDF	ВJ	0.380	0.0466	1.42	1.001
2,3,4,7,8-PECDF	KBJ	0.692	0.0466	1.88	1.000
1,2,3,4,7,8-HXCDF	BJ	0.681	0.0466	1.41	1.000
1,2,3,6,7,8-HXCDF	J	0.488	0.0466	1.17	1.000
1,2,3,7,8,9-HXCDF	K J	0.053	0.0466	1.03	1.000
2,3,4,6,7,8-HXCDF	BJ	0.507	0.0466	1.24	1.000
1,2,3,4,6,7,8-HPCDF		7.93	0.0673	1.05	1.000
1,2,3,4,7,8,9-HPCDF	J	0.645	0.0673	1.06	1.000
OCDF	В	21.4	0.0466	0.88	1.002
TOTAL TETRA-DIOXINS		113	0.0466		
TOTAL PENTA-DIOXINS	В	71.2	0.0466		
TOTAL HEXA-DIOXINS		65.6	0.0532		
TOTAL HEPTA-DIOXINS	В	87.5	0.114		
TOTAL TETRA-FURANS	В	14.6	0.0466		
TOTAL PENTA-FURANS	В	7.08	0.0466		
TOTAL HEXA-FURANS	В	11.5	0.0466		
TOTAL HEPTA-FURANS		24.5	0.0673		

⁽¹⁾ Where applicable, custom lab flags have been used on this report; K = peak detected but did not meet quantification criteria, result reported represents the estimated maximum possible concentration; B = analyte found in sample and the associated blank; J = concentration less than LMCL.

These data are validated and reported as accurate	e, true and compliant with A	AXYS Analytical	Services Ltd. qualit	y assurance processes
Signed:	Matthew	Ou		

For Axys Internal Use Only [XSL Template: Form1A.xsl; Created: 11-Sep-2010 15:46:20; Application: XMLTransformer-1.10.25; Report Filename: 1613_DIOXINS_1613DB5_L14884-21_Form1A_DX0B_200S4_SJ1187177.html; Workgroup: WG33623; Design ID: 699]

⁽²⁾ Contract-required limits for RRTs and ion abundance ratios are specified in Tables 2 and 9, respectively, Method 1613. (3) Alternate confirmation and quantitation ions used for native and labeled PECDD.

Form 1A PCDD/PCDF ANALYSIS REPORT

CLIENT SAMPLE NO. SDS-CPD-09 Sample Collection: 10-Jun-2010 11:30

AXYS ANALYTICAL SERVICES

2045 MILLS RD., SIDNEY, B.C., CANADA V8L 5X2 TEL (250) 655-5800 FAX (250) 655-5811

Contract No.: 4406

Matrix: SOLID

Sample Receipt Date: 17-Jun-2010

Extraction Date: 13-Aug-2010

Analysis Date:

Extract Volume (uL): 20

Injection Volume (uL): 2.0

Dilution Factor: N/A

Concentration Units: pg/g (dry weight basis)

Project No.

Instrument ID:

% Moisture:

FIDALGO BAY, CUSTOM

PLYWOOD DX STUDY

Lab Sample I.D.: L14884-21 Ri

Sample Size: 10.7 g (dry)

Initial Calibration Date:

24-Aug-2010 HR GC/MS

DB03_132 S: 6

GC Column ID: DB225

Sample Data Filename:

Blank Data Filename: DB03_132 S: 5

Cal. Ver. Data Filename:

Filename: DB03_132 S: 2

41.5

COMPOUND	LAB FLAG ¹	CONCENTRATION FOUND	DETECTION LIMIT	ION ABUND. RATIO ²	RRT ²
2,3,7,8-TCDF	В	1.13	0.0623	0.81	1.002

(1) Where applicable, custom lab flags have been used on this report; B = analyte found in sample and the associated blank.

(2) Contract-required limits for RRTs and ion abundance ratios are specified in Tables 2 and 9, respectively, Method 1613.

These data are validated and reported as accurate, true and compliant with AXYS Analytical Services Ltd. quality assurance processes.

Signed: ______Matthew Ou_____

For Axys Internal Use Only [XSL Template: Form1A.xsl; Created: 11-Sep-2010 15:47:12; Application: XMLTransformer-1.10.25; Report Filename: 1613_DIOXINS_1613DB225_L14884-21_Form1A_DB03_132S6_SJ1189683.html; Workgroup: WG33623; Design ID: 699]

10-Sep-2010 Time: 12:02:26

Form 1A PCDD/PCDF ANALYSIS REPORT

CLIENT SAMPLE NO. SDS-CPD-12 Sample Collection: 10-Jun-2010 12:00

AXYS ANALYTICAL SERVICES

2045 MILLS RD., SIDNEY, B.C., CANADA V8L 5X2 TEL (250) 655-5800 FAX (250) 655-5811

Contract No.: 4406

Matrix: SOLID

Sample Receipt Date: 17-Jun-2010

Extraction Date: 13-Aug-2010

Analysis Date: 27-Aug-2010 **Time:** 23:28:05

Extract Volume (uL): 20

Injection Volume (uL): 1.0

Dilution Factor: N/A

Concentration Units:

.

pg/g (dry weight basis)

Project No.

FIDALGO BAY, CUSTOM PLYWOOD DX STUDY

26-Aug-2010

DX0B_200 S: 5

DX0B_199A S: 5

DX0B_200 S: 1

Lab Sample I.D.: L14884-23 R

Sample Size: 9.97 g (dry)

Initial Calibration Date:

Instrument ID: HR GC/MS

GC Column ID:

Sample Data Filename:

Blank Data Filename:

Cal. Ver. Data Filename:

DB5

% Moisture: 39.8

COMPOUND	LAB FLAG ¹	CONCENTRATION FOUND	DETECTION LIMIT	ION ABUND. RATIO ²	RRT ²
2,3,7,8-TCDD	KBJ	0.169	0.0502	0.60	1.002
1,2,3,7,8-PECDD ³	BJ	0.623	0.0502	0.62	1.001
1,2,3,4,7,8-HXCDD	J	0.667	0.0628	1.14	1.000
1,2,3,6,7,8-HXCDD	BJ	2.48	0.0628	1.19	1.000
1,2,3,7,8,9-HXCDD	BJ	1.96	0.0628	1.17	1.010
1,2,3,4,6,7,8-HPCDD	В	24.2	0.0856	1.05	1.000
OCDD	В	143	0.0502	0.90	1.000
2,3,7,8-TCDF	В	2.49	0.0502	0.78	1.001
1,2,3,7,8-PECDF	BJ	0.369	0.0502	1.41	1.000
2,3,4,7,8-PECDF	BJ	0.563	0.0502	1.53	1.000
1,2,3,4,7,8-HXCDF	BJ	0.603	0.0502	1.19	1.000
1,2,3,6,7,8-HXCDF	J	0.403	0.0502	1.25	1.000
1,2,3,7,8,9-HXCDF	U		0.0502		
2,3,4,6,7,8-HXCDF	BJ	0.435	0.0502	1.35	1.000
1,2,3,4,6,7,8-HPCDF		6.04	0.0502	1.04	1.000
1,2,3,4,7,8,9-HPCDF	J	0.421	0.0502	1.03	1.000
OCDF	В	14.5	0.0502	0.87	1.002
TOTAL TETRA-DIOXINS		10.4	0.0502		
TOTAL PENTA-DIOXINS	В	12.1	0.0502		
TOTAL HEXA-DIOXINS		33.8	0.0628		
TOTAL HEPTA-DIOXINS	В	74.2	0.0856		
TOTAL TETRA-FURANS	В	13.0	0.0502		
TOTAL PENTA-FURANS	В	5.94	0.0502		
TOTAL HEXA-FURANS	В	8.65	0.0502		
TOTAL HEPTA-FURANS		18.3	0.0502		

⁽¹⁾ Where applicable, custom lab flags have been used on this report; U = not detected; K = peak detected but did not meet quantification criteria, result reported represents the estimated maximum possible concentration; B = analyte found in sample and the associated blank; J = concentration less than LMCL.

These data are validated and reported as accurate,	true and compliant with AXYS Analytical Services Ltd. quality assurance proce	sses.
Signed:	Matthew Ou	

For Axys Internal Use Only [XSL Template: Form1A.xsl; Created: 11-Sep-2010 15:46:20; Application: XMLTransformer-1.10.25; Report Filename: 1613_DIOXINS_1613DB5_L14884-23_Form1A_DX0B_200S5_SJ1187178.html; Workgroup: WG33623; Design ID: 699]

⁽²⁾ Contract-required limits for RRTs and ion abundance ratios are specified in Tables 2 and 9, respectively, Method 1613.

⁽³⁾ Alternate confirmation and quantitation ions used for native and labeled PECDD.

These pages are part of a larger report that may contain information necessary for full data evaluation. Results reported relate only to the sample tested. Results are compliant with NELAP where specific accreditation is held.

Form 1A PCDD/PCDF ANALYSIS REPORT

CLIENT SAMPLE NO. SDS-CPD-12 Sample Collection: 10-Jun-2010 12:00

AXYS ANALYTICAL SERVICES

2045 MILLS RD., SIDNEY, B.C., CANADA V8L 5X2 TEL (250) 655-5800 FAX (250) 655-5811

Contract No.: 4406

Matrix: SOLID

Sample Receipt Date: 17-Jun-2010

Extraction Date: 13-Aug-2010

Extract Volume (uL): 20

Analysis Date:

Injection Volume (uL): 2.0

Dilution Factor: N/A

Concentration Units: pg/g (dry weight basis)

Project No.

No. FIDALGO BAY, CUSTOM PLYWOOD DX STUDY

L14884-23 Ri

24-Aug-2010

Lab Sample I.D.: L14884

Sample Size: 9.97 g (dry)

Initial Calibration Date:

Instrument ID: HR GC/MS

GC Column ID: DB225

Sample Data Filename: DB03_132 S: 7

Blank Data Filename: DB03_132 S: 5

Cal. Ver. Data Filename:

DB03_132 S: 2

% Moisture: 39.8

COMPOUND	LAB FLAG ¹	CONCENTRATION FOUND	DETECTION LIMIT	ION ABUND. RATIO ²	RRT ²
2,3,7,8-TCDF	ВЈ	0.957	0.0587	0.71	1.001

(1) Where applicable, custom lab flags have been used on this report; B = analyte found in sample and the associated blank; J = concentration less than LMCL.

(2) Contract-required limits for RRTs and ion abundance ratios are specified in Tables 2 and 9, respectively, Method 1613.

These data are validated and reported as accurate,	true and compliant with A	AXYS Analytical	Services Ltd. quali	ty assurance processes
Signed:	Matthew	Ou		

For Axys Internal Use Only [XSL Template: Form1A.xsl; Created: 11-Sep-2010 15:47:12; Application: XMLTransformer-1.10.25; Report Filename: 1613_DIOXINS_1613DB225_L14884-23_Form1A_DB03_132S7_SJ1189684.html; Workgroup: WG33623; Design ID: 699]

10-Sep-2010 Time: 12:39:12

Form 1A PCDD/PCDF ANALYSIS REPORT

CLIENT SAMPLE NO. Lab Blank Sample Collection: N/A

AXYS ANALYTICAL SERVICES

Matrix:

2045 MILLS RD., SIDNEY, B.C., CANADA V8L 5X2 TEL (250) 655-5800 FAX (250) 655-5811

Contract No.: 4406 Project No.

Instrument ID:

N/A

WG33623-101

Lab Sample I.D.:

SOLID

Sample Size: 10.0 g

Sample Receipt Date:

Initial Calibration Date: 26-Aug-2010

Extraction Date: 13-Aug-2010 HR GC/MS

27-Aug-2010 Time: 12:57:12 **Analysis Date:**

GC Column ID: DB5

Extract Volume (uL): 20 Sample Data Filename: DX0B_199A S: 5

Injection Volume (uL): 1.0 **Blank Data Filename:** DX0B_199A S: 5

Dilution Factor: N/A Cal. Ver. Data Filename: DX0B 199A S: 1

Concentration Units: pg/g

COMPOUND	LAB FLAG ¹	CONCENTRATION FOUND	DETECTION LIMIT	ION ABUND. RATIO ²	RRT ²
2,3,7,8-TCDD	КJ	0.066	0.0500	0.32	1.001
1,2,3,7,8-PECDD ³	J	0.064	0.0500	0.64	1.000
1,2,3,4,7,8-HXCDD	U		0.0500		
1,2,3,6,7,8-HXCDD	ΚJ	0.092	0.0500	0.85	1.000
1,2,3,7,8,9-HXCDD	KJ	0.072	0.0500	1.79	1.009
1,2,3,4,6,7,8-HPCDD	J	0.075	0.0500	0.91	1.000
OCDD	J	0.088	0.0500	0.97	1.000
2,3,7,8-TCDF	J	0.536	0.0500	0.75	1.001
1,2,3,7,8-PECDF	ΚJ	0.121	0.0500	2.18	1.000
2,3,4,7,8-PECDF	J	0.257	0.0500	1.43	1.001
1,2,3,4,7,8-HXCDF	J	0.073	0.0500	1.19	1.000
1,2,3,6,7,8-HXCDF	U		0.0500		
1,2,3,7,8,9-HXCDF	U		0.0500		
2,3,4,6,7,8-HXCDF	J	0.069	0.0500	1.09	1.000
1,2,3,4,6,7,8-HPCDF	U		0.0500		
1,2,3,4,7,8,9-HPCDF	U		0.0500		
OCDF	KJ	0.065	0.0500	1.25	1.001
TOTAL TETRA-DIOXINS	U		0.0500		
TOTAL PENTA-DIOXINS		0.064	0.0500		
TOTAL HEXA-DIOXINS	U		0.0500		
TOTAL HEPTA-DIOXINS		0.075	0.0500		
TOTAL TETRA-FURANS		1.20	0.0500		
TOTAL PENTA-FURANS		0.396	0.0500		
TOTAL HEXA-FURANS		0.143	0.0500		
TOTAL HEPTA-FURANS	U		0.0500		

⁽¹⁾ Where applicable, custom lab flags have been used on this report; U = not detected; K = peak detected but did not meet quantification criteria, result reported represents the estimated maximum possible concentration; J = concentration less than LMCL.

These data are validated and reported as accurate, true and compliant with AXYS Analytical Services Ltd. quality assurance processes. Signed: Matthew Ou

For Axys Internal Use Only [XSL Template: Form1A.xsl; Created: 11-Sep-2010 15:46:20; Application: XMLTransformer-1.10.25; Report Filename: $1613_DIOXINS_1613DB5_WG33623-101_Form1A_DX0B_199AS5_SJ1187166.html$; Workgroup: WG33623; Design ID: 699]

These pages are part of a larger report that may contain information necessary for full data evaluation. Results reported relate only to the sample tested. Results are compliant with NELAP where specific accreditation is held.

⁽²⁾ Contract-required limits for RRTs and ion abundance ratios are specified in Tables 2 and 9, respectively, Method 1613.

⁽³⁾ Alternate confirmation and quantitation ions used for native and labeled PECDD.

Form 1A PCDD/PCDF ANALYSIS REPORT

CLIENT SAMPLE NO. Lab Blank Sample Collection: N/A

AXYS ANALYTICAL SERVICES

2045 MILLS RD., SIDNEY, B.C., CANADA V8L 5X2 TEL (250) 655-5800 FAX (250) 655-5811

Contract No.: 4406

Project No.

Lab Sample I.D.:

Sample Size:

N/A

10.0 g

Matrix: SOLID

Initial Calibration Date:

24-Aug-2010

WG33623-101 i

Sample Receipt Date: N/A

illitiai Calibration Date.

HR GC/MS

Extraction Date:
Analysis Date:

10-Sep-2010 **Time:** 11:25:39

13-Aug-2010

Instrument ID:
GC Column ID:

DB225

Extract Volume (uL): 20

Sample Data Filename:

DB03_132 S: 5

Injection Volume (uL): 2

2.0

Blank Data Filename:

DB03_132 S: 5

Dilution Factor: N/A

Cal. Ver. Data Filename:

DB03_132 S: 2

Concentration Units: pg/g

COMPOUND	LAB FLAG ¹	CONCENTRATION FOUND	DETECTION LIMIT	ION ABUND. RATIO ²	RRT ²
2,3,7,8-TCDF	J	0.249	0.0500	0.80	1.001

(1) Where applicable, custom lab flags have been used on this report; J = concentration less than LMCL.

These data are validated and reported as accurate,	true and compliant with A	XYS Analytical	Services Ltd. quality	assurance processes.
Signed:	Matthew	Ou		

 $For Axys \ Internal \ Use \ Only \ [XSL\ Template: Form1A.xsl; Created: 11-Sep-2010\ 15:47:12; Application: XML \ Transformer-1.10.25; Report Filename: 1613_DIOXINS_1613DB225_WG33623-101_Form1A_DB03_132S5_SJ1189681.html; Workgroup: WG33623; Design ID: 699\]$

⁽²⁾ Contract-required limits for RRTs and ion abundance ratios are specified in Tables 2 and 9, respectively, Method 1613.

Form 8A PCDD/PCDF ONGOING PRECISION AND RECOVERY (OPR)

AXYS ANALYTICAL SERVICES

2045 MILLS RD., SIDNEY, B.C., CANADA V8L 5X2 TEL (250) 655-5800 FAX (250) 655-5811

Contract No.: 4406 OPR Data Filename: DX0B_199A S: 2

Matrix: SOLID Lab Sample I.D.: WG33623-102

Extraction Date: 13-Aug-2010 **Analysis Date:** 27-Aug-2010 **Time:** 10:12:19

ALL CONCENTRATIONS REPORTED ON THIS FORM ARE CONCENTRATIONS IN EXTRACT, BASED ON A 20 uL EXTRACT VOLUME.

	LAB	ION ABUND.	SPIKE CONC.	CONC. FOUND	OPR CONC. LIMITS ³	
COMPOUND	FLAG ¹	RATIO ²	(ng/mL)	(ng/mL)	(ng/mL)	% RECOVERY
			40.0			
2,3,7,8-TCDD		0.79	10.0	10.4	6.70 - 15.8	104
1,2,3,7,8-PECDD ⁴		0.61	52.0	52.1	36.4 - 73.8	100
1,2,3,4,7,8-HXCDD		1.26	56.5	54.7	39.6 - 92.7	96.8
1,2,3,6,7,8-HXCDD		1.24	55.5	55.4	42.2 - 74.4	99.7
1,2,3,7,8,9-HXCDD		1.24	54.0	53.5	34.6 - 87.5	99.0
1,2,3,4,6,7,8-HPCDD		1.07	47.5	47.9	33.3 - 66.5	101
OCDD		0.89	100	94.6	78.0 - 144	94.6
2,3,7,8-TCDF		0.81	10.7	11.0	8.03 - 16.9	103
1,2,3,7,8-PECDF		1.55	46.0	46.1	36.8 - 61.6	100
2,3,4,7,8-PECDF		1.56	47.0	47.8	32.0 - 75.2	102
1,2,3,4,7,8-HXCDF		1.26	50.0	47.9	36.0 - 67.0	95.8
1,2,3,6,7,8-HXCDF		1.25	47.5	45.2	39.9 - 61.8	95.1
1,2,3,7,8,9-HXCDF		1.26	52.5	51.1	41.0 - 68.3	97.3
2,3,4,6,7,8-HXCDF		1.25	53.0	50.2	37.1 - 82.7	94.7
1,2,3,4,6,7,8-HPCDF		1.05	50.0	50.3	41.0 - 61.0	101
1,2,3,4,7,8,9-HPCDF		1.02	50.0	47.3	39.0 - 69.0	94.6
OCDF		0.89	104	88.9	65.5 - 177	85.5

⁽¹⁾ Where applicable, custom lab flags have been used on this report.

- (2) Contract-required Ion Abundance Ratios are specified in Table 9, Method 1613.
- (3) Contract-required concentration range as determined from the percent of the test concentration in Table 6, Method 1613, under OPR.
- (4) Alternate confirmation and quantitation ions used for native and labeled PECDD.

These data are validated and reported a	as accurate, true and	compliant with A	XYS Analytical	Services Ltd.	quality assurance	processes.
	Signed:	_Matthew	Ou			

For Axys Internal Use Only [XSL Template: Form8A.xsl; Created: 11-Sep-2010 15:46:20; Application: XMLTransformer-1.10.25; Report Filename: 1613_DIOXINS_1613DB5_WG33623-102_Form8A_SJ1187162.html; Workgroup: WG33623; Design ID: 699]

Form 8G

PCDD/PCDF CERTIFIED REFERENCE MATERIAL (CRM) REPORT FOR NIST SRM 1944

AXYS ANALYTICAL SERVICES

2045 MILLS RD., SIDNEY, B.C., CANADA V8L 5X2 TEL (250) 655-5800 FAX (250) 655-5811

Contract No.: 4406 Lab Sample I.D.: WG33623-104 Matrix: SOLID Sample Size: 1.03 g (received) **Extraction Date:** 13-Aug-2010 **Initial Calibration Date:** 26-Aug-2010 **Analysis Date:** 30-Aug-2010 Time: 17:19:13 Instrument ID: HR GC/MS Extract Volume (uL): GC Column ID: DB5 20

Injection Volume (uL): 1.0 CRM Data Filename: DX0B_201 S: 11

Dilution Factor:N/ABlank Data Filename:DX0B_199A S: 5Concentration Units:pg/g (received weight basis)Cal. Ver. Data Filename:DX0B_201 S: 1

COMPOUND **DETERMINED CERTIFIED /** LAB **REFERENCE** FLAG 1 2,3,7,8-TCDD 136 133 +/- 9 1,2,3,7,8-PECDD² 17.7 19 +/- 2 1,2,3,4,7,8-HXCDD 26.2 26 +/- 3 1,2,3,6,7,8-HXCDD 59.9 56 +/- 6 1,2,3,7,8,9-HXCDD 63.8 53 +/- 7 1,2,3,4,6,7,8-HPCDD 802 800 +/- 70 OCDD 5750 5800 +/- 700 2,3,7,8-TCDF Χ 1,2,3,7,8-PECDF 45.5 45 +/- 7 45 +/- 4 47.5 2,3,4,7,8-PECDF 220 +/- 30 1,2,3,4,7,8-HXCDF 199 1,2,3,6,7,8-HXCDF 876 90 +/- 10 19 +/- 18 1,2,3,7,8,9-HXCDF 2.62 2,3,4,6,7,8-HXCDF 46.9 54 +/- 6 1,2,3,4,6,7,8-HPCDF 1000 +/- 100 949 40.5 40 +/- 6 1,2,3,4,7,8,9-HPCDF **OCDF** 1030 1000 +/- 100

These data are validated and reported as accurate,	, true and compliant with A	XYS Analytical Services	Ltd. quality assurance processes.
Signed:	Matthew	Ou	

For Axys Internal Use Only [XSL Template: Form8G.xsl; Created: 11-Sep-2010 15:46:20; Application: XMLTransformer-1.10.25; Report Filename: 1613_DIOXINS_1613DB5_WG33623-104_Form8G_SJ1187195.html; Workgroup: WG33623; Design ID: 699]

⁽¹⁾ Where applicable, custom lab flags have been used on this report; J = concentration less than LMCL; X = result reported separately.

⁽²⁾ Alternate confirmation and quantitation ions used for native and labeled PECDD.

Form 8G

PCDD/PCDF CERTIFIED REFERENCE MATERIAL (CRM) REPORT FOR NIST SRM 1944

AXYS ANALYTICAL SERVICES

2045 MILLS RD., SIDNEY, B.C., CANADA V8L 5X2 TEL (250) 655-5800 FAX (250) 655-5811

4406 Contract No.: Lab Sample I.D.: WG33623-104 Matrix: SOLID Sample Size: 1.03 g (received) **Extraction Date:** 13-Aug-2010 **Initial Calibration Date:** 24-Aug-2010 **Analysis Date:** 28-Aug-2010 Time: 07:55:28 Instrument ID: HR GC/MS

Extract Volume (uL): 20 GC Column ID: DB225

Injection Volume (uL):2.0CRM Data Filename:DB03_123A S: 18Dilution Factor:N/ABlank Data Filename:DB03_132 S: 5Concentration Units:pg/g (received weight basis)Cal. Ver. Data Filename:DB03_123A S: 2

COMPOUND LAB DETERMINED CERTIFIED / REFERENCE

2,3,7,8-TCDF 32.7 39 +/- 15

(1) Where applicable, custom lab flags have been used on this report.

These data are validated and reported as accurate,	true and compliant with AXYS Analytic	al Services Ltd. quality assurance processes.
Signed:	Matthew Ou	

 $For Axys Internal Use Only [XSL Template: Form8G.xsl; Created: 11-Sep-2010 15:47:12; Application: XMLTransformer-1.10.25; Report Filename: 1613_DIOXINS_1613DB225_WG33623-104_Form8G_SJ1188793.html; Workgroup: WG33623; Design ID: 699]$

BATCH SUMMARY

Batch ID:	WG33742	Date: 13-Sep-2010
Analysis Type: Dioxir	n/Furan	Matrix Type: Solid

		ВАТСН	MAKEUP	
Contract: Samples:	4406			Blank: WG33742-101
L14884-26 L14884-28 L14884-31 L14884-39 L14884-42 L14884-43 L14884-44 L14884-46 L14884-47	SDS-CT-01A SDS-CT-02 SDS-CT-05 SDS-PB-10 SDS-FB-03 SDS-FB-04 SDS-FB-05 SDS-FB-07 SDS-FB-07-D	L15027-1 L15027-2 L15027-3 L15027-5 L15027-6 L15027-8 L15027-12	10654001 10654002 10654003 10654008 10654009 10654013 10654026	Reference or Spike:
L14884-48 L14884-49	SDS-FB-08 SDS-FB-09			

Comments:

- 1. The results are not blank-corrected. The level of 2,3,7,8-TCDF is slightly high in the procedural blank.
- 2. The value of 2,3,7,8-TCDD determined for the reference material NIST exceeds the reference value, although the recovery of TCDD in the OPR is within control limits.

Copyright AXYS Analytical Services Ltd February 1993

Form 1A PCDD/PCDF ANALYSIS REPORT

CLIENT SAMPLE NO. SDS-CT-01A Sample Collection: 14-Jun-2010 10:47

AXYS ANALYTICAL SERVICES

2045 MILLS RD., SIDNEY, B.C., CANADA V8L 5X2 TEL (250) 655-5800 FAX (250) 655-5811

4406 Contract No.:

Matrix: **SOLID**

Sample Receipt Date: 17-Jun-2010

Extraction Date: 25-Aug-2010

04-Sep-2010 Time: 16:41:42

20

Analysis Date:

Extract Volume (uL):

Injection Volume (uL): 1.0

Dilution Factor: N/A

Concentration Units: pg/g (dry weight basis) Project No.

Lab Sample I.D.:

FIDALGO BAY, CUSTOM PLYWOOD DX STUDY

L14884-26 Ri

9.72 g (dry) Sample Size:

Initial Calibration Date:

30-Jul-2010

HR GC/MS Instrument ID:

GC Column ID:

Sample Data Filename:

Blank Data Filename:

DB5 DX0M_119 S: 9

DX0M_123 S: 4

Cal. Ver. Data Filename:

DX0M_119 S: 1

% Moisture:

54.9

COMPOUND	LAB FLAG ¹	CONCENTRATION FOUND	DETECTION LIMIT	ION ABUND. RATIO ²	RRT ²
2,3,7,8-TCDD		3.01	0.0756	0.65	1.001
1,2,3,7,8-PECDD ³		11.8	0.174	0.56	1.001
1,2,3,4,7,8-HXCDD		16.8	0.263	1.18	1.000
1,2,3,6,7,8-HXCDD		95.7	0.263	1.20	1.000
1,2,3,7,8,9-HXCDD	В	50.8	0.263	1.22	1.000
1,2,3,4,6,7,8-HPCDD	В	2500	0.600	0.98	1.000
OCDD	E				
2,3,7,8-TCDF	В	41.9	0.130	0.74	1.002
1,2,3,7,8-PECDF		9.80	0.159	1.43	1.000
2,3,4,7,8-PECDF	В	15.9	0.159	1.41	1.000
1,2,3,4,7,8-HXCDF	В	29.7	0.299	1.18	1.000
1,2,3,6,7,8-HXCDF		13.9	0.299	1.14	1.000
1,2,3,7,8,9-HXCDF	KBJ	1.05	0.299	1.04	1.000
2,3,4,6,7,8-HXCDF	В	14.3	0.299	1.12	1.001
1,2,3,4,6,7,8-HPCDF	В	497	0.494	0.96	1.000
1,2,3,4,7,8,9-HPCDF		30.2	0.494	0.91	1.000
OCDF	В	1870	0.0907	0.85	1.001
TOTAL TETRA-DIOXINS		112	0.0756		
TOTAL PENTA-DIOXINS		174	0.174		
TOTAL HEXA-DIOXINS		1010	0.263		
TOTAL HEPTA-DIOXINS		6800	0.600		
TOTAL TETRA-FURANS	В	262	0.130		
TOTAL PENTA-FURANS	В	215	0.159		
TOTAL HEXA-FURANS	В	704	0.299		
TOTAL HEPTA-FURANS	В	2190	0.494		

⁽¹⁾ Where applicable, custom lab flags have been used on this report; K = peak detected but did not meet quantification criteria, result reported represents the estimated maximum possible concentration; B = analyte found in sample and the associated blank; J = concentration less than LMCL; E = exceeds calibrated linear range, see dilution data.

These data are validated and reported as accurate	e, true and compliant	with AXYS Analytical	Services Ltd.	quality assurance	e processes.
Signed:	Brian	Watson			

For Axys Internal Use Only [XSL Template: Form1A.xsl; Created: 13-Sep-2010 12:06:30; Application: XMLTransformer-1.10.26; Report Filename: 1613_DIOXINS_1613DB5_L14884-26_Form1A_DX0M_119S9_SJ1188500.html; Workgroup: WG33742; Design ID: 699]

⁽²⁾ Contract-required limits for RRTs and ion abundance ratios are specified in Tables 2 and 9, respectively, Method 1613.

⁽³⁾ Alternate confirmation and quantitation ions used for native and labeled PECDD.

Form 1A PCDD/PCDF ANALYSIS REPORT

CLIENT SAMPLE NO. SDS-CT-01A Sample Collection: 14-Jun-2010 10:47

AXYS ANALYTICAL SERVICES

2045 MILLS RD., SIDNEY, B.C., CANADA V8L 5X2 TEL (250) 655-5800 FAX (250) 655-5811

Contract No.: 4406

Matrix: SOLID

Sample Receipt Date: 17-Jun-2010

Extraction Date: 25-Aug-2010

Analysis Date: 10-Sep-2010 **Time:** 17:02:29

Extract Volume (uL): 200

Injection Volume (uL): 1.0

Dilution Factor: 10

Concentration Units: pg/g (dry weight basis)

Project No.

Lab Sample I.D.:

Sample Size:

GC Column ID:

FIDALGO BAY, CUSTOM PLYWOOD DX STUDY

L14884-26 RW

9.72 g (dry)

DB5

Initial Calibration Date: 30-Jul-2010

Instrument ID: HR GC/MS

Sample Data Filename: DX0M_123 S: 11

Blank Data Filename: DX0M_123 S: 4

Cal. Ver. Data Filename: DX0M_123 S: 1

% Moisture: 54.9

COMPOUND	LAB FLAG ¹	CONCENTRATION FOUND	DETECTION LIMIT	ION ABUND. RATIO ²	RRT ²
2,3,7,8-TCDD	X				
1,2,3,7,8-PECDD ³	Χ				
1,2,3,4,7,8-HXCDD	X				
1,2,3,6,7,8-HXCDD	Χ				
1,2,3,7,8,9-HXCDD	Χ				
1,2,3,4,6,7,8-HPCDD	Χ				
OCDD	B D	22200	5.97	0.85	1.000
2,3,7,8-TCDF	X				
1,2,3,7,8-PECDF	X				
2,3,4,7,8-PECDF	X				
1,2,3,4,7,8-HXCDF	X				
1,2,3,6,7,8-HXCDF	Χ				
1,2,3,7,8,9-HXCDF	X				
2,3,4,6,7,8-HXCDF	X				
1,2,3,4,6,7,8-HPCDF	Х				
1,2,3,4,7,8,9-HPCDF	X				
OCDF	X				
TOTAL TETRA-DIOXINS	X				
TOTAL PENTA-DIOXINS	Х				
TOTAL HEXA-DIOXINS	X				
TOTAL HEPTA-DIOXINS	Х				
TOTAL TETRA-FURANS	X				
TOTAL PENTA-FURANS	X				
TOTAL HEXA-FURANS	X				
TOTAL HEPTA-FURANS	Х				

⁽¹⁾ Where applicable, custom lab flags have been used on this report; B = analyte found in sample and the associated blank; D = dilution data; X = result reported separately.

