



# Addendum 4 to **Quality Assurance Monitoring Plan**

# Long-Term Marine Waters Monitoring, Water Column Program

January 2017 Publication No. 17-03-103

#### **Publication Information**

Each study conducted by the Washington State Department of Ecology (Ecology) must have an approved Quality Assurance Project Plan. The plan describes the objectives of the study and the procedures to be followed to achieve those objectives. After completing the study, Ecology will post the final report of the study to the Internet.

This Quality Assurance Project Plan is available on Ecology's website at https://fortress.wa.gov/ecy/publications/SummaryPages/1703103.html

Data for this project will be available on Ecology's Environmental Information Management (EIM) website at <a href="https://www.ecy.wa.gov/eim/index.htm">www.ecy.wa.gov/eim/index.htm</a>. Search Study ID MarineWater.

Ecology's Activity Tracker Code for this study is 01-800.

#### **Original Publication**

Quality Assurance Monitoring Plan: Long-Term Marine Waters Monitoring, Water Column Program. Publication No. 15-03-101.

https://fortress.wa.gov/ecy/publications/SummaryPages/1503101.html

#### **Author and Contact Information**

Mya Keyzers P.O. Box 47600 Environmental Assessment Program Washington State Department of Ecology Olympia, WA 98504-7600

Communications Consultant: phone 360-407-6834.

Washington State Department of Ecology – <u>www.ecy.wa.gov</u>

| 0 | Headquarters, Lacey                 | 360-407-6000 |
|---|-------------------------------------|--------------|
| 0 | Northwest Regional Office, Bellevue | 425-649-7000 |
| 0 | Southwest Regional Office, Lacey    | 360-407-6300 |
| 0 | Central Regional Office, Union Gap  | 509-575-2490 |
| 0 | Eastern Regional Office, Spokane    | 509-329-3400 |

*Cover photo:* Sunrise at Potlach boat launch on Hood Canal (by Mya Keyzers)

Any use of product or firm names in this publication is for descriptive purposes only and does not imply endorsement by the author or the Department of Ecology.

Accommodation Requests: To request ADA accommodation including materials in a format for the visually impaired, call Ecology at 360-407-6764. Persons with impaired hearing may call Washington Relay Service at 711. Persons with speech disability may call TTY at 877-833-6341.

# Addendum 4 to **Quality Assurance Project Plan**

# Long-Term Marine Waters Monitoring, Water Column Program

January 2017

## Approved by:

| Signature:                                               | Date: |
|----------------------------------------------------------|-------|
| Mya Keyzers, Author / Project Manager, EAP               |       |
|                                                          |       |
| Signature:                                               | Date: |
| Christopher Krembs, Author / Principal Investigator, EAP |       |
|                                                          |       |
| Signature:                                               | Date: |
| Carol Maloy, Author's Unit Supervisor, EAP               |       |
|                                                          |       |
| Signature:                                               | Date: |
| Dale Norton, Author's Section Manager, EAP               |       |
|                                                          |       |
| Signature:                                               | Date: |
| Joel Bird, Director, Manchester Environmental Laboratory |       |
|                                                          |       |
| Signature:                                               | Date: |
| Bill Kammin, Ecology Quality Assurance Officer           |       |

Signatures are not available on the Internet version.

EAP: Environmental Assessment Program

# **Table of Contents**

|      |                                                                                                                                                                          | Page           |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
| 3.0  | Background                                                                                                                                                               | 5              |
| 5.0  | Organization and Schedule  5.1 Key individuals and their responsibilities  5.4 Proposed project schedule  5.5 Budget and funding                                         | 6<br>7         |
| 6.0  | Quality Objectives                                                                                                                                                       |                |
| 7.0  | Study Design                                                                                                                                                             | 11<br>11       |
| 8.0  | Field Procedures                                                                                                                                                         |                |
| 9.0  | Laboratory Procedures  9.1 Lab procedures table  9.2.1 Analyte  9.2.4 Expected range of results  9.2.5 Analytical method  9.2.6 Sensitivity/Method Detection Limit (MDL) | 30<br>31<br>31 |
| 10.0 | Quality Control Procedures                                                                                                                                               | 32<br>32       |
| 15.0 | References                                                                                                                                                               | 37             |
| Appe | endix. Glossaries, Acronyms, and Abbreviations                                                                                                                           | 40             |

# **List of Figures and Tables**

Page **Figures** Figure 1. All 2017 Ecology long-term marine water column monitoring station Figure 3. 2017 Marine Flight 2 (MF2) North Sound sampling stations. The 20 particulate pilot project stations are highlighted with a white star......17 Figure 4. 2017 Marine Flight 3 (MF3) Central Sound sampling stations. The 20 particulate pilot project stations are highlighted with a white star......18 Figure 5. 2017 Marine Flight 4 (MF4) South Sound sampling stations. The 20 particulate pilot project stations are highlighted with a white star......19 Figure 6. 2017 Marine Flight 5 (MF5) Hood Canal sampling stations. The 20 particulate pilot project stations are highlighted with a white star......20 **Tables** Table 1. Organization of project staff and responsibilities......6 Table 2. Proposed schedule for completing field and laboratory work, data processing, Table 3. Projected budget for 2017 Marine Flight operations......9 Table 4. Measurement quality objectives for marine water column laboratory samples. .10 Table 5. 2017 station list for Ecology long-term marine water column monitoring. .......12 Table 6. Projected water sample collection plan for 2017 listing depths (in meters) for Table 7. Projected water sample collection plan for 2016-17, listing each sample type Table 8. Field sample collection methods for ambient water column monitoring........28 Table 9. Lab measurement methods, expected range of results, and reporting limits for marine data. Table 10. A summary of quality control steps for field measurements.......33 Table 11. Quality assurance/quality control procedures for water column parameter 

## 3.0 Background

This document describes the 2017 sampling effort for Ecology's Long-Term Marine Waters Monitoring Program. It is an addendum to *Quality Assurance Monitoring Plan: Long-Term Marine Waters Monitoring, Water Column Program* (Bos, 2015). This Quality Assurance Monitoring Plan (QAMP) addendum specifies which stations and parameters will be sampled in 2017.

In 2017, 37 core stations and two sediment team core stations will be sampled for standard water column parameters. Additional sampling will be included at a subset of stations for total organic carbon (TOC), total nitrogen (TN), particulate organic carbon (POC), and particulate organic nitrogen (PN). A new instrument will also be tested called a Submersible Ultraviolet Nitrate Analyzer (SUNA).

A collaboration with the Salish Sea Marine Survival Project will take place from March through October at two stations in Hood Canal. Staff from the Hood Canal Salmon Enhancement Group will collect one vertical plankton net tow at each of these two stations to quantify zooplankton.

The purpose of the program is to examine and report marine water quality on a regular, long-term basis. Its objectives are to understand current existing conditions in the context of environmental factors, identify spatial and temporal trends, and provide high-quality information from sensor and lab sample collection.

All required sections not mentioned in this addendum are discussed in the original QAMP (Bos, 2015) and referenced Standard Operating Procedures.

# 5.0 Organization and Schedule

# 5.1 Key individuals and their responsibilities

Table 1. Organization of project staff and responsibilities.

| EAP Staff                                                                                        | Title                                                                       | Responsibilities                                                                                                                                                                                                                                                       |
|--------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Julia Bos<br>Marine Monitoring Unit<br>Western Operations Section<br>Phone: (360) 407-6674       | Monitoring Coordinator, Data Management, Data Analyst, Publications Author  | Writes the QAPP. Oversees JEMS monitoring program - field and laboratory activities. Conducts QA review, analyzes and interprets data, and enters data into EIM/data management system. Writes reports and data summaries.                                             |
| Christopher Krembs Marine Monitoring Unit Western Operations Section Phone: (360) 407-6675       | Senior Oceanographer,<br>Lead Presentations,<br>Publications Author         | Determines monitoring strategy. Generates index/indicators of water quality conditions.  Determines appropriate analysis, review, and interpretative methods for data reduction and reporting. Generates data products. Lead author of publications and presentations. |
| Skip Albertson<br>Marine Monitoring Unit<br>Western Operations Section<br>Phone: (360) 407-6675  | Physical<br>Oceanographer, Data<br>Analyst, Modeler,<br>Publications Author | Analysis and reporting of climate, weather, and ocean indicators. Generates data products and analytical tools. Conducts QA review of data, analyzes and interprets data. Writes reports and data summaries.                                                           |
| Mya Keyzers Marine Monitoring Unit Western Operations Section Phone: (360) 407-6395              | Marine Flight Lead<br>Technician                                            | Conducts field sampling, laboratory analysis, and instrument maintenance. Records and manages field information. Conducts QA review, analyzes and interprets data. Writes reports and data summaries.                                                                  |
| Laura Hermanson<br>Marine Monitoring Unit<br>Western Operations Section<br>Phone: (360) 407-0273 | Marine Flight<br>Technician                                                 | Conducts field sampling, laboratory analysis, and instrument maintenance. Records and manages field information. Conducts QA review, analyzes and interprets data.                                                                                                     |
| Carol Maloy<br>Marine Monitoring Unit<br>Western Operations Section<br>Phone: (360) 407-6742     | Unit Supervisor                                                             | Provides internal review of the QAPP, approves the budget, and approves the final QAPP.                                                                                                                                                                                |
| Dale Norton<br>Western Operations Section<br>Phone: (360) 407-6596                               | Section Manager                                                             | Reviews the project scope and budget, tracks progress, reviews the draft QAPP, and approves the final QAPP.                                                                                                                                                            |
| William R. Kammin<br>Phone: (360) 407-6964                                                       | Ecology Quality<br>Assurance Officer                                        | Reviews the draft QAPP and approves the final QAPP.                                                                                                                                                                                                                    |

EAP: Environmental Assessment Program, Department of Ecology

EIM: Environmental Information Management database

QAPP: Quality Assurance Project Plan

# 5.4 Proposed project schedule

Table 2. Proposed schedule for completing field and laboratory work, data processing, review, quality control, storage in a database, and reports.

| Activity                                          | Due date                                                     | Lead staff                                                                        |  |
|---------------------------------------------------|--------------------------------------------------------------|-----------------------------------------------------------------------------------|--|
| Field and laboratory work                         |                                                              |                                                                                   |  |
| Field work (sample collection) completed          | Monthly                                                      | Mya Keyzers                                                                       |  |
| Internal (Ecology) laboratory analyses completed  | 3 days (DO samples)<br>post-collection                       | Laura Hermanson                                                                   |  |
| Internal (Ecology) laboratory analyses completed  | 1 month post-collection<br>(chlorophyll a samples)           | Laura Hermanson                                                                   |  |
| External UW and MEL laboratory analyses completed | 3 months post-collection (nutrient, TOC, and POC/PN samples) | Mya Keyzers                                                                       |  |
| Data receipt or processing and upload             | d to EAPMW (Marine Waters) database                          |                                                                                   |  |
| Instrument & sensor data                          | Same month as collection                                     | Julia Bos                                                                         |  |
| Internal laboratory data                          | 1 month post analyses                                        | Laura Hermanson                                                                   |  |
| External laboratory data                          | 1 month post-analyses                                        | Mya Keyzers                                                                       |  |
| Data review and QAQC                              |                                                              |                                                                                   |  |
| Instrument & sensor data                          | 1 month post-collection                                      | Julia Bos, Christopher Krembs<br>Skip Albertson, Mya Keyzers,<br>Laura Hermanson  |  |
| Internal laboratory data                          | 1 month post-analyses                                        | Laura Hermanson                                                                   |  |
| External laboratory data                          | Quarterly, one quarter post-collection                       | Mya Keyzers                                                                       |  |
| Environmental Information System (                | EIM) database                                                |                                                                                   |  |
| EIM data loaded                                   | Same month as collection                                     | Julia Bos                                                                         |  |
| EIM quality assurance                             | 4 months after sampling year complete                        | Julia Bos                                                                         |  |
| EIM complete                                      | 4 months after sampling year complete                        | Julia Bos                                                                         |  |
| Monthly reports                                   |                                                              |                                                                                   |  |
| Monthly condition summary generated               | 1 month post-collection                                      | Julia Bos                                                                         |  |
| Monthly summary posted to web                     | 1 month post-collection                                      | Christopher Krembs                                                                |  |
| Annual Assessment - data products &               | written summary                                              |                                                                                   |  |
| Draft assessments & products due                  | 3 months after sampling year complete                        | Christopher Krembs, Julia Bos,<br>Skip Albertson, Mya Keyzers,<br>Laura Hermanson |  |
| Final reviews & QAQC summarized                   | 4 months after sampling year complete                        | Christopher Krembs, Julia Bos                                                     |  |
| Final summary due on web                          | 4 months after sampling year complete                        | Christopher Krembs                                                                |  |
| Final data posted and performance m               | easures reported                                             |                                                                                   |  |
| Final data & analytical plots due on web          | 4 months after sampling year complete                        | Christopher Krembs,<br>Skip Albertson                                             |  |
| Final Performance calculated & submitted to OFM   | Annually in July                                             | Julia Bos                                                                         |  |

#### **Notes for Table 2**

EAP: Environmental Assessment Program

EIM: Environmental Information Management database

MEL: Manchester Environmental Laboratory QAMP: Quality Assurance Monitoring Plan

UW: University of Washington

# 5.5 Budget and funding

This budget does not include the full cost of the monitoring program. It is limited to direct expenses for the specific elements below.

