

River and Stream Water Quality Monitoring Report

Water Year 2011

July 2012 Publication No. 12-03-039

Publication and Contact Information

This report is available on the Department of Ecology's web site at www.ecy.wa.gov/biblio/1203039.html

Finalized data for this project are available at Ecology's Environmental Information Management (EIM) web site www.ecy.wa.gov/eim/index.htm. Search Study IDs, AMS001, AMS002B.

Ecology's Activity Tracker Code for this study is 01-600.

For more information contact:

Publications Coordinator Environmental Assessment Program P.O. Box 47600, Olympia, WA 98504-7600 Phone: (360) 407-6764

Washington State Department of Ecology - www.ecy.wa.gov

0	Headquarters, Olympia	(360) 407-6000
0	Northwest Regional Office, Bellevue	(425) 649-7000
0	Southwest Regional Office, Olympia	(360) 407-6300
0	Central Regional Office, Yakima	(509) 575-2490
0	Eastern Regional Office, Spokane	(509) 329-3400

Cover photo: Bill Ward placing TidBits in the Duckabush River; station 16C090 (by Karen Adams, Sept 18, 2009).

Any use of product or firm names in this publication is for descriptive purposes only and does not imply endorsement by the author or the Department of Ecology.

If you need this document in a format for the visually impaired, call 360-407-6764.

Persons with hearing loss can call 711 for Washington Relay Service.

Persons with a speech disability can call 877-833-6341.

River and Stream Water Quality Monitoring Report

Water Year 2011

by

David Hallock

Freshwater Monitoring Unit Environmental Assessment Program Washington State Department of Ecology Olympia, Washington 98504-7710

Waterbody Numbers: Statewide

This page is purposely left blank

Table of Contents

	<u>Page</u>
List of Figures and Tables	5
Abstract	7
Acknowledgements	8
Introduction	9
Goals and Objectives	10
Monitoring in Water Year 2011	11
Methods	12
Sampling Network	12
Sample Collection and Analysis	14
Program Changes	
Continuous Temperature Monitoring	
Continuous Multiple-Parameter Monitoring	
Metals Monitoring	
Lake Monitoring	
Quality Assurance	
Continuous Temperature Monitoring	
Continuous Multiple-Parameter Monitoring	20
Results and Discussion	21
Monthly Ambient Monitoring	21
Continuous Temperature Monitoring	
Continuous Multiple-Parameter Monitoring	
Oxygen	26
Temperature	
pH	
Metals Monitoring	
Lake Monitoring	
Quality Assurance	
Barometric Pressure	
Errors in EIM and Web Databases	
Comparison to Quality Control Requirements	
Continuous Temperature Monitoring	
Continuous Multiple-Parameter Monitoring	
Lake Monitoring	
Conclusions and Recommendations	42
Conclusions	
Recommendations	42
References	43
Appendices	45
Appendix A. Station Description and Period of Record	47

Appendix B. Historical Changes in Sampling and Laboratory Procedures, as well	
as Large-Scale Environmental Changes Potentially Affecting Water Quality	69
Appendix C. Water Year 2011: Sources of Raw Data	77
Appendix D. Water Year 2011: Missing Data	79
Appendix E. Glossary, Acronyms, and Abbreviations	83

List of Figures and Tables

	<u>Page</u>
Figure	
Figure 1. Dissolved and total metals in the Similkameen River at Oroville.	29
Figure 2. Difference between calculated barometric pressure (BP) based on elevation and measured BP for 10 years of ambient data.	
Tables	
Table 1. Ecology stream ambient monitoring stations for Water Year 2011.	13
Table 2. Water quality parameters monitored in Water Year 2011.	14
Table 3. Stations monitored for continuous multiple-parameters in Water Year 2011	17
Table 4. Bi-monthly sampling stations for metals in Water Year 2011.	17
Table 5. Water quality criteria in the 2006 water quality standards associated with aquatic life uses.	22
Table 6. Water quality criteria in the 2006 water quality standards associated with contact recreation.	22
Table 7. Stations for which flows are unlikely to be available.	23
Table 8. Temperature summary for Water Year 2011	24
Table 9. Stations exceeding the 13 °C supplemental temperature criterion	25
Table 10. The five stations with the warmest maximum temperatures in 2011 and the maximum temperatures at those stations in 2010 and 2009	25
Table 11. Maximum 7-DADMax temperature and pH and minimum 7-DADMin oxygen compared to water quality criteria.	
Table 12. Metals results from Water Year 2011 exceeding 2006 water quality standards criteria.	28
Table 13. Results qualified by Manchester Laboratory as being below the reporting limit	i 31
Table 14. Root mean square (RMS) of the standard deviation of sequential samples, field splits, and laboratory splits.	
Table 15. Average relative standard deviation (RSD) of replicate samples collected in Water Year 2011.	36
Table 16. Results of field process blank (de-ionized water) samples	37
Table 17. Quality control results from continuous multiple-parameter monitoring	38
Table 18. Quality control results from lake total phosphorus sampling (mg/L)	40

This page is purposely left blank

Abstract

The Washington State Department of Ecology (Ecology) collected monthly water quality data at 92 stream monitoring stations during Water Year 2011 (October 1, 2010 through September 30, 2011). We also collected 30-minute-interval temperature data at 27 sites, mostly from July through September 2011. In addition, we continued a continuous oxygen monitoring program at 13 sites.

The principal goals of this ongoing monitoring program are to monitor trends in water quality of rivers and streams in Washington State, to support a probabilistic monitoring program (Merritt, 2006), and to support Clean Water Act Section 303(d) reporting.

This report documents methods and data quality for Water Year 2011. This year's annual report includes a quality control (QC) analysis of continuously monitored data using multiple-parameter (oxygen, temperature, pH, and conductivity) instruments and a QC analysis of total phosphorus data collected from lakes monitoring for aquatic plants.

A description of Ecology's long-term monitoring program and access to historical data can be found on Ecology's web site at www.ecy.wa.gov/programs/eap/fw riv/ry main.html.

Acknowledgements

The success of the Water Year 2011 ambient monitoring program, and the quality of the data, are attributable to the following people:

- Several Department of Ecology staff spent long hours working in all kinds of weather, traffic, and road conditions. Without their dedication, Appendix D would be much longer. Water Year 2011 samplers (and their lifetime sample count) were Bill Ward (3524), Daniel Sherratt (1268), Jason Myers (709), Troy Warnick (480), Mike Anderson (216), and Dan Dugger (150).
- Bill Ward conducted the continuous stream temperature monitoring project.
- Jason Myers provided streamflow data.
- Brad Hopkins, Bill Ward, Mike Anderson, and Bill Kammin reviewed the draft report;
 Maggie Bell-McKinnon reviewed the lake monitoring sections; and Jenny Hall reviewed the multiple-parameter monitoring sections.
- Jenny Hall conducted much of the quality control review of the multiple-parameter monitoring.
- Joan LeTourneau formatted and edited the final report.

The following Manchester Environmental Laboratory staff did their usual meticulous best to provide high quality data with remarkably fast turn-around times. The folks there are a pleasure to work with.

- Nancy Rosenbower performed sample tracking services with help from Nancy Jensen,
 Aileen Richmond, Susan Carrell, Meredith Jones, and Deborah Clark.
- Dean Momohara supervised the Inorganics Section. Dean was always responsive to our needs and willing to re-analyze samples if there were any questions.
- Kim Archer, Daniel Baker, Crystal Bowlen, Sally Cull, Kamilee Ginder, Nancy Jensen, Aileen Richmond, and Rebecca Wood performed general chemistry analyses.
- Nancy Jensen, Sally Cull, and Susan Carrell were responsible for the microbiology.
- Sally Cull, Meredith Jones, Dean Momohara, and Rebecca Wood worked on low-level metals, and Sally Cull prepared metals sample containers.
- Leon Weiks provided sample containers and other supplies, and Leon and Dean provided transport services.
- Stuart Magoon managed the lab and kept everything working smoothly.

Introduction

The Washington State Department of Ecology (Ecology) and its predecessor agency have operated an ambient water quality monitoring program since 1959. Between 1995 and 2010, the basic program consisted of monthly water quality monitoring for conventional parameters at 62 long-term stations and 20 basin (rotating) stations on rivers and streams throughout Washington State. Beginning with Water Year (WY) 2011, we added more long-term stations and reduced the number of basin stations. In addition, we sampled 10 special project stations.

Our data are provided free to the public and are widely used by academics, consultants, local governments, schools, and others interested in the quality of Washington's flowing waters.

Within Ecology, data generated by ambient monitoring are used to:

- Determine if waters are meeting Washington State water quality standards or are in need of cleanup (e.g., www.ecy.wa.gov/programs/wq/303d/index.html).
- Identify trends in water quality characteristics (e.g., Hallock, 2005).
- Refine and verify Total Maximum Daily Load (TMDL) models.
- Develop water quality-based permit conditions.
- Conduct site-specific evaluations (e.g., Hallock, 2004).

A generalized assessment of water quality at particular stations is provided online (www.ecy.wa.gov/programs/eap/fw_riv/rv_main.html) in the form of a water quality index (WQI; Hallock, 2002). The WQI and trends at long-term stations are reported in *Washington State Water Quality Conditions in 2005 based on Data from the Freshwater Monitoring Unit* (Hallock, 2005).

Other Ecology programs conduct some of their own analyses. For example, Ecology's Water Quality Program applies its own data reduction procedures prior to producing Washington State's Water Quality Assessment [303(d) & 305(b) Report], which includes the list of waters needing to be cleaned up (www.ecy.wa.gov/programs/wq/303d/index.html).

This report describes the WY 2011 monitoring program and discusses the quality of the data collected in WY 2011. More detailed analyses and interpretations of ambient monitoring data are reported elsewhere (for example, see our reports at www.ecy.wa.gov/programs/eap/fw riv/rv main.html).

Goals and Objectives

The primary goals of the River and Stream Ambient Monitoring Program are to monitor trends in the water quality of Washington's rivers and streams, to support a companion probabilistic biological monitoring program (Merritt, 2006), and to support Clean Water Act Section 303(d) reporting.

Beginning with WY 2011, we modified the objectives for basin stations and added a new station type. See Hallock (2011) for a description of our previous monitoring design; a white paper discussing the redesign of our monitoring objectives is available on request.

- Long-term station objectives are unchanged. Stations are monitored every year to track water quality changes over time (trends), assess inter-annual variability, and collect current water quality information. These stations are generally located near the mouths of major rivers, below major population centers, where major streams enter the state, or upstream from most anthropogenic (human-caused) sources of water quality problems.
- **Basin stations** are selected to support the "Water Quality Assessment" process and federal Clean Water Act (303(d)) listings (http://ecy.wa.gov/programs/wq/303d/index.html). Specific objectives are to:
 - Confirm current Category 5 (*Polluted waters*) listings: Some listings are based on old or suspect data; recent data of known quality will help remove waterbodies from the Category 5 list that are currently supporting standards.
 - o Determine a category for currently unlisted waterbodies.
 - o Better define current Category 5 listings.
 - o Resolve Category 2 (*Waters of concern*) listings: should they be Category 1 (*Meets standards*) or Category 5?
 - o Identify "high quality" Tier III waters.
- **Sentinel sites:** These are "long-term" stations with the following objectives:
 - o Support Ecology's probabilistic "Watershed Health" monitoring program.
 - o Characterize reference conditions.
 - o Provide trend data for reference conditions.
 - o Monitor climate change.
- **Special project station** objectives are unchanged. These stations are typically sampled to address a particular question, and they are usually supported by funding external to the ambient monitoring program. We may not sample these stations for the entire usual suite of sampled parameters, or we may sample extra parameters. Special project stations will not necessarily represent typical water quality conditions.

Monitoring in Water Year 2011

In WY 2011, we monitored 66 long-term, 13 basin, and 3 sentinel stations (82 total). In addition, we monitored 10 stations associated with special projects (with external funding). Four of these were in Ecology's Northwest Region and six in the Southwest Region. All these stations were associated with the Intensively Monitored Watersheds (IMW) project (see www.ecy.wa.gov/programs/eap/imw).

Besides routine grab-sample monitoring, we conducted the following additional monitoring activities:

- 30-minute-interval temperature data collection from about July through September 2011 at several long-term and basin stations.
- Bi-monthly metals monitoring at 9 selected stations.
- Continuous monitoring for temperature, dissolved oxygen, pH, and conductivity at 13 stations, including six stations in support of IMW work. Results were delivered in near-real-time to the Internet by satellite telemetry at most stations.

Methods

Sampling Network

The ambient monitoring network in WY 2011 consisted of monthly water collection at all stations. We sampled all stations year-round.

Ambient stations monitored during WY 2011 are listed in Table 1. Appendix A lists current and historical monitoring locations and the years they were monitored by Ecology and its predecessor agency.

A description of our long-term monitoring program, access to most historical data, and previous annual reports can be found on Ecology's web site at www.ecy.wa.gov under the "Environmental Assessment" program and "River and Stream Water Quality."

Table 1. Ecology stream ambient monitoring stations for Water Year 2011. *See Appendix A*.

Key	Station	Location	Status ^a	Key	Station	Location	Status ^a
1	01A050	Nooksack R @ Brennan	C	47	25D050	Germany Cr @ mouth	P
2	01A120	Nooksack R @ No Cedarville	C	48	25E060	Abernathy Cr nr mouth	P
3	03A060	Skagit R nr Mount Vernon	C	49	25F060	Mill Cr nr mouth	P
4	03B050	Samish R nr Burlington	C	50	25G060	Coal Cr @ Harmony Rd	В
5	04A100	Skagit R @ Marblemount	C	51	26B070	Cowlitz R @ Kelso	C
6	05A070	Stillaguamish R nr Silvana	C	52	27B070	Kalama R nr Kalama	C
7	05A090	SF Stillaguamish R @ Arlington	C	53	27D090	EF Lewis R nr Dollar Corner	C
8	05A110	SF Stillaguamish R nr Granite Falls	C	54	31A070	Columbia R @ Umatilla	C
9	05B070	NF Stillaguamish R @ Cicero	C	55	32A070	Walla Walla R nr Touchet	C
10	05B110	NF Stillaguamish R nr Darrington	C	56	33A050	Snake R nr Pasco	C
11	07A090	Snohomish R @ Snohomish	C	57	34A070	Palouse R @ Hooper	C
12	07A100	Snohomish R @ Short School Rd	В	58	34A170	Palouse R @ Palouse	C
13	07C070	Skykomish R @ Monroe	C	59	34B110	SF Palouse R @ Pullman	C
14	07D050	Snoqualmie R nr Monroe	C	60	35A150	Snake R @ Interstate Br	C
15	07D130	Snoqualmie R @ Snoqualmie	C	61	35B060	Tucannon R @ Powers	C
16	08C070	Cedar R @ Logan St/Renton	C	62	36A070	Columbia R nr Vernita	C
17	08C110	Cedar R nr Landsburg	C	63	37A090	Yakima R @ Kiona	C
18	09A080	Green R @ Tukwila	C	_	37A205	Yakima R @ Nob Hill	C
19	09A190	Green R @ Kanaskat	C	65	37J060	Snipes Cr nr mouth	В
20	09N050	Mullen Slough @ Frager Rd	В	66	38A050	Naches R @ Yakima on US HWY 97	C
21	09Q060	Redondo Cr abv Marine View Dr S.	В	67	39A055	Yakima R @ Umtanum Cr Footbrg	C
22	10A070	Puyallup R @ Meridian St	C	68	39A090	Yakima R nr Cle Elum	C
23	10G080	Hylebos Cr @ 8th St E	В	69	39M050	Swauk Cr nr Cle Elum	В
24	10J050	Lakota Cr @ Dumas Bay Center	В	70	39M100	Swauk Cr @ Lauderdale Junction	В
25	11A070	Nisqually R @ Nisqually	C	71	41A070	Crab Cr nr Beverly	C
26	12C060	Flett Cr @ 75th St W	В	72	45A070	Wenatchee R @ Wenatchee	C
27	13A060	Deschutes R @ E St Bridge	C	73	45A110	Wenatchee R nr Leavenworth	C
28	15F050	Big Beef Cr @ mouth	P	74	46A070	Entiat R nr Entiat	C
29	15L050	Seabeck Cr @ mouth	P	75	48A075	Methow R nr Pateros @ Metal Br	C
30	15M070	Llt Anderson Cr @ Anderson Hill Rd	P	76	48A140	Methow R @ Twisp	C
31	15N070	Stavis Cr nr mouth	P	77	49A070	Okanogan R @ Malott	C
32	16A070	Skokomish R nr Potlatch	C	78	49A190	Okanogan R @ Oroville	C
33	16B130	Hamma Hamma R @ Lena Cr Camp	S	79	49B070	Similkameen R @ Oroville	C
34	16C090	Duckabush R nr Brinnon	C	80	53A070	Columbia R @ Grand Coulee	C
35	18B070	Elwha R nr Port Angeles	C	81	54A120	Spokane R @ Riverside State Pk	C
36	19C060	West Twin R nr mouth	P	82	55B070	Little Spokane R nr mouth	C
37	19D070	East Twin R nr mouth	P	83	56A070	Hangman Cr @ mouth	C
38	19E060	Deep Cr nr mouth	P	84	57A150	Spokane R @ Stateline Br	C
39	20B070	Hoh R @ DNR Campground	C	85	59A080	Colville R abv Kettle Falls	C
40	20E100	Twin Cr @ Upper Hoh Rd Br	S	86	59B200	Little Pend Oreille R nr NatWildRef	S
41	22A070	Humptulips R nr Humptulips	C	87	59C070	Sheep Ck at Long Prairie Rd	В
42	23A070	Chehalis R @ Porter	C	88	60A070	Kettle R nr Barstow	C
43	23A160	Chehalis R @ Dryad	C	89	61A070	Columbia R @ Northport	C
44	24B090	Willapa R nr Willapa	C	90	62A090	Pend Oreille R @ Metaline Falls	C
45	24F070	Naselle R nr Naselle	C	91	62A150	Pend Oreille R @ Newport	C
46	25B070	Grays R nr Grays R	В	92	62B070	Skookum Ck nr mouth	В

^a C: long-term; S: Sentinel; B: basin; P: Special Project (Intensively Monitored Watersheds).

Sample Collection and Analysis

We collected samples from the majority of stations as single, near-surface grab samples from highway bridges. We sampled a small subset of stations from the bank, off of culverts, and other locations. Sampling locations are identified on our web site.

We monitored for 12 standard water quality parameters monthly at all stations (Table 2).

Table 2. Water quality parameters monitored in Water Year 2011. Standard parameters collected at all stations are in **bold**.

Parameter	Method	Typical Reporting Limit	
Ammonia, total	SM 4500 NH3H	0.01 mg/L	
Carbon, dissolved organic	SM 5310 B	1 mg/L	
Carbon, total organic	SM 5310 B	1 mg/L	
Chlorophyll	SM 10200H3	0.1 ug/L	
Conductivity	SM 2510 B	NA	
Fecal coliform bacteria	SM 9222 D	1 colony/100 mL	
Hardness	SM 2340 B	Not specified	
Metals: mercury	EPA 245.7	0.002 ug/L	
Metals: other	EPA 200.8	various	
Nitrate + nitrite, total	SM 4500 NO3I	0.01 mg/L	
Nitrogen, total	SM 4500 NB	0.025 mg/L	
Nitrogen, total (dissolved)	SM 4500 NB	0.025 mg/L	
Oxygen, dissolved	SM 4500 OC	NA	
pH	SM 4500 H+	NA	
Phosphorus, soluble reactive	SM 4500 PG	0.003 mg/L	
Phosphorus, total	SM 4500 PF	0.005 mg/L	
Suspended solids, total	SM 2540 D	1 mg/L	
Suspended sediment concentration	ASTMD3977B	1 mg/L	
Temperature	SM 2550 B	NA	
Turbidity	SM 2130	0.5 NTU	

SM: APHA 2005.

EPA: U.S. Environmental Protection Agency, 1983.

Besides the 12 water quality parameters, we also recorded barometric pressure (to calculate percent oxygen saturation) and stream stage measurements, where necessary, to enable flow determination for most long-term stations and some basin stations. We collected metals samples bi-monthly (every other month) at 9 stations as well as additional parameters, such as total organic carbon and chlorophyll, by request at selected stations.

Sample collection and analytical methods are described in our standard operating procedures (Ward, 2007a; Ward, 2007b; Ward, 2011), ambient monitoring quality assurance (QA) documents (Hallock and Ehinger, 2003; Hallock, 2012; and Hopkins, 1996), and Manchester Environmental Laboratory's *Lab Users Manual* (MEL, 2008).

Program Changes

All long-term monitoring programs experience changes in sampling or analytical procedures that can potentially affect results. Normally, these changes are implemented to improve precision or reduce bias. Most changes will have only a minor effect on a synoptic analysis of the data, but even minor improvements in procedures should be considered when evaluating long-term trends.

We made no changes to collection, analytical, or quality control (QC) procedures in WY 2011 that we believe will affect trends.

However, we did find and correct some historical data errors, and we also prepared for an equipment change beginning in WY 2012:

- We had calculated instantaneous flow incorrectly at several stations from WY 2003 through WY 2009. These flows have been corrected in our database. We have decided to remove instantaneous flow data associated with our water quality data from our web pages and from EIM. Most flows are collected by agencies other than Ecology, using QC procedures we have not evaluated. The data we retrieve are often preliminary and subject to change. In addition, these data are already publicly available on the collecting agencies' web sites.
- We checked historical barometric pressures against station elevation and made a number of corrections. This analysis is discussed further in the *Quality Control* section of this report.
- The pH probe we have been using since 1991 (Orion liquid fill) is no longer being manufactured. We conducted several months of comparative tests in preparation for changing to a new pH probe and meter beginning in WY 2012. Results from these tests are reported in the *Quality Control* section of this report.

