APPENDIX C Quiet Cove Data Report

Data Report

Quiet Cove Site Anacortes, Washington Ecology Agreed Order No. DE 11346

for

Washington State Department of Ecology on Behalf of Port of Anacortes

July 5, 2019

Data Report

Quiet Cove Site Anacortes, Washington Ecology Agreed Order No. DE 11346

for

Washington State Department of Ecology on Behalf of Port of Anacortes

July 5, 2019

Fourth and Blanchard Building 2101 4th Avenue, Suite 950 Seattle, Washington 98121 206.728.2674

Data Report

Quiet Cove Property Anacortes, Washington Ecology Agreed Order No. DE 11346

File No. 5147-024-07

July 5, 2019

Prepared for:

Washington State Department of Ecology P.O. Box 47600 Olympia, Washington 98504-7600

Attention: Arianne Fernandez

On Behalf of:

Brad Tesch Port of Anacortes 100 Commercial Avenue Anacortes, Washington 98221

Prepared by:

GeoEngineers, Inc. Fourth and Blanchard Building 2101 4th Avenue, Suite 950 Seattle, Washington 98121 206.728.2674

Abhijit R. Joshi, PE Senio<u>r Envi</u>ronmental Engineer

John M. Herzog, PhD, LG Principal

BJT:ARJ:JMH:can

Brian J. Tracy, 🕫 Senior Environmental Engineer

Disclaimer: Any electronic form, facsimile or hard copy of the original document (email, text, table, and/or figure), if provided, and any attachments are only a copy of the original document. The original document is stored by GeoEngineers, Inc. and will serve as the official document of record.

Table of Contents

LIST OF ACRONYMS AND ABBREVIATIONS	IV
1.0 INTRODUCTION	1
2.0 BACKGROUND	1
2.1. Site Description and Operational History	1
2.2. Previous Environmental Investigations	
3.0 SUMMARY OF REMEDIAL INVESTIGATION FIELD ACTIVITIES	
3.1. Topographic Survey, and Groundwater Seep and Curtis Wharf Visual Survey	
3.2. Soil Investigation	
3.2.1. Direct-Push Borings	
3.2.2. Hollow-Stem Auger Borings	
3.2.3. Soil Sample Collection and Analysis	
3.3. Groundwater Investigation	
3.3.1. Monitoring Well Construction and Development	
3.3.2. Groundwater Sampling and Analysis	
3.4. Sediment Investigation	
3.4.1. Tier 1 Sediment Sampling and Analysis	
3.4.2. Tier 2 Sediment Sampling and Analysis	
3.5. Hydrogeological Investigation	
3.5.1. Tidal Study and Groundwater Flow	
3.5.2. Hydraulic Conductivity Testing	10
3.6. Disposal of Investigation Derived Waste	10
3.7. Quality Assurance and Quality Control	10
3.7.1. Sample Handling and Shipment	10
3.7.2. Laboratory Data Quality	10
3.7.3. Deviations from the Ecology-approved RI/FS Work Plan	10
4.0 SUMMARY OF SUPPLEMENTAL REMEDIAL INVESTIGATION FIELD ACTIVITIES	11
4.1. Supplemental Investigation Soil Investigation	11
4.2. Supplemental Investigation Groundwater Monitoring	12
4.2.1. Monitoring Well Construction and Development	12
4.2.2. Pre-Pack Well Installation	13
4.2.3. Survey	13
4.2.4. Water and Product Level Measurements	13
4.2.5. Groundwater Sample Collection and Processing	13
4.3. Disposal of Investigation Derived Waste	14
4.4. Quality Assurance and Quality Control	
4.4.1. Sample Handling and Shipment	
4.4.2. Laboratory Data Quality	
4.4.3. Deviations from the Work Plan Addendum	
5.0 SUMMARY OF RESULTS	
5.1. Soil Stratigraphy	

5.2. Hydro	geologic Conditions	16
5.2.1.	Tidal Study	16
5.2.2.	Hydraulic Conductivity	16
5.2.3.	Groundwater Flow Direction and Gradient	16
5.2.4.	Groundwater Velocity	16
5.3. Chem	ical Analytical Results	16
5.3.1.	Soil	17
5.3.2.	Groundwater	18
5.3.3.	Sediment	19
6.0 REFE	RENCES	20
7.0 LIMIT	ATIONS	21

LIST OF TABLES

- Table 1. Focused Environmental Investigation and Remedial Investigation Schedule Soil Analytical Schedule
- Table 2. Focused Environmental Investigation and Remedial Investigation Remedial Investigation Groundwater Analytical Schedule
- Table 3. Remedial Investigation Sediment Analytical Schedule
- Table 4. Supplemental Investigation Soil Analytical Schedule
- Table 5. Supplemental Investigation Groundwater Level Snapshot
- Table 6. Supplemental Investigation Groundwater Analytical Schedule
- Table 7. Focused Environmental Investigation, RI and Supplemental Investigation Soil Analytical Results
- Table 8. Remedial Investigation Groundwater Analytical Results
- Table 9. Supplemental Investigation Groundwater Analytical Results
- Table 10. Remedial Investigation Sediment Analytical Results Protective of Benthic Organisms
- Table 11. Remedial Investigation Sediment Analytical Results Protective of Human Health and Higher Trophic Receptors

LIST OF FIGURES

- Figure 1. Vicinity Map
- Figure 2. Current Site Layout
- Figure 3. Site Plan and Sampling Locations
- Figure 4. Hydrogeologic Investigation Locations
- Figure 5. Mean Groundwater and Tidal Elevations, 72-Hour Tidal Study
- Figure 6. Soil and Sediment Analytical Results for Total Petroleum Hydrocarbons (TPH)
- Figure 7. Soil and Sediment Analytical Results for Volatile Organic Compounds (VOCs)
- Figure 8. Soil and Sediment Analytical Results for Carcinogenic Polycyclic Aromatic Hydrocarbons (cPAHs) Toxicity Equivalency (TEQ)
- Figure 9. Soil and Sediment Analytical Results for PAHs
- Figure 10. Soil and Sediment Analytical Results for Metals
- Figure 11. Groundwater Analytical Results for TPH
- Figure 12. Groundwater Analytical Results for VOCs
- Figure 13. Groundwater Analytical Results for cPAHs TEQ
- Figure 14. Groundwater Analytical Results for PAHs
- Figure 15. Groundwater Analytical Results for Dissolved Metals
- Figure 16. Groundwater Analytical Results for Diesel Range-TPH With and Without Silica Gel Cleanup

LIST OF ATTACHMENTS

- Attachment 1. Investigation Exploration Logs
- Attachment 2. Surveys
- Attachment 3. Tier 2 Sediment Sampling Letter
- Attachment 4. Hydrogeological Investigation
- Attachment 5. Investigation Derived Waste Disposal Records
- Attachment 6. Laboratory Data Reports
- Attachment 7. Data Validation Reports
- Attachment 8. Supplemental Investigation Work Plan Addendum

LIST OF ACRONYMS AND ABBREVIATIONS

AETApparent Effects ThresholdARIAnalytical Resources, Inc.ASTaboveground storage tankBETXbenzene, ethylbenzene, toluene and xylenesbgsbelow ground surfacebmlbelow mudlineCityCity of AnacortescPAHsCleanup Screening LevelCwgroundwater concentration protective of sedimentDNRJ.2 dibromoethaneEcologyJ.2 dibromoethaneEDCJ.2 dibromoethaneEPAGeoEngineersGoeEngineersGeoEngineers, Inc.GoeSglobal positioning systemHSAhollow-stem augerIng/kgmilligrams per kilogramMTCAModel Toxics Control ActMTBEanograms per kilogramsGrderAgreed Order No. DE 11346PAHspolycyclic aromatic hydrocarbonsFortPort of Anacortes	Acronym/ Abbreviation	Description
ASTaboveground storage tankBETXbenzene, ethylbenzene, toluene and xylenesbgsbelow ground surfacebmlbelow mudlineCityCity of AnacortescPAHscarcinogenic polycyclic aromatic hydrocarbonsCSLCleanup Screening LevelCwgroundwater concentration protective of sedimentDNRWashington Department of Natural ResourcesEcologyWashington State Department of EcologyEDG1,2 dichloroethaneEDC1,2 dichloroethaneEPAUnited States Environmental Protection AgencyGeoEngineersGeoEngineers, Inc.GPSglobal positioning systemHSAhollow-stem augerIPGIntegrated Planning Grantmg/kgmilligrams per kilogramMLLWmean lower low waterMTCAModel Toxics Control ActMTBEmethyl tertiary-butyl etherng/kgnanograms per kilogramsOrderAgreed Order No. DE 11346PAHspolycyclic aromatic hydrocarbons	AET	Apparent Effects Threshold
BETXbenzene, ethylbenzene, toluene and xylenesbgsbelow ground surfacebmlbelow mudlineCityCity of AnacortescPAHscarcinogenic polycyclic aromatic hydrocarbonsCSLCleanup Screening LevelCwgroundwater concentration protective of sedimentDNRWashington Department of Natural ResourcesEcologyWashington State Department of EcologyEDB1,2 dibromoethaneEDC1,2 dichloroethaneEPAUnited States Environmental Protection AgencyGeoEngineersGeoEngineers, Inc.GPSglobal positioning systemHSAhollow-stem augerIPGIntegrated Planning Grantmg/kgmilligrams per kilogramMLLWmean lower low waterMTCAModel Toxics Control ActMTBEnanograms per kilogramsOrderAgreed Order No. DE 11346PAHspolycyclic aromatic hydrocarbons	ARI	Analytical Resources, Inc.
bgsbelow ground surfacebmlbelow mudlineCityCity of AnacortescPAHscarcinogenic polycyclic aromatic hydrocarbonsCSLCleanup Screening LevelCwgroundwater concentration protective of sedimentDNRWashington Department of Natural ResourcesEcologyWashington State Department of EcologyEDB1,2 dibromoethaneEDC1,2 dichloroethaneEPAUnited States Environmental Protection AgencyGeoEngineersGeoEngineers, Inc.GPSglobal positioning systemHSAhollow-stem augerIPGIntegrated Planning Grantmg/kgmilligrams per kilogramMLLWmean lower low waterMTCAModel Toxics Control ActMTBEnanograms per kilogramsOrderAgreed Order No. DE 11346PAHspolycyclic aromatic hydrocarbons	AST	aboveground storage tank
brilbelow mudlineCityCity of AnacortesCPAHscarcinogenic polycyclic aromatic hydrocarbonsCSLCleanup Screening LevelCwgroundwater concentration protective of sedimentDNRWashington Department of Natural ResourcesEcologyWashington State Department of EcologyEDB1,2 dibromoethaneEDC1,2 dichloroethaneEPAUnited States Environmental Protection AgencyGeoEngineersGeoEngineers, Inc.GPSglobal positioning systemHSAhollow-stem augerIPGIntegrated Planning Grantmg/kgmilligrams per kilogramMLLWmean lower low waterMTCAModel Toxics Control ActMTBEnanograms per kilogramsOrderAgreed Order No. DE 11346PAHspolycyclic aromatic hydrocarbons	BETX	benzene, ethylbenzene, toluene and xylenes
CityCity of AnacortescPAHscarcinogenic polycyclic aromatic hydrocarbonsCSLCleanup Screening LevelCwgroundwater concentration protective of sedimentDNRWashington Department of Natural ResourcesEcologyWashington State Department of EcologyEDB1,2 dibromoethaneEDC1,2 dichloroethaneEPAUnited States Environmental Protection AgencyGeoEngineersGeoEngineers, Inc.GPSglobal positioning systemHSAhollow-stem augerINEmean lower low waterMLLWmean lower low waterMTCAModel Toxics Control Actng/kgnanograms per kilogramsng/kgnanograms per kilogramsOrderAgreed Order No. DE 11346PAHspolycyclic aromatic hydrocarbons	bgs	below ground surface
cPAHscarcinogenic polycyclic aromatic hydrocarbonsCSLCleanup Screening LevelCwgroundwater concentration protective of sedimentDNRWashington Department of Natural ResourcesEcologyWashington State Department of EcologyEDB1,2 dibromoethaneEDC1,2 dichloroethaneEPAUnited States Environmental Protection AgencyGeoEngineersGeoEngineers, Inc.GPSglobal positioning systemHSAhollow-stem augerIPGIntegrated Planning GrantMLLWmean lower low waterMTCAModel Toxics Control ActMTBEnanograms per kilogramsOrderAgreed Order No. DE 11346PAHspolycyclic aromatic hydrocarbons	bml	below mudline
CSLCleanup Screening LevelCwgroundwater concentration protective of sedimentDNRWashington Department of Natural ResourcesEcologyWashington State Department of EcologyEDB1,2 dibromoethaneEDC1,2 dichloroethaneEPAUnited States Environmental Protection AgencyGeoEngineersGeoEngineers, Inc.GPSglobal positioning systemHSAhollow-stem augerIPGIntegrated Planning Grantmg/kgmean lower low waterMTCAModel Toxics Control ActMTBEnanograms per kilogramsorderAgreed Order No. DE 11346PAHspolycyclic aromatic hydrocarbons	City	City of Anacortes
Cwgroundwater concentration protective of sedimentDNRWashington Department of Natural ResourcesEcologyWashington State Department of EcologyEDB1,2 dibromoethaneEDC1,2 dichloroethaneEPAUnited States Environmental Protection AgencyGeoEngineersGeoEngineers, Inc.GPSglobal positioning systemHSAhollow-stem augerIPGIntegrated Planning GrantMLLWmean lower low waterMTCAModel Toxics Control ActMTBEnanograms per kilogramsng/kgnanograms per kilogramsOrderAgreed Order No. DE 11346PAHspolycyclic aromatic hydrocarbons	cPAHs	carcinogenic polycyclic aromatic hydrocarbons
DNRWashington Department of Natural ResourcesEcologyWashington State Department of EcologyEDB1,2 dibromoethaneEDC1,2 dichloroethaneEPAUnited States Environmental Protection AgencyGeoEngineersGeoEngineers, Inc.GPSglobal positioning systemHSAhollow-stem augerIPGIntegrated Planning GrantMLLWmean lower low waterMTCAModel Toxics Control ActMTBEnanograms per kilogramsorderAgreed Order No. DE 11346PAHspolycyclic aromatic hydrocarbons	CSL	Cleanup Screening Level
EcologyWashington State Department of EcologyEDB1,2 dibromoethaneEDC1,2 dichloroethaneEPAUnited States Environmental Protection AgencyGeoEngineersGeoEngineers, Inc.GPSglobal positioning systemHSAhollow-stem augerIPGIntegrated Planning Grantmg/kgmean lower low waterMLLWModel Toxics Control ActMTEAanograms per kilogramsng/kgnanograms per kilogramsOrderAgreed Order No. DE 11346PAHspolycyclic aromatic hydrocarbons	Cw	groundwater concentration protective of sediment
EDB1,2 dibromoethaneEDC1,2 dichloroethaneEDC1,2 dichloroethaneEPAUnited States Environmental Protection AgencyGeoEngineersGeoEngineers, Inc.GPSglobal positioning systemHSAhollow-stem augerIPGIntegrated Planning Grantmg/kgmilligrams per kilogramMLLWmean lower low waterMTCAModel Toxics Control ActMTBEnethyl tertiary-butyl etherng/kgnanograms per kilogramsOrderAgreed Order No. DE 11346PAHspolycyclic aromatic hydrocarbons	DNR	Washington Department of Natural Resources
EDC1,2 dichloroethaneEPAUnited States Environmental Protection AgencyGeoEngineersGeoEngineers, Inc.GPSglobal positioning systemHSAhollow-stem augerIPGIntegrated Planning Grantmg/kgmean lower low waterMTCAModel Toxics Control ActMTBEmethyl tertiary-butyl etherng/kgnanograms per kilogramsOrderAgreed Order No. DE 11346PAHspolycyclic aromatic hydrocarbons	Ecology	Washington State Department of Ecology
EPAUnited States Environmental Protection AgencyGeoEngineersGeoEngineers, Inc.GPSglobal positioning systemHSAhollow-stem augerIPGIntegrated Planning Grantmg/kgmilligrams per kilogramMLLWmean lower low waterMTCAModel Toxics Control ActMTBEmethyl tertiary-butyl etherng/kgnanograms per kilogramsOrderAgreed Order No. DE 11346PAHspolycyclic aromatic hydrocarbons	EDB	1,2 dibromoethane
GeoEngineersGeoEngineers, Inc.GPSglobal positioning systemHSAhollow-stem augerIPGIntegrated Planning Grantmg/kgmilligrams per kilogramMLLWmean lower low waterMTCAModel Toxics Control ActMTBEmethyl tertiary-butyl etherng/kgnanograms per kilogramsOrderAgreed Order No. DE 11346PAHspolycyclic aromatic hydrocarbons	EDC	1,2 dichloroethane
GPSglobal positioning systemHSAhollow-stem augerIPGIntegrated Planning Grantmg/kgmilligrams per kilogramMLLWmean lower low waterMTCAModel Toxics Control ActMTBEmethyl tertiary-butyl etherng/kgnanograms per kilogramsOrderAgreed Order No. DE 11346PAHspolycyclic aromatic hydrocarbons	EPA	United States Environmental Protection Agency
HSAhollow-stem augerIPGIntegrated Planning Grantmg/kgmilligrams per kilogramMLLWmean lower low waterMTCAModel Toxics Control ActMTBEmethyl tertiary-butyl etherng/kgnanograms per kilogramsOrderAgreed Order No. DE 11346PAHspolycyclic aromatic hydrocarbons	GeoEngineers	GeoEngineers, Inc.
IPGIntegrated Planning Grantmg/kgmilligrams per kilogramMLLWmean lower low waterMTCAModel Toxics Control ActMTBEmethyl tertiary-butyl etherng/kgnanograms per kilogramsOrderAgreed Order No. DE 11346PAHspolycyclic aromatic hydrocarbons	GPS	global positioning system
mg/kgmilligrams per kilogramMLLWmean lower low waterMTCAModel Toxics Control ActMTBEmethyl tertiary-butyl etherng/kgnanograms per kilogramsOrderAgreed Order No. DE 11346PAHspolycyclic aromatic hydrocarbons	HSA	hollow-stem auger
MLLWmean lower low waterMTCAModel Toxics Control ActMTBEmethyl tertiary-butyl etherng/kgnanograms per kilogramsOrderAgreed Order No. DE 11346PAHspolycyclic aromatic hydrocarbons	IPG	Integrated Planning Grant
MTCAModel Toxics Control ActMTBEmethyl tertiary-butyl etherng/kgnanograms per kilogramsOrderAgreed Order No. DE 11346PAHspolycyclic aromatic hydrocarbons	mg/kg	milligrams per kilogram
MTBEmethyl tertiary-butyl etherng/kgnanograms per kilogramsOrderAgreed Order No. DE 11346PAHspolycyclic aromatic hydrocarbons	MLLW	mean lower low water
ng/kg nanograms per kilograms Order Agreed Order No. DE 11346 PAHs polycyclic aromatic hydrocarbons	MTCA	Model Toxics Control Act
OrderAgreed Order No. DE 11346PAHspolycyclic aromatic hydrocarbons	MTBE	methyl tertiary-butyl ether
PAHs polycyclic aromatic hydrocarbons	ng/kg	nanograms per kilograms
	Order	Agreed Order No. DE 11346
Port Port of Anacortes	PAHs	polycyclic aromatic hydrocarbons
	Port	Port of Anacortes
ppm parts per million	ppm	parts per million

PQL	practical quantitation limit
PSEP	Puget Sound Estuary Program
QA/QC	quality assurance/quality control
RI/FS	remedial investigation/feasibility study
ROW	right-of-way
SAP	Sampling and Analysis Plan
SCO	Sediment Cleanup Objective
SCUM II	Sediment Cleanup User's Manual II
SIM	selective ion monitoring
Site	Quiet Cove
SMS	Sediment Management Standards
SVOCs	semi-volatile organic compounds
TEQ	toxicity equivalent (refers to concentration basis)
ТОС	total organic carbon
TS	total solids
TVS	total volatile solids
µg/L	micrograms per liter
µg/mg	micrograms per milligram
VOCs	volatile organic compounds
WAC	Washington Administrative Code

1.0 INTRODUCTION

This Data Report describes sampling and analysis activities completed as part of Remedial Investigation (RI) and Supplemental Remedial Investigation (Supplemental Investigation) for the Quiet Cove Cleanup Site (Site) located in Anacortes, Washington (Figure 1). The Site refers to the area within and surrounding the Quiet Cove property that is impacted by historical contamination released to the environment. The Site is currently listed in the Washington State Department of Ecology (Ecology) database of confirmed and suspected contaminated sites under Facility/Site Number 20859 and maintains Cleanup Site ID 12482.

The RI activities were performed by the Port of Anacortes (Port) in 2017 under an Agreed Order (AO) No. DE 11346 issued by the Ecology to evaluate the nature and extent of contamination in soil, groundwater and sediment. The Supplemental Investigation activities were completed in 2018 by the Port to fill data gaps in the initial investigation and further define the nature and extent of contamination in soil and groundwater. The Port has prepared this Data Report to present the data collected to date. The data presented in this report will be used as a basis for the interim cleanup action at the Site.

In accordance with the AO, the Port is also required to prepare an RI and Feasibility Study (RI/FS) Report per Washington Administrative Code (WAC) 173-340-350 and WAC 173-204-560 addressing contamination throughout the Site. The RI/FS Report will be prepared in the future, and the data contained in this document will be used as the basis for its preparation. The RI/FS Report will define the nature and extent of contamination, establish preliminary cleanup levels, present an evaluation of potential cleanup action alternatives for addressing identified contamination and identify a preferred cleanup action alternative.

2.0 BACKGROUND

Detailed information on Site background including location, physical description, use history, and summary of previous environmental investigations are presented in the Ecology-approved RI/FS Work Plan (GeoEngineers 2017). A brief summary is included below.

2.1. Site Description and Operational History

The Site is situated along the southeast shoreline of Guemes Channel at 202 O Avenue (at the intersection of 2nd Street and O Avenue) in Anacortes, Washington (Figure 1). The Site comprises three City of Anacortes (City) parcels – P55354, P55358, and P55359, totaling approximately 0.82 acres. Adjacent properties include a Port-owned storage yard (Parcel No. P55355) and a bulk fuel distribution facility owned and operated by Texaco/Reisner (Parcel No. P55357) to the west, Guemes Channel to the northwest and City streets including 2nd Street, O Avenue and 3rd Street to the north, east and south, respectively. The Site, surrounding areas and parcel boundaries are presented on Figure 2.

The Mean Higher High Water (MHHW) line of the Guemes Channel (shown on Figure 2) generally delineates the marine and upland areas of the Site. The Site is relatively flat and gently slopes to the northwest towards the Guemes Channel. The surfaces in the northern portions of the Site are generally at street level. The street level gradually climbs to the south and as a result the southern portion of the Site is approximately 5 to 6 feet below the adjacent street level. A retaining wall exists along the southern, and portions of the

eastern and western perimeters of the Site to support the the elevation transition. Site topography based on a recent survey (dated 2017/2018) completed by Sound Development Group (SDG) is shown on Figure 2. The Site and surrounding areas are generally covered with buildings, concrete, gravel or asphalt. Planting strips are located on the 2nd and 3rd Street, and O Avenue Rights-Of-Way (ROWs). Currently, a combined office/warehouse building measuring approximately 100 feet long by 45 feet wide and a second warehouse building measuring approximately 50 feet long by 35 feet wide are present in the northwest portion of the Site. A chain link fence surrounds the Site limiting general public access. Vehicle and pedestrian access to the Site is through a gated entrance south of 2nd Street. The utilities known to be present within or adjacent to the Site include power, water, sewer, storm drains, telephone and gas based on SDG's survey.

The Port purchased the property comprising parts of the Site in July 2013 for the purposes of redevelopment. The Site was historically used for bulk fuel storage and auto storage as early as 1925, and included five steel oil tanks, filling shed, oil warehouse, oil staging area, and an auto shed. These structures were removed at some point, but no documentation is available on when the removal occurred. Following decommissioning of the bulk fueling facility, the Site was used for storage of various marine and auto equipment. Currently the Port leases parts of the Site to companies working in the marine fishing industry, and it is primarily used as a storage yard.

2.2. Previous Environmental Investigations

The Port performed a Focused Site Investigation in 2014 as part of an Ecology's Integrated Planning Grant (IPG) to evaluate the presence of contamination in soil and groundwater at the Site. The Focused Site Investigation was completed under an Ecology-approved Work Plan. No other environmental studies are known to have been completed at the Site prior to this investigation. The results of investigation completed in 2014 are presented in the Ecology-approved Focused Environmental Site Investigation Data Report (GeoEngineers, 2014) and summarized in Ecology-approved RI/FS Work Plan (GeoEngineers 2017). Soil and groundwater sample locations completed in 2014 as part of this investigation are shown on Figure 3. Exploration logs describing materials encountered, field screening results and sample intervals for the Focused Site Investigation are provided in Attachment 1. The findings from this investigation were reviewed for technical quality relative to the quality assurance (QA) and quality control (QC) objectives presented in the Ecology-approved RI/FS Work Plan and are considered acceptable for use in the future RI Report.

3.0 SUMMARY OF REMEDIAL INVESTIGATION FIELD ACTIVITIES

The RI activities were completed in 2017 and primarily included the following:

- Topographic survey to document existing surface conditions and utilities at the Site.
- Sampling and analysis of fill and native soil to evaluate the stratigraphy and nature and extent of contamination.
- Sampling and analysis of groundwater to evaluate water quality parameters and nature and extent of contamination.
- Sampling and analysis of surface and subsurface sediment to evaluate the stratigraphy and nature and extent of contamination.

Tidal study and hydraulic conductivity testing to evaluate aquifer characteristics including groundwater gradient and flow direction, hydraulic connection between groundwater and adjacent marine surface water and groundwater flow velocities.

Further description of the field activities performed for the RI is presented in the following sections.

3.1. Topographic Survey, and Groundwater Seep and Curtis Wharf Visual Survey

A topographic survey completed in October 2017 by professional surveyors registered in the State of Washington at Sound Development Group (SDG) documented surface conditions and utilities at the Site and included the intertidal portions of the Site extending from the northern end of N Avenue to Curtis Wharf. A portable document format (PDF) file of the survey is presented in Attachment 2.

As requested by Ecology, a visual survey of the beach area for groundwater seeps was completed along the shoreline west of the Site. In August 2017, a visual survey was performed during low tide by GeoEngineers to investigate seeps at the apparent fill and native material contact. The results of the survey did not identify discrete seeps. The visual survey identified saturated zone of sediment at elevations between approximately 0 to 2 feet NAVD88 (elevation 0.66 to 2.66 feet mean lower low water [MLLW]) throughout the beach area, indicating a general groundwater flow towards the channel. No field evidence of contamination (e.g. petroleum sheen, staining or odor) was present. See Attachment 2 for photos collected as part of the shoreline seep visual survey.

A visual survey below Curtis Wharf was completed at low tide to confirm that any potential historical product supply lines located beneath the former pier structure were removed and capped at the bulkhead. No visual evidence of supply lines beneath the existing pier bulkhead were observed, and there was no field screening evidence of contamination (e.g. petroleum sheen, staining or odor) at the bulkhead. See Attachment 2 for visual survey photos of the bulkhead area.

3.2. Soil Investigation

Soil sampling and analysis was completed in September 2017 in general accordance with the Ecology-approved RI/FS Work Plan. Soil samples were collected using direct-push and hollow-stem auger drilling techniques. Soil boring locations for the RI are shown on Figure 3. Field data including boring coordinates, ground surface elevation, sample collection method, material descriptions encountered, field screening results and sampling intervals for the samples collected as part of the RI are presented on the boring logs provided in Attachment 1.

3.2.1. Direct-Push Borings

Direct-push (DP) borings GEI-29 through GEI-44 (16 in total) were completed in September 2017 by a Washington State licensed driller (Cascade Drilling, Inc.) using a truck mounted Geoprobe drill rig to depths ranging between 6 and 15 feet below ground surface (bgs). Continuous cores were obtained from the DP boring locations using a lined 3.5-inch-diameter and 5-foot-long sampler. The sampler was driven to this full length using a pneumatic hammer.

Soil from each core interval was visually classified in general accordance with ASTM International (ASTM) D-2488 (Standard Practice for Description and Identification of Soils [Visual Manual Procedure]) and screened in the field for the presence of contamination. In addition, the presence of wood or other debris by type and estimated quantity (i.e., observed percent by volume) were also recorded when encountered.

Field screening included visual observation of contamination (i.e., staining, discoloration, etc.), water sheen testing, and organic vapor monitoring using a photo-ionization detector (PID) as described in the Ecology-approved RI/FS Work Plan. Direct-push soil boring logs presenting this information are included in Attachment 1.

3.2.2. Hollow-Stem Auger Borings

Hollow-stem auger (HSA) borings MW-6 through MW-8 and MW-10 (5 in total) were completed in September 2017 by a Washington State licensed driller (Cascade Drilling, Inc.) using a truck mounted HSA drill rig to depths ranging between 13 and 15 feet bgs. The HSA borings were advanced for the collection of soil samples and installation of groundwater monitoring wells. Soil samples were obtained from the HSA borings using a 2.5-inch-diameter and 18-inch-long split-spoon sampler. The sampler was driven to its full length using a 140-pound hammer falling a vertical distance of approximately 30 inches. The number of blows needed to advance the sampler were recorded and are presented on the boring logs.

Soil from each sampler was visually classified and screened in the field as described in Section 3.2.1 above. HSA boring logs are presented in Attachment 1.

3.2.3. Soil Sample Collection and Analysis

After the soil samples were retrieved in cores/sampler, field personnel identified sample intervals to be collected for chemical analysis in accordance with the Ecology-approved RI/FS Work Plan. The samples for volatile organic compound (VOC) analysis were collected from the undisturbed core/sampler using Environmental Protection Agency (EPA) Method 5035A. The remainder of the soil sample interval was removed from the core/sampler for field screening and sample collection. A portion of the sample interval was used for field screening and the remaining portion was homogenized to a uniform color and texture in a stainless-steel bowl and placed into laboratory-supplied containers, lightly packed, and capped with a plastic lid.

In general, soil samples were collected from materials yielding field screening evidence of contamination and/or from materials representative of the different sampling horizons (fill, water table and native). The schedule of analysis for soil samples collected from each boring location for the Focused Environmental Investigation and the RI are identified in Table 1. Samples were submitted to an Ecology-certified laboratory – Analytical Resources Inc. (ARI) located in Tukwila, Washington. Selected samples were analyzed for a combination of the following constituents in accordance with the Ecology-approved RI/FS Work Plan:

- Metals (including arsenic, cadmium, chromium, copper, lead, mercury, silver and zinc) by EPA Method 6000/7000 series.
- Gasoline-range petroleum hydrocarbons by Ecology Method NWTPH-Gx.
- Diesel- and heavy oil-range petroleum hydrocarbons by Ecology Method NWTPH-Dx.
- BETX by EPA Method 8260.
- Fuel additives including EDB, EDC, MTBE and n-hexane by EPA Method 8260.
- PAHs by EPA Method 8270D/SIM.

3.3. Groundwater Investigation

Groundwater sampling and analysis was completed in general accordance with the Ecology-approved RI/FS Work Plan. Five wells MW-6 through MW-8, MW-10 and MW-11 were constructed and developed in September 2017 as part of the RI. The groundwater investigation included two rounds of groundwater sampling and analysis completed in October 2017 and March 2018 at 10 wells MW-1 through MW-8, MW-10 and MW-11. The groundwater well locations are shown on Figure 3.

3.3.1. Monitoring Well Construction and Development

Drilling and construction of the monitoring wells was completed by Cascade Drilling, Inc., a Washington State licensed driller, in general accordance with the Minimum Standards for Construction and Maintenance of Wells (WAC 173-160). Monitoring well borings were drilled using a truck mounted HSA drill rig. Installation of the monitoring wells was observed by a GeoEngineers representative, who maintained a detailed log of the well construction.

Wells were constructed using a 2-inch-diameter, flush-threaded, Schedule 40 polyvinyl chloride (PVC) casing with a machine-slotted PVC screen (0.010-inch). The top of the well screen was positioned approximately 5 feet above the observed groundwater level at the time of drilling, or approximately 3 feet bgs, whichever was deeper. Well screened intervals ranging from 5 to 10 feet in length were positioned across the water table.

Following placement of the well screen and casing in the borehole, a filter pack was installed around the well screen from the bottom to approximately 1 to 2 feet above the top of the well screen. An approximately 1-foot thick bentonite annular seal was placed above the filter pack. Each well was completed with a an approximately 1 to 2-feet thick concrete seal that contains a flush-mount monument. Field data including sample coordinates and monitoring well construction details are presented in the exploration logs in Attachment 1.

The monitoring wells were developed in September 2017. For the well development, a decontaminated slug rod was used to create a surging effect and reduce fine sediment from caking around the installed screened intervals. The surge block was decontaminated prior to use at each well in accordance with the Ecology-approved RI/FS Work Plan. Then a low flow peristaltic pump purged a minimum of 3 well volumes of groundwater until low turbidity water was measured <25 NTU (nephelometric turbidity units). Purged water was placed in 55-gallon drums and stored at the Site.

Upon completion, a licensed surveyor (Sound Development Group) surveyed the location of each monitoring well and recorded the ground surface elevation of the well monument rim as well as top of casing elevation to the nearest 0.01 foot referencing the northern portion of the rim and casing. The survey completed by SDG is presented in Attachment 2.

3.3.2. Groundwater Sampling and Analysis

Groundwater samples from monitoring wells MW-1 through MW-8, MW-10 and MW-11 were collected for analysis and submitted to ARI located in Tukwila, Washington during two rounds of sampling (October-November 2017 and March 2018). Groundwater samples were analyzed for a combination of the following chemical constituents in accordance with the Ecology-approved RI/FS Work Plan:

- Total and dissolved metals (including arsenic, cadmium, chromium, copper, lead, mercury, silver and zinc) by EPA Method 200.8 and 6000/7000 series.
- Gasoline-range petroleum hydrocarbons by Ecology Method NWTPH-Gx.
- Diesel- and heavy oil-range petroleum hydrocarbons by Ecology Method NWTPH-Dx.
- BETX by EPA Method 8260.
- Fuel additives including EDB, EDC, MTBE and n-hexane by EPA Method 8260.
- cPAHs by EPA Method 8270D/SIM.

The schedule of analysis for groundwater samples collected as part of the RI is summarized in Table 2. In accordance with the Ecology-approved RI/FS Work Plan, groundwater samples were obtained using low-flow/low-turbidity sampling techniques to minimize the suspension of sediment in the samples. Prior to sample collection, each well was purged using a peristaltic pump and disposable polyethylene tubing at a rate not to exceed draw down in the well by more than five percent or 500 millimeters per minute. A YSI Pro series water quality meter with a flow-through cell was used to monitor water quality parameters during purging including electrical conductivity, dissolved oxygen, pH, salinity, total dissolved solids, oxidation-reduction potential and temperature. A Hach turbidimeter was used to measure turbidity. Samples were collected from the wells after water quality parameters stabilized and varied by less than 10 percent on three consecutive measurements. Samples collected for dissolved metals analyses were filtered in the field using a disposable inline 0.45-micron filter. Samples were collected directly into laboratory provided containers in accordance with the Ecology-approved RI/FS Work Plan.

3.4. Sediment Investigation

In accordance with the Ecology-approved RI/FS Work Plan, a sediment investigation was completed in a tiered approach. Tier 1 included collection of sediment samples in conjunction with upland area soil sampling field activities. Following the analytical results of the Tier 1 sediment samples, Tier 2 sediment sampling and analysis was completed in coordination with Ecology to further investigate the nature and extent of contamination in sediment. The following sections describe both the Tier 1 and 2 sediment sampling and analysis activities:

3.4.1. Tier 1 Sediment Sampling and Analysis

The objective of the Tier 1 sediment sampling was to determine if contaminated sediment exists adjacent to the Site. If the Tier 1 sampling identified contaminated sediment, then additional characterization would be completed under a Tier 2 sediment investigation.

Tier 1 sediment sampling was completed by Cascade Drilling on September 15, 2017 using a restricted access direct push drilling rig during low tide conditions. Three sample locations SED-1A, -1B and -1C positioned in the intertidal area of the Site (Figure 3) were attempted to collect surface and subsurface samples. A surface composite grab sample was collected from SED-1A, SED-1B and SED-1C by GeoEngineers field personnel from 0 to 10 centimeters (cm) in depth. The surface composite grab sample was collected with a decontaminated stainless-steel spoon and homogenized in a decontaminated stainless-steel bowl prior to collection in laboratory provided containers.

Discrete subsurface samples were planned to be collected at the three locations (SED-1A through -1C) to depths approximately 8 to 12 feet below mudline (bml). However, refusal was encountered upon multiple

attempts at SED-1A at approximately 1 to 2 feet bml due to rock and concrete and therefore, the location was abandoned and a sediment core was not completed. Sediment cores were completed at locations SED-1B and SED-1C to depths of 9 and 12 feet bml, respectively. Due to the loose nature of coarse sand and saturation of the sediment, the recovery from these core locations below approximately 5 to 6 feet bml was poor and not enough to provide the required sediment volume for the proposed sediment laboratory analyses. Ecology project managers were at the Site during the sampling and decided that subsurface sediment material from the cores in SED-1B and -1C be composited to provide sufficient sample volume for analysis. GeoEngineers and Ecology examined the sediment cores and decided to collect a total of two composite samples by combining two core intervals from SED-1B and SED-1C. These intervals were selected based on similar lithology and depths. First composite sample was collected by combining interval ranging from 4 to 6 feet bml from both locations. The decisions for compositing these subsurface intervals was completed in the field in collaboration with Ecology personnel. Subsurface sediment samples were collected consistent with the Ecology-approved RI/FS Work Plan and as described in the soil sampling Section 3.2.3 above.

Tier 1 sediment samples were submitted for analysis to ARI located in Tukwila, Washington. Sediment samples were analyzed for a combination of the following Sediment Management Standards (SMS) constituents in accordance with the Ecology-approved RI/FS Work Plan:

- Conventional parameters including total organic carbon (TOC), total volatile solids (TSS), total solids (TS), sulfide and ammonia.
- Grain size by PSEP 1986 or ASTM International (ASTM)-Mod.
- Metals (including arsenic, cadmium, chromium, copper, lead, mercury, silver and zinc by EPA Method 200.8 and 6000/7000 series.
- Gasoline-range petroleum hydrocarbons by Ecology Method NWTPH-Gx.
- Diesel- and heavy oil-range petroleum hydrocarbons by Ecology Method NWTPH-Dx.
- BETX by EPA Method 8260.
- Fuel additives including EDB, EDC, MTBE and n-hexane by EPA Method 8260.
- SMS PAHs and semi-volatile organic hydrocarbons (SVOCs) by EPA Method 8270-SIM.

The schedule of analysis for Tier 1 sediment samples collected is summarized in Table 3. Exploration logs for the sediment cores are included in Attachment 1.

3.4.2. Tier 2 Sediment Sampling and Analysis

In accordance with the Ecology-approved RI/FS Work Plan, Tier 2 sediment sampling and analysis was triggered based on the analytical results of the Tier 1 samples. The Port and GeoEngineers developed a Quiet Cove RI Tier 2 Sampling Memorandum (GeoEngineers, 2018) to present Tier 2 sediment sampling and analysis plan utilizing the upland and Tier 1 sediment analytical results. The Quiet Cove RI Tier 2 Sampling Letter was approved by Ecology in April 2018 and is included as Attachment 3.

Tier 2 sediment sampling was completed in July 2018 with oversight by Ecology. Sediment samples were collected using both land-based and boat-mounted equipment. Land-based equipment used for sediment

sampling included hand tools and rotary hammer driven core tubes. Boat-mounted equipment included power-grab and vibracore owned and operated by Gravity Environmental (Gravity). GeoEngineers personnel collected surface samples on the upper beach using hand tools and sampling using power grab, vibracore and rotary hammer methods was performed by Gravity with overisight by GeoEngineers.

Five surface sediment samples SED-5 through SED-9 were collected from 0 to 10 cm bml via beach access at low tides using stainless-steel hand trowels and placed in a stainless-steel bowl for field screening and homogenization. Four surface sediment samples SED-2 through SED-4 and SED-10 were collected from 0 to 10 cm bml by a power-grab sampler deployed from Gravity's sampling boat at higher tides These samples were also field screened and homogenized in stainless-steel bowls on the research vessel. Surface sediment samples were placed in laboratory provided jars required for analysis.

Tier 2 sediment core locations in the portions of the upper beach were not possible for the research vessel to attempt using vibracore methods due to tidal conditions. Per the contingency plan in the Quiet Cove RI Tier 2 Sampling Memorandum these cores were attempted using land-based equipment. Three subsurface core locations in the upper beach (SED-6, SED-7 and SED-9) were completed using a portable electric rotary hammer to drive a 3.5-inch-diameter Lexan core tube to depths up to 5-feet bml. The success of this coring method was variable because refusal was encountered due to debris including asphalt and concrete in portions of the beach. Upon completion of the core, the Lexan core tube was cut open, and material was field screened. Sample intervals were then selected according to the sampling plan. Samples were collected for analysis consistent with procedures in the Ecology-approved RI/FS Work Plan and described in Section 3.2.3 above. The rotary hammer sampling method in these locations did not achieve full depth to reach the native horizon for cores as proposed in the Quiet Cove RI Tier 2 Sampling Memorandum.

Six sediment core locations at lower elevations (SED-2 through SED-5, SED-8 and SED-10) were completed during high tides using vibracore methods from Gravity's research vessel during higher tidal conditions. Vibracoring was completed by using 5-inch-diameter Lexan core tube lined with a polyethlene bag. Core tubes up to 10-feet in length were equipped with a sediment catcher on the bottom to minimize sediment loss when the core was removed through the water column. The core tube was positioned on the sampling location utilizing Gravity's integrated GPS software on the research vessel and recorded by a GeoEngineers representative. Once retrieved, the core tube was transferred to an upland sample processing station for field screening and logging the sediment core. Processing the cores included first removing the polyethylene liner to view, log and field screen the core; then sample interval selection; and lastly collection of samples for analysis and archive consistent with the Ecology-approved RI/FS Work Plan and as described in Section 3.2.3 above.

Tier 2 sediment samples were submitted to ARI located in Tukwila, Washington. Sediment samples were analyzed for a combination of the following constituents in accordance with the Ecology-approved RI/FS Work Plan:

- Conventional parameters including total organic carbon (TOC), total volatile solids (TSS), total solids (TS), sulfide and ammonia.
- Grain size by PSEP 1986 or ASTM International (ASTM)-Mod.
- Metals (including arsenic, cadmium, chromium, copper, lead, mercury, silver and zinc by EPA Method 200.8 and 6000/7000 series.

- Gasoline-range petroleum hydrocarbons by Ecology Method NWTPH-Gx.
- Diesel- and heavy oil-range petroleum hydrocarbons by Ecology Method NWTPH-Dx.
- BETX by EPA Method 8260.
- Fuel additives including EDB, EDC, MTBE and n-hexane by EPA Method 8260.
- SMS PAHs and semi-volatile organic hydrocarbons (SVOCs) by EPA Method 8270-SIM.

Following review of Tier 2 sediment sample analytical results, additional archive samples from locations SED-2 through SED-4 were submitted for analysis. These additional analyses were completed in coordination with Ecology via email exchanges in October and November 2018 with Ecology providing concurrence on the archive analysis on November 2, 2018. The schedule of analysis for Tier 2 sediment samples collected is summarized in Table 3. Exploration logs for the sediment cores are included in Attachment 1.

3.5. Hydrogeological Investigation

Hydrogeological investigation was completed in accordance with the Ecology-approved RI/FS Work Plan and included completion of a tidal study and hydraulic conductivity testing at selected monitoring well locations (Figure 4). The following sections summarize field activities completed as part of hydrogeological investigation. A more detailed description of the procedures and results of the hydrogeological investigation are provided in Attachment 4.

3.5.1. Tidal Study and Groundwater Flow

A 72-hour tidal study was completed between 8:00 am on November 7 and 8:00 am on November 9, 2017 using a subset of the Site monitoring wells to evaluate the influence of tidal variations in the level of surface water in Puget Sound/Guemes Channel on groundwater levels. Monitoring well locations adjacent to the shoreline including MW-1, MW-2, MW-3, and MW-8 and wells located at varying distances from the shoreline including MW-4, MW-5, MW-6, MW-7, MW-10, and MW-11 were selected to evaluate influence of tidal action on groundwater. The locations that were monitored as part of the tidal study are shown on Figure 4.

The tidal study recorded groundwater/potentiometric level response to tidal fluctuations using electronic water-level sensors consisting of a pressure transducer and automated datalogger temporarily installed in monitoring wells. Additionally, an electronic water-level sensor was installed in Guemes Channel to directly monitor and record the surface water level for comparison to water levels recorded in monitoring wells. The water-level sensors were removed from the monitoring locations and Guemes Channel after completion of data collection and the data was downloaded for analysis.

The data generated as part of the tidal study was analyzed using the Serfes (1991) method to identify the mean groundwater elevations and flow direction during the 72-hour tidal study, and the Ferris (1951) method to evaluate hydraulic parameters of the aquifer at the Site. The results from the tidal study are presented in Attachment 4.

Data from the 72-hour tidal study performed at monitoring well locations MW-1 through MW-8, MW-10, and MW-11 (Figure 4) in November 2017 was utilized to characterize groundwater flow characteristics and gradients at the Site. Water level elevation data was collected every 15 minutes in each monitoring well

using electronic data loggers and well transducers. Electronic data measurements were confirmed by periodically obtaining manual water level measurements during the study.

3.5.2. Hydraulic Conductivity Testing

Slug testing was performed on selected monitoring locations at the Site on November 16, 2017. The purpose of the slug testing was to use the data, in combination with data gathered during the tidal study, to estimate hydraulic conductivity (K) within the aquifer in the vicinity of the test locations. Slug testing was performed at six locations (MW-2, MW-3, MW-4, MW-6, MW-7 and MW-11) as shown in Figure 4. Procedures for performing the slug tests and results are presented in Attachment 4.

3.6. Disposal of Investigation Derived Waste

Soil cuttings (unused soil from the explorations) from explorations completed during the RI, purge water generated during well development and groundwater sampling activities, and wash water used to decontaminate the reusable sampling equipment was placed in separate labeled and sealed 55-gallon drums pending permitted disposal. Disposable sampling equipment including gloves, sample liners, paper towels, foil, and plastic bags were disposed of as solid waste.

Upon completion of the soil and groundwater investigation, soil cuttings, purge water and decontamination water stored in drums were transferred from the property by Waste Management (WM) for permitted disposal on March 7, 2018. Six (6) 55-gallon drums of water and four (4) 55-gallon drums of soil cuttings were disposed of. See Attachment 5 for Waste Disposal records.

3.7. Quality Assurance and Quality Control

The scope of the RI field investigation and associated QA/QC procedures were defined in the Ecology-approved RI/FS Work Plan. This section includes discussion of laboratory sample handling, laboratory data quality and deviations from the Ecology-approved RI/FS Work Plan for the field activities performed.

3.7.1. Sample Handling and Shipment

Soil, groundwater and sediment samples collected during the investigation were transported to ARI, using chain-of-custody procedures described in the Ecology-approved RI/FS Work Plan. Samples were placed in laboratory-prepared containers and stored in coolers with ice following collection and during transport to the testing laboratory. Sampling and handling procedures were completed in accordance with the Ecology-approved RI/FS Work Plan.

3.7.2. Laboratory Data Quality

Laboratory data from conventional and chemical analyses underwent data quality review and validation. The laboratory data was identified to be of adequate quality for the intended use. Laboratory reports are provided in Attachment 6 and Data Validation Reports are provided in Attachment 7.

3.7.3. Deviations from the Ecology-approved RI/FS Work Plan

The following are deviations from the Ecology-approved RI/FS Work Plan:

- Drilling and soil sampling at location GEI-45 was not completed after multiple attempts because direct push explorations encountered refusal at approximately 2 feet bgs due to buried concrete debris in the subsurface.
- Installation of monitoring well MW-9 could not be completed because subsurface concrete and debris was encountered approximately 2 feet bgs at the proposed location. Multiple attempts in the vicinity of proposed MW-9 were performed without success. It is assumed that this location is underlain by a thick concrete layer adjacent to the Curtis Wharf facility. Equipment was not available on Site to core through the concrete. Ecology was on Site during the field work and concurred that this well could not be constructed as planned.
- Two monitoring wells MW-6 and MW-10 were moved from their planned location. Monitoring well MW-6 was moved approximately 20 feet to the east due to existing overhead power lines. Monitoring well MW-10 was moved approximately 25 feet to the north inside the property boundary due to conflicts with overhead utilities. Ecology was in the field during monitoring well installation activities and was in agreement with the change in location for these two wells.
- Tier 1 sediment sampling was modified in the field in collaboration with Ecology as discussed in detail in Section 3.4.1 above.
- Tier 2 sediment sampling as detailed in the Ecology-approved RI/FS Work Plan was modified as documented in Quiet Cove RI Tier 2 Sampling Memorandum that was reviewed and approved by Ecology prior to sample collection. Tier 2 Sampling was completed in accordance with the Tier 2 Sampling
- Tier 2 sediment sample locations in the upper areas of the beach (SED-5 through SED-9) were not completed to proposed depths due to refusal from subsurface rock, concrete and/or debris as described in Section 3.4.2 above. The equipment and methods available during the field activities were not sufficient to reach the proposed depths.

4.0 SUMMARY OF SUPPLEMENTAL REMEDIAL INVESTIGATION FIELD ACTIVITIES

Upon completion of the RI field activities the Port requested to complete a Supplemental Remedial Investigation (Supplemental Investigation) in the upland portion of the Site to fill identified data gaps in the Site soil and groundwater characterizatons. The RI primarily focused on defining the extent and limits of contamination, but additional information was needed for defining the nature of contaminated soil and groundwater in the most contaminated area of the Site. The Port and GeoEngineers developed a Work Plan Addendum (Work Plan Addendum; GeoEngineers 2018; Attachment 8), which presented a detailed plan for Supplemental Investigation. The Work Plan Addendum was developed in coordination with Ecology and was approved by Ecology on October 4, 2018. The Supplemental Investigation included soil borings, construction of a new monitoring well, installation of pre-pack well points, and soil and groundwater sampling and analysis. The following sections provide documentation of the Supplemental Investigation

4.1. Supplemental Investigation Soil Investigation

Soil borings were completed to further define the nature and extent of contaminated soil at the Site by sampling shallow fill, contaminated fill, water table and native soil horizons. Drilling activities were completed by Cascade Drilling, Inc. on October 17 and 18, 2018. Soil borings SD-1 through SD-10 and

MW-12 were completed to depths of 10 to 20 feet bgs using direct-push drilling methods. The objective for the supplemental soil sample collection was to collect and analyze samples at up to four (4) intervals in each core including: near surface fill, vadose zone fill with highest PID reading, water table fill and, native material. Boring locations are presented in Figure 3. Soil cores were logged and sample intervals approximately 1 to 2 ft in length were identified and collected for analysis in accordance with the Ecology-approved Work Plan Addendum using procedures consistent with the RI soil sampling activities as described in Section 3.2.3. The sample intervals collected were consistent with the intent of the Ecology-approved Work Plan Addendum. In some soil cores (SD-3, SD-4 and SD-5) the highest PID reading interval corresponded with the water table interval, and therefore only three (3) samples were collected at those boring locations.

Attachment 1 presents the boring logs and identifies the sample intervals collected. Table 4 presents samples collected from each soil boring location and the schedule of analysis.

Supplemental Investigation soil samples were submitted to ARI located in Tukwila, Washington for analysis and archival. Soil samples were analyzed for a combination of the following constituents in accordance with the Work Plan Addendum:

- Metals (arsenic, cadmium, chromium, lead and mercury) by EPA 6000/7000;
- Gasoline-range total petroleum hydrocarbons (TPH) by NWTPH-Gx;
- Heavy oil- and diesel-range TPH by NWTPH-Dx;
- BETX by EPA 8260;
- Fuel additives including EDB, EDC, MTBE and n-hexane by EPA Method 8260;
- Carcinogenic polycyclic aromatic hydrocarbons (cPAHs) by EPA 8270-SIM; and/or
- Naphthalenes by EPA 8270-SIM.

4.2. Supplemental Investigation Groundwater Monitoring

The Supplemental Investigation groundwater monitoring was completed in October and November 2018 in general accordance with the Ecology-approved Work Plan Addendum and included monitoring well construction and development, pre-pack well installation, water/product level measurement and groundwater sampling and analysis. The following sections present details on the groundwater field activities for the Supplemental Investigation.

4.2.1. Monitoring Well Construction and Development

Monitoring well MW-12 was drilled and constructed on October 18, 2018 in accordance with the Ecology-approved Work Plan Addendum. Drilling and construction of the monitoring wells was conducted by a Washington State licensed driller from Cascade Drilling, Inc. in general accordance with the Minimum Standards for Construction and Maintenance of Wells (WAC 173-160). Monitoring well MW-12 was drilled using a truck mounted HSA drill rig. Installation of the monitoring wells was observed by a GeoEngineers representative, who maintained a detailed log of the well construction.

MW-12 was constructed using a 2-inch-diameter, flush-threaded, Schedule 40 polyvinyl chloride (PVC) casing with a machine-slotted PVC screen (0.010-inch). The top of the well screen was positioned

approximately 3 feet above the observed groundwater level at the time of drilling. The well screen interval is 10 feet in length positioned across the water table. The well construction log is included in Attachment 1.

The monitoring well was developed on October 18, 2018. First a slug rod was used to create a surging effect and reduce fine sediment from caking around the installed screened intervals. The surge block was decontaminated prior to use at each well in accordance with the Ecology-approved RI/FS Work Plan. Then a low flow peristaltic pump purged a minimum of 3 well volumes of groundwater until low turbidity water was measured <25 NTU (nephelometric turbidity units). Purged water was deposited into 55-gallon drums that were stored at the Site.

4.2.2. Pre-Pack Well Installation

Pre-pack wells were installed at soil boring locations SD-2 and SD-8 (see Figure 3) to facilitate groundwater and/or product level measurements at these locations as further described in Section 4.2.4. These 2-inch-diameter monitoring well points were installed by Washington State licensed driller from Cascade Drilling, Inc. The pre-pack wells were installed for the purposes of measuring water and product levels and they were not developed. The pre-pack wells remain installed at the Site and may be used for future groundwater level measurements.

4.2.3. Survey

Upon completion of Supplemental Investigation field activities, a Washington State licensed surveyor (Sound Development Group) surveyed the location of each soil boring location, monitoring well and temporary pre-pack well along with the ground surface elevation of the well monument rim and the top of casing elevation to the nearest 0.01 foot referencing the northern portion of the rim and casing for monitoring wells and pre-pack wells. A copy of the survey completed by Sound Development Group is presented in Attachment 2.

4.2.4. Water and Product Level Measurements

Groundwater and product level measurements were collected on November 9, 2018 at the eleven (11) wells (MW-1 through MW-8 and MW-10 through MW-12, note that MW-9 was not completed) and the two (2) pre-pack wells that were installed at soil sample locations SD-2 and SD-8. The groundwater and product level measurements are presented in Table 5. Measurable product of 1.46 feet thick was detected in MW-11 and a minimal amount of product, 0.01 feet, was measured in MW-1.

4.2.5. Groundwater Sample Collection and Processing

Groundwater monitoring was completed at the 10 existing wells (MW-1 through MW-8, MW-10 and MW-11, note that MW-9 does not exist) and new well MW-12 on October 29 through October 31, 2018. Samples were collected consistent with the Ecology-approved Work Plan Addendum.

Supplemental Investigation groundwater samples were submitted to ARI for analysis and archive. Samples were analyzed for a combination of the following chemical constituents in accordance with the Ecology-approved Work Plan Addendum:

- Gasoline-range TPH by NWTPH-Gx.
- Heavy oil- and diesel-range TPH by NWTPH-Dx (no silica gel cleanup).
- Duplicate heavy oil- and diesel-range TPH by NWTPH-Dx with silica gel cleanup procedures.

- BETX by EPA 8260.
- Total alkalinity by SM 2420 B-97.
- Ferrous iron by SM 3500-Fe B-97.
- Nitrate and sulfate by EPA 300.0.
- Dissolved manganese by EPA 6020A.
- Dissolved methane by EPA RSK-175.

The schedule of analysis for groundwater samples collected as part of the Supplemental Investigation is presented in Table 6. In accordance with the Ecology-approved Work Plan Addendum, groundwater samples were obtained using low-flow/low-turbidity sampling techniques, as described in Section 3.3.2 above, and water quality parameters were monitored during purging including electrical conductivity, dissolved oxygen, pH, salinity, total dissolved solids, oxidation-reduction potential and temperature. A turbidimeter was used to measure turbidity. Samples were collected from the wells after water quality parameters stabilized and varied by less than 10 percent on three consecutive measurements.

The Ecology-approved Work Plan Addendum proposed up to three groundwater sampling events. One groundwater sampling event has been completed as of October 2018.

4.3. Disposal of Investigation Derived Waste

Soil cuttings (unused soil from the explorations) from explorations completed during the Supplemental Investigation, purge water generated during well development and groundwater sampling activities, and wash water used to decontaminate reusable sampling equipment were placed in separate labeled and sealed 55-gallon drums pending permitted disposal. Disposable sampling equipment including gloves, sample liners, paper towels, foil, and plastic bags were disposed of as solid waste.

Upon completion of the soil and groundwater investigation, soil cuttings, purge water and decontamination water stored in drums were transferred from the property by Waste Management (WM) for permitted disposal on January 24, 2019. Three (3) drums of soil cuttings and four (4) drums of water were disposed of. Note that the water drums for development and purge water from the Supplemental Investigation were combined with existing groundwater purge drums from the RI field work and disposed. See Attachment 5 for Waste Disposal records.

4.4. Quality Assurance and Quality Control

The scope of the RI field investigation and associated Quality Assurance and Quality Control (QA/QC) procedures were defined in the Work Plan Addendum and Ecology-approved RI/FS Work Plan. This section includes discussion of laboratory sample handling, laboratory data quality and deviations from the Ecology-approved Work Plan Addendum for the field activities performed.

4.4.1. Sample Handling and Shipment

Soil and groundwater samples collected during the investigation were transported to ARI, using chain-of-custody procedures described in the Ecology-approved Work Plan Addendum. Samples were placed in laboratory-prepared containers and stored in coolers with ice following collection and during transport to the testing laboratory. Sampling and handling procedures were completed in accordance with the Ecology-approved Work Plan Addendum.

4.4.2. Laboratory Data Quality

Laboratory data from conventional and chemical analyses underwent data quality review and validation. The laboratory data was identified to be of adequate quality for the intended use. Laboratory reports are provided in Attachment 6 and Data Validation Reports are provided in Attachment 7.

4.4.3. Deviations from the Work Plan Addendum

The following are deviations from the Ecology-approved Work Plan Addendum:

- Boring location SD-3 was relocated approximately 25 feet to the southwest
- Boring location SD-9 was moved approximately 15 feet to the east due to heavy equipment storage.
- Boring location SD-4 was relocated approximately 10 feet to the north to allow space for the drill rig adjacent to the buildings.
- Soil boring and monitoring well location MW-12 was relocated approximately 5 feet south to avoid being installed in the 2nd Street right-of-way.

5.0 SUMMARY OF RESULTS

This section presents the results of the RI and Supplemental Investigation activities. As discussed in Section 1.0, evaluation of these results and nature and extent of contamination at the Site will be completed as part of the RI/FS Report, which will be prepared at a later date.

5.1. Soil Stratigraphy

The general stratigraphy at the Site presented is based on observations of material encountered in soil exploration completed as part of the RI, Supplemental Investigation and previous investigations. The stratigraphy at the Site generally consists of fill soil deposits overlying native as described below:

- Historical Fill Deposits: The Site was originally developed in the early 1900s and this included both in the upland portion of the Site to build the bulk fuel storage and distribution facility and in the marine area to build dock(s). This fill material is generally comprised of layers of sand, silty sand and silt with variable gravel content at the depths ranging from about 4 to 17 bgs. In the southern part of the Site the fill material is shallow relative to the ground surface (approximately 4 to 6 feet bgs) because the Site is cut into the slope and the south and east property boundaries have retaining walls. Contained in the historical fill deposits are occasional debris including concrete asphalt, brick and wood fragments. Along the shoreline and beach more debris was encountered at shallower depths potentially related to the dock(s) and the adjacent Curtis Wharf.
- Native Deposits: Native material underlying the fill deposits at the Site include beach sands overlying glacial deposits. The beach sand deposits are typically poorly sorted and loose in nature and vary in thickness from 2 to 6 feet. Glacial deposits consist of a medium dense glaciomarine drift with varying amounts of silt, sand, and gravel. A layer of dark brown organic soil is present below the fill layer in north and northern portion of the Site. The organic layer varies in thickness from several inches to 2 feet.

5.2. Hydrogeologic Conditions

Hydrogeologic conditions including tidal influence, groundwater flow direction and gradients, hydraulic conductivity and groundwater velocities at the Site were estimated based on the results of tidal and hydraulic conductivity studies completed for the RI as described in Section 3.5. Attachment 4 presents the detailed procedures and results from the Hydrogeologic Investigation.

5.2.1. Tidal Study

Figure 4 shows the monitoring wells that were used for the tidal study. In general the tidal study indicated a relatively low degree of tidal influence on the monitoring wells at the Site. The three monitoring wells observed to be the most tidal influence during the 72-hour tidal study are MW-6, MW-7 and MW-10. The remaining monitoring wells used, including monitoring wells MW-1, MW-2, and MW-3 indicated less tidal influence. Further detail on the tidal study results are presented in Hydrogeologic Investigation (Attachment 4).

5.2.2. Hydraulic Conductivity

As stated in Section 5.2.1 the timing and degree of tidal influence observed in the monitoring wells was not proportional to distance from shoreline and the diffusivity could not be calculated, therefore the results of slug testing were used instead to estimate hydraulic parameters for the aquifer

The hydraulic conductivity for the aquifer was estimated using the results of slug testing in six monitoring wells (MW-2, MW-3, MW-4, MW-6, MW-7, and MW-11) as shown on Figure 4. Diffusivity could not be used to estimate the hydraulic parameters due to the unproportional timing and degree of the observed tidal influence. Based on the slug test results, hydraulic conductivity for the aquifer ranges between 0.02 and 4.11 feet/day with a mean value of 1.25 feet/day. Attachment 4 has additional details on how the hydraulic conductivity was calculated.

5.2.3. Groundwater Flow Direction and Gradient

The groundwater flow direction and gradient during the tidal study was determined using the mean groundwater elevations. The mean groundwater flow direction based on the results of the tidal study is generally to the north and northwest toward Guemes Channel (see Figure 5). Mean hydraulic gradient was calculated using two monitoring well pairs (MW-10/MW-2 and MW-5/MW-4). In the western portion of the Site, the calculated hydraulic gradient is 0.013 feet per foot (ft/ft) between monitoring wells MW-10 and MW-2. In the eastern portion of the Site, the calculated hydraulic gradient is 0.023 ft/ft between monitoring wells MW-5 and MW-5 and MW-5.

5.2.4. Groundwater Velocity

The average linear groundwater velocity between monitoring wells MW-10 and MW-2 is 0.07 feet per day (ft/day) with a flow direction to the northwest. The average linear groundwater velocity between monitoring locations MW-5 and MW-4 is 0.09 ft/day with a groundwater flow direction toward the north, as shown in Figure 5.

5.3. Chemical Analytical Results

This section presents soil, groundwater and sediment chemical analytical results from the RI and Supplemental Investigation. Additionally, soil chemical analytical results from Focused Site Investigation of

2014 are also incorporated to help in evaluation of the nature and extent of contamination. The results were screened against the preliminary screening levels presented in the Ecology-approved RI/FS Work Plan to identify exceedances. The results have also been uploaded to Ecology's Environmental Information Management (EIM) database in accordance with the AO.

5.3.1. Soil

The chemical analytical results for soil samples analyzed as part of the Focused Site Investigation, RI and Supplemental Investigation are presented in Table 7. The results are screened, and preliminary screening level exceedances are identified on this table. Figures 6 through 10 summarize results for TPH, VOCs, cPAHs TEQ, PAHs and metals, respectively. For the purposes of summarizing the data on these figures, soil samples collected from each boring are categorized into three sampling horizons – fill, water table and native. Figures 6 through 10 summarize exceedances observed in the sampled horizons at each boring location. The following chemicals exceeded preliminary screening levels in soil:

- Total Petroleum Hydrocarbons (TPH) including gasoline-, diesel- and heavy oil-range;
- Volatile Organic Compounds (VOCs) including benzene, ethylbenzene, toluene and xylenes (BETX) and n-Hexane;
- Carcinogenic Polycyclic Aromatic Hydrocarbons (cPAHs) Toxicity Equivalent Quotient (TEQ);
- Various individual PAH analytes; and
- Metals including cadmium, chromium, lead and mercury.

The analytical results provide evidence of petroleum related contaminants in soil (TPH and fuel related VOCs presented in Figures 6 and 7) are located in the northern half of the Site in the vicinity of the former bulk fuel facility operations and extend north into 2nd Street and west towards the beach area. Elevated concentrations of metals and PAHs were primarily identified within the fill deposits with some isolated deeper contamination (up to approximately 8 to 12 feet bgs) found in the underlying native sand deposits (e.g., GEI-30 and GEI-39).

Fuel-related VOCs are located primarily within the historical fuel operation facility and are comingled with elevated TPH in soil. The depth of petroleum contamination ranges from approximately 4 to 12 feet bgs within the fill formation in both vadose and saturated soil. Petroleum-related contamination is bounded to the east by O Avenue and to the north by sample locations were exceedances were not detected. The extent of contamination to the south is defined by soil sample results were exceedances were not detected. There is uncertainty of the soil quality below the existing buildings in the southwest portion of the former bulk fuel operation area. To the west the data does not provide clear evidence on whether GEI-39 (at the top of the beach slope) is an isolated soil occurrence or contiguous with the upland source area.

Soil analytical results also indicate evidence of isolated areas of PAH and metals contamination in the northern part of the Site (presented in Figures 8 through 10). These results indicate that metals and PAHs contamination in soil is in isolated areas. In general metals and PAHs have a higher frequency of exceendace to the west part of the Site, closer to the shoreline area.

The laboratory data reports for the RI and Supplemental Investigation are presented in Attachment 6. The laboratory data reports for Focused Site Investigations were presented in Focused Environmental Site Investigation Data Report (GeoEngineers, 2014). EPA-defined Stage 2B data validation (EPA Document

540-R-08-005; USEPA 2009) was performed on laboratory data and the data was identified to be of adequate quality for the intended use. The results of the data quality review are presented in Validation Reports provided in Attachment 7.

5.3.2. Groundwater

The chemical analytical results for groundwater samples analyzed as part of the RI and Supplemental Investigation are presented in Table 8 and 9, respectively. The results are screened, and preliminary screening level exceedances are identified on these tables. Figures 11 through 15 summarize results for TPH, VOCs, cPAHs TEQ, PAHs and metals, respectively for two groundwater monitoring events (November 2017 and March 2018) completed as part of the RI. During the Supplemental Investigation, diesel- and heavy oil-range hydrocarbon analysis was performed with and without silica gel cleanup procedures. Note that previous groundwater monitoring events for these analytes were completed without the silica gel cleanup. Figure 16 presents groundwater results for diesel- and heavy oil-range TPH performed with and without silica gel cleanup laboratory preparation that were analyzed as part of the Supplemental Investigation in October 2018. As described in the Work Plan Addendum this data will be evaluated in the RI to determine if there is potential organic interference in the analytical method used (NWTPH-Dx). Groundwater samples for MW-8 and MW-11 were also analyzed for TPH-Gx and BETX as part of the Supplemental Investigation and the results are presented in Table 9. The following chemicals exceeded preliminary screening levels in groundwater:

- Total Petroleum Hydrocarbons (TPH) including gasoline-, diesel- and heavy oil-range;
- Volatile Organic Compounds (VOCs) including benzene and 1,2-dibromoethane (EDB); and
- Metals including arsenic (total and dissolved) and lead (total only).

Groundwater analytical results generally indicate that petroleum-related contamination in groundwater exists within the northern area of the Site within the former bulk fuel operation footprint and in wells located downgradient to the north and west. The highest concentration of TPH and fuel-related VOCs in groundwater are at MW-11, where free product has been measured as approximately 1.5 feet thick, and is, located in the center of the historical fueling operations. Petroleum-related contamination is bounded to the north, south and east by monitoring well MW-7, MW-10 and MW-6, respectively. Wells along the shoreline indicate diesel-range TPH exceedances. Based on the groundwater flow direction, the extent of petroleum-related contamination is generally within the source area and downgradient of the source. MW-8 is located ross-gradient relative to the source area for the Site and was found to have diesel-range TPH in groundwater above preliminary screening levels during the first monitoring event with concentrations below screening levels in subsequent events. Fuel-related VOCs including benzene and EDB were detected within the Site at MW-11. Monitoring wells along the shoreline downgradient of the source area were not found to have petroleum-related VOCs in groundwater. Benzene was detected at MW-8 and is cross-gradient from the source area, and uncertainty exists as to the source of benzene contamination at this location.

As previously noted the Supplemental Investigation groundwater was analyzed for diesel- and heavy-oil TPH with and without the silica gel cleanup preparation method. Figure 16 presents these analytical results for diesel- and heavy oil-range TPH side by side. The results indicate that without the silica gel cleanup diesel-range hydrocarbons are present above screening levels throughout the source area and downgradient wells consistent with results from the RI groundwater monitoring. With the silica cleanup gel procedure the only exceedance for diesel- and/or heavy-oil range TPH is at MW-11. The results indicate

that the silica gel cleanup method lowers concentration below preliminary screening levels at the majority monitoring wells sampled. Further evaluation will be completed to determine if the silica gel cleanup procedure provides accurate analysis of petroleum contamination or if the procedure removes petroleum and artificially lowers concentrations in groundwater.

Groundwater did not exceed preliminary screening levels for PAH or cPAH analytes. Isolated, low concentrations of dissolved arsenic above preliminary screening levels (exceedance ratios of approximately 2 or less) in groundwater were detected at the Site. Arsenic-contaminated soil was not identified at the Site.

As described in Section 4.2.5 groundwater samples were also submitted for laboratory analysis of natural attenuation parameters that do not have preliminary screening levels including methane, nitrate, sulfate, total alkalinity, ferrous iron and dissolved manganese at wells MW-1 through MW-12. These results are presented in Table 9 and the analytical data will be evaluated as part of the RI.

The laboratory data reports for the RI and Supplemental Investigation groundwater sample analyses are provided in Attachment 6. EPA-defined Stage 2B data validation (EPA Document 540-R-08-005; USEPA 2009) was performed on laboratory data and the data was identified to be of adequate quality for the intended use. The results of the data quality review are presented in Validation Reports provided in Attachment 7.

5.3.3. Sediment

In accordance with the Ecology-approved RI/FS Work Plan sediment results were screened for protection of benthic organisms and protection of human health and higher trophic level (HH/HTL) receptors. Figures 6 through 10 summarize results for TPH, VOCs, cPAHs TEQ, PAHs and metals, respectively. Sediment intervals sampled at each location and exceedances of both benthic and human health preliminary screening levels are shown on these figures. The chemical analytical results for sediment samples compared to preliminary screening levels for protection of benthic organisms are presented in Table 10. The results are screened, and preliminary screening level exceedances are identified in these tables. The following chemicals exceeded preliminary screening levels in sediment for protection of benthic organisms:

- Sum of Low Molecular Weight PAHs (LPAHs);
- Sum of High Molecular Weight PAHs (HPAHs);
- Various individual LPAH and HPAH analytes; and
- Pentachlorophenol.

Analytical data indicate that TPH, petroleum-related VOCs and metals in sediment are protective of benthic organisms in sediment samples collected for the RI (see Table 10). Isolated sediment samples exceeded individual PAH analyte screening levels for protection of benthic organisms in the beach area at sample locations SED-1 and SED-8 through SED-10 ranging in depth from surface to 6 feet bml. These PAH concentrations include exceedances of Sediment Cleanup Objective (SCO) and/or Cleanup Screening Level (CSL) concentrations as presented in Table 10. One isolated occurrence of pentachlorophenol above the CSL was present in sediment at composite sample SED-1 in the 4 to 6 foot bml sample interval.

The chemical analytical results for sediment samples compared to preliminary screening levels for protection of HH/HTL are presented in Table 11. The following chemicals exceeded preliminary screening levels in sediment for protection of HH/HTL receptors:

- Various individual LPAH and HPAH analytes;
- cPAH TEQ;
- Pentachlorophenol; and
- Metals including lead and mercury.

Analytical data indicate that TPH and petroleum-related VOCs in sediment are protective of HH/HTL (see Table 10). Sediment sample analytical results indicate that sediment with individual PAHs and cPAH TEQ concentrations greater than the HH/HTL screening level exist throughout the beach area that was investigated for the RI (see Figures 8 and 9). Depths of contaminatd sediment range from surface to 6 feet below mudline (bml), and the sediment sampling and analysis did not bound the extent of contamination in the vertical or horizontal directions. One isolated occurrence of pentachlorophenol above the HH/HTL was present in sediment at composite sample SED-1 in the 4 to 6 foot bml interval as presented in Table 11. Analytical results for lead in sediment was also found to exceed HH/HTL screening levels throughout the sediment area ranging in depths from surface to 6 feet bml. Similar to PAHs the data results do not define the horizontal or vertical extent of lead contamination above the HH/HTL screening levels within the investigation area. There is one isolated mercury sample at composite sample location SED-1 from 4 to 6 feet bml with mercury concentration greater than the screening level protective of HH/HTL receptors.

The laboratory data reports for the sediment samples are presented in Attachment 6. EPA-defined Stage 2B data validation (EPA Document 540-R-08-005; USEPA 2009) was performed on laboratory data and the data was identified to be of adequate quality for the intended use. The results of the data quality review are presented in Validation Reports provided in Attachment 7.

6.0 REFERENCES

- Ferris, J.G. (1951). Cyclic Fluctuations of Water Levels as a Basis for Determining Aquifer Transmissibility. International Union of Geodesy and Geophysics, Assoc. Sci. Hydrology Assembly, Publication 33, Brussels V.2:148-155.
- GeoEngineers, 2014. Focused Environmental Site Investigation Data Report, Quiet Cove Property, Anacortes, Washington, GEI No. 5147-024-01, dated October 20, 2014
- GeoEngineers, 2017. FINAL Remedial Investigation/Feasibility Study Work Plan (RI/FS Work Plan); Quiet Cove Property; Anacortes, WA; Ecology Agreed Order No. DE 11346. GEI No. 5147-024-03, dated January 25, 2017.
- GeoEngineers, 2018. Work Plan Addendum for Supplemental Upland Area Soil and Groundwater Investigation at the Quiet Cove Site, Anacortes, Washington (Work Plan Addendum). GEI No. 5147-024-06, dated October 1, 2018.

- Serfes, M.E. (1991). Determining the Mean Hydraulic Gradient of Groundwater affected by Tidal Fluctuations. Ground Water 29 (4): 549-555.
- U.S. Environmental Protection Agency (USEPA), 2009 "Guidance for Labeling Externy Validated Laboratory Analytical Data for Superfund Use," EPA-540-R-08-005. January 2009.

7.0 LIMITATIONS

We have prepared this report for the Quiet Cove Site located at 202 O Avenue in Anacortes, Washington for use by the Port of Anacortes. Within the limitations of scope, schedule and budget, our services have been executed in accordance with generally accepted environmental science practices in this area at the time this report was prepared. No warranty or other conditions, express or implied, should be understood.

Any electronic form, facsimile or hard copy of the original document (email, text, table, and/or figure), if provided, and any attachments are only a copy of the original document. The original document is stored by GeoEngineers, Inc. and will serve as the official document of record.

Table 1

Focused Environmental Investigation and Remedial Investigation Soil Analytical Schedule

Quiet Cove

Anacortes, Washington

									La	boratory	/ Analy	sis ²			
Sample Location ¹	Sample Identification	Date Sampled	Sample Interval (ft bgs)	Sample Type	Sample Horizon	Metals	NWTPH-G	NWTPH-Dx	BETX	EDB, EDC, MTBE and n-Hexane	Other VOCs	Napthalene	PAHs	сРАНѕ	PCB Aroclors
2014 Focuse	d Environmental Investiga	ation													
GEI-1	GEI-1-3-033114	03/31/14	4 - 6	Saturated	Fill		•	•	•						
	GEI-1-5-033114	03/31/14	8 - 10	Saturated	Native		•	•	•						
	GEI-2-1-033114	03/31/14	0 - 2	Vadose	Fill		•	•	•						
GEI-2	GEI-2-3-033114	03/31/14	4 - 6	Saturated	Fill		•	•	•						
	GEI-2-5-033114	03/31/14	8 - 10	Saturated	Native		•	•	•						
GEI-3	GEI-3-3-033114	03/30/14	4 - 6	Vadose	Fill		•	•	•						
	GEI-4-1-040114	04/01/14	0 - 2	Vadose	Fill		•	•	•						
GEI-4	GEI-4-2-040114	04/01/14	2 - 3	Vadose	Fill/Native	•	•	٠	•	•	•	٠		•	•
	GEI-4-3-040114	04/01/14	4 - 6	Saturated	Native		•	•	•						
GEI-8	GEI-8-3-033114	03/31/14	4 - 6	Saturated	Fill/Native		•	•	•						
GEI-O	GEI-8-5-033114	03/31/14	8 - 10	Saturated	Native		•	•	•						
GEI-9	GEI-9-3-040114	04/01/14	5 - 7	Saturated	Native		•	•	•						
GLI-9	GEI-9-5-040114	04/01/14	8 - 10	Saturated	Native		•	•	•						
	GEI-10-1-033114	03/31/14	0 - 2	Vadose	Fill		•	•	•						
GEI-10	GEI-10-3-033114	03/31/14	4 - 6	Saturated	Fill	•	•	•	•	•	•	•		•	•
	GEI-10-6-033114	03/31/14	8 - 10	Saturated	Native		•	•	•						
GEI-12	GEI-12-3-040114	04/01/14	5 - 7	Saturated	Fill		•	•	•						
GEI-13	GEI-13-2-040114	04/01/14	2 - 3	Vadose	Fill		•	٠	•						
	GEI-13-4-040114	04/01/14	6 - 8	Saturated	Native		•	٠	•						
GEI-14	GEI-14-3-040114	04/01/14	4 - 6	Saturated	Native		•	•	•						
GEI-16	GEI-16-3-033114	03/31/14	4 - 6	Saturated	Fill		•	٠	•						
GE: 10	GEI-16-5-033114	03/31/14	8 - 10	Saturated	Native		•	•	•						
GEI-17	GEI-17-3-033114	03/31/14	4 - 6	Saturated	Fill		•	•	•						

									La	boratory	Analy	sis²			
Sample Location ¹	Sample Identification	Date Sampled	Sample Interval (ft bgs)	Saturated vs. Unsaturated	Saturated vs. Unsaturated	Metals	NWTPH-G	NWTPH-Dx	BETX	EDB, EDC, MTBE and n-Hexane	Other VOCs	Napthalene	PAHs	сРАНѕ	PCB Aroclors
	GEI-18-1-033114	03/31/14	0 - 2	Vadose	Fill		•	•	•						
GEI-18	GEI-18-3-033114	03/31/14	4 - 6	Saturated	Native		•	•	•						
	GEI-18-5-033114	03/31/14	8 - 10	Saturated	Native		•	•	•						
GEI-19	GEI-19-1-040114	04/01/14	0 - 2	Vadose	Fill		•	•	•						
GEI-19	GEI-19-3-040114	04/01/14	4 - 6	Saturated	Native		•	•	•						
GEI-20	GEI-20-3-040114	04/01/14	4 - 6	Saturated	Native		•	•	•						
GEI-21	GEI-21-3-040114	04/01/14	4 - 6	Saturated	Native		•	•	•						
	GEI-25-1-040114	04/01/14	0 - 2	Vadose	Fill		•	•	•						
GEI-25	GEI-25-3-040114	04/01/14	4 - 6	Saturated	Fill	•	•	•	•	•	•	•		•	
	GEI-25-5-040114	04/01/14	8 - 10	Saturated	Native		•	•	•						
GEI-27	GEI-27-3-040214	04/02/14	6 - 7.5	Saturated	Fill		•	•	•						
GEI-28	GEI-28-4-040214	04/02/14	6 - 8	Saturated	Native		•	•	•						
2017 Reme	dial Investigation														
	GEI-29-5-7_091217	9/12/2017	5 - 7	Vadose	Fill	•	•	•	•	•		•	•	•	
GEI-29	GEI-29-10-12_091217	9/12/2017	10 - 12	Saturated	Native	•	•	•	•	•		•	٠	•	
	GEI-29-13-15_091217	9/12/2017	13 - 15	Saturated	Native	•	•	•	•	•		•	•	•	
	GEI-30-2-4_091217	9/12/2017	2 - 4	Vadose	Fill	•	•	•	•	•		•	٠	•	
GEI-30	GEI-30-6-8_091217	9/12/2017	6 - 8	Saturated	Fill/Native	•	•	•	•	•		•	•	•	
	GEI-30-9-11_091217	9/12/2017	9 - 11	Saturated	Native	•	•	•	•	•		•	•	•	
	GEI-31-3-5_091117	9/11/2017	3 - 5	Vadose	Fill	•	•	•	•	•		•	•	•	
GEI-31	GEI-31-13-15_091117	9/11/2017	13 - 15	Saturated	Fill/Native	•	•	•	•	•		•	٠	•	
	GEI-31-6-8_091117	9/11/2017	6 - 8	Saturated	Native	•	•	•	•	•		•	•	•	
	GEI-32-3-4.5_091117	9/11/2017	3 - 4.5	Vadose	Fill	•	•	•	•	•		•	•	•	
GEI-32	GEI-32-10-12_091117	9/11/2017	10 - 12	Saturated	Native	•	•	•	•	•		•	•	•	
	GEI-32-7-9_091117	9/11/2017	7 - 9	Saturated	Native	•	•	•	•	•		•	•	•	
	GEI-38-2-4_091917	9/19/2017	2 - 4	Vadose	Fill	•	•	•	•	•		•	•	•	
GEI-38	GEI-38-5-7_091917	9/19/2017	5 - 7	Saturated	Fill	•	•	•	•	•		•	•	•	
	GEI-38-12-14_091917	9/19/2017	12 - 14	Saturated	Native	•	•	•	•	•		•	•	•	

							-		Laboratory Analysis ²									
Sample Location ¹	Sample Identification	Date Sampled	Sample Interval (ft bgs)	Saturated vs. Unsaturated	Saturated vs. Unsaturated	Metals	0-HATWN	XQ-H4TWN	BETX	EDB, EDC, MTBE and n-Hexane	Other VOCs	Napthalene	SHA	cPAHs	PCB Aroclors			
	GEI-39-1-3_091517	9/15/2017	1-3	Vadose	Fill	•	•	•	•	٠		•	•	٠				
GEI-39	GEI-39-5-7_091517	9/15/2017	5 - 7	Saturated	Fill	•	•	•	•	•		•	•	•				
	GEI-39-8-10_091517	9/15/2017	8 - 10	Saturated	Fill/Native	•	•	•	•	•		•	•	•				
	GEI-40-2-4_091917	9/19/2017	2 - 4	Vadose	Fill	•	•	•	•	•		•	•	•				
GEI-40	GEI-40-12-14_091917	9/19/2017	12 - 14	Saturated	Fill	•	•	•	•	•		•	•	•				
	GEI-40-5-7_091917	9/19/2017	5 - 7	Saturated	Native	•	•	•	•	•		•	•	•				
GEI-41	GEI-41-5-7_091317	9/13/2017	5 - 7	Vadose	Natvie	•	•	•	•	•		•	•	•				
GEI-42	GEI-42-1-3_091317	9/13/2017	1-3	Vadose	Fill	•	•	•	•	•		•	•	•				
GEI-42	GEI-42-6-8_091317	9/13/2017	6 - 8	Saturated	Native	•	•	•	•	•		•	•	•				
GEI-43	GEI-43-3-5_091317	9/13/2017	3 - 5	Vadose	Fill/Native	•	•	•	•	•		•	•	•				
GLI-45	GEI-43-5-7_091317	9/13/2017	5 - 7	Saturated	Native	•	•	•	•	•		•	•	•				
	GEI-44-2-4_091317	9/13/2017	2 - 4	Vadose	Fill	O ³	O ³	O ³	O ³	O ³		O ³	O ³	O ³				
GEI-44	GEI-44-10-12_091317	9/13/2017	10 - 12	Saturated	Fill/Native	0 ³	O ³	O ³	O ³	O ³		O ³	O ³	O ³				
	GEI-44-7-9_091317	9/13/2017	7 - 9	Saturated	Native	0 ³	O ³	O ³	O ³	O ³			O ³	O ³				
N414/ O	MW-8-2-4_091917	9/19/2017	2 - 4	Vadose	Fill		O ³	O ³	O ³	O ³								
MW-8	MW-8-5-7_091917	9/19/2017	5 - 7	Saturated	Fill		O ³	O ³	O ³	O ³								

Notes:

¹ Sample locations are shown on Figure 2.

² Laboratory results are summarized in Table 3.

³ Tier 2 sample analysis based on communications with Ecology.

EDB = 1,2-Dibromoethane

EDC = 1,2-Dichloroethane

BETX = Benzene, Ethyl Benzene, Toluene and Xylenes

MTBE = Methyl t-butyl ether

VOCs = Volatile Organic Compounds

PAHs = Polycyclic Aromatic Hydrocarbons

cPAHs = Carcinogenic Polycyclic Aromatic Hydrocarbons

PCBs = Polychlorinated Biphenyls

ft = feet

- bgs = below ground surface
- F_s = Shallow fill soil
- F_D = Deep fill soil
- PT = Organic deposits (Peat)
- N_S = Shallow native soil
- = Sample collected and submitted for conventional and chemical analysis.
- **O** = Archive sample collected and subsequently submitted for chemical analysis.

Table 2

Focused Environmental Investigation and Remedial Investigation Groundwater Analytical Schedule

Quiet Cove

Anacortes, Washington

								-	Labor	atory An	alysis ²		-		
Sample Location ¹	Sample Identification	Date Sampled	Well Location	Tidal Influence	Total Metals	Dissolved Metals	NWTPH-G	NWTPH-Dx	BETX	EDB, EDC, MTBE and n-Hexane	Other VOCs	Napthalene	PAHs	сРАНѕ	PCB Aroclors
2014 Focuse	d Environmental Investiga														
MW-1	QC-MW-1-7.1.14	07/01/14	Shoreline	Indeterminate ³			•	•	٠					•	
MW-2	QC-MW-2-7.1.14	07/01/14	Shoreline	Indeterminate ³			•	•	•					•	
MW-3	QC-MW-3-7.1.14	07/01/14	Shoreline	Indeterminate ³	•	•	•	•	•	•	•	•	•	•	•
MW-4	QC-MW-4-7.1.14	07/01/14	Upland	Indeterminate ³			•	•	•					•	
MW-5	QC-MW-5-7.1.14	07/01/14	Upland	Indeterminate ³	٠	•	•	•	•	•	٠	•	•	٠	•
2017 Remed	ial Investigation														
MW-1	MW-1-110917	11/09/17	Shoreline	Indeterminate ³	•	٠	•	•	٠	•				•	
	MW-1_031918	03/19/18		Indeterminate	•	٠	•	•	٠	•				•	
MW-2	MW-2-110917	11/09/17	Shoreline	Indeterminate ³	•	٠	•	•	٠	•				•	
	MW-2_032018	03/20/18	Onorenne	Indeterminate	•	٠	•	•	٠	•				•	
MW-3	MW-3_101817	10/18/17	Shoreline	Indeterminate ³	•	•	•	•	•	•				•	
10100-5	MW-3_032018	03/20/18	Shoreline	Indeterminate	•	•	•	•	•	•				•	
MW-4	MW-4_101817	10/18/17	Upland	Indeterminate ³	•	•	•	•	•	•				•	
10100-4	MW-4_031918	03/19/18	opiand	Indeterminate	•	•	•	•	•	•				•	
MW-5	MW-5_101817	10/18/17	Upland	Indeterminate ³	•	•	•	•	•	•				•	
	MW-5_032018	03/20/18	opiand	Indeterminate	•	•	•	•	•	•				•	
MW-6	MW-6_101817	10/18/17	Upland	Yes	•	•	•	•	•	•				•	
0-9919	MW-6_032018	03/20/18	opiariu	105	•	•	•	•	•	•				٠	
MW-7	MW-7_101817	10/18/17	Shoreline	Yes	•	•	•	•	•	•				٠	
11111-1	MW-7_032018	03/20/18	Shorenne	105	•	•	•	•	٠	•				•	
MW-8	MW-8-110917	11/09/17	Shoreline	Indeterminate ³	•	•	•	•	•	•				•	
10100-0	MW-8_031918	03/19/18	Shorenne	mueterminate	•	•	•	•	•	•				•	

									Labor	atory An	alysis ²				
Sample Location ¹	Sample Identification	Date Sampled	Well Location	Tidal Influence	Total Metals	Dissolved Metals	0-H4TWN	NWTPH-Dx	BETX	EDB, EDC, MTBE and n-Hexane	Other VOCs	Napthalene	SHA	cPAHs	PCB Aroclors
MW-10	MW-10-110917	11/09/17	Upland	Yes	•	•	•	•	•	•				•	
10100-10	MW-10_031918	03/19/18	opiariu	Tes	•	•	•	•	•	•				•	
MW-11	MW-11-110917	11/09/17	Upland	Indeterminate ³	•	•	٠	•	•	•				•	
10100-11	MW-11_032018	03/20/18	opianu	indeterminate	•	•	•	•	•	•				•	

Notes:

¹ Sample locations are shown on Figure 2.

² Laboratory results are summarized in Table 4.

³ Tidal effects below the threshold of significance (Stage Ratio less than 3 percent).

EDB = 1,2-Dibromoethane

EDC = 1,2-Dichloroethane

BETX = Benzene, Ethyl Benzene, Toluene and Xylenes

MTBE = Methyl t-butyl ether

VOCs = Volatile Organic Compounds

PAHs = Polycyclic Aromatic Hydrocarbons

cPAHs = Carcinogenic Polycyclic Aromatic Hydrocarbons

PCBs = Polychlorinated Biphenyls

 F_{S} = Shallow fill soil

 F_D = Deep fill soil

PT = Organic deposits (Peat)

 N_{S} = Shallow native soil

• = Sample collected and submitted for conventional and chemical analysis.

Remedial Investigation Sediment Analytical Schedule

Quiet Cove

						Laboratory Analysis ²										
Sample Location ¹	Sample Identification	Date Sampled	Sample Interval (ft bgs)	Sample Type	Sample Horizon	NWTPH-Gx	NWTPH-Dx	BTEX (8260)	EDB, EDC, MTBE and n-Hexane	Grain size	TOC, TVS, TS	Sulfides & Ammonia	SMS Metals (8270D/SIM)	SMS VOCs (8270D/SIM)	PCBs (EPA 1668C)	Dioxins/Furans (1631)
2017 Sedime	ent Tier 1 Investigation	-				1		1			1				-]
	SED-COMP-1_091517	09/15/17	0 - 0.5	Composite	Fill	•	•	٠	•	•	•	•	•	•	0	0
GEI-1	SED1-1-3 _091517	09/15/17	1-3	Composite	Fill	•	•	٠	•	•	•	•	•	•	0	0
	SED1-4-6_091517	09/15/17	4 - 6	Composite	Fill	•	•	٠	•	•	•	•	•	•	0	0
2018 Sedime	ent Tier 2 Investigation						<u> </u>	•	<u> </u>	·	·	<u> </u>	<u> </u>	<u> </u>		
	SED-2-0-0.5_071618	7/16/2018	0 - 0.5	Surface	Fill	0	0	0	0	0	0	0	0	0	0	0
SED-2	SED-2-0-2_071718	7/17/2018	0 - 2	Core	Fill	0	X	0	0	0	0	0	X	X	0	0
	SED-2-2-4_071718	7/17/2018	2 - 4	Core	Native	0	X	0	0	0	0	0	0	0	0	0
	SED-3-0-0.5_071618	7/16/2018	0 - 0.5	Surface	Fill	0	0	0	0	0	0	0	0	0	0	0
SED-3	SED-3-0-2_071718	7/17/2018	0 - 2	Core		0	X	0	0	0	0	0	X	X	0	0
SED-S	SED-3-2-3.5_071718	7/17/2018	2 - 3.5	Core		0	X	0	0	0	0	0	0	0	0	0
	SED-3-3.5-5_071718	7/17/2018	3.5 - 5	Core	Native	0	0	0	0	0	0	0	0	0	0	0
	SED-4-0-0.5_071618	7/16/2018	0 - 0.5	Surface	Fill	•	•	٠	•	•	٠	٠	•	•	0	0
SED-4	SED-4-0-1.5_071618	7/16/2018	0 - 1.5	Core		0	X	0	0	0	0	0	X	X	0	0
SED-4	SED-4-1.5-3_071618	7/16/2018	1.5 - 3	Core		0	X	0	0	0	0	0	X	X	0	0
	SED-4-3-4.5_071618	7/16/2018	3 - 4.5	Core	Native	0	0	0	0	0	0	0	0	0	0	0
	SED-5-0-0.5_071618	7/16/2018	0 - 0.5	Surface	Fill	•	٠	٠	٠	•	٠	٠	٠	٠	0	0
SED-5	SED-5-0-2_071618	7/16/2018	0 - 2	Core		0	0	0	0	0	0	0	0	0	0	0
	SED-5-2-4_071618	7/16/2018	2 - 4	Core	Native	٠	•	٠	٠	•	٠	٠	٠	•	0	0
	SED-6-0-0.5_071718	7/16/2018	0 - 0.5	Surface	Fill	•	•	٠	•	•	•	٠	٠	•	0	0
SED-6	SED-6-0-1_071718	7/17/2018	0 - 1	Core		0	0	0	0	0	0	0	0	0	0	0
	SED-6-1-3_071718	7/17/2018	1 - 3	Core	Fill	•	•	٠	•	•	٠	٠	٠	•	0	0
SED-7	SED-7-0-0.5_071618	7/16/2018	0 - 0.5	Surface	Fill	•	•	٠	•	•	•	•	•	•	0	0
3ED-1	SED-7-0-1_071718	7/17/2018	0 - 1	Core	Fill	•	•	٠	•	•	•	•	•	•	0	0
	SED-8-0-0.5_071618	7/16/2018	0 - 0.5	Surface	Fill	•	•	٠	•	•	•	•	•	•	0	0
SED-8	SED-8-0-1.7_071618	7/16/2018	0 - 1.7	Core		0	0	0	0	0	0	0	0	0	0	0
SED-0	SED-8-1.7-3.2_071618	7/16/2018	1.7 - 3.2	Core		0	0	0	0	0	0	0	0	0	0	0
	SED-8-3.2-4.5_071618	7/16/2018	3.2 - 4.5	Core		•	•	٠	•	•	•	•	•	•	0	0

	SED-9-0-0.5_071618	7/16/2018	0 - 0.5	Surface	Fill	•	•	•	•	٠	•	•	•	•	0	0
SED-9	SED-9-0-1.7_071718	7/17/2018	0 - 1.7	Core		0	0	0	0	0	0	0	0	0	0	0
	SED-9-1.7-2.3_071718	7/17/2018	1.7 - 2.3	Core	Fill	•	•	•	•	•	•	•	•	•	0	0
	SED-10-0-0.5_071618	7/16/2018	0 - 0.5	Surface	Fill	•	•	•	•	•	•	•	•	•	0	0
SED-10	SED-10-0-2_071718	7/17/2018	0 - 2	Core		0	0	0	0	0	0	0	0	0	0	0
3LD-10	SED-10-2-4_071718	7/17/2018	2 - 4	Core		•	•	•	•	•	•	•	•	•	0	0
	SED-10-4-5.6_071718	7/17/2018	4 - 5.6	Core	Native	0	0	0	0	0	0	0	0	0	0	0

¹ Sample locations are shown on Figure 2.

² Laboratory results are summarized in Table 3.

³ Tier 2 sample analysis based on communications with Ecology.

EDB = 1,2-Dibromoethane

EDC = 1,2-Dichloroethane

BETX = Benzene, Ethyl Benzene, Toluene and Xylenes

MTBE = Methyl t-butyl ether

VOCs = Volatile Organic Compounds

PAHs = Polycyclic Aromatic Hydrocarbons

cPAHs = Carcinogenic Polycyclic Aromatic Hydrocarbons

PCBs = Polychlorinated Biphenyls

- ft = feet
- bgs = below ground surface
- F_S = Shallow fill soil
- F_D = Deep fill soil
- PT = Organic deposits (Peat)
- N_S = Shallow native soil
- = Sample collected and submitted for conventional and chemical analysis.
- \boxtimes = Archive sample collected and subsequently submitted for chemical analysis.
- **O** = Archive sample collected.

Supplemental Investigation Soil Analytical Schedule

Quiet Cove Property

					Hydroc	etroleum carbons PH)	-	nic Compounds OCs)	Metals		: Aromatic ons (PAHs)
Sample Location ¹	Sample Identification	Date Sampled	Sample Interval (feet bgs)	Sample Horizon ²	Gasoline- Range (NWTPH-Gx)	Diesel- and Heavy Oil- Range (NWTPH-Dx)	BETX (EPA 8260)	EDB, EDC, MTBE and n-Hexane (EPA 8260)	MTCA Metals ⁴ (EPA 6000/7000)	Carcinogenic PAHs (EPA 8270- SIM)	Naphthalenes (EPA 8270- SIM)
Direct-Push (DP) Samp	le Location										
	SD-1-2-4	10/17/2018	2-4	S	•	•	٠				
	SD-1-5-6.5	10/17/2018	5-6.5	Х	•	•	٠				
SD-1	SD-1-10-12	10/17/2018	10-12	W	•	•	٠				
	SD-1-13-15	10/17/2018	13-15	W							
	SD-1-17-19	10/17/2018	17-19	N	•	•	٠				
	SD-2-2-3	10/17/2018	2-3	S	•	•	٠				
SD-2	SD-2-6-8	10/17/2018	6-8	Х	•	•	•				
5D-2	SD-2-11-12	10/17/2018	11-12	W	•	•	•				
	SD-2-14-15	10/17/2018	14-15	N	•	•	•				
	SD-3-2.5-3	10/17/2018	2.5-3	S	•	•	٠				
SD-3	SD-3-7-8.5	10/17/2018	7-8.5	X,W	•	•	٠				
	SD-3-12-13	10/17/2018	12-13	N	•	•	•				
	SD-4-2.5-3.5	10/18/2018	2.5-3.5	S	•	•	•				
SD-4	SD-4-6.5-7.5	10/18/2018	6.5-7.5	X,W	•	•	•				
	SD-4-12-13	10/18/2018	12-13	N	•	•	•				
	SD-5-0.5-2	10/18/2018	0.5-2	S	•	•	٠				
SD-5	SD-5-5.5-6	10/18/2018	5.5-6	X,W	•	•	•				
	SD-5-9-10	10/18/2018	9-10	N	•	•	•				
	SD-6-1-2	10/18/2018	1-2	S	•	•	•				
SD-6	SD-6-4-5	10/18/2018	4-5	Х	•	•	•				
20-0	SD-6-6-7	10/18/2018	6-7	W	•	•	•				
	SD-6-9-10	10/18/2018	9-10	N	•	•	٠				
	SD-7-1-2	10/17/2018	1-2	S	•	•	•			•	•
	SD-7-2-3.5	10/17/2018	2-3.5	Х	•	•	•			•	•
SD-7	SD-7-9-10	10/17/2018	9-10	W	•	•	•			•	•
	SD-7-15-16.5	10/17/2018	15-16.5	W							
	SD-7-18.5-20	10/17/2018	18.5-20	N	•	•	•			•	•

					Hydroc	etroleum arbons PH)	-	nic Compounds OCs)	Metals		c Aromatic oons (PAHs)
Sample Location ¹			Sample Interval (feet bgs)	Sample Horizon ²	Gasoline- Range (NWTPH-Gx)	Diesel- and Heavy Oil- Range (NWTPH-Dx)	BETX (EPA 8260)	EDB, EDC, MTBE and n-Hexane (EPA 8260)	MTCA Metals ⁴ (EPA 6000/7000)	Carcinogenic PAHs (EPA 8270- SIM)	Naphthalenes (EPA 8270- SIM)
	SD-8-2-4	10/17/2018	0-2	S	•	•	٠				
SD-8	SD-8-6-8	10/17/2018	2-4	Х	•	•	•				
30-8	SD-8-9-11	10/17/2018	4-6	W	•	•	•				
	SD-8-13-15	10/17/2018	6-8	N	•	•	•				
SD-9	SD-9-2.5-4	10/18/2018	2.5-4	S	•	•	٠	•	•	•	•
SD-10	SD-10-4-5	10/18/2018	4-5	S	•	•	٠	•	•	•	•
Hollow-Stem Auger Sam	ple Location										
	MW-12-3-4	10/18/2018	3-4	S	•	٠	٠			•	•
MW-12	MW-12-7.5-9.5	10/18/2018	7.5-9.5	Х	•	•	•				
10100-12	MW-12-11-12	10/18/2018	11-12	W	•	•	•				
	MW-12-14-15	10/18/2018	14-15	N	•	•	•				

¹Sample locations are shown on Figure 1.

² Sample intervals may be adjusted based on observed field conditions to collect samples representative of the fill and native soil horizon, and interface between the saturated and vadose zone. Samples will be collected for analysis based on (1) shallow soil approximately 0-2 feet; (2) highest PID reading; (3) interval at the interface of the saturated and vadose zone and; (4) deepest sample in the boring (native material). If the highest PID reading and water table sample interval overlap, only 3 samples will be collected for analysis. The sample intervals for analysis are anticipated in the table. The exploration will be advanced to at least three feet into native soil or to approximately 14 feet below ground surface (bgs), whichever occurs first. If field screening evidence of contamination is observed, the exploration will be advanced to at least three feet below the observed depth of contamination, or until refusal.

³ Field screening will be completed for each 2-foot interval throughout the boring in accordance with the approved RI/FS Work Plan.

⁴ MTCA metals include arsenic, cadmium, chromium (total), lead and mercury.

Sample for analysis (approximate interval location in table)	bgs = below ground surface
S = Shallow Sample	BETX = Benzene, Ethylbenzene, Toluene and Xylenes
X = Highest PID Reading Sample	EDB = 1,2-Dichloroethane
W = Water Table Sample	EDC = 1,2-Dichloroethane
N = Selected sample for initial chemical analysis .	EPA = Environmental Protection Agency
	MTBE = Methyl t-Butyl Ether
	MTCA = Model Toxics Control Act

Supplemental Investigation Product and Groundwater Measurements

Quiet Cove Property

Anacortes, Washington

Well Identification	Date	Time	DTP (ft)	DTW (ft)	Product Thickness (ft)	Top of Casing Elevation (feet NAVD 88)	Product elevation (feet NAVD 88)	Groundwater Elevation (feet NAVD 88)	Field Notes
MW-1	11/9/18	15:02	3.45	3.46	0.01	11.91	8.46	8.45	Trace product encountered
MW-2	11/9/18	15:00	-	4.87	0	12.01	NP	7.14	
MW-3	11/9/18	14:56	-	5.66	0	12.42	NP	6.76	
MW-4	11/9/18	15:25	1	5	0	12.42	NP	7.42	
MW-5	11/9/18	15:35	1	4.54	0	14.48	NP	9.94	
MW-6	11/9/18	15:38		4.96	0	15.43	NP	10.47	
MW-7	11/9/18	15:15		6.11	0	12.62	NP	6.51	
MW-8	11/9/18	15:08		4.53	0	13.13	NP	8.6	
MW-10	11/9/18	14:31	1	3.84	0	14.17	NP	10.33	
MW-11	11/9/18	14:42	3.37	4.83	1.46	12.28	8.91	7.45	Product encountered
MW-12	11/9/18	15:29		1.83	0	11.17	NP	9.34	
SD-2	11/9/18	14:40		2.46	0	12.04	NP	9.58	Temporary pre-pack well
SD-8	11/9/18	14:37		2.64	0	12.47	NP	9.83	Temporary pre-pack well

Notes:

DTP = Depth to product DTW = Depth to water NAVD 88 = North American Vertical Datum of 1988 ft = feet

NA = Not Available for measurement

NP = No product observed

Supplemental Investigation Groundwater Analytical Schedule

Quiet Cove Property

Anacortes, Washington

				Petroleum Hydrocar (TPH)	bons	Volatile Organic Compounds (VOCs)		Ge	eochemical Pa	arameters		
Sample Location ¹	Sample Identification	Sampling Date	Gasoline- Range (NWTPH-Gx)	Diesel- and Heavy Oil-Range (NWTPH-Dx) - with silica gel cleanup	Diesel- and Heavy Oil-Range (NWTPH-Dx) - no silica gel cleanup	BETX ² (EPA 8260)	Total Alkalinity (SM 2420 B-97)	Ferrous Iron (SM3500-Fe B-97)	Nitrate (EPA 300.0)	Sulfate (EPA 300.0)	Dissolved Manganese (EPA 6020A)	Dissolved Methane (EPA RSK-175)
Existing Monitori	ng Well				-	-	-					-
MW-1	MW-1_103118	10/31/2018		•	•		•	•	•	•	٠	•
MW-2	MW-2_103118	10/31/2018		•	•		•	•	•	•	٠	•
MW-3	MW-3_103018	10/30/2018		•	•		٠	•	•	•	٠	•
MW-4	MW-4_102918	10/29/2018		٠	•		٠	•	•	•	٠	•
MW-5	MW-5_103118	10/31/2018		٠	•		٠	•	•	•	٠	•
MW-6	MW-6_102918	10/29/2018		•	•		•	•	•	•	•	•
MW-7	MW-7_103018	10/30/2018		•	•		•	•	•	•	•	•
MW-8	MW-8_102918	10/29/2018	•	•	•	•	•	•	•	•	•	•
MW-10	MW-10_102918	10/29/2018		•	•		•	•	•	•	•	•
MW-11	MW-11_103118	10/31/2018	•	•	•	•	•	•	•	•	•	•
New Monitoring	Well											
MW-12	MW-12_103018	10/30/2018		•	•		•	•	•	•	•	•

Notes:

¹ Sample locations are shown on Figure 1.

