APPENDIX A NOTICE OF INTENT PROOF OF PUBLICATION

PROOF OF PUBLICATION

BATTELLE 505 KING AVENUE COLUMBUS, OH 43201

STATE OF WISCONSIN, COUNTY OF BROWN:

I, being first duly sworn on oath, deposes and says: That I am now, and at all times embraced in the publication herein mentioned was the principal clerk of the printers and publishers of KITSAP SUN; that said newspaper has been approved as a legal newspaper by the order of the Superior Court of the County of Kitsap, in which County it is published and is now and has been for more than 6 months prior to the date of the publication hereinafter referred to, published in the English language continually as a daily newspaper in Bremerton, Kitsap County, Washington, a weekly newspaper in Kitsap County, Washington and is now and during all of the said time, was printed in an office maintained in the aforesaid place of publication of said newspaper; that the following is a true text of an advertisement as it was published in regular issues (and not in supplement form) of said newspaper on the following date(s), to wit: And on

09/06/2019, 09/07/2019, 09/08/2019

such newspaper was regularly distributed to its subscribers during all of said period

Subscribed and sworn to before on October 3, 2019

Legal Clerk

Wisconsin, County of Brown Nota

My commission

Publication Cost: \$1,420.80 Ad No: GCI0260626 Customer No. 888210 PO #:

Naval Base Kitsap Keyport Invites You to Participate in the Fifth 5-Year Review of Cleanup Actions July 2014 to July 2019

The Navy in cooperation with the U.S. Environmental Protection Agency and the Washington State Department of Ecology is initiating the fifth 5-year review of environmental cleanup actions at Naval Base Kitsap Keyport and invites the public to participate in this process. The purpose of the 5-year review is to ensure that the cleanup actions (remedies) continue to be protective of human health and the environment. These cleanup actions were established in Records of Decision (RODs) prepared under the Comprehensive Environmental Response, Compensation and Liability Act (CERCLA). The 5-year review is required under federal law because the cleanup actions have left some chemical contamination in place.

Site Name, Location, and Address:

Naval Undersea Warfare Center Keyport, Washington

Lead Agency Conducting the Review: United States Navy

BACKGROUND

The Naval Undersea Warfare Center was added to the National Priorities List (NPL) in October 1989. The site is now referred to by the Navy as Naval Base Kitsap Keyport. Cleanup actions have been conducted at several areas within Naval Base Kitsap Keyport Operable Units (OUs) 1 and 2 where environmental contamination was identified in the past. OU 1 consists of Area 1 (the former base landfill), and OU 2 consists of the remaining areas of concerns (Areas 2, 3, 5, 8, and 9). These sites have undergone environmental investigation and/or remediation to address the potential impacts of contamination to human health and the environment. Based on initial evaluation and investigations, Areas 3, 5, and 9 have been issued "No Further Action" determinations by the U.S. Environmental Protection Agency, as documented in the OU 2 ROD.

The remedy for Area 1, OU 1 consists of treating volatile organic compound (VOC) hot spots in the landfill using phytoremediation by poplar trees in concert with natural attenuation; removing PCB-contaminated sediments; upgrading the tide gate and landfill cover; implementing institutional controls; and conducting long-term monitoring.

The selected remedy for Area 2, OU 2 consists of institutional controls and groundwater monitoring.

The selected remedy for Area 8, OU 2 includes removal and off-site disposal of impacted soil above the groundwater table, implementing institutional controls, and long-term monitoring of groundwater, sediment, and marine biota.

An initial statutory 5-year review was finalized in 2000, and subsequent 5-year reviews were finalized in 2005, 2010 and 2015.

Site-specific information and links to documents such as records of decisions are available on the following Navy website: <u>https://www.navfac.navy.mil/navfac worldwide/pacific/fecs/northwest/about_us/northwest_documents/environmental-restoration/nbk_keyport.html</u>

YOU ARE INVITED TO PARTICIPATE IN THIS PROCESS

The Navy welcomes your participation in the 5-year review process. You may participate by submitting your comments or concerns about these environmental cleanup actions at Naval Base Kitsap Keyport by mail, telephone, or email. Point-of-contact information is provided below.

The completed fifth 5-year review document will be available for review at the Navy website listed above. A Notice of Completion will be published at that time in the North Kitsap Herald, Central Kitsap Reporter, Kitsap Sun and at *www.keyport98345.com*.

POINT OF CONTACT AND TELEPHONE NUMBER FOR ADDITIONAL INFORMATION NAVFAC Northwest Public Affairs Officer NAVFAC Northwest 1101 Tautog Circle Silverdale, WA 98315 (360) 396-6387 (telephone). E-mail: james.k.johnson3@navy.mil Anticipated Date of 5-Year Review Completion: December 2020

Naval Base Kitsap Keyport Invites You to Participate in the Fifth 5-Year Review of Cleanup Actions July 2014 to July 2019

Lang 2014 to July 2019 The Harry in cooperation with the LS. Enveronment Protection Agency and the Wathington State Department of Ecology is intaining the fith Strays review of enveronmental departicipation of the State Strate Reproduction of writes the public to participate in this process. The propess continue to be porticipated in the State Strategies and cancel actions were established in Accords of Decemon RCOG prepared using the Cancel actions and the service strategies and because the Cancel participate in the State Strategies and because the Cancel participate strategies and the service strategies and because the Cancel participation and the service composition and because the Cancel participate strategies and the service strategies and place.

Site Name, Location, and Address; Naval Undersea Warfare Center Keyport, Washington

Lead Agency Conducting the Review: United States Navy

United Statist Navy RACKEGDUD The Naval Underse Warters Center was added to the Netional Profiles UNIX (NC) - COLOR 1980. The site is now retended to the Netion as several areas within Naval Base Kraap Koppor Operable Unix (OU) and 2 withere environmental containation was identified in the past CU I consess of Area 1 (the Ioner: base laund), and OU 2 consists of Loss OU) and the Ioner base laund and the Ioner base laund and the advector of the Ioner base laund and the Ioner base laund and the hand - write environmental models and the Ioner mediation to advector of the Ioner base laund and the Ioner base laund and the advector of the Ioner base laund and the Ioner mediation to advector of the Ioner base laund and the Ioner mediation of the advector advector of the Ioner base laund and the Ioner mediation to advector advector advector of the Ioner base laund and the advector advector advector of the Ioner base laund and the advector advector advector of the Ioner base laund and the advector advector advector advector of the Ioner base laund and the advector advector advector of the Ioner base laund and the advector advector advector of the Ioner base laund and the advector advector advector of the Ioner base laund and the advector advector advector of the Ioner base laund and the advector advector advector of the Ioner base laund and the advector advector advector advector of the Ioner base laund and the advector ad

The enredy for Area 1, OU 1 coalists of basing volable organic compound (VOC) hot spots in the landfl using phytomediation by popl-trues in coacet, with natural stratustor, enrowing POE-contannets sedments: upgrading the tole gate and landfal cover, implementin instituctural controls, and conducting loop-ferm monitoring The selected remedy for Area 2, OU 2 consists of institutonal control and groundwate monitoring.

selected remedy for Are 8, OU 2 includes removal and 6 said of impacted soil above the groundwater table implem unoral controls, and long-term monitoring of ground ment and manine both.

An initial statutory 5-year review was finalized in 2000, and subsequ 5-year reviews were finalized in 2005, 2010 and 2015.

e-specific information and links to documents such as re-cisions are available on the following flavy website: <u>https: //ac.navy.mi/naviac.worldwide/pacific/test/nothwes/ibh</u> YOU ARE INVITED TO PARTICIPATE IN THIS PROCESS

The Navy welcomes your participation in the 5-year review process. You may participate by submitting your comments or concerns about these environmental cleanup actions at Naval Base Kitsap Keyport by mail, telephone, or email. Point-of-contact information is provided below.

ompleted frith 5-yearreview document will be a website listed above. A Nonce of Completion in the North Kitsap Herald, Central Kitsap Rep / export 8345 com. POINT OF CONTACT AND TELEPHONE NUMBER FOR ADDITIONAL INFORMATION

WFAC Northwest 01 Tautog Circle verdals, WA 9831 01 395-6387 (relea mad Lames, kjohn

Anticipated Date of 5-Year Review Completion: December 2020

Are right-turn arrows warranted on Viking Way intersections?

The in basket: Ted Newman and Brett Bernier would like to see a red-green right-turn signal installed on Viking Way in Poulebo where Lindvig Way and Pinn Hill Road cross it Ted wrote nearly a year ago, saying, "Im talking north-bound to turn right towards downtown Poulabo Folks head-ing through the intersection westbound have their own green light. Having a right-turn arrow would keep the northbound traffic flowing instead of having a line of cars backed up so far. This month, Brett risked the same issue. "With the in-creased traffic and backups that thave noticed in the Poulsbo area, it would seem advantageous to put green right-turn lights at the intersections of Viking Avenue and Lindvig Way and also at Bond Road and Highway 305. Three is a lireday a green right-turn light on Bond Road heading up towards High-pic Region has the call on that one The city of Poulsbo owns the Viking/Lindvig intersection and would decide that one Mike Lund, Poulsbo's public works director, says "As far as the Viking Ave signal goes, I am not planning on any changes

the Viking Ave signal goes, I am not planning on any changes to the system

to the system "A right green arrow to turn on to Lindvig would really be safe only for the movement when the Lindvig traffic is moving onto Viking. All other movements, there is potential for conflict.

Left turn from Viking - potential conflict with turning

traffic. I Finn Hill Movement – potential conflict with traffic Finn Hill Movement – potential conflict with traffic Finn Hill Movement – this would be the only movement H Lindvig movement – this would be the only movement that it would be a benefit. "The traffic does back up onto Viking some at peak times, but it's not that bad. I travel that road a lot myself and un-derstand the issues over there. "Requiring the right lane to stop is actually a benefit to traf-fic as a whole for that intersection. "It keeps the traffic speeds down while turning onto Lind-vig

"It keeps the traffic speeds down while turning onto Lind-"It allows some gaps in traffic for the traffic coming out of the commercial development on Lindvig (Third Avenue) "It also allows the light at Bond and Front Street to catch up on traffic so it's not backed all the way up Lindvig into the Vik-ing intersection more than it currently is" Doug Adamson, the spokesman for the Olympic Region of state highways, says Bertz's idea for Bond and 305 has merit "We forwarded his comment to our traffic engineers, who will Both Doug and Mike thanked our readers for their input "We truly appreciate readers bringing these suggestions to us," sud Doug "Any way we can increase efficiencies for trav-eleis, all the better for everyone involved."

Paving on Mile Hill Drive

The in basket: Patrick Carey writes, "I like the paving on Mile Hill Druve (in Port Orchard.) My question is why was the center lane not paved from under the overpass to the Olney-Jackson Avenue? The rest looks great" The out basket: Adamson says, "WSDOT strategically re-paves areas of the highway that need it the most This gener-ally means paving efforts focus on the most heavily used lanes

es 'Ultimately, your reader is seeing a cost-effective approach

to help preserve the highway while keeping it in good working orde

the center lane on Highway 166, which Patrick asked about, gets mostly slow-moving, turning traffic and many fewer vehicles than the through lanes

You see the same philosophy when the state repayes only the outside lanes of four-lane highways, which handle much heavier truck traffic than the inside lanes

Kitsap Sun

Customer service Customer service Is vew might an information online related to your absorbution with absorbutions of the point absorbution of the service of the context the kitsage surfammer and the context the kitsage surfammer and the surfamer as exceeded and the service of the phone at 1.844-800-7100 Operating News 30 mm et 600 pm t sources, 700 pm m 1000 pm for sectorical support of the support only I Sunday & Holidays, 7.00 a.m.-11.00 a.m.

Full access subscriptions

- un acteds subscriptions Subscrib and seve today by writing hittapsuncen/subscribe Subscribent below are biled per month and include access to kitapsuncen tablet and smarchone apps and the e-distion a digital registica of the print edition. Pediexry of the Monday through Sunday print editions: \$56.00° editions 155.00" # Delivery of the Thursday through Sunday print # Galvery of the Thursday print editions 122.00" * Dalvery of the Sunday print editions 122.00" * Davis ophicobie traves The IV boak can be added to select print subscriptions for an additional monthly charge Contact Customer Service for additional details

 Contact us
 1-844-900-7105

 Cvistomer Service
 1-804-900-7105

 Editor
 David Nelson 1/360-415-2679

 Advertising

 JBURGE
 360-702-3233

 Oblituaries
 360-702-3333

Corrections and clarifications Our goal is to promptly correct errors. Email is accuracy@kitsapsun.com to report a mistake or call 360-792-8558. Describe the error, who you saw it, the date page number or the URI.

Postal information

Postal information Krisas Sun, USPS +63-880, ISDs # 1050-3692, is published Anonday through Sunday at 545 fifth 51, Bremerich, WA 98337. Periodicals positige pad at Bremerich, WA 98337. Periodicals positige didress changes in Clustomer Ser (c6, PD Box 94090. Albuquerque, VIA 87195-9540

IN BRIEF

King Co. prosecutor will not retry couple in protest shooting

SEATTLE - The King County prose SEATLE - The King County Prose-curo's office will not retry a couple ac-cused in the shooting of an anti-fascist protester at the University of Washing-ton in January 2017 The prosecutors have been weigh-ing their chances on winning a unanti-

inous verdict in a retrial of Elizabeth and Marc Hokoana

mous verifiel in a retrial of Elizabeth and Marc Hokoana A jury in King County Superior Court deadlocked m August when the jury foreman says the panel split over ideological hnes, and the shooting vic-tim refused to testify Judge Kristen Richardson declared a mistrial and the prosecutor's office said Friday a retrial vould likely yield the same result. Elizabeth Hokoana had been changed with assault for shooting Joshua Dukes in the stimach while Marc Hokoana was charged with as-sault for firing peper spray into the crowd

crowd Elizabeth Hokoana savs Dukes had a knife and she fired after he grabbed her husband. No knife was found.

Washington state motorist gets 'A for effort' and \$228 ticket

SEATTLE – A motorist who police say used a black market to try to make the vehicle-tab streker on the heense plate appear current got an A for effort along with a \$228 ticket for expired

tabs Washington State Patrol spokes-woman Heather Axtman tweeted a photo of the doctored tabs Thursday, noting the "coloring skills are kind of

on point" But, Astman said, the effort didn't fool a tooper in Snohomish County

Vintage Direct Primary Care, LLC

Announces the addition of Reid Holtzclaw-Swan, MD now accepting new patients in our Poulsbo Clinic

Dr. Holtzclaw-Swan has been providing medical care to patients around the world since 1996 and on the Kitsap Peninsula since 2008. He is excited to join the team at Vintage Direct Primary Care. We are committed to deeply listening to our patients and taking as much time as needed with them - focusing on each individual, not computer screens.

Visit our website at www.vintagedpc.com to learn more about Vintage DPC. Contact us by email at <u>hello@vintagedpc.com</u>, phone at (360)930-3500, or text at (360)930-6882. Located at 19319 7th Avenue NE, Suite 114

Insurance Provides Coverage, We Provide Care.

Call or visit your local GEICO office for a free quote and receive two free movie passes

jeico.com/silverdale | 360-692-7741

w inquiries only. Value can't exceed 25 dollar fer valid only at this GFR location. Some discount verage, payment plans and features are not availad all states or in all GEICO companies. See geico.co more details. GEICO and Affiliates. Washington D

IN HEALTH IMAGING

A 3D Mammogram May Save Your Life— Have Your First Mammogram at 40 and Then Every Year Thereafter

3D Screening Mammograms are covered 100% by insurance and InHealth Imaging does not pass on the 3D fee to our patients.

 20700 Bond Road NE, Building B, Poulsbo

• 2601 Cherry Ave., Suite 105, Bremerton

 463 Tremont Street W., Suite 130, Port Orchard

Call now to schedule an appointment: 360-598-3141.

WE HELP WITH SOCIAL SECURITY DISABILITY APPLICATIONS

Representing Disabled Clients since 1992
96% approval rate 2006-2019
43 of 45 completed cased approved in 2018 Initial Applications, Appeals, Hearing

360-798-2920 MISSION POSSIBLE EMPLOYMENT SERVICES, INC.

> Naval Base Kitsap Keyport Invites You to Participate in the Fifth 5-Year Review of Cleanup Actions July 2014 to July 2019

The Navy in cooperation with the U.S. Environmental Protection Agency and the Washington State Department of Ecology is initiating the fifth 5-year review of environmental cleanup actions at Naval Base Kitsap Keyport and invites the public to participate in this process. The purpose of the 5-year review is to ensure that the cleanup actions (remedies) continue to be protective of human health and the environment. These cleanup actions were established in Records of Decision (RODs) prepared under the Comprehensive Environmental Response, Compensation and Liability Act (CERCLA). The 5-year review is required under federal law because the cleanup actions have left some chemical contamination in place.

Site Name, Location, and Address: Naval Undersea Warfare Center Keyport, Washington

Lead Agency Conducting the Review:

United States Navy

BACKGROUND

The Naval Undersea Warfare Center was added to the National Priorities List (NPL) in October 1989. The site is now referred to by the Navy as Naval Base Kitsap Keyport. Cleanup actions have been conducted at several areas within Naval Base Kitsap Keyport Operable Units (OUs) 1 and 2 where environmental contamination was identified in the past. OU 1 consists of Area 1 (the former base landfill), and OU 2 consists of the remaining areas of concerns (Areas 2, 3, 5, 8, and 9). These sites have undergone environmental investigation and/or remediation to address the potential impacts of contamination to human health and the environment. Based on initial evaluation and investigations, Areas 3, 5, and 9 have been issued "No Further Action" determinations by the U.S. Environmental Protection Agency, as documented in the OU 2 ROD.

The remedy for Area 1, OU 1 consists of treating volatile organic compound (VOC) hot spots in the landfill using phytoremediation by poplar trees in concert with natural attenuation; removing PCB-contaminated sediments; upgrading the tide gate and landfill cover; implementing institutional controls; and conducting long-term monitoring. The selected remedy for Area 2, OU 2 consists of institutional controls and groundwater monitoring.

Are right-turn arrows warranted on Viking Way intersections?

The in basket: Ted Newman and Brett Bernier would like to see a red-green right-turn signal installed on Viking Way in Poulsbo where Lindvig Way and Finn Hill Road cross it.

Ted wrote nearly a year ago, saying, "I'm talking northbound to turn right towards downtown Poulsbo. Folks heading through the intersection westbound have their own green light. Having a right-turn arrow would keep the northbound traffic flowing instead of having a line of cars backed up so far.

This month, Brett raised the same issue. "With the increased traffic and backups that I have noticed in the Poulsbo area, it would seem advantageous to put green right-turn lights at the intersections of Viking Avenue and Lindvig Way and also at Bond Road and Highway 305. There is already a green right-turn light on Bond Road heading up towards Highway 3. Has the state looked into the possibility of doing this?"

The out basket: Highway 305 is a state route, so its Olympic Region has the call on that one. The city of Poulsbo owns the Viking/Lindvig intersection and would decide that one.

Mike Lund, Poulsbo's public works director, says "As far as the Viking Ave signal goes, I am not planning on any changes to the system.

"A right green arrow to turn on to Lindvig would really be safe only for the movement when the Lindvig traffic is moving onto Viking.

All other movements, there is potential for conflict.

■ Left turn from Viking – potential conflict with turning traffic.

Finn Hill Movement – potential conflict with traffic

■ Viking Ave straight movements – no need for arrow as traffic already has green right of way.

■ Lindvig movement – this would be the only movement that it would be a benefit.

"The traffic does back up onto Viking some at peak times, but it's not that bad. I travel that road a lot myself and understand the issues over there.

"Requiring the right lane to stop is actually a benefit to traffic as a whole for that intersection.

"It keeps the traffic speeds down while turning onto Lindvig.

vig. "It allows some gaps in traffic for the traffic coming out of the commercial development on Lindvig (Third Avenue)

"It also allows the light at Bond and Front Street to catch up on traffic so it's not backed all the way up Lindvig into the Viking intersection more than it currently is."

Doug Adamson, the spokesman for the Olympic Region of state highways, says Brett's idea for Bond and 305 has merit. "We forwarded his comment to our traffic engineers, who will evaluate the possibility," he said.

Both Doug and Mike thanked our readers for their input.

Customer service

To view important information online related to your subscription, visit **aboutyoursubscription**. **kitsapsun.com**. You can also manage your subscription at **account.kitsapsun.com**.

Contact the Kitsap Sun for questions or to report issues via email at kitsapsun@gannett.com or by phone at 1-844-900-7106.

Operating hours are:

Monday-Friday: 8:00 a.m.-6:00 p.m.
 Saturday: 7:00 a.m.-11:00 a.m. for technical support only

Sunday & holidays: 7:00 a.m.-11:00 a.m.

Full access subscriptions

Subscribe and save today by visiting **kitsapsun.com/subscribe**.

Subscriptions below are billed per month and include access to kitsapsun.com, tablet and smartphone apps and the e-Edition, a digital

replica of the print edition. I Delivery of the Monday through Sunday print

editions: \$56.00*

Delivery of the Thursday through Sunday print editions: \$25.00*
Delivery of the Sunday print editions: \$20.00*

*Plus applicable taxes The TV book can be added to select print

subscriptions for an additional monthly charge. Contact Customer Service for additional details.

Contact us

Customer Service	
EditorDa	vid Nelson 360-415-2679
Advertising	
Obituaries	

Corrections and clarifications

Our goal is to promptly correct errors. Email us at accuracy@kitsapsun.com to report a mistake or call 360-792-8558. Describe the error, where you saw it, the date, page number, or the URL.

Postal information

Kitsap Sun, USPS #63-980, ISSN #1050-3692, is published Monday through Sunday at 545 Fifth St., Bremerton, WA 98337. Periodicals postage paid at Bremerton, WA 98337. **Postmaster**: Send address changes to Customer Service, PO Box 94090, Albuquerque, NM 87199-9940

IN BRIEF

King Co. prosecutor will not retry couple in protest shooting

SEATTLE – The King County prosecutor's office will not retry a couple accused in the shooting of an anti-fascist protester at the University of Washington in January 2017.

The prosecutors have been weighing their chances on winning a unanimous verdict in a retrial of Elizabeth and Marc Hokoana.

A jury in King County Superior Court deadlocked in August when the jury foreman says the panel split over ideological lines, and the shooting victim refused to testify.

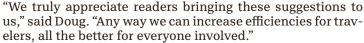
Judge Kristen Richardson declared a mistrial and the prosecutor's office said Friday a retrial would likely yield the same result.

Elizabeth Hokoana had been charged with assault for shooting Joshua Dukes in the stomach while Marc Hokoana was charged with assault for firing pepper spray into the crowd. Elizabeth Hokoana says Dukes had a knife and she fired after he grabbed her husband. No knife was found.

The selected remedy for Area 8, OU 2 includes removal and off-site disposal of impacted soil above the groundwater table, implementing institutional controls, and long-term monitoring of groundwater, sediment, and marine biota.

An initial statutory 5-year review was finalized in 2000, and subsequent 5-year reviews were finalized in 2005, 2010 and 2015.

Site-specific information and links to documents such as records of decisions are available on the following Navy website: <u>https://www.navfac.navy.mil/navfac worldwide/pacific/fecs/northwest/about_us/northwest_documents/environmental-restoration/nbk_keyport.html</u>


YOU ARE INVITED TO PARTICIPATE IN THIS PROCESS

The Navy welcomes your participation in the 5-year review process. You may participate by submitting your comments or concerns about these environmental cleanup actions at Naval Base Kitsap Keyport by mail, telephone, or email. Point-of-contact information is provided below.

The completed fifth 5-year review document will be available for review at the Navy website listed above. A Notice of Completion will be published at that time in the North Kitsap Herald, Central Kitsap Reporter, Kitsap Sun and at www.keyport98345.com.

POINT OF CONTACT AND TELEPHONE NUMBER FOR ADDITIONAL INFORMATION NAVFAC Northwest Public Affairs Officer NAVFAC Northwest 1101 Tautog Circle Silverdale, WA 98315 (360) 396-6387 (telephone) E-mail: james.k.johnson3@navy.mil

Anticipated Date of 5-Year Review Completion: December 2020

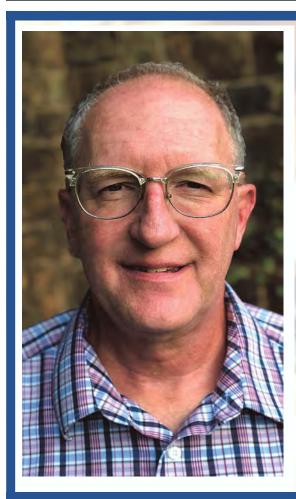
Paving on Mile Hill Drive

The in basket: Patrick Carey writes, "I like the paving on Mile Hill Drive (in Port Orchard.) My question is why was the center lane not paved from under the overpass to the Olney-Jackson Avenue? The rest looks great."

The out basket: Adamson says, "WSDOT strategically repaves areas of the highway that need it the most. This generally means paving efforts focus on the most heavily used lanes.

"Ultimately, your reader is seeing a cost-effective approach to help preserve the highway while keeping it in good working order."

The center lane on Highway 166, which Patrick asked about, gets mostly slow-moving, turning traffic and many fewer vehicles than the through lanes.


You see the same philosophy when the state repaves only the outside lanes of four-lane highways, which handle much heavier truck traffic than the inside lanes.

Washington state motorist gets 'A for effort' and \$228 ticket

SEATTLE – A motorist who police say used a black marker to try to make the vehicle-tab sticker on the license plate appear current got an A for effort along with a \$228 ticket for expired tabs.

Washington State Patrol spokeswoman Heather Axtman tweeted a photo of the doctored tabs Thursday, noting the "coloring skills are kind of on point."

But, Axtman said, the effort didn't fool a trooper in Snohomish County.

Vintage Direct Primary Care, LLC

Announces the addition of Reid Holtzclaw-Swan, MD now accepting new patients in our Poulsbo Clinic

Dr. Holtzclaw-Swan has been providing medical care to patients around the world since 1996 and on the Kitsap Peninsula since 2008. He is excited to join the team at Vintage Direct Primary Care. We are committed to deeply listening to our patients and taking as much time as needed with them - focusing on each individual, not computer screens.

Visit our website at <u>www.vintagedpc.com</u> to learn more about Vintage DPC. Contact us by email at <u>hello@vintagedpc.com</u>, phone at (360)930-3500, or text at (360)930-6882. Located at 19319 7th Avenue NE, Suite 114.

Insurance Provides Coverage. We Provide Care.

North Kitsap Herald

Affidavit of Publication

State of Washington } County of Kitsap } ss

Leanna Hartell being first duly sworn, upon oath deposes and says: that he/she is the legal representative of the North Kitsap Herald a weekly newspaper. The said newspaper is a legal newspaper by order of the superior court in the county in which it is published and is now and has been for more than six months prior to the date of the first publication of the Notice hereinafter referred to, published in the English language continually as a weekly newspaper in Kitsap County, Washington and is and always has been printed in whole or part in the North Kitsap Herald and is of general circulation in said County, and is a legal newspaper, in accordance with the Chapter 99 of the Laws of 1921, as amended by Chapter 213, Laws of 1941, and approved as a legal newspaper by order of the Superior Court of Kitsap County, State of Washington, by order dated June 16, 1941, and that the annexed is a true copy of NKH872019 5-YEAR REVIEW as it was published in the regular and entire issue of said paper and not as a supplement form thereof for a period of 3 issue(s), such publication commencing on 09/06/2019 and ending on 09/20/2019 and that said newspaper was regularly distributed to its subscribers during all of said period.

The amount of the fee for such, publication \$702.03.

Subscribed and sworn before me on this day of

Notary Public in and for the State of Washington. Battelle | HOLLY GOLDEN

RAID IN FUL

Naval Base Kitsap Keyport Invites You to Participate in the Fifth 5-Year Review of Cleanup Actions July 2014 to July 2019 The Navy in cooperation with the U.S. Environ-mental Protection Agen-cy and the Washington State Department of Ecology is initiating the fifth 5-year review of en-vironmental cleanup ac-tions at Naval Base Kit-sap Keyport and invites Keyport sap Keyport and invites the public to participate in this process. The purpose of the 5-year review is to ensure that the cleanup actions (remedies) continue to be protective of human health and the environ-ment. These cleanup actions were established in Records of Decision (RODs) prepared under the Comprehensive Environmental Response, Compensation and Liability Act (CERCLA). The 5-year review is re-quired under federal law because the cleanup ac-tions have left some chemical contamination in place. Site Name, Location, and Address: Naval Undersea Warfare Center Keyport, Washington Lead Agency Conduct-ing the Review: United States Navy BACKGROUND Undersea The Naval

Warfare Center was added to the National Priorities List (NPL) in October 1989. The site is now referred to by the Navy as Naval Base Kitsap Keyport. Cleanup actions have been conducted at several areas within Naval Base Kitsap Keyport Operable Units (OUs) 1 and 2 where environmental contamination was identified in the past. OU 1 consists of Area 1 (the former base landfill), and OU 2 consists of the remaining areas of concerns (Areas 2, 3, 5, 8, and 9). These sites have undergone environmental investigation and/or remediation to address the potential impacts of contamination to human health and the environment. Based on initial evaluation and investigations, Areas 3, 5, and 9 have been issued "No Further Action" determinations by the U.S. Environmental Protection Agency, as documented in the OU 2 ROD. The remedy for Area 1, OU 1 consists of treat-ing volatile organic compound (VOC) hot spots in the landfill using phytoremediation by poplar trees in concert with natural attenuation; removing PCB-contaminated sediments; upgrading the tide gate and landfill cover; implementing institutional controls; and conducting long-term monitoring. The selected remedy for Area 2, OU 2 consists of institutional controls and groundwater monitoring. The selected remedy for Area 8, OU 2 includes removal and off-site disposal of impacted soil above the groundwater table, implementing in-stitutional controls, and long-term monitoring of groundwater, sediment, and marine biota. An initial statutory 5-year review was finalized in 2000, and subsequent 5-year reviews were finalized in 2005, 2010 and 2015. Site-specific information and links to documents such as records of decisions are available on the following Navy web-

1. . .

.

site: https://www.navfac.navy.mil/navfac_worldwid e/pacific/fecs/northwest/about_us/northwest_documents/environmentalrestoration/nbk_keyport.html YOU ARE INVITED TO PARTICIPATE IN THIS PROCESS The Navy welcomes your participation in the 5-year review process. You may participate by submitting your com-ments or concerns about these environmental cleanup actions at Naval Base Kitsap Keyport by mail, tele-phone, or email. Pointof-contact information is provided below. The completed fifth 5-year review document will be available for re-view at the Navy website listed above. A Notice of Completion will be published at that time in the North Kitsap Herald, Central Kitsap Reporter, Kitsap Sun and at www.key-port98345.com. POINT OF CONTACT AND TELEPHONE NUM-BER FOR ADDITIONAL INFORMATION NAVFAC Northwest Public Affairs Officer NAVFAC Northwest 1101 Tautog Circle will be available for re-1101 Tautog Circle Silverdale, WA 98315 (360) 396-6387 (telephone) È-mail: james.k.johnson3@ navy.mil Anticipated Date of 5-Year Review Completion: December 2020 Published: North Kitsap Herald September 6, 13 and 20, 2019 Legal #: NKH872019

h e luting ponds and wetlands.

Long ago, TV newscast-

Salamanders: tiny creatures with big impact

In one day, a single salamander may eat

KITSAP, NATURALIY **By NANCY SEFTON**

wondered who's peering at you through the greenery? A black bear maybe? A wildcat? Strangely, one of the most influential "predators" here is probably hiding under a rock! In a lifetime of hiking, you may never glimpse these tiny "heroes," even though the forest floor literally teems with them.

They're called woodland salamanders. These fourlegged, flat-headed, longtoed, long-tailed, bug-eyed, slippery amphibians (relatives of frogs) are at home in both land and water. And believe it or not, these tiny critters (from 3 to 7 inches long) are crucial to the flow of nutrients through our forests, and to the fight against climate change.

Who'd Salamanders? have thought?!

Salamanders breed in ponds and streams, dining on aquatic bugs, until they develop lungs that replace the external gills. Then, taking up life on land, they wander widely until they return to the same breeding pond (some species guided by earth's magnetic field).

So how do these shy creatures help us fight global warming? Wrap your

20 ants, two flies or beetle larvae, one adult beetle and a springtail. mind around this:Fallen leaves accumulate on the

forest floor where they're ripped into bits and gobbled by hoards of insects.

The resulting leaf litter contains 50% carbon. Excess carbon dioxide (CO2), released into the atmosphere, is gradually warming the Earth.

Enter the salamanders! It so happens that they feast on leaf-shredding insects. Voila: fewer bugs and more undamaged leaves.

Now, the important step: if those leaves are left intact, they pile up in layers, holding onto the carbon until it's captured by the soil, and locked up underground.

In one day, a single salamander may eat 20 ants, two flies or beetle larvae, one adult beetle and a springtail. Multiply that by the estimated density of about 750,000 salamanders per square mile of forest, and you have an amazing system that begins with Mother Nature's control over insects with an appetite for dead leaves, and ends with less CO2 in our atmosphere. A little mind-boggling, but it works.

The proof lies with a recent test where several enclosures (like raised-bed gardens) were created in a northwest forest; screening confined salamanders certain enclosures. to while leaf-gobbling insects had free passage throughout. The results? In enclosures with no salamanders, more leaves were shred-

> POULSBO HISTORICAL SOCIETY **Poulsbo Boats** By Brian Smith with Mike Dennis 9:30 a.m. Tuesday, September 10 Poulsbo City Hall Council Chambers **NORWEGIAN LUNCH BUFFET** Wednesdays 11am - 2pm Soup, open faced sandwiches, lefse, krumkake, desserts, beverages, etc. Public Welcome \$12 SONS OF NORWAY

18891 Front Street • Downtown Poulsbo

360-779-5209 • www.poulsbosonsofnorway.com

er Tom Brokaw reported that amphibian numbers were dropping every-where. He blamed natural ded by the bugs, releasing more carbon into the atmochanges beyond human control. Today, "we've met sphere. Scientists calculate the enemy, and it is us." that on one acre of forest. Nevertheless, small but salamanders send about 180 pounds of carbon into helpful steps are being taken. Scientists are dealthe soil, rather than into ing with the spread of funthe air. It's Nature's finegal diseases, and loggers tuned system, unless (you guessed it!) humans interare starting to abandon fere. Nowadays, logging those sobering clear-cuts, leaving some older trees practices and new wildlife standing to store excess diseases create problems. Amphibians, historically carbon and create havens

immune to fungal infecfor wildlife. tions, are starting to fall The gradual loss of our amphibians is just anothprey to these, thanks perhaps to chemical contamier shot across the bow. Salamanders are one small nation from human activity. piece of the puzzle, but Pavement, introduced into their plight reflects our own forests, contains chemicals harmful to salamanders need to solve a problem we alone created. and other amphibians, pol-

Naval Base Kitsap Keyport Invites You to Participate in the Fifth 5-Year Review of Cleanup Actions July 2014 to July 2019

The Navy in cooperation with the U.S. Environmental Protection Agency and the Washington State Department of Ecology is initiating the fifth 5-year review of environmental cleanup actions at Naval Base Kitsap Keyport and invites the public to participate in this process. The purpose of the 5-year review is to ensure that the cleanup actions (remedies) continue to be protective of human health and the environment. These cleanup actions were established in Records of Decision (RODs) prepared under the Comprehensive Environmental Response, Compensation and Liability Act (CERCLA). The 5-year review is required under federal law because the cleanup actions have left some chemical contamination in

Site Name, Location, and Address: Naval Undersea Warfare Center Keyport, Washington

Lead Agency Conducting the Review: United States Navy

BACKGROUND

BACKGROUND The Naval Undersea Warfare Center was added to the National Priorities List (NPL) in October 1989. The site is now referred to by the Navy as Naval Base Kitsap Keyport. Cleanup actions have been conducted at several areas within Naval Base Kitsap Keyport Operable Units (OUs) 1 and 2 where environmental contamination was identified in the past OU 1 consists of Area 1 (the former base landfill), and OU 2 consists of the remaining areas of concerns (Areas 2, 3, 5, 8, and 9). These sites have undergone environmental investigation and/or remediation to address the potential impacts of contamination to human health and the environment. Based on initial evaluation and investigations, Areas 3, 5, and 9 have been issued "No Further Action" determinations by the U.S. Environmental Protection Agency, as documented in the OU 2 ROD.

The remedy for Area 1, OU 1 consists of treating volatile organic compound (VOC) hot spots in the landfill using phytoremediation by poplar diation by poplar sediments; upgrading the tide gate and landfill cover; implementing institutional controls; and conducting long-term monitoring. The selected remedy for Area 2, OU 2 consists of institutional controls and groundwater monitoring.

The selected remedy for Area 8, OU 2 includes removal and off-site disposal of impacted soil above the groundwater table, implementing institutional controls, and long-term monitoring of groundwater, sediment, and marine biota.

An initial statutory 5-year review was finalized in 2000, and subsequent 5-year reviews were finalized in 2005, 2010 and 2015.

Site-specific information and links to documents such as records of decisions are available on the following Navy website: <u>https://www.</u> navfac.navy.mil/navfac worldwide/pacific/fecs/northwest/about us/ northwest_documents/environmental-restoration/nbk_keyport.html

YOU ARE INVITED TO PARTICIPATE IN THIS PROCESS

The Navy welcomes your participation in the 5-year review process. You may participate by submitting your comments or concerns about these environmental cleanup actions at Naval Base Kitsap Keyport by mail, telephone, or email. Point-of-contact information is arouided below: is provided below.

The completed fifth 5-year review document will be available for review at the Navy website listed above. A Notice of Completion will be published at that time in the North Kitsap Herald, Central Kitsap Reporter, Kitsap Sun and at www.keyport98345.com.

POINT OF CONTACT AND TELEPHONE NUMBER FOR ADDITIONAL INFORMATION NAVFAC Northwest Public Affairs Officer NAVFAC Northwest NAVFAC Northwest 1101 Tautog Circle

Silverdale W/A 98315 (360) 396-6387 (telephone)

-mail: james.k.johnson3@navy.mil

Anticipated Date of 5-Year Review Completion: December 2020

While small, forest salamanders play a big role in balancing natural CO2 emissions. Photos courtesy Nancy Sefton

Phone and Internet Discounts Available to CenturyLink Customers

The Washington Utilities and Transportation Commission designated CenturyLink as an Eligible Telecommunications Carrier within its service area for universal service purposes. CenturyLink's basic local service rates for residential voice lines are \$25.50 per month and business services are \$37.00 per month. Specific rates will be provided upon request.

CenturyLink participates in a government benefit program (Lifeline) to make residential telephone or broadband service more affordable to eligible lowincome individuals and families. Eligible customers are those that meet eligibility standards as defined by the FCC and state commissions. Residents who live on federally recognized Tribal Lands may qualify for additional Tribal benefits if they participate in certain additional federal eligibility programs. The Lifeline discount is available for only one telephone or broadband service per household, which can be on either wireline or wireless service. Broadband speeds must be 18 Mbps download and 2 Mbps upload or faster to qualify.

A household is defined for the purposes of the Lifeline program as any individual or group of individuals who live together at the same address and share income and expenses. Lifeline service is not transferable, and only eligible consumers may enroll in the program. Consumers who willfully make false statements in order to obtain Lifeline telephone or broadband service can be punished by fine or imprisonment and can be barred from the program.

If you live in a CenturyLink service area, please call 1-800-244-1111 or visit centurylink.com/lifeline with questions or to request an application for the Lifeline program.

Recalled generator likely the cause of Kingston garage fire

An investigator with the Kitsap County Fire Marshal's Office has determined that a recalled generator was likely the cause of a Sept. 5 blaze at an off-duty firefighter's home near Kingston.

The firefighter's garage was gutted as a result of the blaze and most of its contents were destroyed. According to a release from North Kitsap

Fire & Rescue, the damage was limited by the homeowner's quick actions and the fire department's rapid response.

Although the flames didn't spread beyond the detached structure to the nearby home and no one was injured in the incident, officials hope to prevent future incidents by calling attention to generator safety tins

North Kitsap Fire & Rescue (NKF&R) and Poulsbo Fire Department (PFD) crews were alerted to the fire at 7:55 p.m. Sept. 5, after the off-duty NKF&R lieutenant saw flames coming from his home's detached garage. He immediately asked his wife to call 911 and evacuate the home's other occupants while he attempted to attack the growing fire with

extinguishers.

While the lieutenant's efforts slowed the fire's growth, they weren't sufficient to stop it so when the crews first arrived from NKF&R's headquarters. flames had engulfed the far half of the two-car, single-story structure which is situated about ten feet from the residence.

Firefighters, using large

volumes of water, were able to quickly squelch the flames to prevent further damage or spread of the fire.

Evidence at the scene along with witness statements points to the fire's origin being in the location of the generator, which had been running due to a power outage Thursday night.

The particular model of gen-

erator in question, a Champion 8250 Portable Generator, model 41332, responders say, was under recall as a potential fire hazard.

States Product Safety Commission, the generator was recalled due to fuel leaks from the generator's carburetor

Lightning thought to have sparked Sunday brush fire in Kingston

About 1,200 square feet of vegetation was charred in a Sunday brush fire that firefighters believe started with a lightning strike to a large maple tree in Kingston late Saturday night.

North Kitsap Fire & Rescue (NKF&R) crews were called to a Barnswallow Way address off of Norman Road near Kingston just after 2:30 p.m. after the property owners discovered the slow-moving fire.

arrival, firefighters Upon reported active fire with flames reaching two-to-four feet in height, burning out from the base of a maple tree. The tree was split and its bark was charred, suggesting that it was struck during the previous evening's lightning storm

A large hemlock, that appeared to have fallen long ago, was also burning, according to a release from NKF&R.

Although crews were able to quickly stop the fire's progress and no structures were threatened by the flames, responders say the fire did pose a challenge as they attempted to extinguish the blaze

The closest vehicle access was 400 feet away and water for the suppression effort had to be provided by a tender truck.

Extinguishing hot spots deep in the forest floor required six firefighters and approximately 6,000 gallons of water and took two hours to contain. Crews returned to the scene periodically during the rest of the day

to ensure that the fire hadn't reignited.

With the exception of a lightning-sparked house fire in Suquamish on Saturday evening, no other weather-related incidents have been reported to NKF&R crews.

There were no injuries to firefighters or civilians in Sunday's

City adopts tax ordinance to improve affordable housing

By KEN PARK Kitsap News Grout

Poulsbo City Council unanimously adopted a sales tax ordinance that will provide roughly \$34,000 in annual funding to be invested in affordable housing.

Additionally, the council voted unanimously to set up a task force that would work together on a plan for how to use the appropriated funds. This is a requirement of the legislation which has a deadline of January 2020 according to Poulsbo's Finance Director Debbie Booher. To be clear this is not a new tax on Poulsbo citizens, but a reappropriation of taxes already being paid to the state.

"One word of caution is that developing committees can take some time, and we are under a bit of a time crunch because we have to have a plan developed once we start receiving the funds," Booher said.

Councilmember David Musgrove requested that a committee be set up as soon as possible following the unanimous vote.

"To make sure that this goes forward at maximum possible speed and meets the required timelines, I would like to move to commit this item to an ad-hoc committee of six members, so that it can be developed, presented and processed as quickly as possible with all options," Musgrove said.

The sales tax ordinance comes out of recently approved legislation, House Bill 1406

HB1406 created the sales tax revenue sharing program that allows cities and counties to access a portion of state sales tax revenue to invest in affordable housing.

Washington state collects about 6.5% in sales tax, in this case, the city of Poulsbo would receive 0.073% of that tax which portions out to about \$34,000 annually to invest in affordable housing solutions. The city would be able to double that effort if Kitsap County was not also chosen to participate in the sales tax revenue.

The funds can be used to acquire, rehab or construct affordable housing which may include new units of affordable housing within an existing structure or facilities providing supportive housing services, or funding the operations and maintenance of new units of affordable housing.

Since the population of Poulsbo has less than 100,000 people the funds can also be used for rental assistance, something that council member Ken Thomas fully supports.

"While this is not a large amount of money, we can't go out and build any big projects with this. But for a lot of folks who are looking for affordable housing, paying the monthly rent can be a stretch, but they can pull it off. What is often a huge barrier is all the deposits. In my mind the way to leverage the tax revenue that this will bring in is to find a way to help with deposits for utilities, first and last month's rent, so that people can get past those barriers and get a roof over their heads,' Thomas said.

Mayor Erickson sees things differently, noting that while rental assistance could be great for one family, it doesn't help many families.

"While I understand what Mr. Thomas said, if we start augmenting people's income, we can only help one family at a time. We really need to look at increasing housing stock. I've got some ideas on what that looks like. \$34,000 doesn't sound like a lot of money, but when you talk about getting that every year, year after year, that turns into a very interesting revenue stream in order to invest in additional housing," Erickson said.

One of the other requirements of HB 1406 is that the beneficiaries of the affordable housing sales tax make less than 60% the median income.

According to U.S. Census data, the median income for Poulsbo is \$61,455 a year, meaning individuals and families would need to make less than \$37,000 a year to qualify under the tax.

High Holidays 5780

We warmly welcome you to join Chavurat Shir Hayam for High Holiday Services. Erev Rosh Hashanah 9/29 Services at 6;30 PM followed by a dessert potluck Rosh Hashanah Day 9/30 9AM Discussion 12:30 Erev Yom Kippur 10/8 Yom Kippur 10/9 9 AM Rabbi Jennifer Clavman. will help lead High Holy Day Services with our theme, Resilience, Renewal and Joy For more information, call 206-567-9414.

of the 5-year review is to ensure that the cleanup actions (remedies) continue to be protective of human health and the environment. These cleanup actions were established in Records of Decision (RODs) prepared under the Comprehensive Environmental Response, Compensation and Liability Act (CERCLA). The 5-year review is required under federal law because the cleanup actions have left some chemical contamination in

BACKGROUND

BACKGROUND The Naval Undersea Warfare Center was added to the National Priorities List (NPL) in October 1989. The site is now referred to by the Navy as Naval Base Kitsap Keyport. Cleanup actions have been conducted at several areas within Naval Base Kitsap Keyport Operable Units (OUs) 1 and 2 where environmental contamination was identified in the past OU 1 consists of Area 1 (the former base landfill), and OU 2 consists of the remaining areas of concerns (Areas 2, 3, 5, 8, and 9). These sites have undergone environmental investigation and/or remediation to address the potential impacts of contamination to human health and the environment. Based on initial evaluation and investigations, Areas 3, 5, and 9 have been issued "No Further Action" determinations by the U.S. Environmental Protection Agency, as documented in the OU 2 ROD.

The remedy for Area 1, OU 1 consists of treating volatile organic compound (VOC) hot spots in the landfill using phytoremediation by poplar trees in concert with natural attenuation; removing PCB-contaminated sediments; upgrading the tide gate and landfill cover; implementing institutional controls; and conducting long-term monitoring. The selected remedy for Area 2, OU 2 consists of institutional controls and groundwater monitoring.

The selected remedy for Area 8, OU 2 includes removal and off-site disposal of impacted soil above the groundwater table, implementing institutional controls, and long-term monitoring of groundwater, sediment, and marine biota.

An initial statutory 5-year review was finalized in 2000, and subsequent 5-year reviews were finalized in 2005, 2010 and 2015.

Site-specific information and links to documents such as records of decisions are available on the following Navy website: https://www.navfac.navy.mil/navfac_worldwide/pacific/fecs/northwest/about_us/ northwest_documents/environmental-restoration/nbk_keyport.html

YOU ARE INVITED TO PARTICIPATE IN THIS PROCESS

The Navy welcomes your participation in the 5-year review process. You may participate by submitting your comments or concerns about these environmental cleanup actions at Naval Base Kitsap Keyport by mail, telephone, or email. Point-of-contact information is avoided below: is provided below.

The completed fifth 5-year review document will be available for review at the Navy website listed above. A Notice of Completion will be published at that time in the North Kitsap Herald, Central Kitsap Reporter, Kitsap Sun and at *www.keyport98345.com*.

POINT OF CONTACT AND TELEPHONE NUMBER FOR ADDITIONAL INFORMATION NAVFAC Northwest Public Affairs Officer NAVFAC Northwest 1101 Tautog Circle Silverdale, WA 98315

(360) 396-6387 (telephone) È-mail: james.k.johnson3@navy.mil

Anticipated Date of 5-Year Review Completion: December 2020

incident Naval Base Kitsap Keyport Invites You to Participate in the Fifth 5-Year Review of Cleanup Actions July 2014 to July 2019 The Navy in cooperation with the U.S. Environmental Protection Agency and the Washington State Department of Ecology is initiating the fifth 5-year review of environmental cleanup actions at Naval Base Kitsap Keyport and invites the public to participate in this process. The purpose

Site Name, Location, and Address: Naval Undersea Warfare Center Keyport, Washington

Lead Agency Conducting the Review: United States Navy

According to the United

Cornfield

Continued from page 4

the same kind of suggestion made the last time the auditor took a measure of the tax breaks in 2014.

Lawmakers did take note the last time. Rep. June Robinson, D-Everett, put forth legislation in 2014 and 2015 to tie the number of jobs at Boeing with the size of the tax break it receives.

Brunell

Continued from page 4

But those bills went nowhere. Inslee steered clear of them.

The hearing provided Inslee another chance to wage his campaign against corporate extortion a short distance from his office and with a row of Boeing officials on hand to hear it. He was a no-show.

Also absent - and a subject for another day — were aerospace machinists and engineers who fought for

Bombardier's regional jet program in June).

parent to Horizon, reported its regional traffic increased 14.6 percent on a 12.9 percent increase in capacity compared to July 2018.

"For years, Boeing and Airbus focused on larger, more-profitable jetliners and shifted away from the smaller planes, which have similar development costs but sell for lower prices.

"Airbus" deal with Bombardier and Boeing's pact with Embraer signal that the big plane-makers intend to deny a foothold in the lucrative narrow-body market to ambitious newcomers, such as Commercial Aircraft Corp. of China," Bloomberg reported in April. (Update: Mitsubishi bought

"A longtime supplier of aircraft components to Boeing, Mitsubishi Heavy, the parent of Mitsubishi Regional Jet (MRJ), plans

to emerge from its customer's (Boeing) shadow," Bloomberg added. It developed and manufactures major airframe components, including fuselage panels for the Boeing 777 and composite-material wing boxes for the 787.

Mitsubishi spent at least \$2 billion over more than a decade developing

1&T 'OH'

those clawback bills in 2014 and 2015.

Inslee's aerospace advisor, Robin Toth, did attend. She delivered a promotional message of the industry's strength and importance, and of the state's efforts to attract more aerospace companies to Washington. She veered wide of the issue of whether a jobs-related metric should be appended to the tax-break law.

"I don't really have a

SpaceJet. Its launch part-

ner is All Nippon Airways

(ANA) — one of Boeing's

Asia is expected to grow

further in the coming years,

and there will be demand

for these aircraft," said Lee

Dong-heon, an analyst at

Daishin Securities Čo. in

Seoul. "The shift in the

regional aviation segment

we have seen over the

last year or so has opened

In order to compete,

DULSB

NORTH KITSAP'S SHOPPING CENTER

SHOPPING | SERVICES | DINING CHOICES | RITE AID

Locally Owned, Serving

our community since 2004

Toys Etc. 19494 7th Ave NE #144, Poulsbo, WA

360.779.8797

Voted Best In

North Kitsap 2009 to 2019

An Authentic Taste of Vietnam

19689 7th Ave., NE #135

360.394.1601

OFF HWY 305,WWW.POULSBOVILLAGE.COM

Mitsubishi can't just rely

on its home market. The

opportunities."

"The aviation market in

first 787 buyers.

position on that," she said afterward. "I haven't gotten anything from the governor on that.

Silence at home and protest abroad has been Inslee's M.O. on this subject in two terms.

If he seeks and secures a third — he says he is all in but climate change czar will be hard to pass up if a Democrat becomes president — it may embolden the governor to face those

biggest customers therefore could be in the U.S., where large airlines try to cut costs by outsourcing short flights to smaller carriers that fly regional jets, Bloomberg concluded.

The good news is Mitsubishi has strong ties with Boeing and Washington State. MRJ is flight testing the SpaceJet in Moses Lake and established its U.S. headquarters in Renton.

Don C. Brunell is a business analyst, writer and columnist. He can be contacted at theBrunells@msn.com.

muggers. Jerry Cornfield is a political reporter for The Daily Herald in Everett, a Sound

Publishing Co. publication. Cornfield can be contacted at 360-352-8623 and jcornfield@heraldnet.com.

Page 5

Naval Base Kitsap Keyport Invites You to Participate in the Fifth 5-Year Review of Cleanup Actions July 2014 to July 2019

The Navy in cooperation with the U.S. Environmental Protection Agency and the Washington State Department of Ecology is initiating the fifth 5-year review of environmental cleanup actions at Naval Base Kitsap Keyport and invites the public to participate in this process. The purpose of the 5-year review is to ensure that the cleanup actions (remedies) continue to be protective of human health and the environment. These cleanup actions were established in Records of Decision (RODs) prepared under the Comprehensive Environmental Response, Compensation and Liability Act (CERCLA). The 5-year review is required under federal law because the cleanup actions have left some chemical contamination in place.

Site Name, Location, and Address: Naval Undersea Warfare Center Keyport, Washington

Lead Agency Conducting the Review: United States Navy

BACKGROUND

EACKGROUND The Naval Undersea Warfare Center was added to the National Priorities List (NPL) in October 1989. The site is now referred to by the Navy as Naval Base Kitsap Keyport. Cleanup actions have been conducted at several areas within Naval Base Kitsap Keyport Operable Units (OUs) 1 and 2 where environmental contamination was identified in the past OU 1 consists of Area 1 (the former base landfill), and OU 2 consists of the remaining areas of concerns (Areas 2, 3, 5, 8, and 9). These sites have undergone environmental investigation and/or remediation to address the potential impacts of contamination to human health and the environment. Based on initial evaluation and investigations, Areas 3, 5, and 9 have been issued "No Further Action" determinations by the U.S. Environmental Protection Agency, as documented in the OU 2 ROD.

The remedy for Area 1, OU 1 consists of treating volatile organic compound (VOC) hot spots in the landfill using phytoremediation by poplar trees in concert with natural attenuation; removing PCB-contaminated sediments; upgrading the tide gate and landfill cover; implementing institutional controls; and conducting long-term monitoring. The selected remedy for Area 2, OU 2 consists of institutional controls and groundwater monitoring. and groundwater monitoring.

The selected remedy for Area 8, OU 2 includes removal and off-site disposal of impacted soil above the groundwater table, implementing institutional controls, and long-term monitoring of groundwater, sediment, and marine biota.

An initial statutory 5-year review was finalized in 2000, and subsequent 5-year reviews were finalized in 2005, 2010 and 2015.

Site-specific information and links to documents such as records of decisions are available on the following Navy website: https://www.navfac.navy.mil/navfac_worldwide/pacific/fecs/northwest/about_us/ northwest_documents/environmental-restoration/nbk_keyport.html

YOU ARE INVITED TO PARTICIPATE IN THIS PROCESS

The Navy welcomes your participation in the 5-year review process. You may participate by submitting your comments or concerns about these environmental cleanup actions at Naval Base Kitsap Keyport by mail, telephone, or email. Point-of-contact information is provided below.

The completed fifth 5-year review document will be available for review at the Navy website listed above. A Notice of Completion will be published at that time in the North Kitsap Herald, Central Kitsap Reporter, Kitsap Sun and at www.keyport98345.com.

POINT OF CONTACT AND TELEPHONE NUMBER FOR ADDITIONAL INFORMATION NAVFAC Northwest Public Affairs Officer NAVFAC Northwest 1101 Tautog Circle Silverdale, WA 98315

(360) 396-6387 (telephone)

È-mail: james.k.johnson3@navy.mil

Anticipated Date of 5-Year Review Completion: December 2020

KitsapDailyNews.com

Central Kitsap Reporter

Affidavit of Publication

State of Washington } County of Kitsap } ss

Leanna Hartell being first duly sworn, upon oath deposes and says: that he/she is the legal representative of the Central Kitsap Reporter a weekly newspaper. The said newspaper is a legal newspaper by order of the superior court in the county in which it is published and is now and has been for more than six months prior to the date of the first publication of the Notice hereinafter referred to, published in the English language continually as a weekly newspaper in Kitsap County, Washington and is and always has been printed in whole or part in the Central Kitsap Reporter and is of general circulation in said County, and is a legal newspaper, in accordance with the Chapter 99 of the Laws of 1921, as amended by Chapter 213, Laws of 1941, and approved as a legal newspaper by order of the Superior Court of Kitsap County, State of Washington, by order dated June 16, 1941, and that the annexed is a true copy of CKR872023 as it was published in the regular and entire issue of said paper and not as a supplement form thereof for a period of 3 issue(s), such publication commencing on 09/06/2019 and ending on 09/20/2019 and that said newspaper was regularly distributed to its subscribers during all of said period.

The amount of the fee for such publication is

\$702.03.

Subscribed and sworn before me on this 2012 day of September,

Notary Public in and for the State of Washington. Battelle | HOLLY G.

CONTRAL BEAL

IN

Naval Base Kitsap Keyport Invites You to Participate in the Fifth 5-Year Review of Cleanup Actions July 2014 to July 2019 The Navy in cooperation with the U.S. Environ-mental Protection Agen-cy and the Washington State Department of Ecology is initiating the fifth 5-year review of en-vironmental cleanup ac-tions at Naval Base Kit-sap Keyport and invites Keyport sap Keyport and invites the public to participate in this process. The purpose of the 5-year review is to ensure that the cleanup actions (remedies) continue to be protective of human health and the environ-ment. These cleanup actions were established in Records of Decision (RODs) prepared under the Comprehensive Environmental Response, Compensation and Liability Act (CERCLA). The 5-year review is re-quired under federal law because the cleanup actions have left some chemical contamination in place. Site Name, Location, and Address: Naval Undersea Warfare Center Keyport, Washington Lead Agency Conduct-ing the Review: United States Navy BACKGROUND The Navel Underson Undersea The Naval

Warfare Center was added to the National Priorities List (NPL) in October 1989. The site is now referred to by the Navy as Naval Base Kitsap Keyport. Cleanup actions have been conducted at several areas within Naval Base Kitsap Keyport Operable Units (OUs) 1 and 2 where environmental contamination was identified in the past. OU 1 consists of Area 1 (the former base landfill), and OU 2 con-sists of the remaining areas of concerns (Are-as 2, 3, 5, 8, and 9). These sites have undergone environmental investigation and/or remediation to address the potential impacts of contamination to human health and the environment. Based on initial evaluation and investigations, Areas 3, 5, and 9 have been issued "No Further Action" determi-nations by the U.S. En-vironmental Protection Agency, as documented in the OU 2 ROD. The remedy for Area 1, OU 1 consists of treating volatile organic compound (VOC) hot spots in the landfill using phytoremediation by poplar trees in concert with natural attenuation; removing PCB-contaminated sediments; upgrading the tide gate and landfill cover; implementing institutional controls; and conducting long-term monitoring. The selected remedy for Area 2, OU 2 consists of institutional controls and groundwater monitoring. The selected remedy for Area 8, OU 2 includes removal and off-site disposal of impacted soil above the groundwater table, implementing in-stitutional controls, and long-term monitoring of groundwater, sediment, and marine biota. initial statutory An 5-year review was finalized in 2000, and subsequent 5-year reviews were finalized in 2005, 2010 and 2015. Site-specific information and links to documents such as records of decisions are available on the following Navy web-

site: https://www.navfac.navy.mil/navfac_worldwid e/pacific/fecs/north-west/about_us/northwest_documents/environmentalrestoration/nbk_keyport.html YOU ARE INVITED TO PARTICIPATE IN THIS PROCESS The Navy welcomes your participation in the 5-year review process. You may participate by submitting your com-ments or concerns about these environmental cleanup actions at Naval Base Kitsap Keyport by mail, telephone, or email. Pointof-contact information is provided below. The completed fifth 5-year review document will be available for review at the Navy website listed above. A Notice of Completion will be published at that time in the North Kitsap Herald, Central Kitsap Reporter, Kitsap Sun and at www.keyport98345.com. POINT OF CONTACT POINT OF CONTACT AND TELEPHONE NUM-BER FOR ADDITIONAL INFORMATION NAVFAC Northwest Public Affairs Officer NAVFAC Northwest 1101 Tauton Circle 1101 Tautog Circle Silverdale, WA 98315 (360) 396-6387 (telephone) È-mail: james.k.johnson3@ navy.mil Anticipated Date of 5-Year Review Completion: December 2020 Published: Central Kitsap Reporter September 6, 13 and 20, 2019 Legal #: CKR872023

Run with the Cops 5K Sept. 7 at Olympic College

By TYLER SHUEY Kitsap News Group

Local law enforcement agencies will participate in the Run with the Cops 5K for Special Olympics Washington Saturday, Sept. 7, at Olympic College in Bremerton.

The family-friendly event is part of a series of 5K races around the state this summer. It is a key fundraiser for the Law Enforcement Torch

Run campaign for Special Olympics Washington, which raises funds and awareness for athletes with intellectual disabilities.

In 2018, the Run with the Cops series raised more than \$30,000 for Special Olympics Washington from sponsors and more than 400 participants.

The race begins at 8:30 a.m. Online registration is available until 9 a.m. Friday, Sept. 6. Day of registration opens at

7 a.m. at Olympic College in Bremerton.

Adult pre-registration is \$30 and will increase to \$40 on the day of the run. One child registration (10 years and younger) is free with one paid adult. Additional child registration is \$20 for pre-registration and \$25 for registration the day of the event.

For more information, visit RunWithTheCopsWA. com

Find all the details @ www.portgambleparanormal.com

Local **Business** Lending

PLUS A DEDICATED PROFESSIONAL **BUSINESS BANKING TEAM YOU CAN** COUNT ON.

Get practical solutions for the growth of your business from the experts on your Silverdale team.

> SBA Loans

fsbwa.com

- > Commercial Lending
- > Business Loans and Lines of Credit
- > Cash Management
- > Business Deposit Solutions

Visit us at our Silverdale branch today!

1st Security bank Serving the Puget Sound Region since 1936

10574 Silverdale Way NW

Member FDIC / Equal Housing Lender

Erin Shannon

360-516-5612

Jennifer Strong

Silverdale

VP, SBA Manager

Walk to End Alzheimer's event set for Saturday, Sept. 7, in Bremerton

event where people come

loved ones and raise funds

together, honor their

to fight Alzheimer's,"

utive director for the

lim Wilgus said, exec-

Alzheimer's Association,

"There's a real sense of

community and camara-

derie at the Walk to End

of hope that, by working

together, we will end this

begins at 8 a.m., followed

by an opening ceremony

at 9 a.m. and the two-mile

walk at 9:30 a.m. The free

and the walk route is fully

who donate or raise \$100

Walk to End Alzheimer's

event is family-friendly

accessible. Participants

or more will receive a

Registration for the walk

Alzheimer's - a sense

disease.

Washington State Chapter.

Bv TYLER SHUEY Kitsap News Group

KITSAPDAILYNEWS.COM

The Alzheimer's Association, Washington State Chapter will be putting on the Kitsap Peninsula Walk to End Alzheimer's Saturday, Sept. 7 at Louis Mentor Boardwalk in Bremerton.

The Walk to End Alzheimer's is the world's largest event to raise funds and awareness for Alzheimer's disease. Last year, 384 people participated in the local event, raising \$42,819. Funds raised for the event are used for Alzheimer's research and to provide care and support services for local families impacted by the disease.

"This is a wonderful

Naval Base Kitsap Keyport Invites You to Participate in the Fifth 5-Year Review of Cleanup Actions July 2014 to July 2019

The Navy in cooperation with the U.S. Environmental Protection Agency and the Washington State Department of Ecology is initiating the fifth 5-year review of environmental cleanup actions at Naval Base Kitsap Keyport and invites the public to participate in this process. The purpose of the 5-year review is to ensure that the cleanup actions (remedies) continue to be protective of human health and the environment. These cleanup actions were established in Records of Decision (RODs) prepared under the Comprehensive Environmental Response, Compensation and Liability Act (CERCLA). The 5-year review is required under federal law because the cleanup actions have left some chemical contamination in place.

Site Name, Location, and Address: Naval Undersea Warfare Center Keyport, Washington

Lead Agency Conducting the Review: United States Navy

BACKGROUND

The Naval Undersea Warfare Center was added to the National Priorities List (NPL) in October 1989. The site is now referred to by the Navy as Naval Base Kitsap Keyport. Cleanup actions have been conducted at several areas within Naval Base Kitsap Keyport Operable Units (OUs) 1 and 2 where environmental contamination was identified in the past. OU 1 consists of Area 1 (the former base landfill), and OU 2 consists of the remaining areas of concerns (Areas 2, 3, 5, 8, and 9). These sites have undergone environmental investigation and/or remediation to address the potential impacts of contamination to human health and the environment. Based on initial evaluation and investigations, Areas 3, 5, and 9 have been issued "No Further Action" determinations by the U.S. Environmental Protection Agency, as documented in the OU 2 ROD.

The remedy for Area 1, OU 1 consists of treating volatile organic compound (VOC) hot spots in the landfill using phytoremediation by poplar trees in concert with natural attenuation; removing PCB-contaminated sediments; upgrading the tide gate and landfill cover; implementing institutional controls; and conducting long-term monitoring. The selected remedy for Area 2, OU 2 consists of institutional controls and groundwater monitoring. and groundwater monitoring.

The selected remedy for Area 8, OU 2 includes removal and off-site disposal of impacted soil above the groundwater table, implementing institutional controls, and long-term monitoring of groundwater, sediment, and marine biota.

An initial statutory 5-year review was finalized in 2000, and subsequent 5-year reviews were finalized in 2005, 2010 and 2015.

Site-specific information and links to documents such as records of decisions are available on the following Navy website: https://www. navfac.navy.mil/navfac_worldwide/pacific/fecs/northwest/about_us/ northwest_documents/environmental-restoration/nbk_keyport.html

YOU ARE INVITED TO PARTICIPATE IN THIS PROCESS

The Navy welcomes your participation in the 5-year review process. You may participate by submitting your comments or concerns about these environmental cleanup actions at Naval Base Kitsap Keyport by mail, telephone, or email. Point-of-contact information is avoided below: is provided below.

The completed fifth 5-year review document will be available for review at the Navy website listed above. A Notice of Completion will be published at that time in the North Kitsap Herald, Central Kitsap Reporter, Kitsap Sun and at www.keyport98345.com.

POINT OF CONTACT AND TELEPHONE NUMBER FOR ADDITIONAL INFORMATION NAVFAC Northwest Public Affairs Officer NAVFAC Northwest 1101 Tautog Circle

Silverdale W/A 98315 (360) 396-6387 (telephone)

E-mail: james.k.johnson3@navy.mil

Anticipated Date of 5-Year Review Completion: December 2020

t-shirt.

In Washington, there are more than 110,000 people living with Alzheimer's and another 348,000 unpaid caregivers providing support to their loved ones, according to AAWSC. It is the sixth-leading cause of death nationally, and the third-leading cause of death in the state.

"Alzheimer's disease is the only leading cause of death that currently cannot be prevented, cured or even slowed," Wilgus said. The Walk to End Alzheimer's is an opportunity for people to get involved and take action against this devastating disease and move us closer to a world without Alzheimer's."

For questions about the Kitsap Peninsula Walk to End Alzheimer's, contact Walk Manager Roxy Robertson at rorobertson@alz.org or at 206-363-5500. To register, visit alz. org/walk or call 1-800-272-3900.

Kitsap Strong fundraiser Saturday

By TYLER SHUEY Kitsap News Group

Kitsap Strong, a community initiative to improve the health and well-being of children, family, and adults, will send dozens of "edgers" rappelling off the Norm **Dicks Government Center** as part of their Over the Edge fundraiser Sept. 14.

The free resource fair from 11 a.m. to 2 p.m. will provide kids activities, including a bouncy house, food vendors, and the Peninsula Community Health Services Mobile Clinic. Edgers will be announced as they descend during the fair.

Notable elected officials participating in the rappelling this year include Kitsap County Commissioner Ed Wolfe, Bremerton Mayor Greg Wheeler, former Bremerton Mayor Patty Lent, and Bainbridge Island Mayor and President and CEO of Kitsap Community Foundation Kol Medina.

"Although rappelling off a building is very much out of my comfort zone, the opportunity to help Kitsap Strong and encourage others to participate in this challenge is one I can't pass up," Medina said.

Participants were each

asked to raise \$1,000 in funds, either individually or as part of a team, according to a press release. Community members are invited to donate to individual or team rappellers or register to participate at kitsapstrong.org.

Other requirements for edgers include a weight range between 100 to 300 pounds and a parent or guardian signature for participants under the age of 18. No experience or advanced training is required, the release states. Over the Edge will also provide all gear and day-ofevent training and support.

Micek

Continued from page 4

And here we are again, with Trump raiding the Treasury - not to help soldiers, but to reinforce his own vanity and secure his own political fortunes. And roughly half the nation will be asked to make that sacrifice.

The Pentagon's diversion of funds will affect "upgrades to infrastructure and training facilities at military installations in 23 states," the Post reported, including the home states of some of Trump's most ardent backers on Capitol Hill.

Upgrades to military bases in 19 foreign countries will also be impacted, and all at a time when American forces

are being relied upon to carry a heavier load around the world.

And for what? A border wall that 60 percent of respondents to a recent Gallup poll oppose, even as an equally consistent majority support a path to citizenship for undocumented immigrants.

Trump has already acknowledged to lawmakers that actual immigration reform and enhanced border security are more effective than any physical barrier. Yet here the White House is, looting funds from badly needed military projects, just to satisfy Trump's edifice complex.

Serving in the military is dangerous enough. One can't help but wonder how much more of this "love" from the

M

White House our forces can be asked to endure.

An award-winning political journalist, John L. Micek is the editor-in-chief of The Pennsylvania Capital-Star in Harrisburg, Pennsylvania. Email him at jmicek@ penncapital-star.com and follow him on Twitter @ ByJohnLMicek.

1954 St. Hwy. 308, Keyport

Community **Meetings**

Executive Director John Clauson will give an update on Kitsap Transit's fleet and facilities. Come join us with your questions and comments!

Saturday, September 21

BREMERTON, 9am - Harborside Building Second Floor, 60 Washington Ave

Saturday, September 28

SILVERDALE, 9am - Oxford Suites Olympic North Room, 9550 Silverdale Way NW

For transportation assistance to a meeting, call 1-800-501-7433.

Transit driver cited after nearly hitting two boys on their bikes

Bv TYLER SHUEY Kitsap News Group

A Kitsap Transit bus driver was recently cited after an August 16 incident where two 12-yearold boys on their bikes were nearly hit by the bus, according to Kitsap County Sheriff's Deputy Scott Wilson.

The incident occurred just before 9 a.m. at the intersection of Aegean Boulevard and Sunset Avenue in East Bremerton. The two boys had to jump off their bikes to avoid being hit by the bus, according to Wilson.

The 64-year-old female

Get home delivery Call 360-731-1425 www.kitsapdailynews.com

Photo courtesy of the Kitsap County Sheriff's Office

bus driver told authorities that she did not see the boys on their bikes and that she made too sharp of a left turn, resulting in a portion of the bus being in the eastbound lane of Aegean Boulevard where the two boys on their bikes

were stopped. One boy did suffer scrapes while jumping out of the way of the bus, Wilson said. The driver was cited for failure to drive on the right side of the road and did not show any signs of impairment, according to Wilson.

Naval Base Kitsap Keyport Invites You to Participate in the Fifth 5-Year Review of Cleanup Actions July 2014 to July 2019

The Navy in cooperation with the U.S. Environmental Protection Agency and the Washington State Department of Ecology is initiating the fifth 5-year review of environmental cleanup actions at Naval Base Kitsap Keyport and invites the public to participate in this process. The purpose of the 5-year review is to ensure that the cleanup actions (remedies) continue to be protective of human health and the environment. These cleanup actions were established in Records of Decision (RODs) prepared under the Comprehensive Environmental Response, Compensation and Liability Act (CERCLA). The 5-year review is required under federal law because the cleanup actions have left some chemical contamination in place.

Site Name, Location, and Address: Naval Undersea Warfare Center Keyport, Washington

Lead Agency Conducting the Review: United States Navy

BACKGROUND

BACKGROUND The Naval Undersea Warfare Center was added to the National Priorities List (NPL) in October 1989. The site is now referred to by the Navy as Naval Base Kitsap Keyport. Cleanup actions have been conducted at several areas within Naval Base Kitsap Keyport Operable Units (OUs) 1 and 2 where environmental contamination was identified in the past OU 1 consists of Area 1 (the former base landfill), and OU 2 consists of the remaining areas of concerns (Areas 2, 3, 5, 8, and 9). These sites have undergone environmental investigation and/or remediation to address the potential impacts of contamination to human health and the environment. Based on initial evaluation and investigations, Areas 3, 5, and 9 have been issued "No Further Action" determinations by the U.S. Environmental Protection Agency, as documented in the OU 2 ROD.

The remedy for Area 1, OU 1 consists of treating volatile organic compound (VOC) hot spots in the landfill using phytoremediation by poplar trees in concert with natural attenuation; removing PCB-contaminated sediments; upgrading the tide gate and landfill cover; implementing institutional controls; and conducting long-term monitoring. The selected remedy for Area 2, OU 2 consists of institutional controls and groundwater monitoring. and groundwater monitoring.

The selected remedy for Area 8, OU 2 includes removal and off-site disposal of impacted soil above the groundwater table, implementing institutional controls, and long-term monitoring of groundwater, sediment, and marine biota.

An initial statutory 5-year review was finalized in 2000, and subsequent 5-year reviews were finalized in 2005, 2010 and 2015.

Site-specific information and links to documents such as records of decisions are available on the following Navy website: <u>https://www.navfac.navy.mil/navfac.worldwide/pacific/fecs/northwest/about us/</u> northwest_documents/environmental-restoration/nbk_keyport.html

YOU ARE INVITED TO PARTICIPATE IN THIS PROCESS

The Navy welcomes your participation in the 5-year review process. You may participate by submitting your comments or concerns about these environmental cleanup actions at Naval Base Kitsap Keyport by mail, telephone, or email. Point-of-contact information is provided below.

The completed fifth 5-year review document will be available for review at the Navy website listed above. A Notice of Completion will be published at that time in the North Kitsap Herald, Central Kitsap Reporter, Kitsap Sun and at *www.keyport98345.com*.

POINT OF CONTACT AND TELEPHONE NUMBER FOR ADDITIONAL INFORMATION NAVFAC Northwest Public Affairs Officer NAVFAC Northwest 1101 Tautog Circle Silverdale, WA 98315

(360) 396-6387 (telephone)

È-mail: james.k.johnson3@navy.mil

Anticipated Date of 5-Year Review Completion: December 2020

It's 'F-bombs' away! Our cursed 2020 campaign

OPINION By TOM PURCELL

a storm The Washington Examiner notes Julian Castro said the "BS" word on HBO. Ohio Rep. Tim Ryan called on Republicans to "get their 's-word' together." Hawaii Rep. Tulsi Gabbard used the "b-word" to describe President Trump and New York Sen. Kirsten Gillibrand told a group of activists that "if we are not helping people, we should go the 'f-word' home.'

Then there's the queen mother of today's cussing campaigners: Beto

"F-bomb" O'Rourke. He has used the "f-word" as a noun, verb, adjective, adverb, pronoun, preposition, conjunction, interjection pretty much everything but a dangling participle, whatever the "h-e-double-hockey-sticks" that is.

O'Rourke has been struggling in the polls since Mayor Pete "Trump 'P.O.'d' our allies" Buttigieg stole his thunder. O'Rourke's cursing appears to be a ploy for attention, which is all it's getting him.

I agree with political observers who cite two reasons for the increasing use of salty language.

Emma Byrne, author of "Swearing is Good for You: The Amazing Science of Bad Language," tells Smithsonian there is a science to why we curse. She says "peppering our language with dirty words can actually help us gain

credibility and establish a sense of camaraderie" if it's done properly.

She distinguishes between "propositional swearing, which is deliberate and planned, and non-propositional swearing, which can happen when we're surprised, or among friends or confidants.

O'Rourke's swearing comes across as contrived - a sign of weakness from an unserious candidate trying to make headlines

That brings us to the second reason for politicians' increasingly salty language: President Trump, who, according to Factba.se transcripts, has cursed publicly at least 87 times since 2017.

The thinking is that Trump's "everyday Joe" cursing has lowered the bar for political discourse, but that other politicians emulating him fail to

understand that he's a master of non-propositional swearing, which — at least among his supporters - may actually boost his political status.

When Trump curses, Byrne says, it comes across as a "sign of honesty" from a non-politician who "tells it like it is."

It's enough to make a Trump opponent curse.

Trump certainly isn't the first president to use profanities. Time reports that after a Revolutionary War battle, George Washington "swore ... till the leaves shook on the trees."

During the 1948 election, President Truman acquired the nickname "Give 'Em Hell Harry" at a time when "hell" offended no small number of Americans.

Once his now-infamous tapes went public, President Nixon turned out to be a master of

coming years, and there will be

Dong-heon, an analyst at Daishin

Securities Co. in Seoul. "The shift

have seen over the last year or so

has opened opportunities.³

in the regional aviation segment we

In order to compete, Mitsubishi

can't just rely on its home market.

The biggest customers therefore

could be in the U.S., where large

that fly regional jets, Bloomberg

The good news is Mitsubishi

Washington State. MRJ is flight test-

ing the SpaceJet in Moses Lake and

established its U.S. headquarters in

—Don C. Brunell is a business

analyst, writer and columnist. He can

be contacted at theBrunells@msn.com.

has strong ties with Boeing and

concluded.

Renton.

airlines try to cut costs by outsourc-

ing short flights to smaller carriers

demand for these aircraft," said Lee

Brunell

Continued from page 4

At stake, particularly in the market for jets with fewer than 100 seats, is \$135 billion in sales over the next 20 years or so, according to industry group Japan Aircraft Development Corp.

Horizon's business is growing rapidly. In July, Alaska Air Group, parent to Horizon, reported its regional traffic increased 14.6 percent on a 12.9 percent increase in capacity compared to July 2018.

"For years, Boeing and Airbus focused on larger, more-profitable jetliners and shifted away from the smaller planes, which have similar development costs but sell for lower prices.

"Airbus' deal with Bombardier and Boeing's pact with Embraer signal that the big plane-makers intend narrow-body market to ambitious newcomers, such as Commercial Aircraft Corp. of China," Bloomberg reported in April. (Update: Mitsubishi bought Bombardier's regional jet program in June).

to deny a foothold in the lucrative

"A longtime supplier of aircraft components to Boeing, Mitsubishi Heavy, the parent of Mitsubishi Regional Jet (MRJ), plans to emerge from its customer's (Boeing) shadow," Bloomberg added. It developed and manufactures major airframe components, including fuselage panels for the Boeing 777 and composite-material wing boxes for the 787.

Mitsubishi spent at least \$2 billion over more than a decade developing SpaceJet. Its launch partner is All Nippon Airways (ANA) — one of Boeing's first 787 buyers.

"The aviation market in Asia is expected to grow further in the

Cornfield

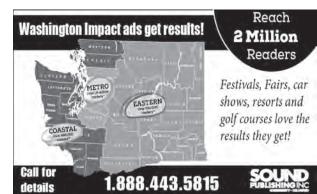
Continued from page 4

The hearing provided Inslee another chance to wage his campaign against corporate extortion a short distance from his office — and with a row of Boeing officials on hand to hear it. He was a no-show.

Also absent - and a subject for another day were aerospace machinists and engineers who fought for those clawback bills in 2014 and 2015.

Inslee's aerospace advisor. Robin Toth. did attend. She delivered a

promotional message of the industry's strength and importance, and of the state's efforts to attract more aerospace companies to Washington. She veered wide of the issue of whether a jobs-related metric should be appended to the tax-break law.


"I don't really have a position on that," she said afterward. "I haven't gotten anything from the governor on that."

Silence at home and protest abroad has been Inslee's M.O. on this subject in two terms.

If he seeks and secures a third — he says he is all

in but climate change czar ical reporter for The Daily will be hard to pass up if a Herald in Everett, a Sound Democrat becomes pres-Publishing Co. publication. ident — it may embolden Cornfield can be contacted the governor to face those at 360-352-8623 and jcorn muggers. field@heraldnet.com.

Jerry Cornfield is a polit-

naughtv words. And Lyndon Baines Johnson - perhaps our most gifted presidential user of curse words had a reputation for verbal obscenity.

In the past, political leaders cussed in private, not in public. Today, though, it's not just politicians swearing more. It's everyone.

A 2017 study by San Diego State University psychologist Jean M. Twenge showed a dramatic increase in cursing, which she attributed to America's growing individualism, "a cultural system that emphasizes the self more and social rules less." She explained that "as social rules fell by the wayside, and people were told to express themselves, swearing became more common.

That doesn't bode well for our cussing politicians. The more they and everyone else use taboo terms, the less taboo those terms become and the less impact they have.

If the use of salty language in our increasingly strident political discourse troubles you, here's a key takeaway from the 2020 campaign season:

We're all cursed.

Tom Purcell, author of "Misadventures of a 1970's Childhood," a humorous memoir available at amazon.com, is a Pittsburgh Tribune-Review humor columnist and is nationally syndicated exclusively by Cagle Cartoons Inc. Purcell can be contacted at Tom@ TomPurcell.com.

Naval Base Kitsap Keyport Invites You to Participate in the Fifth 5-Year Review of Cleanup Actions July 2014 to July 2019

The Navy in cooperation with the U.S. Environmental Protection Agency and the Washington State Department of Ecology is initiating the fifth 5-year review of environmental cleanup actions at Naval Base Kitsap Keyport and invites the public to participate in this process. The purpose of the 5-year review is to ensure that the cleanup actions (remedies) continue to be protective of human health and the environment. These cleanup actions were stablished in Proceeding of Department. cleanup actions were established in Records of Decision (RODs) prepared under the Comprehensive Environmental Response, Compensation and Liability Act (CERCLA). The 5-year review is required under federal law because the cleanup actions have left some chemical contamination in

Site Name, Location, and Address: Naval Undersea Warfare Center Keyport, Washington

Lead Agency Conducting the Review: United States Navy

BACKGROUND

The Naval Undersea Warfare Center was added to the National Priorities List (NPL) in October 1989. The site is now referred to by the Navy as Naval Base Kitsap Keyport. Cleanup actions have been conducted at several areas within Naval Base Kitsap Keyport Operable Units (OUs) 1 and 2 where environmental contamination was identified in the past OU 1 consists of Area 1 (the former base landfill), and OU 2 consists of the remaining areas of concerns (Areas 2, 3, 5, 8, and 9). These sites have undergone environmental investigation and/or remediation to address the potential impacts of contamination to human health and the environment. Based on initial evaluation and investigations, Areas 3, 5, and 9 have been issued "No Further Action" determinations by the U.S. Environmental Protection Agency, as documented in the OU 2 ROD.

The remedy for Area 1, OU 1 consists of treating volatile organic compound (VOC) hot spots in the landfill using phytoremediation by poplar trees in concert with natural attenuation; removing PCB-contaminated sediments; upgrading the tide gate and landfill cover; implementing institutional controls; and conducting long-term monitoring. The selected remedy for Area 2, OU 2 consists of institutional controls and groundwater monitoring. and groundwater monitoring.

The selected remedy for Area 8, OU 2 includes removal and off-site disposal of impacted soil above the groundwater table, implementing institutional controls, and long-term monitoring of groundwater, sediment, and marine biota.

An initial statutory 5-year review was finalized in 2000, and subsequent 5-year reviews were finalized in 2005, 2010 and 2015.

Site-specific information and links to documents such as records of decisions are available on the following Navy website: https://www.navfac.navy.mil/navfac worldwide/pacific/fecs/northwest/about us/ northwest_documents/environmental-restoration/nbk_keyport.html

YOU ARE INVITED TO PARTICIPATE IN THIS PROCESS

The Navy welcomes your participation in the 5-year review process. You may participate by submitting your comments or concerns about these environmental cleanup actions at Naval Base Kitsap Keyport by mail, telephone, or email. Point-of-contact information is provided below.

The completed fifth 5-year review document will be available for review at the Navy website listed above. A Notice of Completion will be published at that time in the North Kitsap Herald, Central Kitsap Reporter, Kitsap Sun and at *www.keyport98345.com.*

POINT OF CONTACT AND TELEPHONE NUMBER FOR ADDITIONAL INFORMATION NAVFAC Northwest Public Affairs Officer NAVFAC Northwest

1101 Tautog Circle Silverdale, WA 98315

(360) 396-6387 (telephone)

È-mail: james.k.johnson3@navy.mil

Anticipated Date of 5-Year Review Completion: December 2020

Page 5

APPENDIX B COMPLETED INTERVIEW RECORDS

Fifth Five-Year Review Interview Record NBK Keyport Keyport, WA

TYPE 2 INTERVIEW - REGULATORY AGENCY								
Name: Mahbub Alam								
Title: Environmental Engineer	Association to NBK Keyport: Regulatory review							
Organization: WA Department of Ecology	Years of Association: 3							
Telephone: 3604076913	Email: mala461@ecy.wa.gov							
Contact Made By:	Date: 11/7/2019							
QUESTIC	ONNAIRE							
 Please describe your degree of familiarity with the Naval Ba Operable Units (OUs) 1 and 2; the implementation of the reme taken place since implementation of the remedies; and recom finalized in 2015. For reference OU 1 includes only one active OU 1 – Former Base Landfill OU 2 Area 2 – Van Meter Spill and Drum Storage Areas OU 2 Area 8 – Former Plating Shop Response: I am familiar with the sites and their remedies. As I the regulatory oversight for these operable units. 	edies at these OUs; the monitoring and maintenance that has mendations made during the fourth five-year review (FYR) site, whereas OU 2 includes two active sites, as follows:							
 2. What is your overall impression of the on-going effectiveness primary remedy components are: Phytoremediation at the former landfill using hybrid poplar Removal of PCB-contaminated sediments from the marsh Upgrade of the tide gate Upgrade and maintenance of the landfill cover Long-term monitoring Contingent actions for off-base domestic wells Institutional controls Response: The remedy of the OU 1 has failed to attain remed seem to pose immediate danger to human health a term. The site is going through re-characterization and human health risk assessments. 	lial action objectives (RAOs). The site does not and environment but may pose risk in the long							
 3. What is your overall impression of the on-going effectiveness primary remedy components are: Institutional controls and groundwater monitoring at Area 2 Excavation and off-site disposal of vadose-zone soil at Area 1 Institutional controls and monitoring of groundwater, sedim Response: The remedy at OU 2 Area 2 remains effective but it has not a level. However, the remedy for OU 2 Area 8 is not effective. Recerrisk assessment showed adverse effects to ecological recepte attaining drinking water quality which calls into question of more revised for groundwater treatment/control besides MNA and i 	ea 8 hents, and shellfish at Area 8 hchieved cleanup levels or taking longer to achieve cleanup ht groundwater seeps bioassay results as part of ecological ors. In addition, the site groundwater is long way from bonitored natural attenuation (MNA). The remedy needs to be							

4. The phytoremediation component of the OU 1 remedy is not operating as anticipated in the southern portion of the former landfill. The Navy has been performing additional investigations, including a USGS modeling effort, to evaluate possible actions to shorten the restoration timeframe and improve the remedy performance. What is your impression of the progress towards reassessing this component of the remedy?

Response:

I think the overall progress made by the Navy is good. However, it appears the whole site, not only the southern plantation which has the highest contamination, has some hot spot areas that need remediation. In addition, it appears the soil mound north of northern plantation are contaminated with TPH and PCBs (new findings). It needs further investigation and assessment to see if these contaminations pose any risks or hazards to human health and environment.

5. To the best of your knowledge, has the on-going program of institutional controls inspections and environmental monitoring at OUs 1 and 2 been sufficiently thorough and frequent to meet the goals of the RODs? Have the monitoring data been timely and of acceptable quality? Please indicate the basis for your assessment. **Response:**

The IC inspections have been routine and thorough to my knowledge. The Navy provides a report depicting the IC inspection results. The monitoring data so far have been of acceptable quality. A Tier II QAPP is always prepared and reviewed by the agencies. The data report showing the monitoring data also meets expected quality.

6. To the best of your knowledge, have the recommendations made during the fourth FYR been adequately implemented/incorporated into the remedy operation, maintenance, and monitoring program? Please indicate the basis for your assessment.

Response:

While I was not involved in the last FYR process, it appears the Navy has made significant progress on the recommendations. All recommendations were taken up for follow up although some milestone dates may have missed. There are still issues in both OU 1 and OU 2 and Ecology expects this FYR will include more robust recommendations to move these sites closer to meeting RAOs.

7. What is your overall impression of meeting the recommendations from the fourth FYR? **Response:**

See above response for question #6.

8. What do you see as major accomplishments for OUs 1 and 2 since the fourth FYR? **Response:**

OU 1 - Site re-characterization to refine the conceptual site model (CSM). Startup of Tier II Human health and Ecological risk assessment. Completion of VI study to evaluate and eliminate the vapor pathway.

OU 2 - Completion of Human health and Ecological risk assessment. Completion of VI study to evaluate and eliminate the vapor pathway.

9. Are you aware of any (Tribal or) community concerns regarding implementation of the remedies at OUs 1 and 2? If so, please give details. **Response:**

No.

10. Are you aware of, and do you feel well informed about the additional investigations that have occurred at OU 1 and OU 2 Area 8 over the past five years? Please elaborate. **Response:**

I am aware of all the investigations happening in OU 1 and OU 2 Area 8. The Navy has arranged project team meetings regularly to brief the stakeholders about plans, data, and comment responses. Emphasis on Field visits, use of collaboration websites for site documents sharing, e.g., box, were some additional efforts made by the Navy for the Agencies.

11. To the best of your knowledge, since June 2014, have there been any new scientific findings that relate to potential site risks that might call into question the protectiveness of the remedies? **Response:**

PFAS contamination at Navy sites have become an issue lately. It is unknown whether PFAS contamination exists or affects protectiveness at this time. The Navy has performed a preliminary assessment (PA) for Keyport without any stakeholder involvement. Ecology expect the Navy will involve the stakeholders in the next phase of assessment.

12. Since June 2014, have there been any complaints, violations, or other incidents related to NBK Keyport installation restoration that required a response by your office? If so, please provide details of the event(s) and results of the response(s).

Response:

To the best of my knowledge, I am not aware of any incidents related to Keyport.

13. Do you have any other comments, concerns, or suggestions regarding the effectiveness of the cleanup measures implemented so far in protecting human health and the environment at NBK Keyport? **Response:**

For OU 1, the Navy needs to revise the CSM to a point that remedial actions can be implemented to remediate not only the hot spots (source areas) but also the other areas as needed so that the surface water, sediment and groundwater can be returned to their beneficial uses within a reasonable timeframe. For OU2, the Navy needs to implement a groundwater remedy to protect the affected ecological receptors and restore the aquifer to drinking water quality.

Fifth Five-Year Review Interview Record NBK Keyport Keyport, WA

TYPE 2 INTERVIEW - REGULATORY AGENCY Name: John Evered Title: Toxicologist/Sediment Specialist Association to NBK Keyport: Regulatory support staff Organization: WA Dept of Ecology Years of Association: 4.5 Telephone: 360 407 7071 Email: jeve461@ecy.wa.gov Contact Made By: Jody Lipps Date: 11/22/19 QUESTIONNAIRE 1. Please describe your degree of familiarity with the Naval Base Kitsap (NBK) Keyport Records of Decision (RODs) for Operable Units (OUs) 1 and 2; the implementation of the remedies at these OUs; the monitoring and maintenance that has taken place since implementation of the remedies; and recommendations made during the fourth five-year review (FYR) finalized in 2015. For reference OU 1 includes only one active site, whereas OU 2 includes two active sites, as follows: OU 1 - Former Base Landfill OU 2 Area 2 - Van Meter Spill and Drum Storage Areas OU 2 Area 8 – Former Plating Shop **Response:** I have provided support to the Ecology project manager related to sediment issues since 2015. I have primarily been involved with the issues related to the investigation and remedy at OU 2 area 8 and provided sediment technical support to the assessment at the OU 1 landfill. I have not been involved any remedial decisions or investigations at OU 2 area 2 2. What is your overall impression of the on-going effectiveness of the components of the OU 1 remedy? For reference, the primary remedy components are: Phytoremediation at the former landfill using hybrid poplar trees Removal of PCB-contaminated sediments from the marsh Upgrade of the tide gate · Upgrade and maintenance of the landfill cover Long-term monitoring Contingent actions for off-base domestic wells Institutional controls • **Response:** Although OU 1 seems to not pose any immediate risks to human health or the environment, recent sampling results suggest that the contamination present may pose risks in the long term. I believe the recently proposed tier II human health and ecological risk assessments, site re-characterization and source area assessment will provide important information related to remedy effectiveness and protectiveness. 3. What is your overall impression of the on-going effectiveness of the components of the OU 2 remedy? For reference, the primary remedy components are: Institutional controls and groundwater monitoring at Area 2 • Excavation and off-site disposal of vadose-zone soil at Area 8 • Institutional controls and monitoring of groundwater, sediments, and shellfish at Area 8 Response: I have not been involved in decisions related to OU 2 area 2, so I defer to Ecology's project manager who stated that the remedy remains effective but has not achieved cleanup goals. Recent results from the

stated that the remedy remains effective but has not achieved cleanup goals. Recent results from the groundwater seep bioassays as part of the OU 2 area 8 ecological risk assessment show adverse effects to receptors, suggesting that the remedy is not protective. Monitored natural attenuation has not been effective in meeting drinking water groundwater standard or preventing impacts to the sediments and shellfish at Area 8.

4. The phytoremediation component of the OU 1 remedy is not operating as anticipated in the southern portion of the former landfill. The Navy has been performing additional investigations, including a USGS modeling effort, to evaluate possible actions to shorten the restoration timeframe and improve the remedy performance. What is your impression of the progress towards reassessing this component of the remedy?

Response:

I defer to the Ecology project manager who stated that the whole site, not only the southern plantation, has contamination hot spots. For example the soil mound in the north plantation with recently discovered TPH and PCB contamination that likely will require further investigation.

5. To the best of your knowledge, has the on-going program of institutional controls inspections and environmental monitoring at OUs 1 and 2 been sufficiently thorough and frequent to meet the goals of the RODs? Have the monitoring data been timely and of acceptable quality? Please indicate the basis for your assessment. **Response:**

To the best of my knowledge IC inspections and environmental monitoring at OU 1 and OU 2 area 8 have been sufficient to attempt to meet the goals of the ROD. Monitoring has been timely, conducted in accordance with an approved QAPP, and data quality is as expected.

6. To the best of your knowledge, have the recommendations made during the fourth FYR been adequately implemented/incorporated into the remedy operation, maintenance, and monitoring program? Please indicate the basis for your assessment.

Response:

Although I was not directly involved in the development process of the last five year review, I believe the Navy has made progress on the previous recommendations. Following the recommendation at OU2 Area 8 to complete an additional risk assessment, risks were identified that will require the implementation of additional groundwater controls. Additional PCB seep data was also collected per a recommendation at OU 1 as well as a vapour intrusion evaluation at OU 1 and OU2 area 8.

7. What is your overall impression of meeting the recommendations from the fourth FYR? **Response:**

See answer to question #6

8. What do you see as major accomplishments for OUs 1 and 2 since the fourth FYR? **Response:**

OU 1 - Complete a site re-characterization to refine the conceptual site model and initiate a tier II human health and ecological risk assessment.

OU 2 - Completion of a human health and ecological risk assessments, specifically seep bioassay's following project teams recommendation, that identified risks to sediment benthic organisms.

9. Are you aware of any (Tribal or) community concerns regarding implementation of the remedies at OUs 1 and 2? If so, please give details.

Response:

None other than have been raised by the Suquamish Tribe in project meetings.

10. Are you aware of, and do you feel well informed about the additional investigations that have occurred at OU 1 and OU 2 Area 8 over the past five years? Please elaborate. **Response:**

The Navy and their consultants have kept project team members well informed of additional investigations occurring at OU 1 and OU 2 area 8. Project team meetings have been arranged as needed to brief stakeholders on issues requiring input and adequate review periods have been provided for documents requiring comment and review.

11. To the best of your knowledge, since June 2014, have there been any new scientific findings that relate to potential site risks that might call into question the protectiveness of the remedies? **Response:**

The emergence of PFAS as a contaminant of concern may call in to question the protection of the remedies, in particular at OU 2 area 8. The presence of a metal plating shop up-gradient of the beach is concerning, due to the use of PFOS as a fire suppressant during the electroplating process. Metal plating facilities have been identified as potential source areas during the PFAS preliminary assessment at Puget Sound Naval Shipyard. I request that Ecology's project manager be included in the next phase of PFAS assessment or investigation.

12. Since June 2014, have there been any complaints, violations, or other incidents related to NBK Keyport installation restoration that required a response by your office? If so, please provide details of the event(s) and results of the response(s).

Response:

I am not aware of any complaints, violations or other incidents related to NBK that required a response by my office.

13. Do you have any other comments, concerns, or suggestions regarding the effectiveness of the cleanup measures implemented so far in protecting human health and the environment at NBK Keyport? **Response:**

No further comments. I look forward to completing the ecological and human health risk assessment at OU 1 and helping identify effective groundwater controls at OU 2 area 8.

Fifth Five-Year Review Interview Record NBK Keyport Keyport, WA

TYPE 3 INTERVIEW - COMMUNITY									
Name: Clayton Schule									
Title: Keyport Neighbor and Former Worker	Association to NBK Keyport: Keyport Neighbor and Former Worker								
Organization: Keyport Improvement Club (KIC)	Years of Association: 15								
Telephone:(360)779-6563	Email: keyportschules@wavecable.com								
Contact Made By: Clay Schule	Date: 10/25/19								
QUESTIC	DNNAIRE								
 Please describe your degree of familiarity with the Naval Ba Operable Units (OUs) 1 and 2; the implementation of the reme taken place since implementation of the remedies; and recom finalized in 2015. For reference OU 1 includes only one active OU 1 – Former Base Landfill OU 2 Area 2 – Van Meter Spill and Drum Storage Areas OU 2 Area 8 – Former Plating Shop Response: I am a resident of Dogfish Bay (OU 1), significantly effer previous assessments of the work done to alleviate env would describe those efforts as cover it, contain it and let 	edies at these OUs; the monitoring and maintenance that has mendations made during the fourth five-year review (FYR) site, whereas OU 2 includes two active sites, as follows: cted by the base landfill areas. I have reviewed the ironmental damage done by the former base landfill. I								
 2. What is your overall impression of the on-going effectiveness primary remedy components are: Phytoremediation at the former landfill using hybrid poplar Removal of PCB-contaminated sediments from the marsh Upgrade of the tide gate Upgrade and maintenance of the landfill cover Long-term monitoring Contingent actions for off-base domestic wells Institutional controls Response: After the original containment and Phytoremediation, reduce the runoff from the former landfill into the "tide the implanting of native little neck clams to help with the landfill to the marsh to the tide flat, etc., it did not As with many long term military facilities, the remediation 	trees there has been nothing of any great effect done to e flats" and then into Dogfish Bay. We have watched the clean up, but without clean up of the inflow from hing.								
 3. What is your overall impression of the on-going effectiveness primary remedy components are: Institutional controls and groundwater monitoring at Area 2 Excavation and off-site disposal of vadose-zone soil at Area 1 Institutional controls and monitoring of groundwater, sedim Response: In reading the remedy reports, it appears that the need to be. Without the active monitoring, correct 	a 8 ents, and shellfish at Area 8 monitoring of these site are not as active as they								

4. Are you aware of any community concerns regarding implementation of the remedies at OUs 1 and 2? If so, please give details.

