# A Department of Ecology Report



**Development of Reference Value Ranges** for Benthic Infauna Assessment **Endpoints in Puget Sound** 

|                                                                                      | For more information                                                                                                                                                                                                                   |
|--------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                      |                                                                                                                                                                                                                                        |
|                                                                                      |                                                                                                                                                                                                                                        |
|                                                                                      |                                                                                                                                                                                                                                        |
|                                                                                      |                                                                                                                                                                                                                                        |
|                                                                                      |                                                                                                                                                                                                                                        |
|                                                                                      |                                                                                                                                                                                                                                        |
|                                                                                      |                                                                                                                                                                                                                                        |
|                                                                                      |                                                                                                                                                                                                                                        |
|                                                                                      |                                                                                                                                                                                                                                        |
|                                                                                      |                                                                                                                                                                                                                                        |
|                                                                                      |                                                                                                                                                                                                                                        |
|                                                                                      |                                                                                                                                                                                                                                        |
|                                                                                      |                                                                                                                                                                                                                                        |
|                                                                                      |                                                                                                                                                                                                                                        |
|                                                                                      |                                                                                                                                                                                                                                        |
|                                                                                      |                                                                                                                                                                                                                                        |
| (360) 407-7170. Persons with hearing loss can call 711 for Washington Relay Service. | If you need this publication in an alternate format, please call Toxic Cleanup Program at (360) 407-7170. Persons with hearing loss can call 711 for Washington Relay Service. Persons with a speech disability can call 877-833-6341. |

# DEVELOPMENT OF REFERENCE VALUE RANGES FOR BENTHIC INFAUNA ASSESSMENT ENDPOINTS IN PUGET SOUND

Final Report

January 30, 1996

#### Prepared For:

Washington Department of Ecology Sediment Management Unit

#### Prepared By:

Striplin Environmental Associates, Inc. 6541 Sexton Dr. NW, Suite E-1 Olympia, WA 98502 (360) 866-2336

SEA Contract No. A94-01

|   | •   |   | · |   |   |       |   |  |
|---|-----|---|---|---|---|-------|---|--|
|   | •   |   |   |   |   |       |   |  |
| • |     |   |   |   |   | •     |   |  |
|   |     | • |   |   |   |       |   |  |
|   |     |   |   |   | · |       |   |  |
|   | •   |   |   |   |   |       |   |  |
|   | ,   |   |   |   |   |       |   |  |
|   |     |   |   |   |   |       |   |  |
|   |     |   |   | , |   |       |   |  |
|   |     |   |   | · |   |       |   |  |
|   |     |   |   |   |   |       | · |  |
|   |     |   |   |   |   |       |   |  |
|   |     |   |   |   |   |       |   |  |
|   | en. |   |   |   |   | 4 · . |   |  |
| • |     |   |   |   |   |       |   |  |
|   |     |   |   |   |   |       |   |  |
|   |     |   |   |   |   |       |   |  |

### TABLE OF CONTENTS

| 1.0 | INTRODUCTION                                               |
|-----|------------------------------------------------------------|
|     | 1.1 IDENTIFICATION OF IMPACTED BENTHIC COMMUNITIES - A     |
|     | HISTORICAL PERSPECTIVE 1                                   |
|     | 1.2 PROGRAM OVERVIEW                                       |
|     | 1.2.1 Phase I                                              |
|     | 1.2.2 Phase II                                             |
|     | 1.3 REPORT ORGANIZATION4                                   |
|     |                                                            |
| 2.0 | DATA COMPILATION                                           |
|     | 2.1 CHEMICAL DATA 5                                        |
|     | 2.2 BIOLOGICAL DATA                                        |
|     |                                                            |
| 3.0 | DETERMINE CHEMICALLY IMPACTED STATIONS                     |
|     |                                                            |
| 4.0 | DETERMINE HABITAT CATEGORIES10                             |
|     | 4.1 METHODS                                                |
|     | 4.1.1 Database Management                                  |
|     | 4.1.2 Data Analysis                                        |
|     | 4.2 RESULTS                                                |
|     | 4.2.1 Definition of Habitat Categories                     |
|     |                                                            |
|     | 4.2.2 Development of Final Benthic Infauna Data Matrices   |
|     |                                                            |
| 5.0 | DEVELOPMENT OF REFERENCE VALUE RANGES                      |
|     | 5.1 BENTHIC INDICES SELECTED FOR EVALUATION AS POTENTIAL   |
|     | REFERENCE ENDPOINTS                                        |
|     | 5.2 IDENTIFICATION OF OUTLIER DATA POINTS                  |
|     | 5.2.1 Cluster Analysis                                     |
|     | 5.2.2 1.96 Standard Normal Deviate                         |
|     | 5.3 CHARACTERISTICS OF HABITAT CATEGORIES                  |
|     |                                                            |
| 6.0 | TESTING OF REFERENCE VALUE RANGES                          |
|     | 6.1 TESTS FOR NORMALITY                                    |
|     | 6.2 VARIABILITY WITHIN REFERENCE HABITAT CATEGORIES        |
|     | 6.3 DIFFERENCES AMONG HABITAT CATEGORIES                   |
|     | 6.4 GEOGRAPHIC VARIABILITY WITHIN REFERENCE HABITAT        |
|     | CATEGORIES                                                 |
|     | 6.5 DIFFERENCES IN BENTHIC ENDPOINTS BETWEEN REFERENCE AND |
|     | CHEMICALLY CONTAMINATED HABITAT CATEGORIES28               |
|     | 6.6 DIFFERENCES BETWEEN REFERENCE HABITAT CATEGORIES AND   |
|     | INDIVIDUAL CONTAMINATED STATIONS                           |
|     | 6.7 SUMMARY OF STATISTICAL TESTING                         |

### TABLE OF CONTENTS (Cont.)

| 7.0 PRIORITIZATION OF BENTHIC INDICES AS                                                          |
|---------------------------------------------------------------------------------------------------|
| REFERENCE VALUE ENDPOINTS                                                                         |
| 7.1 CHARACTERISTICS OF OPTIMAL REFERENCE VALUE ENDPOINTS 3                                        |
| 7.2 NUMERICAL SCORING PROCESS                                                                     |
| 7.3 SUMMARY OF NUMERICAL SCORING                                                                  |
| 8.0 RECOMMENDATIONS4                                                                              |
| 9.0 LITERATURE CITED                                                                              |
| APPENDICES                                                                                        |
| Appendix A. Surveys Included in Evaluation of Chemical Data                                       |
| Appendix B. Benthic Endpoint Data Matrix                                                          |
| Appendix C. Cluster Analyses Within Uncontaminated Habitat Categories                             |
| Appendix D. Plots of Benthic Endpoints Prior to Removal of Outlier Samples                        |
| Appendix E. Summary Statistics for Benthic Endpoints in Uncontaminated Habitat Categories         |
| Appendix F. Frequency Distribution of Benthic Endpoint Data for Uncontaminated Habitat Categories |

### LIST OF FIGURES

| Figure 1. | Dendogram resulting from a Bray-Curtis classification analysis of data from the |
|-----------|---------------------------------------------------------------------------------|
|           | Seahurst Baseline Study                                                         |

|                                         |    |    |   | •   |   |
|-----------------------------------------|----|----|---|-----|---|
|                                         |    |    |   |     |   |
|                                         |    |    |   |     |   |
|                                         |    |    |   |     |   |
|                                         |    |    |   |     |   |
|                                         |    |    |   |     |   |
|                                         |    |    |   |     |   |
|                                         |    |    |   |     |   |
|                                         |    | •  |   |     |   |
|                                         |    |    |   |     |   |
|                                         |    | •  |   |     |   |
|                                         |    |    |   |     | • |
|                                         |    |    |   |     |   |
|                                         |    |    |   |     |   |
|                                         |    |    |   |     |   |
|                                         |    |    |   |     | • |
|                                         |    |    | • |     |   |
|                                         |    |    |   |     | • |
|                                         |    |    |   |     |   |
|                                         |    |    |   |     |   |
|                                         | •  |    |   |     |   |
| •                                       |    |    |   |     |   |
|                                         | •  |    |   |     |   |
|                                         |    |    |   | 4.5 |   |
| •                                       |    |    |   |     |   |
|                                         |    |    |   |     |   |
|                                         | •  |    |   |     |   |
|                                         | •  |    |   |     |   |
|                                         |    | •  |   |     |   |
|                                         |    |    |   |     |   |
|                                         |    |    |   |     |   |
| •                                       |    |    |   |     |   |
|                                         |    |    |   |     |   |
|                                         |    |    |   |     |   |
|                                         |    |    |   |     |   |
|                                         |    |    |   |     |   |
|                                         |    |    |   | •   |   |
|                                         |    |    |   |     |   |
|                                         |    |    |   |     |   |
|                                         |    |    |   | •   |   |
|                                         |    |    |   |     |   |
| · • • • • • • • • • • • • • • • • • • • |    |    |   |     |   |
| <b>v</b>                                |    |    |   |     |   |
|                                         |    |    |   |     |   |
|                                         |    | •  | • |     |   |
|                                         |    |    |   |     |   |
|                                         |    |    |   |     |   |
|                                         |    |    |   |     |   |
|                                         | v. |    |   |     |   |
| r                                       |    |    |   |     |   |
|                                         |    |    |   |     |   |
|                                         |    |    | • |     |   |
|                                         |    | •  |   |     |   |
|                                         |    |    |   |     |   |
|                                         |    |    |   |     |   |
|                                         |    |    |   |     |   |
|                                         |    |    |   |     | , |
|                                         | •  | ·* |   |     |   |
|                                         |    |    |   |     |   |
|                                         |    |    | • |     |   |

### LIST OF TABLES

| Table 1.  | Summary statistics for SQS chemicals                                                                                                                                                                        | 9 |
|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| Table 2.  | Physical characteristics of each major cluster group as defined by the hierarchical cluster analysis                                                                                                        |   |
| Table 3.  | Number of samples with no SQS exceedances in each habitat category 1                                                                                                                                        |   |
| Table 4.  | Stations and samples removed from the calculation of Puget Sound reference values due to being identified as outliers in the cluster analyses                                                               | Q |
| Table 5.  | Results of the ANOVA analyses on inter-habitat variability for selected benthic infauna endpoints.                                                                                                          |   |
| Table 6.  | Table of Bonferroni adjusted probabilities for comparison among habitat categories.                                                                                                                         |   |
| Table 7.  | Results of ANOVA analyses of geographic variability in habitat categories 2                                                                                                                                 |   |
| Table 8.  | Results of the ANOVA analyses on geographic variability in habitat categories. 2                                                                                                                            |   |
| Table 9.  | Table of Bonferroni adjusted probabilities for the comparison of benthic endpoints from reference value categories to habitat categories composed of stations with chemical concentrations greater than SQS |   |
| Table 10. | Results of <i>t</i> -tests comparing reference values to individual impacted stations whose mean is 1 standard deviation or more below the mean reference value 3                                           |   |
| Table 11. | Relative measure of the coefficients of variation for each benthic endpoint within each habitat category                                                                                                    |   |
| Table 12. | Inter-habitat variability in reference areas                                                                                                                                                                |   |
| Table 13. | Comparison between mean reference values for each habitat category and mean values from stations with chemicals at concentrations > SQS                                                                     |   |
| Table 14. | Comparison between mean reference values for each habitat category and the mean values from individual contaminated stations (chemical concentrations >SQS)                                                 |   |
| Table 15. | Summary of scoring by element                                                                                                                                                                               |   |
| Table 16. | Reference value ranges for Puget Sound habitats                                                                                                                                                             |   |
|           |                                                                                                                                                                                                             |   |

. . .

#### LIST OF ACRONYMS

ANOVA Analysis of Variance CV Coefficient of Variation

DAIS Dredged Analysis Information System

DNR Washington State Department of Natural Resources

EPA U.S. Environmental Protection Agency

H' Shannon-Wiener diversity
ITI Infaunal Tropic Index
J Pielou's evenness measure

METRO Municipality of Metropolitan Seattle

NOAA National Oceanic and Atmospheric Administration

NODC National Oceanographic Data Center

NPDES National Pollutant Discharge and Elimination System

PAH Polycyclic Aromatic Hydrocarbon

PSAMP Puget Sound Ambient Monitoring Program

PSEP Puget Sound Estuary Program

SCCWRP Southern California Coastal Water Research Project

SBS Seahurst Baseline Studies
SDI Swartz's Dominance Index
SEDQUAL State Sediment Quality Database

SEDQUAL State Sediment Quanty Database

SMS Washington State Sediment Management Standards
SQS Washington State Sediment Quality Standards

TOC Total Organic Carbon

TPPS Toxicant Pretreatment Planning

TVS Total Volatile Solids
UW University of Washington

|   |     | • |   |                                       |   |
|---|-----|---|---|---------------------------------------|---|
|   |     | • | • |                                       |   |
|   |     |   |   |                                       |   |
|   |     |   |   |                                       |   |
|   |     |   |   |                                       |   |
|   |     |   |   |                                       |   |
|   |     |   |   |                                       |   |
|   |     |   |   |                                       |   |
|   |     |   |   | •                                     |   |
| • |     |   |   |                                       |   |
| • |     |   |   |                                       | • |
| • |     | • | • |                                       |   |
|   |     |   |   |                                       |   |
|   | 4   |   |   |                                       |   |
|   |     |   |   |                                       |   |
|   |     |   |   |                                       |   |
|   |     | • |   | e e e e e e e e e e e e e e e e e e e |   |
|   |     |   |   |                                       |   |
|   |     |   |   |                                       |   |
|   |     |   |   |                                       |   |
|   |     | • |   | •                                     |   |
|   |     |   |   |                                       |   |
|   |     |   | • |                                       |   |
|   |     |   |   |                                       |   |
|   | • • |   |   |                                       | • |
| • |     |   |   | •                                     |   |
|   |     |   |   |                                       | • |
|   |     |   |   |                                       |   |
|   |     |   |   |                                       |   |
|   |     |   |   |                                       |   |
|   |     |   |   |                                       |   |
|   |     |   |   |                                       |   |
|   |     |   |   |                                       |   |
|   |     |   |   |                                       |   |
|   |     |   |   |                                       |   |
|   |     |   |   |                                       |   |
|   |     |   |   |                                       | , |
|   | . • |   |   |                                       |   |
|   | . • |   |   |                                       |   |
|   | . • |   |   |                                       |   |
|   | . • |   |   |                                       |   |
|   |     |   |   |                                       |   |
|   |     |   |   |                                       |   |
|   |     |   |   |                                       |   |
|   |     |   |   |                                       |   |
|   |     |   |   |                                       |   |
|   |     |   |   |                                       |   |
|   |     |   |   |                                       |   |
|   |     |   |   |                                       |   |
|   |     |   |   |                                       |   |
|   |     |   |   |                                       |   |
|   |     |   |   |                                       |   |
|   |     |   |   |                                       |   |
|   |     |   |   |                                       |   |
|   |     |   |   |                                       |   |
|   |     |   |   |                                       |   |
|   |     |   |   |                                       |   |
|   |     |   |   |                                       |   |
|   |     |   |   |                                       |   |
|   |     |   |   |                                       |   |
|   |     |   |   |                                       |   |
|   |     |   |   |                                       |   |

#### 1.0 INTRODUCTION

The Washington Department of Ecology (Ecology) contracted with Striplin Environmental Associates (SEA) to conduct studies in support of further development and refinement of the Sediment Management Standards (SMS, Chapter 173-204 WAC). SEA was funded by Ecology, the U.S. Environmental Protection Agency (EPA), and the Washington Department of Natural Resources (DNR) to compile historical chemical and biological data and calculate benthic community reference values that are representative of a variety of uncontaminated Puget Sound soft bottom habitats. This report describes the work conducted under Phase I (May 10 - September 30, 1993) and Phase II (June 29, 1994 - present) of the reference value project.

The assessment of benthic community structure is a pivotal tool in assessing sediment quality. It is widely used by resource management agencies concerned with the health of Puget Sound. As in other parts of the country, potential impacts to benthic communities are determined largely through comparisons of potentially impacted stations with reference stations. Identifying suitable reference stations in Puget Sound has often been problematic due to the physical complexity of the Sound. The goal of the reference value project was to develop ranges of reference values for Puget Sound by evaluating existing benthic infauna data from stations with little or no chemical contamination. These ranges, determined for several benthic indices among various habitats, may be used by the State's source control/sediment cleanup and dredge material management programs and for biological assessments under the NPDES and federal damage assessment programs to assess the degree of benthic impact at potentially contaminated stations.

The project was divided into two phases with each phase consisting of several tasks. Phase I contained four tasks: compiling chemical and biological data, identifying chemically contaminated and uncontaminated stations, dividing the benthic stations into potentially impacted and non-impacted data matrices (based on chemical data), and dividing both matrices into habitat categories (e.g., shallow water/fine-grained sediment; shallow water/coarse-grained sediment). Phase II consisted of three tasks: statistical evaluations of infaunal data among and within habitat categories, statistical testing between non-contaminated and contaminated habitat categories, and determining whether habitat categories vary geographically within Puget Sound.

# 1.1 IDENTIFICATION OF IMPACTED BENTHIC COMMUNITIES: A HISTORICAL PERSPECTIVE

The identification of anthropogenic effects on benthic communities has long been recognized as an important tool for understanding how these communities function. Approaches for separating impacted from unimpacted stations include the use of indicator species, comparisons to actual reference stations (based on higher taxa levels), and the development of administrative reference values. Some of these methods for determining benthic community impacts are described below.

The use of indicator organisms to define biological communities has a long tradition in benthic ecology. A few examples include identification of natural communities based on ophiuroids

(Barnard and Ziesenhenne 1960), the keystone species concept from Paine (1969), and the presence of the *Capitella capitata* complex (Grassle and Grassle 1974). The limitation of these approaches to identify infaunal communities is that they may result in the protection of a limited number of species, possibly at the expense of others.

A shift away from the use of indicator species began in the late 1970's and 80's with the work by Pearson and Rosenberg (1978), Gray et al. (1988), Warwick (1988a,b), and Gray (1989). All noted the limitations of the single species models and analyzed data using multispecies groups and higher taxa levels by both univariate and multivariate methods. In Puget Sound, many researchers have used higher taxa levels to document anthropogenic effects. Word and Striplin (1981) successfully used the multispecies groups from the infaunal trophic index to separate the effects of nutrients and toxic compounds on the benthic communities living in the erosional environment off of West Point. They also reduced species level data to major phyla and conducted ANOVA analyses to identify effects to the benthic community from combined sewer overflows (Word et al. 1984). Ferraro and Cole (1992) examined the taxonomic level sufficient for assessing moderate impacts to benthic communities and concluded that taxonomic identifications to the family level or higher were sufficient.

The history behind the reference value approach can be traced to work conducted by the Southern California Coastal Water Research Project (SCCWRP). In 1977, SCCWRP conducted a survey along the 60 meter isobath from Pt. Conception to the U.S. Mexico border (Word and Mearns 1979). The goal of the survey was to identify possible reference areas to compare with conditions at existing municipal wastewater discharge sites and to define the apparent normal variation in the chemistry and biology of the mainland shelf of southern California. Samples were collected at one water depth to minimize variability in benthic community structure resulting from different sediment grain sizes and water depths. Stations were established every 10 kilometers, except in areas surrounding southern California's municipal wastewater outfalls. In these areas stations were clustered, both up-current and down-current of the outfall pipe. Stations were sampled for benthic infauna, demersal fish and invertebrates, heavy metals and selected volatile/semivolatile organic compounds. Biological and chemical data from stations that exhibited chemical contamination were removed from the data set and reference (control) values were calculated using the remaining data. Reference values for all measured parameters were compared to data from contaminated stations when apparent differences in those parameters were noted.

In Puget Sound the same basic approach was used by the University of Washington's Roosevelt Environmental Laboratory to characterize the benthic infaunal communities in the central basin of Puget Sound (Word et al. 1984a). Data collected as part of the Municipality of Metropolitan Seattle's (METRO) Toxicant Pretreatment Planning (TPPS) and Seahurst Baseline Studies (SBS) were analyzed and the mean, standard deviation and coefficient of variation were calculated for each major taxa group within five water depth categories. In both of these studies, stations were placed along multiple transect lines from the coarse- grained, shallow-water environments on the east side of the central basin to the fined-grained deep-water environments in the middle of the central basin. The raw data were plotted and depressions in taxa richness and abundance were identified as stations with values less than one-half the mean for that water depth. Enhancements

were considered to be stations with values 1.5 times the mean for that water depth. This analysis, which did not take potential chemical contamination into consideration, successfully identified stations where the benthic infauna were considered to be impacted by anthropogenic activity as identified by the Elliott Bay Action Program (Tetra Tech 1988).

The same UW laboratory conducted a baseline survey in Elliott Bay in support of METRO for the placement of the Renton Treatment Plant wastewater outfall (Word et al. 1984b). The goal of the survey was to identify potential depositional areas in Elliott Bay where the increased deposition of organic material from a new outfall could potentially cause depressions in benthic communities. In an analysis similar to that done for the TPPS and SBS surveys, stations were grouped by water depth because grain size typically varies by water depth, and the mean and various measures of variability were calculated for the major benthic infaunal taxa groups. In this instance, stations were considered depressed if the abundance and/or taxa richness were below the 1.96 standard normal deviate (1.96 times the standard deviation). The benthic infauna data were plotted and areas where depressed infauna communities were found were noted in relation to oceanographic models showing the predicted extent and direction of movement of the outfall plume.

In the Puget Sound Environmental Atlas, primary and secondary areas of concern for benthic infauna in Puget Sound were based on depressions and enhancements in major taxa richness and abundance (Evans-Hamilton 1987). The approach used in the Atlas was the precursor to the reference value approach developed here. Chemical data were screened and potential reference stations were identified based on the absence of chemical contaminants. Stations that passed the chemical screen were sorted into categories based on percent fines (combined percent silt and clay) and water depth. Stations that did not pass the chemical screen (i.e., chemically contaminated non-reference stations) were similarly sorted. Mean taxa richness and abundance were calculated for both sets of data, and benthic infauna data from chemically contaminated stations were compared to that from the chemically uncontaminated (i.e., reference) stations. Chemically contaminated stations were considered to be primary areas of concern if major taxa abundance was less than or equal to 20 percent of the major taxa abundance reference value. Using this approach the Atlas identified stations in Puget Sound where the benthic infauna were impacted due to organic or chemical contamination as identified by the Elliott Bay Action Program (Tetra Tech 1988).

#### 1.2 PROGRAM OVERVIEW

The reference value project began in 1993 as an outgrowth of the recommendations from the National Benthic Experts Workshop (PTI 1993). The project was set up in two phases with several tasks in each phase. Each task is briefly described below.

#### 1.2.1 Phase I

In Task 1, the available chemical and biological data sets from Puget Sound were compiled and spreadsheets of benthic indices and habitat data for each station were developed.

Lists of stations that represented chemically contaminated and chemically uncontaminated areas of Puget Sound were developed in Task 2. These lists were then used to divide the spreadsheet containing the benthic values into a matrix of potentially impacted stations and a matrix of potentially unimpacted stations.

The objective of Task 3 was to select subtidal habitat categories for Puget Sound that reflected natural changes in benthic community composition at recognizable water depths and sediment grain sizes. The work was carried out by Roy F. Weston, Inc. (Seattle, WA) under the direction of Ms. Nancy Musgrove.

Phase I concluded with a status report describing the habitat categories, the number of samples within each habitat category, and a listing of all benthic endpoints by survey.

#### 1.2.2 Phase II

The objectives of Phase II were to develop, assess, and recommend benthic infaunal reference area performance standards for the four grain size categories of the 150 foot water depth habitat category (i.e., Tables 3 & 4 in the *Status Report: Benthic Infauna Reference Value Project*). The following benthic indices were evaluated for their sensitivity in identifying adverse benthic effects within each habitat category: total richness, major taxa richness, total abundance, major taxa abundance, Shannon-Wiener Diversity (H'), Swartz's Dominance Index (SDI), and the Infaunal Trophic Index (ITI). These objectives were met by excluding outlier samples and then conducting a variety of statistical tests to examine variability within habitat categories, differences among habitat categories, and differences between chemically contaminated and reference habitat categories. Phase II concluded by prioritizing benthic endpoints for use based on the application of a scoring system.

#### 1.3 REPORT ORGANIZATION

The remainder of this report describes the methods and results for each of the tasks undertaken during Phase I and Phase II. Section 2.0 contains a description of the data compilation process. Section 3.0 describes the steps taken to determine whether a station was chemically impacted. Section 4.0 describes the process taken to determine habitat categories. Section 5.0 describes the development of the benthic endpoint reference ranges. Section 6.0 discusses statistical testing of the reference values. Section 7.0 discusses the prioritization of benthic endpoints as reference endpoints along with a description of the numerical scoring process that led to the final recommendations. Lastly, Section 8.0 discusses the recommendations for use of the benthic endpoint reference ranges.

#### 2.0 DATA COMPILATION

The first step in the reference value project was to compile available chemical and biological data and develop spreadsheets of benthic indices and habitat data for each station. The initial work plan called for only using data sets that contained synoptic collections of benthic infauna and sediment chemistry. A review of the Puget Sound literature showed that many surveys collected only chemical data. Other surveys collected samples for benthic infauna analysis in addition to chemical and perhaps toxicity data, but the benthic samples were not processed generally due to cost. All participants in the project agreed that valuable data that could be used to help define the difference between chemically contaminated and uncontaminated stations would be lost if only stations with synoptic data were examined. It was decided that all of the chemical data that met the following two criteria would be used:

- The chemical data were from marine subtidal stations.
- The chemical data passed a QA1 level of data validation (as defined by Ecology).

Using these criteria, 76 surveys were identified (Appendix A), of which 22 generated benthic infauna data.

The two largest Puget Sound databases were obtained and installed at SEA. The first was the SEDQUAL Data Management System (PTI 1989) which contained some benthic infauna data and a great deal of sediment chemistry data. The second was the Puget Sound Ambient Monitoring Program (PSAMP) Database System (PSAMP 1989) containing the sediment chemistry and benthic infauna data for the marine sediment monitoring task of the PSAMP from 1989 through 1992.

#### 2.1 CHEMICAL DATA

In addition to data in the SEDQUAL and PSAMP databases, chemical data from the Seahurst Baseline Study were compiled. A spreadsheet was developed that included data for chemicals found in the Sediment Management Standards (conventionals, metals, and organics) as well as station positions and water depths.

In the course of data compilation and preparation of spreadsheets, numerous data gaps (missing fields) were noted in the SEDQUAL system and an extensive effort was made to fill these gaps. The following activities were required to make the spreadsheet complete.

Missing data [water depth, total organic carbon (TOC), station position coordinates] from some SEDQUAL records were obtained and entered into spreadsheets. Both location and depth data were missing for 90 stations, and depth data were missing for an additional 231 stations. In addition, 52 stations had no location information and 445 more stations had "0" for recorded depth. Missing data were found for many of the surveys, but many station coordinates remain lacking.

- Organics data for the Duwamish Head Baseline Study were converted from wet weight to dry weight values.
- TOC data for the TPPS survey were manually loaded as was all of the SBS survey chemistry data. Adding Seahurst chemistry data was considered essential because of the large number of benthic stations sampled.
- In a number of surveys (i.e., Alki Outfall Study, Duwamish Head 1984 Survey, and the TPPS survey), the labels used to represent stations differed between the SEDQUAL database and the original reports. These discrepancies were resolved by SEA and Ecology.
- Finally, when a concentration of "0 U" was found in the NOAA data it was eliminated because a detection limit of zero is not achievable. Similarly, records with a "0.001 U" for neutral organics exclusive of chlorinated pesticides were eliminated. Detection limits of 0.001 ug/kg were considered unreasonable when the methods used do not allow such low detection limits and similar chemicals in the same sample had detection limits of 1-10 ug/kg.

#### 2.2 BIOLOGICAL DATA

Biological data were obtained from the PSAMP and, to a lesser extent, the SEDQUAL databases. In addition, data were entered manually and via conversion programs from other sources. For example, Mr. Tom Gries and Mr. Tuan Vu of Ecology's Environmental Review/Sediment Management Section entered data from the Alki Outfall Study (METRO 1983) and the Puget Sound Dredge Disposal Analysis (PSDDA) 1990 disposal site monitoring program (SAIC 1990). Ms. Nancy Musgrove and staff at Roy F. Weston, Inc. converted digital files for the Seahurst Baseline Study into PSAMP format. The Municipality of Metropolitan Seattle provided SEA with TPPS data in electronic format.

Biological data from 22 surveys were compiled into spreadsheets. Species level data from 17 of these surveys were entered into the PSAMP database for calculation of benthic endpoints (e.g., diversity). Species level data from the remaining five surveys were not available, however, some benthic endpoints were obtained from original reports and entered into the spreadsheet. The spreadsheet is provided as Appendix B.

The biological data presented in Appendix B were from surveys which used two different sampler sizes. The majority of the data (98 percent) were collected using a  $0.1 \text{m}^2$  modified van Veen sampler. The Commencement Bay RI data (SURVEY = CBMSQS) were collected using a  $0.06 \text{m}^2$  modified van Veen and the PSDDA monitoring data were collected using a  $0.06 \text{m}^2$  Gray-O'Hara box core. Because the amount of data collected using the  $0.06 \text{m}^2$  sampler was very small, it was decided after a discussion with Ecology to use only data collected using the  $0.1 \text{m}^2$  modified van Veen sampler. This eliminated the need to standardize data to the same surface area.

#### 3.0 DETERMINE CHEMICALLY IMPACTED STATIONS

The Washington State Marine Sediment Quality Standards (SQS, Table I) were used to separate chemically contaminated stations from chemically uncontaminated stations. Stations with one or more chemicals that exceeded an SQS were considered contaminated. In the event that the only chemical value to exceed an SQS was an undetected value, the station was still considered contaminated.

A second chemical screening approach was also considered. It involved calculating the 90th percentile values for each chemical in the SQS using only those stations with no SQS exceedances. Undetected values were manipulated prior to calculating the 90th percentile values using methods presented in Tetra Tech (1990). This approach was subsequently dropped because there were not enough stations/samples that were less than the 90th percentile within each habitat category to allow for statistical testing.

Lists of stations that represented chemically contaminated and chemically uncontaminated areas of Puget Sound were generated and compiled in a spreadsheet. These lists were then used to divide the spreadsheet containing the benthic endpoint values into a matrix of stations with potential biological impacts and a matrix of stations where biological impacts were thought to be lacking (i.e., unimpacted stations).

A number of issues arose that required clarification before stations could be designated as chemically contaminated or uncontaminated. The issues and their resolutions are presented below.

• There were a number of stations with neutral organics data which were missing TOC values. Therefore normalization of the organics data was not possible.

Two approaches were taken to address this problem. The first was to derive a regression relationship between TOC and total volatile solids (TVS) which previous studies have shown to covary. The Seattle District Army Corps of Engineers' DAIS database contained synoptic TOC and TVS data collected as part of the PSDDA program. The Dredged Material Management Office ran the regression and provided SEA with the slope and coefficients so TOC could be approximated using the TVS data. The following regression relationship was used: TOC = 0.544 x TVS - 0.695, R=0.73. For surveys that did not analyze TVS, the regression relationship between TOC and percent fines, developed as part of the 1989 PSAMP sediment task survey (Tetra Tech 1990), was used to approximate TOC. The following regression relationship was used: TOC = 0.0199 x % FINES + 0.11, R = 0.87. Stations where TOC was approximated using either of the above approaches were marked in the spreadsheet with a VS for TVS or an FN for percent fines.

Characterizing a station as chemically uncontaminated when organics data were lacking was questioned because there were a number of surveys with stations that had short chemical lists. For example, many stations in an early Battelle reconnaissance survey (Battelle 1985) had data for three metals only.

This issue was discussed at a meeting with Ecology on September 13, 1993. It was decided that although only three metals were analyzed for, the data passed project QA requirements and should be used as part of the chemical screening.

• The approach to be used for undetected concentrations of chlorinated benzenes, hexachlorobutadiene, benzyl alcohol, 2,4-dimethylphenol, and pentachlorophenol when detection limits were high was questioned. In most cases, the high detection limits were due to interferences caused by other chemicals, primarily polycyclic aromatic hydrocarbons (PAH). The chemicals in question exhibited low detection frequencies, and the median concentrations in the chemistry data spreadsheets were less than the average detection limit.

This issue was also discussed with Ecology at the September 13, 1993 meeting. The consensus was to be consistent and use the same approach for all chemicals. Raleigh Farlow (DMD, Inc.) indicated that in most cases where the above chemicals were present, the concentration of one of the chemicals causing the interference (i.e., a PAH) would most likely cause that sample to be considered contaminated. Therefore the detection limit was used to represent the chemical concentration.

• It was noted that the SQS of 670 ug/kg for 4-methylphenol is less than the Performance Standard for Reference Areas of 1,400 ug/kg.

Ecology acknowledged this fact at the September 13, 1993 meeting.

Initial compilation of chemical data from SEDQUAL, PSAMP and other data sources resulted in 1,980 stations available for use in identifying contaminated stations. A closer examination of the data found that 327 of the stations from the SEDQUAL database contained no chemistry data (SVPS only) or had TOC data only. The remaining 1,657 stations were screened against SQS values to identify chemically contaminated stations, of which 416 were determined to be contaminated because at least one chemical was found at a concentration above the SQS. Summary statistics for data from stations with concentrations below the SQS are presented in Table 1.

Table 1. Summary statistics for SQS chemicals. Concentrations are in mg/kg dry wt for metals and mg/kg organic carbon for nonionic organic compounds.

| CODMICAL DADAMENDO          |             | 808      | 2   | MARM  | SD      | MINIMOM | MAXIMUM  | MEDIAN   | BOSILE |
|-----------------------------|-------------|----------|-----|-------|---------|---------|----------|----------|--------|
|                             |             | y<br>Y   |     |       |         |         |          |          |        |
| TOC (%)                     | -           |          | 749 | 1.58  | 1.46    | 0.05    | 15.1     | 1.39     |        |
| Aq                          |             | 6.1      | 762 | 0.39  | 0.61    | 0.005   | Ø        | 0.2      | 0.91   |
| AS                          |             | 57       | 728 | 9.72  | 7.47    | 0.05    | 46       | 8.1      | 18     |
| Cd                          | <del></del> | 5.1      | 731 | 0.54  | 0.73    | 0.007   | <b>ب</b> | 0.26     | 1.35   |
| Cr                          |             | 260      | 590 | 44.28 | 35.71   | 1.5     | 233      | 33       | 87.7   |
| Cu                          |             | 390      | 758 | 38.05 | 35.7    | 0.03    | 311      | 30.95    | 76.2   |
| Нg                          |             | 0.41     | 745 | 0.11  | 0.09    | 0.0035  | 0.41     | 0.082    | 0.247  |
| qa.                         |             | 450      | 841 | 27.53 | 37.04   | 0.05    | 310      | 16.8     | 55.5   |
| uz                          |             | 410      | 757 | 82.71 | 54.5    | -       | 395      | 11       | 147    |
| ГРАН                        | *           | 370      | 576 | 17.08 | . 26.57 | 0.1     | 295,39   | 6.005    | 52.34  |
| Naphthalene                 | *           | 66       | 529 | 4.28  | 80.8    | 0.09    | 85.11    | 1.33     | 11.76  |
| Acenaphthene                | *           | 16       | 208 | 1.53  | 1.88    | 0.01    | 14.38    | 6.0      | 3,33   |
| Acenaphthylene              | *           | 99       | 481 | 1.5   | 1.92    | 0.01    | 23.05    | 6.0      | 3,33   |
| Fluorene                    | *           | 23       | 544 | 1.75  | 2.24    | 0.01    | 21.28    | H        | 3.96   |
| Phenanthrene                | *           | 100      | 570 | 7.41  | 10.64   | 0.05    | 95.74    | 3.29     | 19.14  |
| Anthracene .                | *           | 220      | 562 | 3.82  | 8.43    | 0.05    | 149.73   | 1.44     | 9.24   |
| 2-Methylnaphthalene         | *           | 38       | 464 | 2.25  | 3.52    | 0.06    | 33,33    | 1.02     | ιΩ     |
| нран                        | *           | 096      | 597 | 58.43 | 82.2    | 0.05    | 680.14   | 25.13    | 167.4  |
| Fluoranthene                | *           | 1.60     | 583 | 12.49 | 18.75   | 0.05    | 132.74   | 4.73     | 36,11  |
| Pyrene                      | *           | 1000     | 585 | 12.79 | 19.84   | 0.05    | 166.67   | 4.78     | 36.1   |
| Benzo (a) anthracene        | *           | 110      | 559 | 5.26  | 7.33    | 0.05    | 67.38    | 2.29     | 13.53  |
| Chrysene                    | *           | 110      | 564 | 8,15  | 11.93   | 0.05    | 106.34   | 3.245    | 23.24  |
| Benzo(b+j+k)fluoranthenes   | *           | 230      | 476 | 11.79 | 17.1    | 0.25    | 156.03   | 4 48     | 30.61  |
| Benzo(a)pyrene              | *           | 90       | 566 | 5.57  | 9.6     | 0.05    | 85.11    | 2.38     | 14.11  |
| Indeno (123-cd) pyrene      | *           | 34       | 488 | 3.94  | 4.64    | 0.07    | 27.27    | 2.09     | 10     |
| Dibenzo (ah) anthracene     | *           | 12       | 517 | 1.98  | 2.2     | 10.0    | 11.96    | 1.09     | 4.67   |
| Benzo(ghi)perylene          | *           | 31       | 448 | 3.82  | 4.07    | 0.04    | 30.67    | 2.12     | 9.29   |
| 1,2-Dichlorobenzene         | *           | 2.3      | 479 | 0.01  | 0.15    | 0       | 1.99     | 0        | 0      |
| 1,4-Dichlorobenzene         | *           | 3.1      | 483 | 0.08  | 0.35    | 0       | 3.01     | 0        | 0      |
| 1,2,4-Trichlorobenzene      | *           | 0.81     | 467 | 0,    | 0.03    | 0       | 0.56     | 0        | 0      |
| Hexachlorobenzene           | *           | 0.38     | 565 | 0     | 0.03    | 0       | 0.34     | 0        | 0      |
| Hexachlorobutadiene         | *           | ტ.<br>ტ. | 488 | 0.03  | 0.25    | 0       | 3.38     | 0        | 0      |
| total PCBs                  | *           | 12       | 554 | 2.22  | 2.29    | 0       | 11.85    | 1.34     | 5.6    |
| Dibenzofuran                | *           | 15       | 376 | 1.77  | 2.24    | 90.0    | 15.07    | 0.99     | 3.74   |
| N-Nitrosodiphenylamine      | *           | <b>H</b> | 396 | 90.0  | 5.5     | 0       | 6.25     | 0        | 0      |
| Dimethylphthalate           | *           | 53       | 458 | 0.3   | 1.82    | 0       | 21.92    | 0        | 0.01   |
| Diethylphthalate            | *           | 61       | 415 | 1.26  | 1.85    | 0.02    | 22       | 0.71     | 2.67   |
| Di-n-butylphthalate         | *           | 220      | 408 | 6.5   | 22.13   | 0.02    | 217.14   | <b>H</b> | 10.85  |
| Butylbenzylphthalate        | *           | 4.9      | 396 | 1.16  | 66.0    | 0.01    | 4.88     | 0.81     | 2.59   |
| bis (2-Ethylhexyl)phthalate | *           | 47       | 435 | 5.57  | 8.19    | 0.02    | 47.03    | 2.41     | 15.38  |
| Di-n-octylphthalate         | *           | . 58     | 424 | 0:27  | 2.99    | 0       | 57.53    | 0        | 0      |
| Benzoic acid                |             | 650      | 407 | 59.9  | 64.18   | 0.5     | 460      | 44       | 100    |
| Benzyl alcohol              |             | 57       | 411 | 23.77 | 16.04   | ml      | 57       | 21       | 90     |
| Phenol                      |             | 420      | 487 | 34.14 | 76.87   | 0       | 420      | 0        | 130    |
| 2-Methylphenol              |             | 63       | 397 | 1.08  | 5.47    | 0       | 63       | 0        | 0      |
| 4-Methylphenol              |             | 670      | 433 | 25.12 | 84.6    | 0       | 670      | 0        | 56     |
| 2,4-Dimethylphenol          |             | 29       | 433 | 0.27  | 2,3     | 0       | 29       | 0        | 0      |
| <u>Pentachlorophenol</u>    |             | 360      | 477 | 1.62  | 10.04   | 0       | 140      | 0        | 0      |

\* Indicates that the chemical has been normalized to TOC-ppm

#### 4.0 DETERMINE HABITAT CATEGORIES

Four physical factors primarily influence benthic infauna community structure: sediment grain size, salinity, total organic carbon (TOC), and water depth (Pearson and Rosenberg 1978). Of these four factors, the two that appear to most effect the structure and function of Puget Sound subtidal communities are sediment grain size and water depth. TOC, while also important, strongly covaries with grain size. Salinity plays a substantial role in regulating shallow benthic communities in areas near river mouths, however, salinity effects are minimal or absent at depth. The development of benthic reference values must therefore account for the ranges of sediment grain size and water depth found in the Sound.

Habitat categories were defined within which benthic communities would be expected to be relatively similar. Examples of habitat categories include shallow-water coarse sediment and shallow-water fine sediment. The Seahurst Baseline Study was used to develop the categories because of the large number of stations sampled in a variety of clean habitats and because stations were located on transect lines from the east side of the Puget Sound central basin to the west side. Each transect had stations located at water depths of 50', 75', 200', 400', and mid basin (~600') on the east and west sides of the basin. This allowed a direct comparison of differences in benthic communities due to grain size and water depth, which are believed to be the two major influences on benthic community structure, with the goal of determining whether benthic community composition could be appropriately defined in terms of specific habitat categories based on water depths and sediment grain sizes [represented as percent fines (silt plus clay)]. Other benthic surveys which could have been used to derive habitat categories did not sample the range of habitat categories contained in the Seahurst Study. The work was carried out by Roy F. Weston, Inc. under the direction of Ms. Nancy Musgrove.

#### 4.1 METHODS

#### 4.1.1 Database Management

The Seahurst Baseline Study abundance data were retrieved from compressed ASCII files and loaded into a data management system at Weston. Data files consisted of species and abundance records for six quarterly sampling periods between June 1982 and October 1983. Water column species and larval invertebrates entrained by the grab sampler were deleted from all surveys. Physical habitat data (grain size and water depth) were loaded into the database and linked to the associated abundance records. Custom programs were written to cross reference taxonomic designations to NODC codes from a dictionary provided by PTI Environmental Services (Bellevue, WA). Quality control checks revealed approximately 300 names that did not have NODC code assignments. New codes were assigned using the NODC Taxonomic Code document. Provisional species codes were assigned for those taxa with no current NODC listing and all new codes were added to the database dictionary and linked to the data records. New codes were flagged in the dictionary for appending to the PSAMP database. All data files were formatted for delivery as specified in the PSAMP Data Transfer Formats document. Creation of survey, station, and sample files required entry of missing station position coordinates, sampling

date, sampling time, and additional attribute fields required by PSAMP. Some sample information had to be estimated because of missing data (e.g., some water depths were determined based on the station designation rather than actual measured depth).

Custom programs were written for transfer of the data to statistical programs. Internal data products included summaries of major taxa abundances, species richness, total abundance, Infaunal Trophic Index (ITI), species abundance, and dominant taxa for each station and replicate.

#### 4.1.2 Data Analysis

Weston performed correlation, regression, and multivariate analyses of the physical and biological variables to assist in habitat classification and evaluation of habitat effects on benthic community structure. Analyses were performed for each season or survey. File size determined how data were combined for analyses. If the file size was small, then annual data for a given season were combined; whereas if the file size was large, then annual data for a season were analyzed separately. The following data sets were examined separately using multivariate techniques:

September and October 1982/1983 combined November and December 1982 June and July 1982 February and March 1983 June and July 1983

Initial examination of the data included a graphical analysis of the distribution of abundance data, which resulted in the decision to log-transform [i.e., log(x+1)] all abundance data. Frequency distributions by grain size and depth were also plotted to assist in subsequent statistical analyses.

Species abundances were used in hierarchical cluster and principal component analyses to identify habitat characteristics. Correlation and regression analyses were conducted between habitat characteristics [grain size (expressed as percent fines) and depth] and community indices [major taxa abundances (polychaetes, molluscs, crustaceans), total abundance and richness] to further examine habitat effects. A step-wise regression was used to refine the apparent effects of grain size and depth. Analysis of variance techniques were used to examine the significance of the regression relationships.

#### 4.2 RESULTS

Interpretation of the results of the statistical and multivariate analyses were carried out by examining the raw analytical results. Interpretation of the cluster dendograms, regression and principle component analyses were carried out jointly by SEA and Weston.

#### 4.2.1 Definition of Habitat Categories

Habitat categories were defined using the results of hierarchical cluster analysis. Four major groups and two outlier stations were identified. Major group I showed high similarity among shallow-water benthic communities in sandy sediments, and major group II displayed high similarity among deep-water communities in silty sediments. However, for stations located in intermediate depths (200 - 500 ft) there was no clear relationship among water depth, grain size and benthic community structure. Within this depth range, two groups of stations were identified with most stations being at water depths between 185 and 400 feet, although each group contained some shallower and deeper stations. These two groups were identified in the dendogram as groups III and IV. The stations in group III were composed of silty sand with an average water depth of 453 feet, while group IV stations consisted of sand with an average water depth of 186 feet.

The dendogram produced from the cluster analysis showed that the benthic communities were segregating by water depth as a surrogate for grain size (Figure 1). This was confirmed by the step-wise regression analysis. The physical characteristics (as measured by percent fines and TOC) of each cluster group is shown in Table 2 and while grain size and water depth were highly correlated in the Seahurst data set, the results of the step-wise regression analysis pointed to grain size as the main factor driving changes in community composition rather than water depth. This conclusion was also reached by Tetra Tech (1990) following interpretation of the 1989 PSAMP data.

Table 2. Physical characteristics of each major cluster group as defined by the hierarchical cluster analysis.

| Cluster Group | Number of<br>Samples | Water | Depth           | Percen            | t Fines | Percen | it TOC |
|---------------|----------------------|-------|-----------------|-------------------|---------|--------|--------|
|               |                      | Mean  | CV <sup>1</sup> | Mean              | CV      | Mean   | CV     |
| Outlier       | 1                    | 23    | NA              | SILT <sup>2</sup> | NA      | 1.9    | NA     |
| Outlier       | 1                    | 50    | NA              | 2.3               | NA.     | 0.2    | NA     |
| I             | 44                   | 71.6  | 52.0            | 4.1               | 70.9    | 0.3    | 95.1   |
| II            | 17                   | 603.1 | 25.2            | 91.3              | 5.1     | 1.9    | 20.9   |
| III           | 21                   | 453.8 | 35.7            | 43.7              | 43.9    | 0.8    | 49.7   |
| IV            | 9                    | 186.1 | 22.4            | 9.6               | 20.7    | 0.3    | 37.3   |

<sup>&</sup>lt;sup>1</sup> CV = Coefficient of Variation

<sup>&</sup>lt;sup>2</sup> Percent fines numerical data not available



Figure 1. Dendogram resulting from Bray-Curtis classification analysis of data from the Seahurst Baseline Study. Due to matrix size limitations only the top 10 most abundant species in each sample were used. Roman numerals - Major cluster group.

 Based on the results provided by Weston and additional data interpretation by Weston and SEA, the following 16 habitat categories were identified:

| <150 ft and <20 percent fines      | 300-500 ft and <20 percent fines   |
|------------------------------------|------------------------------------|
| <150 ft and 20-50 percent fines    | 300-500 ft and 20-50 percent fines |
| <150 ft and 50-80 percent fines    | 300-500 ft and 50-80 percent fines |
| <150 ft and >80 percent fines      | 300-500 ft and >80 percent fines   |
| 150-300 ft and <20 percent fines   | >500 ft and <20 percent fines      |
| 150-300 ft and 20-50 percent fines | >500 ft and 20-50 percent fines    |
| 150-300 ft and 50-80 percent fines | >500 ft and 50-80 percent fines    |
| 150-300 ft and >80 percent fines   | >500 ft and >80 percent fines      |

#### 4.2.2 Development of Final Benthic Infauna Data Matrices

The benthic data listed in Appendix B were divided into two spreadsheets. The first contained 722 samples where the concentration of one or more chemicals was above the SQS; the second contained 801 samples with chemical concentrations below the SQS. An additional 188 samples were unusable because they had no synoptic chemical measurements.

The benthic infauna samples from stations with no SQS exceedances were divided into the 16 habitat categories. The number of samples in each habitat category shows the sampling bias in Puget Sound benthic infauna studies (Table 3). Most of the studies were conducted in urban embayments in shallow water or in relatively clean non-urban areas (i.e., PSAMP) in shallow water. Because the next step in the derivation of reference value ranges required statistical testing, a minimum of 11 samples was required for each habitat category. Habitat categories with 10 or fewer samples were not evaluated further. Such categories included two of the four categories in both the 150 to 300 ft. and 300 to 500 ft. depth ranges. In the greater than 500 ft. depth range, one of the four categories contained an insufficient number of samples for testing. This category consisted of coarse grained sediment and deep water coarse grained sediments are rare in nature.

There were an adequate number of samples in the less than 150 ft. depth range to derive reference values with statistical confidence. Since most of the regulatory programs in Puget Sound focus on shallow water depths, limiting the Phase II analyses to the four habitat categories that covered the 0-150 ft. water depth would still provide useful reference value information to several regulatory programs.

Table 3. Number of samples with no SQS exceedances in each habitat category.

| Water Depth | Percent Fines |             |             |           |  |  |  |
|-------------|---------------|-------------|-------------|-----------|--|--|--|
| (ft)        | <20%Fines     | 20-50%Fines | 50 80%Fines | >80%Fines |  |  |  |
| <150        | 214           | 83          | 104         | 118       |  |  |  |
| 150 - 300   | 6             | · 2         | 23          | 13        |  |  |  |
| 300 - 500   | 3             | 29          | . 1         | 28        |  |  |  |
| >500        | 8             | 21          | 36.         | 112       |  |  |  |

#### 5.0 DEVELOPMENT OF REFERENCE VALUE RANGES

A full suite of benthic infauna endpoints (including calculated indices) were evaluated to identify preferred endpoints and indices and their associated numeric ranges. These endpoints were determined for habitat categories only in the 0-150 ft. water depth range. The current Sediment Quality Standards use both a 50 percent reduction in the mean abundance of one of the major taxa groups (polychaetes, crustaceans and molluscs) relative to a reference station and statistical significance between the reference and test station to differentiate between an impacted and unimpacted station. For the development of reference values for Puget Sound, additional endpoints were studied based on recommendations from the experts panel at the National Benthic Experts Workshop (PTI 1993). The panel made five recommendations, two of which were directly related to the reference value project. One was the identification of reference conditions for benthic invertebrates in Puget Sound; and the second was the use of more than one endpoint to assess adverse benthic effects. In response to the second recommendation, this project evaluated 16 benthic infauna endpoints. Some of these endpoints require taxonomic identification to the lowest possible level while others allow taxonomic identification at a higher level.

## 5.1 BENTHIC INDICES SELECTED FOR EVALUATION AS POTENTIAL REFERENCE ENDPOINTS

The benthic infauna endpoints selected for inclusion in the project were total taxa richness, major taxa richness (i.e., polychaetes, crustaceans, amphipods, molluscs, echinoderms, and miscellaneous phyla), total abundance, major taxa abundance (polychaetes, crustaceans, amphipods, molluscs, echinoderms, and miscellaneous phyla), Shannon-Wiener diversity (Pielou 1966), Pielou's evenness (J', Pielou 1966), Swartz's dominance index (SDI, Swartz et al. 1985), and the infaunal trophic index (ITI, Word 1982). Each is briefly described below.

#### Total taxa richness

Total taxa richness is defined as the total number of species or taxa identified from a sample.

#### Major taxa richness

Major taxa richness is defined as the number of species or taxa within each major phyla identified from a sample.

#### Total abundance

The total abundance is defined as the number of individual organisms found in a sample.

#### Major taxa abundance

Major taxa abundance is defined as the number of individual organisms within each major phyla found in a sample.

#### Shannon-Wiener diversity (H')

The Shannon-Wiener diversity index is used world-wide to examine the relationship between taxa richness and abundance (Shannon and Weaver 1964). It is normally distributed, relatively independent of sample size, and statistically testable (Tetra Tech 1990). H' scores are dependent primarily on the distribution of individuals among species and secondarily on taxa richness. In habitats with no pollution or environmental stress, the H' values theoretically should be large; conversely, where pollution is present or where environmental stress is high, the H' value should be low. However, since H' is dependent on the equitability of individuals among species, it may actually increase in conditions of slight to moderate pollution (stress), thus giving false positives.

#### Pielou's eveness (J')

Pielou's eveness is expressed as the observed diversity of a sample as a proportion of the maximum possible diversity (Pielou 1966, Zap 1984). Eveness values close to 1.0 indicate a homogeneously distributed population with little or no dominance.

#### Swartz's dominance index (SDI)

Swartz's dominance index is defined as the minimum number of taxa that makes up 75 percent of the sample abundance (Swartz et al. 1985).

#### Infaunal Trophic Index (ITI)

The infaunal trophic index is a functional measure of benthic community structure based on feeding strategy. It ranges from 0 to 100 with low values indicating a community dominated by surface or subsurface detrital/deposit feeders and high numbers indicating a community dominated by suspension feeders.

Ranges for each of these endpoints that represent conditions at uncontaminated (i.e., reference) stations are developed via the following analyses. In the course of the discussion the mean, standard deviation, and coefficient of variation around the mean reference value are discussed because of their importance in statistical evaluations. However reference values will be applied in the form of ranges by future investigators. Suggestions for the application of the ranges are found in Section 8.

#### 5.2 IDENTIFICATION OF OUTLIER DATA POINTS

Outlier data points were identified through a two step process. First, a hierarchical cluster analysis was performed on the major taxa abundance measures within each habitat category, and outliers were identified and removed from the data set. Second, any sample with a value that was greater or less than 1.96 standard normal deviates from the mean of the remaining data was considered an outlier and also removed.

#### 5.2.1 Cluster Analysis

A cluster analysis was conducted using Euclidean distance with single linkage to identify outlier stations within each habitat category (Appendix C, Tables C-1 to C-4). Samples that were considered outliers were identified, using best professional judgement and by the amount of separation of the main cluster groups. The cluster analyses showed separations between the main cluster groups and outlier stations at a Euclidean distance of between 75 and 100. Using a distance of 100 as the cutoff, outlier stations were identified and removed from the data set. A total of 41 samples were removed; 14 were from the less than 20 percent fines category, 8 were from the 20 - 50 percent fines category, 11 were from the 50 - 80 percent fines category and 8 were from the 80 - 100 percent fines category (Table 4).

#### 5.2.2 1.96 Standard Normal Deviate

To define the potential reference value ranges, the mean, standard deviation, and 1.96 standard normal deviate (Sokal and Rolfe 1981) were calculated for each benthic infaunal endpoint within each habitat category. The 1.96 standard normal deviate can also be defined as two standard deviations from a mean value. For each habitat category and each endpoint, data were plotted and any sample that exceeded the plus or minus 1.96 standard normal deviate value was considered an outlier and eliminated from further consideration in the calculation of the reference range for that endpoint (Appendix D, Tables D1-D4). This screening was applied to each endpoint in each habitat category. Elimination of a sample from one endpoint calculation did not influence the use of that same sample in another endpoint calculation.

The result of this exercise was the creation of a data set that minimized extremes of variability, yet still incorporated the natural variability in uncontaminated areas of Puget Sound.

#### 5.3 CHARACTERISTICS OF HABITAT CATEGORIES

Following removal of outlier stations, the characteristics of each benthic infaunal endpoint in each habitat category were examined. The following summary statistics were calculated to characterize the variability in natural, uncontaminated (reference) habitats throughout Puget Sound (Appendix E).

Number of samples Coefficient of variation

MedianMinimumMeanMaximumStandard deviation (STD)RangeVarianceSkewnessStandard error of the mean (SE)Kurtosis

95 percent confidence interval (95% CI) 1.96 Standard normal deviate (2 Sigma)

Statistical analyses were conducted using the SYSTAT version 5.03 software program.

cluster analyses. Stations and samples are presented by habitat category. Table 4. Stations and samples removed from the calculation of Puget Sound reference values due to being identified as outliers in the

| 104                                             | Commencement Bay Commencement Bay Meadowdale Everett Marina Commencement Bay | 1,2,3,4,5 | 41 SR-07       | SED18903 | 1.    | S S S S S S S S S S S S S S S S S S S |
|-------------------------------------------------|------------------------------------------------------------------------------|-----------|----------------|----------|-------|---------------------------------------|
| 104                                             | Commencement Bay Commencement Bay Meadowdale Everett Marina                  | 1,2,3,4,5 | SR-07          |          | 1 1 1 | 200/0 x xxx00                         |
| 9                                               | Commencement Bay Commencement Bay Meadowdale                                 |           | }              | EVCHEM   | 5     | 80 - 100% Fines                       |
| 2                                               | Commencement Bay Commencement Bay                                            | <b></b>   | 23             | SED19203 |       |                                       |
| 2                                               | Commencement Bay                                                             | 1,2,3,4,5 | 41             | SED19103 |       |                                       |
| 00                                              |                                                                              | 1,2,3     | 41             | SED19003 |       |                                       |
| 70                                              | Eagle Harbor                                                                 | 1,3       | 30             | SED18903 | 97    | 50 - 80% Fines                        |
|                                                 | Discovery Bay                                                                | 1,2,3,4,5 | j              | SED19103 |       |                                       |
| 69                                              | Discovery Bay                                                                | 1,3,5     | jumah<br>jumah | SED18903 | 77    | 20 - 50% Fines                        |
| m.)                                             | Pilot Point (Kitsap Penn.)                                                   | 4         | 25             | SED19203 |       |                                       |
|                                                 | Mukilteo Oil Dock                                                            | 2         | 22             | SED19203 |       |                                       |
| lay)                                            | Hood Canal (Dabob Bay)                                                       | 1,2,3,4,5 | 15             | SED19103 |       |                                       |
|                                                 | North Hood Canal                                                             | 2,4,5     | 13             | SED19103 |       |                                       |
|                                                 | North Hood Canal                                                             | 1,3,5     | 13             | SED18903 |       |                                       |
| 193                                             | Mukilteo Oil Dock                                                            | 5         | NG-06          | EVCHEM   | 207   | 0 - 20% Fines                         |
| $\left[\begin{array}{c} N^2 \end{array}\right]$ | Location                                                                     | Samples   | Station        | Survey   | Z     | Habitat Category                      |

N' -- Number of samples prior to elimination from calculation of reference values. N<sup>2</sup> -- Number of samples after elimination from calculation of reference values.

A review of the summary statistics indicated that there was a large amount of variability in the abundance and richness of the Echinodermata and the miscellaneous phyla. It is well known that echinoderms are sensitive to anthropogenic inputs (Pearson and Rosenberg 1978, Gray and Pearson 1982), however the reason for the variability in uncontaminated areas of Puget Sound is unknown. Miscellaneous phyla are also poorly understood in Puget Sound, and taxonomic expertise in the studies included in the reference value project varied greatly by survey. For these reasons these two endpoints were eliminated from further consideration.

#### 6.0 TESTING OF REFERENCE VALUE RANGES

For each endpoint and habitat category, a series of statistical tests was carried out to help determine whether benthic impacts could be identified in samples from contaminated stations relative to uncontaminated stations. Testing was carried out only between like habitat categories (e.g., contaminated 0-20 percent fines versus uncontaminated 0-20 percent fines).

#### 6.1 TESTS FOR NORMALITY

Prior to initiating statistical testing, histogram plots were constructed to determine the structure of the data and to assess whether it departed from normality (Appendix F, Tables F1-F4). Data with large departures from normality were log transformed prior to continued statistical testing.

#### 6.2 VARIABILITY WITHIN REFERENCE HABITAT CATEGORIES

Variability within habitat categories was assessed by examining the amount of variation around the mean using the coefficient of variation (CV). The CV is obtained by dividing the sample standard deviation by the sample mean and is usually expressed as a percent. Typically, the less variable the data the smaller the CV. Benthic infauna data, particularly abundance data, tends to have a high amount of variability and therefore a high CV. This variability tends to decrease with larger sample sizes; thus, the Puget Sound Estuary Program Benthic Protocols recommend that a minimum of five replicate samples be used to characterize a station.

As a general rule, variability, as measured by the CV, is greatest for the abundance endpoints, followed by the richness and calculated endpoints. The largest CVs were found in the amphipod, mollusc, and crustacean abundance endpoints (CV greater than 75 percent are shaded in Table 5), and the smallest CVs were found in the Infaunal Trophic Index endpoint (Table 5).

#### 6.3 DIFFERENCES AMONG HABITAT CATEGORIES

Differences among habitat categories were assessed by testing the following hypothesis:

H<sub>o</sub>: Benthic endpoints do not differ among habitat categories  $(\alpha = 0.05)$ 

Tests for normality and homogeneity of variances were conducted. When the data departed substantially from normality, they were transformed. ANOVAs were conducted to determine whether statistically significant differences existed among the habitat categories. The mean values and measures of variability (i.e., variance, standard deviation and standard error of the mean) for each benthic endpoint within each habitat category were calculated (Appendix E).

Table 5. Results of the ANOVA analyses on inter-habitat variability for selected benthic infauna endpoints. Shaded cells are those with a CV greater than 75 percent.

|                                |     |             |      |    | Ha           | Habitat Category <150 ft | gory < | 150 ft       |       |     |               |      |              |       |
|--------------------------------|-----|-------------|------|----|--------------|--------------------------|--------|--------------|-------|-----|---------------|------|--------------|-------|
| Benthic Endpoint               | 0   | 0-20% Fines | es   | 2( | 20-50% Fines | nes                      | \ \ \  | 50-80% Fines | nes   | 80  | 80-100% Fines | nes  | <b>ب</b> بر. | Δ,    |
|                                | z   | Mean        | CV   | z  | Mean         | CV                       | z      | Mean         | CV    | z   | Mean          | CV   | Ratio        | Value |
| Total abundance                | 184 | 491.4       | 40.0 | 69 | 494.2        | 30.9                     | 79     | 343.5        | 54.5  | 97  | 307.0         | 42.0 | 32.9         | 0.00  |
| Total Richness                 | 183 | 68.7        | 31.4 | 99 | 64.4         | 22.3                     | 81     | 51.8         | 26.7  | 66  | 32.9          | 26.7 | 102.         | 0.00  |
| Crustacean Abundance           | 180 | 120.4       | 64.6 | 89 | 103.3        | 61.7                     | 11     | 51.2         | 163.1 | 86  | 75.8          | 8 76 | 20.6         | 0.00  |
| Crustacean Richness            | 181 | 12.1        | 37.8 | 99 | 10.3         | 36.3                     | 80     | 6.9          | 45.5  | 103 | 4.9           | 36.6 | 93.6         | 0.00  |
| Amphipod Abundance             | 186 | 27.8        | 183  | 63 | 13.4         | 92.0                     | 83     | 15.0         | 103.8 | 95  | 20.5          | 70.2 | 13.8         | 0.00  |
| Amphipod Richness              | 185 | 9.9         | 46.2 | 99 | 4.8          | 57.5                     | 78     | 3.1          | 57.5  | 92  | 2.1           | 48.0 | 82.2         | 0.00  |
| Polychaete Abundance           | 178 | 197.2       | 63.3 | 29 | 224.3        | 43.6                     | 82     | 146.7        | 46.6  | 97  | 88.3          | 64.7 | 34.9         | 0.00  |
| Polychaete Richness            | 193 | 34.0        | 39.0 | 89 | 37.5         | 28.5                     | 8      | 27.9         | 28.6  | 66  | 15.7          | 40.1 | 7.67         | 0.00  |
| Mollusc Abundance              | 178 | 87.7        | 70.4 | 65 | 109.5        | 152                      | 78     | 111.2        | 1083  | 86  | 64.1          | 62.3 | 7.4          | 0.00  |
| Mollusc Richness               | 185 | 16.2        | 28.2 | 99 | 13.1         | 28.5                     | 82     | 12.9         | 37.9  | 100 | 9.3           | 36.2 | 58.5         | 0.00  |
| Shannon-Wiener Diversity (H')  | 185 | 1.340       | 17.0 | 69 | 1.314        | 16.6                     | 98     | 1.231        | 17.6  | 95  | 1.058         | 16.6 | 38.6         | 0.00  |
| Pielou's Eveness Index (J')    | 182 | 0.737       | 12.2 | 69 | 0.724        | 13.2                     | 98     | 0.739        | 13.8  | 66  | 0.70          | 15.3 | 2.1          | 0.11  |
| Infaunal Trophic Index (ITI)   | 183 | 74.4        | 0.6  | 65 | 71.6         | 7.9                      | 83     | 70.2         | 10.0  | 101 | 77.2          | 12.9 | 15.4         | 0.00  |
| Swartz's Dominance Index (SDI) | 186 | 14.2        | 52.0 | 89 | 13.8         | 39.5                     | 84     | 11.0         | 49.8  | 86  | 6'9           | 38.8 | 34.9         | 0.00  |

Results of the ANOVA analyses are also presented in the last two columns of Table 5. Statistically significant differences were seen among all benthic endpoints and all habitat categories except for Pielou's evenness measure. The strength of the F value gives a relative indication as to the number of comparisons that were statistically different and to the magnitude of their differences. Measures of species richness (i.e., total taxa) had the largest F values followed by the derived indices and abundance measures.

Multiple comparison (i.e., Bonferroni) tests were conducted to determine which habitat categories were different, following adjustment due to multiple tests. These procedures test mean values for pairwise differences, and calculate probabilities based on the number of comparisons. Three multiple comparison tests are most frequently used in environmental work; they include the Tukey-HSD, Bonferroni, and Dunnett's procedures. The optimal test to use is dependent on sample size, the number of comparisons to be made, and the type of data (Berthouex and Brown 1994). Dunnett's test is typically used to compare test data to a control or reference sample (i.e., bioassay or infauna data compared to a reference sample). The Tukey-HSD test is relatively insensitive or less powerful than Dunnett's or the Bonferroni procedure when the number of comparisons are less than 30 (SYSTAT 1992). For a large number of comparisons (i.e., > 30), the Tukey-HSD procedure is more sensitive than the others (Striplin pers. comm. 1994). The number of tests conducted in the reference value project is small (i.e. <30); for these reasons, the Bonferroni procedure was considered the most appropriate procedure for conducting multiple tests on this data set.

Six sets of multiple comparison tests were conducted using the reference value data. The objective of these tests was to determine, for each endpoint, whether the values within each habitat category differed. Tests conducted included 0-20 percent fines versus 20-50, 50-80, and 80-100 percent fines; 20-50 percent fines versus 50-80 and 80-100 percent fines; and 50-80 percent fines versus 80-100 percent fines (Table 6). In each of the six sets of comparisons, at least four and at most ten endpoints from adjacent habitat categories (e.g., 0-20 percent fines and 20-50 percent fines) were not significantly different (Table 6). This is not surprising because benthic invertebrate communities exist in a continuous gradient controlled by physical factors and biological interactions. The habitat categories, while selected in as objective a method as possible, are still reflected as abrupt cut offs which are not truly valid in communities that exist as gradients. Given that benthic communities exist as gradients, it is expected that the most dissimilar habitat categories would be the most different. This is borne out in tests between the most dissimilar habitat categories which had the most endpoints that were significantly different. For example, only two endpoints were not significantly different between the 0-20 and 80-100 percent fines categories.

Two endpoints (i.e., amphipod and polychaete richness) were significantly different over all comparisons, while six endpoints differed in all but one comparison. On the other hand, Pielou's evenness index did not differ among any habitat category.

Table 6. Table of Bonferroni adjusted probabilities for the comparison among habitat categories. Shaded areas are those that were statistically different (p<0.05).

| Benthic Endpoint               |        |                      | Habitat ( | Categories < | 150 ft          |                        |
|--------------------------------|--------|----------------------|-----------|--------------|-----------------|------------------------|
|                                |        | 0-20% Fine<br>versus | es        |              | % Fines<br>rsus | 50-80% Fines<br>versus |
|                                | 20-50% | 50-80%               | 80-100%   | 50-80%       | 80-100%         | 80-100                 |
| Total abundance                | 1.000  | 0.000                | 0.000     | 0.000        | 0.000           | 1.000                  |
| Total Richness                 | 0.480  | 0.000                | 0.000     | 0.000        | 0.000           | 0.000                  |
| Crustacean Abundance           | 0.534  | 0.000                | 0.000     | 0.000        | 0.080           | 0.134                  |
| Crustacean Richness            | 0.005  | 0.000                | 0.000     | 0.000        | 0.000           | 0.064                  |
| Amphipod Abundance             | 0.000  | 0.000                | 0.015     | 1.000        | 0.133           | 0.343                  |
| Amphipod Richness              | 0.000  | 0.000                | 0.000     | 0.001        | 0.000           | 0.032                  |
| Polychaete Abundance           | 0.334  | 0.001                | 0.000     | 0.000        | 0.000           | 0.001                  |
| Polychaete Richness            | 0.107  | 0.000                | 0.000     | 0.000        | 0.000           | 0.000                  |
| Mollusc Abundance              | 0.287  | 0.137                | 0.080     | 1.000        | 0.001           | 0.000                  |
| Mollusc Richness               | 0.000  | 0.000                | 0.000     | 1.000        | 0.000           | 0.000                  |
| Shannon-Wiener Diversity (H')  | 1.000  | 0.001                | 0000.0    | 0.100        | 0.000           | 0.000                  |
| Pielou's Evenness Index (J')   | 1.000  | 1.000                | 0.161     | 1.000        | 1.000           | 0.238                  |
| Infaunal Trophic Index (ITI)   | 0.062  | 0.000                | 0.016     | 1.000        | 0.000           | 0.000                  |
| Swartz's Dominance Index (SDI) | 1.000  | 0.000                | 0.000     | 0.028        | 0.000           | 0.000                  |

### 6.4 GEOGRAPHIC VARIABILITY WITHIN REFERENCE HABITAT CATEGORIES

The benthic data in the reference value study were generated throughout greater Puget Sound (i.e., from the Canadian border to the southern reaches of the Sound), and may be influenced by geographic variability. Large-scale factors that could contribute to geographic variability over this distance include the latitudinal distance covered by the data set (i.e., roughly 135 miles), various exposure regimes, and possibly larval availability. However, other geographic features which may occur on a considerably smaller scale, such as exposure (east vs. west sides of an island or the central basin of Puget Sound), local siltation, and flushing, may also influence benthic community structure over the study area.

Because benthic communities are largely regulated by sediment grain size and possibly other covarying parameters such as TOC, differences in these factors within Puget Sound were

examined prior to assessing possible benthic differences within geographic regions of the Sound. The reference value data set was sorted into the three geographic regions used by the Puget Sound Ambient Monitoring Program (PSAMP) sediment task (i.e., northern, central, and southern Puget Sound). The percent fines data, as well as TOC and water depth, were then summarized for each habitat category and region.

The range of differences in mean values for percent fines, TOC, and water depth among regions varied, with TOC having the greatest differences followed by percent fines and water depth (Table 7). For example, in the 0-20 percent fines category, mean TOC ranged from 0.137 percent (northern Puget Sound) to 0.367 percent (southern Puget Sound). Simultaneously, mean percent fines ranged from 3.2 percent (northern Puget Sound) to 11.3 percent (southern Puget Sound). Water depth was generally more constant due to the large reliance on the PSAMP sediment task data set which targeted a water depth of 20 m for much of its sampling.

ANOVAs were also used to evaluate the conventionals data. The Bonferroni pairwise multiple comparison test was conducted to identify which regions were different, and probabilities were adjusted to account for multiple tests. Of the twelve comparisons made for each parameter (four habitat categories times three tests), water depth had the fewest number of mean values that were significantly different among regions (seven), followed by percent fines (five) and TOC (four) (Table 8). In other words, over half of the time mean percent fines and TOC for any given habitat category differed among the three regions of Puget Sound.

For each conventional parameter, the rank order of the three regions was not constant, indicating that gradual trends ordered along a north-south axis were not present. For example, in the 0-20 and 50-80 percent fines categories percent fines was lowest in the northern Sound and highest in the southern Sound, while in the 20-50 percent fines category the lowest and highest percent fines occurred in the southern and northern Sound, respectively. Lastly, the lowest and highest percent fines mean values in the 80-100 percent fines category occurred in the southern and central Sound, respectively.

The implications of significant variability in conventional parameters among the three regions of Puget Sound was considered highly significant to the assessment of possible geographic variability in benthic endpoints. As demonstrated earlier in this report and by others, benthic communities are strongly regulated by conventional parameters. Differences in conventional parameters such as contained in the reference value data set, may be sufficient to override possible larger-scale geographic variability. It was concluded that a substantially larger data set, containing more stations in similar physical conditions within each region of the Sound, would be required to tease apart possible large-scale geographic variability from the smaller-scale variability documented in Tables 7 and 8. It is suggested that potential reference stations be located in similar parts of Puget Sound to account for possible geographic variability.

Table 7. Summary statistics percent fines, total organic carbon (TOC), and water depth in meters for each habitat category by Puget Sound region. CV = coefficient of variation.

|                       |         |     |             |       |    | Hal          | Habitat Category <150 ft | gory < | 150 ft       |      |    |               |      |
|-----------------------|---------|-----|-------------|-------|----|--------------|--------------------------|--------|--------------|------|----|---------------|------|
| Physical<br>Parameter | Region  | 0   | 0-20% Fines | ses   | 2( | 20-50% Fines | nes                      | \$     | 50-80% Fines | səu  | 08 | 80-100% Fines | nes  |
|                       |         | Z   | Mean        | CV    | Z  | Mean         | CA                       | z      | Mean         | CV   | Z  | Mean          | CV   |
| Percent Fines         | North   | 8   | 3.2         | 132.6 | 27 | 38.2         | 13.6                     | 43     | 62.4         | 11.6 | 51 | 94.9          | 2.3  |
|                       | Central | 131 | 6.1         | 75.1  | 33 | 28.7         | 18.0                     | 25     | 65.4         | 10.7 | 16 | 95.1          | 2.5  |
|                       | South   | 47  | 11.3        | 36.4  | 3  | 23.5         | 22.1                     | 15     | 6.79         | 10.3 | 28 | 89.2          | 2.4  |
| TOC                   | North   | 8   | 0.14        | 100.0 | 27 | 0.81         | 51.3                     | 43     | 1.63         | 44.3 | 51 | 1.81          | 23.7 |
|                       | Central | 131 | 0.25        | 45.8  | 33 | 1.06         | 43.4                     | 25     | 1.21         | 57.9 | 16 | 1.05          | 41.9 |
|                       | South   | 47  | 0.37        | 37.1  | 3  | 0.29         | 149.4                    | 15     | 2.69         | 25.9 | 28 | 2.44          | 19.5 |
| Water Depth           | North   | 8   | 17.8        | 31.8  | 27 | 18.1         | 34.4                     | 43     | 20.3         | 32.3 | 51 | 22.0          | 25.9 |
|                       | Central | 131 | 17.8        | 32.1  | 33 | 18.6         | 34.0                     | 25     | 17.1         | 38.0 | 16 | 11.3          | 46.0 |
|                       | South   | 47  | 20.2        | 27.1  | 3  | 20.0         | 32.0                     | 15     | 7.9          | 83.3 | 28 | 14.6          | 36.2 |

Table 8. Results of the ANOVA analyses on the variability within habitat categories by geographic location in Puget Sound. Puget Sound Region: C-central, N-north, S-south. N= Number of samples per region. Result = regions were different ( $\neq$ ) or regions were not different (=). Probabilities were adjusted using the Bonferroni procedure.

|               |      |         |      | Habita   | t Categ | ory <150 ft. |      |           |
|---------------|------|---------|------|----------|---------|--------------|------|-----------|
| Physical      | 0-20 | % Fines | 20-5 | 0% Fines | 50-8    | 0% Fines     | 80-1 | 00% Fines |
| Parameter     | N    | Result  | N    | Result   | N       | Result       | N    | Result    |
| Percent Fines | 8    | C=N     | 27   | C≠N      | 43      | C=N          | 51   | C=N       |
|               | 13   | C≠S     | 33   | C=S      | 25      | C=S          | 16   | C≠S       |
|               | 47   | N≠S     | 3    | N≠S      | 15      | N≠S          | 28   | N≠S       |
| TOC           | 8    | C=N     | 27   | C=N      | 43      | C=N          | - 51 | C≠N       |
|               | 13   | C≠S     | 33   | C≠S      | 25      | C≠S          | 16   | C≠S       |
|               | 47   | N≠S     | 3    | N=S      | 15      | N≠S          | 28   | N≠S       |
| Water Depth   | 8    | C=N     | 27   | C=N      | 43      | C=N          | 51   | C≠N       |
|               | 13   | C≠S     | 33   | C=S      | 25      | C≠S          | 16   | C=S       |
|               | 47   | N=S     | 3    | N=S      | 15      | N≠S          | 28   | N≠S       |

### 6.5 DIFFERENCES IN BENTHIC ENDPOINTS BETWEEN REFERENCE AND CHEMICALLY CONTAMINATED HABITAT CATEGORIES

Differences in benthic infauna endpoints in chemically contaminated and uncontaminated (i.e., reference) habitat categories were assessed by testing the following hypothesis.

 $H_o$ : There are no differences between chemically contaminated and uncontaminated habitat categories ( $\alpha = 0.05$ )

Statistical evaluations of benthic endpoints in chemically contaminated and uncontaminated (i.e., reference) habitat categories were conducted following tests for normality and homogeneity of variances. When the data departed substantially from normality, they were log transformed. When this occurred, both transformed and untransformed results were presented in Table 9, however, only the results from the log transformed data were used in the comparisons between contaminated and reference habitat categories. To identify differences for each endpoint, the habitat category mean for contaminated stations was statistically compared to the mean of the appropriate reference habitat category using ANOVA and *t*-tests. The Bonferroni pairwise multiple comparison test was used to identify which stations were different, and probabilities were adjusted to account for multiple tests. The objective of these tests was to determine whether measurable biological impacts were associated with the contaminated stations relative to the uncontaminated stations.

Results showed that there were statistically significant differences in most of the benthic endpoints between the contaminated and uncontaminated habitat categories (Table 9). While many endpoints were significantly depressed within the contaminated categories relative to uncontaminated categories, other endpoints showed statistically significant enhancements in the contaminated categories when compared to the reference categories. Enhancements in abundance and taxa richness represented 41.1% of the comparisons, and of these enhancements 65.2% were statistically different. The 20-50 and 80-100 percent fines habitat categories had the most number of endpoints showing nonsignificance. In the 20-50 percent fines category there was no difference between contaminated and uncontaminated stations for the crustacea, amphipoda, polychaeta and mollusca abundance endpoints, and crustacea and amphipoda richness endpoints. In the 80-100 percent fines category, crustacea, amphipoda, and mollusca abundance, in addition to polychaeta and mollusca richness measures showed nonsignificance. These results are not surprising because TOC content at many stations with SQS exceedances was also high.

Moderate increases in TOC have been shown repeatedly to stimulate benthic infaunal communities by causing increases in abundance and, to a lesser extent, species richness (Pearson and Rosenberg 1978). The Pearson and Rosenberg model hypothesizes that benthic communities exist as a continuum and that in circumstances where an area is receiving an increasing amount of organic enrichment (i.e., TOC) both species abundance and richness will be stimulated. At a critical point the amount of excess organic material cannot be assimilated by the benthic

Table 9. Table of Bonferroni adjusted probabilities for the comparison of benthic endpoints from reference value categories to habitat categories composed of stations with chemical concentrations greater than SQS. X¹ - Mean of the reference habitat category, X² - Mean of the contaminated habitat category, F - Calculated F ratio, P -Probability of significant difference. Mean values were rounded to one decimal point. Cells with two sets of F and P values are those where the data were log transformed and the analysis was run a second time. The second value was the score for log transformed data. Shaded cells indicate no statistical difference between mean values.

|                                |         |             |              |                |       |              | Habitat    | Habitat Categories | es <150 ft. | fi.          |              |       |       |        |               |                |
|--------------------------------|---------|-------------|--------------|----------------|-------|--------------|------------|--------------------|-------------|--------------|--------------|-------|-------|--------|---------------|----------------|
|                                |         | 0-20% Fines | es           |                |       | 20-50% Fines | Fines      |                    |             | 50-80% Fines | Fines        |       |       | 80-100 | 80-100% Fines |                |
| Benthic Endpoint               | X       | X²          | ഥ            | Ь              | ×     | χ            | ഥ          | д                  | ×           | Xz           | F            | ď     | ιX    | Χz     | Ħ             | Ъ              |
| Total abundance                | 491.4   | 563.4       | 5.2<br>1.5   | 0.024          | 494.2 | 616.7        | 8.5        | 9.004              | 343.5       | 930.2        | 39.8<br>12.2 | 9000  | 307.0 | 527.2  | 22.2          | 0.000          |
| Total Taxa                     | 68.7    | 63.7        | 3.6<br>5.0   | 0.060          | 64.4  | 56.3         | 5.5        | 9021               | 51.8        | 38.4         | 20.9         | 0000  | 33.0  | 37.3   | 4.0           | 9,046          |
| Crustacean Abundance           | . 120.4 | 219.8       | 28.1<br>20.1 | 0.000          | 103.4 | 137.8        | 4.6<br>0.4 | 0.034              | 51.2        | 166.6        | 18.6<br>606  | 0.000 | 75.8  | 125.0  | 3.4           | 0.065          |
| Crustacean Taxa                | 12.1    | 14,4        | 11.2         | 0.001          | 11.2  | 10.8         | 0.2        | 0.703              | 6.9         | 8.4          | 4.5          | 9.035 | 4.9   | 6.2    | 8.6<br>4.2    | 0.004<br>0.042 |
| Amphipod Abundance             | 27.8    | 14,4        | 56.3         | 88             | 13.4  | 10.8         | 1.6        | 0.207              | 15.0        | 8.4          | 15.1         | 0000  | 20.5  | 22.8   | 0.3           | 0.600          |
| Amphipod Taxa                  | 9.9     | 7.8         | 7.8          | 18<br>00<br>00 | 4.8   | 4.3          | 9.0        | 0.460              | 3.1         | 3.9          | 4.2          | 640   | 2.1   | 2.8    | 7.5           | 0.007          |
| Polychaete Abundance           | 197.2   | 156.9       | 3.5<br>9.2   | 0,004          | 224.3 | 302.3        | 5.9<br>1.3 | 0.017              | 146.7       | 624.0        | 39.9<br>18.7 | 0.000 | 88.3  | 298.7  | 37.5<br>70.7  | 0,000          |
| Polychaete Taxa                | 34.0    | 30.5        | 5.2<br>5.6   | 0.023          | 39.4  | 31.7         | 11.8       | 100.0              | 27.9        | 20.9         | 15.5<br>24.0 | 0000  | 15.7  | 20.2   | 11.7          | 0.001          |
| Mollusc Abundance              | 87.7    | 168.7       | 30.5<br>23.4 | 0.000          | 109.5 | 160.5        | 5.4<br>.03 | 0.021              | 111.2       | 82.3         | 2.9<br>6.8   | 0.092 | 64.1  | 0.62   | 1.9           | 0.165<br>0.591 |
| Mollusc Taxa                   | 16.3    | 14.2        | 14.7         | 0.000          | 3.    | 11.0         | 6.1        | 8.00               | 12.9        | 6.8          | 9.99         | 0.000 | 6.9   | 8.4    | 2.7           | 0.099<br>0.262 |
| Shannon-Wiener Diversity (H')  | 1.340   | 1.213       | 22.7         | 0000           | 1.314 | 1.134        | 10.8       | 100.8              | 1.231       | 0.823        | 79.0         | 11001 | 1.058 | 0.934  | 9.5           | 6,002          |
| Pielou's Evenness Index (J')   | 0.737   | 0.681       | 25.8         | 8              | 0.724 | 0.662        | 6.5        | 27015              | 0.722       | 0.556        | 50.9         | 0000  | 0.709 | 0.608  | 21.2          | 0.000          |
| Infaunal Trophic Index (ITI)   | 74.4    | 71.0        | 21.9         | 9<br>8<br>0    | 71.6  | 62.3         | 24.8       | 0.60               | 70.2        | 47.3         | 41.7         | 0.00  | 77.2  | 70.5   | 17.2          | 0.000          |
| Swartz's Dominance Index (SDI) | 14.1    | 12.4        | 4.1<br>6.6   | 0.043<br>0.011 | 13.8  | 9.7          | 15.6       | 8 000              | 0.11.       | 4.7          | 74.4<br>95.0 | 9000  | 6.9   | 5.8    | 8.0           | 6.005          |

community. First, species richness decreases rapidly while species abundance continues to increase, and second, after a considerable lag species abundance also drops rapidly. If the process of organic enrichment continues sulfides and ammonia will increase while oxygen diffusion into the sediment will decrease eventually resulting in azoic conditions.

### 6.6 DIFFERENCES BETWEEN REFERENCE HABITAT CATEGORIES AND INDIVIDUAL CONTAMINATED STATIONS

Statistical tests were used to determine whether samples from contaminated stations were different from reference conditions. The following hypothesis was tested.

H<sub>o</sub>: There are no differences between individual contaminated stations and the appropriate reference value ( $\alpha = 0.05$ )

For each benthic endpoint, the data from individual contaminated stations were statistically tested against the reference values within corresponding habitat categories. Stations whose mean values were less than one standard deviation below the reference value were considered impacted and were statistically compared to the reference value stations using *t*-tests. For many stations sampled as part of the Seahurst Baseline Study, only one replicate sample was processed and the *t*-test could not be conducted. In these cases if the sample endpoint value was less than one standard deviation below the reference value mean then it was counted and listed in Table 10, but no statistical test was conducted using the data.

Results for each habitat category are presented in Table 10. Overall, 86.7 percent of the contaminated stations with mean values less than one standard deviation below the reference value mean were significantly different (p< 0.05). The habitat category with the greatest number of significant differences between contaminated and uncontaminated was the 50-80 percent fines category (98.3%) and the category with the least number of significant differences was the 0-20 percent fines category (79.8%). By counting the number of times contaminated stations with mean values less than one standard deviation below the reference value mean were significantly different as a measure of success, it appears the derived benthic indices were the most sensitive in identifying contaminated stations followed by taxa richness and abundance measures.

### 6.7 SUMMARY OF STATISTICAL TESTING

The statistical testing program showed that measures of benthic community structure generally differed for stations with chemical concentrations below the SQS versus those with chemical concentrations above the SQS. Statistical testing also showed that the habitat categories are effective in limiting benthic variability. Finally, the statistical tests showed that a range of one standard deviation about the mean is a reasonable estimate of natural variability, and that values which fall outside of this range may be associated with impacted sediments.

Table 10. Results of t-tests comparing reference values to individual impacted stations whose mean is 1 standard deviation or more below the mean reference value.

|                                |                  |                              |                             | # of ctations   |               |                             |                            | 3 "             |
|--------------------------------|------------------|------------------------------|-----------------------------|-----------------|---------------|-----------------------------|----------------------------|-----------------|
|                                |                  | # of stations                |                             | different after |               | # of stations               |                            | different after |
|                                |                  | s -1 SD of                   | # of stations               | t-test vs.      |               | < -1 SD of                  | # of stations              | f-test vs.      |
| Benthio Cadaciat               | # of stations    | mean reference               | s -1 SD where               | reference       | # of stations | mean reference              | < -1 SD where              | reference       |
| Dennie Endponn                 | rested           | value                        | reps/station == 1           | p < 0.05        | tested        | value                       | reps/station = 1           | p ≤ 0.05        |
|                                |                  | 0-20%                        | 0-20% Fines                 |                 |               | 20-50% Fines                | Fines                      |                 |
| Lotal Abundance                | 55               | 4                            | 0                           | 4/4             | 14            | 2                           | U                          | 1/1             |
| Total Richness                 | 26               | 00                           |                             | 2/9             | 7             | 1 🕶                         | <b>.</b>                   | 202             |
| Crustacean Abundance           | 54               | -4                           |                             | 2               | 7             |                             | ~ ~                        | 2/2             |
| Crustacean Richness            | 55               | · m                          |                             | 202             | 7             | n "                         | C                          | 7/7             |
| Amphipod Abundance             | 56               | 33                           | 0                           | 3/3             | stand         | and destation of references | alke to eventue them the n | C/7             |
| Amphipod Richness              | 54               | S                            | -                           | 3/4             | 14            | 4                           | C                          | <i>1//</i> C    |
| Polychaete Abundance           | 55               | 6                            | 4                           | 5/5             | : ==          |                             | > 0                        | † C             |
| Polychaete Richness            | 56               | 13                           | · m                         | 6/6             | 2 7           | 1 42                        | o c                        | 7/7             |
| Mollusc Abundance              | 53               | 2                            | ,                           |                 | 14            | · ~                         | > -                        | 2,0             |
| Molfusc Richness               | 56               | 12                           | . ,,                        | 7/0             | <u> </u>      | ገ                           | 1 de                       | 7/7             |
| Shannon-Wiener Diversity (H')  | 3.5              | . <u>.</u>                   | n ox                        | 10/10           | <b>+</b> :    | o (                         | <                          | 3/4             |
| Pielou's Evenness Index (I)    | 35               | 30                           | 9 5                         | 8/16            | 7 1           | <b>n</b> c                  | <b>•</b>                   | 2/3             |
| Infamal Tronhic Index (ITI)    | 3 4              | A -                          | 2 6                         | 0/10            |               | 7 1                         | <b>~</b>                   | 717             |
| Superior Deminance Index (CD)  | 3 7              | = ;                          | 7                           | 9/9             | 14            |                             | 2                          | 5/2             |
| Swartz s Dominance Index (SDI) | 54               | 10                           | 0                           | 7//             | 11            | 4                           | 0                          | 3/3             |
|                                |                  | 50-80%Fines                  | 6Fines                      |                 |               | 80-100% Fines               | Fines                      |                 |
| Total Abundance                | 17               | 3                            | 0                           | 3/3             | 26            | 5                           | 0                          | 5/5             |
| Lotal Richness                 | <u>&amp;</u>     | ςς.                          | 0                           | 5/5             | 25            | 7                           | 0                          | 2/9             |
| Crustacean Abundance           | Stand            | tard de visitos of reference | volue is greater than the m | cour            | 24            | 2                           | · c                        | 2/2             |
| Crustacean Richness            | 17               | 2                            | 0                           | 2/2             | 25            | 1 73                        | · •                        | 272             |
| Amphipod Abundance             | 18               | 2                            | 0                           | 1/1             | guers         | wide Watton of regionics w  | othe is greater than the n | , una           |
| Amphipod Richness              | 18               | 7                            | 0                           | 1/1             | 23            | 4                           | C                          | 2/4             |
| Polychaete Abundance           | 13               | m                            | 0                           | 3/3             | 24            | 0                           | · c                        | NA N            |
| Polychaete Richness            | <u>&amp;</u>     | 80                           | 0                           | 5/5             | 25            | 4                           |                            | 1/2             |
| Mollusc Abundance              | Section 1        | and device in of reference   | ithe it great than the m    | LO2             | <u>2</u> 2    | - 0                         |                            | 6/2°            |
| Mollusc Richness               | -<br>-<br>-<br>- | 11                           | 0                           | 11/11           | 28            | . oc                        | · c                        | 2/6             |
| Shannon-Wiener Diversity (H')  | 17               | 2                            | 0                           | 9/10            | 26            | . 00                        | · C                        | 8/8             |
| Pielou's Evenness Index (J)    | 17               | 7                            | 0                           | 111             | 26            |                             | · 0                        | 11/11           |
| Infaunal Trophic Index (ITI)   | 18               | 7                            | 0                           | 4/4             | 26            | ∞                           | 0                          | 2/9             |
| Swartz's Dominance Index (SDI) | 18               | 8                            | 0                           | 7/1             | 26            | 7                           | 0                          | 4/5             |

# 7.0 PRIORITIZATION OF BENTHIC INDICES AS REFERENCE VALUE ENDPOINTS

The final objective of this report was to prioritize benthic endpoints for use by other investigators. By prioritizing endpoints based on their usefulness in identifying benthic impacts, investigators may be able to focus their work on the most efficient endpoints.

