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STATE OF WASHINGTON

DEPARTMENT OF ECOLOGY

Mail Stop PV-11 e. Olympia, Washington 98504-8711 e (206) 459-6000

August 1, 1992

TO: Interested Parties

FROM: Carol L. F1eskeé¥%%;ogram Manager
Toxics Cleanup Program

Toxics Cleanup Program

SUBJECT: Statistical Guidance for Ecology Site Managers

Attached is the August 1992 edition of Washington State Department of Ecology's
(Ecology) "Statistical Guidance for Ecology Site Managers." The document pro-
vides guidance on statistical issues relating to the investigation and cleanup of
soil- and groundwater contamination under the Model Toxics Control Act Cleanup
Regulation. It is not intended for use at sites where routine petroleum leaking
underground storage tank (LUST) cleanups are undertaken using Ecology's Guidance
for Remediation of Releases from Underground Storage Tanks, which includes
statistical guidance in an appendix.

Routine statistical procedures are provided in this Guidance that should be
applicable to most sites. For statistical situations where site-specific
decisions should be made, the Guidance provides Ecology staff with relevant
information, but does not establish standard procedures or criteria. Conse-
quently, some statistical methods and procedures are discussed that should not
be used without site-specific approval of Ecology. Consult Section 1.2 (Using
the Guidance Document) for more information. "Site-specific approval of Ecology"
refers only to remedial actions conducted or ordered by Ecology, or to cleanups
agreed to by Ecology in an agreed order or decree governing remedial actions ‘at
the site. Ecology will respond to questions relating to the Guidance from
persons conducting independent cleanups if staff resources permit. However, it
may be helpful to consult a statistician regarding sections of the Guidance that
provide for site-specific decisions.

Important features of this Guidance include the default assumption of a lognormal
distribution for soil and groundwater sampling data. This assumption was adopted
on the recommendation of the Model Toxics Control Act Science Advisory Board.

For data that do not follow a lognormal distribution, the Guidance provides
statistical methods for rejecting the default assumption. Readers should also
note that the Guidance provides new procedures relating to the use of background
data in establishing a cleanup level. The technical basis for these procedures
is explained in the document.
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Ecology invites written comments from interested persons regarding this Guidance
for consideration in making future revisions. Ecology's experiences in applying
the Guidance to specific sites will also be considered in evaluating the need for
revisions. More rapid updates will be provided through Guidance Supplements.
These may be issued, for example, to cover a subject that is not presently
addressed; to clarify a section that users find vague or ambiguous; or to replace
a section in the current document. '

Written comments on this document should be addressed to:

Nigel Blakley
Department of Ecology
Toxics Cleanup Program
P.0. Box 47600
Olympia, WA 98504-7600

Requests to be placed on the hailing list for Guidance Supplements and other
Guidance mailings should be addressed to:

Sherrie Hanson
Department of Ecology
Toxics Cleanup Program
Statistical Guidance
P.0. Box 47600
Olympia, WA 98504-7600
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1. INTRODUCTION

11 PURPOSE AND PHILOSOPHY OF THE STATISTICAL GUIDANCE
DOCUMENT

This document is intended to provide Model Toxics Control Act (MTCA) site managers
with guidance for sampling and analyzing groundwater and soils to develop background-based
cleanup standards, where appropriate, and to determine whether a site or exposure unit meets
cleanup standards. The cleanup standard may be listed in the regulation or established under
applicable state and federal laws, or it may be set at natural background levels. Cleanup
standards may also be established at calculated risk-equivalent concentrations.

We can never know the actual contaminant concentrations at a site unless we sample all the
soil or groundwater present. Obviously, this is not feasible. However, we can draw conclusions
about the site by sampling and statistically analyzing the results. We can estimate the parameters
of the true contaminant concentration distribution based on the sample parameters. For example,
we estimate the true average concentration at the site (u) with the average of the samples (X).
This will always involve some uncertainty, because we can never be certain that the samples
represent the true contaminant concentrations at the site. Suppose there is one small area of a
site that is highly contaminated, but no samples are taken in that area. The conclusion, based
on the samples, might be that the site is clean (uncontaminated). In this case, the samples are
not representative of the true contaminant concentrations at a site because they do not reflect the
highly contaminated area. Alternatively, suppose all the samples at the site were taken in the
small, contaminated area. A conclusion might be reached that the site is very contaminated,
when, in fact, only a small area is contaminated and most of the site is clean.

Two methods exist for handling the uncertainty in statistically representing contaminant
concentrations at a site. One is to reduce the uncertainty by improving sampling design to
include more samples—or more representative samples—because in general, the more samples
that are collected, the more certain we can be that we are representing true site conditions.
However, there will always be some uncertainty associated with the results. Alternatively, the
uncertainty can be quantified by assigning confidence intervals (see Section 2.1.9) to the
statistical parameters describing the samples [e.g., the mean (see Section 2.1.1)]. These
intervals describe how confident we are that the true parameters lie within a range of values.
For example, if the mean of a particular data set is 10, we could say we are 95 percent confident
that the true mean of the data set lies between 3 and 16. This means that 5 percent of the time
the true mean lies outside of this range of values.

