Parametrix

ENGINEERING . PLANNING . ENVIRONMENTAL SCIENCES

4660 KITSAP WAY, SUITE A BREMERTON, WA 98312-2357 T. 360.377.0014 F. 360.479.5961 www.parametrix.com

TECHNICAL MEMORANDUM

Date: November 22, 2011

To: Steve Teel, LHG - Department of Ecology

From: David Dinkuhn, P.E. - Parametrix

Subject: Solid Wood Facility Area Assessments to Date

cc: Kip Summers, P.E.- City of Olympia

David Hanna, City of Olympia

Project Number: 235-1577-024 (04/04)

Project Name: Solid Wood Incorporated Site (West Bay Park) RI/FS and Interim Action

INTRODUCTION

The purpose of this technical memorandum is to provide a summary of environmental investigation and sampling work performed to date in the vicinity of the former Solid Wood, Inc. facility and to show that the facility has been adequately characterized for the purposes of the site's Remedial Investigation/Feasibility Study (RI/FS). The information provided here was developed during multiple studies including a 2002 test pit sampling event, a 2004 Phase I Environmental Site Assessment (ESA), Phase II ESAs conducted in 2004 and 2007, and RI/FS investigations beginning in 2008 and continuing to the present. Note that the investigation and cleanup of Area A located just north of the former facility's concrete slab are not discussed here. A site map is provided on the attached Figure 1. A 1983 aerial photo of the site showing the Solid Wood, Inc. facility in operation is also attached.

2004 PHASE I ESA AND SITE HISTORICAL DOCUMENTATION

According to information gathered during the 2004 Phase I ESA, the Solid Wood Inc. facility was a plywood veneer manufacturing plant where logs were cut into sheets for the manufacture of plywood at off-site locations. The plant operated between approximately 1971 and 2001, when the facility and all above-ground structures were demolished (based on aerial photographs and Polk Street Directories).

Information regarding an underground storage tank (UST) on site was obtained from Washington State Department of Ecology (Ecology) records. These records indicated that the site contains a 111 to 1,100 gallon UST installed in 1964 and closed in place on an undisclosed date. The location of the UST was not identified. A visual survey of the facility foundation and surrounding area conducted during the Phase I ESA did not uncover any evidence of the UST location (such as fill or vent pipes). No penetrations were observed in the former building's concrete slab or surrounding paved areas that would indicate a closed-in-place UST.

The following excerpt regarding the site were taken from an unpublished history of the area titled *A Historical* study commissioned by Sarah Wayne Smyth and Delson Lumber Company in conjunction with Shanna Stevenson and Thurston Regional Planning Council in 2004:

"D. Wayne Smyth also had an interest in the Solid Wood operation on West Bay at the Old Port Lagoon next to the 4th Avenue Bridge. Solidwood manufactured four foot veneer sheeting used to make plywood. Solid Wood had a specialized lathe that could cut small diameter logs. Solidwood sold veneer to Hardel Plywood and other Plywood mill throughout the state. Soldiwood shut down its facility in _______, after Hardel plywood relocated and there was a downturn in the industry."

Based on the available information, the process performed at the former Solid Wood, Inc. facility was to mill logs into sheets for plywood manufacture at other, offsite facilities (such as the nearby Hardel Plywood). It is likely no process chemicals were used or stored at the site. Contaminants of concern consist primarily of petroleum fuels and lubricating oil, which are associated with the operation of a potential drying kiln and heavy machinery.

2002 TEST PIT SAMPLING

The Port of Olympia conducted a test pit sampling study at the site in 2002. The sampling report is provided in Attachment 1 for reference. In summary, the purpose of the study was to provide a baseline of environmental conditions at the site. Six test pits (SS-1 through SS-6) were excavated to depths of 4 to 5 feet at the locations shown on Figure 1. A single soil sample was collected from each test pit and analyzed for gasoline, diesel, and lube oil. The analytical results reported low concentrations of diesel and oil is several samples that did not exceed Washington State Department of Ecology Model Toxics Control Act (MTCA) Method A cleanup levels.

2004 PHASE II ESA

Initial work conducted for the 2004 Phase II ESA included a ground-penetrating radar (GPR) survey of the Solid Wood facility vicinity in an attempt to locate the reported UST. The survey consisted of a complete traverse of the perimeter of the concrete slab with the GPR unit located 10 feet from the edge of the slab. The approximate GPR survey footprint is shown on Figure 1. No USTs were located during the survey. The complete GPR survey report is included in Attachment 2 for reference.

The 2002 sampling was supplemented during the Phase II ESA by the installation of two soil borings and a test pit in the vicinity of the former Solid Wood facility (WBGP-03, WBGP-04, and WBTP-06; Figure 1). Logs for the borings and test pit are included in Attachment 3. Boring WBGP-03 was located between the concrete slab and the adjacent railroad tracks. No evidence of contamination such as petroleum staining and/or odors were observed in the boring and no soil or groundwater samples were collected. WBGP-04 was located on the southern end of the concrete slab. Evidence of contamination was observed in this boring and soil and groundwater samples were collected. A soil sample was also collected from WBTP-06 located by the loading dock. The soil and groundwater samples were analyzed for hydrocarbon identification (HCID), total petroleum hydrocarbons (TPH), volatile organic compounds (VOCs), semi-volatile organic compounds (SVOCs), metals, pesticides, and polychlorinated biphenyls (PCBs). Sample results taken as excerpts from existing reports are provided in Attachment 3. As shown, no contaminant was detected at concentration exceeding MTCA A cleanup levels.

2007 PHASE II ESA

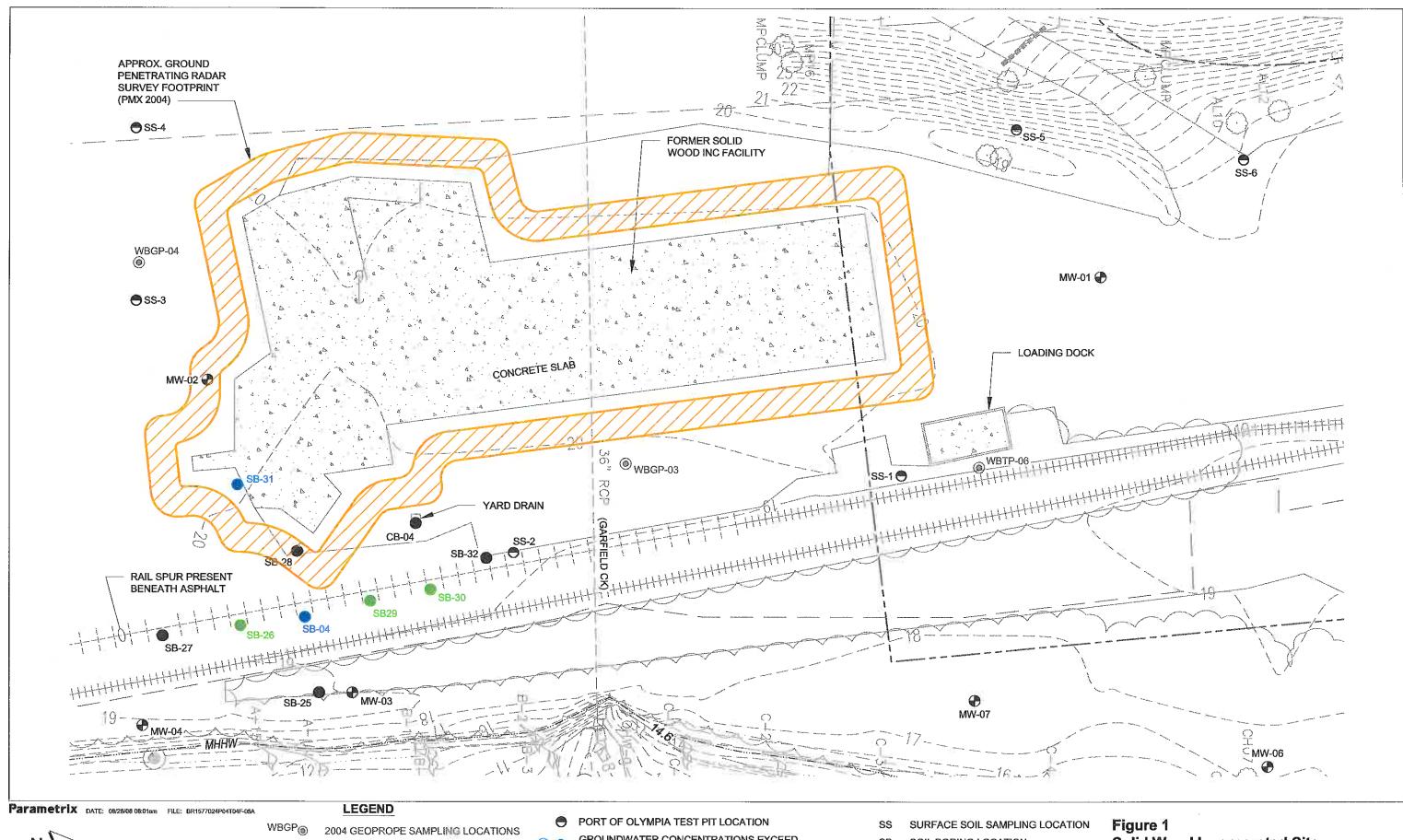
A Phase II ESA was conducted in 2007 to target the railroad right of way on site. Soil boring SB-04 was installed during this study at the southeastern corner of the concrete slab (Figure 1). The boring log and results for a soil and groundwater sample collected from this boring are included in Attachment 4. The samples were analyzed for TPH, pesticides, PCBs, polycyclic aromatic hydrocarbons (PAHs), and metals. A single contaminant, motor oil, was detected in the groundwater sample at a concentration above MTCA A cleanup level. No contaminants were detected above cleanup levels in the soil sample.

RI/FS SAMPLING

RI/FS sampling in 2008 included the installation of a series of eight soil borings (SB-25 through SB-32) around the SB-04 location to define the nature and extent of oil contamination. Soil boring logs and the results of soil and groundwater samples collected from each boring are provided in Attachment 5. The samples were analyzed for TPH, benzene, toluene, ethylbenzene, and total xylenes (BTEX), PAHs, and metals. No motor oil was detected at concentrations above cleanup levels with the exception of the groundwater sample from SB-31. This sample contained oil at a concentration slightly above the cleanup level. The only other constituents detected above cleanup levels were PAHS in soil samples from SB-26, SB-29, and SB-30. Inspection of the boring logs shows that each affected soil sample was collected from a depth immediately below a shallow layer of creosote-treated wood thought to be rail ties or piling. The PAHs in the samples are clearly associated with the creosote-treated wood.

Monitoring wells MW-02 through MW-04 were installed surrounding the SB-04 location to attempt to define the extent of the groundwater plume around SB-04 (Figure 1). Groundwater samples were collected from these three wells for four consecutive quarters. During the four sampling events, only a single detection of motor oil occurred in one well (MW-02) at a concentration below the cleanup level. Note also wells MW-01, MW-06, and MW-07, which were installed for performance monitoring following the 2009 Interim Action performed at the site. These wells were also sampled for four consecutive quarters in 2009. No constituents were detected in these wells with the exception of acenapthene in MW-07 at concentrations below the cleanup level.

A soil sample (CB-04) was collected beneath a yard drain located adjacent to the southeastern corner of the concrete slab. The sample was collected at the base of the drain facility after the facility was removed as part of the Interim Action. Results for this sample are provided in Attachment 5. As shown, no constituents were detected in the sample at concentrations exceeding the cleanup level. These results indicate that the drain was not used as a dumping place for contaminants.


CONCLUSIONS

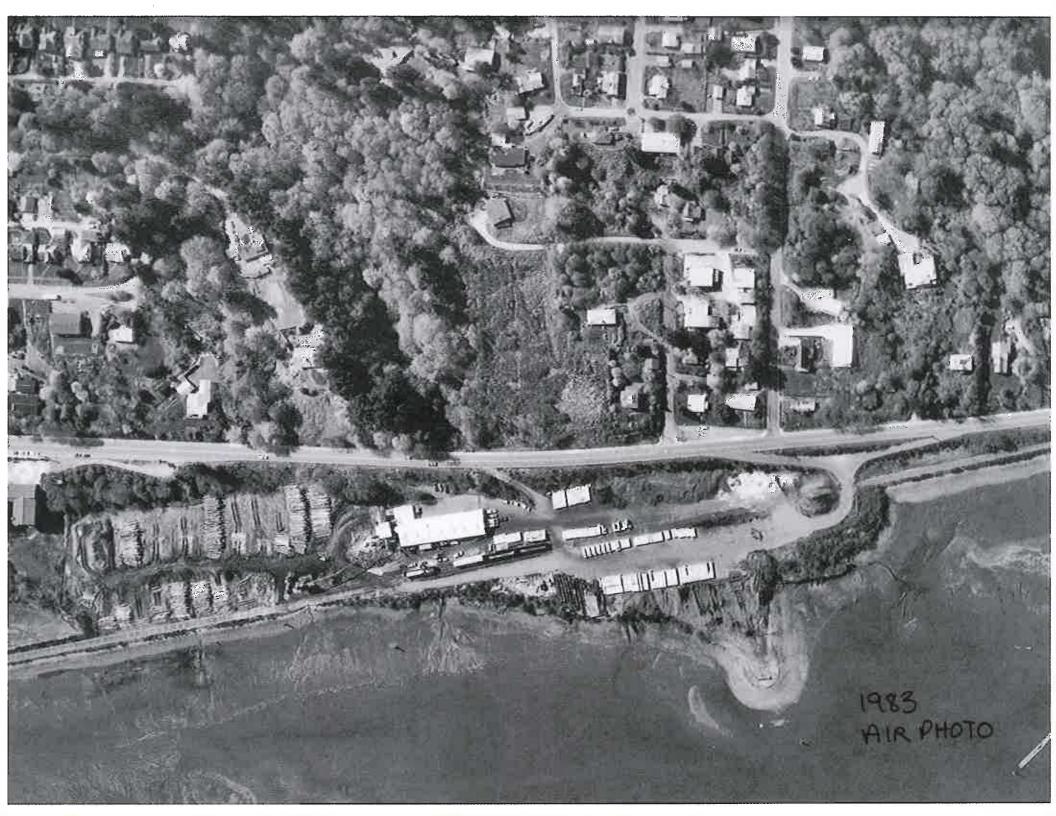
Environmental assessment work performed to date at the location of the former Solid Wood, Inc. facility includes a records review, visual survey, GPR survey, and the collection and analysis of 18 soil samples and 34 groundwater samples (including the four quarters of groundwater monitoring in six monitoring wells). None of the sampling data indicated the presence of a significant source of contamination associated with the former facility. The only constituent detected above cleanup levels is motor oil in groundwater in the vicinity of SB-04. Follow-on RI/FS sampling showed that the motor oil is limited to the immediate vicinity of SB-04. No apparent source area was found in the eight RI/FS borings installed to investigate the nature and extent of the motor oil.

The apparent lack of a significant source of contamination remaining within or near the facility footprint is supported by the monitoring results from the six wells and the four "clean" quarters of monitoring conducted during the RI/FS. All of the wells are located adjacent to or downgradient from the former facility and its operations area. The lack or near lack of detectable constituents in these wells is a strong indication of the absence of a contaminant source, since any groundwater plume originating from the source would likely be detected in the wells. Based on these conclusions, it is the City's opinion that the investigations performed to date at the former Solid Wood, Inc. facility are complete and sufficient for the purposes of the RI/FS.

FIGURE 1

Solid Wood Facility Area Sampling Locations

SCALE IN FEET


2004 TEST PIT SAMPLING LOCATION

- PMX PHASE II ESA/RIFS SAMPLING
- LOCATION

MONITORING WELL

- SOIL CONCENTRATIONS EXCEED SCREENING LEVELS SOIL AND GROUNDWATER CONCENTRATIONS EXCEED SCREENING LEVELS
- SOIL BORING LOCATION
- TEST PIT LOCATION

Solid Wood Incorporated Site Olympia, Washington **Solid Wood Facility Area Sample Locations** **1983 AIR PHOTO**

ATTACHMENT 1

2002 Port of Olympia Study

Lesetill

Northwest Testing Company, Inc. 161

CONSTRUCTION TESTING AND INSPECTION ENVIRONMENTAL CONSULTATION AND ASSESSMENT

October 17, 2002

Don Bache Port of Olympia Engineering 915 Washington Street NE Olympia, WA. 98501-6931

RE: Solid Wood Lease Site Baseline Contaminant Investigation, PO #7619015-064

Dear Don:

We have completed the baseline contaminant study for the above referenced site requested by the Port of Olympia. The study focused on the current environmental state of shallow surface soil at the site with regard to petroleum contamination. Levels of heavy range petroleum hydrocarbons were detected in four of the tested areas, but were below the 2000-ppm Washington State Model Toxics Control Act Method A standards for cleanup requirements.

Site Address: 700 West Bay Drive NW, Olympia, Washington

Parcel Number: 09 5900 03000

Scope of Work:

A total of six locations at the site were selected based upon prior use of the site (see figure 1). Sample areas one through five encircled the former veneer fabrication plant and loading areas. The final sample (location #6) was selected based upon a historic above ground diesel fuel tank located nearby. On October 10th, soil samples were excavated with a backhoe through the upper 48" to 60" of soil. Soil from each individual location were then combined to represent the overall excavated material. Soil from each individual backhoe bucket was field screened with a PID, water sheen test, and general field observations (odor, texture, and color). Slight odors were noted in sample #1 at 16" to 20" depth, and at sample location #3, 0"-16" depth (wood waste and gravel).

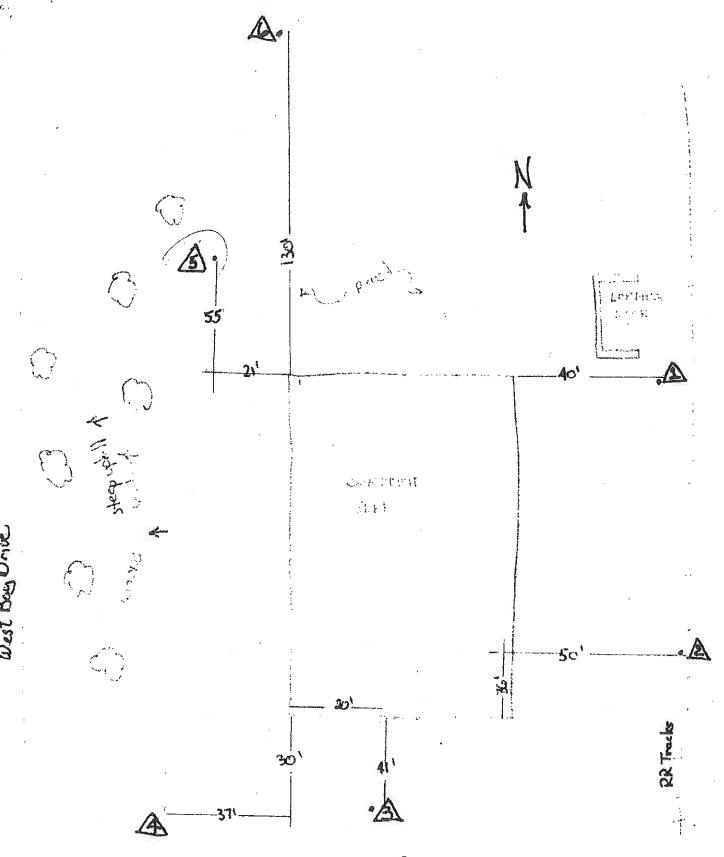
Typical excavation profile was surface duff, gravels, and wood waste from 0" to 16", dry to moist silty/sandy gravel from 16" to 40", and wet sandy gravel below 40" (see attached field sheet notes).

Samples were sealed in glass jars and placed on ice, and delivered to ESN laboratories in Lacey for hydrocarbon identification (HCID test). Significant spikes were found in samples 1, 2, 3, and 5. These samples were then quantified through extended diesel analysis. Low to moderate levels of diesel and heavy oil (Bunker C range) were detected, but all were below cleanup levels. See attached for test locations and results.

P. O. BOX 11581 - OLYMPIA, WASHINGTON 98508-1581 - PHONE or FAX 360/866-3647

Please call me for any questions regarding this investigation. We appreciate this opportunity to be of service to you.

Cordially,


NORTHWEST TESTING COMPANY, INC.

Mark Robinson

Professional Geologist Registered Site Assessor

1188
Consed Geologia

Mark R. Robinson

SOLID WOOD SITE OCTOBER 10th SAMPLE AREAS

WEST SAY

ESN NORTHWEST CHEMISTRY LABORATORY

SOLID WOOD PROJECT Olympia, Washington Northwest Testing Company.