#### 7.1 CHARACTERÍSTICS OF OPTIMAL REFERENCE VALUE ENDPOINTS

Elements that are characteristic of a good reference area endpoint for Puget Sound are derived from the hypotheses discussed in Section 6.0. The following elements may be considered to be characteristic of a good reference area endpoint:

- 1. Low variability within habitat categories
- 2. Statistically significant separation among habitat categories
- 3. Ability to statistically differentiate between chemically impacted and non-impacted stations

#### 7.2 NUMERICAL SCORING PROCESS

A numerical scoring process was developed to prioritize the endpoints. The desirable characteristics of reference area endpoints are discussed below along with the approach for scoring each element. The scores for each element were summed and the endpoints with the greatest scores are considered most appropriate for use as reference value endpoints.

### Element 1. Low Variability within Habitat Categories

Variability within habitat categories was assessed by examining the amount of variation around the mean using the coefficient of variation (CV). If the coefficient of variation was greater than 100 percent, the endpoint was given a score of -1; if the CV was between 50-100 percent, then a score of 0 was assigned; and if the CV was less than 50 percent, a +1 was assigned (Table 11). The derived benthic indices (H', J, ITI), total richness and mollusc and crustacean richness were the least variable and therefore received the highest scores.

Table 11. Relative measure of the coefficient of variation for each benthic endpoint within each habitat category. (1=CV less than 50 percent, 0=CV between 50 and 100 percent, and -1=CV greater than 50 percent.

| Benthic Endpoint               |       | Habita | nt Category < | 150 ft. |       |
|--------------------------------|-------|--------|---------------|---------|-------|
|                                | 0-20% | 20-50% | 50-80%        | 80-100% | Score |
| Total abundance                | 1     | 1      | 0             | 1       | 3     |
| Total Richness                 | 1     | 1      | 1             | 1       | 4     |
| Crustacean Abundance           | 0     | 0      | -1            | 0       | -1    |
| Crustacean Richness            | 1     | 1      | 1             | 1       | 4     |
| Amphipod Abundance             | -1    | 0      | -1            | 0       | -2    |
| Amphipod Richness              | 1     | 0      | 0             | 1       | 2     |
| Polychaete Abundance           | . 0   | 1      | 1             | 0       | 2     |
| Polychaete Richness            | 0     | -1     | -1            | 0       | -2    |
| Mollusc Abundance              | 0     | -1     | -1            | 0       | -2    |
| Mollusc Richness               | 1     | 1      | 1             | 1       | 4     |
| Shannon-Wiener Diversity (H')  | 1     | 1      | 1             | 1       | 4     |
| Pielou's Evenness Index (J')   | 1     | 1      | 1             | 1       | 4     |
| Infaunal Trophic Index (ITI)   | 1     | 1      | 1             | 1       | 4     |
| Swartz's Dominance Index (SDI) | 0     | 1      | 1             | 1       | 3     |

### Element 2. Statistically Significant Separation Among Habitat Categories

ANOVAs were conducted for each endpoint among the four habitat categories to test for statistically significant separation among habitat categories. Endpoints showing a significant difference were given a score of +1 and endpoints showing non-significance were given a score of 0 (Table 12). Polychaete and amphipod richness scored the highest (each with a score of 6), followed by crustacean, mollusc, and total richness, polychaete abundance and the SDI (all with a score of 5).

### Element 3. Ability to statistically differentiate between chemically contaminated and uncontaminated stations

### Element 3A. Differentiate based on group means

ANOVAs were used to statistically differentiate between mean endpoint values from chemically contaminated and uncontaminated habitat categories. An endpoint showing a significant decrease in the contaminated stations relative to the reference value stations was given a +1; an endpoint with a significant increase was given a -1; and a non-significant endpoint was given a 0. When two results are shown in Table 9, the first is the result from the untransformed data and the second is from log transformed data. If data were log transformed, the log transformed results were scored in Table 13. Based on the scoring, the derived endpoints (H', J, ITI, SDI) and total taxa richness were the most efficient at showing significant decreases from the reference values (Score of +4) followed by polychaete and mollusc richness (score of +3).

## Element 3B. Differentiate based on mean reference value versus an individual chemically impacted station

Element 3B examined the ability to differentiate between the reference values and individual stations with chemicals that exceeded the SQS. Statistical testing was done using the *t*-test comparing the reference value against the samples from each individual impacted station. Endpoints that showed statistically significant reduction between the reference values and the contaminated stations were assigned a score of +1 and nonsignificant differences were scored as 0. Significant enhancements were scored as a -1. The scoring indicated that crustacean, amphipod, and molluscs richness (score of 3) were most sensitive in identifying statistical differences followed by total richness, H', and the ITI (score of 2; Table 14).

#### 7.3 SUMMARY OF NUMERICAL SCORING

Following all scoring a master table was prepared. Those endpoints with the greatest score are considered to be the preferred benthic endpoints to assess the benthic effects of chemical contamination in Puget Sound (Table 15). The maximum number of points an endpoint could receive was 22. The greatest number of points was scored by molluscan richness with 15 points, followed by Shannon-Wiener Diversity and the Infaunal Trophic Index, both with 14 points, and total taxa richness and Swartz's Dominance Index with 13 points. The two lowest scores were for the molluscan crustacean and molluscan abundance.

Table 12. Variability among habitat categories. Significant differences (p<0.05) were scored as 1; non-significant differences (p>0.05) were scored as 0.

|                                |     |          | Habi | tat Categ | ory <150      | ft.                 |       |
|--------------------------------|-----|----------|------|-----------|---------------|---------------------|-------|
| Benthic Endpoint               |     | 20% fine |      | ll        | fines<br>rsus | 80% fines<br>versus | Score |
|                                | 50% | 80%      | 100% | 80%       | 100%          | 100%                |       |
| Total abundance                | 0   | 1        | . 1  | 1         | 1             | 0                   | 4     |
| Total Richness                 | • 0 | 1        | 1    | 1         | . 1           | 1                   | 5     |
| Crustacean Abundance           | 0   | 1        | 1    | 1         | 0             | 0                   | 3     |
| Crustacean Richness            | 0   | 1        | 1    | 1         | . 1           | 1                   | 55    |
| Amphipod Abundance             | 1   | 1        | 1    | 0         | 0             | 0                   | 3     |
| Amphipod Richness              | 1   | 1        | 1    | 1         | 1             | 1                   | 6     |
| Polychaete Abundance           | 0   | 1        | 1    | 1         | 1             | 1                   | 5     |
| Polychaete Richness            | 1   | 1        | l    | 1         | 1.            | 1 .                 | 6     |
| Mollusc Abundance              | 0   | 0        | 0    | 0         | 1             | 1                   | 2     |
| Mollusc Richness               | 1   | 1        | 1    | 0         | 1             | 1                   | 5     |
| Shannon-Wiener Diversity (H')  | 0   | 1        | 1    | 0         | 1 .           | 1                   | 4     |
| Pielou's Evenness Index (J')   | 0   | 0        | 0    | 0         | 0             | Ó                   | 0     |
| Infaunal Trophic Index (ITI)   | 0   | 1        | 1    | 0         | 1             | · 1                 | 4     |
| Swartz's Dominance Index (SDI) | 0   | 1        | 1    | 1         | 1             | <u> </u>            | 5     |

Table 13. Comparison between mean reference values for each habitat category and mean values from stations with chemicals at concentrations > SQS. When two results are indicated, the first is the result from untransformed data and the second is from log transformed data.

| Benthic Endpoint               |       | Habita | t Category <1 | 150 ft. |       |
|--------------------------------|-------|--------|---------------|---------|-------|
| ·                              | 0-20% | 20-50% | 50-80%        | 80-100% | Score |
| Total abundance                | 0     | -1     | -1            | -1      | -3    |
| Total Richness                 | 1     | 1      | 1             | -1      | 2     |
| Crustacean Abundance           | -1    | 0      | -1            | 0       | -2    |
| Crustacean Richness            | -1    | 0      | -1            | -1      | -3    |
| Amphipod Abundance             | 1     | 0      | 1             | 0       | 2 .   |
| Amphipod Richness              | -1    | 0      | -1            | -1      | -3    |
| Polychaete Abundance           | 1     | 0      | -1            | -1      | -1    |
| Polychaete Richness            | 1     | 1      | 1             | 0       | 3     |
| Mollusc Abundance              | -1    | 0      | 1             | 0       | 0     |
| Mollusc Richness               | 1     | 1      | 1             | 0       | 3     |
| Shannon-Wiener Diversity (H')  | 1     | 1      | 1             | 1       | 4     |
| Pielou's Evenness Index (J')   | 1     | 1      | 1             | 1       | 4     |
| Infaunal Trophic Index (ITI)   | 1     | 1      | 1             | 1       | 4     |
| Swartz's Dominance Index (SDI) | 1     | 1      | 1             | 1       | 4     |

Table 14. Comparison between mean reference values for each habitat category and the mean values from individual contaminated stations (chemical concentrations > SQS).

| Benthic Endpoint               |       | Habita | nt Category < | 150 ft. |       |
|--------------------------------|-------|--------|---------------|---------|-------|
|                                | 0-20% | 20-50% | 50-80%        | 80-100% | Score |
| Total abundance                | 0     | 0      | 0             | 0       | 0     |
| Total Richness                 | 1     | 0      | 0             | 1       | 2     |
| Crustacean Abundance           | 1     | 0      | -1            | 0       | 0     |
| Crustacean Richness            | 11    | 0      | 1             | I       | 3     |
| Amphipod Abundance             | 0     | -1     | 0             | -1      | 2     |
| Amphipod Richness              | 1     | 1      | 0             | 1       | 3     |
| Polychaete Abundance           | 0     | . 0    | 0             | -1      | -1    |
| Polychaete Richness            | 0     | 0      | . 0           | . 0     | 0     |
| Mollusc Abundance              | 0     | 0      | -1            | 1       | 0     |
| Mollusc Richness               | 1     | 11     | 0             | 1       | 3     |
| Shannon-Wiener Diversity (H')  | 0     | 1      | 1             | 0       | 2     |
| Pielou's Evenness Index (J')   | 1     | :0     | 0             | 0       | 1     |
| Infaunal Trophic Index (ITI)   | 1     | 0      | 0             | 1       | 2     |
| Swartz's Dominance Index (SDI) | 0     | 0      | 0             | 1       | 1     |

Table 15. Summary of scoring by element.

| Benthic Endpoint               |    |     | Eleme     | nt  |             |
|--------------------------------|----|-----|-----------|-----|-------------|
|                                | 1  | 2   | 3A        | 3B  | Total Score |
| Total abundance                | 3  | 4   | -3        | 0   | 4           |
| Total Richness                 | 4  | 5   | 2         | 2   | 13          |
| Crustacean Abundance           | -1 | 3   | -2        | 0   | 0           |
| Crustacean Richness            | 4  | 5   | <b>-3</b> | 3   | 9           |
| Amphipod Abundance             | -2 | 3   | 2         | -2  | 5           |
| Amphipod Richness              | 2  | 6   | -3        | 3   | 8           |
| Polychaete Abundance           | 2  | 5   | -1        | -1  | 5           |
| Polychaete Richness            | 2  | 6   | 3         | 0   | 7           |
| Mollusc Abundance              | -2 | 2   | 0         | 0   | 0           |
| Mollusc Richness               | 4  | . 5 | 3         | 3   | 15          |
| Shannon-Wiener Diversity (H')  | 4  | 4 . | 4         | 2   | 14          |
| Pielou's Evenness Index (J')   | 4  | 0   | 4         | 1   | 9           |
| Infaunal Trophic Index (ITI)   | 4  | 4   | 4         | . 2 | 14          |
| Swartz's Dominance Index (SDI) | 3  | 5   | 4         | 1   | 13          |

### The rank order of the endpoints with their respective score is as follows:

| 1. | Molluscan richness                                               | 15 |
|----|------------------------------------------------------------------|----|
| 2. | Shannon Wiener Diversity Index (H'), Infaunal Tropic Index (ITI) | 14 |
| 3. | Total taxa richness, Swartz Dominance Index (SDI)                | 13 |
| 4. | Crustacean richness, Pielou's Eveness Index                      | 9  |
| 5. | Amphipod richness                                                | 8  |
| 6. | Polychaete richness                                              | 7  |
| 7. | Polychaete abundance, Amphipod abundance                         | 5  |
| 8. | Total abundance                                                  | 4  |
| 9. | Molluscan abundance, Crustacean abundance                        | 0  |

#### 8.0 RECOMMENDATIONS

A number of recommendations can be made based on the results of the reference value project. The objective of these recommendations is to suggest strategies for generating and analyzing benthic infaunal data that will yield the most meaningful information regarding the identification of potentially altered benthic communities in Puget Sound.

First, investigators who are interested in comparing their benthic data to reference conditions described in this report should use the benthic endpoint reference ranges that are shown in Table 16. The use of ranges is important because benthic communities are highly variable and comparison of field data to a mean value for a given benthic endpoint in a habitat category will not account for natural variability. Benthic infauna data generated from reference stations sampled as part of a study can be compared to the reference values to determine if their reference stations data fall within that range. This could then be used to determine the suitability of that station as a reference station. As shown in this report, data that fall within a reference range are almost always statistically similar to the reference data whereas data that are outside of the range are typically significantly different from reference.

Second, the benthic endpoints that received the highest scores appear to be those that most consistently identified benthic impacts in the historic Puget Sound benthic database. Measures of species richness and the derived indices generally scored higher than those for abundance. It is recommended that investigators use several endpoints to evaluate benthic communities, and that the endpoints that received high scores be given greater consideration in the evaluation relative to endpoints that received low scores.

Third, because the majority of benthic data used in this project were generated by regional benthic taxonomists who have worked together extensively, there was reason to believe that most of the identifications in the historic database were roughly comparable. In the event that taxonomic expertise from outside of the Puget Sound area is employed, then it is recommended that those taxonomists also provide data in the form of a standardized species list. Use of a standardized list will increase the chance that new data will be comparable to the historic database and that the reference value ranges will be useful to all investigators. Should different taxonomy be used, then it is likely that application of the reference ranges will not be appropriate.

Fourth, because new data are continuously being generated by public agencies and private parties, the reference ranges should be periodically updated (e.g., every five years) using new data from known reference locations. It may be appropriate to update the reference ranges on the same schedule as the chemical SQS and MCUL values are updated in the Sediment Management Standards. Data generated by the Puget Sound Ambient Monitoring Program would be ideally suited to the update process (as long as synoptic chemistry and benthic infauna data are obtained). Most of the data used to calculate the reference ranges originated from the PSAMP sediment task. Data from other programs should also be included as long as chemical data are

available to verify that chemical concentrations are below the SQS. Care should be taken when screening any benthic data for use in updating the reference value ranges to ensure that it was generated using comparable taxonomy.

Fifth, it is strongly recommended that all investigators strictly adhere to the Puget Sound Protocols and Guidelines for the sampling and analyzing subtidal benthic macroinvertebrate assemblages (PSEP 1987). Deviations from these guidelines would likely make the application of these reference ranges inappropriate.

Table 16. Reference value ranges for Puget Sound habitats. All values are presented in per  $0.1 \mathrm{m}^2$ .

| Benthic Endpoint               |     |                |    | Habitat Cate    | gory < | 150 ft.         |     |                  |
|--------------------------------|-----|----------------|----|-----------------|--------|-----------------|-----|------------------|
|                                | N   | 0-20%<br>Fines | N  | 20-50%<br>Fines | N      | 50-80%<br>Fines | N   | 80-100%<br>Fines |
| Total abundance                | 184 | 295-983        | 69 | 342-647         | 79     | 156-531         | 97  | 178-436          |
| Total Taxa                     | 183 | 47-90          | 66 | 50-78           | 81     | 38-66           | 99  | 24-42            |
| Crustacean Abundance           | 180 | 43-198         | 68 | 40-167          | 77     | 0-104           | 98  | 4-148            |
| Crustacean Taxa                | 181 | 8-17           | 66 | 6-16            | 80     | 4-10            | 103 | 3-72             |
| Amphipod Abundance             | 186 | 8-47           | 63 | 0-27            | 83     | 1-29            | 95  | 0-44             |
| Amphipod Taxa                  | 185 | 4-10           | 66 | 2-7             | 78     | 1-5             | 92  | 1-3              |
| Polychaete Abundance           | 178 | 72-322         | 67 | 126-322         | 82     | 78-215          | 97  | 31-145           |
| Polychaete Taxa                | 193 | 21-47          | 68 | 28-51           | 81     | 21-36           | 99  | 9-22             |
| Mollusc Abundance              | 178 | 26-150         | 65 | 27-192          | 78     | 0-232           | 98  | 24-104           |
| Mollusc Taxa                   | 185 | 12-21          | 66 | 9-17            | 82     | 8-18            | 100 | 6-13             |
| Shannon-Wiener Diversity (H')  | 185 | 1.12-1.57      | 69 | 1.10-1.53       | 86     | 1.01-1.45       | 95  | 0.88-1.23        |
| Pielou's Eveness Index (J')    | 182 | 0.65-0.83      | 69 | 0.63-0.82       | 86     | 0.59-0.85       | 99  | 0.6-0.82         |
| Infaunal Trophic Index (ITI)   | 183 | 67.7-81.1      | 65 | 65.9-77.3       | 83     | 63.2-77.2       | 101 | 67.3-87.1        |
| Swartz's Dominance Index (SDI) | 186 | 6.8-21.6       | 68 | 8:3-19.2        | 84     | 5.5-16.5        | 98  | 4.2-9.6          |

N = Number of samples

### 9.0 LITERATURE CITED

Barnard, J.L. and F.C. Ziesenhenne. 1960. Ophiuroid communities of southern Californian coastal bottoms. Pacific Naturalist 2: 132-152.

Battelle Pacific Northwest Laboratory. 1985. Reconnaissance level assessment of selected sediments for Puget Sound. Draft Final Report, Volumes 1-2. Prepared for U.S. Environmental Protection Agency, Region 10.

Berthouex, P.M. and L.C. Brown. 1994. Statistics for environmental engineers. Lewis Publishers, Ann Arbor, MI. 335 pp.

Evans-Hamilton. 1987. Puget Sound Environmental Atlas. Prepared for the US Army Corps of Engineers, US Environmental Protection Agency, and Puget Sound Water Quality Authority, Seattle, WA. Evans-Hamilton, Inc., Seattle, WA.

Ferraro, S.P. and F.A. Cole. 1992. Taxonomic level sufficient for assessing a model impact on macrobenthic communities in Puget Sound, WA, USA. Can. Jour. Fish. Aquat. Sci., 49: 1184-1188.

Gouch, H.G. 1982. Multivariate analysis in community ecology. Cambridge University Press. Cambridge, UK. 298 pp.

Grassle, J.F and J. P. Grassle. 1974. Opportunistic life histories and genetic systems in marine benthic polychaetes. Jour. of Marine Research. 32:253-284.

Gray J.S. 1989. Effects of environmental stress on species rich assemblages. Biol. Jour. of the Linnean Soc. 37: 19-32.

Gray, J.S. and T. H. Pearson. 1982. Objective selection of sensitive species indicative of pollution induced change in benthic communities. I. Comparative methodology. Mar. Ecol. Prog. Ser. 9: 111-119,.

Gray, J.S., M. Aschan, M.R. Carr, K.R. Clarke, R.H. Green, T.H. Pearson, R. Rosenberg, R.M. Warwick. 1988. Analysis of community attributes of the benthic macrofauna of Frierfjord/langesundfjord and in a microcosm experiment. Mar. Ecol. Prog. Ser. 46: 151-165.

Green, R. H. and G. L. Vascotto. 1978. A method for the analysis of environmental factors controlling patterns of species composition in aquatic communities. Water Research, 12: 583-590.

Paine, R.T. 1969. A note on the trophic complexity and community stability. Amer. Nat. 103: 91-93.

Pearson, T. H. and R. Rosenberg. 1978. Macrobenthic succession in relation to organic enrichment and pollution of the marine environment. Oceanography and Marine Biology Annual Reviews. 16: 229-311.

Pielou, E. C. 1966. The measurement of diversity in different types of biological collections. Jour. Theoret. Biol. 13: 131-144 (not seen).

Poole, R. W. An introduction to quantitative ecology. McGraw-Hill Publishing Company, New York, NY. 532 pp.

PSAMP 1989 Puget Sound Ambient Monitoring Program (PSAMP) Database System: Users guide to the Puget Sound Ambient Monitoring Program Database. Puget Sound Water Quality Authority. 90 pp.

PTI. 1989. SEDQUAL Data Management System. SEDQUAL users guide, Vers. 2. Prepared for the Washington Department of Ecology, Olympia, WA. PTI Environmental Services, Bellevue, WA

PTI. 1993. Recommendations for assessing adverse benthic effects in Puget Sound. Prepared for Washington Department of Ecology, Olympia, WA. PTI Environmental Services, Bellevue, WA. 21 pp. + appendices.

Puget Sound Estuary Program 1987. Recommended protocols for sampling and analyzing subtidal benthic macroinvertebrate assemblages in Puget Sound, Final Report. Prepared for U.S. Environmental Protection Agency, Region 10. Tetra Tech, Inc. Bellevue, WA.

SAIC. 1990. PSDDA 1990 Monitoring Report: Program design for detecting benthic invertebrate community impacts at the Port Gardner disposal site. Prepared for: Washington Department of Natural Resources. Scientific Applications International Corporation, Everett, WA.

Shannon, C. E. and W. Weaver. 1964. The mathematical theory of communication. The University of Illinois Press. Urbana, IL.

Sokal, R.R. and F. J. Rolfe. 1981. Biometry, the principles and practice of statistics in biological research. W. H.Freeman and Company, New York, NY.

Striplin, P. L. 9 November, 1994. Personal Communication (conversation with John Bollweg of SYSTAT, Inc. statistical technical support)

Swartz, R.C., D. W. Shultz, G. R. Ditsworth, W.A. DeBen, and F.A. Cole. 1985. Sediment toxicity, contamination, and macrobenthic communities near a large sewage outfall. pp. 152-175. In: Validation and Predictability of Laboratory Methods for Assessing the Fate and Effects

of Contaminants in Aquatic Ecosystems. T. T. Boyle (ed). American Society for Testing and Materials STP 865. Philadelphia, PA.

Systat. 1992. SYSTAT for Windows: Statistics, Vers. 5. Evanston, IL. 750 pp.

Tetra Tech. 1990. Puget Sound ambient monitoring program: Marine sediment monitoring, Final Report. Prepared for the Washington Department of Ecology, Ambient Monitoring Section, Olympia, WA by Tetra Tech, Inc., Bellevue, WA. 262 pp.

Tetra Tech and PTI. 1988. Elliott Bay Action Program: analysis of toxic problem areas. Final Report. Prepared for U.S. Environmental Protection Agency, Region 10, Office of Puget Sound, Seattle, WA. Tetra Tech, Inc. Bellevue, WA. 286 pp. + appendices.

Warwick, R.M. 1988a. Analysis of community attributes of the macrobenthos of Frierfjord/langesundfjord at taxonomic levels higher than species. Mar. Ecol. Prog. Ser. 46: 167-170.

Warwick, R.M. 1988b. The level of taxonomic discrimination required to detect pollution effects on marine benthic communities. Marine Pollution Bulletin 19: 259-268.

Word, J. Q. and P. L. Striplin. 1981. Effects of municipal waste discharge on the benthic invertebrate communities living in the erosional environment off West Point, Seattle, WA: Toxic and nutritional aspects. Prepared for the Municipality of Metropolitan Seattle, Seattle, WA. University of Washington, Seattle, WA. 29 pp.

Word, J. Q. 1982. The infaunal trophic index for Puget Sound. Draft Report. Prepared for U.S. Environmental Protection Agency, Office of Research and Development, Newport, OR. University of Washington, Seattle, WA. 57 pp.

Word, J. Q. and A.J. Mearns. 1979. 60- Meter control survey off southern California. Southern California Coastal Water Research Project (SCCWRP) Technical Memorandum No. 229. 58 pp.

Word, J.Q., P.L. Striplin, K. Keeley, and P.J. Sparks-McConkey. 1984a. Renton sewage treatment plant project: Seahurst Baseline Study, Subtidal Benthic Ecology. Final Report. Prepared for the Municipality of Metropolitan Seattle. University of Washington, Seattle, WA. Volume V, Section 6, pp. 461. FRI-UW-8413.

Word, J.Q., P.L. Striplin, K. Keeley, and P.J. Sparks-McConkey. 1984b. Renton sewage treatment plant project: Duwamish Head Baseline Study, Subtidal Benthic Ecology. Final Report. Prepared for the Municipality of Metropolitan Seattle. University of Washington, Seattle, WA. FRI-UW-8417. Pages 140-196.

Zar, J. H. 1984. Biostatistical Analysis. Second Edition. Prentice-Hall, Inc., Englewood Cliffs, NJ. 718 pp.

# APPENDIX A SURVEYS INCLUDED IN EVALUATION OF CHEMICAL DATA

| Survey               | Survey Description                                                              | Implementing Agency                                                                 |
|----------------------|---------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|
| ALKI                 | 1982 ALKI Survey                                                                | Municip. of Metropolitan Seattle (METRO)                                            |
| 2MARINAS             | Port Townsend & Cap Sante Marinas Study                                         | EPA, Region X                                                                       |
| ARCOCPC2             | ARCO Cherry Point Refinery Class 2 Insp.                                        | Department of Ecology, EILS                                                         |
| BCWTACC2             | Boise Cascade's West Tacoma Mill Class 2                                        | Department of Ecology, EILS                                                         |
| BPFERNC2             | BP Oil Refinery Class II Inspection                                             | Department of Ecology, EILS                                                         |
| BREMWTC2             | Bremerton WTP Class II Inspection                                               | Department of Ecology, EILS                                                         |
| CBBLAIR              | Commencement Bay RI Blair Waterway Dredge                                       | WA Dept. of Ecology, U.S. EPA Region X                                              |
| CBMSQS               | Commencement Bay RI Main Sed. Qual. Sur.                                        | WA Dept. of Ecology, U.S. EPA Region X                                              |
| CBPRELIM             | Commencement Bay RI Prelim. Survey 1984                                         | WA Dept. of Ecology, U.S. EPA Region X                                              |
| CNKTSPC2             | Central Kitsap WTP 1988 Class II Inspec.                                        | Department of Ecology, EILS                                                         |
| CRECI_83<br>DNRREC91 | EVRT (EW&PG) Sediment Characterization Aq. Lands Sediment Qual. Reconnaissance. | EPA, Region X                                                                       |
| DNRREC92             | Aq. Lands Sediment Qual. Reconnaissance.                                        | Washington Dept. of Natural Resources.                                              |
| DUPONT91             | 91 City of Dupont DEIS Sediment Analysis                                        | Washington Dept. of Natural Resources.<br>City of Dupont/Ecology                    |
| DUWAM84              | 1984 Duwamish Head Survey                                                       | Municip. of Metropolitan Seattle (METRO)                                            |
| DUWAM85              | Duwamish Head Baseline Survey, '85-'86                                          | Municip. of Metropolitan Seattle (METRO)                                            |
| DUWRIV1              | PSDDA Duwamish River I data set.                                                | U.S. Army Corps of Engineers                                                        |
| DUWRIV2              | PSDDA Duwamish River II data set.                                               | U.S. Army Corps of Engineers                                                        |
| EBCHEM               | 1985 Elliott Bay sediment survey                                                | U.S. EPA Region X                                                                   |
| EDMDWTC2             | Edmonds WTP Class II Inspection                                                 | Department of Ecology, EILS                                                         |
| EHCHEM               | Eagle Harbor sediment chemistry survey                                          | WA Dept. of Ecology                                                                 |
| EIGHTBAY             | 1985 Puget Sound Eight-Bay survey.                                              | U.S. EPA Region X                                                                   |
| EPA8283              | 1982-83 EPA survey of Duwamish River                                            | U.S. EPA Region X                                                                   |
| EVCHEM               | 1985 Everett Hbr. chem. & biota data.                                           | U.S. EPA Region X                                                                   |
| EVRT_CSO             | 1987 CSO Monitoring for City of Everett                                         | City of Everett                                                                     |
| EVWEYCII             | Weyerhaeuser, Everett Class II Inspectio                                        | Department of Ecology                                                               |
| GAMPONIA             | Gamponia survey of Elliott Bay                                                  | Municip. of Metropolitan Seattle (METRO)                                            |
| GAPAC_C2             | NPDES Georgia Pacific - Bellingham.                                             | Department of Ecology/NWRO.                                                         |
| IND_MOXL             | Indian/Moxlie Cr. (Olympis) Basin Samp.                                         | Thurston County Health Department                                                   |
| INTALCC2             | DOE 88 Intalco C2 Monitoring Inspection                                         | Department of Ecology, EILS                                                         |
| KTSPMON2             | Sinclair and Dyes Inlet monitoring 91-92                                        | Bremerton-Kitsap Co. Health District                                                |
| MALINS               | 1980 NOAA OMPA-19 survey of Elliott Bay.                                        | NOAA                                                                                |
| METAMB88<br>METAMB90 | METRO NPDES & ambient subtidal monitor. METRO NPDES & ambient subtidal monitor. | Seattle METRO Seattle METRO                                                         |
| METAMB92             | METRO NPDES & ambient subtidal monitor.                                         | Seattle METRO                                                                       |
| NAVYHP84             | 1984 NAVY HP (EVRT) Sediment Character.                                         | Corps of Engineers, Seattle District                                                |
| NAVYHP85             | 1985 Navy HP (EVRT) Sediment Character.                                         | Corps of Engineers, Seattle District                                                |
| NAVYHP87             | 1987 NAVY HP (EVRT) sediment charater.                                          | Dept. of Navy, Western Division                                                     |
| NOAA84               | Benthic Surveillance 1984                                                       | NOAA                                                                                |
| NOAA86               | 1986 Benthic Surveillance (NST)                                                 | Nat'l Oceanic Atmospheric Administration                                            |
| OLYTERC2             | Olympus Terrace WTP Class II Inspection                                         | Department of Ecology, EILS                                                         |
| PENNWLC2             | Pennwalt Class II Inspection Report                                             | Department of Ecology, EILS                                                         |
| PIER53BL             | Pier 53-55 Sediment Cap Remediation Proj                                        | Metro Pollution Control Dept., Seattle                                              |
| POSTPTC2             | NPDES B'ham Post Point treatment plant.                                         | Department of Ecology/NWRO.                                                         |
| PSDDA1               | PSDDA Phase I baseline survey                                                   | Washington Department of Ecology                                                    |
| PSDDA2               | PSDDA Phase 2 baseline survey                                                   | Washington Department of Ecology                                                    |
| PSDDAM90             | 1990 PSDDA Post-Disposal Site Monitoring                                        | Department of Natural Resources                                                     |
| PSDDAM91             | PSDDA 1991 Monitoring/Port Gardner PGB09                                        | Department of Natural Resources, Aquatic                                            |
| PSDDAM92             | 1992 PSDDA full monitoring, Elliott Bay                                         | Department of Natural Resources                                                     |
| PSREF90              | Puget Sound Reference Areas Survey                                              | PTI Environmental Services                                                          |
| PTORCHC2             | Port Orchard WTP Class II Inspection                                            | Department of Ecology, EILS                                                         |
| PTWNPCC2<br>PTWNPENR | Pt. Townsend Paper Company Class 2 Port Townsend Pen-Reared Salmon Mortal.      | Department of Ecology/Pt. Town. Paper Co<br>Dept. of Ecology, Water Quality Invest. |
| SEAHURST             | 1982-84 Seahurst Baseline Study                                                 | Municip. of Metropolitan Seattle (METRO)                                            |
|                      | Puget Sound Reconnaissance Survey                                               | EPA                                                                                 |
| SED18804<br>SED18903 | March 18, 1989 Sediment Survey                                                  | TTCH                                                                                |
| SED19003             | Puget Sound Ambient Monitoring - 1990                                           | PTI Environmental Services                                                          |
| SED19103             | Puget Sound Ambient Monitoring - 1991                                           | Department of Ecology                                                               |
| SED19203             | Puget Sound Ambient Monitoring - 1992                                           | Department of Ecology                                                               |
| SHELLCII             | Shell Oil's Anacortes Refinery Class II                                         | Department of Ecology, EILS                                                         |
|                      | 90 Pt. of Port Angeles Sediment Monitoring                                      | Port of Port Angeles/Battelle                                                       |

| Survey   | Survey Description                         | Implementing Agency                      |
|----------|--------------------------------------------|------------------------------------------|
| SQMMON91 | 91 Pt. of Port Angeles Sediment Monitoring | Port of Port Angeles/Battelle            |
| SQMMON92 | 92 Pt. of Port Angeles Sediment Monitoring | Port of Port Angeles/Battelle            |
| SNDREF92 | Sound Refining NPDES Sediment Monitoring   | Parametrix, Inc. for Sound Refining      |
| SSRECON  | South Puget Sound Reconaissance Survey     | U.S. EPA                                 |
| TACCENC2 | Tacoma Central WTP Class II Inspection     | Department of Ecology, EILS              |
| TEXACOC2 | Texaco Inc.'s Anacortes Refinery Class 2   | Department of Ecology, EILS              |
| TPPSRECO | TPPS Preliminary survey                    | Municip. of Metropolitan Seattle (METRO) |
| MARTPPS  | TPPS Phase III A                           | Municip. of Metropolitan Seattle (METRO) |
| JULTPPS  | TPPS Phase III B                           | Municip. of Metropolitan Seattle (METRO) |
| TXNPDS92 | Texaco, Anacortes NPDES Sediment Studies   | Texaco Puget Sound Plant, Anacortes WA   |
| WBMARINA | Olympia/West Bay marina sampling.          | Thurston County Pub. Health & Soc. Svcs. |
| WYCKO_BL | Wyckoff Effluent Investigation: Baseline   | Wyckoff Co.                              |
| WYCKO_Q1 | Wyckoff Effluent Investigation: 1st Qtr.   | Wyckoff Company                          |
| WYCKO_Q2 | Wyckoff Effluent Investigation: 2nd Qtr.   | Wyckoff Company                          |
| WYCKO_Q3 | Wyckoff Effluent Investigation: 3rd Qtr.   | Wyckoff Company                          |
| WYCKO_Q4 | Wyckoff Effluent Investigation: 4th Qtr.   | Wyckoff Company                          |

# APPENDIX B BENTHIC ENDPOINT DATA MATRIX

|  |   |  | · |
|--|---|--|---|
|  |   |  |   |
|  |   |  |   |
|  |   |  | , |
|  |   |  |   |
|  | • |  |   |
|  |   |  |   |
|  | • |  |   |

Appendix B. Summary statistics for Benthic Reference Range Project. MO - refers to metals and organics were analyzed for at that station. S\* - refers to the type of sampler. 1=0.1 m2 and 2 = 0.06 m2. 2\*\* - refers to how TOC was arrived at if it was not analyzed for at the station. VS = volatile solids, FN = percent fines.

| MOAB        | 290           | 279     | 357     | 87      | 282     | 4       | 16      | 4       | 'n      | 10      | 205     | 112          | 108     | 178     | 175     | 106          | 51          | 69      | 57      | 76      | 30      | 15       | 42         | 32      | 20      | 76          | 48      | 50      | 80      | 43      | -       | <b>.</b>                                          | 7       |  |
|-------------|---------------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|--------------|---------|---------|---------|--------------|-------------|---------|---------|---------|---------|----------|------------|---------|---------|-------------|---------|---------|---------|---------|---------|---------------------------------------------------|---------|--|
| POAB        | 282           | 453     | 260     | 403     | 357     | 47      | 93      | 76      | 153     | 86      | 2149    | 2441         | 1692    | 1272    | 1318    | 1224         | 779         | 1621    | 1230    | 838     | 277     | 310      | 497        | 201     | 268     | 392         | 289     | 298     | 435     | 456     | 12      | 51                                                | 38      |  |
| TOTAX       | 83            | 68      | 26      | 72      | 82      | 4       | 15      | 10      | 15      |         | 37      | 55           | 37      | 35      | 37      | 32           | 21          | 59      | 21      | 21      | 57      | 49       | 19         | 43      | 51      | 59          | 55      | 19      | 69      | 62      | ν,      | 15                                                | 5       |  |
| TOAB        | 958           | 873     | 970     | 609     | 807     | 51      | 111     | 83      | 160     | 111     | 2389    | 2670         | 1829    | 1470    | 1564    | 1345         | 843         | 1695    | 1297    | 924     | 421     | 554      | 905        | 319     | 421     | 865         | 432     | 481     | 810     | 959     | 15      | 65                                                | 41      |  |
| <b>3</b> ** |               |         |         |         |         |         |         |         |         |         |         |              |         |         |         |              |             |         |         |         |         |          |            |         |         |             |         |         |         | -       |         |                                                   |         |  |
| % TOC       | 5.1           | 1.5     | 1.5     | 1.5     | 5.      | 7.4     | 7.4     | 7.4     | 7.4     | 7.4     | 3.4     | 3.4          | 3.4     | 3.4     | 3.4     | 3.13         | 3.13        | 3.13    | 3.13    | 3.13    |         | •        |            | 1       | _       | 8.          | 1.8     | 1.8     | 1.8     | 1.8     | m       | m                                                 | E.      |  |
| % FINES     | 29.4          | 29.4    | 29.4    | 29.4    | 29.4    | 40.4    | 40,4    | 40.4    | 40.4    | 40.4    | 74.2    | 74.2         | 74.2    | 74.2    | 74.2    | 95           | 95          | 95      | 95      | 95      | 18.9    | 18.9     | 18.9       | 18.9    | 18.9    | 30.9        | 30.9    | 30.9    | 30.9    | 30.9    | 73.5    | 73.5                                              | 73.5    |  |
| Depth (m)   | -11.7         | -111.7  | -11.7   | -11.7   | -11.7   | -12.8   | -12.8   | -12.8   | -12.8   | -12.8   | -11.3   | -113         | -113    | -11.3   | -11.3   | -7.6         | 27.6        | -7.6    | -7.6    | -7.6    | 8.8     | 90<br>90 | 80.<br>80. | 80      | 8.8     | -9.2        | -9.2    | -9.2    | -9.2    | -9.2    | -12.2   | -12.2                                             | -12.2   |  |
| LonSec      | 35.72         | 35.72   | 35.72   | 35.72   | 35.72   | 35.12   | 35.12   | 35.12   | 35.12   | 35.12   | 30.93   | 30.93        | 30.93   | 30.93   | 30.93   | 21.17        | 21.17       | 21.17   | 21.17   | 21.17   | 57.65   | 57.65    | 57.65      | 57.65   | 57.65   | 6.32        | 6.32    | 6.32    | 6.32    | 6.32    | 22.8    | 22.8                                              | 22.8    |  |
| LonMin      | 22            | 22      | 22      | 22      | 22      | 20      | 20      | 20      | 20      | 20      | 20      | 20           | 20      | 20      | 20      | 20           | 20          | 20      | 20      | 20      | 20      | 20       | 20         | 20      | 20      | 21          | 21      | 21      | 21      | 21      | 21      | 21                                                | 21      |  |
| LonDeg      | 122           | 122     | 122     | 122     | 122     | 122     | 122     | 122     | 122     | 122     | 122     | 122          | 122     | 122     | 122     | 122          | 122         | 122     | 122     | 122     | 122     | 122      | 122        | 122     | 122     | 122         | 122     | 122     | 122     | 122     | 122     | 122                                               | 122     |  |
| LatSec      | 18.01         | 18.01   | 18.01   | 18.01   | 18.01   | 43.6    | 43.6    | 43.6    | 43.6    | 43.6    | 2.76    | 2.76         | 2.76    | 2.76    | 2.76    | 24.72        | 24.72       | 24.72   | 24.72   | 24.72   | 20.86   | 20.86    | 20.86      | 20.86   | 20.86   | 15.56       | 15.56   | 15.56   | 15.56   | 15.56   | 15.14   | 15.14                                             | 15.14   |  |
| LatMin      | 35            | 35      | 35      | 35      | 35      | 34      | 34      | 3,4     | 34      | 34      | 35      | 35           | 35      | 35      | 35      | 33           | 33          | 33      | 33      | 33      | 35      | 35       | 35         | 35      | . 35    | 35          | 35      | 35      | 35      | 35      | 35      | 35                                                | 35      |  |
| LatDeg      | 47            | 47      | 47      | 47      | 47      | 47      | 47      | 47      | 47      | 47      | 47      | 47           | 47      | 47      | 47      | 47           | 47          | 47      | 47      | 47      | 47      | 47       | 47         | 47      | 47      | 47          | 47      | 47      | 47      | 47      | 47      | 47                                                | 47      |  |
| <u>د</u>    |               |         | -       | •~•     | ****    |         | -       | ****    | -       | ***     |         | <del>,</del> |         |         | -       | <del>,</del> | <del></del> |         |         | ****    | ,,,,,   | nim.     |            |         | ,       | <b>,,,,</b> | •       |         |         |         | -       | <del>, , , , , , , , , , , , , , , , , , , </del> | •~•     |  |
| ၁           | MO            | MO      | MO      | MO      | MO      | MO      | MO      | MO      | MO      | MO      | MO      | MO           | MO      | MO      | MO      | MO           | MO          | MO      | MO      | MO      | MO      | MO       | MO         | MO      | MO      | MO          | MO      | MO      | MO      | MO      | WO.     | MO                                                | MO      |  |
| SAMPLE      | AB-01/1       | AB-01/2 | AB-01/3 | AB-01/4 | AB-01/5 | EW-05/1 | EW-05/2 | EW-05/3 | EW-05/4 | EW-05/5 | EW-11/1 | EW-11/2      | EW-11/3 | EW-11/4 | EW-11/5 | KG-01/1      | KG-01/2     | KG-01/3 | KG-01/4 | KG-01/5 | NH-01/1 | NH-01/2  | NH-01/3    | NH-01/4 | NH-01/5 | NH-02/1     | NH-02/2 | NH-02/3 | NH-02/4 | NH-02/5 | NH-03/1 | NH-03/2                                           | NH-03/3 |  |
| STATION     | <b>AB</b> -01 | AB-01   | AB-01   | AB-01   | AB-01   | EW-05   | EW-05   | EW-05   | EW-05   | EW-05   | EW-11   | EW-11        | EW-11   | EW-11   | EW-11   | KG-01        | KG-01       | KG-01   | KG-01   | KG-01   | NH-01   | NH-01    | NH-01      | NH-01   | NH-01   | NH-02       | NH-02   | NH-02   | NH-02   | NH-02   | NH-03   | NH-03                                             | NH-03   |  |
| SURVEY      | EBCHEM        | EBCHEM  | EBCHEM  | EBCHEM  | EBCHEM  | EBCHEM  | EBCHEM  | EBCHEM  | EBCHEM  | EBCHEM  | EBCHEM  | EBCHEM       | EBCHEM  | EBCHEM  | EBCHEM  | EBCHEM       | EBCHEM      | EBCHEM  | EBCHEM  | EBCHEM  | EBCHEM  | EBCHEM   | EBCHEM     | EBCHEM  | EBCHEM  | EBCHEM      | EBCHEM  | EBCHEM  | EBCHEM  | EBCHEM  | EBCHEM  | EBCHEM                                            | EBCHEM  |  |

| SURVEY | STATION | SAMPLE  | CRAB | AMPAB | ECHAB | MISCAB  | POTAX | AMPTX    | AMPTX MOTAX ECHTAX | CHITAX | CRTX | MISCTX | Ħ     |       | E            | SDI              |
|--------|---------|---------|------|-------|-------|---------|-------|----------|--------------------|--------|------|--------|-------|-------|--------------|------------------|
| EBCHEM | AB-01   | AB-01/1 | 383  | 54    | 0     | en.     | 43    |          | 91                 | 0      | 20   | 7      | 1.288 | 0.675 | 99           | areast<br>denset |
| EBCHEM | AB-01   | AB-01/2 | 135  |       | 3     | 3       | 58    | <b>.</b> | 15                 | 7      |      | ю      | 1.413 | 0.725 | 89           | 13               |
| EBCHEM | AB-01   | AB-01/3 | 50   | 4     | 0     | 3       | 45    | 4        | 14                 | 0      | 15   | 2      | 1.29  | 989.0 | 62           | 10               |
| EBCHEM | AB-01   | AB-01/4 | 116  | 23    | 2     | 1       | 44    | 6        | 6                  | 7      | 16   |        | 1.402 | 0.755 | 69           | 14               |
| EBCHEM | AB-01   | AB-01/5 | 167  | 34    | 0     | pomá    | 44    | Π        | 17                 | 0      | 20   |        | 1.339 | 0.7   | 99           | 10               |
| EBCHEM | EW-05   | EW-05/1 | 0    | 0     | 0     | 0       | 3     | 0        | -                  | 0      | 0    | 0      | 0.328 | 0.544 | 14           |                  |
| EBCHEM | .EW-05  | EW-05/2 | 2    |       | 0     | 0       | Π     |          | 7                  | 0      | 73   | 0      | 0.589 | 0.501 | <u>&amp;</u> | 7                |
| EBCHEM | EW-05   | EW-05/3 | m    | 0     | 0     | 0       | 7     | 0        | -                  | 0      | 7    | 0      | 0.446 | 0.446 | 15           | , provid         |
| EBCHEM | EW-05   | EW-05/4 | νn   | 73    | 0     | 0       | . 10  | 7        | -                  | 0      | 4    | 0      | 0.591 | 0.503 | 30           | 7                |
| EBCHEM | EW-05   | EW-05/5 | 3    |       | 0     | 0       | 9     |          | 7                  | 0      | m    | 0      | 0.723 | 0.694 | 56           | m                |
| EBCHEM | EW-11   | EW-11/1 | 35   | -     | 0     | 0       | 22    |          | 9                  | 0      | 6    | 0      | 0.467 | 0.298 | 99           | power            |
| EBCHEM | EW-11   | EW-11/2 | 95   | 76    | 1     | gund    | . 31  | . 9      | 7                  |        | 14   |        | 0.537 | 0.309 | 99           | <b>pun</b> a     |
| EBCHEM | EW-11   | EW-11/3 | 28   | 7     | 0     | ****    | 24    | 4        | 4                  | 0      | ∞    |        | 0.607 | 0.387 | 65           | 7                |
| EBCHEM | EW-11   | EW-11/4 | 19   | 0     | 0     | ****    | 22    | 0        | 6                  | 0      | к'n  | *****  | 0.589 | 0.382 | 99           | 7                |
| EBCHEM | EW-11   | EW-11/5 | 70   | 0     | 0     | -       | 22    | 0        | 10                 | 0      | 4    |        | 0.607 | 0.387 | 99           | 73               |
| EBCHEM | KG-01   | KG-01/1 | 14   | 9     | 0     | ****    | 20    | 73       | 9                  | 0      | ξO   | 1      | 0.525 | 0.349 | . 19         | 7                |
| EBCHEM | KG-01   | KG-01/2 | 12   |       | 0     |         | 6     |          | 7                  | 0      | 4    | ***    | 0.54  | 0.409 | 69           | . 7              |
| EBCHEM | KG-01   | KG-01/3 | Ş    | 7     | 0     | 0       | 20    |          | \$                 | 0      | 4    | 0      | 0.389 | 0.266 | 89           |                  |
| EBCHEM | KG-01   | KG-01/4 | 10   |       | 0     | 0       | 13    |          | 9                  | 0      | 7    | 0      | 0.426 | 0.323 | 19           |                  |
| EBCHEM | KG-01   | KG-01/5 | 10   | 4     | 0     | 0       | 12    |          | 5                  | 0      | 4    | 0      | 0.528 | 0.399 | 29           | 2                |
| EBCHEM | NH-01   | NH-01/1 | 114  | Э     | 0     | 0       | 41    | 2        | 7                  | 0      | Φ    | 0      | 1.366 | 0.778 | 64           | 13               |
| EBCHEM | NH-01   | NH-01/2 | 228  | 4     | Ö     | ****    | 34    | 4        | 5                  | 0      | 6    | -      | 1.151 | 0.681 | 57           | 7                |
| EBCHEM | NH-01   | NH-01/3 | 361  | 10    | 0     | pand    | 46    | 2        | 10                 | 0      | 6    | F774   | 1.215 | 0.665 | 65           | 6                |
| EBCHEM | NH-01   | NH-01/4 | 84   | 2     | 0     | 7       | 27    |          | 80                 | 0      | 7    | 4      | 1.266 | 0.775 | 99           | 10               |
| EBCHEM | NH-01   | NH-01/5 | 129  | Ś     | 0     | <b></b> | 33    | 4        | 7                  | 0      | 6    |        | 1.257 | 0.736 | 57           | 6                |
| EBCHEM | NH-02   | NH-02/1 | 83   | 16    |       | 33      | 32    | ς.       | 13                 |        | 10   | 7      | 1.314 | 0.742 | 09           | 10               |
| EBCHEM | NH-02   | NH-02/2 | 88   | 14    | 0     | 9       | 37    | 4        | 5                  | 0      | Φ,   | ю      | 1,311 | 0.754 | 62           | 12               |
| EBCHEM | NH-02   | NH-02/3 | 123  | 27    | 0     | 8       | 33    | 7        | <b>∞</b>           | 0      | 11   | 2      | 1.454 | 0.814 | 63           | 17               |
| EBCHEM | NH-02   | NH-02/4 | 206  | 27    |       | 54      | 40    | 9        | 11                 |        | 13   | 33     | 1.421 | 0.773 | 59           | 13               |
| EBCHEM | NH-02   | NH-02/5 | 58   | 4     | 4     | 36      | 40    | 1        | 6                  | 7      | 7    | 33     | 1.365 | 0.762 | 63           | 12               |
| EBCHEM | NH-03   | NH-03/1 | 2    | bout  | 0     | 0       | 7     | -        | pred               | 0      | 2    | 0      | 0.412 | 0.59  | 14           | 7                |
| EBCHEM | NH-03   | NH-03/2 | 7    | 5     | 0     | 0       | Ŋ     | 4        | 4                  | 0      | vn   | 0      | 0.632 | 0.537 | 16           | 33               |
| EBCHEM | NH-03   | NH-03/3 |      | ***** | 0     | 0       | 2     |          | 7                  | 0      | -    | 0      | 0.198 | 0.283 | 4            |                  |

TOAB is calculated by summing POAB, MOAB, CRAB, ECHAB, and MISCAB.

| MOAB        | 0       | 0       | 01      | S       | 23      | 7       | 20      | 148     | 89      | 15      | 42      | 22      | 348     | 331     | 503      | 493     | 451     | 26      | 19      | 20      | 28            | 48      | 133     | 160     | 133     | 147     | 198     | 320     | 351     | 301     | 299     | 359     | 279        |
|-------------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|----------|---------|---------|---------|---------|---------|---------------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|------------|
| POAB M      | 23      | 4       | 1277    | 928     | 753     | 426     | 1043    | 748     | 581     | 122     | 243     | 359     | 125     | 137     | 170      | 173     | 134     | 103     | 75      | 106     | 388           | 64      | 395     | 215     | 19      | 74      | 139     | 207     | 419     | 307     | 265     | 361     | 140        |
| TOTAX PC    | S       | 3       | 43      | 33      | 36      | 21      | 27      | 61      | 43      | 24      | 38      | 37      | 61      | 64      | 73       | 63      | 99      | 25      | 61      | 20      | 26            | 19      | 55      | 48      | 34      | 41      | 43      | 48      | 61      | 47      | 20      | 55      | <i>L</i> 9 |
| TOAB TO     | 25      | 15      | 1323    | 849     | 798     | 442     | 1075    | 922     | 699     | 145     | 299     | 428     | 753     | 689     | 1034     | 871     | 880     | 245     | 185     | 300     | 495           | 161     | 770     | 581     | 342     | 350     | 536     | 614     | 855     | 089     | 632     | 832     | 545        |
| 2** TC      |         |         |         |         |         |         |         |         |         |         |         |         |         |         |          |         |         |         |         |         |               |         |         |         |         |         |         |         |         |         |         |         |            |
| % TOC 2     | ę       | 3       | 7       | 2       | 7       | 7       | 7       | ы       | 7       | 7       |         | 63      | 0.7     | 0.7     | 0.7      | 0.7     | 0.7     | 1.3     | 1.3     | 1.3     | 13            | 1.3     | 1.5     | 1.5     | 1.5     | 1.5     | 1.5     | 0.8     | 8.0     | 0.8     | 8.0     | 8.0     | 0.4        |
| % FINES %   | 73.5    | 73.5    | 46.4    | 46.4    | 46.4    | 46.4    | 46.4    | 53.2    | 53.2    | 53.2    | 53.2    | 53.2    | 24.4    | 24.4    | 24.4     | 24.4    | 24.4    | 83.9    | 83.9    | 83.9    | 83.9          | 83.9    | 88.2    | 88.2    | 88.2    | 88.2    | 88.2    | 23.6    | 23.6    | 23.6    | 23.6    | 23.6    | 12.2       |
| Depth (m) % | -12.2   | -12.2   | -11.9   | -11.9   | -11.9   | -11.9   | -11.9   | -9.4    | -9.4    | -9.4    | -9,4    | 4.6     | -12.3   | -12.3   | -12.3    | -12.3   | -12,3   | œှ      | æp      | ထု      | œ <sub></sub> | oç.     | 9.6-    | 9.6-    | 9.6-    | 9.6     | 9.6-    | -9.2    | -9.2    | -9.2    | -9.2    | -9.2    | 6.8-       |
| LonSec D    | 22.8    | 22.8    | 41.12   | 41.12   | 41.12   | 41.12   | 41.12   | 9.35    | 9.35    | 9.35    | 9.35    | 9.35    | 6.29    | 6.29    | 6.29     | 6.29    | 6.29    | 56.88   | 56.88   | 56.88   | 56.88         | 56.88   | 1.25    | 1.25    | 1.25    | 1.25    | 1.25    | 13.87   | 13.87   | 13.87   | 13.87   | 13.87   | \$0.65     |
| LonMin      | 21      | 21      | 21      | 21      | 21      | 21      | 7       | 22      | 22      | 22      | 22      | 22      | 22      | 22      | 22       | 22      | 22      | 22      | 22      | 22      | 22            | 22      | 28      | 28      | 28      | 28      | 28      | 26      | 26      | 26      | 26      | 26      | 24         |
| LonDeg      | 122     | 122     | 122     | 122     | 122     | 122     | 122     | 122     | 122     | 122     | 122     | 122     | 122     | 122     | 122      | 122     | 122     | 122     | 122     | 122     | 122           | 122     | 122     | 122     | 122     | 122     | 122     | 122     | 122     | 122     | 122     | 122     | 122        |
| LatSec      | 15.14   | 15.14   | 8.19    | 8.19    | 8.19    | 8.19    | 8.19    | 2.08    | 2.08    | 2.08    | 2.08    | 2.08    | 25.67   | 25.67   | 25.67    | 25.67   | 25.67   | 57.56   | 57.56   | 57.56   | 57.56         | 57.56   | 22.74   | 22.74   | 22.74   | 22.74   | 22.74   | 11.98   | 11.98   | 11.98   | 11.98   | 11.98   | 3.04       |
| LatMin      | 35      | 35      | 35      | 35      | 35      | 35      | 35      | 35      | 35      | 35      | 35      | 35      | 37      | 37      | 37       | 37      | 37      | 37      | 37      | 37      | 37            | 37      | 10      | 10      | 10      | 10      | 10      | 90      | 80      | 00      | ••      | ∞       | 7          |
| LatDeg      | 47      | 47      | 47      | 47      | 47      | 47      | 47      | 47      | 47      | 47      | 47      | 47      | 47      | 47      | 47       | 47      | 47      | 47      | 47      | 47      | 47            | 47      | 48      | 48      | 48      | 48      | 48      | 48      | 48      | 48      | 48      | 48      | 48         |
| *           |         | 1       | _       | 1       | - 0     | - 0     |         | 0       | - 0     | 0 1     |         |         | 0       | 0       | 0        |         | 0       | 0       | 0       | - 0     | - 0           | -       | - 0     | 0       | 0       | 0       | MO 1       |
| ο,          | MO      | MO      | MO      | MO      | MO      | WO      | MO      | MO      | MO      | MO      | MO      | · MO    | MO      | MO      | OM<br>OM | MO      | MO      | MO      | MO      | MO      | MO            | MO      | MO      | MO      | MO      | MO      |         |         |         |         |         |         |            |
| SAMPLE      | NH-03/4 | NH-03/5 | NH-04/1 | NH-04/2 | NH-04/3 | NH-04/4 | NH-04/5 | NH-08/1 | NH-08/2 | NH-08/3 | NH-08/4 | NH-08/5 | NS-03/1 | NS-03/2 | NS-03/3  | NS-03/4 | NS-03/5 | NS-08/1 | NS-08/2 | NS-08/3 | NS-08/4       | NS-08/5 | PS-01/1 | PS-01/2 | PS-01/3 | PS-01/4 | PS-01/5 | PS-02/1 | PS-02/2 | PS-02/3 | PS-02/4 | PS-02/5 | PS-03/1    |
| STATION     | NH-03   | NH-03   | NH-04   | NH-04   | NH-04   | NH-04   | NH-04   | NH-08   | NH-08   | NH-08   | NH-08   | NH-08   | NS-03   | NS-03   | NS-03    | NS-03   | NS-03   | NS-08   | NS-08   | NS-08   | NS-08         | NS-08   | PS-01   | PS-01   | PS-01   | PS-01   | PS-01   | PS-02   | PS-02   | PS-02   | PS-02   | PS-02   | PS-03      |
| SURVEY      | EBCHEM   | EBCHEM  | EBCHEM  | EBCHEM  | EBCHEM  | EBCHEM  | EBCHEM        | EBCHEM  | EBCHEM  | EBCHEM  | EBCHEM  | EBCHEM  | EBCHEM  | EBCHEM  | EBCHEM  | EBCHEM  | EBCHEM  | EBCHEM  | EBCHEM     |

| SDI          | <del></del> |         |         |         | -       | -       | -       | 9       | 'n      | 7       | 6       | 9       | 7       | 0       | 6       | <b>∞</b> | ∞       | М       | ĸ       | ťΩ      | 7        | ĸ          | 7       | <b>∞</b> | ∞       | œ       | 7       | 0       | œ       | 00      | 6       | 10      | 6         |
|--------------|-------------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|----------|---------|---------|---------|---------|----------|------------|---------|----------|---------|---------|---------|---------|---------|---------|---------|---------|-----------|
| · III        | 3           |         | 63      | 61      | 62      | 65      | 63      | 69      | 89      | 89      | 69      | 19      | 61      | 63      | 64      | 99       | 63      | 17      | 26      | 28      | 64       | . 36       | 73      | 72       | 70      | 19      | 73      | 74      | 7.5     | 89      | 19      | 70      | 7.7       |
| <b>~</b>     | 0.411       | 0.442   | 0.21    | 0.279   | 0.25    | 0,235   | 0.208   | 0.575   | 0.584   | 0.735   | 0.716   | 0.59    | 0.643   | 69.0    | 0.674   | 0.687    | 0.668   | 0.576   | 0.627   | 0.522   | 0.376    | 0.74       | 0.651   | 0.707    | 969.0   | 0.715   | 9.676   | 0.731   | 0.662   | 0.678   | 0.688   | 0.686   | 0.655     |
| Ħ            | 0.287       | 0.211   | 0.343   | 0.423   | 0.389   | 0.31    | 0.298   | 1.026   | 0.954   | 1.015   | 1.131   | 0.925   | 1.148   | 1.247   | 1.256   | 1.235    | 1.216   | 0.805   | 0.802   | 0.68    | 0.532    | 0.946      | 1.132   | 1.189    | 1.066   | 1.154   | 1.104   | 1.23    | 1.181   | 1.134   | 1.169   | 1.194   | 1.196     |
| MISCTX       | 0           | 0       | 2       | 0       | 0       | 0       | 0       | 0       | ĸ       |         | 0       | 0       | 0       | 0       | 0       |          | 0       | 0       | 0       | 0       | 0        | -          | 7       |          | 0       | 0       | 73      |         | 2       |         | 7       | 4       | т         |
| CRTX         | 6           | ***     | 14      | 11      | 13      | 10      | S       | 10      | 4       | 2       | 4       | 9       | 10      | 4       | 90      | 7        | <u></u> | 4       | 3       | S       | 7        | 2          |         | -        | 7       | 7       | 6       | 10      | 17      | 7       | 13      | Ξ       | 13        |
| нтах         | 0           | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | _        | 0       | 0       | 0       | 0       |          | 0          | 0       | 0        | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | -         |
| мотах еснтах | 0           | 0       | S       | 2       | 9       |         | 4       | 12      | 10      | φ.      | 12      | ∞       | 14      | 14      | 61      | 12       | 91      | 9       | 4       | 7       | <b>.</b> | 10         | 10      |          | 5       | 15      | 12      | П       | 12      | 10      | 13      |         | 16        |
| AMPTX 1      | 71          | 0       | 7       | 6       | 9       | 5       | -       | 2       | 0       | 0       | 0       | 0       |         | 9       | 7       | 4        | 4       | 2       |         | -       | 7        | 1          | œ       | 9        | Ś       | £C      | 9       | Ś       | 10      | æ       | 7       | ţ       | 4         |
| POTAX        | 3           | 7       | 20      | 20      | 17      | 10      | 16      | 38      | 79      | 15      | 22      | 23      | 37      | 36      | 36      | 38       | 39      | 12      | 10      | 7       | య        | S          | 32      | 25       | 7       | 61      | 20      | 76      | 30      | 53      | 22      | 29      | 34        |
| MISCAB       | 0           | 0       | 2       | 0       | 0       | 0       | 0       | 0.      | 9       | 2       | 0       | 0       | . 0     | 0       | 0       | 7        | 0       | 0       | 0       | 0       | 0        |            | 3       |          | 0       | 0       | 2       | -       | 7       | 9       | ю       | 10      | 00        |
| ЕСНАВ        | 0           | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | ş        | 0       | 0       | 0       | Ö       | ,        | 0          | 0       | 0        | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       |           |
| AMPAB        | 2           | 0       | 12      | 15      | 7       | 9       | -       | ť       | 0       | 0       | 0       | 0       | 4       | 12      | 15      | \$       | 9       | 4       | 9       | 2       | œ        | · ••••     | 203     | 156      | 135     | 106     | 146     | 28      | 31      | S.      | 23      | 36      | <b>80</b> |
| CRAB A       | 2           | want    | 33      | 18      | 22      | 14      | 7       | 26      | 14      | . 9     | 7       | 17      | 280     | 221     | 361     | 202      | 295     | 10      | 6       | 7       | 9I       | <b>6</b> 4 | 239     | 205      | 148     | 129     | 197     | 98      | 83      | 99      | 65      | 102     | 117       |
| SAMPLE       | NH-03/4     | NH-03/5 | NH-04/1 | NH-04/2 | NH-04/3 | NH-04/4 | NH-04/5 | NH-08/1 | NH-08/2 | NH-08/3 | NH-08/4 | NH-08/5 | NS-03/1 | NS-03/2 | NS-03/3 | NS-03/4  | NS-03/5 | NS-08/1 | NS-08/2 | NS-08/3 | NS-08/4  | NS-08/5    | PS-01/1 | PS-01/2  | PS-01/3 | PS-01/4 | PS-01/5 | PS-02/1 | PS-02/2 | PS-02/3 | PS-02/4 | PS-02/5 | PS-03/1   |
| STATION      | NH-03       | NH-03   | NH-04   | NH-04   | NH-04   | NH-04   | NH-04   | NH-08   | NH-08   | NH-08   | NH-08   | NH-08   | NS-03   | NS-03   | NS-03   | NS-03    | NS-03   | NS-08   | NS-08   | NS-08   | NS-08    | NS-08      | PS-01   | PS-01    | PS-01   | PS-01   | PS-01   | PS-02   | PS-02   | PS-02   | PS-02   | PS-02   | PS-03     |
| SURVEY       | EBCHEM      | EBCHEM  | EBCHEM  | EBCHEM  | EBCHEM  | EBCHEM  | EBCHEM  | ЕВСНЕМ  | EBCHEM   | EBCHEM  | EBCHEM  | EBCHEM  | EBCHEM  | EBCHEM   | EBCHEM     | EBCHEM  | EBCHEM   | EBCHEM  | EBCHEM  | EBCHEM  | EBCHEM  | EBCHEM  | EBCHEM  | EBCHEM  | EBCHEM  | EBCHEM    |

| MOAB        | 242     | 252     | 307     | 313     | 297     | 231     | 301     | 141     | 139     | 18      | 135     | 19      | 70      | 00      | 226     | 83      | 272     | 263     | 127     | 32      | 39      | .113    | 38      | 47      | 74      | 31      | 33      | 87      | 109     | 99      | 47      | 84      | 41      |
|-------------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|
| POAB        | 98      | 108     | 144     | 124     | 144     | 57      | 166     | 207     | 292     | 248     | 440     | 226     | 247     | 478     | 287     | 190     | 221     | 174     | 243     | 602     | 486     | 693     | 459     | 370     | 762     | 784     | 794     | 755     | 716     | 1784    | 2427    | 2052    | 1973    |
| TOTAX       | 50      | 52      | 48      | 47      | 51      | 39      | 62      | 73      | 70      | 34      | 09      | 32      | 46      | 48      | 99      | 49      | 59      | 20      | 99      | 45      | 44      | 9       | 20      | 39      | 47      | 41      | 53      | 49      | 44      | 52      | 53      | 53      | 43      |
| TOAB        | 418     | 435     | 556     | 999     | 635     | 443     | 999     | 522     | 910     | 291     | 2946    | 272     | 924     | 1068    | 705     | 366     | 710     | 914     | 544     | 069     | 758     | 1181    | 169     | 473     | 1905    | 1527    | 2086    | 1267    | 1241    | 1964    | 2646    | 2235    | 2068    |
| <b>5</b> ** |         |         |         |         |         |         |         |         |         |         |         |         |         |         |         |         |         |         |         |         |         |         |         |         |         |         |         |         |         |         |         |         |         |
| % TOC       | 0.4     | 0.4     | 0.4     | 0.4     | 4.0     | 4.0     | 0.4     | 9.0     | 0.4     | 6.8     | 6.8     | 6.8     | 6.8     | 6.8     | 5.1     | 5.1     | 5.1     | 5.1     | 5.1     | 2.8     | 2.8     | 2.8     | 2.8     | 2.8     | 5.2     | 5.2     | 5.2     | 5.2     | 5.2     | 2.5     | 2.5     | 2.5     | . 2.5   |
| % FINES     | 12.2    | . 12.2  | 12.2    | 12.2    | Ξ       |         |         |         | =       | 84.2    | 84.2    | 84.2    | 84.2    | 84.2    | 87.9    | 8.79    | 8.79    | 67.8    | 8.79    | 76.1    | 76.1    | 76.1    | 76.1    | 76.1    | 71.9    | 71.9    | 71.9    | 71.9    | 71.9    | 62.4    | 62.4    | 62.4    | 62.4    |
| Depth (m)   | 6.8     | 6.8-    | 68-     | -8.9    | 9.8-    | -8.6    | 9.8-    | -8.6    | -8.6    | -9.4    | 4.6-    | -9.4    | -9.4    | 4.6-    | 4.6-    | -9.4    | -9.4    | -9.4    | -9.4    | -7.6    | -7.6    | -7.6    | -7.6    | -7.6    | -7.3    | -7.3    | -7.3    | -7.3    | -7.3    | -7.5    | -7.5    | -7.5    | -7.5    |
| LonSec      | 50.65   | 50.65   | 50.65   | 50.65   | 39.81   | 39.81   | 39.81   | 39.81   | 39.81   | 11.51   | 11.51   | 11.51   | 11.51   | 11.51   | 7.01    | 7.01    | 7.01    | 7.01    | 7.01    | 26.77   | 26.77   | 26.77   | 26.77   | 26.77   | 26.02   | 26,02   | 26.02   | 26.02   | 26.02   | 25.33   | 25.33   | 25.33   | 25.33   |
| LonMin      | 24      | 24      | 24      | 24      | 23      | 23      | 23      | 23      | 23      | 20      | 70      | 20      | 20      | 20      | 21      | 21      | 21      | 21      | 21      | 21      | 21      | 21      | 21      | 21      | 21      | 21      | 21      | 21      | 21      | 21      | 21      | 21      | 21      |
| LonDeg      | 122     | 122     | 122     | 122     | 122     | 122     | 122     | 122     | 122     | 122     | 122     | 122     | 122     | 122     | 122     | 122     | 122     | 122     | 122     | 122     | 122     | 122     | 122     | 122     | 122     | 122     | 122     | 122     | 122     | 122     | 122     | 122     | 122     |
| LatSec      | 3.04    | 3.04    | 3.04    | 3.04    | 11.7    | 11.7    | 11.7    | 11.7    | 11.7    | 4.19    | 4.19    | 4.19    | 4.19    | 4.19    | 47.8    | 47.8    | 47.8    | 47.8    | 47.8    | 8.87    | 8.87    | 8.87    | 8.87    | 8.87    | 40.5    | 40.5    | 40.5    | 40.5    | 40.5    | 54.48   | 54.48   | 54.48   | 54.48   |
| LatMin      | 7       | 7       | 7       | 7       | 9       | 9       | 9       | 9       | 9       | 36      | 36      | 36      | 36      | 36      | 36      | 36      | 36      | 36      | 36      | 35      | 35      | 35      | 35      | 35      | 34      | 34      | 34      | 34      | 34      | 34      | 34      | 34      | 34      |
| LatDeg      | 48      | 84      | 45      | 48      | 48      | 48      | 48      | 48      | 48      | 47      | 47      | 47      | 47      | 47      | 47      | 47      | 47      | 47      | 47      | 47      | 47      | 47      | 47      | 47      | 47      | 47      | 47      | 47      | 47      | 47      | 47      | 47      | 47      |
| <b>*</b> 20 | -       | *****   | ****    |         | -       |         |         | -       | _       | -       |         |         |         |         |         | ,       | ****    | ,       |         |         |         |         |         | ***     |         |         |         | -       |         | ••••    |         |         | ****    |
| C           | MO      | QV.     | M<br>O  | MO      | MO      | MO      | Ø<br>Q  | MO      |
| SAMPLE      | PS-03/2 | PS-03/3 | PS-03/4 | PS-03/5 | PS-04/1 | PS-04/2 | PS-04/3 | PS-04/4 | PS-04/5 | SS-04/1 | SS:04/2 | SS-04/3 | SS-04/4 | SS-04/5 | SS-11/1 | SS-11/2 | SS-11/3 | SS-11/4 | SS-11/5 | WW-09/1 | WW-09/2 | WW-09/3 | WW-09/4 | WW-09/5 | WW-11/1 | WW-11/2 | WW-11/3 | WW-11/4 | WW-11/5 | WW-14/1 | WW-14/2 | WW-14/3 | WW-14/4 |
| STATION     | PS-03   | PS-03   | PS-03   | PS-03   | PS-04   | PS-04   | PS-04   | PS-04   | PS-04   | SS-04   | SS-04   | SS-04   | SS-04   | SS-04   | SS-11   | SS-11   | SS-11   | SS-11   | SS-11   | 60-WW   | 60-MM   | 60-WW   | WW-09   | 60-WW   | WW-11   | WW-11   | WW-11   | WW-11   | WW-11   | WW-14   | WW-14   | WW-14   | WW-14   |
| SURVEY      | EBCHEM  |

| <del></del>        | 9       | 6        | 7       | ιΩ      | œ       | ) fr    | . 0     | 15      | 13      | ν       | ,       | 7       | 4       | 4       | 0       | 01      | 6       | 9       | Ξ       | 9             | ς.      | 9       | 9       | 7       | e            | 2       | ъ       | 4       | "       | 7       |          | 63      |         |
|--------------------|---------|----------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------------|---------|---------|---------|---------|--------------|---------|---------|---------|---------|---------|----------|---------|---------|
| iOS                | _       |          | •       | _       | 10      |         |         |         | **      |         |         |         |         |         |         |         | _       |         |         |               |         |         |         |         |              |         |         |         |         |         |          |         |         |
| E                  | 70      | 71       | 73      | 70      | 75      | 65      | 75      | 75      | 78      | 99      | 65      | 19      | 20      | 64      | - 89    | 69      | 19      | 19      | 89      | 99            | 99      | 19      | 19      | 64      | 65           | 99      | 65      | 65      | 99      | 99      | 99       | 99      | 19      |
| F-,                | 0.62    | 0.661    | 0.641   | 0.594   | 0.636   | 0.513   | 0.653   | 0.759   | 0.777   | 0.59    | 0.288   | 0.711   | 0.479   | 0.522   | 0.721   | 0.763   | 0.716   | 0.63    | 0.74    | 0.556         | 0.618   | 0.614   | 0.632   | 0.658   | 0.463        | 0.419   | 0.453   | 0.543   | 0.489   | 0.37    | 0.359    | 0.377   | 0.315   |
| <u> </u>           | 1.054   | 1.134    | 1.078   | 0.994   | 1.086   | 0.816   | 1.17    | 1.415   | 1.434   | 0.903   | 0.513   | 1.07    | 0.796   | 0.878   | 1.311   | 1.289   | 1.267   | 1.07    | 1.347   | 0.919         | 1.016   | 1.091   | 1.074   | 1.047   | 0.773        | 9.676   | 0.781   | 0.918   | 0.804   | 0.635   | 0.619    | . 0.65  | 0.515   |
| MISCTX             | 7       | 4        | ю       | 2       | 0       | 0       | 7       | 4       |         | 0       | 0       | 0       | 0       | 7       | -       |         | 7       | 0       | 0       |               | 7       |         | m       | <b></b> |              | 0       | 4       | -       | -       | *****   | 7        | 4       | 7       |
| CRTX               | 6       | <b>∞</b> | Š       | 7       | 12      | 7       | 4       | 12      | 13      | 12      | - mad   | 6       | Ξ       | 2       | 18      | 91      | 15      | 14      | 16      | 7             | 10      | 15      | 16      | Ş       | 7            | =       | 12      | 6       |         | 7       | 01       | 6       | 9       |
|                    | 0       | 0        | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       |         | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0             | 0       | -       |         | 0       |              | -       | 7       | 0       | 0       | 0       | 0        | 0       | 0       |
| OTAX EC            | 14      |          | 15      | 13      | ,       | 10      | 12      | 14      | =       | 4       | 10      | 4       | 12      | 6       | 14      | 10      | 15      | 12      | 12      | 6             | 7       | 6       | ∞       | S       | · <b>v</b> o | S       | 9       | 6       | ĸ       | 10      | <b>∞</b> | ∞       | 9       |
| AMPTX MOTAX ECHTAX | 4       | 2        | 2       | 2       | 9       | 4       | 4       | 7       | ∞       | 9       | 0       | 3       | 5       | 3       | 7       | 7       | 9       | 9       | 7       | 3             | 9       | 6       | 10      | 2       | <b>5</b>     | 9       | 7       | 5       | 9       | 5       | \$       | 7       | 4       |
| POTAX              | 25      | 28       | 25      | 25      | 28      | 22      | 33      | 43      | 45      | 8       | 38      | 19      | 23      | 27      | 33      | 22      | 27      | 24      | 38      | 27            | 25      | 33      | 22      | 28      | 32           | 24      | 28      | 29      | 27      | 34      | 32       | 31      | 53      |
| MISCAB             | 7       | 4        | S       | 7       | 0       | 0       |         | 16      |         | 0       | 0       | 0       | 0       | 7       |         | -       | 00      | 0       | 0       | -             | .7      | -       | т       | -       | ****         | 0       | 4       |         |         | -       | 11       | 10      | ĸ       |
| ECHAB 1            | 0       | 0        | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | -       | 0       | 0       | 0       | 0       | 0 .     | 0       | 0       | 0       | 0             | 0       | 7       | -       | 0       | m            | 7       | 7       | 0       | 0       | 0       | 0        | 0       | 0       |
| AMPAB              | 7       | 4        | 2       | S       | ,<br>,  | 7       | 01      | 7       | 12      | 10      | 0       | 13      | 13      | 10      | 72      | 44      | 71      | 83      | 50      | 26            | 93      | 101     | . 62    | 10      | 137          | 82      | 182     | 123     | 96      | 66      | 117      | 52      | 43      |
| CRAB               | 88      | 99       | 100     | 127     | 194     | 155     | 193     | 158     | 178     | 25      | 2370    | 27      | 209     | 200     | 161     | 88      | 209     | 477     | 174     | 54            | 231     | 370     | 196     | 55      | 1065         | 710     | 1200    | 419     | 415     | 113     | 158      | 87      | 49      |
| SAMPLE             | PS-03/2 | PS-03/3  | PS-03/4 | PS-03/5 | PS-04/1 | PS-04/2 | PS-04/3 | PS-04/4 | PS-04/5 | SS-04/1 | SS-04/2 | SS-04/3 | SS-04/4 | SS-04/5 | SS-11/1 | SS-11/2 | SS-11/3 | SS-11/4 | SS-11/5 | WW-09/1       | WW-09/2 | WW-09/3 | WW-09/4 | WW-09/5 | WW-11/1      | WW-11/2 | WW-11/3 | WW-11/4 | WW-11/5 | WW-14/1 | WW-14/2  | WW-14/3 | WW-14/4 |
| STATION            | PS-03   | PS-03    | PS-03   | PS-03   | PS-04   | PS-04   | PS-04   | PS-04   | PS-04   | SS-04   | SS-04   | SS-04   | SS-04   | SS-04   | SS-11   | SS-11   | SS-11   | SS-111  | SS-11   | WW-09         | 60-WW   | 60-WW   | WW-09   | WW-09   | WW-11        | WW-11   | WW-11   | WW-11   | WW-11   | WW-14   | WW-14    | WW-14   | WW-14   |
| SURVEY             | EBCHEM  | EBCHEM   | EBCHEM  | EBCHEM  | EBCHEM  | EBCHEM  | EBCHEM  | EBCHEM  | EBCHEM  | EBCHEM  | EBCHEM  | EBCHEM  | EBCHEM  | EBCHEM  | EBCHEM  | EBCHEM  | EBCHEM  | EBCHEM  | EBCHEM  | <b>ЕВСНЕМ</b> | EBCHEM  | EBCHEM  | EBCHEM  | EBCHEM  | EBCHEM       | EBCHEM  | EBCHEM  | EBCHEM  | EBCHEM  | EBCHEM  | EBCHEM   | EBCHEM  | EBCHEM  |

| MOAB      | 57      | 0      | 0      | 0           | 0      | 7      | 7      | ∞           | 4      | 6      | 8      | \$     |        | 7      | ο,     | 7      | 23     | 99     | 6      | 44     | 9      | 206    | 57         | 238    | 87     | 112    | 122    | 58     | 85     | 55     | 28     | 155    |
|-----------|---------|--------|--------|-------------|--------|--------|--------|-------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| POAB      | 2165    | 35     | 31     | 25          | 106    | 41     | 1202   | 1961        | 1530   | 606    | 1623   | 19     | 27     | 18     | 20     | 26     | 1453   | 626    | 442    | 467    | 793    | 135    | 73         | 83     | 80     | 29     | 178    | 52     | 231    | 235    | 93     | 06     |
| TOTAX     | SI      | 4      | 5      | m           | ę,     | 9      | 15     | 50          | 4      | 13     | 18     | 10     | 22     | 1.1    | 18     | 13     | 27     | 36     | 28     | 28     | 36     | 63     | 43         | 9      | 20     | 46     | 73     | 43     | 99.    | 89     | 47     | 44     |
| TOAB      | 2285    | 84     | 143    | 40          | 154    | 160    | 1383   | 3255        | 2551   | 1226   | 1923   | 47     | 62     | 83     | 61     | 80     | 1888   | 1711   | 876    | 826    | 1386   | 1875   | 758        | 1694   | 1399   | 764    | 793    | 182    | 737    | 754    | 308    | 475    |
| )C 2**    | 2.5     | 10.7   | 10.7   | 10.7        | 10.7   | 10.7   | 29.4   | 29.4        | 29.4   | 29.4   | 29.4   | 9      | 9.     | 9      | 9      | 9      | 11.8   | 11.8   | 11.8   | 11.8   | 11.8   | 2.2    | 2.2        | 2.2    | 2.2    | 2.2    | 4.7    | 4.7    | 4.7    | 4.7    | 4.7    | 0.2    |
| ES %TOC   | 62.4    | 78.7   | 78.7   | 78.7        | 78.7   | 78.7   | 6.85   | 58.9        | 6'85   | 58.9   | 58.9   | 56.7   | 56.7   | 56.7   | 56.7   | 56.7   | 77.1   | 17.1   | 77.1   | 77.1   | 77.1   | 8.1    | <u>~</u> . | 8.1    | 8.1    | 8.1    | 32.2   | 32.2   | 32.2   | 32.2   | 32.2   | 4.4    |
| % FINES   | _       | 1~     |        | •           |        | •      | •      | 7,          | ٠,     | 7,     | ٧,     | ٠,     | ٠,     | ٧,     | • •    |        |        | •      | •-     | •      |        |        |            |        |        |        |        | 1-1    | .,     | ,      | 67     | ÷      |
| Depth (m) | -7.5    | 5.1    | 5.1    | 5.1         | 5.1    | 5.1    | 8.7    | 8.7         | 8.7    | 8.7    | 8.7    | 3.7    | 3.7    | 3.7    | 3.7    | 3.7    | 1.6    | 9.1    | 1.6    | 9.1    | 1,6    | 4.7    | 4.7        | 4.7    | 4.7    | 4.7    | 8.6    | 8.6    | 8.6    | 8.6    | 8.6    | 8.1    |
| LonSec    | 25.33   | 89     | 59     | 59          | 59     | 59     | 6.7    | 6.7         | 6.7    | 6.7    | 6.7    | 1.89   | 1.89   | 1.89   | 1.89   | 1.89   | 14.04  | 14.04  | 14.04  | 14.04  | 14.04  | 20.54  | 20.54      | 20.54  | 20.54  | 20.54  | 36.3   | 36.3   | 36.3   | 36,3   | 36.3   | 53.82  |
| LonMin    | 21      | 2      | 12     | 12          | . 12   | 12     | 13     | 13          | 13     | 13     | .13    | 13     | 13     | 13     | 13     | 13     | 13     | 5      | 13     | 13     | 13     | 13     | 13         | 13     | 13     | 13     | 13     | 13     | 13     | 13     | . 13   | 13     |
| LonDeg    | 122     | 122    | 122    | 122         | 122    | 122    | 122    | 122         | 122    | 122    | 122    | 122    | 122    | 122    | 122    | 122    | 122    | 122    | 122    | 122    | 122    | 122    | 122        | 122    | 122    | 122    | 122    | 122    | 122    | 122    | 122    | 122    |
| LatSec    | 54.48   | 19.64  | 19.64  | 19.64       | 19.64  | 19.64  | 2.64   | 2.64        | 2.64   | 2.64   | 2.64   | 58.75  | 58.75  | 58.75  | 58.75  | 58.75  | 45.87  | 45.87  | 45.87  | 45.87  | 45.87  | 41.75  | 41.75      | 41.75  | 41.75  | 41.75  | 31.98  | 31.98  | 31.98  | 31.98  | 31.98  | 21.99  |
| LatMin    | 34      | 59     | 59     | 59          | 59     | 59     | 59     | 59          | 59     | 59     | . 59   | 58     | 58     | 58     | 58     | 58     | 58     | 58     | 58     | 58     | 58     | 58     | 58         | 58     | 58     | 58     | . 58   | 58     | 58     | 58     | 58     | 58     |
| LatDeg    | 41      | 47     | 47     | 47          | 47     | 47     | 47     | 47          | 47     | 47     | 47     | 47     | 47     | 47     | 47     | 47     | 47     | 47     | 47     | 47     | 47     | 47     | 47         | 47     | 47     | 47     | 47     | 47     | 47     | 47     | 47     | 47     |
| <b>*</b>  |         | -      |        | <del></del> |        |        |        | <del></del> | -      |        | ****   |        |        | -      |        | •      |        |        | -      |        |        |        |            | -      |        | -      |        | 1      |        | -      |        | 4004   |
| Ç         | MO      | MO     | MO     | MO          | MO     | MO     | MO     | MO          | MO     | MO     | MO     | MO     | MO     | MO     | WO     | MO         | MO     | MO     | MO     | MO     | MO     | MO     | MO     | Ω<br>M | MO     |
| SAMPLE    | WW-14/5 | peri   | ~      | m           | 4      | ς,     | *      | 7           | m      | 4      | κ,     |        | 7      | M      | 4      | Ψ'n    | ••••   | 7      | m      | 4      | ٧c     |        | 7          | м      | **     | ν,     | ,      | ~      | m      | 4      | ΥC     |        |
| STATION   | WW-14   | EW-01  | EW-01  | EW-01       | EW-01  | EW-01  | EW-04  | EW-04       | EW-04  | EW-04  | EW-04  | EW-07  | EW-07  | EW-07  | EW-07  | EW-07  | EW-10  | EW-10  | EW-10  | EW-10  | EW-10  | EW-12  | EW-12      | EW-12  | EW-12  | EW-12  | EW-14  | EW-14  | EW-14  | EW-14  | EW-14  | NG-01  |
| SURVEY    | EBCHEM  | EVCHEM | EVCHEM | EVCHEM      | EVCHEM | EVCHEM | EVCHEM | EVCHEM      | EVCHEM | EVCHEM | EVCHEM | EVCHEM | EVCHEM | EVCHEM | EVCHEM | EVCHEM | EVCHEM | EVCHEM | EVCHEM | EVCHEM | EVCHEM | EVCHEM | EVCHEM     | EVCHEM | EVCHEM | EVCHEM | EVCHEM | EVCHEM | EVCHEM | EVCHEM | EVCHEM | EVCHEM |

| SDI                | . ~1    | ۷.     | ۱ ۲    | , c    | 1 6          | ۰ د      | 4 <del></del> | . 0    | : "    | . ~    | , ,    | М      | , oc       | ۲ د    | . 49   | 2 0    | . 6    | ۰ ،      | ۱ ~    | 23     | m            | 7            | 00     | 4      | · m    | . 6        | , g.i., | 15     | 3      | =      | 12     | 4      |
|--------------------|---------|--------|--------|--------|--------------|----------|---------------|--------|--------|--------|--------|--------|------------|--------|--------|--------|--------|----------|--------|--------|--------------|--------------|--------|--------|--------|------------|---------|--------|--------|--------|--------|--------|
| Ш                  | 99      | C      |        | › c    | > C          | · c      | ·<br>> c      | 0      | · ©    | · c    | •      | 2      | ·          | 23     | 3      | ∞ ∞    | , sc.  | · vc     | · m    | 4      | 4            | 71           | 29     | 69     | 89     | 19         | 64      | : 69   | 99     | . 29   | 63     | 89     |
| ï.,                | 0.333   | 0.603  | 0 68   | 0.686  | 0.593        | 0 394    | 0.253         | 0.374  | 0.364  | 0,285  | 0.239  | 0.734  | 0.84       | 0.851  | 0.765  | 0.633  | 0.31   | 0.442    | 0.428  | 0.48   | 0.51         | 0.578        | 0.669  | 0.489  | 0.479  | 0.681      | 0.713   | 0.849  | 0.762  | 0.734  | 0.789  | 0.574  |
| Ħ                  | 0,569   | 0.363  | 0.475  | 0.327  | 0.283        | 0.307    | 0.298         | 0.486  | 0.417  | 0.317  | 0.301  | 0.734  | 1.128      | 1.047  | 0.961  | 0.705  | 0.444  | 0.688    | 0.62   | 0.695  | 0.794        | 1.04         | 1.093  | 0.87   | 0.813  | 1.132      | 1.329   | 1.387  | 1.386  | 1.345  | 1.32   | 0.943  |
| MISCTX             | 73      | 0      | 0      | 0      | 0            | 0        | 0             | 0      | 0      | _      | 0      | 0      | 0          | 0      | 0      | 0      |        |          |        | -      | 0            | m            | 73     | 9      |        | 0          | 9       | 0      | 4      | ιņ     | 0      | ₩      |
| CRTX               | П       | 73     | 7      | -      | 7            |          | rs            | 7      | 'n     | 4      | \$2    | 2      | 14         | 9      | 9      | Ś      | 12     | 61       | 12     | 13     | <u>&amp;</u> | 56           | 19     | 20     | 21     | 7          | 22      | 17     | 15     | 21     | 14     | 7      |
| ЕСНТАХ             | 0       | 0      | 0      | 0      | 0            | 0        | 0             | 0      | 0      | 0      | 0      | 0      | 0          | 0      | 0      | 0      | 0      | 0        | 0      | 0      | 0            | 0            | 0      |        | -      | 0          | -       | 0      | 0      | 0      | 0      | 0      |
| МОТАХ ЕСНТАХ       | 7       | 0      | 0      | 0      | 0            | 2        |               | 4      | 2      | E      | 2      | æ      | <b>444</b> | æ      | m      | 3      | ς.     | m        |        | Ŋ      | 4            | tend<br>tend | 6/     | 13     | 12     | 13         | 12      | 6      | 12     | 10     | 10     | H      |
| AMPTX              | 50      | 0      | 0      | 0      | 0            | 0        | 7             | 4      | E      | 2      | 3      | 7      | 9          | 3      | -      | 7      | ∞      | <b>∞</b> | 10     | 7      | 9            | 12           | 12     | 01     | 1      | <b>0</b> 0 |         | 9      | 6      | 10     | 7      | ю      |
| POTAX              | 30      |        | 2      | •      | <b>,,,,,</b> | 7        | 10            | 7      | S      | ĸ      | 6      | æ      | 52         | 9      | 7      | 4      | ∞      | 12       | 10     | 80     | 13           | 21           | 12     | 19     | 15     | 16         | 31      | 16     | 33     | 32     | 21     | 24     |
| ECHAB MISCAB POTAX | æ       | 0      | 0      | 0      | 0            | 0        | 0             | 0      | 0      | •••    | 0      | 0      | 0          | 0      | 0      | 0      | -      | -        |        |        | 0            | 4            | 8      | 6      | 2      | 0.         | 27      | 0      | 16     | 5      | 0      |        |
| ECHAB              | 0       | 0      | 0      | 0      | 0            | 0        | 0             | 0      | 0      | 0      | 0      | 0      | 0          | 0      | 0      | 0      | 0      | 0        | 0      | 0      | 0            | 0            | 0      |        | ,      | 0          | -       | 0      | 0      | 0      | 0      | 0      |
| AMPAB              | 33      | 0      | 0      | 0      | 0            | 0        | 14            | 74     | 19     | 7      | 17     | 7      | 27         | 14     | 7      | 9      | 34     | 142      | 65     | 53     | 152          | 444          | 272    | 310    | 280    | 255        | 191     | 20     | 133    | 244    | 107    | Ş.     |
| CRAB               |         | 6.2    | 25     | -      |              |          | 37            | 432    | 162    | 23     | 128    | 7      | 63         | 42     | •      | 10     | 381    | 672      | 132    | 123    | 417          | 1526         | 623    | 1359   | 1229   | 585        | 297     | 71     | 296    | 420    | 165    | 227    |
| SAMPLE             | WW-14/5 | years  | 2      | 33     | 4            | <b>.</b> |               | 7      | ĸ      | 4      | S      | _      | 7          | 3      | 4      | \$     |        | 7        | ٣      | 4      | Ŋ            |              | 7      | ۳      | 4      | ۷٦         |         | 7      | æ      | 4      | . 5    |        |
| STATION            | WW-14   | EW-01  | EW-01  | EW-01  | EW-01        | EW-01    | EW-04         | EW-04  | EW-04  | EW-04  | EW-04  | EW-07  | EW-07      | EW-07  | EW-07  | EW-07  | EW-10  | EW-10    | EW-10  | EW-10  | EW-10.       | EW-12        | EW-12  | EW-12  | EW-12  | EW-12      | EW-14   | EW-14  | EW-14  | EW-14  | EW-14  | NG-01  |
| SURVEY             | EBCHEM  | EVCHEM | EVCHEM | EVCHEM | EVCHEM       | EVCHEM   | EVCHEM        | EVCHEM | EVCHEM | EVCHEM | EVCHEM | EVCHEM | EVCHEM     | EVCHEM | EVCHEM | EVCHEM | EVCHEM | EVCHEM   | EVCHEM | EVCHEM | EVCHEM       | EVCHEM       | EVCHEM | EVCHEM | EVCHEM | EVCHEM     | EVCHEM  | EVCHEM | EVCHEM | EVCHEM | EVCHEM | EVCHEM |