² BETX = Benzene, ethylbenzene, toluene, xylene

Remedial Investigation and Supplemental Investigation Soil Analytical Results Quiet Cove

			1		Anacortes,	washington	1					r	
Sample Location ¹		EI-1		GEI-2	Γ	GEI-3		GEI-4	T		EI-8		
Sample Identification	GEI-1-3- 033114	GEI-1-5- 033114	GEI-2-1- 033114	GEI-2-3- 033114	GEI-2-5- 033114	GEI-3-3- 033114	GEI-4-1- 040114	GEI-4-2- 040114	GEI-4-3- 040114	GEI-8-3- 033114	GEI-8-5- 033114	Prolit	minon
Sample Date	3/31/2014	3/31/2014	3/31/2014	3/31/2014	3/31/2014	3/31/2014	4/1/2014	4/2/2014	4/1/2014	3/31/2014	3/31/2014		minary ening
Sample Interval (feet bgs)	4-6 ft	8-10 ft	0-2 ft	4-6 ft	8-10 ft	4-6 ft	0-2 ft	2-3 ft	4-6 ft	4-6 ft	8-10 ft		vel ²
Sample Type	Vadose	Saturated	Vadose	Saturated	Saturated	Vadose	Vadose	Saturated	Saturated	Vadose	Saturated	Vadose	Saturated
Sample Horizon	Fill	Native	Fill	Fill	Native	Fill	Fill	Fill/Native	Native	Fill/Native	Native	Zone	Zode
Field Measured Parameters			•	4	4		•	•		•			
Sheen	HS	NS	NS	MS	NS	HS	NS	HS	NS	HS	NS	NE	NE
Headspace Vapors (ppm)	155	<1	<1	255	53	124	<1	7	<1	232	<1	NE	NE
Metals by EPA 6000/7000 Series (mg/kg)			•				•			•			
Arsenic	-		-			-		14 U				20	20
Cadmium	-		-			-		2.4		-		1.2	1
Chromium						-		13				1,000	50
Copper	-		-			-		-				NE	NE
Lead	-		-			-		79				250	24
Silver	-		_			-		-				NE	NE
Zinc	-							-				NE	NE
Mercury	-		-			-	-	0.34 U		-	-	0.07	0.07
Petroleum Hydrocarbons by NWTPH-G/Dx (mg/	′kg)											•	
Gasoline-range hydrocarbons	7.4 U	7.8 U	3.4 U	7.7 U	3.8 U	7.6 U	3.3 U	6.9 U	9.3 U	260	3.3 U	30 ²	30 ²
Diesel-range hydrocarbons	5,800	540	48	2,400	510	750	170	18,000	730	1,200	29 U	2,000	2,000
Motor Oil-range hydrocarbons	940	97	210	190	77	73	1,200	21,000	940	810	58 U	2,000	2,000
BETX Compounds by EPA 8260 (mg/kg)			1	1	1		1						
Benzene	0.020 U	0.020 U	0.055	0.020 U	0.048	0.020 U	0.05	0.05					
Toluene	0.074 U	0.078 U	0.039	0.077 U	0.038 U	0.076 U	0.033 U	0.069 U	0.093 U	0.11 U	0.033 U	3.8	0.22
Ethylbenzene	0.24	0.078 U	0.21	0.077 U	0.038 U	0.30	0.033 U	0.069 U	0.093 U	0.14	0.033 U	1.1	1.1
Total Xylenes	0.64	0.0780 U	0.31	0.0770 U	0.0380 U	0.91	0.0330 U	0.0690 U	0.0930 U	0.28	0.0330 U	2.8	0.16
Volatile Organic Compounds (VOCs) by EPA 826	60 (mg/kg)		•				•			•			
1,1,1,2-Tetrachloroethane	-		-	-				0.065 U	-			0.044	0.003
1,1,1-Trichloroethane			-			-		0.065 U				42	2.2
1,1,2,2-Tetrachloroethane			-			-		0.065 U	-			0.017	0.002
1,1,2-Trichloroethane			-			-		0.065 U	-			0.025	0.002
1,1-Dichloroethane			-			-		0.065 U				0.061	0.0038
1,1-Dichloroethene			-			-		0.065 U	-			0.023	0.0011
1,1-Dichloropropene			-			-		0.065 U				NE	NE
1,2,3-Trichlorobenzene	-		-			-		0.065 U				NE	NE
1,2,3-Trichloropropane	-		-	-		-		0.065 U				0.033	0.033
1,2,4-Trichlorobenzene			-			-		0.065 U	-			0.019	0.005
1,2-Dibromo-3-Chloropropane	-		-			-		0.33 U				1.3	1.3
1,2-Dibromoethane	-		-			-		0.065 U				0.002	0.001
1,2-Dichlorobenzene (o-Dichlorobenzene)	-		-	-				0.065 U	-			30	1.7
1,2-Dichloroethane	-		-					0.065 U				0.02	0.001
1,2-Dichloropropane	-		-			-		0.065 U			-	0.02	0.001
1,3-Dichlorobenzene (m-Dichlorobenzene)	-		-					0.065 U	-			NE	NE
1,3-Dichloropropane	-		-			-		0.065 U				NE	NE
1,4-Dichlorobenzene (p-Dichlorobenzene)	-		_					0.065 U				0.08	0.067
2,2-Dichloropropane	-		-			-		0.065 U				NE	NE
							-	0.52 U	_		-	NE	NE
2-Chloroethyl vinyl ether													
2-Chloroethyl vinyl ether 2-Chlorotoluene	-					-		0.065 U				1,600	1,600

Sample Location ¹	GI	EI-1		GEI-2		GEI-3		GEI-4			EI-8		
Sample Identification	GEI-1-3-	GEI-1-5-	GEI-2-1-	GEI-2-3-	GEI-2-5-	GEI-3-3-	GEI-4-1-	GEI-4-2-	GEI-4-3-	GEI-8-3-	GEI-8-5-		
•	033114	033114	033114	033114	033114	033114	040114	040114	040114	033114	033114	Preli	minary
Sample Date	3/31/2014	3/31/2014	3/31/2014	3/31/2014	3/31/2014	3/31/2014	4/1/2014	4/2/2014	4/1/2014	3/31/2014	3/31/2014		eening
Sample Interval (feet bgs)	4-6 ft	8-10 ft	0-2 ft	4-6 ft	8-10 ft	4-6 ft	0-2 ft	2-3 ft	4-6 ft	4-6 ft	8-10 ft	Le	evel ²
Sample Type	Vadose	Saturated	Vadose	Saturated	Saturated	Vadose	Vadose	Saturated	Saturated	Vadose	Saturated	Vadose	Saturated
Sample Horizon	Fill	Native	Fill	Fill	Native	Fill	Fill	Fill/Native	Native	Fill/Native	Native	Zone	Zode
Bromobenzene	_	-	-			-	-	0.065 U		-	-	NE	NE
Bromochloromethane	-	-	-			-	-	0.065 U		-		NE	NE
Bromodichloromethane	-	-	-			-	-	0.065 U		-	-	NE	NE
Bromoform (Tribromomethane)	-	-	-			-	-	0.065 U		-		0.79	0.05
Bromomethane		-	-			-	-	0.065 U		-		0.06	0.0038
Carbon Tetrachloride	_		-	-	-	-		0.065 U	-	-	-	0.005	0.001
Chlorobenzene			-	-		-		0.065 U		-		2.5	0.15
Chloroethane			-	-	-	-	-	0.33 U		-	-	96	5.6
Chloroform		-	-	-		-	-	0.065 U		-		0.0064	0.001
Chloromethane	_	-	-	-		-	-	0.42 U		-	-	0.73	0.045
cis-1,2-Dichloroethene		-	-	-		-	-	0.065 U		-		160	160
cis-1,3-Dichloropropene	-	-	-	-				0.065 U				NE	NE
Dibromochloromethane	-	-	-					0.065 U		-	-	0.024	0.002
Dibromomethane	-	-	-			-	-	0.065 U		-		800	800
Dichlorodifluoromethane (CFC-12)	-	-	-	-				0.065 U		-	-	0.17	NE
Hexachlorobutadiene			-					0.33 U				NE	NE
Methyl lodide (lodomethane)			-	-	-	-		0.33 U	-		-	NE	NE
Methyl t-butyl ether	-		-	-	-	-		0.085 U	-	-	-	2.6	0.18
Methylene Chloride	-	-				-		0.33 U				NE	NE
n-Hexane	-		-	-	-	-		0.069 U		-	-	0.27	0.01
Tetrachloroethene	-					-		0.065 U		-	-	0.094	0.0049
Trans-1,2-Dichloroethene			-					0.065 U				22	1.3
Trans-1,3-Dichloropropene			-					0.065 U		-		NE	NE
Trichloroethene	-	-				-	-	0.065 U		-	-	0.01	0.001
Trichlorofluoromethane (CFC-11)	-	-				-	-	0.065 U		-	-	1.4	0.04
Vinyl Chloride	-	-				-	-	0.065 U		-		0.006	0.001
Polycyclic Aromatic Hydrocarbons (PAHs) by E	PA 8270-SIM (mg/	kg)		1	1	1							
1-Methylnaphthalene	-			-		-		11		-		35	35
2-Methylnaphthalene	-			-		-		14		-	-	0.77	0.04
Acenaphthene		-	-	-						-	-	0.32	0.02
Acenaphthylene		-	-	-					-	-	-	NE	0.068
Anthracene	-	-				-	-			-	-	4.4	0.2
Benzo(a)anthracene			-	-				0.77		-		0.07	0.007
Benzo(a)pyrene		-	-	-				0.18	-	-	-	0.14	0.01
Benzo(b)fluoranthene		-	-	-				0.22	-	-		0.25	0.012
Benzo(g,h,i)perylene	_				-	-		-				NE	2
Benzo(k)fluoranthene	_		-					0.18 U	-			0.32	0.016
Chrysene			_	_			-	1.2	_		_	0.25	0.012
Dibenzo(a,h)anthracene	_			_		_		0.091 U				0.14	0.018
Fluoranthene				-	_	_		-			_	0.5	0.16
Fluorene		-	_	_	_	_	_	_			_	0.5	0.16
Indeno(1,2,3-c,d)pyrene	_		_	_	_			0.091 U	_		_	0.69	0.035
Naphthalene		-	-					2.4				0.25	0.013
Phenanthrene		-						-				NE	0.013
Pyrene		-						_				20	1
Total cPAH TEQ ³ (ND=0)								0.29				0.22	0.011
Total cPAH TEQ ³ (ND=0.5RL)								0.29				0.22	0.011
	-					-		0.31				0.22	0.011

Sample Location ¹	GE	51-1		GEI-2		GEI-3		GEI-4		GE	EI-8		
Sample Identification	GEI-1-3-	GEI-1-5-	GEI-2-1-	GEI-2-3-	GEI-2-5-	GEI-3-3-	GEI-4-1-	GEI-4-2-	GEI-4-3-	GEI-8-3-	GEI-8-5-		ļ
Sample identification	033114	033114	033114	033114	033114	033114	040114	040114	040114	033114	033114	Preli	minary
Sample Date	3/31/2014	3/31/2014	3/31/2014	3/31/2014	3/31/2014	3/31/2014	4/1/2014	4/2/2014	4/1/2014	3/31/2014	3/31/2014		ening
Sample Interval (feet bgs)	4-6 ft	8-10 ft	0-2 ft	4-6 ft	8-10 ft	4-6 ft	0-2 ft	2-3 ft	4-6 ft	4-6 ft	8-10 ft	Le	evel ²
Sample Type	Vadose	Saturated	Vadose	Saturated	Saturated	Vadose	Vadose	Saturated	Saturated	Vadose	Saturated	Vadose	Saturated
Sample Horizon	Fill	Native	Fill	Fill	Native	Fill	Fill	Fill/Native	Native	Fill/Native	Native	Zone	Zode
PCB-Aroclor 1016	-	-	-			-		0.068 U			-	NE	NE
PCB-Aroclor 1221	-	-	-			-	-	0.068 U			-	NE	NE
PCB-Aroclor 1232	-		-			-		0.068 U			-	NE	NE
PCB-Aroclor 1242	-		-					0.068 U				NE	NE
PCB-Aroclor 1248	-		-					0.068 U				NE	NE
PCB-Aroclor 1254			-					0.068 U				NE	NE
PCB-Aroclor 1260	-		-			-		0.068 U			-	NE	NE
Total PCB Aroclors	-		-					0.068 U				0.062	0.05

 1 Sample locations and summary of remedial investigation results are shown on Figure 5 through 9.

 2 Preliminary screening levels are from the RI/FS Work Plan (GeoEngineers, 2017).

 3 Value for gasoline-range petroleum hydrocarbons if benzene is present. If benzene is not present, screening level is 100 mg/kg.

³ Total cPAH Toxic Equivalency Quotients (TEQs) were calculated using Toxicity Equivalency Factors (TEFs) values referenced from MTCA Table 708.2 (WAC 173-340-900).

ppm = parts per million

mg/kg = milligrams per kilogram

-- = not analyzed

NE = Not Established

ND = Not Detected

RL = Reporting Limit

 ${\sf U}$ = The analyte was not detected at a concentration greater than the value identified.

J = The analyte was detected and the detected concentration is considered an estimate.

Yellow shading indicates that the identified concentration is greater than the preliminary screening level.

Blue shading indicates that the practical quantitation limit (PQL) is above screening level.

Remedial Investigation and Supplemental Investigation Soil Analytical Results Quiet Cove

						Washington				1		1	
Sample Location ¹		EI-9		GEI-10		GEI-12		-13	GEI-14		1-16		
Sample Identification	GEI-9-3- 040114	GEI-9-5- 040114	GEI-10-1- 033114	GEI-10-3- 033114	GEI-10-6- 033114	GEI-12-3- 04014	GEI-13-2- 040114	GEI-13-4- 040114	GEI-14-3- 040114	GEI-16-3- 033114	GEI-16-5- 033114	Broliu	minary
Sample Date	4/1/2014	4/1/2014	3/31/2014	3/31/2014	3/31/2014	4/1/2014	4/1/2014	4/1/2014	4/1/2014	3/31/2014	3/31/2014		ening
Sample Interval (feet bgs)	5-7 ft	8-10 ft	0-2 ft	4-6 ft	10-12 ft	5-7 ft	2-3 ft	6-8 ft	4-6 ft	4-6 ft	8-10 ft		vel ²
Sample Type	Saturated	Vadose	Vadose	Saturated	Saturated	Vadose	Vadose	Saturated	Vadose	Vadose	Saturated	Vadose	Saturated
Sample Horizon	Native	Native	Fill	Fill	Native	Fill	Fill	Native	Native	Fill	Native	Zone	Zode
Field Measured Parameters				•	•			ł		•			
Sheen	HS	NS	NS	HS	NS	NS	HS	NS	NS	SS	NS	NE	NE
Headspace Vapors (ppm)	5	<1	<1	123	<1	<1	362	2	<1	196	<1	NE	NE
Metals by EPA 6000/7000 Series (mg/kg)				1	1			1					
Arsenic	-			12 U	-					-		20	20
Cadmium	_			0.62 U	_	_			-	-	-	1.2	1
Chromium	_			52	_	_				-	-	1,000	50
Copper	_				_	_				-	-	NE	NE
Lead	_			17	_	_				-	-	250	24
Silver	_				-							NE	NE
Zinc												NE	NE
Mercury	-			0.31 U								0.07	0.07
Petroleum Hydrocarbons by NWTPH-G/Dx (mg/	(kg)												1
Gasoline-range hydrocarbons	4.8 U	5.0 U	3.3 U	420	6.3 U	3.5 U	9.4 U	3.7 U	5.2 U	150	5.4 U	30 ²	30 ²
Diesel-range hydrocarbons	29 U	30 U	1,800	5,600	30 U	29 U	1,900	30 U	34 U	1,600	30 U	2,000	2,000
Motor Oil-range hydrocarbons	58 U	59 U	3,500	8,100	60 U	58 U	80	60 U	68 U	440	60 U	2,000	2,000
BETX Compounds by EPA 8260 (mg/kg)												,	,
Benzene	0.020 U	0.020 U	0.020 U	0.043	0.020 U	0.020 U	0.023	0.020 U	0.020 U	0.11	0.020 U	0.05	0.05
Toluene	0.048 U	0.050 U	0.033 U	0.083 U	0.063 U	0.035 U	0.094 U	0.037 U	0.052 U	0.43 U	0.054 U	3.8	0.22
Ethylbenzene	0.048 U	0.050 U	0.033 U	0.21	0.063 U	0.035 U	0.99	0.037 U	0.052 U	0.85	0.054 U	1.1	1.1
Total Xylenes	0.0480 U	0.0500 U	0.0330 U	0.65	0.0630 U	0.0350 U	0.71	0.0370 U	0.0520 U	0.56	0.0540 U	2.8	0.16
Volatile Organic Compounds (VOCs) by EPA 826	60 (mg/kg)							1		1			
1,1,1,2-Tetrachloroethane	-		-	0.045 U				-	-			0.044	0.003
1,1,1-Trichloroethane			-	0.045 U				-	_			42	2.2
1,1,2,2-Tetrachloroethane			-	0.045 U				-	_			0.017	0.002
1,1,2-Trichloroethane			-	0.045 U				-	-			0.025	0.002
1,1-Dichloroethane			-	0.045 U				-	_			0.061	0.0038
1,1-Dichloroethene			-	0.045 U				_	-			0.023	0.0011
1,1-Dichloropropene			-	0.045 U				-	-			NE	NE
1,2,3-Trichlorobenzene			-	0.045 U				-	_			NE	NE
1,2,3-Trichloropropane			-	0.045 U				-	-			0.033	0.033
1,2,4-Trichlorobenzene	_			0.045 U				_	-	-		0.019	0.005
1,2-Dibromo-3-Chloropropane			-	0.23 U				-	-			1.3	1.3
1,2-Dibromoethane			-	0.045 U		_		_			-	0.002	0.001
1,2-Dichlorobenzene (o-Dichlorobenzene)	_			0.045 U				-	_			30	1.7
1,2-Dichloroethane				0.045 U								0.02	0.001
1,2-Dichloropropane	-			0.045 U								0.02	0.001
1,3-Dichlorobenzene (m-Dichlorobenzene)				0.045 U								NE	NE
1,3-Dichloropropane	-			0.045 U								NE	NE
1,4-Dichlorobenzene (p-Dichlorobenzene)	_			0.045 U								0.08	0.067
2,2-Dichloropropane	_			0.045 U					-			NE	NE
2-Chloroethyl vinyl ether		_	_	0.36 U			-	_	_		-	NE	NE
2-Chlorotoluene	_	_		0.045 U		_			_	_	_	1,600	1,600
		1	1		1		1	1	1	1	1		

Sample Location ¹	GE	EI-9		GEI-10		GEI-12	GE	1-13	GEI-14	GE	I-16		
Sample Identification	GEI-9-3-	GEI-9-5-	GEI-10-1-	GEI-10-3-	GEI-10-6-	GEI-12-3-	GEI-13-2-	GEI-13-4-	GEI-14-3-	GEI-16-3-	GEI-16-5-		
Sample Identification	040114	040114	033114	033114	033114	04014	040114	040114	040114	033114	033114	Preli	minary
Sample Date	4/1/2014	4/1/2014	3/31/2014	3/31/2014	3/31/2014	4/1/2014	4/1/2014	4/1/2014	4/1/2014	3/31/2014	3/31/2014		eening
Sample Interval (feet bgs)	5-7 ft	8-10 ft	0-2 ft	4-6 ft	10-12 ft	5-7 ft	2-3 ft	6-8 ft	4-6 ft	4-6 ft	8-10 ft	Le	evel ²
Sample Type	Saturated	Vadose	Vadose	Saturated	Saturated	Vadose	Vadose	Saturated	Vadose	Vadose	Saturated	Vadose	Saturated
Sample Horizon	Native	Native	Fill	Fill	Native	Fill	Fill	Native	Native	Fill	Native	Zone	Zode
Bromobenzene	-	-	-	0.045 U	-	-	-			-	-	NE	NE
Bromochloromethane	-	-	-	0.045 U	-	-	-			-	-	NE	NE
Bromodichloromethane	-	-	-	0.045 U		-						NE	NE
Bromoform (Tribromomethane)	-	-	-	0.045 U		-		-				0.79	0.05
Bromomethane	-	-	-	0.045 U	-			-	-	-		0.06	0.0038
Carbon Tetrachloride	-			0.045 U				-	-			0.005	0.001
Chlorobenzene	-		-	0.045 U				-	-			2.5	0.15
Chloroethane	-	-	-	0.23 U				-	-			96	5.6
Chloroform	-	-	-	0.045 U				-	-			0.0064	0.001
Chloromethane	-	-	-	0.29 U				-				0.73	0.045
cis-1,2-Dichloroethene	-	-	-	0.045 U				-				160	160
cis-1,3-Dichloropropene	-	-	-	0.045 U				-				NE	NE
Dibromochloromethane	-	-	-	0.045 U				-	-			0.024	0.002
Dibromomethane	-	-	-	0.045 U	-			-		-		800	800
Dichlorodifluoromethane (CFC-12)	-	-	-	0.045 U				-				0.17	NE
Hexachlorobutadiene	-	-	-	0.23 U				-	-			NE	NE
Methyl lodide (lodomethane)	-		-	0.23 U				-	-			NE	NE
Methyl t-butyl ether	-		-	0.059 U				-	-			2.6	0.18
Methylene Chloride	-	-	-	0.23 U				-	-			NE	NE
n-Hexane	-		-	0.083 U				-				0.27	0.01
Tetrachloroethene	-		-	0.045 U		-		-	-			0.094	0.0049
Trans-1,2-Dichloroethene	-		-	0.045 U				-	-			22	1.3
Trans-1,3-Dichloropropene	-		-	0.045 U		-		-	-			NE	NE
Trichloroethene	-		-	0.045 U		-		-	-			0.01	0.001
Trichlorofluoromethane (CFC-11)	-	-		0.045 U	-	-		-	-	-	-	1.4	0.04
Vinyl Chloride	-		-	0.045 U		-	-	-	-		-	0.006	0.001
Polycyclic Aromatic Hydrocarbons (PAHs) by EP	PA 8270-SIM (mg/l	<g)< td=""><td></td><td></td><td></td><td>1</td><td>1</td><td></td><td></td><td>1</td><td></td><td></td><td></td></g)<>				1	1			1			
1-Methylnaphthalene	-	-	-	4.7		-	-	-			-	35	35
2-Methylnaphthalene	-	-	-	7.6		-	-	-			-	0.77	0.04
Acenaphthene	-	-	-	-		-		-				0.32	0.02
Acenaphthylene	-	-	-	-		-		-				NE	0.068
Anthracene	-	-	-	-				-		-		4.4	0.2
Benzo(a)anthracene	-	-	-	3.9	-	-		-	-	-		0.07	0.007
Benzo(a)pyrene	-	-	-	3	-			-		-		0.14	0.01
Benzo(b)fluoranthene			-	2.4	-			-		-		0.25	0.012
Benzo(g,h,i)perylene				-	-					-		NE	2
Benzo(k)fluoranthene			-	1.1	-				-	-	-	0.32	0.016
Chrysene	-			2.8	-					-		0.25	0.012
Dibenzo(a,h)anthracene	-			0.68					-	-		0.14	0.018
Fluoranthene			-	-	-			-	-	-		0.5	0.16
Fluorene				-								0.5	0.16
Indeno(1,2,3-c,d)pyrene	-		-	1.3	-	-		-	-	-		0.69	0.035
Naphthalene	-			6.2	-					-		0.25	0.013
Phenanthrene				-					-	-		NE	0.1
Durana			-	-	-					-		20	1
Pyrene				0.07								0.00	0.041
Pyrene Total cPAH TEQ ³ (ND=0) Total cPAH TEQ ³ (ND=0.5RL)	-		-	3.97 3.97				-				0.22 0.22	0.011

Sample Location ¹	GE	:1-9		GEI-10		GEI-12	GE	I-13	GEI-14	GE	I-16		·
Sample Identification	GEI-9-3-	GEI-9-5-	GEI-10-1-	GEI-10-3-	GEI-10-6-	GEI-12-3-	GEI-13-2-	GEI-13-4-	GEI-14-3-	GEI-16-3-	GEI-16-5-		
Sample Identification	040114	040114	033114	033114	033114	04014	040114	040114	040114	033114	033114	Preli	minary
Sample Date	4/1/2014	4/1/2014	3/31/2014	3/31/2014	3/31/2014	4/1/2014	4/1/2014	4/1/2014	4/1/2014	3/31/2014	3/31/2014		ening
Sample Interval (feet bgs)	5-7 ft	8-10 ft	0-2 ft	4-6 ft	10-12 ft	5-7 ft	2-3 ft	6-8 ft	4-6 ft	4-6 ft	8-10 ft	Le	evel ²
Sample Type	Saturated	Vadose	Vadose	Saturated	Saturated	Vadose	Vadose	Saturated	Vadose	Vadose	Saturated	Vadose	Saturated
Sample Horizon	Native	Native	Fill	Fill	Native	Fill	Fill	Native	Native	Fill	Native	Zone	Zode
PCB-Aroclor 1016	-	-	-	0.062 U		-		-			-	NE	NE
PCB-Aroclor 1221	-	-	-	0.062 U	-	-	-	-			-	NE	NE
PCB-Aroclor 1232	-		-	0.062 U				-				NE	NE
PCB-Aroclor 1242	_	-	-	0.062 U		-	-	-			-	NE	NE
PCB-Aroclor 1248	_	-	-	0.062 U		-	-	-			-	NE	NE
PCB-Aroclor 1254	-	-	-	0.062 U	-	-	-	-			-	NE	NE
PCB-Aroclor 1260	-	-	-	0.062 U	-	-	-	-			-	NE	NE
Total PCB Aroclors	-		-	0.062 U		-		-			-	0.062	0.05

 1 Sample locations and summary of remedial investigation results are shown on Figure 5 through 9.

 2 Preliminary screening levels are from the RI/FS Work Plan (GeoEngineers, 2017).

³ Value for gasoline-range petroleum hydrocarbons if benzene is present. If benzene is not present, screening level is 100 mg/kg.

³ Total cPAH Toxic Equivalency Quotients (TEQs) were calculated using Toxicity Equivalency Factors (TEFs) values referenced from MTCA Table 708.2 (WAC 173-340-900).

ppm = parts per million

mg/kg = milligrams per kilogram

-- = not analyzed

NE = Not Established

ND = Not Detected

RL = Reporting Limit

RL = Reporting Limit

U = The analyte was not detected at a concentration greater than the value identified. J = The analyte was detected and the detected concentration is considered an estimate.

Yellow shading indicates that the identified concentration is greater than the preliminary screening level.

Blue shading indicates that the practical quantitation limit (PQL) is above screening level.

Remedial Investigation and Supplemental Investigation Soil Analytical Results Quiet Cove

Anacortes, Washington

	1				Anacortes,	washington			•				
Sample Location ¹	GEI-17		GEI-18	1		1-19	GEI-20	GEI-21		GEI-25			
Sample Identification	GEI-17-3- 033114	GEI-18-1- 033114	GEI-18-3- 033114	GEI-18-5- 033114	GEI-19-1- 040114	GEI-19-3- 040114	GEI-20-3- 040114	GEI-21-3- 040114	GEI-25-1- 040114	GEI-25-3- 040114	GEI-25-5- 040114	Prelir	minary
Sample Date	3/31/2014	3/31/2014	3/31/2014	3/31/2014	4/1/2014	4/1/2014	4/1/2014	4/1/2014	4/1/2014	4/1/2014	4/1/2014		ening
Sample Interval (feet bgs)	4-6 ft	0-2 ft	4-6 ft	8-10 ft	0-2 ft	4-6 ft	4-6 ft	4-6 ft	0-2 ft	4-6 ft	8-10 ft	Lev	vel ²
Sample Type	Saturated	Vadose	Saturated	Saturated	Vadose	Saturated	Vadose	Vadose	Vadose	Saturated	Saturated	Vadose	Saturated
Sample Horizon	Fill	Fill	Native	Native	Fill	Native	Native	Native	Fill	Fill	Native	Zone	Zode
Field Measured Parameters			•	•	•	•		•	•	•	•		
Sheen	HS	NS	HS	NS	NS	NS	NS	NS	SS	HS	NS	NE	NE
Headspace Vapors (ppm)	>1,000	<1	24	<1	<1	<1	<1	<1	<1	32	<1	NE	NE
Metals by EPA 6000/7000 Series (mg/kg)													
Arsenic	-	-	-	-	-	-	-	-	-	12 U	-	20	20
Cadmium	-	-	-		-	-	-	-		0.59 U	-	1.2	1
Chromium		-						-		34	-	1,000	50
Copper		-	-					-			-	NE	NE
Lead			-		-			-		13	-	250	24
Silver		-						-			-	NE	NE
Zinc		-	-					-			-	NE	NE
Mercury		-	-	-				-	-	0.29 U		0.07	0.07
Petroleum Hydrocarbons by NWTPH-G/Dx (mg	/kg)									1			<u> </u>
Gasoline-range hydrocarbons	9,400	3.2 U	4.0 U	3.8 U	4.0 U	3.6 U	3.9 U	5.8 U	3.3 U	3.9 U	17 U	30 ²	30 ²
Diesel-range hydrocarbons	14,000	270	2,200	71	29 U	29 U	29 U	29 U	250	4,300	76	2,000	2,000
Motor Oil-range hydrocarbons	2,900	1,300	2,300	61 U	58 U	58 U	59 U	59 U	1,100	1,200	580	2,000	2,000
BETX Compounds by EPA 8260 (mg/kg)													<u> </u>
Benzene	62	0.020 U	0.033 U	0.05	0.05								
Toluene	16	0.032 U	0.040 U	0.038 U	0.040 U	0.036 U	0.039 U	0.058 U	0.033 U	0.039 U	0.17 U	3.8	0.22
Ethylbenzene	180	0.032 U	0.11	0.038 U	0.040 U	0.036 U	0.039 U	0.058 U	0.033 U	0.26	0.17 U	1.1	1.1
Total Xylenes	361	0.0320 U	0.23	0.0380 U	0.0400 U	0.0360 U	0.0390 U	0.0580 U	0.042	0.16	0.170 U	2.8	0.16
Volatile Organic Compounds (VOCs) by EPA 82	60 (mg/kg)		•		•	•		•		•			
1,1,1,2-Tetrachloroethane		-	-			-		-		0.037 U	-	0.044	0.003
1,1,1-Trichloroethane		-	-			-		-		0.037 U	-	42	2.2
1,1,2,2-Tetrachloroethane		-	-			-		_		0.037 U	-	0.017	0.002
1,1,2-Trichloroethane		-	-			-		-		0.037 U	-	0.025	0.002
1,1-Dichloroethane					-	-				0.037 U	-	0.061	0.0038
1,1-Dichloroethene					-	-		-		0.037 U	-	0.023	0.0011
1,1-Dichloropropene		-	-			-		-		0.037 U	-	NE	NE
1,2,3-Trichlorobenzene					_	-				0.037 U	-	NE	NE
1,2,3-Trichloropropane					-	-				0.037 U	-	0.033	0.033
1,2,4-Trichlorobenzene					-	-				0.037 U	-	0.019	0.005
1,2-Dibromo-3-Chloropropane		-	-			-		-		0.19 U	-	1.3	1.3
1,2-Dibromoethane		-			-	-		-		0.037 U	-	0.002	0.001
1,2-Dichlorobenzene (o-Dichlorobenzene)		-	-			-		_		0.037 U	-	30	1.7
1,2-Dichloroethane					-	-				0.037 U	-	0.02	0.001
1,2-Dicition dechane								_		0.037 U	-	0.02	0.001
1,2-Dichloropropane			-									1	1
,							-	-		0.037 U	-	NE	NE
1,2-Dichloropropane			-							0.037 U 0.037 U		NE NE	NE NE
1,2-Dichloropropane 1,3-Dichlorobenzene (m-Dichlorobenzene)	-		-					-					
1,2-Dichloropropane 1,3-Dichlorobenzene (m-Dichlorobenzene) 1,3-Dichloropropane							-	-		0.037 U	-	NE	NE
1,2-Dichloropropane 1,3-Dichlorobenzene (m-Dichlorobenzene) 1,3-Dichloropropane 1,4-Dichlorobenzene (p-Dichlorobenzene)						-				0.037 U 0.037 U		NE 0.08	NE 0.067
1,2-Dichloropropane 1,3-Dichlorobenzene (m-Dichlorobenzene) 1,3-Dichloropropane 1,4-Dichlorobenzene (p-Dichlorobenzene) 2,2-Dichloropropane										0.037 U 0.037 U 0.037 U		NE 0.08 NE	NE 0.067 NE

GEOENGINEERS 💋

Sample Location ¹	GEI-17		GEI-18			I-19	GEI-20	GEI-21		GEI-25			
Sample Identification	GEI-17-3-	GEI-18-1-	GEI-18-3-	GEI-18-5-	GEI-19-1-	GEI-19-3-	GEI-20-3-	GEI-21-3-	GEI-25-1-	GEI-25-3-	GEI-25-5-		
· · · · · · · · · · · · · · · · · · ·	033114	033114	033114	033114	040114	040114	040114	040114	040114	040114	040114	Preli	iminary
Sample Date	3/31/2014	3/31/2014	3/31/2014	3/31/2014	4/1/2014	4/1/2014	4/1/2014	4/1/2014	4/1/2014	4/1/2014	4/1/2014		eening
Sample Interval (feet bgs)	4-6 ft	0-2 ft	4-6 ft	8-10 ft	0-2 ft	4-6 ft	4-6 ft	4-6 ft	0-2 ft	4-6 ft	8-10 ft	Le	evel ²
Sample Type	Saturated	Vadose	Saturated	Saturated	Vadose	Saturated	Vadose	Vadose	Vadose	Saturated	Saturated	Vadose	Saturated
Sample Horizon	Fill	Fill	Native	Native	Fill	Native	Native	Native	Fill	Fill	Native	Zone	Zode
Bromobenzene	-	-	-			-	-	-		0.037 U	-	NE	NE
Bromochloromethane			-	-	-	-				0.037 U	-	NE	NE
Bromodichloromethane										0.037 U		NE	NE
Bromoform (Tribromomethane)		-	-					-		0.037 U		0.79	0.05
Bromomethane	-	-			-			-		0.037 U	-	0.06	0.0038
Carbon Tetrachloride			-					-		0.037 U		0.005	0.001
Chlorobenzene		-	-					-		0.037 U		2.5	0.15
Chloroethane								-		0.19 U		96	5.6
Chloroform	-	-	-					-		0.037 U		0.0064	0.001
Chloromethane	-		-			-				0.24 U	-	0.73	0.045
cis-1,2-Dichloroethene		-	-							0.037 U	-	160	160
cis-1,3-Dichloropropene	-			-		-		-	-	0.037 U	-	NE	NE
Dibromochloromethane		-	-							0.037 U	-	0.024	0.002
Dibromomethane	-					-		-		0.037 U	-	800	800
Dichlorodifluoromethane (CFC-12)	-					-		-		0.037 U	-	0.17	NE
Hexachlorobutadiene		-	-	-	-			-	-	0.19 U		NE	NE
Methyl lodide (lodomethane)		-	-	-	-		-	-	-	0.19 U		NE	NE
Methyl t-butyl ether		-		-					-	0.048 U		2.6	0.18
Methylene Chloride	-	-	-	-		-	-		-	0.19 U		NE	NE
n-Hexane		-	-	-				-	-	0.074		0.27	0.01
Tetrachloroethene		-			-		-			0.037 U	-	0.094	0.0049
Trans-1,2-Dichloroethene		-	-	-	-	-	-		-	0.037 U	-	22	1.3
Trans-1,3-Dichloropropene		-					-			0.037 U	-	NE	NE
Trichloroethene		-		-	-	-	-		-	0.037 U	-	0.01	0.001
Trichlorofluoromethane (CFC-11)	-	-	-					-	-	0.037 U		1.4	0.04
Vinyl Chloride	-	-	-	-			-		-	0.037 U		0.006	0.001
Polycyclic Aromatic Hydrocarbons (PAHs) by E	PA 8270-SIM (mg/	kg)		•		•	•	•	•				
1-Methylnaphthalene	-	-	-	-	-	-	-	-	-	6.9	-	35	35
2-Methylnaphthalene		-	-	-	-	-	-	-	-	1.3	-	0.77	0.04
Acenaphthene		-		-	-	-	-	-	-	-		0.32	0.02
Acenaphthylene		-		-	-	-	-	-	-			NE	0.068
Anthracene		-	-				-	-				4.4	0.2
Benzo(a)anthracene	-	-			-	-	-			0.19	-	0.07	0.007
Benzo(a)pyrene		-			-	-	-	-		0.11	-	0.14	0.01
Benzo(b)fluoranthene		-		-	-	-	-			0.08	-	0.25	0.012
Benzo(g,h,i)perylene	-	-	-	-			-		-	-	-	NE	2
Benzo(k)fluoranthene		-		-	-	-	-			0.052	-	0.32	0.016
Chrysene	-	-	-	-	-	-	-		-	0.2	-	0.25	0.012
Dibenzo(a,h)anthracene		-	-	-	-					0.039 U		0.14	0.018
Fluoranthene	-	-	-	-			-	-	-	-	-	0.5	0.16
Fluorene	-	-	-	-			-	-	-	-	-	0.5	0.16
Indeno(1,2,3-c,d)pyrene	-	-	-		_	-	-			0.048	-	0.69	0.035
Naphthalene		-					-			1.1		0.25	0.013
Phenanthrene		-								-		NE	0.1
Pyrene		-								-		20	1
-		1						1					0.014
Total cPAH TEQ ³ (ND=0)	-	-	-				-	-		0.149		0.22	0.011

Sample Location ¹	GEI-17		GEI-18		GE	I-19	GEI-20	GEI-21		GEI-25			
Sample Identification	GEI-17-3-	GEI-18-1-	GEI-18-3-	GEI-18-5-	GEI-19-1-	GEI-19-3-	GEI-20-3-	GEI-21-3-	GEI-25-1-	GEI-25-3-	GEI-25-5-		
Sample Identification	033114	033114	033114	033114	040114	040114	040114	040114	040114	040114	040114	Preli	minary
Sample Date	3/31/2014	3/31/2014	3/31/2014	3/31/2014	4/1/2014	4/1/2014	4/1/2014	4/1/2014	4/1/2014	4/1/2014	4/1/2014		ening
Sample Interval (feet bgs)	4-6 ft	0-2 ft	4-6 ft	8-10 ft	0-2 ft	4-6 ft	4-6 ft	4-6 ft	0-2 ft	4-6 ft	8-10 ft	Le	evel ²
Sample Type	Saturated	Vadose	Saturated	Saturated	Vadose	Saturated	Vadose	Vadose	Vadose	Saturated	Saturated	Vadose	Saturated
Sample Horizon	Fill	Fill	Native	Native	Fill	Native	Native	Native	Fill	Fill	Native	Zone	Zode
PCB-Aroclor 1016	-	-	-			-	-	-	-	0.059 U	-	NE	NE
PCB-Aroclor 1221	-	-	-			-	-	-	-	0.059 U	-	NE	NE
PCB-Aroclor 1232	-		-				-	-		0.059 U		NE	NE
PCB-Aroclor 1242			-				-	-		0.059 U		NE	NE
PCB-Aroclor 1248	-		-				-	-		0.059 U		NE	NE
PCB-Aroclor 1254	-	-	-	-		-	-	-	-	0.059 U	-	NE	NE
PCB-Aroclor 1260	-	-	-	-				-	-	0.059 U	-	NE	NE
Total PCB Aroclors	-							-		0.059 U		0.062	0.05

 1 Sample locations and summary of remedial investigation results are shown on Figure 5 through 9.

 2 Preliminary screening levels are from the RI/FS Work Plan (GeoEngineers, 2017).

³ Value for gasoline-range petroleum hydrocarbons if benzene is present. If benzene is not present, screening level is 100 mg/kg.

³ Total cPAH Toxic Equivalency Quotients (TEQs) were calculated using Toxicity Equivalency Factors (TEFs) values referenced from MTCA Table 708.2 (WAC 173-340-900).

ppm = parts per million

mg/kg = milligrams per kilogram

-- = not analyzed

NE = Not Established

ND = Not Detected

RL = Reporting Limit

 ${\sf U}$ = The analyte was not detected at a concentration greater than the value identified.

J = The analyte was detected and the detected concentration is considered an estimate.

Yellow shading indicates that the identified concentration is greater than the preliminary screening level.

Blue shading indicates that the practical quantitation limit (PQL) is above screening level.

Remedial Investigation and Supplemental Investigation Soil Analytical Results

Quiet Cove Anacortes, Washington

• • • • • 1												T	
Sample Location ¹	GEI-27 GEI-27-3-	GEI-28 GEI-28-4-	GEI-29-5-7	GEI-29	GEI-29-13-15	GEI-30-2-4	GEI-30	GEI-30-9-11	GEI-31-3-5_	GEI-31	CEI 21 12 15	-	
Sample Identification	040214	040214	091217	GEI-29-10-12_ 091217	091217	091217	GEI-30-6-8_ 091217	091217	091117	GEI-31-6-8_ 091117	GEI-31-13-15_ 091117	Preli	minary
Sample Date	4/2/2014	4/2/2014	9/12/2017	9/12/2017	9/12/2017	9/12/2017	9/12/2017	9/12/2017	9/11/2017	9/11/2017	9/11/2017	Scre	ening
Sample Interval (feet bgs)	6-7.5 ft	6-8 ft	5-7 ft	10-12 ft	13-15 ft	2-4 ft	6-8 ft	9-11 ft	3-5 ft	6-8 ft	13-15 ft	Le	vel ²
Sample Type	Vadose	Vadose	Vadose	Saturated	Saturated	Vadose	Saturated	Saturated	Vadose	Saturated	Saturated	Vadose	Saturated
Sample Horizon	Fill	Native	Fill	Native	Native	Fill	Fill/Native	Native	Fill	Fill/Native	Native	Zone	Zode
Field Measured Parameters					•					•			
Sheen	NS	NS	NS	NS	NS	NS	SS	NS	NS	NS	NS	NE	NE
Headspace Vapors (ppm)	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	NE	NE
Metals by EPA 6000/7000 Series (mg/kg)					•					•			
Arsenic		-	3.18	4.47	5.76	2.24	2.16	1.23	1.32	1.5	1.15	20	20
Cadmium	-	-	0.06 J	0.15	0.06 J	0.06 J	0.05 J	0.13	0.19	0.02 J	0.03 J	1.2	1
Chromium	-	-	23.7	31.4	34.5	25.3	29	18.8	12.9	14.5	30.6	1,000	50
Copper	-	-	12.6	19.1	34.3	18.4	14.6	3.52	8.39	3.56	5.7	NE	NE
Lead			18	3.59	4.31	3.36	25.7	1.17	1.7	1.04	1.13	250	24
Silver			0.03 J	0.06 J	0.06 J	0.04 J	0.02 J	0.03 J	0.07 J	0.02 J	0.02 J	NE	NE
Zinc	-		42.5	38.9	57.6	34.3	51.6	19.7	58.4	21.2	26.8	NE	NE
Mercury			0.02854 U	0.02750 U	0.02525 U	0.02407	0.02899 U	0.02235 U	0.02671 U	0.02754 U	0.02614 U	0.07	0.07
Petroleum Hydrocarbons by NWTPH-G/Dx (mg	/kg)												
Gasoline-range hydrocarbons	4.9 U	4.0 U	7.53 U	6.51 U	7.03 U	6.26 U	14.7 U	7.59 U	6.28 U	6.19 U	5.74 U	30 ²	30 ²
Diesel-range hydrocarbons	32 U	29 U	9.79	5.85 U	5.97 U	15.4	105	6.07 U	5.51 U	5.88 U	5.53 U	2,000	2,000
Motor Oil-range hydrocarbons	70	58 U	70.1	11.7 U	11.9 U	27.3	259	17.5	11.0 U	11.8 U	11.1 U	2,000	2,000
BETX Compounds by EPA 8260 (mg/kg)													
Benzene	0.020 U	0.020 U	0.00112 U	0.00123 U	0.00122 U	0.00044 J	0.00141 U	0.00116 U	0.00266	0.00093 J	0.00100 U	0.05	0.05
Toluene	0.049 U	0.040 U	0.00112 U	0.00123 U	0.00122 U	0.00104 U	0.00040 J	0.00034 J	0.00070 J	0.00066 J	0.00100 U	3.8	0.22
Ethylbenzene	0.049 U	0.040 U	0.00112 U	0.00123 U	0.00122 U	0.00104 U	0.00141 U	0.00116 U	0.00144 U	0.00124 U	0.00100 U	1.1	1.1
Total Xylenes	0.0490 U	0.0400 U	0.00224 U	0.00246 U	0.00245 U	0.00209 U	0.00283 U	0.00233 U	0.00288 U	0.00249 U	0.00199 U	2.8	0.16
Volatile Organic Compounds (VOCs) by EPA 82	:60 (mg/kg)												
1,1,1,2-Tetrachloroethane		-								-		0.044	0.003
1,1,1-Trichloroethane		-	-	-	-			-	-	-		42	2.2
1,1,2,2-Tetrachloroethane	-	-			-	-	-			-		0.017	0.002
1,1,2-Trichloroethane	-	-			-	-	-			-		0.025	0.002
1,1-Dichloroethane	-	-	-	-			-	-	-	-		0.061	0.0038
1,1-Dichloroethene		-		-						-		0.023	0.0011
1,1-Dichloropropene	-	-		-	-	-			-	-		NE	NE
1,2,3-Trichlorobenzene		_	-	-	-		-		-	-		NE	NE
1,2,3-Trichloropropane	-	-	-	-			-	-	-	-	-	0.033	0.033
1,2,4-Trichlorobenzene	-	-	-	-	-	-	-		-	-	-	0.019	0.005
1,2-Dibromo-3-Chloropropane	-	-			-		-			-	-	1.3	1.3
1,2-Dibromoethane	-	-	0.00112 U	0.00123 U	0.00122 U	0.00104 U	0.00141 U	0.00116 U	0.00144 U	0.00124 U	0.00100 U	0.002	0.001
1,2-Dichlorobenzene (o-Dichlorobenzene)	-	-	_		-	-	_	-		-	-	30	1.7
1,2-Dichloroethane		-	0.00112 U	0.00123 U	0.00122 U	0.00104 U	0.00141 U	0.00116 U	0.00144 U	0.00124 U	0.00100 U	0.02	0.001
1,2-Dichloropropane	-	-	-		-		_	-		-	-	0.02	0.001
1,3-Dichlorobenzene (m-Dichlorobenzene)	-	-	-		-		-	-		-	-	NE	NE
1,3-Dichloropropane		-	-		-		-	-		-	-	NE	NE
1,4-Dichlorobenzene (p-Dichlorobenzene)		-	-	-	-			-	-	-	-	0.08	0.067
2,2-Dichloropropane				-	-					-		NE	NE
2-Chloroethyl vinyl ether		-					-	-				NE	NE
2-Chlorotoluene					-			-		-		1,600	1,600
	1	1		1	1			1		1	1	-	NE

Sample Location ¹	GEI-27	GEI-28		GEI-29			GEI-30			GEI-31			
Sample Identification	GEI-27-3-	GEI-28-4-	GEI-29-5-7_	GEI-29-10-12_	GEI-29-13-15_	GEI-30-2-4_	GEI-30-6-8_	GEI-30-9-11_	GEI-31-3-5_	GEI-31-6-8_	GEI-31-13-15_		
Sample identification	040214	040214	091217	091217	091217	091217	091217	091217	091117	091117	091117	Preli	iminary
Sample Date	4/2/2014	4/2/2014	9/12/2017	9/12/2017	9/12/2017	9/12/2017	9/12/2017	9/12/2017	9/11/2017	9/11/2017	9/11/2017	Scre	eening
Sample Interval (feet bgs)	6-7.5 ft	6-8 ft	5-7 ft	10-12 ft	13-15 ft	2-4 ft	6-8 ft	9-11 ft	3-5 ft	6-8 ft	13-15 ft	Le	evel ²
Sample Type	Vadose	Vadose	Vadose	Saturated	Saturated	Vadose	Saturated	Saturated	Vadose	Saturated	Saturated	Vadose	Saturated
Sample Horizon	Fill	Native	Fill	Native	Native	Fill	Fill/Native	Native	Fill	Fill/Native	Native	Zone	Zode
Bromobenzene		-	-	_	-				_	-		NE	NE
Bromochloromethane	-						-		-			NE	NE
Bromodichloromethane	-	-		-					-	-		NE	NE
Bromoform (Tribromomethane)	-			-	-				-	-		0.79	0.05
Bromomethane				-			-	-	-		_	0.06	0.0038
Carbon Tetrachloride	-			-	-		-		-	-		0.005	0.001
Chlorobenzene	-			-	-		-		-	-		2.5	0.15
Chloroethane	-	-					-	-	-	-		96	5.6
Chloroform				-					-	-		0.0064	0.001
Chloromethane	-	-			-		-			-		0.73	0.045
cis-1,2-Dichloroethene				-								160	160
cis-1,3-Dichloropropene	_				-		_					NE	NE
Dibromochloromethane		_	_	_	_		_		-	_		0.024	0.002
Dibromomethane	-			_			-		_	_		800	800
Dichlorodifluoromethane (CFC-12)				_			-			_		0.17	NE
Hexachlorobutadiene	-						_	_				NE	NE
Methyl lodide (lodomethane)		_					_	-				NE	NE
Methyl t-butyl ether	_		0.00112 U	0.00123 U	0.00122 U	0.00104 U	0.00141 U	0.00116 U	0.00144 U	0.00124 U	0.00100 U	2.6	0.18
Methylene Chloride				-	-	-	-	-	-	-	-	NE	NE
n-Hexane			0.00112 U	0.00123 U	0.00122 U	0.00104 U	0.00141 U	0.00116 U	0.00144 U	0.00152	0.00106	0.27	0.01
Tetrachloroethene	_	_	_		-	_	_	_		-		0.094	0.0049
Trans-1,2-Dichloroethene	_						-	_				22	1.3
Trans-1,3-Dichloropropene	_						_					NE	NE
Trichloroethene		_					_					0.01	0.001
Trichlorofluoromethane (CFC-11)	_	_					-	-	_	_		1.4	0.001
Vinyl Chloride												0.006	0.001
Polycyclic Aromatic Hydrocarbons (PAHs) by EF			_	_	_	_				_		0.000	0.001
1-Methylnaphthalene	A 8270-510 (mg/ P	~s)	0.0116	0.00478 U	0.00491 U	0.00492 U	0.0339	0.00491 U	0.00497 U	0.00492 U	0.00492 U	35	35
			0.0110	0.00478 U	0.004910 0.00491U	0.00492 0	0.0667	0.00491 U	0.00497 U	0.00492 U	0.00492 U	0.77	0.04
2-Methylnaphthalene	-		0.0182	0.00478 U	0.004910 0.00491U	0.00237J	0.0667	0.00491 U 0.00491 U	0.00497 U	0.00492 U	0.00492 U 0.00492 U	0.77	0.04
Acenaphthene				0.00478 U	0.004910 0.00491U	0.00492 U	0.0102		0.00497 U				0.02
Acenaphthylene			0.00902			0.00492 U 0.00492 U		0.00491 U		0.00492 U	0.00492 U	NE	
Anthracene	-	-	0.0212	0.00478 U	0.00491U		1.03	0.00433 J	0.00497 U	0.00492 U	0.00492 U	4.4	0.2
Benzo(a)anthracene	-		0.058	0.00478 U	0.00491 U	0.00492 U	2.32	0.0107	0.00497 U	0.00492 U	0.00492 U	0.07	0.007
Benzo(a)pyrene			0.0666	0.00286 J	0.00491 U	0.00492 U	2.39	0.0117	0.00497 U	0.00492 U	0.00492 U	0.14	0.01
Benzo(b)fluoranthene			0.0427	0.00478 U	0.00491 U	0.00492 U	1.35	0.00613	0.00497 U	0.00492 U	0.00492 U	0.25	0.012
Benzo(g,h,i)perylene			0.0595	0.00478 U	0.00491 U	0.00492 U	1.58	0.00787	0.00497 U	0.00492 U	0.00492 U	NE	2
Benzo(k)fluoranthene			0.021	0.00478 U	0.00491 U	0.00492 U	0.792	0.00427 J	0.00497 U	0.00492 U	0.00492 U	0.32	0.016
Chrysene	-		0.0776	0.00478 U	0.00491 U	0.00492 U	2.27	0.0117	0.00497 U	0.00492 U	0.00492 U	0.25	0.012
Dibenzo(a,h)anthracene	-	-	0.0104	0.00478 U	0.00491 U	0.00492 U	0.338	0.00491 U	0.00497 U	0.00492 U	0.00492 U	0.14	0.018
Fluoranthene			0.104	0.00344 J	0.00491 U	0.00380 J	4.21	0.0207	0.00267 J	0.00492 U	0.00492 U	0.5	0.16
Fluorene			0.00841	0.00478 U	0.00491 U	0.00492 U	0.0883	0.00491 U	0.00497 U	0.00492 U	0.00492 U	0.5	0.16
Indeno(1,2,3-c,d)pyrene			0.0419	0.00478 U	0.00491 U	0.00492 U	1.38	0.00626	0.00497 U	0.00492 U	0.00492 U	0.69	0.035
Naphthalene	-		0.00834	0.00478 U	0.00491 U	0.00286 J	0.143	0.00491 U	0.00497 U	0.00492 U	0.00492 U	0.25	0.013
Phenanthrene			0.0792	0.00478 U	0.00491 U	0.00463 J	1.38	0.00553	0.00220 J	0.00492 U	0.00492 U	NE	0.1
Pyrene			0.118	0.00449 J	0.00491 U	0.00576	4.71	0.025	0.00264 J	0.00492 U	0.00492 U	20	1
Total cPAH TEQ ³ (ND=0)			0.0848	0.00286	0 U	0 U	3.03	0.0148	0 U	0 U	0 U	0.22	0.011
Total cPAH TEQ ³ (ND=0.5RL)													

Sample Location ¹	GEI-27	GEI-28		GEI-29			GEI-30			GEI-31			
Sample Identification	GEI-27-3-	GEI-28-4-	GEI-29-5-7_	GEI-29-10-12_	GEI-29-13-15_	GEI-30-2-4_	GEI-30-6-8_	GEI-30-9-11_	GEI-31-3-5_	GEI-31-6-8_	GEI-31-13-15_		
	040214	040214	091217	091217	091217	091217	091217	091217	091117	091117	091117	Preli	minary
Sample Date	4/2/2014	4/2/2014	9/12/2017	9/12/2017	9/12/2017	9/12/2017	9/12/2017	9/12/2017	9/11/2017	9/11/2017	9/11/2017	Scre	ening
Sample Interval (feet bgs)	6-7.5 ft	6-8 ft	5-7 ft	10-12 ft	13-15 ft	2-4 ft	6-8 ft	9-11 ft	3-5 ft	6-8 ft	13-15 ft	Le	vel ²
Sample Type	Vadose	Vadose	Vadose	Saturated	Saturated	Vadose	Saturated	Saturated	Vadose	Saturated	Saturated	Vadose	Saturated
Sample Horizon	Fill	Native	Fill	Native	Native	Fill	Fill/Native	Native	Fill	Fill/Native	Native	Zone	Zode
PCB-Aroclor 1016		-	-	-			-	-	-		-	NE	NE
PCB-Aroclor 1221		-		-			-	-	-		-	NE	NE
PCB-Aroclor 1232		-		-			-	-	-		-	NE	NE
PCB-Aroclor 1242	-	-	-			-	-	-	-		-	NE	NE
PCB-Aroclor 1248	-	-				-	-	-	-		-	NE	NE
PCB-Aroclor 1254	-	-				-	-				-	NE	NE
PCB-Aroclor 1260	-	-			-	-	-				-	NE	NE
Total PCB Aroclors						-	-				-	0.062	0.05

 1 Sample locations and summary of remedial investigation results are shown on Figure 5 through 9.

 2 Preliminary screening levels are from the RI/FS Work Plan (GeoEngineers, 2017).

³Value for gasoline-range petroleum hydrocarbons if benzene is present. If benzene is not present, screening level is 100 mg/kg.

³ Total cPAH Toxic Equivalency Quotients (TEQs) were calculated using Toxicity Equivalency Factors (TEFs) values referenced from MTCA Table 708.2 (WAC 173-340-900).

ppm = parts per million

mg/kg = milligrams per kilogram

-- = not analyzed

NE = Not Established

ND = Not Detected

RL = Reporting Limit

U = The analyte was not detected at a concentration greater than the value identified.

J = The analyte was detected and the detected concentration is considered an estimate.

Yellow shading indicates that the identified concentration is greater than the preliminary screening level.

Blue shading indicates that the practical quantitation limit (PQL) is above screening level.

Remedial Investigation and Supplemental Investigation Soil Analytical Results Quiet Cove

Sample Location ¹		GEI-32			GEI-38			GEI-39		GE	-40		
	GEI-32-3-4.5	GEI-32-7-9_	GEI-32-10-12	GEI-38-2-4	GEI-38-5-7_	GEI-38-12-14_	GEI-39-1-3_	GEI-39-5-7_	GEI-39-8-10	GEI-40-2-4_	GEI-40-5-7_		
Sample Identification	091117	091117	091117	091917	091917	091917	091517	091517	091517	091917	091917	Preli	minary
Sample Date	9/11/2017	9/11/2017	9/11/2017	9/19/2017	9/19/2017	9/19/2017	9/15/2017	9/15/2017	9/15/2017	9/19/2017	9/19/2017	Scre	ening
Sample Interval (feet bgs)	3-4.5 ft	7-9 ft	10-12 ft	2-4 ft	5-7 ft	12-14 ft	1-3 ft	5-7 ft	8-10 ft	2-4 ft	5-7 ft	Le	evel ²
Sample Type	Vadose	Saturated	Saturated	Vadose	Saturated	Saturated	Vadose	Saturated	Saturated	Vadose	Saturated	Vadose	Saturated
Sample Horizon	Fill	Native	Native	Fill	Fill	Native	Fill	Fill	Fill/Native	Fill	Fill	Zone	Zode
Field Measured Parameters									•				
Sheen	NS	NS	NS	NS	NS	NS	NS	SS	NS	NS	SS	NE	NE
Headspace Vapors (ppm)	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	18	NE	NE
Metals by EPA 6000/7000 Series (mg/kg)													
Arsenic	1.58	1.41	1.4	3.49	1.33	2.82	3.52	5.92	1.48	5.18	2.35	20	20
Cadmium	0.08 J	0.05 J	0.10 J	0.15	0.04 J	0.06 J	0.1	0.49	0.04 J	0.13	0.61	1.2	1
Chromium	16.7	13.4	24.4	24.9	33.7	77.7	19	34.2	17.4	19.3	22.1	1,000	50
Copper	9.43	6.15	6.55	66	6.4	25.2	43.1	55.4	7.62	75	21.9	NE	NE
Lead	5.45	0.96	1.27	195	2.84	3.28	129	121	10.9	267	60.1	250	24
Silver	0.04 J	0.02 J	0.04 J	0.07 J	0.03 J	0.05 J	0.03 J	0.10 J	0.02 J	0.52	0.04 J	NE	NE
Zinc	27.3	24.3	39.7	110	25.5	42.9	91.3	119	39.7	99.2	56	NE	NE
Mercury	0.02711 U	0.02509 U	0.02399 U	0.115	0.0259 U	0.0307	0.05142	0.1407	0.02027 U	0.0583	0.0587	0.07	0.07
Petroleum Hydrocarbons by NWTPH-G/Dx (mg	/kg)												
Gasoline-range hydrocarbons	6.38 U	7.04 U	5.44 U	5.11 U	6.16 U	6.08 U	6.34 U	426	6.28 U	28.5	20.1	30 ²	30 ²
Diesel-range hydrocarbons	5.37 U	6.08 U	5.62 U	68.9	5.75 U	5.77 U	19.5	1030	11.5	69.1	11.5	2,000	2,000
Motor Oil-range hydrocarbons	13.2	12.2 U	11.2 U	189	11.5 U	11.5 U	92.9	2,340	26.3	150	19.3	2,000	2,000
BETX Compounds by EPA 8260 (mg/kg)		•	•		•				•	•			
Benzene	0.00080 J	0.00033 J	0.00032 J	0.00125	0.00060 J	0.00105 U	0.00114 U	0.00174	0.00141	0.00120 U	0.00237	0.05	0.05
Toluene	0.00028 J	0.00045 J	0.00042 J	0.00257	0.00106 U	0.00105 U	0.00114 U	0.00179	0.00099 U	0.00049 J	0.00095 J	3.8	0.22
Ethylbenzene	0.00101 U	0.00103 U	0.00100 U	0.00094 U	0.00106 U	0.00105 U	0.00114 U	0.00129 U	0.00099 U	0.00120 U	0.00028 J	1.1	1.1
Total Xylenes	0.00202 U	0.00205 U	0.00201 U	0.00137	0.00213 U	0.00209 U	0.00229 U	0.00519	0.00198 U	0.00239 U	0.00062	2.8	0.16
Volatile Organic Compounds (VOCs) by EPA 82	60 (mg/kg)		•										
1,1,1,2-Tetrachloroethane	_	-	-			-	_	-			-	0.044	0.003
1,1,1-Trichloroethane	-	-	-	-		-	_	-	-		-	42	2.2
1,1,2,2-Tetrachloroethane	-		-	-				-			-	0.017	0.002
1,1,2-Trichloroethane	-	-	-	-		-	_	-	-		-	0.025	0.002
1,1-Dichloroethane	-		-				-	-				0.061	0.0038
1,1-Dichloroethene	_	-	-	-		-	-		-	-	-	0.023	0.0011
1,1-Dichloropropene	-			-		-	-				-	NE	NE
1,2,3-Trichlorobenzene	-	-	-	-	-	-	-		-	-	_	NE	NE
1,2,3-Trichloropropane	-		-	-	-	-	-		-	-	-	0.033	0.033
1,2,4-Trichlorobenzene	-			-	-	-	-		-		-	0.019	0.005
1,2-Dibromo-3-Chloropropane		-		-			-		-			1.3	1.3
1,2-Dibromoethane	0.00101 U	0.00103 U	0.00100 U	0.00094 U	0.00106 U	0.00105 U	0.00114 U	0.00129 U	0.00099 U	0.00120 U	0.00106 U	0.002	0.001
1,2-Dichlorobenzene (o-Dichlorobenzene)				-			-		-	-		30	1.7
1,2-Dichloroethane	0.00101 U	0.00103 U	0.00100 U	0.00094 U	0.00106 U	0.00105 U	0.00114 U	0.00129 U	0.00099 U	0.00120 U	0.00106 U	0.02	0.001
1,2-Dichloropropane				-			-		-			0.02	0.001
1,3-Dichlorobenzene (m-Dichlorobenzene)	-						-			-	-	NE	NE
1,3-Dichloropropane	-	-					-					NE	NE
1,4-Dichlorobenzene (p-Dichlorobenzene)		-	-				-					0.08	0.067
2,2-Dichloropropane							-					NE	NE
2-Chloroethyl vinyl ether												NE	NE
2-Chlorotoluene		-					-			_		1,600	1,600
2-Chiorotoluene													

Sample Location ¹		GEI-32			GEI-38			GEI-39		GE	I-40		
Sample Identification	GEI-32-3-4.5_	GEI-32-7-9_	GEI-32-10-12_	GEI-38-2-4_	GEI-38-5-7_	GEI-38-12-14_	GEI-39-1-3_	GEI-39-5-7_	GEI-39-8-10_	GEI-40-2-4_	GEI-40-5-7_		
Sample identification	091117	091117	091117	091917	091917	091917	091517	091517	091517	091917	091917	Preli	iminary
Sample Date	9/11/2017	9/11/2017	9/11/2017	9/19/2017	9/19/2017	9/19/2017	9/15/2017	9/15/2017	9/15/2017	9/19/2017	9/19/2017	Scre	eening
Sample Interval (feet bgs)	3-4.5 ft	7-9 ft	10-12 ft	2-4 ft	5-7 ft	12-14 ft	1-3 ft	5-7 ft	8-10 ft	2-4 ft	5-7 ft	Le	evel ²
Sample Type	Vadose	Saturated	Saturated	Vadose	Saturated	Saturated	Vadose	Saturated	Saturated	Vadose	Saturated	Vadose	Saturated
Sample Horizon	Fill	Native	Native	Fill	Fill	Native	Fill	Fill	Fill/Native	Fill	Fill	Zone	Zode
Bromobenzene	-		-	-		-		-	-	-	-	NE	NE
Bromochloromethane	-		-			-	-	-	-	-		NE	NE
Bromodichloromethane	-	-	-	-	-	-		-	-	-	-	NE	NE
Bromoform (Tribromomethane)	-		-	-	-	-	-		-	-	-	0.79	0.05
Bromomethane		-	-	-		-	-	-	-		-	0.06	0.0038
Carbon Tetrachloride	-		-	-	-	-		-	-	-	-	0.005	0.001
Chlorobenzene	_	-	-	-	-	-			_	-	-	2.5	0.15
Chloroethane	-	-	-		-	-	-	-	_	-	-	96	5.6
Chloroform	-		-	-	-	-	-		-		-	0.0064	0.001
Chloromethane		_	-	-	-		-	-	-	-		0.73	0.045
cis-1,2-Dichloroethene	-	-	-	-	-	-	-		-			160	160
cis-1,3-Dichloropropene		-	-	-			-	-	-			NE	NE
Dibromochloromethane	-	-	-	-	-	-	-	-	-	-		0.024	0.002
Dibromomethane		_	-	-			-	-	_			800	800
Dichlorodifluoromethane (CFC-12)	-	_	-	-	-	-	-	-	-	-		0.17	NE
Hexachlorobutadiene	-	-	-	-	-	-	-		_	-	-	NE	NE
Methyl lodide (lodomethane)	-	-	-	-	-	-	-		_	-	-	NE	NE
Methyl t-butyl ether	0.00101 U	0.00103 U	0.00100 U	0.00094 U	0.00106 U	0.00105 U	0.00114 U	0.00129 U	0.00099 U	0.00120 U	0.00106 U	2.6	0.18
Methylene Chloride												NE	NE
n-Hexane	0.00101 U	0.00103 U	0.00100 U	0.00094 U	0.00106 U	0.00105 U	0.00114 U	0.00129 U	0.00099 U	0.00120 U	0.00106 U	0.27	0.01
Tetrachloroethene	-			-	-	-	-		-	-	-	0.094	0.0049
Trans-1,2-Dichloroethene		-	-	-	-		-		-	-	-	22	1.3
Trans-1,3-Dichloropropene		-	-	-	-					-		NE	NE
Trichloroethene		-			-		-			-		0.01	0.001
Trichlorofluoromethane (CFC-11)	-	-		-		-	-		-			1.4	0.04
Vinyl Chloride	-	-	-	-					-	-		0.006	0.001
Polycyclic Aromatic Hydrocarbons (PAHs) by E	PA 8270-SIM (mg/l	kg)	•	•	1				1	1		1	
1-Methylnaphthalene	0.00490 U	0.00495 U	0.00467 U	0.00898	0.00481 U	0.00479 U	0.00436 J	1.97	0.00422 J	0.0135	0.0115	35	35
2-Methylnaphthalene	0.00257 J	0.00495 U	0.00467 U	0.0131	0.00481 U	0.00479 U	0.00404 J	1.3	0.00441 J	0.0149	0.0129	0.77	0.04
Acenaphthene	0.00490 U	0.00495 U	0.00467 U	0.00551	0.00247 J	0.00479 U	0.00466 U	0.327	0.00359 J	0.00411 J	0.00532	0.32	0.02
Acenaphthylene	0.00490 U	0.00495 U	0.00467 U	0.0305	0.00481 U	0.00479 U	0.00812	0.717	0.00471 J	0.0395	0.0191	NE	0.068
Anthracene	0.00490 U	0.00495 U	0.00467 U	0.0516	0.00481 U	0.00479 U	0.00974	1.14	0.00447 J	0.0672	0.0364	4.4	0.2
Benzo(a)anthracene	0.00490 U	0.00495 U	0.00467 U	0.169	0.00313 J	0.00479 U	0.0371	3.82	0.0112	0.141	0.094	0.07	0.007
Benzo(a)pyrene	0.00490 U	0.00495 U	0.00467 U	0.183	0.00302 J	0.00479 U	0.0378	3.29	0.00879	0.147	0.0898	0.14	0.01
Benzo(b)fluoranthene	0.00490 U	0.00495 U	0.00467 U	0.12	0.00188 J	0.00479 U	0.0303	2.25	0.00586	0.126	0.0664	0.25	0.012
Benzo(g,h,i)perylene	0.00490 U	0.00495 U	0.00467 U	0.155	0.00306 J	0.00479 U	0.035	2.21	0.00573	0.151	0.0655	NE	2
Benzo(k)fluoranthene	0.00490 U	0.00495 U	0.00467 U	0.0737	0.00159 J	0.00479 U	0.0162	1.32	0.00358 J	0.0744	0.038	0.32	0.016
Chrysene	0.00490 U	0.00495 U	0.00467 U	0.168	0.00312 J	0.00479 U	0.0428	3.66	0.00993	0.171	0.113	0.25	0.012
Dibenzo(a,h)anthracene	0.00490 U	0.00495 U	0.00467 U	0.0372	0.00481 U	0.00479 U	0.00847	0.734	0.00495 U	0.0322	0.016	0.14	0.018
Fluoranthene	0.00490 U	0.00495 U	0.00467 U	0.323	0.0138	0.00479 U	0.0676	6.78	0.0345	0.274	0.318	0.5	0.16
Fluorene	0.00490 U	0.00495 U	0.00467 U	0.016	0.00481 U	0.00479 U	0.00460 J	0.397	0.00397 J	0.0227	0.0217	0.5	0.16
Indeno(1,2,3-c,d)pyrene	0.00490 U	0.00495 U	0.00467 U	0.12	0.00481 U	0.00479 U	0.0273	1.82	0.0051	0.107	0.0475	0.69	0.035
Naphthalene	0.00490 U	0.00495 U	0.00467 U	0.0159	0.00287 J	0.00479 U	0.00557	1.2	0.00703	0.0186	0.0159	0.25	0.013
Phenanthrene	0.00490 U	0.00495 U	0.00467 U	0.174	0.00755	0.00479 U	0.04	1.82	0.0134	0.238	0.212	NE	0.1
Pyrene	0.00490 U	0.00495 U	0.00467 U	0.342	0.00986	0.00479 U	0.0765	7.23	0.0442	0.313	0.27	20	1
Total cPAH TEQ ³ (ND=0)	0 U	0 U	0 U	0.237	0.00371	0 U	0.0502	4.32	0.0115	0.197	0.117	0.22	0.011
Total cPAH TEQ ³ (ND=0.5RL)													

Sample Location ¹		GEI-32			GEI-38			GEI-39		GE	1-40		
Sample Identification	GEI-32-3-4.5_	GEI-32-7-9_	GEI-32-10-12_	GEI-38-2-4_	GEI-38-5-7_	GEI-38-12-14_	GEI-39-1-3_	GEI-39-5-7_	GEI-39-8-10_	GEI-40-2-4_	GEI-40-5-7_		
Sample identification	091117	091117	091117	091917	091917	091917	091517	091517	091517	091917	091917	Preli	minary
Sample Date	9/11/2017	9/11/2017	9/11/2017	9/19/2017	9/19/2017	9/19/2017	9/15/2017	9/15/2017	9/15/2017	9/19/2017	9/19/2017		ening
Sample Interval (feet bgs)	3-4.5 ft	7-9 ft	10-12 ft	2-4 ft	5-7 ft	12-14 ft	1-3 ft	5-7 ft	8-10 ft	2-4 ft	5-7 ft	Le	vel ²
Sample Type	Vadose	Saturated	Saturated	Vadose	Saturated	Saturated	Vadose	Saturated	Saturated	Vadose	Saturated	Vadose	Saturated
Sample Horizon	Fill	Native	Native	Fill	Fill	Native	Fill	Fill	Fill/Native	Fill	Fill	Zone	Zode
PCB-Aroclor 1016	-	-	-			-	-	-			-	NE	NE
PCB-Aroclor 1221	-	-	-			-	-	-			-	NE	NE
PCB-Aroclor 1232	-	-	-					-				NE	NE
PCB-Aroclor 1242	-	-	-			-	-	-			-	NE	NE
PCB-Aroclor 1248	-	-	-					-				NE	NE
PCB-Aroclor 1254	-	-	-			-	-	-			-	NE	NE
PCB-Aroclor 1260	-	-	-			-	-	-			-	NE	NE
Total PCB Aroclors		-										0.062	0.05

 1 Sample locations and summary of remedial investigation results are shown on Figure 5 through 9.

 2 Preliminary screening levels are from the RI/FS Work Plan (GeoEngineers, 2017).

 3 Value for gasoline-range petroleum hydrocarbons if benzene is present. If benzene is not present, screening level is 100 mg/kg.

³ Total cPAH Toxic Equivalency Quotients (TEQs) were calculated using Toxicity Equivalency Factors (TEFs) values referenced from MTCA Table 708.2 (WAC 173-340-900).

ppm = parts per million

mg/kg = milligrams per kilogram

-- = not analyzed

NE = Not Established

ND = Not Detected

RL = Reporting Limit

 ${\sf U}$ = The analyte was not detected at a concentration greater than the value identified.

J = The analyte was detected and the detected concentration is considered an estimate.

Yellow shading indicates that the identified concentration is greater than the preliminary screening level.

Blue shading indicates that the practical quantitation limit (PQL) is above screening level.

Remedial Investigation and Supplemental Investigation Soil Analytical Results Quiet Cove

	T		1		Anacortes,	Mashington	1			Γ			
Sample Location ¹	GEI-40	GEI-41		1-42		-43		GEI-44			W-8		
Sample Identification	GEI-40-12-14_ 091917	GEI-41-5-7_ 091317	GEI-42-1-3_ 091317	GEI-42-6-8_ 091317	GEI-43-3-5_ 091317	GEI-43-5-7_ 091317	GEI-44-2-4_ 091317	GEI-44-7-9_ 091317	GEI-44-10-12_ 091317	MW-8-2-4_ 091917	MW-8-5-7_ 091917	Preli	minary
Sample Date	9/19/2017	9/13/2017	9/13/2017	9/13/2017	9/13/2017	9/13/2017	9/13/2017	9/13/2017	9/13/2017	9/19/2017	9/19/2017		ening
Sample Interval (feet bgs)	12-14 ft	5-7 ft	1-3 ft	6-8 ft	3-5 ft	5-7 ft	2-4 ft	7-9 ft	10-12 ft	2-4 ft	5-7 ft		vel ²
Sample Type	Saturated	Vadose	Vadose	Saturated	Vadose	Saturated	Vadose	Saturated	Saturated	Vadose	Saturated	Vadose	Saturated
Sample Horizon	Native	Natvie	Fill	Native	Fill/Native	Native	Fill	Fill/Native	Native	Fill	Fill	Zone	Zode
Field Measured Parameters	•			•	•			•	•		•		
Sheen	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NE	NE
Headspace Vapors (ppm)	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	NE	NE
Metals by EPA 6000/7000 Series (mg/kg)								•					
Arsenic	1.32	5.32	4.24	3.39	4.01	5.74	4.73	1.53	1.34	-	-	20	20
Cadmium	0.02 J	0.12	U 80.0	0.06 J	0.13	0.09 J	0.24	0.07 J	0.02 J	-		1.2	1
Chromium	19.7	37	55.6	15.8	36.7	34.6	25.1	16.3	19.3	-	-	1,000	50
Copper	10.2	37	22.4	12.8	20.8	32	22.4	4.48	4.76	-		NE	NE
Lead	1.59	4.96	4.91	1.88	8.21	4.12	28.7	0.94	1.08	-		250	24
Silver	0.02 J	0.07 J	0.04 J	0.03 J	0.04 J	0.06 J	0.07 J	0.01 J	0.005 J			NE	NE
Zinc	28.6	66.1	37.8	27.1	48.1	57	72.2	28.9	25.4			NE	NE
Mercury	0.0244 U	0.04057	0.02987	0.02543 U	0.04283	0.03611	0.03667	0.02592 U	0.02461 U			0.07	0.07
Petroleum Hydrocarbons by NWTPH-G/Dx (mg	(/kg)												
Gasoline-range hydrocarbons	4.61 U	7.3 U	5.59 U	5.97 U	6.11 U	6.57 U	6.23 U	6.86 U	6.4 U	6.67 U	6.32 U	30 ²	30 ²
Diesel-range hydrocarbons	5.49 U	5.64 U	5.32 U	5.86 U	5.51 U	5.83 U	57	5.93 U	5.75 U	14.6	9.52	2,000	2,000
Motor Oil-range hydrocarbons	11.0 U	11.3 U	10.6 U	11.7 U	11.0 U	11.7 U	247	11.9 U	11.5 U	30.9	44.1	2,000	2,000
BETX Compounds by EPA 8260 (mg/kg)													
Benzene	0.00090 U	0.00102 U	0.00105 U	0.00099 U	0.00099 U	0.00115 U	0.00098 J	0.00109 U	0.00110 U	0.00097 U	0.00474	0.05	0.05
Toluene	0.00090 U	0.00102 U	0.00105 U	0.00099 U	0.00099 U	0.00115 U	0.00041 J	0.00109 U	0.00110 U	0.00030 J	0.00188	3.8	0.22
Ethylbenzene	0.00090 U	0.00102 U	0.00105 U	0.00099 U	0.00099 U	0.00115 U	0.00107 U	0.00109 U	0.00110 U	0.00097 U	0.00088 J	1.1	1.1
Total Xylenes	0.00180 U	0.00205 U	0.00211 U	0.00197 U	0.00197 U	0.00231 U	0.00213 U	0.00219 U	0.00220 U	0.00194 U	0.00304	2.8	0.16
Volatile Organic Compounds (VOCs) by EPA 82	260 (mg/kg)												
1,1,1,2-Tetrachloroethane			-	-	-			-	-			0.044	0.003
1,1,1-Trichloroethane	-		-	-	-	-	-	-	-	-	-	42	2.2
1,1,2,2-Tetrachloroethane	-		-	-	-	-	-		-	-	-	0.017	0.002
1,1,2-Trichloroethane				-							-	0.025	0.002
1,1-Dichloroethane	-		-	_	-	-			-	-	-	0.061	0.0038
1,1-Dichloroethene				-			-				-	0.023	0.0011
1,1-Dichloropropene	-	-	-	-			-	-	-		-	NE	NE
1,2,3-Trichlorobenzene	-			-	-	-	-					NE	NE
1,2,3-Trichloropropane	-			-	-	-	-					0.033	0.033
1,2,4-Trichlorobenzene			-				-		-			0.019	0.005
1,2-Dibromo-3-Chloropropane			-	-	-		-		-	-	-	1.3	1.3
1,2-Dibromoethane	0.00090 U	0.00102 U	0.00105 U	0.00099 U	0.00099 U	0.00115 U	0.00107 U	0.00109 U	0.00110 U	0.00097 U	0.00107 U	0.002	0.001
1,2-Dichlorobenzene (o-Dichlorobenzene)				-					-		-	30	1.7
1,2-Dichloroethane	0.00090 U	0.00102 U	0.00105 U	0.00099 U	0.00099 U	0.00115 U	0.00107 U	0.00109 U	0.00110 U	0.00097 U	0.00107 U	0.02	0.001
1,2-Dichloropropane							-				-	0.02	0.001
1,3-Dichlorobenzene (m-Dichlorobenzene)		-	-				-	-				NE	NE
1,3-Dichloropropane			-				-				-	NE	NE
1,4-Dichlorobenzene (p-Dichlorobenzene)			-	-			-					0.08	0.067
2,2-Dichloropropane			-	-			-					NE	NE
2-Chloroethyl vinyl ether							-					NE	NE
2-Chlorotoluene			-	-			-					1,600	1,600
4-Chlorotoluene		-	-	-	-		-					NE	NE

Sample Location ¹	GEI-40	GEI-41	GE	1-42	GE	-43		GEI-44		M	W-8		
Sample Identification	GEI-40-12-14_	GEI-41-5-7_	GEI-42-1-3_	GEI-42-6-8_	GEI-43-3-5_	GEI-43-5-7_	GEI-44-2-4_	GEI-44-7-9_	GEI-44-10-12_	MW-8-2-4_	MW-8-5-7_		
•	091917	091317	091317	091317	091317	091317	091317	091317	091317	091917	091917	Preli	iminary
Sample Date	9/19/2017	9/13/2017	9/13/2017	9/13/2017	9/13/2017	9/13/2017	9/13/2017	9/13/2017	9/13/2017	9/19/2017	9/19/2017		eening
Sample Interval (feet bgs)	12-14 ft	5-7 ft	1-3 ft	6-8 ft	3-5 ft	5-7 ft	2-4 ft	7-9 ft	10-12 ft	2-4 ft	5-7 ft	Le	evel ²
Sample Type	Saturated	Vadose	Vadose	Saturated	Vadose	Saturated	Vadose	Saturated	Saturated	Vadose	Saturated	Vadose	Saturated
Sample Horizon	Native	Natvie	Fill	Native	Fill/Native	Native	Fill	Fill/Native	Native	Fill	Fill	Zone	Zode
Bromobenzene	-	-	-	-		-		-	-	-	-	NE	NE
Bromochloromethane	-	-	-			-	-	-	-	-	-	NE	NE
Bromodichloromethane	-		-					-			-	NE	NE
Bromoform (Tribromomethane)	-			_	-	-			-		-	0.79	0.05
Bromomethane			-	-				-				0.06	0.0038
Carbon Tetrachloride	-		-	_	-			-	-		-	0.005	0.001
Chlorobenzene	-		-	_	-	-		-	-		-	2.5	0.15
Chloroethane	-	-	-			-		-	-	-	-	96	5.6
Chloroform	-		-	-		-					-	0.0064	0.001
Chloromethane		-	-	-			-	-	-			0.73	0.045
cis-1,2-Dichloroethene	-	-	-			-	-	-	-			160	160
cis-1,3-Dichloropropene		-	-	-			-	-	-			NE	NE
Dibromochloromethane	-		-	-		-	-	-	-			0.024	0.002
Dibromomethane		-	-	-			-	-	-			800	800
Dichlorodifluoromethane (CFC-12)	-	-		-		-	-	-	-			0.17	NE
Hexachlorobutadiene	-	-		-	-	-			-	-	-	NE	NE
Methyl lodide (lodomethane)	-	-		_	-	-	-		-	-	-	NE	NE
Methyl t-butyl ether	0.00090 U	0.00102 U	0.00105 U	0.00099 U	0.00099 U	0.00115 U	0.00107 U	0.00109 U	0.00110 U	0.00097 U	0.00107 U	2.6	0.18
Methylene Chloride												NE	NE
n-Hexane	0.00090 U	0.00102 U	0.00105 U	0.00099 U	0.00099 U	0.00115 U	0.00107 U	0.00109 U	0.00110 U	0.00097 U	0.0038	0.27	0.01
Tetrachloroethene				-					-			0.094	0.0049
Trans-1,2-Dichloroethene			-	-					-	-		22	1.3
Trans-1,3-Dichloropropene				-	-					-		NE	NE
Trichloroethene		-			-		-			-		0.01	0.001
Trichlorofluoromethane (CFC-11)	-					-		-	-			1.4	0.04
Vinyl Chloride	-	-	-	-				-	-	-	-	0.006	0.001
olycyclic Aromatic Hydrocarbons (PAHs) by E	PA 8270-SIM (mg/k	(g)			•	L	L				•		_ _
1-Methylnaphthalene	0.00495 U	0.00473 U	0.00481 U	0.00491 U	0.00461 U	0.00486 U	0.0685	0.00494 U	0.00479 U			35	35
2-Methylnaphthalene	0.00495 U	0.00473 U	0.00481 U	0.00491 U	0.00461 U	0.00486 U	0.104	0.00494 U	0.00479 U	-		0.77	0.04
Acenaphthene	0.00495 U	0.00473 U	0.00481 U	0.00491 U	0.00461 U	0.00486 U	0.00479 U	0.00494 U	0.00479 U	-	-	0.32	0.02
Acenaphthylene	0.00495 U	0.00473 U	0.00198 J	0.00491 U	0.00285 J	0.00486 U	0.0138	0.00494 U	0.00479 U	-		NE	0.068
Anthracene	0.00495 U	0.00473 U	0.00143 J	0.00491 U	0.00845	0.00486 U	0.0242	0.00494 U	0.00479 U	-		4.4	0.2
Benzo(a)anthracene	0.00495 U	0.00473 U	0.00616	0.00491 U	0.0323	0.00486 U	0.0477	0.00494 U	0.00479 U	-		0.07	0.007
Benzo(a)pyrene	0.00495 U	0.00473 U	0.00701	0.00491 U	0.0336	0.00486 U	0.0515	0.00494 U	0.00479 U			0.14	0.01
Benzo(b)fluoranthene	0.00495 U	0.00473 U	0.00449 J	0.00491 U	0.0238	0.00486 U	0.0469	0.00494 U	0.00479 U	-		0.25	0.012
Benzo(g,h,i)perylene	0.00495 U	0.00473 U	0.00646	0.00491 U	0.0265	0.00486 U	0.1	0.00494 U	0.00479 U			NE	2
Benzo(k)fluoranthene	0.00495 U	0.00473 U	0.00481 U	0.00491 U	0.0149	0.00486 U	0.0248	0.00494 U	0.00479 U			0.32	0.016
Chrysene	0.00495 U	0.00473 U	0.00664	0.00491 U	0.0311	0.00486 U	0.0605	0.00494 U	0.00479 U			0.25	0.012
Dibenzo(a,h)anthracene	0.00495 U	0.00473 U	0.00481 U	0.00491 U	0.00563	0.00486 U	0.0129	0.00494 U	0.00479 U			0.14	0.018
Fluoranthene	0.00495 U	0.00473 U	0.00949	0.00491 U	0.0622	0.00486 U	0.0937	0.00494 U	0.00479 U			0.5	0.16
Fluorene	0.00495 U	0.00473 U	0.00481 U	0.00491 U	0.00461 U	0.00486 U	0.00363 J	0.00494 U	0.00479 U			0.5	0.16
	0.00495 U	0.00473 U	0.00454 J	0.00491 U	0.0203	0.00486 U	0.0536	0.00494 U	0.00479 U			0.69	0.035
Indeno(1,2,3-c,d)pyrene		0.00473 U	0.00481 U	0.00491 U	0.00461 U	0.00486 U	0.162	0.00494 U	0.00479 U			0.25	0.013
Indeno(1,2,3-c,d)pyrene	0.004950						0.0843	0.00494 U	0.00479 U	-		NE	0.010
Naphthalene	0.00495 U 0.00495 U	0.00473 U	0.00436 J	0.00491 U	0.0109	0.004860	0.0040						
Naphthalene Phenanthrene	0.00495 U	0.00473 U 0.00473 U	0.00436 J 0.0127	0.00491 U 0.00491 U	0.0109	0.00486 U 0.00486 U				_			
Naphthalene		0.00473 U 0.00473 U 0 U	0.00436 J 0.0127 0.0086	0.00491 U 0.00491 U 0 U	0.0109 0.0674 0.0436	0.00486 U 0.00486 U 0 U	0.102	0.00494 U 0 U	0.00479 U 0 U			20	1 0.011

Sample Location ¹	GEI-40	GEI-41	GE	I-42	GE	I-43		GEI-44		M	W-8		
Sample Identification	GEI-40-12-14_	GEI-41-5-7_	GEI-42-1-3_	GEI-42-6-8_	GEI-43-3-5_	GEI-43-5-7_	GEI-44-2-4_	GEI-44-7-9_	GEI-44-10-12_	MW-8-2-4_	MW-8-5-7_		I
Sample Identification	091917	091317	091317	091317	091317	091317	091317	091317	091317	091917	091917	Preli	minary
Sample Date	9/19/2017	9/13/2017	9/13/2017	9/13/2017	9/13/2017	9/13/2017	9/13/2017	9/13/2017	9/13/2017	9/19/2017	9/19/2017		ening
Sample Interval (feet bgs)	12-14 ft	5-7 ft	1-3 ft	6-8 ft	3-5 ft	5-7 ft	2-4 ft	7-9 ft	10-12 ft	2-4 ft	5-7 ft	Le	evel ²
Sample Type	Saturated	Vadose	Vadose	Saturated	Vadose	Saturated	Vadose	Saturated	Saturated	Vadose	Saturated	Vadose	Saturated
Sample Horizon	Native	Natvie	Fill	Native	Fill/Native	Native	Fill	Fill/Native	Native	Fill	Fill	Zone	Zode
PCB-Aroclor 1016	-	-	-			-		-			-	NE	NE
PCB-Aroclor 1221	-	-	-		-	-	-	-			-	NE	NE
PCB-Aroclor 1232		-	-					-			-	NE	NE
PCB-Aroclor 1242	-	-	-			-	-	-			_	NE	NE
PCB-Aroclor 1248	-	-	-			-	-	-			_	NE	NE
PCB-Aroclor 1254	-	-	-			-	-	-			_	NE	NE
PCB-Aroclor 1260	-	-	-		-	-	-	-			_	NE	NE
Total PCB Aroclors	-	-						-				0.062	0.05

 1 Sample locations and summary of remedial investigation results are shown on Figure 5 through 9.

 2 Preliminary screening levels are from the RI/FS Work Plan (GeoEngineers, 2017).

 3 Value for gasoline-range petroleum hydrocarbons if benzene is present. If benzene is not present, screening level is 100 mg/kg.

³ Total cPAH Toxic Equivalency Quotients (TEQs) were calculated using Toxicity Equivalency Factors (TEFs) values referenced from MTCA Table 708.2 (WAC 173-340-900).

ppm = parts per million

mg/kg = milligrams per kilogram

-- = not analyzed

NE = Not Established

ND = Not Detected

RL = Reporting Limit

 ${\sf U}$ = The analyte was not detected at a concentration greater than the value identified.

J = The analyte was detected and the detected concentration is considered an estimate.

Yellow shading indicates that the identified concentration is greater than the preliminary screening level.

Blue shading indicates that the practical quantitation limit (PQL) is above screening level.

Remedial Investigation and Supplemental Investigation Soil Analytical Results Quiet Cove

	er	0-01			C	D-02			SD-03			
	51	-01			3	D-02			30-03		_	
SD-1-2-4	SD-1-5-6.5	SD-1-10-12	SD-1-17-19	SD-2-2-3	SD-2-6-8	SD-2-11-12	SD-2-14-15	SD-3-2.5-3.5	SD-3-7-8.5	SD-3-12-13	Preli	minary
10/17/18	10/17/18	10/17/18	10/17/18	10/17/18	10/17/18	10/17/18	10/17/18	10/17/18	10/17/18	10/17/18		ening
2-4 ft	5-6.5 ft	10-12 ft	17-19 ft	2-3 ft	6-8 ft	11-12 ft	14-15 ft	2.5-3.5 ft	7-8.5 ft	12-13 ft	Le	vel ²
Vadose	Vadose	Saturated	Saturated	VADOSE	VADOSE	Saturated	Saturated	Vadose	Saturated	Saturated	Vadose	Saturated
Fill	Fill	Fill	Native	Fill	Fill	Fill	Native	Fill	Fill	Native	Zone	Zode
	1			1		1	T	1	T	1		
SS	HS	HS	NS	SS	MS	NS	NS	SS	HS	NS	NE	NE
<1	315	121	<1	9	226	<1	<1	30	428	<1	NE	NE
	1	1	-	1	-	1	T	1		1	-	1
-		-	-		-				-	-	20	20
-		-	-						-	-	1.2	1
		-				-			-	-	1,000	50
	-	-			-	-			-	-	NE	NE
								-	-	-	250	24
		-				-			-	-	NE	NE
-			-						-	-	NE	NE
-	-						-	-	-	-	0.07	0.07
	0.070	1 000	4.00.11		000	4.00.11	4.70.11	070			2	
6.16	3,050	1,880	4.92 U	52.3	382	4.69 U	4.73 U	356	3,880	225	30 ²	30 ²
218	6,180	2,860	5.71 U	855	1,820	5.72 U	5.71 U	639	6,120	291	2,000	2,000
1,770	2,310	1,830	11.4 U	251	198	11.4 U	11.4 U	472	1,290	54.5	2,000	2,000
0.00104	0.0320 J	0.0505 U	0.00108 U	0.00425	0.0101	0.00081	0.00058 J	0.00336	0.984	0.00091		1
0.00104	0.0459 U	0.0505 U	0.00131	0.00425	0.00418	0.00044 J	0.00072 U		0.584	0.00091 0.00048 J	0.05	0.05
0.00075 0.00074 U	0.0459 0	0.0505 U	0.00131 0.00108 U	0.00288 0.00065 J	0.00418	0.00044 J 0.00072 U	0.00072 U	0.0488	0.906	0.00048 J	3.8	0.22
0.00074 0	0.0485	0.101 U	0.00217 U	0.00300	0.0109	0.00145 U	0.00144 U	0.00592	0.908	0.00128	1.1	1.1
0.000930	0.148	0.101.0	0.00217 0	0.00300	0.0109	0.00143.0	0.00144 0	0.00392	0.510	0.000370	2.8	0.16
	1									1	0.044	0.000
-								-		-	0.044	0.003
-									-		0.017	2.2 0.002
-											0.017	0.002
-									-	-	0.025	0.002
									-		0.081	0.0038
-	-								-		0.023 NE	NE
											NE	NE
					-			-		-	0.033	0.033
-					-			-	-	-	0.019	0.005
-	-				-			-	-	-	1.3	1.3
_	-				-	-	-	_	_	_	0.002	0.001
	-				-		-	-	-		30	1.7
		1	1			-	-	_	_	-	0.02	0.001
-			-					1	1	1	0.02	0.001
								_	_	_	0.02	
-											0.02 NE	
-					-						0.02 NE NE	NE NE
-										-	NE NE	NE NE
					-					-	NE	NE
										- - -	NE NE 0.08	NE NE 0.067
										- - - -	NE NE 0.08 NE	NE NE 0.067 NE

			SD-03			-02	SD			-01	SD	
ninary ening vel ²	Scre	SD-3-12-13 10/17/18 12-13 ft	SD-3-7-8.5 10/17/18 7-8.5 ft	SD-3-2.5-3.5 10/17/18 2.5-3.5 ft	SD-2-14-15 10/17/18 14-15 ft	SD-2-11-12 10/17/18 11-12 ft	SD-2-6-8 10/17/18 6-8 ft	SD-2-2-3 10/17/18 2-3 ft	SD-1-17-19 10/17/18 17-19 ft	SD-1-10-12 10/17/18 10-12 ft	SD-1-5-6.5 10/17/18 5-6.5 ft	SD-1-2-4 10/17/18 2-4 ft
Saturated	Vadose	Saturated Native	Saturated Fill	Vadose Fill	Saturated Native	Saturated Fill	VADOSE	VADOSE	Saturated Native	Saturated Fill	Vadose Fill	Vadose Fill
Zode	Zone											
NE	NE					-	-					-
NE NE	NE NE	-	-				-		-		-	-
0.05	0.79											
0.0038	0.79										-	-
0.001	0.005		_	-							-	_
0.15	2.5	-		-							-	-
5.6	96	-	-	-			-		-		-	
0.001	0.0064	-	_	_		-	_		_		_	
0.045	0.73	-	_			_	_		-		-	
160	160	-				_	-		-		-	
NE	NE		_			_	_		-			
0.002	0.024		_				_		-		-	
800	800		_	_								
NE	0.17	_	_				_				-	_
NE	NE	_	_								_	_
NE	NE	-	_	-		-					-	
0.18	2.6		-	_	_			_			-	-
NE	NE	_	_	_							_	_
0.01	0.27		-	_	_	_		_			-	-
0.0049	0.094		-	_	_			_			-	-
1.3	22		-	-	-	-		-			-	
NE	NE	-	-	-		-					-	-
0.001	0.01		-	-	-	-		-			-	-
0.04	1.4			-	_	-		-			-	
0.001	0.006	_	_	-	_	-					-	-
35	35	-	_	-	-	-					-	-
0.04	0.77	_	_	-	_	-					-	-
0.02	0.32	-	-	-	-	-					-	-
0.068	NE	-	-	-		-					-	-
0.2	4.4	-	-	-	-						-	
0.007	0.07	-	-	-							-	
0.01	0.14	-	-	-	-	-	-		-	-	-	-
0.012	0.25	-	-	-		-	-		-	-	-	-
2	NE	-	-			-	-		-	-	-	-
0.016	0.32	-	-	-		-	-		-		-	-
0.012	0.25	-	-			-	-		-	-	-	-
0.018	0.14						-			-		-
0.16	0.5	-	-			-	-		-	-	-	-
0.16	0.5	-				-	-	-	-	-	-	-
0.035	0.69	-	-			-	-		-		-	-
0.013	0.25	-			-	-	-	-	-	-	-	-
0.1	NE		-		-	-	-	-	-	-	-	-
1	20	-			-	-	-	-	-	-	-	
0.011	0.22	-	-		-	-	-	-	-	-	-	
0.011	0.22	-		-	-	-	-	-	-	-	-	

	SD	-01	1		SI	0-02	1		SD-03	1		
SD-1-2-4	SD-1-5-6.5	SD-1-10-12	SD-1-17-19	SD-2-2-3	SD-2-6-8	SD-2-11-12	SD-2-14-15	SD-3-2.5-3.5	SD-3-7-8.5	SD-3-12-13	Preli	minary
10/17/18	10/17/18	10/17/18	10/17/18	10/17/18	10/17/18	10/17/18	10/17/18	10/17/18	10/17/18	10/17/18		ening
2-4 ft	5-6.5 ft	10-12 ft	17-19 ft	2-3 ft	6-8 ft	11-12 ft	14-15 ft	2.5-3.5 ft	7-8.5 ft	12-13 ft	Le	evel ²
Vadose	Vadose	Saturated	Saturated	VADOSE	VADOSE	Saturated	Saturated	Vadose	Saturated	Saturated	Vadose	Saturated
Fill	Fill	Fill	Native	Fill	Fill	Fill	Native	Fill	Fill	Native	Zone	Zode
-	-	-	-	-	-	-		-	-	-	NE	NE
-	-		-		-	-			_	-	NE	NE
-	-				-					-	NE	NE
-	-					-	-	-	_	-	NE	NE
-	-									-	NE	NE
	-	-		-		-	-	-	_	-	NE	NE
	-	-	-	-	-	-	-	-	_	-	NE	NE
		-	-							-	0.062	0.05

 $^{1}\,\mbox{Sample}$ locations and summary of remedial investigation results are shown on Figure 5 through 9.

 2 Preliminary screening levels are from the RI/FS Work Plan (GeoEngineers, 2017).

³Value for gasoline-range petroleum hydrocarbons if benzene is present. If benzene is not present, screening level is 100 mg/kg.

³ Total cPAH Toxic Equivalency Quotients (TEQs) were calculated using Toxicity Equivalency Factors (TEFs) values referenced from MTCA Table 708.2 (WAC 173-340-900).

ppm = parts per million

mg/kg = milligrams per kilogram

-- = not analyzed

NE = Not Established

ND = Not Detected

RL = Reporting Limit

 ${\sf U}$ = The analyte was not detected at a concentration greater than the value identified.

J = The analyte was detected and the detected concentration is considered an estimate.

Yellow shading indicates that the identified concentration is greater than the preliminary screening level.

Blue shading indicates that the practical quantitation limit (PQL) is above screening level.

Remedial Investigation and Supplemental Investigation Soil Analytical Results Quiet Cove

			06	SD-			SD-05			SD-04	
ninary		SD-6-9-10	SD-6-6-7	SD-6-4-5	SD-6-1-2	SD-5-9-10	SD-5-5-6	SD-5-0.5-2	SD-4-12-13	SD-4-6.5-7.5	SD-4-2.5-3.5
ening		10/18/18	10/18/18	10/18/18	10/18/18	10/18/18	10/18/18	10/18/18	10/18/18	10/18/18	10/18/18
/el⁻	Lev	9-10 ft	6-7 ft	4-5 ft	1-2 ft	9-10 ft	5-6 ft	0.5-2 ft	12-13 ft	6.5-7.5 ft	2.5-3.5 ft
Saturated	Vadose	Saturated	Saturated	Vadose	Vadose	Saturated	Saturated	Vadose	Saturated	Saturated	Vadose
Zode	Zone	Native	Fill	Fill	Fill	Native	Fill	Fill	Native	Fill	Fill
		NS	NS	NS	NS	NS	SS	NS	NS	HS	MS
NE	NE										
NE	NE	<1	<1	<1	<1	<1	<1	<1	<1	290	74
										1	
20	20	-					-	-			
1	1.2		-				-	-	-		
50	1,000	-	-				-	-	-		
NE	NE				-		-	-			
24	250	-	-	-		-	-	-	-		-
NE	NE			-	-		-	-			-
NE	NE				-		-	-			
0.07	0.07		-				-	-			
0											
30 ²	30 ²	10	6.42 U	7.22 U	5.6 U	4.45 U	8.61	5.04 U	20.7	3,040	723
2,000	2,000	138	6.42 U	5.61 U	15.5	5.59 U	31.2	14.4	17.9	5,150	974
2,000	2,000	289	12.8 U	11.2 U	58.1	11.2 U	27.5	22.5	12.5	4,210	4,280
0.05	0.05	0.00092 U	0.00064 J	0.00088 J	0.00260	0.00088 U	0.00067 J	0.00076 J	0.00081 U	0.0692 U	0.0522 U
0.22	3.8	0.00092 U	0.00092 U	0.00119 U	0.00204	0.00088 U	L 08000.0	0.00068 J	0.00059 J	7.32	8.57
1.1	1.1	0.00092 U	0.00092 U	0.00119 U	0.00096 U	0.00088 U	0.00112 U	0.00097 U	0.00081 U	0.0943	0.0907
0.16	2.8	0.00183 U	0.00184 U	0.00238 U	0.00105	0.00176 U	0.00224 U	0.00194 U	0.00161 U	0.492	0.493
	1									1	
0.003	0.044			-	-		-	-			-
2.2	42			-	-		-	-			-
0.002	0.017			-	-		-	-			-
0.002	0.025			-	-	-	-	-			-
0.0038	0.061			-	-	-	-	-			-
0.0011	0.023			-	-	-	-	-			-
NE	NE			-	-			-			-
NE	NE			-	-			-			-
0.033	0.033			-	-		-	-			-
0.005	0.019			-	-		-	-			
1.3	1.3			-	-		-	-			-
0.001	0.002			-	-		-	-			
	30			-	-		-	-			-
1.7					-		_	-			-
1.7 0.001	0.02			-	-		-				
	0.02			-			-	-			-
0.001											-
0.001 0.001	0.02				***	**	-	-			
0.001 0.001 NE	0.02 NE			-			-				-
0.001 0.001 NE NE	0.02 NE NE				-	-					-
0.001 0.001 NE NE 0.067	0.02 NE NE 0.08										-
0.001 0.001 NE NE 0.067 NE	0.02 NE NE 0.08 NE		 				- - - - -				

		Γ	-06	SD			SD-05			SD-04	
iminary	Preli	SD-6-9-10	SD-6-6-7	SD-6-4-5	SD-6-1-2	SD-5-9-10	SD-5-5-6	SD-5-0.5-2	SD-4-12-13	SD-4-6.5-7.5	SD-4-2.5-3.5
eening	Scre	10/18/18	10/18/18	10/18/18	10/18/18	10/18/18	10/18/18	10/18/18	10/18/18	10/18/18	10/18/18
evel ²	Le	9-10 ft	6-7 ft	4-5 ft	1-2 ft	9-10 ft	5-6 ft	0.5-2 ft	12-13 ft	6.5-7.5 ft	2.5-3.5 ft
Saturate	Vadose	Saturated	Saturated	Vadose	Vadose	Saturated	Saturated	Vadose	Saturated	Saturated	Vadose
Zode	Zone	Native	Fill	Fill	Fill	Native	Fill	Fill	Native	Fill	Fill
NE	NE	-		-				-	-	-	-
NE	NE	-		_				-	-	-	_
NE	NE	-			-			-	-	-	-
0.05	0.79	_	-	-	_		-	_	_	-	_
0.0038	0.06		-	-	_		-	_	_	_	_
0.001	0.005		-	-	-	-		-	_	-	_
0.001	2.5			-	-	-		-		-	-
5.6	96				-	-				-	_
	0.0064										
0.001	0.0084			-	-	-	-			-	
				-	-	-	-	-			-
160	160			-	-		-	-			-
NE	NE			-	-			-			-
0.002	0.024			-	-		-	-	-	-	-
800	800	-			-	-	-	-		-	-
NE	0.17	-			-		-	-		-	-
NE	NE			-	-	-	-	-	-	-	
NE	NE			-	-	-	-	-			
0.18	2.6	-			-	-	-	-			-
NE	NE		-	-	-	-	-	-	-	-	-
0.01	0.27	-			-	-	-	-			-
0.0049	0.094					-	-	-			-
1.3	22	-	-	-		-	-	-	-	-	-
NE	NE				-	-	-	-			-
0.001	0.01		-			-	-	-	-		
0.04	1.4	-	-				-	-	-		
0.001	0.006	-	-	-	-	-	-	-	-	-	
	1	[
35	35	-	-	-			-	-	-	-	-
0.04	0.77	-	-	-		-	-	-	-	-	-
0.02	0.32	-	-	-	-	-	-	-	-	-	-
0.068	NE	-	-	-	-		-	-	-	-	
0.2	4.4		-	-	-	-	-		-	-	-
0.007	0.07			-	-	-	-			-	
0.01	0.14			-	-	-	-			-	
0.012	0.25			-	-	-	-			-	-
2	NE	-			-	-	-	-		-	-
0.016	0.32	-			-	-	-	-	-	-	
0.012	0.25	-	-		-	-	-	-	-	-	
0.018	0.14	-	-		-	-	-	-	-	-	
0.16	0.5	-	-		-	-	-	-	-	-	
0.16	0.5	-	-	-	-	-	-	-	-	-	
0.035	0.69	-	-	-	-	-	-	-	-	-	
0.013	0.25	-	-	-	-	-		-	-	-	
0.1	NE	-	-	-	-	-		-	-	-	-
1	20	-	-	-	-	-		-	-	-	-
+ *											
0.011	0.22	-		-	-	-			-	-	-

	SD-04	I		SD-05	I		SD	9-06		_	
SD-4-2.5-3.5	SD-4-6.5-7.5	SD-4-12-13	SD-5-0.5-2	SD-5-5-6	SD-5-9-10	SD-6-1-2	SD-6-4-5	SD-6-6-7	SD-6-9-10	Broli	iminary
10/18/18	10/18/18	10/18/18	10/18/18	10/18/18	10/18/18	10/18/18	10/18/18	10/18/18	10/18/18		eening
2.5-3.5 ft	6.5-7.5 ft	12-13 ft	0.5-2 ft	5-6 ft	9-10 ft	1-2 ft	4-5 ft	6-7 ft	9-10 ft	Le	evel ²
Vadose	Saturated	Saturated	Vadose	Saturated	Saturated	Vadose	Vadose	Saturated	Saturated	Vadose	Saturated
Fill	Fill	Native	Fill	Fill	Native	Fill	Fill	Fill	Native	Zone	Zode
-	-	-	-			-	-	-	-	NE	NE
-	-	-	-	-		-	-	-	-	NE	NE
-	-	-	-	-		-		-	-	NE	NE
-	-	-	-	-		-	-	-	-	NE	NE
-	-	-	-	-		-		-	-	NE	NE
	-	-	-	-	-	-		-	-	NE	NE
		-	-	-	-	-	-	-	-	NE	NE
		-	-	-	-	-		-	-	0.062	0.05

 1 Sample locations and summary of remedial investigation results are shown on Figure 5 through 9.

 2 Preliminary screening levels are from the RI/FS Work Plan (GeoEngineers, 2017).

³ Value for gasoline-range petroleum hydrocarbons if benzene is present. If benzene is not present, screening level is 100 mg/kg.

³ Total cPAH Toxic Equivalency Quotients (TEQs) were calculated using Toxicity Equivalency Factors (TEFs) values referenced from MTCA Table 708.2 (WAC 173-340-900).

ppm = parts per million

mg/kg = milligrams per kilogram

-- = not analyzed

NE = Not Established

ND = Not Detected

RL = Reporting Limit

 ${\sf U}$ = The analyte was not detected at a concentration greater than the value identified.

J = The analyte was detected and the detected concentration is considered an estimate.

Yellow shading indicates that the identified concentration is greater than the preliminary screening level.

Blue shading indicates that the practical quantitation limit (PQL) is above screening level.