These data are validated and reported as accurate	e, true and compliant	with AXYS Analytical	Services Ltd. quality assi	urance processes.
Signed:	Brian	Watson		

For Axys Internal Use Only [XSL Template: Form1A.xsl; Created: 13-Sep-2010 12:06:30; Application: XMLTransformer-1.10.26; Report Filename: $1613_DIOXINS_1613DB5_L14884-26_Form1A_DX0M_123S11_SJ1190062.html$; Workgroup: WG33742; Design ID: 699]

⁽²⁾ Contract-required limits for RRTs and ion abundance ratios are specified in Tables 2 and 9, respectively, Method 1613.

⁽³⁾ Alternate confirmation and quantitation ions used for native and labeled PECDD.

Form 1A PCDD/PCDF ANALYSIS REPORT

CLIENT SAMPLE NO. SDS-CT-01A Sample Collection: 14-Jun-2010 10:47

24-Aug-2010

DB03_128 S: 7

DB03_128 S: 5

DB03_128 S: 2

0.77

1.002

DB225

AXYS ANALYTICAL SERVICES

Matrix:

Extraction Date:

2045 MILLS RD., SIDNEY, B.C., CANADA V8L 5X2 TEL (250) 655-5800 FAX (250) 655-5811

4406 Contract No.:

SOLID

25-Aug-2010

pg/g (dry weight basis)

LAB FLAG 1

В

Sample Receipt Date: 17-Jun-2010

Analysis Date: 07-Sep-2010 Time: 23:45:56

Extract Volume (uL): 20

Injection Volume (uL): 2.0

Dilution Factor: N/A

Concentration Units:

COMPOUND

2,3,7,8-TCDF

Project No.

FIDALGO BAY, CUSTOM PLYWOOD DX STUDY

Lab Sample I.D.: L14884-26 R

Sample Size: 9.72 g (dry)

Initial Calibration Date:

Instrument ID: HR GC/MS

GC Column ID:

Sample Data Filename:

Blank Data Filename:

Cal. Ver. Data Filename:

54.9 % Moisture:

0.161

CONCENTRATION **DETECTION** ION ABUND. RRT² **FOUND** LIMIT RATIO²

(2) Contract-required limits for RRTs and ion abundance ratios are specified in Tables 2 and 9, respectively, Method 1613.

16.9

These data are validated and reported as accurate,	true and compliant	with AXYS Analytical S	ervices Ltd. quality	assurance processes.
Signed:	Brian	Watson		

For Axys Internal Use Only [XSL Template: Form1A.xsl; Created: 13-Sep-2010 12:08:35; Application: XMLTransformer-1.10.26; Report Filename: 1613_DIOXINS_1613DB225_L14884-26_Form1A_DB03_128S7_SJ1190205.html; Workgroup: WG33742; Design ID: 699]

⁽¹⁾ Where applicable, custom lab flags have been used on this report; B = analyte found in sample and the associated blank.

Form 1A PCDD/PCDF ANALYSIS REPORT

CLIENT SAMPLE NO. SDS-CT-02 Sample Collection: 14-Jun-2010 11:47

AXYS ANALYTICAL SERVICES

2045 MILLS RD., SIDNEY, B.C., CANADA V8L 5X2 TEL (250) 655-5800 FAX (250) 655-5811

Contract No.: 4406

Matrix: SOLID

Sample Receipt Date: 17-Jun-2010

Extraction Date: 25-Aug-2010

Analysis Date: 04-Sep-2010 **Time:** 17:36:44

Extract Volume (uL): 20

Injection Volume (uL): 1.0

Dilution Factor: N/A

Concentration Units: pg/g (dry weight basis)

Project No.

FIDALGO BAY, CUSTOM PLYWOOD DX STUDY

Lab Sample I.D.: L14884-28 Ri

Sample Size: 10.6 g (dry)

Initial Calibration Date: 30-Jul-2010

Instrument ID: HR GC/MS

GC Column ID: DB5

Sample Data Filename: DX0M_119 S: 10

Blank Data Filename: DX0M_123 S: 4

Cal. Ver. Data Filename: DX0M_119 S: 1

% Moisture: 34.2

COMPOUND	LAB FLAG ¹	CONCENTRATION FOUND	DETECTION LIMIT	ION ABUND. RATIO ²	RRT ²
2,3,7,8-TCDD	КJ	0.453	0.0527	0.59	1.001
1,2,3,7,8-PECDD ³	J	2.07	0.0558	0.58	1.001
1,2,3,4,7,8-HXCDD	J	2.71	0.147	1.24	1.000
1,2,3,6,7,8-HXCDD		18.1	0.147	1.18	1.000
1,2,3,7,8,9-HXCDD	В	7.64	0.147	1.26	1.000
1,2,3,4,6,7,8-HPCDD	В	325	0.261	0.96	1.000
OCDD	В	2340	0.0555	0.87	1.000
2,3,7,8-TCDF	KΒ	1.82	0.0473	0.65	1.001
1,2,3,7,8-PECDF	J	0.593	0.0893	1.60	1.001
2,3,4,7,8-PECDF	ВJ	1.65	0.0893	1.58	1.000
1,2,3,4,7,8-HXCDF	ВJ	4.01	0.101	1.13	1.000
1,2,3,6,7,8-HXCDF	J	1.84	0.101	1.37	1.000
1,2,3,7,8,9-HXCDF	ВJ	0.143	0.101	1.23	1.000
2,3,4,6,7,8-HXCDF	ВJ	2.54	0.101	1.36	1.000
1,2,3,4,6,7,8-HPCDF	В	104	0.201	0.99	1.000
1,2,3,4,7,8,9-HPCDF		6.28	0.201	0.96	1.000
OCDF	В	319	0.0473	0.84	1.002
TOTAL TETRA-DIOXINS		29.7	0.0527		
TOTAL PENTA-DIOXINS		29.7	0.0558		
TOTAL HEXA-DIOXINS		150	0.147		
TOTAL HEPTA-DIOXINS		809	0.261		
TOTAL TETRA-FURANS	В	11.3	0.0473		
TOTAL PENTA-FURANS	В	25.8	0.0893		
TOTAL HEXA-FURANS	В	106	0.101		
TOTAL HEPTA-FURANS	В	376	0.201		

⁽¹⁾ Where applicable, custom lab flags have been used on this report; K = peak detected but did not meet quantification criteria, result reported represents the estimated maximum possible concentration; B = analyte found in sample and the associated blank; J = concentration less than LMCL.

These data are validated and reported as accurate, true and compliant with AXYS Analytical Services Ltd. quality assurance processes.

Signed: Brian Watson

For Axys Internal Use Only [XSL Template: Form1A.xsl; Created: 13-Sep-2010 12:06:30; Application: XMLTransformer-1.10.26; Report Filename: 1613_DIOXINS_1613DB5_L14884-28_Form1A_DX0M_119S10_SJ1188486.html; Workgroup: WG33742; Design ID: 699]

⁽²⁾ Contract-required limits for RRTs and ion abundance ratios are specified in Tables 2 and 9, respectively, Method 1613. (3) Alternate confirmation and quantitation ions used for native and labeled PECDD.

Form 1A PCDD/PCDF ANALYSIS REPORT

CLIENT SAMPLE NO. SDS-CT-02 Sample Collection: 14-Jun-2010 11:47

24-Aug-2010

HR GC/MS

DB03_128 S: 9

DB03_128 S: 5

DB03_128 S: 2

AXYS ANALYTICAL SERVICES

Matrix:

Analysis Date:

Dilution Factor:

2045 MILLS RD., SIDNEY, B.C., CANADA V8L 5X2 TEL (250) 655-5800 FAX (250) 655-5811

4406 Contract No.:

SOLID

Sample Receipt Date: 17-Jun-2010

Extraction Date: 25-Aug-2010

N/A

Extract Volume (uL): 20

Injection Volume (uL): 2.0

Concentration Units:

Project No.

FIDALGO BAY, CUSTOM PLYWOOD DX STUDY

L14884-28 R Lab Sample I.D.:

Sample Size: 10.6 g (dry)

Initial Calibration Date:

Instrument ID:

GC Column ID: **DB225**

Sample Data Filename:

Blank Data Filename:

Cal. Ver. Data Filename:

% Moisture:

34.2

COMPOUND	LAB FLAG ¹	CONCENTRATION FOUND	DETECTION LIMIT	ION ABUND. RATIO ²	RRT ²
2,3,7,8-TCDF	ВЈ	0.874	0.0477	0.86	1.001

(1) Where applicable, custom lab flags have been used on this report; B = analyte found in sample and the associated blank; J = concentration less than

(2) Contract-required limits for RRTs and ion abundance ratios are specified in Tables 2 and 9, respectively, Method 1613.

These data are validated and reported as accura	ate, true and compliant v	with AXYS Analytical	Services Ltd. quality	y assurance processes
Signed:	Brian	Watson		

For Axys Internal Use Only [XSL Template: Form1A.xsl; Created: 13-Sep-2010 12:08:35; Application: XMLTransformer-1.10.26; Report Filename: 1613_DIOXINS_1613DB225_L14884-28_Form1A_DB03_128S9_SJ1190207.html; Workgroup: WG33742; Design ID: 699]

08-Sep-2010 Time: 00:59:29

pg/g (dry weight basis)

Form 1A PCDD/PCDF ANALYSIS REPORT

CLIENT SAMPLE NO. SDS-CT-05 Sample Collection: 14-Jun-2010 13:06

AXYS ANALYTICAL SERVICES

2045 MILLS RD., SIDNEY, B.C., CANADA V8L 5X2 TEL (250) 655-5800 FAX (250) 655-5811

Contract No.: 4406

Matrix: SOLID

Sample Receipt Date: 17-Jun-2010

Extraction Date: 25-Aug-2010

Analysis Date: 04-Sep-2010 **Time:** 18:31:47

Extract Volume (uL): 20

Injection Volume (uL): 1.0

Dilution Factor: N/A

Concentration Units:

Project No.

Lab Sample I.D.:

FIDALGO BAY, CUSTOM PLYWOOD DX STUDY

30-Jul-2010

DX0M_119 S: 11

DX0M_123 S: 4

DX0M_119 S: 1

L14884-31 Ri

Sample Size: 10.6 g (dry)

Initial Calibration Date:

Instrument ID: HR GC/MS

GC Column ID:

Sample Data Filename:

Blank Data Filename:

.....

Cal. Ver. Data Filename:

% Moisture:

27.1

DB5

COMPOUND	LAB FLAG ¹	CONCENTRATION FOUND	DETECTION LIMIT	ION ABUND. RATIO ²	RRT ²
2,3,7,8-TCDD	КJ	0.083	0.0470	0.36	1.001
1,2,3,7,8-PECDD ³	J	0.421	0.0679	0.55	1.001
1,2,3,4,7,8-HXCDD	J	0.442	0.0845	1.15	1.001
1,2,3,6,7,8-HXCDD	J	2.03	0.0845	1.26	1.000
1,2,3,7,8,9-HXCDD	BJ	1.45	0.0845	1.20	1.000
1,2,3,4,6,7,8-HPCDD	В	31.6	0.132	0.91	1.000
OCDD	В	199	0.193	0.85	1.000
2,3,7,8-TCDF	KΒ	1.01	0.0489	0.63	1.001
1,2,3,7,8-PECDF	KJ	0.136	0.123	1.11	1.000
2,3,4,7,8-PECDF	KBJ	0.427	0.123	1.20	1.001
1,2,3,4,7,8-HXCDF	BJ	0.549	0.155	1.29	1.000
1,2,3,6,7,8-HXCDF	KJ	0.315	0.155	0.89	1.000
1,2,3,7,8,9-HXCDF	U		0.155		
2,3,4,6,7,8-HXCDF	BJ	0.467	0.155	1.38	1.000
1,2,3,4,6,7,8-HPCDF	В	9.47	0.123	1.04	1.000
1,2,3,4,7,8,9-HPCDF	KJ	0.556	0.123	1.24	1.000
OCDF	В	27.2	0.0762	0.88	1.002
TOTAL TETRA-DIOXINS		0.527	0.0470		
TOTAL PENTA-DIOXINS		2.04	0.0679		
TOTAL HEXA-DIOXINS		19.3	0.0845		
TOTAL HEPTA-DIOXINS		148	0.132		
TOTAL TETRA-FURANS	В	3.61	0.0489		
TOTAL PENTA-FURANS	В	3.17	0.123		
TOTAL HEXA-FURANS	В	5.08	0.155		
TOTAL HEPTA-FURANS	В	26.5	0.123		

⁽¹⁾ Where applicable, custom lab flags have been used on this report; U = not detected; K = peak detected but did not meet quantification criteria, result reported represents the estimated maximum possible concentration; B = analyte found in sample and the associated blank; J = concentration less than LMCL.

pg/g (dry weight basis)

These data are validated and reported as accurate,	true and compliant v	with AXYS Analytical	Services Ltd. quality	assurance processes.
Signed:	Brian	Watson		

For Axys Internal Use Only [XSL Template: Form1A.xsl; Created: 13-Sep-2010 12:06:30; Application: XMLTransformer-1.10.26; Report Filename: 1613_DIOXINS_1613DB5_L14884-31_Form1A_DX0M_119S11_SJ1188488.html; Workgroup: WG33742; Design ID: 699]

⁽²⁾ Contract-required limits for RRTs and ion abundance ratios are specified in Tables 2 and 9, respectively, Method 1613.

⁽³⁾ Alternate confirmation and quantitation ions used for native and labeled PECDD.

Form 1A PCDD/PCDF ANALYSIS REPORT

CLIENT SAMPLE NO. SDS-CT-05 Sample Collection: 14-Jun-2010 13:06

AXYS ANALYTICAL SERVICES

2045 MILLS RD., SIDNEY, B.C., CANADA V8L 5X2 TEL (250) 655-5800 FAX (250) 655-5811

4406 Contract No.:

SOLID Matrix:

Sample Receipt Date: 17-Jun-2010

Extraction Date: 25-Aug-2010

Extract Volume (uL): 20

Injection Volume (uL): 2.0

Dilution Factor: N/A

Concentration Units:

Analysis Date:

COMPOUND

LAB FLAG 1

pg/g (dry weight basis)

08-Sep-2010 Time: 01:36:07

Project No.

Lab Sample I.D.:

GC Column ID:

FIDALGO BAY, CUSTOM PLYWOOD DX STUDY

24-Aug-2010

HR GC/MS

DB03_128 S: 10

DB03_128 S: 5

DB03_128 S: 2

DB225

L14884-31 R

Sample Size: 10.6 g (dry)

Initial Calibration Date:

Instrument ID:

Sample Data Filename:

Blank Data Filename:

Cal. Ver. Data Filename:

% Moisture:

27.1

DETECTION

LIMIT

ION ABUND. RATIO²

RRT²

2,3,7,8-TCDF BJ0.520 0.0656 0.74 1.001

(1) Where applicable, custom lab flags have been used on this report; B = analyte found in sample and the associated blank; J = concentration less than

(2) Contract-required limits for RRTs and ion abundance ratios are specified in Tables 2 and 9, respectively, Method 1613.

CONCENTRATION

FOUND

These data are validated and reported as accurate	, true and compliant wi	ith AXYS Analytical	Services Ltd. qu	uality assurance p	rocesses
Signed:	Brian V	Vatson			

For Axys Internal Use Only [XSL Template: Form1A.xsl; Created: 13-Sep-2010 12:08:35; Application: XMLTransformer-1.10.26; Report Filename: 1613_DIOXINS_1613DB225_L14884-31_Form1A_DB03_128S10_SJ1190208.html; Workgroup: WG33742; Design ID: 699]

Form 1A PCDD/PCDF ANALYSIS REPORT

CLIENT SAMPLE NO. SDS-PB-10 Sample Collection: 08-Jun-2010 16:20

AXYS ANALYTICAL SERVICES

2045 MILLS RD., SIDNEY, B.C., CANADA V8L 5X2 TEL (250) 655-5800 FAX (250) 655-5811

4406 Contract No.:

SOLID Matrix:

Sample Receipt Date: 17-Jun-2010

Extraction Date: 25-Aug-2010

09-Sep-2010 Time: 08:12:20 **Analysis Date:**

pg/g (dry weight basis)

Extract Volume (uL): 20

Injection Volume (uL): 1.0

Dilution Factor: N/A

Concentration Units:

Project No.

FIDALGO BAY, CUSTOM PLYWOOD DX STUDY

30-Jul-2010

DX0M_122 S: 23

L14884-39 Ri Lab Sample I.D.:

Sample Size: 11.1 g (dry)

Initial Calibration Date:

HR GC/MS Instrument ID:

GC Column ID:

Sample Data Filename:

Blank Data Filename: DX0M_123 S: 4

Cal. Ver. Data Filename:

% Moisture:

DX0M_122 S: 13

38.8

DB5

COMPOUND	LAB FLAG ¹	CONCENTRATION FOUND	DETECTION LIMIT	ION ABUND. RATIO ²	RRT ²
2,3,7,8-TCDD	KJ	0.052	0.0451	0.12	1.000
1,2,3,7,8-PECDD ³	KJ	0.152	0.0451	0.83	1.000
1,2,3,4,7,8-HXCDD	J	0.267	0.0451	1.10	1.001
1,2,3,6,7,8-HXCDD	J	1.08	0.0451	1.12	1.000
1,2,3,7,8,9-HXCDD	KBJ	0.859	0.0451	0.89	1.000
1,2,3,4,6,7,8-HPCDD	В	17.4	0.0842	0.98	1.000
OCDD	В	196	0.133	0.87	1.000
2,3,7,8-TCDF	В	1.30	0.0451	0.74	1.001
1,2,3,7,8-PECDF	KJ	0.063	0.0616	2.13	1.000
2,3,4,7,8-PECDF	BJ	0.315	0.0616	1.46	1.001
1,2,3,4,7,8-HXCDF	BJ	0.208	0.0534	1.26	1.000
1,2,3,6,7,8-HXCDF	KJ	0.133	0.0534	0.82	1.001
1,2,3,7,8,9-HXCDF	U		0.0534		
2,3,4,6,7,8-HXCDF	KBJ	0.189	0.0534	0.99	1.001
1,2,3,4,6,7,8-HPCDF	KBJ	1.92	0.0451	0.84	1.000
1,2,3,4,7,8,9-HPCDF	KJ	0.201	0.0451	1.44	1.000
OCDF	BJ	4.71	0.0472	0.79	1.002
TOTAL TETRA-DIOXINS		1.26	0.0451		
TOTAL PENTA-DIOXINS		0.613	0.0451		
TOTAL HEXA-DIOXINS		11.3	0.0451		
TOTAL HEPTA-DIOXINS		201	0.0842		
TOTAL TETRA-FURANS	В	4.61	0.0451		
TOTAL PENTA-FURANS	В	1.41	0.0616		
TOTAL HEXA-FURANS	В	1.42	0.0534		
TOTAL HEPTA-FURANS	В	3.30	0.0451		

⁽¹⁾ Where applicable, custom lab flags have been used on this report; U = not detected; K = peak detected but did not meet quantification criteria, result reported represents the estimated maximum possible concentration; B = analyte found in sample and the associated blank; J = concentration less than LMCL.

These data are validated and reported as accurate,	true and compliant v	with AXYS Analytical	Services Ltd. quality	assurance processes.
Signed:	Brian	Watson		

For Axys Internal Use Only [XSL Template: Form1A.xsl; Created: 13-Sep-2010 12:06:30; Application: XMLTransformer-1.10.26; Report Filename: 1613_DIOXINS_1613DB5_L14884-39_Form1A_DX0M_122S23_SJ1189292.html; Workgroup: WG33742; Design ID: 699]

⁽²⁾ Contract-required limits for RRTs and ion abundance ratios are specified in Tables 2 and 9, respectively, Method 1613.

⁽³⁾ Alternate confirmation and quantitation ions used for native and labeled PECDD.

These pages are part of a larger report that may contain information necessary for full data evaluation. Results reported relate only to the sample tested. Results are compliant with NELAP where specific accreditation is held.

Form 1A PCDD/PCDF ANALYSIS REPORT

CLIENT SAMPLE NO. SDS-PB-10 Sample Collection: 08-Jun-2010 16:20

AXYS ANALYTICAL SERVICES

Matrix:

Analysis Date:

2045 MILLS RD., SIDNEY, B.C., CANADA V8L 5X2 TEL (250) 655-5800 FAX (250) 655-5811

Contract No.: 4406

SOLID

Sample Receipt Date: 17-Jun-2010

Extraction Date: 25-Aug-2010

08-Sep-2010 Time: 02:12:46

Extract Volume (uL): 20

Injection Volume (uL): 2.0

Dilution Factor: N/A

Concentration Units: pg/g (dry weight basis)

Project No.

Lab Sample I.D.:

FIDALGO BAY, CUSTOM PLYWOOD DX STUDY

DB03_128 S: 5

L14884-39 R

Sample Size: 11.1 g (dry)

Initial Calibration Date: 24-Aug-2010

Instrument ID: HR GC/MS

GC Column ID: DB225

Sample Data Filename: DB03_128 S: 11

Blank Data Filename:

Cal. Ver. Data Filename:

name: DB03_128 S: 2

% Moisture: 38.8

COMPOUND	LAB FLAG ¹	CONCENTRATION FOUND	DETECTION LIMIT	ION ABUND. RATIO ²	RRT ²
2,3,7,8-TCDF	ВЈ	0.626	0.0451	0.83	1.001

(1) Where applicable, custom lab flags have been used on this report; B = analyte found in sample and the associated blank; J = concentration less than LMCL.

(2) Contract-required limits for RRTs and ion abundance ratios are specified in Tables 2 and 9, respectively, Method 1613.

These data are validated and reported as accurate	, true and compliant wi	ith AXYS Analytical	Services Ltd. qu	uality assurance p	rocesses
Signed:	Brian V	Vatson			

For Axys Internal Use Only [XSL Template: Form1A.xsl; Created: 13-Sep-2010 12:08:35; Application: XMLTransformer-1.10.26; Report Filename: 1613_DIOXINS_1613DB225_L14884-39_Form1A_DB03_128S11_SJ1190209.html; Workgroup: WG33742; Design ID: 699]

Form 1A PCDD/PCDF ANALYSIS REPORT

CLIENT SAMPLE NO. SDS-FB-03 Sample Collection: 08-Jun-2010 10:52

AXYS ANALYTICAL SERVICES

2045 MILLS RD., SIDNEY, B.C., CANADA V8L 5X2 TEL (250) 655-5800 FAX (250) 655-5811

4406 Contract No.:

Matrix: SOLID

Sample Receipt Date: 17-Jun-2010

Extraction Date: 25-Aug-2010

09-Sep-2010 Time: 01:46:56 **Analysis Date:**

pg/g (dry weight basis)

Extract Volume (uL): 20

Injection Volume (uL): 1.0

Dilution Factor: N/A

Concentration Units:

Project No.

FIDALGO BAY, CUSTOM PLYWOOD DX STUDY

30-Jul-2010

HR GC/MS

DX0M_122 S: 16

DX0M_123 S: 4

DB5

L14884-42 Ri Lab Sample I.D.:

Sample Size: 11.3 g (dry)

Initial Calibration Date:

Instrument ID:

GC Column ID:

Sample Data Filename:

Blank Data Filename:

Cal. Ver. Data Filename:

DX0M_122 S: 13

% Moisture:

22.1

COMPOUND	LAB FLAG ¹	CONCENTRATION FOUND	DETECTION LIMIT	ION ABUND. RATIO ²	RRT ²
2,3,7,8-TCDD	КJ	0.066	0.0443	0.08	1.000
1,2,3,7,8-PECDD ³	J	0.127	0.0443	0.63	1.001
1,2,3,4,7,8-HXCDD	ΚJ	0.196	0.0449	1.00	1.000
1,2,3,6,7,8-HXCDD	J	0.747	0.0449	1.33	1.000
1,2,3,7,8,9-HXCDD	BJ	0.469	0.0449	1.18	1.000
1,2,3,4,6,7,8-HPCDD	В	4.41	0.0443	0.96	1.000
OCDD	В	26.3	0.0994	0.88	1.000
2,3,7,8-TCDF	В	1.13	0.0801	0.76	1.001
1,2,3,7,8-PECDF	ΚJ	0.102	0.0516	2.72	1.001
2,3,4,7,8-PECDF	BJ	0.282	0.0516	1.75	1.001
1,2,3,4,7,8-HXCDF	BJ	0.186	0.0443	1.20	1.000
1,2,3,6,7,8-HXCDF	ΚJ	0.111	0.0443	1.66	1.001
1,2,3,7,8,9-HXCDF	U		0.0443		
2,3,4,6,7,8-HXCDF	KBJ	0.134	0.0443	0.96	1.001
1,2,3,4,6,7,8-HPCDF	BJ	0.869	0.0481	1.01	1.000
1,2,3,4,7,8,9-HPCDF	ΚJ	0.056	0.0481	1.25	1.000
OCDF	BJ	1.59	0.0443	0.77	1.002
TOTAL TETRA-DIOXINS		0.579	0.0443		
TOTAL PENTA-DIOXINS		0.481	0.0443		
TOTAL HEXA-DIOXINS		6.02	0.0449		
TOTAL HEPTA-DIOXINS		96.8	0.0443		
TOTAL TETRA-FURANS	В	3.54	0.0801		
TOTAL PENTA-FURANS	В	0.802	0.0516		
TOTAL HEXA-FURANS	В	0.750	0.0443		
TOTAL HEPTA-FURANS	В	2.10	0.0481		

⁽¹⁾ Where applicable, custom lab flags have been used on this report; U = not detected; K = peak detected but did not meet quantification criteria, result reported represents the estimated maximum possible concentration; B = analyte found in sample and the associated blank; J = concentration less than LMCL.

These data are validated and reported as accurate,	true and compliant v	with AXYS Analytical	Services Ltd. quality	assurance processes.
Signed:	Brian	Watson		

For Axys Internal Use Only [XSL Template: Form1A.xsl; Created: 13-Sep-2010 12:06:30; Application: XMLTransformer-1.10.26; Report Filename: 1613_DIOXINS_1613DB5_L14884-42_Form1A_DX0M_122S16_SJ1189285.html; Workgroup: WG33742; Design ID: 699]

⁽²⁾ Contract-required limits for RRTs and ion abundance ratios are specified in Tables 2 and 9, respectively, Method 1613.

⁽³⁾ Alternate confirmation and quantitation ions used for native and labeled PECDD.

These pages are part of a larger report that may contain information necessary for full data evaluation. Results reported relate only to the sample tested. Results are compliant with NELAP where specific accreditation is held.

Form 1A PCDD/PCDF ANALYSIS REPORT

CLIENT SAMPLE NO. SDS-FB-03 Sample Collection: 08-Jun-2010 10:52

AXYS ANALYTICAL SERVICES

2045 MILLS RD., SIDNEY, B.C., CANADA V8L 5X2 TEL (250) 655-5800 FAX (250) 655-5811

Contract No.: 4406

Matrix: SOLID

Sample Receipt Date: 17-Jun-2010

Extraction Date: 25-Aug-2010

08-Sep-2010 Time: 02:49:23

Analysis Date:

Extract Volume (uL): 20

Injection Volume (uL): 2.0

Dilution Factor: N/A

Concentration Units: pg/g (dry weight basis)

Project No.

Lab Sample I.D.:

FIDALGO BAY, CUSTOM

PLYWOOD DX STUDY L14884-42 R

Sample Size: 11.3 g (dry)

Initial Calibration Date:

Instrument ID:

HR GC/MS

24-Aug-2010

GC Column ID: DB225

Sample Data Filename:

Blank Data Filename:

DB03_128 S: 5

DB03_128 S: 2

DB03_128 S: 12

Cal. Ver. Data Filename:

_

% Moisture: 22.1

COMPOUND	LAB FLAG ¹	CONCENTRATION FOUND	DETECTION LIMIT	ION ABUND. RATIO ²	RRT ²
2,3,7,8-TCDF	ВЈ	0.547	0.0443	0.87	1.001

(1) Where applicable, custom lab flags have been used on this report; B = analyte found in sample and the associated blank; J = concentration less than LMCL.

(2) Contract-required limits for RRTs and ion abundance ratios are specified in Tables 2 and 9, respectively, Method 1613.

These data are validated and reported as accura	ate, true and compliant v	with AXYS Analytical	Services Ltd. quality	y assurance processes
Signed:	Brian	Watson		

For Axys Internal Use Only [XSL Template: Form1A.xsl; Created: 13-Sep-2010 12:08:35; Application: XMLTransformer-1.10.26; Report Filename: 1613_DIOXINS_1613DB225_L14884-42_Form1A_DB03_128S12_SJ1190210.html; Workgroup: WG33742; Design ID: 699]

Form 1A PCDD/PCDF ANALYSIS REPORT

CLIENT SAMPLE NO. SDS-FB-04 Sample Collection: 08-Jun-2010 11:52

FIDALGO BAY, CUSTOM

PLYWOOD DX STUDY

L14884-43 Ri

10.7 g (dry)

30-Jul-2010

HR GC/MS

DX0M_122 S: 17

DX0M_123 S: 4

DX0M_122 S: 13

DB5

AXYS ANALYTICAL SERVICES

2045 MILLS RD., SIDNEY, B.C., CANADA V8L 5X2 TEL (250) 655-5800 FAX (250) 655-5811

Contract No.: 4406

Matrix: SOLID

Sample Receipt Date: 17-Jun-2010

Extraction Date: 25-Aug-2010

Analysis Date: 09-Sep-2010 **Time:** 02:41:59

Extract Volume (uL): 20

Injection Volume (uL): 1.0

Dilution Factor: N/A

Concentration Units:

pg/g (dry weight basis)

Sample Data Filename:

Blank Data Filename:

Initial Calibration Date:

Cal. Ver. Data Filename:

% Moisture:

Project No.

Lab Sample I.D.:

Sample Size:

Instrument ID:

GC Column ID:

34.3

COMPOUND	LAB FLAG ¹	CONCENTRATION FOUND	DETECTION LIMIT	ION ABUND. RATIO ²	RRT ²
2,3,7,8-TCDD	КJ	0.190	0.0466	0.45	1.001
1,2,3,7,8-PECDD ³	J	0.344	0.0654	0.55	1.001
1,2,3,4,7,8-HXCDD	J	0.278	0.128	1.36	1.001
1,2,3,6,7,8-HXCDD	J	1.69	0.128	1.29	1.001
1,2,3,7,8,9-HXCDD	BJ	1.27	0.128	1.07	1.000
1,2,3,4,6,7,8-HPCDD	В	13.3	0.0931	1.08	1.000
OCDD	В	88.3	0.0507	0.86	1.000
2,3,7,8-TCDF	В	1.99	0.0466	0.77	1.001
1,2,3,7,8-PECDF	J	0.199	0.0863	1.38	1.001
2,3,4,7,8-PECDF	KBJ	0.381	0.0863	0.91	1.001
1,2,3,4,7,8-HXCDF	BJ	0.364	0.0842	1.14	1.001
1,2,3,6,7,8-HXCDF	ΚJ	0.265	0.0842	0.84	1.000
1,2,3,7,8,9-HXCDF	U		0.0842		
2,3,4,6,7,8-HXCDF	BJ	0.253	0.0842	1.11	1.000
1,2,3,4,6,7,8-HPCDF	BJ	2.93	0.0847	0.90	1.000
1,2,3,4,7,8,9-HPCDF	ΚJ	0.234	0.0847	1.49	1.000
OCDF	BJ	5.69	0.0884	0.86	1.002
TOTAL TETRA-DIOXINS		7.08	0.0466		
TOTAL PENTA-DIOXINS		4.24	0.0654		
TOTAL HEXA-DIOXINS		20.9	0.128		
TOTAL HEPTA-DIOXINS		157	0.0931		
TOTAL TETRA-FURANS	В	7.85	0.0466		
TOTAL PENTA-FURANS	В	2.66	0.0863		
TOTAL HEXA-FURANS	В	3.50	0.0842		
TOTAL HEPTA-FURANS	В	2.93	0.0847		

⁽¹⁾ Where applicable, custom lab flags have been used on this report; U = not detected; K = peak detected but did not meet quantification criteria, result reported represents the estimated maximum possible concentration; B = analyte found in sample and the associated blank; J = concentration less than LMCL.