|           |          |        |        |        |        |        |        |        |               |             |        | _      | _      |        | _      | _         |        | _      |        |        | b.     | _      | 61     |        | •      | _      |        |        |        | _      |        |        |          |
|-----------|----------|--------|--------|--------|--------|--------|--------|--------|---------------|-------------|--------|--------|--------|--------|--------|-----------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|----------|
| MOAB      | 155      | 228    | 128    | 197    | 44     | 74     | 82     | 76     | 54            | 604         | 705    | 437    | 559    | 621    | 377    | 359       | 326    | . 269  | 241    | 483    | 517    | 467    | 442    | 643    | 289    | 290    | 368    | 1484   | 617    | 170    | 301    | 777    | 327      |
| POAB      | 64       | 209    | 78     | 55     | 49     | 70     | 51     | 58     | 49            | 11          | 87     | 72     | 77     | 57     | 37     | 36        | 31     | 42     | 49     | 300    | . 205  | 141    | 313    | 294    | 295    | 222    | 317    | 390    | 305    | 16     | 133    | 68     | 06       |
| TOTAX     | 39       | 75     | 49     | 34     | 34     | 40     | 35     | 40     | 31            | 32          | 52     | 47     | 47     | 47     | 52     | 49        | 48     | 48     | 47     | 84     | 84     | 69     | 80     | 89     | 100    | 92     | 94     | 105    | 88     | 51     | 47     | 37     | 45       |
| TOAB      | 356      | 706    | 426    | 368    | 228    | 284    | 306    | 292    | 229           | 828         | 1087   | 798    | 895    | 696    | 615    | 549       | 490    | 525    | 507    | 1086   | 986    | 833    | 972    | 1135   | 931    | 1617   | 1088   | 2857   | 1407   | 322    | 208    | 441    | 486      |
| 2**       |          |        |        |        |        |        |        |        |               |             |        |        |        |        |        |           |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |          |
| % TOC     | 0.2      | 0.2    | 0.2    | 0.2    | . 0.2  | 0.7    | 0.2    | 0.2    | 0.2           | 0.2         | 0.2    | 0.2    | 0.2    | 0.2    | 0.3    | 0.3       | 0.3    | 0.3    | 0.3    | 0.4    | 0.4    | 0.4    | 0.4    | 0.4    | 0.7    | 0.7    | 0.7    | 0.7    | 0.7    | 9.0    | 0.4    | 0.4    | 0,4      |
| % FINES   | 4.4      | 4.4    | 4.4    | 4.4    | 3.1    | 3.1    | 3.1    | 3.1    | 3.1           | 2.7         | 2.7    | 2.7    | 2.7    | 2.7    | 3.6    | 3,6       | 3.6    | 3.6    | 3.6    | 7.1    | 7.1    | 7.1    | 7.1    | 7.1    | 4.2    | 4.2    | 4.2    | 4.2    | 4.2    | 11.5   | 11.5   | 11.5   | 11.5     |
| Depth (m) | 8.       | 8.1    | 8.1.   | 8.1    | 9.8    | 9.8    | 8.6    | 8.6    | 8.6           | 8.2         | 8.2    | 8.2    | 8.2    | 8.2    | 6.9    | 6.9       | 6.9    | 6.9    | 6.9    | 10.2   | 10.2   | 10.2   | 10.2   | 10.2   | 6      | 6      | 6      | 6      | 6      | 7.9    | 7.9    | 7.9    | 7.9      |
| LonSec    | 53.82    | 53.82  | 53.82  | 53.82  | 27.54  | 27.54  | 27,54  | 27.54  | 27.54         | 23.09       | 23.09  | 23.09  | 23.09  | 23.09  | 18.06  | 18.06     | 18.06  | 18.06  | 18.06  | 36.29  | 36.29  | 36.29  | 36.29  | 36.29  | 5.86   | 5.86   | 5.86   | 5.86   | 5.86   | 13.18  | 13.18  | 13.18  | 13.18    |
| LonMin    | 13       | 13     | 13     | 13     | 14     | 14     | 14     | 14     | 14            | 16          | 16     | 16     | 16     | 16     | 11     | 17        | 17     | 17     | 17     | 17     | 17     | 17     | 7      | 17     | 18     | 18     | 18     | 18     | 18     | 26     | 26     | 26     | 26       |
| LonDeg    | 122      | 122    | . 122  | , 122  | 122    | 122    | 122    | 122    | 122           | 122         | 122    | 122    | 122    | 122    | 122    | 122       | 122    | 122    | 122    | 122    | 122    | 122    | 122    | 122    | 122    | 122    | 122    | 122    | 122    | 122    | 122    | 122    | 122      |
| LatSec    | 21.99    | 21.99  | 21.99  | 21.99  | 56.16  | 56.16  | 56.16  | 56.16  | 56.16         | 37.21       | 37.21  | 37.21  | 37.21  | 37.21  | 16.77  | 16.77     | 16.77  | 16.77  | 16.77  | 6.47   | 6.47   | 6,47   | 6.47   | 6.47   | 2.74   | 2.74   | 2.74   | 2.74   | 2.74   | 8.72   | 8.72   | 8.72   | 8.72     |
| LatMin    | . \$8    | 58     | 58     | 58     | 57     | .57    | 57     | 57     | 57            | 57          | 57     | 57     | 57     | 57     | 57     | 57        | 57     | 57     | 57     | 57     | 57     | 57     | 57     | 57     | 57     | 57     | 57     | 57     | 57     | 00     | 8      | 00     | <b>∞</b> |
| LatDeg    | 47       | 47     | 47     | 47     | 47     | 47     | 47     | 47     | 47            | 47          | 47     | 47     | 47     | 47     | 47     | 47        | 47     | 47     | 47     | 47     | 47     | 47     | 47     | 47     | 47     | 47     | 47     | 47     | 47     | 48     | 48     | 48     | 48       |
| *         | _        | ****   | -      |        |        | -      |        | 1      | -             | -           | -      | -      |        |        | ***    | <b>,,</b> |        | ****   |        |        |        | ****   | -      | *****  | _      | -      |        | *****  | proof. | ****   | •      | ,,,,,, | -        |
| ပ         | MO<br>MO | MO            | MO          | MO     | WO     | MO     | MO     | MO     | MO        | MO     | MO     | MO     | WO     | MO       |
| SAMPLE    | 7        | m      | 4      | Ś      | _      | 7      | ю      | 4      | <b>ن</b><br>د | <del></del> | 7      | . rs   | 4      | \$     | ****   | 73        | ю      | 4      | ٧.     |        | 74     | ю      | 4      | 'n     | -      | 7      | т      | 4      | ď      | -      | 7      | m      | 4        |
| STATION   | NG-01    | NG-01  | NG-01  | NG-01  | NG-02  | NG-02  | NG-02  | NG-02  | NG-02         | NG-03       | NG-03  | NG-03  | NG-03  | NG-03  | NG-04  | NG-04     | NG-04  | NG-04  | NG-04  | 90-DN  | 90-DN  | 90-DN  | 90-DN  | NG-06  | NG-10  | NG-10  | NG-10  | NG-10  | NG-10  | PS-02  | PS-02  | PS-02  | PS-02    |
| SURVEY    | EVCHEM   | EVCHEM | EVCHEM | EVCHEM | EVCHEM | EVCHEM | EVCHEM | EVCHEM | EVCHEM        | EVCHEM      | EVCHEM | EVCHEM | EVCHEM | EVCHEM | EVCHEM | EVCHEM    | EVCHEM | EVCHEM | EVCHEM | EVCHEM | EVCHEM | EVCHEM | EVCHEM | EVCHEM | EVCHEM | EVCHEM | EVCHEM | EVCHEM | EVCHEM | EVCHEM | EVCHEM | EVCHEM | EVCHEM   |

| IOS                                   | 4      | 6      | 4      | m      | 4      | 7      | 4      | . 4    | . 4    | · ~          | 4      | m       | 4      | evi     | , 40   | 1        | ₹¢;      | 4      | ٤      | 6      | . 20   | ۲      | 6      | 6      | 19     | 5      | 16     | <u></u>    | Ξ      | 12     | 7      | 9      | 'n         |
|---------------------------------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------------|--------|---------|--------|---------|--------|----------|----------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|------------|--------|--------|--------|--------|------------|
| Ξ                                     | 29     | 69     | 89     | 89     | 19     | 29     | 29     | . 89   | 23     | 75           | 73     | . 02    | 57     | 11      | . 19   | , %<br>% | 99       | 89     | 69     | 19     | 99     | 65     | 69     | 19     | 64     | 9/     | . 67   | 19         | 99     | 69     | 19     | 19     | 99         |
| <b>~</b>                              | 0.605  | 0.638  | 0.56   | 0.614  | 0.576  | 0.649  | 0.551  | 0.615  | 0.568  | 0.487        | 0.516  | 0.525   | 0.517  | 0.503   | 0.636  | 0.682    | 0.635    | 0.547  | 0.598  | 0.646  | 0.636  | 0.638  | 0.655  | 0.621  | 0.744  | 0.756  | 0.756  | 0.666      | 0.704  | 0,744  | 0.626  | 0.639  | 0.553      |
| Ī                                     | 0.963  | 1.196  | 0.946  | 0.94   | 0.882  | 1.04   | 0.851  | 0.986  | 0,847  | 0.734        | 0.885  | 0.878   | 0.864  | 0.841   | 1.092  | 1.152    | 1.067    | 0.919  | 1.001  | 1.243  | 1.223  | 1.174  | 1.246  | 1.21   | 1.487  | 1.485  | 1.491  | 1.347      | 1.368  | 1.271  | 1.047  | 1.003  | 0.915      |
| MISCTX                                | 0      | 8      |        | 7      | en     | 5      | 7      | 7      | 7      |              | 3      | 4       | *****  | 0       | 0      |          | 7        | m      |        | 4      | S      | 4      | 9      | 9      | 5      | 9      | 5      | 9          | ∞ .    | 4      | 2      | ų      | -          |
| CRIX                                  | 00     | 12     | =      | 4      | ş      | 00     | S      | 00     | εn     | 3            | 90     | 12      | ,<br>, | 91      | 15     |          | <b>∞</b> | 6      |        | 8      | 15     | 12     | 12     | 14     | 23     | 31     | 24     | 27         | 26     | 13     | 6      | 00     | 7          |
| СНТАХ                                 | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0            | ·O     | 0       | 0      | 0       | 0      | 0        | 0        | 0      | 0      | m      | -      | -      | 0      |        | 4      | ****** | 4      | <b>.</b> . | 0      | 0      | 0      | 0      | 0          |
| 4OTAX E                               | 12     | 13     | 14     | 6      | 12     | 13     | 13     | 13     | 12     | 17           | 91     | <u></u> | 15     | 91      | 20     | 21       | 22       | 17     | 15     | 24     | 25     | 24     | 25     | 23     | 27     | 23     | 20     | 27         | 22     | 14     | 10     | 00     | 16         |
| AMPTX 1                               | 3      | 9      | 9      | ۴n     | -      | 4      | 73     | ***    | -      |              | 9      | t-      | 7      |         | 6      | 00       | 5        | \$     | 7      | 6      | 9      | 4      | 7      | 9      | 14     | 61     | 2      | 61         | 17     | 7      | . 4    | e      | 7          |
| POTAX                                 | 61     | 47     | 23     | 19     | 14     | 14     | 15     | 11     | 14     | Ξ            | 25     | 8       | 61     | <u></u> | 17     | 16       | 16       | 19     | 20     | 33     | 37     | 28     | 37     | 43     | 40     | 53     | 40     | 40         | ξŲ     | 20     | 26     | 82     | 21         |
| ECHAB MISCAB POTAX AMPTX MOTAX ECHTAX | 0      | 9      |        | 7      | 9      | 10     | 3      | 7      | ťň     |              | =      | 9       | 'n     | 0       | 0      |          | 73       | ∞      |        | 23     | 25     | 32     | 36     | 27     | 16     |        | 21     | 31         | 56     | 4      | ю      | S      | 7          |
| ECHAB                                 | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0            | 0      | 0       | 0      | 0       | 0      | 0        | 0        | 0      | 0      | ν,     | -      | 4      | 0      | 4      | 6      | ****   | 4      | m          | 0      | 0      | 0      | 0      | 0          |
| AMPAB                                 | S      | 7      | 7      | 9      | _      | 4      | 2      | 4      |        | Ś            | 25     | 32      | 21     | 26      | 91     | 27       | 12       | 21     | 34     | 17     | Ξ      | 90     | 18     | 16     | 62     | 605    | 95     | 476        | 135    | 7      | 11     | ∞      | 3          |
| CRAB AMPAB                            | 137    | 263    | 219    | 114    | 129    | 130    | 170    | 130    | 123    | 206          | 284    | 283     | 253    | 291     | 201    | 153      | 131      | 206    | 216    | 275    | 237    | 189    | 181    | 166    | 320    | 161    | 376    | 940        | 456    | 72     | 71     | 70     | <i>L</i> 9 |
| SAMPLE                                | 7      | en     | 4      | 5      | gand   | 7      | m      | 4      | 53     | <b>y</b> wwl | 7      | 6       | 4      | ς.      |        |          | ю        | 4      | S      |        | 7      | т      | 4      | ς,     |        | 7      | 3      | 4          | S      |        | . 2    | ·m     | 4          |
| STATION                               | NG-01  | NG-01  | NG-01  | NG-01  | NG-02  | NG-02  | NG-02  | NG-02  | NG-02  | NG-03        | NG-03  | NG-03   | NG-03  | NG-03   | NG-04  | NG-04    | NG-04    | NG-04  | NG-04  | NG-06  | 90-DN  | 90-DN  | NG-06  | NG-06  | NG-10  | NG-10  | NG-10  | NG-10      | NG-10  | PS-02  | PS-02  | PS-02  | PS-02      |
| SURVEY                                | EVCHEM       | EVCHEM | EVCHEM  | EVCHEM | EVCHEM  | EVCHEM | EVCHEM   | EVCHEM   | EVCHEM | EVCHEM | EVCHEM | EVCHEM | EVCHEM | EVCHEM | EVCHEM | EVCHEM | EVCHEM | EVCHEM | EVCHEM     | EVCHEM | EVCHEM | EVCHEM | EVCHEM | EVCHEM     |

| MOAB        | 288    | 93       | 127        | 123      | 152    | 149    | 89     | 107    | 82     | 7.1    | 82     | <b>∞</b> | m.     | 4      | 4      | 14     | 136    | 183    | 125    | 134    | 172    | 44       | 26       | 24     | . 19     | 32      | 28         | 37     | 95          | 55     | 43     | 10      |
|-------------|--------|----------|------------|----------|--------|--------|--------|--------|--------|--------|--------|----------|--------|--------|--------|--------|--------|--------|--------|--------|--------|----------|----------|--------|----------|---------|------------|--------|-------------|--------|--------|---------|
| POAB        | 113    | 681      | 179        | 118      | 138    | 154    | 160    | 274    | 242    | 165    | 235    | 0        | ent    | -      | -      | 2      | 1117   | 134    | 109    | 136    | 120    | . 26     | 35       | 23     | 35       | 26      | 62         | 69     | 127         | 96     | 128    | 15      |
| TOTAX       | 53     | 63       | <i>L</i> 9 | 53       | 51     | . 52   | 57     | 69     | 62     | 55     | 72     | 10       | 10     | 00     | 6      | 10     | 90     | .99    | 53     | 52     | 55     | 14       | . 17     | 14     | 11       | 16      | 44         | 52     | 59          | 57     | 19     | 35      |
| TOAB        | 452    | 416      | 415        | 334      | 398    | 412    | 375    | 529    | 437    | 373    | 476    | 40       | 4      | 26     | 13     | 57     | 514    | 595    | 487    | 491    | 533    | 71       | 62       | 51     | 28       | 63      | 192        | 257    | 531         | 385    | 422    | 200     |
| <b>5</b> ** |        |          |            |          |        |        |        |        |        |        |        |          |        |        |        |        |        |        |        |        |        |          |          |        |          |         |            |        |             |        |        |         |
| % TOC       | 0.4    | 0,4      | 0.4        | 0,4      | 0.4    | 0.4    | 0.3    | 0.3    | 0.3    | 0.3    | 0,3    | 0.2      | 0.2    | 0.2    | 0.2    | 0.2    | 0.5    | 0.5    | 0.5    | 0.5    | 0.5    | 3.24     | 3.24     | 3.24   | 3.24     | 3.24    | 1.7        | 1.7    | 1.7         | 1.7    | 1.7    | 7.0     |
| % FINES     | 11.5   | 80       | 00         | <b>∞</b> | 00     | 00     | 7.4    | 7.4    | 7.4    | 7.4    | 7.4    | 4.6      | 4.6    | 4.6    | 4.6    | 4.6    | 11.5   | 11.5   | 11.5   | 11.5   | 11.5   | 95.4     | 95.4     | 95.4   | 95.4     | 95.4    | 22.1       | 22.1   | 22.1        | 22.1   | 22.1   | 90.5    |
| Depth (m)   | 7.9    | 9.1      | 9.1        | 9.1      | 9.1    | 9.1    | 8.7    | 8.7    | 8.7    | 8.7    | 8.7    | 4.2      | 4.2    | 4.2    | 4.2    | 4.2    | 9.6    | 9.6    | 9.6    | 9.6    | 9.6    | <b>.</b> |          |        |          |         | 10.9       | 10.9   | 10.9        | 10.9   | 10.9   | 92.3    |
| LonSec D    | 13.18  | 46.36    | 46.36      | 46.36    | 46.36  | 46.36  | 25.88  | 25.88  | 25.88  | 25.88  | 25.88  | 48.97    | 48.97  | 48.97  | 48.97  | 48.97  | 4,48   | 4.48   | 4.48   | 4.48   | 4.48   | 56.12    | 56.12    | 56.12  | 56.12    | 56.12   | 36.85      | 36.85  | 36.85       | 36.85  | 36.85  | 90      |
| LonMin      | 26     | 24       | 24         | 24       | 24     | 24     | 23     | 23     | 23     | 23     | 23     | 13       | 13     | 13     | 13     | 13     | 15     | 15     | 15     | 15     | 15     | 12       | 12       | 12     | 12       | 12      | 13         | . 13   | 13          | 13     | 13     | 23      |
| LonDeg      | 122    | 122      | 122        | 122      | 122    | 122    | 122    | 122    | 122    | 122    | 122    | 122      | 122    | 122    | 122    | 122    | 122    | 122    | 122    | 122    | 122    | 122      | 122      | 122    | 122      | 122     | 122        | 122    | 122         | 122    | 122    | 122     |
| LatSec      | 8.72   | 57.77    | 57.77      | 57.77    | 57.77  | 57.77  | 59.54  | 59.54  | 59.54  | 59.54  | 59.54  | 43.32    | 43.32  | 43.32  | 43.32  | 43.32  | 29.95  | 29.95  | 29.95  | 29.95  | 29.95  | 52.42    | 52.42    | 52.42  | 52.42    | 52.42   | 19.45      | 19,45  | 19.45       | 19,45. | 19.45  | 59      |
| LatMin      | ∞.     | <b>9</b> | 9          | 9        | 9      | 9      | 5      | ŝ      | 5      | 3      | \$     | -        | •      | -      | -      | _      | 59     | 59     | 59     | 59     | 59     | 59       |          | 59     | 59       | 29      | \$9        | 59     | \$9         | 59     | 29     | 36      |
| LatDeg      | 48     | 48       | 48         | - 84     | 48     | 48     | 48     | 48     | 48     | 48     | 48     | 48       | 48     | 48     | 48     | 48     | 47     | 47     | 47     | 47     | 47     | 47       | 47       | 47     | 47       | 47      | 47         | 47     | 41          | 47     | 47     | 47      |
| *S          |        | -        |            |          |        | -      | *****  | -      | ,      | _      | •      | -        | -      |        |        |        | +      | -      |        |        |        | _        | <b>,</b> |        | <b>,</b> | <u></u> | <b>1</b> 4 |        | <del></del> | -      | -      |         |
| ပ           | MO     | MO       | MO         | MO       | MO     | MO     | WO.    | MO     | MO     | MO     | MO     | MO       | MO     | MO     | MO     | MO     | MO     | MO     | MO     | MO     | MO     | MO       | MO       | MO     | MO       | MO      | MO         | MO     | MO          | MO     | MO     | WO      |
| SAMPLE      | \$     | -        | 2          | ю        | 4      | Ŋ      |        |        | m      | 4      | · \$6  |          | 7      | т      | 4      | 'n     | ***    |        | , m    | 4      | ν,     | <b></b>  | 7        | m      | 4        | 85      | ***        | . 2    | m           | 4      | 'n     | m       |
| STATION     | PS-02  | PS-03    | PS-03      | PS-03    | PS-03  | pS-03  | PS-04  | PS-04  | PS-04  | PS-04  | PS-04  | SD-01    | SD-01  | SD-01  | SD-01  | SD-01  | SD-02  | SD-02  | SD-02  | SD-02  | SD-02  | SR-07    | SR-07    | SR-07  | SR-07    | SR-07   | SR-08      | SR-08  | SR-08       | SR-08  | SR-08  | 1230    |
| SURVEY      | EVCHEM | EVCHEM   | EVCHEM     | EVCHEM   | EVCHEM | EVCHEM | EVCHEM | EVCHEM | EVCHEM | EVCHEM | EVCHEM | EVCHEM   | EVCHEM | EVCHEM | EVCHEM | EVCHEM | EVCHEM | EVCHEM | EVCHEM | EVCHEM | EVCHEM | EVCHEM   | EVCHEM   | EVCHEM | EVCHEM   | EVCHEM  | EVCHEM     | EVCHEM | EVCHEM      | EVCHEM | EVCHEM | JULTPPS |

| SDI                | ∞      | 15       | 12     | 6      | 10     | 10     | 6      | 10                                      | game<br>Writed | 10     | 14     | E      | 7      | 3      | 9      | 4      | 7          | 6        | 7                                       | 10     | 7      | 9      | 7      | 9        | 7          | 7                  | - 12   | 13     | 15       | 91     | 15     |   | 7       |
|--------------------|--------|----------|--------|--------|--------|--------|--------|-----------------------------------------|----------------|--------|--------|--------|--------|--------|--------|--------|------------|----------|-----------------------------------------|--------|--------|--------|--------|----------|------------|--------------------|--------|--------|----------|--------|--------|---|---------|
| Ħ                  | 64     | 74       | 75     | 70     | 7.7    | 73     | 75     | 77                                      | 82             | 74     | 92     | 76     | 88     | 68     | 78     | 7.6    | 73         | 72       | 73                                      | 74     | 74     | 19     | 62     | 84       | 54         | 84                 | 19     | 99     | 29       | 19     | 89     |   | m       |
| F,                 | 0.637  | 0.802    | 0.755  | 0.729  | 0.746  | 0.741  | 0.714  | 0.713                                   | 0.749          | 0.741  | 0.768  | 0.694  | 0.974  | 0.669  | 0.925  | 0.786  | 0.629      | 0.643    | 0.625                                   | 0.686  | 0.639  | 0.783  | 0.861  | 0.832    | 0.859      | 0.86               | 0.789  | 0.79   | 0.789    | 0.826  | 0.795  |   |         |
| Ħ                  | 1.098  | 1.443    | 1.378  | 1.257  | 1.273  | 1.272  | 1.253  | 1.311                                   | 1,343          | 1.289  | 1.426  | 0.694  | 0.974  | 0.605  | 0.882  | 0.786  | 1.069      | 1.124    | 1.077                                   | 1.177  | 1.112  | 0.898  | 1.059  | 0.954    | 1.057      | 1.035              | 1.297  | 1.356  | 1.398    | 1.45   | 1.419  |   | т       |
| MISCTX             | ю      | 4        | 4      | C)     | 5      | 4      | 7      | 2                                       | 5              | ю      | S      |        | 7      | -      |        | 2      | 4          | <b>m</b> | 4                                       | 2      | 2      | 0      | 0      | 0        |            | 0                  | . 7    | 4      | т        | emi    | 2      |   | 'n      |
| CRTX               | 00     | <b>∞</b> | ∞      | 4      | 9      | 9      | ==     | ======================================= | 12             | 9/     | 16     | 4      | S      | en     | en.    | en     | 7          | 10       | ~                                       | ∞      | 10     |        |        |          | 7          | ٣                  | 15     | 20     | 21       | 20     | 22     |   | 70      |
| ECHTAX             |        | 0        | 0      | 0      | 0      | 0      | 0      | 0                                       | 0              | 0      | yund   | 0      | 0      | 0      | 0      | 0      | 0          | 0        | 0                                       | 0      | 0      | 0      | 0      | 0        | 0          | 0                  | 0      | 0      |          | 0      | 0      |   | 0.61    |
| MOTAX              | 13     | 19       | 82     | 28     | 15     | 16     | 13     | 61                                      | 17             | 17     | 18     | S      | 7      | М      | 4      | ĸ      | -          | -        | ======================================= | 13     | 13     | 5      | 6      | 5        | 7          | 7                  | 7      | 6      | <b>=</b> | 6      |        |   | 0.941   |
| AMPTX MOTAX ECHTAX | 4      | 7        | ĸ      |        | , med  | 7      | 5      | 7                                       | 4              | 4      | ∞      | 7      |        | 73     | 7      | 7      | <b>v</b> n | S        | 5                                       | Š      | 9      | 0      | *****  | <b>T</b> |            | <del></del>        | 90     | 80     | 12       | 13     | ,      |   | 0       |
|                    | 27     | 32       | 37     | 78     | 25     | 26     | 30     | 37                                      | 28             | 26     | 32     | 0      | -      |        | •      | 2      | 28         | 32       | 30                                      | 29     | 30     | •      | 7      | 7        | <b>o</b> o | \$                 | 20     | 61     | 24       | 27     | 26     |   | 0       |
| ECHAB MISCAB POTAX | 4      | 22       | 7      | m      | 10     | 9      | 4      | 4                                       | 7              | 4      | 12     | -      | ť'n    | 2      | -      | 6      | 6          | 13       | 12                                      | =      | 80     | 0      | .0     | 0        | 0          | 0                  | 28     | 61     | 31       | 12     | 41     |   | ť'n     |
| ECHAB              |        | 0        | 0      | 0      | 0      | 0      | 0      | 0                                       | 0              | 0      |        | 0      | 0      | 0      | 0      | 0      | 0          | 0        | 0                                       | 0      | 0      | 0      | 0      | 0        | 0          | 0                  | 0      | 0      | 0        | 0      | 0      |   | 110     |
| AMPAB              | Φ.     | ů.       | 4      | -      | 7      | 9      | œ      | ю                                       | 7              | 7      | 6      | 11     | 7      | ÷      | ι,     | 23     | 47         | 45       | 44                                      | 40     | 44     | 0      | -      | -        | -          | <del>,,,,,</del> , | 18     | 54     | 93       | 132    | 94     | ; | . 51    |
| CRAB               | 45     | 112      | 102    | 90     | 86     | 103    | 142    | 144                                     | 106            | 133    | 147    | 31     | 7      | 19     | 7      | 32     | 252        | 265      | 240                                     | 210    | 233    | -      | en-m   | ****     | 2          | ĸ                  | 74     | 132    | 278      | 222    | 210    | i | 74      |
| SAMPLE             | Ş      |          | 7      | 8      | **     | 5      | grani  | 2                                       | ĸ              | 4      | 5      |        | 7      | Э      | 4      | \$     |            | 7        | 8                                       | 4      | S      | -      | 2      | 3        | 4          | 'n                 | good   | 2      | т        | 4      | س      | , | m       |
| STATION            | PS-02  | PS-03    | PS-03  | PS-03  | PS-03  | PS-03  | PS-04  | PS-04                                   | PS-04          | PS-04  | PS-04  | SD-01  | SD-01  | SD-01  | SD-01  | SD-01  | SD-02      | SD-02    | SD-02                                   | SD-02  | SD-02  | SR-07  | SR-07  | SR-07    | SR-07      | SR-07              | SR-08  | SR-08  | SR-08    | SR-08  | SR-08  |   | 1230    |
| SURVEY             | EVCHEM | EVCHEM   | EVCHEM | EVCHEM | EVCHEM | EVCHEM | EVCHEM | EVCHEM                                  | EVCHEM         | EVCHEM | EVCHEM | EVCHEM | EVCHEM | EVCHEM | EVCHEM | EVCHEM | EVCHEM     | EVCHEM   | EVCHEM                                  | EVCHEM | EVCHEM | EVCHEM | EVCHEM | EVCHEM   | EVCHEM     | EVCHEM             | EVCHEM | EVCHEM | EVCHEM   | EVCHEM | EVCHEM | 1 | JULIPPS |

| MOAB        | 13      | ∞       | 6       | 3.      | 7       | 12      | 12      | 10      | 19      | 27       | 16      | 16      | 25              | 24      | 33      | 24      | 25      | 00      | 33      | 36      | 22      | 12      | 17      | 29      | 91      | 12      | 10      | 13      |         | 76      | 91      | 9       |
|-------------|---------|---------|---------|---------|---------|---------|---------|---------|---------|----------|---------|---------|-----------------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|
| POAB        | 216     | 37      | 376     | 26      | 29      | 23      | 83      | 51      | 69      | 205      | 154     | 571     | 140             | 205     | 112     | 265     | 62      | 76      | 198     | 411     | 38      | 58      | 181     | 70      | 103     | 74      | 15      | 54      | 6       | 86      | 23      | 31      |
| TOTAX       | 75      | 58      | 43      | 46      | 58      | 34      | 63      | 70      | 54      | 102      | 43      | 96      | 112             | 64      | 127     | 75      | 93      | 39      | 152     | 146     | 16      | 44      | 16      | 120     | 40      | 56      | 62      | 40      | 19      | 124     | 88      | 29      |
| TOAB        | 1025    | 482     | 867     | 553     | 388     | 189     | 881     | 495     | 405     | 580      | 648     | 878     | 903             | 909     | 619     | 463     | 396     | 432     | 954     | 1166    | 385     | 210     | 513     | 590     | 219     | 186     | 223     | 255     | 47      | 549     | 296     | 172     |
| <b>5</b> ** |         |         |         |         |         |         |         |         |         |          |         |         |                 |         |         |         |         |         |         |         |         |         |         |         |         |         |         |         |         |         |         |         |
| % TOC       | 0.7     | 0.5     | 9.0     | 9.0     | 6.0     | 9.0     | 1.2     | 0.5     | 0.8     | 0.3      | 6.0     | 0.3     | 0.2             | 0.2     | 0.5     | 0.3     | 0.7     | 0.7     | 0.2     | 0.8     | 0.2     | 9.0     | 0.2     | 0.3     | <b></b> | 0.7     | 0.7     | 0.5     | 9.0     | 9.0     | 6.0     | 0.8     |
| % FINES     | 80.4    | 78.6    | 34.2    | 100     | 84.8    | 97.6    | 56.4    | 63.5    | 87.6    | 4.7      | 9.98    | 6.4     | 16.7            | 6.16    | 22.3    | 5.5     | 9.4     | 88.9    | 2.4     | 9.5     | 5.1     | 97.3    | 6.2     | 19.6    | 96,4    | 90.5    | 80.4    | 78.6    | 34.2    | 100     | 84.8    | 97.6    |
| Depth (m)   | 18.5    | 30.8    | 9.2     | 18.5    | 30.8    | 92.3    | 18.5    | 30.8    | 92.3    | 30.8     | 230.8   | 30.8    | 92.3            | 230.8   | 92.3    | 30.8    | 92.3    | 230.8   | 61.5    | 30.8    | 92.3    | 230.8   | 30.8    | 92.3    | 230.8   | 92.3    | 18.5    | 30.8    | 9.2     | 18.5    | 30.8    | 92.3    |
| LonSec      | 41      | 51      | 34      | 41      | 45      | 13      | 37      | 37      | 'n      | 46       | 36      | 52      | 52              | 41      | 45      | . 50    | 23      | 38      | 44      | 17      | 43      | 14      | 7       | 22      | 23      | 18      | 41      | 51      | 34      | 41      | 45      | 13      |
| LonMin      | 21      | 7       | 21      | 73      | 21      | 22      | 71      | 21      | 22      | 25       | 27      | 25      | 26              | 27      | 26      | 26      | 26      | 27      | 26      | 26      | 26      | 27      | 26      | 26      | 27      | 22      | 21      | 21      | 21      | 21      | 21      | 22      |
| LonDeg      | 122     | 122     | 122     | 122     | 122     | 122     | 122     | 122     | 122     | 122      | 122     | 122     | 122             | 122     | 122     | 122     | 122     | 122     | 122     | 122     | 122     | 122     | 122     | 122     | 122     | 122     | 122     | 122     | 122     | 122     | 122     | 122     |
| LatSec      | 9       | 4       | 4       | 3       | 55      | 51      | 0       | 96      | 47      | 17       | 13      | 0       | 16              | 9       | Э       | 46      | 47      | 49      | 32      | Ξ       | 12      | 14      | 37      | 30      | 30      | 59      | 9       | 2       | 4       | 3       | 55      | 5       |
| LatMin      | 37      | 37      | 37      | 37      | 36      | 36      | 37      | 36      | 36      | 40       | 41      | 40      | 40              | 40      | 240     | 39      | 39      | 39      | 39      | 39      | 39      | 39      | 38      | 38      | 38      | 36      | 37      | 37      | 37      | 37      | 36      | . 36    |
| LatDeg      | 47      | 47      | 47      | 47      | 47      | 47      | 47      | 47      | 47      | 47       | 47      | 47      | 47              | 47      | 47      | 47      | 47      | 47      | 47      | 47      | 47      | 47      | 47      | 47      | 47      | 47      | 47      | 47      | 47      | 47      | 47      | 47      |
| <b>*</b>    |         | _       | ,       |         | ±       | ,       |         | -       | -       | <b>.</b> |         | -       |                 | -       | _       |         | -       |         |         | -       |         |         | -       | -       |         | :       |         |         |         |         |         |         |
| ပ           | MO      | MO      | MO      | MO      | MO      | WO      | MO      | MO      | MO      | MO       | MO      | MO      | MO              | MO      | MO      | MO      | MO      | MO      | MO      | MO      | WO      | MO      |
| SAMPLE      | 4       | κ.      | S       | 7       | 7       | ν,      | -       | 4       | ю       |          | 7       | punt    | en <sup>'</sup> | event   | \$      |         | \$      | 61      | 4       | m       | *       | 7       | 7       | 4       | m       | 7       | 7       | 2       | 7       | 7       | 7       | 2       |
| STATION     | 1406    | 1512    | 1603    | 1606    | 1612    | 1630    | 1706    | 1810    | 1830    | 210      | 275     | 310     | 330             | 375     | 430     | 510     | 530     | 575     | 621     | 712     | 730     | 775     | 812     | 830     | 875     | 1230    | 1406    | 1512    | 1603    | 1606    | 1612    | 1630    |
| SURVEY      | JULTPPS  | JULTPPS | JULTPPS | JULTPPS         | JULTPPS | JULTPPS | JULTPPS | JULTPPS | JULTPPS | JULTPPS | JULTPPS | JULTPPS | JULTPPS | JULTPPS | JULTPPS | JULTPPS | MARTPPS |

| ias                                   | 9004    | 0          | m       | 0       | 7       | .4      |         |         | 7       | 2       | Second   | 7       | 7       | ব       | 73      | 7       | _       | 0       | 7       | 7       | 3       | m            | 8       | 7       | 8       | ,       | <b>n</b>     | ***        | 0       | grank   | *****   | 7           |         |
|---------------------------------------|---------|------------|---------|---------|---------|---------|---------|---------|---------|---------|----------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|--------------|---------|---------|---------|---------|--------------|------------|---------|---------|---------|-------------|---------|
| E                                     |         | 0          | \$      | 0       | ν,      | 9       | 1       | 9       | 4       | ζÜ      | <b>-</b> | 7       | 5       | 1       | 2       | ю       |         | 0       | 2       | М       | 4       | 9            | 5       | 4       |         | ,       | <i>y</i>     | 4          | 0       | 4       | 3       | ~           | 8       |
| <u>-</u> ,                            |         |            |         |         |         |         |         |         |         |         |          |         |         |         |         |         |         |         |         |         |         |              |         |         |         |         |              |            |         |         |         |             |         |
| P#                                    | 4       | 5          | 4       | 2       | 3       | 7       | 5       | ***     | 10      | 16      | 9        | 7       | 13      | 1       | 20      | 14      | 5       | ς.      | 22      | 16      | 4       | 9            | 6       | 17      | 6       | ŧ       | ,            | (r)        | 6       | pure    |         | ∞           | m       |
| MISCTX                                | ŝ       | ∞          | 10      | 7       | Ξ       | Ξ       | 7       | 12      | 16      | 30      | 27       | 17      | 105     | 59      | 72      | . 09    | 39      | 42      | 137     | 45      | 22      | 13           | 4       | 43      | 31      | 9       | <u>o</u>     | 4          | 18      | 6       | 49      | 12          | ∞       |
| CRIX                                  | 28      | 70         | 52      | 65      | 72      | 7.1     | 63      | 73      | 70      | 72      | 44       | 69      | 83      | 49      | 78      | 72      | 73      | 46      | 16      | 78      | 99      | 63           | 77      | 7.1     | 63      |         | Ç ;          | 8          | 22      | 91      | 84      | 11          | 09      |
| CHITAX                                | 0.631   | 0.701      | 0.557   | 0.552   | 0.753   | 0.618   | 0.649   | 0.826   | 0.656   | 0.776   | 0.47     | 0.569   | 0.785   | 0.605   | 0.852   | 0.671   | 0.837   | 0.533   | 0.777   | 0.708   | 0.807   | 0.738        | 0.776   | 0.84    | 0.745   | 6       | 670.0        | 0.824      | 0.623   | 0.876   | 0.84    | 0.893       | 0.704   |
| OTAX E                                | 1.183   | 1.236      | 0.91    | 0.918   | 1.328   | 0.946   | 1.168   | 1.525   | 1.136   | 1.558   | 0.768    | 1.112   | 1.608   | 1.093   | 1.791   | 1.258   | 1.649   | 0.848   | 1.695   | 1.533   | 1.604   | 1.213        | 1.521   | 1.747   | 1.194   | 1 45    | <del>}</del> | 1.478      | 0.999   | 1.12    | 1.758   | 1.736       | 1.03    |
| MPTX M                                | 0       | -          | 0       | 0       | y-s-ri  | 0       | 0       | -       | 0       | 7       | 0        | 7       | ່ຕ      | 7       | 4       | т       | ٣       | 7       | vs.     | S       | -       | 7            | 9       | 2       | · our   | -       | → •          | 7          | 7       | 0       | 9       | ν,          | 7       |
| OTAX A                                | 0       |            | 0       | 0       | -       | 0       | 0       |         | 0       | s.      | 0        | 4       | 35      | 7       | 6       | 9       | \$      | 7       | 15      | 32      |         | 4            | 18      | 15      |         | -       | - (          | m          | 4       | 0       | 22      |             | · en    |
| ECHAB MISCAB POTAX AMPTX MOTAX ECHTAX | 15      | 15         | 12      | 13      | 14      | 4       | Ξ       | 17      | 9       | 19      | 2        | 19      | 20      | 14      | 14      | 19      | 13      | œ       | 17      | 24      | 16      | 11           | 15      | 15      | 6       | =       | - ;          | med<br>med | œ       | ⋪,      | 22      | <del></del> | 6       |
| ECHAB 1                               | 545     | 267        | 276     | 361     | 167     | 105     | 325     | 178     | 193     | 118     | 471      | 119     | 173     | 348     | 109     | 102     | 127     | 294     | 26      | 273     | 150     | 66           | 74      | 185     | 8       | ç       | 4 6          | 86<br>6    | 160     | ₩.      | 11      | 46          | 76      |
| AMPAB                                 | 46      | 32         | 21      | 28      | 35      | 80      | 37      | 40      | 27      | 49      | 13       | 52      | 09      | 70      | 71      | 28      | 46      | 16      | 96      | 69      | 56      | <u>&amp;</u> | 49      | 69      | 12      | ç       | <b>3</b> 2   | 36         | 16      | 13      | 61      | 22          | 11      |
| CRAB                                  | 263     | 173        | 213     | 100     | 185     | 19      | 468     | 256     | 135     | 244     | 21       | 183     | 402     | 41      | 411     | 68      | 187     | 37      | 699     | 402     | 194     | 48           | 230     | 270     | 23      | 7.      | 2 8          | 8<br>5     | 36      | 26      | 325     | 201         | 40      |
| SAMPLE                                | 4       | <b>ν</b> η | 5       | 7       | 7       | Ŋ       |         | 4       | , m     | ,       | 2        | لحو     | EП      |         | ίς      | -       | į,      | 7       | 4       | т       | 4       | 7            | 7       | 44      | m       | r       | 1 (          | 7          | 7       | 7       | 7       | 7           | 7       |
| STATION                               | 1406    | 1512       | 1603    | 9091    | 1612    | 1630    | 1706    | 1810    | 1830    | 210     | 275      | 310     | 330     | 375     | 430     | 510     | 530     | 575     | 621     | 712     | 730     | 775          | 812     | 830     | 875     | 1230    | 2071         | 1400       | 1512    | 1603    | 1606    | 1612        | 1630    |
| SURVEY                                | JULTPPS | JULTPPS    | JULTPPS | JULTPPS | JULTPPS | JULTPPS | JULTPPS | JULTPPS | JULTPPS | JULTPPS | JULTPPS  | JULTPPS | JULTPPS | JULTPPS | JULTPPS | JULTPPS | JULTPPS | JULTPPS | JULTPPS | JULTPPS | JULTPPS | JULTPPS      | JULTPPS | JULTPPS | JULTPPS | MARTPPS | MADTER       | MAKIFFS    | MARTPPS | MARTPPS | MARTPPS | MARTPPS     | MARTPPS |

| MOAB      | 11      | 22      | <b>0</b> 0 | 10      | ł.      | S       | 5       | m       | ς,          | 12      | 7       | 4       | <b>=</b> | £       | 12      | 18      | 00      | 10      | 37      | 49       | 861      | 85            | 174      | 46       | 201      | 381        | 408      | 126       | 348      | 206      | 265      | 156             |
|-----------|---------|---------|------------|---------|---------|---------|---------|---------|-------------|---------|---------|---------|----------|---------|---------|---------|---------|---------|---------|----------|----------|---------------|----------|----------|----------|------------|----------|-----------|----------|----------|----------|-----------------|
| POAB      | 61      | 24      | 48         | 15      | 82      | 13      | 93      | 51      | 90          | 19      | 94      | 27      | 17       | 09      | 45      | 180     | 15      | . 23    | 22      | 68       | 241      | 39            | . 92     | 51       | 173      | . 182      | 100      | 152       | 238      | 192      | 102      | 361             |
| TOTAX     | 88      | 94      | 23         | 40      | 36      | 43      | 28      | 46      | 36          | 34      | 57      | 45      | 46       | 88      | 36      | 68      | 80      | 30      | 127     | 99       | 19       | 43            | \$       | 55       | 62       | <i>L</i> 9 | 23       | <b>64</b> | 63       | 64       | 20       | 110             |
| TOAB      | 300     | 372     | 96         | 336     | 322     | 399     | 1230    | 390     | 290         | 160     | 647     | 293     | 277      | 393     | 291     | 694     | 546     | 321     | 1208    | 235      | 475      | 234           | 408      | 269      | 441      | 299        | 588      | 325       | 702      | 474      | 441      | 863             |
| **        |         |         |            |         |         |         |         |         |             | ı       |         |         |          |         |         |         |         |         |         | S/S      | vs       | S/S           | NS.      | Ö        | ΝS       | VS         | ΛS       | Ð         | ΝS       | ۸S       |          | VS              |
| % TOC     | 1.2     | 0.5     | 0.8        | 0.3     | 6.0     | 0.3     | 0.2     | 0.2     | 0.5         | 0.3     | 0.7     | 0.7     | 0.2      | 0.8     | 0.2     | 9.0     | 0.2     | 0.3     | eveni.  | 0.3      | 0.3      | 1.3           | 1.3      | 0.1      | 0.2      | 6.0        | 0.8      | 0.5       | 0.1      | 0.2      | 0.7      | 0.1             |
| % FINES   | 56.4    | 63.5    | 87.6       | 4.7     | 9.98    | 6.4     | 16.7    | 6116    | 22.3        | 5.5     | 9.4     | 88.9    | 2.4      | 9.5     | 5.1     | 97.3    | 6.2     | 19.6    | 96.4    |          |          |               |          |          |          |            | ٠        |           |          |          | 90.5     |                 |
| Depth (m) | 18.5    | 30.8    | 92.3       | 30.8    | 230.8   | 30.8    | 92.3    | 230.8   | 92.3        | 30.8    | 92.3    | 230.8   | 61.5     | 30.8    | 92.3    | 230.8   | 30.8    | 92.3    | 230.8   | 30.5     | 91.4     | 182.9         | 189      | 30.5     | 30.5     | 45.7       | 91.4     | 64        | 30.5     | 45.7     | 92.3     | 91.4            |
| LonSec D  | 37      | 37      | \$         | 46      | 36      | 52      | 52      | 41      | 45          | 20      | 52      | 38      | 44       | 17      | 43      | 14      | 7       | 22      | 22      | 17       | 48       |               |          |          |          |            |          |           |          |          | 18       |                 |
| LonMin    | 21      | 21      | 22         | 25      | 27      | 25      | 56      | 27      | 56          | 26      | 792     | 27      | 56       | 26      | 56      | 27      | 56      | 26      | 27      | 24       | . 25     |               |          |          | /        |            |          |           |          |          | 22       |                 |
| LonDeg    | 122     | 122     | 122        | 122     | 122     | 122     | 122     | 122     | 122         | 122     | 122     | 122     | 122      | 122     | 122     | 122     | 122     | 122     | 122     | 122      | 122      |               |          |          |          |            |          |           |          |          | 122      |                 |
| LatSec    | 0       | \$6     | 47         | 17      |         | 0       | 16      | 9       | m           | 46      | 47      | 49      | 32       | 11      | 12      | 14      | 37      | 30      | 30      | 42       | 35       |               |          |          |          |            |          |           |          |          | 89       |                 |
| LatMin    | 37      | 36      | 36         | 40      | 41      | 9       | 40      | 40      | 240         | 39      | 39      | 39      | 39       | 39      | 39      | 39      | 38      | 38      | 38      | 37       | 37       |               |          |          |          |            |          |           |          |          | 36       |                 |
| LatDeg    | 47      | 47      | 47         | 47      | 47      | 47      | 47      | 47      | 47          | 47      | 47      | 47      | 47       | 47      | 47      | 47      | 47      | 47      | 47      | 47       | 47       |               |          |          |          |            |          |           |          |          | . 47     |                 |
| <b>*</b>  |         |         |            |         | <b></b> | yand,   | -       |         | <del></del> | ,       | p       | ei      | <u>.</u> | _       | -       | •       |         |         |         |          |          | <b>e</b> mail | -        | -        |          | -          | -        |           |          |          |          | -               |
| ပ         | MO      | WO      | MO         | MO      | MO      | MO      | MO      | MO      | MO          | MO      | MO      | MO      | MO       | MO      | MO      | MO      | MO      | MO      | MO      |          |          |               |          |          |          |            |          |           |          |          |          |                 |
| SAMPLE    | 74      | 2       | 7          | 2       | 2       | 2       | 2       | 73      | 2           | 2       | 7       | 7       | 7        | 7       | 7       | 74      | 7       | 7       | 7       | 8        | -        | -             | -        | janes,   | *****    | *****      | guerj    | event.    |          | 2        | -        | <b>9</b> *****( |
| STATION   | 1706    | 1812    | 1830       | 210     | 275     | 310     | 330     | 375     | 430         | 510     | 530     | 575     | 621      | 712     | 730     | 775     | 812     | 830     | 875     | 1010     | 1030     | 1060          | 1062     | 110      | 1110     | 1115       | 1130     | 121       | 1210     | 1215     | 1230     | 130             |
| SURVEY    | MARTPPS | MARTPPS | MARTPPS    | MARTPPS | MARTPPS | MARTPPS | MARTPPS | MARTPPS | MARTPPS     | MARTPPS | MARTPPS | MARTPPS | MARTPPS  | MARTPPS | MARTPPS | MARTPPS | MARTPPS | MARTPPS | MARTPPS | TPPSRECO | TPPSRECO | TPPSRECO      | TPPSRECO | TPPSRECO | TPPSRECO | TPPSRECO   | TPPSRECO | TPPSRECO  | TPPSRECO | TPPSRECO | TPPSRECO | TPPSRECO        |

| SURVEY   | STATION | SAMPLE       | CRAB | AMPAB      | ECHAB | ECHAB MISCAB | POTAX | AMPTX | MOTAX ECHTAX | ЕСНТАХ | CRTX | MISCTX | Ħ              | Fm    | Ē       | SDI |
|----------|---------|--------------|------|------------|-------|--------------|-------|-------|--------------|--------|------|--------|----------------|-------|---------|-----|
| MARTPPS  | 1706    | 7            | 121  | 4          | 73    | 16           | 14    | 3     | 1.705        | 0.877  | 81   | 22     | 6              |       |         |     |
| MARTPPS  | 1812    | 2            | 162  | 51         | 134   |              | 4     | 3     | 1.536        | 0.778  | 81   | 13     | ward<br>transf |       | 6       | _   |
| MARTPPS  | 1830    | 7            | 14   | 6          | 25    | 4            | 3     | 2     | 1.143        | 0.839  | 73   | 20     | 4              |       | 9       |     |
| MARTPPS  | 210     | 2            | 83   | 23         | 237   | 9            | 0     | 0     | 0.759        | 0.474  | 89   |        | 1              |       | 42      |     |
| MARTPPS  | 275     | 7            | 188  | 23         | 51    | 7            | 0     | 0     | 1.216        | 0.781  | 51   | 8      | *****          |       | 22      |     |
| MARTPPS  | 310     | 2            | 225  | 28         | 159   | 6            | 0     | 0     | 1,099        | 0.673  | 69   | 7      | 4              |       | ς.      |     |
| MARTPPS  | 330     | 7            | 1005 | 14         | 64    | 00           | 0     | 0     | 0.452        | 0.312  | 6    |        | good           |       | 7       |     |
| MARTPPS  | 375     | 7            | 150  | 31         | 186   | 6            | and.  | ymvi  | 1.224        | 0.736  | 99   | 0      | 0              |       | , 22    |     |
| MARTPPS  | 430     | 2            | 146  | 20         | 131   | 6            | I     | П     | 1.075        | 0.691  | 69   | 82     | - 4            |       |         |     |
| MARTPPS  | 510     | 7            | 62   | 17         | 97    | 3            | 0     | 0     | 1.105        | 0.721  | 70   | ****   | • •            |       | · vc    |     |
| MARTPPS  | 530     | 7            | 243  | 31         | 307   | 16           | ****  | 9444  | 1.139        | 0.649  | 64   | m      | . 7            |       | ,<br>26 |     |
| MARTPPS  | 575     | 73           | 93   | 27         | 172   | 13           | 0     | 0     | 1.128        | 0.682  | 99   | 4      | 2              |       | 3 1     |     |
| MARTPPS  | 621     | 2.           | 103  | 27         | 157   | 80           | 0     | Ö     | 1.196        | 0.719  | 63   | 6      | , 9            |       | 78      |     |
| MARTPPS  | 712     | 7            | 250  | 54         | 73    | 14           | 7     | 2     | 1.626        | 0.834  | 72   | 16     | 7              |       | 10      |     |
| MARTPPS  | 730     | 7            | 30   | 15         | 216   | 6            | 0     | 0     | 0.835        | 0.536  | 44   | 15     | 9              | ٠     | 28      |     |
| MARTPPS  | 277     | 7            | 413  | 51         | 96    | 17           | purd. | ***** | 1.611        | 0.827  | 70   | 42     | 12             |       | i =     |     |
| MARTPPS  | 812     | ~            | 281  | 52         | 161   | 12           | 12    | 3     | 1.555        | 0.817  | 69   | 11     | \$             |       |         |     |
| MARTPPS  | 830     | 7            | 31   | Ι          | 237   | 6            | 0     | 0     | 0.841        | 0.569  | 51   |        | \$0            |       |         |     |
| MARTPPS  | 875     | 7            | 703  | 64         | 77    | 14           | 44    | 4     | 1.55         | 0.737  | 73   | 34     | 61             |       | . 2     |     |
| TPPSRECO | 1010    | 'n           | 86   | 4          | ťħ    | ٠<br>د       | 35    | .4    | 12           | 6      | 2    | 4      | 1 508          | 0.800 | 83      |     |
| TPPSRECO | 1030    | -            | 25   | 15         | ť'n   | ∞            | 34    | 10    | 7            | r)     | . 2  | 7      | 1.249          | 0.690 | 8 5     |     |
| TPPSRECO | 1060    | *****        | 106  | 57         | m     |              | 14    | 11    | ∞            | 2      | 18   |        | 1.291          | 0.79  | 67      |     |
| TPPSRECO | 1062    |              | 135  | 40         | 7     | 4            | 24    | 15    | 9            |        | 78   | m      | 1.246          | 0.693 |         |     |
| TPPSRECO | 110     | <b>p=v</b> ( | 144  | 21         | 4     | 21           | 21    | ∞     | 91           | ю      | 14   |        | 1.168          | 0.671 | 74      |     |
| TPPSRECO | 1110    |              | 53   | 7          | 0     | 14           | 35    | 44    | 14           | 0      | 10   | ťΩ     | 1.408          | 0.785 | 62      |     |
| TPPSRECO | 1115    | <b></b>      | 29   | 21         | ***** | 9            | 35    | 7     | 17           | I      | 12   | ~      | 1.256          | 0.688 | . 63    |     |
| TPPSRECO | 1130    |              | 79   | 43         | 0     |              | 25    | ∞     | 10           | 0      | 17   | *****  | 908.0          | 0.468 | 69      |     |
| TPPSRECO | 121     | _            | 35   | 23         | 44    | 00           | 29    | 10    | =            | 7      | 19   | e      | 1.397          | 0.773 | 61      |     |
| TPPSRECO | 1210    |              | 109  | ţn         |       | 9            | 37    | 4     | 13           | -      | 11   | ,      | 1.242          | 69'0  | 59      |     |
| TPPSRECO | 1215    | 7            | 53   | <b>0</b> 0 | 1     | 22           | 34    | \$    | 15           | *****  |      | 3      | 1.499          | 0.83  | .29     |     |
| TPPSRECO | 1230    | _            | 74   | 51         | 0     | 0            | 26    | -     | 7            | 0      | 17   | 0      | 0.956          | 0.563 | 89      |     |
| TPPSRECO | 130     |              | 96   | 78         | 46    | 210          | 57    | Ξ     | <u>\$2</u>   | 5      | 23   | 7      | 1.544          | 0.756 | 74      |     |
|          |         |              |      |            |       |              |       |       |              |        |      |        |                |       |         |     |

| roab MOAB | 200 388         | 239 246 | 150 125        | 61 156         | 67 82          | 171 287        | 148 298         | 63 441          | 84 338  | 90 175         | 66 136          | 51 47   | 130 327    | 131 184         | 101 379        | 118 229         | 273 584        | 125 192        | 80 168         | 138 241 | 142 474 | 88 135  | 290 137        | 200 224 | 367 316 | 222 123          | 56 277  | 23 285  | 97 345  | 175 91  | 133 168 | 164 175 | 249 122 |
|-----------|-----------------|---------|----------------|----------------|----------------|----------------|-----------------|-----------------|---------|----------------|-----------------|---------|------------|-----------------|----------------|-----------------|----------------|----------------|----------------|---------|---------|---------|----------------|---------|---------|------------------|---------|---------|---------|---------|---------|---------|---------|
|           | 65              | 09      | 9              | 36             | 43             | 52             | 48              | 44              | 53      | 52             | 55              | 34      | 40         | 41              | 38             | 54              | 72             | 54             | 47             | 53      | 52      | 4       | 93             | 79      | 101     | 82               | 48      | 38      | 35      | 66      | 80      | 85      | 105     |
|           | 782             | 615     | 1206           | 333            | 235            | . 552          | 541             | 268             | 478     | 331            | 290             | 243     | 641        | 377             | 700            | 440             | 979            | 363            | 310            | 408     | 647     | 248     | 645            | 589     | 762     | 445              | 421     | 360     | 532     | 432     | 610     | 514     | 299     |
|           | VS              | VS      |                |                | ۸S             | SA             |                 | ۸S              | VS      | VS             | Ŋ               |         |            | Ö               |                | NS.             |                | ΛS             |                | NS.     | ΛS      | VS      |                | ۸S      | VS      | ΛS               |         |         |         |         |         | ΛS      |         |
|           | 0.4             | 0.8     | 6.0            | 0.7            | 0.7            | 4.1            | 0.5             | 1.7             | 8.0     | 1.2            | 6.0             | 9.0     | 9.0        | 1.2             | 1.2            | 3.1             | 0.5            | 0.4            | 0.8            | 0.4     | 0.4     | 4       | 0.3            | 0.1     | 0.1     | 0.1              | 6.0     | 0.9     | 6.0     | 0.3     | 0.3     | 0.1     | . 0.2   |
|           |                 |         |                | 80,4           |                |                | 78.6            |                 |         |                |                 | 34.2    | 100        |                 | 56.4           |                 |                |                | 87.6           |         |         |         | 4.7            |         |         |                  |         |         |         | 6,4     | 6.4     |         | 16.7    |
|           | 18.5            | 30.5    | 9.1            | 18.5           | 1.6            | 18.3           | 30.8            | 45.7            | 91.4    | 152            | 182.9           | 9.2     | 18.5       | 201.2           | 18.5           | 30.5            | 30.5           | 45.7           | 92.3           | 30.5    | 45.7    | 91.4    | 30.8           | 6.09    | 91.4    | 137.2            | 268.2   | 268.2   | 268.2   | 30.5    | 30.8    | 6.09    | 92.3    |
|           |                 |         |                | 4              |                |                | 51              |                 |         |                |                 | 34      | 41         |                 | 37             |                 |                |                | 5              |         |         |         | 46             |         |         |                  |         |         |         |         | . 52    |         | 52      |
|           |                 |         |                | 21             |                |                | 21              |                 |         |                |                 | 21      | 21         |                 | 21             |                 |                |                | 22             |         |         |         | 25             |         |         |                  |         |         |         |         | 25      |         | 26      |
|           |                 |         |                | 122            |                |                | 122             |                 |         |                |                 | 122     | 122        |                 | 122            |                 |                |                | 122            |         |         |         | 122            |         |         |                  |         |         |         |         | 122     |         | 122     |
|           |                 |         |                | 9              |                |                | 7               |                 |         |                |                 | 4       | 8          |                 | 0              |                 |                |                | 47             |         |         |         | 1.7            |         |         |                  |         |         |         |         | 0       |         | 16      |
|           |                 |         |                | 37             |                |                | 37              |                 |         |                |                 | 37      | 37         |                 | 37             |                 |                |                | 36             |         |         |         | 40             |         |         |                  |         |         |         |         | 40      |         | 40      |
|           |                 |         |                | 47             |                |                | 47              |                 |         |                |                 | 47      | 47         |                 | 47             |                 |                |                | 47             |         |         |         | 47             |         |         |                  |         |         |         |         | 47      |         | 47      |
|           |                 | ,       | -              | -              | -              |                | *****           |                 | -       | -              |                 | *****   | *****      |                 |                | <b>,</b> ,      | -              |                | ****           |         | -       | -       |                |         | -       | <del>, red</del> | tened   | ****    | -       | -       |         |         |         |
|           |                 |         |                |                |                |                |                 |                 |         |                |                 |         |            |                 |                |                 |                |                |                |         |         | -       |                |         |         |                  |         |         |         |         |         |         |         |
|           |                 | s       | 2              | ****           | passes         |                |                 | -               |         | -              | ymmi            | *****   | ****       |                 |                | 7               | 2              | 7              | 7              |         |         | -       | 7              | М       | pom     | *                | -       | 7       | 33      | 7       | 4       | 7       | -       |
|           | 1306            | 1310    | 1403           | 1406           | 1503           | 1506           | 1510            | 1515            | 1530    | 1550           | 091             | 1603    | 1606       | 166             | 1706           | 1710            | 1810           | 1815           | 1830           | 1910    | 1915    | 1930    | 210            | 220     | 230     | 245              | 288     | 288     | 288     | 310     | 310     | 320     | 330     |
|           | <b>IPPSRECO</b> | PPSRECO | <b>PPSRECO</b> | <b>PPSRECO</b> | <b>PPSRECO</b> | <b>PPSRECO</b> | <b>IPPSRECO</b> | <b>IPPSRECO</b> | PPSRECO | <b>PPSRECO</b> | <b>IPPSRECO</b> | PPSREC0 | rppsreco . | <b>IPPSRECO</b> | <b>PPSRECO</b> | <b>IPPSRECO</b> | <b>PPSRECO</b> | <b>PPSRECO</b> | <b>PPSRECO</b> | PPSREC0 | PPSREC0 | PPSREC0 | <b>PPSRECO</b> | PPSREC0 | PPSRECO | <b>PPSRECO</b>   | PPSRECO |

| SURVEY   | STATION | SAMPLE      | CRAB | AMPAB | ECHAB   | MISCAB | POTAX | AMPTX MOTAX ECHTAX | AOTAX E     | CHTAX | CRTX | MISCTX | Ħ     | <u>,</u> | ш    | IOS        |
|----------|---------|-------------|------|-------|---------|--------|-------|--------------------|-------------|-------|------|--------|-------|----------|------|------------|
| TPPSRECO | 1306    | <b></b>     | 191  | -     | 0       | 33     | 40    | ganni              | 15          | 0     | 6    | -      | 1.132 | 0.625    | 62   | 9          |
| TPPSRECO | 1310    |             | 126  |       | 2       | 2      | 33    | -                  | 18          | 7     | S    | 7      | 1.287 | 0.724    | 99   | 10         |
| TPPSRECO | 1403    | 7           | 924  |       | 0       | 3      | 32    |                    | 18          | 0     | 7    | 2      | 0.785 | 0.442    | 64   | 3          |
| TPPSRECO | 1406    | ٠           | 116  | 0     | 0       | 0      | 22    | ٥                  | 6           | 0     | 5    | 0      | 1.061 | 0.682    | 99   | ţ          |
| TPPSRECO | 1503    | •           | 98   | 9     | 0       | 0      | 19    | æ                  | 13          | 0     |      | 0      | 1.233 | 0.755    | 63   | <b>∞</b>   |
| TPPSRECO | 1506    |             | 94   | m     | 0       | 0      | 30    | 2                  | 12          | 0     | δ.   | 0      | 1.158 | 0.675    | 19   | ∞          |
| TPPSRECO | 1510    | ****        | 87   | 0     | 2       | 9      | 29    | 0                  | 6           | 7     | 9    | 7      | 1.096 | 0.652    | 63   | 7          |
| TPPSRECO | 1515    | 40044       | 64   | 15    | 0       | 0      | 21    | ιΛ                 | 14          | 0     | 6    | .0     | 0.823 | 0.501    | 62   | m          |
| TPPSRECO | 1530    | •           | 53   | 35    | 0       | 3      | 29    | 6                  | 5           | 0     | 17   | 7      | 0.812 | 0.471    | 89   | šΛ         |
| TPPSRECO | 1550    | -           | 63   | 30    | -       | 7      | 25    | 00                 | 6           |       | 16   | _      | 1.218 | 0.71     | 4    | und<br>und |
| TPPSRECO | 160     |             | 74   | 50    | 12      | 2      | 21    | 10                 | 11          | 3     | 18   | 64,    | 1.329 | 0.764    | 19   | 23         |
| TPPSRECO | 1603    |             | 145  | 0     | 0       | 0      | 18    | 0                  | =           | 0     | 50   | 0      | 0.959 | 0.626    | 62   | 7          |
| TPPSRECO | 1606    | <b>prod</b> | 182  | 0     | 0       | 2      | 24    | 0                  | <del></del> | 0     | 44   | -      | 906.0 | 0.565    | 99   | 4          |
| TPPSRECO | 166     |             | 48   | 1.7   | ٤٧      | 6      | 14    | 4                  | Ξ           | 2     | 13   | -      | 1.006 | 0.624    | . 99 | 85         |
| TPPSRECO | 1706    |             | 220  | 4     | 0       | 0      | 18    | m                  | 12          | 0     | 80   | 0      | 0.89  | 0.564    | 61   | ť'n        |
| TPPSRECO | 1710    | 7           | 85   | 4     |         | 7      | 29    | 4                  | 12          |       | 10   | 7      | 1.18  | 0.681    | 2    | 00         |
| TPPSRECO | 1810    | 7           | 118  | 6     | 0       |        | 40    | 'n                 | 18          | 0     | 10   | 3      | 161:1 | 0.641    | 57   | 6          |
| TPPSRECO | 1815    | 7           | 46   | 18    | 0       | 0      | 31    | 4                  | 13          | 0     | 10   | 0      | 1.316 | 0.76     | 73   | 2          |
| TPPSRECO | 1830    | 73          | 59   | 48    |         | 7      | 26    | 7                  | ν           | 1     | 13   | 73     | 1.065 | 0.637    | 29   | ∞          |
| TPPSRECO | 1910    | _           | 26   | 7     | 0       | εn     | 27    | 4                  | 15          | 0     | 6    | 2      | 1.259 | 0.73     | 58   | 12         |
| TPPSRECO | .\$161  |             | 21   | 12    |         | 6      | 25    | 4                  | 4           | 7504  | 10   | 2      | 1.02  | 0.595    | 54   |            |
| TPPSRECO | 1930    | -           | 24   | 14    | 0       | -      | 25    | 9                  | 4           | 0     | y-m/ | 1      | 0.987 | 0.612    | 73   | <b>∞</b>   |
| TPPSRECO | 210     | ۲۹ .        | 209  | 39    | 6       | 0      | 49    | 12                 | 16          | 4     | 21   | 0      | 1.507 | 0.766    | 70   | 19         |
| TPPSRECO | 220     | 7           | 155  | 16    | 9444    | 6      | 38    | ∞                  | 21          | -     | 16   | 2      | 1.373 | 0.723    | 59   | 14         |
| TPPSRECO | 230     |             | 62   | 23    | 9       | 9      | 62    | 6                  | 14          | 2     | 20   | ****   | 1.552 | 0.774    | 26   | 23         |
| TPPSRECO | 245     | _           | 64   | 40    | 7       | 29     | 47    | 12                 | =           |       | 61   | æ      | 1.662 | 0.868    | 76   | 25         |
| TPPSRECO | 288     | _           | 83   | 18    | 0       | 5      | 15    | 7000               | 13          | 0     | 11   | m      | 1.075 | 0.639    | 57   | 9          |
| TPPSRECO | 288     | 7           | 51   | 28    | 0       | -      | 15    | 10                 | 01          | 0     | 12   |        | 976.0 | 0.618    | 54   | •          |
| TPPSRECO | 288     | 3           | 68   | 15    | <b></b> | 0      | 17    | 4                  | 6           | -     | 00   | 0      | 1.011 | 0.655    | 55   | 9          |
| TPPSRECO | 310     | 7           | 152  | 40    | -       | 13     | 46    | 15                 | 21          | -     | 25   | 8      | 1.654 | 0.829    | 69   | 27         |
| TPPSRECO | 310     | 4           | 302  | 35    | 5       | 2      | 39    | 13                 | 16          | 7     | 21   | 73     | 1.26  | 0.662    | 99   | 6          |
| TPPSRECO | 320     | 7           | 162  | 35    | 4       | 6      | 35    | 10                 | 21          | m     | 23   | 8      | 1.413 | 0.733    | 58   | 11         |
| TPPSRECO | 330     |             | 150  | 124   | . 62    | 84     | 53    | 61                 | 13          | \$    | 28   | 9      | 1.717 | 0.849    | 80   | 28         |

| MOAB        | 247      | 322      | 225      | 235      | 220      | 83       | 61       | 100      | 110      | 141            | 961      | 164      | 33       | 12       | 222      | 114      | 73           | 85       | 316      | 169      | <b>8</b> 0 | 175      | 273      | 329      | 127      | 206      | . 105    | 289      | 13       | 10       | 109      | 279      |
|-------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------------|----------|----------|----------|----------|----------|----------|--------------|----------|----------|----------|------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
| POAB        | 146      | 82       | 309      | 123      | 113      | 435      | 26       | 52       | 610      | 159            | 215      | 52       | 161      | 13       | 390      | 522      | 107          | 124      | 365      | 71       | 114        | 403      | 133      | 122      | 87       | 179      | 92       | 64       | 26       | 23       | 21       | 79       |
| TOTAX       | 8        | 43       | =        | 19       | 98       | 121      | 32       | 48       | 139      | <del>5</del> 0 | 88       | 33       | 123      | 24       | 124      | 134      | <b>~</b>     | 77       | 83       | 44       | 56         | 136      | 18       | 55       | 73       | 57       | 26       | 38       | 30       | 31       | 23       | 43       |
| TOAB        | 570      | 518      | 1071     | 860      | 557      | 716      | 274      | 311      | 863      | 405            | 604      | 327      | 360      | 42       | 935      | 936      | 297          | 271      | 915      | 359      | 376        | 841      | 542      | 549      | 415      | 396      | 182      | 376      | 70       | 58       | 184      | 405      |
| <b>5</b> ** | ΝS       |          | ΛS       | ΛS       | ΝS       |          |          |          |          |                | ΛS       |          | VS       |          | NS.      |          | ΛS           |          |          |          |            |          | ۸S       |          | ۸S       |          | ۸S       | S/S      |          |          |          |          |
| % TOC       | 0.1      | 0.2      | 0.1      | 0.1      | 0.1      | 0.5      | 0.3      | 0.3      | 0.7      | 0.7            | 0.1      | 0.7      | 0.2      | 0.2      | 0.2      | 0.8      | 0.1          | 0.2      | 0.8      | 9.0      | 0.2        | 0.3      | 0.1      |          | 0.4      |          | 2.8      | 2.8      | 1.9      | 1.9      | 2        | 7        |
| % FINES     |          | 91.9     |          |          |          | 22.3     | 5.5      | 5.5      |          | 9.4            |          | 88.9     |          | 2.4      |          | 9.5      |              | 5.1      |          | 97.3     | 6.2        | 19.6     |          | 96.4     |          |          |          |          | 93.8     | 93.8     | 76.6     | 76.6     |
| Depth (m)   | 182.9    | 230.8    | 30.5     | 30.5     | 61.5     | 92.3     | 30.8     | 30:8     | 61.5     | 92.3           | 182.9    | 230.8    | 30.5     | 61.5     | 91.4     | 30.8     | 64           | 92.3     | 182.9    | 230.8    | 30.8       | 92.3     | 182.9    | 230.8    | 30.5     | 91.4     | 182.9    | 207.3    | 184.6    | 184.6    | 221.5    | 221.5    |
| LonSec      |          | 4        |          |          |          | 45       | 20       | 20       |          | 22             |          | 38       |          | 44       |          | 17       |              | 43       |          | 14       | 1          | 22       |          | 23       | 10       | 25       |          |          | . 53     | . 22     | 12       | 12       |
| LonMin      |          | 27       |          |          |          | 26       | 26       | 26       |          | 26             |          | 27       |          | 26       |          | 26       |              | 26       |          | 27       | 26         | 26       |          | 27       | 25       | 25       |          |          | 24       | 24       | 26       | 92       |
| LonDeg      |          | 122      |          |          |          | 122      | 122      | 122      |          | 122            |          | 122      |          | 122      |          | 122      |              | 122      |          | 122      | 122        | 122      |          | 122      | 122      | 122      |          |          | 122      | 122      | 122      | 122      |
| LatSec      |          | 9        |          |          |          | М        | 46       | 46       |          | 47             |          | 49       |          | 32       |          |          |              | 12       |          | 14       | 37         | 30       |          | 30       | Ø.       | -        |          |          | 16       | 16       | 37       | 37       |
| LatMin      |          | 40       |          |          |          | 240      | 39       | 39       |          | 39             |          | 39       |          | 39       |          | 39       |              | 39       |          | 39       | 38         | 38       |          | 38       | 38       | 38       |          |          | 32       | 32       | 31       | 31       |
| LatDeg      |          | 47       |          |          |          | 47       | 47       | 47       |          | 47             |          | 47       |          | 47       |          | 47       |              | 47       |          | 47       | 47         | 47       |          | 47       | 47       | 47       |          |          | 47       | 47       | 47       | 47       |
| *           |          | yem      |          |          | -        |          |          | -        | -        | ,              | _        | paral .  | •        |          | quet     | -        | <del>y</del> | ****     |          |          |            |          | -        |          |          | ÷        | -        | -        |          |          | -        | -        |
| O           |          |          |          |          |          |          |          |          |          |                |          |          |          |          |          |          |              |          |          |          |            |          |          |          |          |          |          |          | MO       | MO       | MO       | MO       |
| SAMPLE      | -        |          | т        | **       | -        |          | 8        | 4        | ***      | 4              | •        | ****     | 2        | _        | <b>.</b> |          | •            | gust     | T        | ***      | 7          | 2        | quet     | _        | 7        | S        | -        | -        | A600EXA  | A600EXB  | A720XA   | A720XB   |
| STATION     | 360      | 375      | 410      | 410      | 421      | 430      | 510      | 510      | 521      | 530            | 260      | 588      | 610      | 621      | 630      | 712      | 721          | 730      | 160      | 780      | 810        | 830      | 860      | 880      | 910      | 930      | 096      | 896      | A-600E   | A-600E   | A-720    | A-720    |
| SURVEY      | TPPSRECO       | TPPSRECO | TPPSRECO | TPPSRECO | TPPSRECO | TPPSRECO | TPPSRECO | TPPSRECO     | TPPSRECO | TPPSRECO | TPPSRECO | TPPSRECO   | TPPSRECO | TPPSRECO | TPPSRECO | TPPSRECO | TPPSRECO | TPPSRECO | TPPSRECO | SEAFEB83 | SEAFEB83 | SEAFEB83 | SEAFEB83 |

| MOAB      | 99       | 108      | 13       |          | 114      | 148      | 36       | 9        | 92       | 124      | 76       | 134      | 74       | 116      | 259      | 262      | 280          | 280      | 316      | 69       | 72       | 145      | 196      | 108      | 104      | 48       | 176      | 20       | 22       | 56       | 16          | 23       | 10       |
|-----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|--------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|-------------|----------|----------|
| POAB      | 1.7      | 51       | 38       | 36       | 55       | 52       | 56       | 21       | 144      | 171      | 217      | 141      | 248      | 53       | 77       | 103      | 92           | 65       | 69       | 189      | 337      | 220      | 164      | 284      | 208      | 50       | 134      | 40       | 70       | 99       | 43          | 43       | 19       |
| TOTAX     | 27       | 32       | .24      | 27       | 37       | 27       | 30       | 18       | 63       | 58       | 62       | 19       | 75       | 28       | 38       | 26       | 51           | 45       | 09       | 75       | 90       | 62       | 89       | 75       | 63       | 26       | 45       | 30       | . 24     | 35       | 29          | 31       | 91       |
| TOAB      | 115      | 199      | 70       | 72       | 199      | 214      | 123      | 45       | 327      | 379      | 344      | 364      | 461      | 189      | 377      | 402      | 431          | 428      | 487      | 346      | 531      | 442      | 454      | 451      | 337      | 108      | 336      | 70       | 113      | 159      | 72          | 125      | 32       |
| 2**       |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |              |          |          |          |          |          |          |          |          |          |          |          |          |          |             |          |          |
| % TOC     | 2.7      | 2.7      | 1.8      | 1.8      | 2        | 7        | 2        | 2        | 0.3      | 0.3      | 0.3      | 0.3      | 0.3      | 2.6      | 2.6      | 0.8      | 0.8          | 1.3      | 1.3      | 9.0      | 9.0      | 6.0      | 6.0      | 0.8      | 0.8      | 2.2      | 2.2      | 2.4      | 2.4      | 2.1      | 2.1         | 2.1      | 2.1      |
| % FINES   | 6.06     | 6'06     | 96       | 96       | 90.4     | 90.4     | 92.5     | 92.5     | 12.9     | 12:9     | 12.9     | 12.9     | 12.9     | 8.06     | 8.06     | 40       | 40           | 66.5     | 66.5     | 23       | 23       | 34.4     | 34.4     | 38.3     | 38.3     | 95.6     | 92.6     | 94.5     | 94.5     | 96.3     | 96.3        | 6.96     | 96.3     |
| Depth (m) | 184.6    | 184.6    | 203.1    | 203.1    | 184.6    | 184.6    | 184.6    | 184.6    | 61.5     | 61.5     | 61.5     | 61.5     | 61.5     | 203.1    | 203.1    | 184.6    | 184.6        | 230.8    | 230.8    | 184.6    | 184.6    | 240.0    | 240.0    | 184.6    | 184.6    | 240.0    | 240.0    | 184.6    | 184.6    | 184.6    | 184.6       | 184.6    | 184.6    |
| LonSec    | 25       | 25       | 27       | 27       | 40       | 40       | 28       | 28       | 36       | 36       | 36       | 36       | 36       | 39       | 39       | =        | <del>,</del> | 58       | 58       | 4        | 41       | 49       | 49       | 56       | 26       | 29       | . 29     | 45       | 45       | 36       | 36          | 36       | 36       |
| LonMin    | 24       | 24       | 25       | 25       | 23       | 23       | 24       | 24       | 22       | 22       | 22       | 22       | 22       | 24       | 24       | 23       | 23           | 23       | 23       | 23       | 23       | 23       | 23       | 22       | 22       | 23       | 23       | 22       | 22       | 23       | 23          | 23       | 23       |
| LonDeg    | . 122    | 122      | 122      | 122      | 122      | 122      | 122      | 122      | 122      | 122      | 122      | 122      | 122      | 122      | 122      | 122      | 122          | 122      | 122      | 122      | 122      | 122      | 122      | 122      | 122      | 122      | 122      | 122      | 122      | 122      | 122         | 122      | 122      |
| LatSec    | 46       | 46       | 16       | 16       | 38       | 38       | 31       | 31       | -        | =        | <u>-</u> | =        | -        | 7        | 7        | 35       | 35           | 24       | 24       | 53       | 53       | 29       | .29      | 28       | . 28     | 7        | 7        | 57       | 57       | 45       | 45          | 45       | 45       |
| LatMin    | 30       | 30       | 30       | 30       | 29       | 29       | 29       | 29       | 28       | 28       | 28       | 28       | 28       | 29       | . 29     | 27       | 27           | 27       | 27       | 26       | 26       | 26       | 26       | 26       | . 26     | 26       | 26       | 25       | 25       | 25       | 25          | 25       | 25       |
| LatDeg    | 47       | 47       | 47       | 47       | 47       | 47       | 47       | 47       | 47       | 47       | 47       | 47       | 47       | 47       | 47       | 47       | 47           | 47       | 47       | 47       | 47       | 47       | 47       | 47       | 47       | 47       | 47       | 47       | 47       | 47       | 47          | 47       | 47       |
| *         |          | _        |          | gamit    | +-4      | _        |          |          | guard.   |          |          |          | -        |          | •        |          | ******       |          | -        | <b></b>  |          |          |          |          |          | -        | •        | •        | ****     |          | <del></del> |          | -        |
| ၁         | MO           | MO       | MO       | MO       | MO       | MO       | MO       | MO       | MO       | MO       | MO       | MO       | MO       | MO       | MO          | MO       | MO       |
| SAMPLE    | B600EXA  | B600EXC  | B660XB   | B660XC   | C600EXA  | C600EXB  | C640XA   | C640XC   | D250EXA  | D250EXB  | D250EXD  | D250EXE  | D250EXF  | D660XA   | D660XC   | E600EXA  | E600EXB      | E750XB   | E750XC   | F600EXA  | F600EXC  | F780XA   | F780XC   | G600EXA  | G600EXB  | G780XA   | G780XC   | H600EXA  | H600EXB  | H640XA   | H640XB      | .H640XD  | H640XE   |
| STATION   | B-600E   | B-600E   | B-660    | B-660    | C-600E   | C-600E   | C-640    | C-640    | D-250E   | D-250E   | D-250E   | D-250E   | D-250E   | D-660    | D-660    | E-600E   | E-600E       | E-750    | E-750    | F-600E   | F-600E   | F-780    | F-780    | G-600E   | G-600E   | G-780    | G-780    | H-600E   | H-600E   | H-640    | H-640       | H-640    | H-640    |
| SURVEY    | SEAFEB83     | SEAFEB83 | SEAFEB83 | SEAFEB83 | SEAFEB83 | SEAFEB83 | SEAFEB83 | SEAFEB83 | SEAFEB83 | SEAFEB83 | SEAFEB83 | SEAFEB83 | SEAFEB83 | SEAFEB83 | SEAFEB83    | SEAFEB83 | SEAFEB83 |

| CRAB AMPAB ECHAB MISCAB POTAX AMPTX MOTAX ECHTAX  38 11 2 2 11 5 5 2 |
|----------------------------------------------------------------------|
| 38 12 1 1 17 4                                                       |
| 13 13 4 2 12 5                                                       |
| 9 6 6 4 16 2                                                         |
| 21 17 5 4 21 4                                                       |
|                                                                      |
| 23 20 6 2 15 5                                                       |
| 7 6 5 3 9 2                                                          |
| 88 12 1 2 35 8                                                       |
| 80 13 2 2 28 8                                                       |
| 50 7 0 1 34 7                                                        |
| 83 19 2 4 33 10                                                      |
| 130 14 1 8 44 6                                                      |
| 18 3 2 0 13 2                                                        |
| 36 5 2 3 17 4                                                        |
| 32 9 5 0 35 5                                                        |
| 51 7 3 5 28 4                                                        |
|                                                                      |
|                                                                      |
|                                                                      |
|                                                                      |
|                                                                      |
| 89 17 1 4 38 8                                                       |
|                                                                      |
| 16 .5 2 7 37 3                                                       |
| 8 3 1 1 14 2                                                         |
| 22 14 1 3 23 8                                                       |
| 6 3 3 1 13 3                                                         |
| 18 11 1 2 12 4                                                       |
| 26 14 3 6 14 7                                                       |
|                                                                      |
| 22 · 6 3 0 15 4                                                      |
| 6 1 0 0 9 1                                                          |

| MOAB        | 13       | 8        | 128      | 43       | 11       | 62       | 57       | 48       | 83       | 0        | 0        | 106      | 48       | 98       | 38       | 25       | 19       | 90       | 189      | 260      | 228      | 174      | 184      | 98       | 104      | 215      | 144      | 7        | 40       | 13         | 188      | 205         |
|-------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|------------|----------|-------------|
| POAB        | 23       | 107      | 180      | 22       | 46       | 32       | 27       | 30       | 35       | 30       | 25       | 0        | 0        | 45       | . 49     | 20       | 34       | 77       | 69       | 86       | 54       | 62       | 101      | 377      | 178      | 194      | 75       | <b>1</b> | 26       | =          | 29       | 45          |
| TOTAX       | 19       | 53       | 74       | 30       | 49       | 29       | 25       | 29       | 32       | 26       | 21       | 7        | 9        | 23       | 32       | 22       | 18       | 35       | 38       | 39       | 34       | 32       | 40       | 115      | 107      | 73       | 57       | 25       | 34       | 56         | 42       | 51          |
| TOAB        | 57       | 210      | 331      | 80       | 149      | 102      | 93       | 93       | 134      | 56       | 35       | 107      | 48       | 143      | 106      | 56       | 89       | 155      | 279      | 388      | 306      | 255      | 313      | 574      | 375      | 646      | 252      | 49       | 118      | 19         | 393      | 437         |
| <b>5</b> ** |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          | ٠        |          |          |          | ٠        |          |          |          |            |          |             |
| % TOC       | 2.1      | 0.8      | 0.8      | 1.4      | 1.4      | 0.2      | 0.2      | 0.2      | 0.2      | 1.5      | 1.5      | 7        | 2        | 2        | 2        | 2        | 2        | 2        | 1.9      | 1.9      | 1.9      | 1.9      | 1.9      | 0.5      | 0.4      | 0.8      | 6.0      | 0.2      | 1.9      | 1.9        | 2        | 2           |
| % FINES     | 96.3     | 58.5     | 58.5     | 87.7     | 87.7     |          |          |          |          | 92       | 92       | 88.7     | 88.7     | 92.6     | 92.6     | 92.6     | 9.56     | 9.56     | 94.2     | 94.2     | 94.2     | 94.2     | 94.2     | 8.2      |          | 44.4     | 42       | 2.3      | 93.8     | 93.8       | 76.6     | 76.6        |
| Depth (m)   | 184.6    | 184.6    | 184.6    | 212.3    | 212.3    | 161.544  | 161.544  | 182.88   | 182.88   | 184.6    | 184.6    | 212.3    | 212.3    | 181.0512 | 181.0512 | 181.0512 | 181.0512 | 181.0512 | 179,2224 | 179.2224 | 179.2224 | 179.2224 | 179.2224 | 61.5     | 123.1    | 123.1    | 123.1    | 15.4     | 184.6    | 184.6      | 221.5    | 221.5       |
| LonSec I    | 36       | 26       | 56       | 10       | 10       | 25       | 25       | 28       | 28       | 15       | 15       | 20       | 20       | 36       | 36       | 36       | 36       | 36       | 42       | 42       | 42       | 42       | 42       | 73       | 25       | 01       | <u>~</u> | 10       | 22       | 22         | 12       | 12          |
| LonMin      | 23       | 21       | 21       | 22       | 23       | 20       | 20       | 21       | 21       | 20       | 20       | 21       | 21       | 23       | 23       | 23       | 23       | 23       | 22       | 22       | 22       | 22       | 22       | 24       | 27       | 24       | 27       | 28       | 24       | 24         | 26       | 79          |
| LonDeg      | 122      | 122      | 122      | 122      | 122      | 122      | 122      | 122      | 122      | 122      | 122      | 122      | 122      | 122      | 122      | 122      | 122      | 122      | 122      | 122      | 122      | 122      | 122      | 122      | 122      | 122      | 122      | 122      | 122      | 122        | 122      | 122         |
| LatSec      | 45       | 00       | ∞        | 33       | 33       | 20       | 20       | 12       | . 12     | 26       | 26       | 13       | 13       | 0        | 0        | 0        | 0        | 0        | 55       | 55       | 55       | 55       | 55       | 13       | 12       | 22       | 82       | 57       | 16       | 16         | 37       | 37          |
| LatMin      | 25       | 25       | 25       | 24       | 24       | 21       | 21       | 22       | 22       | 23       | 23       | 23       | 23       | 29       | 29       | 29       | 29       | 29       | 28       | 28       | 28       | 28       | 28       | 32       | 31       | 32       | 31       | 30       | 32       | 32         | 31       | 31          |
| LatDeg      | 47       | 47       | 47       | 47       | 47       | 47       | 47       | 47       | 47       | 47       | 47       | 47       | 47       | 47       | 47       | 47       | 47       | 47       | 47       | 47       | 47       | 47       | 47       | 47       | 47       | 47       | 47       | 47       | 47       | 47         | 47       | 47          |
| <b>*</b>    |          | ,4       | -        | -        | -        |          |          | -        | -        | •        |          |          | -        | ,        |          | ,        | ****     | ****     | -        | ****     |          |          |          |          |          |          |          |          |          | <u>~</u> . | -        | <del></del> |
| Ü           | MO       |          |          | MO       | MO       |          |          |          |          | MO       | MO       |          |          | MO         | MO       | MO          |
| SAMPLE      | H640XF   | I600EXA  | I600EXC  | 1690XA   | 1690XB   | J600EXA  | J600EXC  | J690XA   | 1690XB   | J5600XB  | J5600XC  | 15600EXB | 15600EXC | OTIXA    | OTIXB    | OTIXD    | OTIXE    | OTIXE    | OTZXA    | OT2XC    | OT2XD    | OT2XE    | OT2XF    | A200EUB  | A200WUB  | A400EUA  | A400WUA  | A50WUB   | A600EUA  | A600EUB    | A720UA   | A720UB      |
| STATION     | H-640    | I-600E   | I-600E   | 069-1    | I-690    | J-600E   | J-600E   | J-690    | 069-f    | JS-600   | 15-600   | JS-600E  | JS-600E  | OT-1     | OT-1     | OF-1     | OT-1     | 0T-1     | OT-2     | OT-2     | 0T-2     | OT-2     | OT-2     | A-200E   | A-200W   | A-400E   | A-400W   | A-50W    | A-600E   | A-600E     | A-720    | A-720       |
| SURVEY      | SEAFEB83 | SEAJUN82   | SEAJUN82 | SEAJUN82    |