Remedial Investigation and Supplemental Investigation Soil Analytical Results

Quiet Cove Anacortes, Washington

32 U 5.86 U 6,760 681 58.3 33.2 1,780 5,730 2,000 2,0		SD-10	SD-09		-08	SD			07	SD-	
12/18 10/17/18 10/18/18 10/18/18 10/18/18 Notes		00 40 4 5		00.04045	00.0.0.44						00 7 4 0
	-									SD-7-2-3.5	SD-7-1-2
Saturated Fill Saturated Native Yadose Fill Yadose Fill Yadose Fill Yadose Fill Yadose Fill Yadose Fill Yadose Fill Yadose Fill Saturated Fill Yadose Fill Saturated Fill Yadose Fill Yadose Fill Yadose Fill Yadose Fill Yadose Fill Saturated Fill Saturated Fill Saturated Fill Saturated Fill Yadose Fill Yadose Fill Saturated Fill Saturated Fill	-									10/17/18 2-3.5 ft	10/17/18 1-2 ft
HI Native FII FII Native FII FII No. No										Vadose	Vadose
NS NS HS HS NS NS NS MS HS NE NE -1 -336 98 30 -1 4 293 NE NE - - - - - 2.96 5.53 20 20 - - - - - - 24.3 30.3 1.000 50 - - - - - - - NE NE - - - - - - - NE NE - - - - - - NE NE NE - - - - - - NE NE NE - - - - - - - NE NE - - - - - - NE NE NE -		Vauo								Fill	Fill
<1		Fiii 200	FIII	Native	FIII	FIII	FIII	nauve	FIII	FIII	FIII
<1 336 98 30 <1 4 293 NE NE 2.96 5.53 20 20 0.75 6.62 1.2 1 24.3 30.3 1,000 50 NE NE NE NE NE NE NE NE NE NE NE NE NE NE NE NE NE NE NE <t< td=""><td></td><td>HS</td><td>MS</td><td>NS</td><td>NS</td><td>HS</td><td>HS</td><td>NS</td><td>NS</td><td>SS</td><td>SS</td></t<>		HS	MS	NS	NS	HS	HS	NS	NS	SS	SS
- - - - - 296 5.53 20 20 - - - - - 0.75 6.62 1.2 1 - - - - - 0.75 6.62 1.2 1 - - - - - 24.3 30.3 1.000 50 - - - - - - - NE NE - - - - - - - NE NE - - - - - - NE NE NE - - - - - - - NE NE - - - - - - - NE NE - - - - - - - NE NE - - - -										<1	<1
- - - - - 0.75 6.62 12 1 - - - - - - 24.3 30.3 1.000 50 - - - - - - - NE NE - - - - - - NE NE - - - - - - NE NE - - - - - - NE NE NE - - - - - - - NE NE - - - - - - - NE NE - - - - - - - NE NE - - - - - - NE NE NE - - - - - -	NL NL			_				_	_	_	
- - - - - 0.75 6.62 12 1 - - - - - - 0.75 6.62 12 1 - - - - - 24.3 30.3 1.000 50 - - - - - - - NE NE - - - - - - - NE NE - - - - - - - NE NE - - - - - - - NE NE - - - - - - - NE NE - - - - - - - NE NE - - - - - - - NE NE NE - - -	20 20	5.53 20	2.96						_		-
- - - - - 24.3 30.3 1.000 50 - - - - - - - NE NE - - - - - - - NE NE - - - - - - - NE NE - - - - - - - NE NE - - - - - - - NE NE - - - - - - NE NE - - - - - - NE NE - - - - - - NE NE NE - - - - - - - NE NE - - - - - - - <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td></t<>											-
- - - - - - - NE NE - - - - - - - NE NE NE - - - - - - - NE NE NE - - - - - - - NE NE NE - - - - - - - NE NE NE - - - - - - NE NE NE - - - - - - NE NE NE - - - - - NE NE NE - - - - - NE NE NE 32U 586U 6.760 681 58.3 33.2 1.780 5.30 0.002 2.000 313U <td></td> <td></td> <td>24.3</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>_</td> <td></td>			24.3							_	
- - - - - 154 2,050 24 - - - - - - - NE NE - - - - - - - NE NE - - - - - - - NE NE - - - - - - - - NE NE - - - - - - 0.0529 3.25 0.07 0.07 32U 5.80 6,760 681 58.3 33.2 1.780 5.730 2.000 2.000 2.60 11.7U 423 87.1 11.6U 11.5U 1.950 433 2.000 2.000 2.000 2.60 0.00112U 0.0454U 0.0401U 0.0006U 0.00073U 0.00114 0.0453 3.8 0.22 0.33U 0.00112U 0.0454U	·	2,00								-	
- - - - - - - NE NE - - - - - - - NE NE NE - - - - - - - NE NE NE - - - - - - 0.0529 325 0.07 0.07 33U 33.7 5.350 1.430 95.5 46.6 142 1.820 30 ² 30 ² 2.6U 11.7U 423 87.1 11.6U 11.5U 1.950 433 2.000 2.000 0.33U 0.00112U 0.0454U 0.0401U 0.00066U 0.00073U 0.00118 0.0305 0.05 0.05 0133U 0.00112U 0.0454U 0.0401U 0.00066U 0.00073U 0.00114 0.0403 3.8 0.22 0133U 0.00112U 0.0454U 0.0401U 0.0006U 0.00073U 0.00117										_	
- - - - - - NE NE - - - - - - 0.0529 3.25 0.07 0.07 39 U 33.7 5,350 1,430 95.5 46.6 142 1,820 30 ² 30 ² .32 U 5.86 U 6,760 681 58.3 33.2 1,760 5,730 2,000 2,000 2.6 U 11.7 U 423 87.1 11.6 U 11.5 U 1,950 433 2,000 2,000 0133 U 0.00112 U 0.0454 U 0.0401 U 0.00066 U 0.00073 U 0.00144 0.0403 3.8 0.22 0133 U 0.00112 U 0.0454 U 0.0401 U 0.00066 U 0.00073 U 0.00144 0.0403 3.8 0.22 0133 U 0.00112 U 0.0454 U 0.0401 U 0.00066 U 0.00073 U 0.00131 U 0.0017 1.1 1.1 0134 U 0.0025 U 0.0908 U 0.0803 U </td <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>_</td> <td></td>			-							_	
- - - - - - 0.0529 3.25 0.07 0.07 3.9 U 33.7 5,350 1,430 95.5 46.6 142 1,820 30 ² 30 ² 30 ² 3.2 U 5.86 U 6,760 681 58.3 33.2 1,780 5,730 2,000 2,000 2.6 U 11.7 U 423 87.1 11.6 U 11.5 U 1,950 433 2,000 2,000 0.33 U 0.00112 U 0.0454 U 0.0401 U 0.00066 U 0.00073 U 0.00144 0.0403 3.8 0.22 0133 U 0.00112 U 0.0454 U 0.0401 U 0.00066 U 0.00073 U 0.00144 0.0403 3.8 0.22 0133 U 0.00112 U 0.0454 U 0.0401 U 0.00066 U 0.00073 U 0.00144 0.0403 3.8 0.22 0133 U 0.0012 U 0.0908 U 0.0803 U 0.00131 U 0.00031 J 0.107 1.1 1.1										_	
33.7 5,350 1,430 95.5 46.6 142 1,820 30 ² 30 ² .32 U 5.86 U 6,760 681 58.3 33.2 1,780 5,730 2,000 2,000 2.6 U 11.7 U 423 87.1 11.6 U 11.5 U 1,950 433 2,000 2,000 0.133 U 0.00112 U 0.0454 U 0.0401 U 0.00066 U 0.00073 U 0.00144 0.0403 3.8 0.22 0133 U 0.00112 U 0.0454 U 0.0401 U 0.00066 U 0.00073 U 0.00144 0.0403 3.8 0.22 0133 U 0.00112 U 0.0454 U 0.0401 U 0.00066 U 0.00073 U 0.00144 0.0403 3.8 0.22 0133 U 0.00112 U 0.0454 U 0.0401 U 0.00066 U 0.00073 U 0.00117 0.17 1.1 1.1 0140 0.0025 U 0.0908 U 0.0803 U 0.00131 U 0.00117 0.526 2.8 0.16 -<		0.05	0.0529		_					_	
3.2 U 5.8 U 6,760 681 58.3 33.2 1,780 5,730 2,000 2,000 2.6 U 11.7 U 423 87.1 11.6 U 11.5 U 1,950 433 2,000 2,000 0.031 U 0.00112 U 0.0454 U 0.0401 U 0.00066 U 0.00073 U 0.00144 0.0403 3.8 0.22 0133 U 0.00112 U 0.0454 U 0.0401 U 0.00066 U 0.00073 U 0.00144 0.0403 3.8 0.22 0133 U 0.00112 U 0.0454 U 0.0401 U 0.00066 U 0.00073 U 0.00144 0.0403 3.8 0.22 0133 U 0.00112 U 0.0454 U 0.0401 U 0.00066 U 0.00073 U 0.00144 0.0403 3.8 0.22 0130 U 0.0025 U 0.098 U 0.0803 U 0.0013 U 0.00145 U 0.00117 0.526 2.8 0.16 - - - - - - - - - 0.0											
2.6 U 11.7 U 423 87.1 11.6 U 11.5 U 1,950 433 2,000 2,000 0133 U 0.00112 U 0.0454 U 0.0401 U 0.00066 U 0.00073 U 0.00118 0.0305 0.05 0.05 0080 J 0.00112 U 0.0454 U 0.0401 U 0.00066 U 0.00073 U 0.00144 0.0403 3.8 0.22 0133 U 0.00112 U 0.0454 U 0.0401 U 0.00066 U 0.00073 U 0.00144 0.0403 3.8 0.22 0133 U 0.00112 U 0.0454 U 0.0401 U 0.00066 U 0.00073 U 0.00117 0.107 1.1 1.1 0140 0.0025 U 0.0908 U 0.0803 U 0.0013 U 0.00117 0.526 2.8 0.16 - - - - - - - - 42 2.2 - - - - - - - 0.017 0.002 - - - -<	30 ² 30 ²	1,820 30	142	46.6	95.5	1,430	5,350	33.7	8.9 U	23.4	81.7
2.6 U 11.7 U 423 87.1 11.6 U 11.5 U 1.950 433 2.000 2.000 00133 U 0.00112 U 0.0454 U 0.0401 U 0.00066 U 0.00073 U 0.00118 0.0305 0.05 0.05 0080 J 0.00112 U 0.0454 U 0.0401 U 0.00066 U 0.00073 U 0.00144 0.0403 3.8 0.22 0133 U 0.00112 U 0.0454 U 0.0401 U 0.00066 U 0.00073 U 0.00144 0.0403 3.8 0.22 0133 U 0.00112 U 0.0454 U 0.0401 U 0.00066 U 0.00073 U 0.00031 J 0.107 1.1 1.1 0140 0.0025 U 0.0908 U 0.0803 U 0.00131 U 0.00145 U 0.00117 0.526 2.8 0.16 - - - - - - - 42 2.2 - - - - - - - 0.017 0.002 - -	2,000 2,000	5,730 2,00	1,780	33.2	58.3	681	6,760	5.86 U	6.32 U	349	315
0080 J 0.00112 U 0.0454 U 0.0401 U 0.00066 U 0.00073 U 0.00144 0.0403 3.8 0.22 0133 U 0.00112 U 0.0454 U 0.0401 U 0.00066 U 0.00073 U 0.00031 J 0.107 1.1 1.1 0140 0.0025 U 0.0908 U 0.0803 U 0.00131 U 0.00145 U 0.00117 0.526 2.8 0.16			1,950	11.5 U	11.6 U	87.1	423	11.7 U	12.6 U	531	760
0080 J 0.00112 U 0.0454 U 0.0401 U 0.00066 U 0.00073 U 0.00144 0.0403 3.8 0.22 0133 U 0.00112 U 0.0454 U 0.0401 U 0.00066 U 0.00073 U 0.00031 J 0.107 1.1 1.1 0140 0.0025 U 0.0908 U 0.0803 U 0.00131 U 0.00145 U 0.00117 0.526 2.8 0.16		L									
0.000112 U 0.0454 U 0.0401 U 0.00066 U 0.00073 U 0.00031 J 0.107 1.1 1.1 00140 0.00225 U 0.0908 U 0.0803 U 0.00131 U 0.00145 U 0.00017 0.526 2.8 0.166	0.05 0.05	0.0305 0.0	0.00118	0.00073 U	0.00066 U	0.0401 U	0.0454 U	0.00112 U	0.00133 U	0.00168	0.00121
0140 0.00225 U 0.0908 U 0.0803 U 0.00131 U 0.00145 U 0.00117 0.526 2.8 0.16	3.8 0.22	0.0403 3.8	0.00144	0.00073 U	0.00066 U	0.0401 U	0.0454 U	0.00112 U	0.00080 J	0.00091 J	0.00105 J
- - - - - - - 0.044 0.003 - - - - - - - 0.044 0.003 - - - - - - - 42 2.2 - - - - - - - 42 2.2 - - - - - - 0.017 0.002 - - - - - - 0.017 0.002 - - - - - - - 0.017 0.002 - - - - - - - - 0.025 0.002 - - - - - - - - 0.011 0.0038 - - - - - - - - 0.023 0.0011 - - - - - - - - NE NE - - - - - - - - NE NE	1.1 1.1	0.107 1.1	0.00031 J	0.00073 U	0.00066 U	0.0401 U	0.0454 U	0.00112 U	0.00133 U	0.00135 U	0.00106 U
42 2.2 42 2.2 0.017 0.002 0.025 0.002 0.025 0.002 0.025 0.002 0.025 0.002 0.025 0.001 0.023 0.0011 NE NE NE NE	2.8 0.16	0.526 2.8	0.00117	0.00145 U	0.00131 U	0.0803 U	0.0908 U	0.00225 U	0.00140	0.00142	0.00179
42 2.2 42 2.2 0.017 0.002 0.025 0.002 0.025 0.002 0.025 0.002 0.025 0.002 0.025 0.001 0.023 0.0011 NE NE NE NE	<u>.</u>										
0.017 0.002 0.025 0.002 0.017 0.002 0.025 0.002 0.061 0.0038 0.023 0.0011 0.023 0.0011 NE NE NE NE	0.044 0.003	0.04		-	-	-	-		-	-	
- - - - - 0.025 0.002 - - - - - - 0.025 0.002 - - - - - - - 0.061 0.0038 - - - - - - - 0.023 0.0011 - - - - - - - 0.023 0.0011 - - - - - - - 0.023 0.0011 - - - - - - - - 0.023 0.0011 - - - - - - - NE NE - - - - - - - NE NE	42 2.2	42		-	-	-			-	-	
- - - - - - 0.061 0.0038 - - - - - - - 0.023 0.0011 - - - - - - - 0.023 0.0011 - - - - - - - NE NE - - - - - - - NE NE	0.017 0.003	0.01		-	-	-			-	-	
0.023 0.0011 NE NE NE NE NE NE	0.025 0.002	0.02		-	-	-	-	-	-	-	
NE NE NE NE	0.061 0.003	0.06		-	-	-	-	-	-	-	
	0.023 0.001	0.02		-	-	-	-	-	-	-	
	NE NE	NE		-	-	-	-	-	-	-	-
0.033 0.033	NE NE	NE		-	-	-	-	-	-	-	-
	0.033 0.033	0.03		-	-	-	-		-	-	
0.019 0.005	0.019 0.00	0.01		-					-		
13 13	1.3 1.3			-	-	-			-	-	
<u>- 0.00094 U 0.00111 U 0.002 0.001</u>	0.002 0.002	0.00111 U 0.00	0.00094 U	-	-	-		-	-	-	
30 1.7	30 1.7			-					-		
0.00094 U 0.00111 U 0.02 0.001	0.02 0.00	0.00111 U 0.0	0.00094 U	-					-		
0.02 0.001				-					-		
NE NE				-		-			-		
NE NE				-					-		***
0.08 0.067				-							
NE NE				-	-	-	-	-	-	-	_
NE NE				-	-	-	-	-	-	-	-
1,600 1,600 NE NE				-	-	-		-	-	-	-

	_	SD-10	SD-09		-08	SD			07	SD-	
		SD-10-4-5	SD-9-2.5-4	SD-8-13-15	SD-8-9-11	SD-8-6-8	SD-8-2-4	SD-7-18.5-20	SD-7-9-10	SD-7-2-3.5	SD-7-1-2
iminary		10/18/18	10/18/18	10/17/18	10/17/18	10/17/18	10/17/18	10/17/18	10/17/18	10/17/18	10/17/18
eening evel ²		4-5 ft	2.5-4 ft		9-11 ft				9-10 ft		
vei	Le			13-15 ft		6-8 ft	2-4 ft	18.5-20 ft		2-3.5 ft	1-2 ft
Saturated	Vadose	Vadose	Vadose	Saturated	Saturated	Vadose	Vadose	Saturated	Saturated	Vadose	Vadose
Zode	Zone	Fill	Fill	Native	Fill	Fill	Fill	Native	Fill	Fill	Fill
NE	NE			-	-	-		-	-	-	-
NE	NE			-	-				-	-	
NE	NE			-	-					-	-
0.05	0.79			-	-				-	-	
0.0038	0.06			-	-	-		-	-	-	-
0.001	0.005	-		-	-	-	-	-	-	-	-
0.15	2.5			-	-	-	-	-	-	-	-
5.6	96			-	-	-	-	-	-	-	-
0.001	0.0064			-		-	-	-	-		-
0.045	0.73	-		-	-	-	-		-	-	-
160	160	-		-	-	-	-		-	-	-
NE	NE			-	-	-			-		
0.002	0.024			-	-	-	-		-	-	-
800	800	-		-	-	-			-	-	-
NE	0.17	-	-	-	-	-				-	-
NE	NE	-	-		-				-	-	-
NE	NE	-	_		-		-		-		_
0.18	2.6	0.00111 U	0.00094 U		-	-	-		-		-
NE	NE	_	_	-	-		-		-	-	
0.01	0.27	-									
0.0049	0.094				-						
1.3	22	-			-					-	
NE	NE	-			-					-	
0.001	0.01	-								_	
0.04	1.4	-								_	
0.001	0.006	_	_							_	
	1										
35	35	2.24	0.0856				_	0.00128 J	0.0126	0.234	0.659
0.04	0.77	3.23	0.0603					0.00129 J	0.00729	0.526	0.911
0.02	0.32	0.0518 U	0.0483 U				_	0.00498 U	0.00498 U	0.0215	0.1
0.068	NE	0.655	0.0268					0.00165 J	0.0177	0.272	0.706
0.2	4.4	0.164	0.0483 U					0.00167	0.00121 J	0.0134	0.106
0.007	0.07	0.0793	0.0193	-				0.00498 U	0.00498 U	0.0247	0.209
0.01	0.14	0.0486	0.0551	-		-		0.00498 U	0.00498 U	0.0300	0.2
0.01	0.14	0.0457	0.0409			-		0.00498 U	0.00498 U	0.0356	0.202
2	NE	0.0397	0.0378					0.00498 U	0.00498 U	0.0354	0.459
0.016	0.32	0.0472	0.0968	-	-			0.00498 U	0.00498 U	0.0465	0.188
0.018	0.32	0.0185	0.0175	-				0.00498 U	0.00498 U	0.0133	0.141
		0.104	0.137		-			0.00498 U	0.00498 U	0.0531	0.376
0.018	0.14	0.0518 U	0.0483 U		-			0.00498 U	0.00498 U	0.00605	0.0449
0.16	0.5	0.0518 0	0.0797	-	-	-		0.00143 J	0.00151 J	0.0648	0.617
0.16	0.5	0.582	0.103	-	-			0.00143 J	0.00297 J	0.00871	0.0257
0.035	0.69	0.0254	0.0211	-	-	-		0.00498 U	0.00498 U	0.0349	0.171
0.013	0.25	1.21	0.267	-	-			0.00498 0	0.00498 0	0.0349	0.852
0.1	NE	0.31	0.267	-	-			0.00124 J 0.00110 J	0.00287 J	0.0687	0.852
1	20		0.212	-	-						
0.011	0.22	0.0600		-	-			0 U	0 U	0.0481	0.307
0.011	0.22	0.0626	0.0578	-	-			0.00376 U	0.00376 U	0.0481	0.307

	SD-	-07			SI	0-08		SD-09	SD-10	_	
SD-7-1-2	SD-7-2-3.5	SD-7-9-10	SD-7-18.5-20	SD-8-2-4	SD-8-6-8	SD-8-9-11	SD-8-13-15	SD-9-2.5-4	SD-10-4-5	Preli	minary
10/17/18	10/17/18	10/17/18	10/17/18	10/17/18	10/17/18	10/17/18	10/17/18	10/18/18	10/18/18		ening
1-2 ft	2-3.5 ft	9-10 ft	18.5-20 ft	2-4 ft	6-8 ft	9-11 ft	13-15 ft	2.5-4 ft	4-5 ft	Le	evel ²
Vadose	Vadose	Saturated	Saturated	Vadose	Vadose	Saturated	Saturated	Vadose	Vadose	Vadose	Saturated
Fill	Fill	Fill	Native	Fill	Fill	Fill	Native	Fill	Fill	Zone	Zode
-	-	-	-	-	-	-	-	-		NE	NE
-	-	-	-	-	-	-	-	-		NE	NE
-	-	-	-		-	-	-	-		NE	NE
-	-	-	-	-	-	-	-	-		NE	NE
-	-	-	-		-	-	-	-		NE	NE
-	-	-	-		-	-	-	-		NE	NE
-	-	-	-	-	-	-	-	-	-	NE	NE
-	-	-	-	-	-	-	-	-		0.062	0.05

 1 Sample locations and summary of remedial investigation results are shown on Figure 5 through 9.

 $^{\rm 2}$ Preliminary screening levels are from the RI/FS Work Plan (GeoEngineers, 2017).

³Value for gasoline-range petroleum hydrocarbons if benzene is present. If benzene is not present, screening level is 100 mg/kg.

³ Total cPAH Toxic Equivalency Quotients (TEQs) were calculated using Toxicity Equivalency Factors (TEFs) values referenced from MTCA Table 708.2 (WAC 173-340-900).

ppm = parts per million

mg/kg = milligrams per kilogram

-- = not analyzed

NE = Not Established

ND = Not Detected

RL = Reporting Limit

 ${\sf U}$ = The analyte was not detected at a concentration greater than the value identified.

J = The analyte was detected and the detected concentration is considered an estimate.

Yellow shading indicates that the identified concentration is greater than the preliminary screening level.

Blue shading indicates that the practical quantitation limit (PQL) is above screening level.

Remedial Investigation and Supplemental Investigation Soil Analytical Results Quiet Cove Anacortes, Washington

	MV	V_12	Γ	_	
MW-12-3-4 10/18/18	MW-12-7.5-9.5 10/18/18	MW-12-11-12 10/18/18	MW-12-14-15 10/18/18		minary ening
3-4 ft	7.5-9.5 ft	11-12 ft	14-15 ft		vel ²
Vadose	Saturated	Saturated	Saturated		T
Fill	Fill	Fill	Native	Vadose Zone	Saturated Zode
		• •••	hative	20116	2008
NS	HS	SS	NS	NE	NE
<1	125	243	<1	NE	NE
			I	.1	
-	-	-	-	20	20
		-	-	1.2	1
-	-	-	-	1,000	50
		-	-	NE	NE
-	-	-	-	250	24
		-		NE	NE
	-	-	-	NE	NE
	-	-		0.07	0.07
				1	-
5.23 U	3,010	762	6.08 U	30 ²	30 ²
36.4	1,300	220	5.75 U	2,000	2,000
69.9	200	57.6	11.5 U	2,000	2,000
0.00057.1	0.0475.11	0.00424	0.00000.11		Т
0.00057 J	0.0475 U	0.00134	0.00086 U	0.05	0.05
0.00246	0.0475 U	0.00391	0.00086 U	3.8	0.22
0.00075 U	0.0475 U	0.00098 U	0.00086 U	1.1	1.1
0.000380	0.0362	0.00161	0.00172 U	2.8	0.16
				0.044	0.002
				42	0.003
			-	0.017	0.002
				0.017	0.002
	-	-	-		
		-	-	0.061	0.0038
		-	-	0.023	0.0011 NE
	-	-		NE NE	NE
		_		0.033	0.033
				0.019	0.005
		_	_	1.3	1.3
		-	_	0.002	0.001
		-	-	30	1.7
	_	_	-	0.02	0.001
	_	_		0.02	0.001
_	_	_		NE	NE
_	_	_	_	NE	NE
_	_	_		0.08	0.067
	_	_		NE	NE
_	_	_	_	NE	NE
			1	·	+
	-	-	-	1,600	1,600

	MV	/_12		4	
MW-12-3-4	MW-12-7.5-9.5	MW-12-11-12	MW-12-14-15		
10/18/18	10/18/18		10/18/18		minary ening
3-4 ft	7.5-9.5 ft	8/18 10/18/18 10/18/18 11.12 ft 14.15 f rated Saturated Saturate III Native - - - </th <th>14-15 ft</th> <th></th> <th>evel²</th>	14-15 ft		evel ²
Vadose	Saturated	Saturated	Saturated	Vadose	Saturate
Fill	Fill	Fill	Native	Zone	Zode
	-	-	-	NE	NE
-	-	_		NE	NE
-	-	-	-	NE	NE
-	-	-		0.79	0.05
	-	_		0.06	0.0038
-		-		0.005	0.001
-		-		2.5	0.15
		-		96	5.6
		-		0.0064	0.001
		-	-	0.73	0.045
		-	-	160	160
		-		NE	NE
	-	-	-	0.024	0.002
	-			800	800
	-	-	-	0.17	NE
		-	-	NE	NE
	-			NE	NE
-	-	-	-	2.6	0.18
	-			NE	NE
-	-			0.27	0.01
-				0.094	0.0049
-				22	1.3
-	-			NE	NE
				0.01	0.001
-				0.006	0.04
-		-	-	0.006	0.001
0.0110	1.77	0.223	0.00307 J	35	35
0.0205	1.89	0.134	0.00180 J	0.77	0.04
0.00566	0.0737		0.00481 U	0.32	0.04
0.0154	0.146	0.0190	0.00481 U	NE	0.068
0.00208 J		_	-	4.4	0.2
0.00998				0.07	0.007
0.0140				0.14	0.01
0.0161				0.25	0.012
0.0170		-		NE	2
0.0204			-	0.32	0.016
0.00844			-	0.25	0.012
0.0231			-	0.14	0.018
0.00268 J				0.5	0.16
0.0378				0.5	0.16
0.0112			-	0.69	0.035
0.0124			-	0.25	0.013
0.0286				NE	0.1
0.0390				20	1
0.0218			-	0.22	0.011
0.0218	-	-	-	0.22	0.011

MW_12				_	
	MW-12-7.5-9.5	MW-12-11-12	MW-12-14-15	Preliminary Screening Level ²	
	10/18/18	10/18/18	10/18/18		
	7.5-9.5 ft	11-12 ft	14-15 ft		
	Saturated	Saturated	Saturated	Vadose	Saturated
	Fill	Fill	Native	Zone	Zode
	-	-	-	NE	NE
	-	-	-	NE	NE
	-	_	-	NE	NE
	-	-		NE	NE
		-		NE	NE
	-	-		NE	NE
	-	-		NE	NE
		-		0.062	0.05

 $^{1}\,\mbox{Sample}$ locations and summary of remedial investigation results are shown on Figure 5 through 9.

 2 Preliminary screening levels are from the RI/FS Work Plan (GeoEngineers, 2017).

³ Value for gasoline-range petroleum hydrocarbons if benzene is present. If benzene is not present, screening level is 100 mg/kg.

³ Total cPAH Toxic Equivalency Quotients (TEQs) were calculated using Toxicity Equivalency Factors (TEFs) values referenced from MTCA Tabl ppm = parts per million

mg/kg = milligrams per kilogram

– = not analyzed

NE = Not Established

ND = Not Detected

RL = Reporting Limit

U = The analyte was not detected at a concentration greater than the value identified. J = The analyte was detected and the detected concentration is considered an estimate.

Yellow shading indicates that the identified concentration is greater than the preliminary screening level.

Blue shading indicates that the practical quantitation limit (PQL) is above screening level.

Remedial Investigation Groundwater Analytical Results

Quiet Cove

Anacortes, Washington

Sample Location ¹		MV	V_1	MV	N_2	MV	V_3	MV	N_4	M	N_5
Sample Identification	Preliminary	MW-1-110917	MW-1-031918	MW-2-110917	MW-2-032018	MW-3-101817	MW-3-032018	MW-4-101817	MW-4-031918	MW-5-101817	MW-5-032018
Date Sampled	Screening	11/09/17	03/19/18	11/09/17	03/20/18	10/18/17	03/20/18	10/18/17	03/19/18	10/18/17	03/20/18
Well Location	Level ²	Shoreline	Shoreline	Shoreline	Shoreline	Shoreline	Shoreline	Upland	Upland	Upland	Upland
Field Measured Parameters	-		-		-			-			-
Top of Casing Elevation ³ (feet)	NE	11.91	11.91	12.01	12.01	12.42	12.42	12.43	12.43	14.96	14.96
Depth to Groundwater (feet)	NE	3.93	4.56	5.12	5.48	6.32	5.82	5.68	5.62	5.54	4.82
Groundwater Elevation (feet)	NE	7.98	7.35	6.89	6.53	6.10	6.60	6.75	6.81	9.42	10.14
рН	NE	7.46	5.89	7.41	6.21	6.36	6.21	6.15	6.05	6.14	5.79
Conductivity (µS/cm)	NE	195	132	493	362	740	520	860	367	384	141
Turbidity ⁵ (NTU)	NE	4.0	3.3	3.8	4.8	9.3	6.8	5.0	8.5	17.8	21.4
Dissolved Oxygen (mg/l)	NE	1.27	1.53	0.28	2.02	0.40	0.11	0.06	0.16	0.10	0.89
Temperature (°C)	NE	11.5	8.0	13.5	9.8	15.0	10.9	15.4	11.1	15.4	9.7
Total Dissolved Solids (mg/l)	NE	171.0	126.7	411.5	332.8	591.5	468.0	682.5	324.6	298.9	128.1
Oxidation Reduction Potential (mV)	NE	113.9	39.2	93.2	70.1	75.6	64.9	66.5	76.9	72.1	79.6
Salinity (ppt)	NE	0.13	0.09	0.31	0.24	0.45	0.35	0.52	0.24	0.23	0.09
Total Metals by EPA 200.8/1631 (µg/L)											
Arsenic	5	2.42 J	0.86	7.69	5.69	1.84	2.51	1.5	1.97	4.55	2.13
Cadmium	8.8	0.0420 J	0.100 U	0.0410 J	0.0350 J	0.0710 J	0.0470 J	0.500 U	0.118	0.200 U	0.104
Chromium	50	0.520 J	0.323 J	2.23	1.28	7.32	4.9	3.29	0.394 J	1.6	6.22
Copper	NE	1.63 J	1.24	2.46	2.15	1.92	1.36	2.50 U	1.42	1.85	6.23
Lead	2.1	0.403 J	0.361	0.261	0.204	0.227	0.276	3.75	0.0850 J	0.408	1.66
Silver	NE	0.200 UJ	0.200 U	0.200 UJ	0.200 U	0.200 UJ	0.200 U	1.00 UJ	0.200 U	0.400 UJ	0.0260 J
Zinc	NE	4.56 J	2.80 J	2.56 J	2.42 J	27.7	5.66	78.5	3.01 J	2.37 J	10.2
Mercury	0.025	0.020 U									
Dissolved Metals by EPA 200.8/1631 (μ	ıg∕L)										
Arsenic	5	1.2	0.614	7.57	4.66	1.13	1.42	1.53	1.71	4.6	0.648
Cadmium	8.8	0.0360 J	0.100 U	0.200 U	0.0660 J	0.0620 J	0.0450 J				
Chromium	50	0.228 J	0.333 J	1.58	0.99	6.28	4.55	4.45	0.355 J	0.606 J	0.375 J
Copper	NE	1.1	0.931	1.75	1.7	0.719	0.525	0.948 J	1.21	0.980 J	1.23
Lead	2.1	0.100 U	0.209	0.100 U	0.0860 J	0.0950 J	0.113	0.200 U	0.100 U	0.200 U	0.100 U
Silver	NE	0.200 U	0.400 U	0.200 U	0.400 U	0.200 U					
Zinc	NE	4.43	2.14 J	2.86 J	5.29	15.9	2.41 J	2.01 J	2.90 J	8.00 U	0.835 J
Mercury	0.025	0.020 U									
Petroleum Hydrocarbons by NWTPH-G/E					-				-	-	
Gasoline-range hydrocarbons	800 ⁴	100 U	100 U	100 U	100 U	234	100 U	447	100 U	112	100 U
Diesel-range hydrocarbons	500	665 J	388	3,530	1,600	1,940	1,270	1,460	293	637	100 U
Motor Oil-range hydrocarbons	500	200 UJ	200 U	1,080	700	461	279	285	200 U	200 U	200 U

Sample Location ¹		MV	V_1	MV	V_2	M	N_3	MM	V_4	MV	N_5
Sample Identification	Preliminary	MW-1-110917	MW-1-031918	MW-2-110917	MW-2-032018	MW-3-101817	MW-3-032018	MW-4-101817	MW-4-031918	MW-5-101817	MW-5-032018
Date Sampled	Screening	11/09/17	03/19/18	11/09/17	03/20/18	10/18/17	03/20/18	10/18/17	03/19/18	10/18/17	03/20/18
Well Location	Level ²	Shoreline	Shoreline	Shoreline	Shoreline	Shoreline	Shoreline	Upland	Upland	Upland	Upland
Volatile Organic Compounds (VOCs) by E	PA 8360 (µg/L)										
Benzene	2.4	0.20 U	0.11 J	0.20 U	0.20 U	0.20 U					
Toluene	520	0.20 U	0.20 U	0.20 U	0.20 U	0.04 J	0.20 U	0.09 J	0.20 U	0.20 U	0.20 U
Ethylbenzene	130	0.20 U									
Total Xylenes	310	0.40 U	0.40 U	0.40 U	0.40 U	0.25	0.40 U	0.21	0.40 U	0.07	0.40 U
1,2-Dibromoethane (EDB)	0.01	0.20 U									
1,2-Dichloroethane (EDC)	5	0.20 U									
Methyl t-butyl ether (MTBE)	610	0.50 U									
n-Hexane	7.8	0.20 U									
Polycyclic Aromatic Hydrocarbons (PAHs) by EPA 8270 SIN	/I (µg/L)									
Benzo(a)anthracene	0.01	0.010 U	0.010 U	0.010 U	0.010 U	0.001 J	0.010 U	0.006 J	0.002 J	0.0009 J	0.001 J
Benzo(a)pyrene	0.01	0.010 U	0.030 U	0.003 J	0.010 U	0.010 U					
Benzo(b)fluoranthene	0.01	0.0007 J	0.010 U	0.0008 J	0.010 U	0.001 J	0.010 U	0.004 J	0.002 J	0.010 U	0.002 J
Benzo(k)fluoranthene	0.013	0.010 U	0.030 U	0.010 U	0.010 U	0.010 U					
Chrysene	0.031	0.002 J	0.010 U	0.010 U	0.010 U	0.003 J	0.010 U	0.012 J	0.003 J	0.0009 J	0.004 J
Dibenzo(a,h)anthracene	0.01	0.010 U	0.030 U	0.010 U	0.010 U	0.010 U					
Indeno(1,2,3-c,d)pyrene	0.01	0.001 J	0.010 U	0.030 U	0.008 J	0.010 U	0.010 U				
Total cPAH TEQ ⁵ (ND = 0)	0.011	0.0002 J	0 U	0.0001 J	ΟU	0.0002 J	ΟU	0.0074 J	0.0042 J	0.0001 J	0.0003 J
Total cPAH TEQ ⁵ (ND = 0.5 RL)	0.011	0.0067 J	0.0076 U	0.0071 J	0.0076 U	0.0067 J	0.0076 U	0.0084 J	0.0052 J	0.0071 J	0.0068 J

¹ Sample locations and summary of remedial investigation results are shown on Figure 12 through 17.

² Preliminary screening levels are from the RI/FS Work Plan (GeoEngineers, 2017).

³ Sample elevations referenced to North American Vertical Datum 1988 (NAVD88) from Sound Development Group October 2017 Survey.

⁴ Value for gasoline-range petroleum hydrocarbons if benzene is present. If benzene is not present, screening level is 1,000 µg/l.

⁵ Total cPAH Toxic Equivalency Quotients (TEQs) were calculated using Toxicity Equivalency Factors (TEFs) values referenced from MTCA Table 708.2 (WAC 173-340-900).

 μ S/cm = microsiemens per centimeter

NTU = Nephelometric Turbidity Unit

mV = millivolt

C = Celsius

ppt = parts per thousand

mg/L = milligram per liter

 μ g/L = microgram per liter

-- = not analyzed

NE = Not Established

ND = Not Detected

 U = The analyte was not detected at a concentration greater than the value identified.

 $\mathsf{J}=\mathsf{The}$ analyte was detected and the detected concentration is considered an estimate.

Yellow shading indicates that the identified concentration is greater than the preliminary screening level.

Blue shading indicates that the practical quantitation limit (PQL) is above screening level.

Bold font type indicates the analyte was detected at the reported concentration.

Remedial Investigation Groundwater Analytical Results

Quiet Cove

Anacortes, Washington

Sample Location ¹		MV	V_6	MV	V_7	M	N_8	MM	/_10	M	W_11
Sample Identification	Preliminary	MW-6-101817	MW-6-032018	MW-7-101817	MW-7-032018	MW-8-110917	MW-8-031918	MW-10-110917	MW-10-031918	MW-11-110917	MW-11-032018
Date Sampled	Screening	10/18/17	03/20/18	10/18/17	03/20/18	11/09/17	03/19/18	11/09/17	03/19/18	11/09/17	03/20/18
Well Location	Level ²	Upland	Upland	Shoreline	Shoreline	Shoreline	Shoreline	Upland	Upland	Upland	Upland
Field Measured Parameters								-			
Top of Casing Elevation ³ (feet)	NE	15.43	15.43	12.62	12.62	13.13	13.13	14.17	14.17	12.28	12.28
Depth to Groundwater (feet)	NE	5.68	4.54	6.69	6.38	4.60	4.89	4.49	3.46	3.58	
Groundwater Elevation (feet)	NE	9.75	10.89	5.93	6.24	8.53	8.24	9.68	10.71	8.70	12.28
рН	NE	7.08	6.39	6.20	6.01	7.26	6.49	6.90	6.96	6.24	
Conductivity (µS/cm)	NE	314	229	1470	710	567	283	406	301	830	
Turbidity ⁵ (NTU)	NE	5.8	3.0	5.0	0.0	5.7	2.7	4.4	0.4	8.4	
Dissolved Oxygen (mg/l)	NE	5.47	6.31	1.66	5.67	0.28	0.22	3.83	0.37	0.10	
Temperature (°C)	NE	14.3	9.6	15.9	10.0	15.0	10.3	16.1	8.9	15.5	-
Total Dissolved Solids (mg/l)	NE	256.8	211.2	1168.0	637.0	294.5	260.0	318.5	282.7	656.5	
Oxidation Reduction Potential (mV)	NE	78.0	114.1	86.5	69.5	30.8	19.4	77.2	251.1	65.4	-
Salinity (ppt)	NE	0.19	0.16	0.91	0.48	0.22	0.19	0.25	0.21	0.50	-
Total Metals by EPA 200.8/1631 (µg/L)											
Arsenic	5	1.59	0.705	4.16	0.974	5.96	6.75	1.71	1.33	10.4	7.01
Cadmium	8.8	0.0510 J	0.100 U	0.500 U	0.100 U	0.100 U	0.100 U	0.0360 J	0.0340 J	0.0820 J	0.100 U
Chromium	50	0.483 J	1.17	2.04 J	0.398 J	1.92	1.09	0.265 J	0.500 U	1.12	0.932
Copper	NE	1.2	2.73	2.50 U	0.692	0.805	0.884	1.25	0.879	0.500 U	0.500 U
Lead	2.1	0.526	0.339	0.500 U	0.0830 J	0.164	0.143	0.231	0.100 U	0.278	0.0780 J
Silver	NE	0.200 UJ	0.200 U	1.00 UJ	0.200 U	0.200 UJ	0.200 U	0.200 UJ	0.200 U	0.200 UJ	0.200 U
Zinc	NE	1.55 J	5.41	20.0 U	2.69 J	2.09 J	2.71 J	2.11 J	2.31 J	4.45	0.978 J
Mercury	0.025	0.020 U	0.020 U	0.020 U	0.020 U						
Dissolved Metals by EPA 200.8/1631 (µ	ıg∕L)										
Arsenic	5	1.47	0.64	1.71	0.989	6.29	3.91	1.67	1.32	11.6	6.74
Cadmium	8.8	0.100 U	0.100 U	0.500 U	0.100 U	0.100 U	0.100 U	0.0320 J	0.0730 J	0.100 U	0.100 U
Chromium	50	0.402 J	1.07	1.42 J	0.356 J	1.41	1.13	0.500 U	0.500 U	1.18	1.05
Copper	NE	0.931	2.91	2.50 U	1.29	0.500 U	0.500 U	0.96	0.963	0.500 U	0.500 U
Lead	2.1	0.100 U	0.100 U	0.500 U	0.251	0.100 U	0.100 U	0.100 U	0.100 U	0.111	0.133
Silver	NE	0.200 U	0.200 U	1.00 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U
Zinc	NE	1.01 J	1.58 J	20.0 U	3.08 J	1.90 J	1.42 J	2.51 J	2.18 J	3.99 J	4.00 U
Mercury	0.025	0.020 U	0.020 U	0.020 U	0.020 U						
Petroleum Hydrocarbons by NWTPH-G/D			Γ		r		T	T	T		
Gasoline-range hydrocarbons	800 ⁴	100 U	100 U	100 U	100 U	251	109	100 U	100 U	2,030	3,120
Diesel-range hydrocarbons	500	100 U	100 U	100 U	100 U	828	455	100 U	100 U	4,780	5,440
Motor Oil-range hydrocarbons	500	200 U	200 U	200 U	200 U	342	200 U	200 U	200 U	723	739

GEOENGINEERS

Sample Location ¹		MV	V_6	MV	V_7	M	N_8	MW	/_10	MV	V_11
Sample Identification	Preliminary	MW-6-101817	MW-6-032018	MW-7-101817	MW-7-032018	MW-8-110917	MW-8-031918	MW-10-110917	MW-10-031918	MW-11-110917	MW-11-032018
Date Sampled	Screening	10/18/17	03/20/18	10/18/17	03/20/18	11/09/17	03/19/18	11/09/17	03/19/18	11/09/17	03/20/18
Well Location	Level ²	Upland	Upland	Shoreline	Shoreline	Shoreline	Shoreline	Upland	Upland	Upland	Upland
Volatile Organic Compounds (VOCs) by E	PA 8360 (µg/L)										
Benzene	2.4	0.20 U	0.20 U	0.20 U	0.20 U	5.83	3.03	0.20 U	0.20 U	30.5	25.1
Toluene	520	0.20 U	0.20 U	0.20 U	0.20 U	0.54	0.12 J	0.20 U	0.20 U	2.29	2.05
Ethylbenzene	130	0.20 U	0.20 U	0.20 U	0.20 U	0.24	0.20 U	0.20 U	0.20 U	1.17	1.21
Total Xylenes	310	0.40 U	0.40 U	0.40 U	0.40 U	0.64	0.11	0.40 U	0.40 U	2.8	3.2
1,2-Dibromoethane (EDB)	0.01	0.20 U	0.20 U	0.20 U	0.08 J						
1,2-Dichloroethane (EDC)	5	0.20 U	0.15 J	0.20 U	0.20 U	0.20 U	0.20 U				
Methyl t-butyl ether (MTBE)	610	0.50 U	0.50 U	0.50 U	0.50 U						
n-Hexane	7.8	0.20 U	0.20 U	0.20 U	0.20 U	4.4	1.32	0.20 U	0.20 U	0.20 U	5.86
Polycyclic Aromatic Hydrocarbons (PAHs	s) by EPA 8270 SIM	1 (µg/L)									
Benzo(a)anthracene	0.01	0.001 J	0.002 J	0.0009 J	0.002 J	0.010 U	0.010 U	0.010 U	0.010 U	0.001 J	0.002 J
Benzo(a)pyrene	0.01	0.010 U	0.010 U	0.010 U	0.010 U						
Benzo(b)fluoranthene	0.01	0.0008 J	0.001 J	0.0008 J	0.001 J	0.010 U	0.010 U	0.0006 J	0.010 U	0.001 J	0.010 U
Benzo(k)fluoranthene	0.013	0.010 U	0.010 U	0.010 U	0.010 U						
Chrysene	0.031	0.002 J	0.002 J	0.001 J	0.002 J	0.010 U	0.010 U	0.001 J	0.010 U	0.004 J	0.005 J
Dibenzo(a,h)anthracene	0.01	0.010 U	0.010 U	0.010 U	0.010 U						
Indeno(1,2,3-c,d)pyrene	0.01	0.010 U	0.001 J	0.010 U	0.001 J	0.010 U	0.010 U	0.010 U	0.010 U	0.010 U	0.010 U
Total cPAH TEQ ⁵ (ND = 0)	0.011	0.0002 J	0.0004 J	0.0002 J	0.0004 J	ΟU	0 U	0.0001 J	ΟU	0.0002 J	0.0003 J
Total cPAH TEQ ⁵ (ND = 0.5 RL)	0.011	0.0067 J	0.0064 J	0.0067 J	0.0064 J	0.0076 U	0.0076 U	0.0071 J	0.0076 U	0.0067 J	0.0073 J

¹ Sample locations and summary of remedial investigation results are shown on Figure 12 through 17.

² Preliminary screening levels are from the RI/FS Work Plan (GeoEngineers, 2017).

³ Sample elevations referenced to North American Vertical Datum 1988 (NAVD88) from Sound Development Group October 2017 Survey.

⁴ Value for gasoline-range petroleum hydrocarbons if benzene is present. If benzene is not present, screening level is 1,000 µg/l.

⁵ Total cPAH Toxic Equivalency Quotients (TEQs) were calculated using Toxicity Equivalency Factors (TEFs) values referenced from MTCA Table 708.2 (WAC 173-340-900).

 μ S/cm = microsiemens per centimeter

NTU = Nephelometric Turbidity Unit

mV = millivolt

C = Celsius

ppt = parts per thousand

mg/L = milligram per liter

 μ g/L = microgram per liter

-- = not analyzed

NE = Not Established

ND = Not Detected

 U = The analyte was not detected at a concentration greater than the value identified.

 J = The analyte was detected and the detected concentration is considered an estimate.

Yellow shading indicates exceedance of the preliminary groundwater screening level.

Blue shading indicated non-detect result exceedance of the preliminary groundwater screening level.

Bold font type indicates the analyte was detected at the reported concentration.

Supplemental Investigation Groundwater Analytical Results

Quiet Cove Anacortes, Washington

		1	T	1	,	cortes, washingto				T		1	
Monitoring Well Location ¹	Preliminary	MW_1	MW_2	MW_3	MW_4	MW_5	MW_6	MW_7	MW_8	MW_10	MW_11	MW_12	MW_12
Sample Identification	Screening	MW-1_103118	MW-2_103118	MW-3_103018	MW-4_102918	MW-5_103118	MW-6_102918	MW-7_103018	MW-8_102918	MW-10_102918	MW-11_103118	MW-12_103018	DUP-1_103018
Date Sampled	Level ²	10/31/18	10/31/18	10/30/18	10/29/18	10/31/18	10/29/18	10/30/18	10/29/18	10/29/18	10/31/18	10/30/18	10/30/18
Field Measured Parameters													
Top of Casing Elevation [°] (feet)	NE	11.91	12.01	12.42	12.43	14.96	15.43	12.62	13.13	14.17	12.28	11.17	
Depth to Groundwater (feet)	NE	4.35	5.7	6.21	5.71	6.59	5.31	6.47	5.97	6.72	6.12	2.85	
Groundwater Elevation (feet)	NE	7.56	6.31	6.21	6.72	8.37	10.12	6.15	7.16	7.45	6.16	8.32	
рН	NE	6.33	6.55	6.61	6.04	6.41	6.92	6.4	6.78	7.03	6.48	6.23	
Conductivity (mS/cm)	NE	162.9	452.7	1457	528	320.8	278.9	1583	324.6	347.4	789	436.1	
Turbidity [°] (NTU)	NE	10.03	7.63	8.54	10.54	10.47	6.72	9.47	120.61	27.33	5.43	9.78	
Dissolved Oxygen (mg/L)	NE	2.99	1.07	0.76	0.9	1.03	1.17	1.4	0.87	1.02	0.76	0.86	
Temperature (°C)	NE	13.3	14.1	15.3	15.2	15.1	14	15.5	16	14.2	15	14.8	
Total Dissolved Solids (mg/L)	NE	136	367	1170	423	257	227	1256	259	277	627	352	
Oxidation Reduction Potential (mV)	NE	31.4	-22.4	-78.7	-82.6	17.7	139	100.9	-65	161.9	-80.3	-75.5	
Salinity (%)	NE	0.1	0.27	0.92	0.32	0.19	0.17	0.99	0.19	0.2	0.48	0.26	
Geochemical Parameters ⁴		•	•	•			•				•		
Methane (µg/L)	NE	264	2,830	9,880	7,560	794	0.65 U	14.7	1,000	0.65 U	14,000	16,900	17,500
Nitrate (mg/L)	NE	0.501	1.73	0.100 U	0.454	0.100 U	0.199	2.74	0.242	0.100 U	0.100 U	0.100 U	0.100 U
Sulfate (mg/L)	NE	25.8	20.7	24.2	72.2	1.01	15.8	22.4	10.5	19.2	0.100 U	7.93	9.98
Total Alkalinity (mg/L)	NE	69.0	253	406	168	187	150	249	185	184	426	233	242
Iron, Ferrous, Fe+2 (mg/L)	NE	0.598	4.21	3.05	16.7	1.49	0.040	0.040 U	5.61	0.040 U	32.0	25.5	25.6
Dissolved Manganese (µg/L)	NE	48.1	156	292	2,570	1,240	8.36	203	1,130	573	3,350	3,010	2,950
Petroleum Hydrocarbons by NWTPH-Gx (µg/L)													
Gasoline-range hydrocarbons	800 ⁵		-			-			117	-	3,220		
Petroleum Hydrocarbons by NWTPH-Dx (μ g/L)	without silica g	el cleanup											
Diesel-range hydrocarbons	500	1,090	1,210	1,420	584	454	100 U	100 U	415	100 U	5,850	1,750	1,890
Motor Oil	500	359	616	200 U	200 U	200 U	200 U	200 U	200 U	200 U	977	200 U	200 U
Petroleum Hydrocarbons by NWTPH-Dx (µg/L)	with silica gel o	leanup											
Diesel-range hydrocarbons	500	100 U	100 U	100 U	100 U	100 U	1,110	188	202				
Motor Oil	500	200 U	200 U	200 U	200 U	200 U	200 U	200 U	200 U				
Volatile Organic Compounds (VOCs) by EPA 83	860 (µg/L)												
Benzene	2.4		-		-	-		-	2.19		29.1		
Toluene	520		-		-	-		-	0.16 J		2.45		
Ethylbenzene	130		-		-	-		-	0.06 J		1.39	-	-
Total Xylenes	310	-	-	-	_	_	-	_	0.190	-	3.30	-	-

Notes:

¹ Sample locations are shown on Figure 1.

² Preliminary screening levels are from the RI/FS Work Plan (GeoEngineers, 2017).

³ Sample elevations referenced to North American Vertical Datum 1988 (NAVD88) from Sound Development Group October 2017 Survey.

⁴ Geochemical methods include: Methane by EPA RSK-175; Nitrate and Sulfate by EPA 300.0; Total Alkalinity by SM2420 B-97; Ferrous Iron by SM 3500-Fe; and Manganese by EPA 6020A

⁵ Value for gasoline-range petroleum hydrocarbons if benzene is present. If benzene is not present, screening level is 1,000 µg/l.

 μ S/cm = microsiemens per centimeter

NTU = Nephelometric Turbidity Unit

- mV = millivolt
- C = Celsius

ppt = parts per thousand

μg/L = microgram per liter -- = not analyzed NE = Not Established ND = Not Detected

mg/L = milligram per liter

 $\mathsf{U}=\mathsf{The}$ analyte was not detected at a concentration greater than the value identified.

 $\mathsf{J}=\mathsf{The}$ analyte was detected and the detected concentration is considered an estimate.

Yellow shading indicates exceedance of the preliminary groundwater screening level.

Blue shading indicated non-detect result exceedance of the preliminary groundwater screening level.

Bold font type indicates the analyte was detected at the reported concentration.

Remedial Investigation Sediment Analytical Results for Protection of Benthic Organisms

Quiet Cove

Sample Location ¹	Preli	minary Screening		GEI-SED-1 ²		GEI-S	SED-2	GEI-S	SED-3	GEI-S	SED-4
Sample Identification		Level ³	SED-COMP-1_091517	SED1-1-3 _091517	SED1-4-6_091517	SED-2-0-2	SED-2-2-4	SED-3-0-2	SED-3-2-3.5	SED-4-0-1.5	SED-4-1.5-3
Sample Date	SCO/	CSL/	9/15/2017	9/15/2017	9/15/2017	7/17/2018	07/17/18	7/17/2018	07/17/18	7/16/2018	7/16/2018
Sample Interval (feet bgs)	LAET ⁴	2LAET ⁴	0-10 cm	1-3 ft	4 - 6 ft	0-2 ft	2-4 ft	0-2 ft	2-3.5 ft	0-1.5 ft	1.5-3 ft
Field Measured Parameters					· · · · · · · · · · · · · · · · · · ·						
Sheen	NE	NE	NS	NS	NS	NS	NS	NS	NS	NS	NS
Headspace Vapors (ppm)	NE	NE	<1	<1	<1	<1	<1	<1	<1	<1	<1
Conventionals		•					•			•	•
Total Organic Carbon (TOC)	NE	NE	0.14 J	0.85 J	0.39 J			-			
Total Volatile Solids (TVS)	NE	NE	0.803	1.44	2.21			-			
Total Solids (TS)	NE	NE	87.8	93.01	87.29			-			
Sulfide	NE	NE	1.05 U	0.910 U	99.6		-				
Ammonia (Total as N)	NE	NE	0.44 U	0.40 U	1.13						
Grain Size (Percent)		L			· · ·		•		•	•	•
Gravel	NE	NE	34.6	40.5	35.2						
Very coarse sand	NE	NE	8.9	11.8	7.7						
Coarse sand	NE	NE	19	15.1	7.8		-				
Medium sand	NE	NE	18.3	16.9	9.6						
Fine sand	NE	NE	18.8	12.4	27.2						
Very fine sand	NE	NE	0.4	1.3	7.8						
Coarse silt	NE	NE	0.1 U	2.1 U	1.4						
Medium silt	NE	NE	0.1 U	2.1 U	1.2			-			
Fine silt	NE	NE	0.1 U	2.1 U	0.8			-			
Very fine silt	NE	NE	0.1 U	2.1 U	0.4						
Coarse clay	NE	NE	0.1 U	2.1 U	0.2		-				
Medium clay	NE	NE	0.1 U	2.1 U	0.5						
Total Fines	NE	NE	0.1	2.1	4.7						
Metals by EPA 6000/7000 Series (mg/kg)					11						1
Arsenic	57	93	3.45	3.62	6.83						
Cadmium	5.1	6.7	0.03 UJ	0.08 UJ	0.56 J						
Chromium	260	270	16.3	17	18.1						
Copper	390	390	21.2 J	30.4 J	58.6 J						
Lead	450	530	56.4 J	60.8 J	97.1 J	69.9		19.8		125	55.8
Silver	6.1	6.1	0.02 J	0.02 J	0.14 J						
Zinc	410	960	166	68.2	98.7						
Mercury	0.41	0.59	0.0212 UJ	0.0334 J	0.235 J						
Petroleum Hydrocarbons by NWTPH-G/Dx (mg/kg)					· · ·		ł	·	ł	ł	ł
Gasoline-range hydrocarbons	30 ⁵	NE	5.95 U	5.36 U	8.59 U						
Diesel-range hydrocarbons	2,000	NE	8.58	17.6	580	107	41.1	8.08	5.65 U	78	40
Motor Oil-range hydrocarbons	2,000	NE	46.9	69.4	688	171	76.6	13.8	11.3 U	129	67.9
Volatile Organic Compounds (VOCs) by EPA 8360 (µg/kg)	·				ł ł		ł		ł	ł	ł
Benzene	370	780	1.34 J	1.17	1.20 U			_		_	
Toluene	38	64	1.82	1.77	1.20 U						
Ethylbenzene	16	57	1.63 U	1.03 U	1.20 U						
Total Xylenes	66	66	3.26 U	1.63	2.40 U		-	-			
1,2-Dibromoethane (EDB)	220	1200	1.63 U	1.03 U	1.20 UJ						
1,2-Dichloroethane (EDC)	23	79	1.63 U	1.03 U	1.20 U						
Methyl t-butyl ether (MTBE)	99	170	1.63 U	1.03 U	1.20 U			-			
n-Hexane	100	480	1.63 U	1.03 U	1.20 U						

Sample Location ¹	Prelimin	ary Screening		GEI-SED-1 ²		GEI	-SED-2	GEI-	SED-3	GEI-S	SED-4
Sample Identification		Level ³	SED-COMP-1_091517	SED1-1-3 _091517	SED1-4-6_091517	SED-2-0-2	SED-2-2-4	SED-3-0-2	SED-3-2-3.5	SED-4-0-1.5	SED-4-1.5-3
Sample Date	SCO/	CSL/	9/15/2017	9/15/2017	9/15/2017	7/17/2018	07/17/18	7/17/2018	07/17/18	7/16/2018	7/16/2018
Sample Interval (feet bgs)	LAET ⁴	2LAET ⁴	0-10 cm	1 - 3 ft	4 - 6 ft	0-2 ft	2-4 ft	0-2 ft	2-3.5 ft	0-1.5 ft	1.5-3 ft
Low Molecular Weight Polycyclic Aromatic Hydrocarbons	(LPAHs; OC Normaliz	ed) by EPA 8270 SIM (m	g/kg OC)	•				•		-	•
Sum of LPAHs ⁶	370	780	221	146	4,050					-	
2-Methylnaphthalene	38	64	2.42	1.66	23.8					-	
Acenaphthene	16	57	2.51	0.733	38					-	
Acenaphthylene	66	66	11.1	2.98	54.1		-	_		-	
Anthracene	220	1200	17	6.59	196					_	
Fluorene	23	79	9.79	2.72	58.2						
Naphthalene	99	170	3.48	2.12	90.8						
Phenanthrene	100	480	137	25.2	554						
Low Molecular Weight Polycyclic Aromatic Hydrocarbons											
Sum of LPAHs ⁶	5,200	5,200	309	1,240	15,800			_		-	
2-Methylnaphthalene	670	670	3.39 J	14.1	93			-		-	
Acenaphthene	500	500	3.52 J	6.23	150					-	
	1,300	1,300	15.5	25.3	211			-		-	
Acenaphthylene	960	960	23.8	56							
Anthracene		540	13.7	23.1	765 227			-		-	
Fluorene	540	1						-	-	-	
Naphthalene	2,100	2,100	4.87 J	18	354					-	
Phenanthrene	1,500	1,500	192	214	2,160					-	
High Molecular Weight Polycyclic Aromatic Hydrocarbons	(HPAHs; OC Normali 960	zed) by EPA 8270 SIM (n 5,300									
Sum of HPAHs'	110	270	930	514	14,700			-		-	
Benzo(a)anthracene			55.1	19.8	451				-	-	
Benzo(a)pyrene	99	210	57.3	17.3	372						
Benzofluoranthenes (Total)°	230	450	69.6	24.4	300					-	
Benzo(g,h,i)perylene	31	78	51.5	13.4	236			-		-	
Chrysene	110	460	65.6	22.8	441						
Dibenzo(a,h)anthracene	12	33	8.5	3.49	49						
Fluoranthene	160	1,200	148	41	910				-	-	
Indeno(1,2,3-c,d)pyrene	34	88	37.8	10.7	202						
Pyrene	1,000	1,400	161	42.6	1,100						
High Molecular Weight Polycyclic Aromatic Hydrocarbons	(HPAHs) by EPA 827	0 SIM (µg/kg)	-				<u>.</u>		-		
Sum of HPAHs ⁷	12,000	17,000	1,300	4,370	57,500	-		-		-	
Benzo(a)anthracene	1,300	1,600	77.1	168	1,760	0.449		0.0368		0.617	0.164
Benzo(a)pyrene	1,600	1,600	80.2	147	1,450	0.515		0.0386		0.701	0.186
Benzo(g,h,i)perylene	3,200	3,600	97.4	207	1,170	0.815		0.0611		1.09	0.295
Benzofluoranthenes (Total) ⁸	670	720	72.1	114	921			-	-	-	
Chrysene	1,400 230	2,800	91.9	194	1,720	0.48		0.0379		0.683	0.175
Dibenzo(a,h)anthracene	1,700	230	11.9	29.7	190	0.078		0.00984		0.101	0.0293
Fluoranthene	600	2,500 690	207	350	3,550			- 0.0195		- 0.391	
Indeno(1,2,3-c,d)pyrene Pyrene	2,600	3,300	52.9 225	91.2 362	789 4,100	0.308		0.0195		0.381	0.114
Chlorinated Hydrocarbons (OC Normalized ²) by EPA 8270		3,300	225	302	4,100					-	
1,2,4-Trichlorobenzene	0.81	1.8	3.50 U	0.550 U	1.30 U						
1,2-Dichlorobenzene (o-Dichlorobenzene)	2.3	2.3	3.50 U	0.550 U	1.30 U						
1,3-Dichlorobenzene (m-Dichlorobenzene)	NE	NE	3.50 U	0.550 U	1.30 U			-		-	
1,4-Dichlorobenzene (p-Dichlorobenzene)	3.1	9	3.50 U	0.330	2.1			-		-	
Hexachlorobenzene	0.38	2.3	3.50 U	0.550 U	1.30 U						
Chlorinated Hydrocarbons by EPA 8270 (µg/kg)	0.00	2.5	0.000	0.000 0	1.000						
1,2,4-Trichlorobenzene	31	51	4.9 U	4.7 U	5.0 U					-	
1,2-Dichlorobenzene (o-Dichlorobenzene)	35	50	4.9 U	4.7 U	5.0 U				-		
1,3-Dichlorobenzene (m-Dichlorobenzene)	NA	NA	4.9 U	4.7 U	5.0 U					-	
1,4-Dichlorobenzene (p-Dichlorobenzene)	110	110	4.9 U	2.9 J	8					-	
Hexachlorobenzene	22	70	4.9 U	4.7 U	5.0 U					-	

Sample Location ¹	Prelimir	ary Screening		GEI-SED-1 ²		GEI-	SED-2	GEI-	SED-3	GEI-	SED-4
Sample Identification		Level ³	SED-COMP-1_091517	SED1-1-3_091517	SED1-4-6_091517	SED-2-0-2	SED-2-2-4	SED-3-0-2	SED-3-2-3.5	SED-4-0-1.5	SED-4-1.5-3
Sample Date	SCO/	CSL/	9/15/2017	9/15/2017	9/15/2017	7/17/2018	07/17/18	7/17/2018	07/17/18	7/16/2018	7/16/2018
Sample Interval (feet bgs)	LAET ⁴	2LAET ⁴	0-10 cm	1-3ft	4 - 6 ft	0-2 ft	2-4 ft	0-2 ft	2-3.5 ft	0-1.5 ft	1.5-3 ft
Phthalates (OC Normalized ²) by EPA 8270 SIM (mg/kg O	C)										
Bis(2-Ethylhexyl) Phthalate	47	78	22.4	5.51 U	12.7 U		-			-	
Butyl benzyl Phthalate	4.9	64	3.50 U	4.69	1.30 U			-		-	
Dibutyl Phthalate	220	1,700	14.0 U	1.1	5.10 U					-	
Diethyl Phthalate	61	110	14.0 U	2.20 U	5.10 U						
Dimethyl Phthalate	53	53	3.50 U	0.550 U	1.30 U						
Di-N-Octyl Phthalate	58	4,500	14.0 U	2.20 U	5.10 U						
Phthalates by EPA 8270 (µg/kg)		•						•	•	•	
Bis(2-Ethylhexyl) Phthalate	1,300	1,900	31.3 J	46.8 U	49.7 U						
Butyl benzyl Phthalate	63	900	4.9 U	39.9	5.0 U	-					
Dibutyl Phthalate	1,400	1,400	19.6 U	9.4 J	19.9 U	-					
Diethyl Phthalate	200	200	14.0 U	2.20 U	5.10 U	-					
Dimethyl Phthalate	71	160	3.50 U	0.550 U	1.30 U						
Di-N-Octyl Phthalate	6,200	6,200	19.6 U	18.7 U	19.9 U						
Phenols by EPA 8270 (µg/kg)		•						•	•	•	
2,4-Dimethylphenol	29	29	24.4 U	23.4 U	23.6 J				-		
2-methylphenol (o-Cresol)	63	63	19.6 U	18.7 U	15.8 J						
4-methylphenol (p-Cresol)	670	670	19.6 U	18.7 U	187						
Pentachlorophenol	360	690	97.8 U	93.5 U	1,110						
Phenol	420	1,200	19.6 U	18.7 U	42.6						
Miscellaneous Extractables (OC Normalized ²) by EPA 827	0 SIM (mg/kg OC)		•				•				
Dibenzofuran	15	58	6.08	1.21	35.6			-		-	
Hexachlorobutadiene	3.9	6.2	3.50 U	0.550 U	1.30 U						
N-Nitrosodiphenylamine (as diphenylamine)	11	11	3.50 U	0.550 U	1.30 U						
Miscellaneous Extractables by EPA 8270 (mg/kg)		I			L		I	1		1	
Dibenzofuran	540	540	8.51	10.3	139	-		-		-	
Hexachlorobutadiene	11	120	4.9 U	4.7 U	5.0 U			-		-	
N-Nitrosodiphenylamine (as diphenylamine)	28	40	4.9 U	4.7 U	5.0 U			-		-	
Benzoic Acid	650	650	97.8 U	93.5 U	99.4 U						
Benzyl Alcohol	57	730	19.6 U	18.7 U	19.9 U						

Table 10 (Continued)

Remedial Investigation Sediment Analytical Results for Protection of Benthic Organisms

Quiet Cove

Sample Location ¹	Prelimin	ary Screening	GEI-	SED-5	GEI-	SED-6	GEI	SED-7	GEI	SED-8
Sample Identification	I	Level ³	SED-5-0-0.5	SED-5-2-4	SED-6-0-0.5	SED-6-1-3	SED-7-0-0.5	SED-7-0-1	SED-8-0-0.5	SED-8-3.2-4.5
Sample Date	SCO/	CSL/	07/16/18	07/16/18	07/16/18	07/17/18	07/16/18	07/17/18	07/16/18	07/16/18
Sample Interval (feet bgs)	LAET ⁴	2LAET ⁴	0-0.5 ft	2-4 ft	0-0.5 ft	1-3 ft	0-0.5 ft	0-1 ft	0-0.5 ft	3.2-4.5 ft
ield Measured Parameters		•						·	•	
Sheen	NE	NE	NS	NS	NS	NS	NS	NS	NS	NS
Headspace Vapors (ppm)	NE	NE	<1	<1	<1	<1	<1	<1	3.3	1.8
Conventionals		•				•				
Total Organic Carbon (TOC)	NE	NE	0.33	0.20	0.25	0.22	0.12	0.12	0.18	0.74
Total Volatile Solids (TVS)	NE	NE	1.00	0.88	1.10	0.80	0.91	0.72	1.14	1.75
Total Solids (TS)	NE	NE	94.18	90.57	96.05	94.72	97.04	97.11	81.80	82.13
Sulfide	NE	NE	1.04 U	8.28	0.990 U	0.962 U	1.06 U	1.01 U	1.14 U	2.31
Ammonia (Total as N)	NE	NE	1.36	0.40 U	0.39 U	0.38 U	0.40 U	0.39 U	3.97	2.00
Grain Size (Percent)				•					·	
Gravel	NE	NE	79.9	69.8	49.3	46.2	52.5	43.7	60.1	75.4
Very coarse sand	NE	NE	9.2	12.1	16.7	12.2	9.3	7.8	6.7	3.9
Coarse sand	NE	NE	4.5	6.5	18.6	17.6	22.1	21.8	5.0	3.5
Medium sand	NE	NE	2.9	4.2	8.7	13.9	11.3	20.7	11.6	5.3
Fine sand	NE	NE	3.1	5.2	5.9	8.2	4.3	5.5	14.7	10.0
Very fine sand	NE	NE	0.2	0.4	0.1	0.4	0.1	0.1	0.5	1.7
Coarse silt	NE	NE	0.2 U	1.8 U	0.7 U	1.5 U	0.4 U	0.3 U	1.4 U	0.2 U
Medium silt	NE	NE	0.2 U	1.8 U	0.7 U	1.5 U	0.4 U	0.3 U	1.4 U	0.2 U
Fine silt	NE	NE	0.2 U	1.8 U	0.7 U	1.5 U	0.4 U	0.3 U	1.4 U	0.2 U
Very fine silt	NE	NE	0.2 U	1.8 U	0.7 U	1.5 U	0.4 U	0.3 U	1.4 U	0.2 U
Coarse clay	NE	NE	0.2 U	1.8 U	0.7 U	1.5 U	0.4 U	0.3 U	1.4 U	0.2 U
Medium clay	NE	NE	0.2 U	1.8 U	0.7 U	1.5 U	0.4 U	0.3 U	1.4 U	0.2 U
Total Fines	NE	NE	0.2	1.8	0.7	1.5	0.4	0.3	1.4	0.2
Metals by EPA 6000/7000 Series (mg/kg)										
Arsenic	57	93	3.73	3.30	7.16	5.55	3.05	3.20	3.72	3.57
Cadmium	5.1	6.7	0.08 J	0.12	0.07 J	0.09 J	0.06 J	0.06 J	0.04 J	0.42
Chromium	260	270	19.5	14.5	13.6	27.2	17.8	14.3	15.2	15.3
Copper	390	390	21.0	38.6	14.5	43.4	187	165	22.2	47.8
Lead	450	530	31.3	70.1	34.8	78.8	53.3	40.8	44.4	240
Silver	6.1	6.1	0.03 J	0.06 J	0.05 J	0.05 J	0.04 J	0.04 J	0.05 J	0.11 J
Zinc	410	960	51.2	81.8	108	75.7	112	53.8	41.6	132
Mercury	0.41	0.59	0.0219 U	0.0427	0.0238 U	0.0234 U	0.0200 U	0.0230 U	0.0244 U	0.168
Petroleum Hydrocarbons by NWTPH-G/Dx (mg/kg)						•				
Gasoline-range hydrocarbons	30 ⁵	NE								
Diesel-range hydrocarbons	2,000	NE	-	-	-	-	-	-	-	-
Motor Oil-range hydrocarbons	2,000	NE			-					
Volatile Organic Compounds (VOCs) by EPA 8360 (µg/kg)										
Benzene	370	780	1.21	0.93 J	0.43 J	2.05	0.80 J	0.28 J	1.13 U	1.69
Toluene	38	64	1.47	0.41 J	1.22 U	1.62	0.52 J	0.23 J	1.13 U	0.49 J
Ethylbenzene	16	57	1.06 U	1.05 U	1.22 U	0.95 U	1.14 U	0.91 U	1.13 U	0.95 U
Total Xylenes	66	66	0.810	2.10 U	2.43 U	0.440	2.28 U	1.82 U	2.25 U	1.91 U
1,2-Dibromoethane (EDB)	220	1200	1.06 U	1.05 U	1.22 U	0.95 U	1.14 U	0.91 U	1.13 U	0.95 U
1,2-Dichloroethane (EDC)	23	79	0.47 J	1.05 U	1.22 U	0.95 U	1.14 U	0.91 U	1.13 U	0.54 J
Methyl t-butyl ether (MTBE)	99	170	1.06 U	1.05 U	1.22 U	0.95 U	1.14 U	0.91 U	1.13 U	0.95 U
n-Hexane	100	480	1.06 U	1.05 U	1.22 U	0.95 U	1.14 U	0.91 U	1.13 U	0.95 U

Sample Location ¹	Prelimina	ary Screening	GEI-S	ED-5	GEI-S	SED-6	GEI-	SED-7	GE	I-SED-8
Sample Identification		Level ³	SED-5-0-0.5	SED-5-2-4	SED-6-0-0.5	SED-6-1-3	SED-7-0-0.5	SED-7-0-1	SED-8-0-0.5	SED-8-3.2-4.5
Sample Date	SCO/	CSL/	07/16/18	07/16/18	07/16/18	07/17/18	07/16/18	07/17/18	07/16/18	07/16/18
Sample Interval (feet bgs)	LAET ⁴	2LAET ⁴	0-0.5 ft	2-4 ft	0-0.5 ft	1-3 ft	0-0.5 ft	0-1 ft	0-0.5 ft	3.2-4.5 ft
Low Molecular Weight Polycyclic Aromatic Hydrocarbons										
Sum of LPAHs ⁶	370	780	98.2	71.0	12.8	34.9	9.42	60.8	107	99.0
	38	64	2.83	1.73	1.00	1.81	3.87 U	3.45	2.27	3.97
2-Methylnaphthalene										
Acenaphthene	16	57	2.19	1.39	1.87 U	2.16 U	3.87 U	3.89 U	3.51	5.27
Acenaphthylene	66	66	7.76	4.99	0.936	8.95	3.87 U	5.39	5.89	8.04
Anthracene	220	1200	15.3	13.4	2.31	9.18	2.25	7.09	19.3	15.9
Fluorene	23	79	8.06	5.35	1.87 U	1.51	3.87 U	3.38	7.17	7.54
Naphthalene	99	170	9.76	2.49	2.10	1.52	1.98	4.68	4.80	10.0
Phenanthrene	100	480	55.2	43.6	7.44	13.7	5.18	40.3	66.1	51.8
Low Molecular Weight Polycyclic Aromatic Hydrocarbons	(LPAHs) by EPA 8270) SIM (µg/kg)								
Sum of LPAHs ⁶	5,200	5,200	324	142	32.0	76.8	11.3	73.0	192	730
2-Methylnaphthalene	670	670	9.35	3.45 J	2.50 J	3.99 J	4.64 U	4.14 J	4.09 J	29.4
Acenaphthene	500	500	7.23	2.77 J	4.67 U	4.76 U	4.64 U	4.67 U	6.31	39.0
Acenaphthylene	1,300	1,300	25.6	9.97	2.34 J	19.7	4.64 U	6.47	10.6	59.5
Anthracene	960	960	50.5	26.7	5.78	20.2	2.70 J	8.51	34.8	118
Fluorene	540	540	26.6	10.7	4.67 U	3.32 J	4.64 U	4.06 J	12.9	55.8
	2,100	2,100	32.2	4.97	5.26	3.35 J	2.38 J	5.61	8.64	74.2
Naphthalene	1,500	1,500	182		18.6	30.2				
Phenanthrene				87.1	18.6	30.2	6.22	48.4	119	383
High Molecular Weight Polycyclic Aromatic Hydrocarbons				ſ	1	Г Г		T		
Sum of HPAHs'	960	5,300	409	280	116	326	102	370	487	509
Benzo(a)anthracene	110	270	36.0	22.8	10.9	25.0	7.03	29.0	40.1	43.9
Benzo(a)pyrene	99	210	34.2	25.4	10.3	24.2	6.78	32.8	48.3	45.7
Benzofluoranthenes (Total) ⁸	230	450	62.1	36.4	18.3	75.0	17.9	27.2	37.1	34.1
Benzo(g,h,i)perylene	31	78	23.7	19.5	8.04	23.8	6.55	58.0	67.0	68.2
Chrysene	110	460	64.2	27.4	12.0	43.3	10.3	38.3	47.3	43.9
Dibenzo(a,h)anthracene	12	33	8.24	8.30	5.72	8.59	10.1	13.3	11.4	8.23
Fluoranthene	160	1,200	83.6	58.0	19.4	51.8	13.7	68.3	95.6	110
Indeno(1,2,3-c,d)pyrene	34	88	20.2	17.4	9.36	20.9	12.3	25.7	29.5	25.0
Pyrene	1,000	1,400	75.2	65.0	21.6	53.6	16.8	73.8	100	127
High Molecular Weight Polycyclic Aromatic Hydrocarbons		0 SIM (ug/kg)	10.2	00.0	21.0	00.0	10.0	10.0	100	121
Sum of HPAHs ⁷	12,000	17,000	1,350	560	289	718	122	440	877	3,770
Benzo(a)anthracene	1,300	1,600	1,350	45.5	289	55.0	8.44	34.8	72.2	3,770
Benzo(a)pyrene	1,600	1,600	113	50.7	25.7	53.3	8.13	39.3	86.9	338
Benzo(g,h,i)perylene	3,200	3,600	205	72.7	45.8	165	21.5	32.6	66.8	252
Benzofluoranthenes (Total) ⁸	670	720	78.3	38.9	20.1	52.4	7.86	69.6	120	505
Chrysene	1,400	2,800	212	54.8	30.0	95.2	12.3	45.9	85.1	325
Dibenzo(a,h)anthracene	230	230	27.2	16.6	14.3	18.9	12.0	15.9	20.6	60.9
Fluoranthene	1,700	2,500	276	116	48.5	114	16.4	82.0	172	840
Indeno(1,2,3-c,d)pyrene	600	690	66.8	34.8	23.4	46.0	14.7	30.8	53.1	185
Pyrene	2,600	3,300	248	130	53.9	118	20.1	88.6	200	938
Chlorinated Hydrocarbons (OC Normalized ²) by EPA 8270		2,000	270	100	00.9	110	20.1	00.0	200	300
1,2,4-Trichlorobenzene	0.81	1.8	1.40 U	2.40 U	1.90 U	2.10 U	3.90 U	3.90 U	2.70 U	0.680 U
1,2-Dichlorobenzene (o-Dichlorobenzene)	2.3	2.3	1.40 U	2.40 U	1.90 U	2.10 U	3.90 U	3.90 U	2.70 U	0.680 U
1,3-Dichlorobenzene (m-Dichlorobenzene)	NE	NE	1.40 U	2.40 U	1.90 U	2.10 U	3.90 U	3.90 U	2.70 U	0.680 U
1,4-Dichlorobenzene (p-Dichlorobenzene)	3.1	9	1.40 U	2.40 U	1.90 U	2.10 U	3.90 U	3.90 U	2.70 U	0.540
Hexachlorobenzene	0.38	2.3	1.40 U	2.40 U	1.90 U	2.10 U	3.90 U	3.90 U	2.70 U	0.680 U
Chlorinated Hydrocarbons by EPA 8270 (µg/kg)	0.38	2.3	1.40 0	2.400	T.90 0	2.10 0	3.30 0	3.90 0	2.700	0.060.0
1,2,4-Trichlorobenzene	31	51	4.7 U	4.8 U	4.7 U	4.7 U	4.7 U	4.7 U	4.8 U	5.0 U
1,2-Dichlorobenzene (o-Dichlorobenzene)	35	50	4.7 U	4.8 U	4.7 U	4.7 U	4.7 U	4.7 U	4.8 U	5.0 U
1,3-Dichlorobenzene (m-Dichlorobenzene)	NA	NA	4.7 U	4.8 U	4.7 U	4.7 U	4.7 U	4.7 U	4.8 U	5.0 U
1,4-Dichlorobenzene (p-Dichlorobenzene)	110	110	4.7 U	4.8 U	4.7 U	4.7 U	4.7 U	4.7 U	4.8 U	4.0 J
Hexachlorobenzene	22	70	4.7 U	4.8 U	4.7 U	4.7 U	4.7 U	4.7 U	4.8 U	5.0 U

Sample Location ¹	Prelimin	ary Screening	GEI-	SED-5	GEI-S	ED-6	GEI-S	SED-7	GEI	SED-8
Sample Identification		Level ³	SED-5-0-0.5	SED-5-2-4	SED-6-0-0.5	SED-6-1-3	SED-7-0-0.5	SED-7-0-1	SED-8-0-0.5	SED-8-3.2-4.5
Sample Date	SCO/	CSL/	07/16/18	07/16/18	07/16/18	07/17/18	07/16/18	07/17/18	07/16/18	07/16/18
Sample Interval (feet bgs)	LAET ⁴	2LAET ⁴	0-0.5 ft	2-4 ft	0-0.5 ft	1-3 ft	0-0.5 ft	0-1 ft	0-0.5 ft	3.2-4.5 ft
Phthalates (OC Normalized ²) by EPA 8270 SIM (mg/kg 0	C)				•					
Bis(2-Ethylhexyl) Phthalate	47	78	14.2 U	23.8 U	18.6 U	21.6	38.8 U	39.0 U	26.6 U	6.74 U
Butyl benzyl Phthalate	4.9	64	1.40 U	2.40 U	1.90 U	2.10 U	3.90 U	3.90 U	2.70 U	0.680 U
Dibutyl Phthalate	220	1,700	5.67 U	9.50 U	7.44 U	8.59 U	15.5 U	15.6 U	10.7 U	2.69 U
Diethyl Phthalate	61	110	3.70	6.35	4.08	9.32	11.6	15.0	6.56	2.54
Dimethyl Phthalate	53	53	1.40 U	2.40 U	1.90 U	2.10 U	3.90 U	3.90 U	2.70 U	0.680 U
Di-N-Octyl Phthalate	58	4,500	5.67 U	9.50 U	7.44 U	8.59 U	15.5 U	15.6 U	10.7 U	2.69 U
Phthalates by EPA 8270 (µg/kg)								•	•	
Bis(2-Ethylhexyl) Phthalate	1,300	1,900	46.9 U	47.6 U	46.6 U	47.5	46.6 U	46.8 U	47.9 U	49.9 U
Butyl benzyl Phthalate	63	900	4.7 U	4.8 U	4.7 U	4.7 U	4.7 U	4.7 U	4.8 U	5.0 U
Dibutyl Phthalate	1,400	1,400	18.7 U	19.0 U	18.6 U	18.9 U	18.6 U	18.7 U	19.2 U	19.9 U
Diethyl Phthalate	200	200	12.2 J	12.7 J	10.2 J	20.5	13.9 J	18.0 J	11.8 J	18.8 J
Dimethyl Phthalate	71	160	4.7 U	4.8 U	4.7 U	4.7 U	4.7 U	4.7 U	4.8 U	5.0 U
Di-N-Octyl Phthalate	6,200	6,200	18.7 U	19.0 U	18.6 U	18.9 U	18.6 U	18.7 U	19.2 U	19.9 U
Phenols by EPA 8270 (µg/kg)									•	·
2,4-Dimethylphenol	29	29	23.4 U	23.8 U	23.3 U	23.7 U	23.3 U	23.4 U	24.0 U	3.1 J
2-methylphenol (o-Cresol)	63	63	18.7 U	19.0 U	18.6 U	18.9 U	18.6 U	18.7 U	19.2 U	19.9 U
4-methylphenol (p-Cresol)	670	670	18.7 U	19.0 U	18.6 U	18.9 U	18.6 U	18.7 U	19.2 U	47.9
Pentachlorophenol	360	690	93.7 U	95.2 U	93.2 U	94.6 U	93.2 U	93.5 U	95.8 U	57.4 J
Phenol	420	1,200	18.7 U	19.0 U	18.6 U	18.9 U	18.6 U	18.7 U	19.2 U	19.9 U
Miscellaneous Extractables (OC Normalized ²) by EPA 827	0 SIM (mg/kg OC)									
Dibenzofuran	15	58	3.42	2.83	1.87 U	2.16 U	3.87 U	3.89 U	3.28	4.24
Hexachlorobutadiene	3.9	6.2	1.40 U	2.40 U	1.90 U	2.10 U	3.90 U	3.90 U	2.70 U	0.680 U
N-Nitrosodiphenylamine (as diphenylamine)	11	11	1.40 U	2.40 U	1.90 U	2.10 U	3.90 U	3.90 U	2.70 U	2.61
Miscellaneous Extractables by EPA 8270 (mg/kg)								•	•	
Dibenzofuran	540	540	11.3	5.65	4.67 U	4.76 U	4.64 U	4.67 U	5.90	31.4
Hexachlorobutadiene	11	120	4.7 U	4.8 U	4.7 U	4.7 U	4.7 U	4.7 U	4.8 U	5.0 U
N-Nitrosodiphenylamine (as diphenylamine)	28	40	4.7 U	4.8 U	4.7 U	4.7 U	4.7 U	4.7 U	4.8 U	19.3
Benzoic Acid	650	650	93.7 U	95.2 U	28.2 J	94.6 U	93.2 U	21.0 J	95.8 U	39.6 J
Benzyl Alcohol	57	730	18.7 U	19.0 U	18.6 U	18.9 U	18.6 U	18.7 U	19.2 U	19.9 U

Table 10 (Continued)

Remedial Investigation Sediment Analytical Results for Protection of Benthic Organisms

Quiet Cove

Sample Location ¹	Prelimina	ry Screening	GEI-	SED-9	GEI-SI	ED-10
Sample Identification	Le	evel ³	SED-9-0-0.5	SED-9-1.7-2.3	SED-10-0-0.5	SED-10-2-4
Sample Date	SCO/	CSL/	07/16/18	07/17/18	07/18/18	07/17/18
Sample Interval (feet bgs)	LAET ⁴	2LAET ⁴	0-0.5 ft	1.7-2.3 ft	0-0.5 ft	2-4 ft
Field Measured Parameters						
Sheen	NE	NE	NS	NS	NS	NS
Headspace Vapors (ppm)	NE	NE	<1	2.2	<1	<1
Conventionals						
Total Organic Carbon (TOC)	NE	NE	0.42	0.19	0.19	0.62
Total Volatile Solids (TVS)	NE	NE	1.10	0.39	0.84	1.05
Total Solids (TS)	NE	NE	87.58	89.60	82.88	77.21
Sulfide	NE	NE	1.07 U	1.09 U	1.05 U	1.62
Ammonia (Total as N)	NE	NE	0.89	0.42 U	0.36 U	1.46
Grain Size (Percent)						
Gravel	NE	NE	60.7	60.2	38.7	30.0
Very coarse sand	NE	NE	6.1	4.3	17.9	3.4
Coarse sand	NE	NE	6.4	8.9	23.1	2.0
Medium sand	NE	NE	15.1	16.2	8.9	6.1
Fine sand	NE	NE	9.8	8.3	8.6	32.4
Very fine sand	NE	NE	0.7	0.2	0.4	22.3
Coarse silt	NE	NE	1.2 U	1.8 U	2.3 U	3.8 U
Medium silt	NE	NE	1.2 U	1.8 U	2.3 U	3.8 U
Fine silt	NE	NE	1.2 U	1.8 U	2.3 U	3.8 U
Very fine silt	NE	NE	1.2 U	1.8 U	2.3 U	3.8 U
Coarse clay	NE	NE	1.2 U	1.8 U	2.3 U	3.8 U
Medium clay	NE	NE	1.2 U	1.8 U	2.3 U	3.8 U
Total Fines	NE	NE	1.2	1.8	2.3	3.8
Metals by EPA 6000/7000 Series (mg/kg)	·		·			
Arsenic	57	93	3.93	0.75	2.71	4.01
Cadmium	5.1	6.7	0.06 J	0.009 J	0.05 J	0.37
Chromium	260	270	15.4	15.9	21.6	15.2
Copper	390	390	47.9	4.49	16.0	17.1
Lead	450	530	101	0.87	24.5	23.5
Silver	6.1	6.1	0.05 J	0.03 J	0.04 J	0.07 J
Zinc	410	960	68.4	20.0	47.7	54.3
Mercury	0.41	0.59	0.0353	0.0253 U	0.0291 U	0.0844
Petroleum Hydrocarbons by NWTPH-G/Dx (mg/kg)			•			
Gasoline-range hydrocarbons	30 ⁵	NE				
Diesel-range hydrocarbons	2,000	NE	-			
Motor Oil-range hydrocarbons	2,000	NE	-	-		
Volatile Organic Compounds (VOCs) by EPA 8360 (µg/kg)			•	•	•	
Benzene	370	780	0.65 J	0.73 J	1.09 U	0.42 J
Toluene	38	64	0.53 J	0.34 J	1.09 U	0.46 J
Ethylbenzene	16	57	1.04 U	1.05 U	1.09 U	1.23 U
Total Xylenes	66	66	2.08 U	2.11 U	2.18 U	2.47 U
1,2-Dibromoethane (EDB)	220	1200	1.04 U	1.05 U	1.09 U	1.23 U
1,2-Dichloroethane (EDC)	23	79	1.04 U	1.05 U	1.09 U	1.23 U
Methyl t-butyl ether (MTBE)	99	170	1.04 U	1.05 U	1.09 U	1.23 U
n-Hexane	100	480	1.04 U	1.05 U	1.09 U	1.23 U

Sample Location ¹	Preliminary Screening		GEI	-SED-9	GEI-SED-10		
Sample Identification		Level ³	SED-9-0-0.5	SED-9-1.7-2.3	SED-10-0-0.5	SED-10-2-4	
Sample Date	SCO/	CSL/	07/16/18	07/17/18	07/18/18	07/17/18	
Sample Interval (feet bgs)	LAET ⁴	2LAET ⁴	0-0.5 ft	1.7-2.3 ft	0-0.5 ft	2-4 ft	
Low Molecular Weight Polycyclic Aromatic Hydrocarbons		zed) by EPA 8270 SIM (mg	g/kg OC)				
Sum of LPAHs ⁶	370	780	165	2.48 U	13.6	63.9	
2-Methylnaphthalene	38	64	2.71	2.48 U	5.94 U	2.39	
Acenaphthene	16	57	3.86	2.48 U	5.94 U	2.40	
Acenaphthylene	66	66	8.67	2.48 U	3.65	5.66	
Anthracene	220	1200	29.0	2.48 U	5.94 U	10.4	
Fluorene	23	79	9.79	2.48 U	5.94 U	4.87	
Naphthalene	99	170	6.79	2.48 U	5.94 U	6.65	
Phenanthrene	100	480	108	2.48 U	9.98	34.0	
Low Molecular Weight Polycyclic Aromatic Hydrocarbons							
Sum of LPAHs ⁶	5,200	5,200	694	4.72 U	10.9	396	
2-Methylnaphthalene	670	670	11.4	4.72 U	4.75 U	14.8	
Acenaphthene	500	500	16.2	4.72 U	4.75 U	14.9	
Acenaphtylene	1,300	1,300	36.4	4.72 U	2.92 J	35.1	
Anthracene	960	960	120	4.72 U	4.75 U	64.7	
Fluorene	540	540	41.1	4.72 U	4.75 U	30.2	
			28.5	4.72 U	4.75 U	41.2	
Naphthalene	2,100	2,100	452	4.72 U	4.75 0 7.98		
Phenanthrene	1,500	1,500		4.720	1.98	210	
High Molecular Weight Polycyclic Aromatic Hydrocarbons	(HPAHs; OC Normal 960	ized) by EPA 8270 SIM (m 5,300					
Sum of HPAHs'	110	270	745	4.97 U	129	250	
Benzo(a)anthracene			51.9	2.48 U	8.80	19.7	
Benzo(a)pyrene	99	210 450	57.9	2.48 U	11.4	23.2	
Benzofluoranthenes (Total) ⁸	230		41.2	2.48 U	9.21	18.1	
Benzo(g,h,i)perylene	31	78	93.6	4.97 U	22.4	33.2	
Chrysene	110	460	70.5	2.48 U	11.2	21.8	
Dibenzo(a,h)anthracene	12	33	9.21	2.48 U	14.5	7.68	
Fluoranthene	160	1,200	207	2.48 U	15.8	46.9	
Indeno(1,2,3-c,d)pyrene	34	88	31.0	2.48 U	17.5	15.7	
Pyrene	1,000	1,400	184	2.48 U	17.6	63.2	
High Molecular Weight Polycyclic Aromatic Hydrocarbons				1	1		
Sum of HPAHs ⁷	12,000	17,000	3,130	9.44 U	103	1,550	
Benzo(a)anthracene	1,300	1,600	218	4.72 U	7.04	122	
Benzo(a)pyrene	1,600 3,200	1,600 3,600	243	4.72 U	9.08	144	
Benzo(g,h,i)perylene Benzofluoranthenes (Total) ⁸	670	720	173 393	4.72 U 9.44 U	7.37	<u>112</u> 206	
Chrysene	1,400	2,800	296	9.44 0 4.72 U	8.96	135	
Dibenzo(a,h)anthracene	230	230	38.7	4.72 U	11.6	47.6	
Fluoranthene	1,700	2,500	871	4.72 U	12.6	291	
Indeno(1,2,3-c,d)pyrene	600	690	130	4.72 U	14.0	97.1	
Pyrene	2,600	3,300	771	4.72 U	14.0	392	
Chlorinated Hydrocarbons (OC Normalized ²) by EPA 8270							
1,2,4-Trichlorobenzene	0.81	1.8	1.10 U	2.50 U	5.90 U	0.770 U	
1,2-Dichlorobenzene (o-Dichlorobenzene)	2.3	2.3	1.10 U	2.50 U	5.90 U	0.770 U	
1,3-Dichlorobenzene (m-Dichlorobenzene)	NE	NE	1.10 U	2.50 U	5.90 U	0.770 U	
1,4-Dichlorobenzene (p-Dichlorobenzene)	3.1	9	1.10 U	2.50 U	5.90 U	0.770 U	
Hexachlorobenzene	0.38	2.3	1.10 U	2.50 U	5.90 U	0.770 U	
Chlorinated Hydrocarbons by EPA 8270 (µg/kg)							
1,2,4-Trichlorobenzene	31	51	4.7 U	4.7 U	4.7 U	4.8 U	
1,2-Dichlorobenzene (o-Dichlorobenzene)	35	50	4.7 U	4.7 U	4.7 U	4.8 U	
1,3-Dichlorobenzene (m-Dichlorobenzene)	NA 110	NA	4.7 U	4.7 U	4.7 U	4.8 U	
1,4-Dichlorobenzene (p-Dichlorobenzene)	110	110	4.7 U	4.7 U	4.7 U	4.8 U	
Hexachlorobenzene	22	70	4.7 U	4.7 U	4.7 U	4.8 U	

Sample Location ¹	Prelimina	ary Screening	GEI-	SED-9	GEI-SI	ED-10
Sample Identification	L	.evel ³	SED-9-0-0.5	SED-9-1.7-2.3	SED-10-0-0.5	SED-10-2-4
Sample Date	SCO/	CSL/	07/16/18	07/17/18	07/18/18	07/17/18
Sample Interval (feet bgs)	LAET ⁴	2LAET ⁴	0-0.5 ft	1.7-2.3 ft	0-0.5 ft	2-4 ft
Phthalates (OC Normalized ²) by EPA 8270 SIM (mg/kg OC	:)					
Bis(2-Ethylhexyl) Phthalate	47	78	18.8	24.7 U	59.0 U	7.77 U
Butyl benzyl Phthalate	4.9	64	1.10 U	2.50 U	5.90 U	0.970
Dibutyl Phthalate	220	1,700	4.48 U	9.89 U	23.6 U	3.11 U
Diethyl Phthalate	61	110	3.24	9.53	17.9	2.55
Dimethyl Phthalate	53	53	1.80	2.50 U	5.90 U	0.770 U
Di-N-Octyl Phthalate	58	4,500	4.48 U	9.89 U	23.6 U	3.11 U
Phthalates by EPA 8270 (µg/kg)		•				
Bis(2-Ethylhexyl) Phthalate	1,300	1,900	79.1	46.9 U	47.2 U	48.2 U
Butyl benzyl Phthalate	63	900	4.7 U	4.7 U	4.7 U	6.0
Dibutyl Phthalate	1,400	1,400	18.8 U	18.8 U	18.9 U	19.3 U
Diethyl Phthalate	200	200	13.6 J	18.1 J	14.3 J	15.8 J
Dimethyl Phthalate	71	160	7.5	4.7 U	4.7 U	4.8 U
Di-N-Octyl Phthalate	6,200	6,200	18.8 U	18.8 U	18.9 U	19.3 U
Phenols by EPA 8270 (µg/kg)			-	-		
2,4-Dimethylphenol	29	29	23.5 U	23.5 U	23.6 U	4.6 J
2-methylphenol (o-Cresol)	63	63	18.8 U	18.8 U	18.9 U	19.3 U
4-methylphenol (p-Cresol)	670	670	18.8 U	18.8 U	18.9 U	19.3 U
Pentachlorophenol	360	690	93.8 U	93.8 U	94.3 U	96.5 U
Phenol	420	1,200	18.8 U	18.8 U	18.9 U	19.3 U
Miscellaneous Extractables (OC Normalized ²) by EPA 8270) SIM (mg/kg OC)					
Dibenzofuran	15	58	3.76	2.48 U	5.94 U	2.76
Hexachlorobutadiene	3.9	6.2	1.10 U	2.50 U	5.90 U	0.770 U
N-Nitrosodiphenylamine (as diphenylamine)	11	11	1.10 U	2.50 U	5.90 U	0.770 U
Miscellaneous Extractables by EPA 8270 (mg/kg)		•				
Dibenzofuran	540	540	15.8	4.72 U	4.75 U	17.1
Hexachlorobutadiene	11	120	4.7 U	4.7 U	4.7 U	4.8 U
N-Nitrosodiphenylamine (as diphenylamine)	28	40	4.7 U	4.7 U	4.7 U	4.8 U
Benzoic Acid	650	650	93.8 U	93.8 U	94.3 U	96.5 U
Benzyl Alcohol	57	730	18.8 U	18.8 U	18.9 U	19.3 U

¹ Sample locations and summary of remedial investigation results are shown on Figure 5 through 9.

² SED-1 was completed by compositing sediment surface samples and cores from 2 locations (SED-1B and SED-1C).

³ Screening levels are referenced from Ecology's Sediment Cleanup Users Manual II (SCUM II; Ecology, 2017).

sediment with a total organic carbon (TOC) concentration

⁵ Value for gasoline-range petroleum hydrocarbons if benzene is present. If benzene is not present, screening level is 100 mg/kg.

of the following LPAH compounds: acenaphthene,

of the following HPAH compounds: benzo[a]anthracene,

⁸ Total benzofluoranthenes represents the sum of concentrations of the b, j, and k isomers.

SCO = Sediment Cleanup Objective

CSL = Cleanup Screening Level

LAET = Lowest Apparent Effects Threshold

2LAET = Second Lowest Apparent Effects Threshold

mg/L = milligram per liter

 μ g/L = microgram per liter

NE = not established

NA = not applicable

-- = not analyzed

mg/kg = milligram per kilogram

mg/kg OC = milligram per kilogram normalized to organic carbon

µg/kg = microgram per kilogram

U = The analyte was not detected at a concentration greater than the value identified.

J = The analyte was detected and the detected concentration is considered an estimate.

cm = centimeters

 $\ensuremath{\textbf{Bold}}$ font type indicates the analyte was detected at the reported concentration.

Yellow shading indicates exceedance of the SCO/LAET screening level.

Orange shading indicates exceedance of the CSL/2LAET screening level.

Blue shading indicates that the practical quantitation limit (PQL) or the organic carbon normalized value calculated from the PQL is above screening level.

Grey shading indicates that the shaded value is not compared to the screening levels because the TOC concentration of the sample is outside the specified range for application of screening levels to the shaded value.

Remedial Investigation Sediment Analytical Results for Protection of Human Health

Quiet Cove

Sample Location ¹			GEI-SED-1 ²		GEI-	-SED-2	GEI-S	SED-3	GEI-	SED-4
Sample Identification	Preliminary	GEI-SED-COMP-1_ 091517	GEI-SED1-1-3 _ 091517	GEI-SED1-4-6 _ 091517	SED-2-0-2	SED-2-2-4	SED-3-0-2	SED-3-2-3.5	SED-4-0-1.5	SED-4-1.5-3
Sample Date	Screening	9/15/2017	9/15/2017	9/15/2017	07/17/18	07/17/18	07/17/18	07/17/18	07/16/18	07/16/18
Sample Interval (feet bgs)	Level ³	0-10 cm	1 - 3 ft	4 - 6 ft	0-2 ft	2-4 ft	0-2 ft	2-3.5 ft	0-1.5 ft	1.5-3 ft
Field Measured Parameters										
Sheen	NE	NS	NS	NS	NS	NS	NS	NS	NS	NS
Headspace Vapors (ppm)	NE	<1	<1	<1	<1	<1	<1	<1	<1	<1
Metals by EPA 6000/7000 Series (mg/kg)										
Arsenic	11	3.45	3.62	6.83	-		-	-	-	
Cadmium	0.8	0.03 UJ	0.08 UJ	0.56	-			-	-	-
Chromium	230,000	16.3	17	18.1		-	-	-	-	-
Copper	26,000	21.2	30.4	58.6	-	-	-	-	-	-
Lead	21	56.4	60.8	97.1	69.9	-	19.8	-	125	55.8
Silver	3,200	0.02 J	0.02 J	0.14 J	-	-	-	-	-	-
Zinc	190,000	166	68.2	98.7		-	-	-		
Mercury	0.2	0.0212 UJ	0.0334	0.235			-	-	-	
Petroleum Hydrocarbons by NWTPH-G/Dx (mg/kg)					•		·			•
Gasoline-range hydrocarbons	30 ⁴	5.95 U	5.36 U	8.59 U				-		
Diesel-range hydrocarbons	2,000	8.58	17.6	580	107	41.1	8.08	5.65 U	78	40
Motor Oil-range hydrocarbons	2,000	46.9	69.4	688	171	76.6	13.8	11.3 U	129	67.9
Volatile Organic Compounds (VOCs) by EPA 8360 (µg/kg)					•		·			•
Benzene	0.05	0.00134 J	0.00117	0.00120 U						
Toluene	3.78	0.00182	0.00177	0.00120 U						
Ethylbenzene	1.12	0.00163 U	0.00103 U	0.00120 U						
Total Xylenes	2.83	0.00326 U	0.00163	0.00240 U		-	-			
1,2-Dibromoethane (EDB)	NA	0.00163 U	0.00103 U	0.00120 U		-			-	-
1,2-Dichloroethane (EDC)	0.02	0.00163 U	0.00103 U	0.00120 U				-	-	
Methyl t-butyl ether (MTBE)	2.59	0.00163 U	0.00103 U	0.00120 U						
n-Hexane	0.27	0.00163 U	0.00103 U	0.00120 U						
Polycyclic Aromatic Hydrocarbons (LPAHs) by EPA 8270 SIM	M (mg/kg)				•		·			•
2-Methylnaphthalene	1,600	0.00339 J	0.0141	0.093		-	-	-		
Acenaphthene	25,000	0.00352 J	0.00623	0.15		-	-			
Acenaphthylene	25,000	0.0155	0.0253	0.211		-	-			
Anthracene	120,000	0.0238	0.056	0.765		-	-	-		
Fluorene	16,000	0.0137	0.0231	0.227		-	-			
Naphthalene	8,200	0.00487 J	0.018	0.354		-	-	-		
Phenanthrene	120,000	0.192	0.214	2.16		-	-	-	-	
Polycyclic Aromatic Hydrocarbons (HPAHs) by EPA 8270 SI	M (mg/kg)									•
Benzo(a)anthracene	0.600	0.0771	0.168	1.76	0.449	-	0.0368	-	0.617	0.164
Benzo(a)pyrene	0.0600	0.0802	0.147	1.45	0.515	-	0.0386	-	0.701	0.186
Benzo(g,h,i)perylene	12,000	0.0721	0.114	0.921	-	-	-	-	-	-
Benzofluoranthenes (Total)	NE	0.0974	0.207	1.17	0.815	-	0.0611	-	1.09	0.295
Chrysene	6.00	0.0919	0.194	1.72	0.48	-	0.0379		0.683	0.175
Dibenzo(a,h)anthracene	0.600	0.0119	0.0297	0.19	0.078	-	0.00984	-	0.101	0.0293
Fluoranthene	16,000	0.207	0.35	3.55	-	-				
Indeno(1,2,3-c,d)pyrene	0.600	0.0529	0.0912	0.789	0.308	-	0.0195		0.381	0.114
Pyrene	12,000	0.225	0.362	4.1	-	-	_			

Sample Location ¹			GEI-SED-1 ²		GEI	-SED-2	GEI-9	SED-3	GEI-	SED-4
Sample Identification		GEI-SED-COMP-1_	GEI-SED1-1-3 _	GEI-SED1-4-6 _						
oumple identification	Preliminary	091517	091517	091517	SED-2-0-2	SED-2-2-4	SED-3-0-2	SED-3-2-3.5	SED-4-0-1.5	SED-4-1.5-3
Sample Date	Screening	9/15/2017	9/15/2017	9/15/2017	07/17/18	07/17/18	07/17/18	07/17/18	07/16/18	07/16/18
Sample Interval (feet bgs)	Level ³	0-10 cm	1-3	4 - 6	0-2 ft	2-4 ft	0-2 ft	2-3.5 ft	0-1.5 ft	1.5-3 ft
Carcinogenic PAHs (cPAHs) by EPA 8270 SIM (mg/kg)							-			
Total cPAH TEQ ⁵ (ND=0)	0.0210	0.105	0.199	1.89	0.662	-	0.0501	-	0.9	0.24
Total cPAH TEQ ⁵ (ND=0.5RL)	0.0210	0.105	0.199	1.89	0.662	-	0.0501	-	0.9	0.24
Chlorinated Hydrocarbons by EPA 8270 (mg/kg)										
1,2,4-Trichlorobenzene	19.0	0.0049 U	0.0047 U	0.0050 U					-	
1,2-Dichlorobenzene (o-Dichlorobenzene)	45,000	0.0049 U	0.0047 U	0.0050 U					-	
1,3-Dichlorobenzene (m-Dichlorobenzene)	NE	0.0049 U	0.0047 U	0.0050 U	-					-
1,4-Dichlorobenzene (p-Dichlorobenzene)	100	0.0049 U	0.0029 J	0.008			-			-
Hexachlorobenzene	0.340	0.0049 U	0.0047 U	0.0050 U						
Phthalates by EPA 8270 (mg/kg)										
Bis(2-Ethylhexyl) Phthalate	39.0	0.0313 J	0.0468 U	0.0497 U						
Butyl benzyl Phthalate	290	0.0049 U	0.0399	0.0050 U						
Dibutyl Phthalate	49,000	0.0196 U	0.0094 J	0.0199 U						
Diethyl Phthalate	400,000	0.0196 U	0.0187 U	0.0199 U	-	-	-	-	-	
Dimethyl Phthalate	NE	0.0049 U	0.0047 U	0.0050 U						
Di-N-Octyl Phthalate	4,900	0.0196 U	0.0187 U	0.0199 U						
Phenols by EPA 8270 (mg/kg)										
2,4-Dimethylphenol	9,900	0.0244 U	0.0234 U	0.0236 J	-		-	-	-	-
2-methylphenol (o-Cresol)	25,000	0.0196 U	0.0187 U	0.0158 J	-		-	-	-	-
4-methylphenol (p-Cresol)	49,000	0.0196 U	0.0187 U	0.187	-	-	-	-	-	
Pentachlorophenol	0.62	0.0978 U	0.0935 U	1.11	-		-	-	-	-
Phenol	150,000	0.0196 U	0.0187 U	0.0426	-	-	-	-	-	-
Miscellaneous Extractables by EPA 8270 (mg/kg)				1	1		1	1		
Dibenzofuran	490	0.00851	0.0103	0.139	-	-	-	-		-
Hexachlorobutadiene	7.00	0.0049 U	0.0047 U	0.0050 U						
N-Nitrosodiphenylamine (as diphenylamine)	110	0.0049 U	0.0047 U	0.0050 U						
Benzoic Acid	NE	0.0978 U	0.0935 U	0.0994 U	-		-			-
Benzyl Alcohol	49,000,000	0.0196 U	0.0187 U	0.0199 U		-				

Table 11 (Continued)

Remedial Investigation Sediment Analytical Results for Protection of Human Health

Quiet Cove

. 1		1		Anacontes, wasi	-	I			
Sample Location ¹		GEI-3	SED-5	GEI-	SED-6	GI	EI-SED-7	GEI-	SED-8
Sample Identification	Preliminary	SED-5-0-0.5	SED-5-2-4	SED-6-0-0.5	SED-6-1-3	SED-7-0-0.5	SED-7-0-1	SED-8-0-0.5	SED-8-3.2-4.5
Sample Date	Screening	07/16/18	07/16/18	07/16/18	07/17/18	07/16/18	07/17/18	07/16/18	07/16/18
Sample Interval (feet bgs)	Level ³	0-0.5 ft	2-4 ft	0-0.5 ft	1-3 ft	0-0.5 ft	0-1 ft	0-0.5 ft	3.2-4.5 ft
Field Measured Parameters								1	
Sheen	NE	NS	NS	NS	NS	NS	NS	NS	NS
Headspace Vapors (ppm)	NE	<1	<1	<1	<1	<1	<1	3.3	1.8
Metals by EPA 6000/7000 Series (mg/kg)				ſ					
Arsenic	11	3.73	3.30	7.16	5.55	3.05	3.20	3.72	3.57
Cadmium	0.8	L 80.0	0.12	0.07 J	0.09 J	0.06 J	0.06 J	0.04 J	0.42
Chromium	230,000	19.5	14.5	13.6	27.2	17.8	14.3	15.2	15.3
Copper	26,000	21.0	38.6	14.5	43.4	187	165	22.2	47.8
Lead	21	31.3	70.1	34.8	78.8	53.3	40.8	44.4	240
Silver	3,200	0.03 J	0.06 J	0.05 J	0.05 J	0.04 J	0.04 J	0.05 J	0.11 J
Zinc	190,000	51.2	81.8	108	75.7	112	53.8	41.6	132
Mercury	0.2	0.0219 U	0.0427	0.0238 U	0.0234 U	0.0200 U	0.0230 U	0.0244 U	0.168
Petroleum Hydrocarbons by NWTPH-G/Dx (mg/kg)	30 ⁴	5 00 11		7.00.11	4.04.11			7.07.11	5.00.11
Gasoline-range hydrocarbons		5.26 U	6.6 U	7.66 U	4.64 U	7.44 U	5.54 U	7.07 U	5.96 U
Diesel-range hydrocarbons	2,000	18.1	24.1	10.5	6.39	5.12 U	5.11 U	10.1	135
Motor Oil-range hydrocarbons	2,000	40.6	94.6	43.2	35.1	22.2	24.2	26.7	248
Volatile Organic Compounds (VOCs) by EPA 8360 (µg/kg)	0.05	0.004.04	0.00000.1	0.00040.1	0.00005	0.00000.1	0.00000.1	0.00110.0	0.004.00
Benzene	0.05	0.00121	0.00093 J	0.00043 J	0.00205	0.00080 J	0.00028 J	0.00113 U	0.00169
Toluene	3.78	0.00147	0.00041 J	0.00122 U	0.00162	0.00052 J	0.00023 J	0.00113 U	0.00049 J
Ethylbenzene	1.12	0.00106 U	0.00105 U	0.00122 U	0.00095 U	0.00114 U	0.00091 U	0.00113 U	0.00095 U
Total Xylenes	2.83	0.000810	0.00210 U	0.00243 U	0.000440	0.00228 U	0.00182 U	0.00225 U	0.00191 U
1,2-Dibromoethane (EDB)	NA	0.00106 U	0.00105 U	0.00122 U	0.00095 U	0.00114 U	0.00091 U	0.00113 U	0.00095 U
1,2-Dichloroethane (EDC)	0.02	0.00047 J	0.00105 U	0.00122 U	0.00095 U	0.00114 U	0.00091 U	0.00113 U	0.00054 J
Methyl t-butyl ether (MTBE)	2.59	0.00106 U	0.00105 U	0.00122 U	0.00095 U	0.00114 U	0.00091 U	0.00113 U	0.00095 U
n-Hexane Polycyclic Aromatic Hydrocarbons (LPAHs) by EPA 8270 SII	0.27	0.00106 U	0.00105 U	0.00122 U	0.00095 U	0.00114 U	0.00091 U	0.00113 U	0.00095 U
	1,600	0.00935	0.00345 J	0.00250 J	0.00399 J	0.00464 U	0.00414 J	0.00409 J	0.0294
2-Methylnaphthalene	25,000	0.00723	0.00277 J	0.00250 J	0.00476 U	0.00464 U	0.00414 J	0.00631	0.0390
Acenaphthene	25,000	0.0256	0.00997	0.00234 J	0.0197	0.00464 U	0.00647	0.0106	0.0595
Acenaphthylene	120,000	0.0505	0.0267	0.00578	0.0202	0.00404 0 0.00270 J	0.00851	0.0348	0.118
Anthracene	16,000	0.0266	0.0107	0.00467 U	0.00332 J	0.00464 U	0.00406 J	0.0129	0.0558
Fluorene	8,200	0.0322	0.00497	0.00526	0.00335 J	0.00238 J	0.00561	0.00864	0.0742
Naphthalene	120,000	0.182	0.0871	0.0186	0.0302	0.00622	0.0484	0.119	0.383
Phenanthrene Polycyclic Aromatic Hydrocarbons (HPAHs) by EPA 8270 SI									
Benzo(a)anthracene	0.600	0.12	0.0455	0.0272	0.0550	0.00844	0.0348	0.0722	0.325
	0.0600	0.113	0.0507	0.0257	0.0533	0.00813	0.0393	0.0869	0.338
Benzo(a)pyrene Benzo(g,h,i)perylene	12,000	0.0783	0.0389	0.0201	0.0524	0.00786	0.0326	0.0668	0.252
Benzo(g,n,i)peryiene Benzofluoranthenes (Total)	NE	0.205	0.0727	0.0458	0.165	0.0215	0.0696	0.12	0.505
Chrysene	6.00	0.212	0.0548	0.0300	0.0952	0.0123	0.0459	0.0851	0.325
Dibenzo(a,h)anthracene	0.600	0.0272	0.0166	0.0143	0.0189	0.0121	0.0159	0.0206	0.0609
	16,000	0.276	0.116	0.0485	0.114	0.0164	0.0820	0.172	0.84
	- ,								
Fluoranthene Indeno(1,2,3-c,d)pyrene	0.600	0.0668	0.0348	0.0234	0.0460	0.0147	0.0308	0.0531	0.185

Sample Location ¹		GEI-S	SED-5	GEI-	SED-6	GE	-SED-7	GEI	SED-8
Sample Identification	Preliminary	SED-5-0-0.5	SED-5-2-4	SED-6-0-0.5	SED-6-1-3	SED-7-0-0.5	SED-7-0-1	SED-8-0-0.5	SED-8-3.2-4.5
Sample Date Sample Interval (feet bgs)	Screening	07/16/18	07/16/18	07/16/18	07/17/18	07/16/18	07/17/18	07/16/18 0-0.5 ft	07/16/18 3.2-4.5 ft
	Level ³	0-0.5 ft	2-4 ft	0-0.5 ft	1-3 ft	0-0.5 ft	0-1 ft		
Carcinogenic PAHs (cPAHs) by EPA 8270 SIM (mg/kg)									
Total cPAH TEQ ⁵ (ND=0)	0.0210	0.157	0.0682	0.0371	0.0827	0.0139	0.0549	0.114	0.449
Total cPAH TEQ ⁵ (ND=0.5RL)	0.0210	0.157	0.0682	0.0371	0.0827	0.0139	0.0549	0.114	0.449
Chlorinated Hydrocarbons by EPA 8270 (mg/kg)						·			
1,2,4-Trichlorobenzene	19.0	0.0047 U	0.0048 U	0.0047 U	0.0047 U	0.0047 U	0.0047 U	0.0048 U	0.0050 U
1,2-Dichlorobenzene (o-Dichlorobenzene)	45,000	0.0047 U	0.0048 U	0.0047 U	0.0047 U	0.0047 U	0.0047 U	0.0048 U	0.0050 U
1,3-Dichlorobenzene (m-Dichlorobenzene)	NE	0.0047 U	0.0048 U	0.0047 U	0.0047 U	0.0047 U	0.0047 U	0.0048 U	0.0050 U
1,4-Dichlorobenzene (p-Dichlorobenzene)	100	0.0047 U	0.0048 U	0.0047 U	0.0047 U	0.0047 U	0.0047 U	0.0048 U	0.0040 J
Hexachlorobenzene	0.340	0.0047 U	0.0048 U	0.0047 U	0.0047 U	0.0047 U	0.0047 U	0.0048 U	0.0050 U
Phthalates by EPA 8270 (mg/kg)			•			· ·			
Bis(2-Ethylhexyl) Phthalate	39.0	0.0469 U	0.0476 U	0.0466 U	0.0475	0.0466 U	0.0468 U	0.0479 U	0.0499 U
Butyl benzyl Phthalate	290	0.0047 U	0.0048 U	0.0047 U	0.0047 U	0.0047 U	0.0047 U	0.0048 U	0.0050 U
Dibutyl Phthalate	49,000	0.0187 U	0.0190 U	0.0186 U	0.0189 U	0.0186 U	0.0187 U	0.0192 U	0.0199 U
Diethyl Phthalate	400,000	0.0122 J	0.0127 J	0.0102 J	0.0205	0.0139 J	0.0180 J	0.0118 J	0.0188 J
Dimethyl Phthalate	NE	0.0047 U	0.0048 U	0.0047 U	0.0047 U	0.0047 U	0.0047 U	0.0048 U	0.0050 U
Di-N-Octyl Phthalate	4,900	0.0187 U	0.0190 U	0.0186 U	0.0189 U	0.0186 U	0.0187 U	0.0192 U	0.0199 U
Phenols by EPA 8270 (mg/kg)						· ·			
2,4-Dimethylphenol	9,900	0.0234 U	0.0238 U	0.0233 U	0.0237 U	0.0233 U	0.0234 U	0.0240 U	0.0031 J
2-methylphenol (o-Cresol)	25,000	0.0187 U	0.0190 U	0.0186 U	0.0189 U	0.0186 U	0.0187 U	0.0192 U	0.0199 U
4-methylphenol (p-Cresol)	49,000	0.0187 U	0.0190 U	0.0186 U	0.0189 U	0.0186 U	0.0187 U	0.0192 U	0.0479
Pentachlorophenol	0.62	0.0937 U	0.0952 U	0.0932 U	0.0946 U	0.0932 U	0.0935 U	0.0958 U	0.0574 J
Phenol	150,000	0.0187 U	0.0190 U	0.0186 U	0.0189 U	0.0186 U	0.0187 U	0.0192 U	0.0199 U
Miscellaneous Extractables by EPA 8270 (mg/kg)			•	•	•	· ·			•
Dibenzofuran	490	0.0113	0.00565	0.00467 U	0.00476 U	0.00464 U	0.00467 U	0.00590	0.0314
Hexachlorobutadiene	7.00	0.0047 U	0.0048 U	0.0047 U	0.0047 U	0.0047 U	0.0047 U	0.0048 U	0.0050 U
N-Nitrosodiphenylamine (as diphenylamine)	110	0.0047 U	0.0048 U	0.0047 U	0.0047 U	0.0047 U	0.0047 U	0.0048 U	0.0193
Benzoic Acid	NE	0.0937 U	0.0952 U	0.0282 J	0.0946 U	0.0932 U	0.0210 J	0.0958 U	0.0396 J
Benzyl Alcohol	49,000,000	0.0187 U	0.0190 U	0.0186 U	0.0189 U	0.0186 U	0.0187 U	0.0192 U	0.0199 U

Table 11 (Continued)

Remedial Investigation Sediment Analytical Results for Protection of Human Health

Quiet Cove

Sample Location ¹		GEI	SED-9	GEI-SI	ED-10
Sample Identification	D	SED-9-0-0.5	SED-9-1.7-2.3	SED-10-0-0.5	SED-10-2-4
Sample Date	Preliminary Screening	07/16/18	07/17/18	07/18/18	07/17/18
Sample Interval (feet bgs)	Level ³	0-0.5 ft	1.7-2.3 ft	0-0.5 ft	2-4 ft
Field Measured Parameters	II				
Sheen	NE	NS	NS	NS	NS
Headspace Vapors (ppm)	NE	<1	2.2	<1	<1
Metals by EPA 6000/7000 Series (mg/kg)					
Arsenic	11	3.93	0.75	2.71	4.01
Cadmium	0.8	0.06 J	0.009 J	0.05 J	0.37
Chromium	230,000	15.4	15.9	21.6	15.2
Copper	26,000	47.9	4.49	16.0	17.1
Lead	21	101	0.87	24.5	23.5
Silver	3,200	0.05 J	0.03 J	0.04 J	0.07 J
Zinc	190,000	68.4	20.0	47.7	54.3
Mercury	0.2	0.0353	0.0253 U	0.0291 U	0.0844
Petroleum Hydrocarbons by NWTPH-G/Dx (mg/kg)					
Gasoline-range hydrocarbons	30 ⁴	6.6 U	6.28 U	6.32 U	7.16 U
Diesel-range hydrocarbons	2,000	20.7	5.54 U	5.69 U	29.0
Motor Oil-range hydrocarbons	2,000	51.6	11.1 U	28.2	52.7
Volatile Organic Compounds (VOCs) by EPA 8360 ($\mu g/kg)$					
Benzene	0.05	0.00065 J	0.00073 J	0.00109 U	0.00042 J
Toluene	3.78	0.00053 J	0.00034 J	0.00109 U	0.00046 J
Ethylbenzene	1.12	0.00104 U	0.00105 U	0.00109 U	0.00123 U
Total Xylenes	2.83	0.00208 U	0.00211 U	0.00218 U	0.00247 U
1,2-Dibromoethane (EDB)	NA	0.00104 U	0.00105 U	0.00109 U	0.00123 U
1,2-Dichloroethane (EDC)	0.02	0.00104 U	0.00105 U	0.00109 U	0.00123 U
Methyl t-butyl ether (MTBE)	2.59	0.00104 U	0.00105 U	0.00109 U	0.00123 U
n-Hexane	0.27	0.00104 U	0.00105 U	0.00109 U	0.00123 U
Polycyclic Aromatic Hydrocarbons (LPAHs) by EPA 8270 SI					
2-Methylnaphthalene	1,600	0.0114	0.00472 U	0.00475 U	0.0148
Acenaphthene	25,000	0.0162	0.00472 U	0.00475 U	0.0149
Acenaphthylene	25,000	0.0364	0.00472 U	0.00292 J	0.0351
Anthracene	120,000	0.12	0.00472 U	0.00475 U	0.0647
Fluorene	16,000	0.0411	0.00472 U	0.00475 U	0.0302
Naphthalene	8,200	0.0285	0.00472 U	0.00475 U	0.0412
Phenanthrene	120,000	0.452	0.00472 U	0.00798	0.21
Polycyclic Aromatic Hydrocarbons (HPAHs) by EPA 8270 S			0.00175	0.00-01	
Benzo(a)anthracene	0.600	0.218	0.00472 U	0.00704	0.122
Benzo(a)pyrene	0.0600	0.243	0.00472 U	0.00908	0.144
Benzo(g,h,i)perylene	12,000	0.173	0.00472 U	0.00737	0.112
Benzofluoranthenes (Total)	NE	0.393	0.00944 U	0.0179	0.206
Chrysene	6.00	0.296	0.00472 U	0.00896	0.135
Dibenzo(a,h)anthracene	0.600	0.0387	0.00472 U	0.0116	0.0476
Fluoranthene	16,000	0.871	0.00472 U	0.0126	0.291
Indeno(1,2,3-c,d)pyrene	0.600	0.13	0.00472 U	0.0140	0.0971
Pyrene	12,000	0.771	0.00472 U	0.0141	0.392

Sample Location ¹		GEI	SED-9	GEI-S	ED-10	
Sample Identification	Preliminary	SED-9-0-0.5	SED-9-1.7-2.3	SED-10-0-0.5	SED-10-2-4	
Sample Date	Screening	07/16/18	07/17/18	07/18/18	07/17/18	
Sample Interval (feet bgs)	Level ³	0-0.5 ft	1.7-2.3 ft	0-0.5 ft	2-4 ft	
Carcinogenic PAHs (cPAHs) by EPA 8270 SIM (mg/kg)						
Total cPAH TEQ ⁵ (ND=0)	0.0210	0.324	0 U	0.0142	0.193	
Total cPAH TEQ ⁵ (ND=0.5RL)	0.0210	0.324	0.00360 U	0.0142	0.193	
Chlorinated Hydrocarbons by EPA 8270 (mg/kg)						
1,2,4-Trichlorobenzene	19.0	0.0047 U	0.0047 U	0.0047 U	0.0048 U	
1,2-Dichlorobenzene (o-Dichlorobenzene)	45,000	0.0047 U	0.0047 U	0.0047 U	0.0048 U	
1,3-Dichlorobenzene (m-Dichlorobenzene)	NE	0.0047 U	0.0047 U	0.0047 U	0.0048 U	
1,4-Dichlorobenzene (p-Dichlorobenzene)	100	0.0047 U	0.0047 U	0.0047 U	0.0048 U	
Hexachlorobenzene	0.340	0.0047 U	0.0047 U	0.0047 U	0.0048 U	
Phthalates by EPA 8270 (mg/kg)	· · · ·					
Bis(2-Ethylhexyl) Phthalate	39.0	0.0791	0.0469 U	0.0472 U	0.0482 U	
Butyl benzyl Phthalate	290	0.0047 U	0.0047 U	0.0047 U	0.0060	
Dibutyl Phthalate	49,000	0.0188 U	0.0188 U	0.0189 U	0.0193 U	
Diethyl Phthalate	400,000	0.0136 J	0.0181 J	0.0143 J	0.0158 J	
Dimethyl Phthalate	NE	0.0075	0.0047 U	0.0047 U	0.0048 U	
Di-N-Octyl Phthalate	4,900	0.0188 U	0.0188 U	0.0189 U	0.0193 U	
Phenols by EPA 8270 (mg/kg)	· · · ·					
2,4-Dimethylphenol	9,900	0.0235 U	0.0235 U	0.0236 U	0.0046 J	
2-methylphenol (o-Cresol)	25,000	0.0188 U	0.0188 U	0.0189 U	0.0193 U	
4-methylphenol (p-Cresol)	49,000	0.0188 U	0.0188 U	0.0189 U	0.0193 U	
Pentachlorophenol	0.62	0.0938 U	0.0938 U	0.0943 U	0.0965 U	
Phenol	150,000	0.0188 U	0.0188 U	0.0189 U	0.0193 U	
Miscellaneous Extractables by EPA 8270 (mg/kg)						
Dibenzofuran	490	0.0158	0.00472 U	0.00475 U	0.0171	
Hexachlorobutadiene	7.00	0.0047 U	0.0047 U	0.0047 U	0.0048 U	
N-Nitrosodiphenylamine (as diphenylamine)	110	0.0047 U	0.0047 U	0.0047 U	0.0048 U	
Benzoic Acid	NE	0.0938 U	0.0938 U	0.0943 U	0.0965 U	
Benzyl Alcohol	49,000,000	0.0188 U	0.0188 U	0.0189 U	0.0193 U	

¹ Sample locations and summary of remedial investigation results are shown on Figure 3 through 8.

