

# Addendum 5 to **Quality Assurance Project Plan**

# Freshwater Fish Contaminant Monitoring Program: 2016

December 2016 Publication No. 16-03-122

#### **Publication Information**

#### Addendum

This addendum is on the Department of Ecology's website at <a href="https://fortress.wa.gov/ecy/publications/SummaryPages/1603122.html">https://fortress.wa.gov/ecy/publications/SummaryPages/1603122.html</a>

This addendum is an addition to an original Quality Assurance Project Plan. It is not a correction (errata) to the original plan.

Data for this project will be available on Ecology's Environmental Information Management (EIM) website at www.ecy.wa.gov/eim/index.htm. Search Study ID FFCMP16.

#### **Activity Tracker code**

Ecology's Activity Tracker code for this addendum is 02-500.

#### **Original Publication**

Quality Assurance Project Plan: Freshwater Fish Contaminant Monitoring Program. Publication No. 13-03-111.

https://fortress.wa.gov/ecy/publications/SummaryPages/1303111.html

### **Authors and Contact Information**

Keith Seiders and Casey Deligeannis Environmental Assessment Program Washington State Department of Ecology Olympia, Washington 98504-7710

For more information contact: Communications Consultant, phone 360-407-6764.

Any use of product or firm names in this publication is for descriptive purposes only and does not imply endorsement by the author or the Department of Ecology.

Accommodation Requests: To request ADA accommodation including materials in a format for the visually impaired, call Ecology at 360-407-6834. Persons with impaired hearing may call Washington Relay Service at 711. Persons with speech disability may call TTY at 877-833-6341.

## Addendum 5 to Quality Assurance Project Plan

# Freshwater Fish Contaminant Monitoring Program: 2016

December 2016

#### Approved by:

| Signature:                                                | Date: December 2016 |
|-----------------------------------------------------------|---------------------|
| Jessica Archer, Client and Author's Section Manager, EAP  |                     |
| Signature:                                                | Date: December 2016 |
| Carol Smith, Client's Supervisor and Program Manager, EAP |                     |
| Signature:                                                | Date: December 2016 |
| Keith Seiders, Author / Project Manager, TSU, EAP         |                     |
| Signature:                                                | Date: December 2016 |
| Debby Sargeant, Author's Supervisor, TSU, EAP             |                     |
| Signature:                                                | Date: December 2016 |
| Dale Norton, Western Operations Section Manager, EAP      |                     |
| Signature:                                                | Date: December 2016 |
| Tom Mackie, Supervisor, Eastern Operations Section, EAP   |                     |
| Signature                                                 | Date: December 2016 |
| Joel Bird, Director, Manchester Environmental Laboratory  |                     |
| Signature:                                                | Date: December 2016 |
| Bill Kammin, Ecology Quality Assurance Officer            |                     |

Signatures are not available on the Internet version.

EAP: Environmental Assessment Program

TSU: Toxics Studies Unit

## **Table of Contents**

|                               | Page   |
|-------------------------------|--------|
| 3.0 Background                | 6<br>6 |
| 4.0 Project Description       | 9      |
| 5.0 Organization and Schedule | 12     |
| 6.0 Quality Objectives        | 14     |
| 8.0 Sampling Procedures       | 15     |
| 9.0 Measurement Methods       | 16     |
| 10.0 Quality Control          | 18     |
| 15.0 References               | 19     |

# **List of Figures and Tables**

| H | ~ |   | r | Δ | C |
|---|---|---|---|---|---|
|   | ч | u |   | ᆫ | J |
|   | J | _ |   | _ | _ |

| Figure 1.  | Proposed sampling locations in the Cowlitz River10                                         |
|------------|--------------------------------------------------------------------------------------------|
| Tables     |                                                                                            |
| Table 1. S | Summary of fish contaminant studies for the Cowlitz River7                                 |
| Table 2.   | Category 5 and Category 2 Listings for the Cowlitz Basin                                   |
| Table 3. 1 | Results for key parameters from past sampling efforts in the Cowlitz River8                |
| Table 4.   | Site information for proposed sample locations, FFCMP 20169                                |
| Table 5.   | Sample plan and estimated laboratory costs, FFCMP 201611                                   |
| Table 6.   | Organization of project staff and responsibilities, FFCMP 201612                           |
| Table 7.   | Schedule for completing field, laboratory, and report tasks, FFCMP 201613                  |
| Table 8. 1 | Measurement quality objective, FFCMP 201614                                                |
| Table 9.   | Containers, preservation, and holding times for samples, FFCMP 201615                      |
| Table 10.  | Laboratory measurement methods for fish tissue samples, FFCMP 201616                       |
|            | Characteristics of chlorinated pesticides to be analyzed using HR GC/MS for the FFCMP 2016 |
| Table 12.  | Laboratory quality control sample types and frequencies, FFCMP 201618                      |

## 3.0 Background

This document describes the 2016 sampling effort for the Washington State Department of Ecology (Ecology) Freshwater Fish Contaminant Monitoring Program (FFCMP) and is an addendum to the Quality Assurance Project Plan (Seiders, 2013). The 2016 sampling effort will focus on the Cowlitz River basin in Washington. The main goals are to characterize current contaminant levels in resident fish, establish a robust baseline for future monitoring efforts, and determine changes over time by comparing results with historical data. We were planning to sample the Walla Walla River basin in 2016 but have postponed that effort to 2017 because of second year of low flows and shifting priorities.