Statistical methods presented in this manual are designed to permit site managers to make
decisions about contamination levels at an entire site, or within an exposure unit, based on a
limited number of samples. These methods are designed to take into account the uncertainty
inherent in this process. MTCA provides for "other statistical methods" than those discussed



in the rule. This document describes some other methods that may be applicable to a specific
sitnation. Other generally acceptable statistical methods exist for soil (EPA 1989a) and
groundwater (EPA 1988). References in the Bibliography provide additional statistical data
evaluation methods (e.g., Gilbert 1987) which may be acceptable if consistent with MTCA
requirements (e.g., see Section 2.1.6).

The philosophy behind the statistical procedures in MTCA includes the following principles:

1. Tests of compliance monitoring data should be such that a low frequency of
relatively small-magnitude exceedances of the cleanup standard are allowable
within the rules without triggering mandatory cleanup criteria, but that the
frequency and magnitude of such exceedances should be limited.

2. Inthose cases where cleanup standards are based on background, the background
distributions should be such that clean (i.e., uncontaminated) sites or exposure
units have a high probability of being recognized as such.

An effort was made to make this document as applicable as possible to actual situations
faced at sites. However, it is not possible to address every case that may occur in application
to real-world situations. If a statistical interpretation of site data appears to be more complex
than the examples provided in this document, it is recommended that the assistance of the
Washington State Department of Ecology (Ecology) or a statistician be sought.

12 USING THE GUIDANCE DOCUMENT
Users other than Ecology staff:

Although this guidance should be used by all parties involved in the investigation and
cleanup of hazardous waste sites under MTCA, the document was primarily written to assist
Ecology staff. Thus while the guidance provides statistical procedures which may be used
routinely at most sites, the document also provides information for Ecology staff on alternative
approaches available under special circumstances (e.g. contaminant data are neither lognormally
or normally distributed). Decisions regarding the use of these alternatives are made by
Ecology on a site-specific basis and therefore require consultation with the department.

Information on alternative approaches requiring Ecology’s approval is identified in this
document in one of two ways. First, section headings are marked "Requires consultation with
Ecology" where information is provided to Ecology staff for their use in making site-specific
decisions. For example, the nonparametric method for estimating percentiles (Section 2.1.2.3)
is only acceptable if Ecology has agreed to its use for a particular data set. Second, in other
sections it is clearly indicated where consultation with Ecology is required before a specific
statistical decision may be made (e.g. Section 4.3.5).

The requirement to consult with Ecology regarding sections of this guidance refers only to
remedial actions conducted or ordered by Ecology, or to cleanups agreed to by Ecology in an



agreed order or decree governing remedial actions at the site. The department will respond to
questions relating to the guidance from persons conducting independent cleanups if staff
resources permit. However, it may be helpful to consult a statistician regarding sections of the
guidance which provide for site-specific decisions.

Overview for all users:

Basic statistical parameters and definitions, and methods for calculating these parameters,
are described in Section 2. Section 2 should be read in its entirety by those unfamiliar with
statistics, or it can be used as a reference and reminder for those more familiar with the
material. However, guidance on distributions (2.1.4.2 - 2.1.4.3) is of key importance and
should be read by all users of this document. Other important guidance also occurs at the end
of this section (2.2 - 2.3). Section 3 describes issues to be considered in sampling. This is an
extensive topic and will be addressed more fully in the future. Thus, this section is reserved in
the current version of the guidance document. Section 4 describes the methods for answering
the question, "What is the cleanup standard, and how is it related to background concentra-
tions?" Both soils and groundwater are discussed. Section 5 describes the methodology for
answering the question, "Does the site or exposure unit meet the identified cleanup standards?"
Section 6 (Geostatistics) is reserved at this time. Section 7 contains general statistical references
that provide additional information on topics covered in this guidance document. Numbered
examples, mentioned throughout the text, are found in Section 8. Tables A-1 through A-7,
along with other relevant material, are included in Appendix A.

Important terms are in bold face where they are introduced for the first time. If applicable,
this will be followed by a reference to the section where this concept is discussed. '



2. GENERAL STATISTICAL ISSUES

2.1  BASIC DEFINITIONS

The objective of this section is to describe basic statistical concepts and to act as a
framework on which data interpretation and decisions may be based.

2.1.1 Mean

2.1.1.1 Arithmetic Mean (Example 1)—The arithmetic mean is the same as the average
value of a data set. The mean value may not equal any of the data values. The mean, X, may
be calculated by summing the values in a data set and dividing by the total number of values in
the set:

where

x; = values of samples

n number of samples.