These data are validated and reported as accurate,	true and compliant	with AXYS Analytical	Services Ltd. quality	assurance processes.
Signed:	Brian	Watson		

For Axys Internal Use Only [XSL Template: Form1A.xsl; Created: 13-Sep-2010 12:06:30; Application: XMLTransformer-1.10.26; Report Filename: 1613_DIOXINS_1613DB5_L14884-43_Form1A_DX0M_122S17_SJ1189286.html; Workgroup: WG33742; Design ID: 699]

⁽²⁾ Contract-required limits for RRTs and ion abundance ratios are specified in Tables 2 and 9, respectively, Method 1613.

⁽³⁾ Alternate confirmation and quantitation ions used for native and labeled PECDD.

These pages are part of a larger report that may contain information necessary for full data evaluation. Results reported relate only to the sample tested. Results are compliant with NELAP where specific accreditation is held.

Form 1A PCDD/PCDF ANALYSIS REPORT

CLIENT SAMPLE NO. SDS-FB-04 Sample Collection: 08-Jun-2010 11:52

AXYS ANALYTICAL SERVICES

2045 MILLS RD., SIDNEY, B.C., CANADA V8L 5X2 TEL (250) 655-5800 FAX (250) 655-5811

4406 Contract No.:

Sample Size:

Project No.

FIDALGO BAY, CUSTOM PLYWOOD DX STUDY

L14884-43 R Lab Sample I.D.:

SOLID Matrix:

10.7 g (dry)

Sample Receipt Date: 17-Jun-2010 **Initial Calibration Date:**

24-Aug-2010

Extraction Date:

25-Aug-2010

Instrument ID:

HR GC/MS

Analysis Date:

08-Sep-2010 Time: 03:26:10

GC Column ID:

DB225

Extract Volume (uL):

20

Sample Data Filename:

DB03_128 S: 13

Injection Volume (uL):

2.0

Blank Data Filename:

DB03_128 S: 5

Dilution Factor:

N/A

Cal. Ver. Data Filename:

DB03_128 S: 2

Concentration Units:

pg/g (dry weight basis)

% Moisture:

34.3

COMPOUND	LAB FLAG ¹	CONCENTRATION FOUND	DETECTION LIMIT	ION ABUND. RATIO ²	RRT ²
2,3,7,8-TCDF	ВЈ	0.923	0.0484	0.70	1.001

⁽¹⁾ Where applicable, custom lab flags have been used on this report; B = analyte found in sample and the associated blank; J = concentration less than

These data are validated and reported as accurate	e, true and compliant v	with AXYS Analytical	Services Ltd. quality	assurance processes
Signed:	Brian	Watson		

For Axys Internal Use Only [XSL Template: Form1A.xsl; Created: 13-Sep-2010 12:08:35; Application: XMLTransformer-1.10.26; Report Filename: 1613_DIOXINS_1613DB225_L14884-43_Form1A_DB03_128S13_SJ1190211.html; Workgroup: WG33742; Design ID: 699]

⁽²⁾ Contract-required limits for RRTs and ion abundance ratios are specified in Tables 2 and 9, respectively, Method 1613.

Form 1A PCDD/PCDF ANALYSIS REPORT

CLIENT SAMPLE NO. SDS-FB-05 Sample Collection: 08-Jun-2010 13:48

AXYS ANALYTICAL SERVICES

2045 MILLS RD., SIDNEY, B.C., CANADA V8L 5X2 TEL (250) 655-5800 FAX (250) 655-5811

Contract No.: 4406

Matrix: SOLID

Sample Receipt Date: 17-Jun-2010

Extraction Date: 25-Aug-2010

Analysis Date: 10-Sep-2010 **Time:** 16:07:28

Extract Volume (uL): 20

Injection Volume (uL): 1.0

Dilution Factor: N/A

Concentration Units:

Project No.

Lab Sample I.D.:

FIDALGO BAY, CUSTOM PLYWOOD DX STUDY

L14884-44 Ri2 (A)

30-Jul-2010

Sample Size: 11.1 g (dry)

Initial Calibration Date:

Instrument ID: HR GC/MS

GC Column ID: DB5

Sample Data Filename: DX0M_123 S: 10

Blank Data Filename: DX0M_123 S: 4

Cal. Ver. Data Filename: DX0M_123 S: 1

% Moisture: 23.2

COMPOUND	LAB FLAG ¹	CONCENTRATION FOUND	DETECTION LIMIT	ION ABUND. RATIO ²	RRT ²
2,3,7,8-TCDD	КJ	0.086	0.0452	0.35	1.001
1,2,3,7,8-PECDD ³	KJ	0.135	0.0452	0.80	1.001
1,2,3,4,7,8-HXCDD	KJ	0.156	0.0452	1.79	1.000
1,2,3,6,7,8-HXCDD	J	0.811	0.0452	1.32	1.001
1,2,3,7,8,9-HXCDD	ВЈ	0.710	0.0452	1.34	1.000
1,2,3,4,6,7,8-HPCDD	В	6.99	0.0573	0.98	1.000
OCDD	В	44.8	0.0672	0.86	1.000
2,3,7,8-TCDF	BJ	0.947	0.0452	0.67	1.001
1,2,3,7,8-PECDF	KJ	0.107	0.0452	1.12	1.002
2,3,4,7,8-PECDF	KBJ	0.201	0.0452	0.95	1.001
1,2,3,4,7,8-HXCDF	KBJ	0.102	0.0649	1.55	1.000
1,2,3,6,7,8-HXCDF	J	0.085	0.0649	1.06	1.000
1,2,3,7,8,9-HXCDF	U		0.0649		
2,3,4,6,7,8-HXCDF	BJ	0.126	0.0649	1.10	1.001
1,2,3,4,6,7,8-HPCDF	BJ	1.53	0.0452	0.97	1.000
1,2,3,4,7,8,9-HPCDF	KJ	0.105	0.0452	0.79	1.001
OCDF	BJ	2.33	0.0452	0.94	1.002
TOTAL TETRA-DIOXINS		0.795	0.0452		
TOTAL PENTA-DIOXINS		0.906	0.0452		
TOTAL HEXA-DIOXINS		7.90	0.0452		
TOTAL HEPTA-DIOXINS		22.6	0.0573		
TOTAL TETRA-FURANS	В	3.18	0.0452		
TOTAL PENTA-FURANS	В	1.31	0.0452		
TOTAL HEXA-FURANS	В	1.80	0.0649		
TOTAL HEPTA-FURANS	В	3.60	0.0452		

⁽¹⁾ Where applicable, custom lab flags have been used on this report; U = not detected; K = peak detected but did not meet quantification criteria, result reported represents the estimated maximum possible concentration; B = analyte found in sample and the associated blank; J = concentration less than LMCL.

pg/g (dry weight basis)

These data are validated and reported as accurate,	true and compliant v	with AXYS Analytical	Services Ltd. quality	assurance processes.
Signed:	Brian	Watson		

For Axys Internal Use Only [XSL Template: Form1A.xsl; Created: 13-Sep-2010 12:06:30; Application: XMLTransformer-1.10.26; Report Filename: 1613_DIOXINS_1613DB5_L14884-44_Form1A_DX0M_123S10_SJ1190060.html; Workgroup: WG33742; Design ID: 699]

⁽²⁾ Contract-required limits for RRTs and ion abundance ratios are specified in Tables 2 and 9, respectively, Method 1613.

⁽³⁾ Alternate confirmation and quantitation ions used for native and labeled PECDD.

These pages are part of a larger report that may contain information necessary for full data evaluation. Results reported relate only to the sample tested. Results are compliant with NELAP where specific accreditation is held.

Form 1A PCDD/PCDF ANALYSIS REPORT

CLIENT SAMPLE NO. SDS-FB-05 Sample Collection: 08-Jun-2010 13:48

AXYS ANALYTICAL SERVICES

2045 MILLS RD., SIDNEY, B.C., CANADA V8L 5X2 TEL (250) 655-5800 FAX (250) 655-5811

Contract No.: 4406

Matrix: SOLID

Sample Receipt Date: 17-Jun-2010

Extraction Date: 25-Aug-2010

08-Sep-2010 Time: 04:02:48

Analysis Date:

Extract Volume (uL): 20

Injection Volume (uL): 2.0

Dilution Factor: N/A

Concentration Units: pg/g (dry weight basis)

Project No.

Lab Sample I.D.:

GC Column ID:

% Moisture:

FIDALGO BAY, CUSTOM PLYWOOD DX STUDY

L14884-44 R (A)

24-Aug-2010

DB03_128 S: 14

DB03_128 S: 5

DB03_128 S: 2

Sample Size: 11.1 g (dry)

Initial Calibration Date:

Instrument ID: HR GC/MS

Sample Data Filename:

Blank Data Filename:

Cal. Ver. Data Filename:

23.2

DB225

COMPOUND	LAB FLAG ¹	CONCENTRATION FOUND	DETECTION LIMIT	ION ABUND. RATIO ²	RRT ²
2.3.7.8-TCDF	ВЈ	0.493	0.0452	0.84	1.001

(1) Where applicable, custom lab flags have been used on this report; B = analyte found in sample and the associated blank; J = concentration less than LMCL.

(2) Contract-required limits for RRTs and ion abundance ratios are specified in Tables 2 and 9, respectively, Method 1613.

These data are validated and reported as accurate	, true and compliant wi	ith AXYS Analytical	Services Ltd. qua	lity assurance p	rocesses.
Signed:	Brian V	Vatson			

For Axys Internal Use Only [XSL Template: Form1A.xsl; Created: 13-Sep-2010 12:08:35; Application: XMLTransformer-1.10.26; Report Filename: 1613_DIOXINS_1613DB225_L14884-44_Form1A_DB03_128S14_SJ1190212.html; Workgroup: WG33742; Design ID: 699]

Form 1A PCDD/PCDF ANALYSIS REPORT

CLIENT SAMPLE NO. SDS-FB-07 Sample Collection: 08-Jun-2010 14:05

AXYS ANALYTICAL SERVICES

2045 MILLS RD., SIDNEY, B.C., CANADA V8L 5X2 TEL (250) 655-5800 FAX (250) 655-5811

4406 Contract No.:

Matrix: **SOLID**

Sample Receipt Date: 17-Jun-2010

Extraction Date: 25-Aug-2010

09-Sep-2010 Time: 06:22:14

pg/g (dry weight basis)

20

Analysis Date:

Extract Volume (uL):

Injection Volume (uL): 1.0

Dilution Factor: N/A

Concentration Units:

Project No.

FIDALGO BAY, CUSTOM

PLYWOOD DX STUDY

11.1 g (dry)

L14884-46 Ri Lab Sample I.D.:

Sample Size:

Initial Calibration Date:

30-Jul-2010

DB5

Instrument ID:

HR GC/MS

GC Column ID:

Sample Data Filename:

DX0M_122 S: 21

Blank Data Filename:

DX0M_123 S: 4

Cal. Ver. Data Filename:

DX0M_122 S: 13

39.2 % Moisture:

COMPOUND	LAB FLAG ¹	CONCENTRATION FOUND	DETECTION LIMIT	ION ABUND. RATIO ²	RRT ²
2,3,7,8-TCDD	КJ	0.113	0.0451	0.34	1.001
1,2,3,7,8-PECDD ³	KJ	0.337	0.0530	0.48	1.001
1,2,3,4,7,8-HXCDD	J	0.355	0.0518	1.29	1.000
1,2,3,6,7,8-HXCDD	KJ	1.51	0.0518	1.46	1.000
1,2,3,7,8,9-HXCDD	ВЈ	1.33	0.0518	1.14	1.000
1,2,3,4,6,7,8-HPCDD	В	13.4	0.0600	0.96	1.000
OCDD	В	99.5	0.102	0.87	1.000
2,3,7,8-TCDF	В	1.54	0.0672	0.77	1.001
1,2,3,7,8-PECDF	KJ	0.093	0.0839	0.71	1.001
2,3,4,7,8-PECDF	BJ	0.421	0.0839	1.43	1.001
1,2,3,4,7,8-HXCDF	KBJ	0.368	0.0451	1.65	1.000
1,2,3,6,7,8-HXCDF	KJ	0.222	0.0451	2.09	1.000
1,2,3,7,8,9-HXCDF	U		0.0451		
2,3,4,6,7,8-HXCDF	KBJ	0.207	0.0451	0.89	1.000
1,2,3,4,6,7,8-HPCDF	BJ	3.01	0.0451	0.93	1.000
1,2,3,4,7,8,9-HPCDF	J	0.185	0.0451	0.90	1.000
OCDF	BJ	6.67	0.0451	0.87	1.002
TOTAL TETRA-DIOXINS		4.21	0.0451		
TOTAL PENTA-DIOXINS		2.93	0.0530		
TOTAL HEXA-DIOXINS		9.03	0.0518		
TOTAL HEPTA-DIOXINS		148	0.0600		
TOTAL TETRA-FURANS	В	6.50	0.0672		
TOTAL PENTA-FURANS	В	2.00	0.0839		
TOTAL HEXA-FURANS	В	3.11	0.0451		
TOTAL HEPTA-FURANS	В	7.56	0.0451		

⁽¹⁾ Where applicable, custom lab flags have been used on this report; U = not detected; K = peak detected but did not meet quantification criteria, result reported represents the estimated maximum possible concentration; B = analyte found in sample and the associated blank; J = concentration less than LMCL.

These data are validated and reported as accurate,	true and compliant v	with AXYS Analytical	Services Ltd. quality	assurance processes.
Signed:	Brian	Watson		

For Axys Internal Use Only [XSL Template: Form1A.xsl; Created: 13-Sep-2010 12:06:30; Application: XMLTransformer-1.10.26; Report Filename: 1613_DIOXINS_1613DB5_L14884-46_Form1A_DX0M_122S21_SJ1189290.html; Workgroup: WG33742; Design ID: 699]

⁽²⁾ Contract-required limits for RRTs and ion abundance ratios are specified in Tables 2 and 9, respectively, Method 1613.

⁽³⁾ Alternate confirmation and quantitation ions used for native and labeled PECDD.

Form 1A PCDD/PCDF ANALYSIS REPORT

CLIENT SAMPLE NO. SDS-FB-07 Sample Collection: 08-Jun-2010 14:05

AXYS ANALYTICAL SERVICES

2045 MILLS RD., SIDNEY, B.C., CANADA V8L 5X2 TEL (250) 655-5800 FAX (250) 655-5811

Contract No.: 4406

Matrix: SOLID

Sample Receipt Date: 17-Jun-2010

Extraction Date: 25-Aug-2010

Analysis Date: 08-Sep-2010 **Time:** 04:39:27

Extract Volume (uL): 20

Injection Volume (uL): 2.0

Dilution Factor: N/A

Concentration Units: pg/g (dry weight basis)

Project No.

FIDALGO BAY, CUSTOM PLYWOOD DX STUDY

Lab Sample I.D.: L14884-46 R

Sample Size: 11.1 g (dry)

Initial Calibration Date:

Instrument ID:

24-Aug-2010 HR GC/MS

DB03_128 S: 15

DB03_128 S: 2

GC Column ID: DB225

Sample Data Filename:

Blank Data Filename: DB03_128 S: 5

Cal. Ver. Data Filename:

% Moisture: 39.2

COMPOUND	LAB FLAG ¹	CONCENTRATION FOUND	DETECTION LIMIT	ION ABUND. RATIO ²	RRT ²
2,3,7,8-TCDF	ВЈ	0.785	0.0524	0.78	1.001

(1) Where applicable, custom lab flags have been used on this report; B = analyte found in sample and the associated blank; J = concentration less than LMCL.

(2) Contract-required limits for RRTs and ion abundance ratios are specified in Tables 2 and 9, respectively, Method 1613.

These data are validated and reported as accurate	, true and compliant wi	ith AXYS Analytical	Services Ltd. qu	uality assurance p	rocesses
Signed:	Brian V	Vatson			

For Axys Internal Use Only [XSL Template: Form1A.xsl; Created: 13-Sep-2010 12:08:35; Application: XMLTransformer-1.10.26; Report Filename: 1613_DIOXINS_1613DB225_L14884-46_Form1A_DB03_128S15_SJ1190213.html; Workgroup: WG33742; Design ID: 699]

Form 1A PCDD/PCDF ANALYSIS REPORT

CLIENT SAMPLE NO. SDS-FB-07-D Sample Collection: 08-Jun-2010 14:05

AXYS ANALYTICAL SERVICES

2045 MILLS RD., SIDNEY, B.C., CANADA V8L 5X2 TEL (250) 655-5800 FAX (250) 655-5811

4406 Contract No.:

Matrix: SOLID

Sample Receipt Date: 17-Jun-2010

Extraction Date: 25-Aug-2010

09-Sep-2010 Time: 04:32:10 **Analysis Date:**

Extract Volume (uL): 20

Injection Volume (uL): 1.0

Dilution Factor: N/A

Concentration Units:

Project No.

Lab Sample I.D.:

Sample Size:

FIDALGO BAY, CUSTOM PLYWOOD DX STUDY

L14884-47 Ri

Initial Calibration Date:

Instrument ID:

GC Column ID:

30-Jul-2010 HR GC/MS

DB5

11.2 g (dry)

Sample Data Filename:

Blank Data Filename:

DX0M_123 S: 4

DX0M_122 S: 19

Cal. Ver. Data Filename:

DX0M_122 S: 13

38.0 % Moisture:

COMPOUND	LAB FLAG ¹	CONCENTRATION FOUND	DETECTION LIMIT	ION ABUND. RATIO ²	RRT ²
2,3,7,8-TCDD	J	0.130	0.0446	0.81	1.002
1,2,3,7,8-PECDD ³	J	0.303	0.0446	0.59	1.001
1,2,3,4,7,8-HXCDD	KJ	0.269	0.0446	0.84	1.000
1,2,3,6,7,8-HXCDD	KJ	1.36	0.0446	1.00	1.000
1,2,3,7,8,9-HXCDD	BJ	0.998	0.0446	1.30	1.000
1,2,3,4,6,7,8-HPCDD	В	11.0	0.0794	1.05	1.000
OCDD	В	75.6	0.0632	0.88	1.000
2,3,7,8-TCDF	В	1.89	0.0446	0.69	1.001
1,2,3,7,8-PECDF	ΚJ	0.175	0.0669	1.19	1.001
2,3,4,7,8-PECDF	KBJ	0.413	0.0669	1.00	1.000
1,2,3,4,7,8-HXCDF	KBJ	0.291	0.0544	0.85	1.001
1,2,3,6,7,8-HXCDF	ΚJ	0.121	0.0544	2.19	1.001
1,2,3,7,8,9-HXCDF	U		0.0544		
2,3,4,6,7,8-HXCDF	KBJ	0.246	0.0544	1.67	1.000
1,2,3,4,6,7,8-HPCDF	BJ	2.50	0.0447	1.02	1.000
1,2,3,4,7,8,9-HPCDF	ΚJ	0.188	0.0447	0.81	1.000
OCDF	BJ	5.26	0.0446	0.87	1.002
TOTAL TETRA-DIOXINS		2.67	0.0446		
TOTAL PENTA-DIOXINS		1.34	0.0446		
TOTAL HEXA-DIOXINS		14.8	0.0446		
TOTAL HEPTA-DIOXINS		144	0.0794		
TOTAL TETRA-FURANS	В	7.08	0.0446		
TOTAL PENTA-FURANS	В	0.510	0.0669		
TOTAL HEXA-FURANS	В	2.85	0.0544		
TOTAL HEPTA-FURANS	В	6.48	0.0447		

⁽¹⁾ Where applicable, custom lab flags have been used on this report; U = not detected; K = peak detected but did not meet quantification criteria, result reported represents the estimated maximum possible concentration; B = analyte found in sample and the associated blank; J = concentration less than LMCL.

pg/g (dry weight basis)

These data are validated and reported as accurate,	true and compliant	with AXYS Analytical	Services Ltd. quality	assurance processes.
Signed:	Brian	Watson		

For Axys Internal Use Only [XSL Template: Form1A.xsl; Created: 13-Sep-2010 12:06:30; Application: XMLTransformer-1.10.26; Report Filename: 1613_DIOXINS_1613DB5_L14884-47_Form1A_DX0M_122S19_SJ1189288.html; Workgroup: WG33742; Design ID: 699]

⁽²⁾ Contract-required limits for RRTs and ion abundance ratios are specified in Tables 2 and 9, respectively, Method 1613.

⁽³⁾ Alternate confirmation and quantitation ions used for native and labeled PECDD.

Form 1A PCDD/PCDF ANALYSIS REPORT

CLIENT SAMPLE NO. SDS-FB-07-D Sample Collection: 08-Jun-2010 14:05

AXYS ANALYTICAL SERVICES

2045 MILLS RD., SIDNEY, B.C., CANADA V8L 5X2 TEL (250) 655-5800 FAX (250) 655-5811

Contract No.: 4406 Project No. Lab Sample I.D.: FIDALGO BAY, CUSTOM PLYWOOD DX STUDY

L14884-47 R

Matrix: **SOLID** Sample Size:

11.2 g (dry)

Sample Receipt Date:

17-Jun-2010

Initial Calibration Date:

24-Aug-2010

Extraction Date:

25-Aug-2010

Instrument ID:

HR GC/MS

Analysis Date:

08-Sep-2010 Time: 05:16:12

GC Column ID:

DB225

Extract Volume (uL):

20

Sample Data Filename:

DB03_128 S: 16

Injection Volume (uL): 2.0 Blank Data Filename:

DB03_128 S: 5

Dilution Factor:

N/A

Cal. Ver. Data Filename:

DB03_128 S: 2

38.0

Concentration Units:

pg/g (dry weight basis)

% Moisture:

COMPOUND	LAB FLAG ¹	CONCENT FOU

CONCENTRATION **DETECTION** JND

ION ABUND. LIMIT RATIO²

RRT²

2,3,7,8-TCDF

В

0.969

0.0446

0.70

1.001

(1) Where applicable, custom lab flags have been used on this report; B = analyte found in sample and the associated blank. (2) Contract-required limits for RRTs and ion abundance ratios are specified in Tables 2 and 9, respectively, Method 1613.

These data are validated and reported as accurate, true and compliant with AXYS Analytical Services Ltd. quality assurance processes. _Brian Watson Signed: _

For Axys Internal Use Only [XSL Template: Form1A.xsl; Created: 13-Sep-2010 12:08:35; Application: XMLTransformer-1.10.26; Report Filename: 1613_DIOXINS_1613DB225_L14884-47_Form1A_DB03_128S16_SJ1190214.html; Workgroup: WG33742; Design ID: 699]

Form 1A PCDD/PCDF ANALYSIS REPORT

CLIENT SAMPLE NO. SDS-FB-08 Sample Collection: 08-Jun-2010 11:33

AXYS ANALYTICAL SERVICES

2045 MILLS RD., SIDNEY, B.C., CANADA V8L 5X2 TEL (250) 655-5800 FAX (250) 655-5811

4406 Contract No.:

SOLID Matrix:

Sample Receipt Date: 17-Jun-2010

Extraction Date: 25-Aug-2010

09-Sep-2010 Time: 05:27:12 **Analysis Date:**

Extract Volume (uL): 20

Injection Volume (uL): 1.0

Dilution Factor: N/A

Concentration Units:

Project No.

Lab Sample I.D.:

FIDALGO BAY, CUSTOM PLYWOOD DX STUDY

L14884-48 Ri

30-Jul-2010

HR GC/MS

DX0M_122 S: 20

DX0M_123 S: 4

DX0M_122 S: 13

DB5

Sample Size: 10.9 g (dry)

Initial Calibration Date:

Instrument ID:

GC Column ID:

Sample Data Filename:

Blank Data Filename:

Cal. Ver. Data Filename:

% Moisture:

34.7

COMPOUND	LAB FLAG ¹	CONCENTRATION FOUND	DETECTION LIMIT	ION ABUND. RATIO ²	RRT ²
2,3,7,8-TCDD	KJ	0.132	0.0459	0.44	1.001
1,2,3,7,8-PECDD ³	J	0.248	0.0459	0.52	1.000
1,2,3,4,7,8-HXCDD	ΚJ	0.284	0.0459	1.55	1.000
1,2,3,6,7,8-HXCDD	ΚJ	1.27	0.0459	1.43	1.000
1,2,3,7,8,9-HXCDD	KBJ	0.879	0.0459	1.63	1.000
1,2,3,4,6,7,8-HPCDD	В	10.6	0.0817	1.02	1.000
OCDD	В	82.5	0.0595	0.85	1.000
2,3,7,8-TCDF	В	1.29	0.0459	0.67	1.001
1,2,3,7,8-PECDF	KJ	0.110	0.0711	5.55	1.000
2,3,4,7,8-PECDF	KBJ	0.316	0.0711	1.14	1.000
1,2,3,4,7,8-HXCDF	KBJ	0.254	0.0652	0.92	1.001
1,2,3,6,7,8-HXCDF	J	0.169	0.0652	1.34	1.001
1,2,3,7,8,9-HXCDF	U		0.0652		
2,3,4,6,7,8-HXCDF	ВЈ	0.219	0.0652	1.06	1.000
1,2,3,4,6,7,8-HPCDF	BJ	2.24	0.0939	1.02	1.000
1,2,3,4,7,8,9-HPCDF	J	0.200	0.0939	0.92	1.000
OCDF	BJ	4.22	0.0459	0.88	1.002
TOTAL TETRA-DIOXINS		2.07	0.0459		
TOTAL PENTA-DIOXINS		2.09	0.0459		
TOTAL HEXA-DIOXINS		10.7	0.0459		
TOTAL HEPTA-DIOXINS		141	0.0817		
TOTAL TETRA-FURANS	В	4.66	0.0459		
TOTAL PENTA-FURANS	В	1.13	0.0711		
TOTAL HEXA-FURANS	В	1.69	0.0652		
TOTAL HEPTA-FURANS	В	2.57	0.0939		

⁽¹⁾ Where applicable, custom lab flags have been used on this report; U = not detected; K = peak detected but did not meet quantification criteria, result reported represents the estimated maximum possible concentration; B = analyte found in sample and the associated blank; J = concentration less than LMCL.

pg/g (dry weight basis)

These data are validated and reported as accurate,	true and compliant v	vith AXYS Analytical	Services Ltd.	quality assurance	processes.
Signed:	Brian	Watson			

For Axys Internal Use Only [XSL Template: Form1A.xsl; Created: 13-Sep-2010 12:06:30; Application: XMLTransformer-1.10.26; Report Filename: 1613_DIOXINS_1613DB5_L14884-48_Form1A_DX0M_122S20_SJ1189289.html; Workgroup: WG33742; Design ID: 699]

⁽²⁾ Contract-required limits for RRTs and ion abundance ratios are specified in Tables 2 and 9, respectively, Method 1613.

⁽³⁾ Alternate confirmation and quantitation ions used for native and labeled PECDD.

These pages are part of a larger report that may contain information necessary for full data evaluation. Results reported relate only to the sample tested. Results are compliant with NELAP where specific accreditation is held.

Form 1A PCDD/PCDF ANALYSIS REPORT

CLIENT SAMPLE NO. SDS-FB-08 Sample Collection: 08-Jun-2010 11:33

AXYS ANALYTICAL SERVICES

2045 MILLS RD., SIDNEY, B.C., CANADA V8L 5X2 TEL (250) 655-5800 FAX (250) 655-5811

Contract No.: 4406

Lab Sample I.D.:

FIDALGO BAY, CUSTOM PLYWOOD DX STUDY

L14884-48 R

Matrix: SOLID

Sample Size:

Project No.

10.9 g (dry)

Sample Receipt Date: 17-Jun-2010

Initial Calibration Date:

24-Aug-2010

Extraction Date:

25-Aug-2010

Instrument ID:

HR GC/MS

Analysis Date:

08-Sep-2010 **Time:** 05:52:59

GC Column ID:

DB225

Extract Volume (uL):

20

Sample Data Filename:

DB03_128 S: 17

Injection Volume (uL):

2.0

Blank Data Filename:

DB03_128 S: 5

Dilution Factor:

N/A

Cal. Ver. Data Filename:

DB03_128 S: 2

Concentration Units:

pg/g (dry weight basis)

% Moisture:

34.7

COMPOUND	LAB FLAG ¹	CONCENTRATION FOUND	DETECTION LIMIT	ION ABUND. RATIO ²	RRT ²
2,3,7,8-TCDF	ВЈ	0.706	0.0459	0.78	1.001

(1) Where applicable, custom lab flags have been used on this report; B = analyte found in sample and the associated blank; J = concentration less than LMCL.

(2) Contract-required limits for RRTs and ion abundance ratios are specified in Tables 2 and 9, respectively, Method 1613.

These data are validated and reported as accura	te, true and compliant v	with AXYS Analytical	Services Ltd. quali	ty assurance processes.
Signed:	Brian	Watson		

For Axys Internal Use Only [XSL Template: Form1A.xsl; Created: 13-Sep-2010 12:08:35; Application: XMLTransformer-1.10.26; Report Filename: 1613_DIOXINS_1613DB225_L14884-48_Form1A_DB03_128S17_SJ1190215.html; Workgroup: WG33742; Design ID: 699]

Form 1A PCDD/PCDF ANALYSIS REPORT

CLIENT SAMPLE NO. SDS-FB-09 Sample Collection: 08-Jun-2010 14:35

AXYS ANALYTICAL SERVICES

2045 MILLS RD., SIDNEY, B.C., CANADA V8L 5X2 TEL (250) 655-5800 FAX (250) 655-5811

Contract No.: 4406

Matrix: SOLID

Sample Receipt Date: 17-Jun-2010

Extraction Date: 25-Aug-2010

09-Sep-2010 Time: 07:17:17

pg/g (dry weight basis)

Extract Volume (uL): 20

Analysis Date:

Injection Volume (uL): 1.0

Dilution Factor: N/A

Concentration Units:

Project No.

Lab Sample I.D.:

FIDALGO BAY, CUSTOM

PLYWOOD DX STUDY

L14884-49 Ri

30-Jul-2010

Sample Size: 11.7 g (dry)

Initial Calibration Date:

Instrument ID: HR GC/MS

GC Column ID:

Sample Data Filename: DX0M_122 S: 22

Blank Data Filename: DX0M_123 S: 4

Cal. Ver. Data Filename:

% Moisture: 34.6

040

DX0M_122 S: 13

DB5

COMPOUND	LAB FLAG ¹	CONCENTRATION FOUND	DETECTION LIMIT	ION ABUND. RATIO ²	RRT ²
2,3,7,8-TCDD	КJ	0.155	0.0428	0.47	1.001
1,2,3,7,8-PECDD ³	J	0.440	0.0428	0.63	1.000
1,2,3,4,7,8-HXCDD	J	0.417	0.0428	1.10	1.000
1,2,3,6,7,8-HXCDD	J	1.68	0.0428	1.25	1.001
1,2,3,7,8,9-HXCDD	BJ	1.34	0.0428	1.25	1.000
1,2,3,4,6,7,8-HPCDD	В	14.6	0.0948	1.00	1.000
OCDD	В	101	0.0468	0.88	1.000
2,3,7,8-TCDF	В	1.88	0.0428	0.73	1.001
1,2,3,7,8-PECDF	J	0.231	0.0495	1.67	1.001
2,3,4,7,8-PECDF	BJ	0.501	0.0495	1.44	1.000
1,2,3,4,7,8-HXCDF	BJ	0.406	0.0741	1.20	1.000
1,2,3,6,7,8-HXCDF	J	0.231	0.0741	1.15	1.001
1,2,3,7,8,9-HXCDF	U		0.0741		
2,3,4,6,7,8-HXCDF	BJ	0.258	0.0741	1.32	1.000
1,2,3,4,6,7,8-HPCDF	BJ	3.04	0.0428	0.92	1.000
1,2,3,4,7,8,9-HPCDF	ΚJ	0.259	0.0428	0.84	1.000
OCDF	BJ	7.07	0.0947	0.81	1.002
TOTAL TETRA-DIOXINS		7.64	0.0428		
TOTAL PENTA-DIOXINS		4.96	0.0428		
TOTAL HEXA-DIOXINS		21.1	0.0428		
TOTAL HEPTA-DIOXINS		160	0.0948		
TOTAL TETRA-FURANS	В	7.36	0.0428		
TOTAL PENTA-FURANS	В	2.29	0.0495		
TOTAL HEXA-FURANS	В	4.57	0.0741		
TOTAL HEPTA-FURANS	В	7.75	0.0428		

⁽¹⁾ Where applicable, custom lab flags have been used on this report; U = not detected; K = peak detected but did not meet quantification criteria, result reported represents the estimated maximum possible concentration; B = analyte found in sample and the associated blank; J = concentration less than LMCL.