Previous studies and associated data were reviewed to guide development of project objectives and the sampling plan. Contaminants assessed in previous studies included CPs (chlorinated pesticides), PBDEs (polybrominated diphenyl ethers), PCBs (polychlorinated biphenyls), and PCDD/Fs (polychlorinated dibenzo-p-dioxins and –furans). These chemicals were often found at elevated levels from which a decrease could likely be detected over time, assuming that inputs decrease. Reductions in contaminant levels might also approach levels seen in similar species from "background" areas – those areas not directly impacted by human activities.

Collectively, data from the historical sampling efforts comprise a mix of sites, species, tissue types, collection seasons, and analytical methods. Monitoring efforts or data analyses to measure statistically significant temporal changes have not been pursued in the Cowlitz River basin. Typical challenges associated with such efforts include small sample sizes, high variability associated with fish tissue, and high costs associated with laboratory analyses for organic contaminants.

Information about previous work on contaminants in fish from the 2016 target locations is summarized below.

#### **Cowlitz River**

Two sites in the Cowlitz have been sampled in the past: the river near the town of Vader and the reservoir Mayfield Lake. The sampling was part of statewide screening-level studies for various contaminants. Table 1 shows the timeframe, species, and target analytes for studies conducted in the Cowlitz River.

Results from these studies showed that concentrations of several chemicals in fish tissue did not meet Washington water quality standards. These results led to 303(d) listings for PCBs, dioxin (2,3,7,8-TCDD), and mercury (Table 2). The 303(d) listings are also known as Category 5 listings in Ecology's periodic statewide Water Quality Assessment (<a href="http://www.ecy.wa.gov/programs/Wq/303d/index.html">http://www.ecy.wa.gov/programs/Wq/303d/index.html</a>).

Table 1. Summary of fish contaminant studies for the Cowlitz River.

|                        | Study:                 | Ecology WSPMP <sup>1</sup> | Ecology PBDE <sup>2</sup> | Ecology WSTMP <sup>3</sup> |
|------------------------|------------------------|----------------------------|---------------------------|----------------------------|
|                        | Sample Year:           | 1995                       | 2005                      | 2005                       |
| Species                | Location               | Number and ti              | ssue type of sampl        | es analyzed                |
| CTT                    |                        | 1f                         |                           | 1f                         |
| LSS                    | Cowlitz R,             | 2w                         |                           |                            |
| MWF                    | middle<br>(near Vader) | 2f                         |                           | 1f                         |
| NPM                    |                        |                            |                           | 1f                         |
| LMB                    |                        |                            |                           | 1f*                        |
| LSS                    | Mayfield<br>Reservoir  |                            | 1f                        |                            |
| NPM                    |                        |                            |                           | 1f*                        |
| YP                     |                        |                            |                           | 1f*                        |
| <b>Target Analytes</b> |                        |                            |                           |                            |
| CP                     |                        | X                          |                           | Х                          |
| Mercury                |                        |                            |                           | Х                          |
| PBDE                   |                        |                            | X                         | Х                          |
| PCB                    |                        | X                          |                           | Х                          |
| PCDD/F                 |                        |                            |                           | X                          |

All samples are composites of fillets (f) or whole fish (w) from multiple fish.

References: 1- Davis et al., 1998; 2- Johnson et al., 2006; 3- Seiders et al., 2007.

Study Codes: PBDE: Statewide PBDE Screening Study. WSPMP: Washington State Pesticide Monitoring Program. WSPMP: Washington State Toxics Monitoring Program.

Species Codes: CTT: Cutthroat trout; LMB: Largemouth bass; LSS: Largescale sucker; MWF: Mountain whitefish; NPM: Northern pikeminnow; YP: Yellow perch.

Table 2. Category 5 and Category 2 Listings for the Cowlitz Basin.

| Waterbody<br>Name | Assessment<br>Unit ID | Water Quality<br>Assessment<br>Parameter Name | Current<br>Category | Species<br>Not Meeting<br>Standard | Listing<br>ID |
|-------------------|-----------------------|-----------------------------------------------|---------------------|------------------------------------|---------------|
|                   | er 17080005000220     | PCBs                                          | 5                   | CTT, MWF, NPM                      | 17164         |
| Cowlitz River     |                       | Mercury                                       | 5                   | NPM                                | 52602         |
|                   | 17000003000220        | 2,3,7,8-TCDD (Dioxin)                         | 5                   | CTT, NPM                           | 51552         |
|                   |                       | 2,3,7,8-TCDD TEQ                              | 2                   | CTT, NPM                           | 51605         |
| Mayfield Lake     | 46122F5E3             | PCBs                                          | 5                   | LMB, NPM                           | 52669         |

Species Codes: CTT: Cutthroat trout; LMB: Largemouth bass; LSS: Largescale sucker; MWF: Mountain whitefish; NPM: Northern pikeminnow; YP: Yellow perch.

<sup>\*</sup> Results from these samples were also used in the PBDE project.

These 303(d) listings can affect how communities along the river manage their wastewater discharges, so the more comprehensive sampling effort in 2016 will help address questions about the extent of pollution in the river and its reservoirs. Table 3 summarizes results for chemicals in fish tissue from the Cowlitz River.