Response:

I'm not sure of community response, but the ability for human consumption of shellfish from Dogfish bay would be an excellent measure of clean up.

5. Are you aware of, and do you feel well informed about the additional investigations that have occurred at OU 1 and OU 2 Area 8 over the past five years? Please elaborate. **Response:**

I've read the report, but no other information.

6. What effects has the remedy operation, maintenance, and monitoring program at the OU 1 and OU 2 sites had on the surrounding community?

Response:

I'm sure the from the worst (I've not seen) it must have improved. But our children play in the waters associated with these sites. I watch for them removing shellfish from Dogfish Bay, and warn of consuming them.

7. Please provide the newspaper, website, or Facebook page you used to obtain local information. **Response:**

I live there!

8. Do you have any other comments, concerns, or suggestions regarding the effectiveness of the cleanup measures implemented so far in protecting human health and the environment at NBK Keyport? **Response:**

I would like more reporting of the real effects of the runoff on local waters like Dogfish Bay.

9. Do you know of any other individuals who should be interviewed as part of this FYR process? If so, please provide their name(s) and contact information.

Response:

Please come to a meeting of the Keyport Improvement club.

APPENDIX C OU 1 CUMULATIVE LONG-TERM MONITORING DATA

FIFTH FIVE-YEAR REVIEW NAVAL BASE KITSAP KEYPORT Appendix C – OU 1 Cumulative Long-Term Monitoring Data

Table C-1. OU 1 Chlorinated VOC Groundwater Sampling Results through June 2019 Cocation Cocation <td< th=""></td<>										
ID	Sampling Date	1,1-DCA	1,2-DCA	1,1-DCE	cis-1,2-DCE	trans-1,2-DCE	PCE	1,1,1-TCA	TCE	Vinyl Chlorid
Remed	iation Goals	800	5	0.5	70	100	5	200	5	0.5
th Plant	ation – Shallow Grou	undwater Wells								
/W-1	8/25/1995	14	1 U	5.1	590 J	180 J	1 U	1 U	1 U	1,000 J
MW-1	12/6/1995	1	1 U	$1 U^1$	87 J	7.7	1 U	1 U	1 U	210 J
MW-1	3/12/1996	8.5	0.5 U	2.6	450 J	120 J	0.5 U	0.5 U	0.62	710
/W-1	6/26/1996	15	0.5 U	3.2	460 J	220 J	0.5 U	0.5 U	0.51 U	1,200 J
/W-1	3/3/1998	4.5	0.5 U	0.42 J	81 J	34 J	0.5 U	0.5 U	0.5 U	250 J
4W-1	6/11/1999	19	3 U	4	420	240	3 U	3 U	3 U	1,300
1W-1	10/20/1999	17	0.5 U	3.1	320	190	0.5 U	0.5 U	0.5 U	970
1W-1	4/25/2000	18	0.5 U	3.1	380 J	200 J	0.5 U	0.5 U	0.5 U	1,200 J
1W-1	6/7/2000	14	0.5 U	1.7	240 J	210 J	0.5 U	0.5 U	0.58	1,200 J
4W-1	7/24/2000	25 U	25 U ¹	25 U ¹	280 J	170 J	25 U ¹	25 U	25 U ¹	920 J
/W-1	10/31/2000	17	1 U	2	270	160	1 U	1 U	1 U	1,300
1W-1	4/27/2001	17	1 UJ	3.9	250 J	170 J	1 U	1 UJ	0.6 J	770 J
1W-1	6/20/2001	19 J	0.58 U	2.5 J	240 J	170 J	0.55 U	0.56 U	0.59 U	860
/W-1	7/30/2001	14 J	1 U	2.4	240 J	170	1 U	1 U	1 U	1,500 J
/W-1	10/29/2001	14 J	1 U	1.5	160 J	130	1 U	1 U	1 U	970 J
4W-1	4/30/2002	16 J	2.5 U	2.6 J	280 J	180 J	2.5 U	2.5 U	2.5 U	750 J
/W-1	6/19/2002	12 J	0.57 U	1.7 J	170 J	130 J	0.55 U	0.57 U	0.59 U	970 J
1W-1	7/23/2002	15 J	2.5 U	2.6 J	280 J	200 J	2.5 U	2.5 U	2.5 U	1,100 J
fW-1	10/24/2002	15 J	2 U	2 U^1	180 J	130 J	2 U	2 U	2 U	570 J
IW-1	4/29/2003	10 J	0.23 U	1.4 J	160 J	94 J	0.22 U	0.23 U	0.24 U	780 J
AW-1	10/14/2003	14 J	0.57 U	1.4 J	140 J	140 J	0.55 U	0.57 U	0.59 U	840 J
/W-1	4/22/2004	12	0.12 U	2 J	150 J	130 J	0.11 U	0.12 U	0.31 J	760 J
4W-1	10/13/2004	15	0.12 U	1.2	130 J	140 J	0.11 U	0.12 U	0.23 J	900 J
4W-1	4/14/2005	0.4	0.2 U	0.2 U	0.4	0.6	0.2 U	0.2 U	0.2 U	4.8
4W-1	10/13/2005	13	0.2 U	0.9	100	91	0.2 U	0.2 U	0.2 U	830
4W-1	7/10/2006	11 DJ	2.5 UJ	1.1 DJ	72 DJ	100 DJ	2.5 UJ	2.5 UJ	2 JD	820 DJ
4W-1	10/16/2006	12	0.5 U	0.52	56	92 D	0.5 U	0.5 U	0.14 J	660 D
4W-1	6/13/2007	11	0.5 U	0.68	66 D	84 D	0.5 U	0.5 U	0.18 J	600 D
1W-1	10/18/2007	13	0.5 U	0.63	69	86 D	0.5 U	0.5 U	0.15 J	540 D
fW-1	5/13/2008	10 D	1 U	0.46 D	33 D	67 D	1 U	1 U	0.16 JD	580 D
1W-1	10/28/2008	10 D	1 U	0.46 JD	39 D	71 D	1 U	1 U	1 U	490 D
1W-1	6/18/2009	9.6 D	1 U	0.46 D	43 D	73 D	1 U	1 U	1 U	570 D
/W-1	10/27/2009	8.3 D	1 U	0.2 JD	14 D	46 D	1 U	1 U	1 U	420 D
/W-1	6/15/2010	9.2	0.5 U	0.45 J	39 D	60 D	0.5 U	0.5 U	0.17 J	380 D
/W-1	10/25/2010	8.4 D	1.3 U	0.4 JD	31 D	31 D	1.3 U	1.3 U	1.3 U	400 D
/W-1	7/18/2011	9.1	0.5 U	0.39 J	37	67	0.5 U	0.5 U	0.14 J	370 D
/W-1	10/25/2011	8.1	0.5 U	0.27	31	60	0.5 U	0.5 U	0.5 U	280 D
/W-1	6/12/2012	8.4	0.5 U	0.26 J	24	49	0.5 U	0.5 U	0.11 J	200 D 290 D
1W-1	6/23/2014	6.1	0.5 U	0.19 J	17	35	0.5 UJ	0.5 U	0.5 U	290 D 280 D
1W-1	6/21/2016	4.6	0.08 J	0.5 U	13	25	0.5 U	0.5 U	0.5 U	230 D
4W-1	6/11/2019	3.2	0.2 UM	0.12 JM	9.9	23	0.5 U	0.2 U	0.2 U	230 D
N1-02	8/28/1995	1 U	1 U	4.2	1,400 J	23	1 U	1 U	36 J	150 J
W1-02	12/6/1995	1 U	1 U	3.5	1,400 J	23	1 U	1 U	35 J	130 J
W1-02	3/11/1996	0.5 U	0.5 U	4.8	1,800 J	30 J	0.5 U	0.5 U	41	200 J
W1-02	6/25/1996	0.23 J	0.5 U	4.0 5.1 J	1,500 J	31 J	0.5 U	0.5 U	43 J	200 J 180 J
W1-02	3/2/1998	0.5 U	0.5 U	3.4	1,300 J	21	0.5 U	0.5 U	43 J 29 J	130 J 110 J
W1-02	6/11/1999	3 U	3 U	5.4	1,200 J	26	3 U	3 U	29 J 27	110 J 160

1 of 10

Table C-1. OU 1 Chlorinated VOC Groundwater Sampling Results through June 2019										
Location ID	Sampling Date	1,1-DCA	1,2-DCA	1,1-DCE	cis-1,2-DCE	trans-1,2-DCE	PCE	1,1,1-TCA	TCE	Vinyl Chloride
W Remedi	iation Goals	800	5	0.5	70	100	5	200	5	0.5
MW1-02	10/20/1999	0.5 U	0.5 U	3.4	1,000	21	0.5 U	0.5 U	23	110
MW1-02	4/25/2000	0.5 U	0.5 U	6	1,900 J	49 J	0.5 U	0.5 U	13	220 J
AW1-02	6/8/2000	0.3 J	0.2 J	3.2 J	890 J	21 J	0.5 U	0.5 U	22 J	110 J
fW1-02	7/24/2000	25 U	25 U ¹	25 U ¹	750 J	25 U	25 U ¹	25 U	25 U ¹	87 J
fW1-02	10/31/2000	1 U	1 U	2.2	810	15	1 U	1 U	12	85
W1-02	4/26/2001	1 U	1 UJ	6.3	1,200 J	44	1 U	1 UJ	21	120 J
IW1-02	6/20/2001	0.91 U	1.2 U	3.6 J	950 J	18 J	1.1 U	1.2 U	19 J	89 J
IW1-02	7/30/2001	1 U	1 U	2.1	660 J	43 J	1 U	1 U	19	130 J
IW1-02	10/29/2001	1 U	1 U	2.4	700 J	18	1 U	1 U	14	93
IW1-02	4/30/2002	2.5 U	2.5 U	3.6 J	1,200 J	29 J	2.5 U	2.5 U	5 J	140 J
W1-02	6/19/2002	0.26 J	0.23 U	2.2 J	660 J	13 J	0.22 U	0.23 U	15 J	75 J
W1-02	7/23/2002	1 U	1 U	2.6 J	720 J	16 J	1 U	1 U	17 J	100 J
W1-02	10/24/2002	2.5 U	2.5 U	2.7 J	910 J	17 J	2.5 U	2.5 U	21 J	120 J
W1-02	4/30/2003	0.37 U	0.46 U	3.4 J	870 J	18 J	0.44 U	0.46 U	13 J	130 J
W1-02	10/15/2003	0.26 J	0.12 U	2.6	710 J	15	0.11 U	0.12 U	19	120 J
W1-02	4/22/2004	0.37 J	0.12 U	3.9	1,200 J	22	0.11 U	0.12 U	14	200 J
W1-02	10/13/2004	0.45 J	0.12 U	3.6	930 J	23	0.11 U	0.12 U	6.6	160 J
W1-02	4/12/2005	0.3	0.2 U	2.2	690	15	0.2 U	0.2 U	13	180
W1-02	10/12/2005	0.4	0.2 U	2.9	810	20	0.2 U	0.2 U	4.1	140
W1-02	7/10/2006	2.5 U	2.5 U	2.8 D	660 D	17 D	2.5 U	2.5 U	2 JD	150 D
W1-02	10/16/2006	0.33 J	0.5 U	2	560 D	16	0.5 U	0.5 U	1.3	110 D
W1-02	6/13/2007	0.36 JD	1 U	2.1 D	680 D	16 D	1 U	1 U	5.2 D	140 D
W1-02	10/18/2007	0.28 JD	1 U	1.9 D	590 D	15 D	1 U	1 U	9.5 D	98 D
W1-02	5/8/2008	0.28 J	0.5 U	1.8	460 D	13	0.5 U	0.5 U	7.5	110 D
W1-02	10/28/2008	0.25 JD	1.3 U	1.8 D	420 D	11 D	1.3 U	1.3 U	9.1 D	88 D
W1-02	6/19/2009	0.22 JD	1 U	1.5 D	460 D	11 D	1 U	1 U	6.4 D	87 D
W1-02	10/27/2009	0.26 JD	1 U	1.8 D	440 D	11 D	1 U	1 U	6.2 D	91 D
W1-02	6/15/2010	0.27 J	0.5 U	1.9	490 D	13	0.5 U	0.5 U	7.5	92 D
W1-02	10/25/2010	0.24 JD	1 U	1.4 D	410 D	10 D	1 U	1 U	5.8 D	96 D
W1-02	7/19/2011	0.37 J	0.5 U	1.7	440 D	14	0.5 U	0.5 U	3	90 D
W1-02	10/25/2011	0.28 J	0.5 U	1.1	360 D	9.9	0.5 U	0.5 U	2.3	67
W1-02	6/12/2012	0.35 J	0.5 U	1.8	450 D	14	0.5 U	0.5 U	5.8	81 D
W1-02	6/23/2014	0.34 J	0.5 U	1.5	390 D	13	0.5 UJ	0.5 U	4.7	110 D
W1-02	6/21/2016	0.41 J	0.5 U	1.2	330 D	11	0.5 U	0.5 U	1.2	89 D
W1-02	6/19/2017	0.31 J	0.5 U	0.65	200 D	6.6	0.5 U	0.5 U	2.1	54
W1-02	6/18/2019	0.37	0.2 U	0.63	160 D	7	0.5 U	0.2 U	1.1	79 DM
W1-03	3/8/1996	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
W1-03	6/21/1996	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
W1-03	9/11/1996	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
W1-03	10/20/1999	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.7	0.5 U
W1-03	4/25/2000	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
W1-03	7/24/2000	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
W1-03	10/31/2000	1 U	1 U	1 U ¹	1 U	1 U	1 U	1 U	1 U	1 U ¹
W1-03	4/27/2001	1 U	1 UJ	$1 U^{1}$	1 U	1 U	1 U	1 UJ	1 U	$1 U^{1}$
W1-03	7/30/2001	1 U	1 U	1 U ¹	1 U	1 U	1 U	1 U	1 U	1 U ¹
W1-03	10/29/2001	1 U	1 U	1 U ¹	1	1.1	1 U	1 U	1 U	3.3
W1-03	4/30/2002	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
4W1-03	7/23/2002	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U

Table C-1. OU 1 Chlorinated VOC Groundwater Sampling Results through June 2019

Table C-1. OU 1 Chlorinated VOC Groundwater Sampling Results through June 2019										
Location ID	Sampling Date	1,1-DCA	1,2-DCA	1,1-DCE	cis-1,2-DCE	trans-1,2-DCE	PCE	1,1,1-TCA	TCE	Vinyl Chloride
GW Remedi	iation Goals	800	5	0.5	70	100	5	200	5	0.5
MW1-03	10/24/2002	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
MW1-03	4/29/2003	0.091 U	0.12 U	0.12 U	0.12 U	0.14 U	0.11 U	0.12 U	0.12 U	0.22 U
MW1-03	10/14/2003	0.091 U	0.12 U	0.12 U	0.12 U	0.14 U	0.11 U	0.12 U	0.12 U	0.22 U
MW1-03	4/21/2004	0.091 U	0.12 U	0.12 U	0.12 U	0.14 U	0.11 U	0.12 U	0.12 U	0.22 U
MW1-03	10/13/2004	0.091 U	0.12 U	0.12 U	0.12 U	0.15 U	0.11 U	0.12 U	0.12 U	0.23 J
MW1-03	4/12/2005	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
MW1-03	10/12/2005	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
MW1-03	7/12/2006	0.5 U	0.5 U	0.2 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.2 U
MW1-03	10/16/2006	0.5 U	0.5 U	0.3 U	0.17 J	0.5 U	0.5 U	0.5 U	0.5 U	0.09 J
MW1-03	6/13/2007	0.5 U	0.5 U	0.2 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.2 U
MW1-03	10/19/2007	0.5 U	0.5 U	0.2 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.2 U
MW1-03	5/7/2008	0.5 U	0.5 U	0.2 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.2 U
MW1-03	10/28/2008	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.2 U
MW1-03	6/19/2009	0.5 U	0.5 U	0.2 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.2 U
MW1-03	10/27/2009	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
MW1-03	6/15/2010	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
MW1-03	10/25/2010	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
MW1-03	7/19/2011	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
MW1-03	10/25/2011	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
MW1-03	6/12/2012	0.5 U	0.5 U	0.5 UJ	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
MW1-03	6/23/2014	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 UJ	0.5 U	0.5 U	0.5 U
MW1-03	6/22/2016	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
MW1-41	10/21/1999	0.5 U	0.5 U	0.5 U	0.6	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
MW1-41	4/26/2000	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
MW1-41	6/8/2000	0.2 J	0.5 U	0.5 U	0.82	0.5 U	0.5 U	0.5 U	0.5 U	0.53
MW1-41	7/24/2000	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
MW1-41	11/2/2000	1 U	1 U	1 U1	1 U	1 U	1 U	1 U	1 U	1 U ¹
MW1-41	4/26/2001	1 U	1 UJ	1 U1	1 U	1 U	1 U	1 UJ	1 U	1 U ¹
MW1-41 MW1-41	6/20/2001	0.1 J	0.12 U	0.12 U	0.4 J	0.14 U	0.11 U	0.12 U	0.12 U	0.4 J
MW1-41 MW1-41	6/20/2001	0.091 U	0.12 U 0.12 U	0.12 U 0.12 U	0.41 J	0.14 U 0.14 U	0.11 U	0.12 U	0.12 U 0.12 U	0.42 J
MW1-41 MW1-41	7/30/2001	1 U	0.12 U 1 U	$1 U^{1}$	0.41 J 1 U	0.14 U 1 U	0.11 U	0.12 U 1 U	0.12 U 1 U	
										0.6 J
MW1-41	10/29/2001	1 U	1 U	1 U ¹	1 U	1 U	1 U	1 U	1 U	0.5 J
MW1-41	4/30/2002	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
MW1-41	6/19/2002	0.091 U	0.12 U	0.12 U	0.41 J	0.14 U	0.11 U	0.12 U	0.12 U	0.43 J
MW1-41	7/23/2002	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
MW1-41	10/24/2002	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
MW1-41	4/30/2003	0.091 U	0.12 U	0.12 U	0.43 U	0.14 U	0.11 U	0.12 U	0.12 U	0.43 U
MW1-41	10/15/2003	0.091 U	0.12 U	0.12 U	0.37 J	0.14 U	0.11 U	0.12 U	0.12 U	0.28 J
MW1-41	4/22/2004	0.091 U	0.12 U	0.12 U	0.3 J	0.14 U	0.11 U	0.12 U	0.12 U	0.3 J
MW1-41	10/13/2004	0.1 J	0.12 U	0.12 U	0.41 J	0.15 U	0.11 U	0.12 U	0.12 U	0.35 J
MW1-41	4/12/2005	0.2 U	0.2 U	0.2 U	0.3	0.2 U	0.2 U	0.2 U	0.2 U	0.3
MW1-41	10/12/2005	0.2 U	0.2 U	0.2 U	0.5	0.2 U	0.2 U	0.2 U	0.2 U	0.3
MW1-41	7/10/2006	0.5 U	0.5 U	0.2 U	0.26 J	0.5 U	0.5 U	0.5 U	0.5 U	0.23
MW1-41	10/16/2006	0.5 U	0.5 U	0.3 U	0.34 J	0.5 U	0.5 U	0.5 U	0.5 U	0.22
MW1-41	6/13/2007	0.5 U	0.5 U	0.2 U	0.25 J	0.5 U	0.5 U	0.5 U	0.5 U	0.21
MW1-41	10/18/2007	0.5 U	0.5 U	0.2 U	0.31 J	0.5 U	0.5 U	0.5 U	0.5 U	0.18 J
MW1-41	5/8/2008	0.5 U	0.5 U	0.2 U	0.27 J	0.11 J	0.5 U	0.5 U	0.5 U	0.19 J
MW1-41	10/28/2008	0.08 J	0.5 U	0.5 U	0.32 J	0.12 J	0.5 U	0.5 U	0.5 U	0.16 J

Table C-1. OU 1 Chlorinated VOC Groundwater Sampling Results through June 2019

W Remedi		1,1-DCA	1,2-DCA	1,1-DCE	cis-1,2-DCE	trans-1,2-DCE	PCE	1,1,1-TCA	TCE	Vinyl Chlori
_	iation Goals	800	5	0.5	70	100	5	200	5	0.5
/W1-41	6/19/2009	0.5 U	0.5 U	0.2 U	0.26 J	0.07 J	0.5 U	0.5 U	0.5 U	0.2
/W1-41	10/27/2009	0.5 U	0.5 U	0.5 U	0.28 J	0.1 J	0.5 U	0.5 U	0.5 U	0.17 J
/W1-41	6/15/2010	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.2 J
/W1-41	10/25/2010	0.5 U	0.5 U	0.5 U	0.29 J	0.5 U	0.5 U	0.5 U	0.5 U	0.18 J
/W1-41	7/18/2011	0.5 U	0.5 U	0.5 U	0.26 J	0.08 J	0.5 U	0.5 U	0.5 U	0.16 J
/W1-41	10/25/2011	0.5 U	0.5 U	0.5 U	0.23 J	0.09 J	0.5 U	0.5 U	0.5 U	0.12 J
/W1-41	6/19/2019	0.04 J	0.2 U	0.2 U	0.16 J	0.2 U	0.2 U	0.2 U	0.2 U	0.12
	ation – Shallow Gro	undwater Wells								
/W1-04	8/23/1995	1 U	1 U	7.7	6,400 J	80 J	2.2	1 U	11,000 J	2,000 J
/W1-04	12/5/1995	1 U	1 U	5.2	3,900 J	500 U^1	1.7	1 U	8,600 J	2,800 J
/W1-04	3/5/1996	0.67 J	0.5 UJ	5.6 J	3,500 J	56 J	0.96 J	0.5 UJ	6,300 J	1,100 J
/W1-04	6/20/1996	0.64	0.5 U	13	5,900 J	41	4	0.5 U	22,000 J	970 J
/W1-04	3/3/1998	0.5 U	0.5 U	16	13,000 J	140 J	3.8	0.5 U	22,000 J	1,900 J
/W1-04	6/14/1999	2 J	3 U	24	12,000 J	140	4	3 U	26,000	1,800
/W1-04	10/21/1999	0.8	0.5 U	10	5,300	70	0.7	0.5 U	3,600	1,100
/W1-04	4/26/2000	1.4	0.5 U	16	8,500 J	100 J	2.9	0.5 U	19,000 J	1,300 J
/W1-04	6/7/2000	0.3 J	0.5 U	6.2	15,000 J	100 J	1.3	0.5 U	38,000	1,300
1W1-04	7/25/2000	250 U	250 U ¹	250 U ¹	8,500 J	250 U ¹	250 U ¹	250 U ¹	18,000 J	860 J
1W1-04	11/9/2000	1 U	1 U	0.9 J	660	12	1 U	1 U	490	190
4W1-04	4/27/2001	1 U	1 UJ	6.6	3,700 J	74 J	0.8 J	1 UJ	3,900 J	700 J
4W1-04	6/20/2001	4.6 U	5.7 U ¹	18 J	12,000 J	110 J	5.5 U ¹	5.6 U	13,000 J	1,700 J
/W1-04	7/31/2001	1 U	1 U	2.9	2,200 J	95 J	0.6 J	1 U	2,700 J	400 J
/W1-04	10/30/2001	1 U	1 U	0.5 J	270 J	3	1 U	1 U	170	49
/W1-04	5/1/2002	2.5 U	2.5 U	2.5 U ¹	600 J	3.7 J	2.5 U	2.5 U	730 J	54 J
/W1-04	6/17/2002	9.1 U	12 U ¹	30 J	15,000 J	100 J	$11 U^{1}$	12 U	42,000 J	970 J
/W1-04	7/25/2002	1 U	1 U	1.1 J	600 J	2.7 J	1 U	1 U	580 J	95 J
/W1-04	10/25/2002	0.5 U	0.5 U	0.8	430 J	3.9	0.5 U	0.5 U	490 J	36 J
/W1-04	4/29/2003	4.6 U	5.7 U ¹	16 U^1	7,000 J	53 J	5.5 U ¹	5.7 U	11,000 J	1,100 J
1 W1-04	10/15/2003	2.3 U	2.9 U	9 J	4,000 J	50 J	2.8 U	2.9 U	2,500 J	1,800 J
fW1-04	4/21/2004	9.1 U	12 U ¹	18 J	8,100 J	71 J	11 U^1	12 U	20,000 J	460 J
1 W1-04	10/14/2004	1.2	0.12 U	28	15,000 J	94 J	3.8	0.12 U	22,000 J	770 J
1W1-04	4/13/2005	0.2 U	0.2 U	$200 U^1$	10,000	200 U ¹	2.3	0.2 U	16,000	800
/W1-04	10/13/2005	0.2 U	0.2 U	13	8,600	100 U ¹	1.5	0.2 U	7,800	1,900
fW1-04	7/12/2006	50 U	50 U ¹	16 JD	6,300 D	53 D	50 U ¹	50 U	14,000 D	540 D
4W1-04	10/17/2006	0.23 J	0.5 U	17	11,000 D	77 D	0.63	0.5 U	3000 D	4500 D
1 W1-04	6/14/2007	100 U	$100 U^1$	$100 U^{1}$	11,000 D	72 JD	$100 U^1$	100 U	24,000 D	850 D
1 W1-04	10/17/2007	10 U	10 U^1	5 D	3,400 D	23 D	10 U ¹	10 U	3,100 D	240 D
1W1-04	5/7/2008	50 U	50 U ¹	18 JD	7,500 D	73 D	50 U ¹	50 U	24,000 D	410 D
1W1-04	10/28/2008	13 U	13 U ¹	4.5 JD	3,400 D	23 D	13 U ¹	13 U	6,600 D	180 D
IW1-04	6/25/2009	50 U	50 U ¹	23 D	12,000 D	93 D	50 U ¹	50 U	30,000 JD	510 D
1W1-04 1W1-04	10/27/2009	50 U	50 U	3.4 JD	12,000 D 1,600 D	10 D	5 U	5 U	2,000 JD	100 D
1W1-04 1W1-04	6/16/2010	50 U	50 U ¹	25 JD	1,000 D 17,000 D	10 D 170 D	50 U ¹	50 U	2,000 D 32,000 D	960 D
/W1-04	10/25/2010	10 U	10 U^1	4.2 JD	2,700 D	21 D	10 U^1	10 U	5,400 D	960 D 130 D
IW1-04	7/18/2011	50 U ^{1/}	0.5 U	17 JD	1,100 D	95 D	50 U1/	50 U	22,000 D	440 D
AW1-04	10/25/2011	2.5 U	2.5 U	1.6 JD	840 D	6.3 D	2.5 U	2.5 U	380 D	56 D
1W1-04 1W1-04	6/12/2012 6/17/2013	25 U 25 U	25 U ¹ 25 U ¹	7 JD 8.5 JD	7,000 D 7,700 D	46 D 46 D	25 U ¹ 25 U ¹	25 U 25 U	16,000 D 15,000 D	130 D 130 D

FIFTH FIVE-YEAR REVIEW NAVAL BASE KITSAP KEYPORT Appendix C – OU 1 Cumulative Long-Term Monitoring Data

Table C-1. OU 1 Chlorinated VOC Groundwater Sampling Results through June 2019											
Location ID	Sampling Date	1,1-DCA	1,2-DCA	1,1-DCE	cis-1,2-DCE	trans-1,2-DCE	PCE	1,1,1-TCA	TCE	Vinyl Chloride	
W Remed	iation Goals	800	5	0.5	70	100	5	200	5	0.5	
MW1-04	6/17/2014	10 U	10 U ¹	4.2 JD	3,500 D	27 D	10 U ¹	10 U	6,100 D	110 D	
MW1-04	6/24/2015	2.5 U	2.5 U	2.9 D	1,800 D	16 D	2.5 U	2.5 U	1,600 D	96 D	
AW1-04	6/23/2016	2.5 U	2.5 U	2.9 D	1,800 D	14 D	2.5 U	2.5 U	1,700 D	85 D	
MW1-04	6/19/2017	10 U	10 U^1	6.6 J D	5600 D	56 D	10 U ¹	10 U	11000 D	240 D	
/W1-04	6/19/2019	0.2 U	0.2 U	1.3	580 D	7.3	0.5 U	0.2 U	680 D	34	
4W1-05	8/23/1995	5.8 J	1 U	1 U ¹	17	1.3	1 U	1 U	1.9	140 J	
4W1-05	12/5/1995	110 J	1 U	$1 U^1$	74 J	16	1 U	1 U	7.3	4,300 J	
4W1-05	3/6/1996	34	0.5 U	0.5 U	60	7	0.5 U	0.5 U	3	1,100	
1W1-05	6/20/1996	29 J	0.5 U	0.24 J	93 J	6.5	0.5 U	0.5 U	1.7	1,500 J	
fW1-05	3/4/1998	67 J	0.26 J	0.5 U	8.9	7.2	0.5 U	0.5 U	1.6	1,000 J	
fW1-05	6/14/1999	9	3 U	3 U ¹	9	2 J	3 U	3 U	2 J	290	
IW1-05	10/21/1999	9.6	0.5 U	0.5 U	0.5	0.5	0.5 U	0.5 U	0.5 U	18	
W1-05	4/25/2000	1.1	0.5 U	0.5 U	1.2	0.5 U	0.5 U	0.5 U	0.5 U	30	
IW1-05	6/7/2000	6.9	0.5 U	0.5 U	1.8	0.64	0.5 U	0.5 U	1.6	22	
W1-05	7/25/2000	1.8	0.5 U	0.5 U	3.4	0.5 U	0.5 U	0.5 U	0.5 U	31	
W1-05	11/6/2000	1.7	1 U	$1 U^1$	1 U	1 U	1 U	1 U	1 U	7	
W1-05	4/26/2001	1 U	1 UJ	$1 U^1$	1 U	1 U	1 U	1 UJ	1 U	24	
W1-05	6/20/2001	1.5	0.12 U	0.12 U	0.46 J	0.28 J	0.11 U	0.12 U	0.46 J	32	
W1-05	7/31/2001	0.5 J	1 U	1 U ¹	1 U	1 U	1 U	1 U	1 U	13	
W1-05	10/30/2001	1.7	1 U	1 U ¹	0.5 J	1 U	1 U	1 U	1 U	3.5	
W1-05	5/1/2002	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	1.7	
W1-05	6/17/2002	0.93	0.12 U	0.12 U	0.74	0.16 J	0.11 U	0.12 U	0.85	11	
W1-05	7/24/2002	0.65	0.12 U 0.5 U	0.12 U 0.5 U	0.63 J	0.5 U	0.5 U	0.12 U 0.5 U	0.66	2.5	
W1-05	10/25/2002	15	0.5 U	0.5 U	0.82	0.5 U	0.5 U	0.5 U	0.8	2.5 5.6	
W1-05	4/29/2003	0.32 U	0.12 U	0.12 U	0.82 0.3 U	0.14 U	0.3 U 0.11 U	0.3 U 0.12 U	0.33 U	5.6	
W1-05	10/15/2003	2	0.12 U 0.12 U	0.12 U 0.12 U	0.3 U 0.41 J	0.14 U 0.22 J	0.11 U	0.12 U 0.12 U	0.33 U 0.24 J	3.1	
W1-05	4/22/2004	0.24 J	0.12 U	0.12 U 0.12 U	0.27 J	0.14 U	0.11 U	0.12 U 0.12 U	0.24 J	0.83	
W1-05	10/14/2004	0.24 J 1.4	0.12 U 0.12 U	0.12 U 0.12 U		0.14 U 0.31 J	0.11 U	0.12 U 0.12 U	0.55	2	
W1-05	4/13/2005	0.2 U	0.12 U 0.2 U	0.12 U 0.2 U	0.56 2	0.31 J 0.2 U	0.11 U 0.2 U	0.12 U 0.2 U	0.55 10	0.9	
W1-05	10/12/2005	3	0.2 U	0.2 U 0.2 U	0.7	0.2 U 0.2 U	0.2 U 0.2 U	0.2 U 0.2 U	0.5	5.9	
W1-05	7/12/2005	0.48 J	0.2 U 0.5 U	0.2 U 0.2 U	0.4 J	0.2 U 0.5 U	0.2 U 0.5 U	0.2 U 0.5 U	0.5 U		
W1-05	10/16/2006	6.8	0.5 U	0.2 U 0.3 U	0.4 J	0.5 U 0.4 J	0.5 U	0.5 U	0.65	0.91	
										11	
W1-05 W1-05	6/14/2007 10/17/2007	0.44 J 2.1	0.5 U 0.5 U	0.5 U 0.2 U	0.27 J 0.55	0.5 U 0.17 J	0.5 U 0.5 U	0.5 U 0.5 U	0.27 J 0.34 J	0.7 4	
W1-05 W1-05											
	5/12/2008	0.16 J	0.5 U	0.2 U 0.5 U	0.26 J	0.1 J 0.24 J	0.5 U	0.5 U	0.27 J	0.42	
W1-05	10/29/2008	1.4	0.5 U		0.54		0.5 U	0.5 U	0.39 J	2.2	
W1-05	6/26/2009	3.4	0.5 U	0.2 U	0.51	0.59	0.5 U	0.5 U	0.47 J	6.6	
W1-05	10/27/2009	0.97	0.5 U	0.5 U	0.44 J	0.23 J	0.5 U	0.5 U	0.44 J	1.9	
W1-05	6/16/2010	2.6	0.5 U	0.5 U	0.62	0.55	0.5 U	0.5 U	0.52	8.1	
W1-05	10/25/2010	0.37 J	0.5 U	0.5 U	0.35 J	0.5 U	0.5 U	0.5 U	0.32 J	0.74	
W1-05	7/18/2011	1.9	0.5 U	0.5 U	0.6	0.47 J	0.5 U	0.5 U	0.42 J	9.4	
W1-05	10/26/2011	1.4	0.5 U	0.5 U	0.46 J	0.16 J	0.5 U	0.5 U	0.4 J	3.6	
W1-05	6/12/2012	0.25 J	0.5 U	0.5 UJ	0.24 J	0.1 J	0.5 U	0.5 U	0.27 J	2.2	
W1-05	6/17/2013	0.1 J	0.5 U	0.5 U	0.19 J	0.5 U	0.5 U	0.5 U	0.16 J	0.31 J	
W1-05	6/17/2014	0.78	0.5 U	0.5 U	0.85	0.2 J	0.5 U	0.5 U	0.24 J	17	
W1-05	6/24/2015	0.6	0.5 U	0.5 U	0.53	0.08 J	0.5 U	0.5 U	0.29 J	7.7 J	
W1-05	6/22/2016	4	0.5 U	0.11 J	5.5	1.2	0.5 U	0.5 U	0.46 J	64	
W1-05	6/19/2017	2.7	0.5 U	0.09 J	5.7	1.1	0.5 U	0.5 U	0.58	53	

Location ID	Sampling Date	1,1-DCA	1,2-DCA	1,1-DCE	cis-1,2-DCE	trans-1,2-DCE	PCE	1,1,1-TCA	TCE	Vinyl Chlorid
W Remed	iation Goals	800	5	0.5	70	100	5	200	5	0.5
MW1-16	8/31/1995	12,000 J	15 J	680 J	14,000 J	520 J	0.51 J	5,600 J	250 J	12,000 J
MW1-16	6/20/1996	30,000 J	35 J	180 J	3,100 J	180 J	1.3 J	430 J	34 J	2,200 J
MW1-16	3/4/1998	24,000 J	24 J	110 J	18,000 J	180 J	1.5	840 J	4,000 J	3,900 J
MW1-16	6/14/1999	15,000 J	17	48	6,900	160	1 J	140	550	4,100
MW1-16	10/21/1999	6,500	9	5	28	26	1.2	23	9.2	28
MW1-16	4/26/2000	1,700 J	0.5 UJ	0.5 UJ	70 J	7.4 J	0.69 J	16 J	3.3 J	4.3 J
MW1-16	6/7/2000	2,500	2.7	2 J	13	13	1 J	29	20	6.6
MW1-16	7/25/2000	2,300 J	50 U ¹	$50 U^1$	50 U	50 U	50 U^1	50 U	50 U ¹	$50 U^1$
MW1-16	11/6/2000	3,900	4.2	1.3	12	16	1 U	21 J	4.1	1 U ¹
MW1-16	4/27/2001	1,100 J	1.6 J	$1 U^1$	2.4	7.5	0.4 J	7.2 J	2.2	19
AW1-16	6/20/2001	2,900 J	7 J	23 J	9,300 J	98 J	$5.5 U^1$	28 J	370 J	1,400 J
AW1-16	7/31/2001	1,900 J	1.9	2.2	60	12	1 U	15	8.3	68 J
/W1-16	10/30/2001	3,400 J	4.1	2.1	13	17	1 U	13	3.5	11
AW1-16	5/1/2002	1,200 J	2.5 U	2.5 U ¹	3.9 J	7.9 J	2.5 U	5.6 J	2.5 U	2.7 J
/W1-16	6/17/2002	10,000 J	12 U ¹	42 J	24,000 J	240 J	$11 U^{1}$	38 J	150 J	3,000 J
AW1-16	7/24/2002	3,200 J	5 U	5 U ¹	340 J	17 J	5 U	10 J	5.5 J	86 J
MW1-16	10/25/2002	9,000 J	25 U ¹	25 U ¹	190 J	38 J	25 U ¹	25 U	25 U ¹	80 J
MW1-16	4/29/2003	330 J	0.41 U	0.37 U	1.6	3.9	0.31 U	0.52	1.3	2.1
AW1-16	10/15/2003	1,700 J	1.2 U	1.2 U^1	6.2 J	13 J	1.1 U	5.3 J	2.4 J	5.5 J
MW1-16	4/21/2004	160 J	0.21 J	0.24 J	1.8	3	0.13 J	0.2 J	1	1.7
AW1-16	10/13/2004	4,200 J	3.7	1.1	11	23	0.42 J	10	4.5	9.3
MW1-16	4/13/2005	88	0.2 U	0.2 U	1.2	2.8	0.2 U	0.2 U	0.6	0.6
MW1-16	10/13/2005	220	0.2 J	0.2 J	13 J	7 J	0.2 U	0.2 U	2 J	5.9 J
MW1-16	7/14/2006	240 D	1 U	0.4 D	3.3 D	3.2 D	1 U	1 U	1.2 D	2.8 D
MW1-16	10/17/2006	1,000 D	0.47 J	0.63	440 D	26	0.13 J	0.23 J	2.6	290 D
MW1-16	6/14/2007	40	0.5 U	0.13 J	1.6	2.2	0.5 U	0.5 U	0.7	0.89
MW1-16	10/17/2007	98 D	2.5 U	1 U	6.5 D	6.1 D	2.5 U	2.5 U	1.8 JD	2.5 D
MW1-16	5/12/2008	17	0.5 U	0.14 J	1.1	1.9	0.5 U	0.5 U	0.65	0.68
MW1-16	10/29/2008	68 D	0.14 JD	0.2 JD	12 D	6.7 D	1 U	1 U	1 D	6.3 D
MW1-16	6/25/2009	37	0.5 U	0.23	29	2.6	0.5 U	0.08 J	3.1	11
MW1-16	10/27/2009	68 D	1 U	0.4 JD	35 D	4.2 D	1 U	1 U	3.2 D	13 D
MW1-16	6/16/2010	92 D	0.5 U	0.5 U	0.95	2.8	0.5 U	0.2 J	0.57	0.47 J
MW1-16	10/25/2010	52	0.5 U	0.08 J	8.1	2.2	0.5 U	0.5 U	0.43 J	4
MW1-16	7/18/2011	5.3	0.5 U	0.1 J	1.6	1.1	0.5 U	0.5 U	0.39 J	0.72
MW1-16	10/25/2011	1,500 D	1.3 JD	1.2 JD	1,300 D	34 D	2.5 U	0.85 JD	1.4 JD	360 D
MW1-16	6/12/2012	28	0.5 U	0.5 UJ	1.3	0.65	0.5 U	0.5 U	0.21 J	0.26 J
MW1-16	6/17/2013	15	0.5 U	0.15 J	14	1.8	0.5 U	0.5 U	0.32 J	4.8
MW1-16	6/17/2014	2.5	0.5 U	0.5 U	0.63	0.39 J	0.5 UJ	0.5 U	0.11 J	0.29 J
AW1-16	6/24/2015	5.2	0.5 U	0.5 U	1.1	0.93	0.5 U	0.5 U	0.31 J	0.54 J
/ W1-16	6/22/2016	4.4	0.5 U	0.5 U	2	1.3	0.5 U	0.5 U	0.16 J	1.5
AW1-16	6/19/2017	2	0.5 U	0.5 U	0.69	0.41 J	0.5 U	0.5 U	0.5 U	0.54
AW1-20	8/30/1995	1 U	1 U	1 U ¹	1 U	1 U	1 U	1 U	1 U	1 U ¹
AW1-20	12/8/1995	1 U	1 U	$1 U^1$	1 U	1 U	1 U	1 U	1 U	$1 U^1$
AW1-20	3/11/1996	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
AW1-20	6/27/1996	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
MW1-20	10/21/1999	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
MW1-20	4/26/2000	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U

Table C-1. OU 1 Chlorinated VOC Groundwater Sampling Results through June 2019

Table C-1. OU 1 Chlorinated VOC Groundwater Sampling Results through June 2019											
Location ID	Sampling Date	1,1-DCA	1,2-DCA	1,1-DCE	cis-1,2-DCE	trans-1,2-DCE	PCE	1,1,1-TCA	TCE	Vinyl Chloride	
GW Remedi	iation Goals	800	5	0.5	70	100	5	200	5	0.5	
MW1-20	7/25/2000	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	
MW1-20	10/31/2000	1 U	1 U	$1 U^1$	1 U	1 U	1 U	1 U	1 U	1 U ¹	
MW1-20	7/31/2001	1 U	1 U	$1 U^1$	1 U	1 U	1 U	1 U	1 U	$1 U^1$	
MW1-20	10/30/2001	1 U	1 U	$1 U^1$	1 U	1 U	1 U	1 U	1 U	$1 U^1$	
MW1-20	5/1/2002	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	
MW1-20	7/25/2002	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	
MW1-20	10/25/2002	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	
MW1-20	4/29/2003	0.091 U	0.12 U	0.12 U	0.12 U	0.14 U	0.11 U	0.12 U	0.12 U	0.22 U	
MW1-20	10/14/2003	0.091 U	0.12 U	0.12 U	0.12 U	0.14 U	0.11 U	0.12 U	0.12 U	0.22 U	
MW1-20	4/21/2004	0.091 U	0.12 U	0.12 U	0.12 U	0.14 U	0.11 U	0.12 U	0.12 U	0.22 U	
MW1-20	10/13/2004	0.091 U	0.12 U	0.12 U	0.12 U	0.15 U	0.11 U	0.12 U	0.12 U	0.22 U	
MW1-20	4/13/2005	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	
MW1-20	10/12/2005	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	
MW1-20	7/12/2006	0.5 U	0.5 U	0.2 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.2 U	
MW1-20	10/16/2006	0.5 U	0.5 U	0.3 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.05 J	
MW1-20	6/13/2007	0.5 U	0.5 U	0.2 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.2 U	
MW1-20	10/19/2007	0.5 U	0.5 U	0.2 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.2 U	
MW1-20	5/7/2008	0.5 U	0.5 U	0.2 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.2 U	
MW1-20	10/28/2008	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.2 U	
MW1-20	6/24/2009	0.5 U	0.5 U	0.2 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.2 U	
MW1-20	10/27/2009	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	
MW1-20	6/15/2010	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	
MW1-20	10/25/2010	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	
MW1-20	7/18/2011	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	
MW1-20	10/25/2011	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	
MW1-20	6/12/2012	0.5 U	0.5 U	0.5 UJ	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	
MW1-20	6/17/2013	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	
MW1-20	6/17/2014	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	
MW1-20	6/24/2015	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 UJ	
MW1-20	6/22/2016	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	
MW1-20	6/19/2017	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	
	dfill – Shallow Gro		0.0 0	0.0 0	0.0 0	0.5 0	0.0 0	0.0 0	0.5 0	0.0 0	
MW1-17	8/29/1995	1 U	1 U	1 U ¹	6.4	0.94 J	1 U	1 U	1 U	6.9	
MW1-17	12/4/1995	1 U	1 U	1 U ¹	5.1	1 U	1 U	1 U	1 U	4.3	
MW1-17	3/6/1996	0.5 U	0.5 U	0.5 U	0.32 J	0.29 J	0.5 U	0.5 U	0.5 U	0.47 J	
MW1-17 MW1-17	6/24/1996	0.5 U	0.2 J	0.5 U	1.4 U	0.51	0.4 J	0.5 U	0.5 U	1.2 U^1	
MW1-17 MW1-17	6/7/2000	0.5 C	0.5 U	0.5 U	0.5 U	0.64	0.4 J 0.5 U	0.5 U	0.3 J	0.5 U	
MW1-17 MW1-17				0.3 U 0.12 U		0.71				0.22 U	
	6/20/2001	0.12 J	0.12 U		0.12 U		0.11 U	0.12 U	0.12 U		
MW1-17	6/19/2002	0.11 J	0.12 U	0.12 U	0.12 U	0.43 J	0.11 U	0.12 U	0.12 U	0.66	
MW1-17 MW1-17	4/29/2003	0.091 U	0.12 U	0.12 U	0.18 U	0.39 U	0.11 U	0.12 U	0.12 U	1.4	
	4/22/2004	0.091 U	0.12 U	0.12 U	3.4 0.2 U	0.31 J	0.11 U	0.12 U	0.89	3.8	
MW1-17	4/14/2005	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	
MW1-17	7/10/2006	0.5 UJ	0.5 UJ	0.25 J	50 J	0.23 J	0.5 UJ	0.5 UJ	0.5 UJ	14 J	
MW1-17	6/14/2007	0.5 U	0.5 U	0.31 J	76 D	0.5 U	0.5 U	0.5 U	0.5 U	14	
MW1-17	5/7/2008	0.5 U	0.5 U	0.19 J	33 100 D	0.14 J	0.5 U	0.5 U	0.5 U	5.9	
MW1-17	6/18/2009	0.5 U	0.5 U	0.43	100 D	0.22 J	0.5 U	0.5 U	0.13 J	18	
MW1-17	6/15/2010	0.5 U	0.5 U	0.42 J	61 D	0.16 J	0.5 U	0.5 U	0.5 U	15	
MW1-17	7/18/2011	0.5 U	0.5 U	0.42 J	90 D	0.18 J	0.5 U	0.5 U	0.5 U	15	

Table C-1. OU 1 Chlorinated VOC Groundwater Sampling Results through June 2019

ocation. ID	Sampling Date	1,1-DCA	1,2-DCA	1,1-DCE	cis-1,2-DCE	trans-1,2-DCE	PCE	1,1,1-TCA	TCE	Vinyl Chlorid
W Remed	liation Goals	800	5	0.5	70	100	5	200	5	0.5
IW1-17	6/12/2012	0.5 U	0.5 U	1.4 J	360 D	0.34 J	0.5 U	0.5 U	0.2 J	40
IW1-17	6/17/2013	0.5 U	0.5 U	1.9	430 D	0.55	0.5 U	0.5 U	0.46 J	89 D
IW1-17	6/18/2014	0.5 U	0.5 U	1.5	360 D	0.31 J	0.5 U	0.5 U	0.5 U	62
W1-17	6/24/2015	1 U	1 U	2.1 D	630 D	0.46 JD	1 U	1 U	1 U	120 JD
W1-17	6/21/2016	0.5 U	0.5 U	1.6	440 D	0.45 J	0.5 U	0.5 U	0.5 U	100 D
W1-17	6/19/2017	0.5 U	0.5 U	1.2	440 D	0.39 J	0.5 U	0.5 U	0.5 U	72
<u>^</u>	undwater Wells									
W1-09	8/21/1995	1 U	1 U	$1 U^1$	1 U	1 U	1 U	1 U	1 U	1 U ¹
W1-09	12/5/1995	1 U	1 U	1 U ¹	1 U	1 U	1 U	1 U	1 U	1 U ¹
W1-09	3/5/1996	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
W1-09	6/7/2000	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 J	0.5 U
W1-09	6/17/2002	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.2 U
W1-09	4/23/2004	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.2 U
W1-09	7/13/2006	0.5 UJ	0.5 UJ	0.2 UJ	0.17 J	0.5 UJ	0.5 UJ	0.5 UJ	0.5 UJ	0.2 UJ
W1-09	5/12/2008	0.5 U	0.5 U	0.2 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.2 U
IW1-09	6/16/2010	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
IW1-09	6/14/2012	0.5 U	0.5 U	0.5 UJ	0.14 J	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
IW1-09	6/24/2014	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
W1-09	6/22/2016	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
W1-09	6/27/2019	0.2 UM	0.2 UM	0.2 U	0.2 UM	0.2 UM	0.2 UM	0.2 UM	0.2 UM	0.02 UM
W1-25	8/17/1995	4.8	1 U	7.3	440 R	35 R	1 U	1 U	98 R	340 R
W1-25	12/6/1995	3.9	1 U	6.1	630 R	38 R	1 U	1 U	74 R	230 R
W1-25	3/11/1996	0.5 U	0.5 U	1.1	260	6.3	0.5 U	0.5 U	11	44
W1-25	6/25/1996	0.5 U	0.5 U	4.7 J	630 R	45 R	0.5 U	0.5 U	74 R	240 R
W1-25	6/8/2000	6.9	0.3 J	7.2	2,000	41	0.5 U	0.5 U	39	260
W1-25	8/6/2002	8.6 J	$10 U^1$	7.6 J	2,000 D	41 D	10 U ¹	10 U	20 D	240 D
W1-25	6/19/2003	67 U	NA	67 U	1,800	34	67 U ¹	67 U	14	210
W1-25	4/22/2004	5.9 D	2.5 U	6.6 D	1,600 D	33 D	2.5 U	2.5 U	7.5 D	170 D
W1-25	7/13/2006	6 D	5 U	7.3 D	1700 D	37 D	5 U	5 U	4.3 JD	270 D
W1-25	5/8/2008	4.5 D	2.5 U	4.8 D	1200 JD	28 D	2.5 U	2.5 U	1.3 JD	210 D
W1-25	6/16/2010	4.2 D	2.5 U	5.1 D	1,400 D	28 D	2.5 U	2.5 U	1.9 JD	180 D
W1-25	6/23/2014	4.9 D	2.5 U	5.7 D	1,300 D	27 D	2.5 UJ	2.5 U	0.95 JD	220 D
W1-25	6/20/2019	3.6	0.19 U	2.9	1,100 D	20	0.5 UM	0.2 U	0.43	270 D
W1-28	12/7/1995	1.1	1 U	5.1	720 R	58 R	1 U	1 U	2.3	420 R
W1-28	3/8/1996	2.1	0.5 U	5	320	78 78 D	0.5 U	0.5 U	1.6	480
W1-28	6/25/1996	2.4 J	0.5 U	6.3	540 R	78 R	0.5 U	0.5 U	2.2 J	480 R
W1-28	9/9/1996	2.3	0.5 U	5.4	510 R	66 R	0.5 U	0.5 U	1.2	540 R
W1-28	6/7/2000	3.2	0.5 U	5.1	1,300 J	74 84 D	0.5 U	0.5 U	0.81	520
W1-28	8/6/2002	4.6 J	10 U ¹	5.4 J	1,500 D	84 D	10 U ¹	10 U	10 U ¹	600 D
W1-28	6/19/2003	50 U	NA	50 U ¹	1,200	34	50 U ¹	50 U	50 U ¹	470
W1-28	4/22/2004	3.9	0.5 U	5.3	1,300 D	71 D	0.5 U	0.5 U	0.52	540 D
W1-28	7/13/2006	6.1 D	5 U	7.2 D	1500 D	94 D	5 U	5 U	1.6 JD	710 D
W1-28	5/8/2008	6.1 D	2.5 U	5.7 D	1400 D	78 D	2.5 U	2.5 U	0.9 JD	650 D
W1-28	6/17/2010	6.3 D	2.5 U	6.1 D	1,700 D	91 D	2.5 U	2.5 U	0.7 JD	540 D
W1-28	6/24/2014	6.2 D	2.5 U	5.9 D	1,600 D	94 D	2.5 UJ	2.5 U	0.75 JD	560 D
W1-28	6/24/2019	5.6	0.12 J	5.1	1,500 D	74 D	0.5 U	0.2 U	0.2 U	590 D
W1-29	6/27/2019	0.2 UM	0.2 U	0.2 UM	0.2 UM	0.2 UM	0.5 UM	0.2 UM	0.2 UM	0.02 UJ

Location						ater Sampling Result				
ID	Sampling Date	1,1-DCA	1,2-DCA	1,1-DCE	cis-1,2-DCE	trans-1,2-DCE	PCE	1,1,1-TCA	TCE	Vinyl Chloride
W Remed	iation Goals	800	5	0.5	70	100	5	200	5	0.5
/W1-38	6/27/1996	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
4W1-38	9/10/1996	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
IW1-38	4/23/2004	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
IW1-38	7/13/2006	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
IW1-38	5/12/2008	0.5 U	0.5 U	0.2 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.2 U
W1-38	6/17/2010	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
W1-38	6/13/2012	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
IW1-38	6/24/2014	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 UJ	0.5 U	0.5 U	0.5 U
IW1-38	6/22/2016	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
IW1-38	6/19/2019	0.2 UM	0.2 U	0.2 UM	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.022 M
W1-39	6/17/1996	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.8
W1-39	6/27/1996	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	1 U ¹
W1-39	9/10/1996	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.76
W1-39	6/8/2000	0.5 U	0.5 U	0.5 U	0.4 J	0.5 U	0.5 U	0.5 U	0.5 U	2
IW1-39	8/6/2002	0.5 U	0.5 U	0.5 U	0.32 J	0.5 U	0.5 U	0.5 U	0.5 U	1.8
IW1-39	6/19/2003	1 U	NA	$1 U^1$	0.56	1 U	1 U	1 U	1 U	1.3
IW1-39	4/23/2004	0.5 U	0.5 U	0.5 U	0.33 J	0.5 U	0.5 U	0.5 U	0.5 U	2
IW1-39	7/13/2006	0.5 U	0.5 U	0.2 U	0.45 J	0.5 U	0.5 U	0.5 U	0.5 U	2.7
W1-39	5/12/2008	0.5 U	0.5 U	0.2 U	0.43 J	0.5 U	0.5 U	0.5 U	0.5 U	2.3
W1-39	6/17/2010	0.5 U	0.5 U	0.5 U	0.6	0.5 U	0.5 U	0.5 U	0.5 U	0.09 J
W1-39	6/13/2012	0.5 U	0.5 U	0.5 U	0.9	0.5 U	0.5 U	0.5 U	0.5 U	2
W1-39	6/24/2014	0.5 U	0.5 U	0.5 U	0.94	0.5 U	0.5 UJ	0.5 U	0.5 U	2.1
W1-39	6/22/2016	0.5 U	0.5 U	0.5 U	0.93	0.5 U	0.5 U	0.5 U	0.5 U	1.8
IW1-39	6/17/2019	0.2 UM	0.2 UM	0.2 U	0.65	0.2 UM	0.2 U	0.2 U	0.2 UM	1.6
IW1-60	9/18/2018	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 UJ
	uifer Domestic Wa									
lavy #5	12/8/1995	1 U	1 U	1 U ¹	1 U	1 U	1 U	1 U	1 U	1 U ¹
lavy #5	3/3/1998	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
lavy #5	6/2/1999	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
lavy #5	6/7/2000	0.5 U	0.5 U	0.5 U	0.3 J	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
avy #5	6/19/2001	0.091 U	0.12 U	0.12 U	0.12 U	0.14 U	0.11 U	0.12 U	0.12 U	0.22 U
avy #5	6/27/2002	0.091 U	0.12 U	0.12 U	0.12 U	0.14 U	0.11 U	0.12 U	0.12 U	0.22 U
avy #5	4/30/2003	0.091 U	0.12 U	0.12 U	0.12 U	0.14 U	0.11 U	0.12 U	0.12 U	0.22 U
avy #5	4/23/2004	0.091 U	0.12 U	0.12 U	0.14 J	0.14 U	0.11 U	0.12 U	0.12 U	0.22 U
avy #5	6/16/2004	0.091 U	0.12 U	0.12 U	0.12 U	0.14 U	0.11 U	0.12 U	0.12 U	0.22 U
avy #5	4/14/2005	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
avy #5	7/14/2006	0.5 U	0.5 U	0.2 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.2 U
avy #5	6/15/2007	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
avy #5	5/9/2008	0.5 U	0.5 U	0.2 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.2 U
avy #5	6/18/2009	0.5 U	0.5 U	0.2 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.2 U
avy #5	6/16/2010	0.5 U	0.5 U	0.2 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
avy #5	7/18/2011	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
avy #5	6/13/2012	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
avy #5	6/19/2012	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 UJ	0.5 U
avy #5	6/24/2014	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 UJ	0.5 U	0.5 U	0.5 U
avy #5	6/24/2015	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 UJ
lavy #5	6/23/2016	0.5 U	0.5 U	0.5 U	0.07 J	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
lavy #5	6/21/2017	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U

Table C-1. OU 1 Chlorinated VOC Groundwater Sampling Results through June 2019

			Table (C-1. OU 1 Chlorina	ted VOC Groundw	ater Sampling Resul	ts through June 2)19		
Location ID	Sampling Date	1,1-DCA	1,2-DCA	1,1-DCE	cis-1,2-DCE	trans-1,2-DCE	PCE	1,1,1-TCA	TCE	Vinyl Chloride
W Remed	iation Goals	800	5	0.5	70	100	5	200	5	0.5
Navy #5	6/11/2017	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.02 UJQ
PUD	12/8/1995	1 U	1 U	1 U ¹	1 U	1 U	1 U	1 U	1 U	1 U ¹
PUD	3/3/1998	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
PUD	6/2/1999	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
PUD	6/8/2000	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
PUD	6/19/2001	0.091 U	0.12 U	0.12 U	0.12 U	0.14 U	0.11 U	0.12 U	0.12 U	0.22 U
PUD	7/1/2002	0.091 U	0.12 U	0.12 U	0.12 U	0.14 U	0.11 U	0.12 U	0.12 U	0.22 U
PUD	4/30/2003	0.091 U	0.12 U	0.12 U	0.12 U	0.14 U	0.11 U	0.12 U	0.12 U	0.22 U
PUD	4/23/2004	0.091 U	0.12 U	0.12 U	0.12 U	0.14 U	0.11 U	0.12 U	0.12 U	0.22 U
PUD	4/14/2005	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
PUD	7/14/2006	0.5 U	0.5 U	0.2 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.2 U
PUD	6/14/2007	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
PUD	5/9/2008	0.5 U	0.5 U	0.2 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.2 U
PUD	6/17/2009	0.5 U	0.5 U	0.2 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.2 U
PUD	6/16/2010	0.5 U	0.5 U	0.2 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
PUD	7/19/2011	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
PUD	6/13/2012	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
PUD	6/19/2013	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 UJ	0.5 U
PUD	6/25/2014	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 UJ	0.5 U	0.5 U	0.5 U
PUD	6/25/2015	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 UJ
PUD	6/22/2016	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
PUD	6/21/2017	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
PUD	6/10/2019	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.02 UJQ
ezometers										
P1-01	6/11/2019	0.2 UM	0.2 U	0.2 U	0.077 JM	0.2 UM	0.5 U	0.2 U	0.2 U	0.02 UJ
P1-02	6/19/2019	0.2 U	0.2 U	0.2 UM	0.1 J	0.2 U	0.5 U	0.2 U	0.2 U	0.064
P1-03	6/27/2019	0.11 JM	0.2 U	0.2 UM	0.085 JM	0.2 UM	0.5 UM	0.2 U	0.2 UM	0.02 UM
P1-04	6/17/2019	0.31	0.2 UM	1.5	480 D	11	0.5 U	0.2 UM	0.28	150 D
P1-05	6/27/2019	0.16 JM	0.3	0.2 UM	0.13 JM	0.38	0.5 UM	0.2 U	0.2 UM	0.02 UM
tes:						green highlight indicates samp	oles collected during this F	YR period.		
	ions are in µg/L.				NA – not an	•				
Ļ	roundwater.				PCE – tetrac					
		-	dwater remediation goal.		-	nore quality control criteria fai				
D – the reported result is from a dilution					R – rejected result, quality control indicates the data are not usable					
DCA – dichloroethane					TCA – trichloroethane					
CE – dichlor					TCE – trichloroethene					
- estimated						ected at value shown				
	grams per liter					ected at value shown and value	-	1		
– manual ir	ntegrated compound				UJ – not det	ected at the estimated value sh	nown			

Location ID	Sampling Date	ampling Results through June 2019 1,4-Dioxane (µg/L)
Remediation Goal		NE (MTCA Method B = 0.44)
North Plantation – Shallo	w Groundwater Wells	
1MW-1	7/10/2006	1.1
1MW-1	6/11/2019	0.56
MW1-02	7/10/2006	14
MW1-02	9/19/2018	5.9
MW1-02	6/18/2019	7.6
MW1-03	7/12/2006	1 U
MW1-14	6/11/2019	0.28 M
MW1-41	7/10/2006	8.5
MW1-41	9/19/2018	28
MW1-41	6/19/2019	5.1 J
South Plantation – Shalld		
MW1-04	7/12/2006	1 U
MW1-04	6/19/2019	0.2 U
MW1-05	7/12/2006	1 U
MW1-16	7/14/2006	1 U
MW1-20	7/12/2006	1 U
Central Landfill – Shallor		
MW1-17 Deeper Groundwater We	7/10/2006	1
MW1-09	7/13/2006	1 U
MW1-09	6/14/2012	1 U
MW1-09	6/24/2012	10
MW1-09	6/22/2014	0.4 U
MW1-09	6/18/2019	0.4 U
MW1-25	7/13/2006	29
MW1-25	9/20/2018	31
MW1-25 1/	6/20/2019	12
MW1-25 ^{2/}	6/20/2019	27 HDJ
MW1-28	7/13/2006	29
MW1-28	9/19/2018	7.4
MW1-28	6/24/2019	31 D
MW1-29	6/17/2019	0.2 UM
MW1-38	7/13/2006	4.1
MW1-38	6/13/2012	2.5
MW1-38	6/24/2014	2.3
MW1-38	6/22/2016	2.2
MW1-38	6/19/2019	1.7
MW1-39	7/13/2006	1.9
MW1-39 MW1-39	6/13/2012	1.2
MW1-39 MW1-39	6/24/2014 6/22/2016	1.1 0.85
MW1-39 MW1-39	6/17/2019	0.42 M
		0.42 M
Regional Aquifer Domest		
Navy #5	7/14/2006	1 U
Navy #5	6/24/2014	1 U
Navy #5	6/23/2016	0.4 U 0.19 U
Navy #5 PUD	6/10/2019	0.19 U 1 U
PUD PUD	7/14/2006 6/25/2014	1 U 1 U
PUD	6/25/2014 6/22/2016	0.4 U
PUD PUD	6/22/2016 6/11/2019	0.4 U 0.19 U
PUD Piezometers	0/11/2019	0.19 U
Plezometers	6/11/2019	0.26 M
P1-01 P1-02	6/19/2019	0.28 M
P1-02 P1-03	6/17/2019	8.6
P1-03 P1-04		8.6 24 D
P1-04 P1-05	6/17/2019 6/17/2019	6.6 D
F1-00	0/17/2019	0.0 D

Notes :

 $^{\prime\prime}$ The MW1-25 samples were analyzed by two laboratories. The initial analysis was completed by Test America, West Sacramento, California. See Section 3.2 for an explanation.

 $^{2\prime}$ The MW1-25 samples were analyzed by two laboratories. The second analysis was completed by Test America, Seattle, Washington. See Section 3.2 for an explanation.

All concentrations are in micrograms per liter (µg/L).

Bold indicates detected value is equal to or exceeds the MTCA Method B - carcinogen - cleanup level.

Yellow and green highlighting indicates samples collected during this FYR period. D – result reported from a diluted analysis

DUP – field duplicate sample

H - sample was prepped or analyzed beyond the specified holding time

J - analyte positively identified, but result is estimated

J1 - the quantitation is an estimation due to discrepancies in meeting certain analyte-specific quality control criteria

M - manual integrated compound

MTCA - Model Toxics Control Act

NE – not established (MTCA Method B – carcinogen – cleanup level = 0.44 $\,\mu g/L)$

PUD – Public Utility District

U-not detected at value shown

		1		B mocions Ground	iwater bailping	Results for Depten	1001 2010		
Location ID	Sampling Date	Aroclor 1016	Aroclor 1221	Aroclor 1232	Aroclor 1242	Aroclor 1248	Aroclor 1254	Aroclor 1260	Total PCBs
GW Remediation	Goal (µg/L)	NE	NE	NE	NE	NE	NE	NE	0.044
MW1-02	9/19/2018	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.010 U
MW1-02 (DUP)	9/19/2018	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.010 U
MW1-14	9/19/2018	0.10 U	0.10 U	0.10 U	0.10 U	0.63 PDJ	0.20 PDJ	0.10 U	0.83 PDJ
P1-01	9/19/2018	0.02 UJ	0.02 UJ	0.02 UJ	0.02 UJ	0.02 UJ	0.02 UJ	0.02 UJ	0.020 UJ

Table C-3. OU 1 PCB Aroclors Groundwater Sampling Results for September 2018

Notes:

All concentrations are in micrograms per liter (µg/L).

Bold indicates detected concentration is equal to or exceeds MTCA Method B risk based cleanup level of $0.044 \ \mu g/L$ for total PCBs in groundwater.

D – the report results is from a diluted analysis

DUP - field duplicate sample

GW - groundwater

J - analyte positively identified, but result is estimated

NE - not established

P-the relative percent difference is greater than 40% between the results on the two analytical columns

PCBs - polychlorinated biphenyls

U - the analyte was not detected at or above the indicated practical quantitation limit

UJ - analyte not detected, but the reported quantitation/detection limit is estimated

Congener	MW1-02	MW1-02 (DUP)	MW1-14	P1-01
PCB-1	1.5 J	7.2 J M	18,000 D	65 J M
PCB-2	0.44 J M	0.63 J q	1,200 J D	4.4 J
PCB-3	0.87 J M q	3 J M	8,600 D	6.4 J q
PCB-4	3.3 J M q	6.1 J M	15,000 D	36 J M
PCB-5	190 U	190 U	3,800 U M	190 U
PCB-6	190 U	190 U	43,000 D	180 J
PCB-7	190 U	190 U	1,900 J D	190 U
PCB-8	190 U	5.1 J M q	35,000 D M	15 J
PCB-9	190 U	190 U	2,600 J D	190 U
PCB-10	190 U	190 U	890 J D	190 U
PCB-11	190 U	190 U	1,500 J D	190 U
PCB-12/13	380 U	380 U	1,800 J D	380 U
PCB-14	190 U	190 U	3,800 U	4.2 J M q
PCB-15	190 U	190 U	13,000 D	190 U
PCB-16	190 U	1.7 J M q	10,000 D	5.9 J q
PCB-17	2 J q	3.2 J q	14,000 D	5.9 J
PCB-18/30	380 U	380 U	37,000 D	16 J
PCB-19	190 U	2.4 J q	2,700 J D	3 J q
PCB-20/28	5.4 J q	11 J	150,000 D	29 J
PCB-21/33	380 U	3.5 J q	52,000 D	13 J
PCB-22	1.4 J q	1.7 J	11,000 D	190 U
PCB-23	190 U	190 U	3,800 U	190 U
PCB-24	190 U	190 U	200 J D q	190 U
PCB-25	1.6 J q	4.7 J	73,000 D	47 J
PCB-26/29	1.4 J M q	18 J	460,000 D	340 J
PCB-27	190 U	190 U	2,400 J D	2.2 J q
PCB-31	190 U	10 J	210,000 D	43 J
PCB-32	1.8 J	4.1 J	36,000 D	11 J
PCB-34	190 U	190 U	4,200 D M q	4.4 J M
PCB-35	190 U	190 U	3,800 U	190 U
PCB-36	190 U	190 U	37,000 D M	190 U M
PCB-37	190 U	190 U	7,500 D M q	190 U
PCB-38	190 U	190 U	3,800 U	7.1 J
PCB-39	190 U	190 U	3,800 U	190 U
PCB-40/71	1.9 J q	11 J	530,000 D	380 U M
PCB-41	190 U	190 U	18,000 U	98 J M
PCB-42	2.3 J M q	7.5 J	270,000 D	35 J
PCB-43	190 U	190 U	16,000 U	190 U
PCB-44/47/65	570 U	73 J	2,200,000 D	260 J
PCB-45	190 U M	8 J M	27,000 D M	6.1 J M
PCB-46	190 U	190 U	24,000 D M	190 U
PCB-48	190 U	1.8 J M	52,000 D	190 U
PCB-49/69	380 U	39 J	1,500,000 D	190 J
PCB-50/53	0.89 J q	5.1 J	110,000 D	15 J

Table C-4. OU 1 PCB Congeners Groundwater Sampling Results for September 2018

19 J M

24 J M

PCB-51

12,000 U

21 J M

Congener	MW1-02	MW1-02 (DUP)	MW1-14	P1-01
PCB-52	190 U	140 J	5,700,000 E D J	620
PCB-54	0.46 J q	0.6 J q	250 J D	190 U
PCB-55	0.63 J M q	190 U	10,000 U	190 U
PCB-56	1 J q	4.1 J q	380,000 D	17 J
PCB-57	190 U	190 U	9,700 U	190 U
PCB-58	190 U	190 U M	150,000 D	190 U M
PCB-59/62/75	0.6 J M q	1.3 J	45,000 D	5.2 J
PCB-60	190 U	1.9 J	110,000 D	3.3 J
PCB-61/70/74/76	760 U	47 J	4,100,000 D	170 J
PCB-63	190 U	190 U	48,000 D	5.3 J q
PCB-64	190 U	9.7 J q	520,000 D	37 J
PCB-66	190 U	21 J M	1,400,000 D	71 J
PCB-67	190 U	190 U	9,000 U	190 U
PCB-68	2.8 J	4.9 J	14,000 D	6.6 J
PCB-72	190 U	0.68 J M q	35,000 D	6.4 J
PCB-73	190 U	190 U	9,600 U	190 U
PCB-77	19 U	19 U	16,000 D M	19 U
PCB-78	190 U	190 U	28,000 D M	4.1 J q
PCB-79	190 U	190 U	58,000 D M	8.8 J
PCB-80	190 U	190 U	33,000 D	190 U
PCB-81	19 U	19 U	13,000 U M	19 U
PCB-82	190 U	9.4 J	1,000,000 D	25 J
PCB-83	190 U M	11 J M	630,000 D M	29 J M
PCB-84	5.3 J	32 J	2,500,000 E D J	100 J
PCB-85/116/117	3.1 J q	13 J	1,400,000 D	34 J
PCB-86/87/97/108/119/125	9.4 J M q	49 J M	5,800,000 D M	150 J M
PCB-88/91	3.4 J	15 J	1,100,000 D	41 J
PCB-89	190 U	190 U	120,000 U	190 U
PCB-90/101/113	570 U	78 J	8,600,000 E D J	230 J
PCB-92	190 U	14 J q	1,600,000 D	58 J
PCB-93/100	380 U	380 U	100,000 U	380 U
PCB-94	190 U	190 U	110,000 U	190 U
PCB-95	190 U	97 J	7,000,000 E D J	320
PCB-96	190 U	190 U	37,000 D	3.7 J
PCB-98/102	380 U	380 U	170,000 D M	380 U
PCB-99	5.6 J M q	30 J M	4,000,000 E D M J	100 J M
PCB-103	190 U	190 U	94,000 U	190 U
PCB-104	190 U	190 U	260 J D	190 U
PCB-105	19 U	24	3,800,000 E D J	57
PCB-106	190 U	190 U	89,000 U	190 U
PCB-107/124	380 U	1.4 J M q	250,000 D	380 U
PCB-109	190 U	3.2 J M q	530,000 D M	15 J M
PCB-110/115	380 U	86 J	10,000,000 E D M J	300 J
PCB-111	190 U	190 U	83,000 U	190 U

Congener	MW1-02	MW1-02 (DUP)	MW1-14	P1-01
PCB-112	190 U M	190 U M	85,000 U M	190 U M
PCB-114	19 U	19 U	240,000 D M	19 U
PCB-118	19 U	56	7,900,000 E D J	160
PCB-120	190 U	190 U	83,000 U	190 U
PCB-121	190 U	190 U	77,000 U	190 U
PCB-122	190 U	190 U	96,000 U	190 U
PCB-123	19 U	19 U	120,000 U	19 U M
PCB-126	19 U	19 U	120,000 U	19 U
PCB-127	190 U	190 U	92,000 U	190 U
PCB-128/166	380 U	11 J	1,300,000 D	26 J
PCB-129/138/163	570 U	53 J	7,700,000 E D J	120 J
PCB-130	0.97 J q	3.2 J	490,000 D	190 U
PCB-131	190 U	1.4 J	120,000 D	190 U
PCB-132	190 U	21 J	2,600,000 E D J	42 J
PCB-133	190 U	190 U	69,000 D	190 U
PCB-134/143	380 U	3.4 J q	420,000 D	380 U
PCB-135/151	380 U	13 J	1,400,000 D M	27 J q
PCB-136	2 J q	7.8 J	760,000 D	16 J
PCB-137	190 U M	2.2 J q	520,000 D	5.7 J q
PCB-139/140	380 U	1.1 J	170,000 D	380 U
PCB-141	190 U	6.2 J	980,000 D	14 J
PCB-142	190 U	190 U M	25,000 U	190 U
PCB-144	190 U	1.9 J	250,000 D	190 U
PCB-145	190 U	190 U	16,000 U	190 U
PCB-146	2 J q	5.9 J	730,000 D	14 J
PCB-147/149	380 U	35 J	4,500,000 E D J	81 J
PCB-148	190 U	190 U	22,000 U	190 U
PCB-150	190 U	190 U	15,000 U	190 U
PCB-152	190 U	190 U	15,000 U	190 U
PCB-153/168	380 U	31 J	4,400,000 E D J	69 J
PCB-154	190 U	190 U	54,000 D M	190 U
PCB-155	0.43 J q	190 U	14,000 U	190 U
PCB-156/157	38 U	10 J	1,300,000 D M	24 J
PCB-158	1.5 J	5.7 J q	830,000 D	13 J
PCB-159	190 U	190 U	10,000 D	190 U
PCB-160	190 U M	190 U M	16,000 U M	190 U M
PCB-161	190 U M	190 U M	17,000 U M	190 U M
PCB-162	190 U	190 U	30,000 D	190 U
PCB-164	190 U	3.3 J	400,000 D	11 J
PCB-165	190 U	190 U	17,000 U	190 U
PCB-167	19 U	2.3 J q	370,000 D	5.8 J
PCB-169	0.63 J q	1.3 J M	3,800 U	19 U
PCB-170	0.4 J q	4.3 J	610,000 D	14 J
PCB-171/173	380 U	0.97 J q	210,000 D	3.3 J q

Congener	MW1-02	MW1-02 (DUP)	MW1-14	P1-01
PCB-172	190 U	0.61 J q	82,000 D	190 U
PCB-174	190 U	4 J	430,000 D	7.5 J
PCB-175	190 U M	190 U	18,000 D	190 U
PCB-176	190 U	0.39 J q	50,000 D	190 U
PCB-177	190 U	2.1 J q	250,000 D	3.6 J q
PCB-178	190 U M	0.59 J q	52,000 D	190 U
PCB-179	0.41 J q	1.1 J q	120,000 D	3.5 J
PCB-180/193	380 U	6.4 J	820,000 D	17 J q
PCB-181	190 U	190 U	16,000 D	190 U
PCB-182	190 U	190 U	3,800 D	190 U
PCB-183	190 U	190 U	260,000 D M	190 U
PCB-184	190 U	190 U	660 J D	190 U
PCB-185	190 U M	190 U M	3,800 U M	190 U M
PCB-186	190 U	190 U M	440 J D	190 U
PCB-187	190 U	3.1 J	310,000 D	7.3 J
PCB-188	190 U	190 U M	480 J D	190 U
PCB-189	0.54 J	0.97 J	30,000 D	19 U
PCB-190	190 U	0.7 J q	100,000 D	1.5 J
PCB-191	190 U	190 U	23,000 D	190 U
PCB-192	190 U	190 U	3,800 U	190 U
PCB-194	190 U	0.9 J q	100,000 D	3.5 J q
PCB-195	190 U	190 U	35,000 D	190 U
PCB-196	190 U	190 U	38,000 D	190 U M
PCB-197	190 U	190 U	2,200 J D	190 U
PCB-198/199	380 U	0.59 J q	65,000 D	1.9 J
PCB-200	190 U	190 U	7,900 D	190 U
PCB-201	190 U	190 U	6,400 D	190 U
PCB-202	190 U	1 J	8,400 D	190 U
PCB-203	190 U	190 U	45,000 D	1.1 J q
PCB-204	190 U	190 U	3,800 U	190 U
PCB-205	190 U	0.76 J q	5,700 D	190 U
PCB-206	190 U	190 U	32,000 D	4 J q
PCB-207	190 U	190 U	2,600 J D	190 U
PCB-208	190 U	190 U	4,200 D	4 J
PCB-209	0.41 J q	1 J M	1,300 J D	8.7 J q
Total PCB Congeners in pg/L	90.38	1,246	108,300,080	4,590
Total PCB Congeners in µg/L	0.00009	0.0012	108.3	0.0046
Cleanup Goal (µg/L)	0.044	0.044	0.044	0.044

Table C-4. OU 1 PCB Congeners Groundwater Sampling Results for September 2018

Notes:

All concentrations are in picograms per gram (pg/L), except where noted.

Bold indicates detected concentration exceeds MTCA Method B risk based cleanup level of 0.044 μ g/L for total PCBs. D – the reported from a diluted analysis

J – analyte positively identified, but result is estimated

M - a manual integration was performed by the laboratory analyst

PCB – polychlorinated biphenyl

q – the reported concentration is the estimated maximum possible concentration for this analyte.

The measured ion ratio does not meet qualitative identification criteria and indicates a possible interference.

Table C-5.	OU 1 Chlorinated VOC Surface and Seep Water Sampling Results through June 2019

Location ID	Sampling Date	1,1-DCA	1,2-DCA	1,1-DCE	cis-1,2-DCE	trans-1,2-DCE	PCE	1,1,1-TCA	TCE	Vinyl Chloride
Remed	iation Goals	NE	59	1.9	NE	33,000	4.2	41,700	56	2.9
South Plantatic	on									
MA12	3/14/1996	5 U	0.5 U	0.56	180 J	1.6	0.5 U	0.5 U	26	56 J
MA12	7/1/1996	11	0.5 U	1	480 J	3.5	0.5 U	0.5 U	64 J	56 J
MA12	6/11/1999	15	3 U	2 J	910	8	3 U	3 U	130	210
MA12	10/21/1999	12	0.5 U	1.9	600	5.5	0.5 U	0.5 U	110	130
MA12	4/26/2000	21	0.5 U	1.3	630 J	10	0.5 U	0.5 U	190 J	240 J
MA12	6/6/2000	16	5 U	5 U ¹	670	5.5	5 U	5 U	110	140
MA12	7/25/2000	25 U	25 U	25 U ¹	750 J	25 U	25 U ¹	25 U	180 J	140 J
MA12	11/9/2000	14	1 U	1.2	680	5.2	1 U	1 U	170	140
MA12	4/27/2001	15	1 UJ	1.6	600 J	12	1 U	1 UJ	100 J	92 J
MA12	6/22/2001	15 J	0.29 U	0.98 J	520 J	6.8 J	0.28 U	0.28 U	62 J	80 J
MA12	7/31/2001	17	1 U	1.1	500 J	28 J	1 U	1 U	90	150
MA12	10/30/2001	6.8	1 U	0.8 J	260 J	2.7	1 U	1 U	82	67
MA12	5/1/2002	7 J	1 U	1 U	440 J	3.1 J	1 U	1 U	96 J	49 J
MA12	6/19/2002	7.2	0.12 U	0.7	340 J	3	0.11 U	0.12 U	53 J	57 J
MA12	7/25/2002	8.3 J	1 U	1.2 J	580 J	4.7 J	1 U	1 U	86 J	94 J
MA12	10/25/2002	5.1 J	1.3 U	1.3 U	420 J	2.7 J	1.3 U	1.3 U	59 J	55 J
MA12	4/30/2003	4 J	0.23 U	0.84 U	390 J	2.8 J	0.22 U	0.23 U	60 J	49 J
MA12	10/22/2003	3.5	0.12 U	0.52	160 J	1.3	0.11 U	0.12 U	28	45
MA12	4/21/2004	5.7	0.12 U	0.81	430 J	3.2	0.11 U	0.12 U	83 J	46
MA12	10/14/2004	11	0.12 U	2	660 J	4.7	0.11 U	0.12 U	57	110 J
MA12	4/14/2005	7.3	0.2 U	0.8	450	5.4	0.2 U	0.2 U	83	51
MA12	10/13/2005	4.9	0.4	1.3	540	4.8	0.2 U	0.2 U	47	92
MA12	7/12/2006	6 D	2.5 U	2.3 D	800 D	11 D	2.5 U	2.5 U	110 D	120 D
MA12	10/17/2006	3.3	0.5 U	1.2 D	460 D	4.1	0.5 U	0.5 U	59	75
MA12	6/15/2007	3.9 D	1 U	1.3 D	840 D	5.6 D	1 U	1 U	150 D	120 D
MA12	10/18/2007	0.67	0.5 U	0.29 D	130 D	0.83	0.5 U	0.5 U	12	28
MA12	5/9/2008	4.3 D	1 U	1.3 D	670 D	5.8 D	1 U	1 U	140 D	93 D
MA12	10/28/2008	3 D	1.3 U	1.2 JD	400 D	3.1 D	1.3 U	1.3 U	65 D	49 D
MA12	6/17/2009	3.9 D	2.5 U	1.9 D	1000 D	9 D	2.5 U	2.5 U	170 D	110 D
MA12	10/27/2009	2.1	0.5 U	1	320 D	2.4	0.5 U	0.5 U	53	67
MA12	6/16/2010	2.7 D	1.3 U	1.1 JD	670 D	4.8 D	1.3 U	1.3 U	87 D	65 D
MA12	10/25/2010	0.67	0.5 U	0.32 J	170 D	1	0.5 U	0.5 U	28	27
MA12	7/19/2011	2.3 D	1 U	0.98 JD	670 D	4.4 D	1 U	1 U	100 D	91 D
MA12	10/25/2011	2.5	0.5 U	1.1	420 D	3.8	0.5 U	0.5 U	67	51 D
MA12	6/12/2012	1.8 D	1 U	1.4 D	830 D	5.8 D	1 U	1 U	120 D	68 D
MA12	6/19/2013	1.2 D	1 U	1.5 D	750 D	5.1 D	1 U	1 U	140 D	48 D
MA12	6/18/2014	0.67	0.5 U	0.82	480 D	3.4	0.5 U	0.5 U	84 D	42
MA12	6/24/2015	0.49 J	0.5 U	0.72	380 D	2.7	0.5 U	0.5 U	56	26
MA12	6/23/2016	0.37 J	0.09 J	0.73	330 D	2.5	0.5 U	0.5 U	72	32
MA12	6/19/2017	0.4 J	0.5 U	0.77	500 D	2.8	0.5 U	0.5 U	44	42
MA12	6/18/2019	0.24	0.2 UM	0.48 M	240 D	1.2	0.5 U	0.2 U	15	12

Table C-5.	OU 1 Chlorinated VOC Surface and Seep Water Sampling Results through June 2019

Location ID	Sampling Date	1,1-DCA	1,2-DCA	1,1-DCE	cis-1,2-DCE	trans-1,2-DCE	PCE	1,1,1-TCA	TCE	Vinyl Chlorid
Remedi	ation Goals	NE	59	1.9	NE	33,000	4.2	41,700	56	2.9
Central Landfil	l									
MA11	9/6/1995	1 U	1 UJ	1 U	0.51 J	1 UJ	1 U	1 U	1 U	1 U
MA11	12/6/1995	1 U	1 U	1 U	10	1 U	1 U	1 U	1 U	3.5
MA11	3/13/1996	0.43 J	0.5 U	0.5 U	13	0.5 U	0.5 U	0.5 U	1.6	5.9
MA11	7/2/1996	0.5 U	0.5 U	0.5 U	0.52	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
MA11	6/6/2000	1.2	0.5 U	0.5 U	33	0.56	0.5 U	0.5 U	7.9	9.2
MA11	6/22/2001	0.16 J	0.12 U	0.12 U	4.6	0.14 U	0.11 U	0.12 U	0.66	0.98
MA11	6/19/2002	0.54	0.12 U	0.12 U	22	0.24 J	0.11 U	0.12 U	4.2	5.6
MA11	4/30/2003	0.41 U	0.12 U	0.12 U	33	0.31 U	0.11 U	0.12 U	6.1	6
MA11	4/21/2004	0.33 J	0.12 U	0.12 U	23	0.31 J	0.11 U	0.12 U	4.9	4
MA11	4/14/2005	0.2 U	0.2 U	0.2 U	11	0.2 U	0.2 U	0.2 U	2.5	1.4
MA11	7/12/2006	0.5 U	0.5 U	0.2 U	0.14 J	0.5 U	0.5 U	0.5 U	0.5 U	0.2 U
MA11	6/15/2007	0.5 U	0.5 U	0.5 U	0.54	0.5 U	0.5 U	0.5 U	0.5 U	0.07 J
MA11	5/9/2008	0.07 J	0.5 U	0.2 U	10	0.15 J	0.5 U	0.5 U	2.1	1.8
MA11	6/24/2009	0.5 U	0.5 U	0.2 U	3.8	0.5 U	0.5 U	0.5 U	0.67	0.38
MA11	6/16/2010	0.5 U	0.5 U	0.5 U	12	0.5 U	0.5 U	0.5 U	1.6	1.4
MA11	7/19/2011	0.5 U	0.5 U	0.5 U	12	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
MA11	6/14/2012	0.5 U	0.5 U	0.5 UJ	19	0.21 J	0.5 U	0.5 U	2.8	1.2
MA11	6/19/2013	0.5 U	0.5 U	0.5 U	0.19 J	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
MA11	6/18/2014	0.5 U	0.5 U	0.5 U	8.1	0.5 U	0.5 U	0.5 U	1.5	0.61
MA11	6/23/2016	0.5 U	0.5 U	0.5 U	0.23 J	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
MA11	6/20/2017	0.5 U	0.5 U	0.5 U	0.15 J	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
MA11	6/18/2019	0.2 U	0.2 UM	0.2 UJ	0.2 UJ	0.2 UJ	0.5 UJ	0.2 UJ	0.2 UJ	0.02 UN
North Plantatio	n									
SP1-1	9/5/1995	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	0.66 J
SP1-1	12/5/1995	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
SP1-1	3/13/1996	0.5 U	0.5 U	0.5 U	170 J	1.8	0.5 U	0.5 U	0.5 U	420 J
SP1-1	7/2/1996	0.5 U	0.5 U	0.5 U	7.4	0.76	0.5 U	0.5 U	0.5 U	31 J
SP1-1	9/10/1996	0.2 J	0.5 U	0.5 U	0.33 J	0.5 U	0.5 U	0.5 U	0.5 U	1.1
SP1-1	6/11/1999	3 U	3 U	3 U ¹	4	3 U	3 U	3 U	3 U	32
SP1-1	10/20/1999	0.5 U	0.5 U	0.5 U	0.5	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
SP1-1	4/26/2000	0.5 U	0.5 U	0.5 U	32	2.5	0.5 U	0.5 U	1.7	210 J
SP1-1	7/25/2000	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
SP1-1	11/9/2000	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1
SP1-1	4/27/2001	1 U	1 UJ	1 U	1.3	0.7 J	1 U	1 UJ	1 U	8.4
SP1-1	7/31/2001	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
SP1-1	10/30/2001	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
SP1-1	5/1/2002	0.5 U	0.5 U	0.5 U	5	1	0.5 U	0.5 U	0.5 U	43
SP1-1	7/25/2002	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
SP1-1	10/25/2002	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
SP1-1	4/29/2003	0.21 U	0.12 U	0.12 U	2.2	0.8	0.11 U	0.12 U	0.12 U	31
SP1-1 SP1-1	10/22/2003	0.091 U	0.12 U	0.12 U	0.17 J	0.14 U	0.11 U	0.12 U	0.12 U	0.22 U
SP1-1	4/21/2004	0.2 J	0.12 U	0.12 U	0.16 J	0.36 J	0.11 U	0.12 U	0.12 U	1.1
SP1-1	10/14/2004	0.26 J	0.12 U	0.12 U	0.14 J	0.18 J	0.11 U	0.12 U	0.12 U	0.22 U
SP1-1	4/14/2005	0.2 U	0.2 U	0.12 U	0.2 U	0.2 U	0.11 U 0.2 U	0.2 U	0.2 U	0.2 U
SP1-1 SP1-1	10/13/2005	0.2 U 0.4 U	0.2 U 0.4 U	0.2 U 0.4 U	0.2 U 0.4 U	0.2 U 0.4 U	0.2 U 0.4 U	0.2 U 0.4 U	0.2 U 0.4 U	0.2 U 0.4 U
SP1-1 SP1-1	7/12/2006	0.4 U 0.13 J	0.4 U 0.5 U	0.4 U 0.2 U	0.4 U 0.17 J	0.4 U	0.4 U 0.5 U	0.4 U 0.5 U	0.4 U 0.5 U	0.4 U 0.06 J
SP1-1	10/17/2006	0.13 J 0.14 J	0.5 U	0.2 U 0.3 U	0.17 J 0.16 J	0.5 U	0.5 U	0.5 U	0.5 U	0.00 J 0.2 U
SP1-1 SP1-1	6/15/2007	0.14 J 0.11 J	0.5 U	0.5 U	0.10 J 0.14 J	0.5 U	0.5 U	0.5 U	0.5 U	0.2 U 0.05 J
SP1-1 SP1-1	5/8/2008	0.11 J 0.12 J	0.14 J	0.3 U 0.2 U	0.14 J 0.2 J	0.14 J	0.5 U 0.5 U	0.5 U	0.5 U 0.5 U	0.03 J 0.13 J
SP1-1 SP1-1	5/8/2008 6/24/2009	0.12 J 0.5 U	0.14 J 0.08 J	0.2 U 0.2 U	0.2 J 0.32 J	0.14 J 0.5 U	0.5 U 0.5 U	0.5 U 0.5 U	0.5 U 0.5 U	0.13 J 0.2 U
SP1-1 SP1-1	6/16/2010	0.5 U 0.09 J	0.08 J 0.09 J	0.2 U 0.5 U	0.32 J 0.4 J	0.5 U 0.14 J	0.5 U 0.5 U	0.5 U 0.5 U	0.5 U 0.14 J	0.2 U 0.31 J
SP1-1	7/19/2011	0.1 J	0.5 U	0.5 U	0.27 J 0.34 J	0.13 J	0.5 U	0.5 U	0.5 U	0.11 J
SP1-1	6/25/2014	0.5 U 0.06 J	0.5 U 0.2 U	0.5 U 0.2 U	0.34 J 0.1 J	0.12 J 0.2 U	0.5 UJ 0.5 U	0.5 U 0.2 U	0.5 U 0.2 UM	0.24 J 0.086

Table C-5.	OU 1 Chlorinated VOC Surface and Seep V	Water Sampling Results through June 2019

Location ID	Sampling Date	1,1-DCA	1,2-DCA	1,1-DCE	cis-1,2-DCE	trans-1,2-DCE	PCE	1,1,1-TCA	TCE	Vinyl Chloride
Remedi	ation Goals	NE	59	1.9	NE	33,000	4.2	41,700	56	2.9
MA09	9/5/1995	1 U	1 UJ	1 U	4	1 UJ	1 U	1 U	1 U	1.3
MA09	12/5/1995	1 U	1 U	1 U	14	1 U	1 U	1 U	1 U	5.4
MA09	3/14/1996	0.29 J	0.5 U	0.5 U	11	0.5 U	0.5 U	0.5 U	1.2	8
MA09	7/2/1996	0.5 U	0.5 U	0.5 U	0.79	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
MA09	3/3/1998	0.5 U	0.5 U	0.5 U	1.5	0.5 U	0.5 U	0.5 U	0.5 U	0.3 J
MA09	6/6/2000	0.5 U	0.5 U	0.5 U	3	0.5 U	0.5 U	0.5 U	0.63	0.64
MA09	6/22/2001	1.2	0.12 U	0.12 U	37	0.51	0.11 U	0.12 U	4.7	8.3
MA09	6/27/2002	0.13 J	0.12 U	0.12 U	6.3	0.14 U	0.11 U	0.12 U	0.82	1.4
MA09	4/29/2003	0.27 U	0.12 U	0.12 U	18	0.24 U	0.11 U	0.12 U	3.5	4.9
MA09	4/21/2004	0.22 J	0.12 U	0.12 U	15	0.21 J	0.11 U	0.12 U	3.2	1.9
MA09	4/14/2005	0.2 J	0.2 U	0.2 U	14 J	0.2 J	0.2 U	0.2 U	3.1 J	2.5 J
MA09	7/12/2006	0.5 U	0.5 U	0.2 U	2.3	0.5 U	0.5 U	0.5 U	0.5 U	0.3
MA09	6/15/2007	0.5 U	0.5 U	0.5 U	10	0.5 U	0.5 U	0.5 U	1.6	1.8
MA09	5/9/2008	0.5 U	0.5 U	0.2 U	6.3	0.09 J	0.5 U	0.5 U	1.3	1.2
MA09	6/24/2009	0.5 U	0.5 U	0.2 U	12	0.11 J	0.5 U	0.5 U	2.3	1.6
MA09	6/16/2010	0.11 J	0.5 U	0.5 U	23	0.21 J	0.5 U	0.5 U	2.9	2.5
MA09	7/19/2011	0.5 U	0.5 U	0.5 U	0.88 J	0.5 J	0.5 U	0.5 U	0.13 J	0.11 J
MA09	6/13/2012	0.08 J	0.5 U	0.5 U	29	0.24 J	0.5 U	0.5 U	3.7	2.7
MA09	6/19/2013	0.5 U	0.5 U	0.5 U	9.7	0.1 J	0.5 U	0.5 U	1.7	0.49 J
MA09	6/18/2014	0.5 U	0.5 U	0.5 U	12	0.12 J	0.5 U	0.5 U	2.2	0.95
MA09	6/24/2015	0.5 U	0.5 U	0.5 U	0.74	0.5 U	0.5 U	0.5 U	0.1 J	0.5 U
MA09	6/23/2016	0.5 U	0.5 U	0.5 U	2.5	0.5 U	0.5 U	0.5 U	0.56	0.34 J
MA09	6/19/2017	0.5 U	0.5 U	0.5 U	0.16 J	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
MA09	6/18/2019	0.2 UJ	0.2 U	0.2 UM	0.55	0.2 U	0.5 U	0.2 U	0.2 U	0.1 M
Tide Flats										
TF19	9/5/1995	1 U	1 U	1 U	4	1 U	1 U	1 U	1 U	0.92 J
TF19	12/4/1995	1 U	1 U	1 U	8.7	1 U	1 U	1 U	1 U	3.1
TF19	3/12/1996	0.43 J	0.5 U	0.5 U	19	0.26 J	0.5 U	0.5 U	1.3	19
TF19	7/1/1996	0.5 U	0.5 U	0.5 U	5.9	0.5 U	0.5 U	0.5 U	0.7	2.4
TF19	9/10/1996	0.5 U	0.5 U	0.5 U	1.4	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
TF19	3/3/1998	0.5 J	0.5 U	0.5 U	16	0.31 J	0.5 U	0.5 U	2.6	6.1
TF19	6/6/2000	0.4 J	0.5 U	0.5 U	12	0.2 J	0.5 U	0.5 U	2.3	3.1
TF19	6/22/2001	0.55	0.12 U	0.12 U	18	0.22 J	0.11 U	0.12 U	2.1	3.2
TF19	6/19/2002	0.22 J	0.12 U	0.12 U	8.5	0.14 U	0.11 U	0.12 U	1.3	1.9
TF19	4/29/2003	0.43 U	0.12 U	0.12 U	26	0.29 U	0.11 U	0.12 U	4.9	6.1
TF19	4/23/2004	0.13 J	0.12 U	0.12 U	9	0.17 J	0.11 U	0.12 U	1.6	1.1
TF19	4/14/2005	0.2 U	0.2 U	0.2 U	11	0.2 U	0.2 U	0.2 U	2.4	1.8
TF19	7/12/2006	0.5 U	0.5 U	0.2 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.2 U
TF19	6/15/2007	0.5 U	0.5 U	0.5 U	6.5	0.5 U	0.5 U	0.5 U	0.98	1
TF19	5/9/2008	0.5 U	0.5 U	0.2 U	0.18 J	0.5 U	0.5 U	0.5 U	0.5 U	0.2 U
TF19	6/25/2009	0.5 U	0.5 U	0.2 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.2 U
TF19	6/17/2010	0.5 U	0.5 U	0.5 U	3.9	0.5 U	0.5 U	0.5 U	0.58	0.42 J
TF19	7/19/2011	0.5 U	0.5 U	0.5 U	0.27 J	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
TF19	6/18/2014	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
TF19	6/20/2019	0.2 U	0.2 U	0.2 U	0.83	0.2 U	0.5 U	0.2 U	0.2 U	0.02 U

Table C-5.	OU 1 Chlorinated VOC Surface and See	p Water Sampling Results through June 2019

Location ID	Sampling Date	1,1-DCA	1,2-DCA	1,1-DCE	cis-1,2-DCE	trans-1,2-DCE	PCE	1,1,1-TCA	TCE	Vinyl Chloride
Remedi	ation Goals	NE	59	1.9	NE	33,000	4.2	41,700	56	2.9
Dogfish Bay										
DB14	9/5/1995	1 U	1 UJ	1 U	1 U	1 UJ	1 U	1 U	1 U	1 U
DB14	12/4/1995	1 U	1 U	1 U	1.9	1 U	1 U	1 U	1 U	1 U
DB14	3/13/1996	0.5 U	0.5 U	0.5 U	0.35 J	0.5 U	0.5 U	0.5 U	0.5 U	0.25 J
DB14	7/1/1996	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
DB14	9/10/1996	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
DB14	3/3/1998	0.5 U	0.5 U	0.5 U	1.5	0.5 U	0.5 U	0.5 U	0.5 U	0.58
DB14	6/6/2000	0.5 U	0.5 U	0.5 U	0.59	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
DB14	6/22/2001	0.091 U	0.12 U	0.12 U	0.7	0.14 U	0.11 U	0.12 U	0.12 U	0.22 U
DB14	6/19/2002	0.091 U	0.12 U	0.12 U	0.53	0.14 U	0.11 U	0.12 U	0.12 U	0.22 U
DB14	4/29/2003	0.091 U	0.12 U	0.12 U	1.8	0.14 U	0.11 U	0.12 U	0.35 U	0.38 U
DB14	4/23/2004	0.091 U	0.12 U	0.12 U	0.63	0.14 U	0.11 U	0.12 U	0.12 J	0.22 U
DB14	4/14/2005	0.2 U	0.2 U	0.2 U	0.6	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
DB14	7/12/2006	0.5 U	0.5 U	0.2 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.2 U
DB14	6/15/2007	0.5 U	0.5 U	0.5 U	1.1	0.5 U	0.5 U	0.5 U	0.18 J	0.16 J
DB14	5/9/2008	0.5 U	0.5 U	0.2 U	0.13 J	0.5 U	0.5 U	0.5 U	0.5 U	0.2 U
DB14	6/25/2009	0.5 U	0.5 U	0.2 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.2 U
DB14	6/17/2010	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
DB14	7/19/2011	0.5 U	0.5 U	0.5 U	0.07 J	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
DB14	6/18/2014	0.5 U	0.5 U	0.5 U	0.07 J	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
DB14	6/18/2019	0.2 U	0.2 UM	0.2 UM	0.2 UM	0.2 UM	0.5 UM	0.2 U	0.2 U	0.02 U

Notes:

All concentrations are inµg/L.