The mean of the sampled values, X, is likely to differ from the mean of the true population (see
Section 2.1.4), p, which could only be obtained by sampling all of the soils or groundwater at
the site. Thus, we try to estimate the true mean, based on the sampled values. The mean of
the sampled values may be influenced by outlier values (see Section 2.3) or by unrepresentative
sampling of values within the distribution, which may give a biased view of the true overall
statistical population. In the case of contaminant concentrations, samples below the detection
limit must be handled carefully, so as not to bias the mean. Below-detection-limit data (known
as censored data sets) are discussed in Section 2.2. In general, the arithmetic mean should be
used for the statistical methods described in this document.

2.1.1.2 Geometric Mean (Example 2)—Environmental data are often analyzed using the
geometric mean rather than the arithmetic mean, particularly for lognoermal or other skewed data
sets (discussed in Section 2.1.4.2). In this document, the mean is the arithmetic mean, unless
it is specified otherwise. However, the geometric mean is mentioned here because it is often
encountered in technical literature relating to lognormally distributed data. '



The geometric mean is the nth root of the product of n numbers. For examples, the
geometric mean of 6, 10, and 20 is the cube root of 6 x 10 x 20, or 10.63. In practlce the
geometric mean may be estimated by the following method:

1. Transform the data by taking the natural logarithm (base €) of each value. Note
that other transformations are acceptable (e.g., base 10 logarithms), but in this
document the natural logarithm will be used. Most calculators have both
logarithms, so care should be taken that the natural logarithm is used. Note that
it is possible and acceptable to obtain negative values after transforming the data.

y; = 1n x,

2. Calculate the arithmetic mean of the transformed values:

(yl+y2+ e +yn)

y= o

where

y; = lognormally transformed sample values
n - = number of samples.

3. The sample geometric mean (for a base e logarithmic transformation only) is then:

e

2.1.2 Median and Other Percentiles

Percentiles, also known as quantiles, describe a location in the distribution of data. For
example, the 50th percentile is the value at which half the data lie above the value, and half lie
below. For the 90th percentile value, 10 percent of the data lie above the value and 90 percent
lie below. The 10th percentile is the point at which 90 percent of the data lie above the point,
and 10 percent below.

2.1.2.1 Estimating the Median (Examples 3 and 4)—The median, like the mean, is a
statistic that describes typical (central) values of the data set. The median is the 50th percentile
of the data set: half the data values lie above the median and half below. As a measure of
central tendency of the data set, the median is not influenced by extreme (very high or very low)



values, as is the mean, but for this same reason, it also does not utilize all the information
contained in the data set. The median can be estimated directly from the sample data using the
following method:

1. Sort the data from smallest to largest, and rank them from 1 to n, where n is the
total number of data points in the data set (sample size). If there is more than one
data point with the same value (i.e., a "tie"), order the data points consecutively,
and give each its own rank. For example, if the S5th and 6th lowest data points
are both 28, assign one 28 a rank of 5 and the other a rank of 6. This will not
affect the calculation of the median.

2. If the sample size, n, is odd: the sample median estimate is the (n+1)/2th value.
For example, if the sample size is 19, the sample median is the (19+1)/2 = 10th
value. ~

3. If the sample size, n, is even: the sample median estimate is the average of the
n/2th and the (n+2)/2th values. For example, if the sample size is 20, the sample
median estimate is the average of the 20/2 = 10th and the [(20+2)/2] = 11th
values.

This method is illustrated in Example 3.

Alternatively, the median can be estimated from a probability plot. If the data are
normally distributed (Section 2.1.4.1), plot the points on normal probability paper (included in
Appendix A) and fit a line by eye to the points on a probability plot. Some statistical computer
software packages can do this. Use the line to estimate the value corresponding to 50 percent
on the cumulative percent scale. This value is the median. This method is demonstrated in
Example 4. If the data are lognormally distributed, use a probability plot of the log-transformed
data. Note that for the log.-transformed data, the value corresponding to 50 percent is the log
of the median; you will have to convert it by taking the exponent (base e) of the transformed
values. Alternatively, plot the points on log-probability paper and read off the median directly.

2.1.2.2 Estimating the 90th Percentile— Several methods are available for estimating the
90th percentile of a data set: '

m  If the data are lognormally distributed, calculate X and s for the log,-transformed
data. Then calculate M, where M = X + (1.28)(s). The 90th percentile can then
be approximated by:

X5 = eM

(Note: the value of 1.28 is Z,,, which was obtained from Table A-6).

®m  If the data are normally distributed, the 90th percentile X, may be estimated
from a probability plot. The procedure is basically the same as that. for the



median, but 90 percent on the cumulative percent scale is used. This method is
recommended for censored data sets.

m  If the data are normally distributed, calculate the sample mean (X) and the sample
standard deviation (s) (described in Section 2.1.3 below). The 90th percentile is
approximated by:

Xg0 = 90th percentile = X + (1.28)(s)

This method is preferable for uncensored data sets. (Note: again, the value of 1.28
is Zy,, obtained from Table A-6).

