Publication No. 78-e24 WA-10-1032

DEPARTMENT OF ECOLOGY Olympia, Washington 98504 206/753-2800

MEMORANDUM

April 18, 1978

To: Ron Devitt

From: Bill Yake

Re: Enumclaw STP

Class II Inspection

Date: March 14-15/78

Findings and Conclusions:

A Class II inspection of the Enumclaw STP was performed on March 14-15, 1978 by Bill Yake. Ron Devitt of the Northwest Regional Office and Neil Thompson of EPA were also in attendance. A receiving water (Boise Creek) study was carried out on the same days by Greg Cloud and Shirley Prescott of the Department of Ecology.

The Enumclaw plant is a trickling filter with chlorination prior to final clarification. Solids are digested and ordinarily spread on agricultural land. The digester mixing pump was inoperable at the time of inspection.

The flow measuring device at the plant is very inaccurate and in need of replacement if the plant is to meet its flow measuring and reporting commitments. Flows are presently recorded as "unknown". The flow reported here is based on two instantaneous measurements using a magnetic flow meter in the influent grit channels.

The plant was, at the time of inspection, meeting current NPDES limitations for pH and fecal coliforms. DOE suspended solids analysis indicated that the plant was exceeding monthly suspended solids concentration limitations. The plant was exceeding BOD $_5$ concentration limitations and based on the estimated daily flow, it was exceeding daily BOD $_5$ discharge in terms of lbs/day.

Instantaneous measurements at the plant indicate fluctuations in influent pH and conductivity which may be related to activities at Farmen's Pickle Company.

The results of the simultaneous stream survey will be included under a separate cover.

BY:ee

Attachments

cc: Dick Cunningham Central Files 24 Hour Composite Sampler Installations

Sampler	Date and Tir Installed	me	Location					
al	fluent 3/21/78 -	0955	Below grit chamber weirs					
2. pr	250 ml/30 min. imary Effluent 3/ iquot —	21/78 - 0948*	In primary outfall weir channel					
3. Ch al	lorinated Effluent iquot –	sampler ceased operation first 6 hours 21/78 - 0945	At outfall of secondary clarifier					
	Grab Samples	21/70 - 0543						
	Date and Time	Analysis	Sample Location					
2. 3/ 3. 3/	21/78 - 1015 22/78 - 1115	tal & Fecal Coliforms """" """"	Sec. clarifier outfall Outfall at Boise Creek Sec. clarifier outfall Outfall at Boise Creek					
I. Type - Unknown, unique quasi-in-line meter of unknown configuration 2. Dimensions - Unknown a. Meets standard criteria // Yes /// No Explain: Device is not of standard construction, is not calibrated, and is extremently sensitive to error caused by recycle flows								
	Actual Instan. Flo		ding Recorder Accuracy (% of inst. flcw)					
1. 2. 3.	1.02 MGD (recycle 1.25 MGD (recycle	•	89% 26%					
is within accepted 15% error limitations								
	// is in need	of CXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	cement					
Field Da	ta							
Parameter Chlorine Resid Chlorine Resid Chlorine Resid Chlorine Resid Temp., Cond., Temp., Cond., Temp., Cond.,	dual 3/21/78 - lual 3/21/78 - laul 3/22/78 - lual 3/22/78 - pH 3/21/78 - pH 3/21/78 - pH 3/21/78 -	Location - 1007 Sec. Clarifie - 1015 Outfall at Bo - 1115 Sec. Clarifie - 1130 Outfall at Bo - 1255 Influent - 1312 Primary Efflu - 1320 Chlorinated E	r Outfall 1.4 mg/l ise Creek 1.0 mg/l r Outfall 2.0 mg/l ise Creek 1.5 mg/l See Results ent See Results ffluent See Results					
Temp., Cond., Temp., Cond.,			See Results					

3/22/78 - 1040 3/22/78 - 1047

Primary Effluent Chlorinated Effluent

See Results

See Results

Temp., Cond., pH

Temp., Cond., pH

BOD_5

- 1) Samples are collected manually (50-60 ml/hr) and composited during the working shift. They are refrigerated as taken.
- 2) BOD₅ determinations are made on influent and effluent samples. Chlorine is added above the final clarifier, the effluent sample is therefore chlorinated. This sample is dechlorinated using several drops of 10% sodium thiosulfate. It is not reseeded.
- 3) BOD₅ determinations are made using a Hach (manometric) BOD kit. They are occasionally checked against normal (Winkler-Standard Methods) procedures. Both results are reported for the sample split made during this inspection.
- 4) Although BOD5 values from the plant agree well with DOE's determinations there are several current problems with the methods which should be addressed:
 - a) Chlorinated samples should be reseeded.
 - b) The Hach (manometric) BOD₅ determination is not recognized by either Standard Methods or the Department of Ecology. Conversion to an accepted procedure should be undertaken. The plant was provided with a copy of DOE's BOD procedure manual.
 - c) PAO used in dissolved oxygen determination is not standardized. This should be done on a regular (weekly) basis.

