

Natural Background for Dioxins/Furans in WA Soils¹

Technical Memorandum #8

To: Interested Persons

From: Dave Bradley, Manager Information and Policy Section Toxics Cleanup Program

Date: August 9, 2010

Previously, Ecology recommended that 2.2 ng/kg TEQ dioxins & furans in Washington soils be used as a natural background. Reference to this value, supporting data, and discussion can be found in the following three Ecology publications:

- April 1999. Screening Survey for Metals and Dioxins in Fertilizer Products and Soils in Washington State. State of Washington, Department of Ecology. Publication Number 99-309.
- 2. April 1999. Supplemental Appendices Survey for Metals and Dioxins in Fertilizer Products and Soils in Washington State. State of Washington, Department of Ecology. Publication Number 99-310.
- 3. October 10, 2007. Concise Explanatory Statement and Responsiveness Summary for the Amendment of Chapter 173-340 WAC, Model Toxics Control Act Cleanup Regulation. State of Washington, Department of Ecology. Publication Number 07-09-108, page 83.

Since calculation of the 2.2 ng/kg TEQ for natural background, the MTCA rule was updated in 2007, requiring the use of different toxicity equivalency factors (TEFs). Changes to TEF values are summarized in Table 1.

Special accommodations: To ask about the availability of this document in a version for the visually impaired, call the Toxics Cleanup Program at 360-407-7170. Persons with hearing loss, call 711 for Washington Relay Service. Persons with a speech disability, call 877-833-6341.

¹ Calculations supporting this memorandum were conducted by Laura Klasner, P.E., Toxics Cleanup Program Peer review was conducted by Connie Groven and Pete Kmet, P.E., Toxics Cleanup Program.

The 1999 natural background calculations assigned a value of zero to non-detects. WAC 173-340-709(5)(a) currently specifies that non-detects be assigned a value equal to one-half of the method detection limit (MDL) when calculating natural background. The 2007 Concise Explanatory Statement, page 80, referenced above, also discusses how to treat undetected congeners in TEQ calculations.

The 1999 open and forested samples data set has one or more detections for all 17 congeners. Therefore, consistent with these references all congeners were assigned a value of one-half of the MDL if they were not detected. Where the laboratory reported a higher sample method detection limit than published for the method, the Method MDL was substituted for the laboratory MDL.

The method detection limits for dioxin congeners in EPA Method 8290 are as follows: ² tetra & penta have a MDL of 1 pptr hexa & hepta have MDLs of 2.5 pptr octa has a MDL of 5 pptr

Identical data sets were used for both the 1999 and 2010 natural background concentration calculations. This data set included 16 forested and open samples collected in 1998 within the state of Washington (Table 2). Data sets were evaluated and natural background was calculated using statistics appropriate for the distribution pattern (per WAC 173-340-709) (Table 3). Where duplicate samples were analyzed, an average of the two sample results was assigned to the congener values.

The results summarized in Table 2 are consistent with results from other studies.^{3 4} The Toxics Cleanup Program is currently designing a soil sampling study to characterize background soil concentrations for several organic hazardous substances that are frequently found at Washington cleanup sites. These substances include dioxins, furans, polychlorinated biphenyls (PCBs) and polynuclear aromatic hydrocarbons (PAHs). Once that study is completed, we will review and update (as appropriate) the information in this technical memorandum.

Based on these revised calculations (attached), an appropriate background for dioxin and furan mixtures is 5.2 ng/kg TEQ (2,3,7,8 TCDD - Toxic Equivalent Concentration). This can be considered a "natural background" concentration for upland soils for the purposes of cleanups under the Model Toxics Control Act Cleanup Regulation (Chapter 173-340 WAC).

² See Table 1 on Page 47 for EPA Method 8290. http://www.epa.gov/epawaste/hazard/testmethods/sw846/pdfs/8290a.pdf

³ Environmental Protection Agency. 2007. Pilot Survey of Levels of Polychlorinated Dibenzo-p-dioxins, Polychlorinated Dibenzofurans, Polychlorinated Biphenyls, and Mercury in Rural Soils in the United States. EPA/600/R-05/048F. National Center for Environmental Assessment, Office of Research and Development. April 2007.

⁴ Environmental Protection Agency. 2003. Exposure and Human Health Reassessment of 2,3,7,8 Tetrachlorodibenzo-p-dioxin (TCDD) and Related Compounds. NAS Review Draft. National Center for Environmental Assessment. EPA/600/P-00/001Cb.

Congener	2010 ⁵	1999 ⁶
Name	TEFs	TEFs
2,3,7,8-TCDD	1	1
1,2,3,7,8-PCDD	1	0.5
1,2,3,4,7,8-HxCDD	0.1	0.1
1,2,3,6,7,8-HxCDD	0.1	0.1
1,2,3,7,8,9-HxCDD	0.1	0.1
1,2,3,4,6,7,8-HpCDD	0.01	0.01
OCDD	0.0003	0.001
2,3,7,8-TCDF	0.1	0.1
1,2,3,7,8-PCDF	0.03	0.05
2,3,4,7,8-PCDF	0.3	0.5
1,2,3,4,7,8-HxCDF	0.1	0.1
1,2,3,6,7,8-HxCDF	0.1	0.1
2,3,4,6,7,8-HxCDF	0.1	0.1
1,2,3,7,8,9-HxCDF	0.1	0.1
1,2,3,4,6,7,8-HpCDF	0.01	0.01
1,2,3,4,7,8,9-HpCDF	0.01	0.01
OCDF	0.0003	0.001

 Table 1: Differences in TEF Values Used

⁵ The TEF values in the MTCA rule were obtained from the following publication: Van den Berg et al. 2006. The 2005 World Health Organization Re-evaluation of Human and Mammalian Toxic Equivalency Factors for Dioxins and Dioxin-like Compounds. Toxicological Sciences 93(2): 223-241. These TEF values are included in WAC 173-340-900 (Table 708-1).