Table 3. Results for key parameters from past sampling efforts in the Cowlitz River.

| Site          | Species and<br>Sample<br>Year | t-PCB<br>(ug/kg) | TCDD<br>TEQ<br>(ng/kg) | t-PBDE<br>(ug/kg) | t-DDT<br>(ug/kg) | Mercury<br>(ug/kg) | Lipid<br>(%) | Mean<br>Total<br>Length<br>(mm) | Mean<br>Weight<br>(g) | Mean<br>Age<br>(yr) |
|---------------|-------------------------------|------------------|------------------------|-------------------|------------------|--------------------|--------------|---------------------------------|-----------------------|---------------------|
|               | CTT-1995                      | <b>84</b> J      |                        |                   | 53 *             |                    | 3.0          | 312                             | 315                   |                     |
|               | CTT-2005                      | 55               | 0.303                  | 5.0               | 29               | 87.0               | 4.7          | 360                             | 493                   | 3.0                 |
| Cowlitz       | LSSw-1995                     | 84 J             |                        |                   | 91               |                    | 2.5          | 434                             | 868                   |                     |
| River         | LSSw-1995                     | 108 J            |                        |                   | 71               |                    | 2.8          | 467                             | 1036                  |                     |
| near<br>Vader | MWF-1995                      | <b>47</b> J      |                        |                   | 13               |                    | 6.0          | 350                             | 403                   |                     |
| v auci        | MWF-1995                      | <b>60</b> J      |                        |                   | 10               |                    | 5.8          | 382                             | 611                   |                     |
|               | MWF-2005                      | 46               |                        | 24                | 6.2              | 205                | 6.8          | 441                             | 859                   | 5.6                 |
|               | NPM-2005                      | 92               | 0.410                  | 18                | 21               | 859                | 1.8          | 427                             | 656                   | 10.6                |
|               | LMB-2005                      | 5.5              | 0.050 UJ               | 2.0               | 1.0 U            | 242                | 0.88         | 328                             | 610                   | 4.2                 |
| Mayfield      | LSS-2005                      |                  |                        | 2.6 J             |                  |                    | 1.7          | 443                             | 918                   | 12.8                |
| Lake          | NPM-2005                      | 8.9              | 0.009                  | 2.3               | 2.5              | 474                | 1.5          | 312                             | 244                   | 6.4                 |
|               | YP-2005                       | 5.0 U            |                        | 0.38              | 1.0 U            | 84.0               | 0.52         | 237                             | 164                   | 4.0                 |

Bold values indicate results that do not meet Washington's current water quality standards.

Species Codes: CTT: Cutthroat trout; LMB: Largemouth bass; LSS: Largescale sucker; MWF: Mountain whitefish;

NPM: Northern pikeminnow; YP: Yellow perch.

<sup>\* 4,4&#</sup>x27;-DDE in this sample was 42 ug/kg which exceeded the water quality standard of 32 ug/kg.

J: Estimated value.

U: Not detected at or above the reported value.

UJ: Not detected at or above the estimated reporting limit.

## 4.0 Project Description

The main goal of the 2016 monitoring effort is to develop a robust data set of contaminant levels in fish from the Cowlitz River to:

- Characterize temporal trends by comparisons to historical and future data.
- Compare results to current and proposed water quality standards (FTECs).
- Support fish consumption risk assessments by health jurisdictions.
- Inform water quality management efforts such as TMDLs and related planning.

Table 4 shows location information for the 2016 sites. Site selection was described in the original QAPP and is refined here for the 2016 effort. The key characteristics of sites selected for long term monitoring are:

- Concentrations of key contaminants are elevated in fish tissue.
- Likelihood of detecting change in contaminant levels over time.
- Presence of historical data that can be used for temporal comparisons.
  - o Multiple samples taken during previous efforts.
  - o Multiple sampling efforts at different times in the past.
  - o Potential for pooling data to increase statistical sensitivity.
- Waters impaired: Category 5 or 2 from the most recent Water Quality Assessment.
- Ability to collect desired species: access, permits, species abundance.

Table 4. Site information for proposed sample locations, FFCMP 2016.

| Waterbody                                            | Site Description                                                                          | WRIA         | EIM<br>Location ID |
|------------------------------------------------------|-------------------------------------------------------------------------------------------|--------------|--------------------|
| Cowlitz River                                        | wlitz River Longview/Kelso area to Castle Rock, RM 1-17                                   |              | na                 |
| Cowlitz River                                        | Olequa Cr, 8 mi N of Castle Rock, to I-5 bridge, RM 24-30                                 | 26 - Cowlitz | COWLITZ-F          |
| Mayfield Lake<br>(Cowlitz River)                     | From dam to east end narrows, Cowlitz R, RM 52.2-62                                       | 26 - Cowlitz | MAYFIELD-F         |
| Riffe Lake<br>(Cowlitz River)                        | From dam to east end of lake, RM 66-85                                                    | 26 - Cowlitz | na                 |
| Scanewa Lake<br>(Cowlitz-Cispus<br>River confluence) | From Cowlitz Falls dam upstream to mouths of Cowlitz and Cispus Rivers (approx 1-2 miles) | 26 - Cowlitz | na                 |
| Cowlitz River                                        | Upstream confluence at east end of Riffe Lake to Cowlitz Falls, RM 85-88.5                | 26 - Cowlitz | na                 |
| Cowlitz River                                        | Upstream of confluence with Cispus R to 4 mi NE of Packwood, RM 91-131                    | 26 - Cowlitz | na                 |

RM: River mile.