‘ 2.12.3 General Nonparametric Method for Estimating the p* Percentile

(Example 5)—[Requires consultation with Ecology.]. If the data are neither normally nor
lognormally distributed, a nonparametric method (Section 2.1.5), which does not require the
data to fit any particular distribution, should be used. A normal or lognormal distribution should
not be assumed if the statistical test indicates significant departure from either of these
distributions. If a normal or lognormal distribution cannot be rejected, the best-fit distribution
should be assumed, and the methods described in Section 2.1.2.2 should be used rather than a
nonparametric method. A nonparametric (distribution free) method can be used to estimate any
percentile, X, and is shown in Example 5. ‘

1. Sort the data from smallest to largest, and rank them from 1 to n, where n is the
total number of data points in the data set (sample size). Data points with the
same value should be ordered consecutively, and each point assigned its own rank.

2. Estimate v .
V=100 (n+1)

where v = the rank of the p" percentile data.

3. Ifvis an integer, then the p™ percentile is simply the v* ranked datum in the data
set. :

4. If v is not an integer, then the p™ percentile must be linearly interpolated between
the two closest order statistics (see Example 5).

The nonparametric estimation of the median (50th percentile) value is seen to be a special case
of this general method for estimating percgntiles.



2.13 Standard Deviation, Variance (Example 6), and Coefficient of Variation

The standard deviation of the population, ¢, represents the spread of the population around
the mean. The standard deviation of the sampling data, s, which is an estimator of o, can be
calculated as the positive square root of the sample variance, s?>, which is defined by:

Y(x,-%)?
—5 T

s? =

Calculation of s? and s is demonstrated in Example 6.

* The coefficient of variation (CV), which is affected by the degree of skew (Sectlon 2.1.4.2)
is calculated as the standard deviation divided by the mean:

CV = s/x

Most scientific calculators will calculate standard deviations. However, it is important to
note whether the calculator divides by n or n—1 when performing the calculation. Some
calculators will allow you to select the divisor. In general, the n—1 divisor should be used for
calculating the standard deviation of a data set.

Note: do net use the standard deviation and mean of the sampling data when calculating
the CV for compliance decisions (see Sections 4.3.3-4.3.5). Instead, use the standard deviation
and mean of the best-fit distribution (Supplement S-5). For example, the CV of 3.65 calculated
in Example 12 is for the best-fit lognormal distribution, not the raw data.

214 Probability Distribution

The probability distribution is a plot of the probability of a variable attaining a value. It
is a curve, usually continuous, that shows all possible values and describes the true distribution
of the population. In order to be valid, many statistical tests require that the data approximate
a normal (or Gaussian) probability distribution (e.g., bell-shaped curve). For this document,
a population can be thought of as the entire set of contaminant concentrations that could be
measured at a site if all the soil or groundwater at the site could be sampled. Thus, it is not
possible to know the true probability distribution of a population unless we sample all the soil
or groundwater at a site, which, of course, is not feasible. Instead, we estimate the probability
distribution based on only a sample of the population. The sampled data can then be plotted on
a histogram. A histogram is a bar plot that shows ranges of discrete measured values, and the
frequency with which these values occur in a data set. The probability distribution of the overall
population can be inferred from the histogram (Figure 1).

2.141 Normal Distribution (Example 7)— A normally distributed population will form
the familiar "bell-shaped," symmetric curve (Figure 2). Many statistical tests require that data
be normally distributed. Several methods can be used to determine whether data follow a



c6€06064-v0LD

‘uonnquisip Ayjigeqoid pue Em&oﬁ_: uaemiaq uolejey ‘| einbi4




26€0 60-64-#0.0

‘uonejndod
Buihpapun jo (o) uoneinep piepuels pue () ueaw jo uoieoo| Bumoys uonnquisip [ewioN ‘g 8inbiy

.
L
0 961 _ 0 96°
1 et 1
I 1 I
| | |
| NOILVTINdOd 40 %S6 |
[l L 1
LS ﬁ v
| _ |
I I |
1
| 0 —>|<—p0 V“
|
| |
I
|
I
I

— -
NOLLYINdOd 40 %89

10



normal distribution. The data for each contaminant at a site must be tested individually for
normality.

Normality testing using probability plot—The simplest approach is to graph the data on a
probability plot. Statistical computer software packages such as STATGRAPHICS® or
SYSTAT® will do this for you; otherwise you will need probability plot graph paper if you do
it by hand (linear [normal] probability plot paper is included in the appendix to this document).
The measured data should be plotted on a normal probability plot. Then, a line should be
overlaid that describes the data expected from a normal distribution with the same mean and
variance as the measured data (Figure 3). The measured data points will not fall exactly on the
line, but if they lie approximately on the line, the data are normally distributed. This is a
‘somewhat subjective test. Several references are available that describe the development of
‘normal probability plots (Neter and Wasserman 1974; Shapiro 1980).