⁶ The TEF values used in the 1999 analysis were obtained from the following publication: Van den Berg et al. 1998. Toxic equivalency factors (TEFs) for PCB, PCDDs and PCDFs for humans and wildlife. Environ. Health Perspect 106; 775-792.

		2007	1999
Sample	Sample	TEO	TEO
Number	Name	(ND = 1/2)	(ND=0)
		(ng/kg)*	ng/kg
98328332	Forest west commercial	2.6166	2.0338
98318243	Forested east commercial	2.4316	0.9140
98338330	Forested east commercial	1.1212	0.0330
98328341	Forested east non-commercial	6.5511	5.0985
98338331	Forested east non-commercial	1.3826	0.4490
98338333	Forested west commercial	2.7310	2.4213
98308000	Forested west non-commercial	6.1746	4.9288
98318241	Forested west non-commercial	3.5223	2.5690
98328335	Open east non-grazed	0.6533	0.0460
98328340	Open east non-grazed	1.3881	0.0834
98328336	Open east rangeland grazed	1.3252	0.0400
98338332	Open rangeland grazed	0.9596	0.0431
98318242	Open west non-grazed	1.1720	0.3360
98328330	Open west non-grazed	2.8599	2.3950
98308004	Open west rangeland grazed	1.2207	0.6190
98328331	Open west rangeland grazed	4.5294	4.5810
98328339	Urban Kennewick	1.6081	1.0840
98328337 & 98328338 avg	Urban Richland	4.4260	4.6252
98318230	Urban Seattle 1	0.7338	0.3120
98318238	Urban Seattle 2	5.6909	5.1490
98318236	Urban Seattle 3	1.3301	4.7250
98318231	Urban Seattle 4	0.7416	0.1300
98318235	Urban Seattle 5	1.3301	0.8212
98318232	Urban Seattle 6	2.5401	2.0970
98318233	Urban Seattle 7	1.4009	0.7365
98318234	Urban Seattle 8	6.1189	5.9740
98318237	Urban Seattle 9	1.7828	1.3640
98328333 & 98328334 avg	Urban Spokane	2.1531	0.6547
98318239	Urban Tacoma 1	21.0208	19.4890
98318240	Urban Tacoma 2	8.5060	9.4730

Table 2: Data from Ecology Publication 99-310, Sorted by Category:

* 1/2 EPA Method 8290 method detection limit substituted for lab detection limit, if lab detection limit was greater than Method 8290 method detection limit.

Table 3:	Sample	Statistics by	Category	of	Land	Use
----------	--------	---------------	----------	----	------	-----

Forested Samples Statistics				
	2007	1999		
	TEQ	TEQ		
	ng/kg	ng/kg		
Distribution	Lognormal	Normal		
mean =	3.3160	2.3060		
median =	2.6738	2.2276		
50th percentile =	2.8100	2.3100		
4 X 50th =	11.2200	9.2200		
90th percentile =	6.8100	4.1000		
min	1.1212	0.0330		
max	6.5511	5.0985		

Open Areas Samples Statistics			
	2007	1999	
	TEQ	TEQ	
	ng/kg	ng/kg	
Distribution	Lognormal	Lognormal	
mean =	1.7640	1.0180	
median =	1.2729	0.2097	
50th percentile =	1.4700	0.2500	
4 X 50th =	5.8700	1.0000	
90th percentile =	3.5800	3.8900	
min	0.6533	0.0400	
max	4.5294	4.5810	

Forested and Open Areas Samples Statistics			
	2007	1999	
	TEQ	TEQ	
	ng/kg	ng/kg	
Distribution	Lognormal	Lognormal	
mean =	2.5400	1.6620	
median =	1.9098	0.7665	
50th percentile =	2.0300	0.5500	
4 X 50th =	8.1100	2.1900	
90th percentile =	5.2100 **	8.0700	
min	.6533	0.0330	
max	6.5511	5.0985	

Urban Samples Statistics				Forested, Open & U	rban
	2007	1999			
	TEQ	TEQ			
	ng/kg	ng/kg			
Distribution	Lognormal	Lognormal		Distribution	L
mean =	4.2420	4.0450		mean =	
median =	1.9679	1.7305		median =	
50th percentile =	2.5800	1.8700		50th percentile =	
4 X 50th =	10.3200	7.4600		4 X 50th =	
90th percentile =	9.9300	12.5700		90th percentile =	
min	0.7338	0.1300		min	
max	21.0208	19.4890		max	

Forested, Open & Urban Samples Statistics			
	2007 1999		
	TEQ	TEQ	
	ng/kg	ng/kg	
Distribution	Lognormal	Lognormal	
mean =	3.3340	2.3530	
median =	1.9679	0.6369	
50th percentile =	2.2700	0.5600	
4 X 50th =	9.0800	2.2500	
90th percentile =	6.9400	5.3800	
min	0.6533	0.0330	
max	21.0208	19.4890	

Highlighted values are the lower of 90th percentile and 4 X 50 percentile (per WAC 173-340-709).

** Basis for MTCA natural background.