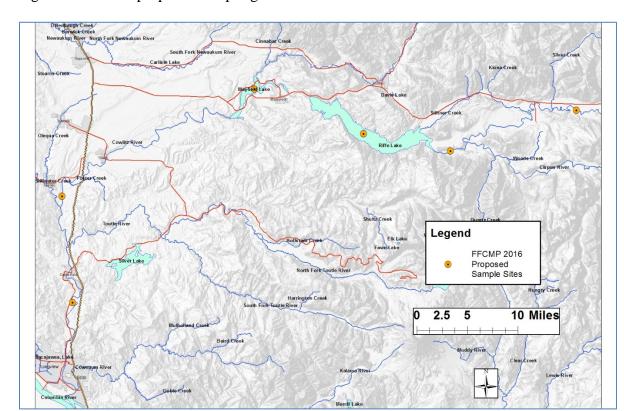



Figure 1 show the proposed sampling locations for 2016 in the Cowlitz River.

Figure 1. Proposed sampling locations in the Cowlitz River.

Target analytes include chlorinated pesticides, mercury, polybrominated diphenyl ethers (PBDEs), polychlorinated biphenyls (PCBs), and polychlorinated dibenzo-p-dioxins and -furans (PCDD/Fs).

This project will use data collected through past monitoring efforts conducted by Ecology as described above. These data and associated documentation (e.g., project plans, project reports, and laboratory data reports) will be reviewed to assess their usability in this project.

For the long-term monitoring strategy at selected sites in the target watersheds, multiple replicates of composite samples for each species at each site are anticipated to provide an adequately robust data set that will meet objectives. Review of field replicate data from previous FFCMP work showed that variance is inconsistent and can be high for organic contaminants, ranging up to 100% Relative Percent Difference (RPD) for PCBs, DDTs, and PCDD/Fs. A sample size of five to seven composite samples should reduce the variability associated with the mean and median tissue concentrations and improve the ability to determine change among sample results over time.

Table 5 shows the sites, target species, and number of analyses of composite samples by analyte group. Actual numbers of samples may be adjusted depending on success of fish collection efforts.

Table 5. Sample plan and estimated laboratory costs, FFCMP 2016.

|                  |                         | 1         | Number of Comp                          | posite Samples for                     | or Each Analysi | s                    |
|------------------|-------------------------|-----------|-----------------------------------------|----------------------------------------|-----------------|----------------------|
| Sites            | Species Code            | Mercury   | Cl Pest, PCB<br>Aroclor,<br>PBDE, lipid | 3 PCB<br>Aroclors,<br>3 DDTs,<br>lipid | PCDD/F          | CL Pest,<br>HiRes ** |
|                  | CTT                     | 3         | 3                                       | 4                                      | 3               | 1                    |
| Cowlitz R,       | LSSw                    |           | 3                                       | 4                                      |                 |                      |
| lower            | MWF                     | 3         | 3                                       | 4                                      | 3               | 1                    |
|                  | NPM                     | 3         | 3                                       | 4                                      | 3               |                      |
|                  | CTT                     | 3         | 3                                       | 4                                      | 3               | 1                    |
| Cowlitz R,       | LSSw                    |           | 3                                       | 4                                      |                 |                      |
| middle           | MWF                     | 3         | 3                                       | 4                                      | 3               | 1                    |
|                  | NPM                     | 3         | 3                                       | 4                                      | 3               |                      |
|                  | CTT                     | 3         | 3                                       |                                        | 3               | 1                    |
| Mayfield L       | LSSw                    |           | 3                                       |                                        |                 |                      |
| (Cowlitz R)      | LMB                     | 3         | 3                                       |                                        |                 |                      |
|                  | NPM                     | 3         | 3                                       |                                        | 3               | 1                    |
|                  | CTT                     | 3         | 3                                       |                                        | 3               | 1                    |
| Riffe L          | LSSw                    |           | 3                                       |                                        |                 |                      |
| (Cowlitz R)      | SMB                     | 3         | 3                                       |                                        |                 |                      |
|                  | NPM                     | 3         | 3                                       |                                        | 3               | 1                    |
|                  | CTT                     | 3         | 3                                       |                                        | 3               | 1                    |
| Scanewa L        | LSSw                    |           | 3                                       |                                        |                 |                      |
| (Cowlitz R)      | MWF                     | 3         | 3                                       |                                        | 3               | 1                    |
|                  | NPM                     | 3         | 3                                       |                                        | 3               |                      |
| Cowlitz R,       | CTT                     | 3         | 3                                       | 4                                      | 3               | 1                    |
| upper            | MWF                     | 3         | 3                                       | 4                                      | 3               | 1                    |
| Tota             | Total # field samples   |           | 66                                      | 40                                     | 45              | 12                   |
| Total #          | Total # lab QC analyses |           | 4                                       | 2                                      | 2               | 1                    |
| Total # analyses |                         | 54        | 70                                      | 42                                     | 47              | 13                   |
|                  | Cost per analysis       | \$ 50     | \$ 620                                  | \$ 264                                 | \$ 531          | \$ 1,100             |
|                  | Subtotal costs          | \$ 2,700  | \$ 43,400                               | \$ 11,088                              | \$ 24,969       | \$ 14,300            |
|                  | Grand Total             | \$ 82,157 |                                         |                                        |                 | \$ 14,30             |

<sup>\*\*</sup> High resolution analysis performed only if selected pesticides are not detected in analyses using EPA Method 8081: Additional funding may be needed.