These data are validated and reported as accurate,	true and compliant v	with AXYS Analytical	Services Ltd. quality	assurance processes.
Signed:	Brian	Watson		

For Axys Internal Use Only [XSL Template: Form1A.xsl; Created: 13-Sep-2010 12:06:30; Application: XMLTransformer-1.10.26; Report Filename: 1613_DIOXINS_1613DB5_L14884-49_Form1A_DX0M_122S22_SJ1189291.html; Workgroup: WG33742; Design ID: 699]

⁽²⁾ Contract-required limits for RRTs and ion abundance ratios are specified in Tables 2 and 9, respectively, Method 1613.

⁽³⁾ Alternate confirmation and quantitation ions used for native and labeled PECDD.

These pages are part of a larger report that may contain information necessary for full data evaluation. Results reported relate only to the sample tested. Results are compliant with NELAP where specific accreditation is held.

Form 1A PCDD/PCDF ANALYSIS REPORT

CLIENT SAMPLE NO. SDS-FB-09 Sample Collection: 08-Jun-2010 14:35

AXYS ANALYTICAL SERVICES

2045 MILLS RD., SIDNEY, B.C., CANADA V8L 5X2 TEL (250) 655-5800 FAX (250) 655-5811

4406 Contract No.:

Project No. Lab Sample I.D.:

Sample Size:

FIDALGO BAY, CUSTOM PLYWOOD DX STUDY

L14884-49 R

Matrix: **SOLID**

11.7 g (dry)

Sample Receipt Date: 17-Jun-2010 **Initial Calibration Date:**

24-Aug-2010 HR GC/MS

Extraction Date: Analysis Date:

25-Aug-2010

08-Sep-2010 Time: 06:29:45

Instrument ID: GC Column ID:

Extract Volume (uL):

20

DB225

Injection Volume (uL):

2.0

Sample Data Filename: Blank Data Filename:

DB03_128 S: 18 DB03_128 S: 5

Dilution Factor:

N/A

Cal. Ver. Data Filename:

DB03_128 S: 2

Concentration Units:

pg/g (dry weight basis)

% Moisture:

34.6

COMPOUND	LAB FLAG ¹	CONCENTRATION FOUND	DETECTION LIMIT	ION ABUND. RATIO ²	RRT ²
2,3,7,8-TCDF	В	0.973	0.0428	0.81	1.001

⁽¹⁾ Where applicable, custom lab flags have been used on this report; B = analyte found in sample and the associated blank.

These data are validated and reported as accurate	, true and compliant	with AXYS Analytical	Services Ltd. quality	assurance processes.
Signed:	Brian	Watson		

For Axys Internal Use Only [XSL Template: Form1A.xsl; Created: 13-Sep-2010 12:08:35; Application: XMLTransformer-1.10.26; Report Filename: 1613_DIOXINS_1613DB225_L14884-49_Form1A_DB03_128S18_SJ1190216.html; Workgroup: WG33742; Design ID: 699]

⁽²⁾ Contract-required limits for RRTs and ion abundance ratios are specified in Tables 2 and 9, respectively, Method 1613.

Form 1A PCDD/PCDF ANALYSIS REPORT

CLIENT SAMPLE NO. 10654001 Sample Collection: 03-Sep-2008 11:28

AXYS ANALYTICAL SERVICES

2045 MILLS RD., SIDNEY, B.C., CANADA V8L 5X2 TEL (250) 655-5800 FAX (250) 655-5811

Contract No.: 4406

Matrix: SOLID

Sample Receipt Date: 16-Jul-2010

Extraction Date: 25-Aug-2010

07-Sep-2010 Time: 21:01:25

Analysis Date:

Extract Volume (uL): 20

Injection Volume (uL): 1.0

Dilution Factor: N/A

Concentration Units: pg/g (dry weight basis)

Project No.

FIDALGO BAY, CUSTOM PLYWOOD DX STUDY

Lab Sample I.D.: L15027-1 Ri2

Sample Size: 10.5 g (dry)

Initial Calibration Date:

Instrument ID: HR GC/MS

GC Column ID:

Sample Data Filename: DX0M_121F S: 4

Blank Data Filename:

DX0M_123 S: 4

30-Jul-2010

DB5

Cal. Ver. Data Filename:

DX0M_121F S: 1

% Moisture: 55.2

COMPOUND	LAB FLAG ¹	CONCENTRATION FOUND	DETECTION LIMIT	ION ABUND. RATIO ²	RRT ²
2,3,7,8-TCDD	J	0.608	0.135	0.69	1.001
1,2,3,7,8-PECDD ³	J	2.74	0.0474	0.55	1.001
1,2,3,4,7,8-HXCDD	J	3.66	0.242	1.11	1.000
1,2,3,6,7,8-HXCDD		19.4	0.242	1.19	1.000
1,2,3,7,8,9-HXCDD	В	10.8	0.242	1.24	1.000
1,2,3,4,6,7,8-HPCDD	В	376	0.432	0.99	1.000
OCDD	В	2710	0.0489	0.87	1.000
2,3,7,8-TCDF	В	5.22	0.0699	0.71	1.001
1,2,3,7,8-PECDF	ΚJ	0.953	0.175	1.22	1.000
2,3,4,7,8-PECDF	BJ	1.97	0.175	1.36	1.001
1,2,3,4,7,8-HXCDF	BJ	4.64	0.205	1.06	1.001
1,2,3,6,7,8-HXCDF	J	2.55	0.205	1.36	1.000
1,2,3,7,8,9-HXCDF	BJ	0.260	0.205	1.26	1.000
2,3,4,6,7,8-HXCDF	BJ	2.64	0.205	1.10	1.001
1,2,3,4,6,7,8-HPCDF	В	104	0.373	0.97	1.000
1,2,3,4,7,8,9-HPCDF		5.70	0.373	1.01	1.000
OCDF	В	411	0.0474	0.85	1.002
TOTAL TETRA-DIOXINS		62.6	0.135		
TOTAL PENTA-DIOXINS		38.9	0.0474		
TOTAL HEXA-DIOXINS		200	0.242		
TOTAL HEPTA-DIOXINS		1010	0.432		
TOTAL TETRA-FURANS	В	33.4	0.0699		
TOTAL PENTA-FURANS	В	32.9	0.175		
TOTAL HEXA-FURANS	В	110	0.205		
TOTAL HEPTA-FURANS	В	368	0.373		

⁽¹⁾ Where applicable, custom lab flags have been used on this report; K = peak detected but did not meet quantification criteria, result reported represents the estimated maximum possible concentration; B = analyte found in sample and the associated blank; J = concentration less than LMCL.

These data are validated and reported as accurate, true and compliant with AXYS Analytical Services Ltd. quality assurance processes.

Signed: Brian Watson

For Axys Internal Use Only [XSL Template: Form1A.xsl; Created: 13-Sep-2010 12:06:30; Application: XMLTransformer-1.10.26; Report Filename: 1613_DIOXINS_1613DB5_L15027-1_Form1A_DX0M_121FS4_SJ1188693.html; Workgroup: WG33742; Design ID: 699]

⁽²⁾ Contract-required limits for RRTs and ion abundance ratios are specified in Tables 2 and 9, respectively, Method 1613.

⁽³⁾ Alternate confirmation and quantitation ions used for native and labeled PECDD.

Form 1A PCDD/PCDF ANALYSIS REPORT

CLIENT SAMPLE NO. 10654001 Sample Collection: 03-Sep-2008 11:28

AXYS ANALYTICAL SERVICES

Matrix:

Analysis Date:

2045 MILLS RD., SIDNEY, B.C., CANADA V8L 5X2 TEL (250) 655-5800 FAX (250) 655-5811

Contract No.: 4406

SOLID

09-Sep-2010 Time: 22:53:08

Sample Receipt Date: 16-Jul-2010

Extraction Date: 25-Aug-2010

Extract Volume (uL): 20

Injection Volume (uL): 2.0

Dilution Factor: N/A

Concentration Units: pg/g (dry weight basis)

Project No.

FIDALGO BAY, CUSTOM PLYWOOD DX STUDY

DB225

DB03_131 S: 6

DB03_128 S: 5

DB03_131 S: 2

Lab Sample I.D.: L15027-1 Ri

Sample Size: 10.5 g (dry)

Initial Calibration Date: 24-Aug-2010

Instrument ID: HR GC/MS

GC Column ID:

Sample Data Filename:

Blank Data Filename:

Cal. Ver. Data Filename:

% Moisture:

55.2

COMPOUND	LAB FLAG ¹	CONCENTRATION FOUND	DETECTION LIMIT	ION ABUND. RATIO ²	RRT ²
2,3,7,8-TCDF	В	2.39	0.118	0.83	1.000

(1) Where applicable, custom lab flags have been used on this report; B = analyte found in sample and the associated blank.

(2) Contract-required limits for RRTs and ion abundance ratios are specified in Tables 2 and 9, respectively, Method 1613.

These data are validated and reported as accurate,	true and compliant	with AXYS Analytical	Services Ltd. quali	ty assurance processes.
Signed:	Brian	Watson		

For Axys Internal Use Only [XSL Template: Form1A.xsl; Created: 13-Sep-2010 12:08:35; Application: XMLTransformer-1.10.26; Report Filename: 1613_DIOXINS_1613DB225_L15027-1_Form1A_DB03_131S6_SJ1190320.html; Workgroup: WG33742; Design ID: 699]

Form 1A PCDD/PCDF ANALYSIS REPORT

CLIENT SAMPLE NO. 10654002 Sample Collection: 03-Sep-2008 12:39

AXYS ANALYTICAL SERVICES

2045 MILLS RD., SIDNEY, B.C., CANADA V8L 5X2 TEL (250) 655-5800 FAX (250) 655-5811

Contract No.: 4406

Matrix: SOLID

Sample Receipt Date: 16-Jul-2010

Extraction Date: 25-Aug-2010

07-Sep-2010 Time: 21:56:28

Extract Volume (uL): 20

Analysis Date:

Injection Volume (uL): 1.0

Dilution Factor: N/A

Concentration Units: pg/g (dry weight basis)

Project No.

Lab Sample I.D.:

Sample Size:

FIDALGO BAY, CUSTOM PLYWOOD DX STUDY

L15027-2 Ri2

10.6 g (dry)

Initial Calibration Date: 30-Jul-2010

. ._

Instrument ID: HR GC/MS

GC Column ID:

Sample Data Filename: DX0M_121F S: 5

Blank Data Filename:

Cal. Ver. Data Filename:

DX0M_123 S: 4

DX0M_121F S: 1

DB5

% Moisture: 44.7

COMPOUND	LAB FLAG ¹	CONCENTRATION FOUND	DETECTION LIMIT	ION ABUND. RATIO ²	RRT ²
2,3,7,8-TCDD	КJ	0.276	0.0471	0.58	1.001
1,2,3,7,8-PECDD ³	J	1.06	0.0496	0.58	1.001
1,2,3,4,7,8-HXCDD	J	1.49	0.0951	1.26	1.000
1,2,3,6,7,8-HXCDD		6.69	0.0951	1.13	1.000
1,2,3,7,8,9-HXCDD	BJ	4.24	0.0951	1.25	1.000
1,2,3,4,6,7,8-HPCDD	В	118	0.268	0.99	1.000
OCDD	В	859	0.196	0.86	1.000
2,3,7,8-TCDF	В	2.78	0.0471	0.74	1.001
1,2,3,7,8-PECDF	ΚJ	0.434	0.108	1.92	1.000
2,3,4,7,8-PECDF	BJ	0.745	0.108	1.40	1.000
1,2,3,4,7,8-HXCDF	KBJ	1.64	0.105	1.02	1.000
1,2,3,6,7,8-HXCDF	J	0.875	0.105	1.25	1.001
1,2,3,7,8,9-HXCDF	KBJ	0.112	0.105	0.50	1.001
2,3,4,6,7,8-HXCDF	BJ	1.11	0.105	1.06	1.000
1,2,3,4,6,7,8-HPCDF	В	31.5	0.146	0.95	1.000
1,2,3,4,7,8,9-HPCDF	ΚJ	1.78	0.146	0.73	1.000
OCDF	В	112	0.134	0.85	1.002
TOTAL TETRA-DIOXINS		19.5	0.0471		
TOTAL PENTA-DIOXINS		19.5	0.0496		
TOTAL HEXA-DIOXINS		72.7	0.0951		
TOTAL HEPTA-DIOXINS		392	0.268		
TOTAL TETRA-FURANS	В	16.1	0.0471		
TOTAL PENTA-FURANS	В	11.5	0.108		
TOTAL HEXA-FURANS	В	28.5	0.105		
TOTAL HEPTA-FURANS	В	95.6	0.146		

⁽¹⁾ Where applicable, custom lab flags have been used on this report; K = peak detected but did not meet quantification criteria, result reported represents the estimated maximum possible concentration; B = analyte found in sample and the associated blank; J = concentration less than LMCL.

These data are validated and reported as accurate, true and compliant with AXYS Analytical Services Ltd. quality assurance processes.

Signed: Brian Watson

For Axys Internal Use Only [XSL Template: Form1A.xsl; Created: 13-Sep-2010 12:06:30; Application: XMLTransformer-1.10.26; Report Filename: 1613_DIOXINS_1613DB5_L15027-2_Form1A_DX0M_121FS5_SJ1188694.html; Workgroup: WG33742; Design ID: 699]

⁽²⁾ Contract-required limits for RRTs and ion abundance ratios are specified in Tables 2 and 9, respectively, Method 1613. (3) Alternate confirmation and quantitation ions used for native and labeled PECDD.

Form 1A PCDD/PCDF ANALYSIS REPORT

CLIENT SAMPLE NO. 10654002 Sample Collection: 03-Sep-2008 12:39

AXYS ANALYTICAL SERVICES

Matrix:

Analysis Date:

2045 MILLS RD., SIDNEY, B.C., CANADA V8L 5X2 TEL (250) 655-5800 FAX (250) 655-5811

Contract No.: 4406

SOLID

Sample Receipt Date: 16-Jul-2010

Extraction Date: 25-Aug-2010

Extract Volume (uL): 20

Injection Volume (uL): 2.0

Dilution Factor: N/A

Concentration Units:

Project No.

. FIDALGO BAY, CUSTOM PLYWOOD DX STUDY

24-Aug-2010

HR GC/MS

DB03_131 S: 7

DB03_128 S: 5

DB03_131 S: 2

DB225

Lab Sample I.D.: L15027-2 Ri

Sample Size: 10.6 g (dry)

Initial Calibration Date:

Instrument ID:

GC Column ID:

Sample Data Filename:

Blank Data Filename:

Cal. Ver. Data Filename:

% Moisture:

44.7

COMPOUND	LAB FLAG ¹	CONCENTRATION FOUND	DETECTION LIMIT	ION ABUND. RATIO ²	RRT ²
2,3,7,8-TCDF	В	1.41	0.150	0.83	1.000

⁽¹⁾ Where applicable, custom lab flags have been used on this report; B = analyte found in sample and the associated blank.

These data are validated and reported as accurate,	true and compliant	with AXYS Analytical	Services Ltd. quality	assurance processes.
Signed:	Brian	Watson		

For Axys Internal Use Only [XSL Template: Form1A.xsl; Created: 13-Sep-2010 12:08:35; Application: XMLTransformer-1.10.26; Report Filename: 1613_DIOXINS_1613DB225_L15027-2_Form1A_DB03_131S7_SJ1190321.html; Workgroup: WG33742; Design ID: 699]

09-Sep-2010 Time: 23:29:45

pg/g (dry weight basis)

⁽²⁾ Contract-required limits for RRTs and ion abundance ratios are specified in Tables 2 and 9, respectively, Method 1613.

Form 1A PCDD/PCDF ANALYSIS REPORT

CLIENT SAMPLE NO. 10654003 Sample Collection: 03-Sep-2008 13:21

AXYS ANALYTICAL SERVICES

2045 MILLS RD., SIDNEY, B.C., CANADA V8L 5X2 TEL (250) 655-5800 FAX (250) 655-5811

Contract No.: 4406

Matrix: SOLID

Sample Receipt Date: 16-Jul-2010

Extraction Date: 25-Aug-2010

Analysis Date: 07-Sep-2010 **Time:** 22:51:30

Extract Volume (uL): 20

Injection Volume (uL): 1.0

Dilution Factor: N/A

Concentration Units: pg/g (dry weight basis)

Project No.

Lab Sample I.D.:

FIDALGO BAY, CUSTOM PLYWOOD DX STUDY

L15027-3 Ri2

30-Jul-2010

DX0M_121F S: 6

DX0M_123 S: 4

DX0M_121F S: 1

Sample Size: 10.7 g (dry)

Initial Calibration Date:

Instrument ID: HR GC/MS

GC Column ID: DB5

Sample Data Filename:

Blank Data Filename:

Cal. Ver. Data Filename:

% Moisture:

34.2

COMPOUND	LAB FLAG ¹	CONCENTRATION FOUND	DETECTION LIMIT	ION ABUND. RATIO ²	RRT ²
2,3,7,8-TCDD	КJ	0.197	0.0656	1.01	1.001
1,2,3,7,8-PECDD ³	KJ	0.890	0.103	0.75	1.001
1,2,3,4,7,8-HXCDD	KJ	0.837	0.112	1.00	1.000
1,2,3,6,7,8-HXCDD	J	3.42	0.112	1.14	1.000
1,2,3,7,8,9-HXCDD	BJ	2.15	0.112	1.08	1.000
1,2,3,4,6,7,8-HPCDD	В	57.1	0.167	0.94	1.000
OCDD	В	440	0.0468	0.85	1.000
2,3,7,8-TCDF	В	2.78	0.0884	0.69	1.002
1,2,3,7,8-PECDF	J	0.337	0.0851	1.41	1.000
2,3,4,7,8-PECDF	KBJ	0.525	0.0851	2.00	1.000
1,2,3,4,7,8-HXCDF	BJ	0.970	0.109	1.21	1.000
1,2,3,6,7,8-HXCDF	J	0.527	0.109	1.25	1.000
1,2,3,7,8,9-HXCDF	U		0.109		
2,3,4,6,7,8-HXCDF	KBJ	0.567	0.109	0.86	1.000
1,2,3,4,6,7,8-HPCDF	В	17.6	0.146	1.02	1.000
1,2,3,4,7,8,9-HPCDF	ΚJ	1.18	0.146	1.45	1.001
OCDF	В	93.4	0.0561	0.81	1.002
TOTAL TETRA-DIOXINS		15.9	0.0656		
TOTAL PENTA-DIOXINS		7.83	0.103		
TOTAL HEXA-DIOXINS		38.3	0.112		
TOTAL HEPTA-DIOXINS		251	0.167		
TOTAL TETRA-FURANS	В	15.2	0.0884		
TOTAL PENTA-FURANS	В	7.20	0.0851		
TOTAL HEXA-FURANS	В	15.5	0.109		
TOTAL HEPTA-FURANS	В	58.2	0.146		

⁽¹⁾ Where applicable, custom lab flags have been used on this report; U = not detected; K = peak detected but did not meet quantification criteria, result reported represents the estimated maximum possible concentration; B = analyte found in sample and the associated blank; J = concentration less than LMCL.

These data are validated and reported as accurate,	true and compliant v	vith AXYS Analytical	Services Ltd.	quality assurance	processes.
Signed:	Brian	Watson			

For Axys Internal Use Only [XSL Template: Form1A.xsl; Created: 13-Sep-2010 12:06:30; Application: XMLTransformer-1.10.26; Report Filename: 1613_DIOXINS_1613DB5_L15027-3_Form1A_DX0M_121FS6_SJ1188695.html; Workgroup: WG33742; Design ID: 699]

⁽²⁾ Contract-required limits for RRTs and ion abundance ratios are specified in Tables 2 and 9, respectively, Method 1613.

⁽³⁾ Alternate confirmation and quantitation ions used for native and labeled PECDD.

These pages are part of a larger report that may contain information necessary for full data evaluation. Results reported relate only to the sample tested. Results are compliant with NELAP where specific accreditation is held.

Form 1A PCDD/PCDF ANALYSIS REPORT

CLIENT SAMPLE NO. 10654003 Sample Collection: 03-Sep-2008 13:21

AXYS ANALYTICAL SERVICES

2045 MILLS RD., SIDNEY, B.C., CANADA V8L 5X2 TEL (250) 655-5800 FAX (250) 655-5811

Contract No.: 4406

Project No.

Sample Size:

FIDALGO BAY, CUSTOM PLYWOOD DX STUDY

L15027-3 Ri

Lab Sample I.D.: L15

Matrix: SOLID

10.7 g (dry)

Sample Receipt Date:

16-Jul-2010

Initial Calibration Date:

24-Aug-2010

Extraction Date:

25-Aug-2010

Instrument ID:

HR GC/MS

Analysis Date:

Dilution Factor:

10-Sep-2010 **Time:** 00:06:24

GC Column ID:

DB225

Extract Volume (uL):

20

Sample Data Filename:

DB03_131 S: 8

Injection Volume (uL):

2.0 N/A Blank Data Filename:
Cal. Ver. Data Filename:

DB03_128 S: 5
DB03_131 S: 2

Concentration Units:

pg/g (dry weight basis)

% Moisture:

34.2

COMPOUND	LAB FLAG ¹	CONCENTRATION FOUND	DETECTION LIMIT	ION ABUND. RATIO ²	RRT ²
2,3,7,8-TCDF	В	1.26	0.0754	0.82	1.001

⁽¹⁾ Where applicable, custom lab flags have been used on this report; B = analyte found in sample and the associated blank.

These data are validated and reported as accurate	, true and compliant	with AXYS Analytical	Services Ltd. quality	assurance processes.
Signed:	Brian	Watson		

For Axys Internal Use Only [XSL Template: Form1A.xsl; Created: 13-Sep-2010 12:08:35; Application: XMLTransformer-1.10.26; Report Filename: 1613_DIOXINS_1613DB225_L15027-3_Form1A_DB03_13188_SJ1190322.html; Workgroup: WG33742; Design ID: 699]

⁽²⁾ Contract-required limits for RRTs and ion abundance ratios are specified in Tables 2 and 9, respectively, Method 1613.

Form 1A PCDD/PCDF ANALYSIS REPORT

CLIENT SAMPLE NO. 10654008 Sample Collection: 04-Sep-2008 08:23

AXYS ANALYTICAL SERVICES

2045 MILLS RD., SIDNEY, B.C., CANADA V8L 5X2 TEL (250) 655-5800 FAX (250) 655-5811

Contract No.: 4406

Matrix: SOLID

Sample Receipt Date: 16-Jul-2010

Extraction Date: 25-Aug-2010

07-Sep-2010 Time: 23:46:32

Analysis Date:

Extract Volume (uL): 20

Injection Volume (uL): 1.0

Dilution Factor: N/A

Concentration Units: pg/g (dry weight basis)

Project No.

FIDALGO BAY, CUSTOM PLYWOOD DX STUDY

L15027-5 Ri

30-Jul-2010

DX0M_121F S: 7

DX0M_121F S: 1

Lab Sample I.D.: L150

Sample Size: 10.7 g (dry)

Initial Calibration Date:

Instrument ID: HR GC/MS

GC Column ID:

% Moisture:

Sample Data Filename:

_. . _ . _..

Blank Data Filename: DX0M_123 S: 4

Cal. Ver. Data Filename:

49.7

DB5

COMPOUND	LAB FLAG ¹	CONCENTRATION FOUND	DETECTION LIMIT	ION ABUND. RATIO ²	RRT ²
2,3,7,8-TCDD	J	0.626	0.0468	0.77	1.001
1,2,3,7,8-PECDD ³	J	2.60	0.0515	0.62	1.001
1,2,3,4,7,8-HXCDD	J	3.47	0.112	1.09	1.000
1,2,3,6,7,8-HXCDD		18.8	0.112	1.20	1.001
1,2,3,7,8,9-HXCDD	В	9.90	0.112	1.24	1.000
1,2,3,4,6,7,8-HPCDD	В	384	0.305	0.99	1.000
OCDD	В	2930	0.0792	0.87	1.000
2,3,7,8-TCDF	В	4.51	0.0617	0.71	1.001
1,2,3,7,8-PECDF	J	0.939	0.101	1.50	1.002
2,3,4,7,8-PECDF	ВЈ	1.86	0.101	1.53	1.000
1,2,3,4,7,8-HXCDF	В	4.70	0.129	1.15	1.001
1,2,3,6,7,8-HXCDF	J	2.42	0.129	1.07	1.000
1,2,3,7,8,9-HXCDF	KBJ	0.218	0.129	1.73	1.000
2,3,4,6,7,8-HXCDF	BJ	2.45	0.129	1.12	1.001
1,2,3,4,6,7,8-HPCDF	В	117	0.137	0.99	1.000
1,2,3,4,7,8,9-HPCDF		7.15	0.137	0.93	1.000
OCDF	В	481	0.0468	0.84	1.002
TOTAL TETRA-DIOXINS		29.1	0.0468		
TOTAL PENTA-DIOXINS		29.1	0.0515		
TOTAL HEXA-DIOXINS		175	0.112		
TOTAL HEPTA-DIOXINS		1020	0.305		
TOTAL TETRA-FURANS	В	28.1	0.0617		
TOTAL PENTA-FURANS	В	31.8	0.101		
TOTAL HEXA-FURANS	В	119	0.129		
TOTAL HEPTA-FURANS	В	449	0.137		

⁽¹⁾ Where applicable, custom lab flags have been used on this report; K = peak detected but did not meet quantification criteria, result reported represents the estimated maximum possible concentration; B = analyte found in sample and the associated blank; J = concentration less than LMCL.

These data are validated and reported as accurate, true and compliant with AXYS Analytical Services Ltd. quality assurance processes.

Signed: Brian Watson

For Axys Internal Use Only [XSL Template: Form1A.xsl; Created: 13-Sep-2010 12:06:30; Application: XMLTransformer-1.10.26; Report Filename: 1613_DIOXINS_1613DB5_L15027-5_Form1A_DX0M_121FS7_SJ1188696.html; Workgroup: WG33742; Design ID: 699]

⁽²⁾ Contract-required limits for RRTs and ion abundance ratios are specified in Tables 2 and 9, respectively, Method 1613. (3) Alternate confirmation and quantitation ions used for native and labeled PECDD.

Form 1A PCDD/PCDF ANALYSIS REPORT

CLIENT SAMPLE NO. 10654008 Sample Collection: 04-Sep-2008 08:23

AXYS ANALYTICAL SERVICES

2045 MILLS RD., SIDNEY, B.C., CANADA V8L 5X2 TEL (250) 655-5800 FAX (250) 655-5811

Contract No.: 4406

Project No.

FIDALGO BAY, CUSTOM PLYWOOD DX STUDY

L15027-5 R

Matrix: SOLID

Sample Size:

Lab Sample I.D.:

10.7 g (dry)

Sample Receipt Date:

16-Jul-2010

Initial Calibration Date:

24-Aug-2010

Extraction Date:

25-Aug-2010

Instrument ID:

HR GC/MS

Analysis Date:

10-Sep-2010 **Time:** 00:43:01

GC Column ID:

DB225

Extract Volume (uL):

20

Sample Data Filename:

DB03_131 S: 9

Injection Volume (uL):

2.0

Blank Data Filename:

DB03_128 S: 5

Dilution Factor:

N/A

Cal. Ver. Data Filename:

DB03_131 S: 2

Concentration Units:

pg/g (dry weight basis)

% Moisture:

49.7

COMPOUND	LAB FLAG ¹	CONCENTRATION FOUND	DETECTION LIMIT	ION ABUND. RATIO ²	RRT ²
2,3,7,8-TCDF	В	1.64	0.0831	0.77	1.001

⁽¹⁾ Where applicable, custom lab flags have been used on this report; B = analyte found in sample and the associated blank.

These data are validated and reported as accurate	, true and compliant	with AXYS Analytical	Services Ltd. quality	assurance processes.
Signed:	Brian	Watson		

For Axys Internal Use Only [XSL Template: Form1A.xsl; Created: 13-Sep-2010 12:08:35; Application: XMLTransformer-1.10.26; Report Filename: 1613_DIOXINS_1613DB225_L15027-5_Form1A_DB03_131S9_SJ1190323.html; Workgroup: WG33742; Design ID: 699]

⁽²⁾ Contract-required limits for RRTs and ion abundance ratios are specified in Tables 2 and 9, respectively, Method 1613.

Form 1A PCDD/PCDF ANALYSIS REPORT

CLIENT SAMPLE NO. 10654009 Sample Collection: 04-Sep-2008 09:37

AXYS ANALYTICAL SERVICES

2045 MILLS RD., SIDNEY, B.C., CANADA V8L 5X2 TEL (250) 655-5800 FAX (250) 655-5811

Contract No.: 4406

Matrix: SOLID

Sample Receipt Date: 16-Jul-2010

Extraction Date: 25-Aug-2010

08-Sep-2010 Time: 00:41:35

pg/g (dry weight basis)

Extract Volume (uL): 20

Analysis Date:

Injection Volume (uL): 1.0

Dilution Factor: N/A

Concentration Units:

Project No.

GC Column ID:

FIDALGO BAY, CUSTOM PLYWOOD DX STUDY

30-Jul-2010

DX0M_121F S: 8

DX0M_123 S: 4

DX0M_121F S: 1

Lab Sample I.D.: L15027-6 Ri

Sample Size: 5.81 g (dry)

Initial Calibration Date:

Instrument ID: HR GC/MS

Sample Data Filename:

Blank Data Filename:

Cal. Ver. Data Filename:

DB5

% Moisture: 42.8

COMPOUND	LAB FLAG ¹	CONCENTRATION FOUND	DETECTION LIMIT	ION ABUND. RATIO ²	RRT ²
2,3,7,8-TCDD	J	0.529	0.0861	0.66	1.001
1,2,3,7,8-PECDD ³	J	2.51	0.0861	0.53	1.000
1,2,3,4,7,8-HXCDD	J	3.08	0.110	1.18	1.000
1,2,3,6,7,8-HXCDD		16.2	0.110	1.17	1.000
1,2,3,7,8,9-HXCDD	ВЈ	8.89	0.110	1.15	1.000
1,2,3,4,6,7,8-HPCDD	В	458	0.326	1.00	1.000
OCDD	В	3510	0.149	0.87	1.000
2,3,7,8-TCDF	В	5.13	0.0861	0.70	1.001
1,2,3,7,8-PECDF	KJ	0.520	0.0977	4.28	1.000
2,3,4,7,8-PECDF	BJ	1.70	0.0977	1.59	1.001
1,2,3,4,7,8-HXCDF	BJ	3.45	0.147	1.23	1.001
1,2,3,6,7,8-HXCDF	J	1.69	0.147	1.22	1.001
1,2,3,7,8,9-HXCDF	KBJ	0.190	0.147	0.99	1.000
2,3,4,6,7,8-HXCDF	BJ	2.17	0.147	1.07	1.000
1,2,3,4,6,7,8-HPCDF	В	81.3	0.298	1.00	1.001
1,2,3,4,7,8,9-HPCDF	KJ	4.58	0.298	0.88	1.000
OCDF	В	305	0.0861	0.83	1.002
TOTAL TETRA-DIOXINS		21.0	0.0861		
TOTAL PENTA-DIOXINS		26.4	0.0861		
TOTAL HEXA-DIOXINS		159	0.110		
TOTAL HEPTA-DIOXINS		1300	0.326		
TOTAL TETRA-FURANS	В	31.8	0.0861		
TOTAL PENTA-FURANS	В	25.5	0.0977		
TOTAL HEXA-FURANS	В	79.0	0.147		
TOTAL HEPTA-FURANS	В	276	0.298		

⁽¹⁾ Where applicable, custom lab flags have been used on this report; K = peak detected but did not meet quantification criteria, result reported represents the estimated maximum possible concentration; B = analyte found in sample and the associated blank; J = concentration less than LMCL.

These data are validated and reported as accurate, true and compliant with AXYS Analytical Services Ltd. quality assurance processes.

Signed: Brian Watson

For Axys Internal Use Only [XSL Template: Form1A.xsl; Created: 13-Sep-2010 12:06:30; Application: XMLTransformer-1.10.26; Report Filename: 1613_DIOXINS_1613DB5_L15027-6_Form1A_DX0M_121FS8_SJ1188697.html; Workgroup: WG33742; Design ID: 699]

⁽²⁾ Contract-required limits for RRTs and ion abundance ratios are specified in Tables 2 and 9, respectively, Method 1613.

⁽³⁾ Alternate confirmation and quantitation ions used for native and labeled PECDD.