| SURVEY   | STATION | SAMPLE   | CRAB | AMPAB | ECHAB    | MISCAB | POTAX         | AMPTX    | AMPTX MOTAX ECHTAX |            | CRTX     | MISCTX       | £     | <del></del> | Ш    | SDI      |
|----------|---------|----------|------|-------|----------|--------|---------------|----------|--------------------|------------|----------|--------------|-------|-------------|------|----------|
| SEAFEB83 | H-640   | H640XF   | 21   | 5     | 0        | 0      | 7             | m        | 9                  | 0          | 9        | 0            | 1.164 | 16.0        | 76   | 2        |
| SEAFEB83 | I-600E  | I600EXA  | 17   | 12    | . 71     | ю      | 33            | 5        | 9                  | 7          | 6        | n            | 1.377 | 0.799       | 74   | 14       |
| SEAFEB83 | I-600E  | 1600EXC  | 18   | 10    | æ        | 2      | 48            | 9        | 10                 | 7          | 12       | 73           | 1.43  | 0.765       | 7.2  | 1        |
| SEAFEB83 | 1-690   | I690XA   | 12   | S     |          | 7      | 4             | 4        | 9                  | -          | ∞        | ,            | 1.111 | 0.752       | 19   | 12       |
| SEAFEB83 | 069-I   | 1690XB   | 25   | 14    |          | 4      | 23            | 7        | Ţ                  | m          | 10       | 7            | 1.302 | 0.77        | 7.1  | 16       |
| SEAFEB83 | J-600E  | J600EXA  | 7    | -     | 0        | -      | 19            | ,        | 9                  | 0          | 3        | -            | 0.948 | 0.648       | 69   | 6        |
| SEAFEB83 | J-600E  | J600EXC  | 7    | 3     | 0        | 2      | 12            | 2        | 9                  | 0          | S        | 7            | 0.898 | 0.642       | . 65 | 5        |
| SEAFEB83 | J-690   | J690XA   | 10   | 3     | E        | 73     | 16            | <b>6</b> | 5                  | -          | 3        | 7            | 1.072 | 0.733       | 69   | 6        |
| SEAFEB83 | J-690   | J690XB   | 14   | 9     | 7        | 0      | <del>18</del> | 4        | 9                  | <b>*</b> 1 | 7        | 0            | 1.022 | 0.679       | 99   | œ        |
| SEAFEB83 | 15-600  | JS600XB  | 26   | 9     | 0        | 0      | 18            | 3        | 0                  | 0          | ∞        | 0            | 1.276 | 0.902       | 26   | 13       |
| SEAFEB83 | 15-600  | JS600XC  | 10   | 7     | 0        | 0      | 15            | 4        | 0                  | 0          | 9        | 0            | 1.249 | 0.944       | 79   | 13       |
| SEAFEB83 | 15-600E | JS600EXB | 0    | 0     | 0        |        | 0             | 0        | 9                  | 0          | 0        |              | 0.273 | 0.323       | 63   |          |
| SEAFEB83 | 15-600E | JS600EXC | 0    | 0     | 0        | 0      | 0             | 0        | 9                  | 0          | 0        | 0            | 0.279 | 0.358       | 64   | 1        |
| SEAFEB83 | 01-1    | OTIXA    | 6    | 9     |          | 7      | Π             | ю        | ς,                 | -          | 5        | <b>,,,,,</b> | 0.894 | 0.657       | 89   | S        |
| SEAFEB83 | 01-1    | OTIXB    | 10   | ĸ     | 8        | 9      | 15            | .4       | 9                  | 7          | 7        | 73           | 1.228 | 0.816       | 89   | Ξ        |
| SEAFEB83 | OT-1    | OTIXD    | 3    | ťħ    | 4        | 7      | Π             | 2        | 4                  | 33         | m        | ,,,,,,       | 1.195 | 0.89        | 89   |          |
| SEAFEB83 | OT-1    | OTIXE    | 12   | œ     |          | m      | σ,            | 61       | 'n                 | 0          | , en     | <b></b>      | 1.102 | 0.878       | 47   | <b>x</b> |
| SEAFEB83 | OI-1    | OTIXF    | . 19 | 13    | М        | 9      | 18            | S        | 9                  | 2          | 7        | 2            | 1.255 | 0.813       | 74   | -        |
| SEAFEB83 | OT-2    | OT2XA    | 13   | 7     | ٧٢       | en     | 20            | 9        | 9                  | 63         | 00       | -            | 0.807 | 0.511       | 89   | 4        |
| SEAFEB83 | OT-2    | OTZXC    | 24   | 17    | 2        | 4      | 24            | 4        | 9                  | 7          | 9        |              | 0.78  | 0.49        | 69   | 4        |
| SEAFEB83 | OT-2    | OT2XD    | 21   | 90    | ,        |        | 16            |          | 10                 | ••••       | 9        | -            | 0.689 | 0.45        | 69   | m        |
| SEAFEB83 | OT-2    | OT2XE    | 15   | 6     | 2        | 7      | 17            | 7        | 4                  | 7          | <b>∞</b> |              | 0.819 | 0.544       | 19   | 4        |
| SEAFEB83 | OT-2    | OT2XF    | 24   | 15    |          | m      | 24            | 7        | 8                  | -          | Φ        |              | 0.93  | 0.581       | 70   | \$       |
| SEAJUN82 | A-200E  | A200EUB  | 93   | . 26  | খ        | 4      | 89            | 7        | <u></u>            | 54         | 23       | ve           | 1 638 | 0 795       | 7    | %        |
| SEAJUN82 | A-200W  | A200WUB  | 81   | 52    | ν,       | 7      | 54            | 17       | 50                 | . w        | 25       | 4            | 1.772 | 0.873       | 72   | 9 4      |
| SEAJUN82 | A-400E  | A400EUA  | 225  |       | -        | 11     | 32            | 13       | 13                 | -          | 23       | 4            | 1.391 | 0.746       | 19   | 13       |
| SEAJUN82 | A-400W  | A400WUÄ  | 31   | Q.    | 2        | 0      | 32            | 9        | 6                  |            | 15       | 0            | 1.245 | 0.709       | 89   | 15       |
| SEAJUN82 | A-50W   | A50WUB   | 25   | 15    | <b>→</b> | 7      |               | m        | 4                  | -          | 7        | 63           | 1.191 | 0.852       | 81   | <u>E</u> |
| SEAJUN82 | A-600E  | A600EUA  | 33   | 10    | 9        | 13     | 16            | 4        | ş.                 | 7          | ∞        | æ            | 1.291 | 0.843       | 61   | 11       |
| SEAJUN82 | A-600E  | A600EUB  | 33   | 17    | ∞        | 33     | 6             | ΚŲ       | 8                  | 7          | 9/       | -            | 1.246 | 0.881       | E    |          |
| SEAJUN82 | A-720   | A720UA   | 169  | ==    | 0        | 7      | 61            | 9        | 9                  | 0          |          | m            | 0.884 | 0.544       | 22   | e        |
| SEAJUN82 | A-720   | A720UB   | 176  | 35    | 0        | 11     | 17            |          | 0,                 | 0          | 21       | 44           | 1.095 | 0,641       | 53   | <b>%</b> |
|          |         |          |      |       |          |        |               |          |                    |            |          |              |       |             |      |          |

|           |          |          |          |          |          |          |          |          |             |          |          |          |          |          |          |          |          |            |          | •        |          |          |          |          |          |          |          |          |          |          |          |          |          |
|-----------|----------|----------|----------|----------|----------|----------|----------|----------|-------------|----------|----------|----------|----------|----------|----------|----------|----------|------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
| MOAB      | 133      | 308      | 170      | 108      | 159      | 131      | 118      | 219      | 8           | 79       | 39       | 84       | 62       | 398      | 478      | 414      | 324      | 212        | 151      | 69       | 88       | 38       | 55       | 314      | 53       | 148      | 132      | 221      | 150      | 222      | 73       | 62       | 100      |
| POAB      | 273      | 555      | 292      | 9        | 16       | 504      | 39       | 87       | 34          | 23       | 209      | 150      | 101      | 253      | 202      | 40       | 50       | 69         | 101      | 26       | 20       | 45       | 23       | 92       | 393      | 46       | 134      | 163      | 168      | 276      | 332      | 240      | 163      |
| TOTAX     | 147      | 185      | 80       | 52       | 55       | 136      | 52       | 09       | 44          | 32       | 87       | 92       | ***      | \$       | 70       | 55       | 55       | <i>L</i> 9 | 46       | 39       | 35       | 39       | 40       | 64       | 121      | 61       | 79       | 68       | 92       | 92       | 81       | 119      | 86       |
| TOAB      | 629      | 1227     | 545      | 438      | 474      | 716      | 261      | 384      | 184         | 152      | 428      | 321      | 244      | 728      | 737      | 206      | 652      | 200        | 275      | 160      | 144      | 145      | 138      | 729      | 989      | 305      | 322      | 525      | 449      | . 593    | 452      | 521      | 563      |
| 2**       |          |          |          |          |          |          |          |          |             |          |          |          |          |          |          |          |          |            |          |          | •        |          |          |          |          |          |          |          |          |          |          |          |          |
| % TOC     | 0.4      | 0.4      | 0.1      | 0.1      | 0.1      | 0.1      | 2.7      | 2.7      | <del></del> | 1.8      | 0.3      | 0.2      | 0.2      | 0.8      | 0.8      | 0.1      | 0.1      | 0.1        | 0.1      | 2        | 2        | 7        | . 7      | . 0.1    | 0.1      | 0.3      | 0.3      | 0.3      | 0.3      | 0.3      | 0.7      | 0.2      | 0.2      |
| % FINES   | 11.3     | ==3      | 35.7     | 3.7      | 3.7      | 4.2      | 6'06     | 6'06     | 8           | 06       | 5.3      | 6.5      | 6.5      | 37.5     | 37.5     | 2.3      | 2.3      | 3.9        | 3.9      | 90.4     | 90.4     | 92.5     | 92.5     | 2.6      | 4.6      | 12.9     | 12.9     | 12.9     | 12.9     | 12.9     | 26       | 3.9      | 40       |
| Depth (m) | 61.5     | 61.5     | 123.1    | 15.4     | 15.4     | 15.4     | 184.6    | 184.6    | 203.1       | 203.1    | 23.1     | 61.5     | 61.5     | 123.1    | 123.1    | 15.4     | 15.4     | 15.4       | 15.4     | 184.6    | 184.6    | 184.6    | 184.6    | 23.1     | 23.1     | 61.5     | 61.5     | 61.5     | 61.5     | 61.5     | 123.1    | 15.4     | 15.4     |
| LonSec D  | ю        | m        | 13       | 48       | 48       | 0        | 25       | 25       | 27          | . 27     | 58       | 7        | 2        | 14       | 14       | 47       | 47       | Ξ          |          | 40       | 40       | 28       | 28       | 53       | 9        | 36       | 36       | 36       | 36       | 36       | N/A      | 9        | 54       |
| LonMin    | 24       | 24       | 24       | 23       | 23       | 27       | 24       | 24       | 25          | 25       | 56       | 23       | 23       | 23       | 23       | 22       | 22       | 27         | 27       | 23       | 23       | 24       | 24       | 22       | 27       | 23       | 22       | 22       | 23       | 23       | N/A      | 23       | 25       |
| LonDeg    | 122      | 122      | 122      | 122      | 122      | 123      | 122      | 122      | 122         | 122      | 122      | 122      | 122      | 122      | 122      | 122      | 122      | 122        | 122      | 122      | 122      | 122      | 122      | 122      | 122      | 122      | 122      | 122      | 122      | 122      | N/A      | 122      | 122      |
| LatSec    | 20       | 50       | 46       | 52       | 52       | 15       | 46       | 46       | 16.         | 16       | 81       | 50       | 50       | 48       | . 48     | 51       | 51       | 18         | 28       | 38       | 38       | 31       | 31       | 52       | 19       | 11       | -        | 11       | =        | Ξ        | N/A      | 23       | <b>∞</b> |
| LatMin    | 30       | 30       | 30       | 30       | 30       | 30       | 30       | 30       | 30          | 30       | 30       | 29       | 53       | 29       | 29       | 29       | 29       | 29         | 29       | 29       | 29       | 29       | 29       | 53       | 29       | 28       | . 28     | 28       | 28       | 28       | N/A      | 28       | 28       |
| LatDeg    | 47       | 47       | 47       | 47       | 47       | 47       | 47       | 47       | 47          | 47       | 47       | 47       | 47       | 47       | 47       | 47       | 47       | 47         | 47       | 47       | 47       | 47       | 47       | 47       | 47       | 47       | 47       | 47       | 47       | 47       | N/A      | 47       | 47       |
| <b>*</b>  | -        | *****    | 1        | _        |          |          | -        |          | -           |          | -        | ****     | •        | g-m4     |          |          | ****     | -          | •        |          | ****     |          | ·        | ,        | •        | -        | •••      |          |          | -        | ****     |          |          |
| ပ         | MO       | MO       | MO       |          |          | MO       | MO       | MO       | MO          | MO       | MO       | MO       | MO       | MO       | MO       |          |          |            |          | MO       |          |          |          |
| SAMPLE    | B200EUB  | B200EUC  | B400EUA  | B50EUA   | BSOEUC   | B50WUA   | B600EUA  | B600EUC  | B660UA      | B660UB   | B75WUC   | C200EUB  | C200EUC  | C400EUA  | C400EUC  | CSOEUA   | CSOEUC   | C50WUB     | C50WUC   | C600EUA  | C600EUC  | C640UA   | C640UC   | C7SEUC   | C75WUA   | D250EUB  | D250EUC  | D250EUD  | D250EUE  | D250EUF  | D400EUA  | D50EUA   | D50WUC   |
| STATION   | B-200E   | B-200E   | B-400E   | B-50E    | B-50E    | B-50W    | B-600E   | B-600E   | B-660       | B-660    | B-75W    | C-200E   | C-200E   | C-400E   | C-400E   | C-50E    | C-50E    | C-50W      | C-50W    | C-600E   | C-600E   | C-640    | C-640    | C-75E    | C-75W    | D-250E   | D-250E   | D-250E   | D-250E   | D-250E   | D-400E   | D-50E    | D-50W    |
| SURVEY    | SEAJUN82    | SEAJUN82 | SEAJUN82 | SEAJUN82 | SEAJUN82 | SEAJUN82 | SEAJUN82 | SEAJUN82 | SEAJUN82 | SEAJUN82   | SEAJUN82 | SEAJUN82 | SEAJUN82 | SEAJUN82 | SEAJUN82 | SEAJUN82 | SEAJUN82 | SEAJUN82 | SEAJUN82 | SEAJUN82 | SEAJUN82 | SEAJUN82 | SEAJUN82 | SEAJUN82 | SEAJUN82 |

| SURVEY   | STATION | SAMPLE        | CRAB | AMPAB | ECHAB        | MISCAB   | POTAX | AMPTX     | MOTAX ECHTAX |          | CRTX | MISCTX | Ē     | <del>-</del> | Ш    | SDI |
|----------|---------|---------------|------|-------|--------------|----------|-------|-----------|--------------|----------|------|--------|-------|--------------|------|-----|
| SEAJUN82 | B-200E  | B200EUB       | 211  | 76    | 24           | <u>∞</u> | 73    | . 20      | 24           | 9        | 35   | ∞      | 1.907 | 0.88         | 75   | 47  |
| SEAJUN82 | B-200E  | B200EUC       | 307  | 86    | 25           | 32       | 94    | 29        | 27           | 7        | 45   |        | 1.821 | 0.803        | 72   | 44  |
| SEAJUN82 | B-400E  | B400EUA       | 62   | 27    |              | 8        | 43    | 8         | 13           | 3        | 17   | 4      | 1.464 | 0.769        | 72   | 70  |
| SEAJUN82 | B-50E   | BSOEUA        | 269  | 62    | 0            |          | 21    | 12        | 12           | 0        | 82   |        | 0.948 | 0.552        | 71   | 4   |
| SEAJUN82 | B-50E   | BSOEUC        | 221  | 43    | 0            | æ        | 30    | <b>00</b> | <b>∞</b>     | 0        | 15   | 7      | 1.036 | 0.595        | 69   | 7   |
| SEAJUN82 | B-50W   | <b>B50WUA</b> | 218  | 19    | 80           | 44       | 46    | 26        | 27           | 00       | 42   | 13     | 1,476 | 0.692        | - 00 | 24  |
| SEAJUN82 | B-600E  | B600EUA       | 95   | 25    | ťή           | 9        | , 22  | *****     | 6            | £        | 17   | -      | 1.287 | 0.75         | 1 19 | -   |
| SEAJUN82 | B-600E  | B600EUC       | 72   | 29    | 2            | 4        | 28    | 11        | 12           |          | 18   | ,      | 1.209 | 0.68         | . 63 | 9   |
| SEAJUN82 | B-660   | B660UA        | 49   | 26    | 9            | 3        | 15    | 7         | П            | 2        | 12   | m      | 1.278 | 0.777        | 22   | 22  |
| SEAJUN82 | B-660   | B660UB        | 40   | 18    | ∞            | 2        | 10    | 7         | ∞            | 7        | Π    |        | 1.208 | 0.802        | 65   | 1 = |
| SEAJUN82 | B-75W   | B75WUC        | 71   | 27    | 72           | 37       | 40    | -         | <del></del>  | 10       | 18   | œ      | 1.617 | 0.834        | 71   | 24  |
| SEAJUN82 | C-200E  | C200EUB       | 77   | 26    | 4            | 9        | 48    | 6         | 17           | 4        | 18   | s      | 1.757 | 0.894        | 75   | 36  |
| SEAJUN82 | C-200E  | CZ00EUC       | 74   | 16    | ••••         | 9        | 39    | 10        | 18           |          | 61   | 4      | 1.69  | 0.885        | 70   | 31  |
| SEAJUN82 | C-400E  | C400EUA       | 65   | 28    | 9            | 9        | 43    | 11        | 12           | <b>m</b> | 20   | 6      | 1.153 | 0.604        | 69   | 6   |
| SEAJUN82 | C-400E  | C400EUC       | 44   | 27    | 4            | 6        | 33    | 12        | 13           | ,        | 19   | 4      | 1.04  | 0.564        | 19   | 1   |
| SEAJUN82 | C-50E   | CSOEUA        | 247  | 43    | 0            | ś        | 23    | 7         | 14           | 0        | 14   | 4      | 0.745 | 0.428        | 99   | 2   |
| SEAJUN82 | C-50E   | CSOEUC        | 274  | 47    | 0            | 4        | 24    | 6         |              | 0        | 17   | £,     | 0.855 | 0.491        | 19   | 7   |
| SEAJUN82 | C-50W   | CSOWUB        | 204  | 81    | <b>p</b> ort | 14       | 26    | 11        | 15           | -        | 20   | 3      | 1.144 | 0.627        | 74   | 6   |
| SEAJUN82 | C-50W   | CSOWUC        | 0    | 0     | 2            | 21       | 28    | 0         | 13           |          | 0    | 4      | 1.173 | 0.706        | 69   | 12  |
| SEAJUN82 | C-600E  | C600EUA       | 49   | 32    | S            | 11       | 14    | S         | 00           | 2        | 17   | 4      | 1.265 | 0.795        | 58   | =   |
| SEAJUN82 | C-600E  | C600EUC       | 24   | 5     | 5            | 7        | 12    | \$        | ∞            | ю        | 10   | 7      | 1.138 | 0.737        | 9    | 10  |
| SEAJUN82 | C-640   | C640UA        | 41   | 26    | 9            | 15       | 17    | 00        | κυ           | 2        | 13   | 2      | 1.394 | 0.876        | 63   | 14  |
| SEAJUN82 | C-640   | C640UC        | 44   | 21    | 10           |          | 12    | 6         | œ            | 3        | 15   | 7      | 1.421 | 0.887        | 19   | 91  |
| SEAJUN82 | C-75E   | C75EUC        | 317  | 54    |              | \$       | 26    | 10        | 16           | gament.  | 17   | 4      | 0.921 | 0.51         | 69   | Э   |
| SEAJUN82 | C-75W   | C75WUA        | 199  | 109   | 24           | 17       | 47    | 22        | 19           | œ        | 37   | 6      | 1.418 | 0.681        | 16   | 27  |
| SEAJUN82 | D-250E  | D250EUB       | 26   | 13    | 1            | 33       | 31    | ∞         | p            | •        | 14   | 4      | 1.418 | 0.794        | 71   | 18  |
| SEAJUN82 | D-250E  | D250EUC       | 36   | 13    | 4            | 16       | 42    | 7         | 14           | 3        | 91   | 4      | 1.64  | 0.864        | 74   | 25  |
| SEAJUN82 | D-250E  | D250EUD       | 50   | 20    | 4            | 87       | 50    |           | 12           | 2        | 8    | ĸ٦     | 1.502 | 0.77         | 72   | 17  |
| SEAJUN82 | D-250E  | D250EUE       | 51   | 25    | 90           | 72       | 47    | 4         | 14           | m        | 21   | 1      | 1.642 | 0.836        | 75   | 25  |
| SEAJUN82 | D-250E  | D250EUF       | 78   | 35    | 2            | 15       | 49    | φ,        | 19           | 2        | 18   | ю      | 1.562 | 0.796        | 70   | 20  |
| SEAJUN82 | D-400E  | D400EUA       | 29   | 7     | 7            | 16       | 47    | 90        | 13           | 7        | 15   | 4      | 1.439 | 0.754        | 71   | 20  |
| SEAJUN82 | D-50E   | DSOEUA        | 181  | 47    | 11           | 21       | 54    | 12        | 22           | 4        | 25   | 13     | 1.644 | 0.792        | 84   | 32  |
| SEAJUN82 | D-50W   | DS0WUC        | 237  | 62    | 49           | 14       | 42    | 16        | 61           | 40       | 27   | S      | 1.442 | 0.724        | 73   | 21  |

| MOAB      | 68       | Z        | 63       | 62       | 151      | 144      | 190      | 110      | 73       | 148      | 157      | 83       | 105      | 65       | 61       | 146      | 78       | 109      | 113      | 162      | 99                                      | 137      | 148      | 85       | 144      | 278      | 8        | 20       | 99       | 85       | 103      | 45            | 24       |
|-----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|-----------------------------------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|---------------|----------|
| POAB      | 46       | 32       | 66       | 231      | 92       | 98       | 103      | 95       | 126      | 149      | 126      | 06       | 11       | 159      | 279      | . 653    | 578      | 70       | 137      | 265      | 247                                     | 72       | 74       | 154      | 345      | 43       | 44       | 241      | 141      | 113      | 146      | 52            | 4        |
| TOTAX     | 36       | 39       | 92       | 118      | 63       | 53       | 65       | 70       | 78       | 70       | . 68     | 61       | 49       | 91       | 110      | 193      | 134      | 62       | 84       | 107      | 114                                     | 9        | 56       | 93       | 107      | 51       | 49       | 80       | 65       | 70       | 92       | 44            | 31       |
| TOAB .    | 186      | 145      | 522      | 684      | 360      | 355      | 784      | 722      | 409      | 377      | 379      | 242      | 278      | 531      | 206      | 1154     | 856      | 288      | 486      | 593      | 661                                     | 291      | 282      | 345      | 805      | 654      | 353      | 359      | 287      | 587      | 553      | 130           | 82       |
| 2**       |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |                                         |          |          |          |          |          |          |          |          |          |          |               |          |
| % TOC     | 2.6      | 2.6      | 0.1      | 0.1      | 0.2      | 0.2      | 0.2      | 0.2      | 0.2      | 0.8      | 8.0      | 1.3      | 1.3      | 0.2      | 0.5      | 0.5      | 6.5      | 0.1      | 0.1      | 0.1      | 0.1                                     | 6.0      | 6.0      | 0.3      | 0.5      | 0.1      | 0.3      | 0.8      | 0.8      | 0.1      | 0.8      | 2.1           | 2.1      |
| % FINES   | 8.06     | 90.8     | 4.8      | 2.2      | 10.6     | 10.6     | 4        | 4        | 5        | 40       | 40       | 66.5     | 66.5     | 3.5      | 6.5      | 8.4      | 8.4      | 3.9      | 23       | 23       | 7.6                                     | 34.4     | 34,4     | 47.6     | 25.4     | 2.7      | 3.6      | 38.3     | 38.3     | 3.4      | 2.3      | 92.6          | 95.6     |
| Depth (m) | 203.1    | 203.1    | 23.1     | 23.1     | 61.5     | 61.5     | 15.4     | 15.4     | 15.4     | 184.6    | 184.6    | 230.8    | 230.8    | 23.1     | 23.1     | 61.5     | 61.5     | 15.4     | 184.6    | 184.6    | 23.1                                    | 240.0    | 240.0    | 61.5     | 123.1    | 15.4     | 15.4     | 184.6    | 184.6    | 23.1     | 23.1     | 240.0         | 240.0    |
| LonSec    | 39       | 39       | 6        | 48       | 36       | 36       | 18       | 8        | 4        | Ξ        | Ξ        | . 58     | 58       | 21       |          | 15       | 15       | ν.       | 41       | 41       | 59                                      | 49.      | 49       | 36       | 49       | 23       | 30       | 56       | 99       | 25       | 28       | 29            | 59       |
| LonMin    | 24       | 24       | . 22     | 25       | 22       | 22       | 23       | 22       | 56       | 23       | 23       | 23       | 23       | 22       | 26       | 23       | 23       | 26       | 23       | 23       | 25                                      | 23       | 23       | 22       | 22       | 22       | 25       | 22       | 22       | 22       | 22       | 23            | 23       |
| LonDeg    | 122      | 122      | 122      | 122      | 122      | 123      | 122      | 122      | 122      | 122      | 122      | 122      | 122      | 122      | 122      | 122      | 122      | 122      | 122      | 122      | . 122                                   | 122      | 122      | 122      | 122      | 122      | 122      | 122      | 122      | 122      | 122      | 122           | 122      |
| LatSec    | 7        | 7        | 25       | 6        | 35       | 35       | 36       | 36       | 16       | 35       | 35       | 24       | 24       | 38       | 19       | 58       | 28       | 15       | 53       | 53       | 11                                      | .29      | 53       | 47       | 36       | 55       | 23       | 28       | 28       | 54       | 23       | 7             | 7        |
| LatMin    | 29       | 29       | . 58     | 28       | 27       | 27       | 27       | 27       | 27       | 27       | 27       | 27       | 27       | 27       | 27       | 26       | 26       | 76       | 26       | 26       | 26                                      | 26       | 26       | 26       | 36       | 26       | 25       | 26       | 26       | 26       | 25       | 26            | 76       |
| LatDeg    | 47       | 47       | 47       | 47       | 47       | 47       | 47       | 47       | 47       | 47       | 47       | 47       | 47       | 47       | 47       | 47       | 47       | 47       | 47       | 47       | 47                                      | 47       | 47       | 47       | 47       | 47       | 47       | 47       | 47       | 47       | 47       | 47            | 47       |
| *         | ,        | enni     |          |          |          | -        | -        | ****     |          | •        |          |          | _        |          | -        | ~        | ****     | ****     | ,,       | -        | *************************************** |          | ****     |          | ,        | ,        |          | ***      |          | -        | -        | $\overline{}$ | <b>y</b> |
| Ο.        | MO       | MO       |          |          | WO       | MO                                      | MO       | MO       | MO       | MO       | MO       | MO       | MO       | MO       | MO       | MO       | MO            | MO       |
| SAMPLE    | D660UA   | D660UB   | D75EUA   | D75WUC   | E200EUB  | E200EUC  | E50EUA   | ESOEUB   | E50WUA   | E600EUA  | E600EUB  | E750UA   | E750UB   | E75EUA   | E75WUC   | F200EUA  | F200EUC  | F50WUC   | F600EUB  | F600EUC  | F75WUA                                  | F780UA   | F780UB   | G200EUA  | G400EUA  | G50EUA   | GSOWUB   | G600EUA  | G600EUB  | G75EUA   | G75WUA   | G780UA        | G780UB   |
| STATION   | D-660    | D-660    | D-75E    | D-75W    | E-200E   | E-200E   | E-50E    | E-50E    | E-50W    | E-600E   | E-600E   | E-750    | E-750    | E-75E    | E-75W    | F-200E   | F-200E   | F-50W    | F-600E   | F-600E   | F-75W                                   | F-780    | F-780    | G-200E   | G-400E   | G-50E    | G-50W    | G-600E   | G-600E   | G-75E    | G-75W    | G-780         | G-780    |
| SURVEY    | SEAJUN82                                | SEAJUN82 | SEAJUN82 | SEAJUN82 | SEAJUN82 | SEAJUN82 | SEAJUN82 | SEAJUN82 | SEAJUN82 | SEAJUN82 | SEAJUN82 | SEAJUN82      | SEAJUN82 |

| SDI                | 01       |            | 15       | 24       | 15                                     | 13       | 9        | 6        | 17       | 16       | 17       | 21       | 16       | 16       | 30       | 49       | 28       | 13       | 19       | 53       | 27       | 16       | -        | 33       | 21       | ю        | 4        | 25       | 21       | 01       | 18       | 7        | 13       |
|--------------------|----------|------------|----------|----------|----------------------------------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
| S                  |          |            |          |          |                                        |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |
| E                  | 69       | 99         | 70       | 80       | 70                                     | 99       | 69       | 89       | 76       | 69       | 69       | 99       | 74       | 74       | 84       | 87       | 96       | 74       | 81       | 76       | 78       | 63       | 69       | 78       | 84       | 69       | 74       | 72       | 69       | 89       | 74       | 65       | 89       |
| ÷                  | 0.731    | 0.753      | 0.617    | 0.761    | 0.733                                  | 0.757    | 0.562    | 0.563    | 0.741    | 0.784    | 0.774    | 0.831    | 0.827    | 0.673    | 0.788    | 0.846    | 0.677    | 0.702    | 0.771    | 0.833    | 0.751    | 0.756    | 0.754    | 0.894    | 0.78     | 0.492    | 0.582    | 0.842    | 0.845    | 0.562    | 0.709    | 0.86     | 0.894    |
| Ħ                  | 1.138    | 1.198      | 1.212    | 1.577    | 1.319                                  | 1.306    | 1.019    | 1.039    | 1.402    | 1.446    | 1.418    | 1.484    | 1.511    | 1.318    | 1.608    | 1.933    | 1.441    | 1.259    | 1.483    | 1.691    | 1.545    | 1.344    | 1.318    | 1.759    | 1.582    | 0.84     | 0.983    | 1.602    | 1.532    | 1.036    | 1.393    | 1.413    | 1,333    |
| MISCTX             | 0        | ť          | 10       | 12       | т                                      | ю        | 4        | 5        | 7        | ĸ'n      | Ŋ        | 4        | 7        | <b>∞</b> | 7        | 16       | 14       | 4        | 5        | 9        | 7        | 73       | 4        | ч        | ∞        | 7        | ĸ٦       | ŧΩ       | m        | 7        | 7        | 7        | grad     |
| CRTX M             | 12       | 13         | 61       | 32       | 15                                     | 11       | 21       | 18       | 20       | 12       | 15       | 13       | 16       | 22       | 24       | 38       | 21       | 9!       | 61       | 27       | 37       | 17       | 11       | 20       | 26       | 17       | 13       | 17       | 14       | 21       | 24       | 10       | 6        |
|                    |          | -          | 7        | ∞        | ****                                   | 0        | 0        | -        |          |          | -        | 73       | 2004     | 4        | 7        |          | =        | 7        | 5        | 7        | 4        |          | 0        | 4        | 33       | 0        | ****     | 60       | 2        | 0        | en       | 7        | 0        |
| YTAX ECI           | 7        | <b>o</b> o | 17       | 61       | 7                                      | 18       | _        | 15       | 11       | 12       | =        | 12       | 13       | \$2      | 24       | 56       | 18       | 13       | 10       | *<br>14  | 11       | 14       | 12       | 2        | 14       | 14       | 10       | 10       | 01       | 14       | 14       | 9        | ∞        |
| AMPTX MOTAX ECHTAX | 7        | ĸ          | 12       | 22       | ĸ                                      | S        | 14       | 10       | 10       | 9        | 9        | 6        | 9        | 11       | 14       | 21       | 10       |          | 14       | 14       | 19       | 10       | 10       | 12       | 18       | 10       | 9        | 7        | 9        | Π        | 13       | 9        | 9        |
| POTAX AI           | 91       | 14         | 44       | 47       | 30                                     | 21       | 29       | 31       | 32       | 42       | 35       | 30       | 35       | 39       | 52       | 100      | 69       | 27       | 45       | 57       | 48       | 56       | 23       | 50       | 99       | 18       | 20       | 45       | 36       | 33       | 44       | 24       | 13       |
| MISCAB P           | 0        | 9          | 13       | 14       | 5                                      | Ξ        | œ        |          | 19       | 14       | 13       | 91       | 4        | 11       | 21       | 80       | 58       | 4        | 102      | 70       | 15       | 7        | 11       | 30       | 136      | 9        | S        | 13       | ∞        | . 2      | 20       | 7        | 4        |
| ECHAB M            | <b>L</b> | -          | <b>∞</b> | 124      | ************************************** | 0        | 0        | •        | 11       | 7        | -        | 7        | -        | 10       | 4        | 20       | 37       | m        | 17       | 22       | 32       |          | 0        | 4        | 25       | 0        | ****     | 9        | \$       | 0        | 3        | 'n       | 0        |
| AMPAB E            | 82       | 15         | 72       | 116      | Ξ                                      | 10       | 11       | 95       | 44       | 10       | 16       | II       | 13       | 45       | 40       | 161      | 47       | 13       | 111      | 20       | 76       | 25       | Ξ        | 35       | 130      | 71       | 23       | 01       | 13       | 47       | 63       | 13       | 9        |
| CRAB 4             | 44       | 35         | 339      | 253      | 111                                    | 114      | 483      | 505      | 180      | 64       | 82       | 51       | 57       | 286      | 141      | 225      | 105      | 102      | 1117     | 74       | 301      | 79       | 49       | 72       | 155      | 327      | 213      | 49       | 19       | 387      | 281      | 26       | 13       |
| SAMPLE             | D660UA   | D660UB     | D75EUA   | D75WUC   | E200EUB                                | E200EUC  | E50EUA   | ESOEUB   | E50WUA   | E600EUA  | E600EUB  | E750UA   | E750UB   | E75EUA   | E75WUC   | F200EUA  | F200EUC  | F50WUC   | F600EUB  | F600EUC  | F75WUA   | F780UA   | F780UB   | G200EUA  | G400EUA  | GSOEUA   | G50WUB   | G600EUA  | G600EUB  | G75EUA   | G75WUA   | G780UA   | G780UB   |
| STATION            | D-660    | D-660      | D-75E    | D-75W    | E-200E                                 | E-200E   | E-50E    | E-50E    | E-50W    | E-600E   | E-600E   | E-750    | E-750    | E-7SE    | E-75W    | F-200E   | F-200E   | F-50W    | F-600E   | F-600E   | F-75W    | F-780    | F-780    | G-200E   | G-400E   | G-50E    | G-50W    | G-600E   | G-600E   | G-75E    | G-75W    | G-780    | G-780    |
| SURVEY             | SEATUN82 | SEAJUN82   | SEAJUN82 | SEAJUN82 | SEAJUN82                               | SEAJUN82 | SEAJUN82 | SEAJUN82 | SEAJUN82 | SEAJUN82 | SEAJUN82 | SEAJUN82 | SEAJUN82 | SEAJUN82 | SEAJUN82 | SEAJUN82 | SEAJUN82 | SEAJUN82 | SEAJUN82 | SEAJUN82 | SEAJUN82 | SEAJUN82 | SEAJUN82 | SEAJUN82 | SEAJUN82 | SEAJUN82 | SEAJUN82 | SEAJUN82 | SEAJUN82 | SEAJUN82 | SEAJUN82 | SEAJUN82 | SEAJUN82 |

| 130     | 126      | 19       | 14           | 37       | 21       | 31       | 22       | 56       | 33       | 43       | 89       | 108      | 47       | 89         | 65       | 62       | 47       | 39       | 46           | 75       | 81       | 153           | 35       | 43       | 37       | 7        | 43       | 19       | 30       | 96       | 220      | 83       |
|---------|----------|----------|--------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|------------|----------|----------|----------|----------|--------------|----------|----------|---------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
| 101     | 112      | 44       | 25           | 32       | 34       | . 61     | 54       | 36       | . 78     | 89       | 278      | 362      | 71       | 102        | 148      | 49       | 57       | 131      | 132          | 175      | 49       | 75            | 120      | 84       | 82       | 51       | 65       | 187      | 171      | 166      | 66       | 112      |
| 62      | 11       | 40       | 34           | 42       | 34       | 45       | 36       | 45       | 99       | 88       | 121      | 88       | . 69     | 70         | 84       | 58       | 09       | 70       | 105          | 63       | 99       | 53            | 9        | 47       | 46       | 40       | 55       | 88       | 82       | 83       | 28       | 99       |
| 255     | 667      | 119      | 72           | 119      | 26       | [4]      | 119      | 123      | 397      | 389      | 612      | 565      | 296      | 233        | 290      | 185      | 178      | 307      | 278          | 278      | 869      | 664           | 474      | 155      | 165      | 128      | 171      | 687      | 346      | 380      | 379      | 635      |
| 1.3     | 0.1      | 2.4      | 2.4          | 2.1      | 2.1      | 2.7      | 2.1      | 2.1      | 0.1      | 0.05     | 0.3      | 0.4      | 0.1      | 8.0        | 8.0      | 1.4      | 1.4      | 6.0      | 0.3 FN       | your."   | 8.0      | 8.0           | 9.0      | 1.5      | 1.5      | 7        | 7        | 0.1      | 0.1      | 0.2      | 6.0      | . 0.7    |
| 54.5    | 1.6      | 94.5     | 94.5         | 96.3     | 96.3     | 96.3     | 96.3     | 96.3     | 1.8      | 5.4      | 12.6     | 18.6     | 3.3      | 58.5       | 58.5     | 87.7     | 87.7     | 2.1      | 10           | 27.3     | 2.3      | 2.3           | 1.8      | 92       | 92       | 88.7     | 88.7     | 2.1      | 2.3      | 9.2      | 72.5     | 1.8      |
| 123.1   | 15.4     | 184.6    | 184.6        | 184.6    | 184.6    | 184.6    | 184.6    | 184.6    | 23.1     | 23.1     | 61.5     | 123.1    | 15.4     | 184.6      | 184.6    | .212.3   | 212.3    | 23.1     | 61.5         | 123.1    | 15.4     | 15.4          | 15.4     | 184.6    | 184.6    | 212.3    | 212.3    | 23.1     | 23.1     | 61.5     | 123.1    | 15.4     |
| 2       | 40       | 45       | 45           | 36       | 36       | 36       | 36       | 36       | 45       | 40       | 4        | 20       | 24       | 26         | 26       | 10       | 01       | 21       | N/A          | Ś        | 42       | 42            | N/A      | 15       | 15       | 70       | 20       | 45       | 17       | 0        | 3        | 52       |
| 22      | 21       | 22       | 22           | 23       | 23       | 23       | 23       | 23       | 21       | 25       | 21       | 21       | 23       | 21         | 21       | 22       | 22       | 23       | N/A          | 20       | 19       | 19            | N/A      | 20       | 20       | 21       | 21       | 10       | 22       | 22       | 22       | 21       |
| 122     | 122      | 122      | 122          | 122      | 122      | 122      | 122      | 122      | 122      | 122      | 122      | 122      | 122      | 122        | 122      | 122      | 122      | 122      | N/A          | 122      | 122      | 122           | N/A      | 122      | 122      | 122      | 122      | 122      | 122      | 122      | 122      | 122      |
| 27      | 31       | 57       | 57           | 45       | 45       | 45       | 45       | 45       | 56       | 36       | 16       | . 15     | 4        | œ          | ∞        | 33       | 33       | 9        | N/A          | 27       | 29       | 59            | N/A      | 26       | 26       | 13       | 13       | 30       | 26       | 28       | 33       | 15       |
| 56      | 26       | 25       | 25           | 25       | 25       | 25       | 25       | 25       | 26       | 24       | 25       | 25       | 24       | 25         | 25       | 24       | 24       | 24       | N/A          | 23       | 23       | 23            | N/A      | 23       | 23       | 23       | 23       | 23       | 23       | 20       | 20       | 20       |
| 47      | 47       | 47       | 47           | 47       | 47       | 47       | 47       | 47       | 47       | 47       | 47       | 47       | 47       | 47         | 47       | 47       | 47       | 47       | N/A          | 47       | 47       | 47            | N/A      | 47       | 47       | 47       | 47       | 47       | 47       | 47       | 47       | 47       |
| ****    | _        |          | <b>,,,,,</b> | ,        | _        |          |          | -        | -        | Ι        |          |          | <b>,</b> | · <b>_</b> | <u>.</u> |          | -        |          | <b>quant</b> | -        |          | -             | -        | _        |          | Annual   | ****     | 1        |          | 1        | - 0      |          |
| MO      | MO       | MO       | MO           | MO       | MO       | MO       | MO       | MO       | MO       |          |          |          |          |            |          | MO       | MO       |          |              |          | MO       | MO            |          | MO       | MO       |          |          | MO       |          | 3 MO     | MO       | MO       |
| H400EUA | HSOEUB   | H600EUA  | H600EUB      | H640UA   | H640UB   | H640UC   | H640UD   | · H640UE | H75EUA   | H75WUA   | 1200EUB  | 1400EUB  | ISOWUB   | 1600EUA    | 1600EUB  | 1690UA   | 1690UB   | 175WUB   | J200EUA      | J400EUB  | JS0EUA   | <b>JSOEUB</b> | J50WUA   | J600EUA  | J600EUB  | J690UA   | 1690UB   | J75EUA   | J75WUA   | K200EUB  | K400EUA  | KSOEUA   |
| JOOP.   | H-50E    | H-600E   | H-600E       | H-640    | H-640    | H-640    | H-640    | H-640    | H-75E    | H-75W    | 1-200E   | 1-400E   | I-50W    | 1-600E     | I-600E   | 069-1    | 1-690    | I-75W    | J-200E       | J-400E   | J-50E    | J-50E         | J-50W    | J-600E   | J-600E   | J-690    | 1-690    | J-75E    | J-75W    | K-200E   | K-400E   | K-50E    |
|         | SEAJUN82 | SEAJUN82 | SEAJUN82     | SEAJUN82 | SEAJUN82 | SEAJUN82 | SEAJUN82 | SEAJUN82 | SEAJUN82 | SEAJUN82 | SEAJUN82 | SEAJUN82 | SEAJUN82 | SEAJUN82   | SEAJUN82 | SEAJUN82 | SEAJUN82 | SEAJUN82 | SEAJUN82     | SEAJUN82 | SEAJUN82 | SEAJUN82      | SEAJUN82 | SEAJUN82 | SEAJUN82 | SEAJUN82 | SEAJUN82 | SEAJUN82 | SEAJUN82 | SEAJUN82 | SEAJUN82 | SEAJUN82 |

| STATION | SAMPLE  | CRAB | AMPAB    | ECHAB | MISCAB       | POTAX    | AMPTX      | MOTAX ECHTAX | ЕСНТАХ | CRTX    | MISCTX        | Pipe<br>Inter | ã—₅   | Ī   | SDI  |
|---------|---------|------|----------|-------|--------------|----------|------------|--------------|--------|---------|---------------|---------------|-------|-----|------|
| H-400E  | H400EUA | 17   | <b>∞</b> | 4     | δ.           | 39       | . <b>*</b> | 10           |        | 6       | т             | 1.31          | 0.731 | 89  | 17   |
| H-50E   | H50EUB  | 421  | 59       | 0     | ∞            | 33       | 12         | ũ            | 0      | 25      | 9             | 1.058         | 0.561 | 65  | 6    |
| H-600E  | H600EUA | 48   | 25       | 5     | 9            | <u>~</u> | 9          | Ş            | 7      | 12      | æ             | 1.479         | 0.923 | 74  | 18   |
| H-600E  | H600EUB | 23   | 21       |       | 4            | 12       | 7          | ∞            | 7      | 6       | ю             | 1.428         | 0.933 | 72  | 16   |
| H-640   | H640UA  | 43   | 26       |       | \$           | 17       | 6          | ••           | ,4     | . 15    | -             | 1.466         | 0.903 | 74  | 18   |
| H-640   | H640UB  | 35   | 15       | 4     | ťή           | 16       | 4          | 4            | 2      | 10      | 7             | 1,404         | 0.917 | 73  | 15.  |
| H-640   | H640UC  | 41   | 14       | 9     |              | 22       | 7          | 00           | 7      | 12      |               | 1.475         | 0.892 | 29  | 16   |
| H-640   | H640UD  | 32   | 16       | 7     | 4            | 16       | 9          | 9            | Э      | 6       | 7             | 1.395         | 0.897 | 73  | 15   |
| H-640   | H640UE  | 53   | 23       | 8     | m            | 4        | 10         | 7            | 7      | 21      | <b>,,,,</b> , | 1.544         | 0.934 | 72  | 21   |
| H-75E.  | H75EUA  | 282  | 16       | 0     | 4            | 30       | 9          | -            | 0      | =       | 4             | 0.818         | 0.468 | 99  | 4    |
| H-75W   | H75WUA  | 257  | 92       | 4     | . 17         | 32       | 13         | 91           | æ      | 29      | œ             | 1.357         | 869.0 | 74  | 21   |
| I-200E  | 1200EUB | 192  | 37       | 12    | 62           | 59       | 15         | 22           | 7      | 28      | 01            | 1.666         | 0.8   | 7.1 | 31   |
| I-400E  | 1400EUB | 64   | 45       | œ     | 23           | 48       |            | 14           | -      | 19      | 9             | 9.1           | 0.823 | 80  | 22   |
| I-50W   | 150WUB  | 156  | 58       | 9     | 16           | 26       | 14         | 10           | £      | 24      | 9             | 1.372         | 0.746 | 76  | 15   |
| I-600E  | 1600EUA | 52   | 20       | 3     | ∞            | 34       | 7          | 12           | 64     | 61      | u             | 1.663         | 0.901 | 89  | 30   |
| 1-600E  | 1600EUB | 51   | 27       | 7     | 24           | 39       | 12         | 13           | 7      | 23      | 9             | 1.675         | 0.87  | 79  | 27   |
| I-690   | 1690UA  | 09   | 21       | 4     | 10           | 23       | <u>E</u>   | 6            |        | 22      | 33            | 1.52          | 0.862 | 64  | 22   |
| I-690   | 1690UB  | 62   | 23       | 2     | 10           | 28       | 10         | 12           | 2      | 91      | 2             | 1.582         | 0.89  | 89  | 24   |
| N-75W   | 175WUB  | 126  | 40       | 0     | =            | 24       | 13         | 14           | 0      | 24      | ∞             | 1.377         | 0.746 | 85  | 8    |
| J-200E  | J200EUA | 87   | 37       | 4     | 6            | 51       | 17         | Ξ            | т      | 34      | 9             | 1.861         | 0.921 | 75  | 45   |
| J-400E  | J400EUB | 15   | 00       | 2     | Ξ            | 36       | ***        | - ==         | 6      | 6       | ٤             | 1.488         | 0.827 | 74  | . 11 |
| J-50E   | JS0EUA  | 563  | 49       | 0     | 'n           | 24       | 10         | 10           | 0      | 50      | 7             | 0.671         | 0.384 | 29  | 7    |
| J-50E   | JS0EUB  | 431  | 29       | 0     | \$           | 22       | 7          | 13           | 0      | 15      | 3             | 0.799         | 0.463 | 99  | m    |
| J-50W   | JS0WUA  | 314  | 39       | 0     | 'n           | 33       | 11         | Ξ            | 0      | 17      | 4             | 1.006         | 0.555 | 70  | 00   |
| J-600E  | J600EUA | 24   | <b></b>  | 71    | 7            | 27       | 5          | 7            | -      | -       | pur           | 1.411         | 0.844 | 09  | 1.1  |
| J-600E  | J600EUB | 32   | 20       | 4     | 10           | 24       | ĸ          | ∞            |        | Π       | 7             | 1.516         | 0.912 | .49 | 61   |
| 1-690   | J690UA  | 53   | ∞        | 7     | <del>,</del> | 20       | 9          | ٧n           | 2      | 12      | ****          | 1.335         | 0.834 | 29  | 14   |
| 069-f   | 1690UB  | 54   | 23       | 4     | 7            | 27       | 7          | <b>∞</b>     | -      | 14      | 5             | 1.485         | 0.853 | 9   | 18   |
| J-75E   | J75EUA  | 406  | 27       | Ŋ     | 22           | 45       | Q,         | 14           | 4      | 18      | 7             | 7.            | 0.586 | 70  | 7    |
| J-75W   | J75WUA  | 911  | 46       | 16    | 13           | 39       | 12         | 6            | 9      | 21      | 7             | 1.576         | 0.824 | 77  | 25   |
| K-200E  | K200EUB | 102  | 91       | _     | <u></u>      | 42       | 7          | 17           | -      | <u></u> | Ŋ             | 1.628         | 0.849 | 71  | 27   |
| K-400E  | K400EUA | 49   | 15       | m     | ∞            | 31       | 4          | 01           | 2      | 12      | ۳             | 1.133         | 0.643 | 62  | ∞    |
| K-50E   | K50EUA  | 435  | 99       | Books | 4            | 28       | 12         | 14           |        | 20      | 7             | 0.967         | 0.533 | 89  | 7    |
|         |         |      |          |       |              |          |            |              |        |         |               |               |       |     |      |

| MOAB        | T COM     | 95       | 30       | 32       | 25       | 29       | 35       | 34       | 609      | 296      | 09       | 26       | 95       | 74       | 70       | 35       | 36       | 48       | 78       | 65       | 63       | 49       | 35       | 37       | 22       | 24       | 24       | 123      | 149      | 171      | 286      | 108      | 18       | 23       |
|-------------|-----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
| a v O d     |           | 149      | 145      | 4        | 29       | 136      | 94       | 189      | 204      | 226      | 461      | 200      | 282      | 209      | 104      | 8        | 456      | 230      | 145      | 108      | 166      | 144      | 44       | 40       | 10       | 21       | 35       | 26       | 21       | 56       | 35       | 36       | 699      | 573      |
| TOTAV       |           | 82       | 82       | 37       | 32       | 83       | 63       | 06       | 57       | 69       | 113      | 104      | 106      | 87       | 70       | 100      | 109      | 112      | 81       | 89       | 96       | 88       | 37       | 34       | 25       | 27       | 34       | 36       | 29       | 39       | 4        | 37       | 30       | 10       |
| TO 4 D      |           | 617      | 389      | 109      | 9/       | 471      | 302      | 423      | 921      | 631      | 629      | 443      | 466      | 347      | 313      | 314      | 1008     | 385      | 623      | 444      | 509      | 441      | 119      | 114      | 7.1      | 73       | 87       | 178      | 184      | 221      | 350      | 167      | 745      | 199      |
| *           |           |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |
| `<br>`<br>` |           | 0.7      | 9.0      | 1.3      | 1.3      | 0.8      | 8.0      | ī        | -        | 1.2      | 0.2      | 0.2      | 1.5      | 1.5      | 0.2      | 6.0      | 0.8      | 0.2      | 0.1      | 0.2      | 0.1      | 0.1      | 7        | 2        | 7        | 7        | 7        | 1.9      | 1.9      | 1.9      | 1.9      | 1.9      | 1.9      | 1.9      |
| 201400      | % FINES   | 8.       | 2.4      | 6.16     | 6'16     | 2.9      | 2.9      | 2.6      | 64.4     | 853      | 17.3     | 3.4      | 62       | 62       | •        | 3.1      | 7        | 10.9     | 6,1      | 6'6      | 3.5      | 3.3      | 95.6     | 92.6     | 95.6     | 92.6     | 95.6     | 94.2     | 94.2     | 94.2     | 94.2     | 94.2     |          |          |
|             | Depth (m) | 15.4     | 15.4     | 184.6    | 184.6    | . 23.1   | 23.1     | 23.1     | 61.5     | 123.1    | 15.4     | 15.4     | 184.6    | 184.6    | 23.1     | 23.1     | 61.5     | 61.5     | 15.4     | 15.4     | 23.1     | 23.1     | 184.6    | 184.6    | 184.6    | 184.6    | 184.6    | 184.6    | 184.6    | 184.6    | 184.6    | 184.6    | 7.1      | 7.1      |
|             | Lonsec    | 52       | 13       | 42       | 42       | 54       | 54       | Φ.       | 15       | 16       | 9        | ĸ        | 42       | 42       | 9/       | -        | 45       | 24       | 7        | 38       | 6        | 33       | 36       | 36       | 36       | 36       | 36       | 42       | 5        | 42       | 4        | 42       | 29       | 53       |
|             | LonMin    | 21       | 25       | 23       | 23       | 21       | 21       | 25       | 26       | 26       | 26       | 27       | 56       | 26       | 92       | .27      | 31       | 53       | 29       | 30       | 29       | 30       | 23       | 23       | 23       | 23       | 23       | 22       | 22       | 22       | 22       | 22       | 27       | 27       |
|             | LonDeg    | 122      | 122      | 122      | 122      | 122      | 122      | 122      | 122      | 122      | 122      | 122      | 122      | 122      | 122      | 122      | 122      | 122      | 122      | 122      | 122      | 122      | 122      | 122      | 122      | 122      | 122      | 122      | 122      | 122      | 122      | 122      | 122      | 122      |
|             | LatSec    | 15       | 15       | 6        | 6        | 18       | 18       | 12       | 46       | 0        | 33       | 45       | 43       | 43       | 36       | 43       | 54       | 61       | 11       | 24       | 4        | 23       | 0        | 0        | 0        | 0        | 0        | 55       | 55       | 55       | 55       | 55       | 57       | 23       |
|             | LatMin    | 8        | 22       | 21       | 21       | 20       | 20       | 22       | 82       | 19       | 18       | 20       | 61       | 19       | 18       | 20       | 61       | 29       | 29       | 29       | 59       | 29       | 29       | 29       | 29       | 29       | 29       | 28       | 28       | 28       | 28       | 28       | 23       | 23       |
|             | LatDeg    | 47       | 47       | 47       | 47       | 47       | 47       | 47       | 47       | 47       | 47       | 47       | 47       | 47       | 47       | 47       | 47       | 47       | 47       | 47       | 47       | 47       | 47       | 47       | 47       | 47       | 47       | 47       | 47       | 47       | 47       | 47       | 47       | 47       |
|             | *s        | -        | <b></b>  | •        | <b></b>  |          | _        |          | -        | -        |          | *****    | proof    | ,        |          |          | -        |          |          |          |          |          | ***      |          | -        | -        | -        | -        |          |          | ,        |          | p==1     |          |
|             | ن         | MO       | МО       | MO       | MO       | MO       |          |          | MO       |
|             | SAMPLE    | KSOEUB   | K50WUA   | K590UA   | KS90UB   | K75EUA   | K75EUB   | K75WUB   | L200EUB  | L400EUB  | LSOEUB   | L50WUA   | L570UA   | LS70UB   | L75EUB   | L75WUB   | M200UA   | N200EUA  | NSOEUA   | NSOWUB   | N75EUA   | N75WUA   | OTIUA    | OTIUC    | OTIUD    | OTIUE    | OTHUF    | OTZUA    | OTZUB    | OTZUC    | OTZUE    | OTZUF    | QMIUA    | QMIUB    |
|             | STATION   | K-50E    | K-50W    | K-590    | K-590    | K-75E    | K-75E    | K-75W    | L-200E   | L-400E   | L-50E    | L-50W    | L-570    | L-570    | L-75E    | L-75W    | M-200    | N-200E   | N-50E    | N-50W    | N-75E    | N-75W    | OT-1     | OT-1     | OT-1     | OT-1     | OT-1     | OT-2     | OT-2     | OT-2     | OT-2     | OT-2     | OM-1     | QM-1     |
| ٠           | SURVEY    | SEAJUN82 |

| SDI          | 12       | 18       | 16       | 15                                      | 17       | 14       | 22       | 4        | Ξ        | 25       | 31       | 27             | 28       | 8        | 30           | Ξ        | 38       | 11       | 10       | 4        | 17       | 14       | <u>.</u>                                | 10       | 13       | 17       | 1        | 7        | ,<br>,   | 7        | œ            |          |          |
|--------------|----------|----------|----------|-----------------------------------------|----------|----------|----------|----------|----------|----------|----------|----------------|----------|----------|--------------|----------|----------|----------|----------|----------|----------|----------|-----------------------------------------|----------|----------|----------|----------|----------|----------|----------|--------------|----------|----------|
| Ш            | 69       | 70       | 89       | 64                                      | 71       | 72       | 75       | 67       | 67       | 78       | 70       | 75             | 73       | 74       | 75           | 88       | 79       | 73       | 7.1      | 71       | 78       | 99       | 99                                      | 89       | 70       | 71       | 69       | 62       | 99       | 62       | 19           | 65       | 69       |
| ř-,          | 0.635    | 0.706    | 0.883    | 0.905                                   | 0.667    | 0.723    | 0.728    | 0.488    | 0.673    | 0.752    | 0.824    | 0.83           | 98.0     | 0.786    | 0.837        | 0.618    | 0.86     | 0.573    | 0.628    | 999.0    | 0.711    | 0.867    | 0.844                                   | 0.853    | 906'0    | 0.913    | 0.551    | 0.473    | 0.473    | 0.439    | 0.607        | 0.261    | 0.336    |
| Н            | 1.216    | 1.352    | 1.385    | 1.362                                   | 1.277    | 13       | 1.422    | 0.857    | 1.238    | 1.544    | 1.661    | 1.681          | 1.668    | 1.451    | 1.673        | 1.26     | 1.763    | 1.093    | 1.151    | 1.302    | 1.383    | 1.36     | 1.293                                   | 1.192    | 1.297    | 1.399    | 0.857    | 0.692    | 0.752    | 0.702    | 0.952        | 0.386    | 0.336    |
| MISCTX       | 12       | ٣        |          | 4                                       | m        | 7        | 7        | 2        | , Land   | κ.       | 'n       | 4              | 4        | \$       | <b>\$</b> \$ | 10       | ∞        | 4        | ťψ       | 7        | 4        | 7        | 7                                       | т        | 7        | ~        |          | 7        | 7        | en       | <del>,</del> | 2        | 0        |
| CRTX         | 91       | 91       | 6        | <b>∞</b>                                | 23       | 17       | 8        | 12       | 16       | 21       | 31       | 56             | 19       | 13       | 20           | 23       | 28       | 18       | 20       | 11       | 56       | 10       | 14                                      | 6        | 6        | 10       | 10       | ņ        | 10       | 12       | 9            | 10       | m        |
| CHTAX        | 7        | 3        | 7        |                                         | 73       | 0        | .44      | 0        | 73       | 9        | 4        | 2              | E        | 0        | 7            | 9        | 4        | 4        | 0        | 2        | 7        |          | -                                       | 0        |          | -        | 73       | 7        | 1        | 7        | 7            | 0        | 0        |
| MOTAX ECHTAX | 14       | 14       |          | 'n                                      | 10       | =        | 13       | =        | 10       | 17       | 14       | 10             | 9        | 17       | 20           | 6        | 15       | 91       | 15       | 21       | 17       | 9        | 9                                       | S        | 4        | 'n       | 7        | 9        | 6        | ∞        | 7            | 6        | 7        |
| AMPTX N      | 6        | 10       | S        | \$                                      | 13       | 10       | 4        | 5        | 9        | 10       | 1.1      | 12             | =        | ∞        | 12           | 15       | 61       | 10       | 12       | 10       | 18       | 9        | ο,                                      | · vs     | 9        | 9        | Ŋ        | <b></b>  | 7        | 7        | 'n           | 9        | und      |
| POTAX        | 38       | 46       | 8        | 14                                      | 44       | 33       | 48       | 32       | 37       | 63       | 20       | 64             | 22       | 35       | 43           | 58       | 26       | 39       | 30       | 43       | 41       | 82       | ======================================= | 60       | Ξ        | 91       | 16       | 16       | 17       | 16       | 81           | 6        | ላን       |
| MISCAB 1     | 39       | S        |          | 9                                       | 9        | 7        | 11       | 00       | m        | 9        | 10       | 41             | 17       | 5        | •            | 407      | 17       | 5        | 33       | .6       | ю        | 6        | 9                                       | 10       | 10       | 4        | 3        | 4        | 6        | 10       | 4            | 2        | 0        |
| ECHAB N      | 9        | 12       | ß        | 2                                       | 2        | 0        | 14       | 0        | m        | 9        | 7        | Amed<br>fering | λ        | 0        | 57           | 14       | 7        | 'n       | 0        | 7        | 7        | 7        | pare                                    | 0        | 4        | 2        | 4        | 4        |          | 73       | tt)          | 0        | O        |
| AMPAB        | 99       | 26       | 5        | ======================================= | 70       | 45       | 4        | 12       | 19       | 35       | 49       | 4              | 21       | 16       | 34           | 74       | 64       | 56       | 59       | 20       | 123      | 14       | 22                                      | 11       | 10       | 16       | =        | 7        | =        | 10       | ĸ            | 10       | 71       |
| CRAB         | 338      | 197      | 30       | 14                                      | 298      | 171      | 175      | 100      | 103      | 146      | 170      | 20             | 42       | 134      | 96           | 95       | 83       | 390      | 268      | 269      | 243      | 29       | 30                                      | 53       | 14       | 22       | 22       | 9        | 17       | 17       | 16           | . 62     | 71       |
| SAMPLE       | KSOEUB   | K50WUA   | K590UA   | K590UB                                  | K75EUA   | K75EUB   | K75WUB   | L200EUB  | L400EUB  | L50EUB   | L50WUA   | L570UA         | LS70UB   | L75EUB   | L75WUB       | MZ00UA   | NZ00EUA  | N50EUA   | NSOWUB   | N75EUA   | N75WUA   | OTIUA    | OTIUC                                   | OTIUD    | OTIUE    | OTIUF    | OT2UA    | OTZUB    | OTZUC    | OTZUE    | OTZUF        | QMIUA    | QMIUB    |
| STATION      | K-50E    | K-50W    | K-590    | K-590                                   | K-75E    | K-75E    | K-75W    | L-200E   | L-400E   | L-50E    | L-50W    | L-570          | L-570    | L-75E    | L-75W        | M-200    | N-200E   | N-50E    | N-50W    | N-7SE    | N-75W    | OT-1     | 0T-1                                    | 0.1-10   | 0T-1     | OT-1     | OT-2     | OT-2     | OT-2     | OT-2     | OT-2         | QM-I     | QM-1     |
| SURVEY       | SEAJUN82 | SEAJUN82 | SEAJUN82 | SEAJUN82                                | SEAJUN82 | SEAJUN82 | SEAJUN82 | SEAJUN82 | SEAJUN82 | SEAJUN82 | SEAJUN82 | SEAJUN82       | SEAJUN82 | SEAJUN82 | SEAJUN82     | SEAJUN82 | SEAJUN82 | SEAJUN82 | SEAJUN82 | SEAJUN82 | SEAJUN82 | SEAJUN82 | SEAJUN82                                | SEAJUN82 | SEAJUN82 | SEAJUN82 | SEAJUN82 | SEAJUN82 | SEAJUN82 | SEAJUN82 | SEAJUN82     | SEAJUN82 | SEAJUN82 |

| MOAB        | 70       | 55       | 45       | <b>00</b> | 20       | 111      | 110      | 174      | 234      | 207      | 61       | 65       | 101      | 68       | 16       | 106      | 7.7      | 99       | 901      | 155      | 1117     | 146      | 101      | 277      | 12       | 15       | ĸ        | 21       | 10       | 261         | 314      | 285      |
|-------------|----------|----------|----------|-----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|-------------|----------|----------|
| POAB        | 57       | 18       | 31       | 39        | 30       | 106      | 275      | 233      | 238      | 204      | 186      | 265      | 37       | . 29     | 84       | 19       | 19       | 70       | 54       | 42       | 99       | 55       | 24       | 26       | 32       | 40       | 39       | 46       | 20       | 147         | 228      | 82       |
| TOTAX       | 33       | 25       | 34       | 30        | 31       | 29       | 94       | 89       | 86       | 87       | 89       | 90       | 38       | 27       | 42       | 48       | 37       | 47       | 48       | 48       | 44       | 38       | 38       | 89       | 27       | 24       | 27       | 37       | 19       | <i>L</i> 9  | 19       | 63       |
| TOAB        | 172      | 121      | 119      | 74        | 74       | 270      | 466      | 519      | 549      | 585      | 332      | 504      | 177      | 138      | 214      | 208      | 101      | 240      | 225      | 274      | 256      | 284      | 188      | 831      | 80       | 83       | 98       | 103      | 43       | 454         | 995      | 994      |
| %TOC 2**    | E        |          |          |           |          | 0.3      | 0.3      | 0.3      | 0.3      | 0.3      | 0.6 FN   | 0.6 FIN  | 2 FN     | 2 FN     | - FN     | - F      | 2 FN     | 2 FN     | 1.3      | 1.3      | 1.3      | <u></u>  | 1.3      | 0.2 VS   | 2.1      | 2.1      | 2.1      | 2.1      | 2.1      | 0.2         | 1.2      | 0.1      |
| % FINES %   |          |          |          |           |          | 12.9     | 12.9     | 12.9     | 12.9     | 12.9     | 25       | 25       | 95       | 95       | 20       | 20       | 95       | 95       | \$.99    | 999      | 66.5     | 999      | . 5.99   |          | 96.3     | 96.3     | 96.3     | 96.3     | 96.3     | 8.9         | 54.2     |          |
| Depth (m) % | 16.3     | 201.168  | 201.168  | 192.024   | 192.024  | 61.5     | 61.5     | 61.5     | 61.5     | 61.5     | 179.2224 | 179.2224 | 172.8216 | 172.8216 | 183.7944 | 183,7944 | 208.4832 | 208.4832 | 230.8    | 230.8    | 230.8    | 230.8    | 230.8    | 15.2     | 184.6    | 184.6    | 184.6    | 184.6    | 184.6    | 79.248      | 121.92   | 15.5448  |
| LonSec      | <b>∞</b> | m        | e        | 54        | 54       | 36       | 36       | 36       | 36       | 36       | 7        | 7        | 25       | 25       | 28       | 28       | 33       | 33       | 58       | 28       | 28       | 28       | 28       | 47       | 36       | 36       | 36       | 36       | 36       | 12          | 91       | ∞        |
| LonMin      | 28       | 56       | 26       | 24        | 24       | 22       | 22       | 22       | 22       | 22       | 28       | 28       | 24       | 24       | 22       | 22       | 21       | 21       | 23       | 23       | . 23     | 23       | 23       | 25       | 23       | 23       | 23       | 23       | 23       | 20          | 20       | 20       |
| LonDeg      | 122      | 122      | 122      | 122       | 122      | 122      | 122      | 122      | 122      | 122      | 122      | 122      | 122      | 122      | 122      | 122      | 122      | 122      | 122      | 122      | 122      | 122      | 122      | 122      | 122      | 122      | 122      | 122      | 122      | 122         | 122      | 122      |
| LatSec      | 28       | 12       | 12       | 19        | 19       | П        | 11       | П        | 11       | -        | 58       | . 28     | 0        | 0        | 33       | . 33     | ∞ `      | <b>∞</b> | 24       | 24       | 24       | 24       | 24       | 32       | 45       | 45       | 45       | 45       | 45       | 46          | 54       | 34       |
| LatMin      | . 53     | 31       | 31       | 30        | 30       | 28       | 28       | 28       | 28       | . 28     | 18       | 8        | 21       | 21       | 22       | 22       | 24       | 24       | 27       | 27       | 27       | 27       | 27       | 24       | 25       | 25       | 25       | 25       | 25       | 20          | 20       | 20       |
| LatDeg      | 47       | 47       | 47       | 47        | 47       | 47       | 47       | 47       | 47       | 47       | 47       | 47       | 47       | 47       | 47       | 47       | 47       | 47       | 47       | 47       | 47       | 47       | 47       | 47       | 47       | 47       | 47       | 47       | 47       | 47          | 47       | 47       |
| <b>*</b>    |          |          |          |           | _        |          |          | _        |          |          |          | _        | -        |          | _        |          |          |          |          |          |          | _        | -        | _        |          | _        |          |          | -        | <b>P</b> mt | (Vermal  | ****     |
| C           | MO       | MO       | MO       | MO        | MO       | MO       | MO       | MO       | MO       | MO       | MO       | MO       | MO       | MO       | MO       | MO       | MO       | MO       | MO       | MO       | MO       | ₩<br>9   | MO       |          | MO       | MO       | MO       | MO       | MO       |             |          |          |
| SAMPLE      | QM2UA    | ASYA     | A5YB     | B5YA      | BSYC     | D250EYB  | D250EYC  | D250EYD  | D250EYE  | D250EYF  | DPIYA    | DPIYB    | DP2YA    | DP2YB    | DP3YA    | DP3YB    | DP4YA    | DP4YC    | E750YA   | E750YB   | E750YD   | E750YE   | E750YF   | H50WYA   | H640YA   | H640YB   | H640YD   | H640YE   | H640YF   | JS250EYB    | J5400EYB | J550EYB  |
| STATION     | QM-2     | A.5      | A.5      | B.5       | B.5      | D-250E   | D-250E   | D-250E   | D-250E   | D-250E   | DP-1     | D-1      | DP-2     | DP-2     | DP-3     | DP-3     | DP-4     | DP-4     | E-750    | E-750    | E-750    | E-750    | E-750    | H-50W    | H-640    | H-640    | H-640    | H-640    | H-640    | JS-250E     | JS-400E  | JS-50E   |
| SURVEY      | SEAJUN82 | SEAJUN83 | SEAJUN83 | SEAJUN83  | SEAJUN83 | SEAJUN83 | SEAJUN83 | SEAJUN83 | SEAJUN83 | SEAJUN83 | SEAJUN83 | SEAJUN83 | SEAJUN83 | SEAJUN83 | SEAJUN83 | SEAJUN83 | SEAJUN83 | SEAJUN83 | SEAJUN83 | SEAJUN83 | SEAJUN83 | SEAJUN83 | SEAJUN83 | SEAJUN83 | SEAJUN83 | SEAJUN83 | SEAJUN83 | SEAJUN83 | SEAJUN83 | SEAJUN83    | SEAJUN83 | SEAJUN83 |

| SDI          | 6        | 7        | <u></u>     | 15        | 15       | 21       | 21       | 19       | 19       | 15       | 11       | 22       | 7          | 4        | 6        | 12       | 14       | 13       | 77         | ∞          | 6        | 9        | 7        | 8           |               | 6           | 13       | 15       | 6            | <del></del> | 9        | 63       |
|--------------|----------|----------|-------------|-----------|----------|----------|----------|----------|----------|----------|----------|----------|------------|----------|----------|----------|----------|----------|------------|------------|----------|----------|----------|-------------|---------------|-------------|----------|----------|--------------|-------------|----------|----------|
| Ш            | 55       | 70       | 71          | 62        | 74       | 7.1      | 75       | 70       | 71       | 29       | 72       | 73       | 99         | 89       | 7.       | 70       | 74       | . 70     | . 89       | 99         | 89       | 29       | 19       | 71          | 85            | 72          | 67       | 9/       | 73           | 69          | 89       | 89       |
| <del>-</del> | 0.783    | 0.751    | 0.833       | 816.0     | 0.907    | 962.0    | 0.801    | 0.758    | 0.73     | 0.714    | 0.803    | 0.808    | 0,683      | 0.546    | 0.721    | 0.737    | 0.837    | 0.778    | 0.714      | 0.653      | 669'0    | 0.684    | 0.685    | 0.536       | 0.897         | 0.841       | 916.0    | 0.904    | 0.889        | 0.639       | 0.555    | 0.404    |
| ű            | 1.189    | 1.05     | 1.276       | 1.355     | 1.353    | 1.454    | 1.581    | 1.477    | 1,412    | 1.384    | 1.471    | 1.579    | 1.079      | 0.782    | 1.17     | 1.238    | 1,313    | 1.301    | 1.201      | 1.098      | 1.149    | 1.08     | 1.083    | 0.981       | 1.284         | 1.161       | 1.311    | 1.417    | 1.136        | 1.166       | 0.99     | 0.727    |
| MISCTX       | ****     | ****     |             | <b></b> 1 |          | В        | ĸ٦       | 7        | 4        | ĸ        |          | ~        | 7          | 0        | 0        | 7        | •••      | 2        | <b>C</b> 4 | ю          | 7        |          | 7        | ю           | <del></del> - | -           | <u></u>  | 73       | <b>1</b> 000 | £           | prest    | 2        |
| CRTX M       | ς.       | 7        | 00          | 6         | 6        | 81       | 19       | 25       | 18       | 23       | 24       | 28       | 16         | 10       | 90       | 12       | 14       | 12       | 17         | 12         | _        | 14       | 12       | 17          | 7             | ∞           | ****     | ****     | Ŋ            | 10          | 13       | 16       |
|              | 64.      | 2        | <b>pm</b> i | 2         | 7        | 0        | 4        | 0        | 0        | 2        | 7        | -        | have       | 7        | 0        | -        |          | 0        | ****       | 4          | 0        | 0        | gmd      | 7           | 7             | <del></del> | pané     | +        | 0            | 2           | y.ml     | -        |
| MOTAX ECHTAX | 0        | ∞        | 6           | 4         | 7        | 14       | 4        | 15       | 15       | 15       | · ∞      | 13       | 9          | m        |          | 12       | 9        | 10       | 6          | 9/         | 6        | 9        | œ        | 12          | 3             | 3           | 33       | 00       | 3            | 17          | 6        | 14       |
| AMPTX M      |          | 3        | 4           | 80        | 4        | 9        | I        | 14       | 10       | 13       | 15       | 15       | <b>0</b> 0 | 7        | ,<br>,   | 7        | <b>∞</b> | 7        | 7          | 4          | Ś        | 7        | 9        | <del></del> | 80            | 9           | 9        | 9        | m            | m           | <b>∞</b> | 6        |
| POTAX A      | 15       | 7        | 15          | 4         | 12       | 32       | 52       | 42       | 49       | 42       | 33       | 46       | 13         | 12       | 25       | 21       | 15       | 23       | 61         | 20         | 22       | 17       | 15       | 34          | 14            | =           | Ī        | 15       | 10           | 35          | 37       | 30       |
|              |          | 2        | 7           |           | 7        | 4        | 1        | 13       | 9        | 6        | 7        | 4        | 7          | 0        | 0        | 7        | -        | 9        | 4          | œ          | 7        | 7        | 7        | 10          |               |             | \$       | 33       | 7            | 7           | gave     | 4        |
| ECHAB MISCAB | Ξ        | 74       | -           | 4         | 9        | 0        | 4        | 0        | 0        | 7        | 7        | -        |            | 7        | 0        | şurul    |          | 0        | 1          | 5          | 0        | 0        | 7        | 7           | 4             | -           | 7        | 3        | 0            | 5           | 7***     |          |
| AMPAB        | 1        | . 12     | 7           | 12        | 1        | 17       | 24       | 31       | 20       | 26       | 31       | 54       | 15         | 11       |          | 13       | 13       | 18       | 6/         | <b>x</b> 5 | 12       | 15       | 13       | 98          | 25            | 15          | 21       | 18       | 4            | 4           | 15       | 45       |
| CRAB /       | 33       | 44       | 40          | 22        | 91       | 49       | 70       | 66       | 7.1      | 163      | <b>∞</b> | 169      | 36         | 18       | 39       | 32       | 53       | 86       | 9          | 64         | 71       | 81       | 59       | 445         | 31            | 26          | 35       | 30       |              | 34          | 22       | 622      |
| SAMPLE       | QMZUA    | ASYA     | ASYB        | B5YA      | BSYC     | D250EYB  | D250EYC  | D250EYD  | D250EYE  | D250EYF  | DPIYA    | DPIYB    | DP2YA      | DP2YB    | DP3YA    | DP3YB    | DP4YA    | DP4YC    | E750YA     | E750YB     | E750YD   | E750YE   | E750YF   | H50WYA      | H640YA        | H640YB      | H640YD   | H640YE   | H640YF       | JS250EYB    | JS400EYB | JSS0EYB  |
| STATION      | QM-2     | A.5      | A.5         | B.5       | B.5      | D-250E   | D-250E   | D-250E   | D-250E   | D-250E   | DP-1     | DP-1     | DP-2       | DP-2     | DP-3     | DP-3     | DP-4     | DP-4     | E-750      | E-750      | E-750    | E-750    | E-750    | H-50W       | H-640         | H-640       | H-640    | H-640    | H-640        | JS-250E     | JS-400E  | 15-50E   |
| SURVEY       | SEAJUN82 | SEAJUN83 | SEAJUN83    | SEAJUN83  | SEAJUN83 | SEAJUN83 | SEAJUN83 | SEAJUN83 | SEAJUN83 | SEAJUN83 | SEAJUN83 | SEAJUN83 | SEAJUN83   | SEAJUN83 | SEAJUN83 | SEAJUN83 | SEAJUN83 | SEAJUN83 | SEAJUN83   | SEAJUN83   | SEAJUN83 | SEAJUN83 | SEAJUN83 | SEAJUN83    | SEAJUN83      | SEAJUN83    | SEAJUN83 | SEAJUN83 | SEAJUN83     | SEAJUN83    | SEAJUN83 | SEAJUN83 |

| MOAB          | 9/       | 22       | 142       | 160      | 89       | 86       | 47       | 38       | 381      | 188      | 961      | 157      | 27       | 20       | 24       | 124         | 154      | 138      | 306      | 142      | 480      | 48       | 41       | 23       | 257      | 119      | 98       | 163      | 901      | 23       | 148      | 191        |
|---------------|----------|----------|-----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|-------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|------------|
| POAB          | 108      | 136      | 284       | 257      | 86       | 113      | 125      | 139      | 394      | 242      | 261      | 7.1      | 251      | 13       | . 31     | 44          | \$2      | 126      | 82       | 106      | 112      | 156      | 25       |          | 48       | 114      | 21       | 52       | 23       | 22       | 19       | 92         |
| TOTAX         | 47       | 16       | 85        | 89       | 89       | 76       | 74       | . 8      | 79       | 79       | 82       | 53       | 122      | 22       | 31       | 33          | 29       | 77       | 57       | 89       | 76       | 84       | 28       | 26       | 39       | 55       | 36       | 37       | 38       | 31       | 27       | 35         |
| TOAB          | 561      | 542      | 532       | 448      | 546      | 683      | 431      | 604      | 915      | 559      | 559      | 297      | 708      | 53       | 75       | 180         | 223      | 336      | 521      | 353      | 869      | 489      | 98       | 54       | 381      | 917      | 137      | 274      | . 164    | 83       | 237      | 243        |
| 2**           |          |          | K.        | Z        | K        | K        | Z        | FN       |          |          |          |          |          |          |          |             |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |            |
| % TOC         | 0.05     | 0.5      | 1.1       | 1.1      | 0.1      | 0.2      | .0.2     | 0.2      | 0.8      | 0.5      | 0.7      | 1.6      |          | . 2      | 7        | 1.9         | 6.1      | 0.1      | 0.2      | 0.1      | 0.1      |          | 1.9      | 1.9      | 2        | 2        | 2.7      | 2.7      | 8.       | \$ . T   | 2        |            |
| % FINES       | 3.3      | m        | 45        | 50       | .8       | 2.5      | ĸ        | n        | 37.9     | 28.8     |          | 9.06     |          | 92.6     | 92.6     | 94.2        | 94.2     | 5.3      | 5.5      | 5.1      | 6.3      |          | 93.8     | 93.8     | 9.97     | 76.6     | 6'06 -   | 6'06     | 06       | 06       | 90.4     | 90.4       |
| Depth (m)     | 24.384   | 21.9456  | 58,5216   | 121.92   | 14.3256  | 16.764   | 21.336   | 22.86    | 64.008   | 124.968  | 128.016  | 166,4208 | 96.09    | 181.0512 | 181.0512 | 179.2224    | 179.2224 | 56.6928  | 57.6072  | 57.6072  | 96'09    | 14.9352  | 184.6    | 184.6    | 221.5    | 221.5    | 184.6    | 184.6    | 203.1    | 203.1    | 184.6    | 184.6      |
|               | 6        | 'n       | 10        | 7        | 53       | 31       | \$0      | 30       | 43       | 0        | 6        | 43       | 82       | 36       | 36       | 42          | 42       | 46       | 35       | 4        | 33       | 98       | 22       | 22       | 12       | 12       | 25       | 25       | 27       | 27       | 40       | 40         |
| LonMin LonSec | 20       | 24       | 25        | 25       | 24       | 26       | 24       | 26       | 26       | 27       | 29       | 27       | 59       | 23       | 23       | 22          | 22       | 19       | 19       | 21       | 21       | 28       | 24       | 24       | 56       | 26       | 24       | 24       | 25       | 25       | 23       | 23         |
| LonDeg        | 122      | 122      | 122       | 122      | 122      | 122      | 122      | 122      | 122      | 122      | 122      | 122      | 122      | 122      | 122      | 122         | 122      | 122      | 122      | 122      | 122      | 122      | 122      | 122      | 122      | 122      | 122      | 122      | 122      | 122      | 122      | 122        |
| LatSec        | 39       | 43       | 50        | 56       | 31       | 34       | 36       | 34       | 25       | 26       | 52       | 20       | 15       | 0        | 0        | 55          | 55       | 22       | 58       | 42       | 28       | 18       | 16       | 16       | 37       | 37       | 46       | 46       | 16       | 16       | 38       | 38         |
| LatMin        | 20       | 22       | 16        | 19       | . 19     | 21       | 19       | 21       | 8.       | <u>«</u> | 17       | 18       | 31       | 29       | 29       | 28          | 28       | 21       | 20       | 20       | 20       | 21       | 32       | 32       | 31       | 3.       | 30       | 30       | 30       | 30       | 29       | 53         |
| LatDeg        | 47       | 47       | 47        | 47       | 47       | 47       | 47       | 47       | 47       | 47       | 47       | 47       | 47       | 47       | 47       | 47          | 47       | 47       | 47       | 47       | 47       | 47       | 47       | 47       | 47       | 47       | 47       | 47       | 47       | 47       | 47       | 47         |
| *             |          | -        | -         |          | _        | ,        | _        | -        | ****     | -        |          | -        | -        | -        | -        | <del></del> |          | <b></b>  |          |          | -        | _        |          |          |          |          | -        | <b>,</b> | -        | -        | •••      | <b>→</b> · |
| ပ             |          |          | MO        | MO       | MO       | MO       | MO       | MO       | MO<br>MO | MO       | MO       | MO       | MO       | MO       | MOM      | MO          | MO       | MO       | MO       | MO       | MO       | MO       | MO       | MO       | MO       | MO       | MO       | MO       | MO       | MO       | MO       | MO         |
| SAMPLE        | JS75EYB  | JS75WYA  | K\$200EYB | K5400EYC | K550EYA  | K550WYA  | K575EYB  | K575WYC  | LS200EYA | L5400EYA | L5400WYB | LSSS0YA  | O200YA   | OTIYA    | OTIYC    | OT2YB       | OT2YC    | PBIYC    | PB2YB    | PB3YB    | PB4YA    | QM3YC    | A600EWA  | A600EWB  | A720WA   | A720WB   | B600EWB  | B600EWC  | B660WA   | B660WB   | C600EWB  | C600EWC    |
| STATION       | JS-75E   | JS-75W   | KS-200E   | K5-400E  | K5-50E   | KS-50W   | KS-75E   | K5-75W   | L5-200E  | L5-400E  | L5-400W  | L5-550   | 0-200    | OT-1     | OT-1     | OT-2        | OT-2     | PB-1     | PB-2     | PB-3     | PB-4     | QM-3     | A-600E   | A-600E   | A-720    | A-720    | B-600E   | B-600E   | B-660    | B-660    | C-600E   | C-600E     |
| SURVEY        | SEAJUN83 | SEAJUN83 | SEAJUN83  | SEAJUN83 | SEAJUN83 | SEAJUN83 | SEAJUN83 | SEAJUN83 | SEAJUN83 | SEAJUN83 | SEAJUN83 | SEAJUN83 | SEAJUN83 | SEAJUN83 | SEAJUN83 | SEAJUN83    | SEAJUN83 | SEAJUN83 | SEAJUN83 | SEAJUN83 | SEAJUN83 | SEAJUN83 | SEANOV82   |

| SDI          | 5        | 17       | 22       | 13       | 7        | 10       | 944<br>144 | 14       | =        | 14       | 13       | 7        | 20       | 6             | 15       | 4          | ы        | 19       | 4        | 20       | 00       | 14       | =        | 13       | 4        | т        | ∞        | 9        | 7        | 14       | 4           | S        |
|--------------|----------|----------|----------|----------|----------|----------|------------|----------|----------|----------|----------|----------|----------|---------------|----------|------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|-------------|----------|
| Ш            | 19       | 72       | 11       | 74       | 69       | 29       | 71         | 69       | 69       | 71       | . 02     | 69       | 06       | 72            | 69       | <i>L</i> 9 | 70       | 74       | 69       | 7.1      | 69       | 16       | 65       | 63       | 20       | 51       | 65       | 63       | 61       | 7.5      | 89          | 69       |
| <del>-</del> | 0.494    | 0.711    | 0.826    | 0.738    | 0.536    | 0.564    | 0.596      | 0.619    | 0.658    | 0.756    | 0.7      | 909.0    | 0.721    | 0.885         | 0.921    | 0.519      | 0.515    | 0.749    | 0.529    | 0.775    | 0.535    | 0.697    | 0.828    | 0.915    | 0.562    | 0.474    | 0.655    | 0.674    | 0.677    | 0.881    | 0.621       | 0.587    |
| Ħ            | 0.826    | 1.392    | 1.593    | 1.352    | 0.982    | 1.06     | 1.114      | 1.182    | 1.249    | 1.435    | 1.339    | 1.045    | 1.504    | 1.188         | 1.374    | 0.788      | 0.753    | 1.412    | 0.928    | 1.421    | 1.006    | 1.341    | 1.198    | 1.295    | 0.895    | 0.825    | 1.019    | 1.058    | 1.07     | 1.314    | 0.889       | 906'0    |
| MISCTX       | 4        | S        | 9        | 7        | m        | 4        | ĸ          | 4        | 4        | 2        | 4        | 7        | 6        | prot          | ,        | 0          | 0        | 4        | 71       | 4        | S        | m        |          | 0        | 7        | 7        | т        |          | 7        | ~        | <b>9444</b> | -        |
| CRTX N       | 4        | 23       | 28       | 15       | 20       | 25       | 12         | 26       | 8        | 23       | 23       | 19       | 36       | σ,            | 9        | 7          | 9        | 16       | 6        | 21       | 17       | 26       | 4        | . 4      | ∞        | 14       | 11       | 6        | 00       | <b>∞</b> | 5           | 7        |
| нтах         | -        | 4        | 9        | 0        | 7        | ĸ        | 7          | m        | 4        | 3        | 6        | ******   | 7        | <b>\$11.6</b> | , 7      |            | 0        | -        | 7        | 7        | -        | 61       | m        | 7        | 0        | 0        |          | 7        | 7        | 7        | 73          |          |
| MOTAX ECHTAX | 12       | 15       | 91       | =        | 14       | =        | 13         | 10       | 13       | 14       | 12       | ۶۶       | 16       | ν             | 7        | 9          | 7        | 15       | 14       | 13       | 18       | 15       | 9        | 7        | Ξ        | 14       | 7        | 6        | 10       | 7        | 4           | 7        |
| AMPTX        | 7        | 13       | 10       | 00       | 13       | 14       | 90         | 20       | ∞        | 13       | 10       | 10       | 61       | \$            | 4        | εŋ         | 4        | 90       | 33       | 7        |          | 16       | m        | 7        | 8        | κ.       | 7        | 9        | 5        | 4        | 7           | 4        |
| POTAX        | 26       | 44       | 38       | 40       | 29       | 33       | 42         | 38       | 40       | 37       | 40       | 56       | 29       | φ.            | 15       | 16         | 16       | 41       | 30       | 32       | 35       | 38       | 14       | 13       | 8        | 25       | 14       | 91       | 16       | 13       | 15          | 16       |
| MISCAB       | <b>∞</b> | 53       | 4        | 8        | 10       | ∞        | 9          | 21       | 14       | 33       | 6        | 6        | 30       | -             | gund     | 0          | 0        | <b>∞</b> | 33       | 6        | 00       | 5        |          | 0        | 2        | 4        | 3        | 5        | 3        | 3        | 3           | m        |
| ECHAB N      | <b>,</b> | 48       | 14       | 0        | 4        | 25       | 9          | 24       | 5        | ĺω       | ťΩ       | -        | 42       |               | 5        | 7          | 0        |          | ю        | 4        | -        | 14       | Ś        | 4        | 0        | 0        | _        | 74       | 9        | 8        | ťή          | 7        |
| AMPAB I      | 17       | 34       | 20       | 13       | 52       | 65       | 25         | 50       | 14       | 51       | 23       | 15       | 295      | 15            | 12       | 'n         | 9        | 00       | 9        | 17       | Ö,       | 20       | ∞        | ς,       |          | 9        | 12       | 22       | 12       | 12       | 16          | 22       |
| CRAB A       | 368      | 283      | 51       | 28       | 366      | 451      | 247        | 382      | 121      | 123      | 96       | 65       | 358      | <u></u>       | 14       | 10         | 15       | 63       | 127      | 92       | 26       | 266      | 14       | 10       | 74       | 128      | 26       | 52       | 56       | 30       | 22          | 27       |
| SAMPLE       | J575EYB  | JS75WYA  | K5200EYB | K5400EYC | K550EYA  | K550WYA  | K575EYB    | K575WYC  | L5200EYA | L5400EYA | L5400WYB | LSSS0YA  | O200YA   | OTIYA         | OTIYC    | OT2YB      | OTZYC    | PBIYC    | PB2YB    | PB3YB    | PB4YA    | QM3YC    | A600EWA  | A600EWB  | A720WA   | A720WB   | B600EWB  | B600EWC  | B660WA   | B660WB   | C600EWB     | C600EWC  |
| STATION      | JS-75E   | JS-75W   | K5-200E  | K5-400E  | KS-50E   | K5-50W   | KS-75E     | K5-75W   | L5-200E  | LS-400E  | L5-400W  | L5-550   | 0.200    | 0T-1          | 0T-1     | OT-2       | 0T-2     | PB-1     | PB-2     | PB-3     | PB-4     | QM-3     | A-600E   | A-600E   | A-720    | A-720    | B-600E   | B-600E   | B-660    | B-660    | C-600E      | C-600E   |
| SURVEY       | SEAJUN83   | SEAJUN83 | SEAJUN83 | SEAJUN83 | SEAJUN83 | SEAJUN83 | SEAJUN83 | SEAJUN83      | SEAJUN83 | SEAJUN83   | SEAJUN83 | SEAJUN83 | SEAJUN83 | SEAJUN83 | SEAJUN83 | SEAJUN83 | SEANOV82    | SEANOV82 |