All known and suspected changes to methods and procedures during the history of the stream monitoring program, as well as large-scale environmental changes that may affect a trend analysis, are documented in Appendix B.

Continuous Temperature Monitoring

This program's goal is to collect summer, diel (24-hour) temperature data with 30-minute monitoring intervals at most long-term and current basin ambient monitoring stations, as well as at some special request stations. The data are primarily used for trend analyses and to determine the stream's compliance with water quality standards.

The scope of this program is being expanded (as resources and locations allow) with the establishment of year-round temperature (and seasonal oxygen) monitoring stations. Six long-term and two basin stations were installed during WY 2011 using a slant-pipe attached to the stream bank or to a shoreline structure.

We try to deploy the loggers that collect summer data by early July and retrieve them in late September. We also try to swap out the loggers at our year-round stations following a similar (June-September) schedule.

We deploy two Onset StowAway TidbiT® temperature loggers at each site, one in water and one in air. All deployed loggers are shaded with a PVC pipe and installed in a location considered representative of the surrounding environment. We usually install stream temperature loggers about six inches off the stream bottom to minimize potential influence from groundwater inflow. Loggers are placed in a free-flowing location at a depth to avoid exposure to air resulting from low streamflows.

Beginning in WY 2012, we intend to set all deployed loggers to *standard time*. Previously, we deployed loggers primarily during daylight savings time, and we used local time because it matched field sample times. However, year-round deployments cause problems with twice-yearly time shifts when using local time.

Detailed protocols are found in Ward (2011) and QC requirements in Ward (2005).

Continuous Multiple-Parameter Monitoring

Like temperature, oxygen concentration changes in a sinusoidal pattern over a 24-hour period. Oxygen concentration is typically lowest in the morning and highest in the late afternoon. Usually, daily lows are of the most interest because they have the most impact on aquatic life. Our grab-sample monitoring program does a poor job of capturing daily low oxygen concentrations.

To measure daily low oxygen concentrations, we need diel oxygen data. We are particularly interested in annual lows (usually occurring in mid to late summer), but also in daily low concentrations at the beginning and ending of salmonid spawning seasons, which vary according to location.

In WY 2011, we deployed Hydrolab® Minisondes with optical oxygen sensors (LDO) or In Situ® optical oxygen sensors (RDO) at 13 stations, 6 in support of the IMW project and 7 to supplement grab sample monitoring (Table 3). Most instruments were connected to near-real-

time telemetry stations. We deployed self-contained systems (without telemetry) at three sites. All instruments recorded temperature, oxygen, and conductivity readings every 15 minutes. Several instruments also recorded pH. Our methods are described in Hallock (2009). We hope to expand this program in the future; however, we have no dedicated funding and are dependent on available resources.

Table 3. Stations monitored for continuous multiple-parameters in Water Year 2011.

Station	Name	Objective
08C110	Cedar R near Landsburg	Long-term; reference conditions
13A060	Deschutes R @ E St	WQS evaluation; support intensive monitoring project
19C060	West Twin R near mouth	Support IMW project
19D070	East Twin R near mouth	Support IMW project
19E060	Deep Cr near mouth	Support IMW project
23A070	Chehalis @ Porter	Oxygen is Category 2. Assess to move to Category 1 or 5.
25D050	Germany Cr @ mouth	Support IMW project
25E060	Abernathy Cr near mouth	Support IMW project
25F060	Mill Cr near mouth	Support IMW project
25G060	Coal Cr @ Harmony Rd	Initial assessment. Supplemental temperature criteria apply.
37J060	Snipes Cr near mouth	Oxygen and pH are Category 2. Assess to move to 1 or 5.
41A070	Crab Cr near Beverly	Oxygen is Category 2 (pH is 5). Assess to move to 1 or 5.
59C060	Sheep Cr @ Deer Cr Rd	Oxygen and pH are Category 2. Assess to move to 1 or 5.

WQS: Water Quality Standards. IMW: Intensively Monitored Watershed.

Metals Monitoring

Metals monitoring continued in WY 2011 at 9 stations (Table 4). Metals samples were collected every other month beginning in October 2010 at all stations except the Similkameen at Oroville. We monitored monthly in the Similkameen beginning in April to assess water quality prior to and during the re-opening of the Copper Mountain Mining Company's open pit copper mine in British Columbia, Canada.

Table 4. Bi-monthly sampling stations for metals in Water Year 2011.

Station	Name	Station	Name
10G080	Hylebos Cr @ 8th St E	49B070	Similkameen R @ Oroville
12C060	Flett Cr @ 75th St W	55B070	Little Spokane R nr mouth
25G060	Coal Cr @ Harmony Rd	56A070	Hangman Cr @ mouth
37J060	Snipes Cr nr mouth	57A150	Spokane R @ Stateline Br
39M100	Swauk Cr @ Lauderdale Junction		

Samples were analyzed for hardness and total mercury, as well as total and dissolved arsenic, cadmium, chromium, copper, lead, nickel, silver, and zinc. Collection and analytical methods are discussed in more detail in Ward (2007b) and Hopkins (1996).

Our current objectives for metals monitoring are as follows:

- Continue trend monitoring in the Spokane River at Stateline Bridge.
- Assess metals at the few remaining long-term stations where we have never collected metals data.
- Assess metals at basin stations in developed areas or in areas with a history of mining in the watershed.

Lake Monitoring

Although Ecology currently has no statewide lake monitoring program, Ecology management agreed to fund the analysis of total phosphorus samples collected from lakes visited by staff as part of Ecology's aquatic plant monitoring program. Plant monitoring staff collected 32 samples from 28 lakes (4 lakes were visited twice) in WY 2011.

The Quality Assurance Project Plan for this monitoring project is Bell-McKinnon (2011).

Quality Assurance

Ecology's Manchester Environmental Laboratory QA program includes the use of QC charts, check standards, in-house matrix spikes, laboratory blanks, and performance evaluation samples. For a more complete discussion of laboratory QA, see Manchester Laboratory's *Quality Assurance Manual* (MEL, 2006) and their *Lab Users Manual* (MEL, 2008).

The QA program for field sampling consisted of three parts:

- 1. Adherence to standard operating procedures (SOPs) for sample/data collection and periodic evaluation of sampling personnel.
- 2. Consistent instrument calibration methods and schedules.
- 3. The collection of field QC samples during each sampling run.

Our QA program is described in detail in Hallock and Ehinger (2003) and Hallock (2012).

Three types of field QC samples were collected:

- 1. *Duplicate (Sequential) Field Samples*. These consisted of an additional sample collection made approximately 15-20 minutes after the initial collection at a station. These samples represent the total variability due to short-term, instream dynamics; sample collection and processing; and laboratory analysis.
- 2. *Duplicate (Split) Field Samples*. These consisted of one sample (usually the duplicate sequential sample) split into two containers that are processed as individual samples. This eliminates instream and sample collection variability. Remaining variability is attributable to field processing and laboratory analysis.

3. *Field Blank Samples*. These consisted of the submission and analysis of de-ionized water. These are true field process blanks. The blank water was poured into cleaned sample collection equipment, and the sampler simulated collecting a water sample, including lowering the sampling device to the water surface. The expected value for each analysis is the reporting limit for that analysis. Significantly higher results would indicate that sample contamination had occurred during field processing or during laboratory analysis.

We submit QC samples semi-blind to the laboratory. Samples were identified as QC samples, but sample type (duplicate, split, or blank) and station were not identified.

In WY 2011, we processed 126 field QC samples for standard parameters: 13 field blanks, 57 field duplicates (sequential), and 56 field split samples. In addition, the laboratory conducted its own splits of some field QC samples. The central tendency of the variance of pairs of split field samples was summarized by calculating the square root of the mean of the sample-pair variances (root mean square; RMS). These figures provide an unbiased and higher estimate than other commonly used statistics (for example, mean or median of the standard deviations).

We use a two-tiered system to evaluate data quality of individual results based on field QC. The first tier consists of four automated checks: holding time, variability in field duplicates, reasonableness of the result, and the balance of nutrient species. Results exceeding pre-set limits are flagged. The second tier QC evaluation consists of a manual review of the data flagged in the first tier. Data are then coded from 1 through 9 (1 = data meet all QC requirements, 9 = data are unusable). Criteria for assigning codes are discussed in more detail in Hallock and Ehinger (2003). We do not routinely use or distribute data with quality codes greater than 4.

Finally, data management includes verification at several stages:

- We verify field data entry quarterly by comparing field data forms to printouts from the database.
- At the end of the WY, we electronically compare data in Ecology's EIM database, and in the database used for our web presentation, to the primary database.
- We visually check plots of streamflow versus stage height for anomalies. For flows
 determined independent of stage records, this method confirms the flow. (Most flows are
 derived from continuous recorders and based on date and time, not stage.) For flows based
 on stage, this method confirms that the flow was correctly determined from the flow curve,
 but the method cannot ensure that stage was correctly recorded.

Continuous Temperature Monitoring

The quality of the continuous temperature data was assessed by calibration checks using a certified reference thermometer before and after a deployment. If a pre-survey calibration check indicated that a logger's accuracy was not within the required limits (0.2 °C for water and 0.4 °C for air) when compared to a certified reference thermometer, then the logger was rejected and not deployed (Ward, 2005).

If a logger failed a post-survey calibration check, then the results may be rejected or, if the bias was relatively small and consistent (i.e., the pre-deployment bias was just within the required limits and in the same direction as the post-deployment bias), we may adjust results.

All datasets are graphically reviewed to identify and delete anomalies. In addition, we compare the data to the field temperature measurements taken at deployment and retrieval with a calibrated alcohol thermometer or thermistor. We also assess the differences between the continuous results recorded by the TidBit and monthly measurements collected during grabsample monitoring surveys.

We upload all finalized results and summaries into our database, our webpage, and Ecology's EIM database.

Continuous Multiple-Parameter Monitoring

We used Hallock (2009) to assess the quality of data collected by multiple-parameter probes. In most cases, we compared grab sample results to continuous results determined by linear interpolation between the recorded results preceding and following the grab sample time. All times were first adjusted to Pacific Standard Time. We performed the following QC checks:

- Examination of a plot of continuous data overlaid with grab sample data for signs of outliers (caused, for example, by signal noise) in the continuous data, or drift in the continuous data compared to the grab data.
- Calculation of the mean difference between continuous and grab sample results. If >2%, continuous results were adjusted for offset and drift, where such adjustment was appropriate as indicated by a plot of the data. This adjustment was made prior to conducting additional OC evaluations.
- Comparison of the average relative standard deviation (RSD) of continuous and grab sample data pairs to the precision requirements in Hallock (2009).
- Comparison of individual differences between continuous and grab sample results to the accuracy requirements in Hallock (2009).

Results and Discussion

The primary purpose of this report is to present the results of Ecology's stream monitoring in WY 2011. The main body of the report describes the sampling program and interprets QC results. Appendix C describes where our monitoring data can be found. Raw data are available in computer formats on request and are posted on Ecology's web pages (www.ecy.wa.gov/programs/eap/fw_riv/rv_main.html). Unpublished data are also available online but are considered "preliminary."

Monthly Ambient Monitoring

A station-by-station data analysis is not within the scope of this report. Individual results not meeting the 2006 water quality criteria in Washington's Water Quality Standards (WAC Chapter 173-201A), excluding un-ionized ammonia, are identified in reports on our web site (www.ecy.wa.gov/apps/watersheds/riv/exceed). The un-ionized ammonia criteria are complicated to determine and are rarely exceeded (not met) in ambient waters. In WY 2011, no samples exceeded the chronic un-ionized ammonia criteria. Un-ionized ammonia was more than 10% of the chronic criterion at four stations: Mullen Slough at Frager Rd (09N050; on two occasions), Palouse River at Hooper (34A070), Colville River above Kettle Falls (59A080), and Skookum Creek near mouth (62B070).

Effective December 20, 2006, Ecology adopted an aquatic life system for classifying the state's waterbodies, dropping the AA, A, B, and C system in the 1997 standards (Ecology, 2006). Some of the numeric criteria from the new 2006 water quality standards are listed in Tables 5 and 6. The Ecology ambient monitoring program's comparison of results to water quality criteria on our web pages is not a formal determination of water quality *violations*. Determining violations requires additional considerations such as human impact or multiple results not meeting a criterion, and in some cases continuous data are desired.

(See www.ecy.wa.gov/programs/wq/303d//policy1-11Rev.html.)

Of the more than 13,000 possible standard water quality results in WY 2011, we missed collecting 401 results (3.0%). Most results (243) were missed because of weather-related causes such as the station being frozen or inaccessible due to snow. Other reasons for missing results included road construction or other access problems (60) and equipment failure (40). Appendix D gives more detailed explanations for each missed result.

Instantaneous flow data are still being gathered. Flow data from most of our stations are produced by the U.S. Geological Survey (USGS). USGS recently changed their data management procedures, which has affected the way we retrieve data from them. We hope eventually to obtain flow data for all 66 long-term stations and most of the 10 special project stations, though flows have been discontinued at some of these. Flows are not available for the 3 sentinel stations or for 10 of 13 basin stations (Table 7).

In addition, flows were not available at various times and stations due to ice, equipment failure, failure of the sampler to record stage, and unknown reasons. We identified all available flows from 17 stations as "estimated" because rating curves were out of date or imprecise, mean daily flow (rather than instantaneous) was used, or for other reasons.

Table 5. Water quality criteria in the 2006 water quality standards associated with aquatic life uses.^a

Results outside the ranges shown do not meet the criterion.

Aquatic Life Use	Temperature (7-DADMax) ^b (°C)	Oxygen (1-day minimum) (mg/L)	pH (standard units)
Char spawning	<=9		
Char spawning and rearing	<=12	>9.5	6.5<=pH<=8.5
Salmon and trout spawning ^c	<=13		
Core summer salmonid habitat	<=16	>9.5	6.5<=pH<=8.5
Salmonid spawning rearing and migration	<=17.5	>8.0	6.5<=pH<=8.5
Salmonid rearing and migration only	<=17.5	>6.5	6.5<=pH<=8.5
Non-anadromous interior redband trout	<=18	>8.0	6.5<=pH<=8.5
Indigenous warm-water species	<=20	>6.5	6.5<=pH<=8.5

^a WAC 173-201A-602 (Ecology, 2006) identifies use designations for waterbodies and some exceptions to the standard criteria listed above. Metals criteria, most of which are a function of hardness, are not listed here.

Table 6. Water quality criteria in the 2006 water quality standards associated with contact recreation.^a

Results outside the ranges given do not meet the criterion.

Recreation Use	Fecal Coliform Bacteria (cfu/100 mL)		
	10%	Geometric Mean	
Extraordinary primary contact recreation	<=100	<=50	
Primary contact recreation	<=200	<=100	
Secondary contact recreation	<=400	<=200	

^a WAC 173-201A-602 (Ecology, 2006) identifies use designations for waterbodies.

^b 7-DADMax: 7-day average of the daily maximum temperature.

^c An additional temperature criterion applies during specified seasons for some waterbodies (Payne, 2006).

Table 7. Stations for which flows are unlikely to be available.

Station	Station Name	Station Type
07A100	Snohomish R @ Short School Rd	Basin
09N050	Mullen Slough @ Frager Rd	Basin
09Q060	Redondo Cr abv Marine View Dr S	Basin
10G080	Hylebos Cr @ 8th St E	Basin
10J050	Lakota Cr @ Dumas Bay Center	Basin
16B130	Hamma Hamma R @ Lena Cr Camp	Sentinel
20E100	Twin Cr @ Upper Hoh Rd Br	Sentinel
25G060	Coal Cr @ Harmony Rd	Basin
39M050	Swauk Cr nr Cle Elum	Basin
39M100	Swauk Cr @ Lauderdale Junction	Basin
59B200	Little Pend Oreille R nr NatWildRef	Sentinel
59C070	Sheep Ck @ Long Prairie Rd	Basin
62B070	Skookum Ck nr mouth	Basin

Continuous Temperature Monitoring

During WY 2011, our monitoring goals were met at 19 western Washington and 5 eastern Washington stations (Table 8). We collected data from three additional stations that may not have included the critical period for temperature. We were unable to retrieve three eastern Washington water loggers: Methow nr Pateros, Methow @ Twisp, and Walla River. Data from these stations may be available later.

The seven-day average of the daily maximum temperature (7-DADMax) failed to meet the basic 2006 criteria at most stations (19 of 27 stations, 70%). Four stations did not meet supplemental temperature criteria (Table 9). More stations would probably have failed the supplemental criteria, but deployment dates at most stations rarely include the beginning or ending of the supplemental season.

For the second year, seasonal maximum temperatures continued to be cooler than typical. In 2009, maximum temperatures at the warmest five stations ranged from 29.1 to 30.0 °C. In 2011, maximum temperatures at the warmest five stations ranged from 22.7 to 26.8 °C (Table 10). However, this is likely due, at least in part, to the relatively few stations monitored in WY 11, especially in eastern Washington.

Table 8. Temperature summary for Water Year 2011 (°C).
7-DADMax exceeding 2006 criteria (excluding special seasonal criteria) are shown in bold.

G:	Criterion	Sup. Criterion ^a	Deployment Maximum		7-DADMax ^b		Deploy	Retrieve
Station			Max	Date/Time ^c	Max	Date ^c	Date	Date
05A070	17.5	Yes	20.1	26-Aug-11	19.1	24-Aug-11	05-Jul-11	26-Sep-11
05B070	16.0	Yes	18.9	26-Aug-11	17.9	26-Aug-11	05-Jul-11	26-Sep-11
05B110	12.0	Yes	15.9	26-Aug-11	15.3	27-Aug-11	05-Jul-11	26-Sep-11
07D130 ^d	16.0	No	17.7	26-Aug-11	16.8	23-Aug-11	05-Jul-11	28-Sep-11
08C110	16.0	Yes	13.3	23-Sep-11	12.7	04-Oct-10	29-Sep-10	28-Sep-11
09A190	16.0	Yes	17.3	26-Aug-11	16.8	08-Sep-11	05-Jul-11	28-Sep-11
09Q060	16.0	No	14.6	16-Jul-11	13.0	24-Aug-11	22-Jun-11	14-Sep-11
10G080	17.5	No	17.1	06-Jul-11	16.6	24-Aug-11	22-Jun-11	28-Sep-11
10J050	16.0	No	14.5	24-Jun-11	13.1	01-Aug-11	22-Jun-11	14-Sep-11
11A070	16.0	Yes	16.8	27-Aug-11	16.5	24-Aug-11	13-Jul-11	28-Sep-11
12C060	16.0	No	17.5	06-Jul-11	16.8	04-Jul-11	22-Jun-11	14-Sep-11
13A060	17.5	No	18.8	04-Aug-11	18.1	01-Aug-11	29-Jun-11	20-Sep-11
16A070	16.0	Yes	14.5	06-Jul-11	14.0	01-Aug-11	06-Jul-11	21-Sep-11
16C090	16.0	Yes	11.9	27-Aug-11	11.3	25-Aug-11	22-Sep-10	21-Sep-11
18B070	16.0	No	15.2	11-Sep-11	15.0	09-Sep-11	06-Jul-11	05-Oct-11
22A070	16.0	Yes	20.6	03-Aug-11	19.7	01-Aug-11	18-Jul-11	04-Oct-11
23A070	17.5	Yes	23.0	26-Aug-11	22.3	26-Aug-11	15-Sep-10	20-Sep-11
23A160	16.0	Yes	22.7	26-Aug-11	21.8	25-Aug-11	27-Jun-11	20-Sep-11
25B070	16.0	Yes	18.9	03-Aug-11	18.0	01-Aug-11	27-Jun-11	29-Sep-11
25H050	16.0	Yes	17.5	25-Aug-11	17.0	25-Aug-11	27-Jun-11	20-Sep-11
27B070 ^d	16.0	Yes	13.5	02-Oct-10	12.7	24-Jun-11	15-Sep-10	27-Jun-11
34A170 ^d	20.0	No	26.8	02-Aug-11	26.5	02-Aug-11	12-Jul-11	28-Sep-11
34B110	17.5	No	20.6	05-Aug-11	20.3	02-Aug-11	12-Jul-11	09-Jan-12
35B060	17.5	No	23.9	25-Aug-11	23.5	02-Aug-11	12-Jul-11	09-Jan-12
37J060	17.5	No	24.0	04-Aug-11	23.4	02-Aug-11	12-Jul-11	10-Jan-12
39M100	16.0	Yes	19.1	27-Aug-11	19.0	26-Aug-11	02-Aug-11	10-Jan-12
46A070	17.5	Yes	18.6	27-Aug-11	18.3	26-Aug-11	02-Aug-11	10-Jan-12

^a Indicates whether station has supplemental spawning and incubation protection temperature criteria (Payne, 2006).

^b This is the 7-day period with the highest average of daily maximum temperatures.

^c There may be other dates or other 7-day periods with the same maximum. Date shown is middle of 7-day period.

^d Continuous temperature monitoring may not have included the critical period.

Table 9. Stations exceeding the 13 °C supplemental temperature criterion (Payne, 2006).