Form 1A PCDD/PCDF ANALYSIS REPORT

CLIENT SAMPLE NO. 10654009 Sample Collection: 04-Sep-2008 09:37

AXYS ANALYTICAL SERVICES

2045 MILLS RD., SIDNEY, B.C., CANADA V8L 5X2 TEL (250) 655-5800 FAX (250) 655-5811

4406 Contract No.:

Project No.

Sample Size:

FIDALGO BAY, CUSTOM PLYWOOD DX STUDY

L15027-6 R Lab Sample I.D.:

Matrix: **SOLID**

16-Jul-2010

Initial Calibration Date:

24-Aug-2010

Extraction Date:

Sample Receipt Date:

25-Aug-2010

Instrument ID:

HR GC/MS

5.81 g (dry)

Analysis Date:

10-Sep-2010 Time: 01:19:39

GC Column ID:

DB225

Extract Volume (uL):

20

Sample Data Filename:

DB03_131 S: 10

Injection Volume (uL):

2.0

Blank Data Filename:

DB03_128 S: 5

ION ADUND

Dilution Factor:

N/A

Cal. Ver. Data Filename:

DB03_131 S: 2

42.8

Concentration Units:

COMPOUND

pg/g (dry weight basis)

% Moisture:

COMPOUND	LAB FLAG '	FOUND	LIMIT	RATIO ²	RRT ²
2,3,7,8-TCDF	В	2.00	0.195	0.81	1.001

⁽¹⁾ Where applicable, custom lab flags have been used on this report; B = analyte found in sample and the associated blank.

ONCENTE ATION

These data are validated and reported as accurate	, true and compliant	with AXYS Analytical	Services Ltd. quality	assurance processes.
Signed:	Brian	Watson		

For Axys Internal Use Only [XSL Template: Form1A.xsl; Created: 13-Sep-2010 12:08:35; Application: XMLTransformer-1.10.26; Report Filename: 1613_DIOXINS_1613DB225_L15027-6_Form1A_DB03_131S10_SJ1190324.html; Workgroup: WG33742; Design ID: 699]

⁽²⁾ Contract-required limits for RRTs and ion abundance ratios are specified in Tables 2 and 9, respectively, Method 1613.

Form 1A PCDD/PCDF ANALYSIS REPORT

CLIENT SAMPLE NO. 10654013 Sample Collection: 04-Sep-2008 13:04

AXYS ANALYTICAL SERVICES

2045 MILLS RD., SIDNEY, B.C., CANADA V8L 5X2 TEL (250) 655-5800 FAX (250) 655-5811

Contract No.: 4406

Matrix: SOLID

Sample Receipt Date: 16-Jul-2010

Extraction Date: 25-Aug-2010

Analysis Date: 08-Sep-2010 **Time:** 01:36:37

Extract Volume (uL): 20

Injection Volume (uL): 1.0

Dilution Factor: N/A

Concentration Units: pg/g (dry weight basis)

Project No.

FIDALGO BAY, CUSTOM PLYWOOD DX STUDY

Lab Sample I.D.: L15027-8 Ri

Sample Size: 10.9 g (dry)

Initial Calibration Date: 30-Jul-2010

Instrument ID: HR GC/MS

GC Column ID: DB5

Sample Data Filename: DX0M_121F S: 9

Blank Data Filename: DX0M_123 S: 4

Cal. Ver. Data Filename: DX0M_121F S: 1

% Moisture: 37.0

COMPOUND	LAB FLAG ¹	CONCENTRATION FOUND	DETECTION LIMIT	ION ABUND. RATIO ²	RRT ²
2,3,7,8-TCDD	КJ	0.237	0.0460	0.52	1.000
1,2,3,7,8-PECDD ³	J	0.616	0.0460	0.63	1.001
1,2,3,4,7,8-HXCDD	J	0.686	0.0479	1.20	1.001
1,2,3,6,7,8-HXCDD	J	2.87	0.0479	1.23	1.000
1,2,3,7,8,9-HXCDD	ВЈ	2.25	0.0479	1.21	1.000
1,2,3,4,6,7,8-HPCDD	В	39.2	0.108	0.99	1.000
OCDD	В	271	0.0460	0.86	1.000
2,3,7,8-TCDF	В	2.33	0.0460	0.71	1.001
1,2,3,7,8-PECDF	J	0.378	0.0534	1.69	1.002
2,3,4,7,8-PECDF	KBJ	0.704	0.0534	1.83	1.001
1,2,3,4,7,8-HXCDF	KBJ	0.852	0.0616	0.98	1.000
1,2,3,6,7,8-HXCDF	KJ	0.477	0.0616	0.94	1.001
1,2,3,7,8,9-HXCDF	KBJ	0.062	0.0616	1.47	1.000
2,3,4,6,7,8-HXCDF	BJ	0.551	0.0616	1.16	1.000
1,2,3,4,6,7,8-HPCDF	В	9.84	0.0734	1.00	1.000
1,2,3,4,7,8,9-HPCDF	J	0.586	0.0734	0.97	1.000
OCDF	В	29.4	0.0607	0.84	1.002
TOTAL TETRA-DIOXINS		8.39	0.0460		
TOTAL PENTA-DIOXINS		8.39	0.0460		
TOTAL HEXA-DIOXINS		37.5	0.0479		
TOTAL HEPTA-DIOXINS		224	0.108		
TOTAL TETRA-FURANS	В	11.4	0.0460		
TOTAL PENTA-FURANS	В	5.52	0.0534		
TOTAL HEXA-FURANS	В	10.1	0.0616		
TOTAL HEPTA-FURANS	В	27.8	0.0734		

⁽¹⁾ Where applicable, custom lab flags have been used on this report; K = peak detected but did not meet quantification criteria, result reported represents the estimated maximum possible concentration; B = analyte found in sample and the associated blank; J = concentration less than LMCL.

These data are validated and reported as accurate, true and compliant with AXYS Analytical Services Ltd. quality assurance processes.

Signed: Brian Watson

For Axys Internal Use Only [XSL Template: Form1A.xsl; Created: 13-Sep-2010 12:06:30; Application: XMLTransformer-1.10.26; Report Filename: 1613_DIOXINS_1613DB5_L15027-8_Form1A_DX0M_121FS9_SJ1188698.html; Workgroup: WG33742; Design ID: 699]

⁽²⁾ Contract-required limits for RRTs and ion abundance ratios are specified in Tables 2 and 9, respectively, Method 1613. (3) Alternate confirmation and quantitation ions used for native and labeled PECDD.

Form 1A PCDD/PCDF ANALYSIS REPORT

CLIENT SAMPLE NO. 10654013 Sample Collection: 04-Sep-2008 13:04

AXYS ANALYTICAL SERVICES

2045 MILLS RD., SIDNEY, B.C., CANADA V8L 5X2 TEL (250) 655-5800 FAX (250) 655-5811

Contract No.: 4406

Lab Sample I.D.:

FIDALGO BAY, CUSTOM PLYWOOD DX STUDY

L15027-8 R

Matrix: SOLID

10.9 g (dry)

Sample Receipt Date: 16-Jul-2010

Initial Calibration Date:

24-Aug-2010

Extraction Date:

25-Aug-2010

Instrument ID:

Project No.

Sample Size:

HR GC/MS

Analysis Date:

10-Sep-2010 **Time:** 01:56:18

GC Column ID:

DB225

Extract Volume (uL):

20

Sample Data Filename:

DB03_131 S: 11

Injection Volume (uL): 2.0

Blank Data Filename:

DB03_128 S: 5

Dilution Factor: N/A

Cal. Ver. Data Filename:

DB03_131 S: 2

Concentration Units:

pg/g (dry weight basis)

% Moisture:

COMPOUND

LAB FLAG ¹

CONCENTRATION FOUND

DETECTION LIMIT ION ABUND. RATIO ²

0.80

RRT²

2,3,7,8-TCDF

ВJ

0.946

0.0478

37.0

1.001

(1) Where applicable, custom lab flags have been used on this report; B = analyte found in sample and the associated blank; J = concentration less than LMCL.

(2) Contract-required limits for RRTs and ion abundance ratios are specified in Tables 2 and 9, respectively, Method 1613.

These data are validated and reported as accurate, true and compliant with AXYS Analytical Services Ltd. quality assurance processes.

Signed: Brian Watson

For Axys Internal Use Only [XSL Template: Form1A.xsl; Created: 13-Sep-2010 12:08:35; Application: XMLTransformer-1.10.26; Report Filename: 1613_DIOXINS_1613DB225_L15027-8_Form1A_DB03_131S11_SJ1190325.html; Workgroup: WG33742; Design ID: 699]

Form 1A PCDD/PCDF ANALYSIS REPORT

CLIENT SAMPLE NO. 10654026 Sample Collection: 05-Sep-2008 13:42

AXYS ANALYTICAL SERVICES

2045 MILLS RD., SIDNEY, B.C., CANADA V8L 5X2 TEL (250) 655-5800 FAX (250) 655-5811

4406 Contract No.:

Matrix: **SOLID**

Sample Receipt Date: 16-Jul-2010

Extraction Date: 25-Aug-2010

08-Sep-2010 Time: 02:31:40 **Analysis Date:**

Extract Volume (uL): 20

Injection Volume (uL): 1.0

Dilution Factor: N/A

Concentration Units: pg/g (dry weight basis) Project No.

Lab Sample I.D.:

Sample Size:

Instrument ID:

FIDALGO BAY, CUSTOM PLYWOOD DX STUDY

L15027-12 Ri

10.8 g (dry)

Initial Calibration Date: 30-Jul-2010

HR GC/MS

GC Column ID: DB5

Sample Data Filename: DX0M_121F S: 10

Blank Data Filename: DX0M_123 S: 4

Cal. Ver. Data Filename:

DX0M_121F S: 1

% Moisture: 41.9

COMPOUND	LAB FLAG ¹	CONCENTRATION FOUND	DETECTION LIMIT	ION ABUND. RATIO ²	RRT ²
2,3,7,8-TCDD	КJ	0.194	0.0465	0.62	1.001
1,2,3,7,8-PECDD ³	J	0.706	0.0465	0.56	1.001
1,2,3,4,7,8-HXCDD	J	0.720	0.0645	1.13	1.000
1,2,3,6,7,8-HXCDD	J	2.96	0.0645	1.15	1.000
1,2,3,7,8,9-HXCDD	BJ	2.34	0.0645	1.23	1.000
1,2,3,4,6,7,8-HPCDD	В	33.7	0.0996	0.98	1.000
OCDD	В	230	0.0698	0.86	1.000
2,3,7,8-TCDF	В	2.55	0.0465	0.75	1.001
1,2,3,7,8-PECDF	ΚJ	0.267	0.0699	0.96	1.000
2,3,4,7,8-PECDF	BJ	0.591	0.0699	1.62	1.001
1,2,3,4,7,8-HXCDF	KBJ	0.815	0.106	1.52	1.001
1,2,3,6,7,8-HXCDF	ΚJ	0.552	0.106	0.99	1.000
1,2,3,7,8,9-HXCDF	U		0.106		
2,3,4,6,7,8-HXCDF	BJ	0.761	0.106	1.09	1.001
1,2,3,4,6,7,8-HPCDF	В	9.44	0.0926	0.92	1.000
1,2,3,4,7,8,9-HPCDF	J	0.672	0.0926	1.17	1.001
OCDF	В	26.3	0.0465	0.84	1.002
TOTAL TETRA-DIOXINS		7.84	0.0465		
TOTAL PENTA-DIOXINS		9.10	0.0465		
TOTAL HEXA-DIOXINS		35.1	0.0645		
TOTAL HEPTA-DIOXINS		192	0.0996		
TOTAL TETRA-FURANS	В	11.4	0.0465		
TOTAL PENTA-FURANS	В	6.14	0.0699		
TOTAL HEXA-FURANS	В	9.36	0.106		
TOTAL HEPTA-FURANS	В	25.0	0.0926		

⁽¹⁾ Where applicable, custom lab flags have been used on this report; U = not detected; K = peak detected but did not meet quantification criteria, result reported represents the estimated maximum possible concentration; B = analyte found in sample and the associated blank; J = concentration less than LMCL.

These data are validated and reported as accurate,	true and compliant	with AXYS Analytical	Services Ltd.	quality assurance	ce processes.
Signed:	Brian	Watson			

For Axys Internal Use Only [XSL Template: Form1A.xsl; Created: 13-Sep-2010 12:06:30; Application: XMLTransformer-1.10.26; Report Filename: 1613_DIOXINS_1613DB5_L15027-12_Form1A_DX0M_121FS10_SJ1188687.html; Workgroup: WG33742; Design ID: 699]

⁽²⁾ Contract-required limits for RRTs and ion abundance ratios are specified in Tables 2 and 9, respectively, Method 1613.

⁽³⁾ Alternate confirmation and quantitation ions used for native and labeled PECDD.

These pages are part of a larger report that may contain information necessary for full data evaluation. Results reported relate only to the sample tested. Results are compliant with NELAP where specific accreditation is held.

Form 1A PCDD/PCDF ANALYSIS REPORT

CLIENT SAMPLE NO. 10654026 Sample Collection: 05-Sep-2008 13:42

AXYS ANALYTICAL SERVICES

2045 MILLS RD., SIDNEY, B.C., CANADA V8L 5X2 TEL (250) 655-5800 FAX (250) 655-5811

Contract No.: 4406

400

Project No.

Lab Sample I.D.:

FIDALGO BAY, CUSTOM PLYWOOD DX STUDY

L15027-12 R

Matrix: SOLID

Sample Size:

10.8 g (dry)

Sample Receipt Date:

16-Jul-2010

Initial Calibration Date:

24-Aug-2010

Extraction Date:

25-Aug-2010

Instrument ID:

HR GC/MS

Analysis Date:

10-Sep-2010 **Time:** 02:32:56

GC Column ID:

DB225

Extract Volume (uL):
Injection Volume (uL):

20

Sample Data Filename:

DB03_131 S: 12

2.0

Blank Data Filename:

DB03_128 S: 5

Dilution Factor:

N/A

Cal. Ver. Data Filename:

DB03_131 S: 2

Concentration Units:

pg/g (dry weight basis)

% Moisture:

41.9

COMPOUND	LAB FLAG ¹	CONCENTRATION FOUND	DETECTION LIMIT	ION ABUND. RATIO ²	RRT ²
2,3,7,8-TCDF	В	1.19	0.0560	0.74	1.001

- (1) Where applicable, custom lab flags have been used on this report; B = analyte found in sample and the associated blank.
- (2) Contract-required limits for RRTs and ion abundance ratios are specified in Tables 2 and 9, respectively, Method 1613.

These data are validated and reported as accurate,	true and compliant	with AXYS Analytical	Services Ltd. qualit	ty assurance processes.
Signed:	Brian	Watson		

For Axys Internal Use Only [XSL Template: Form1A.xsl; Created: 13-Sep-2010 12:08:35; Application: XMLTransformer-1.10.26; Report Filename: 1613_DIOXINS_1613DB225_L15027-12_Form1A_DB03_131S12_SJ1190326.html; Workgroup: WG33742; Design ID: 699]

Form 1A PCDD/PCDF ANALYSIS REPORT

CLIENT SAMPLE NO. SDS-FB-05 (Duplicate) Sample Collection: 08-Jun-2010 13:48

AXYS ANALYTICAL SERVICES

2045 MILLS RD., SIDNEY, B.C., CANADA V8L 5X2 TEL (250) 655-5800 FAX (250) 655-5811

Contract No.: 4406

Matrix: SOLID

Sample Receipt Date: 17-Jun-2010

Extraction Date: 25-Aug-2010

Extract Volume (uL): 20

Analysis Date:

Dilution Factor:

Injection Volume (uL):

Concentration Units:

pg/g (dry weight basis)

1.0

N/A

04-Sep-2010 Time: 15:46:39

Project No.

Lab Sample I.D.:

FIDALGO BAY, CUSTOM

PLYWOOD DX STUDY

WG33742-103 i (DUP L14884-44)

Sample Size:

Initial Calibration Date:

30-Jul-2010

DB5

10.1 g (dry)

Instrument ID: HR GC/MS

GC Column ID:

Sample Data Filename:

Blank Data Filename: DX0M_123 S: 4

Cal. Ver. Data Filename:

DX0M_119 S: 1

DX0M_119 S: 8

% Moisture:

28.3

COMPOUND	LAB FLAG ¹	CONCENTRATION FOUND	DETECTION LIMIT	ION ABUND. RATIO ²	RRT ²
2,3,7,8-TCDD	U		0.0495		
1,2,3,7,8-PECDD ³	ΚJ	0.190	0.0495	0.36	1.002
1,2,3,4,7,8-HXCDD	KJ	0.228	0.0495	0.96	1.000
1,2,3,6,7,8-HXCDD	J	0.877	0.0495	1.19	1.000
1,2,3,7,8,9-HXCDD	BJ	0.699	0.0495	1.35	1.000
1,2,3,4,6,7,8-HPCDD	В	6.67	0.0583	1.12	1.000
OCDD	В	40.4	0.0495	0.85	1.000
2,3,7,8-TCDF	В	1.24	0.0722	0.72	1.001
1,2,3,7,8-PECDF	U		0.109		
2,3,4,7,8-PECDF	KBJ	0.357	0.109	1.28	1.000
1,2,3,4,7,8-HXCDF	KBJ	0.168	0.0495	1.52	1.001
1,2,3,6,7,8-HXCDF	ΚJ	0.105	0.0495	1.66	1.000
1,2,3,7,8,9-HXCDF	U		0.0495		
2,3,4,6,7,8-HXCDF	KBJ	0.156	0.0495	0.92	1.000
1,2,3,4,6,7,8-HPCDF	BJ	1.68	0.0501	1.07	1.001
1,2,3,4,7,8,9-HPCDF	U		0.0501		
OCDF	BJ	2.34	0.0495	0.95	1.002
TOTAL TETRA-DIOXINS		0.807	0.0495		
TOTAL PENTA-DIOXINS		0.741	0.0495		
TOTAL HEXA-DIOXINS		7.91	0.0495		
TOTAL HEPTA-DIOXINS		95.7	0.0583		
TOTAL PENTA FURANS	В	2.63	0.0722		
TOTAL PENTA-FURANS	В	0.601	0.109		
TOTAL HEXA-FURANS	В	0.906	0.0495		
TOTAL HEPTA-FURANS	В	3.68	0.0501		

⁽¹⁾ Where applicable, custom lab flags have been used on this report; U = not detected; K = peak detected but did not meet quantification criteria, result reported represents the estimated maximum possible concentration; B = analyte found in sample and the associated blank; J = concentration less than LMCL.

These data are validated and reported as accurate,	true and compliant v	with AXYS Analytical	Services Ltd. quality	assurance processes.
Signed:	Brian	Watson		

For Axys Internal Use Only [XSL Template: Form1A.xsl; Created: 13-Sep-2010 12:06:30; Application: XMLTransformer-1.10.26; Report Filename: 1613_DIOXINS_1613DB5_WG33742-103_Form1A_DX0M_119S8_SJ1188499.html; Workgroup: WG33742; Design ID: 699]

⁽²⁾ Contract-required limits for RRTs and ion abundance ratios are specified in Tables 2 and 9, respectively, Method 1613.

⁽³⁾ Alternate confirmation and quantitation ions used for native and labeled PECDD.

These pages are part of a larger report that may contain information necessary for full data evaluation. Results reported relate only to the sample tested. Results are compliant with NELAP where specific accreditation is held.

Form 1A PCDD/PCDF ANALYSIS REPORT

CLIENT SAMPLE NO. SDS-FB-05 (Duplicate) Sample Collection: 08-Jun-2010 13:48

AXYS ANALYTICAL SERVICES

2045 MILLS RD., SIDNEY, B.C., CANADA V8L 5X2 TEL (250) 655-5800 FAX (250) 655-5811

4406 Contract No.:

SOLID Matrix:

Sample Receipt Date: 17-Jun-2010

Extraction Date: 25-Aug-2010

08-Sep-2010 Time: 00:22:43

pg/g (dry weight basis)

Extract Volume (uL): 20

Injection Volume (uL): 2.0

N/A

LAB FLAG 1

Concentration Units:

Analysis Date:

Dilution Factor:

COMPOUND

Project No.

FIDALGO BAY, CUSTOM PLYWOOD DX STUDY

WG33742-103 (DUP L14884-44) Lab Sample I.D.:

Sample Size: 10.1 g (dry)

Initial Calibration Date:

Instrument ID:

GC Column ID:

Sample Data Filename:

Blank Data Filename:

Cal. Ver. Data Filename:

% Moisture:

28.3

DETECTION

LIMIT

24-Aug-2010

HR GC/MS

DB03_128 S: 8

DB03_128 S: 5

DB03_128 S: 2

DB225

ION ABUND. RATIO²

RRT²

2,3,7,8-TCDF BJ0.765 0.147 0.79 1.001

(1) Where applicable, custom lab flags have been used on this report; B = analyte found in sample and the associated blank; J = concentration less than

(2) Contract-required limits for RRTs and ion abundance ratios are specified in Tables 2 and 9, respectively, Method 1613.

CONCENTRATION

FOUND

These data are validated and reported as accurate	, true and compliant wi	ith AXYS Analytical	Services Ltd. qu	uality assurance p	rocesses
Signed:	Brian V	Vatson			

For Axys Internal Use Only [XSL Template: Form1A.xsl; Created: 13-Sep-2010 12:08:35; Application: XMLTransformer-1.10.26; Report Filename: 1613_DIOXINS_1613DB225_WG33742-103_Form1A_DB03_128S8_SJ1190206.html; Workgroup: WG33742; Design ID: 699]

PCDD/PCDF ANALYSIS REPORT RELATIVE PERCENT DIFFERENCE

AXYS ANALYTICAL SERVICES

2045 MILLS RD., SIDNEY, B.C., CANADA V8L 5X2 TEL (250) 655-5800 FAX (250) 655-5811

Contract No.: 4406

Client ID: SDS-FB-05

Project No.

FIDALGO BAY, CUSTOM PLYWOOD DX STUDY

Concentration Units: pg/g (dry weight basis)

	L14884	4-44 (A)	WG337	742-103		
COMPOUND	LAB FLAG ¹	CONC. FOUND	LAB FLAG ¹	CONC. FOUND	MEAN	RELATIVE PERCENT DIFFERENCE
2,3,7,8-TCDD	ΚJ	0.086	U			
1,2,3,7,8-PECDD	ΚJ	0.135	ΚJ	0.190		
1,2,3,4,7,8-HXCDD	ΚJ	0.156	ΚJ	0.228		
1,2,3,6,7,8-HXCDD	J	0.811	J	0.877	0.844	7.76
1,2,3,7,8,9-HXCDD	J	0.710	J	0.699	0.704	1.54
1,2,3,4,6,7,8-HPCDD		6.99		6.67	6.83	4.67
OCDD		44.8		40.4	42.6	10.5
2,3,7,8-TCDF	J	0.493	J	0.765	0.629	43.2
1,2,3,7,8-PECDF	ΚJ	0.107	U			
2,3,4,7,8-PECDF	ΚJ	0.201	ΚJ	0.357		
1,2,3,4,7,8-HXCDF	ΚJ	0.102	ΚJ	0.168		
1,2,3,6,7,8-HXCDF	J	0.085	ΚJ	0.105		
1,2,3,7,8,9-HXCDF	U		U			
2,3,4,6,7,8-HXCDF	J	0.126	ΚJ	0.156		
1,2,3,4,6,7,8-HPCDF	J	1.53	J	1.68	1.60	9.34
1,2,3,4,7,8,9-HPCDF	ΚJ	0.105	U			
OCDF	J	2.33	J	2.34	2.33	0.454

(1) Where applicable, custom lab flags have been used on this report; U = not detected; K = peak detected but did not meet quantification criteria, result reported represents the estimated maximum possible concentration; J = concentration less than LMCL.

These data are validated and reported as accurate,	true and compliant with AXYS Analytical Services Ltd. quality assurance processes
Signed:	Brian Watson

For Axys Internal Use Only [XSL Template: RPD.xsl; Created: 13-Sep-2010 12:10:30; Application: XMLTransformer-1.10.26; Report Filename: RPD_DIOXINS_1613-RPD_WG33742-103_L14884-44_.html; Workgroup: WG33742; Design ID: 699]

Form 1A PCDD/PCDF ANALYSIS REPORT

CLIENT SAMPLE NO. Lab Blank Sample Collection: N/A

WG33742-101 Ri2

AXYS ANALYTICAL SERVICES

2045 MILLS RD., SIDNEY, B.C., CANADA V8L 5X2 TEL (250) 655-5800 FAX (250) 655-5811

SOLID

20

Contract No.: 4406

Project No.

Sample Size:

N/A

Lab Sample I.D.:

10.0 g

Sample Receipt Date: N/A

Initial Calibration Date:

30-Jul-2010

Extraction Date: 25-Aug-2010

Instrument ID:

HR GC/MS

Analysis Date:

Matrix:

10-Sep-2010 Time: 10:37:17

GC Column ID:

DB5

Extract Volume (uL):

Sample Data Filename:

DX0M_123 S: 4

Injection Volume (uL): 1.0

Blank Data Filename:

DX0M_123 S: 4

Dilution Factor: N/A

Cal. Ver. Data Filename:

DX0M_123 S: 1

Concentration Units: pg/g

COMPOUND	LAB FLAG ¹	CONCENTRATION FOUND	DETECTION LIMIT	ION ABUND. RATIO ²	RRT ²
2,3,7,8-TCDD	U		0.0500		
1,2,3,7,8-PECDD ³	U		0.0500		
1,2,3,4,7,8-HXCDD	U		0.0500		
1,2,3,6,7,8-HXCDD	U		0.0500		
1,2,3,7,8,9-HXCDD	KJ	0.054	0.0500	0.55	1.000
1,2,3,4,6,7,8-HPCDD	ΚJ	0.068	0.0500	1.53	1.000
OCDD	ΚJ	0.227	0.0500	1.15	1.000
2,3,7,8-TCDF	J	0.448	0.0500	0.88	1.003
1,2,3,7,8-PECDF	U		0.0706		
2,3,4,7,8-PECDF	KJ	0.099	0.0706	1.21	1.002
1,2,3,4,7,8-HXCDF	J	0.051	0.0500	1.06	1.000
1,2,3,6,7,8-HXCDF	U		0.0500		
1,2,3,7,8,9-HXCDF	KJ	0.068	0.0500	0.32	0.999
2,3,4,6,7,8-HXCDF	KJ	0.071	0.0500	3.23	1.000
1,2,3,4,6,7,8-HPCDF	J	0.085	0.0500	1.17	1.001
1,2,3,4,7,8,9-HPCDF	U		0.0500		
OCDF	KJ	0.059	0.0500	1.39	1.002
TOTAL TETRA-DIOXINS	U		0.0500		
TOTAL PENTA-DIOXINS	U		0.0500		
TOTAL HEXA-DIOXINS	U		0.0500		
TOTAL HEPTA-DIOXINS	U		0.0500		
TOTAL TETRA-FURANS		0.620	0.0500		
TOTAL PENTA-FURANS		0.078	0.0706		
TOTAL HEXA-FURANS		0.051	0.0500		
TOTAL HEPTA-FURANS		0.085	0.0500		

⁽¹⁾ Where applicable, custom lab flags have been used on this report; U = not detected; K = peak detected but did not meet quantification criteria, result reported represents the estimated maximum possible concentration; J = concentration less than LMCL.

These data are validated and reported as accurate, true and compliant with AXYS Analytical Services Ltd. quality assurance processes.

Signed: _____Brian Watson_____

For Axys Internal Use Only [XSL Template: Form1A.xsl; Created: 13-Sep-2010 12:06:30; Application: XMLTransformer-1.10.26; Report Filename: 1613_DIOXINS_1613DB5_WG33742-101_Form1A_DX0M_123S4_SJ1190067.html; Workgroup: WG33742; Design ID: 699]

⁽²⁾ Contract-required limits for RRTs and ion abundance ratios are specified in Tables 2 and 9, respectively, Method 1613.

⁽³⁾ Alternate confirmation and quantitation ions used for native and labeled PECDD.

Form 1A PCDD/PCDF ANALYSIS REPORT

CLIENT SAMPLE NO. Lab Blank Sample Collection: N/A

AXYS ANALYTICAL SERVICES

2045 MILLS RD., SIDNEY, B.C., CANADA V8L 5X2 TEL (250) 655-5800 FAX (250) 655-5811

Contract No.: 4406

Project No.

Lab Sample I.D.:

N/A

10.0 g

Matrix: SOLID

Sample Size:

Sample Receipt Date: N/A

Initial Calibration Date:

24-Aug-2010

WG33742-101

Extraction Date:

25-Aug-2010

Instrument ID:

HR GC/MS

Analysis Date:

07-Sep-2010 **Time:** 22:32:20

GC Column ID:

DB225

Extract Volume (uL):

20

N/A

Sample Data Filename:

DB03_128 S: 5

Injection Volume (uL): 2.0

Blank Data Filename:

DB03_128 S: 5

Dilution Factor:

Cal. Ver. Data Filename:

DB03_128 S: 2

Concentration Units: pg/g

COMPOUND	LAB FLAG ¹	CONCENTRATION FOUND	DETECTION LIMIT	ION ABUND. RATIO ²	RRT ²
2,3,7,8-TCDF	J	0.214	0.0500	0.77	1.001

(1) Where applicable, custom lab flags have been used on this report; J = concentration less than LMCL.

These data are validated and reported as accurate,	true and compliant	with AXYS Analytical	Services Ltd. quality	assurance processes.
Signed:	Brian	Watson		

For Axys Internal Use Only [XSL Template: Form1A.xsl; Created: 13-Sep-2010 12:08:35; Application: XMLTransformer-1.10.26; Report Filename: $1613_DIOXINS_1613DB225_WG33742-101_Form1A_DB03_128S5_SJ1190201.html$; Workgroup: WG33742; Design ID: 699]

⁽²⁾ Contract-required limits for RRTs and ion abundance ratios are specified in Tables 2 and 9, respectively, Method 1613.

Form 8A PCDD/PCDF ONGOING PRECISION AND RECOVERY (OPR)

AXYS ANALYTICAL SERVICES

2045 MILLS RD., SIDNEY, B.C., CANADA V8L 5X2 TEL (250) 655-5800 FAX (250) 655-5811

Contract No.: 4406 OPR Data Filename: DX0M_119 S: 3

Matrix: SOLID Lab Sample I.D.: WG33742-102 i

Extraction Date: 25-Aug-2010 **Analysis Date:** 04-Sep-2010 **Time:** 11:11:28

ALL CONCENTRATIONS REPORTED ON THIS FORM ARE CONCENTRATIONS IN EXTRACT, BASED ON A 20 uL EXTRACT VOLUME.

COMPOUND	LAB FLAG ¹	ION ABUND. RATIO ²	SPIKE CONC. (ng/mL)	CONC. FOUND (ng/mL)	OPR CONC. LIMITS ³ (ng/mL)	% RECOVERY
			, ,	()	()	
2,3,7,8-TCDD		0.75	10.0	8.78	6.70 - 15.8	87.8
1,2,3,7,8-PECDD ⁴		0.61	52.0	46.7	36.4 - 73.8	89.8
1,2,3,4,7,8-HXCDD		1.23	56.5	51.0	39.6 - 92.7	90.3
1,2,3,6,7,8-HXCDD		1.13	55.5	51.1	42.2 - 74.4	92.1
1,2,3,7,8,9-HXCDD		1.24	54.0	51.7	34.6 - 87.5	95.7
1,2,3,4,6,7,8-HPCDD		1.01	47.5	44.9	33.3 - 66.5	94.6
OCDD		0.87	100	93.7	78.0 - 144	93.7
2,3,7,8-TCDF		0.73	10.7	10.0	8.03 - 16.9	93.5
1,2,3,7,8-PECDF		1.48	46.0	42.8	36.8 - 61.6	93.0
2,3,4,7,8-PECDF		1.43	47.0	42.2	32.0 - 75.2	89.8
1,2,3,4,7,8-HXCDF		1.16	50.0	48.1	36.0 - 67.0	96.2
1,2,3,6,7,8-HXCDF		1.12	47.5	45.9	39.9 - 61.8	96.7
1,2,3,7,8,9-HXCDF		1.14	52.5	50.6	41.0 - 68.3	96.5
2,3,4,6,7,8-HXCDF		1.17	53.0	52.2	37.1 - 82.7	98.5
1,2,3,4,6,7,8-HPCDF		0.92	50.0	52.7	41.0 - 61.0	105
1,2,3,4,7,8,9-HPCDF		0.98	50.0	50.0	39.0 - 69.0	100
OCDF		0.87	104	89.6	65.5 - 177	86.2

⁽¹⁾ Where applicable, custom lab flags have been used on this report.

