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STATE OF WASHINGTON

DEPARTMENT OF ECOLOGY

Mail Stop PV-11 e. Olympia, Washington 98504-8711 e (206) 459-6000

August 1, 1992

TO: Interested Parties

FROM: Carol L. F1eskeé¥%%;ogram Manager
Toxics Cleanup Program

Toxics Cleanup Program

SUBJECT: Statistical Guidance for Ecology Site Managers

Attached is the August 1992 edition of Washington State Department of Ecology's
(Ecology) "Statistical Guidance for Ecology Site Managers." The document pro-
vides guidance on statistical issues relating to the investigation and cleanup of
soil- and groundwater contamination under the Model Toxics Control Act Cleanup
Regulation. It is not intended for use at sites where routine petroleum leaking
underground storage tank (LUST) cleanups are undertaken using Ecology's Guidance
for Remediation of Releases from Underground Storage Tanks, which includes
statistical guidance in an appendix.

Routine statistical procedures are provided in this Guidance that should be
applicable to most sites. For statistical situations where site-specific
decisions should be made, the Guidance provides Ecology staff with relevant
information, but does not establish standard procedures or criteria. Conse-
quently, some statistical methods and procedures are discussed that should not
be used without site-specific approval of Ecology. Consult Section 1.2 (Using
the Guidance Document) for more information. "Site-specific approval of Ecology"
refers only to remedial actions conducted or ordered by Ecology, or to cleanups
agreed to by Ecology in an agreed order or decree governing remedial actions ‘at
the site. Ecology will respond to questions relating to the Guidance from
persons conducting independent cleanups if staff resources permit. However, it
may be helpful to consult a statistician regarding sections of the Guidance that
provide for site-specific decisions.

Important features of this Guidance include the default assumption of a lognormal
distribution for soil and groundwater sampling data. This assumption was adopted
on the recommendation of the Model Toxics Control Act Science Advisory Board.

For data that do not follow a lognormal distribution, the Guidance provides
statistical methods for rejecting the default assumption. Readers should also
note that the Guidance provides new procedures relating to the use of background
data in establishing a cleanup level. The technical basis for these procedures
is explained in the document.
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Ecology invites written comments from interested persons regarding this Guidance
for consideration in making future revisions. Ecology's experiences in applying
the Guidance to specific sites will also be considered in evaluating the need for
revisions. More rapid updates will be provided through Guidance Supplements.
These may be issued, for example, to cover a subject that is not presently
addressed; to clarify a section that users find vague or ambiguous; or to replace
a section in the current document. '

Written comments on this document should be addressed to:

Nigel Blakley
Department of Ecology
Toxics Cleanup Program
P.0. Box 47600
Olympia, WA 98504-7600

Requests to be placed on the hailing list for Guidance Supplements and other
Guidance mailings should be addressed to:

Sherrie Hanson
Department of Ecology
Toxics Cleanup Program
Statistical Guidance
P.0. Box 47600
Olympia, WA 98504-7600

CLF:NB:cp
Attachment



Washington State Department of Ecology

Statistical Guidance for Ecology Site Managers

Disclaimer

Notice: This document is intended solely for the guidance of Ecology staff. Itis not intended,
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1. INTRODUCTION

11 PURPOSE AND PHILOSOPHY OF THE STATISTICAL GUIDANCE
DOCUMENT

This document is intended to provide Model Toxics Control Act (MTCA) site managers
with guidance for sampling and analyzing groundwater and soils to develop background-based
cleanup standards, where appropriate, and to determine whether a site or exposure unit meets
cleanup standards. The cleanup standard may be listed in the regulation or established under
applicable state and federal laws, or it may be set at natural background levels. Cleanup
standards may also be established at calculated risk-equivalent concentrations.

We can never know the actual contaminant concentrations at a site unless we sample all the
soil or groundwater present. Obviously, this is not feasible. However, we can draw conclusions
about the site by sampling and statistically analyzing the results. We can estimate the parameters
of the true contaminant concentration distribution based on the sample parameters. For example,
we estimate the true average concentration at the site (u) with the average of the samples (X).
This will always involve some uncertainty, because we can never be certain that the samples
represent the true contaminant concentrations at the site. Suppose there is one small area of a
site that is highly contaminated, but no samples are taken in that area. The conclusion, based
on the samples, might be that the site is clean (uncontaminated). In this case, the samples are
not representative of the true contaminant concentrations at a site because they do not reflect the
highly contaminated area. Alternatively, suppose all the samples at the site were taken in the
small, contaminated area. A conclusion might be reached that the site is very contaminated,
when, in fact, only a small area is contaminated and most of the site is clean.

Two methods exist for handling the uncertainty in statistically representing contaminant
concentrations at a site. One is to reduce the uncertainty by improving sampling design to
include more samples—or more representative samples—because in general, the more samples
that are collected, the more certain we can be that we are representing true site conditions.
However, there will always be some uncertainty associated with the results. Alternatively, the
uncertainty can be quantified by assigning confidence intervals (see Section 2.1.9) to the
statistical parameters describing the samples [e.g., the mean (see Section 2.1.1)]. These
intervals describe how confident we are that the true parameters lie within a range of values.
For example, if the mean of a particular data set is 10, we could say we are 95 percent confident
that the true mean of the data set lies between 3 and 16. This means that 5 percent of the time
the true mean lies outside of this range of values.

Statistical methods presented in this manual are designed to permit site managers to make
decisions about contamination levels at an entire site, or within an exposure unit, based on a
limited number of samples. These methods are designed to take into account the uncertainty
inherent in this process. MTCA provides for "other statistical methods" than those discussed



in the rule. This document describes some other methods that may be applicable to a specific
sitnation. Other generally acceptable statistical methods exist for soil (EPA 1989a) and
groundwater (EPA 1988). References in the Bibliography provide additional statistical data
evaluation methods (e.g., Gilbert 1987) which may be acceptable if consistent with MTCA
requirements (e.g., see Section 2.1.6).

The philosophy behind the statistical procedures in MTCA includes the following principles:

1. Tests of compliance monitoring data should be such that a low frequency of
relatively small-magnitude exceedances of the cleanup standard are allowable
within the rules without triggering mandatory cleanup criteria, but that the
frequency and magnitude of such exceedances should be limited.

2. Inthose cases where cleanup standards are based on background, the background
distributions should be such that clean (i.e., uncontaminated) sites or exposure
units have a high probability of being recognized as such.

An effort was made to make this document as applicable as possible to actual situations
faced at sites. However, it is not possible to address every case that may occur in application
to real-world situations. If a statistical interpretation of site data appears to be more complex
than the examples provided in this document, it is recommended that the assistance of the
Washington State Department of Ecology (Ecology) or a statistician be sought.

12 USING THE GUIDANCE DOCUMENT
Users other than Ecology staff:

Although this guidance should be used by all parties involved in the investigation and
cleanup of hazardous waste sites under MTCA, the document was primarily written to assist
Ecology staff. Thus while the guidance provides statistical procedures which may be used
routinely at most sites, the document also provides information for Ecology staff on alternative
approaches available under special circumstances (e.g. contaminant data are neither lognormally
or normally distributed). Decisions regarding the use of these alternatives are made by
Ecology on a site-specific basis and therefore require consultation with the department.

Information on alternative approaches requiring Ecology’s approval is identified in this
document in one of two ways. First, section headings are marked "Requires consultation with
Ecology" where information is provided to Ecology staff for their use in making site-specific
decisions. For example, the nonparametric method for estimating percentiles (Section 2.1.2.3)
is only acceptable if Ecology has agreed to its use for a particular data set. Second, in other
sections it is clearly indicated where consultation with Ecology is required before a specific
statistical decision may be made (e.g. Section 4.3.5).

The requirement to consult with Ecology regarding sections of this guidance refers only to
remedial actions conducted or ordered by Ecology, or to cleanups agreed to by Ecology in an



agreed order or decree governing remedial actions at the site. The department will respond to
questions relating to the guidance from persons conducting independent cleanups if staff
resources permit. However, it may be helpful to consult a statistician regarding sections of the
guidance which provide for site-specific decisions.

Overview for all users:

Basic statistical parameters and definitions, and methods for calculating these parameters,
are described in Section 2. Section 2 should be read in its entirety by those unfamiliar with
statistics, or it can be used as a reference and reminder for those more familiar with the
material. However, guidance on distributions (2.1.4.2 - 2.1.4.3) is of key importance and
should be read by all users of this document. Other important guidance also occurs at the end
of this section (2.2 - 2.3). Section 3 describes issues to be considered in sampling. This is an
extensive topic and will be addressed more fully in the future. Thus, this section is reserved in
the current version of the guidance document. Section 4 describes the methods for answering
the question, "What is the cleanup standard, and how is it related to background concentra-
tions?" Both soils and groundwater are discussed. Section 5 describes the methodology for
answering the question, "Does the site or exposure unit meet the identified cleanup standards?"
Section 6 (Geostatistics) is reserved at this time. Section 7 contains general statistical references
that provide additional information on topics covered in this guidance document. Numbered
examples, mentioned throughout the text, are found in Section 8. Tables A-1 through A-7,
along with other relevant material, are included in Appendix A.

Important terms are in bold face where they are introduced for the first time. If applicable,
this will be followed by a reference to the section where this concept is discussed. '



2. GENERAL STATISTICAL ISSUES

2.1  BASIC DEFINITIONS

The objective of this section is to describe basic statistical concepts and to act as a
framework on which data interpretation and decisions may be based.

2.1.1 Mean

2.1.1.1 Arithmetic Mean (Example 1)—The arithmetic mean is the same as the average
value of a data set. The mean value may not equal any of the data values. The mean, X, may
be calculated by summing the values in a data set and dividing by the total number of values in
the set:

where

x; = values of samples

n number of samples.

The mean of the sampled values, X, is likely to differ from the mean of the true population (see
Section 2.1.4), p, which could only be obtained by sampling all of the soils or groundwater at
the site. Thus, we try to estimate the true mean, based on the sampled values. The mean of
the sampled values may be influenced by outlier values (see Section 2.3) or by unrepresentative
sampling of values within the distribution, which may give a biased view of the true overall
statistical population. In the case of contaminant concentrations, samples below the detection
limit must be handled carefully, so as not to bias the mean. Below-detection-limit data (known
as censored data sets) are discussed in Section 2.2. In general, the arithmetic mean should be
used for the statistical methods described in this document.

2.1.1.2 Geometric Mean (Example 2)—Environmental data are often analyzed using the
geometric mean rather than the arithmetic mean, particularly for lognoermal or other skewed data
sets (discussed in Section 2.1.4.2). In this document, the mean is the arithmetic mean, unless
it is specified otherwise. However, the geometric mean is mentioned here because it is often
encountered in technical literature relating to lognormally distributed data. '



The geometric mean is the nth root of the product of n numbers. For examples, the
geometric mean of 6, 10, and 20 is the cube root of 6 x 10 x 20, or 10.63. In practlce the
geometric mean may be estimated by the following method:

1. Transform the data by taking the natural logarithm (base €) of each value. Note
that other transformations are acceptable (e.g., base 10 logarithms), but in this
document the natural logarithm will be used. Most calculators have both
logarithms, so care should be taken that the natural logarithm is used. Note that
it is possible and acceptable to obtain negative values after transforming the data.

y; = 1n x,

2. Calculate the arithmetic mean of the transformed values:

(yl+y2+ e +yn)

y= o

where

y; = lognormally transformed sample values
n - = number of samples.

3. The sample geometric mean (for a base e logarithmic transformation only) is then:

e

2.1.2 Median and Other Percentiles

Percentiles, also known as quantiles, describe a location in the distribution of data. For
example, the 50th percentile is the value at which half the data lie above the value, and half lie
below. For the 90th percentile value, 10 percent of the data lie above the value and 90 percent
lie below. The 10th percentile is the point at which 90 percent of the data lie above the point,
and 10 percent below.

2.1.2.1 Estimating the Median (Examples 3 and 4)—The median, like the mean, is a
statistic that describes typical (central) values of the data set. The median is the 50th percentile
of the data set: half the data values lie above the median and half below. As a measure of
central tendency of the data set, the median is not influenced by extreme (very high or very low)



values, as is the mean, but for this same reason, it also does not utilize all the information
contained in the data set. The median can be estimated directly from the sample data using the
following method:

1. Sort the data from smallest to largest, and rank them from 1 to n, where n is the
total number of data points in the data set (sample size). If there is more than one
data point with the same value (i.e., a "tie"), order the data points consecutively,
and give each its own rank. For example, if the S5th and 6th lowest data points
are both 28, assign one 28 a rank of 5 and the other a rank of 6. This will not
affect the calculation of the median.

2. If the sample size, n, is odd: the sample median estimate is the (n+1)/2th value.
For example, if the sample size is 19, the sample median is the (19+1)/2 = 10th
value. ~

3. If the sample size, n, is even: the sample median estimate is the average of the
n/2th and the (n+2)/2th values. For example, if the sample size is 20, the sample
median estimate is the average of the 20/2 = 10th and the [(20+2)/2] = 11th
values.

This method is illustrated in Example 3.

Alternatively, the median can be estimated from a probability plot. If the data are
normally distributed (Section 2.1.4.1), plot the points on normal probability paper (included in
Appendix A) and fit a line by eye to the points on a probability plot. Some statistical computer
software packages can do this. Use the line to estimate the value corresponding to 50 percent
on the cumulative percent scale. This value is the median. This method is demonstrated in
Example 4. If the data are lognormally distributed, use a probability plot of the log-transformed
data. Note that for the log.-transformed data, the value corresponding to 50 percent is the log
of the median; you will have to convert it by taking the exponent (base e) of the transformed
values. Alternatively, plot the points on log-probability paper and read off the median directly.

2.1.2.2 Estimating the 90th Percentile— Several methods are available for estimating the
90th percentile of a data set: '

m  If the data are lognormally distributed, calculate X and s for the log,-transformed
data. Then calculate M, where M = X + (1.28)(s). The 90th percentile can then
be approximated by:

X5 = eM

(Note: the value of 1.28 is Z,,, which was obtained from Table A-6).

®m  If the data are normally distributed, the 90th percentile X, may be estimated
from a probability plot. The procedure is basically the same as that. for the



median, but 90 percent on the cumulative percent scale is used. This method is
recommended for censored data sets.

m  If the data are normally distributed, calculate the sample mean (X) and the sample
standard deviation (s) (described in Section 2.1.3 below). The 90th percentile is
approximated by:

Xg0 = 90th percentile = X + (1.28)(s)

This method is preferable for uncensored data sets. (Note: again, the value of 1.28
is Zy,, obtained from Table A-6).

‘ 2.12.3 General Nonparametric Method for Estimating the p* Percentile

(Example 5)—[Requires consultation with Ecology.]. If the data are neither normally nor
lognormally distributed, a nonparametric method (Section 2.1.5), which does not require the
data to fit any particular distribution, should be used. A normal or lognormal distribution should
not be assumed if the statistical test indicates significant departure from either of these
distributions. If a normal or lognormal distribution cannot be rejected, the best-fit distribution
should be assumed, and the methods described in Section 2.1.2.2 should be used rather than a
nonparametric method. A nonparametric (distribution free) method can be used to estimate any
percentile, X, and is shown in Example 5. ‘

1. Sort the data from smallest to largest, and rank them from 1 to n, where n is the
total number of data points in the data set (sample size). Data points with the
same value should be ordered consecutively, and each point assigned its own rank.

2. Estimate v .
V=100 (n+1)

where v = the rank of the p" percentile data.

3. Ifvis an integer, then the p™ percentile is simply the v* ranked datum in the data
set. :

4. If v is not an integer, then the p™ percentile must be linearly interpolated between
the two closest order statistics (see Example 5).

The nonparametric estimation of the median (50th percentile) value is seen to be a special case
of this general method for estimating percgntiles.



2.13 Standard Deviation, Variance (Example 6), and Coefficient of Variation

The standard deviation of the population, ¢, represents the spread of the population around
the mean. The standard deviation of the sampling data, s, which is an estimator of o, can be
calculated as the positive square root of the sample variance, s?>, which is defined by:

Y(x,-%)?
—5 T

s? =

Calculation of s? and s is demonstrated in Example 6.

* The coefficient of variation (CV), which is affected by the degree of skew (Sectlon 2.1.4.2)
is calculated as the standard deviation divided by the mean:

CV = s/x

Most scientific calculators will calculate standard deviations. However, it is important to
note whether the calculator divides by n or n—1 when performing the calculation. Some
calculators will allow you to select the divisor. In general, the n—1 divisor should be used for
calculating the standard deviation of a data set.

Note: do net use the standard deviation and mean of the sampling data when calculating
the CV for compliance decisions (see Sections 4.3.3-4.3.5). Instead, use the standard deviation
and mean of the best-fit distribution (Supplement S-5). For example, the CV of 3.65 calculated
in Example 12 is for the best-fit lognormal distribution, not the raw data.

214 Probability Distribution

The probability distribution is a plot of the probability of a variable attaining a value. It
is a curve, usually continuous, that shows all possible values and describes the true distribution
of the population. In order to be valid, many statistical tests require that the data approximate
a normal (or Gaussian) probability distribution (e.g., bell-shaped curve). For this document,
a population can be thought of as the entire set of contaminant concentrations that could be
measured at a site if all the soil or groundwater at the site could be sampled. Thus, it is not
possible to know the true probability distribution of a population unless we sample all the soil
or groundwater at a site, which, of course, is not feasible. Instead, we estimate the probability
distribution based on only a sample of the population. The sampled data can then be plotted on
a histogram. A histogram is a bar plot that shows ranges of discrete measured values, and the
frequency with which these values occur in a data set. The probability distribution of the overall
population can be inferred from the histogram (Figure 1).

2.141 Normal Distribution (Example 7)— A normally distributed population will form
the familiar "bell-shaped," symmetric curve (Figure 2). Many statistical tests require that data
be normally distributed. Several methods can be used to determine whether data follow a
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normal distribution. The data for each contaminant at a site must be tested individually for
normality.

Normality testing using probability plot—The simplest approach is to graph the data on a
probability plot. Statistical computer software packages such as STATGRAPHICS® or
SYSTAT® will do this for you; otherwise you will need probability plot graph paper if you do
it by hand (linear [normal] probability plot paper is included in the appendix to this document).
The measured data should be plotted on a normal probability plot. Then, a line should be
overlaid that describes the data expected from a normal distribution with the same mean and
variance as the measured data (Figure 3). The measured data points will not fall exactly on the
line, but if they lie approximately on the line, the data are normally distributed. This is a
‘somewhat subjective test. Several references are available that describe the development of
‘normal probability plots (Neter and Wasserman 1974; Shapiro 1980).

Normality testing using the W test—The W test (Shapiro and Wilk 1965) can be used to test
whether the data differ significantly from a normal distribution, but cannot be used to determine
whether the data are normally distributed. If the W test does not show that the data differ from
normal, a normal distribution can be assumed.

The W test, as described below, is appropriate for fewer than 50 samples. The W test is
recommended by the U.S. Environmental Protection Agency (U.S. EPA 1986) because it
performs well for small sample sizes (which are likely at MTCA sites). For larger sample sizes,
D’ Agostino’s test should be used (D’Agostino 1971). Both tests are described in Gilbert (1987).

The W method tests the hypothesis: The data have been drawn from a normally distributed
population. This is the "null hypothesis" for the test (the null hypothesis is discussed in Section
2.1.6). The alternative is that the underlying population is not normally distributed. The
method for performing the W test is as follows (Gilbert 1987):

‘1. Compute the denominator, d, of the W test statistic. This is done by calculating
the mean of the data set, X, and subtracting the mean from each of the-dataaalues
(some resulting values will be negative). The difference between the mean and
each value should be squared, and the results should be summed. This is
expressed by the following equation:

n
d=Y (x-%?
1=1

where

n = the total number of samples

X; = the individual data values.

11
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2. Order the data from smallest to largest, and assign a rank to each value.

3. Compute r where

r.=n/2 _if n is even
and
r = (n-1)/2 if nis odd.

4. Use Table A-1 for the number of samples n to determine coefficients a,, a,, ...
a,.

5. Next compute W using the equation:

1 r
W= (-a)[ ]glai(xln-m] - xy)]?

where

Xg = the value of i" ranked data
a; = coefficients calculated from Table A-1.

6. Using Table A-2, find the value of W for a particular significance level, o, and
sample size, n. A significance level of 0.05 (confidence level of 95 percent) is
consistent with the significance level required by the regulations for other
statistical tests. If the value for W calculated in Step 5 above is less than the
value in Table A-2, the null hypothesis—that the population is normally distribut-
ed—should be rejected. If the W from Step 5 is greater than the tabled value for
W, we can assume that the data are normally distributed. Example 7 demon-
strates an application of the W test to the data in Example 4. Detailed instructions
for examining data for departures from normality using the W test are given in
Worksheet W-1a.

Normality testing by alternative methods—[Requires consultation with Ecology.]. Alternative-
ly, the chi-square (x*) goodness-of-fit test at some specified significance level (e.g., 0.01) can
be applied to test the normality of the data. The chi-square test is used to quantitatively evaluate
the difference between the observed and expected frequency value for each variable. This test
can be applied using computer software such as STATGRAPHICS®. Another available
procedure, the nonparametric Kolmogorov-Smirnov test (Conover 1980), is considered to be
more powerful than the chi-square test for evaluating the fit of a hypothesized distribution,
particularly for small sample sizes (e.g., n<20). Several other methods for testing the
normality of a data set are described in Shapiro (1980). Alternatives to the W test should not
be used unless there is a valid statistical reason for doing so.

13



2142 Lognormal Distribution (Example 8)—A probability distribution is symmetric
if a vertical line can be drawn through the distribution such that the two sides are mirror images
of each other (Figure 2). If a distribution is not symmetric with respect to the vertical line, it
is skewed. Distributions may be skewed to the right or left. A distribution skewed to the left
(also known as negatively skewed) will have a long tail on the left and a shorter tail on the right,
while distributions skewed to the right (positively skewed) have a long tail on the right
(Figure 4) and a greater proportion of the population on the left. Water quality data, and other
environmental data, are often positively (sometimes highly) skewed (Gilliom and Helsel 1986;
Gilbert 1987; Helsel 1990).

In this document, the default assumption is that the data are lognormally distributed.
‘Data should first be tested to determine if a lognormal distribution is appropriate. If there is
evidence that the data are normally distributed (e.g., visual fit or statistical test), or if the data
do not appear to be lognormally distributed, they should be tested for normality. Rejection or
acceptance of a lognormal or normal distribution can be made visually, but if there is any doubt,
a statistical test should be performed to eliminate the subjectiveness of the visual methods. If
both normal and lognormal distributions are rejected, the advice in the guidance document
should be followed.

To test the assumption of lognormality, the data should be logarithmically transformed and
tested for normality as described in Section 2.1.4.1. This involves calculating the natural
logarithm (base e) of each of the data points. If the transformed data appear to be normally
distributed (using the W test or D’Agostino’s test) when they have been logarithmically
transformed, the data set can be assumed to be lognormally distributed. Many of the statistical
estimation methods and tests described in the following sections may then be performed on the
transformed data. Detailed instructions for testing the assumption of lognormality using the W
test are provided in Worksheet W-1. Supplement S-3 provides. an overview of the procedure
to follow in making a decision on the distribution of site or background data.

A histogram of a data set drawn from a lognormally distributed population is shown in
Figure 5a. This data set was logarithmically transformed, and the transformed data appear to
be normally distributed (Figure 5b). Logarithmic transformations are demonstrated in
Example 8. In Figure 6, an untransformed data set is plotted on a probability plot, and the
points do not plot on a straight line. However, the plotted, logarithmically transformed data
approximate a straight line (Figure 7), indicating that the data set is approximately lognormally
distributed (log [lognormal] probability plotting paper is included in the Appendix of this
document). A comparison of normal and lognormal distributions is shown in Figure 8.

Lognormally transformed data should never be used to obtain summary statistics (e.g.,
mean, standard deviation) for the untransformed data, due to the transformation bias inherent
in determining summary statistics for a transformed data set and then transforming the data back
to original units. Thus, the mean of the log-transformed data is not the same as the logarithm
of the mean of the raw (untransformed) data. However, transformation of percentiles (e.g., 90th
percentile, median) does not exhibit this bias. In other words, the 90th percentile of the log-
transformed ‘data will be the same as the logarithm of the 90th percentile of the raw (untrans-
formed) data.

14
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The log-transformed data appear to be normally distributed, indicating
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19

C704-19-09 0392



RELATIVE FREQUENCY

RELATIVE FREQUENCY

Q
sqfesseseanteniassenis
Q

| TRt

—- —
N —
© —
& —
o —
o —
~N —

CONCENTRATION

CONCENTRATION

LEGEND

O = Standard deviation of population distribution

! = One standard deviation from the mean of the
population distribution

= Mean of population distribution

= Median (50th percentile)

= 90th percentile

Figure 8. Relative position of meén, standard deviation and percentiles for a
normally distributed population (upper figure) and a lognormally
distributed population (lower figure).

20

C704-19-09 0392




2143 Other Distributions—For small data sets (e.g., n < 20), it may not be possible
to "reject” either the normal or lognormal distribution; both distributions may appear to fit the
data. In this case, the lognormal distribution should be used. Alternatively, additional samples
can be taken to better determine the distribution. This is demonstrated in Figure 9. Normal and
lognormal distributions are sufficient to model many real-world statistical situations. However,
some data sets may be neither normally nor lognormally distributed. Several other distributions
have been used to model environmental data, including Weibull, gamma, and beta distributions.
The three-parameter Weibull distribution can assume a wide variety of shapes and can be used
to model both right and left-skewed data. These distributions are discussed briefly in Gilbert
(1987), and are mentioned here because they may be encountered in statistical texts. However,
for the statistical methods described in this document, if the data set does not appear to be
normally or lognormally distributed, a nonparametric (distribution-free) statistical method should
be used, if available and appropriate.

2.1.5 Parametric vs. Nonparametric Methods

Parametric estimation methods and tests require that the data be drawn from a population
with a specific probability distribution (e.g., normal). When the distributional assumptions hold,
parametric tests are usually more powerful than nonparametric (distribution-free) tests, although
this is dependent on the type of test performed. However, parametric tests can lose statistical
power or introduce bias if their distributional assumptions are incorrect. In this case, statistical
power can be thought of as the ability of a method to detect site contamination if it is present,
and to decide that remediation is unnecessary at a clean site. The loss of statistical power or
introduction of bias when distributional assumptions are not met can render parametric statistical
procedures ineffective in reaching decisions on site contamination.

Nonparametric estimation methods and tests, also called "distribution-free," do not require
that the data be drawn from a specific distribution (e.g., normal). These methods and tests are
valid for all data distributions. However, because parametric methods are generally more
powerful if distributional assumptions hold, parametric methods are preferred unless data deviate -
significantly from normal and lognormal distributions. Thus, in order to use a nonparametric
method, the distributional assumptions must be tested, and both the normal and lognormal
distributions rejected.

2.1.6 Null Hypothesis

In MTCA (WAC 173-340-200), the null hypothesis (the "working assumption") is that
contaminant concentrations at the site exceed the cleanup level (unless the cleanup level is based
on background concentrations). The alternative is that they do not exceed the cleanup level.
Since there is only one possibility for the alternative hypothesis, the appropriate statistical
analysis is known as a one-tailed test. If there were two possibilities for alternative hypotheses,
the test would be a two-tailed test.

The MTCA null hypothesis ("site exceeds cleanup level") is environmentally conservative
but creates some statistical problems. This is because the conventional null hypothesis in
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statistics is the "no difference" hypothesis ("site is not different from cleanup level"). Most
statistical tests are designed to test the "no difference" null hypothesis, and any introductory
statistical textbook will be written from this perspective. Consequently, many commonly used
statistical tests, such as the r-test or analysis of variance (ANOVA), are generally inappropriate
for MTCA cleanups and are therefore not described in MTCA or this document. In addition,
much of the information in statistics texts is also inappropriate. Statistical guidance published
for the Resource Conservation and Recovery Act (RCRA) program is generally inapplicable to
MTCA because the "no difference” null hypothesis is used in statistical analysis for RCRA
facilities. However, U.S. EPA (1988, 1989a) has published statistical guidance for Superfund
cleanups that is based on the same null hypothesis as MTCA, and may therefore be used for
statistical analysis of data from MTCA sites. If in doubt, consult these sources or a statistician.

2.1.7 Type I and Type II Errors

Two types of errors can occur when a statistical test is applied to test a null hypothesis.

If a statistical test shows that the null hypothesis is very unlikely, then we can accept the
alternative, which in this case is that the site is clean. Since we are dealing with probabilities
and not certainties in statistics, we could be wrong. If we are wrong—we assume that the site
is clean and it is in fact contaminated—we have committed a Type I error. A Type I error
means that the null hypothesis ("site exceeds cleanup level") is incorrectly rejected; a site that
is actually contaminated will not be cleaned up. Statistics can’t prevent Type I errors, but it
* does allow us to control the likelihood of committing such an error. In general, this likelihood
is set at 0.05 (5 percent, or 1 time in 20) in the regulation [e.g., WAC 173-340-720(8)(e) ()]
This defines what we mean by the null hypothesis being "very unlikely" and is an attempt to
minimize mistakes. The statistical test must show that the chances of the null hypothesis being
right are no greater than 0.05, or 1 in 20 in order to reject the null hypothesis.

The probabilistic nature of statistical decisions can also lead to a Type II error. When a
Type II error occurs, the null hypothesis ("site exceeds cleanup levels") is incorrectly accepted.
A statistical test on a particular data set may indicate that the null hypothesis is not sufficiently
unlikely to justify its being rejected (i.e., it is more likely than 1 in 20), and the null hypothesis
is therefore accepted. In this case, however, if the site actually is clean, we have committed a
Type I error. If a Type II error occurs, cleanup will be required on a site that actually doesn’t
need it. In general, the likelihood of committing a Type II error can be reduced by collecting
more samples or by using a more powerful statistical test. When deciding the number of
samples needed at a site, it is worth considering that a Type II error may be a more expensive
mistake than collecting too many samples. These issues are discussed further in the EPA
guidance documents cited above.

2.1.8 Estimation Procedures vs. Statistical Tests

The procedures described in Sections 2.1.1-2.1.3 above are procedures for estimating
summary statistics for the underlying population. Summary statistics include the mean, standard
deviation, and median or other percentiles. Summary statistics describe basic facets of the data
but do not provide interpretive or decision-making power.
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In many cases, the purpose of statistical analysis is not only to estimate the statistical
parameters for the underlying population,. but also to make some conclusion about those data.
Statistical tests have been developed for this purpose. In its simplest form, a statistical test deals
with hypotheses and estimating the likelihood that they are correct. The following sections
describe methods to reach conclusions about the site contaminant concentration data.

The concépts behind a statistical test of a null hypothesis will be illustrated by an example:

Samples are collected from two orchard fields to measure soil arsenic levels. There
are two hypotheses. One is that the soil arsenic level is the same in both fields. The
alternative hypothesis is that the soil arsenic levels are different. Normally in statistics
the first hypothesis ("no difference") is the null hypothesis. A statistical test can then
be used to estimate the likelihood that the null hypothesis is correct. If it is "very
unlikely," then the alternative, that the orchard fields are different, is probably correct.
This example illustrates several important points. First, we can only test the null
hypothesis, we cannot prove it. Second, statistics doesn’t provide certainty (although
it does let you specify what you mean by "very unlikely"). A more subtle point is that
if the null hypothesis is probably wrong, and there is a difference between the fields,
then there are actually two possibilities: field #1 has higher arsenic levels than field
#2, or vice versa (either way, the fields are different). Where the alternative to the
null hypothesis contains two possibilities, the appropriate analysis is a two-tailed
statistical test.

If field #1 had been sprayed with an arsenic pesticide, there is good reason to set up
different hypotheses. Now the alternative hypothesis could be that the soil in field #1
has more arsenic than the soil in field #2, and the null hypothesis is that it doesn’t.
If a statistical test shows that the null hypothesis is very unlikely, there is only one
possibility left: arsenic levels in field #1 are higher than in field #2. Here the
appropriate analysis is a one-tailed statistical test.

In general, estimation methods are not influenced by the null hypothesis, whereas statistical
tests are. The procedures discussed in this document are estimation procedures, and therefore
are not influenced by the null hypothesis to be tested (the null hypothesis does not influence the
confidence interval or tolerance interval "tests" described in this document). However,
"alternate statistical procedures” are allowed by MTCA. If methods other than those described
in the regulations are used, they must be consistent with the MTCA null hypothesis that the site
exceeds the cleanup level. As mentioned above, many of the common statistical tests (e.g.,
t-test) are not appropriate for this null hypothesis.

2.19 Confidence Interval
Estimation procedures do not provide population parameters (e.g., mean) with absolute

certainty. The confidence interval for statistical parameters can be used to describe the
likelihood that the parameters will fall within a specific interval.
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Suppose that a specific number of samples are taken at a site, the 100(1—«) percent
confidence interval is calculated, and this process is repeated many times. The 100(1—c)
percent confidence interval (CI) on a percentile (e.g., the median) means that 100(1 —«) percent
of those intervals will include the percentile. The level of significance, «, is calculated from
the selected CI by the following equation:

o =1 — CI/100.

Thus, for a 95-percent confidence interval, « is 0.05. For a significance level o = 0.05, the
95-percent CI on the median means that the true population median will be within the interval
95 percent of the time. : :

2.1.10 Tolerance Interval

A tolerance interval is based on determining the confidence interval on a fixed proportion
of the measurements, rather than on a particular parameter (e.g., the median). A confidence
interval describes the likelihood that the particular parameter (e.g., the median) will fall within
the interval. The tolerance interval describes the likelihood that a portion of the measurements
(e.g., 95 percent) will fall within a specific interval. For example, the value obtained from the
upper 95-percent tolerance interval around the 90th percentile means that we are 95 percent
confident that at least 90 percent of the distribution is less than the value.

The tolerance limits are given by

X + ks

The k value is essentially a factor that reflects the percentile of interest and the sample size. It
increases the standard deviation by an amount related to the number of samples and the
confidence level desired.

The tolerance interval approach assumes that the sampled data are drawn from a normally
distributed population. This approach is more sensitive to the normality assumption than the
confidence interval approach. It should not be used for data where a statistical test indicates that
the normal distribution is inappropriate. For lognormally distributed data, see Section 5.2.2.2.
Methods for data that are neither normally or lognormally distributed are described in Sections
5.2.2.3and 5.2.2.4. ’

2.2 SAMPLES WITH VALUES BELOW THE DETECTION LIMIT OR PRACTICAL
QUANTITATION LIMIT

Environmental data sets commonly contain data that are reported as "less than" the detection
limit, or "not detected." This is particularly common for contaminants such as volatile organics,
which are not normally present in the environment. In addition, due to conditions such as
matrix interference, a laboratory measurement may be above the method detection limit, but
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below the practical quantitation limit (PQL), and these measurements will commonly be reported
as "less than" the PQL. Data sets that contain below-detection-limit (BDL) or below-PQL data
are known as censored data sets. Censored data sets present difficulties for many standard
estimation procedures and statistical tests. For example, the mean cannot be estimated by the
method described in Section 2.1.1 unless numerical values are assigned to the BDL or below-
PQL data. Thus, the values assigned to BDL and below-PQL data could have a significant
impact on the calculated mean for the data set. Censored data are less influential, however,
when we are interested in upper-percentile estimates (e.g., defining background concentrations).

