Table 1-1Soil Proposed Cleanup LevelsBoeing Auburn Supplemental Feasibility StudyAuburn, Washington

		Method A	Meth	od B			Meth	nod C			
Analyte	RI Soil SL (mg/kg)	Method A Industrial Properties	Method B Non-Cancer Direct Contact	Method B Cancer Direct Contact	Constituent Exceeds pCUL in Groundwater	Soil Protective of Groundwater Vadose at 13°C	Method C Non-Cancer Direct Contact	Method C Cancer Direct Contact	Background Soil Metals Concentration (a)	Soil pCUL (mg/kg)	
VOLATILES	-			_	-	-		_			_
Trichloroethene	0.00357	N/A	40	12	х	0.025	1,800	2,800	N/A	0.025/1,800	Soil prote cleanup
TOTAL PETROLEUM HYDROCARBONS AND A	SSOCIATED VO	DLATILES				•					
AOC A-01											
Benzene	0.00448	N/A	320	18			14,000	2,400	N/A	2,400	Method
Ethylbenzene	6.05	N/A	8,000		х	5.9	350,000		N/A	5.9/350,000	Soil prot cleanup
Toluene	0.00465	N/A	6,400				280,000		N/A	280,000	Method
Total Xylenes	14.6	NA	16,000		x	14	700,000		N/A	14/350,000	Soil prot cleanup
Diesel-Range Organics	2,000	2,000	(b)				(b)		N/A	2,000	Method
Oil-Range Organics	2,000	2,000	(b)				(b)		N/A	2,000	Method
Gasoline-Range Organics (c)	30/100	30/100	(b)		х	(b)	(b)		N/A	30/100	Method
AOC A-13	Į		ł		ł	ł	ł				4
Total Petroleum Hydrocarbons	2,000	N/A	16,000			71,000	190,000		N/A	71,000	100% NA documer <i>Contami</i> i
METALS AND CYANIDE				-			-				-
Antimony	5.4	N/A	32				1,400		N/A	1,400	Method (no dete evaluate
Cadmium	1.0	N/A	80		x	0.69	3,500		1.0	1.0/3,500	Protectic groundw non-cano
Copper	284	N/A	3,200		х	280	140,000		36	280/140,000	Soil prot cleanup
Nickel	130	N/A	1,600				70,000		48	70,000	Method
Cyanide (d)	48	N/A	50		х		2,200		N/A	2,200	Method

Abbreviations and Acronyms:

--- = not listed % = percent °C = degrees Celsius CLARC = Cleanup Levels and Risk Calculation COC = constituent of concern FS = feasibility study mg/kg = milligrams per kilogram N/A = not applicable NAPL = non-aqueous-phase liquid pCUL = proposed cleanup level RI = remedial investigation SL = screening level

Notes:

A cleanup level for vinyl chloride in soil is not provided because it has never been detected in soil at the site. Grey Shading = contaminant eliminated as a COC in media identified

(a) Puget Sound Region 90th percentile value (Ecology. 1994. Natural Background Soil Metals Concentrations in Washington State. Publication #94-115.Washington State Department of Ecology. October. https://fortress.wa.gov/ecy/publications/documents/94115.pdf.)

(b) Method B/Method C values were not calculated.

(c) 30 mg/kg is used if benzene is detected; 100 mg/kg is used if benzene is not detected.

(d) CLARC calculations are evaluated based on free cyanide.

Basis for pCUL
otective of groundwater. Once groundwater pCUL is met, p level will be adjusted to Method C non-cancer direct contact.
d C cancer direct contact.
otective of groundwater. Once groundwater pCUL is met, p level will be adjusted to Method C non-cancer direct contact.
d C non-cancer direct contact.
otective of groundwater. Once groundwater pCUL is met, p level will be adjusted to Method C non-cancer direct contact.
d A
d A
d A
NAPL based on ASB0160R Hydrocarbon workbook as nented in <i>Guidance for Remediation of Petroleum</i> minated Sites, Ecology 2016.
d C non-cancer based on direct contact. Eliminated as a COC tections above the pCUL and not associated with an AOC ted as part of the FS).
tion of groundwater adjusted for natural background. Once dwater pCUL is met, cleanup level will be adjusted to Method C uncer direct contact.
otective of groundwater. Once groundwater pCUL is met, p level will be adjusted to Method C non-cancer direct contact.

od C non-cancer direct contact.

od C non-cancer direct contact.

Table 1-2 **Groundwater Proposed Cleanup Levels** Boeing Auburn Supplemental Feasibility Study Auburn, Washington

						Cleanup Lev	els Protective o	f Drinking Water			
Analyte	RI GW SL	ARAR Federal MCL	ARAR WA State MCL	Method A	Method B (Non-Cancer)	Method B (Cancer)	Adjusted 10-5	Background (a)	Groundwater pCUL (μg/L)	Basis	Surface Water Quality Standards in Groundwater (µg/L)
VOLATILES				-		-					
Trichloroethene	0.54	5.0	5.0	N/A	4.0	0.54	5.4	N/A	4	Method B Non-Cancer	0.38 (b)
Vinyl Chloride	0.029	2.0	2.0	N/A	24	0.029	0.29	N/A	0.29	Method B Cancer, adjusted to cancer risk 10 ⁻⁵ based on MCL rule.	0.02 (b)
TOTAL PETROLEUM HYDROCARBONS A	ND ASSOCIATED	VOLATILES	I	1			1				
AOC A-01											
Benzene	0.795	5.0	5.0	N/A	32	0.8	8.0	N/A	5.0	Federal/State MCL	N/A
Ethylbenzene	700	700	700	N/A	800		N/A	N/A	700	Federal/State MCL	N/A
Toluene	640	1,000	1,000	N/A	640		N/A	N/A	640	Method B Non-Cancer	N/A
Total Xylenes	1,600	10,000	10,000	N/A	1,600		N/A	N/A	1,600	Method B Non-Cancer	N/A
Diesel-Range Organics	500			500	(c)	(c)	N/A	N/A	500	Method A	N/A
Oil-Range Organics	500			500	(c)	(c)	N/A	N/A	500	Method A	N/A
Gasoline-Range Organics (d)	800			800/1,000	(c)	(c)	N/A	N/A	800/1,000	Method A	N/A
AOC A-13											
Total Petroleum Hydrocarbons	N/A			N/A	20,000 (e)		N/A	N/A	20,000	Method B cleanup level (calculated at AGW128 and AGW281 and used median value as indicated in Guidance for Remediation of Petroleum Contaminated Sites, Ecology 2016).	N/A
METALS AND CYANIDE											
Arsenic	8.0	10	10	N/A	4.8	0.058	0.58	8.0	8.0	Background; Eliminated as a COC (no history of use, no history of release, natural occurrence).	N/A
Cadmium	5.0	5.0	5.0	NA	8.0			N/A	5.0	Federal/State MCL	N/A
Copper	640	1,300	1,300	NA	640			N/A	640	Method B non-cancer	N/A
Nickel	100		100	N/A	320			N/A	100	Federal/State MCL.	N/A
Cyanide	9.6	200	200	N/A	10			N/A	10 (f)	Method B non-cancer	N/A

Abbreviations and Acronyms:

-- = not Listed

- µg/L = micrograms per liter
- ARARs = applicable or relevant and appropriate requirements
- CLARC = Cleanup Levels and Risk Calculation

COC = constituent of concern

- GW = groundwater
- MCL = maximum contaminant level

N/A = not applicable

- pCUL = proposed cleanup level
- RI = remedial investigation
- SL = screening level
- TPH = total petroleum hydrocarbon
- WA = Washington
- WAC = Washington Administrative Code

Notes:

Grey shading = Contaminant eliminated as a COC in media identified.

- (a) PTI. 1989. Draft report Sections 1-7, Background Concentrations of Selected Chemicals in Water, Soil, Sediments, and Air of Washington State. PTI Environmental Services. April. (b) Human Health Fresh Water WAC 173-201A. Added to the groundwater table based on Ecology comments.
- (c) Method B values were not calculated.
- (d) 800 μ g/L is used if benzene is detected; 1,000 μ g/L is used if benzene is not detected. (e)Method B values were calculated for groundwater collected from wells AGW128 (TPH Method B = 7,000 μ g/L) and AGW281 (TPH Method B = 32,000 μ g/L). The mean value (20,000) is used for the pCUL.

(f) CLARC evaluated based on free cyanide.

Table 1-3 Surface Water Proposed Cleanup Levels Boeing Auburn Supplemental Feasibility Study Auburn, Washington

	RI GW SL (a)	Federal ARAR Human Health - Fresh Water CWA 304	WA State ARAR Human Health - Fresh Water WAC 173-201A	Method B Non-cancer	Method B Cancer	Surface Water pCUL	Basis
VOLATILES							
Trichloroethene	0.3	0.6	0.38	120	13	0.38	WA State ARAR WAC 173-201A
Vinyl Chloride	0.02	0.022	0.02	6,600	3.7	0.02	WA State ARAR WAC 173-201A

Notes:

(a) SLs were provided for different areas in the RI report. The most conservative SLs are presented here.