Hydrocarbon Identification by NWTPH-HCID for Soil

Sample Number	Date Analyzed	Surrogate Recovery (%)	Gasoline (mg/kg)	Diesel (mg/kg)	Heavy Oil (mg/kg)	Mineral Oil
Method Blank	10/14/02	95	nd	nd	nd	(mg/kg) nd
021010-1	10/14/02	int.	nd	nd	D	nd
021010-2	10/14/02	73	nd	nd	D	nd
021010-3	10/14/02	int.	nd	D	D	nd
021010-4	10/14/02	79	nd	nd	nd	nd
021010-5	10/14/02	78	nd	nd	D	nd
021010-6	10/14/02	85	nd	nd	nđ	nd
Method Detection L	imits		20	50	100	100

[&]quot;nd" Indicates not detected at listed detection limits.

ACCEPTABLE RECOVERY LIMITS FOR SURROGATE: 65% TO 135%

ANALYSES PERFORMED BY: Marilyn Farmer & Tim McCall

[&]quot;D" Indicates detected above the listed detection limit.

[&]quot;int" Indicates that interference prevents determination.

ESN NORTHWEST CHEMISTRY LABORATORY

SOLID WOOD PROJECT Olympia, Washington Northwest Testing Company

Analyses of Diesel & Oil (NWTPH-Dx/Dx Extended) in Soil

Sample Number	Date Analyzed	Surrogate Recovery (%)	Diesel (mg/kg)	Oil (mg/kg)	Mineral Oil (mg/kg)
Method Blank	10/14/02	9.5	nd	nđ	nd
021010-1	10/14/02	int.	nd	880	nd
021010-2	10/14/02	73	nd	140	
021010-3	10/14/02	int.	120	530	nd
021010-5	10/14/02	78	nď	430	nd nd
Method Detection Limits			20	40	40

[&]quot;nd" Indicates not detected at the listed detection limits.
"int" Indicates that interference prevents determination.

ACCEPTABLE RECOVERY LIMITS FOR SURROGATE : 65% TO 135%

ANALYSES PERFORMED BY:

Marilyn Farmer & Tim McCall

10-10-02 1:10 pm 50/10 Wood Lite

1 0-12" duff

0'4' 12"16" growl

13:35

16" 20" block sand slight abov

20"-48" sandy growl-dry/clean

#2 Suface-Guried RR tres

014' 12"-18" diff+grand

40" 48" block, moist chayey gravel

#3 0" 16" soudist/weedweste mived as growl - slight sheen
16"-22" shift sitty growl
04" 22" as wet this soundy growl

0'-4' Sandet-wet
24"-40" green brown serrely gravel
40"-48" very wet brown gravel, no sheens

0"40" 12"-38" sitty growl wet elbettom

5-60" 20"-42" dry sitty gravel 42"-58" most gray sandy gravel

Environmental Scrvices Network	
ESN	•

ATTACHMENT 2

GPR Survey Report

applied geophysics

INTERNATIONAL

March 18, 2004 J04-755

Parametrix Inc 5700 Kitsap Way Bremerton, Wa 98312

> West Bay Environmental Assessment Geophysical Survey

This report presents the results of the Geophysical Survey in conjunction with the West Bay Environmental Assessment, Olympia, Washington. The survey utilized Electro-magnetic (EM) and Ground Penetrating Radar (GPR) methods to locate potential Underground Storage Tanks (UST), clear boring locations for drill hole hazards and provide an estimate of the depth of "bark" deposits or other fill materials in the former material storage area. The survey was made on March 3, 2004. A verbal report of findings was made prior to your site investigation.

Results

Burn Area

Soil conductivity measurements were made in the "burn area" located on the small spit in the middle of the property. Figure 1 attached to this report shows the location of the 50 by 60 foot grid area. The conductivity measurements were made with an EM-31 on a 10 foot grid. The results are shown in Figure 2. The area did not show evidence of "buried metal structures". The rebar in the concrete bulkhead surround the area did lower the measured conductivities however the instrument did not cross the bulkhead. The conductivity response to buried metal would be to produce artificial negative values on conductivity.

Foundation Pad

The exterior of the foundation pad was traversed with the EM-31. The traverse was made approximately 10 feet from the edge of the foundation pad, beginning and ending at the Northeast corner of the pad. The conductivity profile of the EM measurements is shown in Figure 3. The traverse detected two negative going conductivity areas that are indicative of buried metal, i.e. possible USTs.

The first negative going conductivities occurred along the East edge of the foundation pad. A GPR traverse was made across this area. The GPR image of the line is shown in page 3 of the attached GPR data. The negative area was determined to be a result of the reber in the concrete pad that runs from the loading platform along side the railroad tracts to the foundation pad. It is noted that inspection of the aerial photographs of the former structure on the side did not reveal a "door" in the side of the building at this point. The concrete runway pad is covered with asphalt adjacent to the foundation pad. No evidence of a UST was found in the GPR data.

Negative conductivity values were also found along the South edge of the foundation pad, and along a small portion of the Southeast corner of the pad.

The negative values are assumed to be a result of the rebar in the pad, and from a metal in the pole at the SE corner.

The sanitary sewer system associated with restroom facilities of the former building is located in the Northwest corner of the foundation pad. The sewer line runs to the toe of the slope (to the west) and the sewerage effluent is then pumped to the sewer line upslope.

Former Material Storage Area.

Two GPR traverses (North Line and South Line) were made in the former material storage area to estimate potential depth of "bark" and other material. The area lies between the foundation pad and the pend to the south of the pad. The lines were centered in the approximate center of the area, and are 25 feet apart, approximately 100 feet in length. The GPR data is shown in the GPR images attached to the report on Pages 1 and 2. The lines were run from approximately the toe of the slope east to the road running along side of the area.

The GPR data in both of the lines show two layers of material. The material is largely sand/gravel deposits with sections of finer grained material (silts). The upper section may be fill material. No "bark" or other wood products are evident in the data.

Drill Hole Hazard Clearance

The four proposed bore hole locations were marked and GPR lines run over the locations to detect possible drilling hazards. The boring locations did not show evidence of drill hazards i.e. buried pipes underlying the locations. The area lying between the two railroad tracks east of the former locating dock was also scanned for possible hazards. No hazards were found.

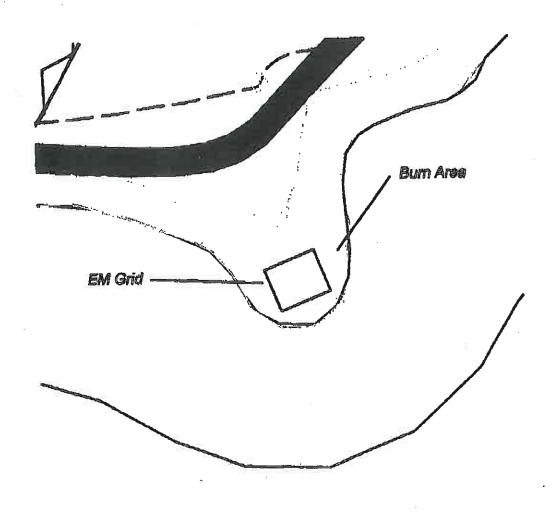
Methods

The Ground Penetrating Radar (a GSSI, SIR System 2) utilized a 400 Mega-Hertz antenna. The GPR antenna used for this investigation transmits a 2.5 nano-second (ns) pulse at a center frequency of 400 Mega-Hertz for the selected scan rate of 16 times per second. When the signal encounters a change in electrical properties (a change in electrical permittivity), a portion of the signal energy is reflected back to the surface. The reflected signal received by the antenna, is digitally processed and recorded in the instrument consol. The character of the reflection is used to interpret the source of the reflection.

The GPR records were recorded at a full-scale sweep of 60 nano-seconds. The depth of an object is determined by the electro-magnetic wave propagation rate (inverse of wave velocity) of the site materials. The recorded time is two-way time; that is the time down to the surface and then back to the antenna. The two-way time is estimated to be between 5 to 6 nano-seconds per foot. The electro-magnetic velocity may vary across the site, both horizontally and vertically. The data was recorded in metres and then converted to feet by software analysis.

The soil conductivity measurements were made with a Geonics EM-31. The instrument measures an elliptical area approximately 8 by 6 feet. The instrument operates at a frequency of 9.8 KHz. The transmitted EM wave interacts with the soil materials, which conducts the signal and in turn transmits a wave which interacts at the transmitted wave at the receiver coil of the instrument. The resulting signal is compared to the transmitted signal; the difference is a function of the ground conductivity. The ground current is concentrated by buried metal objects, and produces a negative response in the measured conductivity. The depth of the signal is approximately 19 feet, however, the majority of the signal is conducted at a depth 12 feet.

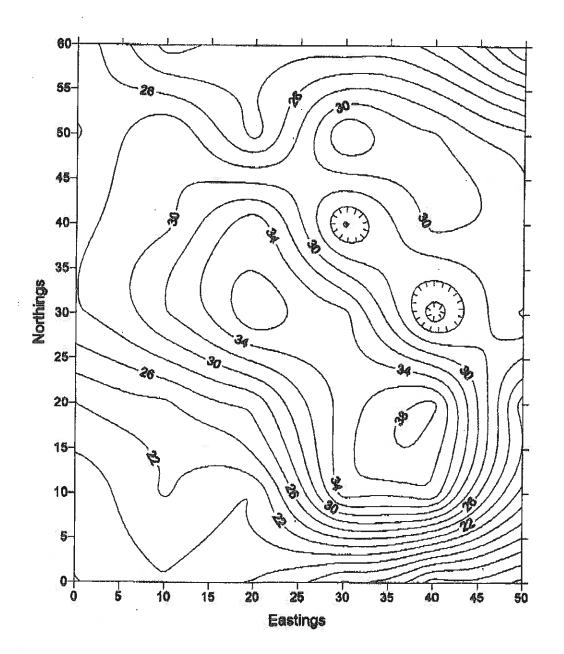
The information presented in this report is based upon geophysical measurements made by generally accepted methods and field procedures, and our interpretation of these data. The presented information is based upon our best estimate of subsurface conditions considering the geophysical results and all other information available to us. These results are interpretive in nature and are considered to be a reasonably accurate presentation of the existing conditions within the limitations of the method or methods employed.


We trust that the above is sufficient for your requirements. Please let us know if you have any questions or if we may be of further assistance.

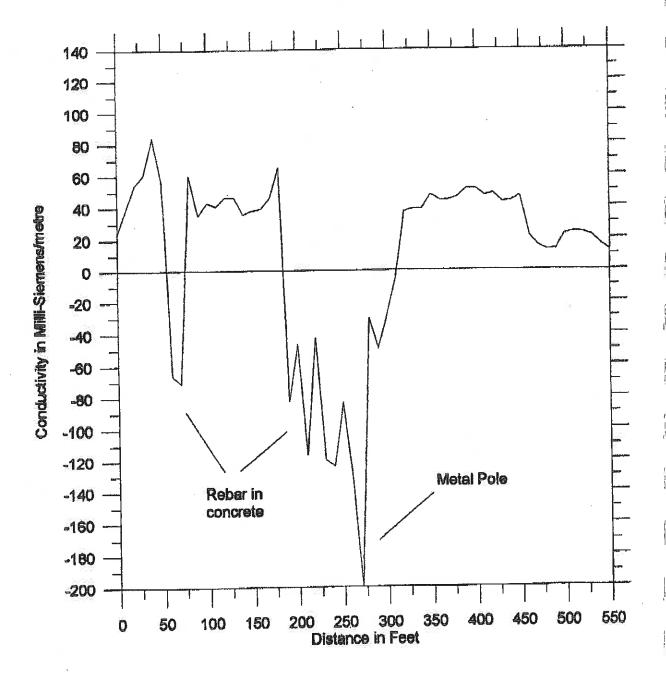
For Geo-Recon International

John M Mussey

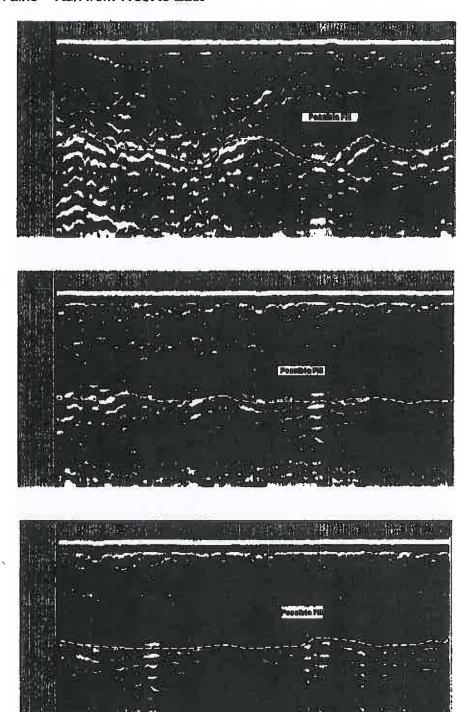
John M Musser


Principal Geophysicist

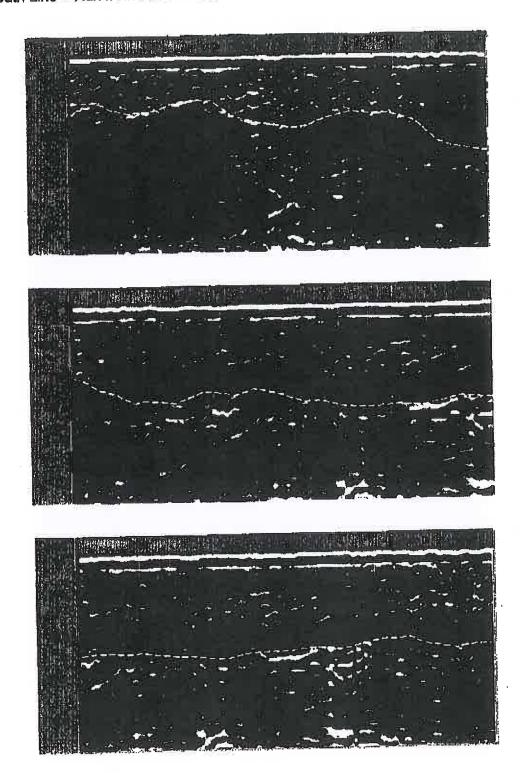
Scale: 1 inch = 100 feet


Burn Area Location	Proposed Olympic Park, Olympic, Wa	shington	
EM Survey J04-755	GEO-RECON INTERNATIONAL	FIG. 1	1

North

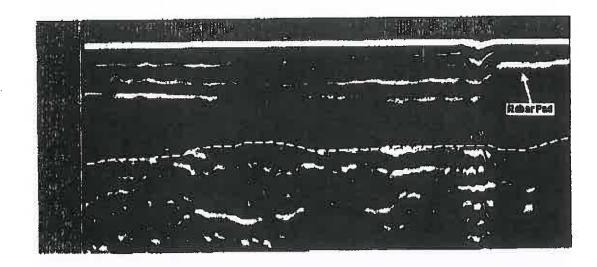

Conductivity Contours - Burn Area

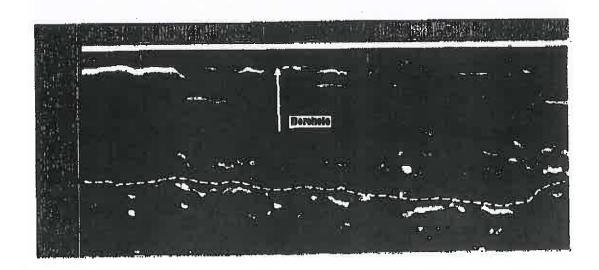
Conductivity in Milli-Siemens/metre



Proposed Olympic Park, Olympia, Wa EM Traverse Around Foundation Pad

North Line - Run from West to East




South Line - Run from West to East

GPR Images - West Bay Environmental Site Assessment Parametrix Inc.

Line run along side East side of foundation pad - Run from North to South

ATTACHMENT 3

2004 Phase II ESA Data

TESTPIT & PROBE LOGS

DLD NOTES WOTES 4/10/08

Daily Report Prepared by Christopher J. Hamilton West Bay – 08 March 2004 PMX 215-4764-001-01-04 GP-03 GP-04 TP-06

0745 Arrive on site, 45 F, Foggy

0800 Sandra Matthews arrives on site

0805 Anisa, ESN Driller, arrives on site, walk site to review sample locations

0820 Dave Oakerland arrives on site, unlocks gate

0900 Sandra departs site

0915 Setup to drill WBGP-01 by gate

1030 Sample WBGP-01S & -01G

0-4 feet, ½ recovery, 7.5 YR 3/2 Dark brown sand and gravel (SM-GM), medium to fine sand, round gravel

4-8 feet, full recovery, Gley 1 4/1 dark greenish grey clay (CL) (2 feet)

5Y 4/1 dark gray sand medium to coarse (SM) (12 inches)

Dark brown wood (12 inches)

8-12 feet, full recovery, 5Y 4/1 dark gray sad and gravel (SM-GM), medium to coarse sand (36 inches)

Black wood and silt (6 inches)

12-16 feet, ³/₄ recovery, 5Y 4/1 dark gray clay (CL) (6 inches)

Silty sand (SM) (18 inches)

Wood and silt (6 inches)

Silt and crushed shells (oyster) (2 inches)

Water at 11.5 feet

1145 WBGP-02S & -02G Sample collected by storm drains at end of Giles Avenue

0-4 feet, ½ recovery, 2.5Y 4/1 Dark gray sand and gravel (GM)

4-8 feet, full recovery, 2.5Y 4/1 Dark gray sand and gravel (GM) (18 inches)

2.5Y 4/1 Dark gray, silt and crushed shell (oyster), bedded, some pink shells (30 inches)

 $8\mbox{-}12$ feet, full recovery, 2.5Y 4/1 Dark gray silt and shells (SM), some interbedded clay lenses, saturated

Water at 7 feet

1245 Sample WBGP-03S & -03G, east of large foundation

0-4 feet, ¾ recovery, 5Y 6/1 gray, silty sand with gravel (SM-GM) fine to medium sand, subround gravel

4-8 feet, full recovery, 5Y 5/1 gray silty sand (SM), with interbedded 1 inch dark brown sand and gravel lens, damp

8-12 feet, ³/₄ recovery, 2.5Y 4/1 Dark gray, Wet/saturated, silt and crushed shells (oyster) bedded, some pink, multiple ½ to 1 inch clay lenses

Water at 7 feet

1330 Sample WBGP-04S & -04G, south end of large foundation

0-4 feet, 3/4 recovery, Dark brown sand and wood (12 inches)

Light gray sand and gravel, petroleum odor (24 inches)

4-8 feet, ½ recovery, light gray sand with gravel, petroleum odor (12 inches) Dark brown sand and shell (12 inches)

8-12 feet, ½ recovery, Dark brown sand and shell, saturated (24 inches)

- HeID ND

1345 Sample WBGP-06S collected from petroleum odor soil from 0-4 and 4-8 samples of WBGP-04

1430 Sample WBGP-05S & -05G, Railroad track – south, just north of Lagoon end and sprinkler system

0-4 feet, ½ recovery, red bark (2 inches)

Sandy gravel (GM) (12 inches)

2.5Y 4/3 Olive brown silty sand (SM) (12 inches)

4-8 feet, ½ recovery, 2.5 Y 4/3 Olive brown, Silty sand (SM), damp

8-12 feet, ½ recovery, Silty sand (18 inches)

Wood with petroleum odor (6 inches)

12-16 feet, ½ recovery, silty sand, with 1 inch round gravel lens wood chips with petroleum odor

1445 WBGP-07S taken from 8-12 foot sample because hole did not yield much in recovery

Water at 8 feet

1500 collected Outfall and Seep sediment samples

1530 Departed site after locking gate, called Dave to let him know that we had left the site

1545 Delivered samples to ESN laboratory

Daily Report Prepared by Christopher J. Hamilton West Bay – 09 March 2004 PMX 215-4764-001-01-04

0815 Arrive on site, 45 F, slight drizzle,

0820 Paul Stemen, Stemen Environmental arrives on site

0825 Equipment arrives on site, Dave Oakerland opens gate

0930 Start digging WBTP-01, 20 feet south of property line (WBTP-01S & -01G)

Wire conduit and two 4 inch metal pipes uncovered while clearing brush

4 feet light brown sand and clay

6 inches light gray clay with petroleum odor (shoe polish)

6 inches dark brown moist sawdust/wood chips (red/brown)

Water at 5 feet

Called Sandra Matthews to confirm sample to be collected: Collect sample from immediately above water table and note any odors or discolorations.

Sandra requested that we dig just north of test pit to attempt to determine extent of contamination. Moved 5 feet north, towards property line. Test pit revealed same configuration except that a larger amount of gray clay was observed - horizontally. Sample collected from wood chips, should probable run silica gel cleanup on NWTPH if results are high – will remove organic false positives.