|            | SAMPLE  | ပ      | S* LatDeg    | g LatMin | n LatSec |                                         | LonDeg | LonMin | LonSec | Depth (m) | % FINES | % TOC   | 2** | TOAB | TOTAX | POAB | MOAB |
|------------|---------|--------|--------------|----------|----------|-----------------------------------------|--------|--------|--------|-----------|---------|---------|-----|------|-------|------|------|
| C640WA MO  | MO      |        |              | 47       | 29       | 31                                      | 122    | 24     | 28     | 184.6     | 92.5    | 2       |     | 130  | 34    | 26   | 11   |
| C640WB MO  | QW<br>W |        | p            | 47       | 59       | 31                                      | 122    | 24     | 28     | 184.6     | 92.5    | 7       |     | 103  | 34    | 33   | 49   |
|            | MO      |        | _            | 47       | 28       | =                                       | 122    | 22     | 36     | 61.5      | 12.9    | 0.3     |     | 535  | 82    | 191  | 194  |
| D250EWB MO | MO      |        | Verent.      | 47       | 28       | =                                       | 122    | 22     | 36     | 61.5      | 12.9    | 0.3     |     | 658  | 92    | 285  | 223  |
| D250EWD MO | Ø<br>W  |        |              | 47       | 28       | ****                                    | 122    | 22     | 36     | 61.5      | 12.9    | 0.3     |     | 126  | 39    | 28   | 79   |
| D250EWE MO | MO      |        | <del>,</del> | 47       | 28       | ======================================= | 122    | 22     | 36     | 61.5      | 12.9    | 0.3     |     | 351  | 67    | 142  | 147  |
| D250EWF MO | MO      |        | -            | 47       | 28       | =                                       | 122    | 22     | 36     | 61.5      | 12.9    | 0.3     |     | 634  | 64    | 159  | 388  |
| D660WA MO  | WO      |        | ,            | 47       | 73       | 7                                       | 122    | 24     | 39     | 203.1     | 8.06    | 2.6     |     | 151  | 33    | 44   | 98   |
| D660WB MO  | MO      |        |              | 47       | . 62     | 7                                       | 122    | 24     | 39     | 203.1     | 8.06    | 2.6     |     | 163  | 28    | 26   | 118  |
| E600EWA MO | WO      |        | ,            | 47       | 27       | 35                                      | 122    | 23     |        | 184.6     | 40      | 0.8     |     | 333  | 45    | 54   | 248  |
| E600EWB MO | M       |        | ·            | 47       | 27       | 35                                      | 122    | 23     | 11     | 184.6     | 40      | 8.0     |     | 287  | 45    | 42   | 221  |
| E750WA MO  | MO      | _      | -            | 47       | 27       | 24                                      | 122    | 23     | 58     | 230.8     | 66.5    | <u></u> |     | 370  | 40    | 44   | 268  |
| E750WB MO  | Ž       |        |              | 47       | 27       | 24                                      | 122    | 23     | 58     | 230.8     | 66.5    | 1.3     |     | 409  | 47    | 69   | 300  |
| F600EWA MO | MO      |        | <b>7</b> 004 | 47       | 97       | 53                                      | 122    | 23     | 4      | 184.6     | 23      | 0.1     |     | 373  | 101   | 184  | 06   |
| F600EWB MO | Ø<br>Q  |        |              | 47       | 56       | 53                                      | 122    | 23     | 4      | 184.6     | 23      | 0.1     |     | 447  | 106   | 179  | 71   |
| F780WA MO  | MO      |        | <b>,</b> ,   | 47       | 26       | 53                                      | 122    | 23     | 49     | 240.0     | 34.4    | 6.0     |     | 292  | 56    |      | 144  |
| F780WB MO  | ×       | _      |              | 47       | 26       | 59                                      | 122    | 23     | 49     | 240.0     | 34.4    | 6.0     |     | 260  | 61    | 238  | 263  |
| G600EWA MO | M       | $\sim$ | <b>,</b>     | 47       | 36       | 28                                      | 122    | 22     | 99     | 184.6     | 38.3    | 8.0     |     | 262  | 7.1   |      | 98   |
| G600EWB MO | M       | _      | -            | 47       | 56       | 28                                      | 122    | 22     | 99     | 184.6     | 38.3    | 0.8     |     | 217  | 57    | 133  | 89   |
| G780WA MO  | X       | _      |              | 47       | 56       | 7                                       | 122    | 23     | 29     | 240.0     | 92.6    | 2.1     |     | 269  | 33    |      |      |
| G780WB MO  | X       | 0      |              | 47       | 56       | 7                                       | 122    | 23     | 29     | 240.0     | 92.6    | 2.1     |     | 212  | 45    | 58   | 129  |
| H600EWA MO | ĭ       | ~      |              | 47       | 25       | 57                                      | 122    | 22     | 45     | 184.6     | 94.5    | 2.4     |     | 101  | 36    | 51   | 36   |
| H600EWB MO | ž       | 0      | -            | 47       | 25       | 23                                      | 122    | . 22   | 45     | 184.6     | 94.5    | 2.4     |     | 88   | 32    |      | 29   |
| H640WA MO  | ×       | 0      |              | 47       | 25       | 45                                      | 122    | 23     | 36     | 184.6     | 96.3    | . 2.1   |     | 154  | 36    | 49   |      |
| H640WC MO  | Ĭ       | 0      |              | 47       | 25       | 45                                      | 122    | 23     | 36     | 184.6     | 96.3    | 2.1     |     | 71   | 21    |      | 27   |
| H640WD MO  | M       | _      |              | 47       | 25       | 45                                      | 122    | 23     | 36     | 184.6     | 96.3    | 2.1     |     | 107  | 23    |      | 19   |
| H640WE MO  | ĭ       | 0      | -            | 47       | 25       | . 45                                    | 122    | 23     | 36     | 184.6     | 96.3    | 2.1     |     | 109  | 29    | 51   | 42   |
| H640WF MO  | ž       | 0      | -            | 47       | 25       | 45                                      | 122    | 23     | 36     | 184.6     | 96.3    | 2.1     |     | 92   | 30    | 26   | 49   |
| 1600EWA    |         |        |              | 47       | 25       | ∞                                       | 122    | 21     | 26     | .184.6    | 58.5    | 0.8     |     | 289  | 59    | 201  | 89   |
| I600EWB    |         |        | _            | 47       | 25       | <b>∞</b>                                | 122    | 21     | 26     | 184.6     | 58.5    | 0.8     |     | 234  | 57    | 82   | 106  |
| I690WA MO  | Ž       | 0      | <del></del>  | 47       | 24       | 33                                      | 122    | 23     | 10     | 212.3     | 87.7    | 4.      |     | 207  | 43    | 71   | 105  |
| 1690WB MO  | ×       | _      |              | 47       | 24       | 33                                      | 122    | 22     | 10     | 212.3     | 87.7    | 1.4     |     | 171  | 37    | 57   | 77   |
| J600EWA    |         |        | <b>5</b> m4  | 47       | 21       | 20                                      | 122    | 70     | 25     | 161.5     |         | 0.2     |     | 144  | 32    | 57   | 78   |
|            |         |        |              |          |          |                                         |        |        |        |           |         |         |     |      |       |      |      |

| SURVEY   | STATION | SAMPLE  | CRAB | AMPAB      | ECHAB | MISCAB | POTAX | AMPTX    | MOTAX    | AMPTX MOTAX ECHTAX | CRTX | MISCTX | Ħ     | <b>-</b> | E  | SDI      |
|----------|---------|---------|------|------------|-------|--------|-------|----------|----------|--------------------|------|--------|-------|----------|----|----------|
| SEANOV82 | C-640   | C640WA  | 21   | 15         | į     | ·      | 16    | 7        | 9        |                    | 6    | 7      | 1.098 | 0,717    | 19 | 6        |
| SEANOV82 | C-640   | C640WB  | 11   | 7          | 00    | 2      | 91    | 5        | 90       | 73                 | 7    | , Lung | 1.219 | 0.796    | 20 | 12       |
| SEANOV82 | D-250E  | D250EWA | 143  | 44         | umi   | 9      | 45    |          | 11       | pool               | 21   | 4      | 1.409 | 0.736    | 89 | 16       |
| SEANOV82 | D-250E  | D250EWB | 135  | 15         |       | 14     | 54    | 9        | 15       | 1                  | 91   | 9      | 1.427 | 0.727    | 69 | 17       |
| SEANOV82 | D-250E  | D250EWD | 8    | <b>∞</b>   | 0     | -      | 16    | 5        | 12       | 0                  | 10   | -      | 1.275 | 0.801    | 70 | 13       |
| SEANOV82 | D-250E  | D250EWE | 59   | 22         | 1     | 7      | 36    | 9        | 7        | -                  | 14   | 2      | 1.524 | 0.835    | 71 | 20       |
| SEANOV82 | D-250E  | D250EWF | 82   | 24         | 2     | 3      | 28    | 7        | 17       | 7                  | 14   | ю      | 1.171 | 0.648    | 19 | 12       |
| SEANOV82 | D-660   | D660WA  | 15   | S          | m     | æ      | 17    | 2        | <b>∞</b> | 2                  | 4    | 7      | 1.043 | 0.687    | 99 | 6        |
| SEANOV82 | D-660   | D660WB  | 15   |            |       | Ю      | 15    | ****     | 9        |                    | 4    | 7      | 0.856 | 0.591    | 19 | 4        |
| SEANOV82 | E-600E  | E600EWA | 26   | 10         | ю     | 2      | 23    | 5        | 6        | 7                  | 6    | 2      | 0.821 | 0.496    | 99 | 4        |
| SEANOV82 | E-600E  | E600EWB | 20   | 10         | 2     | 73     | 23    | 5        | 10       | 7                  | 6    |        | 0.816 | 0.493    | 64 | 4        |
| SEANOV82 | E-750   | E750WA  | 57   | . ∞        | 0     | -      | 19    | 5        | 00       | 0                  | 12   |        | 0.875 | 0.546    | 58 | th.      |
| SEANOV82 | E-750   | E750WB  | 37   | 9          | perd  | 2      | 29    | ю        | •        |                    | 7    | 2      | 0.935 | 0.559    | 61 |          |
| SEANOV82 | F-600E  | F600EWA | 41   | 28         | 22    | 36     | 58    | 14       | yand     | 4                  | 22   | 9      | 1.733 | 0.865    | 75 | 31       |
| SEANOV82 | F-600E  | F600EWB | 103  | 86         | 19    | 75     | 57    | 17       | 14       | 4                  | 24   | 7      | 1.647 | 0.813    | 81 | 27       |
| SEANOV82 | F-780   | F780WA  | 30   | 10         | £,    | S      | 30    | 4        | 13       | m                  | ∞    | 7      | 1.36  | 0.778    | 75 | 13       |
| SEANOV82 | F-780   | F780WB  | 44   | II         | 4     |        | 33    | 6        | 10       | 6                  | 4    | ••••   | 1.343 | 0.752    | 75 | <b>-</b> |
| SEANOV82 | G-600E  | G600EWA | 25   | 12         |       | 9      | 41    | 6        | 12       | -                  | 14   | 3      | 1.522 | 0.822    | 72 | 22       |
| SEANOV82 | G-600E  | G600EWB | 6    | r.         | 9     | -      | 37    | ሞነ       | 10       | æ                  | 9    | -      | 1.483 | 0.844    | 73 | 19       |
| SEANOV82 | G-780   | G780WA  | 20   | 13         | 'n    | 2      | 12    | 9        | _        | ****               | ∞    | 1      | 0.746 | 0.492    | 99 | 4        |
| SEANOV82 | G-780   | G780WB  | 16   | 7          | 4     | S      | 20    | 82       | 10       | 7                  | 10   | m      | 1.092 | 99'0     | 69 |          |
| SEANOV82 | H-600E  | H600EWA | 01   | 9          | E     | -      | 20    | ĸ        | 7        | -                  | 7    | -      | 1.327 | 0.852    | 89 | 15       |
| SEANOV82 | H-600E  | H600EWB | 7    | 2          | 4     | 9      | 16    | Ś        | 4        | 2                  | 7    | m      | 1.28  | 0.85     | 71 | 12       |
| SEANOV82 | H-640   | H640WA  | 53   | 47         | -     | S      | 14    | 00       | 7        | -                  | 12   | 7      | 1.193 | 0.766    | 78 | 10       |
| SEANOV82 | H-640   | H640WC  | 01   | 7          | ιņ    |        | 01    | 4        | er)      | -                  | 9    | -      |       | 0.832    | 74 | σ.       |
| SEANOV82 | H-640   | H640WD  | 12   | 4          | ťΩ    | 0      | Ξ     | 7        | 7        |                    | 4    | 0      | 1.093 | 0.803    | 64 | ∞        |
| SEANOV82 | H-640   | H640WE  | -    | 4          | 7     | m      | 13    | m        | 7        | 7                  | 9    | ****   | 1.158 | 0.792    | 71 | 6        |
| SEANOV82 | H-640   | H640WF  | 13   | 7          | . 4   |        | 12    | 4        | 7        | 33                 | œ    | 0      | 1.173 | 0.794    | 69 | 10       |
| SEANOV82 | I-600E  | 1600EWA | 15   | <b>0</b> 0 | 0     | κJ     | 40    | 9        | φ        | 0                  | 10   | т      | 1.375 | 0.776    | 75 | 15       |
| SEANOV82 | I-600E  | 1600EWB | 39   | 27         | 3     | 4      | 31    | <b>∞</b> | <b>∞</b> | ю                  | 4    |        | 1.368 | 0.779    | 74 | 91       |
| SEANOV82 | I-690   | I690WA  | 22   | 7          | -     | 80     | 23    | 80       | ∞        | ****               | ∞    | m      | 1.193 | 0.73     | 89 | 12       |
| SEANOV82 | I-690   | 1690WB  | 35   | 21         | -     | -      | 18    | 9        | 7        |                    | 10   |        | 1.239 | 0.79     | 70 | =        |
| SEANOV82 | J-600E  | J600EWA | ∞    | 4          | 0     | -      | 22    | 8        | 4        | 0                  | 8    |        | 1.065 | 0.708    | 99 | 6        |

| MOAB      | 99       | 87       | 100      | 158      | 139      | 98       | 88       | 62       | 131      | 82       | 44       | 69       | 85       | 86       | 242      | 248      | 263      | 180      | 323      | 63       | 19       | 146      | 251      | 144      | 98       |          | 120      | 119      | 194      | 143      | 72       | 74       |
|-----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
| POAB .    | 51       | 71       | 54       | 38       | 37       | . 25     | 30       | 46       | 54       | 35       | 21       | 24       | 26       | 32       | 28       | 41       | 69       | 39       | 82       | 16       | 16       | 38       | 65       | 28       | 27       | 22       | 29       | 61       | 43       | 21       | 18       | 22       |
| TOTAX     | 31       | 47       | 43       | 30       | 32       | 31       | 33       | 30       | 36       | 31       | 24       | 29       | 40       | 33       | 44       | 32       | 37       | 32       | 43       | 34       | 27       | 34       | 52       | 34       | 34       | 29       | 31       | 48       | 39       | 32       | 23       | 27       |
| TOAB      | 125      | 207      | 179      | 214      | 192      | 148      | 130      | 125      | 211      | 135      | 83       | 112      | 146      | 158      | 325      | 308      | 348      | 241      | 443      |          | 108      | 329      | 543      | 214      | 162      | . 161    | 194      | 513      | 276      | 192      | 109      | 117      |
| 2**       |          |          | ٠        |          |          |          |          |          |          |          |          | •        |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |
| %TOC      | 0.2      | 0.2      | 0.2      | 1.5      | 1.5      | 2        | 2        | 1.3      | 1.3      | 2        | 2        | 2        | 2        | 7        | 1.9      | 1.9      | 1.9      | 1.9      | 1.9      | 1.9      | 1.9      | 7        | 2        | 2.7      | 2.7      | 1.8      |          | 0.1      | 7        | 2        | 7        | 7        |
| % FINES   |          |          |          | 92       | 92       | 88.7     | 88.7     | 91.9     | 91.9     | 92.6     | 92.6     | 92.6     | 92.6     | 92.6     | 94.2     | 94.2     | 94.2     | 94.2     | 94.2     | 93.8     | 93.8     | 76.6     | 76.6     | 6.06     | 6.06     | 06       | 06       | 2.3      | 90.4     | 90.4     | 92.5     | 92.5     |
| Depth (m) | 161.5    | 182.9    | 182.9    | 184.6    | 184.6    | 212.3    | 212.3    | 184.6    | 184.6    | 184.6    | 184.6    | 184.6    | 184.6    | 184.6    | 184.6    | 184.6    | 184.6    | 184.6    | 184.6    | 184.6    | 184.6    | 221.5    | 221.5    | 184.6    | 184.6    | 203.1    | 203.1    | 15.4     | 184.6    | 184.6    | 184.6    | 184.6    |
| LonSec    | 25       | 28       | 28       | 15       | . 15     | 20       | 20       | 42       | 42       | 36       | 36       | 36       | 36       | 36       | 42       | 42       | 42       | 42       | 42       | 22       | 22       | 12       | 12       | 25       | 25       | 27       | 27       | .47      | 40       | 40       | 28       | 28       |
| LonMin    | 20       | 21       | 21       | 20       | 20       | 21       | . 21     | 23       | 23       | 23       | 23       | 23       | 23       | 23       | 22       | 22       | 22       | 22       | 22       | 24       | 24       | 26       | 26       | 24       | 24       | 25       | 25       | 22       | 23       | 23       | 24       | 24       |
| LonDeg    | 122      | 122      | 122      | 122      | 122      | 122      | 122      | 122      | 122      | 122      | 122      | 122      | 122      | 122      | 122      | 122      | 122      | 122      | 122      | 122      | 122      | 122      | 122      | 122      | 122      | 122      | 122      | 122      | 122      | 122      | 122      | 122      |
| LatSec    | 20       | 12       | 12       | 26       | 26       | 13       | 13       | 0,       | 6        | 0        | 0        | 0        | 0        | 0        | 55       | 55       | 55       | 55       | 55       | 16       | 16       | 37       | 37       | 46       | 46       | 16       | 16       | 51       | 38       | 38       | 31       | 31       |
| LatMin    | 21       | 22       | 22       | 23       | 23       | 23       | 23       | 21       | 21       | 29       | 29       | 29       | 29       | 29       | 28       | 28       | 28       | 28       | 28       | 32       | 32       | 31       | 31       | 30       | 30       | 30       | 30       | 59       | 29       | 29       | 29       | 29       |
| LatDeg    | 47       | 47       | 47       | 47       | 47       | 47       | 47       | 47       | 47       | 47       | 47       | 47       | 47       | 47       | 47       | 47       | 47       | 47       | 47       | 47       | 47       | 47       | 47       | 47       | 47       | 47       | 47       | 47       | 47       | 47       | 47       | 47       |
| <b>*</b>  | *****    | ****     | -        |          | - 0      | *****    |          |          | 0 1      | 0        |          | - 0      | - 0      | 0        |          | - 0      |          | - 0      |          | C        | 0        |          | 1 0      |          | 1        | 1 0      | - 0      |          |          |          | - 0      | -        |
| S         |          |          |          | MO       | » MO     | _        | _        | MO       | Ø        | MO       |          | OW .     | MO       | MO       | MO       |
| SAMPLE    | J600EWB  | J690WA   | J690WC   | J5520EWA | J5520EWB | JS600EWA | 15600EWB | K590WA   | K590WB   | OTIWA    | OTIWB    | OTIWC    | OTIWD    | OTIWE    | OT2WA    | OT2WB    | OT2WC    | OT2WD    | OT2WE    | A600EVA  | A600EVB  | A720VA   | A720VC   | B600EVA  | B600EVC  | B660VA   | B660VB   | CSOEVB   | C600EVA  | C600EVB  | C640VA   | C640VB   |
| STATION   | J-600E   | 1-690    | 1-690    | JS-520E  | JS-520E  | 15-600E  | JS-600E  | K-590    | K-590    | OT-1     | OT-1     | OT-1     | 01-1     | OT-1     | OT-2     | OT-2     | OT-2     | OT-2     | OT-2     | A-600E   | A-600E   | A-720    | A-720    | B-600E   | B-600E   | B-660    | B-660    | C-50E    | C-600E   | C-600E   | C-640    | C-640    |
| SURVEY    | SEANOV82 | SEASEP82 |

| SDI                | 10       | 12             | 12       | 7        | . ,,     | , vo     | › oc     | · r-     |          | 90       | ٥        | 7        | 10       | 9        | · m      | . 23     | 2        | i m      | ı π      |          | 0.       | _            | so.      | 9              | S                                     | 10        | 9         | 9        | Ś        | 57       | 4        | · vc     | , 00<br>00 |
|--------------------|----------|----------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|--------------|----------|----------------|---------------------------------------|-----------|-----------|----------|----------|----------|----------|----------|------------|
|                    | 69       | 71             | 89       | 63       | 99       | 99       |          | 3 39     | 69       | 72       | 72       | 69       | 19       | 72       | 89       | . 59     | 70       | 1.9      | 70       |          | 66       | 99           | 57       | 90             | 89                                    | 92        | 29        | 63       | 70       | 99       | 89       | 64       | 19         |
| II                 |          |                |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |              |          |                |                                       |           |           |          |          |          | •        |          |            |
| ï-,                | 0.755    | 0.757          | 0.7      | 0.555    | 0.547    | 0.668    | 0.626    | 0.69     | 0.61     | 0.672    | 0.8      | 0.676    | 0.721    | 0.633    | 0.447    | 0.42     | 0.416    | 0.491    | 0.458    | 1        | 0.739    | 0.674        | 0.656    | 0.644          | 0.588                                 | 0.775     | 0.595     | 0.669    | 0.543    | 0.555    | 0.518    | 0.691    | 0.743      |
| Ħ                  | 1.125    | 1.267          | 1.143    | 0.82     | 0.823    | 966.0    | 0.951    | 1.019    | 0.95     | 1.002    | 1.103    | 0.989    | 1.156    | 0.962    | 0.735    | 0.632    | 0.653    | 0.739    | 0.748    |          | 1.132    | 0.964        | 1.005    | 1.105          | 0.901                                 | 1.188     | 0.871     | 0.998    | 0.912    | 0.883    | 0.78     | 0.941    | 1.064      |
| MISCTX             | 0        | ****           | m        | 7        |          | 0        |          |          | -        | سو       | -        | ,        | 73       | -        | 7        |          | -        | •        | yanut    | •        |          |              | ·        | <b>→</b> (     | <b>&gt;</b>                           | co.       | 7         | 0        | р        | ,        | ٥        |          | 0          |
| CRTX               | 9        | 15             | . 10     |          | 9        | 10       | 9        | 7        | 13       | s        | \$       | 7        | 12       | 0        | 6        | 7        | 9        | ∞        | ****     | 5        | 2 (      | ָ י          | 2 !      | <u> </u>       | ×o                                    | 01        | œ         | 9        | 10       | 10       | 2        | 9        | 6          |
| ECHTAX             | <b></b>  | -              | 7        |          | 0        | -        |          | -        | <b></b>  | 3        | 2        | 2        | 3        | 2        | m        | 7        | 7        | -        | 8        | c        | ۰ ۱      |              | - 0      | > (            | 7                                     | -         | .6        | 7        | 0        | т        | <b></b>  | rent     |            |
| MOTAX ECHTAX       | 'n       | 9              | ∞        | 7        | Ś        | ٠        | 9        | ٧        | ላ        | ∞        | 9        | 7        | 6        | 7        | \$       | ৼ        | 6        | 9        | 7        | ٥        | ۰ ۱      | e t          | - ;      | 2 5            | oc .                                  | 7         | 6         | 6        | 14       | 7        | 9        | \$       | 6          |
| AMPTX              | Υ'n      | 9              | 4        |          | 4        | 9        | 4        | 4        | ∞        | 2        | 4        | 3        | •        | 9        | 90       | 5        | m        | ş        | ~        | t        |          | ۰ -          | 4. 0     | o <del>-</del> | <b>3</b> 1                            | 9         | ς,        | 7        | 7        | 8        | 9        | 3        | ۲C         |
| POTAX              | 16       | 24             | 20       | 15       | 20       | 15       | 19       | 16       | 16       | 14       | 10       | 12       | 14       | 14       | 25       | 18       | 16       | 91       | 21       |          | î 5      | ) ·          | <u> </u> | 7 -            | <u> </u>                              | 13        | <b>00</b> | 14       | 23       | 81       | 13       | 10       | <b>6</b> 6 |
| ECHAB MISCAB POTAX | 0        | 2              | m        | 2        | -        | 0        | *****    |          | 7        | -        | 2        | 2        | 5        | -        | 2        | 3        | 2        | 3        | 7        | •        |          | <b>-</b> - ( | 7 0      | > <            | ۰ د                                   | 4         | 2         | 0        | -        | provi    | 0        | 7        | 0          |
| ECHAB              | -        | -              | 4        | 3        | 0        | 2        | -        | •        | . 2      | , ro     | m        | 60       | 7        | 2        | 4        |          | 2        | ,        | **       | "        | ` ~      | ⊸ (          | v c      | , ,            | ή ,                                   | 4         | 9         | 4        | 0        | 7        | 4        | 3        | ****       |
| AMPAB              | 6        | 21             | 7        | 5        | 7        | 61       | S        | S        | Ξ        | 9        | 0,       | 7        | 14       | 21       | 17       | 7        | 7        | 13       | 26       | 10       | ; ;=     |              | 0 %      | 3 8            | Ç , [                                 | 57        | 10        | 6        | . 65     | 91       | 17       | 33       | 15         |
| CRAB               | 13       | 46             | 81       | 13       | 15       | 35       | 10       | 15       | 22       | 14       | 13       | 14       | 23       | 25       | 19       | 13       | 12       | 90       | 32       | 34       | ; ;;     | C. 4.1       | 1+1      | ì              | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | 4         | 70        | 4        | 332      | 31       | 24       | 7        | 20         |
| SAMPLE             | J600EWB  | J690WA         | J690WC   | J5520EWA | J5520EWB | J5600EWA | J5600EWB | K590WA   | K590WB   | OTIWA    | OTIWB    | OTIWC    | OTIWD    | OTIWE    | OT2WA    | OT2WB    | OTZWC    | OT2WD    | OT2WE    | A600FVA  | A600FVB  | A7200A       | A720VC   | REOUETVA       | DY 2000C                              | Danner    | B660VA    | B660VB   | C50EVB   | C600EVA  | C600EVB  | C640VA   | C640VB     |
| STATION            | J-600E   | 069 <b>-</b> f | 1-690    | JS-520E  | JS-520E  | JS-600E  | JS-600E  | K-590    | K-590    | OT-1     | OT-1     | OT-1     | OT-1     | OT-1     | OT-2     | OT-2     | . OT-2   | OT-2     | OT-2     | A-600E   | A-600F   | A-720        | A-720    | R-600F         | 2002 0                                | 2000-0    | B-660     | B-660    | C-50E    | C-600E   | C-600E   | C-640    | C-640      |
| SURVEY             | SEANOV82 | SEANOV82       | SEANOV82 | SEANOV82 | SEANOV82 | SEANOV82 | SEANOV82 | SEANOV82 | SEANOV82 | SEANOV82 | SEANOV82 | SEANOV82 | SEANOV82 | SEANOV82 | SEANOV82 | SEANOV82 | SEANOV82 | SEANOV82 | SEANOV82 | SEASEP82 | SEASEP82 | SEASEP82     | SEASEP82 | SEASEP82       | SEA SED87                             | SEASEI 82 | SEASEP82  | SEASEP82 | SEASEP82 | SEASEP82 | SEASEP82 | SEASEP82 | SEASEP82   |

| B<br>B    | 192      | 141      | 244      | \$\$     | 214      | 112      | 146      | 238      | 107      | 303      | 190      | 210      | 150      | 73       | 95       | 145      | 159      | 78       | 25       | 188      | 192      | 63       | 16       | 68          | 107      | 99       | 75       | 78       | 95       | 39       | 75       | 110      | 113      |
|-----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|-------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
| MOAB      |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |             |          |          |          |          |          |          |          |          |          |
| POAB      | 134      | 106      | 123      | 124      | 128      | 30       | 34       | 72       | 75       | 89       | 19       | SS       | 5.5      | 158      | 177      | 123      | 83       | 110      | 114      | 59       | 48       | 36       | 40       | 32          | 51       | 30       | 34       | 38       | 69       | 65       | 54       | 65       | 56       |
| TOTAX     | 78       | 16       | 75       | 59       | 72       | 37       | 38       | 63       | 59       | 98       | 45       | 20       | 53       | 97       | 96       | 58       | 20       | 99       | 57       | 42       | 38       | 33       | 30       | 39          | 40       | 25       | 27       | 36       | 42       | 52       | 51       | 52       | 35       |
| TOAB      | 541      | 382      | 521      | 246      | 454      | 161      | 209      | 550      | 412      | 457      | 295      | 344      | 246      | 365      | 418      | 333      | 337      | 231      | 163      | 276      | 269      | 128      | 188      | 155         | 213      | 107      | 124      | 141      | 180      | 124      | 176      | 244      | 207      |
| 2**       |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |             |          |          |          |          |          |          |          |          |          |
| % TOC     | 0.3      | 0.3      | 0.3      | 0.3      | 0.3      | 2.6      | 2.6      | 0.5      | 0.2      | 0.8      | 0.8      | 1.3      | 1.3      | 0.1      | 0.1      | 6.0      | 6.0      | 0.8      | 0.8      | 2.1      | 2.1      | 2.4      | 2.4      | 2.1         | 2.1      | 2.1      | 2.1      | 2.1      | 0.8      | 8.0      | 4.1      | 1.4      | 0,2      |
| % FINES   | 12.9     | 12.9     | 12.9     | 12.9     | 12.9     | 8.06     | 8.06     | 10.6     | 4        | 40       | 40       | 66.5     | 66.5     | 23       | 23       | 34.4     | 34.4     | 38.3     | 38.3     | 92.6     | 92.6     | 94.5     | 94.5     | 96.3        | 96.3     | 96.3     | 96.3     | 96.3     | 58.5     | 58.5     | 87.7     | 1.78     |          |
| Depth (m) | 61.5     | 61.5     | 61.5     | 61.5     | 61.5     | 203.1    | 203.1    | 61.5     | 15.4     | 184,6    | 184.6    | 230.8    | 230.8    | 184.6    | 184.6    | 240.0    | 240.0    | 184.6    | 184.6    | 240.0    | 240.0    | 184.6    | 184.6    | 184.6       | 184.6    | 184.6    | 184.6    | 184.6    | 184.6    | 184.6    | 212.3    | 212.3    | 161.5    |
| LonSec    | 36       | 36       | 36       | 36       | 36       | 36       | 39       | 36       | 18       | 11       |          | 58       | 58       | 4.       | 41       | 49       | 49       | 96       | 56       | 29       | 29       | 45       | 45       | 36          | 36       | 36       | 36       | 36       | 56       | 26       | 10       | 10       | 25       |
| LonMin    | 22       | 22       | 22       | 22       | 22       | 24       | 2,4      | 22       | 22       | 23       | 23       | 23       | 23       | 23       | 23       | 23       | 23       | 23       | 22       | 23       | 23       | 22       | 22       | 23          | 23       | 23       | . 23     | 23       | 21       | 21       | 22       | 22       | 20       |
| LonDeg    | 122      | 122      | 122      | 122      | 122      | 122      | 122      | 122      | 122      | 122      | 122      | 122      | 122      | 122      | 122      | 122      | 122      | 122      | 122      | 122      | 122      | 122      | 122      | 122         | 122      | 122      | 122      | 122      | 122      | 122      | 122      | 122      | 122      |
| LatSec    | Ξ        | <u></u>  | =        | 11       | •        | 7        | 7        | 35       | 36       | 35       | 35       | 24       | 24       | 53       | 53       | 29       | 29       | 28       | 28       | 1        | 7        | 57       | 27       | 45          | 45       | 45       | 45       | 45       | 00       | ∞        | 33       | 33       | 70       |
| LatMin    | 28       | 28       | 28       | . 28     | 28       | 29       | 29       | 27       | 27       | 27       | 27       | 27       | 27       | 26       | 26       | 26       | 26       | 26       | 56       | 26       | 56       | 25       | 25       | 25          | 25       | 25       | 25       | 25       | 25       | 25       | 24       | 24       | 71       |
| LatDeg    | . 47     | 47       | 47       | 47       | 47       | 47       | 47       | 47       | 47       | 47       | 47       | 47       | 47       | 47       | . 47     | 47       | 47       | 47       | 47       | 47       | 47       | 47       | 47       | 47          | 47       | 47       | 47       | 47       | 47       | 47       | 47       | 47       | 47       |
| *         |          |          |          | -        |          |          |          | <b></b>  |          |          | _        | ****     |          |          | -        | ****     | -        | _        | bred     | •        |          |          | -        | <del></del> | *****    |          | ,        |          |          |          |          |          | -        |
| ပ         | MO       | M<br>O   | MO       | WO       | MO       | MO       | MO       | MO          | MO       | MO       | MO       | MO       |          |          | MO       | MO       |          |
| SAMPLE    | D250EVA  | D250EVC  | D250EVD  | D250EVE  | D250EVF  | D660VA   | D660VB   | E200EVA  | E50EVA   | E600EVA  | E600EVC  | E750VA   | E750VB   | F600EVA  | F600EVB  | F780VB   | F780VC   | G600EVA  | G600EVB  | G780VA   | G780VB   | H600EVA  | H600EVB  | H640VA      | H640VB   | H640VC   | H640VE   | H640VF   | I600EVA  | 1600EVC  | 1690VA   | JA069I   | J5520EVA |
| STATION   | D-250E   | D-250E   | D-250E   | D-250E   | D-250E   | D-660    | D-660    | E-200E   | E-50E    | E-600E   | E-600E   | E-750    | E-750    | F-600E   | F-600E   | F-780    | F-780    | G-600E   | G-600E   | G-780    | G-780    | H-600E   | H-600E   | H-640       | H-640    | H-640    | H-640    | H-640    | I-600E   | I-600E   | 069-I    | 1-690    | JS-520E  |
| SURVEY    | SEASEP82    | SEASEP82 | SEASEP82 | SEASEP82 | SEASEP82 | SEASEP82 | SEASEP82 | SEASEP82 | SEASEP82 | SEASEP82 |

| SURVEY   | STATION | SAMPLE   | CRAB | AMPAB    | ECHAB | ECHAB MISCAB POTAX |      | AMPTX       | AMPTX MOTAX ECHTAX | СНТАХ  | CRTX      | MISCTX      | Ŀ     | <b>F</b> | Щ.   | SDI       |
|----------|---------|----------|------|----------|-------|--------------------|------|-------------|--------------------|--------|-----------|-------------|-------|----------|------|-----------|
| SEASEP82 | D-250E  | D250EVA  | 214  | 23       | 0     | -                  | 38   | -           | 91                 | 0      | 23        |             | 1.263 | 0.668    | 99   | 12        |
| SEASEP82 | D-250E  | D250EVC  | 128  | 52       | 2     | 5                  | 40   | 8           | 13                 | 2      | <u>\$</u> | æ           | 1 485 | 0.789    | 70   | 70        |
| SEASEP82 | D-250E  | D250EVD  | 150  | 23       | 0     | 4                  | 35   | 80          | 23                 | 0      | 16        | 7           | 1.172 | 0.625    | 99   | 6         |
| SEASEP82 | D-250E  | D250EVE  | 33   | 17       | -     | 3                  | 35   | 6           | 00                 | 947-1  | 13        | 7           | 1.495 | 0.844    | . 59 | 9         |
| SEASEP82 | D-250E  | D250EVF  | 102  | 16       | 0     | 10                 | 38   | 00          | 16                 | 0      | 14        | 4           | 1.247 | 0.672    | 67   | 4         |
| SEASEP82 | D-660   | D660VA   | 13   | 6        | 2     | 4                  | 17   | 9           | 7                  | ,      | 10        | 61          | 0.95  | 9090     | 67   | , ,       |
| SEASEP82 | D-660   | D660VB   | 25   | 10       | Э     | 1                  | 17   | Ś           | ∞                  | 7      | 10        | -           | 0.91  | 0.576    | 67   | . vc      |
| SEASEP82 | E-200E  | E200EVA  | 234  | 28       | 2     | 4                  | 24   | 01          | 81                 | purk   | 17        | · m         | 1.106 | 0.615    | 67   | , ,       |
| SEASEP82 | E-50E   | E50EVA   | 228  | 99       | 0     | 2                  | 27   | 10          | 16                 | 0      | 4         | 7           | 1.235 | 0.697    |      |           |
| SEASEP82 | E-600E  | E600EVA  | 78   | 18       | 4     | 4                  | . 26 | ∞           | 01                 | 2      | 91        | 7           | 0.997 | 0.57     | 65   |           |
| SEASEP82 | E-600E  | E600EVC  | 38   | 15       | 4     | 2                  | 23   | 4           | <b>∞</b>           | ,m     | 6         | 73          | 0.945 | 0.572    | 89   | . თ       |
| SEASEP82 | E-750   | E750VA   | 11   |          | ****  |                    | 27   | 9           | 10                 |        | 11        |             | 1.056 | 0.622    | 19   | Ŋ         |
| SEASEP82 | E-750   | E750VB   | 36   | <b>∞</b> | 3     | 2                  | 27   | 7           | 6                  | 7      | 14        | ****        | 1.151 | 0.667    | 19   |           |
| SEASEP82 | F-600E  | F600EVA  | 9    | 33       | 6     | 65                 | 49   | 91          | 10                 | ю      | 25        | •           | 1.692 | 0.851    | 77   | 32        |
| SEASEP82 | F-600E  | F600EVB  | 54   | 38       | . 21  | 71                 | 52   | 91          | 12                 | 2      | 24        | ç           | 1.694 | 0.855    | 83   | 31        |
| SEASEP82 | F-780   | F780VB   | 57   | 9        | 9     | 2                  | 27   | 5           | 13                 | 4      | 13        | <b>.</b>    | 1.334 | 0.756    | 19   | 13        |
| SEASEP82 | F-780   | F780VC   | 92   | 6        | -     | 2                  | 21   | 7           | 12                 | pmi    | 15        |             | 1.268 | 0.747    | 65   | 10        |
| SEASEP82 | G-600E  | G600EVA  | 34   | 12       | -     | <b>0</b> 0         | 27   | 6           | 12                 | book   | 91        | 4           | 1.508 | 0.848    | 89   | 50        |
| SEASEP82 | G-600E  | G600EVB  | 6    | 2        |       | 10                 | 35   | <del></del> | 10                 | m      | . 9       | 3           | 1.543 | 0.879    | 73   | 25        |
| SEASEP82 | G-780   | G780VA   | 21   | 6        | 9     | . 2                | 20   | 9           | 7                  | m      | 01        | 2           | 0.852 | 0.525    | 70   | 4         |
| SEASEP82 | G-780   | G780VB   | 24   | 'n       | 5     | 0                  | 18   | E.          | 7                  | 2      |           | 0           | 0.847 | 0.536    | . 59 | 4         |
| SEASEP82 | H-600E  | H600EVA  | 21   | 10       | 3     | B                  | 16   |             | 9                  | 73     | ∞         |             | 1.189 | 0.783    | 89   | 12        |
| SEASEP82 | H-600E  | H600EVB  | 54   | 40       | ****  | 2                  | 14   | 9           | m                  |        | -         |             | 1.159 | 0.785    | 89   | 10        |
| SEASEP82 | H-640   | H640VA   | 29   | 12       | 4     | <b>74</b>          | 17   | 5           | 6                  | 6      | 10        |             | 1.131 | 0.711    | 89   | 12        |
| SEASEP82 | H-640   | H640VB   | 50   | 26       | 4     |                    | 17   |             |                    | 7      | 6         |             | 1.211 | 0.756    | 72   | 12        |
| SEASEP82 | H-640   | H640VC   | 6    | 3        |       | bood               |      | ec          | 5                  | -      | 7         | .—          | 0.97  | 0.694    | 99   | 7         |
| SEASEP82 | H-640   | H640VE   | 14   | 9        | ,     | 0                  | 15   | 60          | 9                  | -      | 'n        | 0           | 1.017 | 0.711    | . 89 | œ         |
| SEASEP82 | H-640   | H640VF   | 18   | 6        | \$    | 2                  | 17   | 9           | 7                  | 73     | 6         | -           | 1.112 | 0.715    | 89   | Ξ         |
| SEASEP82 | I-600E  | I600EVA  |      | 2        | 33    | 7                  | 24   | 2           | -                  | ť'n    | 7         | <b>y-w1</b> | 1.21  | 0.746    | 72   | 10        |
| SEASEP82 | I-600E  | 1600EVC  | 14   | 6        | 3     | 8                  | 29   | 9           | 9                  | 2      | 6         | 3           | 1.518 | 0.885    | 9/   | 23        |
| SEASEP82 | 1-690   | I690VA   | 36   | 6        | 4     | 7                  | 27   | 7           | ∞                  | 2      | 12        | 2           | 1.366 | 0.8      | 99   | <u>ee</u> |
| SEASEP82 | 069-1   | J690VC   | 99   | 18       | 2     | 7                  | 25   | 9           | 10                 | 7      | 13        | 2           | 1.281 | 0.746    | 70   | 13        |
| SEASEP82 | JS-520E | J5520EVA | 35   | 27       | -     | 2                  | 19   | 4           | 7                  | *****C | 7         | ****        | 1.096 | 0.71     | . 89 | 7         |

| MOAB       | 150      | 54       | 48       | 86       | 77       | 109      | 122      | 49       | 53       | 64       | 132      | 93       | 90       | Ξ        | 185      | 212      | 112      | 232      | 181      |   | 557      | 220      | 116      | 239      | 189      | 175      | 190      | 231      | 196      | 285      | 66       | 88       | 108      |
|------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|---|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
| POAB       | 64       | 36       | 28       | 40       | 42       | 47       | 62       | 43       | 37       | 24       | 18       | 19       | 17       | 21       | 53       | 26       | 27       | 36       | 35       | ţ | 152      | 215      | 202      | 120      | 168      | 84       | 57       | 72       | 20       | 7.1      | 51       | 47       | 09       |
| TOTAX      | 33       | 34       | 35       | 39       | 38       | 40       | 52       | 35       | 31       | 31       | 27       | 23       | 30.      | 28       | 39       | 40       | 27       | 33       | 38       | ; | 89       | 66       | 66       | 77       | 80       | 51       | 49       | 48       | 47       | 57       | 37       | 43       | 32       |
| TOAB       | 238      | 106      | 103      | 149      | 141      | 221      | 257      | 109      | 108      | 110      | 175      | 128      | 133      | 151      | 797      | 308      | 155      | 287      | 236      |   | 867      | 989      | 396      | 488      | 448      | 350      | 323      | 363      | 325      | 439      | 961      | 171      | 207      |
| )C . 2**   | 0.2      | 0.2      | 0.2      | 1.5      | 1.5      | 2        | 7        | 1.3      | 1.3      | 7        | 2.       | 7        | . 7      | 2        | 1.9      | 1.9      | 6.1      | 1.9      | 6.1      | ; | 0.3      | 0.3      | 0.3      | 0.3      | 0.3      | 1,3      | 1.3      | 1.3      | 1.3      | 1.3      | 2.1      | 2.1      | 2.1      |
| ES %TOC    |          |          |          | 92       | 92       | 88.7     | 7.88     | 91.9     | 91.9     | 9.56     | 92.6     | 92.6     | 93.6     | 92.6     | 94.2     | 94.2     | 94.2     | 94.2     | 94.2     |   | 12.9     | 12.9     | 12.9     | 12.9     | 12.9     | 5'99     | 66.5     | 5'99     | 5.99     | 99.5     | 96.3     | 96.3     | 96.3     |
| 1) % FINES | ζ.       | 6.2      | 67       | 9.1      | 184.6    |          |          | 184.6    |          |          |          |          | 184.6    | 184.6    | 184.6    | 184.6    |          |          | 184.6    |   |          | 61.5     | 61.5     | 61.5     | 61.5     |          |          |          |          |          |          |          |          |
| Depth (m)  | 161.5    | 8 182.9  | 182.9    | 184.6    |          | ) 212.3  | ) 212.3  |          | 184.6    | 5 184.6  | 5 184.6  | 5 184.6  |          |          |          |          | 184.6    | 184.6    |          |   |          |          |          |          |          | 3 230.8  | 3 230.8  | 3 230.8  | 3 230.8  | 3 230.8  | 184.6    | 184.6    | 184.6    |
| LonSec     | ) 25     | 1 28     | 1 28     | 0 15     | 0 15     | 1 20     | 1 20     | 3 42     | 3 42     | 3 . 36   | 3 36     | 3 36     | 3 36     | 3 36     | 2 42     | 2 42     | 2 42     | 2 42     | 2 42     |   |          |          |          | 2 36     |          | 3 58     | 3 58     | 3 58     | 3 58     |          |          | 36       | 36       |
| LonMin     | 2 20     |          | 2 21     | 2 20     | 2 20     |          |          |          |          |          |          |          | -        | 2 23     |          |          |          | 2 22     |          |   |          |          |          | 2 22     |          |          |          |          | 2 23     | 2 23     | 2 23     | 2 2.     | 2        |
| LonDeg     | 20 122   | 12 122   | 12 122   | 6 122    | 26 122   | 13 122   | 3 122    | 9 122    | 9 122    | 0 122    | 0 122    | 0 122    | 0 122    | 0 122    | 55 122   | 55 122   | 55 122   | 55 122   | 55 122   | , | 1 122    | 1 122    | 1 122    | 1 122    | 1 122    | 24 122   | 24 122   | 4 122    | 4 122    | 24 122   | 45 122   | 45 122   | 45 122   |
| LatSec     |          | 22       | 22       |          |          |          | 23 1     | 11       | 21       | 29       | 29       | 29       | 6        | 29       | 28 5     | 28 5     | 28 5     | 28 5     | 28 5     |   | 78       | 28 I     | 28 1     | 28 1     | 28 1     | 27 2     |          | 27 2     |          |          |          | 25 4     | 25 4     |
| LatMin     | 47 2     |          | 47       | 47 2     | 47       | 47       | 47       | 47       | 47       | 47       | 47       | 47 2     | 47 2     | 47       | 47       | 47       | 47       | 47       | 47       |   | 47       | 47       | 47       | 47       | 47       | 47       | 47       | 47 2     | 47 2     | 47 2     | 47 2     | 47 2     | 47 2     |
| LatDeg     | ٧,       | 7        | 7        | 7        | •        | ,        | •        |          | •        | *        | ,        | •        | •        | •        | •        | •        | 7        |          | •        |   | •        | •        | .*       | •        | •        | 7        | 7        | ,        | ,        | 7        | 7        | 7        | ,        |
| c St       | _        |          | ·        | MO 1     | MO       | *****    |          | - OM     | MO       | MO       | MO       | MO       | MO .     | MO 1     | MO 1     | MO 1     | MO 1     | MO       | MO 1     |   | MO<br>M  | MO 1     | MO 1     | MO       | MO I     | MO       | MO 1     | MO       | MO 1     | MO       | MO 1     | MO 1     | MO 1     |
| SAMPLE     | J5520EVB | J5600EVA | JS600EVB | J600EVA  | J600EVB  | J690VA   | J690VC   | K590VA   | K590VC   | OTIVA    | OTIVB    | OTIVD    | OTIVE    | OTIVF    | OT2VA    | OT2VB    | OT2VC    | OT2VD    | OT2VE    |   | D250EZA  | D250EZB  | D250EZC  | D250EZE  | D250EZF  | E750ZA   | E750ZB   | E7502C   | E750ZD   | E750ZF   | H640ZA   | H640ZC   | H640ZD   |
| STATION    | J5-520E  | JS-600E  | JS-600E  | J-600E   | J-600E   | J-690    | J-690    | K-590    | K-590    | OT-1     | OT-1     | OT-1     | OT-1     | OT-1     | OT-2     | OT-2     | OT-2     | OT-2     | OT-2     |   | D-250E   | D-250E   | D-250E   | D-250E   | D-250E   | E-750    | E-750    | E-750    | E-750    | E-750    | H-640    | H-640    | H-640    |
| SURVEY     | SEASEP82 |   | SEASEP83 |

| IGS                | 9        | 13       | <u></u>  | 01       | 13       | 10       | ,          | 14       | 01       | 6        | m        | რ        | ŧ۸       | 4        | 4          | 4        | 4        | 2        | ₩.         |   | ∞        | 16          | 30       | 14       | 82         | 6        | ∞             | œ        | 7        | 80           | =            | 13       | . 01     |
|--------------------|----------|----------|----------|----------|----------|----------|------------|----------|----------|----------|----------|----------|----------|----------|------------|----------|----------|----------|------------|---|----------|-------------|----------|----------|------------|----------|---------------|----------|----------|--------------|--------------|----------|----------|
| Ē                  | 63       | 67       | 64       | 19       | 65       | 29       | 64         | 63       | 64       | 69       | 65       | 63       | 89       | 29       | 89         | 89       | 69       | 64       | 99         |   | 62       | 29          | 7.7      | 63       | <i>L</i> 9 | 65       | 62            | 99       | 62       | 62           | 89           | 69       | 89       |
| <del>-</del>       | 0.62     | 0.78     | 0.835    | 0.659    | 0.765    | 0.73     | 0.739      | 0.82     | 0.769    | 969.0    | 0.511    | 0.583    | 0.59     | 0.558    | 0.512      | 0.504    | 0.507    | 0.448    | 0.456      |   | 165.0    | 869.0       | 0.838    | 0.694    | 0.732      | 0.691    | 0.674         | 0.599    | 0.659    | 0.617        | 0.727        | 0.743    | 0.724    |
| Ħ                  | 0.942    | 1.195    | 1.29     | 1.048    | 1.208    | 1.17     | 1.267      | 1.267    | 1.148    | 1.039    | 0.731    | 0.795    | 0.872    | 0.807    | 0.815      | 808.0    | 0.725    | 0.681    | 0.72       |   | 1.083    | 1,394       | 1.673    | 1.31     | 1.393      | 1.179    | 1.139         | 1.008    | 1.102    | 1.083        | 1.14         | 1.213    | 1.09     |
| MISCTX             |          | 0        | 7        |          | -        |          | 7          |          | hmel     | 0        | 0        | -        | ****     | 0        | 0          |          | 0        |          | 0          |   | 4        | 9           | 7        | 4        | 33         | 2        | <del></del> 1 |          | 2        | 3            | •            | ε,       |          |
| CRTX               | 7        | 7        | =        | 9        | 7        |          | 17         | s        | œ        | 6        | 6        | 9        | 10       | 7        | <b>0</b> 0 | 11       | 6        | 7        | 6          |   | 16       | 25          | 18       | 8.       | 11         | 6        | 13            | 11       | 1        | 18           | 13           | 10       | 6        |
| жи                 | 0        |          | ****     | 2        | 3        | 23       | •          |          | ሮች       |          | ****     |          |          |          | ~          | 0        | 7        | -        | æ          |   | 0        | 0           | 2        | 0        | prox       | 7        |               |          | *****    |              | <del>.</del> | 7        | 7        |
| OTAX EC            | 44       |          | 7        | 80       | 7        | 9        | 7          | 9        | 4        | 5        | 3        | 5        | 9        | ∞        | 10         | s        | 4        | 6        | 1          |   | 14       | 17          | 2        | 12       | =          | 00       | 10            | 00       | ,        | 10           | 7            | ∞        | 9        |
| AMPTX MOTAX ECHTAX | 4        | 0        | ₹0       | e        | 3        | 7        | 6          | 7        | ю        | ∞        | 5        | 3        | 7        | 4        | 7          | 9        | 7        | ς,       | ş          |   | ∞        | 15          | <b>∞</b> |          | 6          | 4        | 7             | S        | 5        | 6            | 6            | 9        | 4        |
|                    | 6        | 18       | 7        | 22       | 20       | 20       | 25         | 22       | 15       | 91       | 17       | 10       | 12       | 12       | 61         | 23       | 12       | 15       | 19         |   | 34       | 51          | 9        | 43       | 48         | 30       | 24            | 27       | 22       | 25           | 15           | 20       | 41       |
| ECHAB MISCAB POTAX | N        | 0        | .73      | Proces   | *****    | 'n       | 5          | . 7      |          | 0        | 0        | poss     |          | 0        | 0          | 4        | 0        | 33       | 0          |   | 9        | <b>\$</b> 0 | 22       | 6        | 12         | 10       | green.        | -        | 3        | 4            | 3            | 9        | 9        |
| ECHAB N            | 3        | 5        | 33       | ж        | 90       | 7        | <b>5</b> 0 | 33       | 3        | E        | \$       | 2        | 5        | -        | 4          | 0        | 4        |          | . <b>m</b> | - | 0        | 0           | 33       | 0        | 1          | 2        | -             |          | 7        | <b>*****</b> | 7            | 3        | 7        |
| AMPAB              | 6        | S        | =        | ю        | 00       | 16       | 22         | 9        | 9        | 16       | 00       | 4        | 14       | 7        | 11         | 15       | 10       | φ.       | 9          |   | 26       | 42          | 17       | 29       | 22         | 10       | 15            | 4        | proof.   | 15           | 22           | 61       | 19       |
| CRAB ,             | 61       | 11       | 22       | 7        | 15       | 9        | 63         | 12       | 14       | 19       | 20       | 13       | 20       | 18       | 20         | 36       | 12       | 15       | 17         |   | 152      | 243         | 53       | 120      | 78         | 62       | 74            | 28       | 74       | 78           | 4            | 27       | 31       |
| SAMPLE             | J5520EVB | J5600EVA | J5600EVB | J600EVA  | J600EVB  | J690VA   | J690VC     | K590VA   | KS90VC   | OTIVA    | OTIVB    | OTIVD    | OTIVE    | OTIVE    | OT2VA      | OT2VB    | OTZVC    | OT2VD    | OT2VE      |   | D250EZA  | D250EZB     | D250EZC  | D250EZE  | D250EZF    | E750ZA   | E750ZB        | E750ZC   | E750ZD   | E750ZF       | H640ZA       | H640ZC   | H640ZD   |
| STATION            | JS-520E  | J2-600E  | JS-600E  | ·1-600E  | J-600E   | 1-690    | 1-690      | K-590    | K-590    | OT-1     | OT-1     | OT-1     | OT-1     | OT-1     | OT-2       | OT-2     | OT-2     | OT-2     | OT-2       |   | D-250E   | D-250E      | D-250E   | D-250E   | D-250E     | E-750    | E-750         | E-750    | E-750    | E-750        | H-640        | H-640    | H-640    |
| SURVEY             | SEASEP82   | SEASEP82 | SEASEP82 | SEASEP82 | SEASEP82 | SEASEP82 | SEASEP82 | SEASEP82 | SEASEP82   | SEASEP82 | SEASEP82 | SEASEP82 | SEASEP82   |   | SEASEP83 | SEASEP83    | SEASEP83 | SEASEP83 | SEASEP83   | SEASEP83 | SEASEP83      | SEASEP83 | SEASEP83 | SEASEP83     | SEASEP83     | SEASEP83 | SEASEP83 |

| MOAB        | 47       | 96       | 162      | 214      | 353      | 315      | 384      | 34           | 635      | 233      | 345      | 163      | 142      | 329      | 46       | 44       | 13       | 144      | 13             | 35       | 89       | 89        | 9/       | 9/       | 09       | 6        | 14       | 55       | 65       | 40       | 84       | 58       |
|-------------|----------|----------|----------|----------|----------|----------|----------|--------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------------|----------|----------|-----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
| POAB        | 31       | 30       | 32       | 20       | 45       | 7.1      | 90       | 88           | 127      | 29       | 102      | 57       | Π        | 98       | 176      | 349      | 326      | 95       | 122            | 20       | 148      | 153       | 356      | 346      | 346      | . 82     | 219      | 210      | 179      | 137      | 26       | 35       |
| TOTAX       | 32       | 28       | 30       | 37       | 46       | 45       | 65       | 56           | 53       | 36       | 89       | 44       | 29       | 55       | 108      | 141      | 84       | 50       | 29             | 25       | 33       | 45        | 59       | 72       | 27       | 17       | 36       | 52       | 45       | 43       | 42       | 37       |
| TOAB        | 105      | 156      | 218      | 293      | 436      | 428      | 647      | 159          | 815      | 368      | 650      | 324      | 209      | 684      | 439      | 744      | 387      | 329      | 385            | 299      | 574      | 252       | 496      | 469      | 428      | 26       | 237      | 325      | 296      | 287      | 248      | 208      |
| <b>2</b> ** |          |          |          |          | *        |          | NS.      | E            | Æ        | ΛS       | ΛS       | FN       |          |          |          |          | SA       |          |                |          |          |           |          |          |          |          |          |          |          |          |          |          |
| % TOC       | 2.1.     | 2:1      | 2        | 2        | 6.1      | 1.9      | 1.7      | 0.3          | 1.5      | 1.2      | 1.7      | 1.4      | 1.8      | 1.4      | 0.7      | 0.4      | Brond    | 0.4      | 5.             | 1.5      | 1.5      | 0.68      | 0.68     | 0.68     | 1.2      | 1.2      | 1.2      | 2        | 2        | 7        | 1.8      | 1.8      |
| % FINES     | 6.3      | 96.3     | 9.56     | 95.6     | 94.2     | 94.2     |          | 9.7          | 69.1     |          |          | 1'99     | 84.3     | 99       | 32       | 13.6     |          | 14.4     | 93.3           | 93.3     | 93.3     | 60.7      | 60.7     | 2009     | 32.7     | 32.7     | 32.7     | 93.3     | 93.3     | 93.3     | 95.7     | 95.7     |
| Depth (m)   | 184.6    | 184.6    | 181,0512 | 181.0512 | 179.2224 | 179.2224 | 237.744  | 82.296       | 87.7824  | 146.304  | 239.5728 | 184.7088 | 182.88   | 234.0864 | 137.16   | 54.864   | 123,444  | 106.0704 | -22            | -22      | -22      | -20       | -20      | -20      | -218     | -218     | -218     | -24      | -24      | -24      | -20      | -20      |
| LonSec      | 36       | 36       | 36       | 36       | 42       | 42       | 44       | 32           |          | 44       | 32       | 15       | 32       | 29       | ťΩ       | 53       | 33       | 6        | 92             | 56       | 56       | 20        | 20       | 20       | 20       | 20       | 20       | 10       | 10       | 10       | 7        | 7        |
| LonMin      | 23       | 23       | 23       | 23       | 22       | 22       | 27       | 30           | 29       | 28       | 26       | 25       | 25       | 36       | 27       | 27       | 30       | 31       | 51             | 51       | 2        | 43        | 43       | 43       | 58       | 58       | 58       | 32       | 32       | 32       | 32       | 32       |
| LonDeg      | 122      | 122      | 122      | 122      | 122      | 122      | 122      | 122          | 122      | 122      | 122      | 122      | 122      | 122      | 122      | 122      | 122      | 122      | 122            | 122      | 122      | 122       | 122      | 122      | 122      | 122      | 122      | 122      | 122      | 122      | 122      | 122      |
| LatSec      | 45       | 45       | 0        | 0        | 55       | 55       | 20       | 22           | 0        | 32       | 7        | 46       | 42       | 38       | 33       | Ś        | 9        | 20       | 30             | 30       | 30       | γ.        | 5        | 5        | 16       | 16       | 16       | 9        | 9        | 9        | 49       | 49       |
| LatMin      | 25       | 25       | 29       | 29       | 28       | 28       | 34       | 33           | 34       | 33       | 34       | 33       | 32       | 32       | 32       | 32       | 32       | 32       | 53             | 59       | 59       | 20        | 50       | 20       | 52       | 52       | 52       | 4        | 4        | 41       | 35       | 35       |
| LatDeg      | 47       | 47       | 47       | 47       | 47       | 47       | 47       | 47           | 47       | 47       | 47       | 47       | 47       | 47       | 47       | 47       | 47       | 47       | 48             | 48       | 48       | 48        | 48       | 48       | 48       | 48       | 48       | 48       | 48       | 48       | 48       | 48       |
| *           |          |          | •        | ******   |          | <b>₩</b> | - 4444   | <b>5</b> 004 | •        |          | ****     |          | -        |          | -        |          | _        |          |                |          |          | -         | 944M     |          | -        | ****     | *****    | Ame      |          | -        | ,        | -        |
| ပ           | MO       | MO       | MO       | MO       | MO       | MO       |          | MO           | MO       |          |          |          | MO       | MO       | MO       | MO       |          |          | W <sub>O</sub> | QV<br>W  | MO       | MO        | MO       | MO       | MO       | MO       | MO       | MO       | MO       | MO       | MO.      | MO       |
| SAMPLE      | H640ZE   | H640ZF   | OTIZA    | OTIZB    | OT2ZA    | OT2ZB    | SS1ZB    | SS10ZC       | SS11ZC   | SS12ZA   | SS2ZB    | SS3ZB    | SS4ZC    | SSSZB    | SS6ZB    | SS7ZA    | SS8ZB    | SS9ZA    | <b>,</b>       | ю        | \$       | <b>V4</b> | т        | જ        | 1        | т        | ٧,       | -        | ι'n      | ş        | -        | ю        |
| STATION     | H-640    | H-640    | OT-1     | OT-1     | OT-2     | OT-2     | SS-1     | SS-10        | SS-11    | SS-12    | SS-2     | SS-3     | SS-4     | SS-5     | 9-SS     | SS-7     | SS-8     | 6-SS     | 1              | -        |          | 7         | 5        | 7        | E.       | m        | <b>ش</b> | 4        | 4        | 4        | 82       | \$       |
| SURVEY      | SEASEP83     | SEASEP83 | SEASEP83 | SEASEP83 | SEASEP83 | SEASEP83 | SEASEP83 | SEASEP83 | SEASEP83 | SEASEP83 | SEASEP83 | SED18903       | SED18903 | SED18903 | SED18903  | SED18903 | SED18903 | SED18903 | SED18903 | SED18903 | SED18903 | SED18903 | SED18903 | SED18903 | SED18903 |

| SDI                | posed    | 7               | 4        | 4        | 2        | 'n       | 9        | 22       | æ        | 4        | ∞        | 7        | 4        | 85       | 33       | 34       | 28       | 10       |   | \$          | <b>6</b> 00  | ∞        | 15        | 1        | 13       | S        | 3        | 6        | 91           | 13       | gund<br>gand |            | 01       |
|--------------------|----------|-----------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|---|-------------|--------------|----------|-----------|----------|----------|----------|----------|----------|--------------|----------|--------------|------------|----------|
| E                  | 65       | 69              | 99       | 19       | 62       | 99       | 63       | 70       | . 65     |          | 64       | 63       | 29       | 62       | 77       | 87       | 80       | 53       | • | 78          | 81           | 98       | 70        | 72       | 80       | 09       | 63       | 82       | 72           | 7.1      | 74           | 74         | 74       |
| Ťn,                | 0.822    | 0.665           | 0.529    | 0.488    | 0.423    | 0.472    | 0.576    | 0.889    | 0.44     | 0.61     | 909'0    | 0.665    | 0.548    | 0.602    | 0.851    | 608'0    | 0.834    | 0.729    |   | 0,713       | 0.811        | 0.747    | 0.848     | 0.705    | 0.705    | 999'0    | 0.599    | 0.755    | 0.813        | 0.813    | 0.781        | 0.801      | 0.799    |
| Ï                  | 1.238    | 0.963           | 0.781    | 0.765    | 0.704    | 0.781    | 1.043    | 1.554    | 0.759    | 0.95     | 1.1111   | 1.093    | 0.801    | 1.048    | 1.731    | 1.738    | 1.604    | 1.238    |   | 1.043       | 1.134        | 1.135    | 1.401     | 1.248    | 1.309    | 0.953    | 0.738    | 1.175    | 1.395        | 1.344    | 1.275        | 1.299      | 1.253    |
| MISCTX             |          | 0               | 2        | ,<       | ya-4     | 7        | 7        | 9        | 2        | 7        | 3        | Э        | 0        | 7        | 9        | 00       | т        | ୍ଟ       |   | -           | <b>purel</b> | 0        | 0         | 71       | m        | 0        | 0        | 0        | ю            | 2        | hund         |            | -        |
| CRTX               | 10       | <del>pour</del> | 7        | 00       | 14       | ==       | 23       | 11       | 12       | =        | 21       | δ        | 13       | 21       | 31       | 30       |          | 14       |   | 9           | 9            | 7        | 7         | ∞        | 12       | 0        | S        | . 2      | S            | 9        | 4            |            |          |
|                    |          | <del>,</del>    | -        | ъ        | 7        | 0        | -        | 0        |          | 0        |          | 0        |          |          | 9        |          | ю        | 0        |   | 4           | 4            | 4        |           | -        | 8        | 0        | 0        | 0        | 7            | 7        | 7            | <b>6</b> 7 | 4        |
| AMPTX MOTAX ECHTAX | 4        | 4               | ∞        | <b>∞</b> | 3        | 7        | 13       | 10       | Π        | 01       | 16       | <b>∞</b> | ∞        | 6        | 10       | 17       | φ.       | 9        |   | 9           | 9            | 00       | 18        | 18       | 21       | 9        | 7        | 4        | 13           | 10       | φ,           | 15         | 12       |
| AMPTX              | 9        | 9               | 9        | 4        | 6        | 7        | 14       | . 7      | 9        | Ŋ        | 13       | 5        | 6        | 14       | 61       | 24       | 01       | S        |   | 33          | m            | 3        | m         | 4        | 35       | 0        | m        |          | ĸη           | 4        | 7            | ∞          | 2        |
| POTAX              | 16       | 13              | 12       | . 11     | 24       | 25       | 26       | 29       | 27       | 13       | 27       | 24       | 7        | 22       | 54       | 73       | 61       | 27       |   | 12          | ∞            | 13       | 19        | 28       | 30       | 20       | 10       | 30       | 29           | 25       | 27           | 12         | 12       |
| ECHAB MISCAB       | 4        | 0               | 2        |          |          | 4        | 6        | <b>∞</b> | 4        | 5        | 14       | 12       | 0        | 14       | 83       | 35       | 18       | 13       |   |             |              | 0        | 0         | 4        | 9        | 0        | 0        | 0        | 00           | 7        | 3            | 1          | ĸ        |
| ECHAB              | e        | -               | -        | w        | κ,       | 0        | <b>,</b> | 0        | _        | 0        | -        | 0        | poud     | 1        | 42       | 173      | 5        | 0        |   | 111         | 115          | 226      | -         | 3        | 7        | 0        | 0        | 0        | 9            | 5        | 5            | 28         | 39       |
| AMPAB              | 12       | 21              | 28       | 18       | 20       | 24       |          | 26       | 18       | 01       | 40       | 9        | 22       | 40       | 56       | 132      |          | 30       |   | 42          | 44           | 35       | <b>oo</b> | 13       |          | 0        | 3        | -        | 25           | 26       | 98           | 27         | æ        |
| CRAB               | 20       | 29              | 21       | 25       | 34       | 38       | 163      | 36       | 48       | 104      | 188      | 92       | 55       | 254      | 92       | 143      | . 25     | 77       |   | 138         | 86           | 130      | 30        | 50       | 33       | 0        | 9        | 4        | 46           | 40       | 102          | 109        | 72       |
| SAMPLE             | H640ZE   | H640ZF          | OTIZA    | OTIZB    | OT2ZA    | OT2ZB    | SSIZB    | SS10ZC   | SSIIZC   | SS12ZA   | SS2ZB    | SS3ZB    | SS4ZC    | SS5ZB    | SS6ZB    | SS7ZA    | SS8ZB    | SS9ZA    |   |             | m            | S        | -         | es       | S        | _        | m        | \$       | <b>300</b> 4 | ю        | S            | -1         | en<br>En |
| STATION            | H-640    | H-640           | OT-1     | OT-1     | OT-2     | OT-2     | SS-1     | SS-10    | SS-11    | SS-12    | SS-2     | SS-3     | SS-4     | SS-5     | 9-SS     | SS-7     | SS-8     | 6-SS     |   | <del></del> | -            |          | 7         | 7        | 7        | Ю        | 3        | ы        | 4            | 4        | 4            | Ş          | 'n       |
| SURVEY             | SEASEP83 | SEASEP83        | SEASEP83 | SEASEP83 | SEASEP83 | SEASEP83 | SEASEP83 | SEASEP83 | SEASEP83 | SEASEP83 | SEASEP83 | SEASEP83 | SEASEP83 | SEASEP83 | SEASEP83 | SEASEP83 | SEASEP83 | SEASEP83 |   | SED18903    | SED18903     | SED18903 | SED18903  | SED18903 | SED18903 | SED18903 | SED18903 | SED18903 | SED18903     | SED18903 | SED18903     | SED18903   | SED18903 |

| MOAB      | 79       | 197      | 251      | 76       | 28       | 91       | 16       | 63         | 101      | 96       | 105        | 106          | 100      | 54       | 95       | 65       | ums      | 82       | 66       | 111       | 72       | 69       | 1130     | 1180     | 1154          | 156       | 139      | 1117     | 291      | 182      | 196      | 09 .     | 92       |
|-----------|----------|----------|----------|----------|----------|----------|----------|------------|----------|----------|------------|--------------|----------|----------|----------|----------|----------|----------|----------|-----------|----------|----------|----------|----------|---------------|-----------|----------|----------|----------|----------|----------|----------|----------|
| POAB      | 33       | 85       | 1117     | 52       | 265      | 287      | 408      | 236        | 219      | 195      | 89         | 901          | 121      | 449      | 551      | 412      | 483      | 444      | 618      | 77        | 75       | 69       | 134      | 258      | 325           | 71        | 70       | . 85     | 191      | 178      | 140      | 109      | 180      |
| TOTAX     | 34       | 54       | 98       | 4        | 37       | 64       | 80       | 72         | 56       | 7.1      | 47         | 28           | 47       | 4        | 75       | 19       | 93       | 66       | 81       | 48        | 47       | 42       | 69       | 09       | 85            | 19        | 53       | 26       | 85       | 85       | 84       | 52       | 61       |
| TOAB      | 234      | 316      | 400      | 139      | 327      | 382      | 517      | 381        | 406      | 377      | 436        | 476          | 534      | 603      | 756      | 579      | 1003     | 626      | 1011     | 366       | 348      | 336      | 1441     | 1091     | 1632          | 291       | 235      | 246      | 538      | 404      | 372      | 216      | 293      |
| 2**       |          |          |          |          |          |          |          |            |          |          |            |              |          |          |          |          |          |          |          |           |          |          |          |          |               |           |          |          |          |          |          |          |          |
| % TOC     | ***      | 0.2      | 0.2      | 0.2      | 0.3      | 0.3      | 0.3      | 3.9        | 3.9      | 3.9      | 90.0       | 90.0         | 90.0     | 0.61     | 0.61     | 0.61     | 0.64     | 0.64     | 0.64     | 1.5       | 1.5      | 1.5      | 0.18     | 0.18     | 0.18          | 0.35      | 0.35     | 0.35     | 0.24     | 0.24     | 0.24     | 0.18     | 0.18     |
| % FINES   | 95.7     | 7.1      | 7.1      | 7.1      | 6.1      | 6.1      | 6.1      | 65.8       | 65.8     | 65.8     | 1.3        | 13           | . 1.3    | 37.2     | 37.2     | 37.2     | 24.3     | 24.3     | 24.3     | 90.3      | 90.3     | 90.3     | 7.6      | 9.7      | 6.7           | 27.6      | 27.6     | 27.6     | 8.2      | 8.2      | 8.2      | 3.9      | 3.9      |
| Depth (m) | -20      | -20      | -20      | -20      | -133     | -133     | -133     | -21        | -21      | -21      | -21        | -21          | -21      | -20      | -20      | -20      | -20      | -20      | -20      | -20       | -20      | -20      | -20      | -20      | -20           | -115      | -115     | -115     | -20      | -20      | -20      | -20      | -20      |
| LonSec D  | 7 .      | 59       | 29       | 23       | 4        | 14       | 14       | 92         | 20       | 20 \$    | pred       | ****         |          | 99       | 56       | 26       | 33       | 31       | 31       | 20        | 20       | 20       | 29       | 29       | 29            | 46        | 46       | 46       | 50       | 20       | 50       | 52       | 52       |
| LonMin    | 32       | 34       | 34       | 34       | 14       | 14       | 14       | 56         | 26       | 26       | 17         | 17           | 17       | 5.       | 5        | κ        | 53       | 53       | 53       | 46        | 46       | 46       | 37       | 37       | 37            | 43        | 43       | 43       | 48       | 48       | 48       | 9        | 9        |
| LonDeg    | 122      | 122      | 122      | 122      | 123      | . 123    | 123      | 123        | 123      | 123      | 123        | 123          | 123      | 123      | 123      | 123      | 122      | 122      | 122      | 122       | 122      | 122      | 122      | 122      | 122           | 122       | 122      | 122      | 122      | 122      | 122      | 123      | 123      |
| LatSec    | 49       | emel     | 1        | -        | 16       | 16       | 16       | 28         | 58       | 58       | 13         | 13           | 13       | 13       | 13       | 13       | 61       | 19       | 19       | <b>00</b> | 00       | •        | 25       | 25       | 25            | 4         | 4        | 4        | 7        | 7        | 7        | 49       | 49       |
| LatMin    | 35       | 31       | 31       | 31       | 12       | 12       | 12       | 7          | 7        | 7.       | <b>o</b> ¢ | ∞            | ∞        | 10       | 10       | 10       | m        | 33       | w        | ٩         | κ        | ٠,       | 20       | 20       | 80            | 47        | 47       | 47       | 43       | 43       | 43       | 22       | 22       |
| LatDeg    | 48       | 48       | 48       | 48       | 48       | 48       | 48       | 48         | 48       | 48       | 48         | 48           | 48       | 48       | 48       | 48       | 48       | . 48     | 48       | 48        | 48       | 48       | 47       | 47       | 47            | 47        | 47       | 47       | 47       | 47       | 47       | 47       | 47       |
| *∞        |          |          | -        |          | -        | ,a       | _        |            |          | ,        | _          | <del>,</del> | _        | ****     |          |          | -        |          |          |           | •••      | -        |          |          | <del></del> - | <b></b> - | -        | ,        | •        | _        | ••••     | -        | -        |
| ပ         | MO         | MO       | MO       | MO         | MO           | MO       | MO       | MO       | MO       | MO       | MO       | Μ̈́O     | MO        | MO       | MO       | MO       | MO       | MO            | MO        | MO       | MO       | MO       | MO       | MO       | MO       | MO       |
| SAMPLE    | <b>د</b> |          | ю        | S        | 1        | ٣        | \$       |            | ٣        | S        | york.      | 9            | ς,       |          | m        | 5        | <b></b>  | m        | 2        |           | 8        | S        | +4       | æ        | S             | <b>~</b>  | 3        | \$       | y-me     | 3        | κ.       |          | ĸ        |
| STATION   | S        | 9        | 9        | 9        | 7        | 7        | 1        | <b>0</b> 0 | œ        | ∞        | 6          | 6            | 6        | 10       | 01.      | 10       |          |          |          | 12        | 12       | 12       | 13       | 13       | 13            | ₹ /       | 4        | 14       | 15       | 15       | 15       | 16       | 91       |
| SURVEY    | SED18903   | SED18903 | SED18903 | SED18903   | SED18903     | SED18903 | SED18903 | SED18903 | SED18903 | SED18903 | SED18903 | SED18903 | SED18903  | SED18903 | SED18903 | SED18903 | SED18903 | SED18903      | SED18903  | SED18903 | SED18903 | SED18903 | SED18903 | SED18903 | SED18903 | SED18903 |

| IQS                | œ        | 15       | 16       | 8        | ы        | 14       | 13       | 61       | 14         | 16       | 7         | 0        | 9        | 6        | 10       | 10       | 10       | 16       | 13       | 12       | 6        | 10       | 3        | т        | . 2        | 15       | 13       | 717      | 21       | 25       | 29       | 21       | 17       |
|--------------------|----------|----------|----------|----------|----------|----------|----------|----------|------------|----------|-----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|------------|----------|----------|----------|----------|----------|----------|----------|----------|
| s III              | 11       | 58       | 62       | 63       | 89       | 72       | 73       | 98       | 85         | 80       | 68        | 06       | 91       | 85       | 85       | 98       | 94       | 98       | 06       | 78       | 84       | 98       | 69       | 29       | 69         | 63       | 89       | 64       | 72       | 70       | 29       | 89       | 73       |
| ī.                 | 0.767    | 0.828    | 0.83     | 0.875    | 0.456    | 0.657    | 0.609    | 0.826    | 0.794      | 0.788    | 0.677     | 669.0    | 0.637    | 0.672    | 0.671    | 0.686    | 0.649    | 0.716    | 69'0     | 0.782    | 0.718    | 0.717    | 0.396    | 0.433    | 0.47       | 0.732    | 0.74     | 0.743    | 0.772    | 0.857    | 0.86     | 0.883    | 0.839    |
| Ħ                  | 1.175    | 1.435    | 1.45     | 1.411    | 0.715    | 1.186    | 1.159    | 1.534    | 1.388      | 1.459    | 1.132     | 1.233    | 1.064    | 1.214    | 1.257    | 1.224    | 1.278    | 1.428    | 1.317    | 1.315    | 1.201    | 1.163    | 0.728    | 0.771    | 906.0      | 1.306    | 1.276    | 1.299    | 1.49     | 1.654    | 1.654    | 1.515    | 1.498    |
| MISCTX             | 2        | 1        | 7        | <b></b>  | <b>ب</b> | т        | ĸ        | 2        | 7          | 0        | 7         | m        |          | 0        | 7        |          | 7        | es       | e        | 7        | 0        |          |          | 2        | 7          | ю        | έ        | ကို      | 4        | ω,       | ့က       | S        | 4        |
| CRTX               | \$       | \$       | 9        | 2        | 9        | 14       | 22       | 6        | 6          | 12       | 2         | 00       | ∞        | 16       | 23       | 13       | 24       | 21       | 24       | S        | 9        | 4        | 23       | 14       | 13         | 12       | 12       | ∞        | Π        | 12       | 11       | 4        | e        |
| CHTAX              | 4        | m        | 4        | 2        |          | S        | 3        | 2        | 0          | 3        | 4         | *****    | 7        | •        | 0        | *****    | •        | 0        | *****    | 3        | 33       | 4        | 0        | 0        | ****       |          | 7        | 0        | 33       |          |          | 0        | 0        |
| MOTAX E            | 10       | 23       | 20       | 15       | 4        | 10       | 12       | 91       | 18         | 18       | 14        | 11       | 12       | =        | 6        | 10       | 1        | 82       | 13       | 19       | 15       | 17       | 91       | 17       | 24         | 13       | 10       | П        | 25       | 24       | 27       | 80       | 21       |
| AMPTX MOTAX ECHTAX | 2        | 7        | 7        | -        | 'n       | 2        | 16       | 4        | . 4        | ∞        | S.        | ₹5       | -        | 7        | 12       | ŧ٦       | 12       | 10       | 14       | 7        | 4        | ~        | 14       | 1        | 4          | 4        | 9        | ٧n       | 7        | 7        | 9        | -        | 3        |
| POTAX              | 13       | 22       | 23       | 21       | . 22     | 32       | 38       | 42       | 27         | 38       | 22        | 29       | 23       | 36       | 40       | 36       | . 69     | 56       | 40       | 16       | 22       | 16       | 56       | 27       | 45         | 31       | 56       | 33       | 42       | 45       | 42       | 25       | 33       |
| MISCAB             | 3        | 5        | 4        | 2        | 00       | 6        | 20       | ť'n      | 7          | 0        | 2         | 4        | -        | 0        | ٠        | 7        | 32       | 31       | 22       | 4        | 0        | -        |          | 9        | 14         | ••       | 5        | 30       | 13       | 7        | 6        | 38       | 33       |
| ECHAB              | 42       | 18       | 12       | m        | imed     | 10       | m        | t.       | 0          | S        | 11        | . 7      | 6        |          | 0        | 4        | 7        | 0        | Pund     | 109      | 127      | 149      | 0        | 0        | <b>-</b> , | 7        | 7        | 0        | <b>∞</b> | 7        | prod     | 0        | 0        |
| AMPAB              | 15       | m        | 7        | 7        | 23       | 45       | 53       | 46       | 99         | 2        | 229       | 253      | 301      | 64       | 71       | 64       | 451      | 351      | 244      | 16       | 32       | Ξ        | 33       | 14       | =          | . 9      | 10       | 10       | 20       | 13       | φ,       | -        | 10       |
| CRAB               | 77       |          | 13       | 9        | 24       | 50       | 29       | 7.5      | 84         | 8        | 229       | 258      | 302      | 66       | 104      | 96       | 483      | 371      | 27.1     | 63       | 73       | 48       | 176      | 157      | 138        | 50       | 61       | 13       | 35       | 35       | 26       | 6        | 10       |
| SAMPLE             | ٧,       |          | m        | 5        |          | 3        | ٠        |          | 3          | 5        | <b></b> , | m        | ۰        | poort    | ٣        | ς.       |          | ю        | v,       | _        | 8        | 5        |          | 8        | \$         | -        | rc.      | 5        | _        | 8        | ۍ        |          | m        |
| STATION            | ν.       | 9        | 9        | 9        | 7        | 7        |          | ∞        | <b>0</b> 0 | 90       | 6         | 6        | 6        | 10       | 10       | 10       | =        |          | <u></u>  | 12       | 17       | 12       | 13       | 13       | <u>I3</u>  | 14       | 14       | 14       | 15       | 15       | 15       | 91       | 91       |
| SURVEY             | SED18903   | SED18903 | SED18903  | SED18903 | SED18903 | SED18903 | SED18903 | SED18903 | SED18903 | SED18903 | SED18903 | SED18903 | SED18903 | SED18903 | SED18903 | SED18903 | SED18903   | SED18903 | SED18903 | SED18903 | SED18903 | SED18903 | SED18903 | SED18903 | SED18903 |

| MOAB        | 57       | 69       | 29       | 53       | 285      | 288      | 63       | 10       | 10       | σ        | 96       | 84       | 108      | 457      | 439      | 629      | 9/1      | 204      | 146      | 355                                     | 283      | 216      | 78       | 28       | 31       | 73       | 54       | 125      | 143      | 100      | 108      | 118        | 99       |
|-------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|-----------------------------------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|------------|----------|
| POAB N      | 129      | 99       | 29       | 75       | 121      | 189      | 86       | 29       | 24       | 24       | 188      | 298      | 215      | 164      | 155      | 148      | 37       | 49       | 24       | 67                                      | 98       | 09       | 35       | 50       | 36       | 74       | 132      | 111      | 94       | 146      | 141      | 161        | 267      |
| TOTAX       | 64       | 22       | 18       | 56       | 32       | 41       | 29       | 22       | 20       | 23       | 36       | 44       | 38       | 58       | 49       | 51       | 33       | 37       | **       | 55                                      | 62       | . 59     | 45       | 35       | 40       | 45       | 37       | 42       | 61       | 73       | 65.      | 16         | 16       |
| TOAB        | 225      | 150      | 101      | 142      | 418      | 514      | 170      | 47       | 42       | 51       | 375      | 499      | 456      | 894      | 864      | 1116     | 307      | 343      | 270      | 542                                     | 468      | 367      | 94       | 130      | 100      | 302      | 247      | 425      | 355      | 386      | 361      | 545        | 673      |
| <b>**</b>   |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |                                         |          | ٠,       |          |          |          |          |          |          |          |          |          |            |          |
| % TOC       | 0.18     | 1.5      | 1.5      | 1.5      | 0.93     | 0.93     | 0.93     | 1.9      | 1.9      | 1.9      |          |          | -        | 1.3      | 1.3      | 1.3      | 0.15     | 0.15     | 0.15     | 0.12                                    | 0.12     | 0.12     | 1.7      | 1.7      | 1.7      | .0.1     | 0.1      | 0.1      | 0.42     | 0.42     | 0.42     | 0.12       | 0.12     |
| % FINES     | 3.9      | 92.5     | 92.5     | 92.5     | 60.2     | 60.2     | 60.2     | 81.3     | 81.3     | 81.3     | 94.1     | 94.1     | 94.1     | 52.2     | 52.2     | 52.2     | 4.2      | 4.2      | 4.2      | 2.1                                     | 2.1      | 2.1      | 87.1     | 87.1     | 87.1     | 1.9      | 1.9      | 1.9      | 15.7     | 15.7     | 15.7     | 3.2        | 3.2      |
| Depth (m) 9 | -20      | -79      | -79      | 62-      | -20      | 20       | -20      | -121     | -121     | -121     | =        | -11      | 1        | -20      | -20      | -20      | .21      | -21      | -21      | -20                                     | -20      | -20      | -180     | -180     | -180     | -20      | -20      | -20      | -262     | -262     | -262     | -20        | -20      |
| LonSec D    | 52       | 40       | 40       | . 40     | 13       | 13       | 13       | 15       | 15       | 13       | ν.       | 30       | 5        | 34.5     | 34.5     | 34.5     | 10.8     | 10.8     | 10.8     | Ś                                       | \$       | 5        | 52       | 52       | 52       |          | *****    | gunna.   | 22       | 22       | 22       | <b>0</b> 0 | 8        |
| LonMin      | 9        | 7        | 7        | 7        | 37       | 37       | 37       | 28       | . 82     | 28       | 27       | 27       | 27       | 14       | 14       | 7        | 17       | 17       | 17       | 50                                      | 20       | 50       | 21       | 21       | 21       | 30       | 30       | 30       | 27       | . 27     | 27       | 23         | 23       |
| LonDeg      | 123      | 123      | 123      | 123      | 122      | 122      | 122      | 122      | 122      | 122      | 122      | 122      | 122      | 122      | 122      | 122      | 122      | 122      | 122      | 122                                     | 122      | 122      | 122      | 122      | 122      | 122      | 122      | 122      | 122      | 122      | 122      | 122        | 122      |
| LatSec      | 46       | 80       | ∞        | 00       | 27       | 27       | 27       | 57       | 57       | 57       | 32       | 32       | 32       | 7.8      | 7.8      | 7.8      | 20.4     | 20.4     | 20.4     | 7                                       | 14       | 14       | 53       | 53       | 53       | 22       | 22       | . 22     | Υ        | 5        | \$       | 35         | 35       |
| LatiMin     | 22       | 22       | 22       | 22       | 15       | 15       | 15       | 10       | \$       | \$       | 0        | 9        | 10       | 59       | 59       | 59       | 57       | 57       | 57       | 52                                      | 52       | 52       | 51       | 51       | 51       | 51       | 51       | 51       | 51       | \$       | 51       | 45         | 45       |
| LatDeg      | 47       | 47       | 47       | 47       | 48       | 48       | 48       | 48       | 48       | 48       | 48       | 48       | 48       | 47       | 47       | 47       | 47       | 47       | 47       | 47                                      | 47       | 47       | 47       | 47       | 47       | 47       | 47       | 47       | 47       | 47       | 47       | 47         | 47       |
| <b>*</b> 5  | -        | ****     | _        | •        |          | *****    | ****     | ****     | ****     |          |          | -        | _        |          | -        | -        | -        | _        |          | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |          |          |          | _        | _        | _        |          | -        | -        |          | *****    |            | ****     |
| ပ           | MO                                      | MO       | MO       | MO       | MO       | MO       | MO       | MO       | MO       | MO       | MO       | MO       | MO         | MO       |
| SAMPLE      | 40       | •        | m        | Ŋ        |          | ٣        |          | -        | M        | 8        | _        | 8        | 5        |          | ę        | 5        |          | m        | ٧.       |                                         | ιn       | 8        |          | , en     | έΩ       |          | т        |          | -        | т        | 'n       | 1          | ĸ        |
| STATION     | 16       | 17       |          | 17       | 18       | 18       | 18       | 19       | 19       | 19       | 70       | 50       | 20       | 21       | 21       | 21       | 22       | 22       | 22       | 23                                      | 23       | 23       | 24       | 24       | 24       | 25       | 25       | 25       | 26       | 92       | 26       | 27         | 27       |
| SURVEY      | SED18903                                | SED18903 | SED18903 | SED18903 | SED18903 | SED18903 | SED18903 | SED18903 | SED18903 | SED18903 | SED18903 | SED18903 | SED18903   | SED18903 |

| SURVEY   | STATION    | SAMPLE     | CRAB | AMPAB       | ECHAB      | MISCAB | POTAX    | AMPTX        | MOTAX ECHTAX |        | CRTX     | MISCTX   |       | <b>=</b> -, | E  | SDI      |
|----------|------------|------------|------|-------------|------------|--------|----------|--------------|--------------|--------|----------|----------|-------|-------------|----|----------|
| SED18903 | 16         | ν,         | 12   | 9           | -          | 25     | 34       | 4            | 20           | *****  | Ś        | 3        | 1.642 | 0.909       | 72 | 25       |
| SED18903 | 17         |            | 13   | 0           | 0          | 2      | 15       | 0            | 4            | 0      | 2        |          | 0.899 | 0.67        | 29 | s        |
| SED18903 | 17         | т          | 5    | 2           | 0          | 0      | 12       | 2            | æ            | 0      | ጠ        | 0        | 0.7   | 0.558       | 19 | 4        |
| SED18903 | 17         | S          | 14   | 9           | 0          | 0      | 11       | 4            | 60           | 0      | 9        | 0        | 1.061 | 0.75        | 19 | 7        |
| SED18903 | . 81       | 1          | 0    |             | 0          | 12     | 20       | 0            | 10           | 0      | 0        | 73       | 0.894 | 0.594       | 99 | Ś        |
| SED18903 | 18         | 3          | 90   | 0           | 0          | 29     | 27       | 0            | 6            | 0      | Э        | 7        | 0.957 | 0.594       | 67 | S        |
| SED18903 | <b>8</b> 2 | \$         | -    | 0           | 0          | ∞      | 8        | 0            | •            | 0      | -        | 7        | 1.152 | 0.788       | 67 | 6        |
| SED18903 | 19         | <b>F</b> 1 | 2    |             | 7          | 4      | 13       | <del>,</del> | 5            |        | 2        |          | 1.221 | 0.91        | 71 | -        |
| SED18903 | 61         | 3          | 4    | 33          | 7          | 71     | . 12     | 7            | 3            |        |          | <b>y</b> | 1.208 | 0.929       | 89 | <b>=</b> |
| SED18903 | 19         | 5          | 12   | 10          | 60         |        | =        | 4            | 4            | -      | 9        |          | 1.249 | 0.917       | 81 | I        |
| SED18903 | 20         | gumq       | 87   | 34          | 0          | 4      | 12       | 3            | 11           | 0      | 9        |          | 1.207 | 0.775       | 79 | ∞        |
| SED18903 | 70         | т          | 114  | 41          | .0         | 3      | 23       | 9            | 12           | 0      | ∞        |          | 1.169 | 0.711       | 77 | ∞        |
| SED18903 | 20         | 8          | 129  | 54          | 0          | 4      | 13       | 3            | 16           |        | 7        | 7        | 1.186 | 0.751       | 11 | 7        |
| SED18903 | 21         | -          | 271  | 12          | <b>,</b> , | -      | 27       | 7.           | 12           | 1      | 17       |          | 1.058 | 9.0         | 62 | vs.      |
| SED18903 | 21         | m          | 267  |             | 0          | 2      | 27       | ю            | 12           | 0      | <b>∞</b> |          | 1.028 | 0.608       | 19 | 4        |
| SED18903 | 21         | 5          | 308  | . 11        | 0          |        | 24       | 5            | 15           | 0      | 11       | ***      | 0.94  | 0.55        | 19 | 4        |
| SED18903 | 22         | -          | 93   | 21          | 0          | 1      | 11       | *1           | 12           | 0      | 6        |          | 1.058 | 0.697       | 20 | 9        |
| SED18903 | 22         | 8          | 86   | 3           | 0          |        | 16       | 2            | 14           | 0      | 9        | ****     | 826.0 | 0.624       | 29 | 'n       |
| SED18903 | 22         | V)         | 86   | 23          | 1          |        | 14       | 9.           | 15           | erent. | 10       |          | 1.074 | 999.0       | 70 | 'n       |
| SED18903 | 23         | -          | 116  | 16          | 0          | 4      | 21       | 5            | 24           | 0      | ∞        | 2        | 1.15  | 0.661       | 73 | 9        |
| SED18903 | 23         | т          | 95   | 20          | ****       | m      | 26       | S            | 23           | , .    | 10       | 2        | 1.265 | 0.705       | 75 | . 10     |
| SED18903 | 23         | 5          | 88   | 20          | _          | 2      | 15       | <b>0</b> 0   | 27           | -      | 14       | . 7      | 1.321 | 0.746       | 72 | 12       |
| SED18903 | 24         |            | 29   | rud<br>Fund | 2          | 0      | 22       | 9            |              | 7      | 10       | 0        | 1.531 | 0.926       | 77 | 22       |
| SED18903 | 24         | 3          | 43   | 12          | 9          | m      | 18       | 3            | 7            | 7      | 7        | -        | 1.396 | 0,904       | 69 | 14       |
| SED18903 | 24         | ۶.         | 29   | 17          | 7          | 7      | <u>~</u> | ſΛ           | 12           | *****  | 00       | -        | 1.458 | 16.0        | 80 | 18       |
| SED18903 | 25         |            | 150  | 15          | 7          | 3      | 17       | 5            | 16           | ••••   | 6        |          | 1.023 | 0.619       | 70 | S        |
| SED18903 | 25         | 3          | 58   | 15          | 33         | 0      | 15       | 4            | 12           | 7      | œ        | 0        | 1.003 | 0.64        | 71 | 9        |
| SED18903 | 25         | 5          | 186  | 47          | 3          | 0      | 16       | 4            | 15           | ٣      | ∞        | 0        | 1.057 | 0.651       | 72 | 5        |
| SED18903 | 52         |            | 116  | . 20        |            | *****  | 27       | 9            | 20           |        | 12       | <b></b>  | 1.358 | 0.761       | 57 | 15       |
| SED18903 | 26         | 33         | 134  | 54          | 2          | 3      | 33       | 7            | 22           | 7      | 14       |          | 1.494 | 0.802       | 29 | 18       |
| SED18903 | 56         | 5          | 1111 | 48          | -          | 0      | 30       | 10           | 17           |        | 17       | 0        | 1.538 | 0.848       | 72 | 20       |
| SED18903 | 27         | · June     | 215  | 36          | В          | 8      | 41       | Ξ            | 25           | 7      | 70       | m        | 1.465 | 0.748       | 75 | 22       |
| SED18903 | 27         | ሮግ         | 292  | 44          | 20         | 28     | 46       | 10           | 22           | 7      | 17       | 4        | 1.357 | 0.683       | 9/ |          |