Species codes: CTT: Cutthroat trout; LMB: Largemouth bass; LSSw: Largescale sucker (as whole fish); MWF: Mountain whitefish; NPM: Northern pikeminnow; SMB: Smallmouth bass.

## 5.0 Organization and Schedule

Table 6 lists the people involved in this project. All are employees of the Washington State Department of Ecology. Table 6 is the proposed schedule for this project.

Table 6. Organization of project staff and responsibilities, FFCMP 2016.

| EAP Staff                                                    | Title                                            | Responsibilities                                                                                                                                                                                                                                                                         |
|--------------------------------------------------------------|--------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Jessica Archer<br>SCS<br>360-407-6698                        | Client                                           | Provides internal review of the QAPP, addendums, and reports.  Approves the final QAPP and addendums.                                                                                                                                                                                    |
| Keith Seiders<br>Toxics Studies Unit<br>SCS<br>360-407-6689  | Project Manager<br>and Principal<br>Investigator | Writes the QAPP, addendums, and reports. Reviews historical data and develops sample strategy for different sites on annual basis. Works with laboratories to obtain analytical services. Reviews, analyzes, and interprets data. Guides field assistants in various roles and tasks.    |
| Patti Sandvik<br>Toxics Studies Unit<br>SCS<br>360-407-7198  | Field and EIM<br>Lead, Project<br>Assistant      | Leads efforts for sample collection, processing, and transportation of samples to the laboratory. Ensures that field and processing information is recorded. Enters field and laboratory data into EIM. Compiles and summarizes historical and current-year data. Assists report effort. |
| Debby Sargeant<br>Toxics Studies Unit<br>SCS<br>360-407-6139 | Unit Supervisor<br>for the Project<br>Manager    | Provides internal review of the QAPP, addendums, and reports.<br>Approves the final QAPP and addendums. Manages budget and staffing needs.                                                                                                                                               |
| Joel Bird<br>Manchester<br>Environmental Lab<br>360-871-8801 | Laboratory<br>Director                           | Approves the final QAPP. Oversees all operations at MEL regarding in-house analyses and processes for contracting analyses to commercial labs.                                                                                                                                           |
| William R. Kammin 360-407-6964                               | Ecology Quality<br>Assurance<br>Officer          | Reviews the draft QAPP and addendums. Approves the final QAPP and addendums.                                                                                                                                                                                                             |
| Dale Norton<br>WOS<br>360-407-6596                           | Supervisor,<br>EAP – Western<br>Operations       | Helps coordinate SWRO and NWRO inter-program and inter-<br>office efforts as needed, especially public communications.                                                                                                                                                                   |

EAP: Environmental Assessment Program

EIM: Environmental Information Management database

NWRO: Northwest Regional Office SWRO: Southwest Regional Office QAPP: Quality Assurance Project Plan SCS: Statewide Coordination Section WOS: Western Operations Section

Table 7. Schedule for completing field, laboratory, and report tasks, FFCMP 2016.

| Field and laboratory work                                | Due date                      | Lead staff       |  |
|----------------------------------------------------------|-------------------------------|------------------|--|
| Field work completed                                     | October 2016                  | Patti Sandvik    |  |
| Sample processing completed                              | December 2016                 | Patti Sandvik    |  |
| Ecology Lab analyses completed                           | July 2017                     | MEL, Joel Bird   |  |
| Contract Lab analyses completed                          | August 2017                   | MEL, Joel Bird   |  |
| Environmental Information System (EIM                    | ) database                    |                  |  |
| EIM user study ID                                        | FFCMP16                       |                  |  |
| Product                                                  | Due date                      | Lead staff       |  |
| EIM data loaded                                          | September 2017                | Patti Sandvik    |  |
| EIM data verification                                    | October 2017                  | To be determined |  |
| EIM complete                                             | November 2017                 | Patti Sandvik    |  |
| Final report                                             |                               |                  |  |
| Author lead / Support staff                              | Keith Seiders / Patti Sandvik |                  |  |
| Schedule                                                 |                               |                  |  |
| Draft due to supervisor                                  | March 2018                    |                  |  |
| Draft due to client/peer reviewer                        | April 2018                    |                  |  |
| Draft due to external reviewer(s)                        | April 2018                    |                  |  |
| Final (all reviews done) due to publications coordinator | May 2018                      |                  |  |
| Final report due on web                                  | June 2018                     |                  |  |

# 6.0 Quality Objectives

Table 8 shows measurement quality objectives (MQOs).

Table 8. Measurement quality objective, FFCMP 2016.