1030 WBTP-02, 30 feet east of WBTP-01 and 20 feet south of property line (WBTP-02S & -02G)

3 feet light brown to tan sand

1 foot light gray clay with petroleum odor

6 inches red/brown wood chips

Water at 5 feet

Sample collected from wood chips for same reason as WBTP-01

1120 WBTP-03S, excavated 40 feet south of WBTP-02

12 feet medium brown silty sand and clay with a 1 to 2 foot gray clay lens at 4 feet, wood at 12 feet, no water in excavation

1200 WBTP-04S, southwest of burner

Creosote piles 12" x 12" x 6 feet

Dark brown top soil 6 inches

Black ash and burnt wood 6 inches

Light gray sand and gravel 9 feet with some grey clay and wood chunks

Strange odor, not quite marine but could be decaying organics

Called Sandra to determine what Fly ash looked like

Water at 10 feet WBTP-ASH

1240 WBTP-05S, northeast of burner

Dark brown top soil 6 inches

Black ash and burnt wood 6 inches – sample collected from this material

Light gray sand and gravel

Collected FLY ASH 1 from sediments along wall northeast of WBTP-05

1300 WBTP-06S, by dock and large foundation

Gray sand and gravel (12 mches)

Light tan sand and gravel (18 inches)

Black wood (6 inches)

Black wood and snells (6 inches)

Water at 4.5 feet

Sump sample collected, Sandra called to let me know that QA duplicates needed to be collected (1 soil, 1 water). Decided to collect duplicate soil from the sump (Sump 2) 1400 WBTP-07S & -07G, Railroad tracks, tide out

Sand and large gravel, strong creosote odor, hole kept collapsing, hard to collect water sample

1430 WBTP-08S, east of pond, gray sand and large gravel (4 feet)

Gray sand (4 feet)

Water at 8 feet

1500 WBTP-09S, west of pond gray sand and large gravel (3 feet)

Water at 3 feet

1515 Collected Pond water sample from eastern part of pond

1645 Finish collecting samples and depart site

1700 Drop samples off at ESN Laboratory

Daily Report Prepared by Christopher J. Hamilton West Bay – 10 March 2004 PMX 215-4764-001-01-04

1330 Arrive on site, 50 F, clear
Collect Outfall water sample, and duplicate
Collect Wood sediment sample from areas around wood on beach
Collect Seep water sample
Collect WBNT-01S & -01G from outfall near the northern tip of the property
Observed two seeps just south of the outfall, but not collected
1500 Depart site and deliver samples to ESN Laboratory

ESN NORTHWEST CHEMISTRY LABORATORY

WESTBAY-2 PROJECT Olympia, Washington Parametrix Client Project #4767-001

HYDROCARBON IDENTIFICATION BY NWTPH-HCID FOR SOIL

Sample	Date	Surrogate	Gasoline	Diesel	Heavy Oil	Mineral Oil
Number	Analyzed	Recovery (%)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
Method Blank	3/9/04	. 116	nd	nd	nd	nd
WBGP-04S	3/9/04	98	nd	nd	nd	nd
WBGP-05S	3/9/04	92	nd	nd	nd	nd
WBGP-05S Dup	3/9/04	96	nd	$\mathbf{n}\mathbf{d}$	$\mathbf{n}\mathbf{d}$	$\mathbf{b}\mathbf{a}$
Method Detection Li	mits		20	50	100	100

[&]quot;nd" Indicates not detected at listed detection limits.

ACCEPTABLE RECOVERY LIMITS FOR SURROGATE: 65% TO 135%

ANALYSES PERFORMED BY: Dean Phillips

[&]quot;D" Indicates detected above the listed detection limit.

[&]quot;int" Indicates that interference prevents determination.

ESN NORTHWEST CHEMISTRY LABORATORY

WESTBAY-2 PROJECT Olympia, Washington Parametrix Client Project #4767-001

Specific Halogenated and Aromatic Hydrocarbons (EPA 8021B) in Soil

Sample Description		Method Blank	WBGP-04S	WBGP-05S	WBGP-058 Dup.	WBGP-06S
Date Sampled Date Analyzed	MDL (mg/kg)	3/9/04 (mg/kg)	3/8/04 3/9/04 (me/kg)	3/8/04 3/9/04 (mg/kg)	3/8/04 3/9/04 (mg/kg)	3/8/04 3/9/04 (mg/kg)
Vinyi chloride	0.25	nd .	, pd	pu	pu	pu
Benzene Toluene	0.02	ng ng	音音	on. Pu	n p	pg u
Ethylbenzene	0.05	pi.	日.	pu •	nd	pq
Total Xylenes	0.05	말	D o	pg d	ם סם	מס
Methylene chloride	0.02	담	pu	pu	pu	₽ <u>₽</u>
trans-1,2-Dichloroethene	0.05	pu	검	pu	pu	pu
1,1-Dichloroethane	0.05	pu	pu	nd	nđ	nd
cis-1,2-Dichloroethene	0.05	멑	D	pu	nd	nd
Chloroform	0.05	nd	멑	. pu	nd	nd.
1,1,1-Trichloroethane (TCA)	0.05	멀	nd	pu	pu	nd
Carbon tetrachloride	0.05	pu	nd	pu	pu	nd
1,2-Dichloroethane	.0.05	pu	B	pu	þu	nd
Trichloroethene (TCE)	0.02	pu	pu	pu	pu	nd
1,1,2-Trichloroethane	0.05	pu	百	nd	pu	пd
Tetrachloroethene (PCE)	0.02	pu	ם	pu	pu	nd
1,1,1,2-Tetrachloroethane	0.05	pu	Pu	pu	pu	nd
1,1,2,2-Tetrachloroethane	0.05	pu	pa	מק	nd	pu
Surrogate Recovery (%)		104	104	80	116	73

"nd" Indicates not detected at listed detection limit. "int" Indicates that interference prevents determination. ACCEPTABLE RECOVERY LIMITS FOR SURROGATE (Chlorobenzene): 65%-135%

ANALYSES PERFORMED BY: Marilyn Parmer

ESN SEATTLE CHEMISTRY LABORATORY (425) 957-9872, fax (425) 957-9904

ESN Job Number:

\$40309-3

Client:

PARAMETRIX

Client Job Name:

WESTBAY

Client Job Number:

4767-001

Analytical Results

8270, mg/kg		MTH BLK	LCS	WBGP-04S	WBGP-05S	SEEP-1G
Matrix	Soil	Soil	Soil	Soil	Soil	Soil
Date extracted	Reporting	03/15/04		03/15/04	03/15/04	03/15/04
Date analyzed	Limits	03/15/04	03/15/04	03/15/04	03/15/04	03/15/04
Moisture, %				28%	18%	36%
	•			95		nd
Fluorene	0.1	nd		nd	nd	
4-Chlorophenylphenylether	1.0	nd		nd	nd	nd
Diethylphthalate	1.0	nd		nel	nd	nd
4-Nitroanaline	5.0	ndi		nd	nd	nd
4,6-Dinitro-2-methylphenol	5.0	nd		nd	nd	nd
N-nitrosodiphenylamine	1.0	nd		nd	_	nd
Azobenzene	1.0	nd		nd		nd
4-Bromophenylphenylether	1.0	nd		nd		nd
Hexachlorobenzene	1.0	nd		nd		nd
Pentachlorophenol	5.0	nd		nd	nd	nd
Phenanthrene	0.1	nđ		nd		nd
Anthracene	0.1	nd		nd	nd	nd
Carbazole	1.0	nd	_	nd	nd	nd
Di-n-butylphthalate	1.0	nd		nd	nd	nd
Fluoranthene	0.1	nd	101%	nd	l nd	nd
Pyrene	0.1	nd		nd	nd	nd
Butylbenzylphthalate	1.0	nd		nd	nd	nd
Bis(2-ethylhexyl) adipate	1.0	nd		ni	l nd	nd
Benzo(a)anthracene	0.1	nd		120	l nd	nd
Chrysene	. 0.1	nd		mo	l nd	nd
Bis (2-ethylhexyl) phthalate	1.0	nd		rio	l nd	nd
Di-n-octyl phthalate	1.0	nd		no	l nd	nd nd
Benzo(b)fluoranthene	0.1	nd		no	i nd	l , nd
Benzo(k)fluoranthene	0.1	nd		nc	i nd	i nd
Benzo(a)pyrene	0,1	nd	87%	enc.	<u>j</u> no	l nd
Dibenzo(a,h)anthracene	0.1	nd		ne	1 no	l nd
Benzo(ghi)perylene	0.1	nd		ne	<u>i</u> no	i nd
Indeno(1,2,3-cd)pyrene	0.1	nd		ric	<u>i</u> no	i no
Surrogate recoveries		131%	96%	76%	6 135%	5 107%
2-Fluorophenol		108%	78%		-	
Phenol-d6		131%	112%			
Nitrobenzene-d5		131%	123%	-		
2-Fluorobiphenyl						
2,4,6-Tribromophenol		103%	65%			
4-Terphenyl-d14		143%	1279	0 1327	1007	u 1-70 /

Data Qualifiers and Analytical Comments

nd - not detected at listed reporting limits Acceptable Recovery limits: 50% TO 150%

Acceptable RPD limit: 35%

B - found in Blank

ESN SEATTLE CHEMISTRY LABORATORY (425) 957-9872, fax (425) 957-9904

ESN Job Number:

S40309-3

Client:

PARAMETRIX

Client Job Name:

WESTBAY

Client Job Number:

4767-001

Analytical Results

8270, mg/kg		MTH BLK		WRGP-04S	WBGP-05S	SEEP-1G
Matrix	Soil	Soil	Soil	Soil	Soil	Soil
Date extracted	Reporting	03/15/04		03/15/04	03/15/04	03/15/04
Date analyzed	Limits	03/15/04	03/15/04	03/15/04	03/15/04	03/15/04
Moisture, %				28%	18%	36%
				520.	nd	no
Pyridine	1.0	nd		nd	nd	no
Analine	1.0	nd		rigi	nd	no
Phenol	1.0	nd		nd		
2-Chlorophenol	1.0	nd		nd	nd	no
Bis (2-chloroethyl) ether	1.0	nd		nd	nd	no
1,3-Dichlorobenzene	1.0	nd		ing.	nd	no no
1,4-Dichlorobenzene	1.0	nd		Line	nd .	
1,2-Dichlorobenzene	1.0	nd		na	nd .	no · m
Benzyl alcohol	1.0	nd		no	nd	· no
2-Methylphenol (o-cresol)	1.0	nd		nd	nd	no
Bis (2-chloroisopropyl) ether	5.0	nd		na	nd	no
3,4-Methylphenol (m,p-cresol)	1.0	, nd		rid	nd	ni
Hexacholorethane	1.0	nd		- nd		ne
N-Nitroso-di-n-propylamine	1.0	nd		nd		n
Nitrobenzene	1.0	nd		nd		ħ
Isophorone	1.0	nd		rid		· · ·n·
2-Nitrophenol	5.0	nd		nd	nd	n
4-Nitrophenol	5,0	nd		nd	- nd	n
2.4-Dimethylphenol	1.0	nd		nd	nd	n
Bis (2-chloroethoxy) methane	1.0	nd		nd	្តា វាd	n
2,4-Dichlorophenol	5.0	nd		nd	l, nd	ח
1.2,4-Trichlorobenzene	1.0	nd		no	l nd	n
Naphthalene	1.0	nd		ne	l nd	n
4-Chloroanaline	5.0	nd		the	nd	n
Hexachlorobutadiene	1.0	. ndi		rid	nd	· In
4-Chloro-3-methylphenol	5.0	nd		ne	l nd	ı
2-Methylnapthalene	1.0	nd		.710	nd	l n
1-Methylnapthalene	1.0	nd		,na	i nd	i n
Hexachlorocyclopentadiene	1.0	nd [*]		Tic	1 nd	ı n
2,4,6-Trichlorophenol	5.0	nd		no	nd	l r
2,4,5-Trichlorophenol	5.0	nd		THE	nd nd	l r
2-Chloronaphthalene	1.0	nd		Elec	i no	l r
2-Chioronaphinalene 2-Nitroanaline	5.0	nd		ni	i no	l r
1.4-Dinitrobenzene	5.0	nd		ris	i no	iг
Dimethylphthalate	. 1.0	nd	-	But	d no	i r
Acenaphthylene	0.1	nd		ne		1 1
	5.0	nd		in in		i i
1,3-Dinotrobenzene	1.0	nd		. n		i 1
2,6-Dinitrotoluene	1.0	nd		n	7.	
1,2-Dinitrobenzene	0.1	nd	1009		E	
Acenaphthene	5.0	nd	1007	n	₹	
3-Nitroanaline	1.0	nd		n	E .	
Dibenzofuran	1.0	nd		13	W .	
2,4-Dinitrotoluene		nu nd-		n	E.	
2,3,4,6-Tetrachlorophenol	1.0			n		
2,3,5,6-Tetrachlorophenol	1.0	nd				
2,4-Dinitrophenol	5.0	nd		- n		u.

ESN NORTHWEST CHEMISTRY LABORATORY

WESTBAY-2 PROJECT Olympia, Washington Parametrix Client Project #4767-001

PCB Analyses of Soil (EPA Method 8082)

Sample Description		Method	WBGP-04S	WBGP-05S	
= 0.0	<u> </u>	Blank			Dup.
Date Sampled			3/8/04	3/8/04	3/8/04
Date Analyzed		3/9/04	3/9/04	3/9/04	3/9/04
	MDL				
	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
PCB-1016	0.20	nđ	nd	nd	nd
PCB-1221	0.20	nd	nd	nd	nd
PCB-1232	0.20	nd	nd	nđ	nd
PCB-1242	0.05	nd	nd	nd	nd
PCB-1248	0.05	nd	nd	nd	nd
PCB-1254	0.05	nd	nd	nd	nd
PCB-1260	0.05	nd	nd	nđ	nd
Total	0.05	0.00	0.00	0.00	0.00
Surrogate Recovery (TCMX) (%)		100	86	91	108
Surrogate Recovery (DCBP) (%)		108	92	108	98

[&]quot;nd" Indicates not detected at listed detection limit.

ACCEPTABLE RECOVERY LIMITS FOR SURROGATE (TCMX) AND (DCBP): 65% - 135%

ANALYSES PERFORMED BY:

Marilyn Farmer

[&]quot;int" Indicates that interference prevents determination.

WESTBAY-2 PROJECT Olympia, Washington **Parametrix** Client Project #4767-001

Pesticide Analyses of Soil (EPA Method 8081)

Sample Description		Method Blank	WBGP-048	WBGP-058	WBGP-05S Dup.	
Date Sampled		3/8/04	3/8/04	3/8/04	3/8/04	····
Date Analyzed	,	3/9/04	3/9/04	3/9/04	3/9/04	
Ditto Fallary 220d	MDL	0,5,0,				
	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	
	-37.0			•	•	
-BHC	0.001	nd	nd	nd	nd	
-BHC	0.001	nd	nd	nd	nd	
g-BHC	0.001	nd	nd	\mathbf{nd}	nd	
I-BHC	100.0	nd	nd	nd	nd	
Teptachlor	0.001	nd	nd	nd	nd	•
Aldrin	0.001	nd	nd	nd	nd	
Teptachlor epoxide	0.001	nd	nd	nd	n d '	
Endosulfan I	0.001	nd	nd	nd .	nd	-
Dieldrin	0.001	nd	nd	nd	nd	
1,4'-DDE	0.001	nd	nd	nd	nd	
Endrin	0.001	nd	nd	nd	nd	
Endosulfan II	0.001	nd	nd	nd	nd	
1,4'-DDD	0.001	nd	nd	nd	nd	
Endrin aldehyde	0.001	nd	nd	nd	nd	
Endosulfan sulfate	0.001	nd	nd	nd	nd	
4,4'-DDT	0.001	nd .	nd	nd	nd	
Surrogate Recovery (TCM	IX) (%)	100	86	91	108	·
Surrogate Recovery (DCE	3P) (%)	108	92	108	98	

ACCEPTABLE RECOVERY LIMITS FOR SURROGATE (TCMX) AND (DCBP): 65% - 135%

ANALYSES PERFORMED BY:

[&]quot;nd" Indicates not detected at listed detection limit.
"int" Indicates that interference prevents determination.

Table 5-3. Summary of Metals Analyzed in Soils

Sample Number	Location	Lead (Pb) EPA 7420 (mg/kg)	Cadmium (Cd) EPA 7130 (mg/kg)	Chromium (Cr) EPA 7190 (mg/kg)	Arsenic (As) EPA 7061 (mg/kg)	Silver (Ag) EPA 7760 (mg/kg)	Nickel (Ni) EPA 7520 (mg/kg)	Copper (Cu) EPA 7210 (mg/kg)	Thallium (TI)) EPA 7840 (mg/kg)	Antimony (Sb) EPA 7040 (mg/kg)	Zinc (Zn) EPA 7950 (mg/kg)	Selenium (Se) EPA 7741 (mg/kg)	Mercury (Hg) EPA 7471 (mg/kg)	Barium (Ba) EPA 7080 (mg/kg)
MTCA Method A Soil Cleanup Level		250	2	19	20	NS"	NS	NS	NS	NS	NS	NS	2 2	NS
Seep-1S ^b	Shoreline Seep	9	NDc	6	ND	ND	ND	ND	ND	ND ·	20	ND	ND	ND
Outfall-1S	Outfall	19	ND	ND	ND	ND	ND	ND	ND	ND	200	ND	ND	ND
Outfall-1S Dup	Outfall	16	ND	ND	ND	ND	ND	ND	ND	ND	190	ND	ND	ND
WBGP ^d -01S	North Railroad Tracks	7	ND	6	ND	ND	ND	ND	ND	ND	30	ND	ND	ND
WBGP-04S	Solid Wood, Inc.	6	ND	ND	ND	ND	ND	ND	ND	ND	24	ND	ND	ND
WBGP-05S	South Railroad Track	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
WBTP ^e -01S	Northern Tip	8	ND	ND	ND	ND	ND	ND	ND `	ND	ND	ND	ND	ND
WBTP-02S	Northern Tip	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
WBTP-03S	Northern Tip	ND	ND	10	ND	ND	16	ND	ND	ND	ND	ND	ND	ND
WBTP-04S	Wood Handling Area	56	ND	ND	ND	ND	10	46	ND	ND	43	ND	ND	ND
WBTP-ASH	Wood Burner	23	ND	ND	ND	ND	ND	33	ND	ND	6)	ND	ND	ND
WBB ^f -Sediment	Wood Burner	8 (ND	ND	ND	ND	ND	ND	ND	ND	45	ND	ND	ND
SUMP-2	Solid Wood, Inc. Sump	29	ND	ND	ND	.ND	ND	68	ND	ND .	43	ND	ND	ND
WBTP-06S	Loading Dock	ND	ND	ND	ND	ND:	ND	ND	ND	ÜVD	ND	ND	ND	ND
WBTP-07S	South of Solid Wood, Inc.	ND	ND	ND	. ND	ND	ND	ND	ND	ND	CN	ND	ND	ND
WBTP-08S	South of Solid Wood, Inc.	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
WBTP-09S	South Wood Pile	8	ND	ND	ND	ND	ND	ND	ND	ND	20	ND	ND	ND
SUMP soil	Solid Wood, Inc. Sump	18	ND	ND	ND	ND	ND	55	ND	ND	46	ND	ND	ND
WBNT-01S	Northern Tip	11	ND	ND	ND	ND	ND	ND	ND	ND	20	ND	ND	ND
WBNT ⁹ -01S Dup	Northern Tip	9	ND	ND	ND	ND	ND	ND	ND	ND	20	ND	ND /	ND
WOOD	Shoreline Wood Pile	17	ND	ND	ND	ND	10	ND	ND	ND	23	ND	ND	ND

a NS - No standard listed under MTCA Method A.

314

c ND – Not detected.

b S – Soil.

e WBTP – Test pit.

d WBGP – Geoprobe.

⁹ WBNT – Outfall near northern tip area.

f WBB -- Sediment sample near burner area.

WESTBAY-2 PROJECT Olympia, Washington Parametrix Client Project #4767-001

Hydrocarbon Identification by NWTPH-HCID for Waters

Samule	Date	Surrogate	Gasoline	Diesel	Heavy Oil	Mineral Oil
Number	Analyzed	Recovery (%)	(l/gn)	(ug/l)	(l/gn)	(ng/l)
Method Blank	3/10/04	109	pu	nd	pu	pu
WBGP-04G	3/10/04	95	pu	pu	pu	pu
Method Detection Limits	S		250	500	200	500
		,				

"nd" Indicates not detected at listed detection limits.

"D" Indicates detected above the listed detection limit.

"int" Indicates that interference prevents determination.