Bold indicates detected value is equal to or exceeds surface water remediation goal.

Yellow highlighting indicates samples collected during this FYR period.

D - the reported result is from a dilution

DCA - dichloroethane

DCE - dichloroethene

J-estimated result

M - manual integrated compound

 $\mu g/L-micrograms \ per \ liter$

NE – not established PCE – tetrachloroethene

TCA – trichloroethane

TCE - trichloroethene

U - not detected at value shown

 \boldsymbol{U}^l-not detected at value shown and value exceeds remediation goal

UJ - not detected at the estimated value shown

Sampling Date	D	Total PCBs (µg/L)
Total PCBs Remediation Goal	Program	0.044
Spring 1990	RI	1.8
Fall 1991	RI	1.5
September 5, 1995	Post-RI	0.16
December 5, 1995	-	0.15
March 13, 1996	Post-RI	0.2
July 2, 1996	Post-RI	0.24 J
October 10, 1996	Post-RI	0.13
June 7, 2000	Post-RA/LTM	0.42
June 17, 2002	Post-RA/LTM	0.45
April 21, 2004	Post-RA/LTM	0.42
July 12, 2006	Post-RA/LTM	0.29
May 8, 2008	Post-RA/LTM	0.27
June 16, 2010	Post-RA/LTM	0.28
June 25, 2014	Post-RA/LTM	0.696
June 20, 2017	Post-RA/LTM	0.010 U
June 18, 2019	Post-RA/LTM	0.572 J

Table C-6. OU 1 Total PCBs (Aroclors) in Seep SP1-1 Water through June 2019

Notes:

 $\mu g/L$ – micrograms per liter

U - not detected at value shown

RI – remedial investigation

RA - remedial action

LTM - long-term monitoring

Appendix C – OU 1 Cumulative Long-Term Monitoring Data

	OU 1 DOD	D D		T 2010
Table C-7.	OU I PCB	Congeners Seep) Water Results	s, June 2019

	SP1-1	SP1-1 (DUP)		
Congener	AREA-1-19-220	AREA-1-19-221		
PCB-1	16,000	15,000		
PCB-2	900	740		
PCB-3	7,000 J	5,900 J		
PCB-4	210,000 D M J1	170,000 D		
PCB-5	1,200 U M	900 U M		
PCB-6	1,200 D M	110,000 D M		
PCB-7	2,500 M	1,700 M		
PCB-8	180,000 D M	120,000 D M		
PCB-9	,	,		
	3,900 M	2,700 M		
PCB-10	5,900	4,400		
PCB-11	4,700 M	3,700 M		
PCB-12/13	18,000 M	13,000 M		
PCB-14	1,100 U	850 U		
PCB-15	100,000 D J1	64,000 D		
PCB-16	77,000 D	45,000 D		
PCB-17	100,000 D	62,000 D		
PCB-18/30	230,000 D	130,000 D		
PCB-19	67,000 D J1	39,000 D		
PCB-20/28	170,000 D	96,000 D M		
PCB-21/33	31,000	20,000 M		
PCB-22	38,000 D	22,000 D M		
PCB-23	900 U	660 U		
PCB-24	190 U	190 U		
PCB-25	63,000 D	35,000 D M		
PCB-26/29	100,000 D	58,000 D		
PCB-27	62,000 D	36,000 D		
PCB-31	150,000 D	83,000 D M		
PCB-32	63,000 D	36,000 D		
PCB-34	2,300 M	1,500 M		
PCB-35	960 M	700 U		
PCB-36	810 U	590 U		
PCB-37	19,000 D J1	13,000 M		
PCB-38	900 U	660 U		
PCB-39	920 U	670 U		
PCB-40/71	46,000 D M	22,000 M		
PCB-41	34,000 D	18,000		
PCB-42	5,000 M	2,700 M		
PCB-43	120,000 D	71,000 D		
PCB-44/47/65	25,000 D M	14,000 M		
PCB-45	18,000 D M	11,000		
PCB-46	12,000	6,500		
PCB-48	110,000 D	67,000 D		
PCB-49/69	65,000 D	34,000		
PCB-50/53	9,300 M	4,600 M		
PCB-51	210,000 D M	120,000 D M		
PCB-52	1,100 J	730 J		
PCB-52 PCB-54	1,100 J 190 U M	190 U M		
РСВ-54 РСВ-55	190 U M 11,000	6,600		
PCB-56	1,000 M	490 M		

Appendix C – OU 1 Cumulative Long-Term Monitoring Data

	OU 1 DOD	D D		T 2010
Table C-7.	OU I PCB	Congeners Seep) Water Results	s, June 2019

	SP1-1	SP1-1 (DUP)
Congener	AREA-1-19-220	AREA-1-19-221
PCB-57	420 M	190 M
PCB-58	20,000	10,000
PCB-59/62/75	2,100	1,300 M
PCB-60	53,000	28,000
PCB-61/70/74/76	2,300 M	1,200 M
PCB-63	35,000 D M	16,000 M
PCB-64	44,000 D	19,000
PCB-66	3,400 M	1,600 M
PCB-67	1,600 M	750 M
PCB-68	2,300 M	1,100 M
PCB-72	1,400 U	830 U
PCB-73	3,500 J M	2,000 J
PCB-77	200 U	190 U
PCB-78	570 M	320 M
PCB-79	330	190
PCB-80	310 U M	160 U M
PCB-81	4,800	3,000
PCB-82	5,400 M	2,700 M
PCB-83	43,000 D	16,000
PCB-84	7,600	4,800
PCB-85/116/117	37,000	23,000
PCB-86/87/97/108/119/125	18,000	8,200
PCB-88/91	970 U	580 U
PCB-89	87,000 D	42,000 M
PCB-90/101/113	16,000	9,800 M
PCB-92	1,900 M	850 M
PCB-93/100	2,000 M	910 M
PCB-94	110,000 D M	66,000 D M
PCB-95	2,200	1,100
PCB-96	4,400 M	1,900 M
PCB-98/102	44,000 D M	25,000 D M
PCB-99	1,700 M	780 M
PCB-103	20 J	12 J
PCB-104	12,000 M	7,000 M
PCB-105	680 U	410 U
PCB-106	1,100 M	650 M
PCB-107/124	3,400 M	2,100 M
PCB-109	87,000 D	50,000 D
PCB-110/115	760 U	460 U
PCB-111	610 U M	360 U M
PCB-112	940 U	540 U
PCB-114	47,000 D M J1	27,000 D M
PCB-118	640 U	380 U
PCB-120	650 U	390 U
PCB-121	960 U	580 U
PCB-122	960 U	560 U
PCB-123	1,100 U	650 U
PCB-126	800 U	480 U
PCB-127	5,900	3,200
	5,700	3,200

Appendix C – OU 1 Cumulative Long-Term Monitoring Data

Table C-7	OU 1 PCR	Congeners Seep	Water Results	Juna 2010
Table C-7.	UU I FCD	Congeners seep	water results	, June 2019

	SP1-1	SP1-1 (DUP)
Congener	AREA-1-19-220	AREA-1-19-221
PCB-128/166	46,000	24,000
PCB-129/138/163	3,100	1,600
PCB-130	510 M	290 M
PCB-131	16,000 M	8,400 M
PCB-132	720 M	370 M
PCB-133	3,400 M	1,800 M
PCB-134/143	15,000 M	7,700 M
PCB-135/151	7,500	3,900
PCB-136	1,800	930
PCB-137	770 M	400 M
PCB-139/140	6,300	3,100
PCB-141	250 U	200 U
PCB-142	1,600	800 M
PCB-144	190 U	190 U
PCB-145	6,700	3,400
PCB-146	37,000 M	18,000 M
PCB-147/149	220 U	190 U
PCB-148	190 U	190 U
PCB-150	190 U	190 U
PCB-152	36,000	19,000
PCB-153/168	970 M	500 M
PCB-154	190 U	190 U
PCB-155	3,900 J	2,300 J
PCB-156/157	4,000	2,000
PCB-158	150 J	91 J
PCB-159	200 U M	190 U M
PCB-160	190 U M	190 U M
PCB-161	140 J M	91 J M
PCB-162	2,800	1,500
PCB-164	200 U	190 U
PCB-165	1,800 J	990 J
PCB-167	43 U	28 U
PCB-169	7,300	4,300
PCB-170	2,000	1,200
PCB-171/173	1,100	620
PCB-172	5,600	3,200
PCB-174	340	160 J
PCB-175	930 M	460
PCB-176	3,500	2,000
PCB-177	1,500	750 1 200 M
PCB-178	2,700	1,300 M
PCB-179	14,000	8,000 190 U
PCB-180/193 PCB-181	190 U	
PCB-181 PCB-182	88 J M 3,600 M	36 J M 2,200 M
PCB-182 PCB-183	14 J M	2,200 M 6 J M
PCB-185 PCB-184	540 M	220 M
PCB-185	190 U	190 U
PCB-185	8,100 M	3,900 M
1 CD-100	0,100 MI	5,900 M

Appendix C - OU 1 Cumulative Long-Term Monitoring Data

	SP1-1	SP1-1 (DUP)
Congener	AREA-1-19-220	AREA-1-19-221
PCB-187	23 J	14 J M
PCB-188	310	160 M
PCB-189	1,300 M	740
PCB-190	270	170 J
PCB-191	190 U	190 U
PCB-192	2,000	1,100
PCB-194	840	430
PCB-195	1,300	680
PCB-196	75 J	43 J M
PCB-197	2,200	1,200
PCB-198/199	290	150 J M
PCB-200	290	160 J
PCB-201	420	260
PCB-202	1,400	800
PCB-203	190 U	190 U
PCB-204	150 J	70 J
PCB-205	690 J	440 J
PCB-206	76 J	50 J
PCB-207	200	130 J
PCB-208	470	270
PCB-209	2,700 U	1,600 U
Total PCB Congeners (pg/L)	3,519,276	2,080,293
Total PCB Congeners (µg/L)	3.5193	2.0803
Cleanup Goal (µg/L)	0.044	0.044

Table C-7.	OU 1 PCB	Congeners	Seen	Water	Results	June 2019
	UUIIUD	Congeners	SCCP	vv atti	itesuits,	June 2017

Notes:

All concentrations are in picograms per gram (pg/L), except where noted.

 $\textbf{Bold} \ indicates \ detected \ concentration \ exceeds \ MTCA \ Method \ B \ risk \ based \ cleanup \ level \ of \ 0.044 \ \mu g/L \ for \ total \ PCBs.$

D - the reported from a diluted analysis

J - analyte positively identified, but result is estimated

J1 – the quantitation is an estimation due to discrepancies in meeting certain analyte-specific quality control criteria.

M - a manual integration was performed by the laboratory analyst

PCB – polychlorinated biphenyl

q – the reported concentration is the estimated maximum possible concentration for this analyte.

The measured ion ratio does not meet qualitative identification criteria and indicates a possible interference.

	,											
Location	Somulo ID	Sampling	Aroclor	Aroclor	Aroclor	Aroclor	Aroclor	Aroclor	Aroclor	Total		
ID	Sample ID	Date	1016	1221	1232	1242	1248	1254	1260	PCBs		
SP1-1	AREA-1-19-250	6/18/2019	14 J	22 UM	34.67	48.67 J						
SP1-1 (DUP)	AREA-1-19-251	6/18/2019	12 J	16.5 UM	24	36 J						
MA09	AREA-1-19-252	6/18/2019	6.77 UM J1	6.77 UM	6.77 UM	6.77 UM	6.77 UM	1.15 J	6.77 UM	1.15 J		
MA14	AREA-1-19-253	6/18/2019	7.17 UM	7.17 U	7.17 UM	7.17 UM	7.17 UM	1.2 J	7.17 UM	1.2 J		
TF21	AREA-1-19-254	6/20/2019	5.58 UM	5.58 U	5.58 UM	5.58 UM	5.58 UM	5.58 U	5.58 UM	5.58 UM		
Sediment Quality	y Standard (mg/kg	0C)	NE	NE	NE	NE	NE	NE	NE	12		

Table C-8. OU 1 PCB Aroclors Sediment Results, June 2019

Notes:

All concentrations are in milligrams per kilogram and have been normalized for organic carbon (mg/kg OC).

Bold indicates detected concentration is equal to or exceeds the SQS of 12 mg/kg for total PCBs in sediment.

D - the report results is from a diluted analysis

DUP - field duplicate sample

GW - groundwater

J – analyte positively identified, but result is estimated

J1 - the quantitation is an estimation due to discrepancies in meeting certain analyte-specific quality control criteria

P-the relative percent difference is greater than 40 percent between the results on the two analytical columns

PCBs - polychlorinated biphenyls

SQS - sediment quality standard

U - the analyte was not detected at or above the indicated practical quantitation limit

UJ – analyte not detected, but the reported quantitation/detection limit is estimated

Table C-9. OU 1 PCB Congeners Sediment Results, June 2019

	Table C-9. OU 1 PCB Congeners Sediment Results, June 2019												
	SP1-1	SP1-1 (DUP)	MA09	MA14	TF21								
Congener	AREA-1-19-250	AREA-1-19-251	AREA-1-19-252	AREA-1-19-253	AREA-1-19-254								
PCB-1	550 M	360 M	6.2 J	3.9 J M	7.4 J								
PCB-2	100	73 M	43	39 M	83								
PCB-3	430	310 M	4.2 J	4.1 J	7.7 J								
PCB-4	13,000 D M	13,000 D M	24 M	16 J M	61 M								
PCB-5	110 U	110 U	20 U	20 U	20 U								
PCB-6	11,000 D M	9,900 D M	23 M	18 J M	43 M								
PCB-7	140 M	130 M	20 U	20 U	20 U								
PCB-8	13,000 D M	11,000 D M	35 M	29 M	58 M								
PCB-9	240 M	200 M	20 U	20 U	20 U								
PCB-10	340	380	20 U	20 U	20 U								
PCB-11	410 M	370 M	19 J M	23 J M	28 M								
PCB-12/13	1,600 M	1,300 M	13 J M	9 J M	9 J M								
PCB-14	100 U	100 U	20 U	20 U	20 U								
PCB-15	8,300 D	7,400 D M	64 M	58 M	53 M								
PCB-16	4,900 D	4,400 D	20	15 J	20								
PCB-17	6,700 D	6,000 D	30	18 J	34								
PCB-18/30	15,000 D	14,000 D	53	35 J	49								
PCB-19	3,600 D	3,800 D	9.5 J	6.7 J M	13 J								
PCB-20/28	11,000 D	9,200 D M	110 g	100	94								
PCB-21/33	2,400 D M	1,900 M	21 J q	25 J	22 J								
PCB-22	2,400 D M 2,400 D	1,900 M	19 J	20	14 J M								
PCB-23	100 U	1,900 D W	20 U	20 U	20 U								
PCB-24	20 U	20 U	20 U	20 U	20 U								
PCB-25	3,400 D	3,000 D M	20 U 28 q	20 U 20 M	19 J								
PCB-26/29	5,800 D	5,000 D M	66 q	42 M	35 J								
PCB-27	4,300 D	4,400 D	19 J	11 J	21								
PCB-31	9,900 D	8,000 D M	19 5	89	67								
PCB-32	4,000 D	3,700 D	18 J	12 J	21								
PCB-32 PCB-34	140 M	120 M	20 U	20 U	21 20 U								
PCB-35	140 M	120 M 110 U	20 U	2.5 J M	2.0 U 2.3 J M								
РСВ-36	92 U	94 U M	3.4 J q	2.5 J M 20 U	2.5 J M 20 U								
РСВ-30	1,900	1,400 M	29	37	20 U 26 M								
PCB-37 PCB-38	1,900 100 U	1,400 M 100 U	29 20 U	20 U	20 M 20 U								
РСВ-39	100 U	100 U 110 U	20 U	20 U	20 U								
PCB-39 PCB-40/71	2,800	2,700											
	2,800 170 U	2,700 290 U	36 J	26 J M	16 J M								
PCB-41 PCB-42	2,400 D	290 U 2,000 D	20 U 19 J	20 U 16 J	20 U								
	, , ,	,			11 J								
PCB-43	320 M	340 M	2.8 J M	2.2 J M	20 U								
PCB-44/47/65	8,300 D	7,200 D	98	78	50 J								
PCB-45	1,900 M	1,800 M	10 J M	7.5 J M	6.7 J M								
PCB-46	1,200	1,200	5.3 J	3.6 J	3.6 J								
PCB-48	740	730	7.6 J	7 J	4.7 J								
PCB-49/69	7,600 D	6,700 D	110	72	59								
PCB-50/53	4,000	4,200 D	25 J	14 J	17 J								
PCB-51	500 M	440 M	3.2 J M	1.7 J M	2.8 J M								
PCB-52	15,000 D	13,000 D M	230 M	190 M	110 M								
PCB-54	90	80 M q	0.74 J M	0.71 J M	20 U								
PCB-55	31 U M	22 U M	20 U M	20 U M	20 U M								
PCB-56	1,100 M	870 M	19 J	27	14 J M								
PCB-57	35 M	36 M	20 U	20 U	20 U								
PCB-58	31 U	230 M	6 J M	20 U M	1.2 J M								
PCB-59/62/75	1,200	1,300	11 J	7.9 J	5.6 J								
PCB-60	350 M	260 M	9.2 J	14 J	8.3 J M								
PCB-61/70/74/76	4,200 M	3,000 M	85 M	150 M	49 J M q								
PCB-63	120 M	100 M	2.1 J M	2.5 J M	1.3 J								
PCB-64	2,000	1,900	22	28 M	11 J								
PCB-66	3,900 D	3,000 D	79 M	90 M	47 M								
PCB-67	180 M	27 M	1.8 J M	2 J M	0.72 J q								
PCB-68	75 M	68 M	1.6 J	1.7 J M	1.1 J								
PCB-72	120	100 M	2.3 J	2.3 J	1.3 J								
PCB-73	91 U	150 U	20 U	20 U	20 U								
PCB-77	660	390 M	22	24	20								
PCB-78	39 U	28 U	20 U	20 U	20 U								
PCB-79	300	100 M	4.9 J	4.5 J M	1.7 J M								
PCB-80	100 M	93 M	3.2 J	3.2 J M	0.89 J								
PCB-81	45 U M	31 U M	2 U	2 U M	2 U								
PCB-82	1,200	770	46	42	9.7 J								

Table C-9. OU 1 PCB Congeners Sediment Results, June 2019

Table C-9. OU 1 PCB Congeners Sediment Results, June 2019 SPL 1 SPL 1 SPL 1												
	SP1-1	SP1-1 (DUP)	MA09	MA14	TF21							
Congener	AREA-1-19-250	AREA-1-19-251	AREA-1-19-252	AREA-1-19-253	AREA-1-19-254							
PCB-84	4,600 D	2,700 D	84 M	74 M	16 J M							
PCB-85/116/117	2,000	1,400	97	110	33 J							
PCB-86/87/97/108/119/125	8,500 M	6,000 M	320 M	330 M	79 J M							
PCB-88/91	2,000 M	1,400 M	45 M	52 M	13 J M							
PCB-89	230 U	160 U	20 U	20 U	20 U							
PCB-90/101/113	18,000 D	10,000 D	530	520	160							
PCB-92	3,500 D	2,100 D	100	100	28							
PCB-93/100	240 U	230 M	40 U	40 U	40 U							
PCB-94	270 U	190 U	20 U	20 U	20 U							
PCB-95	16,000 D M	9,400 D M	220 M	260 M	50 M							
PCB-96	120	62 M	1.6 J	1.2 J	0.73 J M							
PCB-98/102	460 M	360 M	7.4 J M	8 J M	3 J M							
PCB-99	5,600 D M	3,900 D M	260 M	260 M	100 M							
PCB-103	220 U	150 U	20 U	20 U	20 U							
PCB-104	4 J	2 J M	0.25 J	0.24 J M	20 U							
PCB-105	4,100 D	2,200 D	220 J J1	270	100							
PCB-106	160 U	110 U	20 U	20 U	20 U							
PCB-107/124	400	250	9.6 J	21 J	5.2 J							
PCB-109	1,200 M	710 M	38 M	50 M	20 M							
PCB-110/115	17,000 D	9,900 D	590	680	160							
PCB-111	180 U	120 U	20 U	20 U	20 U							
PCB-112	140 U M	99 U M	20 U M	20 U M	20 U M							
PCB-114	190 U	130 U	7.9 M	11 M	3.3 M							
PCB-118	13,000 D B	7,200 B D	590 J J1 B N	690 B	270 B							
PCB-120	150 U	100 U	20 U	20 U	20 U							
PCB-121	160 U	110 U	20 U	20 U	20 U							
PCB-122	230 U	160 U	9.1 J M	11 J M	3.5 J M							
PCB-123	200 U	140 M	7.6 M	10 M	4.5 M							
PCB-126	500 M	210 M	4.3 U	6.2 U	2.4 U							
PCB-127	190 U	130 U	20 U	20 U	20 U							
PCB-128/166	4,500 D	2,200	130	150	51							
PCB-129/138/163 PCB-130	47,000 D 2,700 D	21,000 D 1,400	730 45	850 60	310 20							
PCB-130 PCB-131	2,700 D 290 M	1,400 140 M	45 7.2 J	7.3 J	20 2 J M							
PCB-131 PCB-132	11,000 D	4,900 D	160	1.5 J	47 M							
PCB-132 PCB-133	510	280 M	6.8 J	9 J	47 M 4 J M							
PCB-134/143	1,400 M	830 M	28 J M	29 J M	8.5 J M							
PCB-135/151	12,000 D	5,600 D	110 M	130	44 M							
PCB-136	3,800 D M	1,800 M	48 M	45	16 J							
PCB-130	840	530 M	37	46	10 J							
PCB-139/140	500 M	270 M	13 J	12 J	4.1 J M							
PCB-141	8.600 D	3,600 D	66	84	23							
PCB-142	160 U	81 U	20 U	20 U	20 U							
PCB-144	1,600 M	800 M	17 J	17 J M	5.8 J							
PCB-145	97 U	50 U	20 U	20 U	20 U							
PCB-146	6,400 D	2,900 D	67	83	38							
PCB-147/149	28,000 D	13,000 D	320	370	130 M							
PCB-148	140 U	73 U	20 U	20 U	20 U							
PCB-150	100 U	53 U	20 U	20 U	20 U							
PCB-152	91 U	47 U	20 U	20 U	20 U							
PCB-153/168	43,000 D	19,000 D	440	470	230							
PCB-154	650 M	350 M	6.6 J M	5.6 J M	4.2 J							
PCB-155	120 U	69 U	20 U	20 U	20 U							
PCB-156/157	4,100 D	2,300	90	120	37							
PCB-158	4,200 D	1,900	72	76	25							
PCB-159	360	170	1.1 J	1.8 J M	0.89 J							
PCB-160	130 U M	66 U M	20 U M	20 U M	20 U M							
PCB-161	99 U M	51 U M	20 U M	20 U M	20 U M							
PCB-162	240 M	120 M	2.5 J M	4.3 J M	1.3 J M							
PCB-164	2,800 D	53 U	32	43	12 J							
PCB-165	120 U	64 U	20 U	20 U	20 U							
PCB-167	2,200 D	1,200	32	42	14							
PCB-169	77 M	37 U	2 U	2 U	2 U							
PCB-170	19,000 D	7,100 D	47	79	40							
PCB-171/173	4,800 D	2,200 M	18 J	28 J	16 J							
PCB-172	2,900 D	1,300	7.6 J	13 J	7.1 J							
PCB-174	13,000 D	5,200 D	32	61 M	32 M							
PCB-175	610	220	2.2 J	2.7 J	2.9 J M							

Table C-9. OU 1 PCB Congeners Sediment Results, June 2019

	SP1-1	SP1-1 (DUP)	ediment Results, June 2 MA09	MA14	TF21
Congener	AREA-1-19-250	AREA-1-19-251	AREA-1-19-252	AREA-1-19-253	AREA-1-19-254
PCB-176	1,500	530	5.1 J	7.2 J	5 J
PCB-177	7,900 D	3,200 D	26	44	27
PCB-178	2,900 D	1,000	11 J	15 J	12 J
PCB-179	5,100 D	1,600	13 J M	21	15 J
PCB-180/193	39,000 D	14,000 D	83 M	140 M	91
PCB-181	120 U	51 U	1.1 J	1.7 J M	20 U
PCB-182	110 M	33 M	0.5 J M	0.29 J M q	0.5 J M
PCB-183	11,000 D M	3,800 D M	32 M	40 M	31 M
PCB-184	20	8 J	0.086 J M q	20 U	0.23 J M
PCB-185	950 M	590 M	1.8 J M	2.9 J M	2.4 J M
PCB-186	20 U	20 U	20 U	20 U	20 U
PCB-187	17,000 D M	6,000 D M	51 M	77 M	67 M
PCB-188	51	25	0.5 J M	0.47 J M	0.93 J
PCB-189	800 M	300 M	3.2 M	4.8	2.6 M
PCB-190	3,500 D	1,400	10 J M	16 J M	7.8 J
PCB-191	750	310	2.4 J M	3.1 J M	1.6 J
PCB-192	99 U	41 U	20 U	20 U	20 U
PCB-194	5,900 D	2,600 D	14 J	27	25
PCB-195	2,300 D	1,600	5 J	10 J	8.7 J
PCB-196	4,200 D	1,000	7.2 J	11 J	15 J
PCB-197	210	51	0.71 J	0.81 J M q	1.5 J M
PCB-198/199	6,900 D	1,600	15 J	28 J	31 J
PCB-200	660	200	1.4 J	2.4 J M	2.1 J M
PCB-201	920	240	2.9 J	4.1 J	5.9 J
PCB-202	1,600	620	5.6 J	10 J	11 J
PCB-203	4,500 D	1,100 M	9 J	15 J	14 J
PCB-204	20 U	20 U	20 U	20 U	20 U
PCB-205	410	160	0.79 J	1.5 J	1.2 J M
PCB-206	1,800 D	930	15 J	32	25
PCB-207	280	110	2.1 J	3.6 J M	4.3 J
PCB-208	550	230	6.1 J	14 J	13 J
PCB-209	370	340	25	46	50
Total PCB Congeners (pg/g)	630,842	366,488	7,696	8,522	3,906
Total PCB Congeners (mg/kg)	0.6308	0.3665	0.0077	0.0085	0.0039
Total Organic Carbon	1.50%	2.00%	0.96%	0.92%	1.20%
Total PCB congeners (mg/kg OC)	42.0561	18.3244	0.8017	0.9263	0.3255
Cleanup Goal (mg/kg)	12	12	12	12	12

Notes:

All concentrations are in picograms per gram (pg/g), except where noted.

Bold indicates detected concentration exceeds the RG of 12 mg/kg for total PCBs.

B - the analyte was detected above one-half the reporting limit in an associated blank.

D - the reported from a diluted analysis

J - analyte positively identified, but result is estimated

J1 - the quantitation is an estimation due to discrepancies in meeting certain analyte-specific quality control criteria.

 $M-a\ manual\ integration\ was\ performed\ by\ the\ laboratory\ analyst$

PCB - polychlorinated biphenyl

q – the reported concentration is the estimated maximum possible concentration for this analyte.

The measured ion ratio does not meet qualitative identification criteria and indicates a possible interference.

APPENDIX D OU 1 DATA COLLECTED DURING FYR PERIOD

FIFTH FIVE-YEAR REVIEW NAVAL BASE KITSAP KEYPORT Appendix D – OU 1 Data Collection During FYR Period

			140	n D-1. 00	120140700	Concentrations					
Location Remediation G	Date	РСЕ (µg/L) 5	TCE (μg/L) 5	1,1-DCE (μg/L) 0.5	cis- 1,2-DCE (µg/L) 70	trans- 1,2-DCE (μg/L) 100	Vinyl Chloride (µg/L) 0.5	1,1,1-TCA (μg/L) 200	1,1-DCA (μg/L) 800	1,2-DCA (μg/L) 5	cVOCs (µg/L) NE
		_	_							_	
MW1-4	6/23/2014	10 U	6,100	4.2 J	3,500	27	110	10 U	10 U	10 U	9,741
MW1-5	6/23/2014	0.5 U	0.24 J	0.5 U	0.85	0.2 J	17	0.5 U	0.78	0.5 U	19
MW1-16	6/23/2014	0.5 U	0.11 J	0.5 U	0.63	0.39 J	0.29 J	0.5 U	2.5	0.5 U	3.9
MW1-17	6/18/2014	0.5 U	0.5 U	1.5	360	0.31 J	62	0.5 U	0.5 U	0.5 U	424
P1-6	6/23/2014	10 U	10 U	10 U	3,420	60.7	3,800	10 U	172	20 U	7,453
P1-7	6/23/2014	100 U	33,800	100 U	55,700	305	6,850	100 U	100 U	200 U	96,655
P1-8	6/23/2014	1 U	1 U	1 U	18.7	1 U	88	1 U	1 U	2 U	107
P1-9	6/23/2014	1 U	906	1.7	1,740	17.8	356	1 U	1 U	2 U	3,022
P1-10	6/23/2014	10 U	287	10 U	1,040	17.7	1,150	10 U	10 U	20 U	2,495
S-2	9/4/2014	0.1 U	0.1	0.1 U	1.1	0.1 U	2.1	0.1 U	0.6	NA	3.9
S-2B	9/4/2014	1.0 U	1.0 U	1.0 U	1.0 U	1.9	16	1.0 U	10.3	NA	28.2
S-3	9/4/2014	0.1 U	0.1 U	0.1 U	0.2	0.1	0.4	0.1 U	0.1	NA	0.8
S-3B	9/4/2014	0.1 U	0.1 U	0.1 U	1.1	0.1 U	0.2 U	0.1 U	0.1	NA	1.2
S-4	9/4/2014	100 U	100 U	100 U	46,000	302	13,200	100 U	100 U	NA	59,500
S-4B	9/4/2014	1.0 U	1.0 U	1.0 U	416	1.5	191	1.0 U	1.0 U	NA	608
S-5	9/4/2014	1.0 U	6.5	1.3	1350	4.7	43.7	1.0 U	1.0 U	NA	1400
S-5B	9/4/2014	0.1 U	0.1 U	0.1 U	0.4	0.1 U	1.5	0.1 U	0.1 U	NA	2
S-6	9/4/2014	0.1 U	0.6	0.1 U	3.1	0.1	1.9	0.1 U	0.1 U	NA	5.7

Table D-1. OU 1 2014 cVOC Concentrations in Groundwater

Notes:

cVOCs - sum of detected chlorinated volatile organic chemicals, including seven chemicals in table and PCE and 1,1,1-TCA

DCA - dichloroethane

DCE - dichloroethene

J - estimated

µg/L - microgram per liter

NA - not analyzed

NE - not established

PCE - tetrachloroethene

TCA - trichloroethane

TCE - trichloroethene

U - non-detect

	Location Name		MW1-43	MW1-44	MW1-45	MW	1-46	MW1-47
	Sample Name	CL-B76-S-19.0- 171006	CL-B77-S-18.0- 171006	CL-B75-S-26.0- 171005	CL-B74-S-18.5- 171005	CL-B78-S-28.5- 171007	FD-171007-01	CL-B79-S-21.5- 171009
	Sample Type	Ν	Ν	Ν	Ν	Р	FD	N
Analyte Name	PAL	Result	Result	Result	Result	Result	Result	Result
1,1,1-Trichloroethane	1490	23 U	<u>21</u> U	22 U	23 U	18 U	63 U	21 U
1,1-Dichloroethane	40.7	23 U	<u>21</u> U	22 U	23 U	18 U	<u>63</u> U	21 U
1,1-Dichloroethene	45.7	23 U	<u>21</u> U	39 J	23 U	18 U	<u>63</u> U	56
1,2-Dichloroethane	23.1	39 U	<u>37</u> U	<u>38</u> U	<u>40</u> U	<u>32</u> U	<u>110</u> U	<u>37</u> U
Chloroethane	40.7	<u>110</u> U	<u>110</u> U	<u>110</u> U	<u>110</u> U	<u>92</u> U	<u>320</u> U	<u>100</u> U
Cis-1,2-Dichloroethene	78.1	110	4,000	6,600	23 U	3,500	11,000	36,000 J
Tetrachloroethene	49.9	39 U	37 U	38 U	40 U	32 U	<u>110</u> U	37 U
Trans-1,2-Dichloroethene	518	190	150	60 J	68 U	53 J	240 J	390
Trichloroethene	25.2	73	<u>37</u> U	<u>38</u> U	<u>40</u> U	200	150 J	54
Vinyl Chloride	1.67	<u>230</u> U	150 J	130 J	<u>230</u> U	630	450 J	2,400 J

Table D-2. OU 1 2017 Target cVOCs in Auger Boring Soil Samples (µg/kg)

	Location Name	MW1-48	MW1-49	MW1-50	MW1-51	MW1-52	MW1-53	MW1-54
	Sample Name	CL-B83-S-18.5- 171012	SP-B80-S-7.5-171010	SP-B73-S-9.0-171004	SP-B71-S-13.5-171002	SP-B72-S-12.0-171003	SP-B82-S-10.0-171011	SP-B81-S-38.5-171011
	Sample Type	Ν	N	Ν	Ν	Ν	N	Ν
Analyte Name	PAL	Result	Result	Result	Result	Result	Result	Result
1,1,1-Trichloroethane	1490	29 U	22 U	20 U	24 UJ	23 U	21 U	20 U
1,1-Dichloroethane	40.7	29 U	22 U	20 U	140 J	23 U	21 U	20 U
1,1-Dichloroethene	45.7	29 U	22 U	20 U	45 J	23 U	21 U	20 U
1,2-Dichloroethane	23.1	<u>50</u> U	<u>38</u> U	<u>36</u> U	<u>41</u> UJ	<u>40</u> U	<u>37</u> U	<u>36</u> U
Chloroethane	40.7	<u>140</u> U	<u>110</u> U	<u>100</u> U	<u>120</u> UJ	<u>110</u> U	<u>110</u> U	<u>100</u> U
Cis-1,2-Dichloroethene	78.1	440	620	730	4,000 J	3,700	5,300	93
Tetrachloroethene	49.9	50 U	38 U	36 U	41 UJ	40 U	37 U	36 U
Trans-1,2-Dichloroethene	518	86 U	65 U	61 U	220 J	86 J	310	61 U
Trichloroethene	25.2	52 J	2,200	3,500	1,600 J	52 J	3,000	<u>36</u> U
Vinyl Chloride	1.67	440	<u>220</u> U	<u>200</u> U H	980 J	260 J	530	<u>200</u> U

Table D-2. OU 1 2017 Target cVOCs in Auger Boring Soil Samples (µg/kg)

	Location Name	MW1-55	MW1-56	MW1-56	MW1-56	MW	V1-57	MW1-57
	Sample Name	SP-B86-S-35.0-171016	SP-B87-S-29.0-171017	SP-B87-S-37.5-171017	SP-B87-S-9.0-171017	FD-171018-01	SP-B88-S-9.0-171018	SP-B88-S-31.0-171018
	Sample Type	Ν	N	N	Ν	FD	Р	N
Analyte Name	PAL	Result	Result	Result	Result	Result	Result	Result
1,1,1-Trichloroethane	1490	14 U	27 U	21 U	22 U	19 UJ	21 UJ	27 U
1,1-Dichloroethane	40.7	14 U	27 U	21 U	22 U	19 UJ	21 UJ	27 U
1,1-Dichloroethene	45.7	14 U	27 U	21 U	22 U	350 J	540 J	27 U
1,2-Dichloroethane	23.1	<u>24</u> U	<u>47</u> U	<u>38</u> U	<u>39</u> U	<u>34</u> UJ	<u>37</u> UJ	<u>47</u> U
Chloroethane	40.7	<u>69</u> U	<u>130</u> U	<u>110</u> U	<u>110</u> U	<u>96</u> UJ	<u>110</u> UJ	<u>130</u> U
Cis-1,2-Dichloroethene	78.1	290	5,200	80 J	22 U	240,000 J	350,000 J	760
Tetrachloroethene	49.9	24 U	47 U	38 U	39 U	2,000 J	4,200 J	47 U
Trans-1,2-Dichloroethene	518	41 U	80 U	64 U	66 U	3,500 J	5,600 J	61 J
Trichloroethene	25.2	520	420 J	120 J	<u>39</u> U M	1,800,000 J	3,500,000 J	59 J
Vinyl Chloride	1.67	<u>140</u> UJ	<u>270</u> UJ	<u>210</u> UJ	<u>220</u> UJ	5,000 J	4,200 J	100 J

Table D-2. OU 1 2017 Target cVOCs in Auger Boring Soil Samples (µg/kg)

	Location Name		MW1-58	MW1-58	MW1-60
	Sample Name	SP-B89-S-24.0-171101	SP-B89-S-34.0-171101	SP-B89-S-6.5-171101	SP-B84-S-20.0-171012
	Sample Type	Ν	Ν	Ν	Ν
Analyte Name	PAL	Result	Result	Result	Result
1,1,1-Trichloroethane	1490	10 U	21 U	26 U	23 U
1,1-Dichloroethane	40.7	10 U	21 U	26 U	23 U
1,1-Dichloroethene	45.7	10 U	21 U	26 U	23 U
1,2-Dichloroethane	23.1	18 U	36 U	46 U	<u>41</u> U
Chloroethane	40.7	<u>51</u> U	<u>100</u> U	<u>130</u> U	<u>120</u> U
Cis-1,2-Dichloroethene	78.1	400	68 J M	8,500	23 U
Tetrachloroethene	49.9	18 U Q	36 U Q	46 U Q	41 U
Trans-1,2-Dichloroethene	518	31 U	62 U	92 J	70 U
Trichloroethene	25.2	18 J	30 J	<u>46</u> U	<u>41</u> U
Vinyl Chloride	1.67	<u>100</u> U	<u>210</u> U	9,800	<u>230</u> UJ

Table D-2. OU 1 2017 Target cVOCs in Auger Boring Soil Samples (µg/kg)

Samples analyzed using EPA Method 8260C

Underlined values represent analytes not detected at or above the stated limit, which exceeds the PAL

Bolded values indicate that the reported concentration exceeds the PAL.

FD - Field Duplicate

P – Parent sample of field duplicate

N – Sample is not part of a duplicate pair.

PAL - Project Action Limit

U - The analyte was not detected at or above the stated limit. (sometimes validators will elevate the limit

due to the "B" qualifier using the 5x/10x rule so this definition is different than the lab description).

J - The reported value is an estimated concentration.

UH - The analyte was not detected at or above the stated limit. (sometimes validators will elevate the limit

due to the "B" qualifier using the 5x/10x rule so this definition is different than the lab description). / Sample was prepped or analyzed beyond the specified holding time.

U M - The analyte was not detected at or above the stated limit. (sometimes validators will elevate the limit

due to the "B" qualifier using the 5x/10x rule so this definition is different than the lab description). / A matrix effect was present.

UJ - The analyte was not detected at or above the stated sample quantitation limit, which is an estimated value.

µg/kg – micrograms per kilogram

	Location Name		CL-B02			CL-B03		CL	-B04
	Sample Name	CL-B02-S-14.0- 170711	CL-B02-S-20.0- 170711	CL-B02-S-29.0- 170711	CL-B03-S-18.0- 170712	CL-B03-S-19.4- 170712	CL-B03-S-37.0- 170712	CL-B04-S-11.5- 170712	CL-B04-S-19.5- 170712
	Sample Type	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν
Analyte	PAL (µg/kg)	Result							
1,1,1-Trichloroethane	1,490	0.88 UJ	0.88 UJ	0.97 UJ	0.92 UJ	0.89 UJ	1.1 UJ	0.9 UJ	0.88 UJ
1,1-Dichloroethane	40.7	0.44 U	0.44 U	0.48 U	0.46 U	0.44 U	0.54 U	0.45 U M	0.44 U
1,1-Dichloroethene	45.7	5.2	1 J	0.97 U M	0.92 U M	4.8	1.1 U	0.9 U	2.9 J
1,2-Dichloroethane	23.1	0.44 UJ	0.44 UJ	0.48 UJ	0.46 UJ	0.44 UJ	0.54 UJ	0.45 UJ	0.44 UJ
Chloroethane	40.7	0.44 UJ	0.44 UJ	0.48 UJ	0.46 UJ	0.44 UJ	0.54 UJ	0.45 UJ	0.44 UJ
Cis-1,2-Dichloroethene	78.1	1,300 J Q	450 J Q	46 Q	46 Q	9,000	13 Q	8.1 Q	5,600
Tetrachloroethene	49.9	0.88 U	0.88 U	0.97 U M	0.92 U	0.89 U	1.1 U	0.9 U	0.88 U
Trans-1,2-Dichloroethene	518	2 J	32 J	0.78 J	0.83 J	2 J	1.1 UJ	0.9 UJ	48 J
Trichloroethene	25.2	7,400 J	5,200 J	3,600 J	3,900	83 Q	92 Q	51 Q	3,800 J
Vinyl Chloride	1.67	44 J	6.5 J	1.3 J	3.8 J	25 J	1.1 UJ	0.9 UJ	5 J

	Location Name	CL-B04	CL-B05	CL-]	B06a		CL-B07		CL-B08
	Sample Name	CL-B04-S-29.0- 170712	CL-B05-S-18.3- 170712	CL-B06a-S-16.0- 170713	CL-B06a-S-33.0- 170713	CL-B07-S-20.0- 170713	CL-B07-S-28.5- 170713	CL-B07-S-4.0-170713	CL-B08-S-17.5- 170713
	Sample Type	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν
Analyte	PAL (µg/kg)	Result	Result	Result	Result	Result	Result	Result	Result
1,1,1-Trichloroethane	1,490	1.2 UJ	0.98 U	0.85 U	0.9 U	0.82 U	0.85 U	0.76 U	0.87 U
1,1-Dichloroethane	40.7	0.59 U	0.98 U	0.85 U	0.9 U	0.82 U	0.85 U	0.76 U	0.87 U
1,1-Dichloroethene	45.7	13	0.98 U	0.85 U	0.9 U	4.8	3.1	0.76 U	2.2 J
1,2-Dichloroethane	23.1	0.59 UJ	0.98 U	0.85 U	0.9 U	0.82 U	0.85 U	0.76 U	0.87 U
Chloroethane	40.7	0.59 UJ	4.9 U	4.3 U	4.5 U	4.1 U	4.2 U	3.8 U	4.3 U
Cis-1,2-Dichloroethene	78.1	6,600	110	2	88 J	2,100	2,600	0.76 U	3,800 J
Tetrachloroethene	49.9	1.2 U	0.98 U	0.85 U	0.9 U	0.82 U	0.85 U	0.76 U	0.87 U
Trans-1,2-Dichloroethene	518	35 J	2.7	0.85 U	23 J	6.9	1.4	0.76 U	1.7 J
Trichloroethene	25.2	6,900 J	2,900	0.85 U	0.9 U	0.82 U	0.85 U	0.76 U	0.87 U
Vinyl Chloride	1.67	77 J	0.98 U	0.85 U	25 J	14	22	0.76 U	5.3 J

	Location Name	CL-B08	CL-B09	CL·	B10	CL-B11		CL-B12	
	Sample Name	CL-B08-S-27.0- 170713	CL-B09-S-13.0- 170713	CL-B10-S-10.0- 170714	CL-B10-S-21.0- 170714	CL-B11-S-7.0-170714	CL-B12-S-17.5- 170714	CL-B12-S-20.5- 170714	CL-B12-S-31.5- 170714
	Sample Type	Ν	Ν	Ν	Ν	N	Ν	Ν	Р
Analyte	PAL (µg/kg)	Result	Result	Result	Result	Result	Result	Result	Result
1,1,1-Trichloroethane	1,490	0.79 U	1 U	0.75 U	0.84 U	1.1 U	0.95 U	0.88 U	1.6 U
1,1-Dichloroethane	40.7	0.79 U	1 U	0.75 U	0.84 U	1.1 U	0.95 U	0.88 U	1.6 U
1,1-Dichloroethene	45.7	1.3 J	1 U	0.75 U	0.84 U	1.1 U	19	1.8	24
1,2-Dichloroethane	23.1	0.79 U	1 U	0.75 U	0.84 U	1.1 U	0.95 U	0.88 U	1.6 U
Chloroethane	40.7	3.9 U	5.1 U	3.8 U	4.2 U	5.3 U	4.8 U	4.4 U	7.9 U
Cis-1,2-Dichloroethene	78.1	470 J	3.5 J	2.7 J	1.2	1.7	9,500	690	2,000
Tetrachloroethene	49.9	0.79 U	1 U	0.75 U	0.84 U	1.1 U	0.95 U	0.88 U	1.6 U
Trans-1,2-Dichloroethene	518	39 J	3.3 J	0.75 U	0.84 U	1.1 U	19	81	25
Trichloroethene	25.2	4.8 J	1.8 J	1.3 J	0.85	1.1 U	1.7	1,900	5,500
Vinyl Chloride	1.67	42 J	2.1 J	0.75 U	0.84 U	1.1 U	36	5.6	27

	Location Name	CL-B12	CL-B13			CL-B14b			CL-B15
	Sample Name	e FD-170714-01	CL-B13-S-11.5- 170717	CL-B14b-S-18.0- 170717	CL-B14b-S-21.0- 170717	CL-B14b-S-4.0- 170717	CL-B14b-S-9.0- 170717	FD-170717-01	CL-B15-S-23.0- 170717
	Sample Type	FD	Ν	Ν	Ν	Ν	Р	FD	Ν
Analyte	PAL (µg/kg)	Result	Result	Result	Result	Result	Result	Result	Result
1,1,1-Trichloroethane	1,490	1.5 U	0.98 U	110 U	0.86 U	0.87 U	1.2 U	1.7 U	0.93 U
1,1-Dichloroethane	40.7	1.5 U	0.98 U	<u>110</u> U	0.86 U	0.87 U	1.2 U	2.5	0.93 U
1,1-Dichloroethene	45.7	15	0.98 U	120	16	0.87 U	1.2 U	1.7 U	0.93 U
1,2-Dichloroethane	23.1	1.5 U	0.98 U	<u>110</u> U	0.86 U	0.87 U	1.2 U	1.7 U	0.93 U
Chloroethane	40.7	7.7 U	4.9 U	<u>560</u> U	4.3 U	4.4 U	6.2 U	8.7 U	4.6 U
Cis-1,2-Dichloroethene	78.1	1,900	11	42,000 J	31,000	5.1	32	74	10
Tetrachloroethene	49.9	1.5 U	0.98 U	<u>110</u> U	0.86 U	0.87 U	1.2 U	1.7 U	0.93 U
Trans-1,2-Dichloroethene	518	18	0.98 U	770	130	0.87 U	1.2 U	1.7 U	0.93 U
Trichloroethene	25.2	5,000	0.98 U	<u>110</u> U	2.5	1.5	1.7	2.6	0.93 U
Vinyl Chloride	1.67	17	6.7	10,000	5,100	1.1	11	18	3.4

	Location Name	CL-B16	CL-B17			CL-B18a			CL-B19
	Sample Name		CL-B17-S-20.0- 170718	CL-B18a-S-14.5- 170718	CL-B18a-S-18.0- 170718	CL-B18a-S-21.5- 170718	CL-B18a-S-22.3- 170718	CL-B18a-S-33.0- 170718	CL-B19-S-23.0- 170719
	Sample Type	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν
Analyte	PAL (µg/kg)	Result	Result	Result	Result	Result	Result	Result	Result
1,1,1-Trichloroethane	1,490	2,000	0.83 U	1.3 U	0.9 U	0.99 U	110 U	0.85 U	0.422 UJ
1,1-Dichloroethane	40.7	2,100	1.6	1.3 U	0.9 U	0.99 U	<u>110</u> U	0.85 U	0.422 UJ
1,1-Dichloroethene	45.7	110	0.83 U	1.3 U	0.9 U	4.2	<u>110</u> U	0.85 U	0.422 UJ
1,2-Dichloroethane	23.1	25	0.83 U	1.3 U	0.9 U	0.99 U	<u>110</u> U	0.85 U	0.422 UJ
Chloroethane	40.7	120	4.1 U	6.5 U	4.5 U	4.9 U	<u>530</u> U	4.2 U	0.422 UJ
Cis-1,2-Dichloroethene	78.1	45	28	19	15	27,000	47,000	1,600	1.51 J
Tetrachloroethene	49.9	1.1 U	0.83 U	1.3 U	0.9 U	0.99 U	<u>110</u> U	0.85 U	0.422 UJ
Trans-1,2-Dichloroethene	518	1.1 U	0.83 U	1.3 U	0.9 U	37	550	4.6	0.422 UJ
Trichloroethene	25.2	19	0.83 U	1.3 U	0.9 U	9,000	6,000	1.3	0.422 UJ
Vinyl Chloride	1.67	8.7	2.4	5.7	0.9 U	76	3,100	26	1.19 J

	Location Name	CL-B19		CL-B20		CL	·B21	CL-B22	CL-B23
	Sample Name	CL-B19-S-38.0- 170719	CL-B20-S-25.0- 170719	CL-B20-S-28.3- 170719	CL-B20-S-31.5- 170719	CL-B21-S-12.0- 170720	CL-B21-S-21.5- 170720	CL-B22-S-18.5- 170720	CL-B23-S-13.5- 170720
	Sample Type	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν
Analyte	PAL (µg/kg)	Result							
1,1,1-Trichloroethane	1,490	0.402 UJ	0.381 UJ	0.397 UJ	0.479 UJ	0.521 U	0.452 U	0.467 U	0.536 U
1,1-Dichloroethane	40.7	0.402 UJ	0.381 UJ	0.397 UJ	0.479 UJ	0.521 U	0.594 J	0.467 U	0.536 U
1,1-Dichloroethene	45.7	0.402 UJ	0.343 J	1.64 J	0.479 UJ	0.521 U	0.452 U	0.467 U	6.05
1,2-Dichloroethane	23.1	0.402 UJ	0.381 UJ	0.397 UJ	0.479 UJ	0.446 J	0.452 U	0.467 U	0.536 U
Chloroethane	40.7	0.402 UJ	0.381 UJ	0.397 UJ	0.479 UJ	9.32	0.452 U	0.467 U	0.536 U
Cis-1,2-Dichloroethene	78.1	16.9 J	282 J	1,040 J	261 J	3.33	2.26	4.11	1,590 E
Tetrachloroethene	49.9	0.402 UJ	0.381 UJ	0.397 UJ	0.479 UJ	0.521 U	0.452 U	2.75	0.536 U
Trans-1,2-Dichloroethene	518	2.38 J	3.3 J	16.9 J	3.08 J	0.521 U	0.452 U	3.33	2.16
Trichloroethene	25.2	0.947 J	0.229 J	0.474 J	0.267 J	0.521 U	0.441 J	72.2	0.536 U
Vinyl Chloride	1.67	1.49 J	6.81 J	57.1 J	9.87 J	1.7	0.945	1.91	54.9

	Location Name	CL-B23	CL-B24	CL	-B25	CL-B26a						
	Sample Name		e Namel	CL-26a-S-26.0- 170721	FD-170721-01	1-01 CL-26a-S-9.0-170721						
	Sample Type	Ν	Ν	Ν	Ν	Ν	Р	FD	N			
Analyte	PAL (µg/kg)	Result	Result	Result	Result	Result	Result	Result	Result			
1,1,1-Trichloroethane	1,490	0.38 UJ	0.431 U	0.448 U	0.447 U	0.44 U	0.489 U	0.485 U	0.755 U			
1,1-Dichloroethane	40.7	0.38 UJ	0.431 U	0.448 U	0.447 U	0.44 U	0.489 U	0.485 U	0.755 U			
1,1-Dichloroethene	45.7	0.598 J	0.431 U	0.448 U	1.6	0.796 J	0.372 J	0.418 J	0.755 U			
1,2-Dichloroethane	23.1	0.38 UJ	0.431 U	0.26 J	0.403 J	0.309 J	0.705 J	0.485 U	0.603 J			
Chloroethane	40.7	0.38 UJ	0.234 J	0.233 J	0.242 J	0.248 J	0.45 J	0.485 U	0.755 U			
Cis-1,2-Dichloroethene	78.1	244 J	13.4	1.03 J	198 E	421 E	139 E	151 E	1.4 J			
Tetrachloroethene	49.9	0.38 UJ	0.431 U	0.448 U	0.447 U	0.44 U	0.489 U	0.485 U	0.755 U			
Trans-1,2-Dichloroethene	518	0.258 J	0.753 J	3.09	21.2	6.36	31.8 J	30	0.755 U			
Trichloroethene	25.2	0.38 UJ	0.431 U	0.448 U	0.447 U	2.8	13.8	20.5	0.755 U			
Vinyl Chloride	1.67	7.59 J	4.46	11.9 J	16	3.17	35.3	30.2	0.755 U			

	Location Name	CL-B27	CL-B28	CL-	B29a	CL-J	B30a	CL	·B31
	Sample Name	CL-B27-S-10.0- 170721	CL-B28-S-9.0-170721	CL-B29a-S-2.0- 170724	CL-B29a-S-21.0- 170724	CL-B30a-S-10.5- 170724	CL-B30a-S-21.0- 170724	CL-B31-S-11.5- 170724	CL-B31-S-19.0- 170724
	Sample Type	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν
Analyte	PAL (µg/kg)	Result	Result	Result	Result	Result	Result	Result	Result
1,1,1-Trichloroethane	1,490	0.425 U	0.594 U	0.591 U	0.453 U	1 UJ	0.427 U	0.697 U	0.41 U
1,1-Dichloroethane	40.7	0.425 U	0.594 U	0.591 U	1.36	0.7 J	0.427 U	0.697 U	0.41 U
1,1-Dichloroethene	45.7	0.425 U	0.594 U	0.591 U	0.254 J	1 UJ	0.427 U	0.697 U	0.383 J
1,2-Dichloroethane	23.1	0.425 U	0.594 U	0.591 U	0.499 J	1 UJ	0.427 U	0.697 U	0.41 U
Chloroethane	40.7	0.307 J	0.43 J	0.591 U	0.453 U	1 UJ	0.427 U	0.697 U	0.41 U
Cis-1,2-Dichloroethene	78.1	0.502 J	0.967 J	0.681 J	2.73	1.72 J	0.292 J	0.967 J	196 J
Tetrachloroethene	49.9	0.425 U	0.594 U	0.591 U	0.816 J	1 UJ	0.427 U	0.697 U	0.41 U
Trans-1,2-Dichloroethene	518	0.425 U	0.594 U	0.591 U	2.33	0.7 J	0.427 U	0.697 U	10.5
Trichloroethene	25.2	0.213 J	0.594 U	0.591 U	10.3	0.96 J	0.427 U	0.697 U	1.28
Vinyl Chloride	1.67	0.307 J	0.597 J	0.411 J	1.64	1 UJ	0.427 U	0.477 J	8.75

	Location Name	CL-B32	CL-B33	CL-B34	CL-	·B35	CL-B36	CL-B37	CL-B38c
	Sample Name	CL-B32-S-15.0- 170724	CL-B33-S-3.5-170724	CL-B34-S-18.0- 170725	CL-B35-S-18.0- 170725	CL-B35-S-20.5- 170725	CL-B36-S-15.5- 170725	CL-B37-S-15.0- 170726	CL-B38C-S-4.0- 170726
	Sample Type	Ν	N	Ν	Ν	Ν	Ν	Ν	Ν
Analyte	PAL (µg/kg)	Result	Result	Result	Result	Result	Result	Result	Result
1,1,1-Trichloroethane	1,490	0.514 U	0.412 U	0.502 U	0.563 U	0.481 U	0.435 U	0.95 U	68 UJ
1,1-Dichloroethane	40.7	0.514 U	0.412 U	0.502 U	0.563 U	0.481 U	0.435 U	0.48 U	<u>68</u> UJ
1,1-Dichloroethene	45.7	3.4	0.412 U	1.96	3.1	0.481 U	0.313 J	6.3	<u>68</u> UJ
1,2-Dichloroethane	23.1	0.514 U	0.412 U	0.502 U	0.563 U	0.481 U	0.435 U	0.48 U	<u>120</u> UJ
Chloroethane	40.7	0.514 U	0.412 U	0.502 U	0.563 U	0.481 U	0.435 U	0.43 J	<u>340</u> UJ
Cis-1,2-Dichloroethene	78.1	814 J	0.579 J	489 E	721 E	89.7	87.6	2,100 J	68 UJ
Tetrachloroethene	49.9	0.514 U	0.412 U	0.502 U	0.563 U	0.481 U	0.435 U	0.95 U	<u>120</u> UJ
Trans-1,2-Dichloroethene	518	27.4	0.412 U	49.1	1.23	0.481 U	1.05	99	210 UJ
Trichloroethene	25.2	0.514 U	0.412 U	1.64	0.563 U	0.481 U	0.435 U	11,000 J	93 J
Vinyl Chloride	1.67	143 J	0.223 J	12.8	22	74.7	3.39	23	<u>680</u> UJ

	Location Name	CL-B39		SP-B01		SP-B01B	SP-B	340
	Sample Name	CL-B39-S-7.0-170726	SP-B01-S-13.5-170711	SP-B01-S-17.5-170711	SP-B01-S-28.0- 170711	SP-B01b-S-8.0-170807	SP-B40-S-13.0-170726	SP-B40-S-20.0- 170726
	Sample Type	Ν	Ν	Ν	Ν	Ν	Ν	Ν
Analyte	PAL (µg/kg)	Result	Result	Result	Result	Result	Result	Result
1,1,1-Trichloroethane	1,490	0.95 U	140 J	26 U	0.87 UJ	<u>5,400</u> U	26 UJ	0.91 U
1,1-Dichloroethane	40.7	0.48 U	20 U	26 U	0.43 U	<u>5,400</u> U	26 UJ	0.49 J
1,1-Dichloroethene	45.7	0.95 U	2,300	160	0.87 U	25,600	26 UJ	0.91 U
1,2-Dichloroethane	23.1	0.48 U	<u>34</u> U	<u>46</u> U	0.43 UJ	<u>5,400</u> U	<u>46</u> UJ	0.46 U
Chloroethane	40.7	1.7 J	<u>98</u> U	<u>130</u> U	0.43 UJ	<u>5,400</u> U	180 J	2.7
Cis-1,2-Dichloroethene	78.1	1.2 J	1,100,000	160,000	63 Q	5,660,000 E	2,000 J	5.7
Tetrachloroethene	49.9	0.95 U	17,000	2,200	0.82 J	69,100	46 UJ	0.91 U
Trans-1,2-Dichloroethene	518	0.95 U	19,000	1,800	0.99 J	55,900	79 UJ	0.91 U
Trichloroethene	25.2	0.95 U	83,000,000 B	1,600,000 J	7,500 B	59,000,000 E	<u>46</u> UJ	0.63 J
Vinyl Chloride	1.67	1.7 J	<u>200</u> U	<u>260</u> U	0.58 J	360,000	<u>260</u> UJ	3.4

	Location Name	SP-B40	SP-B41		SP-B42		SP·	·B43	SP-B44
	Sample Name	SP-B40-S-7.0-170726	SP-B41-S-8.0-170726	SP-B42-S-16.0- 170727	SP-B42-S-20.0- 170727	SP-B42-S-7.5-170727	SP-B43-S-10.0- 170727	SP-B43-S-12.0- 170727	SP-B44-S-10.5- 170727
	Sample Type	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν
Analyte	PAL (µg/kg)	Result	Result	Result	Result	Result	Result	Result	Result
1,1,1-Trichloroethane	1,490	140 J	0.86 U	0.98 U	0.92 U	1.1 U	0.9 U	1.4 U	0.91 U
1,1-Dichloroethane	40.7	26 UJ	3.5	0.81 J	0.46 U	0.67 J	1.1	0.65 J	0.35 J
1,1-Dichloroethene	45.7	7.9 J	0.86 U	2.1 J	0.92 U	2.8 J	4.3 J	1.5 J	1.1 J
1,2-Dichloroethane	23.1	0.54 U	0.43 U	0.49 U	0.46 U	0.54 U	0.45 U	0.72 U	0.45 U
Chloroethane	40.7	340 J	12	4	0.64 J	3.4	0.74 J	3.8	1.6 J
Cis-1,2-Dichloroethene	78.1	26 J	3.5	6,800 H	2.4 J	8,300 J	9,800 J	2,900 J	2,300 J
Tetrachloroethene	49.9	44 J	0.86 U	0.98 U	0.92 U	1.6 J	0.9 U	1.4 U	0.91 U
Trans-1,2-Dichloroethene	518	1.1 U	0.66 J	9.4	0.92 U	30	29	6.5	6.3
Trichloroethene	25.2	110 J	0.75 J	6,300 J	2.4 J	14,000 J	5,300 J	2,800 J	1,800 J
Vinyl Chloride	1.67	3.3 J	2.7	31	0.99 J	56	1,600 J	48	84

	Location Name	SP·	·B45	SP-B46	SP-B47	SP-I	348b	SP-	·B50
	Sample Name	SP-B45-S-13.5- 170727	SP-B45-S-18.0- 170727	SP-B46-S-13.0- 170728	SP-B47-S-14.0- 170728	SP-B48b-S-11.0- 170728	SP-B48b-S-6.0- 170728	SP-B50-S-12.0- 170731	SP-B50-S-16.5- 170731
	Sample Type	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν
Analyte	PAL (µg/kg)	Result	Result	Result	Result	Result	Result	Result	Result
1,1,1-Trichloroethane	1,490	0.99 U	1.1 U	0.88 U	0.82 U	1 U	0.93 U	0.92 U	0.88 U
1,1-Dichloroethane	40.7	0.5 J	0.61 J	2.6	2.6	0.77 J M	3.5	0.21 J M	0.44 U
1,1-Dichloroethene	45.7	0.55 J	1.1 U	0.88 U	0.82 U	1.7 J	5	2.7 J	0.88 U
1,2-Dichloroethane	23.1	0.49 U	0.57 U	0.44 U	0.41 U	0.52 U	0.25 J	0.46 U	0.13 J
Chloroethane	40.7	3.3	3.8	<u>120</u> U	37 J	0.52 U Q	0.46 U Q	0.46 UJ	0.44 UJ
Cis-1,2-Dichloroethene	78.1	2,400 J	2,600 J	65	33	11,000 J	18,000 J	1,400 J	1,500 J
Tetrachloroethene	49.9	0.99 U	1.1 U	0.88 U	0.82 U	1 U	0.93 U	0.92 U	0.88 U
Trans-1,2-Dichloroethene	518	7.1	6	4.1	4.1	20	74	6.9	1.8
Trichloroethene	25.2	6.7	9.1	0.88 U	0.82 U	15	0.93 U M	100	46
Vinyl Chloride	1.67	45	24	860	100	4,400 J	9,100 J	130	15

	Location Name	SP-	B51	SP-B52		SP	·B53		SP-B54
	Sample Name	SP-B51-S-13.0- 170731	SP-B51-S-17.0- 170731	SP-B52-S-12.0- 170731	SP-B53-S-10.0- 170731	SP-B53-S-24.0- 170731	SP-B53-S-32.0- 170731	SP-B53-S-33.5- 170731	SP-B54-S-17.0- 170801
	Sample Type	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν
Analyte	PAL (µg/kg)	Result							
1,1,1-Trichloroethane	1,490	0.94 U	0.97 U	0.96 U	0.91 U	0.94 U M	0.73 U	0.99 U	0.98 UJ
1,1-Dichloroethane	40.7	0.47 U	0.49 U	0.48 U	0.46 U	0.47 U	0.36 U	0.5 U	0.49 UJ
1,1-Dichloroethene	45.7	0.94 U	0.97 U	0.93 J	0.91 U	1.4 J	0.73 U	0.82 J M	0.98 UJ
1,2-Dichloroethane	23.1	0.47 U	0.49 U	0.14 J	0.46 U	0.47 U	0.36 U	0.5 U M	0.49 UJ
Chloroethane	40.7	0.47 UJ	0.49 UJ	0.48 UJ	0.46 UJ	0.47 UJ	0.36 UJ	0.5 UJ	0.49 UJ
Cis-1,2-Dichloroethene	78.1	42	2.8	480 J	55 J	140 J	61 J	140 J	9 U
Tetrachloroethene	49.9	0.94 U	0.97 U	0.96 U	0.91 U	11	0.73 U	0.99 U M	0.98 UJ
Trans-1,2-Dichloroethene	518	0.94 U	0.97 U	8.1	0.91 U	18	0.73 U M	1.6 J	0.71 J
Trichloroethene	25.2	20	1.2 J	1,300 J	200 J	1,400 J	450 J	1,200 J	2.4 J
Vinyl Chloride	1.67	2.7	4.3	15	0.63 J M	3.3 M	0.89 J	2.7	0.88 J

	Location Name	SF	P-B54		SP-B55		SP-	B56	SP-B57
	Sample Name	SP-B54-S-35.0- 170801	SP-B54-S-7.0-170801	FD-170801-01	SP-B55-S-9.0-170801	SP-B55-S-33.0- 170801	SP-B56-S-10.0- 170801	SP-B56-S-27.0- 170801	SP-B57-S-10.0- 170802
	Sample Type	Ν	N	FD	Р	Ν	Ν	Ν	Ν
Analyte	PAL (µg/kg)	Result	Result	Result	Result	Result	Result	Result	Result
1,1,1-Trichloroethane	1,490	15 U	<u>2,400</u> U	140 U	130 U	0.95 U Q	140 U	140 U	0.94 U H
1,1-Dichloroethane	40.7	15 U	<u>2,400</u> U	<u>140</u> UJ	<u>130</u> UJ	0.48 U Q	<u>140</u> UJ	<u>140</u> UJ	0.26 J H
1,1-Dichloroethene	45.7	15 U	9,800 M	19	5.3	0.95 U	1.8 J	9	0.94 UJ
1,2-Dichloroethane	23.1	<u>26</u> U	<u>4,200</u> U	<u>240</u> U	<u>220</u> U	0.48 U Q	<u>240</u> U	<u>250</u> U	0.16 J
Chloroethane	40.7	<u>74</u> UJ	<u>12,000</u> UJ	0.52 UJ	0.48 UJ	0.48 UJ	0.54 UJ	0.52 UJ	0.47 U H
Cis-1,2-Dichloroethene	78.1	58 J	3,600,000 H	10,000	11,000	75 B	3,500	5,000	1.9 U
Tetrachloroethene	49.9	26 U	4,200 U	1 UJ	0.95 UJ	0.95 U Q	5.2 J	1 UJ	0.94 U H
Trans-1,2-Dichloroethene	518	44 U	59,000	31	16	1.2 J	100 J	60	0.5 J H
Trichloroethene	25.2	<u>26</u> U	7,200	2,400	1,600	18 Q	<u>240</u> U	2,800	0.32 J H
Vinyl Chloride	1.67	<u>150</u> U	610,000	150	58	13	6,600	130	18 H

	Location Name	SP-B57		SP-B58			SP-B59	
	Sample Name	SP-B57-S-29.0- 170802	SP-B58-S-21.0- 170802	SP-B58-S-37.0- 170802	SP-B58-S-39.5- 170802	SP-B59-S-21.0- 170802	SP-B59-S-29.8- 170802	SP-B59-S-5.0-170802
	Sample Type	Ν	Ν	Ν	Ν	Ν	Ν	Ν
Analyte	PAL (µg/kg)	Result	Result	Result	Result	Result	Result	Result
1,1,1-Trichloroethane	1,490	0.86 U H	1 U	0.78 U	1.9 U	0.86 U	0.9 U	1 UJ
1,1-Dichloroethane	40.7	0.43 U H	0.51 U	0.39 U	0.97 U	0.43 U	0.45 U	0.5 UJ
1,1-Dichloroethene	45.7	0.72 J	1 UJ	0.91 J	1.9 U	0.86 U	0.9 U	1 UJ
1,2-Dichloroethane	23.1	0.43 UJ	0.51 UJ	0.39 UJ	0.97 UJ	0.43 UJ	0.45 UJ	0.5 UJ
Chloroethane	40.7	0.43 U H	0.51 U	0.39 U	0.97 U	0.43 U	0.45 U	0.5 UJ
Cis-1,2-Dichloroethene	78.1	49 H	7.4	950 J	5.1	0.6 U	1.1 U	2.6 J
Tetrachloroethene	49.9	0.86 U H	1 U	1.3 J	1.9 U	0.86 U	0.9 U	31 J
Trans-1,2-Dichloroethene	518	2.1 H	1 U	3.6	1.9 U	0.86 U	0.9 U	8 J
Trichloroethene	25.2	0.44 J H	4.3	2,100 J	2.5 J	1.6 J	6.9	2.1 J
Vinyl Chloride	1.67	4.8 H	1.4 J M	10 J	1 J	0.37 J	0.9 UJ	1.7 J

	Location Name		SP-B60		SP-	B61		SP-B62	
	Sample Name	SP-B60-S-17.0- 170802	SP-B60-S-23.5- 170802	SP-B60-S-7.5-170802	SP-B61-S-18.0- 170803	SP-B61-S-23.5- 170803	SP-B62-S-16.0- 170803	SP-B62-S-24.0- 170803	SP-B62-S-26.0- 170804
	Sample Type	Ν	Ν	N	Ν	Ν	Ν	Ν	Ν
Analyte	PAL (µg/kg)	Result	Result	Result	Result	Result	Result	Result	Result
1,1,1-Trichloroethane	1,490	0.92 U	0.8 U	1.4 U	21 U R	18 U R	20 U R	17 U R	0.415 U
1,1-Dichloroethane	40.7	0.46 U	0.4 U	0.72 U	21 U R	18 U R	20 U R	17 U R	0.415 U
1,1-Dichloroethene	45.7	0.92 U	0.8 U	1.4 U	21 U R	18 U R	20 U R	17 U R	0.415 U
1,2-Dichloroethane	23.1	0.46 U Q	0.4 U Q	0.72 UJ	38 U R	31 U R	35 U R	29 U R	0.415 U
Chloroethane	40.7	0.46 U	0.4 U	0.72 U	110 U R	89 U R	100 U R	84 U R	0.415 U
Cis-1,2-Dichloroethene	78.1	1.5 J	1.1 J	1.6 U	160 J	18 U R	260 J	17 U R	1.08
Tetrachloroethene	49.9	0.92 U	0.8 U	1.4 U	38 U R	31 U R	35 U R	29 U R	0.415 U
Trans-1,2-Dichloroethene	518	0.92 U	0.8 U	1.4 U M	36 J	53 U R	96 J	50 U R	0.415 U
Trichloroethene	25.2	1.6 J	6.5	1.4 J	35 J	180 J	780 J	230 J	2.16
Vinyl Chloride	1.67	0.92 U Q	0.37 J M Q	0.79 J	210 U R	180 U R	200 U R	170 U R	0.415 U

	Location Name	SP-B62	SP-	B63	SP-B64	SP-B65C	SI	P-B66
	Sample Name	SP-B62-S-7.0-170803	SP-B63-S-18.5- 170804	SP-B63-S-24.0- 170804	SP-B64-S-12.0- 170804	SP-B65c-S-8.0- 170806	SP-B66-S-10.5- 170806	SP-B66-S-9.0-170806
	Sample Type	Ν	Ν	Ν	N	Ν	Ν	Ν
Analyte	PAL (µg/kg)	Result	Result	Result	Result	Result	Result	Result
1,1,1-Trichloroethane	1,490	3.3 U	0.468 U	0.444 U	0.538 U	0.544 U	0.457 U	0.473 U
1,1-Dichloroethane	40.7	0.87 J	0.468 U	0.444 U	0.538 U	0.544 U	0.457 U	0.473 U
1,1-Dichloroethene	45.7	3.3 U	0.468 U	0.573 J	0.538 U	0.294 J	0.457 U	0.473 U
1,2-Dichloroethane	23.1	0.99 J	0.468 U	0.444 U	0.538 U	0.544 U	0.457 U	0.473 U
Chloroethane	40.7	1.6 U	0.468 U	0.444 U	0.538 U	0.544 U	0.229 J	0.473 U
Cis-1,2-Dichloroethene	78.1	68	9.63	321 E	199 E	319 E	180 E	84
Tetrachloroethene	49.9	3.3 U	0.468 U	0.37 J	0.538 U	0.544 U	0.457 U	0.473 U
Trans-1,2-Dichloroethene	518	7.4	0.468 U	2.4	1.7	3.72	1.58	0.95
Trichloroethene	25.2	2.4 J	12.2	1,700 E	513 E	540 E	20.2	21.4
Vinyl Chloride	1.67	8.3 J	0.586 J	2.08	1.91	3.86	13.9	6.31

	Location Name	SP	B67		SP-B68			SP-B69	
	Sample Name	SP-B67-S-12.5- 170806	SP-B67-S-24.0- 170806	SP-B68-S-0.5-170806	SP-B68-S-12.5- 170806	SP-B68-S-9.5-170806	FD-0-170806-02	SP-B69-S-11.5-170806	SP-B69-S-15.0- 170806
	Sample Type	Ν	Ν	Ν	Ν	Ν	FD	Р	Ν
Analyte	PAL (µg/kg)	Result	Result	Result	Result	Result	Result	Result	Result
1,1,1-Trichloroethane	1,490	0.473 U	0.523 U	0.777 U	0.468 U	0.504 U	0.478 U	0.526 U	0.549 U
1,1-Dichloroethane	40.7	0.473 U	0.523 U	0.777 U	0.468 U	32.4	0.478 U	0.526 U	0.549 U
1,1-Dichloroethene	45.7	0.473 U	0.523 U	0.777 U	0.468 U	0.504 U	0.487 J	0.326 J	0.549 U
1,2-Dichloroethane	23.1	0.473 U	0.523 U	0.777 U	0.468 U	0.302 J	0.478 U	0.526 U	0.549 U
Chloroethane	40.7	0.958	0.523 U	0.777 U	0.468 U	90.8	10	8.38	2.29
Cis-1,2-Dichloroethene	78.1	32.5	3.36	7.19	111 E	5.45	395 E	396 E	168 E
Tetrachloroethene	49.9	0.473 U	0.523 U	0.777 U	0.468 U	0.504 U	0.478 U	0.526 U	0.549 U
Trans-1,2-Dichloroethene	518	1.13	0.523 U	0.777 U	2.21	3.47	5.67	5.57	2.93
Trichloroethene	25.2	18.5	9.78	21	10.9	11.9	129 E	11.5	16.3
Vinyl Chloride	1.67	23.2	3.17	4.68	39.5	3.46	69.3	66.9	18.2

Samples analyzed using EPA Method 8260C

FD - Field Duplicate

J - The reported value is an estimated concentration.

M - A matrix effect was present.

Q - One or more quality control criteria failed.

P – Parent sample of field duplicate.

N – Sample is not part of a duplicate pair.

U - The analyte was not detected at or above the stated limit. (sometimes validators will elevate the limit due to the "B" qualifier using the 5x/10x rule, so this definition is different than the lab description).

UJ - The analyte was not detected at the stated sample quantitation limit, which is an estimated value.

J H - The reported value is an estimated concentration. / Sample was prepped or analyzed beyond the specified holding time.

U R - The reported value is unusable, rejected. Analyte may or may not be present.

U H - The analyte was not detected at or above the stated limit. (sometimes validators will elevate the limit due to the "B" qualifier using the 5x/10x rule, so this definition is different than the lab description). / Sample was prepped or analyzed beyond the specified holding time.

U M - The analyte was not detected at or above the stated limit. (sometimes validators will elevate the limit due to the "B" qualifier using the 5x/10x rule, so this definition is different than the lab description). / A matrix effect was present.

<u>Underlined</u> values represent analytes not detected at or above the stated limit, which exceeds the PAL.

Bolded values indicate that the reported concentration exceeds the PAL.

PAL - Project Action Limit µg/kg – micrograms per kilogram

B - The analyte was found in an associated blank, as well as in the sample.

H - Sample was prepped or analyzed beyond the specified holding time.

E - The reported value exceeded the instrument calibration range, so the concentration is estimated.

Table D-4. OU 1 2017 SVOCs in Soil (µg/kg)												
			CL-	B18a	CL-	B21	SP-B	01B	SP-I	362		
Analyte Name	Screening Level (µg/kg)	Screening Level Source		a-S-18.0-)718	CL-B21 170		SP-B01b 1708		SP-B62-S-7	7.0-170803		
	(µg/ng)	Bource	I	N	N	J	N	I	N	[
			Re	sult	Res	sult	Res	ult	Res	ult		
1,2,4-Trichlorobenzene	29.4	А	19	U	19	U	<u>190</u>	UJ	2,300	UJ		
1,2-Dichlorobenzene	399.4	А	38	U	38	U	370	UJ	4,600	UJ		
1,3-Dichlorobenzene	NA	NE	19	U	19	U	190	UJ	2,300	U J		
1,4-Dichlorobenzene	67.7	А	19	U	19	U	<u>190</u>	UJ	2,300	U J		
1-Methylnaphthalene	34,483	В	2,000		20	J	190	UJ	8,600			
2,2'-Oxybis(1-Chloropropane)	14,286	В	150	U	150	U	1,500	UJ	<u>18,000</u>	U J		
2,4,5-Trichlorophenol	1,507	А	150	U	150	U	1,500	UJ	18,000	U J		
2,4,6-Trichlorophenol	2.66	А	<u>150</u>	U	<u>150</u>	U	1,500	UJ	<u>18,000</u>	U J		
2,4-Dichlorophenol	10.4	Α	38	U	38	U	<u>370</u>	U J	4,600	U J		
2,4-Dimethylphenol	79.3	А	38	U	38	U	<u>370</u>	UJ	4,600	UJ		
2,4-Dinitrophenol	9.17	Α	510	U	500	U	5,000	U J	61,000	U J		
2,4-Dinitrotoluene	0.11	А	150	U	<u>150</u>	U	1,500	UJ	18,000	U		
2,6-Dinitrotoluene	0.021	Α	150	U	150	U	1,500	U J	18,000	U		
2-Chloronaphthalene	6,400,000	С	19	U	19	U	190	UJ	2,300	U		
2-Chlorophenol	27	А	<u>150</u>	U	<u>150</u>	U	1,500	UJ	18,000	U J		
2-Methylnaphthalene	320,000	С	2,900		15	J	370	UJ	10,000			
2-Methylphenol	151.1	Α	150	U	150	U	1,500	U J	18,000	U J		
2-Nitroaniline	800,000	С	64	U	63	U	620	UJ	7,700	U		
2-Nitrophenol	NA	NE	<u>150</u>	U	150	U	1,500	UJ	18,000	U J		
3,3-Dichlorobenzidine	0.197	А	<u>310</u>	UQ	<u>300</u>	UQ	3,000	UJ	<u>37,000</u>	U		
3- And 4-Methylphenol	4,000,000	С	24	J	38	U	370	UJ	4,600	UJ		
3-Nitroaniline	NA	NE	150	U	150	U	1,500	UJ	18,000	U		
4,6-Dinitro-2-Methylphenol	NA	NE	310	UQ	300	UQ	3,000	UJ	37,000	UJ		
4-Bromophenyl-Phenylether	NA	NE	150	U	150	U	1,500	UJ	18,000	U		
4-Chloro-3-Methylphenol	NA	NE	150	U	150	U	1,500	UJ	18,000	U J		
4-Chloroaniline	0.0772	А	1,300	U	1,300	U	12,000	UJ	<u>150,000</u>	U J		
4-Chlorophenyl-Phenylether	NA	NE	150	U	150	U	1,500	UJ	18,000	U		
4-Nitroaniline	NA	NE	64	U	63	U	620	UJ	7,700	U		
4-Nitrophenol	NA	NE	1,000	U	1,000	U	10,000	U J	120,000	UJ		
Acenaphthene	4,977	А	4,700		17	J	190	U J	8,900			
Acenaphthylene	NA	NE	110		19	U	190	U J	2,300	U		
Anthracene	114,142	А	3,600		19	U	190	UJ	8,400			

Table D-4. OU 1 2017 SVOCs in Soil (µg/kg)

		Table D-4. (DU 1 2017 S	SVOCs in	Soil (µg/kg	()				
			CL-I	B18a	CL-	B21	SP-B	01B	SP-H	362
Analyte Name	Screening Level (µg/kg)	Screening Level Source	CL-B18a 170		CL-B21 170		SP-B01b 1708		SP-B62-S-7	.0-170803
	(µg/kg)	Source	Ν	1	Ν	1	N	I	N	ſ
			Res	ult	Res	ult	Res	ult	Res	ult
Benzo[A]Anthracene	42.89	Α	7,500		19	U	75	J	8,500	
Benzo[A]Pyrene	116.3	Α	3,400		38	U	<u>370</u>	U J	5,100	J
Benzo[B]Fluoranthene	147.5	Α	6,400		19	U	190	U J	4,600	
Benzo[G,H,I]Perylene	NA	NE	590		38	U	370	U J	4,600	UJ
Benzo[K]Fluoranthene	1,475	A	2,400	М	38	U	370	UJ	4,600	U M
Benzoic Acid	18,385	А	2,600	U M	2,500	U	25,000	U J	310,000	UJ
Benzyl Alcohol	8,000,000	С	150	U	150	U	1,500	UJ	18,000	U J
Bis(2-Chloroethoxy)Methane	NA	NE	150	U	150	U	1,500	UJ	18,000	U J
Bis(2-Chloroethyl)Ether	0.0144	А	<u>150</u>	U	<u>150</u>	U	<u>1,500</u>	U J	18,000	UJ
Bis(2-Ethylhexyl)Phthalate	668.5	А	510	U	500	U	<u>5,000</u>	UJ	61,000	U
Butylbenzylphthalate	646	А	150	UQ	150	UQ	1,500	UJ	18,000	UJ
Carbazole	NA	NE	1,300		150	U	1,500	U J	18,000	UJ
Chrysene	4,774	А	7,200		38	U	370	UJ	12,000	
Di-N-Butylphthalate	2,966	А	150	U	150	U	1,500	UJ	18,000	U
Di-N-Octylphthalate	13,312,046	A	770	U	760	U	7,500	UJ	92,000	U
Dibenz[A,H]Anthracene	21.4	А	220		<u>38</u>	U	<u>370</u>	UJ	4,600	UJ
Dibenzofuran	80,000	С	3,600		150	U	1,500	UJ	18,000	U
Diethylphthalate	4,719	А	510	U	500	U	<u>5,000</u>	UJ	<u>61,000</u>	U
Dimethyl Phthalate	NA	NE	150	U	150	U	1,500	UJ	18,000	U
Fluoranthene	31,605	А	42,000		19	U	130	J	14,000	
Fluorene	5,116	А	5,500		12	J	190	UJ	12,000	
Hexachlorobenzene	43.9	А	19	U	19	U	<u>190</u>	UJ	2,300	U
Hexachlorobutadiene	30.3	А	<u>38</u>	U	<u>38</u>	U	<u>370</u>	UJ	4,600	U J
Hexachlorocyclopentadiene	9,613.76	А	64	U	63	U	620	UJ	7,700	U J
Hexachloroethane	2.26	А	150	U	<u>150</u>	U	1,500	UJ	18,000	U J
Indeno[1,2,3-Cd]Pyrene	416	А	960		19	U	190	UJ	2,300	U J
Isophorone	15.4	А	150	U	150	U	1,500	UJ	18,000	U J
N-Nitrosodimethylamine	19.6	В	1,300	U	1,300	U	12,000	UJ	150,000	U J
N-Nitrosodinpropylamine	3.88E-03	А	<u>150</u>	U	<u>150</u>	U	<u>1,500</u>	UJ	18,000	U J
N-Nitrosodiphenylamine	28.2	А	<u>38</u>	U	<u>38</u>	U	<u>370</u>	U J	4,600	U
Naphthalene	236.4	А	1,700		19	U	190	U J	21,000	J
Nitrobenzene	6.49	А	<u>150</u>	U	<u>150</u>	U	<u>1,500</u>	U J	18,000	UJ
Pentachlorophenol	0.879	А	<u>310</u>	U	<u>300</u>	U	<u>3,000</u>	U J	37,000	UJ
Phenanthrene	NA	NE	34,000		38	U	370	U J	46,000	J
Phenol	757.12	А	71	J	150	U	520	J	18,000	UJ
Pyrene	32,774	Α	28,000		38	U	370	UJ	19,000	J

Table D-4. OU 1 2017 SVOCs in Soil (µg/kg)

Notes:

Samples analyzed using EPA Method 8270D.

Screening levels based on the lowest MTCA Method B value shown in Ecology's July 2015 CLARC table. Values used as presented by Ecology without recalculation.

A - Screening level source is "Protective of Groundwater Saturated".

B - Screening level source is "Method B Cancer".

C - Screening level source is "Method B Non Cancer".

N – Sample is not part of a duplicate pair.

<u>Underlined</u> values represent analytes not detected at or above the stated limit, which exceeds the PAL.

Bolded values indicate that the reported concentration exceeds the PAL.

NE - Not established.

U - The analyte was not detected at or above the stated limit. (Sometimes validators will elevate the limit due to the "B" qualifier using the 5x/10x rule so this definition is different than the lab description).

J - The reported value is an estimated concentration.

U J - The analyte was not detected at the stated sample quantitation limit, which is an estimated value.

Q - One or more quality control criteria failed.

M - A matrix effect was present.

U M - The analyte was not detected at or above the stated limit. (sometimes validators will elevate the limit due to the "B" qualifier using the 5x/10x rule so this definition

is different than the lab description). / A matrix effect was present.

µg/kg – micrograms per kilogram

	Table D-5. 00 1 2017 11 II Results in Son Samples (ing/kg)											
	Loc	ation Name	CL-B18a	CL-B21	SP-B01	SP-B62						
	Sam	ple Name	CL-B18a-S-18.0- 170718	CL-B21-S-12.0- 170720	SP-B01-S-17.5- 170711	SP-B62-S-7.0-170803						
	S	ample Type	Ν	Ν	Ν	Ν						
Method	Analyte	Screening Level ^a	Result	Result	Result	Result						
NWTPH-HCID	TPH-Diesel range C12-C24	NE	300 J	140	4,200 J	80,000 J						
NWTPH-HCID	TPH-Motor Oil C24-C36	NE	140 J	310	6,600 J	330,000 J						
NWTPH-HCID	TPH-Total Unknown Gasoline Range Organics	NE	28 UJ	27 U	13,000 J	390,000 J						
NWTPH-Dx	TPH-Diesel range	2000	950 J	260	6,900 J	69,000 J						
NWTPH-Dx	TPH-Motor Oil C24-C36	2000	660 J	800	12,000 J	240,000 J						
NWTPH-Gx	TPH-Total Gasoline Range Organics	100	NA	NA	6 ,500 J	13,000						

Table D-5. OU 1 2017 TPH Results in Soil Samples (mg/kg)

Notes:

Samples analyzed using EPA Method NWTPH-HCID, NWTPH-Dx, NWTPH-Gx

EPA Method NWTPH-HCID is a screening method for TPH

N – Sample is not part of a duplicate pair.

U - The analyte was analyzed but not detected at or above the stated limit. (sometimes validators will elevate the limit

due to the "B" qualifier using the 5x/10x rule so this definition is different than the lab description).

J - The reported value is an estimated concentration.

UJ - The analyte was analyzed but not detected. the sample quantitation limit is an estimated value.

NA - not analyzed

NE - not established

^a MTCA Method A Soil Cleanup Levels used as screening levels for reference

Bolded values indicate that the reported concentration exceeds the PAL.

mg/kg - milligrams per kilogram

Table D-6. OU 1 2017 VOCs in Soil Samples (µg/kg)

	Locat	tion Name:		CL-B02			CL-B03			CL-B04			SP-B01		SP-B62
			CL-B02-S-14.0-	CL-B02-S-20.0-	CL-B02-S-29.0-	CL-B03-S-18.0-	CL-B03-S-19.4-	CL-B03-S-37.0-	CL-B04-S-11.5-	CL-B04-S-19.5-	CL-B04-S-29.0-	SP-B01-S-13.5-	SP-B01-S-17.5-	SP-B01-S-28.0-	
	Sai	mple Name	170711	170711	170711	170712	170712	170712	170712	170712	170712	170711	170711	170711	SP-B62-S-7.0-170803
	Sa	mple Type	Ν	N	Ν	Ν	Ν	Ν	N	Ν	Ν	Ν	Ν	Ν	Ν
Analyte	PAL or Screening level	Source	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result
1,1,1,2-Tetrachloroethane	38,500	В	0.44 U	0.44 U	0.48 U	0.46 U	0.44 U	0.54 U	0.45 U	0.44 U	0.59 U	210	78 U	0.43 U	1.6 U Q
1,1,1-Trichloroethane	1,490	SAP	0.88 UJ	0.88 UJ	0.97 UJ	0.92 UJ	0.89 UJ	1.1 UJ	0.9 UJ	0.88 UJ	1.2 UJ	140 J	26 U	0.87 UJ	3.3 U
1,1,2,2-Tetrachloroethane	0.08	А	<u>1.8</u> U	<u>1.8</u> U	<u>1.9</u> U	<u>1.8</u> U	<u>1.8</u> U	<u>2.2</u> U	<u>1.8</u> U	<u>1.8</u> U	<u>2.4</u> U	<u>9.8</u> U	<u>13</u> U	<u>1.7</u> U	<u>6.6</u> U
1,1,2-Trichloroethane	1.81	А	0.44 U	0.44 U	0.48 U	0.46 U	0.44 U	0.54 U	0.45 U	0.44 U	0.59 U	<u>20</u> U M	<u>26</u> U	0.43 U	1.6 U
1,1-Dichloroethane	40.7	SAP	0.44 U	0.44 U	0.48 U	0.46 U	0.44 U	0.54 U	0.45 U M	0.44 U	0.59 U	20 U	26 U	0.43 U	0.87 J
1,1-Dichloroethene	45.7	SAP	5.2	1 J	0.97 U M	0.92 U M	4.8	1.1 U	0.9 U	2.9 J	13	2,300	160	0.87 U	3.3 U
1,1-Dichloropropene	NE	NA	0.88 UJ	0.88 UJ	0.97 UJ	0.92 UJ	0.89 UJ	1.1 UJ	0.9 UJ	0.88 UJ	1.2 UJ	34 U	46 U	0.87 UJ	3.3 U
1,2,3-Trichlorobenzene	21	D	1.8 U	1.8 U	1.9 U	1.8 U	1.8 U	2.2 U	1.8 U	1.8 U	2.4 U	59 U	<u>78</u> U	1.7 U	6.6 U M Q
1,2,3-Trichloropropane	33	В	0.88 U	0.88 U	0.97 U	0.92 U	0.89 U	1.1 U	0.9 U	0.88 U	1.2 U	59 U	<u>78</u> U	0.87 U	40
1,2,4-Trichlorobenzene	29.4	А	0.88 U	0.88 U	0.97 U	0.92 U	0.89 U	1.1 U	0.9 U	0.88 U	1.2 U	98 U	130 U	0.87 U	3.3 U M O
1,2,4-Trimethylbenzene	NE	NA	5.9	2.7	1.6 J	1.3 J	0.89 J	1.1 J	0.59 J	0.72 J	0.71 J	140.000	97.000	28	370.000 J
1,2-Dibromo-3-Chloropropane	1.250	B	3.5 U M	3.5 U	3.9 U	3.7 U M	3.5 U	4.3 U	3.6 U	3.5 U	4.7 U	3.500	520 U M	3.5 U	13 U Q
1,2-Dibromoethane	1,250 NE	NA	0.44 U	0.44 U	0.48 U	0.46 U	0.44 U	0.54 U	0.45 U	0.44 U	0.59 U	20 U Q	26 U Q	0.43 U	1.6 U
1,2-Dichlorobenzene	399	A	0.88 U M	0.88 U M	0.97 U M	0.92 U M	0.89 U	1.1 U M	0.9 U	0.88 U	1.2 U	20 U 20 U	26 U	0.87 U M	3.3 U
1,2-Dichloroethane	23.1	SAP	0.44 UJ	0.44 UJ	0.48 UJ	0.46 UJ	0.44 UJ	0.54 UJ	0.45 UJ	0.44 UJ	0.59 UJ	<u>34</u> U	46 U	0.43 UJ	0.99 J
1.2-Dichloropropane	1.67	A	0.88 UJ	0.44 UJ	0.48 UJ	0.40 UJ	0.44 UJ	1.1 UJ	0.49 UJ	0.88 UJ	1.2 UJ	<u>19 U Q M</u>	25 U Q	0.43 UJ	3.3 UJ
1,3,5-Trimethylbenzene	800,000	C A	1.2 J	0.88 UJ 0.53 J	0.29 J	0.92 UJ 0.25 J	0.16 J	0.21 J	0.45 U	0.88 UJ 0.44 U	0.59 U	45.000	<u>23</u> 0 Q 27,000	6.9	<u>3.3</u> UJ 140.000 J
		-	0.88 U	0.55 J 0.88 U M			0.16 J 0.89 U M		0.45 U 0.9 U M			- /	27,000 46 U	0.87 U M	- ,
1,3-Dichlorobenzene	NE	NA		0.88 U M 0.44 U	0.97 U M	0.92 U M	0.89 U M 0.44 U	1.1 U	0.45 U	0.88 U	1.2 U M	34 U			3.3 U M
1,3-Dichloropropane	NE	NA	0.44 U		0.48 U	0.46 U		0.54 U		0.44 U	0.59 U	34 U Q M	46 U Q	0.43 U	1.6 U
1,4-Dichlorobenzene	67.7	A	0.44 U M	0.44 U M	0.48 U M	0.46 U M	0.44 U M	0.54 U M	0.45 U M	0.44 U	0.59 U M	59 U Q M	<u>78</u> U Q	0.43 U M	1.6 U
2,2-Dichloropropane	NE	NA	1.8 U	1.8 U	1.9 U	1.8 U	1.8 U	2.2 U	1.8 U	1.8 U	2.4 U	59 U	78 U	1.7 U	6.6 U
2-Chlorotoluene	NE	NA	0.44 U	0.44 U	0.48 U	0.46 U	0.44 U	0.54 U	0.45 U	0.44 U	0.59 U	34 U Q	46 U Q	0.43 U M	1.6 U
4-Chlorotoluene	NE	NA	0.44 U M	0.44 U M	0.48 U	0.46 U	0.44 U	0.54 U	0.45 U	0.44 U	0.59 U	740	78 U Q M	0.43 U M	3,000 J
4-Isopropyltoluene	NE	NA	0.61 J	0.88 U	0.97 U	0.92 U	0.89 U	1.1 U M	0.9 U	0.88 U M	1.2 U	20,000	12,000	3.1	62,000 H
Benzene	1.74	A	0.88 U Q	0.88 U Q	0.97 U Q	0.92 U Q	0.89 U Q	1.1 U M Q	0.9 U Q	0.88 U Q	1.2 U Q	390 J	<u>46</u> U M	0.87 U Q	11
Bromobenzene	NE	NA	3.5 U	3.5 U	3.9 U	3.7 U	3.5 U	4.3 U	3.6 U	3.5 U	4.7 U	98 U Q	130 U Q	3.5 U	13 U
Bromochloromethane	NE	NA	0.44 U Q	0.44 U Q	0.48 U Q	0.46 U Q	0.44 U Q	0.54 U Q	0.45 U Q	0.44 U Q	0.59 U Q	34 U	46 U	0.43 U Q	1.6 U
Bromodichloromethane	2.6	А	0.44 U M Q	0.44 U M Q	0.48 U M Q	0.46 U Q	0.44 U M Q	0.54 U M Q	0.45 U M Q	0.44 U M Q	0.59 U M Q	54,000 M	<u>26</u> U M	0.43 U M Q	1.6 U
Bromoform	22.9	А	0.88 U	0.88 U	0.97 U	0.92 U	0.89 U	1.1 U	0.9 U	0.88 U	1.2 U	<u>200</u> U	<u>260</u> U	0.87 U	3.3 U
Bromomethane	3.31	А	0.44 UJ	0.44 UJ	0.48 UJ	0.46 UJ	0.44 UJ	0.54 UJ	0.45 UJ	0.44 UJ	0.59 UJ	<u>59</u> U	<u>78</u> U	0.43 UJ	1.6 U
Carbon Tetrachloride	2.19	Α	0.88 U Q	0.88 U Q	0.97 U Q	0.92 U Q	0.89 U Q	1.1 U Q	0.9 U Q	0.88 U Q	1.2 U Q	<u>20</u> U	<u>26</u> U	0.87 U Q	<u>3.3</u> U Q
Chlorobenzene	51.1	Α	0.88 U	0.88 U	0.97 U	0.92 U	0.89 U	1.1 U	0.9 U	0.88 U	1.2 U	970	<u>78</u> U Q	0.87 U M	100
Chloroethane	40.7	SAP	0.44 UJ	0.44 UJ	0.48 UJ	0.46 UJ	0.44 UJ	0.54 UJ	0.45 UJ	0.44 UJ	0.59 UJ	<u>98</u> U	<u>130</u> U	0.43 UJ	1.6 U
Chloroform	4.8	А	0.88 UJ	0.88 UJ	0.97 UJ	0.92 UJ	0.89 UJ	1.1 UJ	0.9 UJ	0.88 UJ	1.2 UJ	<u>20</u> U	<u>26</u> U	0.87 UJ	3.3 U
Chloromethane	NE	NA	0.44 U	0.44 U	0.48 U	0.46 U	0.44 U	0.54 U	0.45 U	0.44 U	0.59 U	59 U	78 U	0.43 U	1.6 UJ
Cis-1,2-Dichloroethene	78.1	SAP	1,300 J Q	450 J Q	46 Q	46 Q	9,000	13 Q	8.1 Q	5,600	6,600	1,100,000	160,000	63 Q	68
Cis-1,3-Dichloropropene	0.14	Α	<u>0.44</u> U	<u>0.44</u> U	<u>0.48</u> U	<u>0.46</u> U	<u>0.44</u> U	<u>0.54</u> U	<u>0.45</u> U	<u>0.44</u> U	<u>0.59</u> U	<u>20</u> U Q	<u>26</u> U Q	<u>0.43</u> U	<u>1.6</u> U
Dibromochloromethane	1.82	А	0.88 U	0.88 U	0.97 U	0.92 U	0.89 U	1.1 U	0.9 U	0.88 U	1.2 U	<u>59</u> U	<u>78</u> U	0.87 U	<u>3.3</u> U
Dibromomethane	NE	NA	0.44 UJ	0.44 UJ	0.48 UJ	0.46 UJ	0.44 UJ	0.54 UJ	0.45 UJ	0.44 UJ	0.59 UJ	34 U M	46 U	0.43 UJ	1.6 U
Dichlorodifluoromethane	16,000,000	С	0.88 UJ	0.88 UJ	0.97 UJ	0.92 UJ	0.89 UJ	1.1 UJ	0.9 UJ	0.88 UJ	1.2 UJ	200 UJ	260 UJ	0.87 UJ	3.3 U
Ethylbenzene	343	А	0.88 U	0.88 U	0.97 U M	0.92 U M	0.89 U M	1.1 U	0.9 U	0.88 U	1.2 U	4,100	2,900 J	0.71 J	400
Hexachlorobutadiene	30.3	А	1.8 U	1.8 U	1.9 U	1.8 U	1.8 U	2.2 U	1.8 U	1.8 U	2.4 U	<u>98</u> U	<u>130</u> U	1.7 U	6.6 U
Isopropylbenzene	NE	NA	0.44 U M	0.44 U M	0.48 U	0.46 U	0.44 U	0.54 U	0.45 U	0.44 U	0.59 U	9,300	5,500	1.3 J	39,000 J
M- and P-Xylene ¹	772	А	0.58 J	0.41 J	0.27 J	0.46 U	0.44 U M	0.54 U	0.23 J	0.44 U	0.59 U	14,000	11,000	2.9	40,000 J
Methyl Tert-Butyl Ether	7.23	А	0.88 UJ	0.88 UJ	0.97 UJ	0.92 UJ	0.89 UJ	1.1 UJ	0.9 UJ	0.88 UJ	1.2 UJ	<u>34</u> U	<u>46</u> U	0.87 UJ	3.3 U
Methylene Chloride	1.48	А	<u>3.9</u> U	<u>4.7</u> U	<u>4.5</u> U	5.4 J	3.7 J	4.2 J	<u>3.3</u> U	<u>5.4</u> U	<u>4.3</u> U	<u>390</u> U	<u>520</u> U	<u>4.2</u> U	5.1 J
N-Butylbenzene	4,000,000	С	2.4	0.44 U M	0.59 J	0.46 U M	0.44 U M	0.35 J	0.45 U	0.22 J	0.59 U	21,000	12,000	13	68,000 J
Naphthalene	236	A	1.8 J	3.5 U	3.9 U	3.7 U	3.5 U	4.3 U	3.6 U	3.5 U	4.7 U M	460	7,300	6.2 J	6,700 J
O-Xylene	844	A	0.29 J	0.88 U	0.97 U M	0.92 U	0.89 U	1.1 U	0.9 U	0.88 U	1.2 U	10,000	7,400	1.7	21,000 J
Propylbenzene	8,000,000	C	0.72 J	0.37 J	0.97 U	0.92 U M	0.89 U	1.1 U	0.9 U	0.88 U	1.2 U	22,000	14,000	3.8	73,000 J
ropyioenzene	0,000,000	C	0.72 J	0.57 J	0.97 U	0.92 U WI	0.07 U	1.1 U	0.9 U	0.00 U	1.2 U	22,000	14,000	5.0	73,000 J

Table D-6. OU 1 2017 VOCs in Soil Samples (µg/kg)

	Loca	tion Name:		CL-B02			CL-B03			CL-B04			SP-B01		SP-B62
	Sa	mple Name	CL-B02-S-14.0- 170711	CL-B02-S-20.0- 170711	CL-B02-S-29.0- 170711	CL-B03-S-18.0- 170712	CL-B03-S-19.4- 170712	CL-B03-S-37.0- 170712	CL-B04-S-11.5- 170712	CL-B04-S-19.5- 170712	CL-B04-S-29.0- 170712	SP-B01-S-13.5- 170711	SP-B01-S-17.5- 170711	SP-B01-S-28.0- 170711	SP-B62-S-7.0-170803
	Sa	mple Type	Ν	Ν	Ν	N	N	N	Ν	N	N	Ν	N	Ν	Ν
Analyte	PAL or Screening level	Source	Result	Result											
Sec-Butylbenzene	8,000,000	С	0.32 J	0.44 U	0.48 U	0.46 U	0.44 U	0.54 U M	0.45 U M	0.44 U	0.59 U M	14,000	8,200	3.5	66,000 J
Styrene	120	А	0.44 U	0.44 U	0.48 U	0.46 U	0.44 U	0.54 U	0.45 U	0.44 U	0.59 U	34 U M	46 U M	0.43 U M	1.6 U M
Tert-Butylbenzene	8,000,000	А	0.44 U M	0.44 U	0.48 U	0.46 U	0.44 U	0.54 U	0.45 U	0.44 U	0.59 U	900	2,500 U	0.43 U M	62
Tetrachloroethene	49.9	SAP	0.88 U	0.88 U	0.97 U M	0.92 U	0.89 U	1.1 U	0.9 U	0.88 U	1.2 U	17,000	2,200	0.82 J	3.3 U
Toluene	273	А	0.3 J	0.27 J	0.35 J	0.28 J	0.89 U	1.1 U	0.27 J	0.28 J	<u>1.2</u> U	2,800	<u>14,000</u> U	0.37 J	120
Trans-1,2-Dichloroethene	518	SAP	2 J	32 J	0.78 J	0.83 J	2 J	1.1 UJ	0.9 UJ	48 J	35 J	19,000	1,800	0.99 J	7.4
Trans-1,3-Dichloropropene	0.137	А	<u>3.5</u> U	<u>3.5</u> U	<u>3.9</u> U	<u>3.7</u> U	<u>3.5</u> U	<u>4.3</u> U	<u>3.6</u> U	<u>3.5</u> U	<u>4.7</u> U	<u>34</u> U Q	<u>46</u> U Q	<u>3.5</u> U	<u>13</u> U
Trichloroethene	25.2	SAP	7,400 J	5,200 J	3,600 J	3,900	83 Q	92 Q	51 Q	3,800 J	6,900 J	83,000,000 B	1,600,000 J	7,500 B	2.4 J
Trichlorofluoromethane	24,000,000	С	0.88 UJ	0.88 UJ	0.97 UJ	0.92 UJ	0.89 UJ	1.1 UJ	0.9 UJ	0.88 UJ	1.2 UJ	200 U	260 U	0.87 UJ	3.3 U
Vinyl Chloride	1.67	SAP	44 J	6.5 J	1.3 J	3.8 J	25 J	1.1 UJ	0.9 UJ	5 J	77 J	<u>200</u> U	<u>260</u> U	0.58 J	8.3 J

Notes:

Samples analyzed using EPA Method 8260C.