Station		7-DADMax ^a		Supplemental	Deploy	Retrieve	
		Max	Date ^b	Season	Date	Date	
05B070	NF Stillaguamish R @ Cicero	17.4	9-Sep	09/01-07/01	05-Jul-11	26-Sep-11	
09A190	Green R @ Kanaskat	16.3	22-Sep	09/15-07/01	05-Jul-11	28-Sep-11	
11A070	Nisqually R @ Nisqually	15.6	22-Sep	09/15-07/01	13-Jul-11	28-Sep-11	
23A160	Chehalis R @ Dryad	17.7	1-Jul	09/15-07/01	27-Jun-11	20-Sep-11	
23A160	Chehalis R @ Dryad	17.0	15-Sep	09/15-07/01	27-Jun-11	20-Sep-11	

^a This is the 7-day period with the highest average of daily maximum temperatures.

Table 10. The five stations with the warmest maximum temperatures in 2011 and the maximum temperatures at those stations in 2010 and 2009 (°C).

Station	STANAME	2011	2010	2009
34A170	Palouse R @ Palouse	26.8	28.2	28.7
37J060	Snipes Cr nr mouth	24.0	NS	NS
35B060	Tucannon R @ Powers	23.9	25.4	NS
23A070	Chehalis R @ Porter	23.0	23.4	27.9
23A160	Chehalis R @ Dryad	22.7	23.2	28.0

NS: Not sampled.

^b This is the middle of the 7-day period with the highest average of daily maximum temperatures during the first or last part of the supplemental season. Stations that exceeded the criterion at both the beginning and ending of the season are listed twice.

Continuous Multiple-Parameter Monitoring

Continuous data from multiple-parameter monitoring are maintained at the River and Stream Flow Monitoring web pages (www.ecy.wa.gov/programs/eap/flow/shu_main.html). We were unable to process data from stations supporting the IMW project (Table 3) in time to be included in this report. We rejected all results from stations 41A070-Crab Cr near Beverly and 59C060-Sheep Cr @ Deer Cr Rd (see the *Quality Control* section). Results from other continuous multiple-parameter monitoring stations are discussed below.

Oxygen

All 7-day averages of daily minimums (7-DADMin) of dissolved oxygen concentrations met or were better than criteria except at 25G060-Coal Cr, where the 7-DADMin was 9.2 mg/L, below the 9.5 mg/L criterion (Table 11). However, this concentration was very near full saturation. Limitations in oxygen concentration at this station are due to the effects of temperature on saturation. Coal Creek is not included in the 2008 Water Quality Assessment for oxygen (Koch, 2009).

Temperature

All 7-DADMax for temperature were warmer than the basic criteria except station 08C110-Cedar River near Landsburg (Table 11). Station 23A070-Chehalis River at Porter also exceeded the supplemental temperature criterion of 13°C with a temperature of 19.0°C on October 1, the beginning of the supplemental season. One or more reaches of the Deschutes River and Coal and Snipes Creeks are already listed as Category 5 for temperature in the 2008 Water Quality Assessment; the Chehalis River is Category 4A (Koch, 2009).

pН

Both station 23A070-Chehalis at Porter and station 37J060-Snipes Creek exceeded the upper pH criterion (Table 11). This reach of the Chehalis River is listed as Category 1 for pH and Snipes Creek is currently Category 2.

Table 11. Maximum 7-DADMax temperature and pH and minimum 7-DADMin oxygen compared to water quality criteria.

Values not meeting criteria are in bold.

Station	7-DADM ^a	Date ^b	Criteria/Comment				
Dissolved Oxygen (mg/L)							
08C110	10.18	9/23/2011	7-DADMin ≥ 9.5 mg/L; data available between 8/13 and 9/30.				
13A060	8.26	7/24/2011	7-DADMin ≥ 8.0 mg/L; data available between 6/30 and 7/27 and did not include the critical period. (Intermittent data available through 9/11. Minimum single-day DO was 7.68).				
23A070	8.27	8/3/2011	7-DADMin ≥ 8.0 mg/L; data available between 7/13 and 8/9 and may not have included the critical period. (Intermittent data available through 10/1. Minimum single-day DO was 8.06).				
25G060	9.17	8/24/2011	7-DADMin ≥ 9.5 mg/L; data available between 5/18 and 9/19.				
37J060	8.07	8/2/2010	7-DADMin ≥ 8.0 mg/L; data available between 7/4 and 10/1. (Intermittent data available beginning 6/16.)				
	Temperature (°C)						
08C110 12.7 9/24/2011		9/24/2011	7-DADMax ≤ 16.0 °C and 13 °C; seasonal criterion 9/15 through 5/15; data available between 8/13 and 9/30. 7-DADMax after 9/15 was 10.5.				
13A060	18.1	8/1/2011	7-DADMax ≤ 17.5 °C; data available between 6/30 and 9/12.				
23A070	21.7	8/2/2011	7-DADMax ≤ 17.5 °C and 13 °C; seasonal criterion 10/1 through 5/15; data available between 7/13 and 10/1. Temperature was 15.7 on 10/1.				
25G060	19.0	8/24/2011	7-DADMax ≤ 16.0 °C and 13 °C; seasonal criterion 2/15 through 6/15; data available between 5/18 and 10/1. 7-DADMax before 6/15 was 11.1.				
37J060	23.3	8/2/2011	7-DADMax ≤ 17.5 °C; data available between 6/16 and 10/1.				
			pH (standard units)				
08C110	7.97	9/10/2011	$6.5 \le pH \le 8.5$; data available between 8/13 and 9/30. The individual daily maximum was 8.0.				
13A060	NA	-	All pH data rejected				
23A070	8.6	8/1/2011	$6.5 \le pH \le 8.5$; data available between 7/28 and 8/15. The individual daily maximum was 8.6 .				
25G060	NA		All pH data considered "unreliable estimate."				
37J060	8.7	7/17/2011	$6.5 \le pH \le 8.5$; data available between $6/16$ and $10/1$ with several intermittent periods of rejected data. The individual daily maximum was 9.3 .				

^a The highest 7-day average of daily maximums in each dataset for temperature or pH, or the lowest 7-day average of daily minimums for dissolved oxygen datasets.

DO: Dissolved oxygen.

^b Date is the middle of the averaged 7-day period.

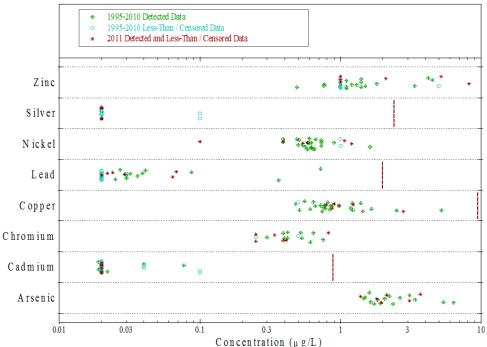
Metals Monitoring

During WY 2011, we collected all of the 918 possible metals results (9 stations x 6 samples x 17 analytes).

Of the 486 dissolved metals and total mercury results reported, 11 (2.3%) exceeded 2006 Washington State water quality standards chronic criteria (Table 12). Dissolved zinc did not meet (exceeded) the criterion in the Spokane River at Stateline in all months zinc was sampled, and dissolved lead exceeded criteria half the time. The Spokane River has a TMDL for metals (Butkus and Merrill, 1999), mostly due to legacy contamination from upstream mining practices. See Hallock (2010) for an analysis of long-term metals monitoring data from the Spokane River.

Mercury exceeded the chronic criterion a single time at three different sites but never by much. It is not unusual to see occasional isolated mercury results exceed the criterion.

Table 12. Metals results from Water Year 2011 exceeding 2006 water quality standards criteria.


Date	Parameter	Hardness (mg/L)	Result (ug/L)	Chronic Criterion (ug/L)	Percent Over Chronic Criterion	Acute Criterion (ug/L)	Percent Over Acute Criterion			
	Hylebos Cr @ 8th St E									
12/08/2010	Hg	NA	0.0176	0.012	47%	2.1				
	Swauk Cr @ Lauderdale Junction									
04/04/2011	Hg	NA	0.0192	0.012	60%	2.1				
		Similka	meen R	a @ Orovil	le					
5/23/2011	Hg	NA	0.0152	0.012	27%	2.1				
	57.	A150 Spok	ane R @	Stateline	Bridge					
10/12/2010	Zn_DIS	22.1	35.8	29.0839	23	31.85	12%			
12/20/2010	Zn_DIS	23.8	48.8	30.9687	58	33.91	44%			
2/23/2011	Pb_DIS	21.3	1.93	0.4516	327	11.59				
2/23/2011	Zn_DIS	21.3	55.1	28.1893	95	30.87	78%			
4/11/2011	Pb_DIS	19.6	2.34	0.411	469	10.55				
4/11/2011	Zn_DIS	19.6	56.1	26.271	114	28.77	95%			
6/21/2011	Pb_DIS	17.5	0.674	0.3615	86	9.28				
6/21/2011	Zn_DIS	17.5	35.8	23.8657	50	26.14	37%			

Hg: mercury.

Zn_DIS: dissolved zinc. Pb_DIS: dissolved lead.

Metals concentrations in the Similkameen River at Oroville in 2011 were similar to concentrations reported previously (Figure 1). A two-sample t-test assuming unequal variances (an f-test rejected the hypothesis of equal variances) failed to reject the hypothesis that means from the two data sets were the same (p<0.05).

Dissolved Metals in the Similkameen River at Oroville

Total Metals in the Similkameen River at Oroville

Figure 1. Dissolved (top) and total (bottom) metals in the Similkameen River at Oroville.

Vertical lines show the water quality criteria for dissolved metals and total mercury at the average hardness for the Similkameen. All criteria are chronic except for silver, which is acute. Water quality standards for arsenic (190 ug/L), chromium (149 ug/L), nickel (131 ug/L), and zinc (87 ug/L) are off scale.

Lake Monitoring

An analysis of total phosphorus data collected from lakes in 2011 is beyond the scope of this report. Data are available from Ecology's EIM database under project ID AMS002B-2 (provisional data) or AMS002B (published data).

Quality Assurance

In WY 2011 we collected almost 16,000 non-QC water quality results, including metals and various other parameters in addition to the standard 12 parameters listed in Table 2.

- We coded 55 results (0.3%) "4" indicating that the data are usable, but there were questions about the quality. These were from a variety of stations, dates, and parameters.
- We coded 356 results (2.2%) "5" or greater indicating serious data quality questions; these data will not be routinely used or provided. This practice gives us the opportunity to explain quality issues to prospective users before they obtain the data. About half of these were barometric pressure measurements from eastern Washington in January through August where the barometer had failed (see the following *Barometric Pressure* section). For these samples, elevation will be used instead of measured pressure to determine percent oxygen saturation. Many of the remaining results were from Eastern Washington in July through September that we coded "9" due to a possible mix-up in samples.

Manchester Laboratory assigned a qualifier to 16% of usable results. Of these, 547 results (3.5%) were qualified as estimates ("J"), 1948 results (12%) as below the reporting limit ("U"), and 5 results (0.03%) were coded as both estimates and below the reporting limit ("UJ"). A total of 68% of all ammonia results were below the reporting limit, as were 13% of orthophosphate results and 37% of all metals results (Table 13).

Table 13. Results qualified by Manchester Laboratory as being below the reporting limit.

Parameter	Reporting Limit (mg/L except where otherwise noted)	Number of results coded U or UJ	Number of unqualified results	Percent of results coded U or UJ	
Ammonia	0.01	731	1072	68%	
Chlorophyll	0.05 ug/L	0	33	0%	
Fecal coliform bacteria	1	105	1072	10%	
Hardness	Not specified	0	55	0%	
Metals	Various	368	990	37%	
Nitrate+Nitrite	0.01	92	1072	9%	
Nitrogen, total	0.025	24	1072	2%	
Organic carbon, dissolved	1	129	399	32%	
Organic carbon, total	1	154	513	30%	
Orthophosphate	0.003	136	1071	13%	
Phosphorus, total	0.005	51	1070	5%	
Suspended sediment concentration	1	15	108	14%	
Suspended solids	1	93	1070	9%	
Turbidity	0.5 NTU	55	1072	5%	

U: Below the reporting limit

UJ: Below the reporting limit and estimated

Barometric Pressure

We use barometric pressure (BP) to calculate percent oxygen saturation. BP varies during the course of the day (the atmosphere has a tidal cycle), and weather systems can cause BP to vary by 38 mm Hg or more, which equates to a variation of about ± 0.3 mg/L in the theoretical oxygen concentration at saturation or $\pm 3\%$ in the calculated percent saturation. (For more discussion of pressure and saturation, see Brown and Hallock, 2009.)

Unfortunately, analog barometers, especially, can be mis-read, off scale at higher elevations, improperly calibrated, and inaccurate, especially when cold. Elevation can be used as a surrogate for BP but with consequences for the precision of saturation calculations.

This report includes an evaluation of the difference between calculated BP based on elevation and reported BP (Figure 2). The data between the 1st and 99th percentiles are within the expected range of normal variability in BP at a location. The analysis indicated one station where elevation had been incorrectly recorded, one recent 8-month period where a barometer had failed (not shown in the plot, below), and a number of individual results that were suspect. Results outside the 1st and 99th percentiles were coded "4" (questionable), and results outside the 0.1st and 99.9th percentiles were coded "5" (probably bad). For data coded "5", we recommend that elevation be used for percent saturation calculations.

We also implemented a database procedure to warn samplers during data entry if the difference between the calculated BP and their recorded BP is outside the 10th and 90th percentiles.

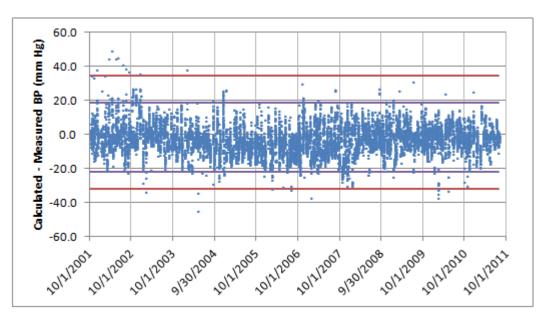


Figure 2. Difference between calculated barometric pressure (BP) based on elevation and measured BP for 10 years of ambient data.

Inner purple lines are the 1^{st} and 99^{th} percentiles; outer red lines are the 0.1^{st} and 99.9^{th} percentiles.

pН

We used our usual Orion pH and conductivity meters throughout WY 2011. However, because the probe we have been using for years is no longer being manufactured, we explored other options and eventually settled on the Hach HQ40d combination meter for both pH and conductivity. We will document procedures specific to this meter in an update to our SOP (Ward, 2007b).

We spent March through June testing the instrument with side-by-side comparisons and refining protocols. From July through September, all samplers collected pH data using both the Orion and the Hach pH meters following standard protocols. A total of 95% of results were within ± 0.2 standard units, with little bias between the two meters (mean Orion minus Hach = -0.020, standard deviation = 0.101 standard units, N=276). These results are similar to informal tests of two Orion meters. In a test of three Hach meters analyzing 4 samples, the maximum difference was 0.16, and the average absolute difference was 0.075 (standard deviation=0.040 standard units).

Informal tests on conductivity indicated that results from Orion and Hach meters were highly comparable.

Errors in EIM and Web Databases

Data verification identified 53 instances where results in the EIM database ("transitional" project AMS001-2) were different than results in our primary database. All but one of these were from 4 stations with incorrect dates in EIM. One mis-matched result was a mis-entered pH value

collected on 10/26/2011 from Coal Creek (25G060) which we had failed to correct in EIM. In addition, 3 oxygen results from 1/10/2011 had not been entered into EIM at all, and 169 results were present in EIM that had been coded as "bad" in the primary database. Most of these were barometric pressures collected from several stations between January and July where the instrument had failed. The rest were from the Spokane River at Stateline (57A150), which we removed due to a possible mix-up in samples. We corrected the EIM database in April 2012.

Eight results in our preliminary web database did not match results in our primary database, most likely due to a data entry error that we corrected in the primary database but not on the web. In addition, 5 results were missing in the web database. We corrected or loaded these 13 results in April 2012.

Comparison to Quality Control Requirements

Decision Quality Objectives

Decision quality objectives (DQOs) are based on RMS values by concentration range (Table 14). In practice, estimates of variability are strongly influenced by extreme values, especially when the sample size is small. Also, the variability estimate is skewed downward for the lowest concentration ranges because data below the reporting limit are censored and, therefore, sample pairs below this limit have a variance of zero.

In general, variability of repeated measures followed the expected pattern of field sequential samples > field split samples > lab split samples. However, in a number of cases, lab split samples had greater variability than field QC samples, probably because lab splits are often based on different samples than the field QC samples. Field sequential samples occasionally had less variability than the field splits. Usually, a single field split pair with poor precision was responsible.

Variability between paired samples as measured by RMS was generally low.

Two field split constituent/concentration ranges failed the Quality Assurance Monitoring Plan (QAMP) DQO (Hallock and Ehinger, 2003), which specifies that DQOs be evaluated against field splits, where possible. The mid-range of ammonia and total phosphorus samples exceeded DQOs due to one particularly poor sample split in each case (0.01U/0.051 and 0.033/0.069 mg/L, respectively).

Two field sequential constituent categories failed to meet the DQO criteria, but instream variability is included in these sample pairs so their variability is not a true measure of sampling plus analytical error. As in years past, the variability in sequential samples for total suspended solids (TSS) concentrations tends to be particularly high. This underscores the inherent variability in measurements of stream sediment.

One lab split constituent/concentration range failed DQO requirements. The highest range of turbidity samples exceeded the DQO due to one particularly poor sample split (30 and 110 NTUs).

Table 14. Root mean square (RMS) of the standard deviation of sequential samples, field splits, and laboratory splits.

Results not meeting (exceeding) QAMP DQO criteria (Hallock and Ehinger, 2003) are shown in bold.

Parameter (units)	Range	S _{err (mp)} a	Field Sequential RMS	n	Field Split RMS	n	Lab Split RMS	n
Specific conductance (µS/cm)	≤50 >50-100 >100-150 >150	4.4 8.8 13.2 26.4	0.82 0.63 0.62 12.5	14 20 9 12	No field splits		No lab splits	
Fecal col. bacteria (colonies /100 mL)	1-1000 >1000	88 176	10.3 NA	57 0	No field splits		23.2 NA	194 0
Ammonia (ug N/L)	≤20 >20-100 >100	1.76 8.8 17.6	1.4 7.48 NA	50 7 0	1.14 13.3 NA	50 7 0	0.25 2.26 1.16	40 9 3
Nitrogen, total (ug N/L)	≤100 >100-200 >200-500 >500	8.8 17.6 44 88	8.68 10.3 20.0 31.7	12 10 17 17	7.22 7.73 14.5 31.9	12 9 17 18	3.63 6.20 11.1 49.8	26 14 21 17
Nitrate+nitrite- nitrogen (ug N/L)	≤100 >100-200 >200-500 >500	8.8 17.6 44 88	2.52 2.09 2.37 30.8	21 4 18 14	2.66 2.48 1.98 38.4	21 4 18 14	1.97 2.42 1.42 26.5	34 3 22 13
Oxygen, dissolved (mg O ₂ /L)	≤ 8 > 8-10 > 10-12 > 12	0.70 0.88 1.06 2.11	NA 0.13 0.08 0.11	0 6 29 22	No field splits		No lab splits	
рН	All	0.66	0.09	56	No field	splits	No lab splits	
Phosphorus, soluble reactive (ug P/L ⁻¹)	≤50 >50-100 >100	4.4 8.8 17.6	0.59 1.43 1.41	51 5 1	0.44 5.99 NA	51 6 0	0.31 0.33 0.00	87 7 1
Phosphorus, total (ug P/L)	≤50 >50-100 >100	4.4 8.8 17.6	1.87 5.12 2.29	42 9 6	2.27 10.4 4.20	42 8 6	0.86 2.09 0.50	57 9 6
Solids, suspended (mg /L)	≤10 >10-20 >20-50 >50	0.88 1.76 4.4 8.8	0.59 4.62 3.67 10.3	37 5 8 7	No field splits		0.48 0.92 1.72 4.04	43 35 24 19
Temperature (°C)	All	2.64	0.40	57	No field	No field splits No lab splits		plits
Turbidity (NTU)	≤10 >10-20 >20-50 >50	0.88 1.76 4.4 8.8	0.43 1.34 3.06 3.34	44 5 7 5	No field splits 0.22 0.87 1.89 25.5		0.87 1.89	69 16 17 5

^a Maximum permissible standard error to meet Quality Assurance Monitoring Plan (QAMP) DQO (Hallock and Ehinger, 2003).

NA: not applicable.

n: number of sample pairs.

The criteria in Table 14 are based on desired trend power. (We want to be able to detect a 20% change over a ten-year period with 90% confidence.) Parameters that consistently do not meet the DQO criteria are unlikely to meet our goals for trend detection. The variability in most parameters indicates equivalent or greater trend power than the goal specified in our QAMP (Hallock and Ehinger, 2003). Our ability to detect trends in TSS, however, is likely to be worse than our goal.

Measurement Quality Objectives

Measurement quality objectives (MQOs) for accuracy are based on comparisons (usually against standards) during calibration checks (Hallock, 2012). Checks failing criteria cause an immediate corrective action (usually recalibration). Bias MQOs are evaluated at the laboratory based on spike recovery. Precision MQO evaluations are based on comparisons to average relative standard deviation (RSD) of field split pairs. Results are presented in Table 15.

Only the suspended sediment concentration (SSC) exceeded MQO criteria based on field split samples or sequential samples. However, we only collected three SSC sequential samples, and all were near the detection limit where even a slight difference will result in a large RSD.