The method described in MTCA for handling censored data sets is the same as that used
- for estimating background concentrations, and for demonstrating compliance with groundwater,
surface water, and soil cleanup levels. The regulation requires that all concentrations below the
detection limit be assigned a value equal to one-half the detection limit of the method being used.
Measurements above the method detection limit, but below the PQL shall be assigned a value
equal to the method detection limit [WAC 173-340-708(11)(e), 173-340-720(8)(g), 173-340-
730(7)(f), 173-340-740(7)(g)]. However, "alternate statistical procedures" for handling censored
data may be approved by the department.

2.2.1 Additional Information

Three basic methods are available for estimating summary statistics for censored data sets:
1) simple substitution, 2) distributional methods, and 3) robust methods (Helsel 1990). These
methods range from simple to complex. The method described in MTCA is an example of
simple substitution, which involves substituting a single value for each BDL or below-PQL
value. Many studies have found that simple substitution methods do not estimate summary
statistics of the underlying population as well as more complicated methods for handling
censored data (Helsel 1990). [Use of methods 2) or 3) requires consultation with Ecology.]

Distributional methods estimate a distribution for the data and use the characteristics of the
distribution to estimate summary statistics. Helsel (1990) states that the best estimation method
in this category is the maximum likelihood estimator (MLE). MLEs have performed well for
percentile estimation, but not as well for estimating the mean and standard deviation of a data
set. This method is accurate only if the data fit the assumed distribution well, and the sample
sizes are large (e.g., >30) (Helsel 1990). Due to the small sample sizes likely to be available
at MTCA sites, however, these methods may not be appropriate.

Helsel (1990) recommends the use of robust methods for estimating the mean and standard
deviation. These methods use the observed data above the detection limit to assume a
distribution, and then extrapolate the distribution below the detection limit to calculate summary
statistics. If the data above the detection limit fit a normal or lognormal distribution, this can
be done with a probability plot. Robust methods are recommended when data do not appear to
fit the assumed distribution well. ‘

- The percentage of data below the detection limit will influence which methods are applicable
for a particular data set. ‘If the data set contains only a small percentage of censored data (e.g.,
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no more than 15 percent), simple substitution methods will be satisfactory for estimating
parameters. However, for estimation of summary statistics such as the mean and standard
deviation, the presence of a substantial number of BDL or below-PQL data poses a significant
problem from a statistical standpoint, unless more robust methods—discussed above—are used.
However, some statistical estimation methods are not influenced by censored data. For example,
the nonparametric confidence intervals about upper percentiles (Sections 5.2.2.3 and 5.2.2.4)
will not be influenced by some censored data.

2.2.2 Multiple Detection Limits [Alternative methods require consultation with Ecology.]

Data sets may contain data with more than one detection limit. This may occur when data
sets from multiple laboratories are combined, or data are analyzed at different times with
variations in the reporting limit (usually the limit becomes lower over time). Using the simple
substitution method (one-half the detection limit) described in the MTCA, multiple detection
limits will not pose a problem. However, if alternative methods for handling BDL data are
used, multiple reporting limits may cause some difficulties. Helsel (1990) recommends using
robust methods for estimating the mean and standard deviation, and MLEs for percentiles.

2.3 OUTLIERS
The EPA groundwater guidance (U.S. EPA 1988) states:

In many statistical texts, measurements that are very large or small relative to the rest
of the data, or are suspected of being unrepresentative of the true concentration at the
sample location are often called "outliers.” Observations which appear to be unusual
may correctly represent unusual concentrations in the field, or may result from
unrecognized handling problems, such as contamination, lab measurement, or data
recording errors. If a particular observation is suspected to be in error, the error
should be identified and corrected, and the corrected value used in the analysis. If no
such verification is possible, a statistician should be consulted to provide modifications
to the statistical analysis that account for the suspected "outlier” ... The handling of
outliers is a controversial topic. In this document, all data not known to be in error
. are considered valid because:

- The expected distribution of concentration values may be skewed (i.e., non-
symmetric) so that large concentrations that look like "outliers" to some
analysts may be legitimate,

- The procedures recommended in this document are less sensitive to extremely
low concentrations than to extremely high concentrations, and

- High concentrations are of particular concern for their potential health and
environmental impact.

There are no provisions in MTCA for excluding "outliers" that cannot be demonstrated to
be in error.
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3. SAMPLING

A wide variety exists in sampling designs. Each describes the number of samples, locations
for sampling, type of samples, and time frame for sampling. The sampling plan should be
considered carefully prior to performing any sampling or performing statistical analysis on data,
because a poorly designed sampling plan can greatly reduce the usefulness of the collected data.
The sampling method used can influence the effectiveness of the remedial action in protecting
human health and the environment. Sampling should be continued until the complete,
preplanned sampling workplan has been carried out. It is unacceptable to terminate a sampling
plan prematurely because the data collected to date indicate the results desired by the sampler
(e.g., the cleanup level has been met).

Many factors should be considered in sampling, including the objectives of the study, the
sampling method (e.g., random vs. systematic sampling), cost effectiveness of the sampling
program, statistical analysis to be performed on the data, and the expected type and distribution
of contaminants. In addition, several practical factors exist, such as legal and political
considerations (e.g.,. sampling on private property), site accessibility and availability, and
required equipment, which may affect sampling design. These factors influence sampling
locations as well as the number and type of samples required. Sampling design is an extensive
topic, and is beyond the scope of this document. However, its importance should not be
underestimated. In this document, it is assumed that sampling design issues have been
considered prior to performing statistical analyses of data. :

Gilbert (1987) presents concepts and considerations for several sampling methods (e.g.,
simple random, stratified random, systematic). Soil sampling locations are discussed in
McBratney et al. (1981); McBratney and Webster (1981) and U.S. EPA (1989a). Design of
groundwater monitoring systems is described in Nelson and Ward (1981). and Sophocleous et al.
(1982).

Special Comment on Hot Spots: No discussion of "hot spots" (highly contaminated local
areas) is presented in MTCA. Gilbert (1987) presents a method for locating single hot spots by
sampling on a square, rectangular, or triangular systematic sampling grid. Methods for locating
multiple hot spots are presented in Gilbert (1982) and Holoway et al. (1981).

Special Comment on Compositing: Compositing of soil, or occasionally groundwater,
samples refers to taking several samples and combining them into a single sample for analysis.
This is commonly done to reduce analytical costs. There are two common methods used for
compositing samples. The first method entails sampling segments of the soil core at random or
at systematic locations. The sampled portions are homogenized and then subsampled. The
second method requires retaining the entire soil core, homogenizing all the material, and then
subsampling. The second method is preferable from a statistical standpoint, because the
subsampling variance will be lower (U.S. EPA 1989a).
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Compositing may be useful in screening a large area for contamination (e.g., screening for
hot spots) in a cost-effective manner. In addition, compositing has been used successfully to
evaluate the risk associated with an "exposure unit," the area over which people are expected
to be exposed at a site and where cleanup actions are being considered (Ryti and Neptune 1991).
In this case, the average concentration of contaminants over an exposure unit is a meaningful
basis for assessing risk, and thus, compositing is a useful sampling technique (Neptune et al.
1990). : ‘

Despite the advantages associated with compositing, there are several problems that should
be considered prior to sampling.

® A contaminated sample may be overlooked due to the effects of dilution. For
example, suppose the detection limit for a particular contaminant is 1 mg/kg, and
the action level is 3 mg/kg. Ten samples are taken and composited into one
sample. If one sample has a concentration of 9 mg/kg, and all of the other
samples are uncontaminated, the dilution effect of mixing the single contaminated
sample with all the clean soil will cause the overall concentration measured in the
soil to be below the detection limit of 1 mg/kg, and the soil will be considered
clean. However, the local, hotspot concentration of 9 mg/kg is greater than the
3 mg/kg action level, and the site actually should be considered contaminated.

®  Compositing methods may be inappropriate unless the statistical parameter of
interest is the mean concentration. This is because the variance of the mean
contributed by differences in location across the site from composited samples will
be lower than the same variance associated with the mean from noncomposited
samples (U.S. EPA 1989a).

®  For contaminants such as volatile organics, compositing may cause the loss of
material from the soil sample, and will thus reduce the measured contaminant
concentration.

Due to these problems, compositing should be used only when it is supported by defined
sampling objectives and its use can be shown to be appropriate for those objectives. Unless
there is a well-defined reason for compositing, it should not be performed.

Several references are available that describe compositing of soil samples, including Duncan
(1962), Rohde (1976), Schaeffer and Janardan (1978), Elder et al. (1980), U.S. EPA (1983,
1984, 1989b), Neptune et al. (1990), and Ryti and Neptune (1991).

Special Comment on Variability and Error in Data: Variability in environmental data
can be attributed to two primary factors: 1) true variability in the population and 2) analytical
or statistical uncertainty or error. True variability in contaminant concentrations in soils and
groundwater may be due to a wide variety of factors, including:

B Natural variations in the geologic media '(e. g., composition, permeability, and
grain size)

m  Distance from the source of contamination and variations in the source over space
and time
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® - Differences in vegetation and in activity of microorganisms
‘B Temporal and spatial variations in background levels
®  Chemical reactions of contaminants (e.g., degradation and transformation)

B Seasonal variation (e.g., in precipitation or temperature).

In addition, several sources of error and uncertainty exist that can result in observed
variability in sampled data: _
B Measurement bias (constant factor by which measurements are too high or low)

B Uncertainty in measurements (random sampling error)

m Qliality assurance and quality control (QA/QC) problems. It is critical that the
data available at the time of statistical evaluations have been through a QA/QC or

data validation step and that they are deemed useful as reported for further
decision-making at the site.
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4. DETERMINATION OF CLEANUP STANDARDS
AND BACKGROUND CONCENTRATIONS

4.1 DECISION-MAKING PROCESS

This chapter addresses three issues:

1. In general, how are cleanup standards determined?

2. What are the criteria for using background concentrations to determine a cleanup
level?

3. How should the background data be used to set a cleanup level?

Prior to evaluating onsite data, the cleanup standard should be determined for the contaminants
present at the site. This standard may be based on appropriate applicable state and federal laws,
risk, ecological factors, and analytical considerations (e.g., BDL data, PQL), or may be related
to background levels of the contaminant near the site. The process involved in choosing a
method for determining a cleanup level is shown in Figure 10.

42 WASHINGTON ADMINISTRATIVE CODE DEFINITIONS

4.2.1 Establishing Cleanup Levels: Methods A, B, and C

Establishing cleanup standards (WAC 173-340-610) requires the specification of:

1. Cleanup levels

2. Points of compliance (locations where cleanup levels must be met) and time of
compliance (for groundwater)

3. Additional regulatory requirements that apply to a cleanup action because of the
type of action and/or the location of the site.

MTCA provides three basic methods for establishing cleanup levels in groundwater, surface
water, soil, and air (WAC 173-340-700). Cleanup levels resulting from these methods may be
broadly defined as:

B  Method A—numerical standards (routine cleanup method)

B Method B—site-specific method that includes risk-assessment-based standards,
standards based on applicable state and federal laws, or background concentrations
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Method A Criteria:
 Routine cleanup action

- obvious and limited choice of
cleanup methods

- reliable and capable cleanup

" methods _

- cleanup standards obvious
undisputed and allow
adequate margin of safety

- Ecology has experience with
similar actions

- EIS not required

- typically would not include
ground water

or

* Numerical standards available
for all indicator hazardous
substances, in all media of
concern

- Method A tables

- applicable state and federal
laws

- natural background
concentrations

- practical quantitation limits

"Industrial” Criteria:

+ Zoned or otherwise designated.
industrial

« Current or past industrial use

* Adjacent properties are
.industrial

* Future use industrial

+ Cleanup action includes
institutional controls

Method C Criteria:

» Method A or B cleanup levels
below area background

« Attainment of Method A or B
cleanup levels would create
significantly greater overall
threat to human health or the
environment '

* Not technically possible to
achieve Method A or B cleanup
levels

Industrial
Clasification
Soils Only

Does site meet
criteria for using Method A?
WAC 173-340-700(3)(a)
WAC 173-340-704

Does site meet criteriab
for "industrial” classification?
WAC 173-340-745(1)(b)

Use Method B to determine

(optional)

Use Method A to determine
soil cleanup levels
WAC 173-340-740

yes

Is
this a soil
?

no

cleanup levels -
WAC 173-340-700(3)(b)
WAC 173-340-705

Does site meet

criteria for using Method C?
WAC 173-340-700(3)(c)

WAC 173-340-706(1)

Evaluate Method B
cleanup levels

Use Method C to determine
cleanup levels
WAC 173-340-706

site meet criteria for

using industrial Method A?
WAC 173-340-700(3)(a)
WAC 173-340-704

WAC 173-340-745(2

Use Method C industrial to
develop soil cleanup levels
WAC 173-340-745(3)

(optional)

Use Method A industrial to
develop soil cleanup levels
WAC 173-340-745(2)

Figure 10. Flowchart for determining whether Method A,B, or C should be

used for establishing cleanup levels.
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(standard method)

m  Method C—when compliance with Method A or B cleanup levels is impossible or |
may cause greater environmental harm or if site is an industrial site (conditional
method).

4.2.1.1 Method A: Tables—Method A can be applied if either of the following conditions
are met (WAC 173-340-704):

1. The site qualifies for a routine cleanup action. A cleanup action can be consid-
ered "routine" if all of the following criteria are met [WAC 173-340-130(7)]:

- It involves an obvious and limited choice of cleanup methods

- It uses a cleanup method that is reliable and has been proven capable of
achieving cleanup standards

- Cleanup standards for each hazardous substance addressed by the
cleanup are obvious and undisputed, and allow an adequate margin of
safety for protection of human health and the environment

- Ecology has experience with similar actions
- An environmental impact statement is not required.

Cleanup of groundwater will not normally be considered a routine cleanup action
[WAC 173-340-130(7)(c)].

2. Numerical standards are available for all indicator hazardous substances in all
media of concern. Numerical standards may be available in the regulations
(Tables 1, 2, and 3 of WAC), or applicable state and federal laws. Under Method
A, cleanup levels must be at least as stringent as concentrations specified in these
sources. If they are not available from these sources, cleanup standards can be
set at natural background concentrations or the PQL for the substance in question.
Ecology may set more stringent standards if needed to protect human health and
the environment.

4.2.1.2 Method B: Standard Method—The regulations [WAC 173-340-700(3)(b)] state
that under Method B:

...cleanup levels for individual hazardous substances are established using applicable
state and federal laws or the risk equations specified in WAC 173-340-720 through
173-340-750. For carcinogenic compounds, cleanup levels are based upon the upper
bound of the estimated excess lifetime cancer risk of one in one million. For
individual noncarcinogenic substances, cleanup levels are set at concentrations which
are anticipated to result in no acute or chronic toxic effects on human health and the
environment. Where a hazardous waste site involves multiple hazardous substances
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and/or multiple pathways of exposure, Method B cleanup levels for individual
substances must be modified in accordance with the procedures in WAC 173-340-708.
Under this method, the total excess lifetime cancer risk for a site shall not exceed one
in one hundred thousand and the hazard index for substances with similar
noncarcinogenic toxic effects shall not exceed one (1).

42.1.3 Method C: Conditional Method—Method C cleanup levels may be established
based on applicable state and federal laws and a site-specific risk assessment if any of the
following conditions are met (WAC 173-340-706):

1. Cleanup levels established using Method A or B are below area background
concentrations.

2. Attainment of Method A or Method B cleanup levels has the potential for creating
a significantly greater overall threat to human health or the environment than
attainment of Method C cleanup levels.

3. Method A or Method B cleanup levels are below technically possible concentra-
tions. "Technically possible" means that remedial measures are capable of being
designed, constructed, and implemented in a reliable and effective manner,
regardless of cost (WAC 173-340-200). '

4. The site is defined as an industrial site (see WAC 173-340-745) and meets the
criteria for establishing soil cleanup levels under WAC 173-340-745:

m  The site is zoned for industrial use
®  The site is currently used for industrial purposes
B Adjacent properties are currently used for industrial purposes

®  The site is expected to be used for industrial purposes in the
foreseeable future

®  Institutional controls will be nnplemented as part of the remedial
action.

Additional criteria for using Method C include:
®  All ARARs will be met
®  All practicable methods of treatment will be used

®  Institutional controls will be implemented
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A flowchart for use in determmmg whether Method A, B, or C is appropriate for establish-
ing cleanup levels at a site is shown in Figure 10.

4.2.2 Natural vs. Area Background

The MTCA regulation makes a distinction between natural and area background concentra-
tions.

4.2.2.1 Natural Background—Natural background refers to the concentration of a
constituent that occurs naturally in the environment and has not been influenced by localized
human activities. An example presented in MTCA (WAC 173-340-200) is that several metals
occur naturally in the bedrock and soils of Washington State due solely to the geologic processes
that formed these materials; therefore, the concentrations of these metals would be considered
natural background. In addition, some constituents have been used globally, and low concentra-
tions of these contaminants can be found in soils and groundwater throughout much of the state.
These concentrations are the result of widespread use of the constituents and not localized human
activity. Examples presented of constituents for which low concentrations would be considered
- natural background include polychlorinated biphenyls (PCBs) and radionuclides (due to fallout
from bomb testing and nuclear accidents).

For comparison of onsite constituent concentrations with natural background levels, data
should be obtained from a suitable reference area that is comparable to the site (e.g., similar
geology and soil characteristics).

4.2.2.2 Area Background—Area background is defined as the concentration of hazardous
substances that are consistently present in the environment in the vicinity of a site, and are the
result of human activities unrelated to releases from that site. The size of the area affected by
a particular contaminant is smaller for area background levels than for natural background. For -
example, lead levels in Seattle might be higher than lead levels in Bellevue; area background
concentrations would therefore be different in these two cities.

4.3 SOIL CLEANUP STANDARDS BASED ON BACKGROUND DATA

MTCA regulations allow background concentrations to be considered in establishing cleanup
standards. The role of background concentrations within the regulation and the procedures for
background data evaluations are discussed in the sections below. Details of the statistical
methods used for background data evaluations are provided in Sections 2 and 5.

35



43.1 Characteristics of Background Data Sets

Several characteristics of background data should be recognized:

‘® . Background data are variable, and samples will typically reflect a range of values,
not a single value. Therefore it is appropriate to consider the distribution of
background values (see Section 2.1.4).

B The distribution for background data may vary from one site to another, one
environmental medium (e.g., soil, groundwater) to another, and one constituent
to another. Background data may occur in the form of normal, lognormal, or
other distributions, although it is expected that many background distributions will
be (approximately) lognormal. The form of the data distribution should be
considered in evaluating background values for each constituent, in each medium,
at each site. :

B BDL results are common for many constituents in background samples, and the
frequency of BDL results may be much higher than for most compliance monitor-
ing data sets. Therefore, specific methods for dealing statistically with BDL
values (i.e., the regulation’s default approach, assigning one-half of the detection
limit to BDL values, or an alternative approach) should be identified (see Section
2.2).

43.2 - Uses of Background in the Cleanup Standards Regulation

The distinction between natural background and area background values is important with
respect to the uses of background data in the cleanup standards regulation (see the discussion in
Section 4.2.2 above). Background data can generally be used in three ways to establish cleanup

" standards:

1. Natural background can be used to establish a cleanup standard for a hazardous
substance for which no applicable or relevant and appropriate requirement (ARAR) or
cleanup standard regulation value exists [WAC 173-340-704(2)(c)].

2. Natural background can be used to replace an existing Method A, Method B, or
Method C cleanup standard when that standard is below the natural background level
[WAC 173-340-700(4)(d)].

3. When Method A or Method B cleanup standards are below area background levels,
Method C can be used to establish the cleanup standard. That cleanup standard may
be equal to the area background value if it is within the allowable range for Method
C standards, but the standard may not be greater than the maximum concentration
allowable under Method C calculations [WAC 173-340-706(1)(a)].

Situations in which either natural or area background values will result in cleanup standards
higher than those derived in Methods A, B, or C, based on ARARs or risk-equivalent
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calculations, may be infrequent. For many cleanup standard decisions, background values will
not affect the cleanup standards. However, in cases where background values lead to the
adoption of higher cleanup standards, this decision can be of great importance for reaching
decisions on site cleanup. A flowchart presenting the role of background values in determining
cleanup levels is shown in Figure 11.

433 Calculation of Background Values

4.3.3.1 General Issues—The uses of background data specified in MTCA regulations
require that the distribution of background values (i.e., the varying concentrations reported
within a set of background samples) be represented by a single selected value. That value will
determine, for example, whether or not a numerical cleanup standard established under Method
A, B, or C is below background.

The regulation states the following requirements [WAC 173-340-708(0),(d), and (e)]:

1. The statistical method used to evaluate available data shall be appropriate for the
statistical distribution (e.g., lognormal) of each hazardous substance.

¥

2. The lower tolerance limit may be used to compare a cleanup standard with back-
ground. That lower tolerance limit shall be based on a coverage of 95 percent and a
tolerance coefficient of 95 percent (i.e., the background value shall be the lower 95
percent confidence limit on the 95th percentile of the background distribution).

3. Other statistical methods may be used if approved by Ecology.

4. Values below the method detection limit shall be assigned a value equal to one-half of
the method detection limit. Values above the method detection limit but below the
practical quantitation limit shall be assigned a value equal to the method detection
limit. Alternative procedures for addressing not-detected values may be used if
approved by Ecology.

Ecology has determined that the statistical procedures included in the regulation, including
the use of lower tolerance limits, do not provide an appropriate method for evaluating
background data and comparing cleanup standards to background. Therefore, alternative
procedures are described in this guidance document. They are discussed in Section 4.3.3.2
below.

The same statistical methods are used for both natural and area background data, regardless
of the intended uses of the data. The main features distinguishing natural and area background
data sets under MTCA are the location and number of samples. The same locations are not
equally representative of natural and area background conditions; therefore, any sampling plan
for collecting background data should be carefully designed and reviewed with respect to the
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cleanup levels
to be set at natural
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Method
A?

no

Y

Determine cleanup level for
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levels likely to be

Calculate natural background
value (Section 4.3.3.2)

no:

less than natural

background
?

yes

Y

Calculate natural background
value (Section 4.3.3.2)

Is
cleanup level
less than natural
background value?
(Section 4.3.4.)

yes

Y
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any cleanup

levels likely to be
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?
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value (Section 4.3.3.2)

background value (Section 4.3.4.)

any cleanup
levels less than area
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'

yes

Under Method A: May use Method C
cleanup levels
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cleanup levels

May use area background
as cleanup level, subject
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Under Method B:

Under Method C:
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Use Method A cleanup
levels
Use Method B cleanup
levels
Use Method C cleanup
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Figure 11. Flowchart demonstrating the role of background values in
determining cleanup levels.
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representativeness of those locations for the type of background data being sought. Area and
natural background samples cannot be combined meaningfully in a single data set.

For soils data, the regulation specifies minimum numbers of background samples [WAC
173-340-708(11)(d)]. At least 10 soil samples are required to determine natural background
levels, and at least 20 are required to determine area background levels. The minimum number
of samples required for other media is not defined in the regulation and needs to be determined
on a case-by-case basis. The minimum sample sizes of 10 or 20 samples may not result in data
sets that provide accurate and representative estimates of background values (i.e., sampling
errors may be relatively large). Estimates of upper percentile values of the background
distribution may be particularly affected by small sample sizes. In many cases, it may be
appropriate to collect a larger number of background samples to reduce possible sampling error
effects and reach a better decision on cleanup standards.

The flowchart in Figure 12 provides an overview of the data evaluation procedures for
determining possible cleanup standards based on background. Default procedures are shown in
the left-hand column of Figure 12. The right-hand column provides for alternative methods. A
numerical cleanup standard is still established, but it may be based on different data evaluation
procedures. This could be as the result of site-specific characteristics, such as the form of the
background data distribution, its coefficient of variation (CV) or degree of skew, the number of
samples available, or other such factors.

The use of alternative procedures rather than the default procedures of Figure 12 for
evaluations at MTCA sites will require submittal of adequate supporting information on the
performance of the proposed tests (e.g., Type I and Type II error rates). Alternative procedures
cannot be used unless they are reviewed and approved by Ecology.

43.3.2 Calculation Methods (Examples 9 and 10)—The default procedures for
determining a cleanup standard based on background data are illustrated in Figure 12 and are
discussed in this section. An abbreviated summary of the procedures shown in Figure 12 is
provided in Supplement S-4. Statistical methods referred to in these default procedures are
described in Sections 2, 5.2, and 5.3.

The default procedures result in a numerical value, calculated from site background data,
that is used to represent background for evaluations of cleanup standards and compliance with
background-based cleanup standards. Background data are assumed to be lognormally
distributed; contrary assumptions shall not be made unless a lognormal distribution is statistically
rejected at the 0.05 level. Lognormal distributions have a positive skew; this is often representa-
tive of data from environmental measurements, which are constrained on the low side by zero
or the limits of analytical detection. Ecology performed computer analyses (called "Monte
Carlo" simulations) to examine the performance (Type II error rates and power to detect residual
contamination) of various percentiles of lognormal distributions as candidates for defining
background cleanup standards. Those simulations included lognormal distributions with varying
coefficients of variation (i.e., varying degrees of skew). Similar simulation evaluations were
also performed for normal distributions. Based on the results of the Monte Carlo simulations,
Ecology has selected the 90th percentile value as the default background value for cleanup
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Figure 12. Flowchart for determination of cleanup
‘standards based on background data.
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TECHNICAL ATTACHMENT 1
TO FIGURE 12

ALLOWABLE FREQUENCY OF EXCEEDANCE OF CLEANUP STANDARDS BASED ON BACKGROUND
[Requires consultation with Ecology]) '

The cleanup regulations under MTCA include provisions for limiting the frequency of exceedances of a
cleanup standard to no more than 10 percent. Where a cleanup standard is established based on risk estimates,
ARARs, or other approaches at a level above background, the possibility of a "false positive” result does not arise.
However, for a cleanup standard based on background, the possibility that exceedances of the standard occur as
a result of chance alone (false positives) should be considered explicitly. This results in an adjustment to the
allowable frequency of exceedances for background-based cleanup standards only.

A cleanup standard selected at a given percentile of the background distribution defines the probabilities of
any single random sample from that background distribution being above or below the cleanup level. For example,
a cleanup standard established as the 90th percentile (using the default procedures) of a background ‘distribution
results in a probability of 0.10 for a single sample exceeding the cleanup level, and 0.90 for that sample being less
than the cleanup level. This "binomial" outcome leads directly to use of the binomial theorem to calculate
probabilities of any frequency of exceedance of the cleanup level. Probabilities of exceedance depend only on the
percentile chosen for background, the number of compliance monitoring samples, and the exceedance frequency.

Based on the percentile of background that the cleanup standard represents, let p and q represent the
probabilities of a single random sample being greater than and less than (or equal to) the cleanup standard,
respectively. For the default procedures where the cleanup standard is at the 90th percentile, as discussed above,
p = 0.10and q = 0.90. Letn be the number of compliance monitoring samples. Then, by the binomial theorem,
the probability of exactly k out of the n compliance monitoring samples exceeding the cleanup standard is:

probability =p kq'"* (2)
where

() = [n(n=1) (n-2)...(n—k+1)/K!

The last term on the right in the probability equation gives the number of different ways of selecting the k
out of n samples that exceed the cleanup level (order of sampling not considered). Each such result has the same
probability, namely p‘q"™*. Using this equation to calculate the results for individual k values, the probability of
k or more exceedances can easily be determined.

It should be recognized that there is a non-zero probability that none of the n samples exceeds the cleanup
standard. For example, the probability that O of 10 compliance monitoring samples exceeds a cleanup standard
based on the 90th percentile of background is just (0.9)'° = 0.349. Since some outcome must be observed, the
sum of the probabilities from k = O to k = n must equal 1. Table A-5 provides binomial distribution results for
selected values of p and n. '
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A 0.05-level false positive error probability is considered in the following analysis. With a discrete, rather .
than continuous, set of outcomes (only integral values are possible for k, the number of compliance monitoring
results above the cleanup standard), an exact 0.05-level criterion is not available. The table below provides some
illustrative results assuming that the cleanup standard is established at the 90th percentile of background:

Probability of k or more exceedances

number of samples:

k 10 15 20 25 30 40 50
3 .070 .184

4 013 .056 .133

5 013 .043 .098

6 011 .033 .073

7 .010 .026 .100

8 .042

9 .016 .058
10 .025

An appropriate criterion for the allowable exceedances of a cleanup standard based on the 90th
percentile of background can be determined from information on the probability of k or more exceedances out of
n compliance monitoring samples. For example, with 20 compliance monitoring samples, the probability of 5 or
more exceedances is 0.043 (approximately 0.05), and the maximum allowable number of exceedances is 4, or
20 percent. :

Table A-5 may provide the information necessary for calculation of the probabilities of k or more
exceedances in specific cases. To illustrate how to perform the necessary calculations, consider a case where
the cleanup standard is established at the 80.22nd percentile of background, and 10 compliance monitoring
samples are collected. Using the basic probability equation given above for the probability of exactly k out of n
exceedances, a table of values can be simply computed. The values for p, q, and n are {1 - 0.8022), 0.8022,
and 10, respectively. The initial values in such a table are:

Probability of exactly k out of 10 exceedances

k probability

0 0.1104  p°q™

0.2721  p'q®(10)

2 0.3019  [p*q®(10)(9)1/2

3 0.1985  [p°q’(10)(9)(8)1/(3)(2)

4 0.0857  [p*q®(10)(9)(8)(7))/(4)(3)(2)

-

The probability of 5 or more out of 10 compliance monitoring samples exceeding a cleanup standard
based on the 80.22nd percentile of background is 1 minus the sum of the tabled probabilities fork = O, 1, 2, 3,
or 4, or a probability of (1 — 0.9686) = 0.031. Thus, a maximum allowable number of exceedances would be
4 based on a 0.031-level false positive error rate. '

NOTE: These tables are for illustrative purposes only. Contact Ecology for site-specific allowable exceedance.
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TECHNICAL ATTACHMENT 2
TO FIGURE 12

ALLOWABLE MAGNITUDE OF EXCEEDANCE OF CLEANUP STANDARD BASED ON BACKGROUND
[Requires consultation with Ecology]

The cleanup regulations under MTCA include provisions for limiting the maximum magnitude of
exceedance of a cleanup standard in a compliance monitoring data set to no more than two times the cleanup
level. Where a cleanup standard is based on risk estimates, ARARs, or other approaches at a level above
background, the possibility of a "false positive” result does not arise. However, for a cleanup standard based on
background, the possibility that the maximum compliance monitoring value exceeds twice the cleanup level by
chance alone (false positive) should be considered explicitly. This may result in an adjustment for the maximum
allowable exceedance factor for backaround-based cleanup standards only. '

The maximum allowable exceedance factor can be calculated to achieve a desired false positive error
rate, for example 0.05, assuming that the background distribution is known. Under the standard default
procedures, the background distribution is lognormal; the calculations illustrated here are for that distribution. The
adjustment in the maximum factor of exceedance of a cleanup standard depends on the number of compliance
monitoring samples, the shape of the lognormal distribution (determined by its coefficient of variation [CV], the
standard deviation divided by the mean value for the distribution), and the percentile of background at which the
cleanup standard is established.

For a given compliance monitoring sample size, n, a percentile of the distribution at which the
probability of 1 or more exceedances is equal to 0.05 is calculated first. That probability is equal to 1 minus the
probability of no exceedances. Let the percentile be denoted as (100 x q), so that q represents the probability of
a single random sample being less than (or equal to) the percentile (see Attachment 1). Then

1-q" = 0.05
095 = q"
and
(log,0.95)/n = log,q

q-= e(logeo. 95/n)

The percentile of the distribution is then equal to 100q. For example, the value of 100q when there
are 10 compliance monitoring samples is

100q = 100 x e(loan.SS/‘lO)

100 X e(~0.0051)

99.49

so there is a 5 percent chance of 1 or more out of 10 random samples from background exceeding the 99.49th
percentile of the background distribution. The percentiles for 15, 20, and 30 compliance monitoring samples are
the 99.66th, 99.74th, and 99.83rd, respectively.

Using information on the background distribution (i.e., the best-fit lognormal distribution under standard
default procedures), the value at the percentile corresponding to this 0.05 false positive error rate can be
estimated. This can be done using a computer statistical package such as STATGRAPHICS®, or by calculating
percentiles using log,-transformed values and back-transforming to original units (e.g., see Example 10). The
resulting value defines a criterion for limiting the maximum exceedance of the cleanup standard at a 0.05 false
positive error rate.

A table of exceedance factors can be developed by calculating percentile values as described above
and comparing them to cleanup standard values. Assuming a lognormal background distribution, default cleanup
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standard values will be at the 90th percentile up to a CV of about 1.5, and at 4 times the 50th percentile for CV
values at or above 1.5. The results are as follows:

Maximum exceedance factor of cleanup standard (selected false positive rate = 0.05)

number of samples:

cv 10 20 30
0.1 1.14 1.16 1.18
0.2 : 1.29 1.35 139
0.3 148 1.56 ' 162
0.4 1.65 1.79 1.89
0.5 1.84 2.04 2.18
0.6 2.05 2.31 2.49
0.7 2.26 2.60 2.83
0.8 2.49 2.90 3.19
0.9 2.71 3.21 3.56
10 2.94 3.52 3.94
1.5 4.10 5.19 6.01
2.0 6.56 8.66 10.27

These results illustrate that the maximum exceedance factor at a 0.05-level false positive error rate
increases as either the number of compliance monitoring samples or the background distribution CV increases.
At CV values above 1.5, the cleanup standard based on 4 times the 50th percentile value will also be lower than
the 90th percentile; that difference in cleanup levels also increases the maximum exceedance factor.

Similar procedures can be used to determine a maximum exceedance factor for compliance monitoring
samples in cases of other sample sizes, other CV values for a lognormal background distribution, cleanup standards
at other than the default percentiles, or other types of known background distributions. For example, with 15
compliance monitoring samples, a lognormal background distribution with a CV = 0.7, and a cleanup standard
at the 90th percentile, an exceedance factor of 2.46 results. For 10 compliance monitoring samples, a lognormal
background distribution with a CV of about 3.65, and a cleanup standard at 4 times the 50th percentlle
(approximate 80.22nd percentile), an exceedance factor of about 16.5 results.

NOTE: This table is for illustrative purposes only; contact Ecology for site-specific allowable exceedance factor.
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standard and site evaiuations, subject to certain constraints discussed below. Section 2.1.2
discusses the estimation of percentile values.

The performance of the 90th percentile, especially with respect to Type II error rates
(finding a site to be contaminated when it is really at background; Section 2.1.7), declines as
the coefficient of variation (CV) of a background lognormal distribution increases. It is not
known what CV values will characterize actual background data sets; many of them are expected
to be only modestly skewed. It is noted that alternative procedures may become increasingly
appropriate as the CV increases above about 0.5.