¹The lowest MTCA Method B value for M-Xylene was chosen to represent M- and P-Xylene, as the M-Xylene value was the lower of the two analytes.

Screening levels based either on the lowest MTCA Method B value show in Ecology's July 2015 CLARC table or the project SAP. Values used as presented by Ecology without recalculation.

A - Screening level source is "Protective of Groundwater Saturated".

B - Screening level source is "Method B Cancer".

C - Screening level source is "Method B Non Cancer".

D - Screening level source is "Protective of Groundwater Vadose at 25 degC"

SAP - The screening level source is the SAP for this project: "Sampling and Analysis Plan Operable Unit 1 Site Recharacterization, June 29, 2017."

NA - Not applicable; NE - Not established.

N - Sample is not part of a field duplicate pair

PAL - Project Action Limit

U - The analyte was analyzed but not detected at or above the stated limit. (sometimes validators will elevate the limit due to the "B" qual using the 5x/10x rule so this definition is different than the lab description).

J - The reported value is an estimated concentration.

E - The reported value exceeded the instrument calibration range, estimated concentration.

UJ - The analyte was analyzed but not detected. the sample quantitation limit is an estimated value.

B - The analyte was found in an associated blank, as well as in the sample.

H - Sample was prepped or analyzed beyond the specified holding time.

J H - The reported value is an estimated concentration./Sample was prepped or analyzed beyond the specified holding time.

M - A matrix effect was present.

Q - One or more quality control criteria failed.

UH - The analyte was analyzed but not detected at or above the stated limit. (sometimes validators will elevate the limit due to the "B" qual using the 5x/10x rule so this definition is different than the lab description)./Sample was prepped or analyzed beyond the specified holding time.

U M - The analyte was analyzed but not detected at or above the stated limit. (sometimes validators will elevate the limit due to the "B" qual using the 5x/10x rule so this definition is different than the lab description)./A matrix effect was present.

Underlined values represent analytes not detected at or above the stated limit, which exceeds the PAL.

Bolded values indicate that the reported concentration exceeds the PAL.

FIFTH FIVE-YEAR REVIEW NAVAL BASE KITSAP KEYPORT

Appendix D – OU 1 Data Collection During FYR Period

	Location Name	CL-B18a	CL-B21	SP-B01	SP-B62
	Sample Name	CL-B18a-S-18.0- 170718	CL-B21-S-12.0-170720	SP-B01-S-17.5-170711	SP-B62-S-7.0-170803
	Sample Type	Ν	Ν	Ν	Ν
Analyte Name	PAL* (mg/kg)	Result	Result	Result	Result
Aroclor-1016	0.5	0.029 U	0.025 U	0.023 U J	0.31 U J
Aroclor-1221	0.5	0.014 U	0.012 U	0.012 U	0.15 U J
Aroclor-1232	0.5	0.014 U	0.012 U	0.012 U	0.15 U J
Aroclor-1242	0.5	0.005 U	0.0043 U	0.0041 U	0.054 U J
Aroclor-1248	0.5	0.014 U	0.012 U	0.012 U	0.15 U J
Aroclor-1254	0.5	0.053	0.0062 U	1.1	0.32 J
Aroclor-1260	0.5	0.01 U	0.0087 U	0.34 J	0.11 U J

 Table D-7. OU 1 2017 PCBs in Soil Samples (mg/kg)

Notes:

* WAC 173-340-747; Soil Method B cleanup level

Bold indicates exceedance of PAL.

Samples analyzed using EPA Method 8082 A

mg/kg - milligram per kilogram

U - The compound was analyzed for, but was not detected ("nondetect") at or above the LOD.

J - The result is an estimated concentration that is less than the LOQ, but greater than or equal to the DL.

U J - The analyte was not detected at the stated sample quantitation limit, which is an estimated value

N – Sample is not part of a field duplicate pair

Loc	ation Name	CL-B02	CL-B03	CL-B04	CL-B05	CL-B06a	CL-B07	CL-B08
Sa	ample Name	CL-B02-GW-20.0- 170711	CL-B03-GW-22.0- 170712	CL-B04-GW-20.0- 170712	CL-B05-GW-19.0- 170712	CL-B06a-GW-16.0- 170713	CL-B07-GW-29.0- 170713	CL-B08-GW-18.0- 170713
S	ample Type	Ν	Ν	Ν	Ν	Ν	Ν	Ν
ANALYTE_NAME	PAL	Result	Result	Result	Result	Result	Result	Result
1,1,1-Trichloroethane	200	100 UJ	2.5 UJ	2.5 UJ	0.05 UJ	0.05 UJ	0.05 UJ	0.05 UJ
1,1-Dichloroethane	7.7	<u>50</u> UJ	2.5 UJ	2.5 UJ	0.15 J	0.054 J	0.069 J	2 J
1,1-Dichloroethene	7	<u>200</u> UJ	15 J	12 J	0.73 J	0.05 UJ	3.3 J	5.1 J
1,2-Dichloroethane	0.48	53 J	<u>2.5</u> UJ	<u>2.5</u> UJ	0.05 UJ	0.05 UJ	0.05 UJ	0.05 UJ
Chloroethane	7.7	<u>350</u> UJ	<u>10</u> UJ	<u>10</u> UJ	0.63 J	0.2 UJ	0.2 UJ	0.2 UJ
Cis-1,2-Dichloroethene	16	3,900 J	4,500 J	4,400 J	150 J	33 J	250 J	270 J
Tetrachloroethene	5	<u>100</u> UJ	<u>10</u> UJ	3.5 J	0.2 UJ	0.2 UJ	0.2 UJ	0.2 UJ
Trans-1,2-Dichloroethene	100	160 J	71 J	97 J	2.9 J	1 J	3.1 J	110 J
Trichloroethene	0.54	22 J	60 J	6.4 J	160 J	0.5 J	0.18 J	0.1 J
Vinyl Chloride	0.029	270 Ј	210 J	1,300 J	43 J	100 J	120 J	740 J

L	ocation Name	CL-B09	CL-B10	CL-B11	CL-B12	CL-B13	CL-I	814B
:	Sample Name	CL-B09-GW-14.0- 170713	CL-B10-GW-12.0- 170714	CL-B11-GW-12.0- 170714	CL-B12-GW-21.0- 170714	CL-B13-GW-12.0- 170717	CL-B14b-GW-22.0- 170717	FD-170717-02
	Sample Type	Ν	Ν	Ν	Ν	Ν	Р	FD
ANALYTE_NAME	PAL	Result	Result	Result	Result	Result	Result	Result
1,1,1-Trichloroethane	200	0.05 UJ	0.05 U	0.05 U				
1,1-Dichloroethane	7.7	0.083 J	0.19 J	0.3	0.19 J	0.86	0.05 U M	0.05 U M
1,1-Dichloroethene	7	0.05 UJ	0.05 U M	0.05 U M	2.2	0.05 U M	210 H	210 H
1,2-Dichloroethane	0.48	0.05 UJ	0.065 J	0.026 J	0.05 U	0.05 U M	0.05 U	0.05 U M
Chloroethane	7.7	0.2 UJ	0.2 U M	11 M	0.83	0.92 M	0.2 U M	0.2 U
Cis-1,2-Dichloroethene	16	2.8 J	16	0.97	210 J	0.28	50,000 J	46,000 J
Tetrachloroethene	5	0.2 UJ	0.2 U M	0.2 U M	0.2 U	0.2 U M	0.2 U M	0.2 U M
Trans-1,2-Dichloroethene	100	0.17 J	0.25	0.05 U	61 J	0.05 U M	1,300 J	1,300 J
Trichloroethene	0.54	0.1 J	6.1	0.099 J	150 J	0.087 U	610 J	610 J
Vinyl Chloride	0.029	3.5 J	3.2 M	0.72 M	22	0.015 U M	22,000 J	20,000 J

Loc	ation Name	CL-B15	CL-B16	CL-B17	CL-B18a	CL-J	B18a	CL-B19
Sa	mple Name	CL-B15-GW-23.0- 170717	CL-B16-GW-13.0- 170718	CL-B17-GW-19.5- 170718	CL-B18a-GW-14.5- 170718	CL-B18a-GW-33.0- 170719	CL-B18b-GW-20.0- 170807	CL-B19-GW-23.0- 170719
S	ample Type	Ν	Ν	Ν	N	Ν	Ν	Ν
ANALYTE_NAME	PAL	Result	Result	Result	Result	Result	Result	Result
1,1,1-Trichloroethane	200	0.05 U	37	0.05 U M	0.05 U	0.05 U	<u>500</u> U	0.05 U
1,1-Dichloroethane	7.7	0.05 U M	550	0.11 J M	0.58	0.05 U M	<u>250</u> U	0.23
1,1-Dichloroethene	7	0.05 U M	37	0.05 U M	0.05 U M	10	<u>1,000</u> U M	0.05 U M
1,2-Dichloroethane	0.48	0.05 U	38	0.031 J	0.053 J	0.05 U	<u>500</u> U	0.05 U
Chloroethane	7.7	0.46 J M	5,300 M	0.2 U M	2.3 M	0.2 U M	<u>1,800</u> U	0.2 U M
Cis-1,2-Dichloroethene	16	14 J	1,100 J	36 J	24	5,700 J	22,000	0.55 J
Tetrachloroethene	5	0.2 U M	0.23 J	0.2 U M	0.2 U M	0.2 U M	<u>500</u> U	0.2 U M
Trans-1,2-Dichloroethene	100	0.28	25 U M	0.61	0.66	<u>1,000</u> U R	<u>1,000</u> U M	0.099 J
Trichloroethene	0.54	0.13 U	27 J	0.26	0.38	6.7	1,100 J	0.23 J
Vinyl Chloride	0.029	2.5	180 B M	0.69 B M	3.9 M	1,300 J	2,200 J	1 J

Lo	cation Name	CL·	·B20	CL-B21	CL-B22	CL-	·B23	CL-B24
s	ample Name	CL-B20-GW-26.5- 170719	CL-B20-GW-32.0- 170719	CL-B21-GW-12.5- 170720	CL-B22-GW-19.0- 170720	CL-B23-GW-14.0- 170720	CL-B23-GW-18.0- 170720	CL-B24-GW-16.0- 170720
5	Sample Type	Ν	Ν	Ν	Ν	Ν	N	Ν
ANALYTE_NAME	PAL	Result						
1,1,1-Trichloroethane	200	0.05 U						
1,1-Dichloroethane	7.7	3.7	0.39	0.14 J	0.47	0.077 J	0.05 U M	0.37
1,1-Dichloroethene	7	3.4	26	0.05 U M	5.7	1	2.6	0.7
1,2-Dichloroethane	0.48	0.056 J	0.026 J	4	1.1	0.05 U M	0.05 U	0.05 U M
Chloroethane	7.7	18	0.2 U M	<u>1,800</u> U R	<u>1,800</u> U R	0.2 U M	0.2 U M	0.2 U M
Cis-1,2-Dichloroethene	16	1,400 J	14,000 J	<u>250</u> U R	26 B	410 J	1,100 J	230 J
Tetrachloroethene	5	0.2 U M	0.2 U M	0.2 U M	9	0.2 U M	0.39 J	0.2 U M
Trans-1,2-Dichloroethene	100	20	1,000 U R	1.1	45	1.5	31	17
Trichloroethene	0.54	0.71	1.7	0.05 U	200 J	0.14 J	1.3	0.068 J
Vinyl Chloride	0.029	290 J	3,800 J	0.015 UJ	21 J	150 J	<u>250</u> U R	350 J

Lo	cation Name	CL-B25	CL-B26a	CL-B27	CL-	B28	CL-B29a	CL-B30a
5	Sample Name	CL-B25-GW-29.0- 170720	CL-B26a-GW-10.0- 170721	CL-B27-GW-12.0- 170721	CL-B28-GW-10.0- 170721	FD-170721-02	CL-B29a-GW-21.0- 170724	CL-B30a-GW-21.0- 170724
	Sample Type	Ν	Ν	Ν	Ν	FD	Ν	Ν
ANALYTE_NAME	PAL	Result	Result	Result	Result	Result	Result	Result
1,1,1-Trichloroethane	200	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U
1,1-Dichloroethane	7.7	0.15 J	0.05 U M	0.11 J	0.05 U M	0.05 U M	29.5 J	0.05 U
1,1-Dichloroethene	7	3.1	0.05 U M	0.05 U M	0.05 U M	0.05 U M	4.39	0.05 U
1,2-Dichloroethane	0.48	0.05 U M	0.05 U	0.05 U	0.05 U	0.05 U	4.49	0.87
Chloroethane	7.7	0.2 U M	0.2 U M	0.2 U M	0.2 U M	0.2 U M	0.5 UJ	0.5 UJ
Cis-1,2-Dichloroethene	16	590 J	<u>250</u> U H	<u>250</u> U H	<u>250</u> U H	<u>250</u> U H	108 J	0.05 U
Tetrachloroethene	5	0.2 U M	0.2 U M	0.2 U M	0.2 U M	0.2 U M	1.92	0.192 J
Trans-1,2-Dichloroethene	100	9.3	0.05 U	0.33	0.05 U	0.05 U	37.7 J	0.189 J
Trichloroethene	0.54	0.18 J	0.068 J	0.81	0.036 J	0.05 U M	122 J	0.467 U
Vinyl Chloride	0.029	250 U R	0.015 U M	0.015 U M	0.015 U M	0.015 U M	253 J	0.434

Loc	ation Name	CL-B31	CL-B32	CL-B33	CL-B34	CL-B35	CL-B36a	CL-B37
Sa	mple Name	CL-B31-GW-12.0- 170724	CL-B32-GW-16.0- 170724	CL-B33-GW-13.0- 170724	CL-B34-GW-20.0- 170725	CL-B35-GW-21.0- 170725	CL-B36a-GW-17.0- 170725	CL-B37-GW-15.0- 170726
S	ample Type	Ν	Ν	Ν	Ν	Ν	Ν	Ν
ANALYTE_NAME	PAL	Result	Result	Result	Result	Result	Result	Result
1,1,1-Trichloroethane	200	0.05 U	0.05 UJ	0.05 UJ	0.05 U	0.05 U	0.05 U	0.164 J
1,1-Dichloroethane	7.7	0.05 U	0.259 J	0.145 J	1.88	0.05 U	1.25	0.117 J
1,1-Dichloroethene	7	0.05 U	1.76 J	0.05 UJ	3.15	23.7 D	23.7 D	0.946 J
1,2-Dichloroethane	0.48	0.05 U	0.05 UJ	0.05 UJ	0.05 U	0.05 U	0.05 U	0.0163 J
Chloroethane	7.7	0.5 UJ	6.46 J					
Cis-1,2-Dichloroethene	16	0.05 U	505 J	1.21 J	698 D	4,520 D	4,790 D	52.2 J
Tetrachloroethene	5	0.177 J	0.172 J	0.2 UJ	0.171 J	0.17 J	0.172 J	0.2 UJ
Trans-1,2-Dichloroethene	100	0.05 U	51.8 J	0.667 J	336 D	98 D	122 D	12.4 J
Trichloroethene	0.54	0.05 U	<u>2.82</u> U	1.39 J	<u>1.87</u> U	1.32 U	<u>17</u> U	7.1 J
Vinyl Chloride	0.029	0.015 U	188 J	0.015 UJ	0.015 U	1,040 D	2,030 D	46.1 J

Lo	ocation Name	CL-B39	SP-	B01	SP-B01a		SP-B01B	
5	Sample Name	CL-B39-GW-10.0- 170726	SP-B01-GW-13.5- 170711	SP-B01-GW-17.5- 170711	SP-B01a-GW-28.0- 170711	FD-0170807-01	SP-B01b-GW-10.0- 170807	SP-B01b-GW-15.0- 170809
	Sample Type	Ν	Ν	Ν	Ν	FD	Р	Ν
ANALYTE_NAME	PAL	Result	Result	Result	Result	Result	Result	Result
1,1,1-Trichloroethane	200	0.164 J	1 U	1 UJ	25 UJ	<u>500</u> U	<u>500</u> U	<u>500</u> U
1,1-Dichloroethane	7.7	0.204 J	0.63 J	0.5 UJ	<u>13</u> UJ	<u>250</u> U	<u>250</u> U	<u>250</u> U
1,1-Dichloroethene	7	0.0156 J	88 J	80 J	<u>50</u> UJ	<u>1,000</u> U M	<u>1,000</u> U	<u>1,000</u> U
1,2-Dichloroethane	0.48	0.0179 J	<u>1</u> U	<u>1</u> UJ	<u>25</u> UJ	<u>500</u> U	<u>500</u> U	<u>500</u> U
Chloroethane	7.7	0.408 J	3.5 U	3.5 UJ	<u>88</u> UJ	<u>1,800</u> U	<u>1,800</u> U	<u>1,800</u> U
Cis-1,2-Dichloroethene	16	0.569 J	150,000 J	130,000 J	360 J	100,000	350,000	120,000
Tetrachloroethene	5	0.2 UJ	25 J	43 J	<u>25</u> UJ	<u>500</u> U	<u>500</u> U	<u>500</u> U
Trans-1,2-Dichloroethene	100	0.595 J	4,100 J	3,700 J	23 J	1,100 J	2,300	1,100 J
Trichloroethene	0.54	0.182 J	150,000 H	360,000 H	500 J	320,000	260,000	310,000
Vinyl Chloride	0.029	1.71 J	7,900 J	2,900 J	320 J	4,300 J M	32,000	4,800 J

I	ocation Name	SP-	B40	SP-B41	SP-	B42	SP-B43a	SP-B44
Sample Name		SP-B40-GW-11.0- 170726	SP-B40-GW-16.0- 170726	SP-B41-GW-10.0- 170726	SP-B42-GW-10.0- 170727	SP-B42-GW-18.0- 170727	SP-B43a-GW-13.0- 170807	SP-B44-GW-12.0- 170727
	Sample Type	Ν	Ν	N	N	N	N	Ν
ANALYTE_NAME	PAL	Result	Result	Result	Result	Result	Result	Result
1,1,1-Trichloroethane	200	5,810 J	255 J	3.8 J	0.921 J	0.489 J	<u>500</u> U	1.24 J
1,1-Dichloroethane	7.7	17,600 J	302 J	8.43 J	1.41 J	0.572 J	<u>250</u> U	4.82 J
1,1-Dichloroethene	7	305 J	5.64 J	1 UJ	12.2 J	3.87 J	<u>1,000</u> U M	53.1 J
1,2-Dichloroethane	0.48	5.12 J	<u>1</u> UJ	<u>1</u> UJ	0.0376 J	0.0312 J	<u>500</u> U	0.198 J
Chloroethane	7.7	30,600 J	2,580 J	26.5 J	91.9 J	105 J	<u>1,800</u> U M	2,450 J
Cis-1,2-Dichloroethene	16	456 J	3,570 J	18.6 J	4,270 J	2,340 J	27,000	11,900 J
Tetrachloroethene	5	0.2 UJ	0.2 UJ	4 UJ	0.55 J	0.0159 J	<u>500</u> U	0.0687 J
Trans-1,2-Dichloroethene	100	83.8 J	103 J	4.32 J	62.4 J	36.9 J	<u>1,000</u> U	148 J
Trichloroethene	0.54	195 J	380 J	9.54 J	4,670 J	1,200 J	10,000	5,330 J
Vinyl Chloride	0.029	571 J	3,800 J	41.9 J	498 J	339 J	4,200 J	4,200 J

Locat	ion Name	SP-B45	SP-B46	SP-B47	SP-B48b	SP-	B49	SP-B50
Sample Name		SP-B45-GW-18.0- 170727	SP-B46-GW-15.0- 170728	SP-B47-GW-15.0- 170728	SP-B48b-GW-10.0- 170728	SP-B49-GW-10.0- 170728	SP-B49-GW-20.0- 170728	SP-B50-GW-14.0- 170731
San	nple Type	Ν	Ν	Ν	N	Ν	Ν	Ν
ANALYTE_NAME	PAL	Result	Result	Result	Result	Result	Result	Result
1,1,1-Trichloroethane	200	0.058 J	0.057 J	0.13 J	0.042 J	0.05 U	0.05 U M	0.05 U M
1,1-Dichloroethane	7.7	1.8	31	33	13 J	17	0.056 J	1.2
1,1-Dichloroethene	7	13	0.58	0.44	25 J	69	5 U	34
1,2-Dichloroethane	0.48	0.2	0.11 J	0.097 J	0.33 J	0.05 U	0.05 U M	0.29
Chloroethane	7.7	15	<u>1,800</u> U R	<u>1,800</u> U R	<u>3,500</u> U R	<u>100</u> UJ	0.19 J	0.3 J
Cis-1,2-Dichloroethene	16	8,300 J	360 J	200 J	12,000 J	77,000 J	470 J	9,300 J
Tetrachloroethene	5	0.2 U M	0.2 U M	0.2 U	0.091 J	5.3	0.11 J	0.08 J
Trans-1,2-Dichloroethene	100	94 J	29	40	130	720	9.5 J	110
Trichloroethene	0.54	47	1.4	1.7	1,700 J	63,000 J	480 J	2,600 J
Vinyl Chloride	0.029	1,200 J	2,500 B	1,800 B	3,100 B	5,600 B	250 U R	1,100

Loc	ation Name	SP-B51	SP-	B52	SP-	B53	SP-	B54
Sample Name		SP-B51-GW-14.0- 170731	SP-B52-GW-11.0- 170731	SP-B52-GW-20.0- 170731	SP-B53-GW-23.0- 170731	SP-B53-GW-33.0- 170731	SP-B54-GW-35.0- 170801	SP-B54-GW-7.0- 170801
S	ample Type	Ν	Ν	Ν	Ν	Ν	Ν	Ν
ANALYTE_NAME	PAL	Result	Result	Result	Result	Result	Result	Result
1,1,1-Trichloroethane	200	0.034 J	0.17 J	0.05 U M	<u>50</u> U M	0.05 U M	2.5 U M	2.5 U M
1,1-Dichloroethane	7.7	0.05 U	2.3	0.068 J	<u>50</u> U	0.074 J	2.5 U	2.5 U M
1,1-Dichloroethene	7	0.45	25	0.53	<u>50</u> U M	2.5 U	2.5 U M	64
1,2-Dichloroethane	0.48	0.05 U M	0.039 J	0.05 U M	<u>50</u> U M	0.05 U M	2.5 U M	<u>2.5</u> U M
Chloroethane	7.7	0.2 U M	4.3	0.22 J	<u>200</u> U M	0.2 U M	<u>10</u> U M	<u>10</u> U M
Cis-1,2-Dichloroethene	16	190 B	21,000 B	630 B	63,000 J	270 B	7,700 H B	59,000 J
Tetrachloroethene	5	0.2 U M	2.8	0.096 J M	<u>200</u> U M	0.34 J	<u>10</u> U M	<u>10</u> U M
Trans-1,2-Dichloroethene	100	1.7 J	200	8.6 J	700	7.5 J	60	900
Trichloroethene	0.54	250 U R	26,000 J	590 J	540,000 J	1,900 J	270 J	250 J
Vinyl Chloride	0.029	10	1,300	26 M	<u>15</u> U M	27	440 B	14,000 B

Lo	Location Name		B55		SP-B56		SP-	B57
Sample Name		SP-B55-GW-10.0- 170801	SP-B55-GW-33.0- 170801	FD-170801-02	SP-B56-GW-10.0- 170801	SP-B56-GW-27.0- 170801	SP-B57-GW-10.0- 170802	SP-B57-GW-29.0- 170802
1	Sample Type	Ν	Ν	FD	Р	Ν	N	Ν
ANALYTE_NAME	PAL	Result	Result	Result	Result	Result	Result	Result
1,1,1-Trichloroethane	200	2.5 U M	2.5 U M	0.05 U	0.05 U	0.05 U M	0.05 U M	0.05 U M
1,1-Dichloroethane	7.7	2.5 U	2.5 U	0.34	0.16 J	0.05 U M	0.37	0.11 J
1,1-Dichloroethene	7	150	2.5 U M	18	17	18	2.8	32
1,2-Dichloroethane	0.48	<u>2.5</u> U M	<u>2.5</u> U M	0.05 U	0.72	0.05 U	0.37	0.05 U M
Chloroethane	7.7	<u>10</u> U M	<u>10</u> U M	0.2 U	0.2 U	0.2 U	0.2 U Q	0.2 U Q
Cis-1,2-Dichloroethene	16	43,000 B J	3,800 B	31,000 J	29,000 J	15,000 B	6,600 B	1,700 B
Tetrachloroethene	5	<u>10</u> U M	<u>10</u> U M	0.2 U M	0.2 U	0.2 U M	0.2 U	0.2 U M
Trans-1,2-Dichloroethene	100	290	52	370	330	130	120	61
Trichloroethene	0.54	20,000 B	520 J	<u>6.8</u> U	<u>5.9</u> U	250 J	250 J	250 J
Vinyl Chloride	0.029	2,600 B J	660	0.015 U	0.015 U M	1,900 B	15,000 B	280 B

Loc	Location Name		SP-B59	SP-	B60	SP-B61	SP-B62	SP-B63
Sa	ample Name	SP-B58-GW-39.0- 170802	SP-B59-GW-30.0- 170802	SP-B60-GW-24.0- 170802	SP-B60-GW-9.0- 170802	SP-B61-GW-25.0- 170803	SP-B62-GW-26.0- 170804	SP-B63-GW-24.0- 170804
S	ample Type	Ν	Ν	Ν	Ν	Ν	Ν	Ν
ANALYTE_NAME	PAL	Result	Result	Result	Result	Result	Result	Result
1,1,1-Trichloroethane	200	0.05 U M	0.05 U M	0.05 U M	0.05 U M	0.05 U M	0.05 U M	0.05 U M
1,1-Dichloroethane	7.7	0.05 U M	0.05 U	0.05 U	0.05 U	0.05 U M	0.12 J	0.05 U
1,1-Dichloroethene	7	13 U	0.26	0.082 J	0.05 U	0.11 M	0.05 U	0.28
1,2-Dichloroethane	0.48	0.03 J	0.05 U M	0.05 U	0.05 U M	0.05 U M	0.05 U M	0.05 U M
Chloroethane	7.7	0.2 U M Q	0.2 U M Q	0.2 U M Q	0.2 U M Q	0.2 U M	0.2 U M	0.2 U M
Cis-1,2-Dichloroethene	16	8,500 J	<u>250</u> U R	250 UJ	<u>250</u> UJ	7.5 B	5.5 B	100 J
Tetrachloroethene	5	0.31 J	0.2 U M	0.2 U M	0.2 U M	0.2 U M	0.2 U M	0.14 J M
Trans-1,2-Dichloroethene	100	130 J	2.9	0.98	<u>1,000</u> UJ	0.93	2.3	2.2
Trichloroethene	0.54	1,400 J	<u>250</u> U R	<u>250</u> UJ	<u>250</u> UJ	<u>250</u> UJ	<u>250</u> UJ	710 J
Vinyl Chloride	0.029	1,100 J	9.5 B	<u>250</u> UJ	<u>250</u> UJ	<u>250</u> UJ	<u>250</u> UJ	<u>250</u> UJ

Loc	ation Name	SP-B64	SP-B65C	SP-B66	SP-B67	SP-	B68	SP-B69
Sample Name		SP-B64-GW-10.0-170804	SP-B65c-GW-9.0- 170806	SP-B66-GW-10.0- 170806	SP-B67-GW-14.0- 170806	FD-170806-01	SP-B68-GW-13.0- 170806	SP-B69-GW-12.0- 170806
S	ample Type	N	Ν	N	Ν	FD	Р	Ν
ANALYTE_NAME	PAL	Result	Result	Result	Result	Result	Result	Result
1,1,1-Trichloroethane	200	0.07 J	<u>500</u> U	<u>500</u> U	<u>500</u> U	<u>500</u> U	<u>500</u> U	<u>500</u> U
1,1-Dichloroethane	7.7	0.26 J	<u>250</u> U	<u>250</u> U	<u>250</u> U	<u>250</u> U M	<u>250</u> U M	<u>250</u> U
1,1-Dichloroethene	7	6.6 J	<u>1,000</u> U M	<u>1,000</u> U M	<u>1,000</u> U	<u>1,000</u> U	<u>1,000</u> U	<u>1,000</u> U M
1,2-Dichloroethane	0.48	0.05 U M	<u>500</u> U	<u>500</u> U	<u>500</u> U	<u>500</u> U	<u>500</u> U	<u>500</u> U
Chloroethane	7.7	0.28 J	<u>1,800</u> U	<u>1,800</u> U M	<u>1,800</u> U M	<u>1,800</u> U	<u>1,800</u> U M	2,700
Cis-1,2-Dichloroethene	16	6,500 J	260 J	22,000	2,200	2,400	2,900	1,500
Tetrachloroethene	5	2 J	<u>500</u> U M	<u>500</u> U	<u>500</u> U	<u>500</u> U	<u>500</u> U	<u>500</u> U
Trans-1,2-Dichloroethene	100	64	<u>1,000</u> U M	<u>1,000</u> U	<u>1,000</u> U M	<u>1,000</u> U	<u>1,000</u> U	<u>1,000</u> U
Trichloroethene	0.54	15,000 J	710 J	<u>250</u> U M	<u>250</u> U	<u>250</u> U	<u>250</u> U	<u>250</u> U M
Vinyl Chloride	0.029	84 J	<u>250</u> UJ	14,000 J	9,800 J	7,200 J	6,600 J	1,100 J

Notes:

Samples analyzed using EPA Method 8260C

FD - Field Duplicate

P - Parent sample of field duplicate

N - Sample is not part pof a field duplicate pair

PAL - Project Action Limit

D - The reported value is from a dilution.

JD - The reported value is an estimated concentration. / The reported value is from a dilution.

U - The analyte was not detected at or above the stated limit. (sometimes validators will elevate the limit due to the "B" qualifier using the 5x/10x rule so this

definition is different than the lab description).

J - The reported value is an estimated concentration.

UJ - The analyte was not detected at or above the sample quantitation limit, which is an estimated value.

B - The analyte was found in an associated blank, as well as in the sample.

B J - The analyte was found in an associated blank, as well as in the sample. / Sample was prepped or analyzed beyond the specified holding time.

H - Sample was prepped or analyzed beyond the specified holding time.

M - A matrix effect was present.

U R - The reported value is unusable, rejected. Analyte may or may not be present.

U H - The analyte was not detected at or above the stated limit. (Sometimes validators will elevate the limit due to the "B" qualifier using the 5x/10x rule so this

definition is different than the lab description). / Sample was prepped or analyzed beyond the specified holding time.

U M - The analyte was not detected at or above the stated limit. (sometimes validators will elevate the limit due to the "B" qualifier using the 5x/10x rule so this

definition is different than the lab description). / A matrix effect was present.

<u>Underlined</u> values represent analytes not detected at or above the stated limit, which exceeds the PAL.

Bolded values indicate that the reported concentration exceeds the PAL

Location Nan	Location Name		MW1-17	MW1-42	MW1-43	MW1-44	MW1-45
Sample Nam	Sample Name		CL-MW1-17-GW- 170720	MW1-42-171023	MW1-43-171023	MW1-44-171023	MW1-45-171023
	Sample type	Ν	N	Ν	N	N	Ν
Analyte	PAL (µg/L)	Result	Result	Result	Result	Result	Result
1,1,1-Trichloroethane	200	0.5 U	0.05 U	1 U	5 U	25 U	1 U
1,1-Dichloroethane	7.7	0.5 U	0.05 U M	5.09 D	5 U	25 U	1 U
1,1-Dichloroethene	7	0.5 U	2.5	0.613 JD	3.76 JD	26.5 JD	0.931 JD
1,2-Dichloroethane	0.48	0.5 U	0.05 U	<u>1</u> U	<u>5</u> U	<u>25</u> U	<u>1</u> U
Chloroethane	7.7		<u>1,800</u> U R				
Cis-1,2-Dichloroethene	16	1.32 U	680 J	53.6 D	982 D	5,250 D	187 D
Tetrachloroethene	5	0.5 U	0.2 U M	1 U	5 U	<u>25</u> U	1 U
Trans-1,2-Dichloroethene	100	0.5 U	0.82	38.7 D	92.1 D	20.8 JD	1 U
Trichloroethene	0.54	46.6	<u>250</u> U R	1.18 JD	<u>5</u> U	<u>25</u> U	1 U
Vinyl Chloride	0.029	<u>0.5</u> U	<u>250</u> U R	46.9 D	452 D	723 D	83.7 D

Table D-9. OU 1 2017 cVOCs in Groundwater Monitoring Wells (µg/L)

Location Nam	ie	MV	V1-46	MW1-47	MW1-48	MW1-49	MW1-50
Sample Name	Sample Name		MW1-46-171023	MW1-47-171023	MW1-48-171024	MW1-49-171024	MW1-50-171024
	Sample type	FD	Р	N	N	N	Ν
Analyte	PAL (µg/L)	Result	Result	Result	Result	Result	Result
1,1,1-Trichloroethane	200	50 U	50 U	100 U	2.5 U	25 U	5 U
1,1-Dichloroethane	7.7	<u>50</u> U	<u>50</u> U	<u>100</u> U	2.5 U	<u>25</u> U	5 U
1,1-Dichloroethene	7	<u>50</u> U	<u>50</u> U	<u>100</u> U	2.5 U	<u>25</u> U	5 U
1,2-Dichloroethane	0.48	<u>50</u> U	<u>50</u> U	<u>100</u> U	<u>2.5</u> U	<u>25</u> U	<u>5</u> U
Chloroethane	7.7						
Cis-1,2-Dichloroethene	16	8,600 D	8,500 D	20,900 D	438 D	2,830 D	855 D
Tetrachloroethene	5	<u>50</u> U	<u>50</u> U	<u>100</u> U	2.5 U	<u>25</u> U	<u>5</u> U
Trans-1,2-Dichloroethene	100	82 JD	101 D	189 JD	4.08 JD	27.9 JD	6.76 JD
Trichloroethene	0.54	<u>50</u> U	<u>50</u> U	86.4 JD	111 D	1,040 D	856 D
Vinyl Chloride	0.029	2,070 D	2,050 D	3,400 D	98.2 D	280 D	54.2 D

Table D-9. OU 1 2017 cVOCs in Groundwater Monitoring Wells (µg/L)

Location Nam	Location Name		MW1-52	MW	/1-53	MW1-54	MW1-55
Sample Name		MW1-51-171024	MW1-52-171024	FD-171026-01	MW1-53-171026	MW1-54-171024	MW1-55-171024
	Sample type	Ν	N	FD	Р	N	Ν
Analyte	PAL (µg/L)	Result	Result	Result	Result	Result	Result
1,1,1-Trichloroethane	200	0.5 U	1 U	5 U	5 U	0.5 U	2.5 U
1,1-Dichloroethane	7.7	0.357 J	1 U	<u>5</u> U	5 U	0.5 U	2.5 U
1,1-Dichloroethene	7	0.5 U	0.671 JD	<u>5</u> U	5 U	0.5 U	1.62 JD
1,2-Dichloroethane	0.48	0.5 U	<u>1</u> U	<u>5</u> U	<u>5</u> U	0.5 U	<u>2.5</u> U
Chloroethane	7.7						
Cis-1,2-Dichloroethene	16	23.8	156 D	803 D	773 D	1.76	492 D
Tetrachloroethene	5	0.5 U	1 U	<u>5</u> U	<u>5</u> U	0.5 U	2.5 U
Trans-1,2-Dichloroethene	100	0.5 U	0.64 JD	31.1 D	29.4 D	0.5 U	5.46 D
Trichloroethene	0.54	0.5 U	4.37 D	220 D	216 D	2.86	357 D
Vinyl Chloride	0.029	25.3	45.2 D	192 D	189 D	0.464 J	75.2 D

Table D-9. OU 1 2017 cVOCs in Groundwater Monitoring Wells ($\mu g/L$)

Location Nam	ie	MW	/1-56	MW1-57			
Sample Name		MW1-56-12.0-171025	MW1-56-24.0-171025	MW1-57-10.0-171025	MW1-57-16.0-171025	MW1-57-34.0-171025 ^a	
	Sample type	N	N	Ν	Ν	Ν	
Analyte	PAL (µg/L)	Result	Result	Result	Result	Result	
1,1,1-Trichloroethane	200	<u>1,000</u> U	<u>1,250</u> U	<u>1,250</u> U	<u>1,000</u> U	25 U	
1,1-Dichloroethane	7.7	<u>1,000</u> U	<u>1,250</u> U	<u>1,250</u> U	<u>1,000</u> U	<u>25</u> U	
1,1-Dichloroethene	7	<u>1,000</u> U	<u>1,250</u> U	<u>1,250</u> U	<u>1,000</u> U	<u>25</u> U	
1,2-Dichloroethane	0.48	<u>1,000</u> U	<u>1,250</u> U	<u>1,250</u> U	<u>1,000</u> U	<u>25</u> U	
Chloroethane	7.7						
Cis-1,2-Dichloroethene	16	31,000 D	55,200 D	94,300 D	58,800 D	2,470 D	
Tetrachloroethene	5	<u>1,000</u> U	<u>1,250</u> U	<u>1,250</u> U	<u>1,000</u> U	<u>25</u> U	
Trans-1,2-Dichloroethene	100	<u>1,000</u> U	<u>1,250</u> U	938 JD	661 JD	49.5 JD	
Trichloroethene	0.54	122,000 D	332,000 D	361,000 D	218,000 D	9,490 D	
Vinyl Chloride	0.029	<u>1,000</u> U	<u>1,250</u> U	4,810 D	<u>1,000</u> U	406 D	

Table D-9. OU 1 2017 cVOCs in Groundwater Monitoring Wells (µg/L)

Location Name **MW1-58** MW1-60 MW1-58-9.0-171115 MW1-58-19.0-171115 MW1-58-35.0-171115 Sample Name MW1-60-171026 Ν Ν Ν Ν Sample type Result Result Result Result Analyte PAL (µg/L) 1,1,1-Trichloroethane 200 100 U 5 U 1 U 0.5 U 1.1-Dichloroethane 7.7 100 U 5 U 1 U 0.5 U 1,1-Dichloroethene 7 <u>100</u> U 5 U 1 U 0.5 U 1.2-Dichloroethane 0.48 100 U 5 U 1 U 0.5 U Chloroethane 7.7 Cis-1,2-Dichloroethene 16 23,600 D 1,110 D 79.2 D 0.5 U Tetrachloroethene 5 100 U 5 U 1 U 0.5 U Trans-1,2-Dichloroethene 100 245 D 6.85 JD 1 U 0.5 U Trichloroethene 0.54 66.6 JD 27.6 D 8.53 D 15.8 0.029 9.570 D Vinyl Chloride 106 D 9.64 D 0.5 U

Table D-9. OU 1 2017 cVOCs in Groundwater Monitoring Wells (µg/L)

Notes:

^a - The sample ID incorrectly indicates the depth of this sample as 34 feet bgs. The actual depth was 31 feet bgs.

Samples analyzed using EPA Method 8260C

FD - Field Duplicate

P - Parent sample of field duplicate

N – Sample is not part of a field duplicate pair

PAL - Project Action Limit

U - The analyte was not detected at or above the stated limit. (sometimes validators will elevate the limit

due to the "B" qualifier using the 5x/10x rule so this definition is different than the lab description).

D - The reported value is from a dilution.

JD - The reported value is an estimated concentration. / The reported value is from a dilution.

U R - The reported value is unusable, rejected. Analyte may or may not be present.

J - The reported value is an estimated concentration.

U M - The analyte was not detected at or above the stated limit. (sometimes validators will elevate the limit

due to the "B" qualifier using the 5x/10x rule so this definition is different than the lab description). / A matrix effect was present.

Underlined values represent analytes not detected at or above the stated limit, which exceeds the PAL.

Bolded values indicate that the reported concentration exceeds the PAL.

Location Name	Sample Name	Sample Type	PAL	1,4-Dioxane (µg/L)
MW1-43	MW1-43-171023	Ν	0.44	0.236 U
MW1-46	MW1-46-171023	Р	0.44	4.04
MW1-46	FD-171023-01	FD	0.44	3.32
MW1-47	MW1-47-171023	Ν	0.44	2.1
MW1-48	MW1-48-171024	Ν	0.44	4.94
MW1-50	MW1-50-171024	Ν	0.44	0.254 U
MW1-52	MW1-52-171024	Ν	0.44	0.251 U
MW1-56	MW1-56-12.0-171025	Ν	0.44	0.234 U
MW1-57	MW1-57-10.0-171025	Ν	0.44	0.246 U
MW1-58	MW1-58-9.0-171115	Ν	0.44	<u>1.17</u> U
MW1-60	MW1-60-171026	Ν	0.44	0.239 U

Table D-10. OU 1 2017 Groundwater Monitoring Well Results for 1,4-Dioxane (µg/L)

Samples analyzed using EPA Method 8270D.

FD - Field Duplicate

P – Parent sample of field duplicate

N – Sample is not part of a field duplicate pair

PAL - Project Action Limit

U - The analyte was not detected at or above the stated limit. (sometimes validators will elevate

the limit due to the "B" qualifier using the 5x/10x rule so this definition is different than the lab description).

Underlined values represent analytes not detected at or above the stated limit, which exceeds the PAL.

Bolded values indicate that the reported concentration exceeds the PAL. μ g/L – micrograms per liter

FIFTH FIVE-YEAR REVIEW NAVAL BASE KITSAP KEYPORT

Appendix D – OU 1 Data Collection During FYR Period

Location Name	Sample Name	Sample type	analyte ND as 1	CBs (Sum of value with null) Result 1g/kg)	Total number of PCBs detections	Total Organic Carbon %	Total PCBs (TOC Normalized) ^a (mg/kg OC)
	SMS Sod	imont SCO		shwater 110			Marine
		iment SCO iment CSL		110 2500			12 65
MA09	SED02-10-170906	N	830		169	1.6	51.9
INIA09	SED02-10-170900	11	030	Вq	109	1.0	51.9
MA14 (DUP)	FD-170906-01	FD	33	Вq	164	0.53	6.2
MA14	SED01-10-170906	Ν	24	q B	157	0.51	4.7
MA19	SED04-10-170906	Ν	9.9	Вq	151	0.58	1.7
SP1-1	SED03-10-170906	N	13	Вq	157	0.56	2.3
TF-21	SED05-10-170907	Ν	30	Вq	166	0.79	3.8

Table D-11. OU 1 2017 Total PCBs in Sediment (µg/kg)

Notes:

 a – If percent TOC is between 0.5 and 3.5, then PCB concentrations TOC-normalized with units of mg/kg OC. To calculate

TOC-normalized values, the concentration in $\mu g/kg$ is divided by the decimal fraction TOC times 1,000 $\mu g/mg.$

All samples analyzed using analytical method 1668A.

Bolded values exceed the SCO

DUP - Duplicate

FD - Field Duplicate

P - Parent sample of field duplicate

N – Sample is not part of a field duplicate pair

 $\mu g/kg$ - microgram per kilogram

B - The analyte was found in an associated blank, as well as in the sample.

q - One or more quality control criteria failed.

SCO - sediment cleanup objective

CSL - cleanup screening level

		Location Name	MA-09	MA-14	MA-14	MA19	SP1-1	TF-21
		Sample Name	SED02-10-170906	FD-170906-01	SED01-10-170906	SED04-10-170906	SED03-10-170906	SED05-10-170907
		Sample type	Ν	FD	Р	Ν	Ν	Ν
Analyte	Units	ROD RG (mg/kg OC)	Result	Result	Result	Result	Result	Result
AROCLOR-1016	µg/kg	NE	48 U	31 U	31 U	36 U	35 U	39 U J
AROCLOR-1221	µg/kg	NE	75 U	48 U	49 U	57 U	55 U	62 U
AROCLOR-1232	µg/kg	NE	94 U	60 U	62 U	71 U	69 U	77 U
AROCLOR-1242	µg/kg	NE	110 U	71 U	73 U	83 U	81 U	91 U
AROCLOR-1248	µg/kg	NE	75 U	48 U	49 U	57 U	55 U	62 U
AROCLOR-1254	µg/kg	NE	350 J	46 U	47 U	54 U	52 U	59 U
AROCLOR-1260	µg/kg	NE	120 J	33 U Q	33 U Q	38 U Q	37 U Q	42 U Q
AROCLOR-1262	µg/kg	NE	130 U	82 U	84 U	96 U	94 U	100 U
AROCLOR-1268	µg/kg	NE	100 U	65 U	66 U	76 U	74 U	82 U
Total PCB Aroclors	mg/kg OC	12	29.38 J	8.68 U	9.22 U	1.61 U	1.66 U	7.47 U
CARBON	mg/kg	NE	16,000.00	5,300.00 J	5,100.00 J	5,800.00	5,600.00 J	7,900.00 J

Table D-12. OU 1 2017 PCB Aroclor Analysis in Sediment Samples (µg/kg)

Notes:

Samples analyzed for Aroclor analysis by method 8082 A, carbon analysis by 9060.

FD - Field duplicate

P - Parent Sample of field duplicate

 $N-Sample \ is not part of a field duplicate pair % \label{eq:nonlinear}$

U - The analyte was analyzed but not detected at or above LOD. (sometimes validators will elevate the limit due to the "B" qual using the 5x/10x rule so this definition is different than the lab description).

J - The reported value is an estimated concentration.

U J - The analyte was analyzed but not detected. The sample quantitation limit is an estimated value.

Q - One or more quality control criteria failed.

Total PCB (Aroclor) are derived based on the sum of the concentrations of Aroclors® 1016, 1221, 1232, 1242, 1248, 1254 and 1260.

When all chemicals in a group are undetected, only the single highest individual chemical quantitation limit in a group should be reported and appropriately qualified. If some concentrations were detected

and others were not, only the detected concentrations are included in the sum.

PED Type	Location	Calculated Water Co	oncentration (ng/L)	Calculated Flux**
PED Frames	Location	Porewater	Surface Water	$(\mu g/m^2/yr)$
PED-01	TF-21	3.3	0.6	191
PED-02	MA-14	8.9	0.8	574
PED-03	MA-09	14.6	NA	N/A
PED-04	SP1-1	2.2	N/A	
PED-05	MA19	3.4	0.6	200
PED-06	new	2.6	0.5	148
Piezometers/Wells		Ground	lwater	
PED-07	P1-1	6		NA
PED-08	P1-2	1.1	NA	
PED-09	MW1-14	129	NA	
PED-10	MW1-2	0.9)	NA

Table D-13. OU 1 Calculated Total Dissolved PCB* and Diffusive PCB Flux Obtained via Passive Samplers (PEDs)

Notes:

* in PCB summations congeners not detected above the detection limit were counted as zero and within co-eluting congener groups calculations were conducted on the one with the lowest PED-water partition coefficient which results in the highest (more conservative) total PCB estimate (see text for more information)
** positive values of flux indicate transport from porewater to surface water
NA - Not Available – surface water portion of PED damaged during deployment.

 $\mu g/m^2/yr$ - micrograms per squared meters per year

ng/L - nanogram per liter

Table D-14. OU 1 2017 cVOCs in Porewater Samples (µg/L)

	Location Name	PW1-01	PW	1-02	PW1-03	PW1-04	PW1-05	PW1-06	PW1-07	PW1-08	PW1-09	PW1-10
	Sample Name	PW1-01-170907	PW1-02-170907	FD-170907-01	PW1-03-170907	PW1-04-170907	PW1-05-170908	PW1-06-170908	PW1-07-170908	PW1-08-170908	PW1-09-170908	PW1-10-170908
	Sample Type	Ν	Р	FD	N	N	N	N	N	N	N	N
Analyte	PAL	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result
cis-1,2-Dichloroethene	16	1 U	1,000 J	1,160 D	26,800 D	297 D	1 U	1 U	1 U	1 U	1 U	555 D
Trichloroethene	0.54	<u>1</u> U	10.9 JD	34.9 D	6,520 D	13.8 D	<u>1</u> U	15.9 D				
Vinyl Chloride	0.029	<u>1</u> U	408 J	415 D	3,570 D	492 D	<u>1</u> U	182 D				
1,1,1-Trichloroethane	200	1 U	10 U	10 U	125 U	5 U	1 U	1 U	1 U	1 U	1 U	2.5 U
1,1-Dichloroethane	7.7	1 U	<u>10</u> U	<u>10</u> U	<u>125</u> U	5 U	1 U	1 U	1 U	1 U	1 U	2.5 U
1,1-Dichloroethene	7	1 U	<u>10</u> U	<u>10</u> U	108 JD	5 U	1 U	1 U	1 U	1 U	1 U	1.76 JD
1,2-Dichloroethane	0.48	<u>1</u> U	<u>10</u> U	<u>10</u> U	<u>125</u> U	<u>5</u> U	<u>1</u> U	<u>2.5</u> U				
Tetrachloroethene	5	1 U	<u>10</u> U	<u>10</u> U	<u>125</u> U	<u>5</u> U	1 U	1 U	1 U	1 U	1 U	2.5 U
trans-1,2-Dichloroethene	100	1 U	7.25 JD	10.3 JD	194 JD	5.91 JD	1 U	1 U	1 U	1 U	1 U	3.68 JD

Notes

Samples analyzed using EPA Method 8260C.

FD - Field Duplicate

P – Parent sample of field duplicate

N – Sample is not part of a field duplicate pair

PAL - Project Action Limit

D - The reported value is from a dilution.

JD - The reported value is an estimated concentration./The reported value is from a dilution.

U - The analyte was not detected at or above the stated limit. (sometimes validators will elevate the limit due to the "B" qualifier using the 5x/10x rule so this definition is different than the lab description).

J - The reported value is an estimated concentration.

<u>Underlined</u> values represent analytes not detected at or above the stated limit, which exceeds the PAL.

Bolded values indicate that the reported concentration exceeds the PAL. μ g/L - micrograms per liter

Loc	ation Name	SW1-01	SW1-02	SW1-03	SW1-04	SW1-05	SW1-06	SW1-06
Sa	mple Name	SW1-01-171026	SW1-02-171026	SW1-03-171026	SW1-04-171026	SW1-05-171026	SW1-06-171026	FD-171026-02
S	ample Type	Ν	N	Ν	Ν	Ν	Р	FD
Analyte	PAL	Result						
cis-1,2-Dichloroethene	600	10,600 D	2,500 D	170 D	744 D	527 D	293 D	319 D
Trichloroethene	0.382	2,580 D	305 D	28.8 D	115 D	79.8 D	44.9 D	49.1 D
Vinyl Chloride	0.021	981 D	399 D	1.86 JD	32.5 D	17.1 D	5.89 D	5.54 D
1,1,1-Trichloroethane	47,000	50 U	25 U	1 U	5 U	2.5 U	2.5 U	2.5 U
1,1-Dichloroethane	9.3	<u>50</u> U	<u>25</u> U	1 U	5 U	2.5 U	2.5 U	2.5 U
1,1-Dichloroethene	1,200	50 U	25 U	1 U	5 U	2.5 U	2.5 U	2.5 U
1,2-Dichloroethane	9.3	<u>50</u> U	<u>25</u> U	1 U	5 U	2.5 U	2.5 U	2.5 U
Tetrachloroethene	4.9	<u>50</u> U	<u>25</u> U	1 U	<u>5</u> U	2.5 U	2.5 U	2.5 U
trans-1,2-Dichloroethene	600	47.2 JD	25 U	0.789 JD	3.78 JD	2.8 JD	1.67 JD	1.84 JD

Table D-15. OU 1 2017 cVOCs in Surface Water Samples (µg/L)

	Location Name	SW1-07	SW1-08	SW1-09	SW1-10	SW1-11	SW1-12
	Sample Name	SW1-07-171026	SW1-08-171026	SW1-09-171026	SW1-10-171026	SW1-11-171026	SW1-12-171026
	Sample Type	Ν	Ν	Ν	Ν	Ν	Ν
Analyte	PAL	Result	Result	Result	Result	Result	Result
cis-1,2-Dichloroethene	600	62 D	50.5 D	41.1 D	6,640 D	246 D	229 D
Trichloroethene	0.382	10.1 D	9.18 D	58.6 D	<u>25</u> U	10.3 D	9.33 D
Vinyl Chloride	0.021	0.606 JD	<u>1</u> U	9.62 D	4,330 D	51.8 D	45.3 D
1,1,1-Trichloroethane	47,000	1 U	1 U	1 U	25 U	2.5 U	2.5 U
1,1-Dichloroethane	9.3	1 U	1 U	1 U	<u>25</u> U	2.5 U	2.5 U
1,1-Dichloroethene	1,200	1 U	1 U	0.644 JD	13.3 JD	2.5 U	2.5 U
1,2-Dichloroethane	9.3	1 U	1 U	1 U	<u>25</u> U	2.5 U	2.5 U
Tetrachloroethene	4.9	1 U	1 U	1 U	<u>25</u> U	2.5 U	2.5 U
trans-1,2-Dichloroethene	600	1 U	1 U	1 U	53.7 D	1.29 JD	1.42 JD

Table D-15. OU 1 2017 cVOCs in Surface Water Samples (µg/L)

Notes:

Samples analyzed using EPA Method 8260C.

N – Sample is not part of a field duplicate pair

FD - Duplicate

P - Parent Sample of field duplicate

PAL - Project Action Limit

D - The reported value is from a dilution.

JD - The reported value is an estimated concentration. The reported value is from a dilution.

U - The analyte was not detected at or above the stated limit. (Sometimes validators will elevate the limit

due to the "B" qualifier using the 5x/10x rule so this definition is different than the lab description).

Underlined values represent analytes not detected at or above the stated limit, which exceeds the PAL.

Bolded values indicate that the reported concentration exceeds the PAL. µg/L - micrograms per liter

	Location Name	08-705-S	TORMW	MH-STORMW						
	Sample Name	08-705-STO	RMW-171115	FD-1	71115-01		TORMW- 1115			
	Sample Type		N		FD		Р			
Analyte	PAL	Re	esult	F	Result	R	esult			
cis-1,2-Dichloroethene	600	1.14	JD	1	U	1	U			
Trichloroethene	0.382	<u>1</u>	U	<u>1</u>	U	<u>1</u>	U			
Vinyl Chloride	0.021	<u>1</u>	U	<u>1</u>	U	<u>1</u>	U			
1,1,1-Trichloroethane	47,000	1	U	1	U	1	U			
1,1-Dichloroethane	9.3	1	U	1	U	1	U			
1,1-Dichloroethene	1,200	1	U	1	U	1	U			
1,2-Dichloroethane	9.3	1	U	1	U	1	U			
Tetrachloroethene	4.9	1	U	1	U	1	U			
trans-1,2-Dichloroethene	600	1	U	1	U	1	U			

Table D-16. OU 1 2017 cVOCs in Stormwater Samples (µg/L)

Notes:

Samples analyzed using EPA Method 8260C.

FD - Field Duplicate

P – Parent sample of a field duplicate pair

N – Sample is not part of a field duplicate pair

PAL - Project Action Limit

U - The analyte was analyzed but not detected at or above the stated limit. (Sometimes validators will elevate the limit

due to the "B" qual using the 5x/10x rule so this definition is different than the lab description).

JD - The reported value is an estimated concentration. The reported value is from a dilution.

µg/L - micrograms per liter

<u>Underlined</u> values represent analytes not detected at or above the stated limit, which exceeds the PAL.

Bolded values indicate that the reported concentration exceeds the PAL.

						,	enum in Son Gas					
Sample ID:	Soil Gas Scree	ning Level	SV-01	SV-02	SV-03	SV-04	SV-05	SV-06	SV-11	SV	-12	SV-13
Sample Date:	Ecology MTCA	EPA ^b	8/30/2016	8/30/2016	8/30/2016	8/30/2016	8/30/2016	8/30/2016	9/8/2016	9/8/2	2016	9/8/2016
Other:	Method B ^a	EFA									DUP	
Chlorinated Volatile Organic Compou	inds (ug/m3)											
1,1-Dichloroethane	52	260	21	3.2 J	2.9 J	3.3 J	0.64 U	25 U	24 U	24 U	39 U	2.3 U
Chloroethane	NE	NE	4.4 J	4.1	3.4 U	3.7 U	0.61 U	24 U	23 U	22 U	38 U	0.98 J
Tetrachloroethene	320	1,600	3.7 U	2.6 U	3.4 U	3.7 U	0.42 J	24 U	23 U	22 U	38 U	6
trans-1,2-Dichloroethene	NE	NE	310	29	5.5	5.4	0.64 U	68	24 U	24 U	39 U	89
1,1-Dichloroethene	3,050	29,000	140	49	7.5	3.9 U	0.66 U	130	24 U	24 U	40 U	39
1,2-Dichloroethane	3.2	16	3.9 U	2.8 U	3.6 U	3.8 U	0.42 J	25 U	24 U	24 U	39 U	2.3 U
1,1,1-Trichloroethane	76,000	730,000	3.8 U	2.7 U	3.5 U	3.7 U	0.63 U	24 U	23 U	23 U	39 U	2.2 U
Trichloroethene	12	100	120	79	22	3.7 U	0.23 J	210	23 U	15 J	16 J	420
cis-1,2-Dichloroethene	NE	NE	1,900 D	220	110	23	0.66 U	470	11 J	42	43 J	760 D
Vinyl Chloride	9.3	93	9,100 D	150	13	150	0.61 U	1,400	23 U	82	89	39
Methane (mg/m ³)	NE	NE	60,000	100,000	36,000	130,000	4.6	150,000	190,000	19,000	19,000	2,200
Helium (ppmv) ^c	NE	NE	NA	NA	NA	NA	NA	NA	92	2,800	5,200	6.7
TWA Helium (ppmv in shroud) ^d	NE	NE	NA	NA	NA	NA	NA	NA	38,000	60,700	70,200	77,000
Helium (% as ratio) ^e	NA		NA	NA	NA	NA	NA	NA	0.24	4.6	7.4	0.0087

Table D-17. Summary of Analytical Results for cVOCs, Methane, and Helium in Soil Gas Samples

Notes:

Bold value indicates that the reported result exceeds the lowest soil gas screening level.

Shaded value indicates the reporting limit exceeds the lowest soil gas screening level.

^aModel Toxics Control Act (MTCA) Cleanup Regulation, WAC 173-340. MTCA values are from Ecology website CLARC tables dated August 2015. (https://fortress.wa.gov/ecy/clarc/CLARCDataTables.aspx)

^b United States Environmental Protection Agency (USEPA) Vapor Intrusion Screening Levels (VISLs) from Vapor Intrusion Screening Level Calculator with May 2016 Regional Screening Levels.

(https://www.epa.gov/vaporintrusion/vapor-intrusion-screening-levels-visls).

^e Helium concentration within sampling shroud enclosing the sampling apparatus was measured in field at the time of sampling. Time-weighted average of concentrations throughout the duration of sampling was used to

comparison to the laboratory results (Appendix H).

^d Values converted from mg/m³.

^e Helium concentration in sample canister expressed as a percentage of the concentration in the sampling shroud at the time of sampling. Leak tests results are considered passing results if the percentage is less than 10 percent % - percent

D - reported result is from a dilution EPA - U.S. Environmental Protection Agency

J - estimated value

ug/m³ - micrograms per cubic meter

mg/m3 - milligrams per cubic meter

MTCA - Model Toxics Control Act

NA - not applicable

NE - not established

ppmv - parts per million by volume

DUP - field duplicate sample

TWA - time-weighted average

U - compound was analyzed for but not detected above the reporting limit shown.

VOC - volatile organic compound

				Analyte Name	Tetrachlo	roethene	Trichloro	oethene	cis-1 Dichloro	·	trans Dichloro		1,1-Dichlo	roethene	Vinyl cl	hloride	1,4-Dio	oxane	Methane ¹
				PAL Air - Indoor (µg/m ³)	4()	2		N	E	60		20	0	2.	8	5		3,280,164
			PA	L Soil Gas – Sub-slab (µg/m3)	133	30	66.	.7	N	E	200)0	667	70	93	.3	16	7	3,280,164
Location Name	Sample Name	Sample Type	Collect Date	Description		Result (µg/m ³)													
								Μ	arch										
B916-IA-1	OU1-B916-IA-1-180320	Р	3/20/2018	Air - Indoor	0.12		0.014	U	0.034	J	0.013	J	0.078		0.02	J	0.049	J	2,200
B916-IA-1	OU1-B916-IA-2-180320	FD	3/20/2018	Air - Indoor	0.099		0.012	U	0.033	J	0.011	U	0.073		0.017	J	0.053	J	2,100
B916-IA-1				Air - Indoor- Corrected	0.077		0		0		0		0.067		0.009	J	0.031	J	200
B916-SS-1	OU1-B916-SS-1-180321	Р	3/21/2018	Soil Gas – Sub-slab	0.82	U	0.82	U	0.94	U	1.1	U	1	U	1	U	0.94	U	3,400
B916-SS-1	OU1-B916-SS-2-180321	FD	3/21/2018	Soil Gas – Sub-slab	0.86	U	1	J	0.98	U	1.2	U	1	U	1	U	0.98	U	3,300
OA-4	OU1-OA-4-180320	N	3/20/2018	Air - Outdoor	0.043		0.035		0.043		0.015	J	0.011	J	0.011	J	0.022	J	2,000
								J	uly										
B916-IA-1	OU1-B916-IA-1-180724	Р	7/24/2018	Air - Indoor	0.029	J	0.035	U	0.035	U	0.037	U	0.021	J	0.052		0.028	J	2,000
B916-IA-1	OU1-B916-IA-2-180724	FD	7/24/2018	Air - Indoor	0.033	J	0.033	U	0.033	U	0.035	U	0.024	J	0.052		0.034	J	1,800
B916-IA-1				Air - Indoor- Corrected	0		0.033	U	0.033	U	0.035	U	0.024	J	0.052		0.001	J	100
B916-SS-1	OU1-B916-SS-1-180725	Р	7/25/2018	Soil Gas – Sub-slab	0.45	J	0.62	U	0.62	U	0.62	U	0.62	U	0.62	U	0.62	U	690
B916-SS-1	OU1-B916-SS-2-180725	FD	7/25/2018	Soil Gas – Sub-slab	0.35	J	0.67	U	0.67	U	0.67	U	0.67	U	0.67	U	0.67	U	800
OA-5	OU1-OA-5-180724	Ν	7/24/2018	Air - Outdoor	0.064	J	0.033	U	0.033	U	0.035	U	0.033	U	0.033	U	0.033	J	1,900

 Table D-18. OU 1 2018 Vapor Intrusion Sampling Results – Building 916

Notes:

¹ – Because the PAL for methane is based on the lower explosive limit (LEL), no attenuation factor was applied. That is, the PAL for both sub-slab vapor and indoor air was established as 10% LEL. Bold text indicates a concentration that exceeds the PAL

FD – field duplicate; $\mu g/m^3$ – micrograms per cubic meter; N – normal sample, with no paired field duplicate; NE – not established; P – parent sample of field duplicate; PAL – project action limit

Decision rules:

For outdoor air samples with field duplicates, the outdoor sample with the minimum concentration was used to compare to the indoor air sample.

When an analyte is not detected in outdoor air, then the maximum detected indoor air concentration is selected as the indoor air corrected value.

When an analyte is detected in outdoor air but not detected in indoor air and the reporting limit is **below** the detected outdoor air concentration, then the corrected indoor value is zero.

When an analyte is detected in outdoor air but not detected in indoor air and the reporting limit is *above* the detected outdoor air concentration, then the minimum detection limit in indoor air is selected as the corrected indoor value. If the indoor air sample concentration is less than outdoor air concentration, then the indoor air corrected is zero (no contribution from SSV or indoor air sources; indoor air value is no different from outdoor air) If the indoor air sample concentration is greater than outdoor air concentration, the indoor air corrected is calculated as follows: Indoor air – Outdoor air

				Analyte Name	Tetrachloroethene	Trichloroethene	cis-1,2- Dichloroethene	trans-1,2- Dichloroethene	1,1-Dichloroethene	Vinyl chloride	1,4-Dioxane	Methane ¹					
				PAL Air – Indoor (µg/m ³)	40	2	NE	60	200	2.8	5	3,280,164					
			PAL	Soil Gas – Sub-slab (µg/m3)	1330	66.7	NE	6670	93.3	167	3,280,164						
Location Name	Sample Name	Sample Type	Collect Date	Description	Result (µg/m ³)												
March																	
B944-IA-1	OU1-B944-IA-1-180320	Р	3/20/2018	Air - Indoor	0.063	0.013 U	0.06	0.011 U	0.013 U	0.012 U	0.2	1,900					
B944-IA-1	OU1-B944-IA-2-180320	FD	3/20/2018	Air - Indoor	0.059	0.012 U	0.058	0.011 U	0.013 U	0.011 U	0.023 J	1,900					
				Air - Indoor- Corrected	0.02	0	0.017	0	0.013 U	0.011 U	0.178	0					
B944-SS-1	OU1-B944-SS-1-180321	Р	3/21/2018	Soil Gas – Sub-slab	0.56 U	0.56 U	0.64 U	0.76 U	0.68 U	0.68 U	0.64 U	1,700					
B944-SS-1	OU1-B944-SS-2-180321	FD	3/21/2018	Soil Gas – Sub-slab	0.55 U	0.55 U	0.62 U	0.74 U	0.66 U	0.66 U	0.62 U	1,700					
OA-4	OU1-OA-4-180320	Ν	3/20/2018	Air - Outdoor	0.043	0.035	0.043	0.015 J	0.011 J	0.011 J	0.022 J	2,000					
						1	ſuly										
B944-IA-1	OU1-B944-IA-1-180724	Р	7/24/2018	Air - Indoor	0.075	0.033 U	0.033 U	0.035 U	0.033 U	0.033 U	0.071 J	1,900					
B944-IA-1	OU1-B944-IA-2-180724	FD	7/24/2018	Air - Indoor	0.074	0.031 U	0.031 U	0.032 U	0.031 U	0.031 U	0.06 J	1,800					
				Air - Indoor- Corrected	0.011	0.031 U	0.031 U	0.032 U	0.031 U	0.031 U	0.038 J	0					
B944-SS-1	OU1-B944-SS-1-180725	Р	7/25/2018	Soil Gas – Sub-slab	0.27 J	0.67 U	0.67 U	0.67 U	0.67 U	0.67 U	0.6 J	1,500					
B944-SS-1	OU1-B944-SS-2-180725	FD	7/25/2018	Soil Gas – Sub-slab	0.63 U	0.63 U	0.63 U	0.63 U	0.63 U	0.63 U	0.63 U	1,400					
OA-5	OU1-OA-5-180724	Ν	7/24/2018	Air - Outdoor	0.064 J	0.033 U	0.033 U	0.035 U	0.033 U	0.033 U	0.033 J	1,900					

Table D-19. OU 1 2018 Vapor Intrusion Sampling Results – Building 944

Notes:

¹ – Because the PAL for methane is based on the lower explosive limit (LEL), no attenuation factor was applied. That is, the PAL for both sub-slab vapor and indoor air was established as 10% LEL. Bold text indicates a concentration that exceeds the PAL

FD - field duplicate; $\mu g/m^3$ - micrograms per cubic meter; N - normal sample, with no paired field duplicate; NE - not established; P - parent sample of field duplicate; PAL - project action limit

Decision rules:

For outdoor air samples with field duplicates, the outdoor sample with the minimum concentration was used to compare to the indoor air sample.

When an analyte is not detected in outdoor air, then the maximum detected indoor air concentration is selected as the indoor air corrected value.

When an analyte is detected in outdoor air but not detected in indoor air and the reporting limit is *below* the detected outdoor air concentration, then the corrected indoor value is zero.

When an analyte is detected in outdoor air but not detected in indoor air and the reporting limit is *above* the detected outdoor air concentration, then the minimum detection limit in indoor air is selected as the corrected indoor value. If the indoor air sample concentration is less than outdoor air concentration, then the indoor air corrected is zero (no contribution from SSV or indoor air sources; indoor air value is no different from outdoor air)

				Analyte Name			Trichlor	•	cis-1 Dichloro	,2-	trans- Dichloro	-1,2-	1,1-Dichlo	oroethene	Vinyl cl	nloride	1,4-Di	oxane	Methane ¹
				PAL Air - Indoor (µg/m ³)			2		N	E	60		20	0	2.	8	5	5	3,280,164
			PAL S	Soil Gas – Sub-slab (µg/m3)	3) 1330 66.7			.7	N	E	200	0	667	70	93	.3	10	57	3,280,164
Location Name	Sample Name	Sample Type	Collect Date	Description		Result (µg/m ³)													
March																			
B945-IA-1	OU1-B945-IA-1-180320	Р	3/20/2018	Air - Indoor	0.074		0.021	J	0.089		0.011	U	0.041		0.011	U	0.02	J	1,900
B945-IA-1	OU1-B945-IA-2-180320	FD	3/20/2018	Air - Indoor	0.069		0.024	J	0.093		0.0092	U	0.043		0.011	J	0.12	J	1,800
				Air - Indoor- Corrected	0.031		0		0.05		0		0.032		0		0.098	J	0
B945-SS-1	OU1-B945-SS-1-180321	Р	3/21/2018	Soil Gas – Sub-slab	0.77	U	0.77	U	0.88	U	1	U	0.93	U	0.93	U	0.88	U	1,000
B945-SS-1	OU1-B945-SS-2-180321	FD	3/21/2018	Soil Gas – Sub-slab	0.75	U	0.75	U	0.86	U	1	U	0.91	U	0.91	U	0.86	U	1,000
OA-4	OU1-OA-4-180320	Ν	3/20/2018	Air - Outdoor	0.043		0.035		0.043		0.015	J	0.011	J	0.011	J	0.022	J	2,000
									July										
B945-IA-1	OU1-B945-IA-1-180724	Р	7/24/2018	Air - Indoor	0.041		0.033	U	0.033	U	0.035	U	0.073		0.033	U	0.068	J	2,000
B945-IA-1	OU1-B945-IA-2-180724	FD	7/24/2018	Air - Indoor	0.031	J	0.034	U	0.034	U	0.036	U	0.069		0.034	U	0.05	J	2,000
				Air - Indoor- Corrected	0		0.033	U	0.033	U	0.035	U	0.073		0.033	U	0.035	J	100
B945-SS-1	OU1-B945-SS-1-180725	Р	7/25/2018	Soil Gas – Sub-slab	0.5	J	0.72	J	0.87	J	0.67	U	0.67	U	0.67	U	0.67	U	850
B945-SS-1	OU1-B945-SS-2-180725	FD	7/25/2018	Soil Gas – Sub-slab	0.5	J	0.64	U	0.64	U	0.64	U	0.64	U	0.64	U	0.64	U	800
OA-5	OU1-OA-5-180724	Ν	7/24/2018	Air - Outdoor	0.064	J	0.033	U	0.033	U	0.035	U	0.033	U	0.033	U	0.033	J	1,900

Table D-20. OU 1 2018 Vapor Intrusion Sampling Results – Building 945

Notes:

¹ – Because the PAL for methane is based on the lower explosive limit (LEL), no attenuation factor was applied. That is, the PAL for both sub-slab vapor and indoor air was established as 10% LEL. **Bold** text indicates a concentration that exceeds the PAL

FD - field duplicate; $\mu g/m^3$ - micrograms per cubic meter; N - normal sample, with no paired field duplicate; NE - not established; P - parent sample of field duplicate; PAL - project action limit

Decision rules:

For outdoor air samples with field duplicates, the outdoor sample with the minimum concentration was used to compare to the indoor air sample.

When an analyte is not detected in outdoor air, then the maximum detected indoor air concentration is selected as the indoor air corrected value.

When an analyte is detected in outdoor air but not detected in indoor air and the reporting limit is *below* the detected outdoor air concentration, then the corrected indoor value is zero.

When an analyte is detected in outdoor air but not detected in indoor air and the reporting limit is *above* the detected outdoor air concentration, then the minimum detection limit in indoor air is selected as the corrected indoor value. If the indoor air sample concentration is less than outdoor air concentration, then the indoor air corrected is zero (no contribution from SSV or indoor air sources; indoor air value is no different from outdoor air) If the indoor air sample concentration is greater than outdoor air concentration, the indoor air corrected is calculated as follows: Indoor air - Outdoor air

Table D-21.	OU 1 2018 Vapor Intrusion Sampling Results – Building 893	

					14540 2 211 00	o i zoto vupor intra	cis-1,2-	trans-1,2-				
				Analyte Name	Tetrachloroethene	Trichloroethene	Dichloroethene	Dichloroethene	1,1-Dichloroethene	Vinyl chloride	1,4-Dioxane	Methane ¹
				PAL Air - Indoor (µg/m ³)	40	2	NE	60	200	2.8	5	3,280,164
			PAL	Soil Gas - Sub-slab (µg/m3)	1330	66.7	NE	2000	6670	93.3	167	3,280,164
Location Name	Sample Name	Sample Type	Collect Date	Description				Result	$(\mu g/m^3)$			
						Ma	ırch					
B893-IA-1	OU1-B893-IA-1-180320	Ν	3/20/2018	Air - Indoor	0.04	0.074	0.1	0.015 J	0.013 U	0.012 U	0.019 J	2,800
				Air - Indoor- Corrected	0.011	0.074	0.1	0.015 J	0.013 U	0.012 U	0.019 J	1,000
B893-SS-1	OU1-B893-SS-1-180321	Ν	3/21/2018	Soil Gas – Sub-slab	5.8 U	5.8 U	6.6 U	7.8 U	7 U	7 U	6.6 U	1,100
B893-IA-2	OU1-B893-IA-2-180320	Ν	3/20/2018	Air - Indoor	0.042	0.018 J	0.068	0.015 J	0.013 U	0.012 U	0.038 J	2,500
				Air - Indoor- Corrected	0.013	0.018 J	0.068	0.015 J	0.013 U	0.012 U	0.038 J	700
B893-SS-2	OU1-B893-SS-2-180321	Ν	3/21/2018	Soil Gas – Sub-slab	210	8.2 J	8.7 U	10 U	9.2 U	9.2 U	8.7 U	1,100
B893-IA-3	OU1-B893-IA-3-180320	Ν	3/20/2018	Air - Indoor	0.04	0.013 J	0.047	0.017 J	0.013 U	0.011 U	0.013 J	2,200
				Air - Indoor- Corrected	0.011	0.013 J	0.047	0.017 J	0.013 U	0.011 U	0.013 J	400
B893-SS-3	OU1-B893-SS-3-180322	Ν	3/22/2018	Soil Gas – Sub-slab	7.8	0.87 U	1 U	1.2 U	1.1 U	1.1 U	1 U	830
B893-IA-4	OU1-B893-IA-4-180320	Р	3/20/2018	Air - Indoor	0.036 J	0.013 U	0.039 J	0.014 J	0.013 U	0.012 U	0.013 U	2,200
B893-IA-4	OU1-B893-IA-8-180320	FD	3/20/2018	Air - Indoor	0.039	0.015 J	0.052 J	0.014 J	0.013 U	0.012 U	0.013 U	2,200
				Air - Indoor- Corrected	0.01	0.015	0.052 J	0.014 J	0.013 U	0.012 U	0.013 U	400
B893-SS-4	OU1-B893-SS4-180322	Ν	3/22/2018	Soil Gas – Sub-slab	0.82 U	0.82 U	0.94 U	1.1 U	1 U	1 U	0.94 U	840
B893-IA-5	OU1-B893-IA-5-180320	Ν	3/20/2018	Air - Indoor	0.04	0.025 J	0.071	0.015 J	0.012 U	0.01 U	0.037 J	2,300
				Air - Indoor- Corrected	0.011	0.025 J	0.071	0.015 J	0.012 U	0.01 U	0.037 J	500
B893-SS-5	OU1-B893-SS5-180322	Ν	3/22/2018	Soil Gas – Sub-slab	0.93 U	0.93 U	1.1 U	1.3 U	1.1 U	1.1 U	1.1 U	970
B893-IA-7	OU1-B893-IA-7-180320	Ν	3/20/2018	Air - Indoor	0.041	0.016 J	0.067	0.015 J	0.013 U	0.012 U	0.016 J	2,500
				Air - Indoor- Corrected	0.012	0.016 J	0.067	0.015 J	0.013 U	0.012 U	0.016 J	700
OA-7	OU1-OA-7-180320	Ν	3/20/2018	Air - Outdoor	0.029 J	0.012 U	0.013 U	0.01 U	0.012 U	0.011 U	0.012 U	1,800
B893-IA-6	OU1-B893-IA-6-180321	Ν	3/21/2018	Air - Indoor	0.036	0.015 J	0.084	0.011 J	0.012 U	0.01 U	0.011 U	2,100
				Air - Indoor- Corrected	0.012	0.015 J	0.051	0.011 J	0.012 U	0.01 U	0.011 U	100
B893-SS-6	OU1-B893-SS6-180322	Ν	3/22/2018	Soil Gas – Sub-slab	0.82 U	0.82 U	0.94 U	1.1 U	1 U	1 U	0.94 U	1,800
B893-SS-7	OU1-B893-SS-7-180321	Р	3/21/2018	Soil Gas – Sub-slab	1.6 J	0.68 J	0.62 U	0.74 U	0.66 U	0.66 U	0.62 U	1,500 J
B893-SS-7	OU1-B893-SS-8-180321	FD	3/21/2018	Soil Gas – Sub-slab	1.6 J	0.83 J	0.64 U	0.76 U	0.68 U	0.68 U	0.64 U	1,100 J
OA-8	OU1-OA-8-180321	Ν	3/21/2018	Air - Outdoor	0.024 J	0.013 U	0.033 J	0.011 U	0.013 U	0.012 U	0.013 U	2,000

				Analyte Name	Tetrachloroethene	Trichloroethene	cis-1,2- Dichloroethene	trans-1,2- Dichloroethene	1,1-Dichloroethene	Vinyl chloride	1,4-Dioxane	Methane ¹
				PAL Air - Indoor (µg/m ³)	40	2	NE	60	200	2.8	5	3,280,164
			PAL	Soil Gas – Sub-slab (µg/m3)	1330	66.7	NE	2000	6670	93.3	167	3,280,164
Location Name	Sample Name	Sample Type	Collect Date	Description				Result	$(\mu g/m^3)$			
						Ju	uly					
B893-IA-1	OU1-B893-IA-1-180724	Р	7/24/2018	Air - Indoor	0.051	0.034 U	0.034 U	0.036 U	0.034 U	0.034 U	0.035 J	2,100
B893-IA-1	OU1-B893-IA-8-180724	FD	7/24/2018	Air - Indoor	0.039	0.032 U	0.032 U	0.033 U	0.032 U	0.032 U	0.037 J	2,200
				Air - Indoor- Corrected	0.021	0.032 U	0.032 U	0.033 U	0.032 U	0.032 U	0.037 J	300
B893-SS-1	OU1-B893-SS-1-180725	N	7/25/2018	Soil Gas – Sub-slab	1.1 J	0.66 U	0.66 U	0.66 U	0.66 U	0.66 U	0.66 U	700
B893-IA-2	OU1-B893-IA-2-180724	Ν	7/24/2018	Air - Indoor	0.048	0.034 U	0.034 U	0.012 J	0.034 U	0.034 U	0.42	2,100
				Air - Indoor- Corrected	0.018	0.034 U	0.034 U	0.012 J	0.034 U	0.034 U	0.42	200
B893-SS-2	OU1-B893-SS-2-180725	N	7/25/2018	Soil Gas – Sub-slab	0.47 J	0.67 U	0.67 U	0.67 U	0.67 U	0.67 U	0.67 U	820
B893-IA-3	OU1-B893-IA-3-180724	N	7/24/2018	Air - Indoor	0.081	0.054	0.037 U	0.039 U	0.037 U	0.037 U	0.033 J	2,000
				Air - Indoor- Corrected	0.051	0.054	0.037 U	0.039 U	0.037 U	0.037 U	0.033 J	100
B893-SS-3	OU1-B893-SS-3-180725	Ν	7/25/2018	Soil Gas – Sub-slab	6	0.64 U	0.64 U	0.64 U	0.64 U	0.64 U	0.64 U	900
B893-IA-4	OU1-B893-IA-4-180724	N	7/24/2018	Air - Indoor	0.065	0.042 U	0.042 U	0.044 U	0.042 U	0.042 U	0.049 J	2,100
				Air - Indoor- Corrected	0.035	0.042 U	0.042 U	0.044 U	0.042 U	0.042 U	0.049 J	200
B893-SS-4	OU1-B893-SS-4-180725	N	7/25/2018	Soil Gas – Sub-slab	0.95 J	0.68 U	0.68 U	0.68 U	0.68 U	0.68 U	0.68 U	970
B893-IA-5	OU1-B893-IA-5-180724	Ν	7/24/2018	Air - Indoor	0.033 J	0.032 U	0.032 U	0.033 U	0.032 U	0.032 U	0.026 J	1,900
				Air - Indoor- Corrected	0.003 J	0.032 U	0.032 U	0.033 U	0.032 U	0.032 U	0.026 J	0
B893-SS-5	OU1-B893-SS-5-180725	Ν	7/25/2018	Soil Gas – Sub-slab	0.46 J	0.67 U	0.67 U	0.67 U	0.67 U	0.67 U	15	740
B893-IA-6	OU1-B893-IA-6-180724	N	7/24/2018	Air - Indoor	0.044	0.034 U	0.034 U	0.035 U	0.034 U	0.034 U	0.037 J	1,900
				Air - Indoor- Corrected	0.014	0.034 U	0.034 U	0.035 U	0.034 U	0.034 U	0.004 J	0
B893-SS-6	OU1-B893-SS-6-180725	Ν	7/25/2018	Soil Gas – Sub-slab	1.2 J	0.65 U	0.65 U	0.65 U	0.65 U	0.65 U	0.46 J	1,800
B893-IA-7	OU1-B893-IA-7-180724	N	7/24/2018	Air - Indoor	0.049	0.036 U	0.036 U	0.038 U	0.036 U	0.036 U	0.038 J	2,000
				Air - Indoor- Corrected	0.019	0.036 U	0.036 U	0.038 U	0.036 U	0.036 U	0.038 J	100
B893-SS-7	OU1-B893-SS-7-180725	Р	7/25/2018	Soil Gas – Sub-slab	2.6	0.68 U	0.68 U	0.68 U	0.68 U	0.68 U	1.1 J	670
B893-SS-7	OU1-B893-SS-8-180725	FD	7/25/2018	Soil Gas – Sub-slab	2.6	0.62 U	0.62 U	0.62 U	0.62 U	0.62 U	0.62 U	580
OA-4	OU1-OA-4-180724	N	7/24/2018	Air - Outdoor	0.03 J	0.033 U	0.033 U	0.035 U	0.033 U	0.033 U	0.033 U	1,900

Table D-21. OU 1 2018 Vapor Intrusion Sampling Results - Building 893

Notes:

¹ – Because the PAL for methane is based on the lower explosive limit (LEL), no attenuation factor was applied. That is, the PAL for both sub-slab vapor and indoor air was established as 10% LEL.

Bold text indicates a concentration that exceeds the PAL

FD - field duplicate; µg/m3 - micrograms per cubic meter; N - normal sample, with no paired field duplicate; NE - not established; P - parent sample of field duplicate; PAL - project action limit

Decision rules:

For outdoor air samples with field duplicates, the outdoor sample with the minimum concentration was used to compare to the indoor air sample.

When an analyte is not detected in outdoor air, then the maximum detected indoor air concentration is selected as the indoor air corrected value.

When an analyte is detected in outdoor air but not detected in indoor air and the reporting limit is below the detected outdoor air concentration, then the corrected indoor value is zero.

When an analyte is detected in outdoor air but not detected in indoor air and the reporting limit is above the detected outdoor air concentration, then the minimum detection limit in indoor air is selected as the corrected indoor value.

If the indoor air sample concentration is less than outdoor air concentration, then the indoor air corrected is zero (no contribution from SSV or indoor air sources; indoor air value is no different from outdoor air)

Table D-22.	OU 1 2018	Vapor Intrusion	Sampling Results -	- Building 820
-------------	-----------	-----------------	--------------------	----------------

						1 2018 vapor Intru	cis-1,2-	trans-1,2-				
				Analyte Name	Tetrachloroethene	Trichloroethene	Dichloroethene	Dichloroethene	1,1-Dichloroethene	Vinyl chloride	1,4-Dioxane	Methane ¹
				PAL Air - Indoor (µg/m ³)	40	2	NE	60	200	2.8	5	3,280,164
			PAI	L Soil Gas – Sub-slab (µg/m3)	1330	66.7	NE	2000	6670	93.3	167	3,280,164
Location Name	Sample Name	Sample Type	Collect Date	Description				Result	(µg/m ³)			
						Ma	rch					
B820-IA-1	OU1-B820-IA-1-180320	Ν	3/20/2018	Air - Indoor	0.032 J	0.013 U	0.036 J	0.011 U	0.013 U	0.011 U	0.013 U	1,900
				Air - Indoor- Corrected	0.005 J	0.013 U	0.036 J	0.011 U	0.013 U	0.011 U	0.013 U	100
B820-SS-1	OU1-B820-SS-1-180322	Р	3/22/2018	Soil Gas – Sub-slab	2.2	18 J	3.2 J	0.74 U	0.66 U	0.66 U	1.6 J	1,000
B820-SS-1	OU1-B820-SS-4-180322	FD	3/22/2018	Soil Gas – Sub-slab	2.8	96 J	12 J	0.89 U	0.79 U	0.79 U	2 J	930
B820-IA-2	OU1-B820-IA-2-180320	Р	3/20/2018	Air - Indoor	0.032 J	0.015 J	0.046	0.011 U	0.012 U	0.011 U	0.012 U	1,800
B820-IA-2	OU1-B820-IA-4-180320	FD	3/20/2018	Air - Indoor	0.096	0.016 J	0.036	0.01 U	0.012 U	0.011 U	0.012 U	1,900
				Air - Indoor- Corrected	0.069	0.016 J	0.046	0.011 U	0.012 U	0.011 U	0.012 U	100
B820-SS-2	OU1-B820-SS-2-180322	Ν	3/22/2018	Soil Gas – Sub-slab	2.6	0.58 U	0.67 U	0.79 U	0.71 U	0.71 U	0.83 J	1,100
B820-IA-3	OU1-B820-IA-3-180320	Ν	3/20/2018	Air - Indoor	0.039	0.016 J	0.045	0.0099 U	0.012 U	0.01 U	0.073 J	1,900
				Air - Indoor- Corrected	0.012	0.016 J	0.045	0.0099 U	0.012 U	0.01 U	0.073 J	100
B820-SS-3	OU1-B820-SS-3-180322	Ν	3/22/2018	Soil Gas – Sub-slab	0.56 U	0.56 U	0.64 U	0.76 U	0.68 U	0.68 U	0.64 U	1,100
OA-6	OU1-OA-6-180320	N	3/20/2018	Air - Outdoor	0.027 J	0.012 U	0.013 U	0.01 U	0.012 U	0.01 U	0.012 U	1,800
						Jı	ıly					
B820-IA-1	OU1-B820-IA-1-180724	Ν	7/24/2018	Air - Indoor	0.046	0.035 U	0.035 U	0.037 U	0.035 U	0.035 U	0.069 J	1,800
				Air - Indoor- Corrected	0.013	0.035 U	0.035 U	0.037 U	0.035 U	0.035 U	0.015 J	0
B820-SS-1	OU1-B820-SS-1-180725	Р	7/25/2018	Soil Gas – Sub-slab	4.6	0.68 U	0.68 U	0.68 U	0.68 U	0.68 U	0.42 J	970 J
B820-SS-1	OU1-B820-SS-4-180725	FD	7/25/2018	Soil Gas – Sub-slab	4.7	0.67 U	0.67 U	0.67 U	0.67 U	0.67 U	0.55 J	740 J
B820-IA-2	OU1-B820-IA-2-180724	Р	7/24/2018	Air - Indoor	0.11	0.013 J	0.029 U	0.063	0.029 U	0.029 U	0.023 J	2,000
B820-IA-2	OU1-B820-IA-4-180724	FD	7/24/2018	Air - Indoor	0.036 J	0.033 U	0.033 U	0.035 U	0.033 U	0.033 U	0.035 J	1,900
				Air - Indoor- Corrected	0.077	0.013 J	0.029 U	0.063	0.029 U	0.029 U	0	200
B820-SS-2	OU1-B820-SS-2-180725	Ν	7/25/2018	Soil Gas – Sub-slab	4.5	0.64 U	0.64 U	0.64 U	0.64 U	0.64 U	0.5 J	860
B820-IA-3	OU1-B820-IA-3-180724	Ν	7/24/2018	Air - Indoor	0.044	0.034 U	0.034 U	0.036 U	0.034 U	0.034 U	0.022 J	2,000
		_		Air - Indoor- Corrected	0.011	0.034 U	0.034 U	0.036 U	0.034 U	0.034 U	0	200
B820-SS-3	OU1-B820-SS-3-180725	Ν	7/25/2018	Soil Gas – Sub-slab	1.4 J	0.68 U	0.68 U	0.68 U	0.68 U	0.68 U	0.45 J	750
OA-3	OU1-OA-3-180724	N	7/24/2018	Air - Outdoor	0.033 J	0.034 U	0.034 U	0.036 U	0.034 U	0.034 U	0.054 J	1,800

Notes:

¹ – Because the PAL for methane is based on the lower explosive limit (LEL), no attenuation factor was applied. That is, the PAL for both sub-slab vapor and indoor air was established as 10% LEL. Bold text indicates a concentration that exceeds the PAL

FD - field duplicate; $\mu g/m^3$ - micrograms per cubic meter; N - normal sample, with no paired field duplicate; NE - not established; P - parent sample of field duplicate; PAL - project action limit

Decision rules:

For outdoor air samples with field duplicates, the outdoor sample with the minimum concentration was used to compare to the indoor air sample.

When an analyte is not detected in outdoor air, then the maximum detected indoor air concentration is selected as the indoor air corrected value.

When an analyte is detected in outdoor air but not detected in indoor air and the reporting limit is **below** the detected outdoor air concentration, then the corrected indoor value is zero.

When an analyte is detected in outdoor air but not detected in indoor air and the reporting limit is *above* the detected outdoor air concentration, then the minimum detection limit in indoor air is selected as the corrected indoor value. If the indoor air sample concentration is less than outdoor air concentration, then the indoor air corrected is zero (no contribution from SSV or indoor air sources; indoor air value is no different from outdoor air)

Table D-23. OU 1 2018 Vapor Intrusion Sampling Results – Building 950

				Analyte Name	Tetrachloroethene	Trichloroethene	cis-1,2- Dichloroethene	trans-1,2- Dichloroethene	1,1-Dichloroethene	Vinyl chloride	1,4-Dioxane	Methane ¹
				PAL Air - Indoor (µg/m ³)	40	2	NE	60	200	2.8	5	3,280,164
			PAL So	oil Gas – Sub-slab (µg/m3)	1330	66.7	NE	2000	6670	93.3	167	3,280,164
Location Name	Sample Name	Sample Type	Collect Date	Description				Result	$(\mu g/m^3)$			
						Γ	Aarch					
B950-IA-1	OU1-B950-IA-1-180320	Р	3/20/2018	Air - Indoor	0.15	0.049	0.24	0.011 U	0.013 U	0.011 U	0.085 J	2,100
B950-IA-1	OU1-B950-IA-2-180320	FD	3/20/2018	Air - Indoor	0.14	0.061	0.24	0.01 U	0.012 U	0.019 J	0.038 J	2,000
				Air - Indoor- Corrected	0.123	0.061	0.24	0.01 U	0.012 U	0.019 J	0.085 J	300
B950-SS-1	OU1-B950-SS-1-180323	Р	3/23/2018	Soil Gas – Sub-slab	5.9	0.56 U	0.64 U	0.76 U	0.68 U	0.68 U	0.84 J	480,000
B950-SS-1	OU1-B950-SS-2-180323	FD	3/23/2018	Soil Gas – Sub-slab	7.3	0.54 U	0.62 U	0.74 U	0.66 U	0.66 U	0.85 J	560,000
OA-6	OU1-OA-6-180320	Ν	3/20/2018	Air - Outdoor	0.027 J	0.012 U	0.013 U	0.01 U	0.012 U	0.01 U	0.012 U	1,800
							July					
B950-IA-1	OU1-B950-IA-1-180724	Р	7/24/2018	Air - Indoor	0.37	0.022 J	0.035 J	0.018 J	0.035 U	0.035 U	0.035 J	1,900
B950-IA-1	OU1-B950-IA-2-180724	FD	7/24/2018	Air - Indoor	0.45	0.023 J	0.034 J	0.016 J	0.033 U	0.033 U	0.034 J	1,900
				Air - Indoor- Corrected	0.417	0.023 J	0.035 J	0.018 J	0.033 U	0.033 U	0	100
B950-SS-1	OU1-B950-SS-1-180726	Р	7/26/2018	Soil Gas – Sub-slab	5.3	0.37 J	0.69 U	0.69 U	0.69 U	0.69 U	0.69 U	3,400,000
B950-SS-1	OU1-B950-SS-2-180726	FD	7/26/2018	Soil Gas – Sub-slab	5.5	0.41 J	0.73 U	0.73 U	0.73 U	0.73 U	1 J	3,500,000
OA-3	OU1-OA-3-180724	Ν	7/24/2018	Air - Outdoor	0.033 J	0.034 U	0.034 U	0.036 U	0.034 U	0.034 U	0.054 J	1,800

Notes:

¹ – Because the PAL for methane is based on the lower explosive limit (LEL), no attenuation factor was applied. That is, the PAL for both sub-slab vapor and indoor air was established as 10% LEL. **Bold** text indicates a concentration that exceeds the PAL

FD - field duplicate; µg/m³ - micrograms per cubic meter; N - normal sample, with no paired field duplicate; NE - not established; P - parent sample of field duplicate; PAL - project action limit

Decision rules:

For outdoor air samples with field duplicates, the outdoor sample with the minimum concentration was used to compare to the indoor air sample.

When an analyte is not detected in outdoor air, then the maximum detected indoor air concentration is selected as the indoor air corrected value.

When an analyte is detected in outdoor air but not detected in indoor air and the reporting limit is *below* the detected outdoor air concentration, then the corrected indoor value is zero.