Normality testing using the W test—The W test (Shapiro and Wilk 1965) can be used to test
whether the data differ significantly from a normal distribution, but cannot be used to determine
whether the data are normally distributed. If the W test does not show that the data differ from
normal, a normal distribution can be assumed.

The W test, as described below, is appropriate for fewer than 50 samples. The W test is
recommended by the U.S. Environmental Protection Agency (U.S. EPA 1986) because it
performs well for small sample sizes (which are likely at MTCA sites). For larger sample sizes,
D’ Agostino’s test should be used (D’Agostino 1971). Both tests are described in Gilbert (1987).

The W method tests the hypothesis: The data have been drawn from a normally distributed
population. This is the "null hypothesis" for the test (the null hypothesis is discussed in Section
2.1.6). The alternative is that the underlying population is not normally distributed. The
method for performing the W test is as follows (Gilbert 1987):

‘1. Compute the denominator, d, of the W test statistic. This is done by calculating
the mean of the data set, X, and subtracting the mean from each of the-dataaalues
(some resulting values will be negative). The difference between the mean and
each value should be squared, and the results should be summed. This is
expressed by the following equation:

n
d=Y (x-%?
1=1

where

n = the total number of samples

X; = the individual data values.

11
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Figure 3. Data from Example 1 plotted on a probability plot. These data
appear to be normally distributed.
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2. Order the data from smallest to largest, and assign a rank to each value.

3. Compute r where

r.=n/2 _if n is even
and
r = (n-1)/2 if nis odd.

4. Use Table A-1 for the number of samples n to determine coefficients a,, a,, ...
a,.

5. Next compute W using the equation:

1 r
W= (-a)[ ]glai(xln-m] - xy)]?

where

Xg = the value of i" ranked data
a; = coefficients calculated from Table A-1.

6. Using Table A-2, find the value of W for a particular significance level, o, and
sample size, n. A significance level of 0.05 (confidence level of 95 percent) is
consistent with the significance level required by the regulations for other
statistical tests. If the value for W calculated in Step 5 above is less than the
value in Table A-2, the null hypothesis—that the population is normally distribut-
ed—should be rejected. If the W from Step 5 is greater than the tabled value for
W, we can assume that the data are normally distributed. Example 7 demon-
strates an application of the W test to the data in Example 4. Detailed instructions
for examining data for departures from normality using the W test are given in
Worksheet W-1a.

Normality testing by alternative methods—[Requires consultation with Ecology.]. Alternative-
ly, the chi-square (x*) goodness-of-fit test at some specified significance level (e.g., 0.01) can
be applied to test the normality of the data. The chi-square test is used to quantitatively evaluate
the difference between the observed and expected frequency value for each variable. This test
can be applied using computer software such as STATGRAPHICS®. Another available
procedure, the nonparametric Kolmogorov-Smirnov test (Conover 1980), is considered to be
more powerful than the chi-square test for evaluating the fit of a hypothesized distribution,
particularly for small sample sizes (e.g., n<20). Several other methods for testing the
normality of a data set are described in Shapiro (1980). Alternatives to the W test should not
be used unless there is a valid statistical reason for doing so.

13



2142 Lognormal Distribution (Example 8)—A probability distribution is symmetric
if a vertical line can be drawn through the distribution such that the two sides are mirror images
of each other (Figure 2). If a distribution is not symmetric with respect to the vertical line, it
is skewed. Distributions may be skewed to the right or left. A distribution skewed to the left
(also known as negatively skewed) will have a long tail on the left and a shorter tail on the right,
while distributions skewed to the right (positively skewed) have a long tail on the right
(Figure 4) and a greater proportion of the population on the left. Water quality data, and other
environmental data, are often positively (sometimes highly) skewed (Gilliom and Helsel 1986;
Gilbert 1987; Helsel 1990).

In this document, the default assumption is that the data are lognormally distributed.
‘Data should first be tested to determine if a lognormal distribution is appropriate. If there is
evidence that the data are normally distributed (e.g., visual fit or statistical test), or if the data
do not appear to be lognormally distributed, they should be tested for normality. Rejection or
acceptance of a lognormal or normal distribution can be made visually, but if there is any doubt,
a statistical test should be performed to eliminate the subjectiveness of the visual methods. If
both normal and lognormal distributions are rejected, the advice in the guidance document
should be followed.