To address the possible significant increases in exposures and human health risks at 90th
percentile background values, especially for strongly positively skewed background distributions,
an additional evaluation measure is applied. Typical background values may be defined as at
or near the 50th percentile value. The ratio of the 90th to the 50th percentile values for
background is a measure of how far the potential cleanup standard value at the 90th percentile
is above typical background levels. This ratio will be larger when the positive skew in the
distribution is larger. As a matter of policy, Ecology constrains possible background cleanup
standards to no greater than 4 times the 50th percentile concentrations. (This assumes that a
risk-based cleanup standard based on Method A, B, or C is below the 50th percentile of
background; if it is in fact above the 50th percentile, the limiting value for a background-based
standard would be 4 times the Method A, B, or C cleanup level). Therefore, after a 90th
percentile background concentration is determined, it is compared to a 50th percentile value and
this ratio test is applied. In cases where 4 times the 50th percentile value is less than the 90th
percentile value, this results in a lower background cleanup standard and a somewhat higher
clean-site failure rate, balanced by lower potential exposures and human health risks.

The choice of the 90th percentile concentration of background for evaluation of cleanup
standards and compliance actually depends on both the background and compliance monitoring
data sets. If the background data are tested and rejected as lognormal (e.g., using the W test;
see Section 2.1.4.1), the 90th percentile should not be used. A different percentile will be
appropriate depending on the distribution of the background data. For example, Ecology
simulations of background data sets drawn from a normal distribution indicate that the 80th
percentile would be suitable in that case. The same percentile value does not result in the same
performance (error rates and power to detect residual contamination) for different data
distributions. If the background data are not lognormally distributed, Ecology should be
consulted for alternative procedures. Example 9 illustrates a case where the background data
appear to be normally rather than lognormally distributed. Example 10 addresses lognormal
background data.

The choice of the 90th percentile when the background data are lognormally distributed is
also contingent on the use of the method of Land (1971, 1975) for estimating an upper
confidence limit on the mean of the compliance monitoring data distribution. That method is
described in Section 5.2.1.2 and is only appropriate when the data are lognormally distributed.
Therefore, if the compliance monitoring data are tested and rejected as lognormal, the 90th
percentile may no longer be appropriate to use for background evaluations. Ecology should be
consulted if background data are lognormally distributed but compliance monitoring data are not
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lognormal before proceeding with site compliance evaluations. The percentile defining
background under MTCA could change in such cases from the default 90th percentile value.

In some cases, it may be appropriate to consider collecting additional background data to
determine if the background distribution is really as skewed as suggested by an initial, small
background data set. Any such additional background sampling should be carefully reviewed
with Ecology before assuming that the data will be used in background evaluations. Higher
background values should always be carefully reviewed to establish whether they could be
influenced by a localized contaminant source (i.e., whether they are really representative of
background).

Worksheet W-3 provides detailed instructions for calculating a background value for
lognormally distributed data. Examples 9 and 10 provide comparisons of parametric and
nonparametric methods for estimating percentiles of a distribution. When a specific distribution
(e.g., lognormal or normal) is assumed for background, appropriate parametric methods should
be used.

434 Establishing a Cleanup Standard from Background Data

After calculating an appropriate background value from a background data set, using the
methods described in Section 4.3.3.2 above, the comparison of that value with a Method A, B,
or C cleanup standard is straightforward. It simply involves the comparison of two numbers.

In the case of natural background comparisons, the higher of the two values will becom
the cleanup standard. .

In the case of area background comparisons, a Method A or Method B cleanup standard that
is greater than area background will still be used as the cleanup standard. If, on the other hand,
area background is greater than the standard, then a Method C cleanup standard can be derived
and used. The resulting standard may or may not be as large as the area background value.

For any comparison based on a given background data set, the results of the comparison
may be accepted or additional background data may be collected, the background value -
recalculated based on a larger (pooled) data set, and the comparison re-evaluated. Collection
of additional background data (sampling design, access agreements, sample collection, laboratory
analysis, QA/QC review, and data validation) would normally require additional time. This
should not be allowed to unnecessarily delay making site decisions. Schedule allowances for the
possibility of a second round of background data collection should be considered early in the
project. ‘

The pooling of data collected in different time frames, and possibly involving different
sampling procedures or analytical laboratories, also should be considered carefully prior to a
second round of sampling. Sampling locations and sampling plans to be used for background
characterization should be approved by Ecology. While the enhancement of a site background
data set offers an opportunity for better characterization of background, and thereby better
decision making, there are also statistical issues involving the post-hoc selection of a most-
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favorable data set for evaluation (continuing sampling until a favorable result is obtained and .
then stopping, introducing bias into the characterization process). Therefore, all background
sampling should be carefully reviewed with Ecology.

435 Evaluating Compliance Monitoring Data When a Cleanup Standard is Based on
Background (Example 11)

Once a numerical cleanup standard has been selected, whether based on risk-equivalent
concentrations, ARARS, ecologically protective levels, natural or area backgrounds, or other
criteria, the evaluation of compliance monitoring data with respect to the cleanup standard
proceeds in exactly the same way. The fact that a numerical cleanup standard has been derived
based on background data does not affect the types of evaluations of compliance monitoring data.
However, some adjustments are required in the criteria based on the allowable frequency and
magnitude of exceedance of a cleanup standard (see Section 5) when that standard is based on
background. Those adjustments are discussed in this section, and are apphcable only in the case
of background -based standards.

The computer analys1s performed by Ecology indicates that, for both the frequency and
magnitude-of-exceedance criteria, evaluation of Type II error rates indicates that the criteria
defined in the MTCA regulation should be adjusted when the cleanup standard is based on
background. The probability of having more than 10 percent of the compliance monitoring
samples above the 90th percentile of background is relatively high if the compliance monitoring
data are from the background distribution (i.e., if the site is clean). Therefore, the criterion
based on frequency of exceedance of the cleanup standard should be adjusted to a somewhat
higher percentage. Attachment 1 to Figure 12 describes an adjustment procedure that should be

‘used. For example, for relatively small compliance monitoring sample sizes (n<30), not more
than 20 percent of the samples should exceed a standard based on the 90th percentile background
value. Consult Ecology for other cases (see Attachment 1).

An adjusted maximum allowable exceedance factor of the cleanup standard will depend on
the number of compliance monitoring samples, the percentile used for a cleanup standard, and
the CV of the lognormal distribution. Attachment 2 to Figure 12 describes how to determine
a 0.05-level exceedance factor. For relatively small sample sizes and CV values, the usual
criterion of no sample values more than two times the cleanup standard is still suitable. In other
cases, a higher factor of exceedance is required. Attachment 2 provides details of the
procedures for determining an appropriate factor for evaluating background-based standards
(requires consultation with Ecology).

Evaluation of compliance monitoring data is the subject of Section 5.0. An illustration of
such an evaluation based on a background cleanup standard is provided in Example 11.
Appropriate adjustments to the frequency and magnitude-of-exceedance criteria are illustrated
in Example 11. (See also Example 12).
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44 GROUNDWATER CLEANUP STANDARDS BASED ON BACKGROUND DATA
(Example 12) :

Except for the requirement to assess compliance at each well or monitoring point [WAC
173-340-720(8)(c)(iv)], cleanup standards for groundwater are evaluated in almost exactly the
same manner as those for soils or any other medium under MTCA. Therefore, the discussion
for soils in section 4.3 above is equally applicable to groundwater. The only other issue for
which the regulation treats soils and groundwater differently is the minimum number of
background samples, which is specified for soils but left to a case-by-case determination for
groundwater. Costs for collecting groundwater samples are typically much higher than for soil
samples, often resulting in fewer groundwater samples being collected and smaller data sets
being available for evaluation. The importance of the background data for site decisions should
always be considered in addition to cost; the need for an adequate database may justify collecting
more groundwater data, even at substantially increased costs.

The spatial and temporal aspects of groundwater variability are somewhat different than for
soils and should be carefully considered in designing any background data collection program
(see Section 5.3.5). Groundwater samples collected within reasonably small areas (i.e., close
to the site) may not reflect the same groundwater population. Hydrogeologic and statistical
information should be considered in evaluating the representativeness of groundwater samples
for defining a background value related to site conditions. It is not necessary that samples be
from hydraulically connected locations, but it is necessary that they be from representative
locations.

Background groundwater concentrations, as well as onsite concentrations, may also vary
substantially over time (e.g., seasonally). This may be particularly important for comparing
compliance monitoring data and background-based cleanup standards. Seasonal variation—for
example as influenced by different precipitation and infiltration rates throughout the year—should
not be confounded with differences between site and background concentrations.

Both spatial and temporal components of variation in groundwater concentrations should be
carefully evaluated as part of the design of any sampling program, but especially for background
sampling where the data will be used for cleanup standards decisions. In general, multiple
samplings from the same well cannot be used to increase sample size unless a demonstration can
be made that repeat measurements at individual wells are not significantly correlated temporally.
Any such demonstration should address temporal and spatial variability independently.

An example of the development of a groundwater cleanup standard based on background

data is provided as Example 12. Additional considerations for groundwater are discussed in
Section 5.3.5.
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4.5 SURFACE WATER CLEANUP STANDARDS [RESERVED]

4.6 AIR QUALITY STANDARDS [RESERVED]

4.7 SEDIMENT STANDARDS [RESERVED]

49



50



5. ASSESSMENT OF COMPLIANCE MONITORING DATA FOR
MEETING CLEANUP STANDARDS

5.1 DECISION-MAKING PROCESS

After the cleanup standard has been determined (see Section 4), the data from the site must
be evaluated to determine whether the exposure unit meets the cleanup standard. This decision
is independent of the approach used to define the numerical cleanup standard. As described in
Section 4, the cleanup standard may be based on applicable state and federal laws, risk,
ecological factors, or analytical considerations (e.g., BDL data, PQL), or may be related to
background levels of the contaminant near the site. In all cases, a single numerical value is
obtained for the cleanup standard, to which site data can be compared. The process involved
in making the decision as to whether the exposure unit meets cleanup standards for soils and
groundwater is shown in Figures 13 and 14, respectively. Note that the criteria for allowable
frequency and maximum magnitude of exceedance of cleanup standards may be adjusted in
consultation with Ecology if the cleanup standard is based on background, as described in
Section 4, and covered in Figure 12.

If issues at a particular site become more complex than those covered in thls document,
additional assistance should be sought from a statistician or Ecology.
5.2 COMPARING SITE DATA TO SOIL CLEANUP STANDARDS

Two methods for demonstrating that the site meets the cleanup standards are recognized:

a method using a confidence interval, and a parametric method for percentiles. The MTCA
regulations state:

For cleanup levels based on short-term or acute toxic effects on human health or the
environment, an upper percentile soil concentration shall be used to evaluate compli-
ance with cleanup levels [WAC 173-340-740(5)(c)(iv)(A)].

and

For cleanup levels based on chronic or carcinogenic threats, the mean' soil concentra-
tion shall be used to evaluate compliance with cleanup levels... [WAC 173-340-

74065)(c)(iv)(B)]
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See section 5.2.1.4 for discussion

Is

yes number samples

<20
?

Design sampling plan for
onsite soils (Section 3 [reserved])

Y

Sample soils and determine
cleanup level

If n is sufficiently large, use method
in Section 5.2.1.3, otherwise, see
discussion in Section 5.2.1.4

Are data
normally or lognormally

distributed
?

Y

Calculate upper confidence limit
on mean. |f data are lognormally
distributed, use H values and the
method of Land (1971, 1975)
(Section 5.2.1.2). ‘See Section
5.2.1.1 if data are normally
distributed

Calculate upper tolerance limit for
90th percentile (Section 5.2.2)
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?

Note: If the cleanup standard is
based on background, these
criteria may be adjusted. See
Section 4 and Figure 12

Site considered clean
(uncontaminated)

Figure 13.

Flowchart for determining if soils at a site meet a cleanup standard.
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See section 5.2.1.4 for discussion
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Are data .

normally or lognormally

distributed
?

Y

Calculate upper confidence limit
on mean. I data are lognormally
distributed, use H values and the
method of Land (1971, 1975)
(Section 5.2.1.2). See Section
5.2.1.1 if data are normally
distributed

y

Calculate upper tolerance limit for
50th percentile (Section 5.2.2)

|

Site considered contaminated

!

yes

e—_—— yes

any single
sample value greater
than two times the
~ soil cleanup

level
?

Do
more than 10%
of samples exceed
-the cleanup

" standard
?

Note: If the cleanup standard is
based on background, these criteria
may be adjusted. See section 4
and Figure 12

Site considered clean
(uncontaminated)

Figure 14. Flowchart for determining if groundwater at a site meets

a cleanup standard.
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Thus, the confidence interval approach (Section 5.2.1) should be used for cleanup levels
based on chronic or carcinogenic effects, and the tolerance interval approach (Section 5.2.2)
should be used for cleanup levels based on short-term or acute toxic effects. Also acceptable
are "other statistical methods approved by the department” [WAC 173-340-740(7)(d)].

The confidence interval and tolerance interval methods should not be performed on data that
‘cannot be approximated by a normal or lognormal distribution. A distribution-free (non-
parametric) method should be used for this type of data. Nonparametric confidence interval
estimates are described in Section 5.2.1.3 and 5.2.1.4 below.

5.2.1 Evaluation of Compliance Monitoring Data Based on Upper Confidence Limit on
the Mean

The MTCA soil compliance monitoring regulations state that an appropriate statistical
method for evaluating compliance (for cleanup levels based on chronic or carcinogenic effects)
is "a procedure in which a confidence interval for each hazardous substance is established from
site sampling data and the soil cleanup level is compared to the upper confidence level [WAC
173-340-740(7)(d)(i)], and "statistical tests should be performed at a Type I error level of 0.05"
[WAC 173-340-740(7)(e)(Q)]. Thus, for soils, compliance monitoring requires estimating the 95-
percent confidence interval about the mean, and comparing this value to the cleanup level.

The method for determining whether an exposure unit meets the cleanup level is to compare
the upper confidence limit (UCL) of the site data with the cleanup level. This method should
be used for most cleanups; the tolerance interval method (Section 5.2.2) should be used when
the cleanup level is based on short-term or acute toxic effects on human health or the environ-
ment. The procedure for calculating the UCL is discussed below.

5.2.1.1 Normally Distributed Data—The sample mean determined from a set of samples
from a normal distribution provides a point estimate of the population mean. Different
compliance monitoring data sets from the same site would usually result in somewhat different
sample mean values. This indicates that the sample mean itself has a probability distribution.
Confidence intervals for the mean are based on the distribution of the sample mean. The sample
mean follows a Student’s t distribution.

One-sided confidence interval values for the Student’s t parameter are provided in Table A-
4. The procedure for calculating a one-sided upper confidence limit for the mean for data from
a normal distribution is as follows:

1. Calculate the mean (X) and standard deviation (s) of the compliance monitoring data.

2. In Table A-4, look up the appropriate t value. For a one-sided 95-percent confidence
interval (a« = 0.05), the column headed .05 is used. The t value is determined by
finding the row corresponding to the degrees of freedom (df), which is one less than
the number of samples, n.
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df =n-1

3. The upper confidence limit (UCL) for the mean is

s

UCL =X +t,_ =
where
X = sample mean
s = sample stahdard deviation
n - = number of compliance monitoring samples
t = value of the t parameter from Table A-4, based on a one-sided « of 0.05 and

n-1 degrees of freedom.

5.2.1.2 Lognormally Distributed Data—A method for calculating the upper one-sided
confidence limit for the mean of a lognormal distribution is provided by Land (1971, 1975).
This method is also described in Gilbert (1987). The procedure uses statistics calculated from
the log.-transformed sample data from a lognormal distribution, as well as a parameter, H,
determined from tabled values. '

For a 95-percent one-sided confidence interval (¢ = 0.05), the upper confidence limit is
calculated by

UCL = exp(¥ + O.Ssy2 + _s_ylj';”)
n-1

where

exp = e raised to the indicated power

y = mean of the log.-transformed data

s, = standard deviation of the log.-transformed data
n = number of compliance monitoring samples
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o = significance level (0.05)
H = tabled H value from Figure A-1 (in the Appendix).

The value of the parameter H depends on the number of compliance monitoring samples,
n, and on the variability of the sample data, measured by the standard deviation of the log.-
transformed data, s,. Land (1971, 1975) provides tabled H values.

Figure A-1 in Appendix A and Supplement S-2 give nomographs of selected H values for
calculating one-sided 95-percent upper confidence limits for the lognormal mean. The
approximate values that can be read off that nomographs will often support a determination of -
whether the UCL on the lognormal mean is greater than or less than the cleanup standard. For
more accurate H values, tabled values (Land 1971, 1975) should be consulted. Land (1975)
indicates that cubic interpolation (four-point Lagrangian interpolation) should be used to
interpolate additional H values from the tables; however, this is complex, and in practice, the
simpler linear interpolation will often suffice.

Detailed instructions for calculating the one-sided 95-percent upper confidence limits for the
lognormal mean using Land’s method are provided in Worksheet W-2.

5.2.1.3 Other Distributions with Large Sample Size—[Requires consultation with
Ecology.] If compliance monitoring data indicate that both the normal and lognormal distribu-
tions should be rejected (e.g., by the W test), it may be possible to find another known
distribution that is not rejected by an appropriate goodness-of-fit test. There may be procedures
in the statistical literature for estimating upper confidence limits for the mean of those other
known distributions, or for defined transformations of the distributions. If such methods exist,
they may allow calculation of a UCL for the mean of the compliance monitoring data.
Generally, however, compliance monitoring data that are neither normal nor lognormal will not
have explicit methods for calculating a UCL for the mean. In most cases, the distribution of the
data may be unknown.

A method providing approximate one-sided upper confidence limits for the mean for
"sufficiently large sample sizes," n, from any distribution is based on the normal distribution and
is described in Gilbert (1987; see p.139). As Gilbert (1987, p. 140) states, "There appears to
be no simple rule for determining how large n should be for [this equation] to be used. It
depends on the amount of bias in the confidence limits that can be tolerated and also on the
shape of the distribution from which the data have been drawn. If the distribution is highly
skewed, an n of 50 or more may be required."

The approximate one-sided upper 95 percent confidence limit for the mean is calculated by

UCL=%X+2__5
n
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where

%X = sample mean-
7
s = sample standard deviation
n = number of compliance monitoring samples
Z,, = value of the Z parameter from the normal distribution for

a defined o level. For a one-sided upper 95 percent
confidence limit, a value for Zss determined from Table
A-6 is 1.645.

52.14 Other Distributions with Small Sample Size —[Requires consultation with
Ecology.] In some cases, it may be apparent even from a small data set that neither the
lognormal nor normal distribution is appropriate. For example, the data may be strongly
bimodal due to the inclusion of values from a hot spot. For most sites, the number of
compliance monitoring samples per exposure unit or exposure unit for which a cleanup decision
is required will be relatively small compared to the sample size that might support use of the
approximate method described in Section 5.2.1.3 above for calculating a UCL for the mean.
Reliable statistical methods do not exist for estimating a UCL for the mean from unknown
distributions where only a small number of samples are available.

In some cases, a different statistical test (e.g., upper tolerance limit test for a percentile of
the distribution) may also be appropriate for use under the MTCA regulations, and that test
could be used in place of one based on the UCL for the mean. Procedural options if a UCL for
the mean is needed mclude the following:

1. Use the approximate procedure described in Section 5.2.1.3 even though the sample
size is small. The likelihood that a substantial bias is introduced in the UCL estimate
because of sampling error will increase as the number of samples decreases.

2. Develop a larger compliance monitoring data set for evaluation. The larger data set
would have to be collected and evaluated based on a sampling plan reviewed and
approved by Ecology. The larger compliance monitoring data set could support an
assumption of a normal or lognormal distribution where the smaller initial data set did
not; failing that, it would still result in a better approximation using the methods of
Section 5.2.1.3. The cost of additional compliance monitoring data collection should
be considered in comparison to the potential consequences of a poor site cleanup
decision based on a small sample size.

3. Evaluate an upper tolerance limit for a percentile selected on a site-specific basis by
Ecology instead of an upper confidence limit for the mean. The percentile would be
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selected to reflect the approximate estimated location of the mean based on the sample
results.

Small sample sizes with single, uncomposited samples will unavoidably result in difficulties
for statistical evaluations of the likely true mean of a constituent at a site. For alternatives using
an approach with a relatively small number of composited samples, see Neptune et al. (1990)
and Ryti and Neptune (1991).

5.2.2 Evaluation of Compliance Monitoring Data Based on Upper Tolerance Limit for
the 90th Percentile

For cleanup levels based on short-term or acute threats, an appropriate statistical method
is "a parametric test for percentiles based on tolerance intervals to test the proportion of soil
samples having concentrations less than the soil cleanup level" [WAC 173-340-740-(7)(d)(ii)].
In addition, "the true proportion of samples that do not exceed the soil cleanup level shall not
be less than ninety percent. Statistical tests shall be performed with a type I error level of 0. 05"
[WAC 173-340-740-(7)(f)(ii)]. Thus, for soils, MTCA requires a 95-percent confidence interval
(Type I error level of 0.05) around the 90th percentile [WAC 173-340-740-(7)(f)(iii)].

5.2.2.1 Normally Distributed Data—Tolerance limits are defined in Section 2.1.10. An
upper tolerance limit for a percentile is much like a one-sided confidence interval for that
percentile, and tolerance limits are used within MTCA as a method of taking possible sampling
error into account (the point estimates derived from the data may not accurately reflect the
underlying population value for the percentile).

An upper tolerance limit is calculated using sample statistics for the mean (X) and standard
deviation (s) and tabled values for a parameter, k. That parameter depends on the percentile of
interest; the number of samples, n; and the "coverage" of the tolerance interval (equivalently,
the « level for the one-sided confidence interval). Values for k for calculating 95 percent upper
tolerance limits (o = 0.05) for selected percentiles of a normal distribution are given in Table
A-3. In that table, percentiles are identified by the value of P, = (1 - percentile/100). Thus,
the 90th percentile is represented by a P, value of 0.10.

An upper 95 percent tolerance limit (Ty) for the 90th percentile of the compliance
monitoring distribution is determined by

where
X = sample mean
s = sample standard deviation
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k

= value determined from table A-3 for the tolerance limit parameter, k,
with @ = 0.05, n equal to the number of compliance monitoring
samples, and P, equal to 0.10 for the 90th percentile

This method can be used only when the data are normally distributed.

5.2.2.2 Lognormally Distributed Data—Both percentiles and upper tolerance limits for
percentiles from a lognormal distribution can be estimated by first transforming the data (using
log.), calculating values on the normally distributed transformed data, and then back-transform-
ing to original units (raising e to the power of the result calculated from the transformed data).

“An upper tolerance limit for the 90th percentile of a lognormally distributed compliance
monitoring distribution is calculated as follows:

1.

2.

Transform the raw compliance monitoring data using a log, transformation.

Using the method described in Séction 5.2.2.1 above for normally distributed data,
calculate an upper tolerance limit for the transformed data. Let the result be designat-
ed as T,.

The upper tolerance limit for the 90th percentile of the lognormal distribution is then

Ty = exp(T,)
where
exp = e raised to the indicated power
T, = upper tolerance limit calculated for the log.-transformed data.

5.2.2.3 Nonparametric Methods for Upper Confidence Limit with 20 or Fewer
Samples—[Requires consultation with Ecology.] Regardless of the form of the distribution,
nonparametric methods can be used to estimate an upper confidence limit for percentiles of the
distribution. For sample sizes of 20 or fewer, a method described in Conover (1980) can be
used. That method is discussed in this section. For sample sizes greater than 20, a method
~ described in Gilbert (1987) can be used. It is described in the next section.

For sample sizes less than 20:

1.

Use Table A-5 to find tabled values for b at approximately /2 and 1-a/2. The
method for using Table A-5 is to read across the table for the percentile of interest (in
this case, p = 0.90), and down the left-hand column for the value of n. Then move
down the entries corresponding to different y values (which refer to the number of
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occurrences of a binomial variable in N trials) until the entry in the table (b) is
approximately equal to «/2. find the corresponding value of y in the far left column.
Add 1 to this value to get 1.

Continue down the column until you reach an entry approximately equal to 1-c/2.
Find the corresponding value of y in the far left column. Add 1 to this y value to get
.

Order the data from smallest to largest, and assign a rank (y value) to each value. If
two or more data points have the same value, order them consecutively, and assign
each its own rank. Determine the data value corresponding to s and r. These values
represent the upper and lower confidence limits about the percentile of interest.

Compare the upper confidence interval with the cleanup standard. If the upper
confidence limit is greater than the cleanup standard, the site is considered to be
contaminated.

Example 15 provides a numerical demonstration.

5224 Nonparametric Methods for Upper Confidence Limit with More Than 20
Samples—[Requires consulation with Ecology]l For sample sizes greater than 20, a nonparam-
etric method described by Gilbert (1987, p. 142) can be used to estimate one-sided upper

confidence limits:
1. Find the value for Z,_, in Table A-6, where Z, , = percentile of normal distribution.
2. Calculate
u =p@+1) + Z,_[op(l - p)I'?

where

u = rank of upper confidence limit

p = percentile

n = number of samples.
3. Order the data from smallest to largest, and assign a rank to each value.
4. If uis an integer, then the data value corresponding to that rank is the upper confi-

dence limit. If u is not an integer, the limit must be obtained by linear interpolation
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between the two closest values. See Example 5 for a demonstration of linear
interpolation.

5. Compare the upper confidence interval with the cleanup standard. If u is greater than
the cleanup standard, the site is still considered to be contaminated.

523 Additional Requiremehts for Determining if a Site is Clean

In addition to comparing site data to the cleanup standard, there are two other requirements
that must be met before a site can be determined to be "clean" [WAC 173-340-740(7)(e) and

(O]:

1. No single sample concentration shall be greater than two times the soil cleanup level.
2. Less than 10 percent of the sample concentrations shall exceed the soil cleanup level.

For background-based cleanup standards, the adjustments to these criteria (discussed in Section
4.3) should be considered.

5.3 COMPARING SITE DATA TO GROUNDWATER CLEANUP STANDARDS
(EXAMPLE 17)

Statistical requirements for groundwater [WAC 173-340-720(8)] are similar to those for soil,
except that the parametric method for percentiles requires a 95 percent confidence interval on
the 50th percentile (i.e., the median). Note also that compliance with a cleanup standard must
be determined for each well or monitoring point [WAC 173-340-720(8)(c)(iv)], while compliance
decisions for soil are normally based on combined data from different sampling points.

5.3.1 Normally Distributed Data

For a normal distribution, the median is equal to the mean. Therefore, the methods
described in Section 5.2.1.1 for estimating a one-sided upper confidence limit of the mean can
be used to evaluate compliance monitoring data based on the median.

5.3.2 Lognormally Distributed Data [Requires consultation with Ecology.]

A method for estimating the approximate two-sided confidence interval for the true median
of a lognormal distribution is given by Gilbert (1987; see p. 173).

An upper confidence limit for the 100(1-«) percent two-sided confidence interval for the
median of a lognormal distribution is calculated using the log.-transformed compliance
monitoring data. First calculate the arithmetic average and standard deviation of these
transformed data, y and s,, respectively. The one-sided upper 95-percent confidence limit is
then estimated, using o = 0.10 for the two-sided equation given in Gilbert (1987), by:
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UCL = exp(¥)exp(t

1-a,n-1

Sy)
[__

n

where
exp = e raised to the indicated power
y = mean of the log,-transformed data
s, = standard deviation of the loge—@sfomw data
t = tabled value of the t distribution from Table A-4 (note that since this is -

a one-sided table, the column heading at o 0.05 level is used)
n = number of samples.

~ As discussed in Gilbert, this estimate is biased high, but the amount of bias decreases with
increasing sample size and is generally small unless the skew of the lognormal distribution (i.e.,
its coefficient of variation) is very large.

533 Nonparametric Method for Upper Confidence Limit [Requires consultation with
Ecology.]

A nonparametric method for providing confidence limits for the median of any continuous
distribution is provided by Van der Parren (1970; see Appendix A). This method can be used
regardless of the distribution of the compliance monitoring data. It provides confidence intervals
that are equal to selected ranked data values; the confidence interval coverage is approximate
rather than exact.

- To determine an upper confidence limit for the two-sided confidence interval for the
population median, the following procedure is used:

1. Sort the data from lowest to highest values and assign ranks, increasing with
concentration. _

2. From Table A-7 (extracted from the original Van der Parren reference for
« equal to 0.05) find the value of j, the rank corresponding to the estimated
upper confidence limit, for the sample size n.

3. Determine the concentration for the j®-ranked compliance monitoring data

value.
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4. That concentration is an estimated upper confidence limit for an approximate
a level of 0.05. The actual « level can be determined from tabled values
given in the Van der Parren reference (attached in Appendix A).

Other tests are discussed Gilbert (1987, Chapters 11, 16, and 17) and may be appropriate
for confirmatory analysis.

534 Additional Requirements for Determining if a Site is Clean

There are two other requirements that must be met before groundwater at a site can be.
determined to be "clean" [WAC 173-340-740(7)(e) and (f)]:

1. No single sample concentration shall be greater than two times the groundwater
cleanup level.

2. Less than 10 percent of the sample concentrations shall exceed the groundwater
cleanup level during the representative sampling period.

For background-based cleanup standards, the adjustments to these criteria (discussed in
Section 4.3) should be considered.

Figure 15 shows the relation between these requirements using a hypothetical probability
distribution from a site. This figure shows that the site data meet two of the three requirements
for the site to be considered clean: the 95-percent CI on the median is below the cleanup
standard, and no single sample concentration is greater than two times the cleanup level.
However, 15 percent of the sample concentrations exceed the cleanup standard. Therefore, the
site does not meet all three criteria and must be considered contaminated.

5.3.5 Additional Considerations for Groundwater

The following topics are not described in MTCA, but are discussed here because they may
be significant issues at some sites. If it appears that these issues are relevant to a site, and the
discussion here is not sufficient, additional assistance should be obtained from references listed,
a statistician, or Ecology. '

5.3.51 Trends—Groundwater is typically monitored for two purposes: 1) to determine
contaminant concentrations of potentially impacted groundwaters relative to non-impacted
(background) groundwater, and 2) to determine trends in concentrations with time or location,
or both. Statistical methods must be applied to determine if temporal or spatial variability in
contaminant concentrations is significant. If significant variations are detected, statistical
methods can be applied to determine if the variations indicate verifiable trends.
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FREQUENCY '9

SAMPLE MEAN

' UPPER 95% CI| ON MEAN
A K
POST-REMEDIATION | }
SITE DISTRIBUTION |
DATA »—_—ul
|
| 15% of COMPLIANCE
| MONITORING
{ DATA
|
l
|
|
I
|
|
|
|
|
|
|
|
[
i |
CONCENTRATION == CLEANUP Py MAX =
, STANDARD 1.5 times
STANDARD

In this example, the site meets only two of three criteria.

1) Is the upper Cl on the mean less that the cleanup standard? Yes.

2) Is the maximum compliance monitoring value less than 2x standard? Yes.

3) Are 10 percent of the data above standard? No. 15 percent of the data are
above standard. The site is not clean enough.

Figure 15. Conceptual basis for answering the question "Is the groundwater
at the site clean enough?"
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Contaminant concentrations measured at one location may vary naturally with time. This
variation may be entirely random, it may follow a predictable trend or cycle, or it may have a
random distribution superimposed upon a predictable trend or cycle. Variability in contaminant
concentrations may be due to cyclic or non-cyclic changes in water-table elevations (tides, river
stage changes, precipitation, and seasonal changes in infiltration rates and temperatures).
Changes in concentrations may indicate effects of an onsite release, or they may reflect natural
or anthropogenic regional changes.

To evaluate temporal trends (steady increases or decreases in contaminant concentrations),
upgradient monitoring should be performed over a period of at least one year, because regression
methods can yield misleading data when only a portion of an annual cycle is considered.
Therefore, it is important for data to be collected over a period sufficient to establish cyclical
trends. Occurrence of trends can be determined by plotting analyte concentrations vs. time and
- visually inspecting the plot to determine whether seasonal fluctuations are apparent. In addition,
‘a linear regression can be fitted to contaminant concentrations vs. time, and a #-test performed

to determine if the slope of the regression line is significantly different than zero (Gilbert 1987).
Although it was previously stated that the z-test is not usually applicable at MTCA sites because
it is inconsistent with the null hypothesis that the "site exceeds cleanup levels," it is applicable
in this instance because the null hypothesis is that the slope of the line is not different from zero.
This null hypothesis can be tested using conventional statistical methods. The z-test is described
in many introductory statistical textbooks.

If seasonal trends are present in the data, it is critical that background contaminant
concentrations measured during a particular period are compared to downgradient data from the
same period. For example, suppose concentrations of a particular contaminant tend to decrease
in the summer and increase in the winter. If the background concentrations are measured in the
summer, and then compared to onsite concentrations measured in the winter, it may appear that
the site is contaminated when the data really reflect only seasonal variation. Clearly this is not
desirable, because remediation could be required on a site that is, in fact, "clean."

5.3.5.2 Serial Correlation—Most standard statistical tests assume that the data are
independent. This means that there is no correlation between the data: that the chance of
measuring a high or low concentration in a well is the same for each well at all times.
However, if a well is sampled one day and then sampled again the next day, it is likely the
concentration will be similar for each day. This is known as serial correlation—the linear
dependence between observations in time. Even wells sampled on a quarterly basis can exhibit
serial correlation (Montgomery et al. 1987). Such data violate the assumption of independence,
without which the use of many statistical techniques may be precluded. A thorough discussion
of serial correlation is beyond the scope of this document. However, Montgomery et al. (1987)
suggest using statistical techniques that are insensitive to serial correlation or averaging the data
over time periods sufficiently large that the serial correlation is insignificant. They also describe
methods for determining whether data are serially correlated, which would indicate the length
of a "sufficiently large" time period. If serial correlation appears to be a problem at a particular
site, further statistical assistance should be sought.
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5.3.5.3 Period of Time for Determining Background Concentrations—The period of
time must be defined during which upgradient (background) data will be used for comparison
with data collected onsite. The period considered may be prior to operation of the site or the
start of onsite monitoring. It may also be a moving window (e.g., as one year prior to each
monitoring event). In some cases, use of all available background data is the preferred method,
because the environment is protected from short-run fluctuations that may dominate a moving
window, while the potentially liable person (PLP) is likely to have increased confidence in the
- interpretation afforded by an increased size in the background data set (Gibbons 1990).
However, use of all data may decrease the power to detect increases in groundwater contamina-
tion. The decision to use all or part of the data should be based on a consideration of the
consequences of each detection.