² SED-1 was completed by compositing sediment surface samples and cores from 2 locations (SED-1B and SED-1C).

³ Screening levels are based on the exposure pathways specific to intertidal sediment (i.e., beach play, clamming and net fishing) consistent with the RI/FS Work Plan.

⁴ Value for gasoline-range petroleum hydrocarbons if benzene is present. If benzene is not present, screening level is 100 mg/kg.

⁵ Total cPAH Toxic Equivalency Quotients (TEQs) were calculated using Toxicity Equivalency Factors (TEFs) values referenced from MTCA Table 708.2 (WAC 173-340-900). ppm = parts per million

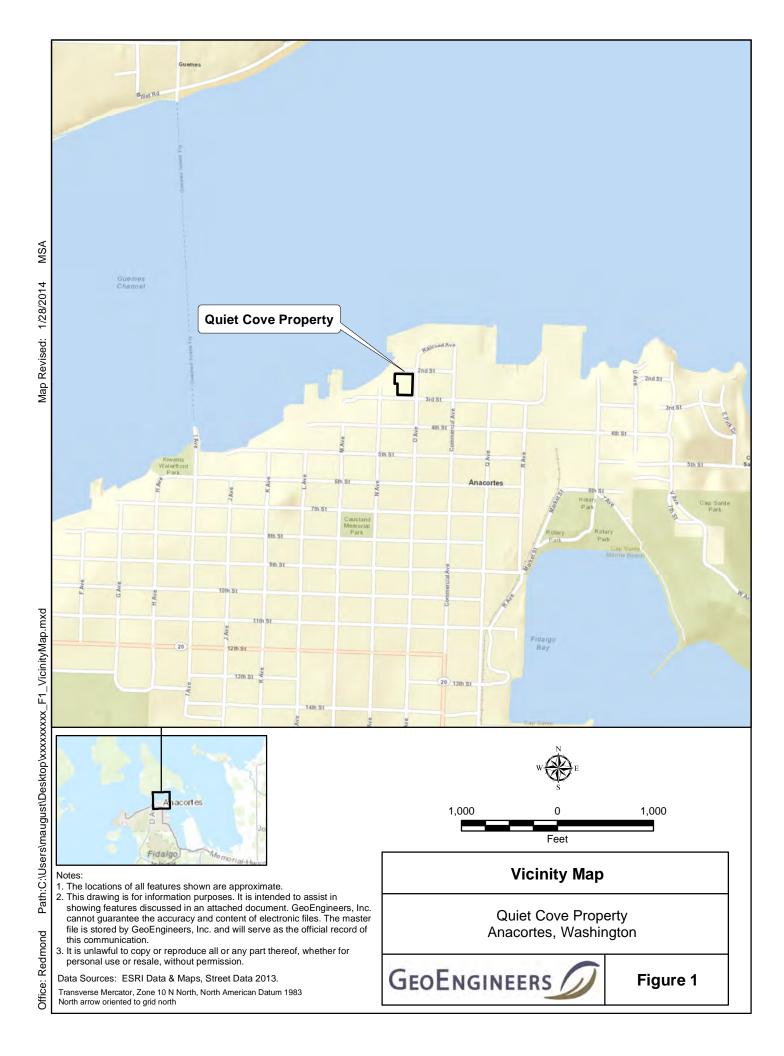
mg/kg = milligrams per kilogram

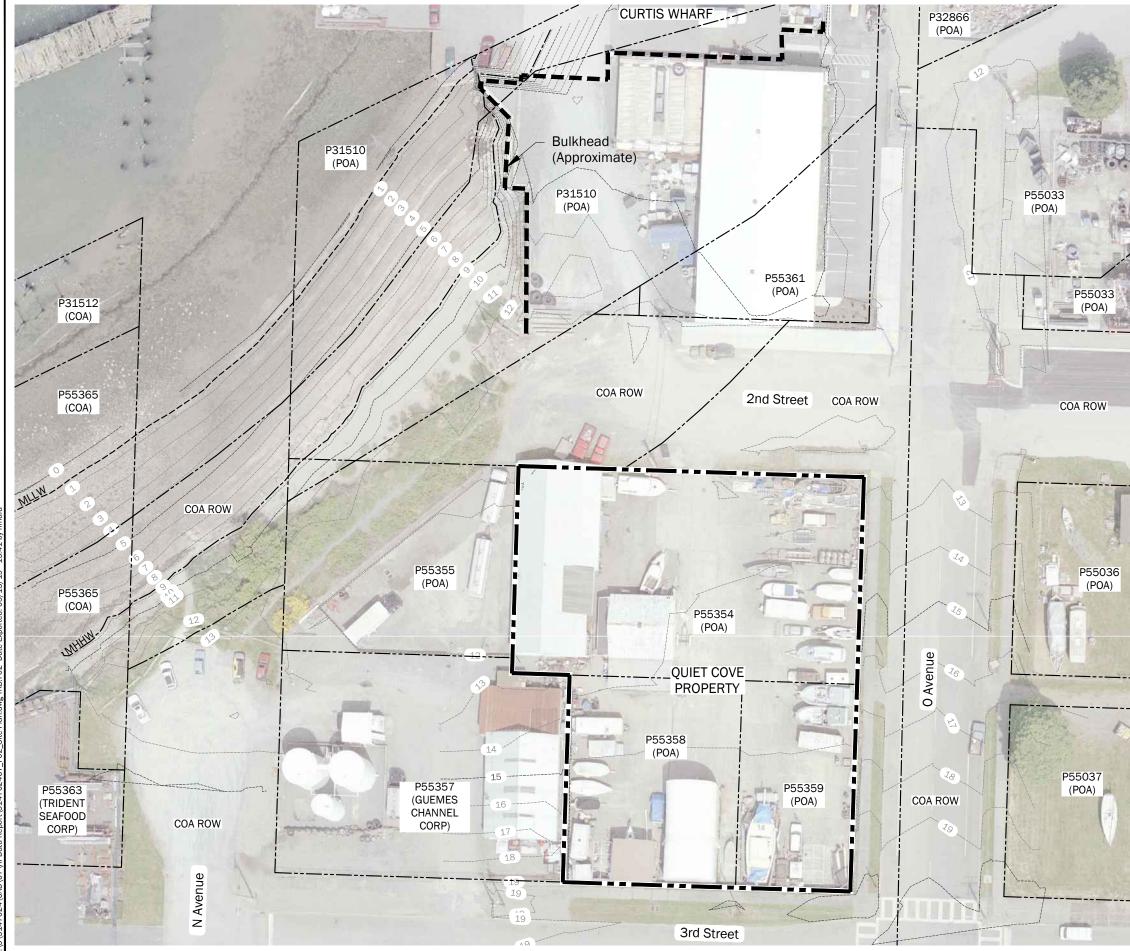
-- = not analyzed

NE = Not Established

ND = Not Detected

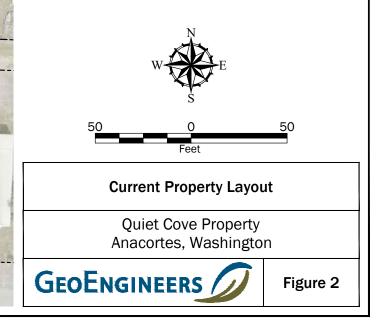
U = The analyte was not detected at a concentration greater than the value identified.

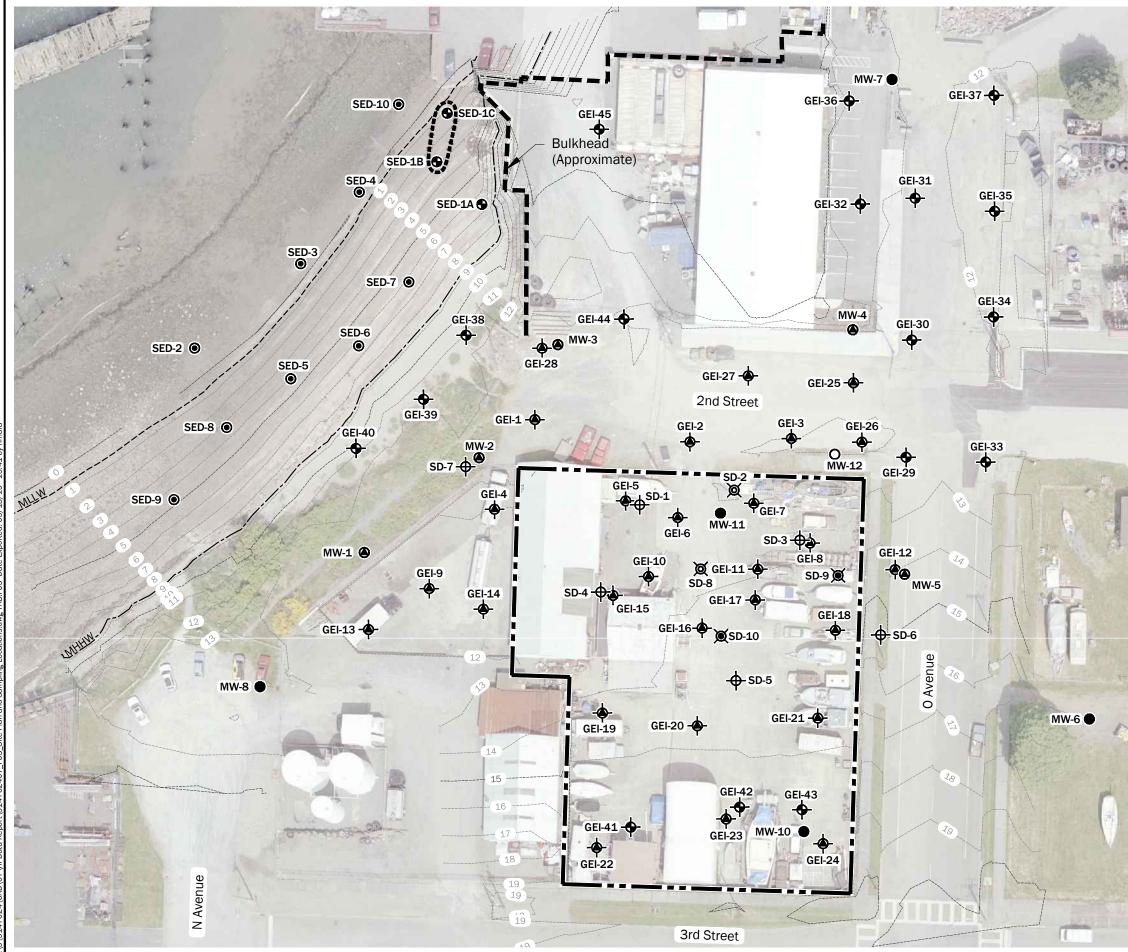

J = The analyte was detected and the detected concentration is considered an estimate.


Yellow shading indicates that the identified concentration is greater than the preliminary screening level.

Bold font type indicates the analyte was detected at the reported concentration.

Legend


	Quiet Cove Property Boundary
	Skagit County Parcel Boundary
10	Contour (Feet, NAVD 88)
	Mean Lower Low Water (MLLW) Line (0.66 Feet NAVD 88)
	Mean Higher High Water (MHHW) Line (8.86 Feet NAVD 88)
P55365 (COA)	Parcel Number (Owner)
POA = COA = ROW =	Port of Anacortes City of Anacortes Right-of-Way


Notes:

- 1.
- The locations of all features shown are approximate. This drawing is for information purposes. It is intended to assist in showing features discussed in an attached document. GeoEngineers, Inc. cannot guarantee the accuracy and content of electronic files. The master file is stored by GeoEngineers, Inc. and will serve as the official record of this communication. 2.

Data Source: Base Aerial taken by David C. Smith & Associates, Inc. on 6/17/2009. Base survey by Sound Development Group on 10-11-2017

Projection: NAD83 WA State Planes, N Zone, US Foot

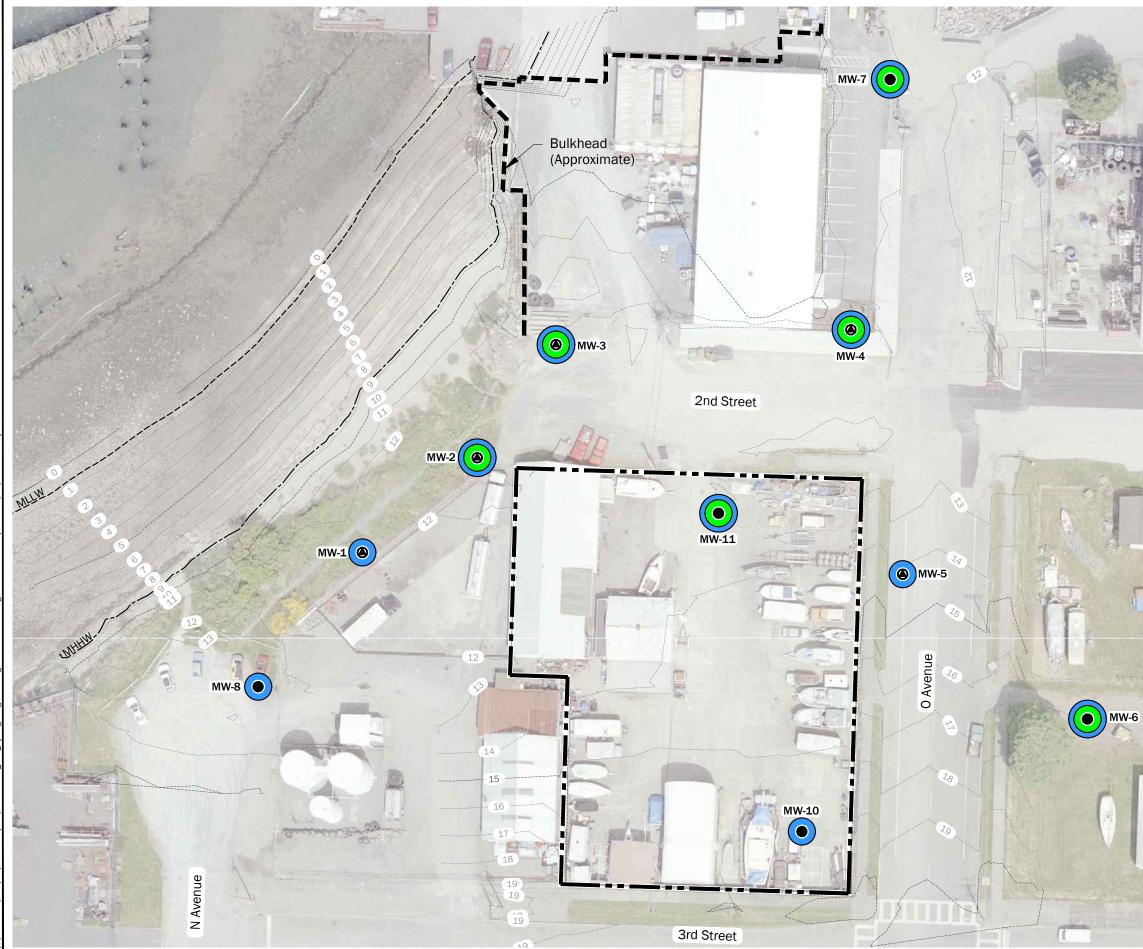
	Legend
	Quiet Cove Property Boundary
10	Contour (Feet, NAVD 88)
	Mean Lower Low Water (MLLW) Line (0.66 Feet NAVD 88)
	Mean Higher High Water (MHHW) Line (8.86 Feet NAVD 88)
sd-1-∲-	Supplemental RI Sample Locations Supplemental RI Soil Boring Location, 2018
SD-2 👿	Supplemental RI Soil Boring Location and Temporary Well Screen, 2018
SD-9 💓	Supplemental RI Shallow Soil Boring Location, 2018
MW-12 O	Supplemental RI Monitoring Well, 2018
GEI-31 -	RI Sample Locations RI Soil Boring Location, 2017
SED-1A 🕤	RI Tier 1 Sediment Sample, September 2017
SED-2 🔘	RI Tier 2 Sediment Sample, July 2018
MW-6 🌑	RI Monitoring Well, 2017
()	Composite Sediment Sample Grab Area (SED-1)
GEI-1 -	Focused Site Investigation Focused Site Investigation Soil Boring Location, 2014
MW-1 🌢	Focused Site Investigation Monitoring Well, 2014

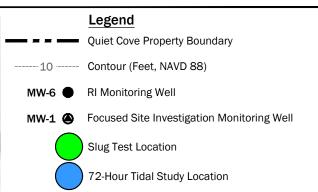
1.

The locations of all features shown are approximate. This drawing is for information purposes. It is intended to assist in showing features discussed in an attached document. GeoEngineers, Inc. cannot guarantee the accuracy and content of electronic files. The master file is stored by GeoEngineers, Inc. and will serve as the official record of this communication. 2.

Data Source: Base Aerial taken by David C. Smith & Associates, Inc. on 6/17/2009. Base survey by Sound Development Group on 10-11-2017

Projection: NAD83 WA State Planes, N Zone, US Foot

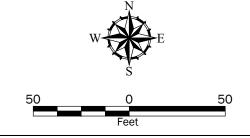




Site Plan and Sampling Locations

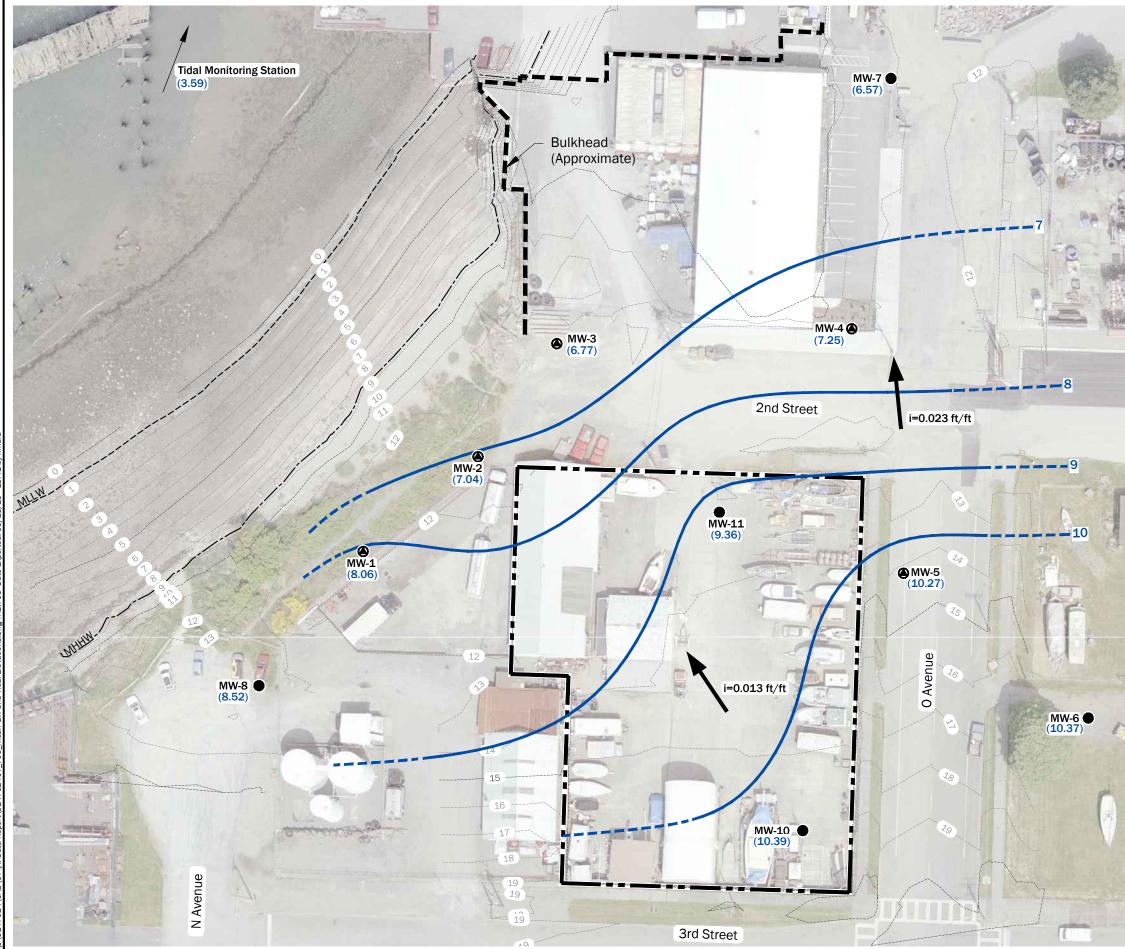
Quiet Cove Property Anacortes, Washington

GEOENGINEERS /



- 1.
- The locations of all features shown are approximate. This drawing is for information purposes. It is intended to assist in showing features discussed in an attached document. GeoEngineers, Inc. cannot guarantee the accuracy and content of electronic files. The master file is stored by GeoEngineers, Inc. and will serve as the official record of this communication. 2.

Data Source: Base Aerial taken by David C. Smith & Associates, Inc. on 6/17/2009. Base survey by Sound Development Group on 10-11-2017


Projection: NAD83 WA State Planes, N Zone, US Foot

Hydrogeologic Investigation Locations

Quiet Cove Property Anacortes, Washington

GEOENGINEERS

Legend

Quiet Cove Property Boundary

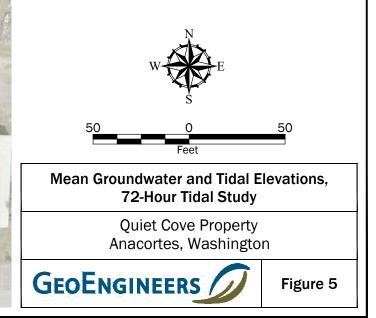
Contour (Feet, NAVD 88) -10 -

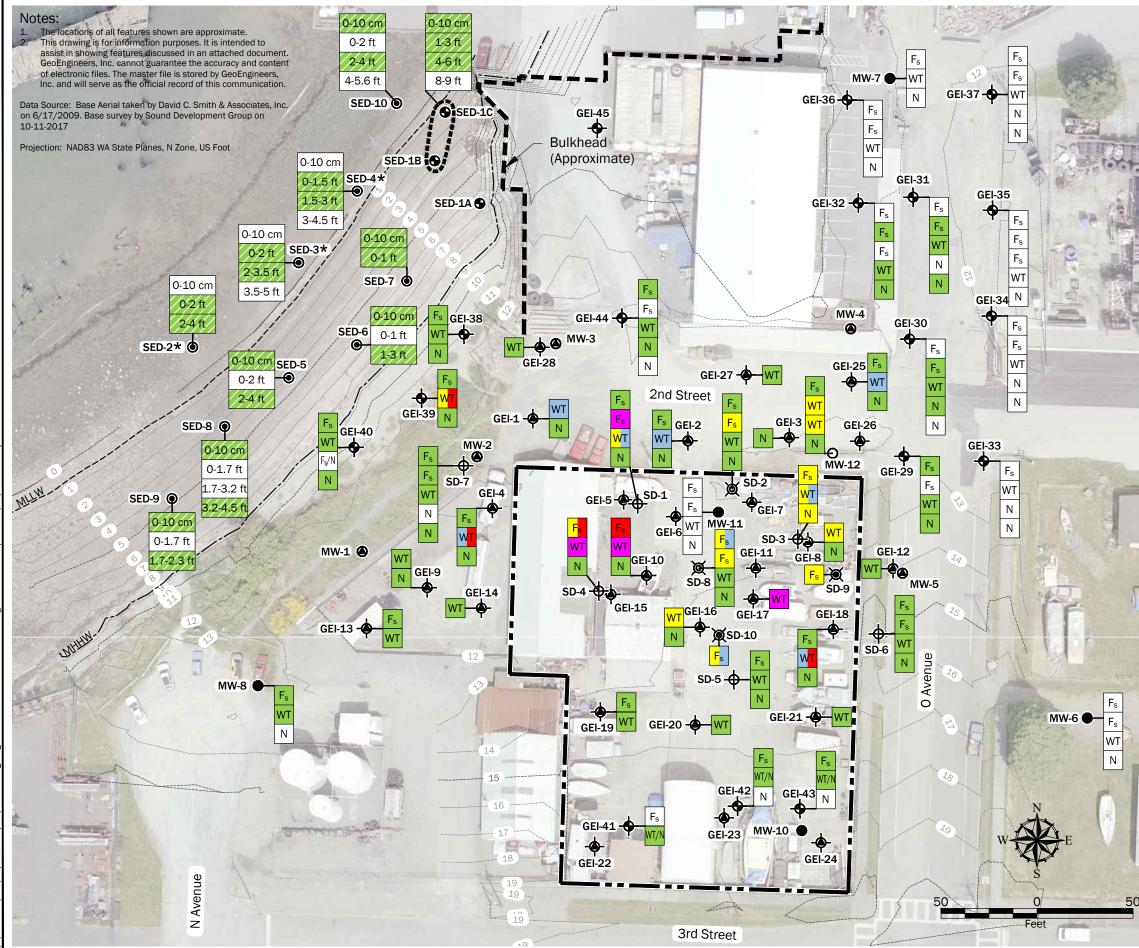
RI Monitoring Well MW-6 🔴

MW-1 O Focused Site Investigation Monitoring Well

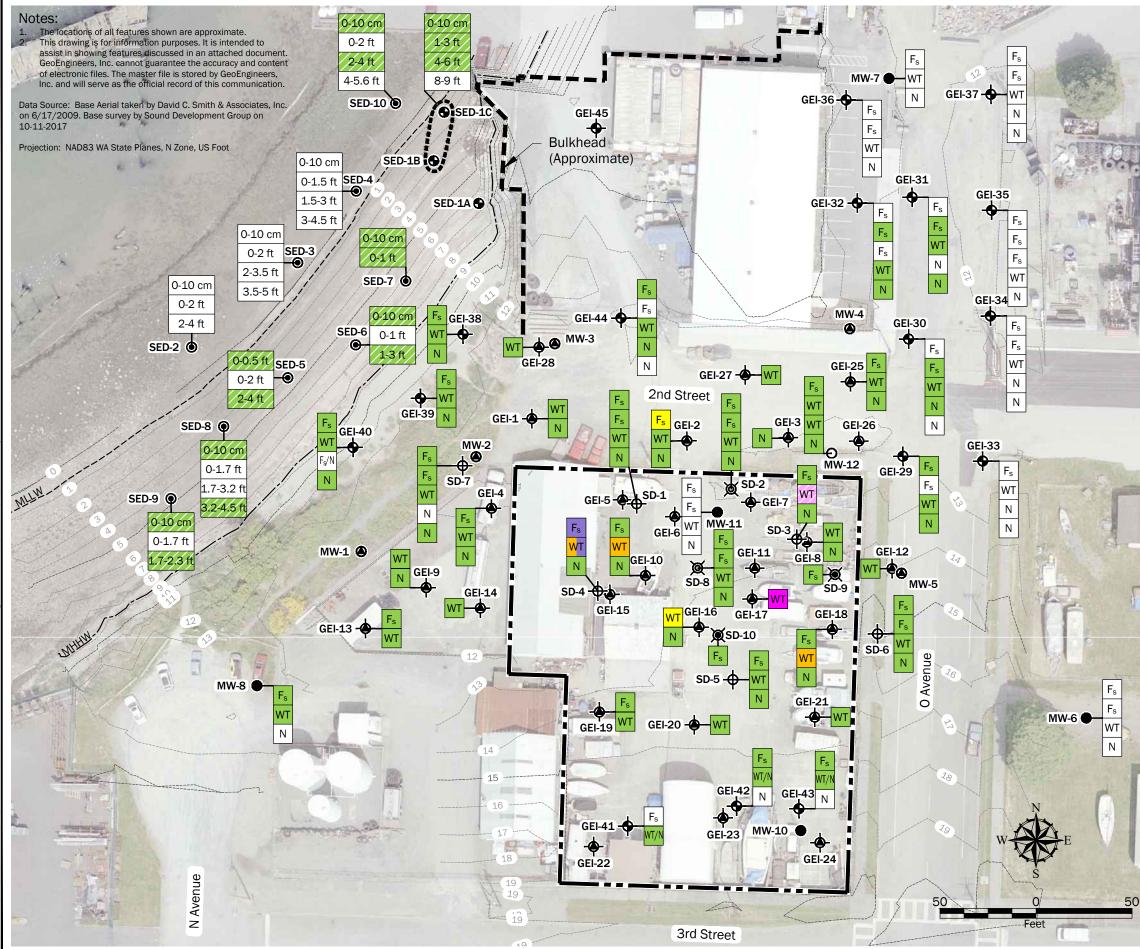
Mean Groundwater Elevation (Feet, NAVD 88), (10.39) 72-Hour Tidal Study

Groundwater Elevation Contour (Feet, NAVD 88), Mean Elevations 72-Hour Tidal Study. Dashed Where Inferred.

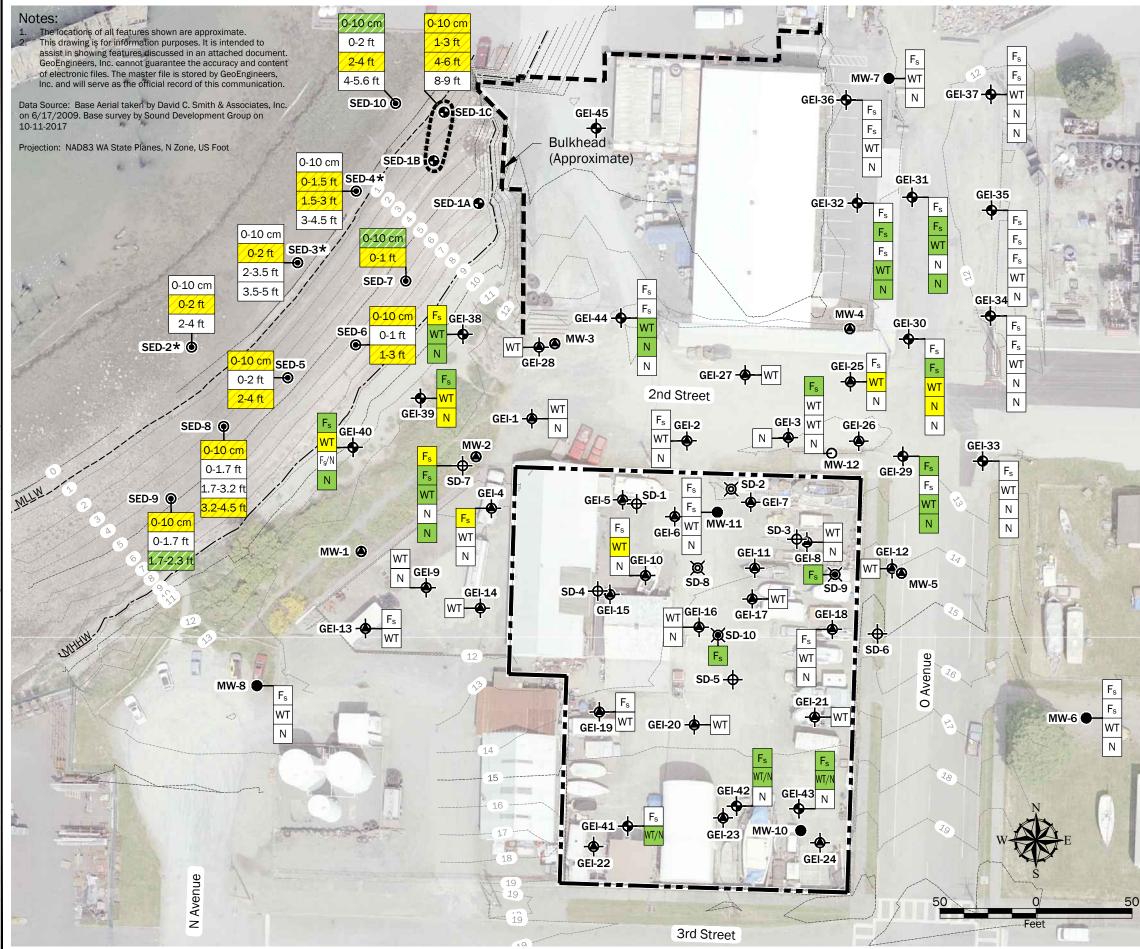

Inferred groundwater flow direction and groundwater gradient in feet per foot calculated between monitoring wells MW-10 and MW-2, and between monitoring wells MW-5 and MW-4


Notes:

- 1.
- 2.
- 72-hour tidal study conducted between 12:30 November 6 and 12:30 November 9, 2017.
 The locations of all features shown are approximate.
 This drawing is for information purposes. It is intended to assist in showing features discussed in an attached document. GeoEngineers, Inc. cannot guarantee the accuracy and content of electronic files. The master file is stored by GeoEngineers, Inc. and will serve as the official record of this communication. 3.

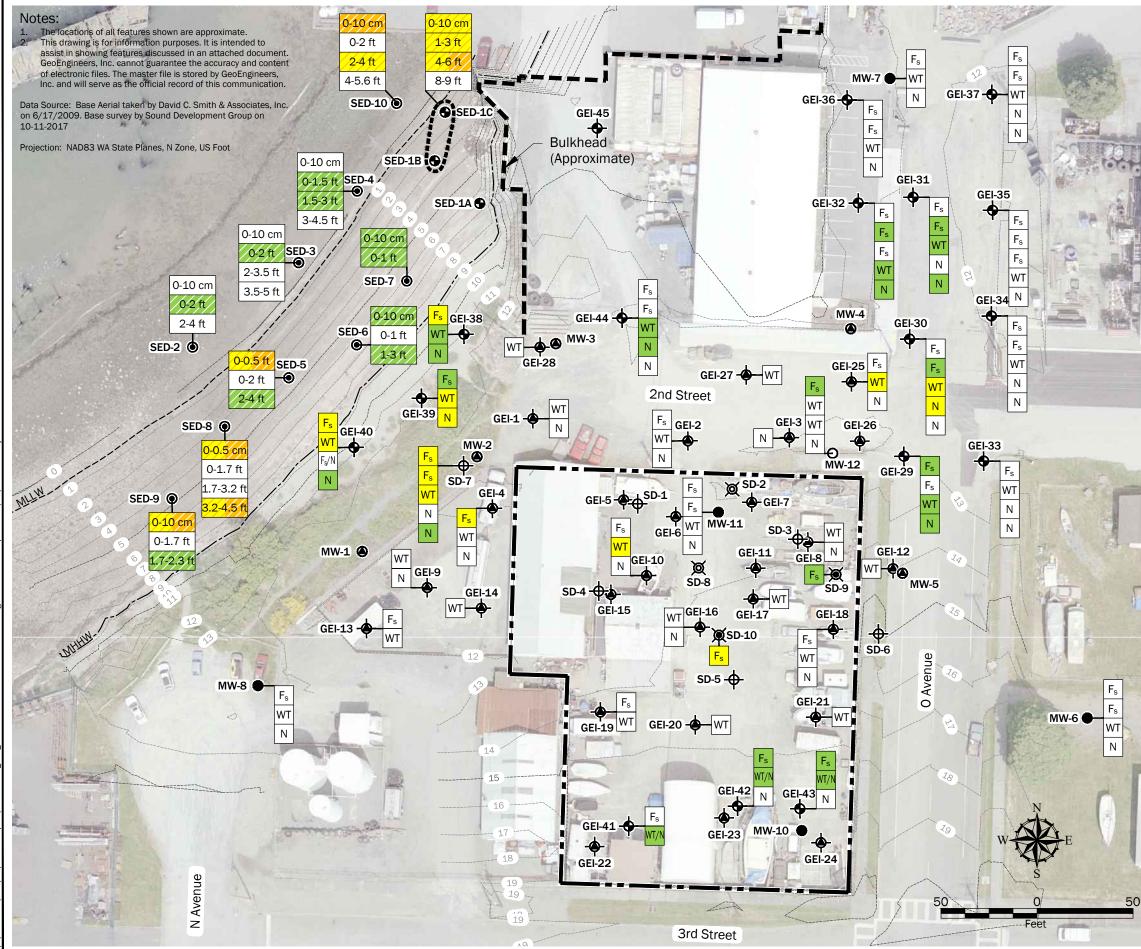

Data Source: Base Aerial taken by David C. Smith & Associates, Inc. on 6/17/2009. Base survey by Sound Development Group on 10-11-2017

Projection: NAD83 WA State Planes, N Zone, US Foot



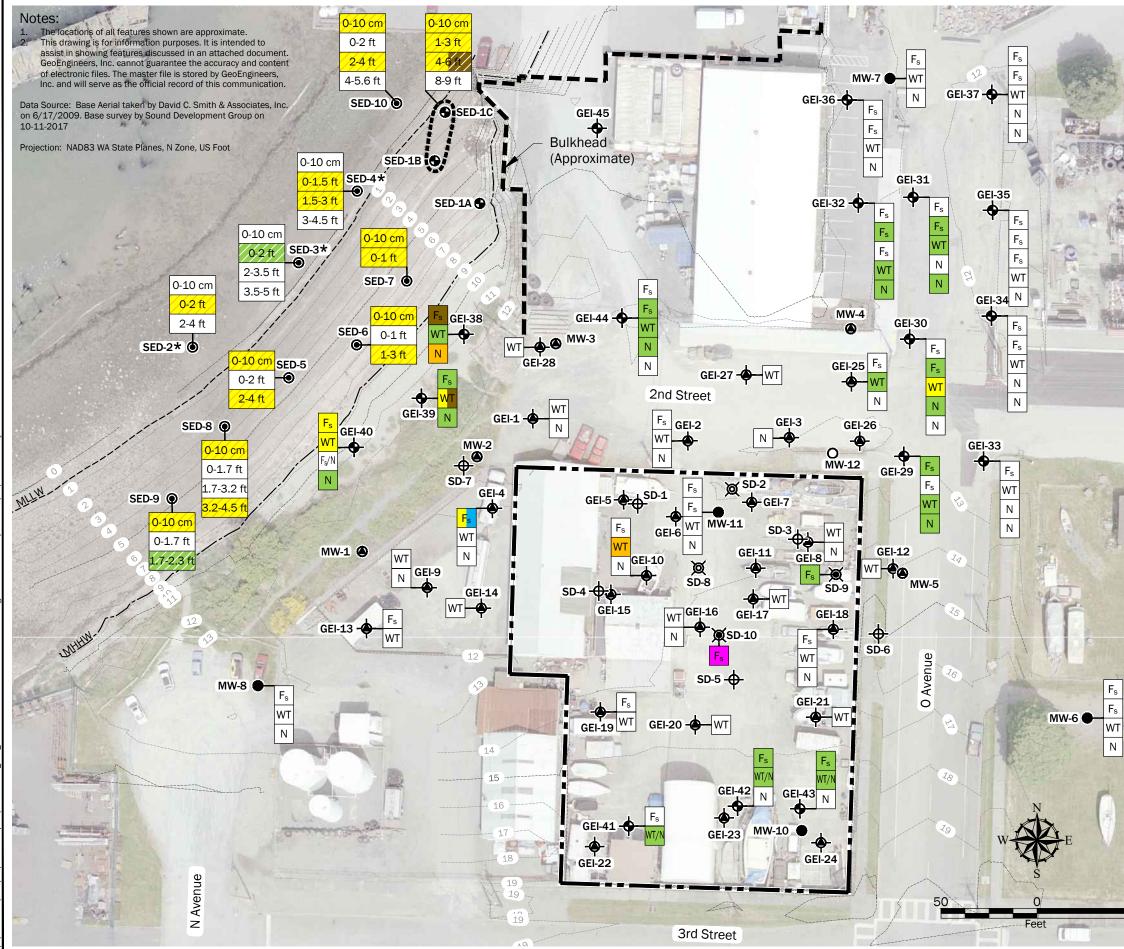
	Legend
	 Quiet Cove Property Boundary
10	- Contour (Feet, NAVD 88)
sd-1 -	- Supplemental RI Soil Boring Location
SD-2 💓	Supplemental RI Soil Boring Location and Temporary Well Screen
SD-9 💓	Supplemental RI Shallow Soil Boring Location
MW-12 O	Supplemental RI Monitoring Well
GEI-31 🔶	- RI Soil Boring Location
SED-1A 🕒	RI Tier 1 Sediment Sample
SED-2 🔘	RI Tier 2 Sediment Sample
MW-6 ●	RI Monitoring Well
GEI-1 -🔶	- Focused Site Investigation Soil Boring Location
MW-1 🌘	Focused Site Investigation Monitoring Well
()	Composite Sediment Sample Grab Area (SED-1)
	I Sample Result eedance of Preliminary Screening Level for:
	soline-Range TPH Gas+Heavy-Oil TPH
	sel-Range TPH Diesel+Heavy Oil TPH
	No Exceedance for
	5, Diesel and Heavy-Oil TPH Sample Not Analyzed,
	Archived s+Diesel TPH * Sample Only Analyzed
Soi	for TPH-D
Fs	Surface Fill WT Water Table
N	Native liment Sample Results
0-10 cm 1-3 ft 4-6 ft 8-9 ft	SED-1 Sample Interval Depth (bml)
	No Exceedance
	Human Health Exceedance
	Benthic Exceedance
	Sample Not Analyzed, Archived
Soil a	and Sediment Analytical Results for Total Petroleum Hydrocarbon
	Quiet Cove Property Anacortes, Washington
Geol	ENGINEERS Figure 6

	Legend
	Quiet Cove Property Boundary
10	Contour (Feet, NAVD 88)
sd-1- ∲ -	Supplemental RI Soil Boring Location
SD-2 💓	Supplemental RI Soil Boring Location and Temporary Well Screen
SD-9 💓	Supplemental RI Shallow Soil Boring Location
MW-12 O	Supplemental RI Monitoring Well
GEI-31 -	RI Soil Boring Location
SED-1A 😜	RI Tier 1 Sediment Sample
SED-2 🔘	RI Tier 2 Sediment Sample
MW-6 🌑	RI Monitoring Well
GEI-1 -	Focused Site Investigation Soil Boring Location
MW-1 🌘	Focused Site Investigation Monitoring Well
	Composite Sediment Sample Grab Area (SED-1)
	Sample Result edance of Preliminary Screening Level for:
Benz	
Total	Xylenes Benzene, Toulene, Total Xylenes
All Bl	ETX and n-Hexane
No E	xceedance
Sam	ple Not Analyzed, Archived
Soil	Site Stratigraphy
Fs	Surface Fill WT Water Table
N Sedi i	Native ment Sample Results
0-10 cm 1-3 ft 4-6 ft 8-9 ft	SED-1 Sample Interval Depth (bml)
	No Exceedance
	Human Health Exceedance
	Benthic Exceedance
	Sample Not Analyzed, Archived
	nd Sediment Analytical Results for Volatile Organic Compounds
	Quiet Cove Property Anacortes, Washington
GEOE	NGINEERS Figure 7

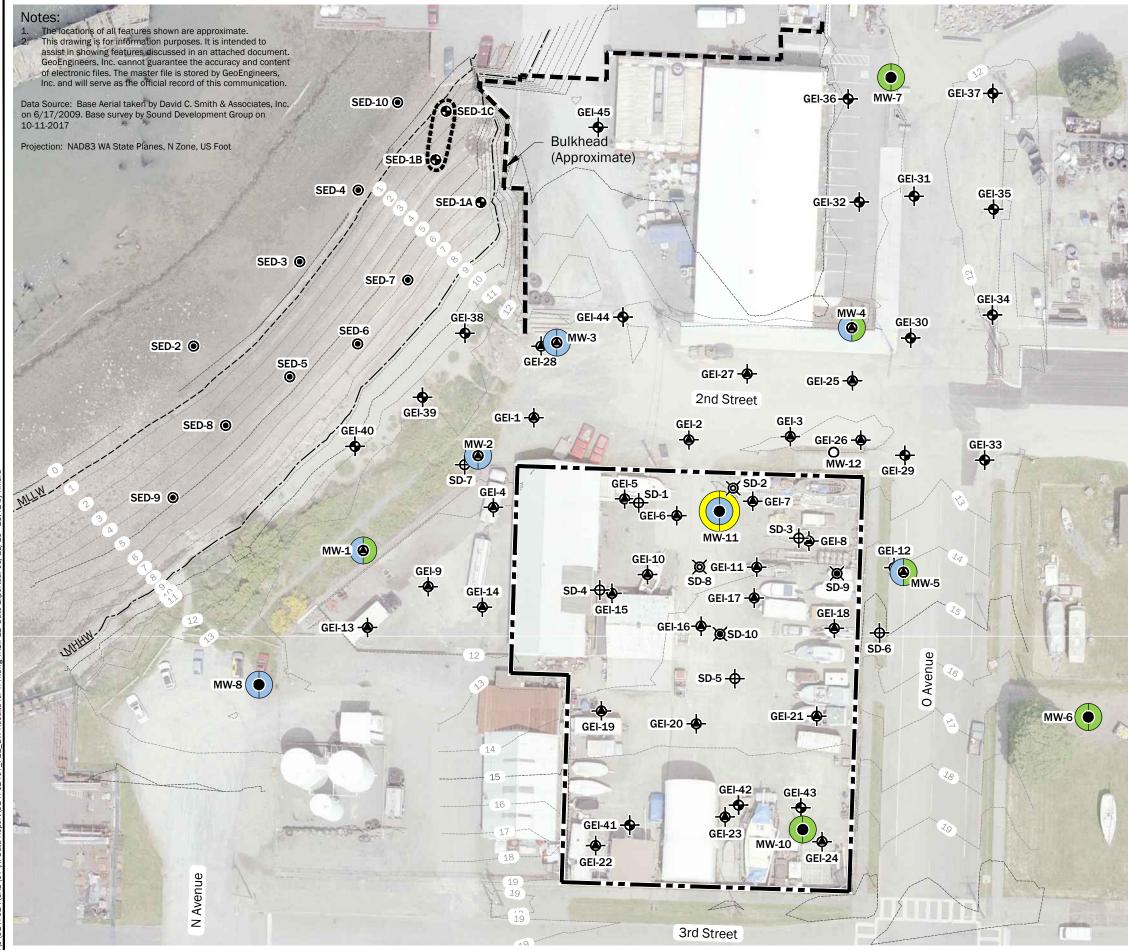


	Legend		
	Quiet Cove Property Boundary		
10	Contour (Feet, NAVD 88)		
sd-1- ∲ -	Supplemental RI Soil Boring Location		
SD-2 🔘	Supplemental RI Soil Boring Location and Temporary Well Screen		
SD-9 💓	Supplemental RI Shallow Soil Boring Location		
MW-12 O	Supplemental RI Monitoring Well		
GEI-31 🔶	RI Soil Boring Location		
SED-1A 🕒	RI Tier 1 Sediment Sample		
SED-2 🔘	RI Tier 2 Sediment Sample		
MW-6 🌒	RI Monitoring Well		
GEI-1 -	Focused Site Investigation Soil Boring Location		
MW-1 🌰	Focused Site Investigation Monitoring Well		
	Composite Sediment Sample Grab Area (SED-1)		
Soil Sample Result Exceedance of Preliminary Screening Level for:			
	H TEQ		
No E	Exceedance		
Sam	nple Not Analyzed, Archived		
* Sam	nple Only Analyzed for cPAHs		
Soil	Site Stratigraphy		
F _s N	Surface Fill WT Water Table Native		
	iment Sample Results		
0-10 cm 1-3 ft 4-6 ft 8-9 ft	SED-1 Sample Interval Depth (bml)		
	No Exceedance		
	Human Health Exceedance		
	Benthic Exceedance		
	Sample Not Analyzed, Archived		
Soil a	Soil and Sediment Analytical Results for		

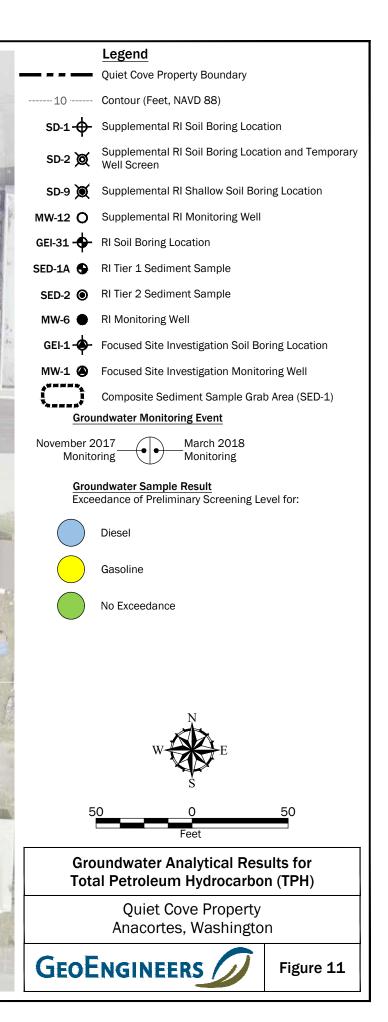
cPAH TEQ

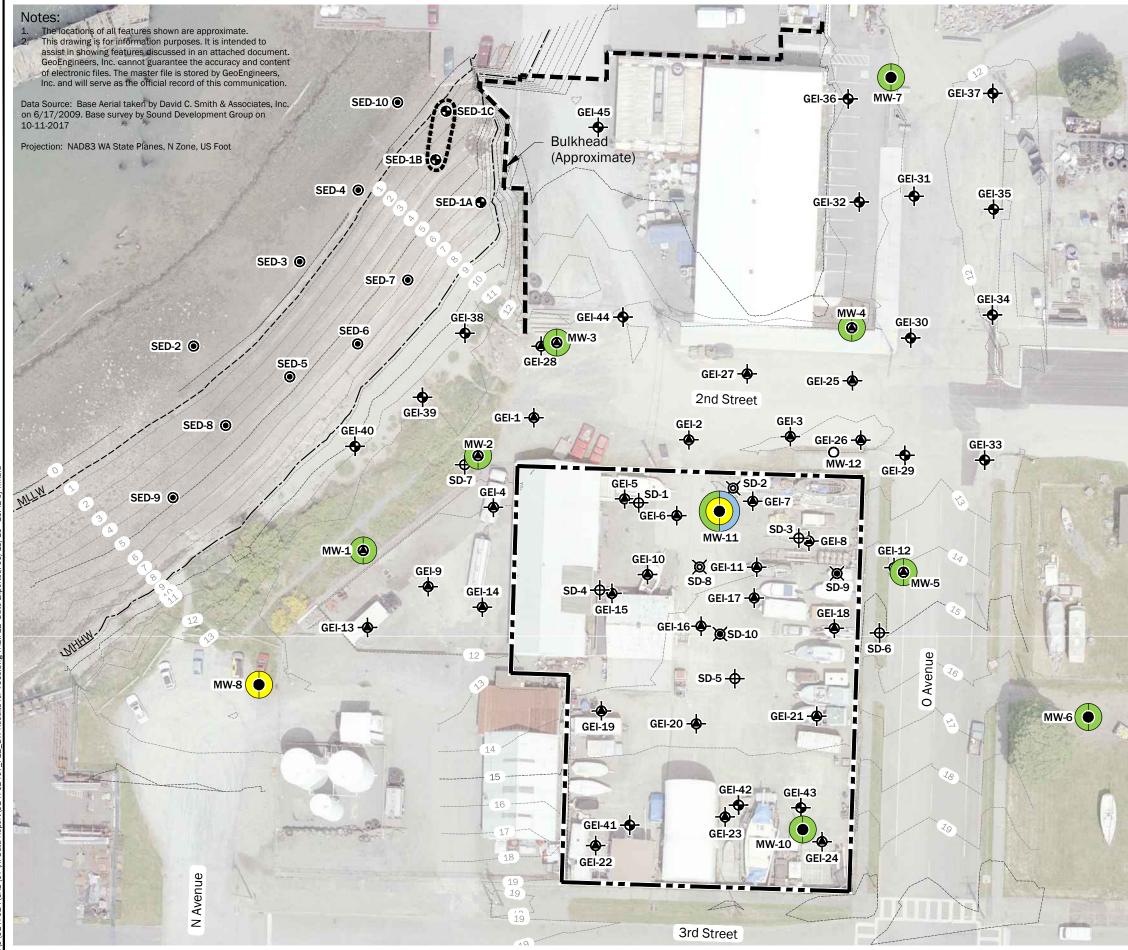

Quiet Cove Property Anacortes, Washington

GEOENGINEERS

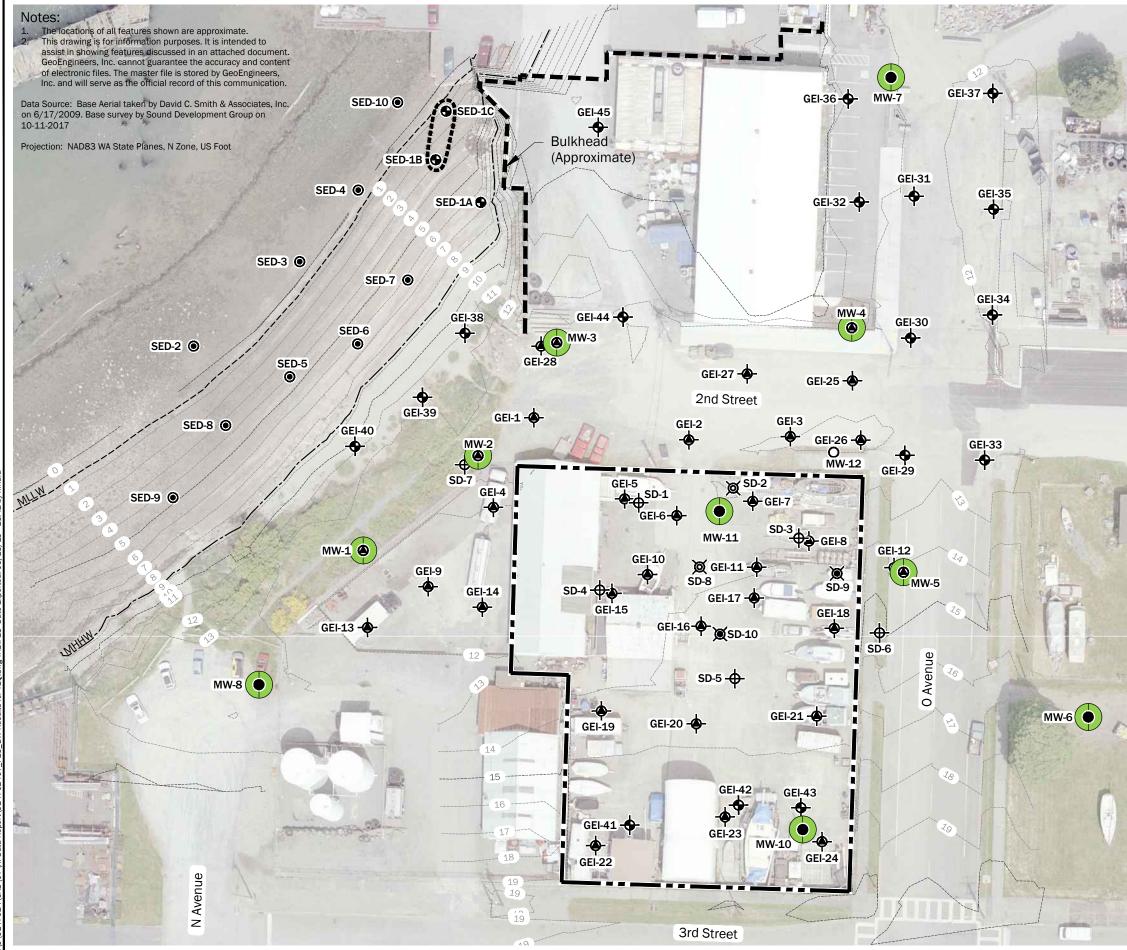


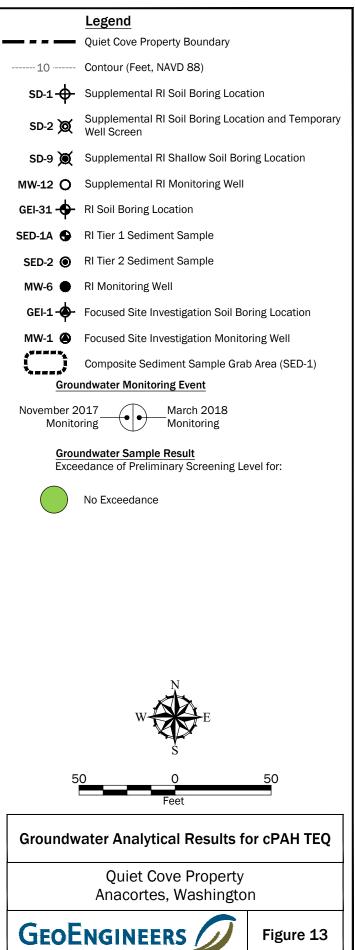
	Legend		
	Quiet Cove Property Boundary		
	Contour (Feet, NAVD 88)		
sd-1- ∲	Supplemental RI Soil Boring Location		
SD-2 💓	Supplemental RI Soil Boring Location and Temporary Well Screen		
SD-9 👿	Supplemental RI Shallow Soil Boring Location		
MW-12 O	Supplemental RI Monitoring Well		
GEI-31 -	RI Soil Boring Location		
SED-1A 🕤	RI Tier 1 Sediment Sample		
SED-2 🔘	RI Tier 2 Sediment Sample		
MW-6 ●	RI Monitoring Well		
GEI-1 - -	Focused Site Investigation Soil Boring Location		
MW-1 🌰	Focused Site Investigation Monitoring Well		
	Composite Sediment Sample Grab Area (SED-1)		
Soil Sample Result Exceedance of Preliminary Screening Level for: One or More Individual PAH Detections Greater than Soil Screening Level No Detections Above Soil Screening Levels			
Sample Not Analyzed, Archived			
Soil	Site Stratigraphy		
Fs	Surface Fill WT Water Table		
N <u>Sedi</u> i	Native ment Sample Results		
0-10 cm 1-3 ft 4-6 ft 8-9 ft	SED-1 Sample Interval Depth (bml)		
	No Exceedance		
	Human Health Exceedance		
	Benthic Exceedance		
	Sample Not Analyzed, Archived		
Note: Sediment samples exceedance for one or more PAH compound.			
PAH = Polycyclic Aromatic Hydrocarbons			
Soil and Sediment Analytical Results for PAHs			
Quiet Cove Property Anacortes, Washington			

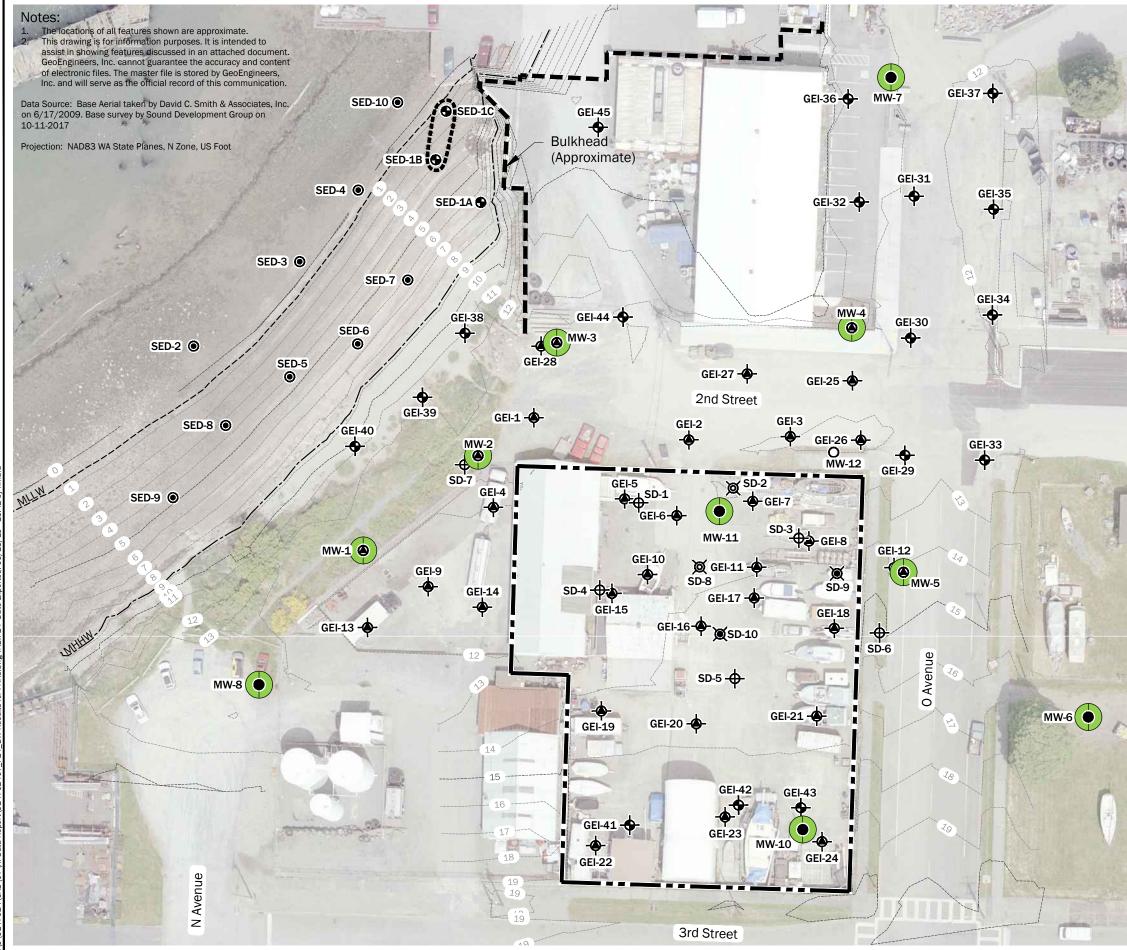

GEOENGINEERS

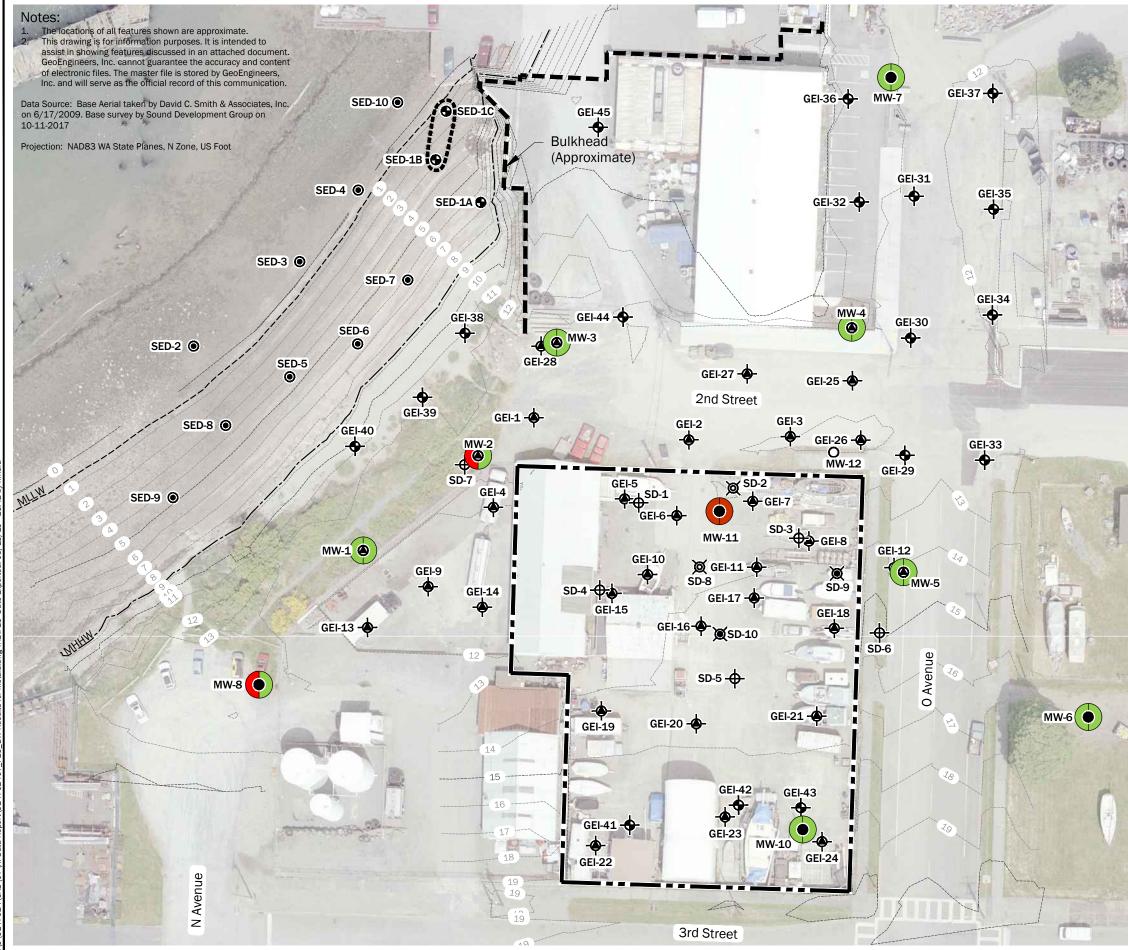


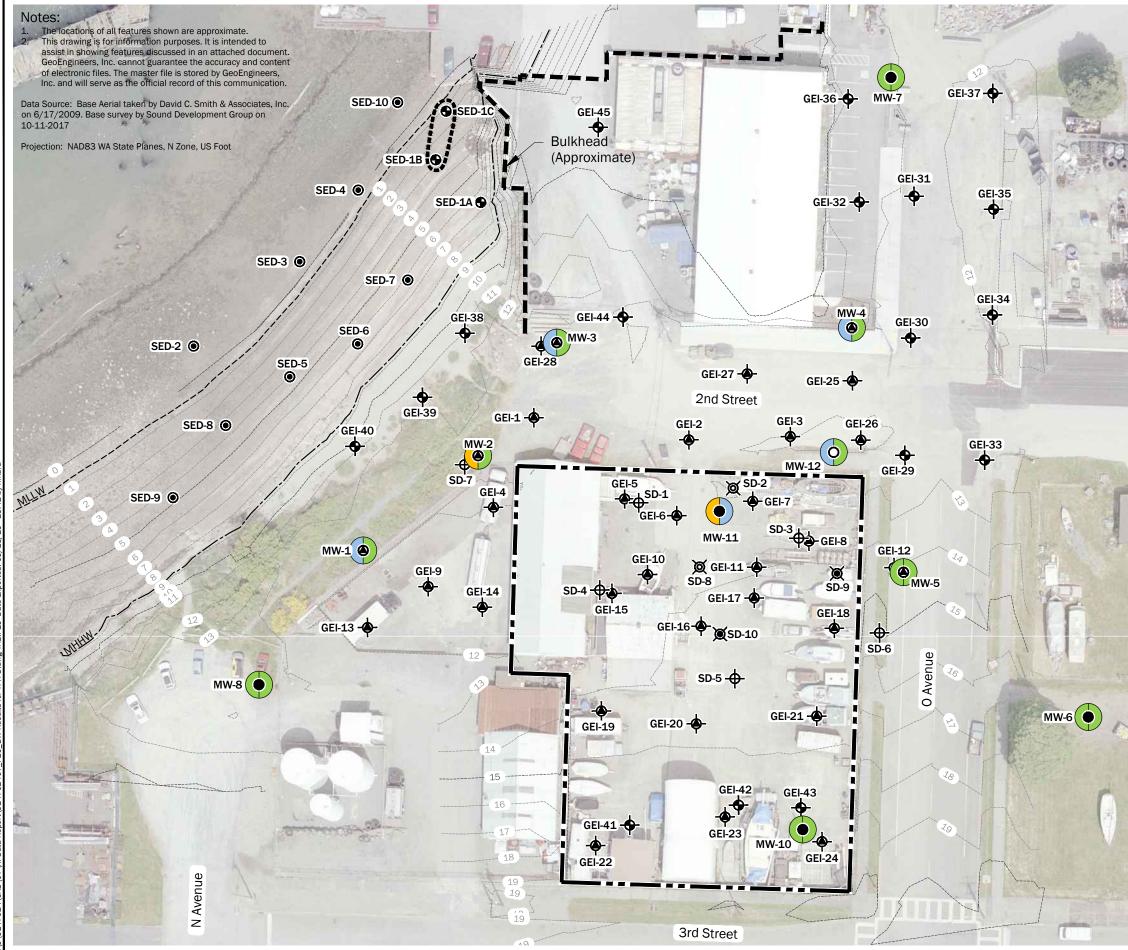
	Legend		
	Quiet Cove Property Boundary		
	Contour (Feet, NAVD 88)		
SD-1 - €	 Supplemental RI Soil Boring Location 		
SD-2)	Supplemental RI Soil Boring Location and Temporary Well Screen		
SD-9 🌶	Supplemental RI Shallow Soil Boring Location		
MW-12 C	Supplemental RI Monitoring Well		
GEI-31 -	RI Soil Boring Location		
SED-1A	RI Tier 1 Sediment Sample		
SED-2 🖲	RI Tier 2 Sediment Sample		
MW-6	RI Monitoring Well		
GEI-1 -	 Focused Site Investigation Soil Boring Location 		
MW-1 🍊	Focused Site Investigation Monitoring Well		
	Composite Sediment Sample Grab Area (SED-1)		
	il Sample Result		
	ceedance of Preliminary Screening Level for:		
	ad+Cadmium Mercury		
Le	ad+Mercury No Exceedance for		
	ad, Cadmium, Mercury Sample Not Analyzed,		
Ch	romium Archived ★ Sample Only Analyzed		
So	il Site Stratigraphy for Lead		
F₅ N	-		
Sediment Sample Results			
0-10 cm 1-3 ft 4-6 ft 8-9 ft SED-1 Sample Interval Depth (bml)			
	No Exceedance		
	Human Health Exceedance - Lead		
	Human Health Exceedance - Mercury		
	Benthic Exceedance		
	Sample Not Analyzed, Archived		
Soil and Sediment Analytical Results for Metals			
Quiet Cove Property			
Anacortes, Washington			
GEO	GEOENGINEERS Figure 10		




P:\5\5147024\CAD\07\RI Data Report\514702407_F11_GW Results for TPH.dwg TAB:F11 Date Exported: 05/13/19 - 15:42 by hmarr



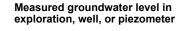




P:\5\5147024\CAD\07\RI Data Report\514702407_F14_GW Results for PAHs.dwg TAB:F14 Date Exported: 05/13/19 - 15:42 by hmarr

	Legend
	Quiet Cove Property Boundary
	Contour (Feet, NAVD 88)
SD-1- ⊕	Supplemental RI Soil Boring Location
SD-2 🗕	Supplemental RI Soil Boring Location and Temporary Well Screen
SD-9 💓	Supplemental RI Shallow Soil Boring Location
MW-12 O	Supplemental RI Monitoring Well
GEI-31 🔶	RI Soil Boring Location
SED-1A 🕤	RI Tier 1 Sediment Sample
SED-2 🔘	RI Tier 2 Sediment Sample
MW-6 ●	RI Monitoring Well
GEI-1 -	Focused Site Investigation Soil Boring Location
MW-1 🙆	Focused Site Investigation Monitoring Well
	Composite Sediment Sample Grab Area (SED-1)
Grou	ndwater Monitoring Event
November 2 Monito	
Grou	ndwater Sample Result
Exce	edance of Preliminary Screening Level for:
	Arsenic
	No Exceedance
	NO Exceedance
	WEE
	5
5	0 0 50 Feet
Gro	undwater Analytical Results for Dissolved Metals
	Quiet Cove Property Anacortes, Washington
GEOE	NGINEERS Figure 15

P:\5\5147024\CAD\07\RI Data Report\514702407_F16_GW Results for TPH-D.dwg TAB:F16 Date Exported: 05/13/19 - 15:42 by hmara


ATTACHMENT 1 Investigation Exploration Logs

N			0)/117		TYPICAL	CV.	BOL
	AJOR DIVIS	IONS	SYME GRAPH		TYPICAL DESCRIPTIONS	GRAPH	
	GRAVEL	CLEAN GRAVELS		GW	WELL-GRADED GRAVELS, GRAVEL - SAND MIXTURES		A
	AND GRAVELLY SOILS	(LITTLE OR NO FINES)		GP	POORLY-GRADED GRAVELS, GRAVEL - SAND MIXTURES		C
COARSE GRAINED SOILS	MORE THAN 50% OF COARSE FRACTION	GRAVELS WITH FINES		GM	SILTY GRAVELS, GRAVEL - SAND - SILT MIXTURES		C
	RETAINED ON NO. 4 SIEVE	(APPRECIABLE AMOUNT OF FINES)		GC	CLAYEY GRAVELS, GRAVEL - SAND - CLAY MIXTURES		с П
MORE THAN 50%	SAND	CLEAN SANDS	••••••••••••••••••••••••••••••••••••••	sw	WELL-GRADED SANDS, GRAVELLY SANDS		Gro
200 SIEVE	AND SANDY SOILS	(LITTLE OR NO FINES)		SP	POORLY-GRADED SANDS, GRAVELLY SAND		Mea
	MORE THAN 50% OF COARSE FRACTION PASSING NO. 4	SANDS WITH FINES		SM	SILTY SANDS, SAND - SILT MIXTURES		Mea
	SIEVE	(APPRECIABLE AMOUNT OF FINES)		SC	CLAYEY SANDS, SAND - CLAY MIXTURES	_	Gra
				ML	INORGANIC SILTS, ROCK FLOUR, CLAYEY SILTS WITH SLIGHT PLASTICITY		Dis geo
FINE GRAINED	SILTS AND CLAYS	LIQUID LIMIT LESS THAN 50		CL	INORGANIC CLAYS OF LOW TO MEDIUM PLASTICITY, GRAVELLY CLAYS, SANDY CLAYS, SILTY CLAYS, LEAN CLAYS	/	App cha
SOILS			h	OL	ORGANIC SILTS AND ORGANIC SILTY CLAYS OF LOW PLASTICITY		Ma
MORE THAN 50% PASSING NO. 200 SIEVE				МН	INORGANIC SILTS, MICACEOUS OR DIATOMACEOUS SILTY SOILS		Dis geo
	SILTS AND CLAYS	LIQUID LIMIT GREATER THAN 50		СН	INORGANIC CLAYS OF HIGH PLASTICITY		App cha
			hiphi h	ОН	ORGANIC CLAYS AND SILTS OF MEDIUM TO HIGH PLASTICITY		
	IGHLY ORGANIC	SOILS	<u> </u>	РТ	PEAT, HUMUS, SWAMP SOILS WITH HIGH ORGANIC CONTENTS		Lat
	2.4 Sta Sho Pis	mpler Symb -inch I.D. split Indard Penetra elby tube ton ect-Push	barrel	-	<u>15</u>	%F AL CA CS DS HA MC MD OC PM PI PP	Pero Atte Che Lab Cor Dire Hyd Moi Org Pero Plas Poc
Riow		lk or grab orded for drive	an sample	ers as th	e number	PPM SA TX UC	Par Siev Tria Unc
of blo dista	count is reco	lk or grab orded for drive I to advance sa See exploratio	ampler ⁻ 12	2 inches	(or	SA TX	Sie [.] Tria
of blo dista and o	vcount is reco ows required ince noted). drop. " indicates s	orded for drive	ampler 12 on log for	? inches hamme	(or r weight	SA TX UC VS	Sie Tria Une Var She

AL MATERIAL SYMBOLS

SYM	BOLS	TYPICAL
GRAPH	LETTER	DESCRIPTIONS
	AC	Asphalt Concrete
	сс	Cement Concrete
	CR	Crushed Rock/ Quarry Spalls
	TS	Topsoil/ Forest Duff/Sod

undwater Contact

sured free product in well or ometer

phic Log Contact

nct contact between soil strata or ogic units

roximate location of soil strata ge within a geologic soil unit

erial Description Contact

nct contact between soil strata or ogic units

roximate location of soil strata ge within a geologic soil unit

oratory / Field Tests

Laboratory / Tielu	
Percent fines	
Atterberg limits	
Chemical analysis	

- pratory compaction test solidation test
- ct shear
- rometer analysis
- sture content
- sture content and dry density
- anic content neability or hydraulic conductivity
- ticity index
- ket penetrometer
- s per million
- e analysis
- cial compression
- onfined compression
- shear

en Classification

- isible Sheen
- nt Sheen
- erate Sheen /y Sheen
 - ested

er understanding of subsurface explorations were made; they are

KEY TO EXPLORATION LOGS GEOENGINEERS / **FIGURE A-1**

Drille	d 3/3	<u>Star</u> 1/20	<u>t</u>)14	<u>Er</u> 3/31	<u>nd</u> /2014	Total Depth	(ft)	1()	Logged By RST Checked By	Driller Cascade Drilling	j, L.P.			Drilling Method Direct-Push
Surfac Vertic	ce Elev al Datu	atic um	n (ft)		Und	letermine	d			lammer Data	Pneumatic	Drilli Equi	ng pmei	nt	Geoprobe 6600
Eastin Northi Notes	ng (Y)		ravel		1208	713.80850 8686.6820 xe - flat			5	System Datum NAD83			<u>undw</u> Meas		Depth to
_				FIEL	D D	ATA									
Elevation (feet)	o Depth (feet) 	Interval	Recovered (in)	Blows/foot	Collected Sample	<u>Sample Name</u> Testing	Water Level	Graphic Log	Group Classification	M/ DES	ATERIAL SCRIPTION	Sheen	Headspace	Vapor (ppm)	REMARKS
	0—				Î				GP SM	Approximately 2-inc Gray silty fine to co					
	-		46.8			1			SP	Grayish-brown fine occasional grav	to coarse sand with el (moist)	NS	6 <	:1	
	-					2				-		- NS		:1	
	-								ML SP	Gray silt (moist) Gray fine to mediur	n sand (wet)	N\$	5 <	:1	
	5—		58.9			<u>3</u> CA				-		- HS	5 1	55	Slight petroleum odor and black staining
	-					4			SP	Brown fine to mediu	um sand (wet)	M	3 1:	24	Slight petroleum odor
	-					5 CA			SP	Grayish-brown fine	to medium sand (wet)	 NS		:1	
	10 —											TN.			
No	ite: See	e Fi	gure	A-1 fo	r expl	anation of	syn	nbols.							

Log of Boring GEI-1

Project:Quiet Cove PropertyProject Location:Anacortes, WashingtonProject Number:5147-024-01

Figure A-2 Sheet 1 of 1

Drilleo		<u>Start</u> 1/2014	4	<u>En</u> 3/31/	<u>d</u> ⁄2014	Total Depth	ı (ft)	15	5	Logged By RST Checked By	Driller Cascade Drilli	ng, L.F	P.		Drilling Method Direct-Push
Surfac Vertica	ce Elev al Dat	/ation (um	(ft)		Unde	etermine	d			lammer Data	Pneumatic		Drilling Equipr		Geoprobe 6600
Eastin Northin Notes	ng (Y)		1208767 20188 Datum NIAD83						Groun Date M		Depth to				
feet)		(in)			ample			D	uo	M	MATERIAL				
Elevation (feet)	⊖ Depth (feet) I	Interval Recovered (in)		Blows/foot	- Collected Sample	<u>Sample Name</u> Testing	Water Level	Graphic Log	Group Classification	DES	CRIPTION	-	Sheen	Headspace Vapor (ppm)	REMARKS
	-					1 CA			GP SP	(fill) Gray to brown fine f (moist) (fill)	hes crushed gravel (mois		NS	<1	
	-	42	4			2			SM	Brown silty fine to c	orse sand (moist)	-	HS	255	Slight petroleum odor
	5—					<u>3</u> CA				-		_	MS	225	Slight petroleum odor
	-	26	5.4			4			SP-SM	Increasing sand con	ntent (wet) (native?)		MS	148	Slight petroleum odor
	- 10 —					<u>5</u> CA				- No recovery		_	NS	53	
	-	c								-		_			
	-									-		-			
Not	15 — te: Se	e Figu	re A	1-1 for	expla	nation of	syn	nbols.							
										Log of Bo	oring GEI-2				
Ģ	δE	эE	N	G	N	ER	S	Ó	7	Project: Project Locatio Project Numbe					Figure A-3 Sheet 1 of 1

Drille	<u>9</u> d 3/3	Star 1/20	14	<u>Er</u> 3/31	<u>nd</u> /2014	Total Depth	n (ft)	1	5	Logged By RST Checked By	Driller Cascade Drilling, L	P.		Drilling Method Direct-Push
Surfac Vertica	e Elev al Datu	atio m	n (ft)		Unde	etermine	d			Hammer Data	Pneumatic	Drillin Equip	g ment	Geoprobe 6600
Eastin Northi	ig (X) ng (Y)									System Datum	NAD83	<u>Groun</u> Date M		Depth to
Notes	: Crus	h gi	avel	road s	surface	e - flat								
				FIEL	D DA	ATA	1							
Elevation (feet)		Interval	Recovered (in)	Blows/foot	Collected Sample	<u>Sample Name</u> Testing	Water Level	Graphic Log	Group Classification	M/ DES	ATERIAL CRIPTION	Sheen	Headspace Vapor (ppm)	REMARKS
	0 —					1		0	GP SP	Approximately 3-inc	hes crushed gravel	- NS	145	
	-		49.2			2			SM	Gray silty fine sand	(moist)	- 	212	Strong petroleum odor
	5 —					3 CA			SM	Gray silty fine sand	(wet)	- - HS	124	Strong petroleum odor
	-		52.4		T T	4			PT	Brown organic peat	(moist) (native)	- HS	85	
	- 10					5			SM	Brown silty fine to m	edium sand (wet)	- HS	4	Moderate petroleum odor
	-		50.4		Y	6				-		- NS	<1	
	-					7				-		- NS	<1	
	15 —) 0 0 0	GP	Gray fine gravel and	coarse sand (wet)	NS	<1	
No		e Fiç	gure .	A-1 fo	r expla	ination of	syn	nbols.						
	Log of Boring GEI-3													
									7	Project: Project Location Project Number			l	Figure A-4 Sheet 1 of 1

Seatile: Date://29/14 Path://SEA/PROJECTS/95/1470240(INT/5/4702401.GPJ DBTemplate/LbTemplate/GEOENGINEERS8.GDT/GEI8_ENVIRONMENTAL_STANDARD

Drille	Start End Total Logged By RST ed 4/1/2014 4/1/2014 Depth (ft) Checked By Driller Cascade Dri						Driller Cascade Drilling,	L.P.		Drilling Method Direct-Push					
Surfac Vertica	e Elev al Datu	atio ım	on (ft))	Und	etermine	d			Har Dat	mmer ta	Pneumatic	Drilling Equipr	g ment	Geoprobe 6600
Eastin Northi	ig (X) ng (Y)					67.0949 ² 665.6377					stem tum	NAD83	Groun		Depth to
Notes	: Crus	h g	ravel	road	surface	e - slope t	:0 S(outhv	/est						
				FIEL	D D/	ATA									
Elevation (feet)	o Depth (feet) 	Interval	Recovered (in)	Blows/foot	Collected Sample	<u>Sample Name</u> Testing	Water Level	Graphic Log	Group Classification	Classification		ATERIAL CRIPTION	Sheen	Headspace Vapor (ppm)	REMARKS
	- 0					1 CA		2	GP SP Bric		Gray crushed rock Brown fine to mediu gravel (dense, r Red brick debris	im sand with occasional noist)	NS	<1	
1	-		42.2			2 CA			SP	D	Black medium to co gravel (very den Dark brown organic	parse sand with occasional se, moist) matter (peat) (soft, moist)	HS	7	Free product
	- 5 —					3 CA				-	(native)		_ NS	<1	
	-		60			4			SM	Л	Brown silty fine to c gravel (medium -	oarse sand with occasional dense, wet)	- ss	<1	
	-					5			ML	-	Dark brown silt (sof	t, moist)	- NS	<1	
	10 —									-	No recovery		-		
	-		0								-		_		
	_										-				
No	15 — te: See	e Fi	gure	A-1 fo	r expla	anation of	syn	nbols					1		1
	Log of Boring GEI-4														
C	GEOENGINEERS Project: Quiet Cove Property Project Location: Anacortes, Washington Project Number: 5147-024-01														

seatile: Date:7/29/14 Path:\\SEA\PROJECTS\05/1470240\IN15/1470240\IN29_DBTemplate\UbTemplate\UbTemplate\CEOBOGINEERS8.GDT/GEB_ENVIRONMENTAL_STANDARD

Figure A-5 Sheet 1 of 1

orthing (Y)		U	ndetermine	ed		Ha Da	immer ta	Pneumatic	Drilling Equipr	g ment	Geoprobe 6600
	Easting (X) 559673.029199 Iorthing (Y) 1208729.04073 Notes: Asphalt work surface - flat						stem atum	NAD83	Groun Date M		Depth to
		FIELD									
o Depth (feet)	Interval Recovered (in)	Blows/foot Collected Sample Sample Name Testing Water Level				Group Classification		ATERIAL SCRIPTION	Sheen	Headspace Vapor (ppm)	REMARKS
-			- 1 - 2			AC SM GP ML	Brown silty fine san (moist) Gray crushed grave	ches asphalt concrete d with occasional gravel el (moist) ional gravel (moist)	NS	<1	
- 5	_	¥	- 3 -			ML ML ML	 (moist) Gray silt (moist) 	with occasional gravel and occasional gravel (wet)	HS - - - HS	242	Free product (product beads)
_		•	4 - 5			PT	– Dark brown organic – (native) Dark brown silty sa	: matter (peat) (moist) nd (moist)	HS - - NS	2	Free product (product beads) Free product (product beads)

Note: See Figure A-1 for explanation of symbols.

Log of Boring GEI-5

Project:Quiet Cove PropertyProject Location:Anacortes, WashingtonProject Number:5147-024-01

Figure A-6 Sheet 1 of 1

Drilled		<u>Start</u> 1/2014	<u>End</u> 3/31/20	Total D14 Dept	l h (ft)	10	Logged By RST Checked By	Driller Cascade Drilling,	L.P.		Drilling Method Direct-Push
Surface Vertical		ation (ft) Im) U	ndetermine	ed		Hammer Data	Pneumatic	Drilling Equip	g ment	Geoprobe 6600
Easting Northing Notes:	g (Y)	crete wo		9662.7307 08760.883 e - flat			System Datum	vstem atum NAD83			Depth to <u>d Water (ft)</u> <u>Elevation (f</u>
Elevation (feet)	o Depth (feet)	Interval Recovered (in)	Blows/foot <u>H</u> Collected Sample <u>C</u>		Water Level	O Group Classification		ATERIAL CRIPTION	Sheen	Headspace Vapor (ppm)	REMARKS
	-	28.8		1		ML		fine to coarse sand (moist)	 NS	16	
	_			2		SM	Gray silty fine sand	(moist)	- MS	144	Slight petroleum odor
	5 —	57.6		3 			Brown organic mat	ier (peat) (moist) (native)	- MS - HS	106 345	Slight petroleum odor
	- 10 —			5		nii nii o GP	Grayish-brown fine (wet)	to medium sand and gravel	NS	<1	
Note	e: See	e Figure	A-1 for e	xplanation o	of symbo	ls.	L og of Br	oring GEI-6			
6	_				_		Project:	Quiet Cove Prop	-		
G	IE(IGI	NEER	S/		Project Location Project Number		nington		Figure A- Sheet 1 of 1

Drille	Start End Total 15 Drilled 3/31/2014 3/31/2014 Depth (ft) 15							;	Logged By RST Checked By	Driller Cascade Drilling,	P.		Drilling Method Direct-Push
Surfac Vertica	ce Elev al Datu	ation (f	t)	Und	letermine	d			Hammer Data	Pneumatic	Drillin Equip		Geoprobe 6600
Eastin Northi	ng (X) ing (Y)				70.2473 800.656				System Datum	NAD83	Grour		Depth to
Notes	s: Conc	rete w	ork su	rface -	flat								
\bigcap	-			LD D		1							
Elevation (feet)	o Depth (feet)	Interval Recovered (in)	Blows/foot	Collected Sample	<u>Sample Name</u> Testing	Water Level	Graphic Log	Group Classification		ATERIAL CRIPTION	Sheen	Headspace Vapor (ppm)	REMARKS
	_				1			CC SP	Brown fine to mediu	hes cement concrete im sand (moist)	 NS	5	
								SP	Gray fine to mediun	n sand (moist)		5	
	-	3.2			2				-		HS	30	
	5 —				3				Increasing sand cor	ntent, becomes wet	- HS	36	Strong petroleum odor and black staining
	-	4.8			4				-		- HS	22	Strong petroleum odor and black staining Free product (product beads)
	- 10 —	_		.	5			GP	- Gray fine gravel with	n fine to coarse sand (wet)	- HS - SS	19	Strong petroleum odor and black staining Strong petroleum odor and black staining
	-	4.7		¥.					_ (native)		-		
									-		- NS	<1	
No	15 Note: See Figure A-1 for explanation of symbols.												
									Log of Bo	oring GEI-7			
C	GeoEngineers							1	Project: Project Locatio Project Number			1	Figure A-8 Sheet 1 of 1

seatile: Date:7/29/14 Path:\\SEA\PROJECTS\05/1470240\IN15/1470240\IN29_DBTemplate\UbTemplate\UbTemplate\CEOBOGINEERS8.GDT/GEB_ENVIRONMENTAL_STANDARD

Figure A-8 Sheet 1 of 1

	<u>Start</u> 1/2014	<u>Er</u> 4/1/	<u>id</u> 2014	Total Dept		1(D	Logged By RST Checked By	Driller Cascade Drilling,	L.P.		Drilling Method Direct-Push
Surface Elev Vertical Date	/ation (ft) um)	Und	etermine	ed			lammer Data	Pneumatic	Drilli Equi	ng oment	Geoprobe 6600
Easting (X) Northing (Y) Notes: Gra	vel work		1208	25.7947 331.6392 :			E	System Datum	NAD83		ndwate Measur	Depth to
Elevation (feet) Depth (feet)	Interval Recovered (in)	Blows/foot	Collected Sample	Sample Name Testing	Water Level	Graphic Log	Group Classification		TERIAL CRIPTION	- La	Headspace Vapor (ppm)	REMARKS
en an	28.8	Blov		1 2 CA 3 4 5 CA	Wat		SP Wood PT SP SP	gravel (moist) (fi	n layer wood debris peat (moist) (native) se sand with occasional	SA - Sheen	<pre><1 </pre> <1 <1 <1 <1 <1 <5	Slight petroleum odor and black staining
10	e Figure	A-1 fo	r expla	anation o	fsyn	nbols.			ring GFL9			
								Log of Bo Project:	Quiet Cove Prop	erty		
Ge	oEr	١G	IN	EER	S	D		Project Location Project Number	n: Anacortes, Wash	-	n	Figure A-1 Sheet 1 of 1

Drilled 3/3	<u>Sta</u> 31/2	<u>rt</u> 014	<u>Er</u> 3/31	<u>nd</u> /2014	Total Depth	(ft)	1	5	Logged By RST Checked By	Driller Cascade Drilling	, L.P.		Drilling Method Direct-Push
Surface Ele Vertical Dat	vatio	on (ft)		Und	etermine	d			Hammer Data	Pneumatic	Drillin Equip	g ment	Geoprobe 6600
Easting (X) Northing (Y Notes: Cor)	te/asp		1208	32.08536 745.8557 urface - fla	71			System Datum	NAD83	<u>Grour</u> <u>Date N</u>	idwate leasure	Depth to
Elevation (feet)	Interval	ed (in)	Blows/foot	Collected Sample	ATA Sample Name Testing	Water Level	Graphic Log	Group Classification		ATERIAL CRIPTION	Sheen	Headspace Vapor (ppm)	REMARKS
	-	34.8			1 CA			SP	Brown fine to coars (fill) -	e sand and gravel (moist)	- NS	<1	
					2			ML	Gray silt with occas	m sand with occasional	HS	18	Slight petroleum odor and black staining Slight petroleum odor and black staining
5 -		-			3 CA				-		HS	123	Moderate petroleum odor Free product (product beads)
	-	32.4			4			ML	Gray silt (moist) Gray silty fine to co (native?)	arse sand with gravel (wet)	- HS	23	Moderate petroleum odor Free product (product beads) Moderate petroleum odor Free product (product beads)
10 -					<u>6</u> CA			ML	Gray silt (moist)		 NS	<1	
	-	51.6			7				-		- NS	<1	
15 – Note: Se	e Fi	igure	A-1 fo	r expla	anation of	syn	nbols					1	1
										ring GEI-10			
									Project:	Quiet Cove Pro	perty		

Project Location:

Project Number:

Anacortes, Washington

5147-024-01

seattle: Date:7/29/14 Path:\\SEAIPROJECTS\\56/147024\G\NT\5/14702401.6PJ DBTemplate\UbTemplate\UbTemplate\GOENGINEERS8.GDT\GEB_ENVIRONMENTAL_STANDARD

GEOENGINEERS

Figure A-11 Sheet 1 of 1

Drilleo		<u>Start</u> 1/2014	<u>End</u> 3/31/2		Total Depth		10)	Logged By RST Checked By	Driller Cascade Drilling	g, L.P			Drilling Method Direct-Push	
Surfact Vertica		ration (ft) Im)	Und	etermine	ed			ammer ata	Pneumatic	D E	rilling quipr) nent	Geoprobe 6600	
Eastin Northin Notes	ng (Y)	crete wo	1	208	36.6794 803.204 ¹ at			Sy Di	ystem atum	NAD83			dwater easured	Depth to	ation (
Elevation (feet)	o Depth (feet)	Interval Recovered (in)	Blows/foot HI	Collected Sample	Sample Name Testing	Water Level	Graphic Log	Group Classification	DES	TERIAL CRIPTION		Sheen	Headspace Vapor (ppm)	REMARKS	
	-	42.8	-		1			SM ML SP	Brown silty fine to co (moist) (fill) Black silt with sand (moist)	parse sand with gravel and wood debris (unknown m sand with occasional	n)	NS	<1		
	- 5 —		-		2 3, Dup-2			ML	Brown silt (moist) Gray fine to coarse gravel (wet)	sand with occasional		HS	18 32	Slight petroleum odor and black st	_
	-	42.8	-		4			PT	_	er (peat) (moist) (native)	_	HS	28	Slight petroleum odor and black st	aininç
	- 10 —				5				-		_	NS	<1		
No	te: Se	e Figure	A-1 for	expla	anation of	fsym	nbols.								
									Log of Bo	ring GEI-11					
C	BE	DE	IGI	NI	EER	S		1	Project: Project Location Project Number				_	Figure / Sheet	A-1

Figure A-12 Sheet 1 of 1

Drille	d 4/	<u>Star</u> /20		<u>Ei</u> 4/1	<u>nd</u> /2014	Total Depth	(ft)	1	5	Logge Checke	ed By RST ed By	Driller	Cascade Drilling, I	P.		Drilling Method Direct-Push
Surfac Vertic	ce Elev al Dati	atio Im	on (ft))	Unde	etermine	d			Hammer Data		Pneum	natic	Drillin Equip		Geoprobe 6600
Eastir Northi	ıg (X) ng (Y)									System Datum		NAD	83		ndwate Neasure	Depth to
Notes	s: O Av	/enu	ue rig	ht-of-	way - s	lope to no	orth									
				FIEI	_D D/	ATA	-									
Elevation (feet)	, Depth (feet)	Interval	Recovered (in)	Blows/foot	Collected Sample	<u>Sample Name</u> Testing	Water Level	Graphic Log	Group Classification			ATERI. SCRIPT		Sheen	Headspace Vapor (ppm)	REMARKS
	0 — - -					1			AC CC ML	App	roximately 4-in roximately 3-in It brown silt wit occasional gra	ches cem	ent concrete nedium sand and	NS	<1	
	-		30			2				-				NS -	<1	
	5 —		56.4			3 CA			SP	- Brov	wn medium to	coarse sa	nd and gravel (wet)	- NS	<1	
	-					4			ML	- ((moist)		m sand and gravel	NS	<1	
1	10 —					5			SM		y silty fine to m	iedium sa	nd (wet) (native?)	NS _	<1	
	-		38.4			6			ML	Ligh _	t brown silt wit	h occasio	nal gravel (moist)	NS	<1	
	_					7				_				- NS -	<1	
	15 —	e Fig	gure	A-1 fc	I ♥	anation of	syn	nbols							1	1
$\overline{}$										L	.og of Bo	oring	GEI-12			
(ΞEO	bl	En	١G	INI	EER	S		J	Proj Proj	-	Qu on: Ar	uiet Cove Prope nacortes, Wash 47-024-01		ı	Figure A-13 Sheet 1 of 1

seatie: Date:728/14 Path://SEA/PROJECTS/95147024G(INT/914702401.GPJ DBTemplate/LibTemplate/DEDENGINEERS8.GDT/GEI8_ENVIRONMENTAL_STANDARD

Figure A-13 Sheet 1 of 1

1/	ed 4/	vation (11-	· ·	h (ft)			mer	Drilling		Drilling Method Direct-Push Geoprobe 6600
	cal Dati	um			determine			Da		Equipr		·
North	ng (X) iing (Y)				8600.037			Di	em m NAD83	Groun Date M		Depth to
Note	s: Grav	vel wor	k surf	ace - fla	at							
			FI	ELD D	DATA							
(feet)	t)	(in)		Collected Sample	ame	e	b	ion	MATERIAL			
Elevation (feet)	Depth (feet)	Interval Recovered (in)	Blowelfoot	cted S	<u>Sample Name</u> Testing	Water Level	Graphic Log	Group Classification	DESCRIPTION	Ē	Headspace Vapor (ppm)	REMARKS
Elev	o Dept	Interval Recover		Colle	<u>Sam</u> Testi	Wate	Grap			Sheen	Head Vapo	
	0-			Î				SP	Brown medium sand with occasional gravel (moist)			
	-				1					- NS	81	
	_							SM	Brown silty fine to medium sand (moist)			
		3	5		2 CA			SP	Gray medium sand (wet)	HS	362	Strong petroleum odor
	-			T				PT	Dark brown organic matter (peat) (moist)			
	-				3		¥ ¥		(native)	NS	6	
							<u>w</u>					
	5 —						프 프로 다마		Decision of the first terms of the second of the			
	-	6						SM	Brown silty fine to medium sand with occasional gravel (wet)	-		
					<u>4, Dup-4</u> CA					NS	2	
	-			ł				ML	Gray to brown silt with occasional gravel			
	-				5				(moist)	NS	<1	
	10 —										1	1
N	ote: Se	e Figu	e A-1	for exp	lanation o	fsyn	ıbols.					
N:	ote: Se	e Figu	re A-1	for exp	lanation o	fsyn	ibols.		Log of Boring GEI-13			
					eter of the second seco			-	Log of Boring GEI-13 Project: Quiet Cove Prop Project Location: Anacortes, Wasl	perty		

Drilled		<u>art</u> 2014		<u>End</u> 4/1/2		Total Depth	ı (ft)	1	0	Logged By RST Checked By	Driller Cascade Drilling,	L.P.			Drilling Method Direct-Push
Surface Vertical	Eleva Datur	tion (ft)	l	Und	etermine	d			lammer Data	Pneumatic	Dri Eq	illing quipn	nent	Geoprobe 6600
Easting Northing	(X)					15.10857 659.8293			S	System Datum	NAD83			dwate	Depth to
Notes:	5(-)				200	000.0200					14.200	<u>Da</u>	<u>ite Me</u>	easure	d Water (ft) Elevation (ft)
\geq			F	IFI I	ם נ	ATA									
(feet)	Ð	d (in)					e	b	ion	MA	ATERIAL				REMARKS
Elevation (feet)	Depth (feet)	Interval Recovered (in)		Blows/foot	Collected Sample	<u>Sample Name</u> Testing	Water Level	Graphic Log	Group Classification	DES	CRIPTION		u	Headspace Vapor (ppm)	REIMARKS
Elev		Rec	;	BIO	8 8 •	Tes	Vat	Gra	O CO CO SP	Approvimetaly 2 inc	has modium to assess and		Sheen	Head Vapo	
					Î					and approximate					
	-					1			SP ML	brick debris (mo		_	NS	<1	
	-	40.	8	-					IVIL	Gray silt with occas	ional gravel (moist)	_			
	_					2		1.11	SM	Gray silty medium t	a coarso cond with		NS	<1	
					ļ				3111	occasional grav	el (wet)				
	-					<u>3</u> CA			PT	Dark brown organic	matter (peat) (moist)		NS	<1	
	5 —	-				ĊĂ		ĪĪ	SM	Brown silty fine to m	nedium sand with	_		.,	
	_	60			ł					occasional grav	er (wet)	_			
					Ī										
	_					4							NS	<1	
	-			-					SM	Gray silty fine to me gravel (wet)	dium sand with occasional	-			
	_					5						_	NS	<1	
	10 —				ļ										
	10														
Note															
Note	: See	Figur	e A-	1 for (expla	anation of	syn	nbols							
										Log of Bo	ring GEI-14				
		_								Project:	Quiet Cove Prope	erty	,		

Seattle: Date:7/2014 Path/ISEAIPROJECTS/05147024/GINT/614702401.GPJ DBTemplate/LbTemplate/GEOENGINEERS8.GDT/GEI8_ENVIRONMENTAL_STANDARD

GEOENGINEERS

Project Location: Anacortes, Washington Project Number: 5147-024-01

Figure A-15 Sheet 1 of 1

<u>Sta</u> Drilled 4/1/2		<u>End</u> 4/1/2014	Total Dept		10		Logged By RST Checked By	Driller Cascade Drilling,	L.P.		Drilling Method Direct-Push
Surface Elevati /ertical Datum		Un	determine	ed			ammer ata	Pneumatic	Drilling Equipr	g ment	Geoprobe 6600
Easting (X) Northing (Y) Notes: Asphal	lt/concr	120	627.9884 8728.252 surface - fl	271			ystem atum	NAD83	Groun		Depth to
		FIELD [DATA								
Elevation (feet) Depth (feet) Interval	Recovered (in)	Blows/foot Collected Sample	<u>Sample Name</u> Testing	Water Level	Group	Classification		ATERIAL SCRIPTION	Sheen	Headspace Vapor (ppm)	REMARKS
	31.2		1	l þ		AC CC GP DL	Approximately 3-in Gray fine gravel (p Dark brown organic	ch asphalt concrete ches cement concrete oor recovery) (moist) (fill) c matter (wood debris) occasional gravel (moist)	NS NS	<1 56	Slight petroleum odor and black staining
5			3		S	SP	Brown fine to medi gravel (wet)	um sand with occasional	HS	148	Free product (product beads)
_	44.4	¥	4		M	DL ML SM	Dark brown organie	c matter (wood debris) c silt (moist) parse sand with gravel (wet)	HS 	103	Slight petroleum odor and black staining Free product (product beads) Slight petroleum odor and black staining Free product (product beads)

Note: See Figure A-1 for explanation of symbols.