ACCEPTABLE RECOVERY LIMITS FOR SURROGATE: 65% TO 135%

ANALYSES PERFORMED BY: Marilyn Farmer & Dean Phillips

WESTBAY-2 PROJECT Olympia, Washington Parametrix Client Project #4767-001

Specific Halogenated and Aromatic Hydrocarbons (EPA 8021B) in Water

				-
Sample Description		Method Blank	WBGP-04G	WBGP-05G
Date Sampled			3/8/04	3/8/04
Date Analyzed		3/11/04	3/11/04	3/11/04
	MDL (ug/l)	(ug/l)	(ug/l)	(ug/l)
Virgel ablarida	5.0	nd	nd	nd
Vinyl chloride	1.0	nd	nd	nd
Benzene Toluene	1.0	nd	nd	nd
Ethylbenzene .	1.0	nd nd	nd	nd
Total Xylenes	1.0	nd	nd	nd
1,1-Dichloroethene	1.0	nd	nd	nd
Methylene chloride	1.0	nd	nd	nd
trans-1,2-Dichloroethene	1.0	nd	nd	nd
1,1-Dichloroethane	1.0	nd	nd	$\mathbf{p}\mathbf{d}$
cis-1,2-Dichloroethene	1.0	\mathbf{nd}	nd	nd
Chloroform	1.0	nd	nd	nd
1,1,1-Trichloroethane (TCA)	1.0	nd	nd	nd
Carbon tetrachloride	1.0	nd	nd	nd
1,2-Dichloroethane	1.0	\mathbf{nd}	nd	nd
Trichloroethene (TCE)	1.0	nd	nd	nd
1,1,2-Trichloroethane	1.0	nd	nel	nd
Tetrachloroethene (PCE)	1.0	nd	nd	nd
1,1,1,2-Tetrachloroethane	1.0	nd	nd	nd
1,1,2,2-Tetrachloroethane	1.0	nd	nd	nd
Surrogate Recovery (%)	<u> </u>	102	108	83

ACCEPTABLE RECOVERY LIMITS FOR SURROGATE (Chlorobenzene): 65%-135%

ANALYSES PERFORMED BY:

Marilyn Farmer

[&]quot;nd" Indicates not detected at listed detection limit.
"int" Indicates that interference prevents determination.

ESN SEATTLE CHEMISTRY LABORATORY (425) 957-9872, fax (425) 957-9904

ESN Job Number:

\$40309-3

Client:

PARAMETRIX ·

Client Job Name:

WESTBAY

Client Job Number:

4767-001

Analytical Results

8270, µg/L		MTH BLK	LCS	WBGP-04G	MS	MSD	RPD
Matrix	Water	Water	Water	Water	Water	Water	
Date extracted	Reporting	03/15/04		03/15/04	03/15/04	03/15/04	
Date analyzed	Limits	03/15/04	03/15/04	03/15/04	03/15/04	03/15/04	
Pyridine	1.0	nd		nd .			
Analine	1.0	nd		nd			
Phenol*	1.0	nd		riid			
- neno 2-Chlarophenol*	1.0	nd		rid			
Bis (2-chloroethyl) ether	1.0	-nd		nd			
1,3-Dichlorobenzene	1.0	nd		nd:			
1,4-Dichlorobenzene	1.0	nd		ind			
1,2-Dichlorobenzene	1.0	nd		nd	_		
2-Methylphenol (o-cresol)*	1.0	nd		nd			
Bis (2-chloroisopropyl) ether	5.0	nd		nd			
3,4-Methylphenol (m,p-cresol)*	1.0	nd		nd			
Hexacholorethane	1.0	nd		nd			
nexacnoloreularie N-Nitroso-di-n-propylamine	1.0	nd		md			
Nitrobenzene	1.0	nd	r	nd	-		
Isophorone	1.0	nd		rid			
2-Nitrophenol*	5.0	nd		rjd	-		
-	5.0	nd		nd.			
4-Nitrophenol* 2,4-Dimethylphenol*	1.0	nd		nd			
	1.0	nd i		nd			
Bis (2-chloroethoxy) methane 2.4-Dichlorophenol*	5.0	nd		nd	•		
2,4-Dichlorophenor 1,2,4-Trichlorobenzene	1.0	·nd		nd			
	1.0	nd		nd			•
Naphthalene	5.0	nd		nd			
4-Chloroanaline	1.0	nd		nd		-	
Hexachlorobutadiene	5.0	nd		nd			
4-Chloro-3-methylphenol*	1.0	nd		rid			
2-Methylnapthalene	1.0	nd		nd			
1-Methylnapthalene	5.0			nd			
2,4,6-Trichlorophenol*	5.0	nd		nd		•	
2,4,5-Trichlorophenol*	3.0 1.0	nd		nel			
2-Chioronaphthalene	5.0	nd		nd		•	
2-Nitroanaline	5.0	nd	•	nd.	•		
1,4-Dinitrobenzene	5.0 1.0	nd		nd			
Dimethylphthalate				nd	-	•	
Acenaphthylene	0.1	nd		nd			
1,3-Dinotrobenzene	5.0	nd 		nd			
2,6-Dinitrotoluene	1.0	nd		nd			
1,2-Dinitrobenzene	1.0	nd 	100%	1,000	116%	107%	8%
Acenaphthene	0.1	nd	100%	nd nd	11070	10170	0 /
3-Nitroanaline	5.0	nd	•	nd		•	
Dibenzofuran	1.0	nd nd		ned			
2,4-Dinitrotoluene	1.0	nd nd					
2,4-Dinitrophenol*	5.0	nd		nd			
Fluorene	0.1	nd		nd			
4-Chlorophenylphenylether	1.0	nd		nd		•	•
Diethylphthalate	1.0			nd			•
4-Nitroanaline	5.0	nd		nei			
4,6-Dinitro-2-methylphenol*	5.0	nd		nd	•		

ESN SEATTLE CHEMISTRY LABORATORY (425) 957-9872, fax (425) 957-9904

ESN Job Number:

S40309-3

Client:

PARAMETRIX

Client Job Name:

WESTBAY

Client Job Number:

4767-001

Analytical Results

8270, μg/L		MTH BLK	LCS	WBGP-04G	MS	MSD	RPD
Matrix	Water	Water	Water	Vfaler	Water	Water	
Date extracted	Reporting	03/15/04		03/15/04	03/15/04	03/15/04	,
Date analyzed	Limits	03/15/04	03/15/04	03/15/04	03/15/04	03/15/04	
N-nitrosodiphenylamine	1.0	nd		nd			
Azobenzene	1.0	nd		nd			
4-Bromophenylphenylether	1.0	nd		nd			
Hexachlorobenzene	1,0	nd		nd			,
Pentachlorophenol	5.0	nd		nd			
Phenanthrene	0.1	nd		nd		-	
Anthracene	0.1	nd		nd		•	
Carbazole	1.0	nd		nd			
Di-n-butylphthalate	1.0	nd		ind			
Fluoranthene	0.1	nd	101%	nd	128%	115%	11%
Pyrene	0.1	nd		nd			
Butylbenzylphthalate	1.0	nd	-	nd			
Bis(2-ethylhexyl) adipate	1.0	nd	-	nd			
Benzo(a)anthracene	0.1	nd		rid			
Chrysene	0.1	ņd		and			•
Bis (2-ethylhexyl) phthalate	1.0	nđ		and			
Di-n-octyl phthalate	1.0	nd		rid			
Benzo(b)fluoranthene	0.1	nd		rati			
Benzo(k)fluoranthene	0.1	nd		nd			
Benzo(a)pyrene	0.1	nd	87%	rud	125%	121%	.3%
Dibenzo(a,h)anthracene	0.1	nd		rid			
Benzo(ghi)perylene	0.1	nd		nd			
Indeno(1,2,3-cd)pyrene	0.1	nd 1		rid			
Surrogate recoveries	·						
2-Fluorophenol*				51.2%			
Phenol-d6*				31.3%			
Nitrobenzene-d5		124%	112%	110%	117%	95%	-
2-Fluorobiphenyl		128%	123%	102%	93%	. 78%	
2,4,6-Tribromophenol*				83.1%			
4-Terphenyl-d14		137%	127%	114%	108%	89%	

*Results by STL

Data Qualifiers and Analytical Comments

nd - not detected at listed reporting limits

Acceptable Recovery Limits (ARL): 50% TO 150%

Acceptable RPD limit: 35%

B - found in Blank

ARL 2-flourophenol: 10%-112%

ARL Phenol-d5: 10%-85%

ARL 2,4,6-Tribromophenol: 29%-159%

#DIV/0!

WESTBAY-2 PROJECT Olympia, Washington Parametrix Client Project #4767-001

PCB Analyses of Water (EPA Method 8082)

Sample Description		Method Blank	WBGP-04G	WBGP-05G	WBGP-05G Dup.
Date Sampled			3/8/2004	3/8/2004	3/8/2004
Date Analyzed		3/10/2004	3/10/2004	3/10/2004	3/10/2004
,	MDL				
	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)
			•		
PCB-1016	1.0	пđ	nd	nd	nd
PCB-1221	1.0	nd	nd	nd	nd
PCB-1232	1.0	nd	nd	nd	nd
PCB-1242	1.0	nd	nd	nd	nd
PCB-1248	1.0	nd	nd	nd	nd
PCB-1254	1.0	nd	nd	nd	nd
PCB-1260	1.0	\mathbf{nd}_{\perp}	nd	nd	nd
Total	1.0	0.0	0.0	0.0	0.0
Surrogate Recovery (TO	CMX) (%)	100	86	91	108
Surrogate Recovery (De	CBP) (%)	108	92	108	98

[&]quot;nd" Indicates not detected at listed detection limit.

ACCEPTABLE RECOVERY LIMITS FOR SURROGATE (TCMX) AND (DCBP): 65% -135%

ANALYSES PERFORMED BY:

Marilyn Farmer

[&]quot;int" Indicates that interference prevents determination.

WESTBAY-2 PROJECT Olympia, Washington Parametrix Client Project #4767-001

Pesticide Analyses of Water (EPA Method 8081)

Sample Description		Method	WBGP-04G	WBGP-05G	WBGP-05G
		Blank			Dup.
Date Sampled	2 - 11 - 12 - 11 - 12 - 11		3/8/2004	3/8/2004	3/8/2004
Date Analyzed		3/10/2004	3/10/2004	3/10/2004	3/10/2004
•	MDL			•	
	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ng/l)
				. 1	
a-BHC	0.05	nd	nd	nd	nd .
ь-внс	0.05	nd	nd	nđ	nd
g-BHC	0.05	nd	nd	nd	nd
d-BHC	0.05	\mathbf{nd}	nd	nd	nd
Heptachlor	0.05	nd	nd	nd	nd
Aldrin	0.05	nd	mel	nd	nđ
Heptachlor epoxide	0.05	nd	nd	nd	\mathbf{nd}_{+}
Endosulfan I	0.05	nd	md	nd	nd
Dieldrin	0.05	nd	nel	nd	\mathbf{nd}
4,4'-DDE	0.05	$\mathbf{n}\mathbf{d}$	nd	nd	\mathbf{nd}
Endrin	0.05	nđ	nd	nd	\mathbf{nd}
Endosulfan II	0.05	nd	nd	$\mathbf{n}\mathbf{d}$	nd
4,4'-DDD	0.05	\mathbf{nd}	nd	$\mathbf{n}\mathbf{d}$	nd
Endrin aldehyde	0.05	$\mathbf{n}\mathbf{d}$	nd	nd	nd
Endosulfan sulfate	0.05	nd	nd	nd	nđ
4,4'-DDT	0.05	ņd	ba	nd	nd
Surrogate Recovery (TO	CMX) (%)	100	86	91	108
Surrogate Recovery (DC	, , ,	108	92	108	98

[&]quot;nd" Indicates not detected at listed detection limit.

ACCEPTABLE RECOVERY LIMITS FOR SURROGATE (TCMX) AND (DCBP): 65% -135%

ANALYSES PERFORMED BY:

Marilyn Farmer

[&]quot;int" Indicates that interference prevents determination.

Table 5-5. Summary of Metals Analyses in Water

Sample Number	Location	Lead (Pb) EPA 6020 (ug/L)	Cadmium (Cd) EPA 6020 (ug/L)	Chromium (Cr) EPA 6020 (ug/L)	Arsenic (As) EPA 6020 (ug/L)	Silver (Ag) EPA 6020 (ug/L)	Nickel (Ni) EPA 6020 (ug/L)	Copper (Cu) EPA 6020 (ug/L)	Thallium (TI) EPA 6020 (ug/L)	Antimony (Sb) EPA 6020 (ug/L)	Zinc (Zn) EPA 6020 (ug/L)	Selenium (Se) EPA 6020 (ug/L)	Mercury (Hg) EPA 7470 (ug/L)
MTCA Method A		15	5	50		NS ⁸	NS	NS	NS	NS	NS	NS	2
WBGP°-04G°	South of Solid Wood, Inc.	NDe	ND	3	11.1	ND	1.5	ND	ND	ND	3.57	1.2	ND
WBTP ^e -01G	Northern Tip	0.535	ND	3.57	2.74	ND	2.44	ND	ND	ND	7.89	ND	ND
WBTP-02G	Northern Tip	ND	ND	6.05	0.865	ND	3.85	ND	ND	ND	8.58	ND	ND
SUMP	Solid Wood, Inc. Sump	0.555	ND	1.7	1.89	ND	1.18	2.85	ND	ND	63.9	ND	ND
WBNT ^f -01G	Northern Tip	0.94	ND	ND ND	1.11	ND	0.79	0.84	ND	ND	7.35	2.6	ND
OUTFALL	Outfall	ND	ND	0.69	0.945	ND	1.06	0.93	ND	ND	13.7	1.21	ND
OUTFALL 2	Outfall	ND	ND	1.35	1.05	ND	0.515	ND	ND	ND	2.14	1.01	ND
SEEP	Seep	ND	ND	0.805	1.11	ND	1.45	0.58	ND	ND	9.91	2.17	ND
POND	South Pond	0.805	ND	3.76	3.61	ND	4.72	10.6	ND	ND	15.8	ND	ND
WBTP-07G	South of Solid Wood, Inc	ND	ND	1.92	6.98	ND	2.71	4.22	ND	ND	7.72	ND	ND

a NS - No standard listed under MTCA Method A.

b WBGP – Geoprobe.

c G – Groundwater.

d ND – Not detected.

e WBTP – Test pit.

f WBNT – Outfall near northern tip.

TP-06

ESN NORTHWEST CHEMISTRY LABORATORY

WESTBAY PROJECT Olympia, Washington Parametrix Client Project #4767-001

Hydrocarbon Identification by NWTPH-HCID for Soil

Sample	Date	Surrogate	Gasoline	Diesel	Heavy Oil	Mineral Oil
Number	Analyzed	Recovery (%)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
Method Blank	3/15/04	115	nd	nd	pu	nď
Method Blank	3/16/04	91	nd	pu .	pu	nd
WBTP-04S	3/16/04	93	nď	nđ	pu	nd
WBTP-ASH	3/16/04	86	pu	pu	nđ	· pu
WBB-Sediment	3/16/04	. 91	nd	pu	nd	pu
WBB-Sediment Dup.	3/16/04	93	pq	pu	pu	nd
SUMP 2	3/16/04	108	pq	nd	pu	nd
WBTP-06S	3/16/04	16	Pu	Pu	a	pu
WBTP-07S	3/16/04	86	рq	pu	pu	nd
SUMP (soil)	3/16/04	105	nd	pq	pu	nd .
WBNT-01S	3/15/04	65	nd	pu	nd	pu
WOOD	3/15/04	87	pu	pu	pu .	. pu
A Cathod Dotaction I traite			20	50	100	100
יאונייות דיפופפתים דייוויים						

"nd" Indicates not detected at listed detection limits. "D" Indicates detected above the listed detection limit. "int" Indicates that interference prevents determination.

ACCEPTABLE RECOVERY LIMITS FOR SURROGATE : 65% TO 135%

ANALYSES PERFORMED BY:

Marilyn Farmer & Dean Phillips

5.2 GEOPHYSICAL SURVEY

No underground structures were detected by the survey. Some pieces of buried debris were identified. However, no typical structures of environmental concerns such as USTs were identified. The Phase I SA indicated that a UST used to store leaded gasoline existed on the site and was closed in place. However, no UST structures were detected by the geophysical survey. Therefore, the UST may have been removed. The wood debris in the southern area of the site was determined to be at least 5 feet thick. Data from the geophysical survey are provided in Appendix D.

5.3 CHEMICAL ANALYSES

This section presents results of laboratory analysis of chemicals in each media sampled. Results are compared to the MTCA Method A Soil Cleanup Levels for Unrestricted Land Uses (hereafter referenced as "Method A Cleanup Levels"). In the majority of samples, chemicals were reported as being below analytical detection levels; and in most cases, chemicals were below the MTCA Method A Cleanup Levels. The following sections primarily focus on areas where chemicals were measured above the analytical detection limits. A full chemical analysis data report for each sample is included in Appendix B.

5.3.1 Soil

No pesticides, PCBs, PAHs, or VOCs were detected in the soils.

Approximately nine soil samples were sent for hydrocarbon identification analysis (HCID). Two samples, WBGP-01S and WBTP-06S, showed detections in the heavy oil fraction. These two samples were sent with three other samples for NWTPH-Dx analysis. The results indicated 260 mg/kg of heavy oil in WBGP-01S and 1,600 mg/kg of heavy oil in WBTP-06S (see Table 5-1). Two of the other three samples had detections of 570 mg/kg of diesel for WBTP-01S and 1,100 mg/kg of diesel in WBTP-02S. All of the detected hydrocarbons are below the MTCA Method A Soil Cleanup Level of 2,000 mg/kg.

Sample Number	Location	Diesel (mg/kg)	Heavy Oil (mg/kg)	Mineral Oil (mg/kg)
MTCA Method A Solf Cleanup Level		2,000	2,000	4,000
WBTP ^a -01S ^b	Northern Tip	570	NDc	ND
WBTP-02S	Northern Tip	1,100	ND	ND
WBTP-03S	Northern Tip	ND	ND	ND
WBTP-06S	Loading Dock	ND	1,600	ND
WBGP ^d -01\$	North Railroad Tracks	ND	260	ND

a WBTP – Test pit.

S - Soil.

ND - Not Detected

d WBGP - Geoprobe.

Table 5-3. Summary of Metals Analyzed in Soils

Sample Number	Location	Lead (Pb) EPA 7420 (mg/kg)	Cadmium (Cd) EPA 7130 (mg/kg)	Chromium (Cr) EPA 7190 (mg/kg)	Arsenic (As) EPA 7061 (mg/kg)	Silver (Ag) EPA 7760 (mg/kg)	Nickel (Ni) EPA 7520 (mg/kg)	Copper (Cu) EPA 7210 (mg/kg)	Thallium (TI)) EPA 7840 (mg/kg)	Antimony (Sb) EPA 7040 (mg/kg)	Zinc (Zn) EPA 7950 (mg/kg)	Selenium (Se) EPA 7741 (mg/kg)	Mercury (Hg) EPA 7471 (mg/kg)	Barium (Ba) EPA 7080 (mg/kg)
MTCA Method A Soil Cleanup Level		250	2	19	20	NS	NS	NS	NS	NS	NS.	NS	2	NS
Seep-1S ^b	Shoreline Seep	9	NDc	6	ND	ND	ND	ND	ND	ND ·	20	ND	ND	ND
Outfall-1S	Outfall	19	ND	ND	ND	ND	ND	ND	ND	ND	200	ND	ND	ND
Outfall-1S Dup	Outfall	16	ND	ND	ND	ND	ND	ND	ND	ND	190	ND	ND	ND
WBGP ^d -01S	North Railroad Tracks	7	ND	6	ND	ND	ND	ND	ND	ND	30	ND	ND	ND
WBGP-04S	Solid Wood, Inc.	6	ND	ND	ND	ND	ND	ND	ND	ND	26	ND	ND	ND
WBGP-05S	South Railroad Track	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ŊD	ND	ND
WBTP ^e -01S	Northern Tip	8	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
WBTP-02S	Northern Tip	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND ·	· ND
WBTP-03S	Northern Tip	ND	ND	10	ND	ND	16	ND	ND	ND	ND	ND	ND	ND
WBTP-04S	Wood Handling Area	56	ND	ND	ND	ND	10	46	ND	ND	43	ND	ND	ND
WBTP-ASH	Wood Burner	23	ND	·ND	ND	ND	ND	33	ND	ND	69	ND	ND	ND
WBB ^f -Sediment	Wood Burner	8	ND	ND	ND	ND	ND	ND	ND	ND	45	ND	ND	ND
SUMP-2	Solid Wood, Inc. Sump	29	ND	ND	ND	.ND	ND	68	ND	ND .	43	ND	ND	ND
WBTP-06S	Loading Dock	ND	ND	ND	ND	ND	ND	ND	ND	ND	N)	ND	ND	ND
WBTP-07S	South of Solid Wood, Inc.	ND	ND	ND	ND	ND	ND	ND	ND	ND	GN	ND	ND	ND
WBTP-08S	South of Solid Wood, Inc.	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
WBTP-09S	South Wood Pile	8	. ND	ND	ND	ND	ND	ND	ND	ND	20	ND	ND	ND
SUMP soil	Solid Wood, Inc. Sump	18	ND .	ND	ND	ND	ND	55	ND	ND	46	ND	ND	ND
WBNT-01S	Northern Tip	11	ND	ND	ND	ND	ND	ND	ND	ND	20	ND	ND	ND
WBNT ⁹ -01S Dup	Northern Tip	9	ND	ND	ND	ND	ND	ND	ND	ND	20	ND	ND -	ND ND
WOOD	Shoreline Wood Pile	17	ND	ND	ND	ND	10	ND	ND	ND	23	ND	ND	ND

a NS – No standard listed under MTCA Method A.

c ND - Not detected.

b S-Soil.

e WBTP – Test pit.

d WBGP – Geoprobe.