When an analyte is detected in outdoor air but not detected in indoor air and the reporting limit is *above* the detected outdoor air concentration, then the minimum detection limit in indoor air is selected as the corrected indoor value. If the indoor air sample concentration is less than outdoor air concentration, then the indoor air corrected is zero (no contribution from SSV or indoor air sources; indoor air value is no different from outdoor air)

Table D-24. OU 1 2018 Vapor Intrusion Sampling Results – Building 951	Table D-24.	OU 1 2018 Vapor	Intrusion Sampling	Results – Building 951
---	-------------	------------------------	---------------------------	-------------------------------

				Analyte Name		Trichloroethene	cis-1,2- Dichloroethene	trans-1,2- Dichloroethene	1,1-Dichloroethene	Vinyl chloride	1,4-Dioxane	Methane ¹
			I	PAL Air - Indoor (µg/m ³)	40	2	NE	<u>60</u>	200	2.8	5	3,280,164
				l Gas – Sub-slab $(\mu g/m^3)$	1330	66.7	NE	2000	6670	93.3	167	3,280,164
Location Name	Sample Name	Sample Type	Collect Date	Description				Result	(µg/m ³)			
							March					
B951-IA-1	OU1-B951-IA-1-180320	Ν	3/20/2018	Air - Indoor	0.08	0.042	0.27	0.0096 U	0.011 U	0.019 J	0.063 J	2,100
				Air - Indoor- Corrected	0.053	0.042	0.27	0.0096 U	0.011 U	0.019 J	0.063 J	300
B951-SS-1	OU1-B951-SS-1-180323	Ν	3/23/2018	Soil Gas – Sub-slab	0.55 U	0.55 U	0.63 U	0.75 U	0.67 U	0.67 U	0.63 U	1,300
B951-IA-2	OU1-B951-IA-2-180320	Ν	3/20/2018	Air - Indoor	0.11	0.043	0.24	0.011 U	0.013 U	0.015 J	0.013 U	1,900
				Air - Indoor- Corrected	0.083	0.043	0.24	0.011 U	0.013 U	0.015 J	0.013 U	100
B951-SS-2	OU1-B951-SS-2-180323	Ν	3/23/2018	Soil Gas – Sub-slab	0.54 U	0.54 U	0.62 U	0.74 U	0.66 U	0.66 U	0.62 U	3,800
B951-IA-3	OU1-B951-IA-3-180320	Р	3/20/2018	Air - Indoor	0.077	0.051	0.29	0.01 U	0.012 U	0.019 J	0.03 J	2,000
B951-IA-3	OU1-B951-IA-4-180320	FD	3/20/2018	Air - Indoor	0.082	0.048	0.32	0.01 U	0.012 U	0.021 J	0.069 J	2,000
				Air - Indoor- Corrected	0.055	0.051	0.32	0.01 U	0.012 U	0.021 J	0.069 J	200
B951-SS-3	OU1-B951-SS-3-180323	Р	3/23/2018	Soil Gas – Sub-slab	6.8	3.9	1.1 J	0.73 U	0.65 U	0.65 U	0.61 U	1,400
B951-SS-3	OU1-B951-SS-4-180323	FD	3/23/2018	Soil Gas – Sub-slab	0.54 U	0.54 U	0.61 U	0.73 U	0.65 U	0.65 U	0.61 U	1,400
OA-6	OU1-OA-6-180320	Ν	3/20/2018	Air - Outdoor	0.027 J	0.012 U	0.013 U	0.01 U	0.012 U	0.01 U	0.012 U	1,800
							July					
B951-IA-1	OU1-B951-IA-1-180724	Ν	7/24/2018	Air - Indoor	0.11	0.032 U	0.067	0.033 U	0.032 U	0.032 U	0.11 J	1,900
				Air - Indoor- Corrected	0.077	0.032 U	0.067	0.033 U	0.032 U	0.032 U	0.056 J	100
B951-SS-1	OU1-B951-SS-1-180726	Ν	7/26/2018	Soil Gas – Sub-slab	0.54 J	0.6 U	0.6 U	0.6 U	0.6 U	0.6 U	0.6 U	660
B951-IA-2	OU1-B951-IA-2-180724	Ν	7/24/2018	Air - Indoor	0.1	0.032 U	0.061	0.033 U	0.032 U	0.032 U	0.05 J	2,100
				Air - Indoor- Corrected	0.067	0.032 U	0.061	0.033 U	0.032 U	0.032 U	0	300
B951-SS-2	OU1-B951-SS-2-180726	Ν	7/26/2018	Soil Gas – Sub-slab	0.37 J	0.68 U	0.68 U	0.68 U	0.68 U	0.68 U	0.68 U	910
B951-IA-3	OU1-B951-IA-3-180724	Р	7/24/2018	Air - Indoor	0.13 J	0.023 J	0.071	0.026 J	0.04 U	0.04 U	0.046 J	2,000
B951-IA-3	OU1-B951-IA-4-180724	FD	7/24/2018	Air - Indoor	0.089 J	0.013 J	0.085	0.033 U	0.032 U	0.013 J	0.074 J	2,100
				Air - Indoor- Corrected	0.097 J	0.023 J	0.085	0.026 J	0.032 U	0.013 J	0.02 J	300
B951-SS-3	OU1-B951-SS-3-180726	Р	7/26/2018	Soil Gas – Sub-slab	0.65 U	0.65 U	0.65 U	0.65 U	0.65 U	0.65 U	0.65 U	650
B951-SS-3	OU1-B951-SS-4-180726	FD	7/26/2018	Soil Gas – Sub-slab	0.93 J	0.61 U	0.61 U	0.5 J	0.61 U	0.61 U	0.61 U	780
OA-3	OU1-OA-3-180724	Ν	7/24/2018	Air - Outdoor	0.033 J	0.034 U	0.034 U	0.036 U	0.034 U	0.034 U	0.054 J	1,800

Notes:

¹ – Because the PAL for methane is based on the lower explosive limit (LEL), no attenuation factor was applied. That is, the PAL for both sub-slab vapor and indoor air was established as 10% LEL. Bold text indicates a concentration that exceeds the PAL

FD - field duplicate; $\mu g/m^3$ - micrograms per cubic meter; N - normal sample, with no paired field duplicate; NE - not established; P - parent sample of field duplicate; PAL - project action limit

Decision rules:

For outdoor air samples with field duplicates, the outdoor sample with the minimum concentration was used to compare to the indoor air sample.

When an analyte is not detected in outdoor air, then the maximum detected indoor air concentration is selected as the indoor air corrected value.

When an analyte is detected in outdoor air but not detected in indoor air and the reporting limit is *below* the detected outdoor air concentration, then the corrected indoor value is zero.

When an analyte is detected in outdoor air but not detected in indoor air and the reporting limit is *above* the detected outdoor air concentration, then the minimum detection limit in indoor air is selected as the corrected indoor value. If the indoor air sample concentration is less than outdoor air concentration, then the indoor air corrected is zero (no contribution from SSV or indoor air sources; indoor air value is no different from outdoor air) If the indoor air sample concentration is greater than outdoor air concentration, the indoor air corrected is calculated as follows: Indoor air - Outdoor air

Table D.25	OII 1 2018 Var	oor Intrusion Sam	nling Results _	. Building 1051
1 abic D-45.	0012010 14	for the usion Sam	ipning recounto -	- Dunung 1051

				Analyte Name		Trichloroethene	cis-1,2-	trans-1,2-	1,1-Dichloroethene	Vinyl chloride	1,4-Dioxane	Methane ¹
					Tetracmoroetnene	Trichloroethene	Dichloroethene	Dichloroethene	· ·	-	1,4-Dioxane	
				PAL Air - Indoor (µg/m ³)	40	2	NE	60	200	2.8	5	3,280,164
			PAL	Soil Gas – Sub-slab (µg/m ³)	1330	66.7	NE	2000	6670	93.3	167	3,280,164
Location Name	Sample Name	Sample Type	Collect Date	Description				Result	(µg/m ³)			
						Marc	h					
B1051-IA-1	OU1-B1051-IA-1-180319	Ν	3/19/2018	Air - Indoor	0.05	0.055	0.3	0.02 J	0.015 U	0.018 J	0.015 U	1,900
				Air - Indoor- Corrected	0.016	0.027	0.238	0.003 J	0.015 U	0.018 J	0.015 U	100
B1051-IA-2	OU1-B1051-IA-2-180319	Р	3/19/2018	Air - Indoor	0.04	0.059	0.31	0.02 J	0.013 U	0.018 J	0.013 U	1,900
B1051-IA-2	OU1-B1051-IA-8-180319	FD	3/19/2018	Air - Indoor	0.038	0.057	0.31	0.019 J	0.013 U	0.019 J	0.014 J	1,900
				Air - Indoor- Corrected	0.006	0.031	0.248	0.003 J	0.013 U	0.018 J	0.013 J	100
B1051-IA-3	OU1-B1051-IA-3-180319	Ν	3/19/2018	Air - Indoor	0.036 J	0.059	0.33	0.02 J	0.013 U	0.019 J	0.018 J	2,100
				Air - Indoor- Corrected	0.002 J	0.031	0.268	0.003 J	0.013 U	0.019 J	0.018 J	300
B1051-IA-4	OU1-B1051-IA-4-180319	Ν	3/19/2018	Air - Indoor	0.087	0.052	0.27	0.026 J	0.021 J	0.016 J	0.012 U	1,900
				Air - Indoor- Corrected	0.053	0.024	0.208	0.009 J	0.021 J	0.016 J	0.012 U	100
B1051-IA-5	OU1-B1051-IA-5-180319	Ν	3/19/2018	Air - Indoor	0.052	0.078	0.34	0.023 J	0.012 U	0.021 J	0.016 J	1,900
				Air - Indoor- Corrected	0.018	0.05	0.278	0.006 J	0.012 U	0.021 J	0.016 J	100
B1051-IA-6	OU1-B1051-IA-6-180319	Ν	3/19/2018	Air - Indoor	0.05	0.032 J	0.17	0.066	0.063	0.012 U	0.014 U	2,000
				Air - Indoor- Corrected	0.016	0.004 J	0.108	0.049	0.063	0.012 U	0.014 U	200
B1051-IA-7	OU1-B1051-IA-7-180319	Ν	3/19/2018	Air - Indoor	0.035 J	0.047	0.25	0.022 J	0.013 U	0.015 J	0.013 U	1,900
				Air - Indoor- Corrected	0.001 J	0.019	0.188	0.005 J	0.013 U	0.015 J	0.013 U	100
B1051-SV-1	OU1-B1051-SV-1-180320	Ν	3/20/2018	Soil gas	0.53 U	0.53 U	0.6 U	0.71 U	0.64 U	0.64 U	0.6 U	1,700
B1051-SV-2	OU1-B1051-SV-2-180320	Ν	3/20/2018	Soil gas	1.6 U	1.6 U	1.8 U	2.2 U	2 U	2 U	1.8 U	1,600
B1051-SV-3	OU1-B1051-SV-3-180320	Ν	3/20/2018	Soil gas	0.51 U	0.51 U	0.58 U	0.69 U	0.62 U	0.62 U	0.58 U	1,100
B1051-SV-4	OU1-B1051-SV-4-180320	Ν	3/20/2018	Soil gas	1.4 U	1.4 U	1.6 U	1.9 U	1.7 U	1.7 U	1.6 U	970
B1051-SV-5	OU1-B1051-SV-5-180320	Ν	3/20/2018	Soil gas	1.6 U	1.6 U	1.8 U	2.1 U	1.9 U	1.9 U	1.8 U	890
B1051-SV-6	OU1-B1051-SV-6-180320	Ν	3/20/2018	Soil gas	0.5 U	0.5 U	0.57 U	0.68 U	0.61 U	0.61 U	0.57 U	730
B1051-SV-7	OU1-B1051-SV-7-180320	Ν	3/20/2018	Soil gas	0.51 U	0.51 U	0.58 U	0.69 U	0.62 U	0.62 U	0.58 U	1,600
B1051-SV-8	OU1-B1051-SV-8-180320	Р	3/20/2018	Soil gas	0.5 U	0.5 U	0.57 U	0.67 U	0.6 U	0.6 U	0.57 U	930
B1051-SV-8	OU1-B1051-SV-9-180320	FD	3/20/2018	Soil gas	0.54 U	0.54 U	0.62 U	0.74 U	0.66 U	0.66 U	0.62 U	1,200
OA-2	OU1-OA-2-180319	Ν	3/19/2018	Air - Outdoor	0.034 J	0.028 J	0.062	0.017 J	0.012 U	0.01 U	0.011 U	1,800

				Analyte Name		Trichloroethene	cis-1,2-	trans-1,2-	1,1-Dichloroethene	Vinyl chloride	1,4-Dioxane	Methane ¹
				-		Tremoroethene	Dichloroethene	Dichloroethene	· ·	-		
				PAL Air - Indoor (µg/m ³)	40	2	NE	60	200	2.8	5	3,280,164
	r		PAL S	oil Gas – Sub-slab (µg/m ³)	1330	66.7	NE	2000	6670	93.3	167	3,280,164
Location Name	Sample Name	Sample Type	Collect Date	Description				Result	(µg/m ³)			
						July						
B1051-IA-1	OU1-B1051-IA-1-180724	N	7/24/2018	Air - Indoor	0.047	0.031 U	0.031 U	0.013 J	0.031 U	0.031 U	0.015 J	1,900
B1051-IA-1				Air - Indoor- Corrected	0.014	0.031 U	0.031 U	0.013 J	0.031 U	0.031 U	0	100
B1051-IA-2	OU1-B1051-IA-2-180724	Р	7/24/2018	Air - Indoor	0.042	0.031 U	0.031 U	0.013 J	0.031 U	0.031 U	0.013 J	2,000
B1051-IA-2	OU1-B1051-IA-8-180724	FD	7/24/2018	Air - Indoor	0.055	0.035 U	0.035 U	0.012 J	0.035 U	0.035 U	0.035 U	2,000
B1051-IA-2				Air - Indoor- Corrected	0.022	0.031 U	0.031 U	0.013 J	0.031 U	0.031 U	0	200
B1051-IA-3	OU1-B1051-IA-3-180724	N	7/24/2018	Air - Indoor	0.048	0.033 U	0.023 J	0.028 J	0.033 U	0.033 U	0.015 J	2,000
B1051-IA-3				Air - Indoor- Corrected	0.015	0.033 U	0.023 J	0.028 J	0.033 U	0.033 U	0	200
B1051-IA-4	OU1-B1051-IA-4-180724	N	7/24/2018	Air - Indoor	0.11	0.023 J	0.033 U	0.028 J	0.033 U	0.033 U	0.039 J	1,900
B1051-IA-4				Air - Indoor- Corrected	0.077	0.023 J	0.033 U	0.028 J	0.033 U	0.033 U	0.021 J	100
B1051-IA-5	OU1-B1051-IA-5-180724	N	7/24/2018	Air - Indoor	0.38	0.033 U	0.033 U	0.079	0.033 U	0.033 U	0.033 U	1,900
B1051-IA-5				Air - Indoor- Corrected	0.347	0.033 U	0.033 U	0.079	0.033 U	0.033 U	0.033 U	100
B1051-IA-6	OU1-B1051-IA-6-180724	N	7/24/2018	Air - Indoor	0.038 J	0.033 U	0.033 U	0.012 J	0.033 U	0.033 U	0.033 U	2,100
B1051-IA-6				Air - Indoor- Corrected	0.005 J	0.033 U	0.033 U	0.012 J	0.033 U	0.033 U	0.033 U	300
B1051-IA-7	OU1-B1051-IA-7-180724	N	7/24/2018	Air - Indoor	0.054	0.039 U	0.039 U	0.041 U	0.039 U	0.039 U	0.039 U	2,000
B1051-IA-7				Air - Indoor- Corrected	0.021	0.039 U	0.039 U	0.041 U	0.039 U	0.039 U	0.039 U	200
B1051-SV-1	OU1-B1051-SV-1-180723	N	7/23/2018	Soil gas	0.4 J	0.8 U	0.8 U	0.8 U	0.8 U	0.8 U	0.8 U	1,600
B1051-SV-2	OU1-B1051-SV-2-180723	N	7/23/2018	Soil gas	0.37 J	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	1,600
B1051-SV-3	OU1-B1051-SV-3-180723	N	7/23/2018	Soil gas	0.87 J	0.72 U	0.72 U	0.72 U	0.72 U	0.72 U	1.3 J	1,200
B1051-SV-4	OU1-B1051-SV-4-180723	N	7/23/2018	Soil gas	0.45 J	0.76 U	0.76 U	0.76 U	0.76 U	0.76 U	0.76 U	1,000
B1051-SV-5	OU1-B1051-SV-5-180723	N	7/23/2018	Soil gas	0.52 J	0.77 U	0.77 U	0.77 U	0.77 U	0.77 U	0.77 U	1,000
B1051-SV-6	OU1-B1051-SV-6-180723	N	7/23/2018	Soil gas	0.52 J	0.73 U	0.73 U	0.73 U	0.73 U	0.73 U	0.73 U	850
B1051-SV-7	OU1-B1051-SV-7-180723	N	7/23/2018	Soil gas	0.39 J	0.7 U	0.7 U	0.7 U	0.7 U	0.7 U	0.7 U	830
B1051-SV-8	OU1-B1051-SV-8-180723	Р	7/23/2018	Soil gas	0.31 J	0.7 U	0.7 U	0.7 U	0.7 U	0.7 U	0.7 U	850
B1051-SV-8	OU1-B1051-SV-9-180723	FD	7/23/2018	Soil gas	0.7 J	0.78 U	0.78 U	0.78 U	0.78 U	0.78 U	0.55 J	850
OA-2	OU1-OA-2-180724	Р	7/24/2018	Air - Outdoor	0.033 J	0.032 U	0.032 U	0.034 U	0.032 U	0.032 U	0.032 U	1,800
OA-2	OU1-OA-6-180724	FD	7/24/2018	Air - Outdoor	0.042 J	0.033 U	0.033 U	0.034 U	0.033 U	0.033 U	0.018 J	1,800

Table D-25. OU 1 2018 Vapor Intrusion Sampling Results - Building 1051

Notes:

¹ – Because the PAL for methane is based on the lower explosive limit (LEL), no attenuation factor was applied. That is, the PAL for both sub-slab vapor and indoor air was established as 10% LEL.

Bold text indicates a concentration that exceeds the PAL

FD - field duplicate; µg/m3 - micrograms per cubic meter; N - normal sample, with no paired field duplicate; NE - not established; P - parent sample of field duplicate; PAL - project action limit

Decision rules:

For outdoor air samples with field duplicates, the outdoor sample with the minimum concentration was used to compare to the indoor air sample.

When an analyte is not detected in outdoor air, then the maximum detected indoor air concentration is selected as the indoor air corrected value.

When an analyte is detected in outdoor air but not detected in indoor air and the reporting limit is below the detected outdoor air concentration, then the corrected indoor value is zero.

When an analyte is detected in outdoor air but not detected in indoor air and the reporting limit is *above* the detected outdoor air concentration, then the minimum detection limit in indoor air is selected as the corrected indoor value.

If the indoor air sample concentration is less than outdoor air concentration, then the indoor air corrected is zero (no contribution from SSV or indoor air sources; indoor air value is no different from outdoor air)

Table D-26.	OU 1 2018 Vapor	· Intrusion Sampling Result	s - Building 824

				Analyte Name	Tetrachloroethene	Trichloroethene	cis-1,2- Dichloroethene	trans-1,2- Dichloroethene	1,1-Dichloroethene	Vinyl chloride	1,4-Dioxane	Methane ¹
				PAL Air - Indoor (µg/m ³)	40	2	NE	60	200	2.8	5	3,280,164
			PAL So	il Gas – Sub-slab (µg/m3)	1330	66.7	NE	2000	6670	93.3	167	3,280,164
Location Name	Sample Name	Sample Type	Collect Date	Description				Result	$(\mu g/m^3)$			
							March					
B824-IA-1	OU1-B824-IA-1-180320	Р	3/20/2018	Air - Indoor	0.038	0.051	0.3	0.01 U	0.012 U	0.019 J	0.012 U	2,000
B824-IA-1	OU1-B824-IA-2-180320	FD	3/20/2018	Air - Indoor	0.033 J	0.051	0.3	0.0099 U	0.012 U	0.018 J	0.012 U	1,900
				Air - Indoor- Corrected	0.012	0.051	0.3	0.0099 U	0.012 U	0.018 J	0	0
B824-SS-1	OU1B824-SS-1-180322	Р	3/22/2018	Soil Gas – Sub-slab	0.59 U	0.59 U	0.68 U	0.8 U	0.72 U	0.72 U	0.68 U	1,400
B824-SS-1	OU1-B824-SS-2-180322	FD	3/22/2018	Soil Gas – Sub-slab	0.54 U	0.54 U	0.62 U	0.74 U	0.66 U	0.66 U	0.62 U	1,300
OA-5	OU1-OA-5-180320	Ν	3/20/2018	Air - Outdoor	0.026 J	0.012 U	0.013 U	0.011 U	0.013 U	0.011 U	0.018 J	2,000
							July					
B824-IA-1	OU1-B824-IA-1-180724	Р	7/24/2018	Air - Indoor	0.03 J	0.042 U	0.051	0.044 U	0.042 U	0.042 U	0.042 U	2,100
B824-IA-1	OU1-B824-IA-2-180724	FD	7/24/2018	Air - Indoor	0.029 J	0.034 U	0.049	0.035 U	0.034 U	0.034 U	0.034 U	1,900
				Air - Indoor- Corrected	0	0.034 U	0.049	0.035 U	0.034 U	0.034 U	0.034 U	300
B824-SS-1	OU1-B824-SS-1-180726	Р	7/26/2018	Soil Gas – Sub-slab	0.4 J	0.66 U	0.66 U	0.66 U	0.66 U	0.66 U	0.66 U	910
B824-SS-1	OU1-B824-SS-2-180726	FD	7/26/2018	Soil Gas – Sub-slab	0.87 J	0.65 U	0.65 U	0.65 U	0.65 U	0.65 U	0.65 U	910
OA-1	OU1-OA-1-180724	Ν	7/24/2018	Air - Outdoor	0.032 J	0.033 U	0.033 U	0.035 U	0.033 U	0.033 U	0.019 J	1,800

Notes:

¹ – Because the PAL for methane is based on the lower explosive limit (LEL), no attenuation factor was applied. That is, the PAL for both sub-slab vapor and indoor air was established as 10% LEL. **Bold** text indicates a concentration that exceeds the PAL

FD - field duplicate; $\mu g/m^3$ - micrograms per cubic meter; N - normal sample, with no paired field duplicate; NE - not established; P - parent sample of field duplicate; PAL - project action limit

Decision rules:

For outdoor air samples with field duplicates, the outdoor sample with the minimum concentration was used to compare to the indoor air sample.

When an analyte is not detected in outdoor air, then the maximum detected indoor air concentration is selected as the indoor air corrected value.

When an analyte is detected in outdoor air but not detected in indoor air and the reporting limit is **below** the detected outdoor air concentration, then the corrected indoor value is zero.

When an analyte is detected in outdoor air but not detected in indoor air and the reporting limit is *above* the detected outdoor air concentration, then the minimum detection limit in indoor air is selected as the corrected indoor value. If the indoor air sample concentration is less than outdoor air concentration, then the indoor air corrected is zero (no contribution from SSV or indoor air sources; indoor air value is no different from outdoor air)

Table D-27. OU 1 2018 Vapor Intrusion Sampling Results – Building 108

				Analyte Name	Tetrachloroethene	Trichloroethene	cis-1,2- Dichloroethene	trans-1,2- Dichloroethene	1,1-Dichloroethene	Vinyl chloride	1,4-Dioxane	Methane ¹
	PAL Air - Indoor (µg/m ³)			40	2	NE	60	200	2.8	5	3,280,164	
	PAL Soil Gas – Sub-slab (µg/m3)					66.7	NE	2000	6670	93.3	167	3,280,164
Location Name	Sample Name	Sample Type	Collect Date	Description				Result	$(\mu g/m^3)$			
						March						
B108-IA-1	OU1-B108-IA-1-180319	Р	3/19/2018	Air - Indoor	0.034 J	0.016 J	0.073	0.011 U	0.013 U	0.011 U	0.044 J	1,900
B108-IA-1	OU1-B108-IA-2-180319	FD	3/19/2018	Air - Indoor	0.033 J	0.02 J	0.071	0.011 J	0.012 U	0.01 U	0.061 J	1,800
				Air - Indoor- Corrected	0.005 J	0.02 J	0.073	0	0.012 U	0.011 U	0.045 J	0
B108-SS-1	OU1-B108-SS-1-180322	Р	3/22/2018	Soil Gas – Sub-slab	0.56 U	0.56 U	0.64 U	0.76 U	0.68 U	0.68 U	0.64 U	850 J
B108-SS-1	OU1B108-SS-2-180322	FD	3/22/2018	Soil Gas – Sub-slab	0.86 U	0.86 U	2.5 J	1.2 U	1 U	1 U	0.98 U	1,200 J
OA-1	OU1-OA-1-180319	Р	3/19/2018	Air - Outdoor	0.036 J	0.013 U	0.014 U	0.014 J	0.013 U	0.012 U	0.016 J	2,000
OA-1	OU1-OA-3-180319	FD	3/19/2018	Air - Outdoor	0.029 J	0.013 U	0.014 U	0.015 J	0.013 U	0.011 U	0.097 J	1,900
						July						
B108-IA-1	OU1-B108-IA-1-180724	Р	7/24/2018	Air - Indoor	0.042	0.035 U	0.02 J	0.036 U	0.035 U	0.035 U	0.32	2,000
B108-IA-1	OU1-B108-IA-2-180724	FD	7/24/2018	Air - Indoor	0.045	0.036 U	0.021 J	0.038 U	0.036 U	0.036 U	0.33	2,000
				Air - Indoor- Corrected	0.013	0.035 U	0.021 J	0.036 U	0.035 U	0.035 U	0.311	200
B108-SS-1	OU1-B108-SS-1-180726	Р	7/26/2018	Soil Gas – Sub-slab	0.65 U	0.65 U	0.65 U	0.65 U	0.65 U	0.65 U	0.65 U	760
B108-SS-1	OU1-B108-SS-2-180726	FD	7/26/2018	Soil Gas – Sub-slab	0.66 U	0.66 U	0.66 U	0.66 U	0.66 U	0.66 U	0.66 U	880
OA-1	OU1-OA-1-180724	Ν	7/24/2018	Air - Outdoor	0.032 J	0.033 U	0.033 U	0.035 U	0.033 U	0.033 U	0.019 J	1,800

Notes:

¹ – Because the PAL for methane is based on the lower explosive limit (LEL), no attenuation factor was applied. That is, the PAL for both sub-slab vapor and indoor air was established as 10% LEL. Bold text indicates a concentration that exceeds the PAL

FD - field duplicate; $\mu g/m^3$ - micrograms per cubic meter; N - normal sample, with no paired field duplicate; NE - not established; P - parent sample of field duplicate; PAL - project action limit

Decision rules:

For outdoor air samples with field duplicates, the outdoor sample with the minimum concentration was used to compare to the indoor air sample.

When an analyte is not detected in outdoor air, then the maximum detected indoor air concentration is selected as the indoor air corrected value.

When an analyte is detected in outdoor air but not detected in indoor air and the reporting limit is *below* the detected outdoor air concentration, then the corrected indoor value is zero.

When an analyte is detected in outdoor air but not detected in indoor air and the reporting limit is *above* the detected outdoor air concentration, then the minimum detection limit in indoor air is selected as the corrected indoor value.

If the indoor air sample concentration is less than outdoor air concentration, then the indoor air corrected is zero (no contribution from SSV or indoor air sources; indoor air value is no different from outdoor air)

Table D-28. 2017 Groundwater Monitoring Results for PFAS Compounds (ng/L)

		2 17714 10	10004 46		ne D-28. 2017 Groun	0		1 .0 ,	20000		1 1111 10	1 1111 80	
-	Location Name		MW1-46	MW1-46	MW1-47	MW1-48	MW1-50	MW1-52	MW1-56	MW-57	MW1-58	MW1-58	MW1-60
		MW1-43-171023	MW1-46-171023	FD-171023-01	MW1-47-171023	MW1-48-171024	MW1-50-171024	MW1-52-171024	MW1-56-12.0-171025	MW1-57-10.0-171025	MW1-58-9.0-171115	FD-171115-02	MW1-60-171026
	Sample Type	N	Р	FD	N	N	N	N	N	N	Р	FD	N
Analyte	PAL	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result
Perfluorooctane sulfonate (PFOS)	70	3.68 UJ	1.65 UJ	1.74 UJ	5.3 UJ	10.47 J	0.36 UJ	0.62 UJ	2.03 J	8.42	1.95 J	1.71 J	0.36 UJ
N-ethyl perfluorooctanesulfonamidoacetic a (NEtFOSAA)	ncid NE	1.69 UJ	0.74 UJ	0.72 UJ	1.72 UJ	2.08 UJ	0.71 UJ	0.71 UJ	0.63 J	0.71 U	0.44 U	0.45 U	0.71 UJ
N-methylperfluorooctane sulfonamidoacetic acid (NMeFOSAA)	² NE	1.64 UJ	1.85 UJ	1.81 UJ	1.08 UJ	0.42 J	1.79 UJ	1.79 UJ	0.72 J	1.79 UJ	1.11 U	1.13 U	1.79 UJ
Perfluorobutanesulfonic acid (PFBS)	380,000	0.37 UJ	0.37 UJ	0.36 UJ	0.36 UJ	0.36 UJ	0.36 UJ	0.36 UJ	0.38 U	0.36 U	0.22 U	0.23 U	0.36 U
Perfluorodecanoic acid (PFDA)	NE	1.1 UJ	0.37 UJ	0.36 UJ	1.03 UJ	0.69 UJ	0.36 UJ	0.36 UJ	0.94 J	0.49 J	0.44 J	0.39 J	0.36 U
Perfluoroheptanoic acid (PFHpA)	NE	1.8 UJ	0.97 UJ	0.99 UJ	4.37 J	3 J	0.36 UJ	0.36 UJ	0.38 U	1.54 J	3.29 J	2.36 J	0.36 U
Perfluorohexanesulfonic acid (PFHxS)	NE	3.18 UJ	1.2 UJ	1.22 UJ	4.49 UJ	3.47 UJ	0.36 UJ	0.36 UJ	4.4 J	8.97	0.22 U	0.23 U	0.36 U
Perfluorononanoic acid (PFNA)	NE	1.39 UJ	0.74 UJ	0.72 UJ	1.57 UJ	1.12 UJ	0.71 UJ	0.71 UJ	1.93 J	0.38 J	0.63 J	0.52 J	0.71 U
Perfluorooctanoic acid (PFOA)	70	6.58 UJ	4.2 UJ	3.78 UJ	13.6 J	14.56 J	1.58 UJ	1.74 UJ	11.26	6.59 J	6.27 U	6.27 U	3.29 J
Perfluorotetradecanoic acid (PFTeDA)	NE	4.24 UJ	1.86 UJ	1.08 UJ	4 UJ	0.71 UJ	0.71 UJ	0.71 UJ	2.56 J	0.36 J	0.44 U	0.55 U	0.71 UJ
Perfluorotridecanoic acid (PFTrDA)	NE	2.11 UJ	0.37 UJ	0.59 UJ	1.98 UJ	0.36 UJ	0.36 UJ	0.36 UJ	1.49 J	0.22 J	0.22 U	0.34 J	0.36 UJ
Perfluoroundecanoic acid (PFUnA)	NE	1.28 UJ	0.74 UJ	0.72 UJ	1.36 UJ	0.71 UJ	0.71 UJ	0.71 UJ	0.69 J	0.71 U	0.44 U	0.45 U	0.71 UJ
Perfluorododecanoic acid (PFDoA)	NE	2.14 UJ	0.37 UJ	0.36 UJ	2.08 UJ	0.36 UJ	036 UJ	0.36 UJ	1.03 J	0.36 U	0.22 U	0.12 J	0.36 U
Perfluorohexanoic acid (PFHxA)	NE	2.19 UJ	1.71 UJ	1.82 UJ	6.39 J	3.99 J	0.36 UJ	0.36 UJ	0.38 UJ	1.8 J	3.5 J	1.57 J	0.36 UJ

Notes:

PFAS compounds analyzed by EPA Method 537-MOD.

Bold text indicates that the result or the LOD exceeds the PAL.

FD - Field Duplicate

P - Parent sample of field duplicate.

N - Sample is not part of a field duplicate pair

J - The reported value is an estimated concentration.

NE - Not established.

PAL - Project action limit as established in the sampling and analysis plan.

U - The analyte was not detected at or above the stated limit. (sometimes validators will elevate the limit due to the "B" qualifier using the 5x/10x rule so this definition is different than the lab description).

UJ - The analyte was not detected at the stated sample quantitation limit, which is an estimated value.

ng/L - nanograms per liter

APPENDIX E OU 2 AREA 2 CUMULATIVE LONG-TERM MONITORING DATA

	Sampling	cis,1,2-DCE	TCE	Vinyl Chloride
Location	Date	(µg/L)	(µg/L)	(µg/L)
Remedial Goal (Drin		16 ^e	5 ^f	0.029 ^g
	11/21/95	1 U	41 J	1 U *
	09/30/96	1 U	28	1 U *
	10/16/97	1 U	29	1 U *
	10/08/98	0.2 U	29	0.2 U *
	11/22/99	0.5 U	17	0.5 U *
	11/17/00	0.5 U	22	0.5 UJ *
	11/19/01	0.1 U	16	0.2 U *
	06/17/02	0.1 U	11	0.2 U *
	06/18/03	0.067 U	12	0.12 U *
	06/15/04	0.067 U	9.7	0.12 U *
2MW-1	06/21/05	0.2 U	10	0.2 U *
	06/20/06	0.5 U	8.1	0.2 U *
	06/12/07	0.5 U	5.8	0.2 U *
	05/06/08	0.5 U	4.9	0.2 U *
	06/24/09	0.21 J	5.8 J	0.2 U *
	06/15/10	NS	NS	NS 0.2.1.*
	07/20/11	0.08 J	3.8	0.2 U *
	06/13/12	0.059	3.8	0.010 J
	06/24/14	0.089	1.2	0.018 J
	06/21/16	NA	NA	0.022 U
	09/20/18	NA	NA	0.021 J
2) (1) 2	06/24/19	NA	NA	0.020 U
2MW-3	11/20/95	19	1 J	4
2MW-4	11/20/95	1 U	1 U	1 U *
	11/21/95	7	11	1
	09/30/96	1	2	1
2MW-5	10/16/97	1	2	1
	10/08/98	0.26	2.1	0.2
	11/22/99	0.5	0.4 J	0.5
	11/20/95	10	1 U	4
	09/30/96	15	1 U	5
	10/16/97	11	1 U	4
	10/08/98	9.5	0.2 U	2.7
	11/22/99	12	0.5 U	2.7
	11/17/00	15	0.5 U	2.9 J
	11/19/01	7 J	0.2 UJ	1.2 J
2MW-6 ^b	06/17/02	13	0.2 U	2.1
··· -	06/18/03	9.9	0.081 U	1.5
	06/15/04	6.9	0.081 U	0.86
	06/21/05	4.5	0.2 U	0.68
	06/21/06	9	0.5 U	1.1
	06/13/07	8.4	0.5 U	0.99
	05/07/08	2.7	0.5 U	0.34
	06/24/09	7.1	0.03 J	0.99
	06/15/10	3.5	0.5 U	0.32
	07/20/11	1.5	0.5 U	0.09 J
	06/13/12	1.7	0.018 J	0.099

Table E-1. Target Analytes in Groundwater at OU 2 Area 2 (November 1995 – June 2019)

Page 1 of 3

Landar	Sampling	cis,1,2-DCE	TCE	Vinyl Chloride
Location Remedial Goal (Drink	Date	(µg/L) 16 ^e	(µg/L) 5 ^f	(µg/L) 0.029 ^g
Kenieulai Goai (Di liik	06/23/14	3.9	0.021 UJ	0.029
	06/21/16	NA	NA	0.073
	09/20/18	NA	NA	1.4
	06/24/19	NA	NA	0.16 M
MW2-6°	11/17/00	0.5 U	0.5 U	0.5 U *
	11/19/01	0.72	0.2 U	0.2 U *
	06/17/02	0.97	0.2 U	0.2 U *
	06/18/03	1.4	0.081 U	0.12 U *
	06/15/04	1.9	0.081 U	0.2 J
	06/24/05	1.9	0.2 U	0.2 U *
	06/20/06	2	0.5 U	0.2 U *
	06/12/07	1.9	0.5 U	0.2
MW2-8 ^d	05/06/08	1.4	0.5 U	0.07 J
IVI VV 2-0	06/24/09	1.1	0.5 U	0.07 J
	06/15/10	1.1	0.5 U	0.2 UJ *
	07/20/11	1.2	0.5 U	0.2 U *
	06/13/12	0.92 J	0.0045 J	0.035
	06/23/14	0.43	0.02 U	0.016 J
	06/21/16	NA	NA	0.020 U
	09/20/18	NA	NA	0.049 J
	06/24/19	NA	NA	0.020 U

Table E-1 (continued). Target Analytes in Groundwater at OU 2 Area 2 (November 1995 – June 2019)

^a Protection of human health by ingestion.

^b The 11/17/00 and 11/19/01 results for 2MW-6 are the average concentrations of the primary and duplicate sample. ^c Prior to 2000, MW2-6 was last sampled in 1991 during the remedial investigation.

^d The 06/17/02 results for MW2-8 are the average concentrations of the primary and duplicate sample.

^e No remedial goal for cis-1,2-DCE was established in the Record of Decision (U.S. Navy, USEPA, Ecology, 1994). For comparison purposes, the current MTCA Method B value is shown in the table.

^f Value listed accounts for adjustment when the maximum contaminant level or water quality standard is sufficiently protective to serve as the MTCA cleanup level for that individual chemical. Individual chemical cleanup levels

may require downward adjustment for multiple chemical contaminants or multiple exposure pathways (WAC 173-340-720[7][b]). Value does not account for adjustments due to background levels or PQLs.

^g Calculated MTCA Method B remedial goal starting in 2012, based upon the current oral slope value. *Notes:*

Bolded value indicates it exceeds or is equal to the remedial goal for drinking water.

Yellow highlighted rows indicate sampling results from this FYR period.

* – The reporting limit exceeds the remedial goal

DCE-dichloroethane

J – The result is an estimated concentration that is less than the MRL, but greater than or equal to the MDL.

M – Laboratory performed a manual integration on the chromatographic peak.

MDL – method detection limit

 $\mu g/L-microgram \ per \ liter$

MRL – method reporting limit

MTCA – Model Toxics Control Act

NA - Compound not analyzed for per recommendation in the fourth FYR.

 $NS-not \ sampled$

PQL – practical quantitation limits

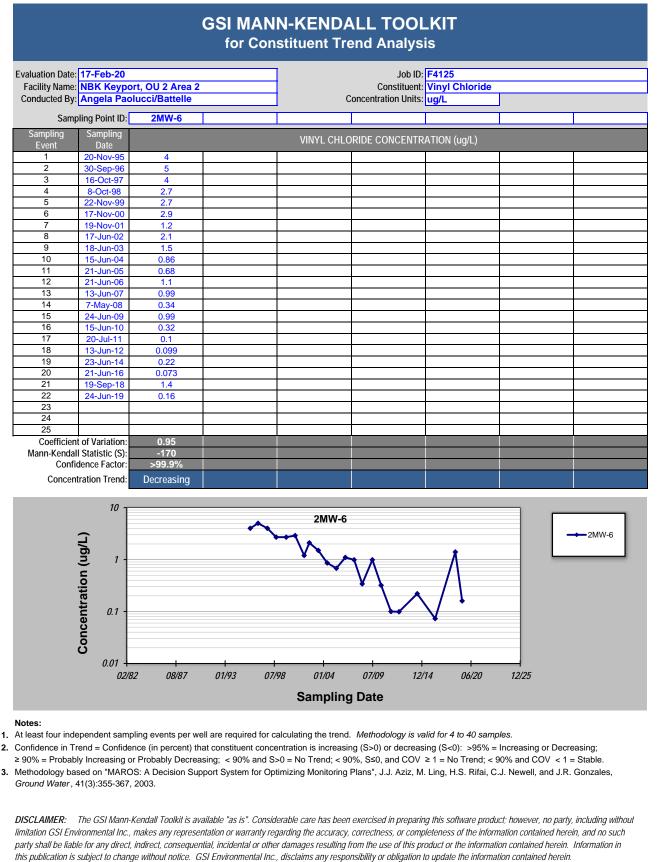
TCE - trichloroethene

U - The compound was analyzed for but was not detected ("nondetect") at or above the MRL/MDL.

Location	Sampling Date	1,4-Dioxane (µg/L)
MTCA Method B (0.44 ^a
	06/12/07	1.0 U
2NAXV 1	06/20/17	0.40 U
2MW-1	09/20/18	0.40 U
	06/24/19	0.19 U
	06/13/07	0.30 J
	06/20/17	0.40 U
2MW-6	09/19/18	0.17 J
	06/24/19	0.19 U
	06/12/07	1.0 U
	06/20/17	0.40 U
MW2-8	09/20/18	0.40 U
	06/24/19	0.19 U

Table E-2. 1,4-Dioxane in Groundwater at OU 2 Area 2 (June 2007 – June 2019)

^a No remedial goal for 1,4-dioxane was established in the Record of Decision (U.S. Navy, USEPA, Ecology, 1994). For comparison purposes, the MTCA Method B (carcinogenic) cleanup level is provided in the table. *Notes:*


Bold indicates detected value is equal to or exceeds the MTCA Method B cleanup level.

J – estimated concentration

U - not detected at or above the practical quantitation limit shown

 $\mu g/L$ – micrograms per liter

APPENDIX F OU 2 AREA 2 MANN-KENDALL STATISTICS AT 2MW-6

GSI Environmental Inc., www.gsi-net.com

Iluation Date: 17-Fe acility Name: NBK I onducted By: Angel	Keyport,	OU 2 Area 2	!			Const	Job ID: F412 tituent: Viny	I Chloride		
Sampling Pol		2MW-6				Concentration				
Sampling Samp		2.000				ORIDE CONC		NI (/I.)		
Event Da	te		T				ENTRATIO	N (UG/L)	T	
1 23-Ju 2 21-Ju		0.22								
2 21-Ju 3 19-Se		0.073	-						-	
4 24-Ju		0.16								
5										
6										
7										
8 9			+			+				
10										
11										
12										
13										
14										
15										
16 17										
18										
19										
20										
Coefficient of Vari		1.35								
Mann-Kendall Statist		0								
Confidence F		37.5%								
Concentration 1	Frend:	No Trend								
	10								_	
					2MW-6					
$\widehat{}$										→ 2MW-6
Concentration (ug/L)								•		
n)	1 -							Λ		
Ę								Λ		
tio										
ira								•		
Ĩ	0.1						V			
ŭ										
5									_	
-										
0	0.01									
	02/82	08/87	01/93	07/98	01/04	07/09	12/14	06/20	12/25	
					Samplin	a Data				

ng (S>0) or decreas tituent concentration is incre e in Trend = Confidence (in percent) that cons ng (S<0): >95% = Incre

≥ 90% = Probably Increasing or Probably Decreasing; < 90% and S>0 = No Trend; < 90%, S≤0, and COV ≥ 1 = No Trend; < 90% and COV < 1 = Stable. 3. Methodology based on "MAROS: A Decision Support System for Optimizing Monitoring Plans", J.J. Aziz, M. Ling, H.S. Rifai, C.J. Newell, and J.R. Gonzales, Ground Water, 41(3):355-367, 2003.

DISCLAIMER: The GSI Mann-Kendall Toolkit is available "as is". Considerable care has been exercised in preparing this software product; however, no party, including without limitation GSI Environmental Inc., makes any representation or warranty regarding the accuracy, correctness, or completeness of the information contained herein, and no such party shall be liable for any direct, indirect, consequential, incidental or other damages resulting from the use of this product or the information contained herein. Information in this publication is subject to change without notice. GSI Environmental Inc., disclaims any responsibility or obligation to update the information contained herein. GSI Environmental Inc., www.gsi-net.com

APPENDIX G OU 2 AREA 8 CUMULATIVE LONG-TERM MONITORING DATA

Table G-1. Summary of Selected VOCs Detected in Groundwater and Seeps at OU 2 Area 8 (1995-2019)

			Analyte (Concentration	n (µg/L)	
Location	Sampling Date	1,1-DCE	cis-1,2-DCE	PCE	1,1,1-TCA	TCE
	nking Water) ^a	7 ^b	70	5 ^b	200	5 ^b
	irface Water) ^a	3.2 ^{b,c}		8.9 ^{b,c}	42,000	81 ^{b,c}
	11/95	1.0	2.0	49	23	190
	06/96	0.90 J	1.0	34	11	110
	09/96	1.0	2.0	58	19	190
	05/97	1.0 U	1.0	15	3.0	68
	10/97	0.60 U	1.0 U	19	9.0	78
	05/98	1.0 U	0.9 J	12	3.0	63
	10/98	1.0 U	1.0 U	30	9.0	76
	05/99	5.0 U *	5.0 U	5.0 U	5.0 U	58
	11/99	1.0	3.2	2.0	10	150 H
	06/00	1 J	4.5	23	6.6	120
	06/01	1.3	7.3	20	3.9	84
	06/02	1.1	7.3	17	3.9	81 81 D
	06/03	0.94	6.8	12 13	2.7	81 D 80 D
MW8-8	06/04	0.7	8.5 7.4	13	2.9 2.0	64
IVI VV 0-0	06/05	0.7	7.4	9.2	2.0	68 D
	06/07	0.55	7.5	7.7	1.7	53 D
	05/08	0.41 J	6.6	8.4	1.6	59
	06/09	0.69	9.1	5.6	1.6	66
	06/10	0.55	8.4	5.1	1.5	58
	07/11	0.37 J	5.9	6.0	1.5	59
	06/12	0.14 J	2.1	9.7	1.1	38
	06/13	0.5 U	0.46 J	9.0	0.6	24 J
	06/14	0.5 U	0.83	9.8	0.83	32
	06/15	0.5 U	0.45 J	8.4	0.87	26
	06/16	0.11 J	1.2	6.9	0.9	37
	06/17	0.11 J	1.6	7.1	0.93	40
	09/18	0.13 J	1.8	8.0	NA	33 EJ
	06/19	0.20 UM	1.1	6.9	1.1	35
	11/95	50 U *	27 J	50 U *	50 U	1600
	06/96	1.0 U	28	1 U	2.0	800
	09/96	1.0 U	28	0.40 J	2.0	1000
	05/97	1.0 U	34	0.30 J	2.0	1600
	05/97 10/97	1.0 U 1.0 U	34 1.0 U	0.30 J 1.0 U	2.0 1.0	1600 720
	05/97 10/97 05/98	1.0 U 1.0 U 1.0 U	34 1.0 U 12	0.30 J 1.0 U 1.0 U	2.0 1.0 0.70 J	1600 720 370
	05/97 10/97 05/98 10/98	1.0 U 1.0 U 1.0 U 1.0 U	34 1.0 U 12 34	0.30 J 1.0 U 1.0 U 1.0 U	2.0 1.0 0.70 J 3.0	1600 720 370 610
	05/97 10/97 05/98 10/98 05/99	1.0 U 1.0 U 1.0 U 1.0 U 1.0 U	34 1.0 U 12 34 6.0	0.30 J 1.0 U 1.0 U 1.0 U 1.0 U	2.0 1.0 0.70 J 3.0 1.0 U	1600 720 370 610 84
	05/97 10/97 05/98 10/98 05/99 11/99	1.0 U 1.0 U 1.0 U 1.0 U 1.0 U 0.50 U	34 1.0 U 12 34 6.0 30	0.30 J 1.0 U 1.0 U 1.0 U 1.0 U 0.6	2.0 1.0 0.70 J 3.0 1.0 U 1.4	1600 720 370 610 84 500
	05/97 10/97 05/98 10/98 05/99 11/99 06/00	1.0 U 1.0 U 1.0 U 1.0 U 1.0 U 0.50 U 2.5 U	34 1.0 U 12 34 6.0 30 15	0.30 J 1.0 U 1.0 U 1.0 U 1.0 U 0.6 2.5 U	2.0 1.0 0.70 J 3.0 1.0 U 1.4 1 J	1600 720 370 610 84 500 170
	05/97 10/97 05/98 10/98 05/99 11/99	1.0 U 1.0 U 1.0 U 1.0 U 1.0 U 0.50 U	34 1.0 U 12 34 6.0 30	0.30 J 1.0 U 1.0 U 1.0 U 1.0 U 0.6	2.0 1.0 0.70 J 3.0 1.0 U 1.4	1600 720 370 610 84 500
	05/97 10/97 05/98 10/98 05/99 11/99 06/00 06/01	1.0 U 1.0 U 1.0 U 1.0 U 1.0 U 0.50 U 2.5 U 0.24 U	34 1.0 U 12 34 6.0 30 15 18	0.30 J 1.0 U 1.0 U 1.0 U 1.0 U 0.6 2.5 U 0.26 J	2.0 1.0 0.70 J 3.0 1.0 U 1.4 1 J 0.44 J	1600 720 370 610 84 500 170 330
	05/97 10/97 05/98 10/98 05/99 11/99 06/00 06/01 06/02	1.0 U 1.0 U 1.0 U 1.0 U 1.0 U 0.50 U 2.5 U 0.24 U 0.50 U	34 1.0 U 12 34 6.0 30 15 18 7.5	0.30 J 1.0 U 1.0 U 1.0 U 1.0 U 0.6 2.5 U 0.26 J 0.23 J	2.0 1.0 0.70 J 3.0 1.0 U 1.4 1 J 0.44 J 0.69	1600 720 370 610 84 500 170 330 60
MW8-9	05/97 10/97 05/98 10/98 05/99 11/99 06/00 06/01 06/02 06/03	1.0 U 1.0 U 1.0 U 1.0 U 1.0 U 2.5 U 0.24 U 0.50 U 0.50 U	34 1.0 U 12 34 6.0 30 15 18 7.5 1.3 U	0.30 J 1.0 U 1.0 U 1.0 U 1.0 U 0.6 2.5 U 0.26 J 0.23 J 0.50 U	2.0 1.0 0.70 J 3.0 1.0 U 1.4 1 J 0.44 J 0.69 0.23 J	1600 720 370 610 84 500 170 330 60 21
MW8-9	05/97 10/97 05/98 10/98 05/99 11/99 06/00 06/01 06/02 06/03 06/04	1.0 U 1.0 U 1.0 U 1.0 U 1.0 U 2.5 U 0.24 U 0.50 U 0.50 U 0.50 U	34 1.0 U 12 34 6.0 30 15 18 7.5 1.3 U 1.7	0.30 J 1.0 U 1.0 U 1.0 U 1.0 U 0.6 2.5 U 0.26 J 0.23 J 0.50 U 0.18 J	2.0 1.0 0.70 J 3.0 1.0 U 1.4 1 J 0.44 J 0.69 0.23 J 0.44 J	1600 720 370 610 84 500 170 330 60 21 25
MW8-9	05/97 10/97 05/98 10/98 05/99 11/99 06/00 06/01 06/02 06/03 06/04 06/05	1.0 U 1.0 U 1.0 U 1.0 U 0.50 U 2.5 U 0.24 U 0.50 U 0.50 U 0.50 U 0.50 U	34 1.0 U 12 34 6.0 30 15 18 7.5 1.3 U 1.7 0.2	0.30 J 1.0 U 1.0 U 1.0 U 0.6 2.5 U 0.26 J 0.23 J 0.50 U 0.18 J 0.2 U	2.0 1.0 0.70 J 3.0 1.0 U 1.4 1 J 0.44 J 0.69 0.23 J 0.44 J 0.2 U	1600 720 370 610 84 500 170 330 60 21 25 4.1
MW8-9	05/97 10/97 05/98 10/98 05/99 11/99 06/00 06/01 06/02 06/03 06/04 06/05 06/06	1.0 U 1.0 U 1.0 U 1.0 U 1.0 U 0.50 U 2.5 U 0.24 U 0.50 U	34 1.0 U 12 34 6.0 30 15 18 7.5 1.3 U 1.7 0.2 0.42 J	0.30 J 1.0 U 1.0 U 1.0 U 0.6 2.5 U 0.26 J 0.23 J 0.50 U 0.18 J 0.2 U 0.20 J	2.0 1.0 0.70 J 3.0 1.0 U 1.4 1 J 0.44 J 0.69 0.23 J 0.44 J 0.2 U 0.28 J	1600 720 370 610 84 500 170 330 60 21 25 4.1 3.9
MW8-9	05/97 10/97 05/98 10/98 05/99 11/99 06/00 06/01 06/02 06/03 06/04 06/05 06/06 06/07	1.0 U 1.0 U 1.0 U 1.0 U 1.0 U 0.50 U 2.5 U 0.24 U 0.50 U	34 1.0 U 12 34 6.0 30 15 18 7.5 1.3 U 1.7 0.2 0.42 J 0.27 J	0.30 J 1.0 U 1.0 U 1.0 U 0.6 2.5 U 0.26 J 0.23 J 0.50 U 0.18 J 0.2 U 0.20 J 0.5 U	2.0 1.0 0.70 J 3.0 1.0 U 1.4 1 J 0.44 J 0.69 0.23 J 0.44 J 0.2 U 0.28 J 0.15 J	1600 720 370 610 84 500 170 330 60 21 25 4.1 3.9 1.9
MW8-9	05/97 10/97 05/98 10/98 05/99 11/99 06/00 06/01 06/02 06/03 06/04 06/05 06/06 06/07 05/08	1.0 U 1.0 U 1.0 U 1.0 U 1.0 U 0.50 U 2.5 U 0.24 U 0.50 U 0.5 U 0.5 U 0.5 U	34 1.0 U 12 34 6.0 30 15 18 7.5 1.3 U 1.7 0.2 0.42 J 0.27 J 0.23 J	0.30 J 1.0 U 1.0 U 1.0 U 0.6 2.5 U 0.26 J 0.23 J 0.50 U 0.18 J 0.2 U 0.20 J 0.5 U 0.16 J	2.0 1.0 0.70 J 3.0 1.0 U 1.4 1 J 0.44 J 0.69 0.23 J 0.44 J 0.2 U 0.28 J 0.15 J 0.14 J 0.14 J 0.12 J	1600 720 370 610 84 500 170 330 60 21 25 4.1 3.9 1.9 1.7
MW8-9	05/97 10/97 05/98 10/98 05/99 11/99 06/00 06/01 06/02 06/03 06/04 06/05 06/06 06/07 05/08 06/09 06/10 07/11	1.0 U 1.0 U 1.0 U 1.0 U 1.0 U 0.50 U 2.5 U 0.24 U 0.50 U 0.5 U 0.5 U 0.5 U 0.5 U	34 1.0 U 12 34 6.0 30 15 18 7.5 1.3 U 1.7 0.2 0.42 J 0.27 J 0.23 J 1.3 0.69 0.8	0.30 J 1.0 U 1.0 U 1.0 U 0.6 2.5 U 0.26 J 0.23 J 0.50 U 0.18 J 0.2 U 0.20 J 0.5 U 0.16 J 0.11 J 0.12 J	2.0 1.0 0.70 J 3.0 1.0 U 1.4 1 J 0.44 J 0.69 0.23 J 0.44 J 0.2 U 0.28 J 0.15 J 0.14 J 0.14 J 0.12 J 0.11 J	1600 720 370 610 84 500 170 330 60 21 25 4.1 3.9 1.9 1.7 20 9.4 12
MW8-9	05/97 10/97 05/98 10/98 05/99 11/99 06/00 06/01 06/02 06/03 06/04 06/05 06/06 06/07 05/08 06/09 06/10 07/11 06/12	1.0 U 1.0 U 1.0 U 1.0 U 1.0 U 0.50 U 2.5 U 0.24 U 0.50 U 0.5 U	34 1.0 U 12 34 6.0 30 15 18 7.5 1.3 U 1.7 0.2 0.42 J 0.27 J 0.23 J 1.3 0.69 0.8 1.2	0.30 J 1.0 U 1.0 U 1.0 U 0.6 2.5 U 0.26 J 0.23 J 0.50 U 0.18 J 0.2 U 0.20 J 0.5 U 0.16 J 0.11 J 0.12 J 0.49 J	2.0 1.0 0.70 J 3.0 1.0 U 1.4 1 J 0.44 J 0.69 0.23 J 0.44 J 0.2 U 0.28 J 0.15 J 0.14 J 0.14 J 0.12 J 0.11 J 0.16 J	1600 720 370 610 84 500 170 330 60 21 25 4.1 3.9 1.9 1.7 20 9.4 12 14
MW8-9	05/97 10/97 05/98 10/98 05/99 11/99 06/00 06/01 06/02 06/03 06/04 06/05 06/06 06/07 05/08 06/09 06/10 07/11 06/12 06/13	1.0 U 1.0 U 1.0 U 1.0 U 1.0 U 0.50 U 2.5 U 0.24 U 0.50 U 0.5 U	34 1.0 U 12 34 6.0 30 15 18 7.5 1.3 U 1.7 0.2 0.42 J 0.27 J 0.23 J 1.3 0.69 0.8 1.2 2.7	0.30 J 1.0 U 1.0 U 1.0 U 0.6 2.5 U 0.26 J 0.23 J 0.50 U 0.18 J 0.2 U 0.20 J 0.5 U 0.16 J 0.11 J 0.12 J 0.49 J 0.18 J	2.0 1.0 0.70 J 3.0 1.0 U 1.4 1 J 0.44 J 0.69 0.23 J 0.44 J 0.2 U 0.28 J 0.15 J 0.14 J 0.14 J 0.12 J 0.11 J 0.16 J 0.13 J	1600 720 370 610 84 500 170 330 60 21 25 4.1 3.9 1.9 1.7 20 9.4 12 14 43 J
MW8-9	05/97 10/97 05/98 10/98 05/99 11/99 06/00 06/01 06/02 06/03 06/04 06/05 06/06 06/07 05/08 06/09 06/10 07/11 06/12 06/13 06/14	1.0 U 1.0 U 1.0 U 1.0 U 1.0 U 0.50 U 2.5 U 0.24 U 0.50 U 0.50 U 0.50 U 0.50 U 0.5	34 1.0 U 12 34 6.0 30 15 18 7.5 1.3 U 1.7 0.2 0.42 J 0.27 J 0.23 J 1.3 0.69 0.8 1.2 2.7 1.5	0.30 J 1.0 U 1.0 U 1.0 U 0.6 2.5 U 0.26 J 0.23 J 0.50 U 0.18 J 0.2 U 0.20 J 0.5 U 0.16 J 0.11 J 0.12 J 0.49 J 0.29 J	2.0 1.0 0.70 J 3.0 1.0 U 1.4 1 J 0.44 J 0.69 0.23 J 0.44 J 0.2 U 0.28 J 0.15 J 0.14 J 0.12 J 0.13 J 0.12 J	1600 720 370 610 84 500 170 330 60 21 25 4.1 3.9 1.7 20 9.4 12 14 43 J 24
MW8-9	05/97 10/97 05/98 10/98 05/99 11/99 06/00 06/01 06/02 06/03 06/04 06/05 06/06 06/07 05/08 06/09 06/10 07/11 06/12 06/13 06/14 06/15	1.0 U 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U 0.50 U 2.5 U 0.24 U 0.50 U 0.5 U	34 1.0 U 12 34 6.0 30 15 18 7.5 1.3 U 1.7 0.2 0.42 J 0.27 J 0.23 J 1.3 0.69 0.8 1.2 2.7 1.5 0.35 J	0.30 J 1.0 U 1.0 U 1.0 U 0.6 2.5 U 0.26 J 0.23 J 0.50 U 0.18 J 0.2 U 0.20 J 0.5 U 0.16 J 0.18 J 0.11 J 0.49 J 0.29 J 0.16 J	2.0 1.0 0.70 J 3.0 1.0 U 1.4 1 J 0.44 J 0.69 0.23 J 0.44 J 0.2 U 0.28 J 0.15 J 0.14 J 0.12 J 0.13 J 0.13 J	1600 720 370 610 84 500 170 330 60 21 25 4.1 3.9 1.7 20 9.4 12 14 43 J 24 5.6
MW8-9	05/97 10/97 05/98 10/98 05/99 11/99 06/00 06/01 06/02 06/03 06/04 06/05 06/06 06/07 05/08 06/09 06/10 07/11 06/12 06/13 06/14 06/15 06/16	1.0 U 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U 0.50 U 2.5 U 0.24 U 0.50 U 0.5 U	34 1.0 U 12 34 6.0 30 15 18 7.5 1.3 U 1.7 0.2 0.42 J 0.27 J 0.23 J 1.3 0.69 0.8 1.2 2.7 1.5 0.35 J 0.07 J	0.30 J 1.0 U 1.0 U 1.0 U 1.0 U 0.6 2.5 U 0.26 J 0.23 J 0.50 U 0.18 J 0.2 U 0.20 J 0.5 U 0.16 J 0.18 J 0.19 J 0.16 J 0.10 J	2.0 1.0 0.70 J 3.0 1.0 U 1.4 1 J 0.44 J 0.69 0.23 J 0.44 J 0.2 U 0.28 J 0.14 J 0.14 J 0.14 J 0.11 J 0.16 J 0.13 J 0.15 J	1600 720 370 610 84 500 170 330 60 21 25 4.1 3.9 1.9 1.7 20 9.4 12 14 43 J 24 5.6 0.27 J
MW8-9	05/97 10/97 05/98 10/98 05/99 11/99 06/00 06/01 06/02 06/03 06/04 06/05 06/06 06/07 05/08 06/09 06/10 07/11 06/12 06/13 06/14 06/15 06/16 06/17	1.0 U 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U 0.50 U 2.5 U 0.24 U 0.50 U 0.5 U	34 1.0 U 12 34 6.0 30 15 18 7.5 1.3 U 1.7 0.2 0.42 J 0.27 J 0.23 J 1.3 0.69 0.8 1.2 2.7 1.5 0.35 J 0.07 J 0.5 U	0.30 J 1.0 U 1.0 U 1.0 U 1.0 U 0.6 2.5 U 0.26 J 0.23 J 0.50 U 0.18 J 0.2 U 0.20 J 0.5 U 0.16 J 0.11 J 0.12 J 0.49 J 0.16 J 0.10 J 0.13 J	2.0 1.0 0.70 J 3.0 1.0 U 1.4 1 J 0.44 J 0.69 0.23 J 0.44 J 0.2 U 0.28 J 0.15 J 0.14 J 0.12 J 0.13 J 0.15 J 0.15 J 0.50 U	1600 720 370 610 84 500 170 330 60 21 25 4.1 3.9 1.9 1.7 20 9.4 12 14 43 J 24 5.6 0.27 J 0.12 J
MW8-9	05/97 10/97 05/98 10/98 05/99 11/99 06/00 06/01 06/02 06/03 06/04 06/05 06/06 06/07 05/08 06/09 06/10 07/11 06/12 06/13 06/14 06/15 06/16 06/17 09/18	1.0 U 0.50 U 2.5 U 0.24 U 0.50 U 0.50 U 0.50 U 0.50 U 0.50 U 0.50 U 0.5 U	34 1.0 U 12 34 6.0 30 15 18 7.5 1.3 U 1.7 0.2 0.42 J 0.27 J 0.23 J 1.3 0.69 0.8 1.2 2.7 1.5 0.35 J 0.07 J 0.5 U 0.02 U	0.30 J 1.0 U 1.0 U 1.0 U 1.0 U 0.6 2.5 U 0.26 J 0.23 J 0.50 U 0.18 J 0.2 U 0.20 J 0.5 U 0.16 J 0.18 J 0.12 J 0.49 J 0.18 J 0.29 J 0.13 J 0.13 J	2.0 1.0 0.70 J 3.0 1.0 U 1.4 1 J 0.44 J 0.69 0.23 J 0.44 J 0.2 U 0.28 J 0.15 J 0.14 J 0.12 J 0.13 J 0.12 J 0.13 J 0.15 J 0.15 J 0.15 J 0.15 J 0.15 J 0.15 J 0.15 J 0.15 J 0.50 U NA	1600 720 370 610 84 500 170 330 60 21 25 4.1 3.9 1.9 1.7 20 9.4 12 14 43 J 24 5.6 0.27 J 0.12 J 0.059
MW8-9	05/97 10/97 05/98 10/98 05/99 11/99 06/00 06/01 06/02 06/03 06/04 06/05 06/06 06/07 05/08 06/09 06/10 07/11 06/12 06/13 06/14 06/15 06/16 06/17	1.0 U 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U 0.50 U 2.5 U 0.24 U 0.50 U 0.5 U	34 1.0 U 12 34 6.0 30 15 18 7.5 1.3 U 1.7 0.2 0.42 J 0.27 J 0.23 J 1.3 0.69 0.8 1.2 2.7 1.5 0.35 J 0.07 J 0.5 U	0.30 J 1.0 U 1.0 U 1.0 U 1.0 U 0.6 2.5 U 0.26 J 0.23 J 0.50 U 0.18 J 0.2 U 0.20 J 0.5 U 0.16 J 0.11 J 0.12 J 0.49 J 0.16 J 0.10 J 0.13 J	2.0 1.0 0.70 J 3.0 1.0 U 1.4 1 J 0.44 J 0.69 0.23 J 0.44 J 0.2 U 0.28 J 0.15 J 0.14 J 0.12 J 0.13 J 0.15 J 0.15 J 0.50 U	1600 720 370 610 84 500 170 330 60 21 25 4.1 3.9 1.9 1.7 20 9.4 12 14 43 J 24 5.6 0.27 J 0.12 J

Table G-1. Summary of Selected VOCs Detected in Groundwater and Seeps at OU 2 Area 8 (1995-2019)

			Analyte C	Concentration	n (µg/L)	
T	Sampling	1,1-DCE	cis-1,2-DCE	PCE	111 704	TCE
Location	Date	7 ^b	70	5 ^b	1,1,1-TCA 200	5 ^b
	nking Water) ^a rface Water) ^a	3.2 ^{b,c}	70	5 8.9 ^{b,c}	42,000	5 81 ^{b,c}
KG (Su	11/95	3.2 44	1.0 U	1.0 U	520	84
	06/96	44	1.0 U	1.0 U	460	84
	09/96	27	0.30 J	1.0 U	400	80
	05/97	42	1.0 U	1.0 U	500	63
	10/97	30	2.0	1.0 U	300	62
	05/98	33	1.0 U	1.0 U	200	61
	10/98	35	1.0 U	1.0 U	200	62
	05/99	8.0	2.0 U	2.0 U	45	27
	11/99	12	0.50 U	0.50 U	64 H	54 H
	06/00	12	0.40 J	0.50 U	82 J	41 J
	06/01	15	0.38 J	0.27 J	91	62
	06/02	1.1	0.46 J	0.79	84	92
	06/03	20	0.47 J	0.6	80 D	99 D
	06/04	25	0.37 J	0.66	80	110 D
MW8-11	06/05	10	0.2	0.5	33	61
	06/06	10	0.27 J	0.68	39	99 D
	06/07	3.3	0.29 J	0.81	21	46 D
	05/08	2.4	0.37 J	1.1	31	53
	06/09	1.6	0.38 J	1.2	22	67
	06/10	1.6	0.83	1.5	14	80 J
	07/11	0.35 J	0.82	0.79	10	75
	06/12	0.77 J	0.81	1.1	9.7	56
	06/13	0.56	0.61	1.0	6.9	67
	06/14	0.21 J	0.45 J	0.9	5.0	55
	06/15	0.2 J	0.55	0.77	6.3	63
	06/16	0.1 J	0.38 J	0.5	4.2	45
	06/17	0.5 U	0.26 J	0.44 J	3.0	24
	09/18	0.049 J	0.25	0.41	NA	24 EJ
	06/19	0.2 U	0.17 J	0.31 J	3.3	16
	11/95	10	1.0	13	140	85
	06/96	14	1.0 U	5.0	180	63
	09/96	20	2.0	23	250	120
	05/97	6.0	1.0	12	67	120
	10/97	4.0	1.0 U	7.0	41	44
	05/98	2.0	2.0	10	20	46
	10/98	1.0 U 1.0 U	1.0 U	15 4.0 U	22 8.0	46
	05/99 11/99	0.9	1.0 U 2.1	4.0 0 9.7	8.0 14	25 50 H
	06/00	0.9 0.50 J	3.0	9.7 16	6.8	50 H
	06/00	0.50 J	4.8	10	6.5	76
	06/01	0.50 U	4.5	14	5.0	47
	06/02	0.31 J	3.2	9.8	3.2	36
	06/03	0.34 J	3.1	8.5	4.1	40
MW8-12	06/05	0.3	3.3	8.8	2.8	34
	06/06	0.28 J	2.5	7.9	2.5	31
	06/07	0.22 J	3.5	6.8	2.0	37
	05/08	0.15 J	2.4	7.7	1.8	28
	06/09	0.18 J	3.4	11	2.5	52
	06/10	0.2 J	3.9	6.2	1.5	31
	07/11	0.11 J	3.0	6.0	2.1	31
	06/12	0.5 UJ	1.8	6.3	1.6	31
	06/13	0.5 U	0.5	5.6	1.2	23
	06/14	0.5 U	0.39 J	5.7	1.1	22
	06/15	0.5 U	0.26 J	4.6	1.7	17
	06/16	0.5 U	0.19 J	2.9	1.2	11
	06/17	0.5 U	0.28 J	2.8	0.87	10
	09/18	0.043 J	0.38	4.1	NA	16 EJ
	06/19	0.2 U	0.15 JM	2.3	1.3	11

Table G-1. Summary of Selected VOCs Detected in Groundwater and Seeps at OU 2 Area 8 (1995-2019)

			Analyte (Concentratio	n (µg/L)	
Location	Sampling Date	1,1-DCE	cis-1,2-DCE	PCE	1,1,1-TCA	TCE
Location	Date king Water) ^a	7 ^b	70	5 ^b	200	5 ^b
	rface Water) ^a	3.2 ^{b,c}		5 8.9 ^{b,c}	42,000	81 ^{b,c}
KG (Su	11/95	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
	06/96	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
	09/96	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
	05/97	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
	10/97	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
	05/98	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
	10/98	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
	05/99	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
	11/99	0.50 U	3.2	0.50 U	0.50 U	0.50 U
	06/00	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U
	06/01	0.12 U	0.12 U	0.11 U	0.84	0.12 U
	06/02	0.50 U	0.50 U	0.50 U	0.18 J	0.50 U
	06/03	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U
	06/04	0.50 U	0.50 U	0.50 U	0.12 J	0.50 U
MW8-14	06/05	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
	06/06	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
	06/07	0.5 U	0.5 U	0.5 U	0.5 U	0.23 J
	05/08	0.5 U	0.5 U	0.5 U	0.11 J	0.5 U
	06/09	0.2 U	0.5 U	0.5 U	0.1 J	0.5 U
	06/10	0.5 U	0.5 U	0.5 U	0.18 J	0.5 U
	07/11	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
	06/12	0.5 UJ	0.5 U	0.5 U	0.5 U	0.5 U
	06/13	0.5 U	0.5 U	0.5 U	0.5 U	0.5 UJ
	06/14	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
	06/15	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
	06/16	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
	06/17	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
	09/18 06/19	0.02 UJ 0.2 U	0.027	0.014 J	NA 0.2 U	0.031 0.2 U
MW8-15	06/19	0.2 U	0.2 UM 0.2 U	0.5 U 0.5 U	0.2 U	0.2 U
IVI VV 0-13	11/95	1.0 U	2.0	0.5 U	2.0	58
	06/96	1.0 U	2.0	0.80 J	2.0	72
	09/96	1.0 U	3.0	0.80 J	2.0	69
	05/97	1.0 U	2.0	0.80 J	2.0	57
	10/97	1.0 U	1.0 U	0.60 J	2.0	47
	05/98	1.0 U	2.0	0.80 J	1.0	61
	10/98	1.0 U	3.0	1.0 U	1.0 U	47
	05/99	1.0 U	6.0	1.0 U	2.0	40
	11/99	0.50 U	5.3	0.8	1.7	63
	06/00	0.59	16	0.7	1.1	51
	06/01	0.77	21	0.84	1.2	74
	06/02	0.67	30 U	0.99	0.83	130
	06/03	0.57	28	1.5	0.94	190 D
	06/04	0.61	130 D	0.75	0.59 J	120 D
MW8-16	06/05	0.9	34	2.2	0.7	350
	06/06	0.64	93 D	1.1	0.33 J	200 D
	06/07	0.68	38	1.5	0.42 J	430 D
	05/08	0.65	67 D	1.0	0.18 J	380 D
	06/09	0.21	14	0.64	0.13 J	140 D
	06/10	0.13 J	9.2	0.64	0.16 J	79 J
	07/11	0.1 J	3.6	0.76	0.22 J	90
	06/12	0.08	2.7	0.8	0.18 J	56
	06/13	0.5 U	0.93	0.79	0.21 J	50
	06/14	0.5 U	1.0	0.97	0.19 J	50
	06/15	0.09 J	1.8	0.51	0.19 J	48
	06/16	0.11 J	28	0.5 U	0.5 U	8.1
	06/17	0.09 J	26	0.15 J	0.5 U	7.2
	09/18	0.088 J	23 EJ	0.064	NA	4.4

Table G-1. Summary of Selected VOCs Detected in Groundwater and Seeps at OU 2 Area 8 (1995-2019)

			Analyte C	Concentratio	n (µg/L)	
Location	Sampling Date	1,1-DCE	cis-1,2-DCE	PCE	1,1,1-TCA	TCE
	king Water) ^a	7 ^b	70	5 ^b	200	5 ^b
	rface Water) ^a	3.2 ^{b,c}		8.9 ^{b,c}	42,000	81 ^{b,c}
	05/96	16	7.0	3.0	88	68
	06/00	3.1	3.7	0.30 J	19	7.4
	06/01	1.4	1.3	0.31 J	11	3.0
	06/02	1.0	0.68	0.50 U	9.5	1.2
	06/03	0.50 U	0.50 U	0.24 J	1.6	0.36 J
	06/04	13	9.9	0.92	77	49
	06/05	0.2 U	0.2 U	0.3	2.2	0.3
	06/06	1.5 J	2.0 J	0.3 J	12 J	3.6 J
	06/07	0.42	0.85	0.31 J	2.8	2.4
Seep A	05/08	1.1	1.7	0.55	5.5	7.7
_	06/09	1.5	1.9	0.39 J	5.7	6.4
	06/10	0.36 J	1.6	0.29 J	1.8	4.4
	07/11	0.5 U	0.09 J	0.1 J	0.5 U	1.4
	06/12	11 J	1.9	1.0	53 J	13
	06/13	0.5 U	1.3	0.26 J	1.0	3.3 J
	06/14	2.9	1.0	0.73	21	7.4
	06/15	0.25 J	1.3	0.3 J	3.6	2.5
	06/16	5.4	0.82	0.65	44 J	7.9
	06/17	2.6	0.69	0.58	18	6.7
	05/96	1.0 U	0.70 J	1.0 U	1.0	14
	06/00	0.50 U	0.50 U	0.50 U	0.30 J	2.2
	06/01	0.12 U	0.44 J	0.13 J	0.26 J	3.1
	06/02	0.50 U	0.52	0.12 J	0.15 J	5.4
	06/03	0.50 U	0.20 J	0.14 J	0.50 U	1.9
	06/04	0.50 U	0.23 J	0.39 J	0.8	0.61
Seep B	06/05	0.2 U	0.2 U	0.4	0.3	0.3
	06/06	0.5 U	0.18 J	0.22 J	0.12 J	0.48 J
	06/07	0.5 U	0.5 U	0.5 U	0.5 U	0.14 J
	05/08	0.5 U	0.12 J	0.17 J	0.1 J	0.41 J
	06/09	0.2 U	0.5 U	0.18 J	0.16 J	0.4 J
	06/10	0.5 U	0.51	0.18 J	0.09 J	5.7
	07/11	0.5 U	0.09 J	0.12 J	0.5 U	1.3
Seep C	09/18	1.0 UJ	0.0078 J	0.14 J	NA	0.06 J
Seep C	06/19	0.2 UJ M	0.055 J	0.17 J	0.71	0.26

^aProtection of human health for ingestion

^bValue listed accounts for adjustment when the maximum contaminant level or water

quality standard is sufficiently protective to serve as the RG for that individual chemical.

Individual cleanup levels may require downward adjustment for multiple chemical

contaminants or multiple exposure pathways. Value does not account for adjustments due

to background levels or practical laboratory quantitation limits.

^eProtection of human health for fish ingestion

Notes:

Bolded value indicates concentration in the monitoring well exceeds or is equal to the RG for drinking water, or in the seep exceeds or is equal to the RG for surface water.

Shaded row indicates data evaluated in this review period.

Yellow highlighted value exceeds or is equal to the surface water RG.

* - The reporting limit exceeds the RG

Data from 1995 to 2004 are from U.S. Navy 2005a, from 2005 to 2008 are from U.S. Navy

2008c, from 2009 are from U.S. Navy 2009d, and from 2010 through 2014 in U.S. Navy 2015c.

D - The reported result is from a dilution. DCE - dichloroethene

H - Analytical result is from an analysis reported past the holding time.

J - The result is an estimated concentration that is less than the MRL, but greater than or equal to the MDL.

MDL - method detection limit

µg/L - microgram per liter

MRL - method reporting limit

PCE - tetrachloroethene

RG - remediation goal

TCA - trichloroethane

TCE - trichloroethene

U - The compound was analyzed for, but was not detected ("nondetect") at or above the MRL/MDL.

Table G-2. Summary of Other VOCs Detected in Groundwater at OU 2 Area 8 (2015-2019)

	Sampling	Chloroform	CT CT	1,1-DCA	1,2-DCA	trans-1,2-DCE	1,1,2-TCA	Toluene	Total Xylenes
Location ID	Date	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
Drinking Water Reme	diation Goals	7.2	0.34	800	5	100	5	1,000	10,000
Surface Water Remed	iation Goals	470	4.4	NE	5.9	33,000	42	49,000	NE
MW8-8	06-15	1.4	/	0.5 U	/	1.5		0.46 J	0.5 U
MW8-8	06-16	1.9	\sim	0.5 U		2.2		0.5 U	0.5 U
MW8-8	06-17	0.62	\sim	0.5 U		3.0	0.019 J	0.5 U	0.5 U
MW8-8	09-18	0.54 J	0.26 J	0.5 U	0.006 J	1.8	0.23		
MW8-8	06-19	0.58	0.2 U	0.063 JM	0.2 U	1.9	0.2 UM		
MW8-9	06-15	0.16 J	/	0.5 U	/	0.12 J		0.77	0.11 J
MW8-9	06-16	0.5 U	\sim	0.5 U		0.5 U		0.17 J	0.5 U
MW8-9	06-17	0.5 U	\sim	0.5 U		0.5 U		0.5 U	0.5 U
MW8-9	09-18	0.024 J	0.046 J		0.02 J	0.02 U	0.02 U		
MW8-9	06-19	0.2 UM	0.2 U	0.2 UM	0.2 U	0.2 U	0.2 U		
MW8-11	06-15	0.48 J		0.12 J		0.56	$\overline{)}$	1.1	0.5 U
MW8-11	06-16	0.5 U	\sim	0.9 J		0.26 J		0.12 J	0.5 U
MW8-11	06-17	0.23 J		0.1 J		0.11 J		0.5 U	0.5 U
MW8-11	09-18	0.26 J	0.86 J		0.019 J	0.14	0.033		
MW8-11	06-19	0.18 J	0.2 U	0.08 J	0.2 U	0.2 U	0.2 U		
MW8-11 (Dup)	06-16	0.5 U		0.11 J	/	0.26 J		0.1 J	0.5 U
MW8-11 (Dup)	06-17	0.23 J		0.1 J		0.14 J		0.5 U	0.5 U
MW8-11 (Dup)	09-18	0.26 J	0.86 J		0.019 J	0.14	0.032		$\overline{)}$
MW8-11 (Dup)	06-19	0.18 J	0.2 U	0.084 J	0.2 U	0.2 U	0.2 U		
MW8-12	06-15	3.0	/	0.5 U		1.2	/	0.5 U	0.13 J
MW8-12	06-16	1.1	\sim	0.5 U		0.75		0.1 J	0.5 U
MW8-12	06-17	0.74		0.5 U		0.78		0.5 U	0.5 U
MW8-12	09-18	0.79 J	0.46 J		0.006 J	0.89	0.13		/
MW8-12	06-19	0.31	0.2 U	0.2 UM	0.2 U	0.37 M	0.2 U		
MW8-14	06-15	0.5 U	/	0.5 U		0.5 U	/	0.5 U	0.5 U
MW8-14	06-16	0.5 U	\sim	0.5 U		0.5 U		0.5 U	0.5 U
MW8-14	06-17	0.5 U		0.5 U		0.5 U	\sim	0.5 U	0.5 U
MW8-14	09-18	0.009 J	0.02 UJ		0.02 U	0.02 U	0.02 U	///	$\overline{)}$
MW8-14	06-19	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U		
MW8-15	06-19	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U		
MW8-16	06-15	1.8	$\overline{)}$	0.5 U	$\overline{)}$	0.5 U	$\overline{)}$	0.49 J	0.12 J
MW8-16	06-16	0.5 U		0.5 U		0.13 J	\sim	0.5 U	0.5 U
MW8-16	06-17	0.14 J	\sim	0.08 J	\sim	0.19 J	\sim	0.5 U	0.5 U
MW8-16	09-18	0.84 J	0.029 J		0.02 U	0.25	0.02 U	\	
MW8-16	06-19	0.11 JM	0.2 U	0.081 JM	0.2 U	0.25	0.2 U		\sim

Notes:

Bold indicates detected value is equal to or exceeds the drinking water RG.

µg/L – microgram per liter

CT - carbon tetrachloride

DCA - dichloroethane

DCE - dichloroethene

Dup - field duplicate

ID - identification

J - analyte positively identified, but result is estimated

M - manual integrated compound

TCA - trichloroethane

U - analyte was not detected at or above the indicated practical quantitation limit

VOC - volatile organic compounds

Table G-3. Summary of 1,4-Dioxane Results in Groundwater and Seeps at OU 2 Area 8 (2007-2019)

Location	Sampling	1,4-Dioxane
Location	Date	(µg/L)
	06/07	0.70 J
	07/11	1.0 U *
	06/12	0.76 J
	06/13	1.0 U *
MW8-8	06/14	1.0 U *
101 00 0-0	06/15	0.22 J
	06/16	0.41
	06/17	1.1
	09/18	0.43
	06/19	0.47
	06/07	1.0 U *
	07/11	1.0 U *
	06/12	1.0 U *
	06/13	1.0 U *
MW8-9	06/14	1.0 U *
101 00-9	06/15	0.40 U
	06/16	0.25 J
	06/17	0.40 U
	09/18	0.40 U
	06/19	0.19 U
	06/07	39
	07/11	29
	06/12	19
	06/13	11
MW8-11	06/14	11
	06/15	12
	06/16	14
	06/17	16
	09/18	8.1
	06/19	8.7
	06/07	1.1
	07/11	0.18 J
	06/12	0.53 J
	06/13	1.0 U *
MW8-12	06/14	0.31 J
	06/15	0.53
	06/16	1.1
	06/17	1.1
	09/18	0.96
	06/19	0.44

Table G-3. Summary of 1,4-Dioxane Results in Groundwater and Seeps at OU 2 Area 8 (2007-2019)

Location	Sampling	1,4-Dioxane
	Date	(µg/L)
MW8-14	06/07	1.0 U *
	07/11	1.0 U *
	06/12	1.0 J
	06/13	1.0 U *
	06/14	1.0 U *
	06/15	0.40 U
	06/16	0.16 J
	06/17	0.40 U
	09/18	0.40 U
	06/19	0.19 U
MW8-15	06/19	0.19 U
MW8-16	06/07	1.0 U *
	07/11	1.0 U *
	06/12	1.0 U *
	06/13	1.0 U *
	06/14	1.0 U *
	06/15	0.40 U
	06/16	0.22 J
	06/17	0.40 U
	09/18	0.40 U
	06/19	0.19 U
Seep A	07/11	1.0 U *
Seep B	07/11	1.0 U *

Notes:

No remediation goal is established for 1,4-dioxane.

Bold value is equal to or exceeds the Model Toxics Control Act Method B cleanup level (0.44 $\mu\text{g/L}).$

Data are from U.S. Navy 2015c.

 \ast - Reporting limit exceeds the MTCA Method B cleanup level.

J - The result is an estimated concentration that is less than the MRL, but greater than or equal to the MDL.

MDL - method detection limit

 μ g/L - microgram per liter

MRL - method reporting limit

U - The compound was analyzed for, but was not detected ("nondetect") at or above the MRL/MDL.

							Juniur y or y	Barris		oroununu	ter und seeps		Area 8 Exceedin	~			a 2 oleanap .								
			A	Arsenic		Cadn	nium	Total	Chromium	Chro	omium VI	1	Copper		Lead	м	lercury		Nickel	5	Silver	Т	hallium	Ziı	nc
	Sampling	Total	Total	Dissolved	Dissolved	Total	Dissolved	Total	Dissolved ^b	Total	Dissolved	Total	Dissolved	Total	Dissolved	Total	Dissolved	Total	Dissolved	Total	Dissolved	Total	Dissolved	Total	Dissolved
Location RG I	Date Drinking Water		(ICP)	0.05 ^e	(ICP)				50°		80		590		15		2		100		48		1.1	4,8	
	G Surface Water			0.14 ^{a,e}		8			50 ^d		50		2.5		5.8		0.025		7.9		1.2		1.6	7	
MW8-6	06/96	NA	NA	NA	1.1 B	NA	(-)	NA	NA	(-)	NA	NA	(-)	NA	NA	NA	NA	NA	(-)	NA	NA	NA	(-)	NA	54.8
MW8-7	11/95	3.3 +	NA	NA	NA	(-)	NA	NA	NA	(-)	NA	(-)	NA	(-)	NA	0.11	NA	(-)	NA	(-)	NA	NS	2.4 +	(-)	NA
	11/95	(-)	NA	NA	NA	(-)	NA	NA	NA	390	NA	4.8 +	NA	(-)	NA	(-)	NA	12.8 +	NA	(-)	NA	(-)	NA	(-)	NA
	05/96	NA	NA	NA	1.4 B	NA	(-)	NA	NA	380	NA	NA	(-)	NA	NA	NA	NA	NA	(-)	NA	NA	NA	1.2 BN	NA	(-)
	09/96 05/97	NA NA	NA NA	(-) 2.0 UN *	NA NA	NA NA	(-)	330 NA	NA 319	320 NA	NA 350	NA NA	(-) 2.0 U	NA NA	NA (-)	NA NA	NA 0.20 U *	NA NA	(-) 5.0 U	NA NA	(-) 4.0 U *	NA NA	NA 1.0 UN	NA NA	(-)
ł	10/97	NA	NA	0.50 UN *	NA	NA	(-)	NA	372	NA	NA	NA	2.3 B	NA	(-)	NA	0.10 U *	NA	11.0 U *	NA	1.8 B	NA	1.8 UN *	NA	(-)
	05/99	NA	NA	0.50 U *	NA	NA	(-)	NA	344	NA	NA	NA	(-)	NA	(-)	NA	0.10 U *	NA	4.0 U	NA	1.0 UN	NA	1.2 U *	NA	(-)
	10/98	NA	NA	1.8 U *	NA	NA	(-)	NA	322	NA	NA	NA	(-)	NA	(-)	NA	0.10 U *	NA	(-)	NA	1.0 UN	NA	1.2 U *	NA	(-)
	05/99	NA NA	NA NA	1.7 U * 5 U *	NA	NA NA	(-) 2.5	NA NA	184 N	NA NA	NA	NA NA	(-) 10 U *	NA	(-) 2 U	NA	0.10 U * 0.2 U *	NA	3.5 BN 20 U *	NA NA	2.2 U * 10 U *	NA NA	1.0 UN 5 U *	NA NA	(-) 10 U
	11/99 06/00	NA	NA	5 U * 0.20 J	NA NA	NA	1.33	NA	154 95.7	NA NA	NA 102 J	NA NA	0.46 J	NA NA	0.03	NA NA	0.2 U * 0.10 U *	NA NA	3.21 J	NA	0.907	NA NA	0.01 U	NA	3.1
ł	06/01	NA	NA	0.3 UJ *	NA	NA	0.58	NA	71.4	NA	NS	NA	0.29 J	NA	0.04 U	0.0022	NA	NA	1.5	NA	0.62	NA	0.005 U	NA	2 U
ļ	06/02	NA	NA	0.13 J	NA	NA	0.83 J	NA	191	NA	NA	NA	0.40	NA	0.15 UJ	NA	0.10 U *	NA	1.45	NA	0.47 J	NA	0.006 J	NA	0.8
	06/03	NA	NA	0.43 J	NA	NA	0.15	NA	84.1 J	NA	NA	NA	0.49	NA	0.04	NA	0.10 U *	NA	0.76 J	NA	0.17	NA	0.005 B	NA	0.7
MW8-8	06/04 06/05	NA NA	NA NA	0.32 B 0.44	NA NA	NA NA	0.2	NA NA	111 88.3	NA NA	NA NA	NA NA	0.45	NA NA	0.009 B 0.1 U	NA NA	0.04 U * 0.1 U *	NA NA	0.79 2.8	NA NA	0.489 0.265	NA NA	0.003 U 0.01 U	NA NA	1.45 0.99
	06/05	NA	NA	0.27 B	NA	NA	0.334	NA	88.6	NA	NA	NA	0.369	NA	0.021 U	NA	0.2 U *	NA	0.61 J	NA	0.284	NA	0.02 U	NA	1.02
ł	06/07	NA	NA	0.26 J	NA	NA	0.12	NA	81.9	NA	NA	NA	5.1	NA	0.24	NA	0.2 U *	NA	0.69	NA	0.19	NA	0.02 U	NA	1
ļ	05/08	NA	NA	0.21 B	NA	NA	0.124	NA	96	NA	NA	NA	0.496	NA	0.054 U	NA	0.2 U *	NA	1.08	NA	0.182	NA	0.005 B	NA	0.77
	06/09	NA	NA	0.21 J	NA	NA	0.432	NA	43.8	NA	NA	NA	0.437	NA	0.020 U	NA	0.2 U *	NA	1.05	NA	0.746 J	NA	0.009 J	NA	1.43
	06/10 07/11	NA NA	NA NA	0.85 0.91	NA NA	NA NA	0.114 0.036 UJ	NA NA	55.6 118	NA NA	NA NA	NA NA	0.77	NA NA	0.02 UJ 0.02 UJ	NA NA	0.02 J 0.2 U *	NA NA	0.72	NA NA	0.292 0.198	NA NA	0.02 U 0.02 U	NA NA	0.87 0.48 J
	06/12	NA	NA	0.7	NA	NA	0.022	NA	59.6	NA	NA	NA	0.53	NA	0.107	NA	0.2 U *	NA	0.68	NA	0.178	NA	0.013 J	NA	0.433
ł	06/13	NA	NA	0.648	NA	NA	0.008	NA	52.3	NA	NA	NA	0.33	NA	0.02 U	NA	0.2 U *	NA	0.34	NA	0.211	NA	0.02 U	NA	0.37 J
ſ	06/14	NA	NA	0.56	NA	NA	0.015 J	NA	66.7	NA	NA	NA	0.39 J	NA	0.05	NA	0.0023	NA	0.33	NA	0.336	NA	0.02 U	NA	0.38 J
	06/15	NA	NA	0.61	NA	NA	0.04 UJ	NA	83.2	NA	NA	NA	1.05		0.122	NA	0.00361	NA	0.28	NA	0.327 J	NA	0.02 UJ	NA	1.69
	06/16 07/17	NA NA	NA NA	0.8 0.33 J	NA NA	NA NA	0.082	NA NA	53.6 70.2	NA NA	NA NA	NA NA	0.32	NA NA	0.147 0.008 J	NA NA	0.00264 NA	NA NA	0.3	NA NA	0.496	NA NA	0.02 UJ NA	NA NA	2.1 0.54
ł	09/18	NA	NA	0.6 J	NA	NA	0.061	NA	60.4	NA	NA	NA	0.41	NA	0.04 U	NA	NA	NA	0.43	NA	0.484	NA	NA	NA	0.5 U
	06/19	NA	NA	0.42 J	NA	NA	0.207	NA	64.4	NA	NA	NA	0.27	NA	0.02 U	NA	NA	NA	0.57	NA	0.613	NA	NA	NA	2.2
	11/95	3.0 NW	NA	NA	NA	(-)	NA	NA	NA	(-)	NA	3.6 W+	NA	(-)	NA	(-)	NA	(-)	NA	(-)	NA	(-)	NA	(-)	NA
	05/96 09/96	NA NA	NA NA	NA 3.4 BW	2.6 B NA	NA NA	(-) 3.5 B	NA (-)	NA NA	380 (-)	NA NA	NA NA	(-)	NA NA	NA NA	NA NA	NA NA	NA NA	(-)	NA NA	NA (-)	NA NA	(-) NA	NA NA	(-)
	05/97	NA	NA	3.4 BW	NA	NA	э.э в (-)	(-) NA	(-)	(-) NA	(-)	NA	2.0 U	NA	(-)	NA	0.20 UN *	NA	(-) 5.0 U	NA	(-) 4.0 U *	NA	134 N	NA	(-)
ł	10/97	NA	NA	1.4 BNW	NA	NA	(-)	NA	(-)	NA	NA	NA	(-)	NA	(-)	NA	0.35	NA	11.0 U	NA	1.0 U	NA	1.8 UNW *	NA	(-)
ļ	04/98	NA	NA	1.1 BW	NA	NA	(-)	NA	(-)	NA	NA	NA	(-)	NA	(-)	NA	0.10 U *	NA	7.0 B	NA	1.0 UN	NA	6.0 U *	NA	(-)
	10/98	NA	NA	5.4 B	NA	NA	(-)	NA	(-)	NA	NA	NA	(-)	NA	(-)	NA	0.13 B	NA	38.2 B	NA	2.0 B	NA	6.0 UW *	NA	(-)
	05/99 11/99	NA NA	NA NA	2.0 B 5 U *	NA NA	NA NA	(-) 14	NA NA	(-)	NA NA	NA NA	NA NA	(-) 10 U *	NA NA	(-) 2 U	NA NA	0.10 U * 0.2 U *	NA NA	16.3 BN 20 U *	NA NA	2.7 B 10	NA NA	10.0 UNW * 5 U	NA NA	(-) 10 U
1	06/00	NA	NA	0.80 J	NA	NA	1.05	NA	9.8	NA	16 J	NA	0.95 J	NA	0.97	NA	0.2 U 0.10 U *	NA	8.57 J	NA	3.7	NA	0.01 U	NA	8.6
l i	06/01	NA	NA	0.5 J	NA	NA	1.13	NA	9.7	NA	NS	NA	0.78 J	NA	0.04 U	0.0036		NA	4.2	NA	1.61	NA	0.005 B	NA	3 U
1	06/02	NA	NA	0.43 J	NA	NA	0.65 J	NA	6.43	NA	NA	NA	0.90	NA	0.049 UJ	NA	0.10 U *	NA	4.97	NA	1.44 J	NA	0.003 J	NA	3.2
	06/03	NA	NA	0.58 J 0.42 B	NA	NA	0.98 0.51	NA	6.9 J 7.09	NA	NA	NA	1.38 0.73	NA	0.23 0.52	NA	0.10 B 0.05 U *	NA	4.85 J 3.91	NA NA	1.66 1.3	NA	0.015 B 0.003 U	NA	4.9 1.57
MW8-9	06/04 06/05	NA NA	NA NA	0.42 D	NA NA	NA NA	0.904	NA NA	6.8	NA NA	NA NA	NA NA	0.75	NA NA	0.52 0.1 U	NA NA	0.05 U *	NA NA	3.5	NA	0.68	NA NA	0.003 U 0.01 U	NA NA	2.17
	06/06	NA	NA	0.49 B	NA	NA	0.454	NA	6.87	NA	NA	NA	0.652	NA	0.02 U	NA	0.2 U *	NA	2.57 J	NA	0.863	NA	0.02 U	NA	1.01
ļ	06/07	NA	NA	0.52 J	NA	NA	0.3	NA	6.1	NA	NA	NA	8.1	NA	0.35	NA	0.2 U *	NA	2.3	NA	0.48	NA	0.02 U	NA	1.3
	05/08	NA	NA	0.69	NA	NA	0.363	NA	6.38	NA	NA	NA	0.654	NA	0.026 U	NA	0.2 U *	NA	2.25	NA	0.421	NA	0.004 B	NA	0.82
I I	06/09 06/10	NA NA	NA NA	0.63 J 0.73	NA NA	NA NA	0.59 0.174	NA NA	4.85	NA NA	NA NA	NA NA	0.659 0.739	NA NA	0.020 U 0.02 UJ	NA NA	0.2 U * 0.2 U *	NA NA	1.55	NA NA	0.263 J 0.312	NA NA	0.020 U 0.02 UJ	NA NA	0.59 4.57
	06/10	NA	NA	0.73	NA	NA	0.174	NA	7.46	NA	NA	NA	0.739	NA	0.02 UJ 0.014 J	NA	0.2 U * 0.2 U *	NA	1.2	NA	0.312	NA NA	0.02 UJ 0.02 UJ	NA	0.65
 	06/12	NA	NA	0.61	NA	NA	0.286	NA	6.09	NA	NA	NA	0.581	NA	0.015 J	NA	0.2 U *	NA	1.48	NA	0.43	NA	0.02 UJ	NA	0.6
	06/13	NA	NA	0.67	NA	NA	0.238	NA	5.41	NA	NA	NA	0.561	NA	0.009 J	NA	0.2 U *	NA	1.28	NA	0.245	NA	0.02 UJ	NA	0.48 J
	06/14	NA	NA	0.66	NA	NA	0.231	NA	6.3	NA	NA	NA	0.564	NA	0.18	NA	0.00439	NA	1.38	NA	0.36	NA	0.02 UJ	NA	0.7
	06/15 06/16	NA NA	NA NA	0.67 J 0.56	NA NA	NA NA	0.438 0.523	NA NA	6.32 7.81	NA NA	NA NA	NA NA	1.98 0.99	NA NA	0.09	NA NA	0.003 0.00374	NA NA	1.87 1.54	NA NA	0.488	NA NA	0.02 U 0.02 U	NA NA	2.5 6.58
	07/17	NA	NA	0.30 0.49 J	NA	NA	0.323	NA	5	NA	NA	NA	0.57	NA	0.016 J	NA	NA	NA	1.54	NA	0.439	NA	NA	NA	0.58
 	09/18	NA	NA	0.7	NA	NA	0.476	NA	10.3	NA	NA	NA	0.59	NA	0.05 UJ	NA	NA	NA	1.24	NA	0.507	NA	NA	NA	0.65
	06/19	NA	NA	0.66	NA	NA	0.73	NA	8.3	NA	NA	NA	0.47	NA	0.059 UJ	NA	NA	NA	1.44	NA	0.375	NA	NA	NA	0.57