Abbreviations and Acronyms:

ARAR = applicable or relevant and appropriate requirement

CWA = Clean Water Act

GW = groundwater

pCUL = proposed cleanup level

RI = remedial investigation

SL = screening level

WA = Washington

WAC = Washington Administrative Code

Table 2-1AOC A-13 Drilling and Well Installation MatrixBoeing Auburn Supplemental Feasibility StudyAuburn, Washington

		Date of	Total	Soil Sample	Screened	Groundwater	Horizontal Coordinates		Vertical Coordinates	
Location ID	Location Description	Installation	Exploration	Depth (ft bgs)	Interval (ft h co)	Zone	Northing	Easting	Well Rim	Top of Casing
Conventional Mon	itoring Well		Depth (ft bgs)		(ft bgs)				Elevation (ft)	Elevation (ft)
conventional mon	ů.	([]	[]		г				
AGW284	North of ASB0294; near ASB0028	6/12/2020	25.5	11, 17.5, 22.5	10.5 to 25.5	S(WT)	107430.08	1291928.86	86.7822	86.1349
Temporary Boring										
ASB0294 (a)	Southwest of Monitoring Well AGW042; near ASB0025	6/12/2020	25	12, 16, 23	N/A	N/A	107354.79	1291932.67	86.7047	N/A

Notes:

1. Coordinate System and Zone: Washington State Plane, North Zone Coordinates

2. Horizontal Datum: North American Datum of 1983 (91), North Zone, US Feet

3. Vertical Datum: National Geodetic Vertical Datum of 1929, US Feet

(a) Existing monitoring well AGW042 was sampled for TPH and VOCs, rather than collecting any groundwater samples from ASB0294.

Soil and groundwater samples collected were analyzed for diesel-range and oil-range organics by NWTPH-Dx. Groundwater samples were also analyzed for VOCs by EPA 8260D SIM.

Water table is a subset of the shallow zone. Wells are identified as water table when the screened interval crosses the water table

Conventional = well with a single screen located in either the shallow, intermediate, or deep zone.

Abbreviations and Acronyms:

bgs = below ground surface EPA = US Environmental Protection Agency ft = feet ID = identification N/A = not applicable NWTPH-Dx = Northwest total petroleum hydrocarbon diesel-range extended S = shallow SIM = selected ion monitoring VOC = volatile organic compound WT = water table

Table 2-2 AOC A-13 Soil Results Boeing Auburn Supplemental Feasibility Study Auburn, Washington

				ım Hydrocarbons (mg	
Sample	Sample	Sample	Total Petroleum	Diesel-Range	Oil-Range
Location	Depth (ft)	Date	Hydrocarbons	Organics	Organics
		Soil pCUL	71,000	N/A	N/A
AGW127	15.0	9/8/2008	5.3	5.3	11 U
AGW128	18.5	9/12/2008	5,280	880	4,400
AGW129	12.5	9/11/2008	12	5.7 U	12
AGW130	14.0	9/11/2008	5.6	5.6	11 U
AGW277	8.0	8/12/2017	ND	51 U	51 U
	17.0	8/12/2017	15,200	2,200	13,000
	21.0	8/13/2017	1,500	500 U	1,500
	24.5	8/13/2017	ND	51 U	51 U
	26.0	8/13/2017	110	56 U	110
	29.5	8/13/2017	ND	69 U	69 U
AGW279	12.5	12/27/2017	ND	54 U	54 U
	22.0	12/27/2017	ND	51 U	51 U
AGW280	13.0	12/28/2017	ND	53 U	53 U
	23.5	12/28/2017	ND	57 U	57 U
AGW281	13.0	12/29/2017	ND	56 U	56 U
	16.0	12/29/2017	170	52 U	170
	18.5	12/29/2017	18,100	3,100	15,000
	21.0	12/29/2017	770	140	630
	25.5	12/29/2017	496	96	400
	26.5	12/29/2017	170	50 U	170
	27.5	12/29/2017	ND	59 U	59 U
AGW282	11.5	12/29/2017	95	49 U	95
	16.0	12/29/2017	ND	53 U	53 U
	17.0	12/29/2017	ND	58 U	58 U
	21.0	12/29/2017	ND	50 U	50 U
	22.5	12/29/2017	ND	60 U	60 U
AGW284	11.0	6/12/2020	ND	5.35 U	10.7 U
	17.5	6/12/2020	ND	5.53 U	11.1 U
	22.5	6/12/2020	ND	5.48 U	11 U
ASB0159	16.0	8/30/2004	ND	5 U	10 U
ASB0160	17.5	9/7/2004	36,800	4,800	32,000
ASB0167	5.0	9/7/2004	ND		
	20.0	9/7/2004	ND	5 U	10 U
ASB0168	15.0	9/8/2004	1,570	170	1,400
	17.5	9/8/2004	268	28	240
ASB0169	15.0	9/8/2004	2,420	320	2,100
	17.5	9/8/2004	3,360	460	2,900
ASB0170	15.0	9/9/2004	23,900	3,900	20,000
-	17.5	9/9/2004	15,200	2,200	13,000
ASB0171	15.0	9/9/2004	11,100	1,600	9,500
	17.5	9/9/2004	8,200	1,200	7,000
ASB0271	11.0	8/12/2017	ND	51 U	51 U
·····	18.0	8/12/2017	9,100	1,600	7,500
	24.0	8/12/2017	1,290	290	1,000
ASB0272	11.0	8/12/2017	ND	50 U	50 U
	17.0	8/12/2017	13,300	2,300	11,000
	17.0	8/12/2017	18,500	3,500	15,000

Table 2-2 AOC A-13 Soil Results Boeing Auburn Supplemental Feasibility Study Auburn, Washington

			Petrole	um Hydrocarbons (mg	g/kg) (a)
Sample	Sample	Sample	Total Petroleum	Diesel-Range	Oil-Range
Location	Depth (ft)	Date	Hydrocarbons	Organics	Organics
	- 	Soil pCUL	71,000	N/A	N/A
ASB0274	10.0	8/12/2017	92	49 U	92
	16.0	8/12/2017	ND	55 U	55 U
	19.0	8/12/2017	ND	49 U	49 U
ASB0275	8.0	8/13/2017	ND	50 U	50 U
	10.0	8/13/2017	62	51 U	62
	20.0	8/13/2017	ND	68 U	68 U
	23.0	8/13/2017	ND	50 U	50 U
ASB0286	11.0	12/27/2017	ND	51 U	51 U
	16.0	12/27/2017	326	56	270
	18.0	12/27/2017	13,600	2,600	11,000
	22.0	12/27/2017	ND	51 U	51 U
ASB0287	12.0	12/28/2017	ND	50 U	50 U
	22.0	12/28/2017	ND	56 U	56 U
ASB0288	10.5	12/28/2017	120	50 U	120
	12.0	12/28/2017	5,630	930	4,700
	13.5	12/28/2017	3,960	660	3,300
	18.0	12/28/2017	19,500	3,500	16,000
	22.5	12/28/2017	2,090	390	1,700
	25.0	12/28/2017	ND	52 U	52 U
	29.0	12/28/2017	ND	60 U	60 U
ASB0289	12.0	12/29/2017	ND	52 U	52 U
	17.0	12/29/2017	120	53 U	120
	20.5	12/29/2017	423	93	330
	22.0	12/29/2017	100	56 U	100
	25.0	12/29/2017	ND	52 U	52 U
	27.0	12/29/2017	ND	58 U	58 U
ASB0294	12.0	6/12/2020	ND	5.37 U	10.7 U
	16.0	6/12/2020	194.7	20.7	174
	23.0	6/12/2020	ND	5.85 U	11.7 U

Notes:

Bold text indicates detected analyte

Blue border indicates data was collected as part of the 2020 SFS field investigation.

(a) Petroleum hydrocarbons analyzed by NWTPH-Dx.

Total petroleum hydrocarbons were calculated by summing detections of diesel range and oil range organics.

U = The analyte was analyzed for, but was not detected above the level of the reported sample quantitation limit.