⁹ WBNT – Outfall near northern tip area.

f WBB – Sediment sample near burner area.

WESTBAY PROJECT Olympia, Washington Parametrix Client Project #4767-001

Specific Halogenated and Aromatic Hydrocarbons (EPA 8021B) in Soil

Sample Description		Method Blank	Sump-2	WBTP-06S	WBTP-06S Dup.	WBTP-07S	Sump
Date Sampled Date Analyzed		3/12/04	3/9/04 3/12/04	3/2/04	3/9/04 3/12/04	3/9/04 3/12/04	3/9/04 3/12/04
	MDL (mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
Want of londs	0.25	'n	ри	Tro	pu	pu	nd
vinyi cinomec Benzene	0.02	nd	pu	Pa	Pu	Pu	pu
Toluene	0.05	pu	pu	pd	E	pd .	Du T
Ethylbenzene	0.05	pu	nd.	ng.	DG	D 70	DI G
Total Xylenes	0.05	nd	nd	90		. PT	o -c
1.1-Dichloroethene	0.05	pu	pu	2	0	ם י	2 5
Methylene chloride	0.01	nd	nd	E	0 '	2 7	2 °C
trans-1.2-Dichloroethene	0.05	nd	nd	<u> </u>	110	27	ביי די
1,1-Dichloroethane	0.05	pu	pg '	Da.	DG T	DII.	ם נו
cis-12-Dichloroethene	0.05	pu	nd	B	<u>.</u>	ם מו	n to
Chloroform	0.05	пd	pu	2	H	ם מ	ם יונ יו
1.1.1-Trichloroethane (TCA)	0.05	nd	nd	밑		Di i) 1
Carbon tetrachloride	0.05	nd	pu	Dil	DI	nii F	
1.2-Dichloroethane	0.05	nd	nd	Dil.	E T	וו קיי	ָרָי רָּבְּי
Trichloroethene (TCE)	0.02	nd	E .	ng.	100	7 7	1 TO
1.1.2-Trichloroethane	0.05	пф	рш	Di .	D .	D T	יי ניי
Tetrachloroethene (PCE)	0.02	рu	pu	PE	Du	nd ,	יים
1 1 2. Tetrachloroethane	0.05	pu	nd	pu	nd	nd.	DI T
1,1,2,2-Tetrachloroethane	0.05	pu	pu	pa	Ħ	<u> </u>	DEI .
Surrogate Recovery (%)		86	122	98	115	111	99

"nd" Indicates not detected at listed detection limit. "int" Indicates that interference prevents determination. ACCEPTABLE RECOVERY LIMITS FOR SURROGATE (Chlorobenzene): 65%-135%

ANALYSES PERFORMED BY: Marilyn Farmer

ESN SEATTLE CHEMISTRY LABORATORY (425) 957-9872, fax (425) 957-9904

ESN Job Number: Client:

S40312-2 PARAMETRIX WESTBAY

Client Job Name:

Client Job Number:

4767

Analytical Result:	Anal	vtical	Res	ult
--------------------	------	--------	-----	-----

8270, mg/kg	-	MTH BLK	LCS	SUMP	WBTP-06S	WBTP-07S
Matrix	Soil	Soil	Soil	Soil	. Soil,	Soil
Date extracted	Reporting	03/15/04	,	03/15/04	03/15/04	03/15/04
Date analyzed	Limits	03/15/04	03/15/04	03/15/04	03/15/04	03/15/04
Moisture, %				86%	15%	7%
Pyridine	1.0	nď			= 24	
Analine	1.0			nd 	4122	nd '
Phenol	1.0	nd nd		nd	nd	nd 1
2-Chlorophenol	1.0	nd nd	-	nd.	nd	nd
Bis (2-chloroethyl) ether	1.0	nd		nd	nd nd	nd
1,3-Dichlorobenzene	1.0	nd		nd nd	nd	nd nd
1,4-Dichlorobenzene	1.0	nd		nd	nd	nd nd
1,2-Dichlorobenzene	1,0	nd		nd	nd	nd
Benzyl alcohol	1.0	nd		nd	nd	nd
2-Methylphenol (o-cresol)	1.0	nd		nd	nd.	nd nd
Bis (2-chloroisopropyl) ether	5.0	nd		nd	nd	nd
3,4-Methylphenol (m,p-cresol)	1.0	nd		nd	evel	nd
Hexacholorethane	1.0	nd		nd	nd	nd .
N-Nitroso-di-n-propylamine	1.0	nd		, nd	net	nd
Nitrobenzene	1.0	· nd		nd	rvit	nd
Isophorone	1.0	nd		nd	bet	nd
2-Nitrophenol	5.0	nd		nd	nd	nđ
4-Nitrophenol	5.0	nd		nd	nd	nd
2.4-Dimethylphenol	1.0	nd		nd	hid	nd
Bis (2-chloroethoxy) methane	1.0	nd		nd	nd	, nd
2,4-Dichlorophenol	5.0	nd		nd	nd	nd
1,2,4-Trichlorobenzene	1.0	nd		nd	nd	nd
Naphthalene	1.0	nd		nd	rid	nd
4-Chloroanaline	5.0	nd		nd	rpd	nd
Hexachlorobutadiene	1.0	nd	•	nđ	rvoi	nd
4-Chioro-3-methylphenol	- 5.0	nd		nd	rick	nd
2-Methylnapthalene	1.0	nđ		nd	nd	nd
1-Methylnapthalene	1.0	. nd		nd	nd	nd
Hexachlorocyclopentadiene	1.0	nd		nd	nd	nd
2,4,6-Trichlorophenol	- 5.0	nd		nd	nd	nd
2,4,5-Trichtorophenol	5.0	nd	:	nđ	nd	nd
2-Chloronaphthalene	1.0	· nd		nđ	nd	nd
2-Nitroanaline	5.0	nd		nd-	nd	nd
1,4-Dinitrobenzene	5.0	nd		nd	nd	nd
Dimethylphthalate	1.0	nd		nd	tic	nd
Acenaphthylene	0.1	· nd		nd	nd	nd
1,3-Dinotrobenzene	5.0	nd		nd	end	nd
2,6-Dinitrotoluene	1.0	nd		. nd	tid	nd
1,2-Dinitrobenzene	1.0	nd		nd	rid	nd
Acenaphthene	0,1	nd	100%	nd	nd	nd
3-Nitroanaline	5.0	nd		nd	nd	nd
Dibenzofuran	1.0	nd		nd	rick	nd
2,4-Dinitrotoluene	1.0	nd		nd		nd.
2,3,4,6-Tetrachlorophenol	1.0	nd	-	nd	nd	nd
2,3,5,6-Tetrachlorophenol	1.0	nd		nd		nď
2,4-Dinitrophenol	5.0	nd		nd		nd
Fluorene	0.1	nd nd		nd		
4-Chlorophenylphenylether	1.0	nd		nd	nd	
Diethylphthalate	1.0	nd		nd		
4-Nitroanaline	5.0	nd		nd		
4,6-Dinitro-2-methylphenol	5.0	nd		nd	राव	nd

ESN SEATTLE CHEMISTRY LABORATORY (425) 957-9872, fax (425) 957-9904

.ESN Job Number:

S40312-2

Client:

PARAMETRIX

Client Job Name: Client Job Number: WESTBAY 4767

Analytical Results

8270, mg/kg		MTH BLK	LCS	SUMP	WBTP-08S	WBTP-07S
Matrix	Soil	Soil	Soil	Soil	Soil	· Soil
Date extracted	Reporting	03/15/04		03/15/04	03/15/04	03/15/04
Date analyzed	Limits	03/15/04	03/15/04	03/15/04	03/15/04	03/15/04
Moisture, %		A named to the state of the sta		86%	15%	7%
N-nitrosodiphenylamine	1.0	nd		nd	no	nd
Azobenzene	1.0	nd		nd	nd	nd
4-Bromophenylphenylether	1.0	nd		nd	nal	nd
Hexachlorobenzene	1.0	nd		nd	not	· nd
Pentachlorophenol	5.0	nd	•	nd	nd	nđ
Phenanthrene	0.1	nd		nd.	nd	nd
Anthracene	0.1	nd	•	nd	nd	nd
Carbazole	1.0	nd		nd	na	nd
Di-n-butylphthalate	1.0	nd		nd	nd	nd
Fluoranthene	0.1	nd	101%	nd	nd	nd
Pyrene	0.1	nd		nd	nd	nd
Butylbenzylphthalate	1.0	nd	•	nd	nd	nd
Bis(2-ethylhexyl) adipate	1.0	nd	•	nd	nd	nd
Benzo(a)anthracene	0.1	nd		nd	net	nd
Chrysene	0.1	nd		nd	tuct	nd
Bis:(2-ethylhexyl) phthalate	1.0	nd		nd	nd	nd
Di-n-octyl phthalate	1.0	nd		nd	nd.	nd
Benzo(b)fluoranthene	0.1	nď		nd	nd	nd
Benzo(k)fluoranthene	0.1	nd		nd	nd	nd
Benzo(a)pyrene	0.1	nd	87%	nd	nd	nd
Dibenzo(a,h)anthracene	0.1	nd		nd	nd	nd
Benzo(ghi)perylene	0.1	nd		nd	nd	nd
Indeno(1,2,3-cd)pyrene	0.1	nd		nd	nid	nd
Surrogate recoveries						
2-Fluorophenol		131%	96%	108%	125%	67%
Phenol-d6		108%	78%	57%	72%	50%
Nitrobenzene-d5		131%	112%	128%	129%	90%
2-Fluorobiphenyl		139%	123%	132%	. 137%	91%
2,4,6-Tribromophenol		103%	65%	96%	88%	68%
4-Terphenyl-d14	vannera i co	143%	127%	150%	130%	97%

Data Qualifiers and Analytical Comments

nd - not detected at listed reporting limits Acceptable Recovery limits: 50% TO 150%

Acceptable RPD limit: 35%

WESTBAY PROJECT Olympia, Washington Parametrix Client Project #4767-001

Pesticide Analyses of Soil (EPA Method 8081)

Sample Description		Method	WBTP-06S	WBTP-06S	WBTP-07S
		Blank		Dup.	<u> </u>
Date Sampled			3/9/2004	3/9/2004	3/9/2004
Date Analyzed		3/15/2004	3/15/2004	3/15/2004	3/15/2004
•	MDL				
	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
a-BHC	0.001	nd	nd	nd	nd
b-BHC	0.001	nd	nd	nd	nd
g-BHC	0.001	nd	nd	nd	nd
d-BHC	0.001	nd	nd	nd	nd
Heptachlor	0.001	nd .	nd	nđ	nd
Aldrin	0.001	nd	nd	nd	nd
Heptachlor epoxide	0.001	nd	nd	nd	nđ
Endosulfan I	0.001	nd	nd	nd .	nd
Dieldrin	0.001	nd	nd	nd	\mathbf{nd}
4,4'-DDE	0.001	nd	nd	nd	,nd
Endrin	0.001	nd	nd	nd	nd
Endosulfan II	0.001	nd	nd	nd	nd
4,4'-DDD	0.001	nd	nd	\mathbf{nd}	nd
Endrin aldehyde	0.001	nd	nd	nd	nd
Endosulfan sulfate	0.001	nđ	nd	nd	ba
4,4'-DDT	0.001	nđ	nd	nd .	nd
Surrogate Recovery (To	CMX) (%)	88	105	120	123
Surrogate Recovery (D		101	110	104	88

"nd" Indicates not detected at listed detection limit:
"int" Indicates that interference prevents determination.

ACCEPTABLE RECOVERY LIMITS FOR SURROGATE (TCMX) AND (DCBP): 65% - 135%

ANALYSES PERFORMED BY:

Marilyn Farmer

ATTACHMENT 4

2007 Phase II ESA Data

BORING/WELL CONSTRUCTION LOG PROJECT NUMBER ABS-157-021 BORING/WELL NUMBER & SB-041 PROJECT NUMBER CUESTION BUT PLACE IT DATE COMPLETED BORING COORDINATES DIAL DATE COMPLETED AT GOMELT OF BORING COORDINATES DIAL DATE OF THAT HAVE LEVEL Y N/H BORING/WELL NUMBER & SB-041 TOTAL DEPTH OF BORING LOGS BORY AFTER COORDINATES DIAL DATE COMPLETED AT GOMELT OF BORING COORDINATES DIAL DATE OF COMPLETE AT A GOVERNMENT OF BORING COORDINATES DIAL DATE OF COMPLETE A COORDINATES DIAL DATE OF CASING ELEVATION DATE BORING/WELL CONSTRUCTION LOGGE BORING/WELL NUMBER & SB-041 AFTER OF COMPLETE AND A COORDINATES AND LING METHOD DIAL DATE OF COMPLETE AND A COORDINATES WELL DIAGRAM		Pa	ran	net	rix	, 1	nc.	3					
PROJECT NUMBER 45512 PO 4 PROJECT NUMBER 258-04 PROJECT NAME (JEST DAY & BOLL SPOR Phose IT DATE COMPLETED 3 QOTTOCATION OLOMBOL WAY SET DATE COMPLETED 3 QUIT DATE COMPLET										BORING/WELL CONS	STF	RUCT	ION LOG
PROJECTION OLYMPIC UA TOTAL DEPTH OF BORNING 18 7 FT COORDINATES UIT NOTATION OLYMPIC UA TOTAL DEPTH OF BORNING 18 7 FT COORDINATES UIT NOTATION TOTAL DEPTH OF BORNING 18 7 FT COORDINATES UIT NOTATION TOTAL DEPTH OF BORNING 18 7 FT COORDINATES UIT NOTATION TO COORDINATES UIT NOTATI		PROJ	IECT N	UMBE	R	<u>0</u>	<u>/3 °</u>	J -	5	7)- C2 2 BORING/WELL NUMBER #	S	100	~ · ·
COORDINATES DICTACT PUSC STATIC WATER LEVEL \(\frac{\pi}{2} \) A 1		PROJ	ECT N	AME		١	25H	000	1 8	Don't SPUR Phase IT DATE COMPLETED		2	907
COORDINATES DICTACT PUSC STATIC WATER LEVEL \(\frac{\pi}{2} \) A 1		LOCA	MOITA				0	<u>lym</u>	<u>101 </u>	TOTAL DEPTH OF BORING		100	8 Ef
SAMPLING METHOD SPONT S		COO	RDINA	TES _						**************************************		4 F t	
SAMPLING METHOD SCALEYE TOP OF CASING ELEVATION SECULIFIED TOP OF CASING ELEVATION DESCRIPTION DESCRIPTION SECULIFIED DESCRIPTION DOIL: Group Name, Group Symbol. Color, Plastichy, Grain Size, Method Color, Method Color, Plastichy, Grain Size, Method Color, Plastichy, Grain Size, Method Color, Method Color, Plastichy, Grain Size, Method Color, Method Color, Method Color, Method Color, Method Color, Method C		DRIL	ING M	ETHO	D		······································	$\overline{\mathcal{Q}}$	ire	CH PUS h STATIC WATER LEVEL Y		M	$A_{\underline{\underline{\underline{\underline{\underline{\underline{\underline{\underline{\underline{\underline{\underline{\underline{\underline{\underline{\underline{\underline{\underline{\underline$
DESCRIPTION SOLL GROUP Name, Group Symbol, Color, Plassicity, Grain Siza, BE WELL DIAGRAM Soll Bod Dog But Was a large of the soll of the		SAMI	PLING I	METH	OD _			2^{t}	<u>h+</u>	SPOON LOGGED BY	5e		
Substitute of 18" R. Road Balast 18-36" Soud, SW, 104R4/2 NP, Soud = Five -7 course 6 course = Five -7 med, DAMP Black discoloration 033" Lo 34" 33-36" mid Petrokum Odor. 6 ravel JW 104R4/2 750/6 6 course, 25% Soud O-24" Gravel Same as 10 YR 4/1, Rest is same as Obove. Shells Botton 18" 15- 20- 20- 20- 20- 20- 20- 20- 2		GROU	JND EL	EVAT	TON _				<u>Se</u>	caleve Top of Casing Elevation	-	<u></u>	17
Set 0-18" R. Road Balast 18-36" Sand, SW, 104R4/2 NP, Soud = Five -> course 6 case = Five -> med, DAMP Black discoloration @ 33" Lo 24" 33-36" mid Petrokum -5 case JW 104R4/2 > 5 CHC Gravel , 2596 Sand O-24" Gravel SAME as 10 R 44", Sand, SW, 104R4/2 10 NR 441, Rest is same as Obove. Shells BoHCM 18" 15-		Į Į	Z L	ERY S)	ID.	F	I	s,	LOG	DESCRIPTION	- 		
Set 0-18" R. Road Balast 18-36" Sand, SW, 104R4/2 NP, Soud = Five -> course 6 case = Five -> med, DAMP Black discoloration @ 33" Lo 24" 33-36" mid Petrokum -5 case JW 104R4/2 > 5 CHC Gravel , 2596 Sand O-24" Gravel SAME as 10 R 44", Sand, SW, 104R4/2 10 NR 441, Rest is same as Obove. Shells BoHCM 18" 15-		id)	100 100 100 100 100 100 100 100 100 100	COV	MPLE	E	(ft.)	S.C.	H	SOIL: Group Name, Group Symbol. Color, Plasticity, Grain Size	EPTI (ft.)	WE	LL DIAGRAM
18-36" Saud, SW, 104R4/7 NP, Saud = Five - recoirse Gravel = Five - red, DAMP Black discolaration @ 331" Lo 24" 33-36" mild Petroleum Odor. Gravel JW 104R4/7 Petroleum Odor. Gravel JW 104R4/7 TSOK Gravel, 250/6 Saud O-24" Gravel SAme as 10- 10- 24-48", Saud, Sw, 104R4/7 104R4/1, Rest is same as Olbove. Shells Bottom 18" 15-		ā.	_0	# S	SAI	111				Moisture Content, Density/Compaction, Miscellaneous	Ω	-5	1
NP, Soud = Five - 7 coirse Gravel = Five - 7 med, DAMP Black discolaration @ 3311 Lo 24" 33-36" mild Petrolum odor. Grovel JW 104R 4/12 7506 Gravel, 2596 Soud 0-24" Gravel SAME as 10- 24-48", Soud, Sw; 104R 4/12 104R 4/1, Rest is same as Olbove. Shells Botton 18" -20-				34		M	Blat		ecpo				
Gardi = Fine - 7 med , DAMP Black discoloration @ 3311 to 34" 33-36" mid Petrokum - 5 odor. Granel JW 104R 4/2 7506 Gravel, 2596 Sand 0-34" Gravel SAME as -10- 24-48", Sand, Sw., 104R 4/27 104R 4/1, Rest is same as above. Shells Bottom 18"1 - 15-				148			бр с. Сууджана		-critical distance	18-36" Sand, SW, 10484/2	_		
Black discoloration @33" Le 34" 33-36" mid Petroleum odor. Gravel Jun 1048 412 7506 Gravel, 256 Sand 0.24" Gravel Same as Above. 34-48", Sand, Sw., 1048 4127 1048 41, Rest is same as above. Shells Botton 18" -20-				,					C. 3	NP, Soud = Five -> course	_	-	
Lo 34" 33-36" mild Petroteum 50000. Gravel JW 104R 412 7506 Gravel, 2596 Saud C-24" Gravel SAME as Above 24-48", Soud, Sw., 108R 4127 104R 41, Rest is same as Above. Shells Bottom 18" -20-	ļ				GB-4 113	1	-\$ -	*	120	Gravel = Five-7 med, DAMP	-		19 4
Lo 34" 33-36" mild Petroteum 50000. Gravel JW 104R 412 7506 Gravel, 2596 Saud C-24" Gravel SAME as Above 24-48", Soud, Sw., 108R 4127 104R 41, Rest is same as Above. Shells Bottom 18" -20-			:		3.4			CHARLES TO SERVICE		· ·	_	Cars.	CURRE
Odor. Gravel JW 1048 412 7506 Gravel, 2506 Saud C-24" Gravel SAME as 10- Above 24-48", Saud, Sw., 1048 4127 1048 41, Rest is same as Obove. Shells Botton 18"1 -15-					584	\ /	 5			1-0 24" 33-36" mild Petrokum		0	
Gravel JW 104R 4/2 7506 Gravel Same as -10- Above Shells Botton 18" -20				<i>1</i>	back					1			
7506 Gravel, 2596 Saud 0-24" Gravel Same as 10- Above 10- 10- 24-48", Saud, Sw., 1048 4127 1048 41, Rest is same as Olbove. Shells BoHon 18"1 -15- 20- 20-				f.							Ĩ		
O-24" Gravel Same as Above 24-48", Soud, Sui, 1048427 104841, Rest is same as Olbove. Shells BoHom 18"1 -20-				710		$ \setminus $	- 1			13504 (20 d) 1044 41 4	-		
Above 24-48", Soud, Sw., 104R4127 104R411, Rest is same as Olbove. Shells Botton 18" -20-	1									1390 Graver, 2590 Sand	4		
Above 24-48", Soud, Sw., 104R4127 104R411, Rest is same as Olbove. Shells Botton 18" -20-		-								0-24" Leavel Same as			
24-48", Soud, Sw., 104R4127, 104R411, Rest is same as Olbove. Shells Botton 18"1							-10-				10-		
above. Shells Battan 18"1 -15-										<u> </u>	_		
above. Shells Battan 18"1 -15-										24-48", Soud, SW: 104R412-			
Obove. Shells Botton 18!! -15- -20- -20-	1		.]				-			101R41 Best 15 same as]		
Shells Botton 1811 -15-							. 1			1 I	1		
-20-							• -	,			4		
							-15-			Shells Botton 18" L	15-		
							-				+	-	
	T										-		
										<u> </u>	4		
							-20-		,		20		
Convinced Nove Page							20			ſ	20-		
Convinued Nove Page	At A Land						1			Ţ.			
Continued Nort Rose						-	-				-		
Continued Nort Rose		. 1	į,			F	4			·	-		•
Continued Newt Page			- in [.			-	-			1	-		,
						L	-25-		Ī	Continued Next Page	25	,	