Blanks

Most results for analyses of blank samples were "below reporting limits," or less than 3 uS (microsiemens) for specific conductivity (Table 16). Blanks were not measured for temperature, dissolved oxygen, pH, or fecal coliform bacteria.

Protocols specify that one dissolved metals blank sample should be submitted annually from each run that collects metals. In WY 2011, we failed to collect dissolved metals blanks from the eastern Washington runs.

Historically, blanks for dissolved zinc frequently (43% of the time) exceeded reporting limits of 1 ug/L (though results were always < 5 ug/L, the reporting limit for total zinc). As a result, we set the quality code field = 4 for detected dissolved zinc results < 5 ug/L. The effect of this action is that our low-level zinc data on the Internet will be annotated with the footnote: "Asterisk * indicates possible quality problem for the result. You may wish to discuss the result with the station contact person."

All conductivity blanks were less than 3 uS/cm, except one equal to 3 uS/cm and one equal to 10 uS/cm. We confirmed the latter and traced it to contaminated blank water.

Manchester Laboratory staff assessed the remaining elements of the laboratory QA program through a manual review of laboratory QC results including check standards, in-house matrix spikes, and laboratory blanks. Results were within acceptable ranges as defined by the laboratory's *Quality Assurance Manual* (MEL, 2006) or were either re-run or coded as determined by laboratory staff (e.g., as an estimate, "J").

Table 15. Average relative standard deviation (RSD) of replicate samples collected in Water Year 2011.

Results not meeting (exceeding) QAMP MQO criteria (Hallock, 2012) are shown in bold.

Parameter (units)	Precision MQO (%)	Sequential Sample RSD (%)	n^a	Field Split RSD (%)	n^a
Carbon, total organic	10	2.5	22	1.9	21
Carbon, dissolved organic	10	4.9	18	2.2	16
Specific conductance	10	0.88	55	No field splits	
Fecal coliform bacteria (>20 colonies /100 mL)	≥50% < 20 ≥90% < 50	52.9 ^b 94.1 ^b	17 17	No field splits	
Ammonia	10	4.5	57	5.4	57
Nitrogen, total	10	5.3	56	4.0	57
Nitrate+nitrite-nitrogen	10	2.1	57	2.0	57
Oxygen, dissolved	10	0.6	57	No field splits	
рН	10	0.7	56	No field splits	
Phosphorus, soluble reactive	10	4.1	57	3.6	57
Phosphorus, total	10	5.2	57	5.9	57
Solids, suspended	15	12	57	No field splits	
Suspended sediment concentration	15	16	3	No field splits	
Temperature	10	1.0	57	No field splits	
Turbidity	15	8.2	57	No field splits	

^a "n" is the number of sample pairs.

^b Percent of sample pairs (excluding pairs with an average \leq 20 colonies/100mL) with RSD \leq 20% or 50%.

Table 16. Results of field process blank (de-ionized water) samples.

Parameter	Reporting Limit	Number Above Reporting Limit (concentration)	Sample Size n
Metals (ug/L)	Various	0 a	53
Carbon, dissolved organic (mg/L)	1	2 (1.3 and 1.0 mg/L)	11
Carbon, total organic (mg/L)	1	0	6
Hardness (mg/L)	0.3	0	3
Ammonia (ug/L)	10	0	13
Nitrate+nitrite-nitrogen (ug/L)	10	0	13
Soluble reactive phosphorus (ug/L)	3	0	13
Specific conductivity (uS/cm)	NA	NA (mean: 2.2 uS, std dev: 6.7) ^b	9
Suspended solids (ug/L)	1	0	10
Total nitrogen (ug/L)	25	0	13
Total phosphorus (ug/L)	5	0	13
Turbidity (NTU)	0.5	0	10

NA: not applicable.

Continuous Temperature Monitoring

Pre- and post-deployment calibration checks using a certified reference thermometer met or were better than the specified criteria for the instruments (Ward, 2005).

Most of the temperature loggers were deployed by July 13. Four eastern Washington loggers were deployed on August 2 (nearly three weeks late).

Continuous Multiple-Parameter Monitoring

Some deployments extended beyond the water year reviewed in this annual report; however, for continuous multiple-parameter monitoring, we reviewed all data from each location except 08C110, Cedar River near Landsburg. Data collection there is intended to be continuous so each water year will be reviewed independently.

Deployments at two locations, 41A070-Crab Cr near Beverly and 59C060-Sheep Cr @ Deer Cr Rd, failed QC requirements for all parameters due to sedimentation. We rejected all data from all deployments at these locations. Sedimentation occurred almost immediately after monthly maintenance. Both deployments were "stand-alone" (i.e., not telemetered), illustrating the usefulness of telemetry, where problems can be identified and corrected relatively quickly.

^a Excludes 1 estimated ("J") dissolved zinc result at the reporting limit.

^b Results from one conductivity blank were 10 uS/cm. This was confirmed and traced to contaminated blank water.

Data from IMW stations were not processed in time to be included in this QC review, which is performed after visually reviewing data and removing anomalous data points.

Dissolved Oxygen

All of the Hydrolab[®] dissolved oxygen sensors passed QC requirements (Table 17). Four of the 12 deployments needed a small constant adjustment (offset) to account for probable calibration error. Most sensors were extremely stable, with little or no drift over the course of the deployment, however, there were indications of positive drift during one deployment.

Though oxygen sensors were generally quite "clean," unexplained spikes occurred at times. These spikes usually occurred as a sharp and obvious change rather than a gradual one, and so were easy to spot and remove prior to the numerical QC review reported in Table 17.

On the whole, the RSD between the optical dissolved oxygen sensor results and Winkler results is only a little greater than the RSD between sequentially collected Winkler grab samples (Table 14).

Table 17. Quality control (QC) results from continuous multiple-parameter monitoring.

Average and RSD were calculated after applying offset and removing rejected data. A positive average percent difference indicates that check samples were higher than matching continuous results. Rejected deployments and data considered "unreliable estimates" are in bold.

Station	Deploy- ment End	Offset ^a	Average Percent Difference	RSD	Comment
			Dissol	lved Oxyg	gen (mg/L)
08C110	All	None	1.44%	1.0%	
	7/20 1315	+0.24	0.0%	0.0%	Code "estimate" because only one valid check sample.
13A060	11/7 1315	+0.46	0.04%	1.12%	Indication of positive drift but within QC criteria after applying constant offset. After adjusting offset, adjusted drift by lowering start 0.13 and raising end 0.12 mg/L.
	7/27 0630	None	-1.14%	0.80%	
	8/16 1445	None	-0.87%	0.93%	Check samples within QC limits but inconsistent.
23A070	8/24 1230	None	-1.90%	1.33%	
	10/10 1700	None	1.05%	0.75%	
	10/17 1530	None	0.00%	0.00%	
25G060	8/16 0815	None	0.50%	1.12%	One of 3 grab samples was inconsistent but within QC requirements.
	10/31 1230	+0.24	0.01%	0.52%	
37J060	8/10 1145	-0.21	0.01%	1.10%	
3/3000	10/12 1200	None	-1.31%	0.92%	
			To	emperatu	re (°C)
08C110	All	None	0.0%	0.0%	
13A060	7/20 1315	None	0.19%	0.14%	
13A000	11/7 1315	None	0.20%	0.14%	
23A070	7/27 0630	None	1.13%	0.80%	
23A070	8/16 1445	None	-1.00%	0.70%	

	Deploy-		Average		
Station	ment End	Offset ^a	Percent	RSD	Comment
			Difference		
	8/24 1230	None	-1.00%	0.70%	
	10/10 1700	None	0.00%	0.00%	
	10/17 1530	None	0.72%	0.51%	
25G060	8/16 0815	None	0.29%	0.20%	
230000	10/31 1230	None	-1.89%	1.32%	One QC check was right at the criterion (0.4°C).
37J060	8/10 1145	None	0.25%	0.18%	
373000	10/12 1200	None	0.43%	0.31%	
			Cor	nductivity	(uS/cm)
08C110	All	+6	-0.04	0.28%	
13A060	7/20 1315	None	2.26%	1.62%	No offset and coded "estimate" because check samples inconsistent (3uS high and 5uS low).
	11/7 1315	+4	0.04	1.12	Indication of positive drift but within QC criteria.
	7/27 0630	None	2.43%	1.76%	Precision probably better than indicated and not adjusted because 1 st QC check was questionable.
22 4 070	8/16 1445	None	-0.89%	0.63%	
23A070	8/24 1230	+5	0.00%	0.00%	
	10/10 1700	+7	0.00%	0.00%	
	10/17 1530	+4	0.00%	0.00%	
25G060	8/16 0815	-3	-0.02%	0.53%	1 st grab sample is inconsistent with remaining three. Reject data prior to 2nd grab (6/14 0900). Noisy continuous record; remaining data coded as estimate.
	10/31 1230	+3	0.01%	0.12%	Noisy continuous record; data coded as estimate.
	8/10 1145	+9	0.13%	2.61%	Trong continuous record, data coded as estimate.
37J060	10/12 1200	None	-0.84%	1.44%	
				(standar	d units)
08C110	All	-0.27	0.01	0.73%	
	7/20 1315				Reject data . Drift and check samples inconsistent.
13A060	11/7 1315	+0.32	0.00%	0.80%	Indication of negative drift but within QC criteria after adjustment.
	7/27 0630		-1.14%	0.80%	Reject data. Drift and too few check samples.
	8/16 1445	+0.36	-0.05%	1.06%	Indication of negative drift but within QC criteria after adjustment.
23A070	8/24 1230		6.78%	4.97%	Reject data. Drift and check samples inconsistent.
	10/10 1700		7.00%	5.13%	Reject data. Drift and check samples inconsistent.
	10/17 1530		11.1%	8.28%	Reject data . Check sample requires excessive adjustment (0.84 std units).
25G060	8/16 0815	+0.15	0.00%	1.85%	One of 3 grab samples was inconsistent (same grab as dissolved oxygen). Difference from grabs ranges from +0.36 to -0.23. Code as "unreliable estimate".
	10/31 1230	+0.19	0.00%	0.09%	Indications of drift after 2 nd QC check. Code data after 9/13 0830 as " unreliable estimate ".
37J060	8/10 1145	None	0.13%	0.96%	
.) / JUUU	10/12 1200	None	1.20%	0.84%	

^a Constant added to continuous data only if original average percent difference was >2.0%.

Temperature

The temperature signal from all sensors was both stable and clean. In most cases, precision was excellent, much less than the allowed ± 0.4 °C difference between grab sample temperatures and recorded temperatures.

Conductivity

Only one conductivity deployment exhibited an apparent drift (13A060), and the amount of drift was small. To bring continuous data in line with check sample results, seven deployments required a small positive adjustment, one a small negative adjustment, and 4 required no adjustment. We rejected part of the dataset from 25G060 because the check sample conductivity was inconsistent with other check samples relative to the continuous record, though this may have been a problem with the check sample rather than with the continuous data.

The conductivity sensors exhibited more apparent noise than oxygen or temperature sensors. Noise was usually expressed as a single unusually high value, though sometimes the value would be unusually low.

pН

Although pH was not a critical parameter for this monitoring, and was included only because most of the instruments included pH sensors, resolving the Category 2 designation for pH at two stations (37J060 and 59C060) was included in our objectives. Unfortunately, we rejected most pH data because of imprecision relative to grab sample pH and especially because of drift in the pH signal. The pH datasets from 37J060 are among the few deployments we did not reject.

We have subsequently discovered electrical interference, in some cases, from the metal housing in which we deploy our instruments. If pH is a critical parameter, protective housings should not be made of metal. Long-term continuous monitoring for pH may be possible, but obtaining reliable data will require telemetry, regular maintenance of the pH sensors, maintenance of battery voltage, and regular check samples.

Lake Monitoring

The average RSD from lake monitoring duplicate results was 3.7%, well below the MQO of 20% (Bell-McKinnon, 2011). RSDs for individual duplicate pairs were also low (Table 18).

Table 18. Quality control (QC) results from lake total phosphorus sampling (mg/L).

Lake	Date	Result	Duplicate	Duplicate Type	RSD
Arrowhead (Mason)	7/5/2011	0.0147	0.0151	Field Duplicate	1.9%
Clear (Thurston)	9/23/2011	0.0331	0.0321	Lab Split	2.2%
Florence (Pierce)	5/6/2011	0.0092	0.0099	Lab Split	5.2%
Lone (Island)	8/10/2011	0.1160	0.1270	Field Duplicate	6.4%
Silver (Cowlitz)	6/21/2011	0.0315	0.0310	Field Duplicate	1.1%

Manchester Laboratory QC results were within the specifications provided in laboratory QC guidance (MEL, 2006).

We consider QC results to be acceptable; data may be used without qualification beyond those applied by Manchester Laboratory.

Total phosphorus results and Secchi depth data were entered into EIM and independently reviewed for transcription errors.

Conclusions and Recommendations

Following are conclusions and recommendations resulting from this Water Year (WY) 2011 study by Ecology's River and Stream Monitoring Program.

Conclusions

- Most quality control results were within the limits specified in our Quality Assurance Management Plan and were consistent with findings in previous years.
- Except where noted otherwise, data collected can be used without qualification.
- With the exception of one mercury result, metals data from the Similkameen River were consistent with previous metals monitoring there.

Recommendations

- Stand-alone, multiple-parameter monitoring can be successful but requires regular maintenance to ensure everything is functioning properly and the monitoring results are not affected by debris, silt, or aquatic growth. Telemetered systems, which can be routinely checked in a few minutes at the office, should be used whenever possible and always if data loss is unacceptable.
- If pH is a critical continuous parameter, then to prevent static charge from affecting readings, protective housings should not be made of metal. Long-term continuous monitoring for pH may be possible, but obtaining reliable data will require telemetry, regular maintenance of the pH sensors, close attention to battery voltage, and regular and frequent check samples.
- The continuous temperature monitoring program should continue to expand the deployment period to year-round at all ambient stations. Longer datasets are needed to assess applicable supplemental temperature criteria and to help monitor climate changes.

References

APHA, 2005. Standard Methods for the Examination of Water and Wastewater, 21st Edition. Joint publication of the American Public Health Association, American Water Works Association, and Water Environment Federation. www.standardmethods.org/.

Bell-McKinnon, M., 2011. Addendum to Quality Assurance Project Plan: Aquatic Plant Monitoring in Washington Lakes and Rivers. Washington State Department of Ecology, Olympia, WA. 6 pp. August, 2011. www.ecy.wa.gov/biblio/1103106addendum1.html.

Brown, C. and D. Hallock, 2009. Washington State Dissolved Oxygen Standard: A Review and Discussion of Freshwater Intragravel Criteria Development. Washington State Department of Ecology, Olympia, WA. 40 pp. Publication No. 09-03-039. www.ecy.wa.gov/biblio/0903039.html.

Butkus, S. and K. Merrill, 1999. Spokane River Dissolved Metals Total Maximum Daily Load—Submittal Report. Washington State Department of Ecology, Olympia, WA. 25 pp. Publication No. 99-49. https://fortress.wa.gov/ecy/publications/summarypages/9949.html.

Ecology, 2006. Water Quality Standards for Surface Waters of the State of Washington Chapter 173-201A WAC. Washington State Department of Ecology, Olympia WA. 113 p. Publication No. 06-10-091. www.ecy.wa.gov/biblio/0610091.html.

Hallock, D., 2002. A Water Quality Index for Ecology's Stream Monitoring Program. Washington State Department of Ecology, Olympia, WA. 17 pp. + appendices. Publication No. 02-03-052. www.ecy.wa.gov/biblio/0203052.html.

Hallock, D., 2004. Assessment of Changes in Water Quality in the Spokane River Between Riverside State Park and the Washington-Idaho Border. Washington State Department of Ecology, Olympia, WA. 54 pp. Publication No. 04-03-007. www.ecy.wa.gov/biblio/0403007.html.

Hallock, D., 2005. Washington State Water Quality Conditions in 2005 based on Data from the Freshwater Monitoring Unit. Washington State Department of Ecology, Olympia, WA. Publication No. 05-03-036, with Technical Appendix bound separately. www.ecy.wa.gov/biblio/0503036.html.

Hallock, D., 2009. Quality Assurance Monitoring Plan: Continuous Monitoring for Oxygen, Temperature, pH, and Conductivity in Statewide Rivers and Streams. Washington State Department of Ecology, Olympia, WA. 24 pp. Publication No. 09-03-122. www.ecy.wa.gov/biblio/0903122.html.

Hallock, D., 2010. River and Stream Water Quality Monitoring Report, Water Year 2009. Washington State Department of Ecology, Olympia, WA. 50 pp. + appendices. Publication No. 10-03-046. www.ecy.wa.gov/biblio/1003046.html.

Hallock, D., 2011. River and Stream Water Quality Monitoring Report, Water Year 2010. Washington State Department of Ecology, Olympia, WA. 40 pp. + appendices. Publication No. 11-03-037. www.ecy.wa.gov/biblio/1103037.html.

Hallock, D., 2012. Addendum to Quality Assurance Monitoring Plan: Stream Ambient Water Quality Monitoring: Correction of Objectives, Responsibilities, and Addition of Analytes. Washington State Department of Ecology, Olympia, WA. 11 pp. Publication No. 03-03-200-Addendum2. www.ecy.wa.gov/biblio/0303200Addendum2.html.

Hallock, D. and W. Ehinger, 2003. Quality Assurance Monitoring Plan: Stream Ambient Water Quality Monitoring. Washington State Department of Ecology, Olympia, WA. 27 pp. Publication No. 03-03-200. www.ecy.wa.gov/biblio/0303200.html.

Hopkins, B., 1996. Ambient Metals Project Proposal - Final Quality Assurance Project Plan. Washington State Department of Ecology, Environmental Investigations and Laboratory Services Program, Olympia, WA. 19 pp. + appendices. March 1996.

Koch, K., 2009. Water Quality Assessment (303[d]) & Water Quality Improvement Projects (TMDLs). www.ecy.wa.gov/programs/wq/links/wq_assessments.html accessed on May 10, 2012. Washington State Department of Ecology, Olympia, WA.

MEL, 2006. Manchester Environmental Laboratory Quality Assurance Manual. Manchester Environmental Laboratory, Washington State Department of Ecology, Manchester, WA.

MEL, 2008. Manchester Environmental Laboratory Lab Users Manual, Ninth Edition. Manchester Environmental Laboratory, Washington State Department of Ecology, Manchester, WA.

Merritt, G., 2006. Status and Trends Monitoring for Watershed Health and Salmon Recovery: Quality Assurance Monitoring Plan. Washington State Department of Ecology, Olympia, WA. 54 pp. Publication No. 06-03-203. www.ecy.wa.gov/biblio/0603203.html.

Payne, S., 2006. Waters Requiring Supplemental Spawning and Incubation Protection for Salmonid Species. Washington State Department of Ecology, Olympia, WA. 49 pp. Publication No. 06-10-038. www.ecy.wa.gov/biblio/0610038.html.

U.S. Environmental Protection Agency, 1983. Methods for Chemical Analysis of Water and Wastes, EPA-600/4-79-020. U.S.E.P.A., Cincinnati, Ohio.

Ward, W., 2005. Quality Assurance Project Plan: Continuous Stream Temperature Monitoring by the Freshwater Monitoring Unit. Washington State Department of Ecology, Olympia, WA. 18 pp. Publication No. 05-03-202. www.ecy.wa.gov/biblio/0503202.html.

Ward, W., 2007a. Standard Operating Procedures for the Collection, Processing, and Analysis of Stream Samples, Version 1.0. Washington State Department of Ecology, Olympia, WA. SOP Number EAP034. www.ecy.wa.gov/programs/eap/quality.html.

Ward, W., 2007b. Standard Operating Procedures for the Collection and Field Processing of Metals Samples. Washington State Department of Ecology, Olympia, WA. SOP Number EAP029. www.ecy.wa.gov/programs/eap/quality.html.

Ward, W., 2011. Standard Operating Procedures for Continuous Temperature Monitoring of Fresh Water Rivers and Streams. Version 1.0. Washington State Department of Ecology, Olympia, WA. SOP Number EAP080. www.ecy.wa.gov/programs/eap/quality.html.