Table 3. Projected budget for 2017 Marine Flight operations.

| Туре                                               | Cost/unit      | Qty.     |      | Cost       |
|----------------------------------------------------|----------------|----------|------|------------|
| UW Marine Cher                                     | mistry Lab A   | nalyses1 |      |            |
| Seawater Nutrient Analysis <sup>1&amp;2</sup>      | 18.50          | 1320     | \$   | 24,420.00  |
| Salinity Analysis <sup>1</sup>                     | 21.00          | 156      | \$   | 3,276.00   |
| Dissolved Oxygen reagents <sup>1</sup>             | 644.00         | 2        | \$   | 1,288.00   |
|                                                    | •              | Subtotal | \$   | 28,984.00  |
| Manchester (M                                      | IEL) Lab Ana   | alyses   |      |            |
| Particulate organic carbon & nitrogen <sup>2</sup> | 42.50          | 264      | \$   | 11,220.00  |
| Particulate filters                                | 0.90           | 264      | \$   | 237.60     |
| Total Nitrogen <sup>2</sup>                        | 40.00          | 264      | \$   | 10,560.00  |
| Total Organic Carbon <sup>2</sup>                  | 30.00          | 264      | \$   | 7,920.00   |
|                                                    |                | Subtotal | \$   | 29,937.60  |
| Sen                                                | sor Cost       |          |      |            |
| Company                                            |                |          | Cost | ţ.         |
| Seabird Inc.                                       |                |          | \$   | 4,000.00   |
| WET Labs Inc.                                      |                |          | \$   | 3,000.00   |
| Biospherical Instruments Inc.                      |                |          | \$   | 200.00     |
|                                                    | •              | Subtotal | \$   | 7,200.00   |
| Transpo                                            | rtation Cost   |          |      |            |
| Company                                            |                |          | Cost | į          |
| Kenmore Air Seaplanes <sup>3</sup>                 |                |          | \$   | 89,010.00  |
| Port of Olympia                                    |                |          | \$   | 600.00     |
|                                                    | •              | Subtotal | \$   | 89,610.00  |
| Shannon Point M                                    | Iarine Science | e Center |      |            |
| Research Vessel <sup>4</sup>                       | \$110.00       | 88       | \$   | 9,680.00   |
| Lab fee                                            | \$200.00       | 12       | \$   | 2,400.00   |
|                                                    |                | Subtotal | \$   | 12,080.00  |
|                                                    |                | Total    | \$   | 167,811.60 |

<sup>&</sup>lt;sup>1</sup>Costs include 15.6% overhead

<sup>&</sup>lt;sup>2</sup> Includes internal lab and field check standards and blanks sent with every batch. Does not include MEL lab standard and blank samples. The funding for this project ends in June 2017; this is a 6 month budget.

<sup>&</sup>lt;sup>3</sup> State Contract No. 04413

<sup>&</sup>lt;sup>4</sup>Inter-agency Agreement No. C1400008

# 6.0 Quality Objectives

## 6.2 Measurement quality objectives (MQOs)

### **6.1.1.5** Laboratory MQOs

Seawater nutrient and salinity sample analyses are conducted by the University of Washington Marine Chemistry Laboratory (UW-MCL). Dissolved oxygen (Winkler) and chlorophyll a samples are analyzed by the Marine Lab (ML) of the Marine Waters Monitoring Group. POC, PN, TOC, and TN analyses are conducted by Ecology's Manchester Environmental Laboratory (MEL). Any labs conducting analyses for the marine waters monitoring program are accredited through Ecology's Laboratory Accreditation Program.

All work is expected to meet the quality control (QC) requirements of the analytical methods used for this project. These requirements are summarized in the Measurement Procedures and Quality Control Procedures sections of this document and in the standard operating procedures (SOPs) used for each analysis. Many of these procedures can also be found in detail in the Puget Sound Estuary Program (PSEP) Protocols (1997).

Table 4. Measurement quality objectives for marine water column laboratory samples.

This table summarizes measurement quality objectives for "analytical laboratory" values for marine data. Ecology is responsible for verifying all MQOs are met.

| Measurement - Laboratory         | Precision<br>(relative standard<br>deviation, RSD) | Accuracy (Bias)<br>(% deviation<br>from true value) | Lowest Value (reporting limit) |  |
|----------------------------------|----------------------------------------------------|-----------------------------------------------------|--------------------------------|--|
| Total Organic Carbon (TOC)       | = 20%</td <td>5%</td> <td>500 ug/L</td>            | 5%                                                  | 500 ug/L                       |  |
| Total Nitrogen (TN)              | = 20%</td <td>5%</td> <td>25 ug/L</td>             | 5%                                                  | 25 ug/L                        |  |
| Particulate Nitrogen (PN)        | = 20%</td <td>5%</td> <td>62.3ug/L</td>            | 5%                                                  | 62.3ug/L                       |  |
| Particulate Organic Carbon (POC) | = 20%</td <td>5%</td> <td>10.5 ug/L</td>           | 5%                                                  | 10.5 ug/L                      |  |
| Dissolved Oxygen                 | 5%                                                 | 5%                                                  | 0.05 mg/L                      |  |
| Marine Nitrate                   | 10%                                                | 5%                                                  | 0.15 μΜ                        |  |
| Marine Nitrite                   | 10%                                                | 5%                                                  | 0.01 μΜ                        |  |
| Marine Ammonium                  | 10%                                                | 5%                                                  | 0.05 μΜ                        |  |
| Marine Orthophosphate            | 10%                                                | 5%                                                  | 0.02 μΜ                        |  |
| Marine Silicate                  | 10%                                                | 5%                                                  | 0.21 μΜ                        |  |
| Chlorophyll a                    | 10%                                                | N/A                                                 | 0.02 μg/L                      |  |
| Salinity                         | 5%                                                 | 5%                                                  | 0.002 PSU                      |  |

<sup>\*</sup>Not currently collected

# 7.0 Study Design

## 7.1 Study boundaries

## 7.1.2 Sampling location and frequency

#### 7.1.2.1 Core Station Monitoring and Locations

Core long-term monitoring stations are visited once a month, year-round, to ensure that all major seasonal hydrographic conditions are observed. Since not all stations can be visited in 1 day, stations are aligned by region and separated into regional surveys conducted every month for the most efficient operations. This year the stations are divided into 6 regional surveys a month as opposed to 5, as previously done. Fewer stations per survey allow for more flexibility to adapt to weather delays, seasonally limited daylight hours, and weather-dependent activities such as the *Eyes Over Puget Sound* (EOPS) aerial surveys.

For 2015, stations WPA001 and GYS004 were changed from core to rotational, as these stations are in rivers and exhibit freshwater rather than marine characteristics. These 2 stations will not be sampled in 2017. This results in a total of 39 stations: 37 core waters stations and 2 sediment team core stations. This year the regions will be grouped as:

- Strait of Juan de Fuca (JEMS)
- Coastal Bays (Marine Flight (MF1)
- San Juans/North Sound/Whidbey Basin (MF2)
- Admiralty Inlet/Central Sound (MF3)
- South Sound (MF4)
- Hood Canal (MF5)

See Table 5 and Figures 1-7.

Stations are sampled at intervals no less than 3 weeks apart to ensure reasonable adherence to a monthly sampling scheme.

Table 5. 2017 station list for Ecology long-term marine water column monitoring.

| Flight    | Station ID | Location                          | Latitude N<br>NAD83<br>(deg/dec_min) | Longitude W (NAD83) (deg/dec_min) | WQMA                    | Depth (m) | Record                                | Record<br>Length<br>(yrs) | Justification                                   |
|-----------|------------|-----------------------------------|--------------------------------------|-----------------------------------|-------------------------|-----------|---------------------------------------|---------------------------|-------------------------------------------------|
| Marine    | GYS008     | Mid-S.<br>Channel                 | 46 56.2388                           | 123 54.7934                       | Western<br>Olympic      | 6         | 1974-1976, 1983 - present             | 36                        | represents mid Grays Harbor, south              |
| Flight 1: | GYS016     | Damon Point                       | 46 57.2053                           | 124 05.5770                       | Western<br>Olympic      | 11        | 1982- 987, 1991 - present             | 30                        | represents outer Grays Harbor, north            |
| Coast     | WPA004     | Toke Point                        | 46 41.9800                           | 123 58.1240                       | Lower<br>Columbia       | 14        | 1973-1975, 1977-present               | 42                        | represents north Willapa Bay                    |
|           | WPA113     | Bay Center                        | 46 38.6400                           | 123 59.5800                       | Lower<br>Columbia       | 11        | 1997-2000, 2006-present               | 13                        | represents mouth of (NW)<br>Willapa Bay         |
|           | WPA006     | Nahcotta<br>Channel               | 46 32.7226                           | 123 58.8097                       | Lower<br>Columbia       | 21        | 1991-present                          | 25                        | represents central Willapa Bay                  |
|           | WPA007     | Long Island,<br>S. Jenson Pt.     | 46 27.1893                           | 124 00.5672                       | Lower<br>Columbia       | 14        | 1991-2008, 2013-present               | 20                        | represents SW Willapa Bay                       |
|           | WPA008     | Naselle River mouth               | 46 27.7890                           | 123 56.4760                       | Lower<br>Columbia       | 14        | 1996-2008, 2013-present               | 15                        | represents SE Willapa Bay, off<br>Naselle R.    |
|           | WPA003     | Willapa<br>River, John.<br>Slough | 46 42.2392                           | 123 50.2431                       | Lower<br>Columbia       | 10        | 1973-present                          | 43                        | represents north Willapa Bay, off<br>Willapa R. |
| Marine    | PTH005     | Port<br>Townsend                  | 48 04.9889                           | 122 45.8767                       | Eastern<br>Olympic      | 26        | 1977-1978, 1991-2002,<br>2005-present | 25                        | represents waters off city of Port<br>Townsend  |
| Flight 2: | RSR837     | Rosario Strait                    | 48 36.9896                           | 122 45.7775                       | Nooksack/<br>San Juan   | 56        | 2009-present                          | 7                         | represents waters in Rosario Strait             |
| North     | GRG002     | Strait of<br>Georgia              | 48 48.4896                           | 122 57.2446                       | Nooksack/<br>San Juan   | 190       | 1988-present                          | 28                        | represents Strait of Georgia end<br>member      |
|           | BLL009     | Bellingham<br>Bay                 | 48 41.1564                           | 122 35.9771                       | Nooksack/<br>San Juan   | 16        | 1977-present                          | 39                        | represents waters off city of<br>Bellingham     |
|           | BLL040     | Bellingham<br>Bay                 | 48 41.0382                           | 122 32.2920                       | Nooksack/<br>San Juan   | 26        | NA                                    | 27                        | represents waters of Bellingham                 |
|           | SKG003     | Skagit Bay                        | 48 17.7893                           | 122 29.3763                       | Island/<br>Snohomish    | 24        | 1990-1991, 1994-1998,<br>2007-present | 16                        | represents Whidbey Basin                        |
|           | SAR003     | Saratoga<br>Passage               | 48 06.4557                           | 122 29.4925                       | Island/<br>Snohomish    | 149       | 1977-present                          | 39                        | represents Whidbey Basin                        |
|           | PSS019     | Possession<br>Sound               | 48 00.6556                           | 122 18.0750                       | Island/<br>Snohomish    | 101       | 1980-present                          | 36                        | represents waters off city of<br>Everett        |
|           | ADM001     | Admiralty<br>Inlet                | 48 01.7888                           | 122 37.0760                       | Kitsap &<br>Cedar/Green | 148       | 1975-1987, 1992-present               | 36                        | represents waters within<br>Admiralty Inlet     |