54 COMPARING SITE DATA TO SURFACE WATER STANDARDS

MTCA states that when "surface water cleanup levels are based on requirements specified
in applicable state and federal laws, the procedures for evaluating compliance that are specified
in those requirements shall be utilized to evaluate compliance with surface water cleanup levels
unless these procedures conflict with the intent of this section" [WAC 173-340-730(7)(d)].
"Where procedures for evaluating compliance are not specified in an applicable state and federal
law, the statistical methods used to evaluate compliance with surface water cleanup levels shall
be appropriate for the distribution of the hazardous substance sampling data" [WAC 173-340-
730(7)(e)]. The confidence interval and tolerance interval procedures described above are
appropriate tests. The tolerance interval procedure, however, requires a decision about the
percentile to be used and can be used only with normally distributed data. If the data are not
normally distributed, transformation (e.g., by converting to logarithms) may correct this.
Alternatively, the groundwater guidance document cited above includes a nonparametric test for
proportions (U.S. EPA 1988, p. 5-21) that does not require normally distributed data. Other
tests described in that guidance document, such as regression analysis, may be useful in
sitnations where surface water contaminant concentrations are changing over time.

5.5 COMPARING SITE DATA TO AIR QUALITY STANDARDS

Requirements are given in WAC 173-340-750(7). Consult staff in the Department of
Ecology Air Program for technical assistance.
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6. GEOSTATISTICS [RESERVED]
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8. EXAMPLES
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EXAMPLE 1

CALCULATION OF ARITHMETIC MEAN

We want to calculate the arithmetic mean, X, of the following data set:

44 80 101 122
55 | 85 105 129
68 91 110 133
72 94 115 139
76 | 97 119, 167

1. Calculate the sum of all the values:
44 + 55 + ... + 139 + 167 = 2,002

2. The arithmetic mean is the sum divided by the number of samples, n. In this case, n = 20,
and '

x = 2,002/20 = 100.1.
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EXAMPLE 2

CALCULATION OF GEOMETRIC MEAN

- We want to calculate the geometric mean of the data set in Example 1.

1. Transform the data by taking the natural logarithm (base e) of each value. The log-
transformed data are listed below:

3.78 _ 4.38 4.62 4.80

4.01 4.44 4.65 4.86
4.22 4.51 4.70 4 4.89
4.28 . 4.54 4.74 4.93
4.33 4.57 4.78 5.12

2. Calculate the sum of the >|og-transformed data values
3.78 + 4.01 + ... + 4.93 + 5.12 = 91.15.
3. Calculate the arithmetic mean of the log-transformed values (the sum divided by the number
of samples, n). In this case, n = 20, so the arithmetic mean of the transformed values is
91.15/20 = 4.558.
4. The geometric mean is the exponent of the mean calculated in Step 3.'
exp(4.558) = %8 = 95 4.
In this case, the geometric mean is relatively‘ close to the arithmetic mean calculated in Example
1. This is because the data were derived from a normally distributed population. If the data

were significantly skewed, the geometric mean would be substantially different from the
arithmetic mean. :
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EXAMPLE 3

METHOD FOR CALCULATING THE MEDIAN OF A DATA SET

-

Suppose we want to estimate the median of the data set from Example 1.

1. The 20 data are sorted from smallest to largest, and a rank is assigned to each value.

Data Rank
44 1
55 2
68 3 i
72 4
76 5
80 6
85 7
91 8
94 9
97 10
101 11
105 12
10 13
115 14
119 15
122 16
129 17
133 18
139 19
167 20

2. Because the sample size, n, is even, the sample median estimate is the average of the
n/2th and the (n+2)/2th values. In this case the sample size is 20, the sample median
estimate is the average of the 20/2 = 10th and the [(20+2)/2] = 11th ranked values.

3. For this data set, the 10th ranked valué is 97 and the 11th ranked value is 101. The
median is the arithmetic average of these two points:
(97 + 101)/2 = 99.
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EXAMPLE 4

ESTIMATING A PERCENTILE OF A DATA SET
FROM A PROBABILITY PLOT

Twenty soil samples from a site are analyzed for lead, and the following concentrations (ppb) are
obtained: »

276 179 138 162
206 114 220 131
242 136 157 180
167 165 226 245
146 183 201 193

We want to estimate the 50th percentile (median) and 90th percentile of the data set using a
probability plot. Assume the data set has been tested for lognormality and normality, and it
appears that the data have been drawn from a normal distribution. The 20 data are sorted from
smallest to largest, and a rank is assigned to each value. In addition, for each data point estimate
(i - 0.5)100/n, where i is the rank of the data point.

Datav Rank (i-0.5)100/n Data Rank (i - 0.5)100/n
114 1 2.5 180 11 52.5
131 2 7.5 183 12 57.5
136 3 12.5 193 13 62.5
138 4 17.5 201 14 67.5
146 5 22.5 206 15 72.5
157 6 27.5 220 16 77.5
157 7 32.5 226 17 82.5
162 8 37.56 242 18 87.5
165 9 42.5 245 19 92.5
179 10 47.5 276 20 97.5

2. Because in this case we assume that data are normally distributed, we plot x vs. (i - 0.5)100/n
on normal probability paper (contained in this document), as shown below. .A straight line is fit
to the data by eye, which fits the data reasonably well, indicating that the data are drawn from
a normal population.

76



Example 4. (Continued)
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Figure E4. Example of a probability plot.
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Using the line, we can read the 50th and 90th percentiles from the plot, by reading across
the cumulative percent along the horizontal axis to-50 and 90. Using this technique, the
50th and 90th percentile are estimated to be approximately 179 ppb, and 242 ppb. This
agrees reasonably well with the median of 179.5 estimated by the method shown in
Example 3. A nonparametric method for estimating the 90th percentile is shown in Example
5. '

Note:

If the data set contained some data below the detection limit or PQL, the data above the
limit could be plotted, and a line fit to the remaining data points to estimate upper
percentiles.
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EXAMPLE 5

NONPARAMETRIC (DISTRIBUTION-FREE) METHOD FOR CALCULATING
PERCENTILE OF A DATA SET (Section 2.1.2.3)

Using a nonparametric method, we wish to estimate the 90th percentile of the lead concentra-
tion data set in Example 4.

1. The 20 data are sorted from smallest to largest, and a rank is assigned to each value.

_ Data " Rank

Data Rank
114 1 180 11
131 2 183 12
136 3 193 13
138 4 201 14
146 5 206 15
157 6 220 16
157 7 226 17
162 8 242 18
165 9 245 19
179 10 276 20
V‘TSF (n+1)
where
p = percentile
n = number of samples

v = rank of pth percentile data

_ 90 -
- —55- (20+ 1) =189

-3. Since v is not an integer, the 90th percentile must be found by linear interpolation between the
18th and 19th ranked data, 242 and 245, respectively.

4. The linear interpolation is performed as follows:

The difference between the rank values is calculated: 19 -18 = 1

The difference between v and the lower rank value is calculated: 18.9 - 18 = 0.9
The ratio between the values calculated in steps a and b is found: 0.9/1 = 0.9
The difference between the data values is calculated: 245 - 242 = 3.

The ratio in ¢ is multiplied by the difference between the data values: 0.9 (3) = 2.7
This value is added to the lowest data value: 242 + 2.7 = 244.7.

hfOo Q0T

Thus, the 90th percentile of the data set is 244.7.
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EXAMPLE 6

CALCULATION OF VARIANCE, STANDARD DEVIATION, AND COEFFICIENT OF
VARIATION

We want to calculate the sample variance, s?, of the following concentrations (x,) in mg/kg : 2.4,
4.4, 6.5, 6.7, and 8.2.

The arithmetic mean, X, calculated as described in Example 1, is 5.64. The
equation for calculating the variance is

z (x - X)?
s? =

n-1
where n is the number of samples. In this example, n = 5, so the denominatoris 5 -1 = 4.

Thus, the sample variance can be calculated as

(2.4 -5.64)2 + (4.4 - 5.64)? + (6.5 - 5.64)% + (6.7 - 5.64)2 + (8.2 - 5.64)2
s? =

4
s? = 5.11 |
The standard deviation, s, is the square root of the variance:
s = v5.11 = 2.26.

The coefficient of variation, CV, is calculated by:

S
CV = —
X
2.26
CV=—— =.040
5.64

NOTE: This calculation method should not be used for som\’e purposes. See Supplement S-5.
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» EXAMPLE 7
W TEST FOR TESTING THE NORMALITY OF A DATA SET

The data from the 20 soil samples in Example 4 will be tested for normality by the W test
{Shapiro and Wilk 1965). These data could be tested for lognormality by log-transforming the
date, and then performing the same test on the transformed data.

1. The number of samples, n, is 20. The calculated mean, X, of the data is 182.85.

2. The 20 data are sorted from smallest to largest, and a rank is assigned to each value

Data Rank Data Rank
114 1 180 11
131 2 183 12
136 3 - 193 13
138 4 201 14
146 5 206 15
157 6 220 16
157 7 226 17
162 8 242 18
165 9 245 19
179 10 276 20

3. The denominator d is calculated for the data:

d = (114 - 182.85)* + (131 - 182.85)%> + (136 - 182.85)* + (138 - 182.85)* +
(146 - 182.85)? + {157 - 182.85)* + (157 ~ 182.85)® + (162 - 182.85)* +
(165 - 182.85)* + (179 - 182.85)* + (180 - 182.85)*> + (183 - 182.85)* +

- (193 - 182.85)2 + (201 - 182.85)® + (206 - 182.85)*> + (220 - 182.85)% +
(226 - 182.85)> + (242 - 182.85)* + (245 - 182.85)% + (276 - 182.85)?
d = 35,355

4. Calculate r, the number of a, coefficients used in the calculation.
Since nis even, r = 20/2 = 10

5. From Table A-1, the a, coefficients for n = 20 are:

a, = 0.4734 ag = 0.1334
a, = 0.3211 a;, = 0.1013
a; = 0.2565 a; = 0.0711
a, = 0.2085 3, = 0.0422

a; = 0.1686 a,o = 0.0140
6. W is calculated as follows: |
W = (1/35,355)[0.4734(276 — 114) + 0.3211(245 — 131) + 0.2565(242 - 136)] +
0.2085(226 — 138) + 0.1686(220 — 146) + 0.1334(206 — 157) + 0.1013(201
- 157) + 0.0711(193 - 162) + 0.0422(183 - 165) + 0.0140(180 — 179)F

W = 0.97
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Example 7. (Continued)

7. Using Table A-2, the value of W for the significance level @ = 0.05 is 0.905. The value for
W calculated in Step 6 above (0.97) is greater than the value in Table A-2, so the null
hypothesis that the population is normally distributed cannot be rejected, and the data
should be assumed to have been drawn from a normal distribution. '

NOTE: If calculating W by hand, use Worksheet W-1 or W-1a.

{
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EXAMPLE 8

TRANSFORMATION OF LOGNORMALLY DISTRIBUTED DATA

The following groundwater concentrations of a contaminant (mg/l) have been measured at a site: -

82 151 75 | 105
61 68 100 123
95 74 126 85

136 163 112 89
59 99 108 88

1. A histogram of the data suggests that they may be lognormally distributed (Figure 5a).

2. To test the lognormal assumption, the data are log-transformed (log.).

4.41 5.02 4.32 4.65
4.11 4.22 : 4.61 . | 4.81
4.55 4.30 4.84 4.44
4.91 5.09 4.72 4.49
4.08 4.60 4.68 4.48

A histogram of the transformed values (Figure 5b) indicates that they are normally distributed.
This suggests that the data are lognormally distributed. Note that the histogram method for
determining normality or lognormality is subjective and depends on the intervals chosen for the
graph. It is used here to illustrate lognormal transformations. In practice, a probability plot or
other test (e.g., W test) should be used to determine normality or lognormality (see Supplement
S-3).
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EXAMPLE 9

PARAMETRIC AND NONPARAMETRIC METHODS DETERMINING WHETHER A
CLEANUP STANDARD IS BELOW NATURAL BACKGROUND - NORMALLY DISTRIBUTED
' ' DATA ’

The cleanup standard for kryptonite ih soil is 115 mg/kg, based on Method B of the MTCA
regulations. The PLP collects 20 samples from locations determined to be natural background.
Is the Method B cleanup standard below natural background?

The background data are:

110.28 107.11 61.56 91.81 89.08
116.32 20.06 112.84 101.87 64.52
124.14 91.80 . 50.28 97.04 91.65

111.94 78.54 110.17 80.78 155.19

Background data are assumed initially to be lognormally distributed (see the discussion in Section 4.3
and the flowchart for determination of cleanup standards based on background, Figure 12). To check
the lognormal assumption for the kryptonite background data, the W test (see Example 7) will be used.
As discussed in Section 2.1.4.1, the W test is designed as a test of the hypothesis that the data are
from a normal distribution. However, it can be used to test the hypothesis of a lognormal distribution
by first transforming the raw data using natural logarithms, and then calculating and evaluating the W
statistic using the transformed data as shown in Example 7. '

The W statistic for the transformed data is calculated to be 0.792. The critical value at the 0.05 level
for a sample size of 20 is determined from Table A-2 to be 0.905. Since the calculated value for W
is less than the critical value, the null hypothesis that the data are lognormal is rejected. The PLP then
decides to determine if the data are normally distributed. The W value calculated on the raw
(untransformed) data is 0.958, which exceeds the critical value of 0.905, so the null hypothesis that
the data are normally distributed is not rejected.

The default procedure establishing the background-based cleanup standard at the 90th percentile of
the estimated distribution is based on the assumption of a lognormal distribution. In cases where the
assumption of a lognormal distribution is rejected, as in this example, Ecology should be consulted on
appropriate alternative procedures to establish the cleanup standard. The 90th percentile concentration
should not be used without consulting Ecology. For this example, assume that Ecology has determined
that the cleanup standard should be based on the estimated 80th percentile concentration.

The 80th percentile then can be estimated using a table of standard normal values (see Table A-6) as
follows:

Xgo = X + ZgoS
and, since

x = 93.34

s = 29.33
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Example 9. (Continued)

and from Table A-6

Z,, = 0.842
then

93.34 + 1.282(29.33)

Xgo

118.04 mg/kg

This procedure assumes a normal distribution for the background samples to estimate the 80th
percentile value. Since that estimate, about 118 mg/kg, is greater than the Method B cleanup standard
of 115 mg/kg, the Method B value is below natural background.

Now, assume that we wish to estimate the 80th percentile value of the background distribution using
nonparametric methods as in Example 5.

First, the 20 background values are ranked from lowest to highest:

20:06 97.04
50.28 101.87
61.56 ' 107.11
64.52 110.17
78.54 110.28
80.78 111.94
89.08 112.84
91.66 116.32
91.80 124.14
91.81 1565.19

Then the 80th percentile is estimated as in Example 5, as follows:

p
k = —— (n+1) = 0.80(21) = 16.8
100
and interpolating between the 16th and 17th ranked values, 111.94 and 112.84,

Xso = 111.94 + 0.8(112.84 - 111.94)

Il

111.94 + 0.72

112.66 mg/kg
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Example 9. (Continued)

Since this estimate of the 80th percentile of the background data is less than the 115 mg/kg from
Method B, the Method B cleanup standard is not below natural background.

This example demonstrates that the method of estimating the 80th percentile of natural background
can affect whether or not a Method A, Method B, or Method C cleanup standard is determined to be
below natural background. In this example, the difference in 80th percentile values from parametric
and nonparametric approaches is not great; in other cases it may be much greater, and either approach
can produce the higher estimated 90th percentile value. In this case, because the background-based
cleanup standard is so close to the Method B standard, and the parametric and nonparametric methods
result in different decisions, it would be wise to collect more background samples.

In general, the first (parametric) method shown here should be used unless the data deviate
significantly from normal and lognormal distributions. [f the data are lognormalily distributed, as
assumed in the default procedures and typically expected for most environmental data, see Example
10. Consult Ecology before using the nonparametric method.
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EXAMPLE 10

PARAMETRIC AND NONPARAMETRIC METHODS DETERMINING WHETHER A CLEANUP
STANDARD IS BELOW NATURAL BACKGROUND - LOGNORMALLY DISTRIBUTED DATA

The cleanup standard for ubiquinite in soil is 175 mg/kg, based on Method B of the regulations.
The PLP collects 20 samples from locations determined to be natural background. Is the
Method B cleanup standard below natural background?

The background data (rank-ordered) are: '

42 .78 95 122
61 81 98 132
66 v 83 _ - 104 : 138
69 85 109 : 212
71 90 114 286

The assumption that the background data are from a lognormal distribution is evaluated using the W
test (see Example 7). The W test is used to evaluate a null hypothesis that background values are
lognormally distributed by transforming the raw data using natural logarithms and then calculating the
W statistic, as in Example 9. For the log-transformed ubiquinite data listed above, the W statistic is
calculated to be 0.953; since that value is greater than the critical value of 0.905 (at the 0.05 level)
from Table A-2, the null hypothesis is not rejected, and a lognormal distribution is assumed.

If the lognormal null hypothesis is not rejected, it is not necessary to test other distributions.

The 90th percentile of the lognormally-distributed background data can be estimated by transforming
the raw data using logarithms, estimating a 90th percentile value using a table of standard normal
values (see Table A-6), and then back-transforming to original units (appropriate for percentiles, but
not for means!), as follows: '

Transform the raw data using logarithms, with y, = logx;:

3.738 4.357 4.554 4.804
4.111 o 4.394 4.585 ' 4.883
4.190 4.419 4.644 4.927
4.234 4.443 4.691 5.357
4.263 4.500 4.736 ~ 5.656

The 90th percentile of the transformed (normal) data can be estimated as in Example 9:
Yoo = ¥ + ZgoS,
The mean and standard deviation of the transformed data are:
= 4.574
= 0.429

and from Table A-6

Zoo = 1.282.
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Example 10. (Continued)

Then
Yoo = 4.574 + 1.282(0.429)

= 5.124

Finally, transform back to the original units:

Xgo = €%12* = 168.0
This procedure uses the assumed lognormal distribution for the background samples to estimate the
90th percentile value. Since that estimate, 168.0 mg/kg, is less than the Method B cleanup standard

of 175 mg/kg, the Method B value is determined not to be below natural background.

Now assume that we wish to estimate the 90th percentile value of the nontransformed background
distribution using nonparametric methods, as in Example 5.

The 90th percentile is estimated as in Example 5, as follows:

k = p/100 (n+1) = 90/100 (21) = 18.9

and interpolating between the 18th and 19th ranked values, 138 and 212,

138 + 0.9(212 - 138)

1

Xg0

]

138 + 66.6
= 204.6

Since this estimate of the 90th percentile of the background data is greater than the 175 mg/kg from
method B, the Method B cleanup standard is determined to be below natural background.

As in Example 9, this example demonstrates that the method of estimating the 90th percentile of
natural background can affect whether or not a Method A, Method B, or Method C cleanup standard
is determined to be below natural background. In this example, the nonparametric estimate of X, g
is substantially higher than the parametric estimate. The first (parametric) method shown here should
be used unless the data deviate significantly from normal and lognormal distributions. Consult Ecology
before using the nonparametric method.
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EXAMPLE 11

EVALUATION OF SOILS COMPLIANCE MONITORING DATA

The Method B cleanup standard for a contaminant, Pesticite, in soils is 2.5 yg/kg. Assume that
Pesticite is widely distributed in areas near the site (a pesticide distribution facility) from normal
agricultural practices, unrelated to any site-specific releases. Appropriate and representative area
background samples are collected and analyzed. It is determined from those samples that the
assumption of a lognormal area background distribution is not rejected (at the 0.05 level) and that
the estimated 90th percentile concentration of area background is 30 yg/kg. Then the Method B
cleanup standard is less than area background, and a Method C standard equal to the 90th
percentile of area background, 30 ug/kg, is selected in accordance with the default procedures
discussed in section 4.3.

A compliance monitoring data set of 15 samples is collected and analyzed for Pesticite after site
remediation activities are performed. Can the site be considered clean?

Assume the monitoring data are as follows:

ND (<5) 16 25
5 19 29
6 21 30
8 21 32
12 24 38

The W test (see Example 7) is used to evaluate the null hypothesis that the compliance monitoring data
are from a lognormal distribution. The W statistic is calculated assuming a value of 2.5 ug/kg (one-half
the detection limit) for the one not-detected (ND) value. The goodness-of-fit test for a lognormal
distribution is performed by transforming the raw data using natural logarithms (log,), as in Example
10. The calculated W statistic is 0.888, which is slightly greater than the critical value of 0.881 for
a 0.05 test with 15 samples (see Table A-2). Therefore, the null hypothesis of a lognormal distribution
is not rejected.

Although the W test cannot reject a lognormal distribution, a histogram plot of the compliance
manitoring data reveals that, subjectively, the lognormal distribution does not provide a close fit to the
data. The compliance monitoring data appear to be a combination of lognormally-distributed
background data (approximating the area background distribution) and a second distribution shifted
upward to higher concentrations compared to that background distribution. The higher values in the
compliance monitoring data set all appear to be from samples taken in an area of the site known to
have been used for storing bags of dry Pesticite mix. That area was the most contaminated at the site
before cleanup actions were taken.

Three criteria will be used to evaluate whether the site is in compliance:

1) Calculation of the upper confidence limit (UCL) on the mean, and companson of that value
to the 90th percentile of the background data

2) Frequency of exceedance

3) Magnitude of exceedances.
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Example 11. (Continued)

CRITERION 1

Since the null hypothesis of a lognormal distribution is not rejected, the method of Land (1971, 1975)
described in Gilbert (1987) is used to calculate a one-sided 95 percent upper confidence limit on the
mean concentration of Pesticite in soil at the site. The equation for that upper confidence limit (UCL)
is as follows:

UCLes = exp(y + 0.5s,2 + SrHss
n-1

where
y = arithmetic mean of the n transformed values y;, = In x;
s, = standard deviation of the transformed data
n = the number of sampled values

Hes = tabled values from-Land (1971, 1975) determined by n and S,

The raw data are transformed using logarithms (log,):

0.916 2.773 3.219
1.609 2.944 3.367
1.792 3.045 . 3.401
2.079 ' 3.045 3.466

2.485 3.178 3.638

The values for the mean and standard deviation of these transformed data are determined (to three
decimal places): : ,

y = 2.730
s, = 0.794
The approximate value of H can be determined from the nomograph in Figure A-1 or Supplement S-2.

In this case, n = 15 samples, and s, = 0.794. Interpolating between 2.306 and 2.443, the H value
is determined to be 2.434. The UCL on the mean is then calculated using these values, as follows:

UCLss = exp(2.730 + 0.5(0.630) + 0.794(2.434)(1/[141°%))
= exp(3.562)
UCLgs = 35.2 ug/kg
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Example 11. (Continued)

The calculated UCL of 35.2 ug/kg, from the compliance monitoring data, is therefore greater than the
cleanup standard of 30 ug/kg based on the 90th percentile of area background, and the site does not
meet the applicable cleanup standard based on background. Further cleanup actions are required. In
this case, the residual soil contamination located where dry Pesticite mix was stored appears to cause
the site to fail the test. '

The exceedance of the background-based cleanup standard based on this test is sufficient by itself to
require additional cleanup actions. Two additional tests are included in the regulation to account for
the frequency and magnitude of exceedances of the background-based cleanup standard in the
compliance monitoring data. For purposes of illustration, these tests are also discussed here, although
once the test based on the UCL of the mean is failed, they would not necessarily have to be
performed. '

CRITERION 2

According to the regulation, the standard test, based on the frequency of exceedances of the cleanup
level, is that no more than 10 percent of the compliance monitoring samples exceed the cleanup level.’
However, the actual probability of having more than 10 percent of compliance monitoring samples
above the cleanup level if the site is at background concentrations is rather high, and generally
increases as the compliance monitoring sample size increases (see Technical Attachment 1 to Figure
12). For sample sizes of 20 or more and a cleanup level based on the 90th percentile concentration
of background, that probability is greater than 0.30. This is not acceptable, because even if a site is
remediated to background concentrations (obviously a "clean site"), it has a >30 percent chance of
failing this test. Therefore, an adjustment in the allowable percentage of compliance monitoring
samples above the cleanup level can be made so that the "false positive” error rate approximates 5
percent. This adjustment is made only in the case of a cleanup level based on background.

For sample sizes less than or equal to 30, an appropriate adjustment is to allow up to 20 percent of
the samples to exceed the cleanup level (see Attachment 1). Therefore, for the Pesticite site with 15
samples, the test based on frequency of exceedances would require additional cleanup actions if 4 or
more out of 15 compliance monitoring samples exceeded the cleanup level. The calculated probability
of 4 or more exceedances if the site has achieved background is 0.056 (5.6 percent). For the
compliance monitoring data reported at the Pesticite site, 2 of the 15 values exceed the cleanup level
of 30 ug/kg. The exceedance frequency is therefore 13.3 percent. Although this is greater than the
standard test criterion of 10 percent, it is less than the adjusted criterion (for the specific background-
based cleanup standard and compliance monitoring sample size) of 20 percent. The site does not fail
the test of frequency of exceedances.

CRITERION 3

The regulation states that no compliance monitoring sample be more than two times the cleanup level.
The probability of one or more samples exceeding two times the cleanup standard if the site is at
background concentrations depends on the definition of the cleanup standard (i.e., the percentile value
selected as the cleanup level), the shape of the background distribution (e.g., the coefficient of
variation [CV], defined as the standard deviation divided by the mean concentration), and the number
of compliance monitoring samples. A factor of exceedance that results in an approximate 5 percent
false positive rate can be calculated (see Technical Attachment 2 to Figure 12).
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Example 11. (Continued)

For the Pesticite site, assume that the background data are lognormally distributed with a CV of 0.7.
The probability of exceeding twice the cleanup level (the 90th percentile concentration) in 15
compliance monitoring samples (false positive probability) is about 0.123 (12.3 percent). However,
for a more acceptable rate of exceedence probability (0.05, or 5 percent), a factor of about 2.46 is
calculated (see Technical Attachment 2 to Figure 12). The exceedance factor of 2.46 means that a
sample may exceed the cleanup standard by up to 2.46x, instead of 2. Such an adjustment in the
standard criterion can be made only in the case of a cleanup level based on background.

For the compliance monitoring data reported at the Pesticite site, the maximum concentration of 38
pg/kg is only 1.27 times the cleanup level of 30 ug/kg. That exceedance factor is less than the
adjusted criterion value of 2.46 for the site. Therefore, the Pesticite site does not fail the magnitude
of exceedence (Criterion 3) test.

The compliance monitoring data for this site strongly suggest a residual hot spot of contamination
(e.g., based on the histogram of soil concentrations and their spatial pattern at the site). Alternative
statistical procedures based on distributional tests such as the Wilcoxon or Quantile tests may be
appropriate and useful in such situations (see Figure 12).
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EXAMPLE 12

DETERMINATION OF GROUNDWATER CLEANUP
STANDARDS BASED ON NATURAL BACKGROUND DATA

The Zarkle Industries site, now closed, is contaminated with the inorganic constituent Zodium,
which was used in large quantities in a manufacturing process. In particular, groundwater
concentrations of Zodium at the site are very high (mg/l levels). The Method B Cleanup standard
for Zodium in groundwater is 0.5 ug/l, based on acceptable human health risks (drinking water
ingestion). Is the Method B cleanup standard below natural background?

Several articles in the literature have noted that natural background concentrations of Zodium in
groundwater are quite variable. The PLP decides to drill monitoring wells to determine
background concentrations near the Zarkle Industries site. Sampling locations are selected
carefully and reviewed with Ecology to screen out any locations that could be influenced by site
contamination. The background results for Zodium (in ug/l) are as follows:

9.74 22.39
14.74 1.98
2.20 2.31
27.39 ‘ 0.56
0.86 ~ 75.07

The higher results are reviewed by Ecology and the PLP to confirm that they represent background
values and are not influenced by the site or other identifiable sources. No reason for rejecting the
higher results is found; moreover, these higher concentrations are consistent with previous literature
reports on Zodium. The results are accepted for determining natural background.

The assumption that the background data are from a lognormal distribution is evaluated using the W
test (see Example 7). As in Examples 9 and 10, the W test is used to evaluate a null hypothesis that
background values are lognormally distributed by transforming the raw data using natural logarithms
and then calculating the W statistic. The calculated W statistic of 0.945 is compared to the critical
value of 0.842 based on 10 samples and a 0.05 level test (Table A-2). Since the calculated W statistic
is greater than the criterion value, the null hypothesis of a lognormal distribution is not rejected, and
the data are assumed to be lognormally distributed.

The estimated 90th percentile background concentration is calculated as in Example 10. The log,
transformed data are as follows (to three decimal places only):

2.276 3.109
2.691 0.683 . ¢
0.788 0.837
3.310 -0.580
-0.1561 4.318

The mean, y, and standard deviation, s, of the log-transformed data are 1.728 and 1.632, respectively.

The 90th percentile of these log-transformed data is obtained by finding the 90th percentile value
based on the best-fit transformed normal distribution and then back-transforming (appropriate for
percentiles, but not for means!), as follows:
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Exampie 12. (Continued)

Yoo = V + ZggS,

1.728 + 1.282(1.632)

3.820

Transforming back to original units, the estimated 90th percentile of the natural background for Zodium
in groundwater is

Xgo = €°820 = 45.60 ug/l

Therefore, the Method B cleanup standard of 0.5 ug/l for Zodium is below natural background. Before
accepting the estimated 90th percentile of the natural background distribution for Zodium as the
cleanup standard, however, the distribution of background values is considered further. The estimated
90th percentile value of 45.60 ug/l is more than 91 times higher than the risk-derived Method B
standard of 0.5 ug/l.

The background data set shows considerable positive skew. The coefficient of variation (CV) of the
best-fit lognormal distribution is calculated as the standard deviation divided by mean concentration,
or about 3.65. Upper percentile values for distributions with that degree of skew are well above the
typical values around the 50th percentile of the distribution.

The 50th percentile value is easily determined. Recall that the transformed data from a lognormal
distribution are normally distributed, and the mean and 50th percentile (median) values for a normal
distribution are identical. The 50th percentile value is therefore calculated using the mean of the log-
transformed background data as follows: '

Yeo = 1.728

1]

e'’?%® = 5.63 ug/L

Xgo

The 90th percentile value of 45.60 ug/L is therefore about 8.1 times higher than the 50th percentile
value. Thus, the calculated risks at the 90th percentile are also more than 8 times higher than at more
typical background concentrations. Ecology policy is to limit the cleanup standards based on natural
background to no more than 4 times the 50th percentile background concentration. This policy
represents a balancing of acceptable exposures and risks with the probability that clean (background)
sites would fail a comparison with the cleanup standard for a site.

The cleanup standard for Zodium in groundwater at the Zarkle Industries site based on natural
background is therefore 4 times the 50th percentile value, or

Cleanup Standard = (4) (5.63)

=22.52 ug/L
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Example 12. (Continued)

This cleanup standard represents a value only slightly greater than the 80th percentile of the
background distribution. The estimated percentile can be calculated by determining the Z value of a
normal distribution that solves the equation '

log, 22.52 = y + Zs,
and then looking up that Z value in Table A-6 to determine the percentile.

The effect for this site of limiting the natural background cleanup standard to 4 times the 50th
percentile value is to adopt the 80th rather than the 90th percentile of the background distribution.
This results in a higher probability that a clean (background) site would fail the test (higher false
positive rate), balanced by almost a 50 percent reduction in the exposures that would occur at the
estimated 90th percentile of natural background.

The percentile value for the cleanup standard of 22.52 ug/l is estimated as 80.22. A test based on
the frequency of values above the cleanup standard at that percentile can be derived for a given
compliance monitoring sample size to provide an approximate 5 percent false positive rate (i.e., an
approximate 0.05 level test). Using the approach described in Technical Attachment 1 of Figure 12,
for example, the probability that 5 or more out of 10 compliance monitoring samples would exceed a
cleanup standard based on the 80.22nd percentile value is 0.031. Therefore, a test at the 0.03 level
for 10 samples would be based on not more than 40 percent of the values exceeding the cleanup level.

A test based on the maximum magnitude of exceedance can be derived similarly using the approach
described in Technical Attachment 2 of Figure 12. For example, with a compliance monitoring sample
size of 10, there is a 5-percent chance that one or more values would exceed the 99.49th percentile
if the site is at background. For a lognormal distribution with a CV of about 3.65, as estimated for the
Zodium background distribution in groundwater, a test at the 0.05 level of the maximum magnitude
observed would be based on an exceedance factor of about 16.5 times the cleanup standard.

Background data sets with high coefficients of variation (highly skewed distributions) will pose
problems for simultaneously achieving desirable false positive error rates and statistical power to detect
residual contamination, using the standard default methods described in this guidance document and
based on relatively small numbers of samples. In such cases, it may be appropriate to consider using
alternative distribution testing methods such as the Wilcoxon and Quantile tests. In the context of the
standard default procedures, values of the lognormal distribution CV (the mean divided by the standard
deviation of the best-fit lognormal distribution, not the raw sample values) greater than about 0.5 may
be considered relatively high.
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EXAMPLE 13

CONFIDENCE INTERVAL METHOD FOR TESTING COMPLIANCE - NORMALLY
DISTRIBUTED DATA

We wish to evaluate the soil lead data from Example 4 to determine whether the site complies
with the risk-based 250-mg/kg cleanup level (Method A).

276 _ 179 . 138 162
206 114 220 131
242 136 157 180
157 165 226 245
146 183 201 193

n 20

% 182.85

s 43.14

Assume that these data have been tested for lognormality and normality and are assumed to be
normally distributed. Find the appropriate: t-value in a t table (Appendix Table A-4). There are n
~ 1 = 19 degrees of freedom, and the correct column is for 0.05. The t-value is therefore
1.729. Calculate the upper confidence limit (UCL):

43.1
182.85 + 1.729‘3‘2_6‘

= 199.5.

UCL

Since the UCL on the mean is less than 250, the site meets the criteria that the UCL must be
less than the cleanup standard. In addition, no single value is greater than two times the
cleanup standard, and fewer than 10 percent (5 percent) of the values are above the cleanup
standard. Therefore, the site can be considered uncontaminated. As described in Section 5.2.1,
the confidence interval method should be used to compare compliance monitoring data to
cleanup levels based on chronic or carcinogenic effects.
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EXAMPLE 14

TOLERANCE INTERVAL METHOD FOR TESTING COMPLIANCE

Use the same data as for Example 13. From Table A-3 under P, = 0.1 for n = 20 (sample
size), k = 1.926. The value for P, comes from the fact that this is a confidence interval around

the 90th percentile (100 - 90 = 10; i

760 = 0.10). Then:

Ty

182.85 + (1.926) (43.14)
265.9

Although as shown in Example 13, the site meets two requirements for it to be considered clean,
because the cleanup level of 250 falls below the upper tolerance interval, the site is not clean by
this test. In general, the tolerance interval approach will be more stringent than the confidence,
interval method. As described in Section 5.2.2, the tolerance interval method should be used to
compare compliance monitoring data to cleanup levels based on acute or short-term effects.
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EXAMPLE 15

CALCULATION OF NONPARAMETRIC CONFIDENCE LIMITS
FOR PERCENTILES WHEN n <20 (Section 5.2.2.3)

Assume that the following soils data set (in mg/kg) from a site has been tested for normality and
lognormality, and found to fit neither distribution. The cleanup standard is 7 mg/kg. Does the
site meet the cleanup standard for soils?