To test the assumption of lognormality, the data should be logarithmically transformed and
tested for normality as described in Section 2.1.4.1. This involves calculating the natural
logarithm (base e) of each of the data points. If the transformed data appear to be normally
distributed (using the W test or D’Agostino’s test) when they have been logarithmically
transformed, the data set can be assumed to be lognormally distributed. Many of the statistical
estimation methods and tests described in the following sections may then be performed on the
transformed data. Detailed instructions for testing the assumption of lognormality using the W
test are provided in Worksheet W-1. Supplement S-3 provides. an overview of the procedure
to follow in making a decision on the distribution of site or background data.

A histogram of a data set drawn from a lognormally distributed population is shown in
Figure 5a. This data set was logarithmically transformed, and the transformed data appear to
be normally distributed (Figure 5b). Logarithmic transformations are demonstrated in
Example 8. In Figure 6, an untransformed data set is plotted on a probability plot, and the
points do not plot on a straight line. However, the plotted, logarithmically transformed data
approximate a straight line (Figure 7), indicating that the data set is approximately lognormally
distributed (log [lognormal] probability plotting paper is included in the Appendix of this
document). A comparison of normal and lognormal distributions is shown in Figure 8.

Lognormally transformed data should never be used to obtain summary statistics (e.g.,
mean, standard deviation) for the untransformed data, due to the transformation bias inherent
in determining summary statistics for a transformed data set and then transforming the data back
to original units. Thus, the mean of the log-transformed data is not the same as the logarithm
of the mean of the raw (untransformed) data. However, transformation of percentiles (e.g., 90th
percentile, median) does not exhibit this bias. In other words, the 90th percentile of the log-
transformed ‘data will be the same as the logarithm of the 90th percentile of the raw (untrans-
formed) data.

14
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Figure 6. Soil lead data plotted bn a probability plot. These data do not appear
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The log-transformed data appear to be normally distributed, indicating

that the original data are lognormally distributed.
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2143 Other Distributions—For small data sets (e.g., n < 20), it may not be possible
to "reject” either the normal or lognormal distribution; both distributions may appear to fit the
data. In this case, the lognormal distribution should be used. Alternatively, additional samples
can be taken to better determine the distribution. This is demonstrated in Figure 9. Normal and
lognormal distributions are sufficient to model many real-world statistical situations. However,
some data sets may be neither normally nor lognormally distributed. Several other distributions
have been used to model environmental data, including Weibull, gamma, and beta distributions.
The three-parameter Weibull distribution can assume a wide variety of shapes and can be used
to model both right and left-skewed data. These distributions are discussed briefly in Gilbert
(1987), and are mentioned here because they may be encountered in statistical texts. However,
for the statistical methods described in this document, if the data set does not appear to be
normally or lognormally distributed, a nonparametric (distribution-free) statistical method should
be used, if available and appropriate.

2.1.5 Parametric vs. Nonparametric Methods

Parametric estimation methods and tests require that the data be drawn from a population
with a specific probability distribution (e.g., normal). When the distributional assumptions hold,
parametric tests are usually more powerful than nonparametric (distribution-free) tests, although
this is dependent on the type of test performed. However, parametric tests can lose statistical
power or introduce bias if their distributional assumptions are incorrect. In this case, statistical
power can be thought of as the ability of a method to detect site contamination if it is present,
and to decide that remediation is unnecessary at a clean site. The loss of statistical power or
introduction of bias when distributional assumptions are not met can render parametric statistical
procedures ineffective in reaching decisions on site contamination.

Nonparametric estimation methods and tests, also called "distribution-free," do not require
that the data be drawn from a specific distribution (e.g., normal). These methods and tests are
valid for all data distributions. However, because parametric methods are generally more
powerful if distributional assumptions hold, parametric methods are preferred unless data deviate -
significantly from normal and lognormal distributions. Thus, in order to use a nonparametric
method, the distributional assumptions must be tested, and both the normal and lognormal
distributions rejected.

2.1.6 Null Hypothesis

In MTCA (WAC 173-340-200), the null hypothesis (the "working assumption") is that
contaminant concentrations at the site exceed the cleanup level (unless the cleanup level is based
on background concentrations). The alternative is that they do not exceed the cleanup level.
Since there is only one possibility for the alternative hypothesis, the appropriate statistical
analysis is known as a one-tailed test. If there were two possibilities for alternative hypotheses,
the test would be a two-tailed test.

The MTCA null hypothesis ("site exceeds cleanup level") is environmentally conservative
but creates some statistical problems. This is because the conventional null hypothesis in
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statistics is the "no difference" hypothesis ("site is not different from cleanup level"). Most
statistical tests are designed to test the "no difference" null hypothesis, and any introductory
statistical textbook will be written from this perspective. Consequently, many commonly used
statistical tests, such as the r-test or analysis of variance (ANOVA), are generally inappropriate
for MTCA cleanups and are therefore not described in MTCA or this document. In addition,
much of the information in statistics texts is also inappropriate. Statistical guidance published
for the Resource Conservation and Recovery Act (RCRA) program is generally inapplicable to
MTCA because the "no difference” null hypothesis is used in statistical analysis for RCRA
facilities. However, U.S. EPA (1988, 1989a) has published statistical guidance for Superfund
cleanups that is based on the same null hypothesis as MTCA, and may therefore be used for
statistical analysis of data from MTCA sites. If in doubt, consult these sources or a statistician.