| Flight              | Station ID | Location                    | Latitude N<br>NAD83<br>(deg/dec_min) | Longitude W<br>(NAD83)<br>(deg/dec_min) | WQMA                        | Depth (m) | Record                                              | Record<br>Length<br>(yrs) | Justification                                     |
|---------------------|------------|-----------------------------|--------------------------------------|-----------------------------------------|-----------------------------|-----------|-----------------------------------------------------|---------------------------|---------------------------------------------------|
| Marine<br>Flight 3: | ADM003     | S. of<br>Admiralty<br>Inlet | 47 52.7390                           | 122 28.9917                             | Kitsap &<br>Cedar/Green     | 210       | 1988-1991, 1996-present                             | 22                        | represents waters S. of Admiralty sills           |
| Central             | PSB003     | Puget Snd.<br>Main Basin    | 47 39.5891                           | 122 26.5745                             | Kitsap &<br>Cedar/Green     | 40-50     | 1976-present                                        | 40                        | represents Puget Sound Main<br>Basin              |
|                     | ELB015     | Elliott Bay                 | 47 35.7892                           | 122 22.1743                             | Cedar/Green                 | 82        | 1991-present                                        | 25                        | represents waters off city of<br>Seattle          |
|                     | EAP001     | East Passage                | 47 25.0226                           | 122 22.8241                             | Kitsap &<br>Cedar/Green     | 200       | 1988-1991, 1994-95,<br>1997-present                 | 24                        | represents South Puget Sound<br>main axis         |
|                     | SIN001     | Sinclair Inlet              | 47 32.9557                           | 122 38.6083                             | Kitsap                      | 16        | 1973-1987, 1991-present                             | 39                        | represents waters off city of<br>Bremerton        |
|                     | HCB013     | Hood Canal                  | 47 50.2548                           | 122 37.7370                             | N of Hood<br>Canal Bridge   | 20        | NA                                                  | 1                         | represents entrance of Hood<br>Canal              |
|                     | CMB003     | Commence-<br>ment Bay       | 47 17.4226                           | 122 27.0074                             | South Puget<br>Sound        | 150       | 1976-present                                        | 40                        | represents waters off city of<br>Tacoma           |
|                     | BUD005     | Budd Inlet                  | 47 05.5224                           | 122 55.0918                             | Eastern<br>Olympic          | 15        | 1973-present                                        | 41                        | represents waters off city of<br>Olympia          |
| Marine Flight 4:    | DNA001     | Dana Passage                | 47 09.6890                           | 122 52.3083                             | Eastern<br>Olympic          | 40        | 1984-85, 1989-present                               | 29                        | represents south reach of Southern<br>Puget Sound |
| South               | NSQ002     | Devil's Head                | 47 10.0390                           | 122 47.2914                             | E. Oly &<br>Kitsap &<br>SPS | 100       | 1984-85, 1996-present                               | 22                        | represents South Puget Sound<br>near Nisqually    |
|                     | GOR001     | Gordon Point                | 47 10.9891                           | 122 38.0743                             | E. Oly &<br>Kitsap &<br>SPS | 160-170   | 1996-present                                        | 19                        | represents South Puget Sound<br>south of Narrows  |
|                     | CRR001     | Carr Inlet                  | 47 16.5891                           | 122 42.5745                             | Eastern<br>Olympic          | 95        | 1977-93, 1995-96, 1998-<br>2003, 2006, 2009-present | 32                        | represents waters within Carr Inlet               |
|                     | CSE001     | Case Inlet                  | 47 15.8724                           | 122 50.6583                             | Eastern<br>Olympic          | 55        | 1978-1993, 1995-96,<br>1998-99, 2009-present        | 27                        | represents waters within Case<br>Inlet            |
|                     | OAK004     | Oakland Bay                 | 47 12.8056                           | 123 04.6590                             | Eastern<br>Olympic          | 15        | 1974-75, 1977-present                               | 41                        | represents waters off city of<br>Shelton          |
|                     | HCB007     | Hood Canal,<br>Lynch Cv.    | 47 23.8889                           | 122 55.7755                             | Kitsap & E.<br>Olympic      | 21        | 1990-1996, 1998-2007,<br>2011-present               | 22                        | very low DO, assess duration & coverage           |
| Marine Flight 5:    | HCB004     | Hood Canal,<br>Sisters Pt.  | 47 21.3723                           | 123 01.4924                             | Kitsap & E. Olympic         | 55        | 1975-1987, 1990-present                             | 39                        | represents southern Hood Canal                    |
| Hood<br>Canal       | НСВ003     | Hood Canal,<br>Eldon        | 47 32.2722                           | 123 00.5760                             | Kitsap & E.<br>Olympic      | 144       | 1976-92, 1994-96, 1998-<br>2007, 2010-present       | 35                        | very low DO, assess duration & coverage           |
|                     | НСВ010     | Hood Canal,<br>S of Bangor  | 47 40.2000                           | 122 49.2000                             | Kitsap & E.<br>Olympic      | 100       | 2005-present                                        | 11                        | represents northern Hood Canal                    |

| Flight  | Station ID | Location                    | Latitude N<br>NAD83<br>(deg/dec_min) | Longitude W (NAD83) (deg/dec_min) | WQMA                     | A Depth (m) Record |              | Record<br>Length<br>(yrs) | Justification                                 |
|---------|------------|-----------------------------|--------------------------------------|-----------------------------------|--------------------------|--------------------|--------------|---------------------------|-----------------------------------------------|
| Straits | SJF000     | Strait of Juan<br>de Fuca   | 48 25.0000                           | 123 01.5000                       | S. of San<br>Juan Island | 180                | 2000-present | 16                        | represents northern Strait of Juan de Fuca    |
|         | SJF001     | Strait of Juan<br>de Fuca   | 48 20.0000                           | 123 01.5000                       | SE of Hein<br>Bank       | 160                | 2000-present | 16                        | represents central Strait of Juan de<br>Fuca  |
|         | SJF002     | Strait of Juan<br>de Fuca   | 48 15.0000                           | 123 01.5000                       | SW of<br>Eastern Bank    | 145                | 2000-present | 16                        | represents southern Strait of Juan de Fuca    |
|         | ADM002     | N. of<br>Admiralty<br>Inlet | 48 11.2391                           | 122 50.5770                       | Island & E.<br>Olympic   | 82                 | 1980-present | 35                        | represents waters entering<br>Admiralty Inlet |

WQMA: Water Quality Management Area SPS: South Puget Sound DO: Dissolved Oxygen

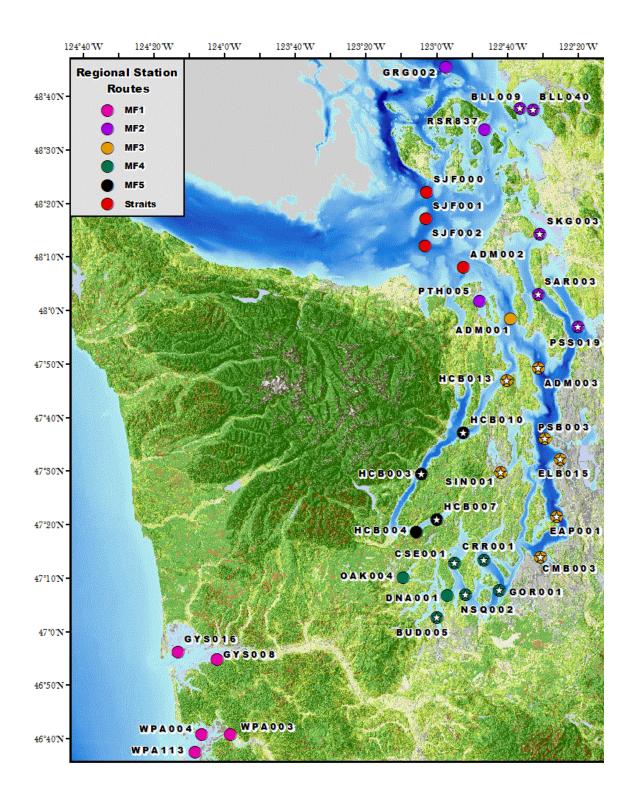



Figure 1. All 2017 Ecology long-term marine water column monitoring station locations. *The 20 particulate pilot project stations are highlighted with a white star.* 

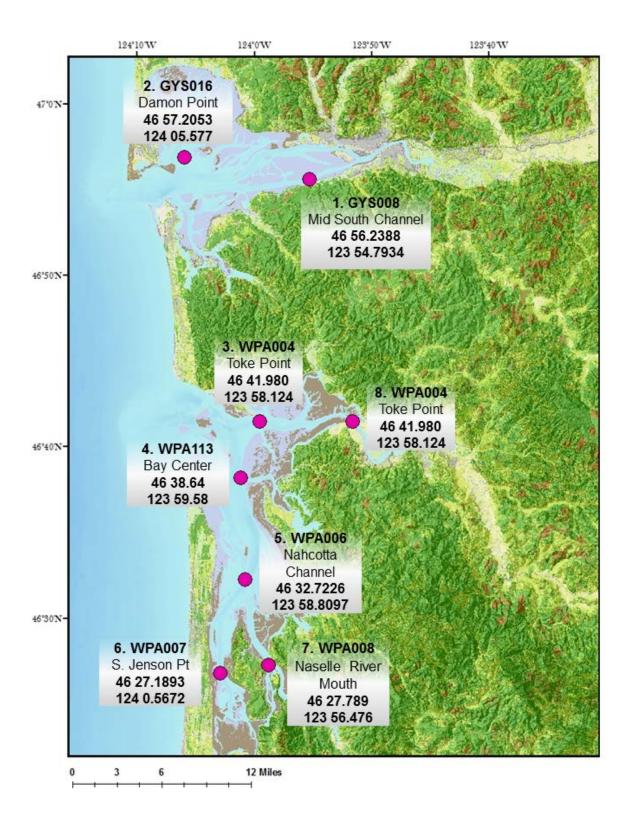



Figure 2. 2017 Marine Flight 1 (MF1) Coast sampling stations.

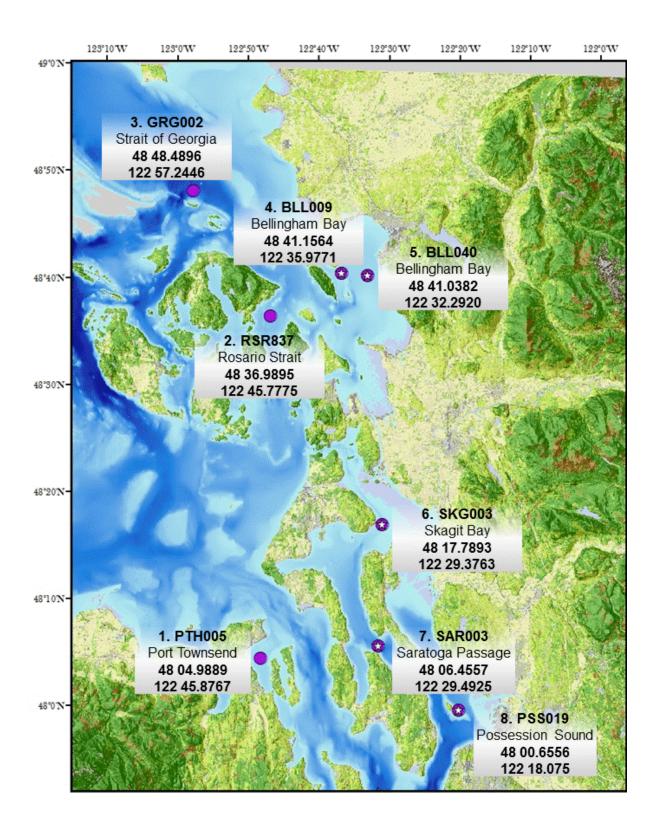



Figure 3. 2017 Marine Flight 2 (MF2) North Sound sampling stations. The 20 particulate pilot project stations are highlighted with a white star.

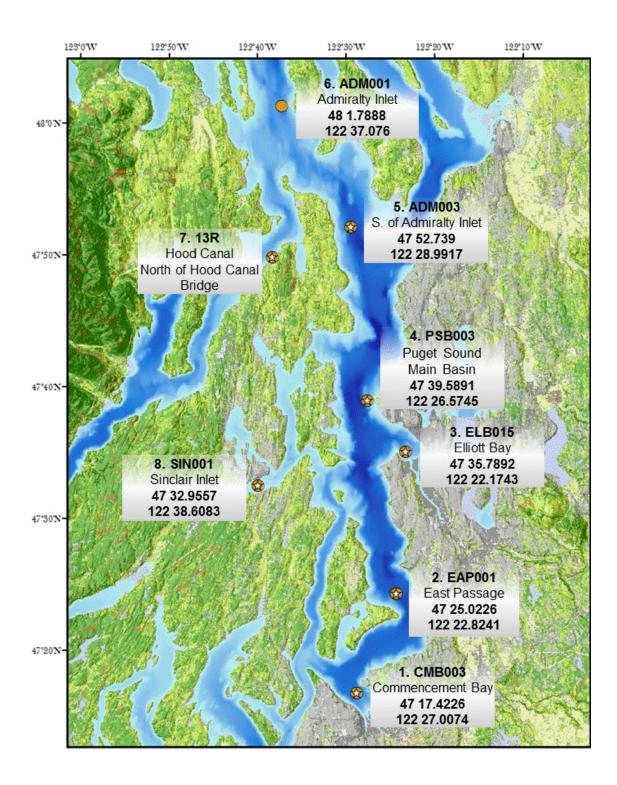



Figure 4. 2017 Marine Flight 3 (MF3) Central Sound sampling stations. The 20 particulate pilot project stations are highlighted with a white star.



Figure 5. 2017 Marine Flight 4 (MF4) South Sound sampling stations. The 20 particulate pilot project stations are highlighted with a white star.