6.01 4.53 6.78  3.79
8.94 820 543 6.54
5.21 4.46 5.90 6.23
8.43 5.32 7.42 4.01

We want to find the upper 95 percent confidence limit around the 90th percentile for the data

set..

A nonparametric test must be applied because the data are assumed not to be normally or
lognormally distributed. In addition, n<20, so the procedure described in Conover (1980)
should be applied.

1.

In this case, a = 0.05, 1—a = 0.95, p/100 = 0.90, and n = 16. Conover provides
two-sided confidence intervals in this table. However, under the regulation a one-sided
interval is the appropriate test. Therefore, for an equivalent one-sided test at a = 0.05,
the two-sided test for twice that value, or 0.10 must be used. Table A-5 is used to find
values for b. Read across columns for p/100 = 0.90, and down the left hand column
ton = 16. Move down the column (p/100 = 0.90) until the values approximate a/2 (in
this case 0.05). Find the corresponding value of y in the far left column. In this
example, a tabled value of 0.0684 is closest to 0.05, and the corresponding y value is
12. This value is r-1; we must add 1 to get r. Thus, in this example, r = 13.

Continue down the column for p/100 = .90, until you reach an entry approximately
equal to 1-(a/2), which is 0.950 in this example. The closest value is 0.8147, with a
corresponding y value of 15. Again, this value represents s-1, so 1 is added to obtain
to obtain s (16). ,

We wish to find the data values corresponding to ranks of r = 13 and s = 16. Order
the data from smallest to largest and assign a rank to each value.

97



EXAMPLE 15. (Continued)

Data Rank
3.79 1
4.01 2
446 3
453 4
5.21 5
532 6
543 7
590 8
"6.01 9
6.23 10
6.54 11
.6.78 12
7.42 13
8.20 14
8.43 15
8.94 16

4. The data values corresponding to ranks of 13 and 16 are 7.42 and 8.94. These values
represent the lower and upper confidences limits about the 90th percentile. The upper
confidence limit is 8.94 which is greater than the cleanup standard of 7 mg/l. Thus, the
site should be considered contaminated.

Technical Note: In this case, the exact confidence coefficient is determined by the a entries used,
and is not equal to 0.95. The actual value in this case is [1-0.017-0.8147 =
0.1683], not 0.05.
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EXAMPLE 16

CALCULATION OF NONPARAMETRIC CONFIDENCE LIMITS
FOR PERCENTILES WHEN N > 20 (Section 5.2.2.4)

Suppose we want to calculate the upper 95-percent confidence limit around the 90th percentile
for a data set with n = 100.

Assume that these data have been tested and do not appear to be normally or lognormally
distributed. Thus, we select the nonparametric method for estimating one-sided upper confidence
limits (Gilbert 1987, p.141).

1. Find Z, = Z,, in Table A-6. This value can be found by searching the table for a value
close to 0.95. In Table A-6, the closest values are 0.9495 and 0.9505. Z, is found by
reading the left-hand column value (Z)) in the same row as these values. In this case,
the value is 1.6. The hundredths digit must then be interpolated from the values in the
upper row. In this case, we must interpolate between 0.04 and 0.05 (corresponding to
0.9495 and 0.9505). (An example of linear interpolation is shown in Example 5.)
Thus, Z, = 1.6 + 0.045 = 1.645.

2. Calculate the rank of the upper confidence limit:

_p P yq_ P
u 100‘"”)+Z1“’J(""1oo”1 100

u =39 (100+1) + 1.645J(100)(.9_9_)(1 _ 90,

100 100 100

u = 95.835

3. Order the data from smallest to largest and assign a rank to each value.

4. Since u is not an integer, the limit must be obtained by linear interpolation between the
95th and 96th ranked data values.
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EXAMPLE 17

NONPARAMET RIC METHOD FOR EVALUATING GROUNDWATER COMPLIANCE
(Section 5.3.3)

The method of Van der Parren will be used to estimate an upper confidence limit on the median.
The following concentrations (mg/l) of XYZ are measured in the groundwater at a site. Does the
groundwater meet the cleanup level of 6 ppm?

Raw data Sorted data
XYZ (ppm) Rank XYZ(ppm)
9.3 1 0.4
5.6 2 1.5
, 0.4 3 1.6
3.1 4 1.8
2.0 5 1.9
4.2 6 1.9
1.9 7 1.9
7.4 8 2.0
6.1 9 2.3
5.3 10 2.5
1.9 11 3.1
1.8 12 3.5
1.5 13 3.7
3.7 14 4.2
2.5 15 5.3
1.6 . 16 5.6
5.8 17 5.8
3.5 | 18 6.1
2.3 | 19 7.4
1.9 20 9.3

The sample size (n) is 20. From Appendix Table A-7, j=15. For the sorted data, the 15th value
(= upper confidence limit) is 5.3 which is less than the cleanup standard of 6 ppm. Therefore,
the criterion that the 95 percent confidence limit on the median must be below the cleanup stan-
dard is satisfied. However, 15 percent {(more than 10 percent) of the data are above the cleanup
standard, so this criterion is not met, and the site is still considered to be contaminated.

Technical Note: The true confidence coefficient defined in Van der Parren for this case is 0.9586.
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TABLE A-1. COEFFICIENTS a, FOR THE SHAPIRO-WILK W TEST FOR NORMALITY

kn 2 3 L] 5 6 7 8 9 10

1 0.7071 0.7071 0.6872 0.6646 0.6431 0.6233 0.6052 0.5888 0.5739

2 . 0.0000 0.1677 0.2%13 0.2806 0.3031 0.3164 0.3244  0.3291

3 - . - 0.0000 0.0875 0.1401 0.1743 0.1976 0.21M

» - - - - . 0.0000 0.0561 0.0947 0.122%

R . - - - - - - 0.0000 0.0399

‘\ 1 12 1 1% 15 16 17 18 19 20

i

1 0.5601 0.54?5 0.5359 0.5251 0.5150 0.5056  0.4968 0.4886 0.A808 0.473)
2 0.3315 0.3325 0.3325 0.3318 0.3306 0.3290 0.3273 0.3253 0.3232 0.3211
3 0.2260 0.2347 0.2412 0.2460 0.2495 0.2521 0.2540 0.2553 0.2561 0.2565
4 0.1429 0.1586 0.1707 0.1802 0.1878 0.1939 0.1988 0.2027 0.2059 0.2085
5 0.0695 0.0922 0.1099 0.1280 0.1353 0.1447 0.1524 0.1587 0.1681 0.1686
6 0,0000 0.0303 0.0539 0.0727 0.0880 0.1005 0.1109 0.1197 0.1271 0,133
7 - - 0.0000 0.0240 0.0433 0.0593 0.0725 0.0837 0.0932 0.1013
8 - . . - 0.0000 0.0196 0.0359 0.0496 0.0612 0.0711
9 - - - - - - 0.0000 0.0163 0.0303 0.0422
10 . - . - - - - - 0.0000 0.0140
'\n 21 22 3 2 3 26 27 28 29 30

11 0,0000 0.0122 g.ozgz g.o:%; 0.0403 0.0476 0.0540 0.0598 0.0650 0.0697

12 - +00! .01 0.0200 0.0284 0.0358 0.0424 0.0483 0.0537
13 i - - - o 0.00%% 0.0178 0.0253 0.0320 0.0381
14 - - - - - - 0.0000 0.0084 0.0159 0.0227
135 - - - - - - - - 0.0000 0.0076

Source: After Shapiro and Wilk, 1965. Used by permission of the Biometrika Trustees.



TABLE A-1. (Continued)

N, 31 32 33 3 35 36 37 38 39 a0

1 0.64220 0.4188 0.4156 0.4127 0.4096 0.8068 0.A040 0.4015 0.3989 0.396A
2 0.2921 0.2898 0.2876 0.2854 0.2834 0.2813 0.2794 0.2774  0.2755 0.2737
3 0.2475 0.2462 0.2451 0.2439 0.2427 0.2415 0.2403 0.2391 0.2380 0.2368
A 0.2145  0.21841 0.2137 0.2132 0.2127 0.2121 0.2116 0.21910 0.2104  0.2098
S 0.1876 -0.1878 0.1880 0.1882 0.1883 0.1883 0.1863 0.1881 . 0.1880 0.1878
€ O0.16A1 0.1651 0.1660 0.1667 0.1673 0.1678 0.1683 0.1686 0.1689 0.1691
7 0.1A33  0.1849 0.1463 0.1475 0.1487 0.1496 0.1505 0.1513 0.1520 0.1526
8 0.1243 0.1265 0.1284 ©0.1301 0.1317 0.1331 0.1384 0.1356 0.1366 0.1376
9 0.1066 0.1093 0.1116 0.1140 0.1160 0.1179 0.1196 0.1211  0.1225 0.1237
10 0.0899 0.0931 0.0961 0.0988 0.1013 0.1036 0.1056 0.1075 0.1092 0.1108
11 0.0739 0.0777 0.0812 0.08A4 0.0873 0.0900 0.092% ©0.0947 0.0%€7 0.0986
12 0.0585 0.0629 0.0669 0.0706 0.0739 0.0770 0.0798 0.0824 0.0848 0.0870
13 0.0435 0.0a85 0.0530 0.0572 0.0610 0.06A5 0.0677 0.0706 0.0733 0.0759
14 0.0289 0.0384 0.0395 0.0aM1 0.04BA 0.0523 0.0559 0.0592 0.0622 0.0651
15 0.0144 0.0206 0.0262 0.031% 0.0361 O0.0AOM 0.0AbA  0.0A81 0.0515 0.0546
16 0.0000 0.0068 0.0131 0.0187 0.0239 0.0287 0.0331 0.0372 0.0409 0.0MA&
17 - - 0. 0.0062 0.0119 0.0172 0.0220 0.0264 0.0305 0.0343
18 - - - - 0.0000 ©.0057 0.0110 0.0158 0.0203 0.0244
19 - - - - - - 0.0000 0.0053 0.0101 0.0146
20 - - - - - - - - 0.0000 0.0049

n M a2 a a Y a6 a7 A8 a9 50

1

1 0.3940 0.3917 0,389 0.3672 0.3850 0.3830 0.3808 0.3789 - 0.3770 0.3751
2 0.2719 0.2701 0.268% 0.2667 0.2651 0.2635 0.2620 0.2604 0.2583 0.257%
3 0.2357 0.2345 0.233 0.2323  0.2313 0.2302 0.2291 0.2281 0.2271 0.2260
& 0.2091 0.2085 0.2078 0.2072 0.2065 0.2058 0.2052 0.20A5 0.2038 ©0.2032
S 0.1876 0.1874 0.1871 0.1868 0.1865 0.1862 0.1859 0.1855 0.1851 0.1847
6 0.1693 0.169% 0.1695 0.1695 0.1695 0.1695 0.1695 0.1693 0.1692 0.1691
7 0.1531 0.1535 0.1539 0.1542 0.1545 0.1548 0.1550 0.1551 0.1553 0.1554
8 0.1384 0.1392 0.1398 0.1405 0.1810 0.1415 0.1420 0.1423  0.1427 0.1A30
9 0.1249 0.1259 0.1269 0.1278 0.1286 0.1293 0.1300 - 0.1306 0.131z 0.1317
10 0.1123  0.1136 0.1149 0.1160 ©.1170 0.1180 0.1189 0.1197 0.1205 0.1212
11 0.1008 0.7020 0.1035 0.104%9 0.1062 0.1073 0.1085 0.1095 0.1105 0.1113
12 0.0891 0.0909 ©0.0927 0.093 0.0959 0.0972 0.098 0.0998 0.1010 0.1020
13 0.0782 0.0804 0.0824 0.0842 0.0860 0.0876 0.0892 0.0906 0.0919 0.0932
14  0.0677 0.0701 0.0724 0.0745 0.0765 0.0783 0.0801 0.0817 0.0832 0.0846
15 0.05?5 0.0602 0.0628 0.0651 0.0673 0.06% 0.0713 0.0731 0.0748 0.0764
16 0.0a76 0.0506 0.0534 0.0560 0.0584 0.0607 0.0628 0.06A8 0.0667 0.0685
17 0.0379 0.0A11 0.0aA2 0.0471 0.0897 0.0522 0.0546 0.0568 0.0588 0.0608
18 0.0283 0.0318 0.0352 0.0383 0.0412 0.0V39 0.0A65 0.0489 0.0511 0.0532
19 0.0188 0.0227 0.0263 0.0296 0.0328 0.0357 0.0385 0.0A11 0.08436 0.0459
20 0.0094 0.0136 0.0175 0.0211 0.0245 0.0277 0.0307 0.0335 0.0361 0.0386
21 0.0000 0.0045 0.0087 0.0126 0.0163 0.0197 0.0229 0.0259 0.0288 0.0314
22 - - 0.0000 0.0042 0.0081 0.0118 0.0153 0.0185 0.0215 0.0244
23 - - - - 0.0000 0.0039 0.0076 0.0111 0.0%43 0.017%
2 - - - - - - .0000 0.0037 0.0071 0.0104
25 - - - - - - - - 0.0000 0.0035




TABLE A-2. QUANTILES OF THE
SHAPIRO-WILK W TEST FOR NORMALITY

n %0.01 ¥%.02 ¥o.08 ¥o0.10 ¥o.50

3 0.753 0.756 0.767 0.789 T 0.959

’ 0.687 0.707 0.748 0.792 0.935

5 0.686 0.715 0.762 0.80€ 0.927

6 0.713 0.743 0.788 0.826 0.927

7 0.730 0.760 0.803 0.838 0.928

8 0.749 0.778 0.818 0.851 0.932

9 0.764 0.791 0.829 0.859 0.935
10 0.781 0.806 0.882 0.869 0.938
1 0.792 0.817 0.850 0.876 0.940
12 0.805 0.828 0.859 0.883 0.943
13 0.814 0.837 0.866 0.889 0.945
1 0.825 0.846 0.87% 0.895 0.947
15 0.835 0.855 0.881 0.901 0.950
16 0.844 0.863 0.887 0.906 0.952
17 0.851 0.869 0.892 ©0.910 0.954
12 0.858 0.874 0.897 0.914 0.956
19 0.863 0.879 0.901. 0.917 0.957
20 0.868 0.884 0.905 0.920 0.959
21 0.873 0.888 0.908 0.923 0.960
22 0.878 0.892 0.91 0.926 0.961
2 0.881 0.895 0.914 0.928 0.962
2 0.884 0.898 0.916 0.930 0.963
25 0.886 0.901 0.918 0.931 0.964
26 0.891 0.904 0.920 0.933 0.965
27 0.2%4 0.906 0.923 0.935 0.965
28 0.896 0.908 0.924 0.936 0.966
29 0.898 0.910 0.926 0.937 0.966
30 0.900 0.912 0.927 0.939 0.967
N 0.902 0.914 0.929 0.9A0 0.967
32 0.904 0.915 0.930 0.941 0.968
33 0.906 0.917 0.931 0.9%2 0.968
3 0.908 0.919 0.933 0.943 0.969
35 0.910 0.920 0.93% 0.9% 0.969
36 0.912 0.922 0.935 0.945 0.970
37 0.914 0.92% 0.936 0.946 6.970
38 0.916 0.925 0.938 0.947 0.571
39 0.917 0.927 0.939 0.948 0.97
a0 0.919 0.928 0.940 0.949 0.972
41 0.920 0.929 0.941 0.950 0.972
a2 0.922 0.930 0.942 0.951 0.972
¥} 0.923 0.932 0.943 0.951 0.973
~ 0.924 0.933 0.544 0.952 0.973
as 0.926 0.934 0.945 0.953 0.973
6 0.927 0.935 0.985 0.953 0.974
a7 0.928 0.93¢ 0.946 0.954 0.97%
A8 0.929 0.937 0.947 0.954 0.974
A9 0.929 0.937 0.947 0.955 0.97%
50 0.930 0.938 0.547 0.955 0.97%

Values of W such that 100 p percent of the distribution of W is less than Wp.

Source: After Shapiro and Wilk, 1965. Used by permission of the Biometrika Trustees.



TABLE A-3. TABLE OF k USED IN CALCULATING
TOLERANCE INTERVALS FOR A
NORMALLY DISTRIBUTED VARIABLE
(@ = 0.05, P,, and sample size n)

n Po
025 0.1 0.05 0.010
2 11.763 20.581 26.260 37.094
3 3.806 6.155 7.656 10.553
4 2.618 4.162 5.144 7.042
5 2.150 3.407 4.203 5.741
6 1.895 3.006 3.708 5.062
7 1.732 2.755 3.399 4.642
8 1.618 2.582 3.187 4.354
9 1.532 2.454 3.031 4.143
10 1.465 2.355 2911 3.981
11 1.411 2.275 2.815 3.852
12 1.366 2.210 2.736 3.747
13 1.328 2.155 2.671 3.659
14 1.296 2.109 2.614 3.585
15 1.268 2.068 2.566 3.520
16 1.243 2.033 2.524 3.464 .
17 1.220 2.002 2.486 3414
18 1.201. 1.974 2.453 3.370
19 1.183 1.949 2.423 3.331
20 1.166 1.926 2.396 3.295
21 1.152 1.905 2.371 3.263
22 1.138 1.886 2.349 3.233
23 1.125 1.869 2.328 3.206
24 1.114 1.853 2.309 3.181
25 1.103 1.838 2.292 3.158
26 1.093 1.824 2.275 3.136
27 1.083 1.811 2.260 3.116
- 28 1.07 1.799 2.246 3.098
29 1.066 1.788 2.232 3.080
30 1.058 1.777 2.220 3.064
35 1.025 1.732 2.167 2.995
40 0.999 1.697 2.125 2.941
50 0.960 1.646 2.065 2.862
70 0.911 1.581 1.990 2.765
100 0.870 1.527 1.927 2.684
200 0.809 1.450 1.837 2.570
500 0.758 1.385 1.763 2.475
infinity 0.674 1.282 1.645 2.326

From U.S. EPA (1988).



TABLE A-4. TABLE OF ONE-SIDED CONFIDENCE LIMIT VALUES
(for selected a and degrees of freedom)

Use alpha to determine which column to use. Use the degrees of freedom to determine which row to
use. The t value will be found at the intersection of the row and column. For values of degrees of
freedom not in the table, interpolate between those values provided.

. a for determining t].q df
25 10 05 025 01 00Ss 0025 001

df .
1 1.000 3.078 6314 12706 31.821 63.657 127321 318309
2 0816 1.886 2920 4303 6.965 9925 14.089 22.327
Degrees of 3 0.765 1.638  2.353 3.182 4541 5841 7453 10215
Freedom 4 0,741 1533  2.132 2716 3747 4604 5598 7.173
df S 0.727 1476 2.015 2571 3365 4.032 4773 5.893
6 0718 1440 1943 2447 3143 3707 4317 5.208
7 0.711 1415 1895 2365 2998 3499 4029 4.785
8 0706 1397 1.860 2306 2896 3355 3.833 4.501
9 0.703 1.383 1.833 2262 2.821 3250 3.690 4.297
10 0.700 1372 13812 2228 2764 3169 3581 4.144
11 0697 1363 1796 2201 2718 3.106 3497 4.025
12 0695 135 1.782 2179 2681 3.055 3428 3930
13 0694 1350 1771 2160 2650 3.012 3372 3852
14 0692 1345 1.761 2145 2624 2977 3326 3.787
15 0.691 1341 1.753 2131 2602 2947 328 3.733
16 0690 1337 1.746 2.120 2.583 2921 3252 3.686
17 0.689 1333 1740 2110 2.567 2898 3222 3.646
18 0.688 1330 1.734 2101 2,552 2878 3.197 3.610
19 0.688 1328 1.729 2093 2539 2861 3.174 3.579
20 0.687 1325 1.725 2086 2.528 2845 3.153 3.552
21 0686 1323 1.721 2080 2518 2831 3.135 3.527
22 0686 1321 1717 2074 2508 2819 3.119 3.505
23 0685 1319 1714 2069 2500 2807 3.104 3485
A 0685 1318 1711 2064 2492 2797 3091 3467
25 0684 1316 1.708 2060 2485 2,787 3078 3450
26 0684 1315 1.706 2056 2479 2779 3.067 3435
27 0684 1314 1703 2052 2473 2771 3057 3421
28 0.683 1313 1701 2048 2467 2763 3.047 3408
29 0683 1311 169 2045 2462 2756 3038 3.39%
30 0.683 1310 1.697 2042 2457 2750 3.030 3.385
- 40 0.681 1303 1.684 2021 2423 2704 2971 3307
60 0679 129 1.671 2000 239 2660 2915 3232
120 0.677 1289 1.658 1980 2358 2617 2860 3.160
400 0675 1284 1.649 1966 2336 2588 2823 3.111
infinite 0674 1282 1.645 1960 2326 2576 2.807 3.090




TABLE A-5. BINOMIAL DISTRIBUTION

p=205 .10 A5 .20 25 30 35 40 45

1 0 .9500- .9000 .8500 .8000 .7500 .7000 .6500 .6000 .5500
1 1.0000 1.0000 1.0000 1.0000 !.0000 1.0000 1.0000 1.0000 1.0000
2 0 9025 8100 .7225 .6400 .5625 .4900 4225 .3600 .3025
1 9975 9900 9775 9600 .9375 .9100 .8775 .8400 .7975
2 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
3 0 .8574 7290 6141 .5120 4219 .3430 2746 .2160 .1664
1 9928 9720 9392 .8960 .8438 .7840 .7I182 .6480 .5748
2 .9999 9990 .9966 .9920 .9844 9730 9571 9360 .9089
3 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
4 0 .8145 6561 .5220 .4096 .3164 .2401 1785  .1296 .0915
1 9860 .9477 8905 .8192 .7383 .6517 .5630 4752 .3910
2 9995 9963 9880 9728 .9492 9163 .8735  .8208 .7585
3 1.0000 .9999 9995 9984 9961 .9919 9850 .9744 .9590
4 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
5 0 .7738 .S905 4437 3277 .2373  .1681 .1160 .0778 .0503
1 9774 9185 .8352 .7373 6328 .5282 4284 3370 .2562
2 9988 9914 9734 9421 .8965 .8369 .7648  .6826 .5931
3 10000 9995 9978 9933 9844 9692 9460 9130 .8688
4 1.0000 1.0000 .9999 9997 9990 .9976 9947 9898 .9815
5 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
6 0 7351 5314 3771 2621 1780  .1176 0754 .0467 .0277
1 9672 .8857 .7765 .6554 .5339 4202 3191 .2333 .1636
2 9978 9842 9527 9011 8306 .7443 6471 5443 4415
3 9999 9987 9941 9830 .9624 9295 .8826  .8208 .7447
4 1.0000 .9999 9996 9984 9964 9891 .9777 9590 .9308
5 1.0000 1.0000 1.0000 .9999 .9998 9993 9982 9959 .9917
6 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000.
7 0 .6983 4783 .3206 .2097 .1335 - .0824 .0490 .0280 .0152
1 9556 .8503 .7166 .S767 .4449 ~ 3294 2338 .1586 .1024
2 9962 9743 9262 .8520 .7564 .6471 .5323 4199 .3164
3 9998 9973 9879 9667 9294 .8740 .8002 .7102 .6083
4 1.0000 .9998 9988 9953 9871 9712 9444 9037 .8471
5..1.0000 1.0000 .9999 .9996 9987 9962 .9910 9812 .9643
6 1.0000 1.0000 1.0000 1.0000 .9999 .9998 .9994 9984 .9963
7 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Source: Practical Nonparametric Statistics. Second Edition, W. J. Conover, Copyright © (1971, 1980,
by John Wiley & Sons, Inc.). Reprinted by permission John Wiley & Sons, Inc.



TABLE A-5. (Continued)

p=.350 .55 60 65 .70 .75 80 85 90 .95
0 .5000 .4500 .4000 .3500 .3000 .2500 .2000 .1500 .1000 .0500
1 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
0 .2500 .2025 .1600 .1225 .0900 .0625 .0400 .0225 .0100 .0025
1 .7500 .6975 .6400 .S775 .5100 .4375 .3600 .2775 .1900 .0975
2 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000. 1.0000 1.0000
0 .1250 .0911 .0640 .0429 :0270 .0156 .0080 .0034 .0010 .0001
1 .5000 .4252 .3520 .2818 .2160 .1562 .1040 .0608 .0280 .0072
2 8750 .8336 .7840 .7254 .6570 .5781 .4880 .3859 .2710 .1426
3 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
0 .0625 .0410 .0256 .0150 .0081 .0039 .00i6 .0005 .0001 .0000
1 .3125 2415 .1792 .1265 .0837 .0508 .0272 .0120 .0037 .0005
2 6875 .6090 .5248 .4370 .3483 .2617 .1808 .1095 .0523 .0140
3 .9375 .9085 .8704 .8215 .7599 .6836 .5904 4780 .3439 .1855
4 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
0 .0312 .0185 .0102 .0053 .0024 .0010 .0003 .0001 .0000 .0000
1 .1875 .1312 .0870 .0540 .0308 .0156 .0067 .0022 .0005 .0000
2 .5000 4069 .3174 .2352 .1631 .1035 .0579 .0266 .0086 .0012
3 ' 8125 .7438 .6630 .5716 .4718 .3672 .2627 .1648 .0815 .0226
4 9688 9497 .9222 .8840 .8319 .7627 .6723 .5563 .4095 .2262
5 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
0 .0156 .0083 .0041 .0018 .0007 .0002 .0001 .0000 .0000 .0000
1 .1094 .0692 .0410 .0223 .0109 .0046 .0016 .0004 .0001 .0000
2 .3438 .2553 .1792 .1174 .0705 .0376 .0170 .00S9 .0013 .000I
3 6562 .5585 .4557 .3529 .2557 .1694 .0989 .0473 .0158 .0022
4 8906 .8364 .7667 .6809 .5798 .4661 .3446 .2235 .1143 .0328
5 9844 9723 9533 .9246 .8824 .8220 .7379 .6229 .4686 .2649
6 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
0 .0078 .0037 .0016 .0006 .0002 .0001 .0000 .0000 .0000 .0000
1 .0625 .0357 .0188 .0090 .0038 .0013 .0004 .0001 .0000 .0000
2 .2266 .1529 .0963 .0556 .0288 .0129 .0047 .0012 .0002 .0000
3 .5000 .3917 .2898 .1998 .1260 .0706 .0333 .0121 .0027 .0002
4 7734 6836 .5801 - .4677 .3529 .2436 .1480 .0738 .0257 .0038
5 9375 .8976 .8414 .7662 .6706 .5551 .4233 .2834 .1497 .0444
6 .9922 .9848 9720 .9510 .9176 .8665 .7903 .6794 .5217 .3017
7

1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000




TABLE A-5. (Continued)

10 A5 .20 .30 35 .40 45
g8 O 4305 .2725  .1678 .0576  .0319 .0168 .0084
1 8131 6572 .5033 2553 .1691 .1064  .0632
2 9619 .8948 7969 5518 4278 3154 .2201
3 9950 9786  .9437 .8059 7064 .5941 .4770
4 9996 9971  .9896 9420  .8939  .8263 .7396
5 1.0000 .9998  .9988 9887 .9747 9502 9115
6 1.0000 1.0000 .9999 9987 9964 9915  .9819
7 1.0000 1.0000 1.0000 9999 9998  .9993  .9983
8 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
9 0 3874 2316 1342 .0404 - .0207 .0101 .0046
1 7748 5995 4362 .1960  .1211  .0705 .0385
2 9470 .8591  .7382 4628  .3373 2318  .1495
3 9917 9661 9144 7297  .6089  .4826  .3614
4 9991 9944 9804 9012  .8283 .7334 .6214
5 9999 9994 .9969 .9747 9464 9006 .8342
6 1.0000 1.0000 .9997 .9957  .9888  .9750 .9502
7 1.0000 1.0000 1.0000 9996 9986 .9962 .9909
8 1.0000 1.0000 1.0000 1.0000 .9999  .9997 .9992
9 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
10 0 3487 1969  .1074 .0282 0135 .0060 .0025
1 7361 5443 3758 1493  .0860 .0464 .0233
2 9298  .8202 .6778 .3828 .2616 .1673  .0996
3 9872 - 9500 ..8791 .6496  .5138  .3823  .2660
4 .9984 9901  .9672 8497 7515  .6331 .5044
] 9999 9986  .9936 9527 .9051 .8338 .7384
6 1.0000 .9999 - .9991 9894 9740 9452 .8980
7 1.0000 1.0000 - .9999 9984 9952 9877 .9726
8 1.0000 1.0000 1.0000 9999  .9995 9983  .9955
9 1.0000 1.0000 1.0000 1.0000 1.0000 .9999 .9997
10 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
11 0 3138 1673 .0859 .0198 .0088 .0036 .0014
1 6974 4922 3221 1130 .0606 .0302 .0139
2 9104 7788 6174 3127 2001 .1189  .0652
3 9815 .9306 .8389 5696 .4256  .2963  .1911
4 9972 9841 9496 7897  .6683 .5328 .3971
] 9997 9973  .9883 9218  .8513 7535 .6331
6 1.0000 .9997 .9980 9784 9499 9006 .8262
7 1.0000 1.0000 .9998 9957 9878  .9707 .9390
8 1.0000 1.0000 1.0000 . 9994 9980 .9941 .9852
9 1.0000 1.0000 1.0000 1. .0000 9998 .9993 .9978
10 1.0000 1.0000 1.0000 1. .0000 1.0000 1.0000 .9998
11 1.0000 1.0000 1.0000 1. .0000 1.0000 1.0000 1.




TABLE A-5. (Continued)

p=.50 .55 .60 .65 .70 75 .80 85 .90 95
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0039 .0017 .0007 .0002 .0001 .0000 .0000 .0000 .0000 .0000
.0352 .0181 .0085 .0036 .0013 .0004 .0001 .0000 .0000 .0000
.1445 .0885 .0498 .0253 .0113 .0042 .0012 .0002 .0000 .0000
3633 .2604 .1737 .1061 .0580 .0273 .0104 .0029 .0004 .0000
.6367 .5230 .4059 .2936 .1941 .1138 .0563 .0214 .0050 .0004
8555 .7799 .6846 .5722 .4482 .3215 .2031 .1052 .0381 .00S8
9648 9368 .8936 .8309 .7447 .6329 .4967 .3428 .1869 .0572
9961 .9916 .9832 .9681 .9424 .8999 .8322 .7275 .5695 .3366
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

0020 .0008 .0003 .0001 .0000 .0000 .0000 .0000 .0000 .0000
.0195 .0091 .0038 .0014 .0004 .0001 .0000 .0000 .0000 .0000
.0898 .0498 .0250 .0112 .0043 .0013 .0003 .0000 .0000 .0000
2539  .1658 .0994 .0536 .0253 .0100 .0031 .0006 .0001 .0000
.5000 .3786 .2666 .1717 .0988 .0489. .0196 .0056 .0009 .0000
7461 6386 .5174 .3911 .2703 .1657 .0856 .0339 .0083 .0006
9102 .8505 .7682 .6627 .5372 .3993 .2618 .1409 .0530 .0084
9805 .9615 ~.9295 .8789 .8040 .6997 .5638 .4005 .2252 .0712
9980 .9954 9899 .9793 .9596 .9249 .8658 .7684 .6126 .3698
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

.0010 .0003 .0001 .0000 .0000 .0000 .0000 .0000 .0000 .0000
.0107 .0045 .0017 .0005 .0001 .0000 .0000 .0000 .0000 .0000
0547 .0274 .0123 .0048 .0016 .0004 .0001 .0000 .0000 .0000
1719 1020 .0548 .0260 .0106 .0035 .0009 .0001 .0000 .0000
3770 2616 .1662 .0949 .0473 .0197 .0064 .0014 .0001 .0000
.6230 .4956 .3669 .2485 .1503 .0781 .0328 .0099 .0016 .0001
.8281 .7340 .6177 .4862 .3504 .2241 .1209 .0500 .0128 .0010
9453 9004 .8327 .7384 6172 .4744 3222 1798 .0702 .0115
9893 9767 .9536 .9140 .8507 .7560 .6242 .4557 .2639 .0861
9990 9975 .9940 .9865 9718 .9437 .8926 .8031 .6513 .4013
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 ,1.0000

0059 .0022 .0007 -0002 .0000 .0000 .0000 .0000 .0000 .0000
0327 .0148 .0059 .0020 .0006 .0001 .0000 .0000 .0000 .0000
1133 .0610 .0293 .0122 .0043 .0012 .0002 .0000 .0000 .0000
2744  .1738 .0994 .0501 .0216 .0076 .0020 .0003 .0000 .0000
5000 .3669 .2465 .1487 .0782 .0343 .0117 .0027 .0003 .0000
1256 6029 4672 3317 2103 .1146 .0504 .0159 .0028 .0001
.8867 .8089 .7037 .5744 .4304 .2867 .1611 .0694 .0185 .0016
9673 9348 8811 .7999 .6873 .5448 3826 .2212 .0896 .0152
9941 9861 .9698 .9394 .8870 .8029 .6779 .5078 .3026 .1019
9995 9986 .9964 .9912 .9802 .9578 .9141 .8327 .6862 .4312
1.0000 100001000010000100001000010000100001000010000




TABLE A‘-5. {Continued)

ny
p=.05 .10 A5 .20 25 30 35 .40 45
12 0 .5404 2824  .1422 0687 .0317 .0138 .0057 .0022 .0008
1 .8816 .6590  .4435 2749  .1584 - .0850 .0424 .0196 .0083
2 9804 .8891 7358 5583 3907 .2528 .IS13  .0834 .0421
3 978 9744 9078 7946 6488 4925 .3467 .2253 .1345
4 9998 9957 9761 9274 8424 7237 .5833  .4382 .3044
5 1.0000 .9995 9954 - 9806 .9456 .8822 7873  .6652 . .5269 .
6 1.0000 .9999 9993 9961 .9857 9614 .9154 .8418 .7393
7 1.0000 1.0000 9999 9994 9972 9905 .9745 .9427 .8883
§ 1.0000 1.0000 1.0000 .9999 .9996 9983 .9944 9847 .9644
9 1.0000 1.0000 1.0000 1.0000 1.0000 .9998 .9992 .9972 .9921
10 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 .9999 .9997 .9989
11 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 .9999
12 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
13 0 5133 .2542  .1209 0550 .0238 .0097 .0037  .0013 .0004
1 8646 .6213  .3983 2336 .1267 .0637 .0296 .0126 .0049
2 9755 8661 6920 .5017 3326 .2025 .1132 .0579 .0269
3 9969 9658 8820 .7473  .5843 4206 .2783 .1686 .0929
4 997 9935 9658. .9009 .7940 .6543 .5005 .3530 .2279
5 10000 9991 9925 °.9700 9198 ~ .8346 .7159 .5744 .4268
6 1.0000 .9999 9987 9930 9757 9376 .8705 .7712 .6437
7 1.0000 1.0000 9998 9988 - .9944 9818 .9538  .9023 .8212
8 10000 1.0000 1.0000 .9998 .9990 .9960 .9874 .9679 .9302 .
9 1.0000 1.0000 1.0000 1.0000 .9999 .9993 .2975 .9922 .9797
10 10000 1.0000 1.0000 1.0000 1.0000 .9999 .9997 .9987 .9959
11 10000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 .9999 .9995
12 1.0000 1.0000 10000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
13 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
14 0 4877 2288 1028 .0440 .0178 .0068 .0024 .0008 .0002
1 8470 .5846 .3567 .1979 .1010 .0475 .0205 .0081 .0029
2 9699 8416 .6479 4481 2811 .1608 .0839 .0398 .0170
3 9958 9559 .8535 6982 .5213  .3552 2205 .1243 .0632 .
4 9996 9908 9533 8702 .7415 .5842 .4227 2793 .1672
5 1.0000 9985 9885 9561 .8883 .7805 .6405 4859 .3373
6 10000 9998 .9978 .9884 9617 .9067 .8164 .692§ .5461
7 1.0000 1.0000 .9997 9976 9897 .9685 .9247 .B499 .7414
8 1.0000 1.0000 1.0000 .9996 .9978 .9917 9757 .9417 .88l
9 1.0000 1.0000 1.0000 1.0000 .9997 .9983 .9940 .9825 .9574
10 1.0000 1.0000 10000 1.0000 1.0000 .9998 .9989 .9961 - .9886
11 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 .9999 .9994 .9978
12 10000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 .9999 .9997
13 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
14 1.0000 1.0000 1.0000 1.0000. 1.0000 1.0000 1.0000 1.0000 1.0000