2.1.7 Type I and Type II Errors

Two types of errors can occur when a statistical test is applied to test a null hypothesis.

If a statistical test shows that the null hypothesis is very unlikely, then we can accept the
alternative, which in this case is that the site is clean. Since we are dealing with probabilities
and not certainties in statistics, we could be wrong. If we are wrong—we assume that the site
is clean and it is in fact contaminated—we have committed a Type I error. A Type I error
means that the null hypothesis ("site exceeds cleanup level") is incorrectly rejected; a site that
is actually contaminated will not be cleaned up. Statistics can’t prevent Type I errors, but it
* does allow us to control the likelihood of committing such an error. In general, this likelihood
is set at 0.05 (5 percent, or 1 time in 20) in the regulation [e.g., WAC 173-340-720(8)(e) ()]
This defines what we mean by the null hypothesis being "very unlikely" and is an attempt to
minimize mistakes. The statistical test must show that the chances of the null hypothesis being
right are no greater than 0.05, or 1 in 20 in order to reject the null hypothesis.

The probabilistic nature of statistical decisions can also lead to a Type II error. When a
Type II error occurs, the null hypothesis ("site exceeds cleanup levels") is incorrectly accepted.
A statistical test on a particular data set may indicate that the null hypothesis is not sufficiently
unlikely to justify its being rejected (i.e., it is more likely than 1 in 20), and the null hypothesis
is therefore accepted. In this case, however, if the site actually is clean, we have committed a
Type I error. If a Type II error occurs, cleanup will be required on a site that actually doesn’t
need it. In general, the likelihood of committing a Type II error can be reduced by collecting
more samples or by using a more powerful statistical test. When deciding the number of
samples needed at a site, it is worth considering that a Type II error may be a more expensive
mistake than collecting too many samples. These issues are discussed further in the EPA
guidance documents cited above.

2.1.8 Estimation Procedures vs. Statistical Tests

The procedures described in Sections 2.1.1-2.1.3 above are procedures for estimating
summary statistics for the underlying population. Summary statistics include the mean, standard
deviation, and median or other percentiles. Summary statistics describe basic facets of the data
but do not provide interpretive or decision-making power.
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In many cases, the purpose of statistical analysis is not only to estimate the statistical
parameters for the underlying population,. but also to make some conclusion about those data.
Statistical tests have been developed for this purpose. In its simplest form, a statistical test deals
with hypotheses and estimating the likelihood that they are correct. The following sections
describe methods to reach conclusions about the site contaminant concentration data.

The concépts behind a statistical test of a null hypothesis will be illustrated by an example:

Samples are collected from two orchard fields to measure soil arsenic levels. There
are two hypotheses. One is that the soil arsenic level is the same in both fields. The
alternative hypothesis is that the soil arsenic levels are different. Normally in statistics
the first hypothesis ("no difference") is the null hypothesis. A statistical test can then
be used to estimate the likelihood that the null hypothesis is correct. If it is "very
unlikely," then the alternative, that the orchard fields are different, is probably correct.
This example illustrates several important points. First, we can only test the null
hypothesis, we cannot prove it. Second, statistics doesn’t provide certainty (although
it does let you specify what you mean by "very unlikely"). A more subtle point is that
if the null hypothesis is probably wrong, and there is a difference between the fields,
then there are actually two possibilities: field #1 has higher arsenic levels than field
#2, or vice versa (either way, the fields are different). Where the alternative to the
null hypothesis contains two possibilities, the appropriate analysis is a two-tailed
statistical test.

If field #1 had been sprayed with an arsenic pesticide, there is good reason to set up
different hypotheses. Now the alternative hypothesis could be that the soil in field #1
has more arsenic than the soil in field #2, and the null hypothesis is that it doesn’t.
If a statistical test shows that the null hypothesis is very unlikely, there is only one
possibility left: arsenic levels in field #1 are higher than in field #2. Here the
appropriate analysis is a one-tailed statistical test.

In general, estimation methods are not influenced by the null hypothesis, whereas statistical
tests are. The procedures discussed in this document are estimation procedures, and therefore
are not influenced by the null hypothesis to be tested (the null hypothesis does not influence the
confidence interval or tolerance interval "tests" described in this document). However,
"alternate statistical procedures” are allowed by MTCA. If methods other than those described
in the regulations are used, they must be consistent with the MTCA null hypothesis that the site
exceeds the cleanup level. As mentioned above, many of the common statistical tests (e.g.,
t-test) are not appropriate for this null hypothesis.