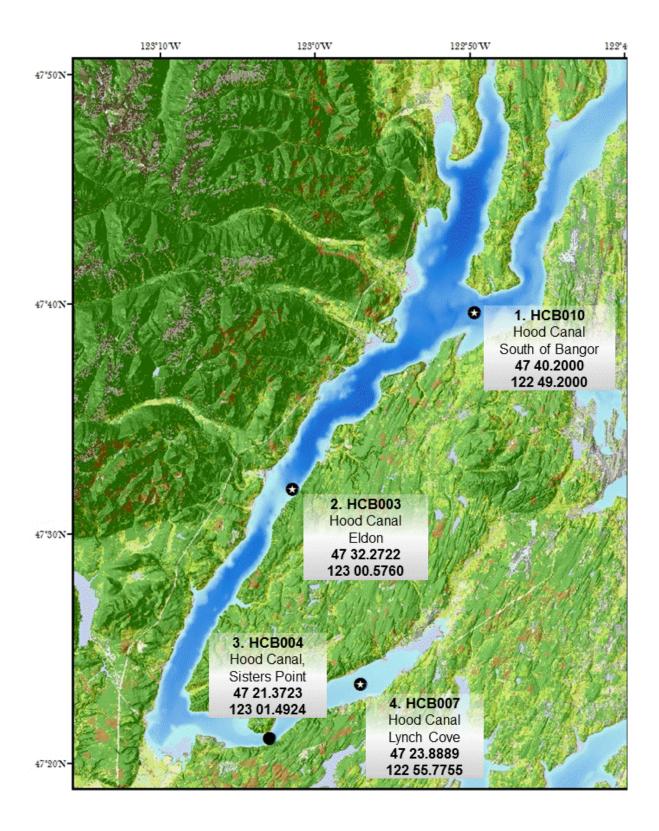



Figure 6. 2017 Marine Flight 5 (MF5) Hood Canal sampling stations. The 20 particulate pilot project stations are highlighted with a white star.

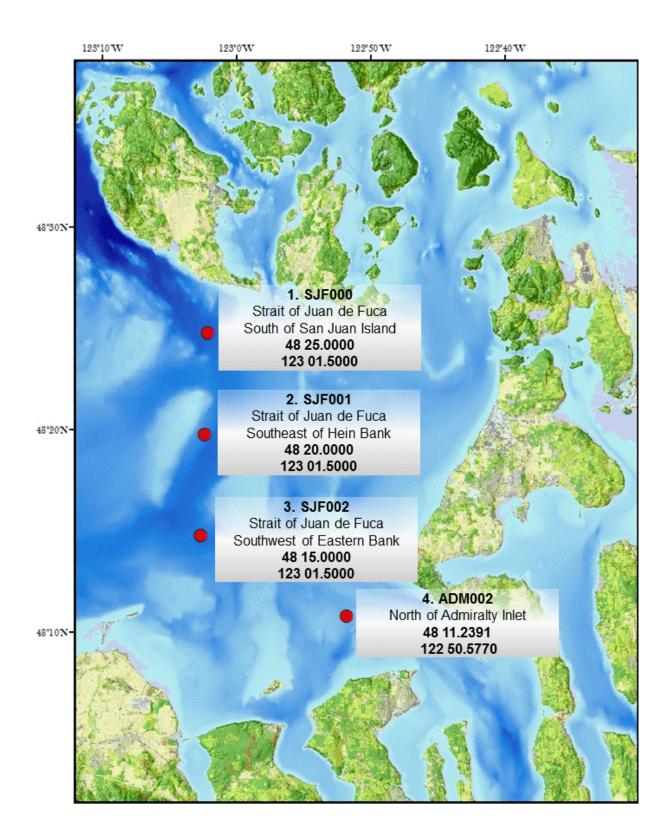



Figure 7. 2017 Strait of Juan de Fuca sampling stations.

Table 6. Projected water sample collection plan for 2017 listing depths (in meters) for each sample type collected at each station.

| Station         | Nutrients*             | Chlorophyll          | POC & PN   | тос        | TN         | Dissolved<br>Oxygen | Salinity | Approximate<br>Water Depth<br>(m) |
|-----------------|------------------------|----------------------|------------|------------|------------|---------------------|----------|-----------------------------------|
| Marine Flight 1 |                        |                      |            |            |            |                     |          |                                   |
| GYS008          | 0                      | 0                    |            |            |            |                     |          | 6                                 |
| GYS016          | 0, 10                  | 0, 10                |            |            |            | near bottom<br>(NB) |          | 11                                |
| WPA004          | 0, 10, 10, 10          | 0, 10, 10, 10        |            |            |            | , ,                 | 10       | 14                                |
| WPA113          | 0, 10                  | 0, 10                |            |            |            | NB                  |          | 11                                |
| WPA006          | 0, 10                  | 0, 10                |            |            |            | NB                  | 10       | 21                                |
| WPA007          | 0, 10                  | 0, 10                |            |            |            |                     |          | 14                                |
| WPA008          | 0, 10                  | 0, 10                |            |            |            |                     |          | 14                                |
| WPA003          | 0, 10                  | 0, 10                |            |            |            |                     |          | 10                                |
| Total Samples:  |                        |                      |            |            |            |                     |          |                                   |
| 8               | 17                     | 17                   |            |            |            | 3                   | 2        |                                   |
| Marine Flight 2 |                        |                      |            |            |            |                     |          |                                   |
| PTH005          | 0, 10, 10, 10          | 0, 10, 10, 10        |            |            |            |                     |          | 26                                |
| RSR837          | 0, 10, 30              | 0, 10, 30            |            |            |            | NB                  |          | 56                                |
| GRG002          | 0, 10, 30              | 0, 10, 30            |            |            |            |                     | 30       | 190                               |
| BLL009          | 0, 10, NB              | 0, 10                | 10,NB      | 10,NB      | 10,NB      |                     |          | 16                                |
| BLL040          | 0, 10, NB              |                      | 10,NB      | 10,NB      | 10,NB      |                     |          | 26                                |
| SKG003          | 0, 10, NB              | 0, 10                | 10, 10, NB | 10, 10, NB | 10, 10, NB |                     | 10       | 24                                |
| SAR003          | 0, 10, 30, NB          | 0, 10, 30            | 10,NB      | 10,NB      | 10,NB      |                     |          | 149                               |
| PSS019          | 0, 10, 30              | 0, 10, 30            | 10,NB      | 10,NB      | 10,NB      | NB                  |          | 101                               |
| Total Samples:  |                        |                      |            |            |            |                     |          |                                   |
| 8               | 33                     | 28                   | 11         | 11         | 11         | 3                   | 2        |                                   |
| Marine Flight 3 |                        |                      |            |            |            |                     |          |                                   |
| ADM001          | 0, 10, 30              | 0, 10, 30            |            |            |            | NB                  |          | 148                               |
| ADM003          | 0, 10, 30, NB          | 0, 10, 30            | 10,NB      | 10,NB      | 10,NB      | 30                  | -        | 210                               |
| HCB013          | 0, 10, NB              |                      | 10,NB      | 10,NB      | 10,NB      |                     |          | 20                                |
| PSB003          | 0, 10, 30, NB          | 0, 10, 30            | 10,NB      | 10,NB      | 10,NB      |                     |          | 40-50                             |
| ELB015          | 0, 10, 30, NB          | 0, 10, 30            | 10, 10, NB | 10, 10, NB | 10, 10, NB |                     | 10       | 82                                |
| EAP001          | 0, 10, 30, NB          | 0, 10, 30            | 10,NB      | 10,NB      | 10,NB      | 30                  |          | 200                               |
| SIN001          | 0, 10, NB              | 0, 10                | 10,NB      | 10,NB      | 10,NB      |                     |          | 16                                |
| CMB003          | 0, 0, 0, 10, 30,<br>NB | 0, 10, 10,<br>10, 30 | 10,NB      | 10,NB      | 10,NB      | 30                  | 30       | 150                               |
| Total Samples:  |                        |                      |            |            |            |                     |          |                                   |
| 8               | 22                     | 17                   | 11         | 11         | 11         | 3                   | 2        |                                   |

| Station         | Nutrients*                  | Chlorophyll             | POC & PN  | тос       | TN        | Dissolved<br>Oxygen         | Salinity | Approximate<br>Water Depth<br>(m) |
|-----------------|-----------------------------|-------------------------|-----------|-----------|-----------|-----------------------------|----------|-----------------------------------|
| Marine Flight 4 |                             |                         |           |           |           |                             |          |                                   |
| BUD005          | 0, 0, 0, 10, NB             | 0, 10, 10, 10           | 10,NB     | 10,NB     | 10,NB     |                             | 10       | 15                                |
| DNA001          | 0, 10, 30                   | 0, 10, 30               |           |           |           | 30, 30, 30                  |          | 40                                |
| NSQ002          | 0, 10, 30, NB               | 0, 10, 30               | 10,NB     | 10,NB     | 10,NB     |                             |          | 100                               |
| GOR001          | 0, 10, 30, NB               | 0, 10, 30               | 10,NB     | 10,NB     | 10,NB     | 30                          | 30       | 160-170                           |
| CRR001          | 0, 10, 30, NB               | 0, 10, 30               | 10,10, NB | 10,10, NB | 10,10, NB |                             |          | 95                                |
| CSE001          | 0, 10, 30, NB               | 0, 10, 30               | 10,NB     | 10,NB     | 10,NB     | 30                          |          | 55                                |
| OAK004          | 0, 10                       | 0, 10                   |           |           |           |                             |          | 15                                |
| Total Samples:  |                             |                         |           |           |           |                             |          |                                   |
| 7               | 29                          | 23                      | 13        | 13        | 13        | 5                           | 2        |                                   |
| Marine Flight 5 |                             |                         |           |           |           |                             |          |                                   |
| HCB007          | 0, 0, 0, 10, NB             | 0, 10                   | 10,10, NB | 10,10, NB | 10,10, NB |                             | 10       | 21                                |
| HCB004          | 0, 10, 30                   | 0, 10, 30               |           |           |           | 30                          |          | 55                                |
| HCB003          | 0, 10, 30, NB               | 0, 10, 10,<br>10        | 10,NB     | 10,NB     | 10,NB     |                             |          | 144                               |
| HCB010          | 0, 10, 30, NB               | 0, 10, 30               | 10,NB     | 10,NB     | 10,NB     | 30                          | 30       | 100                               |
| Total Samples:  |                             |                         |           |           |           |                             |          |                                   |
| 4               | 20                          | 15                      | 9         | 9         | 9         | 2                           | 2        |                                   |
| Straits         |                             |                         |           |           |           |                             |          |                                   |
| SJF000          | 0, 30, 80, 140              | 0, 30, 80,<br>140       |           |           |           | 0, 30, 80, 140              |          | 161                               |
| SJF001          | 0, 30, 80, 140              | 0, 0, 0, 30,<br>80, 140 |           |           |           | 0, 30, 80, 140              |          | 144                               |
| SJF002          | 0, 30, 80, 140,<br>140, 140 | 0, 30, 80,<br>140       |           |           |           | 0, 30, 80,<br>140, 140, 140 | 0, 140   | 142                               |
| ADM002          | 0, 10, 30, 80               | 0, 10, 30, 80           |           |           |           | 80                          | 80       | 82                                |
| Total Samples:  |                             |                         |           |           |           |                             |          |                                   |
| 4               | 18                          | 18                      |           |           |           | 15                          | 3        |                                   |
| Annual Total:   |                             |                         |           |           |           |                             |          |                                   |
| Station         | Nutrients*                  | Chlorophyll             | POC & PN  | тос       |           | Dissolved<br>Oxygen         | Salinity |                                   |
| 39              | 139                         | 118                     | 44        | 44        | 44        | 31                          | 13       |                                   |

<sup>\*</sup>Nutrient species included nitrite, nitrate, phosphate, silicate, and ammonium.

#### 7.1.3 Parameters to be determined

#### Particulate Organic Material (OM) Carbon and Particulate Nitrogen

Analyses of Ecology's long-term marine monitoring data indicate increases of dissolved inorganic nitrate and phosphate relative to ocean source water and a change in the balance of macro-nutrients and silicate (Krembs 2012, 2015; PSEMP Marine Waters Workgroup, 2016). These changes affect growth conditions of phytoplankton at the base of the food web. The observed changes in inorganic nutrients could either be the result of decreased uptake by phytoplankton, increased nitrogen and phosphate loading, or a combination of the two. The long-term change has potential implications for marine food web structure, energy transfer, particle export, and higher trophic levels such as fish.

To understand these processes and to include the organic pools or nutrients, Ecology will continue a particulate pilot project as a collaboration between the Marine Waters water column group and the sediment group. Starting in April 2016 through June 2017 in addition to the routine sampling the marine group will collect total organic carbon (TOC), total nitrogen (TN), particulate organic carbon (POC), and particulate organic nitrogen (PN) from 2 depths; 10m and near bottom (NB) from 20 stations that overlap core sediment and core waters stations. Samples will be kept at 4 °C and delivered to the Manchester Lab the day after collection where the samples will be handled according to standard methods explained in Table 9.