Log of Boring GEI-15

Project:Quiet Cove PropertyProject Location:Anacortes, WashingtonProject Number:5147-024-01

Figure A-16 Sheet 1 of 1

Drillee	<u>9</u> d 3/3	<u>Start</u> 1/20 ⁻	14	<u>Er</u> 3/31	<u>nd</u> /2014	Total Depth	n (ft)	1()	Logged By RST Checked By	Driller Cascade Drilling,	L.P.		Drilling Method Direct-Push
Surfac Vertica	e Elev al Datu	atior m	n (ft)		Und	etermine	d			Hammer Data	Pneumatic	Drillin Equip		Geoprobe 6600
Eastin Northi	g (X) ng (Y)					05.1846 773.991			: I	System Datum	NAD83	Grour		Depth to
Notes	: Con	crete	wor	rk surf	face - 1	flat								
\square				FIEL	D D									
Elevation (feet)	⊃ Depth (feet) 	Interval	Recovered (in)	Blows/foot	Collected Sample	<u>Sample Name</u> Testing	Water Level	Graphic Log	Group Classification	M. DES	ATERIAL CRIPTION	Sheen	Headspace Vapor (ppm)	REMARKS
	- 0					1			CC SM		thes cement concrete oarse sand with occasional ill)	- NS	<1	
	-	4	17.6			2			ML	Gray silt (moist)		NS	<1	
	5 —					<u>3</u> CA			SM	Brown silty fine to c	oarse sand and gravel (wet)	SS	198	
	-	4	46.8			4			ML	- - Grayish-brown silt (moist) (native)	SS	44	
	-					5 CA				_		NS -	<1	
No	te: See	e Fig	ure	A-1 fo	r expla	anation of	syn	nbols.						
										_	ring GEI-16	orty		
C	δEC	b E	ĒN	١G	IN	EER	S		J	Project: Project Locatio Project Numbe			ı	Figure A-17 Sheet 1 of 1

bale: Dale:72914 Path://SEA/PROJECTS/95147024GINT/5147024GINT/514702401.GPJ DBTemplate/UbTemplate/GEOENGINEERS.GDT/GEI8_ENVIRONMENTAL_STANDARD

Figure A-17 Sheet 1 of 1

Drilled 3/		2014		<u>d</u> /2014	Total Depth	n (ft)	1	0		Logged By RST Checked By	Driller Cascade Drillin	-		Drilling Method	Direct-Push	
Surface Ele Vertical Da	evati atum	ion (ft)		Unde	etermine	ed				ammer ata	Pneumatic	Drilliı Equip	ng oment		Geoprobe 6600)
Easting (X) Northing (Y Notes: Cor	Ý)	ete wor		12088	19.3833 302.621 lat					<i>i</i> stem atum	NAD83		ndwat Measur		Depth to <u>Water (ft)</u>	Elevation (ft)
			FIEL	D DA	ATA											
Elevation (feet) Depth (feet)	Interval	Recovered (in)	Blows/foot	Collected Sample	<u>Sample Name</u> Testing	Water Level	Graphic Log	Group	Classification		ATERIAL SCRIPTION	Sheen	Headspace Vapor (nom)		REMARKS	i
0 -								CC SN	С		ches cement concrete e to medium sand with					
	_	38.4			1			51	IVI	occasional grav	el (moist)	- NS -	<1			
					2		1.1.1	SF		Gray fine to mediu	m sand (moist)					
	-			•	2			MI	IL	Brown silt (moist)		SS	895			
5 -	_	-		¥	3 CA			SN	M	Brownish-gray silty gravel (wet)	fine to coarse sand and	- HS	>100	ю	Strong petroleum or	dor
	-	60			4					_		- HS	>100	0	Strong petroleum or	dor
								GN SP-S		Gray silty fine grav					Strong petroleum or	dor
10 -	_				5							⁻ NS	25			

Note: See Figure A-1 for explanation of symbols.

Log of Boring GEI-17

Project:Quiet Cove PropertyProject Location:Anacortes, WashingtonProject Number:5147-024-01

Figure A-18 Sheet 1 of 1

Easting (X) Northing (Y Notes: Co)	12	59604.0890 208843.160 e - flat			Sy Da	stem Itum NAD83		<u>Groun</u>		Depth to
Elevation (feet)	Interval Recovered (in)	Blows/foot	Sample Name Testing	Water Level	Graphic Log	Group Classification	MATERIAL DESCRIPTION		Sheen	Headspace Vapor (ppm)	REMARKS
Ŭ			1 CA			CC ML	Approximately 4-inches cement concrete Brown silt with fine sand and gravel (mois		- NS	<1	
	- 38.4 -		2			SM ML	Brown silty fine to coarse sand with grave (moist) Gray silt with gravel and sand (moist)	el	NS	<1	
5 -			<u>3. Dup-3</u> CA			SP	Brown coarse sand and gravel (wet)		HS	24	Slight petroleum odor
	- 51.6		4				-		- - HS	32	Slight petroleum odor
	-					ML	Brown silt (moist) (native)		- NS	<1	
Note: Se	ee Figure	A-1 for e	explanation o	fsyr	nbols						

Log of Boring GEI-18

Figure A-19 Sheet 1 of 1

Drille	d 4/1	<u>Star</u> 1/20	<u>t</u> 14	<u>Er</u> 4/1	<u>nd</u> /2014	Total Depth	(ft)	1	0	Logged By RST Checked By	D	riller Cascade Drilling, L	.P.		Drilling Method Direct-Push
Surfac Vertic	ce Elev al Datu	vatio um	on (ft)	1	Und	etermine	d			Hammer Data	P	neumatic	Drillin Equip	g ment	Geoprobe 6600
Eastir Northi	ng (X) ing (Y)					60.98978 721.8301				System Datum		NAD83	<u>Grour</u> Date N		Depth to
Notes	s: Con	cret	e wo	rk sur	face -	flat							Duten	loubure	
				FIEI	_D D	ATA									
Elevation (feet)	o Depth (feet) 	Interval	Recovered (in)	Blows/foot	Collected Sample	<u>Sample Name</u> Testing	Water Level	Graphic Log	Group Classification		ESCF	ERIAL RIPTION	Sheen	Headspace Vapor (ppm)	REMARKS
	- - 5 —		37.2			1 CA 2 3 CA			SP	Dark brown silty (moist)	sand v	e sand with occasional	- NS - NS - NS	<1	
,			60			4 5			ML	- Grayish-brown s - (moist) -	ilt with	occasional gravel	- NS - NS	<1	
		e Fi	gure	A-1 fc	or expla	anation of	syn	nbols							
										Log of E	Borii	ng GEI-19			
C	ĴΕ	ol	Er	١G	IN	EER	S		J	Project: Project Loca Project Numl		Quiet Cove Prope Anacortes, Washi 5147-024-01	-	1	Figure A-20 Sheet 1 of 1

Seatite: Date:7/29/14 Path://SEAIPRO.ECTS/56/147024GINT/5147024G

Drilleo		<u>Star</u> 1/20		<u>Er</u> 4/1/	<u>nd</u> /2014	Total Depth	(ft)	1	0	Logged By RST Checked By	Driller Cascade Drilling,	L.P.		Drilling Method Direct-Push
Surfac Vertica	e Elev al Datu	vatio um	n (ft)		Unde	etermine	d			Hammer Data	Pneumatic	Drillin Equip		Geoprobe 6600
Eastin Northir	g (X) ng (Y)					55.01364 770.9069				System Datum	NAD83		ndwate Aeasure	Depth to
Notes	: Con	cret	e woi	rk surf	face - f	lat						<u></u>	louour	
				FIEL	D D/	ATA	_							
Elevation (feet)	o Depth (feet) 	Interval	Recovered (in)	Blows/foot	Collected Sample	<u>Sample Name</u> Testing	Water Level	Graphic Log	Group Classification		IATERIAL SCRIPTION	Sheen	Headspace Vapor (ppm)	REMARKS
	-		36			1			SM		nches cement concrete m to coarse sand with gravel	- NS	<1	
	- 5 —					2 3 CA			PT SP	(native)	ic matter (peat) (moist) oarse sand with occasional	NS	<1	
	-		38.4			4, Dup-5				-		- NS	<1	
	-					5			ML	Brown silt (moist)		_ NS	<1	
	10 ML Brown silt (moist)													
Not	te: See	e Fiq	gure	A-1 fo	r expla	nation of	syn	nbols						
											oring GEI-20	ortr		
Ċ	ΞEO	bl	ĒN	١G	INI	EERS	5		J	Project: Project Locati Project Numb		-	ו	Figure A-21 Sheet 1 of 1

Seatile: Date://29/14 Path://SEA/PROJECTS/95/1470240(INT/5/4702401.GPJ DBTemplate/LbTemplate/GEOENGINEERS8.GDT/GEI8_ENVIRONMENTAL_STANDARD

Figure A-21 Sheet 1 of 1

Drilled	<u>start</u> /2014		<u>nd</u> /2014	Total Depth	(ft)	10		Logged By RST Checked By				Drilling Method Direct-Push	
Surface Vertical	e Eleva I Datu	ation (f m	t)	Unde	etermine	d			ammer Pneumatic Drilling Equipment			Geoprobe 6600	
Easting Northing	(X) g (Y)				58.36670 834.000			5	System Datum	ystem atum NAD83			<u>er</u> Depth to ad Water (ft) <u>Elevation (ft)</u>
Notes:	Conc	rete w	ork sur	face - f	lat			•			Date M		
			FIE	_D DA	ATA								
Elevation (feet)	○ Depth (feet)	Interval Recovered (in)	Blows/foot	Collected Sample	<u>Sample Name</u> Testing	Sample Name Testing Water Level		Group Classification		ATERIAL CRIPTION	Sheen	Headspace Vapor (ppm)	REMARKS
	-	32.4	ŀ		1		SM	Approximately 4-inc Dark gray silty fine i occasional grav Brown silty fine to n occasional grav	el (moist) nedium sand with	- NS	<1		
	- 5 — -				2 GA			SP	Brown coarse sand	with occasional gravel (wet)	- NS - NS - NS	<1	
	-	51.6	5		4				-		- NS - NS	<1	
	10	Figure	 	∫ ∳ or expla	nation of	syn	nbols.						
									Log of Bo	ring GEI-21			
G	EC	Β	NG	IN	EERS	5	0	1	Project: Project Locatio Project Numbe		-		Figure A-22 Sheet 1 of 1

seatile: Date:7/29/14 Path:\\SEA\PROJECTS\05/1470240\IN15/1470240\IN29_DBTemplate\UbTemplate\UbTemplate\CEOBOGINEERS8.GDT/GEB_ENVIRONMENTAL_STANDARD

Figure A-22 Sheet 1 of 1

Dr	illed		<u>8tart</u> /2014		<u>En</u> 4/2/2		Total Depth		10		Logged By RST Checked By	Driller Cascade Drilling, I	P.		Drilling Method Direct-Push	
Su Ve	Surface Elevation (ft) Undetermined Han Data										ammer ata	Pneumatic Drilling Equipment			Geoprobe 6600	
No	Easting (X) 559490.925134 Sys Northing (Y) 1208718.82857 Da Notes: Concrete work surface - flat									S D	tum NIAD93			indwa Measi	Depth to	
	oles. C		iele w								1					
vation (feet)	Elevation (feet) Depth (feet) Interval Interval Recovered (in) Blows/foot Blows/foot Blows/foot Collected Sample Sampl								Graphic Log	Group Classification		MATERIAL DESCRIPTION			REMARKS	
Ē		5	39. 60	6	BIC		ec) الم	M		SP SP SP	Dark brown silty fin (fill) Grayish-brown med	hes cement concrete to medium sand (moist) ium to coarse sand (moist) sional gravel (moist)		5 <1	<1	
Path/SEA/PROJECTS/96147024GINT/514702401.GPJ_DBTemplate/UbTemplate/GEOENGINEERS8.GDT/GEIB_ENVIRONMENTAL_STANDARD	1 Note:		Figur	e A-	-1 for	expla	5 anation of	f syn	nbols.				- NS	\$ <1	51	
4											Log of Bo Project:	ring GEI-22 Quiet Cove Prope	ertv			
Seattle: Date:7/29/	GeoEngineers										Project Locatio Project Numbe	n: Anacortes, Wash	-	n	Figure A-23 Sheet 1 of 1	

ſ	StartEndTotal10Drilled4/1/20144/1/2014Depth (ft)10								10		Logged By RST Checked By	Logged By RST Checked By Driller Cascade Drilling, L.P.				Drilling Method Direct-Push	
	Surface Elevation (ft) Vertical DatumUndeterminedHan Data										lammer Pata	Pneumatic	Drilling Equipment			Geoprobe 6600	
	Eastin Northi	g (X) ng (Y))5.8204 786.264			S	stem utum NAD83				dwate easure	Depth to	
	Notes: Concrete work surface - flat																
ſ					FIEL	.D DA	ATA										
	Elevation (feet)	Elevation (feet) Depth (feet) Interval Recovered (in) Blows/foot Blows/foot Collected Sample Collected Sample Testing Mater Level Group Group 										ATERIAL CRIPTION		Sheen	Headspace Vapor (ppm)	REMARKS	
		-		60			1			CC SM ML	Brown silty fine to n (moist) (fill) -	thes cement concrete nedium sand with gravel asional gravel (moist)	-	NS	<1		
RONMENTAL_STANDARD		5 — - - -		60			3, Dup-6 4 5				-		-	NS NS	<1 <1 <1		
Seattle: Date:/129/14 Path/ISEAIPROJECTS/05/147024/GINT/614702401.GP.J DBTemplate/LibTemplate/GEOENGINEERS8.GDT/GEI8_ENVIRONMENTA	Note: See Figure A-1 for explanation of symbols.																
ath:\\SEA\P												ring GEL-23					
Seattle: Date:7/29/14 F	0	Log of Boring GEI-23 GEOENGINEERS Project: Quiet Cove Property Project Location: Anacortes, Washington Figure A-24 Project Number: 5147-024-01 Figure A-24															

Drilled 4/2	<u>Start</u> 2/20		<u>En</u> 4/2/2		Total Depth	(ft)	1()	Logged By RST Checked By	Driller Cascade Drilling, L	P.		Drilling Method Direct-Push
Surface Elev Vertical Date	vatio um	n (ft)		Unde	etermine	d			Hammer Data Pneumatic			ng oment	Geoprobe 6600
Easting (X) Northing (Y))2.73072 336.8320				System Datum	NAD83		ndwate Measure	Depth to
Notes: Con	crete	e woi	rk surfa	ace - fl	at								
			FIEL		ATA	-							
Elevation (feet) Depth (feet)								Group Classification				Headspace Vapor (ppm)	REMARKS
0		42.2			1 2 3			CC SP ML	Approximately 4-inc Brown fine to mediu gravel (moist) (fi	isional gravel (moist)	- NS - NS - NS - NS - NS	<1	
	e Fiq	gure	A-1 for	expla	5	sym	nbols.	SM	Brown silty fine to m occasional graw	nedium sand with el (moist)	NS	<1	
									Log of Po	ring CEL 24			
									Project:	ring GEI-24 Quiet Cove Prope	. undes -		

seattle: Date:7/29/14 Path/ISEAIPROJECTS/95/147024/GINT/514702401.GPJ DBTemplate/LibTemplate/GEOENGINEERS8.GDT/GEI8_ENVIRONMENTAL_STANDARD

GEOENGINEERS

Project:Quiet Cove PropertyProject Location:Anacortes, WashingtonProject Number:5147-024-01

Figure A-25 Sheet 1 of 1

Drille		Start End Total 4/1/2014 4/1/2014 Depth (ft)						1	0		Logged By RST Checked By	Driller Cascade Drilling, L.P.				Drilling Method Direct-Push		
Surfac Vertic	ce Elev al Datu	ation/ um	(ft)		Unde	etermine	ed			Ha Da	ammer ata	Pneumatic	D E	rilling quipn	l nent	Geoprobe 6600		
Eastin Northi	ng (X) ing (Y)					32.9893 3852.56					/stem atum	NAD83	NAD83 Groundwater			Depth to		
Notes	Notes: Gravel road surface - flat																	
\square		FIELD DATA																
Elevation (feet)	o Depth (feet) I	Interval	Kecovered (In)	Blows/foot Collected Sample Sample Name Testing		Water Level	Graphic Log	Group	Classification		ATERIAL CRIPTION		Sheen	Headspace Vapor (ppm)	REMARKS			
			2.0			1 CA		0	GF		Approximately 4-inc Gray silty fine to me gravel (moist) (f	edium sand with occasiona	al –	SS	<1			
	-	4	3.2			2			GF	D		h fine to medium sand (we	- ot)	SS	10			
	5—					3 CA			0				- -	HS	32	Free product (product beads)		
	-	5	0.4			4					_		_	HS	31	Free product (product beads)		
	- 10					5 CA			P1	Т	Dark brown organic (native) _	matter (peat) (moist)	_	NS	<1	Free product (product beads)		

Note: See Figure A-1 for explanation of symbols.

Log of Boring GEI-25

Project:Quiet Cove PropertyProject Location:Anacortes, WashingtonProject Number:5147-024-01

Figure A-26 Sheet 1 of 1

Drilled 4/2	<u>Start</u> 2/201	14	<u>En</u> 4/2/2	<u>d</u> 2014	Total Depth	(ft)	1(C	Logged By RST Checked By	Driller Cascade Drilling	g, L.P.		Drilling Method Direct-Push
Surface Elev Vertical Datu	/atioi um	า (ft)		Und	etermine	d			Hammer Data	Pneumatic	Drillin Equip	ng oment	Geoprobe 6600
Easting (X) Northing (Y) Notes: Grav		bad s		1208	02.09529 856.9676	57 54						ndwate Measure	Depth to
Elevation (feet) o Depth (feet)	Interval	Recovered (in)	Blows/foot	Collected Sample	ATA Sample Name Testing	Water Level	Graphic Log	Group Classification	Approximately 3-in	ATERIAL SCRIPTION	Sheen	Headspace Vapor (ppm)	REMARKS
- - -		18		•	1			SM	Gray silty fine to m (moist) (fill) - Poor recovery	edium sand and gravel	NS - SS - MS 	110	
- - - - 10 –		42.2			2			PT	- Dark brown organi (native) -	c matter (peat) (moist)	- HS - NS 		Free product (product beads) Free product (product beads)
Note: Se	e Fig	Jure A		- expla	anation of	syn	nbols.						
				expla		Syn	IDUIS.						
									Log of Bo	Quiet Cove Pro			

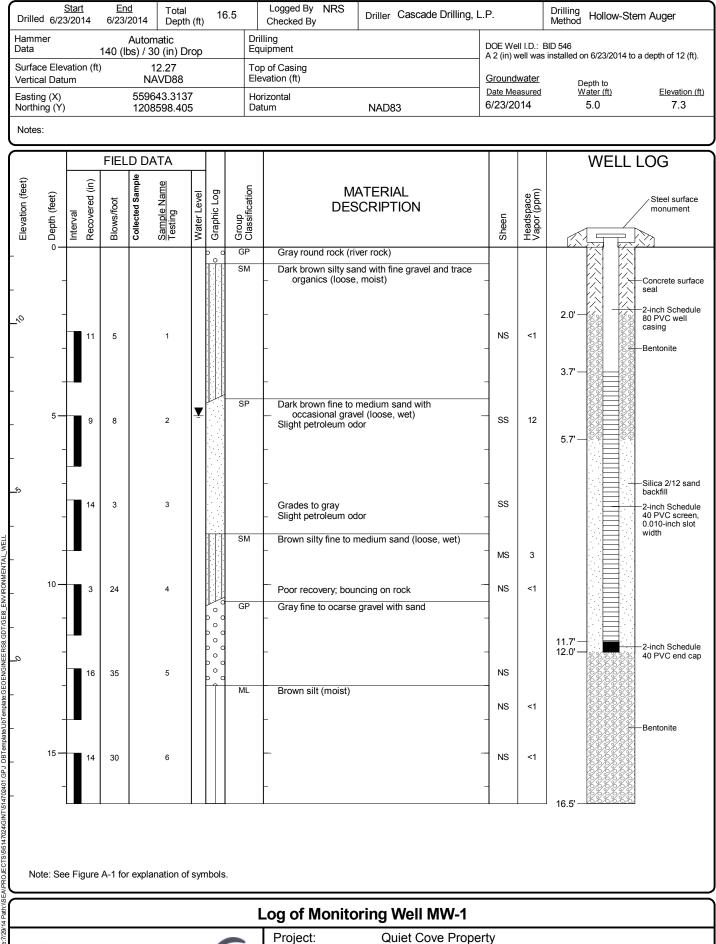
GEOENGINEERS Project: Quiet Cove Property Project Location: Anacortes, Washington Project Number: 5147-024-01

Figure A-27 Sheet 1 of 1

Drilled 4/2/2014 End Total Depth (ft) 10									0	Logged By RST Checked By Driller Cascade Drilling, L				Drilling Method Direct-Push
Surfac Vertic	ce Elev al Datu	atio Im	n (ft)		Und	etermine	ed			Hammer Data Pneumatic			g ment	Geoprobe 6600
Eastir Northi						36.6005 797.788				System Datum	Grour		Depth to	
Notes	s: Grav	el ro	bad s	surface	e - flat	İ								
_				FIEL		ATA								
Elevation (feet)	⊖ Depth (feet) I	Interval	Recovered (in)	Blows/foot	Collected Sample	<u>Sample Name</u> Testing	Water Level	Graphic Log	Group		ATERIAL CRIPTION	Sheen	Headspace Vapor (ppm)	REMARKS
	-		3.4			1			SM	(moist) (fill) -	edium sand with gravel nedium sand with el (moist)	- NS	<1	
	- 5 —					2 3 CA				- Approximate 2-inch	roots at 5 feet	- NS NS	<1	
	- - 10		3.9			4			PT	 Dark brown organic and grass reed 	matter (peat) with roots traces (moist) (native)	- - - NS	<1	
	ote: See	e Fiç	gure	A-1 fo	r expl	anation of	fsyn	nbols						
										_	ring GEI-27			
C	GEOENGINEERS									Project: Project Locatio Project Numbe			Ì	Figure A-28 Sheet 1 of 1

bale: Dale:72914 Path://SEA/PROJECTS/95147024GINT/5147024GINT/514702401.GPJ DBTemplate/UbTemplate/GEOENGINEERS.GDT/GEI8_ENVIRONMENTAL_STANDARD

Figure A-28 Sheet 1 of 1


Drille	d 4/2	<u>Star</u> 2/20	<u>t</u> 14		<u>nd</u> 2/2014	Total Depth	ı (ft)	1	0		Logged By RST Checked By	Driller Cascade Drilling,	L.P.		Drilling Method Direct-Push
Surfac Vertic	ce Elev al Dati	/atic um	on (ft))	Und	determine	d			Har Dat	mmer a	Pneumatic	Drillin Equip	g ment	Geoprobe 6600
Eastir Northi	ng (X) ing (Y)					751.01907 3690.3964				Sys Dat	stem tum	NAD83	Grour	ndwate Ieasur	Depth to
Notes	Notes: Gravel road surface - flat														
\square				FIE		ATA									
Elevation (feet)	, Depth (feet)	Interval	Recovered (in)	Blows/foot	Collected Sample	<u>Sample Name</u> Testing	Water Level	Graphic Log	Group Classification	CIASSIIICAUOII		ATERIAL SCRIPTION	Sheen	Headspace Vapor (ppm)	REMARKS
									SP		Gray silty fine to me gravel (moist) -	edium sand with occasional	- NS	<1	
	_							0 0	GP		Gray fine to coarse				
			46.8						SM		Brown silty fine to r occasional grav	nedium sand with el (moist)			
	-					2					-		NS	<1	
	-				ł						-		-		
	5—					3			SP SP		Brown medium sar		NS	<1	
	_								SP		Brown medium sar		_		
	-		58.8			<u>4. Dup-7</u> CA					-		[–] NS	<1	
	- - 10 —					5				-	- Transitioning to gra -	ıy	- - NS	<1	
	ote: Se	e Fi	gure	A-1 fc	or expl	anation of	syr	nbols	·						
	Note: See Figure A-1 for explanation of symbols.														
	Log of Boring GEI-28														
	-		_								Project:	Quiet Cove Prop	erty		

Seatle: Date:7/29/14 Path:\SEA\PROJECTS\95/47/024GINT\5/47/02401.GPJ DBTemplate/LibTemplate/GEOENGINEERS8.GDT/GEI8_ENVIRONMENTAL_STANDARD

Project Location: Anacortes, Washington Project Number: 5147-024-01

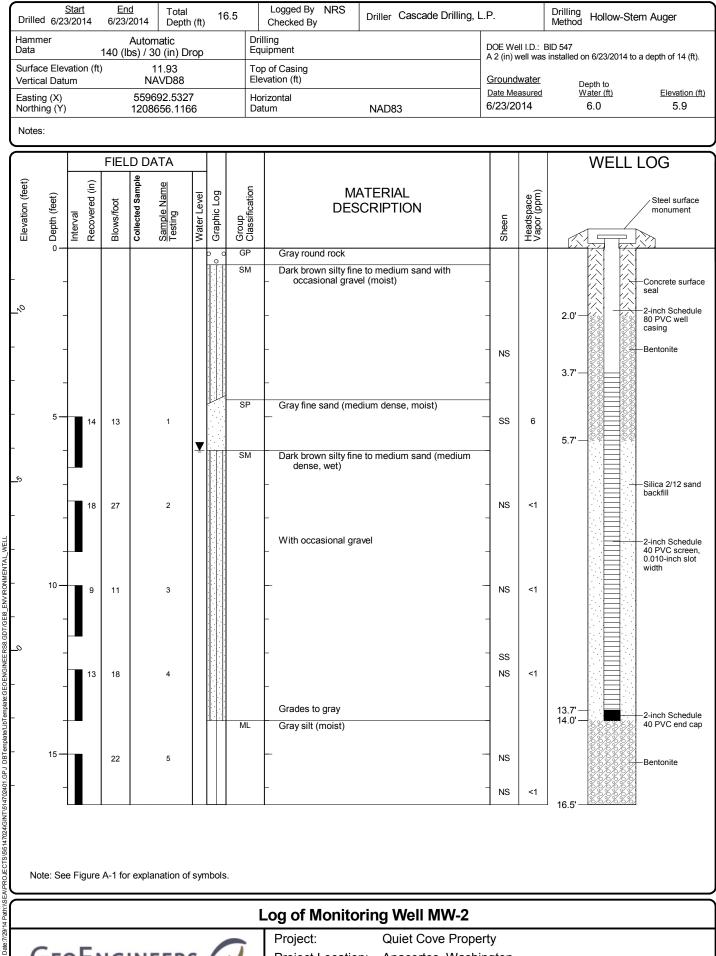
Figure A-29 Sheet 1 of 1

Project Location:

Project Number:

Anacortes, Washington

5147-024-01


Figure A-30 Sheet 1 of 1

VEERS8 GDT/GEI8

ę.

Date:

GEOENGINEERS

Project Location:

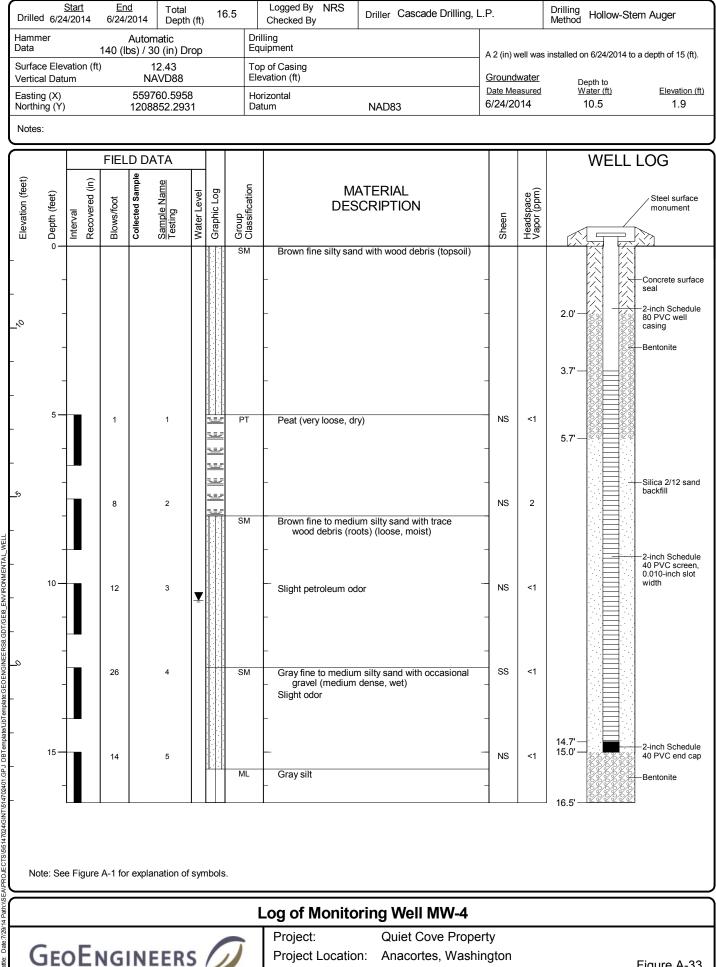
Project Number:

Anacortes, Washington

5147-024-01

GEOENGINEERS

Figure A-31 Sheet 1 of 1


Log of Monitoring Well MW-3

Project:Quiet Cove PropertyProject Location:Anacortes, WashingtonProject Number:5147-024-01

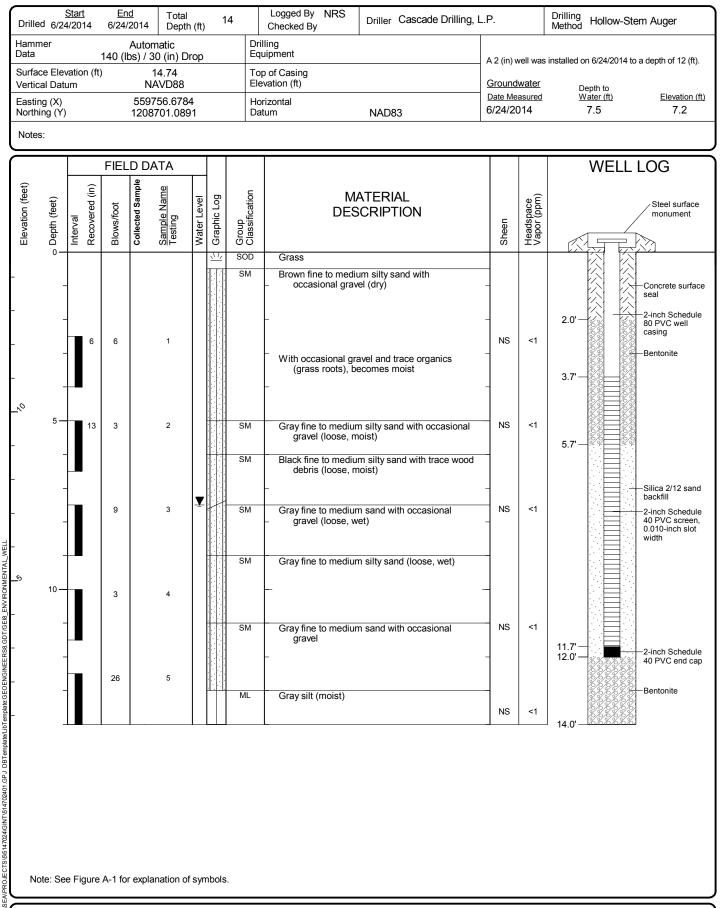
Date:

GEOENGINEERS

Figure A-32 Sheet 1 of 1

Project Location:

Project Number:


Anacortes, Washington

5147-024-01

Figure A-33 Sheet 1 of 1

molate:GEOENGI emplate/LihT E ę. Date:

NFF RS8

Log of Monitoring Well MW-5

Date:

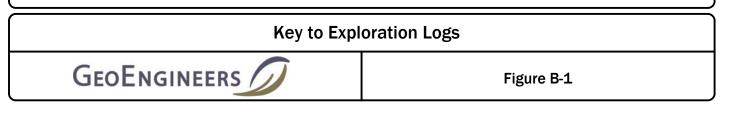
Project:Quiet Cove PropertyProject Location:Anacortes, WashingtonProject Number:5147-024-01

Figure A-34 Sheet 1 of 1

	3	OIL CLASS				AD
r	MAJOR DIVIS	IONS	SYM GRAPH	BOLS LETTER	TYPICAL DESCRIPTIONS	GRA
	000/51	CLEAN GRAVELS	000	GW	WELL-GRADED GRAVELS, GRAVEL - SAND MIXTURES	GRA
	GRAVEL AND GRAVELLY SOILS	(LITTLE OR NO FINES)		GP	POORLY-GRADED GRAVELS, GRAVEL - SAND MIXTURES	
COARSE GRAINED	MORE THAN 50%	GRAVELS WITH		GM	SILTY GRAVELS, GRAVEL - SAND - SILT MIXTURES	
SOILS	OF COARSE FRACTION RETAINED ON NO. 4 SIEVE	FINES (APPRECIABLE AMOUNT OF FINES)		GC	CLAYEY GRAVELS, GRAVEL - SAND - CLAY MIXTURES	
		CLEAN SANDS		sw	WELL-GRADED SANDS, GRAVELLY SANDS	1/ <u>\\ 1/</u>
MORE THAN 50% RETAINED ON NO. 200 SIEVE	SAND AND SANDY	(LITTLE OR NO FINES)	° ° ° ° ° ° ° °	SP	POORLY-GRADED SANDS, GRAVELLY SAND	
	SOILS MORE THAN 50% OF COARSE	SANDS WITH FINES		SM	SILTY SANDS, SAND - SILT MIXTURES	
	FRACTION PASSING ON NO. 4 SIEVE	(APPRECIABLE AMOUNT OF FINES)		sc	CLAYEY SANDS, SAND - CLAY MIXTURES	
				ML	INORGANIC SILTS, ROCK FLOUR, CLAYEY SILTS WITH SLIGHT PLASTICITY	$\overline{\nabla}$
FINE	SILTS AND CLAYS	LIQUID LIMIT LESS THAN 50		CL	INORGANIC CLAYS OF LOW TO MEDIUM PLASTICITY, GRAVELLY CLAYS, SANDY CLAYS, SILTY CLAYS, LEAN CLAYS	
GRAINED SOILS				OL	ORGANIC SILTS AND ORGANIC SILTY CLAYS OF LOW PLASTICITY	
MORE THAN 50% PASSING NO. 200 SIEVE				МН	INORGANIC SILTS, MICACEOUS OR DIATOMACEOUS SILTY SOILS	
10.2000.212	SILTS AND CLAYS	LIQUID LIMIT GREATER THAN 50		СН	INORGANIC CLAYS OF HIGH PLASTICITY	
			\Box	ОН	ORGANIC CLAYS AND SILTS OF MEDIUM TO HIGH PLASTICITY	
	HIGHLY ORGANIC	SOILS	h	PT	PEAT, HUMUS, SWAMP SOILS WITH HIGH ORGANIC CONTENTS	
bl Se	□ 2.4- ○ Star ■ She □ Pist □ Dire □ Bull □ Con lowcount is re ows required ee exploration	ect-Push < or grab tinuous Coring ecorded for dri to advance sa n log for hamn	oarrel tion Test g ven samp ampler 12 ner weigh	(SPT) blers as t 2 inches tt and dro	he number of (or distance noted).	%G AL CP CS DD HA MD Mohs OC PM PI PSA TX UC VS
"\		es sampler pue		U U	C	NS SS MS

ADDITIONAL MATERIAL SYMBOLS

SYM	BOLS	TYPICAL
GRAPH	LETTER	DESCRIPTIONS
	AC	Asphalt Concrete
	сс	Cement Concrete
	CR	Crushed Rock/ Quarry Spalls
	SOD	Sod/Forest Duff
	TS	Topsoil


Groundwater Contact leasured groundwater level in exploration, ell, or piezometer leasured free product in well or piezometer **Graphic Log Contact** Distinct contact between soil strata pproximate contact between soil strata **Material Description Contact** Contact between geologic units Contact between soil of the same geologic ınit aboratory / Field Tests. Percent fines Percent gravel tterberg limits chemical analysis aboratory compaction test onsolidation test ry density irect shear lydrometer analysis loisture content loisture content and dry density Iohs hardness scale rganic content Permeability or hydraulic conductivity Plasticity index ocket penetrometer Sieve analysis riaxial compression Inconfined compression

Vane shear

Sheen Classification

- No Visible Sheen
- Slight Sheen
- Moderate Sheen
- Heavy Sheen

NOTE: The reader must refer to the discussion in the report text and the logs of explorations for a proper understanding of subsurface conditions. Descriptions on the logs apply only at the specific exploration locations and at the time the explorations were made; they are not warranted to be representative of subsurface conditions at other locations or times.

Drille		<u>Start</u> 2/2017	<u>Er</u> 9/12	<u>nd</u> 2/2017	Total Depth	(ft)	15	Logged By NS Checked By BJT	Driller Cascade Drilling, LF	•		Drilling Method Direch Push
	ice Eleva cal Datui				12.15 IAVD88			Hammer Data	Pneumatic	Drillin Equip		GeoProbe 6600
Eastii North	ng (X) ning (Y))8879.93 9694.22			System WA Datum	State Plane North NAD83 (feet)	See "	Remar	ks" section for groundwater observed
Note	es:											
			FIE	LD D/	ATA							
Elevation (feet)	o Depth (feet) I	Interval © Recovered (in)	Blows/foot	Collected Sample	<u>Sample Name</u> Testing	Graphic Log	Group Classification	DESC	TERIAL CRIPTION	Sheen	Headspace	REMARKS
	-						AC NR	Approximately 6 inches a No recovery	sphalt concrete	_		
_%	-							-		_		
_	-						ML	Brown silt with occasiona	I sand and gravel (moist) (fill)	NS	<1	
ŀ	5 —	52			1 CA		SP	Dark brown-gray fine to c gravel (moist)	oarse sand with occasional	NS		
-	-							-		- NS		
<u>~</u> 5	_				2	1	PT ML	Brown organic matter (m Brown silt with trace orga (moist)	oist) (peat) (native) nic matter (weathered wood)	- NS		
	-						ML	Wood chuck chunk at 81/ Brown silt with sand and		NS		
I AL_SIANDA	10 —	60		•	<u>3</u> CA		ML	Light gray silt with sand (wet)	NS	<1	Groundwater observed at approximately 10 feet at time of drilling
	-				CA					– NS	<1	
o'	-			¥.				_		- NS	<1	
-	-				4 CA		ML	Gray silt with occasional s	sand (moist)	NS	<1	
-	-							_		- NS	<1	
<u>ام</u>	Note: See Figure B-1 for explanation of symbols. Coordinates Data Source: Horizontal approximated based on topographic land survey completed by Sound Development Group October 6, 2017. Vertical approximated based on topographic land survey completed by Sound Development Group October 6, 2017. Vertical approximated based on topographic land survey completed by Sound Development Group October 6, 2017.											
						-		•	ring GEI-29			
	Geo	οEι	١G	INI	EER	s /	D		Cove n: Anacortes, Washin : 5147-024-05	gton		Figure B-2 Sheet 1 of 1

Drille	d 9/1	<u>Start</u> 2/2017	9/:	<u>End</u> 12/2017	Total Depth	(ft)	15	Logged By NS Checked By BJT	Driller Cascade Drilling, LP			Drilling Method Direch Push
	ce Eleva al Datur				12.27 AVD88			Hammer Data	Pneumatic	Drilling Equipn	nent	GeoProbe 6600
Eastir North	ng (X) ing (Y)				8882.91 9755.28			System W/ Datum	A State Plane North NAD83 (feet)	See "R	emark	s" section for groundwater observed
Note	S:											
				ELD DA								
Elevation (feet)	o Depth (feet) I	Interval Recovered (in)		Collected Sample	<u>Sample Name</u> Testing	Graphic Log	Group Classification		TERIAL CRIPTION	Sheen	Headspace Vapor (ppm)	REMARKS
-	0-	48			1 DUP 1		AC	Approximately 8 inches a		_		
-	-			Ī			SP	 Brown fine to coarse san 	d with gravel (dry) (fill)	- NS	<1	
_^>	-			Ť	<u>2</u> CA	· . · .	ML	Gray silt with trace sand	(dry)	NS	<1	
-	-							=		- NS	<1	
-	_			<u> </u>				_		_		Wood chunk in shoe
F	5—	56					SP	Gray fine to coarse sand	with occasional gravel (moist)	— NS	<1	
-	-			A	<u>3</u> CA			_		- SS	<1	
<u>_</u> %	-						PT	Brown organic matter (pe chips and grass (we	eat) with occasional wood et) (native)	- NS	<1	Groundwater observed at approximately 7 feet at time of drilling
-	-			.				_		- NS	<1	
-	-			•	4 CA		SP	Gray fine to medium san (grass) (wet)	d with trace organic matter	- NS	<1	
_	10 -	60			UA .		SP	Dark gray fine to mediun	n sand (wet)	- NS	<1	
_	-							_		- NS	<1	
_0	-						SP	Grav fine to coarse sand	with occasional gravel (wet)	NS	<1	
	_				5			_		- NS	<1	
-	-							_		- NS	<1	
	15 —			V								
Co	Note: See Figure B-1 for explanation of symbols. Coordinates Data Source: Horizontal approximated based on topographic land survey completed by Sound Development Group October 6, 2017. Vertical approximated based on topographic land survey completed by Sound Development Group October 6, 2017.											
								Log of Bo	ring GEI-30			
(GEO	эE	NG	GINE	ER	s /	D	Project: Quiet Project Location		ton		Figure B-3 Sheet 1 of 1

Drilled		<u>Start</u> 1/20		<u>En</u> 9/11,	<u>1</u> /2017	, Total Depth	(ft)	15	Logged By NS Checked By BJT	Driller Cascade Drilling, LP			Drilling Method Direch Push
Surface Vertica			(ft)			12.34 VAVD88			Hammer Data	Pneumatic	Drilling Equipn		GeoProbe 6600
Easting Northir					12 55	08884.7 9829.12			System WA Datum	State Plane North NAD83 (feet)	See "R	emark	s" section for groundwater observed
Notes:	:												
				FIEL	D D	ATA							
Elevation (feet)	Depth (feet)	Interval	Recovered (in)	Blows/foot	Collected Sample	<u>Sample Name</u> Testing	Graphic Log	Group Classification		TERIAL CRIPTION	Sheen	Headspace Vapor (ppm)	REMARKS
	0-		42		•	1		AC SP	Approximately 6 inches a Brown fine to coarse san				
	-							JF			- NS	<1	
_%	-							SP	Dark brown fine to mediu	m sand with trace organic	NS	<1	Geotextile at 2 feet bgs
	-					2 CA		SP	matter (moist) Brown fine to medium sa	nd (moist)	NS	<1	
	-					CA		-		· ····································	- NS	<1	
	5 —		60		¥.				_		— NS	<1	
	-					<u>3</u> CA		SP-SM	Dark gray fine to medium	sand with silt (moist)		<1	
<u>_</u> 6	-					ur.		SP	Light gray fine sand (wet)	(native)	NS	<1	Groundwater observed at approximately G ¹ / ₂ feet at time of drilling
	-				¥				-	`	- NS	<1	
	-				•	4		SP	Gray fine to medium sand	d (wet)	- NS	<1	
•	10 -		60						_		- NS	<1	
	-				¥.			SP	Gray fine to medium sand	d with occasional gravel (wet)	- NS	<1	
_0	-								-		- NS	<1	
	-				A	5 CA			-		- NS	<1	
	-								-		- NS	<1	
Note: See Figure B-1 for explanation of symbols. Coordinates Data Source: Horizontal approximated based on topographic land survey completed by Sound Development Group October 6, 2017. Vertical approximated based on													
									nt Group October 6, 2017.		P		
									Project: Quiet (r ing GEI-31 Cove			
C	BE	ЭE	ĒN	G	N	EER	S/	D	Project Location	n: Anacortes, Washing : 5147-024-05	gton		Figure B-4 Sheet 1 of 1

Dr	illed	9/1	<u>Star</u> .1/2		<u>En</u> 9/11	<u>d</u> /2017	, Total Depth	(ft)	15	Logged By NS Checked By BJT	Driller Cascade Drilling, LP			Drilling Method Direch Push
		e Eleva Datu		(ft)			13.44 VAVD88			Hammer Data	Pneumatic	Drilling Equipn		GeoProbe 6600
	sting rthin					120 55	08856.16 59826.1			System W# Datum	A State Plane North NAD83 (feet)	See "R	emark	s" section for groundwater observed
	otes:													
					FIEI	D D	ATA							
Elevation (feet)		o Depth (feet) I	Interval	Recovered (in)	Blows/foot	Collected Sample	<u>Sample Name</u> Testing	Graphic Log	Group Classification		TERIAL CRIPTION	Sheen	Headspace Vapor (ppm)	REMARKS
-		0-		54					AC SP-SM	Approximately 6 inches a Brown fine to coarse san	· · · · · · · · · · · · · · · · · · ·			
-		-					1			-		- NS - NS	<1	
-									ML	Brown silt with gravel (m	edium dense, moist)			
_>		-					2 CA		SP-SM	Black fine sand with silt a (moist)	and trace organic matter	NS	<1	
-		-				L.			SP-SM	Brown fine sand with silt	(moist)	NS	<1	
_		5 —		58			3			_		— NS	<1	
		-								-		- NS	<1	
		-				Ŧ	4 CA		SP-SM	_ Gray fine to medium san	d with silt (moist) (native)	- NS	<1	
<u>رم و</u> ر		-								-		- NS	<1	
		-				+				-		- NS	<1	Groundwater observed at approximately 9 feet at time of drilling
		10 —		60		•	<u>5</u> CA		SP	Grayish brown fine to coa	arse sand (wet)	NS	<1	
IRONMEN		_					CA		0.	-		- NS	<1	
GEI8_ENV		-								_		- NS	<1	
E_2017.GLB		_								-		- NS	<1	
		-								_		- NS	<1	
	Coo	rdinat	es D)ata S	Source:	Horizo		oximat		t on topographic land survey c nt Group October 6, 2017.	ompleted by Sound Developme	ent Group	Octob	er 6, 2017. Vertical approximated based on
W:/FRUJE										Log of Bo	ring GEI-32			
	G	ΞE(ol	Er	١G	IN	EER	s /	D	Project: Quiet Project Location		gton		Figure B-5 Sheet 1 of 1

Drilleo	d 9/1	<u>Start</u> 2/2017	· 9,	<u>End</u> /12/201	7 Total	ר (ft)	15	Logged By NS Checked By BJT	Driller Cascade Drilling, L	þ			Drilling Method Direch Push
	e Eleva al Datu	tion (ft) n			12.25 NAVD88			Hammer Data	Pneumatic	Drillir Equip	ng omei	nt	GeoProbe 6600
Eastin	g (X)				208921.46 59691.72	6		System W/	A State Plane North NAD83 (feet)				s" section for groundwater observed
Northi				5	00001.72			Datum					
\geq				IELD D									
et)		(u					c						
Elevation (feet)	Depth (feet)	Interval Recovered (in)		Blows/Toot Collected Sample	<u>Sample Name</u> Testing	Graphic Log	Group Classification		TERIAL CRIPTION	Sheen	loodoooto	Headspace Vapor (ppm)	REMARKS
-	0-	12					AC	Approximately 6 inches a					
-	-						SP	Brown fine to coarse san	d with gravel (moist) (fill)	- NS	5	<1	
_^0	-			A	1			-		- NS	5	<1	
-	-							_		- NS	5	<1	
-	-			┢				-		- NS	;	<1	
_	5—	54			2		SP		um sand with occasional grave	NS	5	<1	
_	-							(moist) _		- NS	;	<1	Groundwater observed at approximately 6 feet at time of drilling
_~s	-			¥.			ML	Becomes wet	anic matter (wet)	NS	5	<1	
	_						IVIL	Brown silt with trace orga	anic matter (wet)	NS		<1	
				Î	3		PT	Dark brown organic matt	er (peat) (moist)				
	-						SP-SM	- Dark brown fing to modil	Im sand with silt and trace	- NS	5	<1	
	10 -	60		*				organic matter (wet)		- NS	5	<1	
	-						SP-SM	Gray fine to coarse sand (moist) (native)	with silt and occasional grave	NS	5	<1	
0 	-			Ť	4				<u>\</u>	- NS	;	<1	
	-						ML	Gray silt with sand (moist	.)	- NS	;	<1	
- -	-			↓				_		- NS	;	<1	
	15 —												
/ Uz400.GFJ													
GINI (514													
NO CO	ordinat	es Data	Sou	rce: Horiz	ation of sy contal appr	oximat	ed basec	l on topographic land survey c nt Group October 6, 2017.	completed by Sound Developn	nent Grou	ıp Oc	ctobe	er 6, 2017. Vertical approximated based on
	Brah			.,ipit					ring GEI-33				
	_							Project: Quiet	-				
	ΞEO	bΕ	N	GIN	EER	S /	D		n: Anacortes, Washir r: 5147-024-05	ngton			Figure B-6 Sheet 1 of 1

Drilled	1 9/1	<u>Star</u> 2/2		<u>En</u> 9/12	<u>d</u> /2017	, Total Depth	(ft)	15	Logged By NS Checked By BJT Driller Cascade Drilling, LP			Drilling Method Direch Push
Surfac Vertica	e Eleva al Datur		(ft)			11.87 VAVD88			Hammer Data Pneumatic	Drilling Equipn	nent	GeoProbe 6600
Easting Northir						08925.51 59767.3			System WA State Plane North Datum NAD83 (feet)	See "R	emark	s" section for groundwater observed
Notes												
\geq				FIEL	D D/	ATA						
Elevation (feet)	Depth (feet)	Interval	Recovered (in)	Blows/foot	Collected Sample	<u>Sample Name</u> Testing	Graphic Log	Group Classification	MATERIAL DESCRIPTION	Sheen	Headspace Vapor (ppm)	REMARKS
	0-		48					AC	Approximately 8 inches asphalt concrete			
-	-				1	1		SP	 Brown fine to medium sand with gravel (dry) (fill) . 	NS	<1	
_%	_					2		ML	Gray-brown silt with occasional organic matter	NS	<1	
-	_								(weathered wood fragments) and gravel (moist)	NS	<1	
_	-				¥.					NS	<1	
_	5 —		56							NS	<1	
-	-		50			2		PT	Dark brown organic matter (peat) with weathered fibrous wood chips (moist) (native)	NS	<1	
<u>~</u> 6					Î	3		ML	Gray silt with trace organic matter (grass) (moist)			Crounduster aboat ed at approvince tel
	_							SP	Gray fine to medium sand (wet)	- NS	<1	Groundwater observed at approximately 7 feet at time of drilling
_	_				¥					NS	<1	
-	_									NS	<1	
-	10 —		60			4				NS	<1	
-	_									NS	<1	
_0	-				¥.					NS	<1	
-	_				•	5		SP	Gray fine to medium sand with occasional gravel	NS	<1	
-	-									- NS	<1	
Coo	ordinat	esĒ)ata S	Source:	Horizo	ition of syn nital appro ted by Sou	ximat	ed based	on topographic land survey completed by Sound Development nt Group October 6, 2017.	Group	Octobe	er 6, 2017. Vertical approximated based on
					-				Log of Boring GEI-34			
	-		_						Project: Quiet Cove			
C	E	b	EN	١G	IN	EER	s /		Project Location: Anacortes, Washingto Project Number: 5147-024-05	on		Figure B-7 Sheet 1 of 1

Start Drilled 9/11/2017	<u>End</u> 9/11/2017	Total Depth (ft)	10	Logged By Checked By	NS BJT	Driller Cascade Drilling, LP		Drilling Method Direch Push
Surface Elevation (ft) Vertical Datum		1.67 VD88		Hammer Data		Pneumatic	Drilling Equipment	GeoProbe 6600
Easting (X) Northing (Y)		1926.08 822.33		System Datum	W	A State Plane North NAD83 (feet)	See "Remark	ks" section for groundwater observed

			FIE	LD D								
Elevation (feet)	Depth (feet)	Interval Recovered (in)	Blows/foot	Collected Sample	<u>Sample Name</u> Testing	Graphic Log	Group Classification	MATERIAL DESCRIPTION	Sheen	Headspace	Vapor (ppm)	REMARKS
	0-			-	4		AC	Approximately 6 inches asphalt concrete	_			
_	-				1		ML	Gray silt (moist) (fill)	– NS	<:	1	
_%	-			F	2		SP	Brown fine to coarse sand with gravel (moist)	- NS	<	1	
-	-						ML	Gray-brown silt with trace organic matter (moist)	NS	<	1	
-							ML	Gray silt with sand (moist)				
	-			Ŧ	3			-	- NS	<	1	
-	5 —						SP-SM	Gray fine to medium sand with silt (dry)	- NS	<:	1	Groundwater observed at approximately
-	-			ł	4			-	- NS	<:	1	Groundwater observed at approximately 5½ feet at time of drilling
<u>_</u> \$}	-						SP	Dark gray fine to medium sand (wet) (native)	- NS	<	1	
- 89	-			ł	5			_	- NS	<	1	
	-						SP	Dark gray fine to medium sand with trace gravel (wet)	- NS	<:	1	
No Co	ote: See ordinat	Figure es Data	B-1 for Source	explana : Horizo	ation of syr ontal appro	mbols. oximat	ed based	on topographic land survey completed by Sound Development It Group October 6, 2017.	Group	Octo	ober	6, 2017. Vertical approximated based on

GEOENGINEERS

ate:5/9/18 Path

Log of Boring GEI-35

Project: Quiet Cove Project Location: Anacortes, Washington Project Number: 5147-024-05

Notes:	GeoProbe 6600 section for groundwater observed
Northing (Y) 559879.78 Datum NAD83 (feet) See "Hemarks" se Notes: FIELD DATA	
Notes:	REMARKS
	REMARKS
	REMARKS
Elevation (feet) Depth (feet) Interval Interval Recovered (in) Blows/foot Collected Sample Blows/foot Collected Sample Sample Name Testing Group Group Classification Sheen Sheen HeadSpace Vapor (ppm)	
0 36 AC Approximately 3 inches asphalt concrete	
- Gray-brown fine to coarse sand with gravel (moist) (fill)	
- NS <1	
- NS <1	
5 48 SP Brown fine to medium sand with occasional gravel and trace organic matter (moist) NS <1	
- NS <1	
- NS <1	
- NS <1	Groundwater observed at approximately 8 feet at time of drilling
SP Gray fine to medium sand with gravel (wet) (native)	
SP Gray fine to medium sand with occasional gravel (moist)	
Output Becomes wet Image: Second	
Note: See Figure B-1 for explanation of symbols. Coordinates Data Source: Horizontal approximated based on topographic land survey completed by Sound Development Group October 6,	6, 2017. Vertical approximated based on
topographic land survey completed by Sound Development Group October 6, 2017.	
Log of Boring GEI-36 Project: Quiet Cove	
GEOENGINEERS Project: Quiet Cove Project Location: Anacortes, Washington Project Number: 5147-024-05	Figure B-9 Sheet 1 of 1

Drille	d 9/1	<u>Start</u> 1/2017	9/	<u>End</u> 11/201	.7 Total Depth	n (ft)	15	Logged By NS Checked By BJT	Driller Cascade Drilling, LP			Drilling Method Direch Push
	ce Eleva al Datu	ition (ft) n			11.52 NAVD88			Hammer Data	Pneumatic	Drilling Equipr		GeoProbe 6600
Eastin Northi					208925.74 59882.69			System W# Datum	A State Plane North NAD83 (feet)	See "F	Remark	s" section for groundwater observed
Notes												
_			F	ELD D	DATA							
Elevation (feet)	Depth (feet)	Interval Recovered (in)	Blows /foot	Collected Sample	<u>Sample Name</u> Testing	Graphic Log	Group Classification		TERIAL CRIPTION	Sheen	Headspace Vapor (ppm)	REMARKS
	0-	39					AC	Approximately 6 inches a	· · · · · · · · · · · · · · · · · · ·			
<u>^</u> 0	-			•	1		SM SP	Gray silty fine to medium Grayish brown fine to coa	sand (moist) (fill) arse sand with gravel (dry)	NS	<1	
_>	-						0.0	Dada dara fara da ara di	· ()	NS	<1	
	_						SP	Dark gray fine to medium	i sand (dry)	- NS	<1	Geotextile fabric at 21/4 feet
	-				2					GNI		
	-						ML	- Gray silt (moist)		- NS	<1	
	5 —	60		╞			SP		nd with occasional gravel	- NS	<1	
	-				3		CDCM			NS	<1	
<u>ي</u>	_				Ũ		SP-SM	Gray fine to medium san	d with slit (moist)	- NS	<1	
								Becomes wet		145		
	-			¥				_		- NS	<1	Groundwater observed at approximately 8 feet at time of drilling
	-			•	4		SP	Brown fine to medium sa	nd (wet) (native)		<1	
	10	60						_		- NS	<1	
	-			Ļ				_		– NS	<1	
م												
	_						SP	Gray fine to coarse sand	with occasional gravel (wet)	NS	<1	
	-			Ť	5			-		- NS	<1	
	-							-		- NS	<1	
	15 —											
Note: See Figure B-1 for explanation of symbols. Coordinates Data Source: Horizontal approximated based on topographic land survey completed by Sound Development Group October 6, 2017. Vertical approximated based on												
								nt Group October 6, 2017.				
									ring GEI-37			
(.	٦F			EER	c /	1	Project: Quiet Project Location	Cove n: Anacortes, Washing	ton		
				2114	LEK	5/			: 5147-024-05	····		Figure B-1 Sheet 1 of 1

	Drilled	9/1	Start 9/20	017	<u>En</u> 9/19	<u>d</u> /2017	Total Depth	(ft)	15	Logged By NS Checked By BJT	Driller Cascade Drilling, LP			Drilling Method Direch Push
		e Eleva Il Datur		(ft)			1.06 AVD88			Hammer Data	Pneumatic	Drilling Equipr	g ment	GeoProbe 7822 DT
	astiną orthir	g (X) ng (Y)				1208 559	3650.79 757.76			System Wa Datum	A State Plane North NAD83 (feet)	See "F	Remark	ss" section for groundwater observed
Ν	lotes								·					
Ē					FIEL	D DA	TA							
(+	Elevation (reet)	Depth (feet)	Interval	Recovered (in)	Blows/foot	Collected Sample	<u>Sample Name</u> Testing	Graphic Log	Group Classification		TERIAL CRIPTION	Sheen	Headspace Vapor (ppm)	REMARKS
-		0-		24					SP	Light brown fine to media	um sand (loose, dry) (fill)			
_%	Ş	-								-		- NS	<1	
-		-					1 CA		SP-SM	- Crowfing to modium con	d with silt and occasional	- NS	<1	
-		-							3F-3W	gravel (medium dens	e, moist)	- NS	<1	
╞		-				*		//	SP-SM	Gray fine to medium san dense, wet)	d with silt and gravel (medium	NS	<1	Groundwater observed at approximately 4 feet at time of drilling
-		5—		48		I	2 CA			_		— NS	<1	
<u>_</u> ⁄o		-								-		- NS	<1	
-		_				•				-		- NS	<1	
- GW		-								_		- NS	<1	
NDARD_NO		-								-		– NS	<1	
ENTAL_STA		10 —		58					SP-SM	Gray fine to medium san	d with silt and occasional	- NS	<1	
		-								gravel (dense, wet)		– NS	<1	
.GLB/GEI8_		-				A	<u>3</u> CA		ML		sional gravel (very dense,	NS	<1	
IUNE_2017		-								moist) (native) –		- NS	<1	
STD_US		-				I				-		– NS	<1	
SINEERS_D		15 —												
TS\5\514/024	Coo	ordinat	es D	ata S	Source:	Horizor	on of syn Ital appro Id by Sou	oximat	ed based velopme	l on topographic land survey o nt Group October 6, 2017.	completed by Sound Developmen	nt Group	Octob	er 6, 2017. Vertical approximated based on
W:/PROJEC										Log of Bo	ring GEI-38			
Date:5/9/18 Path:	0	ΞEO	b	ΞN	١G	INE	ER	s /	D	Project: Quiet Project Location		ton		Figure B-11 Sheet 1 of 1

<u>Start</u> Drilled	<u>End</u>	Total Depth (ft)	10	Logged By Checked By	NS BJT	Driller Cascade Drilling, LP		Drilling Method Direch Push
Surface Elevation (ft) Vertical Datum		L1.42 AVD88		Hammer Data		Pneumatic	Drilling Equipment	GeoProbe 7822 DT
Easting (X) Northing (Y)		8628.66)724.41		System Datum	W	A State Plane North NAD83 (feet)	See "Remarl	ks" section for groundwater observed
Notes:								

\bigcap				FIEL	D D	ATA						
Elevation (feet)	o Depth (feet) J	Interval	Recovered (in)	Blows/foot	Collected Sample	<u>Sample Name</u> Testing	Graphic Log	Group Classification	MATERIAL DESCRIPTION	Sheen	Headspace Vapor (ppm)	REMARKS
-	0-		26					SP	Light brown fine to medium sand (dry) (fill)			
_^2	-				Ť	$\frac{1}{CA}$				NS	<1	
_	-									NS	<1	
-	-				•					NS	<1	
-	-		30					SP	Brown fine to medium sand with occasional gravel (moist)	NS	<1	
-	5 —					2 CA		SP	Gray fine to medium sand (moist)	NS	<1	
<u>_</u> %	-							SP	Dark gray fine to medium sand with organic matter (weathered wood) (wet)	SS	<1	Groundwater observed at approximately 6 feet at time of drilling
-	_							SP	Dark gray fine to medium sand (wet)	NS	<1	
8. –	-		21			<u>3</u> CA				NS	<1	
AL_STANDARD_NO_GW	_							SP	Gray fine to medium sand with occasional gravel (dense, wet) (native)	NS	<1	
AL_S1	10				L¥							l

GEOENGINEERS

Note: See Figure B-1 for explanation of symbols. Coordinates Data Source: Horizontal approximated based on topographic land survey completed by Sound Development Group October 6, 2017. Vertical approximated based on topographic land survey completed by Sound Development Group October 6, 2017.

Log of Boring GEI-39

Project: Quiet Cove Project Location: Anacortes, Washington Project Number: 5147-024-05

Drilleo	9/19	Start 9/20	017	<u>En</u> 9/19,	<u>d</u> /2017	Total Depth	(ft)	15	Logged By SJB/NS Checked By BJT	Driller Cascade Drilling, LP			Drilling Method Direch Push
	e Eleva al Datur		(ft)		N	10.3 AVD88			Hammer Data	Pneumatic	Drillin Equip		GeoProbe 7822 DT
Eastin Northi						8593.49 9698.84			System Wa Datum	A State Plane North NAD83 (feet)	See "I	Remark	s" section for groundwater observed
Notes	5.												
$\overline{}$				FIEL	D DA	TA							
Elevation (feet)	Depth (feet)	Interval	Recovered (in)	Blows/foot	Collected Sample	<u>Sample Name</u> Testing	Graphic Log	Group Classification		TERIAL CRIPTION	Sheen	Headspace Vapor (ppm)	REMARKS
_%	0 —		39					SP	Light brown fine to media	um sand (dry) (fill)			
_	_								-		- NS	<1	
Ļ	_					<u>1</u> CA			_		– NS	<1	
	-							SP-SM		nd with occasional silt and	NS	<1	
	_				┢				gravel (moist) _		– NS	<1	
	5 —		54			2 CA			_		— NS	<1	
	_					CA		SP-SM	Becomes wet	medium sand with silt and	— ss	18	Groundwater observed at approximately 6 feet at time of drilling
	-				L.			SP-SM	gravel (wet) Gray fine to medium san	d with occasional silt and	- NS	<1	
_	_								gravel (wet)		- NS	<1	
-	_								_		– NS	<1	
-	10 -					3					NS	<1	
مـ	10		48					SP-SM		with occasional silt and gravel	_		
-	-								- (wet) (native)		- NS	<1	
_	-					4 CA			_		- NS	<1	
-	-								-		- NS	<1	
-	-				¥				_		- NS	<1	
Co	ordinate	es D)ata S	Source:	Horizo		oximat		I on topographic land survey on topographic land survey of the survey of	ompleted by Sound Developme	nt Group) Octob	er 6, 2017. Vertical approximated based on
	5-4				1	.,			·	ring GEI-40			
	-	-	_						Project: Quiet	-			
(EC	b	EN	١G	INE	ER	s /			n: Anacortes, Washing r: 5147-024-05	ton		Figure B-13 Sheet 1 of 1

Drillec	d 9/1	<u>Start</u> 3/20:	17	<u>En</u> 9/13,	<u>1</u> /2017	Total Depth	(ft)	10	Logged By NS Checked By BJT	Driller Cascade Drilling, LF	5		Drilling Method Direch Push
Surfac Vertica			ft)		Ν	14.5 IAVD88			Hammer Data	Pneumatic	Drilling Equipr	g nent	GeoProbe 6600
Easting Northir)8736.61 9501.57			System WA Datum	State Plane North NAD83 (feet)	Groun	dwate	r not observed at time of exploration
Notes										(
\geq				FIFI	D D/								
Elevation (feet)	o Depth (feet) I		Recovered (in)	Blows/foot	Collected Sample	Sample Name Testing	Graphic Log	Group Classification		TERIAL CRIPTION	Sheen	Headspace Vapor (ppm)	REMARKS
-	-		12			1		CC SP	Approximately 4 inches o Brown fine to coarse san		- NS - NS	<1	Rock in shoe
-	-								-		– NS	<1	
- 	-								_		- NS	<1	
-	5—	-	60		•	2 CA		ML	Gray sandy silt with trace	gravel (moist) (native)	NS	<1	
-	-								_		- NS	<1	
-	-				<u> </u>				_		- NS	<1	
- 	-								-		- NS - NS	<1	
No	te: See ordinat	Figur es Da	re B- ata S nd su	1 for e	kplana Horizco omplet	tion of syr intal approved by Sou	nbols. xximat	ed based velopmer	on topographic land survey c nt Group October 6, 2017.	ompleted by Sound Developn	nent Group	Octob	er 6, 2017. Vertical approximated based on
—									Log of Bo	ring GEI-41			
C	ΞE	эE		IG	N	EER	s /	D	Project: Quiet Project Location		ngton		Figure B-14 Sheet 1 of 1

Drilled	5	Start		En	<u>d</u>	Total Depth	ı (ft)	15	Logged By NS Checked By BJT Driller Cascade Drilling, LP			Drilling Method Direch Push
Surface Vertical			t)			14.27 VAVD88				Drilling Equipn		GeoProbe 6600
Easting Northing					120 55	08793.28 9512.02			System WA State Plane North Datum NAD83 (feet)	See "R	emark	s" section for groundwater observed
Notes:												
\geq				FIEI	D D/	ATA						
Elevation (feet)	o Depth (feet) I		Kecovered (IN)	Blows/foot	Collected Sample	Sample Name Testing	Graphic Log	Group Classification	MATERIAL DESCRIPTION	Sheen	Headspace Vapor (ppm)	REMARKS
-	-		26			1 CA		SP SP	Approximately 4 inches cement concrete Dark brown fine to coarse sand with gravel (dry) (fill) Light brown fine to medium sand with occasional gravel (moist)	- NS - NS - NS	<1 <1 <1	
_% - -								ML	Gray silt with sand (moist) (native)	- NS - NS - NS	<1 <1 <1	
-	-				¥	CA			Brown-gray silt with sand (moist) Becomes wet	- NS - NS	<1	Groundwater observed at approximately 8 feet at time of drilling
 	- 10	6	50		•	3		ML	Brown silt with sand (moist)	- NS - NS	<1	
-	-				¥				-	- NS - NS	<1	
0	-								-	- NS - NS	<1	
Cool	rdinat	es Dat	ta So	ource:	Horizo	ition of syn Intal appro ted by Sou	oximat	ed based	I on topographic land survey completed by Sound Development nt Group October 6, 2017.	Group	Octob	ver 6, 2017. Vertical approximated based on
									Log of Boring GEI-42			
G	ΞE	эE	N	IG	IN	EER	S/	D	Project: Quiet Cove Project Location: Anacortes, Washingt Project Number: 5147-024-05	on		Figure B-15 Sheet 1 of 1

Start Drilled 9/13/2017	<u>End</u> 9/13/2017	Total Depth (ft)	10	Logged By Checked By	NS BJT	Driller Cascade Drilling, LP		Drilling Method Direch Push
Surface Elevation (ft) Vertical Datum		4.37 VD88		Hammer Data		Pneumatic	Drilling Equipment	GeoProbe 6600
Easting (X) Northing (Y)		825.75 510.64		System Datum	WA	A State Plane North NAD83 (feet)	Groundwate	r not observed at time of exploration

GEOENGINEERS

ate:5/9/18 Path:W

Coordinates Data Source: Horizontal approximated based on topographic land survey completed by Sound Development Group October 6, 2017. Vertical approximated based on topographic land survey completed by Sound Development Group October 6, 2017. Vertical approximated based on topographic land survey completed by Sound Development Group October 6, 2017.

Log of Boring GEI-43

Project: Quiet Cove Project Location: Anacortes, Washington Project Number: 5147-024-05

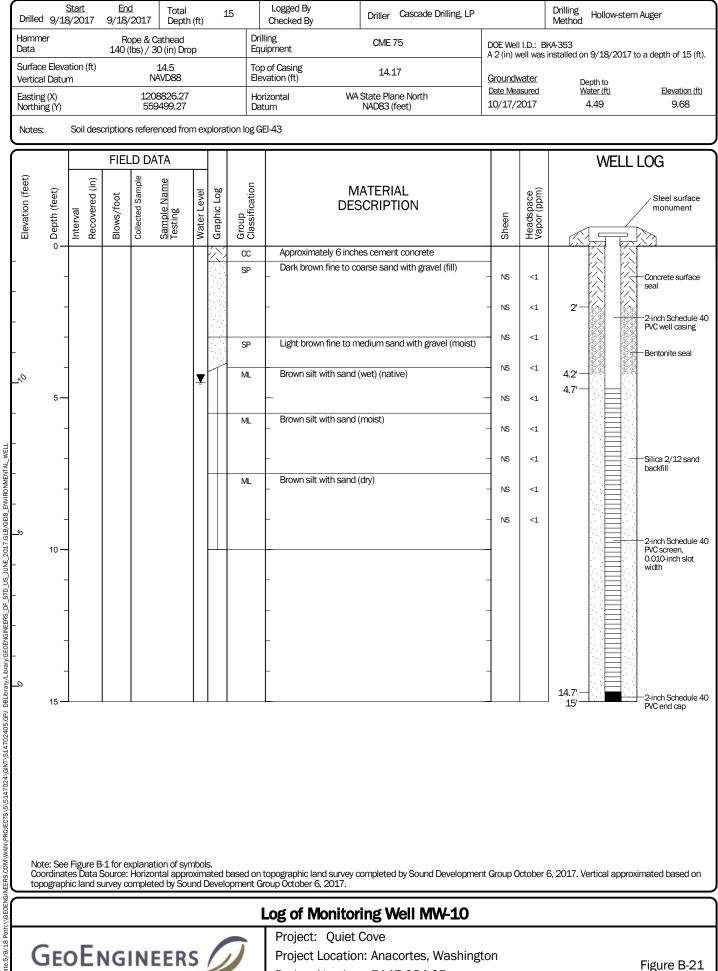
Drilleo	9/1	Start 3/20		<u>En</u> 9/13	<u>d</u> /2017	, Total Depth	(ft)	15	Logged By NS Checked By BJT Drille	er Cascade Drilling, LP			Drilling Method Direch Push
Surfac Vertica	e Eleva Il Datur		(ft)			12.94 AVD88			Hammer Data Pner	umatic	Drilling Equipn	nent	GeoProbe 6600
Easting Northin						08733.06 59766.2				Plane North 33 (feet)	See "R	emark	s" section for groundwater observed
Notes													
$\overline{}$				FIE	LD D/	ATA							
Elevation (feet)	o Depth (feet) I	Interval	Recovered (in)	Blows/foot	Collected Sample	<u>Sample Name</u> Testing	Graphic Log	Group Classification	MATERI DESCRIP		Sheen	Headspace Vapor (ppm)	REMARKS
	0-		32					CR	Crushed gravel				
-	_							SP	Brown fine to coarse sand with	gravel (dry) (fill)	NS	<1	
-	-					$\frac{1}{CA}$			_		- NS	<1	
_%	-								-		- NS	<1	
-	_				↓			SP	Light brown fine to medium san	d (dry)	NS	<1	
-	5 —		60			2			_		— NS	<1	
-	_								_		- NS	<1	
-	_				ł	3			Becomes moist, 1-inch shell lay	er	- NS	<1	
<u>~</u>	- 3 CA DUP 2							SP	Gray fine to medium sand (wet)	(native)	NS	<1	Groundwater observed at approximately 7½ feet at time of drilling
_	_							0		(hauve)	- NS	<1	
-	10										- NS	<1	
_	_		60		ļ	$\frac{4}{CA}$			_		- NS	<1	
_								SP	Dark gray fine to medium sand	with occasional gravel			
0									- (wet)		- NS	<1	
	_					5			_		- NS	<1	
-	-								-		- NS	<1	
Co	ordinat	es D	ata S	Source:	Horizo		oximat		I on topographic land survey complet t Group October 6, 2017.	ted by Sound Developmen	nt Group	Octob	er 6, 2017. Vertical approximated based on
	5 1.			, -		,			Log of Boring	GEI-44			
	_		_						Project: Quiet Cove				
C	ΞEC	b	EN	١G	IN	EER	s /	D	Project Location: An Project Number: 51	acortes, Washing	ton		Figure B-17 Sheet 1 of 1

Drille	d 9/18	Start 3/20	17	<u>En</u> 9/18/		Total Depth	(ft)	1	5		jed By ked By	NS BJT	Driller	Cascade Drillin	ng, LP			Drilling Method
Hamn Data	ner					Cathead 30 (in) Dro	р			Drilling Equipment	t		CME	75		DOE Wel		, 3KA-355 ; installed on 9/18/2017 to a depth of 15 (ft).
	ce Eleva al Datu		(ft)			15.96 AVD88				op of Cas Jevation (15.4	13		Groundy		Depth to
Eastin)8975.42 9557.88				lorizontal Datum		WA	State Pla NAD83 (ne North feet)		<u>Date Mea</u> 10/18/2		Water (ft) Elevation (ft) 5.68 9.75
Notes														,				
\geq				FIEL	_D D/	ATA												WELL LOG
feet)	it)		l (in)	t	ample	ame	el	ß	ion			Μ	ATERI	AL			a (F	
Elevation (feet)	Depth (feet)	Interval	Recovered (in)	Blows/foot	Collected Sample	<u>Sample Name</u> Testing	Water Level	Graphic Log	Group Classification				SCRIPT			en	Headspace Vapor (ppm)	Steel surface monument
Elev	o Dep	Inte	Rec	Blov	Colle	Test	Wat	Gra						(maint)	(£ 11)	Sheen	Hea Vap	
_%	-								SP	_ Gra	ay fine to	meaium	Sanu witi	gravel (moist) ((1111)	_		Concrete surface
_	_		18	6					SP	Lig		fine to c	oarse san	d with gravel (lo	iose,	- NS	<1	2'
						1					dry)							2 2-inch Schedule 40 PVC well casing
	-		18	9												- NS	<1	Bentonite seal
-	-		18		_				NR	- No	recovery	,				- NS	<1	4.2'-***
-	5 —						¥			_	,					NS	<1	
_%	-		18	23	Ť	2			SM	Bro	own silty s moist)	sand with	occasion	al gravel (loose	,	NS	<1	
	-									-	,					- NS	<1	Silica 2/12 sand backfill
_	-		18	25	+				SP-SN	1 Bro	own fine t dense, r		m sand wi	th silt (medium		- NS	<1	
- - -	-		18	20	•	3			SP-SN	1 – Bro	own fine s	sand with	silt (loos	e, wet) (native)		- NS	<1	
	10 —									-						NS	<1	2-inch Schedule 40 PVC screen, 0.010-inch slot
<u>~</u>	-		18	20	·					-						- NS	<1	width
2 2 -	-		18	16						_						- NS	<1	
	-		10	10	_											NS	<1	
	_		18	42		4			SP-SN		own tine s	sand with	i siit (mea	ium dense mois	ST)	- NS	<1	
1	15																-	14.7'
5	15-																	15' PVC end cap
4																		
No	ote: See	Figu	ıre B-	1 for e	xplanat	tion of syn	nbols	6.										
Co	oordinat	es D	ata S	Source:	Horizo	ntal appro ed by Sou	xima	ated k	pased contractions of the second s	on topogra Group Oc	aphic lanc ctober 6, 2	d survey o 2017.	completed	I by Sound Deve	elopmen	t Group C	October	6, 2017. Vertical approximated based on
										Log	of M	onito	ring \	Vell MW-	6			
	2-	~ [-				oject:				chingt			
	JF(J	_ ľ	٩G	INI	EERS					-			cortes, Was 7-024-05	si ili igt			Figure B-18 Sheet 1 of 1

Date:5/9/18 Path:\GEOENGINEERS.COM/WAN/PROJECTS\5/5147024\GINT\514702405.GPJ DBLIbran/Libran/Libran/GEOENGINEERS_DF_3DL_JUNE_2017.GLB/GERS_ENVIRONMENTAL_WELL

Drilled 9/19	<u>Star</u> 9/20		<u>En</u> 9/19/		Total Depth	(ft)	13.5	5	Logged By NS Checked By BJT	Driller Cascade Drilling, LP			Drilling Method
Hammer Data					Cathead 30 (in) Dro	р			rilling quipment	CME 75	DOE Wel	I I.D.: B vell was	KA-357 installed on 9/19/2017 to a depth of 10.3
Surface Eleva Vertical Datu		n (ft)		Ν	13.1 AVD88				op of Casing levation (ft)	12.62	(ft). <u>Ground</u>	vater	Depth to
Easting (X) Northing (Y)					08872.65 9890.97				orizontal WA atum	State Plane North NAD83 (feet)	Date Mea 10/18/3		Water (ft) Elevation (ft) 6.69 5.93
Notes:													
			FIEL	D D/	ATA								WELL LOG
(feet) et)		d (in)	ŗ	ample	ame	el	Эg	tion	M	ATERIAL		e E	Oharl surface
Elevation (feet) Depth (feet)	Interval	Recovered (in)	Blows/foot	Collected Sample	<u>Sample Name</u> Testing	Water Level	Graphic Log	Group Classification	DES	SCRIPTION	en	Headspace Vapor (ppm)	Steel surface monument
- Elev	Inte	Rec	Blov	Colle	Test	Wat	Gra				Sheen	Hea Vap	
								CR	Crushed gravel				
] 10	9				6	SP	Brown fine to mediur	n sand with trace gravel (loose,			Concrete surface seal
					1			0i	– dry) (fill)		- NS	<1	2' 2-1-2-inch Schedule 4
<u>_</u> ^0 -		18	6								– NS	<1	PVC well casing
-	$\left\ \right\ $			L.					-		– NS	<1	Bentonite seal
5 —		18	16					SP	Brown fine to medium (loose, dry)	n sand with occasional gravel	- NS	<1	4.5
-					_				Becomes moist		- NS	<1	Silica 2/12 sand
		18	16		2	Ţ		SP	Brown fine to mediur	n sand (loose, wet)	_		backfill
-		18	13					SP	Brown fine to coarse	sand with gravel (loose, wet)	- NS	<1	2-inch Schedule 4
<u>- &</u>				¥				0i	-	(,)	- NS	<1	0.010-inch slot width
		18	10					SP-SM		edium sand with silt (loose,	NS	<1	
. 10 —									wet) (native)		— NS	<1	10' - 2-inch Schedule 4
		18	16		3		•	SP-SM	Brown fine to coarse (loose, wet)	sand with silt and gravel	- NS	<1	PVC end cap
		18	12					SP-SM	Brown fine to mediur	n sand with silt (loose, wet)	NS	<1	12'
_o -				•					-		- NS	<1	13.5
													13.5
Note: See	e Fig	jure B	∙1 for e	xplana	tion of syr	nbok	S.						
Coordinat	tesī	Data S	Source:	Horizo	ontal appro	oxima	ated bas	sed or ment	n topographic land survey o Group October 6, 2017.	ompleted by Sound Developmer	nt Group C)ctober	6, 2017. Vertical approximated based on
									Log of Monito	ring Well MW-7			
~		_							Project: Quiet				
GE	0	E١	١G	IN	EER	S			Project Location Project Number	n: Anacortes, Washing	ton		Figure B-19 Sheet 1 of 1

Log of Monitoring Well MW-7


Drilled		Start /20		<u>Enc</u> 9/19/		Total Depth	(ft)	13	3.5		Logged By Checked By	NS BJT	Driller	Cascade Drilling	g, LP			Drilling Method Hollow	-stem	Auger
Hamme Data	er					Cathead 30 (in) Dro	р				ling uipment		CMET	75		DOE Well A 2 (in) w		(A-356 nstalled on 9/19/2	2017 to	a depth of 13 (ft).
Surface Vertical			(ft)			13.58 AVD88					o of Casing vation (ft)		13.1	3		Groundv		Depth to		,
Easting Northin	; (X) Ig (Y)					08872.65 19890.97				Hor Dat	rizontal tum	WA	State Pla NAD83 (1			<u>Date Mea</u> 10/17/2		<u>Water (ft)</u> 5.51		Elevation (ft) 7.62
Notes:																				
\bigcap				FIEL	D D/		_											WE	ELL I	_OG
Elevation (feet)	Depth (feet)	Interval	Recovered (in)	Blows/foot	Collected Sample	<u>Sample Name</u> Testing	Water Level	Graphic Log	Group	Classification			ATERI, SCRIPT			Sheen	Headspace Vapor (ppm)			Steel surface monument
_	0 —	Π	14	8	-			<u>]]</u>	Bai		Bark and	-				_			囹	
_	_		10	10					SP-S			moist) (fill)	n silt and gravel		NS	<1		X	-Concrete surface seal 2-inch Schedule 40
_	-		10	13		1 CA			M	L	Light gray s moist)	silt with or	ange mot	ling (medium sti	ff,	NS	<1	2'	200	PVC well casing Bentonite seal
_0											_				-	- NS	<1	2.7'		
									PI	Г	Black organ	nic matter	(peat) wit	h trace grass (so	oft,	SS	2.7			
	5								SF	D	· · · · · ·		dium sand	with gravel (me	dium _	- NS	<1			
_	-		0	45				<u></u>	NF	7	No recover	у				NS	<1			-Silica 2/12 sand backfill
	-				*						_				-	NS	<1			
- - -	-		9	21					SF	5		ine to coa loose, we		vith trace silt and	d	- NS	<1			-2-inch Schedule 40 PVC screen, 0.010-inch slot width
	-		14	10							-				-	NS	<1			widui
_	10 —										_				-	NS	<1			
	-		18	16	•	3			SP-S	SM	Light gray f (native)		rse sand v	with silt (loose, m	noist)	- NS	<1			
-	-	$\left \right $	18	26					SN	N	Gray silty s	and (loose	e, moist)		-	NS	<1			
_	-				¥.				SN	N	Brown silty	sand (me	dium den:	se, moist)	-	NS	<1	12.7'		-2-inch Schedule 40 PVC end cap
Coo	ordinate	es D	ata S	ource:	Horizo	tion of syn	oxima	ated I	based	Ioni	topographic lan roup October 6,	d survey o	xompleted	by Sound Devel	opment	Group C) Detober (5, 2017. Vertical a	ipproxii	nated based on

Log of Monitoring Well MW-8

Project: Quiet Cove Project Location: Anacortes, Washington Project Number: 5147-024-05

Figure B-20 Sheet 1 of 1

GEOENGINEERS

Project Number: 5147-024-05

3 FOFNGINFFRS

Sheet 1 of 1

Drilled 9/1	<u>Sta</u> 1.8/2		<u>En</u> 9/18/		Total Depth	(ft)	1	5	Logged	-		Driller	Cascade Drilling, LP			Drilling Method Hollow-stem Auger
Hammer Data					Cathead 30 (in) Dro	p			Drilling Equipment	-		CME 75	5			BKA-354 as installed on 9/18/2017 to a depth of 15 (ft).
Surface Eleva Vertical Datu		on (ft)			12.69 AVD88				op of Casin Jevation (ft)	Ś		12.28	3	<u>Groun</u>		
Easting (X) Northing (Y)				120	08783.3 9665.06			F	Horizontal Datum	١	WA S 1	State Plan NAD83 (fe	e North eet)		easured	<u>d Water (ft)</u> <u>Elevation (ft)</u>
Notes:								·								
			FIEL	D DA	ATA											WELL LOG
Elevation (feet) Depth (feet)	Interval	Recovered (in)	Blows/foot	Collected Sample	<u>Sample Name</u> Testing	Water Level	Graphic Log	Group Classification				ATERIA CRIPTI		Sheen	Headspace	Steel surface monument
Ш -о	2	Re	Ē	ပိ	20 Te	Ň	<u>م</u>	ចំប៊ CR		hed gravel				ې ک	Ξ	
-	-							ML	Gray	silt with sand	d (mc	oist) (fill)		- NS	<1	L Concrete surface seal
- _%	-	18	12		1			SP-SN		fine to coarse silt with sand			t (loose, moist)	— нs	180	0 2'
	╫	18	19			¥		ML SP-SN	0		`		t (loose, moist)	- MS	93	
[·	-	18		+				ML	- ív	ood) (very so	oft, m	noist)	matter (weathered	HS	28	
5 -								INIX		covery due to orth	o ruk	oble; mov	ed boring 3 feet	_		
-	T	18	5		2			SP-SN PT	-				t (loose, moist) ed wood) (soft,	MS	90	
	-	18	14							noist)				– MS	12:	backfill
														- MS	18	
10 –		18	13		3			SP-SN		medium to co cose, wet)	oars	e sand wi	th silt and gravel	MS	198	8 2-inch Schedule 40 PVC screen,
- - -	_	18	13	L.					-					– MS	90	0.010-inch slot width
- - - - - -	-	18	19	•	4				-					- NS	<1	
_0	-								-					– NS	<1	
-	-	18	7	L.				SP-SN		fine to mediu ravel (loose, v			silt and occasional	- NS	<1	
15 -																14.7' 2-inch Schedule 40 15' PVC end cap
Coordina	ates	Data S	Source:	Horizo	ion of syn	xima	ated b	ased o	on topograpi	nic land surve ber 6, 2017.	ey co	ompleted l	by Sound Developme	ent Group	Octobe	er 6, 2017. Vertical approximated based on
	JIIC	ianu s	urvey O	unplet	eu ny SOU	na L	evel0	pment	•	,		ng \4/				
										ect: Quie		-	ell MW-11			
Ge	0	E	١G	INE	EER	5		J	Proj		ion	: Anac	ortes, Washing -024-05	gton		Figure B-22 Sheet 1 of 1

Start Drilled 9/15/2017	<u>End</u> 9/15/2017	Total Depth (ft)	9	Logged By Checked By	NS BJT	Driller Cascade Drilling, LP		Drilling Method Direch Push
Surface Elevation (ft) Vertical Datum		.41 VD88		Hammer Data		Pneumatic	Drilling Equipment	GeoProbe 7822 DT
Easting (X) Northing (Y)		8635.57 848.09		System Datum	W	A State Plane North NAD83 (feet)	Groundwate	r not observed at time of exploration

\bigcap			FIE	LD D	ATA						
Elevation (feet)	o Depth (feet) I	Interval Recovered (in)	Blows/foot	Collected Sample	<u>Sample Name</u> Testing	Graphic Log	Group Classification	MATERIAL DESCRIPTION	Sheen	Headspace Vapor (ppm)	REMARKS
	0-	18				000	GP	Sand and cobble (moist)			
	-				<u>1</u> CA		SP	Brown fine to coarse sand with occasional gravel and - shell fragments (moist)	NS	<1	
	_			Ļ					NS	<1	
	_	32						_	NS	<1	
	-				2 CA		SP-SM	Black fine to medium sand with silt (moist) -	NS	<1	
	5—								NS	<1	
	-	30							- NS	<1	
	_								NS	<1	
	-			-	2	0 0	GP	Gravel with fine to medium sand (moist)	NS	<1	
;; ; ;					3		SP	Brown fine to medium sand with gravel (moist)			

GEOENGINEERS

Note: See Figure B-1 for explanation of symbols. Coordinates Data Source: Horizontal approximated based on topographic land survey completed by Sound Development Group October 6, 2017. Vertical approximated based on topographic land survey completed by Sound Development Group October 6, 2017.

Log of Boring SED-1B

Project: Quiet Cove Project Location: Anacortes, Washington Project Number: 5147-024-05

Start Drilled 9/15/2017	<u>End</u> 9/15/2017	Total Depth (ft)	12	Logged By Checked By	NS BJT	Driller Cascade Drilling, LP		Drilling Method Direch Push
Surface Elevation (ft) Vertical Datum		17 VD88		Hammer Data		Pneumatic	Drilling Equipment	GeoProbe 7822 DT
Easting (X) Northing (Y)		8640.96 873.14		System Datum	W	A State Plane North NAD83 (feet)	Groundwate	r not observed at time of exploration

				FIF	LD D	ΑΤΑ						
Elevation (feet)	Depth (feet)	Interval	Recovered (in)	Blows/foot	Collected Sample	Sample Name Testing	Graphic Log	Group Classification	MATERIAL DESCRIPTION	Sheen	Headspace Vapor (ppm)	REMARKS
	0 —		23		Ì	1 CA		GP SP-SM SP	Sand and cobble (moist) Brown fine to coarse sand with silt and occasional shell fragments (moist) Dark gray to black fine to coarse sand with occasional gravel (moist)	- NS - NS	<1 <1	
	_		27		Ť	2 CA		SP-SM	Gray fine sand with silt and occasional gravel (wet)	- NS	<1	
	5 —		36		•			SP-SM	Brown fine to medium sand with silt and occasional gravel (wet)	- NS - NS	<1 <1 <1	
	_		36		Ì	3			-	- NS	<1	
	10 —									- NS	<1	

GEOENGINEERS

Note: See Figure B-1 for explanation of symbols. Coordinates Data Source: Horizontal approximated based on topographic land survey completed by Sound Development Group October 6, 2017. Vertical approximated based on topographic land survey completed by Sound Development Group October 6, 2017.

Log of Boring SED-1C

Project: Quiet Cove Project Location: Anacortes, Washington Project Number: 5147-024-05

Start Drilled 7/17/2018	<u>End</u> 7/17/2018	Total Depth (ft)	4.75	Logged By Checked By	pr Bjt	Driller Gravity Environmenta	I	Drilling Method Vibracore
Surface Elevation (ft) Vertical Datum	Undet	ermined		Hammer Data		N/A	Drilling Equipment	RV Discovery, 27' Research Vessel
Easting (X) Northing (Y)		509.45 751.05		System Datum	W	A State Plane North NAD83 (feet)	Groundwate	r not observed at time of exploration

\bigcap			FIE	_D D	ATA						
Elevation (feet)	Depth (feet)	Interval Recovered (in)	Blows/foot	Collected Sample	Sample Name Testing	Graphic Log	Group Classification	MATERIAL DESCRIPTION	Sheen	Headspace Vapor (ppm)	REMARKS
	0-	52.8					ML	Brown silt with sand			
	-			I			SP-SM	Brown fine to coarse sand with silt	NS	<1	
	-						SP	Brown-black fine to coarse sand with trace silt			<5% shell fragments
	-			I				Grades to with gravel	NS	<1	
	-							 Increased gravel content 			

Note: See Figure B-1 for explanation of symbols. Coordinates Data Source: Horizontal approximated based on . Vertical approximated based on .

Log of Boring SED-2

GEOENGINEERS

Project: Quiet Cove Project Location: Anacortes, Washington Project Number: 5147-024-05

Start Drilled 7/17/2018	<u>End</u> 7/17/2018	Total Depth (ft)	5	Logged By Checked By	pr Bjt	Driller Gravity Environmenta	I	Drilling Method Vibracore
Surface Elevation (ft) Vertical Datum	Undet	ermined		Hammer Data		N/A	Drilling Equipment	RV Discovery, 27' Research Vessel
Easting (X) Northing (Y)		564.71 795.03		System Datum	W	A State Plane North NAD83 (feet)	Groundwate	r not observed at time of exploration

			FIE	DD	ATA						
Elevation (feet)	Depth (feet)	Interval Recovered (in)	Blows/foot	Collected Sample	<u>Sample Name</u> Testing	Graphic Log	Group Classification	MATERIAL DESCRIPTION	Sheen	Headspace Vapor (ppm)	REMARKS
	0-	60					ML	Brown-black silt with sand			
	-			I					NS	<1	
	-						SP-SM	Brown-black fine to coarse sand with silt			
	_			I		/ 0 0 0	GP	Brown-black fine to coarse gravel with sand and trace silt	NS	<1	
	-			+		م <u>، م</u>			NS	<1	
	5 —			+			SP	Brown fine to coarse sand with gravel			Difficult to recover sediment at base of core

GEOENGINEERS_DF_STD_US_JUNE_2017.GLB/GEI8_ENVIRONMENTAL_STANDARD_NO_GM 5\5147024\GINT\514702405.GPJ DBLibrary/Libra ate:5/17/19

Note: See Figure B-1 for explanation of symbols. Coordinates Data Source: Horizontal approximated based on . Vertical approximated based on .

Log of Boring SED-3

GEOENGINEERS

Project: Quiet Cove Project Location: Anacortes, Washington Project Number: 5147-024-05

Start Drilled 7/16/2018	<u>End</u> 7/16/2018	Total Depth (ft)	5.5	Logged By Checked By	pr Bjt	Driller Gravity Environmenta	I	Drilling Method Vibracore
Surface Elevation (ft) Vertical Datum	Undet	ermined		Hammer Data		N/A	Drilling Equipment	RV Discovery, 27' Research Vessel
Easting (X) Northing (Y)		595.18 332.32		System Datum	W	A State Plane North NAD83 (feet)	Groundwate	r not observed at time of exploration

_STD_US_JUNE_2017.GLB/GEI8_ENVIRONMENTAL_STANDARD_N0_GW

Ъ

SED FNGINFERS

5\5147024\GINT\514702405.GPJ DBLibrary/Libra

ate:5/17/19

\bigcap			FIEI	_D D	ATA						
Elevation (feet)		Interval Recovered (in)	Blows/foot	Collected Sample	Sample Name Testing	Graphic Log	Group Classification	MATERIAL DESCRIPTION	Sheen	Headspace Vapor (ppm)	REMARKS
	0-	54		_			GP	Black fine to coarse gravel with sand	NS	<1	
	_						SP	Black fine to coarse sand with trace silt and occasional gravel			
	_			T			ML	Black silt with sand and occasional gravel	NS	<1	
	-			I			GP	Fine to coarse gravel with trace silt, sand and occasional cobbles	NS	<1	
	5 —					\circ			-		

Note: See Figure B-1 for explanation of symbols. Coordinates Data Source: Horizontal approximated based on . Vertical approximated based on .

Log of Boring SED-4

GEOENGINEERS

Project: Quiet Cove Project Location: Anacortes, Washington Project Number: 5147-024-05

Start Drilled 7/16/2018	<u>End</u> 7/16/2018	Total Depth (ft)	5	Logged By Checked By	pr Bjt	Driller Gravity Environmenta	I	Drilling Method Vibracore
Surface Elevation (ft) Vertical Datum	Undet	ermined		Hammer Data		N/A	Drilling Equipment	RV Discovery, 27' Research Vessel
Easting (X) Northing (Y)		559.53 735.1		System Datum	W	A State Plane North NAD83 (feet)	Groundwate	r not observed at time of exploration

\square			FIE	LD D	ATA						
Elevation (feet)	b Depth (feet)	Interval Becovered (in)	Blows/foot	Collected Sample	<u>Sample Name</u> Testing	Graphic Log	Group Classification	MATERIAL DESCRIPTION	Sheen	Headspace Vapor (ppm)	REMARKS
	0-	. 5	7	I			SP-SM SP	Fine sand with silt - Fine to coarse sand with occasional gravel -	NS	<1	
	-			I					NS	<1	<10% shell fragments
	5 —										

Note: See Figure B-1 for explanation of symbols. Coordinates Data Source: Horizontal approximated based on . Vertical approximated based on .

Log of Boring SED-5

GEOENGINEERS

Project: Quiet Cove Project Location: Anacortes, Washington Project Number: 5147-024-05

Start Drilled 7/17/2018	<u>End</u> 7/17/2018	Total Depth (ft)	4.75	Logged By Checked By	pr Bjt	Driller Cascade Drilling, LP		Drilling Method Direct Push
Surface Elevation (ft) Vertical Datum	Undet	ermined		Hammer Data		N/A	Drilling Equipment	Power-corer
Easting (X) Northing (Y)		594.91 752.22		System Datum	W	A State Plane North NAD83 (feet)	Groundwate	r not observed at time of exploration

\bigcap			FIEL	D D	ATA						
Elevation (feet)	Depth (feet)	Interval Recovered (in)	Blows/foot	Collected Sample	Sample Name Testing	Graphic Log	Group Classification	MATERIAL DESCRIPTION	Sheen	Headspace Vapor (ppm)	REMARKS
	0— - -	42		I			SP	Brown fine to coarse sand with occasional sand	NS	<1	<10% shell fragments
	-						NR				Multiple attempts with consistent refusalt at approximately 3 feet depth

Note: See Figure B-1 for explanation of symbols. Coordinates Data Source: Horizontal approximated based on . Vertical approximated based on .

Log of Boring SED-6

Project: Quiet Cove Project Location: Anacortes, Washington Project Number: 5147-024-05

Drilled	<u>Start</u> 7/17/2018	<u>End</u> 7/17/2018	Total Depth (ft)	1	Logged By Checked By	pr Bjt	Driller Cascade Drilling, LP		Drilling Method Direct Push
Surface Vertical	Elevation (ft) Datum	Undet	ermined		Hammer Data		N/A	Drilling Equipment	Power-corer
Easting (Northing					System Datum	W	A State Plane North NAD83 (feet)	Groundwate	r not observed at time of exploration
Notoo									

\bigcap			FIEL	D D	ATA						
Elevation (feet)	b Depth (feet)	Interval Recovered (in)	Blows/foot	Collected Sample	<u>Sample Name</u> Testing	Graphic Log	Group Classification	MATERIAL DESCRIPTION	Sheen	Headspace Vapor (ppm)	REMARKS
	0-	12		T			SP	Brown fine to coarse sand	NS	<1	<10% shell fragments
	-					E	NR	No recovery, refusal			Refusal due to asphalt/brick chunks larger than core diameter, multiple attempts

Note: See Figure B-1 for explanation of symbols. Coordinates Data Source: Horizontal approximated based on . Vertical approximated based on .

Log of Boring SED-7

GEOENGINEERS

Project: Quiet Cove Project Location: Anacortes, Washington Project Number: 5147-024-05

Start Drilled 7/16/2018	<u>End</u> 7/16/2018	Total Depth (ft)	5	Logged By Checked By	pr Bjt	Driller Gravity Environmenta	I	Drilling Method Vibracore
Surface Elevation (ft) Vertical Datum	(ft) Undetermined Hammer Data			N/A	Drilling Equipment	RV Discovery, 27' Research Vessel		
Easting (X) Northing (Y)		526.17 709.73		System Datum	W	A State Plane North NAD83 (feet)	Groundwate	er not observed at time of exploration

		FIEL	D D	ATA						
Elevation (feet) Depth (feet)	Interval Recovered (in)	Blows/foot	Collected Sample	Sample Name Testing	Graphic Log	Group Classification	MATERIAL DESCRIPTION	Sheen	Headspace Vapor (ppm)	REMARKS
- 0 - -	50.4		I			GP SP-SM	Brown fine to coarse gravel with trace silt and sand Grades to with brick fragments, broken glass Black fine to coarse sand with silt	NS NS	3.3 2.0	<10% shell fragments
-			I			GP	Black fine to coarse gravel with trace silt, sand and occasional cobbles	NS	1.8	

_STD_US_JUNE_2017.GLB/GEI8_ENVIRONMENTAL_STANDARD_N0_GW Ъ SED FNGINFERS 5\5147024\GINT\514702405.GPJ DBLibrary/Libra ate:5/17/191

Note: See Figure B-1 for explanation of symbols. Coordinates Data Source: Horizontal approximated based on . Vertical approximated based on .

Log of Boring SED-8

GEOENGINEERS

Project: Quiet Cove Project Location: Anacortes, Washington Project Number: 5147-024-05

Start Drilled 7/17/2018	<u>End</u> 7/17/2018	Total Depth (ft)	3	Logged By Checked By	pr Bjt	Driller Cascade Drilling, LP		Drilling Method Direct Push
Surface Elevation (ft) Vertical Datum	Undet	ermined		Hammer Data		N/A	Drilling Equipment	Power-corer
Easting (X) Northing (Y)		498.71 572.18		System Datum	WA State Plane North NAD83 (feet)		Groundwate	r not observed at time of exploration

			FIEL	D D	ATA						
Elevation (feet)	Depth (feet)	Interval Recovered (in)	Blows/foot	Collected Sample	<u>Sample Name</u> Testing	Graphic Log	Group Classification	MATERIAL DESCRIPTION	Sheen	Headspace Vapor (ppm)	REMARKS
	0	27.6		I		0 0	GP SP SP	Brown fine to coarse gravel with cobbles Brown fine to coarse sand Brown fine to coarse sand with occasional gravel	NS	<1	
	_			T			GP NR	Brown fine to coarse gravel with trace silt and sand Grades to with cobbles No recovery	NS	2.2	Refusal due to cobble material, multiple attem

Note: See Figure B-1 for explanation of symbols. Coordinates Data Source: Horizontal approximated based on . Vertical approximated based on .

Log of Boring SED-9

GEOENGINEERS

Project: Quiet Cove Project Location: Anacortes, Washington Project Number: 5147-024-05

Start Drilled 7/17/2018	<u>End</u> 7/17/2018	Total Depth (ft)	6.75	Logged By Checked By	pr Bjt	Driller Gravity Environmenta	I	Drilling Method Vibracore
Surface Elevation (ft) Vertical Datum	Undet	ermined		Hammer Data		N/A	Drilling Equipment	RV Discovery, 27' Research Vessel
Easting (X) Northing (Y)		3615.7 9878		System Datum	W	A State Plane North NAD83 (feet)	Groundwate	r not observed at time of exploration

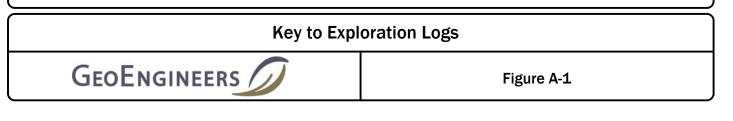
			FIEL	D D	ATA						
Elevation (feet)	Depth (feet)	Interval Recovered (in)	Blows/foot	Collected Sample	<u>Sample Name</u> Testing	Graphic Log	Group Classification	MATERIAL DESCRIPTION	Sheen	Headspace Vapor (ppm)	REMARKS
	0 —	74.4		1			ML	Brown-black silt with sand	NS	<1	
	-			I			SM	Becomes more dense Brown-black silty fine sand			<5% shell fragments
	_			I				Decreased silt content	NS	2.2	
	_						SP	Brown-black medium to coarse sand with gravel and occasional cobbles	-		
	5 —								-		
	_										

Note: See Figure B-1 for explanation of symbols. Coordinates Data Source: Horizontal approximated based on . Vertical approximated based on .

Log of Boring SED-10

GEOENGINEERS

Project: Quiet Cove Project Location: Anacortes, Washington Project Number: 5147-024-05


	5	OIL CLASSI	FICAT			ADD
r	MAJOR DIVIS	IONS	SYM GRAPH	BOLS LETTER	TYPICAL DESCRIPTIONS	S) GRAF
		CLEAN GRAVELS		GW	WELL-GRADED GRAVELS, GRAVEL - SAND MIXTURES	ditAl
	GRAVEL AND GRAVELLY SOILS	(LITTLE OR NO FINES)		GP	POORLY-GRADED GRAVELS, GRAVEL - SAND MIXTURES	
COARSE GRAINED	MORE THAN 50%	GRAVELS WITH FINES		GM	SILTY GRAVELS, GRAVEL - SAND - SILT MIXTURES	
SOILS	OF COARSE FRACTION RETAINED ON NO. 4 SIEVE	(APPRECIABLE AMOUNT OF FINES)		GC	CLAYEY GRAVELS, GRAVEL - SAND - CLAY MIXTURES	
		CLEAN SANDS		sw	WELL-GRADED SANDS, GRAVELLY SANDS	<u>1/ \\ // \</u>
MORE THAN 50% RETAINED ON NO. 200 SIEVE	SAND AND SANDY SOILS	(LITTLE OR NO FINES)	****	SP	POORLY-GRADED SANDS, GRAVELLY SAND	
	MORE THAN 50% OF COARSE	SANDS WITH FINES		SM	SILTY SANDS, SAND - SILT MIXTURES	
	FRACTION PASSING ON NO. 4 SIEVE	(APPRECIABLE AMOUNT OF FINES)		SC	CLAYEY SANDS, SAND - CLAY MIXTURES	Ţ
				ML	INORGANIC SILTS, ROCK FLOUR, CLAYEY SILTS WITH SLIGHT PLASTICITY	
FINE GRAINED	SILTS AND CLAYS	LIQUID LIMIT LESS THAN 50		CL	INORGANIC CLAYS OF LOW TO MEDIUM PLASTICITY, GRAVELLY CLAYS, SANDY CLAYS, SILTY CLAYS, LEAN CLAYS	
SOILS				OL	ORGANIC SILTS AND ORGANIC SILTY CLAYS OF LOW PLASTICITY	
MORE THAN 50% PASSING NO. 200 SIEVE				МН	INORGANIC SILTS, MICACEOUS OR DIATOMACEOUS SILTY SOILS	
	SILTS AND CLAYS	LIQUID LIMIT GREATER THAN 50		СН	INORGANIC CLAYS OF HIGH PLASTICITY	
				он	ORGANIC CLAYS AND SILTS OF MEDIUM TO HIGH PLASTICITY	
	HIGHLY ORGANIC	SOILS		PT	PEAT, HUMUS, SWAMP SOILS WITH HIGH ORGANIC CONTENTS	
	□ 2.4- ○ Star ■ She □ Pist □ Dire □ Bull □ Con lowcount is required	ect-Push < or grab tinuous Coring ecorded for dri	barrel tion Test (s wen samp umpler 12	(SPT) Diers as t 2 inches	he number of (or distance noted).	AL CA CP CS DD DS HA MC MD Mohs OC PM PI PP SA TX UC VS

ADDITIONAL MATERIAL SYMBOLS

SYM	BOLS	TYPICAL							
GRAPH	LETTER	DESCRIPTIONS							
	AC	Asphalt Concrete							
	сс	Cement Concrete							
	CR	Crushed Rock/ Quarry Spalls							
	SOD	Sod/Forest Duff							
	TS	Topsoil							

ES		Groundwater Contact
	Ţ	Measured groundwater level in exploration, well, or piezometer
	<u> </u>	Measured free product in well or piezometer
в, тү		Graphic Log Contact Distinct contact between soil strata
	\sim	Approximate contact between soil strata
		Material Description Contact Contact between geologic units
		Contact between soil of the same geologic unit
1		Laboratory / Field Tests
	%F %G AL CA CP CS DD DS HA MC MD MOhs OC PM PI PP SA TX UC VS	Percent fines Percent gravel Atterberg limits Chemical analysis Laboratory compaction test Consolidation test Dry density Direct shear Hydrometer analysis Moisture content Moisture content and dry density Mohs hardness scale Organic content Permeability or hydraulic conductivity Plasticity index Pocket penetrometer Sieve analysis Triaxial compression Unconfined compression Vane shear
		Sheen Classification
	NS SS MS HS	No Visible Sheen Slight Sheen Moderate Sheen Heavy Sheen

NOTE: The reader must refer to the discussion in the report text and the logs of explorations for a proper understanding of subsurface conditions. Descriptions on the logs apply only at the specific exploration locations and at the time the explorations were made; they are not warranted to be representative of subsurface conditions at other locations or times.