Appendices

This page is purposely left blank

Appendix A. Station Description and Period of Record

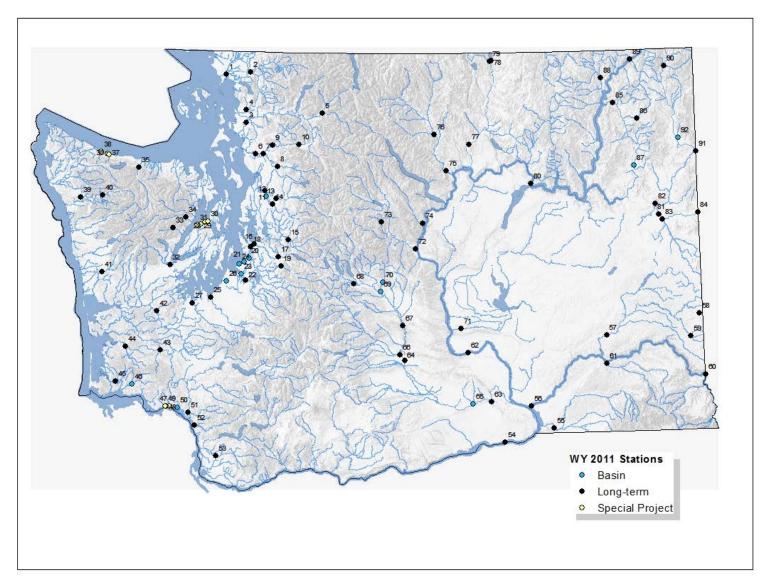


Figure A-1. Map showing stations monitored in Water Year 2011. *See Table 1 for the key.*

Monitoring History for Environmental Assessment Program Ambient Monitoring Stations

Station	<u> </u>	Long-term							Water Year S	ample	d			
Number	Name	or Basin		<1960s	-> <	<1	970	s>	<1980s>			<20	00s>	<2010s>
01A050	Nooksack R @ Brennan	L				ΧУ	XΣ	XX	XXXXXXXXX	XXXX	XXXXXX	XXXXX	XXXXX	XXX
01A070	Nooksack R @ Ferndale	В		XXXXXXX	XX	XΣ	Χ	Χ						
01A090	Nooksack R nr Lynden	В				Х	Χ	Х						
01A120	Nooksack R @ No Cedarville	L	Х	XXXXXXXX	Х	XΣ	Χ	XX	XXXXXXXXX	XX X	XXXXX	XXXXX	XXXXX	XXX
01B050	Silver Cr nr Brennan	В								XX				
01D070	Sumas R nr Huntingdon BC	В				Х	Χ	XXX	XXXXXXXXX	XXX	X			
01D080	Sumas R @ Jones Road	В										X		
01D090	Sumas R @ Sumas	В				Χ	Х							
01D120	Sumas R nr Nooksack	В									X			
01E050	Whatcom Cr @ Bellingham	В				>	ζ	Х			X			
01E070	Whatcom Cr @ Lake Outlet	В				Σ	ζ							
01E090	Whatcom Lake nr Bellingham	В		XXX	Х	ζ								
01F070	S.F. Nooksack @ Potter Rd	В									X	Х	Χ	X
01G070	M.F. Nooksack R	В									X	X	Χ	
01H070	Terrell Cr nr Jackson Rd.	В										Х		
01N060	Bertrand Cr. @ Rathbone Rd	В											Χ	
01T050	Anderson Cr @ South Bay Road	В											Х	
01U070	Fishtrap Cr @ Flynn Rd	В											Χ	
03A050	Skagit R @ Conway	В				Χ	Χ							
03A060	Skagit R nr Mount Vernon	L	Х	XXXXXXXX	Х	ζ	XXX	XXXX	XXXXXXXXX	XXXX	XXXXXX	XXXXX	XXXXX	XXX
03A070	Skagit R nr Sedro Woolley	В				Χ	Χ	Х						
03A080	Skagit R abv Sedro Woolley	В										Х	Х	X
03B045	Samish R. nr Mouth	В									Χ	X		
03B050	Samish R nr Burlington	L	Х	XXXXXXXX	Х	XΣ	Χ	XXX	XXXXXXXXX	XX X	XXXXX	XXXXX	XXXXX	XXX
03B070	Samish R nr Hoogdal	В				Χ								
03B077	Samish R abv Parson Cr	В												X
03B080	Samish R. nr Prairie	В									Χ			
03C060	Friday Cr Blw Hatchery	В					Χ			Х	Χ			
03C080	Friday Cr at Alger	В					Χ							
03D050	Nookachamp Ck nr Mouth	В									Х	Х		
03E050	Joe Leary Slough nr Mouth	В										X		
03F070	Hill Ditch @ Cedardale Rd	В										X		
04A060	Skagit R @ Concrete	В				Χ	Х	XXX	XXXXXXXXX	XX X				

Station Number	Name	Long-term or Basin	<1960s>	<	1970)s>	Water Year S <1980s>	ampled <1990s>	<2000s>
04A100	Skagit R @ Marblemount	L	x xxxxxxx x	Х		XX	XXXXXXXXX	XXXXXXXXX	xxxxxxxxx xxx
04A140	Skagit R @ Newhalem	В			Х	Χ			
04B070	Baker R @ Concrete	В	XXXX			XXX	XXXXXXXXX	XX X	
04B150	Baker Lake @ Boulder Cr	В			Х	XXXX	X		
04C070	Sauk R nr Rockport	В				XXX	XXXXXXXXX	XX X	Х
04C110	Sauk R @ Darrington	В	X XX						
04C120	Sauk R @ Backman Park	В							Х
04E050	Finney Cr near Birdsview	В						X	
05A050	Stillaguamish R @ Stanwood	В		Х					
05A055	Hat Slough nr Stanwood	В				Χ			
05A070	Stillaguamish R nr Silvana	L	x xxxxxxxxx	XX	Χ	XXX	XXXXXXXXX	XXXXXXXXX	xxxxxxxxx xxx
05A090	SF Stillaguamish R @ Arlington	L		Х	Χ	XX	XXXXXXXXX	XX X XXXXX	xxxxxxxxx xxx
05A110	SF Stillaguamish R nr Granite Falls	L	x xxxxxxx		Χ			x xxxxx	xxxxxxxxx xxx
05B070	NF Stillaguamish R @ Cicero	L	XXXXXXXX	XX	Χ	XX	XXXXXXXXX	XX X XXXXX	xxxxxxxxx xxx
05B090	NF Stillaguamish R @ Oso	В			Χ				
05B110	NF Stillaguamish R nr Darrington	L			Χ			x xxxxx	xxxxxxxxx xxx
05G050	Jim Cr @ Jordan Rd	В							X
05L100	Church Creek @ 284th St.	В							X
05M050	Montague Creek @ Hwy 530	В							X
07A090	Snohomish R @ Snohomish	L	x xxxxxxxx x	XX	Χ	XXX	XXXXXXXXX	XXXXXXXXX	xxxxxxxxx xxx
07A100	Snohomish R. @ Short School Rd.	В							X
07A109	Snohomish R nr Monroe NE	В		Х					
07A110	Snohomish R nr Monroe SW	В		Х					
07A111	Snohomish R nr Monroe (USGS)	В			Х	X X	XX		
07B055	Pilchuck R @ Snohomish	В		Х	Χ	XX	XXXXXXXXX	XXX X	
07B075	Pilchuck R @ Russel Rd.	В							X
07B090	Pilchuck R nr Lake Stevens	В				Χ			
07B120	Pilchuck R @ Robe-Menzel Rd.	В							X
07B150	Pilchuck R @ Menzel Lake Rd.	В							Х
07C070	Skykomish R @ Monroe	L		Х	Χ	XXX	XXXXXXXXX	XXXX XXXXX	xxxxxxxxx xxx
07C090	Skykomish R @ Sultan	В		Х	Χ				
07C120	Skykomish R nr Gold Bar	В	x xxxxxxxxx	Х		XX	XXXXXXXXX	XXX	х
07C170	Skykomish R nr Miller R	В				Х			
07D050	Snoqualmie R nr Monroe	L				Х		XX XXXXX	xxxxxxxxx xxx

Station Number	Name	Long-term or Basin	<1960s>	<	1970)s>	Water Year S <1980s>			<2000s>
07D070	Snoqualmie R nr Carnation	В		Х	XX	XXX	XXXXXXXXX	XXX	Х	
07D100	Snoqualmie R abv Carnation	В								X
07D130	Snoqualmie R @ Snoqualmie	L	x xxxxxxxxx	Х		XXX	XXXXXXXXX	XXX	XXXXX	XXXXXXXXX XXX
07D150	M F Snoqualmie R nr Ellisville	В						Х		X
07E055	Sultan R @ Sultan	В	XXXXXXXX X	XX	Х			Х		X
07F055	Woods Cr @ Monroe	В		Х	Х			Х	Χ	
07G070	Tolt R nr Carnation	В	XXXXXXXXX	Х				Х		
07M070	SF Snoqualmie R at North Bend	В						Х		
07M120	SF Snoqualmie R @ 468th Ave. SE	В								Х
07N070	NF Snoqualmie R near Ellisville	В						Х		
07P070	Patterson Ck nr Fall City	В						Х	Χ	X
07Q070	Raging R @ Fall City	В						Х		X
07R050	French Cr nr Mouth	В							X	X
08A070	McAleer Cr nr Mouth	В		X						
08A090	Upper McAleer Cr	В		Х						
08B070	Sammamish R @ Bothell	В	X XXXXXXXXX	XX	Х	X XX	XXXXXXXXX	XXXX	X X	
08B110	Sammamish R @ Redmond	В				X			X	
08B130	Issaquah Cr nr Issaquah	В	XXX X	XX	Х	X			X	
08C070	Cedar R @ Logan St/Renton	L	X XXXXXXX	Х	X	X XX	XXXXXXXXX	XXXX	XXXXXX	xxxxxxxxx xxx
08C080	Cedar R @ Maplewood	В							Χ	
08C090	Cedar R @ Maple Valley	В			Χ				Χ	
08C100	Cedar R @ RR Grade Rd	В								X
08C110	Cedar R nr Landsburg	L	X XXX		Χ	XX	XXXXXXXXX	XX	XXXXXX	xxxxxxxxx xxx
08D070	Mercer Slough nr Bellevue	В		X						
08E090	Kelsey Cr @ Monitor Site	В		X						
08E110	Upper Kelsey Cr	В		X						
08F070	May Cr nr Mouth	В		X						
08G070	Valley Cr nr Mouth	В		X						
08H070	Thornton Cr nr Mouth	В		Х						
08H100	North Branch Thornton Cr	В		Х						
08J070	West Branch Thornton Cr	В		Х						
08J100	Swamp Creek abv Lynnwood	В							X	
08K090	Ship Canal @ Freemont	В							X	
08K100	North Creek nr Everett	В							X	

Station	Name	Long-term	1 1000-	4 40705	Water Year S	ampled	2000-	2010-
Number 08L070	Name Laughing Jacobs Cr nr Mouth	or Basin B	<1960s>	<1970s	198US>	<1990s>	<2000s>	<20 IUS>
08L070	SF Thornton Cr @ 107th Ave NE	В					X	
08N070	Johns Creek @ Gene Coulon Park	В					X	
09A060	•	В			XXXXXXXXX	VV	^	
	Duwamish R @ Allentown Br		x xxxxxxxx		^^^^^	AA		
09A070	Duwamish R @ Foster	В	A AAAAAAA			VVVVVVVVV	XXXXXXXXX	VVV
09A080	Green R @ Tukwila	L		X XX	XXXXXXXXX		^^^^^	AAA
09A090	Green R @ 212th St nr Kent	В	*************		XXXXXXXXX	XX X		
09A110	Green R @ Auburn	В	XXXXX X					
09A130	Green Abv Big Soos/Auburn	В	X XXXXXXXXX			X		
09A150	Green R nr Auburn	В		X				
09A170	Green R nr Black Diamond	В		X				
09A190	Green R @ Kanaskat	L	X XX		XXXXXXXXX	XXXXXXXXX	XXXXXXXXX	XXX
09B070	Big Soos Cr blw Hatchery	В		X X				
09B090	Big Soos Cr nr Auburn	В	XXXX	XX		X X		
09C070	Des Moines Cr nr Mouth	В		X		X	X	
09C090	Des Moines Cr @ So 200th	В		X				
09D070	Miller Cr nr Mouth	В		X			ХХ	
09D090	Miller Cr @ Ambaum Blvd SW	В		X				
09E070	Mill Creek @ Orillia	В			XXXXXX	X X		
09E090	Mill Creek - Kent on W Valley Hwy	В			XXXXXX	X		
09F150	Newaukum Creek nr Enumclaw	В				X		
09H090	Black R @ Monster Rd SW	В				X	X	
09J090	Longfellow Cr abv 24-25th St juctn	В					XX	
09K070	Fauntleroy Cr. nr Mouth	В					XX	
09L060	Walker Creek near mouth	В					X	
09M050	North Creek at Seahurst Pk	В					X	
09N050	Mullen Slough @ Frager Rd.	В						X
09Q060	Redondo Cr. abv Marine View Dr. S.	В						X
10A050	Puyallup R @ Puyallup	В	x xxxxxxxx x	XXX XXXX	x xxx		XXX	
10A070	Puyallup R @ Meridian St	L		X X X	x xxxxxxxxx	XXXXXXXXX	xxxxxxxx	XXX
10A075	Puyallup R @ East Main St.	В					X	
10A080	Puyallup R. nr Sumner	В					X	
10A090	Puyallup R @ McMillin	В		X X				
10A110	Puyallup R @ Orting	В	x xxx xxxxxx		x xxxxxxxxx	xx x x		

Station Number	Name	Long-term or Basin	<1960s>	<19	970s>	Water Year S <1980s>			<2000s>	<2010s>
10B070	Carbon R nr Orting	В	XX	XX			Х			
10B090	Carbon R @ Fairfax	В			X					
10C070	White R @ Sumner	В		XX	XX	XXXXXXXXX	XX X	X		
10C085	White R nr Sumner	В	X	Х	X			X		
10C090	White R @ Auburn	В	XXXXX	ХХ						
10C095	White River @ R Street	В						Х	XXXXXXX X	
10C110	White R blw Buckley	В		Х						
10C130	White R @ Buckley	В					Х			
10C140	White R nr Buckley	В		Х						
10C150	White R nr Greenwater	В		Х						
10D070	Boise Cr @ Buckley	В	XXX	Х					X	
10D090	Boise Cr nr Enumclaw	В	XXX							
10E070	Salmon Cr @ Sumner	В		X						
10F070	So Prairie Cr nr Crocker	В			X					
10F090	South Prairie Ck nr S. Prairie	В					Х			
10G080	Hylebos Creek @ 8th St. E	В								X
10H070	Lk Tapps Tailrace @ E. Valley Hwy.	В							X	
101050	Joe's Creek @ SR 509	В							X	
10J050	Lakota Cr. @ Dumas Bay Center	В								X
11A070	Nisqually R @ Nisqually	L		X	X XX	XXXXXXXXX	XXXXX	XXXXXX	XXXXXXXXX	XXX
11A080	Nisqually R @ McKenna	В	X XXXXXXXXX	Х			XX X			
11A090	Nisqually R abv Powell Cr	В		X	XX	XXXXXXXXX	Х			
11A110	Nisqually R @ LaGrande	В		X						
11A140	Nisqually R @ Elbe	В		X	X XX	X				
12A070	Chambers Cr nr Steilacoom	В	XXXXX	XX	X	XXXXXX	XX X	Χ		
12A100	Chambers Cr blw Steilacoom Lk	В	XX		X			XXX		
12A110	Clover Cr abv Steilacoom Lk	В	XXX		Х			XXXX		X
12A130	Clover Cr nr Parkland	В	XX							
12B070	Leach Cr nr Steilacoom	В	XXX		X				X	
12C060	Flett Cr. @ 75th St. W.	В								X
12C070	Flett Cr @ Custer Rd	В	XXX		X					
12D050	Ponce de Leon Ck nr mouth	В						XXX		
12F090	Spanaway Cr @ Old Military Rd.	В							X	
13A050	Deschutes R @ Tumwater	В	XXXXX X	X	X					

Station Number		Long-term or Basin	<1960s>	<1970s>	Water Year Sampled <1980s>	· <2000s> <2010s>
13A060	Deschutes R @ E St Bridge	L		XX	XXXXXXXXXX XXXX	xxxxxxxxx xxx
13A080	Deschutes R nr Olympia	В		X X X		
13A150	Deschutes R nr Rainier	В	x xxx	X X XX	XXXXXXXXXX XX X	
14A060	Goldsborough Cr @ Shelton	В			X X	
14A070	Goldsborough Cr nr Shelton	В	XXX X	X		
14C050	Happy Hollow Cr at WA106	В				X
15A070	Dewatto R nr Dewatto	В		XXX	X	X
15B050	Chico Cr nr Chico	В			X	X
15B070	Chico Cr nr Bremerton	В	XXXXX	X		
15C070	Clear Cr @ Silverdale	В			X	Х
15D070	Tahuya R @ Tahuya River Rd	В				Х
15D090	Tahuya R nr Belfair	В			X	
15E070	Union R nr Belfair	В			X	X
15F050	Big Beef Cr @ Mouth	В				XXXXX XX
15G050	Little Mission Cr. @ Hwy 300	В				X
15H050	Stimson Creek @ Hwy 300	В				X
15J050	Big Mission Cr. @ Hwy 300	В				X
15K070	Olalla Cr. @ Forsman Rd.	В				X
15L050	Seabeck Cr. @ mouth	В				XXXXX XX
15M070	Llt Anderson Cr. @ Anderson Hill Rd	В				XXXXX XX
15N070	Stavis Cr. nr Mouth	В				XXXXX XX
16A070	Skokomish R nr Potlatch	L	XXXXXXXX X	X XXX XX	X XXXXXX XXXXXXXXX	xxxxxxxxx xxx
16B070	Hamma Hamma R nr Mouth	В	XXXXXX X	X X		
16B110	Hamma Hamma R nr Eldon	В		XX	X	
16B130	Hamma Hamma River @ Lena Creek	Ca L				XX
16C070	Duckabush R @ Mouth	В	XXXXXXXX X	X X		
16C090	Duckabush R nr Brinnon	L		XXX	XXXXXX	xxxxxxxxx xxx xxx
16D070	Dosewallips R @ Brinnon	В	x xxxxxxxxx	X XXX	X	
16E070	Finch Cr @ Hoodsport	В			X X	
17A060	Big Quilcene R nr mouth	В				XX X
17A070	Big Quilcene R nr Quilcene	В	x xxxxxxx	XXX	X X	
17B070	Chimacum Cr nr Irondale	В			X	
17B090	Chimacum Cr @ Hadlock	В		Х		
17B100	Chimacum Cr @ Chimacum	В			X	

Station		Long-term			Water Year S	ampled	
Number	Name	or Basin	<1960s>	<1970s>	<1980s>	<1990s>	<2000s> <2010s>
17B110	Chimacum Cr nr Chimacum	В		X			
7C070	Jimmycomelately Cr near Mouth	В					xx
17G060	Tarboo Cr. nr mouth	В					X
8A050	Dungeness R nr Mouth	В					XXXXXX
8A070	Dungeness R nr Sequim	В	x xxxxxxx	XXX		X X	XX
8B070	Elwha R nr Port Angeles	L	x xxxxxxx x	XXX		XXXXXX	xxxxxxxxx xxx
18B080	Elwha R @ McDonald Br (USGS)	В		XXXXX	XX		
9A070	Pysht R nr Pysht	В		XXX			
9B070	Hoko R nr Mouth	В		X			
9B090	Hoko R nr Sekiu	В		XX			
9C060	West Twin R. nr mouth	В					xxxxx xxx
9D070	East Twin R. nr Mouth	В					xxxxx xxx
9E060	Deep Cr. nr mouth	В					xxxxx xxx
0A090	Soleduck R nr Forks	В		XXX		X	
0A130	Soleduck R nr Fairholm	В	XXXXXXXX X	X			
0B070	Hoh R @ DNR Campground	L	XXXXXXXXX	x xxx xx	X	XXXXXX	xxxxxxxxx xxx
0C070	Ozette R @ Ozette	В	X XX				
0D070	Dickey R nr La Push	В				X	
0E100	Twin Creek @ Upper Hoh Rd Br	L					XX
0F070	Lake Creek at Hwy101	В					X
1A070	Queets R @ Queets	В	XXXXXXXXX	хх		X	
1A080	Queets R nr Clearwater (USGS)	В		XX	XX		
1A090	Queets R abv Clearwater	В		XX			
1B090	Quinault R @ Lake Quinault	В	x x xxxxxx	x xxx xx	Х	X	
1C070	Clearwater R nr Queets	В		XX			
1D070	NF Quinault R @ Amanda	В		xxxxxxxx	XX		
2A070	Humptulips R nr Humptulips	L	x xxxxxxxxx	x xxx xx	xxxxxxxxx	xxxxxxxxx	xxxxxxxxx xxx
2B070	WF Hoquiam R nr Hoquiam	В	XXXXX	XX		X	
2C050	Chehalis R nr Montesano	В		xx xx	xxxxxxxxx	XXX	
2C070	Chehalis R nr Fuller	В		х х			
2D070	Wishkah R nr Wishkah	В	XXXXX	XX X			
2F090	Wynoochee R nr Montesano	В	x xxxxxxxx x	X XX X			
22G070	Satsop R nr Satsop	В	XXXXXXXXX	XX X XXX	XXXXXXXXX	XX X	
2H070	Cloquallum Cr nr Elma	В	XXXX	x x x			

Station Number	Name	Long-term or Basin	<1960s>	<1970s>	Water Year S <1980s>	ampled <1990s>	<2000s> <2010s>
22J070	Wildcat Cr nr McCleary	В		Х			
23A070	Chehalis R @ Porter	L	x xxxxxxxxx	xxxx xxxxx	xxxxxxxxx	xxxxxxxxx	xxxxxxxxx xxx
23A100	Chehalis R @ Prather Rd	В				XXX	XXXX
23A110	Chehalis R @ Galvin	В		X X X			
23A120	Chehalis R @ Centralia	В		XX	XXXXXXXXX	XX X	
23A130	Chehalis R @ Claquato	В				X	
23A140	Chehalis R @ Adna	В		X X X			
23A160	Chehalis R @ Dryad	L	x xxxxxxx	XX	XXXXXXXXX	XXXXXXXXX	xxxxxxxxx xxx
23A170	Chehalis R. nr Doty	В					X
23B050	Newaukum @ Mouth	В				X	
23B070	Newaukum R nr Chehalis	В	XXXXXXX	XXX		X	
23B090	SF Newaukum R @ Forest	В		X			
23C070	NF Newaukum R @ Forest	В		X			
23D055	Skookumchuck R @ Centralia	В				X X	
23D070	Skookumchuck R nr Centralia	В	XX				
23E060	Black R. @ Hwy. 12	В					X
23E070	Black River @ Moon Road Bridge	В				XX X XXX	
23F070	Mill Ck nr Bordeaux	В				X	
23G070	SF Chehalis R @ Beaver Creek Rd.	В				X	X
24B090	Willapa R nr Willapa	L	XX X	XXXXX XXXX	XX XXXXXX	XXX XXXXX	XXXXXXXXX XXX
24B095	Willapa R nr Menlo	В					Х
24B130	Willapa R @ Lebam	В	X XX X	XX	XXXXXXXXX	XXX	X
24B150	Willapa R @ Swiss Picnic Rd	В					Х
24C070	SF Willapa R @ South Bend	В		X			
24D070	North R nr Raymond	В		X XX		XX	
24D090	North R @ Artic	В				X	
24E070	North Nemah R @ Nemah	В		X X			
24F040	Naselle R @ Mouth	В		Х			
24F055	Naselle R @ Naselle	В		X			
24F070	Naselle R nr Naselle	L	XX X	X X XXXX	X	X XXXXX	xxxxxxxxx xxx
24G070	Bear Branch nr Naselle	В	X	X			
24H070	Middle Nemah R nr Nemah	В		X			
24J070	South Nemah R nr Nemah	В		X			
24K060	Forks Cr abv Hatchery (outfall)	В					X