| SURVEY   | STATION | SAMPLE       | υ<br>U | S* La   | LatDeg | LatMin | LatSec | LonDeg | LonMin | LonSec | Depth (m)  | % FINES | % TOC | 2** | TOAB . | TOTAX | POAB  | MOAB |
|----------|---------|--------------|--------|---------|--------|--------|--------|--------|--------|--------|------------|---------|-------|-----|--------|-------|-------|------|
| SED18903 | 27      | 'n           | MO     | ****    | 47     | 45     | 35     | 122    | 23     | ∞.     | 7,70       | 3.2     | 0.12  |     | 655    | 84    | 206   | 100  |
| SED18903 | 28      |              | MO     | ****    | 47     | 43     | 59     | 122    | 29     | 22     | -20        | 4.9     | 0.15  |     | 427    | 98    | 238   | 106  |
| SED18903 | 28      | ю            | MO     | _       | 47     | 43     | 59     | 122    | 29     | 22     | -20        | 4.9     | 0.15  |     | 780    | . 93  | 530   | 120  |
| SED18903 | 28      | Ś            | MO     | _       | 47     | 43     | 59     | 122    | . 29   | 22     | -20        | 4.9     | 0.15  | ,   | 538    | 66    | 311   | 110  |
| SED18903 | 29      | ****         | MO     | -       | 47     | 42     | 7      | 122    | 27     | 9      | -195       | 83.1    | 1.6   |     | 75     | 24    | 55    | 7    |
| SED18903 | 29      | ю            | MO     | yq      | 47     | 42     | 7      | 122    | 27     | 9      | -195       | 83.1    | 1.6   |     | 197    | 42    | 58    | 59   |
| SED18903 | 29      | 8            | MO     | proved. | 47     | 42     | 7      | 122    | 27     | 9      | -195       | 83.1    | 1.6   |     | 192    | 39    | 62    | 64   |
| SED18903 | 30      |              | MO     |         | 47     | 37     | 25     | 122    | 30     | 10     | -13        | \$6.0   | 1.4   |     | 878    | 52    | 738   | 93   |
| SED18903 | 30      | m            | MO     | _       | 47     | 37     | 25     | 122    | 30     | 10     | -13        | 56.0    | 1.4   |     | 782    | 45    | 504   | 122  |
| SED18903 | 30      | \$           | МО     |         | 47     | 37     | 25     | 122    | 30     | 10     | -13        |         | 4.    |     | 368    | 4     | 255   | . 0  |
| SED18903 | 31      | _            | MO     |         | 47     | 39     | 11     | 122    | 26     | 7      | -22        | 1.7     | 0.15  |     | 290    | 08    | 116   | 33   |
| SED18903 | 31      | w            | MO     |         | 47     | 39     | 17     | 122    | 26     | 7      | -22        | 1.7     | 0.15  |     | 337    | 9/    | 184   | 25   |
| SED18903 | 33      | <b>10</b>    | MO     | _       | 47     | 39     | 11     | 122    | 26     | 7      | -22        | 1.7     | 0.15  |     | 587    | 87    | 271   | 64   |
| SED18903 | 32      |              | MO     | _       | 47     | 37     | 57     | 122    | 24     | 29     | -20        | 7.2     | 0.17  |     | 969    | 68    | 508   | 53   |
| SED18903 | 32      | የጣ           | MO     | 1       | 47     | 37     | 57     | 122    | 24     | 29     | -20        | 7.2     | 0.17  |     | 703    | 103   | 520   | 39   |
| SED18903 | 32      | Ś            | MO     |         | 47     | 37     | 57     | . 122  | 24     | 29     | -20        | 7.2     | 0.17  |     | 732    | 96    | 527   | 46   |
| SED18903 | 33      |              | MO     | •       | 47     | 35     | 9      | 122    | 22     | . 30   | -20        | • • •   | 0,64  |     | 632    | 63    | 336   | 6.   |
| SED18903 | 33      | т            | MO     |         | 47     | 35     | 16     | 122    | 22     | 30     | -20        | 24.0    | 0.64  |     | 644    | 99    | 341   | 135  |
| SED18903 | 33      | 8            | MO     |         | 47     | 35     | 91     | 122    | 22     | 30     | -20        | 24.0    | 0.64  |     | 643    | 70    | 320   | 149  |
| SED18903 | . 34    | ••           | MO     |         | 47     | 32     | 48     | 122    | 39     | 43     | 6-         | 91.6    | 2.2   |     | 909    | 55    | 337   | 49   |
| SED18903 | 34      | т            | MO     | ****    | 47     | 32     | 48     | 122    | 39     | 43     | Q,         | 9116    | 2.2   |     | 447    | 47    | 261   | . 63 |
| SED18903 | 34      | 'n           | MO     | +4      | 47     | 32     | 48     | 122    | 39     | 43     | <b>6</b> . | 91.6    | 2.2   |     | 416    | 42    | 218   | 46   |
| SED18903 | 35      | -            | MO     |         | 47     | 36     | 49     | . 122  | 4      | 53     | -14        | 78.9    | 2.3   |     | 337    | 39    | 106   | 12   |
| SED18903 | 35      | ·m           | МО     | *       | 47     | 36     | 49     | 122    | 41     | 53     | -14        | 78.9    | 2.3   |     | 1214   | 38    | 737   | 0    |
| SED18903 | 35      | 'n           | MO     | _       | 47     | 36     | 49     | 122    | 41     | 53     | -14        | 78.9    | 2.3   |     | 385    | 37    | . 118 | 13   |
| SED18903 | . 36    | <b>1</b> 000 | MO     | _       | 47     | 30     | 50     | 122    | 23     | 53     | -15        | 2.2     | 0.13  |     | 356    | 99    | 149   | 89   |
| SED18903 | 36      | ю            | MO     |         | 47     | 30     | 50     | 122    | 23     | 53     | -15        | 2.2     | 0.13  |     | 480    | 62    | 158   | 96   |
| SED18903 | 36      | 30           | МО     | Anne    | 47     | 30     | 20     | 122    | 23     | 53     | -15        | 2.2     | 0.13  |     | 384    | 52    | 138   | 87   |
| SED18903 | 37      | _            | OM     |         | 47     | 29     | 14     | 122    | 27     | 19     | -20        | 5.9     | 0.21  |     | 590    | . 110 | 386   | 50   |
| SED18903 | 37      | т            | МО     | _       | 47     | 29     | .4     | 122    | 27     | 19     | -20        | 5.9     | 0.21  |     | 391    | 92    | 201   | 53   |
| SED18903 | 37      | 5            | MO     |         | 47     | 29     | 7      | 122    | 27     | 19     | -20        | 5.9     | 0.21  |     | 620    | 92    | 419   | 63   |
| SED18903 | 38      | _            | MO     | <b></b> | 47     | 25     | 43     | 122    | 23     | 34     | -195       | 93.3    | 2.1   |     | 162    | 30    | 37    | 17   |
| SED18903 | 38      | m            | MO     | _       | 47     | 25     | 43     | 122    | 23     | 34     | -195       | 93.3    | 2.1   |     | 95     | 25    | 28    | =    |

| SURVEY   | STATION | SAMPLE         | CRAB | AMPAB | ECHAB | ECHAB MISCAB POTAX | POTAX | AMPTX | AMPTX MOTAX ECHTAX |             | CRTX M | MISCTX      | Ħ     | <del>-</del> | Œ  | IOS           |
|----------|---------|----------------|------|-------|-------|--------------------|-------|-------|--------------------|-------------|--------|-------------|-------|--------------|----|---------------|
| SED18903 | 27      | S              | 332  | 26    | 9     | Ξ                  | 34    | 12    | 26                 | 4           | 18     | 64          | 1.181 | 0.614        | 74 | 15            |
| SED18903 | 28      |                | 77   | 20    | -     | €.                 | 49    | 9     | 20                 | ) mark      | 12     | <b>,,,,</b> | 1.529 | 0.79         | 83 | 24            |
| SED18903 | 28      | ю              | 66   | 24    | 7     | 24                 | 42    | 9     | 27                 |             | 15     | 9           | 1.172 | 0.595        | 92 | 12            |
| SED18903 | 78      | 5              | 104  | 41    | 3     | 10                 | 54    | 00    | 23                 | m           | 16     | m           | 1.502 | 0.752        | 80 | 21            |
| SED18903 | 53      | quant          | 9    |       | 3     | 4                  | 15    |       | 2                  | 7           | m      | 73          | 1.068 | 0.774        | 89 | 10            |
| SED18903 | 29      | ю              | 77   | 22    | 1     | 2                  | 21    | 9     | 7                  |             | 12     | -           | 1.248 | 0.769        | 63 | 10            |
| SED18903 | 29      | 5              | 61   | ŝ     | 3     | 2                  | 18    | 3     | 10                 | 2           | 90     | _           | 1.157 | 0.727        | 57 | 6             |
| SED18903 | 30      |                | 128  | 7     | 15    | 4                  | 25    | 9     | 10                 | 3           | 12     | 7           | 0.859 | 0.501        | 68 | 4             |
| SED18903 | 30      | ٤              | 150  | ∞     | 4     | 2                  | 22    | 5     | =                  | 2           | φ.     |             | 0.874 | 0.529        | 99 | 4             |
| SED18903 | 30      | 5              | 104  |       | 9     | 3                  | 30    |       | 0                  | 3           | 9      | 7           | 0.933 | 0.578        | 89 | 4             |
| SED18903 | 31      |                | 119  | 44    | 6     | 13                 | 38    | ****  | 90                 | 9           | 91     | 71          | 1.5   | 0.788        | 75 | 24            |
| SED18903 | 31      | 3              | 95   | 30    | 17    | 91                 | 38    | 10    | 15                 | 7           | 14     | - 7         | 1.547 | 0.823        | 78 | 23            |
| SED18903 | tr)     | 5              | 202  | 51    | 27    | 23                 | 45    | 10    | 19                 | 9           | 14     | 3           | 1.501 | 0.774        | 11 | 22            |
| SED18903 | 32      | <b>F</b> ***** | 111  | 25    | 9     | 18                 | 49    | 10    | 8                  | ω.          | 15     | ٣           | 1.235 | 0.634        | 87 | 12            |
| SED18903 | 32      | m              | 109  | 23    | 13    | 22                 | 52    | 6     | 70                 | 9           | 19     | 9           | 1,409 | 0.7          | 83 | 16            |
| SED18903 | 32      | ς              | 126  | 61    | 16    | 17                 | . 29  | S     | 17                 | 5           | =      | 4           | 1.42  | 0.717        | 98 | 61            |
| SED18903 | 33      | umi            | 201  | 7     |       | 2                  | 38    | 7     | 13                 | <b>yw</b> i | 9      | 7           | 1.212 | 0.674        | 19 | 6             |
| SED18903 | 33      | 3              | 167  | 1     |       | 0                  | 38    | -     | 15                 |             | 12     | 0           | 1.264 | 0.695        | 89 | 10            |
| SED18903 | 33      | S              | 160  | -     | 4     | 10                 | 39    | port  | 14                 | 4           | 10     | т           | 1.308 | 0.709        | 89 | · <del></del> |
| SED18903 | 34      | •••            | 212  | 52    | 7     | <b>v1</b>          | 34    | 4     | 6                  | 3           | œ      |             | 1.291 | 0.742        | 11 | 01            |
| SED18903 | 34      | ٣              | 123  | 13    | 0     | 0                  | 27    | ĸ     | 14                 | 0           | 9      | 0           | 1.229 | 0,735        | 71 | δ             |
| SED18903 | 34      | 5              | 146  | 13    | -     | 2                  | 26    | KJ.   | 7                  | -           | 9      | 7           | 1.155 | 0.711        | 69 | ∞             |
| SED18903 | 35      | puni           | 176  | 4     | 40    | m                  | 21    | æ     | 6                  | ю           | ζ.     | <b>-</b>    | 1.093 | 0.687        | 78 | ~             |
| SED18903 | 35      | 3              | 434  | 20    | 40    | 3                  | 27    | ς,    | 0                  | т           | 7      |             | 0.828 | 0.524        | 92 | ęή            |
| SED18903 | 35      | \$             | 200  | 7     | 43    |                    | 21    | 2     | 9                  | 3           | 4      | ĸ           | 1.078 | 0.687        | 76 | ∞             |
| SED18903 | 36      | _              | 128  | 34    | 33    | ∞                  | 23    | 6     | 15                 | r.          | 12     | ю           | 1.361 | 0.778        | 69 | 15            |
| SED18903 | 36      | ٣              | 220  | 4.1   | 0     | 9                  | 31    | ∞     | 15                 | 0           | 14     | 7           | 1.183 | 99'0         | 99 | σ.            |
| SED18903 | 36      | 5              | 153  | 43    |       | 5                  | 24    | 7     | 14                 |             | 12     | you         | 1.302 | 0.759        | 99 | 13            |
| SED18903 | 37      | proof          | 123  | 46    | 17    | 14                 | 59    | 12    | 20                 | 60          | 17     | 5           | 1.577 | 0.772        | 81 | 28            |
| SED18903 | 37      | 3              | 92   | 25    | 38    | 7                  | 45    | 6     | 19                 | 6           | 16     | κJ          | 1.609 | 0.82         | 08 | 78            |
| SED18903 | 37      | S              | 88   | 24    | 17    | 33                 | 46    | ∞     | 21                 | ∞           | 14     | æ           | 1.318 | 0.671        | 87 | 11            |
| SED18903 | 38      |                | 104  | 29    | 7     | 6                  | 13    | m     | 4                  | 7           | 10     |             | 1.119 | 0.757        | 72 | 7             |
| SED18903 | 38      | ю              | 21   | . 12  | 4     | -                  | 6     | w ·   | 7                  | -           |        |             | 1.171 | 0.838        | 70 | ∞             |
|          |         |                |      |       |       |                    |       |       |                    |             |        |             |       |              |    |               |

| MOAB          | 10       | 63       | 80       | 45       | 306      | 162          | 126      | 1121     | 1419     | 320      | 16       | ] [      | 21       | 42       | 34       | 48       | 65       | 58       | 30       | 18       | 11       | 16       | 4        | 42       | 19       | 65       | 38       | 51       | 35       | 35       | 34       | 6        | ∞.       |
|---------------|----------|----------|----------|----------|----------|--------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
| POAB          | 30       | 99       | 123      | 58       | 255      | 439          | 420      | 1779     | 772      | 414      | 47       | . 55     | 62       | 130      | 137      | 159      | 470      | 160      | 373      | 208      | 961      | 247      | 108      | 279      | . 201    | 184      | 175      | 108      | 16       | 80       | 53       | 78       | 58       |
| TOTAX         | 24       | 40       | 48       | 39       | 51       | 58           | . 46     | 43       | 37       | 37       | 27       | 41       | 56       | 48       | 57       | 49       | 103      | 58       | 90       | 57       | 45       | 48       | 55       | 76       | 89       | 75       | 63       | 63       | 28       | 31       | 30       | 23       | 21       |
| TOAB          | 127      | 199      | 341      | 206      | 169      | 661          | 611      | 3039     | 2294     | 788      | 81       | 95       | 91       | 467      | 544      | 919      | 650      | 265      | 484      | 289      | 291      | 309      | 342      | 502      | 445      | 609      | 398      | 345      | 327      | 313      | 192      | 133      | 131      |
| 2**           |          |          |          |          |          |              |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |
| % TOC         | 2.1      | 0.09     | 0.09     | 0.09     | 0.7      | 0.7          | 0.7      | 0.8      | 8.0      | 8.0      | 0.1      | 0.1      | 0.1      | 0.14     | 0.14     | 0.14     | 0.42     | 0.42     | 0.42     | 96'0     | 96.0     | 96.0     | 0.42     | 0.42     | 0.42     | 0.29     | 0.29     | 0.29     | 2.5      | 2.5      | 2.5      | 2.7      | 2.7      |
| % FINES       | 93.3     | 1.7      | 1.7      | 1.7      | 15.6     | 15.6         | 15.6     | 81.1     | 81.1     | 81.1     | 3.2      | 3.2      | 3.2      | 6.3      | 6.3      | 6.3      | 14.7     | 14.7     | 14.7     | 55.3     | 55.3     | 55.3     | 9.5      | 9.5      | 9.5      | 23.5     | 23.5     | 23.5     | 81.3     | 81.3     | 81.3     | 88.1     | 88.1     |
| Depth (m)     | -195     | 14       | -14      | -14      | 0        | -10          | -10      | -20      | -20      | -20      | -39      | -39      | -39      | -20      | -20      | -20      | -20      | -20      | -20      | -53      | -53      | -53      | -22      | -22      | -22      | -20      | -20      | -20      | -20      | -20      | -20      | ۴        | φ        |
| LonSec D      | 34       | 48       | 48       | 48       | 9.       | · <b>0</b> / | 6        | 13       | 13       | 13       | 57       | 57       | 57       | 28       | 28       | 28       | 16       | 16       | 16       |          | -        | -        | 46       | 46       | 46       | 49       | 49       | 49       | m,       | m        | ĸ'n      | 43       | 43       |
| LonMin        | 23       | 21       | 21       | 21       | 26       | 26           | 26       | 25       | 25       | 25       | 53       | 29       | 29       | 44       | 44       | 44       | 40       | 40       | 40       | 45       | 45       | 45       | 46       | 46       | 46       | 20       | 50       | 20       | 55       | . 55     | 55       | 54       | 54       |
| LonDeg        | 122      | 122      | 122      | 122      | 122      | 122          | 122      | 122      | 122      | 122      | 122      | 122      | 122      | 122      | 122      | 122      | 122      | 122      | 122      | 122      | 122      | 122      | 122      | 122      | 122      | 122      | 122      | 122      | 122      | 122      | 122      | 122      | 122      |
| LatSec        | 43       | 5.       | 15       | 15       | 43       | 43           | 43       | 32       | 32       | 32       | 14       | 14       | 14       | 53       | 53       | 53       | 45       | 45       | 45       | 55       | 55       | . 22     | 57       | 57       | 57       | 7        | 1        | 7        | 30       | 30       | 30       | 53       | 53       |
| LatMin        | 25       | 20       | 20       | 20       | 15       | 15           | 15       | 16       | 16       | 16       | 138      | 82       | 81       | 17       | . 17     | 11       | 6        | 6        | 0,       | 0        | 6        | ο,       | 7        | 7        | 7        | 14       | 14       | 4        |          | 7        | 7        | 4        | 4        |
| LatDeg        | 47       | 47       | 47       | 47       | 47       | 47           | 47       | 47       | 47       | 47       | 47       | 47       | 47       | 47       | 47       | 47       | 47       | 47       | 47       | 47       | 47       | 47       | 47       | 47       | 47       | 47       | 47       | 47       | 47       | 47       | 47       | 47       | 47       |
| . <b>*</b> 20 |          |          |          | 1        | _        |              | -        | ~        |          |          | -        |          | - 0      | - 1      | - 1      | 1        | -        |          | _        | - 1      | 1        | _        |          |          |          |          |          |          |          |          | _        | _        | -        |
| O             | MO       | MO       | MO       | MO       | MO       | MO           | MO       | MO       | MO       | MO       | MO       | MO       | MO       | MO       | MO       | MO       | MO       | MO       | MO       | MO       | MO       | MO       | MO       | MO       | MO       | MO       | Ø.       | MO       | MO       | MO       | MO       | MO       | MO       |
| SAMPLE        | 8        | <b></b>  | ю        | 3        |          | mi           | ٧٠       |          | 8        | ٠ż       | -        | ю        | \$       |          | ю        | 'n       |          | m        | ٧.       |          | m        | κ)       |          | e.       | •        | -        | ĸ        | ٠        |          | ĸ        | 5        | -        | ŵ        |
| STATION       | . 38     | 39       | 39       | 39       | 40       | 40           | 40       | 41       | 41       | 41       | 42       | 42       | 42       | 43       | 43       | 43       | 44       | 44       | 44       | 45       | 45       | 45       | 46       | 46       | 46       | 47       | 47       | 47       | 48       | 48       | 48       | 49       | 49       |
| SURVEY        | SED18903 | SED18903 | SED18903 | SED18903 | SED18903 | SED18903     | SED18903 | SED18903 | SED18903 | SED18903 | SED18903 | SED18903 | SED18903 | SED18903 | SED18903 | SED18903 | SED18903 | SED18903 | SED18903 | SED18903 | SED18903 | SED18903 | SED18903 | SED18903 | SED18903 | SED18903 | SED18903 | SED18903 | SED18903 | SED18903 | SED18903 | SED18903 | SED18903 |

| SDI                       | 80       | 1        | 7        | ∞             | <b>∞</b> | ∞         | <b>∞</b> | 2        | 7         | ሴታ       | 10          | 18       | 7          | 12       | 9           | 7        | 21       | 19       | 22       | 12       | ∞        | φ.             | 15       | 21       | 61       | 17       | 15       | 17       | т                                       | 4        | S        | 7        | 7        |
|---------------------------|----------|----------|----------|---------------|----------|-----------|----------|----------|-----------|----------|-------------|----------|------------|----------|-------------|----------|----------|----------|----------|----------|----------|----------------|----------|----------|----------|----------|----------|----------|-----------------------------------------|----------|----------|----------|----------|
| Samed<br>Second<br>Second | 71       | 69       | 65       | 69            | 89       | 29        | 19       | 29       | 19        | 19       | 79          | 80       | 70         | 84       | 82          | 87       | 62       | 77       | 80       | 72       | 19       | 73             | 76       | 80       | 75       | 76       | 82       | 83       | 65                                      | 65       | 64       | 69       | 72       |
| F-,                       | 0.761    | 0.797    | 0.672    | 0.734         | 699'0    | 0.652     | 0.664    | 0.318    | 0.335     | 0.532    | 0.796       | 0.818    | 0.704      | 0.788    | 9.676       | 0.677    | 0.752    | 0.816    | 0.774    | 0.726    | 0.652    | 0.702          | 0.828    | 0.807    | 0.816    | 0.71     | 8.0      | 8.0      | 0.522                                   | 0.548    | 0.656    | 0.773    | 0.743    |
| ≒                         | 1.05     | 1.277    | 1.13     | 1.167         | 1.143    | 1.15      | 1.104    | 0.52     | 0.525     | 0.835    | 1.14        | 1,32     | 966.0      | 1.325    | 1.187       | 1.145    | 1.514    | 1.439    | 1.513    | 1.275    | 1.077    | 1.18           | 1.44     | 1.517    | 1.495    | 1.33     | 1.439    | 1.44     | 0.755                                   | 0.817    | 696'0    | 1.053    | 0.983    |
| MISCTX                    |          | 0        | m        | · <del></del> | m        | 7         | 7        | -        | -         | guerri.  | <b>****</b> |          | 0          | 7        | 2           | 0        | 4        | 7        | ю        | 7        | 9        | 7              | 4        | 3        | ю        | æ        | 6        | 4        | . ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | 7        | 7        |          | 7        |
| CRTX                      | ∞        | ∞        | 13       | <del></del>   | 7        | 7         | 9        | 10       | 7         | 6        | \$          | 6        | 9          | 11       | =           | 10       | 7        | _        | ∞        | 9        | ĸ        | 8              | 13       | 14       | 10       | 12       | 6        | 10       | 'n                                      | 4        | ٧٠       | 4        | 7.       |
| CHITAX                    | -        | 0        | 0        |               | 7        | ε         | 7        | 3        | 7         | 2        | w           | 2        | 0          | 3        | 33          | 3        | 9        | 4        | 7        | \$       | Ś        | 7              | 2        | 2        | 7        | 5        | 4        |          | 0                                       | 0        | 1        | 2        | £        |
| OTAX E                    | 4        | 15       | 4        | 15            | 15       | 13.       | Ξ        | 12       | 12        | 10       | S           | •        | 3          | 10       | <del></del> | 13       | 16       | =        | 13       | œ        | 7        | ∞ <sup>'</sup> | 13       | 12       | 15       | 18       | 4        | 15       | 9                                       | ∞        | 7        | 5        | S        |
| AMPTX MOTAX ECHTAX        | 3        | 3        | 7        | 9             |          | <b>—</b>  | 0        | 4        |           | 2        | m           | <b>∞</b> | <b>v</b> s | 9        | 7           | ∞        | 6        | 9        | 10       | 9        |          | ю              | 7        | 7        | 9        | 00       | ~        | ĸ        | ĸ                                       | 2        | en.      | _        | -        |
| POTAX ,                   | 10       | 17       | 22       | Ξ             | 24       | 33        | 25       | 17       | 15        | 15       | 15          | 20       | 15         | 22       | 30          | 23       | 63       | 30       | 48       | 35       | 24       | 31             | 23       | 44       | 38       | 37       | 33       | 29       | 16                                      | 17       | 14       | =        | 6        |
| MISCAB                    | 7        | 0        | 4        |               | 3        | •         | 14       | 9        | 5         |          | æ           | æ        | 0          | <b>∞</b> | т           | 0        | 47       | 9        | 21       | 4        | 2        | m              | 7        | 13       | 14       | 238      | 98       | 72       | 4                                       | 1        | 9        | 7        | 9        |
| ECHAB                     | m        | 0        | 0        |               | ***** ·  | 7         | ς,       | 31       |           | 5        | -           | 7        | 0          | 118      | 118         | 167      | 1        | œ        | 12       | =        | 10       | 7              | 38       | 24       | 28       | 31       | . 19     | 73       | 0                                       | 0        |          | 9        | 6        |
| AMPAB                     | 19       | 31       | 33       | 4             |          | <b>v-</b> | 0        | 17       | <b>00</b> | 2        |             | 23       | 7          | 58       | 52          | 59       | 23       | 14       | 22       | 9        | 7        | ∞              | 65       | 53       | 40       | 38       | 18       | 10       | 5                                       | 00       | ∞        |          |          |
| CRAB                      | 82       | 70       | 134      | 101           | 116      | 47        | 46       | 102      | 92        | 40       | 14          | 24       | 96         | 169      | 252         | 242      | 19.      | 33       | 47       | 47       | 56       | 36             | 148      | 143      | 135      | 91       | 32       | 41       | 197                                     | 161      | 76       | 33       | 50       |
| SAMPLE                    | 'n       |          | ξÛ       | 5             | *****    | 3         | 5        |          | ٣١        | 5        |             | 3        | 5          |          | æ           | \$       | possel   | т        |          | 1        | en.      | 5              |          | 3        | S        |          | 3        | 5        | ••••                                    | m        | 50       | <b>3</b> | έn       |
| STATION                   | 38       | 39       | 39       | 39            | 40       | 40        | 40       | 41       | 4         | 4        | 42          | 42       | 42         | 43       | 43          | 43       | 44       | 44       | 44       | 45       | 45.      | 45             | 46       | 46       | .46      | 47       | 47       | 47       | 48                                      | 48       | 48       | 49       | 49       |
| SURVEY                    | SED18903 | SED18903 | SED18903 | SED18903      | SED18903 | SED18903  | SED18903 | SED18903 | SED18903  | SED18903 | SED18903    | SED18903 | SED18903   | SED18903 | SED18903    | SED18903 | SED18903 | SED18903 | SED18903 | SED18903 | SED18903 | SED18903       | SED18903 | SED18903 | SED18903 | SED18903 | SED18903 | SED18903 | SED18903                                | SED18903 | SED18903 | SED18903 | SED18903 |

| SURVEY   | STATION | SAMPLE          | Ü  | *S           | LatDeg     | LatiMin  | LatSec       | LonDeg | LonMin | LonSec | Depth (m) | % FINES | % TOC          | 2** | TOAB      | TOTAX | POAB     | MOAB |  |
|----------|---------|-----------------|----|--------------|------------|----------|--------------|--------|--------|--------|-----------|---------|----------------|-----|-----------|-------|----------|------|--|
| SED18903 | 49      | ٨٦              | MO | *****        | 47         | 4        | 53           | 122    | 54     | 43     | 9-        | 88.1    | 2.7            |     | 143       | 22    | 93       | =    |  |
| SED18903 | 20      | · <b></b>       | MO | •            | 47         | 12       | 47           | 123    | 4      | 28     | 1         | 3.8     | 0.2            |     | 640       | 56    | 104      | 313  |  |
| SED18903 | 20      | т               | MO |              | 47         | 12       | 47           | 123    | 4      | 28     | 7         | 3.8     | 0.2            |     | 440       | 09    | 96       | 1.17 |  |
| SED18903 | 20      | ۲v              | MO | •            | 47         | 12       | 47           | 123    | 4      | 28     | L-        | 3.8     | 0.2            |     | 381       | 58    | 83       | 189  |  |
| SED19003 | 000     | ţ               | QV | ***          | 97         |          | 30           | 5      | Ü      | 7,     | ç         | . 6     | -              |     | ç         | ř     | 2        | Ţ    |  |
| SED19003 | 1000    | ۰, ۲            |    |              | ê <b>e</b> | <b>S</b> | 9 6          | 1 5    | 7 4    | 77 7   |           |         | 0, 0           |     | 700       | 3. 5  | 100      | ÷ 5  |  |
| SED19003 | 000     | 4 (1            |    |              | ° 4        | 5 8      | 9 6          | 3 5    | า้ จั  | 07 6   |           |         | o o            |     | 750       | 4 6   | /07      | 26   |  |
| SED19003 | 0003    | n               |    |              | 48         | \$ \$    | 20 4         | 1 5    | 5 %    | 8 6    | •         |         | 0.1.0          |     | + 00<br>0 | 07    | g (      |      |  |
| SED19003 | 0003    | , 73            | MO |              | 84         | 52       | 16           | . 2    | 28     | 202    | ·         | 45      | 0.81           | -   | 4         | , ,   | <b>,</b> | 10   |  |
| SED19003 | 0003    | ٣               | MO |              | 48         | 52       | 16           | 122    | 58     | 70     |           |         | 0.81           |     | 94        | 19    | 37       | 35   |  |
| SED19003 | 0004    | <del>,,,,</del> | MO | 1            | 48         | 41       | 9            | 122    | 52     | 10     | -24       | 86      | 1.9            |     | 497       | 54    | 223      | =    |  |
| SED19003 | 4000    | 7               | MO |              | 48         | 41       | 9            | 122    | 52     | 10     | -24       | 86      | 1.9            |     | 671       | . 53  | 260      | 161  |  |
| SED19003 | 0004    | m               | MO |              | 48         | 41       | 9            | 122    | 52     | 10     | -24       | 86      | 1.9            |     | 397       | 51    | 212      | 72   |  |
| SED19003 | 0000    |                 | MO | ·            | 48         | 35       | 49           | 122    | 32     | 7      | -19.9     | 97.3    | 1.99           |     | 502       | 48    | 175      | 142  |  |
| SED19003 | 0005    | 2               | 2  |              | 48         | 35       | 49           | 122    | 32     | 7      | -19.9     | 97.3    | 1.99           |     | 477       | 53    | 155      | 148  |  |
| SED19003 | 0000    | m               | MO | <b></b>      | 48         | 35       | 49           | 122    | 32     | 7      | -19.9     | 97.3    | 1.99           |     | 480       | 40    | 130      | 159  |  |
| SED19003 | 0005    | 4               | MO |              | 48         | 35       | 49           | 122    | 32     | 7      | -19.9     | 97.3    | 1.99           |     | 516       | 42    | 133      | 198  |  |
| SED19003 | 0000    | \$              | MO | <u>.</u>     | 48         | 35       | 49           | 122    | 32     | 7      | -19.9     | 97.3    | 1.99           |     | 547       | 49    | 250      | 105  |  |
| SED19003 | 8000    |                 | MO | ,            | 48         | 7        | 28           | 123    | 26     | 50     | -21.1     | 64      | 3.4            |     | 393       | 65    | 208      | 66   |  |
| SED19003 | 8000    | 7               | MO | <b>,</b>     | 48         | 7        | 58           | 123    | 26     | 50     | -21.1     | 64      | 3.4            |     | 354       | 68    | 234      | 64   |  |
| SED19003 | 8000    | 3               | MO |              | 48         | 7        | 28           | 123    | 36     | 50     | -21.1     | 64      | 3,4            |     | 388       | 19    | 287      | 53   |  |
| SED19003 | 0012    |                 | MO |              | 48         | s.       | <b>∞</b>     | 122    | 46     | 21     | -21.1     | 93      | 1.8            |     | 200       | 54    | 109      | 142  |  |
| SED19003 | 0012    |                 | MO | -            | 48         | <b>S</b> | ∞            | 122    | 46     | 21     | -21.1     | . 93    | <del>8</del> . |     | 495       | 49    | 106      | 171  |  |
| SED19003 | 0012    | ε               | МО | -            | 48         | 8        | <b>&amp;</b> | 122    | 46     | 21     | -21.1     | 93      | 1.8            |     | 466       | 20    | 100      | 107  |  |
| SED19003 | 0014    |                 | MO |              | 47         | 47       | 4            | 122    | 43     | 46     | -112.8    | 37      | 0.72           |     | 126       | 38    | 32       | 46   |  |
| SED19003 | 0014    | 7               | MO | -            | 47         | 47       | 4            | 122    | 43     | 46     | -112.8    | 37      | 0.72           |     | 429       | 85    | 199      | 109  |  |
| SED19003 | 0014    | 33              | MO | -            | 47         | 47       | 4            | 122    | 43     | 46     | -112.8    | 37      | 0.72           |     | 264       | 82    | 146      | 43   |  |
| SED19003 | 0015    |                 | MO | -            | 47         | 43       | ις           | 122    | 48     | 50     | -19.4     | \$      | 0.18           |     | 289       | 72    | 153      | 83   |  |
| SED19003 | 0015    | 2               | MO | -            | 47         | 43       | m            | 122    | 48     | 50     | -19.4     | ν'n     | 0.18           |     | 288       | 63    | 148      | 86   |  |
| SED19003 | 0015    | 'n              | MO | ****         | 47         | 43       | ج            | 122    | 48     | . 50   | -19,4     | 5       | 0.18           |     | 358       | 11    | 224      | 96   |  |
| SED19003 | 0017    | -               | MO | <del>,</del> | 47         | 22       | œί           | 123    | 7      | 40     | -80.8     | 86      | 1.7            |     | 110       | 22    | 44       | 51   |  |
| SED19003 | 0017    | 2               | MO | -            | 47         | 22       | ∞            | 123    | 7      | 40     | -80.8     | 86      | . 1.7          |     | 285       | 24    | 156      | 103  |  |
|          |         |                 |    |              |            |          |              |        |        |        |           |         |                |     |           |       |          |      |  |

|                                       | 7        | 13           | 23       | 14       | ξ.       | 4        | 4        | 9        | 4            | 9        | 10       | œ        | 6        | 01       | 2        | 6        | ∞        | 10       | 81       | 21       | 8        | 7        | 5        | 7        | 12       | 20       | 31       | 23       | 17       | 24       | 7        | ح        |
|---------------------------------------|----------|--------------|----------|----------|----------|----------|----------|----------|--------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
| SDI                                   |          |              |          |          |          |          |          | •        |              |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |
| EL.                                   | 99       | 70           | 71       | 99       | 88       | 88       | 93       | 65       | 40           | 55       | 76       | 76       | 76       | 75       | 72       | 74       | 71       | 74       | 84       | 79       | 42       | 84       | 81       | 85       | 72       | 79       | 80       | 70       | 72       | 75       | 99       | 99       |
| <del>-</del> ,                        | 0.817    | 0.789        | 0.805    | 0.812    | 0.63     | 0.594    | 0.537    | 0.781    | 0.93         | 0.789    | 0.743    | 0.706    | 0.735    | 0.771    | 0.779    | 0.772    | 0.764    | 0.739    | 0.836    | 0.841    | 0.81     | 0.635    | 0.615    | 0.633    | 0.805    | 0.813    | 0.903    | 0.869    | 0.835    | 0.855    | 0.745    | 0.677    |
| ĬĽ                                    | 1.097    | 1.38         | 1.432    | 1.432    | 0.939    | 0.885    | 0.759    | 0.961    | 0.786        | 1.009    | 1.286    | 1.218    | 1.255    | 1.296    | 1.343    | 1.236    | 1.239    | 1.25     | 1.515    | 1.542    | 1.479    |          | 1.039    | 1.076    | 1.272    | 1.568    | 1.728    | 1.614    | 1.502    | 1.613    |          | 0.934    |
| AISCTX                                |          | 73           | -        | 7        | έŊ       | -        | 0        | 0        | 0            | 0        | 4        | 4        | 2        | 33       | ю        | ,        | 7        | 4        | 7        | 7        | 4        | 7        | . 3      | 2        | -        | Ś        | 7        | 7        | ю        | ъ        | 0        | 0        |
| CRTX MISCTX                           | m        | gund<br>gund | 14       | 12       | 9        | 5        | 4        | 7        | 7            | 9        | 9        | 6        | 9        | œ        | σ,       | 1        | 7        | 7        | 12       | 11       | 10       | ∞        | 6        | 0/       | œ        | 21       | 6        | 13       | 11       | 13       | 4        | 4        |
|                                       |          | 2            | ťî       | 4        | 9        | 3        | 2        | 0        | 0            | 0        | -        | -        | 2        | -        | <b>-</b> |          | •        | 7        | arred    | 7        | 7        | · prose  | unet     |          | 0        | 2.       | ĸ        |          | 0        | 0        | 0        | 0        |
| OTAX EC                               | Ŋ        | 16           | 11       | 18       | <b>∞</b> | 00       | 10       | 5        | 4            | \$       | 16       | 13       | =        | 12       | 15       | 13       | 10       | 14       | 18       | 16       | 14       | 15       | 14       | 13       | 10       | 16       | 13       | 16       | 15       | 61       | 3        | 'n       |
| ECHAB MISCAB POTAX AMPTX MOTAX ECHTAX | 0        | 9            | 7        | 9        | m        | m        | 2        | , m      | <del>,</del> | s.       | 4        | 4        | т        | Ś        | 4        | 4        | т        | 4        | ∞        | 6        | 4        | 9        | 4        | S        | 5        | Ξ        | ĸ        | ş        | 4        | 9        |          | grant    |
| OTAX 4                                | 12       | 22           | 24       | 20       |          | 13       | 10       | 00       | 1            | ∞        | 27       | 26       | 29       | 24       | 25       | <u>«</u> | 22       | 22       | 32       | 31       | 37       | 28       | 23       | 25       | 19       | 41       | 46       | 37       | 34       | 42       | 15       | 15       |
| (ISCAB F                              | ∞        | 9            | -        | 7        | 4        | 2        | 0        | 0        | 0            | 0        | 10       | П        | 33       | 22       | 13       | 4        | 6        | 22       | 7        | 4        | 35       | \$       | 9        | 7        | grand    | <b>€</b> | , 21     | 16       | 18       | 13       | 0        | 0        |
| SCHAB N                               | 2        | 10           | 7        | 6        | 221      | 366      | 465      | 0        | 0            | 0        | 20       | 89       | 31       | 61       | 52       | 53       | 37       | 19       | 5        | S        | 7        | 179      | 152      | 189      | 0        | 6        | 13       |          | 0        | 0        | 0        | 0        |
|                                       | 0        | 124          | 86       | 20       | 93       | . 66     | 89       | =        | 2            | =        | 51.      | 11       | 42       | 36       | 61       | 46       | 44       | 30       | 46       | 25       | 29       | 56       | 10       | 13       |          | 99       | 10       | 6        | 15       | 6        | 7        | -        |
| CRAB AMPAB                            | 29       | 198          | 152      | 68       | 150      | 192      | 168      | . 14     | 3            | 22       | 103      | 141      | 77       | 102      | 601      | 134      | 139      | 109      | 79       | 47       | 41       | 65       | .09      | 99       | 47       | 101      | 40       | 36       | 36       | . 25     | 15       | 26       |
| SAMPLE                                | δ.       | -            | m        | 'n       | -        | 2        | 3        | _        | 2            |          |          | 2        | 3        |          | 7        | ٣        | 4        | 5        |          | 2        | ť        |          | 2        | 33       |          | . 2      | m        | -        | . 7      | E)       | -        | 73       |
| STATION                               | 49       | 20           | 20       | 20       | 0001     | 1000     | 1000     | 0003     | 6000         | 0003     | 0004     | 0004     | 0004     | 0002     | 2000     | 0005     | 0002     | 0000     | 8000     | 8000     | 8000     | 0012     | 0012     | 0012     | 0014     | 0014     | 0014     | 0015     | 0015     | 0015     | 0017     | 0017     |
| SURVEY                                | SED18903 | SED18903     | SED18903 | SED18903 | SED19003 | SED19003 | SED19003 | SED19003 | SED19003     | SED19003 | SED19003 | SED19003 | SED19003 | SED19003 | SED19003 | SED19003 | SED19003 | SED19003 | SED19003 | SED19003 | SED19003 | SED19003 | SED19003 | SED19003 | SED19003 | SED19003 | SED19003 | SED19003 | SED19003 | SED19003 | SED19003 | SED19003 |

| MOAB          | 82       | 225      | 212      | 159      | 7        | 10       | 7        | 64          | . 77     | 63       | 423      | 440      | 250      | 179      | . 73     | 223      | 52       | 19       | . 62     | 168         | 227      | 190      | <b>%</b> . | 47       | 46       | 45       | 53           | 43       | 176      | 118      | 62       | 48          | 25       |
|---------------|----------|----------|----------|----------|----------|----------|----------|-------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|-------------|----------|----------|------------|----------|----------|----------|--------------|----------|----------|----------|----------|-------------|----------|
| POAB          | 130      | 71       | 09       | 70       | 98       | 61       | . 40     | 245         | 211      | 266      | 183      | 145      | 127      | . 51     | 58       | 52       | <b>=</b> | 114      | 123      | 47          | 40       | 16       | 345        | 333      | 249      | 518      | 501          | 535      | 230      | 230      | 151      | 405         | 271      |
| TOTAX         | 28       | 39       | 27       | 24       | 21       | 21       | 22       | 33          | 39       | 47       | 46       | 51       | 43       | 40       | 45       | 44       | 63       | 71       | 62       | 34          | 43       | 31       | 9          | 54       | 42       | 92       | 80 ·         | 88       | 92       | 83       | 65       | 52          | 47       |
| TOAB          | 242      | 324      | 290      | 248      | 89       | 83       | 50       | 388         | 369      | 404      | 839      | 935      | 520      | 397      | 370      | 447      | 235      | 271      | 287      | 254         | 340      | 265      | 514        | 499      | 422      | 783      | 969          | 770      | 509      | 498      | 335      | 604         | 398      |
| <b>5</b> **   |          |          |          |          |          |          |          |             |          |          |          |          |          |          |          |          |          |          |          |             |          |          |            |          |          |          |              |          |          |          |          |             |          |
| % TOC         | 1.7      | 1.5      | 1.5      | 1.5      | œ.       | 1.8      | 1.8      | 1.2         | 1.2      | 1.2      | 1.5      | 1.5      | 1.5      | 0.2      | 0.2      | 0.2      | 0.54     | 0.54     | 0.54     | 1.8         | 1.8      | 1.8      | 4.         | 4.1      | 1.4      | 0.22     | 0.22         | 0.22     | 1.1      | 1.1      | Ξ        | 2.7         | 2.7      |
| % FINES       | 86       | 92       | 92       | 65       | 83       | 83       | 83       | 76          | 26       | 76       | 61       | 19       | . 61     | 5.5      | 5.5      | 5,5      | 77       | 21       | 7        | 63          | 63       | 93       | 62         | 62       | 62       | 7.5      | 7.5          | 7.5      | 34       | 34       | 34       | 95          | 95       |
| Depth (m)     | -80.8    | -19.1    | -19.1    | -19.1    | -121.5   | -121.5   | -121.5   | -10.3       | -10.3    | -10.3    | -52.7    | -52.7    | -52.7    | -20.5    | -20.5    | -20.5    | -267.9   | -267.9   | -267.9   | -199,3      | -199.3   | -199.3   | -13.3      | -13.3    | -13.3    | -20.4    | -20.4        | -20.4    | -19.8    | -19.8    | -19.8    | -6.6        | 9.9-     |
| LonSec        | 40       | 13       | 13       | 2        | . 15     | 15       | 15       | 32          | 5        | 5        | 31.      | 31       | 33       | ° 00     | ∞        | <b>∞</b> | 22       | 22       | 22       | 9           | 9        | 9        | 10         | 01       | 10       | 29       | 29           | 29       | 30       | 30       | 30       | 43          | 43       |
| LonMin        | 7        | 37       | 37       | 37       | 28       | 28       | 28       | 27          | 27       | 27       | 14       | 14       | 14       | 17       | . 17     | 11       | 77       | 27       | 27       | 27          | 27       | 27       | 30         | 30       | 30       | 24       | 24           | 24       | 22       | 22       | 22       | 39          | 39       |
| LonDeg        | 123      | 122      | 122      | 122      | 122      | 122      | 122      | 122         | . 122    | 122      | 122      | 122      | 122      | 122      | 122      | 122      | 122      | 122      | 122      | 122         | 122      | 122      | 122        | 122      | 122      | 122      | 122          | 122      | 122      | 122      | 122      | 122         | 122      |
| LatSec        | ∞        | 27       | 27       | 27       | 57       | 57       | 57       | 32          | 32       | 32       | 7        | 7        | 7        | 21       | 21       | 21       | Ŋ        | v,       | 40       | 7           | . 1      | 7        | 25         | 25       | 25       | 57       | 57           | 57       | 16       | 16       | 16       | 47          | 47       |
| LatMin        | 22       | 15       | 15       | 15       | 8        | S        | 5        | 01          | 01       | 10       | 59       | 89       | 59       | 57       | . 57     | 57       | 51       | 51       | 51       | 42          | 42       | 42       | 37         | 37       | 37       | 37       | 37           | 37       | 35       | 35       | 35       | 32          | 32       |
| LatDeg LatMin | 47       | 48       | 48       | 48       | 48       | 48       | 48       | 48          | 48       | 48       | 47       | 47       | 47       | 47       | 47       | 47       | 47       | 47       | 47       | 47          | 47       | 47       | 47         | 47       | 47       | 47       | 47           | 47       | 47       | 47       | 47       | 47          | 47       |
| *             |          |          |          | ,        | -        |          |          |             | -        |          | -        |          | •        |          |          | *****    | <b>A</b> | p-mt     |          | -           |          |          | -          |          | ****     |          | <b>proof</b> |          |          |          | -        | -           | ****     |
| O             | MO          | MO       | MO       | MO       | MO       | MO       | MO       | MO       | MO       | MO       | MO       | MO       | MO          | MO       | MO       | MO         | MO       | MO       | MO       | MO           | MO       | MO       | MO       | MO       | MO          | MO       |
| SAMPLE        | ю        | gmd      | 5        | ťΩ       |          | 73       | ĸ        | <b>, ma</b> | 7        | ťΥ       | ****     | 7        | m        |          | 71       | m        |          | 7        | m        | <del></del> | . 2      | 190      | ,q         | 7        | ŧή       |          | 7            | т        | -        | 71       | m        | <del></del> | 7        |
| STATION       | 0017     | 0018     | 0018     | 0018     | 6100     | 6100     | 6100     | 0020        | 0000     | 0000     | 0021     | 0021     | 0021     | 0022     | 0022     | 0022     | 9700     | 9700     | 9700     | 6700        | 6700     | 6700     | 0030       | 0030     | 0030     | 0032     | 0032         | 0032     | 0033     | 0033     | 0033     | 0034        | 0034     |
| SURVEY        | SED19003    | SED19003 | SED19003 | SED19003 | SED19003 | SED19003 | SED19003 | SED19003 | SED19003 | SED19003 | SED19003 | SED19003 | SED19003    | SED19003 | SED19003 | SED19003   | SED19003 | SED19003 | SED19003 | SED19003     | SED19003 | SED19003 | SED19003 | SED19003 | SED19003    | SED19003 |

| SURVEY   | STATION | SAMPLE        | CRAB       | AMPAB | ECHAB | ECHAB MISCAB POTAX | POTAX | AMPTX    | AMPTX MOTAX ECHTAX                     | ЕСИТАХ    | CRTX     | MISCTX    | Ħ     | F,    | Ш   | SDI  |
|----------|---------|---------------|------------|-------|-------|--------------------|-------|----------|----------------------------------------|-----------|----------|-----------|-------|-------|-----|------|
| SED19003 | 0017    | ٣             | 29         |       | 0     | <b>,,</b>          | 17    | *****    | 80                                     | 0         | 5        | ÷         | 0.972 | 0.672 | 19  | ٧    |
| SED19003 | 0018    |               | 25         | 15    | 0     | 3                  | 22    |          | ∞                                      | 0         | 7        | 7         | 0.902 | 0.567 | 99  | 85   |
| SED19003 | 0018    | 7             | 14         | δ.    | 0     | 4                  |       | _        | 10                                     | 0         | 5        | <b>T</b>  | 0.77  | 0.538 | 99  | 4    |
| SED19003 | 8100    | 3             | 13         | 4     | 0     | 9                  | 12    |          | ∞                                      | 0         | 3        |           | 0.841 | 609.0 | 99  | S    |
| SED19003 | 6100    | <b></b> .     | <b>0</b> 0 | 9     | 2     | 0                  | _     | 4        | 2                                      | 7         | 5        | 0         | 98.0  | 0.65  | 61  | s.   |
| SED19003 | 6100    | 2             | 9          | 3     | E)    | 3                  | 2     | 2        | m                                      |           | \$       | 7         | 0.849 | 0.642 | 70  | 9    |
| SED19003 | 6100    | m             | 7          | 7     |       | 0                  | 17    | 7        | 2                                      | pmq       | 2        | 0         | 0.979 | 0.729 | 7.1 | 10   |
| SED19003 | 0070    | Troot         | 79         | 43    | 0     | 0                  | 91    | 2        | 13                                     | 0         | 4        | 0         | 1.235 | 0.813 | 80  | 9    |
| SED19003 | 0070    | 2             | ∞          | 4     | o     | 0                  | 22    | **       | ************************************** | 0         | 9        | 0         | 1.305 | 0.82  | 11  | 10   |
| SED19003 | 0070    | 3             | 73         | 36    | 0     | 2                  | 29    | æ        | =                                      | 0         | 9        | event     | 1.316 | 0.787 | 81  |      |
| SED19003 | 0021    |               | 232        | 13    | 0     | ****               | 27    | 4        | 13                                     | 0         | 00       | _         | 1.087 | 0.643 | 63  | 9    |
| SED19003 | 0021    | 2             | 347        | 4     | 0     | 'n                 | 29    | 2        | 13                                     | 0         | 9        | Э         | 1.017 | 0.595 | 09  | 4    |
| SED19003 | 0021    | 3             | 140        | 9     | 0     | ю                  | 25    | 4        | 9                                      | 0         | ∞        | -         | 1.107 | 0.678 | 63  | 9    |
| SED19003 | 0022    |               | 167        | 25    | 0     | 0                  | 12    | 9        | 17                                     | 0         |          | 0         | 1.013 | 0.632 | 89  | 5    |
| SED19003 | 0022    | 7             | 239        | ę,    | 0     | 0                  | 24    | 2        | 14                                     | 0         | 7        | 0         | 1.007 | 0.609 | 28  |      |
| SED19003 | 0022    | 8             | 172        | 14    | 0     | 0                  | 18    |          | 21                                     | 0         | 5        | 0         | 1.029 | 0.626 | 29  | ₹0   |
| SED19003 | 9700    | . *****       | 29         | 40    | 0     | 5                  | 33    | 00       | 13                                     | 0         | 14       | m         | 1.569 | 0.872 | 89  | 22   |
| SED19003 | 0026    | 2             | 82         | 36    | 0     | ∞                  | 39    | φ.       | 13                                     | 0         | 16       | ы         | 1.546 | 0.835 | 64  | 21   |
| SED19003 | 9700    | æ             | 100        | 71    | 0     | 7                  | 27    | 13       | 5                                      | 0         | 20       | 2         | 1.553 | 0.867 | 70  | 20   |
| SED19003 | 6700    | *****         | 35         | 7     |       | 3                  | 16    | 4        | ∞                                      |           | 60       |           | 0.836 | 0.546 | 46  | 'n   |
| SED19003 | 6700    | . 2           | 89         | 22    | 'n    | 0                  | 82    | 7        | 10                                     |           | 13       | 0         | 0.874 | 0.535 | 46  | ς.   |
| SED19003 | 6700    | ŧή            | 51         | 14    | ю     | 7                  | -     | 9        | 7                                      | -         | 11       |           | 0.73  | 0.489 | 45  | ίŋ   |
| SED19003 | 0030    | grant         | 82         | 4     | 0     | -                  | 37    | m        | 12                                     | 0         | 10       | -         | 1.209 | 89.0  | 89  | 6    |
| SED19003 | 0030    | 7             | 112        | -     | 0     | 7                  | 37    |          | ∞                                      | 0         | 9        | m         | 1.178 | 0.68  | 70  | 9    |
| SED19003 | 0030    | 6,0           | 124        |       | 0     | 0                  | 26    | 4        | œ                                      | 0         | ∞        | 0         | 1.08  | 9990  | 69  | 7    |
| SED19003 | 0032    |               | 146        | 38    | 27    | 47                 | 49    | 10       | 20                                     | 3         | 16       | ٣         | 1.429 | 0.728 | 79  | 16   |
| SED19003 | 0032    | 7             | Ξ          | . 32  | 7     | 24                 | 47    | <b>∞</b> | 61                                     | æ         | 15       | 4         | 1.33  | 0.684 | 85  | 14   |
| SED19003 | 0032    | 6             | 116        | 34    | . 27  | 49                 | 48    | 10.      | 13                                     | 9         | 17       | 4         | 1.393 | 0.716 | 8   | 15   |
| SED19003 | 0033    | <b>T</b> 1004 | 86         | 4.    | М     | 2                  | 45    | 4        | 12                                     | ĸ         | 7        | 73        | 1.402 | 0.745 | 29  | 14   |
| SED19003 | 0033    | 7             | 145        | 12    | 44    | proved             | 50    | m        | 16                                     | 7         | . 12     | <b></b> ' | 1.487 | 0.779 | 89  | . 61 |
| SED19003 | 0033    | ٣             |            | 7     | 7     | 4                  | 42    | 4        | 12                                     | 7         | 7        | 7         | 1.364 | 0.753 | 99  | 91   |
| SED19003 | 0034    | <b></b>       | 144        | 32    | 6     | 4                  | 30    | 9        | 6                                      | <b>\$</b> | 6        | ю         | 1.298 | 0.757 | 70  | 2    |
| SED19003 | 0034    | 7             | 86         |       | 7     | 7                  | 29    | 4        | 7                                      | şumi      | <b>∞</b> | 7         | 1.234 | 0.738 | 71  | 6    |

|             |          |          |          |          |          |          |          |          |          |          |          |          |          |          | ٠        |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |
|-------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
| MOAB        | 26       | 23       | 96       | 34       | =        | 6        | 9        | 42       | 69       | 55       | 62       | 57       | 64       | 1149     | 1150     | 1050     | 63       | 06       | 63       | 19       | 55       | 41       | 16       | 14       | ∞        | 46       | 35       | 62       | 74       | 118      | 8        | 33       | 51       |
| POAB        | 230      | 250      | 585      | 528      | 28       | 27       | 34       | 55       | 93       | 101      | 162      | 243      | 142      | 819      | 953      |          | 153      | 178      | 163      | 796      | 999      | 449      | 143      | 171      | 222      | 266      | 317      | 359      | 233      | 287      | 285      | 29       | 54       |
| TOTAX       | 46       | 40       | 90       | 38       | 26       | 26       | 27       | 34       | 53       | 46       | 44       | 89       | 54       | 45       | 53       | 45       | 64       | 58       | 63       | 109      | 103      | 64       | 38       | 46       | 4        | 63       | 69       | 69       | 16       | 96       | 95       | 36       | 39       |
| TOAB        | 341      | 611      | 962      | 894      | 72       | 98       | 93       | 160      | 293      | 235      | 356      | 406      | 297      | 2089     | 2211     | 2256     | 754      | 630      | 634      | 994      | 759      | 624      | 229      | 242      | 304      | 442      | 514      | 286      | 553      | 295      | 532      | 361      | 316      |
| **          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |
| % TOC       | 2.7      | 3.07     | 3.07     | 3.07     | 2.5      | 2.5      | 2.5      | 0.15     | 0.15     | 0.15     | -        | -        |          | 1.5      | 1.5      | 1.5      | 0.26     | 0.26     | 0.26     | 0.51     | 0.51     | 0.51     | 1.2      | 1.2      | 1.2      | 0.39     | 0.39     | 0.39     | 0.32     | 0.32     | 0.32     | 2.2      | 2.2      |
| % FINES     | 95       | 82.3     | 82.3     | 82.3     | 86       | 86       | 86       | 2        | 2        | 2        | 28       | 28       | 28       | 99       | 99       | 99       | 7        | 7        | 7        | 14.5     | 14.5     | 14.5     | 09       | 09       | 09       | 19       | 19       | 19       | 12       | 12       | 12       | 65       | 92       |
| Depth (m)   | 9.9-     | -11.3    | -11.3    | -11.3    | -198.7   | -198.7   | -198.7   | -14.8    | -14.8    | -14.8    | -94      | -9.4     | -9.4     | -19.1    | -19.1    | -19.1    | -19.8    | -19.8    | -19.8    | -19.5    | -19.5    | -19.5    | -51.9    | -51.9    | -51.9    | -19.8    | -19.8    | -19.8    | -19.5    | -19.5    | -19.5    | -20      | -20      |
| LonSec      | 43       | 53       | 53       | 53       | 34       | 34       | 34       | 48       | 48       | 48       | 6        | Φ.       | 6        | 13       | 13       | 13       | 28       | 28       | 28       | 16       | 16       | 16       | m        | m        | т        | 46       | 46       | 46       | 49       | 49       | 49       | ĸ        | 100      |
| LonMin      | 39       | 41       | 41       | 41       | 23       | 23       | 23       | 21       | 7        | 21       | 26       | 26       | . 56     | 25       | 25       | 25       | 44       | 44       | 44       | 40       | . 40     | 40       | 45       | 45       | 45       | 46       | 46       | 46       | 50       | 50       | 50       | 55       | 55       |
| LonDeg      | 122      | 122      | 122      | 122      | 122      | 122      | 122      | 122      | 122      | 122      | 122      | 122      | 122      | 122      | 122      | 122      | 122      | 122      | 122      | 122      | 122      | 122      | 122      | 122      | 122      | 122      | 122      | 122      | 122      | 122      | 122      | 122      | 122      |
| LatSec      | 47       | 49       | 49       | 49       | 43       | 43       | 43       | 15       | . 15     | 15       | 42       | 42       | 42       | 32       | 32       | 32       | 53       | 53       | 53       | 45       | 45       | 45       | 53       | 53       | 53       | 57       | 57       | 57       | 7        | 7        | 7        | 30       | 30       |
| LatMin      | 32       | 36       | 36       | . 36     | 25       | 25       | 25       | 20       | 20       | 20       | 15       | 15       | 15       | 16       | 91       | 16       | 13       | 17       | 7        | 6        | 6        | 6        | 6        | 6        | 6        | 7        | 7        | 7        | 14       | 14       | 14       | 7        | 7        |
| LatDeg      | 47       | 47       | 47       | 47       | 47       | 47       | 47       | 47       | 47       | 47       | 47       | 47       | 47       | 47       | 47       | 47       | 47       | 47       | 47       | 47       | 47       | 47       | 47       | 47       | 47       | 47       | 47       | 47       | 47       | 47       | 47       | 47       | 47       |
| <b>*</b> 22 | <b>,</b> | -        | _        | -        |          |          |          | ****     | -        | -        | _        | -        | _        | 4****4   | partner  | Pro-c    | -        | <b></b>  |          | ••••     |          | ***      | _        | -        | ****     | ****     | _        | _        | -        |          | •••      |          |          |
| ပ           | MO       | МО       | MO       |
| SAMPLE      | т        | -        | 2        | ĸ.       | -        | 7        | т        | horsi    | 2        | ю        | •        | 7        | 8        | provid   | 7        | en       |          | 7        | m        | _        | 7        | æ        |          | 7        | ش        |          | 7        | E        | *****    | 2        | 3        | ,        | 7        |
| STATION     | 0034     | 0035     | 0035     | 0035     | 8600     | . 0038   | 0038     | 0039     | 6003     | 0039     | 0040     | 0040     | 0040     | 0041     | 0041     | 0041     | 0043     | 0043     | 0043     | 0044     | 0044     | 0044     | 0045     | 0045     | 0045     | 0046R    | 0046R    | 0046R    | 0047     | 0047     | 0047     | 0048     | 0048     |
| SURVEY      | SED19003 |

| SURVEY     | STATION | SAMPLE             | CRAB | AMPAB | ECHAB | MISCAB      | POTAX | AMPTX      | MOTAX ECHTAX | снтах     | CRTX | MISCTX      | · <b>II</b> | <del>-</del> | E    | SDI      |
|------------|---------|--------------------|------|-------|-------|-------------|-------|------------|--------------|-----------|------|-------------|-------------|--------------|------|----------|
| SED19003   | 0034    | ю                  | 83   | 18    | 7     | 0.          | . 59  | 7          | 10           | 7         | S.   | 0           | 1.2         | 0.721        | 73   | ∞        |
| SED19003   | . 0035  |                    | 293  | ťΩ    | 42    | m           | 25    | ťή         | 9            |           | 9    | 2           | 0.902       | 0.563        | 77   | 4        |
| SED19003   | 0035    | 7                  | 250  | 27    | 35    | 2           | 31    | vo         | 7            | -         | 6    | 7           | 1.017       | 0.599        | 86   | S        |
| SED19003   | 0035    | £                  | 280  | ć.)   | 45    | 7           | 22    | 7          | \$           | •••       | S    | ς,          | 0.911       | 0.577        | 7    | 4        |
| SED19003   | 0038    |                    | 26   | 4     | 7     | 0           |       | Ś          | 4            | 2         | 6    | 0           | 1.264       | 0.893        | 70   | 10       |
| SED19003   | 0038    | 2                  | 49   | 27    | -     | 0           | 12    | <b>ا</b>   | 4            | grani     | o,   | 0           | 1,203       | 0.85         | 76   | 00       |
| SED19003   | 8500    | ю                  | 51   | 39    | . 7   | 0           | 12    | 'n         | 4            | 2         | 6    | 0           | 1.182       | 0.826        | 85   | 6        |
| SED19003   | 0039    | -                  | 19   | 27    | ***** | <b>u</b> m+ | 15    | Ŋ          | 00           |           | ο,   | -           | 1.213       | 0.792        | 77   | <b>∞</b> |
| SED19003   | 0039    | 7                  | 126  | 27    |       | 4           | 25    | <b>c</b> c | 12           |           | 13   | 7           | 1.189       | 0.689        | 89   | 7        |
| SED19003   | 0039    | ĸ                  | 69   | 11    | 0     | 4           | 21    | 4          | 12           | 0         | 6    | 4           | 1.258       | 0.756        | 63   | 6        |
| SED19003   | 0040    |                    | 129  | . 2   | _     | 7           | 24    | yuuud      | 12           | 1         | Ŋ    | 7           | 1.257       | 0.765        | 70   | 6        |
| SED19003   | 0040    | . 7                | 26   | 9     | 4     | 5           | 41    | 60         | 15           | ****      | œ    | 80          | 1.372       | 0.749        | 72   | 14       |
| SED19003   | 0040    | ന                  | 82   | ĸ     | 4     | \$          | 28    | 2          | 16           | 7         | 9    | 7           | 1.39        | 0.803        | 72   | 14       |
| SED19003   | 0041    |                    | 112  | 5     | 5     | 4           | 26    | 7          | 01           | 7         | 9    |             | 0.632       | 0.382        | 65   | 7        |
| SED19003   | 0041    | 7                  | 86   | 7     | 2     | ∞           | 30    |            | 14           | paret     | 1    | -           | 0.676       | 0.392        | 65   | 7        |
| SED19003   | 0041    | m                  | 90   | 22    | 0     | 5           | 29    | 2          | ∞            | 0         | 9    | 7           | 0.584       | 0.354        | 99   | 2        |
| SED19003   | 0043    |                    | 247  | 63    | 287   | 4           | 32    | 7          | 16           | 7         |      | 3           | 1.163       | 0.644        | 80   | 7        |
| SED19003   | 0043    | <b>C1</b>          | 238  | 7.1   | 123   | _           | 30    | 7          | 91           | 2         | 9/   | _           | 1.202       | 0.681        | 83   | 00       |
| SED19003   | 0043    | ٣                  | 175  | 43    | 227   | 9           | 33    | 4          | 17           | 7         | 90   | 33          | 1.197       | 0.665        | 87   | 6        |
| SED19003   | 0044    |                    | 95   | 45    | 4     | 28          | 65    | 6          | 19           | 2         | 18   | 5           | 1.415       | 0.694        | 85   | 20       |
| SED19003   | 0044    | 7                  | 94   | 47    | 13    | 31          | 62    | torus.     | 15           | ťħ        | 20   | 3           | 1,499       | 0.745        | 80   | 25       |
| SED19003   | 0044    | 3                  | 105  | 55    | 13    | 16          | 58    | Ξ          | 12           | 2         | 21   | 4           | 1.526       | 0.768        | 85   | 22       |
| SED 19003  | 0045    | punt.              | 50   | 9     | 13    | 7           | 23    | ٣          | 9            | gund      | 7    | ****        | 1.156       | 0.732        | 71   | 00       |
| SED19003   | 0045    | 7                  | 43   | 5     | 5     | 6           | 27    | m          | 7            |           | 7    | ťή          | 1.191       | 0.716        | 19   | 10       |
| SED19003   | 0045    | m                  | 58   | 10    | 9     | 10          | 25    | n          | . 8          |           | 8    | 2           | 1.139       | 0.706        | 75   | 00       |
| SED19003   | 0046R   | <del>, , , ,</del> | 115  | 43    | 4     | Ξ           | 30    | 10         | 15           | -         | 13   | 2           | 1,335       | 0.742        | 81   |          |
| SED19003   | 0046R   |                    | 112  | 43    | 39    | <del></del> | 36    | 6          | ,d           | •         | 11   | 4           | 1.378       | 0.749        | 78   | 12       |
| SED19003 . | 0046R   | ဗ                  | 104  | 39    | 28    | 33          | 37    | 6          | 13           | 7         | 13   | 4           | 1.399       | 0.761        | 82   | 13       |
| SED19003   | 0047    | -                  | 38   | 14    | 48    | 160         | 55    | 'n         | 18           | <b>የጎ</b> | 01.  | <b>\$</b> 0 | 1.5         | 0.766        | 77   | 82       |
| SED19003   | 0047    | 7                  | 29   | 91    | 23    | 105         | 57    | <b>∞</b>   | 13           | 7         | 13   | <b>ν</b>    | 1.563       | 8.0          | 74   | 19       |
| SED19003   | 0047    | 6                  | 57   | 12    | 51    | 58          | 58    | 9          | 18           | 7         | 13   | 4           | 1.617       | 0.817        | 74   | 23       |
| SED19003   | 0048    | <b>.</b>           | 148  | 14    | 0     | 4           | 21    | 2          | 7            | 0         | 4    | 7           | 0.934       | 9.0          | . 67 | 5        |
| SED19003   | 0048    | 2                  | 150  | 18    | -     | 10          | 16    | 7          | 12           | *****     | 4    | 4           | 1.072       | 0.674        | 99   | ∞        |

| SDI                | 85       | Ŋ        | 9        | 7          | 15       | 70       | 23       | Ŕ        | 7        | 9        | 20       | 19       | 22       | 7        | 2        | 33           | Φ        | 9        | 9        | 14       | 16       | 14       | 9             | 7        | 9        | 9        | 9        | 9.            | 4          | 9        | 13       | 41       | 17       |  |
|--------------------|----------|----------|----------|------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|--------------|----------|----------|----------|----------|----------|----------|---------------|----------|----------|----------|----------|---------------|------------|----------|----------|----------|----------|--|
| I                  | 99       | 89       | 19       | 73         | 78       | 8,       | 76       | 99       | 99       | 09       | 74       | 74       | 78       | 11       | 64       | 63           | 62       | 58       | 52       | 62       | 99       | 99       | 70            | 70       | 83       | 80       | 80       | 83            | .84        | 74       | 78       | 11       | 80       |  |
| <del>-</del>       | 0.592    | 0.695    | 0.773    | 0.769      | 0.821    | 0.836    | 0.856    | 0.63     | 0.783    | 0.796    | 0.828    | 0.834    | 0.875    | 0.755    | 0.41     | 0.515        | 0.861    | 0.841    | 92.0     | 0.868    | 0.861    | 0.85     | 0.735         | 0.801    | 0.658    | 0.661    | 89.0     | 0.752         | 0.682      | 0.758    | 0.736    | 0.75     | 0.787    |  |
| ï                  | 0.907    | 0.888    | 1.005    | 1.074      | 1.459    | 1.531    | 1.599    | 0.832    | 1,066    | 1.017    | 1.577    | 1.554    | 1.568    | 1.014    | 0.525    | 0.681        | 1.188    | 1.056    | 1.062    | 1.41     | 1.448    | 1,413    | 1.014         | 1.075    | 1.107    | 1.065    | 1.041    | 1.051         | 9260       | 1.084    | 1.362    | 1.402    | 1.438    |  |
| MISCTX             | c,       |          |          | <b>,</b> . |          | 7        | ю        | •        |          | 0        | 4        | 71       | т        | <b>"</b> | ****     | -            |          | -        |          | m        | 7        | m        | -             | -        | 7        | 7        | 4        | 7             | <b>,</b> , | 7        | 8        | æ        | rn.      |  |
| CRTX MI            | ν.       | 4        | 4        | m          | 15       | 14       |          | 4        | 4        | 7        | 17       | Ξ        | 0,       | 9        | 33       | 4            | \$       | 3        | \$       | 10       | 11       | 6        | 4             | 4        | 9        | 9/       | 4        | 4             | 4          | ς.       | 91.      | 11       | 15       |  |
|                    | 0        |          | yme      |            | 0        | ,        | 7        |          | 7        | ····· ,  | 7        | 4        | -        | 7        | <b>,</b> | <b>,,,,,</b> |          |          | -        | 1        | 0        | •***     | <b>F</b> ***4 | ****     | 7        | •        |          | 7             | 7          | 7        | -        | <b>)</b> | -        |  |
| JTAX EC            | 12       | 'n       | ŧ٧       | 9          | 15       | 13       | 16       | 5        | 9        | 9        | 16       | 11       | 15       | 7        | S        | 4            | 9        | 4        | 4        | 7        | 13       | 10       | 7             | 4        | 15       | ∞        | 6        | ş,            | 9          | 7        | 12       | 16       | 14       |  |
| AMPTX MOTAX ECHTAX | . 2      | -        | 0        |            | 7        | έż       | en       | -        | -        | 0        | 9        | 7        | \$       |          | -        | 0            | 0        | 0        | -        | ς.       | ,9       | 9        | 7             | <b>↔</b> | ĸ        | 6        | 5.       | 73            | 7          | m        | ∞        | ς.       | =        |  |
|                    | 13       | 80       | 9/       | 14         | 29       | 38       | 43       | 10       | 10       | 10       | 43       | 39       | 34       | 9        | 90       | 10           | 11       | ο,       | 14       | 14       | 22       | 23       | -             | 12       | 23       | 21       | 16       | 12            | 4          | 10       | 39       | 43       | 33       |  |
| ECHAB MISCAB POTAX | 43       | т        | 3        | 7          | 2        | 12       | 9        | 7        |          | 0        | 21       | 12       | 15       | 7        | 12       | 10           | m        | -        | 73       | 9        | 9        | 7        | 11            | 6        | 7        | 9        | 6        | \$            | 00         | 6        | 178      | 109      | 100      |  |
| CHAB N             | 0        | ю        | 7        | 13         | 0        | т        | 6        | _        | 73       | 7        | 31       | . 28     | 28       | 7        | 4        | -            | 4        | ť'n      | 4        | 2        | 0        | ю        | ·             | 7        | 177      | 147      | 95       | 54            | 82         | 47       | 95       | 75       | 59       |  |
|                    | 23       |          | 0        | ю          | 34       | 30       | 16       | 2        | -        | 0        | 43       | 32       | 45       | 2        | -        | 0            | 0        | 0        | -        |          | 18       | 12       | 9             | ****     | 7        | 7        | 7        | 31            | 20         | 00       | 39       | 36       | 47       |  |
| CRAB AMPAB         | 212      | 51       | 32       | 99         | 140      | 137      | 121      | 7        | 10       | ю        | 134      | 134      | 111      | 91       | e        | 13           | 39       | 43       | 26       | 56       | 26       | 33       | 19            | 39       | 108      | 155      | 100      | 159           | 216        | 133      | 78       | 53       | 64       |  |
| SAMPLE             | m        |          | 7        | 3          |          | 2        | 3        | wae      | .7       | ٣        | -        | 7        | 3        | -        | 2        | 3            |          | 7        | 33       | -        | 7        | , m      | 2             | m        | <b>,</b> | 2        | ٣        | <b>,,,,,,</b> | 2          | ٣        | -        | 7        | 8        |  |
| STATION            | 0048     | 0049     | 0049     | 0049       | 6900     | 6900     | 6900     | 000      | 0000     | 000      | 1700     | 1,000    | 1/00     | R101     | R101     | R101         | R102     | R102     | R102     | R103     | R103     | R103     | R104          | R104     | R105     | R105     | R105     | R106          | R106       | R106     | R108     | R108     | R108     |  |
| SURVEY             | SED19003 | SED19003 | SED19003 | SED19003   | SED19003 | SED19003 | SED19003 | SED19003 | SED19003 | SED19003 | SED19003 | SED19003 | SED19003 | SED19003 | SED19003 | SED19003     | SED19003 | SED19003 | SED19003 | SED19003 | SED19003 | SED19003 | SED19003      | SED19003 | SED19003 | SED19003 | SED19003 | SED19003      | SED19003   | SED19003 | SED19003 | SED19003 | SED19003 |  |

|             |            |          |          |          |          |          |          |          |          |          |          |          |          |          |            |          |          |          |          |          |          |          |           |          |          |          |          |              |          |          |           | -        |          |
|-------------|------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|------------|----------|----------|----------|----------|----------|----------|----------|-----------|----------|----------|----------|----------|--------------|----------|----------|-----------|----------|----------|
| MOAB        | 55         | *****    | *****    | 31       | 7.1      | 57       | 72       | 18       | 37       | 47       | 113      | 73       | 77       | 64       | 185        | 160      | 35       | 42       | 139      | 75       | 69       | 75       | 23        | ς.       | 55       | 40       | 91       | 10           | 10       | 26       | 199       | 298      | 155      |
| POAB        | 112        | 34       | 20       | , 90     | 172      | 205      | 128      | 44       | 09       | 32       | 318      | 297      | 259      | 22       | 19         | 33       | 51       | 4        | 72       | 70       | 111      | 115      | 157       | 06       | 205      | 216      | 116      | 125          | 129      | 103      | 175       | 244      | 163      |
| TOTAX       | 34         | 61       | 20       | 25       | 9        | 89       | 74       | 21       | 23       | 61       | 80       | 73       | 62       | 22       | 61         | 21       | 24       | <u>~</u> | 25       | 42       | 48       | 46       | 24        | 22       | 48       | 14       | 34       | 25           | 27       | 27       | 7.1       | 74       | 19       |
| TOAB        | 388        | 102      | 86       | 207      | 385      | 414      | 338      | 135      | 114      | 84       | 617      | 544      | 490      | 111      | 226        | 217      | 132      | 130      | 273      | 181      | 212      | 233      | 253       | 150      | 552      | 564      | 336      | 353          | 445      | 324      | 725       | 779      | 541      |
| <b>5</b> ** |            |          |          |          |          |          |          |          |          |          |          |          |          |          |            |          |          |          |          |          |          |          |           |          |          |          |          |              |          |          |           |          | ٠        |
| % TOC       | 2.2        |          | 3        | т        | 0.47     | 0.47     | 0.47     | 3.1      | 3.1      | J.       | 1.4      | 4.       | 4.       | 4        | 4          | **       | 2.6      | 2.6      | 2.6      | 0.5      | 0.5      | 0.5      | m         | ლ        | 2.2      | 2.2      | 2.2      | 2.8          | 2.8      | 2.8      | 0.2       | 0.2      | 0.2      |
| % FINES     | 92         | 16       | 76       | 46       | 15       | 15       | . 15     | 64       | 64       | 64       | 46       | 46       | 46       | 96       | 06         | 90       | 88       | 88       | 88       | ∞        | 90       | ∞        | 86        | 86       | 7.5      | 75       | 75       | 98           | 98       | 98       |           | \$       |          |
| Depth (m)   | -20        | -4.7     | 4.7      | 4.7      | -32.4    | -32.4    | -32.4    | -5.2     | -5.2     | -5.2     | -6.1     | -6.1     | -6.1     | -2.1     | -2.1       | -2.1     | -11.6    | -11.6    | -11.6    | -20.5    | -20.5    | -20.5    | <i>t-</i> | 1-       | -14      | -14      | -14      | -11.2        | -11.2    | -11.2    | -18.9     | -18.9    | -18.9    |
| LonSec      | æ          | 43       | 43       | 43       | 7        | 7        | 2        | 0        | 0        | 0        | 7        | 7        | 7        | 40       | ςς.        | \$       | 8        | ለ        | 'n       | 23       | 23       | 23       | 24        | 24       | 43       | 42       | 42       | 18           | . 18     | 18       | 58        | 58       | . 58     |
| LonMin      | 55         | 54       | 54       | 54       | 32       | 32       | 32       | \$       |          | S        | 35       | 35       | . 35     | m        | <b>6</b> 3 | ю        |          | -        | -        | 57       | 57       | 57       | 58        | 58       | 56       | . 56     | 26       | 55           | 55       | 55       | 53        | 53       | 53       |
| LonDeg      | 122        | 122      | 122      | 122      | 122      | 122      | 122      | 123      | 123      | 123      | 122      | 122      | 122      | 123      | 123        | 123      | 123      | 123      | 123      | 122      | 122      | 122      | 122       | 122      | 122      | 122      | 122      | 122          | 122      | 122      | 122       | 122      | 122      |
| LatSec      | 30         | 52       | 52       | 52       |          | 11       |          | 32       | 32       | 32       | 35 .     | 35       | 35       | 58       | 58         | 58       | 8        | 30       | S        | 'n       | 3        | 5        | 48        | 48       | 4        | 4        | 4        | 51           | 51       | 51       | 52        | 52       | 52       |
| LatMin      | 7          | 4        | 4        | 4        | 44       | 44       | 44       | 12       | 12       | 12       | 30       | 30       | 30       | 13       | 13         | 13       | 7        | 7        | 7        | 01       | 10       | 10       | 3         | \$       | ∞        | ∞        | ∞        | 5            | 5        | 5        | ∞         | ∞        | ∞        |
| LatDeg      | 47         | 47       | 47       | 47       | 47       | 47       | 47       | 47       | 47       | 47       | 48       | 48       | 48       | 47       | . 47       | 47       | 47       | 47       | 47       | 47       | 47       | 47       | 47        | 47       | 47       | 47       | 47       | 47           | 47       | 47       | 47        | 47       | 47       |
| <b>*</b>    | , <b>–</b> | -        | <b>~</b> | _        |          | -        | -        | 1        |          | -        |          | -        |          | <b>,</b> |            |          | <b>,</b> |          | -        | -        |          | -        | -         | ****     | -        |          |          |              |          |          | <b></b> 4 | _        | _        |
| O           | MO         | MO       | MO       | MO       | WO.      | MO         | MO       | MO       | MO       | MO       | MO       | MO       | MO       | MO        | MO       | MO       | MO       | MO       | MO           | MO       | MO       | MO        | MO       | MO       |
| SAMPLE      | ю          |          | 7        | 3        | _        | 7        | 3        | _        | 2        | 6        | _        | 7        | 3        | ,        | 7          | 8        | -        | 7        | Э        | -        | 7        | 3        | 2         | 3        |          | 7        | 63       | <b>Provi</b> | . 2      | 3        |           | 2        | £        |
| STATION     | 0048       | 0049     | 0049     | 0049     | 6900     | 6900     | 6900     | 0/00     | 0000     | 0020     | 1200     | 1,000    | 0071     | R101     | R101       | R101     | R102     | R102     | R102     | .R103    | R103     | R103     | R104      | R104     | R105     | R105     | R105     | R106         | R106     | R106     | R108      | R108     | R108     |
| SURVEY      | SED19003   | SED19003 | SED19003 | SED19003 | SED19003 | SED19003 | SED19003 | SED19003 | SED19003 | SED19003 | SED19003 | SED19003 | SED19003 | SED19003 | SED19003   | SED19003 | SED19003 | SED19003 | SED19003 | SED19003 | SED19003 | SED19003 | SED19003  | SED19003 | SED19003 | SED19003 | SED19003 | SED19003     | SED19003 | SED19003 | SED19003  | SED19003 | SED19003 |

| MOAB        |          | <b>00</b> | 0,       | 22       | 17       | 17       | 38       | 58       | 22       | 23       | 37       |    | S        | 22       | 10       | 35       | 14       | 28       | 23       | 62       | 70       | 25       | 91       | . 95     | 7.8         | 89       | 68       | 164      | 116      | 137      | 85       | 131      | 79       |
|-------------|----------|-----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|-------------|----------|----------|----------|----------|----------|----------|----------|----------|
| POAB        | 173      | 162       | 139      | 115      | 98       | 87       | 129      | 184      | 79       | 172      | 100      |    | 38       | . 08     | 22       | 45       | 34       | 85       | 38       | 248      | 108      | 76       | 42       | 39       | 16          | 23       | 46       | 92       | 46       | 108      | 80       | 79       | 216      |
| TOTAX       | 33       | 29        | 25       | 27       | 32       | 56       | 58       | 58       | 33       | 23       | 37       |    | 22       | 24       | 21       | 24       | 25       | 20       | 82       | . 27     | 23       | 20       | 31       | 30       | 21          | 27       | 34       | 43       | 38       | 41       | 39       | 39       | 64       |
| TOAB        | 612      | 585       | 536      | 397      | 181      | 212      | 241      | 328      | 142      | 241      | 175      |    | 272      | 303      | 376      | 543      | 482      | 138      | 78       | 376      | 191      | 112      | 215      | 202      | 238         | 253      | 219      | 345      | 239      | 301      | 238      | 291      | 319      |
| <b>5</b> ** |          |           |          |          |          |          |          |          |          |          |          | ,. |          |          | _        |          |          |          |          |          |          |          |          |          |             |          |          |          |          |          |          |          |          |
| % TOC       | 2.5      | 2.5       | 2.5      | 3.4      | 3.4      | 3.4      |          |          | 0.1      | 0.       | 0.1      |    | 1.7      | ,        | 1.7      | 1.7      | 1.3      | £        | 1.3      | ****     | =        | 1.3      |          |          | ,,          |          |          | 1.8      | 1.8      | 1.8      | 1.8      | 1.8      | 2.5      |
| % FINES     | 91       | 16        | 91       | 16       | 91       | 91       | 36       | 36       | yand     |          | <b></b>  |    | 95.8     | 95.8     | 95.8     | 95.8     | 95.8     | 63.8     | 63.8     | 63.8     | 63.8     | 63.8     | 97.6     | 97.6     | 97.6        | 91.6     | 97.6     | 95.6     | 92.6     | 95.6     | 92.6     | 92.6     | 63.7     |
| Depth (m)   | -22.7    | -22.7     | -22.7    | -18.2    | -18.2    | -18.2    | -20.1    | -20.1    | -19.4    | -19.4    | -19.4    |    | -23.5    | -23.5    | -23.5    | -23.5    | -23.5    | -223.2   | -223.2   | -223.2   | -223.2   | -223.2   | -25.4    | -25.4    | -25.4       | -25.4    | -25.4    | -20.2    | -20.2    | -20.2    | -20.2    | -20.2    | -22.1    |
| LonSec      | 51       | . 51      | 51       | 24       | 24       | 24       | 26       | 56       | 18       | 18       | 18       |    | 41       | 4        | 41       | 14       | 41       | 20       | 50       | 20       | 70       | 20       | 18       | 18       | 18          | 18       | 18       | 9        | 9        | 9        | 9        | 9        | 57       |
| LonMin      | 46       | 49        | 49       | 46       | 46       | 46       | 46       | 46       | 42       | 42       | 42       |    | 51       | 51       | 51       | 51       | 51       | 58       | 58       | 58       | 58       | . 58     | 32       | 32       | 32          | 32       | 32       | 32       | 32       | 32       | 32       | 32       | 56       |
| LonDeg      | 122      | 122       | 122      | 122      | 122      | 122      | 122      | 122      | 122      | 122      | 122      | •  | 122      | 122      | 122      | 122      | 122      | 122      | 122      | 122      | 122      | 122      | 122      | 122      | 122         | 122      | 122      | 122      | 122      | 122      | 122      | 122      | 123      |
| LatSec      | 16       | 16        | 16       | 25       | 25       | 25       | 16       | 16       | 10       | 10       | 10       |    | 28       | 28       | 28       | 28       | 28       | 16       | 16       | 16       | 16       | 16       | 4        | 4        | 4           | 4        | 4        | 51       | 51       | 51       | 51       | 51       | 53       |
| LatMin      | 6        | 0         | 6        | 20       | 20       | 20.      | 18       | 18       | 9        | 9        | 9        |    | 59       | 59       | 59       | 59       | 59       | 52       | 52       | 52       | 52       | 52       | 41       | 41       | 41          | 4        | 4        | 35       | 35       | 35       | 35       | 35       | 7        |
| LatDeg      | 47       | 47        | 4        | .47      | 47       | 47       | 47       | 47       | 47       | 47       | 47       |    | 48       | 48       | 48       | 48       | 48       | 48       | 48       | 48       | 48       | 48       | 48       | 48       | 48          | 48       | 48       | 48       | 48       | 48       | 48       | 48       | 48       |
| <b>\$</b> 2 |          |           |          |          |          |          |          |          |          |          | -        |    | ÷        |          |          | -        |          |          | -        |          |          |          | _        | -        | <del></del> | •        |          | <b>,</b> | ,        |          | ••••     | -        |          |
| ပ           | MO       | MO        | MO       | MO       | MO       | MO       | MO       | MO       | MO       | MO<br>MO | MO       |    | MO          | MO       | MO       | MO       | MO       | MO       | MO       | MO       | MO       |
| SAMPLE      | -        | 2         | М        |          | 2        | en.      | <u>.</u> | ю        | -        | 7        | 3        |    |          | 5        | 3        | 4        | 5        | e4       | 7        | 'n       | 4        | 5        | porta    | 7        | 3           | 47       | \$       |          | 7        | 3        | 4        | 'n       | -        |
| STATION     | R109     | R109      | R109     | R110     | R110     | R110     | R111     | RIII     | R112     | R112     | R112     |    | -        | _        |          | <b>3</b> | p-mt     | т        | ٣        | m        | ന        | т        | 4        | ₹        | 4           | 4        | 4        | Ś        | 87       | 50       | ۲۵       | \$5      | ∞.       |
| SURVEY      | SED19003 | SED19003  | SED19003 | SED19003 | SED19003 | SED19003 | SED19003 | SED19003 | SED19003 | SED19003 | SED19003 |    | SED19103    | SED19103 | SED19103 | SED19103 | SED19103 | SED19103 | SED19103 | SED19103 | SED19103 |