Drilled	1 10/1	Start L7/2	018	<u> </u> 10/1	<u>End</u> 7/201	.8 Total Depth	1 (ft)	20	Logged By NS Checked By BJT D	riller Cascade Drilling, LP			Drilling Direct Push Method
Surfac Vertica	xe Eleva al Datui	ation m	(ft)			12.35			Hammer Data	N/A	Drilling Equipn	nent	Track-mounted Drill Rig
Eastin Northi	ng (Y)				559 12	9669.441 08741.24	6 I		System WA Sta Datum NA	ate Plane North AD83 (feet)	See "R	emark	s" section for groundwater observed
Notes	.						<u> </u>		1				1
£)				FIEI	_D D		+						
Elevation (feet)	o Depth (feet) I	Interval	Recovered (in)	Blows/foot	Collected Sample	<u>Sample Name</u> Testing	Graphic Log	Group Classification	MATE DESCRI		Sheen	Headspace Vapor (ppm)	REMARKS
- - _%	-		36					CR SP	Crushed rock Brown fine to coarse sand wi (loose, moist)	ith occasional gravel	\$\$	<1	
-	- 5 —		60					ML	Gray silt with sand Gray silty fine to coarse sand	l (medium dense, moist)	— HS	315	
S - -	-							PT	Becomes wet Brown peat (medium stiff, we Gray silty fine to coarse sand	·	NS	<1	Groundwater observed at approximately 8 fee during drilling
-	10		60								— - нз -	121	
-	-							SP	- Gray fine to coarse sand with	n trace silt (loose, wet)	_ SS	28	
-	- 15		60					SP SM	Gray medium to coarse sanc Gray silty fine to medium sar	nd (dense, wet)			
_9 - -	-							ML	Gray silt (very dense, moist to - -	9 wel) (nadve till)	- NS -	<1	
No Co	20 — ote: See ordinat	Figu es D	ure B- Data S	1 for e Source:	xplana Horizo	ation of syn ontal appr	mbols.	ed based	l on . Vertical approximated based	d on .			
									Log of Bori	ng SD-1			
									Project: Quiet Co				

GEOENGINEERS Project: Quiet Cove Project Location: Anacortes, Washington Project Number: 5147-024-05

Date:5/24/1

Drilled 10/17/2018	<u>End</u> 10/17/2018	Total Depth (ft)	15	Logged By Checked By	NS BJT	Driller Cascade Drilling, LP		Drilling Method Direct Push
Surface Elevation (ft) Vertical Datum					N/A	Drilling Equipment	Track-mounted Drill Rig	
Easting (X) Northing (Y)		7.0847 90.458		System Datum	W	A State Plane North NAD83 (feet)	Groundwate	r not observed at time of exploration

United and the second secon			FIEL	D D/	ATA						
30 CR Gravel (base course/fill) 1 SP Brown fine to medium sand (loose, moist) SS 9 1 SP Brown fine to medium sand (loose, moist) SS 11 5 ML Gray silt with sand (dense, moist) SS 20 5 SM Gray silt y fine to coarse sand (dense, moist) SS 20 5 SM Gray silty fine to coarse sand with occasional organic matter (peat, wood chips, roots) (medium stiff to silf, moist to wet) MS 226 10 PT Peat (medium stiff, moist to wet) NS 1 10 SM Lark gray silty fine to coarse sand with gravel (very dense, wet) NS 1 10 SM Lark gray silty fine to coarse sand with gravel (very dense, wet) NS 1 10 ML Gray silt (very dense, moist) NS 1 10 ML Gray silt (very dense, moist) NS 1			Blows/foot	Collected Sample	<u>Sample Name</u> Testing	Graphic Log	Group Classification		Sheen	Headspace Vapor (ppm)	REMARKS
SP Brown fine to medium sand (loose, moist) SS 11 ML Gray silt with sand (dense, moist) SS 11 S ML Gray silt with sand (dense, moist) SS 20 S SM Gray silty fine to coarse sand with occasional organic matter (peat, wood chips, roots) (medium stiff to stiff, moist) MS 226 L SM Dark gray silty fine to coarse sand with gravel (very dense, wet) NS 1 L SM Dark gray silty fine to coarse sand with gravel (very dense, wet) NS 1 L ML Gray silty fine to coarse sand with gravel (very dense, wet) NS 1 L ML Gray silty fine to coarse sand with gravel (very dense, wet) NS 1 L ML Gray silty fine to coarse sand with gravel (very dense, wet) NS 1 L ML Gray silty fine to medium sand (very dense, wet) NS 1 L ML Gray silt (very dense, moist) NS 1 L ML Gray silt (very dense, moist) NS 1	-0	36					CR	Gravel (base course/fill) -			
ML Gray silt with sand (dense, moist) 5	<u>-</u> >0			Ì	1		SP	Brown fine to medium sand (loose, moist)		9	
5	-						ML	Gray silt with sand (dense, moist)	- SS	11	
2 SM Brown sity fine to coarse sand with occasional organic matter (peat, wood chips, roots) (medium stiff to stiff, moist) 4 PT Peat (medium stiff, moist to wet) 10 PT Peat (medium stiff, moist to wet) 10 SM Dark gray sity fine to coarse sand with gravel (very dense, wet) 10 SM Dark gray sity fine to medium sand (very dense, wet) 10 ML Gray sit (very dense, moist)	5 -						SM	Gray silty fine to coarse sand (dense, moist)	- ss	20	
10 10 10 10 10 10 10 10 10 10	۔ ۔ چ				2		SM	Brown silty fine to coarse sand with occasional organic matter (peat, wood chips, roots) (medium stiff to 	- MS	226	
S - - - - NS 1 ML Gray silt (very dense, moist) - NS <1	- 10 —			_*_			PT	Peat (medium stiff, moist to wet) 	-		
- - ML Gray silt (very dense, moist) NS <1	-			1	3		SM	Dark gray silty fine to coarse sand with gravel (very dense, wet)	NS	1	
	- a			*					- NS	<1	
	-			Ì	4		ML	Gray silt (very dense, moist) 			

Note: See Figure B-1 for explanation of symbols. Coordinates Data Source: Horizontal approximated based on . Vertical approximated based on .

Log of Boring SD-2

GEOENGINEERS

NEERS.COM

Date:5/24/19 Pat

Project: Quiet Cove Project Location: Anacortes, Washington Project Number: 5147-024-05

Figure B-3 Sheet 1 of 1

Drilled	<u>Start</u> 10/17/2018	<u>End</u> 10/17/2018	Total Depth (ft)	15	Logged By Checked By	NS BJT	Driller Cascade Drilling,	P	Drilling Method Direct Push
Surface Vertical	Elevation (ft) Datum	12	2.59		Hammer Data		N/A	Drilling Equipment	Track-mounted Drill Rig
Easting (X) Northing (Y)			51.0388 324.646	0,000			A State Plane North NAD83 (feet)	See "Remai	rks" section for groundwater observed

Date:5/24/191

FIELD DATA					
Elevation (feet) Depth (feet) Interval Recovered (in) Blows/foot Collected Sample Testing	Graphic Log Group Classification	MATERIAL DESCRIPTION	Sheen	Headspace Vapor (ppm)	REMARKS
- 30	20 X	Cement concrete pavement			
	SP SM SM	Brown medium to coarse sand with gravel Brown silty fine to coarse sand with gravel (loose, moist) Gray silty fine to medium sand with trace gravel (loose, moist) Black medium to coarse sand with gravel (loose, wet) Black medium to coarse sand with gravel (loose, wet)		30	
	ML	Peat Light gray silty fine to coarse sand with gravel Gray silt	- NS - NS	<1	
Note: See Figure B-1 for explanation of Coordinates Data Source: Horizontal ap	ymbols.	l on . Vertical approximated based on .			
		Log of Boring SD-3			

GEOENGINEERS Project: Quiet Cove Project Location: Anacortes, Washington Project Number: 5147-024-05

Figure B-4 Sheet 1 of 1

	Drilled	10/2	<u>Start</u> 17/2018	10,	<u>End</u> /17/20	018 Total Depth	n (ft)	15	Logged By NS Checked By BJT	Driller	Cascade Drilling, LP			Drilling Method Direct Push
s V	Surface (ertica	e Eleva I Datu	ition (ft) m			12.89			Hammer Data	N/#	A Contraction of the second se	Drilling Equipr	g ment	Track-mounted Drill Rig
	asting Iorthir				55 12	59624.032 208721.00	9 3		System Datum	WA State Pla NAD83		See "F	temarl	ks" section for groundwater observed
	Notes:													
Ĩ				FII	ELD I	DATA								
	Elevation (feet)	Depth (feet)	Interval Recovered (in)		Collected Sample	<u>Sample Name</u> Testing	Graphic Log	Group Classification		ATERIA SCRIPTI		Sheen	Headspace Vapor (ppm)	REMARKS
		0-	30					CC SP	6 inches concrete cer Brown fine to coarse s			_		
-		-						SP SP	Dark brown fine to coa			_		
_`	ò	-			Î	1			(very loose, dry)			– MS	74	
-		-			↓			SP SM	Gray fine to coarse sa Gray silty fine to coars (dense, moist)					
NO_GW		5-	36						-			_		
D_US_JUNE_2017.GLB/GEI8_ENVIRONMENTAL_STANDARD_NO_GW	0	-			Ì	2			_			– HS	290	Groundwater observed at approximately 7½ feet during drilling
VIRONMEN		-		PT Peat										
17.GLB/GEI8_EN	10 - 60 - 60													
IS_JUNE_20		-						SM	Light gray silty fine to wet)	coarse sand	with gravel (dense,	_		
EERS_DF_STD_L	ML Gray silt with trace gravel (very dense, moist) NS <1													
brary:GEOENGIN														
BLibrary/Li														
Date:5/24/19 Path:\\GEGENGINEERS.COM\WAN\PROJECTS\S\5147024\GINT\514702405.GPJ DBLUDrary/EDGENGINEERS_DF_ST														
0JECTS\5\514702														
.COM\WAN\PR(Not	·p• 5pr	Figure	₹ -1 for	exula	nation of sy	mhole							
ENGINEERS	Coc	ordinat	es Data	Sourc	e: Hori	zontal appr	oxima	ted based	l on . Vertical approximated	based on .				
ath:\\GEOf									Log of		SD-4			
Date:5/24/19 P	C	ΒE	οE	NG	δIN	EER	S/	D	Project: Quie Project Locat Project Numb	on: Anac	ortes, Washing 7-024-05	ton		Figure B-5 Sheet 1 of 1

Start Drilled 10/18/2018	<u>End</u> 10/18/2018	Total Depth (ft)	11	Logged By Checked By	NS BJT	Driller Cascade Drilling, LP		Drilling Method Direct Push	
Surface Elevation (ft) Vertical Datum					N/A	Drilling Equipment	Track-mounted Drill Rig		
Easting (X) Northing (Y)	559577.8851 1208791.369			System Datum	W	A State Plane North NAD83 (feet)	See "Remarks" section for groundwater observed		

$\overline{}$			FIE	LD D	ATA						
Elevation (feet)	Depth (feet)	Interval Recovered (in)	Blows/foot	Collected Sample	<u>Sample Name</u> Testing	Graphic Log	Group Classification	MATERIAL DESCRIPTION	Sheen	Headspace Vapor (ppm)	REMARKS
-	-0	18			1		SOD SM	Grass surface Brown silty fine to medium sand (loose, dry)	NS	<1	
_%	-						SM SM	Light brown silty fine to medium sand with gravel (loose, moist) Dark brown silty fine to coarse sand with occasional gravel (medium dense, moist)			
-	5 -	60			2			Becomes wet	SS	<1	Groundwater observed at approximately 5 fee during drilling
<u>_</u> 6					3		SM ML	Light brown to gray silty fine to coarse sand with gravel Gray silt with sand and occasional gravel (very dense, moist)	NS	<1	
- - - -	-	12									

EERS.COM\WAN'

Note: See Figure B-1 for explanation of symbols. Coordinates Data Source: Horizontal approximated based on . Vertical approximated based on .

Log of Boring SD-5

Project: Quiet Cove Project Location: Anacortes, Washington Project Number: 5147-024-05

Figure B-6 Sheet 1 of 1

Start Drilled 10/18/2018	<u>End</u> 10/18/2018	Total Depth (ft)	10	Logged By Checked By	NS BJT	Driller Cascade Drilling, LP		Drilling Method Direct Push
Surface Elevation (ft) Vertical Datum	15	5.66		Hammer Data		N/A	Drilling Equipment	Track-mounted Drill Rig
Easting (X) Northing (Y)				System Datum	W	A State Plane North NAD83 (feet)	See "Remarl	ks" section for groundwater observed

\equiv			FIE	LD D	ATA						
Elevation (feet)	Depth (feet)	Interval Recovered (in)	Blows/foot	Collected Sample	<u>Sample Name</u> Testing	Graphic Log	Group Classification	MATERIAL DESCRIPTION	Sheen	Headspace Vapor (ppm)	REMARKS
_\\$^	0 —	54					SOD	Grass surface			
-	-			Ţ	1		SM	Brown silty fine to medium sand (loose, dry)	NS	<1	
-	-						SM	Light brown silty fine to medium sand with gravel (loose, moist)	NS	<1	
-	5 —	60		L.	2		SM	Dark brown silty fine to coarse sand with occasional gravel (medium dense, moist)	-		
- -	-				3			Becomes wet	NS	<1	Groundwater observed at approximately 6 feet during drilling
-							SM	Light brown to gray silty fine to coarse sand with gravel			
				Ì	4		ML	Gray silt with sand and occasional gravel (very dense, moist)	NS	<1	
	10										

EERS.COM\WAN'

ate:5/24/19 F

Note: See Figure B-1 for explanation of symbols. Coordinates Data Source: Horizontal approximated based on . Vertical approximated based on .

Log of Boring SD-6

GEOENGINEERS

Project: Quiet Cove Project Location: Anacortes, Washington Project Number: 5147-024-05

Figure B-7 Sheet 1 of 1

Drilled 10/17/2018	End 10/17/2018 Total Dept	al 20 th (ft)	Logged By Checked By	NS BJT	Driller Cascade Drilling, LP		Drilling Method Direct Push
Surface Elevation (ft) Vertical Datum	12.28		Hammer Data		N/A	Drilling Equipment	Track-mounted Drill Rig
Easting (X) Northing (Y)	559689.308 1208650.60		System Datum	W	A State Plane North NAD83 (feet)	See "Remar	ks" section for groundwater observed

Date:5/24/19 Patl

			FIE	ELD D	ATA						
Elevation (feet)	Depth (feet)	Interval Recovered (in)	Blows/foot	Collected Sample	<u>Sample Name</u> Testing	Graphic Log	Group Classification	MATERIAL DESCRIPTION	Sheen	Headspace Vapor (ppm)	REMARKS
-	0-	48	3				CR	Gravel surface			
-	-			Ì	1		SP	Dark brown fine to coarse sand with occasional gravel and trace organic matter (roots) (loose, moist)	- SS	<1	
_%	-				2		SP	Brown fine to medium sand with trace gravel (medium dense, moist)	SS	<1	
-	-			L.			SP	- Gray fine sand (medium dense, moist)	NS	<1	
-	-										
-	5-	60									
STANDARD_NO_GW	-										
	-	-					SM	Gray silty fine to medium sand with occasional gravel (medium dense, moist)	NS	<1	
ENVIRONM	-	-		+	3		SM	Gray silty fine to medium sand with occasional gravel (dense, wet)	NS	<1	Groundwater observed at approximately 8½ feet during drilling
	10-	60	,		-						
JUNE_20	-								_		
	-								_		
DBLibrary/Library:GE0ENGINEERS	-								- NS	<1	
ny/Library:GF	-						SM	Gray silty fine to coarse sand with gravel (very dense, wet)	-		
7	15 -	60	,		4				-		
L4702405.G	-								_		
224/GINT\51	-						SM	Gray silty fine to coarse sand (very dense, wet)	NS	<1	
IS\5\5147(I	-			+	5		ML	- Gray silt with sand (very dense, moist)	NS	<1	
AN\PROJEC	-										
ENGINEERS COM/WANY PROJECTS (5) 5147 024 (GINT)514702405.05	– 20 Note: See Coordina	Figure	B-1 for Source	explan e: Horiz	ation of syr ontal appre	nbols. oximat	ted based	on . Vertical approximated based on .		<u> </u>	1
					- 1.1-						
×/::								Log of Boring SD-7			

og or boring

Drilled	10/2	<u>Start</u> 17/2018	10/1	<u>End</u> L7/201	.8 Total Depth	n (ft)	15	Logged By NS Checked By BJT	Driller Cascade Drilling, LP			Drilling Method Direct Push
Surfac Vertica		ation (ft) m			12.81			Hammer Data	N/A	Drilling Equipr	; nent	Track-mounted Drill Rig
Eastin; Northi	g (X) ng (Y)			559 120	9636.037 08772.98	4 6		System W/ Datum	A State Plane North NAD83 (feet)	Groun	dwate	r not observed at time of exploration
Notes										1		
\geq			FIE	LD D	ATA							
Elevation (feet)	o Depth (feet) I	Interval Recovered (in)	Blows/foot	Collected Sample	<u>Sample Name</u> Testing	Graphic Log	Group Classification		TERIAL CRIPTION	Sheen	Headspace Vapor (ppm)	REMARKS
_	0-	40					CR	Gravel base course				
- ~~	-				1		SP	Brown fine to coarse san	d with gravel (dense, moist)	- HS	336	
-	5 — -	48			2		SM WD SP	Wood debris (log decay)	ine to coarse sand with gravel	HS	98	
 - -		60			3		SP	- Light gray silty fine to coa wet)	arse sand with gravel (dense,	- NS	30	
- - -	-				4		ML	Light gray silt with traces	sand (very dense, moist)	- NS	<1	
Nº CO	15 — te: See ordinat	Figure E es Data S	- Source	explana : Horizo	ation of syr ontal appro	nbols. oxima	ted based	d on . Vertical approximated b				
									oring SD-8			
C	GEOENGINEERS Project: Quiet Cove Project Location: Anacortes, Washington Figure B-9 Project Number: 5147-024-05 Sheet 1 of 1											

Start Drilled 10/17/2018	<u>End</u> 10/17/2018	Total Depth (ft)	5	Logged By Checked By	NS BJT	Driller Cascade Drilling, LP		Drilling Method Direct Push
Surface Elevation (ft) Vertical Datum	13	3.02		Hammer Data		N/A	Drilling Equipment	Track-mounted Drill Rig
Easting (X) Northing (Y)		32.6333 344.563		System Datum	W	A State Plane North NAD83 (feet)	Groundwate	r not observed at time of exploration

ſ			FIEL	_D D	ATA						
Elevation (feet)	Depth (feet)	Interval Recovered (in)	Blows/foot	Collected Sample	Sample Name Testing	Graphic Log	Group Classification	MATERIAL DESCRIPTION	Sheen	Headspace Vapor (ppm)	REMARKS
-	0-	30				$\langle \rangle$	CC	Concrete pavement			
_	_						SP	Brown fine to mediums and with gravel (loose, moist)			
-	-								MS	4	
<u>^</u>	_			١Î -	1	्र स्टिन्स					
							SM	Brown silty fine to medium sand (loose, moist)			
-	-			۲.		次	CC	Concrete rubble			
	5—						SP	Dark brown fine to coarse sand with gravel (dense, moist to wet)			

Note: See Figure B-1 for explanation of symbols. Coordinates Data Source: Horizontal approximated based on . Vertical approximated based on .

Log of Boring SD-9

GEOENGINEERS

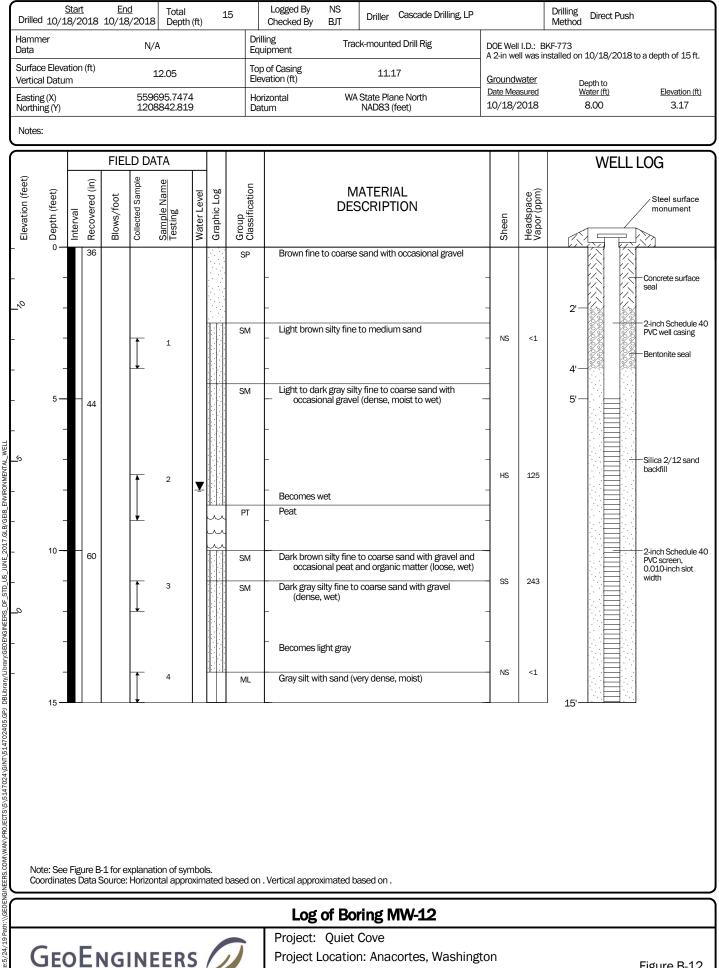
Project: Quiet Cove Project Location: Anacortes, Washington Project Number: 5147-024-05

Figure B-10 Sheet 1 of 1

Drilled 10/18/2018	<u>End</u> 10/18/2018	Total Depth (ft)	5	Logged By Checked By	NS BJT	Driller Cascade Drilling, LP		Drilling Method Direct Push
Surface Elevation (ft) Vertical Datum	13	3.17		Hammer Data		N/A	Drilling Equipment	Track-mounted Drill Rig
Easting (X) Northing (Y)		01.036 783.61		System Datum	W	A State Plane North NAD83 (feet)	Groundwate	r not observed at time of exploration

ſ			FIE	LD D	ATA						
Elevation (feet)	b Depth (feet)	Interval Recovered (in)	Blows/foot	Collected Sample	<u>Sample Name</u> Testing	Graphic Log	Group Classification	MATERIAL DESCRIPTION	Sheen	Headspace Vapor (ppm)	REMARKS
-	0-	54				$\langle \chi \rangle$	CC	Concrete pavement			
	_						CR	Gravel base course			
-							SP	Light brown fine to medium sand (loose, dry)			
-	-						S	Concrete			
0							SP	Brown to dark brown fine to coarse sand (loose, dry)			
_%						\square	CC	Concrete			
-	-			Ť			SP	Dark gray fine to coarse sand with gravel (dense, moist)	MS	293	
	5 —										

y:GEOENGINEERS_DF_STD_US_JUNE_2017.GLB/GEI8_ENVIRONMENTAL_STANDARD_N0_GW \GINT\514702405.GPJ DBLibrary/Library PR0 IFCTS\5\5147024 EERS.COM\WAN ate:5/24/191


Note: See Figure B-1 for explanation of symbols. Coordinates Data Source: Horizontal approximated based on . Vertical approximated based on .

Log of Boring SD-10

GEOENGINEERS

Project: Quiet Cove Project Location: Anacortes, Washington Project Number: 5147-024-05

Figure B-11 Sheet 1 of 1



Es GEDENGINFERS DBLibrary \GINT\514702405.GPJ RS CON

Project Location: Anacortes, Washington Project Number: 5147-024-05

Figure B-12 Sheet 1 of 1

ATTACHMENT 2 Surveys

View of the lower beach from N Avenue looking northeast.

Notes:

- 1. Water level response was measured with an unvented 0-30psi INW PT2X pressure transducer recording 8 times per second.
- 2. Well is screened across the water table.
- 3. Aquifer is assumed to be unconfined. 4.
- Saturated thickness is assumed to be 7.6 feet. 5.
- Well is screened from 3.7 to 11.7 feet below ground surface. 6. Static water level was 6.37 feet below ground surface.
- This drawing is for information purposes. It is intended to assist in showing 7. features discussed in an attached document. GeoEngineers, Inc. cannot guarantee the accuracy and content of electronic files. The master file is stored by GeoEngineers, Inc. and will serve as the official record of this communication.
- Data Source: project.GeoEngineers.com/Technical Analysis/Tidal Study and Slug Testing/Slug Tests/MW-2_BouwerRice1976.xlxs

Visual Survey – Quiet Cove Beach

Quiet Cove Property Anacortes, WA

GEOENGINEERS /

View of the lower beach from adjacent to Quiet Cove Site looking northeast.

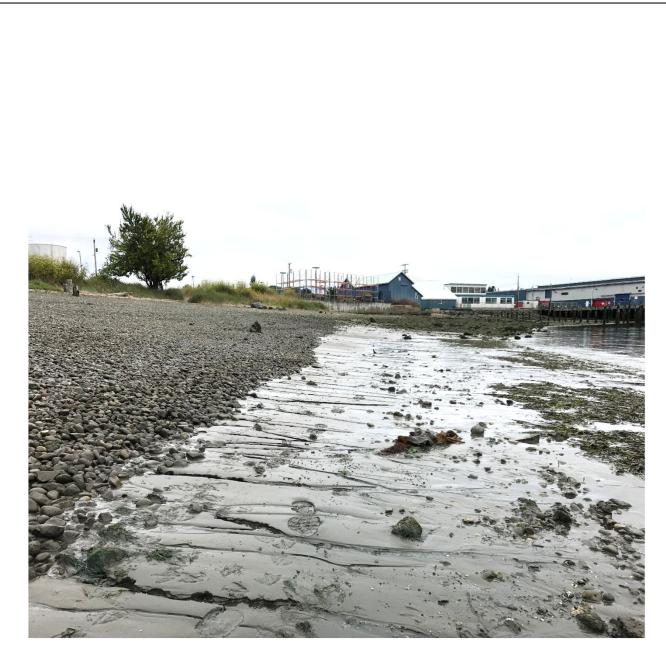
Notes:

- 1. Water level response was measured with an unvented 0-30psi INW PT2X pressure transducer recording 8 times per second.
- 2. Well is screened across the water table.
- 3. Aquifer is assumed to be unconfined.
- 4. Saturated thickness is assumed to be 7.6 feet.
- Well is screened from 3.7 to 11.7 feet below ground surface.
 Static water level was 6.37 feet below ground surface.
- This drawing is for information purposes. It is intended to assist in showing features discussed in an attached document. GeoEngineers, Inc. cannot guarantee the accuracy and content of electronic files. The master file is stored by GeoEngineers, Inc. and will serve as the official record of this communication.

Data Source: project.GeoEngineers.com/Technical Analysis/Tidal Study and Slug Testing/Slug Tests/MW-2_BouwerRice1976.xlxs

Visual Survey – Quiet Cove Beach

Quiet Cove Property Anacortes, WA


View from the lower beach looking east at the Quiet Cove Site (building is the office/maintenance building).

- 1. Water level response was measured with an unvented 0-30psi INW PT2X pressure transducer recording 8 times per second.
- 2. Well is screened across the water table.
- 3. Aquifer is assumed to be unconfined. 4. Saturated thickness is assumed to be 7.6 feet.
- 5.
- Well is screened from 3.7 to 11.7 feet below ground surface. 6. Static water level was 6.37 feet below ground surface.
- This drawing is for information purposes. It is intended to assist in showing 7. features discussed in an attached document. GeoEngineers, Inc. cannot guarantee the accuracy and content of electronic files. The master file is stored by GeoEngineers, Inc. and will serve as the official record of this communication.
- Data Source: project.GeoEngineers.com/Technical Analysis/Tidal Study and Slug Testing/Slug Tests/MW-2_BouwerRice1976.xlxs

Visual Survey - Quiet Cove Beach

Quiet Cove Property Anacortes, WA

GEOENGINEERS /

View of the lower beach from adjacent to the Quiet Cove Site looking southwest.

Notes:

- 1. Water level response was measured with an unvented 0-30psi INW PT2X pressure transducer recording 8 times per second.
- 2. Well is screened across the water table.
- 3. Aquifer is assumed to be unconfined.
- 4. Saturated thickness is assumed to be 7.6 feet.
- 5. Well is screened from 3.7 to 11.7 feet below ground surface.
- 6. Static water level was 6.37 feet below ground surface.
- This drawing is for information purposes. It is intended to assist in showing features discussed in an attached document. GeoEngineers, Inc. cannot guarantee the accuracy and content of electronic files. The master file is stored by GeoEngineers, Inc. and will serve as the official record of this communication.
- Data Source: project.GeoEngineers.com/Technical Analysis/Tidal Study and Slug Testing/Slug Tests/MW-2_BouwerRice1976.xlxs

Visual Survey – Quiet Cove Beach

Quiet Cove Property Anacortes, WA

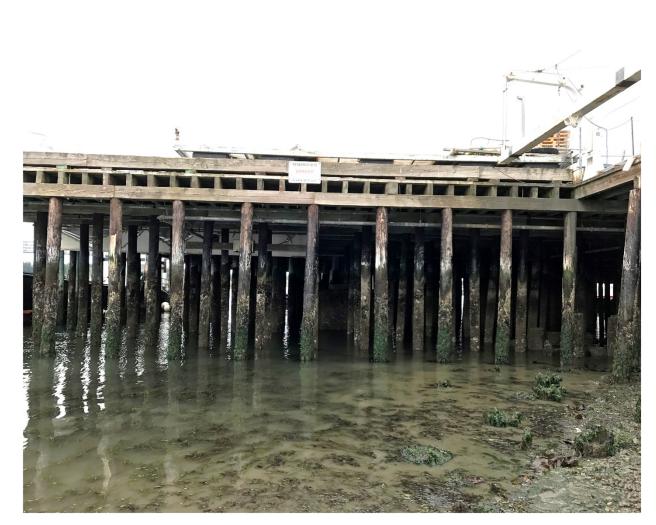
Close-up of beach substrate at elevation around 0 feet MLLW.

- Water level response was measured with an unvented 0-30psi INW PT2X 1. pressure transducer recording 8 times per second.
- 2. Well is screened across the water table.
- 3. Aquifer is assumed to be unconfined. 4. Saturated thickness is assumed to be 7.6 feet.
- 5.
- Well is screened from 3.7 to 11.7 feet below ground surface. 6. Static water level was 6.37 feet below ground surface.
- This drawing is for information purposes. It is intended to assist in showing 7. features discussed in an attached document. GeoEngineers, Inc. cannot guarantee the accuracy and content of electronic files. The master file is stored by GeoEngineers, Inc. and will serve as the official record of this communication.
- Data Source: project.GeoEngineers.com/Technical Analysis/Tidal Study and Slug Testing/Slug Tests/MW-2_BouwerRice1976.xlxs

Visual Survey – Quiet Cove Beach

Quiet Cove Property Anacortes, WA

GEOENGINEERS


View of the south end of Curtis Wharf looking east from the lower beach.

- 1. Water level response was measured with an unvented 0-30psi INW PT2X pressure transducer recording 8 times per second.
- 2. Well is screened across the water table.
- 3. Aquifer is assumed to be unconfined.
- 4. Saturated thickness is assumed to be 7.6 feet.
- Well is screened from 3.7 to 11.7 feet below ground surface.
 Static water level was 6.37 feet below ground surface.
- This drawing is for information purposes. It is intended to assist in showing features discussed in an attached document. GeoEngineers, Inc. cannot guarantee the accuracy and content of electronic files. The master file is stored by GeoEngineers, Inc. and will serve as the official record of this communication.
- Data Source: project.GeoEngineers.com/Technical Analysis/Tidal Study and Slug Testing/Slug Tests/MW-2_BouwerRice1976.xlxs

Visual Survey – Quiet Cove Beach

Quiet Cove Property Anacortes, WA

GEOENGINEERS /

View of the southwest section of Curtis Wharf from the lower beach.

- Water level response was measured with an unvented 0-30psi INW PT2X pressure transducer recording 8 times per second.
 Well is personal person the upter table
- 2. Well is screened across the water table.
- Aquifer is assumed to be unconfined.
 Saturated thickness is assumed to be 7.6 feet.
- Saturated thickness is assumed to be 7.6 reet.
 Well is screened from 3.7 to 11.7 feet below ground surface.
- Static water level was 6.37 feet below ground surface.
- This drawing is for information purposes. It is intended to assist in showing features discussed in an attached document. GeoEngineers, Inc. cannot guarantee the accuracy and content of electronic files. The master file is stored by GeoEngineers, Inc. and will serve as the official record of this communication.

Data Source: project.GeoEngineers.com/Technical Analysis/Tidal Study and Slug Testing/Slug Tests/MW-2_BouwerRice1976.xlxs

Visual Survey - Curtis Wharf

Quiet Cove Property Anacortes, WA

GEOENGINEERS /

Under-wharf view of the southwest bulkhead on Curtis Wharf. Pipe is for fire suppression system. No evidence of historical product lines coming through the bulkhead.

- 1. Water level response was measured with an unvented 0-30psi INW PT2X pressure transducer recording 8 times per second.
- 2. Well is screened across the water table.
- Aquifer is assumed to be unconfined.
 Saturated thickness is assumed to be 7.6 f
- Saturated thickness is assumed to be 7.6 feet.
 Well is screened from 3.7 to 11.7 feet below ground surface.
- Weil is screened from 3.7 to 11.7 feet below ground surface.
 Static water level was 6.37 feet below ground surface.
- This drawing is for information purposes. It is intended to assist in showing features discussed in an attached document. GeoEngineers, Inc. cannot guarantee the accuracy and content of electronic files. The master file is stored by GeoEngineers, Inc. and will serve as the official record of this communication.
- Data Source: project.GeoEngineers.com/Technical Analysis/Tidal Study and Slug Testing/Slug Tests/MW-2_BouwerRice1976.xlxs

Visual Survey - Curtis Wharf

Quiet Cove Property Anacortes, WA

GEOENGINEERS

Under-wharf view from the bulkhead looking north. Pipe is for fire suppression system.

- 1. Water level response was measured with an unvented 0-30psi INW PT2X pressure transducer recording 8 times per second.
- 2. Well is screened across the water table.
- Aquifer is assumed to be unconfined.
 Saturated thickness is assumed to be 7.6 feet.
- saturated trickness is assumed to be 7.6 feet.
 Well is screened from 3.7 to 11.7 feet below ground surface.
- Static water level was 6.37 feet below ground surface.
- 7. This drawing is for information purposes. It is intended to assist in showing features discussed in an attached document. GeoEngineers, Inc. cannot guarantee the accuracy and content of electronic files. The master file is stored by GeoEngineers, Inc. and will serve as the official record of this communication.

Data Source: project.GeoEngineers.com/Technical Analysis/Tidal Study and Slug Testing/Slug Tests/MW-2_BouwerRice1976.xlxs

Visual Survey - Curtis Wharf

Quiet Cove Property Anacortes, WA

GEOENGINEERS /

Under-wharf view close up of bulkhead and wharf interface near the west end of the wharf.

- 1. Water level response was measured with an unvented 0-30psi INW PT2X pressure transducer recording 8 times per second.
- 2. Well is screened across the water table.
- Aquifer is assumed to be unconfined.
 Saturated thickness is assumed to be 7.6 feet.
- saturated trickness is assumed to be 7.6 feet.
 Well is screened from 3.7 to 11.7 feet below ground surface.
- Static water level was 6.37 feet below ground surface.
- 7. This drawing is for information purposes. It is intended to assist in showing features discussed in an attached document. GeoEngineers, Inc. cannot guarantee the accuracy and content of electronic files. The master file is stored by GeoEngineers, Inc. and will serve as the official record of this communication.
- Data Source: project.GeoEngineers.com/Technical Analysis/Tidal Study and Slug Testing/Slug Tests/MW-2_BouwerRice1976.xlxs

Visual Survey - Curtis Wharf

Quiet Cove Property Anacortes, WA

GEOENGINEERS /

SECTION 13, TOWNSHIP 35 NORTH, RANGE 1 E., W.M.

Point #	Raw Description	Rim Elevation	Top of Pipe	Northing	Easting
1327	sed 1a	4.410		559834.0830	1208641.3250
1295	mw-2	12.421	12.01	559693.9790	1208657.5940
1331	gei 44	12.938		559766.2000	1208733.0590
1315	mw-1	12.229	11.91	559644.6200	1208597.8020
1325	sed 1c	1.182		559873.4100	1208640.9590
1326	sed 1b	2.830		559848.0990	1208635.5730
1328	gei 38	11.059		559757.7590	1208650.7900
1457	mw-8	13.575	13.13	559574.7290	1208543.5030
1329	gei 39	11.424		559724.4140	1208628.6570
1330	gei 40	10.295		559698.8360	1208593.4930
1332	gei 43	14.371		559510.6390	1208825.7510
1333	gei 42	14.273		559512.0150	1208793.2780
1334	gei 41	14.500		559501.5740	1208736.6060
1335	gei 29	12.146		559694.2160	1208879.9360
1336	gei 33	12.250		559691.7200	1208921.4610
1338	gei 35	11.673		559822.3250	1208926.0830
1339	gei 37	11.519		559882.6920	1208925.7370
1340	gei 36	13.466		559879.7810	1208850.3360
1341	gei 32	13.437		559826.0970	1208856.1550
1342	gei 31	12.345		559829.1170	1208884.6970
1344	gei 30	12.272		559755.2750	1208882.9080
1352	mw-3	12.764	12.42	559752.8430	1208698.6300
1337	gei 34	11.872		559767.2990	1208925.5050
1362	mw-4	12.94	12.42	559760.7700	1208852.9400
1371	mw-11	12.686	12.28	559665.0550	1208783.3000
1372	mw-10	14.501	14.17	559499.2730	1208826.7160
1570	mw-6	15.956	15.43	559557.8830	1208975.4200
1696	mw-7	13.101	12.62	559890.9730	1208872.6500
185	SD-1	12.353		559669.4416	1208741.2395
192	SD-2	12.359	12.04	559677.0847	1208790.4584
187	SD-3	12.591		559651.0388	1208824.6462
186	SD-4	12.889		559624.0329	1208721.0025
189	SD-5	13.103		559577.8851	1208791.3689
196	SD-6	15.662		559601.7090	1208866.7063
184	SD-7	12.278		559689.3087	1208650.6050
194	SD-8	12.805	12.47	559636.0374	1208772.9862
190	SD-9	13.017		559632.6333	1208844.5630
188	SD-10	13.166		559601.0360	1208783.6097
191	MW-12	12.054	11.17	559695.7474	1208842.8186
199	MW-5	14.72	14.48	559633.052	1208866.748

|--|

_ _ _ _

	EXISTING
	ASBUILT I
	EXISTING
	EXISTING
0	EXISTING
SD SD	EXISTING
	EXISTING
	EXISTING
SS	EXISTING
\bigcirc	EXISTING
w w	EXISTING
\bowtie	EXISTING
-0-	EXISTING
G	EXISTING
P	EXISTING
<u> </u>	EXISTING
	EXISTING
	EXISTING
d	EXISTING
	EXISTING
	EXISTING
29	EXISTING
\diamond	PILE [TYP
	EXISTING
OHT	EXISTING

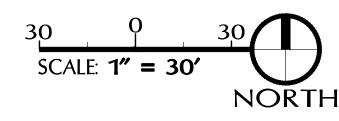
LEGAL DESCRIPTION

LOTS 1 THROUGH 6, INCLUSIVE, AND LOTS 16 THROUGH 20, INCLUSIVE, BLOCK 66, "MAP OF THE CITY OF ANACORTES, SKAGIT COUNTY, WASHINGTON," AS PER PLAT RECORDED IN VO.UME 2 OF PLATS, PAGE 4, RECORDS OF SKAGIT COUNTY, WASHINGTON.

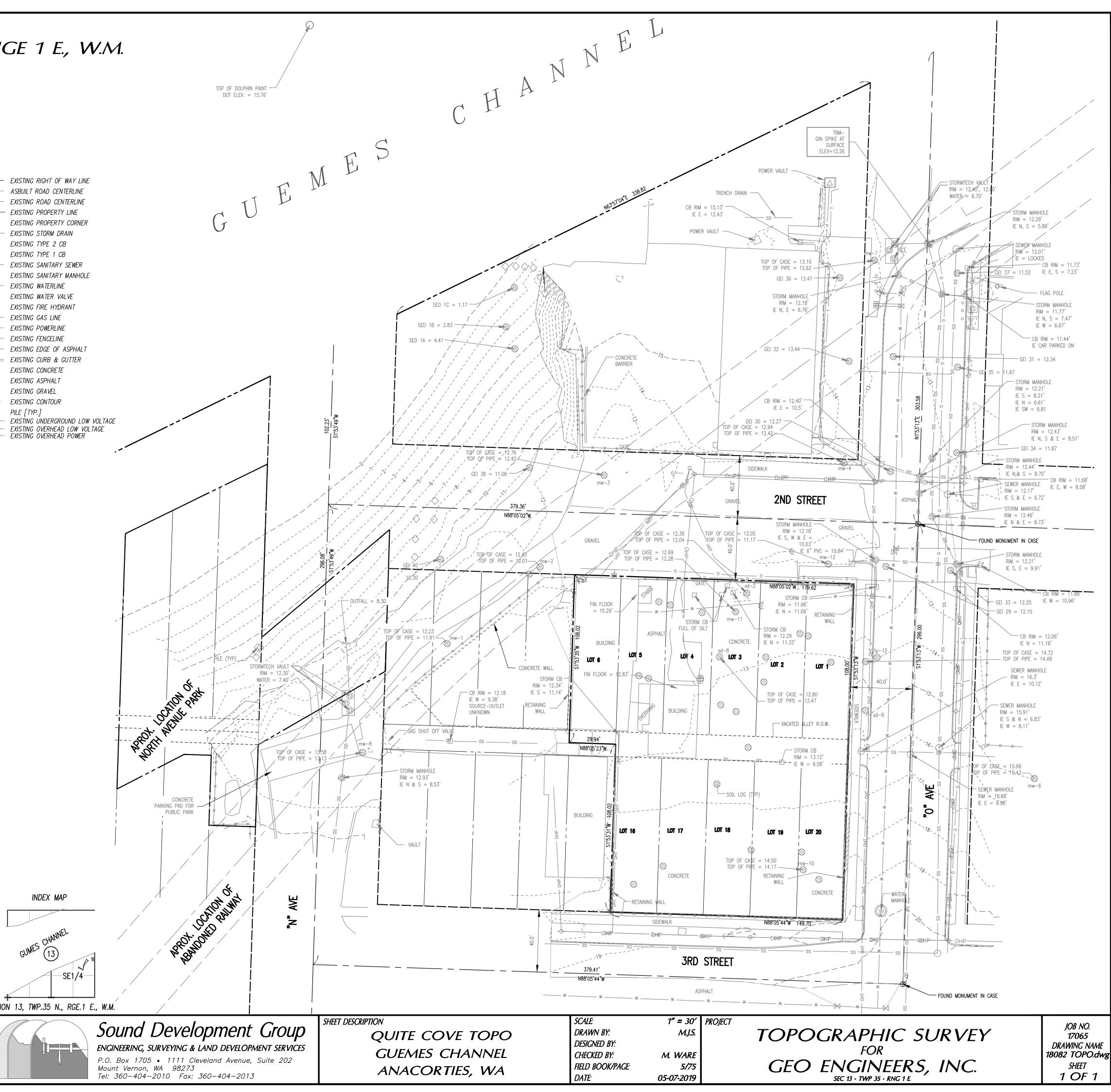
TOGETHER WITH THAT PORTION OF THE NORTH HALF OF THE VACATED ALLY ADJACENT TO LOTS 1 THROUGH 6, INCLUSIVE, AND THAT PORTION OF THE WOIUTH HALF OF SAID VACATED ALLEY ADJACENT TO LOTS 16 THROUGH 20, INCLUSIVE, WHICH AS REVERTED TO SAID PREMISES BY OPERATION OF LAW.

SITUATE IN THE COUNTY OF SKAGIT, STATE OF WASHINGTON. (FROM GUARDIAN NORTHWEST TITLE REPORT ORDER NO. 107445, DATED APRIL 4, 2014)

VERTICAL DATUM NAVD 88'


VERTICAL DATUM BASED ON TIE TO JETTY 2 AS PUBLISHED BY THE "PORT OF ANACORTES" BY WHPACIFIC. NAVD 88 + 0.66 = MLLW (TIDAL DATUM) AS PUBLISHED BY THE "PORT OF ANACORTES" BY WHPACIFIC.

BASIS OF BEARING BASED ON THE MONUMENTS AT THE INTERSECTION OF 2ND AND "O" AND 3RD AND "O" AS SHOWN HEREON BEARS NORTH 1°53'13" EAST


UTILITIES NOTE

UTILITIES SHOWN HEREON ARE BASED ON FIELD OBSERVATION AND PRIVATE LOCATES COMPLETED IN 2014. TELEPHONE LINES COULD ALSO BE T.V., CABLE OR INTERNET.

2				
	RES	EARCH		
	A.F.N.	9809040088	SKAGIT	COUNTY
	A.F.N.	9011020026	SKAGIT	COUNTY
	A.F.N.	9210140061	SKAGIT	COUNTY
	A.F.N.	8508270029	SKAGIT	COUNTY
	A.F.N.	2002062600	16 SKAG	IT COUNTY
	A.F.N.	9612190052	SKAGIT	COUNTY

_				
SECTION	13,	TWP.35	Ν.,	R

CALL 48 HOURS BEFORE YOU DIG							
1-800-424-5555							
	NO.	DATE	REVISIONS	BY	APRVD		

ATTACHMENT 3 Tier 2 Sediment Sampling Letter

Memorandum

Plaza 600 Building, 600 Stewart Street, Suite 1700, Seattle, Washington 98101, Telephone: 206.728.2674, Fax: 206.728.2732	www.geoengineers.com
---	----------------------

To:	Arianne Fernandez and Susannah Edwards; Washington State Department of Ecology
From:	Brian Tracy and John Herzog; GeoEngineers on behalf of Port of Anacortes
Date:	April 17, 2018
File:	5147-024-05
Subject:	Quiet Cove Remedial Investigation Tier 2 Sediment Sampling

The purpose of this memorandum is to document the detail on the scope and procedures for completing Tier 2 sediment sampling for the Remedial Investigation (RI) field study of the Quiet Cove Cleanup Site (Site) that was recently discussed and agreed to with the Washington State Department of Ecology (Ecology). These details provided herein, supplement the existing Remedial Investigation/Feasibility Study (RI/FS) Work Plan (GeoEngineers, 2017). GeoEngineers collected Tier 1 soil, sediment and groundwater samples in September and October 2017. Analytical results indicate that contaminants of potential concern (COPCs) exist at concentrations greater than preliminary screening levels in soil and sediment along the shoreline. In accordance with the RI/FS Work Plan, these analytical results trigger the need to collect and analyze additional sediment samples to determine the nature and extent of contamination related to historical Site operations. Ecology provided comment regarding the locations and methodology for the future sediment sampling and the Port collaborated with Ecology to refine the plans and procedures for the Tier 2 sediment sampling as described below.

Sampling and analysis procedures will be completed in accordance with the Sampling and Analysis Plan (SAP) included in the RI/FS Work Plan. The information below provides detail for collection and analysis for the Tier 2 sediment sampling effort.

SAMPLE COLLECTION

The Tier 2 sediment sampling locations included in the RI/FS Work Plan were preliminary, and the tiered approach in the work plan was designed to allow for modifying these sample locations based on the results of the Tier 1 study. Figure 1 provides the proposed locations for the Tier 2 sediment sampling study. Based on findings of the Tier 1 RI field study, the Tier 2 sediment sample locations have been modified to focus on the areas where data is needed to fully define the extent of contamination at the Site. As requested by Ecology, three additional locations were added for further coverage of the sediment area. In total nine sediment sample locations will be collected, SED-2 through SED-10, as presented in Figure 1.

Surface Sample Collection and Processing

Surface sediment samples will be collected via beach access at low tides or by a power-grab sampler off the vessel at higher tides. The preference is to collect surface samples via beach access. Sample locations SED-2, -3, -4 and -10 may not be accessible at low tides and will be collected from a vessel.

Surface sediment samples will be obtained using hand tool (stainless steel trowel or spoon) from the beach or power grab sampler from a vessel. Surface samples will be obtained from the upper 10 centimeters (cm) of sediment. Sampling equipment will be decontaminated and inspected before sampling. The procedures for collecting surface sediment samples are as follows:

- 1. Identify the sample location using a handheld global-positioning system (GPS) for locations accessible by the beach. Maneuver the vessel to the sampling location using a handheld GPS and/or the GPS location on the vessel and measure the depth of water to the mudline for samples collected from the water.
- 2. Record the location of the sample.
- Use a stainless-steel spoon to collect the sediment from the top 10 cm and place in stainless steel bowl(s). Samples for volatile analysis will be collected from a discrete location prior to homogenization following the Ecology 5035A methodology
- 4. Visually classify sediment in accordance with ASTM International (ASTM) D 2488 methods and the Unified Soil Classification System (ASTM D 2487) and record on the field form. In addition to the visual classification, sediment samples shall be observed and field screened. Qualitative descriptive parameters including biota, debris, and presence of staining shall also be recorded.
- 5. The visual absence or presence of wood debris in the surface sediment sample will be recorded on the field form. If wood debris is present, the type or types of wood debris (i.e., saw dust, bark, chips, chunks, twigs, fibers, etc.), the estimated quantity (i.e., observed percent by volume) of each type of wood debris, and the depth interval where the wood is observed will be recorded on the field form.
- 6. Photograph the sediment sample. Include in the camera's field of view a sheet of paper or whiteboard with the sample name written in large print; use care not to touch the sediment with the paper/whiteboard or with hands contaminated with whiteboard ink.
- 7. To avoid cross-contamination, a clean hands/dirty hands approach to use of whiteboard pens and erasers and lab pens will be utilized during all sample collection activities where subsequent chemical analyses will be carried out on the samples collected. Gloves that have been in contact with lab pens and whiteboard pens will not be used for sample handling.
- 8. Homogenize the sediment to a uniform appearance (i.e., color and texture) to the extent practicable in accordance with Sediment Cleanup Users' Manual II (SCUM II) within a stainless-steel mixing bowl using a stainless-steel spoon and/or stainless-steel mixing paddle attached to a power drill.
- 9. Distribute the sample to designated sample containers and ensure that the samples are properly labeled and tightly closed. Sample containers will be filled to minimize headspace.
- 10. Clean the exterior of the sample containers and store them in a cooler with ice.
- 11. Decontaminate all equipment in accordance with the RI/FS Work Plan SAP.
- 12. Double check that field collection forms are completely filled out.

Surface sediment sampling, storage, transport and disposal will be completed in accordance with the RI/FS Work Plan.

Subsurface Sample Collection

Vibracore sampling methods will be used to extract the proposed sediment cores. Based on our field experience vibracores will provide opportunity to obtain high quality sediment cores for the conditions at the Site. The vibracores will be collected from a small research-type vessel at high tide to access the proposed sample areas located higher elevations of the beach.

Vibracoring technology is utilized to collect sediment cores by attaching a core tube to a source of mechanical vibration (power head). The vibration allows the core tube to be driven into sediment by the force of gravity minimizing disturbance of the core. Vibracores are driven into the sediment using an approximately 5-inch diameter lexan liner with a core catcher at the point of the tube. Cores will be completed to depths where native material is encountered or refusal. Note that vibracore methods are not likely be effective in coring through hard native silt material. Based on upland geology, we expect the cores will be advanced to depths of about 5 feet below mudline.

The Port will subcontract the sediment sample collection vessel, captain and deckhand. GeoEngineers staff will oversee and direct the sample collection efforts. Acceptance of cores will be determined on the vessel as the cores are extracted. Upon extraction of the core barrel, the liner will be capped and the core will be examined relative to the following acceptance criteria:

- Overlying water is present and the surface is intact.
- Calculated linear compaction is not greater than 25 percent.
- The core tube appears intact without obstructions or blockage.

If any of the sediment acceptance criteria are not achieved, the sample will be rejected and the location resampled. If the proposed sampling location cannot be achieved after four deployments, the Project Manager will be notified. Ecology will be contacted for required review and approval if an alternative location is needed as described in the Contingency Measures for Coring section below.

If the core meets the acceptance criteria, then proceed with core processing. Core processing including geologic logging and sediment sampling will be completed in the upland (i.e., east of the beach). Core collection, processing, transport, and disposal will be completed in accordance with the sediment core procedures included in the SAP and the Health and Safety Plan (see Appendix C and Appendix D, respectively, of the RI/FS Work Plan).

The procedures for collecting and processing subsurface sediment samples are as follows:

- 1. Maneuver the vessel to the sampling location using a handheld GPS and/or the GPS location on the vessel (Note: the GPS device on the vessel provides precise coordinates of the core).
- 2. Record the location of the sample.
- 3. Measure the depth to mudline below the water using a lead line after the GPS location is recorded.
- 4. Record the time and the depth of water measurement.
- 5. Drive the sampler into the sediment surface to the target depth or until refusal.
- 6. Collect a continuous core to the specified target depth or until refusal.
- 7. For each core interval, record the penetration depth on the field form.
- 8. Extract the core barrel and open using a decontaminated core-opening device.
- 9. Visually classify sediment in accordance with ASTM D 2488 methods and the Unified Soil Classification System (ASTM D 2487) and record on the field form. In addition to the visual classification, sediment samples shall be observed and field screened. Qualitative descriptive parameters including biota, debris, and presence of product/staining shall also be recorded.

- 10. The visual absence or presence of wood debris in the subsurface sediment sample will be recorded on the field form. If wood debris is present, the type or types of wood debris (i.e., saw dust, bark, chips, chunks, twigs, fibers, etc.), the estimated quantity (i.e., observed percent by volume) of each type of wood debris, and the depth interval where the wood is observed will be recorded on the field form.
- 11. Photograph the sample. Include in the camera's field of view a sheet of paper or whiteboard with the sample name written in large black print; use care not to touch the sediment with the paper/whiteboard or with gloved hands in contact with whiteboards, pens or with whiteboard ink. It is likely several photos will be necessary to record the entire length of the core sample. Include the depth interval on the paper/whiteboard.
- 12. Collect sediment from the liner using a decontaminated stainless-steel spoon. Minimize collection of sediment that has been in contact with the sides of the core liner, or the core-opening device to the extent possible. Place the sediment into a decontaminated stainless-steel homogenization bowl. Cover the container with a new sheet of aluminum foil and dispose after use.
- 13. Homogenize the sediment to a uniform appearance (i.e., color and texture) to the extent practicable in accordance with SCUM II within a stainless-steel mixing bowl using a stainless-steel spoon and/or stainless-steel mixing paddle attached to a power drill.
- 14. Distribute the sample to appropriate sample containers and ensure that the samples are properly labeled and tightly closed.
- 15. Clean the exterior of the sample containers and store them in a cooler with ice.
- 16. Decontaminate all equipment as described in accordance with the RI/FS Work Plan SAP.
- 17. Double check that field collection forms are completely filled out.

If adequate sample volume cannot be obtained in a particular interval(s) in cores or the location, additional cores will be attempted within a 10-foot radius of the original core location.

Drill cuttings from borings completed for the sediment sampling activities will be placed in labeled and sealed 55-gallon drums. The drums will be stored temporarily at a secure location on Port property pending receipt of analytical results and off-site disposal at a permitted facility.

Contingency Measures for Coring

Vibracoring is expected to be successful in areas where water is at least 2 to 3 feet deep during drilling and where obstructions such as large cobbles, bedrock or hard silt are not present. If the first attempt is unsuccessful due to refusal we will make up to 3 additional attempts within an approximately 10-foot radius of the proposed sampling location in attempt to drive a successful core. This 10-foot radius is consistent with Ecology and Dredged Material Management Program (DMMP) protocols. If a core location is unsuccessful, we will notify Ecology and attempt to discuss in real time whether to move or abandon the location while the sampling vessel is still onsite, to maximize the use of the sampling mobilization. In areas with less than approximately 3 feet of water during drilling, there is a higher likelihood that the vibracore will heat up the liner resulting in an unsuccessful core. If this occurs, the location will be moved in consultation with Ecology to deeper water, while remaining as close to the original location as possible. Alternatively, sampling may be completed during a more advantageous tide, to the extent practical, to re-attempt coring.

Memorandum to Ecology on Quiet Cove Tier 2 Sediment Sampling April 17, 2018 Page 5

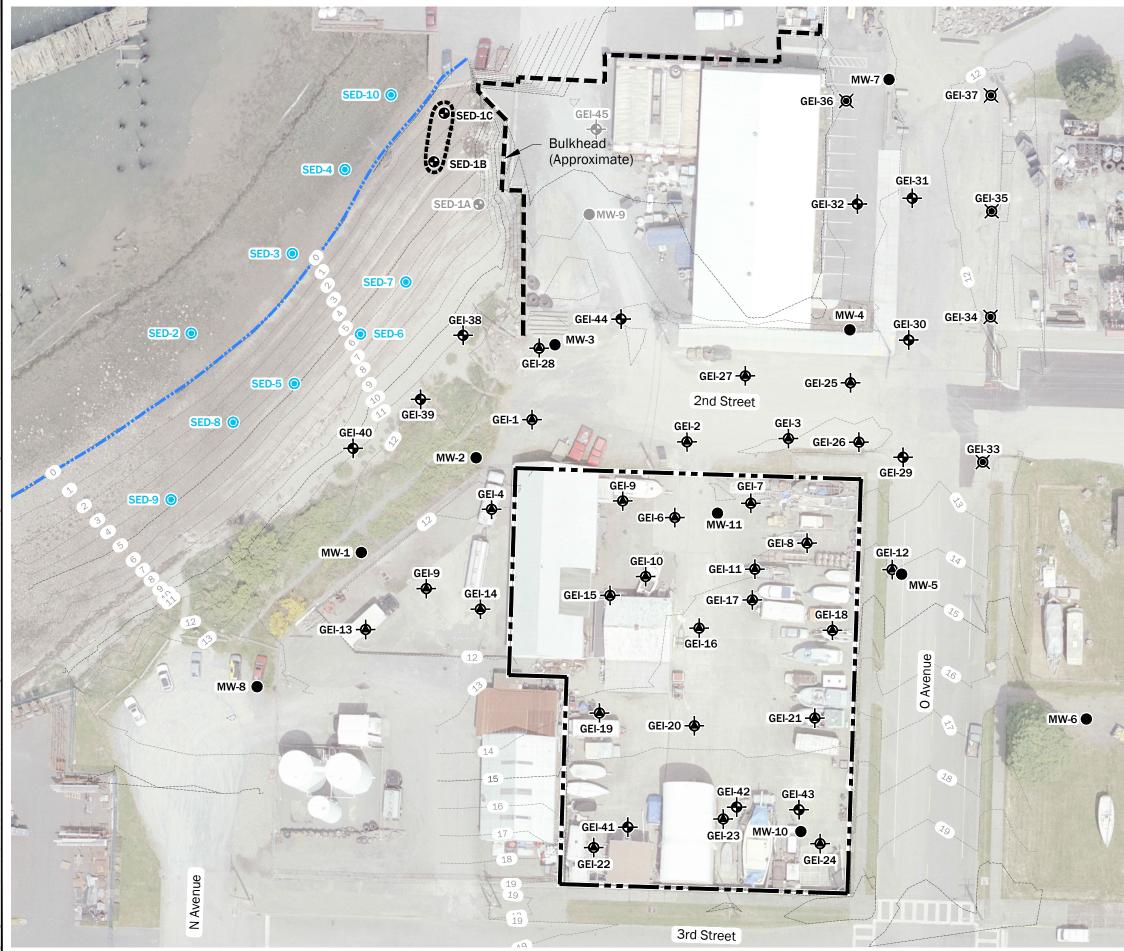
In the case that Vibracoring is not successful, an alternative coring method using a portable beach rotary impact corer at low tides will be utilized. The vessel would be beached, the corer unloaded and moved into place. The corer would be powered by the vessel. This equipment drives an approximately 3-inch diameter core tube using a pneumatic rotary hammer.

SAMPLE ANALYSIS

Surface and subsurface sediment samples would be collected at the nine locations shown in the attached figure (SED-2 to -10). Subsurface samples would extend a minimum of 2-feet into the native geologic layer. The following analyses are proposed for these sediment samples based on the observed contamination in the adjacent upland:

- Gasoline-range total petroleum hydrocarbons (TPH-Gx), diesel-range total petroleum hydrocarbons (TPH-Dx), volatile organic compounds (VOCs), polycyclic aromatic hydrocarbons (PAHs) and metals would be analyzed at locations SED-5, -6, -7, -8, -9 and -10 from one sample interval each. TPH and VOCs analyses will be completed on a rush turnaround time so that follow-up analysis can be completed within the hold time, if necessary. The remaining samples collected will be archived.
- Selection of sample interval for analysis would be based on field evidence of contamination. In the absence of field evidence, the sample interval on top of the native layer would be analyzed.
- Additional analysis of archived samples would only be triggered if exceedances are found in SED-5 through -10 and weight of evidence indicates contamination has passed into the marine environment. These additional analyses would be determined in consultation with Ecology.
- The remainder of the sample intervals collected would be archived.

Laboratory method requirements and protocols are provided in the RI/FS Work Plan.


SCHEDULE

The Tier 2 sediment sampling field work will be planned for the end of July. The specific schedule dates will be determined based on predicted tides and contractor availability. The specific schedule for field work will be communicated to Ecology when dates are confirmed and prior to implementation of the work. It is our understanding that Ecology may be present to oversee the field sample collection.

Attachments:

Figure 1. Revised Tier 2 Sampling Locations

Disclaimer: Any electronic form, facsimile or hard copy of the original document (email, text, table, and/or figure), if provided, and any attachments are only a copy of the original document. The original document is stored by GeoEngineers, Inc. and will serve as the official document of record.

Site Boundar	y
--------------	---

GEI-31 - Tier 1 Soil Boring

GEI-36 💓 Tier 2 Soil Boring

SED-1A 🕤 Tier 1 Sediment Sample

Proposed Tier 2 Sediment Sample Location SED-2 🔘

GEI-1 - Integrated Planning Grant Soil Boring Location, 2014

MW-10 🌑 Monitoring Well

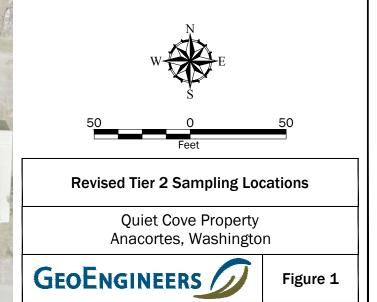
Composite Sediment Sample Grab Area (SED-1)

-----10 -GEI-45

(# **m m**)

Contour (Feet, NAVD 88)

Proposed Sampling Location Not Completed Due to Refusal


Approximate Elevation of native geologic Layer based on borings at GEI-38, -39 and -40

Notes:

- 1.
- The locations of all features shown are approximate. This drawing is for information purposes. It is intended to 2. assist in showing features discussed in an attached document. GeoEngineers, Inc. cannot guarantee the accuracy and content of electronic files. The master file is stored by GeoEngineers, Inc. and will serve as the official record of this communication.

Data Source: Base Aerial taken by David C. Smith & Associates, Inc. on 6/17/2009. Base survey by Sound Development Group on 10-11-2017

Projection: NAD83 WA State Planes, N Zone, US Foot

ATTACHMENT 4 Hydrogeological Investigation

Memorandum

Plaza 600 Building, 600 Stewart Street, Suite 1700, Seattle, Washington 98101, Telephone: 206.728.2674, Fax: 206.728.2732

www.geoengineers.com

Prepared For:	Arianne Fernandez – Washington State Department of Ecology
Date:	August 1, 2018
Prepared By:	GeoEngineers, Inc. on Behalf of Port of Anacortes
GEI File No.:	5147-024-05
Subject:	Hydrogeologic Evaluation Quiet Cove Property Anacortes, Washington Ecology Agreed Order No. DE 11346

INTRODUCTION

This technical memorandum presents the results of hydrogeologic testing completed to evaluate tidal influence, groundwater flow directions and aquifer hydraulic parameters for the Quiet Cove Property (Site) located along the southeast shoreline of Guemes Channel at 202 O Avenue (at the intersection of 2nd Street and O Avenue) in Anacortes, Washington. The hydrogeologic testing described in this memorandum was completed at the Site in November 2017 and consisted of a tidal study and hydraulic conductivity testing that included slug testing. The tidal study was completed on ten groundwater monitoring wells and slug testing was completed on six groundwater monitoring wells.

Figure 1 identifies the approximate locations used for hydrogeologic testing. The results of the tidal study and hydraulic conductivity testing are presented in the following sections.

TIDAL STUDY

Purpose and Objectives

The purpose of the tidal study was to evaluate the influence of water level fluctuations in Guemes Channel on groundwater conditions at the Site to support development of a hydrogeologic conceptual site model and evaluation of contaminant fate and transport in groundwater. Water level fluctuations in Guemes Channel in the vicinity of the Site were due to tidal fluctuations in Puget Sound during the tidal study.

The tidal study was conducted to achieve the following objectives:

- To identify and analyze the extent of tidal response and evaluate Site groundwater conditions.
- To provide a better understanding of measured groundwater levels, groundwater gradients, and their relative degree of variation under tidal influence at the Site.
- To estimate values for groundwater unit apparent hydraulic diffusivity (T/S) and transmissivity (T). The estimated values were combined with the results of slug testing to estimate average hydraulic conductivity (K) where appropriate.

The objectives were achieved by performing a tidal study using selected monitoring wells as representative indicators of the groundwater response at the Site. Monitoring wells used to evaluate the influence of water level fluctuations in Guemes Channel on groundwater conditions at the Site are shown on Figure 1.

Puget Sound Water Level Fluctuations

Puget Sound experiences daily tides that feature complex double highs and lows of uneven magnitude during each full tidal cycle. This pattern is caused by dominant diurnal and semidiurnal lunar/solar cycles that combine to create what is known as a mixed tide (also called a bichromatic tide). This pattern features a continuously changing pattern of primarily high and low tides, with smaller secondary high and low tides mixed in the cycle through each month. The pattern strongly affects the surface water level of Puget Sound. A portion of the monthly pattern can be seen in the measured tidal data collected for this study from the water-level sensor installed in Guemes Channel. All elevations that were measured are relative to the North American Vertical Datum 1988 (NAVD 88).

Methodology

Aquifers or groundwater units that are hydraulically connected to tidal surface waters typically show a progressively attenuated and delayed tidal response with increasing distance from the shoreline. In order to evaluate tidal-groundwater hydraulic connection at the Site, monitoring wells MW-1, MW-2, MW-3, MW-4, MW-5, MW-6, MW-7, MW-8, MW-10, and MW-11 were selected to provide a representative hydrogeologic cross-section. Well construction details and the soil type for the screened intervals for the monitoring locations used for the tidal study are presented in Table 1.

Each of the tidal study wells was equipped with a water level sensor consisting of a piezoelectric pressure transducer and automated data logger (transducer/data logger) programmed to record water pressure (head) above the sensor every minute over a period of three days from November 6 through 9, 2017. In addition, tidal fluctuations in Guemes Channel were also recorded during this time period using a transducer/data logger attached to a pile situated beneath Curtis Wharf (located north of the Site). To correct for changes in barometric pressure during the tidal study, a transducer/data logger was positioned on-site and secured within a well monument box that was allowed to vent to the atmosphere.

Prior to installation, the transducer/data loggers were pre-programmed to record pressure head at every 60 seconds from 12:30 pm on November 6 until 12:30 pm on November 9, 2017 (three days). Programming was performed using a single computer to ensure that each transducer/data logger was time-synced to the same clock. As a check on the transducer/data logger data, and to account for instrument drift, water level was measured in each monitoring well at the beginning and end of the tidal study using a decontaminated electronic water level indicator ("e-tape"). All measurements were made from a surveyed reference mark on the top of each casing. At the conclusion of the study, all transducers/data loggers were removed and returned to GeoEngineers for data processing.

Mean Groundwater Elevations

Mean groundwater elevations for the tidal study were calculated for each monitoring location and the tidal gauge using the Serfes (1991) method, which gives the mean of a subset of 25-point moving averages (Y_j) calculated from 48, 24-point moving averages (X_i). The mean groundwater elevations for the monitoring wells ranged between 10.39 and 6.57 feet NAVD 88. The mean tidal elevation during the tidal study was 3.59 feet

NAVD 88. Based on the results of the tidal study, the average groundwater flow direction at the Site was from the interior of the Site to the northwest toward Guemes Channel (Figure 2).

Hydrographs showing mean groundwater elevations for each location and the mean surface water elevation calculated from the tidal study using the Serfes (1991) method are shown on Figures 3 through 13 over the full period of the tidal study.

Tidal Influence on Groundwater

The groundwater level data collected at each of the tidal study monitoring well locations are presented in elevation relative to the Site survey datum (NAVD 88) and plotted along with the measured surface water elevations in Guemes Channel during the tidal study period for comparison of groundwater elevation and tidal trends. Comparative plots showing hydrographs for each tidal study monitoring well plotted along with the water level in Guemes Channel over the full period of the tidal study are shown on Figures 3 through 13. Three monitoring wells (MW-6, MW-7 and MW-10) were observed to be tidally influenced (Table 2; Figures 9, 10 and 12). The remaining monitoring wells exhibited little to no response to tidal changes as shown in Figures 4 through 8, 11, and 13.

As shown in these figures, the transducer monitoring tidal changes during the tidal study (shown in blue) recorded apparently anomalous fluctuations at times during the study that may be the result of equipment malfunction. To check the accuracy of the tidal transducer data, the predicted tidal fluctuations for Anacortes (NOAA Station 9448794, Anacortes, Fidalgo Island) were plotted in Figures 3 through 12 (shown in green) along with the tidal fluctuations recorded during the tidal study. Predicted tidal elevations for NOAA Station 9448794 were converted from Mean Lower Low Water (MLLW) to NAVD 88 or direct comparison to measured tidal elevations at the Site using the Port of Anacortes conversion factor (NAVD 88=MLLW-0.66 feet) published by the Port of Anacortes by WHPacific. A review of the predicted versus recorded tidal elevations (Figure 3) indicate the tidal elevations recorded at the Site during the tidal study are generally close to the predicted tides for Anacortes and therefore are considered appropriate for use in the tidal match analysis.

For each tidal study monitoring well, the time lag and stage ratio were evaluated. The time lag represents the time for propagation of the tidal effect through the groundwater unit from Guemus Channel to the monitoring well while the stage ratio represents the relative degree of groundwater level change resulting from tidal changes in Guemus Channel. Stage ratio and lag time were determined using the following procedures:

- Time Lag was determined by shifting the Date/Time scale (x-axis) of the groundwater record backwards relative to the tidal record from Guemes Channel until the respective peaks and troughs matched. The value of time (in hours and minutes) indicated on the secondary axis represents the time lag or phase shift.
- Stage Ratio was determined by expanding and shifting the elevation scale (y-axis) of the groundwater plot relative to the tidal plot from Guemes Channel, until the respective amplitudes matched. The value of stage ratio is calculated as the ratio of secondary axis length (in feet), divided by the primary axis length (20 feet) and expressed as a percentage.

The time lag and stage ratio for each tidal study monitoring well was determined over a period of two full tidal cycles (Figures 14 through 23). The observed tidal effects on monitoring locations used for the tidal study are presented in Table 2. Tidal study data for the monitoring wells indicating the most tidal influence are summarized in the table below and are organized by shortest to longest time lag in hours.

Monitoring Well	Distance from Shoreline (ft)	Mean Groundwater Elevation (ft NAVD 88)	Time Lag (hours)	Stage Ratio (%)
MW-10	300	10.39	1.9	5.00
MW-6	380	10.37	2.4	8.75
MW-7	240	6.57	2.4	4.3

Ft = feet

NAVD 88 = North American Vertical Datum 1988

% = percent

HYDRAULIC CONDUCTIVITY TESTING

Hydraulic conductivity testing that included slug testing was performed on selected monitoring locations at the Site on November 16, 2017. The purpose of the slug testing was to use the data, in combination with data gathered during the tidal study, to estimate hydraulic conductivity (*K*) within the aquifer in the vicinity of the test locations. Slug testing was performed at monitoring well locations MW-2, MW-3, MW-4, MW-6, MW-7, and MW-11. Field procedures, as well as the procedure for data analysis from the slug testing are described below. The locations selected for slug testing are shown on Figure 2. Plots of the slug test results are presented on Figures 24 through 29.

Field Procedures

Each slug test was performed in two stages; a falling head stage followed by a rising head stage. At each location two replicates (i.e., two falling head and two rising head tests) were performed. For each test, the water level in the monitoring location was measured and recorded at 0.25-second intervals using a decontaminated, submerged water-level sensor consisting of a piezoelectric pressure transducer and automated datalogger (transducer/datalogger) programmed to record water pressure (head) above the sensor. The water level was also measured using a decontaminated electronic water level indicator ("e-tape") as a check on the transducer/data logger.

Prior to slug testing, the pre-test static water level was measured in each well from a surveyed reference mark on top of the well casing. For the falling head stage, a slug (weighted 5-foot length of sealed PVC casing) of known volume was rapidly lowered into the well, causing displacement of the water, which rose rapidly above its initial water level. The water level in the well was then monitored until it returned (fell) to the approximate pre-test water level. For the rising-head stage, the slug was rapidly removed from the well, causing the water level to drop below its pre-test static water level, and the water level in the well was monitored until it returned (rose) to the approximate pre-test static water level.

Data Analysis

The data from all slug tests were downloaded from the transducer/datalogger, processed using spreadsheet software, and then plotted to identify the type of hydraulic response. Data from all wells that were slug tested were analyzed using the method of Bouwer and Rice (1976).

Both the falling head stage and rising-head stage data can be used only in wells where the screened interval is under the water table during all portions of the test. In wells where the screened interval extends above the water table, only the rising-head stage data is used, because some of water displaced during the falling head stage portion of the test is dispersed into the unsaturated zone above the water table. The screen interval extended above the water table in all monitoring wells that were slug tested, so only the rising head data were analyzed. The results of slug test analysis and the type of analysis are presented in Table 3.

The wells generally exhibited an over-damped response typical of moderately permeable formations. Inspection of the rising head response shows an early period of rapid head change during some tests, which was interpreted as drainage of the filter pack into the well during the first few seconds of each rising head slug test. A volumetric analysis using the method of Binkhorst & Robbins (1998) confirmed that rapid drainage of the filter pack would explain this portion of the data, with a calculated specific yield or drainable porosity for the filter pack material of around 20 percent (±4 percent). This second phase in each rising head test following drainage of the filter pack during the first few seconds of each test was interpreted to represent inflow to the well from the surrounding aquifer formation and was selected for analysis to provide an estimate of the hydraulic conductivity.

ESTIMATION OF HYDRAULIC PARAMETERS

The time lag and stage ratio data from the tidal study were analyzed to estimate diffusivity (T/S) of the aquifer. A method originally developed by Ferris (1951) was used to estimate the diffusivity of the shallow and deep groundwater units whereby time lag and stage ratio is plotted against the horizontal distance between the monitoring location and the shoreline. The calculations are predicated on the validity of the Ferris (1951) method and the presumed dominance of the diurnal tidal effect, with a period of just under 24 hours, representing the main lunar-solar diurnal tide component in Guemes Channel.

Diffusivity

The diffusivity (T/S) for the aquifer could not be estimated using time lag data and stage ratio data because the timing and degree of tidal influence observed in the monitoring wells was not proportional to distance from shoreline, resulting in a poor fit for the diffusivity analysis. The three monitoring wells that were observed to be tidally-influenced during the tidal study (MW-6, MW-7 and MW-10) were located between 80 and 380 feet from the shoreline, which is further from the shoreline than the other monitoring wells used for the tidal study, with the exception of MW-7. The remaining monitoring wells, including monitoring wells MW-1, MW-2, and MW-3, located between 35 and 80 feet from the shoreline, were not tidally-influenced. These results suggest heterogeneity in the materials comprising the Site aquifer, the presence of buried structures (i.e., historical foundations and/or bulkheads) and/or preferential flow pathways through backfill material surrounding utilities present in portions of 0 Avenue and 3rd Street.

Because the timing and degree of tidal influence observed in the monitoring wells was not proportional to distance from shoreline, the diffusivity could not be calculated, therefore the results of slug testing were used instead to estimate hydraulic parameters for the aquifer.

Hydraulic Conductivity

The hydraulic conductivity for the aquifer was estimated using the results of slug testing in six monitoring wells (MW-2, MW-3, MW-4, MW-6, MW-7, and MW-11). As stated above, diffusivity could not be used to estimate the hydraulic parameters due to the unproportional timing and degree of the observed tidal influence. Based on the slug test results, hydraulic conductivity for the aquifer ranges between 0.02 and 4.11 feet/day with a mean value of 1.25 feet/day. Slug test results and calculated hydraulic conductivities for each monitoring well are shown on Figures 24 through 29.

Groundwater Flow Direction and Gradient

The groundwater flow direction and gradient during the tidal study was determined using the mean groundwater elevations. The mean groundwater flow direction based on the results of the tidal study is generally to the north and northwest toward Guemes Channel (Figure 2). Mean hydraulic gradient was calculated using two monitoring well pairs (MW-10/MW-2 and MW-5/MW-4). The calculated groundwater gradients for the selected well pairs are presented in Table 4. In the western portion of the Site, the calculated hydraulic gradient is 0.013 feet per foot (ft/ft) between monitoring wells MW-10 and MW-2. In the eastern portion of the Site, the calculated hydraulic gradient is 0.023 ft/ft between monitoring wells MW-5 and MW-5.

Groundwater Velocity

The average linear groundwater velocity between monitoring wells MW-10 and MW-2 is 0.07 feet per day (ft/day) with a flow direction to the northwest. The average linear groundwater velocity between monitoring locations MW-5 and MW-4 is 0.09 ft/day with a groundwater flow direction toward the north.

REFERENCES

- Bouwer, H. and Rice, R.C. (Bouwer and Rice), 1976. A Slug Test for Determining Hydraulic Conductivity of Unconfined Aquifers with Completely or Partially Penetrating Wells. Water Resources Research, 12(3), 423-428.
- Bouwer, 1989. The Bouwer and Rice Slug Test An Update. Ground Water, Volume 27, Number 3. Pages 304-309.
- Butler Jr., J.J., 1998. The Design, Performance, and Analysis of Slug Tests. CRC Press, Boca Raton, FL. 252 p.
- Butler, Jr. J.J., and Garnett, E.J., 2000. Simple procedures for analysis of slug tests in formations of high hydraulic conductivity using spreadsheet and scientific graphics software. Kansas Geological Survey Open-File Rept. 2000-40.
- Ferris, J.G. (1951). Cyclic Fluctuations of Water Levels as a Basis for Determining Aquifer Transmissibility. International Union of Geodesy and Geophysics, Assoc. Sci. Hydrology Assembly, Publication 33, Brussels V.2:148-155.
- Neville, C. J., 2011. Critical Thinking in Aquifer Test Interpretation. Short Course Presented in Conjunction with the 8th Washington Hydrogeology Symposium, Tacoma, Washington, April 28, 2011.

Memorandum to Washington State Department of Ecology August 1, 2018 Page 7

- Serfes, M.E. (1991). Determining the Mean Hydraulic Gradient of Groundwater affected by Tidal Fluctuations. Ground Water 29 (4): 549-555.
- Van Der Kamp, G., 1976. Determining Aquifer Transmissivity by Means of Well Response Tests: The Underdamped Case. Water Resources Research 12, No. 1:71-77.

LIMITATIONS

We have prepared this technical memorandum for use exclusive use of the Port of Anacortes, their authorized agents and regulatory agencies for the Quiet Cove Property located at 202 O Avenue in Anacortes, Washington. Within the limitations of scope, schedule and budget, our services have been executed in accordance with generally accepted environmental science practices in this area at the time this report was prepared. No warranty or other conditions, express or implied, should be understood. No other party may rely on the product of our services unless we agree in advance and in writing to such reliance.

Any electronic form, facsimile or hard copy of the original document (email, text, table, and/or figure), if provided, and any attachments are only a copy of the original document. The original document is stored by GeoEngineers, Inc. and will serve as the official document of record.

Attachments: Table 1. Test Well Construction Details Table 2. Observed Tidal Effect on Test Wells Table 3. Slug Test Results Table 4. Average Linear Groundwater Velocities Between Selected Wells Figure 1. Hydrogeologic Investigation Locations Figure 2. Mean Groundwater and Tidal Elevations, 72-Hour Tidal Study Figures 3 through 13. Serfes Tidal Analysis Figures 14 through 23. Ferris Tidal Analysis Figures 24 through 29. Aquifer Slug Test

Disclaimer: Any electronic form, facsimile or hard copy of the original document (email, text, table, and/or figure), if provided, and any attachments are only a copy of the original document. The original document is stored by GeoEngineers, Inc. and will serve as the official document of record.

Table 1 Test Well Construction Details

Quiet Cove Property

Anacortes, Washington

	Well Screen Depth (feet bgs)		Top of Casing	Well Screen Elevation (feet NAVD 88)			
Monitoring Well Identification	Тор	Elevation Bottom (feet NAVD 88) Top Bottom		Bottom	Soil Type Across Screened Interval	Hydrogeologic Evaluation Performed	
MW-1	3.7	11.7	12.27	8.57	0.57	Sand, silty sand and gravel	Tidal Study
MW-2	3.7	13.7	11.93	8.23	-1.77	Silty sand	Tidal Study, Slug Test
MW-3	3.7	15.7	12.97	9.27	-2.73	Sand and gravel	Tidal Study, Slug Test
MW-4	3.7	14.7	12.43	8.73	-2.27	Silty sand and peat	Tidal Study, Slug Test
MW-5	3.7	11.7	14.74	11.04	3.04	Silty sand	Tidal Study
MW-6	5	15	15.96	10.96	0.96	Sand with silt and peat	Tidal Study, Slug Test
MW-7	5	10	13.10	8.10	3.10	Sand, gravel and silty sand	Tidal Study, Slug Test
MW-8	3	13	13.58	10.58	0.58	Sand and silty sand	Tidal Study
MW-10	5	15	14.50	9.50	-0.50	Silt and silty sand	Tidal Study
MW-11	5	15	12.69	7.69	-2.31	Sand with silt and peat	Tidal Study, Slug Test

Notes:

bgs = below ground surface

NAVD 88 = North American Vertical Datum 1988

Table 2 Observed Tidal Effect on Test Wells

Quiet Cove Property

Anacortes, Washington

	Approximate Distance	Tidal Study Results ²					
Monitoring Well Identification	from Shoreline ¹ (feet)	Mean Groundwater Elevation (feet NAVD 88)	Time Lag (hours)	Stage Ratio (percent)			
MW-1	35	8.06	Indeterminate ³	<3			
MW-2	40	7.04	Indeterminate ³	<3			
MW-3	45	6.77	Indeterminate ³	<3			
MW-4	190	7.25	Indeterminate ³	<3			
MW-5	260	10.27	Indeterminate ³	<3			
MW-6	380	10.37	2.4	8.8			
MW-7	240	6.57	2.4	4.3			
MW-8	80	8.52	Indeterminate ³	<3			
MW-10	300	10.39	1.9 5.0				
MW-11	160	9.36	Indeterminate ³	<3			

Notes:

¹ Distance is from the well to the nearest shoreline area.

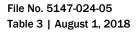
² The tidal study was performed November 6 through 9, 2017.

³ Tidal effects below the threshold of significance for the Ferris analytical method.

NAVD 88 = North American Vertical Datum 1988

Table 3

Slug Test Results¹ Quiet Cove Property Anacortes, Washington


Monitoring	Type of	Estimated Hydraulic Conductivity ³ (K)			
Well Identification	Slug Test ²	feet/day	centimeters/second		
	Rising Head 1	0.58	2.0E-04		
MW-2	Rising Head 2	0.47	1.7E-04		
_	Geometric Mean	0.52	1.8E-04		
	Rising Head 1	3.99	1.4E-03		
MW-3	Rising Head 2	4.24	1.5E-03		
-	Geometric Mean	4.11	1.5E-03		
	Rising Head 1	0.75	2.6E-04		
MW-4	Rising Head 2	0.76	2.7E-04		
-	Geometric Mean	0.75	2.7E-04		
	Falling Head 1	0.02	7.1E-06		
MW-6	Falling Head 2	0.03	1.1E-05		
-	Geometric Mean	0.02	8.6E-06		
	Rising Head 1	1.67	5.9E-04		
MW-7	Rising Head 2	1.49	5.3E-04		
	Geometric Mean	1.58	5.6E-04		
	Rising Head 1	0.54	1.9E-04		
MW-11	Rising Head 2	0.58	2.0E-04		
	Geometric Mean	0.56	2.0E-04		

Notes:

 $^{1}\,\text{Slug}$ tests were performed November 16, 2017.

² Two replicates were performed for the slug tests conducted in each well. Slug test results are calculated from rising head tests due to the water table occurring within the screened interval in all wells. The geometric mean calculated from the results for the two replicates is used to characterize the hydraulic conductivity for each well that was tested.

³ Hydraulic conductivities were calculated for slug tests using Bouwer and Rice (1976).

Table 4 Average Linear Groundwater Velocities Between Selected Wells

Quiet Cove Property

Anacortes, Washington

Well Pair Used for Velocity Calculation								Groundwater Gradient ⁴ (i)	Average Linear Groundwater Velocity ^{5,6} (feet/day)
Upgradient Well	Well 1 Groundwater Elevation (ft NAVD 88)	Downgradient Well	Well 2 Groundwater Elevation (ft NAVD 88)	Representative Area	General Soil Type ¹	Effective Porosity by Soil Type ² (n _e)	Hydraulic Conductivity ³ (K)	Tidal Study ⁷	Tidal Study ⁷
MW-10	10.39	MW-2	7.04	Western Portion of Site	Silt and fine silty sand	0.10	0.52	0.0130	0.07
MW-5	10.27	MW-4	7.25	Eastern Portion of Site	Fine to medium silty sand	0.20	0.75	0.0230	0.09

Notes:

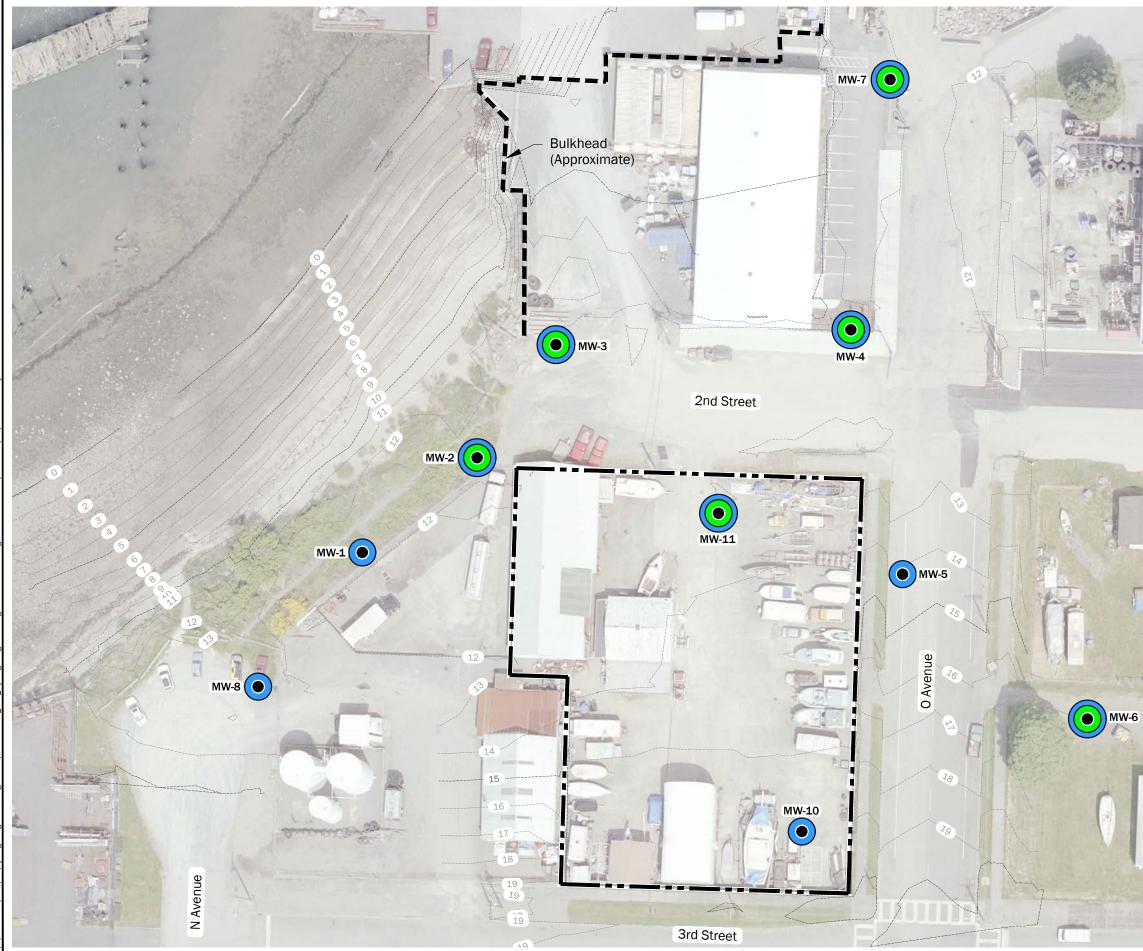
¹Soil type based on visual classification during well installation.

² Average effective porosity (n_e) values by soil type from Argonne National Laboratory Environmental Science Division website, U.S. Department of Energy.

³ Presents average hydraulic conductivity for the well pair.

⁴ Hydraulic gradients (i) are calculated from mean groundwater elevations observed during the tidal study between the two wells noted.

⁵ Horizontal groundwater velocity calculation: $v = K/n_e *i$.


⁶ Groundwater velocities are based on literature values for effective porosity by soil type and hydraulic gradients are calculated from a limited set of data points. Groundwater velocities should therefore be considered estimates.

⁷ The 72-hour tidal study was performed November 6 through 9, 2017.

NAVD 88 = North American Vertical Datum 1988

ft = feet

Legend

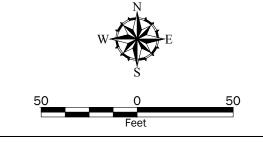
Site Boundary

MW-10 Monitoring Well

----- 10 ------

Slug Test Location

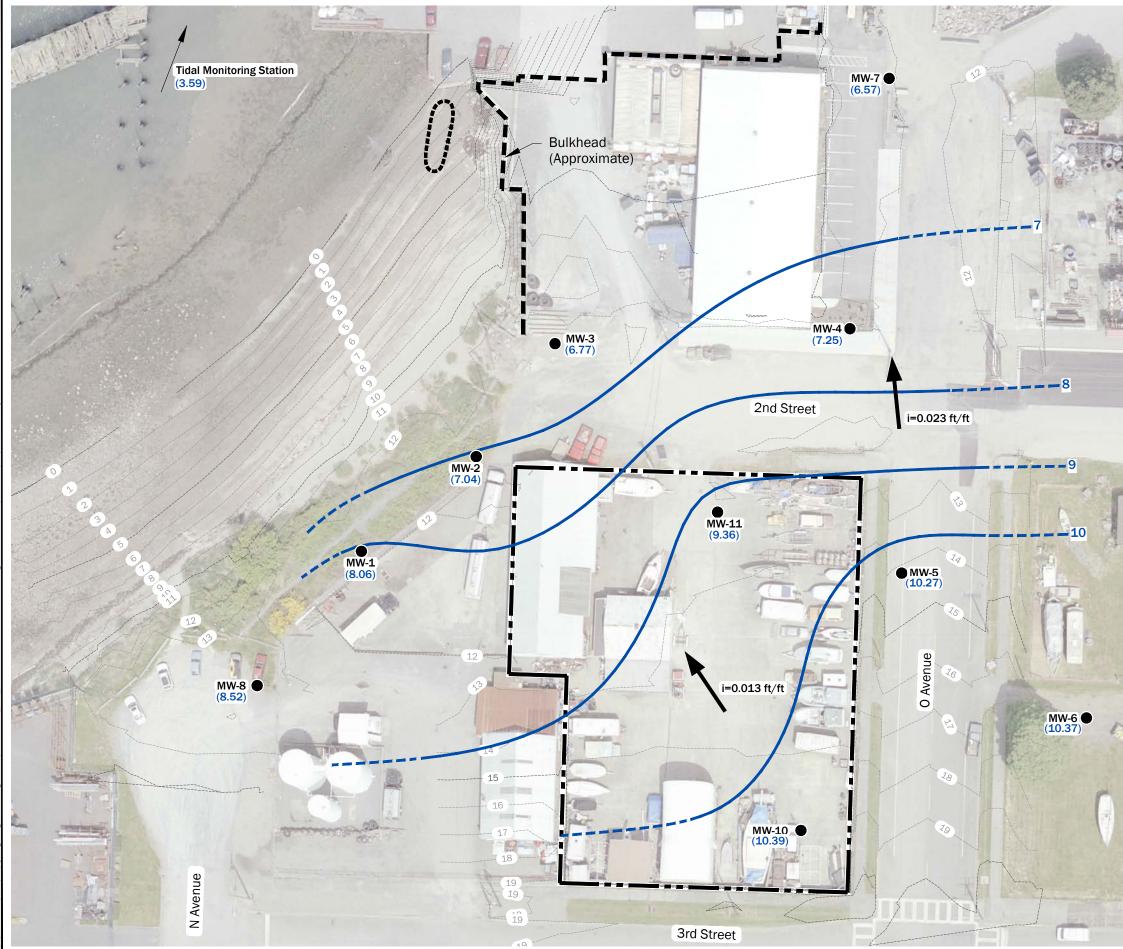
Contour (Feet, NAVD 88)


72-Hour Tidal Study Location

Notes:

- 1.
- The locations of all features shown are approximate. This drawing is for information purposes. It is intended to assist in showing features discussed in an attached document. GeoEngineers, Inc. cannot guarantee the accuracy and content of electronic files. The master file is stored by GeoEngineers, Inc. and will serve as the official record of this communication. 2.

Data Source: Base Aerial taken by David C. Smith & Associates, Inc. on 6/17/2009. Base survey by Sound Development Group on 10-11-2017


Projection: NAD83 WA State Planes, N Zone, US Foot

Hydrogeologic Investigation Locations

Quiet Cove Property Anacortes, Washington

GEOENGINEERS

Legend

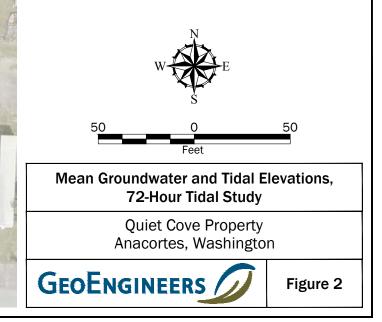
Site Boundary

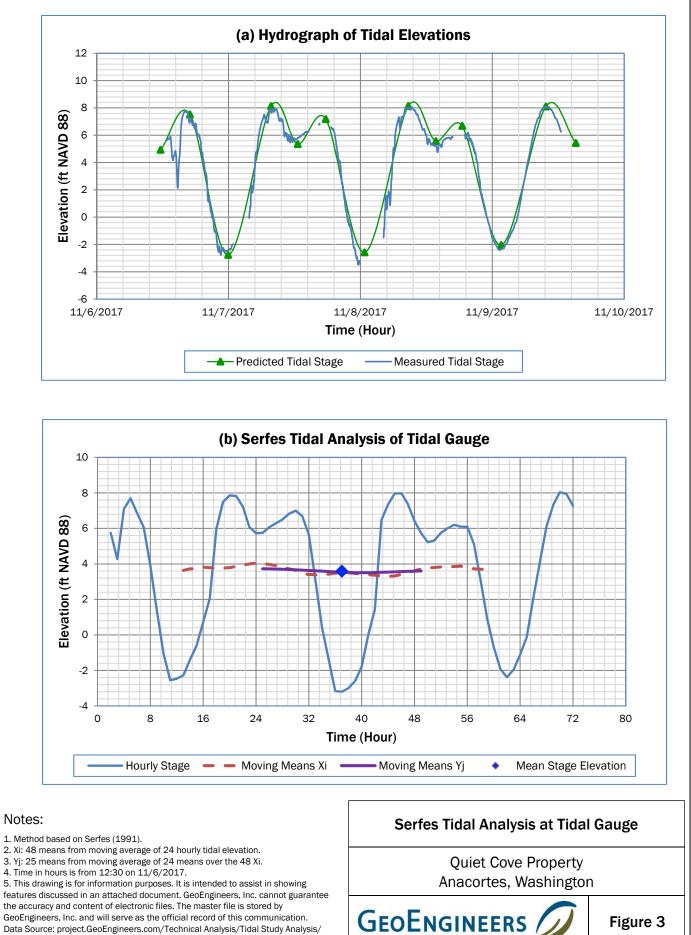
Monitoring Well and Mean Groundwater Elevation, 72-Hour Tidal Study

Composite Sediment Sample Grab Area (SED-1)

Ground Surface Elevation Contour (Feet, NAVD 88)

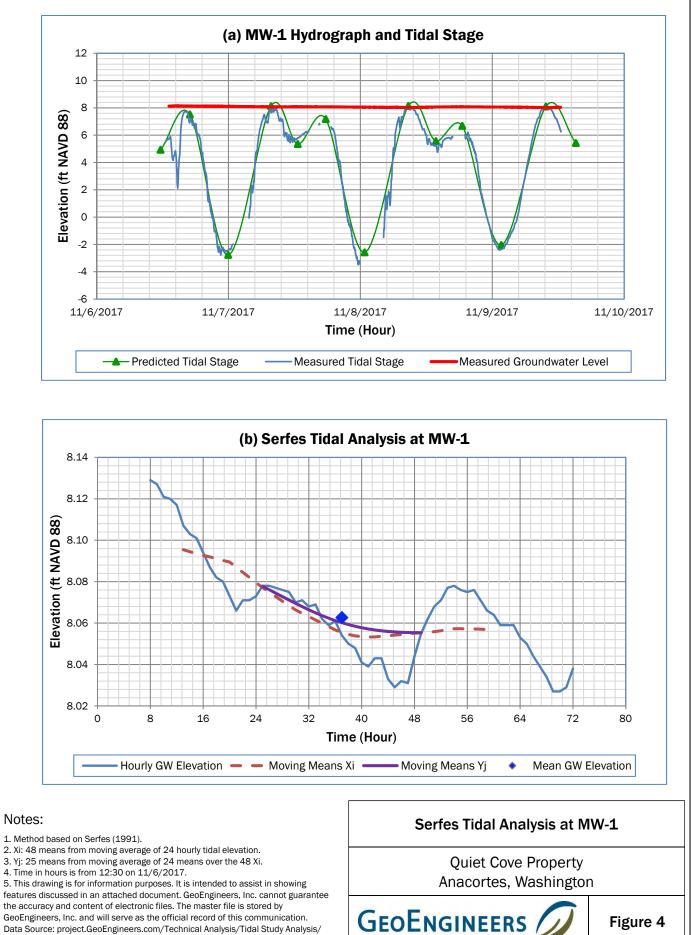
Groundwater Elevation Contour, Mean Elevations 72-Hour Tidal Study. Dashed Where Inferred.

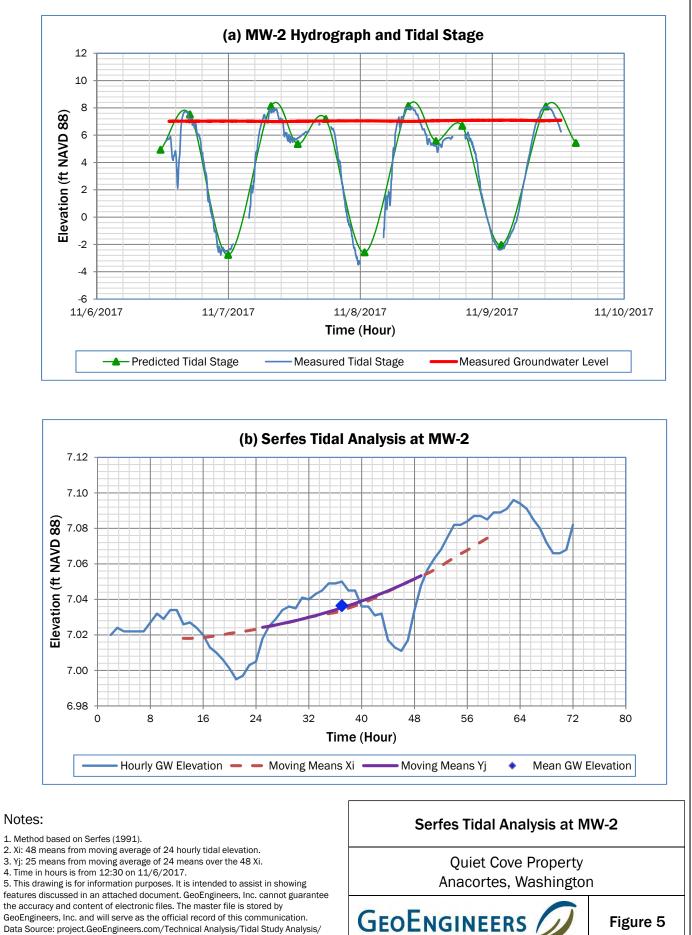

Inferred groundwater flow direction and groundwater gradient in feet per foot calculated between monitoring wells MW-10 and MW-2, and between monitoring wells MW-5 and MW-4


Notes:

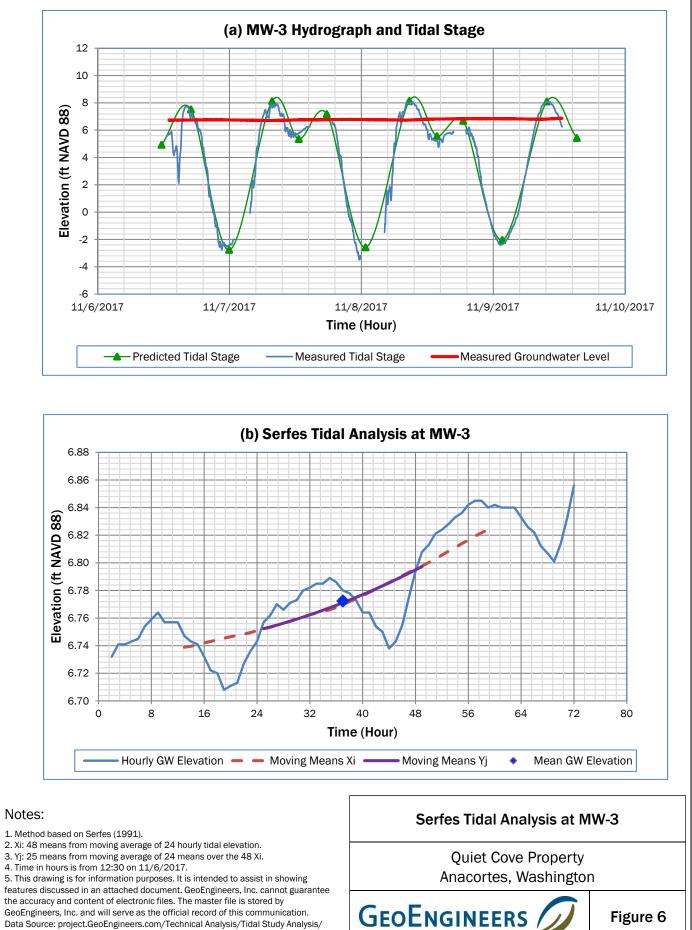
- 72-hour tidal study conducted between 12:30 November 6 and 12:30 November 9, 2017. The locations of all features shown are approximate. This drawing is for information purposes. It is intended to assist in showing features discussed in an attached document. 1.
- 2
- 3. GeoEngineers, Inc. cannot guarantee the accuracy and content of electronic files. The master file is stored by GeoEngineers, Inc. and will serve as the official record of this communication.

Data Source: Base Aerial taken by David C. Smith & Associates, Inc. on 6/17/2009. Base survey by Sound Development Group on 10-11-2017

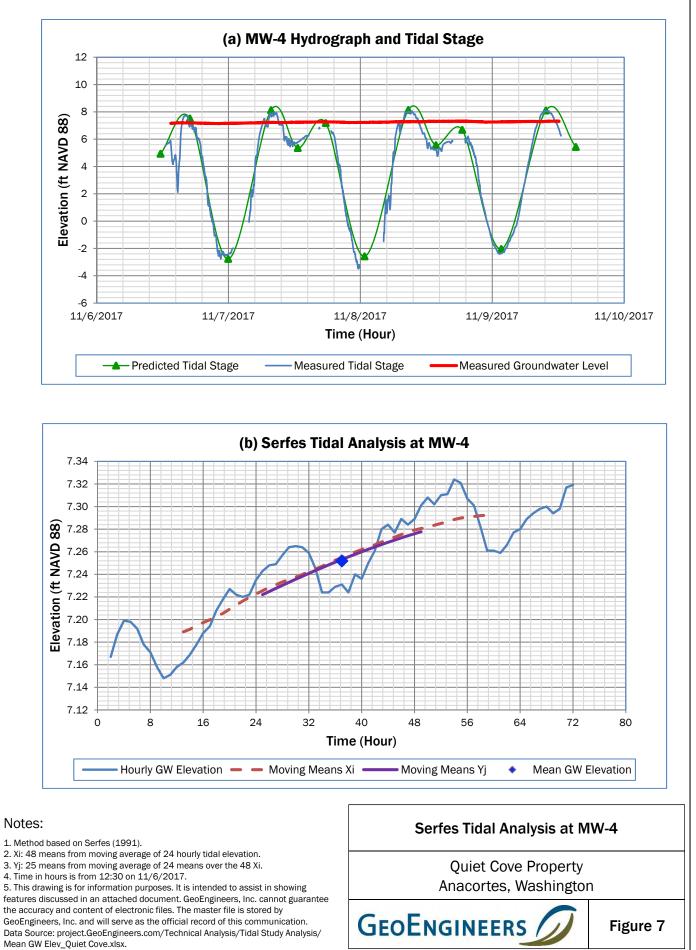

Projection: NAD83 WA State Planes, N Zone, US Foot


neers.com/Working/DRAFT FINAL Tech Memo Hydrogeological Evaluation/Draft Final Quiet Cove Hydro Study Tech Memo_Figs 03-13 Date Exported: 04/18/18

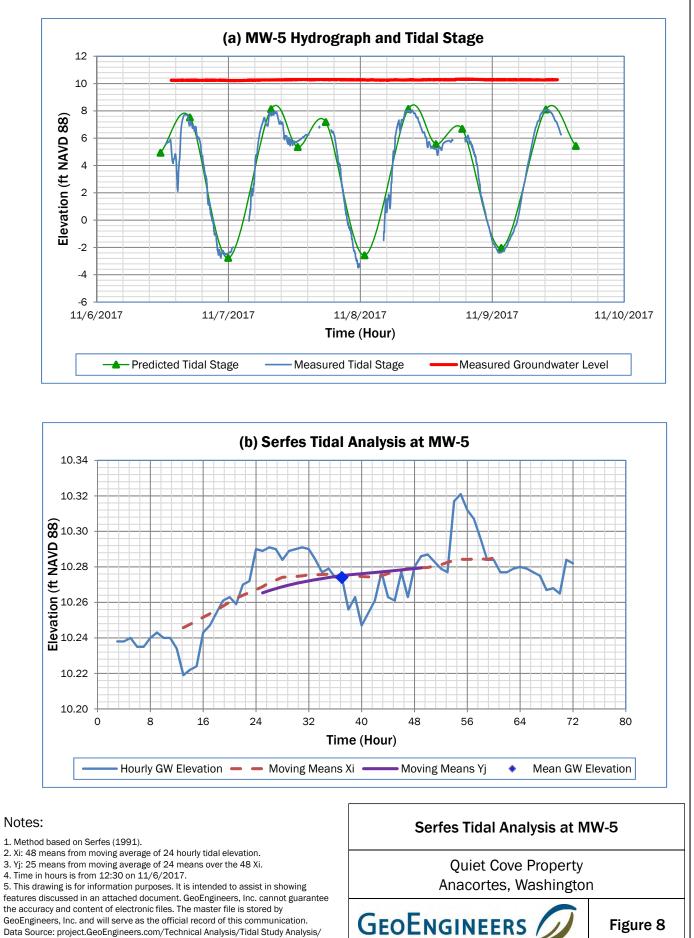
Mean GW Elev_Quiet Cove.xlsx.


ieers.com/Working/DRAFT FINAL Tech Memo Hydrogeological Evaluation/Draft Final Quiet Cove Hydro Study Tech Memo_Figs 03-13 Date Exported: 04/18/18

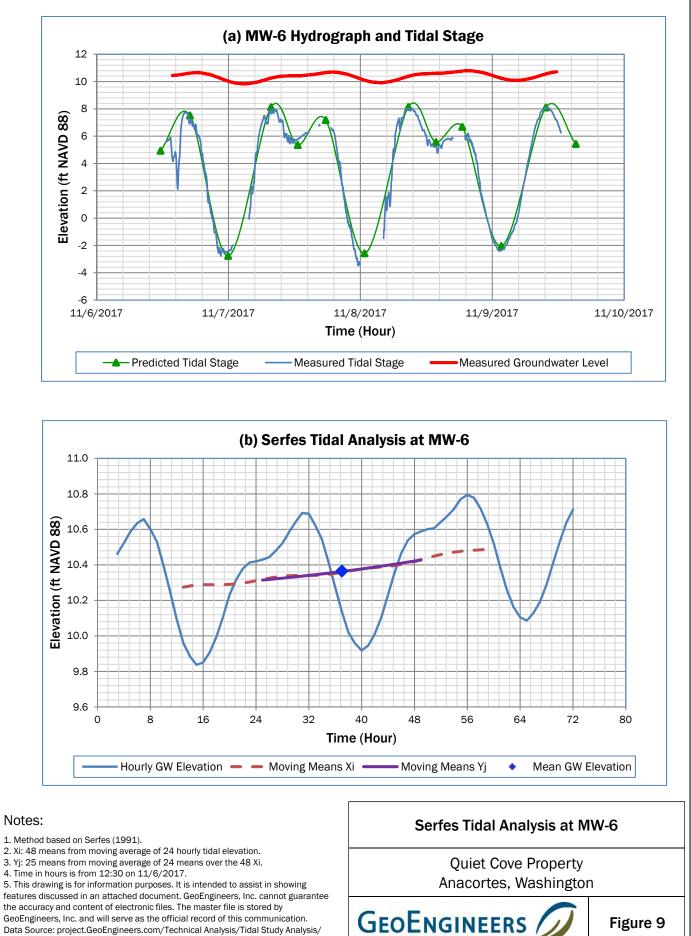
Mean GW Elev_Quiet Cove.xlsx.



eers.com/Working/DRAFT FINAL Tech Memo Hydrogeological Evaluation/Draft Final Quiet Cove Hydro Study Tech Memo_Figs 03-13 Date Exported: 04/18/18

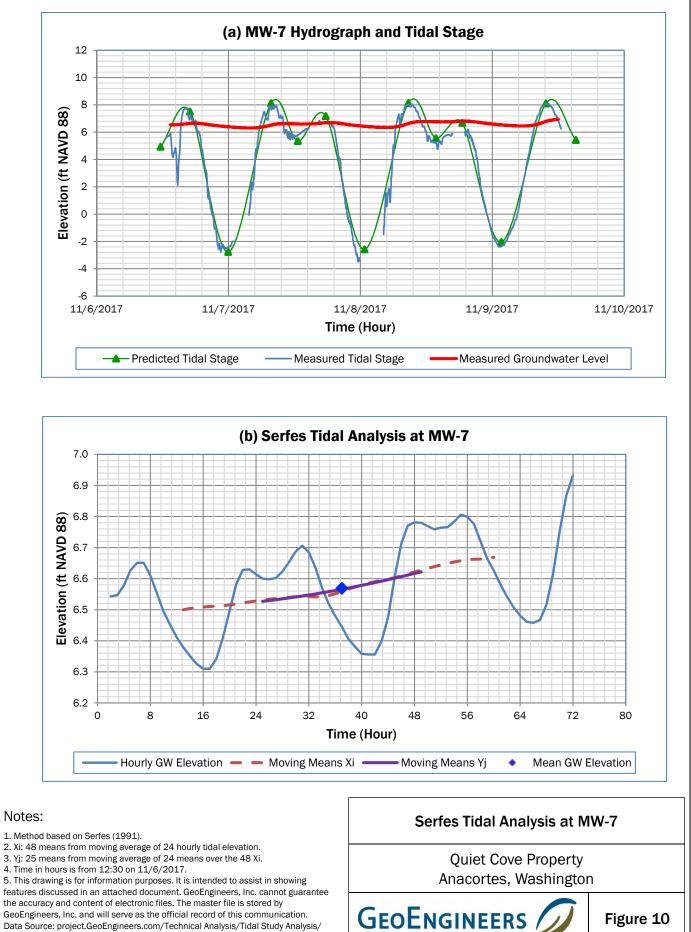

Mean GW Elev_Quiet Cove.xlsx.