Station Number	Name	Long-term or Basin	<1960s>	<10	970s	۱ د	Water Year S	ample	d 990s>	<2000s>	<>2010e>
25	Nooksack R above the MF	В	100032	- 1			10000>	- 1	Х	X X	20100
25A070	Columbia R @ Cathlamet	В	XX	Х	Х						
25A075	Columbia R @ Bradwood	В			XXXXX	X					
25A110	Columbia R @ Fisher Is Lt	В	XXXXX								
25A115	Columbia R nr Longview	В	XX	X	Х						
25A150	Columbia R blw Longview Br	В	X	Х							
25B070	Grays R nr Grays River	В		Х	XX				Х		X
5C070	Elochoman R nr Cathlamet	В	X	Х	XX				Х	X	
25D050	Germany Cr @ mouth	В								XXXXX	XXX
5E060	Abernathy Cr nr mouth	В								XXXXX	XXX
25E100	Abernathy Cr. @ DNR	В								XXXX	
25F060	Mill Cr. nr mouth	В								XXXXX	XXX
5F100	Mill Cr. @ DNR	В								XXXX	
5G060	Coal Cr. @ Harmony Rd.	В									X
6B070	Cowlitz R @ Kelso	L	XXXXXXX	XX	X X	X	XXXXXXXX	XXXX	XXXXXX	XXXXXXXXX	XXX
6B100	Cowlitz R @ Castle Rock	В	XXX	Х	XXXX					X	
3B150	Cowlitz R @ Toledo	В	XXXXX	Х	X X	X Z	X	Х			
6B180	Cowlitz nr Kosmos B Cispus	В	x xxxxxxxx								
6B190	Cowlitz R nr Randle	В	X	Х	Χ	Х					
6B200	Cowlitz R nr Kosmos	В		Х							
6C070	Coweeman R @ Kelso	В	XXXXX	XX	Х		XXXXXX	XXX	X		
6C073	Coweeman R @ 3802 Allen Street	В									X
6C080	Coweeman R av Goble Cr	В							X		
6C090	Coweeman R nr Rose Valley	В		Х	Х						
6D070	Toutle R nr Castle Rock	В	xxxxxxx x	ХХ	X X	X Z	XXXXXXXXX	XXX			
6E070	Cispus R nr Kosmos	В		Х		2	XXX				
6F050	Olequa Cr. at 7th Street	В								X	
7A070	Columbia R @ Kalama	В	XX	Х	XX						
7A110	Columbia River nr St. Helens	В	XX	Х							
7B050	Kalama R @ Kalama	В	xxxxxxxxx	Х							
7B070	Kalama R nr Kalama	L		XX	XX	3	XXXXXXXXX	XXX	XXXXX	XXXXXXXXX	XXX
7B090	Kalama R @ Upper Hatchery	В		Х							
27B110	Kalama R @ Pigeon Springs	В		Х							
7C070	Lewis R @ Woodland @ I-5	В	XXXXX X	X XX							

Station Number	Name	Long-term or Basin	<1960s>	<1970s-	Water Year S			<2000s>	<2010s>
27C080	Lewis R @ Co Rd 16	В				Х			
27C110	Lewis R @ Ariel	В	XX	X	xx x				
27D090	EF Lewis R nr Dollar Corner	L		X	xx xxxxxxxxx	XXX	XXXXX	xxxxxxxxx	XXX
27E070	Cedar Cr nr Etna	В					X		
27F070	Gee Cr @ Ridgefield	В					Х		
28A090	Columbia blw Vancouver WA	В	XX	X					
28A091	Columbia blw Vancouver OR	В	XX	X					
28A100	Columbia R @ Vancouver	В						X X	
28A165	Columbia R @ Warrendale	В		XXXXX	XX				
28A170	Columbia R blw Bonneville	В	XX	X					
28A175	Columbia R @ Bonneville Dam	В	XX	X X					
28B070	Washougal R @ Washougal	В	2	X XX XX		Х		X	
28B085	Washougal R abv Ltl Washougal R	В							X
28B090	Washougal R nr Washougal	В	XXXXXXX	X					
28B110	Washougal R blw Canyon Ck	В					Х Х	X	
28C070	Burnt Br Cr @ Mouth	В		X				XX XX	
28C110	Burnt Br Cr @ Vancouver	В		X					
28D070	Salmon Cr @ Salmon Creek	В		X					
28D110	Salmon Cr nr Battle Ground	В		X					
28D170	Salmon Cr @ NE 199th/Hill rd	В							X
28E070	Weaver Cr nr Battle Ground	В		X					
28F070	Lake R nr Ridgefield	В				Х			
28G070	Gibbons Ck nr Washougal	В				X		X	
28H070	Campen Cr nr Washougal	В						X	
281120	Lacamas Creek @ Goodwin Road	В						X	
28J070	Little Washougal Cr. @ Blair Road	В						X	
29B070	White Salmon R nr Underwood	В	XXXXXXXXX	X XX XX	XX XXXX		Х		
29B090	White Salmon R @ Husum St	В						X	
29C070	Wind R nr Carson	В		X XX	XX XXXX		Х		
29D070	Rattlesnake Cr nr Mouth	В					XXX	X	
29E070	Gilmer Cr nr Mouth	В					XXX		
30A070	Columbia R @ The Dalles	В	XX	XXXXXXX	X		Χ		
30A090	Columbia R @ The Dalles Dam	В	X						
30B060	Klickitat R nr Lyle	В]	XX		

Station	N	Long-term	1000	4070	Water Year S		
Number	Name	or Basin	<1960s>	<1970s>		<1990s>	<2000s> <2010s>
30B070	Klickitat R nr Pitt	В	XXX		X		
30C070	Little Klickitat nr Wahkiacus	В		X		XX	
30C090	Little Klickitat R. @ Olson Rd.	В					X
30C150	Little Klickitat R. @ Hwy 97	В					X
31A070	Columbia R @ Umatilla	L	X	XXXXX		XXXXXXXX	XXXXXXXXX XXX
31A090	Columbia R @ McNary Dam	В	X XXXXXXXXXX				
31A130	Columbia R nr Yakima R Mouth	В	X				
31B110	Rock Creek @ Bickleton Hwy	В					X
31C012	Alder Crk @ 6 Prong Rd Bridge	В					X
31D010	Pine Creek @ One Mile Bridge	В					X
31E060	Glade Creek @ SR14	В					X
32A070	Walla Walla R nr Touchet	L	X XXXXXXX	XX XXXXXX	XXXXXXXXX	XXXXXXXXX	xxxxxxxxx xxx
32A090	Walla Walla R nr Lowden	В		XX			
32A100	Walla Walla at east Detour Road Br	В				X	X
32A110	Walla Walla R @ College PI	В		XX XX			
32B070	Touchet R @ Touchet	В		X XX XX	XXXXXXXXX	XXX X	
32B075	Touchet R. @ Cummins Rd.	В					X X
32B080	Touchet at Sims Road	В				Х	x
32B100	Touchet R @ Bolles	В		XX		Х	x
32B120	Touchet R nr Dayton	В		XX			
32B130	Touchet R @ Dayton	В	XX			XX	
32B140	Touchet R above Dayton	В				X	
32C070	Mill Cr @ Swegle Rd	В		X XX			х
32C110	Mill Cr @ Tausick Way	В		X X		Х	
3A010	Snake R nr Mouth	В	X				
3A050	Snake R nr Pasco	L	xxxxxxx x	X		xxxxxxxx	xxxxxxxxx xxx
3A070	Snake R blw Ice Harbor Dam	В	X	x xxxxxx	xxxxxxxxx	XX	
34A070	Palouse R @ Hooper	L	x xxxxxxxxx	x xxxxxx	XXXXXXXXX	XXXXXXXXX	xxxxxxxxx xxx
84A075	Palouse River @ Hwy 26	В					x
34A080	Palouse River above Rebel Flat	В					x
34A085	Palouse R @ Shields Rd Bridge	В				X	x
34A090	Palouse R nr Diamond	В		ХХ			
34A109	Palouse River blw Colfax	В					X
34A110	Palouse R abv Buck Canyon	В		X XX			

Station Number	Name	Long-term or Basin	<1960s>	<1970s>	Water Year S <1980s>	ampled <1990s>	<2000s>	<2010s>
34A120	Palouse R at Colfax	В					X X	
34A170	Palouse R @ Palouse	L		Х		XXXXXXXX	XXXXXXXXX	XXX
34A200	Palouse R nr Stateline	В					Х	
34B070	SF Palouse R nr Colfax	В		X XX				
34B075	SF Palouse R @ Shawnee Rd	В					X	
34B080	SF Palouse R @ Albion	В					X	
34B090	SF Palouse R nr Pullman	В		X X				
34B110	SF Palouse R @ Pullman	L		x x xx	XXXXXXXXX	xxx xxxxx	XXXXXXXXX	XXX
34B130	SF Palouse R blw Sunshine	В		X			XXX	
34B140	SF Palouse R @ Busby	В				X		
34C060	Paradise Cr at Mouth	В				X	XXX	
34C070	Paradise Cr nr Pullman	В		Х				
34C100	Paradise Cr @ Border	В				X	XXX	
34D070	SF Palouse Trib Whitman Fm	В		X				
4E070	Rock Creek at Revere	В				X		
4F090	Pine Cr @ Rosalia	В				X	X	
4H070	Pleasant Valley Cr blw St John	В					X	
4J050	Union Flat Cr nr Mouth	В					X	
4J070	Union Flat Cr @ Winona Rd	В					X	
4J090	Union Flat Cr @ Hwy 26	В					X	
4J120	Union Flat Cr @Almota Rd	В					X	
4K050	Rebel Flat Cr @ Mouth	В					X	
4K080	Rebel Flat Cr @ Repp Rd	В					X	
4K120	Rebel Flat Cr @ Fairgrounds	В					X	
4L050	Cow Cr @ mouth	В					X	
4M070	Dry Creek @ Pullman	В					X	
4N070	Missouri Flat Creek @ Pullman	В					X	
5A100	Snake R blw Lwr Granite Dam	В		X				
5A150	Snake R @ Interstate Br	L	XXXXX XX			XXXXXXXX	XXXXXXXXX	XXX
5A200	Snake R nr Anatone	В		XXXXXXXX				
5B060	Tucannon R @ Powers	L		X XX	XXXXXXXXX	XXX XXXXX	XXXXXXXXX	XXX
5B090	Tucannon R @ Smith Hollow	В					X	
35B100	Tucannon R @ Territorial Road	В					X	
35B110	Tucannon R nr Delaney	В	XX					

Station	Name	Long-term	4000-	4070-	Water Year S			
Number	Name	or Basin	<1960s>	<1970s>	<198US>	<1990s>		<2010s>
35B120	Tucannon R @ Brines Road	В					X	
35B150	Tucannon R nr Marengo	В				X	X	
35C070	Grande Ronde R nr Anatone	В		X	XXX	X		
35D070	Asotin Cr @ Asotin	В		X		X X	X	
35D120	NF Asotin Ck blw Lick Cr	L						X
35E070	Clearwater R @ US12/95	В				X		
35F050	Pataha Cr near mouth	В					X X	X
35F070	Pataha Cr @ Archer Rd	В				X	X	
35F095	Pataha Cr @ Tatman Road	В					X	
35F110	Pataha Cr @ Rosy Grade	В					X	
35L050	Almota Cr. @ mouth	В					X	
35L140	Almota Cr @ Klemgard Rd	В					X	
35Q050	Little Almota Cr @ Mouth	В					X	
35R050	Steptoe Cr @ Mouth	В					X	
35R120	Steptoe Cr blw Stewart	В					X	
35R140	Steptoe Cr abv Stewart	В					X	
35S060	Wawawai Cr @ mouth	В					X	
35U070	Alkali Flat Cr nr Mouth	В					X	
35U090	Alkali Flat Cr abv Hay	В					X	
35U140	Alkali Flat Cr @ Little Alkali Rd	В					X	
35U190	Alkali Flat Cr @ Penewawa Rd	В					X	
35W070	Mud Flat Cr @ Mouth	В					X	
35Y070	Penewawa Cr nr Mouth	В					X	
35Y110	Penewawa Cr @ Looney Br	В					X	
35Y170	Penewawa Cr abv Goose cr	В					X	
35Z070	Little Penewawa Cr @ Mouth	В					X	
36A055	Columbia R @ Port of Pasco	В		X				
36A060	Columbia R @ Pasco	В	X	ζ				
36A065	Columbia R @ Richland	В		X				
36A070	Columbia R nr Vernita	L	XX X	x x xxx xx	XXXXXXXXX	XX XXXXXX	XXXXXXXXX	XXX
37A060	Yakima R @ VanGiesen Br	В		x xx				
37A070	Yakima R nr Richland	В		X				
37A090	Yakima R @ Kiona	L	x xxx xx	xxxxxxxxxx	xxxxxxxxx	xxxxxxxxx	XXXXXXXXX	XXX
37A095	Yakima 2 mi blw Prosser	В				X		

Station Number	Name	Long-term or Basin	<1960s>	<1970s>	Water Year S <1980s>	ampled <1990s>	<2000s>
37A100	Yakima below Prosser	В				Х	
37A110	Yakima R @ Prosser	В		X XX			
37A130	Yakima R @ Mabton	В		X XX		X	
37A149	Yakima R @ Granger No Side	В		X			
37A150	Yakima R @ Granger So Side	В		X			
37A170	Yakima R nr Toppenish	В		X XX		X	
37A190	Yakima R @ Parker	В		x xxxxxxx	xxxxxxxxx	XXX	X
37A200	Yakima R abv Ahtanum Cr (USGS)	В		XX X	XX		
37A205	Yakima R @ Nob Hill	L				XXXXX	xxxxxxxxx xxx
37A210	Yakima R nr Terrace Height	В		XX XX		X	
37B060	Satus Cr @ Satus	В		XX			
37C060	Toppenish Cr nr Satus	В		XX			
37D080	Marion Drin nr Granger	В		XX			
37E050	Wide Hollow Cr. @ Main Street	В					XX
37E070	Wide Hollow Cr @ Union Gap	В		х х		X	
37E090	Wide Hollow Cr @ Goodman	В		X X			
37E120	Wide Hollow Creek @ Randall Park	В					XX
37F070	Sulphur Ck Wasteway @ McGee Rd	В				X	
37F080	Sulphur Creek @ Holaday Road	В					Х
37G050	Ahtanum Crk @ Fulbright Park	В					X
37G120	Ahtanum Cr @ 62nd Ave	В					XX
371070	Moxee Drain @ Birchfield Rd.	В					XX
37J060	Snipes Creek nr Mouth	В					X
38A050	Naches R @ Yakima on US HWY 97	L	XXXXXXX			X XX	x x x x xx
38A070	Naches R @ Yakima	В		X X			
38A110	Naches R @ Naches	В	XX	X			
38A130	Naches R nr Naches	В	XXXX				
38B070	Tieton R @ Oak Creek	В	XXXX			X	
38C070	Rattlesnake Cr nr Nile	В	XX				
38D070	Bumping R @ American R	В	XX				
38E070	American R @ American R	В	XX				
38F070	Little Naches nr Cliffdell	В	XXX			X	
38G070	Cowiche Cr. @ Powerhouse Rd.	В					xx
38G120	Cowiche Cr @ Zimmerman rd	В					XX

Station Number		Long-term or Basin	<1960s>	<1970s>	Water Year S	ampled <1990s>	<2000s> <2010s>
39A050	Yakima R @ Harrison Bridge	В	1 100032	10700	10000		XXX X
39A055	Yakima R. @ Umtanum Cr Footbrg	L					XXX
39A060	Yakima R @ Ellensburg	В				XX	XX
39A070	Yakima R nr Thorp	В		ХХ			
39A080	Yakima R @ Cle Elum	В	x xxxxxxxxx	X			
39A090	Yakima R nr Cle Elum	L		X X		XXX XXXXX	xxxxxxxxx xxx
39B070	Cle Elum R nr Cle Elum	В		X X			
39B090	Cle Elum R nr Roslyn	В				X	X
39C070	Wilson Cr @ Highway 821	В	XXXX	X X X		X	XX
39D070	Teanaway R nr Cle Elum	В	XXXXX			X	
39M050	Swauk Cr. nr Cle Elum	В					X
39M100	Swauk Cr. @ Lauderdale Junction	В					X
39R050	Umtanum Creek nr mouth	L					X
41A070	Crab Cr nr Beverly	L	x xxxxxxxxx	XXX XX XX	xxxxxxxxx	xx xxxxxx	xxxxxxxxx xxx
41A075	Crab Cr nr Smyrna	В	XXX				
41A090	Crab Cr nr Othello	В		X			
41A110	Crab Cr nr Moses Lake	В	X		XXXX	X X	X
41D070	Rocky Ford Creek @ Hwy 17	В				X	X
41E070	Sand Hollow Creek on Hwy 26	В				X	
41F100	Rocky Ford Coulee Drain	В				X	
41G070	Rocky Coulee Wasteway @ K NE Roa	nd B					X
41H050	Moses Lake at South Outlet	В					X
41J070	Lind Coulee @ Hwy 17	В					X
42A070	Crab Cr below Adrian	В					X
43A070	Crab Cr @ Irby	В	X			X	X X
43A080	Crab Creek @ Odessa	В					X
43A095	Crab Creek @ Amnen Road	В					X
43A100	Crab Ck @ Marcelus Road	В				X	Х
43A110	Crab Creek at Tokio Road	В					X
43A130	Crab Creek @ US23	В					Х
43A150	Crab Ck @ Bluestem Road	В				X	Х
43B090	Lake Ck @ Coffeepot Road	В				X	
43C070	Goose Creek nr Wilbur	В					Х
44A070	Columbia R blw Rock Is Dam	В		X XX XX	XXXXXXXXX	XX	