2.19 Confidence Interval
Estimation procedures do not provide population parameters (e.g., mean) with absolute

certainty. The confidence interval for statistical parameters can be used to describe the
likelihood that the parameters will fall within a specific interval.
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Suppose that a specific number of samples are taken at a site, the 100(1—«) percent
confidence interval is calculated, and this process is repeated many times. The 100(1—c)
percent confidence interval (CI) on a percentile (e.g., the median) means that 100(1 —«) percent
of those intervals will include the percentile. The level of significance, «, is calculated from
the selected CI by the following equation:

o =1 — CI/100.

Thus, for a 95-percent confidence interval, « is 0.05. For a significance level o = 0.05, the
95-percent CI on the median means that the true population median will be within the interval
95 percent of the time. : :

2.1.10 Tolerance Interval

A tolerance interval is based on determining the confidence interval on a fixed proportion
of the measurements, rather than on a particular parameter (e.g., the median). A confidence
interval describes the likelihood that the particular parameter (e.g., the median) will fall within
the interval. The tolerance interval describes the likelihood that a portion of the measurements
(e.g., 95 percent) will fall within a specific interval. For example, the value obtained from the
upper 95-percent tolerance interval around the 90th percentile means that we are 95 percent
confident that at least 90 percent of the distribution is less than the value.

The tolerance limits are given by

X + ks

The k value is essentially a factor that reflects the percentile of interest and the sample size. It
increases the standard deviation by an amount related to the number of samples and the
confidence level desired.

The tolerance interval approach assumes that the sampled data are drawn from a normally
distributed population. This approach is more sensitive to the normality assumption than the
confidence interval approach. It should not be used for data where a statistical test indicates that
the normal distribution is inappropriate. For lognormally distributed data, see Section 5.2.2.2.
Methods for data that are neither normally or lognormally distributed are described in Sections
5.2.2.3and 5.2.2.4. ’

2.2 SAMPLES WITH VALUES BELOW THE DETECTION LIMIT OR PRACTICAL
QUANTITATION LIMIT

Environmental data sets commonly contain data that are reported as "less than" the detection
limit, or "not detected." This is particularly common for contaminants such as volatile organics,
which are not normally present in the environment. In addition, due to conditions such as
matrix interference, a laboratory measurement may be above the method detection limit, but
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below the practical quantitation limit (PQL), and these measurements will commonly be reported
as "less than" the PQL. Data sets that contain below-detection-limit (BDL) or below-PQL data
are known as censored data sets. Censored data sets present difficulties for many standard
estimation procedures and statistical tests. For example, the mean cannot be estimated by the
method described in Section 2.1.1 unless numerical values are assigned to the BDL or below-
PQL data. Thus, the values assigned to BDL and below-PQL data could have a significant
impact on the calculated mean for the data set. Censored data are less influential, however,
when we are interested in upper-percentile estimates (e.g., defining background concentrations).

The method described in MTCA for handling censored data sets is the same as that used
- for estimating background concentrations, and for demonstrating compliance with groundwater,
surface water, and soil cleanup levels. The regulation requires that all concentrations below the
detection limit be assigned a value equal to one-half the detection limit of the method being used.
Measurements above the method detection limit, but below the PQL shall be assigned a value
equal to the method detection limit [WAC 173-340-708(11)(e), 173-340-720(8)(g), 173-340-
730(7)(f), 173-340-740(7)(g)]. However, "alternate statistical procedures" for handling censored
data may be approved by the department.

2.2.1 Additional Information

Three basic methods are available for estimating summary statistics for censored data sets:
1) simple substitution, 2) distributional methods, and 3) robust methods (Helsel 1990). These
methods range from simple to complex. The method described in MTCA is an example of
simple substitution, which involves substituting a single value for each BDL or below-PQL
value. Many studies have found that simple substitution methods do not estimate summary
statistics of the underlying population as well as more complicated methods for handling
censored data (Helsel 1990). [Use of methods 2) or 3) requires consultation with Ecology.]

Distributional methods estimate a distribution for the data and use the characteristics of the
distribution to estimate summary statistics. Helsel (1990) states that the best estimation method
in this category is the maximum likelihood estimator (MLE). MLEs have performed well for
percentile estimation, but not as well for estimating the mean and standard deviation of a data
set. This method is accurate only if the data fit the assumed distribution well, and the sample
sizes are large (e.g., >30) (Helsel 1990). Due to the small sample sizes likely to be available
at MTCA sites, however, these methods may not be appropriate.

Helsel (1990) recommends the use of robust methods for estimating the mean and standard
deviation. These methods use the observed data above the detection limit to assume a
distribution, and then extrapolate the distribution below the detection limit to calculate summary
statistics. If the data above the detection limit fit a normal or lognormal distribution, this can
be done with a probability plot. Robust methods are recommended when data do not appear to
fit the assumed distribution well. ‘

- The percentage of data below th