					Tuo		unininar y or	morgum	es Detected in (or ound wa	ter und Beeps		Analyte Concent	0			u D Ciculiup I								
			A	Arsenic		Cad	mium	Total	Chromium	Chro	omium VI	1	Copper		Lead	N	Iercury		Nickel	5	Silver	Т	hallium	Zi	inc
Location	Sampling Date	Total	Total (ICP)	Dissolved	Dissolved (ICP)	Total	Dissolved	Total	Dissolved ^b	Total	Dissolved	Total	Dissolved	Total	Dissolved	Total	Dissolved	Total	Dissolved	Total	Dissolved	Total	Dissolved	Total	Dissolved
	Drinking Water			0.05 ^e			5		50°		80		590		15		2		100		48		1.1		800
RG	Surface Water	1		0.14 ^{a,e}	T		8		50 ^d		50		2.5		5.8		0.025		7.9		1.2		1.6		17
	11/95 05/96	2.0 W+ NA	NA NA	NA NA	NA 1.0 U *	251 NA	NA 444	NA NA	NA NA	950 800	NA	13.4 S	NA 18.9 B	(-)	NA NA	0.22 NA	NA	51.3	NA 39.5 B	4.2 NA	NA NA	(-) NA	NA	207	NA 248
	03/96	NA	NA	2.4 BW	NA	NA	262	626	NA	720	NA NA	NA NA	14.3 B	NA NA	NA	NA	NA NA	NA NA	42.3	NA	(-)	NA NA	(-) NA	NA NA	166
	05/97	NA	NA	2.1 NW	NA	NA	210	NA	441	NA	610	NA	12.4	NA	(-)	NA	0.20 UN *	NA	30.5	NA	7.0 N	NA	10.0 UW *	NA	161
	10/97	NA	NA	0.66 BNW	NA	NA	278	NA	377	NA	NA	NA	11.7 B	NA	(-)	NA	0.32	NA	40.0	NA	4.4 B	NA	9.0 UNW *	NA	178
	05/98	NA	NA	0.50 UW *	NA	NA	320	NA	303	NA	NA	NA	12.5 B	NA	(-)	NA	0.10 U *	NA	36.9 B	NA	5.2 BN	NA	6.0 U *	NA	193
	10/98 05/99	NA NA	NA NA	2.1 B 2.6 B	NA NA	NA NA	126 E 33.5 N	NA NA	459 198	NA NA	NA NA	NA NA	9.0 B 5.3 B	NA NA	(-)	NA NA	0.17 B 0.10 B	NA NA	16.2 B 4.6 BN	NA NA	2.2 B 2.2 U *	NA NA	1.2 UW * 10.0 UNW *	NA NA	50.9 (-)
	11/99	NA	NA	5 U *	NA	NA	205	NA	201	NA	NA	NA	10 U *	NA	2U	NA	0.2 U *	NA	20 U *	NA	10	NA	5 U *	NA	89
	06/00	NA	NA	0.80 J	NA	NA	106	NA	221	NA	227 J	NA	4.44 J	NA	0.16	NA	0.10 U *	NA	10.2 J	NA	2.09	NA	0.04	NA	109
	06/01	NA	NA	0.7 J	NA	NA	129	NA	429	NA	NS	NA	4.95 J	NA	0.062	0.0071		NA	13	NA	2.29	NA	0.038	NA	110
	06/02 06/03	NA NA	NA NA	0.52 J 0.61 J	NA NA	NA NA	420 J 353	NA NA	608 302 J	NA NA	NA NA	NA NA	4.90 5.15	NA NA	0.047 UJ 0.02 U	NA	0.10 U * 0.10 U *	NA NA	9.46 9.10 J	NA NA	3.87 J 5.87	NA NA	0.040 J 0.041	NA NA	221 134
	06/03	NA	NA	0.57	NA	NA	357	NA	290	NA	NA	NA	5.29	NA	0.02 0	NA NA	0.10 U *	NA	31.9	NA	6.45	NA	0.041	NA	157
MW8-11	06/05	NA	NA	1.9	NA	NA	266	NA	230	NA	NA	NA	4.63	NA	0.1 U	NA	0.1 U *	NA	24.4	NA	6	NA	0.05	NA	91
	06/06	NA	NA	0.61	NA	NA	338	NA	157	NA	NA	NA	3.48	NA	0.066 U	NA	0.2 U *	NA	25.8 J	NA	6.17	NA	0.0405	NA	135
	06/07	NA	NA	0.53 J	NA	NA	231	NA	150	NA	NA	NA	3.60	NA	0.094	NA	0.2 U *	NA	19.3	NA	4.70	NA	0.038	NA	81.0
	05/08	NA NA	NA NA	0.82 0.94 J	NA	NA	154 115	NA	191 163	NA	NA	NA NA	3.44	NA	0.055 U 0.020 U	NA	0.2 U * 0.2 U *	NA	15.1 11.1	NA NA	3.5 2.45 J	NA NA	0.025	NA	58.1 49.1
	06/09 06/10	NA	NA	0.94 J	NA NA	NA NA	214	NA NA	163	NA NA	NA NA	NA	3.09	NA NA	0.020 U 0.02 UJ	NA NA	0.2 U * 0.02 J	NA NA	11.1	NA NA	2.45 J	NA NA	0.024 0.034 UJ	NA NA	49.1 85.7
	07/11	NA	NA	0.68	NA	NA	166	NA	165	NA	NA	NA	3	NA	0.023	NA	0.2 U *	NA	16	NA	3.55	NA	0.025	NA	68
	06/12	NA	NA	0.7	NA	NA	152	NA	153	NA	NA	NA	2.81	NA	0.02 U	NA	0.2 U *	NA	11.4	NA	3.22	NA	0.026 UJ	NA	68.4
	06/13	NA	NA	0.86	NA	NA	85.1	NA	187	NA	NA	NA	2.61	NA	0.014 J	NA	0.2 U *	NA	9.77	NA	2.77	NA	0.022 UJ	NA	44
	06/14	NA	NA	0.93	NA	NA	106	NA	164	NA	NA	NA	2.76	NA	0.05	NA	0.00973	NA	12.1	NA	2.6	NA	0.033 UJ	NA	43
	06/15 06/16	NA NA	NA NA	0.87 J 0.74	NA NA	NA NA	127 131	NA NA	182 145	NA NA	NA NA	NA NA	3.52 5.75	NA NA	0.047 8.02	NA NA	0.0102	NA NA	13.8 19.1	NA NA	3.11 4.21	NA NA	0.026	NA NA	52.4 85
	06/17	NA	NA	0.91	NA	NA	131	NA	145	NA	NA	NA	2.62	NA	0.017 J	NA	NA	NA	14.6	NA	2.7	NA	NA	NA	48
	09/18	NA	NA	0.77	NA	NA	122	NA	168	NA	NA	NA	2.81	NA	0.094 UJ	NA	NA	NA	5.87	NA	3.85	NA	NA	NA	47
	06/19	NA	NA	1.09	NA	NA	161	NA	135	NA	NA	NA	2.52	NA	0.05 U	NA	NA	NA	13.7	NA	2.77	NA	NA	NA	47.9
	11/95	5.1 N	NA	NA	NA	28.6	NA	NA	NA	1500	NA	329 S+	NA	11.7	NA	0.19	NA	34.6 +	NA	(-)	NA	(-)	NA	(-)	NA
	05/96	NA	NA	NA 10 P	3.6 B	NA	46.1 53.8	NA 1740	NA	380	NA	NA	(-)	NA	NA	NA	NA	NA	17.9 B	NA	NA	NA	(-)	NA	29.7
	09/96 05/97	NA NA	NA NA	1.9 B 2.0 UN *	NA NA	NA NA	53.8	1740 NA	NA 1280	1800 NA	NA 1400	NA NA	(-) 64.4	NA NA	NA 20 UN *	NA NA	NA 0.20 UN *	NA NA	49.3 673	NA NA	(-) 40 UN *	NA NA	NA 1.0 UNW	NA NA	(-) 727
	10/97	NA	NA	1.8 BN	NA	NA	154	NA	961	NA	NA	NA	150	NA	(-)	NA	0.10 U *	NA	423	NA	1.8 B	NA	1.8 UNW *	NA	325
	05/98	NA	NA	2.4 BW	NA	NA	7.3	NA	728	NA	NA	NA	5.2 B	NA	(-)	NA	0.10 U *	NA	7.5 B	NA	1.0 BN	NA	1.2 U *	NA	(-)
	10/98	NA	NA	1.8 U *	NA	NA	6.5 E	NA	1090	NA	NA	NA	4.0 B	NA	(-)	NA	0.15 B	NA	8.9 B	NA	1.2 B	NA	1.2 U *	NA	(-)
	5/99	NA	NA	1.7 U *	NA	NA	45.7 N	NA	815 N	NA	NA	NA	19.9 B	NA	3.2 N	NA	0.10 U *	NA	70.0 N	NA	2.2 U *	NA	1.0 UNW	NA	48.9
	11/99 06/00	NA NA	NA NA	NA 0.20 J	NA NA	NA NA	(-) 20	NA NA	(-) 163	NA NA	NA 216 J	NA NA	NA 5.65 J	NA NA	NA 0.75	NA NA	NA 0.10 U *	NA NA	NA 26.8 J	NA NA	NA 0.88	NA NA	NA 0.01 U	NA NA	NA 24.9
	06/01	NA	NA	0.20 J	NA	NA	20.7	NA	103	NA	NA	NA	6.14 J	NA	1.2	0.0022	NA	NA	20.8 5	NA	1.24	NA	0.013 B	NA	25.3
	06/02	NA	NA	0.37 J	NA	NA	4.42 J	NA	238	NA	NA	NA	4.10	NA	0.17 UJ	NA	0.10 U *	NA	2.77	NA	0.27 K	NA	0.006 J	NA	1.8
	06/03	NA	NA	0.32 J	NA	NA	7.84	NA	107 J	NA	NA	NA	2.78	NA	0.15	NA	0.10 U *	NA	4.36 J	NA	0.47	NA	0.013 B	NA	2.3
	06/04	NA	NA	0.43 B	NA	NA	3.23	NA	146	NA	NA	NA	5.15	NA	0.096	NA	0.05 U *	NA	2.55	NA	-0.197	NA	0.007 B	NA	0.92
MW8-12	06/05 06/06	NA	NA NA	1.3 0.28 B	NA NA	NA	2.04 2.71	NA NA	114 113	NA	NA	NA NA	3.7 2.67	NA NA	0.219 0.048 U	NA NA	0.1 U * 0.2 U *	NA	3 1.99 J	NA NA	0.22 0.279	NA	0.01 U 0.02 U	NA NA	5.97 4.17
	06/08	NA NA	NA	0.23 D	NA	NA NA	0.31	NA	101	NA NA	NA NA	NA	2.6	NA	0.054	NA	0.2 U *	NA NA	0.92	NA	0.037	NA NA	0.02 U	NA	0.67
	05/08	NA	NA	0.53	NA	NA	0.431	NA	100	NA	NA	NA	2.18	NA	0.036 U	NA	0.2 U *	NA	1.07	NA	0.057	NA	0.004 B	NA	0.25 B
	06/09	NA	NA	0.68 J	NA	NA	0.109	NA	80.8	NA	NA	NA	1.65	NA	0.018 J	NA	0.2 U *	NA	0.57	NA	0.016 J	NA	0.006 J	NA	0.15 J
	06/10	NA	NA	0.35 J	NA	NA	0.433	NA	74.8	NA	NA	NA	2.48	NA	0.264 J	NA	0.02 J	NA	0.93	NA	0.05	NA	0.02 UJ	NA	0.39 J
	07/11	NA	NA	0.46 J	NA	NA	0.194	NA	137	NA	NA	NA	2.22	NA	0.048	NA	0.2 U *	NA	0.66	NA	0.027 UJ	NA	0.02 UJ	NA	0.2 J
	06/12 06/13	NA NA	NA NA	0.5 4.63	NA NA	NA NA	0.128 0.063	NA NA	106 89.4	NA NA	NA NA	NA NA	1.78	NA NA	0.028	NA NA	0.2 U * 0.2 U *	NA NA	0.57 0.42	NA NA	0.019 J 0.008 J	NA NA	0.034 J 0.02 U	NA NA	0.5 UJ 0.43 J
	06/13	NA	NA	2.2	NA	NA	0.063	NA	<u> </u>	NA NA	NA	NA	1.55 2.7 J	NA	0.032	NA	0.20*	NA NA	0.42	NA	0.008 J 0.02 UJ	NA	0.02 U 0.02 U	NA	0.43 J 0.35 J
	06/15	NA	NA	2.3	NA	NA	0.082	NA	118	NA	NA	NA	2.11	NA	0.425	NA	0.00328	NA	0.58	NA	0.02 UJ	NA	0.02 UJ	NA	0.58
	06/16	NA	NA	0.3 J	NA	NA	0.797	NA	87.69	NA	NA	NA	2.29	NA	0.057 UJ	NA	0.00367	NA	1.11	NA	0.141	NA	0.02 U	NA	1.63
	06/17	NA	NA	0.45 J	NA	NA	0.352	NA	72.9	NA	NA	NA	1.45	NA	0.039	NA	NA	NA	0.79	NA	0.045	NA	NA	NA	0.33 J
	09/18	NA	NA	0.45 J	NA NA	NA	0.272	NA	159	NA NA	NA	NA	1.79	NA	0.061 UJ	NA	NA	NA	0.88	NA	0.052	NA	NA	NA	0.43 J
L	06/19	NA	NA	0.33 J	NA	NA	2.73	NA	89.7	NA	NA	NA	1.65	NA	0.132 UJ	NA	NA	NA	2.99	NA	0.327	NA	NA	NA	13.5

					Iu			Inorgani		or ound wa	ter und beeps		rea 8 Exceedi Analyte Concent												
			A	Arsenic		Cadı	mium	Total	Chromium	Chro	omium VI		Copper		/ Lead	N	Iercury		Nickel	5	Silver	Т	hallium	Zi	nc
Terrettere	Sampling	Total	Total	Dissolved	Dissolved	Total	Dissolved	Total	Dissolved ^b	Total	Dissolved	Total	Dissolved	Total	Dissolved	Total	Dissolved	Total	Dissolved	Total	Dissolved	Total	Dissolved	Total	Dissolved
Location	Date Drinking Water		(ICP)	0.05 ^e	(ICP)				50°		80		590		15		2		100		48		1.1	4,8	
	Surface Water			0.14 ^{a,e}					50 ^d		50		2.5		5.8		0.025		7.9		1.2		1.6	.,	
	11/95	5.1 W+	NA	NA	NA	22.4	NA	NA	NA	<u>90</u>	NA	152 S	NA	203 N	NA	0.52	NA	100	NA	(-)	NA	(-)	NA	241	NA
	05/96	NA	NA	NA	3.3 B	NA	10.9	NA	NA	(-)	NA	NA	6.7 B	NA	NA	NA	NA	NA	(-)	NA	NA	NA	(-)	NA	29.9
	09/96	NA	NA	3.1 BW	NA	NA	19.9	(-)	NA	(-)	NA	NA	(-)	NA	NA	NA	NA 0.20 JPL *	NA	(-)	NA	8.6 B	NA	NA 10.0 JDL *	NA	(-)
	05/97 10/97	NA NA	NA NA	2.8 NW 1.0 BNW	NA NA	NA NA	9.8 3.2	NA NA	(-)	NA NA	(-) NA	NA NA	2.0 U (-)	NA NA	(-)	NA NA	0.20 UN * 0.48	NA NA	5.0 U 11.0 U *	NA NA	7.3 N 2.0 B	NA NA	10.0 UN * 1.8 UBN *	NA NA	(-)
	05/98	NA	NA	0.86 BW	NA	NA	12.6	NA	(-)	NA	NA	NA	(-)	NA	(-)	NA	0.10 U *	NA	4.8 B	NA	1.2 BN	NA	6.0 U *	NA	(-)
	10/98	NA	NA	10.8	NA	NA	16.9 E	NA	(-)	NA	NA	NA	(-)	NA	(-)	NA	0.15 B	NA	4 B	NA	1.0 U	NA	6.0 UW *	NA	(-)
	05/99	NA	NA	2.2 B	NA	NA	10.5 N	NA	(-)	NA	NA	NA	13.2	NA	(-)	NA	0.10 U *	NA	(-)	NA	2.2 U *	NA	10.0 UNW *	NA	(-)
	11/99 06/00	NA NA	NA NA	5 U * 2	NA NA	NA NA	13 13.8	NA NA	7 14.4	NA NA	NA 58.8 J	NA NA	10 U * 1.22 J	NA NA	2U 0.61	NA NA	0.2U * 0.10 U *	NA NA	20 U * 3.71 J	NA NA	10 U * 0.564	NA NA	5 U 0.01 U	NA NA	10 U 3.2
	06/01	NA	NA	1.3 J	NA	NA	13.0	NA	29.7	NA	NA	NA	1.16 J	NA	0.959	.0009 B	0.10 0	NA	2.4	NA	0.31	NA	0.007 B	NA	3.2 3 U
	06/02	NA	NA	1.53 J	NA	NA	14.9 J	NA	15.8	NA	NA	NA	1.70	NA	0.74 UJ	NA	0.10 U *	NA	4.63	NA	0.44 J	NA	0.007 J	NA	4
	06/03	NA	NA	2.08 J	NA	NA	14.6	NA	16.2 J	NA	NA	NA	1.53	NA	0.74	NA	0.10 U *	NA	4.71 J	NA	0.38	NA	0.006 B	NA	2.6
MW8-14	06/04 06/05	NA NA	NA NA	1.63 2	NA NA	NA NA	13.5 12.5	NA NA	22.2	NA NA	NA NA	NA NA	1.37	NA NA	0.89	NA NA	0.06 U * 0.1 U *	NA NA	5.61 6.9	NA NA	0.351 0.46	NA NA	0.007 B 0.01 U	NA NA	2.6 2.92
101 00 - 14	06/05	NA	NA	1.66	NA	NA	11.1	NA	14.9	NA	NA	NA	1.13	NA	0.682	NA	0.2 U *	NA	5.17 J	NA	0.358	NA	0.02 U	NA	2.25
	06/07	NA	NA	1.5 J	NA	NA	9.8	NA	15.4	NA	NA	NA	2.9	NA	0.99	NA	0.2 U *	NA	5.5	NA	0.33	NA	0.02 U	NA	2.6
	05/08	NA	NA	1.91	NA	NA	8.33	NA	21	NA	NA	NA	1.38	NA	0.817	NA	0.2 U *	NA	5.21	NA	0.24	NA	0.012 B	NA	2.2
	06/09 06/10	NA NA	NA NA	1.78 J 1.91	NA NA	NA NA	8.91 10.4	NA NA	18.2 28.3	NA NA	NA NA	NA NA	1.76 1.42	NA NA	1.18 1.57 J	NA NA	0.2 U * 0.2 U *	NA NA	5.08 4.89	NA NA	0.259 J 0.383	NA NA	0.005 J 0.02 UJ	NA NA	2.58 2.23
	07/11	NA	NA	1.91	NA	NA	8.65	NA	15.1	NA	NA	NA	1.42	NA	1.06	NA	0.2 U *	NA	5.42	NA	0.385	NA	0.02 UJ	NA	2.23
	06/12	NA	NA	1.67	NA	NA	7.9	NA	19.8	NA	NA	NA	1.29	NA	0.88	NA	0.2 U *	NA	4.42	NA	0.223	NA	0.039 J	NA	2.1
	06/13	NA	NA	1.56	NA	NA	8.52	NA	23.9	NA	NA	NA	1.29	NA	1.07	NA	0.2 U *	NA	4.25	NA	0.237	NA	0.02 UJ	NA	2.01
	06/14 06/15	NA NA	NA NA	1.6 1.61 J	NA NA	NA NA	7.6 9.04	NA NA	15.76 17.94	NA NA	NA NA	NA NA	1.91 1.76	NA NA	1.17	NA NA	0.00202 0.00197	NA NA	4.35	NA NA	0.25	NA NA	0.02 UJ 0.011 J	NA NA	2.6
	06/15	NA	NA	1.35	NA	NA	5.04 6.94	NA	14.78	NA	NA	NA	1.83	NA	1.96	NA	0.00137	NA	4.64	NA	0.230	NA	0.011 J 0.008 J	NA	4.42
	06/17	NA	NA	1.47	NA	NA	5.91	NA	12.4	NA	NA	NA	1.39	NA	0.984	NA	NA	NA	4.37	NA	0.21	NA	NA	NA	2.41
	09/18	NA	NA	1.61	NA	NA	10.1	NA	31.2	NA	NA	NA	1.26	NA	1.45	NA	NA	NA	3.59	NA	0.305	NA	NA	NA	2.69
	06/19 11/95	NA (-)	NA NA	1.53 1.0 UN *	NA NA	NA (-)	7.14 J (-)	NA NA	13.5 NA	NA (-)	NA NA	NA 2.5 +	(-)	NA (-)	(-)	NA (-)	NA NA	NA (-)	5.08 9.3 +	NA (-)	0.234 3.0 UNW *	NA NS	NA (-)	NA (-)	2.43 35.6
MW8-15	06/19	NA	NA	0.23 J	NA	NA	0.02 U	NA	0.28	NA	NA	NA	0.02 U	NA	0.025 UJ	NA	NA	NA	0.29	NA	0.020 U	NA	NA	NA	2.0 U
	11/95	2.3 +	NA	NA	NA	(-)	NA	NA	NA	(-)	NA	(-)	NA	(-)	NA	0.16	NA	(-)	NA	(-)	NA	(-)	NA	(-)	NA
	05/96	NA	NA	NA	2.8 B	NA	(-)	NA	NA	(-)	NA	NA	(-)	NA	NA	NA	NA	NA	(-)	NA NA	NA	NA	1.1 BNW	NA	(-)
	09/96 05/97	NA NA	NA NA	2.9 B 2.3 N	NA NA	NA NA	(-)	(-) NA	NA (-)	(-) NA	(-)	NA NA	(-) 2.0 U	NA NA	NA (-)	NA NA	NA 0.20 UN *	NA NA	(-) 5.0 U	NA	(-) 4.0 UN *	NA NA	NA 1.0 UNW	NA NA	(-)
	10/97	NA	NA	1.4 BN	NA	NA	(-)	NA	(-)	NA	NA	NA	(-)	NA	(-)	NA	0.10 U *	NA	11.0 U *	NA	1.0 U	NA	1.8 UN *	NA	(-)
	05/98	NA	NA	1.2 B	NA	NA	(-)	NA	(-)	NA	NA	NA	(-)	NA	(-)	NA	0.10 U *	NA	5.7 B	NA	1.0 UN	NA	1.2 U *	NA	(-)
	10/98 05/99	NA NA	NA NA	1.8 U * 1.7 U *	NA NA	NA NA	(-)	NA NA	(-)	NA NA	NA NA	NA NA	(-)	NA NA	(-) 3.4 N	NA NA	0.10 U * 0.11 B	NA NA	(-) 4,1 BN	NA NA	1.0 U 2.2 U *	NA NA	1.2 U * 1.0 UNW	NA NA	(-)
	11/99	NA	NA	5 U *	NA	NA	(-) 4 U	NA	(-) 5U	NA	NA	NA	(-) 10 U *	NA	2 U	NA	0.11 B 0.2 U *	NA	4,1 BN 20 U *	NA	2.2 U * 10 U *	NA	5 U *	NA	(-) 10 U
	06/00	NA	NA	1.14 J	NA	NA	0.16	NA	.17 U	NA	4.0 U	NA	0.20 J	NA	7 U *	NA	0.10 U *	NA	1.02 J	NA	0.020 B	NA	0.03 U	NA	4
	06/01	NA	NA	1.5 J	NA	NA	0.21	NA	0.45	NA	NA	NA	0.2 R	NA	0.04 U	.0003 B	NA	NA	1.4	NA	0.07 U	NA	0.005 U	NA	36.5
	06/02	NA	NA	1.82 J 2.37 J	NA	NA	0.065 J 0.42	NA	0.04 U 1.0 UJ	NA	NA	NA	0.20 0.10 U	NA	0.011 UJ 0.10 U	NA	0.10 U * 0.10 U *	NA	2.59 9.34 J	NA	0.001 J 0.04 U	NA	0.002 J 0.02 U	NA	1.7 2.3 B
	06/03 06/04	NA NA	NA NA	2.75	NA NA	NA NA	0.42	NA NA	0.04 U	NA NA	NA NA	NA NA	0.38	NA NA	0.10 U 0.011 B	NA NA	0.10 U *	NA NA	3.76	NA NA	0.004 U	NA NA	0.02 U 0.001 U	NA NA	2.3 B
MW8-16	06/05	NA	NA	3	NA	NA	2 U	NA	5 U	NA	NA	NA	2	NA	2 U	NA	0.1 U *	NA	10 U *	NA	3 U *	NA	1 U	NA	6 U
	06/06	NA	NA	2.44	NA	NA	0.186	NA	0.2 U	NA	NA	NA	0.043 B	NA	0.02 U	NA	0.2 U *	NA	3.61 J	NA	0.028	NA	0.02 U	NA	1.15
	06/07	NA	NA NA	2.3 J 3.61	NA	NA	0.098	NA	0.41	NA	NA	NA	0.77 0.043 B	NA NA	0.075 0.044 U	NA	0.2 U * 0.2 U *	NA	2.7 0.64	NA	0.02 U 0.01 B	NA	0.02 U 0.002 U	NA NA	1 0.36 B
	05/08 06/09	NA NA	NA	3.50 J	NA NA	NA NA	0.013 J	NA NA	0.10 J	NA NA	NA NA	NA NA	0.156	NA	0.020 U	NA NA	0.2 U *	NA NA	0.42	NA NA	0.004 J	NA NA	0.02 U	NA	0.10 J
	06/10	NA	NA	1.52	NA	NA	0.022 UJ	NA	0.06 J	NA	NA	NA	0.1 UJ	NA	0.02 UJ	NA	0.2 U *	NA	1	NA	0.005 J	NA	0.02 UJ	NA	0.21 J
	07/11	NA	NA	4.1	NA	NA	0.059	NA	0.29	NA	NA	NA	0.72	NA	0.02 UJ	NA	0.2 U *	NA	0.65	NA	0.02 UJ	NA	0.02 U	NA	0.46 J
	06/12 06/13	NA	NA	2.04 4.19	NA	NA	0.027	NA	0.33	NA	NA	NA	0.295	NA	0.009 J 0.042	NA	0.2 U * 0.2 U *	NA	0.35	NA NA	0.015 J 0.053	NA	0.02 UJ 0.02 U	NA	0.5 UJ 1.25
	06/13	NA NA	NA NA	4.19 3.9	NA NA	NA NA	0.037 0.013 J	NA NA	2.49	NA NA	NA NA	NA NA	0.5 1.06 J	NA NA	0.042	NA NA	0.2 U *	NA NA	0.68	NA NA	0.053 0.022 UJ	NA NA	0.02 U 0.02 U	NA NA	0.84
	06/15	NA	NA	2.6	NA	NA	0.022	NA	0.42	NA	NA	NA	0.66	NA	0.046	NA	0.00218	NA	0.26	NA	0.02 UJ	NA	0.02 UJ	NA	0.99
	06/16	NA	NA	2.14	NA	NA	0.074	NA	0.2 UJ	NA	NA	NA	0.1 UJ	NA	0.02 UJ	NA	0.00034 B	NA	1.93	NA	0.02 UJ	NA	0.007 J	NA	0.76
	06/17 09/18	NA	NA NA	2.17 2.39	NA NA	NA NA	0.006 J 0.02 UJ	NA NA	1.01	NA NA	NA NA	NA NA	0.1 UJ 0.06 J	NA NA	0.016 J 0.05 U	NA NA	NA NA	NA NA	4.45	NA NA	0.008 J 0.02 U	NA NA	NA NA	NA NA	0.5
	09/18	NA NA	NA	2.39	NA	NA	0.02 UJ	NA	0.51	NA	NA	NA	0.08 J 0.1 U	NA	0.05 U	NA	NA	NA	5.85	NA	0.02 U 0.02 U	NA	NA	NA	0.32
L	0.0.47						0.02.0		0.01		- ***			- ** •	0.00 0		- ** •	- ** •	2.00		0.02 0	- ** •		- • • •	

											-		Analyte Concent	tration (µg/L	.)		-								
			A	Arsenic		Cad	mium	Total	l Chromium	Chr	romium VI	(Copper		Lead	М	lercury		Nickel		Silver	Т	hallium	Zi	inc
Location	Sampling Date	Total	Total (ICP)	Dissolved	Dissolved (ICP)	Total	Dissolved	Total	Dissolved ^b	Total	Dissolved	Total	Dissolved	Total	Dissolved	Total	Dissolved	Total	Dissolved	Total	Dissolved	Total	Dissolved	Total	Dissolved
RG	Drinking Water		(-)	0.05 ^e	(101)		5		50 ^c		80		590		15		2		100		48		1.1	4,8	800
RG	Surface Water			0.14 ^{a,e}			8		50 ^d		50		2.5		5.8		0.025		7.9		1.2		1.6	7	17
MW8-17	11/95	3.0 N	NA	NA	NA	(-)	NA	NA	NA	(-)	NA	26.7 S+	NA	(-)	NA	0.11	NA	35.2 +	NA	(-)	NA	NA	(-)	(-)	NA
MW8-18	11/95	1.8 N	NA	1.2 N	NA	(-)	(-)	NA	NA	(-)	NA	3.8 +	(-)	(-)	(-)	(-)	NA	16.0 +	9.0 +	(-)	3.0 UNW *	NA	(-)	(-)	(-)
MW8-19	11/95	3.3 NW	NA	1.9 N	NA	(-)	(-)	NA	NA	(-)	NA	22.9 S+	1.3 +	3.2	NA	(-)	NA	25.7 +	9.0 U + *	(-)	3.0 UNW *	NA	(-)	(-)	(-)
MW8-20	11/95	(-)	NA	NA	NA	(-)	NA	NA	NA	(-)	NA	7.9 +	NA	(-)	NA	(-)	NA	18.6 +	NA	(-)	NA	NA	(-)	(-)	NA
	05/96	NA	NA	NA	1.3 B	46.7	33.9	183	159	240	NA	7.8 B	5.1 B	NA	NA	NA	NA	NA	(-)	NA	NA	NA	NA	NA	(-)
	05/97	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	(-)	NA	NA
	06/00	NA	NA	2.4 J	NA	NA	0.14	NA	0.6	NA	NA	NA	0.27	NA	1.3 J	NA	NA	NA	5.59 J	NA	1.14 J	NA	0.02	NA	0.8
	06/01	NA	NA	0.9 J	NA	NA	23.2	NA	5.6	NA	NA	NA	1 J	NA	0.06	0.0034	NA	NA	1	NA	0.1	NA	0.022	NA	7.6 B
	06/02	NA	NA	1.95 J	NA	NA	2.57 J	NA	0.44 U	NA	NA	NA	0.80	NA	0.054 UJ	NA	0.10 U *	NA	0.95	NA	0.011 UJ	NA	0.003 J	NA	1.3
	06/03	NA	NA	1.29 J 0.66	NA	NA	38.3 88.9	NA	7.6 J 45.5	NA	NA	NA	0.89	NA	0.03	NA	0.10 U * 0.06 U *	NA	1.22 J 4.29	NA	0.02	NA	0.012 B 0.015 B	NA	4.5 B 0.83
	06/04	NA	NA	1.7	NA	NA	50.3	NA	45.5	NA	NA	NA	1.08	NA	0.032 0.1 U	NA	0.06 U * 0.1 U *	NA	2	NA	0.031 0.032 U	NA	0.015 B 0.014	NA	1.83
	06/05 06/06	NA NA	NA NA	1.7	NA NA	NA NA	14.4	NA NA	3.58	NA NA	NA NA	NA NA	0.814	NA NA	0.1 U	NA NA	0.1 U *	NA NA	1.74 J	NA NA	0.032 0	NA NA	0.014 0.02 U	NA NA	1.65
	06/08	NA	NA	1.21 1 J	NA	NA	19.4	NA	7.2	NA NA	NA	NA	1.2	NA	0.063	NA	0.2 U *	NA	1.743	NA	0.102 0.02 U	NA	0.02 U	NA	1.4
Seep A ^f	05/08	NA	NA	2.48	NA	NA	7.96	NA	10.6	NA	NA	NA	0.867	NA	0.092 U	NA	0.2 U *	NA	1.77	NA	0.02 0	NA	0.01 B	NA	1.44
	06/09	NA	NA	1.50 J	NA	NA	2.57	NA	5.0	NA	NA	NA	0.383	NA	0.028	NA	0.2 U *	NA	1.18	NA	0.013 J	NA	0.003 J	NA	1.00
	06/10	NA	NA	1.66	NA	NA	6.6	NA	4.87	NA	NA	NA	0.517	NA	0.028 0.042 UJ	NA	0.2 U *	NA	1.94	NA	0.013 5	NA	0.02 UJ	NA	2.58
	07/11	NA	NA	1.19	NA	NA	1.08	NA	3.59	NA	NA	NA	0.651	NA	0.036	NA	0.2 U *	NA	1.58	NA	0.02 UJ	NA	0.02 UJ	NA	0.6
	06/12	NA	NA	0.98	NA	NA	15.4	NA	7.52	NA	NA	NA	0.468	NA	0.047	NA	0.2 U *	NA	2.99	NA	0.107	NA	0.026 UJ	NA	1.21
	06/13	NA	NA	1.27	NA	NA	0.848	NA	4.32	NA	NA	NA	0.435	NA	0.016 J	NA	0.2 U *	NA	1.03 UJ	NA	0.009 J	NA	0.02 UJ	NA	0.68
	06/14	NA	NA	1.1	NA	NA	2.9	NA	7.3	NA	NA	NA	0.511	NA	0.03	NA	0.00162	NA	1.97	NA	0.02 UJ	NA	0.02 UJ	NA	0.8
	06/15	NA	NA	0.99 J	NA	NA	0.729	NA	1.37	NA	NA	NA	0.38	NA	0.047	NA	0.00506	NA	1.05	NA	0.011 J	NA	0.006 J	NA	2.3
	06/16	NA	NA	0.89	NA	NA	10.5	NA	3.22	NA	NA	NA	0.372	NA	0.053 UJ	NA	0.00134	NA	6.83	NA	0.057	NA	0.008 J	NA	0.62
	06/17	NA	NA	0.93	NA	NA	10.5	NA	6.14	NA	NA	NA	0.42	NA	0.034	NA	NA	NA	6.78	NA	0.039	NA	NA	NA	0.87
	05/96	NA	3.0 B	NA	4.6 B	(-)	(-)	NA	NA	(-)	NA	24.5 B	8.5 B	NA	NA	NA	NA	NA	(-)	NA	NA	NA	NA	NA	(-)
	05/97	NA	NA	NA	NA	NA	NS	NA	NS	NA	NA	NA	NS	NA	NA	NA	NA	NA	NS	NA	NA	NA	(-)	NA	NA
	06/00	NA	NA	2.5 J	NA	NA	0.82	NA	6.4	NA	NA	NA	0.76	NA	.22 J	NA	NA	NA	.83 J	NA	0.297 J	NA	0.01 U	NA	1.4
	06/01	NA	NA	1.4 J	NA	NA	1.52	NA	4.4	NA	NA	NA	0.8 J	NA	0.04 U	.0009 B	NA	NA	1	NA	0.1 U	NA	0.011 B	NA	3.4 U
	06/02	NA	NA	1.29 J	NA	NA	2.23 J	NA	3.54	NA	NA	NA	0.90	NA	0.024 UJ	NA	0.10 U *	NA	1.95	NA	0.049 J	NA	0.011 J	NA	1.9
	06/03	NA	NA	1.33 J	NA	NA	4.18	NA	2.9 J	NA	NA	NA	0.76	NA	0.02 U	NA	0.10 U *	NA	1.26 J	NA	0.09	NA	0.013 B	NA	9.0 B
Seep B ^f	06/04	NA	NA	1.02	NA	NA	8.33	NA	15.9	NA	NA	NA	0.71	NA	0.27	NA	0.06 U *	NA	4.31	NA	0.097	NA	0.017 B	NA	0.97
	06/05	NA	NA	1.43	NA	NA	2.06	NA	6.52	NA	NA	NA	0.89	NA	0.1 U	NA	0.1 U *	NA	2.77	NA	0.035	NA	0.01 U	NA	1.12
	06/06	NA	NA	1.32	NA	NA	2.1	NA	3.33	NA	NA	NA	0.602	NA	0.022	NA	0.2 U *	NA	2.64 J	NA	0.085	NA	0.02 U	NA	1.01
	06/07	NA	NA	1.1 J	NA	NA	1.1	NA	2.7	NA	NA	NA	0.6	NA	0.058 0.18 U	NA	0.2 U * 0.2 U *	NA	1.8	NA	0.02 U	NA	0.02 U 0.019 B	NA	0.96
	05/08	NA	NA	2.27	NA NA	NA	1.26 0.616	NA NA	3.28	NA NA	NA	NA	0.668	NA		NA		NA	2.11	NA	0.051	NA		NA	1.39
	06/09 06/10	NA	NA	1.26 J 1.4		NA			3.19		NA	NA	0.618	NA	0.058	NA	0.2 U *	NA	1.10 1.46	NA	0.009 J	NA	0.004 J	NA	0.73
	06/10 07/11	NA NA	NA NA	1.4	NA NA	NA NA	0.928	NA NA	3.7 3.53	NA NA	NA NA	NA NA	0.646	NA NA	0.02 UJ 0.025	NA NA	0.2 U * 0.2 U *	NA NA	1.46	NA NA	0.202 0.024 UJ	NA NA	0.02 UJ 0.018 J	NA NA	2.31 0.68
	07/11	NA	NA	1.17	NA	NA	20.8	NA	5.51	NA	NA	NA	0.69	NA	0.025 0.209 UJ	NA	0.2 U *	NA	1.61	NA	0.024 UJ 0.018 J	NA	0.018 J NA	NA	2.25
Seep C	09/18	NA	NA	1.18	NA	NA	0.726	NA	4.36	NA	NA	NA	0.92	NA	0.209 UJ 0.050 U	NA	NA	NA	1.58	NA	0.018 J 0.007 J	NA	NA	NA	0.50 U
	00/19	INA	INA	1.5	INA	INA	0.720	INA	4.30	INA	INA	INA	0.7	INA	0.050 0	INA	INA	INA	1.20	INA	0.007 J	INA	INA	INA	0.50 0

^aValue listed is the lower of the cancer or noncancer value.

^bResults are less than the results reported for chromium (VI) because of variation in analytical methods. Variance in results for these analytes is common.

 $^{c}\text{Value}$ is for total chromium. Chromium (VI) is 80 $\mu\text{g/L}.$

^d50 µg/L is for chromium (VI). There is no goal for total chromium

^eThe background concentration of arsenic in groundwater at the site is 12 µg/L.

^fSeeps are only compared to surface water RGs.

Notes:

Data from 1995 to 2004 are from U.S. Navy 2005a, from 2005 to 2008 are from U.S. Navy 2008e, from 2009 are from U.S. Navy 2009d, and from 2010 through 2014 are from U.S. Navy 2014b (updated some values based on Naval Installation Restoration Information Solution download). Shaded row indicates data evaluated in this 5-year review period.

Bolded value indicates it exceeds or is equal to the RG for drinking water.

Yellow highlighted value exceeds or is equal to the surface water RG.

* - The reporting limit exceeds the RG.

(-) - undetected above one-half of the MTCA Method B cleanup levels

+ - Duplicate analysis is not within control limits.

B - between instrument detection limit and contract required detection limit

J - The result is an estimated concentration that is less than the MRL, but greater than or equal to the MDL.

MDL - method detection limit

µg/L - microgram per liter

- MRL method reporting limit MTCA - Model Toxics Control Act N - Spiked sample is outside of control limits. NA - not analyzed
- RG remediation goal
- S determined by method of standard additions

W - Post-digestion spike for furnace atomic absorption spectrophotometric analysis is out of control limits (85 to 115%), and sample is less than 50% of spike absorbance.

U - The compound was analyzed for, but was not detected ("nondetect") at or above the MRL/MDL.

FIFTH FIVE-YEAR REVIEW NAVAL BASE KITSAP KEYPOR1 Appendix G – OU 2 Area 8 Cumulative Long-Term Monitoring Data

Table G-5. PFAS Results for Area 8 Groundwater Sampling Locations, 2018 and 2019

Well Identification	n MW8-8	MW8-8	MW8-9	MW8-9	MW8-11	MW8-11	MW8-11 (Dup)	MW8-11 (Dup)	MW8-12	MW8-12	MW8-14	MW8-14	MW8-15	MW8-15	MW8-16	MW8-16	Field Blank	Field Blank	Field Blank
	AREA-8-18-20	0 AREA-8-19-200	AREA-8-18-201	AREA-8-19-201	AREA-8-18-202	AREA-8-19-202	AREA-8-18-203	AREA-8-19-203	AREA-8-18-204	AREA-8-19-204	AREA-8-18-205	AREA-8-19-205	AREA-8-18-207	AREA-8-19-207	AREA-8-18-206	AREA-8-19-206	AREA-8-18-210	AREA-8-19-212	AREA-8-19-21
Sample Date	e 09/17/18	06/10/19	09/17/18	06/11/19	09/18/18	06/25/19	09/18/18	06/25/19	09/17/18	06/10/19	09/18/18	06/25/19	09/18/18	06/10/19	09/17/18	06/11/19	09/17/18	06/10/19	06/25/19
Unit	s ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L
Analyte																			
N-ethylperfluorooctanesulfonamidoacetic acid (NEtFOSAA)	19 U	21 U	19 U M	20 U	19 U	18 U M	19 U	18 U	18 U	20 U	19 U	18 U	19 U	20 U	19 U	20 U	18 U	20 U	18 U
N-methylperfluorooctanesulfonamidoacetic acid (NMeFOSAA)	19 U	21 U	19 U	20 U	19 U	18 U	19 U M	18 U	18 U	20 U	19 U M	18 U	19 U	20 U	19 U	20 U	18 U M	20 U	18 U M
Perfluorobutanesulfonic acid (PFBS)	4.7	4.8	0.79 J M	0.76 J M	1.2 J M	1.1 J M	1.3 J	0.93 J M	4.5	3.6	1.9 U M	1.8 U M	1.9 U	2.0 U	0.77 J M	0.74 J	1.8 U	2.0 U M	1.8 U
Perfluorodecanoic acid (PFDA)	3.9	2.6	1.9 U	2.0 U	0.53 J	0.68 J	0.79 J M	0.66 J	2.7	1.5 J M	1.9 U M	1.8 U	1.9 U	2.0 U	0.75 J	0.76 J M	1.8 U	2.0 U M	1.8 U
Perfluorododecanoic acid (PFDoA)	1.9 U	2.1 U	1.9 U	2.0 U	1.9 U	1.8 U	1.9 U	1.8 U	1.8 U	2.0 U	1.9 U	1.8 U	1.9 U	2.0 U	1.9 U	2.0 U	1.8 U	2.0 U	1.8 U
Perfluoroheptanoic acid (PFHpA)	8.4	6.5 M	0.72 J	1.1 J M	3.5	3.0 M	3.4	2.6 M	7.7	4.7 M	1.9 U	1.8 U	1.9 U	2.0 U M	1.2 J	0.99 J M	1.8 U	2.0 U M	1.8 U
Perfluorohexanesulfonic acid (PFHxS)	2.6	1.8 J M	4.6	2.5 M	3.2	2.7 M	3.5	2.8 M	2.9	2.6 M	0.61 J M	0.60 J J1 M	1.9 U	2.0 U M	1.3 J M	1.3 J M	1.8 U	2.0 U M	1.8 U M
Perfluorohexanoic acid (PFHxA)	13	13	1.5 J M	2.4 M	3.5	3.3 M	3.5	3.3 M	13	11 M	1.9 U M	0.46 J	1.9 U	2.0 U M	1.8 J M	1.8 J M	1.8 U	2.0 U	1.8 U
Perfluorononanoic acid (PFNA)	3.7	2.8	1.9 U M	2.0 U M	1.0 J M	1.2 J	1.3 J	1.2 J M	3.7 M	2	1.9 U J1 M	1.8 U	1.9 U	2.0 U	0.60 J M	0.55 J M	1.8 U	2.0 U M	1.8 U
Perfluorooctanesulfonic acid (PFOS)	47	42	7.6	6.0 M	63	46	57	42	60	31	1.9 J M	1.7 J M	3.8 U M	4.0 U M	5.9	6.4 M	3.5 U M	3.9 U M	3.6 U
Perfluorooctanoic acid (PFOA)	17	13	1.7 J M	2.1 M	11	8.4 M	10 M	8.1 M	17 M	8.6 M	0.64 J M	0.62 J M	1.9 U M	2.0 U	2.4 M	2.4 M	1.8 U M	2.0 U	1.8 U M
Perfluorotetradecanoic acid (PFTeA)	3.7 U	4.1 U	3.7 U	4.0 U	3.8 U M	3.5 U	3.8 U	3.5 U	3.6 U	4.1 U	3.7 U	3.5 U	3.8 U	4.0 U	3.8 U	4.0 U	3.5 U	3.9 U	1.8 U
Perfluorotridecanoic acid (PFTriA)	3.7 U	4.1 U	3.7 U	4.0 U	3.8 U	3.5 U	3.8 U	3.5 U	3.6 U	4.1 U	3.7 U	3.5 U	3.8 U	4.0 U	3.8 U	4.0 U	3.5 U	3.9 U	1.8 U
Perfluoroundecanoic acid (PFUnA)	1.9 U M	2.1 U M	1.9 U	2.0 U	1.9 U	1.8 U	1.9 U	1.8 U	1.8 U M	2.0 U	1.9 U J1	1.8 U M	1.9 U	2.0 U M	1.9 U	2.0 U M	1.8 U	2.0 U M	1.8 U
Total PFOS + PFOA	64	55	9.3 J M	8.1 M	74	54.4 M	67 M	50.1 M	77 M	39.6 M	2.54 J M	2.32 J M	5.7 U	6.0 U	8.3	8.8	5.3 U M	5.9 U M	5.4 U M
EPA Heath Advisory Level for PFOA, PFOS, or PFOA+PFOS	70	70	70	70	70	70	70	70	70	70	70	70	70	70	70	70	70	70	70

Notes:

Bold indicates the analyte was detected in the groundwater sample.

Shading indicates detected value is equal to or exceeds EPA Health Advisory Level of 70 ng/L.

Dup – field duplicate

J - analyte was positively identified; but the result is estimated estimation

J1 - the result is an estimation due to discrepancies in meeting certain analyte-specific quality control criteria

M - manual integrated compound

ng/L - nanograms per liter

U - not detected at value shown

FIFTH FIVE-YEAR REVIEW NAVAL BASE KITSAP KEYPORT

Appendix G - OU 2 Area 8 Cumulative Long-Term Monitoring Data

Table G-6. Selected VOC Results for OU 2 Area 8 Surface Water, June 2019

Location ID	Sample ID	Sampling Date	TCE (µg/L)	PCE (µg/L)	1,1-DCE (µg/L)	cis-1,2-DCE (µg/L)	1,1,1-TCA (µg/L)
Surface Water	Remediation Go	oals	81	8.9	3.2		42,000
Seep C	AREA-8-19-210	06/17/19	0.2 UJ M J1	0.5 UJ J1	0.2 UJ M J1	0.2 UJ M J1	0.2 UJ J1
Seep C (DUP)	AREA-8-19-211	06/17/19	0.2 UJ M	0.5 UJ	0.2 UJ M	0.2 UJ M	0.2 UJ M

Notes:

Shading indicates detected value is equal to or exceeds surface water RG.

µg/L – microgram(s) per liter

DCE - dichloroethene

DUP - field duplicate

J1 - the result is an estimation due to discrepancies in meeting certain analyte-specific quality control criteria

M - manually integrated compound

PCE-tetrachloroethene

TCA - trichloroethane

TCE-trichloroethene

UJ - analyte not detected, but the reported quantitation/detection limit is estimated

FIFTH FIVE-YEAR REVIEW NAVAL BASE KITSAP KEYPORT Appendix G - OU 2 Area 8 Cumulative Long-Term Monitoring Data

Table G-7. Dissolved Metals Results for OU 2 Area 8 Surface Water, June 2019

							,			
Location ID	Sample ID	Sampling	Arsenic	Cadmium	Chromium	Copper	Lead	Nickel	Silver	Zinc
Location ID	Sample ID	Date	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
Surface Water	Remediation Goa	ıls	0.14 ^{1/}	8	50 ^{2/}	2.5	5.8	7.9	1.2	77
Seep C	AREA-8-19-210	06/17/19	1.3	0.418	0.32	0.44	0.077 UJ	0.5	0.02 U	1.19
Seep C (DUP)	AREA-8-19-211	06/17/19	1.28	0.539	0.39	0.47	0.066 UJ	0.54	0.02 U	1.18

Notes:

 $^{1\!/} The background concentration of arsenic in groundwater at the site is 12 <math display="inline">\mu g/L.$

 $^{2'}$ The RG of 50 µg/L is for hexavalent chromium [Cr(VI)]. There is no RG established for total dissolved chromium.

All concentrations are dissolved (except where noted above) and in μ g/L.

Shading indicates detected value is equal to or exceeds the surface water RG.

µg/L - microgram(s) per liter

DUP - field duplicate

U – analyte was not detected at or above the indicated practical quantitation limit

UJ - analyte not detected, but the reported quantitation/detection limit is estimated

FIFTH FIVE-YEAR REVIEW NAVAL BASE KITSAP KEYPORT Appendix G – OU 2 Area 8 Cumulative Long-Term Monitoring Data

Table G-8. Dissolved Metals for OU 2 Area 8 Sediment, June 2019

Location ID	Sample ID	Sampling	Arsenic	Cadmium	Chromium	Copper	Lead	Nickel	Silver	Zinc
Location ID	Sample ID	Date	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
Sediment Clear	nup Goal ^{1/}		57	5.1	260	390	450.0	NE	6.1	410
Seep C	AREA-8-19-250	06/19/19	1.9 D	14 JD J1	46 D J1	11 JD J1	4.3 D	22 JD J1	0.48 D	36 JD
Seep C (DUP)	AREA-8-19-251	06/19/19	2.0 JD	13 JD	46 JD	12 JD	5.3 D	21 JD	0.66 D	42 JD

Notes:

^{1/}The sediment cleanup goals are equal to the Washington State SQS values.

Bold indicates detected value is equal to or exceeds the sediment cleanup goal.

mg/kg - milligram(s) per kilogram

D - result reported from a diluted analysis

DUP - field duplicate

J - analyte positively identified, but result is estimated

J1 - the result is an estimation due to discrepancies in meeting certain analyte-specific quality control criteria

SQS - Sediment Quality Standard

APPENDIX H OU 2 AREA 8 DATA COLLECTED DURING FYR PERIOD

					victais anu	Total Sollus	Analysis	counts 101	Kelerence	e Area Tissue				
Sampling Station ID	Sample Date	Sample No.	Arsenic (mg/kg)	Inorganic Arsenic (µg/g)	Cadmium (mg/kg)	Chromium (mg/kg)	Copper (mg/kg)	Lead (mg/kg)	Nickel (mg/kg)	Silver (mg/kg)	Zinc (mg/kg)	Mercury (ng/g)	Methyl Mercury (ng/g)	Total Solids (%)
		Mean ^a	2.22	0.035	0.445	0.4	1.16	0.022	0.399		15	6.2	3.9	14.6
		Median ^a	2.19	0.033	0.438	0.343	1.12	0.0204	0.368		14.8	6.19	3.7	14.6
		Minimum ^a	1.7	0.026	0.31	0.216	0.896	0.0132	0.229		13.1	3.35	2.2	13.3
		Maximum ^a	3.09	0.055	0.63	1.72	1.45	0.0678	1.2	0.0475	17.1	8.22	6.6	16.2
No. of I	Detected / No.	Sampled	22/22	22/22	22/22	22/22	22/22	22/22	22/22	1/22	22/22	22/22	22/22	22/22
Ran	ige of Reportin	ng Limits								0.0069-0.0186				
PP01		PP1-CL15	2.08	0.037	0.512	0.387	1.04	0.025	0.441	0.0156 U	16.2	3.35	3.4	13.3
PP02	6/2/2015	PP2-CL15	1.7	0.037	0.484	0.251	1.23	0.0164	0.348	0.0126 U	17	6.19	3.6	13.7
PP03	6/2/2015	PP3-CL15	1.72	0.041	0.438	0.432	1.12	0.0219	0.486	0.0143 U	15.6	6.51	3.2	13.7
PP04	6/2/2015	PP4-CL15	1.87	0.034	0.365	0.461	1.29	0.021	0.414	0.0186 U	14.9	5.26	3.3	14.4
PP05	6/2/2015	PP5-CL15	2.14	0.043	0.629	0.381	1.42	0.0211	0.445	0.0118 U	16.6	6.1	6.6	13.9
PP06	6/2/2015	PP6-CL15	2.12	0.035	0.372	0.31	1.35	0.0244	0.412	0.0101 U	17	5.86	3.7	14.6
PP07	6/2/2015	PP7-CL15	2.26	0.031	0.404	0.329	0.986	0.0295	0.318	0.0086 U	14.1	6.56	4.1	14.6
PP08	6/2/2015	PP8-CL15	1.79	0.045	0.31	0.496	1.34	0.0229	0.404	0.0115 U	14	5.79	3.2	15.2
PP09	6/2/2015	PP9-CL15	3.09	0.035	0.506	0.307	0.994	0.0149	0.385	0.0076 U	13.8	6.28	4.3	13.9
PP10	6/3/2015	PP10-CL15	2.28	0.029	0.444	0.285	1.19	0.0194	0.335	0.0073 U	14.7	5.78	4.2	14.1
PP11	6/3/2015	PP11-CL15	1.93	0.03	0.418	0.383	1.12	0.0184	0.443	0.0089 U	15.5	6.59	4.4	15.2
PP12	6/3/2015	PP12-CL15	2.31	0.026	0.462	0.258	1.04	0.0142	0.287	0.009 U	13.1	5.38	4.6	14.7
PP13	6/3/2015	PP13-CL15	2.83	0.03	0.49	0.395	0.896	0.0152	0.387	0.0096 U	13.5	5.18	2.2	13.5
PP14	6/3/2015	PP14-CL15	2.6	0.055	0.411	1.72	1.32	0.0678	1.2	0.0093 U	14.7	8.17	4.3	16.2
PP15	6/3/2015	PP15-CL15	2.23	0.036	0.415	0.283	1.07	0.0228	0.311	0.0475	14.5	8.22	4.6	16.1
PP16	6/3/2015	PP16-CL15	2.01	0.031	0.481	0.357	1.27	0.0164	0.362	0.0129 U	14.5	6.45	3.7	15.3
PP17	6/3/2015	PP17-CL15	2.13	0.033	0.461	0.369	1.45	0.0222	0.373	0.0117 U	14.7	7.71	3.7	15.5
PP18	6/3/2015	PP18-CL15	2.34	0.029	0.396	0.235	0.96	0.0151	0.229	0.0113 U	17.1	6.18	3.7	16.1
PP19	6/3/2015	PP19-CL15	2.72	0.03	0.565	0.216	0.996	0.0132	0.253	0.0094 U	13.5	7.55	3.3	13.8
PP20	6/3/2015	PP20-CL15	2.37	0.032	0.437	0.224	1.01	0.0198	0.325	0.0069 U	14.9	6.4	3.8	13.9
PP21	6/3/2015	PP21-CL15	1.91	0.032	0.349	0.431	1.12	0.0234	0.339	0.0123 U	14.8	5.19	2.9	14.9
PP22	6/3/2015	PP22-CL15	2.43	0.031	0.434	0.298	1.28	0.0186	0.287	0.0098 U	15.3	5.64	4.5	14.9

Table H-1. Metals and Total Solids Analysis Results for Reference Area Tissue

Notes:

Tissue results are reported in wet weight.

^a Only detected concentrations are included

ID - identification

µg/g - microgram per gram

mg/kg - milligram per kilogram

ng/g - nanogram per gram

No. - number

Table H-2. Metals and Total Solids Analysis Results for Area 8 Tissue

								larysis Resu	Its for Area 8 Tis	suc					
Transect	Sampling Station ID	Sample Date	Sample No.	Arsenic (mg/kg)	Inorganic Arsenic (µg/g)	Cadmium (mg/kg)	Chromium (mg/kg)	Copper (mg/kg)	Lead (mg/kg)	Nickel (mg/kg)	Silver (mg/kg)	Zinc (mg/kg)	Mercury (ng/g)	Methyl Mercury (ng/g)	Total Solids (%)
			Mean ^a	2.32	0.027	0.375	0.478	1.22	0.0723	0.476	0.176	13.4	16.1	8.3	16.4
			Median ^a	2.27	0.026	0.264	0.396	1.2	0.0727	0.435	0.117	13.6	13.6	7.9	16.5
			Minimum ^a	1.65	0.017	0.169	0.155	0.759	0.0431	0.27	0.0371	9.6	8.6	1	11.8
			Maximum ^a	3.5	0.05	1	1.13	1.73	0.13	1	0.582	16.3	42.2	18	19
	No. of Detected / N	· ·		41/41	39/41	41/41	41/41	41/41	41/41	41/41	41/41	41/41	41/41	41/41	41/41
	Range of Repo	0			0.014-0.015										
1	S.STATION01		SS01-CL15	1.97	0.023	0.335	0.289	1.03	0.0587	0.329	0.0711	13.6	10.9	5.8	14.2
1	S.STATION07	6/17/2015	SS07-CL15	2.01	0.032	0.222	0.794	1.52	0.0853 J	0.543	0.106 J	11.7	9.2	3.7	18.6
2	S.STATION02	6/7/2015	SS02-CL15	2.01	0.029	0.351	0.617	1.36	0.0793 J	0.465	0.118 J	11.9	9.73	9.1	15.6
2	S.STATION05	6/17/2015	SS05-CL15	2.21	0.026	0.757	0.953	1.15	0.092 J	0.694	0.211 J	14	13.4	8	17.8
2	S.STATION08	6/17/2015	SS08-CL15	2.44	0.028	0.344	0.922	1.35	0.0823 J	0.683	0.0751 J	13.6	13	6.9	18.9
2	S.STATION62	6/21/2016	SS62-CL16	2.96	0.017	0.501	0.261	0.994	0.0502	0.844	0.375 J	15.1	22.3	13	14.6
2&3	S.STATION64	6/21/2016	SS64-CL16	2.72	0.015 U	1	0.61	1.24	0.0431	0.735	0.582 J	14.7	37.5	9.1	14.6
3	S.STATION03	6/16/2015	SS03-CL15	3.04	0.023	0.891	1.13	1.1	0.0641	0.614	0.164	13	14.5	9	16.4
3	S.STATION09	6/17/2015	SS09-CL15	1.81	0.029	0.209	0.779	1.2	0.0796 J	0.538	0.0678 J	13.2	9.35	5.5	17.3
3&8	S.STATION65	6/21/2016	SS65-CL16	3.5	0.018	0.613	0.434	1.29	0.0597	1	0.437 J	13.8	23.6	14	16.3
8	S.STATION67	6/21/2016	SS67-CL16	2.99	0.02	0.664	0.183	1.08	0.0498	0.649	0.364 J	13.3	25.1	18	15.4
8	S.STATION32	6/17/2015	SS32-CL15	1.67	0.031	0.191	0.917	1.36	0.0873 J	0.567	0.0466 J	12.6	10.1	1 J	17.8
8	S.STATION34	6/17/2015	SS34-CL15	1.65	0.026	0.295	0.718	1.1	0.0828 J	0.524	0.066 J	12.4	12.8	6.6	16.5
8	SEEPC	6/15/2015	SEEPC-CL15	2.11	0.022	0.579	0.388	0.978	0.0617	0.291	0.0748	10.8	11.9	7.7	13.6
9	S.STATION70	6/21/2016	SS70-CL16	3.09	0.017	0.973	0.237	1.5	0.13	0.53	0.453 J	16.3	42.2	11.9	15.8
9	OF03703	6/16/2015	OF03703-CL15	2.58	0.018	0.867	0.38	1.12	0.047	0.329	0.463	14.4	20	9	14.9
9	S.STATION35	6/17/2015	SS35-CL15	1.84	0.027	0.21	0.66	1.33	0.0799 J	0.448	0.0599 J	12.9	10.8	7.1	18.9
9	S.STATION36	6/16/2015	SS36-CL15	2.27	0.029	0.219	0.681	1.73	0.0858 J	0.482	0.0604 J	14.4	12.4	6.8	18.8
9	S.STATION37	6/17/2015	SS37-CL15	2.36	0.028	0.419	0.44	1.2	0.0862 J	0.405	0.117 J	13.9	16.8	9.3	17.9
9	S.STATION53	6/16/2015	SS53-CL15	2.18	0.03	0.209	0.596	1.48	0.0913	0.435	0.0959	12.7	10.1	5.5	18.1
9 & 10	S.STATION74	6/21/2016	SS74-CL16	2.33	0.034	0.279	0.227	0.964	0.0794	0.45	0.137 J	14	17.8	11.7	15.1
10	S.STATION73	6/21/2016	SS73-CL16	2.84	0.041	0.41	0.155	1.08	0.0689	0.736	0.508 J	15.8	25.2	11.4	17.2
10	S.STATION38	6/16/2015	SS38-CL15	2.26	0.026	0.245	0.444	1.38	0.0789	0.402	0.0735	14.8	12.3	5.2	19
10	S.STATION40	6/16/2015	SS40-CL15	1.71	0.029	0.204	1.03	1.32	0.0787	0.584	0.0538	12.7	11.3	6.9	18.7
10	S.STATION56	6/17/2015	SS56-CL15	1.87	0.026	0.22	0.363	1.11	0.0651 J	0.341	0.0615 J	12.9	11.8	5.6	17.5
10	SEEPD	6/15/2015	SEEPD-CL15	2.91	0.023	0.336	0.57	1.38	0.0727	0.405	0.129	12.9	13.6	5.1	16.1
10 & 11	S.STATION75	6/21/2016	SS75-CL16	2.49	0.028	0.237	0.242	1.1	0.0687	0.321	0.0756 J	13	16.4	11.9	14.9
11	S.STATION43	6/17/2015	SS43-CL15	1.81	0.024	0.205	0.396	1.24	0.0687 J	0.372	0.0598 J	14.6	10.5	6.9	17.7
11	SEEPE	6/15/2015	SEEPE-CL15	2.48	0.023	0.264	0.677	1.29	0.06	0.364	0.0907	14.5	14.1	7.9	17
12	S.STATION46	6/17/2015	SS46-CL15	1.67	0.03	0.169	0.375	1.4	0.0724 J	0.362	0.0474 J	15	11.2	6	19
12	SEEPF	6/15/2015	SEEPF-CL15	2.64	0.025	0.256	0.471	1.52	0.0651	0.42	0.181	13.8	15.4	5.6	17.8
13	SS-03701	6/16/2015	OF03701-CL15	2.3	0.021	0.469	0.367	1.12	0.0672	0.299	0.366	12.4	28.9	9	14.6
13	S.STATION49	6/16/2015	SS49-CL15	2.86	0.022	0.304	0.347	1.09	0.0749	0.315	0.35	12.2	21.1	11.3	15.4
13	SEEPG	6/15/2015	SEEPG-CL15	2.4	0.05	0.214	0.493	1.37	0.0846	0.385	0.129	13.8	11.6	5.7	15.7
S. 13	S.STATION76	6/21/2016	SS76-CL16	2.88	0.038	0.24	0.208	1.21	0.0742	0.315	0.095 J	15.8	21	13.6	16.9
S. 13	S.STATION77A	6/21/2016	SS77A-CL16	1.87	0.034	0.197	0.205	1.05	0.0706	0.288	0.0955 J	11.6	14.5	9.6	14.7
N. 13	S.STATION78	6/21/2016	SS78-CL16	2.26	0.023	0.259	0.248	1.11	0.0831	0.628	0.292 J	15.1	19	10.4	18.9
N. 13	S.STATION79A	6/21/2016	SS79A-CL16	2.03	0.039	0.201	0.182	1.21	0.0851	0.33	0.138 J	14.4	14.8	8	18.6
14	S.STATION57	6/21/2016	SS57-CL16	2.84 J	0.014 U	0.398	0.163	0.759	0.0431	0.531 J	0.153 J	10.3	14.8	12.3	12
14	S.STATION58	6/21/2016	SS58-CL16	1.66	0.024	0.203	0.158	1.03	0.0474	0.27	0.139 J	9.6	8.58	3.7	11.8
14	S.STATION59	6/21/2016	SS59-CL16	1.68	0.025	0.202	0.307	0.998	0.0582	0.277	0.0371 J	10.9	9.31	6.6	13.4

Notes:

Tissue results are reported in wet weight.

^a Only detected concentrations are included

ID - identification

J - The result is an estimated concentration.

µg/g - microgram per gram

mg/kg - milligram per kilogram

ng/g - nanogram per gram

No. - number

Table H-3. Metals Analysis Results for Area 8 Sediment

		-	1				Table II-5. Wietas	s Analysis Results I	of Area o Beulineire					
Transect	Sampling Station ID	Sample Date	Sample No.	Sample Depth (cm)	Sample Type	Arsenic (mg/kg)	Cadmium (mg/kg)	Total Chromium (mg/kg)	Copper (mg/kg)	Lead (mg/kg)	Nickel (mg/kg)	Silver (mg/kg)	Zinc (mg/kg)	Mercury (mg/kg)
					Mean ^a	2.32	1.734	30.2	17.19	10.64	16.1	0.806	39.3	0.165
					Median ^a	2.22	0.787	30.2	8.58	5.01	16.1	0.281	30.8	0.067
				N	1inimum ^a	0.42	0.152	2.32	3.81	1.71	2.37	0.048	12.5	0.006
					laximum ^a	6.47	11.4	84.8	439	185	40.8	17	396	2.42
			No. of	Detected / No	. Sampled	81/81	81/81	81/81	81/81	81/81	81/81	81/81	81/81	81/81
1	S.STATION01		SS01-SD15	0-10	N	1.92	0.343 J	18.1 J	8.51 J	4.13	16.5	0.136	31.8 J	0.011 J
	S.STATION04	6/15/2015	SS04-SD15	0-10	N	2.03	0.395 J	22 J	7.75 J	5.59	15.6	0.714	28.6 J	0.032
1	S.STATION07	6/17/2015		0-10	N	3.33	0.41	19 J	14.8 J	4.43	17.5	0.059	30.6	0.038
1	S.STATION07	6/17/2015	SS07-SD15B	10-24	N	2.87	0.309	19.6 J	7.41 J	4.18	16.3	0.061	26.3	0.037
1	S.STATION60	6/21/2016	SS60-SD16	0-10	N	3.22	0.325	18	8.11	5.46 J	15.9	0.07	30.5	0.029
1	S.STATION60	6/21/2016	SS-FD1	0-10	FD	3.18	0.302 J	22.3 J	7.86	5.62	16.5	0.074 J	29	0.048
	S.STATION55	6/16/2015	SS55-SD15	0-10	N	2.12	0.152 J	8.03 J	8.17 J	3.23	23.6	0.048	18.2 J	0.025
	S.STATION10	6/17/2015		0-10	N	3.43	0.284	11.2	7.92	4.73	9.31	0.068	21.4	0.033
1 & 2	S.STATION61	6/21/2016	SS61-SD16	0-10	N	1.28	0.306	13.4	10.9	14.4 J	13.7	0.072	40.2	0.011 J
2	S.STATION62	6/21/2016	SS62-SD16	0-10	N	1.57	0.484	21.1	12.5	6.18 J	19.8	0.124	44.5	0.015 J
2	S.STATION63	6/21/2016	SS63-SD16	0-10	Ν	1.52	0.385	19.8	11.4	4.73 J	19.1	0.116	37.9	0.111
	S.STATION02	6/17/2015	SS02-SD15	0-10	N	2.56	1.61	29.9 J	10.6 J	3.79	12.3	0.283	24.7	0.05
	S.STATION05	6/17/2015	SS05-SD15	0-10	Ν	2.53	3	34.7 J	8.57 J	4.6	20.1	1.12	31.6	0.033
	S.STATION08	6/17/2015	SS08-SD15	0-10	N	2.18	2.84	45 J	8.92 J	4.62	17.4	0.857	30.2	1.67
2	S.STATION08	6/17/2015	SS08-SD15B	10-24	N	2.09	3.02	35 J	7.67 J	4.94	17.1	0.829	29.6	0.038
2	S.STATION30	6/17/2015	SS30-SD15	0-10	N	2.12	0.289	19.9 J	7.73 J	5.76	21.1	0.068	25.1	0.031
	S.STATION11	6/16/2015	SS11-SD15	0-10	N	3.37	0.258 J	12.5 J	6.64 J	4	12.4	0.072	21.5 J	0.034
	S.STATION64	6/21/2016		0-10	N	1.22 1.84	2.71	18.9	11.5	5.67 J	18.8	0.208	63.8	0.082
	S.STATION50	6/15/2015	SS50-SD15	0-10	N	1.84	8.84 J	38 J	19.4 J	7.2 47.8	27.9 40.8	0.469 0.099	53.5 J	0.308
2	S.STATION51	6/15/2015	SS51-SD15	0-10	N N	6.47	10.2 J 11.4	84.8 J 34.1 J	61.6 J 8.16	4.01 J		0.433	113 J 31	0.074
2	S.STATION03 S.STATION06	6/16/2015 6/16/2015	SS03-SD15 SS06-SD15	0-10	N	2.27	5.85 J	34.1 J 49.9 J	9.31 J	5.36	15.5 17.5	0.433	31.8 J	0.074
2	S.STATION06	6/16/2015	SS06-SD15 SS06-SD15B	10-10	N	1.62	4.86 J	49.9 J 46.1 J	6.73 J	3.95	17.5	0.332	25.6 J	0.031
3	S.STATION00	6/17/2015	SS09-SD15B	0-10	N	2.73	2.36	40.1 J 69.5 J	8.64 J	4.86	17.5	0.305	35.9	0.044
3	S.STATION09	6/17/2015	SS09-SD15	10-10	N	2.75	2.29	64.2 J	8.58 J	4.96	17.2	0.287	32.7	0.045
	S.STATION03	6/16/2015	SS31-SD15B	0-10	N	3.27	0.468 J	37.1 J	7.14 J	4.13	12.5	0.109	23.5 J	0.028
3	S.STATION12	6/16/2015	SS12-SD15	0-10	N	3.4	0.339 J	22.4 J	6.81 J	4.27	11.3	0.075	22.9 J	0.037
3&8	S.STATION65	6/21/2016	SS65-SD16	0-10	N	1.48	2.06	20.3	12.1	7.66 J	16.8	0.099	39.7	0.506
	S.STATION66	6/21/2016		0-10	N	0.78	0.876	6.62	7.98	3.66 J	10.6	0.12	19.1	0.06
	S.STATION67	6/21/2016		0-10	N	3.74	1.3	16.8	14.2	6.41 J	11.5	0.106	46.1	0.182
	SEEPC	6/15/2015	SEEPC-SD15	0-10	N	1.66	6.8 J	34.1 J	12.6 J	4.15	14.8	0.299	32.5 J	0.133
8	S.STATION34	6/17/2015	SS34-SD15	0-10	N	2.22	3.38	53.4 J	14.2 J	5.04 J	21.1	0.274	32.9	0.132
8	S.STATION34	6/17/2015	DUP3-SD15	0-10	FD	1.74	3.82	47.7 J	8.36 J	4.22	14.9	0.28	27.2	0.116
8	S.STATION34	6/17/2015	SS34-SD15B	10-24	N	1.54	3.77	51.1 J	7.4 J	4.68	13.9	0.281	26.4	0.17 J
	S.STATION34	6/17/2015	DUP4-SD15B	10-24	FD	1.47	3.48	43.8 J	6.33 J	3.79	12.6	0.245	23.4	0.083 J
8	S.STATION32	6/17/2015	SS32-SD15	0-10	Ν	3.02	0.791	40.8 J	8.2 J	5.24	17.1	0.148	30.3	0.077
8	S.STATION54	6/16/2015	SS54-SD15	0-10	Ν	4.02	0.709	36.7 J	13.3	6.53 J	19.4	0.136	38.5	0.057
8&9	S.STATION68	6/21/2016	SS68-SD16	0-10	Ν	0.42 J	1.15	2.32	3.81	1.71 J	2.37	0.355	12.5	0.044
8&9	S.STATION69	6/21/2016	SS69-SD16	0-10	Ν	0.73	1.17	5.43	4.61	2.05 J	7.07	0.076	17.1	0.055
9	S.STATION70	6/21/2016	SS70-SD16	0-10	Ν	1.57	3.18 J	27.5 J	77.5	50.2	19.5	7.75 J	148	0.491
9	S.STATION71	6/21/2016	SS71-SD16	0-10	Ν	1.49	1.22 J	45.3 J	439	19.7	23.4	2.63 J	46.7	0.113
9	OF03703	6/16/2015	OF03703-SD15	0-10	N	2.01	3.33	49.2 J	13.9	6.61 J	22	1.47	44.1	0.627
9	OF03703	6/16/2015	DUP5-SD15	0-10	FD	1.93	3.93	46.4 J	12.2	5.77 J	19.6	1.98	37.9	0.422
9	S.STATION37	6/17/2015	SS37-SD15	0-10	N	1.67	3.15	29.1 J	8.76 J	4.42	11.8	0.414	26.6	0.111
9	S.STATION36	6/16/2015	SS36-SD15	0-10	Ν	1.31	1.15	26 J	5.24	2.85 J	8.94	0.151	17.2	0.083
	S.STATION36	6/16/2015	SS36-SD15B	10-24	Ν	1.68	1.7	38.5 J	6	3.1 J	12.4	0.261	23.2	0.073
	S.STATION53	6/16/2015		0-10	Ν	2.31	0.44	23.6 J	5.68	4.12 J	11.4	0.1	20.9	0.027
	S.STATION72	6/21/2016	SS72-SD16	0-10	Ν	1.44	1.18 J	26.5 J	48.8	67.7	19.6	17 J	54.2	0.163
9 & 10	S.STATION74	6/21/2016	SS74-SD16	0-10	N	1.57	1.99 J	36 J	10.6	5.9	16.9	2.2 J	35.3	0.176

Table H-3.	Metals Ana	lysis Results	for Area 8	Sediment

			-				Tuble II et Hietun	s Analysis Results I						
Transect	Sampling Station ID	Sample Date	Sample No.	Sample Depth (cm)	Sample Type	Arsenic (mg/kg)	Cadmium (mg/kg)	Total Chromium (mg/kg)	Copper (mg/kg)	Lead (mg/kg)	Nickel (mg/kg)	Silver (mg/kg)	Zinc (mg/kg)	Mercury (mg/kg)
					Mean ^a	2.32	1.734	30.2	17.19	10.64	16.1	0.806	39.3	0.165
					Median ^a	2.22	0.787	30.2	8.58	5.01	16.1	0.281	30.8	0.067
				Ν	/linimum ^a	0.42	0.152	2.32	3.81	1.71	2.37	0.048	12.5	0.006
				N	faximum ^a	6.47	11.4	84.8	439	185	40.8	17	396	2.42
			No. of	Detected / No	o. Sampled	81/81	81/81	81/81	81/81	81/81	81/81	81/81	81/81	81/81
10	S.STATION73	6/21/2016	SS73-SD16	0-10	N	2.26	0.9 J	19.9 J	19.1	8.77	12.7	1.91 J	39.7	0.099
10	SEEPD	6/15/2015	SEEPD-SD15	0-10	Ν	0.9	1.08 J	8.73 J	4.2 J	2.64	5.17	0.398	13.2 J	0.165
10	S.STATION40	6/16/2015	SS40-SD15	0-10	N	1.41	3.82	41.1 J	9.85	5.27 J	14.9	1.41	29.8	0.068
10	S.STATION40	6/16/2015	SS40-SD15B	10-24	N	1.44	1.16	30.2 J	9.22	4.55 J	14.6	1.16	34.1	0.767
10	S.STATION38	6/16/2015	SS38-SD15	0-10	N	1.48	0.487	25.6 J	6.58	3.22 J	13.4	0.238	19.6	0.066
10	S.STATION39	6/16/2015	SS39-SD15	0-10	N	2.49	0.524	33.2 J	6.05	7.67 J	13.7	0.113	23.8	0.034
10	S.STATION52	6/16/2015	SS52-SD15	0-10	Ν	2.95	0.437	33.6 J	6.82	10.2 J	15.1	0.116	26.7	0.037
10 & 11	S.STATION75	6/21/2016	SS75-SD16	0-10	Ν	2.85	1.55 J	34.1 J	13.4	6.83	18.2	0.889 J	47.7	0.205
11	SEEPE	6/15/2015	SEEPE-SD15	0-10	N	1.63	0.715 J	30.9 J	9.71 J	3.99	15.4	0.446	27.2 J	0.107
11	S.STATION43	6/17/2015	SS43-SD15	0-10	Ν	2.58	0.814	38.4 J	8.58 J	4.38	16.7	0.342	32.4	0.054
11	S.STATION43	6/17/2015	SS43-SD15B	10-24	N	1.95	0.782	30 J	7.25 J	3.3	17.2	0.295	24.8	0.067
11	S.STATION41	6/16/2015	SS41-SD15	0-10	N	3.27	0.533	34.4 J	8.5	4.98 J	16.2	0.117	30	0.045
11	S.STATION42	6/16/2015	SS42-SD15	0-10	N	3.25	0.403	28.3 J	6.97	4.78 J	15.1	0.091	27.2	0.043
12	SEEPF	6/15/2015	SEEPF-SD15	0-10	N	2.22	0.754 J	19.8 J	6.68 J	4.9	10.4	0.228	28.8 J	0.136
12	S.STATION46	6/16/2015	SS46-SD15	0-10	N	2.53	0.677	39.1 J	8.05	5.11 J	15.7	0.345	29.4	0.095
12	S.STATION46	6/16/2015	SS46-SD15B	10-24	N	2.5	0.88	34 J	7.64	7.82 J	14.5	0.368	34.3	0.054
12	S.STATION44	6/16/2015	SS44-SD15	0-10	N	1.94	0.38	21.3 J	4.74	3.15 J	10.3	0.102	17.7	0.034
12	S.STATION45	6/16/2015	SS45-SD15	0-10	N	3.37	0.339	30.8 J	6.48	4.45 J	16.9	0.079	28	0.034
13	SS-03701	6/16/2015	OF03701-SD15	0-10	N	2.47	1.97	30.2 J	39.8	185 J	24.2	5.99	396	0.224
13	S.STATION49	6/16/2015	SS49-SD15	0-10	N	1.67	0.524	20.3 J	10.2 J	7.86	12.5	0.999	36.5	0.151
13	SEEPG	6/15/2015	SEEPG-SD15	0-10	N	2.37	0.585 J	26.6 J	11 J	8.32	15.4	0.616	40.8 J	0.144
13	SEEPG	6/15/2015	SEEPG-SD15B	10-24	N	2.09	0.487 J	31.6 J	10.6 J	12.8	17.4	0.423	43.8 J	0.099
13	S.STATION48	6/15/2015	SS48-SD15	0-10	N	3.56	0.771 J	35.8 J	23.1 J	8.83	17.4	0.527	45.2 J	0.608
13	S.STATION47	6/16/2015	SS47-SD15	0-10	N	3.19	0.375	20.3 J	6.67	4.33 J	14.4	0.081	25.5	0.026
S. 13	S.STATION76	6/21/2016	SS76-SD16	0-10	N	3.12	0.765 J	40.5 J	14.7	41.8	20.6	0.479 J	55.2	0.112
S. 13	S.STATION77	6/21/2016	SS77-SD16	0-10	N	3.31	0.681 J	32.5 J	9.31	6.99	19	0.218 J	37.5	0.112
N. 13	S.STATION78	6/21/2016	SS78-SD16	0-10	N	2.25	1.14 J	31.8 J	14.6 J	12.5 J	18.4	1.33 J	49	0.107
N. 13	S.STATION78	6/21/2016	SS-FD2	0-10	FD	1.46	0.285 J	18.2 J	8.68 J	32.5 J	12.6	0.622 J	31.2	0.121
N. 13	S.STATION79	6/21/2016	SS79-SD16	0-10	N	3.71	0.655 J	34.9 J	11	13.4	20.4	0.356 J	46.3	0.066
14	S.STATION57	6/21/2016	SS57-SD16	0-10	N	3.16	0.33	12.9	7.04	4.61 J	10.8	0.071	42	0.006 J
14	S.STATION58	6/21/2016	SS58-SD16	0-10	N	2.37	0.259	21.6	11.5	6.15 J	17.9	0.067	36.1	0.018 J
14	S.STATION59	6/21/2016	SS59-SD16	0-10	N	2.44	0.233	12.9	7.93	5.1 J	12.6	0.056	25.8	0.046

Notes:

Sediment results are reported in dry weight.

^a Only detected concentrations are included

cm - centimeter

FD - field duplicate

ID - identification

J - The result is an estimated concentration

mg/kg - milligram per kilogram N - normal environmental sample No. - number

				1401011-	4. AVS/SEM Analy	sis Results for Are				
Sampling Station ID	Sample Date	Sample No.	Sample Type	Acid Volatile Sulfides (µmol/g)	Cadmium (µmol/g)	Copper (µmol/g)	Lead (µmol/g)	Nickel (µmol/g)	Zinc (µmol/g)	Mercury (µmol/g)
S.STATION06	6/16/2015	SS06-SD15B	Ν	3.9	0.04937 J	0.0261	0.038	0.0325 J	0.211	5.80E-05 U
S.STATION07	6/17/2015	SS07-SD15	Ν	3.65	0.00315 J	0.0271	0.0175 J	0.0278	0.207	6.30E-05 U
S.STATION08	6/17/2015	SS08-SD15	N	4.77	0.02675	0.0318	0.0181 J	0.0365	0.229	6.10E-05 U
S.STATION08	6/17/2015	SS08-SD15B	Ν	7.5	0.02361	0.0184 J	0.0154 J	0.0338	0.204	5.30E-05 U
S.STATION09	6/17/2015	SS09-SD15	Ν	7.9	0.0165	0.0148 J	0.0153 J	0.0338	0.239	5.10E-05 U
S.STATION09	6/17/2015	SS09-SD15B	Ν	8.9	0.01694	0.027	0.0188 J	0.0384	0.246	6.00E-05 U
S.STATION34	6/17/2015	SS34-SD15	Ν	4.88	0.04421	0.0417	0.0245 J	0.0402	0.24	6.20E-05 U
S.STATION34	6/17/2015	SS34-SD15B	Ν	0.85	0.03604 J	0.0379	0.0175	0.0398 J	0.199	6.10E-05 U
S.STATION34	6/17/2015	DUP3-SD15	FD	3.95	0.03639	0.035	0.018 J	0.0318	0.184	5.50E-05 U
S.STATION34	6/17/2015	DUP4-SD15B	FD	0.55	0.03042 J	0.0375	0.0181	0.0314 J	0.172	6.10E-05 U
S.STATION36	6/16/2015	SS36-SD15	Ν	7.7	0.01683 J	0.0309	0.0148	0.0442 J	0.221	5.80E-05 U
S.STATION36	6/16/2015	SS36-SD15B	Ν	5.98	0.01822 J	0.0272	0.0153	0.0411 J	0.226	5.90E-05 U
S.STATION40	6/16/2015	SS40-SD15B	Ν	9.1	0.01199 J	0.0381	0.029	0.0605 J	0.388	6.20E-05 U
S.STATION40	6/16/2015	SS40-SD15	Ν	9.3	0.01588 J	0.051	0.0235	0.0738 J	0.41	6.10E-05 U
S.STATION43	6/17/2015	SS43-SD15	Ν	2.21	0.00801 J	0.0345	0.0178	0.0401 J	0.211	6.30E-05 U
S.STATION46	6/16/2015	SS46-SD15	Ν	2.13	0.0073 J	0.036	0.021	0.0361 J	0.239	6.10E-05 U
S.STATION48	6/15/2015	SS48-SD15	Ν	7.06	0.00625	0.043	0.0269	0.0415	0.376	6.50E-05 U
S.STATION57	6/21/2016	SS57-SD16	Ν	0.017 U	0.00552 U	0.0427 J	0.0276 U	0.0249 J	0.284	6.60E-05 U
S.STATION58	6/21/2016	SS58-SD16	Ν	2.33	0.00169 J	0.0394 J	0.0209 J	0.0359	0.233	5.40E-05 U
S.STATION59	6/21/2016	SS59-SD16	Ν	0.09	0.00213 J	0.0437 J	0.0205 J	0.0229	0.22	5.40E-05 U
S.STATION62	6/21/2016	SS62-SD16	N	0.013 U	0.00305 J	0.0794	0.0227	0.0297	0.297	5.20E-05 U
S.STATION64	6/21/2016	SS64-SD16	Ν	0.013 U	0.01754	0.0874	0.0285	0.137	0.846	2.60E-05 J
S.STATION65	6/21/2016	SS65-SD16	Ν	0.045	0.01271	0.51	0.0542	0.0556	0.37	1.60E-03
S.STATION67	6/21/2016	SS67-SD16	Ν	0.041	0.00906	0.106	0.0316	0.055	0.509	6.10E-05 U
S.STATION70	6/21/2016	SS70-SD16	Ν	0.016 J	0.02552 J	0.975	0.221	0.0783	1.71	3.00E-05 J
S.STATION73	6/21/2016	SS73-SD16	Ν	0.012 U	0.00768 J	0.1	0.0459	0.0485	0.33	5.10E-05 J
S.STATION74	6/21/2016	SS74-SD16	N	2.77	0.01725 J	0.0492	0.0328	0.0466	0.34	5.50E-05 U
S.STATION75	6/21/2016	SS75-SD16	Ν	2.54	0.01619 J	0.0701	0.0312	0.0709	0.38	5.50E-05 U
S.STATION76	6/21/2016	SS76-SD16	Ν	9.7	0.00724 J	0.0685	0.0488	0.072	0.614	5.60E-05 U
S.STATION77	6/21/2016	SS77-SD16	Ν	1.27	0.00547 J	0.0449	0.0273	0.0373	0.27	6.10E-05 U
S.STATION78	6/21/2016	SS78-SD16	Ν	1.22	0.00438 J	0.0906	0.0548	0.0683	0.515	5.30E-05 U
S.STATION79	6/21/2016	SS79-SD16	Ν	2.38	0.00651 J	0.0481	0.0345	0.0451	0.391	6.00E-05 U
S.STATION78	6/21/2016	SS-FD2	FD	1.12	0.00567 J	0.0888	0.0742	0.057	0.581	5.40E-05 U

Table H-4. AVS/SEM Analysis Results for Area 8 Sediment

Notes:

AVS - acid volatile sulfides

FD - field duplicate

ID - identification

J - The result is an estimated concentration.

µmol/g - micromole per gram

N - normal environmental sample

No. - number

SEM - simultaneously extracted metals

Table H-5. Total Organic Carbon, Total Solids, and Grain Size Analysis Results for Area 8 Sediment

			Table n-5	. Total Organ	c Carbon, 1	Jan Sonus, and	i Gram Size Ai	arysis Result	S 101 AI ea o 5	eunnent			
Sampling Station ID	Sample Date	Sample No.	Sample Type	Total Organic Carbon (%)	Total Solids (%)	Gravel >2 mm (%)	Sand, Very Coarse 1-2 mm (%)	Sand, Coarse 0.5-1 mm (%)	Sand, Medium 0.25-0.5 mm (%)	Sand, Fine 0.125-0.25 mm (%)	Sand, Very Fine 0.0625- 0.125 mm (%)	Silt 0.0039- 0.0625 mm (%)	Clay < 0.0039 mm (%)
OF03701	6/16/2015	OF03701-SD15	N	0.723	72.3	59.39	13.12	12.44	7.71	2.52	1.16	6.39	4
OF03703	6/16/2015	OF03703-SD15	N	0.4	81.8	31.23	16.98	25.01	16.79	4.85	1.63	5.42	2.38
OF03703	6/16/2015	DUP5-SD15	FD	0.398	82.2	34.29	16.13	22.64	16.56	4.86	1.77	5.23	2.3
S.STATION01	6/15/2015	SS01-SD15	N	NA	79.8	NA	NA	NA	NA	NA	NA	NA	NA
S.STATION02	6/17/2015	SS02-SD15	N	NA	76.5	NA	NA	NA	NA	NA	NA	NA	NA
S.STATION03	6/16/2015	SS03-SD15	N	0.221	78.4	NA	NA	NA	NA	NA	NA	NA	NA
S.STATION04	6/15/2015	SS04-SD15	N	NA	73.8	NA	NA	NA	NA	NA	NA	NA	NA
S.STATION05	6/17/2015	SS05-SD15	N	NA	80.8	NA	NA	NA	NA	NA	NA	NA	NA
S.STATION06	6/16/2015	SS06-SD15	N	NA	81.3	NA	NA	NA	NA	NA	NA	NA	NA
S.STATION06	6/16/2015	SS06-SD15B	N	0.333	81.9	12.69	7.36	13.99	38.7	9.73	1.4	3.65	2.16
S.STATION07	6/17/2015	SS07-SD15	N	NA	74.9	NA	NA	NA	NA	NA	NA	NA	NA
S.STATION07	6/17/2015	SS07-SD15B	N	0.36	73.5	19.7	15.6	13.5	30.53	13.95	1.8	4.14	2.73
S.STATION08	6/17/2015	SS08-SD15	N	NA	77.6	NA	NA	NA	NA	NA	NA	NA	NA
S.STATION08	6/17/2015	SS08-SD15B	N	0.362	73.2	47.98	5.7	9.67	23.3	16.01	1.22	3.31	1.88
S.STATION09	6/17/2015	SS09-SD15	N	NA	86	NA	NA	NA	NA	NA	NA	NA	NA
S.STATION09	6/17/2015	SS09-SD15B	N	0.424	76.2	23.64	6.74	17.35	29.54	11.26	1.89	6.65	2.76
S.STATION10	6/17/2015	SS10-SD15	N	NA	69	NA	NA	NA	NA	NA	NA	NA	NA
S.STATION11	6/16/2015	SS11-SD15	N	NA	77.1	NA	NA	NA	NA	NA	NA	NA	NA
S.STATION12	6/16/2015	SS12-SD15	N	NA	72.6	NA	NA	NA	NA	NA	NA	NA	NA
S.STATION30	6/17/2015	SS30-SD15	N	0.439	76.7	36.94	9.49	11.89	18.75	11.18	4.11	7.86	2.23
S.STATION31	6/16/2015	SS31-SD15	N	0.469	76.1	37.83	11.11	8.74	21.82	9.01	2.47	5.38	2.36
S.STATION32	6/17/2015	SS32-SD15	N	0.51	72.3	8.42	4.41	10.8	36.22	17.62	9.11	14.58	3.61
S.STATION34	6/17/2015	SS34-SD15	N	0.433	75.2	22.06	13.78	23.54	22.7	5.97	1.99	6.81	2.33
S.STATION34	6/17/2015	SS34-SD15B	N	0.273	77.6	47.24	14.94	17.3	16.26	3.67	1.06	2.48	1.49
S.STATION34	6/17/2015	DUP3-SD15	FD	0.392	80.5	32.47	12.52	20.25	18.72	4.69	1.6	5.12	2.09
S.STATION34	6/17/2015	DUP4-SD15B	FD	0.268	78.2	40.23	16.1	19.07	18.23	4.08	1.16	2.7	1.59
S.STATION36	6/16/2015	SS36-SD15	N	0.405	80.3	11.38	9.55	22.87	34.02	8.54	2.52	5.42	2.71
S.STATION36	6/16/2015	SS36-SD15B	N	0.235	78.8	18.71	14.37	24.09	31.7	6.11	1.14	2.21	1.41
S.STATION37	6/17/2015	SS37-SD15	N	0.464	72.2	22.57	18.89	28.87	21.45	4.62	1.4	4.21	2.21
S.STATION38	6/16/2015	SS38-SD15	N	0.254	77.8	24.72	11.9	21.94	30	5.6	1.37	2.46	1.77
S.STATION39	6/16/2015	SS39-SD15	N	0.451	77.4	9.9	4.9	10.55	48.14	14.71	2.63	4.09	2.04
S.STATION40	6/16/2015	SS40-SD15B	N	0.274	74.7	23.13	22.48	29.22	17.63	3.58	0.98	2.31	1.92
S.STATION40	6/16/2015	SS40-SD15	N	0.257	73.7	30.97	20.44	27.12	15.64	3.4	1.03	2.41	1.98
S.STATION41	6/16/2015	SS41-SD15	N	0.382	79.6	15.63	5.67	7.89	38.4	19.38	4.33	5.39	2.41
S.STATION42	6/16/2015	SS42-SD15	N	0.334	77.4	11.22	5.8	7.03	40.87	19.26	4.63	6.75	2.51
S.STATION43	6/17/2015	SS43-SD15B	N	0.242	81	41.92	10.69	14.33	26.39	6.01	1.16	1.13	1.01
S.STATION43	6/17/2015	SS43-SD15	N	0.36	74.7	20.99	11.38	19.9	31.69	8.32	3.17	4.79	2.21
S.STATION44	6/16/2015	SS44-SD15	N	0.259	77	8.75	5.87	10.37	41.32	21.49	3.87	3.98	1.93
S.STATION45	6/16/2015	SS45-SD15	N	0.254	77.3	13.45	3.49	5.96	38.03	27.48	5.5	4.54	2.06
S.STATION46	6/16/2015	SS46-SD15	N	0.321	77.3	16.8	5.77	9.88	38.18	15.96	4.11	4.85	2.05
S.STATION46	6/16/2015	SS46-SD15B	Ν	0.293	77.8	39.45	7.35	8.97	29.09	11.01	2.52	3.02	1.61
S.STATION47	6/16/2015	SS47-SD15	N	0.353	76.5	18.25	6.72	7.83	30.37	19.39	6.04	7.26	2.56
S.STATION48	6/15/2015	SS48-SD15	Ν	0.399	72.1	4.8	4.05	13.5	45.93	14.07	4.23	6.76	3.04
S.STATION49	6/16/2015	SS49-SD15	Ν	0.411	76	NA	NA	NA	NA	NA	NA	NA	NA
S.STATION50	6/15/2015	SS50-SD15	Ν	0.245	84.7	30.7	25.8	24.02	9.92	2.37	0.61	4.06	2.95
S.STATION51	6/15/2015	SS51-SD15	N	0.239	91.4	37.5	19.59	16.18	9.79	3.06	0.92	3.1	2.25
S.STATION52	6/16/2015	SS52-SD15	Ν	0.269	79	11.32	4.86	10.65	48.83	14.13	3.12	4.89	2.16
S.STATION53	6/16/2015	SS53-SD15	Ν	0.435	76.9	49.87	5.31	6.46	22.87	9.31	2.91	6.23	2.28
S.STATION54	6/16/2015	SS54-SD15	N	0.757	63.4	10.34	3.88	5.08	23.72	15.7	8.98	27.86	6.03
S.STATION55	6/16/2015	SS55-SD15	N	NA	78.7	NA	NA	NA	NA	NA	NA	NA	NA
SEEPC	6/15/2015	SEEPC-SD15	Ν	0.402	73.9	NA	NA	NA	NA	NA	NA	NA	NA
SEEPD	6/15/2015	SEEPD-SD15	N	0.412	74.4	NA	NA	NA	NA	NA	NA	NA	NA
SEEPE	6/15/2015	SEEPE-SD15	Ν	0.313	74.8	29.38	19.05	26.71	18.32	3.35	0.84	1.78	1.49
SEEPF	6/15/2015	SEEPF-SD15	Ν	0.411	73.2	27.24	18.51	22.48	22.41	4.28	1.07	2.38	2.11
SEEPG	6/15/2015	SEEPG-SD15	Ν	0.429	74	11.17	11.11	24.64	29.67	7.02	2.53	6.85	3.63
SEEPG	6/15/2015	SEEPG-SD15B	N	0.201	80.8	37.77	11.4	20.55	22.83	4.37	1.23	2.46	1.88

Notes: Total organic carbon and grain size analytical method was American Society for Testing and Materials D422 modified for the Puget Sound Estuary Program. FD - field duplicate

ID - identification

N - normal environmental sample

NA - not analyzed

No. - number

mm - millimeter

Table H-6. Metals Analysis Results for Area 8 Seeps and Outfalls

Sampling Station ID	Sample Date	Sample No.	Sample Type	Dissolved Arsenic (µg/L)	Dissolved Cadmium (µg/L)	Dissolved Chromium, Total (µg/L)	Dissolved Copper (µg/L)	Dissolved Lead (µg/L)	Dissolved Nickel (µg/L)	Dissolved Silver (µg/L)	Dissolved Zinc (µg/L)	Dissolved Mercury (µg/L)
OF03701	6/16/2015	OF03701-OF15	N	0.84 J	6.91	8.25	5.39	0.355	1.13	0.266 J	54.9	0.00427
OF03701	6/16/2015	DUP6-OF15	FD	1.6 J	5.7	6.77	5.06	0.344	1.16	0.58 J	40.2	0.00534
SEEPA	6/15/2015	SEEPA-SW15	N	1.26	45.7	9.68	1.88	0.047	1.65	0.057	1.63	0.00849
SEEPB	6/15/2015	SEEPB-SW15	N	1.44	0.321	2.61	1.13	0.026	0.93	0.021	1.24	0.001
SEEPC	6/15/2015	SEEPC-SW15	N	1.55	2.41	1.21	0.687	0.089	1.81	0.016 J	1.43	0.00866
SEEPD	6/15/2015	SEEPD-SW15	N	0.71	0.003 U	0.42	0.132 U	0.01 U	0.53	0.003 J	1.38	0.00589
SEEPE	6/15/2015	SEEPE-SW15	N	1.76	0.015 J	0.2 J	0.345	0.027	0.53	0.003 J	0.54 U	0.0141
SEEPF	6/16/2015	SEEPF-SW15	N	2.51	0.027 J	0.34 J	0.492	0.028 J	0.78	0.011 J	1.49 J	0.00205 J
SEEPF	6/16/2015	DUP2-SW15	FD	1.96	0.038 J	0.24 J	0.44	0.023 J	0.53	0.013 J	0.77 J	0.00256
SEEPG	6/17/2015	SEEPG-SW15	N	2.28	0.044	0.25	0.438	0.017 J	0.96	0.008 J	1.24	0.00129

Notes:

FD - field duplicate

ID - Identification

J - The result is an estimated concentration

µg/L - microgram per liter

N - normal environmental sample

No. - number

Sampling Station ID	Sample Date	Sample No.	Sample Type	Dissolved Arsenic (µg/L)	Dissolved Cadmium (µg/L)	Dissolved Chromium, Total (µg/L)	Dissolved Copper (µg/L)	Dissolved Lead (µg/L)	Dissolved Nickel (µg/L)	Dissolved Silver (µg/L)	Dissolved Zinc (µg/L)	Dissolved Mercury (µg/L)
			Mean ^a	1.08	0.047	0.14	0.604	0.018	0.77	0.006	1	0.00032
			Median ^a	1.17	0.056	0.16	0.537	0.016	0.78	0.005	0.9	0.00033
			Minimum ^a	0.49	0.014	0.07	0.365	0.014	0.51	0.003	0.6	0.00021
			Maximum ^a	1.54	0.066	0.23	0.901	0.031	0.93	0.011	1.4	0.00043
	No. of D	etected / No. Sam	pled	9/9	8/9	9/9	9/9	7/9	9/9	6/9	5/9	9/9
		Range of Report	rting Limits		0.009			0.01		0.005	0.2 - 0.4	
PP01	6/3/2015	PP1-MW15	N	1.54	0.064	0.11 J	0.901	0.031	0.75	0.011 J	1.4	0.00043 J
PP03	6/3/2015	PP3-MW15	Ν	1.21	0.066	0.16 J	0.537	0.021	0.71	0.006 J	0.6	0.00033 J
PP03	6/3/2015	PPDUP-MW15	FD	1.54	0.059	0.17 J	0.822	0.014 J	0.65	0.005 J	0.9	0.00029 J
PP05	6/3/2015	PP5-MW15	Ν	1.17	0.052	0.16 J	0.456	0.016 J	0.86	0.005 J	1.4	0.00029 J
PP07	6/3/2015	PP7-MW15	Ν	1.18	0.06	0.17 J	0.534	0.015 J	0.51	0.005 J	0.7	0.00028 J
PP09	6/3/2015	PP9-MW15	Ν	0.65	0.014 J	0.1 J	0.386	0.01 U	0.93	0.005 U	0.3 U	0.00036 J
PP11	6/3/2015	PP11-MW15	Ν	1.06	0.035	0.23	0.804	0.018 J	0.78	0.003 J	0.4 U	0.00021 J
PP13	6/3/2015	PP13-MW15	Ν	0.91	0.026	0.12 J	0.63	0.014 J	0.84	0.005 U	0.4 U	0.00035 J
PP15	6/3/2015	PP15-MW15	Ν	0.49 J	0.009 U	0.07 J	0.365	0.01 U	0.93	0.005 U	0.2 U	0.00037 J

Table H-7. Metals Analysis Results for Reference Area Marine Water

Notes:

^a Only detected concentrations are included

FD - field duplicate

ID - identification

J - The result is an estimated concentration

N - normal environmental sample

No. - number

µg/L - microgram per liter

Sampling Station ID	Sample Date	Sample No.	Sample Type	Dissolved Arsenic (µg/L)	Dissolved Cadmium (µg/L)	Dissolved Chromium, Total (µg/L)	Dissolved Copper (µg/L)	Dissolved Lead (µg/L)	Dissolved Nickel (µg/L)	Dissolved Silver (µg/L)	Dissolved Zinc (µg/L)	Dissolved Mercury (µg/L)
			Mean ^a	1.34	0.43	0.43	0.696	0.056	0.63	0.012	1.39	0.00168
			Median ^a	1.31	0.185	0.43	0.609	0.047	0.6	0.009	0.96	0.00141
			Minimum ^a	1.23	0.041	0.19	0.488	0.029	0.45	0.005	0.63	0.00061
]	Maximum ^a	1.58	1.57	0.86	1.34	0.099	1.01	0.051	3.59	0.00372
		No. of Detected / N	lo. Sampled	10/10	10/10	10/10	10/10	10/10	10/10	10/10	10/10	10/10
OF03703	6/15/2015	OF03703-MW15	Ν	1.58	0.224	0.21	1.34	0.08	0.76	0.051	1.88	0.00243
S.STATION05	6/16/2015	SS5-MW15	Ν	1.23	0.277	0.58	0.803	0.047	0.68	0.005 J	0.86	0.00061
SEEPA	6/15/2015	SEEPA-MW15	Ν	1.37	1.3	0.46	0.614	0.099	0.75	0.009 J	0.76 J	0.00089
SEEPA	6/15/2015	DUP1-MW15	FD	1.35	1.57	0.42	0.604	0.074	0.6	0.009 J	0.63	0.00099
SEEPB	6/15/2015	SEEPB-MW15	Ν	1.24	0.145	0.86	0.843	0.047	1.01	0.014 J	3.59	0.00127
SEEPC	6/15/2015	SEEPC-MW15	Ν	1.27	0.551	0.43	0.635	0.056	0.6	0.008 J	0.94	0.00248
SEEPD	6/15/2015	SEEPD-MW15	Ν	1.32	0.041	0.58	0.488	0.029	0.5	0.005 J	0.97	0.00372
SEEPE	6/15/2015	SEEPE-MW15	Ν	1.29	0.055	0.21	0.501	0.045	0.45	0.005 J	1.48	0.00161
SEEPF	6/15/2015	SEEPF-MW15	Ν	1.24	0.052	0.19 J	0.534	0.04	0.46	0.005 J	2.05	0.00135
SEEPG	6/15/2015	SEEPG-MW15	Ν	1.5	0.089	0.34	0.596	0.047	0.49	0.01 J	0.71	0.00147

Table H-8. Metals Analysis Results for Area 8 Marine Water

Notes:

^a Only detected concentrations are included

FD - field duplicate

ID - Identification

J - The result is an estimated concentration

µg/L - microgram per liter

N - normal environmental sample

No. - number

Sampling Station ID	Dissolved . (µg/I		Dissolved Ca (µg/L		Dissolved Ch Total (µ	,	Dissolved ((µg/L		Dissolved Lea	ad (µg/L)	Dissolved (µg/		Dissolved Silv	ver (µg/L)	Dissolved Z	inc (µg/L)	Dissolved (µg/	•
	Seep	MW	Seep	MW	Seep	MW	Seep	MW	Seep	MW	Seep	MW	Seep	MW	Seep	MW	Seep	MW
SEEPA	1.26	1.37	45.7	1.57	9.68	0.46	1.88	0.614	0.047	0.099	1.65	0.75	0.057	0.009 J	1.63	0.76 J	0.00849	0.00099
SEEPB	1.44	1.24	0.321	0.145	2.61	0.86	1.13	0.843	0.026	0.047	0.93	1.01	0.021	0.014 J	1.24	3.59	0.001	0.00127
SEEPC	1.55	1.27	2.41	0.551	1.21	0.43	0.687	0.635	0.089	0.056	1.81	0.6	0.016 J	0.008 J	1.43	0.94	0.00866	0.00248
SEEPD	0.71	1.32	0.003 U	0.041	0.42	0.58	0.132 U	0.488	0.01 U	0.029	0.53	0.5	0.003 J	0.005 J	1.38	0.97	0.00589	0.00372
SEEPE	1.76	1.29	0.015 J	0.055	0.2 J	0.21	0.345	0.501	0.027	0.045	0.53	0.45	0.003 J	0.005 J	0.54 U	1.48	0.0141	0.00161
SEEPF	2.51	1.24	0.038 J	0.052	0.34 J	0.19 J	0.492	0.534	0.028 J	0.04	0.78	0.46	0.013 J	0.005 J	1.49 J	2.05	0.00256	0.00135
SEEPG	2.28	1.5	0.044	0.089	0.25	0.34	0.438	0.596	0.017 J	0.047	0.96	0.49	0.008 J	0.01 J	1.24	0.71	0.00129	0.00147

Table H-9. Metals Analysis Results for Area 8 Seeps and Marine Water

Notes:

Bold indicates which concentration is higher, comparing seep and marine water.