Chlorine Residual

1) Chlorine residual determinations are made using orthotolidine. This procedure is no longer accepted by Standard Methods or the Department of Ecology. It is suggested that the plant purchase a DPD kit for chlorine residual analysis.

Suspended Solids

- 1) 50-100 ml samples are processed on the final effluent. 50 ml samples are processed on the influent.
- 2) Whatman filters are cut to fit Gooch crucibles. Jim Crossler will be ordering the accepted Gelman A/E or Reeves Angel 934H filters when the present supply of Whatman filters is depleted.
- 3) Comparison of results indicate acceptable agreement.

Fecal Coliform

1) Jim Crossler had recently attended a Department of Ecology seminar on fecal coliform procedure. This procedure was being performed correctly.

The following table is a comparison of laboratory results from 24 hour composite(s) together with NPDES permit effluent limitations. Additional results pertinent to this inspection have also been included.

tills make also been meradeat									
	 Influent 	DOE Primary Effluent ***	Chlorinated Effluent	Infl Winkler		Primary Effluent		inated luent Hach	NPDE [©] (Month average
BOD ₅ mg/l lbs/day	195 (1790) ⁵	110 (1010) ⁵	78 (716) ⁵	237 (2170) ⁵	190 (1740) ⁵		73 (670) ⁵	75 (688) ⁵	40 670
TSS mg/l lbs/day	119 (1090) ⁵	109 (1000) ⁵	45 (413) ⁵	169 (1550) ⁵			37 (340) ⁵		40 670
Total Plant Flow MGD	1.25* 1.02*		(1.1) ⁵				(1.1) ⁵		
Total Coliform			2000 ¹ 7000 ²						
Fecal Coliform			20 est ¹ 50 est ² 35 est ³ 25 est ⁴						200/100 ml
Residual Chlorine			1.4 ^{*1} 1.0*2 2.0*3 1.5*4						
′рН	7.1 8.6* 7.4* 7.1**	7.4 7.6* 7.0* 7.1**	7.2 7.3* 7.0* 7.6**						6-9
Temp. °C	14.5* 14.0*	14.0* 13.2*	14.0* 14.0*						
Sp. Cond.	1170	638	1170						
μmho/cm	650* 580* 1150**	605* 650* 580**	570* 750* 990**			:			
COD mg/l	400	250	260						The second secon
Turbidity (NTU's)	45	45	34						
NH ₃ -N (mg/l)	14	21	22						
NO ₂ -N (mg/1)	.02	< .02	<.02						
NO3-N (mg/l)	0.10	< .02	<.02						
0-PO ₄ -P (mg/1)	3.8	4.2	4.8						
T-P04-P (mg/1)	6.4	6.0	6.2						

Field analysis - composite

- 1. Sec. clarifier outfall, 3/21/78
- 2. Outfall at Boise Creek, 3/21/78
- Sec. clarifier outfall, 3/22/78
- 4. Outfall at Boise Creek, 3/22/78 5. Est. - Based on estimated daily flow

Shut off on first day

	Influent	DOE Primary Effluent***	Chlor. Eff.			NPDES (Monthly Average)
Settleable Solids (mg/l)			0.5			
Total Solids (mg/l)	785	420	670			
TNVS (mg/1)	542	224	538		·	
TSS (mg/1)	119	109	45			
TSNVS (mg/1)	7	6	4			
MBAS (mg/l)			0.6*			
Trace Metals Zn (mg/Kg)** Pb (ng/Kg) Cu (mg/Kg) Cd (mg/Kg) Cr (mg/Kg)			Sludge 1690 340 420 7 41			
				!		

^{*} Field Analysis - Grab "<" is "less than" and ">" is "greater than"

** mg/Kg dry wt (2.9% Solids)

*** Shut off on first day