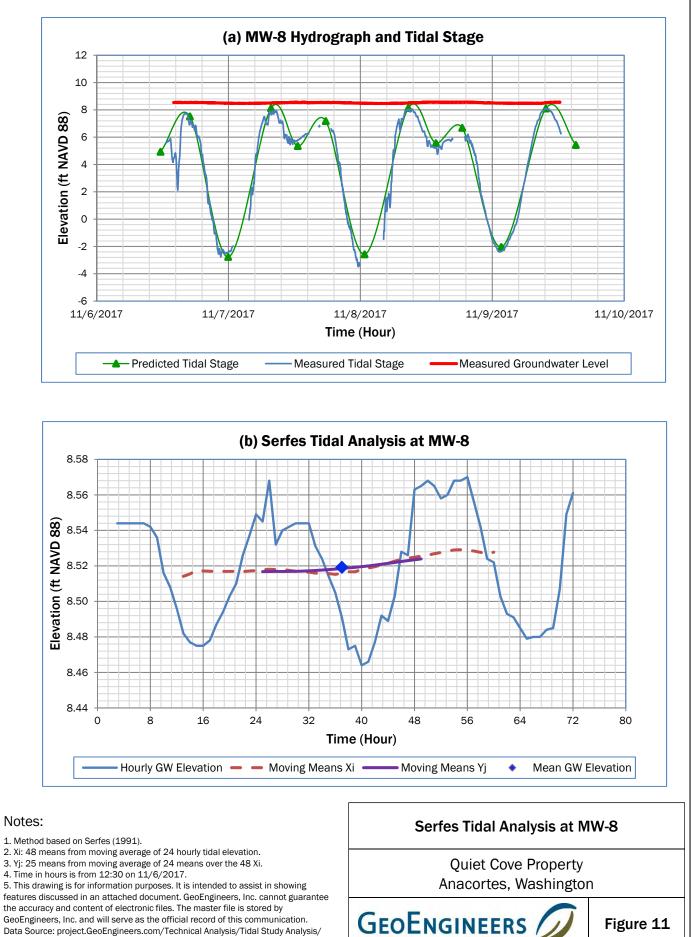
Mean GW Elev_Quiet Cove.xlsx.



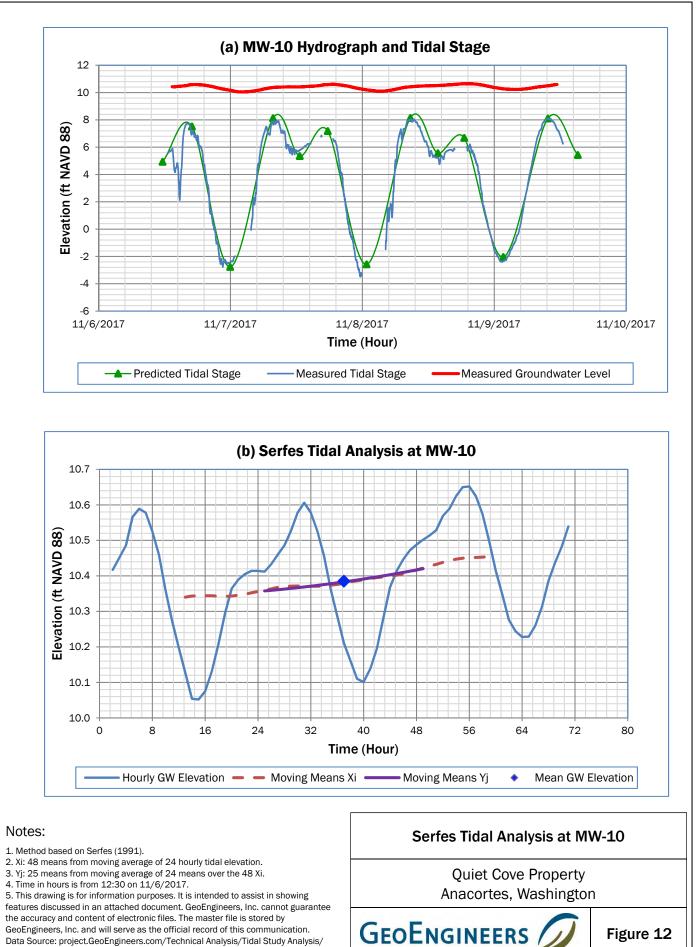
eers.com/Working/DRAFT FINAL Tech Memo Hydrogeological Evaluation/Draft Final Quiet Cove Hydro Study Tech Memo_Figs 03-13 Date Exported: 04/18/18

Mean GW Elev_Quiet Cove.xlsx.

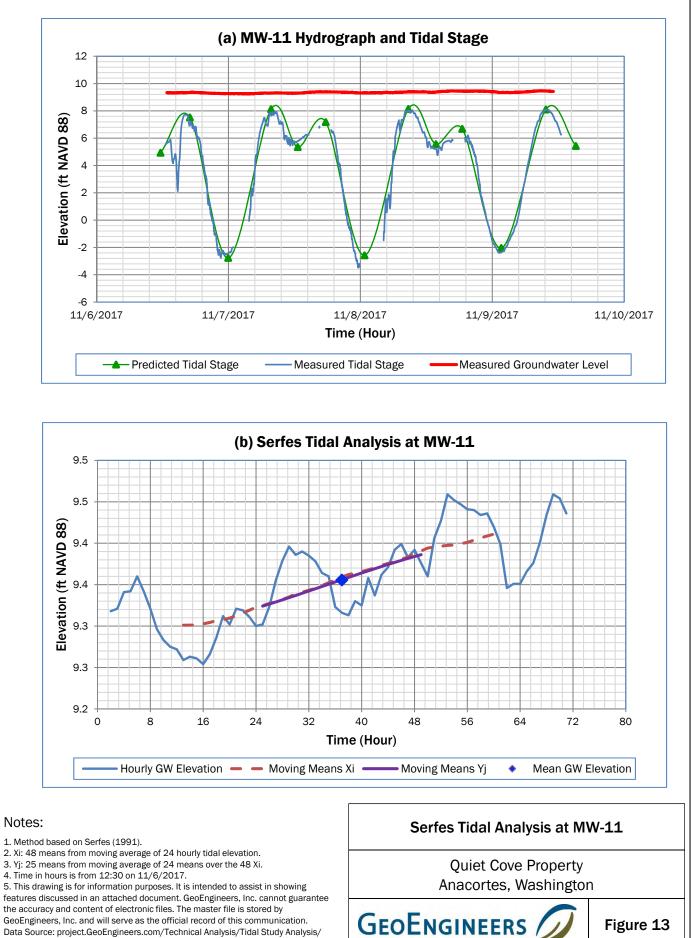

eers.com/Working/DRAFT FINAL Tech Memo Hydrogeological Evaluation/Draft Final Quiet Cove Hydro Study Tech Memo_Figs 03-13. Date Exported: 04/18/18


ieers.com/Working/DRAFT FINAL Tech Memo Hydrogeological Evaluation/Draft Final Quiet Cove Hydro Study Tech Memo_Figs 03-13 Date Exported: 04/18/18

Data Source: project.GeoEngineers.com/Technical Analysis/Tidal Study Analysis/

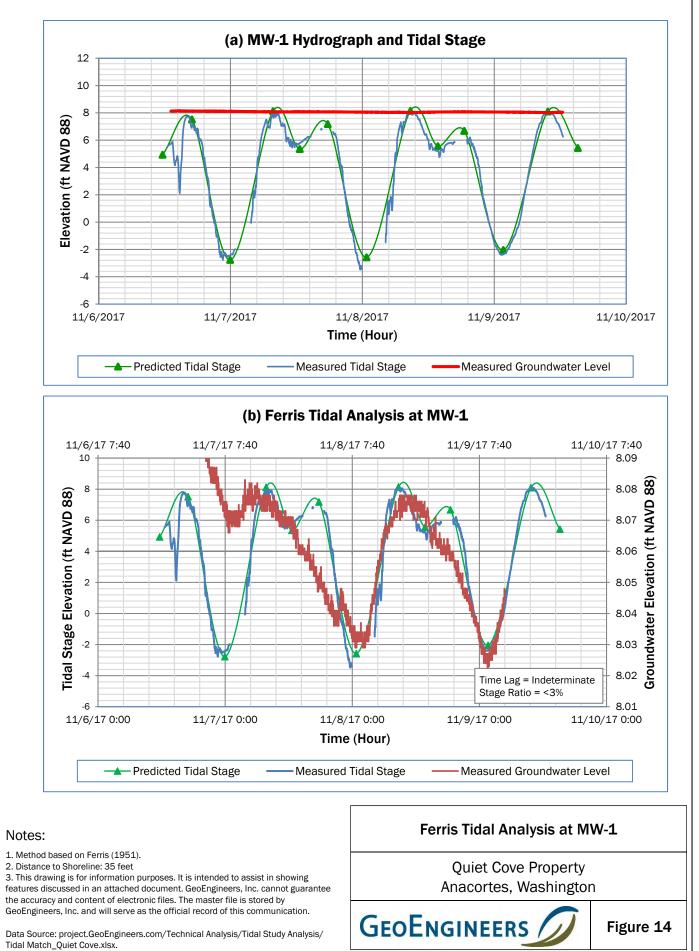

Mean GW Elev_Quiet Cove.xlsx.

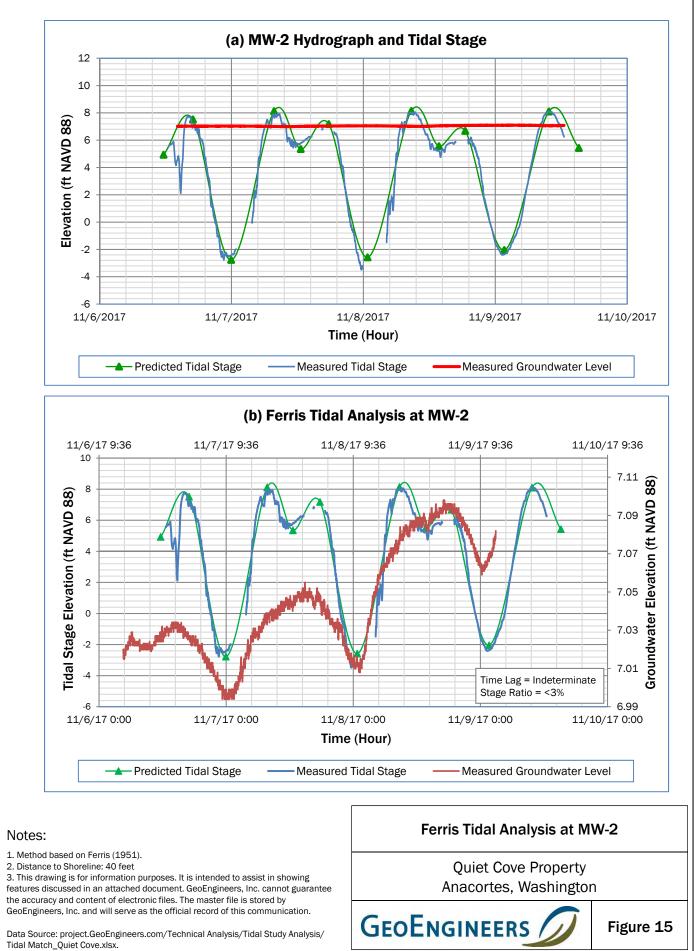
Mean GW Elev_Quiet Cove.xlsx.

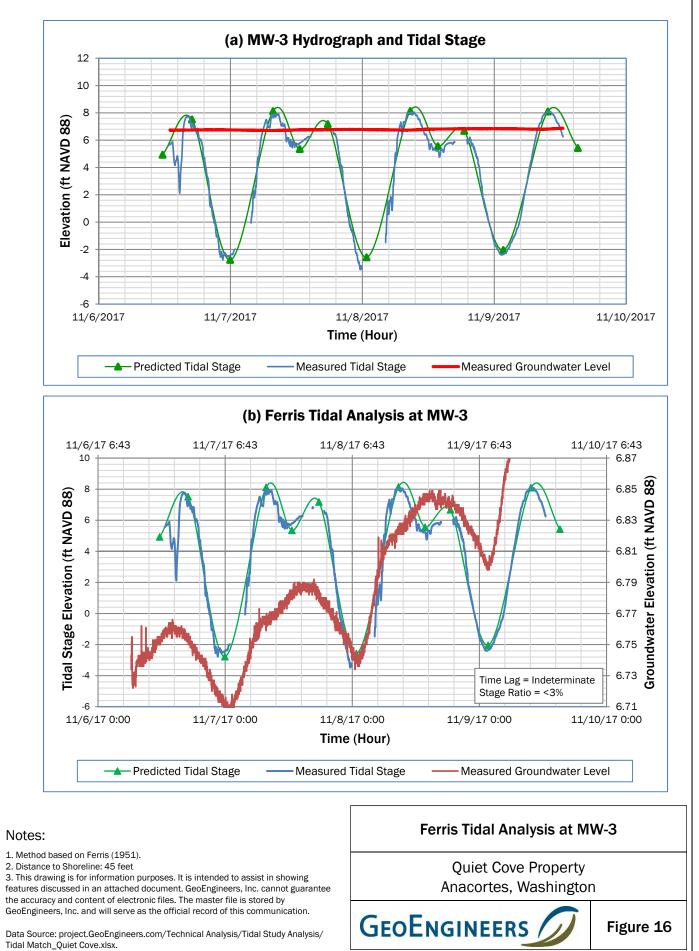


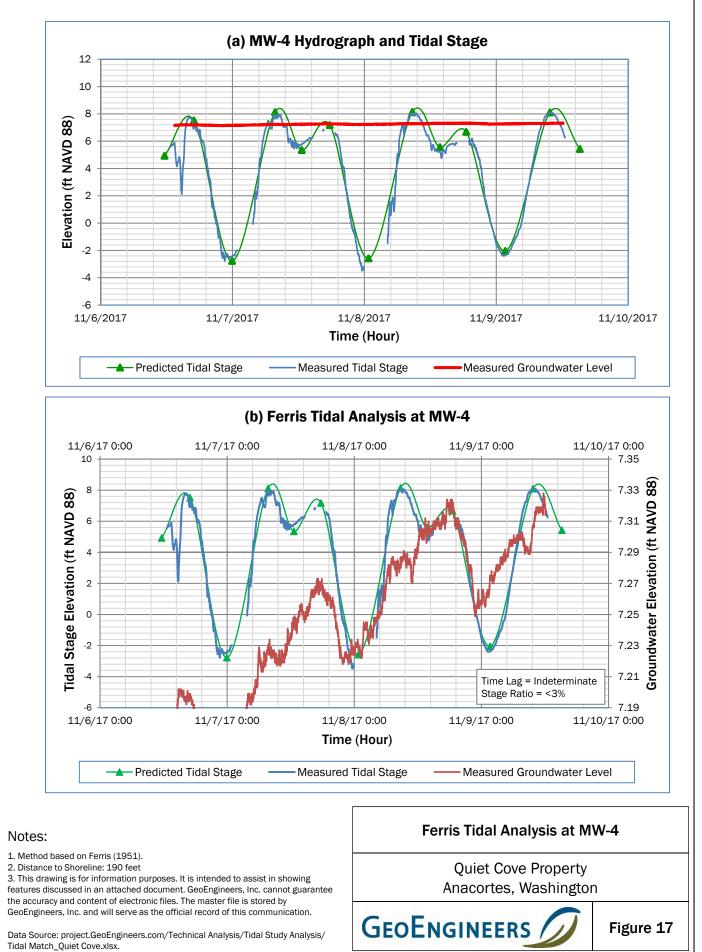
eers.com/Working/DRAFT FINAL Tech Memo Hydrogeological Evaluation/Draft Final Quiet Cove Hydro Study Tech Memo_Figs 03-13 Date Exported: 04/18/18 Data Source: project.GeoEngineers.com/Technical Analysis/Tidal Study Analysis/ Mean GW Elev_Quiet Cove.xlsx.

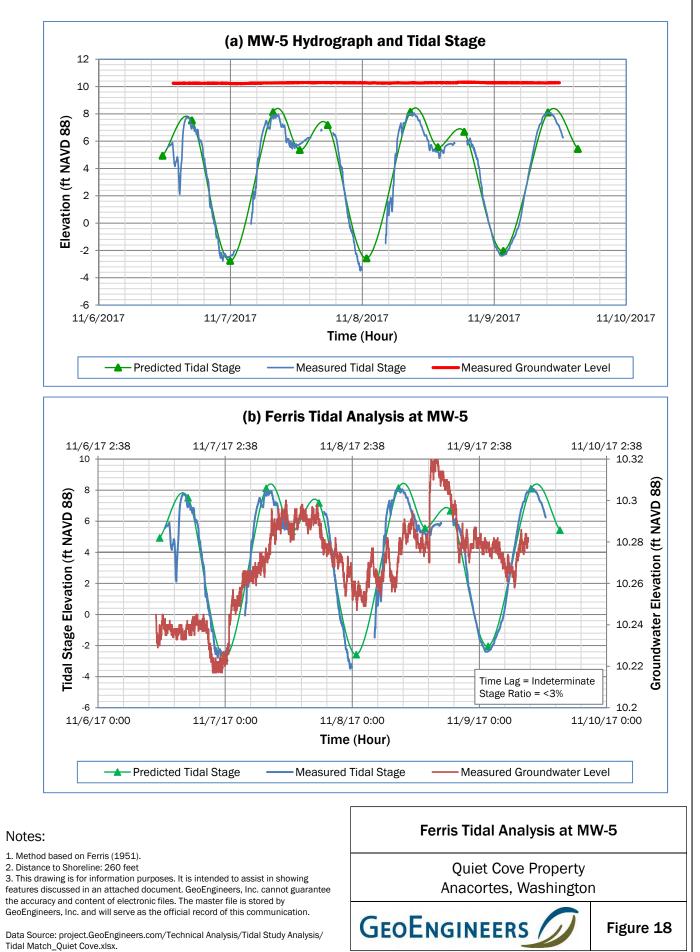
Data Source: project.GeoEngineers.com/Technical Analysis/Tidal Study Analysis/

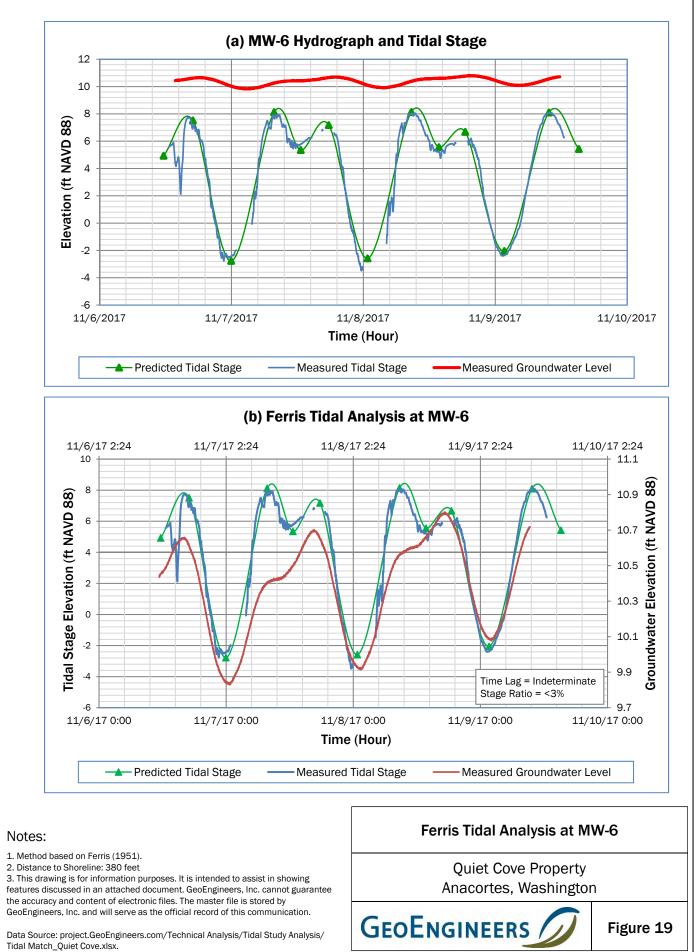

Mean GW Elev_Quiet Cove.xlsx.

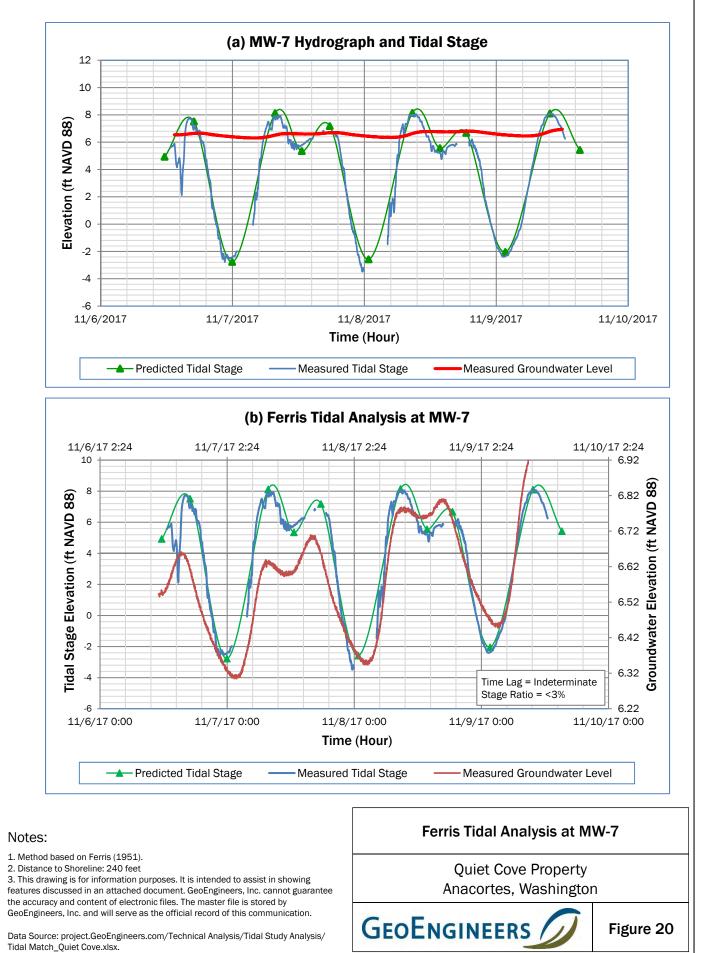

Geoengineers.com/Working/DRAFT FINAL Tech Memo Hydrogeological Evaluation/Draft Final Quiet Cove Hydro Study Tech Memo_Figs 03-13 Date Exported: 04/18/18

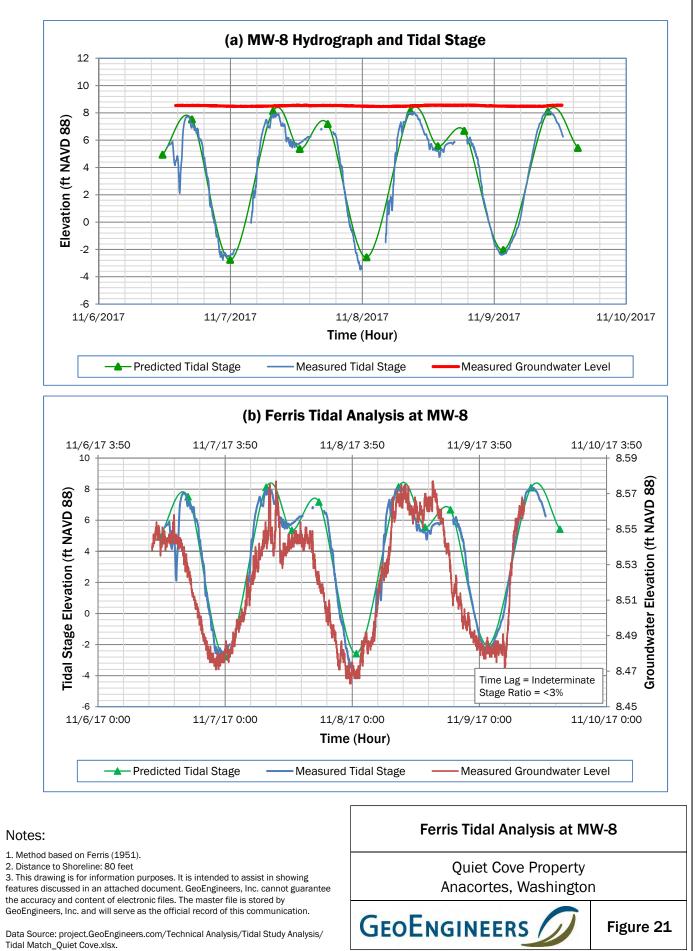

Data Source: project.GeoEngineers.com/Technical Analysis/Tidal Study Analysis/

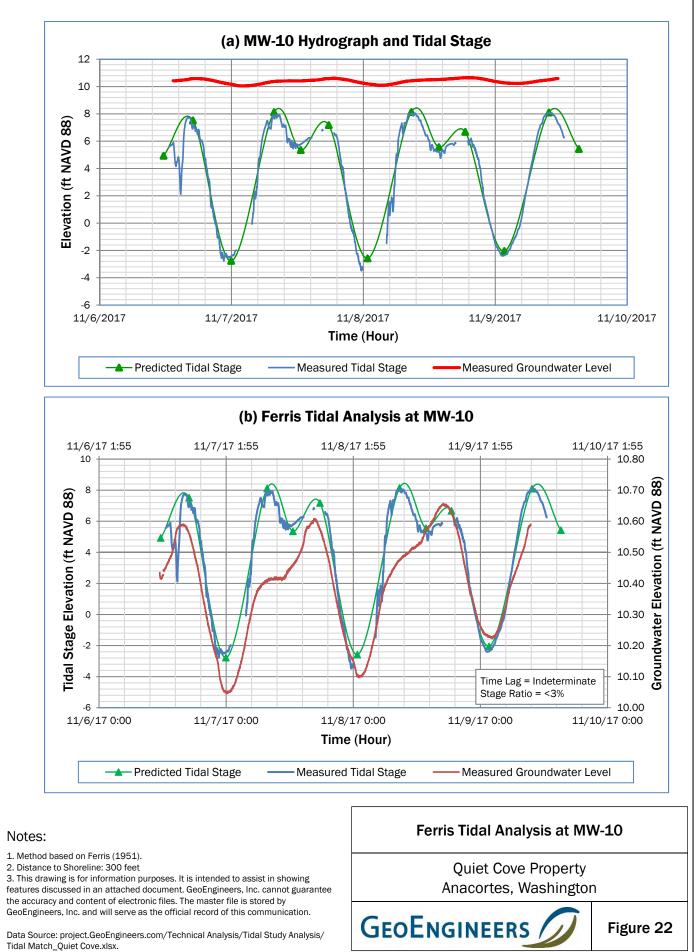

Mean GW Elev_Quiet Cove.xlsx.

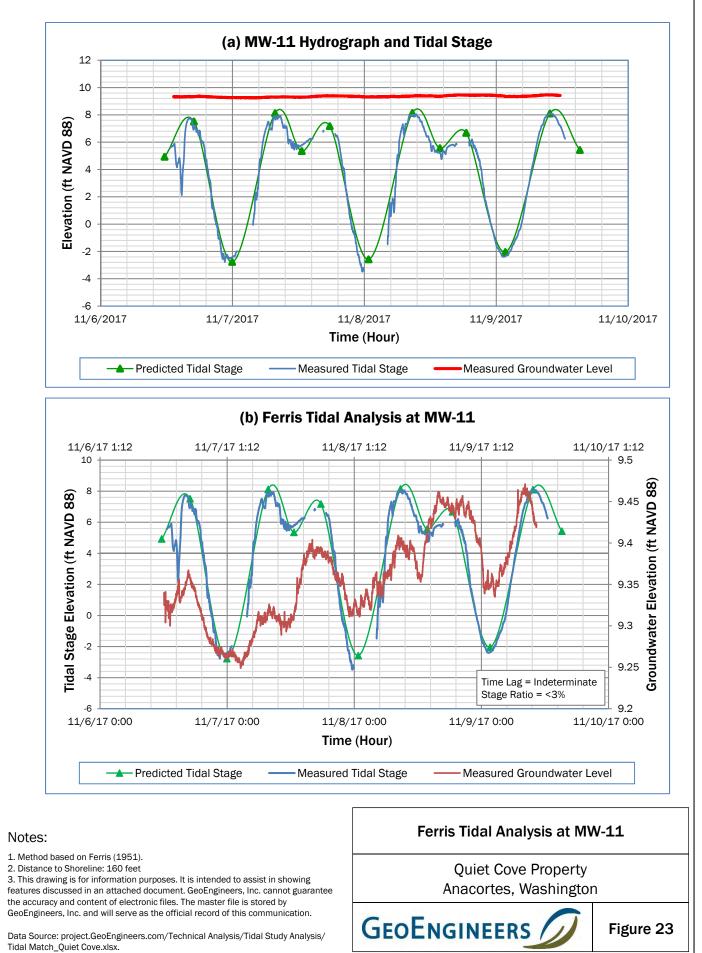


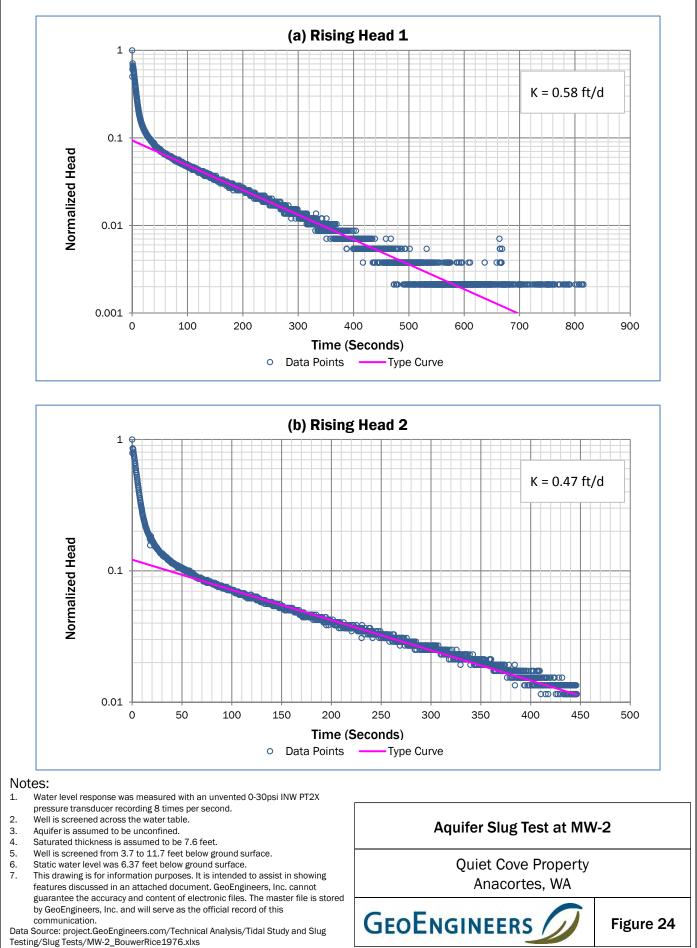

.com/Working/DRAFT FINAL Tech Memo Hydrogeological Evaluation/Draft Final Quiet Cove Hydro Study Tech Memo_Figs 14-23 Date Exported: 04/18/18

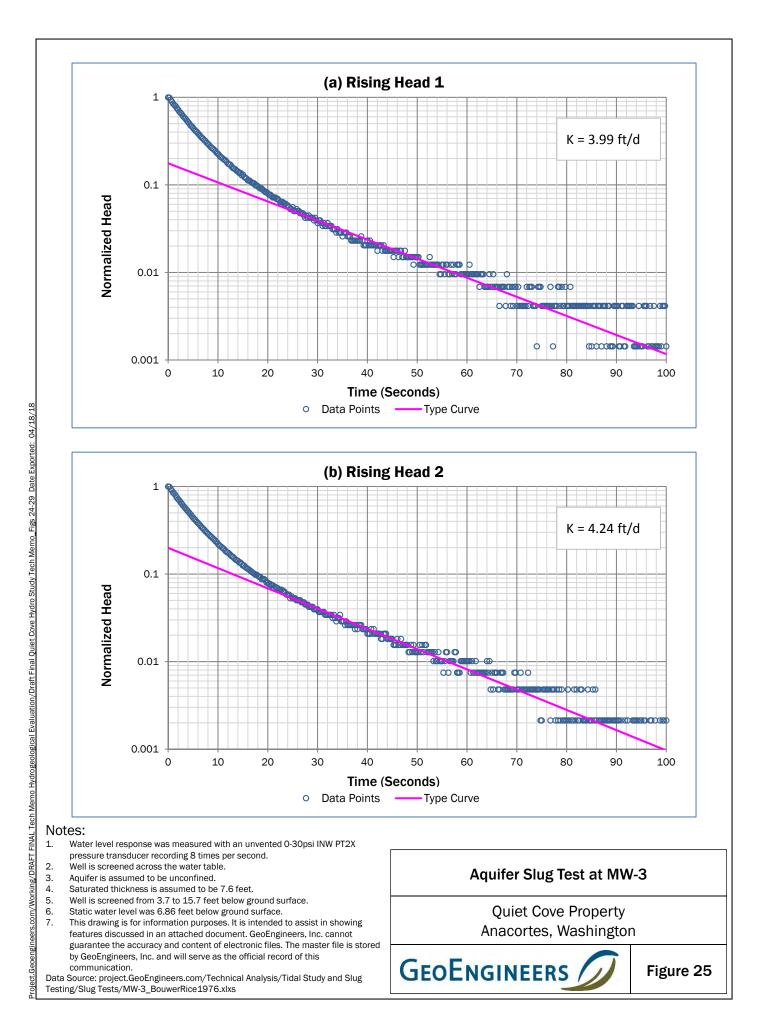


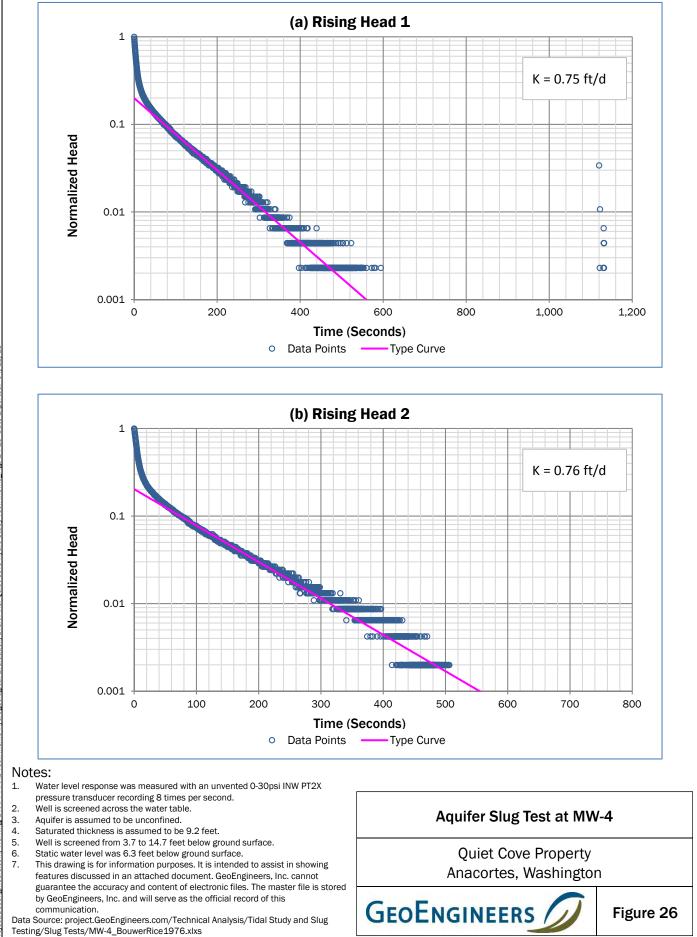


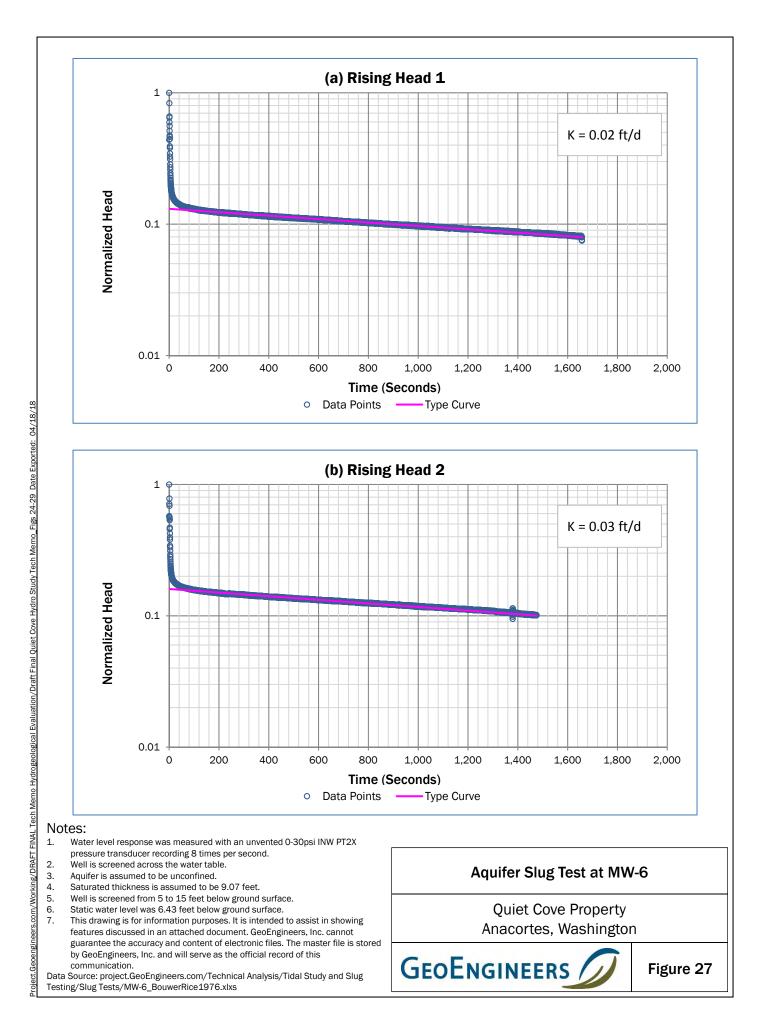


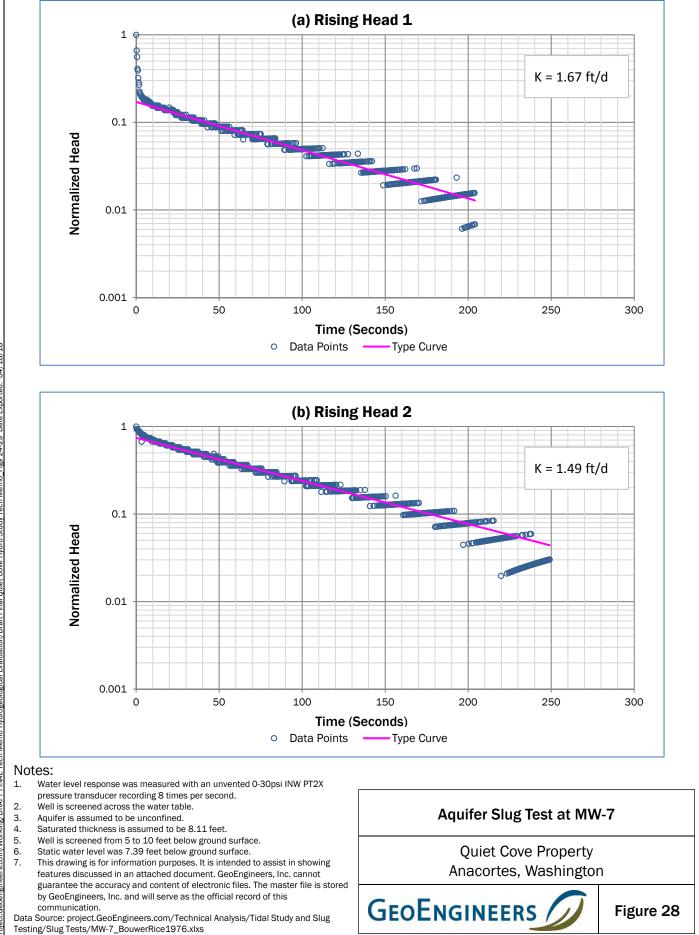


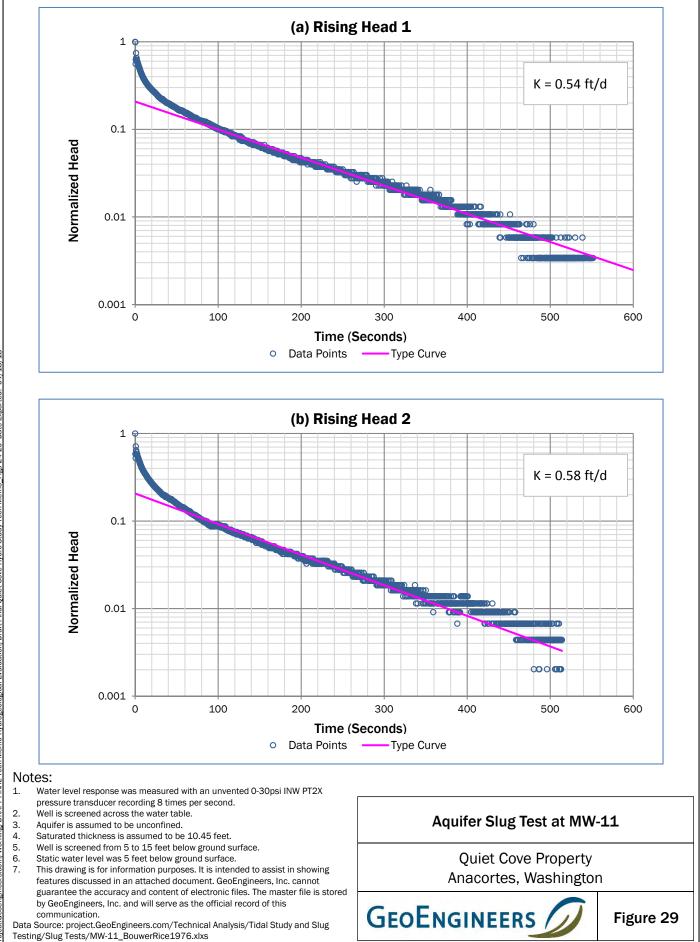



.com/Working/DRAFT FINAL Tech Memo Hydrogeological Evaluation/Draft Final Quiet Cove Hydro Study Tech Memo_Figs 14-23 Date Exported: 04/18/18








roject. Geoengineers.com/Working/DRAFT FINAL Tech Memo Hydrogeological Evaluation/Draft Final Quiet Cove Hydro Study Tech Memo_Figs 24-29 Date Exported: 04/18/18

ATTACHMENT 5 Investigation Derived Waste Disposal Records

HASTE MANIFEST	2. Page 1 cl 3. En	-	1.18.11.1	4. Wasta	Treining H	
eneraldr's Nema and Mailing Addresa	وجي بيران محمد المرجم والمرجم في المرجم ا	1900112. Lions Sta Adda		t Chan mailing acid	tess)	2-03182018
PORT OF ANACORTES	۹					
ANACORTES VVA. 65221 etators Fronze (3801/2001/1927	l			U.S. EPAID	Murther	·····
CHEMICAL WASTE MAMAGEMENT				9.3 GMU		29457353
ansporter 2 Company Neine		*****		US EPAID		66002303
UNION PACIFIC RAILROAD			، غرب		NEDO	nt792310
esignated Fact ty Name and Sile Address				US. EPAID		میں ہوتے ہیں ہوتے ہیں ہوتے <mark>اور اور اور اور اور اور اور اور اور اور </mark>
17829 CED4	Maste Management, & Springs Lane 1 or 97812-9709	3441 		Victoria	0220	894 523 53
9. Waste Shipping Name and Description		SD, Cor		11. Total	12. Uni	
		No.	Type	Quantity	WILNOL	[
WAICKIAL NUT KEGULATED BY D	08827956	4	DM	4800	7	×004
A MATERIAL NOT RESELLATED BY D	0.T. 0R327858	- Spece	DM	2400	9	X004
3			-	1	†	
4.			Ļ	<u> </u>		
] .				
zeil Handhig babyetlors and Addicert Information JR327858-SOIL JR327858-WATER						
				U 91		

Signaturo

10, GENERAT ආශ්රයේ ක Ganeratorsic Ben 15. Internation Post of entrylexit: Importio U.S. Export from U.S. Transporter Sensiona (for exercise anly); ate leaving U.S. 16. Jacasped et Action Action and Second of Materials W REE THAT Signationa Fransporter 2 Printed Types Name Signatura Þ Avile emini Out: 17 Discrepancy 17# Discrepancy Deficition Space Птура Residua Manifest Releases Number 17b. Alternato Facility (or Generator) Fectivy's Phone 17c. Signations of Alternate Facility (or Generator) 18. Designated Facility Owner of Operator. Certification of receipt of materials covered by the manifest except as noted in item Fa Printed/Typed Name

97 169-BLC-O & 10498 (Rev. \$/09)

コリカモ

e

GENERATOR-

TRANSPORTER

1

CNATED FACILITY

DEG

DESIGNATED FACILITY'S COPY

Monith 37 M

Yest

Year

YAB

Z 2

Konth

Month

Panial Rejection

U.S. EPA ID Number

fay

Full Rejection

Đay

I Commissions success	19. Generator ID Number	20 Page	21. Wes	la Tracking Nuc	aber CVAA-2-02482018
22 Generators Name PORT OF ANACORT					<u></u>
23, Transponter Company Name_OLLIN	STA RIDGE LANDFILL			U.S. EPA I	ORD987173457
24, Fransporter Company Nama		na _s ere: Ren e ^{den}		US EPÁ I	
25. Waste Shipping Name and Obscription		28, Cont No.	аіприя Тура	27 Tole) Ocentily	20. Linit Wi.Not
			der eine der sterne der der der der der der der der der de		
29. Special Hantling Instructions and Additional Informatio				and the second	
30. Transportes J. Acknowindomeni al Receipt of Mar			LN)	Mru	981740
Printed Type Stanta 100111 RIAC Shi 31. Tansporter Alconomical of Receipt of Machine	Signature	Bilit	aw		Skinist Day Ye
Panted/Typed Nama 32, Discrepancy	Signaturo				Math Dsy Ye
		1997 A. 7. 40° and 100			

U **VS 105** 92 (Rev. 8/06)

з

ø

.

DESIGNATED FACILITY'S COPY

	NON-HAZARDOUS	1. Generator ID Number		2. Page 1 of 3. En	ergency Respon	ise Phone	4. Waste T	racking Nu	umber
	WASTE MANIFEST 5. Generator's Name and Mail	NI/A		<u> </u>	(ffr	1424-113	**	2	A121718-CMM
			••	Gene	rator's Site Addre	éss (it difleten	nt than mailing addr	'8SS)	······································
	QUIETICO	DVE: 202 O AVENU	E						
	Generator's Phone:	TES: W SE	3221						
	6. Transporter 1 Company Nar CHEMIC	TAL WASTE MANA	CENENT INO				U.S. EPA ID	Number	
	7. Transporter 2 Company Nar	ne una	BEIMENT, INC.				U.S. EPAID		2D089452353
1	B. Designated Facility Name ar	VYKK nd Site Address			1		U.S. EPA ID	201	192910
F	Facility's Phone: (541)454	176	EMICAL WASTE 129 CEDAR SPR LINGTON OR 9	INGS LANE	INT, INC.			OR	D088452353
	9. Waste Shipping Nam	o and Description			10. Con	lainers	11. Total	12. Unit	<u></u>
1	1. MATERIAL			· · · · · · · · · · · · · · · · · · ·	No.	Туре	Quantity	Wt/Vol	· ·
	and an	L NOT REGULATE			5	DM	2,500	2	
		L NOT REGULATE) BY D.O.T	OR337263	4	ĎM	2,600	Ч	
	3.					a the second second second			
	4.					<u>+</u>			
13	1. Special Handling Instructions 1. OR337286-S 2. OR337283-LF	s and Additional Information TABD1-RI WATER F01/STAB01-RI SOI	4-65g 1-15 123-55g 1-15	s Sq	[<u> </u>	<u> </u>		
	1. OR337286-S 2. OR337283-LF	TABD1-RI WATER	time that the contrasts of this	<u> </u>			970	25	Z
14	1. OR337286-S 2. OR337283-LF	TABD1-RI WATER -01/STAB01-RI SO S CENTEICATION: 1 hereby dec and are in all respects in prope	time that the contrasts of this	<u> </u>				Z-S-	, and are classified, package
14 G	1. OR337286-S 2. OR337283-LF . GENERATOR S/OFFEROR mainted and labeled/plocarde herator/s/Offeror's PointedTyp	TABD1-RI WATER -01/STAB01-RI SO S CENTEICATION: 1 hereby dec and are in all respects in prope	time that the contrasts of this	consegnment are fully an onting to applicable inter Supature	nd accurately dem national and nat			Z-S-7	and are classified, package Honth Day
14 G	1. OR337288-S 2. OR337283-LF . OENERATOR STOFFEROR marked and labeled (plocande herator StOfferors Printed Typ Since Store Store Store Store International Shipments	S CENTFICATION: 1 hereby dec and are in all respects in prope red Name	tare that the contents of this or condition for transport acc	consegnment are fully as ording to applicable inter Stanature	nd accurately des national and nat	ional govern		ZS ;	, and are classified, package
14 G 215.	1. OR337286-S 2. OR337283-LF . OENERATOR SJOFFEROR maiked and labeled/plocande herator Stollerors Printed Typ Sincury (27) Intermational Shigments Inscorter Signature (for escent	S CENTFICATION: 1 hereby dec d. and are in all respects in prope and Name	tare that the contents of this or condition for transport acc	consegnment are fully an onting to applicable inter Supature	nd accurately dem national and nat	ional govern		Z.S.	, and are classified, package
14 G 215. That 15.	1. OR337288-S 2. OR337283-LF . OENERATOR STOFFEROR marked and labeled (plocande herator StOfferors Printed Typ Since Store Store Store Store International Shipments	TABD1-RI WATER -01/STAB01-RI SOI S CENTFICATION: I hereby dec and are in all respects in prope and Name 	tare that the contents of this or condition for transport acc	consegnment are fully as ording to applicable inter Stanature	nd accurately des national and nat	ional govern		Z.S.	, and are classified, package
14 G	1. OR337286-S 2. OR337283-LF . GENERATOR STOFFEROR marked and labeled/placarde herator/s/Dileror's PrintedTyp 3. Learna Shigments Insporter Signature (for example Transporter Acknowledgment insporter 1 Printed/Typed Nam	TABD1-RI WATER -01/STABD1-RI SOI S CENTFICATION: 1 hereby dec and are in all respects in prope red Name 	tare that the contents of this or condition for transport acc	consignment are (uSy ar ording to applicable inter Standard Export from U.S. Signature	nd accurately des national and nat	ional govern		ZST pping name,	and are classified, package
14 G 215. Tra	1. OR337286-S 2. OR337283-LF . OR337283-LF . OR337283-LF . OR337283-LF . OR337283-LF . OR337283-LF . OR337283-LF . OR337283-LF . OR33728-S . OR337286-S . OR337283-LF . OR337286-S . OR337286-S . OR337286-S . OR337286-S . OR337286-S . OR337283-LF . OR357283-LF . OR357284-LF . OR	TABD1-RI WATER -01/STABD1-RI SOI S CENTERCATION: 1 hereby dec and are in all respects in prope red Name 	tare that the contents of this or condition for transport acc	Consegnment are luly ar ording to applicable inter Structure Autor Export from U.S.	nd accurately des national and nat	ional govern		ZST	and are classified, package Honth Day 1 142
14 G 2 15. Tra Tra 17.	1. OR337286-S 2. OR337283-LF anaked and labeled/plocade marked plocade marked/	TABD1-RI WATER -01/STAB01-RI SOI S CENTFICATION: 1 hereby dec ed and are in all respects in prope red Name 	tare that the contents of this or condition for transport acc	consignment are (uSy ar ording to applicable inter Standard Export from U.S. Signature	nd accurately des national and nat	ional govern		ZST ping name,	and are classified, package Honth Day 1 14
14 G 25, Tra 16.	1. OR337286-S 2. OR337283-LF CENERATOR STOFFERON marked and labeled/plocande inerator Stofferor's Ponted Typ Similar Signature (for except Transporter Signature (for except Transporter 1 Printed/Typed Nam insporter 2 Printed/Typed Nam	TABD1-RI WATER -01/STAB01-RI SOI S CENTFICATION: 1 hereby dec ed and are in all respects in prope red Name 	tare that the contents of this or condition for transport acc	Consignment are fully ar ording to applicable inter Stonature J Export from U S. Signature	nd accurately des national and nat	ional govern		iping name,	and are classified, package Honth Day 1 142
14 G 215. Train 16. Train 17. 17. 17. 17. 17. 17. 17. 17. 17. 17.	1. OR337286-S 2. OR337283-LF anaked and labeled/plocade marked plocade marked/	TABD1-RI WATER =01/STAB01-RI SOI S CENTFICATION: 1 hereby dec ed and are in all respects in prope wed Name AASS D Import to U.S S Only I: tol Ascription I statemals ABS B $ASSC$ $ASSSC$ $ASSSSC$ $ASSSSC$ $ASSSSC$ $ASSSSC$ $ASSSC$ $ASSSSC$ $ASSSSSC$ $ASSSSC$ $ASSSSSC$ $ASSSSSC$ $ASSSSSSC$ $ASSSSSSSC$ $ASSSSSSC$ $ASSSSSSSSC$ $ASSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS$	are that the contents of this or condition for transport acc	Consignment are fully as ording to applicable inter Standard Export from U S. Signature	nd accumulative des national and national and national and national Port of eg Constructions Automatio		by the proper ship pental regulations.	tion	And are classified, package Honth Day 144
14 G 15. Tra 17. 17. 17. 17. 17. 17. 17. 17. 17. 17.	OR337286-S OR37286-S OR3728-S OR3728-	TABD1-RI WATER =01/STAB01-RI SOI S CENTFICATION: 1 haveby dec. ed and are in all respects in proper- ped Name AASS D Import to U.S S Only I: of Ascription 1 statemals AASS O Import to U.S S Only I: AASS O Import to U.S AASS AASS O Import to U.S AASS AASS AASS O Import to U.S AASSS AASSS AASSS AASSSS	are that the contents of this or condition for transport acc	Consignment are fully as ording to applicable inter Standard Export from U S. Signature	nd accumulative des national and national and national and national Port of eg Difference and and and and and and and and and and		Panial Reject	tion	And are classified, package Honth Day 144
14 G 2 15. That 15. Trac 17. 17. 17. 17. 17. 17. 17. 17. 17. 17.	OR337286-S OR337283-LF OR37283-LF OR3728-LF OR372	TABD1-RI WATER =01/STAB01-RI SOI S CENTFICATION: 1 haveby dec. ed and are in all respects in proper- ped Name AASS D Import to U.S S Only I: of Ascription 1 statemals AASS O Import to U.S S Only I: AASS O Import to U.S AASS AASS O Import to U.S AASS AASS AASS O Import to U.S AASSS AASSS AASSS AASSSS	are that the contents of this or condition for transport acc	Consignment are fully as ording to applicable inter Standard Export from U S. Signature	nd accumulative des national and national and national and national Port of eg Difference and and and and and and and and and and		Panial Reject	tion	And are classified, package Honth Day 144
14 G 2 15. That 15 Tree 17. 17. 17. 17. 17. 17. 17. 17. 17. 17.	OR337286-S OR337283-LF OR37283-LF OR3728-LF O	TABD1-RI WATER =01/STAB01-RI SOI S CENTFICATION: 1 haveby dec. ed and are in all respects in proper- ped Name AASS D Import to U.S S Only I: of Ascription 1 statemals AB B B B B C Quantity C	are that the contents of this or condition for transport acc	consignment are fully ar aning to applicable inter Standard Export from U S. Signature Signature	nd accurately der national and national and national and national Port of er Carried Address of the second		Panial Reject	tion	And are classified, package

'IVIAI

467460

a.		••	19. Generalor ID Number	20. Paga	2 21, Wast	a Tracking Kum	hae	·····
ł	1	NON-HAZARDOUS WASTE MANIFEST (Continuation Sheet)	Nya Generator ili Number		2 21, Wass	a <i>nas</i> ang kum		FO.4121719-CMM
a da Tanƙa Nangata ya	22,0	Generalor's Name PORT OF ANAC			r			
	23. T	Transporter Company Name	LUMBIARIDGE LANDI	FILL		U.S. EPA ID	Number CRI	5687171457
	24. 7	Transparter Company Name				U S. EPA ID	Number	
		25. Waste Shipping Name and Description		26. C No.	ntainers Type	27, Total Quantity	28. Unit Wh.Nol.	
			:					
GENERATOR -								
GENE				and the second	: 			
	29. 1	Special Handling Instructions and Additional Inform	Bilan	WM	W C	170-	25Z	
TRANSPORTER	Printe	ransponer Acknowledgment of Receipt of edition of Name Automation Acknowledgment of Receipt of ransponer Acknowledgment of Receipt of	they	2.07 store Alle	Į C	pibb.	14	1991 - 99 - 190 - 44 CM
TRA		ed/Typed Name		Signer de	V	/	1	Month Day Year
D FACILITY	32. Di	iscrapancy						
DESIGNATED FACILITY								

170-BLC-O 6 10502 (Rev. 8/06)

DESIGNATED FACILITY TO GENERATOR

<u>CNAA</u>A

ATTACHMENT 6 Laboratory Data Reports

Not included in this draft. Available upon request.

ATTACHMENT 7 Data Validation Reports

Data Validation Report

Plaza 600 Building, 600 Stewart Street, Suite 1700, Seattle, WA 98101, Telephone: 206.728.2674, Fax: 206.728.2732 www.geoengineers.com

Project:	Port of Anacortes – Quiet Cove RIFS Second groundwater monitoring event
GEI File No:	005147-024-05
Date:	April 17, 2018

This report documents the results of a United States Environmental Protection Agency (USEPA)-defined Stage 2B data validation (USEPA Document 540-R-08-005; USEPA 2009) of analytical data from the analyses of groundwater samples collected as part of the Quiet Cove RIFS – second monitoring event, and the associated laboratory and field quality control (QC) samples. The samples were obtained from the Quiet Cove Site (Site) located at 3rd Street and O Avenue in Anacortes, Washington.

OBJECTIVE AND QUALITY CONTROL ELEMENTS

GeoEngineers, Inc. (GeoEngineers) completed the data validation consistent with USEPA Contract Laboratory Program National Functional Guidelines for Superfund Organic Methods Data Review (USEPA 2008) and Inorganic Superfund Data Review (USEPA 2010; National Functional Guidelines) to determine if the laboratory analytical results meet the project objectives and are usable for their intended purpose. Data usability was assessed by determining if:

- The samples were analyzed using well-defined and acceptable methods that provide reporting limits below applicable regulatory criteria;
- The precision and accuracy of the data are well-defined and sufficient to provide defensible data; and
- The quality assurance/quality control (QA/QC) procedures utilized by the laboratory meet acceptable industry practices and standards.

In accordance with the RI/FS Work Plan (GeoEngineers, 2017), the data validation included review of the following QC elements:

- Data Package Completeness
- Chain-of-Custody Documentation
- Holding Times and Sample Preservation
- Surrogate Recoveries
- Method, Trip, and Rinsate Blanks
- Matrix Spikes/Matrix Spike Duplicates
- Laboratory Control Samples/Laboratory Control Sample Duplicates
- Laboratory and Field Duplicates

- Instrument Tuning
- Internal Standards
- Initial Calibrations (ICALs)
- Continuing Calibrations (CCALs)
- Miscellaneous

VALIDATED SAMPLE DELIVERY GROUPS

This data validation included review of the sample delivery groups (SDGs) listed below in Table 1.

Laboratory Sample Delivery Group	Validated Samples
18C0320	MW-1_031918, MW-4_031918, MW-8_031918, MW-10_031918, and TRIPBLANK_031918
18C0338	MW-2_032018, DUP-1_032018, MW-3_032018, MW-5_032018, MW-6_032018, MW-7_032018, MW-11_032018, and TRIPBLANK_032018

CHEMICAL ANALYSIS PERFORMED

Analytical Resources, Inc. (ARI), located in Tukwila, Washington, performed laboratory analyses on the sediment and soil samples using one or more of the following methods:

- Gasoline-range Hydrocarbons (NWTPH-Gx) by Method NWTPH-Gx;
- Petroleum Hydrocarbons (NWTPH-Dx) by Method NWTPH-Dx;
- Volatile Organic Compounds (VOCs) by Method SW8260C;
- Polycyclic Aromatic Hydrocarbons (PAHs) by Method SW8270D-SIM;
- Total Metals by Methods EPA 6020/7470

DATA VALIDATION SUMMARY

The results for each of the QC elements are summarized below.

Data Package Completeness

ARI provided all required deliverables for the data validation according to the National Functional Guidelines. The laboratory followed adequate corrective action processes and all identified anomalies were discussed in the relevant laboratory case narrative.

Chain-of-Custody Documentation

Chain-of-custody (COC) forms were provided with the laboratory analytical reports. The COCs and sample container IDs were signed, initialed, accurate and complete when submitted to the lab, with the exceptions noted below:

COC and Sample Container Exceptions

- SDG 18C0320: The laboratory noted that 3 Trip Blank vials contained large air bubbles, which was taken into consideration during the validation process. Since the trip blank is only used as a test to ascertain whether there was a source of contamination during the transportation process, qualification was determined to be unnecessary in this case. No qualifiers were applied.
- SDG 18C0338: The laboratory noted that 3 Trip Blank vials contained large air bubbles, which was taken into consideration during the validation process. Since the trip blank is only used as a test to ascertain whether there was a source of contamination during the transportation process, qualification was determined to be unnecessary in this case. No qualifiers were applied. It was also noted that small bubbles were observed in at least one vial each for Samples MW-5_032018, MW-6_032018, and MW-11_032018. No qualification was required for this size of bubble in the vials.

Holding Times and Sample Preservation

The sample holding time is defined as the time that elapses between sample collection and sample analysis. Maximum holding time criteria exist for each analysis to help ensure that the analyte concentrations found at the time of analysis reflect the concentration present at the time of sample collection. Established holding times were met for all analyses, with the exceptions noted below. The sample coolers arrived at the laboratory within the appropriate temperatures of between 2° and 6° Celsius, with the exceptions noted below.

Cooler Temperature Exceptions

SDG 18C0320: One sample cooler temperature was recorded at the laboratory as 1.6° Celsius. It was determined through professional judgment that these temperatures should not affect the sample analytical results; no action was taken other than to note in this report.

Surrogate Recoveries

A surrogate compound is a compound that is chemically similar to the organic analytes of interest, but unlikely to be found in any environmental sample. Surrogates are used for organic analyses and are added to all samples, standards, and blanks to serve as an accuracy and specificity check of each analysis. The surrogates are added to the samples at a known concentration and percent recoveries (%R) are calculated following analysis. All surrogate recoveries for field samples were within the laboratory control limits, with the following exceptions:

Volatile Organic Compound (VOC) Surrogate Exceptions

SDG 18C0320 and 18C0338: The %R values for 1,2-dichloroethane-d4 were greater than the control limits in Samples MW-4_031918, MW-6_032018, and MW-10_031918. No qualifiers were required as the laboratory used a total of 4 surrogates for each sample. In both cases, there were at least 3 of the 4 surrogates were within the control limits provided by the laboratory. No qualifiers were required.

Method Blanks

Method blanks are analyzed to ensure that laboratory procedures and reagents do not introduce measurable concentrations of the analytes of interest. A method blank was analyzed with each batch of samples, at a frequency of 1 per 20 samples. For all sample batches, method blanks were analyzed at the required frequency. None of the analytes of interest were detected in the method blanks.

Trip Blanks

Trip blanks are analyzed to assess whether field sampling or sample transport processes may have introduced measurable concentrations of volatile analytes of interest into project samples. The following SDGs contained trip blanks that were packed into the sample coolers and transported with the field samples:

- **SDG 18C0320:** A Trip Blank was sampled on 3/19/18 and analyzed for Gasoline Range Hydrocarbons and Volatile contaminants. There were no positive results greater than the reporting limits in this Trip Blank. No qualifiers were applied to any field samples.
- **SDG 18C0338:** A Trip Blank was sampled on 3/20/18 and analyzed for Gasoline Range Hydrocarbons and Volatile contaminants. There were no positive results greater than the reporting limits in this Trip Blank. No qualifiers were applied to any field samples.

Matrix Spikes/Matrix Spike Duplicates

Since the actual analyte concentration in an environmental sample is not known, the accuracy of a particular analysis is usually inferred by performing a matrix spike (MS) analysis on one sample from the associated batch, known as the parent sample. One aliquot of the sample is analyzed in the normal manner and then a second aliquot of the sample is spiked with a known amount of analyte concentration and analyzed. From these analyses, a %R is calculated. Matrix spike duplicate (MSD) analyses are generally performed for organic analyses as a precision check and analyzed in the same sequence as a matrix spike. Using the results from the MS and MSD, the relative percent difference (RPD) is calculated. The %R control limits for MS and MSD analyses are specified in the laboratory documents, as are the RPD control limits for MS/MSD sample sets.

One MS/MSD analysis should be performed for every analytical batch or every 20 field samples, whichever is more frequent. The frequency requirements were met for all analyses and the %R and RPD values were within the proper control limits, with the exceptions noted below.

Volatile Organic Compound (VOC) MS/MSD Exceptions

SDG 18C0338: The laboratory performed a matrix spike on Sample MW-6-032018. The %Rs for m,p-xylene and 1,2-dibromomethane were greater than the control limits in either the MS or the MSD. However, in both cases, the corresponding MS/MSD %R values were within their respective control limits. No qualification was required.

Laboratory Control Samples/Laboratory Control Sample Duplicates

A laboratory control sample (LCS) is a blank sample that is spiked with a known amount of analyte and then analyzed. An LCS is similar to an MS, but without the possibility of matrix interference. Given that matrix interference is not an issue, control limits for accuracy and precision in the LCS and its duplicate (LCSD) are usually more rigorous than for MS/MSD analyses. Additionally, data qualification based on LCS/LCSD analyses would apply to each sample in the associated batch, instead of just the parent

sample. The %R control limits for LCS and LCSD analyses are specified in the laboratory documents, as are the RPD control limits for LCS/LCSD sample sets.

One LCS/LCSD analysis should be performed for every analytical batch or every 20 field samples, whichever is more frequent. The frequency requirements were met for each analysis and the %R and RPD values were within the proper control limits.

Laboratory Duplicates

Internal laboratory duplicate analyses are performed to monitor the precision of the analyses. Two separate aliquots of a sample are analyzed as distinct samples in the laboratory and the RPD between the two results is calculated. Duplicate analyses should be performed once per analytical batch. If one or more of the samples used has a concentration less than five times the reporting limit for that sample, the absolute difference is used instead of the RPD. The RPD control limits are specified in the laboratory documents. Laboratory duplicates were analyzed at the proper frequency and the specified acceptance criteria were met.

Field Duplicates

Field duplicates are similar to laboratory duplicates in that they are used to assess precision. Two samples (parent and duplicate) are created in the field by subsampling the homogenized sample and submitting them to the lab as separate samples. Duplicate samples were collected and analyzed for the same parameters as the associated parent samples. Precision is determined by calculating the RPD between each pair of samples. If one or more of the sample analytes has a concentration less than five times the reporting limit for that sample, then the absolute difference is used instead of the RPD. The RPD control limit for soil samples is 50 percent.

SDG 18C0338: One field duplicate sample pair, MW-2-032018 and DUP-1-032018, was submitted with this SDG. The precision criteria for were met for all target analytes.

Instrument Tuning

Instrument tuning for analyses by gas chromatography/mass spectrometry (GC/MS) are completed to ensure that mass resolution, identification, and sensitivity of the analyses are acceptable. Instrument tuning should be performed at the beginning of each 12-hour period during which samples or standards are analyzed. The frequency and specified acceptance criteria were met for each applicable analysis.

Internal Standards (Low Resolution Mass Spectrometry)

Like the surrogate, an internal standard is a compound that is chemically similar to the analytes of interest, but unlikely to be found in any environmental sample. Internal standards are used only for the mass spectrometry instrumentation and are usually added to the sample aliquot after extraction has taken place. The internal standard should be analyzed at the beginning of a 12-hour sample run and the control limits for internal standard recoveries are 50 percent to 200 percent of the calibration standard. All internal standard recoveries were within the control limits.

Initial Calibrations (ICALs)

The initial calibrations were conducted according to the laboratory methods and consisted of the appropriate number of standards. For inorganic analyses, the %R values were within the control limits of 90% and 110%. For organic analyses, the percent relative standard deviation (%RSD) and relative

response factors (RRF) values were within the control limits stated in the USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review (USEPA 2008).

Continuing Calibrations (CCALs)

The continuing calibrations were conducted according to the laboratory methods and consisted of the appropriate number of standards. For inorganic analyses, the %R values were within the control limits of 90% and 110%. For organic analyses, the percent difference (%D) and relative response factors (RRF) values were within the control limits in the USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review (USEPA 2008).

Overall Assessment

As was determined by this data validation, the laboratory followed the specified analytical methods. Accuracy was acceptable, as demonstrated by the surrogate, LCS/LCSD, and MS/MSD %R values, with the exceptions noted above. Precision was acceptable, as demonstrated by the LCS/LCSD, MS/MSD, and laboratory/field duplicate RPD values, with the exceptions noted above.

No data points were qualified for any reason.

All data are acceptable for the intended use.

REFERENCES

GeoEngineers, 2017. FINAL Remedial Investigation/Feasibility Study Work Plan (RI/FS Work Plan); Quiet Cove Property; Anacortes, WA; Ecology Agreed Order No. DE 11346. GEI No. 5147-024-03, dated January 25, 2017.

U.S. Environmental Protection Agency (USEPA). "Guidance for Labeling Externally Validated Laboratory Analytical Data for Superfund Use," EPA-540-R-08-005. January 2009.

U.S. Environmental Protection Agency (USEPA). "Contract Laboratory Program National Functional Guidelines for Superfund Organic Methods Data Review," EPA-540-R-08-01. June 2008.

U.S. Environmental Protection Agency (USEPA). "Contract Laboratory Program National Functional Guidelines for Inorganic Superfund Data Review," EPA-540-R-10-011. January 2010

GEI File No:

Date:

Data Validation Report

Plaza 600 Building	Plaza 600 Building, 600 Stewart Street, Suite 1700, Seattle, WA 98101, Telephone: 206.728.2674, Fax: 206.728.2732			
Project:	Port of Anacortes – Quiet Cove RIFS September 2017 Upland Sampling Event			

This report documents the results of a United States Environmental Protection Agency (USEPA)-defined Stage 2B data validation (USEPA Document 540-R-08-005; USEPA 2009) of analytical data from the analyses of groundwater samples collected as part of the October/November 2017 Quiet Cove RIFS sampling event, and the associated laboratory and field quality control (QC) samples. The samples were obtained from the Quiet Cove Site (Site) located at 3rd Street and O Avenue in Anacortes, Washington.

OBJECTIVE AND QUALITY CONTROL ELEMENTS

005147-024-05

February 13, 2018

GeoEngineers, Inc. (GeoEngineers) completed the data validation consistent with USEPA Contract Laboratory Program National Functional Guidelines for Superfund Organic Methods Data Review (USEPA 2008) and Inorganic Superfund Data Review (USEPA 2010; National Functional Guidelines) to determine if the laboratory analytical results meet the project objectives and are usable for their intended purpose. Data usability was assessed by determining if:

- The samples were analyzed using well-defined and acceptable methods that provide reporting limits below applicable regulatory criteria;
- The precision and accuracy of the data are well-defined and sufficient to provide defensible data; and
- The quality assurance/quality control (QA/QC) procedures utilized by the laboratory meet acceptable industry practices and standards.

In accordance with the RI/FS Work Plan (GeoEngineers, 2017), the data validation included review of the following QC elements:

- Data Package Completeness
- Chain-of-Custody Documentation
- Holding Times and Sample Preservation
- Surrogate Recoveries
- Method, Trip, and Rinsate Blanks
- Matrix Spikes/Matrix Spike Duplicates
- Laboratory Control Samples/Laboratory Control Sample Duplicates
- Laboratory and Field Duplicates

- Instrument Tuning
- Internal Standards
- Initial Calibrations (ICALs)
- Continuing Calibrations (CCALs)
- Miscellaneous

VALIDATED SAMPLE DELIVERY GROUPS

This data validation included review of the sample delivery groups (SDGs) listed below in Table 1.

Laboratory Sample Delivery Group	Validated Samples
17J0350	MW-3_101817, MW-4_101817, MW-5_101817, MW-6_101817, and MW-7_101817
17K0171	MW-1-110917, DUP-1-110917, MW-2-110917, MW-8-110917, MW-10-110917, MW-11-110917, and TRIP_BLANKS

CHEMICAL ANALYSIS PERFORMED

Analytical Resources, Inc. (ARI), located in Tukwila, Washington, performed laboratory analyses on the sediment and soil samples using one or more of the following methods:

- Gasoline-range Hydrocarbons (NWTPH-Gx) by Method NWTPH-Gx;
- Petroleum Hydrocarbons (NWTPH-Dx) by Method NWTPH-Dx;
- Volatile Organic Compounds (VOCs) by Method SW8260C;
- Polycyclic Aromatic Hydrocarbons (PAHs) by Method SW8270D-SIM;
- Total Metals by Methods EPA 6020/7470

DATA VALIDATION SUMMARY

The results for each of the QC elements are summarized below.

Data Package Completeness

ARI provided all required deliverables for the data validation according to the National Functional Guidelines. The laboratory followed adequate corrective action processes and all identified anomalies were discussed in the relevant laboratory case narrative.

Chain-of-Custody Documentation

Chain-of-custody (COC) forms were provided with the laboratory analytical reports. The COCs and sample container IDs were signed, initialed, accurate and complete when submitted to the lab, with the exceptions noted below:

COC and Sample Container Exceptions

SDG 17J0350: The 'Relinquished by:' date of 10-19-2017 was corrected by the laboratory as 10-20-2017. The laboratory noted that 4 bottles were missing labels, and that the 'No. Containers' column was incorrect for MW-4_101817 and MW-7_101817. The quantity of these sample containers were switched, MW-4_101817 should be '13' samples, and MW-7_101817 should be '26' samples.

Holding Times and Sample Preservation

The sample holding time is defined as the time that elapses between sample collection and sample analysis. Maximum holding time criteria exist for each analysis to help ensure that the analyte concentrations found at the time of analysis reflect the concentration present at the time of sample collection. Established holding times were met for all analyses, with the exceptions noted below. The sample coolers arrived at the laboratory within the appropriate temperatures of between 2° and 6° Celsius, with the exceptions noted below.

Cooler Temperature Exceptions

- SDG 17J0350: One sample cooler temperature was recorded at the laboratory above 6 ° Celsius. It was determined through professional judgment that these temperatures should not affect the sample analytical results; no action was taken other than to note in this report.
- SDG 17K0171: Two sample cooler temperatures were recorded at the laboratory as 0.3° Celsius and 1.9° Celsius. It was determined through professional judgment that since the samples were not frozen, this temperature should not affect the sample analytical results.

Surrogate Recoveries

A surrogate compound is a compound that is chemically similar to the organic analytes of interest, but unlikely to be found in any environmental sample. Surrogates are used for organic analyses and are added to all samples, standards, and blanks to serve as an accuracy and specificity check of each analysis. The surrogates are added to the samples at a known concentration and percent recoveries (%R) are calculated following analysis. All surrogate recoveries for field samples were within the laboratory control limits.

Method Blanks

Method blanks are analyzed to ensure that laboratory procedures and reagents do not introduce measurable concentrations of the analytes of interest. A method blank was analyzed with each batch of samples, at a frequency of 1 per 20 samples. For all sample batches, method blanks were analyzed at the required frequency. None of the analytes of interest were detected in the method blanks, with the exceptions noted below.

Volatile Organic Compound (VOC) Method Blank Exceptions

SDG 17K0171: There were positive results for m,p-xylene and n-hexane detected above the method detection limit, but below the reporting limit in the groundwater method blank prepared on 11/16/17. The positive results for these compounds were qualified (U) as not-detected only in Sample DUP-1-110917, as this was the only associated sample that reported detections for these analytes below the reporting limits.

There were positive results for m,p-xylene, o-xylene, and n-hexane detected above the method detection limit, but below the reporting limits in the groundwater method blank prepared on

11/15/17. The positive results for these compounds were qualified (U) as not-detected only in Sample TRIP_BLANKS, as this was the only associated sample that reported detections for these analytes below the reporting limits.

Total Metals Method Blank Exceptions

SDG 17J0350: There was a positive result for arsenic detected above the method detection limit, but below the reporting limit in the method blank digested on 10/26/2017. The associated field samples all reported positive results greater than the reporting limits; therefore, no qualifiers were required.

Trip Blanks

Trip blanks are analyzed to assess whether field sampling or sample transport processes may have introduced measurable concentrations of volatile analytes of interest into project samples. The following SDGs contained trip blanks that were packed into the sample coolers and transported with the field samples:

SDG 17K0171: Trip Blank sampled on 11/9/17. There were no positive results greater than the reporting limits in this Trip Blank. No qualifiers were applied to any field samples.

Matrix Spikes/Matrix Spike Duplicates

Since the actual analyte concentration in an environmental sample is not known, the accuracy of a particular analysis is usually inferred by performing a matrix spike (MS) analysis on one sample from the associated batch, known as the parent sample. One aliquot of the sample is analyzed in the normal manner and then a second aliquot of the sample is spiked with a known amount of analyte concentration and analyzed. From these analyses, a %R is calculated. Matrix spike duplicate (MSD) analyses are generally performed for organic analyses as a precision check and analyzed in the same sequence as a matrix spike. Using the results from the MS and MSD, the relative percent difference (RPD) is calculated. The %R control limits for MS and MSD analyses are specified in the laboratory documents, as are the RPD control limits for MS/MSD sample sets.

One MS/MSD analysis should be performed for every analytical batch or every 20 field samples, whichever is more frequent. The frequency requirements were met for all analyses and the %R and RPD values were within the proper control limits, with the exceptions noted below.

Total Metal MS/MSD Exceptions

 SDG 17K0171: The laboratory performed a matrix spike on Sample MW-8-110917. The %R for Total silver was less than the control limits in the MS. The positive results for this silver were qualified as estimated (J) in all samples in this SDG.

Laboratory Control Samples/Laboratory Control Sample Duplicates

A laboratory control sample (LCS) is a blank sample that is spiked with a known amount of analyte and then analyzed. An LCS is similar to an MS, but without the possibility of matrix interference. Given that matrix interference is not an issue, control limits for accuracy and precision in the LCS and its duplicate (LCSD) are usually more rigorous than for MS/MSD analyses. Additionally, data qualification based on LCS/LCSD analyses would apply to each sample in the associated batch, instead of just the parent sample. The %R control limits for LCS and LCSD analyses are specified in the laboratory documents, as are the RPD control limits for LCS/LCSD sample sets.

One LCS/LCSD analysis should be performed for every analytical batch or every 20 field samples, whichever is more frequent. The frequency requirements were met for each analysis and the %R and RPD values were within the proper control limits.

Laboratory Duplicates

Internal laboratory duplicate analyses are performed to monitor the precision of the analyses. Two separate aliquots of a sample are analyzed as distinct samples in the laboratory and the RPD between the two results is calculated. Duplicate analyses should be performed once per analytical batch. If one or more of the samples used has a concentration less than five times the reporting limit for that sample, the absolute difference is used instead of the RPD. The RPD control limits are specified in the laboratory documents. Laboratory duplicates were analyzed at the proper frequency and the specified acceptance criteria were met, with the following exceptions:

SDG 17J0350: (Total Metals) A laboratory duplicate analysis was performed on Sample MW-7_101817. The RPD values for arsenic were greater than the control limits. The positive results for this target analyte was qualified as estimated (J) in all samples in this SDG.

Field Duplicates

Field duplicates are similar to laboratory duplicates in that they are used to assess precision. Two samples (parent and duplicate) are created in the field by subsampling the homogenized sample and submitting them to the lab as separate samples. Duplicate samples were collected and analyzed for the same parameters as the associated parent samples. Precision is determined by calculating the RPD between each pair of samples. If one or more of the sample analytes has a concentration less than five times the reporting limit for that sample, then the absolute difference is used instead of the RPD. The RPD control limit for soil samples is 50 percent.

SDG 17K0171: One field duplicate sample pair, MW-1-110917 and DUP-1_110917, was submitted with this SDG. The precision criteria for Total arsenic, Total copper, Total zinc, Total chromium, Total lead, Diesel-range organic and Motor oil were not met for this sample pair. the positive results for these analytes were qualified as estimated (J) in both samples.

Instrument Tuning

Instrument tuning for analyses by gas chromatography/mass spectrometry (GC/MS) are completed to ensure that mass resolution, identification, and sensitivity of the analyses are acceptable. Instrument tuning should be performed at the beginning of each 12-hour period during which samples or standards are analyzed. The frequency and specified acceptance criteria were met for each applicable analysis.

Internal Standards (Low Resolution Mass Spectrometry)

Like the surrogate, an internal standard is a compound that is chemically similar to the analytes of interest, but unlikely to be found in any environmental sample. Internal standards are used only for the mass spectrometry instrumentation and are usually added to the sample aliquot after extraction has taken place. The internal standard should be analyzed at the beginning of a 12-hour sample run and the control limits for internal standard recoveries are 50 percent to 200 percent of the calibration standard. All internal standard recoveries were within the control limits, with the following exceptions:

SDG 17J0350: (PAHs) The internal standard %R for d10-phenanthrene was less than the control limits in Sample MW-4_101817. The sample was re-extracted and diluted at a factor of 3, and both results were

reported. Only the re-extracted results were used for this project, the positive results and reporting limits in the initial analysis were labeled as Do-Not-Report (DNR).

Initial Calibrations (ICALs)

The initial calibrations were conducted according to the laboratory methods and consisted of the appropriate number of standards. For inorganic analyses, the %R values were within the control limits of 90% and 110%. For organic analyses, the percent relative standard deviation (%RSD) and relative response factors (RRF) values were within the control limits stated in the USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review (USEPA 2008).

Continuing Calibrations (CCALs)

The continuing calibrations were conducted according to the laboratory methods and consisted of the appropriate number of standards. For inorganic analyses, the %R values were within the control limits of 90% and 110%. For organic analyses, the percent difference (%D) and relative response factors (RRF) values were within the control limits in the USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review (USEPA 2008).

Miscellaneous

SDG 17J0350: (PAHs) The laboratory reported two sets of results for Sample MW-4-101817. The second analysis was diluted at a factor of 3 for all analytes. For this reason, the results all the PAH analytes were labeled as Do-Not-Report (DNR) in the first analysis in order to avoid redundant analyte reporting.

SDG 17K0171: (NWTPH-Dx) The laboratory reported two sets of results for Sample MW-11-110917 because Diesel-range organics exceeded the calibration range of the instrument in the first analysis. The second analysis was diluted at a factor of 10 for all analytes. For this reason, the result of Diesel-range organics was labeled as Do-Not-Report (DNR) in the first analysis and the result of Motor Oil-range organics was labeled as Do-Not-Report (DNR) in the second analysis in order to avoid redundant analyte reporting.

Overall Assessment

As was determined by this data validation, the laboratory followed the specified analytical methods. Accuracy was acceptable, as demonstrated by the surrogate, LCS/LCSD, and MS/MSD %R values. Precision was acceptable, as demonstrated by the LCS/LCSD, MS/MSD, and laboratory/field duplicate RPD values, with the exceptions noted above.

Data were qualified as not detected because of method blank contamination. Data were also qualified as estimated because of matrix spikes %R outliers, laboratory duplicate precision outliers, and field duplicate precision outliers.

Data were labeled as Not Reportable in order to avoid redundant analytes per sample.

All data are acceptable for the intended use, with the following qualifications listed below in Table 2.

Sample ID	Analyte	Qualifier	Reason	
DUP-1-110917	Xylene, m-,p-	U	Method Blank Contamination	
DUP-1-110917	Xylene, o-	U	Method Blank Contamination	
DUP-1-110917	n-Hexane	U	Method Blank Contamination	
TRIP_BLANKS	Xylene, m-,p-	U	Method Blank Contamination	
TRIP_BLANKS	n-Hexane	U	Method Blank Contamination	
MW-1-110917	Diesel-range hydrocarbons	J	Field Duplicate Precision	
MW-1-110917	Motor Oil	UJ	Field Duplicate Precision	
DUP-1-110917	Diesel-range hydrocarbons	J	Field Duplicate Precision	
DUP-1-110917	Motor Oil	J	Field Duplicate Precision	

TABLE 2: SUMMARY OF QUALIFIED SAMPLES

References

GeoEngineers, 2017. FINAL Remedial Investigation/Feasibility Study Work Plan (RI/FS Work Plan); Quiet Cove Property; Anacortes, WA; Ecology Agreed Order No. DE 11346. GEI No. 5147-024-03, dated January 25, 2017.

U.S. Environmental Protection Agency (USEPA). "Guidance for Labeling Externally Validated Laboratory Analytical Data for Superfund Use," EPA-540-R-08-005. January 2009.

U.S. Environmental Protection Agency (USEPA). "Contract Laboratory Program National Functional Guidelines for Superfund Organic Methods Data Review," EPA-540-R-08-01. June 2008.

U.S. Environmental Protection Agency (USEPA). "Contract Laboratory Program National Functional Guidelines for Inorganic Superfund Data Review," EPA-540-R-10-011. January 2010.

Data Validation Report

Plaza 600 Building, 6	www.geoengineers.com	
Project:	Port of Anacortes – Quiet Cove RIFS September 2017 Upland Sampling Event	
GEI File No:	005147-024-05	
Date:	December 15, 2017	

This report documents the results of a United States Environmental Protection Agency (USEPA)-defined Stage 2B data validation (USEPA Document 540-R-08-005; USEPA 2009) of analytical data from the analyses of soil and sediment samples collected as part of the September 2017 Quiet Cove RIFS sampling event, and the associated laboratory and field quality control (QC) samples. The samples were obtained from the Quiet Cove Site (Site) located at 3rd Street and O Avenue in Anacortes, Washington.

OBJECTIVE AND QUALITY CONTROL ELEMENTS

GeoEngineers, Inc. (GeoEngineers) completed the data validation consistent with USEPA Contract Laboratory Program National Functional Guidelines for Superfund Organic Methods Data Review (USEPA 2008) and Inorganic Superfund Data Review (USEPA 2010; National Functional Guidelines) to determine if the laboratory analytical results meet the project objectives and are usable for their intended purpose. Data usability was assessed by determining if:

- The samples were analyzed using well-defined and acceptable methods that provide reporting limits below applicable regulatory criteria;
- The precision and accuracy of the data are well-defined and sufficient to provide defensible data; and
- The quality assurance/quality control (QA/QC) procedures utilized by the laboratory meet acceptable industry practices and standards.

In accordance with the Ecology-approved Remedial Investigation (RI)/Feasibility Study (FS) Work Plan (GeoEngineers, 2017), the data validation included review of the following QC elements:

- Data Package Completeness
- Chain-of-Custody Documentation
- Holding Times and Sample Preservation
- Surrogate Recoveries
- Method, Trip, and Rinsate Blanks
- Matrix Spikes/Matrix Spike Duplicates
- Laboratory Control Samples/Laboratory Control Sample Duplicates
- Laboratory and Field Duplicates

- Instrument Tuning
- Internal Standards
- Initial Calibrations (ICALs)
- Continuing Calibrations (CCALs)
- Miscellaneous

VALIDATED SAMPLE DELIVERY GROUPS

This data validation included review of the sample delivery groups (SDGs) listed below in Table 1.

Laboratory Sample Delivery Group	Validated Samples
17I0184 (Sediments)	GEI-SED1-1-3_091517, GEI-SED1-4-6_091517, and GEI-SED-COMP-1_091517
1710121 (Soils)	GEI-31-3-5_091117, GEI-31-6-8_091117, GEI-31-13-15_091117, GEI-32-3-4.5_091117, GEI-32-7-9_091117, GEI-32-10-12_091117, and TRIP_BLANK_170911
1710125 (Soils)	GEI-29-5-7_091217, GEI-29-10-12_091217, GEI-29-13-15_091217, GEI-30-2-4_091217, GEI-30-6-8_091217, GEI-30-9-11_091217, and TRIP_BLANK_170912
1710146 (Soils)	GEI-41-5-7_091317, GEI-42-1-3_091317, GEI-42-6-8_091317, GEI-43-3-5_091317, GEI-43-5-7_091317, GEI-44-2-4_091317, GEI-44-7-9_091317, and GEI-44-10-12_091317
1710185 (Soils)	GEI-39-1-3_091517, GEI-39-5-7_091517, GEI-39-8-10_091517, and TRIP_BLANK_170916
1710266 (Soils)	GEI-38-2-4_091917, GEI-38-5-7_091917, GEI-DUP-2_091917, GEI-38-12-14, GEI-40-2-4_091917, GEI-40-5-7_091917, and GEI-40-12-14_091917

CHEMICAL ANALYSIS PERFORMED

Analytical Resources, Inc. (ARI), located in Tukwila, Washington, performed laboratory analyses on the sediment and soil samples using one or more of the following methods:

- Gasoline-range Hydrocarbons (NWTPH-Gx) by Method NWTPH-Gx;
- Petroleum Hydrocarbons (NWTPH-Dx) by Method NWTPH-Dx;
- Volatile Organic Compounds (VOCs) by Method SW8260C;
- Semi-volatile Organic Compounds (SVOCs) by Method SW8270D;
- Polycyclic Aromatic Hydrocarbons (PAHs) by Method SW8270D-SIM;
- Total Metals by Methods EPA6010A/7471B;
- Total Organic Carbon (TOC) by Method Plumb 1981 (Combustion IR)

- Ammonia by SM4500-NH3
- Sulfides by SM4500-S2 D-00

Materials Testing & Consulting (MT&C) headquartered in Burlington, Washington, performed laboratory analysis on the soil and sediment samples using the following method:

Grain Size analysis by Puget Sound Estuary Protocols (PSEP)

DATA VALIDATION SUMMARY

The results for each of the QC elements are summarized below.

Data Package Completeness

ARI provided all required deliverables for the data validation according to the National Functional Guidelines. The laboratory followed adequate corrective action processes and all identified anomalies were discussed in the relevant laboratory case narrative.

Chain-of-Custody Documentation

Chain-of-custody (COC) forms were provided with the laboratory analytical reports. The COCs and sample container IDs were signed, accurate and complete when submitted to the lab, with the exceptions noted below:

Sample Container Exceptions

- SDG 17I0121: The laboratory noted that all of the sample containers for the cooler trip blank (sampled on 9/11/17) were received with air bubbles approximately >4 mm in diameter. There were no positive results for any target analytes in the trip blank, therefore all reporting limits were qualified as estimated (UJ) in Sample TRIP_BLANK_170911.
- SDG 17I0125: The laboratory noted that archived Sample GEI-29-7-9_091217 (on COC) was received with Sample ID GEI-12-7-9_091217 listed on the sample jar. Samples GEI-29-5-7_091217 and GEO-30-13-15_091217 were both received by the laboratory with incorrect dates on the sample containers.

There were also discrepencies between the amount of sample containers listed on the COC and amounts actually received:

GEI-39-13-15_091217 listed 8 containers on COC; received 10

Trip Blanks listed 0 containers on COC; received 4

SDG 17I0266: The laboratory noted that one of two sample containers for Sample GEI-40-9-11_091917 was received broken. The soil contents of the jar were immediately transferred to a new jar and, collectively, the sample was archived at the laboraroy. No other action was taken other than to note the discrepancy here.

Holding Times and Sample Preservation

The sample holding time is defined as the time that elapses between sample collection and sample analysis. Maximum holding time criteria exist for each analysis to help ensure that the analyte concentrations found at the time of analysis reflect the concentration present at the time of sample

collection. Established holding times were met for all analyses, with the exceptions noted below. The sample coolers arrived at the laboratory within the appropriate temperatures of between 2° and 6° Celsius, with the exceptions noted below.

Cooler Temperature Exceptions

- SDG 17I0184: One sample cooler temperature recorded at the laboratory was 0.5 ° Celsius. It was determined through professional judgment that since the samples were not frozen, this temperature should not affect the sample analytical results.
- SDG 17I0125: Two sample cooler temperatures were recorded at the laboratory above 6 ° Celsius. It was determined through professional judgment that these temperatures should not affect the sample analytical results; no action was taken other than to note in this report.
- SDG 17I0185: One sample cooler temperature recorded at the laboratory was 0.5 ° Celsius. It was determined through professional judgment that since the samples were not frozen, this temperature should not affect the sample analytical results.
- SDG 17I0266: Two sample cooler temperatures were recorded at the laboratory above 6 ° Celsius. It was determined through professional judgment that these temperatures should not affect the sample analytical results; no action was taken other than to note in this report.

Surrogate Recoveries

A surrogate compound is a compound that is chemically similar to the organic analytes of interest, but unlikely to be found in any environmental sample. Surrogates are used for organic analyses and are added to all samples, standards, and blanks to serve as an accuracy and specificity check of each analysis. The surrogates are added to the samples at a known concentration and percent recoveries (%R) are calculated following analysis. All surrogate recoveries for field samples were within the laboratory control limits, with the exceptions noted below.

Poly-Aromatic Hydrocarbons (PAH) Surrogate Exceptions

SDG 17I0266: The %R values for surrogate dibenzo(a,h)anthracene-d14 were greater than the control limits in Samples GEI-40-2-4_091917 and GEI-40-5-7_091917; however, the samples were both spiked with two additional surrogates, all within the control limits. No action was required for these outliers.

Method Blanks

Method blanks are analyzed to ensure that laboratory procedures and reagents do not introduce measurable concentrations of the analytes of interest. A method blank was analyzed with each batch of samples, at a frequency of 1 per 20 samples. For all sample batches, method blanks were analyzed at the required frequency. None of the analytes of interest were detected in the method blanks, with the exceptions noted below.

Volatile Organic Compound (VOC) Method Blank Exceptions

SDG 17I0121 and 17I0125: There were positive results for m,p-xylene and n-hexane detected above the method detection limit, but below the reporting limit in the soil method blank extracted on 9/15/17; and there were no positive results for either of these analytes in any of the associated samples; therefore, no qualifications were required.

Semi-Volatile Organic Compound (SVOC) Method Blank Exceptions

SDG 16G0026: There was a positive result for diethyl phthalate detected above the method detection limit, but below the reporting limit in the method blank extracted on 7/25/2016. The positive result for diethyl phthalate was qualified as non-detected (U) in Sample EDP22_16-17.

Total Metals Method Blank Exceptions

- SDG 17I0184: There was a positive result for cadmium detected above the method detection limit, but below the reporting limit in the method blank digested on 9/20/2017. The associated field samples, GEI-SED-COMP-1_091517 and GEI-SED1-1-3_091517 also reported positive results at levels less than the reporting limits; therefore, these results were qualified as notdetected (U) in both samples.
- SDG 17I0121 and 17I0125: There were positive results for copper, chromium, lead, and zinc detected above the method detection limits, but below the reporting limits in the method blank digested on 9/15/2017. The associated field samples all reported positive results greater than the reporting limits; therefore, no qualifiers were required.
- SDG 17I0146: There was a positive result for copper detected above the method detection limit, but below the reporting limit in the method blank digested on 9/18/2017. The associated field samples all reported positive results greater than the reporting limits; therefore, no qualifiers were required.
- SDG 17I0185: There was a positive result for cadmium detected above the method detection limit, but below the reporting limit in the method blank digested on 9/20/2017. The associated field sample, GEI-39-8-10_091517 also reported a positive result at a level less than the reporting limit; therefore, this result was qualified as not-detected (U) in this sample.

There was a positive result for zinc detected above the method detection limit, but below the reporting limit in the method blank digested on 9/21/2017. The associated field samples all reported positive results greater than the reporting limits; therefore, no qualifiers were required.

Trip Blanks

Trip blanks are analyzed to assess whether field sampling or sample transport processes may have introduced measurable concentrations of volatile analytes of interest into project samples. The following SDGs contained trip blanks that were packed into the sample coolers and transported with the field samples:

- SDG 17I0184: Trip Blank sampled on 9/15/17.
- **SDG 17I0121:** Trip Blank sampled on 9/11/17.
- **SDG 17I0125:** Trip Blank sampled on 9/12/17.
- **SDG 17I0185:** Trip Blank sampled on 9/16/17.

None of the analytes of interest were detected in the trip blanks, with the following exceptions:

Matrix Spikes/Matrix Spike Duplicates

Since the actual analyte concentration in an environmental sample is not known, the accuracy of a particular analysis is usually inferred by performing a matrix spike (MS) analysis on one sample from the associated batch, known as the parent sample. One aliquot of the sample is analyzed in the normal manner and then a second aliquot of the sample is spiked with a known amount of analyte concentration

and analyzed. From these analyses, a %R is calculated. Matrix spike duplicate (MSD) analyses are generally performed for organic analyses as a precision check and analyzed in the same sequence as a matrix spike. Using the results from the MS and MSD, the relative percent difference (RPD) is calculated. The %R control limits for MS and MSD analyses are specified in the laboratory documents, as are the RPD control limits for MS/MSD sample sets.

One MS/MSD analysis should be performed for every analytical batch or every 20 field samples, whichever is more frequent. The frequency requirements were met for all analyses and the %R and RPD values were within the proper control limits, with the exceptions noted below.

Volatile Organic Compound (VOC) MS/MSD Exceptions

- SDG 17I0184: The laboratory performed an MS/MSD on Sample GEI-SED1-4-6 091517. The %R values for 1,2-dibromoethane were less than the control limits in the MS and MSD samples. There was no positive result for this compound in the parent sample; therefore, the reporting limit for this compound was qualified as estimated (UJ) in the parent sample.
- SDG 17I0266: The laboratory performed an MS/MSD on Sample GEI-40-2-4_091917. The %R values for ethylbenzene and m,p-xylene were less than the control limits in the MS. However, the %R values for these analytes were acceptable in the corresponding MSD. No qualification was required for this outlier.

Semi-Volatile Organic Compound (SVOC) MS/MSD Exceptions

- SDG 17I0184: (SW8270 and SW8270-SIM analyses) The laboratory performed an MS/MSD on Sample GEI-SED1-4-6 091517. In both analyses, the %R values for 15 analytes were outside the control limits in the MS and/or MSD samples. Upon inspection it was noted that several of the native concentrations had concentrations that exceeded the calibration range of the instrument. No qualifications were required in either case.
- SDG 17I0146: (SW8270-SIM analyses) The laboratory performed an MS/MSD on Sample GEI-44-7-9_091317. The %R value for dibenz(a,h)anthracene was greater than the control limits in the MS. However, the %R values for these analytes were acceptable in the corresponding MSD. No qualification was required for this outlier.
- SDG 17I0266: (SW8270-SIM analyses) The laboratory performed an MS/MSD on Sample GEI-40-2-4_091917. The %R values for phenanthrene, fluoranthene, pyrene, and chrysene were greater than the control limits in the MS/MSD. The positive results for these compounds were qualified as estimated (J) in the parent sample.

Total Metal MS/MSD Exceptions

- SDG 17I0184: The laboratory performed a matrix spike on Sample GEI-SED1-4-6_091517. The %R for silver was less than the control limits in the MS digested on 9/21/2017. The positive results for this silver were qualified as estimated (J) in all samples in this SDG. The %R for copper was greater than the control limits in the same matrix spike. The positive results for copper were qualified as estimated (J) in all samples in this SDG.
- SDG 17I0146: The laboratory performed a matrix spike on Sample GEI-44-7-9_091317. The %R for chromium was greater than the control limits in the MS digested in this sample set. However, the %R values for chromium were acceptable in the corresponding MSD. No qualification was required for this outlier.

SDG 17I0266: The laboratory performed a matrix spike on Sample GEI-40-2-4_091917. The %R values for chromium and copper were greater than the control limits in the MS/MSD digested in this sample set. The positive results for chromium and copper were qualified as estimated (J) in this SDG. The %R values for lead were also outside of the control limits in the MS/MSD digested in this sample set, however, the native sample concentration for lead was greater than 4 times the amount spiked into the sample. No action was required for this outlier.

Petroleum Hydrocarbon (NWTPH-Dx) MS/MSD Exceptions

SDG 17I0184: The laboratory performed an MS/MSD on Sample GEI-SED1-4-6_091517. The %R for diesel-range hydrocarbons was less than the control limits in the MSD extracted on 9/20/2017; however, the native sample concentration for diesel-range hydrocarbons was greater than 4 times the amount spiked into the sample. No action was required for this outlier.

Laboratory Control Samples/Laboratory Control Sample Duplicates

A laboratory control sample (LCS) is a blank sample that is spiked with a known amount of analyte and then analyzed. An LCS is similar to an MS, but without the possibility of matrix interference. Given that matrix interference is not an issue, control limits for accuracy and precision in the LCS and its duplicate (LCSD) are usually more rigorous than for MS/MSD analyses. Additionally, data qualification based on LCS/LCSD analyses would apply to each sample in the associated batch, instead of just the parent sample. The %R control limits for LCS and LCSD analyses are specified in the laboratory documents, as are the RPD control limits for LCS/LCSD sample sets.

One LCS/LCSD analysis should be performed for every analytical batch or every 20 field samples, whichever is more frequent. The frequency requirements were met for each analysis and the %R and RPD values were within the proper control limits, with the exceptions noted below.

PAHs (8270-SIM) LCS/LCSD Exceptions

SDG 17I0121, 17I0125, 17I0146: The %R for dibenz(a,h)anthracene was greater than the control limits in the LCS extracted on 9/21/2017 (#BFI0317). The positive results for dibenz(a,h)anthracene were qualified as estimated (J) in Samples GEI-29-5-7_091217, GEI-43-3-5_091317, and GEI-44-2-4_091317.

Laboratory Duplicates

Internal laboratory duplicate analyses are performed to monitor the precision of the analyses. Two separate aliquots of a sample are analyzed as distinct samples in the laboratory and the RPD between the two results is calculated. Duplicate analyses should be performed once per analytical batch. If one or more of the samples used has a concentration less than five times the reporting limit for that sample, the absolute difference is used instead of the RPD. The RPD control limits are specified in the laboratory documents. Laboratory duplicates were analyzed at the proper frequency and the specified acceptance criteria were met, with the following exceptions:

SDG 17I0184: (TOC) A laboratory duplicate analysis was performed on Sample GEI-SED1-4-6_091517. The RPD for TOC was greater than the control limit. The positive result for this target analyte was qualified as estimated (J) in all samples in this SDG.

(Total Metals) A laboratory duplicate analysis was performed on Sample GEI-SED1-4-6_091517. The RPD values for cadmium, copper, mercury, and lead were greater than the control limits. The positive results for these target analytes were qualified as estimated (J) in all samples in this SDG.

SDG 17I0266: (Total Metals) A laboratory duplicate analysis was performed on Sample GEI-40-2-4_091917. The RPD values for arsenic, chromium, copper, silver, and lead were greater than the control limits. The positive results for these target analytes were qualified as estimated (J) in all samples in this SDG.

Field Duplicates

Field duplicates are similar to laboratory duplicates in that they are used to assess precision. Two samples (parent and duplicate) are created in the field by subsampling the homogenized sample and submitting them to the lab as separate samples. Duplicate samples were collected and analyzed for the same parameters as the associated parent samples. Precision is determined by calculating the RPD between each pair of samples. If one or more of the sample analytes has a concentration less than five times the reporting limit for that sample, then the absolute difference is used instead of the RPD. The RPD control limit for soil samples is 50 percent.

SDG 17I0266: One field duplicate sample pair, GEI-38-5-7_091917 and GEI-DUP-2_091917, was submitted with this SDG. The precision criteria for chromium, lead, and zinc were not met for this sample pair. The positive results for these analytes were qualified as estimated (J) in both samples.

Instrument Tuning

Instrument tuning for analyses by gas chromatography/mass spectrometry (GC/MS) are completed to ensure that mass resolution, identification, and sensitivity of the analyses are acceptable. Instrument tuning should be performed at the beginning of each 12-hour period during which samples or standards are analyzed. The frequency and specified acceptance criteria were met for each applicable analysis.

Internal Standards (Low Resolution Mass Spectrometry)

Like the surrogate, an internal standard is a compound that is chemically similar to the analytes of interest, but unlikely to be found in any environmental sample. Internal standards are used only for the mass spectrometry instrumentation and are usually added to the sample aliquot after extraction has taken place. The internal standard should be analyzed at the beginning of a 12-hour sample run and the control limits for internal standard recoveries are 50 percent to 200 percent of the calibration standard.

Initial Calibrations (ICALs)

The initial calibrations were conducted according to the laboratory methods and consisted of the appropriate number of standards. For inorganic analyses, the %R values were within the control limits of 90% and 110%. For organic analyses, the percent relative standard deviation (%RSD) and relative response factors (RRF) values were within the control limits stated in the USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review (USEPA 2008).

Continuing Calibrations (CCALs)

The continuing calibrations were conducted according to the laboratory methods and consisted of the appropriate number of standards. For inorganic analyses, the %R values were within the control limits of 90% and 110%. For organic analyses, the percent difference (%D) and relative response factors (RRF) values were within the control limits in the USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review (USEPA 2008), with the following exceptions:

SDG 17I0184: (VOCs) The %D value for n-hexane was greater than the control limit in the continuing calibration verification (CCAL) performed on 9/19/2017. There were no positive results for this analyte in the associated batched field samples. No qualifiers were required.

(SVOCs) The %D values for butylbenzyl phthalate were lower than the control limit in the CCAL performed on 9/28/2017. The positive results and reporting limits for this compound were qualified as estimated (J/UJ) in all Samples in this SDG. The %D value for pentachlorophenol was greater than the control limit in this same CCAL. The positive result for pentachlorophenol was qualified as estimated (J) in Sample GEI-SED1-4-6_091517.

Also, the %D value for butylbenzyl phthalate and pentachlorophenol were outside of the control limits in the CCAL performed on 10/4/2017. No qualification was required because this calibration standard was only used for the diluted analytes in the sample.

(SVOC-PAHs) The %D values for hexachlorobenzene were lower than the control limit in the CCAL performed on 9/28/2017. There were no positive results for hexachlorobenzene in any of the associated samples. The reporting limits for hexachlorobenzene were qualified as estimated (UJ) in all Samples in this SDG.

SDG 17I0121, 17I0125, and 17I0146: (VOCs) The %D value for n-hexane was greater than the control limit in the continuing calibration verification (CCAL) performed Instrument NT5 (9/18/2017). There were no positive results for this analyte in the associated batched field samples. No qualifiers were required.

SDG 17I0185 and 17I0266: (VOCs) The %D value for n-hexane was greater than the control limit in the continuing calibration verification (CCAL) performed Instrument NT5 (9/19/2017). There were no positive results for this analyte in the associated batched field samples. No qualifiers were required.

Miscellaneous

SDG 17I0184: (SVOCs) The laboratory reported two sets of results for Sample GEI-SED1-4-6_091517 because phenanthrene, fluoranthene, and pyrene exceeded the calibration range of the instrument in the first analysis. The second analysis was diluted at a factor of 3 for all analytes. For this reason, the results of phenanthrene, fluoranthene, and pyrene were were labeled as Do-Not-Report (DNR) in the first analysis and all other analytes were labeled as Do-Not-Report (DNR) in the second analysis in order to avoid redundant analyte reporting.

(PAH-SIMs) The laboratory reported two sets of results for Sample GEI-SED1-4-6_091517 because 10 analytes exceeded the calibration range of the instrument in the first analysis. The second analysis was diluted at a factor of 10 for all analytes. For this reason, the results of the undiluted analytes that exceededcalibration range were were labeled as Do-Not-Report (DNR) in the first analysis and all other analytes were labeled as Do-Not-Report (DNR) in the second analysis in order to avoid redundant analyte reporting.

SDG 17I0125: (PAH-SIMs) The laboratory reported three sets of results for Sample GEI-30-6-8_091217 because 12 analytes exceeded the calibration range of the instrument in the first analysis. The second analysis was diluted at a factor of 5 for all analytes, and the third analysis was diluted at a factor of 20 for all analytes. For this reason, the results of the analytes that exceeded the calibration range were were labeled as Do-Not-Report (DNR) in the first and second analyses and all other analytes were labeled as Do-Not-Report (DNR) in the third analysis in order to avoid redundant analyte reporting.

SDG 17I0185: (PAH-SIMs) The laboratory reported two sets of results for Sample GEI-39-5-7_091517 because 5 analytes exceeded the calibration range of the instrument in the first analysis. The second analysis was diluted at a factor of 20 for all analytes, and the first analysis was diluted at a factor of 5 for all analytes. For this reason, the results of the analytes that exceeded the calibration range were were labeled as Do-Not-Report (DNR) in the first analyses and all other analytes were labeled as Do-Not-Report (DNR) in order to avoid redundant analyte reporting.

Overall Assessment

As was determined by this data validation, the laboratory followed the specified analytical methods. Accuracy was acceptable, as demonstrated by the surrogate, LCS/LCSD, and MS/MSD %R values, with the exceptions noted above. Precision was acceptable, as demonstrated by the LCS/LCSD, MS/MSD, and laboratory/field duplicate RPD values, with the exceptions noted above.

Data were qualified as not detected because of method blank contamination. Data were also qualified as estimated because of headspace in the sample container, MS/MSD %R outliers, laboratory duplicate RPD outliers, and continuing calibration %D outliers.

Data were labeled as Not Reportable in order to avoid redundant analytes per sample.

All data are acceptable for the intended use, with the following qualifications listed below in Table 2.