| SDI                     | 4              | 4        | 4        | 7        |             | 7             | 19       | 14       | 6        | 4        | 12       | æ        | 4        | ĸ        | . m      | т        | ∞        | ∞        | ş٧           | 7        | <b>.</b>    | <b>0</b> 0 | <b>.</b>       | 8        | 5        | 0           | 10       | 10       | 12       | _        | 10       | 20       |
|-------------------------|----------------|----------|----------|----------|-------------|---------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|--------------|----------|-------------|------------|----------------|----------|----------|-------------|----------|----------|----------|----------|----------|----------|
| hard<br>Frank<br>Servel | 84             | 80       | 98       | 90       | 84          | 87            | 99       | 76       | 73       | 19       | 73       | 82       | 82       | 06       | 93       | 96       | 58       | 61       | 57           | 99       | 61          | 80         | 87             | 68       | 06       | 76          | 74       | 11       | 19       | 76       | 711      | 92       |
| <del>-</del> ,          | 0.571          | 0.591    | 0.572    | 0.712    | 0.702       | 0.759         | 0.869    | 0.813    | 0.813    | 9.0      | 0.829    | 0.511    | 0,668    | 0.581    | 0.579    | 0.553    | 0.835    | 0.91     | 0.683        | 0.811    | 0.81        | 0.789      | 0.723          | 0.65     | 0.643    | 0.817       | 0.778    | 0.791    | 0.813    | 0.818    | 0.793    | 0.861    |
| I                       | 0.867          | 0.864    | 0.799    | 1.019    | 1.056       | 1.074         | 1.533    | 1.434    | 1.234    | 0.817    | m<br>G   | 0.686    | 0.922    | 0.769    | 0.8      | 0.773    | 1.087    | 1.142    | 0.977        | 1.089    | 1.054       | 1.176      | 1.068          | 0.859    | 0.92     | 1.251       | 1.271    | 1,249    | 1,311    | 1.301    | 1.261    | 1.555    |
| MISCTX                  | 4              | ы        | 7        | 7        | 7           |               | e        | 7        | 7        | -        |          | 0        |          | -        |          | -        | 0        | 0        | -            | 0        | 0           | 7          | <del>, ,</del> | yund     |          | ****        | 7        | 7        | 7        | 0        | 7        | 0        |
| CRTX                    | Ŋ              | 5        | 4        | ĸ        | 4           | 4             | 9        | 00       | 10       | 4        |          | 7        | \$       | 9        | v        | 85       | 7        | m        | ю            | 4        | s           | 7          | 4              | М        | 4        | Ş           | 'n       | 'n       | m        | Š        | 4        | 10       |
| CHTAX                   |                |          | -        | 7        | 4           | 7             | 63       | 5.       | 0        | 0        | 0        | 7        | 2        | 7        | 7        | 2        |          | -        | <b>Front</b> |          | 0           | 2          | 2              | -        | ч        | 7           | 7        | ******   | 5        | ćη       | 7        | т        |
| MOTAX ECHTAX            | 9              | \$       | 'n       | ις       | 90          | 9             | 10       | 15       | 80       | 4        | 7        | m        | 00       | 4        | ŝ        | ς,       | 4        | 3        | 9            | 4        | 4           | 6          | 6              | 7        | 10       | <del></del> | 91       | 7        | 12       | П        | 14       | 13       |
| AMPTX                   |                | ť'n      | -        | <b></b>  | <b>****</b> | <b>B</b> 1647 | 64       | 4        | 9        | 4        | σ.       | m        | 7        | tr)      | ED.      | £        | es       | 2        | 2            | Beerd.   | æ           |            | ю              | -        | 2        | 7           | 7        | m        | ,<br>,   | 7        |          | 4        |
|                         | 16             | 14       |          | 15       | 16          | 13            | 36       | 28       | 91       | 14       | 18       | 10       | ∞        | 00       | =        | 12       | 7        | 10       | 15           | 12       | 11          | 91         | 14             | 6        | 10       | 15          | 18       | 15       | 17       | 19       | 16       | 37       |
| ECHAB MISCAB POTAX      | 18             | 18       | 7        | 21       | 00          | ν.            | 24       | 4        | 3        | , y1     | -        | 0        |          | e        |          | 2        | 0        | 0        | -            | O        | 0           | ť'n        |                | 2        | 2        | 7           | S        | 2        | 7        | 0        | m        | 0        |
| ECHAB                   | 181            | 151      | 185      | 158      | 52          | 28            |          | 18       | 0        | 0        | 0        | 28       | 19       | 92       | 214      | 172      |          | 3        | æ            | 1        | 0           | 38         | 89             | 106      | 114      | 43          | 50       | 48       | 26       | 47       | 45       | 00       |
| AMPAB                   | 7              | 7        |          | 44       |             | 22            | 4        | 18       | 29       | 45       | 33       | 179      | 105      | 202      | 139      | 198      | S        | 4        | 4            | 7        | 9           | 24         | 21             | 22       | 24       | 14          | 15       | ∞        | w        | ∞        | 9        | 13       |
| CRAB                    | 228            | 245      | 196      | 81       | <b>8</b> .  | 45            | 27       | 64       | 38       | 45       | 37       | 201      | 133      | 249      | 248      | 260      | 21       | 13       | 37           | 17       | <del></del> | 41         | 38             | 36       | 46       | 39          | 34       | 56       | 19       | 24       | 22       | 31       |
| SAMPLE                  | <del>r</del> m | 7        | ю        | _        | 7           | 3             | *****    | 3        |          | 7        | en       | Person   | 7        | ۳n       | 4        | 5        |          | 7        | m            | 4        | 5           |            | 2              | ٣        | 4        | \$          | -        | 2        | en       | 4        | 'n       | ⊷        |
| STATION                 | R109           | R109     | R109     | R110     | R110        | R110          | R111     | RIII     | R112     | R112     | R112     | ₩.       | post     |          |          | -        | к'n      | ۳        | m            | ٣        | m           | 4          | 4              | <b>₹</b> | 4        | 4           | \$       | Š        | ς        | \$       | S        | ∞        |
| SURVEY                  | SED19003       | SED19003 | SED19003 | SED19003 | SED19003    | SED19003      | SED19003 | SED19003 | SED19003 | SED19003 | SED19003 | SED19103     | SED19103 | SED19103    | SED19103   | SED19103       | SED19103 | SED19103 | SED19103    | SED19103 | SED19103 | SED19103 | SED19103 | SED19103 | SED19103 |

| POAB MOAB  | 241 40   | 193 26   | 153      | 213 51   | 83 82    | 99 110   | 74 83    | 95 84    | 50 97    | 89 29    | 35       | 92 46    | 116 36   | 127 79   | 180 92   | 171 87   | 158 72   | 163 51   | 123 99   | 48 362   | 31 356   | 26 322   | 82 329   | 80 280   | 217 392  | 302 422  |          | 82 174    |          |                      |                      |                                  |                                              |
|------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|-----------|----------|----------------------|----------------------|----------------------------------|----------------------------------------------|
|            | 19       | 51       | 49       | 62       | 43       | 50       | 44       | 49       | 43       | 46       | 65       | 75       | 74       | 83       | 69       | 19       | 29       | 64       | 19       | -        | 61       | 1.1      | 26       | 24       | 39       | 5        | 35       |           | 30       | 30                   | 30<br>36<br>24       | 30<br>36<br>24                   | 30<br>36<br>24<br>26                         |
| в тотах    | 309      | 230      | 185      | 302      | 334      | 447      | 378      | 368      | 361      | 145      | 170      | 201      | 199      | 275      | 699      | 625      | 604      | 663      | 648      | 412      | 387      | 351      | 413      | 361      | 979      | 759      | 274      |           | 655      | 655<br>491           | 555<br>491<br>47     | 555<br>491<br>47<br>51           | 555<br>491<br>47<br>51                       |
| TOAB       | , ,      |          |          |          |          |          |          |          |          |          |          |          |          |          |          | _        |          |          |          | Ť        |          | •        | ·        |          |          |          |          |           | _        |                      |                      |                                  |                                              |
| %TOC 2**   | 2.9      | 2.9      | 2.9      | 2.9      | 1.5      | 1.5      | 1.5      | 1.5      | 1.5      | 0.7      | 0.7      | 0.7      | 0.7      | 0.7      | 0.2      | 0.2      | 0.2      | 0.2      | 0.2      | 6.1      | 1.9      | 1.9      | 1.9      | 1.9      | 9.0      | 9.0      | 9.0      | `         | 0.0      | 9.0                  | 0.0<br>0.6<br>1.8    | 0.0                              | 0 9 8 8 8                                    |
|            | 63.7     | 63.7     | 63.7     | 63.7     | 91.4     | 91.4     | 91.4     | 91.4     | 91.4     | 37.8     | 37.8     | 37.8     | 37.8     | 37.8     | 5.8      | 5.8      | 5.8      | 5.8      | 5.8      | 93.7     | 93.7     | 93.7     | 93.7     | 93.7     | 41.8     | 8 4 8    | 41.8     | 8 8       | 2        | 8 41.8               | 41.8                 | 41.8<br>82.0<br>82.0             | 41.8<br>82.0<br>82.0                         |
| % FINES    | 9        | ý        | 9        | 9        | 6        | 6        | 6        | 6        | 6        | 'n       | 'n       | ĸ        | m        | Ś        |          |          |          |          |          | 66       | 6        | 6        | 6        | 6        | 4        | 4        | 44       | 4         | •        | . 4                  | · 44 90              | · 44 90 90                       | . 44 90 90 90                                |
| Depth (m)  | -22.1    | -22.1    | -22.1    | -22.1    | -21.1    | -21.1    | -21.1    | -21.1    | -21.1    | -113.4   | -113.4   | -113.4   | -113.4   | -113.4   | -21.8    | -21.8    | -21.8    | -21.8    | -21.8    | -82.7    | -82.7    | -82.7    | -82.7    | -82.7    | -19      | -19      | -19      | -19       |          | -19                  | -19                  | -19<br>-122.6<br>-122.6          | -19<br>-122.6<br>-122.6<br>-122.6            |
| LonSec     | 57       | 57       | 57       | 57       | 31       | 31       | 31       | 31       | 31       | 46       | 46       | 44       | 46       | 46       | 20       | 95       | 50       | 50       | 50       | 46       | 46       | 46       | 46       | 46       | 25       | 25       | 25       | 35        | 3        | 25                   | 25                   | 25 1 16 16 19                    | 25 9 9 9                                     |
| LonMin     | 26       | 36       | 56       | 92       | 46       | 46       | 46       | 46       | 46       | 43       | 43       | 43       | 43       | 43       | 48       | 48       | 48       | 48       | 48       |          | 7        | 7        | 7        | 7        | 37       | 37       | 37       | 37        |          | 37                   | 37 28                | 37 28 28                         | 37<br>28<br>28<br>28                         |
| LonDeg     | 123      | 123      | 123      | . 123    | 122      | 122      | 122      | 122      | 122      | 122      | 122      | 122      | 122      | 122      | 122      | 122      | 122      | 122      | 122      | 123      | 123      | 123      | 123      | 123      | 122      | 122      | 122      | 122       |          | 122                  | 122                  | 122                              | 122 122 121                                  |
| LatSec     | 53       | 53       | 53       | 53       | S        | \$       | ς.       | vn.      | 5        | 4        | 4        | 4        | 4        | 4        | 2        | 7        | 2        | 7        | 7        | 11       | Ξ.       | . =      | ****     | 11       | 22       | 22       | 22       | 22        |          | 22                   | 22 52                | 22 22 22 22 22                   | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2      |
| LatMin     | 7        | 7        | 7        | 1        | S        | 5        | 5        | 5        | 5        | 47       | 47       | 47       | 47       | 47       | 43 .     | 43       | 43       | 43       | 43       | 22       | 22       | . 22     | 22       | 22       | 15       | 15       | 15       | ?         | )        | 2 2                  | <u> </u>             | . <del></del> ~ ~                | <u> </u>                                     |
| LatDeg     | 48       | 48       | 48       | 48       | 48       | 48       | 48       | 48       | 48       | 47       | 47       | 47       | 47       | 47       | 47       | 47       | 47       | 47       | 47       | 47       | 47       | 47       | 47       | 47       | 48       | 48       | 48       | 48        | ?        | 2 84                 | 48 48                | 48 48 6<br>48 48 6               | 48 48 48 48 48 48 48 48 48 48 48 48 48 4     |
| <b>*</b> 2 | -        |          |          |          |          | ,        |          |          | -        | _        | -        | -        |          | _        |          |          |          | _        | -        |          |          | -        |          | <u></u>  |          |          | -        | -         | -        |                      | <del>-</del> -       |                                  |                                              |
| C          | MO       | WO.      | MO       | WO       | MO       | MO       | ,         | M        | MO W                 | M MO                 | W W W                            | W W W                                        |
| SAMPLE     | 7        | en<br>En | 4        | 'n       |          | 7        | ю        | 4        | 5        | _        | 73       | m        | 4        | 'n       | · ·      | 7        | m<br>·   | 4        | \$       |          | 7        | m        | 4        | s,       | ,2       | 7        | 3        | •         | 4        | 4 N                  | 4 % <del>-</del>     | 4 ~ ~ ~ ~                        | 4 2 - 12 m                                   |
| STATION    | 8        | ∞        | ∞        | œ        | 12       | 12       | 13       | 12       | 12       | 14       | 14       | 14       | 14       | 4        | 15       | 15       | 15       | 15       | 15       | 17       | 17       | 17       | 11       | . 7      | 8        | 81       | 18       | •         | <u>8</u> | 18 18<br>81          | 18<br>18<br>19       | 81<br>81<br>19<br>19             | 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 9 1 9 1      |
| SURVEY     | SED19103 | 001014130 | SED12103 | SED19103<br>SED19103 | SED19103<br>SED19103 | SED19103<br>SED19103<br>SED19103 | SED19103 SED19103 SED19103 SED19103 SED19103 |

| SURVEY   | STATION  | SAMPLE     | CRAB | AMPAB | ECHAB | ECHAB MISCAB POTAX | POTAX | AMPTX  | AMPTX MOTAX ECHTAX | ECHTAX   | CRTX        | MISCTX         | Ħ     | <del>-</del> - | Ë.      | SDI          |
|----------|----------|------------|------|-------|-------|--------------------|-------|--------|--------------------|----------|-------------|----------------|-------|----------------|---------|--------------|
| SED19103 | ∞        | 73         | 28   | 4     | 0     | 0                  | 40    | 4      | 12                 | 0        | 6           | 0              | 1.454 | 0.814          | 22      | 16           |
| SED19103 | ∞        | 8          | П    | 3     | 0     | 0                  | 38    | 2      | 6                  | 0        | 4           | 0              | 1.387 | 0.812          | 73      | 17           |
| SED19103 | •••      | 4          | 19   | 14    | 0     | 0                  | 28    | 00     | 6                  | 0        | ,           | 0              | 1.358 | 0.803          | 11      | 15           |
| SED19103 | ∞        | \$         | 36   | 24    | 2     | 0                  | 35    | 7      | 14                 | 7        |             | 0              | 1.526 | 0.852          | 77      | 20           |
| SED19103 | 12       | -          | 35   | 15    | 132   |                    | 22    | ς,     | ,                  | ****     | 7           | , mm           | 1.034 | 0.633          | 98      | 9            |
| SED19103 | 12       | 2          | 31   | . 5   | 203   | 0                  | 26    | 2      | . 15               | 7        | 5           | 0              | 1.041 | 0.612          | 88      | 9            |
| SED19103 | 13       | 3          | 23   | 10    | 192   | ····               | 23    | m      | 12                 | 7        | S           | <u></u>        | 0,946 | 0.576          | 87      | · vo         |
| SED19103 | 12       | **         | 24   | 13    | 191   | -                  | 24    | 4      | 14                 | 2        | 7           |                | 1.064 | 0.63           | 98      |              |
| SED19103 | . 21     | 'n         | 35   | 15    | 177   | 2                  | 14    | 'n     | 18                 | 7        | 7           | 7              | 0.954 | 0.584          | 8 80    | - V1         |
| SED19103 | 4        |            | 25   | 15    | 0     | 2                  | 26    | ι,     | 10                 | 0        | 6           | -              | 1.493 | 0.898          | 78      |              |
| SED19103 | 14       | 7          | 24   | 12    | 2     | •                  | 33    | 4      | 4                  | 2        | 12          | m              | 1.65  | 0.91           | 292     | 27           |
| SED19103 | 14       | 3          | 48   | 34    | 4     | 10                 | 35    | 10     | 14                 | 8        | 16          | ν.             | 1.714 | 0.914          | <u></u> | 31           |
| SED19103 | 41       | 4          | 36   | 1.5   | m     | 7                  | 4     | 9      | 10                 | 7        | 16          | 4              | 1.699 | 0.909          | 11      | <del>.</del> |
| SED19103 | 14       | 5          | 58   | 42    | 2     | *                  | 41    | Ξ      | 14                 | 7        | 20          | 4              | 1.672 | 0.871          | 6/      | 29           |
| SED19103 | 15       | -          | 26   | 6     | 0     | 371                | 29    | 9      | 25                 | 0        | 12          | ĸ              | 0.988 | 0.537          | 17      | i vo         |
| SED19103 | 15       | 2          | 15   | 80    | 7     | 350                | 34    | 4      | 20                 | port     | 6           | m              | 0.955 | 0.523          | 72      | · v          |
| SED19103 | 15       |            | 18   | Ş     |       | 355                | 37    | 4      | 18                 | -        | 00          | Ф              | 0.951 | 0.521          | 72      | 9            |
| SED19103 | 15       | 4          | 91   | 9     | 0     | 433                | 31    | 5      | 24                 | 0        | 7           | ~              | 0.829 | 0.459          | 69      | 4            |
| SED19103 | 15       | \$         | 15   | 5     | 0     | 411                | 32    | 8      | 18                 | 0        | 9           | 73             | 0.832 | 0.466          | 65      | 4            |
| SED19103 | 17       |            | 63   | 2     | 0     | 0                  | 11    | 77     | 4                  | 0        | . 74        | 0              | 0.34  | 0.276          | 99      |              |
| SED19103 | 17       | 7          | 0    |       | 0     | 0                  | 13    | 0      | 9                  | 0        | 0           | 0              | 0.275 | 0.215          | 29      | I            |
| SED19103 | 17       | ED.        | 47   | 0     | 0     | 0                  | ,     | 0      | Ş                  | 0        | <b>p</b> ud | 0              | 0.354 | 0.288          | 99      |              |
| SED19103 | 17       | 4          | 73   |       | 0     | 0                  | 18    | I      | 9                  | 0        | 2           | 0              | 0.534 | 0.377          | 99      | 71           |
| SED19103 | 17       | \$         | 0    | 0     | 0     | <b>port</b>        | 20    | 0      | ť'n                | 0        | 0           |                | 0.538 | 0.39           | 99      | 7            |
| SED19103 | 81       | ,          | 7    | 0     | 0     | 10                 | 24    | 0      | 10                 | 0        | 3           | 2              | 0.775 | 0.487          | 29      | m            |
| SED19103 | 18       | 7          | 4    | 0     |       | 30                 | 34    | 0      | 11                 | gurenii. | m           | 7              | 0.925 | 0.542          | 29      | 4            |
| SED19103 | <u>8</u> | m          | ∞    | 7     | 0     | 10                 | 22    | 7      | S                  | 0        | ŝ           | 6)             | 0.836 | 0.541          | 19      | 4            |
| SED19103 | <u>«</u> | **         | 2    | 0     | 0     | 82                 | 19    | 0      | 7                  | 0        | *****       | m <sub>.</sub> | 0.622 | 0.421          | 29      | 7            |
| SED19103 | 81       | \$         | S    | ∾.    | -     | 15                 | 20    | -      | 10                 | ****     | М           | 7              | 0.847 | 0.544          | 99      | ٣            |
| SED19103 | 16       | <b>***</b> | 'n   |       | 5     | 0                  | 15    | provid | 4                  | 3        | 7           | 0              | 1.279 | 0.927          | 74      | 13           |
| SED19103 | 61       | 2          | 6    | 7     | 7     | m                  | 16    | 63     | 2                  | ,,,,,    | 4           | -              | 1.276 | 0.925          | 72      | 12           |
| SED19103 | 61       | 6          | 1    | 2     | ξĐ.   | 0                  | 15    | 7      | 4                  |          | 9           | 0              | 1.338 | 0.946          | 11      | 15           |
| SED19103 | 16       | 4          | 6,   | m     | 4     | 0                  | 13    | 7      | <b>64</b> )        | 7        | m           | 0              | 1.234 | 0.934          | 80      | 12           |
|          |          |            |      |       |       |                    |       |        |                    |          |             |                |       |                |         |              |

| MOAB        | 01       | 44          | 33       | 43       | 56       | 23       | 252      | 278      | 248      | 364      | 391      | 163      | 178      | 318      | 267      | 212      | 16         | 96       | 136      | 119      | 197              | 225      | 270          | 209      | 214      | 197      | 26       | 59       | 34       | 48       | 44       | 114      | 20       |
|-------------|----------|-------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|------------|----------|----------|----------|------------------|----------|--------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
| POAB        | 43       | 141         | 174      | 128      | 130      | 120      | 142      | 193      | 127      | 187      | 137      | 24       | 47       | 7.1      | 19       | 24       | 664        | 356      | 840      | 367      | 2109             | 53       | 50           | 34       | 70       | 31       | 335      | 146      | 174      | 125      | 162      | 282      | 306      |
| TOTAX       | 30       | 38          | 37       | 56       | 38       | 27       | 35       | 43       | 39       | 45       | 39       | 43       | 59       | 48       | 47       | 39       | 125        | 121      | 132      | 109      | 141              | 36       | 37           | 30       | 34       | 29       | 61       | 64       | 61       | 54       | 19       | 66       | 80       |
| TOAB        | 69       | 186         | 215      | 173      | 197      | 145      | 506      | 575      | 483      | 663      | 639      | 284      | 334      | 511      | 480      | 350      | 886        | 510      | 1124     | 540      | 2622             | 322      | 358          | 273      | 309      | 261      | 470      | 311      | 321      | 300      | 278      | 585      | 513      |
| <b>5</b> ** |          |             |          |          |          |          |          |          |          | -        |          |          |          |          |          |          |            |          |          |          |                  |          |              |          |          |          |          |          |          |          |          |          |          |
| % TOC       | 1.8      |             | proof.   | gumi     | -        | •••      | 1.3      | 1.3      | 1.3      | 1.3      | 1.3      | 0.2      | 0.2      | 0.2      | 0.2      | 0.2      | 8.0        | 8.0      | 0.8      | 8.0      | 8.0              | 1.4      | <del>*</del> | 1.4      | 1.4      | 1.4      | 0.7      | 0.7      | 0.7      | 0.7      | 0.7      | 0.1      | . 0.1    |
| % FINES     | 82.0     | 96.2        | 96.2     | . 96.2   | 96.2     | 96.2     | 80.3     | 80.3     | 80.3     | 80.3     | 80.3     | 12.9     | 12.9     | 12.9     | 12.9     | 12.9     | 16.9       | 16.9     | 16.9     | 16.9     | 16.9             | 83.9     | 83.9         | 83.9     | 83.9     | 83.9     | 23.5     | 23.5     | 23.5     | 23.5     | 23.5     | 8.9      | 6.8      |
| Depth (m)   | -122.6   | -11.8       | -11.8    | -11.8    | -11.8    | -11.8    | -20.7    | -20.7    | -20.7    | -20.7    | -20.7    | -22.5    | -22.5    | -22.5    | -22.5    | -22.5    | -266.9     | -266.9   | -266.9   | -266.9   | -266.9           | -199.9   | -199.9       | -199.9   | -199.9   | 6'661-   | -13.3    | -13.3    | -13.3    | -13.3    | -13.3    | -20.4    | -20.4    |
| LonSec      | 16       | 21          | 21       | 21       | 21       | 21       | 34       | 34       | 34       | 34       | 34       | 10       | 10       | 10       | 10       | 10       | 30         | 30       | 30       | 30       | 30               | 13       | 13           | 13       |          | 13       | 10       | 10       | . 10     | 10       | 10       | 30       | 30       |
| LonMin      | 28       | 27          | 27       | 27       | 27       | 27       | 14       | 14       | 14       | 14       | 14       | 17       | 17       | 17       | 17       | 17       | 27         | 27       | 27       | 27       | 27               | 27       | 27           | 27       | 27       | 27       | 30       | 30       | 30       | 30       | 30       | 24       | 24       |
| LonDeg      | 122      | 122         | 122      | 122      | 122      | 122      | 122      | 122      | 122      | 122      | 122      | 122      | 123      | 122      | 122      | 122      | 122        | 122      | 122      | 122      | 122              | 122      | 122          | 122      | 122      | 122      | 122      | 122      | 122      | 122      | 122      | 122      | 122      |
| LatSec      | 52       | 23          | 23       | 23       | 23       | 23       | 7        | 7        | 7        | 7        | 7        | 20       | 20       | 20       | 20       | 20       | <b>0</b> 0 | •        | •        | ∞        | 00               | 9        | 9            | 9        | 9        | 9        | 26       | 26       | 26       | 26       | 26       | 55       | 55       |
| LatMin      | ŧ'n      | 10          | 10       | 10       | 10       | 10       | 59       | 59       | 59       | 59       | 59       | 57       | 57       | 57       | 57       | 57       | 51         | 51       | 51       | 51       | 3.               | 42       | 42           | 42       | 42       | 42       | 37       | 37       | 37       | 37       | 37       | 37       | 37       |
| LatDeg      | 48       | 48          | 48       | 48       | 48       | 48       | 47       | 47       | 47       | 47       | 47       | 47       | 47       | 47       | 47       | 47       | 47         | 47       | 47       | 47       | 47               | 47       | 47           | 47       | 47       | 47       | 47       | 47       | 47       | 47       | 47       | 47       | 47       |
| <b>*</b>    | -        |             |          |          |          |          | -        |          | ****     |          | -        |          | _        |          | ·        |          |            |          |          |          |                  |          |              | ****     | •        |          | ·        |          | _        |          | +        |          |          |
| ၁           | MO       | MO<br>MO    | MO       | MO<br>MO | WO       | MO         | MO       | MO       | MO       | MO               | M<br>O   | MOM          | MO       | MO       | MO       | Q<br>Q   | MO       | MO       | MO       | MO       | MO       | MO       |
| SAMPLE      | 'n       | <del></del> | 7        | т        | 4        | ş        | <b>-</b> | 7        | ĸ        | 4        | \$       |          | 7        | т        | *        | ٠        |            | 7        | m        | 4        | ĸ                | <b></b>  |              | m        | 4        | ς,       |          | 2        | en.      | 4        | v        | ****     | ч        |
| STATION     | 61       | 50          | 20       | 20       | 20       | 20       | 21       | 21       | 21       | 21       | 21       | 22       | 23       | 22       | .22      | 22       | 56         | 56       | . 97     | 26       | - <del>2</del> 2 | 29       | 29           | 56       | . 29     | 29       | 30       | 30       | 30       | 30       | 30       | 32       | 32 ·     |
| SURVEY      | SED19103 | SED19103    | SED19103 | SED19103 | SED19103 | SED19103 | SED19103 | SED19103 | SED19103 | SED19103 | SED19103 | SED19103 | SED19103 | SED19103 | SED19103 | SED19103 | SED19103   | SED19103 | SED19103 | SED19103 | SED19103         | SED19103 | SED19103     | SED19103 | SED19103 | SED19103 | SED19103 | SED19103 | SED19103 | SED19103 | SED19103 | SED19103 | SED19103 |

| SDI                | 14       |              | 12                                      | vo       | 12       | ∞        | ~        | 7        | 7        | 7        | \$       | 9        | ∞        | 9        | ς.       | 9             | 30       | 39        | 56       | 34.          | 14       | 4        | 4        | 4        | 4        | ъ        | 12       | 16       | 15          | 4        | 91       | 27           | 20         |
|--------------------|----------|--------------|-----------------------------------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|---------------|----------|-----------|----------|--------------|----------|----------|----------|----------|----------|----------|----------|----------|-------------|----------|----------|--------------|------------|
|                    | 75       | 9/           | 76                                      | 73       | 11       | 75       | 83       | 65       | 63       | 64       | 63       | 63       | . 99     | 57       | 55       | 09            | 82       | 75        | 11       | 73           | 93       | 47       | 44       | 43       | 49       | 43       | 82       | 79       | 74          | 75       | 76       | 64           | 99         |
| Ш                  | ~        |              |                                         | Boord.   | **       | •        |          |          | ٧٥.      | •        |          | •        |          | ~        |          | _             | ••       |           |          |              |          |          | _        |          |          |          |          |          |             |          |          |              |            |
| Ĩ-s                | 0.923    | 0.803        | 0.831                                   | 0.741    | 0.84     | 0.799    | 0.72     | 0.681    | 0.716    | 0.659    | 0,623    | 0.659    | 0.652    | 0.628    | 0.636    | 0.664         | 0.815    | 0.885     | 0.8      | 0.868        | 0.64     | 0.513    | 0.47     | 0.501    | 0.502    | 0.482    | 0.722    | 0.792    | 0.751       | 0.75     | 0.788    | 0.81         | 0.769      |
| Ħ                  | 1.364    | 1.268        | 1.303                                   | 1.049    | 1.328    | 1.143    | 1.112    | 1.113    | 1.139    | 1.089    | 0.991    | 1.076    | 1.155    | 1.056    | 1.063    | 1.057         | 1.71     | 1.843     | 1.697    | 1.768        | 1.377    | 0.798    | 0.737    | 0.74     | 0.768    | 0.705    | 1.29     | 1.431    | 1.341       | 1.3      | 1.407    | 1.617        | 1.495      |
| MISCTX             |          | *****        | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |          | 1        | ,        | 2        | 0        | 7        | <b></b>  |          | -        | ٣        | 73       |          | <b>***</b> ** | 4        | 4         | ٤C       | 3            | 90       |          | _        | 0        | 0        |          | 2        | 0        | <del></del> | 0        | 0        | 9            | 4          |
| CRTX M             | Ş        | 0            | т                                       |          | 4        | <b></b>  | 4        | 4        | 4        | 4        | w        | 7        | 6        | <b>∞</b> | <b>∞</b> | œ             | 13       | [4        | 22       | . 15         | 17       | 6        | 01       | ∞        | 10       | 6        | ∞        | . 15     | 6           | 12       | Ξ        | 14           | 7          |
|                    | 7        | 0            | 0                                       | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        | ****          | e        | ω,        | 9        | <del>ن</del> | 8        | 7        | -        | €        | -        | 7        | emi      | evval    |             | •        | 0        | 9            | \$         |
| OTAX EC            | m.       | 10           | <b>9</b> 0                              | 0,       | ∞        | . 9      | 01       | 13       | 12       | 14       | 17       | 21       | 20       | 17       | 18       | 11            | 20       | 25        | 25       | 22           | 31       | 7        | 10       | œ        | 7        | œ        | 00       | 6        | 12          |          | •<br>    | 25           | 91         |
| AMPTX MOTAX ECHTAX | 4        | 0            | 7                                       | 0        | 73       |          | 7        | 7        | 2        | 73       |          | 4        | ю        | e        | m        | 4             | ••       | <b>00</b> |          | П            |          | S        | 9        | 5        | .9       | 40       | 4        | 10       | ĸ           | 7        | 9        | φ.           | ∞          |
| POTAX A            | 61       | 27           | 25                                      | 15       | 25       | 61       | 61       | 25       | 21       | 26       | 8        | 14       | 27       | 21       | 20       | 12            | 80       | 72        | 70       | 64           | 78       | 17       | 15       | _        | 16       | 6        | 42       | 39       | 37          | 30       | 38       | <del>4</del> | 48         |
| IISCAB P           | 7        | <b>7</b> 004 | m                                       |          | 9        | gwel     | 7        | 0        | I        | 3        | 7        | -        | 5        | 3        | 2        | ****          | 18       |           | 25       | m            | 75       | m        | -        | 0        | 0        | 7        | 7        | 0        | mont        | 0        | 0        | 23           | 15         |
| ECHAB MISCAB       | 4        | 0            | 0                                       | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        | yout          | 15       | 90        | 14       | 6            | 30       | ιn       | ťΩ       | S        |          | 73       | 4        | <b>,</b> | 7           | 7        | 0        | 21           | 27         |
| AMPAB I            | ∞        | 0            | 2                                       | 0        | 3        | -        | 4        | 9        | 2        | 7        | 4        | 6        | ်တ       | 4        | 'n       | 6             | 73       | 25        | 48       | 78           | 121      | . 13     | 18       | ∞        | ∞        | 10       | 9        | 29       | 9           | 4        | 6        | 29           | 31         |
| CRAB /             | 01       | 0            | δ.                                      | yund     | 80       | poort    | 110      | 103      | 76       | 100      | 109      | 96       | 104      | 119      | 150      | 112           | 87       | 38        | 65       | 39           | 138      | 38       | 34       | 25       | 24       | 59       | 103      | 105      | 106         | 125      | 7.1      | 145          | 115        |
| SAMPLE             | \$       | ••••         | 2                                       | 3        | 4        | 5        |          | 2        | m        | 4        | κ)       | ,        | 2        | 33       | 4        | ሌ             |          | 2         | 3        | 4            | 5        |          | 7        | 3        | 4        | 5        |          | 2        | ٣           | 4        | S        | youd         | <b>C</b> 3 |
| STATION            | 61       | 70           | 70                                      | 70       | 20       | 79       | 21       | 21       | 21       | 21       | 21       | 22       | 22       | 22       | 22       | 22            | 56       | . 26      | 56       | 76           | 26       | 29       | 29       | 29.      | . 29     | 29       | 30       | 30       | 30          | 30       | 30       | 32           | 32         |
| SURVEY             | SED19103 | SED19103     | SED19103                                | SED19103 | SED19103 | SED19103 | SED19103 | SED19103 | SED19103 | SED19103 | SED19103 | SED19103 | SED19103 | SED19103 | SED19103 | SED19103      | SED19103 | SED19103  | SED19103 | SED19103     | SED19103 | SED19103 | SED19103 | SED19103 | SED19103 | SED19103 | SED19103 | SED19103 | SED19103    | SED19103 | SED19103 | SED19103     | SED19103   |

| SED19103  | SED19103 | SED19103 | SED19103 | SED19103       | SED19103 | SED19103 | SED19103 | SED19103 | SED19103  | SED19103 | SED19103 | SED19103 | SED19103 | SED19103 | SED19103     | SED19103 | SED19103 | SED19103 | SED19103 | SED19103 | SED19103 | SED19103 | SED19103         | SED19103 | SED19103  | SED19103    | SED19103    | SED19103 | SED19103 | SED19103 | SED19103 | SED19103 |  |
|-----------|----------|----------|----------|----------------|----------|----------|----------|----------|-----------|----------|----------|----------|----------|----------|--------------|----------|----------|----------|----------|----------|----------|----------|------------------|----------|-----------|-------------|-------------|----------|----------|----------|----------|----------|--|
| 40        | 40       | 40       | 40       | 40             | 39       | 39       | 39       | 39       | 39        | 38       | 38       | 38       | 38       | 38       | 35           | 35       | 35       | 35       | 35       | 34       | 34       | 34       | 34               | 34       | 33        | 33          | 33          | 33       | 33       | 32       | 32       | 32       |  |
| v         | 4        | w        | 2        |                | S        | 4        | ເມ       | 2        |           | 5        | 4        | w        | 2        | _        | Us.          | 4        | w        | 2        | ,        | 5        | 4        | ω        | 2                | -        | Us.       | 4           | دي          | 2        | -        | S        | 4        | ω        |  |
| 178       | 167      | 138      | 123      | 147            | 78       | 67       | 99       | 36       | 35        | 50       | 36       | 43       | 65       | 33       | 214          | 186      | 175      | 163      | 168      | 121      | 88       | 89       | 108              | 176      | 153       | 183         | 150         | 189      | 218      | 113      | 104      | 124      |  |
| 4         |          | 2        | 2        | S <sub>1</sub> | 27       | 23       | 22       | 25       | 21        | 91       | ·<br>8   | 19       | 13       | 15       | 10           | 17       | 24       | 2        | 23       | 46       | 27       | 37       | 40               | 51       | 2         | 3           | 9           | œ        | Ç,       | 16       | ïs       | 21       |  |
| 2         | (J.)     | 0        | 2        | 2              | 0        | 0        | -        | 0        | 0         | S        | u        | 0        | 2        | 2        | 47           | 56       | . 40     | 15       | 46       | 10       | 2        | ر.<br>ن  | S                | 4        | 7         | 17          | 6           | 6        | W        | 13       | 19       | 9        |  |
| <b>\$</b> | w        | •9       | φ,       | G              | prod.    | 2        | Si       | 7        | 2         | w        | Post .   | 0        | 2        | 2        | 4            | 6        | Ųι       | 4        | 1.       | ω        | -        | 0        | S                | 0        | Ç,        | 6           | 5A          | 6        | 4        | 14       | 00       | ∞        |  |
| 45        | 37       | 45       | 53       | 39             | 23       | 17       | 21       | 00       | 19        | ∞        | 6        | 12       | 9        | 12       | 21           | 29       | 29       | 28       | 30       | 26       | 23       | 28       | 44               | 34       | 50        | 59          | 49          | 49       | 45       | 52       | 54       | 41       |  |
| w         |          |          | 2        | (L)            | 8        | 4        | 6        | 6        | Ŋ         | 5 .      | Çş.      | 6        | Ç,       | 00       | 2            | 2        | 2        | 2        | 3        | 4        | ديا      | . 4      | S                | 5        | 2         | w.          | 4           | 5        | s        | 7        | <b>∞</b> | 7        |  |
| 13        | 18       | 17       | ~~<br>4  | 17             | 15       | 9        | 9        | 10       | 9         | 6        | (J)      | 6        | 6        | 4        | 4            | 6        | 9        | w        | OI       | 7        | 7        | 7        | 9                | ∞        | ~~~<br>~~ | <del></del> | 19          | 19       | 21       | 17       | 20       | 20       |  |
| 2         | 2        | 0        | 2        | <b>,</b>       | 0        | 0        | <b>,</b> | 0        | 0         | 2        | -        | 0        | 2        | ,        | 13           | 4        | 2        | 2        | 4        | 2        | 2        | pud      | t <sub>e</sub> s | -        | 4         | 4           | Ų.          | 4        | 2        | ω        | 7        | ω        |  |
| 10        | 6        | 6        | 7        | 7              | 12       | <b>∞</b> | 9        | 9        | <b>00</b> | <b>∞</b> | 9        | 13       | pt<br>nt | 12       | , <b>U</b> s | 5        | σ,       | t/s      | 10       | 7        | 9        | 00       | 10               | 00       | ∞         | 12          | . 13        |          | 15       | Ξ        | 15       | 10       |  |
| ⊷.        | possa    | ω        | u        | 2              |          | 2        | 2        | 4        | 2         | . 2      | -        | 0        | 2        | 2        | w            | ω        | ω        | 2        | w        | 2        | <b>}</b> | 0        | ω                | 0        | 2         | 4           | -           | ω        | 2        | ٥        | w        | ·ω       |  |
| 1.366     | 1.337    | 1.395    | 1.475    | 1.351          | 1.357    | 1.246    | 1.253    | 1.362    | 1.3       | 0.996    | 0.869    | 1.076    | 1.015    | 1.279    | 0.982        | 1.115    | 1.156    | 1.165    | 1.13     | 0.835    | 0.439    | 1.321    | 0.913            | 0.809    | 1.485     | 1.548       | 1.454       | 1.46     | 1.389    | 1.556    | 1.63     | 1.511    |  |
| 0.738     | 0.74     | 0.754    | 0.777    | 0.742          | 0.791    | 0.801    | 0.767    | 0.844    | 0.823     | 0.704    | 0.648    | 0.722    | 0.687    | 0.857    | 0.636        | 0.667    | 0.684    | 0.727    | 0.644    | 0.508    | 0.27     | 0.804    | 0.497            | 0.474    | 0.776     | 0.777       | 0.754       | 0.751    | 0.72     | 0.8      | 0.817    | 0.801    |  |
| . 69      | 69       | 70       | 68       | 68             | 68       | 68       | 69       | 64       | 66        | 53       | 50       | 54       | 53       | 59       | 77           | 90       | 88       | 70       | 80       | 92       | 97       | 77       | 90               | 92       | 68        | 67          | 67          | . 67     | 66       | 69       | 70       | 69       |  |
| 14        | 딦        | 17       | 18       | 15             | 15       | 1        | 14       | 15       | 12        | 6        | S        | 9        | 6        | 12       | V            | 6        | <b>∞</b> | 9        | 6        | 6        | No.      | =        | 6                | S        | 20        | 23          | <del></del> | 20       | 14       | 24       | 28       | 24       |  |

SURVEY STATION

SAMPLE CRAB AMPAB ECHAB MISCAB POTAX AMPTX MOTAX ECHTAX CRTX MISCTX

포

Ξ

SDI

| SED19103    | SED19103 | SED19103 | SED19103 | SED19103    | SED19103 | SED19103        | SED19103 | SED19103 | SED19103 | SED19103 | SED19103 | SED19103 | SED19103 | SED19103 | SED19103 | SED19103 | SED19103 | SED19103 | SED19103   | SED19103 | SED19103 | SED19103 | SED19103 | SED19103 | SURVEY    |
|----------|----------|----------|----------|----------|----------|----------|----------|-------------|----------|----------|----------|-------------|----------|-----------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|------------|----------|----------|----------|----------|----------|-----------|
| 40       | 40       | 40       | 40       | 40       | 39       | 39       | 39       | 39          | 39       | 38       | 38       | 38          | 38       | 38              | 35       | 35       | 35       | . 35     | 35       | 34       | 34       | 34       | 34       | 34       | 33       | 33       | . <u>u</u> | 33       | 33       | 32       | 32       | 32       | STATION   |
| Ú,       | 4        | Ų.       | 2        | pund     | ¢,       | 4        | w        | 2           |          | S        | 4        | ເມ          | ы        | <del>د</del> سم | (A       | 4        | ų.       | 2        | lumb     | S        | 4        | u        | 2        |          | Ċŋ.      | 4        | ယ          | ν.       | yeard    | S,       | 4        | ω        | SAMPLE    |
| MO       | MO       | Mo<br>Mo | MO       | MO       | MO       | Mo       | MO       | MO          | MO       | MO       | MO       | MO          | MO       | MO              | MO       | MO       | MO       | MO       | MO       | MO       | MO       | MO       | MO       | MO       | MO       | MO       | MO         | MO       | ΜO       | MO       | MO       | MO       | С         |
| t-um     |          | -        | -        | -        | -        |          | -        |             |          | ****     | -        | <b>Jame</b> |          |                 |          |          | -        | <b></b>  |          | -        |          | ••••     | -        |          | -        |          |            |          |          |          | jund     |          | S* L      |
| 47       | 47       | 47       | 47       | 47       | 47       | 47       | 47       | 47          | 47       | 47       | 47       | 47          | 47       | 47              | 47       | 47       | 47       | 47       | 47       | 47       | 47       | 47       | 47       | 47       | 47       | 47       | 47         | 47       | 47       | 47       | 47       | 47       | LatDeg    |
| 15       | 15       | 15       | 15       | 15       | 20       | 20       | 20       | 20          | 20       | 25       | 25       | 25          | 25       | . 25            | 36       | 36       | 36       | 36       | 36       | 32.      | 32       | 32       | 32       | 32       | 35       | 35       | 35         | 35       | 35       | 37       | 37       | 37       | LatMin    |
| 41       | 41       | <b>±</b> | 41       | 41       | 13       | 13       | 13       | 13          | 13       | 42       | 42       | 42          | 42       | 42              | 48       | 48       | 48       | 48       | 48       | 47       | 47       | 47       | 47       | 47       | 14       | 4        | <b>4</b>   | 14       | 14       | 55       | 55       | 55       | LatSec    |
| 122      | 122      | 122      | 122      | 122      | 122      | 122      | 122      | 122         | 122      | 122      | 122      | 122         | 122      | 122             | 122      | 122      | 122      | 122      | 122      | 122      | 122      | 122      | 122      | 122      | 122      | 122      | 122        | 122      | 122      | 122      | 122      | 122      | LonDeg    |
| 26       | 26       | 26       | 26       | 26       | 22       | 22       | 22       | 22          | 22       | 23       | 23       | 23          | 23       | 23              | 41       | 4        | 41       | 4        | 41       | 39       | 39       | 39       | 39       | . 39     | 22       | 22       | 22         | 22       | 22       | 24       | 24       | 24       | LonMin    |
| ψ.       | •        | ψ,       | Ο,       | ٠,       | .•       | ,,,      |          |             |          | -        |          | _           | ~        | _               |          |          |          |          |          | •        | Ĭ        | ·        | Ĭ        | Ť        | ,,,      | ,,,      | ,,,        |          |          | ·        |          |          | LonSec    |
| Ü        | 13       | <u></u>  | 13       | 13       | 18       | .18      | 18       | <del></del> | 8        | 35       | 35       | 35          | 35       | 35              | 55       | 55       | 55       | 55       | 55       | 43       | 43       | 43       | 43       | 43       | 33       | 33       | Ω          | ယ္သ      | 33       | 30       | 30       | 30       |           |
| -10.4    | -10,4    | -10.4    | -10,4    | -10.4    | -14.8    | -14.8    | -14.8    | -14.8       | -14.8    | -198.7   | -198.7   | -198.7      | -198.7   | -198.7          | -13.3    | -13.3    | -13.3    | -13.3    | -13.3    | -10.6    | -10.6    | -10.6    | -10.6    | -10.6    | -20.8    | -20.8    | -20.8      | -20.8    | -20.8    | -20.4    | -20,4    | -20.4    | Depth (m) |
|          |          |          |          |          |          |          |          |             |          |          |          |             |          |                 | •        |          |          |          |          |          |          |          |          |          |          |          |            |          |          |          |          |          | % FINES   |
| 33.2     | 33.2     | 33.2     | 33.2     | 33.2     | 2.4      | 2.4      | 2.4      | 2.4         | 2.4      | 94.3     | 94.3     | 94.3        | 94.3     | 94.3            | 79.8     | 79.8     | 79.8     | 79.8     | 79.8     | 92,7     | 92.7     | 92.7     | 92.7     | 92.7     | 31.5     | 31.5     | 31.5       | 31.5     | 31.5     | 6.8      | 6.8      | 6.8      | ES        |
| _        | _        |          | _        | _        | _        | _        | _        | _           |          |          |          | .,          | .,       |                 |          |          |          |          |          |          | , i      |          | 63       | K)       | _        | _        | _          |          | C        | 0        | 0        | 0        | %TOC      |
| 0.9      | .9       | 9        | 0.9      | 9.       | 0.1      | 0.1      | Ξ        | 0.1         | Ξ        | 2.1      | 2.1      | <u></u>     | 2.1      | jame.           | 2.4      | 2,4      | 2.4      | 2.4      | 2.4      | 2.3      | 2.3      | 2.3      | w        | نبآ      | 9        | 0.9      | .9         | 9        | 0.9      | 0.1      |          | 0.1      | 2**       |
| 787      | 529      | 628      | 596      | 485      | 19       | 142      | 211      |             | 118      | 143      | 116      | 139         | 15       | œ               | 36       | 62       | 53       | 391      | 723      | 897      | 1359     | 368      | 933      | 1526     | 507      | 782      | 539        | 546      | 686      | 542      | 470      | 365      | TOAB      |
| 7        | 9        | 00       | 6        | Ç,       | 7        | 2        |          | 6           | 00       | S        | 6        | 9           | w        | Φ,              | ω        | S        |          | (*****   | ω        | 7        | 9        | 00       | ω        | 9        | 7        | 2        | •          | 6        | 55       | 2        | 0        |          | TOTAX     |
| 71       | 64       | 71       | 79       | 66       | 52       | 36       | 43       | 4           | 38       | .26      | 22       | 31          | 30       | 31              | 35       | 47       | 49       | 40       | 57       | 44       | 42       | 44       | 69       | 51       | స్ట      | 98       | 85         | 88       | 85       | 88       | 99       | 77       |           |
| 379      | 178      | 235      | 276      | 141      | 73       | 46       | 69       | 33          | 41       | 19       | 12       | 30          | 17       | 21              | 73       | 335      | 269      | 172      | 466      | 726      | 1242     | 250      | 774      | 1302     | 234      | 356      | 223        | 199      | 234      | 332      | 274      | 167      | POAB      |
| 220      | 178      | 246      | 189      | 190      | 43       | 27       | 36       | 40          | 40       | 66       | 64       | 86          | 67       | 28              | 25       | 42       | 42       | 37       | 32       | 37       | 26       | 24       | 41       | 44       | 108      | 219      | 159        | 146      | 227      | 70       | 65       | 57       | MOAB      |

| SURVEY   | STATION | SAMPLE        | ၁      | *s          | LatDeg | LatMin | LatSec | LonDeg | LonMin | LonSec | Depth (m) | % FINES | % TOC | <b>5</b> ** | TOAB  | TOTAX | POAB | MOAB       |  |
|----------|---------|---------------|--------|-------------|--------|--------|--------|--------|--------|--------|-----------|---------|-------|-------------|-------|-------|------|------------|--|
| SED19103 | 4       | ****          | MO     | <b>,</b>    | 47     | 16     | 32     | 122    | 25     | 13     | -21.1     | 70.0    | Ä     |             | 1311  | 45    | 777  | 955        |  |
| SED19103 | 41      | - 7           | MO     | -           | 47     | 91     | 32     | 122    | 25     |        | -21.1     | 70.0    |       |             | 1816  | 43    | 366  | 1390       |  |
| SED19103 | 41      | т             | MO     | -           | 47     | 91     | 32     | 122    | 25     | 13     | -21.1     | 70.0    |       |             | 1750  | 49    | 465  | 1198       |  |
| SED19103 | 41      | 4             | MO     | -           | 47     | 16     | 32     | 122    | 25     | 13     | -21.1     | 70.0    |       | ٠           | 1662  | 46    | 461  | 1133       |  |
| SED19103 | 41      | ĸ             | MO     | -           | 47     | 16     | 32     | 122    | 25     | 5 13   | -21.1     | 70.07   | _     |             | 1930  | 42    | 525  | 1332       |  |
| SED19103 | 43      | <b>\$</b> 100 | MO     | -           | 47     | 17     | 53     | 122    | 44     | 32     | -20.8     | 5.9     | 0.1   |             | 669   | 99    | 250  | 51         |  |
| SED19103 | 43      | 7             | MO     |             | 47     | 17     | 53     | 122    | 44     | 32     | -20.8     | 5,9     | 0.1   |             | 761   | 69    | 269  | <i>L</i> 9 |  |
| SED19103 | 43      | ю             | MO     | -           | 47     | 17     | 53     | 122    | 44     | 1 32   | -20.8     |         | 0.1   |             | 573   | 54    | 144  | 99         |  |
| SED19103 | 43      | 4             | MO     |             | 47     | 11     | 53     | 122    | 44     | 32     | -20.8     | 5.9     | 0.1   |             | 609   | 99    | 242  | 63         |  |
| SED19103 | 43      | 'n            | MO     |             | 47     | 11     | 53     | 122    | 44     | 32     | -20.8     |         | 0.1   |             | 693   | 19    | 212  | 52         |  |
| SED19103 | 44      | -             | MO     | ~           | 47     | 6      | 4      | 122    | 40     |        | -21.5     | 17.1    | 0.5   |             | 635   | 106   | 434  | 16         |  |
| SED19103 | 44      | ž.            | MO     |             | 47     | Ġ      | 41     | 122    | 40     | ) 25   | -21.5     | 17.1    | 0.5   |             | 385   | 83    | 258  | 7.1        |  |
| SED19103 | 44      | ۳             | MO     | p.m.4       | 47     | 6      | 41     | 122    | 40     | ) 25   | -21.5     | 17.1    | 0.5   |             | 496   | 111   | 319  | 57         |  |
| SED19103 | 44      | খ             | MO     | ****        | 47     | 6      | 4      | 122    | 40     | ) 25   | -21.5     | 17.1    | 0.5   |             | 394   | 76    | 249  | 48         |  |
| SED19103 | 44      | S             | MO     | ,           | 47     | 6      | 41     | 122    | 40     | ) 25   | -21.5     | 17.1    | 0.5   |             | 271   | 78    | 159  | 48         |  |
| SED19103 | 45      | ,             | MO     | ****        | 47     | 6      | 53     | 122    | 45     |        | -513      | 59.8    | =     |             | 130   | 43    | 78   | 19         |  |
| SED19103 | 45      | 7             | MO     | -           | 47     | 6      | 53     | 122    | 45     | 5      | 51.3      | 59.8    | 1.1   |             | 140   | 46    | 85   | 10         |  |
| SED19103 | 45      | m             | MO     | -           | 47     | 6      | 53     | 122    | 45     | 5      | .51.3     | 8.65    | 1.1   |             | 261   | 46    | 171  | 18         |  |
| SED19103 | 45      | 4             | MO     |             | 47     | 0      | 53     | 122    | 45     | \$     | -51.3     | 59.8    | 1.1   |             | 213   | 37    | 136  | 56         |  |
| SED19103 | 45      |               | MO     |             | 47     | 6      | 53     | 122    | 45     | 5      | -513      | 59.8    | 1.1   |             | 185   | 41    | 112  | 24         |  |
| SED19103 | 47      |               | MO     | -           | 47     | 14     | 0      | 122    | 50     | ) 52   | -21.5     | 9.4     | 0.3   | ÷           | 929   | 92    | 393  | 126        |  |
| SED19103 | 47      | 77            | M<br>0 | ****        | 47     | 4      | 0      | 122    | . 50   | ) 52   | .21.5     | 9.4     | 0.3   |             | 505   | 95    | 335  | 99         |  |
| SED19103 | 47      | т             | MO     | <b>pure</b> | 47     | 14     | 0      | 122    | 50     | 52     | -21.5     | 9.4     | 0.3   |             | . 565 | 86    | 331  | 72         |  |
| SED19103 | 47      | ব             | MO     |             | 47     | 14     | 0      | 122    | 50     | ) 52   | -21.5     | 9.4     | 0,3   |             | 959   | 81    | 242  | 83         |  |
| SED19103 | 47      | Ϋ́            | MO     | 7           | 47     | 14     | 0      | 122    | 50     | 52     | -21.5     | 9.4     | 0.3   |             | 516   | 81    | 260  | 65         |  |
| SED19103 | 48      | -             | MO     | _           | 47     | 7      | 26     | 122    | 55     | 6      | .21.3     | 8.68    | 2.3   |             | 176   | 24    | 14   | 45         |  |
| SED19103 | 48      | 7             | MO     |             | 47     | 7      | 56     | 122    | 55     | ţ      | 21.3      | 8.68    | 2.3   |             | 187   | . 28  | 33   | 49         |  |
| SED19103 | 48      | m             | MO     |             | 47     | 7      | 26     | 122    | . 55   | 7 9    | -21.3     | 8.68    | 2.3   |             | 161   | 24    | 14   | 24         |  |
| SED19103 | 48      | 4             | MO     |             | 47     | 7      | . 26   | 122    | 55     | 9      | .21.3     | 8.68    | 2.3   |             | 196   | 31    | 36   | 22         |  |
| SED19103 | 48      | ¥Ω.           | MO     |             | 47     | 7      | 26     | 122    | 55     | . 6    | -21.3     | 8.68    | 2.3   |             | 118   | 25    |      | 33         |  |
| SED19103 | 49      | <del></del>   | MO     |             | 47     | 4      | 49     | 122    | 54     | 64     | 9.5-      | 84.0    | 3.3   |             | 128   | 20    | 80   | 24         |  |
| SED19103 | 49      | 2             | MO     |             | 47     | 4      | 49     | 122    | 54     | 1 49   | .5.6      | 84.0    | 3.3   |             | 111   | 16    | 59   | 16         |  |
| SED19103 | 49      | m             | MO     |             | 47     | .4     | 49     | 122    | 54     | 4 49   | -5.6      | 84.0    | 3.3   |             | 129   | 24    | 99   | 30         |  |

| SDI                | ю        | т        | 7        | 7        | 7        | 10       | 10       | 7        | 10       | ∞        | 31       | 79       | 37       | 34       | 26       | 15       | 17       | 01       | 6        | prq      | 70       | 22       | 23       | . 4      | 17       | 9        | 1        | Ŋ           | 7        | 'n       | 5        | ٠<br>د     | ĸ٥       |
|--------------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|-------------|----------|----------|----------|------------|----------|
| Ш                  | 99       | 64       | 29       | 65       | 65       | 82       | 86       | 68       | 83       | 88       | 11       | 75       | 79       | 75       | 73       | 29       | 73       | 73       | 71       | 17       | 70       | 75       | 81       | 85       | 84       | 70       | . 65     | 69          | 69       | 89       | 19       | 69         | 89       |
| F,                 | 0,441    | 0.425    | 0.404    | 0.44     | 0.4      | 0.667    | 0.662    | 0.629    | 0.665    | 0.642    | 0.85     | 0.868    | 0.878    | 968'0    | 0.881    | 0.819    | 0.851    | 0.736    | 0.775    | 0.762    | 0.796    | 0.81     | 8.0      | 99.0     | 0.765    | 9.676    | 0.731    | 0.653       | 0.697    | 0.7      | 0.765    | 0.77       | 0.746    |
| ĬI                 | 0.729    | 0.694    | 0.683    | 0.731    | 0.649    | 1.213    | 1.218    | 1.09     | 1.209    | 1.147    | 1.722    | 1.666    | 1.795    | 1.78     | 1.666    | 1.338    | 1.414    | 1.225    | 1.216    | 1.23     | 1.562    | 1.602    | 1.547    | 1,259    | 1.46     | 0.933    | 1.057    | 0.901       | 1.04     | 0.979    | 966'0    | 0.927      | 1.03     |
| MISCTX             | 2        |          | . —      | 0        |          | m        | 2        | ,        |          | m        | 9        | 4        | 4        | 4        | Э        | 4        | 7        | 4        | 13       | т        | ы        | 9        | 5        | 4        | 9        | 7        | 7        | <b>,</b>    | 2        | -        | _        | <b>,,,</b> | 1        |
| CRTX               | 4        | 4        | Š        | 4        | 4        | Ξ        | 12       | 6        | 14       | <b>=</b> | 16       | 6        | 16       | 13       | 8        | 5        | 4        | ∞        | 5        | 80       | 13       | 82       | 13       | 13       | 12       | 4        | 4        | 44          | 60       | 3        | ş        | -          | 9        |
| жи                 |          | -        | 7        |          | ****     | m        | 2        | 7        | М        | 7        | 3        | m        | 4        | æ        |          | 7        | 7        | prot     | 7        | ****     | 33       | 7        | 7        | ٣        | 3        | -        | _        | -           | -        |          | 0        | · proof    |          |
| AMPTX MOTAX ECHTAX | 16       | 12       | 4        | 11       | 11       | 13       | 19       | 61       | 91       | 15       | 61       | 81       | 17       | 20       | 16       | ∞        | 9        | 9.       | ∞        | 6        | 20       | 18       | 81       | 15       | 12       | 00       | ∞        | 12          | . 12     | .11      | 9        | S          | 9        |
| AMPTX N            | ,        |          | . 7      | -        |          | 9        | 6        | \$       | 10       | <b>∞</b> | 10       | 9        | Ξ        | 7        | 7        |          | Print    | 4        | 2        | -        | 9        | 6        | 9        | <b>∞</b> | 7.       | 7        | 2        | · <b>ch</b> | 7        | (1)      | -        | 0          | ш        |
| POTAX ,            | 22       | 25       | 27       | 24       | 19       | 36       | 34       | 23       | 32       | 30       | 62       | 49       | 69       | 56       | 52       | 24       | 31       | 23       | 19       | 23       | 53       | 50       | 46       | 45       | 48       | 00       | 12       | Ś           | 13       | 00       | <b>∞</b> | 00         | 01       |
|                    | 2        | 3        | 4        | 0        | 4        | 6        | 2        | -        | •        | •        | 28       | 10       | 28       | . 23     | 26       | 9        | 7        | 22       | 7        | ς,       | 22       | 42       | 28       | 29       | 35       | 4        | 6        | 7           | т        | 7        | 5        | 8          | 4        |
| ECHAB MISCAB       | 4        | 5        | 15       | 12       |          | 201      | 193      | . 225    | 128      | 227      | 14       | 5        | 17       | 6        |          | ĸ        | 7        | ş        | 6        | 7        | 64       | 25       | 89       | 267      | 130      | ∞        | ∞        | š           | 6        | 7        | 0        | 3          |          |
|                    | 20       | =        | 16       | 12       | 13       | 43       | 80       | 37       | 40       | 53       | 28       | 6        | 35       | 20       | 74       | 7        | 33       | 6        | S        | 7        | 55       | 21       | 24       | 21       | 19       | 21       | 7        | 18          | 81       | 17       |          | 0          | S        |
| CRAB AMPAB         | 73       | 52       | 89       | 26       | 58       | 188      | 230      | 137      | 175      | 161      | 89       | 4        | 75       | 65       | 26       | 24       | 34       | 44       | 35       | 37       | 71       | 35       | 4        | 35       | 32       | 103      | 76       | 95          | 96       | 63       | 61       | 30         | 34       |
| SAMPLE             | -        | 7        | en       | 4        | 5        | ****     | 7        | ٣        | 4        | 5        | 1        | 7        | 6        | খ        | 5        | *****    | 2        | 3        | 4        | 5        | pund     | 2        | 9        | 4        | S        | *****    | 7        | m           | 4        | ٧        | •        | 2          | en       |
| STATION            | 41       | 41       | 41       | 41       | 41       | 43       | 43       | 43       | 43       | 43       | 44       | 44       | 44       | 44       | 44       | 45       | 45       | 45       | 45       | 45       | 47       | 47       | 47       | 47       | 47       | 48       | 48       | 84          | 48       | 48       | 49       | 49         | 49       |
| SURVEY             | SED19103    | SED19103 | SED19103 | SED19103 | SED19103   | SED19103 |

| MOAB        | 13       | 56       | 55       | 926      | 39       | 83       | 99       | 62       | 59       | 35       | 28       | 54       | 28       | 47       | 36       | 52       | 51       | 44       | 72       | 156      | 99         | 77       | 45       | 65       | 44       | 69       | 30       | 48       | 75       | 131      | 91       | 56       | 68.      |
|-------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
| POAB        | 102      | 26       | 358      | 260      | 280      | 304      | 182      | 32       | 28       | 65       | 23       | 25       | 118      | 160      | 121      | 156      | 100      | 235      | 115      | 129      | 112        | 149      | 344      | 549      | 402      | 428      | 534      | 344      | 382      | 662      | 301      | 382      | 545      |
| TOTAX       | 25       | 25       | 68       | 7.5      | 69       | 69       | 7.2      | 15       | 20       | 22       | 8        | 16       | 52       | 53       | 49       | \$3      | 45       | 55       | 48       | 20       | 57         | 62       | 28       | 33       | 26       | 25       | 25       | 78       | 74       | 66       | 72       | 84       | 79       |
| TOAB        | 176      | 158      | 603      | 527      | 485      | 499      | 401      | 96       | 93       | 1        | 87       | 79       | 213      | 253      | 222      | 299      | 211      | 310      | 204      | 300      | - 197      | 256      | 493      | 817      | 551      | 716      | 724      | 469      | 486      | 864      | 370      | 483      | 1114     |
| <b>5</b> ** |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |            |          |          |          |          |          |          |          |          |          |          |          |          |
| % TOC       | 3,3      | 3.3      | 9.0      | 9.0      | 9.0      | 9.0      | 9.0      | 3.2      | 3.2      | 3.2      | 3.2      | 3.2      | 1.2      | 1.2      | 1.2      | 1.2      | 1.2      | 0.8      | 0.8      | 0.8      | 0.8        | 0.8      | 0.1      | 0.1      | 0.1      | 0.1      | 0.1      | 9.0      | 9.0.     | 9.0      | 9.0      | 9.0      | 1.2      |
| % FINES     | 84.0     | 84.0     | 21.4     | 21.4     | 21.4     | 21.4     | 21.4     | 67.2     | 67.2     | 67.2     | 67.2     | 67.2     | 55.8     | 55.8     | 55.8     | 55.8     | 55.8     | 57.7     | 57.7     | 57.7     | 57.7       | 57.7     | 6'0      | 6.0      | 6.0      | 6.0      | 6.0      | 32.8     | 32.8     | 32.8     | 32.8     | 32.8     | 29.1     |
| Depth (m)   | -5.6     | -5.6     | -34.4    | -34.4    | -34.4    | -34.4    | -34.4    | -6.5     | -6.5     | -6.5     | -6.5     | -6.5     | -7.1     | -7.1     | -7.1     | -7.1     | -7.1     | -21.3    | -21.3    | -21.3    | -21.3      | -21.3    | -16.5    | -16.5    | -16.5    | -16.5    | -16.5    | -20.7    | -20.7    | -20.7    | -20.7    | -20.7    | -22.5    |
| LonSec L    | 49       | 49       | 7        | 7        | 7        | 7        | 7        | 100      | 100      | 100      | 100      | 100      | 13       | 13       | 13       | 13       | 13       | 7        | 7        | 7        | 7          | 7        | 57       | 57       | 57       | 57       | 57       | m        | т.       | 3        | ы        | r)       | 41       |
| LonMin      | 54       | 54       | 32       | 32       | 32       | 32       | 32       | 4        | 4        | 4        | 4        | 4        | 35       | 35       | 35       | 35       | 35       | 44       | 44       | 44       | 44         | 44       | 14       | 14       | 14       | 7        | 14       | 9        | 9        | 9        | 9        | 9        | 53       |
| LonDeg      | 122      | 122      | 122      | 122      | 122      | 122      | 122      | 123      | 123      | 123      | 123      | 123      | 122      | 122      | 122      | 122      | 122      | 122      | 122      | 122      | 122        | 122      | 123      | 123      | 123      | 123      | 123      | 123      | 123      | 123      | 123      | 123      | 122      |
| LatSec      | 49       | 49       | 6        | 6        | 6        | 6        | 6        | 42       | 42       | 42       | 42       | 42       | 33       | 33       | 33       | 33       | 33       | 5        | <b>ن</b> | so.      | ις         | 'n       | . 2      | 2        | 7        | 2        | 2        | 10       | 10       | 10       | 10       | 10       | 15       |
| LatMin      | 4        | 4        | 44       | 44       | 44       | 44       | 44       | 12       | 12       | 12       | 12       | 2        | 30       | 30       | 30       | 30       | 30       | 50       | 50       | 50       | 50         | 20       | ∞        | ∞        | ∞        | 8        | ∞        | 10       | 10       | 10       | 10       | 10       | ю        |
| LatDeg      | 47       | 47       | 47       | 47       | 47       | 47       | 47       | 47       | 47       | 47       | 47       | 47       | 48       | 48       | 48       | 48       | 48       | 48       | 48       | 48       | 48         | 48       | 48       | 48       | 48       | 48       | 48       | 48       | 48       | 48       | 48       | 48       | 48       |
| <b>*</b>    |          | <b>y</b> |          | -        |          |          | -        |          | ****     | -        |          | ****     |          | -        | -        | -        |          |          | ****     | ****     | <b>p</b> 4 |          |          |          | ****     | -        | -        | _        | -        | -        | -        | ****     |          |
| ပ           | MO       | <u>X</u> | MO       | WO.      | MO         | MO       | MO       | MO       | MO       | MO       | MO       | MO       | MO       | MO       | MO       | MO       | MO       |
| SAMPLE      | 4        | S        | -        | 7        | m        | 4        | ₹0       |          | 7        | W        | 4        | ν        | 1        | .7       | W        | 4        | ₹7       |          | 7        | ω.       | 4          | Ŋ        |          | 7        | ĸ        | 4        | ĸ٦       | -        | 7        | m        | 4        | ś        | · ·      |
| STATION     | 49       | 49       | 69       | 69       | 69       | 69       | 69       | 70       | 70       | 70       | 70       | 70       | 7.1      | 7.1      | . 1/     | 7.       | 7.1      | R 2      | R2       | R 2      | R2         | R2       | R.9      | R 9      | R 9      | R 9      | R 9      | R10      | R10      | R10      | R10      | R10      | R11      |
| SURVEY      | SED19103   | SED19103 | SED19103 | SED19103 | SED19103 | SED19103 | SED19103 | SED19103 | SED19103 | SED19103 | SED19103 | SED19103 | SED19103 |

| SURVEY   | STATION | SAMPLE | CRAB AMPAB | AMPAB | ECHAB | MISCAB      | POTAX | AMPTX       | AMPTX MOTAX ECHTAX                      |       | CRTX MIS | MISCTX     | Ħ     | <del>-</del> | Ш   | SDI                                     |
|----------|---------|--------|------------|-------|-------|-------------|-------|-------------|-----------------------------------------|-------|----------|------------|-------|--------------|-----|-----------------------------------------|
| SED19103 | 49      | 4      | 14         | ĸν    | p4    | δ.          | 12    | 2           | 9                                       | 7     | 4        | ****       | 1.116 | 0.798        | 7.1 | 00                                      |
| SED19103 | 49      | S      | 22         | 9.    | . 44  | . 9         | 13    | 3           | 9                                       | presi | 4        |            | 1.213 | 0.867        | 89  | 10                                      |
| SED19103 | 69      |        | 176        | 10    | 12    | <b>June</b> | 55    | ••          | 15                                      | 7     | 15       |            | 1.51  | 0.775        | 80  | 11                                      |
| SED19103 | 69      | 2      | 142        | 12    | 65    | 4           | 45    | 9           | 13                                      |       | 14       | 7          | 1.476 | 0.787        | 81  | 11                                      |
| SED19103 | 69      | ٣      | 118        | 15    | 43    | S           | 42    | S           | 12                                      | -     | 11       | ٣,         | 1.494 | 0.812        | 81  | 17                                      |
| SED19103 | 69      | 4      | 110        | 12    | 27    | 5           | 44    | 3           | 14                                      |       | 6        | <b>y</b> 4 | 1.483 | 908.0        | 80  | 16                                      |
| SED19103 | 69      | S      | 137        | 18    | 24    | 2           | 37    |             | 14                                      | 2     | 17       | 2          | 1,498 | 0.807        | 78  | 18                                      |
| SED19103 | 70      | ,      | 7          |       | 0     | 0           | ∞     | -           | 3                                       | 0     | 7        | 0          | 0.905 | 0.769        | 29  | 4                                       |
| SED19103 | 70      | 73     | Ś          | ***** | 0     | <b>and</b>  | 7     |             | ∞                                       | 0     | 4        |            | 1.062 | 0.816        | 25  | 9                                       |
| SED19103 | 70      | m      | 9          |       | 0     | Š           | 6     | -           | ∞                                       | 0     | т        | 2          | 1.015 | 0.756        | 99  | 9                                       |
| SED19103 | 70      | 4      |            | 4     | -     | 0           | 7     |             | •                                       | -     | 7        | 0          | 1,03  | 0.82         | 57  | 9                                       |
| SED19103 | 70      | ,w     | 0          | 0     | 0     | 0           | 7     | 0           | 6                                       | 0     | 0        | 0          | 0.944 | 0.784        | 62  | 9                                       |
| SED19103 | 71      | , mar  | 44         | 24    | 91    | 7           | 33    | 2           | 10                                      | 7     | 9        | -          | 1.492 | 0.87         | 74  | 82                                      |
| SED19103 | 11      | 61     | 34         | 1.5   | 7     | \$          | 29    | т           | 15                                      | 7     | 9        | -          | 1.51  | 9.876        | 7.1 | 70                                      |
| SED19103 | 71      | т      | 38         | 21    | 21    | 9           | 28    | ť'n         | ======================================= | 7     |          |            | 1.462 | 0.865        | 76  | 17                                      |
| SED19103 | 71      | 4      | 74         | 33    | 10    | 7           | 31    | w           | [3                                      | 7     | 9        | <b></b>    | 1.447 | 0.839        | 73  | 16                                      |
| SED19103 | 7.1     | S      | 44         | 25    | 13    | ťħ          | 21    | 7           | 14                                      | 7     | 7        | -          | 1.482 | 0.897        | 74  | 18                                      |
| SED19103 | R 2     |        | 18         | 4     | 6     | m           | 28    | 4           | 12                                      | 7     | 6        | .03        | 1.242 | 0.714        | 80  | ======================================= |
| SED19103 | R2      | 7      | 10         | 5     |       | 4           | 24    | · m         | 16                                      | -     | 9        |            | 1.419 | 0.844        | 64  | 17                                      |
| SED19103 | R 2     | ť'n    | ∞          | -     | 7     | 5           | 24    | <b>part</b> | 19                                      | -     | 4        | 7          | 1.217 | 0.716        | 64  | 6                                       |
| SED19103 | R 2     | 4      | 6          | 2     | 4     | 9           | 31    | 2           | 61                                      |       | 4        | 7          | 1.558 | 0.887        | 69  | 21                                      |
| SED19103 | R2      | ارد    | 18         | -     | 9     | 9           | 34    | 4           | 18                                      |       | 9        | 33         | 1.52  | 0.848        | 76  | 20                                      |
| SED19103 | R9      | _      | 9          | 4     | 88    | 9           | 15    | 6           | 33                                      | 7     | 4        | 60         | 6.0   | 0.622        | 73  | 5                                       |
| SED19103 | К9      | 2      | 25         | 25    | 116   | 59          | 14    | 4           | 7                                       | 7     | 4        | ŝ          | 0.833 | 0.549        | 69  | 4                                       |
| SED19103 | R9      | т      | <b>∞</b>   | œ     | . 65  | 30          | 12    | ć,          | 9                                       | -     | er.      | 3          | 0.794 | 0.561        | 69  | 4                                       |
| SED19103 | R 9     | 4      | 19         | 19    | 191   | 38          | 12    | 7           | 9                                       | I     | 7        | ю          | 0.856 | 0.612        | 69  | 4                                       |
| SED19103 | R 9     | ۍ      | 00         | 90    | 85    | 47          | . 12  | 2           | S                                       |       | 7        | ť'n        | 0.727 | 0.52         | 99  | 33                                      |
| SED19103 | R10     | -      | 69         | 59    | 0     | ķ           | 47    | 6           |                                         | 0     | 15       | , th       | 1.331 | 0.703        | 98  | 17                                      |
| SED19103 | R10     | 7      | 26         | 19    | 0     | 0           | 48    | 7           | 12                                      | 0     | 13       | 0          | 1.229 | 0.658        | 8   | 12                                      |
| SED19103 | R10     | m      | 62         | 47    | 0     | 90          | 89    | 00          | yord<br>                                | 0     | 11       | 2          | 1.33  | 0.667        | 83  | 16                                      |
| SED19103 | RIO     | 4      | 52         | 41    | 0     | ****        | . 49  |             | 9                                       | 0     | 16       |            | 1.465 | 0.789        | 83  | . 20                                    |
| SED19103 | RIO     | ۍ      | 40         | 23    | 0     | 4           | 55    |             | -                                       | 0     | 15       | 2          | 1.298 | 0.674        | 84  | 17                                      |
| SED19103 | RII     |        | 464        | 455   | 0     | 16          | 56    | •           | ∞                                       | 0     | 12       | 6          | 1,203 | 0.634        | 88  | 6                                       |

| MOAB        | 68       | 193      | 106      | 174      | 461      | 910      | 609      | 1049     | 1359     | 22       | 19       | 16       | 15       | 81       | <u>E</u> | 14       | . <del>~</del> | 23       | . 23     | 15       | 16       | 17       | 12       | 16       | 51       | 7        | 44       | 47       | 57       | 252      | 202      | 234              | 249                                   |
|-------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|------------------|---------------------------------------|
| POAB        | 1057     | 516      | 488      | 822      | 46       | 94       | 62       | 20       | 197      | 334      | 311      | 405      | 217      | 387      | 114      | 152      | 180            | 155      | 162      | 158      | 241      | 139      | 179      | 119      | 147      | 96       | 98       | 62       | 112      | 83       | 127      | 105              | 87                                    |
| TOTAX       | 6        | 88       | 80       | 93       | 40       | 29       | 52       | 36       | 70       | 75       | 99       | 69       | 71       | 62       | 40       | 38       | 44             | 65       | 45       | 49       | 49       | 45       | 22       | 47       | . 25     | 26       | 24       | 23       | 27       | 46       | 52       | 54               | 53                                    |
| TOAB        | 2061     | 1281     | 1304     | 1485     | 685      | 1146     | 783      | 1216     | 1715     | 912      | 764      | 946      | 701      | 1153     | 142      | 189      | 221            | 212      | 215      | 260      | 335      | 231      | 263      | 206      | 288      | 225      | 147      | 163      | 276      | 373      | 391      | 425              | 381                                   |
| <b>5</b> ** |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |                |          |          |          |          |          |          |          |          |          |          |          |          |          |          |                  |                                       |
| % TOC       | 1.2      | 1.2      | 1.2      | 1.2      | 0.2      | 0.2      | 0.2      | 0.2      | 0.2      | 0.6      | 9.0      | 9.0      | 9.0      | 9.0      | 0.5      | 0.5      | 0.5            | 0.5      | 0.5      | 1.7      | 1.7      | 1.7      | 1.7      | 1.7      | 2.4      | 2.4      | 2.4      | 2.4      | 2.4      | Ξ.       |          | ,<br>,<br>,<br>, | , , , , , , , , , , , , , , , , , , , |
| % FINES     | 29.1     | 29.1     | 29.1     | 29.1     | 8.6      | 8.6      | 8.6      | 8.6      | 8.6      | 21.9     | 21.9     | 21.9     | 21.9     | 21.9     | 24.4     | 24.4     | 24.4           | 24.4     | 24.4     | 7.86     | 7.86     | 7.86     | 98.7     | 7.86     | 94.1     | 94.1     | 94.1     | 94.1     | 94.1     | 62.1     | 62.1     | 62.1             | 62.1                                  |
| Depth (m)   | -22.5    | -22.5    | -22.5    | -22.5    | -19.3    | -19.3    | -19.3    | -19.3    | -19.3    | -121.3   | -121.3   | -121.3   | -121.3   | 121.3    | -118.6   | -118.6   | -118.6         | -118.6   | -118.6   | -12.5    | -12.5    | -12.5    | -12.5    | -12.5    | -31.7    | -31.7    | -31.7    | -31.7    | -31.7    | -31.9    | -31.9    | -31.9            | -31.9                                 |
| LonSec      | 41       | 41       | 41       | 41       | 43       | 43       | 43       | 43       | 43       | 25       | 25       | 25       | 25       | 25       | 35       | 35       | 35             | 35       | 35       | 100      | 100      | 100      | 100      | 100      | 34       | 34       | 34       | 34       | 34       | 57       | 57       | 57               | 57                                    |
| LonMin      | 53       | 53       | 83       | 53       | 37       | 37       | 37       | 37       | 37       | 12       | 12       | 12       | 12       | 12       | ·v       | ś        | 5              | 5        | ζ.       | 31       | 31       | 31       | 33       | 31       | 52       | 52       | 22       | 22       | 52       | 20       | 20       | 20               | 80                                    |
| LonDeg      | 122      | 122      | 122      | 122      | 122      | 122      | 122      | 122      | 122      | 123      | 123      | 123      | 123      | 123      | 123      | 123      | 123            | 123      | 123      | 122      | 123      | 122      | 122      | 123      | 122      | 122      | 122      | 122      | 122      | 122      | 122      | 122              | 122                                   |
| LatSec      | 15       | 15       | 15       | 15       | 27       | 27       | 27       | 27       | 27       | 28       | 28       | 28       | 28       | 28       | 54       | 54       | 54             | 54       | 54       | 0        | 0        | 0        | 0        | 0        | 81       | 18       | 18       | 18       | 18       | 22       | 22       | 22               | 22                                    |
| LatMin      | 3        | 3        | 60       | m        | 50       | 20       | 50       | 20       | 20       | \$9      | 59       | 59       | 59       | 89       | 55       | 55       | 55             | 55       | 55       | 45       | 45       | 45       | 45       | 45.      | 38       | 38       | 38       | 38       | 38       | 35       | 35       | 35               | 35                                    |
| LatDeg      | 48       | 48       | 48       | 48       | 47       | 47       | 47       | 47       | 47       | 48       | 48       | 48       | 48       | 48       | 48       | 48       | 48             | 48       | 48       | 48       | 48       | 48       | 48       | 48       | 48       | 48       | 48       | 48       | 48       | 48       | 48       | 48               | 48                                    |
| <b>*</b>    |          |          | -        | _        |          | -        | ,        |          | ,        |          |          | ·        | ,,,,,,   | ,        |          |          | _              | -        |          | -        | ,        | _        |          |          | _        | -        | _        |          | -        | ,        | ,,       |                  |                                       |
| Ö           | MO       | MO       | MO       | WO       | MO       | WO       | MO       | MO       | MO             | MO       | MO       | MO       | W        | MO               | MO                                    |
| SAMPLE      | 73       | ٣        | 4        | 5        | 7        | 2        | æ        | 4        | S        | Juni,    | 7        | m,       | 4        | . 8      | ·<br>•   | 7        | m              | 4        | 'n       |          | 2        | 3        | 4        | Ś        |          | 7        | ю        | 4        | Ś        | ****     | 7        | т                | 4                                     |
| STATION     | RII      | RII      | RII      | RII      | R13      | R13      | R13      | RI3      | R13      | R201     | R201     | R201     | R201     | R201     | . R202   | R202     | R202           | R202     | R202     | R203     | R203     | R203     | R203     | R203     | R204     | R204     | R204     | R204     | R204     | R205     | R205     | R205             | R205                                  |
| SURVEY      | SED19103       | SED19103 | SED19103 | SED19103 | SED19103 | SED19103 | SED19103 | SED19103 | SED19103 | SED19103 | SED19103 | SED19103 | SED19103 | SED19103 | SED19103 | SED19103         | SED19103                              |

| SDI          | 0           | 13       | Ø.       | 0        | ; (      | ₹ 4        | ٠,       | ۰۰۰ ۱    | 6e       | , ,              | - <b>v</b> e | ) oc       | ) km       | 4        | · .      | Į. Q.    | 2 1      | ; ç      | } <u>*</u> | 3 2      | 2 =      | : :      | ` ¥      | 2 %      |          | - 01     | 00           | • oc     | , «      | , ,          | ` G      | 2 1      | . 9      |
|--------------|-------------|----------|----------|----------|----------|------------|----------|----------|----------|------------------|--------------|------------|------------|----------|----------|----------|----------|----------|------------|----------|----------|----------|----------|----------|----------|----------|--------------|----------|----------|--------------|----------|----------|----------|
| Ш            | 86          | 68       | 92       | 6        | 7,6      | 74         | . X      | 3 %      | 3 %      | 77               | : 2          | . 62       | 11         | 7.4      |          | 3. 24    | 2 8      | 2 5      | . 6        | £ \$     | 3 2      | 28       | 3 2      | ž ~      | . 2      | . 69     | , y <u>e</u> | 285      | : 39     | S            | 2 0      | 3 %      | £ 2      |
| <b>Ľ.,</b> . | 0.592       | 0.651    | 0.567    | 0.646    | 0.433    | 0 472      | 0.394    | 0.245    | 0.373    | 0.55             | 0.564        | 0.603      | 0.509      | 0.483    | 0.804    | 0.80     | 0.847    | 0.841    | 0.813      | 0.869    | 0 738    | 0.80     | 78.0     | 0.885    | 0.784    | 0.864    | 0.836        | 0.841    | 0.755    | 0090         | 0.66     | 0.625    | 0.563    |
| Ħ            | 1.176       | 1.267    | 1.079    | 1.272    | 0.694    | 0.862      | 0.677    | 0.382    | 0.688    | 1.03             | 1.026        | 1.109      | 0.943      | 0.866    | 1.288    | 1.266    | 1.392    | 1.525    | 1344       | 1.468    | 1 247    | 1.471    | 1.475    | 1.479    | 1.096    | 1.222    | 1.154        | 1.145    | 1.08     | 1.013        | 1 132    | 1.084    | 0.97     |
| MISCTX       | ж           | 3        | 2        | 4        | -        | n          | ۴ħ       | . 23     | 0        | ĸ                | ĸ            | 4          | የጎ         | æ        |          | -        | 73       | ŧη       | 7          | : m      | 2        | ٠ ٠      | 5        | 'n       | -        | -        |              |          |          |              | 2        |          |          |
| CRTX         | 17          | 18       | 7        | 81       | 90       | 15         | 14       | 7        | 81       | 10               | 7            | 15         | ` <u>=</u> | ∞        | 4        | 9        | 7        | ۵        | 9          | 7        | 2        | ,        | 7        | . 40     | 7        | т        | m            | т        | Ю        | 4            | ٧٦       | 4        | 00       |
|              | 0           | <b></b>  |          | _        | 0        | 0          | -        | 0        | 7        | 4                | т            | şç         | 4          | 9        | _        | _        | 0        | 74       | ,          | 7        | 7        | 74       | - 73     | 71       | -        | ****     |              | -        |          | port         |          | 7        | ****     |
| MOTAX ECHTAX | <del></del> | 12       | 6        | 12       | 13       | 18         | 12       | 12       | 13       | 13               | 10           | <b>9</b> 5 | .6         | 9        | 10       | œ        | 6        | 12       | 10         | 9        | ∞        | ĸ        | 4        | ~        | 9        | 7        | 80           | 9        | 9        | 91           |          | 2        | 15       |
| AMPTX N      | <u>=</u>    | 13       | 6        | 10       | 4        | 10         | 9        |          | 10       | 7                | e            | 10         | 9          | Ś        | 4        | 4        | 4        | 7        | 4          | 4        | 2        | 7        | æ        | 2        |          | 7        | 2            | garant.  | 73       | 7            | 9        | ų        | т        |
| POTAX        | 65          | 54       | 54       | 56       | ∞        | 30         | 23       | 15       | 37       | 42               | 43           | 37         | 44         | 39       | 24       | 22       | 56       | 39       | 26         | 30       | 30       | 27       | 37       | 29       | 15       | 14       | <b></b>      | 12       | 16       | 24           | 33       | 34       | 27       |
| MISCAB       | 61          | 28       | 21       | 21       | 4        | 6          | Ś        | 9        | 0        | 454              | 357          | 400        | 387        | 652      | 7        | 2        | æ        | <b>ئ</b> | Ş          | 40       | 2        | 90       | 4        | =        | 7        | 10       | . 6          | 7        | 6        | 7            | E        | 9        | -        |
| ECHAB N      | 0           |          | <b></b>  | 6        | 0        | 0          | -        | 0        | £0       | 99               | 52           | 82         | 89         | 11       | -        |          | 0        | 7        | 7          | 24       |          | 90       | 9        | 19       | 13       | 20       | m            | ∞        | 13       | 17           | 33       | 19       | 22       |
| AMPAB        | 688         | 535      | 678      | 433      | 19       | <i>L</i> 9 | Π        | 7        | 33       | 15               | 4            | 32         | 9          | 00       | 12       | 82       | 16       | 20       | 91         | 34       | 52       | 24       | 44       | 20       | 57       | 14       | 15           | 20       | 71       | Ş            | 10       | m        | 7        |
| CRAB 4       | 895         | 543      | 688      | 452      | 174      | 132        | 106      |          | 156      | 34               | 25           | 43         | 14         | 16       | 12       | 20       | 20       | 22       | 18         | 57       | 65       | 49       | 62       | 4        | 75       | 28       | 35           | 39       | 85       | 61           | 56       | 61       | 20       |
| SAMPLE       | 7           | ι'n      | 4        | ν.       | _        |            | 8        | 4        | 5        | <del>pu</del> ud | 7            | 3          | 4          | S        |          | 2        | 3        | 4        | 5          | _        | 7        | 3        | 4        | ĸ        | -        | 2        | 33           | 4        | ۲,       | <b>,,,,,</b> | 7        | 8        | 4        |
| STATION      | R11         | RI1      | E        | R11      | R13      | R13        | R13      | R13      | R13      | R201             | R201         | R201       | R201       | R201     | R202     | R202     | R202     | R202     | R202       | R203     | R203     | R203     | R203     | R203     | R204     | R204     | R204         | R204     | R204     | R205         | R205     | R205     | R205     |
| SURVEY       | SED19103    | SED19103 | SED19103 | SED19103 | SED19103 | SED19103   | SED19103 | SED19103 | SED19103 | SED19103         | SED19103     | SED19103   | SED19103   | SED19103 | SED19103 | SED19103 | SED19103 | SED19103 | SED19103   | SED19103 | SED19103 | SED19103 | SED19103 | SED19103 | SED19103 | SED19103 | SED19103     | SED19103 | SED19103 | SED19103     | SED19103 | SED19103 | SED19103 |

| MOAB      | 272            | 170          | 346      | 209      | 406      | 241      | 192      | 294      | 266      | 253      | 333      | 0        | 0        | 0        | 0        | 0        | 70       | 99       | 8        | 80       | 78       | 45             | 9        | 53       | 36       | 188      | 164      | 233      | 170      | 7.1      | 56       | 53       |
|-----------|----------------|--------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
|           | 84             | 134          | 222      | 180      | 262      | 192      | 139      | 145      | 165      | 233      | 146      | 101      | 123      | 153      | 134      | 124      | 124      | 203      | 142      | 104      | 150      | 115            | 114      | 79       | 29       | 99       | 19       | 45       | 98       | 40       | 92       | 83       |
| POAB      |                | <del>,</del> | 2        | =        | Ñ        | pind     | -        | Ť        |          | 2        | 7        | =        | 11       | ==       | ==       | =        | ==       | 7        | *        | ~        | 77       | =              | -        | . • •    | •        | •        |          | 7        |          | 4        | O,       | •        |
| TOTAX     | \$             | 72           | 82       | 87       | 101      | 74       | 51       | 55       | 09       | 71       | 51       | 2        | 4        |          | . 2      | 2        | 71       | 50       | 48       | 41       | 50       | 32             | 35       | 31       | 22       | 29       | 23       | 25       | 34       | . 34     | 36       | 4        |
| TOAB      | 406            | 349          | 649      | 421      | 727      | 472      | 352      | 453      | 453      | 531      | 504      | 102      | 125      | 153      | 135      | 125      | 354      | 441      | 402      | 381      | 405      | 794            | 923      | 920      | 644      | 288      | 198      | 315      | 300      | 178      | 216      | 190      |
| **        |                |              |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |                |          |          |          |          |          |          |          |          |          |          |
| % TOC     | years<br>years | 0.8          | 0.8      | 0.8      | 0.8      | 0.8      | 1.5      | 1.5      | 1.5      | 1.5      | 1.5      | 2.8      | 2.8      | 2.8      | 2.8      | 2.8      | 0.5      | 0.5      | 0.5      | 0.5      | 0.5      | 1.7421         | 1.7421   | 1.7421   | 1.7421   | 0.886    | 0.886    | 0.886    | 0.886    | 2.4931   | 2.4931   | 2.4931   |
| % FINES   | 62.1           | 35.6         | 35.6     | 35.6     | 35.6     | 35.6     | 73.4     | 73.4     | 73.4     | 73.4     | 73.4     | 90.1     | 90.1     | 90.1     | 90.1     | 90.1     | 34.0     | 34.0     | 34.0     | 34.0     | 34.0     | 94.1           | 94.1     | 94.1     | 94.1     | 50.8     | 50.8     | 50.8     | 50.8     | 8.96     | 8.96     | 8.96     |
| Depth (m) | -31.9          | -19.4        | -19.4    | -19.4    | -19.4    | -19.4    | -29.9    | -29.9    | -29.9    | -29.9    | -29.9    | -13.7    | -13.7    | -13.7    | -13.7    | -13.7    | 9'61-    | 9'61-    | -19,6    | 9'61-    | -19.6    | -22.5          | -22.5    | -22.5    | -22.5    | -223.2   | -223.2   | -223.2   | -223.2   | -24      | -24      | -24      |
| LonSec    | 57             | 47           | 47       | 47       | 47       | 47       | 15       | 15       | 15       | 15       | 5        | 22       | 22       | 22       | 22       | 22       |          | <u>∞</u> | 8        | 80       | 18       | 42             | 42       | 42       | 42       | 42       | 42       | 42       | 42       | - 11     | -11      | .13      |
| LonMin    | 50             | 0            | 0        | 0        | 0        | 0        | 40       | 40       | 40       | 40       | 40       | 0        | 0        | 0        | 0        | 0        | 29       | 53       | . 29     | 29       | 29       | 51             | 51       | 51       | 51       | 28       | 58       | 58       | 58       | 32       | 32       | 32       |
| LonDeg    | 122            | 123          | 123      | 123      | 123      | 123      | 122      | 122      | 122      | 122      | 122      | 123      | 123      | 123      | 123      | 123      | 122      | 122      | 122      | 122      | 122      | 122            | 122      | 122      | 122      | 122      | 122      | 122      | 122      | 122      | 122      | 122      |
| LatSec    | 22             | 34           | 34       | 34       | 34       | 34       | 57       | 57       | 57       | 57       | 57       | 31       | 31       | 31       | 31       | 33       | 43       | 43       | 43       | 43       | 43       | 28             | 28       | 28       | 28       | . 14     | 14       | 4        | 14       | m        | m        | m        |
| LatMin    | 35             | 32           | 32       | 32       | 32       | 32       | 23       | 23       | 23       | 23       | 23       | 2        | 7        | 2        | 2        | 2        | 1.1      | 17       | 17       | 11       | 17       | . 59           | 99       | 59       | 89       | 52       | 52       | 52       | 52       | 41       | 41       | 41       |
| LatDeg    | 48             | 48           | 48       | 48       | 48       | 48       | 48       | 48       | 48       | 48       | 48       | 48       | 48       | 48       | 48       | 48       | 48       | 48       | 48       | 48       | 48       | 48             | 48       | 48       | 48       | 48       | 48       | 48       | 84       | 48       | 48       | 48       |
| *s        |                |              | <b>,</b> |          | ****     | _        |          | <b>,</b> |          |          | <b>,</b> | -        | ****     |          |          | *****    |          |          |          | -        |          | -              | *****    | -        |          |          | -        | -        | *****    | ****     | ,        |          |
| O         | MO             | MO           | MO       | MO       | MO       | ΨO       | OM.      | MO       | MO       | MO       | MO       | MO       | WO       | MO             | MO       | MO       | MO       | MO       | MO       | MO       | MO       | MO       | MO       | MO       |
| SAMPLE    | 5              | ****         | 73       | 8        | 4        | ς,       | -        | 7        | ю        | 4        | S        | -        | 7        | m<br>m   | 4        | 'n       |          | 73       | ю        | 4        | ęc,      | -              | 7        | m        | 4        | sound    | 7        | É        | 4        | -        | 2        | ų        |
| STATION   | R205           | R206         | R206     | R206     | R206     | R206     | R207     | R207     | R207     | R207     | R207     | R208     | R208     | R208     | R208     | R208     | R209     | R209     | R209     | R209     | R209     | `. <del></del> | şene)    | ****     | <b></b>  | m        | ю        | 33       | т        | 4        | 4        | 4        |
| SURVEY    | SED19103       | SED19103     | SED19103 | SED19103 | SED19103 | SED19103 | SED19103 | SED19103 | SED19103 | SED19103 | SED19103 | SED19103 | SED19103 | SED19103 | SED19103 | SED19103 | SED19103 | SED19103 | SED19103 | SED19103 | SED19103 | SED19203       | SED19203 | SED19203 | SED19203 | SED19203 | SED19203 | SED19203 | SED19203 | SED19203 | SED19203 | SED19203 |

| SDI                | 7        | 24       | 20       | 26       | 22       | 20       | 6.       | 7        | 6          |          | 9        | ***      | -        | -        |          | _        | 15       | 9                                                 | 7        | 9        | 80       | ~        | t <del>«</del> | . (4     | , w      | 4        | 4        | 3        | ν.       | 10       | 10        | #************************************* |
|--------------------|----------|----------|----------|----------|----------|----------|----------|----------|------------|----------|----------|----------|----------|----------|----------|----------|----------|---------------------------------------------------|----------|----------|----------|----------|----------------|----------|----------|----------|----------|----------|----------|----------|-----------|----------------------------------------|
| Ш                  | 8        | 70       | 69       | 70       | . 68     |          | 65       | . 64     | 64         | 65       | 65       | 19       | 19       | 19       | 19       | 19       | 70       | 69                                                | 69       | 69       | 68       | 8        | 7 8            | . 6      | 95       | 14       | 39       | 38       | 49       | 84       | 88        | 77                                     |
| <del>.</del> .,    | 0.61     | 0.838    | 0.779    | 0.822    | 0.758    | 0.816    | 0.64     | 0.576    | 0.63       | 0.637    | 0.567    | 0.079    | 0.169    | 0.296    | 0.063    | 0.067    | 0.699    | 0.642                                             | 99.0     | 0.63     | 0.643    | 23 0     | 75.0           | 0.53     | 0.515    | 0.609    | 0.604    | 0.555    | 0.653    | 0.757    | 0.73      | 0.825                                  |
| î,T.               | 1.057    | 1.556    | 1.49     | 1.594    | 1.519    | 1.525    | 1.093    | 1.002    | 1.12       | 1.179    | 0.968    | 0.024    | 0.102    | 0.089    | 0.019    | 0.02     | 1.294    | 1.09                                              | 1.11     | 1.016    | 1.093    | 0        | 0.000          | 0.79     | 0.691    | 0.89     | 0.822    | 0.776    | 1.001    | 1.16     | 1.136     | 1.33                                   |
| MISCTX             | ,        | 7        | 7        | 2        | 7        |          | ,        |          | 2          | 2        | punt     | 0        |          | 0        | 0        | 0        | g        | <del>, , , , , , , , , , , , , , , , , , , </del> | -        | -        | 7        |          |                | , 2      | . 0      |          | part     | 0        | 0        |          | 7         | 2                                      |
| CRTX               | 7        | 6        | 7        | 10       | _        | ∞        | 90       | ٤        | 9          | 12       | ∞        |          |          | 0        |          | -        |          | 7                                                 | 10       | 7        | 9        | t        | ~ ox           | , ,      | 9        | 9        | 9        | 7        | 10       | m        | 4         | ю                                      |
|                    |          | 0        | 4        | -        | *****    |          |          |          |            | 7        | -        | 0        | 0        | 0        | 0        | 0        | 2        | ş                                                 |          | 2        | 2        | •        |                | ı m      | m        | 0        | 0        | 0        | 0        | 73       | 7         | -                                      |
| МОТАХ ЕСНТАХ       | 16       | 20       | 23       | 20       | 26       | 22       | 14       | 15       | 16         | 14       | 15       | 0        | 0        | 0        | 0        | 0        | 15       | 14                                                | 14       | 12       | 13       | ,        | - 0            | , ec     | ş        | <b>∞</b> | 0        | ∞        | 00       | 10       | 9         | 7                                      |
| AMPTX              | 4        | 5.       | S        | 9        | 9        | 33       | 80       | ţq       | 8          | 00       | ς        | -        | 0        | 0        | 0        | 0        | 9        | 4                                                 | 9        | 4        | 4        | ,        | י ער           | i en     | 4        | 5        | 7        | 4        | 5        | 7        | 7         | 7                                      |
|                    | 28       | 4        | 47       | 53       | 09       | 4        | 27       | 34       | 35         | 40       | 26       | paral.   | 74       | 7        |          |          | 41       | 27                                                | 22       | 19       | 27       | 2        | <u> </u>       |          | 00       | <u></u>  | 9        | 10       | 16       | 18       | 22        | 78                                     |
| ECHAB MISCAB POTAX | 2        | 15       | 15       | 7        | 15       | 15       | 2        | 2        | ς,         | 00       | 2        | 0        |          | 0        | 0        | 0        | 8        | 9                                                 | 7        | 9        | ლ        | •        | 4 (r           | 4        | 0        | -        | -        | 0        | 0        | 73       | 4         | 7                                      |
| ECHAB              | 24       | 0        | 36       |          | 7        | 2        | -        | 2        | <b>pur</b> | 2        | ю        | 0        | 0        | 0        | 0        | 0        | S        | ·                                                 | ĸ        | 9        | KL)      | 330      | 363            | 352      | 327      | 0        | 0        | 0        | 0        | 59       | 81        | 28                                     |
| AMPAB              | 7        | 13       | 16       | 6        | 14       | 9        | =        | 6.       | 9          | 24       | 12       | -        | 0        | 0        | 0        | 0        | 11       | 19                                                | 18       | 11       | 7        | ć        | 292            | 351      | 170      | -00      | æ        | 7        | *        | 7        | 1.        | 12                                     |
| CRAB               | 23       | 30       | 30       | 23       | 40       | 20       | 8        | 60       | 16         | 34       | 20       |          | ı        | 0        |          | •        | 147      | 165                                               | 169      | 185      | 17       | 303      | 388            | 432      | 252      | 31       | 14       | 37       | 44       | 9        | 13        | 61                                     |
| SAMPLE             | s,       |          | 7        | ť        | 4        | 5        |          | 7        | 3          | **       | 5        |          | 2        | æ        | 4        | اد<br>د  | ganer!   | 7                                                 | ന        | 4        | \$       | pos      | . ~            | · 10     | **       |          | 2        | 33       | 4        | ****     | <b>17</b> | m                                      |
| STATION            | R205     | R206     | R206     | R206     | R206     | R206     | R207     | R207     | R207       | R207     | R207     | R208     | R208     | R208     | R208     | R208     | R209     | R209                                              | R209     | R209     | R209     |          |                | g.,,,d   | gened    | m        | m        | ٣        | æ        | 4        | 4         | 4                                      |
| SURVEY             | SED19103   | SED19103 | SED19103 | SED19103 | SED19103 | SED19103 | SED19103 | SED19103 | SED19103 | SED19103                                          | SED19103 | SED19103 | SED19103 | SED19203 | SED19203       | SED19203 | SED19203 | SED19203 | SED19203 | SED19203 | SED19203 | SED19203 | SED19203  | SED19203                               |