TABLE A-5. (Continued)

n y :
p=.50 .55 .60 .65 .70 75 .80 85 .90 .95

12 0 .0002 .0001 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000
1 .0032 .0011 .0003 .0001 .0000 .0000 .0000 .0000 .0000 .0000
2 0193 0079 .0028 .0008 .0002 .0000 .0000 .0000 .0000 .000O
3 .0730 .0356 .0153 .0056 .0017 .0004 .0001 .0000 .0000 .0000
4 (1938 .1117 .0573 .0255 .0095 .0028 .0006 .0001 .0000 .0000
5 .3872 2607 .1582 '.0846 .0386 .0143 .0039 .0007 .0001 .0000
6 .6128 .4731 .3348 2127 .1178 .0544 .0194 .0046 .0005 .0000
7 8062 .6956 .5618 .4167 .2763 .1576 .0726 .0239 .0043 .0002
8 9270 .8655 .7747 6533 .5075 .3512 .2054 .0922 .0256 .0022
9 9807 .9579 9166  .8487 .7472 .6093 4417 2642 .1109 .0196
10 9968 .9917 .9804 .9576 .9150 .8416 .7251 .5565 .3410 .1184
11,9998 9992 9978 .9943 9862 .9683 - 9313 .8578 .7176 .4596
12 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
13 0 .0001 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000
1 .0017 .0005 .0001 .0000 .0000 .0000 .0000 .0000 .0000 .0000
2. .0112 .0041 .0013 .0003 .0001 .0000 .0000 .0000 .0000 .0000
3 .0461 .0203 .0078 .0025 .0007 .0001 .0000 .0000 .0000 .0000
4 1334 0698 .0321 .0126 .0040 .0010 .0002 .0000 .0000 .0000
5 .2905 .1788 .0977 .0462 .0182 .0056 .0012 .0002 .0000 .000O
6 .5000 .3563 .2288 .1295 .0624 .0243 .0070 .0013 .0001 .0000
7 .7095 .5732 .4256 .2841 .1654 .0802 .0300 .0075 .0009 .0000
8 8666 .7721 .6470 .4995 .3457 .2060 .0991 0342 .0065 .0003
9 9539 9071 .8314 .7217 .5794 .415T .2527 - .1180 .0342 0031
10 9888 9731 -9421 .8868 .7975 .6674 .4983 3080 .1339 .0245
11 9983 9951 .9874 .9704 .9363 .8733 .7664 .6017 .3787 .]1354
129999 9996 .9987 .9963 .9903 .9762 .9450 .8791 .7458 .4867
13 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
14 0 0001 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000
1 .0009 .0003 .0001 .0000 .0000 .0000 .0000 .0000 .0000 .0000
2 .0065 .0022 .0006 .0001 .0000 .0000 .0000 .0000 .0000 .0000
3 .0287 .0114 .0039 .0011 .0002 .0000 .0000 .0000 .0000 .0000
4 0898 0426 .0I75 .0060 .0017 .0003 .0000 .0000 .0000 .0000
5 2120 .1189 .0583 .0243 .0083 .0022 .0004 .0000 .0000 .0000
6 .3953 .2586' .1501 .0753 .031S 0103 .0024 .0003 .0000 .0000
7 .6047 4539 .3075 .1836 .0933. .0383 .0116 .0022 .0002 .0000
8 .7880 .6627 .5141 .3595 .2195 .1117 .0439 .0115 .0015 .0000
9 9102 .8328 .7207 .5773 .41S8 2585 .1298 .0467 .0092 .0004
10 9713 9368 .8757 .7795 .6448 4787 .3018 .1465 .0441 .0042
11 9935 9830 .9602 .9161 .8392 .7189 .5519 .3521 .1584 .0301
12 9991 9971 .9919 .9795 .9525 .8990 .8021 .6433 4154 .1530
139999 9998 .9992 .9976 .9932 .9822 .9560 .8972 .7712 .5123

14

1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000




TABLE A-5. (Continued)

n y
p=.05 .10 a5 .20 .25 .30 .35 40 45
1S 0 .4633 .2059 .0874 .0352 .0134 .0047 .0016 .000S .0001
1 .8290 .5490 .3186 .1671 .0802 .0353 .0142  .0052 .0017
2 9638 .8159 .6042 .3980 2361 .1268 .0617 .0271 .0107
3 .9945 .9444 8227 6482 4613 2969 .1727 .0905 .0424
4 9994 9873 .9383 .8358 6865 .5155 .3519 .2173 .1204
S .9999 .9978 9832 9389 8516 .7216 .5643 .4032 °.2608
6 1.0000 .9997 .9964 9819 9434 8689 .7548 .6098 .4522
7 1.0000 1.0000 .9994 9958 9827 .9500 .8868 .7869 .6535
8 1.0000 1.0000 - .9999 .9992 9958 .9848 .9578 .90S0 .8182
9 1.0000 1.0000 1.0000 .9999 9992 9963 .9876 .9662 .9231
10 1.0000 1.0000 1.0000 1.0000 .9999 .9993 .9972 .9907 .974S
11 1.0000 1.0000 1.0000 1.0000 1.0000 .9999 .9995 .9981 .9937
12 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 .9999 .9997 .9989
13 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 .9999
14 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
15 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
16 0 .4401 .1853 .0743 .0281 .0100 .0033 .0010 .0003 .0001
1 .8108 .5147 .2839 .1407 .0635 .0261 .0098 .0033 .0010
2 .9571 .7892 .5614 3518 1971 .0994 .0451 .0183 .0066
3 .9930 .9316 .7899  .5981 .4050 .2459 .1339 .0651 .0281
4 9991 9830 .9209 .7982 6302 .4499 .2892 .1666 .0853
5 .9999 9967 .9765 9183 8103 .6598 .4900 .3288 .1976
6 1.0000 .9995 .€944 9733 9204  .8247 .6881 .5272 .3660
7 1.0000 .9999 Y989 9930 .9729 .925¢ .8406 .7161 .5629
8 1.0000 1.0000 .9998 9985 9925 9743 9329 .8577 .7441
9 1.0000 1.0000 1.0000 .9998 .9984 9929 9771 .9417 .8759
10 1.0000 1.0000 1.0000 1.0000 .9997 .9984 .9938 .9809 .9514
11 1.0000 1.0000 1.0000 1.0000 1.0000 .9997 .9987 .9951 .9851
12 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 .9998 .9991 .9965
13 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 .9999 .9994
14 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 .9999
15 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
16 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000




TABLE A-5. (Continued)

n

Yy

p=.350 55 .60 .65 70 - 75 .80 85 .90 95
15 0 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000
1 .0005 .0001 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000
2 .0037 .0011 .0003 .0001 .0000 .0000 .0000 .0000 .0000 .0000
3 .0176 .0063 .0019 .0005 .0001 .0000 .0000 .0000 .0000 .0000
4 0592 -.0255 ..0093 .0028 . .0007 .0001 .0000 .0000 .0000 .0000
5 .1509 .0769 .0338 .0124 .0037 .0008 .0001 .0000 .0000 .0000
6 .3036 .1818 .0950 .0422 .0152 .0042 .0008 .0001 .0000 .0000
7 .5000 .3465 .2131 .1132 .0500 .0173 .0042 .0006 .0000 .0000
8 .6964 .5478 .3902 .2452 .1311 .0566 .0181 .0036 .0003 .0000
9 .8491 .7392 .5968 .4357 .2784 .1484 .0611 .0168 .0022 .0001
10 .9408 .8796 .7827 .6481 .4845 3135 .1642 .0617 .0127 .0006
11 9824 9576 .9095 .8273 .7031 .5387 3518 .1773 .0556 .00S5
12 9963 .9893 .9729 .9383 .8732 .7639 .6020 .3958 .1841 .0362
13 9995 9983 .9948 .9858 .9647 .9198 .8329 .6814 4510 .1710
14 1.0000 .9999 .9995 .9984 9953 .9866 .9648 9126 .7941 .5367
15 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
16 0 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000
1 .0003 .0001 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000
2 .0021. .0006 .0001 .0000 .0000 .0000 .0000 .0000 .0000 .0000
3 .0106 .0035 .0009 .0002 .0000 .0000 .0000 .0000 .0000 .0000
4 0384 .0149 .0049 .0013 .0003 .0000 .0000 .0000 .0000 .0000
S .1051 .0486 .0191 .0062 .0016 .0003 .0000 .0000 .0000 .0000
6 .2272 .1241 .0583 .0229 .0071 .0016 .0002 .0000 .0000 .0000
7 4018 .2559 .1423 .0671 .0257 .0075  .001S .0002 .0000 .0000
8 .5982 .4371 .2839 .1594 .0744 .0271 .0070 .0011 .0001 .0000
9 7728 .6340 .4728 .3119 .1753 .0796 - .0267 .0056 .0005 .0000
10 .8949 .8024 .6712 .5100 .3402 .1897 .0817 .0235 .0033 .0001
11 9616 9147 .8334 .7108 .5501 .3698 .2018 .0791 .0170 .0009
12 9894 9719 .9349 .8661 .7541 .5950 .4019 .2101 .0684 .0070
13 9979 9934 .9817 .9549 .9006 .8029 .6482 .4386 .2108 .0429
14 9997 9990 .9967 .9902 .9739 9365 .8593 .7161 .4853 .1892
15 1.0000 .9999 .9997 .9990 .9967 .9900 .9719 .9257 .8147 .5599
16 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 !.0000 1.0000 1.0000 1.0000




TABLE A-5. (Continued)
n y
p=.05 .10 A5 .20 .25 .30 35 40 45
17 0 .4181 .1668 .0631 .0225 .0075 .0023 .0007 .0002 .0000
1 .7922 4818 2525 .1182 .0501 .0193 .0067 .0021 .0006
2 .9497 7618 5198 .3096 - .1637 .0774 .0327 .0123 .0041
3 9912 9174 7556 .5489 3530 .2019 .1028 .0464 .0184
4 9988 9779 9013 7582 .5739  .3887 .2348 .1260 .0596
S .9999 9953 9681 .8943  .7653  .5968 .4197 .2639 .1471
6 1.0000 .9992 9917 .9623 .8929 .7752 .6188  .4478 .2902
7 1.0000 .9999 .9983  .9891 .9598 .89s54 .7872 .6405 .4743
8 1.0000 1.0000 .9997 .9974 9876 .9597 .9006 .8011 .6626
9 1.0000 1.0000 1.0000 .9995 .9969 9873 .9617 .9081 .8166
10 1.0000 1.0000 1.0000 - .9999 9994 9968 .9880 .9652 .9174
11 1.0000 1.0000 1.0000 1.0000 .9999 .9993 9970 .9894  .9699
12 1.0000 1.0000 1.0000 1.0000 1.0000 .9999 .9994 .9975 .9914
13 :.0000 1.0000 1.0000 1.0000 1.0000 1.0000 .9999 .9995 .9981
14 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 .9999 .9997
15 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
16 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
17 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
18 0 .3972 .1501 .0536 .0180 .00S6 .0016 .0004 .0001 .0000
1 7735 4503 2241 0991 0395 0142 .0046 .0013 .0003
2 9419 .7338  .4797 2713  .1353 0600 .0236 .0082 .0025
3 9891 9018 .7202 .5010 .3057 .1646 .0783 .0328 .0120
4 9985 9718 -.8794 .7164 .5187 .3327 .1886 .0942 .0411
5 9998 9936 .9581 .8671 .7175 .5344 .3550 .2088 .1077
6 1.0000 .9988 9882 .9487 .8610 .7217 .5491 .3743 2258
7 1.0000 .9998 .9973 9837 9431 8593 .7283 .5634 .3915
8 1.0000 1.0000 .9995 .9957 9807 .9404 .8609 .7368 .5778
9 1.0000 10000 .9999 9991 9946 9790 .9403  .8653 .7473
10 1.0000 1.0000 1.0000 .9998 .9988 .9939 .9788  .9424 .8720
11 1.0000 1.0000 1.0000 1.0000 .9998 .9986 .9938 .9797 .9463
12 1.0000 1.0000 1.0000 1.0000 1.0000 .9997 .9986 .9942 . .9817
13 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 .9997 .9987 .9951
14 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 .9998 .9990
15 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 .9999
16 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
17 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
18 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.




(Continued)

TABLE A-5.
ny
p=.50 .55 60 65 .70 .75 80 8 .90 .95
17 0 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000
1 .0001 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000
2 .0012 .0003 .0001 .0000 .0000 .0000 .0000 .0000 .0000 .000O
3 .0064 .0019 .0005 .0001 .0000 .0000 .0000 .0000 .0000 .0000
4 0245 0086 .0025 .0006 .0001 .0000 .0000 .0000 .0000 .0000
5 0717 .0301 .0106 .0030 .0007 .0001 .0000 .0000 .0000 -.0000
6 .1662 .0826 .0348 .0120 .0032 .0006 .0001 .0000 .0000 .0000
7 .3145 .1834 .0919 .0383 .0127 .0031 .0005 .0000 .0000 .0000
8 .5000 .3374 .1989 .0994 .0403 .0124 .0026 .0003 .0000 .0000
9 6855 .5257 .3595 .2128 .1046 .0402 .0109 .0017 .000f .0000
10 .8338 .7098 .5522 .3812 .2248 .1071 .0377 .0083 .0008 .0000
11 .9283 .8529 .7361 .5803 .4032 .2347 .1057 .0319 .0047 .0001
12 9755 .9404 .8740 .7652 .6113 .4261 2418 0987 .0221 .00I2 -
13 9936 .9816 .9536 .8972 .7981 .6470 .4511 .2444 .0826 .0088
14 9988 9959 9877 .9673 .9226 .8363 .6904 .4802 .2382 .0503
15 .9999 9994 .9979 .9933 .9807 .9499 8818 .7475 .5182 .2078
16 1.0000 1.0000 .9998 .9993 9977 .9925 9775 .9369 .8332 .5819
17 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
18 0 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .000O
1 .0001 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000
2 .0007 .0001 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000
3 .0038 .0010 .0002 .0000 .0000 .0000 .0000 .0000 .0000 .0000
4 0154 .0049 .0013 .0003 .0000 .0000 .0000 .0000 .0000 .0000
S .0481 .0183 .0058 .0014 .0003 .0000 .0000 .0000 .0000 .0000
6 .1189 0537 .0203 .0062 .0014 .0002 .0000 .0000 .0000 .0000
7 2403 .1280 .0576 .0212 .0061 .0012 .0002 .0000 .0000 .0000
8 4073 2527 .1347 .0597 .0210 .0054 .0009 .0001 .0000 .000O
9 5927 4222 .2632 .1391 .0596 .0193 .0043 .0005 .0000 .0000
10 7597 6085 .4366 .2717 .1407 .0569 .0163 .0027 .0002 .0000
11 8811 7742 .6257 .4509 .2783 .1390 .0513 .0118 .0012 .0000
12 9519 8923 .7912 .6450 .4656 .2825 .1329 .0419 .0064 .0002
13 9846 9589 .9058 .8114 .6673 .4813 2836 .1206 .0282 .001S
14 9962 9880 .9672 .9217 .8354 .6943 .4990 .2798 .0982 .0109
15 9993 .9975 .9918 .9764 .9400 .8647 .7287 .5203 .2662 .0S81
16 9999 9997 .9987 .9954 .9858 .9605 9009 .7759 .5497 .2265
17 1.0000 1.0000 .9999 .9996 .9984 9944 9820 .9464 .8499 .6028
18 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000




TABLE A-5. (Continued)

p=.05 .10 A5 .20 25 J0 35 40 45
19 0 3774 1351 .0456 0144 .0042 0011 .0003 .0001 .0000
1 .7547 4203  .1985 0829 .0310 . .0104 .0031 .0008 .0002
2 9335 7054 4413 2369 .1113 0462 .0170 .0055 .001S
3 9869 .8850 .6841 4551 .2631 .1332 .0591 .0230 .0077
4 9980 .9648 8556 .6733  .4654 2822 = .1500 .0696 .0280
5 9998 9914 9463 8369 .6678 4739 2968  .1629 ~.0777
6 1.0000 .9983 9837 9324 8251 .6655 .4812 .3081 - .1727
7 1.0000 .9997 9959 9767 .9225 8180 .6656 .4878  .3169
8 1.0000 1.0000 .9992 9933 9713 9161 8145 .6675 .4940
9 1.0000 1.0000 .9999 9984 9911 9674 9125 .8139 .6710
1¢ 1.0000 1.0000 10000 9997 9977 9895 .9653 .9115 .8159
11 1.0000 1.0000 1.0000 1.0000 .9995 9972 .9886 .9648 .9129
12 1.0000 1.0000 1.0000 1.0000 .9999 .9994 .9969 .9884 .9658
13 1.0000 1.0000 1.0000 1.0000 1.0000 9999 .9993 .9969 .9891
14 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 .9999 .9994 .9972
15 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 .9999 .9995
16 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 .9999
17 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1:0000 1.0000 1.0000
18 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 -
19 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
20 0 .3585 .1216 .0388 .0115 .0032 .0008 .0002 .0000 .0000
1 7358 3917 .1756 .0692 .0243 .0076 .0021 .0005 .0001
2 9245 6769  .4049 2061 .0913  .0355 .0121 .0036 .0009
3 9841 .8670 .6477 4114 2252 .1071 .0444 0160 .0049
4 9974 9568 8298 6296 4148 .2375 .1182 .0510 .0189
5 9997 9887 .9327 8042 6172 .4164 2454 1256 .0553
6 1.0000 .9976 9781 9133 7858 .6080 .4166 .2500 .1299
7 1.0000 9996 9941 9679 .8982 7723 .6010 .4159 .2520
8 1.0000 9999 9987 9900 .9591  .8867 .7624 .5956 .4143
9 1.0000 1.0000 .9998 9974 9861 9520 .8782 .7553 .5914
10 1.0000 1.0000 1.0000 .9994 .9961 9829 .9468 .8725 .7507
11 1.0000 1.0000 10000 .9999 .9991 9949 .9804 .9435 .8692
12 10000 1.0000 1.0000 1.0000 .9998 .9987 .9940 .9790 .9420
13 1.0000 1.0000 1.0000 1.0000 1.0000 .9997 .9985 9935 .9786
14 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 .9997 .9984 .9936
15 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 .9997 9985
16 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 .9997
17 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
18 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
19 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
20 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000




. TABLE A-5. (Continued)
n y
p=.50 55 60 65 70 75 80 8 90 .95

19 0 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000
2 .0004 .0001 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .000O
3 0022 .0005 .0001 .0000 .0000 .0000 .0000 .0000 .0000 .0000
4 .0096 .0028 .0006 .0001 .0000 .0000 .0000 .0000 .0000 .0000
5 0318 .0109 .0031 .0007 - .0001 .0000 .0000 .0000 .0000 .0000
6 .0835 .0342 .0116 .0031 .0006 .0001 .0000 .0000 .0000 .0000
7 .1796 .0871 .0352 .0114 .0028 .0005 .0000 .0000 .0000 .0000
8 .3238 .1841 .0885 .0347 .0105 .0023 .0003 .0000 .0000 .0000
9 .5000 .3290 .1861 .0875 .0326 .0089 .0016 .0001 .0000 .0000
10 .6762 .5060 .3325 .1855 .0839 .0287 .0067 .0008 .0000 .0000
11 .8204 .6831 .5122 .3344 .1820 .0775 .0233 .0041 .0003 .0000
12 9165 .8273 .6919 .5188 .3345 .1749 .0676 .0163 .0017 .0000
13 .9682 .9223 .8371 .7032 .5261 .3322 .1631 .0537 .0086 .0002
14 9904 9720 .9304 .8500 .7178 .5346 .3267 .1444 0352 .0020
1S 9978 .9923 .9770 9409 .8668 .7369 .5449 3159 .1150 .0132
16 .9996 .9985 .9945 .9830 .9538 .8887 .7631° .5587 .2946 .0665
17 1.0000 .9998 .9992 .9969 .9896 .9690 .9171 .8015 .5797 .2453
18 1.0000 1.0000 .9999 .9997 .9989 .9958 .9856 .9544 .8649 .6226
19 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

20 0 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000
2 .0002 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000
3 .0013 .0003 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000
4 0059 .0015 .0003 .0000 .0000 .0000 .0000 .0000 .0000 .0000
S .0207 .0064 .0016 .0003 .0000 - .0000 .0000 .0000 .0000 .0000
6 .0577 .0214 .0065 .0015 .0003 .0000 .0000 .0000 .0000 .0000
7 .1316 .0580 .0210 .0060 .0013 .0002 .0000 .0000 .0000 .0000
8 .2517 .1308 .0565 .0196 .005S1 .0009 .0001 .0000 .0000 .0000
9 4119 .2493 .1275 .0532 .0171 .0039 .0006 .0000 .0000 .0000
10 .5881 .4086 .2447 .1218 .0480 .0139 .0026 .0002 .0000 .0000
11 .7483 .5857 .4044 2376 .1133 .0409 .0100 .00I13 .0001 .0000
12 .8684 .7480 .5841 .3990 .2277 .1018 .0321 .0059 .0004 .0000
13 9423 8701 .7500 .5834 3920 .2142 .0867 .0219 .0024 .0000
14 9793 9447 .8744 7546 .5836 .3828 .1958 .0673 - .0113 .0003
15 .9941 9811 .9490 .8818 .7625 .S852 .3704 .1702 . .0432 .0026
16 .9987 9951 .9840 .9556 .8929 .7748 .5886 .3523 .1330 .0159
17 .9998 .9991 .9964 .9879 .9645 .9087 .7939 .5951 .3231 .07S5
‘8 1.0000 .9999 .9995 .9979 .9924 .9757 9308 .8244 .6083 .2642
‘9 1.0000 1.0000 1.0000 .9998 .9992 .9968 .9885 .9612 .8784 .641S
20 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000




TABLE A-6. CUMULATIVE NORMAL DISTRIBUTION
(VALUES OF p CORRESPONDING TO Z, FOR THE NORMAL CURVE)

Zp .00 0 .02 .03 .04 .05 .06 .07 .08 .09
.0 .5000 .5040 .5080 .5120 .5160 .5199 .5239 .5279 .5319 .5359
B .5398 .S43E 5478 .5517 .5557 .5596 .5636 5674 YAl .5753
.2 .5793 .5832 .5871 5910 .5948 .5967 6026 .6064 .6103 6141
3 .6179 .6217 .6255 .6293 .6331 .€368 L6406 6443 .6480 .6517
R .6554 .6591 .6628 .6664 .6700 .6736 .6772 .6808 .68k .6879
S5 .6915 .6950 .6985 .7019 .7054 .7088 L7123 7157 .7190 7224
.6 7257 L7291 7324 L7357 .7389 L7422 L7454 . 7486 .7517 .7549
g .7580 7611 7642 .7673 7704 L7734 .7764 779 .7823 .7852
.8 .7881 .7910 .7939 .7967 .7995 .8023 .8051 .8078 .8106 .8133
.9 .8159 .8186 .6212 .6238 .8264 .8289 .8315 .8340 .8365 .8389
1.0 .8413 .8438 .8461 .8485 .8508 .8531 .8556 .8577 .859% .8621
1.1 .8643 .B6€5 .8686 .870€ .8729 .B8749 .8770 .8790 .8810 .883C
1.2 .8849 .8865 .8888 .8907 .8925 .8944 .6962 .898¢ .8997 .9015
1.3 .9032 .9049 .9066 .9082 .9099 29115 9131 L9147 .9162 N7
1.4 .9192 .9207 .9222 .9236 .9251 .9265 .9279 .9292 .9306 9319
1.5 .9332 L9345 .9357 .9370 .9382 L9394 .9406 L9418 .9429 L9441
1.6 L9452 L9463 Oh7h 9484 .9495 .9505 L9515 .9525 .9535 .9545
1.7 .9554 .9564 .9573 .9582 .9591 .9599 .9608 .9€16 .9€25 .9633
1.8 5641 9649 .9656 .9664 L9671 .9676- .9686 .9693 .9699 .970€
1.9 .9713 .9719 .9726 .9732 .9736 9744 .9750 .9756 L9761 .9767
2.0 9772 .9778 .9783 .9788 .9793 .9798 .9803 .9808 .9812 .9817
2. .9821 .9826 .9830 .9834 .983e .9842 .9846 .985C .9854 .9857
2.2 .9861 9864 .9868 987 .987% .9878 .9881 .9884 .9887 .989¢C
2.3 .9893 .9896 .9898 .9901 .9904 .9906 .9909 .99 .9913 .991€
2.4 .9918 .9920 .9922 .9925 .9927 .9929 .99 9932 .9934 .993€
2.5 .9938 .9940 L9941 .9943 .9945 .9946 .9948 .9949 .9951 .9952
2.6 .9953 .9955 .9956 .9957 .9959 .9960 .9961 .9962 .9563 .9964
2.7 9965 .9966 .9967 .9968 .9969 .9970 .9971 .9972 .9973 .9974
2.8 .9974 .9975 .9976 .9977 .9977 .9978 .9979 .9979 .9980 .9981
z.9 .9981 .9982 .9982 .9983 .9984 .9984 .9985 .9985 .9986 .9986
3.0 .9967 .9987 .9987 .9988 .99886 .9989 .9989 .9989 .9990 .9990
3.1 .9990 .9991 .9991 .9991 .9992 .9992 .9992 .9992 .9993 .99¢3
3.2 .9993 .9993 9994 .9994 999 9994 .999% .9995 .9995 .9995
3.3 .9995 .9995 .9995 .9996 .9956 .9996 .9996 .9996 .9996 .9997
3.4 .9997 .9997 .9997 .9997 .9997 .9997 .9997 .9997 .9997 .999¢

Source: After Pearson and Hartley, 1966. Used by permission of the Biometrika Trustees.



TABLE A-7. VALUES FOR j*,
USED FOR ESTIMATING NONPARAMETRIC
CONFIDENCE LIMITS FOR THE MEDIAN'

_ =
—

- - Sample Size
(n) j
5 5
6 6
7 7.
8 7
9 8
10 9
11 9
12 10
13 10
14 11
15 12
16 12
17 13
18 13
19 14
20 7 15
21 15
22 16
23 16
24 17
25 18
26 18
27 ' 19
28 19
29 .20
30 20
31 21
32 22
33 22

34 23




TABLE A-7. (Continued)

- - Sample Size
(n) j
35 23
36 24
37 24
38 25
39 26
40 26
41 27
42 27
43 28
44 28
45 29
46 30
47 30
48 31
49 31
50 32

'In this table, j is the rank of the value used as an estimate of the

nonparametric upper confidence limit of the median.

Values

shown are for two-sided confidence intervals with a = 0.05.

From Van der Parren (»1 970).



Biometrika (1970), 57, 3, p. 613 ‘ 613
Printed in Great Britain
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SUMMARY

A table of the cumulative binomial distribution is used to provide confidence limits for
the population median based on samples of size n = 3(1)150 from any continuous uni-
variate distribution. The confidence interval covers the median with a probability of at
least 1—2x, where 1~ 22 = 0-70, 0-80, 0-90, 0-95, 0-98 and 0-99. The exact probability of
coverage is given in each case.

1. INTRODUCTION

Thompson (1936) suggested a procedure for constructing a confidence interval for the
median, independently of the underlying population form in the case of a continuous
univariate distribution. Nair (1940) established a limited table using these order statistics.
The present paper extends that of Nair.

Letz,, ..., z, be the order statistics from a sample of size n. Let (z;, z,_;,,) be the smallest
symmetrical interval of the form (z;,z,_;.,) covering the median with probability at least
" 1—2a, the exact probability being 1 —21. Here k and I are tabulated as functions of n and
1—2a. In a few cases, the k-value retained corresponds to a probability slightly below 1 — 2a
though very close to it. An asterisk indicates this situation. ‘

2. RELATED TOPICS
Relevant previous work includes the following. Geigy (1963) tabulates binomial confi-
dence limits (x,, z;) for np, p = 0-5 and n = 6 (1) 1000 at levels 2x = 0-05 and 0-01. From
these, the indices (k,n —k+ 1) we are looking for are obtained as (z,+ 1,;).
The subscript k in Table 1 can also be found as (4 + 1), 4 being the critical value for the
sign test in Owen (1962, Table 12.1). There

n =1 (1) 50 (2) 100 (10) 200 (20) 500 (50) 1000;
& = 0-005, 0-01, 0-025, 0-05 and 0-10.

Critical values for the sign test are also tabulated by Dixon & Massey (1957, p. 417) for
n = 3 (1) 90 and 2a = 0-01, 0-05; 0-10 and 0-25.

For values of the parameters # and « not appearing in Table 1 or in the above mentioned
sources, the required information can be obtained alternatively from Tables of the Incom-
plete Beta-Function (Pearson, 1968) or from tables of cumulative binomial probabilities
(Grubbs & Simon, 1952; Harvard University Press, 1955). In the last table,

= 1(1) 50 (2) 100 (10) 200 (20) 500 (50) 1000.