| Parameter                                                  | Analytical Method                          | Lab Duplicate<br>(as RPD)    | Lab Control Sample<br>(% recovery)                                                             | Surrogates (% recovery) | Matrix<br>Spike/Spike<br>Duplicate<br>(% recovery) |
|------------------------------------------------------------|--------------------------------------------|------------------------------|------------------------------------------------------------------------------------------------|-------------------------|----------------------------------------------------|
| Mercury                                                    | EPA 245.6<br>(CVAA)                        | 0%-20% (for results > 5x RL) | 85%-115%                                                                                       | NA                      | 75%-125%;<br>RPD limit 20%                         |
| Chlorinated pesticides                                     | EPA 8081<br>(GC/ECD);<br>MEL SOP           | 0%-40%                       | 50%-150%                                                                                       | 20%-130% <sup>a</sup>   | 50%-150%;<br>RPD limit 40%                         |
| Chlorinated<br>pesticides (HiRes<br>short list: if needed) | EPA 1699 or<br>equivalent<br>(HiRes GC/MS) | 0%-40%                       | Per method for OPR,<br>Internal Standards, and<br>Labeled Compounds<br>each sample & 1/batch b | NA                      | NA                                                 |
| PCB Aroclors                                               | EPA 8082<br>(GC/ECD);<br>MEL SOP           | 0%-40%                       | 50%-150%                                                                                       | 50%-150%                | 50%-150%;<br>RPD limit 40%                         |
| PCB congeners<br>(none planned<br>for 2016)                | EPA 1668A<br>(HiRes GC/MS)                 | 0%-40%                       | Per method for OPR,<br>Internal Standards, and<br>Labeled Compounds                            | NA                      | NA                                                 |
| PCDD/Fs                                                    | EPA 1613B<br>(HiRes GC/MS)                 | 0%-40%                       | Per method for OPR,<br>Internal Standards, and<br>Labeled Compounds                            | NA                      | NA                                                 |
| PBDEs                                                      | EPA 8270 (SIM);<br>SOP 730104              | 0%-40%                       | 50%-150%                                                                                       | 50%-150%                | 50%-150%;<br>RPD limit 40%                         |
| Lipids                                                     | MEL SOP 730009                             | 0%-20%                       | NS                                                                                             | NA                      | NA                                                 |

 $<sup>^{</sup>a}$  Surrogate recovery limits were recently revised by MEL and are specific to surrogates used: some limits are 20%-120%, others are 30%-130%.

<sup>&</sup>lt;sup>b</sup> Labeled compounds in each sample and Ongoing Precision and Recovery standards in each batch.

## 8.0 Sampling Procedures

Samples will be collected and processed as described in the project plan for the FFCMP (Seiders, 2013). Fish collection methods may include the use of gillnets, seines, electrofishing, and angling. Federal, tribal, and state scientific collection permits provide guidance for minimizing the disturbance of anadromous salmon and steelhead that may be present.

Table 9 shows sample containers, preservation, and holding times for fish tissue samples.

Table 9. Containers, preservation, and holding times for samples, FFCMP 2016.

| Parameter                                   | Sample Container                        | Minimum Amount<br>Required *                      | Preservation                         | Holding Time                                      |  |
|---------------------------------------------|-----------------------------------------|---------------------------------------------------|--------------------------------------|---------------------------------------------------|--|
| Mercury                                     | 2 oz. precleaned glass jar w/teflon lid | 5g                                                | 5g freeze,<br>-10° C                 |                                                   |  |
| Chlorinated<br>Pesticides                   | 4 oz. precleaned glass jar w/teflon lid | 30g, 60g preferred                                | freeze,<br>-10° C                    | 1 year to extraction,<br>then 40 days to analysis |  |
| PCB Aroclors                                | 4 oz. precleaned glass jar w/teflon lid | 30g, 60g preferred                                | freeze,<br>-10° C                    | 1 year to extraction,<br>then 40 days to analysis |  |
| PCB congeners<br>(none planned for<br>2016) | 4 oz. precleaned glass jar w/teflon lid | 30g, 60g preferred                                | freeze,<br>-10° C                    | 1 year to extraction,<br>then 40 days to analysis |  |
| PCDD/Fs                                     | 4 oz. precleaned glass jar w/teflon lid | 30g, 60g preferred;<br>~220g if base<br>digestion | freeze,<br>-10° C                    | 1 year to extraction,<br>then 40 days to analysis |  |
| PBDEs                                       | 4 oz. precleaned glass jar w/teflon lid | 30g, 60g preferred                                | 30g, 60g preferred freeze,<br>-10° C |                                                   |  |
| Lipids                                      | 4 oz. precleaned glass jar w/teflon lid | 30 g                                              | freeze,<br>-10° C                    | 1 year to extraction,<br>then 40 days to analysis |  |

### 8.3 Invasive species evaluation

Invasive or unwanted aquatic species may be encountered during fish collections for this project. Environmental ethics and Washington law prohibit the transportation of all aquatic plants, animals, and many noxious weeds. Sample collection efforts for this project will follow the Ecology Environmental Assessment Program's SOP to Minimize the Spread of Invasive Species (Parsons et al., 2012) and Washington Department of Fish and Wildlife's Invasive Species Management Protocols (Tweit et al., 2011).

For this year's target sites, the New Zealand mudsnail, an invasive species of extreme concern, is not known to be present. However, this mudsnail may be present in the first few river miles of the Cowlitz River and its confluence with the Columbia. While sampling is not planned for this area, the procedures described above will be followed if sampling occurs in this lower reach.

### 9.0 Measurement Methods

The analytical methods are consistent with the most recent FFCMP monitoring events. Laboratory analyses of most samples will be conducted by the Ecology Manchester Environmental Laboratory (MEL). Analyses for PCB congeners, PCDD/Fs, and chlorinated pesticides (if needed) will be done by an accredited laboratory through a contract managed by MEL. Both MEL and the contract laboratories are expected to meet the QC requirements of the analytical methods being used and any other requirements specified by MEL or the Project Officer.

Table 10 shows the parameters to be analyzed, analytical methods, desired reporting limits, and ranges of expected results (all results expressed as wet weight).