Abbreviations and Acronyms:

-- = not analyzed

ft = feet

mg/kg = milligrams per kilogram

N/A = not applicable

ND = not detected

NWTPH-Dx = Northwest total petroleum hydrocarbons diesel-range extended

pCUL = proposed cleanup level

SFS = supplemental feasibility study

Table 2-3 AOC A-13 Groundwater Results Boeing Auburn Supplemental Feasibility Study Auburn, Washington

		Petrol	eum Hydrocarbons (µg	/L) (a)
Sample	Sample	Total Petroleum	Diesel-Range	Oil-Range
Location	Date	Hydrocarbons (b)	Organics	Organics
	Groundwater pCUL	20,000	N/A	N/A
AGW041	6/13/2013	ND	95 U	240 U
AGW042	7/2/2020	ND	100 U	200 U
AGW043	1/15/2009	ND	250 U	500 U
AGW044	6/20/2016	2,530	1,800	730
	5/31/2017	180	180	240 U
	6/8/2018	1,300	1,300	350 U
AGW115	12/11/2013	ND	94 U	230 U
AGW116	12/11/2013	ND	95 U	240 U
AGW117	12/10/2013	ND	94 U	240 U
AGW118	12/11/2013	ND	94 U	230 U
AGW127	12/10/2013	ND	95 U	240 U
AGW128	6/17/2016	1,450	1,100	350
	12/1/2016	3,400 J	2,200 J	1,200
	5/31/2017	2,400	1,100	1,300
	12/5/2017	7,600	1,800	5,800
	6/7/2018	3,400 J	1,500 J	1,900 J
	12/11/2018	2,885	455	2,430
AGW129	12/11/2013	ND	95 U	240 U
AGW130	6/20/2016	ND	94 U	230 U
	12/1/2016	ND	95 U	240 U
	5/31/2017	ND	98 U	240 U
	12/5/2017	290	100 U	290
	6/8/2018	ND	110 U	350 U
	12/12/2018	ND	100 U	200 U
AGW277	9/6/2017	1,430 J	450 J	980 J
	12/5/2017	1,810	310	1,500
	3/14/2018	140	140	350 U
	6/7/2018	230	230	350 U
	9/4/2018	200	200	350 U
	12/11/2018	ND	100 U	200 U
AGW279	3/14/2018	ND	110 U	350 U
	6/7/2018	ND	110 U	350 U
	9/4/2018	ND	110 U	350 U
	12/11/2018	ND	100 U	200 U
AGW280	3/14/2018	ND	110 U	350 U
	6/7/2018	ND	110 U	350 U
	9/5/2018	ND	110 U	350 U
	12/12/2018	ND	100 U	200 U
AGW281	3/13/2018	690	150	540
	6/7/2018	190	190	350 U
	9/5/2018	890	190	700
	12/12/2018	250	100 U	250

Table 2-3 AOC A-13 Groundwater Results Boeing Auburn Supplemental Feasibility Study Auburn, Washington

		Petrol	eum Hydrocarbons (µg	;/L) (a)
Sample	Sample	Total Petroleum	Diesel-Range	Oil-Range
Location	Date	Hydrocarbons (b)	Organics	Organics
	Groundwater pCUL	20,000	N/A	N/A
AGW282	3/13/2018	4,260	660	3,600
	6/7/2018	490	490	350 U
	9/5/2018	ND	110 U	350 U
	12/12/2018	ND	100 U	200 U
AGW284	7/2/2020	ND	100 U	200 U
AGW277-20	8/12/2017	891,000 J	21,000 J	870,000
ASB0159-19	8/30/2004	ND	250 U	500 U
ASB0160R-18	9/7/2004	11,500	1,500	10,000
ASB0167-18	9/7/2004	ND	250 U	500 U
ASB0168-18	9/8/2004	2,120	320	1,800
ASB0169-18	9/8/2004	3,160	460	2,700
ASB0170-18	9/9/2004	4,390	690	3,700
ASB0171-18	9/9/2004	4,010	610	3,400
ASB0271-20	8/12/2017	248,000	38,000	210,000
ASB0272-20	8/12/2017	352,000	62,000	290,000
ASB0274-18	8/12/2017	520	110	410
ASB0275-19	8/13/2017	ND	100 U	250 U
ASB0286-16	12/27/2017	25,600 J	4,600 J	21,000
ASB0287-17.5	12/28/2017	ND	100 U	250 U
ASB0288-16	12/28/2017	49,900 J	9,900 J	40,000 J
ASB0289-16	12/29/2017	3,900	1,100	2,800

Notes:

Bold text indicates detected analyte

Blue border indicates data was collected as part of the 2020 SFS field investigation.

Groundwater monitoring locations are identified by the AGW prefix.

Boring sample designations include the location name followed by the depth at which the sample was collected. Groundwater concentrations from temporary boring grab samples are not considered a reliable estimate of actual groundwater concentrations and are, therefore, not compared to pCULs.

(a) Petroleum hydrocarbons were analyzed by NWTPH-Dx.

(b) Total petroleum hydrocarbons were calculated by summing detections of diesel-range and oil-range organics.

J = The result is an estimated quantity. The associated numerical value is the approximate concentration of the analyte in the sample.

U = The analyte was analyzed for but was not detected above the level of the reported sample quantitation limit.

Abbreviations and Acronyms:

 $\mu g/L = micrograms per liter$

N/A = not applicable

ND = not detected

NWTPH-Dx = Northwest total petroleum hydrocarbon diesel-range extended

pCUL = proposed cleanup level

SFS = supplemental feasibility study

Table 2-4 AOC A-14 Former Building 17-03 Release Area Drilling and Sampling Matrix Boeing Auburn Supplemental Feasibility Study Auburn, Washington

	Monitoring		Date of	Total	Soil Sample	Groundwater	Screened	Horizontal	Coordinates	Vertical Coordinates	
Location ID	Well Type	Location Description	Installation	Exploration Depth (ft bgs)	Denth (ft høs)	Zone	Interval (ft bgs)	Northing	Easting	Well Rim Elevation (ft)	Top of Casing Elevation (ft)
AGW283	Multilevel (a)	Adjacent to Boring ASB0277	6/11/2020	110	14 and 16			108196.32	1292164.02	88.603	
AGW283-1						S (WT)	18.5 to 21				88.116
AGW283-2						S	29 to 30				88.124
AGW283-3						I	39 to 40				88.179
AGW283-4						I	52 to 53				88.179
AGW283-5						I	65 to 66				88.13
AGW283-6						D	87 to 88				88.147
AGW283-7						D	99.8 to 100				88.107

Notes:

1. Coordinate System and Zone: Washington State Plane, North Zone Coordinates

2. Horizontal Datum: North American Datum of 1983 (91), North Zone, US Feet

3. Vertical Datum: National Geodetic Vertical Datum of 1929, US Feet

(a) Multilevel = Well with up to seven separate screens, which are located in the shallow, intermediate, and deep zones

Water table is a subset of the shallow zone. Wells are identified as water table when the screened interval crosses the water table

Soil and groundwater samples collected were analyzed for VOCs by EPA 8260D SIM.

Abbreviations and Acronyms:

bgs = below ground surface D = deep EPA = US Environmental Protection Agency ft = feet I = intermediate ID = identification N/A = not applicable S = shallow SIM = selected ion monitoring VOC = volatile organic compound WT = water table Page 1 of 1

Table 2-5 AOC A-14 Former Building 17-03 Release Area Soil Results Boeing Auburn Supplemental Feasibility Study Auburn, Washington

Sample	Sample	Sample	-	iic Compounds ‹g) (a)	
Location	Depth (ft)	Date	Trichloroethene	Vinyl Chloride	
		Soil pCUL	0.025	N/A	
AGW097	16	12/3/2003	ND	ND	
AGW099	16	12/9/2003	ND	ND	
AGW283	14	6/9/2020	0.00628	0.00112 U	
	16	6/9/2020	0.0560	0.00107 U	
ASB0290	12	12/17/2018	0.0445	0.00092 U	
	16	12/17/2018	0.0653	0.00092 U	
ASB0291	12	12/18/2018	0.00117 U	0.00117 U	
	17.5	12/18/2018	0.00118 U	0.00118 U	
ASB0293	11	12/20/2018	0.00113 U	0.00113 U	
	15	12/20/2018	0.00105 U	0.00105 U	
ASB0276	7.5	8/28/2017	0.0020 UJ	0.0020 UJ	
	9.5	8/28/2017	0.0023 UJ	0.0023 UJ	
	17.9	8/28/2017	0.0019 UJ	0.0019 UJ	
ASB0277	6.2	8/28/2017	0.0024 U	0.0024 U	
	11	8/28/2017	0.0038	0.0019 U	
ASB0278	7.5	8/28/2017	0.0020 U	0.0020 U	
	9	8/28/2017	0.0020 U	0.0020 U	
ASB0282	9	9/1/2017	0.0018 U	0.0018 U	
	16.5	9/1/2017	0.0080	0.0016 U	
ASB0283	16.5	9/8/2017	0.0016 U	0.0016 U	
ASB0284	6.5	9/8/2017	0.0017 U	0.0017 U	
	8.5	9/8/2017	0.0023 U	0.0023 U	
ASB0285	2.5	9/11/2017	0.0018 U	0.0018 U	
	9.7	9/11/2017	0.0020 U	0.0020 U	
ASB0279	6.5	8/30/2017	0.0019 U	0.0019 U	
	12.5	8/30/2017	0.0017	0.0016 U	
	18.5	8/30/2017	0.0015 U	0.0015 U	
SS-26	8.5	10/28/1992	ND	ND	
SS-27	8.5	10/28/1992	ND	ND	
SS-28	8.5	10/28/1992	ND	ND	
SS-29	8.5	10/28/1992	ND	ND	

Notes:

Bold text indicates detected analyte

Green shading indicates detected analyte exceeds applicable soil pCUL Blue border indicates data was collected as part of the 2020 SFS field investigation.

(a) VOCs were analyzed by SW-846 8260 and 8260 selected ion monitoring.

- U = The analyte was analyzed for, but was not detected above the level of the reported sample quantitation limit.
- UJ = The analyte was analyzed for but was not detected. The reported quantitation limit is approximate and may be inaccurate or imprecise.