ID - identification

J - The result is an estimated concentration

µg/L - microgram per liter

MW - marine water

No. - number

						fifetuis filluly bis 1		8				
Sampling Station ID	Sample Date	Sample No.	Sample Type	Arsenic (µg/L)	Cadmium (µg/L)	Chromium, Total (µg/L)	Copper (µg/L)	Lead (µg/L)	Nickel (µg/L)	Silver (µg/L)	Zinc (µg/L)	Mercury (µg/L)
B98	6/21/2016	B98-Potable ^a	Ν	0.3 J	0.037	0.3 U	7.56	1.07	2.42	0.008 UJ	81.2	0.00074
B98	6/21/2016	B98-Tank b	Ν	0.3 U	7.4	0.72	5.47	0.476	1.7	0.004 UJ	597	0.05 U
B98	6/21/2016	B98-Tank-F ^a	Ν	0.2 J	6.14	0.55	2.98	0.026 U	1.58	0.01 U	521	0.00093

Table H-10. Metals Analysis Results for Building 98 Water

Notes:

^a Field filtered for dissolved metals analysis

^b Total metals analysis

ID - Identification

J - The result is an estimated concentration.

µg/L - microgram per liter

N - normal environmental sample

No. - number

U - The compound was analyzed for, but was not detected ("nondetect") at or above the limit of detection

						•••••	,			are 101 1					
Transect	Sampling Station ID	Sample Date	Sample No.	Sample Type	Ammonia (mg/L)	Sulfide (mg/L)	Arsenic (mg/L)	Cadmium (mg/L)	Chromium (mg/L)	Copper (mg/L)	Lead (mg/L)	Nickel (mg/L)	Silver (mg/L)	Zinc (mg/L)	Mercury (mg/L)
Transect 8	SEEPC	6/5/2019	DUP-SW19	FD	0.30 U	1.9 U	0.0045	0.028	0.0084	0.0024	0.00060 U	0.0019 J	0.000087 J	0.0023 J	0.00020 U
Transect 8	SEEPC	6/5/2019	SEEPC-SW19	Ν	0.30 U	0.80 J	0.0047	0.028 J	0.0079	0.0010 J	0.00060 U	0.0016 J	0.000076 J	0.0037 J	0.00020 U

Table H-11. Metals, Ammonia, and Sulfide Results for Seep Water for Area 8

FD field duplicate sample

ID identification

J estimated result

mg/L milligram per liter

N normal environmental sample

No. number

Sampling Station ID	-	Sample No	Sample Type	Ammonia (mg/L)	Sulfide (mg/L)	Arsenic (mg/L)	Cadmium (mg/L)	Chromium (mg/L)	Copper (mg/L)	Lead (mg/L)	Nickel (mg/L)	Silver (mg/L)	Zinc (mg/L)	Mercury (mg/L)
PPSP-1	6/5/2019	DUP2-SW19	FD	0.30 U	1.9 U	0.0062	0.0015 U	0.00088 J	0.0075 U	0.0030 U	0.0014 J	0.00035 U	0.020 U	0.00020 U
PPSP-1	6/5/2019	PPSP01SEEP-SW19	Ν	0.30 U	1.9 U	0.0057	0.0015 U	0.00091 J	0.0075 U	0.0030 U	0.0017 J	0.00035 U	0.020 U	0.00020 U

Table H-12. Metals, Ammonia, Sulfide Results for Seep Water for Reference Area

FD field duplicate sample

ID identification

J estimated result

mg/L milligram per liter

N normal environmental sample

No. number

FIFTH FIVE-YEAR REVIEW NAVAL BASE KITSAP KEYPORT

Appendix H - OU 2 Area 8 Data Collection During FYR Period

Sampling Station ID	Sample Date	Sample No.	Sample Type	Aroclor- 1016 (µg/L)	Aroclor- 1221 (µg/L)	Aroclor- 1232 (µg/L)	Aroclor- 1242 (µg/L)	Aroclor- 1248 (µg/L)	Aroclor- 1254 (µg/L)	Aroclor- 1260 (µg/L)	Total PCBs (µg/L)
PPSP-1	6/5/2019	DUP2-SW19	FD	0.17 U	0.17 U						
PPSP-1	6/5/2019	PPSP01SEEP-SW19	Ν	0.17 U	0.17 U						

Table H-13. PCB Results for Seep Water for Reference Area

μg/L microgram per liter

FD field duplicate sample

ID identification

N normal environmental sample

No. number

PCB polychlorinated biphenyl

Sample No.	DUP2-SW19	PPSP01SEEP-SW19
Sample Type	FD	N
Sample Date	6/5/2019	6/5/2019
Analyte (µg/L)		
1,2,4-Trichlorobenzene	0.15 U	0.15 U
1,2-Dichlorobenzene	0.30 U	0.29 U
1,4-Dichlorobenzene	0.15 U	0.15 U
2,4-Dimethylphenol	3.0 U	2.9 U
2-Methylnaphthalene	0.15 U	0.15 U
2-Methylphenol	0.30 U	0.29 U
3 & 4 Methylphenol	0.49 U	0.49 U
Acenaphthene	0.30 U	0.29 U
Acenaphthylene	0.30 UJ	0.29 UJ
Anthracene	0.30 UJ	0.29 UJ
Benzo[a]anthracene	0.30 U	0.29 U
Benzo[a]pyrene	0.49 UJ	0.49 UJ
Benzo[g,h,i]perylene	0.30 U	0.29 U
Benzofluoranthene	0.30 U	0.29 U
Benzoic acid	3.2 UJ	3.1 UJ
Benzyl alcohol	1.4 J	1.6 UJ
Bis(2-ethylhexyl) phthalate	R	R
Butyl benzyl phthalate	0.79 U	0.78 U
Carbazole	0.3 UJ	0.29 UJ
Chrysene	0.49 U	0.49 U
Dibenz(a,h)anthracene	0.30 U	0.29 U
Dibenzofuran	0.15 U	0.15 U
Diethyl phthalate	1.6 U	1.6 U
Dimethyl phthalate	0.30 U	0.29 U
Di-n-butyl phthalate	1.6 U	1.6 U
Di-n-octyl phthalate	0.49 U	0.49 U
Fluoranthene	0.30 U	0.29 U
Fluorene	0.30 U	0.29 U
Hexachlorobenzene	0.30 U	0.29 U
Hexachlorobutadiene	0.30 U	0.29 U
Indeno[1,2,3-cd]pyrene	0.15 U	0.15 U
Naphthalene	0.30 U	0.29 U
N-Nitrosodiphenylamine	0.30 UJ	0.29 UJ
Pentachlorophenol	5.9 U	5.9 U
Phenanthrene	0.30 U	0.29 U
Phenol	0.79 U	0.78 U
Pyrene	0.30 U	0.29 U

Table H-14. SVOC/PAH Results for Seep Water for Reference Area

µg/L	microgram per liter
FD	field duplicate sample
ID	identification
J	estimated result
Ν	normal environmental sample
No.	number
R	rejected
U	The compound was analyzed for, but was not detected
	("nondetect") at or above the reported detection limit

				Iusie	101 1010	, , , , , , , , , , , , , , , , , , ,		amae neo		annent for A						
Transect	Sampling Station ID	Sample Date	Sample No.	Sample Depth (cm)	Sample Type	Ammonia (mg/kg)	Sulfide	Arsenic (mg/kg)	Cadmium (mg/kg)	Chromium (mg/kg)	Copper (mg/kg)	Lead (mg/kg)	Nickel (mg/kg)	Silver (mg/kg)	Zinc (mg/kg)	Mercury (mg/kg)
Transect 2 & 8	S.Station64	6/4/2019	SS64-SD19	0-10	Ν	36 U	11 UJ	2.6	4.3	20	13	5.7	17	0.31	43	0.051
Transect 8	S.Station03-C	6/4/2019	DUP-SD19	0-10	Ν	39 U	140 J	3.2	8.4	44	13	5.1	20	0.34	37	0.13
Transect 8	S.Station03-C	6/4/2019	SS03-C-SD19	0-10	Ν	38 U	84 J	2.7	15	42	11	4	20	0.41	32	0.16
Transect 8	S.Station50	6/4/2019	SS50-SD19	0-10	Ν	32 U	11 UJ	2.1	4.9	35	15	10	28	0.35	44	0.058
Transect 8	S.Station51	6/4/2019	SS51-SD19	0-10	Ν	30 U	11 UJ	2.5	4.8	37	30	82	29	0.13	130	0.075
Transect 3	SEEPA	6/4/2019	SEEPA-SD19	0-10	Ν	37 U	64 J	2.4	8.5	42	11	3.6	20	0.36	32	0.29
Transect 9	OF03703	6/4/2019	OF03703-SD19	0-10	Ν	34 U	11 UJ	3	1.8	68	22	12	25	6.1	55	0.24
Transect 9	S.Station70	6/4/2019	SS70-SD19	0-10	Ν	34 U	11 UJ	2	1.4	47	99	43	26	1.3	120	0.25

Table H-15. Metals, Ammonia, and Sulfide Results for Sediment for Area 8

cm centimeter

ID identification

J estimated result

mg/kg milligram per kilogram

N normal environmental sample

No. number

				,	,								
Transect	Sampling Station ID	Sample Date	Sample No.	Sample Depth (cm)	Sample Type	TOC (mg/kg)	Total Solids (%)	Total Solids @ 70 (%)	Clay (%)	Cobbles (%)	Gravel (%)	Sand (%)	Silt (%)
Transect 2 & 8	S.Station64	6/4/2019	SS64-SD19	0-10	Ν	30,000	80.6	83	3.4	0	42	48	7.1
Transect 8	S.Station03-C	6/4/2019	DUP-SD19	0-10	Ν	29,000	75.1	79	2.3	0	29	61	7.4
Transect 8	S.Station03-C	6/4/2019	SS03-C-SD19	0-10	Ν	21,000	74.1	78	1.8	0	33	60	5
Transect 8	S.Station50	6/4/2019	SS50-SD19	0-10	Ν	15,000	88	87	2.1	0	27	66	5.2
Transect 8	S.Station51	6/4/2019	SS51-SD19	0-10	Ν	29,000	87.4	86	2.4	0	40	54	4.1
Transect 3	SEEPA	6/4/2019	SEEPA-SD19	0-10	Ν	15,000	72.5	75	1.9	0	32	61	5.6
Transect 9	OF03703	6/4/2019	OF03703-SD19	0-10	Ν	15,000	86.4	88	1.5	0	24	71	3.7
Transect 9	S.Station70	6/4/2019	SS70-SD19	0-10	Ν	11,000	85.9	85	2.4	0	52	40	5.1

 Table H-16.
 TOC, Total Solids, and Grain Size Results for Sediment for Area 8

% percent

cm centimeter

ID identification

mg/kg milligram per kilogram

N normal environmental sample

No. number

TOC total organic carbon

Table H-17. SVOC/PAH Results for Sediment for Area 8

Sample No	o. SS64-SD19
Sample Typ	e N
Sample Dat	e 6/4/2019
Transeo	t Transect 2 & 8
Sample Depth (cm	n) 0-10
Analyte (µg/kg)	
1,2,4-Trichlorobenzene	45 UJ
1,2-Dichlorobenzene	89 UJ
1,4-Dichlorobenzene	89 UJ
2,4-Dimethylphenol	89 UJ
2-Methylnaphthalene	89 UJ
2-Methylphenol	89 UJ
3 & 4 Methylphenol	89 UJ
Acenaphthene	45 UJ
Acenaphthylene	45 UJ
Anthracene	45 UJ
Benzo[a]anthracene	45 UJ
Benzo[a]pyrene	89 UJ
Benzo[g,h,i]perylene	89 UJ
Benzofluoranthene	89 UJ
Benzoic acid	4700 UJ
Benzyl alcohol	R
Bis(2-ethylhexyl) phthalate	590 UJ
Butyl benzyl phthalate	360 UJ
Carbazole	89 UJ
Chrysene	89 UJ
Dibenz(a,h)anthracene	89 UJ
Dibenzofuran	45 UJ
Diethyl phthalate	590 UJ
Dimethyl phthalate	89 UJ
Di-n-butyl phthalate	360 UJ
Di-n-octyl phthalate	360 UJ
Fluoranthene	45 UJ
Fluorene	45 UJ
Hexachlorobenzene	89 UJ
Hexachlorobutadiene	89 UJ
Indeno[1,2,3-cd]pyrene	45 UJ
Naphthalene	45 UJ
N-Nitrosodiphenylamine	89 UJ
Pentachlorophenol	1200 UJ
Phenanthrene	89 UJ
Phenol	150 UJ
Pyrene	45 UJ

µg/kg	microgram per kilogram
cm	centimeter
FD	field duplicate sample
ID	identification
J	estimated result
Ν	normal environmental sample
No.	number
R	rejected
U	The compound was analyzed for, but was not detected ("nondetect")
	at or above the reported detection limit

Appendix H – OU 2 Area 8 Data Collection During FYR Period

 Table H-18. PCB Results for Sediment for Area 8

Transect	Sampling Station ID	Sample Date	Sample No.	Sample Depth (cm)	Sample Type	Aroclor- 1016 (µg/kg)	Aroclor- 1221 (µg/kg)	Aroclor- 1232 (µg/kg)	Aroclor- 1242 (µg/kg)	Aroclor- 1248 (µg/kg)	Aroclor- 1254 (µg/kg)	Aroclor- 1260 (µg/kg)	Total PCBs (µg/kg)
Transect 2 & 8	S.Station64	6/4/2019	SS64-SD19	0-10	Ν	1.2 U	1.8 U	1.2 U	1.2 U	0.72 U	1.8 U	1.2 U	1.8 U

µg/kg	microgram per kilogram
cm	centimeter
ID	identification
Ν	normal environmental sample
No.	number
PCB	polychlorinated biphenyl

Transect	Sampling Station ID	Sample Date	Sample No.	Sample Depth (cm)	Sample Type	2,4-DDD (µg/kg)	2,4-DDE (µg/kg)	2,4-DDT (µg/kg)	4,4-DDD (μg/kg)	4,4-DDE (µg/kg)	4,4-DDT (µg/kg)	beta-BHC (µg/kg)	Dieldrin (µg/kg)	Endrin ketone (µg/kg)
Transect 2 & 8	S.Station64	6/4/2019	SS64-SD19	0-10	Ν	0.40 U	0.40 U	0.40 U	0.15 U	0.15 U	R	0.055 U	0.15 UJ	0.15 UJ

 Table H-19. Pesticides Results for Sediment for Area 8

µg/kg	microgram per kilogram
BHC	benzene hexachloride
cm	centimeter
DDD	dichlorodiphenyldichloroethane
DDE	dichlorodiphenyldichloroethylene
DDT	dichlorodiphenyltrichloroethane
ID	identification
J	estimated result
Ν	normal environmental sample
No.	number

Sampling Station ID	Sample Date	Sample No.	Sample Depth (cm)	Sample Type	Ammonia (mg/kg)	Sulfide (mg/kg)	Arsenic (mg/kg)	Cadmium (mg/kg)	Chromium (mg/kg)	Copper (mg/kg)	Lead (mg/kg)	Nickel (mg/kg)	Silver (mg/kg)	Zinc (mg/kg)	Mercury (mg/kg)
PPSP-1	6/6/2019	PPSP01-SD19	0-10	Ν	36 U	12 U	1.7	0.067 J	15	6.5	1.6	17	0.015 J	20	0.019 U
PPSP-2	6/6/2019	DUP02-SD19	0-10	Ν	36 U	13 U	2.1	0.072 J	13	5.5	1.2	15	0.015 J	98 J	0.020 U
PPSP-2	6/6/2019	PPSP02-SD19	0-10	Ν	39 U	13 U	1.6	0.071 J	13	5.5	1.2	13	0.022 J	19 J	0.022 U
PPSP-4	6/6/2019	PPSP04-SD19	0-10	Ν	33 U	13 U	1.7	0.059 J	15	5.5	1.4	13	0.017 J	18	0.021 U

Table H-20. Metals, Ammonia, and Sulfide Results for Sediment for Reference Area

cm centimeter

ID identification

J estimated result

mg/kg milligram per kilogram

N normal environmental sample

No. number

FIFTH FIVE-YEAR REVIEW NAVAL BASE KITSAP KEYPORT

Appendix H – OU 2 Area 8 Data Collection During FYR Period

Table H-21. TOC, Total Solids, a	nd Grain Size Results for Sediment for Reference Area
----------------------------------	---

Sampling Station ID	Sample Date	Sample No.	Sample Depth (cm)	Sample Type	Total Organic Carbon (mg/kg)	Total Solids (%)	Total Solids @ 70°C (%)	Clay (%)	Cobbles (%)	Gravel (%)	Sand (%)	Silt (%)
PPSP-1	6/6/2019	PPSP01-SD19	0-10	Ν	5,500	78.8	77	1.2	0	35	62	1.8
PPSP-2	6/6/2019	DUP02-SD19	0-10	Ν	5,800	76.1	81	1.1	0	40	56	2.8
PPSP-2	6/6/2019	PPSP02-SD19	0-10	Ν	4,100	76.3	83	1.2	0	35	61	3.1
PPSP-4	6/6/2019	PPSP04-SD19	0-10	Ν	3,300	77.3	80	1.2	0	37	58	3.6

% percent

cm centimeter

ID identification

mg/kg milligram per kilogram

N normal environmental sample

No. number

FIFTH FIVE-YEAR REVIEW NAVAL BASE KITSAP KEYPORT

Appendix H – OU 2 Area 8 Data Collection During FYR Period

Sampling Station ID	Sample Date	Sample No.	Sample Depth (cm)	Sample Type	Aroclor- 1016 (µg/kg)	Aroclor- 1221 (µg/kg)	Aroclor- 1232 (µg/kg)	Aroclor- 1242 (µg/kg)	Aroclor- 1248 (µg/kg)	Aroclor- 1254 (µg/kg)	Aroclor- 1260 (µg/kg)	Total PCBs (µg/kg)
PPSP-1	6/6/2019	PPSP01-SD19	0-10	Ν	1.1 U	1.7 U	1.1 U	1.1 U	0.67 U	1.7 U	1.1 U	1.7 U
PPSP-2	6/6/2019	DUP02-SD19	0-10	Ν	1.2 U	1.7 U	1.2 U	1.2 U	0.69 U	1.7 U	1.2 U	1.7 U
PPSP-2	6/6/2019	PPSP02-SD19	0-10	Ν	1.2 U	1.8 U	1.2 U	1.2 U	0.74 U	1.8 U	1.2 U	1.8 U
PPSP-4	6/6/2019	PPSP04-SD19	0-10	Ν	1.1 U	1.7 U	1.1 U	1.1 U	0.68 U	1.7 U	1.1 U	1.7 U

 Table H-22. PCB Results for Sediment for Reference Area

μg/kg microgram per kilogram

cm centimeter

ID identification

N normal environmental sample

No. number

PCB polychlorinated biphenyl

Sampling Station ID		PPSP-2	t for Reference PPSP-2	PPSP-4				
Sampling Station ID Sample No.	PPSP01-SD19	DUP02-SD19	PPSP02-SD19	PPSP04-SD19				
Sample No. Sample Date		6/6/2019	6/6/2019	6/6/2019				
Sample Date		0/0/2019 N	N	N				
Sample Type	0-10	0-10	0-10	0-10				
	0-10	0-10	0-10	0-10				
Analyte (µg/kg)	8.2 U	8.6 U	9.5 U	9.0 U				
1,2,4-Trichlorobenzene	8.2 U 16 U	8.6 U 17 U	9.3 U 19 U	9.0 U 18 U				
1,4-Dichlorobenzene	16 U	17 U	19 U	18 U				
,	16 U		19 U					
2,4-Dimethylphenol 2-Methylnaphthalene	16 U	17 U 17 U	19 U	18 U 18 U				
2-Methylphenol	16 U	17 U	19 U	18 U				
3 & 4 Methylphenol	10 U 12 J	17 U	19 U 19 U	18 U				
Acenaphthene	8.2 U	8.6 U	9.5 U	9.0 U				
Acenaphthylene	8.2 U 8.2 U	8.6 U	9.5 U	9.0 U				
Anthracene	8.2 U 8.2 U	8.6 U	9.5 U	9.0 U				
Benzo[a]anthracene	8.2 U 8.2 U	8.6 U	9.5 U	9.0 U 9.0 U				
Benzo[a]pyrene	16 U	17 U	9.5 U	9.0 U				
Benzo[g,h,i]perylene	16 U	17 U	19 U	18 U				
Benzofluoranthene	16 U	17 U	19 U	18 U				
Benzoic acid	880 UJ	910 U	19 U 1000 U	960 U				
Benzyl alcohol	110 U	110 U	130 U	120 U				
Bis(2-ethylhexyl) phthalate	110 U	110 U	130 U	120 U				
Butyl benzyl phthalate	66 U	68 U	76 U	72 U				
Carbazole	16 U	17 U	19 U	18 U				
Chrysene	16 U	17 U	19 U	18 U				
Dibenz(a,h)anthracene	16 U	17 U	19 U	18 U				
Dibenzofuran	8.2 U	8.6 U	9.5 U	9.0 U				
Diethyl phthalate	110 U	110 U	130 U	120 U				
Dimethyl phthalate	16 U	110 U	130 U	120 U				
Di-n-butyl phthalate	66 U	68 U	76 U	72 U				
Di-n-octyl phthalate	66 U	68 U	76 U	72 U				
Fluoranthene	8.2 U	8.6 U	9.5 U	9.0 U				
Fluorene	8.2 U	8.6 U	9.5 U	9.0 U				
Hexachlorobenzene	16 U	17 U	19 U	18 U				
Hexachlorobutadiene	16 U	17 U	19 U	18 U				
Indeno[1,2,3-cd]pyrene	8.2 U	8.6 U	9.5 U	9.0 U				
Naphthalene	8.2 U	8.6 U	9.5 U	9.0 U				
N-Nitrosodiphenylamine	16 U	17 U	19 U	18 U				
Pentachlorophenol	220 U	230 U	250 U	240 U				
Phenanthrene	16 U	17 U	19 U	18 U				
Phenol	130 J	26 J	27 J	30 U				
Pyrene	8.2 U	8.6 U	9.5 U	9.0 U				
μg/kg	microgram per ki		2.0 0	2.0 0				
cm	centimeter	iogrami						
ID	identification							
J	estimated result							
N N	normal environmental sample							
No.	number	sumple						
110.	namou							

Table H-23. SVOC/PAH Results for Sediment for Reference Area

rejected

R

U

FIFTH FIVE-YEAR REVIEW NAVAL BASE KITSAP KEYPORT

Appendix H – OU 2 Area 8 Data Collection During FYR Period

Sampling Station ID	Sample Date	Sample No.	Sample Depth (cm)	Sample Type	2,4-DDD (µg/kg)	2,4-DDE (µg/kg)	2,4-DDT (µg/kg)	4,4-DDD (µg/kg)	4,4-DDE (µg/kg)	4,4-DDT (μg/kg)	beta-BHC (µg/kg)	Dieldrin (µg/kg)	Endrin ketone (µg/kg)
PPSP-1	6/6/2019	PPSP01-SD19	0-10	Ν	1.1 U	1.1 U	1.1 U	0.42 U	0.42 U	0.42 U	0.15 U	0.42 U	0.42 U
PPSP-2	6/6/2019	DUP02-SD19	0-10	Ν	1.1 U	1.1 U	1.1 U	0.43 U	0.43 U	0.43 U	0.16 U	0.43 U	0.43 U
PPSP-2	6/6/2019	PPSP02-SD19	0-10	Ν	1.2 U	1.2 U	1.2 U	0.46 U	0.46 U	0.46 U	0.17 U	0.46 U	0.46 U
PPSP-4	6/6/2019	PPSP04-SD19	0-10	Ν	1.1 U	1.1 U	1.1 U	0.42 U	0.42 U	0.42 U	0.15 U	0.42 U	0.42 U

 Table H-24. Pesticides Results for Sediment for Reference Area

μg/kg microgram per kilogram

BHC benzene hexachloride

cm centimeter

- DDD dichlorodiphenyldichloroethane
- DDE dichlorodiphenyldichloroethylene
- DDT dichlorodiphenyltrichloroethane
- ID identification
- N normal environmental sample
- No. number

Table II-	-23. Comparison	or mistorical Da	a Useu to sele	Site Sediment	-	Locations to 2019 Metals Data for Sediment				
				Concentration		-				
	Sample	Sample ID	Cd			1				
Sampling			(mg/kg)	Hg (mg/kg)	Ag (mg/kg)	Rationale and Results *				
Station	Sediment	SCO	5.1	0.41	6.1					
	Benchmark:	CSL	6.7	0.59	6.1					
S.STATION03 (Seep C)	6/16/2015	SS03-SD15	11.4 0.074 0.4		0.433	Maximum cadmium sediment concentration; confirmation of prior bioassay results (where applicable)				
SS03-C	6/4/2019	SS03-C-SD19	15	. 5 0.16 0.41		Higher Cd concentration, no seep toxicity, abnormal bivalve development in sediment, reduced growth in polychaetes				
SS03-C Dup	6/4/2019	DUP01-SD19	8.4	0.13	0.34	Duplicate				
	6/15/2015	SS50-SD15	8.84 J	0.308	0.469	Mid-range cadmium sediment concentration				
S.STATION50	6/4/2019	SS50-SD19	4.9	0.058	0.35	No SMS criteria exceedances, no toxicity				
S.STATION51	6/15/2015	SS51-SD15	10.2 J	2.42	0.099	Second highest cadmium and highest mercury; synergistic effects with mercury				
5.5111101.01	6/4/2019	SS51-SD19	4.8	0.075	0.13	No SMS criteria exceedances, no toxicity				
	6/15/2015	SEEPC-SD15	6.8 J	0.133	0.299	Mid-range cadmium concentration				
SEEP A (Sediment)	6/4/2019	SEEPA-SD19	8.5	0.29	0.36	Mid-range cadmium concentration, abnormal bivalve development, reduced growth in polychaetes				
	6/21/2016	SS64-CL16	2.71	0.082	0.208	Low cadmium sediment concentration, but maximum cadmium tissue concentration				
S.STATION64	6/4/2019	SS64-SD19	4.3	0.051	0.31	Low cadmium sediment concentration, but historical maximum cadmium tissue concentration; reduced growth in polychaetes				
S.STATION70	6/21/2016	SS70-SD16	3.18 J	0.491	7.75 J	Low cadmium sediment concentration, but cadmium tissue accumulation, mercury above SCO and high silver concentration; silver tissue concentration of 0.462 mg/kg exceeds background of 0.009 mg/kg; near dry outfall				
	6/4/2019	SS70-SD19	1.4	0.25	1.3	No SMS criteria exceedances, no toxicity				
OF03703	6/16/2015	OF03703-SD15	3.93	0.627	1.98	Exceeds mercury CSL and elevated cadmium tissue concentration				
	6/4/2019	OF03703-SD19	1.8	0.24	6.1	At silver CSO/CSL, but no toxicity				

Table H-25. Comparison of Historical Data Used to Select Sediment Bioassay Test Locations to 2019 Metals Data for Sediment

Notes:

Bold - exceeds SCO.

Bold and yellow-highlight - exceeds CSL

The seep benchmarks is the National Ambient Water Quality Criterion.

*No toxicity was observed in the sediment amphipod bioassay and the seep bivalve bioassay.

Ag silver

Cd cadmium

CSL SMS Cleanup Screening Level

- Hg mercury
- ID identification

J The result is an estimated concentration

mg/kg milligram per kilogram

SCO SMS Sediment Cleanup Objective

SMS Sediment Management Standards, Washington State Dept. of Ecology

Table 11-20. Son vapor Sample Results (ug/m)												
L	ocation Name	OU2A8-SV-1	OU2A8-SV-2	OU2A8-SV-3	OU2A8-SV-3	OU2A8-SV-4	OU2A8-SV-5	OU2A8-SV-5	OU2A8-SV-6			
Sample Name		OU2A8-SV-1-5.0	OU2A8-SV-2-5.0	OU2A8-SV-3-5.0	OU2A8-SV-3-8.0	OU2A8-SV-4-5.0	OU2A8-SV-5-5.0	OU2A8-SV-7-5.0	OU2A8-SV-6-5.0			
Sample Type		Ν	Ν	Ν	Ν	Ν	Р	FD	Ν			
Analyte PAL		Result										
1,1,2-Trichloroethane	6.67	6.2 U	7.7 U	1.6 U	1.5 U	1.5 U	1.5 U	1.5 U	1.6 U			
1,1-Dichloroethene	6,667	4.2 J	4.8 J	1.6 U	1.5 U	1.5 U	5.5	5.3	3			
1,4-Dioxane	167	6.2 U	7.7 U	1.6 U	1.5 U	1.5 U	1.5 U	1.5 U	1.6 U			
Benzene	107	6 U	7.6 U	0.63 J	1.5 J	3.4	2.1	4.7	1.5 U			
Carbon Tetrachloride	139	6 U	7.6 U	1.6 U	1.5 U	33	1.5 U	1.5 U	1.5 U			
cis-1,2-Dichloroethene	NE	38 J	7.7 U	1.6 U	0.94 J	0.83 J	1.5 U	1.5 U	1.6 U			
Ethylbenzene	33,333	6 U	7.6 U	1.6 U	1.5 U	1.5 U	1.5 U	0.95 J	1.5 U			
Tetrachloroethene	1,333	150 J	1,500	16	22	5.9	3.4	3.5	0.58 J			
trans-1,2-Dichlorothene	2,000	5,300 J	240	0.82 J	1.5 U	1.5 U	1.5 U	1.5 U	1.6 U			
Trichloroethene	66.7	1,300 J	1,200	73	140	290 D	41	41	16			
Vinyl Chloride	93.3	5.9 U	7.4 U	1.5 U								
Helium	NE	180,000	7,900	20,000	1,300 U							

Table H-26. Soil Vapor Sample Results (ug/m³)

Notes:

Volatile organic compounds analyzed by EPA Method TO 15

Helium analyzed by EPA Method 3C Modified

Bold text indicates that the result or the reporting limit exceeds the PAL.

D - Result is from a laboratory diluted sample

P - Parent sample

FD - Field Duplicate

J - Result is an estimated value

N - Native sample

NE - Not established

PAL - Project action limit as established in the sampling and analysis plan

U - Analyte not detected at the indicated reporting limit

ug/m³ - micrograms per cubic meter

Table H-27. Outdoor/Ambient Air Sampling Results at Area 8

	ANALYT	E_NAME			Tetrachloroethene	Trichloroethene	cis-1,2-Dichloroethene	trans-1,2-Dichloroethene	1,1-Dichloroethene	Vinyl chloride		
	PAL Air - In	door (µg/m³)			40	2	NE	60	200	2.8		
SAMPLE_TYP COLLECT_D												
LOCATION_NAME	SAMPLE_NAME	E	ATE	Description	Result (µg/m ³)							
					A	Apr-19						
Area8-OA-1	Area8-OA-1-190415	Р	4/15/2019	Air - Outdoor	0.11 J	0.032 J	0.015 U	0.012 U	0.014 U	0.012 U		
Area8-OA-4	Area8-OA-4-190415	FD	4/15/2019	Air - Outdoor	0.31 J	0.038 J	0.016 U	0.013 U	0.015 U	0.013 U		
Area8-OA-2	Area8-OA-2-190415	N	4/15/2019	Air - Outdoor	0.028 J	0.012 U	0.013 U	0.01 U	0.012 U	0.01 U		
Area8-OA-3	Area8-OA-3-190415	N	4/15/2019	Air - Outdoor	0.028 J	0.013 U	0.014 U	0.011 U	0.013 U	0.011 U		
Area8-OA-5	Area8-OA-5-190416	Р	4/16/2019	Air - Outdoor	0.037	0.012 U	0.013 U	0.032 J	0.012 U	0.011 U		
Area8-OA-6	Area8-OA-6-190416	FD	4/16/2019	Air - Outdoor	0.034 J	0.012 U	0.013 U	0.033 J	0.012 U	0.011 U		
						Jul-19						
Area8-OA-1	Area8-OA-1-190723	Ν	7/23/2019	Air - Outdoor	0.027 J	0.029 U	0.029 U	0.14	0.029 U	0.029 U		
Area8-OA-2	Area8-OA-2-190723	Р	7/23/2019	Air - Outdoor	0.029 J	0.029 U	0.029 U	0.28	0.029 U	0.029 U		
Area8-OA-4	Area8-OA-4-190723	FD	7/23/2019	Air - Outdoor	0.028 J	0.029 U	0.029 U	0.28	0.029 U	0.029 U		
Area8-OA-3	Area8-OA-3-190723	N	7/23/2019	Air - Outdoor	0.033 J	0.029 U	0.029 U	0.44	0.029 U	0.029 U		

NOTES:

FD - Field Duplicate

P - Parent

N - Normal (no field duplicate)

U - Undetected at the limit of detection shown

J - The result is an estimated concentration that is less than the LOQ but greater than or equal to the MDL.

April Samples:

OA-4 is FD of OA-1 OA-5/OA-6 location is same as OA-2 location

July Samples:

OA-4 is FD of OA-2

Image: State in the					Table H-28. Vapor Int	lusion Sampling Kes	ints at Area 8 - Bun	ung 62			
Horizona		ANAL	YTE_NAME			Tetrachloroethene	Trichloroethene	cis-1,2-Dichloroethene	trans-1,2-Dichloroethene	1,1-Dichloroethene	Vinyl chloride
LOCATION XAME SKAPLE XAME Control XTR Description Rest/reg/m/		PAL Air	- Indoor (µg/m ³)		40	2	NE	60	200	2.8
LOCIND NAME PK Arg Description Realt Queff Realt Queff Realt Queff Realt Queff Realt Queff Aread BB23-L1 Aread BB23-L1 10015 N 415200 All-1007 300 0.012 0.012 0.011		PAL Soil Ga				1330	66.7	NE	2000	6670	93.3
Ares Ares <th< th=""><th>LOCATION NAME</th><th>SAMPLE NAME</th><th></th><th></th><th>Description</th><th>Descript (sectors³)</th><th>Descript (sectors³)</th><th>Descript (marker 3)</th><th>D 14 ((3)</th><th>Description (marker 3)</th><th>Descript (marker 3)</th></th<>	LOCATION NAME	SAMPLE NAME			Description	Descript (sectors ³)	Descript (sectors ³)	Descript (marker 3)	D 14 ((3)	Description (marker 3)	Descript (marker 3)
Aread Be23.4.1 Aread B	LOCATION_NAME	SAMILE_NAME	TE	AIL	Description	40 .	Result (µg/m)	Result (µg/m)	Result (µg/m)	Result (µg/m)	Kesuit (µg/m)
Ans.B382:S5-1 Ans.B382:S5:1016 FN 41/5210 Sid CacSahala 41/0 Jong Doc.2 Si Si F 0.021 Ans.B382:S5:1016 FD 41/5210 Sin CacSahala Jong 1.038 0.031	A	A	N	4/15/2010	Ato Yo Acco	-	1.2	0.012 11	0.52	0.012 11	0.011 11
Anos B82-S8 Anos B82-S8-19916 PT 447-Theor-Corrected 501 Ass D021 D031 D031 <thd031< th=""> D031 D031</thd031<>										0.012 0	
Ares/B823-A										1	
Aresb Bible Add Amesb Bible Add Strephone N 41/52007 Amesbrance 0.013 0.012 0.013 0.012 0.013 0.012 0.013 0.012 0.013 0.012 0.013 0.012 0.013 0.012 0.013 0.012 0.013 0.012 0.013 0.012 0.013 0.012 0.013 0.011 0.013 0.011 0.013	Aleao-Do2-33-0	Aleao-Do2-55-6-190410	FD	4/10/2019							
Arask B824.84 Arask B824.84 Arask B824.84 Arask B824.84 PD 41/2019 Gala Gala <thgala< th=""> Gala Gala<td>Area8-B82-IA-2</td><td>Area8-B82-IA-2-190/15</td><td>N</td><td>4/15/2019</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></thgala<>	Area8-B82-IA-2	Area8-B82-IA-2-190/15	N	4/15/2019							
AreasBarg SA2 AreasBarg SA2-10016 N 41/2007 Sad Gas-Sashah 140 200 201 0.37 1 0.37 1 0.37 1 0.37 1 0.021 0 AreasBarg SA3-10016 N 4115/019 Ar-Indore Concesci 0.021 0.031 0 0.031 0 0.031 0 0.012 0 0.012 0 0.011 0.053 0.002 0 0.011 0 0.012 0 0.011 0 0.012 0 0.011 0 0.012 0 0.011 0 0.013 0 0.012 0 0.011 0 0.011 0.053 0.012 0 0.012 0 0.011 0 0.011 <td></td>											
Arras B82-1A Arras B82-1A<											
Arcs/BB2A-3 Arcs/BB2A-3-19015 N 4/12/019 Air-Indor 0.27 0.28 0.017 1 0.21 0.017 <td>11000 002 00 2</td> <td>11000 002 00 2 190110</td> <td></td> <td>1/10/2019</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	11000 002 00 2	11000 002 00 2 190110		1/10/2019							
Arash Bit 2AS-3 Analy Bit 2SS-3-19010 N 4/1-2007 Bar Labor Corrected 0.10 0.23 0.07 U 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.01 U 0.21 0.01 U 0.02 U 0.01 U 0.02 U 0.03 0.01 U 0.01 U 0.03 0.01 U 0.01 U </td <td>Area8-B82-IA-3</td> <td>Area8-B82-IA-3-190415</td> <td>N</td> <td>4/15/2019</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Area8-B82-IA-3	Area8-B82-IA-3-190415	N	4/15/2019							
Image Image <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>											
Areas-B821A-4 Areas-B823-A-4-199415 N 4/15/2019 Soit Cas-Solut-4 0.03 J 11 0.04 [U 0.05 [U 0.075 [U 0.075 [U 0.021 [U Areas-B823A-4 Areas-B823A-5 Areas-B823A-5 Areas-B823A-5 Areas-B823A-5 Areas-B823A-5 Areas-B823A-5 Areas-B823A-5 Areas-B823A-5 Areas-B823A-5 Areas-B823A-6 Areas-B823A-7					Air - Indoor- Corrected	0.16	0.228 J	0.013 U		0.012 U	
Arras-Br2S-84 Ares-Br2S-84-190416 N 4 /16/2019 Soil Cars-Sublab 0.03 J 11 0.45 J 0.29 U 0.75 J 0.20 U Arras-Br2A-5 Ares-Br2A-5 Ares-Br2A-5-190416 N 4 /15/2019 Air-Indoor Corrected 0.01 U 0.014 U 0.014 U 0.012 U Ares-Br2A-5 Ares-Br2A-5-190416 N 4 /15/2019 Soil Cars-Sublab 0.02 U 0.058 J 0.014 U 0.012 U 0.012 U Ares-Br2A-5-6 Ares/Br2A-5-190416 N 4 /15/2019 Soil Cars-Sublab 0.21 0.068 J 0.011 U 0.011 U<	Area8-B82-IA-4	Area8-B82-IA-4-190415	N	4/15/2019	Air - Indoor						
Areas B821A-5 Areas B82A-5 Joults N 41500P Areal-base Oli 1 Oli 2 Oli 4 Oli 4 <t< td=""><td></td><td></td><td></td><td></td><td>Soil Gas - Subslab</td><td>0.38 J</td><td>11</td><td>0.45 J</td><td>0.29 U</td><td>0.75 J</td><td>0.22 U</td></t<>					Soil Gas - Subslab	0.38 J	11	0.45 J	0.29 U	0.75 J	0.22 U
Ansa-B82-S5-5 Ansa-B82-S5-5 Ansa-B82-S5-5 Ansa-B82-S5-6 Ansa-B82-S5-7 Ansa-S6-7 Ansa-S6-7 <td></td> <td></td> <td></td> <td></td> <td>Air - Indoor- Corrected</td> <td>0.14</td> <td>0.208 J</td> <td>0.014 U</td> <td>0.53</td> <td>0.013 U</td> <td>0.012 U</td>					Air - Indoor- Corrected	0.14	0.208 J	0.014 U	0.53	0.013 U	0.012 U
mem mem Air - Indoor Ores 0.48 0.014 U 0.014 U 0.014 U 0.014 U 0.011 0.013 U 0.013 U 0.013 U 0.013 U 0.013 U 0.013 U 0.025 U 0.013 U 0.023 U 0.014 U 0.033 U 0.013 U 0.014 U 0.033 U 0.014 U 0.013 U 0.014 U 0.013 U 0.014 U 0.013 U 0.011 U 0.013 U 0.013 U 0.013 U 0.013 U 0.013 U	Area8-B82-IA-5	Area8-B82-IA-5-190415	N	4/15/2019	Air - Indoor	0.13	0.49	0.014 U	0.47	0.014 U	0.012 U
Arrask B821.A.6 Arrask B821.A.6 Arrask B821.A.6 Arrask B821.A.6 Oli 1 O.05 O.015 O.017 O.014 U O.013 U Arrask B82.SS.6 Arrask B82.SS.6 Arrask B82.AS.6-190416 N 4/162019 Soil Gas-Subalab 2.5 1.20 0.3 U 0.29 U 0.29 U 0.23 U 0.23 U 0.23 U 0.25 0.014 U 0.031 U 0.013 U 0.014 U 0.031 U 0.011 U 0.014 U 0.43 0.011 U 0.014 U 0.43 0.011 U 0.014 U 0.43 U 0.011 U 0.014 U 0.012 U 0.013 U 0.012 U 0.013 U 0.012 U 0.012 U<	Area8-B82-SS-5	Area8-B82-SS-5-190416	N	4/16/2019	Soil Gas - Subslab	0.82 J	3.5	0.32 U	0.32 U	0.32 U	0.25 U
Area8-B82:86-0 Area8-B82:86-0 Area8-B82:86-1 Area8-B82:86-1 Area8-B82:86-1 Area8-B82:4A-7 Area8-BA2-A1 N 4/15/2019 Ar Condoor O.11 J 97 O.31 U O.031 U O.012 U O.013 U O.012 U O.012 U O.012					Air - Indoor- Corrected	0.02	0.458 J	0.014 U	0.47	0.014 U	0.012 U
mem Mir Air Indoor O 0.028 J 0.015 U 0.075 0.014 U 0.013 U 0.013 U 0.013 U 0.013 U 0.013 U 0.011 U 0.013 U 0.013 U 0.013 U 0.013 U 0.013 U 0.013 U 0.011 U 0.014 U 0.043 U 0.011 U 0.011 U 0.014 U 0.043 U 0.011 U 0.011 U 0.012 U 0.011 U 0.031 U 0.012 U 0.011 U 0.015 U 0.012 U 0.011 U 0.031 U 0.013 U 0.01	Area8-B82-IA-6	Area8-B82-IA-6-190415	N	4/15/2019	Air - Indoor	0.11	0.66	0.015 U	0.75	0.014 U	0.013 U
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Area8-B82-SS-6	Area8-B82-SS-6-190416	N	4/16/2019	Soil Gas - Subslab	2.5	120	0.3 U	0.29 U	0.29 U	0.23 U
Area8-B82-S8-7 Area8-B82-S8-7-190416 N 4/16/2019 Soil Gas-Sublab 1,1,1 97 0.3,1 1.5,1 0.3,1 0.3,1 0.3,1 0.3,1 0.3,1 0.3,1 0.3,1 0.0,1					Air - Indoor- Corrected	0	0.628 J	0.015 U	0.75	0.014 U	0.013 U
new Air Jador-Corrected 0.09 0.158 J 0.014 U 0.43 0.013 U 0.011 U Area8-0A-1 Area8-0A-1-190415 N 4/152019 Air - Outdoor 0.011 J 0.032 J 0.015 U 0.012 U 0.014 U 0.012 U 0.013 U 0.003 U 0.013 U 0.003 U 0.013 U 0.003 U 0.027 U	Area8-B82-IA-7	Area8-B82-IA-7-190415	N	4/15/2019	Air - Indoor	0.2	0.19	0.014 U	0.43	0.013 U	0.011 U
Area8-0A-1 Area8-0A-1-190415 N 4/15/2019 Air - Oudoor 0.01 J 0.002 0.012 U 0.011 U U 0.013 U 0.013 U 0.013 U 0.013 U 0.013 U 0.012 U 0.012 U 0.012 U 0.012 U 0.012	Area8-B82-SS-7	Area8-B82-SS-7-190416	Ν	4/16/2019							
Area8-0A.4 Area8-0A.4 190415 FD 4/15/2019 Àir - Outdoor 0.31 J 0.038 J 0.016 U 0.015 U 0.013 U 0.021 U 0.025 0.031 U 0.031 U 0.021 U 0.021 U 0.021 U 0.021 U 0.021 U 0.021											
July July <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>											
Area8-B82-IA-1 Area8-B82-IA-1 Area8-B82-IA-8 Out20 Air - Indoor 0.25 0.17 0.056 33 0.033 U 0.033 U Area8-B82-IA-8 Area8-B82-IA-8-100723 FD 7/23/2019 Air - Indoor 0.25 0.17 0.057 36 0.027 U 0.027 U 0.027 U 0.027 U 0.027 U 0.037 J J U J J U J J U J J U J J U J J U J J U J J U J J L D J J Z U J J L D J Z U J J Z U J J Z U D J Z U D J D D D D D D D D D D D	Area8-OA-4	Area8-OA-4-190415	FD	4/15/2019	Air - Outdoor		0.038 J	0.016 U	0.013 U	0.015 U	0.013 U
Area8-B82-IA-8 Area8-B82-IA-8-190723 FD 7/23/2019 Air Indoor 0.25 0.17 0.057 1 36 0.027 U 0.027 U Area8-B82-SS-1 Area8-B8											
Area8-B82-SS-1 Area8-B82-SS-190724 N 7/24/2019 Soil Gas - Subslab 400 3300 J 3.4 U 3.5 0.07 1.5											
Area8-B82-SS-8 Area8-B82-SS-8-190724 FD $7/24/2019$ Soil Gas - Subslab 480 4400 J 2.8 J 33 1.7 J 2.8 U Area8-B82-LA-2 Area8-B82-LA-2190723 N $7/24/2019$ Soil Gas - Subslab 0.17 0.057											
Areas-B82-1A-2 Areas-B82-1A-2-190723 N 7/23/2019 Air - Indoor 0.12 0.062 0.31 B 0.02 U 0.027 U 0.027 U 0.027 U 0.027 U 0.027 U 0.002 U 0.031 U 0.032 U 0.031 U 0.033 U <td></td>											
Area8-B824A-2 Area8-B824A-2:190723 N 7/23/2019 Air Indoor 0.12 0.02 0.03 0.18 0.03 0.	Area8-B82-SS-8	Area8-B82-SS-8-190724	FD	7/24/2019							
Area8-B82-SS-2 Area8-B82-SS-2-190724 N 7/24/2019 Soil Gas - Subslab 210 360 0.66 U 0.03 U											
Image: Note of the second se											
Area8-B82-IA-3 Area8-B82-IA-3-190723 N 7/23/2019 Air - Indoor 0.082 0.081 0.33 109 0.033 U 0.033	Area8-B82-SS-2	Area8-B82-SS-2-190/24	N	//24/2019							
Area8-B82-SS-3 Area8-B82-SS-3-190724 N 7/24/2019 Soil Gas - Subslab 380 2700 2.4 U 0.033 U	Area 9 D92 IA 2	Area 8 B 82 LA 2 100722	N	7/22/2010							
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$											
Area8-B821A-4 Area8-B821A-4-190723 N 7/23/2019 Air - Indoor 0.053 0.027 J 0.32 Image: Constraint of the second of th	Alcao=D02=55=5	711040-102-35-3-190724	19	1/24/2019							
Area8-B82-SS-4 Area8-B82-SS-4-190724 N 7/24/2019 Soil Gas - Subslab 1.6 J 7.1 0.66 U 0.63 U 0.031 U <	Area8-B82-IA-4	Area8-B82-IA-4-190723	N	7/23/2019							
Area8-B82-IA-5 Area8-B82-IA-5-190723 N 7/23/2019 Air - Indoor 0.002 J 0.027 J 0.32 179.86 0.03 U 0.03 U<											
Area8-B82-IA-5 Area8-B82-IA-5-190723 N 7/23/2019 Air - Indoor 0.048 0.18 0.56 1330 0.031 U 0.031 U 0.031 U Area8-B82-IA-5 Area8-B82-S5-5 Area8-B82-S5-509724 N 7/24/2019 Soil Gas - substab 71 29 1.8 J 0.68 U 1.1 J 0.08 U 0.031 U 0.031 <t< td=""><td>. 1040-002-00-4</td><td>11000-002-00-4-190724</td><td></td><td>1124/2019</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	. 1040-002-00-4	11000-002-00-4-190724		1124/2019							
Area8-B82-SS-5 Area8-B82-SS-5-190724 NN 7/2/2019 Soil Gas - Subslab 71 20 1.8 3 0.68 U 1.1 J 0.68 U Area8-B82-SS-6 Area8-B82-IA-6-190723 NN 7/2/2019 Air - Indoor 0.007 U 0.18 J 0.68 U 1.1 J 0.68 U Area8-B82-IA-6 Area8-B82-IA-6-190723 NN 7/2/2019 Air - Indoor 0.047 U 0.25 0.71 A940 0.031 U 0.003 U 0.031 U	Area8-B82-IA-5	Area8-B82-IA-5-190723	N	7/23/2019							
Air - Indoor Oncol J Ons Ons J29.86 Ons U Ons U Ons U Area8-B82-IA-6 Area8-B82-IA-6-190723 N 7/23/2019 Air - Indoor 0.047 C 0.25 O.71 340 O.013 J 0.031 U 0.031 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>											
Area8-B82-IA-6 Area8-B82-IA-6-190723 N 7/23/2019 Air - Indoor 0.047 C 0.25 0.71 340 0.013 J 0.003 U Area8-B82-IS-6 Area8-B82-IS-6-190724 N 7/24/2019 Soil Gas - Subslab 2.2 J 150 0.75 U 0.49 J 0.75 U 0.031 J 0.031 U Area8-B82-IS-6 Area8-B82-IS-6-190724 N 7/24/2019 Soil Gas - Subslab 2.2 J 0.05 U 0.49 J 0.75 U 0.031 U 0.03											
Area8-B82-SS-6 Area8-B82-SS-6-190724 N 7/2/2019 Soil Gas - Subslab 2.2 J 150 0.75 U 0.075 U	Area8-B82-IA-6	Area8-B82-IA-6-190723	N	7/23/2019	Air - Indoor						
Area8-B82-IA-7 Area8-B82-IA-7-190723 N 7/23/2019 Air - Indoor 0.08 0.05 0.71 339.86 0.013 J 0.003 U Area8-B82-IA-7 Area8-B82-IA-7.190723 N 7/23/2019 Air - Indoor 0.082 0.057 1.8 980 0.037 J 0.031 U Area8-B82-S5-7 Area8-B82-S5-7:190724 N 7/24/2019 Soil Gas - Subslab 1.7 J 140 0.68 U 1.4 J 0.68 U 0.68 <td></td>											
Area8-B82-IA-7 Area8-B82-IA-7-190723 N 7/3/2019 Air Indoor 0.08 0.057 I.8 980 0.037 J 0.031 U Area8-B82-SS-7 Area8-B82-SS-7190724 N 7/2/2019 Soil Gas - Subslab 1.7 J 140 0.68 U 1.4 J 0.68 U											
	Area8-B82-IA-7	Area8-B82-IA-7-190723	N	7/23/2019	Air - Indoor	0.082	0.057				
Air - Indoor- Corrected 0.055 J 0.057 1.8 979.86 0.037 J 0.031 U	Area8-B82-SS-7	Area8-B82-SS-7-190724	N	7/24/2019	Soil Gas - Subslab	1.7 J	140	0.68 U	1.4 J	0.68 U	0.68 U
0.037 0					Air - Indoor- Corrected	0.055 J	0.057	1.8	979.86	0.037 J	0.031 U
Area8-OA-1 Area8-OA-1-190723 N 7/23/2019 Air - Outdoor 0.027 J 0.029 U 0.14 0.029 U 0.029 U	Area8-OA-1	Area8-OA-1-190723	N	7/23/2019	Air - Outdoor	0.027 J	0.029 U	0.029 U	0.14	0.029 U	0.029 U

Table H-28. Vapor Intrusion Sampling Results at Area 8 - Building 82

NOTES: Bold - exceeds PAL

FD - Field Duplicate

P - Parent

N - Normal (no field duplicate)

U - Undetected at the limit of detection shown

Table H-29. Vapor Intrusion Sampling Results at Area 8 - Building 85

		ANALYTE NAME		Tuble II 201 (upo	Tetrachloroethene	Trichloroethene	cis-1.2-Dichloroethene	trans-1.2-Dichloroethene	1.1-Dichloroethene	Vinvl chloride
		L Air - Indoor (µg/m ³)			40	2	NE	60	200	2.8
-		Soil Gas - Subslab (µg/m3)		1330	66.7	NE	2000	6670	93.3
LOCATION_NAME	SAMPLE_NAME	SAMPLE_TYPE	COLLECT_DATE	Description	Result (µg/m³)	Result (µg/m ³)				
					Apr-19					
Area8-B85-IA-1	Area8-B85-IA-1-190415	Ν	4/15/2019	Air - Indoor	0.029 J	0.014 U	0.015 U	0.012 U	0.014 U	0.012 U
Area8-B85-SS-1	Area8-B85-SS-1-190416	N	4/16/2019	Soil Gas - Subslab	45	17	0.29 U	0.28 U	0.28 U	0.22 U
Area8-B85-SS-3	Area8-B85-SS-3-190416	FD	4/16/2019	Soil Gas - Subslab	37	17	0.28 U	0.28 U	0.28 U	0.21 U
				Air - Indoor- Corrected	0.001 J	0.014 U	0.015 U	0.012 U	0.014 U	0.012 U
Area8-B85-IA-2	Area8-B85-IA-2-190415	N	4/15/2019	Air - Indoor	0.098	0.047	0.014 U	0.011 U	0.013 U	0.011 U
Area8-B85-IA-3	Area8-B85-IA-3-190415	FD	4/15/2019	Air - Indoor	0.094	0.045 J	0.02 U	0.016 U	0.019 U	0.016 U
Area8-B85-SS-2	Area8-B85-SS-2-190416	N	4/16/2019	Soil Gas - Subslab	1300	640	0.28 U	0.28 U	1.7 J	0.21 U
				Air - Indoor- Corrected	0.07 J	0.047	0.014 U	0.011 U	0.013 U	0.011 U
Area8-OA-2	Area8-OA-2-190415	N	4/15/2019	Air - Outdoor	0.028 J	0.012 U	0.013 U	0.01 U	0.012 U	0.01 U
				•	Jul-19					· · · ·
Area8-B85-IA-1	Area8-B85-IA-1-190723	N	7/23/2019	Air - Indoor	0.035 J	0.034 U	0.034 U	0.3	0.034 U	0.034 U
Area8-B85-SS-1	Area8-B85-SS-1-190724	N	7/24/2019	Soil Gas - Subslab	74	33	0.66 U	0.66 U	0.66 U	0.66 U
				Air - Indoor- Corrected	0.006	0.034 U	0.034 U	0.02	0.034 U	0.034 U
Area8-B85-IA-2	Area8-B85-IA-2-190723	N	7/23/2019	Air - Indoor	0.11	0.064	0.031 U	0.25	0.031 U	0.031 U
Area8-B85-IA-3	Area8-B85-IA-3-190723	FD	7/23/2019	Air - Indoor	0.11	0.059	0.031 U	0.25	0.031 U	0.031 U
Area8-B85-SS-2	Area8-B85-SS-2-190724	N	7/24/2019	Soil Gas - Subslab	3100	1400	5 U	5 U	5 U	5 U
Area8-B85-SS-3	Area8-B85-SS-3-190724	FD	7/24/2019	Soil Gas - Subslab	2500	1100	1.8 U	1.8 U	1.8 U	1.8 U
				Air - Indoor- Corrected	0.081	0.064	0.031 U	0	0.031 U	0.031 U
Area8-OA-2	Area8-OA-2-190723	N	7/23/2019	Air - Outdoor	0.029 J	0.029 U	0.029 U	0.28	0.029 U	0.029 U
Area8-OA-4	Area8-OA-4-190723	FD	7/23/2019	Air - Outdoor	0.028 J	0.029 U	0.029 U	0.28	0.029 U	0.029 U

NOTES: Bold - exceeds PAL

FD - Field Duplicate

P - Parent

N - Normal (no field duplicate)

U - Undetected at the limit of detection shown

				Table H-30. Vapor In						
	ANAL	YTE_NAME			Tetrachloroethene	Trichloroethene	cis-1,2-Dichloroethene	trans-1,2-Dichloroethene	1,1-Dichloroethene	Vinyl chloride
		- Indoor (µg/m ³			40	2	NE	60	200	2.8
	PAL Soil Gas	s - Subslab (µg/			1330	66.7	NE	2000	6670	93.3
LOCATION_NAME	SAMPLE_NAME	SAMPLE_TY PE	COLLECT_D ATE	Description	Result (µg/m ³)					
	1	1			Apr-19	1		1		
Area8-B98-IA-1	Area8-B98-IA-1-190416	N	4/16/2019	Air - Indoor	0.69	0.48	0.018 J	0.81	0.012 U	0.011 U
Area8-B98-SS-1	Area8-B98-SS-1-190417	N	4/17/2019	Soil Gas - Subslab	4.4	15	1.5 J	1.6 J	0.41 U	0.31 U
				Air - Indoor- Corrected	0.662 J	0.48	0.018 J	0.778	0.012 U	0.011 U
Area8-B98-IA-2	Area8-B98-IA-2-190416	N	4/16/2019	Air - Indoor	0.64	0.49	0.021 J	2.2	0.013 U	0.011 U
Area8-B98-SS-2	Area8-B98-SS-2-190417	N	4/17/2019	Soil Gas - Subslab	8.8	15	0.43 U	0.92 J	0.43 U	0.33 U
				Air - Indoor- Corrected	0.612 J	0.49	0.021 J	2.168	0.013 U	0.011 U
Area8-B98-IA-3	Area8-B98-IA-3-190415	Ν	4/15/2019	Air - Indoor	0.091	0.18	0.019 J	7.4	0.013 U	0.012 U
Area8-B98-SS-3	Area8-B98-SS-3-190417	N	4/17/2019	Soil Gas - Subslab	0.69 U	4.3 J	0.75 U	27	0.74 U	0.57 U
Area8-B98-SS-13	Area8-B98-SS-13-190417	FD	4/17/2019	Soil Gas - Subslab	0.71 U	5.8	0.77 U	25	0.76 U	0.58 U
				Air - Indoor- Corrected	0.063 J	0.18	0.019 J	7.368	0.013 U	0.012 U
Area8-B98-IA-4	Area8-B98-IA-4-190416	N	4/16/2019	Air - Indoor	0.84	0.69	0.027 J	2.2	0.015 J	0.011 U
Area8-B98-SS-4	Area8-B98-SS-4-190417	N	4/17/2019	Soil Gas - Subslab	2.6 J	150	0.44 U	16	0.43 U	0.33 U
				Air - Indoor- Corrected	0.812 J	0.69	0.027 J	2.168	0.015 J	0.011 U
Area8-B98-IA-5	Area8-B98-IA-5-190415	N	4/15/2019	Air - Indoor	0.95	0.88	0.014 U	0.89	0.098	0.012 U
Area8-B98-SS-5	Area8-B98-SS-5-190417	N	4/17/2019	Soil Gas - Subslab	11	31	0.46 U	1.1 J	0.45 U	0.35 U
				Air - Indoor- Corrected	0.922 J	0.88	0.014 U	0.858	0.098	0.012 U
Area8-B98-IA-6	Area8-B98-IA-6-190415	Ν	4/15/2019	Air - Indoor	0.12	0.27	0.014 U	1.5	0.013 U	0.012 J
Area8-B98-SS-6	Area8-B98-SS-6-190417	N	4/17/2019	Soil Gas - Subslab	31	18	0.72 U	8.4	0.71 U	0.54 U
				Air - Indoor- Corrected	0.092 J	0.27	0.014 U	1.468	0.013 U	0.012 J
Area8-B98-IA-7	Area8-B98-IA-7-190416	N	4/16/2019	Air - Indoor	0.59	0.54	0.021 J	1.7	0.012 U	0.011 U
Area8-B98-SS-7	Area8-B98-SS-7-190417	N	4/17/2019	Soil Gas - Subslab	82	500	1.6 J	47	0.7 U	0.54 U
				Air - Indoor- Corrected	0.562 J	0.54	0.021 J	1.668	0.012 U	0.011 U
Area8-B98-IA-8	Area8-B98-IA-8-190415	N	4/15/2019	Air - Indoor	0.13	0.26	0.033 J	0.71	0.014 U	0.012 U
Area8-B98-SS-8	Area8-B98-SS-8-190417	N	4/17/2019	Soil Gas - Subslab	350	1000	200	9	1.2 U	0.95 U
				Air - Indoor- Corrected	0.102 J	0.26	0.033 J	0.678	0.014 U	0.012 U
Area8-B98-IA-9	Area8-B98-IA-9-190415	N	4/15/2019	Air - Indoor	0.15	0.35	0.014 U	0.91	0.013 U	0.012 U
Area8-B98-SS-9	Area8-B98-SS-9-190417	N	4/17/2019	Soil Gas - Subslab	14	100	0.42 U	6.7	0.41 U	0.32 U
				Air - Indoor- Corrected	0.122 J	0.35	0.014 U	0.878	0.013 U	0.012 U
Area8-B98-1A-10	Area8-B98-1A-10-190416	N	4/16/2019	Air - Indoor	2.2	1.1	0.027 J	1.5	0.014 J	0.011 U
Area8-B98-1A-15	Area8-B98-1A-15-190416	FD	4/16/2019	Air - Indoor	2.1	1.1	0.026 J	1.5	0.015 J	0.011 U
Area8-B98-SS-10	Area8-B98-SS-10-190417	Ν	4/17/2019	Soil Gas - Subslab	1900	1500	22	31	1.6 U	1.3 U
				Air - Indoor- Corrected	2.172 J	1.1	0.027 J	1.468	0.015 J	0.011 U
Area8-B98-1A-11	Area8-B98-1A-11-190416	N	4/16/2019	Air - Indoor	2.1	1.1	0.027 J	1.3	0.015 J	0.011 U
Area8-B98-SS-11	Area8-B98-SS-11-190417	Ν	4/17/2019	Soil Gas - Subslab	410	1500	17	11 J	1.9 U	1.5 U
				Air - Indoor- Corrected	2.072 J	1.1	0.027 J	1.268	0.015 J	0.011 U
Area8-B98-IA-12	Area8-B98-IA-12-190415	N	4/15/2019	Air - Indoor	0.38	0.43	0.015 J	1.6	0.012 U	0.011 U
Area8-B98-IA-14	Area8-B98-IA-14-190415	FD	4/15/2019	Air - Indoor	0.39	0.45	0.015 J	1.6	0.014 U	0.012 U
Area8-B98-SS-12	Area8-B98-SS-12-190417	N	4/17/2019	Soil Gas - Subslab	110	60	0.58 J	21	0.43 U	0.33 U
				Air - Indoor- Corrected	0.362 J	0.45	0.015 J	1.568	0.012 U	0.012 U
Area8-B98-IA-13	Area8-B98-IA-13-190415	N	4/15/2019	Air - Indoor	0.082	0.078	0.33	140	0.012 U	0.011 U
				Air - Indoor- Corrected	0.054 J	0.078	0.33	139.968	0.012 U	0.011 U
Area8-OA-2	Area8-OA-2-190415	N	4/15/2019	Air - Outdoor	0.028 J	0.012 U	0.013 U	0.01 U	0.012 U	0.01 U
Area8-OA-5	Area8-OA-5-190416	N	4/16/2019	Air - Outdoor	0.037	0.012 U	0.013 U	0.032 J	0.012 U	0.011 U
Area8-OA-6	Area8-OA-6-190416	FD	4/16/2019	Air - Outdoor	0.034 J	0.012 U	0.013 U	0.033 J	0.012 U	0.011 U

Table H-30. Vapor Intrusion Sampling Results at Area 8 - Building 98

				Table H-30. Vapor In	rusion Sampling	Kesuits at Area o - I	Bunung 98			
	ANAL	YTE_NAME			Tetrachloroethe	ene Trichloroethe	ne cis-1,2-Dichloroethene	trans-1,2-Dichloroethene	1,1-Dichloroethene	Vinyl chloride
	PAL Air -	Indoor (µg/m ³))		40	2	NE	60	200	2.8
	PAL Soil Gas	- Subslab (µg/	m3)		1330	66.7	NE	2000	6670	93.3
LOCATION_NAME	SAMPLE_NAME	SAMPLE_TY PE	COLLECT_D ATE	Description	Result (µg/m ³) Result (µg/m ³	³) Result (µg/m ³)	Result (µg/m ³)	Result (µg/m ³)	Result (µg/m ³)
					Jul-19		•			
Area8-B98-IA-1	Area8-B98-IA-1-190723	Ν	7/23/2019	Air - Indoor	0.03 J	0.015 J	0.023 J	9.5	0.031 U	0.031 U
Area8-B98-SS-1	Area8-B98-SS-1-190724	N	7/24/2019	Soil Gas - Subslab	7.1	17	0.72 U	1.2 J	0.72 U	0.72 U
				Air - Indoor- Corrected	0.001 J	0.015 J	0.023 J	9.22	0.031 U	0.031 U
Area8-B98-IA-2	Area8-B98-IA-2-190723	Ν	7/23/2019	Air - Indoor	0.028 J	0.031 U	0.031 U	2.7	0.031 U	0.031 U
Area8-B98-SS-2	Area8-B98-SS-2-190724	Ν	7/24/2019	Soil Gas - Subslab	12	20	0.68 J	0.56 J	0.7 U	0.7 U
				Air - Indoor- Corrected	0 J	0.031 U	0.031 U	2.42	0.031 U	0.031 U
Area8-B98-IA-3	Area8-B98-IA-3-190723	Ν	7/23/2019	Air - Indoor	0.031 J	0.024 J	0.028 J	15	0.031 U	0.031 U
Area8-B98-SS-3	Area8-B98-SS-3-190724	Ν	7/24/2019	Soil Gas - Subslab	1.8 J	16	0.73 U	7.3	0.73 U	0.73 U
Area8-B98-SS-13	Area8-B98-SS-13-190724	FD	7/24/2019	Soil Gas - Subslab	1.2 J	17	0.66 U	7.7	0.66 U	0.66 U
				Air - Indoor- Corrected	0.002 J	0.024 J	0.028 J	14.72	0.031 U	0.031 U
Area8-B98-IA-4	Area8-B98-IA-4-190723	N	7/23/2019	Air - Indoor	0.039 J	0.061	0.021 J	7.7	0.035 U	0.035 U
Area8-B98-SS-4	Area8-B98-SS-4-190724	N	7/24/2019	Soil Gas - Subslab	4	170	0.65 U	5.3	0.65 U	0.65 U
				Air - Indoor- Corrected	0.01 J	0.061	0.021 J	7.42	0.035 U	0.035 U
Area8-B98-IA-5	Area8-B98-IA-5-190723	N	7/23/2019	Air - Indoor	1	0.15	0.031 J	13	0.15	0.036 U
Area8-B98-SS-5	Area8-B98-SS-5-190724	N	7/24/2019	Soil Gas - Subslab	6.4	17	0.68 U	1.5 J	0.68 U	0.68 U
				Air - Indoor- Corrected	0.971	0.15	0.031 J	12.72	0.15	0.036 U
Area8-B98-IA-6	Area8-B98-IA-6-190723	N	7/23/2019	Air - Indoor	0.054	0.14	0.75	280	0.031 U	0.031 U
Area8-B98-SS-6	Area8-B98-SS-6-190724	N	7/24/2019	Soil Gas - Subslab	25	15	0.62 U	5.5	0.62 U	0.62 U
				Air - Indoor- Corrected	0.025	0.14	0.75	280	0.031 U	0.031 U
Area8-B98-IA-7	Area8-B98-IA-7-190723	N	7/23/2019	Air - Indoor	0.079	0.16	0.82	310	0.03 U	0.03 U
Area8-B98-SS-7	Area8-B98-SS-7-190724	N	7/24/2019	Soil Gas - Subslab	72	280	0.66 J	45	0.66 U	0.66 U
				Air - Indoor- Corrected	0.05	0.16	0.82	310	0.03 U	0.03 U
Area8-B98-IA-8	Area8-B98-IA-8-190723	N	7/23/2019	Air - Indoor	0.21	0.12	0.031 J	13	0.032 U	0.032 U
Area8-B98-SS-8	Area8-B98-SS-8-190724	Ν	7/24/2019	Soil Gas - Subslab	430	970	220	8.3	0.65 U	0.65 U
				Air - Indoor- Corrected	0.181	0.12	0.031 J	12.72	0.032 U	0.032 U
Area8-B98-IA-9	Area8-B98-IA-9-190723	N	7/23/2019	Air - Indoor	0.042	0.065	0.043	22	0.031 U	0.031 U
Area8-B98-SS-9	Area8-B98-SS-9-190724	N	7/24/2019	Soil Gas - Subslab	32	190	0.65 U	6.2	0.65 U	0.65 U
0.000.14.10	A 0 D00 14 10 100700		5/22/2010	Air - Indoor- Corrected	0.013	0.065	0.043	21.72	0.031 U	0.031 U
Area8-B98-1A-10	Area8-B98-1A-10-190723	N	7/23/2019	Air - Indoor	0.058	0.066	0.067	30	0.036 U	0.036 U
Area8-B98-SS-10	Area8-B98-SS-10-190725	N	7/25/2019	Soil Gas - Subslab Air - Indoor- Corrected	2300 0.029	0.066	21 0.067	18 29.72	3.7 U 0.036 U	3.7 U 0.036 U
Ama 9 D00 1A 11	Area 9 D09 14 11 100700	NT	7/22/2010	Air - Indoor- Corrected	0.029	0.066	0.067		0.036 U 0.033 U	
Area8-B98-1A-11 Area8-B98-SS-11	Area8-B98-1A-11-190723 Area8-B98-SS-11-190725	N N	7/23/2019 7/25/2019	Air - Indoor Soil Gas - Subslab	520	0.11 1600	0.067	25 9.5 J	0.033 U 3.5 U	0.033 U 3.5 U
AI000-D90-55-11	AICa0-D90-55-11-190/25	IN	1/25/2019	Air - Indoor- Corrected	0.012	0.11	0.067	24.72	0.033 U	0.033 U
Area8-B98-IA-12	Area8-B98-IA-12-190723	N	7/23/2019	Air - Indoor Corrected	0.012	0.11	0.067	24.72 110	0.033 U 0.031 U	0.033 U 0.031 U
Area8-B98-SS-12	Area8-B98-SS-12-190725	N	7/25/2019	Soil Gas - Subslab	150	74	0.14 0.4 J	13	0.031 U	0.031 U
Alcao-D90-33-12	лісао-170-35-12-190/25	11	1125/2019	Air - Indoor- Corrected	0.063	0.15	0.4 J	109.72	0.71 U	0.031 U
Area8-B98-IA-13	Area8-B98-IA-13-190723	N	7/23/2019	Air - Indoor	0.063	0.017 J	0.63	440	0.031 U	0.031 U
Area8-B98-IA-13 Area8-B98-IA-14	Area8-B98-IA-13-190723	FD	7/23/2019	Air - Indoor Air - Indoor	0.041	0.017 J	0.65	440	0.031 U	0.031 U
/10a0-D70-1A-14	71000-070-14-190723	10	1125/2019	Air - Indoor- Corrected	0.042	0.032 J	0.65	430	0.034 U	0.034 U
Area8-OA-2	Area8-OA-2-190723	N	7/23/2019	Air - Outdoor	0.029 J	0.032 J	0.029 U	0.28	0.034 U	0.029 U
Area8-OA-4	Area8-OA-4-190723	FD	7/23/2019	Air - Outdoor	0.029 J	0.029 U	0.029 U	0.28	0.029 U	0.029 U
711000 071 4	1.000 0/1 + 170/25	10	1125/2019		0.020 3	0.027 0	0.027 0	0.20	0.027 0	0.027 0

Table H-30. Vapor Intrusion Sampling Results at Area 8 - Building 98

NOTES:

Bold - exceeds PAL

FD - Field Duplicate

P - Parent

N - Normal (no field duplicate)

U - Undetected at the limit of detection shown

		ANALYTE NAME			Tetrachloroethene	Trichloroethene	cis-1,2-Dichloroethene	trans-1.2-Dichloroethene	1.1-Dichloroethene	Vinvl chloride
	р	AL Air - Indoor (µg/m ³)			40	2	NE	60	200	2.8
		Soil Gas - Subslab (µg/n	13)		1330	66.7	NE	2000	6670	93.3
LOCATION NAME	SAMPLE NAME	SAMPLE TYPE	COLLECT DATE	Description	Result (µg/m ³)	Result (µg/m ²)	Result (µg/m ³)	Result (µg/m ²)	Result (µg/m ³)	Result (µg/m ³)
					Apr-19			(PB)		
Area8-B1074-IA-1	Area8-B1074-IA-1-190415	N	4/15/2019	Air - Indoor	0.083	0.032 J	0.016 U	0.013 U	0.015 U	0.014 U
Area8-B1074-SS-1	Area8-B1074-SS-1-190416	N	4/16/2019	Soil Gas - Subslab	0.55 J	1.4 J	0.29 U	0.29 U	0.29 U	0.22 U
11000 01071 00 1	11010 01071 00 1 190110		010/2019	Air - Indoor- Corrected	0.055 J	0.032 J	0.016 U	0.013 U	0.015 U	0.014 U
Area8-B1074-IA-2	Area8-B1074-IA-2-190415	N	4/15/2019	Air - Indoor	0.08	0.034 J	0.014 U	0.011 U	0.013 U	0.012 U
Area8-B1074-SS-2	Area8-B1074-SS-2-190416	N	4/16/2019	Soil Gas - Subslab	0.82 J	9.8	0.29 U	0.29 U	0.29 U	0.22 U
Area8-B1074-SS-4	Area8-B1074-SS-4-190416	FD	4/16/2019	Soil Gas - Subslab	0.96 J	10	0.29 U	0.29 U	0.29 U	0.22 U
				Air - Indoor- Corrected	0.052 J	0.034 J	0.014 U	0.011 U	0.013 U	0.012 U
Area8-B1074-IA-3	Area8-B1074-IA-3-190415	N	4/15/2019	Air - Indoor	0.083	0.034 J	0.015 U	0.012 U	0.014 U	0.013 U
Area8-B1074-IA-4	Area8-B1074-IA-4-190415	FD	4/15/2019	Air - Indoor	0.094	0.037 J	0.015 U	0.012 U	0.014 U	0.012 U
Area8-B1074-SS-3	Area8-B1074-SS-3-190416	N	4/16/2019	Soil Gas - Subslab	0.57 J	3.8	0.29 U	0.29 U	0.29 U	0.22 U
				Air - Indoor- Corrected	0.066 J	0.037 J	0.015 U	0.012 U	0.014 U	0.013 U
Area8-OA-3	Area8-OA-3-190415	N	4/15/2019	Air - Outdoor	0.028 J	0.013 U	0.014 U	0.011 U	0.013 U	0.011 U
					Jul-19					
Area8-B1074-IA-1	Area8-B1074-IA-1-190723	N	7/23/2019	Air - Indoor	0.056	0.028 U	0.028 U	0.36	0.028 U	0.028 U
Area8-B1074-SS-1	Area8-B1074-SS-1-190724	N	7/24/2019	Soil Gas - Subslab	0.63 U	1.7 J	0.63 U	0.63 U	0.63 U	0.63 U
				Air - Indoor- Corrected	0.023 J	0.028 U	0.028 U	0	0.028 U	0.028 U
Area8-B1074-IA-2	Area8-B1074-IA-2-190723	N	7/23/2019	Air - Indoor	0.048	0.028 U	0.028 U	0.31	0.028 U	0.028 U
Area8-B1074-IA-4	Area8-B1074-IA-4-190723	FD	7/23/2019	Air - Indoor	0.043	0.028 U	0.028 U	0.32	0.028 U	0.028 U
Area8-B1074-SS-2	Area8-B1074-SS-2-190724	N	7/24/2019	Soil Gas - Subslab	0.86 J	10 J	0.67 U	0.67 U	0.67 U	0.67 U
Area8-B1074-SS-4	Area8-B1074-SS-4-190724	FD	7/24/2019	Soil Gas - Subslab	3.7	6 J	0.65 U	0.65 U	0.65 U	0.65 U
				Air - Indoor- Corrected	0.015 J	0.028 U	0.028 U	0	0.028 U	0.028 U
Area8-B1074-IA-3	Area8-B1074-IA-3-190723	N	7/23/2019	Air - Indoor	0.039	0.031 U	0.031 U	0.31	0.031 U	0.031 U
Area8-B1074-SS-3	Area8-B1074-SS-3-190724	N	7/24/2019	Soil Gas - Subslab	0.51 J	4.9	0.71 U	0.71 U	0.71 U	0.71 U
				Air - Indoor- Corrected	0.006 J	0.031 U	0.031 U	0	0.031 U	0.031 U
Area8-OA-3	Area8-OA-3-190723	N	7/23/2019	Air - Outdoor	0.033 J	0.029 U	0.029 U	0.44	0.029 U	0.029 U

NOTES: Bold - exceeds PAL FD - Field Duplicate

P - Parent

N - Normal (no field duplicate)

U - Undetected at the limit of detection shown

APPENDIX I SITE INSPECTION CHECKLISTS

Fifth Five-Year Review NBK Keyport Keyport, WA

		TION CHECKLIST
	I. SITE IN	IFORMATION
Site na	me: Naval Base Kitsap Keyport	Date of inspection: September 19, 2019
Locatio	on and Region: Keyport, WA; Region 10	EPA ID: WA1170023419
	y, office, or company leading the ar review: U.S. Navy; Battelle	Weather/temperature: ~65 degrees F; clear; slight bre
Remed	Includes: (Check all that apply) Landfill cover/containment Access controls Land use controls Groundwater pump and treatment Other: OU 1 - landfill cover, access controls, LUCs, phytoremediation, HHRA and ERA (Area 8 only), soil removal (Area 8 only), and	Surface water collection and treatement Monitored natural attenuation Groundwater containment Vertical barrier walls LTM, tide gate upgrade, sediment removal, and contigency actions; OU 2 - access controls, LUCs, LTM, contingency actions (Area 8 only).
Attach	ments: Inspection team roster attached Inspection team roster and site maps are included in Section 4.0 of Re	□ Site map attached
	II. INT	TERVIEWS
	(Please s	ee Appendix B)
	III. ON-SITE DOCUMENTS & RE	CORDS VERIFIED (Check all that apply)
2	 D&M Documents O&M manual As-built drawings Maintenance logs Health & Safety Plans Remarks: On file at NAVFAC Northwest and reviewed as part of this FYR 	 Readily available Readily available Up to date NA
2. L	Land Use Controls Inspection Records Remarks: On file at NAVFAC Northwest and reviewed and presented as	■ Readily available ■ Up to date □ NA part of this FYR.
	IV. 08	AM COSTS
[[[D&M Organization State in-house PRP in-house Federal Facility in-house Other:	 □ Contractor for State □ Contractor for PRP ■ Contractor for Federal Facility
l	D&M Cost Records Up to date Readily available Funding mechanism/agreement in place	

	Total annual co	ost by year for re	eview period (if avai	ilable):			
	From <u>FY 2015</u>	To	\$187,588.66	□ Breakdown atta	achod		
	(Date)	(Date)	(Total cost)				
	From FY 2016	То	\$219,912.27	Breakdown atta	ached		
	(Date)		(Total cost)				
	From FY 2017		\$145,137.07	Breakdown atta	ached		
	(Date)	(<i>)</i>	(Total cost)				
	From <u>FY 2018</u> (Date)	To (Date)	\$239,712.07 (Total cost)	Breakdown atta	ached		
	(<i>Date)</i> From <u>FY 2019</u>	()	\$204,929.19	Breakdown atta	abad		
	(Date)	To (Date)	(Total cost)		acneo		
3.				During Review Period LTM at OU 1, ranging from 75% to 92% of		er FY.	-
		V. A	CCESS AND LAN	D USE CONTROLS			
			🗆 NA 🔳	Applicable			
A. C)U 1						
1.	Access to lan Remarks: <u>See Se</u>	dfill and planta ection 4.3.1 of FYR Repor	tions controlled? for additional information.		■ Yes	□ No	□ NA -
2.	Remarks: See Se			ndwater monitoring wells are installed	□ Yes d as part of LTM Prog	gram, but	□ NA -
3.	Any activities Remarks: See Se	ection 4.3.1 of FYR Repor	erfere with remedy for additional information.	or monitoring?	□ Yes	■ No	- □ NA -
4.	Any permane Remarks: See Se	nt workers on ection 4.3.1 of FYR Repor	andfill?		□ Yes	■ No	- □ NA -
5.	Any digging in Remarks: See Se	n landfill witho ection 4.3.1 of FYR Repor	ut dig permit? for additional information.		□ Yes	■ No	- □ NA
6.	Any disturbar Remarks: See Se	nce to wetlands ection 4.3.1 of FYR Repor	for additional information.		□ Yes	■ No	- □ NA -
В. О	OU 2						
1.	Access to Are	ection 4.3.1 of FYR Repor			∎ Yes	□ No	□ NA -
2.	Remarks: See Se			undwater monitoring wells are installe	☐ Yes d as part of LTM Pro	gram, but	- □ NA -
3.	Any digging v	without dig per ection 4.3.1 of FYR Repor	mit?		□ Yes	■ No	- □ NA -

4.	Any land use change? Remarks: <u>See Section 4.3.1 of FYR Report for additional information</u> . Remains for industrial/commercial land use		■ No	□ NA
				_
C. L	and Use Controls (LUCs)			
1.	Implementation and enforcement Site conditions imply properly implemented Site conditions imply fully enforced	■ Yes ■ Yes	□ No □ No	□ NA □ NA
	Type of monitoring (e.g., self-reporting, drive by) Drive-by, site walk Frequency Annual			
	Responsible party			
	Contact Carlotta Cellucci Remedial Project Manager	(360) 396-1518		
	Name Title		Phone no.	
	Reporting is up-to-date	Yes	□ No	□ NA
	Specific requirements in decision documents have been met	Yes	🗆 No	□ NA
	Violations have been reported	□ Yes	🗆 No	NA
	Other problems or suggestions: See Section 4.3.1 of FYR Report, potential maintenance/repairs to the landfill cover at OU 1.	□ Report	attached	
2.	Adequacy Remarks: _Based on annual inspections and FYR site inspection, LUCs are adequete, being properly			
	implemented and maintained at OU 1 and OU 2.	Adequa		
		🗆 Inadeq	uale	
	VI. REMEDY COMPONENTS			
AF	Paved Landfill Surface			
1.	Settlement (Low spots)	map 🗆 :	Settlement no	ot evident
	Areal extent <u>-10 x -10 tt</u> Depth <u>-1 inch</u> Remarks: <u>Several ponding/settlement areas observed north of South Plantation or southern portion of Central Landfill,</u>	see Appendix J - P	hotographic Log.	_
2.	Cracks Lengths 200+ feet each Widths <1 inch Depths M Remarks: Several long cracks transversing east-west through the asphalt pavement in the Central Landfill, see Append	-	Cracking not	- evident
		ant of Thiotographic	209.	_
3.	Erosion □ Location shown on site Areal extent Depth Remarks:		Erosion not e	vident
4.	Holes □ Location shown on site Areal extent Depth Remarks:	·	Holes not evi	- dent -
5.	Vegetative Cover □ Grass □ Cover properly establish ■ Trees/Shrubs (indicate size and locations on a diagram) Remarks: See phytoremediation below.		-	- tress -
6.	Alternative Cover (armored rock, concrete, etc.) ■ NA Remarks:			_

	Areal extent <u>~10 x ~20 feet</u> Remarks: <u>Tree roots causing bulges of asphalt per</u>	Height <u>~6 inches</u> avement outside southeast corner of North Plantation, see Appendix J - Photographic Log.
	Wet Areas/Water Damage	□ Wet areas/water damage not evident
	□ Wet areas	□ Location shown on site map Areal extent
		$\Box \text{ Location shown on site map} \qquad \text{Areal extent} \underbrace{\text{Several areas } -10 \text{ x} - 1}_{\text{Areal extent}}$
		□ Location shown on site map Areal extent
	□ Soft subgrade Remarks: <u>Several ponding/settlement areas</u>	□ Location shown on site map Areal extent observed north of South Plantation or southern portion of Central Landfill, see Appendix J - Photographic Log.
	Slope Instability □ Slides Areal extent Remarks:	□ Location shown on site map ■ No evidence of slope instab
	Monitoring Wells (within surfac	
		 Routinely sampled Needs Maintenance Good condition Properly secured/locked Evidence of leakage at penetra
Sı	urface Water Structures at Pave Siltation Areal extent Depth _	Needs Maintenance Good condition Properly secured/locked Evidence of leakage at penetra
Sı	urface Water Structures at Pave Siltation Areal extent Depth _ Remarks: Vegetative Growth Areal extent Remarks:	Needs Maintenance Good condition Properly secured/locked Evidence of leakage at penetra
Sı	urface Water Structures at Pave Siltation Areal extent Depth _ Remarks: Vegetative Growth Areal extent Remarks: See Appendix J - Photographic Log.	Needs Maintenance Good condition Properly secured/locked Evidence of leakage at penetra ed Landfill Location shown on site map No evidence of siltation Location shown on site map Vegetation does not impeded Type Brush and Alder Trees ns through asphalt pavement along foundations of former buildings in southern portion of Central Landfill,
Sı	urface Water Structures at Pave Siltation Areal extent Depth _ Remarks: Vegetative Growth Areal extent Remarks:	

1.	Condition of Trees	Excellent health	□ Some appare health stress	
	Area of most stress: Both the North and	South Plantations are exhibit	ng stress; however, the North	n Plantation is exhibiting more stress.
	Remarks: Leaf curl and burn observed and low	leaf density, see Appendix J - P	hotographic Log.	
2.	Performance Monitoring Type of monitoring <u>Groundwater elevation me</u> Frequency <u>Groundwater elevation measuremer</u> Remarks: <u>Various groundwater monitoring well</u>	nts collected every two years; grou	undwater samples collected con 2018, and 2019 (see Appendix	currently with LTM Program. C).
3.	Effectiveness			
	 Data indicate effective uptake a Data indicate not effective Data inconclusive Remarks: <u>Chlorinated VOC concentrations not</u> Several investigations have been conducted during this 	decreasing at appreciable rate,	but phytoremediation may be c	
D. (Groundwater, Sediment, and Shell	fish Monitoring		
1.	Monitoring Wells Remarks: Monitoring wells at OU 1 and OU 2 (b as part of their respective LTM Programs. LTM Progr re-characterization activities.		018, conducting	Functioning Routinely sampled Needs Maintenance Good condition Properly secured/locked
2.	Monitoring Types of monitoring being conduct and groundwater, seep water, surface water, and sec			All required wells located
	Frequency: <u>LTM is conducted on an annual ba</u>	asis or less frequently, depending	g on media, location, and/or and	alyte.
	Remarks: <u>LTM Program, including media, loca</u>	tions, analytes, and/or frequency	have varied during this FYR p	eriod.
3.	Data Trends Describe results and trends: <u>See S</u>	ection 4.0 of FYR Report.		
E. C	Other Remedy Components			
1.	Soil and Sediment Excavations Remarks:		Completed	Not Completed
2.	Contingent Remedial Action Pla Remarks: For OU 1, dated February 29, 2012.	an	■ Completed	□ Not Completed
3.	Tide Gate Upgrade Remarks: Conducted as part of OU 1 remedy.		■ Completed	□ Not Completed

VII. OVERALL OBSERVATIONS

A. Implementation of the Remedy

Describe issues and observations relating to whether the remedy is effective and functioning as designed. Begin with a brief statement of what the remedy is to accomplish (i.e., to contain contaminant plume, minimize infiltration and gas emission, etc.).

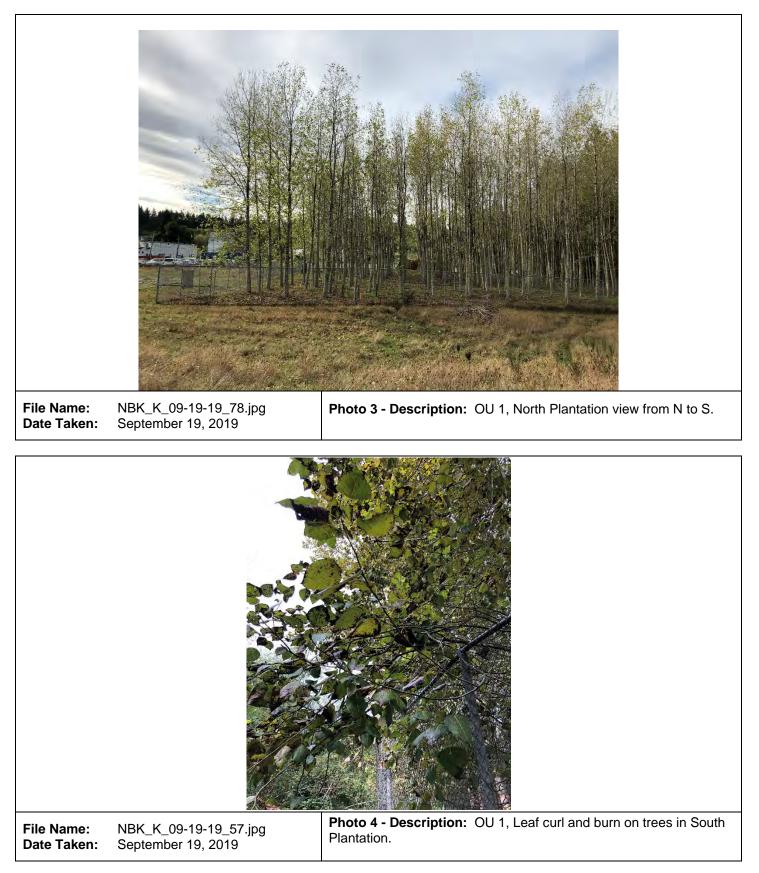
See Section 4.0 (Data Review), 5.0 (Technical Assessment), and 6.0 (Issues and Recommendations) of FYR Report.

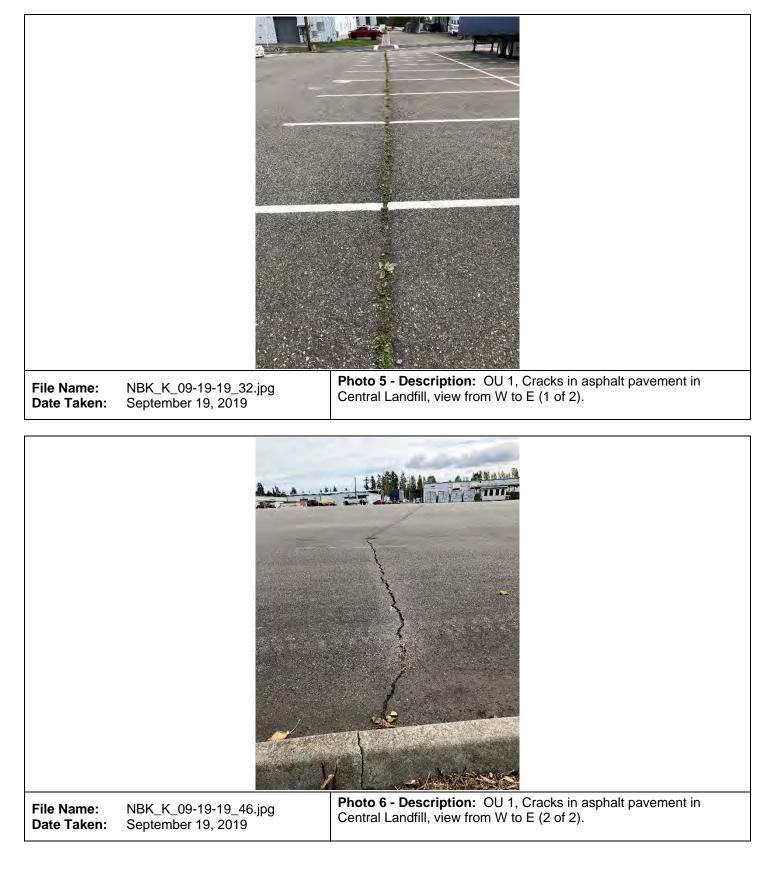
B. Adequacy of O&M

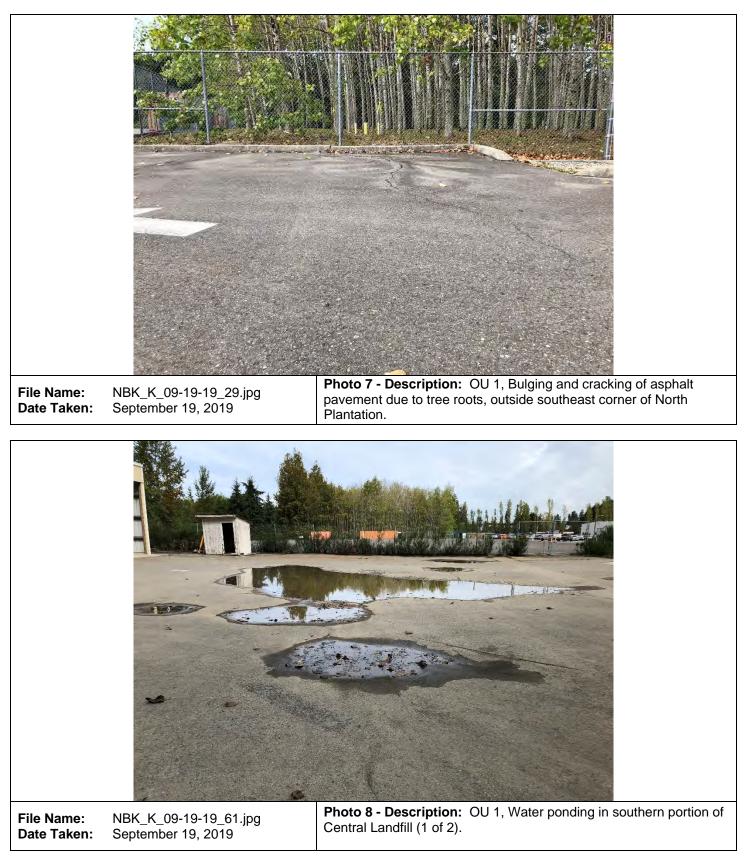
Describe issues and observations related to the implementation and scope of O&M procedures. In particular, discuss their relationship to the current and long-term protectiveness of the remedy.

See Section 4.0 (Data Review), 5.0 (Technical Assessment), and 6.0 (Issues and Recommendations) of FYR Report.