Table 5-1. West Jackson Street to Bowman Avenue Soil Results

			Depth				Boring	Boring Location				Surface Sample Location
			(ft bgs):	SB-01	SB-02	SB-03	SB-04	SB-05	SB-05 (dnb)	SB-06	SB-07	SS-11
3	Analyfe	MTCA A	Units	2	2	က	က	8	ω	7	2	0
Petroleum	Motor Oil	2000	mg/kg	270	9	1100	46JB	4900B	350B	1700	2400	120B
	Diesel	2000	mg/kg	70B	17JB	220B	20JB	2400B	170B	380B	270B	19JB
Pesticides	Aldrin	NS	ug/kg	*B	ž Ž	*D	* 2	*QN	ND*	0.33.1*	*QN	0.14J*
	alpha-BHC	NS	ug/kg	0.66J	0.42	9	0.28J	N	QN	0,36J	N N	0.16J
	beta-BHC	SN	ug/kg	0.483*	Ž N	0.83*	0.23J	* N	* D	0.863*	*QN	0.8.
	delta-BHC	SN	. ug/kg	0.33	N O	N	2	S	ON	0.37J	2	ΩN
	gamma-BHC (Lindane)	10	ug/kg	0.691*	*ON	Ž	0.8√	*ON	S S	0.32	*ON	0.34J*
	4,4'-DDD	NS	ug/kg	0.52J	0.47J*	4,8,*	0.91J*	9	Q	¥_0.T	*QN	*ON
	4,4'-DDE	SN	ug/kg	ND*	*ON	, ND*	0.95J	47,*	ئ پ	1.5J	*ON	*ON
	4,4'-DDT	3,000	ug/kg	0.34J	0.4	S	0.33	<u>N</u>	Q.	0.57J	2	0.64J
	Endosulfan l	SN	ug/kg	*ON	*ON	*ON	0.18J*	*ON	*ON	* 2	* N N	*ON
	Endosulfan II	SN	ng/kg	S	Q.	2.2.7	N Q	N	Q N	9	2	N
	Endosulfan sulfate	NS	ug/kg	Ω	N	N	ND	Q.	ΩN	0.40	N Q	ON.
	Endrin aldehyde	NS	ug/kg	Q.	Q	2.1J	Q.	2	ΩN	ΩN	Ω	0.36J
	Heptachlor	NS	ug/kg	0.16J*	Ž N	*ON	0.26J*	*ON	* N	0.32J*	*ON	ND*
	Heptachlor epoxide	SN	ug/kg	0.41J*	0.17J*	* N	0.23	*ON	*QN	0.173*	*ON	0.21J*
	Endrin ketone	SN	ug/kg	*ON	Ž N	*ON	Ž N	*ON	*OZ	*ON	3.17*	ž Ž
	gamma-Chlordane	SN	ug/kg	0.19	0.27.5	*ON	ND*	*ON	*QX	*QN	*∩ N	0.38,1**
	A A STATE OF THE S		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1	TOPIC COPE	(2010						

| West Bay Rail Spur Phase II Environmental Site Assessment Report | City of Olympia Parks, Arts and Recreation

Table 5-1. West Jackson Street to Bowman Avenue Soil Results (Continued)

							Boring	Boring Location				Surface Sample Location
			(ft bgs):	SB-01	SB-02	SB-03	SB-04	SB-05	SB-05 (dnb)	SB-06	SB-07	58-11
	Analyte	MTCAA	Units	2	2	က	က		8	2	2	0
PCBs	PCB-1260	40	mg/kg	2	2	Ð	2	9	ΩN	ΩN	ND	0.011J
Herbicides	Pentachlorophenol	NC	ng/kg	N N	ND	250	ND	ND	ND	N O	N	g
PAHs	Naphthalene	5,000	ug/kg	270	0.56J	280	110	40	5,47	940	94	1.5
	2-Methylnaphthalene	S	ug/kg	130	0.43J	310	52	S	100	180	54	1.1
	1-Methylnaphthalene	SC	ug/kg	9/	0.32J	160	32	Q	78	110	36	0.64J
	Acenaphthylene	S	ug/kg	37	0.26J	41	13	N _D	4.7	300	15	3.8J
	Acenaphthene	S	ug/kg	24	8	58	17	N N	26	48	14	9
	Fluorene	S	ug/kg	24	0.24J	35	17	330	34	29	22	1.1
	Phenanthrene	S	ug/kg	250B	1.1JB	280B	100B	S	40B	500B	110B	4.2JB
	Anthracene	9	ug/kg	41B	0.34JB	93B	22B	9	12B	38B	10B	6.2JB
	Fluoranthene	8	ng/kg	270B	0.69JB	280B	130B	250B	20B	470B	100B	11B
	Pyrene	S	ug/kg	180B	0.81JB	260B	96B	440B	45B	440B	94B	8.9B
	Benzo[g,h,i]perylene ^a	S	ug/kg	77	3.27	120	21	21	9.4	30	46	9.6
	Benzo[a]anthracene	*	ng/kg	49	2	88	32	300	13	31	9	3.17
	Chrysene ^a	*	ug/kg	83	2	170	64	730	90	51	300	တ
	Benzofluorantheneª	*	ug/kg	86	N	180	71	Q.	18	28	110	16
	Benzo[a]pyrene ^a	100	ug/kg	39	3.5J	96	35	110	18	24	37	හ හ
	Indeno[1,2,3-cd]pyrene ^a	*	ug/kg	71	4.2	110	28	2	9.7	21	38	13
	Dibenz(a,h)anthracene	*	ug/kg	14	4.17	26	7.7	4.15	8.7	8.5	22	7
	11 11 11 11 11 11 11 11 11 11 11 11 11		**************************************		Table Continues)	nues)						

Table 5-1. West Jackson Street to Bowman Avenue Soil Results (Continued)

							Borin	Boring Location	5			Sample Location
\$ ⁶ .2			Depth (ft bgs):	SB-01	SB-02	SB-03	SB-04	SB-05	SB-05 (dup)	SB-06	SB-07	SS-11
,	Analyte	MTCA A	Units	2	2	ო	က	00	ထ	64	2	0
PAHs	Total cPAHs as Benzo[a]pyrene**	100	ug/kg	67.23	5.56	145.9	51.82	148.94	24.35	38.91	63.6	14.4
Metals	Arsenic	20	mg/kg	2.8	23	5.3	1.5.	2.1	1.7J	3.9	3.1	2
	Antimony	S	mg/kg	2.47	1.2.1	5.5	2.3J	<u>N</u>	N	7.7	2.1	2.27
	Beryllium	0.0	mg/kg	0.1	0.16	0.18	0.097	0.044	0.046J	0.086	0.15	9
	Cadmium	2	mg/kg	0,11J	0.015J	0.18J	2	0.43	0.15J	0.54	0.113	0.11J
	Chromium	19	mg/kg	12B	20B	17B	9.5B	9.3B	8.3B	19B	25B	16B
	Copper	NO	mg/kg	44B	21B	130B	41B	4.5B	4.4B	71B	41B	67B
	Lead	250	mg/kg	120B	4.8B	110B	30B	Ô.88B	1.3B	110	30	13B
	Nickel	NC .	mg/kg	20	12	46	13	9.2	10	21B.	31B	24
	Selenium	NG	mg/kg	1.6J	0.57J	2.3J	0.48J	S	Q.	3.2	2.8	1.97
	Zinc	NC	mg/kg	110B	29B	84B	33B	15B	17B	200B	61B	98B
	Mercury	8	mg/kg	0.036	0.019J	~-	0.085	S	Q	0.038	0.032	0.016J

Exceeds MTCA A Concentration

J = Analyte detected at an estimated concentration

B = Analyted detected in faboratory blank

ND = Not Detected

a = Carcinogenic PAH

NC = No cleanup level listed under MTCA

* = Cleanup level determined by toxicity equivalency method (not shown here)

** = Total of individual cPAHs multiplied by benzo(a)pyrene toxicity equivalency factor

Table 5-2. West Jackson Street to Bowman Avenue Groundwater Results

West Bay Rail Spur Phase II Environmental Site Assessment Report City of Olympia Parks, Arts and Rocreation

			Depth			Boring Location	tion		ſ
			(ft bgs):	SB-01	SB-03	SB-04	SB-04-dup	SB-05	
·	Analyte	MTCA	Units	ထ	6	4	4	6	
Petroleum	Motor Oil	9.0	l/bm	0.21JB	.2.7B	2.28	1.5B	28B	[
•	Diesel	0.8	mg/i	0.096JB	1.1B	0.39B	0.28B	10B	
	Gasoline	0.5	- l/gm	NA AN	NA	AN	NA	0.057	
Pesticides	alpha-BHC	NC	T/Bn	N ON	0.0022J	ND	QN.	AN	[
	beta-BHC	S	ng/L	N	0.026	0.0068J	0.00313	Ϋ́	
	delta-BHC	S	ng/L	QN .	0.011	0.0074J	S	₹ Z	
	gamma-BHC (Lindane)	0.2	ng/L	N	0.0021J	ΩN QN	2	Y	
	4,4'-DDD	8	ng/L	N ON	N N	0.0037J	2	. A	
	4,4'-DDT	0.3	ng/L	QN	0.014J	0.0058J	0.034	Υ X	
	Dieldrin	SC	ng/L	2	0.0039J	ΩN	2	. ∢ Z	
	Endosulfan II	NC	ng/L	Q	ΩN	0.0037J	ND	ΑΝ	, 44 7
	Endosulfan sulfate	S	T/6n	N N	0.0078J	ΩN	N	N A	4
	Endrin aldehyde	NC	ng/L	N	N	0.0051J	0.0045J	Ϋ́	
	Methoxychlor	NC	ng/L	N	0.027J	0.0054J	0.019J	N A	
	alpha-Chlordane	SC	ng/L	8	0.00233	۵N	S	Ϋ́	
	gamma-Chlordane	NC	ng/L	ND	0.0044J	N O N	QN	NA	
PAHs	Naphthalene	160	ng/L	0.028JB	0.074JB	0.59B	0.73B	NA	1
	2-Methylnaphthalene	S	ng/L	0.02JB	0.036JB	0.31B	0.35B	NA NA	
	1-Methylnaphthalene	NC	ug/L	ND	N O N	0.32	0.33	. NA	
				(Table Continues)	ies)				

Table 5-2. West Jackson Street to Bowman Avenue Groundwater Results (Continued)

					,	Boring Location	no		
			Deptin (ff bas):	SB-04	SB-03	SB-04	SB-04-dup	SB-05	
	\$ 5 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	MTCA	Units		6	4	4	O	
	Allayle	2	1/0.	CZ	0.02J	0.054J	0.065J	ΑN	
	Acenaphthylene	2 :	1/6n	2 o	O 029.1B	1.8B	1.8B	N AN	
	Acenaphthene) Z	ng/∟	0.032	0.46	1.2	1.1	A A	
	Fluorene	S S	ug/L "	E150.0	91.990 O	E96.0	0.91B	A A	
	Phenanthrene	S 5	ug/L	0.027.35	0.053-1	0.22	0.21	NA	
	Anthracene) (Z 2	ug/L	0.0133	0.079	1.3	£.	NA	
	Fluoranthene	2 2	1/g/L	0.025	0.0723	0.98	0.91	AN	
	Pyrene) (ug/L	0.0190	0.0524	0.09	0.097	ΑZ	
	Benzo[g,h,i]perylene	ָבַ .	¬/gn	25.50		0.28	0.28	Ϋ́Z	
	Benzo[a]anthracene	ĸ	ng/L	<u> </u>	2 6	000	0.32	ď	
	Chrysene	*	ug/L	Ω	0.0933	0.55) (VIZ.	
	Donas of hone	*	ng/L	ΩN	0.046J	0.34	0.35	1 :	14 c
		0	ug/L	ON N	Ω	0.17J	0.17J	NA .	; «
	penzolajpylene enzolajpylene	; ;	/0	0.036J	0.063	0.12	0.12	A V	
	Indeno[1,2,3-cd]pyrene	*	J [0.037.3	0.049J	0.051J	0.055J	A A	
	Dibenz(a,h)anthracene	4	1 E	0.0184	0.01913	0.2677	0.2702		
	Total cPAHs as Benzolalpyrene	 O.:1	ug/L		0.000741	0.00023.1	0.00024J	Y.	
Metals	Beryllium	O Z	mg/I		0.000	8700	0.019	A A	
	Chromium	0.5	l/gm	0.00123	0.0%	2 (0.000	ΔN	
	Connection	2	l/gm .	2	0.16B	0.18	0.1.0	2	
	DOM:	S	mg/l	0.0014JB	0.51B	0.038B	0.043B	NA :	
	Zinc	S	mg/l	<u>N</u>	0.19	0.031	0.035	NA	
***************************************	71117			(Table Continues)					

Table 5-2. West Jackson Street to Bowman Avenue Groundwater Results (Continued)

West Bay Rail Spur Phase II Environmental Site Assessment Report City of Olympia Parks, Arts and Recreation

		Depth			Boring Location	tion	
		(ft bgs):	SB-01	SB-03	SB-04	SB-04-dup	SB-05
Analyte	MTCA	Units	œ	6	4	4	δ
Arsenic	.005	l/gm	QN	0.0091	QN.	S	5 2
Antimony	S	l/gm	0.00034JB	0.0034B	0.0034B	0.00398	2 2
Cadmium	900.	mg/l	2	0.0051	0.000021	CINOSCO.	Y Z
Lead	.015	mg/l	0.000085.1	0.13	0.030	000	Y ?
Selenium	S	ma/l		0.000		, ocu,u	Y :
Thallium	S	ma/l) S	0.0021	UND - 1220000 0	ON	₹ Z
Mercury	200		2 2	0.00002	pe innono.o	0.0000753	NA
	200	125	מא	0.00035	S	OZ Z	ΑN

Exceeds MTCA A Concentration

NC = No cleanup level listed under MTCA

B = Analyted detected in laboratory blank

ND = Not detected

a = Carcinogenic PAH

NA ≃ Not analyzed J = Analyte detected at an estimated concentration

 * \cong Cleanup level determined by toxicity equivalency method (not shown here)

 ** = Total of individual cPAHs multiplied by benzo(a)pyrene toxicity equivalency factor

ATTACHMENT 5
RI/FS Data

PAGE 1 OF

PAGE

BORING/WELL CONSTRUCTION LOG PROJECT NUMBER WEST SAM. DORATION TOTAL DEPTH OF GORNING 12 TO COORDINATES DRILLING METHOD DIVECT YAME COORDINATES DRILLING METHOD DRILLING METHOD GROUND ELEVATION TOP OF GASING ELEV		ra	ran	net	TW,	In	24 28 (1)			•		•	÷
PROJECT NAME LOCATION TOTAL DEPTH OF BORNING 12-17 TOTAL DEPTH OF BORNING 12-17 SAMPLING METHOD DYPECT YIGH STATIC WATER LEVEL \$\frac{1}{2}\$ SAMPLING METHOD GROUND ELEVATION TOP OF CASING		:					•			BORING/WELL CON	ISTE	RUCT	ION LOG
LOCATION COORDINATES DRILLING METHOD STATIC WATER LEVEL ** LOGGED BY LAYILL TOP OF CASING ELEVATION TOP OF CASING EL								1-0°	4	BORING/WELL NUMBER # ST	3-29	2	
DIVECT WAS SAMPLING METHOD DIVECT WAS STATIC WATER LEVEL & STATIC WATER LEVEL & SAMPLING METHOD STATIC WATER LEVEL & SAMPLING WATER LEVE		PROJ	IECT N	IAWE	_VV4	CAT	<u> 8/1.14</u>	<u> </u>		DATE COMPLETED	}		
DRILLING METHOD SAMPLING METHOD GROUND ELEVATION TOP OF CASING ELEVATION WELL DIAGRAM Mobility Correction, Missolianeous and the property of th		LOCA	NOITA		 		<u>U</u>			TOTAL DEPTH OF BORING		·	
SAMPLING METHOD GROUND ELEVATION TOP OF CASING ELEVATION TOP OF CASI		1		-	3	\\\Cof	1-1)	111		INITIAL WATER LEVEL VIT			
BROUND ELEVATION TOP OF CASING ELEVATION DESCRIPTION SOLL Group Name, Group Symbol Color, Pleasich, Grain Size, BZ WELL DIAGRAM SOLL Group Name, Group Symbol Color, Pleasich, Grain Size, BZ WELL DIAGRAM Down Dalland W. 35 FF Fill Sund and Armyll, (Ingular months of bottom), mildfully This soll of prince of the bottom, mildfully This soll of the bot		DRILL	ING N	IETHO	D	nrec	TY	V15/1	<u> </u>	1			· · · · · · · · · · · · · · · · · · ·
WELL DIAGRAM Soll: Group Name, Group Symbol, Color, Plasticity, Grain Size, & & & & & & & & & & & & & & & & & & &		SAMI	PLING	METH	OD _			:		LOGGED BY U- MUUL		·	
Solis Group Name, Group Symbol, Color, Plasticity, Grain Size, Melature Content, Density/Compaction, Miscellaneous Melature Content, Density/Content, Density/Conten		GROU	JND EI	LEVAT	ION _	 				TOP OF CASING ELEVATION			
Solis Group Name, Group Symbol, Color, Plasticity, Grain Size, Melature Content, Density/Compaction, Miscellaneous Melature Content, Density/Content, Density/Conten		Ê	ູເກ	₩.,	₫.		6	1.06	DESCRIPTION	-	1_		
Derbalant vi-35ft fill, sandand gravel, angwall in what e bottom, mildführ sandand gravel, angwall in a sandand in what e bottom, mildführ sandand in what is sandand in what is sandand in what is sandand in sa		idd)	25	OVE	빌	E L	S.C.(일		our Sumbal Color Plantinity Grain Site	單	WEI	L DIAGRAM
Dumballant vi-35ft fill, sandant graph, angwell with a pottom, milkfollor assigned 3.5 ft pring or Rethe 45 fill gran to brance layer of roots and some sound oday. Sold pring or Rethe 45 fill gran to brance layer of roots and sold sold sold sold sold sold sold sol		윤	□ S	윤	SAN		Š	BRAP	Moisture Content	t, Density/Compaction, Miscellaneous	۵	į	
SN Sold politing or Return milder of Bertonite V Backfill of Son Assaura layer of roots SN Sold politing or Return milder of Bertonite V Backfill of Son Assaura layer of roots SN Sold politing or Return layer of roots Earth to be Bertonite V Backfill of Son Assaura layer of roots SN Sold of Son Assaura layer of roots A A The layer of roots SN Sold of Son Assaura layer of roots SN S						1	billig		D-la" ballwot	Α.			121
The state of the fill of the f			·	39/48		 	-		10"-25ff fill S	and and arrivel Ungwalk	}	1	9
The state of the fill of the f						-	Thill		motern a kamin	milketor	-		A
Mus 75 fill gran to Dm grand, microur 5- Backfill 5 Bac	-]			1.		THE WOLD PULLOR	~ (1) A)	ļ.	-	
Mus 75 fill gran to Dm grand, microur 5- Backfill 5 Bac			,	•		Contract of the second	755	E WYRA	BS4 PULLY	oto ato	<u> </u>		
Ushu Distribution of the solution of the solut							71(11	Die	4-5 fill aran.	to him armust mildodor		Bento	nite 0
Ushu Distribution of the solution of the solut	٠.			Anl .		₩"°		77	5-55 mm ya	many lainer W 1808	b	₹ '	1 (((((((((((((((((((
Ushu Distribution of the solution of the solut				148			1 .	<u> </u>	& Orman is oder		-		
Wet Cuft, shall a 50%, staw and -10- interbedded no odar, staw and -10- accessional -15202020-						\mathbb{A}	-15W			1 10 10	-		<u> </u>
Wet Cuft, shall a 50%, staw and -10- interbedded no odar, staw and -10- accessional -15202020-						4	4		15.5-12 gray	sana, sw, NP, (t-m)			
-15- -15- -20- -20-						1/-			Wet Cleft, st	ulla 50% silt layers			
-15- -15- -20- -20-				LE JUL	·	_ ₁₀			interbedded,	nodor, slaw droat	10-		
-15- -15- -20- -20-				(-89		XI			ocassional'	, -0	-10-		A
-20- -20- 20-	i					<u> </u>	1		. 🗆		-	,	۵
-20- -20- 20-						4	1		,	t			ئـــــــــــــــــــــــــــــــــــــ
-20- -20- 20-						-	+						
-20- -20- 20-	<i>\ \</i>	ļ	: 1			-	.		,				
-20- -20- 20-	-					15				•	—15—		•
VC BLANK 2/4/99		ı				'							
VC BLANK 2/4/99							1						
VC BLANK 2/4/99	ı			İ	İ	 	-				- 1	- /.	
VC BLANK 2/4/99						-	-			•			
VC BLANK 2/4/99					ŀ	-	4						
666 177 274 274 274 274 274 274 274 274 274 2						-20	_				20		
Continued Next Page —25—		-											
Continued Next Page —25—							1						
25— Continued Next Page —25—	66/			-			7		·		-		
New 1 25— Continued Next Page —25—	X 2/4					F	-					.	
25— Continued Next Page —25—	BLAN			Į		-	-						
	BWC					-25-			Con	tinued Next Page	-25		·