Abbreviations and Acronyms:

ft = feet

- mg/kg = milligrams per kilogram
- N/A = not applicable
- ND = not detected
- pCUL = proposed cleanup level
- SFS = supplemental feasibility study
- VOC = volatile organic compound

Table 2-6 AOC A-14 Former Building 17-03 Release Area Groundwater Results Boeing Auburn Supplemental Feasibility Study Auburn, Washington

Sample	Groundwater	Sample	Volatile Organ (µg/l	•
Location	Zone	Date	Trichloroethene	Vinyl Chloride
	G	roundwater pCUL	4.0	0.29
	SWQ	S in Groundwater	0.38	0.02
AGW001R	SZ	6/22/2016	1.9	0.020 U
		11/30/2016	2.2	0.2 U
		6/7/2017	1.2	0.020 U
		11/29/2017	1.6	0.020 U
		6/6/2018	1.1	0.020 U
		12/5/2018	1.51	0.0200 U
AGW097	IZ	12/7/2004	0.2 U	0.02 U
AGW099	DZ	12/7/2004	0.2 U	0.02 U
AGW283-1	SZ(WT)	7/2/2020	3.92	0.0200 U
AGW283-2	SZ	7/2/2020	0.588	0.0200 U
AGW283-3	IZ	7/2/2020	0.200 U	0.0200 U
AGW283-4	IZ	7/2/2020	0.200 U	0.0200 U
AGW283-5	IZ	7/2/2020	0.200 U	0.0200 U
AGW283-6	DZ	7/2/2020	0.200 U	0.0200 U
AGW283-7	DZ	7/2/2020	0.200 U	0.0200 U
ASB0276-20	SZ (WT)	8/28/2017	4.44	0.0200 U
ASB0276-30	SZ	8/28/2017	1.43	0.0200 U
ASB0276-40	IZ	8/29/2017	0.39 J	0.0200 U
ASB0277-20	SZ (WT)	8/28/2017	9.21	0.0200 U
ASB0277-30	SZ	8/29/2017	1.48	0.0200 U
ASB0277-40	IZ	8/29/2017	11.0	0.0200 U
ASB0278-20	SZ (WT)	8/30/2017	7.19	0.0200 U
ASB0278-30	SZ	8/30/2017	3.46	0.0200 U
ASB0278-40	IZ	8/30/2017	2.17	0.0200 U
ASB0278-50	IZ	8/30/2017	0.46	0.0200 U
ASB0279-20	SZ (WT)	8/30/2017	0.40	0.0200 U
ASB0279-30	SZ	8/31/2017	0.20 U	0.0200 U
ASB0279-40	IZ	8/31/2017	0.20 U	0.0200 U
ASB0279-50		8/31/2017	0.20 U	0.0200 U
ASB0282-20	SZ (WT)	9/1/2017	3.85 J	0.0200 U
ASB0282-30	SZ	9/1/2017	3.75 J	0.0200 U
ASB0282-40 ASB0282-50	IZ	9/1/2017	3.68 J	0.0200 U
	IZ \$7 (\\/T)	9/1/2017	0.78	0.020 UJ 0.020 U
ASB0283-21 ASB0283-30	SZ (WT)	9/8/2017 9/8/2017	1.2	0.020 U
ASB0283-30 ASB0283-40	SZ IZ	9/8/2017 9/8/2017	0.56	0.020 U
ASB0283-40 ASB0283-50	IZ	9/8/2017 9/8/2017	0.36	0.020 U
ASB0283-50 ASB0284-20	SZ (WT)	9/8/2017 9/8/2017	1.9	0.020 U
ASB0284-20 ASB0284-30	SZ (WT)	9/8/2017 9/11/2017	2.8	0.020 U
ASB0284-30 ASB0284-40	IZ	9/11/2017	0.69	0.020 U
ASB0284-40 ASB0284-50	IZ	9/11/2017	2.3	0.020 U
ASB0284-50 ASB0285-20	SZ (WT)	9/11/2017	0.45	0.020 U
A3DU283-2U	32 (VVI)	9/11/2017	0.45	0.020 0

Sample	Groundwater	Sample	Volatile Organic Compounds (μg/L) (a)						
Location	Zone	Date	Trichloroethene	Vinyl Chloride					
	G	roundwater pCUL	4.0	0.29					
	SWQ	S in Groundwater	0.38	0.02					
ASB0285-30	SZ	9/11/2017	1.6	0.020 U					
ASB0285-40	IZ	9/11/2017	1.0	0.020 U					
ASB0290-20	SZ (WT)	12/17/2018	5.61	0.0200 U					
ASB0290-30	SZ	12/17/2018	1.40	0.0200 U					
ASB0290-40	IZ	12/18/2018	0.879	0.0200 U					
ASB0291-20	SZ (WT)	12/18/2018	1.17	0.0200 U					
ASB0291-30	SZ	12/18/2018	0.950	0.0200 U					
ASB0291-40	IZ	12/19/2018	0.689 J	0.0200 UJ					
ASB0292-20	SZ (WT)	12/19/2018	1.96	0.0200 U					
ASB0292-29.5	SZ	12/19/2018	3.24 J	0.0200 UJ					
ASB0292-40	IZ	12/20/2018	1.30 J	0.0200 UJ					
ASB0293-20	SZ (WT)	12/20/2018	0.370	0.0200 U					
ASB0293-30	SZ	12/20/2018	0.471	0.0200 U					
ASB0293-40	IZ	12/20/2018	0.646 UJ	0.0200 UJ					

Notes:

Bold text indicates detected analyte

Green shading indicates detected analyte exceeds applicable

groundwater pCUL (based on drinking water).

Blue shading indicates concentrations above SWQS in groundwater.

Blue border indicates data was collected as part of the 2020 SFS field investigation.

Groundwater monitoring locations are identified by the AGW prefix.

Boring sample designations include the location name followed by the depth at which the sample was collected.

- (a) VOCs were analyzed by SW-846 8260 and 8260 selected ion monitoring.
- U = The analyte was analyzed for but was not detected above the level of the reported sample quantitation limit.
- UJ = The analyte was analyzed for, but was not detected. The reported quantitation limit is approximate and may be inaccurate or imprecise.
- J = The result is an estimated quantity. The associated numerical value is the approximate concentration of the analyte in the sample.

Abbreviations and Acronyms:

- μ g/L = micrograms per liter
- DZ = deep zone
- IZ = intermediate zone
- pCUL = proposed cleanup level
- SFS = supplemental feasibility study

SWQS = surface water quality standards

SZ = shallow zone

- VOC = volatile organic compound
- WT = water table

Table 4-1 AOC A-14 Supplemental Feasibility Study Remedial Action Alternatives **Boeing Auburn Site** Auburn, Washington