- (2) Contract-required Ion Abundance Ratios are specified in Table 9, Method 1613.
- (3) Contract-required concentration range as determined from the percent of the test concentration in Table 6, Method 1613, under OPR.
- (4) Alternate confirmation and quantitation ions used for native and labeled PECDD.

These data are validated and reported as accurate	, true and compliant v	with AXYS Analytical	Services Ltd.	quality assurance processes.
Signed:	Brian	Watson		

For Axys Internal Use Only [XSL Template: Form8A.xsl; Created: 13-Sep-2010 12:06:30; Application: XMLTransformer-1.10.26; Report Filename: 1613_DIOXINS_1613DB5_WG33742-102_Form8A_SJ1188491.html; Workgroup: WG33742; Design ID: 699]

Form 8G

PCDD/PCDF CERTIFIED REFERENCE MATERIAL (CRM) REPORT FOR NIST SRM 1944

AXYS ANALYTICAL SERVICES

2045 MILLS RD., SIDNEY, B.C., CANADA V8L 5X2 TEL (250) 655-5800 FAX (250) 655-5811

Contract No.: 4406 Lab Sample I.D.: WG33742-104 i Matrix: SOLID Sample Size: 1.22 g (dry) **Extraction Date:** 25-Aug-2010 **Initial Calibration Date:** 30-Jul-2010 **Analysis Date:** 08-Sep-2010 Time: 03:26:42 Instrument ID: HR GC/MS Extract Volume (uL): GC Column ID: DB5 20

Injection Volume (uL):1.0CRM Data Filename:DX0M_121F S: 11Dilution Factor:N/ABlank Data Filename:DX0M_123 S: 4

Concentration Units: pg/g (dry weight basis) Cal. Ver. Data Filename: DX0M_121F S: 1

COMPOUND	LAB FLAG ¹	DETERMINED	CERTIFIED / REFERENCE
2,3,7,8-TCDD		201	133 +/- 9
1,2,3,7,8-PECDD ²	КJ	18.4	19 +/- 2
1,2,3,4,7,8-HXCDD	J	29.1	26 +/- 3
1,2,3,6,7,8-HXCDD		61.6	56 +/- 6
1,2,3,7,8,9-HXCDD		74.6	53 +/- 7
1,2,3,4,6,7,8-HPCDD		824	800 +/- 70
OCDD		6150	5800 +/- 700
2,3,7,8-TCDF	X		
1,2,3,7,8-PECDF		48.1	45 +/- 7
2,3,4,7,8-PECDF		46.3	45 +/- 4
1,2,3,4,7,8-HXCDF		233	220 +/- 30
1,2,3,6,7,8-HXCDF		93.6	90 +/- 10
1,2,3,7,8,9-HXCDF	J	3.45	19 +/- 18
2,3,4,6,7,8-HXCDF		52.5	54 +/- 6
1,2,3,4,6,7,8-HPCDF		1050	1000 +/- 100
1,2,3,4,7,8,9-HPCDF	J	40.8	40 +/- 6
OCDF		1090	1000 +/- 100

⁽¹⁾ Where applicable, custom lab flags have been used on this report; K = peak detected but did not meet quantification criteria, result reported represents the estimated maximum possible concentration; J = concentration less than LMCL; X = result reported separately. (2) Alternate confirmation and quantitation ions used for native and labeled PECDD.

These data are validated and reported as accurate, tr	rue and compliant	with AXYS Analytical	Services Ltd. quality	assurance processes.
Signed:	Brian	Watson		

 $For Axys \ Internal \ Use \ Only \ [XSL\ Template: Form8G.xsl; Created: 13-Sep-2010\ 12:06:30; Application: XML Transformer-1.10.26; Report Filename: 1613_DIOXINS_1613DB5_WG33742-104_Form8G_SJ1188689.html; Workgroup: WG33742; Design ID: 699\]$

Form 8G

PCDD/PCDF CERTIFIED REFERENCE MATERIAL (CRM) REPORT FOR NIST SRM 1944

AXYS	ANAL	YTICAL	. SERV	ICES
------	-------------	--------	--------	------

2045 MILLS RD., SIDNEY, B.C., CANADA V8L 5X2 TEL (250) 655-5800 FAX (250) 655-5811

4406 Contract No.: Lab Sample I.D.: WG33742-104 Matrix: SOLID Sample Size: 1.22 g (dry) **Extraction Date:** 25-Aug-2010 **Initial Calibration Date:** 24-Aug-2010 **Analysis Date:** 10-Sep-2010 Time: 03:09:34 Instrument ID: HR GC/MS Extract Volume (uL): 20 **GC Column ID:** DB225

Injection Volume (uL):2.0CRM Data Filename:DB03_131 S: 13Dilution Factor:N/ABlank Data Filename:DB03_128 S: 5Concentration Units:pg/g (dry weight basis)Cal. Ver. Data Filename:DB03_131 S: 2

COMPOUND LAB DETERMINED CERTIFIED / FLAG 1 REFERENCE

2,3,7,8-TCDF 29.7 39 +/- 15

(1) Where applicable, custom lab flags have been used on this report.

These data are validated and reported as accurate,	true and compliant	with AXYS Analytical	Services Ltd. quality	assurance processes.
Signed:	Brian	Watson		

 $For Axys \ Internal \ Use \ Only \ [XSL\ Template: Form8G.xsl; Created: 13-Sep-2010\ 12:08:35; Application: XMLTransformer-1.10.26; Report Filename: 1613_DIOXINS_1613DB225_WG33742-104_Form8G_SJ1190327.html; Workgroup: WG33742; Design ID: 699\]$

BATCH SUMMARY

Batch ID:	WG33891	Date: 15-Sep-2010
Analysis Type:	Dioxin/Furan	Matrix Type: Solid
	BATCH MAKEUP	
Contract: Samples:	4406	Blank: WG33891-101
L14884-13 L15027-4	SDS-PB-03 10654004	
		Reference or Spike: WG33891-102 WG33891-104
		Duplicate: WG33891-103

Comments:

- 1- Data are not blank corrected
- 2- Concentrations of tetrafurans and pentafurans in the procedural blank are above the method control limits. The sample analyte concentrations are not blank corrected; the results should be interpreted with consideration of the blank.
- 3- The duplication between 10654004 and its duplicate (Axys IDs: L15027-4 and WG33891-103) was outside method specifications for 1,2,3,7,8,9 HXCDF. All calculations and chromatography were reviewed for possible error and the concentrations in each sample were confirmed. The variability may be due to the matrix, which is solid (marine sediment).

Copyright AXYS Analytical Services Ltd February 1993

Form 1A
PCDD/PCDF ANALYSIS REPORT

CLIENT SAMPLE NO. SDS-PB-03 Sample Collection: 07-Jun-2010 14:07

AXYS ANALYTICAL SERVICES

2045 MILLS RD., SIDNEY, B.C., CANADA V8L 5X2 TEL (250) 655-5800 FAX (250) 655-5811

Contract No.: 4406

Matrix: SOLID

Sample Receipt Date: 17-Jun-2010

Extraction Date: 11-Sep-2010

14-Sep-2010 Time: 01:50:25

pg/g (dry weight basis)

Analysis Date:

Extract Volume (uL): 20

Injection Volume (uL): 1.0

Dilution Factor: N/A

Concentration Units:

Project No.

FIDALGO BAY, CUSTOM PLYWOOD DX STUDY

Lab Sample I.D.: L14884-13 R

Sample Size: 9.80 g (dry)

Initial Calibration Date:

Instrument ID: HR GC/MS

GC Column ID: DB5

Sample Data Filename: DX0B_214A S: 7

Blank Data Filename: DX0B_214A S: 5

Cal. Ver. Data Filename:

DX0B_214A S: 1

26-Aug-2010

% Moisture: 49.0

COMPOUND	LAB FLAG ¹	CONCENTRATION FOUND	DETECTION LIMIT	ION ABUND. RATIO ²	RRT ²
2,3,7,8-TCDD	ВЈ	0.257	0.0510	0.66	1.001
1,2,3,7,8-PECDD ³	J	0.570	0.0510	0.57	1.001
1,2,3,4,7,8-HXCDD	J	0.465	0.0510	1.19	1.000
1,2,3,6,7,8-HXCDD	J	2.71	0.0510	1.28	1.000
1,2,3,7,8,9-HXCDD	J	2.07	0.0510	1.16	1.010
1,2,3,4,6,7,8-HPCDD		17.8	0.0995	1.05	1.000
OCDD	В	97.4	0.0510	0.90	1.000
2,3,7,8-TCDF	В	2.63	0.0510	0.79	1.001
1,2,3,7,8-PECDF	KBJ	0.315	0.0510	2.05	1.000
2,3,4,7,8-PECDF	BJ	0.611	0.0510	1.51	1.000
1,2,3,4,7,8-HXCDF	BJ	0.464	0.0565	1.29	1.000
1,2,3,6,7,8-HXCDF	BJ	0.289	0.0565	1.14	1.000
1,2,3,7,8,9-HXCDF	U		0.0565		
2,3,4,6,7,8-HXCDF	KBJ	0.324	0.0565	0.88	1.000
1,2,3,4,6,7,8-HPCDF	J	4.04	0.0510	0.98	1.000
1,2,3,4,7,8,9-HPCDF	J	0.235	0.0510	0.90	1.000
OCDF	J	7.16	0.0510	0.88	1.002
TOTAL TETRA-DIOXINS		6.96	0.0510		
TOTAL PENTA-DIOXINS		8.89	0.0510		
TOTAL HEXA-DIOXINS		25.2	0.0510		
TOTAL HEPTA-DIOXINS		45.5	0.0995		
TOTAL TETRA-FURANS	В	11.4	0.0510		
TOTAL PENTA-FURANS	В	5.20	0.0510		
TOTAL HEXA-FURANS	В	6.58	0.0565		
TOTAL HEPTA-FURANS		10.6	0.0510		

⁽¹⁾ Where applicable, custom lab flags have been used on this report; U = not detected; K = peak detected but did not meet quantification criteria, result reported represents the estimated maximum possible concentration; B = analyte found in sample and the associated blank; J = concentration less than LMCL.

These data are validated and reported as accurate,	true and compliant with	h AXYS Analytical	Services Ltd. qual	ity assurance processes.
Signed:	Celine Va	aillant		

For Axys Internal Use Only [XSL Template: Form1A.xsl; Created: 16-Sep-2010 08:23:03; Application: XMLTransformer-1.10.26; Report Filename: 1613_DIOXINS_1613DB5_L14884-13_Form1A_DX0B_214AS7_SJ1190750.html; Workgroup: WG33891; Design ID: 699]

⁽²⁾ Contract-required limits for RRTs and ion abundance ratios are specified in Tables 2 and 9, respectively, Method 1613.

⁽³⁾ Alternate confirmation and quantitation ions used for native and labeled PECDD.

These pages are part of a larger report that may contain information necessary for full data evaluation. Results reported relate only to the sample tested. Results are compliant with NELAP where specific accreditation is held.

Form 1A PCDD/PCDF ANALYSIS REPORT

CLIENT SAMPLE NO. SDS-PB-03 Sample Collection: 07-Jun-2010 14:07

AXYS ANALYTICAL SERVICES

2045 MILLS RD., SIDNEY, B.C., CANADA V8L 5X2 TEL (250) 655-5800 FAX (250) 655-5811

4406 Contract No.:

Project No.

FIDALGO BAY, CUSTOM PLYWOOD DX STUDY

L14884-13 R

Matrix: **SOLID**

Lab Sample I.D.:

Sample Size:

9.80 g (dry)

Sample Receipt Date: 17-Jun-2010 **Initial Calibration Date:**

24-Aug-2010

Extraction Date:

11-Sep-2010

Instrument ID:

HR GC/MS

Analysis Date:

GC Column ID:

DB225

Extract Volume (uL):

20

Sample Data Filename:

DB03_134C S: 5

Injection Volume (uL):

Concentration Units:

2.0

Blank Data Filename: Cal. Ver. Data Filename: DB03_134C S: 4 DB03_134C S: 2

Dilution Factor: N/A

pg/g (dry weight basis)

13-Sep-2010 Time: 21:11:39

% Moisture:

49.0

COMPOUND	LAB FLAG ¹	CONCENTRATION FOUND	DETECTION LIMIT	ION ABUND. RATIO ²	RRT ²
2,3,7,8-TCDF	В	1.25	0.0510	0.71	1.001

⁽¹⁾ Where applicable, custom lab flags have been used on this report; B = analyte found in sample and the associated blank.

These data are validated and reported as accurate,	true and compliant	with AXYS Analytical	Services Ltd. quality	assurance processes.
Signed:	Celine	Vaillant		

For Axys Internal Use Only [XSL Template: Form1A.xsl; Created: 16-Sep-2010 08:22:47; Application: XMLTransformer-1.10.26; Report Filename: 1613_DIOXINS_1613DB225_L14884-13_Form1A_DB03_134CS5_SJ1190864.html; Workgroup: WG33891; Design ID: 699]

⁽²⁾ Contract-required limits for RRTs and ion abundance ratios are specified in Tables 2 and 9, respectively, Method 1613.

Form 1A PCDD/PCDF ANALYSIS REPORT

CLIENT SAMPLE NO. 10654004 Sample Collection: 03-Sep-2008 14:14

AXYS ANALYTICAL SERVICES

2045 MILLS RD., SIDNEY, B.C., CANADA V8L 5X2 TEL (250) 655-5800 FAX (250) 655-5811

4406 Contract No.:

Matrix: **SOLID**

Sample Receipt Date: 16-Jul-2010

Extraction Date: 11-Sep-2010

14-Sep-2010 Time: 02:45:13 **Analysis Date:**

Extract Volume (uL): 20

Injection Volume (uL): 1.0

Dilution Factor: N/A

Concentration Units: pg/g (dry weight basis) Project No.

Lab Sample I.D.:

Sample Size:

FIDALGO BAY, CUSTOM PLYWOOD DX STUDY

L15027-4 R (A)

HR GC/MS

10.4 g (dry)

Initial Calibration Date: 26-Aug-2010

Instrument ID:

GC Column ID: DB5

Sample Data Filename: DX0B_214A S: 8

Blank Data Filename: DX0B_214A S: 5

Cal. Ver. Data Filename:

DX0B_214A S: 1

56.2 % Moisture:

COMPOUND	LAB FLAG ¹	CONCENTRATION FOUND	DETECTION LIMIT	ION ABUND. RATIO ²	RRT ²
2,3,7,8-TCDD	ВЈ	0.662	0.0481	0.80	1.001
1,2,3,7,8-PECDD ³	J	2.92	0.0481	0.64	1.001
1,2,3,4,7,8-HXCDD	J	3.90	0.321	1.22	1.000
1,2,3,6,7,8-HXCDD		22.7	0.321	1.24	1.000
1,2,3,7,8,9-HXCDD		11.9	0.321	1.16	1.010
1,2,3,4,6,7,8-HPCDD		524	0.673	1.06	1.000
OCDD	В	3960	0.0481	0.89	1.000
2,3,7,8-TCDF	В	4.55	0.133	0.83	1.002
1,2,3,7,8-PECDF	ВJ	1.25	0.0481	1.70	1.000
2,3,4,7,8-PECDF	BJ	2.24	0.0481	1.52	1.000
1,2,3,4,7,8-HXCDF	В	5.80	0.0613	1.29	1.001
1,2,3,6,7,8-HXCDF	BJ	2.74	0.0613	1.35	1.000
1,2,3,7,8,9-HXCDF	J	0.247	0.0613	1.15	1.000
2,3,4,6,7,8-HXCDF	BJ	3.14	0.0613	1.22	1.001
1,2,3,4,6,7,8-HPCDF		142	0.199	1.06	1.000
1,2,3,4,7,8,9-HPCDF		7.14	0.199	1.07	1.000
OCDF		675	0.0481	0.88	1.002
TOTAL TETRA-DIOXINS		30.0	0.0481		
TOTAL PENTA-DIOXINS		43.2	0.0481		
TOTAL HEXA-DIOXINS		206	0.321		
TOTAL HEPTA-DIOXINS		1190	0.673		
TOTAL TETRA-FURANS	В	30.1	0.133		
TOTAL PENTA-FURANS	В	40.8	0.0481		
TOTAL HEXA-FURANS	В	153	0.0613		
TOTAL HEPTA-FURANS		583	0.199		

⁽¹⁾ Where applicable, custom lab flags have been used on this report; B = analyte found in sample and the associated blank; J = concentration less than LMCL.

These data are validated and reported as accurate, true and compliant with AXYS Analytical Services Ltd. quality assurance processes. Signed: Celine Vaillant

For Axys Internal Use Only [XSL Template: Form1A.xsl; Created: 16-Sep-2010 08:23:03; Application: XMLTransformer-1.10.26; Report Filename: 1613_DIOXINS_1613DB5_L15027-4_Form1A_DX0B_214AS8_SJ1190751.html; Workgroup: WG33891; Design ID: 699]

⁽²⁾ Contract-required limits for RRTs and ion abundance ratios are specified in Tables 2 and 9, respectively, Method 1613.

⁽³⁾ Alternate confirmation and quantitation ions used for native and labeled PECDD.

Form 1A PCDD/PCDF ANALYSIS REPORT

CLIENT SAMPLE NO. 10654004 Sample Collection: 03-Sep-2008 14:14

AXYS ANALYTICAL SERVICES

2045 MILLS RD., SIDNEY, B.C., CANADA V8L 5X2 TEL (250) 655-5800 FAX (250) 655-5811

Contract No.: 4406

Project No.

Lab Sample I.D.:

Sample Size:

FIDALGO BAY, CUSTOM PLYWOOD DX STUDY

L15027-4 R (A)

Matrix: SOLID

24-Aug-2010

DB225

11-Sep-2010 Instrument ID:

Extraction Date:
Analysis Date:

Sample Receipt Date:

13-Sep-2010 **Time:** 21:48:17

16-Jul-2010

GC Column ID:

HR GC/MS

10.4 g (dry)

Extract Volume (uL): 20

Sample Data Filename:

Initial Calibration Date:

DB03_134C S: 6

Injection Volume (uL): 2.0

Blank Data Filename:

DB03_134C S: 4

Dilution Factor: N/A

Cal. Ver. Data Filename:

DB03_134C S: 2

Concentration Units: pg/g (dry weight basis)

% Moisture: 56.2

COMPOUND	LAB FLAG ¹	CONCENTRATION FOUND	DETECTION LIMIT	ION ABUND. RATIO ²	RRT ²
2,3,7,8-TCDF	В	1.86	0.0573	0.88	1.002

⁽¹⁾ Where applicable, custom lab flags have been used on this report; B = analyte found in sample and the associated blank.

These data are validated and reported as accurate,	true and compliant	with AXYS Analytical	Services Ltd. quality	assurance processes.
Signed:	Celine	Vaillant		

For Axys Internal Use Only [XSL Template: Form1A.xsl; Created: 16-Sep-2010 08:22:47; Application: XMLTransformer-1.10.26; Report Filename: 1613_DIOXINS_1613DB225_L15027-4_Form1A_DB03_134CS6_SJ1190865.html; Workgroup: WG33891; Design ID: 699]

⁽²⁾ Contract-required limits for RRTs and ion abundance ratios are specified in Tables 2 and 9, respectively, Method 1613.

Form 1A PCDD/PCDF ANALYSIS REPORT

CLIENT SAMPLE NO. 10654004 (Duplicate) Sample Collection: 03-Sep-2008 14:14

AXYS ANALYTICAL SERVICES

2045 MILLS RD., SIDNEY, B.C., CANADA V8L 5X2 TEL (250) 655-5800 FAX (250) 655-5811

4406 Contract No.:

Matrix: **SOLID**

Sample Receipt Date: 16-Jul-2010

Extraction Date: 11-Sep-2010

Analysis Date:

Extract Volume (uL): 20

Injection Volume (uL): 1.0

Dilution Factor: N/A Project No.

Lab Sample I.D.:

FIDALGO BAY, CUSTOM PLYWOOD DX STUDY

WG33891-103 (DUP L15027-4)

26-Aug-2010

Sample Size: 10.4 g (dry)

Initial Calibration Date:

HR GC/MS Instrument ID:

GC Column ID: DB5

Sample Data Filename: DX0B_214A S: 9

Blank Data Filename: DX0B_214A S: 5

Cal. Ver. Data Filename: DX0B_214A S: 1

Concentration Units: pg/g (dry weight basis)

14-Sep-2010 Time: 03:40:05

COMPOUND	LAB FLAG ¹	CONCENTRATION FOUND	DETECTION LIMIT	ION ABUND. RATIO ²	RRT ²
2,3,7,8-TCDD	ВЈ	0.514	0.0480	0.75	1.001
1,2,3,7,8-PECDD ³	J	2.25	0.0480	0.64	1.001
1,2,3,4,7,8-HXCDD	J	3.21	0.528	1.20	1.000
1,2,3,6,7,8-HXCDD		16.5	0.528	1.39	1.000
1,2,3,7,8,9-HXCDD		8.74	0.528	1.27	1.010
1,2,3,4,6,7,8-HPCDD		370	0.498	1.06	1.000
OCDD	В	2860	0.0812	0.89	1.000
2,3,7,8-TCDF	В	3.81	0.0630	0.75	1.002
1,2,3,7,8-PECDF	BJ	1.05	0.0566	1.37	1.000
2,3,4,7,8-PECDF	BJ	2.03	0.0566	1.56	1.000
1,2,3,4,7,8-HXCDF	BJ	4.44	0.0722	1.26	1.000
1,2,3,6,7,8-HXCDF	BJ	2.09	0.0722	1.10	1.000
1,2,3,7,8,9-HXCDF	J	0.158	0.0722	1.21	1.000
2,3,4,6,7,8-HXCDF	BJ	2.42	0.0722	1.22	1.000
1,2,3,4,6,7,8-HPCDF		103	0.245	1.05	1.000
1,2,3,4,7,8,9-HPCDF		4.91	0.245	1.11	1.000
OCDF		452	0.0480	0.88	1.002
TOTAL TETRA-DIOXINS		31.5	0.0480		
TOTAL PENTA-DIOXINS		41.9	0.0480		
TOTAL HEXA-DIOXINS		166	0.528		
TOTAL HEPTA-DIOXINS		893	0.498		
TOTAL TETRA-FURANS	В	24.4	0.0630		
TOTAL PENTA-FURANS	В	34.3	0.0566		
TOTAL HEXA-FURANS	В	116	0.0722		
TOTAL HEPTA-FURANS		399	0.245		

⁽¹⁾ Where applicable, custom lab flags have been used on this report; B = analyte found in sample and the associated blank; J = concentration less than LMCL.

These data are validated and reported as accurate,	true and compliant	t with AXYS Analytical	Services Ltd. quality a	ssurance processes.
Signed:	Celine	Vaillant		

For Axys Internal Use Only [XSL Template: Form1A.xsl; Created: 16-Sep-2010 08:23:03; Application: XMLTransformer-1.10.26; Report Filename: 1613_DIOXINS_1613DB5_WG33891-103_Form1A_DX0B_214AS9_SJ1190752.html; Workgroup: WG33891; Design ID: 699]

⁽²⁾ Contract-required limits for RRTs and ion abundance ratios are specified in Tables 2 and 9, respectively, Method 1613.

⁽³⁾ Alternate confirmation and quantitation ions used for native and labeled PECDD.

Form 1A PCDD/PCDF ANALYSIS REPORT

CLIENT SAMPLE NO. 10654004 (Duplicate) Sample Collection: 03-Sep-2008 14:14

AXYS ANALYTICAL SERVICES

2045 MILLS RD., SIDNEY, B.C., CANADA V8L 5X2 TEL (250) 655-5800 FAX (250) 655-5811

Contract No.: 4406

Project No.

FIDALGO BAY, CUSTOM

PLYWOOD DX STUDY WG33891-103 (DUP L15027-4)

Matrix: SOLID

Sample Size:

Lab Sample I.D.:

10.4 g (dry)

Sample Receipt Date: 16-Jul-2010

Initial Calibration Date:

24-Aug-2010

Extraction Date:

11-Sep-2010

Instrument ID:

HR GC/MS

Analysis Date:

13-Sep-2010 Time: 22:24:51

GC Column ID:

DB225

Extract Volume (uL):

20

Sample Data Filename:

DB03_134C S: 7

Injection Volume (uL): 2.0

Blank Data Filename:

DB03_134C S: 4

Dilution Factor: N/A

Cal. Ver. Data Filename:

DB03_134C S: 2

Concentration Units: pg/g (dry weight basis)

COMPOUND	LAB FLAG ¹	CONCENTRATION FOUND	DETECTION LIMIT	ION ABUND. RATIO ²	RRT ²
2,3,7,8-TCDF	В	1.46	0.0898	0.71	1.001

⁽¹⁾ Where applicable, custom lab flags have been used on this report; B = analyte found in sample and the associated blank.

These data are validated and reported as accurate,	true and compliant	with AXYS Analytical	Services Ltd. quality	assurance processes.
Signed:	Celine	Vaillant		

For Axys Internal Use Only [XSL Template: Form1A.xsl; Created: 16-Sep-2010 08:22:47; Application: XMLTransformer-1.10.26; Report Filename: 1613_DIOXINS_1613DB225_WG33891-103_Form1A_DB03_134CS7_SJ1190866.html; Workgroup: WG33891; Design ID: 699]

⁽²⁾ Contract-required limits for RRTs and ion abundance ratios are specified in Tables 2 and 9, respectively, Method 1613.

PCDD/PCDF ANALYSIS REPORT RELATIVE PERCENT DIFFERENCE

AXYS ANALYTICAL SERVICES

2045 MILLS RD., SIDNEY, B.C., CANADA V8L 5X2 TEL (250) 655-5800 FAX (250) 655-5811

Contract No.: 4406

Client ID: 10654004

Project No.

FIDALGO BAY, CUSTOM PLYWOOD DX STUDY

Concentration Units: pg/g (dry weight basis)

	L1502	7-4 (A)	WG338	91-103		
COMPOUND	LAB FLAG ¹	CONC. FOUND	LAB FLAG ¹	CONC. FOUND	MEAN	RELATIVE PERCENT DIFFERENCE
2,3,7,8-TCDD	J	0.662	J	0.514	0.588	25.2
1,2,3,7,8-PECDD	J	2.92	J	2.25	2.59	26.0
1,2,3,4,7,8-HXCDD	J	3.90	J	3.21	3.55	19.5
1,2,3,6,7,8-HXCDD		22.7		16.5	19.6	31.3
1,2,3,7,8,9-HXCDD		11.9		8.74	10.3	30.5
1,2,3,4,6,7,8-HPCDD		524		370	447	34.6
OCDD		3960		2860	3410	32.4
2,3,7,8-TCDF		1.86		1.46	1.66	23.8
1,2,3,7,8-PECDF	J	1.25	J	1.05	1.15	17.1
2,3,4,7,8-PECDF	J	2.24	J	2.03	2.14	9.68
1,2,3,4,7,8-HXCDF		5.80	J	4.44	5.12	26.5
1,2,3,6,7,8-HXCDF	J	2.74	J	2.09	2.41	26.9
1,2,3,7,8,9-HXCDF	J	0.247	J	0.158	0.203	44.0
2,3,4,6,7,8-HXCDF	J	3.14	J	2.42	2.78	26.0
1,2,3,4,6,7,8-HPCDF		142		103	122	32.2
1,2,3,4,7,8,9-HPCDF		7.14		4.91	6.03	37.0
OCDF		675		452	563	39.6

(1) Where applicable, custom lab flags have been used on this report; J = concentration less than LMCL.

These data are validated and reported as accurate,	true and complian	t with AXYS Analytical	Services Ltd. quality assurance processe	s.
Signed:	Celine	Vaillant		

For Axys Internal Use Only [XSL Template: RPD.xsl; Created: 16-Sep-2010 08:23:39; Application: XMLTransformer-1.10.26; Report Filename: RPD_DIOXINS_1613-RPD_WG33891-103_L15027-4_.html; Workgroup: WG33891; Design ID: 699]

Form 1A PCDD/PCDF ANALYSIS REPORT

CLIENT SAMPLE NO. Lab Blank Sample Collection: N/A

AXYS ANALYTICAL SERVICES

Matrix:

Analysis Date:

2045 MILLS RD., SIDNEY, B.C., CANADA V8L 5X2 TEL (250) 655-5800 FAX (250) 655-5811

Contract No.: 4406

SOLID

pg/g

14-Sep-2010 Time: 00:00:37

Sample Receipt Date: N/A

Extraction Date: 11-Sep-2010

Extract Volume (uL): 20

Injection Volume (uL): 1.0

Dilution Factor: N/A

Concentration Units:

Project No. N/A

Lab Sample I.D.: WG33891-101

Sample Size: 10.0 g

Initial Calibration Date: 26-Aug-2010

Instrument ID: HR GC/MS

GC Column ID: DB5

Sample Data Filename: DX0B_214A S: 5

Blank Data Filename: DX0B_214A S: 5

Cal. Ver. Data Filename: DX0B_214A S: 1

COMPOUND	LAB FLAG ¹	CONCENTRATION FOUND	DETECTION LIMIT	ION ABUND. RATIO ²	RRT ²
2,3,7,8-TCDD	КJ	0.056	0.0500	0.33	1.002
1,2,3,7,8-PECDD ³	U		0.0500		
1,2,3,4,7,8-HXCDD	U		0.0500		
1,2,3,6,7,8-HXCDD	U		0.0500		
1,2,3,7,8,9-HXCDD	U		0.0500		
1,2,3,4,6,7,8-HPCDD	U		0.0500		
OCDD	J	0.185	0.0500	0.98	1.000
2,3,7,8-TCDF	J	0.533	0.0500	0.82	1.002
1,2,3,7,8-PECDF	J	0.138	0.0500	1.75	1.000
2,3,4,7,8-PECDF	J	0.306	0.0500	1.55	1.000
1,2,3,4,7,8-HXCDF	KJ	0.088	0.0500	1.38	1.000
1,2,3,6,7,8-HXCDF	J	0.063	0.0500	1.08	1.000
1,2,3,7,8,9-HXCDF	U		0.0500		
2,3,4,6,7,8-HXCDF	J	0.059	0.0500	1.13	1.000
1,2,3,4,6,7,8-HPCDF	U		0.0500		
1,2,3,4,7,8,9-HPCDF	U		0.0500		
OCDF	U		0.0696		
TOTAL TETRA-DIOXINS	U		0.0500		
TOTAL PENTA-DIOXINS	U		0.0500		
TOTAL HEXA-DIOXINS	U		0.0500		
TOTAL HEPTA-DIOXINS	U		0.0500		
TOTAL TETRA-FURANS		1.61	0.0500		
TOTAL PENTA-FURANS		0.759	0.0500		
TOTAL HEXA-FURANS		0.210	0.0500		
TOTAL HEPTA-FURANS	U		0.0500		

⁽¹⁾ Where applicable, custom lab flags have been used on this report; U = not detected; K = peak detected but did not meet quantification criteria, result reported represents the estimated maximum possible concentration; J = concentration less than LMCL.

These data are validated and reported as accurate, true and compliant with AXYS Analytical Services Ltd. quality assurance processes.

Signed: _____Celine Vaillant_____

For Axys Internal Use Only [XSL Template: Form1A.xsl; Created: 16-Sep-2010 08:23:03; Application: XMLTransformer-1.10.26; Report Filename: $1613_DIOXINS_1613DB5_WG33891-101_Form1A_DX0B_214AS5_SJ1190747.html$; Workgroup: WG33891; Design ID: 699]

⁽²⁾ Contract-required limits for RRTs and ion abundance ratios are specified in Tables 2 and 9, respectively, Method 1613.

⁽³⁾ Alternate confirmation and quantitation ions used for native and labeled PECDD.

Form 1A PCDD/PCDF ANALYSIS REPORT

CLIENT SAMPLE NO. Lab Blank Sample Collection: N/A

N/A

AXYS ANALYTICAL SERVICES

2045 MILLS RD., SIDNEY, B.C., CANADA V8L 5X2 TEL (250) 655-5800 FAX (250) 655-5811

Contract No.: 4406

Project No.