Name a	Long-term	1000-	4 4070- >	Water Year S		- 2000	2010-
Name	or Basin	<1960s>	<1970s>	<198US>	<1990s>		<20 IUS>
		***************************************	17 17 1717 1717	, , , , , , , , , , , , , , , , , , , ,	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		77777
•		XXXXXXXX X	X X XX XX	XXXXXXXXXX	XXXXXXXXX		XXX
,						X	
·							
•							
	L	X XXXXXXXX		XXXXXXXXX		XXXXXXXXX	XXX
			X		X		
Chumstick Cr. nr mouth	В						
Chumstick Cr nr Leavenworth	В				XXX	X X	
Brender Cr nr Cashmere	В				XXX	X XX	
Brender Cr. abv Noname Cr.	В					X	
Mission Cr nr Cashmere	В				XXX	X XX	
Nason Cr. nr mouth	В					X	
White R. @ Road 6500 Bridge	В					X	
Little Wenatchee @ 2 Rvr Grav.Pit	В					X	
Eagle Cr. nr mouth	В					XX	
Noname Creek nr Cashmere	В					XX	
Noname Cr. on Mill Rd.	В					X	
Entiat R nr Entiat	L	x xxxxxxx	X XX XX	XXXXXXXXX	xx xxxxx	XXXXXXXXX	XXX
Chelan R @ Chelan	В	XXXXXXXX X	x x xx xx	XXXXXXXXX	XX X		
Columbia R @ Chelan Station	В				ХХ		
Methow R nr Pateros	L	x xxxxxx	X XX XX	XXXXXXXXX	XXXXXXXXX	XXXXXXXX	
Methow River nr Pateros @ Metal Br.	L					X	XXX
Methow R nr Twisp	В		X XX	XXXXXXXX			
Methow R @ Twisp	L			X	xx x xxxxx	xxxxxxxx	XXX
- ·	В					X	
Methow R @ Weeman Br	В		X				
Methow R blw Gate Cr	В		X XX	x			
	В		X			Х	
			XXXXXXXX	xx			
	В					X	
·		x xxxxxxx x	X				
•				xx xxxxxx	xxxxxxxxx	xxxxxxxxx	XXX
ŭ J							·
	Wenatchee R nr Dryden Wenatchee R @ Leavenworth Wenatchee R nr Leavenworth Icicle Cr nr Leavenworth Chumstick Cr. nr mouth Chumstick Cr nr Leavenworth Brender Cr nr Cashmere Brender Cr. abv Noname Cr. Mission Cr nr Cashmere Nason Cr. nr mouth White R. @ Road 6500 Bridge Little Wenatchee @ 2 Rvr Grav.Pit Eagle Cr. nr mouth Noname Creek nr Cashmere Noname Cr. on Mill Rd. Entiat R nr Entiat Chelan R @ Chelan Columbia R @ Chelan Columbia R @ Chelan Station Methow R nr Pateros Methow River nr Pateros @ Metal Br. Methow R @ Twisp Methow R @ Winthrop Methow R @ Weeman Br	Wenatchee R @ Wenatchee Wenatchee River @ Sleepy Hollow Br. Wenatchee R nr Dryden B Wenatchee R @ Leavenworth B Wenatchee R m Leavenworth L Icicle Cr nr Leavenworth B Chumstick Cr. nr mouth B Chumstick Cr nr Leavenworth B Brender Cr nr Cashmere Brender Cr. abv Noname Cr. Mission Cr nr Cashmere B Nason Cr. nr mouth B White R. @ Road 6500 Bridge Little Wenatchee @ 2 Rvr Grav.Pit Bagle Cr. nr mouth B Noname Creek nr Cashmere B Noname Cr. on Mill Rd. B Entiat R nr Entiat Chelan R @ Chelan Columbia R @ Chelan Station Methow R nr Pateros Methow R iver nr Pateros @ Metal Br. Methow R @ Twisp Methow R @ Winthrop B Methow R @ Weeman Br Methow R @ Winthrop B Andrews Cr nr Mazama Twisp River nr Mouth Okanogan R nr Brewster B Okanogan R @ Malott L	Wenatchee R @ Wenatchee Wenatchee River @ Sleepy Hollow Br. B Wenatchee R nr Dryden Wenatchee R @ Leavenworth Wenatchee R nr Leavenworth L	Wenatchee R @ Wenatchee Wenatchee River @ Sleepy Hollow Br. Wenatchee R nr Dryden Wenatchee R @ Leavenworth Wenatchee R nr Leavenworth B Wenatchee R nr Leavenworth L X XXXXXXXX X X X X X X X X X X X X X	Wenatchee R @ Wenatchee L Wenatchee River @ Sleepy Hollow Br. B Wenatchee R nr Dryden B Wenatchee R nr Dryden B Wenatchee R nr Leavenworth B Wenatchee R nr Leavenworth L Icicle Cr nr Leavenworth B Chumstick Cr. nr mouth B Brender Cr. abv Noname Cr. B Brender Cr. abv Noname Cr. B Mission Cr. nr mouth B White R. @ Road 6500 Bridge B Little Wenatchee @ 2 Rvr Grav.Pit B Eagle Cr. nr mouth B Noname Creek nr Cashmere B Noname Cr. on Mill Rd. B Entiat R nr Entiat L X XXXXXXXX X X X X XXXXXXXXXXXXXXXX	Wenatchee R @ Wenatchee Wenatchee River @ Sleepy Hollow Br. Wenatchee R nr Dryden Wenatchee R m Leavenworth Wenatchee R m Leavenworth B Wenatchee R m Leavenworth L XXXXXXXXX XX XX XX XX XX XX	Wenatchee R @ Wenatchee L XXXXXXXXX X X X XXXXXXXXXX XXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

Station Number	Name	Long-term or Basin	<1960s>	<1970s>	Water Year S <1980s>	ampled <1990s>	<2000s> <2010s>
49A110	Okanogan R @ Omak	В					Х
49A130	Okanogan R @ Riverside	В					X
49A170	Okanogan R @ Janis	В		X			
49A180	Okanogan R @ Tonaskat	В				X	
49A190	Okanogan R @ Oroville	L	XXXXXXX	XX XX	XXXXXXXXX	XX X XXXXX	xxxxxxxxx xxx
49B070	Similkameen R @ Oroville	L	XXXXXXX	XX XX	XXXXXXXXX	XXXXXXXXX	xxxxxxxxx xxx
49B090	Similkameen R @ Nighthawk	В				X	
49B110	Similkameen R @ Chopaka, BC	В					xx
49F070	Bonaparte Cr. @ Tonasket	В					Х
49F105	Bonaparte Cr abv Tonasket	В					Х
50A070	Columbia R nr Brewster	В	X				
50A090	Columbia R @ Bridgeport	В	X				
50B070	Foster Cr @ Mouth	В					X
51A070	Nespelem R @ Nespelem	В			XXXXXXXXX	XX X	
52A070	Sanpoil R @ Keller	В	XXXXXXX	X XX XX	XXXXXXXXX	XX X	
52A110	Sanpoil R 13 mi S. Republic	В				X	
52A170	Sanpoil R blw Republic	В		X			
52A190	Sanpoil R abv Republic	В		X		X	
52B070	Lake Roosevelt from Keller Ferry	В				X	
53A070	Columbia R @ Grand Coulee	L		X XX XX	XXXXXXXXX	XX X XXXXX	XXXXXXXXX XXX
53C070	Hawk Creek @ Miles-Creston Rd.	В					X X
54A050	Spokane R @ Mouth	В				XXXX	
54A070	Spokane R @ Long Lake	В	X XXXXXXX X	XXXXXXXXX	XX		XX X
54A089	Spokane R 2 mi blw Ninemile dam	В		XX			
54A090	Spokane R @ Ninemile Br	В		X X			X XX X
54A120	Spokane R @ Riverside State Pk	L		XXXXXXXX	XXXXXXXXX	XXXXXXXXX	XXXXXXXXX XXX
54A130	Spokane R @ Fort Wright Br	В		X X			X
55B070	Little Spokane R nr Mouth	L		X X XXX	XXXXXXXXX	XX XXXXXX	XXXXXXXXX XXX
55B075	Little Spokane @ Painted Rocks	В				X	
55B080	Little Spokane R nr Griffith Spring	В				XX	
55B082	Little Spokane R abv Dartford Creek	В				XX X	
55B085	Little Spokane nr Dartford	В	XXXXXXX				
55B090	Little Spokane R abv Wandermere	В		X			
55B100	Little Spokane R abv Deadman Creel	k B				XX X	

Station Number	Name	Long-term or Basin	<1960s>	<1970s>	Water Year S	ampled <1990s>	<2000s>	<2010s>
55B200	Little Spokane @ Chattaroy	В				X X		
55B300	Little Spokane River @ Scotia	В					X	
55C065	Deadman Cr nr Mouth	В				X		
55C070	Peone (Deadman) Creek abv L Deep	Cr B				XX	X	
55C200	Deadman Cr@Holcomb Rd	В					X	
55D070	Deer Cr at Hwy 2	В				X		
55E070	Dragoon Cr at Crescent Road	В				X		
56A070	Hangman Cr @ Mouth	L		x x xxx	XXXXXXXXX	XX X XXXXX	XXXXXXXXX	XXX
56A200	Hangman Creek @ Bradshaw Road	В				Х		
57A120	Spokane R @ Spokane	В		X				
57A123	Spokane River@Sandifer Bridge	В					X	X
57A125	Spokane R blw Monroe St.	В					X	
57A130	Spokane R @ Mission St Br	В		X X				
57A140	Spokane River @ Plante's Ferry Park	В					XX	X
57A145	Spokane R @ Trent Br	В		X				
57A146	Spokane River @ Sullivan Rd.	В					X	X
57A148	Spokane R @ Barker Rd	В					X	
57A150	Spokane R @ Stateline Br	L	x xxxxxx x	XX X X		XXXXXXXXX	XXXXXXXXX	XXX
57A190	Spokane R nr Post Falls	В		XXXXXXX	XXXXXXXXX	XX		
57A240	Spokane R @ Lake Coeur d'Alene	В					XX	X
59A070	Colville R @ Kettle Falls	В	XXXXXXXXX	X X XX XX	XXXXXXXXX	XX X		
59A080	Colville R abv Kettle Falls	L				Х	X	XX
59A110	Colville R @ Blue Creek	В		X			X	X
59A130	Colville R @ Chewelah	В		X			XXX	
59A140	Colville R @ Newton Rd	В					XX	X
59B070	Little Pend Oreille @ Hwy 395	В					X	
59B200	Little Pend Oreille R nr NatWildRef	L						XX
59C070	Sheep Ck at Long Prairie Rd.	В						X
60A050	Kettle R @ Hedlund Bridge	В	X					
60A070	Kettle R nr Barstow	L	xxxxxxx x	X X XX XX	XXXXXXXXX	XX XXXXXX	XXXXXXXXX	XXX
61A070	Columbia R @ Northport	L	x xxxxxxxxx	XXXXXXXXX	XX	XXXXXXXXX	XXXXXXXXX	XXX
61B070	Deep Ck nr Mouth	В				Х	X	X
61C070	Onion Cr nr Northport	В				X		
61C100	Onion Creek @ Widow-Hawks Rd.	В						X

Station		Long-term Water Year Sampled								
Number	Name	or Basin	<1960s>	<1970s>	<1980s>	<1990s>	<2000s>	<2010s>		
61D070	Sheep Cr nr Northport	В				X				
62A070	Pend Oreille R @ Waneta BC (USGS) B	XXX							
62A080	Pend Oreille R @ Border	В		XXXXXX	XX					
62A090	Pend Oreille R @ Metaline Falls	L X	XXX			XX XX	XXXXXXXXX	XXX		
62A150	Pend Oreille R @ Newport	L X	XXXXXXX X	X XX	XXXXXXXXX	XXXXXXXXX	XXXXXXXXX	XXX		
62B070	Skookum Ck nr Mouth	В						X		
			'	•				!		

This page is purposely left blank

Appendix B. Historical Changes in Sampling and Laboratory Procedures, as well as Large-Scale Environmental Changes Potentially Affecting Water Quality

This appendix provides a record of changes in methods and procedures used by Ecology's Freshwater Monitoring Unit to collect and analyze river and stream water quality data. Other environmental changes that may potentially affect water quality over a large area are also recorded here.

Many of the changes listed here are anecdotal and may or may not have affected data quality. Comments prior to October 1988 are based on interviews with individuals involved with the earlier program. Comments after that date have usually been recorded as the changes occurred.

General

- Jun to Sept 1985: Laboratory moved from Ecology's Southwest Regional Office to Manchester.
- Oct 1988: Implemented QA/QC program (See memo from David Hallock, October 17, 1988.)
- Prior to WY91: Samples were sent to contract labs from time to time. These occurrences are not all recorded here. Records are not detailed and only available from bench sheets archived by Manchester Laboratory.
- 1994: The use of Polyacrylamide (PAM) to control erosion from rill irrigation is becoming widespread in eastern Washington. Water quality effects are unknown.
- 1996: Began monitoring discharge at some stations ourselves (mostly basin stations), rather than contracting with USGS.
- 2001: Began running Central (Nov 2001) and Eastern (Feb 2002) runs out of regional offices. Barometric pressures calculated from airport readings, either uncorrected, if available, or reconverted to sea level.
- Jan-Jun 2002: Some barometric pressures collected from the western part of the state may be off by 1.0 mmHg due to calibration errors. The effect of this amount of error on the percent oxygen saturation calculation is insignificant.
- Oct 2005 (except the NW run, which made the change several months earlier): Previously, aliquots for pH, conductivity, and turbidity were obtained from the stainless steel bucket used to collect the oxygen. However, this presented a risk of contamination from the oxygen bottles. The sampler was re-designed so that only the oxygen sample is obtained from the bucket; all other samples are collected in passengers.
- Nov 2007: Implemented a Freshwater Technical Coordination Team-required "ride-along" procedure where a senior staff rides with each sampler once during the year to ensure SOP are followed uniformly.
- Jan 16, 2008: Implemented semi-annual calibration of Operation's Center digital barometer against Hg barometer in Air Lab at HQ. Digital BP read 30.86 before recalibration and 30.54 after. S, N, and W BP data since October 2006 could be up to 0.32 inches Hg high.
- Oct 1, 2010: Changed blank sample procedures. Previously, we added blank water to sample equipment then processed the water as a regular sample. Now, we are lowering the sample equipment from the bridge (without entering the water). This should capture potential contamination falling off the bridge during sampling.

Nutrients

- General: Prior to 1980, USGS labs analyzed samples.
- 1966-1969: One gallon of sample was collected in glass jars and held at room temperature for indefinite periods without preservative.
- 1970-1973: Unknown methods; may have been preserved with HgCl. Filtered in field.
- 1973: Laboratory moved from Tacoma to Salt Lake City.
- 1973-1974: Chilled, no preservative. Held as long as one week. Filtered in field; kept in brown poly bottle.
- 1972-1974?: For a short time, TP and NO3 may have been added by filters (probably 72-74). (Personal communications with Joe Rinella, USGS).
- Sep 30, 1978: USGS Lab moved to Arvada, CO. Joint program samples sent there; samples collected for Ecology project only may have been analyzed in-house.
- ~1978: Chilled. Brown poly bottle? (the brown poly bottle may have been introduced later). 30-day holding time for NO2+NO3 implemented (status of other nutrients is unknown). (Source of methods prior to 1979: pers. comm. Joe Rinella, USGS, and Skinner, Earl L. "Chronology of Water Resources Division activities that may have affected water quality values of selected parameters in Watstore, 1970-86. Provisional Report Feb 1989.)
- 1979: For a while, the USGS lab reported nutrient results to the nearest 0.01 units. Values below 0.005 were reported as 0.00. USGS decided to change all Watstore data = 0 to 0.01K back to 1973 for NO2+NO3. Decision on other nutrients is unknown, but they may also have been changed. Most of the 0s in our database have been converted to 0.01K (K-below the detection limit) but a few 0s may remain in the older data.
- 1980: USGS requires NO2+NO3 be preserved with HgCl. Status of other nutrients is unknown. Ecology requirements are unknown.
- Jun 1, 1980 to 1986: Nutrients analyzed by Pat Crawford at Southwest Regional Office.
- Aug 1985: High phosphate values, presumably a result of lab error. (Coded '9-do not use' in our database). (See "Trends in Puget Sound," 1988, Tetra Tech, App. B.)
- 1986 to Apr 1987: Analyzed by various people, mostly Helen Bates, Steve Twiss, and Wayne Kraft at Manchester.
- Jun 1985: Switched from Technicon to Rapid Flow Analysis (Alpkem) auto-analyzers.
- Apr 1987 to present: Analyzed by various people at Manchester.
- Jan 1987 to Jul 1987: NO3, NH3, and TP analyzed by contract lab.
- Mar 1990: Began using MFS cellulose acetate filters for field filtration of nutrients. Previously use Millipore, type HA (cellulose nitrate?).
- Sep 17 Oct 12, 1990: All nutrient samples were contracted out.
- Oct 1990: Dissolved ammonia (P608) and dissolved nitrate+nitrite (P631) were added to the Marine network. Totals (P610 and P630) were dropped.
- Feb 1991: All nutrients sent to contract lab.
- Mar 1991: All nutrients sent to contract lab.
- ~1993: Began collecting nutrients in acid-washed poly-bottle passenger rather than in the stainless-steel bucket used for oxygen determinations.
- Jul 1994: The phosphorus content in laundry detergents is restricted to 0.5% and dishwashing detergent to 8.7% statewide (SSB 5320; WAC 70.85L.020). Phosphorus use had been limited in Spokane County one (?) year earlier.
- Feb 1999: Manchester Laboratory switched from manual to inline digestion for total phosphorus. In early 2003, during the course of evaluating a different method for phosphorus analysis, Manchester Laboratory discovered that the in-line method contained a high bias (4 to

- 20 ppb). Trend analyses of total phosphorus data should be interpreted carefully if results collected between Feb 1999 and Sept 2003 are included. (See email from Dean Momohara to David Hallock, 31 March 2003.) Total phosphorus data analyzed using this method have been coded "4" indicating a potential quality problem, and given a different name ("TP_PInline" rather than the usual "TP_P").
- Sep 2000: Nitrate+nitrite method nomenclature changed from EPA 353.2 to SM 4500NO3I because the latter method is more specific. The instrument used was changed at around this time from a "Flow analyzer" to a "Flow Injection" instrument and procedures may have changed slightly.
- Before Jul 2001: Ammonia method nomenclature changed from EPA 350.1 to SM 4500NH3H because the latter method is more specific. The instrument used was changed at around this time from a "Flow analyzer" to a "Flow Injection" instrument and procedures may have changed slightly.
- Before Aug 2001: Ortho-phosphorus method nomenclature changed from EPA 365.3M to SM 4500PG because the latter method is more specific. The instrument used was changed at around this time from a "Flow analyzer" to a "Flow Injection" instrument and procedures may have changed slightly.
- Before May 2000: Total nitrogen method nomenclature changed from VALDERRAMA to SM 4500NB because the latter method is more specific. The instrument used was changed at around this time from a "Flow analyzer" to a "Flow Injection" instrument and procedures may have changed slightly.
- Oct 2000: TP method changed from EPA 365.1 to SM4500PI. The former method specifies a manual digestion, while the latter correctly refers to the in-line digestion used by Manchester Laboratory's Lachat instrument.
- Oct 2000 to Feb 2001: A low bias may apply to TN data. Except for December data, Manchester Laboratory deemed the bias to be small enough that the data did not need to be qualified. December TN results were coded as estimates (See email from M. Lee to David Hallock, March 8, 2001.)
- Oct 2003: TP method changed from SM4500PI to EPA 200.8M, an ICP/MS method with low detection limits and without the bias associated with in-line digestion. Samples are collected in a 60mL container with HCl preservative instead of the earlier 125mL container with H₂SO₄ preservative.
- Oct 1, 2007: We changed total phosphorus analytical methods from EPA200.8M (ICP-MS) to SM4500PH (colorimetric with manual digestion). We made this change because we discovered that at turbidities greater than 4 NTUs, the ICP method is biased low compared to the colorimetric method. (See email from Dave Hallock to Bob Cusimano, October 25, 2007.)
- Jan 15, 2008: OP method changed from SM4500PG to SM4500PF and TOC method changed from EPA415.1 to SM5310B. Neither procedure actually changed.
- Jul 2008: The phosphorus content in dishwasher detergents is restricted in eertain counties Spokane County depending on population as of this date (RCW 70.95L.020). (A new law signed in March, 2008, eliminated Clark County from the July 1 deadline and weakened regulations that will start in Whatcom County. Phosphorus in laundry detergents has been restricted since 1994.)
- Jul 2010: The phosphorus content in dishwasher detergents will be restricted statewide as of this date (RCW 70.95L.020).

Suspended Solids

- General: Filters were usually used, but sometimes Gooch crucibles were used.
- Feb 1978: Began collecting as passenger to oxygen sampler (was previously collected as aliquot of oxygen sampler). (See memo from Bill Yake, 30 Jan 1978 and Ambient Monitoring Procedure-1978(?) notebook.)
- Mid-1985: Amount filtered changed from 250 (?) to 500 ml.
- Sep 17 Oct 12, 1990: Suspended sediment samples were contracted out.
- Apr 1991: Began collecting 1000 ml of sample.
- Jul 2002: A number of suspended solids results entered into our database as '0' were deleted. We do not know if these results were below reporting limits or "missing data"; 138 results collected between 1972 and 1981 were affected.
- Mar 2003: TSS method reference changed from EPA160.2 to SM 2540D. Methods did not change; the latter reference more accurately reflects analytical procedures. See email from Feddersen, Karin, March 24, 2003.

Conductivity

- Feb 1978: Began calibrating twice monthly using 40, 70, 140, and 200 umho/cm standards. (See memo from Bill Yake, 30 Jan 1978 and Ambient Monitoring Procedure-1978(?) Notebook)
- Oct 1991: All meters were re-calibrated Oct 11, 1991. One conductivity meter was not calibrated above 500 umhos/cm (and could not be calibrated). This meter had last been calibrated about 1 year earlier. Most meters read higher than the 100 umhos/cm standard.
- Oct 1994: Switched from Beckman model Type RB-5 (which could not be field calibrated) to Orion Model 126 meter, calibrated daily.
- 1998: Orion meter calibration began drifting during the day. Sometimes meter could only be calibrated to within 4 umhos/cm of the standard. At first, some samplers would correct the data, others would not. Now, these data are uncorrected and coded "J" (estimate).
- Oct 1, 2011: Dropped Orion model 126 meter and started using Hach model HQ40d combination meter for both pH and conductivity.

Fecal Coliform Bacteria

- Early 1980s: Field personnel may have analyzed some samples.
- Oct 7, 1975 to Nov 1981: Fecal data from eastern Washington may be questionable during this period.
- 1980 to Mar 1988: No changes; analyzed by Nancy Jensen and others at Manchester. However, there is an apparent drop in monthly geometric means in late 1985. The may be coincident with moving the lab to Manchester (see memo from Dave Hallock to Dick Cunningham, June 18, 1991).
- Mar 1988: Switched to new filter with slightly better recovery.
- Nov 2000: Holding time was changed from 30 hours to 24 hours (Standard Methods changed to 24 hours with the 17th edition, 1989). As a result, more data have been coded "J" since then due to exceeding holding times.
- Sep 2003: FC method reference changed from SM 16-909C to SM 9222D. Methods did not change; the latter reference more accurately reflects analytical procedures. See email from Feddersen, Karin, September 15, 2003.

• ~Aug 2009: Pasco airport began x-raying water samples. Other airports may follow suit eventually. Exposure is < 1 millirad while doses used to kill bacteria on food are >30,000 rads. An unnamed contact at Washington's Department of Health stated that the dose is not a concern. We considered testing for an effect, but the number of samples required to detect a small effect is prohibitively large given the natural variance in bacteria data.