Alternative Number:	Alternative D1	Alternative D6	Alternative D7	Alternative D8
Alternative Name:	Site-Wide Monitored Natural Attenuation (MNA)	Enhanced In Situ Bioremediation (EISB) at Algona Focus Area and MNA	EISB at Algona and 17-07 Property Boundary Focus Areas and MNA	EISB at Algona, 17-07 Property Boundary, and The Outlet Collection Focus Areas and MNA
Alternative Description:	Containment of soil and MNA for the entire plume:	Enhanced <i>in situ</i> bioremediation injection at Algona focus area and MNA for the entire plume:	Enhanced <i>in situ</i> bioremediation injection at Algona and Property Boundary focus areas and MNA for the entire plume:	Enhanced <i>in situ</i> bioremediation injection at Algona, Property Boundary, and Outlet Collection focus areas and MNA for the entire plume:
	 Continue containment of contaminated soil site-wide with pavement and buildings acting as a cap. Remediation of groundwater through naturally occurring 	 Continue containment of contaminated soil site-wide with pavement and buildings acting as a cap. Institutional controls consisting of an environmental 	The Algona focus area treatment in Alternative D6 plus: Continue containment of contaminated soil site-wide with 	The Algona and 17-07 Property Boundary treatments in Alternative D7 plus: Continue containment of contaminated soil site-wide with pavement and
	biotic and abiotic degradation and other attenuation	covenant to limit activities that could result in exposure to	pavement and buildings acting as a cap.	buildings acting as a cap.
	processes (MNA). Continued monitoring with routine groundwater sampling. • Institutional controls consisting of an environmental	soil, and which outlines the required continued maintenance for the cap to soil concentrations exceeding protection of groundwater.	 Institutional controls consisting of an environmental covenant to limit activities that could result in exposure to soil, and which outlines the required continued maintenance for the parts are the sector of the part of the part of the parts of the par	 Institutional controls consisting of an environmental covenant to limit activities that could result in exposure to soil, and which outlines the required continued maintenance for the cap to soil concentrations exceeding material and the source of the cap to soil concentrations.
	covenant to limit activities that could result in exposure to soil, and which outlines the required continued maintenance	 In situ groundwater treatment using EISB in the Algona Focus Area (conceptual design: 980-foot long injection row 	for the cap to soil concentrations exceeding protection of groundwater.	protection of groundwater. In situ groundwater treatment using EISB in The Outlet Collection Focus
	for the cap for soil concentrations exceeding protection of groundwater.	 adding on to the pilot test injection row [5 wells] for a total of 29 wells targeting the shallow groundwater zone will consist of 5 injection events performed every 4 years over a span of 20 years of active treatment followed by 10 years of sustained treatment due to endogenous decay and donor back diffusion). Remediation of groundwater through naturally occurring biotic and abiotic degradation and other attenuation processes (MNA). Continued monitoring with routine groundwater sampling. 	 In situ groundwater treatment using EISB at the Building 17-07 Property Boundary focus area (conceptual design: 1,120-foot long injection row with 33 injection well clusters [35-foot centers] targeting all groundwater zones [SZ, IZ, DZ] will consist of 5 injection events performed every 4 years over a span of 20 years of active treatment followed by 10 years of sustained treatment due to endogenous decay and donor back diffusion). Remediation of groundwater through naturally occurring biotic and abiotic degradation and other attenuation processes (MNA). Continued monitoring with routine groundwater sampling. 	 Area (conceptual design: 6 injection rows surrounding the building; one 385-foot long injection row on the west side of the building including 12 injection well clusters [35-foot centers] targeting all groundwater zones [SZ, IZ, DZ]; three 980-foot long injection rows located on the south side of the building including 29 injection well clusters for each row [35-foot centers] targeting all groundwater zones [SZ, IZ, DZ]; two 700-foot long rows on the north side of the building including 11 injection well clusters for each row [35-foot centers] targeting all groundwater zones [SZ, IZ, DZ]; two 700-foot long rows on the north side of the building including 21 injection well clusters for each row [35-foot centers] targeting all groundwater zones [SZ, IZ, DZ]; will consist of 5 injection events performed over a span of 10 to 20 years of active treatment followed by 10 years of sustained treatment due to endogenous decay and donor back diffusion). Remediation of groundwater through naturally occurring biotic and abiotic degradation and other attenuation processes (MNA). Continued monitoring
Point of Compliance - Soil:	Standard; Site-Wide (with institutional controls for residual soil contamination)	Standard; Site-Wide (with institutional controls for residual soil contamination)	Standard; Site-Wide (with institutional controls for residual soil contamination)	with routine groundwater sampling. Standard; Site-Wide (with institutional controls for residual soil contamination)
Point of Compliance - Groundwater (a):	Standard; Site-Wide	Standard; Site-Wide	Standard; Site-Wide	Standard; Site-Wide

Notes:

(a) Although a standard site-wide point of compliance is currently included for each alternative; Boeing may seek Ecology approval for a CPOC downgradient of the release areas and possibly within the transition zone near Mill Creek. The final determination for a CPOC will be made during the development of the cleanup action plan.

Table 5-1 AOC A-14 Summary of Supplemental Feasibility Study Remedial Alternatives Compliance with MTCA Threshold Requirements Boeing Auburn Site Auburn, Washington

SFS Alternative Number:	Alternative D1	Alternative D6	Alternative D7	
Description:	Site-Wide MNA	EISB at Algona Focus Area and MNA	EISB at Algona and 17-07 Property Boundary Focus Areas and MNA	EISB a
Compliance with MTCA Threshold Criteria (WAC 1	.73-340-360[2][a])			
- Protect human health and the environment.	Yes - Alternative will protect human health and the environment through containment of contaminated soil, treatment of groundwater in the Algona and 17-07 Property Boundary focus areas, and MNA of groundwater. No current concentrations exceeding site- specific health based risk thresholds.	Yes envi soil, Prop and exce		
- Comply with cleanup standards (WAC 173-360-700 through 760).	Yes - Con	tainment and ICs used for soil not complying with pCULs; g	roundwater complies with pCULs after cleanup remedy is co	mplete
- Comply with applicable state/federal laws (WAC 173-360-710).		Yes - Alternative complies with applicabl	e laws (see Section 5.0 of this SFS report).	
- Provide for compliance monitoring (WAC 173-360-410).	Yes - Alternative includes provisions for compliance monitoring (soil cap monitoring for ICs and long-term routine groundwater monitoring during MNA and confirmation sampling).	Yes - Alternative includes provisions for compliance monitoring (soil cap monitoring for ICs and long-term routine groundwater monitoring during MNA and confirmation sampling).	Yes - Alternative includes provisions for compliance monitoring (soil cap monitoring for ICs and long-term routine groundwater monitoring during MNA and confirmation sampling).	Yes mor rout conf
Compliance with Other Requirements (WAC 173-3	340-360[2][b])			•
Permanent Solutions to the Maximum Extent Prac	cticable (WAC 173-340-360[3])			
- Permanent to the Maximum Extent Practicable.	Yes - See Disproportionate Cost Analysis (see Table 5-3).	No - See Disproportionate Cost Analysis (see Table 5-3).	No - See Disproportionate Cost Analysis (see Table 5-3).	No -
Reasonable Restoration Time Frame (WAC 173-34	10-360[4][b])			
- Provide for a reasonable restoration time frame.	Yes (Groundwater pCULs) - Restoration time frame is approximately 30 years to meet groundwater pCULs. No (SWQS in groundwater) - Long-restoration time frame is approximately 100 years to meet SWQS in	Yes (Groundwater pCULs) - Restoration time frame is approximately 30 years to meet groundwater pCULs. No (SWQS in groundwater) - Long-restoration time frame is approximately 100 years to meet SWQS in	Yes (Groundwater pCULs) - Restoration time frame is approximately 29 years to meet groundwater pCULs. No (SWQS in groundwater) - Long-restoration time frame is approximately 97 years to meet SWQS in	Yes appr No fram
- Potential risk to human health and environment (1).	groundwater. Low. Contaminated soil concentrations do not exceed direct-contact CULs. Contaminated stormwater and groundwater are not being used as drinking water. There are no current risks to human health and the environment from the contaminants present at the site.	groundwater. Low/Moderate. Contaminated soil concentrations do not exceed direct-contact CULs. Contaminated stormwater and groundwater are not being used as drinking water. There are no current risks to human health and the environment from the contaminants present at the site. Implementation of groundwater cleanup activities and the large amount of injected donor needed to treat the downgradient focus areas could cause electron donor to enter stormwater piping or come to the surface.	groundwater. Low/Moderate. Contaminated soil concentrations do not exceed direct-contact CULs. Contaminated stormwater and groundwater are not being used as drinking water. There are no current risks to human health and the environment from the contaminants present at the site. Implementation of groundwater cleanup activities and the large amount of injected donor needed to treat the downgradient focus areas could cause electron donor to enter stormwater piping or come to the surface.	grou Low not storn drin heal pres clea don coul or co
Description Site-Wide MNA EISB at Algona Focus Area and MNA EISB at Algona and 17-0 Compliance with MTCA Threshold Criteria (MAC 173-340-360[2][a)) Yes - Atternative will protect human health and the environment. Human health and the environment through containment of contaminated and MNA of groundwater. No current concentrations and MNA of groundwater. No current concentrations acceeding site-specific health based risk thresholds. Yes - Atternative will protect human health and the environment through containment of contaminated and MNA of groundwater. No current concentrations and MNA of groundwater. No current concentrations are sceeding site-specific health based risk thresholds. Yes - Atternative indudes provisions for compliance monitoring (WAC 173-360-700). Yes - Atternative indudes provisions for compliance monitoring during MNA and confirmation sampling). Yes - Atternative indudes provisions for compliance monitoring during MNA and confirmation sampling. Yes - Atternative indudes provisions for compliance monitoring during MNA and confirmation sampling). Yes - Atternative indudes provisions for compliance monitoring during MNA and confirmation sampling). Yes - Atternative indudes provisions for compliance monitoring during MNA and confirmation sampling). Yes - Atternative indudes provisions for compliance monitoring during MNA and confirmation sampling). Yes - Atternative indudes provisions for compliance monitoring during MNA and confirmation sampling). Yes - Atternative indudes provisions for compliance monitoring during MNA and confirmation sampling). Yes - Atternative indudes provisions for compliance monitoring during MNA and confirmation sampling). Yes - Atternative indud		s. CVO		
and associated resources that are, or may be affected by releases from		Surrounding areas: Industr	ial, Commercial, Residential	

Alternative D8

at Algona, 17-07 Property Boundary, and The Outlet Collection Focus Areas and MNA

es - Alternative will protect human health and the nvironment through containment of contaminated bil, treatment of groundwater in the Algona, 17-07 roperty Boundary, and Outlet Collection focus areas, nd MNA of groundwater. No current concentrations xceeding site-specific health based risk thresholds.

eted.

es - Alternative includes provisions for compliance nonitoring (soil cap monitoring for ICs and long-term putine groundwater monitoring during MNA and ponfirmation sampling).

o - See Disproportionate Cost Analysis (see Table 5-3).

Yes (Groundwater pCULs) - Restoration time frame is pproximately **25 years** to meet groundwater pCULs.