Lab Sample I.D.: WG33891-101

Matrix: SOLID Sample Size: 10.0 g

Sample Receipt Date: N/A Initial Calibration Date: 24-Aug-2010

Extraction Date: 11-Sep-2010 Instrument ID: HR GC/MS

Analysis Date: 13-Sep-2010 **Time:** 20:24:25 **GC Column ID:** DB225

Extract Volume (uL): 20 Sample Data Filename: DB03_134C S: 4

Injection Volume (uL): 2.0 Blank Data Filename: DB03_134C S: 4

Dilution Factor: N/A Cal. Ver. Data Filename: DB03_134C S: 2

Concentration Units: pg/g

COMPOUND LAB FLAG ¹		CONCENTRATION FOUND	DETECTION LIMIT	ION ABUND. RATIO ²	RRT ²
2.3.7.8-TCDF	J	0.307	0.0500	0.68	1.000

(1) Where applicable, custom lab flags have been used on this report; J = concentration less than LMCL.

(2) Contract-required limits for RRTs and ion abundance ratios are specified in Tables 2 and 9, respectively, Method 1613.

These data are validated and reported as accurate,	true and compliant	with AXYS Analytical	Services Ltd. quality	assurance processes.
Signed:	Celine	Vaillant		

 $For Axys \ Internal \ Use \ Only \ [XSL\ Template: Form 1A.xsl; Created: 16-Sep-2010\ 08: 22: 47; Application: XML Transformer-1.10.26; Report Filename: 1613_DIOXINS_1613DB225_WG33891-101_Form 1A_DB03_134CS4_SJ1190862.html; Workgroup: WG33891; Design ID: 699\]$

Form 8A PCDD/PCDF ONGOING PRECISION AND RECOVERY (OPR)

AXYS ANALYTICAL SERVICES

2045 MILLS RD., SIDNEY, B.C., CANADA V8L 5X2 TEL (250) 655-5800 FAX (250) 655-5811

Contract No.: 4406 OPR Data Filename: DX0B_214A S: 2

Matrix: SOLID Lab Sample I.D.: WG33891-102

Extraction Date: 11-Sep-2010 **Analysis Date:** 13-Sep-2010 **Time:** 21:15:59

ALL CONCENTRATIONS REPORTED ON THIS FORM ARE CONCENTRATIONS IN EXTRACT, BASED ON A 20 uL EXTRACT VOLUME.

COMPOUND	LAB FLAG ¹	ION ABUND. RATIO ²	SPIKE CONC. (ng/mL)	CONC. FOUND (ng/mL)	OPR CONC. LIMITS ³ (ng/mL)	% RECOVERY
2,3,7,8-TCDD		0.80	10.0	10.1	6.70 - 15.8	101
1,2,3,7,8-PECDD ⁴		0.61	52.0	51.1	36.4 - 73.8	98.2
1,2,3,4,7,8-HXCDD		1.24	56.5	54.8	39.6 - 92.7	97.0
1,2,3,6,7,8-HXCDD		1.25	55.5	56.1	42.2 - 74.4	101
1,2,3,7,8,9-HXCDD		1.26	54.0	55.4	34.6 - 87.5	103
1,2,3,4,6,7,8-HPCDD		1.07	47.5	48.7	33.3 - 66.5	102
OCDD		0.89	100	95.1	78.0 - 144	95.1
2,3,7,8-TCDF		0.80	10.7	11.1	8.03 - 16.9	104
1,2,3,7,8-PECDF		1.55	46.0	47.1	36.8 - 61.6	102
2,3,4,7,8-PECDF		1.56	47.0	49.2	32.0 - 75.2	105
1,2,3,4,7,8-HXCDF		1.26	50.0	49.8	36.0 - 67.0	99.5
1,2,3,6,7,8-HXCDF		1.27	47.5	44.8	39.9 - 61.8	94.4
1,2,3,7,8,9-HXCDF		1.24	52.5	51.9	41.0 - 68.3	98.9
2,3,4,6,7,8-HXCDF		1.27	53.0	52.0	37.1 - 82.7	98.1
1,2,3,4,6,7,8-HPCDF		1.05	50.0	51.0	41.0 - 61.0	102
1,2,3,4,7,8,9-HPCDF		1.06	50.0	48.7	39.0 - 69.0	97.5
OCDF		0.89	104	102	65.5 - 177	98.5

- (1) Where applicable, custom lab flags have been used on this report.
- (2) Contract-required Ion Abundance Ratios are specified in Table 9, Method 1613.
- (3) Contract-required concentration range as determined from the percent of the test concentration in Table 6, Method 1613, under OPR.
- (4) Alternate confirmation and quantitation ions used for native and labeled PECDD.

These data are validated and reported as accurate,	true and compliant	t with AXYS Analytical	Services Ltd. quality	assurance processes.
Signed:	Celine	Vaillant		

For Axys Internal Use Only [XSL Template: Form8A.xsl; Created: 16-Sep-2010 08:23:03; Application: XMLTransformer-1.10.26; Report Filename: 1613_DIOXINS_1613DB5_WG33891-102_Form8A_SJ1190743.html; Workgroup: WG33891; Design ID: 699]

Form 8G

PCDD/PCDF CERTIFIED REFERENCE MATERIAL (CRM) REPORT FOR NIST SRM 1944

AXYS ANALYTICAL SERVICES

2045 MILLS RD., SIDNEY, B.C., CANADA V8L 5X2 TEL (250) 655-5800 FAX (250) 655-5811

Contract No.: 4406 Lab Sample I.D.: WG33891-104 Matrix: SOLID Sample Size: 1.24 g (dry) **Extraction Date:** 11-Sep-2010 **Initial Calibration Date:** 26-Aug-2010 **Analysis Date:** 14-Sep-2010 Time: 04:34:58 Instrument ID: HR GC/MS Extract Volume (uL): GC Column ID: DB5

Injection Volume (uL): 1.0 CRM Data Filename: DX0B_214A S: 10

Dilution Factor:N/ABlank Data Filename:DX0B_214A S: 5Concentration Units:pg/g (dry weight basis)Cal. Ver. Data Filename:DX0B_214A S: 1

COMPOUND	LAB FLAG ¹	DETERMINED	CERTIFIED / REFERENCE
2,3,7,8-TCDD		190	133 +/- 9
1,2,3,7,8-PECDD ²	J	23.5	19 +/- 2
1,2,3,4,7,8-HXCDD	J	35.1	26 +/- 3
1,2,3,6,7,8-HXCDD		80.7	56 +/- 6
1,2,3,7,8,9-HXCDD		87.5	53 +/- 7
1,2,3,4,6,7,8-HPCDD		900	800 +/- 70
OCDD		5460	5800 +/- 700
2,3,7,8-TCDF	X		
1,2,3,7,8-PECDF		47.0	45 +/- 7
2,3,4,7,8-PECDF		52.8	45 +/- 4
1,2,3,4,7,8-HXCDF		212	220 +/- 30
1,2,3,6,7,8-HXCDF		96.7	90 +/- 10
1,2,3,7,8,9-HXCDF	J	3.43	19 +/- 18
2,3,4,6,7,8-HXCDF		57.8	54 +/- 6
1,2,3,4,6,7,8-HPCDF		964	1000 +/- 100
1,2,3,4,7,8,9-HPCDF		43.2	40 +/- 6
OCDF		1020	1000 +/- 100

⁽¹⁾ Where applicable, custom lab flags have been used on this report; J = concentration less than LMCL; X = result reported separately.

These data are validated and reported as accurate,	true and compliant	with AXYS Analytical	Services Ltd. quality	assurance processes.
Signed:	Celine	Vaillant		

For Axys Internal Use Only [XSL Template: Form8G.xsl; Created: 16-Sep-2010 08:23:03; Application: XMLTransformer-1.10.26; Report Filename: 1613_DIOXINS_1613DB5_WG33891-104_Form8G_SJ1190753.html; Workgroup: WG33891; Design ID: 699]

⁽²⁾ Alternate confirmation and quantitation ions used for native and labeled PECDD.

Form 8G

PCDD/PCDF CERTIFIED REFERENCE MATERIAL (CRM) REPORT FOR NIST SRM 1944

AXYS ANALYTICAL SERVICES

2045 MILLS RD., SIDNEY, B.C., CANADA V8L 5X2 TEL (250) 655-5800 FAX (250) 655-5811

4406 Contract No.: Lab Sample I.D.: WG33891-104 Matrix: SOLID Sample Size: 1.24 g (dry) **Extraction Date:** 11-Sep-2010 **Initial Calibration Date:** 24-Aug-2010 **Analysis Date:** 14-Sep-2010 Time: 10:49:56 Instrument ID: HR GC/MS Extract Volume (uL): 20 GC Column ID: DB225

Injection Volume (uL):2.0CRM Data Filename:DB03_135 S: 5Dilution Factor:N/ABlank Data Filename:DB03_134C S: 4Concentration Units:pg/g (dry weight basis)Cal. Ver. Data Filename:DB03_135 S: 2

COMPOUND LAB DETERMINED CERTIFIED / REFERENCE

2,3,7,8-TCDF 29.7 39 +/- 15

(1) Where applicable, custom lab flags have been used on this report.

These data are validated and reported as accurate,	true and compliant	with AXYS Analytical	Services Ltd. quality	assurance processes.
Signed:	Celine	Vaillant		

 $For Axys \ Internal \ Use \ Only \ [XSL\ Template: Form8G.xsl; Created: 16-Sep-2010\ 08:22:47; Application: XMLTransformer-1.10.26; Report Filename: 1613_DIOXINS_1613DB225_WG33891-104_Form8G_SJ1190889.html; Workgroup: WG33891; Design ID: 699\]$

BATCH SUMMARY

Batch ID:	WG33443	Date:	03-Sep-2010	
Analysis Type:	Dioxin/Furan	Matrix		
	BATCH MAKEUP			
Contract: Samples:	4406	Blank:	WG33443-101	
L14872-1 L14872-2 L14872-3 L14872-4 L14872-5 L14872-6	SDS-CT-01A SDS-CT-02 SDS-CT-03 SDS-CT-04 SDS-CT-05	Referen	nce or Spike: WG33443-102 ate: WG33443-103	
Comments: 1. Data are not blank corrected.				

Copyright AXYS Analytical Services Ltd February 1993

Form 1A
PCDD/PCDF ANALYSIS REPORT

CLIENT SAMPLE NO. SDS-CT-01A Sample Collection: 14-Jun-2010 10:47

AXYS ANALYTICAL SERVICES

2045 MILLS RD., SIDNEY, B.C., CANADA V8L 5X2 TEL (250) 655-5800 FAX (250) 655-5811

Contract No.: 4406

Matrix: TISSUE

Sample Receipt Date: 17-Jun-2010

Extraction Date: 23-Jul-2010

Analysis Date: 27-Aug-2010 **Time:** 04:44:08

Extract Volume (uL): 20

Injection Volume (uL): 1.0

Dilution Factor: N/A

Concentration Units: pg/g (wet weight basis)

Project No.

Lab Sample I.D.:

Sample Size:

GC Column ID:

FIDALGO BAY, CUSTOM PLYWOOD DX STUDY

L14872-1 L

10.3 g (wet)

Initial Calibration Date:

Instrument ID:

30-Jul-2010 HR GC/MS

DB5

Sample Data Filename:

Blank Data Filename:

DX0M_114 S: 6

Cal. Ver. Data Filename:

DX0M_114 S: 1

DX0M_114 S: 11

% Moisture: 84.3 **% Lipid:** 1.00

COMPOUND	LAB FLAG ¹	CONCENTRATION FOUND	DETECTION LIMIT	ION ABUND. RATIO ²	RRT ²
2,3,7,8-TCDD	KJ	0.109	0.0582	0.51	1.001
1,2,3,7,8-PECDD ³	ΚJ	0.212	0.0572	0.42	1.002
1,2,3,4,7,8-HXCDD	J	0.246	0.0486	1.25	1.001
1,2,3,6,7,8-HXCDD	J	1.23	0.0486	1.34	1.000
1,2,3,7,8,9-HXCDD	J	0.695	0.0486	1.17	1.000
1,2,3,4,6,7,8-HPCDD	В	26.8	0.138	0.98	1.000
OCDD	В	221	0.116	0.86	1.000
2,3,7,8-TCDF	BJ	0.593	0.0486	0.81	1.002
1,2,3,7,8-PECDF	KBJ	0.088	0.0683	1.23	1.001
2,3,4,7,8-PECDF	KBJ	0.213	0.0683	1.93	1.001
1,2,3,4,7,8-HXCDF	J	0.312	0.0755	1.15	1.001
1,2,3,6,7,8-HXCDF	ΚJ	0.168	0.0755	1.03	1.001
1,2,3,7,8,9-HXCDF	J	0.105	0.0755	1.15	1.004
2,3,4,6,7,8-HXCDF	J	0.223	0.0755	1.28	1.001
1,2,3,4,6,7,8-HPCDF		5.75	0.0736	0.90	1.000
1,2,3,4,7,8,9-HPCDF	BJ	0.305	0.0736	1.17	1.001
OCDF		17.9	0.0486	0.89	1.002
TOTAL TETRA-DIOXINS		1.16	0.0582		
TOTAL PENTA-DIOXINS	J	1.40	0.0572		
TOTAL HEXA-DIOXINS		12.1	0.0486		
TOTAL HEPTA-DIOXINS		72.5	0.138		
TOTAL TETRA-FURANS	В	1.98	0.0486		
TOTAL PENTA-FURANS		8.84	0.0683		
TOTAL HEXA-FURANS		7.24	0.0755		
TOTAL HEPTA-FURANS		20.9	0.0736		

⁽¹⁾ Where applicable, custom lab flags have been used on this report; K = peak detected but did not meet quantification criteria, result reported represents the estimated maximum possible concentration; B = analyte found in sample and the associated blank; J = concentration less than LMCL.

These data are validated and reported as accurate,	true and compliant w	ith AXYS Analytical	Services Ltd.	quality assurance	processes.
Signed:	Bryan <i>I</i>	Alonzo			

For Axys Internal Use Only [XSL Template: Form1A.xsl; Created: 03-Sep-2010 14:33:39; Application: XMLTransformer-1.10.25; Report Filename: 1613_DIOXINS_1613DB5_L14872-1_Form1A_DX0M_114S11_SJ1185857.html; Workgroup: WG33443; Design ID: 883]

⁽²⁾ Contract-required limits for RRTs and ion abundance ratios are specified in Tables 2 and 9, respectively, Method 1613.

⁽³⁾ Alternate confirmation and quantitation ions used for native and labeled PECDD.

Form 1A PCDD/PCDF ANALYSIS REPORT

CLIENT SAMPLE NO. SDS-CT-01A Sample Collection: 14-Jun-2010 10:47

AXYS ANALYTICAL SERVICES

2045 MILLS RD., SIDNEY, B.C., CANADA V8L 5X2 TEL (250) 655-5800 FAX (250) 655-5811

Contract No.: 4406

Project No.

Sample Size:

FIDALGO BAY, CUSTOM PLYWOOD DX STUDY

Lab Sample I.D.: L14872-1

Matrix: TISSUE

10.3 g (wet)

Sample Receipt Date: 17-Jun-2010

Initial Calibration Date:

13-Jul-2010

Extraction Date:

23-Jul-2010

Instrument ID:

HR GC/MS

Analysis Date:

04-Aug-2010 Time: 11:59:57

GC Column ID:

DB225

Extract Volume (uL):

20

Sample Data Filename:

DB03_101 S: 8

Injection Volume (uL): 2.0

Blank Data Filename:

DX0M_114 S: 6

Dilution Factor: N/A

Cal. Ver. Data Filename:

DB03_101 S: 2

Concentration Units: pg/g (wet weight basis)

% Moisture: % Lipid:

84.3 1.00

COMPOUND	LAB FLAG ¹	CONCENTRATION FOUND	DETECTION LIMIT	ION ABUND. RATIO ²	RRT ²
2,3,7,8-TCDF	KJ	0.202	0.103	0.39	1.002

⁽¹⁾ Where applicable, custom lab flags have been used on this report; K = peak detected but did not meet quantification criteria, result reported represents the estimated maximum possible concentration; J = concentration less than LMCL.

These data are validated and reported as accurate,	true and compliant	with AXYS Analytical	Services Ltd. quality	assurance processes.
Signed:	Bryan	Alonzo		

For Axys Internal Use Only [XSL Template: Form1A.xsl; Created: 03-Sep-2010 14:17:30; Application: XMLTransformer-1.10.25; Report Filename: 1613_DIOXINS_1613DB225_L14872-1_Form1A_DB03_101S8_SJ1186100.html; Workgroup: WG33443; Design ID: 883]

⁽²⁾ Contract-required limits for RRTs and ion abundance ratios are specified in Tables 2 and 9, respectively, Method 1613.

Form 1A PCDD/PCDF ANALYSIS REPORT

CLIENT SAMPLE NO. SDS-CT-01B Sample Collection: 14-Jun-2010 11:15

AXYS ANALYTICAL SERVICES

2045 MILLS RD., SIDNEY, B.C., CANADA V8L 5X2 TEL (250) 655-5800 FAX (250) 655-5811

Contract No.: 4406

Matrix: TISSUE

Sample Receipt Date: 17-Jun-2010

Extraction Date: 23-Jul-2010

Analysis Date:

Extract Volume (uL): 100

Injection Volume (uL): 1.0

Dilution Factor: 5

Concentration Units: pg/g (wet weight basis)

27-Aug-2010 Time: 08:33:25

Project No.

FIDALGO BAY, CUSTOM PLYWOOD DX STUDY

30-Jul-2010

DX0M_114 S: 12

Lab Sample I.D.: L14872-2 LW

Sample Size: 10.2 g (wet)

Initial Calibration Date:

Cal. Ver. Data Filename:

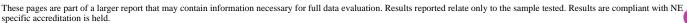
Instrument ID: HR GC/MS

GC Column ID: DB5

Sample Data Filename: DX0M_114 S: 15

Blank Data Filename: DX0M_114 S: 6

% Moisture: 83.8 **% Lipid:** 1.30


COMPOUND	LAB FLAG ¹	CONCENTRATION FOUND	DETECTION LIMIT	ION ABUND. RATIO ²	RRT ²
2,3,7,8-TCDD	UD		0.0925		
1,2,3,7,8-PECDD ³	KDJ	0.150	0.107	0.84	1.001
1,2,3,4,7,8-HXCDD	KDJ	0.898	0.217	0.61	1.004
1,2,3,6,7,8-HXCDD	U D		0.217		
1,2,3,7,8,9-HXCDD	U D		0.217		
1,2,3,4,6,7,8-HPCDD	KBDJ	5.00	0.150	0.79	1.001
OCDD	BDJ	27.4	0.354	0.99	1.000
2,3,7,8-TCDF	BDJ	0.320	0.146	0.82	1.001
1,2,3,7,8-PECDF	UD		0.0968		
2,3,4,7,8-PECDF	KBDJ	0.131	0.0968	0.96	1.002
1,2,3,4,7,8-HXCDF	KDJ	0.155	0.138	2.22	1.000
1,2,3,6,7,8-HXCDF	U D		0.138		
1,2,3,7,8,9-HXCDF	U D		0.138		
2,3,4,6,7,8-HXCDF	U D		0.138		
1,2,3,4,6,7,8-HPCDF	KDJ	0.632	0.173	2.36	1.000
1,2,3,4,7,8,9-HPCDF	U D		0.173		
OCDF	KDJ	2.11	0.133	1.30	1.002
TOTAL TETRA-DIOXINS	U D		0.0925		
TOTAL PENTA-DIOXINS	U D		0.107		
TOTAL HEXA-DIOXINS	D	1.67	0.217		
TOTAL HEPTA-DIOXINS	D	7.96	0.150		
TOTAL TETRA-FURANS	B D	0.320	0.146		
TOTAL PENTA-FURANS	UD		0.0968		
TOTAL HEXA-FURANS	UD		0.138		
TOTAL HEPTA-FURANS	UD		0.173		

⁽¹⁾ Where applicable, custom lab flags have been used on this report; U = not detected; K = peak detected but did not meet quantification criteria, result reported represents the estimated maximum possible concentration; B = analyte found in sample and the associated blank; D = dilution data; J = concentration less than LMCL.

These data are validated and reported as accurate, true and compliant with AXYS Analytical Services Ltd. quality assurance processes.

Signed: _____Bryan Alonzo_____

For Axys Internal Use Only [XSL Template: Form1A.xsl; Created: 03-Sep-2010 14:33:39; Application: XMLTransformer-1.10.25; Report Filename: $1613_DIOXINS_1613DB5_L14872-2_Form1A_DX0M_114S15_SJ1185993.html$; Workgroup: WG33443; Design ID: 883]

⁽²⁾ Contract-required limits for RRTs and ion abundance ratios are specified in Tables 2 and 9, respectively, Method 1613.

⁽³⁾ Alternate confirmation and quantitation ions used for native and labeled PECDD.

Form 1A PCDD/PCDF ANALYSIS REPORT

CLIENT SAMPLE NO. SDS-CT-01B Sample Collection: 14-Jun-2010 11:15

AXYS ANALYTICAL SERVICES

Matrix:

Analysis Date:

2045 MILLS RD., SIDNEY, B.C., CANADA V8L 5X2 TEL (250) 655-5800 FAX (250) 655-5811

4406 Contract No.:

TISSUE

04-Aug-2010 Time: 12:36:30

Sample Receipt Date: 17-Jun-2010

Extraction Date: 23-Jul-2010

Extract Volume (uL): 20

Injection Volume (uL): 2.0

Dilution Factor: N/A

Concentration Units: pg/g (wet weight basis) Project No.

Sample Size:

Lab Sample I.D.:

FIDALGO BAY, CUSTOM PLYWOOD DX STUDY

L14872-2

13-Jul-2010

DB03_101 S: 9

DX0M_114 S: 6

DB03_101 S: 2

DB225

10.2 g (wet)

Initial Calibration Date:

Instrument ID:

HR GC/MS

GC Column ID:

Sample Data Filename:

Blank Data Filename:

Cal. Ver. Data Filename:

% Moisture:

83.8 % Lipid: 1.30

COMPOUND CONCENTRATION **DETECTION** ION ABUND. RRT² LAB FLAG 1 **FOUND** LIMIT RATIO²

U 0.536 2,3,7,8-TCDF

(1) Where applicable, custom lab flags have been used on this report; U = not detected.

(2) Contract-required limits for RRTs and ion abundance ratios are specified in Tables 2 and 9, respectively, Method 1613.

These data are validated and report	ed as accurate,	true and compliar	t with AXYS	Analytical	Services Ltd.	quality assura	nce processes
	Signed:	Bryan	Alonz	0			

For Axys Internal Use Only [XSL Template: Form1A.xsl; Created: 03-Sep-2010 14:17:30; Application: XMLTransformer-1.10.25; Report Filename: 1613_DIOXINS_1613DB225_L14872-2_Form1A_DB03_101S9_SJ1186101.html; Workgroup: WG33443; Design ID: 883]

Form 1A PCDD/PCDF ANALYSIS REPORT

CLIENT SAMPLE NO. SDS-CT-02 Sample Collection: 14-Jun-2010 11:47

AXYS ANALYTICAL SERVICES

2045 MILLS RD., SIDNEY, B.C., CANADA V8L 5X2 TEL (250) 655-5800 FAX (250) 655-5811

Contract No.: 4406

Matrix: TISSUE

Sample Receipt Date: 17-Jun-2010

Extraction Date: 23-Jul-2010

Analysis Date: 27-Aug-2010 **Time:** 11:18:26

Extract Volume (uL): 20

Injection Volume (uL): 1.0

Dilution Factor: N/A

Concentration Units: pg/g (wet weight basis)

Project No.

Lab Sample I.D.:

Sample Size:

FIDALGO BAY, CUSTOM PLYWOOD DX STUDY

L14872-3 L

30-Jul-2010

DX0M_114 S: 6

10.3 g (wet)

DB5

Initial Calibration Date:

Instrument ID: HR GC/MS

GC Column ID:

Sample Data Filename: DX0M_114 S: 18

Blank Data Filename:

% Lipid:

Cal. Ver. Data Filename: DX0M_114 S: 12

1.05

% Moisture: 84.3

COMPOUND	LAB FLAG ¹	CONCENTRATION FOUND	DETECTION LIMIT	ION ABUND. RATIO ²	RRT ²
2,3,7,8-TCDD	КJ	0.054	0.0488	0.22	1.000
1,2,3,7,8-PECDD ³	U		0.0488		
1,2,3,4,7,8-HXCDD	U		0.0488		
1,2,3,6,7,8-HXCDD	J	0.155	0.0488	1.12	1.000
1,2,3,7,8,9-HXCDD	KJ	0.095	0.0488	0.59	1.000
1,2,3,4,6,7,8-HPCDD	BJ	1.69	0.0726	1.01	1.000
OCDD	BJ	9.84	0.0652	0.89	1.000
2,3,7,8-TCDF	BJ	0.255	0.0488	0.82	1.002
1,2,3,7,8-PECDF	U		0.0488		
2,3,4,7,8-PECDF	KBJ	0.079	0.0488	2.27	1.000
1,2,3,4,7,8-HXCDF	KJ	0.058	0.0488	1.71	1.001
1,2,3,6,7,8-HXCDF	U		0.0488		
1,2,3,7,8,9-HXCDF	U		0.0488		
2,3,4,6,7,8-HXCDF	KJ	0.056	0.0488	2.04	1.001
1,2,3,4,6,7,8-HPCDF	KJ	0.639	0.0488	0.79	1.000
1,2,3,4,7,8,9-HPCDF	U		0.0488		
OCDF	J	1.56	0.0488	0.91	1.002
TOTAL TETRA-DIOXINS		0.075	0.0488		
TOTAL PENTA-DIOXINS	U		0.0488		
TOTAL HEXA-DIOXINS		1.06	0.0488		
TOTAL HEPTA-DIOXINS		4.09	0.0726		
TOTAL TETRA-FURANS	В	0.457	0.0488		
TOTAL PENTA-FURANS	U		0.0488		
TOTAL HEXA-FURANS		0.304	0.0488		
TOTAL HEPTA-FURANS		1.34	0.0488		

⁽¹⁾ Where applicable, custom lab flags have been used on this report; U = not detected; K = peak detected but did not meet quantification criteria, result reported represents the estimated maximum possible concentration; B = analyte found in sample and the associated blank; J = concentration less than LMCL.

These data are validated and reported as accurate, true and compliant with AXYS Analytical Services Ltd. quality assurance processes.

Signed: _____Bryan Alonzo_____

For Axys Internal Use Only [XSL Template: Form1A.xsl; Created: 03-Sep-2010 14:33:39; Application: XMLTransformer-1.10.25; Report Filename: $1613_DIOXINS_1613DB5_L14872-3_Form1A_DX0M_114S18_SJ1185996.html$; Workgroup: WG33443; Design ID: 883]

⁽²⁾ Contract-required limits for RRTs and ion abundance ratios are specified in Tables 2 and 9, respectively, Method 1613.

⁽³⁾ Alternate confirmation and quantitation ions used for native and labeled PECDD.

Form 1A PCDD/PCDF ANALYSIS REPORT

CLIENT SAMPLE NO. SDS-CT-02 Sample Collection: 14-Jun-2010 11:47

AXYS ANALYTICAL SERVICES

2045 MILLS RD., SIDNEY, B.C., CANADA V8L 5X2 TEL (250) 655-5800 FAX (250) 655-5811

4406 Contract No.:

Project No.

FIDALGO BAY, CUSTOM

PLYWOOD DX STUDY

L14872-3 Lab Sample I.D.:

TISSUE Matrix:

Sample Size:

10.3 g (wet)

Sample Receipt Date: 17-Jun-2010 **Initial Calibration Date:**

13-Jul-2010

Extraction Date:

23-Jul-2010

Instrument ID:

HR GC/MS

Analysis Date:

04-Aug-2010 Time: 13:13:05

GC Column ID:

DB225

Extract Volume (uL):

20

Sample Data Filename:

DB03_101 S: 10

Injection Volume (uL):

2.0

Blank Data Filename:

DX0M_114 S: 6

Dilution Factor:

N/A

Cal. Ver. Data Filename:

DB03_101 S: 2

Concentration Units:

pg/g (wet weight basis)

% Moisture: % Lipid:

1.05

84.3

COMPOUND

LAB FLAG 1

CONCENTRATION **FOUND**

DETECTION LIMIT

ION ABUND. RATIO²

RRT²

2,3,7,8-TCDF

U

0.101

(1) Where applicable, custom lab flags have been used on this report; U = not detected.

(2) Contract-required limits for RRTs and ion abundance ratios are specified in Tables 2 and 9, respectively, Method 1613.

These data are validated and reported as accurate, true and compliant with AXYS Analytical Services Ltd. quality assurance processes. Bryan Alonzo Signed:

For Axys Internal Use Only [XSL Template: Form1A.xsl; Created: 03-Sep-2010 14:17:30; Application: XMLTransformer-1.10.25; Report Filename: 1613_DIOXINS_1613DB225_L14872-3_Form1A_DB03_101S10_SJ1186102.html; Workgroup: WG33443; Design ID: 883]

Form 1A PCDD/PCDF ANALYSIS REPORT

CLIENT SAMPLE NO. SDS-CT-03 Sample Collection: 14-Jun-2010 12:30

AXYS ANALYTICAL SERVICES

2045 MILLS RD., SIDNEY, B.C., CANADA V8L 5X2 TEL (250) 655-5800 FAX (250) 655-5811

4406 Contract No.:

Matrix: **TISSUE**

Sample Receipt Date: 17-Jun-2010

Extraction Date: 23-Jul-2010

Extract Volume (uL): 20

Analysis Date:

Injection Volume (uL): 1.0

Dilution Factor: N/A

Concentration Units: pg/g (wet weight basis)

27-Aug-2010 Time: 09:28:22

Project No.

FIDALGO BAY, CUSTOM

PLYWOOD DX STUDY

30-Jul-2010

DB5

L14872-4 L (A) Lab Sample I.D.:

Sample Size: 10.3 g (wet)

Initial Calibration Date:

HR GC/MS

Instrument ID:

GC Column ID:

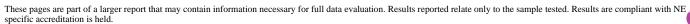
Sample Data Filename: DX0M_114 S: 16

Blank Data Filename:

Cal. Ver. Data Filename:

DX0M_114 S: 12

DX0M_114 S: 6


% Moisture: 84.3 % Lipid: 1.11

COMPOUND	LAB FLAG ¹	CONCENTRATION FOUND	DETECTION LIMIT	ION ABUND. RATIO ²	RRT ²
2,3,7,8-TCDD	U		0.0486		
1,2,3,7,8-PECDD ³	ΚJ	0.066	0.0486	0.38	1.001
1,2,3,4,7,8-HXCDD	J	0.064	0.0588	1.35	1.000
1,2,3,6,7,8-HXCDD	J	0.196	0.0588	1.11	1.000
1,2,3,7,8,9-HXCDD	ΚJ	0.153	0.0588	1.55	1.001
1,2,3,4,6,7,8-HPCDD	ВЈ	1.83	0.0486	0.94	1.000
OCDD	BJ	8.90	0.115	0.87	1.000
2,3,7,8-TCDF	ВJ	0.299	0.0486	0.71	1.001
1,2,3,7,8-PECDF	U		0.0486		
2,3,4,7,8-PECDF	BJ	0.092	0.0486	1.57	1.001
1,2,3,4,7,8-HXCDF	U		0.0533		
1,2,3,6,7,8-HXCDF	U		0.0533		
1,2,3,7,8,9-HXCDF	U		0.0533		
2,3,4,6,7,8-HXCDF	U		0.0533		
1,2,3,4,6,7,8-HPCDF	KJ	0.343	0.0486	0.68	1.000
1,2,3,4,7,8,9-HPCDF	KBJ	0.051	0.0486	0.40	1.000
OCDF	J	1.31	0.0486	0.90	1.002
TOTAL TETRA-DIOXINS		0.152	0.0486		
TOTAL PENTA-DIOXINS		0.130	0.0486		
TOTAL HEXA-DIOXINS		0.841	0.0588		
TOTAL HEPTA-DIOXINS		4.67	0.0486		
TOTAL TETRA-FURANS	В	0.474	0.0486		
TOTAL PENTA-FURANS		0.092	0.0486		
TOTAL HEXA-FURANS		0.391	0.0533		
TOTAL HEPTA-FURANS	U		0.0486		

⁽¹⁾ Where applicable, custom lab flags have been used on this report; U = not detected; K = peak detected but did not meet quantification criteria, result reported represents the estimated maximum possible concentration; B = analyte found in sample and the associated blank; J = concentration less than

These data are validated and reported as accurate, true and compliant with AXYS Analytical Services Ltd. quality assurance processes. _Bryan Alonzo

For Axys Internal Use Only [XSL Template: Form1A.xsl; Created: 03-Sep-2010 14:33:39; Application: XMLTransformer-1.10.25; Report Filename: $1613_DIOXINS_1613DB5_L14872-4_Form1A_DX0M_114S16_SJ1185994.html$; Workgroup: WG33443; Design ID: 883]

⁽²⁾ Contract-required limits for RRTs and ion abundance ratios are specified in Tables 2 and 9, respectively, Method 1613.