The goal of this collaboration is to address the following:

- Quantify pools of unaccounted nutrients in the form of organic material (OM) in relation to inorganic nutrient trends.
- Utilize organic material (OM) nutritional quality (carbon:nitrogen ratio) to monitor changes in patterns of material and energy cycling in water and sediment.
- Explore potential changes in important pathways of OM associated with pollution and toxins to the sediment (using C:N ratio) in context of changing human and climate pressures.

Table 7. Projected water sample collection plan for 2016-17, listing each sample type collected at each station by the waters or sediment group.

| Station<br>Id | Station location                         | Latitude | Longitude  | Station<br>type | Marine<br>water<br>particulates | Sediment<br>chemistry | Benthos | TOC and grain size only |
|---------------|------------------------------------------|----------|------------|-----------------|---------------------------------|-----------------------|---------|-------------------------|
| 3             | Strait of Georgia                        | 48.87025 | -122.97842 | Sediment        |                                 | X                     | X       |                         |
| GRG002        | Georgia Strait - N of<br>Patos Island    | 48.80817 | -122.95408 | Water           |                                 |                       |         |                         |
| 4             | Bellingham Bay                           | 48.68397 | -122.53820 | Sediment        | X                               | X                     | X       |                         |
| BLL009        | Bellingham Bay - Pt.<br>Frances          | 48.68593 | -122.59962 | Water           | X                               |                       | X       | X                       |
| 209R          | Skagit Bay                               | 48.29533 | -122.48850 | Sediment        |                                 | X                     | X       |                         |
| SKG003        | Skagit Bay - Str. Point<br>(Red Buoy)    | 48.29648 | -122.48960 | Water           | X                               |                       |         |                         |
| 19            | Saratoga Passage                         | 48.09792 | -122.47134 | Sediment        |                                 | X                     | X       |                         |
| SAR003        | Saratoga Passage - East<br>Point         | 48.10760 | -122.49155 | Water           | X                               |                       |         |                         |
| 21            | Port Gardner/ Everett<br>Harbor          | 47.98547 | -122.24283 | Sediment        |                                 | X                     | X       |                         |
| PSS019        | Possession Sound                         | 48.01092 | -122.30125 | Water           | X                               |                       |         |                         |
| 119           | Admiralty Inlet                          | 47.87615 | -122.48217 | Sediment        |                                 | X                     | X       |                         |
| ADM003        | Admiralty Inlet (south)                  | 47.87898 | -122.48320 | Water           | X                               |                       |         |                         |
| 29            | Shilshole                                | 47.70075 | -122.45403 | Sediment        |                                 | X                     | X       |                         |
| PSB003        | Puget Sound Main<br>Basin - West Point   | 47.65982 | -122.44292 | Water           | X                               |                       |         |                         |
| 191           | Central                                  | 47.59842 | -122.37581 | Sediment        |                                 |                       | X       | X                       |
| ELB015        | Elliott Bay-East of<br>Duwamish Head     | 47.59648 | -122.36957 | Water           | X                               |                       |         |                         |
| 34            | Sinclair Inlet                           | 47.54708 | -122.66208 | Sediment        |                                 | X                     | X       |                         |
| SIN001        | Sinclair Inlet - Naval<br>Shipyards      | 47.54927 | -122.64347 | Water           | X                               |                       |         |                         |
| 38            | Point Pully (3 Tree<br>Point)            | 47.42833 | -122.39363 | Sediment        |                                 | X                     | X       |                         |
| EAP001        | East Passage - SW of<br>Three Tree Point | 47.41705 | -122.38040 | Water           | X                               |                       |         |                         |
| 281           | Commencement Bay                         | 47.29229 | -122.44193 | Sediment        |                                 |                       | X       | X                       |
| CMB003        | Commencement Bay-<br>Browns Point        | 47.29038 | -122.45012 | Water           | X                               |                       |         |                         |
| 40            | Thea Foss Waterway                       | 47.26130 | -122.43730 | Sediment        |                                 |                       | X       | X                       |
| CMB006        | Commencement Bay -<br>Mouth of City WW   | 47.26149 | -122.43735 | Water           |                                 |                       |         |                         |
| 44            | East Anderson Island                     | 47.16133 | -122.67358 | Sediment        |                                 | X                     | X       |                         |
| GOR001        | Gordon Point                             | 47.18315 | -122.63457 | Water           | X                               |                       |         |                         |
| 265           | Carr Inlet                               | 47.25240 | -122.66572 | Sediment        |                                 | X                     | X       |                         |
| CRR001        | Carr Inlet-Off Green<br>Point            | 47.27648 | -122.70958 | Water           | X                               |                       |         |                         |
| 252           | Case Inlet                               | 47.26957 | -122.85101 | Sediment        |                                 | X                     | X       |                         |
| CSE001        | Case Inlet-S. Heron<br>Island            | 47.26453 | -122.84430 | Water           | X                               |                       |         |                         |

| Station<br>Id | Station location                                      | Latitude | Longitude  | Station<br>type | Marine<br>water<br>particulates | Sediment<br>chemistry | Benthos | TOC and grain size only |
|---------------|-------------------------------------------------------|----------|------------|-----------------|---------------------------------|-----------------------|---------|-------------------------|
| 52            | W. of Devils Head,<br>Case Inlet (Nisqually<br>Reach) | 47.17060 | -122.78051 | Sediment        |                                 | X                     | X       |                         |
| NSQ002        | W. of Devils Head,<br>Case Inlet (Nisqually<br>Reach) | 47.16732 | -122.78819 | Water           | X                               |                       |         |                         |
| 49            | Budd Inlet                                            | 47.07997 | -122.91347 | Sediment        |                                 | X                     | X       |                         |
| BUD005        | Budd Inlet - Olympia<br>Shoal                         | 47.09203 | -122.91820 | Water           | X                               |                       |         |                         |
| 13R           | Hood Canal (north of bridge)                          | 47.83758 | -122.62895 | Sediment        | X                               | X                     | X       |                         |
| 222           | Hood Canal                                            | 47.67821 | -122.81466 | Sediment        |                                 | X                     | X       |                         |
| HCB010        | Hood Canal - Send<br>Creek, Bangor                    | 47.67000 | -122.82000 | Water           | X                               |                       |         |                         |
| HCB003        | Hood Canal - Central                                  | 47.53787 | -123.00960 | Water           | X                               |                       | X       | X                       |
| 305R          | Lynch Cove                                            | 47.39717 | -122.93124 | Sediment        |                                 | X                     | X       |                         |
| HCB007        | Hood Canal - Lynch<br>Cove                            | 47.39815 | -122.92959 | Water           | X                               |                       |         |                         |

WW - waterway

Excessive nitrogen loading is a key cause of accelerating primary production and eutrophication (Pearl, 2009). Nitrogen loading occurs in the form of both dissolved and particulate nitrogen in either inorganic or organic form. Long-term increases of dissolved inorganic nutrients in Puget Sound emphasize the need to quantify pools of nutrients present in all forms, including the particulate phase (Krembs, 2013). To date, Ecology has routinely collected nutrients only in the dissolved inorganic phase. Dissolved nutrients quickly transform into organic biomass and are removed from the dissolved inorganic phase, hence escaping detection. Estimating nutrients in the form of organic nitrogen and phosphate is therefore important to assess overall nutrient trends in Puget Sound.

In addition to sampling TOC, TN, PN, and POC, we will be able to calculate dissolved organic material (DOC). TOC is the fundamental unit of energy in food-web and biogeochemical studies (Azam and Smith, 1991). TOC is made of a dissolved DOC and particulate POC fraction with very different attributes in the environment. While bulk DOC concentrations tend to support moderate bacterial activity and are neutrally buoyant, POC are hotspots of microbial activity which sink through the water column. POC therefore constitutes a vector of energy and material transport to greater depth (Smith et al., 1992). First we plan to augment our sampling with POC measurements to provide key information that can help link observed changes in the food web at the surface with oxygen demand and observed benthic changes at greater depth (Turley and Mackie, 1994). Evolving water quality, toxic fate and transport, and food-web models will benefit from this information and help understand unaccounted detrital pools being introduced to Puget Sound from land.

Presently, POC in Puget Sound is sometimes estimated from in situ chlorophyll a (a key phytoplankton pigment, chl a) concentrations, using an assumed ratio of carbon to chl a. This approach makes assumptions of predictable relationship between chl a and POC based on published data. However, the approach does not account for a large pool of non-photosynthetic

organic carbon (e.g., organic detrital material introduced by rivers and decaying macroalgae). The variability of detrital pool of POC, while not associated with living phytoplankton, is largely unknown in Puget Sound. Yet at times it figures significantly in the overall respiration and uptake of oxygen in Puget Sound. Puget Sound changes in response to human and climatic pressures. We observe species shifts occurring on a large scale (e.g., Flagellates) with very different effects on organic material cycling than more typical diatom-based phytoplankton communities. Estimating particulate organic material (POM) from chl *a* alone, therefore, results in inaccuracies with the conversion factors from chl *a* to POM and by neglecting unaccounted detrital pools. Measuring nutrients in the organic fraction in addition to dissolved inorganic nutrients will help fill this critical information gap in Puget Sound nutrient pools.

In addition, the relationship between chl a, POC, and ideally TOC, needs to be seasonally and geographically refined (Westberry et al., 2010). Ongoing monitoring data of POC and chl a pigment concentration of phytoplankton will support and refine chl a as proxy for phytoplankton biomass into the future and will incorporate the significant fraction of nutrients bound in detrital material. Continuous POC sampling in conjunction with PN will provide valuable data for water quality and biogeochemical models that incorporate land-based organic material loadings to Puget Sound, closing an important data gap (Ahmed, 2014).

The key goals of this sampling are to:

- Quantify pools of organic-bound nutrients (nitrogen) in the particle and dissolved phase to understand overall nitrogen trends in Puget Sound.
- Determine the variability and range of organic carbon conversion factors using chl a as proxy. Provide site and seasonal specific estimates on the timing of nutrient pools in the form of organic material in the upper mixed layer and, when they arrive, in the deeper bottom water.

#### Satlantic SUNA V2 nitrate sensor

To quantify nitrogen in Puget Sound, Ecology will collect continuous vertical nitrate measurements as part of the routine monitoring. Starting in 2017, we plan to test a Satlantic Submersible Ultraviolet Nitrate Analyzer (SUNA) V2 (or equivalent) on our SBE25plus CTD instrument package. Principles of operation for this sensor are described in manufacturer manuals. Instructions f

or optimum data collection are outlined in these manuals.

The goals of continuous vertical nitrate measurements are to:

- Improve representativeness of dissolved inorganic nitrate measurements in surface water.
- Extend nitrate information from 0, 10, and 30 meter point samples to full water column depth resolution.
- Provide nitrate data for monthly condition updates in relationship with other vertical profiles. Currently, lab sample results are received much later.
- Provide information for nitrate maxima, minima, and nitrogen load in association with identifiable water masses to support information on nitrate transport in Puget Sound.

# 8.0 Field Procedures

# 8.1 Field measurement and field sampling SOPs

Table 8. Field sample collection methods for ambient water column monitoring.

| Sample Parameter                                                        | mple Parameter Collection Method or Sensor Sample Container Preserva                               |                                                                                                  | Preservation Method                                                                                                                                                       | Holding Time                                             |
|-------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|
| *Alkalinity &<br>Dissolved Inorganic<br>Carbon (DIC)                    | UNESCO, 1994<br>(JGOFS Protocols)                                                                  | 500 mL pre-<br>combusted, acid-<br>washed, borosilicate<br>glass, stoppered<br>volumetric flasks | Preserve sample with 100 µL super-saturated HgCl <sub>2</sub> . Apply Apiezon® L grease to stopper, insert & twist to remove all air. Store in cool, dark conditions.     | 3 months                                                 |
| Total Organic<br>Carbon (TOC)                                           | SM 5310B                                                                                           | 125mL quality<br>certified HDPE poly<br>bottle                                                   | 1:1 HCL, ice upon collection                                                                                                                                              | 28 days store at 0°C - 6°C.                              |
| Total Nitrogen (TN)                                                     | SM 4500-N B                                                                                        | 125mL 1:1 quality<br>certified HDPE poly<br>bottle                                               | 1:1 H2SO4, ice upon collection                                                                                                                                            | 28 days store at 0°C - 6°C.                              |
| Particulate Organic<br>Carbon and<br>Particulate Nitrogen<br>(POC & PN) | EPA 440.0                                                                                          | 1 L poly amber<br>quality certified<br>bottle                                                    | Store on ice. Filter ASAP upon arrival at the laboratory. Store at -20C.                                                                                                  | Up to 100 days<br>once filtered<br>and stored<br>at -20C |
| Chlorophyll a                                                           | UNESCO, 1994<br>(JGOFS Protocols)                                                                  | 125 mL brown polyethylene bottles                                                                | Store on ice. Filter immediately upon arrival at lab and place filter in 90% acetone. Store frozen.                                                                       | 1 month                                                  |
| Dissolved Nutrients                                                     | UNESCO, 1994<br>(JGOFS Protocols)                                                                  | 125 ml clear acid-<br>washed plastic<br>bottles                                                  | Filter immediately upon collection and place on ice. Store frozen.                                                                                                        | 3 months when stored frozen.                             |
| Dissolved Oxygen                                                        | UNESCO, 1994<br>(JGOFS Protocols)<br>*1st sample<br>collected                                      | 130 mL dry<br>borsilicate glass<br>stoppered<br>volumetric flasks                                | Fix with MnCl <sub>2</sub> & NaOH-<br>NaI azide reagents.<br>Stopper & shake. Store<br>in cold, dark conditions.<br>Upon arrival at lab, shake<br>again and apply DI cap. | 5 days                                                   |
| Salinity UNESCO, 1994 equilibra                                         |                                                                                                    | 250 mL brown<br>equilibrated<br>polyethylene bottles                                             | Keep in a well-sealed container.                                                                                                                                          | 6 months                                                 |
| Secchi Disk Depth                                                       | Lower in water until<br>disk disappears, then<br>bring up until it<br>reappears- record<br>reading | NA                                                                                               | NA                                                                                                                                                                        | NA                                                       |

## 8.1.1 CTD Data Collection

Beginning in 2015, the CTD instrument package was upgraded from a Seabird Electronics SBE25 to a SBE25*plus*. The SBE25*plus* has an internal pressure sensor and a faster sampling rate, providing more measurements per second, thus improving data quality and vertical resolution for several parameters. This upgrade does not change field operations or methods. Principles of CTD and sensor operations are described in manufacturer operating manuals. Instructions for optimum CTD data collection are outlined in these manuals.