No (SWQS in groundwater) - Long-restoration time rame is approximately 85 years to meet SWQS in roundwater.

w/Moderate. Contaminated soil concentrations do ot exceed direct-contact CULs. Contaminated ormwater and groundwater are not being used as rinking water. There are no current risks to human ealth and the environment from the contaminants resent at the site. Implementation of groundwater eanup activities and the large amount of injected onor needed to treat the downgradient focus areas buld cause electron donor to enter stormwater piping r come to the surface.

OC plume concentrations primarily driven by back-

Table 5-1 AOC A-14 Summary of Supplemental Feasibility Study Remedial Alternatives Compliance with MTCA Threshold Requirements Boeing Auburn Site

Auburn, Washington

SFS Alternative Number:	Alternative D1	Alternative D6	Alternative D7	
Description:	Site-Wide MNA	EISB at Algona Focus Area and MNA	EISB at Algona and 17-07 Property Boundary Focus Areas and MNA	EISB at A
 Potential future use of Site, surrounding area, and resources that are, or may be, affected by releases from the Site. 		Surrounding areas: Industr	Industrial rial, Commercial, Residential ater and surface water as drinking water	
- Availability of alternative water supplies.		Yes. The Site is located within the Auburn/Algona/Pacific	city limits, which are supplied by municipal water supplies.	
- Likely effectiveness/reliability of institutional controls. (1)		High. Site is fenced and acco	ess-controlled industrial site.	
- Ability to monitor migration of hazardous substances. (1)	High . Appropriate groundwater monitoring network is present and will be supplemented, as necessary, to adequately monitor groundwater after implementation.	Moderate . Appropriate groundwater monitoring network is present and will be supplemented, as necessary, to adequately monitor groundwater after implementation. However, remediation activities closer to stormwater/surface water features could cause increases of TOC to migrate to stormwater/surface water bodies and be difficult to monitor.	Moderate . Appropriate groundwater monitoring network is present and will be supplemented, as necessary, to adequately monitor groundwater after implementation. However, remediation activities closer to stormwater/surface water features could cause increases of TOC to migrate to stormwater/surface water bodies and be difficult to monitor.	Modera networ necessa implem to storr increas migrate difficult
- Toxicity of hazardous substances at the site. (1)		Soil (dermal	media dependent - contact): L ow er beneficial uses): L ow to moderate	
 Natural processes that reduce concentrations of hazardous substances and have been documented to occur at the Site or under similar conditions. 	High; natural attenuation	has been proven to be an active natural process that reduce	es concentrations of TCE and reductive dechlorination break	down proc
Consider Public Concerns (WAC 173-340-600[13])				
- Consider public concerns.	No comments from public with concerns about		od will be provided for review of the FS/CAP. umptions about public concerns are taken into account in th	e Disprop

Notes:

- (1) Ratings used: Low, Moderate, or High.
- (2) Stormwater is not required to meet pCULs until the final discharge point of the stormwater into surface water bodies.

Abbreviations and Acronyms:

- CAP = cleanup action plan
- CULs = cleanup levels (specifically referencing general MTCA cleanup levels rather than proposed cleanup levels developed as part of the feasibility study)
- CVOC = chlorinated volatile organic compound
- EISB = enhanced in situ bioremediation
- ICs = institutional controls
- FS = feasibility study
- MNA = monitored natural attenuation

MTCA = Model Toxics Control Act pCUL = proposed cleanup level SFS = supplemental feasibility study SWQS = surface water quality standards TCE = trichloroethene TOC = total organic carbon WAC = Washington Administrative Code

Alternative D8

t Algona, 17-07 Property Boundary, and The Outle Collection Focus Areas and MNA

lerate. Appropriate groundwater monitoring work is present and will be supplemented, as essary, to adequately monitor groundwater after ementation. However, remediation activities closer formwater/surface water features could cause eases of TOC and naturally occurring metals to rate to stormwater/surface water bodies and be cult to monitor.

roducts at the site.

oportionate Cost Analysis (See Table 5-3)

Table 5-2 AOC A-14 Supplemental Feasibility Study Disproportionate Cost Analysis Relative Benefits Ranking Considerations Boeing Auburn Site Auburn, Washington

SFS Alternative Num	nber:		Alternative D1		Alternative D6		Alternative D7		
SFS Alternative Na	me:		Site-wide MNA		at Algona and 17-07 Property Boundary Focus Areas and MNA	EI	ISB at A		
					Relative Benefits Ranl	king fo	r DCA		
Evaluation Criteria: WAC 173-340-360(3)(f)	Weighting Factor	Benefit Score		Benefit Score		Benefit Score		Benefit	
- Overall Protectiveness (subsection [i])	30%	5	 Good ICs and containment to limit infiltration of water and direct human contact with contaminated soil. Current risks to human health and the environment do not exceed site-specific health based thresholds; therefore, protectiveness is not appreciably greater through remedy implementation. Time required to meet SWQS in groundwater is extensive. 	5	 Good ICs and containment to limit infiltration of water and direct human contact with contaminated soil. Current risks to human health and the environment do not exceed site-specific health based thresholds; therefore, protectiveness is not appreciably greater through remedy implementation. Time required to meet SWQS in groundwater is extensive. 	5	 Good ICs and containment to limit infiltration of water and direct human contact with contaminated soil. Current risks to human health and the environment do not exceed site-specific health based thresholds; therefore, protectiveness is not appreciably greater through remedy implementation. Time required to meet SWQS in groundwater is extensive. 	5	Good • ICs soil. • Cur thres • Tim
- Permanence (subsection [ii])	20%	7.5	 Excellent Contaminated soil left in place at the Facility; however, no concentrations above direct-contact CULs. MNA will result in site-wide contaminant mass destruction; routine groundwater monitoring conducted until pCULs are met. Treatment is actively taking place via natural processes and the effectiveness of those natural processes will be monitored during implementation of the cleanup. 	8	 Excellent Contaminated soil left in place at the Facility; however, no concentrations above direct-contact CULs. Implementation of EISB at Algona focus area will remove impacts of contaminated groundwater in those areas; however, other areas still affect site restoration time frames. Contaminant mass is more rapidly decreased in limited areas with treatment, but does not result in decreased site-wide restoration time frames. MNA will result in site-wide contaminant mass destruction; routine groundwater monitoring conducted until pCULs are met. 	8.5	 Excellent/Superior Contaminated soil left in place at the Facility; however, no concentrations above direct-contact CULs. Implementation of EISB at Algona and 17-07 Property Boundary focus areas will remove impacts of contaminated groundwater in those areas however, other areas still affect site restoration time frames. Contaminant mass is more rapidly decreased in limited areas with treatment, but does not result in significantly decreased restoration time frames. MNA will result in site-wide contaminant mass destruction; routine groundwater monitoring conducted until pCULs are met. 		Supe • Cor CULs. • Imp will r site r • Cor in sig • MN cond
- Long-Term Effectiveness (subsection [iv])	20%	7	 Excellent/ (3) Fair if SWQS required ICs and cap will be effective in minimizing leaching to groundwater from and direct human contact with contaminated soil. Long-term groundwater treatment effectiveness relies on natural degradation and attenuation processes for <i>in situ</i> destruction and detoxification of contaminants to reach pCULs in groundwater. MNA is proven to be effective at the Site; many wells are below pCULs and concentrations throughout the site are decreasing. Technical ability for any treatment to approach SWQS in groundwater very uncertain; however, MNA may achieve after extensive time frame. 	7	 Excellent/ (3) Fair if SWQS required ICs and cap will be effective in minimizing leaching to groundwater from and direct human contact with contaminated soil. Long-term groundwater treatment effectiveness relies on natural degradation and attenuation processes for <i>in situ</i> destruction and detoxification of contaminants to reach pCULs in groundwater. MNA is proven to be effective at the Site; many wells are below pCULs and concentrations throughout the site are decreasing. Technical ability of EISB to approach SWQS in groundwater very uncertain and not probable for site-wide groundwater; however, MNA may achieve after extensive time frame. 	7	 Excellent/ (3) Fair if SWQS required ICs and cap will be effective in minimizing leaching to groundwater from and direct human contact with contaminated soil. Long-term groundwater treatment effectiveness relies on natural degradation and attenuation processes for <i>in situ</i> destruction and detoxification of contaminants to reach pCULs in groundwater. MNA is proven to be effective at the Site; many wells are below pCULs and concentrations throughout the site are decreasing. Technical ability of EISB to approach SWQS in groundwater very uncertain and not probable for site-wide groundwater; however, MNA may achieve after extensive time frame. 	7	Exce • ICs conta • Lor proce grou conc • Teo site-v

Alternative D8

Algona, 17-07 Property Boundary, and The Outlet Collection Focus Areas and MNA

Ranking Considerations (1)

boc

ICs and containment to limit infiltration of water and direct human contact with contaminated il.

Current risks to human health and the environment do not exceed site-specific health based resholds; therefore, protectiveness is not appreciably greater through remedy implementation. Time required to meet SWQS in groundwater is extensive.

perior

Contaminated soil left in place at the Facility; however, no concentrations above direct-contact JLs.

Implementation of EISB at Algona, 17-07 Property Boundary, and Outlet Collection focus areas ill remove impacts of contaminated groundwater in those areas; however, other areas still affect re restoration time frames.