PAGE 1 OF

BORING/WELL CONSTRUCTION LOG BORING-WELL NUMBER & SB 24 DATE COMPLETED SIZE 108 COORDINATES DEPLIANTE METHOD ORIOUND ELEVATION TOTAL DEPTH OF BORING 125 INITIAL WATER LEVEL W 1 14 SAMPLING METHOD ORIOUND ELEVATION TOP OF GASING FLEVATION TOP OF GASING FLEVATION TOP OF GASING FLEVATION SOIL: Group Names Group Symbol Color, Pleasicly, Grais Size, Melling Mary No Medicine Consent, Davidly Computation, Miscolimocous of Medicine Consent, Davidly Consent,	Pa	rar	net	Tix	, 1	nc.	7							
DATE COMPLETED \$2108 LOCATION TOTAL DEPTH OF BORNO 12 FT COORDINATES DRILLING METHOD DYCK DUCK STATIO WATER LEVEL & SAMPLING METHOD GROUND ELEVATION TOP OF CASING ELEVATI					11 to	K	167	7-1	ากม	•				ION LOG
TOTAL DEPTH OF BORING 12 FT COORDINATES COORDINATES DEPTH OF BORING 12 FT COORDINATES DEPTH OF BORING 12 FT COORDINATES DEPTH OF BORING 12 FT COORDINATES DEPTH OF BORING 12 FT COORDINATES DEPTH OF BORING 12 FT COORDINATES SAMPLING METHOD GROUND ELEVATION TOP OF CASING ELEVATION TOP OF CASING ELEVATION TOP OF CASING ELEVATION TOP OF CASING ELEVATION TOP OF CASING ELEVATION WELL DIAGRAM Mobility Comman, Density Composition, Miscolitineous and Miscolitineous an	1			R _	01	3) " \A- 1	$\frac{(r) t}{2a_{n}}$	1-1	JUI	<u></u>			<u> </u>	
COORDINATES DERLINS METHOD STATE WATER LEVEL \$\frac{1}{2}\$ SAMPLING METHOD GROUND ELEVATION TOP OF CASING ELEVATION TOP OF CASING ELEVATION TOP OF CASING ELEVATION TOP OF CASING ELEVATION SOIL: Group Name, Group Symbol, Color, Pleasticity, Grain Size, But the b	İ					711	JU(K/\ 		,	• • • • • • • • • • • • • • • • • • • •	<u> </u>) <i>(</i>)		·
DRILLING METHOD SAMPLING											1/			·
SAMPLING METHOD GROUND ELEVATION TOP OF CASING RELEVATION TOP OF CASING RELEVATION TOP OF CASING RELEVATION DESCRIPTION SILE BLAND AND AND AND AND AND AND AND AND AND	1		-		7	(ON)	1)	arl		- 1	IT	Ī		
BROWND ELEVATION TOP OF CASING FLEVATION TOP OF CASING FLEVATION TOP OF CASING FLEVATION BE SOIL Group Name, Group Symbol, Color, Plasticky, Grain Stza, Molature Content, Density/Comparation, Miscellaneous and Molature Content, Density/Comparation, Miscellaneous and Molature Content, Density/Comparation, Miscellaneous and Molature Content, Density/Comparation, Miscellaneous and Molature Content, Density/Comparation, Miscellaneous and Molature Content, Density/Comparation, Miscellaneous and Molature Content, Density/Comparation, Miscellaneous and Molature Content, Density/Comparation, Miscellaneous and Molature Content, Density/Comparation, Miscellaneous and Molature Content, Density/Comparation, Miscellaneous and Molature Content, Density/Comparation, Miscellaneous and Molature Content, Density/Comparation, Miscellaneous and Molature Content, Density/Comparation, Miscellaneous and Molature Content, Density Content, Molature Content, Density Content, Molature Content, Density Content, Density Content, Miscellaneous and Molature Content, Density Content, Dens	1				[/]	1-61/	LV	iugi	1	_				
WELL DIAGRAM Description Soll Group Name, Group Symbol, Color, Plasticity, Grain Size Experience Description Soll Group Name, Group Symbol, Color, Plasticity, Grain Size Experience Description Soll Group Name, Group Symbol, Color, Plasticity, Grain Size Experience Description Soll Group Name, Group Symbol, Color, Plasticity, Grain Size Experience Description Description Soll Group Name, Group Symbol, Color, Plasticity, Grain Size Experience Description Description Description Soll Group Name, Group Symbol, Color, Plasticity, Grain Size Experience Description De	l			_				•						·
Solid Graph Park of the Control of t	GRO	UNDE	LEVAT	ION .				· · · · · · · · · · · · · · · · · · ·		TOP OF CASING ELEVATION				
Description of the state of the	Ē	s ≥×	ERY	9	F	I	S,	100	DESCRIPTION		-	-		
Description of the state of the	dd) (Sch	PE	E	EPT (ft.)	S.C.	F	SOIL: Group Name, Gr	our Symbol Color Placticity Grain	Sizo	FPT (ft.)	WEL	L DIAGRAM .
The second service of the second second service of the second second service of the second secon	Ⅱ	1 28	J.F.	SAN			j.	GRAF	Moisture Content	Density/Compaction, Miscellaneo	JS S	۵		
The second service of the second second service of the second second service of the second secon					1				D-3.5 A fill . 0	YAN ATAKU) ANGINGE	fn:			
The second service of the second second service of the second second service of the second secon			Agl.		M	-	511		mind dra	Delson of WD IA FA	w	- · -		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
The state of the s		Ì	148		IX		1 71		A I A I	Leur Mar P. 2011			Ē	
Shell fragments & Sand not large med -25-				ļ f	W				4 11 Das					[8]
Shell fragments & Sand not large med -25-						-	DYANK	10 .	3.5- HPT Bracy	us land, dkbrn Sit	m		•	A
Shell fragments & Sand not large med -25-			f		M	_	LIII		plant debids	i arags) pragnici adar	,			
Shell fragments & Sand not large med -25-			4417		M	— b —		:	11. TM			-5-	72 00	en Els A
Shell fragments & Sand not large med -25-			[$\ \ $		911		7-5 /1 fill, and	n growel, roundeed				1 4
Shell fragments & Sand nest was implementally and standard for the sand nest was implementally and the					1 1			∇	Sight provides	# visibly dk in colar	-		THE	111
-15152025 Continued Next Page -25					Ц	<u> </u>			7 7 7	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		_		M
-15152025 Continued Next Page -25			4		M	_			3-12H, Sana,	SW, gray, NP, F-m,	İ	l		A .
-15152025 Continued Next Page -25			4418		M	İ			Wet B 7A	silt interpodded us	na.	_]		12
-15152025 Continued Next Page -25			1-1			-10-		. [Shell from many	of I Canal Mixturior	1100	-10-		
-15152025 Continued Next Page -25					// }		ļ		CUISAI	VIT X SOMEWAY COURSE	107/6	9		
-20- -20- -25- Continued Next Page				4	H				- 10.7/47	4 .		- 4		
-20- -20- -25- Continued Next Page														
-20- -20- -25- Continued Next Page												1		
-20- -20- -25- Continued Next Page	1									r		1		
Continued Next Page						-15					-	-15		•
Continued Next Page		ļ	İ		-						-			
Continued Next Page					-	- 4					-	. 4	1	
Continued Next Page	ŀ									•				
Continued Next Page														
Continued Next Page		İ]			_	ı			•	T	1		
		ļ			-	-20-					 	-20	·	
					-	4		•			-	-		
		- 1				1	1		·					
										•				
												7		
						4	[F	1		
	\bot				\perp	25-			Cont	inued Next Page		-25-		

	Pal	ran	neti	rix,	Inc	21 21 🗓						
	PROJI LOCA COOF DRILL SAME	ECT N TION IDINATING M	AME .	W.	lest	1577 1300 14 Y	}_		BORING/WELL COMBORING/WELL NUMBER # SE DATE COMPLETED 5/21/08 TOTAL DEPTH OF BORING 12 INITIAL WATER LEVEL \$\Inceltar{\text{N}}\$ STATIC WATER LEVEL \$\Inceltar{\text{V}}\$ LOGGED BY \text{V} \text{V} \text{V} \text{V} TOP OF CASING ELEVATION	129	RUCTI	ON LOG
	PID (ppm)	BLOW	RECOVERY (inches)	SAMPLE ID.	DEPTH	U.S.C.S.	SRAPHIC LOG	DESCRIPTION SOIL: Group Name, Gr Moisture Content	oup Symbol, Color, Plasticity, Grain Size t, Density/Compaction, Miscellaneous	DEPTH (ft.)	WELI	L DIAGRAM
BWC BLANK 2/4/99			24/48		-15 -20 -25	9N:	非	6"3.5 ft-b5 grower 3.5 ft-b5 grower Struned Jovern Sm rounded g le.5-12/1 Sand, S weet & b.5 ft	pretro octor petro octor fill material, VISIbly helining zerro octor 35-44, ravel & Sand in, aray, NP, fc, , Shell 1582;	-10- -15- -25-	Bento	
												PAGE 1 OF

Parameti	rix, inc.		
PROJECT NUMBER PROJECT NAME LOCATION COORDINATES DRILLING METHOE SAMPLING METHOE	Direct YNSA	BORING/WELL COMBORING/WELL COMBORING/WELL NUMBER # SB: DATE COMPLETED 5/21/08 TOTAL DEPTH OF BORING 12 f INITIAL WATER LEVEL \(\subseteq \) STATIC WATER LEVEL \(\subseteq \) LOGGED BY \(\subseteq \) YWW TOP OF CASING ELEVATION	
PID (ppm) BLOW COUNTS RECOVERY (inches)	SAMPLE ID. CEXTENT DEPTH (ft.) (ft.) SOIT: Group Name of Moistrine Conte	Group Symbol, Color, Plasticity, Grain Size, ent, Density/Compaction, Miscellaneous	WELL DIAGRAM
29/48	3-leftfill graws black discolur petro edur, mon b-7ft, grawe ndor 7-12ft gran organic dare -152020-	Hollact, dry Itie, strong petro order I, gray with significant outhor & strong to overwhele st I, gravel fill, tanto gray, slight Sand, SW, Shell 50%, Sith interbeddeel	Bentmite S Bentmite S -10151525- PAGE 1 OF

F	arai	met	rix,	Inc	m)						
PF LC CC DF SA	ROJECT ROJECT ROJECT ROJECT ROBORNA RILLING ROUND R	NAME I ATES _ METHO I METH	D	235 WA Divelo	Billy	2-0%		BORING/WELL BORING/WELL NUMBER # DATE COMPLETED 5/2 TOTAL DEPTH OF BORING INITIAL WATER LEVEL \$ STATIC WATER LEVEL \$ LOGGED BY 100 TOP OF CASING ELEVATION	SB 1/08 12/4 12/4		TION LOG
(mad) Old	BLOW	RECOVERY (inches)	SAMPLE ID.	EXTENT DEPTH	U.S.C.S.	BRAPHIC LOG	DESCRIPTION SOIL: Group Name, Gr Moisture Content	oup Symbol, Color, Plasticity, Gra t, Density/Compaction, Miscellane	in Size,	E (E) WI	ELL DIAGRAM
BWC BLANK 2/4/99		448		-10-	Fill		Sft-12ft Sand Sitt interbedded then heavy Co organio debbris	tinued Next Page		5 Bent	PAGE 1 OF

PARAMETRIX, INC. BORING/WELL CONSTRUCTION LOG Boring/Well Number # SB - 32 Project Number 235-1577-024 Project Name Des(Be) Dark Date Completed 5/28 Location See Plan Total Depth of Boring 12/ Coordinates Initial Water Level Drilling Method Push Prope Static Water Level Sampling Method Logged by D. DINKULL Ground Elevation ~ 79/ Top of Casing Elevation GRAPHIC EE WELL DIAGRAM GEOLOGIC DESCRIPTION 0"-4" RN Topsoil w/woodd debris 4"-5" Gray, sandy gravel, dry, no HC odor 5'-12 Gray, med sand (Fill) 3 (50%) broken, no odor, wet below q' interfeds to 8 BOH @ 121 20 104 84(91) 43" 1545 WB-50-5B29-0090 (9 deptr) 4600 60A WB-GW-SB29-0100 (10/depta) Dx, AAHS, BIEX, Diss. Pb

50%-奶32

Table 3-1 RI/FS Soil Sample Results Summary

Sample Depth (ft): 6.5			Push Probe No.	SB-19	ı	SB-20	"	SB-21	SB-22	l	SB-24		SB-25		
Claim Hypercare Paph (R): 8.5		Sar	mple Depth (ft):	က် က က		بري ري	,	() ()	က္		(O)		3,5		
International color		Grounds	/ater Depth (ft): Date Sampled:	6.5		4 12/7/07	~	3.5 2/7/07	4 5/19/08	-	4 5/19/08		8 5/27/08		
2000 28.0 U 28.0 U 560.0	TROI EIM HVD	POCARR	MTCA A												ī
2000 55.0 U 230 2800)	000	=			0 000					0	Ξ	
0.03 7 7 10.03 10.04 10.07 10.007	ange Organics	mg/kg	2000	20.0 25.0	o =			2800					20.0	D	
0.03		ò		}	}				ı		,)	
7 MATIC HYDROCARBONS - 0.0073 U 0.0075 U 0.022 - 0.0073 U 0.0075 U 0.0087 - 0.0073 U 0.0075 U 0.0087 - 0.0073 U 0.0075 U 0.0088 U	ď	mg/kg	0.03			,		,	ı		i		0.02	\supset	
### ATIC HYDROCARBONS		mg/kg	7	ŧ		ı		1	t		,		0.05	⊃	
9 -	zene	mg/kg	တ			,			ı		٠		0.05	\supset	
MATIC HYDROCARBONS 0.0075 0.0073 0.00073 0.00075 0.0073 0.00075 0.0077 0.00075 0.00077 0.00077 0.00077 0.00075 0.00077 0.00077 0.00075 0.00077 0.00075 0.00078 0.00075 0.00078 0.00075 0.00078 0.00075 0.00075 0.00078 0.00075 0.00075 0.00078 0.00075 0.00078 0.00075		mg/kg	တ	1		,			ı		,		0.05	\supset	
- 0.0073 U 0.0075 U 0.022	SENIC POLYCY(CLIC ARC	MATIC HYDROC	ARBONS					ı		,				
e mg/kg - 0.0073 U 0.0075 U 0.0077 - <td>a)anthracene</td> <td>mg/kg</td> <td>- COSTS</td> <td>0.0073</td> <td>\supset</td> <td>0.0075</td> <td>_</td> <td>0.022</td> <td>ı</td> <td></td> <td></td> <td></td> <td>0.0074</td> <td>\supset</td> <td></td>	a)anthracene	mg/kg	- COSTS	0.0073	\supset	0.0075	_	0.022	ı				0.0074	\supset	
i)fluoranthene mg/kg - 0.0073 U 0.0075 U 0.0075 -	ne	mg/kg	ı	0.0073	\supset	0.0079		0.13	ſ		,		0.014		
jfuoranthene mg/kg - 0.0073 U 0.0075 U 0.0075 - - 1,2,3-cd)pyrene mg/kg - 0.0073 U 0.0075 U 0.0088 U - - 1,2,3-cd)pyrene mg/kg - 0.0073 U 0.0075 U 0.0088 U - - Ahs as mg/kg - 0.0056 0.0058 0.0260 - - Ahs as mg/kg - - 0.0056 0.0058 0.0260 - - Ahs as mg/kg - - 0.0056 0.0260 - - Ahs as mg/kg - - - - - - Ahs as mg/kg 20 - - - - - - - mg/kg 19/2000 - - - - - - - - - - - - - - - - - - -	b)fluoranthene	mg/kg	,	0.0073	\supset	0.0075	_	0.027	ı		,		0.018		
lypyrene mg/kg 0.1 0.0073 U 0.0075 U 0.0088 U - - 1,2,3-cd)pyrene mg/kg - 0.0073 U 0.0075 U 0.0088 U - - AHs as mg/kg - 0.0075 U 0.0058 0.0260 - - - Ahs as mg/kg - - 0.0058 0.0058 0.0260 - - Ahs as mg/kg - - - - - - - Ahrs as mg/kg - - - - - - - - Ahrs as mg/kg - </td <td>k)fluoranthene</td> <td>mg/kg</td> <td>1</td> <td>0.0073</td> <td>⊃</td> <td>0.0075</td> <td>\supset</td> <td>7600.</td> <td>1</td> <td></td> <td>1</td> <td></td> <td>0.0074</td> <td>\supset</td> <td></td>	k)fluoranthene	mg/kg	1	0.0073	⊃	0.0075	\supset	7600.	1		1		0.0074	\supset	
1,2,3-cd)pyrene mg/kg - 0.0073 U 0.0075 U 0.0088 U	a)pyrene	mg/kg	0.1	0.0073	⊃	0.0075	\Box	0.018	1		•		0.0074	\supset	
(a,h)anthracene mg/kg - 0.0073 U 0.0075 U 0.0088 U - - AHs as mg/kg 0.1 0.0056 0.0056 0.0260 - - - - y mg/kg 20 - - 144 U 13 U 13 U 13 U 144 U 154 2,3-cd)pyrene</td> <td>mg/kg</td> <td>ı</td> <td>0.0073</td> <td>⊃</td> <td>0.0075</td> <td></td> <td>0.0088 U</td> <td>1</td> <td></td> <td>1</td> <td></td> <td>0.0079</td> <td>_</td> <td></td>	1,2,3-cd)pyrene	mg/kg	ı	0.0073	⊃	0.0075		0.0088 U	1		1		0.0079	_	
AHs as mg/kg 0.1 0.0056 0.0058 0.0260 pyrene*	o(a,h)anthracene	mg/kg	ı	0.0073	\supset	0.0075	\supset	0.0088 U	1		ı		0.074	\supset	
Jpyrene* y mg/kg	AHs as	mg/kg	0.1	0.0056		0.0058		0.0260	1		•		0.011		
y mg/kg	a)pyrene*														
y mg/kg 7.2 U mg/kg 20 14 U mg/kg 2.0 14 U mg/kg 2.0 17.2 U mg/kg 2.0 0.72 U (0.72 U mg/kg 19/2000 13															
mg/kg 20 14 U	λu	mg/kg		1		1		3	7.2	⊃	6.4	⊃	1		
m mg/kg 2** 0.72 U (m mg/kg 19/2000 13 CrVI/CrIII mg/kg 390*** 13 CrVI/CrIII mg/kg 250 24 mg/kg 2 16 mg/kg 38** 16 mg/kg 16 mg/kg 14 U mg/kg 14 U mg/kg 14 U mg/kg 14 U mg/kg 14 U mg/kg 17		mg/kg	20	1		1			4	⊃	5	<u></u>	1		
m mg/kg 2 0.72 U (Im mg/kg 19/2000 13 CrVI/CrIII 24 mg/kg 250 24 mg/kg 2 16 mg/kg 38** 16 mg/kg 0.36 U (mg/kg 14 U mg/kg 44 mg/kg 410*** 44	E	mg/kg	2**	•					0.72	⊃	0.64	⊃	1		
Im mg/kg 19/2000 - - - 13 CrVI/CrIII mg/kg 390*** - - 24 mg/kg 250 - - - 11 mg/kg 38*** - - - 16 n mg/kg - - - 14 U n mg/kg -	Cadmium	mg/kg	7	t		ı		ı	0.72	⊃	0.64	⊃	t		
CrVI/CrIII mg/kg 390*** 24 mg/kg 250 111 mg/kg 38** 16 n mg/kg 14 U mg/kg 0.72 U mg/kg 44	Chromium	mg/kg	19/2000	1		1			<u>რ</u>		24		ı		
mg/kg 390*** 24 mg/kg 250 111 mg/kg 2 0.36 U (mg/kg 14 U mg/kg 0.72 U (mg/kg 44			CrVI/CrIII												
mg/kg 250 11 mg/kg 28** 0.36 U (mg/kg 38** 16 mg/kg 0.72 U (mg/kg 0.72 U (mg/kg 44	Copper	mg/kg	390***	ı					24		12		1		
mg/kg 2 0.36 U mg/kg 38** 0.36 U mg/kg 0.72 U mg/kg 0.72 U mg/kg		mg/kg	250			•			<u></u>		6.4	⊃	<u>.</u>		
mg/kg 38**· 16 mg/kg 14 U mg/kg 0.72 U (mg/kg 410*** 44	Mercury	mg/kg	2	•		,			0.36	⊃	0.32	-	1		
mg/kg 14 U mg/kg 0.72 U mg/kg 7.2 U mg/kg 410*** 44		mg/kg	38**	1		•			16		8				
mg/kg 0.72 U (mg/kg 7.2 U mg/kg 410*** 44	Selenium	mg/kg	t	F		,		ī	4	⊃	13		ı		
mg/kg 7.2 U mg/kg 410*** 44		mg/kg	1	ı		•			0.72	⊃	0.64	_	1		
410*** 44	Thallium	mg/kg	i	ı		,		1	7.2	⊃	6.4	_	1		
		mg/kg	410***	ı					44		38		ι		