# 9.0 Laboratory Procedures

## 9.1 Lab procedures table

Nutrient and salinity samples are analyzed at University of Washington's Marine Chemistry Laboratory in Seattle, Washington using various analytical methods described in Table 9. Dissolved oxygen and chlorophyll *a* samples are analyzed at Ecology's Marine Laboratory using analytical methods described in Table 9. POC, PN, TOC, TN are analyzed at Ecology's Manchester Environmental Laboratory (MEL) in Port Orchard, Washington using various analytical methods described in Table 9.

Table 9. Lab measurement methods, expected range of results, and reporting limits for marine data.

| Measurement - Lab Analyte        | easurement - Lab Analyte Lab Analytical Me |                            | Expected Range of Results | Reporting<br>Limit |
|----------------------------------|--------------------------------------------|----------------------------|---------------------------|--------------------|
| Total Organic Carbon (TOC)       | MEL                                        | SM 5310B                   | 0 - 3000 ug/L             | 500 ug/L           |
| Total Nitrogen (TN)              | MEL                                        | SM 4500-N B                | 15-50 μΜ                  | 0.01 μΜ            |
| Particulate nitrogen (PN)        | MEL                                        | EPA 440.0                  | 140-380 ug/L              | 1 ug               |
| Particulate Organic Carbon (POC) | MEL                                        | EPA 440.0                  | 0 - 3000 ug/L             | 1 ug               |
| Dissolved oxygen                 | ML                                         | Carpenter, 1966            | 0.00 - 15.00 mg/L         | 0.01 mg/L          |
| Marine Nitrate                   | MCL                                        | Armstrong et al., 1967     | 0.00 - 40.00 μΜ           | 0.15 μΜ            |
| Marine Nitrite                   | MCL                                        | Armstrong et al., 1967     | 0.00 - 2.00 μΜ            | 0.01 μΜ            |
| Marine Ammonium                  | MCL                                        | Slawyk & MacIsaac, 1972    | 0.00 - 10.00 μΜ           | 0.05 μΜ            |
| Marine Orthophosphate            | MCL                                        | Bernhardt & Wilhelms, 1967 | 0.00 - 4.00 μΜ            | 0.02 μΜ            |
| Marine Silicate                  | MCL                                        | Armstrong et al., 1967     | 0.00 - 200.00 μΜ          | 0.21 μΜ            |
| Chlorophyll a                    | ML                                         | EPA, 1997                  | 0.00 - 60.00 μg/L         | 0.01 mg/L          |
| Salinity                         | MCL                                        | Grasshoff et al., 1999     | 0.00 - 36.00 PSU          | 0.01 PSU           |

\*Not currently collected

ML - Ecology's Marine Laboratory

MCL - UW's Marine Chemistry Laboratory

MEL - Ecology's Manchester Environmental Laboratory

## 9.2.1 Analyte

Analytes are listed in Table 9.

## 9.2.4 Expected range of results

Expected ranges for analytical results are listed in Table 9.

## 9.2.5 Analytical method

Analytical methods are listed in Table 9.

## 9.2.6 Sensitivity/Method Detection Limit (MDL)

Sensitivity is reported as "Reporting Limit" in Table 9.

# **10.0** Quality Control Procedures

## 10.1 Table of field and lab quality control (QC) required

Ecology will adhere to all QC procedures outlined in the original QAMP (Bos, 2015). Likewise, Ecology will use the measurement quality objectives defined in the original QAMP to assess quality/usability of the collected data. The sections below discuss specific modifications to our quality assessment and QC procedures for the 2017 sampling year.

## 10.1.1 Tables of field and lab QC required

Table 10 identifies our quality objectives for marine waters data and steps that we follow toward meeting these objectives. Table 11 includes types and numbers of QC samples collected for each sampling survey. The Ecology QA Glossary included in Appendix F contains definitions of the various types of QC samples, including:

- Blanks, both lab and field
- Duplicates, both lab and field
- "Standards" or Standard Reference Materials (SRM)
- Lab Control Samples (LCS)
- "Blind" SRMs submitted to the laboratory

Table 10. A summary of quality control steps for field measurements.

|                                                                | Precision (relative standard deviation, %RSD)                                                                              | Accuracy (% from true value) | Instrument Control Check<br>Using Blanks | Laboratory Standards Check | Laboratory Control Samples | Replicate Analysis | Method Detection Limits<br>Check | Preliminary Review and<br>Flagging of Raw Data | Graphical & Statistical Data<br>Review and Flagging | Annual Review Assessments |
|----------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|------------------------------|------------------------------------------|----------------------------|----------------------------|--------------------|----------------------------------|------------------------------------------------|-----------------------------------------------------|---------------------------|
| Total Organic<br>Carbon (TOC)                                  | =20%</td <td>5%</td> <td>✓</td> <td><b>√</b></td> <td>✓</td> <td>✓</td> <td>✓</td> <td>✓</td> <td>✓</td> <td>✓</td>        | 5%                           | ✓                                        | <b>√</b>                   | ✓                          | ✓                  | ✓                                | ✓                                              | ✓                                                   | ✓                         |
| Total Nitrogen (TN)                                            | =20%</td <td>5%</td> <td>✓</td> <td>✓</td> <td>✓</td> <td>✓</td> <td>✓</td> <td>✓</td> <td>✓</td> <td>✓</td>               | 5%                           | ✓                                        | ✓                          | ✓                          | ✓                  | ✓                                | ✓                                              | ✓                                                   | ✓                         |
| Particulate Organic Carbon and particulate nitrogen (POC & PN) | =20%</td <td>5%</td> <td><b>✓</b></td> <td><b>✓</b></td> <td>✓</td> <td>✓</td> <td>✓</td> <td>✓</td> <td>✓</td> <td>✓</td> | 5%                           | <b>✓</b>                                 | <b>✓</b>                   | ✓                          | ✓                  | ✓                                | ✓                                              | ✓                                                   | ✓                         |
| Chlorophyll a                                                  | 10%                                                                                                                        | NA                           | ✓                                        | ✓                          |                            | ✓                  | ✓                                | ✓                                              | ✓                                                   | ✓                         |
| Dissolved Oxygen                                               | 5%                                                                                                                         | NA                           | ✓                                        | ✓                          |                            | ✓                  | ✓                                | ✓                                              | ✓                                                   | ✓                         |
| Nitrate                                                        | 10%                                                                                                                        | 5%                           | ✓                                        | ✓                          | ✓                          | ✓                  | ✓                                | ✓                                              | ✓                                                   | ✓                         |
| Nitrite                                                        | 10%                                                                                                                        | 5%                           | ✓                                        | <b>✓</b>                   | ✓                          | ✓                  | ✓                                | ✓                                              | ✓                                                   | ✓                         |
| Ammonium                                                       | 10%                                                                                                                        | 5%                           | ✓                                        | ✓                          | ✓                          | ✓                  | ✓                                | ✓                                              | ✓                                                   | ✓                         |
| Orthophosphate                                                 | 10%                                                                                                                        | 5%                           | ✓                                        | ✓                          | ✓                          | ✓                  | ✓                                | ✓                                              | ✓                                                   | ✓                         |
| Silicate                                                       | 5%                                                                                                                         | 5%                           | ✓                                        | ✓                          | ✓                          | ✓                  | ✓                                | ✓                                              | ✓                                                   | ✓                         |
| Salinity                                                       | 10%                                                                                                                        | 5%                           | ✓                                        | ✓                          |                            | ✓                  | ✓                                | ✓                                              |                                                     | ✓                         |

### 10.5.2 Water Sample QA/QC Procedures

#### **10.5.2.1 Replicate Sample Collection**

Triplicate samples will be collected during every field event to help determine field and sampling variability. At one station, three samples taken in succession from the same Niskin sampling bottle will be collected to conduct a quantitative determination of homogeneity of conditions, along with precision of sampling methods. Parameters to be replicated include dissolved oxygen (monthly), nutrients (every survey), and chlorophyll *a* (every survey). Due to water volume constraints, one field split, not triplicate, samples will be collected for each TOC, TN, and POC, PN on every survey.

#### 10.5.2.2 Analytical Replicates

Total variation in lab samples are assessed by collecting replicate samples from the same niskin sampling bottle for all parameters at 5% or more of sites. These replicates are used to assess whether the data quality objectives for precision were met. If the objectives were not met, the data are qualified. In addition, Ecology's Manchester Environmental Laboratory, UW's Marine Chemistry Laboratory, and Ecology's Marine Laboratory all routinely perform replicate sample analyses using sample splits within laboratory batches for QC purposes. The difference between field and laboratory variability is a measure of the sample field variability.

#### 10.5.2.3 Laboratory Control Samples

For testing laboratory performance and analyst proficiency, check standards or laboratory control samples of known concentrations are included with every sample batch. Recovery percentage is calculated from these results and therefore can be used as a measure of analytical accuracy and bias. If the results fall outside of established limits, the reviewer flags data associated with the batch. Any measurement problem that cannot be resolved is given a data quality flag.

To assess the quality of our nutrient data, we conduct laboratory performance and analyst proficiency tests of the analytical lab, using low nutrient seawater laboratory control samples of known concentrations from Ocean Scientific International Ltd. (GPO). They are included with every sample batch. Recovery percentage is calculated from these results and therefore can be used as a measure of analytical accuracy and bias. If the results fall outside of established limits, data associated with the batch are flagged by the reviewer as estimates. Any measurement problem that cannot be resolved is given a data quality flag.

#### 10.5.2.4 Certified Reference Materials

A standard reference material sample from the Ocean Scientific International Ltd will be sent to the laboratory to assess analytical lab performance, along with field split sample collection, and laboratory control samples.

#### 10.5.2.5 Laboratory Blanks

#### Blanks

Blanks of low nutrient seawater will be used to test the nutrient field and analytical laboratory conditions for each survey. These blanks will be handled like field samples to determine if contamination occurs during any stage of the sampling or analytical laboratory processes. To test the POC/PN field and analytical laboratory conditions, blanks of deionized water will be collected at the beginning and end of each filtration.

An additional two unfiltered blanks of low nutrient seawater (LNSW) will be included with each sample batch submitted to the lab for analysis. These blanks serve to determine if samples could be contaminated during processing and analysis and also if they can be used to determine low level bias.