Contaminant mass is more rapidly decreased in limited areas with treatment, but does not result significantly decreased restoration time frames.

MNA will result in site-wide contaminant mass destruction; routine groundwater monitoring inducted until pCULs are met.

cellent/ (3) Fair if SWQS required

ICs and cap will be effective in minimizing leaching to groundwater from and direct human ontact with contaminated soil.

Long-term groundwater treatment effectiveness relies on natural degradation and attenuation ocesses for *in situ* destruction and detoxification of contaminants to reach pCULs in oundwater. MNA is proven to be effective at the Site; many wells are below pCULs and oncentrations throughout the site are decreasing.

Technical ability of EISB to approach SWQS in groundwater very uncertain and not probable for e-wide groundwater; however, MNA may achieve after extensive time frame.

Table 5-2 AOC A-14 Supplemental Feasibility Study Disproportionate Cost Analysis Relative Benefits Ranking Considerations Boeing Auburn Site Auburn, Washington

SFS Alternative Nun	nber:		Alternative D1		Alternative D6		Alternative D7		
SFS Alternative Na	me:		Site-wide MNA		EISB at Algona Focus Area and MNA	EISB	at Algona and 17-07 Property Boundary Focus Areas and MNA	EIS	6B at A
					Relative Benefits Rank	ing fo	r DCA		
- Manageability of Short-Term Risk (subsection [v])	10%	10	Superior Minimal worker health risk from contact with contaminated media during ongoing groundwater sampling. 	4	 Fair Minor worker health and safety risk for drilling equipment operation and from contact with contaminated media during drilling and installation of EISB systems; will be completed by HAZWOPER-certified drillers and contractors. Operation of pumps and equipment for time during bio-injection events (each event in the Algona focus area is anticipated to last 6 weeks) present additional risks to workers. Minimal worker health risk from contact with contaminated media during ongoing groundwater sampling. Moderate short-term risks from implementation of groundwater remediation closer to stormwater features causing possible TOC addition to Chicago Avenue ditch. 	3.5	 Fair Minor worker health and safety risk for drilling equipment operation and from contact with contaminated media during drilling and installation of EISB systems; will be completed by HAZWOPER-certified drillers and contractors. Operation of pumps and equipment for time during bio-injection events (each event in the 17-07 property boundary focus area is anticipated to last 18 weeks) present additional risks to workers. Minimal worker health risk from contact with contaminated media during ongoing groundwater sampling. Moderate short-term risks from implementation of groundwater remediation closer to stormwater features causing possible TOC addition to Chicago Avenue ditch. Moderate short-term risks from implementation near the 17-07 property boundary (work will occur in high-traffic area near active facility). 	1	Poor • Min conta HAZV • Op even addit • Min samp • Mod storm • Mod colle • Mod storm • conc storm
- Implementability (subsection [vi])	10%	10	Superior • Technical implementation uncomplicated; continued routine groundwater monitoring until pCULs are met. • Administration implementation includes filing ICs.	6	Good • Technical implementation challenges: - complicated at active buildings and other actively used properties due to installation of injection wells and the area required for mixing and injection of EISB materials. - Needed locations for injection wells may not be accessible due to location of buildings, infrastructure, off-property access restrictions. - Proper treatment of groundwater provides technical challenges (achieving adequate distribution and contact of injectate, difficulties to inject in low-permeability zones, and challenges with injection solution mounding and entering subsurface utilities). - Long- term O&M of injection wells and treatment system may present challenges such as rehabilitation of injection/extraction wells. • Administration implementation challenges include permitting for injection (UIC permit), and off-property site access/access agreements.	5	Good • Technical implementation challenges: - complicated at active buildings and other actively used properties due to installation of injection wells and the area required for mixing and injection of EISB materials. - Needed locations for injection wells may not be accessible due to location of buildings, infrastructure, off-property access restrictions. - Proper treatment of groundwater provides technical challenges (achieving adequate distribution and contact of injectate, difficulties to inject in low-permeability zones, and challenges with injection solution mounding and entering subsurface utilities). - Long- term O&M of injection wells and treatment system may present challenges such as rehabilitation of injection/extraction wells. • Administration implementation challenges include permitting for injection (UIC permit), and off-property site access/access agreements.	1	Poor • Tec - C injec - D Outle - N infra - P distri with - Lc reha - Pl wate many • Add prop

Alternative D8

Algona, 17-07 Property Boundary, and The Outlet Collection Focus Areas and MNA

or

- Minor worker health and safety risk for drilling equipment operation and from contact with contaminated media during drilling and installation of EISB systems; will be completed by HAZWOPER-certified drillers and contractors.
- Operation of pumps and equipment for long periods of time during extensive bio-injection vents (each event in The Outlet Collection focus area is anticipated to last 1.5 years) present dditional risks to workers.
- Minimal worker health risk from contact with contaminated media during ongoing groundwater ampling.
- Moderate short-term risks from implementation of groundwater remediation closer to tormwater features causing possible TOC addition to Chicago Avenue ditch.
- Moderate short-term risks from implementation near the 17-07 property boundary and Outlet collection Mall (work will occur in high-traffic area near active facility or active commercial area). Moderate short-term risks from implementation of groundwater remediation closer to tormwater/surface water features that could create reduced water conditions and cause higher oncentrations of naturally occurring metals (iron, manganese, and arsenic) and migrate to
- cormwater/surface water features.

oor

- Technical implementation challenges:
- complicated at active buildings and other actively used properties due to installation of jection wells and the area required for mixing and injection of EISB materials.
- Drilling and injection activities in publicly used parking areas and active areas around The butlet Collection extremely difficult.
- Needed locations for injection wells may not be accessible due to location of buildings, frastructure, off-property access restrictions.
- Proper treatment of groundwater provides technical challenges (achieving adequate istribution and contact of injectate, difficulties to inject in low-permeability zones, and challenges
- vith injection solution mounding and entering subsurface utilities). - Long- term O&M of injection wells and treatment system may present challenges such as ehabilitation of injection/extraction wells.
- Planned injection locations are closer to stormwater/surface water features and could cause vater quality concerns due to increased solubility of natural metals (e.g., arsenic, iron, and nanganese).

Administration implementation challenges include permitting for injection (UIC permit), and offroperty site access/access agreements.

Table 5-2 AOC A-14 Supplemental Feasibility Study Disproportionate Cost Analysis Relative Benefits Ranking Considerations **Boeing Auburn Site** Auburn, Washington

SFS Alternative Nur	nber:		Alternative D1		Alternative D6		Alternative D7				
SFS Alternative Na	ime:		Site-wide MNA		EISB at Algona Focus Area and MNA	EISB at Algona and 17-07 Property Boundary Focus Areas and MNA					
					Relative Benefits Ranl	king fo	or DCA				
- Consideration of 10% 4 Subsection [vii]) 10% 4		8	 Excellent Protective of human health and the environment. Public may appreciate that Algona focus area treatment is occurring, but not understand that MNA is an active and protective treatment remedy. Additional public concerns may be created by extensive activity in public and commercial areas and near residential areas for Algona focus area treatments. Public comments/concerns will be addressed during FS/CAP public comment period(s). 	8	 Excellent Protective of human health and the environment. Public may appreciate that Algona and Property Boundary focus area treatments are occurring, but not understand that MNA is an active ar protective treatment remedy. Additional public concerns may be created by extensive activity in public and commercial areas and near residential areas for Algona focu area treatments. Public comments/concerns will be addressed during FS/CAP public comment period(s). 						
Estimated Present	pCULs		\$2,300,000		\$4,740,000		\$11,200,000				
Value Cost (\$) (subsection [iii])	SWQS in GW		\$9,610,000		\$11,800,000		\$18,100,000				
Overall Weighted Benefit	Score	6.8	Good/Excellent	6.3	Good/Excellent	6.25	Good/Excellent	5.5			
Comparative Overall Bene GW pCULs (2)	efit/Cost		6.8	3.1			1.3				
Comparative Overall Bene SWQS in GW (2)	efit/Cost		6.8		5.1		3.3				

Notes:

(1) Ratings used: Poor (1-2), Fair (3-4), Good (5-6), Excellent (7-8), and Superior (9-10).

(2) Benefit/Cost Ratio calculated by dividing the overall weighted benefit score by the estimated remedy cost and scaled (multiplied)

by lowest cost alternative cost in order to compare ranges similar in scale to comparative overall benefit, as presented on Figure 6-1 of this FS report.

Abbreviations and Acronyms:

% = percent

CAP = cleanup action plan

CULs = cleanup levels (specifically referencing general MTCA cleanup levels rather

than proposed cleanup levels developed as part of the feasibility study) DCA = disproportionate cost analysis

EISB = enhanced in situ bioremediation FS = feasibility study GW = groundwater HAZWOPER = hazardous waste operations and emergency response ICs = institutional controls

MNA = monitored natural attenuation MTCA = Model Toxics Control Act O&M = operation and maintenance pCUL = proposed cleanup level SWQS = surface water quality standards TOC = total organic carbon

Alternative D8

t Algona, 17-07 Property Boundary, and The Outlet Collection Focus Areas and MNA

ood

Protective of human health and the environment.