Table 10. Laboratory measurement methods for fish tissue samples, FFCMP 2016.

|                                                     | I                                                                 |                                                                         |                                                            |                                            |  |  |
|-----------------------------------------------------|-------------------------------------------------------------------|-------------------------------------------------------------------------|------------------------------------------------------------|--------------------------------------------|--|--|
|                                                     | Methods, Reporting Limits, and Sample Number                      |                                                                         |                                                            |                                            |  |  |
| Parameter                                           | Number of<br>Samples & Arrival<br>Date <sup>a</sup>               | Expected Range<br>of Results <sup>b</sup>                               | Reporting Limits <sup>c</sup>                              | Analytical Method                          |  |  |
| Mercury                                             | 50, January 2017                                                  | 10 - 1000 ug/kg                                                         | 17 ug/kg                                                   | EPA 245.6<br>(CVAA)                        |  |  |
| Chlorinated pesticides                              | 66-full suite plus<br>40 for 3 DDTs<br>only, January<br>2017      | 0.1 - 1000 ug/kg for<br>DDTs; 0.1 - 50 ug/kg<br>for others              | most 0.5 - 3.0 ug/kg                                       | EPA 8081<br>(GC/ECD);<br>MEL SOP           |  |  |
| Chlorinated pesticides (HiRes short list IF NEEDED) | 12, April, 2017                                                   | Varies by analyte:<br>see Table 11                                      | Varies by analyte: see<br>Table 11                         | EPA 1699 or<br>equivalent (HiRes<br>GC/MS) |  |  |
| PCB Aroclors                                        | 66-full suite, plus<br>40 for 3 Aroclors<br>only, January<br>2017 | 0.5 - 100 ug/kg,<br>depending on Aroclor                                | 1.1 - 5 ug/kg                                              | EPA 8082<br>(GC/ECD);<br>MEL SOP           |  |  |
| PCB congeners<br>(none planned for<br>2016)         | None planned                                                      | 0.005 - 10 ug/kg,<br>depending on<br>congener                           | 0.003-0.01 ug/kg                                           | EPA 1668A<br>(HiRes GC/MS)                 |  |  |
| PCDD/Fs                                             | 45, January 2017                                                  | 0.005 - 5.0 ng/kg,<br>depending on<br>congener and<br>extraction method | EQL (Estimated<br>Quantitation Limit)<br>0.017 - 0.5 ng/kg | EPA 1613B<br>(HiRes GC/MS)                 |  |  |
| PBDEs                                               | 66 January 2017                                                   | 0.1 - 100 ug/kg                                                         | 0.10 - 2.6 ug/kg;<br>PBDE 209 1.9 - 4.3<br>ug/kg           | EPA 8270 (SIM);<br>MEL SOP 730104          |  |  |
| Lipids                                              | 106 (66+40),<br>January 2017                                      | 0.1 - 20%                                                               | 0.10%                                                      | MEL SOP 730009                             |  |  |

<sup>&</sup>lt;sup>a</sup> MEL will be informed of numbers and arrival dates when the sampling effort concludes.

<sup>&</sup>lt;sup>b</sup> Values reflect historical data from the study area.

<sup>&</sup>lt;sup>c</sup> Value reflects typical range.

Analytical methods need to be adequately sensitive to determine if water quality standards are being met. Ecology's recently proposed water quality standards for some chlorinated pesticides have values that are below the reporting and detection limits of commonly used methods. The use of Environmental Protection Agency (EPA) method 8081 often yields reporting limits that are higher than current or proposed water quality standards. Fish tissue is a challenging matrix and presents various interferences that often raise reporting limits for six chlorinated pesticides. These pesticides are aldrin, alpha-BHC, dieldrin, heptachlor, heptachlor epoxide, and toxaphene. These pesticides were identified in Table D-1 of the original QAPP as possibly needing extra effort by labs to achieve desired reporting limits (Seiders, 2013).

In order to obtain results that can be compared to water quality standards, a second round of analyses for pesticides may be conducted after reviewing results from the first round of analyses. An HRGC/HRMS method for chlorinated pesticides, such as method EPA 1699, or an equivalent or more sensitive method, will be used for this second round of analyses. A qualified laboratory will be selected through the Department of Enterprise Services bid solicitation process.

Table 11 shows the parameters to be analyzed with detection limits, quantitation limits, and the proposed and current water quality criteria; all are expressed as ug/kg wet weight. Pesticides other than the six mentioned above are also being analyzed to help inform MEL about issues related to interferences and interpretations of their analysis using EPA 8081.

Table 11. Characteristics of chlorinated pesticides to be analyzed using HR GC/MS for the FFCMP 2016 (ug/kg wet weight).

| Analyte               | CAS#      | Required<br>Detection<br>Limit | Proposed<br>FTEC | Current<br>FTEC | Expected<br>Range of<br>Results |
|-----------------------|-----------|--------------------------------|------------------|-----------------|---------------------------------|
| Aldrin                | 309-00-2  | 0.01                           | 0.03             | 0.654           | ND - 1.0                        |
| alpha-BHC (alpha-HCH) | 319-84-6  | 0.02                           | 0.07             | 1.69            | ND - 1.0                        |
| Dieldrin              | 60-57-1   | 0.01                           | 0.029            | 0.654           | ND - 10                         |
| Heptachlor            | 76-44-8   | 0.02                           | 0.111            | 2.35            | ND - 10                         |
| Heptachlor Epoxide    | 1024-57-3 | 0.02                           | 0.08             | 1.23            | ND - 10                         |
| Toxaphene             | 8001-35-2 | 0.20                           | 0.42             | 9.56            | ND - 50                         |
| beta-BHC (beta-HCH)   | 319-85-7  | 0.02                           | 0.2              | 5.98            | ND - 1.0                        |
| Hexachlorobenzene     | 118-74-1  | 0.02                           | 0.44             | 6.69            | ND - 20                         |

CAS: Chemical Abstract Service.