Sample ID	Analyte	Qualifier	Reason
GEI-SED1-1-3_091517	Lead	J	Laboratory Duplicate Precision
GEI-SED1-1-3_091517	Silver	J	Matrix Spike
GEI-SED1-1-3_091517	Cadmium	UJ	Method Blank, Laboratory Duplicate Precision
GEI-SED1-1-3_091517	Copper	J	Laboratory Duplicate Precision, Matrix Spike
GEI-SED1-1-3_091517	Mercury	J	Laboratory Duplicate Precision
GEI-SED1-1-3_091517	Butyl benzyl Phthalate	J	Continuing Calibration
GEI-SED1-1-3_091517	Total Organic Carbon	J	Laboratory Duplicate Precision
GEI-SED1-4-6_091517	1,2-Dibromoethane	UJ	Matrix Spike
GEI-SED1-4-6_091517	Butyl benzyl Phthalate	UJ	Continuing Calibration
GEI-SED1-4-6_091517	Cadmium	J	Laboratory Duplicate Precision
GEI-SED1-4-6_091517	Copper	J	Matrix Spike, Laboratory Duplicate Precision
GEI-SED1-4-6_091517	Lead	J	Laboratory Duplicate Precision
GEI-SED1-4-6_091517	Mercury	J	Laboratory Duplicate Precision
GEI-SED1-4-6_091517	Pentachlorophenol	J	Continuing Calibration
GEI-SED1-4-6_091517	Silver	J	Matrix Spike
GEI-SED1-4-6_091517	Total Organic Carbon	J	Laboratory Duplicate Precision
GEI-SED-COMP-1_091517	Butyl benzyl Phthalate	UJ	Continuing Calibration
GEI-SED-COMP-1_091517	Cadmium	UJ	Method Blank, Laboratory Duplicate Precision
GEI-SED-COMP-1_091517	Copper	J	Matrix Spike, Laboratory Duplicate Precision
GEI-SED-COMP-1_091517	Lead	J	Laboratory Duplicate Precision
GEI-SED-COMP-1_091517	Mercury	UJ	Laboratory Duplicate Precision
GEI-SED-COMP-1_091517	Silver	J	Matrix Spike
GEI-SED-COMP-1_091517	Total Organic Carbon	J	Laboratory Duplicate Precision
TRIP_BLANK_170911	1,2-Dibromoethane	UJ	Sample Preservation
TRIP_BLANK_170911	1,2-Dichloroethane	UJ	Sample Preservation
TRIP_BLANK_170911	Ethylbenzene	UJ	Sample Preservation
TRIP_BLANK_170911	Toluene	UJ	Sample Preservation
TRIP_BLANK_170911	n-Hexane	UJ	Sample Preservation
TRIP_BLANK_170911	Benzene	UJ	Sample Preservation
TRIP_BLANK_170911	Methyl t-butyl ether	UJ	Sample Preservation

TABLE 2: SUMMARY OF QUALIFIED SAMPLES

TRIP_BLANK_170911	Xylene, m-,p-	UJ	Sample Preservation
TRIP_BLANK_170911	Xylene, o-	UJ	Sample Preservation
GEI-29-5-7_091217	Dibenzo(a,h)anthracene	J	Laboratory Control Sample
GEI-43-3-5_091317	Dibenzo(a,h)anthracene	J	Laboratory Control Sample
GEI-44-2-4_091317	Dibenzo(a,h)anthracene	J	Laboratory Control Sample
GEI-40-2-4_091917	Phenanthrene	J	Matrix Spike
GEI-40-2-4_091917	Fluoranthene	J	Matrix Spike
GEI-40-2-4_091917	Chrysene	J	Matrix Spike
GEI-40-2-4_091917	Pyrene	J	Matrix Spike
GEI-39-8-10_091517	Cadmium	U	Method Blank
GEI-38-12-14	Arsenic	J	Laboratory Duplicate Precision
GEI-38-12-14	Chromium	J	Laboratory Duplicate Precision
GEI-38-12-14	Copper	J	Laboratory Duplicate Precision
GEI-38-12-14	Lead	J	Laboratory Duplicate Precision
GEI-38-12-14	Silver	J	Laboratory Duplicate Precision
GEI-38-2-4_091917	Arsenic	J	Laboratory Duplicate Precision
GEI-38-2-4_091917	Chromium	J	Laboratory Duplicate Precision
GEI-38-2-4_091917	Copper	J	Laboratory Duplicate Precision
GEI-38-2-4_091917	Lead	J	Laboratory Duplicate Precision
GEI-38-2-4_091917	Silver	J	Laboratory Duplicate Precision
GEI-38-5-7_091917	Arsenic	J	Laboratory Duplicate Precision
GEI-38-5-7_091917	Chromium	J	Laboratory Duplicate Precision, Field Duplicate
GEI-38-5-7_091917	Copper	J	Laboratory Duplicate Precision
GEI-38-5-7_091917	Lead	J	Laboratory Duplicate Precision, Field Duplicate
GEI-38-5-7_091917	Silver	J	Laboratory Duplicate Precision
GEI-38-5-7_091917	Zinc	J	Field Duplicate
GEI-40-12-14_091917	Arsenic	J	Laboratory Duplicate Precision
GEI-40-12-14_091917	Chromium	J	Laboratory Duplicate Precision
GEI-40-12-14_091917	Copper	J	Laboratory Duplicate Precision
GEI-40-12-14_091917	Lead	J	Laboratory Duplicate Precision
GEI-40-12-14_091917	Silver	J	Laboratory Duplicate Precision
GEI-40-2-4_091917	Arsenic	J	Laboratory Duplicate Precision
L	•	1	1

GEI-40-2-4_091917	Chromium	J	Laboratory Duplicate Precision, Matrix Spike
GEI-40-2-4_091917	Copper	J	Laboratory Duplicate Precision, Matrix Spike
GEI-40-2-4_091917	Lead	J	Laboratory Duplicate Precision
GEI-40-2-4_091917	Silver	J	Laboratory Duplicate Precision
GEI-40-5-7_091917	Arsenic	J	Laboratory Duplicate Precision
GEI-40-5-7_091917	Chromium	J	Laboratory Duplicate Precision
GEI-40-5-7_091917	Copper	J	Laboratory Duplicate Precision
GEI-40-5-7_091917	Lead	J	Laboratory Duplicate Precision
GEI-40-5-7_091917	Silver	J	Laboratory Duplicate Precision
GEI-DUP-2_091917	Arsenic	J	Laboratory Duplicate Precision
GEI-DUP-2_091917	Chromium	J	Laboratory Duplicate Precision, Field Duplicate
GEI-DUP-2_091917	Copper	J	Laboratory Duplicate Precision
GEI-DUP-2_091917	Lead	J	Laboratory Duplicate Precision, Field Duplicate
GEI-DUP-2_091917	Silver	J	Laboratory Duplicate Precision
GEI-DUP-2_091917	Zinc	J	Field Duplicate

REFERENCES

GeoEngineers, 2017. FINAL Remedial Investigation/Feasibility Study Work Plan (RI/FS Work Plan); Quiet Cove Property; Anacortes, WA; Ecology Agreed Order No. DE 11346. GEI No. 5147-024-03, dated January 25, 2017.

U.S. Environmental Protection Agency (USEPA). "Guidance for Labeling Externally Validated Laboratory Analytical Data for Superfund Use," EPA-540-R-08-005. January 2009.

U.S. Environmental Protection Agency (USEPA). "Contract Laboratory Program National Functional Guidelines for Superfund Organic Methods Data Review," EPA-540-R-08-01. June 2008.

U.S. Environmental Protection Agency (USEPA). "Contract Laboratory Program National Functional Guidelines for Inorganic Superfund Data Review," EPA-540-R-10-011. January 2010.

Data Validation Report

2101 4th Avenue, Suite 950, Seattle, WA 98121, Telephone: 206.728.2674, Fax: 206.728.2732 www.geoengineers.com

Project: Port of Anacortes – Oujet Cove RIFS

Project:	Port of Anacortes – Quiet Cove RIFS 2018 Tier 2 Sediment Sampling Event
GEI File No:	005147-024-05
Date:	August 21, 2018

This report documents the results of a United States Environmental Protection Agency (USEPA)-defined Stage 2B data validation (USEPA Document 540-R-08-005; USEPA 2009) of analytical data from the analyses of soil and sediment samples collected as part of the September 2017 Quiet Cove RIFS sampling event, and the associated laboratory and field quality control (QC) samples. The samples were obtained from the Quiet Cove Site (Site) located at 3rd Street and O Avenue in Anacortes, Washington.

OBJECTIVE AND QUALITY CONTROL ELEMENTS

GeoEngineers, Inc. (GeoEngineers) completed the data validation consistent with USEPA Contract Laboratory Program National Functional Guidelines for Superfund Organic Methods Data Review (USEPA 2008) and Inorganic Superfund Data Review (USEPA 2010; National Functional Guidelines) to determine if the laboratory analytical results meet the project objectives and are usable for their intended purpose. Data usability was assessed by determining if:

- The samples were analyzed using well-defined and acceptable methods that provide reporting limits below applicable regulatory criteria;
- The precision and accuracy of the data are well-defined and sufficient to provide defensible data; and
- The quality assurance/quality control (QA/QC) procedures utilized by the laboratory meet acceptable industry practices and standards.

In accordance with the Final Sampling and Analysis Plan; Quiet Cove Property (GeoEngineers 2017), the data validation included review of the following QC elements:

- Data Package Completeness
- Chain-of-Custody Documentation
- Holding Times and Sample Preservation
- Surrogate Recoveries
- Method, Trip, and Rinsate Blanks
- Matrix Spikes/Matrix Spike Duplicates
- Laboratory Control Samples/Laboratory Control Sample Duplicates
- Laboratory and Field Duplicates

- Instrument Tuning
- Internal Standards
- Initial Calibrations (ICALs)
- Continuing Calibrations (CCALs)
- Miscellaneous

VALIDATED SAMPLE DELIVERY GROUPS

This data validation included review of the sample delivery groups (SDGs) listed below in Table 1.

Laboratory Sample Delivery Group	Validated Samples
18G0186	SED-5-0-0.5, SED-5-2-4, SED-6-0-0.5, SED-7-0-0.5, DUP-1-0-0.5, SED-8-0-0.5, SED-8-3.2-4.5, SED-9-0-0.5, and TRIPBLANK_07162018
18G0206	SED-6-1-3, SED-7-0-1, DUP-2-0-1, SED-9-1.7-2.3, SED-10-2-4, and TRIPBLANK_07172018
18G0215	SED-10-0-0.5 and TRIPBLANK_07182018

CHEMICAL ANALYSIS PERFORMED

Analytical Resources, Inc. (ARI), located in Tukwila, Washington, performed laboratory analyses on the sediment and soil samples using one or more of the following methods:

- Gasoline-range Hydrocarbons (NWTPH-Gx) by Method NWTPH-Gx;
- Diesel and Heavy Oil range Hydrocarbons (NWTPH-Dx) by Method NWTPH-Dx;
- Volatile Organic Compounds (VOCs) by Method SW8260C;
- Semi-volatile Organic Compounds (SVOCs) by Method SW8270D;
- Polycyclic Aromatic Hydrocarbons (PAHs) by Method SW8270D-SIM;
- Total Metals by Methods EPA6010A/7471B;
- Total Organic Carbon (TOC) by Method Plumb 1981 (Combustion IR)
- Ammonia by SM4500-NH3
- Sulfides by SM4500-S2-D00
- Total Volatile Solids by SM2540 G-97

Materials Testing & Consulting (MT&C) headquartered in Burlington, Washington, performed laboratory analysis on the soil and sediment samples using the following method:

Grain Size analysis by Puget Sound Estuary Protocols (PSEP)

DATA VALIDATION SUMMARY

The results for each of the QC elements are summarized below.

Data Package Completeness

ARI provided all required deliverables for the data validation according to the National Functional Guidelines. The laboratory followed adequate corrective action processes and all identified anomalies were discussed in the relevant laboratory case narrative.

Chain-of-Custody Documentation

Chain-of-custody (COC) forms were provided with the laboratory analytical reports. The COCs and sample container IDs were signed, accurate and complete when submitted to the lab, with the exceptions noted below:

Sample Container Exceptions

- SDG 18G0186: The laboratory noted that the cooler trip blank (sampled on 7/16/18) was not listed on the COC. Also, the preservative, zinc acetate, was not included on the sample containers for the Sulfide analysis. No action was taken for these oversights, other than to note them in this document.
- SDG 18G0206: The laboratory noted that archived Sample SED-10-4-5.7 (on COC) was received with Sample ID SED-10-4-5.6 listed on the sample jars.

There were also discrepencies between the amount of sample containers listed on the COC and amounts actually received:

SED-7-0-1 listed 13 containers on COC; received 12

DUP-2-0-1 listed 11 containers on COC; received 12

SDG 18G0215: The laboratory noted that the cooler trip blank (sampled on 7/18/18) was not listed on the COC. Also, the project name was not included on the COC. No action was taken for these oversights, other than to note them in this document.

Holding Times and Sample Preservation

The sample holding time is defined as the time that elapses between sample collection and sample analysis. Maximum holding time criteria exist for each analysis to help ensure that the analyte concentrations found at the time of analysis reflect the concentration present at the time of sample collection. Established holding times were met for all analyses, with the exceptions noted below. The sample coolers arrived at the laboratory within the appropriate temperatures of between 2° and 6° Celsius, with the exception of cases where coolers were received at temperatures slightly below 2°. It was determined through professional judgment that since the samples were not frozen, these lower temperatures would not affect the analytical results.

Surrogate Recoveries

A surrogate compound is a compound that is chemically similar to the organic analytes of interest, but unlikely to be found in any environmental sample. Surrogates are used for organic analyses and are added to all samples, standards, and blanks to serve as an accuracy and specificity check of each analysis. The surrogates are added to the samples at a known concentration and percent recoveries (%R)

are calculated following analysis. All surrogate recoveries for field samples were within the laboratory control limits, with the exceptions noted below.

Semi-Volatile Organic Compounds (SVOC) Surrogate Exceptions

SDG 18G0215: The %R for surrogate 2,4,6-tribromophenol was less than the control limits in Sample SED-10-0-0.5; however, the sample was spiked with three additional acidic surrogates, all within the control limits. No action was required for this outlier.

Method Blanks

Method blanks are analyzed to ensure that laboratory procedures and reagents do not introduce measurable concentrations of the analytes of interest. A method blank was analyzed with each batch of samples, at a frequency of 1 per 20 samples. For all sample batches, method blanks were analyzed at the required frequency. None of the analytes of interest were detected in the method blanks, with the exceptions noted below.

Metals Method Blank Exceptions

SDG 18G0186, 18G0206, 18G0215: There were positive results for chromium and lead detected above the method detection limit, but below the reporting limit in the soil method blank digested on 7/27/18; and there were no results less than the reporting limits for either of these metals in any of the associated samples; therefore, no qualifications were required.

Trip Blanks

Trip blanks are analyzed to assess whether field sampling or sample transport processes may have introduced measurable concentrations of volatile analytes of interest into project samples. The following SDGs contained trip blanks that were packed into the sample coolers and transported with the field samples:

- **SDG 18G0186:** Trip Blank sampled on 7/16/18.
- **SDG 18G0206:** Trip Blank sampled on 7/17/18.
- SDG 18G0215: Trip Blank sampled on 7/18/18.

None of the analytes of interest were detected in the trip blanks.

Matrix Spikes/Matrix Spike Duplicates

Since the actual analyte concentration in an environmental sample is not known, the accuracy of a particular analysis is usually inferred by performing a matrix spike (MS) analysis on one sample from the associated batch, known as the parent sample. One aliquot of the sample is analyzed in the normal manner and then a second aliquot of the sample is spiked with a known amount of analyte concentration and analyzed. From these analyses, a %R is calculated. Matrix spike duplicate (MSD) analyses are generally performed for organic analyses as a precision check and analyzed in the same sequence as a matrix spike. Using the results from the MS and MSD, the relative percent difference (RPD) is calculated. The %R control limits for MS and MSD analyses are specified in the laboratory documents, as are the RPD control limits for MS/MSD sample sets.

One MS/MSD analysis should be performed for every analytical batch or every 20 field samples, whichever is more frequent. The frequency requirements were met for all analyses and the %R and RPD values were within the proper control limits, with the exceptions noted below.

Volatile Organic Compounds (VOC) MS/MSD Exceptions

SDG 18G0206: The laboratory performed an MS/MSD on Sample SED-6-1-3. The %R values for ethylbenzene were less than the control limits in the MS/MSD. There was no positive result for this compound in the parent sample. The reporting limit for ethylbenzene was qualified as estimated (UJ) in Sample SED-6-1-3.

Semi-Volatile Organic Compounds (SVOC) MS/MSD Exceptions

SDG 18G0206: (SW8270 and SW8270-SIM analyses) The laboratory performed an MS/MSD on Sample SED-6-1-3. In both analyses, the %R values for fluoranthene and pyrene were less than the control limits in the MS and/or MSD samples. The positive results for fluoranthene and pyrene were qualified as estimated (J) in Sample SED-6-1-3.

Also, the RPD values for 2,4-dimethylphenol and benzoic acid exceeded the control limits in this same sample set, demonstrating a lack of precision for these analytes. The positive results for 2,4-dimethylphenol and benzoic acid were qualified as estimated (J) in Sample SED-6-1-3.

The SIM analysis also performed an MS/MSD on Sample SED-6-1-3. The %R and RPD values for several analytes were outside of the control limits in this sample set. However, these samples were diluted, therefore no qualification was required.

Total Metal MS/MSD Exceptions

SDG 18G0206: The laboratory performed a matrix spike on Sample SED-6-1-3. The %R for chromium was less than the control limits in the MS/MSD sample set. The positive results for chromium were qualified as estimated (J) in all samples in this SDG. Also, the %R for lead and copper were greater than the control limits in the MSD from this sample set. However, the %R value for lead was within the control limits in the corresponding MS, no qualifiers were required for this outlier.

The RPD value for arsenic was greater than the control limits in the same MS/MSD sample set. The positive results for arsenic were qualified as estimated (J) in all samples in this SDG.

Total Organic Carbon (TOC) Exceptions

- SDG 18G0186: The laboratory performed a MS on Sample SED-6-0-0.5. The %R values for TOC was less than the control limits in the MS. The positive result for TOC was qualified as estimated (J) in the parent sample.
- SDG 18G0206: The laboratory performed a MS on Sample SED-6-1-3. The %R values for TOC was greater than the control limits in the MS/MSD. The positive result for TOC was qualified as estimated (J) in the parent sample.

Laboratory Control Samples/Laboratory Control Sample Duplicates

A laboratory control sample (LCS) is a blank sample that is spiked with a known amount of analyte and then analyzed. An LCS is similar to an MS, but without the possibility of matrix interference. Given that matrix interference is not an issue, control limits for accuracy and precision in the LCS and its duplicate (LCSD) are usually more rigorous than for MS/MSD analyses. Additionally, data qualification based on LCS/LCSD analyses would apply to each sample in the associated batch, instead of just the parent sample. The %R control limits for LCS and LCSD analyses are specified in the laboratory documents, as are the RPD control limits for LCS/LCSD sample sets.

One LCS/LCSD analysis should be performed for every analytical batch or every 20 field samples, whichever is more frequent. The frequency requirements were met for each analysis and the %R and RPD values were within the proper control limits, with the exceptions noted below.

VOCs (8260) LCS/LCSD Exceptions

SDG 18G0215: The %R for methyl tert-butyl ether was less than the control limit in the LCSD extracted on 7/27/2018 (#BGG0688). However, as the %R value for this compound in the corresponding LCS was within the control limits, no action was taken.

Laboratory Duplicates

Internal laboratory duplicate analyses are performed to monitor the precision of the analyses. Two separate aliquots of a sample are analyzed as distinct samples in the laboratory and the RPD between the two results is calculated. Duplicate analyses should be performed once per analytical batch. If one or more of the samples used has a concentration less than five times the reporting limit for that sample, the absolute difference is used instead of the RPD. The RPD control limits are specified in the laboratory documents. Laboratory duplicates were analyzed at the proper frequency and the specified acceptance criteria were met, with the following exceptions:

SDG 18G0206: (Total Metals) A laboratory duplicate analysis was performed on Sample SED-6-1-3. The RPD values for arsenic, copper, and chromium was greater than the control limits. The positive results for chromium were qualified as estimated (J) in Samples SED-6-1-3, SED-7-0-1, DUP-2-0-1, SED-9-1.7-2.3, and SED-10-2-4.

Field Duplicates

Field duplicates are similar to laboratory duplicates in that they are used to assess precision. Two samples (parent and duplicate) are created in the field by subsampling the homogenized sample and submitting them to the lab as separate samples. Duplicate samples were collected and analyzed for the same parameters as the associated parent samples. Precision is determined by calculating the RPD between each pair of samples. If one or more of the sample analytes has a concentration less than five times the reporting limit for that sample, then the absolute difference is used instead of the RPD. The RPD control limit for soil/sediment samples is 50 percent, while the control limit for the absolute difference values is twice the reporting limit.

SDG 18G0186: One field duplicate sample pair, SED-7-0-0.5 and DUP-1-0-0.5, was submitted with this SDG. The precision criteria for Total Organic Carbon (TOC), Heavy Oil, copper, anthracene, benzo(a)anthracene, benzo(a)pyrene, benzo(g,h,i)perylene, benzofluoranthenes (total), chrysene, diethyl phthalate, fluoranthene, phenanthrene, and pyrene were not met for this sample pair. The positive results for these analytes were qualified as estimated (J) in both samples.

SDG 18G0206: One field duplicate sample pair, SED-7-0-1 and DUP-2-0-1, was submitted with this SDG. The precision criteria for sulfide, copper, benzoic acid, phenanthrene, and pyrene were not met for this sample pair. The positive results for these analytes were qualified as estimated (J) in both samples.

Instrument Tuning

Instrument tuning for analyses by gas chromatography/mass spectrometry (GC/MS) are completed to ensure that mass resolution, identification, and sensitivity of the analyses are acceptable. Instrument

tuning should be performed at the beginning of each 12-hour period during which samples or standards are analyzed. The frequency and specified acceptance criteria were met for each applicable analysis.

Internal Standards (Low Resolution Mass Spectrometry)

Like the surrogate, an internal standard is a compound that is chemically similar to the analytes of interest, but unlikely to be found in any environmental sample. Internal standards are used only for the mass spectrometry instrumentation and are usually added to the sample aliquot after extraction has taken place. The internal standard should be analyzed at the beginning of a 12-hour sample run and the control limits for internal standard recoveries are 50 percent to 200 percent of the calibration standard. All internal standard recoveries were within the control limits.

Initial Calibrations (ICALs)

The initial calibrations were conducted according to the laboratory methods and consisted of the appropriate number of standards. For inorganic analyses, the %R values were within the control limits of 90% and 110%. For organic analyses, the percent relative standard deviation (%RSD) and relative response factors (RRF) values were within the control limits stated in the USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review (USEPA 2008).

Continuing Calibrations (CCALs)

The continuing calibrations were conducted according to the laboratory methods and consisted of the appropriate number of standards. For inorganic analyses, the %R values were within the control limits of 90% and 110%. For organic analyses, the percent difference (%D) and relative response factors (RRF) values were within the control limits in the USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review (USEPA 2008), with the following exceptions:

SDG 18G0186: (SVOC-PAHs) The %D value for benzoic acid was less than the control limit in the continuing calibration verifications (CCAL) performed on 7/21/2018 and 7/30/2018. The positive results and reporting limits for benzoic acid were qualified as estimated (J/UJ) in all samples in the SDG, with the exception of Sample TRIPBLANK_07162018.

SDG 18G0206: (SVOC-PAHs) The %D value for benzoic acid was less than the control limit in the continuing calibration verifications (CCAL) performed on 7/30/2018 and 8/1/2018. The positive results and reporting limits for benzoic acid were qualified as estimated (J/UJ) in all samples in the SDG, with the exception of Sample TRIPBLANK_07172018.

SDG 18G0215: (SVOC-PAHs) The %D value for benzoic acid was less than the control limit in the continuing calibration verification (CCAL) performed on 8/1/2018. The reporting limit for benzoic acid was qualified as estimated (UJ) in Sample SED-10-0-0.5.

Miscellaneous

SDG 18G0186: (PAH-SIMs) The laboratory reported two sets of results for Sample SED-9-0-0.5 because fluoranthene and pyrene exceeded the calibration range of the instrument in the first analysis. The second analysis was diluted at a factor of 3 for all analytes. For this reason, the results of the analytes that exceeded the calibration range were were labeled as Do-Not-Report (DNR) in the first analyses and all other analytes were labeled as Do-Not-Report (DNR) in the third analysis in order to avoid redundant analyte reporting.

ALL SDGs: (SVOCs by 8270) Several compounds were reported with the 8270-Full List analysis that were also analyzed by the SIM method. In these cases, the SIM method was chosen for reporting purposes by GeoEngineers. The redundant compounds were were labeled as Do-Not-Report (DNR) from the 8270-Full List analyses in order to avoid redundant analyte reporting.

Overall Assessment

As was determined by this data validation, the laboratory followed the specified analytical methods. Accuracy was acceptable, as demonstrated by the surrogate, LCS/LCSD, and MS/MSD %R values, with the exceptions noted above. Precision was acceptable, as demonstrated by the LCS/LCSD, MS/MSD, and laboratory/field duplicate RPD values, with the exceptions noted above.

Data were qualified because of MS/MSD %R outliers, laboratory and field duplicate precision outliers, and continuing calibration %D outliers.

Data were labeled as Not Reportable in order to avoid redundant analytes per sample.

All data are acceptable for the intended use, with the following qualifications listed below in Table 2.

Sample ID	Analyte	Qualifier	Reason
SED-7-0-0.5	Heavy Oil	J	Field Duplicate Precision
DUP-1-0-0.5	Heavy Oil	J	Field Duplicate Precision
SED-6-1-3	Ethylbenzene	UJ	Matrix Spike (MS & MSD) Recoveries
SED-6-1-3	2,4-Dimethylphenol	UJ	Precision (MS/MSD)
SED-6-1-3	Pyrene	J	Matrix Spike (MS & MSD) Recoveries
SED-6-1-3	Fluoranthene	J	Matrix Spike (MS & MSD) Recoveries
SED-6-1-3	Benzoic Acid	UJ	Precision (MS/MSD)
SED-7-0-0.5	Anthracene	J	Field Duplicate Precision
SED-7-0-0.5	Pyrene	J	Field Duplicate Precision
SED-7-0-0.5	Benzo(g,h,i)perylene	J	Field Duplicate Precision
SED-7-0-0.5	Fluoranthene	J	Field Duplicate Precision
SED-7-0-0.5	Chrysene	J	Field Duplicate Precision
SED-7-0-0.5	Benzo(a)pyrene	J	Field Duplicate Precision
SED-7-0-0.5	Benzo(a)anthracene	J	Field Duplicate Precision
SED-7-0-0.5	Phenanthrene	J	Field Duplicate Precision
SED-7-0-0.5	Benzofluoranthenes (Total)	J	Field Duplicate Precision
SED-7-0-0.5	Diethyl Phthalate	J	Field Duplicate Precision
DUP-1-0-0.5	Anthracene	J	Field Duplicate Precision
DUP-1-0-0.5	Pyrene	J	Field Duplicate Precision
DUP-1-0-0.5	Benzo(g,h,i)perylene	J	Field Duplicate Precision
DUP-1-0-0.5	Fluoranthene	J	Field Duplicate Precision
DUP-1-0-0.5	Chrysene	J	Field Duplicate Precision
DUP-1-0-0.5	Benzo(a)pyrene	J	Field Duplicate Precision
DUP-1-0-0.5	Benzo(a)anthracene	J	Field Duplicate Precision
DUP-1-0-0.5	Phenanthrene	J	Field Duplicate Precision
DUP-1-0-0.5	Benzofluoranthenes (Total)	J	Field Duplicate Precision
DUP-1-0-0.5	Diethyl Phthalate	J	Field Duplicate Precision
SED-5-0-0.5	Benzoic Acid	UJ	Calibration (continuing)
SED-5-2-4	Benzoic Acid	UJ	Calibration (continuing)
SED-6-0-0.5	Benzoic Acid	UJ	Calibration (continuing)

TABLE 2: SUMMARY OF QUALIFIED SAMPLES

SED-6-1-3	Benzoic Acid	UJ	Calibration (continuing)
SED-7-0-0.5	Benzoic Acid	UJ	Calibration (continuing)
SED-7-0-1	Benzoic Acid	IJ	Calibration (continuing)
SED-8-0-0.5	Benzoic Acid	UJ	Calibration (continuing)
SED-8-3.2-4.5	Benzoic Acid	IJ	Calibration (continuing)
SED-9-0-0.5	Benzoic Acid	UJ	Calibration (continuing)
SED-9-1.7-2.3	Benzoic Acid	UJ	Calibration (continuing)
SED-10-0-0.5	Benzoic Acid	UJ	Calibration (continuing)
SED-10-2-4	Benzoic Acid	UJ	Calibration (continuing)
DUP-1-0-0.5	Benzoic Acid	IJ	Calibration (continuing)
DUP-2-0-1	Benzoic Acid	UJ	Calibration (continuing)
SED-7-0-1	Benzoic Acid	J	Field Duplicate Precision
SED-7-0-1	Phenanthrene	J	Field Duplicate Precision
SED-7-0-1	Pyrene	J	Field Duplicate Precision
DUP-2-0-1	Benzoic Acid	UJ	Field Duplicate Precision
DUP-2-0-1	Phenanthrene	J	Field Duplicate Precision
DUP-2-0-1	Pyrene	J	Field Duplicate Precision
DUP-1-0-0.5	Copper	J	Field Duplicate Precision
DUP-2-0-1	Arsenic	J	Lab Precision
DUP-2-0-1	Chromium	J	Lab precision, MS/MSD accuracy
DUP-2-0-1	Copper	J	Lab Precision, Field Duplicate
SED-10-2-4	Arsenic	J	Lab Precision
SED-10-2-4	Chromium	J	Lab precision, MS/MSD accuracy
SED-10-2-4	Copper	J	Lab Precision
SED-6-1-3	Arsenic	J	Lab Precision
SED-6-1-3	Chromium	J	Lab precision, MS/MSD accuracy
SED-6-1-3	Copper	J	Lab Precision
SED-7-0-0.5	Copper	J	Field Duplicate
SED-7-0-1	Arsenic	J	Lab Precision
SED-7-0-1	Chromium	J	Lab precision, MS/MSD accuracy
SED-7-0-1	Copper	J	Lab Precision, Field Duplicate
SED-9-1.7-2.3	Arsenic	J	Lab Precision
L	1	1	

SED-9-1.7-2.3	Chromium	J	Lab precision, MS/MSD accuracy
SED-9-1.7-2.3	Copper	J	Lab Precision
SED-7-0-1	Sulfide	J	Field Duplicate
DUP-2-0-1	Sulfide	J	Field Duplicate

References

GeoEngineers, 2017. FINAL Remedial Investigation/Feasibility Study Work Plan (RI/FS Work Plan); Quiet Cove Property; Anacortes, WA; Ecology Agreed Order No. DE 11346. GEI No. 5147-024-03, dated January 25, 2017.

U.S. Environmental Protection Agency (USEPA). "Guidance for Labeling Externally Validated Laboratory Analytical Data for Superfund Use," EPA-540-R-08-005. January 2009.

U.S. Environmental Protection Agency (USEPA). "Contract Laboratory Program National Functional Guidelines for Superfund Organic Methods Data Review," EPA-540-R-08-01. June 2008.

U.S. Environmental Protection Agency (USEPA). "Contract Laboratory Program National Functional Guidelines for Inorganic Superfund Data Review," EPA-540-R-10-011. January 2010.

Data Validation Report

2101 4 th Avenue, Suite 950, Seattle, WA 98121, Telephone: 206.728.2674, Fax: 206.728.2732		www.geoengineers.com
Project:	Port of Anacortes – Quiet Cove Property, Supplemental Data Collection October 2018 Groundwater Samples	
GEI File No:	05147-024-06	
Date:	November 29, 2018	

This report documents the results of a United States Environmental Protection Agency (USEPA)-defined Stage 2B data validation (USEPA Document 540-R-08-005; USEPA, 2009) of analytical data from the analyses of groundwater samples collected as part of the October 2018 sampling event, and the associated laboratory and field quality control (QC) samples. The samples were obtained from the Quiet Cove Property (Site) located at 3rd Street and O Avenue in Anacortes, Washington.

OBJECTIVE AND QUALITY CONTROL ELEMENTS

GeoEngineers, Inc. (GeoEngineers) completed the data validation consistent with the USEPA Contract Laboratory Program National Functional Guidelines for Organic Superfund Methods Data Review (USEPA, 2017a) and Inorganic Superfund Methods Data Review (USEPA, 2017b) (National Functional Guidelines) to determine if the laboratory analytical results meet the project objectives and are usable for their intended purpose. Data usability was assessed by determining if:

- The samples were analyzed using well-defined and acceptable methods that provide reporting limits below applicable regulatory criteria;
- The precision and accuracy of the data are well-defined and sufficient to provide defensible data; and
- The quality assurance/quality control (QA/QC) procedures utilized by the laboratory meet acceptable industry practices and standards.

In accordance with the Final Remedial Investigation/Feasibility Study Work Plan, Quiet Cove Property (GeoEngineers, 2017a), the Final Sampling and Analysis Plan, Quiet Cove Property (GeoEngineers, 2017b), and the Work Plan Addendum for Supplemental Upland Area Soil and Groundwater Investigation at the Quiet Cove Site (GeoEngineers, 2018), the data validation included review of the following QC elements:

- Data Package Completeness
- Chain-of-Custody Documentation
- Holding Times and Sample Preservation
- Surrogate Recoveries
- Method and Trip Blanks
- Matrix Spikes/Matrix Spike Duplicates

- Laboratory Control Samples/Laboratory Control Sample Duplicates
- Field Duplicates
- Instrument Tuning
- Internal Standards
- Initial Calibrations (ICALs)
- Continuing Calibrations (CCALs)
- Reporting Limits
- Miscellaneous

VALIDATED SAMPLE DELIVERY GROUPS

This data validation included review of the sample delivery groups (SDGs) listed below in Table 1.

TABLE 1: SUMMARY OF VALIDATED SAMPLE DELIVERY GROUPS

Laboratory Sample Delivery Group	Validated Samples		
18J0501	MW-4_102918, MW-6_102918, MW-8_102918, MW-10_102918		
18J0516	MW-3_103018, MW-7_103018, MW-12_103018, DUP-1_103018,		
18J0533	MW-1_103118, MW-2_103118, MW-5_103118, MW-11_103118, TB_103118		

CHEMICAL ANALYSIS PERFORMED

Analytical Resources, Inc. (ARI), located in Tukwila, Washington, performed laboratory analyses on the groundwater samples using one or more of the following methods:

- Gasoline-range Hydrocarbons (NWTPH-Gx) by Method NWTPH-Gx;
- Petroleum Hydrocarbons (NWTPH-Dx) by Method NWTPH-Dx (with separate Silica Gel analysis);
- BTEX Compounds by Method SW8260C
- Nitrate and Sulfate by Method EPA 300.0
- Manganese by Method EPA6020
- Ferrous Iron by Standard Method SM3500FeB
- Methane by Method RSK-175
- Alkalinity as CaCO₃ by Standard Method SM2320B

DATA VALIDATION SUMMARY

The results for each of the QC elements are summarized below.

Data Package Completeness

ARI provided all required deliverables for the data validation according to the National Functional Guidelines. The laboratory followed adequate corrective action processes and all identified anomalies were discussed in the relevant laboratory case narrative.

Chain-of-Custody Documentation

Chain-of-custody (COC) forms were provided with the laboratory analytical reports. The COCs and sample container IDs were signed, accurate and complete when submitted to the lab, with the exception noted below:

SDG 18J0501: The laboratory noted that no trip blank was received by the laboratory; even though there was a sample with an ID of TB-102918 listed on the COC.

Also, several sample VOA vials were received with small bubble in the bottle. It was determined that the sample analyses were not affected by these bubbles as the laboratory had other viable sample containers.

SDG 18J0533: Several sample VOA vials were received with small bubble in the bottle. It was determined that the sample analyses were not affected by these bubbles as the laboratory had other containers to take samples from.

Holding Times and Sample Preservation

The sample holding time is defined as the time that elapses between sample collection and sample analysis. Maximum holding time criteria exist for each analysis to help ensure that the analyte concentrations found at the time of analysis reflect the concentration present at the time of sample collection. The sample coolers arrived at the laboratory within the appropriate temperatures of between 2° and 6° Celsius, with minor exceptions where the samples were taken directly to the laboratory with 24 hours. Established holding times were met for all analyses, with the exceptions below:

SDG 18J0501: (VOCs) The ferrous iron holding time of 24 hours was exceeded for Sample MW-4_102918 by one hour. The positive result for ferrous iron was qualified as estimated (J) in this sample.

SDG 18J0516: (VOCs) The ferrous iron holding time of 24 hours was exceeded for Sample MW-3_103018, MW-12_103018, and DUP-1_103018 by one to two hours. The positive result for ferrous iron were qualified as estimated (J) in these samples.

Surrogate Recoveries

A surrogate compound is a compound that is chemically similar to the organic analytes of interest, but unlikely to be found in any environmental sample. Surrogates are used for organic analyses and are added to all samples, standards, and blanks to serve as an accuracy and specificity check of each analysis. The surrogates are added to the samples at a known concentration and percent recoveries (%R) are calculated following analysis. All surrogate recoveries for field samples were within the laboratory control limits.

Method Blanks

Method blanks are analyzed to ensure that laboratory procedures and reagents do not introduce measurable concentrations of the analytes of interest. A method blank was analyzed with each batch of samples, at a frequency of 1 per 20 samples. For all sample batches, method blanks were analyzed at the required frequency. None of the analytes of interest were detected in the method blanks, with the exceptions noted below:

Metals (Manganese) Method Blank Exceptions

- SDG 18J0501: There was a positive result for manganese detected above the method detection limit, but below the reporting limit in the method blank digested on 11/1/2018. The associated field samples reported positive results at concentrations greater than 5X the concentration in the method blank for these analytes; therefore, no qualifications were required.
- SDGs 18J0516 and 18J0533: There was a positive result for manganese detected above the method detection limit, but below the reporting limit in the method blank digested on 11/2/2018. The associated field samples reported positive results at concentrations greater than 5X the concentration in the method blank for these analytes; therefore, no qualifications were required.

Trip Blanks

Trip blanks are analyzed to assess whether field sampling or sample transport processes may have introduced measurable concentrations of volatile analytes of interest into project samples. The following SDGs contained trip blanks that were packed into the sample coolers and transported with the field samples:

SDG 18J0533: Trip Blank sampled on 10/31/2018.

None of the analytes of interest were detected in the trip blanks.

Matrix Spikes/Matrix Spike Duplicates

Since the actual analyte concentration in an environmental sample is not known, the accuracy of a particular analysis is usually inferred by performing a matrix spike (MS) analysis on one sample from the associated batch, known as the parent sample. One aliquot of the sample is analyzed in the normal manner and then a second aliquot of the sample is spiked with a known amount of analyte concentration and analyzed. From these analyses, a %R is calculated. Matrix spike duplicate (MSD) analyses are generally performed for organic analyses as a precision check and analyzed in the same sequence as a matrix spike. Using the results from the MS and MSD, the relative percent difference (RPD) is calculated. The %R control limits for MS and MSD analyses are specified in the laboratory documents, as are the RPD control limits for MS/MSD sample sets.

One MS/MSD analysis should be performed for every analytical batch or every 20 field samples, whichever is more frequent. The frequency requirements were met for all analyses and the %R and RPD values were within the proper control limits, with the exception noted below.

BTEX Compound MS/MSD Exceptions

 SDG 18J0533: The laboratory performed an MS/MSD on Sample MW-11_103118. The %R for benzene was less than the control limit in the MS extracted on 11/1/2018; however, the %R for

this target analyte was within the control limits in the corresponding MSD. No qualification was required for this outlier.

Methane MS/MSD Exceptions

SDG 18J0516: The laboratory performed an MS/MSD on Sample MW-3_103018. The %R values for methane were greater than the control limits in the MS/MSD analyzed on 11/1/2018; however, the native sample concentration was greater than 4 times the amount spiked into the sample. No qualification was required for this outlier.

Laboratory Control Samples/Laboratory Control Sample Duplicates

A laboratory control sample (LCS) is a blank sample that is spiked with a known amount of analyte and then analyzed. An LCS is similar to an MS, but without the possibility of matrix interference. Given that matrix interference is not an issue, control limits for accuracy and precision in the LCS and its duplicate (LCSD) are usually more rigorous than for MS/MSD analyses. Additionally, data qualification based on LCS/LCSD analyses would apply to each sample in the associated batch, instead of just the parent sample. The %R control limits for LCS and LCSD analyses are specified in the laboratory documents, as are the RPD control limits for LCS/LCSD sample sets.

One LCS/LCSD analysis should be performed for every analytical batch or every 20 field samples, whichever is more frequent. The frequency requirements were met for each analysis and the %R and RPD values were within the proper control limits.

Field Duplicates

Field duplicates are similar to laboratory duplicates in that they are used to assess precision. Two samples (parent and duplicate) are created in the field by subsampling the homogenized sample and submitting them to the lab as separate samples. Duplicate samples were collected and analyzed for the same parameters as the associated parent samples. Precision is determined by calculating the RPD between each pair of samples. If one or more of the sample analytes has a concentration less than five times the reporting limit for that sample, then the absolute difference is used instead of the RPD. The RPD control limit for soil samples is 50 percent.

SDG 18J0516: One field duplicate sample pair, MW-12_103018 and DUP-1_103018, were submitted with this SDG. The precision criteria for all target analytes were met in these sample pairs, no precision qualifiers were required.

Instrument Tuning

Instrument tuning for analyses by gas chromatography/mass spectrometry (GC/MS) are completed to ensure that mass resolution, identification, and sensitivity of the analyses are acceptable. Instrument tuning should be performed at the beginning of each 12-hour period during which samples or standards are analyzed. The frequency and specified acceptance criteria were met for each applicable analysis.

Internal Standards (Low Resolution Mass Spectrometry)

Like the surrogate, an internal standard is a compound that is chemically similar to the analytes of interest, but unlikely to be found in any environmental sample. Internal standards are used only for the mass spectrometry instrumentation and are usually added to the sample aliquot after extraction has taken place. The internal standard should be analyzed at the beginning of a 12-hour sample run and the

control limits for internal standard recoveries are 50 percent to 200 percent of the calibration standard. All internal standard recoveries were within the control limits.

Initial Calibrations (ICALs)

The initial calibrations were conducted according to the laboratory methods and consisted of the appropriate number of standards. For inorganic analyses, the %R values were within the control limits of 90% and 110%. For organic analyses, the percent relative standard deviation (%RSD) and relative response factors (RRF) values were within the control limits stated in the USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review (USEPA, 2017a).

Continuing Calibrations (CCALs)

The continuing calibrations were conducted according to the laboratory methods and consisted of the appropriate number of standards. For inorganic analyses, the %R values were within the control limits of 90% and 110%. For organic analyses, the percent difference (%D) and relative response factors (RRF) values were within the control limits in the USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review (USEPA, 2017a).

Reporting Limits

The contract required quantitation limits (CRQL) were met by the laboratory for the target analytes throughout this sampling event, with some exceptions where the CRQL was elevated due to required sample dilution.

Miscellaneous

Petroleum Hydrocarbons (NWTPH-Dx)

SDG 18J0533: The laboratory reported two sets of results for Sample MW-11_103118 (non silica-gel cleaned), an initial and a dilution (2X), because the result for diesel-range hydrocarbons exceeded the linear calibration range in the initial sample. The initial reported result for diesel-range hydrocarbons and the dilution reported result for lube oil-range hydrocarbons were labeled as Do-Not-Report (DNR) in order to avoid redundant analyte reporting.

Overall Assessment

As was determined by this data validation, the laboratory followed the specified analytical methods. Accuracy was acceptable, as demonstrated by the surrogate, LCS/LCSD, and MS/MSD %R values, with the exceptions noted above. Precision was acceptable, as demonstrated by the LCS/LCSD, MS/MSD, and field duplicate RPD values.

Data were qualified as estimated because holding time outliers.

Data were labeled as Not Reportable in order to avoid redundant analytes per sample.

The data are acceptable for the intended use, with the following qualifications listed below in Table 2.

TABLE 2: SUMMARY OF QUALIFIED SAMPLES

Sample ID	Analyte	Qualifier	Reason
MW-4_102918	Ferrous iron	J	Holding time outlier

MW-3_103018	Ferrous iron	J	Holding time outlier
MW-12_103018	Ferrous iron	J	Holding time outlier
DUP-1_103018	Ferrous iron	J	Holding time outlier
MW-11_103018	Diesel-range hydrocarbons	DNR	Initial analysis
MW-11_103018	Lube oil-range hydrocarbons	DNR	2X dilution

References

U.S. Environmental Protection Agency (USEPA), 2009 "Guidance for Labeling Externally Validated Laboratory Analytical Data for Superfund Use," EPA-540-R-08-005. January 2009.

U.S. Environmental Protection Agency (USEPA), 2017a. "Contract Laboratory Program National Functional Guidelines for Organic Superfund Methods Data Review," EPA-540-R-2017-002. January 2017.

U.S. Environmental Protection Agency (USEPA), 2017b. "Contract Laboratory Program National Functional Guidelines for Inorganic Superfund Methods Data Review," EPA-540-R-2017-001. January 2017.

GeoEngineers, 2017a. "Final Remedial Investigation/Feasibility Study Work Plan, Quiet Cove Property, Anacortes Washington, Ecology Agreed Order No. DE 11346," Prepared for the Washington Department of Ecology on behalf of the Port of Anacortes. January 25, 2017.

GeoEngineers, 2017b. "Final Sampling and Analysis Plan, Quiet Cove Property, Anacortes Washington, Ecology Agreed Order No. DE 11346," Prepared for the Washington Department of Ecology on behalf of the Port of Anacortes. January 25, 2017.

GeoEngineers, 2018. "Work Plan Addendum for Supplemental Upland Area Soil and Groundwater Investigation at the Quiet Cove Site, Anacortes, Washington," Prepared for the Washington Department of Ecology on behalf of the Port of Anacortes. October 1, 2018.

Data Validation Report

Plaza 600 Building, 600 Stewart Street, Suite 1700, Seattle, WA 98101, Telephone: 206.728.2674, Fax: 206.728.2732 www.geoengineers.com

Project:	Port of Anacortes – Quiet Cove Property, Supplemental Data Collection October 2018 Soil Samples
GEI File No:	05147-024-06
Date:	November 19, 2018

This report documents the results of a United States Environmental Protection Agency (USEPA)-defined Stage 2B data validation (USEPA Document 540-R-08-005; USEPA, 2009) of analytical data from the analyses of soil samples collected as part of the October 2018 sampling event, and the associated laboratory and field quality control (QC) samples. The samples were obtained from the Quiet Cove Property (Site) located at 3rd Street and O Avenue in Anacortes, Washington.

OBJECTIVE AND QUALITY CONTROL ELEMENTS

GeoEngineers, Inc. (GeoEngineers) completed the data validation consistent with the USEPA Contract Laboratory Program National Functional Guidelines for Organic Superfund Methods Data Review (USEPA, 2017a) and Inorganic Superfund Methods Data Review (USEPA, 2017b) (National Functional Guidelines) to determine if the laboratory analytical results meet the project objectives and are usable for their intended purpose. Data usability was assessed by determining if:

- The samples were analyzed using well-defined and acceptable methods that provide reporting limits below applicable regulatory criteria;
- The precision and accuracy of the data are well-defined and sufficient to provide defensible data; and
- The quality assurance/quality control (QA/QC) procedures utilized by the laboratory meet acceptable industry practices and standards.

In accordance with the Final Remedial Investigation/Feasibility Study Work Plan, Quiet Cove Property (GeoEngineers, 2017a), the Final Sampling and Analysis Plan, Quiet Cove Property (GeoEngineers, 2017b), and the Work Plan Addendum for Supplemental Upland Area Soil and Groundwater Investigation at the Quiet Cove Site (GeoEngineers, 2018), the data validation included review of the following QC elements:

- Data Package Completeness
- Chain-of-Custody Documentation
- Holding Times and Sample Preservation
- Surrogate Recoveries
- Method and Trip Blanks
- Matrix Spikes/Matrix Spike Duplicates

- Laboratory Control Samples/Laboratory Control Sample Duplicates
- Field Duplicates
- Instrument Tuning
- Internal Standards
- Initial Calibrations (ICALs)
- Continuing Calibrations (CCALs)
- Reporting Limits
- Miscellaneous

VALIDATED SAMPLE DELIVERY GROUPS

This data validation included review of the sample delivery groups (SDGs) listed below in Table 1.

TABLE 1: SUMMARY OF VALIDATED SAMPLE DELIVERY GROUPS

Laboratory Sample Delivery Group	Validated Samples
18J0352	SD-1-2-4, SD-1-5-6.5, SD-1-10-12, SD-1-13-15, SD-1-17-19, SD-2-2-3, SD-2-6-8, SD-2-11-12, SD-2-14-15, SD-3-2.5-3.5, SD-3-7-8.5, SD-3-12-13, SD-7-1-2, SD-7-2-3.5, SD-7-9-10, SD-7-15-16.5, SD-7-18.5-20, SD-8-2-4, SD-8-6-8, SD-8-9-11, SD-8-13-15, TRIPBLANK_101718
18J0365	MW-12-3-4, MW-12-7.5-9.5, MW-12-11-12, MW-12-14-15, SD-4-2.5-3.5, SD-4-6.5-7.5, SD-4-12-13, SD-DUP-1, SD-5-0.5-2, SD-5-5-6, SD-5-9-10, SD-6-1-2, SD-6-4-5, SD-6-6-7, SD-DUP-2, SD-6-9-10, SD-9-2.5-4, SD-10-4-5, TRIPBLANK_101818

CHEMICAL ANALYSIS PERFORMED

Analytical Resources, Inc. (ARI), located in Tukwila, Washington, performed laboratory analyses on the soil samples using one or more of the following methods:

- Gasoline-range Hydrocarbons (NWTPH-Gx) by Method NWTPH-Gx;
- Petroleum Hydrocarbons (NWTPH-Dx) by Method NWTPH-Dx;
- Volatile Organic Compounds (VOCs) by Method SW8260C;
- Polycyclic Aromatic Hydrocarbons (PAHs) by Method SW8270D-SIM; and
- Total Metals by Methods EPA6020A/7471B

DATA VALIDATION SUMMARY

The results for each of the QC elements are summarized below.

Data Package Completeness

ARI provided all required deliverables for the data validation according to the National Functional Guidelines. The laboratory followed adequate corrective action processes and all identified anomalies were discussed in the relevant laboratory case narrative.

Chain-of-Custody Documentation

Chain-of-custody (COC) forms were provided with the laboratory analytical reports. The COCs and sample container IDs were signed, accurate and complete when submitted to the lab, with the exception noted below:

SDG 18J0352: The laboratory noted that for Sample SD-7-1-2 the COC listed eight sample containers; however, nine sample containers were received by the laboratory.

Holding Times and Sample Preservation

The sample holding time is defined as the time that elapses between sample collection and sample analysis. Maximum holding time criteria exist for each analysis to help ensure that the analyte concentrations found at the time of analysis reflect the concentration present at the time of sample collection. Established holding times were met for all analyses. The sample coolers arrived at the laboratory within the appropriate temperatures of between 2° and 6° Celsius.

SDG 18J0352: (VOCs) The laboratory noted that for Sample TRIPBLANK_101718 all sample vials submitted were received with bubbles. The reporting limits for the VOC target analytes were qualified as estimated (UJ) in this sample, due to possible loss of analyte concentration.

SDG 18J0365: (NWTPH-Gx and VOCs) The laboratory noted that for Sample TRIPBLANK_101818 all sample vials submitted were received with bubbles. The reporting limits for gasoline-range hydrocarbons and the VOC target analytes were qualified as estimated (UJ) in this sample, due to possible loss of analyte concentration.

Surrogate Recoveries

A surrogate compound is a compound that is chemically similar to the organic analytes of interest, but unlikely to be found in any environmental sample. Surrogates are used for organic analyses and are added to all samples, standards, and blanks to serve as an accuracy and specificity check of each analysis. The surrogates are added to the samples at a known concentration and percent recoveries (%R) are calculated following analysis. All surrogate recoveries for field samples were within the laboratory control limits, with the exceptions noted below.

Volatile Organic Compounds (VOCs) Surrogate Exceptions

SDG 18J0352: The %R for surrogate 4-Bromofluorobenzene was greater than the control limits in Sample SD-1-5-6.5. The positive results for benzene, ethylbenzene, m,p-Xylene, and o-Xylene were qualified as estimated (J) in this sample. There were no positive results for toluene in this sample; therefore, no qualification was required.

The %R values for surrogates 4-Bromofluorobenzene and toluene-d8 were greater than the control limits in Sample SD-1-10-12. There were no positive results for the VOC target analytes in this sample; therefore, no qualifications were required.

The %R for surrogate 4-Bromofluorobenzene was greater than the control limits in Sample SD-2-6-8. The positive results for benzene, ethylbenzene, m,p-Xylene, o-Xylene, and toluene were qualified as estimated (J) in this sample.

The %R for surrogate 4-Bromofluorobenzene was greater than the control limits in Samples SD-3-7-8.5 and SD-3-12-13. The positive results for benzene, ethylbenzene, m,p-Xylene, and toluene were qualified as estimated (J) in these samples. There were no positive results for o-Xylene in these samples; therefore, no qualifications were required.

The %R for surrogate 4-Bromofluorobenzene was greater than the control limits in Samples SD-8-2-4 and SD-8-6-8. There were no positive results for the VOC target analytes in these samples; therefore, no qualifications were required.

SDG 18J0365: The %R for surrogate 4-Bromofluorobenzene was greater than the control limits in Sample MW-12-7.5-9.5. There were no positive results for the VOC target analytes in this sample; therefore, no qualifications were required.

The %R for surrogate 4-Bromofluorobenzene was greater than the control limits in Sample SD-4-6.5-7.5. The positive results for ethylbenzene, m,p-Xylene, and toluene were qualified as estimated (J) in this sample. There were no positive results for benzene and o-Xylene in this sample; therefore, no qualifications were required.

The %R for surrogate 4-Bromofluorobenzene was greater than the control limits in Sample SD-10-4-5; however, the sample was spiked with two additional surrogates, each within their control limits. No action was required for this outlier.

The %R for surrogate 4-Bromofluorobenzene was less than the control limits in Sample SD-9-2.5-4; however, the sample was spiked with two additional surrogates, each within their control limits. No action was required for this outlier.

The %R for surrogate 4-Bromofluorobenzene was greater than the control limits in Sample MW-12-11-12. The positive results for benzene, m,p-Xylene, and toluene were qualified as estimated (J) in this sample. There were no positive results for ethylbenzene and o-Xylene in this sample; therefore, no qualifications were required.

Polycyclic Aromatic Hydrocarbons (PAHs) Surrogate Exceptions

SDG 18J0365: The %R for surrogate 2-Methylnaphthalene-d10 was less than the control limits in Sample SD-10-4-5; however, the sample was spiked with two additional surrogates, each within their control limits. No action was required for this outlier.

Method Blanks

Method blanks are analyzed to ensure that laboratory procedures and reagents do not introduce measurable concentrations of the analytes of interest. A method blank was analyzed with each batch of samples, at a frequency of 1 per 20 samples. For all sample batches, method blanks were analyzed at the required frequency. None of the analytes of interest were detected in the method blanks, with the exceptions noted below.

Polycyclic Aromatic Hydrocarbons (PAHs) Method Blank Exceptions

■ **SDG 18J0352**: There was a positive result for 1-Methylnaphthalene and 2-Methylnaphthalene detected above the method detection limit, but below the reporting limit in the method blank extracted on 10/22/2018. The associated field samples reported positive results at

concentrations greater than 5X the concentration in the method blank for these analytes; therefore, no qualifications were required.

SDG 18J0365: There was a positive result for 2-Methylnaphthalene, anthracene, and pyrene detected above the method detection limit, but below the reporting limit in the method blank extracted on 10/23/2018. The positive result for 2-Methylnaphthalene was qualified as non-detected (U) in Sample MW-12-14-15. The remaining associated field samples reported positive results at concentrations greater than 5X the concentration in the method blank for these analytes; therefore, no qualifications were required.

Trip Blanks

Trip blanks are analyzed to assess whether field sampling or sample transport processes may have introduced measurable concentrations of volatile analytes of interest into project samples. The following SDGs contained trip blanks that were packed into the sample coolers and transported with the field samples:

- **SDG 18J0352:** Trip Blank sampled on 10/17/2018.
- **SDG 18J0365:** Trip Blank sampled on 10/18/2018.

None of the analytes of interest were detected in the trip blanks.

Matrix Spikes/Matrix Spike Duplicates

Since the actual analyte concentration in an environmental sample is not known, the accuracy of a particular analysis is usually inferred by performing a matrix spike (MS) analysis on one sample from the associated batch, known as the parent sample. One aliquot of the sample is analyzed in the normal manner and then a second aliquot of the sample is spiked with a known amount of analyte concentration and analyzed. From these analyses, a %R is calculated. Matrix spike duplicate (MSD) analyses are generally performed for organic analyses as a precision check and analyzed in the same sequence as a matrix spike. Using the results from the MS and MSD, the relative percent difference (RPD) is calculated. The %R control limits for MS and MSD analyses are specified in the laboratory documents, as are the RPD control limits for MS/MSD sample sets.

One MS/MSD analysis should be performed for every analytical batch or every 20 field samples, whichever is more frequent. The frequency requirements were met for all analyses and the %R and RPD values were within the proper control limits, with the exception noted below.

Petroleum Hydrocarbons (NWTPH-Dx) MS/MSD Exceptions

SDG 18J0365: The laboratory performed an MS/MSD on Sample SD-9-2.5-4. The %R for diesel-range hydrocarbons was less than the control limits in the MS extracted on 10/26/2018; however, the %R for this target analyte was within the control limits in the corresponding MSD. No qualification was required for this outlier.

Laboratory Control Samples/Laboratory Control Sample Duplicates

A laboratory control sample (LCS) is a blank sample that is spiked with a known amount of analyte and then analyzed. An LCS is similar to an MS, but without the possibility of matrix interference. Given that matrix interference is not an issue, control limits for accuracy and precision in the LCS and its duplicate (LCSD) are usually more rigorous than for MS/MSD analyses. Additionally, data qualification based on LCS/LCSD analyses would apply to each sample in the associated batch, instead of just the parent

sample. The %R control limits for LCS and LCSD analyses are specified in the laboratory documents, as are the RPD control limits for LCS/LCSD sample sets.

One LCS/LCSD analysis should be performed for every analytical batch or every 20 field samples, whichever is more frequent. The frequency requirements were met for each analysis and the %R and RPD values were within the proper control limits, with the exceptions noted below.

Volatile Organic Compounds (VOCs) LCS/LCSD Exceptions

SDG 18J0352: The %R for benzene was greater than the control limits in the LCS extracted on 10/24/2018 (#BGJ0813); however, the %R for this target analyte was within the control limits in the corresponding LCSD. No action was required for this outlier.

The %R for benzene was greater than the control limits in the LCS extracted on 10/24/2018 (#BGJ0814); however, the %R for this target analyte was within the control limits in the corresponding LCSD. No action was required for this outlier.

SDG 18J0365: The %R for benzene was greater than the control limits in the LCS extracted on 10/24/2018 (#BGJ0813); however, the %R for this target analyte was within the control limits in the corresponding LCSD. No action was required for this outlier.

The %R for methyl tert-butyl ether was greater than the control limits in the LCSD extracted on 10/26/2018 (#BGJ0884); however, the %R for this target analyte was within the control limits in the corresponding LCS. No action was required for this outlier.

Polycyclic Aromatic Hydrocarbons (PAHs) LCS/LCSD Exceptions

SDG 18J0365: The %R for 1-Methylnaphthalene was less than the control limits in the LCS extracted on 10/23/2018. The positive results for 1-Methylnaphthalene were qualified as estimated (J) in Samples MW-12-3-4, MW-12-7.5-9.5, MW-12-11-12, MW-12-14-15, SD-9-2.5-4, and SD-10-4-5.

Field Duplicates

Field duplicates are similar to laboratory duplicates in that they are used to assess precision. Two samples (parent and duplicate) are created in the field by subsampling the homogenized sample and submitting them to the lab as separate samples. Duplicate samples were collected and analyzed for the same parameters as the associated parent samples. Precision is determined by calculating the RPD between each pair of samples. If one or more of the sample analytes has a concentration less than five times the reporting limit for that sample, then the absolute difference is used instead of the RPD. The RPD control limit for soil samples is 50 percent.

SDG 18J0365: Two field duplicate sample pairs, SD-4-12-13/SD-DUP-1 and SD-6-6-7/DUP-2, were submitted with this SDG. The precision criteria for the target analytes were met in these sample pairs, with the exception of gasoline-range hydrocarbons in Samples SD-4-12-13 and SD-DUP-1. The positive result and reporting limit for this target analyte were qualified as estimated (J and UJ, respectively) in this sample pair.

Instrument Tuning

Instrument tuning for analyses by gas chromatography/mass spectrometry (GC/MS) are completed to ensure that mass resolution, identification, and sensitivity of the analyses are acceptable. Instrument

tuning should be performed at the beginning of each 12-hour period during which samples or standards are analyzed. The frequency and specified acceptance criteria were met for each applicable analysis.

Internal Standards (Low Resolution Mass Spectrometry)

Like the surrogate, an internal standard is a compound that is chemically similar to the analytes of interest, but unlikely to be found in any environmental sample. Internal standards are used only for the mass spectrometry instrumentation and are usually added to the sample aliquot after extraction has taken place. The internal standard should be analyzed at the beginning of a 12-hour sample run and the control limits for internal standard recoveries are 50 percent to 200 percent of the calibration standard. All internal standard recoveries were within the control limits, with the following exceptions:

Volatile Organic Compounds (VOCs) Internal Standards Exceptions

- **SDG 18J0352:** The internal standard recovery for d4-1,4-Dichlorobenzene was outside the control limits in Sample SD-2-6-8. The corresponding analytes for this internal standard were not reported target analytes for this sample; therefore, no qualification was required.
- SDG 18J0365: The internal standard recovery for d4-1,4-Dichlorobenzene was outside the control limits in Samples SD-9-2.5-4 and SD-10-4-5. The corresponding analytes for this internal standard were not reported target analytes for these samples; therefore, no qualifications were required.

Initial Calibrations (ICALs)

The initial calibrations were conducted according to the laboratory methods and consisted of the appropriate number of standards. For inorganic analyses, the %R values were within the control limits of 90% and 110%. For organic analyses, the percent relative standard deviation (%RSD) and relative response factors (RRF) values were within the control limits stated in the USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review (USEPA, 2017a).

Continuing Calibrations (CCALs)

The continuing calibrations were conducted according to the laboratory methods and consisted of the appropriate number of standards. For inorganic analyses, the %R values were within the control limits of 90% and 110%. For organic analyses, the percent difference (%D) and relative response factors (RRF) values were within the control limits in the USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review (USEPA, 2017a), with the following exceptions:

Volatile Organic Compounds (VOCs) CCALs Exceptions

- SDG 18J0352: The %D value for benzene was greater than the control limit in the continuing calibration verification (CCAL) performed on 10/24/2018. The positive results for benzene were qualified as estimated (J) in Samples SD-1-2-4, SD-2-2-3, SD-2-11-12, SD-2-14-15, SD-3-2.5-3.5, SD-7-1-2, and SD-7-2-3.5. There were no positive results for this analyte in Samples SD-1-10-12, SD-1-17-19, SD-7-18.5-20, SD-8-2-4, SD-8-6-8, SD-8-9-11, and SD-8-13-15; therefore, no qualifications were required.
- **SDG 18J0365**: The %D value for benzene was greater than the control limit in the continuing calibration verification (CCAL) performed on 10/24/2018. The positive result for benzene was

qualified as estimated (J) in Sample SD-5-5-6. There were no positive results for this analyte in Samples SD-4-12-13, SD-DUP-1, and SD-5-9-10; therefore, no qualifications were required.

Reporting Limits

The contract required quantitation limits (CRQL) were met by the laboratory for the target analytes throughout this sampling event, with some exceptions where the CRQL was elevated due to required sample dilution.

Miscellaneous

Gasoline-range Hydrocarbons (NWTPH-Gx)

- SDG 18J0352: The laboratory reported two sets of results for Samples SD-1-5-6.5, SD-3-2.5-3.5, SD-3-7-8.5, SD-8-2-4, and SD-8-6-8, an initial and a dilution (500X, 1000X, or 2000X, depending on the sample), because the results for gasoline-range hydrocarbons exceeded the linear calibration range in the initial samples. The initial reported results for gasoline-range hydrocarbons were labeled as Do-Not-Report (DNR) in order to avoid redundant analyte reporting.
- SDG 18J0365: The laboratory reported two sets of results for Sample MW-12-11-12, an initial and a dilution (500X), because the result for gasoline-range hydrocarbons exceeded the linear calibration range in the initial sample. The initial reported result for gasoline-range hydrocarbons was labeled as Do-Not-Report (DNR) in order to avoid redundant analyte reporting.

Petroleum Hydrocarbons (NWTPH-Dx)

- SDG 18J0352: The laboratory reported two sets of results for Sample SD-3-12-13, an initial and a dilution (2X), because the result for diesel-range hydrocarbons exceeded the linear calibration range in the initial sample. The initial reported result for diesel-range hydrocarbons and the dilution reported result for lube oil-range hydrocarbons were labeled as Do-Not-Report (DNR) in order to avoid redundant analyte reporting.
- SDG 18J0365: The laboratory reported two sets of results for Sample SD-10-4-5, an initial and a dilution (50X), because the result for diesel-range hydrocarbons exceeded the linear calibration range in the initial sample. The initial reported result for diesel-range hydrocarbons and the dilution reported result for lube oil-range hydrocarbons were labeled as Do-Not-Report (DNR) in order to avoid redundant analyte reporting.

Volatile Organic Compounds (VOCs)

SDG 18J0352: The laboratory reported two sets of results for Sample SD-1-5-6.5 because the %R for surrogate 4-Bromofluorobenzene was greater than the control limits and the %D for benzene in the CCAL was outside the control limit in the first analysis. The sample was re-analyzed with similar %R for the surrogate; however, the %D for benzene was within the control limit in the CCAL in the second analysis. For this reason, the results from the first analyses were labeled as Do-Not-Report (DNR) in order to avoid redundant analyte reporting.

The laboratory reported two sets of results for Sample SD-2-6-8 because the %R values for surrogates 4-Bromofluorobenzene and toluene-d8 were greater than the control limits and the %D for benzene in the CCAL was outside the control limit in the first analysis. The sample was reanalyzed with %R for the surrogate toluene-d8 and the %D for benzene in the CCAL within the

control limits in the second analysis. For this reason, the results from the first analysis were labeled as Do-Not-Report (DNR) in order to avoid redundant analyte reporting.

The laboratory reported two sets of results for Samples SD-3-7-8.5 and SD-3-12-13 because the %R for surrogate 4-Bromofluorobenzene was greater than the control limits and the %D for benzene in the CCAL was outside the control limit in the first analysis. The samples were reanalyzed with similar %R for the surrogate; however, the %D for benzene was within the control limit in the CCAL in the second analysis. For this reason, the results from the first analyses were labeled as Do-Not-Report (DNR) in order to avoid redundant analyte reporting.

SDG 18J0365: The laboratory reported two sets of results for Samples MW-12-7.5-9.5 and SD-4-6.5-7.5 because the %R for surrogate 4-Bromofluorobenzene was greater than the control limits in the first analysis. The samples were re-analyzed with similar %R for the surrogate in the second analysis. For this reason, the results from the second analyses were labeled as Do-Not-Report (DNR) in order to avoid redundant analyte reporting.

The laboratory reported two sets of results for Sample SD-9-2.5-4 because the %R for surrogate 4-Bromofluorobenzene was less than the control limits and the internal standards for 1,4-Dichlorobenzene-d4 and chlorobenzene-d5 were outside the control limits in the first analysis. The sample was re-analyzed with similar %R for the surrogate and the internal standard 1,4-Dichlorobenzene-d4; however, the %R for internal standard chlorobenzene-d5 was within the control limit in the second analysis. For this reason, the results from the first analyses were labeled as Do-Not-Report (DNR) in order to avoid redundant analyte reporting.

The laboratory reported two sets of results for Sample SD-10-4-5 because the results for m,p-Xylene and n-Hexane exceeded the linear calibration range and the %R values for surrogates 1,2-Dichloroethane-d4 and 4-Bromofluorobenzene were greater than the control limits in the first analysis. The sample was re-analyzed with m,p-Xylene and n-Hexane within the calibration range and the %R for surrogate 1,2-Dichloroethane-d4 was within the control limits. For this reason, the results from the first analysis were labeled as Do-Not-Report (DNR) in order to avoid redundant analyte reporting.

Polycyclic Aromatic Hydrocarbons (PAHs)

SDG 18J0352: The laboratory reported two sets of results for Sample SD-7-1-2, an initial and a dilution (5X), because the results for five analytes exceeded the linear calibration range in the initial sample. The initial reported results for the five analytes that exceeded calibration range and the dilution report results for all other PAH target analytes were labeled as Do-Not-Report (DNR) in order to avoid redundant analyte reporting.

The laboratory reported two sets of results for Sample SD-7-2-3.5, an initial and a dilution (3X), because the result for 2-Methylnaphthalene exceeded the linear calibration range in the initial sample. The initial reported result for 2-Methylnaphthalene and the dilution reported results for all other PAH target analytes were labeled as Do-Not-Report (DNR) in order to avoid redundant analyte reporting.

SDG 18J0365: The laboratory reported two sets of results for Sample MW-12-7.5-9.5, an initial and a dilution (10X), because the results for 1-Methylnaphthalene and 2-Methylnaphthalene exceeded the linear calibration range in the initial sample. The initial reported results for 1-Methylnaphthalene and 2-Methylnaphthalene and the dilution report results for all other PAH

target analytes were labeled as Do-Not-Report (DNR) in order to avoid redundant analyte reporting.

Overall Assessment

As was determined by this data validation, the laboratory followed the specified analytical methods. Accuracy was acceptable, as demonstrated by the surrogate, LCS/LCSD, and MS/MSD %R values, with the exceptions noted above. Precision was acceptable, as demonstrated by the LCS/LCSD, MS/MSD, and field duplicate RPD values, with the exceptions noted above.

Data were qualified as non-detected because of method blank contamination. Data were also qualified as estimated because of bubbles in the sample containers, surrogate and LCS %R outliers, field duplicate RPD outliers, and continuing calibration %D outliers.

Data were labeled as Not Reportable in order to avoid redundant analytes per sample.

The data are acceptable for the intended use, with the following qualifications listed below in Table 2.

TABLE 2: SUMMARY OF QUALIFIED SAMPLES

Sample ID	Analyte	Qualifier	Reason
SD-1-2-4	Benzene	J	CCAL %D
	Benzene	J	Surrogate Recovery
SD-1-5-6.5	Ethylbenzene	J	Surrogate Recovery
50-1-5-6.5	m,p-Xylene	J	Surrogate Recovery
	o-Xylene	J	Surrogate Recovery
SD-2-2-3	Benzene	J	CCAL %D
	Benzene	J	Surrogate Recovery
	Ethylbenzene	J	Surrogate Recovery
SD-2-6-8	m,p-Xylene	J	Surrogate Recovery
	o-Xylene	J	Surrogate Recovery
	Toluene	J	Surrogate Recovery
SD-2-11-12	Benzene	J	CCAL %D
SD-2-14-15	Benzene	J	CCAL %D
SD-3-2.5-3.5	Benzene	J	CCAL %D
	Benzene	J	Surrogate Recovery
00 0 7 0 5	Ethylbenzene	J	Surrogate Recovery
SD-3-7-8.5	m,p-Xylene	J	Surrogate Recovery
	Toluene	J	Surrogate Recovery
	Benzene	J	Surrogate Recovery
SD-3-12-13	Ethylbenzene	J	Surrogate Recovery
50-3-12-13	m,p-Xylene	J	Surrogate Recovery
	Toluene	J	Surrogate Recovery
	Ethylbenzene	J	Surrogate Recovery
SD-4-6.5-7.5	m,p-Xylene	J	Surrogate Recovery
	Toluene	J	Surrogate Recovery
SD-4-12-13	Gasoline-range hydrocarbons	J	Field Duplicate RPD
SD-DUP-1	Gasoline-range hydrocarbons	UJ	Field Duplicate RPD
SD-5-5-6	Benzene	J	CCAL %D

SD-7-1-2	Benzene	J	CCAL %D
SD-7-2-3.5	Benzene	J	CCAL %D
SD-9-2.5-4	1-Methylnaphthalene	J	LCS Recovery
SD-10-4-5	1-Methylnaphthalene	J	LCS Recovery
MW-12-3-4	1-Methylnaphthalene	J	LCS Recovery
MW-12-7.5-9.5	1-Methylnaphthalene	J	LCS Recovery
	1-Methylnaphthalene	J	LCS Recovery
MW-12-11-12	Benzene	J	Surrogate Recovery
	m,p-Xylene	J	Surrogate Recovery
	Toluene	J	Surrogate Recovery
MW-12-14-15	1-Methylnaphthalene	J	LCS Recovery
10100-12-14-15	2-Methylnaphthalene	U	Method Blank Contamination
TRIPBLANK_101718	All VOC target analytes	UJ	Sample Preservation
	Gasoline-range hydrocarbons	UJ	Sample Preservation
TRIPBLANK_101818	All VOC target analytes	UJ	Sample Preservation

References

U.S. Environmental Protection Agency (USEPA), 2009 "Guidance for Labeling Externally Validated Laboratory Analytical Data for Superfund Use," EPA-540-R-08-005. January 2009.

U.S. Environmental Protection Agency (USEPA), 2017a. "Contract Laboratory Program National Functional Guidelines for Organic Superfund Methods Data Review," EPA-540-R-2017-002. January 2017.

U.S. Environmental Protection Agency (USEPA), 2017b. "Contract Laboratory Program National Functional Guidelines for Inorganic Superfund Methods Data Review," EPA-540-R-2017-001. January 2017.

GeoEngineers, 2017a. "Final Remedial Investigation/Feasibility Study Work Plan, Quiet Cove Property, Anacortes Washington, Ecology Agreed Order No. DE 11346," Prepared for the Washington Department of Ecology on behalf of the Port of Anacortes. January 25, 2017.

GeoEngineers, 2017b. "Final Sampling and Analysis Plan, Quiet Cove Property, Anacortes Washington, Ecology Agreed Order No. DE 11346," Prepared for the Washington Department of Ecology on behalf of the Port of Anacortes. January 25, 2017.

GeoEngineers, 2018. "Work Plan Addendum for Supplemental Upland Area Soil and Groundwater Investigation at the Quiet Cove Site, Anacortes, Washington," Prepared for the Washington Department of Ecology on behalf of the Port of Anacortes. October 1, 2018.

ATTACHMENT 8 Supplemental Investigation Work Plan Addendum

Memorandum

2101 4 th Avenue, S	uite 950 Seattle, Washington 98121	P: 206.278.2674	www.geoengineers.com				
To:	Arianne Fernandez – Washin	Arianne Fernandez – Washington State Department of Ecology					
From:	John Herzog and Brian Tracy	John Herzog and Brian Tracy – GeoEngineers, Inc.					
cc:	Brenda Treadwell and Brad Tesch – Port of Anacortes						
Date:	October 1, 2018						
File:	5147-024-06						
Subject:	Work Plan Addendum for Sup at the Quiet Cove Site, Anaco	oplemental Upland Area Soil and ortes, Washington	d Groundwater Investigation				

This memorandum provides an addendum to the Quiet Cove Remedial Investigation/Feasibility Study (RI/FS) Work Plan (GeoEngineers 2017a) and Sampling and Analysis Plan (SAP; GeoEngineers 2017b) for the Quiet Cove Site (Site). This Work Plan Addendum is being provided on behalf of the Port of Anacortes (Port) and describes supplemental soil and groundwater sample collection and chemical analysis activities that will be completed at the Site. This Work Plan addendum has been prepared to collect supplemental data utilizing procedures specified in the RI/FS Work Plan.

The supplemental sample collection and chemical analysis described in this Work Plan addendum is being performed to further characterize soil and groundwater conditions at the Site. To date, limited data have been collected from the interior area of the Site near the potential tank sources. The majority of the upland investigation has focused on defining the outer limits of contamination. Results of the RI field study completed to date indicate the presence of petroleum contamination, including free product, in the northern portion of the Quiet Cove property. Based on review of the existing data, supplemental data items have been identified that can better define the nature and extent of contamination, help identify appropriate remedial action levels and overall, inform the disproportionate cost analysis and remedial alternative selection for the Site.

The new data will supplement the existing soil and groundwater RI field study. The supplemental field investigation described in this Work Plan Addendum will provide data to help refine the selection of cleanup actions in the upland portion of the Site. The Port has coordinated with Washington State Department of Ecology (Ecology) for this work primarily through emails, phone calls and review of the existing data for the Site.

The supplemental data collection described in this Work Plan Addendum includes the collection of subsurface soil samples from eleven (11) new locations and up to three (3) quarterly groundwater monitoring events.

BACKGROUND

The Site is subject to formal cleanup under the regulatory authority of Ecology. The Site is generally located at 202 O Avenue in Anacortes, Washington. The Property consists of three parcels containing a total acreage of approximate 0.82 acres. The boundaries of the Site will be defined by the extent of contamination caused by the historical release of hazardous substances.

An initial RI field study of the upland area and the marine area was completed. As required by the Agreed Order a Data Report Technical Memorandum is being developed to document the findings of the RI field study. This document is in progress and will include the upland and marine area field study results.

Upland Area Remedial Investigation Field Study

The soil and groundwater portion of the RI field study was completed in accordance with the approved RI/FS Work Plan. Soil sampling was completed in September 2017. Additional monitoring wells were constructed and developed along with the soil sampling. Groundwater monitoring was completed during a dry season event in October/November 2017 and a wet season event in March 2018. The initial analytical results of the RI field study were submitted to Ecology via email on December 28, 2017. A hydrogeologic study was completed in October and November 2017 per the RI/FS Work Plan to evaluate tidal influence and determine the hydraulic conductivity and groundwater flow direction throughout the Site.

Marine Area Remedial Investigation Field Study

In September 2017 Tier 1 composite sediment samples were collected in the beach area of the Site in accordance with the RI/FS Work Plan. Analytical results of the upland soil samples adjacent to the beach and the composite sediment samples triggered the need to collect additional sediment data. The Tier 2 sediment sampling scope was determined through discussions with Ecology and field work was completed in July 2018. Results from this Tier 2 sediment sampling are forthcoming.

SUPPLEMENTAL SOIL SAMPLING AND ANALYSIS

Additional soil sampling and analysis is being proposed to further characterize contaminated soil in the upland area of the Site. The proposed sample locations are presented in Figure 1. The additional sampling and analysis activities include:

- A total of eleven (11) soil core sampling locations and collection of samples for analysis.
- Ten (10) core locations completed using direct-push drilling (DP) methods.
- One (1) core location completed using hollow-stem auger drilling methods.

The soil sample collection and analysis that will be completed as part of this Work Plan Addendum is summarized in the following sections.

Soil Sample Collection and Processing

Similar to the previous RI field study, DP borings for obtaining soil samples will be drilled using a truck-mounted direct-push drilling rig. It is anticipated that the DP borings at the Site will be advanced at least 3 feet into the native soil or to approximately 15 feet below ground surface (bgs), whichever occurs first. If evidence of petroleum contamination is observed, the boring will be advanced to at least 3 feet below the observed depth of contamination, or until refusal. DP borings will be completed by a licensed driller in the State of Washington. A representative from GeoEngineers' staff will be present to examine and classify the soils encountered and prepare a detailed boring log of each exploration. Continuous soil samples in 2-foot intervals will be obtained from the DP borings using a "macrocore" sampler or equivalent in direct pushes up to 5 feet in length. Push length may be reduced if recovery is poor. Soil from each sample interval will be visually classified, field screened and logged in the same manner in accordance with the RI/FS Work Plan.

Similar to the initial RI field study, hollow-stem auger (HSA) borings for obtaining soil samples will be drilled using a truck-mounted HSA drilling rig. It is anticipated that the HSA borings at the Site will be advanced at least 3 feet into the native soil or to approximately 15 feet bgs, whichever occurs first. Soil samples will be obtained

from the HSA borings on a 2.5-foot interval using a 2.5-inch-diameter split-barrel sampler or equivalent. The sampler will be advanced a maximum of 18 inches at each sample interval. The number of hammer blows to advance the sampler will be recorded on a boring log across 6-inch intervals.

Using the same approach as the initial RI field study, samples will be collected that are representative of contaminated or potentially contaminated materials and/or different material types. A minimum of three soil samples will be retained from each boring for laboratory analysis. Samples collected from the borings not submitted for chemical analysis will be archived for potential follow-up testing.

For each full-length core (SD-1 through SD-8 and MW-12) samples will be collected for analysis at up to four (4) separate intervals as summarized in Table 1. The samples intervals for collection and analysis include:

- Non-saturated fill material that overlays contaminated soils;
- Soil with the highest photoionization detector (PID) reading and/or evidence of petroleum contamination;
- Saturated fill material at the water table level; and
- Native material without evidence of petroleum contamination and at least 1 foot below the fill/native soil interface.

Based on previous studies at the Site it is possible that the interval with the highest PID reading may also be at the water level. In this case the interval below the water level would be collected and analyzed.

For the two (2) shallow cores (SD-9 and SD-10) the cores will be penetrated to approximately 4 feet bgs. One sample interval from 0 to 2 feet bgs will be collected for analysis at each location as detailed in Table 1.

Sample intervals will be individually homogenized and placed into the appropriate laboratory-supplied sample containers. Samples for volatile analysis (i.e., gasoline and/or volatile organic compounds [VOCs]) will be collected from the center of the sampling interval from undisturbed soil sample prior to homogenization using U.S. Environmental Protection Agency (EPA) Method 5035A sampling procedures consistent with Ecology guidance to reduce volatilization and biodegradation of the sample constituents. Immediately upon collection of the samples, the samples will be placed into a cooler with ice and logged on the chain-of-custody using quality assurance and control procedures in accordance with the RI/FS Work Plan.

Soil Sample Laboratory Analysis

Soil samples will be submitted to Analytical Resources Inc. (ARI) of Tukwila, Washington, for chemical analysis. Table 1 identifies the proposed sample locations, target sample horizons, laboratory analysis and rationale for the data that will be collected to further characterize the nature and extent of contamination of soil in the primary source area of the Site. Table 2 summarizes the analytical methods, sample size, containers, preservation and holding times for laboratory analysis. Sufficient material will be collected from each sample interval to perform each of the listed analysis in accordance with the RI/FS Work Plan and SAP. Selected soil samples as identified in Table 1 will be submitted for a combination of the following:

- Gasoline-range total petroleum hydrocarbons (TPH) by NWTPH-Gx;
- Heavy oil- and diesel-range TPH by NWTPH-Dx;
- BETX by EPA 8260;
- Ethylene dibromide (EDB), ethylene dichloride (EDC), methyl tert-butyl ether (MTBE) and n-Hexane by EPA 8260;

- Metals (arsenic, cadmium, chromium, lead and mercury) by EPA 6000/7000;
- Carcinogenic polycyclic aromatic hydrocarbons (cPAHs) by EPA 8270-SIM; and/or
- Naphthalenes by EPA 8270-SIM.

SUPPLEMENTAL GROUNDWATER MONITORING

Additional groundwater monitoring is being proposed to further characterize groundwater at the Site. The proposed sample locations are presented in Figure 1. The additional groundwater monitoring activities include:

- Construction and development of one (1) new permanent monitoring well for groundwater sampling and analysis.
- Installation of two (2) pre-pack monitoring wells using DP drilling methods for measurement of potential product in groundwater.
- Groundwater monitoring of ten (10) monitoring wells for up to three (3) rounds on a quarterly basis. Each quarter will include:
 - Water and product level measurements;
 - Sampling and analysis of a combination of VOCs and TPH in groundwater;
 - Comparison of TPH analyses with and without silica gel cleanup (first round only); and
 - Sampling and analysis of geochemistry parameters to evaluate potential for natural attenuation of contaminants in groundwater.

The groundwater monitoring activities that will be completed as part of this Work Plan Addendum are summarized in the following sections.

Monitoring Well Construction

A new monitoring well will be constructed following soil sampling and processing at MW-12 (see Figure 1). Monitoring well construction will follow the same procedures completed for the RI field study. Drilling and construction of the monitoring well will be conducted by a Washington State licensed driller in general accordance with the Minimum Standards for Construction and Maintenance of Wells (Washington Administrative Code [WAC] 173-160). It is anticipated that the monitoring wells will be completed at least 5 feet below the observed water level at the time of drilling. Installation of the monitoring wells will be observed by a GeoEngineers representative who will maintain a detailed log of the materials observed and depths of the wells. Monitoring well borings will be drilled using a truck mounted HSA drill rig or similar equipment. Soil cuttings from borings completed for the monitoring well installation on Port property pending receipt of analytical results and off-site disposal at a permitted facility.

The monitoring well will be constructed of 2-inch-diameter, flush-threaded, Schedule 40 polyvinyl chloride (PVC) casing with machine-slotted PVC screen (0.010-inch). The top of the well screens will be located approximately 5 feet above the observed groundwater level, or within 3 feet of the ground surface, whichever is deeper. The well screen intervals may be modified based on field screening results or variations in soil type. Screened intervals of approximately 10 feet (ft) length are anticipated.

Following placement of the well screen and casing in the borehole, a filter pack will be installed around the well screen. The filter pack will extend from the bottom of the well to approximately 2 feet above the top of the well screen. It is anticipated that filter pack material will consist of commercially prepared 10-20 silica sand. However, an alternate sand size/gradation may be used to minimize the turbidity of water entering the wells depending on the materials observed at the time of drilling.

A bentonite annular seal at least 1-foot thick will be placed above the sand pack to a depth of about 1-foot bgs. Each well will be completed with a concrete surface seal, and either a flush-mount or above-ground steel or aluminum monument. The monument will be cemented in place from the surface to a depth of about 1-foot bgs.

Monitoring Well Development

Monitoring well development will follow the same procedures that were utilized in the initial RI field study. Each monitoring well will be developed to remove water introduced into the well during drilling (if any), stabilize the filter pack and formation materials surrounding the well screen, and restore the hydraulic connection between the well screen and the surrounding soil. The well screen interval will be gently surged with a decontaminated bailer or surge block and the well will be purged of water.

Development will continue until a minimum of five casing volumes of water have been removed and turbidity of the discharged water is relatively low. The goal of well development will be to reduce the turbidity content of the water to approximately 10 nephelometric turbidity unit (NTU) if practical. Up to 10 well volumes of water will be removed from the wells in an effort to attain the 10 NTU goal. The removal rate and volume of groundwater removed will be recorded during well development procedures. Water that is removed from the well during well development activities will be stored temporarily at a secure location on Port property in labeled 55-gallon drums, pending receipt of analytical results and off-site disposal at a permitted facility. Depths to water in the monitoring wells will be measured prior to development.

Temporary Pre-Pack Well Installation

Pre-pack wells have not been previously used at the Site. The following procedures will be utilized to complete these temporary groundwater monitoring points. At soil sample locations SD-2 and SD-8 (see Figure 1), temporary pre-pack well points will be installed in the borehole from the direct-push cores. These temporary wells will be installed by Washington State licensed driller. The pre-pack wells will not be developed and will only be used to measure water and product levels.

Survey

A licensed surveyor will be contracted to survey the new monitoring well and pre-pack well points. The surveyor will measure the elevation of the top of casing of these well points in the North American Vertical Datum of 1988 (NAVD 88). The top of casing will be surveyed on the north rim of the casing. Existing monitoring wells at the Site were surveyed during previous investigations.

Water and Product Level Measurements

Water and product level measurements will be completed using the procedures established in the initial RI field study. Prior to each groundwater sampling event, a groundwater level "snapshot" will be performed by measuring water and product levels in all wells within an approximate one-hour duration. Water and product levels will be measured using an electronic oil-water interface probe and will be recorded to the nearest 0.01 foot. The measurement point will be the north rim of the top of the well casing. Well casing and ground surface elevations will be referenced from temporary or permanent benchmarks.

Groundwater Sample Collection and Processing

Groundwater samples will be collected using the same procedures as were utilized for the initial RI field study. Groundwater samples will be collected from existing and new Site monitoring wells for chemical analysis of hazardous substances as identified in Table 3.

Sampling of monitoring wells located adjacent to the shoreline (i.e., tidally influenced wells) will be performed within 1 hour before and 3 hours after the day-time low tide to the extent practicable. Wells nearest the shoreline will be sampled first. Groundwater samples will be obtained by field personnel using low-flow/low-turbidity sampling techniques (EPA 2010) to minimize the suspension of sediment in the samples. The wells will be purged and groundwater samples will be obtained from the wells using a peristaltic or submersible pump and disposable polyethylene tubing. Groundwater will be purged from the wells at a rate not to exceed 0.5 liter per minute. A Horiba U-50 (or similar) water quality measuring system with a flow-through cell will be used to monitor the following water quality parameters during purging:

- Electrical conductivity;
- Dissolved oxygen;
- pH;
- Salinity;
- Turbidity;
- Total dissolved solids;
- Oxidation-reduction potential; and
- Temperature.

Samples will be collected from the wells after these parameters vary by less than 10 percent on three consecutive measurements or after five well volumes have been removed, whichever occurs first. The field measurements will be documented on the field log.

Groundwater samples will be collected in laboratory-supplied containers, placed into a cooler with ice and logged on the chain-of-custody using quality control and assurance procedures in accordance with the RI/FS Work Plan SAP. Attempts will be made to fill containers for gasoline-range TPH, VOCs and dissolved methane analyses ("VOA" vials) with no head space remaining. The goal will be "no head space." Note that the presence of several very small air bubbles (less than several millimeters in diameter) are occasionally unavoidable.

Groundwater Sample Laboratory Analysis

Groundwater samples will be submitted to ARI of Tukwila, Washington, for chemical analysis. Table 3 identifies the monitoring well locations and laboratory analysis that will be performed to further characterize the nature and extent of contamination of soil in the primary source area of the Site. The purpose of analyzing geochemical parameters is to provide data on the groundwater conditions that will inform evaluation of cleanup alternatives at the Site. Additional groundwater data for petroleum compounds will inform the extent of residual contamination in groundwater.

Table 4 summarizes the analytical methods, sample size, containers, preservation and holding times for laboratory analysis. Sufficient water will be collected from each well to perform each of the listed analysis in accordance with the RI/FS Work Plan and SAP. Groundwater samples as identified in Table 3 will be submitted for a combination of the following:

- Gasoline-range TPH by NWTPH-Gx;
- Heavy oil- and diesel-range TPH by NWTPH-Dx (no silica gel cleanup);
- Duplicate heavy oil- and diesel-range TPH by NWTPH-Dx with silica gel cleanup procedures;
- BETX by EPA 8260;
- Total alkalinity by SM 2420 B-97;
- Ferrous iron by SM 3500-Fe B-97;
- Nitrate and sulfate by EPA 300.0;
- Dissolved manganese by EPA 6020A; and
- Dissolved methane by EPA RSK-175.

DATA QUALITY OBJECTIVES

The specific data quality objectives (DQOs) for soil and groundwater sampling and analysis are detailed in the Ecology-approved RI/FS Work Plan. An EPA-defined Stage 2B validation will be performed on organic and inorganic analytical data in general accordance with EPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review (EPA 2004) and EPA Contract Laboratory Program National Functional Guidelines for Organic Data Review (EPA 2008). Data packages will be checked for completeness immediately upon receipt from the laboratory to ensure that data and quality assurance/quality control (QA/QC) information requested are present. At a minimum, the following items will be reviewed to verify the data as applicable:

- Data Package Completeness,
- Chain-of-Custody Documentation
- Holding Times and Sample Preservation
- Surrogate Recoveries
- Method Blanks
- Matrix Spikes/Matrix Spike Duplicates
- Laboratory Control Samples/Laboratory Control Sample Duplicates
- Laboratory and Field Duplicates
- Initial Calibrations (ICALs)
- Continuing Calibrations (CCALs)
- Internal Standards
- Instrument Tunes
- Reporting Limits

REPORTING

Upon completion, supplemental data collection activities and laboratory results will be transmitted to Ecology. Depending on timing and Ecology's preference this supplemental data will be included in the Data Report Technical Memorandum or provided as a separate memorandum. Chemical analytical data for soil and groundwater samples will be submitted to Ecology in electronic format in accordance with Ecology's Environmental Information Management (EIM) Policy 840 following review and validation.

SCHEDULE

This supplemental sampling and analysis will be performed following Ecology approval of this Work Plan Addendum. The additional soil and groundwater sampling and analysis will be completed as soon as possible upon Ecology approval of the Work Plan Addendum to evaluate the possibility of an upland area interim cleanup action. Field sampling would occur in September 2018 pending Ecology approval and driller availability. Analytical results would be expected about a month later in October 2018.

REFERENCES

- U.S. Environmental Protection Agency (EPA), "USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review," EPA 540-R-04-004, Office of Emergency and Remedial Response, US Environmental Protection Agency, Washington, DC, dated October 2004.
- U.S. Environmental Protection Agency (EPA), 2008, "Contract Laboratory Program National Functional Guidelines for Superfund Organic Methods Data Review, EPA-540-R-08-01," Office of Emergency and Remedial Response, US Environmental Protection Agency, Washington, DC, dated June 2008.
- U.S. Environmental Protection Agency (EPA), "Low Stress (Low Flow) Purging and Sampling Procedure for the Collection of Groundwater Samples from Monitoring Wells," EQASOP-GW-001, US Environmental Protection Agency, Washington, DC, dated January 2010.
- GeoEngineers 2017a. Final Remedial Investigation/Feasibility Study Work Plan, Quiet Cove Property, Anacortes Washington, Ecology Agreed Order No. DE 11346. Prepared for the Washington Department of Ecology on behalf of the Port of Anacortes. January 25, 2017.
- GeoEngineers 2017b. Final Sampling and Analysis Plan, Quiet Cove Property, Anacortes Washington, Ecology Agreed Order No. DE 11346. Prepared for the Washington Department of Ecology on behalf of the Port of Anacortes. January 25, 2017.

BJT:JMH:leh

Attachments:

Table 1. Soil Sampling and Analysis Plan Addendum

Table 2. Soil Test Methods, Sample Size, Containers, Preservation and Holding Times

Table 3. Groundwater Sampling Analysis Plan Addendum

Table 4. Groundwater Test Methods, Sample Size, Containers, Preservation and Holding Times

Figure 1. Proposed Supplemental Data Collection Locations

Disclaimer: Any electronic form, facsimile or hard copy of the original document (email, text, table, and/or figure), if provided, and any attachments are only a copy of the original document. The original document is stored by GeoEngineers, Inc. and will serve as the official document of record.

Table 1 Soil Sampling and Analysis Plan Addendum Quiet Cove Property Anacortes, Washington

		Total Petroleum Hydrocarbons (TPH)		Volatile Organic Compounds (VOCs)				Aromatic		
						Metals	Hydrocarbons (PAHs)			
Sample	Target Sample Interval ^{2,3}	Gasoline- Range	Diesel- and Heavy Oil- Range	BETX	EDB, EDC, MTBE and n-Hexane	MTCA Metals ⁴ (EPA	Carcinogenic PAHs (EPA 8270-	Naphthalenes (EPA 8270-		
		(NWTPH-Gx)	(NWTPH-Dx)	(EPA 8260)	(EPA 8260)	(EFA 6000/7000)	SIM)	SIM)	Purpose of Supplemental Data Collection	
Location ¹	(feet bgs)	(NWIFH-GX)	(NWTFH-DA)	(EFA 8200)	(EFA 8200)	0000/1000)	3111)	31WI)	Sampling Locations	
Direct-Push (DP) Sample L		<u> </u>	0	<u>^</u>	T					
	0-2 2-4	S	S	S					Collect chemical analytical data for actuals up related	
	4-6	x	х	Х					Collect chemical analytical data for petroleum-related contaminants in the area of highest concentrations to	
SD-1	6-8	Ŵ	Ŵ	Ŵ					confirm field evidence from the Integrated Planning	
001	8-10	vv	vv	vv					Grant (IPG) and provide more certainty on the extent of	
	10-12	N	N	N					soil contamination.	
	12-14									
	0-2	S	S	S						
	2-4								Collect chemical analytical data for petroleum-related	
	4-6	Х	Х	Х					contaminants in the area of highest concentrations to	
SD-2	6-8	W	W	W					confirm field evidence from the IPG and provide more	
	8-10								certainty on the extent of soil contamination.	
	10-12	N	N	N						
	12-14 0-2	<u> </u>	0	C C						
	2-4	S	S	S						
	4-6	х	х	х					Collect chemical analytical data for petroleum-related	
SD-3	6-8	w	W	W					contaminants in the area of highest concentrations to	
	8-10								confirm field evidence from the IPG and provide more	
	10-12	N	N	N					certainty on the extent of soil contamination.	
	12-14									
	0-2	S	S	S						
	2-4								Collect chemical analytical data for petroleum-related	
	4-6	Х	Х	х					contaminants in the area of highest concentrations to	
SD-4	6-8	W	W	W					confirm field evidence from the IPG and provide more	
	8-10								certainty on the extent of soil contamination.	
	10-12	N	N	N						
	12-14	S	S	S						
	0-2 2-4	5	5	5						
	4-6	х	х	х					Collect chemical analytical data for petroleum-related	
SD-5	6-8	Ŵ	Ŵ	W					contaminants in the area of highest concentrations to	
	8-10								confirm field evidence from the IPG and provide more	
	10-12	N	N	Ν					certainty on the extent of soil contamination.	
	12-14									
	0-2	S	S	S					Collect chemical analytical data for petroleum-related	
	2-4								contaminants in the area of highest concentrations to	
00.0	4-6	X	X	X					confirm field evidence from the IPG and provide more	
SD-6	6-8 8-10	W	W	W					certainty on the extent of soil contamination. This	
	10-12	N	N	N					location is meant to provide confirmation of the extent	
	10-12	IN	IN	IN					of soil contamination to the east.	
	0-2	S	S	S			S	s		
	2-4		0	5			•	3	Collect chemical analytical data for petroleum-related	
	4-6	Х	Х	Х			Х	Х	contaminants in the area of highest concentrations to	
SD-7	6-8	W	W	W			W	W	confirm field evidence from the IPG and provide more certainty on the extent of soil contamination. Also	
	8-10								analyzing PAHs due to existing data indicating PAH	
	10-12	N	N	N			N	N	contamination in this area of the Site.	
	12-14									
	0-2	S	S	S	1					
	2-4 4-6	х	Х	х					Collect chemical analytical data for petroleum-related	
SD-8	4-6 6-8	x W	X W	X W					contaminants in the area of highest concentrations to	
50-0	6-8 8-10	vv	vv	vv	+				confirm field evidence from the IPG and provide more	
	10-12	N	N	N					certainty on the extent of soil contamination.	
	12-14				-					
07.0	0-2	S	S	S	S	S	S	S	Collect and analyze for characterization of soil	
SD-9	2-4								overlying contaminated soil.	
SD-10	0-2	S	S	S	S	S	S	S	Collect and analyze for characterization of soil	
30-10	2-4								overlying contaminated soil.	
Hollow-Stem Auger Sampl	e Location									
	0-2	S	S	S			S	S	Collect chemical analytical data for petroleum-related	
	2-4								contaminants in the area of highest concentrations to	
	4-6	Х	Х	Х			Х	Х	confirm field evidence from the IPG and provide more	
MW-12	6-8	W	W	W			W	W	certainty on the extent of soil contamination.	
	8-10								Monitoring well installed to determine if free product	
	10-12	N	N	N			N	N	exists in groundwater.	
L	12-14	L			1	1		1		

Notes:

 $^{1}\,\mbox{The}$ approximate sample locations are shown on Figure 1.

² Sample intervals may be adjusted based on observed field conditions to collect samples representative of the fill and native soil horizon, and interface between the saturated and vadose zone. Samples will be collected for analysis based on (1) shallow soil approximately 0-2 feet; (2) highest PID reading; (3) interval at the interface of the saturated and vadose zone and; (4) deepest sample in the boring (native material). If the highest PID reading and water table sample interval overlap, only 3 samples will be collected for analysis. The sample intervals for analysis are anticipated in the table. The exploration will be advanced to at least three feet into native soil or to approximately 14 feet below ground surface (bgs), whichever occurs first. If field screening evidence of contamination is observed, the exploration will be advanced to at least three feet below the observed depth of contamination, or until refusal. Sample for analysis (approximate in table)

S = Shallow Sample

X = Highest PID Reading Sample

W = Water Table Sample

N = Selected sample for initial chemical analysis .

³ Field screening will be completed for each 2-foot interval throughout the boring in accordance with the approved RI/FS Work Plan. ⁴ MTCA metals include arsenic, cadmium, chromium (total), lead and mercury.

Sample for analysis (approximate interval location in table)

S = Shallow Sample

X = Highest PID Reading Sample W = Water Table Sample N = Selected sample for initial chemical analysis .

bgs = below ground surface BETX = Benzene, Ethylbenzene, Toluene and Xylenes EDB = 1,2-Dichloroethane EDC = 1,2-Dichloroethane EPA = Environmental Protection Agency MTBE = Methyl t-Butyl Ether MTCA = Model Toxics Control Act

File No. 5147-024-06 Table 1 | October 1, 2018

Table 2 Soil Sample Test Methods, Sample Size, Containers, Preservation and Holding Times Quiet Cove Property Anacortes, Washington

Laboratory Analytical Analysis Method		Minimum Sample Sample Size Container		Sample Preservation	Holding Time ¹
Metals (As, Cd, Cr, Pb and Hg)	EPA 6010/6020/ 7470/7471	100 g	4-oz glass WM with Teflon-lined lid	Cool ≤6°C	180 days/28 days for Mercury
Gasoline-Range Hydrocarbons	NWTPH-Gx	5 g	Two 40mL glass vial (VOA)	Cool ≤6°C	14 days to extraction/analysis
Diesel- and Oil-Range Hydrocarbons	NWTPH-Dx	100 g	8-oz amber glass WM with Teflon-lined lid	Cool ≤6°C	14 days to extraction/analysis
VOCs (Including Volatile Petroleum Compounds	EPA 8260	5 g	Three 40mL glass vial (VOA)	Cool ≤6°C Two VOAs - Sodium Bisulfate One VOA - Methanol	14 days to extraction/analysis
SVOCs (Including PAHs)	EPA 8270/SIM	100 g	8-oz amber glass WM with Teflon-lined lid	Cool ≤6°C	14 days to extraction, 40 days from extraction to analysis

Notes:

¹Holding times are based on elapsed time from date of collection.

NWTPH = Northwest total petroleum hydrocarbons

Dx = diesel-range extended

EPA = Environmental Protection Agency

SIM = selected ion mode

g = gram

Gx = gasoline-range extended

mL = milliliter

oz. = ounce

SVOC = semi-volatile organic compound VOC = volatile organic compound WM = wide mouth

Table 3 Groundwater Sampling and Analysis Plan Addendum Quiet Cove Property Anacortes, Washington

	Petroleum Hydrocarbons (TPH)				Volatile Organic Compounds (VOCs) Geochemical Parameters					
Sample Location ¹	Gasoline-Range (NWTPH-Gx)	Diesel- and Heavy Oil-Range (NWTPH-Dx) - with silica gel cleanup	Diesel- and Heavy Oil-Range (NWTPH-Dx) - no silica gel cleanup	BETX ² (EPA 8260)	Total Alkalinity (SM 2420 B-97)	Ferrous Iron (SM3500-Fe B-97)	Nitrate (EPA 300.0)	Sulfate (EPA 300.0)	Dissolved Mangenese (EPA 6020A)	Dissolved Methane (EPA RSK-175)
Existing Monitorin	ng Well									
MW-1		Х	Х		Х	Х	Х	Х	Х	Х
MW-2		Х	Х		Х	Х	Х	Х	Х	Х
MW-3		Х	Х		Х	Х	Х	Х	Х	Х
MW-4		Х	Х		Х	Х	Х	Х	Х	Х
MW-5		Х	Х		Х	Х	Х	Х	Х	Х
MW-6		Х	Х		Х	Х	Х	Х	Х	Х
MW-7		Х	Х		Х	Х	Х	Х	Х	Х
MW-8	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
MW-10		Х	Х		Х	Х	Х	Х	Х	Х
MW-11	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
New Monitoring Well										
MW-12		Х	Х		Х	Х	Х	Х	Х	Х

Notes:

¹The approximate sample locations are shown on Figure 1.

² BETX = Benzene, ethylbenzene, toulene, xylene

Table 3 provides the chemical analysis for one groundwater sampling event. Up to three (3) quarterly events are planned for the supplemental data collection effort.

X = Selected sample for chemical analysis.

Table 4 Groundwater Sample Test Methods, Sample Size, Containers, Preservation and Holding Times Quiet Cove Property Anacortes, Washington

Laboratory Analysis	Analytical Method	Minimum Sample Size	Sample Container	Sample Preservation	Holding Time ¹
Diesel- and Oil-Range Hydrocarbons	NWTPH-Dx	500 mL	Two 500 mL amber glass with Teflon-lined lid	Cool ≤6 C	14 days to extraction
Diesel- and Oil-Range Hydrocarbons	NWTPH-Dx with silica gel cleanup	500 ML			40 days from extraction to analysis
Total Alkalinity	SM 2420 B-97	500 mL	Two 500 mL amber glass with	Cool ≤6 C	14 days to extraction
Ferrous Iron	SM 3500-Fe B-97	SOO ME	Teflon-lined lid		40 days from extraction to analysis
Sulfate/Nitrate	EPA 300.0	250 mL	One 500 mL HDPE no	Cool ≤6°C	14 days to analysis
Dissolved Manganese	EPA 6020A	230 111	headspace	No Headspace	
Dissolved Methane	EPA RSK-175	250 mL	One 250mL amber glass with Teflon-lined lid, HCI preserved	Cool ≤6°C	24 hours to analysis

Notes:

¹Holding times are based on elapsed time from date of collection.

NWTPH = Northwest total petroleum hydrocarbons

Dx = diesel-range extended

EPA = Environmental Protection Agency

EPH = extractable petroleum hydrocarbons

Gx = gasoline-range extended

HCI = hydrocloric acid

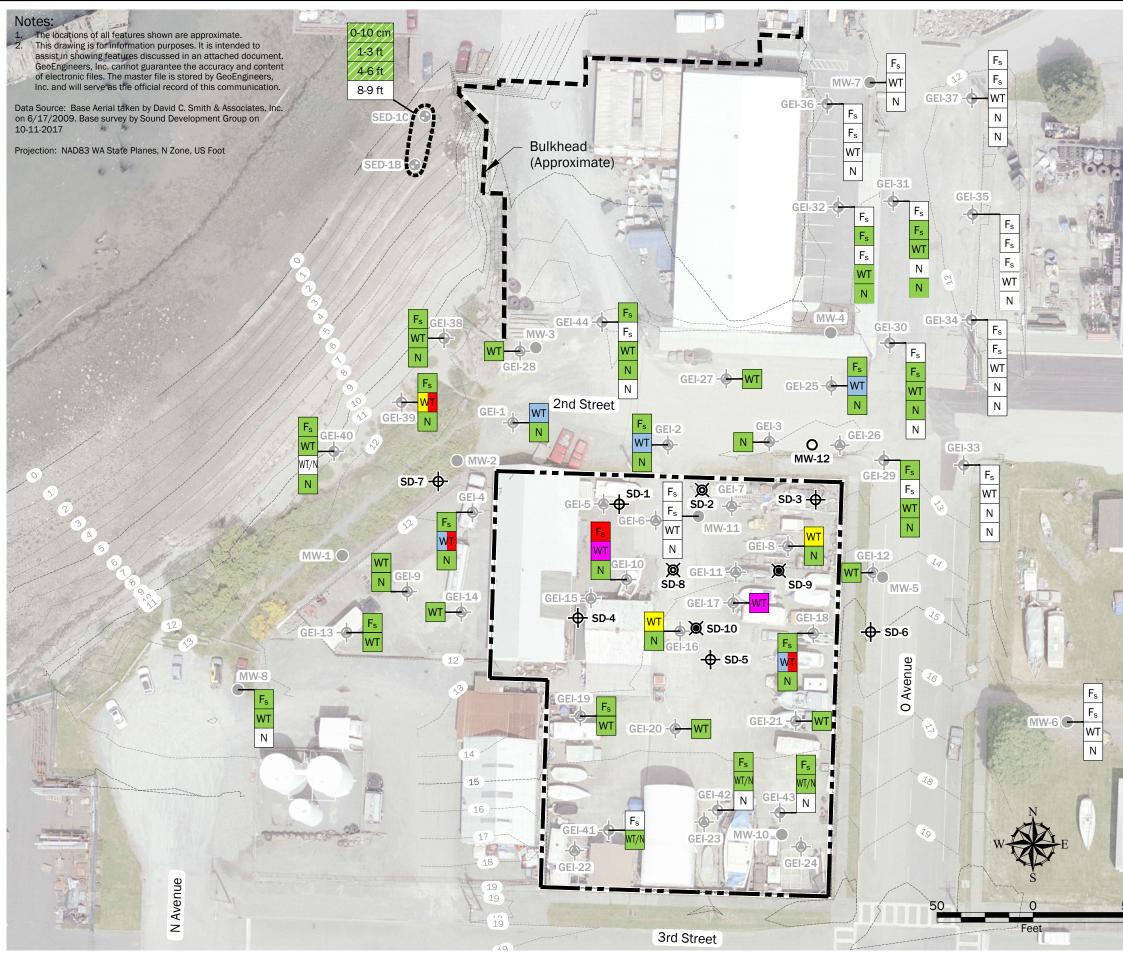
HDPE = high density polyethylene

 HNO_3 = nitric acid

L = liter

mL = milliliter

PCBs = polychlorinated biphenyls


SIM = selected ion mode

SVOC = semi-volatile organic compound

VOC = volatile organic compound

VPH = volatile petroleum hydrocarbons

Legend

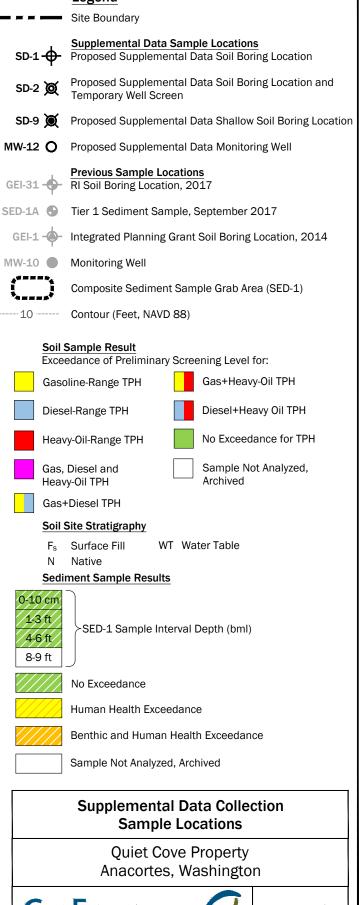


Figure 1