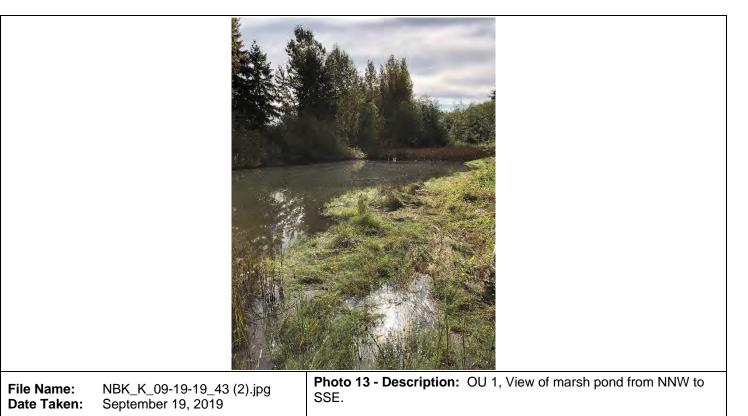
C. Early Indicators of Potential Remedy Problems


Describe issues and observations such as unexpected changes in the cost or scope of O&M or a high frequency of unscheduled repairs, that suggest that the protectiveness of the remedy may be compromised in the future.


See Section 4.0 (Data Review), 5.0 (Technical Assessment), and 6.0 (Issues and Recommendations) of FYR Report.


D. Opportunities for Optimization

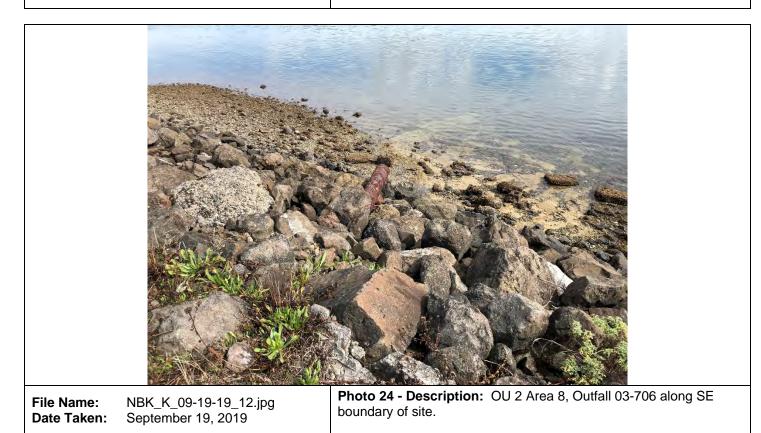
Describe possible opportunities for optimization in monitoring tasks or the operation of the remedy. See Section 4.0 (Data Review), 5.0 (Technical Assessment), and 6.0 (Issues and Recommendations) of FYR Report. APPENDIX J SITE INSPECTION PHOTOGRAPHIC LOG

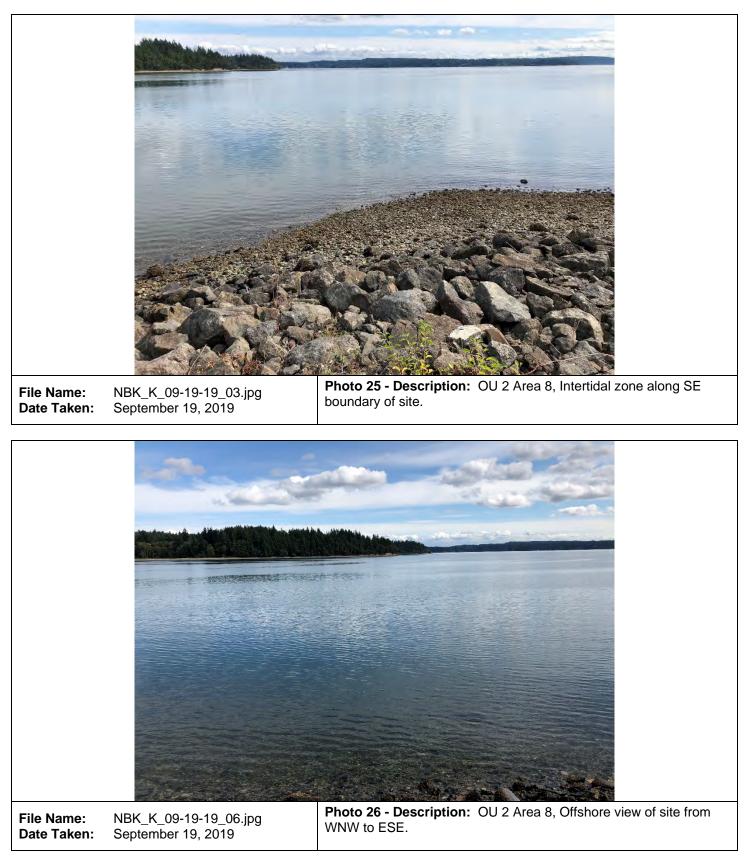

 File Name:
 NBK_K_09-19-19_33.jpg

 Date Taken:
 September 19, 2019

Photo 9 - Description: OU 1, Water ponding in southern portion of Central Landfill (2 of 2).

April 2020


File Name:NBK_K_09-19-19_10.jpgDate Taken:September 19, 2019


Photo 20 - Description: OU 2 Area 8, Monitoring well MW8-11 and location of Former Building 72 – pavement intact.

File Name: Date Taken: NBK_K_09-19-19_05.jpg September 19, 2019 **Photo 23 - Description:** OU 2 Area 8, View along Groner Street from S to N, along with evidence of recent utility trench.

APPENDIX K RESPONSES TO COMMENTS ON DRAFT DOCUMENT

-	of Review:	w Comments 9/14/2020			Page 1 Of	
Projec	t Title: Draf	t Fifth Five Year Review, NBK Keyport		Reviewer:	Harry Craig, Cal Baier-Anderson	
				Code:	U.S. EPA	
Projec	t Number:			Phone:		
ITEM NO.	Pg #, Section, Line	COM	IMENTS	1	REVIEW ACTION (Provide explanation & location of changes as necessary)	Agency Concurrence (Yes/No)
1	General	EPA is focusing the Keyport Five Year F conclusions and protectiveness determina consistency with applicable guidance on editorial comments. Some specific recor practices for FYRs related to emerging c Comments.	ations for the relevant Opera Five Year Reviews rather the nmendations based on best	able Units, and han detailed operating	Noted. The Navy is already aware of the best practice recommendations provided by EPA in the original comments file.	<u>N/A</u>
2	General	OU-1: Based on the monitoring data and conducted between the 2015 and 2020 F [*] phytoremediation and intrinsic bioremed sufficiently effective to ensure that the g edge of the waste management area (land the OU-1 ROD Remediation Goals (RGs condition would change in the near futur were identified in the Central Landfill an which would be expected to remain in gr extended period of time. In addition, em and PFAS have been identified in ground for the surface water/sediment/marine its determined, nor has the risks for this new these reasons, EPA does not concur with Determination of "Short Term Protective exceedances for CVOCs in groundwater contamination and relevant exposure patl dioxane and PFAS) have not been compl Guidance, EPA believes a "Protectivenes appropriate for OU-1.	YRs, EPA has concluded th lation technologies for OU- oundwater at the point of c tfill) or in surface water cor) and there is little evidence e. Significant additional so d the Southern Landfill gro oundwater above the ROD erging contaminants such a lwater, but the full extent of sue exposure pathway has r exposure pathway been id the Navy's proposed Prote " for OU-1 given the OU-1 and surface water, and that ways for emerging contam eted. Based on the 2012 El	at the combined 1 are not ompliance at the isistently meets that this urces of CVOCs undwater, RGs for an s 1,4-dixoane f contamination not been entified. For ctive ROD full extent of inants (1,4- PA FYR	The Navy concurs with EPA's statements regarding cVOCs concentration and extent revealed by the additional site characterization data collected during this FYR period. A risk assessment is underway, in collaboration with the Project Team, to determine whether these new data indicate a change in the risk determinations made in the ROD. Unless and until an unacceptable risk is demonstrated, the remedy established in the ROD is considered to be protective, which is why the Navy has selected "short-term protective." Selecting "protectiveness deferred" would only have the effect of putting an unattainable 1-year deadline on the on-going investigation and risk assessment work and delaying project work while a FYR addendum is developed and produced. Selecting "protectiveness deferred" also gives the impression to the public that this FYR has identified previously unknown conditions impacting protectiveness that now must be quickly investigated and addressed. However, the risk assessments will identify conditions impacting protects with the Project Team, and the path forward is clearly established. The presence or absence of a new; unregulated contaminant, such as PFAS, does not impact the protectiveness of the remedy selected in the ROD for established COCs. The CERCLA process now underway for PFAS will result in a determination of	No

EPA	Review	v Comments				
Date of	f Review:	9/14/2020			Page 2 of	
Project	Title: Draft	Fifth Five Year Review, NBK Keyport		Reviewer:	Harry Craig, Cal Baier-Anderson	
				Code:	U.S. EPA	
Project	Number:			Phone:		-
ITEM NO.	ITEM Pg #, Section COMMENTS			1	REVIEW ACTION (Provide explanation & location of changes as necessary)	Agency Concurrence (Yes/No)
					acceptable or unacceptable risks for PFAS, and the Navy will take any appropriate remedial actions per a future ROD. Also, additional investigations are planned to determine if new pathways/receptors exist at the site; however, no new pathways/receptors have been confirmed at this timeidentified. Therefore at this time there remains no known on-going exposure, so no identified unacceptable risks are known to be currently present at the site	
					Therefore, the Navy respectfully declines to change the protectiveness determination and stands by the determination of "short term protective" for OU 1.	
3	General	OU 2, Area 8 – Based on the monitoring d conducted between the 2015 and 2020 FY conducted for OU2, Area 8 shows elevated environment due to groundwater discharge need for additional groundwater source co discharges into surface water and sedimen groundwater remediation options has not t In addition, PFAS has been detected in gro contamination for the surface water/sedim not been determined, nor has the risks for determined. For these reasons, EPA does n Protectiveness Determination of "Will Be contingency groundwater remedy has been extent of contamination and relevant expo (PFAS) has not been completed. Based on believes a "Not Protective" determination Area 8.	Rs, the ecological risk ass d ecological risk in the ma e of metals. This risk nec ntrols actions to mitigate ts. A RI or Feasibility St been initiated, selected, or bundwater, but the full ex- ent/marine tissue exposure this new exposure pathwa tot concur with the Navy' Protective'' for OU-2, Ar a selected or implemented sure pathways for emergin the 2012 EPA FYR Gui	sessment arine essitates the groundwater udy of implemented. tent of e pathway has ty been 's proposed ea 8, as no I and that the full ng contaminants dance, EPA	Because the risk assessment shows unacceptable risk at OU 2 Area 8, which kicks intriggering groundwater controls under the ROD, and the contingent groundwater control remedy for that has not been selected and is not in progress, the remedy at the site is currently not protective. The ROD includes five remedial options for the contingent remedy, but none are feasible at this site, so the Navy is currently evaluating additional remedial options. The protectiveness statement for OU 2, Area 8 will be changed to "Not Protective." The risk and protectiveness implications of the data collected between 2015 and 2020 are discussed and evaluated in Section 5.3 of the FYR and the elevated ecological risk is acknowledged. As documented in Table 2-1 of the FYR, the risk assessment completed during this FYR period is a component of the selected remedy under the OU 2 ROD, as is implementation of contingent remedial actions based on the conclusions of the risk assessment. The supplemental R1 now being undertaken by the Navy to select the contingent remedy is therefore part of the on-going effort to fully	Yes

Date of	Review: 9/14/2020			Page 3 Of	
Project '	Title: Draft Fifth Five Year Re	eview, NBK Keyport	Reviewer:	Harry Craig, Cal Baier-Anderson	<u>.</u>
			Code:	U.S. EPA	
Project	Number:		Phone:		
ITEM NO.	Pg #, Section, Line	COMMENTS	-	REVIEW ACTION (Provide explanation & location of changes as necessary)	Agency Concurrence (Yes/No)
				implement the original remedy in the OU-2 ROD. When a remedy is in progress and the final remedy is expected to address the RAOs, the FYR concludes that the remedy "will be protective" when the remedy is fully implemented. As indicated above, the presence or absence of a new, unregulated contaminant, such as PFAS, does not impact the protectiveness of the remedy selected in the ROD for established COCs. The CERCLA supplemental RI process now underway will include characterization of the magnitude and extent of PFAS, and the human health and ecological risk assessment addendum planned for 2022 will determine if unacceptable risks from PFAS are present at the site. If an unacceptable risk is identified through the on-going CERCLA process, the Navy will select a remedy in collaboration with the Project Team that, by definition, "will be protective" once implemented. Therefore, the Navy respectfully declines to change the protectiveness determination and stands by the determination of "will be protective" for OU 2 Area 8.	

EPA Review Comments								
Date of Revie	Date of Review: 9/14/2020 Page 4 Of							
Project Title:	Project Title: Draft Fifth Five Year Review, NBK Keyport				Harry Craig, Cal Baier-Anderson			
					U.S. EPA			
Project Numb	ber:			Phone:				
NO Sec	'g #, ction, Line	COMMEN	NTS	-	REVIEW ACTION (Provide explanation & location of changes as necessary)	Agency Concurrence (Yes/No)		

Γ	Specifi	c Comments		
	1	While the report references PFOA and PFOS, which have a health advisory for drinking water, it does not mention PFBS, which is included in the EPA RSL table. Please include PFBS in all PFAS discussions that mention specific PFAS. Please also confirm that PFBS was not found above screening levels.	We will add PFBS will be added to the discussion in Sections 4.2.3, 5.1, and 5.3, and 5.4.2.	Yes
	2	It would be helpful to include a map of the location of PFAS sampling, along with a brief rationale for the location of sampling to date. This can be used to support the assertion that PFAS contamination does not affect current protectiveness.	 PFAS sampling results for OU 1 are included in Table D-28. OU 1 wells where PFAS samples were collected will be identified on Figures 4-5 and 4-8. A brief discussion of the rationale for the PFAS sampling to date will be added to page 5-3, lines 91-95. PFAS sampling results for OU 2 Area 8 are included in Table G-5. OU 2 Area 8 wells where PFAS samples were collected will be identified on Figure 4-17. A brief discussion of the rationale for the PFAS sampling to date will be added to page 5-5, lines 218-222. 	Yes
	3	Please include in the text references to the PFAS analytical reports that are the source of data summaries.	Citations of the report containing the OU 1 PFAS data will be added to page 4-28, line 313. Citations of the reports containing the OU 2 Area 8 PFAS data will be added to page 4-48, line 29.	Yes
	4	Please include need to complete PFAS PA/SI be included in Issues and Recommendations, with target completion date.	A Sitewide finding and recommendation will be added to Table 6-2 as follows: Finding: PFAS compounds have been detected in groundwater samples from existing monitoring wells at OU 1 and OU 2. Recommendation: Include PFAS in the supplemental remedial investigations currently underway at OU 1 and OU 2 Area 8. The timeline for the supplemental RIs is included on Figure 7-1.	Yes

	ogy Review	Commei	nts			
Date of Review	u/11/2020				Page 5 Of	
-	Title: Draft Fifth Fi	ve Year Revi	ew, NBK Keyport	Reviewer:	Mahbub Alam, John Evered, Bonnie Brooks	
5				Code:	Washington State Department of Ecology	
Project	Number:			Phone:		
ITEM NO.	Pg #, Section, Line		СОМ	MENTS	REVIEW ACTION (Provide explanation & location of changes as necessary)	Agency Concurrence (Yes/No)
Genera	al Comments					
1	Protectiveness determination of OU 2 Area 8	determination determination guidance (E be appropri- and no unace under const completion OU 2 Area to accumula hazard to be results/endp that the exis receptors."[6-2]. As suce the need for unacceptable action, whice comes after ROD ameno- its impleme	on of OU 2 Area 8. Th on "Will Be Protective IPA, 2012). "Will Be F ate for remedies where d human and ecologica cceptable risks are occu ruction is anticipated t (See page 3 of the 201 8, the Navy concluded ated contaminants in se enthic organisms based obints." [page 5-5]; "TI sting remedy is not pro page 3-8], and it affect ch, the Navy identified a supplemental RI and le risk to ecological ree ch would make the cass selection of remedy (t dment). Since the RA in ntation, it is premature	2 EPA guidance memo). For – "acute and chronic exposure diment pose a current potential on the bioassay herefore, the ERA concluded	 Because the risk assessment shows unacceptable risk at OU 2 Area 8, triggering groundwater controls under the ROD, and the contingent groundwater control remedy has not been selected and is not in progress, the remedy at the site is currently not protective. The ROD includes five remedial options for the contingent remedy, but none are feasible at this site, so the Navy is currently evaluating additional remedial options. The protective. The EPA guidance from 2012 is misleading. The finding of "will be protective" is typically used when remedy implementation is in progress at the time of a FYR and site conditions have not changed since the time of remedy selection. In these cases, the remedy is expected to be protective once fully implemented. EPA's 2001 guidance, Exhibit 4 5 is slightly more clear in this regard. At any CERCLA site, between the time that a remedy is selected and fully implemented, an unacceptable risk exists (without unacceptable risk, there would be no need for a remedy). Although it is possible to control human exposures during this timeframe through institutional or engineering controls, the ecological risks remain until the remedy can be fully implemented. In these cases, the remedy "will be protective" once fully implemented but is not currently protective during this timeframe because an unacceptable risk exists. As documented in Table 2-1 of the FYR, the risk assessment completed during this FYR period is a component of the selected remedy under the OU 2 ROD, as is implementation of contingent remedial actions based on the conclusions of the risk assessment. The supplemental RI now being undertaken by the Navy in support of contingent remedy selection is therefore part of the on- going effort to fully implement the original remedy in the OU 2 ROD. When a remedy is in progress and the final remedy is expected to address the RAOs, the FYR concludes that the remedy 	Yes

Ecol	ogy Review	Comments			
Date of Review	0/11/2020			Page 6 Of	
Project	Title: Draft Fifth Fi	ve Year Review, NBK Keyport	Reviewer:	Mahbub Alam, John Evered, Bonnie Brooks	
			Code:	Washington State Department of Ecology	
Project	Number:		Phone:		
ITEM NO.	Pg #, Section, Line	СОМ	IMENTS	REVIEW ACTION (Provide explanation & location of changes as necessary)	Agency Concurrence (Yes/No)
				"will be protective" when the remedy is fully implemented.	
				Given that the OU 2 ROD remains the subject of the FYR and the site is still operating under the specifications in the ROD, the Navy respectfully declines to change the protectiveness determination and stands by the determination of "will be protective" for OU 2 Area 8.	
2	Determination of Protectiveness of OU 2 Area 8 as "Not Protective"	 unacceptable risk to hu and Potential or actual expe there is evidence of exp The results of the recently comple provides evidence to the above so text in the previous general comm 	nemo (page 5), this OU falls nich make the case for "Not ants is uncontrolled and poses an man health and the environment, osure is clearly present or osure eted risk assessment for OU Area 8 enarios. See the references to FYR	Please see the response to General Comment 1. The Navy respectfully declines to change the protectiveness determination and stands by the determination of "will be protective" for OU 2 Area 8.	Yes
3	Protectiveness determination of OU 1	Ecology does not agree with the determination of OU 1. The Naw "Short-Term Protective" is not s (EPA, 2012). In order to be "Sho memo, answers to Questions A, and documentation to conclude ecological exposures are current unacceptable risks are occurring Does the Navy have sufficient d	y's protectiveness determination upported by the EPA guidance ort-Term Protective", per the B, and C provide sufficient data that the "the human and ly under control and no ."[page 3 of the EPA memo].	The Navy concurs that the additional site characterization data collected during this FYR period warrant a re-evaluation of sites risks. A risk assessment is underway, in collaboration with the Project Team, to determine whether these new data indicate a change in the risk determinations made in the ROD. Unless and until an unacceptable risk is demonstrated, the remedy established in the ROD is considered to be protective, which is why the Navy has selected "short-term protective." The Navy respectfully declines to change the protectiveness	No

					-
Ecol	ogy Review	Comments			
Date of Review:	9/11/2020			Page 7 Of	
Project	Title: Draft Fifth Fi	ve Year Review, NBK Keyport	Reviewer:	Mahbub Alam, John Evered, Bonnie Brooks	
			Code:	Washington State Department of Ecology	
Project	Number:		Phone:		
ITEM NO.	Pg #, Section, Line	СОМ	IMENTS	REVIEW ACTION (Provide explanation & location of changes as necessary)	Agency Concurrence (Yes/No)
		specifically burrowing high levels of PCBs an 4-29]. There are no unaccepta marsh pond and specifi marsh pond due to the groundwater and seeps. The Navy st cVOC concentrations f water in the wetland sc orders of magnitude hi	ble risk to ecological receptors animal in the landfill area due to d TPH in the shallow soil [page able risks to aquatic organisms in the facally in the creek preceding the contaminant transport through ated in Page 5-2, " <i>Exposure point</i> for ecological receptors in surface outh of the south plantation are gher than known at the time of the assumption is no longer valid".	determination and stands by the determination of "short term protective" for OU 1.	
		fishery due to consump in Page 5-2, "PCB sedi for adverse risk/effects community". Clearly, the Navy doesn't have su human and ecological exposures unacceptable risks are occurring, suggest the opposite; there may b	e risk to Tribal (Suquamish) bion of seafood. The Navy stated iment data indicate the potential to human health and the benthic afficient data to conclude that the are currently under control and no As shown above, the limited data e adverse effects to ecological and bgy does not agree on "Short-Term		
4	Ecology's Determination of Protectiveness of OU 1 as "Protectiveness Deferred"			Selecting "protectiveness deferred" would only have the effect of putting an unachievable 1-year deadline on the on-going investigation and risk assessment work and delaying project work while a FYR addendum is developed and produced. Selecting "protectiveness deferred" also gives the impression to the public that this FYR has identified previously unknown conditions	<u>No</u>

	D •	0				
Date of Review	Q/11/2020	Comments			Page 8 Of	
	Project Title: Draft Fifth Five Year Review, NBK Key		Reviewer:		ıb Alam, John Evered, Bonnie Brooks	
			Code:		ngton State Department of Ecology	
Project	Number:		Phone:			
ITEM NO.	Pg #, Section, Line	COMMENTS		(Pr	REVIEW ACTION ovide explanation & location of changes as necessary)	Agency Concurrence (Yes/No)
		 TPH in the shallow soil other contaminants such the area. 2. An emerging contamination has not been evaluated (1,4- Dioxane and PFA. Nature and extent of conditional cumulative) 3. An ecological risk assest adequately addressed as started the process of up ecological and human heterological extension of the current remedy at a selected remedy can acculevel – Table 5-2 of the RGs, if established toda addition, the Navy answ "no" on Question B (particular distances and present at the site (e.g., preliminar distance). 	<i>curring</i> – Exposure to e to high levels of PCBs and [page 4-29] and there may be n as metals, PAH and Dioxins in <i>int is present and the current risk</i> – Two emerging contaminants S) have been detected at the site. Intamination and associated risk have not been evaluated. <i>issment has never been</i> <i>t the site</i> – The Navy has bodating/encompassing both ealth risk assessment at OU1. <i>hanged and it is unclear whether</i> <i>site is protective or whether the</i> <i>bieve the new risk-based cleanup</i> document shows new lower y, for most COCs at OU1. In <i>rered</i> ge 5-2). other examples/issues that are y findings from the 2019 source the protectiveness determination for	and add 1. 2. 3.	ing protectiveness that now must be quickly investigated dressed. In addition: Currently, no new exposure pathways or receptors have been confirmed at OU 1. Ongoing investigations will determine if new pathways may exist and a risk assessment is underway, in collaboration with the Project Team, to determine whether the new data collected to date, in addition to the results of planned work, indicate a change in the risk determinations made in the ROD. Unless and until an unacceptable risk is demonstrated, the remedy established in the ROD is considered to be protective, which is why the Navy has selected "short- term protective." However, the ongoing risk assessments will identify conditions impacting protectiveness, if present, investigations are being conducted under a comprehensive and collaborative process with the Project Team, and the path forward is clearly established. The presence or absence of a new, unregulated contaminant, such as PFAS, and emerging contaminants, such as 1,4-dioxane, do not impact the protectiveness of the remedy selected in the ROD for established COCs. The CERCLA process now underway will include both PFAS and 1,4-dioxane, will result in a determination of acceptable or unacceptable risks for the site, and the Navy will take any appropriate remedial actions per a future ROD. As indicated, the Navy is in the process of conducting a human health and ecological risk assessment for the site under a comprehensive and collaborative process with the Project Team. Additional investigations are planned to determine if new pathways/receptors exist at the site and the ongoing risk assessment will determine if unacceptable risk exists at	

Ecolo	gy Review	Commen	its			
Date of Review:	9/11/2020				Page 9 Of	
Project Ti	roject Title: Draft Fifth Five Year Review, NBK Keyport		Reviewer:	Mahbub Alam, John Evered, Bonnie Brooks		
			Code:	Washington State Department of Ecology		
Project N	umber:			Phone:		
ITEM NO.	Pg #, Section, Line COMI		MENTS	REVIEW ACTION (Provide explanation & location of changes as necessary)	Agency Concurrence (Yes/No)	
					 the site, based on current toxicological information. However, no new pathways/receptors have been confirmed to date. So, although toxicity values have changed, the site continues to be managed under the existing ROD, and at this time there are no known ongoing exposures that were not present at the time the ROD was signed. So, no identified unacceptable risks are known to be currently present at the site. Therefore, the Navy respectfully declines to change the protectiveness determination and stands by the determination of "short term protective" for OU 1. 	

Ecology Review Comments					
Date of Review:	Q/11/2020			Page 10 of	
Project 7	Project Title: Draft Fifth Five Year Review, NBK Keyport		Reviewer:	Mahbub Alam, John Evered, Bonnie Brooks	
			Code:	Washington State Department of Ecology	
Project 1	Number:		Phone:		
ITEM NO.	COMM		MENTS	REVIEW ACTION (Provide explanation & location of changes as necessary)	Agency Concurrence (Yes/No)

5	Sitewide Protectiveness Statement	The sitewide protectiveness determination as "Will Be Protective" does not seem correct in the light of EPA guidance. As stated before, "Will Be Protective" is referred during "remedy under construction" (Page 3 of the 2012 EPA guidance memo). Since we don't have a selected remedy under new circumstances and there is ongoing unacceptable risk as OU 2 Area 8 and remedy failure at OU 1, Ecology believes the best determination should be "Not Protective".	The sitewide protectiveness determination will be changed to <u>"Not Protective."</u> .Please see the response to General Comment 1. The Navy respectfully declines to change the protectiveness determination and stands by the determination of "will be protective" for the site.	<u>Yes</u>
6	Oversight Party	Review the oversight party for Keyport. Ecology is the lead regulatory agency for Keyport per the 2000 EPA-Ecology MOA. Ecology was listed as the oversight party in the last fourth FYR (page vi).	The oversight party will be changed to Ecology.	Yes
7	Statement about "Lack of Ecology Comments"	In general, if there is no comment from Ecology, there may be a number of reasons why Ecology did not comment. It may be Ecology did not find anything to comment. It can also mean something was not reviewed. However, it does not indicate approval of an issue. The language in page 3-4, item #2 "The lack of Ecology comments regarding the trend analyses in these reports indicates that the revised approach meets Ecology's guidance and expectations." is not acceptable and needs to change. If there is a question that needs Ecology's input, The Navy is requested to ask Ecology for specific input and not assume Ecology's position on the issue. On this particular "trend analysis" issue, see Ecology's response below in "Specific Comments" section (comment #7).	Understood, thank you. The language in page 3-4, item #2 will be removed.	Yes

Date of Review					Page 11 Of	
	: Title: Draft Fifth F i	ivo Voor Rovid	w NRK Keynort	Reviewer:	Mahbub Alam, John Evered, Bonnie Brooks	
Tiojeet	The Dian Film Fi	ive rear Kevn	w, the Report	Code:	Washington State Department of Ecology	
Project	Number:			Phone:		
ITEM NO.	Pg #, Section, Line		COMMENTS		REVIEW ACTION (Provide explanation & location of changes as necessary)	Agency Concurrence (Yes/No)
Specifi	c Comments					
1	Page 1-2, Line 57-60, Figure 1-2 Section 2.1.1	why IC only		s not subject to FYR. It is not clear bject to FYR. If there is LUC for R process.	In accordance with CERCLA § 121(c), the NCP, and Navy and EPA guidance, FYRs are performed for sites covered under CERCLA RODs. The IC-only sites at NBK Keyport are not included in either CERCLA ROD.	Yes
	Line 48					
2	Figure 1-6	misleading e	No activities/events are shown from 2010 to 2020, which is misleading especially a lot of activities happened in the last FYR. The Figure should be updated with major efforts/projects happened during this time		Figure 1-6 is depicting CERCLA milestone events for the site, not comprehensively documenting all site activities. No changes are proposed.	Yes
3	Page 2-2,	exposure to asphalt place vapors, only	Last bullet states the upgraded asphalt landfill cover will prevent exposure to vapors. Unless there was something other than the asphalt placed there, the asphalt alone would not prevent exposure to vapors, only direct contact via ingestion or dermal contact. Can you please clarify what is meant by this or delete the reference to vapors.		The reference to vapors will be deleted.	Yes
4	Page 2-6, Section 2.1.3 Line 263-265		What is the depth of screen for the PUD well and the Navy supply well #5? What are the decision criteria for the CRA monitoring plan?		The PUD well is screened using a V-slot stainless steel screen from 702 to 741 feet below ground surface (bgs). Navy Well 5 is constructed with three slotted-screen intervals in the depth range 725 feet bgs to 802 feet bgs. The decision criteria in the CRA plan consist of concentration values for specific chemicals in specific wells triggering a tiered series of actions. A reference to the 2003 CRA plan will be added to this portion of the FYR text.	Yes
5	Page 2-12, Section 2.2.2 Lines 456 to 464	Add a figure USGS cond	Add a figure depicting what wells were included in the tidal lag study USGS conducted and refer to it in the text of this section.		Wells included in the tidal lag study will be identified on existing Figure 2-3, and a callout to that figure will be added to this portion of the text.	Yes
6	Page 3-4 Table 3-2	during this	FYR period utilize a	OU 1 LTM reports prepared value of half of the reporting limit The spring 2016 LTM report cites	This statement is from Section 7.1, the last sentence of the first paragraph, on page 7-1 of the <i>Final Spring 2016 LTM Report</i> , <i>Operable Unit 1</i> , dated August 22, 2017. Note that revising this	Yes

Ecol	ogy Review	Comments			•
Date of Review	9/11/2020			Page 12 of	
Project	Title: Draft Fifth F	ive Year Review, NBK Keyport	Reviewer:	Mahbub Alam, John Evered, Bonnie Brooks	
5			Code:	Washington State Department of Ecology	
Project	Number:		Phone:		
ITEM NO.			MENTS	REVIEW ACTION (Provide explanation & location of changes as necessary)	Agency Concurrence (Yes/No)
		seem correct. Cite that section of Artificial substitution is not accep		approach in collaboration with Ecology is included as the first finding for OU 1 in Table 6-2. The Ecology guidance was cited in error in the last sentence of the first paragraph, on page 7-1 of the <i>Final Spring 2016 LTM Report</i> , <i>Operable Unit 1</i> , dated August 22, 2017. The statistical approach for depicting contaminant trends in LTM reports still needs to be addressed. Revising this approach in collaboration with Ecology is included as the first finding for OU 1 in Table 6-2 and the FYR will be updated to indicate that this recommendation from the Fourth FYR has not been completed.	
7	Page 3-4 Table 3-2	"The lack of Ecology comments i these reports indicates that the r guidance and expectations." - Th comments on 2018 LTM report i to do statistical trend analysis. Se LTM report. Ecology again com (Ecology comment email dated § personally aware of this recomme during commenting; otherwise, I w recommendation in the comments	evised approach meets Écology's his is incorrect. Ecology for OU 2 Area 8 asked the Navy ee appendix F of Final 2018 mented on 2019 LTM report 3/18/2020). I was not ndation in the previous 4th FYR would have mentioned this	This sentence will be removed and the following sentence will replace it: "The Navy is currently revising the LTM QAPP in collaboration with the project team. Trend analyses methods will be revised to a method approved by Ecology during this process."	Yes
8	Page 3-6 Table 3-2	Were the PCB data collected in 20 If so state here. How does this rec sampling results described on pag exceedance in the 2019 sampling.	e 4-10, that describe an SQS	The phrase "outside of the data review window for this FYR" will be added to the last sentence of the Status text for item 6. The 2019 SQS exceedance noted on page 4-10 is from a different station than the exceedance in 2017. As will be discussed in the forthcoming report covering the 2019 additional investigation work, the variability in PCB concentrations in sediment from the same stations at different times continues to point to a strong spatial variability in sediment PCB concentration, confounding efforts to establish meaningful temporal trends or reliable mean exposure point concentrations for use in risk assessment. As discussed in the meeting held on 10/1/2020, the method of sediment sampling for PCBs will be changed to ISM to allow for better, more repeatable sample data.	Yes

-							
	Ecol	ogy Review	Commer	nts			
	Date of Review	0/11/2020				Page 13 of	
-	Project	Title: Draft Fifth Fi	ve Year Revie	ew, NBK Keyport	Reviewer:	Mahbub Alam, John Evered, Bonnie Brooks	
					Code:	Washington State Department of Ecology	
	Project	Number:			Phone:		
	ITEM NO.	Pg #, Section, Line		COM	MENTS	REVIEW ACTION (Provide explanation & location of changes as necessary)	Agency Concurrence (Yes/No)
	9	Page 3-6 Table 3-2	MA19 could MA19?	MA19 could not be found on the figure 2-1. Which Figure shows MA19?		MA19 is shown on Figure 4-10, which is specific to the PCB congener results. The specific station names will be removed from Table 3-2, to reduce confusion. Specific data discussions are provided in Section 4.	Yes
	10	Page 3-7 Table 3-2		word "conservative" f VI screening levels.	from the 2^{nd} paragraph when	The Navy's extensive analysis of building-specific attenuation factors in the Area 8 VI study report provides ample evidence that the default attenuation factors, and therefore the default screening levels, are indeed conservative for this site. The Navy stands by the use of the qualifier "conservative" in this case.	Yes
	11	Page 4-6 Figure 4-1	are the same them to a co Also, show In addition, flow. Ecolog	Arrows indicating groundwater flow are difficult to see since they are the same color as groundwater elevation contours. Change them to a contrasting color that is easier to pick out? Also, show flow direction in southern plantation. In addition, clarify in the Figure title that it is shallow groundwater flow. Ecology's understanding is that the deeper groundwater moves in the northwest direction.		The arrow colors will be changed as suggested, and a flow direction arrow will be added in the South Plantation. The figure title will be changed to "OU 1 Shallow Groundwater Potentiometric Head Contours and Groundwater Flow September 2018."	Yes
	12	Page 4-5 Section 4.2.1 Line 37	northwest be the north end south of land Provide ano	eneath landfill. Earlier d of the landfill is nort dfill is to west to south	fer groundwater flow is to text states shallow groundwater at hwest towards tide flats and at west towards the marsh pond. groundwater flow in the deeper ification in the text.	An arrow depicting deeper groundwater flow to the northwest will be added to Figure 4-1. The following additional explanatory text will be added starting on Line 38, page 4-5. "This hydrogeological model of multiple superimposed groundwater flow components within an aquifer system is consistent with the standard models of flow systems within regional drainage basins (see Figure 6.4, Fetter, 1980). At sites like OU 1 with substantial local relief and high annual precipitation, local groundwater flow systems become superimposed on the regional flow system. Local, near-surface flow systems are driven by recharge at local topographic highs and discharge at topographic lows. At OU 1, the effect of this local flow system is movement of shallow groundwater and contaminants from the landfill footprint into adjacent surface water, with groundwater flow vectors roughly normal to the flowline of Marsh Creek and the ephemeral stream	Yes

Ecol	ogy Review	Comments			
Date of Review:	9/11/2020			Page 14 Of	
Project '	Title: Draft Fifth Fi	ve Year Review, NBK Keyport	Reviewer:	Mahbub Alam, John Evered, Bonnie Brooks	
			Code:	Washington State Department of Ecology	
Project 1	Number:		Phone:		
ITEM NO.	ITEM Pg #, Section, COMM		MENTS	REVIEW ACTION (Provide explanation & location of changes as necessary)	Agency Concurrence (Yes/No)
				south of the South Plantation. Because the flowlines of these surface water features vary from east-west to south-north, very localized groundwater flow vectors are observed, ranging from nearly due south in the eastern portion of the South Plantation to due west across much of the Central Landfill. Deeper in the aquifer, below the influence of local topographic relief, the regional flow direction to the northwest dominates, probably enhanced by paleotidal and paleofluvial channeling in the Olympia Formation."	
13	13Page 4-7 Lines 63 to 64Include the proper chemical names listed with the proper name and the only listed with the abbreviated name		e abbreviated name, but some are	This represents the typical editorial practice of defining abbreviations and acronyms upon first use in the text. Abbreviations are used here when the chemical has already been used in the text previously and the abbreviation defined. In cases where this is the first use of the chemical name in text, the full name is used and the abbreviation identified.	Yes

_							•
	Ecol	ogy Review	Commen	its			
	Date of Review:	0/11/2020				Page 15 of	
-	Project '	Title: Draft Fifth Fi	ve Year Revie	w, NBK Keyport	Reviewer:	Mahbub Alam, John Evered, Bonnie Brooks	
_					Code:	Washington State Department of Ecology	
_	Project 1	Project Number:			Phone:		
	ITEM NO.	0, ,		СОМ	MENTS	REVIEW ACTION (Provide explanation & location of changes as necessary)	Agency Concurrence (Yes/No)
	14	Pages 4-7 to4-8 Section 4.2.1 Figure 4-2	but does pro	vide valuable informa inant/group of contarr	nation and is difficult to interpret, tion. Create multiple figures for hinants instead of having them all	This figure is meant to convey the overall data generated through the LTM program during the review period. More recent and comprehensive data collected through the additional investigations performed in 2017 and 2019 are not included, and therefore meaningful interpretations of contaminant extent or trends cannot be derived from this figure. Therefore, the Navy believes this summary depiction of LTM data meets the needs of the FYR report and respectfully declines to prepare additional, more focused depictions of these data.	Yes
I	15	Page 4-8 Figure 4-2	orders of ma located near opposite for than MW1-3 Also, note th	The Vinyl chloride (detected above RG) in MW1-39 is at least two orders of magnitude higher than MW1-38. Both wells seemed to be located nearby (may be less than 10 feet). It is interesting to note the opposite for 1,4- dioxane where concentration in MW1-38 is higher than MW1-39. What are the screen interval of these wells? Also, note that these wells are outside the base boundary and the Vinyl chloride and 1,4-dioxane are detected above RG in these wells.		This is a well pair with one shallow screen (MW1-39, screened from 27.5 ft bgs to 32.5 feet bgs) and one deep screen (MW1-38, screened from 44 feet bgs to 49 feet bgs). These wells have been the subject of substantial discussion over the years, including detailed assessment by USGS (2002). Standard transport conceptual site models and numeric models do not account for the patterns of contamination in these two wells. The Navy is currently using environmental sequence stratigraphy and plans to use geophysics (to map stratigraphy beneath the tide flats and the temporal variation in the saltwater/freshwater interface) to better understand the transport pathway from the site to these wells.	Yes
	16	Page 4-9 Section 4.2.1 Line 123	creating indi earlier comm in the text. D	vidual figures for each nent and refer to the fi	re sampled for 1,4-dioxane by h contaminant as suggested in an gure instead of writing them all out minants would make the report o interpret the data.	This discussion is specific to the sampling performed under the LTM program, which is why Figure 4-2 is referenced in particular. Wells with results for 1,4-dioxane from the LTM program are shown on Figure 4-2. Wells shown with an "NS" result indicate that these wells were not samples for 1,4-dioxane. The 1,4-dioxane results for samples collected from the additional investigation conducted in 2017 will be added to Figures 4-5 and 4-8. Initial results for 1,4-dioxane sampling in 2019 are contoured on Figure 4-12. The Navy believes that it is more appropriate to include the chemical-specific maps requested, along with appropriate data interpretation, in the upcoming Source Investigation report documenting the results of the 2019 investigation. Therefore, the Navy respectfully declines to	<u>Yes</u>

10 1	D .	0			
	ogy Review	Comments			
Date of Review	0/11/2020			Page 16 Of	
Project	Title: Draft Fifth Fi	ve Year Review, NBK Keyport	Reviewer:	Mahbub Alam, John Evered, Bonnie Brooks	
			Code:	Washington State Department of Ecology	
Project	Number:		Phone:		
ITEM NO.			MENTS	REVIEW ACTION (Provide explanation & location of changes as necessary)	Agency Concurrence (Yes/No)
				produce additional chemical-specific maps for this FYR.	
17	Page 4-9 Section 4.2.1 Line 131	Clarify what monitoring wells and PCBs (MW1-02, MW1-14, PI-01) each contaminant as suggested in a figure instead of writing them all o contaminants would make the repo to interpret the data. For PCBs, inc data on the same figure.	by creating individual figures for n earlier comment and refer to the ut in the text. Doing this for all rt more concise and make it easier	PCBs as Aroclors and as summed congeners will be added to Figure 4-2 for the three wells analyzed for PCBs as part of the LTM program.	Yes
18	Pages 4-7 to 4-63 Sections 4.2.1, 4.2.2, 4.2.3	Include the specific table number v located in addition to referring to t H. It is very difficult to find the sp In general, the data tables should b just the summary statistics. For PC summation of congeners should be individual congener results can be	he appendix C, D, E, F, G and ecific data. The presented in the main text, not Bs/Dioxins and Furans, the total provided in the main text but the	The specific appendix table number callouts will be added to the text. Unfortunately, placing the data tables from the appendices into the body of the report would decrease readability, due to the number of the tables. Therefore, the Navy respectfully declines to place the data tables into the text.	Yes
19	Page 4-9 Section 4.2.1 Line 140	Make a separate figure that only in samples. This will make it easier to which includes all of the samples c	evaluate the data. Figure 2-1	The Navy will create the requested figure, showing the surface water and seep data from the LTM program during this FYR period.	Yes
20	Page 4-10 Section 4.2.1 Lines 143 to 146	Provide a note that these RGs were are no longer current (refer to Tabl appropriate). In addition, there are detections of without any RGs. Clarify this in th considered in the context of potenti assessment.	e 5-2 in section 5.4, as contaminants in surface water e text. These detections should be	As a point of clarification, the RGs have not changed, but the underlying ARAR values supporting the RGs selected in the ROD have changed since the time of the ROD. A sentence will be added to state, "Note that the ARAR values upon which these RGs were based have changed since the time of the ROD. See Section 5.4 for additional explanation." The FYR evaluates the ROD and the ROD-selected COCs. However, all detected chemicals at the site will be included in the ongoing risk assessment.	Yes

Fool	ogy Doviow	Commor	ata			
Date of	ogy Review	Commen			D 17 cf	
Review	9/11/2020				Page 17 Of	
Project	Title: Draft Fifth Fi	ve Year Revie	ew, NBK Keyport	Reviewer:	Mahbub Alam, John Evered, Bonnie Brooks	
				Code:	Washington State Department of Ecology	
Project	Number:			Phone:		
ITEM NO.	Pg #, Section, Line	COMMENTS		MENTS	REVIEW ACTION (Provide explanation & location of changes as necessary)	Agency Concurrence (Yes/No)
21	Page 4-17 Section 4.2.1 Lines 54 to 65	side of the c	It appears from porewater data contamination extends to the other side of the creek (see stations PW1-3, PW1-4 in Figure 4-6). Is there an explanation regarding this data? Is this discussed later in the report?		In the vicinity of these porewater samples there is no clearly defined flow channel, but rather a low, broad area of saturated wetland sediment. The flow channel shown starting to the west of the area of these sample locations is ephemeral, only flowing with seasonal precipitation. Contaminated groundwater appears to be daylighting in saturated sediment in this area. Additional sample locations from 2019 delimit the lateral extent of this daylighting. The Navy proposes no changes to the FYR based on this comment.	Yes
22	Page 4-23 Section 4.2.1 Lines 169 to 176	objectives (A porewater, a Note that all surface wate	PCBs results in sediment were compared to sediment cleanup objectives (ARAR). However, PCB results in groundwater, porewater, and surface water were not compared to RGs or ARARs. Note that all surface water PCB results failed to meet Washington's surface water quality standards for protection of human health (ARAR for the ROD).		The decision rules established for PCBs in the 2017 investigation were focused on establishing current conditions with regard to PCBs in sediment, and the decision rules for the 2019 investigation expanded to include investigating a potential PCB source area. The report covering the 2019 data collection will include a comparison of the PCB results in aqueous media to the ROD RGs and <u>current</u> ARARs, and these data will be included in the ongoing risk assessment. A recommendation will be added to <u>compare future surface water data to the current ARAR for human</u> <u>health exposure pathways (including incidental ingestion and fin- fish and shellfish consumption), given that the concentration can now be achieved by the laboratories using congener analysis.</u>	Yes
23	Page 4-28 Section 4.2.1 Lines 279 to 319	it would be similar to w 4-8, Section contaminant on one figur	helpful to have figures hat was suggested in t a 4.2.1, Figure 4-2. Creat t/group of contaminan re. If the data has been	2019 sampling event are provided, s with sample locations and data he comment regarding pages 4-7 to ate multiple figures for each ts instead of having them all listed validated, they can be presented. ave not been incorporated into a	Thank you for these suggestions. The requested figures will be produced during preparation of the data report covering the 2019 data collection event. The validated 2019 data were provided to Ecology on August 13, 2020.	Yes

Ecology Review Comments					
Date of Review:	9/11/2020			Page 18 Of	
Project 7	Project Title: Draft Fifth Five Year Review, NBK Keyport		Reviewer:	Mahbub Alam, John Evered, Bonnie Brooks	
			Code:	Washington State Department of Ecology	
Project 1	Number:		Phone:		
ITEM NO.	Pg #, Section, Line	СОММ	IENTS	REVIEW ACTION (Provide explanation & location of changes as necessary)	Agency Concurrence (Yes/No)

	24	Page 4-29 Section 4.2.1 Lines 347 to 350	Given degradation of Aroclors, it is very difficult to measure or fingerprint PCBs as Aroclor in water samples (e.g., groundwater or surface water) unless the concentration is significantly high. "PCBs as congeners were detected" provide the justification that such analysis is warranted, specifically in the water phase.	Understood.	<u>N/A</u>
	25	Page 4-29 Section 4.2.1 Lines 355 to 359	It should be noted that PAL for PCBs in groundwater was based on groundwater RGs, however, if there is a groundwater to surface water pathway, surface water quality must also be protected in addition to sediment. The data so far shows transport of PCBs may be impacting sediment quality above benthic SCO only in certain locations but sediment quality to protect human health is also affected because these sediment results are above Puget sound natural background. In addition, exceedance of surface water quality standards for human health protection (an ARAR of ROD) is more widespread than previously understood. Add surface water PCB data to the analysis and discuss in the CSM for PCBs.	The requested analysis of surface water PCB data will be included in the CSM update being prepared based on the 2019 data and will be included in the risk assessment.	Yes
	26	Page 4-33 Section 4.2.1 Lines 469 to 488 and associated table	Create a figure of the wells listed in the table coded to reflect the different categories in the table.	The requested figure will be added. <u>Please see the table at the end</u> of these responses for a cross walk between figure numbers and titles in the Draft and Draft Final versions of the FYR.	Yes
I	27	Page 4-35 Section 4.2.1 Lines 487 to 489	I think there may be some words missing from this sentence.	This sentence will be revised to read, "Sampling schedules for the six wells where groundwater levels were only minimally influenced by tides need not be constrained by tidal conditions."	Yes
	28	Page 4-35 Section 4.2.1 Lines 495 to 498	Was this also the case for immediately influenced wells such as MW1-38 and MW1-39?	Based on the currently available data, yes. However, this recommendation may change after additional specific conductance data are evaluated. The Navy proposes no change to the FYR based on this comment.	Yes

Ecol	ogy Review	Comments			
Date of Review:	0/11/2020			Page 19 of	
Project '	Title: Draft Fifth Fi	ive Year Review, NBK Keyport	Reviewer:	Mahbub Alam, John Evered, Bonnie Brooks	
			Code:	Washington State Department of Ecology	
Project	Number:		Phone:		
ITEM NO.	Pg #, Section, Line	СОМ	MENTS	REVIEW ACTION (Provide explanation & location of changes as necessary)	Agency Concurrence (Yes/No)
29	Page 4-35 Section 4.2.2 Line 517-523	Remedial goal for vinyl chloride i RG in OU 2 Area 2 was updated to method B update. What was the process to update th the RG for vinyl chloride updated PQL (current PQL is lower). Note water has also changed to 0.02 ug/	o 0.029 µg/L based on MTCA e RG in OU 2 Area 2? Why wasn't for OU 1, which is still based on RG for vinyl chloride in surface	 Because the RGs can only be changed through an ESD or ROD amendment, the FYRs typically carefully weigh the value of going through that process each time numeric standards in ARARs change, versus tracking the latest ARARs through the FYR and LTM process. FYRs typically recommend executing an ESD or ROD amendment only if a CERCLA milestone is imminent (e.g., deciding to cease monitoring for a COC or remove a LUC). In the case of vinyl chloride, the third FYR recommended using a SIM analysis for this analyte at OU 2 Area 2 because the detected concentrations were dropping below the RG but remained above the current ARAR value. This was to ensure that any decisions (such as cessation of monitoring) were based on data that could be compared to the most recent numeric standard, regardless of the RG. At OU 1, the third FYR made the following observation, "For vinyl chloride, because the majority of the groundwater data still significantly exceeds even the ROD value (Table 6-1), concerns about achieving lower PQLs are premature." Based on this observation, the third FYR did not recommend running SIM analysis to achieve a lower reporting limit for OU 1 samples. The RGs for OU 1 will be reviewed and updated as appropriate following the completion of the risk assessment update and any subsequent ROD amendment. A recommendation will be added to compare vinyl chloride results to current ARARs, including analyzing surface water samples for vinyl chloride using a-SIM analysis to achieve a lower reporting limit. 	Yes
30	Page 4-41 Section 4.2.3 Page 5-14 Section 5.4.1	The following are data gaps for O establish a RG for TCE degradatic it was not measured in the LTM. Is past and the Navy had agreed to d okay for LTM but it does not estal documents, such as ROD. Add a r	on product vinyl chloride (VC) and Ecology has pointed this out in the o sampling for VC. Although this is olish a RG for the decision	In Table 6-2, on page 6-4, the first finding for OU 2, Area 8 will be revised to read, "During this FYR period, several COCs (including 1,1-DCE, 1,1,1-TCA, arsenic, lead, mercury, thallium, and zinc) in groundwater, seep water, and surface water samples were consistently, or more frequently than not, detected below their RGs. In addition, no RG was established in the ROD for	<u>Yes</u>

		view Comments				1
Date of Review:	0/11/2020	1/2020			Page 20 of	
Project	Title: Draft Fifth Fi	Fifth Five Year Review, NI	BK Keyport	Reviewer:	Mahbub Alam, John Evered, Bonnie Brooks Washington State Department of Ecology REVIEW ACTION (Provide explanation & location of changes as necessary) a RG, as undwater control vinyl chloride, which is a breakdown product of the chlorinated solvent COCs present at the site." This change will ensure that vinyl chloride is one of the chemicals that should be considered for addition to the list of COCs as part of the supplemental RI. With regard to surface water, a recommendation will be addedincluded to add vinyl chloride to the LTM analyte list and compare results to current ARARs to evaluate the magnitude and extent of this contaminant at the site. e RG. These additions will be made to the table. of bioassay ws for the tpass bioassay. peated assertion bility. The sentence on Page 4-57, lines 1 to 2 will be revised to read, "Ecology's SMS regulation (i.e., an ARAR under the OU 2 ROD) allows the use of bioassay analysis in cases where chemical concentrations in sediment samples acceed the published numeric standards. Samples that pass the bioassay analysis are considered to not pose an unacceptable risk to benthic organisms." A similar change will be made to the equivalent text on page 2-11. this Question roundwater. Even roundwater. Even roundwater. Gen the below EPA ing water The Navy's position is that the presence or absence of a new; mergulated-contaminant, such as PFAS, does not impact the protectiveness of the rementination of acceptable or unacceptable tition this Muestion roundwater. Even roundwater. Even roundwater. Even roundwater. Even roundwater. Even roundwater. Even roundwater. Even roundwater. Even roundwater. Even roundwater.	
				Code:	Washington State Department of Ecology	
Project	Number:			Phone:		
ITEM NO.	Pg #, Section, Line		COMM	IENTS		Agency Concurrence (Yes/No)
			he Navy amends	m and establish a RG, as he ROD for groundwater control n.	solvent COCs present at the site." This change will ensure that vinyl chloride is one of the chemicals that should be considered	
					addedincluded to add vinyl chloride to the LTM analyte list and compare results to current ARARs to evaluate the magnitude and	
31	Page 4-42 Section 4.2.3 Table 4-3	4.2.3 Add the RGs to th 4-3	is table along wit	h the basis of the RG.	These additions will be made to the table.	Yes
32	Page 4-45 Section 4.2.3 Table 4-4	4.2.3 Add the RGs to th	is table along wit	h the basis of the RG.	These additions will be made to the table.	Yes
33	Page 2-11, Line 428-431; Page 4-57 Section 4.2.3 Lines 1 to 2	-431; -57 4.2.3 bioassays were red bioassays were red	RGs to this table along with the basis of the RG. RGs to this table along with the basis of the RG. S does not explicitly require the collection of bioassa if health numbers are exceeded, rather allows for the of samples that exceed benthic criteria, but pass bioa s were requested by Ecology due to the repeated ass S/SEM is not a good predictor of bioavailability. Question C. Ecology believes the answer to this Ques be "yes" due to detection of PFAS in site groundwat		"Ecology's SMS regulation (i.e., an ARAR under the OU 2 ROD) allows the use of bioassay analysis in cases where chemical concentrations in sediment samples exceed the published numeric standards. Samples that pass the bioassay analysis are considered to not pose an unacceptable risk to benthic organisms." A similar	Yes
34	Page 5-1 Section 5.0 Table 5-1 Page 5-3 Section 5.1 Line 87 to 89	5-1 should be "yes" of though the limite human health adv pathway, there is evaluation. The evaluation. The evaluation is evaluated by the second sec	due to detection of ed data show PFC visory levels (LH s significant uncer evaluation lacks t ature and extent of ffect on ecologic offect on and seafor presence of other l sumulative risks f	f PFAS in site groundwater. Even S and PFOA were below EPA A) for the drinking water tainty associated with this he following information: of the contamination	unregulated contaminant, such as PFAS, does not impact the protectiveness of the remedy selected in the ROD for established COCs. The CERCLA process now underway will include PFAS and will support the risk assessment addendum planned for 2022, which will result in a determination of acceptable or unacceptable risks for the site. The Navy will then take any appropriate remedial actions per a future negotiated ROD. Additional discussiontext will be added to the PFAS discussion in Section 5.4.2.4, which supports the response to Question B, regarding	Yes

	0/11/2020			Page 21 of	
Project	Title: Draft Fifth Fi	ve Year Review, NBK Keyport	Reviewer:	Mahbub Alam, John Evered, Bonnie Brooks	
			Code:	Washington State Department of Ecology	
Project	Number:		Phone:		
ITEM NO.	Pg #, Section, Line	СОМ	MENTS	REVIEW ACTION (Provide explanation & location of changes as necessary)	Agency Concurrent (Yes/No)
Project Nu ITEM NO.		Ecology believes the best answer	r should be "yes".	discussion will refer to the CERCLA process now underway, which will be addressing these open questions.	
				Please sSee also the response to tThe Suquamish Tribe's Comment #6.	
35	Page 5-1 Section 5.0 Table 5-1 Page 5-3 Section 5.2 Line 123 to 124	OU 2 Area 2 Question B. Ecology Question should be "no" since the changed since the issuance of ROI	cleanup level for vinyl chloride has	The answer to Question B will be changed to "no." In addition, the OU 2, Area 2 protectiveness will be changed to "Short-Term Protective." The Navy plans to complete a thorough review of current cleanup levels and to proposed updated cleanup levels for discussion and approval by the stakeholders in the process of updating the existing RODs. This process may be expedited by the production of an Explanation of Significant Differences (ESD), if consensus can be reached with the project team regarding the limits of the ESD. The Navy respectfully disagrees. Although ARAR values have changed, ROD RGs remain the same. ROD RGs can only be changed through the use of an ESD or ROD amendment. Therefore, as with the Fourth FYR, the answer to Question B is yes, because the ARARs, exposure assumptions, toxicity data, and RAOs are still valid and protective of human health and the environment. For vinyl chloride, the ROD RG was the MTCA Method B value of 0.023 $\mu g/L$. However, in the past, analytical methods could not achieve this value and the PQL of 1 $\mu g/L$ was used. The current MTCA Method B value has increased slightly to 0.029 $\mu g/L$. Using Ecology's methodology to assess the protectiveness, the risk of the vinyl chloride PQL of 1 is 3 x 10 5, which is just above the ROD RG was the MTCA Science and the PQL of 1.022 $\mu g/L$. However, in the past, analytical methods could not achieve this value and the PQL of 1 is 3 x 10 5, which is just above the ROD traget risk goals and within EPA's target risk range of 10.4 and 10.6, Laboratories can currently achieve a PQL of 0.02 $\mu g/L$ using EPA Method 8260C SIM analysis and can currently achieve the ROD RG value and will be recommended.	Yes
36	Page 5-1 Section 5.0 Table 5-1 Page 5-5	OU 2 Area 8 Question C. Ecolog Question should be "yes" due to in the site groundwater. 2018 dat	the detection of PFAS compounds	The Navy's position is that that the presence or absence of a new _{-5} unregulated contaminant, such as PFAS, does not impact the protectiveness of the remedy selected in the ROD for established	Yes?

Ecol	ogy Review (Comments			
Date of Review:	9/11/2020			Page 22 Of	
Project	Title: Draft Fifth Fi	ve Year Review, NBK Keyport	Reviewer:	Mahbub Alam, John Evered, Bonnie Brooks	
-			Code:	Washington State Department of Ecology	
Project	Number:		Phone:		
ITEM NO.	Pg #, Section, Line	СОМ	MENTS	REVIEW ACTION (Provide explanation & location of changes as necessary)	Agency Concurrence (Yes/No)
	Section 5.3 Line 214 to 216	above EPA LHA, but 2019 data s However, the drinking water path PFAS; there are many unknowns previous comment # 34 and copie There is significant uncertainty a evaluation. The evaluation lacks information:	way is not the only concern for in this regard as explained in ed in below. ssociated with this the following contamination ptors onsumption pathway compounds ombined exposure to all ther COCs	COCs. The CERCLA process now underway will include PFAS and will support the risk assessment addendum planned for 2022, which will result in a determination of acceptable or unacceptable risks for the site. The Navy will then take any appropriate remedial actions per a future negotiated ROD.	
37	Page 5-6 Section 5.4.1	Since the cleanup levels in CLAH FYR, they should be added as a b compendium of technical inform cleanup levels under Washington	oullet point. Note CLARC is a ation related to calculating	The changes to the CLARC cleanup levels will be added as a bullet point.	Yes
38	Page 5-6 Section 5.4.1 Lines 257 - 260	Include the SMS as well as MTC background and PQL.	A that allows for the use of	We will also reference the SMS in this paragraph.	Yes

Ecol	ogy Review	Comments			
Date of Review	9/11/2020			Page 23 of	
Project	Title: Draft Fifth Fi	ve Year Review, NBK Keyport	Reviewer:	Mahbub Alam, John Evered, Bonnie Brooks	
			Code:	Washington State Department of Ecology	
Project	Number:		Phone:		
ITEM NO.	COMMENTS		MENTS	REVIEW ACTION (Provide explanation & location of changes as necessary)	Agency Concurrence (Yes/No)

39	Page 5-7 Section 5.4.1 Line 286 to 293	First, whenever there is a mention of CERCLA acceptable risk range (10 ⁻⁴ to 10 ⁻⁶), there must be a mention of the ARAR of MTCA risk range (10 ⁻⁵ to 10 ⁻⁶) and whether that is met. Again, there are limitations of using CERCLA 10 ⁻⁴ risk (e.g., it may not consider subsistence users) and MTCA 10 ⁻⁵ risk. Second, there should be a recommendation in this FYR to address the proper RG for vinyl chloride. It needs to account for new levels, the surface water pathway, and PQL. It appears the PQL cannot be used as a basis for a RG anymore.	The MTCA risk range will be added throughout the document. <u>A recommendation will be added to compare any vinyl chloride</u> <u>concentrations obtained to the updated ARAR for vinyl chloride</u> <u>and use an appropriate method to achieve that ARAR</u> . The RG for vinyl chloride will be included <u>as part of the Navy's</u> <u>plans to complete a thorough review of current cleanup levels and</u> to proposed updated cleanup levels for discussion and approval by the stakeholders in the process of updating the existing RODs. This process may be expedited by the production of an Explanation of Significant Differences (ESD), if consensus can be reached with the project team regarding the limits of the ESD,the expected ESDs and/or the upcoming ROD amendments planned for both OU 1 and OU 2 as a result of the additional ongoing investigations wills. However, in the interim, the Navy will compare any vinyl chloride concentrations obtained to the updated ARAR for vinyl chloride and use an appropriate analytical method to achieve that ARAR concentration.	<u>Yes</u>
40	Page 5-8 Table 5-2	 Ecology does not agree with the PQL for PCBs as listed in the Table 5-2. First, this PQL was based on PCB analyzed as Aroclor and Labs can currently achieve lower PQL as shown in column 6. Second, much lower PQL can be obtained if PCBs are analyzed with method 1668. Since the surface water criteria (ARAR) as shown in column 11 and 12 are very low, there is a need to use method 1668 to verify compliance. It may be possible that the compliance for total PCBs would default to PQL but that PQL would be orders of magnitude lower than what was shown in column 13. Also, note the discrepancy of column 6 and 13 about PCB PQL. Therefore, the comment "No" in column 14 is not valid anymore. Revise the PQL for PCBs or make a recommendation in the FYR to develop a PQL for total PCBs based on method 1668 analysis. 	The PQL in Table 5-2 will be revised to reflect a PQL for total PCB congeners and the comment "No" will be changed to "Yes."	<u>Yes</u>

Fcol	ogy Review	Comments			
Date of Review:	0/11/2020	Comments		Page 24 Of	
-		ve Year Review, NBK Keyport	Reviewer:	Mahbub Alam, John Evered, Bonnie Brooks	
- J			Code:	Washington State Department of Ecology	
Project 1	Number:		Phone:		
ITEM NO.	Pg #, Section, Line	COMN	MENTS	REVIEW ACTION (Provide explanation & location of changes as necessary)	Agency Concurrence (Yes/No)
		Ecology is willing to provide guid PCB congeners.	lance to calculate a PQL for total		
41	Page 5-9, Section 5.4.1 Line 6 to 14	Regardless of the outcome of Fed criteria (either 0.86 or 0.7 ug/L) w method B value of 13 ug/L. Note MTCA method B number for TCI new toxicity data; the 13 ug/L wa	would be lower than MTCA that the current August 2020 E has changed to 4.9 ug/L based on	Understood. As noted on Line 30, TCE in surface water continues to exceed even the higher RG value, so the revised lower ARAR value does not affect current decision making at the site.	<u>Yes.</u>
42		analysis of PCBs as congeners by representative of total PCBs than identification of a particular Aroc changed due to environmental deg	nment # 40, Ecology believes the method 1668 is more accurate and Aroclor analysis which is based on lor signature which may have gradation. Therefore, if there are is, method 1668 congener analysis	The Navy stands by the assertion in the text that using a method to achieve a lower PQL is premature at this time because PCB concentrations remain above the RG. Once concentrations reduce below the PQL, or an ESD or ROD amendment is prepared, the RG can be changed to a total congeners RG and the analytical method revised to meet the new RG. A recommendation will be added to compare future surface water data to the current ARAR, given that the concentration can now be achieved by the laboratories using congener analysis.	<u>Yes</u>
43		Ecology does not agree with the s as presented in the section. See ge language per EPA guidance mem determination.		The Navy respectfully declines to change the protectiveness determination and stands by the protectiveness statement, as articulate in the response to General Comment 3.	No
44		As explained in comment # 40, E non- detect in Aroclor data, that in signature is absent. There may sti do not form a specific signature o degradation. Therefore, PCB cong necessary to verify compliance.	ndicates a specific Aroclor Il be PCB congeners present that f Aroclor due to environmental	For tissue, the Aroclor analysis provides reporting limits that are below the RG ₂ and therefore congener analysis is not required to achieve a lower reporting limit. The Navy is currently performing congener analysis in tissue and concentrations are being compared to the revised ARAR. The revised ARAR for PCBs will be included in the Navy's plans to complete a thorough review of current cleanup levels and to proposed updated cleanup levels for discussion and approval by the stakeholders in the process of updating the existing RODs. This process may be expedited by the production of an Explanation of Significant Differences (ESD), if consensus can be reached with the project team regarding the limits of the ESD.	Yes

Feel	ogy Review	Commonts			
Date of Review	9/11/2020	Comments		Page 25 of	
-		ve Year Review, NBK Keyport	Reviewer:	Mahbub Alam, John Evered, Bonnie Brooks	
5		, .	Code:	Washington State Department of Ecology	
Project	Number:		Phone:		
ITEM NO.	Pg #, Section, Line	СОМ	MENTS	REVIEW ACTION (Provide explanation & location of changes as necessary)	Agency Concurrence (Yes/No)
45	Page 5-11 Section 5.4.1 Line 134 to 135	It is correct that the revised RG ca data as data was obtained through believes compliance can be meas which has quantitation level at pa RG is in ppb level.	sured with EPA method 1668,	Understood.	<u>N/A</u>
46	Page 5-12 Section 5.4.1 Line 156 to 161		tue to analytical method or the and vinyl chloride was quite high at he surface water pathway was not a n warrants checking the surface stigation in the proposed data gap	The risk assessment for OU 2, Area 2 considered a future use scenario of human recreational exposure to surface water in the lagoon and found risks to be acceptable (Table 7-3 of the OU 2 ROD). No unacceptable ecological risks were found for exposures in the creek at the site or the lagoon downstream. If the data gaps investigation shows a complete pathway from groundwater to surface water, then surface water will also be investigated.	Yes
47	Page 5-12 Section 5.4.1 Line 175 to 181		ard regarding hexavalent chromium ness? What did the Navy do about	No action was or is required because the selected remedy, LUCs, prevents residential exposure regardless of the lower ARAR value. Action would be needed in the future if the land was to be converted to residential land use, and a process is in place through LUC management to trigger such action. This explanation will be included in the FYR text for clarity.	Yes
48	Page 5-15 Section 5.4.1 Lines 53-55	See comment 33 above. Bioassay bioavailability of contaminants in		The text will be revised in a manner similar to that described in the response to Comment 33.	Yes
49	Page 6-3 Section 6.1 Table 6-2	Mention in the first recommendat exceeds MTCA allowable risk.	tion that the risk level $2x10^{-5}$	We will add this notation to the Finding.	Yes
50	Page 6-3 Section 6.1 Table 6-2	Update the second recommendati specific comments on the trend as specific comment # 6 and #7).	ion based on Ecology's general and nalysis (General comment #7,	This recommendation will be revised to read, "In accordance with Ecology's comments on the recent LTM reports, present a statistical evaluation of contaminant concentration trends over time in each LTM report."	Yes
51	Page 6-3 Section 6.1 Table 6-2	Correct typo "Utilized".		Thank you, we will make this correction.	Yes

Ecol	ogy Review	Commen	ts			<u>.</u>
Date of Review	9/11/2020				Page 26 of	
Project	Title: Draft Fifth Fi	ve Year Revie	w, NBK Keyport	Reviewer:	Mahbub Alam, John Evered, Bonnie Brooks	
				Code:	Washington State Department of Ecology	
Project	roject Number:			Phone:		
ITEM NO.	Pg #, Section, Line		СОММ	1ENTS	REVIEW ACTION (Provide explanation & location of changes as necessary)	Agency Concurrence (Yes/No)
52	Page 6-4 Section 6.1 Table 6-2		and third recommendation is outdated with redline	ation in this page appear to be e strikeout.	Thank you, we will delete the redundant recommendation with the strikeout text.	Yes
53	Page 6-4 Section 6.1 Table 6-2	Update the on the draft		n based on Ecology's comments	This recommendation will be revised to read, "Prepare a building inspection and monitoring plan based on the recommendations of the VI study report to ensure that the VI pathway remains incomplete. Include annual foundation inspections for Buildings 82, 85, and 98 and paired indoor air and subslab vapor monitoring every five years for Buildings 82 and 98. Add paired indoor air and subslab vapor monitoring every five years for Building 85 if warranted based on future changes in building use or occupancy."	Yes

Fo	مام	gy Review (Commonts			
Date		9/11/2020			Page 27 of	
Proj	ect Titl	le: Draft Fifth Fiv	ve Year Review, NBK Keyport	Reviewer:	Mahbub Alam, John Evered, Bonnie Brooks	(Yes/No)
				Code:	Washington State Department of Ecology	
Proj	Project Number:		Phone:			
ITE NC		Pg #, Section, Line	COMM	IENTS	REVIEW ACTION (Provide explanation & location of changes as necessary)	Concurrence
54	Ļ	Appendix C Table C-1	It does not appear that data for mo in Table C-1.	mitoring well MW1-14 is included	During this FYR period MW1-14 was sampled in 2018 and 2019, with samples analyzed for PCBs (2018) and 1,4-dioxane (2019). Both the PCB and 1,4-dioxane results are provided in Appendix C (Tables C-2, C-3 and C-4).	Yes
55	5	Appendix C Table C-4	Add footnotes to define lab identit	fiers.	We will add the lab qualifier definitions as requested.	Yes

References

EPA (2012). Clarifying the Use of Protectiveness Determinations for Comprehensive Environmental Response, Compensation, and Liability Act Five-Year Reviews. Memorandum from Director, Office of Superfund Remediation and Technology Innovation. Washington D.C. OSWER 9200.2-111.

i	Suga	uomich Tril	Do Dovid	ew Comments			
	Date of Review:	9/14/2020	Je Kevi			Page 28 Of	
2			ve Year Rev	view, NBK Keyport	Reviewer: Der	nice Taylor	
					Code: The	e Suquamish Tribe	
;	Project 1	Number:			Phone:		
_	ITEM NO.	Pg #, Section, Line		COMMENTS		REVIEW ACTION (Provide explanation & location of changes as necessary)	Agency Concurrence (Yes/No)
1	Protect	iveness Determinat	ions				
	1	OU 1	 "short-terr The rebeen a Re-chaextent Exposicontain not be Risks a character The Tribe deferred" i underway. risks association of the statement of	amish Tribe does not agree with a n protective" for OU 1 for the foll medy is not performing as expect achieved, and RGs are continually aracterization efforts have reveale to of contamination than addressed ure pathways associated with the of minated groundwater to aquatic en- teen fully characterized or controlle associated with 1,4-dioxane and P cterized or controlled. believes a determination of "proto is appropriate given that additiona However, if the Navy does not ac- ciated with PFAS, a determination " is recommended.	lowing reasons: ed, RAOs have not exceeded. d a greater in the ROD. discharge of nvironments have ed. FAS have not been ectiveness il investigation is ddress potential	The Navy concurs that the additional site characterization data collected during this FYR period reveal a greater vertical extent of contamination that known at the time of the ROD, and higher concentrations of VOCs discharging to surface water at the south plantation. Surface water RGs continue to be exceeded, as they were at the time of the ROD when risks regarding this situation were determined to be acceptable and no new pathways or receptors have yet been identified. Understanding that the conceptual site model has changed since the time of the ROD, the Navy has initiated revision of the risk assessment, in collaboration with the Project Team, to determine whether these new data indicate a change in the risk determinations made in the ROD. Unless and until an unacceptable risk is demonstrated, the remedy established in the ROD is considered to be protective, which is why the Navy has selected "short-term protective." Selecting "protectiveness deferred" would only have the effect of putting an unattainable 1-year deadline on the on-going investigation and risk assessment work and delaying project work while a FYR addendum is developed and produced. Selecting "protectiveness deferred" also gives the impression to the public that this FYR has identified previously unknown conditions impacting protectiveness, if present, investigations are being conducted under a comprehensive and collaborative process with the Project Team, and the path forward is clearly established. The presence or absence of a new_ <u>unregulated</u> contaminant, such as PFAS, and emerging contaminants, such as 1,4-dioxane, do not impact the protectiveness of the remedy selected in the ROD for established COCs. The CERCLA process now underway will include both PFAS and 1,4-dioxane, will result in a determination of acceptable or unacceptable risks for the site, and the Navy will take any appropriate remedial actions per a future ROD.	No

Suco	uomich Tril	be Review Comments											
Date of Review:	9/14/2020	Je Review Comments			Page 29 Of		_						
Project 7	Title: Draft Fifth Fi	ve Year Review, NBK Keyport	Reviewer:	Denice	Taylor		-						
			Code:	The Suc	quamish Tribe		_						
Project N	Number:	1	Phone:			_	-						
ITEM NO.	Pg #, Section, Line	COMMENTS			REVIEW ACTION (Provide explanation & location of changes as necessary)	Agency Concurrence (Yes/No)							
					Additional investigations are also planned to determine if new pathways/receptors exist at the site; however, no new pathways/receptors have yet been identified. Therefore at this time there remains no known on-going exposure, so no identified unacceptable risks are known to be currently present at the site.								
					Therefore, the Navy respectfully declines to change the protectiveness determination and stands by the determination of "short term protective" for OU 1.								
					<u>On page 4-3 of the FYR, we will insert a statement that "aAfter</u> reviewing the FYR, the Tribe provided input on the document.								
					The Tribe does not agree with the Navy's Short-Term Protective								
					<u>determination for OU 1 and feels that a protectiveness</u> determination for OU 1 cannot be made at this time (believing a								
					protectiveness statement of "protectiveness deferred" would be is								
					more appropriate. However, the Tribe does concur with the "Short-Term Protective" and "Not Protective" determinations for								
					OU 2 Areas 2 and 8, respectively. Detailed comments made by								
					the Tribe are included in Appendix K."								e add statements to t
2	OU 2 Area 2	Although there may be data gaps conce VOC plume, and the RG for vinyl ch formally changed, the Suquamish T determination that the remedy is protective	loride may need t ribe agrees with	to be the	Understood, thank you.	<u>N/A</u>		lo not cor	ıcu	ncur with	ncur with the	ncur with the Nav	ting that EPA, Ecolog neur with the Navy's n for OU 1.
		If additional investigation regarding the V existing CSM such that additional exposu identified, the next 5YR determination mat	re pathways are	ne									
3	OU 2 Area 8	The Suquamish Tribe does not agree with be protective" for the following reasons: • Ongoing ecological impacts have bee	C		Because the risk assessment shows unacceptable risk at OU 2 Area 8, triggering groundwater controls under the ROD, and the contingent groundwater control remedy has not been selected and	Yes							
5	00 2 mea 0	 exposure pathways are not currently Based on the results of the most recent assessment, additional groundwater results of the most recent assessment. 	t ecological risk		is not in progress, the remedy at the site is currently not protective. The ROD includes five remedial options for the contingent remedy, but none are feasible at this site, so the Navy	105							

Date of Review:	0/1///2020			Page 30 of	
Project '	Title: Draft Fifth F	ive Year Review, NBK Keyport	Reviewer:	Denice Taylor	
			Code:	The Suquamish Tribe	
Project 1	Number:		Phone:		
ITEM NO.	Pg #, Section, Line	COMMENTS		REVIEW ACTION (Provide explanation & location of changes as necessary)	Agency Concurrenc (Yes/No)
		 needed. Potential human health and ecological risk 1,4-dioxane and pfas have not been fully are not controlled. The Tribe believes that a finding of "not prote until risks associated with PFAS are addressed groundwater remediation is underway. 	characterized a ctive" is approj l and additiona	Ine protectiveness statement for OU2, Area 8 will be changed to "Not Protective", As documented in Table 2-1 of the FYR, the risk assessment completed during this FYR period is a component of the selected remedy under the OU 2 ROD, as is implementation of contingent remedial actions based on the conclusions of the risk assessment. The supplemental RI now being undertaken by the Navy to select the contingent remedy is therefore part of the ongoing effort to fully implement the original remedy in the OU2 ROD. When a remedy is in progress and the final remedy is expected to address the RAOs, the FYR concludes that the remedy "will be protective" when the remedy is fully implemented. The Navy's position is that presence or absence of a new, unregulated contaminant, such as PFAS, and emerging contaminants, such as 1,4 dioxane, do not impact the protectiveness of the remedy selected in the ROD for established COCs. The CERCLA process now underway will include both PFAS and 1,4 dioxane, will result in a determination of acceptable or unacceptable risks for the site, and the Navy will take any appropriate remedial actions per a future ROD. Therefore at this time there is no known on going exposure, so no identified unacceptable risks are known to be currently present at the site. The Navy respectfully declines to change the protectiveness determination and stands by the determination of "will be protective" for OU 2 Area 8.	
4	Sitewide	The Suquamish Tribe believes the sitewide de protective" should be changed to "protectiveness deferred" or "not p better reflect the recommended changes to the Area 8 determinations.	protective" to	The Navy respectfully declines to change the sitewide protectiveness determination will be changed to "Not	Yes
5	Sitewide	In cases of "protectiveness deferred", new or a information is typically submitted via an addet		The Navy does not believe that an addendum to this FYR would add value to the investigations and risk assessments underway.	Yes?

Commented [DT2]: Yes and please note that based on project team discussions, findings of protectiveness deferred are not being considered, negating the need for any addendum to this 5YR.

Susq	Susquamish Tribe Review Comments								
Date of Review:	:	9/14/2020					Page 31 of		
Project	Title: Di	raft Fifth F	Five Year Revie	ew, NBK Keyport	Reviewer:	Denice	Taylor		
					Code:	The Su	quamish Tribe		
Project 1	Number	:			Phone:				
ITEM NO.	0	^t , Section, Line		COMMENTS			REVIEW ACTION (Provide explanation & location of changes as necessary)	Agency Concurrence (Yes/No)	
				he need for one or more addenda sh ject team once the protectiveness det			The Navy is progressing down a path of remedy revisions at OU 1 and OU 2 Area 8 in collaboration with the project team at the best possible speed given the limitations of funding, the complexity of the sites, and the nature of the collaborative process itself. If an addendum to the FYR is required, it will delay progress of the work, simply to produce an addendum within the one-year time limit stating that information is being gathered, a risk assessment is underway, and protectiveness would remain deferred.		

Susquamish Tribe Review Comments							
Date of Review		9/14/2020				Page 32 of	
Project	Project Title: Draft Fifth Five Year Review, NBK Keyport			Reviewer:	Denice	Taylor	
				Code:	The Su	quamish Tribe	
Project	Number:			Phone:			
ITEM NO.	COMMENTS				REVIEW ACTION (Provide explanation & location of changes as necessary)	Agency Concurrence (Yes/No)	

Techni	ical Assessments			
6	OU 1	The answer to question C should be "yes". Recent data demonstrate that the CSM at the time of the ROD was inaccurate and/or incomplete regarding the nature and extent of contamination, potential ecological and human health exposures and risks, and estimated recovery timeframe. In addition, since the last 5YR, PFAS contamination has been identified as a concern although potential exposure and risks have not been evaluated.	Question C is meant to capture "other information" not otherwise discussed in the FYR that could affect protectiveness. The additional site characterization data and the impacts of those data on protectiveness are already captured by the discussion for Questions A and B and therefore are not required to be captured in Question C. PFAS is already discussed under Question C, and for the reasons stated does not impact protectiveness. See also the response to Ecology's Specific Comment 34 regarding the answer to Question C.	Yes
			With regard to PFAS and its impact on protectiveness, see the discussion under Question B in the FYR and the response to Ecology's Specific Comment 34.	
7	Area 2 OU 2	The answer to question B should be "no". The RG for vinyl chloride has changed.	The answer to Question B will be changed to "no." In addition, the OU 2, Area 2 protectiveness will be changed to "Short-Term Protective." The Navy plans to complete a thorough review of current cleanup levels and to proposed updated cleanup levels for discussion and approval by the stakeholders in the process of updating the existing RODs. This process may be expedited by the production of an Explanation of Significant Differences (ESD), if consensus can be reached with the project team regarding the limits of the ESD.	Yes
8	Area <u>2-8</u> OU <u>82</u>	The answer to question C should be "yes". Since the last 5YR, impacts to benthic organisms have been documented, identifying the need for additional remediation to control exposure. In addition, potential ecological and human health exposures and risks have not been evaluated.	Question C is meant to capture "other information" not otherwise discussed in the FYR that could affect protectiveness. The risk assessment results and the impacts of those results on protectiveness are already captured in the discussion for Questions A and B and therefore are not required to also be capture in Question C. PFAS is already discussed in Question C, and for the reasons stated does not impact protectiveness.	Yes?
ssues/	Recommendations		reasons stated does not impact protectiveness.	

Commented [DT3]: Yes

Review:	9/14/2020			Page 33 Of		
Project T	Title: Draft Fifth Fi	ve Year Review, NBK Keyport	Reviewer:	Denice Taylor		-
	1		Code:	The Suquamish Tribe		-
Project N	Number:		Phone:			
ITEM NO.	Pg #, Section, Line	COMMENTS		REVIEW ACTION (Provide explanation & location of changes as necessary)	Agency Concurrence (Yes/No)	_
9	General	The addition of CoCs and changes in RGs sh documented in the administrative record for through an ESD or RODA. Add recommenda applicable.	each OU, typical	Changes in the COC list and RGs will be captured in future ESDs and/or ROD amendments for OU 1 or OU 2 Area 8, if and when the remedies are revised. In most cases the administrative burden to execute ESDs and ROD amendments is not warranted for each ARAR change that could affect an RG, or each adjustment to the list of chemicals monitored during LTM. One use of the FYRs is to track ARAR changes and ensure that the LTM and any decision making is appropriately considering the latest ARARs and list of chemicals for monitoring, keeping in mind the legally binding COC list and RGs from the RODs. Any final decisions (such as considering the site UU/UE) would first require an ESD or ROD amendment to fully update the COC list and RGs, however ongoing ESDs and ROD amendments to capture these changes are not currently warranted. Recommendations will be added to the FYR to compare concentrations to current ARARs. The Navy plans to complete a thorough review of current cleanup levels and to proposed updated cleanup levels for discussion and approval by the stakeholders in the process of updating the existing RODs. This process may be expedited by the production of an Explanation of Significant Differences (ESD), if consensus can be reached with the project team regarding the limits of the ESD.	Yes	
10	General	According to the 2012 EPA guidance on prod determinations, a finding of "protectiveness involves an addendum to the 5YR once ongo complete. Add recommendations as appropri protectiveness determinations.	leferred" typical	The Navy does not believe that an addendum to this FYR would add value to the investigations and risk assessments underway. The Navy is progressing down a path of remedy revisions at OU 1 and OU 2 Area 8 in collaboration with the project team at the best possible speed given the limitations of funding, the complexity of	Yes?	Commented [DT4]: Yes and note that dete protectiveness deferred were not applied, whi need for any addendum to this 5YR.

Date of Review:	9/14/2020				Page 34 Of	
Project 7	Fitle: Draft Fifth Fi	ve Year Review, NBK Keyport	Reviewer:	Denice	Taylor	
			Code:	The Su	quamish Tribe	
Project 1	Number:		Phone:			
ITEM NO.	Pg #, Section, Line	COMMENTS			REVIEW ACTION (Provide explanation & location of changes as necessary)	Agency Concurrenc (Yes/No)
					The only finding of the FYR regarding LUCs pertains to a LUC- only site, which is not strictly subject to the FYR process. No issues regarding the existing CERCLA-site LUCs or LUC management plan (except the naming convention of IC plan versus LUC plan) were identified by the FYR.	
					Based on the follow-up comment from the Suquamish Tribe, the following changes to the FYR will be made: Page 5-2, line 69, "closed by the Washington State Department of Health to harvesting and consuming shellfish by recreational or	
				able 6-1	subsistence fishers; therefore, the remedy is protective in the short term. Note that the Suquamish tribe has treaty reserved rights to harvest and maintains the authority to determine harvest practices for tribal members."	
11	General Add a recommendation to update the IC/LUC plan and in Because the Navy cites ICs/LUCs as necessary measures exposures, this is an issue that affects protectiveness. In t status of fish and shellfish harvest advisories and identify agency. Note that the Suquamish Tribe has authority to d practices for tribal members. Include OU-specific update		easures to reduce s ess. In the update, identify the impler rity to determine h	hort-term clarify the nenting arvest	Page 5-9, line 30, "closed by the Washington State Department of Health to harvesting and consuming shellfish by recreational or subsistence fishers. Note that the Suquamish tribe has treaty reserved rights to harvest and maintains the authority to determine harvest practices for tribal members."	Yes
					Page 5-10, line 80, "not currently open by the Washington State Department of Health for harvesting and consuming shellfish by recreational or subsistence fishers; therefore, the remedy is protective in the short term. Note that the Suquanish tribe has treaty reserved rights to harvest and maintains the authority to determine harvest practices for tribal members."	
					Page 5-11, line 121, "In the interim, the tide flats are currently not open by the Washington State Department of Health for harvesting and consuming shellfish by recreational or subsistence fishers; therefore, the remedy is protective in the short term. Note that the Suquamish tribe has treaty reserved rights to harvest and maintains the authority to determine harvest practices for tribal members."	

Commented [DT5]: I think this comment and response needs some additional clarification. In multiple places in Section 5, the Navy states that the current harvest restrictions for the tide flats and Port Orchard Bay ensure that the OU 1 and Area 8 remedies are protective in the short term. Please clarify whether the harvest restrictions are ROD requirements or ICs. I suspect they are not. If they are not, identify WA DOH as the agency that has jurisdiction. I would also like it to be noted that the Suquamish Tribe has treaty reserved rights to harvest and maintain the authority to determine harvest practices for tribal members. If the harvest restrictions are ROD requirements/ICs, that needs to be clarified in this 5YR and probably in the IC/LUC plans, as commented. And the same note about Suquamish Tribe

Susc	uamish Tril	e Review Comments			
Date of Review	9/1//2020			Page 35 Of	
		ve Year Review, NBK Keyport	Reviewer:	Denice Taylor	
	1			The Suquamish Tribe	
Project	Number:		Phone:		A
ITEM NO.	Pg #, Section, Line	COMMENTS		REVIEW ACTION (Provide explanation & location of changes as necessary)	Agency Concurrence (Yes/No)
				Page 5-14, line 21, "Nevertheless, current Washington State Department of Health restrictions prohibit the harvesting of shellfish from Port Orchard Bay; therefore, the remedy remains protective. Note that the Suquanish tribe has treaty reserved rights to harvest and maintains the authority to determine harvest practices for tribal members." Page 5-16, line 108, "currently Washington State Department of Health restrictions in place that prohibit the harvesting of shellfish from Port Orchard Bay; therefore, the remedy remains protective. Note that the Suquanish tribe has treaty reserved rights to harvest and maintains the authority to determine harvest practices for tribal members."	
12	OU 1, Table 6-1	The milestone date of December 2023 seems overly opt the entirety of the first remedy performance recommend Establish achievable milestones for specific efforts or de in consultation with the project team.		recommendation expects that the Project Team will have	Yes
13	OU 1, Table 6-1	In the first performance recommendation, poir part of point 4, assuming an FFS is going to be Recommend this be considered the same effor	e completed.	As discussed during the pilot program for Adaptive Site Management, the points of compliance and remedial action objectives are key elements for directing remedial action and an FFS. The Navy continues to believe that a focused discussion on these key elements is necessary prior to discussing potential remedy revision.	Yes
14	OU 1, Table 6-1	What types of early remedial actions are being with the project team to clarify this prior to re recommendations.		The Navy is gathering information on potential new and innovative technologies that might be applicable to the site, but has not made any determination as to what revisions to the remedy might be appropriate. Selection of early actions or other revisions to the remedy will be made in consultation with the Project Team after clarification of the points of compliance and RAOs.	Yes

Susq	uamish Trit	be Review	w Comments			
Date of Review	9/14/2020			Page 36 of		
Project	Title: Draft Fifth Fi	ive Year Revie	ew, NBK Keyport		e Taylor	
					uquamish Tribe	
Project	Number:	-		Phone:		
ITEM NO.	Pg #, Section, Line		COMMENTS		REVIEW ACTION (Provide explanation & location of changes as necessary)	Agency Concurrence (Yes/No)
15	OU 1, Table 6-2	The third recommendation in Table 6-2 regarding using the OU 2 Area 8 ERA to the extent possible in the OU 1 risk assessments should be deleted. While some assumptions may be appropriate to carry over, this will occur as part of the normal process. The OU 1 assessments need to be specific to OU 1; the Area 8 receiving environment is very different from OU 1.		isk assessments be appropriate to process. The OU 1	This finding is meant only to capture the successful process used at Area 8, not the site-specific information. However, this finding will be deleted as requested.	<u>Yes</u>
16	OU 2, Area 2, Table 6-2	Move the second recommendation to Table 6-1. The results of the investigation will either confirm or alter the CSM, which may affect the protectiveness determination in the next5YR.		A, which may affect	Although the Navy agrees that information from the planned data gaps investigation may change the protectiveness determination in the next FYR, there is currently no evidence that protectiveness is affected now or in the future. Moving this recommendation to Table 6-1 would require that the protectiveness of OU 2 Area 2 be changed to "short term protective," which doesn't seem appropriate as agreed in Suquamish Tribe Comment 2.Recommendation #2 on Table 6-2 will be moved to Table 6-1.	Yes

Susq	Susquamish Tribe Review Comments									
Date of Review:		9/14/2020					Page 37 of			
Project 7	Title: D	raft Fifth Fi	ve Year Revie	w, NBK Keyport	Reviewer:	Denice	e Taylor			
					Code:	The Su	iquamish Tribe			
Project 1	Number	:			Phone:					
ITEM NO.	0	^t , Section, Line				REVIEW ACTION (Provide explanation & location of changes as necessary)	Agency Concurrence (Yes/No)			
17		OU 2, Area 8, Table 6-1 In consultation with the project team, separate the r performance recommendation into specific efforts with achievable milestones.			bles	A timeline showing expected completion of specific elements of this recommendation is provided in Figure 7-1.	Yes			
18	OU 2, Area 8, Table 6-1 Correct typos in the second recommendation.				The Navy assumes that this comment is referring to Table 6-2, not table 6-1. The recommendation with the strikeout text is an early version of the recommendation above and will be deleted.	Yes				

End of Comments

Draft Figure	Draft Final Figure	
Number	Number	Changes from Draft to Draft Final
1-1	1-1	None
1-2	1-2	None
1-3	1-3	None
1-4	1-4	None
1-5	1-5	None
1-6	1-6	None
2-1	2-1	None
2-2	2-2	None
2-3	2-3	Tidal Lag study wells identified
4-1	4-1	Title Changed; deeper GW flow arrow added
4-2	4-2	PCB data added
-	4-3	New SW/seep data figure added
4-3	4-4	None; Figure number shifted
4-4	4-5	None; Figure number shifted
4-5	4-6	PFAS wells identified; 1,4-dioxane data added
4-6	4-7	None; Figure number shifted
4-7	4-8	None; Figure number shifted
4-8	4-9	PFAS wells identified; 1,4-dioxane data added
4-9	4-10	None; Figure number shifted
4-10	4-11	None; Figure number shifted
4-11	4-12	None; Figure number shifted
4-12	4-13	None; Figure number shifted
4-13	4-14	None; Figure number shifted
-	4-15	New Tidal Lag Ranges figure added
4-14	4-16	None; Figure number shifted
4-15	4-17	None; Figure number shifted
4-16	4-18	None; Figure number shifted
4-17	4-19	PFAS wells identified
4-18	4-20	None; Figure number shifted
4-19	4-21	None; Figure number shifted
4-20	4-22	None; Figure number shifted
4-21	4-23	None; Figure number shifted
7-1	7-1	None

From:	Alam, Mahbub (ECY)
To:	Denice Taylor; Cellucci, Carlotta CIV NAVFAC NW, EV31 (carlotta.cellucci@navy.mil)
Cc:	Harry Craig (Craig.Harry@epamail.epa.gov); Brooks, Bonnie (ECY); Evered, John (ECY); Meyer, Michael; JoAnn Grady (joanngrady@gmail.com)
Subject:	RE: Draft Final Keyport 5YR and revised RTCs
Date:	Friday, November 06, 2020 4:00:33 PM

Message received from outside the Battelle network. Carefully examine it before you open any links or attachments.

Hi, Carlotta:

Ecology has reviewed the revised responses. We have the following notes.

1. Ecology specific comments #1 to 7 and the corresponding responses are missing in the revised RTC document. To note there were 7 general comments and 55 specific comments (62 in total). Specific comment #6 needed revised response.

2. I also agree with Denice that a statement be added to the Executive Summary and Section 7 explaining that EPA, Ecology and the Suquamish Tribe did not concur with the Navy's protectiveness determination for OU 1.

Thanks,

Mahbub Alam, PhD, PE Environmental Engineer (360) 407-6913; mala461@ecy.wa.gov

-----Original Message-----

From: Denice Taylor <dtaylor@suquamish.nsn.us>

Sent: Thursday, November 05, 2020 7:27 PM

To: Cellucci, Carlotta CIV NAVFAC NW, EV31 (carlotta.cellucci@navy.mil) <carlotta.cellucci@navy.mil> Cc: Harry Craig (Craig.Harry@epamail.epa.gov) <Craig.Harry@epamail.epa.gov>; Alam, Mahbub (ECY) <MALA461@ECY.WA.GOV>; Brooks, Bonnie (ECY) <bobr461@ECY.WA.GOV>; Evered, John (ECY) <jeve461@ECY.WA.GOV>; Meyer, Michael (meyerm@battelle.org) <meyerm@battelle.org>; JoAnn Grady (joanngrady@gmail.com) <joanngrady@gmail.com> Subject: Draft Final Keyport 5YR and revised RTCs

THIS EMAIL ORIGINATED FROM OUTSIDE THE WASHINGTON STATE EMAIL SYSTEM - Take caution not to open attachments or links unless you know the sender AND were expecting the attachment or the link

Carlotta,

Attached is the revised RTC table with my comments. I think comment 11 still needs some clarification. I would also like to see a statement added to the Executive Summary and Section 7 explaining that EPA, Ecology and the Suquamish Tribe did not concur with the Navy's protectiveness determination for OU 1. The rest are minor comments or confirmation of agreement.

I also reviewed the revisions to the text. There are some editorial and word changes I would have made, but I don't think they are really necessary at this point.

Let me know how you want to address those couple of things or if you have any questions. Denice

From:	Alam, Mahbub (ECY)
То:	Cellucci, Carlotta CIV USN NAVFAC NW SVD WA (USA); Harry Craig (Craig.Harry@epamail.epa.gov)
	<u>(Craig.Harry@epamail.epa.gov);</u> "Denice Taylor (dtaylor@suquamish.nsn.us)"
Cc:	Rohrbaugh, Amanda L CIV USN NAVFAC NW SVD WA (USA); Meyer, Michael
Subject:	RE: Keyport FYR - Final back-check
Date:	Tuesday, November 10, 2020 10:05:43 AM

Message received from outside the Battelle network. Carefully examine it before you open any links or attachments.

Carlotta:

I have taken a quick look at the revised RTC. It looks fine to me. Thanks for including the info in the executive summary.

Mahbub Alam, PhD, PE Environmental Engineer (360) 407-6913; mala461@ecy.wa.gov

From: Cellucci, Carlotta CIV USN NAVFAC NW SVD WA (USA) <carlotta.cellucci@navy.mil>
Sent: Monday, November 09, 2020 9:00 PM
To: Harry Craig (Craig.Harry@epamail.epa.gov) (Craig.Harry@epamail.epa.gov)
<Craig.Harry@epamail.epa.gov>; Alam, Mahbub (ECY) <MALA461@ECY.WA.GOV>; 'Denice Taylor (dtaylor@suquamish.nsn.us)' <dtaylor@suquamish.nsn.us>
Cc: Rohrbaugh, Amanda L CIV USN NAVFAC NW SVD WA (USA) <amanda.rohrbaugh@navy.mil>; Meyer, Michael <meyerm@battelle.org>
Subject: Keyport FYR - Final back-check

Hi Team,

Please review the attached revised responses to comments (RTCs) and provide concurrence or comments ASAP. These revised RTCs reinstates the revised responses to Ecology's specific comments 1-7, which were inadvertently deleted during table formatting. The response to Suquamish Tribe comment 11 has been further revised based on the follow-on comment received, and text revisions shown in the revised comment responses will be incorporated into the five-year review report.

In response to the comment from Ecology and the Suquamish Tribe, the following statement will be added to the Executive Summary and Section 7 of the five-year review: "Ecology, EPA, and the Suquamish Tribe do not concur with the Navy's protectiveness determination for OU 1, and feel that a determination of 'protectiveness deferred' would be more appropriate."

To document final comments and responses, this email and the emailed comments received will be

included with the RTCs in an appendix of the document. Thanks,

C.

Carlotta Cellucci, LG Remedial Project Manager Naval Facilities Engineering Systems Command (NFESC) Northwest 206-595-6711 <u>Carlotta.cellucci@navy.mil</u>

From:	Denice Taylor
То:	<u>Cellucci, Carlotta CIV USN NAVFAC NW SVD WA (USA); Harry Craig (Craig.Harry@epamail.epa.gov)</u> (Craig.Harry@epamail.epa.gov); "MALA461@ECY.WA.GOV"
Cc:	Rohrbaugh, Amanda L CIV USN NAVFAC NW SVD WA (USA); Meyer, Michael
Subject:	RE: Keyport FYR - Final back-check
Date:	Tuesday, November 10, 2020 10:07:48 AM
Attachments:	Fifth 5YR Keyport RTCs revised DT final edits.doc

Message received from outside the Battelle network. Carefully examine it before you open any links or attachments.

Carlotta,

A couple edits on the revisions proposed in response to comment 11. No other changes. Denice

From: Cellucci, Carlotta CIV USN NAVFAC NW SVD WA (USA) <carlotta.cellucci@navy.mil> Sent: Monday, November 9, 2020 9:00 PM

To: Harry Craig (Craig.Harry@epamail.epa.gov) (Craig.Harry@epamail.epa.gov)

<Craig.Harry@epamail.epa.gov>; 'MALA461@ECY.WA.GOV' <MALA461@ECY.WA.GOV>; Denice Taylor <dtaylor@suquamish.nsn.us>

Cc: Rohrbaugh, Amanda L CIV USN NAVFAC NW SVD WA (USA) <amanda.rohrbaugh@navy.mil>; Meyer, Michael <meyerm@battelle.org>

Subject: Keyport FYR - Final back-check

Hi Team,

Please review the attached revised responses to comments (RTCs) and provide concurrence or comments ASAP. These revised RTCs reinstates the revised responses to Ecology's specific comments 1-7, which were inadvertently deleted during table formatting. The response to Suquamish Tribe comment 11 has been further revised based on the follow-on comment received, and text revisions shown in the revised comment responses will be incorporated into the five-year review report.

In response to the comment from Ecology and the Suquamish Tribe, the following statement will be added to the Executive Summary and Section 7 of the five-year review: "Ecology, EPA, and the Suquamish Tribe do not concur with the Navy's protectiveness determination for OU 1, and feel that a determination of 'protectiveness deferred' would be more appropriate."

To document final comments and responses, this email and the emailed comments received will be included with the RTCs in an appendix of the document. Thanks,

C.

Carlotta Cellucci, LG Remedial Project Manager Naval Facilities Engineering Systems Command (NFESC) Northwest 206-595-6711 Carlotta.cellucci@navy.mil