Turbidity

- 1970s: EPA specified a 2100A turbidimeter. Formerly, turbidity units were FTU (?)
- Jan 1976: Turbidity units changed from Jackson Turbidity Units (JTU) to Nephelometric Turbidity Units (NTU). (Source: review of historical reports.) These are roughly equivalent when greater than 25 JTU/NTU, otherwise not.
- Sep 1993: Lab began using a new turbidimeter, Hach model "Ratio X/R."
- Jan 2003: In our database, the units for turbidity results collected prior to January were changed from NTU back to JTU. Though roughly equivalent at JTUs > 25, these are not equivalent for lower measurements; the original units should have been retained.

Field pH

- Oct 7, 1975 to Nov 1981: pH data from eastern Washington are questionable during this period.
- Feb 1978: Began calibrating meter twice monthly. Previous procedures unknown. (See memo from Bill Yake, 30 Jan 1978 and Ambient Monitoring Procedure-1978(?) notebook)
- 1986: Changed to Beckman digital pH meter with gel probe.
- Dec 1991: Changed to Orion model 250A meter with "spare water" liquid probe (uses 1M KCl, rather than 4M). Calibrate daily and check calibration three times during the sampling day.
- Oct 1, 2011: Dropped Orion model 250A meter and started using Hach model HQ40d combination meter for both pH and conductivity. See the WY2011 Annual Report for results of a method comparison study.

Temperature

- Feb 1978: Switched from thermometer in bucket to thermistor in river. (See memo from Bill Yake, 30 Jan 1978 and Ambient Monitoring Procedure-1978(?) notebook.)
- Feb 1985: Checked thermistor calibration daily (internal calibration check based on red-lining needle, not a check against a NIST thermometer) (Memorandum from John Bernhardt, Feb 7, 1985).
- Spring 1994: Switched to YSI 300 meter (precision +/- 0.4C).
- Jan 1, 2001: Began calibrating thermistors prior to each run rather than annually. Some thermistors were found to be as much as 1-2 °C low.
- About May 2006: Began evaluating thermistor calibration at several temperatures and calculating correction coefficients based on a linear regression correction. Corrections are applied upon data entry by the database rather than by the sampler.

Oxygen

• Oct 1, 1977: Began measuring barometric pressure to calculate percent saturation. Previous saturation calculations were presumably based on elevation.

• Mar 1989: Began applying correction factor to results of Winkler analyses based on titration with sodium biiodate to correct sodium thiosulfate normality to 0.025. Previously, thiosulfate was standardized upon preparation, but not during use.

Barometric Pressure

- Feb 1985: Began calibrating barometer before each run based on National Weather Service report from Olympia airport (Memorandum from John Bernhardt, Feb 7, 1985).
- 1995: Began calibrating barometer prior to each run using an on-site mercury barometer rather than pressure as reported by the Olympia airport.
- 2003: Began calibrating barometer prior to each run using an on-site digital barometer rather than the mercury barometer. Calibrating digital barometer to mercury barometer annually.
- Jan 2008: Began calibrating on-site digital barometer twice yearly against a mercury barometer.
- ~Apr 2011: Evaluated historical data against elevation-based BP and adjusted quality codes for some data points. Implemented BP QC check which compares BP during data entry to expected BP based on elevation.

Chlorophyll

• Mar 15, 1990: Switched to fluorometric method (from spectrophotometric). New method has lower detection limit (0.02 ug/L) but less precision. (See memo from Despina Strong, April 12, 1990.)

Hardness

• Jul 1, 1991: Began using 125 ml bottle with HNO3 as preservative. (Previously, aliquot from unpreserved general chemistry bottle was used.)

Metals

- May 1994: Implemented low-level dissolved metals monitoring at selected stations. Metals
 results prior to this date are questionable unless well above detection limits and have been
 quality-coded "9" in our database so that they will not routinely be retrieved. Quality problems
 include inconsistent blank correction and indications of simultaneous peaks and troughs in data
 series from unrelated stations for results above reporting limits.
- Apr 2010: A review of historical blank data showed that dissolved zinc exceed reporting limits of 1 ug/L 43% of the time (though never greater than 5 ug/L). As a result, we have decided to set the quality code field = 4 for reported dissolved zinc results < 5 ug/L, which indicates a potential data quality issue.

Flow

- Oct 1, 2009: Began recording uncorrected stage, correction, and error estimate.
- Feb 2011: Processing of flow for ambient stations shifted from Howard Christensen to Jason Myers. Prior to this time, flows below some dams (e.g., Grand Coulee) were miss-calculated. (These flows have been corrected.)

• Oct 2011: Decided to remove flows from the web (and replace with a link to our source, typically USGS, USACOE, or in-house) and code flows in EIM "Instantaneous flow based on provisional data obtained from various sources. Not confirmed." We also developed procedures to automate retrieval of flow data and to document and manage metadata used for determining flow (e.g., time of travel correction).

This page is purposely left blank

Appendix C. Water Year 2011: Sources of Raw Data

Data discussed in this report are available in electronic format through various sources:

- 1. Ambient river and stream monitoring data are available on Ecology's web pages (www.ecy.wa.gov). Look under "Programs," "Environmental Assessment", and "River and Stream Water Quality."
- 2. Data are available in Ecology's Environmental Information Management (EIM) system. From Ecology's main page (www.ecy.wa.gov), look under "Scientists," "Environmental Monitoring Data", and "EIM." Our project IDs are listed in Table C-1.

Table C-1. Ambient Monitoring EIM projects.

Project ID	Description	Status	Start Date
AMS001	Statewide River and Stream Ambient Monitoring-WY2010 to present (published data)	ONGOING	10/1/2009
AMS001-2	Statewide River and Stream Ambient Monitoring-WY2011 to present (provisional data)	ONGOING	10/1/2009
AMS001B	Statewide River and Stream Ambient Monitoring-Pre-1980	COMPLETED	1/1/1949
AMS001C	Statewide River and Stream Ambient Monitoring-1980 to WY1988	COMPLETED	1/1/1980
AMS001D	Statewide River and Stream Ambient Monitoring-WY1989 through WY1999	COMPLETED	10/1/1988
AMS001E	Statewide River and Stream Ambient Monitoring-WY2000 through WY2009	COMPLETED	10/1/1999
AMS002	Statewide Lake Monitoring	COMPLETED	1/1/1989
AMS002B	Lake Mini-Monitoring (published data)	ONGOING	1/1/2010
AMS002B-2	Lake Mini-Monitoring (provisional data)	ONGOING	1/1/2011
AMS004	Continuous Stream Monitoring	ONGOING	6/1/2001

3. Data are available by contacting the ambient monitoring staff person responsible for ambient monitoring in the Washington State Department of Ecology region, currently:

Ecology Central Region: Dan Dugger (509.454.4183; ddug461@ecy.wa.gov)
Ecology Eastern Region: Jim Ross (509.329.3425; jros461@ecy.wa.gov)
Ecology Northwest Region: Bill Ward (360.407.6621; bwar461@ecy.wa.gov)
Bill Ward (360.407.6621; bwar461@ecy.wa.gov)

The first two digits of each station number is the Water Resource Inventory Area (WRIA) number. This number can be used to identify which Water Quality Management Area (WQMA) or "basin" each station is in, according to Table C-2.

Table C-2. Washington's Water Quality Management Areas.

Basin	WRIAs	Basin	WRIAs
Cedar/Green	8-9	Nooksack/San Juan	1-2
Columbia Gorge	27-29	Okanogan	48-53
Eastern Olympics	13-14, 16-19	Puyallup/Nisqually	10-12
Esquatzel/Crab Cr	36, 42-43	Skagit/Stillaguamish	3-5
Horseheaven/Klickitat	30-31	Spokane	54-57
Island/Snohomish	6-7	Upper and Lower Snake	32-35
Kitsap	15	Upper Columbia/Pend Oreille	58-62
Lower Columbia	24-26	Upper Yakima	38-39
Lower Yakima	37	Wenatchee	40, 44-47
Mid Columbia	41	Western Olympics	20-23

Ambient Monitoring Data Remarks Codes

Remarks codes in historical data are defined below. Only "U" and "J" were used in WY 2011.

- B,V Analyte was found in the blank, indicating possible contamination.
- E Result is an estimate due to interference.
- G, L True result is equal to or greater than reported value.
- H Sample was analyzed over holding time.
- J The reported result is an estimate.
- K, U The analyte was not detected at or above the reported result.
- N Spike sample recovery was outside control limits.
- P Result is between the detection limit and the minimum quantitation limit (applied to metals).
- S Spreader: one or more bacteria colonies were smeared, possibly obscuring other colonies.
- X High background count of non-target bacteria, possibly obscuring additional colonies.

Appendix D. Water Year 2011: Missing Data

Table D-1. Missing data for the 12 standard parameters. "X"=missing

Station	Date	Remarks	Temperature	Conductivity	Oxygen	Hd	Suspended Solids, total	Total Persulfate Nitrogen	Ammonia-nitrogen	Nitrate+nitrite-nitrogen	Phosphorus, total	Orthophosphate	Turbidity	Fecal Coliform Bacteria
05A110	4/25/2011	Access: vandal destroyed lock	х	х	х	х	х	х	х	х	х	х	х	х
05A110	4/25/2011	Access: vandal destroyed lock	х	х	х	х	х	х	х	х	х	х	х	х
07A100	8/24/2011	Sampler Error: broken bottle			х									
07A100	8/24/2011	Sampler Error: broken bottle			х									
07C070	12/14/2010	Weather: no access due to flooding	Х	х	х	х	х	х	х	х	х	х	х	х
07C070	12/14/2010	Weather: no access due to flooding	х	х	х	х	х	х	х	х	х	х	х	х
08C070	8/22/2011	Sampler Error: titration error			х									
08C070	8/22/2011	Sampler Error: titration error			х									
09A190	1/12/2011	Access: road closed	х	х	х	х	х	х	х	х	х	х	х	х
09A190	1/12/2011	Access: road closed	х	х	х	х	х	х	х	х	х	х	х	х
09N050	12/15/2010	Weather: no access due to flooding	х	х	х	х	х	х	х	х	х	х	х	х
09N050	12/15/2010	Weather: no access due to flooding	х	х	х	х	х	х	х	х	Х	Х	х	х
13A060	6/14/2011	Misc. or unk.: sample not analyzed									Х			
13A060	1/4/2011	Sampler Error: titration error			х									
13A060	6/14/2011	Misc. or unk.: sample not analyzed									х			
13A060	1/4/2011	Sampler Error: titration error			х									
15F050	10/20/2010	Equipment Failure: thermistor failed	Х											
15F050	10/20/2010	Equipment Failure: thermistor failed	х											
18B070	10/20/2010	Equipment Failure: thermistor failed	Х											
18B070	11/18/2010	Equipment Failure: thermistor failed	х											
18B070	10/20/2010	Equipment Failure: thermistor failed	х											
18B070	11/18/2010	Equipment Failure: thermistor failed	Х											
22A070	10/19/2010	Equipment Failure: thermistor failed	Х											
22A070	10/19/2010	Equipment Failure: thermistor failed	х											
26B070	11/16/2010	Sampler Error: bottle cap not secured					х							
26B070	11/16/2010	Sampler Error: bottle cap not secured					х							
31A070	10/5/2010	Access: construction at sample site	х	х	х	х	х	х	х	х	х	х	х	х
31A070	10/5/2010	Access: construction at sample site	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
32A070	12/14/2010	Misc. or unk.: Insufficient daylight	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	х
32A070	12/14/2010	Misc. or unk.: Insufficient daylight	Х	Х	Х	Х	х	х	х	х	Х	Х	х	х
33A050	10/5/2010	Sampler Error: bottle cap not secured			Х									
33A050	10/5/2010	Sampler Error: bottle cap not secured			Х									
34A070	8/24/2011	Misc. or unk.: road detour	х	х	х	х	х	х	х	х	х	х	х	х

Station	Date	Remarks	Temperature	Conductivity	Oxygen	Hd	Suspended Solids, total	Total Persulfate Nitrogen	Ammonia-nitrogen	Nitrate+nitrite-nitrogen	Phosphorus, total	Orthophosphate	Turbidity	Fecal Coliform Bacteria
34A070	12/15/2010	Misc. or unk.: sampler illness	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	х
34A070	8/24/2011	Misc. or unk.: road detour	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	х
34A070	12/15/2010	Misc. or unk.: sampler illness	Х	Х	Х	Х	Х	Х	Х	Х	Χ	Х	Х	Х
34B110		Weather: frozen	Х	Х	Х	Х	Х	Х	Х	Х	Χ	Х	Х	Х
34B110	-	Weather: frozen	Х	Х	х	Х	Х	Х	Х	Х	Х	Х	Х	Х
35B060		Misc. or unk.: sampler illness	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
35B060		Misc. or unk.: sampler illness	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
37A205	1/3/2011	Weather: sample freezing			Х									
37A205	1/3/2011	Weather: sample freezing			Х									
37J060	11/3/2010	Equipment Failure: vehicle trouble	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
37J060	11/3/2010	Equipment Failure: vehicle trouble	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
38A050	1/3/2011	Weather: sample freezing			Х									
38A050	1/3/2011	Weather: sample freezing			Х									
39A090	1/3/2011	Weather: sample freezing			Х									
39A090	1/3/2011	Weather: sample freezing			Х									
39M050	1/3/2011	Weather: frozen	X	X	X	X	X	X	X	X	X	X	X	X
39M050	1/3/2011	Weather: frozen Weather: frozen	X	X	X	X	X	X	X	X	X	X	X	X
39M100	1/3/2011		X	X	X	X	X	X	X	X	X	X	X	X
39M100 45A070	1/3/2011 1/4/2011	Weather: frozen Weather: frozen	X	X	X	X	X	X	X	X	X	X	X	X
45A070 45A070	1/4/2011	Weather: frozen	X	X	X	X X	X	X	X	X	X	X	X	X
45A110	12/8/2011	Sampler error: DO bucket not filled	^	^	X	^	^	^	^	^	Х	Х	Х	^
45A110	1/4/2011	Weather: snow piled on walkway	х	Х	X	Х	х	Х	х	Х	Х	Х	Х	Х
48A075		Weather: snow piled on walkway	X	X	X	X	X	X	X	X	X	X	X	X
49A070		Weather: frozen	X	X	Х	Х	Х	X	X	X	X	X	Х	X
49A070	1/10/2011	Weather: frozen	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
53A070	6/27/2011	Access: construction at sample site	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	х
57A150	11/8/2010	Sampler error: no OP sample collected										Х		
57A150	5/16/2011	Sampler error: no TSS sample collected					х							
59A080	1/11/2011	Weather: frozen	Х	х	х	х	Х	Х	х	х	Х	Х	х	х
59C070		Weather: frozen	Х	х	х	х	х	Х	х	х	Х	Х	х	х
59C070	2/23/2011	Weather: frozen	х	Х	Х	Х	Х	Х	х	Х	Х	Х	Х	Х
60A070		Weather: frozen	Х	Х	х	х	Х	Х	Х	Х	Х	Х	х	Х
60A070	1/11/2011	Weather: frozen	Х	Х	х	х	х	Х	Х	Х	Х	Х	Х	Х
60A070	2/15/2011	Weather: frozen	Х	Х	х	Х	Х	Х	Х	Х	Х	Х	Х	Х
61A070	2/15/2011	Equipment Failure: vehicle trouble	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
62A090	12/14/2010	Access: blocked by backup due to rock slide	х	х	х	х	х	х	х	х	х	х	х	х

Station	Date	Remarks	Temperature	Conductivity	Oxygen	Hd	Suspended Solids, total	Total Persulfate Nitrogen	Ammonia-nitrogen	Nitrate+nitrite-nitrogen	Phosphorus, total	Orthophosphate	Turbidity	Fecal Coliform Bacteria
62A090	2/15/2011	Equipment Failure: vehicle trouble	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
62A090	1/11/2011	Weather: frozen	Х	Х	Х	х	х	х	Х	Х	Х	х	Х	х
62A150	6/28/2011	Sampler Error: no TP sample collected									Х			
62B070	5/24/2011	Weather: flow reversed due to high water in Pend Oreille River.	x	x	x	x	x	x	х	х	x	x	х	х
62B070	6/28/2011	Weather: flow reversed due to high water in Pend Oreille River.	х	х	х	х	х	х	х	х	х	х	х	х
62B070	1/11/2011	Weather: frozen	Х	Х	Х	х	х	х	Х	Х	Х	х	Х	х

^{*} DO: dissolved oxygen.

This page is purposely left blank

Appendix E. Glossary, Acronyms, and Abbreviations

Glossary

Ambient: Background or away from point sources of contamination.

Anadromous: Types of fish, such as salmon, that go from the sea to freshwater to spawn.

Anthropogenic: Human-caused.

Basin: A drainage area or watershed in which all land and water areas drain or flow toward a central collector such as a stream, river, or lake at a lower elevation.

Bi-monthly: Every other month.

Char: Char (genus *Salvelinus*) are distinguished from trout and salmon by the absence of teeth in the roof of the mouth, presence of light colored spots on a dark background, absence of spots on the dorsal fin, small scales, and differences in the structure of their skeleton. (Trout and salmon have dark spots on a lighter background.)

Conductivity: A measure of water's ability to conduct an electrical current. Conductivity is related to the concentration and charge of dissolved ions in water.

Diel: Of, or pertaining to, a 24-hour period.

Dissolved oxygen: A measure of the amount of oxygen dissolved in water.

Exceeded: Did not meet.

Fecal coliform: That portion of the coliform group of bacteria which is present in intestinal tracts and feces of warm-blooded animals as detected by the product of acid or gas from lactose in a suitable culture medium within 24 hours at 44.5 plus or minus 0.2 degrees Celsius. Fecal coliform are "indicator" organisms that suggest the possible presence of disease-causing organisms. Concentrations are measured in colony forming units per 100 milliliters of water (cfu/100 mL).

Geometric mean: A mathematical expression of the central tendency (an average) of multiple sample values. A geometric mean, unlike an arithmetic mean, tends to dampen the effect of very high or low values, which might bias the mean if a straight average (arithmetic mean) were calculated. This is helpful when analyzing bacteria concentrations, because levels may vary anywhere from 10 to 10,000 fold over a given period. The calculation is performed by either: (1) taking the nth root of a product of n factors, or (2) taking the antilogarithm of the arithmetic mean of the logarithms of the individual values.

Grab sample: A discrete sample from a single point in the water column or sediment surface.

Hardness: A measure of the dissolved solids in a water sample (e.g., calcium, magnesium).

Noise: An unwanted perturbation to a wanted signal. Noise is used here to indicate any result not representative of the environmental conditions being monitored.

Nutrient: Substance such as carbon, nitrogen, and phosphorus used by organisms to live and grow. Too many nutrients in the water can promote algal blooms and rob the water of oxygen vital to aquatic organisms.

Parameter: A physical chemical or biological property whose values determine environmental characteristics or behavior.

pH: A measure of the acidity or alkalinity of water. A low pH value (0 to 7) indicates that an acidic condition is present, while a high pH (7 to 14) indicates a basic or alkaline condition. A pH of 7 is considered to be neutral. Since the pH scale is logarithmic, a water sample with a pH of 8 is ten times more basic than one with a pH of 7.

Salmonid: Fish that belong to the family *Salmonidae*. Basically, any species of salmon, trout, or char. www.fws.gov/le/ImpExp/FactSheetSalmonids.htm

Sinusoidal: An oscillation that can be described with a sine function.

Spatial: How concentrations differ among various parts of the river.

Stage height: Water surface elevation.

Synoptic survey: Data collected simultaneously or over a short period of time.

Temporal: Characterize over time (e.g., temporal trends).

Thermistors: Data loggers.

Total maximum daily load (TMDL): A distribution of a substance in a waterbody designed to protect it from exceeding water quality standards. A TMDL is equal to the sum of all of the following: (1) individual wasteload allocations for point sources, (2) the load allocations for nonpoint sources, (3) the contribution of natural sources, and (4) a margin of safety to allow for uncertainty in the wasteload determination. A reserve for future growth is also generally provided.

Total suspended solids (TSS): Portion of solids retained by a filter.

Trend: A change over time.

Turbidity: A measure of water clarity. High levels of turbidity can have a negative impact on aquatic life.

Water Year (WY) 2011: October 1, 2010 through September 30, 2011.

Watershed: A drainage area or basin in which all land and water areas drain or flow toward a central collector such as a stream, river, or lake at a lower elevation.

7-DADMax: Seven-day average of the daily maximum (usually temperature).

7-DADMin: Seven-day average of the daily minimum (usually oxygen).

Acronyms and Abbreviations

BP Barometric pressure DQO Data quality objective

DNR Washington State Department of Natural Resources

Ecology Washington State Department of Ecology

EIM Environmental Information Management database

IMW Intensively Monitored WatershedsEPA U.S. Environmental Protection Agency

MQO Measurement quality objective

NA Not applicable NF North Fork

NO₂+NO₃ Nitrate + nitrite-nitrogen

QA Quality assurance

QAMP Quality Assurance Management Plan

QC Quality control RMS Root mean square

RSD Relative standard deviation

SF South Fork

SM Standard method

SOP Standard operating procedure

Std dev Standard deviation TMDL (See Glossary above)

TN Total nitrogen
TP Total phosphorus
TSS (See Glossary above)
USGS U.S. Geological Survey

WAC Washington Administrative Code

WQI Water Quality Index

WRIA Water Resource Inventory Area

WY (See Glossary above)

Units of Measurement

°C degrees centigrade

cm centimeter

mg/L milligrams per liter (parts per million)

mL milliliters

NTU nephelometric turbidity units

s.u. standard units

ug/L micrograms per liter (parts per billion)

uS microsiemens per centimeter, a unit of conductivity