- Public may appreciate that Algona, 17-07 Property Boundary, and Outlet Collection focus area reatments are occurring, but not understand that MNA is an active and protective treatment emedy.
- Additional public concerns may be created by extensive activity in public and commercial areas nd near residential areas for Algona and Outlet Collection focus area treatments.
- Public perception of risk at focus areas (Algona and The Outlet Collection) could cause false erception of environmental risk and create lost revenue for commercial businesses (within The Dutlet Collection) impacted by treatment of focus areas.
- Public comments/concerns will be addressed during FS/CAP public comment period(s).

\$39,800,000
\$46,000,000
Good
0.3
1.1

UIC = Underground Injection Control WAC = Washington Administrative Code

Table 5-3 AOC A-14 Summary of Supplemental Feasibility Study Alternatives MTCA Relative Benefits Ranking **Boeing Auburn Site** Auburn, Washington

SFS Alternative Number and Name		Alterna	tive D1			Alterna	tive D6			Alterna	tive D7		Alternative D8				
		Site-Wid	le MNA		EISB at A	Algona Foc	us Area ar	nd MNA		EISB at Algona and 17-07 Property Boundary Focus Area and MNA				EISB at Algona, 17-07 Property Boundary, and The Outlet Collection Focus Area and MNA			
Relative Benefits Ranking for Disproportionate Cost Analysis WAC 173-340-360(2)(b)(i) and WAC 173-340-36093)(f)																	
Comparative Overall Benefit (1)		Score	Weighting Factor	Weighted Score		Score	Weighting Factor	Weighted Score		Score	Weighting Factor	Weighted Score		Score	Weighting Factor	Weighted Score	
- Overall Protectiveness	Good	5	0.3	1.5	Good	5	0.3	1.5	Good	5	0.3	1.5	Good	5	0.3	1.5	
- Permanence	Excellent	7.5	0.2	1.5	Superior	8	0.2	1.6	Superior	8.5	0.2	1.7	Superior	9	0.2	1.8	
- Long-Term Effectiveness (3)	Excellent	7	0.2	1.4	Excellent	7	0.2	1.4	Excellent	7	0.2	1.4	Excellent	7	0.2	1.4	
- Manageability of Short-Term Risk	Superior	10	0.1	1	Fair	4	0.1	0.4	Fair	3.5	0.1	0.35	Poor	1	0.1	0.1	
- Implementability	Superior	10	0.1	1	Fair	6	0.1	0.6	Poor	5	0.1	0.5	Poor	1	0.1	0.1	
- Consideration of Public Concerns	Fair	4	0.1	0.4	Excellent	8	0.1	0.8	Excellent	8	0.1	0.8	Good	6	0.1	0.6	
Overall Weighted Benefit Score				6.8				6.3				6.3				5.5	
Disproportionate Cost Analysis - Quantitative Evaluation	-																
Overall Weighted Benefit Score		6.8				6.3			6.3				5.5				
Estimated Remedy Present Value Cost to meet		ć2 200	000			ć 1 7 1	000			¢11,200,000				¢20,800,000			

Overall Weighted Benefit Score	6.8	6.3	6.3	5.5		
Estimated Remedy Present Value Cost to meet GW pCULs	\$2,300,000	\$4,740,000	\$11,200,000	\$39,800,000		
Estimated Remedy Total Cost (Undiscounted) to meet GW pCULs	\$2,460,000	\$4,980,000	\$12,100,000	\$41,500,000		
Relative Benefit/Cost Ratio (2) for GW pCULs	6.8	3.1	1.3	0.3		
Estimated Remedy Present Value Cost to meet SWQS in GW	\$9,610,000	\$11,800,000	\$18,100,000	\$46,000,000		
Estimated Remedy Total Cost (Undiscounted) to meet SWQS in GW	\$11,700,000	\$14,000,000	\$20,900,000	\$49,100,000		
Relative Benefit/Cost Ratio (2) for SWQS in GW	6.8	5.1	3.3	1.1		
Most Permanent Solution	No	No	No	No		
Lowest Cost Alternative	Yes	No	No	No		
Costs Disproportionate to Incremental Benefits	No	Yes	Yes	Yes		
Remedy Permanent to the Maximum Extent Practicable?	Yes	No	No	No		
Preferred Alternative	Yes	No	No	No		
Cost of Lowest Present Value Cost Alternative (pCUL) Benefit Score of Highest Ranked Alternative (pCUL) Cost of Highest Present Value Cost Alternative (pCUL)	\$2,300,000 6.8 \$39,800,000		Cost of Lowest Present Value Cost Benefit Score of Highest Ranked Cost of Highest Present Value Cost	Alternative (SWQS) 6.8		

Notes:

R Р

(1) Ratings used: Poor (1-2), Fair (3-4), Good (5-6), Excellent (7-8), and Superior (9-10).

(2) Benefit/Cost Ratio calculated by dividing the overall weighted benefit score by the estimated remedy cost and scaled (multiplied)

by lowest cost alternative cost in order to compare ranges similar in scale to comparative overall benefit, as presented on Figures 5-1 and 5-2 of this SFS report.

(3) The values provided in this section are assuming drinking water pCULs. If surface water standards are required in groundwater, this ranking would drop to 3 due to the uncertainty of meeting SWQS site-wide in groundwater with any treatment option.

Abbreviations and Acronyms:

EISB = enhanced in situ bioremediation GW = groundwater MNA = monitored natural attenuation pCUL = proposed cleanup level

SFS = supplemental feasibility study SWQS = surface water quality standards WAC = Washington Administrative Code Page 1 of 1

Table 5-4 AOC A-14 Supplemental Feasibility Study Remedial Alternatives Cost Estimate Summary Boeing Auburn Site Auburn, Washington

		Treatme	ent to	o Meet Ground	wat	er pCULs	Treatment to Meet SWQS in Groundwater				
SFS Alternative	Technology	Length of Treatment (Years)		Total Cost Indiscounted)		resent Value Total Cost (a)	Length of Treatment (Years)		Total Cost ndiscounted)		esent Value tal Cost (1)
Alternative D1:	MNA	30	\$	2,460,000	\$	2,300,000	100	\$	11,700,000	\$	9,610,000
Site-Wide MNA	Total Cost		\$	2,460,000	\$	2,300,000		\$	11,700,000	\$	9,610,000
Alternative D6:	Algona EISB	20 (b)	\$	2,740,000	\$	2,650,000	20 (b)	\$	2,740,000	\$	2,650,000
EISB Algona Focus Area and Site-Wide MNA	MNA	30 (c)	\$	2,240,000	\$	2,090,000	100 (c)	\$	11,300,000	\$	9,170,000
	Total Cost		\$	4,980,000	\$	4,740,000		\$	14,000,000	\$	11,800,000
	Algona EISB	20 (b)	\$	2,740,000	\$	2,650,000	20 (b)	\$	2,740,000	\$	2,650,000
Alternative D7: EISB Algona and 17-07 Property Boundary	17-07 Property Boundary EISB	20 (b)	\$	7,220,000	\$	6,540,000	20 (b)	\$	7,220,000	\$	6,540,000
Focus Areas and Site-Wide MNA	MNA	29 (c)	\$	2,170,000	\$	2,030,000	97 (c)	\$	10,900,000	\$	8,940,000
	Total Cost	;	\$	12,100,000	\$	11,200,000		\$	20,900,000	\$	18,100,000
	Algona EISB	20 (b)	\$	2,740,000	\$	2,650,000	20 (b)	\$	2,740,000	\$	2,650,000
Alternative D8:	17-07 Property Boundary EISB	20 (b)	\$	7,220,000	\$	6,540,000	20 (b)	\$	7,220,000	\$	6,540,000
EISB Algona, 17-07 Property Boundary, and The Outlet	The Outlet Collection EISB	10 to 20 (d)	\$	29,600,000	\$	28,800,000	10 to 20 (d)	\$	29,600,000	\$	28,800,000
Collection Focus Areas and Site-Wide MNA	MNA	25 (c)	\$	1,890,000	\$	1,780,000	85 (c)	\$	9,550,000	\$	8,000,000
	Total Cost	;	\$	41,500,000	\$	39,800,000		\$	49,100,000	\$	46,000,000

Notes:

(a) Present value project costs for long-term operations, maintenance, and monitoring.

(Assume 0.4% discount rate - real discount, 30-year note, per Office of Management and Budget, Circular A-94 Appendix C, Revised Dec. 2019)

(b) Length of active treatment is assumed to last for 20 years, followed by 10 years of sustained treatment

(c) MNA timeframe is shown as the time expected to meet pCULs or SWQS; however, MNA parameter monitoring will begin after the EISB treatment is completed

(d) Length of active treatment is assumed to last for 10 to 20 years, followed by 10 years of sustained treatment

Detailed cost estimates are provided in Appendix F of this SFS.

Detailed information about assumed length of treatment is provided in Appendices C and D of this SFS

Abbreviations and Acronyms:

% = percent

EISB = enhanced *in situ* bioremediation

MNA = monitored natural attenuation

pCULS = proposed cleanup levels

SFS = supplemental feasibility study

SWQS = surface water quality standards