FTEC: Fish Tissue Equivalent Concentration.

ND: Non detect

# 10.0 Quality Control

Table 12 shows laboratory quality control procedures.

Table 12. Laboratory quality control sample types and frequencies, FFCMP 2016.

| Parameter                                                | Analytical<br>Method                       | Lab<br>Duplicates     | Lab Control<br>Standards              | Surrogates     | MS/MSD  | Method<br>Blanks |
|----------------------------------------------------------|--------------------------------------------|-----------------------|---------------------------------------|----------------|---------|------------------|
| Mercury                                                  | EPA 245.6<br>(CVAA)                        | 1/ batch <sup>a</sup> | 1/batch                               | NA             | 1/batch | 1/batch          |
| Chlorinated pesticides                                   | EPA 8081<br>(GC/ECD);<br>MEL SOP           | 1/batch               | 1/batch                               | each<br>sample | 1/batch | 1/batch          |
| Chlorinated pesticides (HiRes short list)                | HiRes GC/MS<br>(EPA 1699 or<br>equivalent) | 1/batch               | each sample<br>& 1/batch <sup>c</sup> | NA             | NA      | 1/batch          |
| PCB Aroclors                                             | EPA 8082<br>(GC/ECD);<br>MEL SOP           | 1/batch               | 1/batch                               | each<br>sample | 1/batch | 1/batch          |
| PCB congeners <sup>b</sup><br>(none planned for<br>2016) | EPA 1668A<br>(HiRes GC/MS)                 | 1/batch               | each sample<br>& 1/batch <sup>c</sup> | NA             | NA      | 1/batch          |
| PCDD/Fs <sup>b</sup>                                     | EPA 1613B<br>(HiRes GC/MS)                 | 1/batch               | each sample<br>& 1/batch <sup>c</sup> | NA             | NA      | 1/batch          |
| PBDEs                                                    | EPA 8270 (SIM);<br>SOP 730104              | 1/batch               | 1/batch                               | each<br>sample | 1/batch | 1/batch          |
| Lipids                                                   | MEL SOP 730009                             | 1/batch               | 1/batch                               | NA             | NA      | 1/batch          |

<sup>&</sup>lt;sup>a</sup> "Batch" is defined as up to 20 samples analyzed together.

<sup>&</sup>lt;sup>b</sup> Includes one analysis of Certified Reference Material for the project (WMF-01 preferred; CARP-2 acceptable)

<sup>&</sup>lt;sup>c</sup> Labeled compounds in each sample and Ongoing Precision and Recovery standards in each batch.

### 15.0 References

Davis, D., D. Serdar, and A. Johnson. 1998. Washington State Pesticide Monitoring Program: 1995 Fish Tissue Sampling Report. Washington State Department of Ecology, Olympia, WA. Publication No. 98-312. <a href="https://fortress.wa.gov/ecy/publications/summarypages/98312.html">https://fortress.wa.gov/ecy/publications/summarypages/98312.html</a>

Health. 2003. Smallmouth and Largemouth Bass Fish Consumption Advisory. Washington State Department of Health, Olympia, WA. Publication No. DOH 334-289. http://www.doh.wa.gov/Portals/1/Documents/Pubs/334-289.pdf

Johnson, A., K. Seiders, C. Deligeannis, K. Kinney, P. Sandvik, B. Era-Miller, D. Alkire. 2006. PBDE Flame Retardants in Washington Rivers and Lakes: Concentrations in Fish and Water, 2005-06. Washington State Department of Ecology, Olympia, WA. Publication No. 06-03-027. <a href="https://fortress.wa.gov/ecy/publications/summarypages/0603027.html">https://fortress.wa.gov/ecy/publications/summarypages/0603027.html</a>

Parsons, J., D. Hallock, K. Seiders, B. Ward, C. Coffin, E. Newell, C. Deligeannis, and K. Welch. 2012. Standard Operating Procedures to Minimize the Spread of Invasive Species, Version 2.0. Washington State Department of Ecology, Olympia, WA. SOP Number EAP070. <a href="https://www.ecy.wa.gov/programs/eap/quality.html">www.ecy.wa.gov/programs/eap/quality.html</a>

Seiders, K., C. Deligeannis, and P. Sandvik. 2007. Washington State Toxics Monitoring Program: Toxic Contaminants in Contaminants in Fish Tissue from Freshwater Environments in 2004 and 2005. Washington State Department of Ecology, Olympia, WA. Publication No. 07-03-024. https://fortress.wa.gov/ecy/publications/summarypages/0703024.html

Seiders, K. 2013. Quality Assurance Project Plan: Freshwater Fish Contaminant Monitoring Program. Washington State Department of Ecology, Olympia, WA. Publication No. 13-03-111. https://fortress.wa.gov/ecy/publications/summarypages/1303111.html

Tweit, B., A. Pleus, D. Heimer, J. Kerwin, M. Hayes, C. Klein, S. Kelsey, M. Schmuck, L. Phillips, and B. Hebner. 2011. Invasive Species Management Protocols: Version 1 – July 2011. Washington Department of Fish and Wildlife Invasive Species Management Committee. Washington Department of Fish and Wildlife, Olympia, WA.