" Reprinted by permission of the Biometrika Trustees.
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614 J. L. VAN DER PARREN
Table 1. Confidence limits for the median

1-2z2
0-70 0-80 0-90 0-95 0-98 0-99
r A N\ r A N r A N I _A aY l'_"—Jk N\ ~ A Y
n k I k I k I k I k I k A
1
2
3 1 01250
4 1 -0625 1 0-0625
5 1 0313 1 -0313 1 00313
8 2 -1094 1 -0156 1 -0156 1 00156
7 2 -0625 2 0625 1 -0078 1 -0078 1 0-0078
8 3 -1445 2 -0352 2 -0352 1 -0039 1 -0039 1 0-0039
9 3 -0898 3 0898 2 -0195 2 0195 - 1 -0020 1 -0020
10 3 <0547 3 -0547 2 -0107 2 -0107 1 -0010 1 -0010
11 4 -1133 3 -0327 3 -0327 2 -0059 2 -0059 1 -0005
12 4 -0730 4 -0730 3 -0193 3 -0193 2 -0032 2 -0032
13 5 -1334 4 0461 4 -0461 3 -0112 2 -0017 2 -0017
14 5 -0898 5 -0898 4 -0287 3 -0065 3 -0085 2 -0009
15 5 -0592 5 -0592 4 -0176 . 4 -0176 3 -0037 3 <0037
16 6 -1050 5 -038¢ 5 ~-038¢ 4 0106 3 -0021 3  -0021
17 6 0717 6 -0717 5 -0245 5 -0245 4 -0064 3 -0012
18 7 -1189 6 -0481 6 -0481 5 ‘0154 4 <0038 4 -0038
19 7 -0835 7 -0835 6 -0318 5 -0096 5 -0096 4 -0022
20 8 -1316 7 <0576 6 -0207 6 -0207 5 -0059 4 -0013
21 8 -0946 8 -0946 7 -0392 6 -0133 5 -0036 5 -0036
22 9 -1431 8 -0669 7 -0262 6 -0085 6 -0085 5 -0022
23 . 9 -1050 8 -0466 8 -0466 7 0173 6 -0053 5 -0013
24 9 0758 9 -0758 8 -0320 7 ‘0113 6 -0033 6 -0033
25 10 +1148 9 0539 8 -0216 8 <0216 7 -0073 6 -0020
26 10 -0843 10 -0843 9 -0378 8 -0145 7 -0047 7 -0047
27 11 -1239 10 -0810 9 0261 8 -0096 8 -0096 7 -0030
28 11 0925 11 -0925 10 -0436 9 0178 8 -0063 1 -0019
29 12 -1325 11 -0680 10 -0307 9 0121 8 <0041 8 -0041
30 12 -1002 11 -0494 11 -0494 10 0214 9 -0081 8 -0026
31 13 -1405 12 -0748 11 -035¢ 10 -0147 9 -0053 8 -0017
32 13 -1077 12 -0551 11 -0251 10 -0100 10 -0100 9 -0035
33 14 -1481 13 -0814 12 -0401 11 -0175 10 -0088 9 -0023
34 14 -1147 13 -0607 12 -0288 11 -0122 10 -0045 10 -0045
35 14 ‘0877 14 -0877 13 -0448 12 0205 11 -0083 10 -0030
36 15 -1215 14  -0662 13 -0326 12 -0144 11 +0057 10 -0020
37 15 -0939 15 -0939 14 ‘0494 13 0235 12 <0100 11 <0038
38 16 -1279 15 -0716 14 -0365 13 -0168 12 -0069 11 -0025
39 16 -0998 16 -0998 14 -0266 13 -0119 12 -0047 12 0047
40 17 -1341 16 -0769 15 -0403 14 -0192 13 -0083 12 -0032
41 17 -1055 16 -0586 15 -0298 14 -0138 13 <0057 12 <0022
42 18 -1400 17 -0821 16 <0442 15 -0218 14 <0097 13 +0040
43 18 -1110 17 -0631 16 -0330 15 -0158 14 -0069 13 <0027
44 19 -1456 18 -0871 17 -0481 16 ‘0244 14 -0048 14 -0048

45 19 -1163 18 -0676 17 -0362 16 -0178 15 -0080 14 -0033

46 19 -0920 19 <0920 17 ‘0270 16 ‘0129 15 ‘0057 14 -0023
47 20 -1214 19 -0719 18 <0395 - 17 <0200 16 -0093 15 -0040
48 20 <0967 20 -0967 18 0297 17 -0147 16 -0066 15 -0028
49 21 -1264 20 -0762 19 0427 18 0222 16 ‘0047 16 -0047
50 21 -1013 20 -0595 19 0325 18 ‘0164 17 -0077 16 -0033

Sample size n. Interval (T, T4_z4,) has confidence coefficient 1 —27I and is narrowest interval with
confidence coefficient at least 1 — 2a. An asterisk denotes that I very slightly exceeds a.
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Table 1 (cont.)
1-2a

A
0-70 0-80 0-90 0-95 0-98 0-99

A A A N A —A\
f R r N r Al ~ A r B} — )

n k I k 1 -k 1 k I k I k I

51 22 01312 21 0-0804 20 0-0460 19 0-0244 17 0-0055 16 0-0023
52 22 -1058 21 -0632 20 -0352 19 -0182 18  -0088 17 -0039
53 23  -1358 22 -0845 21 -0492 19 -0135 18 -0063 17 -0027
54 23 -1101 22 -0668 21 -0380 20 -0201 19 -0099 18 -0045
55 24 1403 23 0885 21 -0290 20 -0150 19 -0072 18 -0032

56 24 ‘1144 23 -0704 22 -0407 21  -0220 19 -0052 18 -0023
57 25 1446 24 -0924 22 - -0314 21  -0166 20 -0082 19 -0038
58 25 1185 24 -0740 23 0435 22  -0240 20 -0060 19 -0027
59 26  -1488 25 -0963 23 -0337 . 22 -0182 21 -0092 20 -0043
60 26 1225 25 -0775 24  -0462 22 -0137 21 -0067 20 -0031

61 26 -1000 25 -0619 24 -0361 23 -0198 21 -0049 21 -0049
62 27  -1264 26  -0809 25 -0490 23 -0150 22 -0075 21  -0036
63 27  -1037 26  -0649 25 -0385 24 -0215 22 -0056 21  -0026
64 28 -1302 27 -0843 25 -0300 24 -0164 23 -0084 22 -0041
65 28 1073 27 -0680 26 -0408 25 -0232 23 -0062 22 -0030

66 29 -1339 28 -0876 26 -0320 25 -0178 24 -0093 23 -0046
67 29 -1108 28 -0710 27  -0432 26 -0249 24 -0070 23 -0034
68 30  -1375 29 -0909 27 -0341 26 -0192 24 -0052 23 -0025
69 30 -1142 29 0740 28  -0456 26 -0147 25 -0077 24 -0038
70 31 1410 30 -0941 28 -0361 27 -0207 25 -0058 24 -0028

71 31 -1175 30 -0769 29 -0480 27 0160 26 -0085 25 -0043
72 32 1444 31 -0972 20 -0382 28 -0222° 26 -0064 25 -0032
73 32 -1208 31 0798 29 -0302 28 -0172 27 -0093 26 -0048
74 33 -1477 31 -0651 30 -0403 29 -0237 27 -0070 26 -0035
75 33 -1240 32 -0827 30 -0320 29 0185 27 -0053 26 -0026

76 33 -1034 32 0677 - 31 -0423 29 -0143 28 -0077 27 -0040
77 3¢ - 1271 33 -0855 31 -0338 30 -0198 28  -0058 27 -0029
78 34 -1083 33 0703 32 0444 30 -0154 29 -0084 28 -0044
79 35 -1302 34 -0883 32 -0356 31 -0211 290 -0064 28 -0033
80 35 -1092 34 -0728 33 -0465 31 -0165 30 -0091 29 -0048

81 36 1332 35 -0910 33 -0374 32 0224 30 -0070 29 -0036
82 36 -1121 35 -0753 34 -0485 32 -0176 31 -0099 29 0027
83 37 -1361 36 -0937 34 -0392 33 -0238 31 -0076 30 -0040
84 37 - 1149 36 0778 3¢ -0315 33 -0188 31 -0088 30 -0030
85 38 -1390 37 -0964 35 -0410 33 -0147 32 -0082 31  -0044

86 38 1177 37 -0803 35 -0331 34 -0199 32 -0063 31 -0033
87 39 -1418 38 -0990 36 -0428 34 -0157 33  -0089 32 -0048
88 39 -1204 38 -0827 36 -0347 35 -0211 33 -0068 32 -0037
89 40 ‘1445 38 -0687 37  -0447 35 -0167 34 -0096 32 -0028
90 40 -1230 39 -0851 37 -0363 36 -0222 34 -0074 33 -0040

91 41 1472 39 -0709 38 -0465 38 0177 3¢ -0057 33 -0031
92 41  -1257 40 -0875 38 -0379 37 -0235 35 -0080 34 0044
93 42 -1499 40 -0731 39 -0483 37 -0188 35 -0062 34  -0033
94 42 1282 41  -0898 39 -0395 38 -0247 36 -0086 35 -0048
95 .42 -1090 41  -0752 40 -0501* 38 -0198 36 -0067 35 -0037

96 43  -1307 42  -0021 40 0411 38 -0158 37 -0092 35 -0028
97 43 - 1114 42 -0774 40 -0335 39 -0209 37 -0072 36  -0040
98 44 1332 43  -0944 41  -0427 39 -0167 38 -0098 36 -0030
99 44  -1138 43 -0795 41  -0349 40 -0219 ‘38 - -0077 37 -0043
100 45 1356 44  -0967 42  -0443 40 0176 38 -0060 37 -0033

Sample size n. Interval (z;, Zs_.4,) has confidence coefficient 1—2I and is narrowest interval with
confidence coefficient at least 1 —2x. An asterisk denotes that I very slightly exceeds a.
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Table 1 (cont.)
1-22

AL

0-70 0-80 0-90 0-95 0-98 0-99

—A A — A
r N\ r Rl r I r N r ) r Y

n k¥ I kI k I k I k I k I

101 45 0-1161 ~ 44 0-0816 42 0-0364 41 0-0230 39 0-0082 38 0-0047
102 46 -1380 45 -0989 43 -0459 41 -0185 39  -0065 38 -0036
103 46 -1184 45  -0837 43 -0378 42  -0241 40  -0088 39 -0050*
104 47 -1403 45 0705 4  -0475 42 -0195 40 -0069 39  -0039
105 47  -1207 46  -0857 44  -0392 42  -0157 41 -0094 39 -0030

106 48  -1426 46 0724 45 -0491 43 -0204 41 -0074 40 -0042
107 48  -1229 47 -0878 45 -0407 43 -0165 42  -0099 40 -0033
108 49  -1449 47  -0743 45 0335 44 0214 42 -0079 41  -0045
109 49 -1251 48  -0898 46  -0421 44 -0173 42 -0062 41 -0035
110 50 1471 48 -0762 46  -0348 45 -0224 43 -0084 42  -0049

111 50 -1273 49 -0918 47  -0435 45 -0182 43 -0066 42  -0038
112 51  -1493 49 -0780 47 -0361 46 -0234 44 -0089 42 -0029
113 51 -1294 50 -0938 48  -0450 46  -0190 44  -0070 43 -0041
114 51 -1116 50 -0799 48 0373 47  -0243 45 -0094 43 -0032
115 52 --1315 51  -0957 49  -0464 47 -0199 45 -0075 44 -0044

116 52 ‘1136 51 -0817 49 -0386 47 -0161 46  -0099 44 -0034
- 117 53 1336 52 -0977 50 -0478 48 -0208 46  -0079 45  -0047
118 53 1156 52 -0835 50 -0399 48 -0169 46  -0063 45 -0037
119 54 +1356 53 -0996 51 -0493 49  -0216 47 0084 46  -0050
120 54 1176 53 -0853 51 -0412 49 0177 47  -0067 46 -0039

121 55 -1376 53 -0727 51 -0343 50 -0225 48  -0089 46 -0031
122 55 -1195 54 -0871 52 0425 50 -0184 48 -0071 47  -0042
123 56 -1396 54 -0744 52 -0354 51 -0234 49 .-0093 47 -0033
124 56 -1215 55 -0889 53 -0438 51 -0192 49 -0075 48 -0045
125 57 1415 55 -0761 53 -0366 52 -0243 50 -0098 48 -0035

126 57 -1233 56 -0906 54  -0451 52 -0200 50 -0079 49  -0048
127 . 58 -1434 56 -0777 54 -0377 52 -0163 50 -0063 49  -0037
128 58 -1252 57 -0923 55 -0463 53 -0208 51 -0083 50 -0050*
129 59 -1453 57 -0793 55 -0389 53 -0170 51 -0067 50 -0040
130 59 -1271 58 -0940 56 -0478 54 -0216 52 -0088 50 -0032

131 60 -1472 58 -0809 56  -0401 54 -0178 52 -0070 51 -0043
132 60 -1289 59 -0957 57 -0489 55 -0224 53 -0092 51 -0034
133 61 -1490 59 -0825 57 -0412 55 -0185 53 -0074 52 -0045
134 61 -1307 60 -0974 57 -0346 56  -0233 5¢ -0097 52  -0036
135 61 -1140 60 -0841 58 0424 56 -0192 54 -0078 53 -0048

136 62 -1324 61  -0991 58 -0357 57 -0241 54 -0063 53 -0038
137 62 -1158 61 = -0857 59 -0436 57 -0200 55 -0082 53 -0030
138 63 -1342 61 -0738 59 -0367 58 -0249 55 -0066 54 -0040
139 63 -1175 62 -0873 60  -0447 58 -0207 56  -0086 54 -0032
140 64 -1359 62 -0753 60 -0378 58 -0171 56 -0070 55 0043

141 64 -1191 63 -0888 61  -0439 59 -0214 57 0090 35 -0034
142 65 -1376 63 -0767 61 -0388 59 -0178 57 -0073 56 -0045
143 65 1208 64 -0903 62 -0470 60  -0222 58 0094 56 -0036
144 66 -1393 64 -0782 62 -0399 60 -0184 58 0077 57 -0048
145 66 -1224 65 -0918 63 -0482 61  -0229 59. -0099 537 -0038

146 67 -1410 65 -0796 63 -0409 61 -0191 59 -0080 58 -0050*
147 67 -1241 66 -0934 64 -0493 62 . -0237 59 -0065 58 -0040
148 68 -1426 66 -0810 64 -0420 62 -0198 60 -0084 58 -0032
149 68  -1257 67 -0949 64 -0356 63 -0245 60 0069 59 -0043
150 69 -1442 67 -0824 65 -0430 63 -0204 61 -0088 59 -0034

Sample size . Interval (z;, Z,_4+,) has confidence coefficient 1 —2I and is narrowest interval with
confidence coefficient at least 1 ~2x. An asterisk denotes that I very slightly exceeds a.
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3. BASIC EQUATIONS AND PROCEDURE
Let z,,...,2, be a random sample from a continuous population with density function

f(z) and z
F=F@)= " fe

be the area of f(z) which is less than the ith ordered observation z;.
Let G, , be the distribution function of the joint distribution of ¥, and F, (k < s). The
interval (z,,z,) covers the p-quantile X, whenever F, < p < F,. This happens with

probability pf1
1-21 = [ a6, (F T,
0Jp

This can be shown (Kendall & Stuart, 1969, p. 518) to be equivalent to
1-2I = L(k,n—k+1)—I(s,n—s+1),

where (1, j) is the incomplete beta function.
If the quantile considered is the median, this yields

when k+s = n 41, we obtain a similar situation for ascending and decreasing order, i.e.
1-21 = 1- 21, (k,n~k+1)

=5 (f)rer @=a-b.

Grubbs & Simon (1952) tabulate

ﬁ (f) P(l-p).

~ Therefore k can easily be obtained as the largest integer for which

n

z (:‘) P(l-p)-r> 1-a.

It is a pleasure to thank Mrs Jonckers, who helpéd in constructing the tables and typed
the text, and to Mrs Weyers who typed the tables.
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SUPPLEMENTS

Note: Sections, Figures and Examples cited here are found in the main
Guidance Document. '
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SUPPLEMENT S-2

Additional graphs for estimating H-values to calculate upper 95% confidence
limits (lognormal distribution). Supplement to Figure A-1.
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H Values for Std. Devn. = 5.00 to 10.00 (Std. Devn. of log-transformed data)
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SUPPLEMENT S-3

PROCEDURE FOR DETERMINING THE DISTRIBUTION OF SITE OR
BACKGROUND DATA (See Section 2.1.4)

Step 1. Default assumption is Jognormal distribution.
Step 2. Look at a probability plot of the log-transformed data to check the

assumption of a lognormal distribution (see Section 2.1.4.2). The procedure is the
same as shown in Example 4, except that the data must be log-transformed first.
Probability paper is supplied at the end of the Guidance Document.

Although Example 4 shows how to do the plots by hand, it is easier to use statistical
software such as STATGRAPHICS® or SYSTAT® for this purpose.

STATGRAPHICS® Log-transform the data first. Then, at the main menu, select option G. Estimation
and Testing under PLOTTING AND DESCRIPTIVE STATISTICS. Next, select option 3. Normal Probability
Plot in the ESTIMATION AND TESTING menu. At the Data vector field prompt, enter the variable name used
for the log-transformed data.

The points should lie on a straight line if the data are lognormally distributed. This
is a subjective test. The fit to a straight line should be "good" but need not be exact
(compare Figures 6 and 7).

If the fit is poor or questionable, proceed to Step 3. Otherwise, conclude that a
lognormal distribution is valid, and stop here. [Note: Step 2 is provided for
convenience but it is acceptable to proceed directly from Step 1 to Step 3.]

Step 3. Test for lognormality using the W test. Log-tfansform the data before
doing the test. (See Example 7 and Worksheet W-1.) For sample sizes greater than
50, D’Agostino’s test should be used (see section 2.1.4.1). » '

If the test does not indicate a significant difference from lognormality, conclude that
a-lognormal distribution is valid, and stop here. If lognormality is rejected, go to
Step 4.

Step 4. Repeat the procedures described in Step 2, but do not log-transform the
data. If the fit to a straight line is poor or questionable, proceed to Step 5.
Otherwise, conclude that a normal distribution is valid, and stop here. [Note: Step
4 is for convenience and is optional; alternatively, go directly from Step 3 to Step 5.]



Step 5. Test for normality using the W test (Example 7, Worksheet W-1a). For
sample sizes greater than 50, D’Agostino’s test should be used (see Section 2.1.4.1).

If the test does not indicate a significant difference from normality, conclude that a
normal distribution is valid. If normality is rejected, conclude that the data are
significantly different from both lognormal and normal distributions and follow
instructions for "non-lognormal, non-normal" distribution data in the Guidance
Document.




SUPPLEMENT S-4
PROCEDURE FOR CALCULATING BACKGROUND VALUE.
See Figure 12 for complete ﬂowc]iart and Section 4.3.3.2

PART 1 (See Example 12. Although groundwater is used in the example,
calculations are the same for soil).

Step 1. Is the default assumption that background data are lognormally
distributed rejected? (See Supplement S-3.) If data are not lognormally distributed,
go to PART II. Otherwise, proceed to Step 2.

Step 2. Lognormal distribution. Calculate the 90th percentile value. (See
Section 2.1.2.2, Example 10 and Worksheet W-3.)

Step 3. Calculate the 50th percentile (median). Several methods can be used
(e.g. Section 2.1.2.1, Examples 3, 4 and 12). Worksheet W-3 uses the method from
Example 12.
Step 4. Is the 90th percentile more than 4 times the 50th percentile?

NO: Use the 90th percentile as the background value

YES: Use 4 times the 50th percentile value

Note: Ecology may require a different percentile if background data are lognormally
distributed but compliance monitoring (site) data are not (Section 4.3.3.2, Figure 12).

PART II Data are not lognormally distributed.

Step 1. Is the alternative that data are normally distributed rejected? (See
Supplement S-2.) If data are neither lognormally or normally distributed, go to
PART III. Otherwise, proceed to Step 2.

Step 2. Normal distribution. Use a percentile as the background value.

In general, Ecology may use the 80th percentile (Example 9) as the background
value. However, the department may also determine that another percentile is more
appropriate on a site-specific basis.




PART Il  Data are neither normally or lognormally distributed.
Requires site-specific decision by Ecology. Options include:
(1)  Percentile calculated using nonparametric methods (see Examples 5 and 9)

(2)  Wilcoxon rank sum test (Mann Whitney U test).



SUPPLEMENT S-5

PROCEDURE FOR CALCULATING COEFFICIENT OF VARIATION FROM
BEST-FIT DISTRIBUTION.

Decisions relating to the coefficient of variation of a contaminant distribution (e.g.
see Section 4.3.5) should be based on the best-fit distribution, not the sample
statistics (see Section 2.1.3 and Example 12). This supplement describes a simple
procedure for calculating the coefficient of variation using the statistical software
package, STATGRAPHICS®. It is assumed here that a decision has already been
made regarding the data distribution (Supplement S-3). This information is needed
in Step 4.

Step 1. Under the PLOTTING AND DESCRIPTIVE STATISTICS submenu, select
option H (Dlstnbutwn Functions).

Step 2. In the DISTRIBUTION FUNCTIONS menu, select option 1 (Distribution
Fitting).

Step 3. The Distribution Fitting menu appears next. Data must be provided in the
Data vector field. There are two ways to do this:

1) Enter the data in the Data vector field from the keyboard. Use a comma or
space to separate different values.

2) Enter the name of a file and variable if the data have already been entered
in a STATGRAPHICS® file. For help, press F7, then scroll through the list. When
you find the variable, press Enter.

Step 4. Enter the appropriate distribution number from the menu in the next field.
For example, enter 13 for the lognormal distribution.

Step 5. Press F6. The best-fit values for the mean and standard deviation will then
be displayed. Divide the standard deviation by the mean to get the coefficient of
variation (CV).

For further information: To compare the best-fit distribution with the data
distribution, press F6 again and select Histogram from the next menu. The screen
will then show options for the graph. After making any desired changes, press F6 to
see the plot.



Statistical Guidance for Ecology Site Managers

SUPPLEMENT S-6

ANALYZING SITE OR BACKGROUND DATA WITH BELOW-DETECTION
LIMIT OR BELOW-PQL VALUES (CENSORED DATA SETS)

August, 1993

Definitions

An analysis of a sample that is reported as below the detection limit or below the practical
quantitation limit (PQL) is referred to here as a censored value. Censored data means a data set
that includes one or more censored values. The term therefore includes data sets that contain both
censored and uncensored values. Uncensored data means a data set that consists entirely of
uncensored values.

Introduction

As discussed in Section 2.2 of the Statistical Guidance for Ecology Site Managers (“Guidance™), the
analysis of site or background data with censored values can be a difficult statistical problem. For
example, the use of routine statistical procedures described in the Guidance to analyze censored
data may lead to erroneous conclusions on site compliance with a cleanup standard

o The primary purpose of this Supplement is to provide more detailed recommendations on
acceptable methods for analyzing censored data sets than were previously given in the
Guidance document. '

e This Supplement also provides new guidance applicable to either uncensored or censored data
on the use of normal probability plots to:

- make quantitative, unambiguous decisions on the appropriate statistical distribution for
the data. This replaces the need for a subjective decision on whether data points fit a
straight line, as previously recommended in the Guidance.

- find the value corresponding to a percentile (for background data) using least-squares
linear regression. This avoids problems arising from the previously-recommended
procedure of attempting to obtain a value from the probability plot by visual inspection.

- calculate the coefficient of variation (for background data) from the best-fit distribution
estimates for site or background parameters (i and ), rather than using previous methods
in the Guidance which estimate sample statistics (X and s).
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Ecology recognizes that other statistically defensible methods for analyzing censored data may exist
Alternative approaches which may be proposed on a site-specific basis may be approved if adequately
supported (e.g , by including relevant material from the statistical literature). Some approaches described in
this Supplement include the requirement to consult with Ecology. Refer to Guidance Section 1.2 regarding
the applicability of this requirement Ecology invites written comments on the methods described in this
Supplement for consideration in evaluating the need for future revisions.

Which statistical distribution fits the data?

A decision on the appropriate distribution of the data (lognormal, normal or neither) must be made before
proceeding with the analysis of site (compliance) or background data. The Guidance describes two methods for
making this decision: the use of normal probability plots and the W test (replaced by D’Agostino’s test for n
>50).

For censored data, the normal probability plot method should be used. Use of the W test or D’ Agostino’s test
tequires simple substitution for censored values (e.g., replacing non-detects with half the detection limit), which
can lead to erroneous conclusions on the appropriate distribution with these tests. The normal probability plot
method described below uses the uncensored values in the data set to determine the appropriate distribution.

The procedures for using normal probability plots described in the Guidance rely on visual inspection of the
plot for linearity and, in the case of background data, to estimate the value corresponding to a percentile.
However, because of the uncertainties that atise from visual inspection, the procedure described below should
be used to provide a quantitative, unambiguous decision on linearity and to calculate a percentile value. This
procedure should also be used when evaluating data that do not contain censored values. It replaces an eatlier
procedute for calculating background values that was shown in Guidance Worksheet W-3.

Normal probability plot analyses

Distribution decision
Step 1.

List the values from lowest to highest and assign a rank to each. If there are censored values, assign half the
detection limit to non-detects or the method detection limit to below-practical quantitation limit vatues. For
example, the data set:

12.0

8.9

ND (detection limit = 10)
ND (detection limit = 8)

would be ranked:
Data Rank
4 1
5 2
8.9 3
12.0 4
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Normal probability plot analyses (cont.)

Step 2. The remaining calculations are performed only with the uncensored values. Assign a score to each
uncensored value:

score; = ®[(i - 3/8) / (n + 0.25)]

whete @' is the inverse of the standard normal cumulative distribution (obtained using Guidance Table A-6), i
is the rank of the value, and a is the total number of data values (i.e. censored and uncensored).

Step 3.

Use the uncensored values and corresponding scores to calculate the least-squares linear regression equation
and the correlation coefficient, 1. If testing for a lognormal distribution, “uncensored values” means the log-
transformed values. When testing for a normal distribution, use the untransformed values.

Decision criteria:
1) Do not proceed unless the regression ANOVA F-value is significant at the p =0.05 level.

2) If the square of the correlation coefficient (1) for the analysis of the log-transformed values is 0.9 or higher,
assume that the data are lognormally distributed (An r of 1 indicates a perfect fit to a straight line.)

If the lognormal distribution is rejected, then if 1* for the analysis of the untransformed values is 0.9 or higher,
assume that the data are normally distributed. Otherwise, reject the normal distribution.

These criteria should also be used for probability plot analyses of uncensored data. In most cases, the criteria
are expected to lead to the same conclusion on the appropriate distribution as decisions based on the W test (or
D’Agostino’s test for n >50) when applied in the same sequence That is, the data are tested first for a
lognormal distribution and if this assumption is rejected, then for a normal distribution. Where there is a
discrepancy, either method (i.e. probability plot or one of the two tests) for analyzing uncensored data is
acceptable to Ecology.

Background values

If a background value is to be calculated under the assumption of a lognormal or normal distribution, use the
regression equation score; = f{value;) to calculate the value corresponding to a percentile. If the percentile is P,
calculate the score as @ (P/100) and solve for the corresponding value. In the lognormal case, the regression is
based on log-transformed data, and the solution must therefore be converted: Final value = exp(value from
regression equation).
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Normal probability plot analyses (cont.)

Coefficient of variation

Normal distribution.

Use the least-squares linear regression equation for the normal probability plot to obtain estimates for the mean
(1) and standard deviation (o). Calculate the coefficient of variation (1/c).

The regression equation has the form:
y=mx+b
where v =scores (see Step 2 under Distribution decision)
m = slope of the regression line
% = data values

b = regression intercept

The mean is obtained by solving for y = 0, and the standard deviation by solving for y =1 and subtiacting the
mean. Using elementary algebra, this leads to the following simple results:

Mean = -b/m

Standard deviation = 1/m

Lognormal distribution

The approach is the same as for the normal distribution, except that the linear regression is based on log-
transformed values. This requires an additional step to estimate the untransformed mean and standard deviation,
using equations 13.7 and 13.8 in Gilbert (1987). For computational purposes, the required statistics are
calculated as follows:

Mean = exp[(-b/m) + (1/2)(/m*)] = p

Standard deviation = V{ pz[exp( 1/m?) - 11}

Calculate the coefficient of variation from these statistics (standard deviation/mean).
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Compliance decisions on site data: calculation of an upper 95% confidence limit
(UCL) on the site mean.

Summary Table for Substances with Chronic I oxic Effects

Percentage of non-
detects or below-PQL Recommended procedure Discussion
values in data set

More than 0% but no more | Replace NDs with 1/2DL, and below-PQLs with MDL Case 1
than 15%

Between 15% and 50% Lognormal distribution: Use Cohen’s method-adjusted Case 2
mean and standard deviation of log-transformed data to
calculate UCL (Worksheets W-4 and W-2),

Normal distribution. Use Cohen’s method-adjusted mean
and standard deviation of untransformed data to calculate
UCL (Worksheet W-4a),

Neither distribution: Use the largest value in the data set
as the UCL.

More than 50% Use the largest value in the data set as the UCL. Case 3

Case 1. No more than 15% of the data are censored values (non-detects or below-PQL values).

Note: The criterion of 15% is recommended in statistical gunidance provided by EPA (U.S. EPA 1989, 1992),

PART I Default assumption is that data come from a lognormal distribution.
Step 1. Test the default assumption of a lognormal distribution using the normal probability plot
procedure described on page 2. If the assumption is rejected, proceed to Part II.

Step 2. Substitute half the detection limit for non-detects and the method detection limit for below-

PQL values. Calculate the upper 95% confidence limit using Land’s method (Worksheet
W-2)

PARTII Data are not lognormally distributed.



Statistical Guidance for Ecology Site Managers. Supplement $-6. Aug., 1893,

Site data (cont.)

Step 1. Test the default assumption of a normal distribution using the normal probability plot
procedure described on page 2. If the assumption is 1ejected, proceed to Part ITI.

Step 2. Substitute half the detection limit for non-detects and the method detection limit for below-
PQL values. Calculate the upper 95% confidence limit using the t-statistic (see Section 5.2.1 of
the Guidance).

PART III Data are neither lognormally nor normally distributed.
Use the maximum value in the data set as the upper 95% confidence limit. See page 8.
Notes: The basis for this recommendation is explained in Note 2 (attached).
Other approaches for cases where both the lognormal and normal distributions are rejected (Guidance

Sections 5.2.13-5.2.1.4) may be applicable but should not be used for censored data without support from a
qualified statistician.
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Site data (cont.)

Case 2. More than 15% but not more than 50% of the data are censored values.
PART I Default assumption is that data come from a lognormal distribution.

Step 1. Test the default assumption of a lognormal distribution using the normal probability plot
procedure described on page 2. If the assumption is rejected, proceed to Part II.

Step 2. Calculate the adjusted mean and standard deviation, using the log-transformed data(and log-
transformed detection limit or PQL), by Cohen’s method. Worksheet W-4 is provided here for assistance.

About Cohen’s method...

Cohen’s method is a maximum likelihood estimation (MLE) procedure for adjusting the sample mean and standard deviation to
account for data below the detection limit (or PQL) The data are assumed to be normatly distributed. For the lognormal case, log-
transformed values will be normally distributed. Further information on Cohen’s method is given in Cohen (1959,1961), EPA
(1989, 1992) and Gilbert (1987). Detailed computational instructions are given in EPA (1989, p. 8-7).

Cohen’s method becomes less reliable with small sample sizes, a general problem with MLE methods (Helsel 1990). If results from
the use of this method with a particular data set seem questionable, the option of increasing the sample size should be considered.

Step 3. Enter the adjusted mean and standard deviation in boxes M and S on Worksheet W-2 of the
Guidance document. Complete the remaining calculations on that worksheet to calculate the
uppet 95% confidence limit. Include both censored and uncensored data in determining the
number of samples (box N of Worksheet W-2).

PARTII Data are not lognormally distributed.

Step 1. Test the default assumption of a normal distribution using the normal probability plot
procedure described on page 2. If the assumption is rejected, proceed to Part 111

Step 2. Calculate the adjusted mean and standard deviation, using the raw data (and untransformed
detection limit or PQL), by Cohen’s method (see box). Worksheet W-4a is provided here for
assistance.

Step 3. Use the adjusted mean and standard deviation to calculate the upper 95% confidence limit
using the t-statistic (see Section 5.2.1 of the Guidance). Note: include both censored and
uncensored data in determining the number of samples (n).
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Site data (cont.)

Multiple detection limits

If the data set contains non-detects at different detection limits, use either of the following approaches for
calcuiating an upper confidence limit:

1) If Cohen’s method is used, a single detection limit for the data set is required for the calculations Use
the highest of the detection limits reported for the non-detects in the data set.

2) Assign each non-detect a value equal to half the detection limit reported for that sample (simple
substitution). Then use the routine statistical procedures for calculating an upper confidence limit under
the lognormal or normal distribution assumptions. (That is, treat the data set as under Case 1 even if
15%-50% of the data are censored.)

The same recommendations apply to data censored at the PQL, except that the method detection limit is
used in place of half the detection limit.

PART I Data are neither lognormally nor normally distributed.
Use the maximum value in the data set as the upper 95% confidence limit See page 8.

Notes: The basis for this recommendation is explained in Note 2 (attached).

Other approaches for cases where both the lognormal and normal distributions are rejected (Guidance
Sections 5.2.1.3-5.2.1.4) may be applicable but should not be used for censored data without support from a
qualified statistician.

Case 3. More than 50% of the data are censored values.

Use the maximum value in the data set as the upper 95% confidence limit. See page 8.

Notes: The basis for this recommendation is explained in an attached technical note.

If a lognormal or normal distribution can be demonstrated, or if the default lognormal assumption is used,
two other possible approaches exist. However, neither of these methods will be valid for most data sets with a
large proportion of censored values and they should not be used without support from a qualified statistician.

The first method involves the use of nonparametric methods to calculate an upper 95% confidence limit.
Since nonparametric methods are available for calculating an upper confidence limit on a percentile, but not the
mean, it is necessary to estimate the percentile corresponding to the mean of the best-fit distribution, and then
calculate the upper 95% confidence limit on that percentile (see Guidance Sections 52.2.3-5.22.,4).

The second method involves the use of a probability plot to estimate the mean and standard deviation of the
distribution (Gilbert 1987, p. 168), which can then be used to calculate the upper confidence limit on the mean.



Statistical Guidance for Ecology Site Managers. Supplement $-6. Aug., 1993,

Site data (cont.)

Decisions based on the largest value in the data set (Case 2, Part III; Case 3).

Use of the maximum value in the data set as the UCL can be a stringent test for compliance with a cleanup
level. This is particularly true if the maximum is considerably higher than any other values in the data but does
not violate the compliance criterion in the Cleanup Regulation of exceeding twice the cleanup level. Thus the
approptiate decision when the maximum exceeds the cleanup level may be to conduct a further evaluation,
rather than making a compliance decision. The following examples illustrate some possible approaches for a
further evaluation:

1) Resampling with a lower detection limit to obtain uncensored data. If a lower detection limit cannot be
achieved, is the maximum is confirmed by the second round of sampling?

2) If the data are from soil sampling, does the maximum corresponds to a hot spot that should be evaluated
separately from the remaining sampling data? If it is a hot spot, the possible existence of additional hot spots
should be considered.

3) If the data are for groundwater, review the sampling and analysis QA/OC procedures followed and examine
the data for temporal trends or correlations with groundwater levels. For example, the review might reveal
problems with the collection or analysis of the low-value samples o1 the high-concentration sample. As another
example, the review might suggest that large variations in contaminant concentrations are associated with
seasonal changes in groundwater level, and that additional sampling is needed to provide confirmation.
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Background data sets: calculating a background value.

The procedures for establishing background described in the Guidance (Section 4.3.3) require the

calculation of percentiles, o1 “quantiles”, (e.g., 50th and 90th percentiles, for lognormal distributed data). In

addition, the coefficient of variation is needed when a lognormal or normal distribution applies, to determine

the allowable exceedance for a background-based cleanup standard (Guidance Figure 12, Section 4.3.3.2) For
censored data sets, the recommended procedures for calculating these statistics are described below.

Summary Table
Percentage of non- Recommended procedure Discussion
detects or below-PQL
values in data set
Not more than 50% Lognormal distribution: Use regression equation for Case 4
probability plot with the log-transformed data to calculate
the 50th and 90th percentiles.
Normal distribution: Use regression equation for
probability plot with the untransformed data to calculate
the 50th and 80th percentiles.
Neither distribution: Use nonparameiric method for
calculating a percentile (Guidance Example 3, Section
2.1.2.3).
More than 50% Use nonparametric method for calculating a percentile Case 5

{Guidance Example 5, Section 2.1,2.3)

Case 4. No more than 50% of the data are censored values (non-detects or below-PQL values).

PART I Default assumption is that data come from a lognormal distribution.

Step 1. Test the default assumption of a lognormal distribution using the normal probability plot
procedure described on page 2. If the assumption is rejected, proceed to Part IT

Step 2. Calculate the 50th and 90th percentiles from the probability piot regression (page 3).

Step3.  If background value is for use as a cleanup standard, calculate the coefficient of variation from
the linear regression equation (page 4).

Step4.  Follow procedures described in Guidance Section 4.33 (see Guidance Figure 12).

10
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Background data (cont.)

PARTII Data are not lognormally distributed.

Step 1. Test the default assumption of a normal distribution using the normal probability plot
procedure described on page 2. If the assumption is rejected, proceed to Part IT1.

Step 2. Calculate the 50th and 80th percentiles from the probability plot regression (page 3).

Step 3. If background value is for use as a cleanup standard, calculate the coefficient of variation from
the linear regression equation (page 4).

Step 4. Follow procedures described in Guidance Section 43.3 (see Guidance Figure 12).

PART IIT Data are neither lognormally nor normally distributed.
Use the nonparametric method for calculating a percentile selected as the background value (see Guidance
Example 5, Section 2.1.2 3). Requires consultation with Ecology.

Case 5. More than 50% of the data are censored values.

Use the nonparametric method for calculating a percentile selected as the background value (see Guidance
Example 3, Section 2.1.2.3). Requires consultation with Ecology (see Guidance, Section 1.2).

Notes: For some data sets, it may be possible to use a probability plot to make a decision on the data
distribution, and to estimate percentiles, as in Case 5 However, this approach may often be statistically invalid.

11
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Note 1. Additional comments

1) In some instances, data from replicate samples are reported as below the detection limit (or PQL)
for one of the replicate results but not the other. The recommended solution is to assign haif the
detection limit to the censored value (or the MDL, for a below-PQL value) and use the average of this
number and the uncensored value. Treat the average as an uncensored value. (Example: results are
reported as 5.0 ppm for one replicate and not detected, at a detection limit of 3.0 ppm, for the other. -
Use 3.3 ppm as the single value from the replicates for statistical analyses.)

2) An acceptable and technically preferable method of assigning ranks to censored data for
probability plot analyses is described by Hughes and Millard (1988). However, the method is difficult
to implement in practice and is therefore not recommended for routine use.

3) Further information on the probability plot procedure described in this Supplement can be found in
statistical textbooks (e.g., Snedocor and Cochran 1989, page 59).

4) Portions of the Model Toxics Control Act Cleanup Regulation (Chapter 173-340 WAC) dealing with
censored data include the following:

Definitions of “method detection limit” and “practical quantitation limit” WAC 173-340-200
Analytical considerations WAC 1 73-340-707(2)-(4)

Simple substitution method and alternatives WAC 173-340-708(11), WAC 173-340-720(8),
WAC 173-340-730(7), WAC 173-340-740(7)

Sampling and analysis plans WAC 1 73-340-820(2)(d)

Analytical procedures WAC 173-340-830(2)-(4)

Acknowledgements. The method for analyzing probability plots described in this Supplement was suggested by
Colin Wagoner (ICF Technology Incorporated). The Supplement was prepared with assistance from Greg

Glass.
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Note 2. Use of the largest value in a data set as an estimate of the upper 95% confidence limit
on the mean.