Table 3-1 RI/FS Soil Sample Results Summary

	Lila	Push Probe No.	SB-26	出の	17	SB-28	-	SB-28	1000	SB-29		SB-30	_
	Sar	Sample Depth (ft):	4	m	Ó	N				4		ব	
	Groundw	Groundwater Depth (ft):	7.5	φ		7		7		6.5		- ∞	
PARAMETERS	Units	Date Sampled:	5/27/08	5/27/08	80/	5/27/08	4,	5/27/08	7/	5/27/08		5/27/08	
		MTCAA											
TOTAL PETROLEUM HYDROCARBONS	ROCARB												
Diesel Range Organics	mg/kg	2000	170.0	27.0	∩ 0	130.0		29.0	\supset	65.0		71.0	
Lube Oil	mg/kg	2000	580.0	130	0.	460.0		260.0		540.0		240.0	
BTEX	,			_	ļ							2	
Benzene	mg/kg	0.03	0.02	U 0.0	2 D	0.02	⁻⊃	0.02	\supset	0.02	\supset	0.02	=
Toluene	mg/kg	7	0.05	U 0.0	ιδ Ο	0.05	_	0.05	· _	0.05	· –	0.05	· =
Ethylbenzene	mg/kg	9	0.05		റ	0.05		0.05		0.05	· =	0.05) =
Xyelenes	mg/kg	တ	0.05	U 0.05		0.05	· _	0.05		0.05	, <u> </u>	0.05) <u> </u>
CARCINOGENIC POLYCYCLIC ARC	CLIC ARC	MATIC HYDROG	CARBONS			+	1))))))
Benzo(a)anthracene	mg/kg	1	0.23	0.0072	72 U	0.0069	\supset	0.0078	\supset	0.46		0.2	
Chrysene	mg/kg	ı	0.27	0.0072	72 U	0.0074	,	0.013)	0.58		0.25	
Benzo(b)fluoranthene	mg/kg	,	0.18	0.00	72 U	0.0069	\supset	0.013		0.4		0 18	
Benzo(k)fluoranthene	mg/kg	1	0.048	0.0072	72 U	0.0069	⊐	0.0078	\supset	0.11	-	0.046	
Benzo(a)pyrene	mg/kg	0.1	0.086	0.00	72 U	0.0069	\Box	0.0078	Ģ	0.2	g	0.089	
Indeno(1,2,3-cd)pyrene	mg/kg	,	0.035	0.0072	72 U	0.0069	· ⊃	0.0084	II:	0.071	.,	0.04	
Dibenzo(a,h)anthracene	mg/kg	1	0.016	0.0072	72 U	0.0069	· ⊃	0.0078		0.035		0.018	
Total cPAHs as	mg/kg	0.1	0.140	0.0054	54	0.0053	٥	0.0124		0.313	N. 77a	0.140	
Benzo(a)pyrene*												,	
METALS													
Antimony	mg/kg		ı	'				ı		ı		,	
Arsenic	mg/kg	20	1	1		t		. 1		1		ī	
Beryllium	mg/kg	2**	,	1		1		,		ı		,	
Cadmium	mg/kg	2		r		,		1		ı		,	
Chromium	mg/kg	19/2000	Î	,		,		ı		,		ı	
		CrVI/Criii											
Copper	mg/kg	390***	ı	1		1		ı					
Lead	mg/kg	250	9.1	5.4	<u> </u>	5.2	\supset	15.0		5.5	\supset	26.0	
Mercury	mg/kg	2	1	1				ι		t		1	
Nickel	mg/kg	38**		1		ı		,		,		,	
Selenium	mg/kg	. 1	r	1		,		,		t		,	
Silver	mg/kg	ī	1	1		ī		1					
Thallium	mg/kg	1	1	ı		τ		1		,		,	
Zinc	mg/kg	410***	1	1		,		,		ı		1	
			CTable C	ntinitos	_								

13.45

Table 3-1 RI/FS Soil Sample Results Summary

	4		1		-	The party of the p						
		rush Probe No.	SB-30 Dub.	S	57	SB-3		SS-12		SS-13	SS-14	4
	Sa	Sample Depth (ft):	4		O	(7)		9		0.5	6	
	Groundw	rater Depth (ft):	60		to	ග		1		1		
PARAMETERS	Units	Date Sampled:	5/27/08	512	5/27/08	5/28/08	co	12/7/07		12/7/07	12/7/07	7
		MTCAA										
TOTAL PETROLEUM HYDROCARB	ROCARB	S										
Diesel Range Organics	mg/kg	2000	120	īΟ	D 0	34.0	⊃	35	⊃	50.0 U	34.0	\Box
Lube Oil	mg/kg	2000	330	ιζ	545	68.0	D	69	⊃	100.0 U	68.0	\supset
BTEX												
Benzene	mg/kg	0.03	0.02	0.	02 U	0.02	\supset	1		1	•	
Toluene	mg/kg	7	0.05	0.	0.05 U	0.05	\supset	٠			'	
Ethylbenzene	mg/kg	တ	0.05 L	0	05 U	0.05	\supset	ī		ī	'	
Xylenes	mg/kg	တ	0.05	0	05 U	0.05	\supset			1	1	
CARCINOGENIC POLYCYCLIC ARC	CLIC ARC	MATIC HYDRO	CARBONS								-	
Benzo(a)anthracene	mg/kg	1	0.21	0.0	J.0076 U	0.009	\supset	0.063		0.013 U	0.01	4
Chrysene	mg/kg	t	0.27	0.0	0.0095	0.00	\supset	0.13		0.024	0.02	~-
Benzo(b)fluoranthene	mg/kg	,	0.19	0.0	U 970	0.009	\supset	0.15		0.027	. 0.01	_
Benzo(k)fluoranthene	mg/kg	ſ	0.049	0.0	0.0076 U	0.00	\supset	0.096		0.015	0.01	Ø
Benzo(a)pyrene	mg/kg	0.1	0.093	0.0	076 U	0.00	\supset	0.084		0.014	0.01	_
Indeno(1,2,3-cd)pyrene	mg/kg	ı	0.041	0.0	0.0076 U	0.009	\supset	0.078		0.016	0.00	$\overline{\Sigma}$
Dibenzo(a,h)anthracene	mg/kg	ı	0.018	0.0	0.0076 U	0.009	\supset	0.027		0.013 U	0.0091	
Total cPAHs as Benzo(a)pyrene*	mg/kg	0.1	0.147	0.0	0.0058	0.0068	m	0.127		0.033	0.016	(C)
METALS												
בה מ מ	ma/ka	250	26.0	נה	57	œ	_	1				

Table 3-2. RI/FS Groundwater Sample Results Summary

				ı		I									
		Push Probe No.	SB-25		SB-26		SB-27		SB-28		SB-29		SB.30		
	Ϊ́	Sample Depth (ft):	တ		7.		Œ		4		LU CO		0		
	Groundw	(water Depth (ft):	69		7.5		တ		. ~		ရ) 00		
PAKAMETERS	Units	Date Sampled:	5/27/08		5/27/08		5/27/08		5/27/08		5/27/08		5/27/08	-	
		MTCAA													
TOTAL PETROLEUM HYDROCARBO	ROCARE	SNOS													
Diesel Range Organics	mg/L	0.5	0.16	\supset	0.16	⊐	0.17	=	ς,	=	0.46	=	ر د	=	
Lube Oil	mg/L	0.5	0.27) _	0.30) <u> </u>	0.49)	3 5	> =	0 0	o	0.00	> =	
BTEX	•))	<u> </u>		5)	2.5)	0.20	5	
Benzene	na/L	ις	C	=	, C	=	٠ د	=	ć	Ξ		=	7	-	
Toluene	T/on	1000	5 0	=	- -) <u>-</u>		> =		> =	- <i>-</i>)	- , - ,	> :	
Ethylbenzene	na/L	700	5 5	=	. .) <u> </u>	- <u>-</u>) <u>=</u>) <u>:</u>	- , - ,	o :) ;)	> :	
Xylenes	ng/L	1000	0.0))	50) <u> </u>) <u>=</u>	5.0	> =) =	- r	> =	
CARCINOGENIC POLYCYCLIC ARON	SLIC ARC	IATIC HYDROCA	ARBONS)	•)	<u> </u>)	-)	?)	
Benzo(a)anthracene	ng/L		0.012	\supset	0.011	\supset	0.011		0.011	=	0.010	=	0.04		
Chrysene	ng/L		0.012	\supset	0.011	\supset	0.011		0.011	=	0.0	=	0.0		
Benzo(b)fluoranthene	ng/L	ı	0.012	\supset	0.011	\supset	0.011		0.011) =	0.00	=	7000	=	
Benzo(k)fluoranthene	ng/L	ı	0.012	⊃	0.011		0.011	· =	0.01	=	0.0	=	7000	> =	
Benzo(a)pyrene	ng/L	0.1	0.012	⊃	0.011	⊃	0.011		0.011	=	0.010	=	0.000) <u>-</u>	
Indeno(1,2,3-cd)pyrene	ng/L	r	0.012	_	0.011	\supset	0.011		0.011) <u> </u>	0.00	=	0.000) <u> </u>	
Dibenzo(a,h)anthracene	ng/L	1	0.012	\supset	0.011	_	0.011) <u> </u>	0.011	> =	0.010) <u> </u>	0.0007	> =	
Total cPAHs as	ng/L	0.1	0.0091		0.0083		0.0083	ı	0.0083)	0.0076)	0.000)	
Benzo(a)pyrene*	ı										0.00		0000		
DISSOLVED METALS															
Antimony	ng/L	***9	,				,		1		1				
Arsenic	ng/L	ις	'n				,		ı 1						
Beryllium	ng/L	4***	ı		ι		,		١ ،		1		ı		
Cadmium	ng/L	Ω	ı		ı		ı		1				t i		
Chromium	ng/L	50	ı		1		,		,		•		! 1		
Copper	ng/L	2.4**	ı		ı		,		,		1		: 1		
Lead	ng/L	8.1**	1.0	>	1.0	\supset	1.0		10		0		, ,	=	
Mercury	ng/L	0.025**	1		ı			•	,)	2 1)	? ')	
Nickel	ng/L	8.2**	1		,		ı		ı		ı		1		
Selenium	ng/L	150**	1		1				1		,				
Silver	ng/L	**6.1	1		r		ı		ı		,				
Thallium	ng/L	0.47**	ı		ı		ŧ		ı				i 1		
Zinc	ng/L	87**	t			İ	ı		1		ı		ı		
			(Table Continues	ontino	(sə						;		,	•	

41

Table 3-2. RI/FS Groundwater Sample Results Summary

		Amilian																					
					_	.		_	-	\supset	_		-	D	\supset	⊃	⊃	<u> </u>	⊃				_
SB-32	ූ ග	5/28/08			0.17	0.33		1.0	0.	1.0	1.0		0.013	0.013	0.013	0.013	0.013	0.013	0.013	0.0098			0.
) (⊃	⊃)	⊃) 0	_ 0) 0) 0	_ ○))	⊃ 0	92			
SB-5	හ ය	5/27/08			0.16	0.52		0.0	1.0	1.0	1.0		0.010	0.010	0.010	0.010	0.010	0.010	0.010	0.0076			2.7
.dn		60			⊃	⊃		⊋	⊃	⊃	⊃	ဟ	m	1	0 9	0		O 90	0 0	7			
SB-30 Dup	च 00	5/27/08			0.16	0.28		1.0	1.0	1.0	1.0	ARBON	0.013	0.011	0.0096	0.0096	0.0096	0.0096	0.0036	0.0081			
A POST	Sample Depth (ft):	Date Sampled:	MTCAA	BONS	0.5	0.5		വ	1000	700	1000	OMATIC HYDROCARBONS		•	τ	ı	0.1		í	0.1			
	es Francis	Units		OCARB(mg/L	mg/L		ng/L	ng/L	ng/L	ng/L	LIC ARC	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ug/L	ng/L			na/L
	13	PARAMETERS	Mary Company of the C	TOTAL PETROLEUM HYDROCARI	Diesel Range Organics	Lube Oil	BTEX	Benzene	Toluene	Ethylbenzene	Xylenes	CARCINOGENIC POLYCYCLIC AR	Benzo(a)anthracene	Chrysene	Benzo(b)fluoranthene	Benzo(k)fluoranthene	Benzo(a)pyrene	Indeno(1,2,3-cd)pyrene	Dibenzo(a,h)anthracene	Total cPAHs as	Benzo(a)pyrene*	DISSOLVED METALS	Lead

Notes:

cPAHs = Carcinogenic polycyclic aromatic hydrocarbons.

i,

Dup. = Duplicate sample.

MTCA = Model Toxics Control Act.

U = Analyte not detected above given practical quantitation limit.

Shaded Cells Exceeds

Exceeds screening concentration.

= Total of individual cPAHs multiplied by benzo(a)pyrene toxicity equivalency factor - 1/2 the reporting limit was used for non-detected concentrations.

** = Washington State surface water Applicable or Relevant and Appropriate Requirement (ARAR).

*** = State and Federal groundwater Maxiumum Contaminant Level (MCL).

- = Not available/not analyzed.

Table 10. Catch Basin Sample Results Summary¹

PARAMETERS	Units	Catch Basin No. Sample Depth (ft) ² : Date Sampled:	CB-01 0.5 8/12/09	Tarz i	CB-02 0.5 8/12/09		CB-03 0.5 8/12/09	Villagoria	CB-04 3 8/12/09	
TOTAL PETROLEUM HYDROCARBONS		RL.		•	-					
Diesel Range Organics	mg/kg	2000	30	U	65	U	29	1.1	₩-	
Lube Oil Range Organics	mg/kg	2000	60	U	880	U	29 77	U	75	
Gasoline Range Organics	mg/kg	100	7.1	U	5.4	U	77 5.4	U	130	
METALS	0 0			Ü	0.7	U	5.4	U	11.0	Ū
Chromium	mg/kg	2000	4.4		4-					
Copper	mg/kg	2000	14		17		14		16	
Lead		390	10		18		13		17	
Nickel	mg/kg	250	6	U	13		5.9	U	5.5	U
Zinc	mg/kg mg/kg	38 410	13		24		15		20	
	mg/kg	410	21		54		24		80	
VOLATILE ORGANIC COMPOUNDS Acetone	,									
	mg/kg	-	0.047		0.004	U	0.035		0.038	
Carbon Disulfide	mg/kg	-	0.015		8000.0	U	0.0021		0.00084	ı U
2-Butanone	mg/kg	-	0.0075		0.004	U	0.0048	U	0.0042	
1,2,4-Trimethylbenzene	mg/kg	••	0.0012	U	0.0008	U	0.00097	U	0.014	•
sec-Butylbenzene	mg/kg	-	0.0012	U	0.0008	U		Ū	0.0010	
p-Isopropyltoluene	mg/kg`	-	0.0012	U	0.0008	U	0.00097		0.0065	
SEMI-VOLATILE ORGANIC COMPOUNDS										
Phenanthrene	mg/kg	_	0.0079	U	0.014		0.0078		0.04	
Fluoranthene	mg/kg	-	0.0073	U	0.017		0.0078	U	0.21	
Pyrene	mg/kg	<u></u>	0.0095		0.017.			U	0.0073	
1-Methylnaphthalene	mg/kg	5	0.0033	U	0.018	U	0.0078	U	0.0073	U
2-Methylnaphthalene	mg/kg	5	0.0079	U	0.0078		0.0078	U	0.16	
Acenaphthylene	mg/kg	_	0.0079	U	0.0078	U	0.0078	U	0.11	
Acenaphthene	mg/kg	_	0.0079	U	0.0078	U U	0.0078	Ü	0.016	
Fluorene	mg/kg	, ea	0.0079	U	0.0078	U	0.0078 0.0078	U	0.015	
CARCINOGENIC POLYNUCLEAR AROMATIC HYDROCARBONS			0.0070	U	0.0070	U	0.0076	U	80.0	
Benzo(a)anthracene	ma /lea		0.00-0							
Chrysene	mg/kg	-	0.0079	U		U		U	0.0073	U
Benzo(b)fluoranthene	mg/kg	-	0.0079	U	0.0130			U	0.0073	U
Benzo(k)fluoranthene	mg/kg	₩		U	0.0091			U	0.0073	U
Benzo(a)pyrene	mg/kg	_		U		U	0.0078	U	0.0073	U
Indeno(1,2,3-cd)pyrene	mg/kg	0.1		U	0.0110		0.0078	U	0.0073	U
Dibenzo(a,h)anthracene	mg/kg	-		U		U	0.0078	U	0.0073	U
	mg/kg			U	0.0078	U	0.0078	U	0.0073	U
Total cPAHs as Benzo(a)pyrene ³	mg/kg	0.1	0.0060	U	0.0136		0.0546	U	0.0055	U

Notes:

CB-04

⁻ No comparative value established.

¹ Only detected analytes are reported for metals and volatile/semi-volatile organic compounds.

² Sample depth was recorded from surface of soil under the catch basin.

³ Total of individal cPAHs multipled by benzo(a)pyrene toxcity equivalency factor - half the practical quantitation limit was used for non-detect values. cPAHs Carcinogenic Polynuclear Aromatic Hydrocarbons.

ft Feet.

mg/kg Milligrams per kilogram.

RL Remedial level established in the RI/FS Work Plan.

U Analyte not detected above given practical quantitation limit.