⁽³⁾ Alternate confirmation and quantitation ions used for native and labeled PECDD.

Form 1A PCDD/PCDF ANALYSIS REPORT

CLIENT SAMPLE NO. SDS-CT-03 Sample Collection: 14-Jun-2010 12:30

FIDALGO BAY, CUSTOM

AXYS ANALYTICAL SERVICES

2045 MILLS RD., SIDNEY, B.C., CANADA V8L 5X2 TEL (250) 655-5800 FAX (250) 655-5811

4406 Contract No.:

TISSUE

Lab Sample I.D.: Sample Size:

Project No.

PLYWOOD DX STUDY L14872-4 (A)

Matrix:

17-Jun-2010

Initial Calibration Date:

10.3 g (wet) 13-Jul-2010

Extraction Date:

Sample Receipt Date:

23-Jul-2010

Instrument ID:

HR GC/MS

Analysis Date:

04-Aug-2010 Time: 13:49:39

GC Column ID:

DB225

Extract Volume (uL):

20

Sample Data Filename:

DB03_101 S: 11

Injection Volume (uL):

2.0

Blank Data Filename:

DX0M_114 S: 6

Dilution Factor:

N/A

Cal. Ver. Data Filename:

DB03_101 S: 2

84.3

1 11

Concentration Units:

pg/g (wet weight basis)

% Moisture: % Lipid:

COMPOUND

LAB FLAG 1

CONCENTRATION **FOUND**

DETECTION LIMIT

ION ABUND. RATIO²

RRT²

2,3,7,8-TCDF

U

0.0951

(1) Where applicable, custom lab flags have been used on this report; U = not detected.

(2) Contract-required limits for RRTs and ion abundance ratios are specified in Tables 2 and 9, respectively, Method 1613.

These data are validated and reported as accurate	e, true and compliant with AXYS Analytica	I Services Ltd. quality assurance processes
Signed:	Brvan Alonzo	

For Axys Internal Use Only [XSL Template: Form1A.xsl; Created: 03-Sep-2010 14:17:30; Application: XMLTransformer-1.10.25; Report Filename: 1613_DIOXINS_1613DB225_L14872-4_Form1A_DB03_101S11_SJ1186103.html; Workgroup: WG33443; Design ID: 883]

Form 1A PCDD/PCDF ANALYSIS REPORT

CLIENT SAMPLE NO. SDS-CT-04 Sample Collection: 14-Jun-2010 13:31

AXYS ANALYTICAL SERVICES

2045 MILLS RD., SIDNEY, B.C., CANADA V8L 5X2 TEL (250) 655-5800 FAX (250) 655-5811

Contract No.: 4406

Matrix: TISSUE

Sample Receipt Date: 17-Jun-2010

Extraction Date: 23-Jul-2010

Analysis Date:

Extract Volume (uL): 20

Injection Volume (uL): 1.0

Dilution Factor: N/A

Concentration Units: pg/g (wet weight basis)

27-Aug-2010 Time: 12:13:28

Project No.

Lab Sample I.D.:

FIDALGO BAY, CUSTOM PLYWOOD DX STUDY

L14872-5 L

DB5

30-Jul-2010

Sample Size: 9.86 g (wet)

Initial Calibration Date:

Instrument ID: HR GC/MS

GC Column ID:

Sample Data Filename: DX0M_114 S: 19

Blank Data Filename:

Cal. Ver. Data Filename:

DX0M_114 S: 12

DX0M_114 S: 6

% Moisture: 83.9 **% Lipid:** 1.03

COMPOUND	LAB FLAG ¹	CONCENTRATION FOUND	DETECTION LIMIT	ION ABUND. RATIO ²	RRT ²
2,3,7,8-TCDD	J	0.053	0.0507	0.67	1.000
1,2,3,7,8-PECDD ³	U		0.0507		
1,2,3,4,7,8-HXCDD	U		0.0507		
1,2,3,6,7,8-HXCDD	J	0.113	0.0507	1.09	1.001
1,2,3,7,8,9-HXCDD	U		0.0507		
1,2,3,4,6,7,8-HPCDD	BJ	1.00	0.0507	1.11	1.000
OCDD	BJ	4.93	0.0507	0.90	1.000
2,3,7,8-TCDF	KBJ	0.233	0.0507	0.65	1.001
1,2,3,7,8-PECDF	U		0.0507		
2,3,4,7,8-PECDF	KBJ	0.057	0.0507	2.16	1.001
1,2,3,4,7,8-HXCDF	U		0.0507		
1,2,3,6,7,8-HXCDF	U		0.0507		
1,2,3,7,8,9-HXCDF	U		0.0507		
2,3,4,6,7,8-HXCDF	U		0.0507		
1,2,3,4,6,7,8-HPCDF	ΚJ	0.398	0.0582	0.70	1.000
1,2,3,4,7,8,9-HPCDF	U		0.0582		
OCDF	J	0.537	0.0507	0.80	1.002
TOTAL TETRA-DIOXINS		0.053	0.0507		
TOTAL PENTA-DIOXINS		0.069	0.0507		
TOTAL HEXA-DIOXINS		1.15	0.0507		
TOTAL HEPTA-DIOXINS		2.73	0.0507		
TOTAL TETRA-FURANS	В	0.322	0.0507		
TOTAL PENTA-FURANS		0.148	0.0507		
TOTAL HEXA-FURANS		0.131	0.0507		
TOTAL HEPTA-FURANS	U		0.0582		

⁽¹⁾ Where applicable, custom lab flags have been used on this report; U = not detected; K = peak detected but did not meet quantification criteria, result reported represents the estimated maximum possible concentration; B = analyte found in sample and the associated blank; J = concentration less than LMCL.

These data are validated and reported as accurate, true and compliant with AXYS Analytical Services Ltd. quality assurance processes.

Signed: _____Bryan Alonzo______

For Axys Internal Use Only [XSL Template: Form1A.xsl; Created: 03-Sep-2010 14:33:39; Application: XMLTransformer-1.10.25; Report Filename: 1613_DIOXINS_1613DB5_L14872-5_Form1A_DX0M_114S19_SJ1185997.html; Workgroup: WG33443; Design ID: 883]

⁽²⁾ Contract-required limits for RRTs and ion abundance ratios are specified in Tables 2 and 9, respectively, Method 1613.

⁽³⁾ Alternate confirmation and quantitation ions used for native and labeled PECDD.

Form 1A PCDD/PCDF ANALYSIS REPORT

CLIENT SAMPLE NO. SDS-CT-04 Sample Collection: 14-Jun-2010 13:31

FIDALGO BAY, CUSTOM PLYWOOD DX STUDY

AXYS ANALYTICAL SERVICES

2045 MILLS RD., SIDNEY, B.C., CANADA V8L 5X2 TEL (250) 655-5800 FAX (250) 655-5811

4406 Contract No.:

9.86 g (wet)

L14872-5

TISSUE Matrix:

Initial Calibration Date:

13-Jul-2010

Extraction Date: Analysis Date:

23-Jul-2010

20

17-Jun-2010

Instrument ID:

Project No.

Lab Sample I.D.:

Sample Size:

HR GC/MS

Sample Receipt Date:

04-Aug-2010 Time: 15:02:48

GC Column ID:

DB225

Extract Volume (uL):

Sample Data Filename:

DB03_101 S: 13

Injection Volume (uL):

2.0

Blank Data Filename:

DX0M_114 S: 6

Dilution Factor: N/A Cal. Ver. Data Filename:

DB03_101 S: 2

83.9

1.03

Concentration Units:

pg/g (wet weight basis)

% Moisture: % Lipid:

COMPOUND

LAB FLAG 1

CONCENTRATION **FOUND**

DETECTION LIMIT

ION ABUND. RATIO²

RRT²

2,3,7,8-TCDF

U

0.0610

(1) Where applicable, custom lab flags have been used on this report; U = not detected.

(2) Contract-required limits for RRTs and ion abundance ratios are specified in Tables 2 and 9, respectively, Method 1613.

These data are validated and reported as accurate	e, true and compliant with AXYS Analytica	I Services Ltd. quality assurance processes
Signed:	Brvan Alonzo	

For Axys Internal Use Only [XSL Template: Form1A.xsl; Created: 03-Sep-2010 14:17:30; Application: XMLTransformer-1.10.25; Report Filename: 1613_DIOXINS_1613DB225_L14872-5_Form1A_DB03_101S13_SJ1186105.html; Workgroup: WG33443; Design ID: 883]

Form 1A PCDD/PCDF ANALYSIS REPORT

CLIENT SAMPLE NO. SDS-CT-05 Sample Collection: 14-Jun-2010 13:06

AXYS ANALYTICAL SERVICES

2045 MILLS RD., SIDNEY, B.C., CANADA V8L 5X2 TEL (250) 655-5800 FAX (250) 655-5811

Contract No.: 4406

Matrix: TISSUE

Sample Receipt Date: 17-Jun-2010

Extraction Date: 23-Jul-2010

Analysis Date: 27-Aug-2010 **Time:** 13:18:37

Extract Volume (uL): 20

Injection Volume (uL): 1.0

Dilution Factor: N/A

Concentration Units: pg/g (wet weight basis)

Project No.

Lab Sample I.D.:

Sample Size:

FIDALGO BAY, CUSTOM

PLYWOOD DX STUDY

L14872-6 L

DB5

DX0M_114 S: 6

DX0M_114 S: 12

9.99 g (wet)

Initial Calibration Date: 30-Jul-2010

Instrument ID: HR GC/MS

GC Column ID:

Sample Data Filename: DX0M_114 S: 20

Blank Data Filename:

Cal. Ver. Data Filename:

% Moisture: 82.2 **% Lipid:** 3.17

COMPOUND	LAB FLAG ¹	CONCENTRATION FOUND	DETECTION LIMIT	ION ABUND. RATIO ²	RRT ²
2,3,7,8-TCDD	U		0.0501		
1,2,3,7,8-PECDD ³	U		0.0501		
1,2,3,4,7,8-HXCDD	U		0.0501		
1,2,3,6,7,8-HXCDD	KJ	0.060	0.0501	0.94	1.000
1,2,3,7,8,9-HXCDD	U		0.0501		
1,2,3,4,6,7,8-HPCDD	BJ	0.772	0.0501	1.13	1.000
OCDD	BJ	5.15	0.0503	0.86	1.000
2,3,7,8-TCDF	KBJ	0.215	0.0501	1.01	1.002
1,2,3,7,8-PECDF	U		0.0501		
2,3,4,7,8-PECDF	BJ	0.106	0.0501	1.41	1.002
1,2,3,4,7,8-HXCDF	U		0.0501		
1,2,3,6,7,8-HXCDF	U		0.0501		
1,2,3,7,8,9-HXCDF	U		0.0501		
2,3,4,6,7,8-HXCDF	U		0.0501		
1,2,3,4,6,7,8-HPCDF	ΚJ	0.210	0.0501	0.26	1.000
1,2,3,4,7,8,9-HPCDF	U		0.0501		
OCDF	J	0.599	0.0501	0.86	1.002
TOTAL TETRA-DIOXINS	U		0.0501		
TOTAL PENTA-DIOXINS	U		0.0501		
TOTAL HEXA-DIOXINS	U		0.0501		
TOTAL HEPTA-DIOXINS		2.25	0.0501		
TOTAL TETRA-FURANS	В	0.172	0.0501		
TOTAL PENTA-FURANS		0.194	0.0501		
TOTAL HEXA-FURANS	U		0.0501		
TOTAL HEPTA-FURANS		0.354	0.0501		

⁽¹⁾ Where applicable, custom lab flags have been used on this report; U = not detected; K = peak detected but did not meet quantification criteria, result reported represents the estimated maximum possible concentration; B = analyte found in sample and the associated blank; J = concentration less than LMCL.

These data are validated and reported as accurate, true and compliant with AXYS Analytical Services Ltd. quality assurance processes.

Signed: _____Bryan Alonzo_____

For Axys Internal Use Only [XSL Template: Form1A.xsl; Created: 03-Sep-2010 14:33:39; Application: XMLTransformer-1.10.25; Report Filename: $1613_DIOXINS_1613DB5_L14872-6_Form1A_DX0M_114S20_SJ1185998.html$; Workgroup: WG33443; Design ID: 883]

⁽²⁾ Contract-required limits for RRTs and ion abundance ratios are specified in Tables 2 and 9, respectively, Method 1613.

⁽³⁾ Alternate confirmation and quantitation ions used for native and labeled PECDD.

Form 1A PCDD/PCDF ANALYSIS REPORT

CLIENT SAMPLE NO. SDS-CT-05 Sample Collection: 14-Jun-2010 13:06

FIDALGO BAY, CUSTOM PLYWOOD DX STUDY

AXYS ANALYTICAL SERVICES

Matrix:

2045 MILLS RD., SIDNEY, B.C., CANADA V8L 5X2 TEL (250) 655-5800 FAX (250) 655-5811

4406 Contract No.:

TISSUE

Sample Size:

Project No.

L14872-6

9.99 g (wet)

17-Jun-2010 **Initial Calibration Date:** 13-Jul-2010

Extraction Date: 23-Jul-2010 Instrument ID:

Lab Sample I.D.:

HR GC/MS

Analysis Date:

Sample Receipt Date:

04-Aug-2010 Time: 15:39:21

GC Column ID:

DB225

Extract Volume (uL): 20 Sample Data Filename:

DB03_101 S: 14

Injection Volume (uL): 2.0 Blank Data Filename:

DX0M_114 S: 6

Dilution Factor: N/A Cal. Ver. Data Filename:

0.102

DB03_101 S: 2

Concentration Units: pg/g (wet weight basis) % Moisture: % Lipid:

82.2 3.17

COMPOUND CONCENTRATION **DETECTION** ION ABUND. LAB FLAG 1 RRT² **FOUND** LIMIT RATIO²

U 2,3,7,8-TCDF

(1) Where applicable, custom lab flags have been used on this report; U = not detected.

(2) Contract-required limits for RRTs and ion abundance ratios are specified in Tables 2 and 9, respectively, Method 1613.

These data are validated and reported as accurate, true and compliant with AXYS Analytical Services Ltd. quality assurance processes. Bryan Alonzo Signed:

For Axys Internal Use Only [XSL Template: Form1A.xsl; Created: 03-Sep-2010 14:17:30; Application: XMLTransformer-1.10.25; Report Filename: 1613_DIOXINS_1613DB225_L14872-6_Form1A_DB03_101S14_SJ1186106.html; Workgroup: WG33443; Design ID: 883]

Form 1A PCDD/PCDF ANALYSIS REPORT

CLIENT SAMPLE NO. SDS-CT-03 (Duplicate) Sample Collection: 14-Jun-2010 12:30

AXYS ANALYTICAL SERVICES

2045 MILLS RD., SIDNEY, B.C., CANADA V8L 5X2 TEL (250) 655-5800 FAX (250) 655-5811

4406 Contract No.:

Matrix: **TISSUE**

Sample Receipt Date: 17-Jun-2010

Extraction Date: 23-Jul-2010

27-Aug-2010 Time: 10:23:24 **Analysis Date:**

Extract Volume (uL): 20

Injection Volume (uL): 1.0

Dilution Factor: N/A

Concentration Units: pg/g (wet weight basis) Project No.

Lab Sample I.D.:

FIDALGO BAY, CUSTOM

PLYWOOD DX STUDY

WG33443-103 L (DUP L14872-4)

Sample Size: 10.2 g (wet)

Initial Calibration Date:

HR GC/MS Instrument ID:

GC Column ID:

Sample Data Filename: DX0M_114 S: 17

Blank Data Filename:

Cal. Ver. Data Filename:

DX0M_114 S: 12

DX0M_114 S: 6

30-Jul-2010

DB5

% Moisture: 84.3 % Lipid: 1.18

COMPOUND	LAB FLAG ¹	CONCENTRATION FOUND	DETECTION LIMIT	ION ABUND. RATIO ²	RRT ²
2,3,7,8-TCDD	U		0.0490		
1,2,3,7,8-PECDD ³	U		0.0490		
1,2,3,4,7,8-HXCDD	U		0.0597		
1,2,3,6,7,8-HXCDD	K	0.173	0.0597	1.05	1.001
1,2,3,7,8,9-HXCDD	K	0.070	0.0597	2.53	1.001
1,2,3,4,6,7,8-HPCDD	ΚB	1.72	0.0727	0.64	1.000
OCDD	В	9.22	0.0749	0.94	1.000
2,3,7,8-TCDF	В	0.351	0.0490	0.75	1.001
1,2,3,7,8-PECDF	U		0.0523		
2,3,4,7,8-PECDF	ΚB	0.088	0.0523	0.58	1.001
1,2,3,4,7,8-HXCDF	K	0.094	0.0490	1.99	1.001
1,2,3,6,7,8-HXCDF	U		0.0490		
1,2,3,7,8,9-HXCDF	U		0.0490		
2,3,4,6,7,8-HXCDF	K	0.064	0.0490	0.32	1.001
1,2,3,4,6,7,8-HPCDF		0.645	0.0490	1.14	1.000
1,2,3,4,7,8,9-HPCDF	U		0.0490		
OCDF	K	0.939	0.195	1.25	1.002
TOTAL TETRA-DIOXINS		0.100	0.0490		
TOTAL PENTA-DIOXINS	U		0.0490		
TOTAL HEXA-DIOXINS		0.126	0.0597		
TOTAL HEPTA-DIOXINS	U		0.0727		
TOTAL TETRA-FURANS	В	0.475	0.0490		
TOTAL PENTA-FURANS	U		0.0523		
TOTAL HEXA-FURANS		0.319	0.0490		
TOTAL HEPTA-FURANS		1.68	0.0490		

⁽¹⁾ Where applicable, custom lab flags have been used on this report; U = not detected; K = peak detected but did not meet quantification criteria, result reported represents the estimated maximum possible concentration; B = analyte found in sample and the associated blank.

These data are validated and reported as accurate,	true and compliant wit	th AXYS Analytical	Services Ltd. quality	assurance processes.
Signed:	Bryan A	Alonzo		

For Axys Internal Use Only [XSL Template: Form1A.xsl; Created: 03-Sep-2010 14:33:39; Application: XMLTransformer-1.10.25; Report Filename: 1613_DIOXINS_1613DB5_WG33443-103_Form1A_DX0M_114S17_SJ1185995.html; Workgroup: WG33443; Design ID: 883]

⁽²⁾ Contract-required limits for RRTs and ion abundance ratios are specified in Tables 2 and 9, respectively, Method 1613.

⁽³⁾ Alternate confirmation and quantitation ions used for native and labeled PECDD.

Form 1A PCDD/PCDF ANALYSIS REPORT

CLIENT SAMPLE NO. SDS-CT-03 (Duplicate) Sample Collection: 14-Jun-2010 12:30

AXYS ANALYTICAL SERVICES

2045 MILLS RD., SIDNEY, B.C., CANADA V8L 5X2 TEL (250) 655-5800 FAX (250) 655-5811

Contract No.: 4406

Project No.

FIDALGO BAY, CUSTOM

PLYWOOD DX STUDY WG33443-103 (DUP L14872-4)

Matrix: TISSUE

Sample Size:

Lab Sample I.D.:

10.2 g (wet)

Sample Receipt Date: 17-Jun-2010

Initial Calibration Date:

13-Jul-2010

Extraction Date:

23-Jul-2010

Instrument ID:

HR GC/MS

Analysis Date:

04-Aug-2010 Time: 14:26:13

GC Column ID:

DB225

Extract Volume (uL):

20

Sample Data Filename:

DB03_101 S: 12

Injection Volume (uL):

2.0 N/A Blank Data Filename:

DX0M_114 S: 6

Dilution Factor:

Cal. Ver. Data Filename:

DETECTION

LIMIT

DB03_101 S: 2

84.3

1.18

Concentration Units: pg/g (wet weight basis)

% Moisture: % Lipid:

ION ABUND.

RATIO²

RRT²

2,3,7,8-TCDF

COMPOUND

U

LAB FLAG 1

0.128

(1) Where applicable, custom lab flags have been used on this report; U = not detected.

(2) Contract-required limits for RRTs and ion abundance ratios are specified in Tables 2 and 9, respectively, Method 1613.

CONCENTRATION

FOUND

These data are validated and reported as accurate, true and compliant with AXYS Analytical Services Ltd. quality assurance processes.

Signed: ______Bryan Alonzo______

For Axys Internal Use Only [XSL Template: Form1A.xsl; Created: 03-Sep-2010 14:17:30; Application: XMLTransformer-1.10.25; Report Filename: 1613_DIOXINS_1613DB225_WG33443-103_Form1A_DB03_101S12_SJ1186104.html; Workgroup: WG33443; Design ID: 883]

PCDD/PCDF ANALYSIS REPORT RELATIVE PERCENT DIFFERENCE

AXYS ANALYTICAL SERVICES

2045 MILLS RD., SIDNEY, B.C., CANADA V8L 5X2 TEL (250) 655-5800 FAX (250) 655-5811

Contract No.: 4406

Client ID: SDS-CT-03

Project No.

FIDALGO BAY, CUSTOM PLYWOOD DX STUDY

Concentration Units: pg/g (wet weight basis)

	L1487	'2-4 (A)	WG334	143-103		
COMPOUND	LAB FLAG ¹	CONC. FOUND	LAB FLAG ¹	CONC. FOUND	MEAN	RELATIVE PERCENT DIFFERENCE
2,3,7,8-TCDD	U		U			
1,2,3,7,8-PECDD	ΚJ	0.066	U			
1,2,3,4,7,8-HXCDD	J	0.064	U			
1,2,3,6,7,8-HXCDD	J	0.196	K	0.173		
1,2,3,7,8,9-HXCDD	ΚJ	0.153	K	0.070		
1,2,3,4,6,7,8-HPCDD	J	1.83	K	1.72		
OCDD	J	8.90		9.22	9.06	3.53
2,3,7,8-TCDF	U		U			
1,2,3,7,8-PECDF	U		U			
2,3,4,7,8-PECDF	J	0.092	K	0.088		
1,2,3,4,7,8-HXCDF	U		K	0.094		
1,2,3,6,7,8-HXCDF	U		U			
1,2,3,7,8,9-HXCDF	U		U			
2,3,4,6,7,8-HXCDF	U		K	0.064		
1,2,3,4,6,7,8-HPCDF	ΚJ	0.343		0.645		
1,2,3,4,7,8,9-HPCDF	ΚJ	0.051	U			
OCDF	J	1.31	K	0.939		

(1) Where applicable, custom lab flags have been used on this report; U = not detected; K = peak detected but did not meet quantification criteria, result reported represents the estimated maximum possible concentration; J = concentration less than LMCL.

These data are validated and reported as accurate,	true and compliant with AXYS Analytica	I Services Ltd. quality assurance processes.
Signed:	Brvan Alonzo	

For Axys Internal Use Only [XSL Template: RPD.xsl; Created: 03-Sep-2010 14:34:56; Application: XMLTransformer-1.10.25; Report Filename: RPD_DIOXINS_1613-RPD_WG33443-103_L14872-4_.html; Workgroup: WG33443; Design ID: 883]

Form 1A PCDD/PCDF ANALYSIS REPORT

CLIENT SAMPLE NO. Lab Blank Sample Collection: N/A

AXYS ANALYTICAL SERVICES

2045 MILLS RD., SIDNEY, B.C., CANADA V8L 5X2 TEL (250) 655-5800 FAX (250) 655-5811

Contract No.: 4406

Project No.

Lab Sample I.D.: WG33443-101 L:5PT

N/A

Matrix: CANOLA OIL Sample Size: 10.0 g

Sample Receipt Date: N/A Initial Calibration Date: 30-Jul-2010

Extraction Date: 23-Jul-2010 Instrument ID: HR GC/MS

Analysis Date: 27-Aug-2010 **Time:** 00:08:57 **GC Column ID:** DB5

Extract Volume (uL): 20 Sample Data Filename: DX0M_114 S: 6

Injection Volume (uL): 1.0 Blank Data Filename: DX0M_114 S: 6

Dilution Factor: N/A Cal. Ver. Data Filename: DX0M_114 S: 1

Concentration Units: pg/g

COMPOUND	LAB FLAG ¹	CONCENTRATION FOUND	DETECTION LIMIT	ION ABUND. RATIO ²	RRT ²
2,3,7,8-TCDD	U		0.0500		
1,2,3,7,8-PECDD ³	U		0.0500		
1,2,3,4,7,8-HXCDD	U		0.0711		
1,2,3,6,7,8-HXCDD	U		0.0711		
1,2,3,7,8,9-HXCDD	U		0.0711		
1,2,3,4,6,7,8-HPCDD	ΚJ	0.060	0.0500	1.59	1.000
OCDD	ΚJ	0.224	0.0500	2.09	1.000
2,3,7,8-TCDF	ΚJ	0.191	0.0500	0.41	1.001
1,2,3,7,8-PECDF	ΚJ	0.050	0.0500	0.24	1.001
2,3,4,7,8-PECDF	ΚJ	0.057	0.0500	0.98	1.002
1,2,3,4,7,8-HXCDF	U		0.0516		
1,2,3,6,7,8-HXCDF	U		0.0516		
1,2,3,7,8,9-HXCDF	U		0.0516		
2,3,4,6,7,8-HXCDF	U		0.0516		
1,2,3,4,6,7,8-HPCDF	U		0.0500		
1,2,3,4,7,8,9-HPCDF	ΚJ	0.060	0.0500	0.37	1.001
OCDF	U		0.140		
TOTAL TETRA-DIOXINS	U		0.0500		
TOTAL PENTA-DIOXINS	U		0.0500		
TOTAL HEXA-DIOXINS	U		0.0711		
TOTAL HEPTA-DIOXINS	U		0.0500		
TOTAL TETRA-FURANS	J	0.085	0.0500		
TOTAL PENTA-FURANS	U		0.0500		
TOTAL HEXA-FURANS	U		0.0516		
TOTAL HEPTA-FURANS	U		0.0500		

⁽¹⁾ Where applicable, custom lab flags have been used on this report; U = not detected; K = peak detected but did not meet quantification criteria, result reported represents the estimated maximum possible concentration; J = concentration less than LMCL.

These data are validated and reported as accurate	, true and compliant	with AXYS Analytical	Services Ltd.	quality assurance processes.
Signed:	Bryan	Alonzo		

For Axys Internal Use Only [XSL Template: Form1A.xsl; Created: 03-Sep-2010 14:33:39; Application: XMLTransformer-1.10.25; Report Filename: 1613_DIOXINS_1613DB5_WG33443-101_Form1A_DX0M_114S6_SJ1185863.html; Workgroup: WG33443; Design ID: 883]

These pages are part of a larger report that may contain information necessary for full data evaluation. Results reported relate only to the sample tested. Results are compliant with NELAP where specific accreditation is held.

⁽²⁾ Contract-required limits for RRTs and ion abundance ratios are specified in Tables 2 and 9, respectively, Method 1613.

⁽³⁾ Alternate confirmation and quantitation ions used for native and labeled PECDD.

Form 1A PCDD/PCDF ANALYSIS REPORT

CLIENT SAMPLE NO. Lab Blank Sample Collection: N/A

N/A

AXYS ANALYTICAL SERVICES

2045 MILLS RD., SIDNEY, B.C., CANADA V8L 5X2 TEL (250) 655-5800 FAX (250) 655-5811

Contract No.: 4406

Project No.

Lab Sample I.D.: WG33443-101

Matrix: CANOLA OIL Sample Size: 10.0 g

Sample Receipt Date: N/A Initial Calibration Date: 13-Jul-2010

Extraction Date: 23-Jul-2010 Instrument ID: HR GC/MS

Analysis Date: 04-Aug-2010 **Time:** 10:10:14 **GC Column ID:** DB225

Extract Volume (uL): 20 Sample Data Filename: DB03_101 S: 5

Injection Volume (uL): 2.0 Blank Data Filename: DX0M_114 S: 6

Dilution Factor: N/A Cal. Ver. Data Filename: DB03 101 S: 2

Concentration Units: pg/g

COMPOUND	LAB FLAG ¹	CONCENTRATION FOUND	DETECTION LIMIT	ION ABUND. RATIO ²	RRT ²
2,3,7,8-TCDF	U		0.103		

(1) Where applicable, custom lab flags have been used on this report; U = not detected.

(2) Contract-required limits for RRTs and ion abundance ratios are specified in Tables 2 and 9, respectively, Method 1613.

These data are validated ar	nd reported as accurate,	true and compliant with AXYS Analyti	ical Services Ltd. quality assurance processes.
	Signed:	Bryan Alonzo	

 $For Axys \ Internal \ Use \ Only \ [XSL\ Template: Form1A.xsl; Created: 03-Sep-2010\ 14:17:30; Application: XML \ Transformer-1.10.25; Report Filename: 1613_DIOXINS_1613DB225_WG33443-101_Form1A_DB03_101S5_SJ1180936.html; Workgroup: WG33443; Design ID: 883\]$

Form 8A PCDD/PCDF ONGOING PRECISION AND RECOVERY (OPR)

AXYS ANALYTICAL SERVICES

2045 MILLS RD., SIDNEY, B.C., CANADA V8L 5X2 TEL (250) 655-5800 FAX (250) 655-5811

Contract No.: 4406 OPR Data Filename: DX0M_114 S: 3

Matrix: TISSUE Lab Sample I.D.: WG33443-102 L:5PT

Extraction Date: 23-Jul-2010 **Analysis Date:** 26-Aug-2010 **Time:** 21:23:46

ALL CONCENTRATIONS REPORTED ON THIS FORM ARE CONCENTRATIONS IN EXTRACT, BASED ON A 20 uL EXTRACT VOLUME.

COMPOUND	LAB FLAG ¹	ION ABUND. RATIO ²	SPIKE CONC. (ng/mL)	CONC. FOUND (ng/mL)	OPR CONC. LIMITS ³ (ng/mL)	% RECOVERY
2,3,7,8-TCDD		0.75	10.6	9.99	7.10 - 16.7	94.2
1,2,3,7,8-PECDD ⁴		0.61	56.6	48.9	39.6 - 80.4	86.4
1,2,3,4,7,8-HXCDD		1.19	59.2	57.6	41.4 - 97.1	97.3
1,2,3,6,7,8-HXCDD		1.24	51.8	56.4	39.4 - 69.4	109
1,2,3,7,8,9-HXCDD		1.19	56.7	48.9	36.3 - 91.9	86.2
1,2,3,4,6,7,8-HPCDD		1.04	50.0	45.8	35.0 - 70.0	91.5
OCDD		0.84	108	95.5	84.2 - 155	88.5
2,3,7,8-TCDF		0.72	10.9	10.9	8.18 - 17.2	100
1,2,3,7,8-PECDF		1.49	50.0	46.2	40.0 - 67.0	92.4
2,3,4,7,8-PECDF		1.43	50.0	47.4	34.0 - 80.0	94.7
1,2,3,4,7,8-HXCDF		1.20	54.4	49.8	39.2 - 72.9	91.6
1,2,3,6,7,8-HXCDF		1.19	50.0	49.3	42.0 - 65.0	98.7
1,2,3,7,8,9-HXCDF		1.15	50.0	53.4	39.0 - 65.0	107
2,3,4,6,7,8-HXCDF		1.20	53.1	53.5	37.2 - 82.8	101
1,2,3,4,6,7,8-HPCDF		0.99	50.0	53.8	41.0 - 61.0	108
1,2,3,4,7,8,9-HPCDF		0.98	50.0	49.6	39.0 - 69.0	99.1
OCDF		0.86	109	99.8	68.4 - 185	91.9

- (1) Where applicable, custom lab flags have been used on this report.
- (2) Contract-required Ion Abundance Ratios are specified in Table 9, Method 1613.
- (3) Contract-required concentration range as determined from the percent of the test concentration in Table 6, Method 1613, under OPR.
- (4) Alternate confirmation and quantitation ions used for native and labeled PECDD.

These data are validated and reported as accurate,	true and compliant	with AXYS Analytical	Services Ltd. quality assurance processes.
Signed:	Bryan	Alonzo	

 $For Axys \ Internal \ Use \ Only \ [XSL\ Template: Form8A.xsl; Created: 03-Sep-2010\ 14:33:39; Application: XML Transformer-1.10.25; Report Filename: 1613_DIOXINS_1613DB5_WG33443-102_Form8A_SJ1185859.html; Workgroup: WG33443; Design ID: 883\]$