Because the underiying distribution for sampling data is offen positively skewed (e g., Helsel 19280), the mean
will generally correspond fo an upper percentile (i.e., larger than the &0th percentile). When the nonparametric
method described in Section 5.2.2.3 of the Guidance is used on percentiles (including whatever percentile
above the 50th percentile is eguivalent to the mean), the conditions under which the UCL will correspond to the
maximum value from the data set can be determined from Guidance Tahle A-5. Similarly, boundary conditions
from the method in Section 5.2.2.4 (i.e. for more than 20 samples) can be determined from the equation given
there. These conditions are tabled below:

Approximate
Sample percentile at which
Size : UCL=maximum value
6 60 From Guidance Table A-5
7 65
8 70
9 75
10 75
11 75
12 80
13 80
14 80
15 80
16 80
17 85
18 85
20 85
25 85 From Guidance Section 5.2.2.4
30 87
40 90
50 92

As an example, the table shows that the nonparametric upper 895% confidence limit on the 85th percentile is the
maximum value in the data set when there are 20 samples. Use of the maximum for demonstrating compliance
with a cleanup level will be a conservative approach (using nonparametric statistical methods) with 20 sampies
unless the distribution is so highly skewed that the mean exceeds the 85th percentile.

13
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Note 3. Selecting a percentile for use with the nonparametric method for calculating a
background value.

When background data for a specific substance are used for site cleanup decisions, the data must be
reduced to a single background value which can then be used for compliance decisions, as described in the
Guidance (Section 4.3.5). Under the procedures described in the Guidance, the background value is a
percentile (quantile) of the background distribution. Once a percentile has been selected its value can he
estimated from the background data set :

Ecology's approach for selecting a percentile emphasizes the importance of balancing Type | and Il error
rates for background-based compliance decisions. For the cases of a lognormal or normal distribution, Ecology
used estimates of these rates to select the 90th and 80th percentiles, respectively, as background values
(Guidance Section 4.3.3 2). In these analyses, expected Type | and Il error rates were estimated using Monte
Carlo simutations, under a range of conditions (coefficients of variation).

It is impractical to conduct similar analyses to select a percentile that should be used for all data sets that
are neither lognormally or normaity distributed. The appropriate distribution and distributional parameters (e.g.,
coefficient of variation) for such data cannot be anticipated, and will likely vary considerably from one data set
to another. Thus, while the nonparametric method for calculating a percentile is recommended for these data, a
particular percentile that should be used in every case has not been selected. The nonparametric method is
also recommended for heavily censored background data sets (Case 5 in this Supplement), and here again
there is no percentile to be used in every case.

For remedial actions where the requirement to consult with Ecology applies, a percentile will be selected on
a case by case basis. Refer to Section 1.2 of the Guidance regarding the applicability of this requirement.

For persons conducting independent cleanups, the following recommendations on selecting a percentile
may be helpful:

1) Where the nonparametric method is used because of the large proportion of censored data {Case 5 in this
Supplement), assume that the default assumption of an underlying lognormal distribution applies unless
there is obvious evidence to the contrary. This means that the nonparametric method wouid be used to
estimate the 50th and S0th percentiles, and background would be set at the 90th or four times the 50th,
whichever is lower.

2) In some cases, a background data set may deviate from a lognormal or normal distribution when it is
obtained by pooling data from different statistical populations. As a simple example, suppose that iron
concentrations from an iron-rich soil follow a normal distribution and concentrations from an iron-poor soil
also follow a normal distribution, but one with a lower mean. Pooled data from the two soils might produce
a bimodal, rather than a normal, distribution,

As this example illustrates, it may be useful to examine data which do not fit either a lognormal or normal
distribution to determine whether subsets of the data are compatible with one of these distributions.
However, there should be a valid technical justification for forming subsets that may represent different
statistical populations. Separating data from surface and subsurface soil samples may be valid, for
example, but separating soil data solely on the basis of the date of sampling would not

If the data subsets fit a lognormal or normal distribution, it may be possible to caiculate a background
vaiue for each subset, using the procedures for these distributions (Guidance Section 4.3.3.2). The
relevance of the sample subsets to site conditions should be considered in deciding which background
value will be used. For example, if the subsets correspond to different soil types, use the background value
for the soil type that is most representative of site soils. If there is no basis for identifying the most relevant
subset, an environmentally conservative approach would be to use the lowest background value calculated
from the different subsets.

A background vatue calculated from a subset of the data cannot be used for site cleanup decisions if the
subset is too small. At a minimum, a subset of soil samples must include 10 measurements for natural
background and at least 20 for area background EWAC
173-340-708(11 ¥d)].

14
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3) When only a small number of background measurements are availabie (e.g , <20), a few anomalous values
can greatly affect the interpretation of the data. Thus, there is a possibility that even when the underlying
distribution is lognormal (or normal), this may not be apparent with a small data set For this reason, the
preferred approach for a small data set that does not fit either of these distributions is to conduct additional
sampling, rather than proceeding with the nonparametric method for calculating a background value.

4) If alarge data set (e.g, >50) resembles, but does not fit a lognormal distribution, use the smaller of the 90th
percentile or four times the 50th percentile, as estimated with the nonparametric method.

As an example, the data distribution may be more skewed to the right (i e., have a more positive skew or
fonger “tail") than the fitted lognormal distribution. [On a normal probability plot, this means that the larger
(log-transformed) values will curve up above a straight line fitted through all the points on the plot.
However, a histogram of the data may nevertheless resemble the shape of a lognormal distribution (see
Guidance Figure 4),

5) If these recommendations do not resolve the problem, use the Wilcoxon Rank Sum Test or other suitable
nonparametric test to demonstrate compliance with a background-based cleanup standard. This approach
does not require the calculation of a percentile from background data and does not require the comparison
of an upper confidence limit on compliance data with a cleanup level. The test is used to show that
contaminant concentrations, measured after cleanup, are not significantly different from concentrations at a
background area. Use of this approach should be supported by a statistical power analysis, showing the
exceedance of background which could be detected with high probability under the proposed sampling
plan.

The procedures for conducting the Wilcoxon Rank Sum Test (equivalent to the Mann-Whitney U Test)
are described in Gilbert (1987; pages 247-250). Various statistical packages can be used to perform this
test, which should not be confused with the Wilcoxon Signed Rank Test.

A final option is to seek assistance from a statistician in analyzing expected Type | and Il error rates
(Guidance Section 2.1 7) for a distribution fiftted to the background data. Etror rates should be estimated for
several candidate percentiles (e.g., 80th, 90th and 95th). A reasonable range of vaiues for distribution shape
parameters (e.g. coefficient of variation) should also be included in the analysis. The distribution used for
background and site data need not be the same if there are data to support the use of different distributions. A
brief explanation of the approach for estimating Type | and II error rates is given in Guidance Section 4.3.3.2.
Further information can be obtained from Ecoiogy.

Documentation from the analysis should show that the selected percentile provides a reasonable balance
between expected Type | and Il error rates. The estimated Type | error rate should decline as the level of site
contamination increases above the background distribution. If it has not declined to at least 0.05 at the level of
site contamination which corresponds to a doubling of risk, the selected percentile is unlikely to be acceptable
to Ecology, and a lower percentile should be considered. The requirement for a Type | error rate of 005 is
found in the MTCA Cleanup Regutation [e.9., WAC 173-340-720(8)(e)(i)].
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WORKSHEETS
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WORKSHEET W-4 Cohen's Method for Calculating Adjusted Mean and Standard Deviation
of Censored Data (Lognormal Distribution)

Use h and ¥ fo find a value for A in Table A-8 (attached)

T — (A x A) (adjusted mean)

Col. 1 Col. 2
(wesdnotbe | wensformed Calculations:
sorted)
T Average of values in Col. 2
S Standard deviation (Col. 2)
AY Value in Box $ squared (= variance)
C Number of censored values in data set
N Number of samples (censored and uncensored)
A T -In(X) where X = detection limit or PQL
h C/N
y V/A?
A
M
S

V[V + (A x AN} (adjusted std. devn.)

To calculate the upper confidence limit on the mean,

enter the values from Box M and S in the

corresponding boxes on Worksheet W-2 and

Complete that worksheet

F Uncensored data are the values above the detection

Limit or PQL
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WORKSHEET W-4a Cohen's Method for Calculating Adjusted Mean and Standard Deviation
of Censored Data (Normal Distribution)

Col. 1
Uncensored data Calculations:
corted)
T Average of values in Col. 1
$ Standard deviation {(Col. 1)
Vv Value in Box S squared (= variance)
C Number of censored values in data set
N Number of samples (censored and uncensored)
A T-X where X = detection limit or PQL
h C/N
y V/IA?
A Use h and 7y to find a value for A in Table A-8 (attached)
M T — (A x A) (adjusted mean)
S N[V + (A x AY)] (adjusted std. dvn.)
Calculation of upper 95% confidence limit:
df N-1
T Use df to obtain t (see Guidance Table A-4 at a=.05)
UCL M + [(t x SYNN]
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TABLE A-8. VALULS OF A FOR USE WITH WORKSHEETS W-4 AND W-4a

Use the values for h and y calculated from the worksheet to find a vaiue for A, which is needed in subsequent
wotksheet calculations. When the table does not contain the exact entries for h and y, double linear
interpolation should be used to estimate A. The following, adapted from EPA (1989, p. 8-10), illustrates the
procedure:

Example calculation. Assume that values of h=0.18 and y = 1 31 have been obtained from worksheet
calculations. Since these values do not appear in Table A-§, A musts be found by double linear interpolation.

The values from the table which are needed ford the interpolation are:

y h=015 h=0.20
130 026610 0.36610
135  0.26860 0.36950

There are 0.03 units between 0.15 and 0.18 on the h-scale. There are 0.05 units between 0.15 and 0.20.
Therefore, the value of interest (0.18) lies (0.03/0.05 * 100) = 60% of the distance along the interval between
0.15 and 0.20. To linearly interpolate between the tabulated values on the h axis, the range between the values
must be calculated, the value which is 60% of the distance along the range must be computed and then that
value must be added to the lower point on the tabulated values. The result is the interpolated value. The
interpolated points on the h-scale for the current example are:

Aty=1.30 0.36610 - 0.26610 = 0.10000 0.10000 * 0.60 = 0.06000
0.26610 + 0.06000 = 0.32610

Aty=1.35 0.36950 — 0.26860 = 0.10090 0.10090 * 0.60 = 0.06054
0.26860 + 0.06054 = 0.32914

On the y-axis there are 0.01 units between 1.30 and 1.31. There are 0.05 units between 1.30 and 1.35. The
value of interest (1.31) lies (0.01/0.05 * 100) = 20% of the distance along the interval between 1.30 and 1.35.
The interpolated point on the y-axis is:

0.32914 - 0.32610 = 0.00304 0.00304 * 0.20 = 0.000608

0.32610 + 0.000608 = 0.32671

Thus, A =0.32671.
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TABLE A-8. Vailues for A

0.00
0.01
0.08
0.10
0.15
0.20
0.25
0.30
0.35
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Source: EPA (1989, 1982)

(Work sheets W4 and W-4a)

Proportion of censored values in data set (h)

0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50
017342 0 24268 031382 040210 0.48410 059610 070960 0.83680
017470 024430 0.32050 0 40430 0.49670 0.59890 071280 084030
0.17935 0.25033 032793 0.41300 0.50660 081010 072520 0.85400
018479 0 25741 033662 0.42330 051840 062340 0 74000 0.87030
0.18985 0 26405 034480 0.43300 052060 063610 075420 0.88600
019460 0.27031 0.35255 044220 054030 0 64830 076780 0.90120
0.18910 0.27626 035983 0 45100 055060 0.66000 078100 091580
0.20338 028193 036700 0 45950 0 56040 067130 079370 0.93000
0.20747 0.28737 037379 0 46760 0 56990 0.68210 0 80600 094370
0.21139 0.28260 0.38033 047550 057910 060270 0.81780 095700
0.21517 0.29765 038665 048310 ¢ 58800 0.70290 082950 697000
0.21882 030253 0.30276 049040 0 59670 0.71290 0.84080 098260
022235 030725 039870 049760 0 60510 0.72250 085170 099500
022578 031184 040447 0 50450 0.61330 0.73200 0.86250 100700
022310 031630 041008 051140 0.62130 074120 087290 101880
023234 0 320685 041555 051800 0.62910 G 75020 0.88320 103030
0 23550 032488 ¢ 42000 052450 0.63670 0 75000 0.89320 104160
0 23858 0 32903 042612 0 53080 0.64410 0 76760 090310 105270
024158 033307 043122 0.53700 0.65150 077610 091270 1 06360
0.24452 0 33703 0 43622 0.54300 0.65860 078440 092220 1.07430
024740 034091 044112 0.54900 0.66560 079250 093140 108470
0 25022 034471 0 44582 0.55480 0.67240 080050 0 94060 109510
0 25300 0 34840 0 45060 0.56050 0.67930 080840 0 94960 110520
0 25570 035210 0 45530 0.56620 0.68600 081610 0 95840 111520
0.25840 0 35570 0.45980 0.57170 0.69250 082370 6 96710 112500
0.26100 0 35920 0.48430 0.57710 0.69900 0.83120 0 97560 113470
0 26380 0 36270 (1.46870 0.58250 0.70530 083850 098410 1.14430
0 26510 0 36610 0.47300 0.58780 0.71150 084580 0 99240 115370
0.26860 0 36850 0.47730 0.58300 071770 ¢ 85280 100060 1.16290
027100 037280 0.48150 059810 072380 0.86000 100870 117210
027350 037610 0.48560 0.60310 072980 0.86700 101660 1.18120
0.27580 037930 0.48970 0.60810 073570 0.87380 102450 1.19010
027820 0 38250 0.49380 0.61300 074150 0.88060 103230 1.19880
0.28050 0.38560 0.49770 0.61790 074726 0.86730 104000 1.20760
0.28280 0.38870 050170 0.62270 0.75260 0.86350 104760 1.21620
028510 0.39180 0.50550 082740 0 75850 0.90050 105510 1.22480
028730 0.39480 050940 063210 076410 0.90650 106250 1.23320
0.28950 0.30780 0.51320 0.63670 0 76960 0.91330 106980 1.24150
0.29170 0.40070 051600 064130 677500 0.91960 107710 1.24970
029380 0.40360 0.52060 084580 0 78040 0.92580 108420 1.25780
0.29500 0.40650 052430 065020 0 78570 0.93216 100130 1.26600
029810 0.40930 052790 065470 0 79020 0.93820 1.09840 127380
0.30010 0.41220 053150 055900 079610 0.94420 1.10530 128190
0.30220 0.41480 053500 066340 0.80130 0.95020 1.11220 128970
030420 041770 053850 066760 0 80630 0 95620 1.11800 128740
0.30620 0 42040 0.54200 067190 081140 0.96200 1.12580 130510
0.30820 0.42310 054540 067610 081640 0 96790 1.13250 131270
031020 0 42580 0.54880 068020 082130 0 97360 1.13810 132030
031220 0.42850 055220 068440 082620 0 97940 1.14570 132780
0.31410 043110 055550 066840 083110 0 98500 1.16220 133520
0.31600 0 43370 055680 059250 0.83580 098060 115670 134250
031790 0 43630 0 56210 0 69650 0.84070 099620 1.16510 134980
031980 0 43880 0 56540 070050 0.34540 100170 117140 135710
032170 0 44140 0 56860 070440 0.85010 100720 117770 136420
0 32360 0 44390 0 87180 070830 0.85480 101260 118400 137140
032540 0 44640 0.57500 071220 0.85840 101800 118020 1.37840
032720 0 44800 057810 071610 0.86390 102340 119630 138540
@ 32900 045130 058120 0.71980 0.86850 1.02870 120240 1.39240
0 33080 045370 0.58430 072370 087300 1.03390 120850 139930
0 33260 0 45620 058740 072740 087750 1.03920 121450 140610
0.33440 0.45850 0.59050 0.73110 0.86190 1.04430 1.22050 1.41290

TABLE A-8 PAGE1
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TABLE A-8. Values for A (Cont.)
Proportion of censored values in data set (h)

0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

3.00 0.33610 0 46090 ©.59350 073480 0.88630 1.04950 1.22640 141870
3.05 0.33780 D 46330 0.59650 073850 0.89070 1.05460 123230 142640
310 0.33980 0 46560 0.59950 074220 0.89500 1.05970 123810 1.43300
315 0.34130 0 46780 0.50240 0 74580 080830 1.08470 1.24380 1.43860
320 0.34300 0 47030 0.60540 074940 0.90360 1.08970 1.24970 144620
325 0.34470 0 47250 0.60830 075290 0.90790 1.07470 125540 145270
330 0.34640 0 47480 061120 0 75650 091210 1.07960 126110 1.45920
335 0.34800 047710 0.61410 076000 091630 1.08450 1.26680 146570
340 0.34970 0 47930 061680 076350 0.92050 1.08940 127240 1.47200
345 0.35130 0.48160 061970 076700 0.92460 1.08420 127790 1.47840
3.50 0.35280 0.48380 0.62260 077040 0.92870 1.03800 1.28350 148470
355 0.35450 0.48600 062540 077390 093280 1.10380 1.28000 1.48100
3.60 0.35620 0 48820 0.62820 077730 0.93600 110860 129450 1.48720
365 0.35780 0 49030 0.63080 078070 0.94000 1.11330 129940 150340
370 0.35940 0.49250 083370 0 78400 0.94480 1.11800 1.30530 1.50960
375 0.36080 0 49460 053640 078740 0.94890 1.12260 1.31070 151570
380 0.36250 0 49680 0.63910 079070 0.95290 1.12730 1.31600 152180
385 0.36410 0 49890 0.64180 079400 0.95680 1.13190 132130 1.52790
3.90 0.36560 0.50100 0.64450 078730 0.96070 1.13640 1.32660 153390
395 0.36720 0 50310 0.64720 0.80060 096460 114100 1.33180 153880
4.00 0.36870 0 50520 0.64980 0.80380 0 96850 1.14550 1.33710 1.54580
4,05 0.37020 0 50720 0 65250 080700 0.97230 1.15000 1.34230 155180
410 0.37170 0 50930 0.65510 0.81020 0.97620 1.15450 1.34740 155770
415 0.37320 0.51130 085770 0.81340 0.98000 1 15900 1.35260 156350
4.20 0.37470 051340 0.66030 0.81660 0.98370 1.16340 1.35770 156930
425 0.37620 051540 0 66290 0.81980 0.98750 1.16780 1.36270 157510
4.30 0.37770 051740 066540 0.82290 0.99130 1.17220 1.36780 1.58080
435 0.37920 0 51940 066800 0.82600 0.99500 1.17650 1.37280 158660
4.40 0.38080 052140 0 67050 0.82910 0 99870 1.18090 1.37780 1.58240
4.45 0.38210 0 52340 0 67300 0.83220 1.00240 1.18520 1.38280 1.58800
4.50 0.38360 052530 0 67550 0.83530 1.00600 1.18950 1.38780 1.60370
¥ 455 38500 0 52730 067800 0.83840 1.00970 1.19370 1.39270 160930
4.60 0.38640 0 52920 0 68050 0.84140 101330 1.19800 1.39760 161490
4.65 038790 053120 0 68300 0.84450 1.01690 1.20220 1.40240 1.62050
470 0.38930 0 53310 0 68550 0.84750 102050 1.20640 140730 162600
475 0.38070 0 53500 068790 0.85050 102410 1.21060 141210 163150
480 0 30210 0 53700 069030 0.85350 1.02770 1.21480 1.41690 1.63700
485 0 38350 053820 069280 0.85640 103120 1.21890 142170 164250
490 0 39480 0 54070 069520 0.85940 103480 1.22300 142650 164790
495 0 38620 0 54260 069760 0.86230 103830 1.22720 143120 165330
5.00 039770 0 54450 070000 0.66530 104180 1.23120 143590 165870
5.05 (39900 0 54640 070240 0.86820 104520 1.23530 144060 166410
§.10 040040 0 54820 070470 087110 104870 1.23940 144530 166940
515 040180 0 55010 070710 0.87400 105210 1.24340 145000 167470
520 040310 0 55190 0 70940 0 B7680 105560 1.24740 145480 168000
525 0 40450 0 85370 071180 0 87870 105900 1.25140 145920 168530
530 040580 0 55560 071410 088250 106240 1.25540 146380 168050
535 040710 0 55740 071640 0 88540 106580 1.25940 146840 169580
540 040850 - 0 55920 0.71870 0 88820 106910 1.26330 147290 170100
5.45 (40980 0 56100 072100 089100 107250 1.26720 147750 170610
550 041110 0 56280 072330 089380 107580 12710 148200 171130
5.55 041240 0.56460 072560 089660 107920 1.27500 148650 171640
560 041370 0 56630 072780 0.89340 108250 1.27880 149100 172150
5.65 0 41500 0.56810 0.73010 090220 108580 1.28280 149540 172660
570 041630 0 56990 0.73230 090490 108910 1.28660 149980 173170
575 0 41760 057160 0 73460 090770 1.00240 1.29050 150430 173680
5.80 (41890 0.57340 0 73680 091040 1.09560 1.20430 150870 174180
585 6 42020 0.57510 0.73900 091310 108890 1 20810 151310 174680
590 042150 0.57690 0.74120 091580 110210 1.30180 151750 175180
595 042270 0 57860 0.74340 091850 110530 1 30570 152180 1 75680
6.0 0.42400 0.58030 0.74560 0.92120 1.10850 1.30040 1.52620 1.76170
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WORKSHEET W-1 Calculations for W test.

| co. 1 Col. 3
Data sorted Numbers in
lowest to Col. 2 squared
highest

II

Page 1 of 2.

Calculations:

Col. 3 total
Col. 2 total
B2

Number of samples
A - (C/N)

N/2 (N even)
(N-1)/2 (N odd)

C zZz2 a0 w »

-

Proceed to Page 2 of Worksheet.

This worksheet shows calculations required to
test the possibility that the data differ
significantly from a lognormal distribution

(see Section 2.1.4.2). The computation method
shown here differs slightly from that shown in
Example 7 to avoid rounding errors that give a
less accurate value for W.

If the data are not lognormally distributed,
Worksheet W-1a shows the calculations required
to test the possibility that the data differ
significantly from a normal distribution (see
Section 2.1.4.1).

See Supplement S-3 for further information,
including alternatives to the use of these
Worksheets.



WORKSHEET W-1.
Col. 4 Col. 5 Col. 6 Col. 7
List the first r List the last r List the (Col. 5 - Col. 4)
numbers from numbers from cocefficients from | X Col. 6
Col. 2 (smallest Col. 2 (largest to | Table A-1
to largest) smallest)

Page 2 of 2.

Calculations:

E Col. 7 total
F E?
F/D

Compare W with the appropriate value

below. If W is smaller than the
tabled value, the default assumption
of a lognormal distribution for the

data must be rejected.

Sample | Critical | Sample cmm;l
size (N) ] value size (N) * | value
[3 Jorer [z 0923 |
D 0.748 28 0.924
B 0.762 29 0.926
il 6 0.788 30 0927
7 0.803 31 0.929
8 0818 32 0.930
Il 9 0.829 33 0.931
|10 0.842 E 0.933
[l 12 0.850 35 0.934
12 0.859 36 0.935
l13 0.866 37 0.936
14 0.874 38 0.938
}15 0.881 39 0.939
I [ 16 0887 |40 0.940
K 0.892 41 0.941
18 0.897 42 0.942
|l19 0.901 43 0.943
20 0.905 4 0.944
" 21 0.908 45 0.945
2 0.911 46 0.945
IL ' 23 0914 47 0.946
it 22 0.916 48 0.947
fl 2 0.918 49 0.947
Il 26 0.920 50 0.947




WORKSHEET W-1 Calculations for W test.

I Col. 1 Col. 2

Col. 3

|1 Numbers in
Col. 2 squared

EkﬁmpLE Page 1 of 2.

Calculations:
Al 6.0816 | col3 total
B|-/.7/73 | Col2 total
c| 2-749/ |®
N /0 Number of samples
D|5.756] |A-(c/N)

N/2 (N even)

r 5 (N-1)/2 (N odd)

Proceed to Page 2 of Worksheet.

This worksheet shows calculations required to
test the possibility that the data differ
significantly from a lognormal distribution

(see Section 2.1.4.2). The computation method
shown here differs slightly from that shown in
Example 7 to avoid rounding errors that give a
less accurate value for W.

If the data are not lognormally distributed,
Worksheet W-1a shows the calculations required
to test the possibility that the data differ
significantly from a normal distribution (see

. Section 2.1.4.1).

See Supplement S-3 for further information,
including alternatives to the use of these
Worksheets.



WORKSHEET W-1. | Ccefficients Sor Nc1o  Page 2 of 2.

Col. 4 Col. 5 Col. 6 Col. 7
S fistr | Listthelastr | List the (Col. 5 - Col. 4) Calculations:
) '?f (017 %Y numbers from numbers from coefficients from | X Col. 6
aq e | | Col 2 smatiest | Col.2 (largest to | Table A-1
P % to largest) smallest)

E| 2.2564 | Col 7 total
F| 5.09/12 | g |
0.879% | /D

Compare W with the appropriate value
below. If W is smaller than the
tabled value, the default assumption
of a lognormal distribution for the
data must be rejected.

0.8798 /s larger Huan O- Y"\‘Z./
l <0 can't reyect alSumpHon

of (ocanorm:d diskributfion .

Sample Critical
size (N) value

0923
0924
0.926
0927
0.929
0.930
0931
0933
0934
0935
0.936
0938
0.939
0.940
0.941
0942
0.943
0.944
| o094s
0.945
0.946
0947
0.947
0947

RIS |28 |8 |B|G|R|a|R|B|8|2]|8I¥ BN

&

&

5

&

&
-]

8




WORKSHEET W-1a. Calculations for W test Page 1 of 2.
(Use this worksheet only if lognormal distribution has been rejected).

Col. 1 Col. 2
Data sorted Numbers in
lowest to Col. 1 squared

highest

| A — E—

Calculations:

Col. 2 total

Col. 1 total

Bz

Number of samples

C Z2 0 = »

A - (C/N)
N/2 (N even)
r (N-1)/2 (N odd)

Proceed to Page 2 of Worksheet.

This worksheet shows calculations required to

test the possibility that the data differ

significantly from a normal distribution

(see Section 2.1.4.1). The test should only be
conducted if the defaunlt assumption of a lognormal
distribution has been rejected. The computation
method shown here differs slightly from that shown
in Example 7 to avoid rounding errors that give a
less accurate value for W.

See Supplement S-3 for further information,
including alternatives to the use of these
Worksheets.



WORKSHEET W-1a. - Page 2 of 2.

Col. 4 Col. 5 Col. 6 Col. 7
List the first r List the last r List the (Col. 5 - Col. 4) Calculations:
numbers from numbers from coefficients from X Col. 6

Col. 1 (smallest | Col. 1 (largest to | Table A-1

to largest) smallest)

E Col. 7 total
F B
w F/D

Compare W with the appropriate value
below. If W is smaller than the

tabled value, the assumption

of a normal distribution for the

data must be rejected.

Sample Critical Sample Critical J
size (N) | value size (N) value
3 0.767 27 0.923
4 0.748 28 0.924
l 5 0.762 29 0.926
I 6 0.788 30 0.927
7 0.803 31 0.929
) 8 0.818 32 0.930
9 0.829 33 0.931
10 0.842 34 . 10.933
11 0.850 35 0.934
12 0.859 36 0.935
13 0.866 37 0.936
14 0.874 38 0.938
15 0.881 39 0.939
16 0.887 40 0.940
1| 17 - 0.892 41 0.941
18 0.897 42 0.942
19 0.901 43 0.943
20 0.905 44 0.944
21 0.908 45 0.945
22 0.911 46 0.945
|| 23 0.914 47 0.946
] 24 0.916 48 0.947
25 0.918 49 0.947
26 0.920 50 0.947




WORKSHEET W-1a. Calculations for W test

(Use this worksheet only if lognormal distribution has been rejected).

Col. 1 Col. 2
Data sorted Numbers in
lowest to Col. 1 squared
highest

5. 1Y 26. 40
[2.68 160 .36
12 -6 185.¢ 1
19. 9% 399.13
3.0% 130).%0
35.75 /501.83
y2. %8 1838. 69
45. 1% Joyl. 86
45.22 | 1045.00
4§. 59 | 2360.65
52-33 | 2738.63
56.70 | 3214, 4y
62.13 | 3560.56
68.85 | 4740. 6/
50.62 | 4500.25
§0.86 | ¢533.50
¥6.5¢ | 7493.05
j04.35 - | 103%9.3Y
04.45 1098 .97
105.23 | /y072.30
N4.15 |73629.99
125.74 | 15§1]. 30
149. 32 {22297. 36
149-58 122375.07
150.59 |72661. 69
210.1§ |yy176. 05
334-51 |1§98. 95
367.75 |135242.27
377.49 |m2495. 6
y/8.63 |175253.59

Page 1 of 2.
EXAMPLE
Calculations:
A| 785 060. 5| Col. 2 total
B 3 50%./ | Col 1 total
C|/23069/5 |®
N 30 Number of samples
D374 §30 |a-cc/N)
, N/2 (N even)
r /5 (N-1)/2 (N odd)

Proceed to Page 2 of Worksheet.

This worksheet shows calculations required to
test the possibility that the data differ

significantly from a normal distribution

(see Section 2.1.4.1). The test should only be
conducted if the default assumption of a lognormal
distribution has been rejected. The computation
method shown here differs slightly from that shown
in Example 7 to avoid rounding errors that give a
less accurate value for W.

See Supplement S-3 for further information,
including alternatives to the use of these
Worksheets. '



WORKSHEET W-1a. _ . Page 2 of 2.

[[ Col. 4 Col. 5 Col. 6 Col. 7 “
List the first r List the last r List the (Col. 5 - Col. 4) Calculations:
numbers from numbers from coefficients from | X Col. 6
Col. 1 (smallest | Col. 1 (largest to .| Table A-1
to largest) smallest)
5. 14 418.63 |0.4254 {175.9 E{ 539.3 | Col7total
12.68 377.49 | 0-2944 | 107- 4 F|29]339.7 | &
13.62 | 367.75 | 0.24%7 | §§.) wl 0.7F% F/D
I 19-98 | 334.51 | 0. 2148 | 67.4
.08 | 200.18 | 01870 | 32.6 o W with th , |
ompare W wi e appropriate value
38.75 )50 54 0. 1630 (g2 below. If W is smaller than the '
42.88 /49.58 | 0. 1415 | 15.) tabled value, the assumption
4517 149.32 | ©.1219 | 2.7 of a normal distribution for the
y5 12 125 74 0 --1036 g, 3 data must be rejectefl.
45.59 | 4915 | 0.03¢2| 5.7 Since.  0-78 s _S"‘“ﬂ“
51.33 | 105.23 ] 0.06897 | 3.7 || than 0.727 reject”
5070 | 10445 | 6.0537 | 2.6 | normal ohiskributfion.
éZ - l 3 (0 "/ 35 O hd 03 s/l / é Sample Critical Sample Critical
65/ 85 gé 56 0. 02_27 0. 7 “ size (N) Ivalue size (N) value J
5}051 30 . yé 0. 007é 0. 002 3 0.767 27 0.923
4 0.748 28 0.924
5 0.762 29 0.926
6 0.788 30 0.927
7 0.803 31 0.929
8 0.818 2 0.930
9 0.829 33 0.931
10 0.842 34 0.933
11 0.850 35 0.934
12 0.859 36 0.935
13 0.866 37 . |0936
14 ~ Josm 38 0.938
15 0.881 39 0.939
16 0.887 40 0.940
17 0.892 41 0.941
18 0.897 42 0.942
19 0.901 43 0.943
20 0.905 44 0.944
21 0.908 45 0.945
2 0911 46 0.945
23 0914 47 0.946
24 0916 48 0.947
25 0918 . |49 0.947
L2 0.920 50 0.947




WORKSHEET W-2 Calculations for Upper 95% Confidence Limit (UCL)
using H-statistic (lognormally distributed data) - Land’s Method

| cor. 1 Col. 2
bosonedy | magtormed
M
s
N
P
T
H
v
K
UcL

Calculations:

Average of values in Col. 2

Standard deviation (Col. 2)

Number of samples

V(N-1)

0.58?

Use S and N to find value for H in Figure A-1. See
Supplement S-2 for a more extensive nomograph.

(S X H)/P

M+T+V

Exp(K) or eX

See Section 5.2.1.2 and Example 11




WORKSHEET W-2 Calculations for Upper 95% Confidence Limit (UCL)
using H-statistic (lognormally distributed data) - Land’s Method

Col1 |CoL2 | ExAampPLE
aa: r(t:?)a not ::ﬁ:;ormed Calculations:
M| 4 648 | Average of values in Col. 2
S 0.172 Standard deviation (Col. 2)
N 20 Number of samples
P| 4 359 |vND
T| 0. 014§ | 058
H1 22 1,76 | Supploment 55 for s more extensive pomograph.
Vi 0.069 |(SXH)/P
K| 4.732 |[M+T+V
UCL| 113. 6 Exp(K) or e¥

See Section 5.2.1.2 and Example 11




WORKSHEET W-3. Calculating a Background Value (BV)
for lognormally distributed data (see Supplement S-4).

CoL1l |Col2 |
Data (need not Log,-
be sorted) transformed

Calculations:
Average of numbers in Col. 2
Standard devn. (Col.2)
M + (1282 x S)
Exp(P) or e* (P,, = 90th percentile)
Exp(M) or eM (P, = 50th percentile or median)
4 x Py,
P, or

4P50 (if P90 > 4P50)

Note: If more than 15% of the data are
values assigned to BDL or below-PQL
measurements, use the nonparametric
method (see Example 10) or use a
probability plot, with numbers from
Col. 2 (see Example 4, p. 77). For

more information, see Section 2.2.1.




WORKSHEET W-3. Calculating a Background Value (BV)
for lognormally distributed data (see Supplement S-4).

EXAMPLE
Data (need not Calculations:
be sorted)
100. 36 M H.66 Average of numbers in Col. 2

0/. gé 4.624 S| O. 08(, Standard devn. (Col.2)
/20.53 | 4.792 P| Y4.76% M + (1282 x S)

107. 57 4- 6 78 P, "n7.7 Exp(P) or ef (P,, = 90th percentile)
90. b"/ L 507 P, | 105. 43 Exp(M) or eM (P, = 50th percentile or median)
107. 14 Y. b74 ap, | H21.7 4 x P,

Bv| 7.7 P,, or

2.49 | 4.723

1Y, 45 4.7401'

4P50 (if P90 > 4P50)

107.46 | 4. 677
95. 30 4.557

Note: If more than 15% of the data are

" values assigned to BDL or below-PQL

]I measurements, use the nonparametric

“ method (see Example 10) or use a

" probability plot, with numbers from
JI Col. 2 (see Example 4, p. 77). For

" more information, see Section 2.2.1.
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