Table 11. Quality assurance/quality control procedures for water column parameter analysis in the laboratory.

| Analytical Parameters                                                              | Calibration and<br>Standardization                                                        | Lab Control<br>(check) Samples -<br>or- Standards (30<br>or less samples) | Replicates<br>(30 or less<br>samples) | Blanks per<br>Batch       |  |  |  |  |
|------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|---------------------------------------|---------------------------|--|--|--|--|
|                                                                                    | Laboratory San                                                                            | ples                                                                      |                                       |                           |  |  |  |  |
| Total Organic Carbon (TOC)                                                         | 5 point standardization                                                                   | 5*                                                                        | 1 per 20<br>or less                   | 1 per 20<br>or less       |  |  |  |  |
| Total Nitrogen (TN)                                                                | 5 point standardization                                                                   | 5*                                                                        | 1 per 20<br>or less                   | 1 per 20<br>or less       |  |  |  |  |
| Particulate Organic Carbon and<br>Particulate Nitrogen (POC & PN)                  | Single point or multi-<br>point dependent upon<br>the expected range of<br>sample results | 5*                                                                        | 1 per 20<br>or less                   | 1 per 20<br>or less       |  |  |  |  |
| Ammonia (NH <sub>4</sub> )                                                         | 5 point standardization                                                                   | 2 - 3                                                                     | 2                                     | 2                         |  |  |  |  |
| Nitrate (NO <sub>3</sub> )                                                         | 5 point standardization                                                                   | 2 - 3                                                                     | 2                                     | 2                         |  |  |  |  |
| Nitrite (NO <sub>2</sub> )                                                         | 5 point standardization                                                                   | 2 - 3                                                                     | 2                                     | 2                         |  |  |  |  |
| Orthophosphate (PO <sub>4</sub> )                                                  | 5 point standardization                                                                   | 2 - 3                                                                     | 2                                     | 2                         |  |  |  |  |
| Silicate (SiO <sub>4</sub> )                                                       | 5 point standardization                                                                   | 2 - 3                                                                     | 2                                     | 2                         |  |  |  |  |
| Chlorophyll & Phaeopigments                                                        | Calibration - 2x/year                                                                     | 4 total -<br>2 high, 2 low                                                | 3                                     | 2 - method<br>2 - reagent |  |  |  |  |
| Dissolved Oxygen                                                                   | 3 point standardization                                                                   | 3                                                                         | 3                                     | 2                         |  |  |  |  |
| Salinity                                                                           | 1 (batch)                                                                                 | 1                                                                         | 1                                     | 2                         |  |  |  |  |
| ~ Nutrients, dissolved oxygen<br>and chlorophyll a are replicated<br>in the field. |                                                                                           |                                                                           |                                       |                           |  |  |  |  |
| CTD Sensors                                                                        |                                                                                           |                                                                           |                                       |                           |  |  |  |  |
| pH (electrode sensor)                                                              | 5 point calibration                                                                       | NA                                                                        | NA                                    | NA                        |  |  |  |  |
| Light Transmission                                                                 | 2 point calibration<br>(high & low)                                                       | NA                                                                        | NA                                    | NA                        |  |  |  |  |
| Dissolved Oxygen (Clark cell - membrane)                                           |                                                                                           |                                                                           | NA                                    | NA                        |  |  |  |  |

<sup>\*</sup> Calibration standards ran every 10 samples.

## 15.0 References

Ahmed, A., G. Pelletier, M. Roberts, and A. Kolosseus, 2014. South Puget Sound Dissolved Oxygen Study: Water Quality Model Calibration and Scenarios. Washington State Department of Ecology, Olympia, WA. Publication No. 14-03-004.

https://fortress.wa.gov/ecy/publications/SummaryPages/1403004.html

Azam, F. and D.C. Smith, 1991. Bacterial influence on the variability in the ocean's biochemical state: a mechanistic view, pp. 213-236. In S. Demers (ed.), Particle analysis in oceanography. NATO ASI Series, vol. G27. Springer-Verlag, Berlin, Germany.

Bos, J., 2007. Standard Operating Procedure for Seawater Dissolved Oxygen Analysis. Washington State Department of Ecology, Olympia, WA. SOP No. EAP027. <a href="http://www.ecy.wa.gov/programs/eap/qa/docs/ECY\_EAP\_SOP\_SeawaterDissolvedOxygenAnalysis\_v2\_1EAP027.pdf">http://www.ecy.wa.gov/programs/eap/qa/docs/ECY\_EAP\_SOP\_SeawaterDissolvedOxygenAnalysis\_v2\_1EAP027.pdf</a>

Bos, J., 2008. Standard Operating Procedure for Chlorophyll a Analysis. Washington State Department of Ecology, Olympia, WA. SOP No. EAP026. <a href="http://www.ecy.wa.gov/programs/eap/qa/docs/ECY\_EAP\_SOP\_ChlorophyllAnalysis\_v\_3\_0EAP026.pdf">http://www.ecy.wa.gov/programs/eap/qa/docs/ECY\_EAP\_SOP\_ChlorophyllAnalysis\_v\_3\_0EAP026.pdf</a>

Bos, J., 2010a. Standard Operating Procedure for Seawater Sampling. Washington State Department of Ecology, Olympia, WA. SOP No. EAP025. <a href="http://www.ecy.wa.gov/programs/eap/qa/docs/ECY\_EAP\_SOP\_SeawaterSampling\_v\_2\_0EAP025.pdf">http://www.ecy.wa.gov/programs/eap/qa/docs/ECY\_EAP\_SOP\_SeawaterSampling\_v\_2\_0EAP025.pdf</a>

Bos, J., 2010b. Standard Operating Procedure for Reagent Preparation. Washington State Department of Ecology, Olympia, WA. SOP No. EAP028. <a href="http://www.ecy.wa.gov/programs/eap/qa/docs/ECY\_EAP\_SOP\_Reagent%20Preparation\_v2\_2EAP028.pdf">http://www.ecy.wa.gov/programs/eap/qa/docs/ECY\_EAP\_SOP\_Reagent%20Preparation\_v2\_2EAP028.pdf</a>

Bos, J., 2015. Quality Assurance Monitoring Plan: Long-Term Marine Waters Monitoring, Water Column Program. Washington State Department of Ecology, Olympia, WA. Publication No. 15-03-101. <a href="https://fortress.wa.gov/ecy/publications/SummaryPages/1503101.html">https://fortress.wa.gov/ecy/publications/SummaryPages/1503101.html</a>

Bos, J. and S. Albertson, in draft, a. Standard Operating Procedure for Marine Waters Data Processing. Washington State Department of Ecology, Olympia, WA. SOP No. EAP089.

Bos, J. and S. Albertson, in draft, b. Standard Operating Procedure for Marine Waters Data Quality Assurance and Quality Control. Washington State Department of Ecology, Olympia, WA. SOP No. EAP088.

EPA, 1997. Method 440.0 rev. 1.4. Determination of Carbon and Nitrogen in Sediments and Particulates of Estuarine/Coastal Waters Using Elemental Analysis. U.S. Environmental Protection Agency.

GPO (The U.S. Government Publishing Office). 40 CFR Appendix B to Part 136 - Definition and Procedure for the Determination of the Method Detection Limit-Revision 1.11. <a href="http://www.gpo.gov/fdsys/granule/CFR-2011-title40-vol23/CFR-2011-title40-vol23-part136-appB/content-detail.html">http://www.gpo.gov/fdsys/granule/CFR-2011-title40-vol23/CFR-2011-title40-vol23-part136-appB/content-detail.html</a>

Grasshoff, K., M. Ehrhardt, K. Kremling, 1999. Methods of seawater analysis. 3rd. ref. ed. Verlag Chemie GmbH, Weinheim. 600 pp.

Keyzers, M. and J. Bos, 2015. 2015 Addendum 2 to Quality Assurance Monitoring Plan: Long-Term Marine Waters Monitoring, Water Column Program. Washington State Department of Ecology, Olympia, WA. Publication No. 15-03-122. https://fortress.wa.gov/ecy/publications/SummaryPages/1503122.html

Khangaonkar T, B.S. Sackmann, W. Long, T. Mohamedali, and M. Roberts, 2012. Simulation of annual biogeochemical cycles of nutrient balance, phytoplankton bloom(s), and DO in Puget Sound using an unstructured grid model. Ocean Dynamics 62(9):1353-1379. doi:10.1007/s10236-012-0562-4

King County, 2014. Interim Report on An Inter-Laboratory Nutrient Comparison Study Between The King County Environmental Laboratory and University of Washington Marine Chemistry Laboratory. Prepared by Scott Mickelson, King County Water and Land Resources Division, Seattle, Washington; and Julia Bos, Washington State Department of Ecology Marine Monitoring Unit, Olympia, Washington.

Krembs, C., 2013. Eutrophication in Puget Sound. In: Irvine, J.R. and Crawford, W.R. 2013. State of physical, biological, and selected fishery resources of Pacific Canadian marine ecosystems in 2012. DFO Can. Sci. Advis. Sec. Res. Doc. 2013/032. pp. 106-112. http://www.dfo-mpo.gc.ca/Csas-sccs/publications/resdocs-docrech/2013/2013 032-eng.pdf

Krembs, C., 2012. Marine Water Condition Index: Washington State Department of Ecology, Update 1999-2015. http://www.ecy.wa.gov/programs/eap/mar\_wat/mwci.html

Legendre, L. and J. Michaud, 1999. Chlorophyll a to estimate the particulate organic carbon available as food to large zooplankton in the euphotic zone of oceans, Oxford Journals Science & Mathematics Journal of Plankton Research Volume 21, Issue 11 pp. 2067-2083.

Manchester Environmental Laboratory (MEL) SOP 710080, Total Organic Carbon and Dissolved Organic Carbon in Water by Standard Method 5310B (Combustion and NDIR Detection). Washington State Department of Ecology, Manchester, WA.

MEL, 2008. Manchester Environmental Laboratory Lab Users Manual, Ninth Edition. Manchester Environmental Laboratory, Washington State Department of Ecology, Manchester, WA.

Momohara, Dean, in draft. Standard Operating Procedure for Particulate Carbon, Particulate Organic Carbon and Particulate Nitrogen in Estuarine/Coastal and Fresh Waters. WA. MEL SOP No. 710091.

Moore S. K., R. Wold, K. Stark, J. Bos, P. Williams, K. Dzinbal, C. Krembs and J. Newton (Eds). PSEMP Marine Waters Workgroup. 2016. Puget Sound marine waters: 2015 overview. www.psp.wa.gov/PSEMP/PSmarinewatersoverview.php

Orians G., M. Dethier, C. Hirschman, A. Kohn, D. Patten, and T. Young, 2012. Sound Indicators: A Review for the Puget Sound Partnership. An assessment of the Puget Sound Partnership's progress in developing the scientific basis for monitoring and assessing progress toward achieving a vibrant Puget Sound, Washington State Academy of Sciences Committee on Puget Sound Indicators, August 2012, pp. 101.

Pearl, H., 2009. Controlling Eutrophication along the Freshwater–Marine Continuum: Dual Nutrient (N and P) Reductions are Essential. Estuaries and Coasts (2009) 32:593–601 DOI 10.1007/s12237-009-9158-8.

Smith, D.C., M. Simon, A.L Alldredge, and F. Azam, 1992. Intensive hydrolytic activity on marine aggregates and implications for rapid particle dissolution. Nature 359:139-141.

Turley, C.M. and P.J. Mackie, 1994. The biogeochemical significance of attached and free living bacteria and the flux of particles in the deep northeastern Atlantic Ocean. Mar. Ecol. Prog. Ser. 115:191-203.

Westberry, T., M.J. Behrenfeld, D.A. Siegel, and E. Boss, 2008. Carbon-based primary productivity modeling with vertically resolved photoacclimation. Global Biogeochem. Cycles. 22: GB2024, doi:10.1029/2007GB003078.

Westberry, T.K., G. Dall'Olmo, E. Boss, M.J. Behrenfeld, and T. Mouti, 2010. Coherence of particulate beam attenuation and backscattering coefficients in diverse open ocean environments. Opt. Express. 18: 15419-15425.

# Appendix. Glossaries, Acronyms, and Abbreviations

### **Glossary of General Terms**

**Conductivity:** A measure of water's ability to conduct an electrical current. Conductivity is related to the concentration and charge of dissolved ions in water.

**Dissolved oxygen (DO):** A measure of the amount of oxygen dissolved in water.

**Nutrient:** Substance such as carbon, nitrogen, and phosphorus used by organisms to live and grow. Too many nutrients in the water can promote algal blooms and rob the water of oxygen vital to aquatic organisms.

**Particulate Nitrogen (PN).** Particulate matter is defined as suspended particles in seawater having a size greater than 0.45 uM. The particulate nitrogen fraction of total nitrogen can be determine by separating dissolved from particulate fractions by filtration.

**Particulate Organic Carbon (POC).** Particulate matter is defined as suspended particles in seawater having a size greater than 0.45 uM. The particulate organic carbon fraction of total organic carbon is defined as organic matter that is larger than 0.45 uM. POC inputs to the sea are divided into two categories: allochthonous inputs from land and atmosphere and autochthonous (internal) inputs from biogenic material formed from *in situ* photosynthesis or decomposition of organic matter or organisms.

**Particulate Organic Nitrogen (PON).** The fraction of particulate nitrogen that is from biogenic material, such as material formed from *in situ* photosynthesis or decomposition of organic matter or organisms

**pH:** A measure of the acidity or alkalinity of water. A low pH value (0 to 7) indicates that an acidic condition is present, while a high pH (7 to 14) indicates a basic or alkaline condition. A pH of 7 is considered to be neutral. Since the pH scale is logarithmic, a water sample with a pH of 8 is ten times more basic than one with a pH of 7.

**Total Nitrogen (TN).** Total nitrogen is the amount of nitrogen found in water and consists of dissolved nitrogen (DN) and particulate nitrogen (PN) of either organic or inorganic sources.

**Total Organic Carbon (TOC).** Total organic carbon is the amount of carbon found in an organic compound and is often used as a non-specific indicator of water quality. Total organic carbon consists of dissolved (DOC) and particulate organic carbon (POC) and is therefore affected by pronounced fluctuations in suspended solids in riverine systems. Sources of organic carbon in fresh and marine waters include living material and waste materials and effluents. Organic matter from living material may arise directly from plant photosynthesis or indirectly from terrestrial organic matter.

**Turbidity:** A measure of water clarity. High levels of turbidity can have a negative impact on aquatic life.

**90**<sup>th</sup> **percentile:** An estimated portion of a sample population based on a statistical determination of distribution characteristics. The 90<sup>th</sup> percentile value is a statistically derived estimate of the division between 90% of samples, which should be less than the value, and 10% of samples, which are expected to exceed the value.

## **Acronyms and Abbreviations**

DO See glossary above

DOC Dissolved organic carbon

Ecology Washington State Department of Ecology

EIM Environmental Information Management database

et al. And others

GIS Geographic Information System software

GPS Global Positioning System

MEL Manchester Environmental Laboratory

MQO Measurement quality objective

QA Quality assurance
QC Quality control
PN See glossary above
POC See glossary above
PON See glossary above

RSD Relative standard deviation SOP Standard operating procedures

TN See glossary above TOC See glossary above UW University at WA

WQA Water Quality Assessment
WRIA Water Resource Inventory Area

#### Units of Measurement

°C degrees centigrade

m meter

mg/L milligrams per liter (parts per million)

mg/L/hr milligrams per liter per hour

mL milliliter

mmol millimole or one-thousandth of a mole ng/g nanograms per gram (parts per billion) ng/L nanograms per liter (parts per trillion)

NTU nephelometric turbidity units

psu practical salinity units

ug/g micrograms per gram (parts per million)
ug/L micrograms per liter (parts per billion)

uM micromolar (a chemistry unit)

uS/cm microsiemens per centimeter, a unit of conductivity

## **Quality Assurance Glossary**

**Accreditation:** A certification process for laboratories, designed to evaluate and document a lab's ability to perform analytical methods and produce acceptable data. For Ecology, it is "Formal recognition by (Ecology)...that an environmental laboratory is capable of producing accurate analytical data." [WAC 173-50-040] (Kammin, 2010)

**Accuracy:** The degree to which a measured value agrees with the true value of the measured property. USEPA recommends that this term not be used, and that the terms precision and bias be used to convey the information associated with the term accuracy. (USGS, 1998)

**Analyte:** An element, ion, compound, or chemical moiety (pH, alkalinity) which is to be determined. The definition can be expanded to include organisms, e.g., fecal coliform, Klebsiella. (Kammin, 2010)

**Bias:** The difference between the population mean and the true value. Bias usually describes a systematic difference reproducible over time, and is characteristic of both the measurement system, and the analyte(s) being measured. Bias is a commonly used data quality indicator (DQI). (Kammin, 2010; Ecology, 2004)

**Blank:** A synthetic sample, free of the analyte(s) of interest. For example, in water analysis, pure water is used for the blank. In chemical analysis, a blank is used to estimate the analytical response to all factors other than the analyte in the sample. In general, blanks are used to assess possible contamination or inadvertent introduction of analyte during various stages of the sampling and analytical process. (USGS, 1998)

**Calibration:** The process of establishing the relationship between the response of a measurement system and the concentration of the parameter being measured. (Ecology, 2004)

**Check standard:** A substance or reference material obtained from a source independent from the source of the calibration standard; used to assess bias for an analytical method. This is an obsolete term, and its use is highly discouraged. See Calibration Verification Standards, Lab Control Samples (LCS), Certified Reference Materials (CRM), and/or spiked blanks. These are all check standards, but should be referred to by their actual designator, e.g., CRM, LCS. (Kammin, 2010; Ecology, 2004)

**Comparability:** The degree to which different methods, data sets and/or decisions agree or can be represented as similar; a data quality indicator. (USEPA, 1997)

**Completeness:** The amount of valid data obtained from a project compared to the planned amount. Usually expressed as a percentage. A data quality indicator. (USEPA, 1997)

Continuing Calibration Verification Standard (CCV): A QC sample analyzed with samples to check for acceptable bias in the measurement system. The CCV is usually a midpoint calibration standard that is re-run at an established frequency during the course of an analytical run. (Kammin, 2010)

**Control chart:** A graphical representation of quality control results demonstrating the performance of an aspect of a measurement system. (Kammin, 2010; Ecology 2004)

**Control limits:** Statistical warning and action limits calculated based on control charts. Warning limits are generally set at +/- 2 standard deviations from the mean, action limits at +/- 3 standard deviations from the mean. (Kammin, 2010)

**Data Integrity:** A qualitative DQI that evaluates the extent to which a data set contains data that is misrepresented, falsified, or deliberately misleading. (Kammin, 2010)

**Data Quality Indicators (DQI):** Commonly used measures of acceptability for environmental data. The principal DQIs are precision, bias, representativeness, comparability, completeness, sensitivity, and integrity. (USEPA, 2006)

**Data Quality Objectives (DQO):** Qualitative and quantitative statements derived from systematic planning processes that clarify study objectives, define the appropriate type of data, and specify tolerable levels of potential decision errors that will be used as the basis for establishing the quality and quantity of data needed to support decisions. (USEPA, 2006)

**Data set:** A grouping of samples organized by date, time, analyte, etc. (Kammin, 2010)

**Data validation:** An analyte-specific and sample-specific process that extends the evaluation of data beyond data verification to determine the usability of a specific data set. It involves a detailed examination of the data package, using both professional judgment, and objective criteria, to determine whether the MQOs for precision, bias, and sensitivity have been met. It may also include an assessment of completeness, representativeness, comparability and integrity, as these criteria relate to the usability of the data set. Ecology considers four key criteria to determine if data validation has actually occurred. These are:

- Use of raw or instrument data for evaluation.
- Use of third-party assessors.
- Data set is complex.
- Use of EPA Functional Guidelines or equivalent for review.

Examples of data types commonly validated would be:

- Gas Chromatography (GC).
- Gas Chromatography-Mass Spectrometry (GC-MS).
- Inductively Coupled Plasma (ICP).

The end result of a formal validation process is a determination of usability that assigns qualifiers to indicate usability status for every measurement result. These qualifiers include:

- No qualifier, data is usable for intended purposes.
- J (or a J variant), data is estimated, may be usable, may be biased high or low.
- REJ, data is rejected, cannot be used for intended purposes (Kammin, 2010; Ecology, 2004).

**Data verification:** Examination of a data set for errors or omissions, and assessment of the Data Quality Indicators related to that data set for compliance with acceptance criteria (MQOs). Verification is a detailed quality review of a data set. (Ecology, 2004)

**Detection limit** (limit of detection): The concentration or amount of an analyte which can be determined to a specified level of certainty to be greater than zero. (Ecology, 2004)

**Duplicate samples:** Two samples taken from and representative of the same population, and carried through and steps of the sampling and analytical procedures in an identical manner. Duplicate samples are used to assess variability of all method activities including sampling and analysis. (USEPA, 1997)

**Field blank:** A blank used to obtain information on contamination introduced during sample collection, storage, and transport. (Ecology, 2004)

**Initial Calibration Verification Standard (ICV):** A QC sample prepared independently of calibration standards and analyzed along with the samples to check for acceptable bias in the measurement system. The ICV is analyzed prior to the analysis of any samples. (Kammin, 2010)

**Laboratory Control Sample (LCS):** A sample of known composition prepared using contaminant-free water or an inert solid that is spiked with analytes of interest at the midpoint of the calibration curve or at the level of concern. It is prepared and analyzed in the same batch of regular samples using the same sample preparation method, reagents, and analytical methods employed for regular samples. (USEPA, 1997)

**Matrix spike:** A QC sample prepared by adding a known amount of the target analyte(s) to an aliquot of a sample to check for bias due to interference or matrix effects. (Ecology, 2004)

**Measurement Quality Objectives** (MQOs): Performance or acceptance criteria for individual data quality indicators, usually including precision, bias, sensitivity, completeness, comparability, and representativeness. (USEPA, 2006)

**Measurement result:** A value obtained by performing the procedure described in a method. (Ecology, 2004)

**Method:** A formalized group of procedures and techniques for performing an activity (e.g., sampling, chemical analysis, data analysis), systematically presented in the order in which they are to be executed. (EPA, 1997)

**Method blank:** A blank prepared to represent the sample matrix, prepared and analyzed with a batch of samples. A method blank will contain all reagents used in the preparation of a sample, and the same preparation process is used for the method blank and samples. (Ecology, 2004; Kammin, 2010)

**Method Detection Limit (MDL):** This definition for detection was first formally advanced in 40CFR 136, October 26, 1984 edition. MDL is defined there as the minimum concentration of

an analyte that, in a given matrix and with a specific method, has a 99% probability of being identified, and reported to be greater than zero. (Federal Register, October 26, 1984)

**Percent Relative Standard Deviation (%RSD):** A statistic used to evaluate precision in environmental analysis. It is determined in the following manner:

$$%RSD = (100 * s)/x$$

where s is the sample standard deviation and x is the mean of results from more than two replicate samples (Kammin, 2010)

**Parameter:** A specified characteristic of a population or sample. Also, an analyte or grouping of analytes. Benzene and nitrate + nitrite are all "parameters." (Kammin, 2010; Ecology, 2004)

**Population:** The hypothetical set of all possible observations of the type being investigated. (Ecology, 2004)

**Precision:** The extent of random variability among replicate measurements of the same property; a data quality indicator. (USGS, 1998)

**Quality Assurance (QA):** A set of activities designed to establish and document the reliability and usability of measurement data. (Kammin, 2010)

**Quality Assurance Project Plan (QAPP):** A document that describes the objectives of a project, and the processes and activities necessary to develop data that will support those objectives. (Kammin, 2010; Ecology, 2004)

**Quality Control (QC):** The routine application of measurement and statistical procedures to assess the accuracy of measurement data. (Ecology, 2004)

**Relative Percent Difference (RPD):** RPD is commonly used to evaluate precision. The following formula is used:

$$[Abs(a-b)/((a+b)/2)] * 100$$

where "Abs()" is absolute value and a and b are results for the two replicate samples. RPD can be used only with 2 values. Percent Relative Standard Deviation is (%RSD) is used if there are results for more than 2 replicate samples (Ecology, 2004).

**Replicate samples:** Two or more samples taken from the environment at the same time and place, using the same protocols. Replicates are used to estimate the random variability of the material sampled. (USGS, 1998)

**Representativeness:** The degree to which a sample reflects the population from which it is taken; a data quality indicator. (USGS, 1998)

**Sample (field):** A portion of a population (environmental entity) that is measured and assumed to represent the entire population. (USGS, 1998)

Sample (statistical): A finite part or subset of a statistical population. (USEPA, 1997)

**Sensitivity:** In general, denotes the rate at which the analytical response (e.g., absorbance, volume, meter reading) varies with the concentration of the parameter being determined. In a specialized sense, it has the same meaning as the detection limit. (Ecology, 2004)

**Spiked blank:** A specified amount of reagent blank fortified with a known mass of the target analyte(s); usually used to assess the recovery efficiency of the method. (USEPA, 1997)

**Spiked sample:** A sample prepared by adding a known mass of target analyte(s) to a specified amount of matrix sample for which an independent estimate of target analyte(s) concentration is available. Spiked samples can be used to determine the effect of the matrix on a method's recovery efficiency. (USEPA, 1997)

**Split sample:** A discrete sample that is further subdivided into portions, usually duplicates. (Kammin, 2010)

**Standard Operating Procedure (SOP):** A document which describes in detail a reproducible and repeatable organized activity. (Kammin, 2010)

**Surrogate:** For environmental chemistry, a surrogate is a substance with properties similar to those of the target analyte(s). Surrogates are unlikely to be native to environmental samples. They are added to environmental samples for quality control purposes, to track extraction efficiency and/or measure analyte recovery. Deuterated organic compounds are examples of surrogates commonly used in organic compound analysis. (Kammin, 2010)

**Systematic planning:** A step-wise process which develops a clear description of the goals and objectives of a project, and produces decisions on the type, quantity, and quality of data that will be needed to meet those goals and objectives. The DQO process is a specialized type of systematic planning. (USEPA, 2006)

#### **References for QA Glossary**

Ecology, 2004. Guidance for the Preparation of Quality Assurance Project Plans for Environmental Studies. https://fortress.wa.gov/ecv/publications/SummaryPages/0403030.html

Kammin, B., 2010. Definition developed or extensively edited by William Kammin, 2010. Washington State Department of Ecology, Olympia, WA.

USEPA, 1997. Glossary of Quality Assurance Terms and Related Acronyms. U.S. Environmental Protection Agency. <a href="http://www.ecy.wa.gov/programs/eap/quality.html">http://www.ecy.wa.gov/programs/eap/quality.html</a>

USEPA, 2006. Guidance on Systematic Planning Using the Data Quality Objectives Process EPA QA/G-4. U.S. Environmental Protection Agency. <a href="http://www.epa.gov/quality/qs-docs/g4-final.pdf">http://www.epa.gov/quality/qs-docs/g4-final.pdf</a>

USGS, 1998. Principles and Practices for Quality Assurance and Quality Control. Open-File Report 98-636. U.S. Geological Survey. http://ma.water.usgs.gov/fhwa/products/ofr98-636.pdf