TOAB is calculated by summing POAB, MOAB, CRAB, ECHAB, and MISCAB.

| MOAB      | 96       | 183              | 131      | 66       | 115      | 7.1      | 52       | 39       | 80       | 64       | 92       | 45       | 48       | 66       | 88       | 129      | 79       | 44       | 63       | 86       | 54       | 172      | 157      | 173      | 179      | 321      | 338      | 246      | 262          | 25         | ∞;       | 21       | 13       |
|-----------|----------|------------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|--------------|------------|----------|----------|----------|
| POAB M    | 4        | 37               | 29       | 44       | 53       | 281      | 182      | 157      | 243      | 88       | 16       | 82       | 95       | 167      | 139      | 221      | 151      | 126      | 179      | 272      | 187      | 37       | 7.1      | 7.1      | 95       | 562      | 192      | 259      | 06           | 63         | . 53     | 48       | 20       |
| TOTAX     | 37       | 38               | 41       | 37       | 35       | 78       | 63       | 09       | 7.1      | 34       | 40       | 40       | 41       | 57       | 09       | 92       | 61       | 57       | 77       | 76       | 99       | 14       | 21       | 13       | 22       | 54       | 58       | 53       | 33           | 33         | 32       | 27       | 25       |
| TOAB T    | 200      | 266              | 286      | 241      | 263      | 426      | 296      | 227      | 401      | 376      | 350      | 293      | 349      | 325      | 275      | 440      | 279      | 276      | 412      | 474      | 368      | 217      | 236      | 250      | 287      | 672      | 620      | 565      | 394          | 108        | 8        | 98       | 80       |
| 2**       |          |                  |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |              |            |          |          |          |
| % TOC     | 2.4931   | 1.9311           | 1.9311   | 1.9311   | 1.9311   | 2.2161   | 2.2161   | 2.2161   | 2.2161   | 1.1471   | 1.1471   | 1.1471   | 1.1471   | 0.903    | 0.903    | 0.903    | 0.903    | 0.2149   | 0.2149   | 0.2149   | 0.2149   | 1.2451   | 1.2451   | 1.2451   | 1.2451   | 1.3271   | 1.3271   | 1.3271   | 1.3271       | 2.2198     | 2.2198   | 2.2198   | 2.2198   |
| % FINES   | 8.96     | 94.8             | 94.8     | 94.8     | 94.8     | 71.8     | 71.8     | 71.8     | 71.8     | 93.1     | 93.1     | 93.1     | 93.1     | 48.0     | 48.0     | 48.0     | 48.0     | 5.2      | 5.2      | 5.2      | 5.2      | 96.3     | 96.3     | 6.96     | 96.3     | 42.8     | 42.8     | 42.8     | 42.8         | 81.3       | 81.3     | 81.3     | 81.3     |
| Depth (m) | -24      | -21              | -21      | -21      | -21      | -21.1    | -21.1    | -21.1    | -21.1    | -21.1    | -21.1    | -21.1    | -21.1    | -112.8   | -112.8   | -112.8   | -112.8   | -19.4    | -19.4    | -19.4    | +19.4    | -81.8    | -81.8    | -81.8    | -81.8    | -19.1    | -19.1    | -19.1    | -19.1        | -123.4     | -123.4   | -123.4   | -123.4   |
| LonSec    | 1.7      | 4                | 4        | 4        | 4        | 55       | 55       | 55       | 55       | 35       | 35       | 35       | 35       | 4        | 4        | 4        | 4        | ∞        | 00       | ∞        | 80       | 46       | 46       | 46       | 46       | 29       | 29       | 29       | 29           | 11         | 17       | 1.1      | 17       |
| LonMin    | 32       | 32               | 32       | 32       | 32       | 26       | 26       | 26       | 56       | 46       | 46       | 46       | 46       | 4        | 44       | 44       | 44       | 49       | 49       | 49       | 49       | 7        | 7        | 7        | 7        | 37.      | 37       | 37       | 37           | 28         | 28       | 28       | 28       |
| LonDeg    | 122      | 122              | 122      | 122      | 122      | 123      | 123      | 123      | 123      | 122      | 122      | 122      | 122      | 122      | 122      | 122      | 122      | 122      | 122      | 122      | 122      | 123      | 123      | 123      | 123      | 122      | 122      | 122      | 122          | 122        | 122      | 122      | 122      |
| LatSec    | m        | 51               | 51       | 51       | 51       | 53       | 53       | 53       | 53       | 4        | 4        | 4        | 4        | 57       | 57       | 57       | 57       | 54       | 54       | 54       | 54       | -        | Ξ        | =        | 11       | 21       | 21       | 21       | 21           | 52         | 52       | 52       | 22       |
| LatMin    | 41       | 35               | 35       | 35       | 35       | 7        | 7        | 7        | 7        | S        | ς.       | Ś        | 5        | 46       | 46       | 46       | 46       | 42       | 42       | 42       | 42       | 22       | 22       | 22       | 22       | 15       | 15       | 15       | 15           | 5          | 5        | S        | 80       |
| LatDeg    | 48       | 48               | 48       | 48       | 48       | 48       | 48       | 48       | 48       | 48       | 48       | 48       | 48       | 47       | 47       | 47       | 47       | 47       | 47       | 47       | 47       | 47       | 47       | 47       | 47       | 48       | 48       | 48       | 48           | 48         | 48       | 48       | 48       |
| *         | <u>-</u> | _                | ****     | -        |          | <b></b>  |          | _        | ****     |          | ****     |          | ****     |          | ****     | -        | *1       | •        | -        | -        | -        | -        | -        | ****     |          | -        | -        | _        |              | •          | -        | _        | ****     |
| O         | MO       | MO               | MO       | M<br>O   | MO           | MO         | MO       | MO       | ₩<br>V   |
| SAMPLE    | 4        | . <del>-</del> . | 7        | m        | 4        |          | ~        | ю        | 4        | -        | 2        | ю        | 4        |          | 7        | ю        | 4        | p-uq     | 7        | ю        | 4        | -        | 7        | ю        | 4        |          | 7        | en       | ₹            | <b>,</b> , | 73       | 3        | 4        |
| STATION   | 4        | \$               | ٤٦       | κ.       | ν        | ∞        | ∞        | ∞        | ∞ .      | .12      | 12       | 12       | 12       | 14       | 14       | 14       | 14       | 15       | 15       | 15       | ~        | 11       | -        | 17       | 17       | 18       | 81       | 82       | <u>&amp;</u> | 61         | 19       | 61       | 61       |
| SURVEY    | SED19203 | SED19203         | SED19203 | SED19203 | SED19203 | SED19203 | SED19203 | SED19203 | SED19203 | SED19203 | SED19203 | SED19203 | SED19203 | SED19203 | SED19203 | SED19203 | SED19203 | SED19203 | SED19203 | SED19203 | SED19203 | SED19203 | SED19203 | SED19203 | SED19203 | SED19203 | SED19203 | SED19203 | SED19203     | SED19203   | SED19203 | SED19203 | SED19203 |

| •                  |          |          |          |          |          |          |          |              |          |          |          |          |          |          |          |          |            |          |          |          |            |          |          |             |          |                                        |          |          |          |          |          |          |          |
|--------------------|----------|----------|----------|----------|----------|----------|----------|--------------|----------|----------|----------|----------|----------|----------|----------|----------|------------|----------|----------|----------|------------|----------|----------|-------------|----------|----------------------------------------|----------|----------|----------|----------|----------|----------|----------|
| SDI                | 6        | 6        | 12       | 10       | 10       | 23       | 19       | 21           | 22       | š        | <b>∞</b> | ∞        | 7        | . 14     | 91       | 23       | 17         | ==       | 20       | 19       | 19         |          | 2        | 2           | 2        | 4                                      | 5        | œ        | 4        | 10       | 13       | -        | 10       |
|                    | 80       | 63       | 75       | 77       | 75       | 73       | 78       | 78           | œ        | 90       | 87       | 85       | 98       | 72       | 71       | 77       | 74         | 85       | 88       | 87       | 84         | 99       | 99       | 99          | 99       | 71                                     | 72       | 73       | 89       | 82       | 80       | 78       | 78       |
| ñ-,                | 0.772    | 0.766    | 0.802    | 97.0     | 0.795    | 18.0.    | 0.845    | 0.863        | 0.857    | 0.609    | 0.671    | 0.705    | 0.65     | 0.772    | 0.79     | 0.812    | 0.811      | 0.712    | 0.741    | 0.801    | 0.756      | 0.398    | 0.502    | 0.494       | 0.493    | 0.547                                  | 0.559    | 0.641    | 0.508    | 0.819    | 0.888    | 0.873    | 0.875    |
| H                  | 1.211    | 1.21     | 1.294    | 1.192    | 1.228    | 1.532    | 1.521    | 1.535        | 1.586    | 0.933    | 1.075    | 1.129    | 1.048    | 1.356    | 1.405    | 1.594.   | 1.447      | 1.25     | 1.399    | 1.507    | 1.376      | 0.457    | 0.663    | 0.608       | 0.661    | 0.948                                  | 0.985    | 1.106    | 0.771    | 1.244    | 1.337    | 1.249    | 1.224    |
| MISCTX             | 7        | 0        | -        | 7        | ĸ        | 0        | 0        | -            |          | 7        |          |          | _        | m        | 0        | 4        | 0          | m        | ٣        |          | <b>i</b> 7 | 0        | 0        |             | 0        | ო                                      |          | 7        | 71       | 0        |          | -        | 0        |
| CRIX               | 4        | 7        | 9        | 5        | 9        | 16       | 10       | 10           | 13       | 4        | 9        | 9        | 7        | 1.4      | 17       | 23       | 19         | 7        | 10       | 13       | -          | 2        |          | <del></del> | ĸ٦       | 9                                      | 6        | 4        | 7        | 6        | 01       | 4        | +        |
| жи                 | 3        |          | 7        |          | *****    | 0        | gract    |              | 7        |          | ****     | -        |          | 7        | -        | ť        | , <b>.</b> | 0        | 0        | 0        | 0          | 0        | 0        | 0           | 0        | 0                                      |          | 0        | 0        | proof    | 2        | ****     |          |
| AMPTX MOTAX ECHTAX | 1        |          | 15       | 13       | 13       | 16       | 16       | 12           | 91       | Ξ        | 13       | 13       | 12       | 13       | 14       | 14       |            | 61       | 19       | 22       | 21         | m        | 9        | 7           | 9        | ************************************** | 13       | 10       | 6        | 00       | E.       | 7        | 4        |
| AMPTX N            | ٣        | δ        | 4        | ю        | m        | 10       | 9        | 9            | 7        | 7        | 64       | 73       | 33       | 9        | 7        | 12       | П          | ĸ        | 9        | œ        | 9          | 0        | 0        | 0           |          | 1                                      | \$€      | ymet     |          | 9        | 4        | 7        | ν,       |
| POTAX              | 17       | 16       | 17       | 16       | 12       | 44       | 36       | 35           | 39       | 16       | 61       | 19       | 20       | 25       | 27       | 48       | 30         | 28       | 45       | 40       | 32         | 6        | 14       | 6           | 11       | 34                                     | 34       | 37       | 70       | 15       | 91       | 14       | 13       |
| MISCAB             | 4        | 0        | 3        | 9        | w        | 0        | 0        |              | -        | m        | -        | 7        | 7        | 7        | 0        | 22       | 0          | 86       | 137      | 57       | 102        | 0        | 0        | 0           | 0        | 42                                     | 62       | 51       | 00       | 0        | 4        | 3        | 0        |
| ECHAB MISCAB       | 45       | 20       | 59       | 64       | 65       | 0        | *****    | <b></b>      | *        | 184      | 141      | 102      | 150      | m        |          | ţ        |            | 0        | 0        | 0        | 0          | 0        | 0        | 0           | 0        | 0                                      | 1        | 0        | 0        | 1        | 7        | 7        | 7        |
| AMPAB              | 7        | ∞        | 12       | 80       | 11       | 45       | 36       | 23           | 47       | 12       | ×        | 18       | 17       | 24       | 18       | 43       | 31         | 6        | 12       | 26       | 10         | 0        | 0        | 0           | -        | \$                                     | 12       | -        | -        | 13       | Ś        | 73       | 7        |
| CRAB               | 14       | 26       | 26       | 28       | 27       | 11       | 19       | 28           | 69       | 37       | 41       | 62       | 54       | 49       | 46       | 65       | 48         | 17       | 33       | 47       | 25         | ∞        | ∞        | 9           | 13       | 01                                     | 27       | 6        | 34       | 61       | 14       | 12       | 15       |
| SAMPLE             | 4        | -        | 7        | 3        | 4        | pered    | ٠ 64     | 3            | 4        | _        | 7        | 3        | 4        | -        | 2        | ю        | 4          | port     | 7        | 3        | 4          | -        | 7        | ٣           | 4        | <b>,,,,,,</b>                          | 7        | 3        | 4        | _        | 2        | 3        | 4        |
| STATION            | 4        | 5        | 5        | 22       | 5        | 8        | <b>∞</b> | <b>&amp;</b> | ∞ .      | 12       | 13       | 12       | 12       | 14       | 14       | 14       | 14         | 15       | 15       | 15       | 15         | 11       | 1.1      | 17          | 17       | 18                                     | 8        | 18       | 18       | 61       | 61       | 16       | 19       |
| SURVEY             | SED19203     | SED19203 | SED19203 | SED19203 | SED19203 | SED19203 | SED19203 | SED19203 | SED19203 | SED19203   | SED19203 | SED19203 | SED19203 | SED19203   | SED19203 | SED19203 | SED19203    | SED19203 | SED19203                               | SED19203 | SED19203 | SED19203 | SED19203 | SED19203 | SED19203 | SED19203 |

| SURVEY   | STATION | SAMPLE  | O  | *x       | LatDeg | LatMin | LatSec | LonDeg | LonMin | LonSec | Depth (m) | % FINES | % TOC    | <b>2*</b> * | TOAB | TOTAX | POAB  | MOAB |   |
|----------|---------|---------|----|----------|--------|--------|--------|--------|--------|--------|-----------|---------|----------|-------------|------|-------|-------|------|---|
| SED19203 | 34      | 7       | MO |          | 47     | 32     | 84     | 122    | 39     | 43     | -13       | 89.4    | 2.1808   |             | 528  | . 53  | 428   | . 29 |   |
| SED19203 | 34      | m       | MO | ****     | 47     | 32     | 48     | 122    | 39     | 43     | -13       | 89.4    | 2.1808   |             | 488  | 43    | 373   | 20   |   |
| SED19203 | 34      | 4       | MO | , mar    | 47     | 32     | 48     | 122    | 39     | 43     | -13       | 89.4    | 2.1808   |             | 1234 | 48    | 1001  | 39   |   |
| SED19203 | 35      |         | MO |          | 47     | 36     | 49     | 122    | 41     | 53     | -14.3     | 80.5    | 2.3923   |             | 1111 | 47    | 652   | 10   |   |
| SED19203 | 35      | 2       | MO | _        | 47     | 36     | 49     | 122    | 4      | 53     | -14.3     | 80.5    | 2.3923   |             | 1141 | 47    | 722   | 14   |   |
| SED19203 | 35      | 8       | MO | -        | 47     | 36     | 49     | 122    | 4      | 53     | -14.3     | 80.5    | 2.3923   |             | 434  | 29    | 134   | 7    |   |
| SED19203 | 35      | ***     | MO | -        | 47     | 36     | 49     | 122    | 4      | 53     | -14.3     | 80.5    | 2.3923   |             | 452  | 39    | 112   | 10   |   |
| SED19203 | 38      |         | MO | ••••     | 47     | 25     | 43     | 122    | 23     | 35     | -198.7    | 93.1    | 2.03305  |             | 66   | 21    | 16    | 42   |   |
| SED19203 | 38      | 7       | MO |          | 47     | 25     | 43     | 122    | 23     | 35     | -198.7    | 93.1    | 2.03305  |             | 155  | 32    | 32    | 57   |   |
| SED19203 | 38      | æ       | MO | <b>,</b> | 47     | 25     | 43     | 122    | 23     | 35     | -198.7    | 93.1    | 2.03305  |             | 194  | 27    | 23    | 95   |   |
| SED19203 | 38      | 4       | MO | -        | 47     | 25     | 43     | 122    | 23     | 35     | -198.7    | 93.1    | 2.03305  |             | 181  | 20    | 23    | 96   |   |
| SED19203 | 39      |         | MO | _        | 47     | 20     | 14     | 122    | 22     | 18     | -15.8     | 2.7     | 0.1453   |             | 191  | 49    | 109   | 33   |   |
| SED19203 | 39      | 2       | MO | _        | 47     | 20     | 14     | 122    | 22     | 18     | -15,8     | 2.7     | 0.1453   |             | 165  | 43    | 105   | 27   |   |
| SED19203 | 39      | 60      | MO | -        | 47     | 20     | 14     | 122    | 22     | 18     | -15.8     | 2.7     | 0.1453   |             | 145  | 41    | 71    | 35   |   |
| SED19203 | 39      | 4       | MO | _        | 47     | 20     | 14     | 122    | 22     | . 18   | -15.8     | 2.7     | 0.1453   |             | 163  | 40    | 92    | 23   |   |
| SED19203 | 40      | <b></b> | MO | -        | 47     | .15    | 4      | 122    | 26     | 14     | -9.4      | 32.2    | 2.1687   |             | 573  | 82    | 206   | 189  |   |
| SED19203 | 40      | 2       | MO | _        | 47     | 5      | 4      | 122    | 26     | 14     | 4.6       | 32.2    | 2.1687   |             | 595  | 79    | 337   | 83   |   |
| SED19203 | 40      | 3       | MO | _        | 47     | 15     | 4      | 122    | 26     | 14     | 4.6-      | 32.2    | 2.1687   |             | 769  | 78    | 439   | 132  |   |
| SED19203 | 40      | 4       | MO | -        | 47     | 15     | 4      | 122    | 26     | 14     | -9.4      | 32.2    | 2.1687   |             | 716  | 70    | 389   | 164  |   |
| SED19203 | 14      | y       | MO | I        | 47     | 16     | 31     | 122    | 25     | 14     | -19.1     | 75.1    | 1.1428   |             | 1013 | 63    | 171   | 720  |   |
| SED19203 | 41      | 7       | MO | -        | 47     | 16     | 23     | 122    | 25     | 7      | -19.1     | 75.1    | 1.1428   |             | 899  | 45    | 139   | 460  |   |
| SED19203 | 4       | m       | MO | -        | 47     | 16     | 31     | 122    | 25     | 14     | -19.1     | 75.1    | 1.1428   |             | 1021 | 46    | 176   | 757  |   |
| SED19203 | 4       | 4       | MO | -        | 47     | 16     | 31     | 122    | 25     | 14     | -19.1     | 75.1    | 1.1428   |             | 862  | 9     | . 193 | 593  |   |
| SED19203 | 43      | ·—      | MO | _        | 47     | 17     | . 53   | 122    | 44     | 31     | -19.8     | 0.9     | 0.2859   |             | 167  | 69    | 271   | 54   |   |
| SED19203 | 43      | 2       | MO | 7000     | 47     | 11     | 53     | 122    | 44     | 31     | -19.8     | 0.9     | 0.2859   |             | 973  | 7.1   | 325   | 61   |   |
| SED19203 | 43      | 3       | MO | -        | 47     | 17     | 53     | 122    | 44     | 31     | -19.8     | 6.0     | 0.2859   |             | 852  | 76    | 263   | 89   |   |
| SED19203 | 43      | 4       | MO |          | 47     | 17     | 53     | 122    | 44     | 31     | -19.8     | 6.0     | 0.2859   |             | 844  | 58    | 286   | 37   |   |
| SED19203 | 44      | -       | MO |          | 47     | 9/     | 41     | 122    | 40     | 25     | -20.5     | 17.9    | 0.519675 |             | 200  | 51    | 10    | 64   |   |
| SED19203 | 44      | 2       | MO | -        | 47     | 6      | 41     | 122    | 40     | 25     | -20.5     | 17.9    | 0.519675 |             | 484  | 100   | 339   | 46   |   |
| SED19203 | 44      | ю       | MO | <b></b>  | 47     | 6      | 41     | 122    | 40     | 25     | -20.5     | 17.9    | 0.519675 |             | 483  | 104   | 299   | 85   | ٠ |
| SED19203 | 44      | 4       | MO | -        | 47     | 6      | 4      | 122    | 40     | 25     | -20.5     | 17.9    | 0.519675 |             | 644  | 113   | 443   | 09   |   |
| 3ED19203 | 45      | -       | MO | -        | 47     | 6      | 54     | 122    | 45     | 4      | -51.9     | 55.7    | 0.6382   |             | 199  | 47    | 137   | 27   |   |
| SED19203 | 45      | 2       | MO | -        | 47     | 6      | 54     | 122    | 45     | 47     | -51.9     | 55.7    | 0.6382   |             | 277  | 46    | 212   | 24   |   |
|          |         |         |    |          |        |        |        |        |        |        |           |         |          |             |      |       |       |      |   |

|                    | 0       | 80         | 0       | 2          | 7       | S        | ς,       | 9        | 0,      | ∞       | 9         | 7       | 24      | 17      | 21      | 7            | 7       | 4       | tu)     | m           | 14      | 15      | 13         | 14       | 24      | 56      | 24      | 25      | 17      | 17      | 82      | 24      | 4        |
|--------------------|---------|------------|---------|------------|---------|----------|----------|----------|---------|---------|-----------|---------|---------|---------|---------|--------------|---------|---------|---------|-------------|---------|---------|------------|----------|---------|---------|---------|---------|---------|---------|---------|---------|----------|
| SDI                |         |            |         |            |         |          |          |          |         |         |           |         | .,      | _       |         | <b>,,,,,</b> |         |         |         |             | -       | _       | _          | -        | CA      | 7       | 2       |         |         |         |         | 2       |          |
| E                  | 84      | 84         | 79      | 82         | 64      | 62       | 59       | 9        | 70      | 65      | 65        | 89      | 29      | 99      | 19      | 59           | 41      | 45      | 43      | 44          | 29      | 89      | <i>L</i> 9 | 89       | 76      | 72      | 72      | 72      | 89      | 89      | 67      | 70      | 93       |
| <u>, "</u>         | 0.737   | 69.0       | 0.732   | 0.717      | 0.67    | 0.595    | 0.599    | 0.633    | 0.674   | 0.64    | 0.585     | 0.63    | 0.849   | 0.812   | 0.781   | 0.755        | 0.373   | 0.487   | 0.428   | 0.463       | 0.708   | 0.814   | 0.731      | 0.715    | 0.803   | 0.804   | 0.796   | 0.799   | 0.791   | 0.757   | 0.738   | 0.794   | 0.458    |
| ī                  | 1.245   | 1.127      | 1.29    | 1.274      | 1.15    | 0.99     | 1.042    | 1.092    | 1.256   | 1.227   | 1.079     | 1.138   | 1.607   | 1.507   | 1.526   | 1.429        | 0.551   | 0.726   | 0.638   | 0.663       | 1.273   | 1,41    | 1.26       | 1.266    | 1.546   | 1.559   | 1.548   | 1.565   | 1.523   | 1.44    | 1.421   | 1.584   | 0.811    |
| MISCTX             | 0       | 0          | 7       | <u>, i</u> | 2       | <b>т</b> | т        | 7        | 7       | т       | ю         | 4       | 7       | 'n      | т       | 7            | 0       | 0       | -       | 0           | m       | 0       | e,         | ~        | 4       | т       | ĸ       | 4       | ι»      |         | 4       | 4       | 7        |
| CRTX MI            | 9       | <b>∞</b>   | 9       | ю          | 4       | 5        | 01       | 7        | 10      | 13      | 12        | 10      | -61     | 18      | 61      | 24           | γ       | 6       | 9.      | 5           | 10      | œ       | 6          | 7        | 14      | 16      | 14      | 11      | 12      | Ξ       | 13      | 12      | <b>∞</b> |
|                    | 0       | 0          | 0       | 0          | 0       | 0        | 0        | 0        | 0       | 0       | 0         | 0       | -       | 0       | 0       | 0            | grand   | 7       | 7       | 7           | 1       | 0       |            | -        | 7       | 7       | 7       | ٣       | 2       | 2       | 0       | 3       | ***      |
| AMPTX MOTAX ECHTAX | 15      | 15         | 91      | 16         | 20      | 14       | <u>«</u> | 20       | 23      | 25      | 26        | 23      | 22      | 14      | 11      | 17           | ∞       | 6       | Π       | 6           | Ξ       | Ξ       | 14         | 15       | 18      | 15      | 17      | 19      | 13      | 16      | 15      | 24      | 15       |
| AMPTX N            | ŧО      | ĸ          | 5       | 2          | 7       | 3        | ĸ        | 4        | S       | 7       | <b>90</b> | S       |         | 17      | 13      | 16           | 7       | 9       | 2       | т           | 4       | S       | 4          | <b>6</b> | 00      | 10      | 6       | 11      | m       | 7       | ы       | 7       | 9        |
| POTAX ,            | 27      | 20         | 33      | 40         | 26      | 24       | 24       | 24       | 38      | 42      | 29        | 27      | 34      | 35      | 50      | 35           | 16      | 11      |         | <del></del> | 38      | 35      | 26         | 33       | 46      | 51      | 51      | 48      | 54      | 46      | 51      | 99      | 33       |
| IISCAB             | 0       | 0          | т       |            | 4       | 4        | 1        | S        | 45      | 13      | 4         | 22      | 4       | ထ       | 24      | 5            | 0       | 0       | 1       | 0           | 9       | 0       | ∞          | 9        | 7       | 9       | 4       | 'n      | 9       | Ξ       |         | \$      | 7        |
| ECHAB MISCAB       | 0       | 0          | 0       | 0          | 0       | 0        | 0        | 0        | 0       | 0       | 0         | 0       |         | 0       | 0       | 0            |         | 6       | m       | 7           | _       | 0       | 7          | 2        | 7       | m       | 4       | 6       | 4       | 4       | 0       | 7       |          |
|                    | 15      | 61         | 7.      | . 15       | 7       | 3        | 16       | 12       | 10      | 9,      | 10        | 7       | 86      | 136     | 78      | 184          | m       | 46      | 50      | æ           | 10      | 9       | ν          | W        | 18      | 30      | 19      | 27      | ο,      | 7       | 6       | 7       | 89       |
| CRAB AMPAB         | 16      | 22         | 20      | 91         | 298     | 364      | 395      | 352      | 215     | 415     | 297       | 217     | 114     | 173     | 16      | 237          | 56      | 75      | . 54    | 41          | 152     | 46      | 144        | 146      | 93      | 120     | 109     | 118     | 130     | 168     | 174     | 147     | 131      |
| SAMPLE             | 1       | <b>1</b> 4 | 'n      | 4          | ****    | 7        | 60       | 4        |         | 2       | ٣         | 4       | gened   | . 73    | 3       | 4            |         | 7       | т       | 4           | pood    | 7       | 3          | 4        |         | 7       | M       | 4       | -       | 64      | 3       | 4       |          |
| STATION            | 20      | 20         | 20      | 20         | 21      | 21       | 21       | 21       | 22      | 22      | 22        | 22      | 26      | 26      | 56      | . 92         | 29      | 29      | 29      | 29          | 30      | 30      | 30         | 30       | 32      | 32      | 32      | 32      | 33      | 33      | 33      | 33      | 34       |
| SURVEY             | ED19203 | ED19203    | ED19203 | ED19203    | ED19203 | ED19203  | ED19203  | SED19203 | ED19203 | ED19203 | ED19203   | ED19203 | ED19203 | ED19203 | ED19203 | ED19203      | ED19203 | ED19203 | ED19203 | ED19203     | ED19203 | ED19203 | ED19203    | ED19203  | ED19203 | ED19203 | ED19203 | ED19203 | ED19203 | ED19203 | ED19203 | ED19203 | ED19203  |

| MOAB      | 104      | 110      | 101      | 69       | 503      | 889      | 572      | 099      | 262      | 434      | 280      | 224      | 83       | 103      | 140      | 159      | 405      | 315      | 417      | 301      | 40       | 47       | 72       | 52       | 40       | 32       | 33       | 52       | 78       | 149      | 49       | 124      | 11       |
|-----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
| POAB N    | 342      | 585      | 363      | 421      | 233      | 155.     | 176      | 727      | 202      | 273      | 105      | 123      | 154      | 186      | 205      | 165      | 4        | 42       | 51       | 46       | 191      | 191      | 105      | 142      | 236      | 234      | 249      | 225      | 461      | 247      | 344      | 297      | 1236     |
| TOTAX     | 49       | 43       | 58       | 9        | 52       | 46       | 55       | 53       | 73       | 83       | 70       | 64       | 78       | 72       | 06       | 78       | 30       | 31       | 31       | 27       | 63       | 54       | 53       | 59       | 84       | 87       | 88       | 16       | 84       | 80       | 84       | 66       | 59       |
| TOAB      | 463      | 421      | 488      | 207      | 1038     | 1211     | 1150     | 1244     | 724      | 1135     | 989      | 586      | 356      | 470      | 460      | . 566    | 503      | 435      | 526      | 390      | 366      | 260      | 331      | 349      | 383      | 395      | 399      | 409      | 619      | 580      | 280      | 280      | 1447     |
| **        |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |
| % TOC     | 1.0068   | 1.0068   | 1.0068   | 1.0068   | 1.2178   | 1.2178   | 1.2178   | 1.2178   | 0.2596   | 0.2596   | 0.2596   | 0.2596   | 0.8255   | 0.8255   | 0.8255   | 0.8255   | 1.6638   | 1.6638   | 1.6638   | 1.6638   | 1.0317   | 1.0317   | 1.0317   | 1.0317   | 0,329525 | 0.329525 | 0.329525 | 0.329525 | 0.1856   | 0.1856   | 0.1856   | 0.1856   | 2.1808   |
| % FINES   | 95.7     | . 95.7   | 95.7     | 95.7     | 62.2     | 62.2     | 62.2     | 62.2     | 8.0      | 8.0      | 8.0      | 8.0      | 27.3     | 27.3     | 27.3     | 27.3     | 87.9     | 87.9     | 87.9     | 87.9     | . 36.3   | 36.3     | 36.3     | 36.3     | 5.7      | 5.7      | 5.7      | 5.7      | 32.9     | 32.9     | 32.9     | 32.9     | 89.4     |
| Depth (m) | -10.3    | -10.3    | -10.3    | -10.3    | -21.7    | -21.7    | -21.7    | -21.7    | -20.5    | -20.5    | -20.5    | -20.5    | -267.9   | -267.9   | -267.9   | -267.9   | -1993    | -199.3   | -199.3   | -199.3   | -13.3    | -13.3    | -13.3    | -13.3    | -20.4    | -20.4    | -20.4    | -20.4    | -20.8    | -20.8    | -20.8    | -20.8    | -13      |
| LonSec D  | 28       | 28       | 28       | 28       | 34       | 34       | 34       | 34       | 10       | 10       | 10       | 10       | 27       | 27       | 27       | 27       | 15       | 115      | 15       | 15       | 13       | 13       | 13       | 13       | 31       | 31       | 31       | 31       | 32       | 32       | 32       | 32       | 43       |
| LonMin    | 27       | 27       | 27       | 27       | 14       | 14       | 14       | 4        | 17       | 17       | 17       | 17       | 27       | 27       | 27       | 27       | 27       | 27       | 27       | 27       | 30       | 30       | 30       | 30       | 24       | 24       | 24       | 24       | 22       | 22       | 22       | 22       | 36       |
| LonDeg    | 122      | 122      | 122      | 122      | 122      | 122      | 122      | 122      | 122      | 122      | 122      | 122      | 122      | 122      | 122      | 123      | 122      | 122      | 122      | 122      | 122      | 122      | 122      | 122      | 122      | 122      | 122      | 122      | 122      | 122      | 122      | 122      | 122      |
| LatSec    | 23       | 23       | . 23     | 23       | 80       | <b>∞</b> | 90       | <b>∞</b> | 20       | 20       | 20       | 20       | **       | 4        | 4        | 4        | Ŋ        | 5        | \$       | 5        | 26       | 26       | 26       | 26       | 54       | 54       | 54       | 54       | 14       | 4        | 14       | 4        | 48       |
| LatMin    | 10       | 10       | 10       | 10       | 59       | 59       | 59       | 59       | 57       | 57       | 57       | 57       | 51       | 51       | 51       | 51       | 42       | 42       | 42       | 42       | 37       | 37       | 37       | 37       | 37       | 37       | 37       | 37       | 35       | 35       | 35       | 35       | 32       |
| LatDeg    | 48       | 48       | 48       | 48       | 47       | 47       | 47       | 47       | 47       | 47       | 47       | 47       | 47       | 47       | 47       | 47       | 47       | 47       | 47       | 47       | 47       | 47       | 47       | 47       | 47       | 47       | 47       | 47       | 47       | 47       | 47       | 47       | 47       |
| <b>*</b>  | -        | -        |          |          |          | _        |          | 1        | 1        |          |          |          |          |          | -        | -        | - 1      |          | -        |          | -        | _        |          |          | 1        | - 1      |          |          | 1        |          |          |          | -        |
| Û         | MO       | MO       | W        | MO       | MO       | MO       | OM       | MO       | MO       | MO       | MO       | OM<br>O  | MO       | MO       | MO       | MO       | MO       | MO       | QW       | MO       | WO       | WO       | MO       | WO       | MO       | MO       |
| SAMPLE    | -        | 7        | m,       | 4        |          | ч        | ю        | 4        | y4       |          | т        | .4       | and .    | 7        | m        | 4        |          | 7        | m        | 4        |          | 7        | en       | 4        | -        |          | m        | 4        |          | 7        | ုဇာ      | . 4      | -        |
| STATION   | 20       | 70       | 70       | 20       | 21       | 21       | 21       | 21       | 22       | 22       | 22       | . 22     | 26       | 26       | 56       | 92       | 53       | . 29     | 56       | 29       | 30       | 30       | 30       | 30       | 32       | 32       | 32       | 32       | 33       | 33       | 33       | 33       | 34       |
| SURVEY    | SED19203 |

| SDI                | 7         | 7        | 4        | 4        | · 寸      | - 4      | · •      | ٠ ٢      | · 0\     | . 9      | Ŋ        | 15       | ****     | 12       | 12       | 17       | 91       | 15       | <del>, , , , , , , , , , , , , , , , , , , </del> |          | Ś        | 'n       | 6        | 12       | 10       | 6        | 9        | 15       | 25       | 35       | 31       | 91          | <b>∞</b> |
|--------------------|-----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|---------------------------------------------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|-------------|----------|
| ш                  | 72        | 79       | 16       | 16       | 6        | . s      | : 18     | 59       | : 19     | : £\$    | 53       | 29       | 7.1      | 69       | 72       | 89       | 89       | 70       | 69                                                | 99       | 65       | 99       | 29       | 86       | 85       | 85       | 87       | 74       | 74       | 74       | 77       | 70          | 72       |
| ĵ.                 | 0.645     | 0.695    | 0.511    | 0.485    | 0.489    | 0.648    | 0.63     | 0.82     | 0.808    | 0.704    | 0.653    | 0.813    | 0.748    | 0.798    | 0.761    | 0.761    | 0.757    | 0.754    | 0.687                                             | 0.564    | 0.58     | 0.545    | 0.615    | 0.673    | 0.681    | 0.665    | 0.628    | 0.831    | 0.807    | 0.885    | 0.795    | 0.843       | 0.719    |
| Ĭ                  | 1.113     | 1.136    | 0.859    | 0.811    | 0.817    | 0.948    | 1.002    | 1.084    | 1.216    | 1.008    | 0.849    | 1.375    | 1.222    | 1.287    | 1.218    | 1.456    | 1.436    | 1.427    | 1.268                                             | 1.015    | 0.958    | 0.921    | 1.094    | 1.237    | 1.261    | 1.25     | 1.107    | 1.419    | 1.615    | 1.785    | 1.632    | 1.41        | 1.195    |
| MISCTX             | 7         | -        | 73       | **       | <b>ب</b> | 7        | 4        |          |          | -        | 0        | _        |          | 7        | 7        | 7        | 7        | 2        | 7                                                 | ę.m.     | pered    |          | s-mi     | 'n       | 4        | m        | 0        | S        | 7        | 4        | 3        | 4           |          |
| CRTX               | 4         | 9        |          | 7        | 6        | 7        | 9        | 6        | 12       |          | 00       | 13       | 10       | ∞        | 12       | 6        | 10       | ·        | 6                                                 | 9        | 5        | Ŋ        | 7        | 13       | 12       | 16       | 15       | 18       | 14       | 15       | 82       | 9           | m        |
| СНТАХ              | 2         |          |          | 4        | (ሌ)      | -        | 7        |          |          |          | 0        | 0        | 0        | 0        | 0        | 3        | 3        | 73       | 3                                                 | m        | -        | ~        |          | 63       | 2        | 7        | 2        | m        | 4        |          | 2        | gamed.      |          |
| IOTAX E            | 10        | 6        | ∞        | œ        | 7        | ŧ٥       | 7        | 10       | 7        | 9        | ю        | 10       | 10       | 12       | 10       | 21       | 14       | 17       | 18                                                | 20       | 14       | 113      | 70       | 13       | 15       | 17       | 14       | 19       | 21       | 22       | 20       | . 0         | Ξ        |
| AMPTX MOTAX ECHTAX | <b>C1</b> | 4        | 9        | 4        |          | \$       | 4        | 7        | 9        | 9        | 4        | 7        | 9        | νı       | ∞        | ĸ        | 7        | የኅ       | 7                                                 | ĸ        | 7        |          | ю        | φ,       | œ        | 10       | 10       | 12       | 6        | 6        | 13       | 7           |          |
|                    | 35        | 26       | 29       | 24       | 23       | 14       | 20       | 5        |          | <b>∞</b> | 6/       | 25       | 22       | 19       | 16       | 47       | 50       | 45       | 38                                                | 33       | 24       | 24       | 31       | 36       | 38       | 38       | 27       | 9        | 59       | 62       | .70      | 27          | 30       |
| ECHAB MISCAB POTAX | \$        | ю        | 4        | 6        | 10       | 4        | 10       | ,,,,,    | penag    | 2        | 0        | œ        | _        | en       | 4        | 7        | 5        | 4        | 7                                                 | 14       | 9        | ∞        | 13       | 7        | 24       | 7        | 0        | 70       | 7        |          | 16       | 7           | -        |
| ECHAB 1            | ĸ         | 14       | 2        | 99       | 70       | . 56     | 55       | ю        | 5        | ij       | 0        | 0        | 0        | 0        | 0        | 7        | 9        | 9        | 9                                                 | 23       | 6 .      | 23       | 20       | 206      | 223      | 222      | 223      | 12       | 13       | 9        | 18       | 4           | 17       |
| AMPAB              | 16        | 34       | 46       | 74       | 57       | 21       | 35       | 14       | 24       | 21       | 23       | 31       | 28       | 31       | 39       | 9        | 2        | 9        | ю                                                 | 34       | 25       | 23       | 16       | 61       | 28       | 73       | 11       | 42       | 56       | 31       | 37       | 'n          | 7        |
| CRAB ,             | 63        | 78       | 86       | 374      | 325      | 233      | 265      | 37       | 90       | 71       | 62       | 41       | 32       | 36       | 44       | 164      | 164      | 187      | 150                                               | 85       | 54       | 57       | 43       | 229      | 340      | 292      | 298      | 94       | 84       | 82       | 104      | 24          | 23       |
| SAMPLE             | 7         | m        | 4        | ,        | 7        | ٣        | 4        | ·        | 2        | 33       | 4        |          | 7        | m        | -4+      |          | 7        | 6        | 4                                                 | _        | 7        | ٣        | 4        |          | 7        | m        | 4        |          | 7        | ξÜ       | 4        | <del></del> | 2        |
| STATION            | 34        | 34       | 34       | 35       | 35       | 35       | 35       | 38       | 38       | 38       | 38       | 39       | 39       | 36       | 36       | 40       | 40       | 40       | 40                                                | 14       | 41       | 41       | 41       | 43       | 43       | 43       | 43       | 44       | 44       | 44       | 44       | 45          | 45       |
| SURVEY             | SED19203  | SED19203 | SED19203 | SED19203 | SED19203 | SED19203 | SED19203 | SED19203 | SED19203 | SED19203 | SED19203 | SED19203 | SED19203 | SED19203 | SED19203 | SED19203 | SED19203 | SED19203 | SED19203                                          | SED19203 | SED19203 | SED19203 | SED19203 | SED19203 | SED19203 | SED19203 | SED19203 | SED19203 | SED19203 | SED19203 | SED19203 | SED19203    | SED19203 |

| SURVEY   | STATION | SAMPLE     | ပ       | *           | LatDeg | LatMin   | LatSec | LonDeg | LonMin | LonSec | Depth (m) | % FINES | % TOC  | . **2 | TOAB | TOTAX | POAB | MOAB  |  |
|----------|---------|------------|---------|-------------|--------|----------|--------|--------|--------|--------|-----------|---------|--------|-------|------|-------|------|-------|--|
|          |         |            |         |             |        |          |        |        | -      |        |           |         |        |       |      |       |      |       |  |
| 3ED19203 | 45      | 3          | OM<br>M |             | 47     | 6        | 54     | 122    | 45     | 4      | -51.9     | 55.7    | 0.6382 |       | 206  | 42    | 152  | 6     |  |
| SED19203 | 45      | 4          | MO      |             | 47     | <b>6</b> | 54     | 122    | 45     | 4      | -51.9     | 55.7    | 0.6382 |       | 248  | 45    | 195  | 25    |  |
| SED19203 | 47      | gnord      | MO      | -           | 47     | 13       | 59     | 122    | 90     | 58     | -19.5     | 13.2    | 0.5249 |       | 1010 | 123   | 992  | 16    |  |
| SED19203 | 47      | 7          | MO      |             | 47     | 13       | 59     | 122    | 20     | 58     | -19.5     | 13.2    | 0.5249 |       | 1029 | 115   | 745  | 110   |  |
| SED19203 | .47     | m          | MO      |             | 47     | 13       | 59     | 122    | 20     | 28     | -19.5     | 13.2    | 0.5249 |       | 717  | 105   | 497  | 84    |  |
| SED19203 | 47      | 4          | MO      | -           | 47     | 13       | 59     | 122    | 50     | 58     | -19.5     | 13.2    | 0.5249 |       | 523  | 96    | 387  | 46    |  |
| SED19203 | 48      | <b>J</b> 4 | MO      |             | 47     | 7        | 27     | 122    | 55     | 6      | -20.5     | 88.7    | 1,5201 |       | 262  | 25    | 22   | 38    |  |
| SED19203 | 48      | 7          | MO      |             | 47     | 7        | 27     | 122    | 55     | 6      | -20.5     | 88.7    | 1.5201 |       | 291  | 29    | 27   | 89    |  |
| SED19203 | 48      | '.<br>es   | MO      |             | 47     | 7        | 27     | 122    | 55     | 9/     | -20.5     | 88.7    | 1.5201 |       | 266  | 27    | 23   | 41    |  |
| SED19203 | 48      | 4          | MO      |             | 47     | 7        | 27     | 122    | 55     | 6      | -20.5     | 88.7    | 1.5201 |       | 373  | 36    | 84   | 34    |  |
| SED19203 | 49      | <b></b>    | MO      | 1           | 47     | 4        | 49     | 122    | 54     | 47     | -4.7      | 88.1    | 2.1381 |       | 06   | 19    | 30   | 44    |  |
| SED19203 | 49      | . 7        | MO      |             | 47     | 4        | 49     | 122    | 54     | 47     | 14.7      | 88.1    | 2.1381 |       | 153  | 30    | 99   | 74    |  |
| SED19203 | 49      | 'm         | MO      | gamet       | 47     | 4        | 49     | 122    | 54     | 47     | 4.7       | 88.1    | 2,1381 |       | 109  | 19    | 43   | 54    |  |
| SED19203 | 49      | 4          | MO      | -           | 47     | 4        | 49     | 122    | 54     | 47     | 4.7       | 88.1    | 2.1381 |       | 1117 | 22    | 54   | 44    |  |
| SED19203 | 69      | <b></b>    | MO      |             | 47     | 44       | œ      | 122    | 32     | \$     | -35.4     | 18.1    | 0.4569 |       | 549  | 98    | 214  | 109   |  |
| SED19203 | 69      | 64         | МО      |             | 47     | 44       | 8      | 122    | 32     | ٠      | -35.4     | 18.1    | 0.4569 |       | 614  | 92    | 199  | 155   |  |
| SED19203 | 69      | m          | MO      |             | 47     | 44       | ∞      | 122    | 32     | ٠      | -35.4     | 18.1    | 0.4569 |       | 378  | 72    | 113  | 86    |  |
| SED19203 | 69      | 4          | MO      | -           | 47     | 44       |        | 122    | 32     | \$     | -35.4     | 18.1    | 0.4569 |       | 541  | 79    | 186  | 134   |  |
| SED19203 | 70      | *****      | MO      |             | 47     | 13       | 45     | 123    | 4      | 28     | -7.2      | 66.5    | 2.1101 |       | 119  | 26    | 81   | 17    |  |
| SED19203 | 70      | 7          | MO      | ****        | 47     | 12       | 45     | 123    | 4      | 28     | -7.2      | 66.5    | 2.1101 |       | 62   | 16    | 34   | 23    |  |
| SED19203 | 70      | М          | W       |             | 47     | 12       | 45     | 123    | 4      | 58     | -7.2      | 66.5    | 2.1101 |       | 112  | 25    | 79   | 23    |  |
| SED19203 | 70      | 4          | MO      | -           | 47     | 12       | 45     | 123    | 4      | 58     | -7.2      | 66.5    | 2.1101 |       | 43   | 18    | 16   | 19    |  |
| SED19203 | 7.1     | -          | MO      |             | 48     | 30       | 34     | 122    | 35     | 13     | -6.1      | 53.0    | 1,2331 |       | 359  | 53    | 213  | 61    |  |
| SED19203 | 71      | 7          | MO      |             | 48     | 30       | 34     | 122    | 35     | 13     | -6.1      | 53.0    | 1.2331 |       | 404  | 65    | 194  | 120   |  |
| SED19203 | 7.1     | m          | MO      |             | 48     | 30       | 34     | 122    | 35     | 13     | -6.1      | 53.0    | 1.2331 |       | 365  | 59    | 196  | 98    |  |
| SED19203 | 71      | 4          | MO      | -           | 48     | 30       | 34     | 122    | 35     | 13     | -6.1      | 53.0    | 1.2331 |       | 449  | 72    | 246  | 133   |  |
| SED19203 | R23     | _          | WO      | ,           | 48     | 30       | 34     | 122    | 35     | 13     | ·6.1      | 53.0    | 1.2331 |       | 729  | 68    | 101  | 157   |  |
| SED19203 | R23     | 7          | MO      |             | 48     | 30       | 34     | 122    | 35     | 13     | -6.1      | 53.0    | 1.2331 |       | 1021 | 80    | 193  | 575   |  |
| SED19203 | R23     | ĸ          | MO      | _           | 48     | 30       | 34     | 122    | 35     | 13     | -6.1      | 53.0    | 1.2331 |       | 424  | 63    | 161  | 0     |  |
| SED19203 | R23     | 4          | MO      |             | 48     | 30       | 34     | 122    | 35     | 13     | -6.1      | 53.0    | 1.2331 |       | 783  | 69    | 120  | 382   |  |
| SED19203 | R24     | _          | MO      |             | 47     | 51       | 22     | 122    | 21     | 56     | -182.7    | 90.1    | 2.1108 |       | 345  | 45    | 52   | . 264 |  |
| SED19203 | R24     | 2          | MO      |             | 47     | 51       | 52     | 122    | 21     | 92     | -182.7    | 90.1    | 2.1108 |       | 223  | 41    | . 64 | 95    |  |
| SED19203 | R24     | 60         | M       | <del></del> | 47     | 51       | . 52   | 122    | 21     | 26     | -182.7    | 90.1    | 2.1108 |       | 244  | 42    | 40   | 167   |  |

| SDI                | 12       | &        | 27             | 24       | 70       | 31       | ; ~      | 1 4      | . w      | · m       | 80       | 10       | 1        | ∞        | 20                                           | - œ      | 23       | 17       | 0        | . ∞      | ∞        | • 6      | 13       | 19       | 00         | 16               | 9        | \$       | 6        | 7        | ٧n       |          |  |
|--------------------|----------|----------|----------------|----------|----------|----------|----------|----------|----------|-----------|----------|----------|----------|----------|----------------------------------------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|------------|------------------|----------|----------|----------|----------|----------|----------|--|
| Ħ                  | . 72     | 69       | 81             | 74       | 72       | 77       | 67       | 99       | 99       | 19        | 59       | . 64     | 63       | 19       | 00                                           | 73       | . 79     | 78       | 67       | 19       | 99       | 36       | 70       | 74       | 73         | 70               | 72       | 7.1      | 75       | 7.1      | 45       |          |  |
| ÷                  | 0.804    | 0.691    | 0.803          | 0.798    | 0.788    | 0.851    | 0.431    | 0.495    | 0.463    | 0.481     | 0.875    | 0.845    | 0.852    | 0.847    | 0.795                                        | 0.761    | 0.844    | 0.781    | 0.799    | 0.905    | 0.825    | 0.922    | 0.809    | 0.84     | 0.838      | 0.808            | 0.585    | 0.616    | 0.651    | 0.628    | 0.523    | 0.834    |  |
| Ē                  | . 1.306  | 1.142    | 1.678          | 1.645    | 1.593    | 1:688    | 0.603    | 0.723    | 0.662    | 0.749     | 1.119    | 1.248    | 1.089    | 1.137    | 1.537                                        | 1.495    | 1.567    | 1,483    | 1.13     | 1.089    | 1.153    | 1.157    | 1.395    | 1.523    | 1.483      | 1.5              | 1.071    | 1.172    | 1.171    | 1.155    | 0.865    | 1.345    |  |
| MISCTX             | ,        | 73       | \$             | 4        | ĸ'n      | κņ       | 7        | 7        | 2        | ĸ         |          | ****     | -        |          | 2                                            | 4        | S        | ĸ        | -        | 0        | -        | 0        | 2        | 2        | 7          | , <b>, , , ,</b> | 7        | m        | m        | -        | -        | -        |  |
| CRTX               | 4        | 9        | 8              | 10       | 12       | 12       | 4        | 4        | 2        | Э         | 4        | 4        | m        | . ***    | 13                                           | 13       | 13       | 13       | \$       | 2        | 4        | 3        | 7        | Ξ        | ∞          | 01               | 15       | 13       | 18       | 91       | 12       | 6        |  |
| ECHITAX            | 9 1      |          | 0              | 3        | ∞<br>4   | 3        | 0 1      |          | 0        | 0         | 8        |          | 8        | 0 6      | ) 2                                          | 3 2      | 2        | -2       | 0        | 5 0      | 0        | 7 2      |          | ,        |            |                  | 3        | 0        | 7        | 0        | 2        | 7        |  |
| AMPTX MOTAX ECHTAX | 2.       | 1        | 8 20           | 8 25     | 7 18     | 5 13     | 2 10     | 1 12     |          |           |          | 2 10     | -        | 1        | 6 20                                         | 7 23     | 6 19     | 6 21     | 2 6      |          | 8        |          | 4 15     | 6 . 17   | 3 16       | 4 24             | 7 20     | 7 31     | 0 01     | 10 24    | 6 15     | 5 12     |  |
|                    | 27       | 25       | 78             | 7.1      | 89       | 65       | 80       | . 01     | 11       | 61        | 9        | 14       | 7        | ∞        | 49                                           | 50       | 33       | 38       | 4        | 6        | 15       | 9        | 28       | 34       | 32         | 36               | 28       | 33       | 40 1     | . 82     | 15       | 17       |  |
| ECHAB MISCAB POTAX | 7        | 7        | 46             | 44       | 7        | 25       | 2        | ς.       | m        | ۳         | 7        | 9        | 7        | т        | ∞                                            | 9        | 10       | 6        | 64       | 0        | 3        | 0        | 3        | \$       | <b>.</b> ∞ | 3                | 3        | 4        | 6        |          | 3        |          |  |
| CHAB MIS           | 13       | 9        | 34             | 99       | 29       | 15       | 73       | ••••     | 0        | 0         | 0        | H        | 0        | 0        | 84                                           | 85       | 38       | 83       | 0        | . 0      | 0        | 4        | 14       | 22.      | 56         | 6                | 3        | 0        | 4        | 0        | ъ        | 74       |  |
| AMPAB E            | 7        | 2        | 75             | . 63     | 23       | 24       | 6        | 1        | 15       | <b>oc</b> | -        | 7        |          | 7        | 25                                           | 22       | 27       | 91       | \$       | 4        | 4        |          | 28       | 32       | 16         | 24               | 35       | 46       | 46       | 62       | 15       | 40       |  |
| CRAB /             | 15       | 20       | 87             | 29       | 29       | 20       | 198      | 190      | 197      | 252       | 14       | 7        | 10       | 16       | 134                                          | 691      | 119      | 129      | 61       | 5        | 7        | 4        | 89       | 63       | 49         | 58               | 465      | 249      | 250      | 280      | 23       | 61       |  |
| SAMPLE             | 8        | 44       | <b>Journal</b> | 7        | 8        | 4        | quind.   | 7        | ٣        | 47        | yeared   | 7        | m        | 4        | <b>,</b> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | . 3      | €0       | 4        | -        | 2        | ĸ        | 4        | ••••     | 7        | 3          | 4                | -        | 7        | ю.       | 4        | ****     | 2        |  |
| STATION            | 45       | 45       | 47             | 47       | 47       | 47       | 48       | 48       | 48       | 48        | 49       | 49       | 49       | 49       | 69                                           | 69 .     | 69       | 69       | 70       | 70       | 7.0      | 70       | 7.1      | 7.1      | 7.1        | 71               | R23      | R23      | R23      | . R23    | R24      | R24      |  |
| SURVEY             | SED19203 | SED19203 | SED19203       | SED19203 | SED19203 | SED19203 | SED19203 | SED19203 | SED19203 | SED19203  | SED19203 | SED19203 | SED19203 | SED19203 | SED19203                                     | SED19203 | SED19203 | SED19203 | SED19203 | SED19203 | SED19203 | SED19203 | SED19203 | SED19203 | SED19203   | SED19203         | SED19203 | SED19203 | SED19203 | SED19203 | SED19203 | SED19203 |  |

| SURVEY   | STATION | SAMPLE   | C        | %          | LatDeg | LatMin | LatSec   | LonDeg | LonMin | LonSec      | Depth (m) | % FINES | % TOC  | ,<br>** | TOAB | TOTAX      | POAB | MOAB |  |
|----------|---------|----------|----------|------------|--------|--------|----------|--------|--------|-------------|-----------|---------|--------|---------|------|------------|------|------|--|
| SED19203 | R24     | 4        | MO       | -          | 47     | 51     | 52       | 122    | . 73   | 56          | -182.7    | 90.1    | 2.1108 |         | 219  | 29         | 37   | 164  |  |
| SED19203 | R25     |          | MO       | ,,,,       | 47     | 51     | 61       | 122    | 30     | <u>E</u>    | -20.4     | 3.0     | 0.1481 |         | 853  | 53         | 86   | 464  |  |
| SED19203 | R25     | 7        | WO       | <b>,</b> 1 | 47     | 51     | 19       | 122    | 30     | 13          | -20.4     | 3.0     | 0.1481 |         | 106  | 46         | 200  | 432  |  |
| SED19203 | R25     | ю        | MO<br>MO |            | 47     | 51     | 19       | 122    | 30     | 13          | -20.4     | 3.0     | 0.1481 |         | 789  | 20         | 82   | 591  |  |
| SED19203 | R25     | 4        | MO       | -          | 47     | 51     | 19       | 122    | 30     | 13          | -20.4     | 3.0     | 0.1481 |         | 1125 | 54         | 85   | 628  |  |
| SED19203 | R27     |          | MO       | -          | 47     | 45     | 36       | 122    | 23     | <del></del> | -20.7     | 2.6     | 0.1656 |         | 730  | 110        | 367  | 70   |  |
| SED19203 | R27     | 7        | MO       | ****       | 47     | . 45   | 36       | 122    | 23     | =           | -20.7     | 2.6     | 0.1656 |         | 533  | 76         | 235  | 78   |  |
| SED19203 | R27     | 3        | MO       | *****      | 47     | 45     | 36       | 122    | 23     | 11          | -20.7     | 2.6     | 0.1656 |         | 899  | 113        | 332  | 85   |  |
| SED19203 | R27     | 4        | MO       | www.       | 47     | 45     | 36       | 122    | 23     |             | -20.7     | 2.6     | 0.1656 |         | 694  | 106        | 339  | 74   |  |
| SED19203 | R301    | -        | MO       | *****      | 47     | 89     | 7        | 122    | 29     | 30          | -22.1     | 5.9     | 0.2959 |         | 122  | 38         | 51   | 48   |  |
| SED19203 | R301    | 7        | MO       | -          | 47     | 59     | 7        | 122    | 29     | 30          | -22.1     | 5.9     | 0.2959 |         | 557  | 99         | 192  | 26   |  |
| SED19203 | R301    | 8        | MO       |            | 47     | 89     | 7        | 122    | 29     | 30          | -22.1     | 5.9     | 0.2959 |         | 222  | 52         | 134  | 47   |  |
| SED19203 | R301    | 4        | MO       | ,          | 47     | 89     | 7        | 122    | 29     | 30          | -22.1     | 5.9     | 0.2959 |         | 271  | 99         | 154  | 75   |  |
| SED19203 | R302    | -        | MO       | -          | 48     | -      | =        | 122    | 42     | 53          | -20.6     | 68.5    | 0.9448 |         | 151  | 44         | 57   | 40   |  |
| SED19203 | R302    | . 7      | MO       |            | 84     |        |          | 122    | 42     | 53          | -20.6     | 68.5    | 0.9448 |         | 282  | 52         | 57   | 94   |  |
| SED19203 | R302    | e        | MO       |            | 48     |        | =        | 122    | 42     | 53          | -20.6     | 68.5    | 0.9448 |         | 218  | 19         | 107  | 71   |  |
| SED19203 | R302    | 4        | MO       |            | 48     |        | 11       | 122    | 42     | 53          | -20.6     | . 68.5  | 0.9448 |         | 163  | 48         | 57   | 58   |  |
| SED19203 | R303    | . pund   | MO       |            | 47     | 22     | 28       | 122    | 28     | 16          | -14.5     | 76.8    | 1.2708 |         | 230  | 4          | 69   | ν    |  |
| SED19203 | R303    | 7        | MO.      | -          | 47     | 22     | 78       | 122    | 28     | 16          | -14.5     | 76.8    | 1.2708 |         | 225  | 39         | 66   | ĸ    |  |
| SED19203 | R303    | æ        | MO       |            | 47     | 22     | 28       | 122    | 28     | 16          | -14,5     | 76.8    | 1.2708 |         | 299  | 34         | 107  | 7    |  |
| SED19203 | R303    | . 4      | MO       | -          | 47     | 22     | 88.      | 122    | 28     | 16          | -14.5     | 76.8    | 1.2708 |         | 329  | 47         | 129  | 6    |  |
| SED19203 | R304    | Post     | MO       | -          | 47     | 35     | 16       | 122    | 58     | 44          | -175      | 96.5    | 1.8881 |         | 37   | 12         | 9    | 26   |  |
| SED19203 | R304    | 2        | MO       | -          | 47     | 35     | 91       | 122    | 58     | 44          | -175      | 96.5    | 1.8881 |         | 96   | 24         | 19   | 55   |  |
| SED19203 | R304    | m        | MO       |            | 47     | 35     | 16       | 122    | 58     | 44          | -175      | 96.5    | 1.8881 |         | 64   | 20         | 11   | 46   |  |
| SED19203 | R304    | 4        | MO       |            | 47     | 35     | 91       | 122    | 58     | 44          | -175      | 96.5    | 1.8881 |         | 50   | 13         | 90   | 35   |  |
| SED19203 | R305    |          | MO       |            | 47     | 23     | 50       | 122    | 55     | 52          | -21       | 93.9    | 2.4501 |         | 40   | 10         | 35   | ₩    |  |
| SED19203 | R305    | <b>7</b> | MO       | <b></b>    | 47     | 23     | 50       | 122    | 55     | 52          | -21       | 93.9    | 2.4501 |         | 128  | 13         | 126  | 0    |  |
| SED19203 | R305    | 8        | MO       | <b></b>    | 47     | 23     | 50       | 122    | 55     | 52          | -21       | 93.9    | 2.4501 |         | 114  | 7          | 113  | -    |  |
| SED19203 | R305    | ₹        | MO       | <b>,</b>   | 47     | 23     | 50       | 122    | 55     | 52          | -21       | 93.9    | 2.4501 |         | 106  | <b>o</b> ¢ | 106  | 0    |  |
| SED19203 | R306    |          | MO       |            | 47     | 28     | 14       | 122    | 22     | 33          | -75.2     | 0.6     | 0.3965 |         | 136  | 41         | 74   | 36   |  |
| SED19203 | R306    |          | MO       | post       | 47     | 28     | <b>†</b> | 122    | 22     | 33          | -75.2     | 0.6     | 0.3965 | ٠       | 313  | 64         | 189  | 70   |  |
| SED19203 | R306    | 6        | MO       |            | 47     | 28     | 14       | 122    | 22     | 33          | -75.2     | 0.6     | 0.3965 |         | 132  | 4          | 70   | 40   |  |
| SED19203 | R306    | 4        | MO       |            | 47     | 78     | 4        | 122    | 22     | 33          | -75.2     | 9.0     | 0.3965 |         | 359  | 59         | 229  | 54   |  |
|          |         |          |          |            |        |        |          |        |        |             |           |         |        |         |      |            |      |      |  |

| SURVEY   | STATION | SAMPLE | CRAB / | AMPAB      | ECHAB    | MISCAB | POTAX | AMPTX  | ECHAB MISCAB POTAX AMPTX MOTAX ECHIAX |               | CRTX MIS     | MISCTX | Ħ     | <b>-</b> | Ħ   | SDI |  |
|----------|---------|--------|--------|------------|----------|--------|-------|--------|---------------------------------------|---------------|--------------|--------|-------|----------|-----|-----|--|
|          |         |        |        |            |          |        |       |        |                                       |               |              |        |       |          |     |     |  |
| SED19203 | R24     | ₹      | 91     | en         |          |        | 01    | 7      | 01                                    |               | 9            | _      | 0.845 | 0.578    | 49  | 'n  |  |
| SED19203 | R25     | -      | 252    | 50         | 7        | 7      | 8     | 10     | 15                                    | 2             | 91           | 7      | 0.786 | 0.456    | 71  | ĸ   |  |
| SED19203 | R25     | 2      | 261    | 75         | S        | 33     | 45    | 15     | 24                                    | ť'n           | , <b>8</b> 3 | 73     | 1.227 | 0.617    | 74  | 6   |  |
| SED19203 | R25     | 3      | 601    | 55         | 9        |        | 17    | 10     | 91                                    |               | 15           |        | 0.669 | 0.394    | 74  | . 7 |  |
| SED19203 | R25     | . 4    | 406    | 89         | 9        | 0      | 23    | _      | 16                                    | -             | 14           | 0      | 0.74  | 0.427    | 7   | 7   |  |
| SED19203 | R27     | *****  | 242    | 51         | I        | 40     | 57    | 12     | 21                                    | ю             | 23           | 'n     | 1.577 | 0.772    | 29  | 56  |  |
| SED19203 | R27     | 2      | 200    | 35         | 3        | 17     | 21    | ****** | 19                                    | 2             | . 51         | 45     | 1.475 | 0.751    | 70  | 22  |  |
| SED19203 | R27     | 3      | 237    | 36         | 9        | 90     | 55    | 16     | 23                                    | 2             | 25           | 7      | 1.547 | 0.753    | 71  | 26  |  |
| SED19203 | R27     | 4      | 271    | 45         | 9        | 4      | 58    | 14     | 21                                    | 2             | 21           | 4      | 1.494 | 0.738    | 73  | 23  |  |
| SED19203 | R301    | ****   | 21     | m          | 0        | 2      | 22    | 2      | 0                                     | 0             | 9            | -      | 1.346 | 0.852    | 70  | 4   |  |
| SED19203 | R301    | 7      | 247    | 00         | 4        | 21     | 39    | 9      | 6                                     | , <del></del> | 17           | 4      | 1.172 | 0.644    | 69  | 10  |  |
| SED19203 | R301    |        | 79     | ,          | æ        | σ,     | 24    | φ.     | 12                                    | -             | 01           | 4      | 1.33  | 0.775    | 69  | 91  |  |
| SED19203 | R301    | 4      | 34     | S          | 3        | \$     | 32    | 4      | 91                                    |               | 10           | -      | 1.425 | 0.801    | 89  | 61  |  |
| SED19203 | R302    |        | 46     | 17         | <b>∞</b> | 0      | 21    | 5      | 12                                    | 7             | 6            | . 0    | 1.461 | 0.889    | 69  | 17  |  |
| SED19203 | R302    | 2      | 122    | 24         | 6        | 0      | 26    | 5      | 16                                    | *****         | 6            | 0      | 1.306 | 0.761    | 63  | 14  |  |
| SED19203 | R302    | en .   | 33     | 13         | S        | 7      | 36    | Ś      | 19                                    | *****         | 6            | 7      | 1.638 | 0.897    | 70  | 27  |  |
| SED19203 | R302    | 4      | 36     | 12         | Π        | 1      | 24    | 4      | 13                                    | _             | 6            |        | 1.454 | 0.865    | 70  | 11  |  |
| SED19203 | R303    | 1      | 138    | 34         | 13       | 5      | 21    | 4      | 4                                     | æ             | 6            | 4      | 1.221 | 0.757    | 74  | 6   |  |
| SED19203 | R303    | . 2    | 110    | 21         | 8        | ∞      | 27    | 4      | 2                                     | -             | <b>∞</b>     |        | 1.268 | 0.797    | 73  | -   |  |
| SED19203 | R303    | т      | 167    | 36         |          | 7      | 20    | 4      | 3                                     | 2             | ∞            | ,      | 1.187 | 0.775    | 72  | 9   |  |
| SED19203 | R303    | 4      | 174    | 48         | 7        | 10     | 29    | \$     | 4                                     | 7             | 6            | m      | 1.297 | 0.776    | 74  | =   |  |
| SED19203 | R304    |        | 7      | 7          | ť'n      | 0      | 5     | 2      | 4                                     |               | 7            | 0      | 0.785 | 0.728    | 70  | \$  |  |
| SED19203 | R304    | 2      | 22     | 4          | 0        | 0      | 10    | 7      | 6                                     | 0             | \$           | 0      | 1.164 | 0.843    | 49  | σ\  |  |
| SED19203 | R304    | m      | S      | e          | 0        | 2      | 90    | 7      | ∞                                     | 0             | æ            | *****  | 1.031 | 0.792    | 64  | œ   |  |
| SED19203 | R304    | 4      | 4      | 4          | т        | 0      | κ     | .2     | ď                                     | -             | 7            | 0      | 0.934 | 0.839    | 26  | 9   |  |
| SED19203 | R305    | -      | 0      | 0          | 0        | 2      | 7     | 0      | 2                                     | 0             | 0            | -      | 0.717 | 0.717    | 89  | 4   |  |
| SED19203 | R305    | 2      | -      | 0          | 0        | pund   | .11   | 0      | 0                                     | 0             | ****         |        | 0.428 | 0.384    | 64  |     |  |
| SED19203 | R305    | E      | 0      | 0          | 0        | 0      | 9     | 0      | *****                                 | 0             | 0            | 0      | 0.324 | 0.383    | 19  |     |  |
| SED19203 | R305    | 4      | 0      | 0          | 0        | 0      | 00    | 0      | 0                                     | 0             | 0            | 0      | 0.403 | 0.446    | 19  | 2   |  |
| SED19203 | R306    |        | 22     | <b>0</b> 0 | 0        | 4      | 25    | κ      | 9                                     | 0             | 8            | 7      | 1.449 | 0.898    | 2/2 | 17  |  |
| SED19203 | R306    | 7      | 46     | 14         | 0        | ∞      | 36    | 9      | 15                                    | 0             | 10           | 7      | 1.481 | 0.82     | 80  | 16  |  |
| SED19203 | R306    | 3      | 20     | 01         | ~        |        | 24    | Ś      | ĸ                                     | *****         | 10           | *****  | 1.443 | 0.895    | 70  | 91  |  |
| SED19203 | R306    | 4      | 71     | 56         | 0        | 5      | 31    | 6      | 6                                     | 0             | -17          | 7      | 1.248 | 0.705    | 74  | 13  |  |

|             |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          | _        |              |         |         |         | ~^      | ~~          |        | _      | 10     |        |        |        | _      | _      |        |
|-------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|--------------|---------|---------|---------|---------|-------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| MOAB        | 33       | v,       | •        | m        | 62       | 22       | 37       | ,        | 31       | 28       | 37       | . 28     | 122      | 27       | 47       | ξ,       | 4300     | ior+         | 6420.8  | 5820.8  | 5558.3  | 6945.8  | 17138       | 607    | 640    | 675    | 631    | 501    | 515    | 184    | 224    | 250    |
| POAB        | 74       | 79       | 31       | 105      | 522      | 393      | 395      | 278      | 46       | 90       | 128      | 145      | 557      | 269      | 610      | 260      | 0 000    | 0.0210       | 6362.5  | 4000    | 4250    | 7620.8  | 14846       | 139    | 160    | 112    | 230    | 302    | 311    | 230    | 213    | 312    |
| TOTAX       | 16       | 8        | 18       | 11       | 59       | . 65     | 49       | 53       | 46       | 57       | 73       | 72       | 135      | 66       | 125      | 119      |          | 200          | 8.569   | 266.7   | 562.5   | 625     | 900         | 31     | 44     | 26     | 39     | 28     | 32     | 29     | 34     | 23     |
| TOAB        | 88       | 95       | 51       | 122      | 619      | 497      | 489      | 369      | 149      | 212      | 264      | 264      | 881      | 391      | 828      | 787      | 11603    | 11002        | 13433   | 10558   | 10671   | 15050   | 33888       | 811    | 891    | 841    | 928    | 815    | 850    | 423    | 457    | 599    |
| <b>5</b> ** |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |              |         |         |         |         |             |        |        |        |        |        |        |        |        |        |
| % TOC       | 1.8258   | 1.8258   | 1.8258   | 1.8258   | 0.388    | 0.388    | 0.388    | 0.388    | 0.2236   | 0.2236   | 0.2236   | 0.2236   | 0.1817   | 0.1817   | 0.1817   | 0.1817   | 5        | <br>         | 1.7     | 2.2     | 1.5     | 1.4     | 1.3         | 1.3    | 1.3    | 1.3    | 13     | 7      | 2      | 6      | 2      | 1.1    |
| % FINES     | 96.1     | 1.96     | 96.1     | 96.1     | 11.0     | 11.0     | 11.0     | 11.0     | 2.3      | 2.3      | 2.3      | 2.3      | 3.2      | 3.2      | 3.2      | 3.2      | Ę        |              | 64      | 64      | 61.5    | 84      | 72.5        | 55.202 | 55.202 | 55.202 | 55.202 | 84,005 | 84,005 | 84,005 | 84.005 | 64.099 |
| Depth (m) % | -58.4    | -58.4    | -58.4    | -58.4    | -18.9    | -18.9    | -18.9    | -18.9    | -17.7    | -17.7    | -17.7    | -17.7    | -21.2    | -21.2    | -21.2    | -21.2    | -        | 7.11         | 11.4    | 11.4    | 11.2    | 12.9    | 12.3        | Ξ      | =      |        | Ξ.     | 13.0   | 13.0   | 13.0   | 13.0   | 4.11   |
| LonSec D    | 6        | 7        | 2        | 7        | 10       | 10       | 10       | 10       | 51       | 51       | 51       | 51       | 21       | 21       | 21       | 21       |          | e.           | 22      | 25      | 52      | 6       | 77          | 39     | 39     | 39     | . 39   | 8      | 5      | ş      | 'n     | 27     |
| LonMin 1    | 33       | 33       | 33       | 33       | 38       | 38       | 38       | 38       | 23       | 23       | 23       | 23       | 77       | 27       | 27       | 27       | č        | ₹,           | 23      | 23      | 23      | 23      | 25          | 22     | 22     | g      | 22     | 23     | 23     | 23     | 23     | 23     |
| LonDeg      | 122      | 122      | 122      | 122      | 122      | 122      | 122      | 122      | 122      | 122      | 122      | 122      | 122      | 122      | 122      | 122      | ç        | 771          | 122     | 122     | 122     | 122     | 122         | 122    | 122    | 122    | 122    | 122    | 122    | 122    | 122    | 122    |
| LatSec      | 17       | 17       | 17       | 17       | 4        | .4       | ঝ        | 4        | 49       | 49       | 49       | 49       | 15       | 15       | 15       | 15       | į        | 7            | 15      | 54      | 15      | 44      | 47          | 22     | 22     | 22     | 22     | 42     | 42     | 42     | 42     | . 56   |
| LatMin      | 5        | 'n       | ς.       | ς.       | 43       | 43       | 43       | 43       | 30       | 30       | 30       | 30       | 29       | 53       | 29       | 29       | `        | €            | 16      | 15      | 16      | 15      | 16          | 15     | 15     | 15     | 15     | 15     | 15     | 15     | . 15   | 15     |
| LatDeg      | . 48     | 48       | 48       | 8        | 47       | 47       | 47       | 47       | 47       | 47       | 47       | 47       | 47       | 47       | 47       | 4.       | ţ        | <del>}</del> | 47      | 47      | 47      | 47      | 47          | 47     | 47     | 47     | 47     | 47     | 47     | 47     | 47     | 47     |
| *S          | -        |          | ,        | Aunt     |          |          | 1        | *****    | ~        | ••••     |          | -        | -        | •        |          | ••••     | •        | 7            | 7       | 7       | 7       | 7       | 7           | 7      | 7      | 7      | 7      | 7      | 7      | 7      | 7      | 7      |
| ပ           | MO       | 5        | 2            | MO      | MO      | Mo      | MO      | WO          | MO     |
| SAMPLE      | ı        | 7        | 3        | 4        | <u>,</u> | 7        | ю        | য        | _        | 7        | m        | 4        | _        | 7        | т        | 4        |          |              |         |         |         |         | ,           | BI     | B2     | B3     | B4     | B      | B2     | B3     | B4     | B1     |
| STATION     | R307     | R307     | R307     | R307     | R308     | R308     | R308     | R308     | R36      | R36      | R36      | R36      | R37      | R37      | R37      | R37      | 6        | n n          | BO4     | B03     | B15     | B12     | <b>B1</b> 0 | BL-11  | BL-11  | BL-11  | BL-11  | BL-13  | BL-13  | BL-13  | BL-13  | BL-21  |
| SURVEY      | SED19203 | E Y LAGO | CBBLAIR      | CBBLAIR | CBBLAIR | CBBLAIR | CBBLAIR | CBBLAIR     | CBMSQS | CBMSOS | CBMSQS |

| SDI                | 8        | 3        | ∞        | m            | 7        | 01       | 7        | 13       | 91           | 23       | 25          | 22       | 25       | 31       | 31           | 30                                     |         |         |         |         |         |            | m                  | 4      | 1      | m      | 2      | 7          | ĸ      | æ      | m       |
|--------------------|----------|----------|----------|--------------|----------|----------|----------|----------|--------------|----------|-------------|----------|----------|----------|--------------|----------------------------------------|---------|---------|---------|---------|---------|------------|--------------------|--------|--------|--------|--------|------------|--------|--------|---------|
| E                  | 19       | 69       | 65       | 58           | 19       | 69       | 69       | 19       | 77           | 74       | 75          | 77       | 81       | 76       | 76           | 78                                     |         |         |         |         | •       | ,          | 99                 | 19     | 19     | 29     | 99     | 19         | 29     | 99     | 99      |
| ï-,                | 0.648    | 0.576    | 98.0     | 0.562        | 0.589    | 0.682    | 0.641    | 0.778    | 98.0         | 6.0      | 0.856       | 0.835    | 0.755    | . 0.87   | 0.823        | 0.834                                  |         |         |         |         |         |            | 0.448              | 0.456  | 0.35   | 0.435  | 0.429  | 0.417      | 0.505  | 0.529  | 0.57    |
| ĪĽ                 | 0.78     | 0.723    | 1.08     | 169.0        | 1.042    | 1.236    | 1.083    | 1.342    | 1.43         | 1.581    | 1.596       | 1.551    | 1.608    | 1.737    | 1.726        | 1.73                                   |         |         |         |         |         |            | 0.668              | 0.749  | 0.495  | 0.692  | 0.621  | 0.628      | 0.739  | 0.81   | 0.777   |
| MISCTX             | <b></b>  |          | -        |              | -        | т        | 7        | 4        | 0 -          |          | ო           |          | 10       | \$       | <b>لا</b> م. | ĸΛ                                     |         |         | 7       | 7       | ю       | m          | , 0                | 0      | 0      | -      | _      | 0          | 1      |        | <u></u> |
| CRTX M             | m        | €4,      | 4        | 7            | . 0      | ∞        | 4        | <b>∞</b> | 15           | 16       | 11          | 19       | 56       | 17       | 82           | 21                                     | 62.5    | 83.3    | 83.3    | 66.7    | 79.2    | 62.5       | 82                 | *      | φ.     | m      | 2      | 5          | æ      | 4      | *****   |
|                    | 0        | 0        | 0        | 0            | 0        | m        | 7        | 0        | 0            | _        | <del></del> | 7        | 4        | 2        | m,           | 9                                      | 8.3     | 16.7    | 16.7    | 16.7    | 20.8    | 25         |                    | -      |        | 0      | 0      | 0          | ***    | _      | -       |
| MOTAX E            | 6        | 3        | ς.       | £            | 11       | 14       | 13       | ∞        | 10           | 10       | 15          | 16       | 24       | 14       | 61           | 18                                     | 158.3   | 166.7   | 129.2   | 212.5   | 104.2   | 187.5      | <del>,,,,,</del> ( | 12     | 6      | 12     | 5      | <b>0</b> 0 | 'n     | 7      | 4       |
| AMPTX MOTAX ECHTAX | -        |          | ****     | <del>,</del> | 9        | 4        |          | 4        | П            | Ξ        | 12          | 14       | 15       | 10       | =            | ************************************** |         |         |         |         |         |            |                    | 0      | 0      | 0      |        | 0          |        | 0      | 0       |
| POTAX /            | φ.       | 12       | œ        | 7            | 37       | 37       | . 28     | 33       | 21           | 53       | 36          | 33       | 69       | 09       | 78           | 89                                     | 258.3   | 420.8   | 333,3   | 258.3   | 408.3   | 308.3      | 14                 | 27     | 13     | 23     | 17     | 10         | 18     | 21     | 91      |
| MISCAB             | en.      | 5        | 33       | 7            | 5        | 14       | m        | 28       | 0            | -        | 9           | 9        | 19       | 30       | 30           | 35                                     |         |         | 9       | 14      | ∞       | * <b>^</b> | 0                  | 0      | 0      | -      |        | 0          | . 7    | æ      | 73      |
| ECHAB MISCAB       | 0        | 0        | 0        | 0            | 0        | 37       | 24       | 0        | 0            | 1        |             | 7        | 10       | 7        |              | 4.                                     | 20.8    | 29.2    | 54.2    | 25      | 37.5    | 58.3       | 2714               | hund   | 2      | 0      | 0      | 0          | 7      | 3      | ∞       |
| AMPAB              | 4        | -        | 4        | <b>00</b>    | 7        | ş        | med      | 00       | 50           | 57       | 55          | 59       | 49       | 28       | 57           | 44                                     | 29.2    | 0       | 0       | 8.3     | 8,3     | 41.7       | -                  | 0      | 0      | 0      | 7      | 0          |        | 0      | 0       |
| CRAB               | ∞        | 9        | 6        | 12           | 30       | 31       | 30       | 31       | 72           | 92       | 16          | 80       | 128      | 58       | 118          | 66                                     | 620.8   | 612.5   | 675     | 825     | 433.3   | 1795.8     | 64                 | 06     | 52     | 99     | II     | 24         | 33     | 14     | 27      |
| SAMPLE             |          | ~        | æ        | 4            | provid   | 2        | 33       | 4        | <del>,</del> | 7        | m           | 4        | <u>.</u> | 7        | 3            | 4                                      |         |         |         |         |         |            | 8                  | B2     | B3     | B4     | 181    | B2         | B3     | B4     | B       |
| STATION            | R307     | R307     | R307     | R307         | R308     | R308     | R308     | R308     | R36          | R36      | R36         | R36      | R37      | R37      | R37          | R37                                    | B09     | B04     | B03     | B15     | B12     | B10        | BL-11              | BL-11  | BL-11  | BL-11  | BL-13  | BL-13      | BL-13  | BL-13  | BL-21   |
| SURVEY             | SED19203 | SED19203 | SED19203 | SED19203     | SED19203 | SED19203 | SED19203 | SED19203 | SED19203     | SED19203 | SED19203    | SED19203 | SED19203 | SED19203 | SED19203     | SED19203                               | CBBLAIR | CBBLAIR | CBBLAIR | CBBLAIR | CBBLAIR | CBBLAIR    | CBMSQS             | CBMSQS | CBMSQS | CBMSQS | CBMSQS | CBMSQS     | CBMSOS | CBMSOS | CBMSQS  |

| MOAB      | 107    | 961    | 627    | 171    | 400    | 381    | 406    | 86     | 146    | 7.5    | 107    | 131      | 16     | 137    | 263    | 0      | _              | 0             | 0            | 14     | 18     | 17     | 13     | 0      | 5       | 43     | 12     | 79     | 80     | 107    | 135     | 377    | 286    |
|-----------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|----------|--------|--------|--------|--------|----------------|---------------|--------------|--------|--------|--------|--------|--------|---------|--------|--------|--------|--------|--------|---------|--------|--------|
| POAB      | 192    | 201    | 238    | 160    | 254    | 249    | 373    | 57     | 116    | 25     | 53     | 372      | 306    | 93     | 707    | 701    | 364            | 209           | 196          | 91     | 59     | 61     | 55     | 63     | 53      | 44     | 09     | 464    | 716    | 834    | 870     | 165    | 123    |
| TOTAX     | 26     | 30     | 32     | 53     | . 32   | 25     | 30     | 25     | 23     | 17     | 25     | 18       | 21     | 27     | 26     | 15     | 12             | ∞             | 8            | 20     | 15     | 22     | 16     | 4      | 17      | 19     | 1.1    | 30     | 35     | 37     | 41      | 36     | 30     |
| TOAB      | 363    | 417    | 894    | 362    | 682    | 693    | 829    | 186    | 277    | 113    | 168    | 511      | 411    | 243    | 866    | 3676   | 2011           | 2264          | 1724         | 108    | 78     | 81     | 89     | 63     | 123     | 108    | 8      | 260    | 834    | 166    | 1041    | 609    | 457    |
| 2**       |        | ·      |        |        |        |        |        |        |        |        |        |          |        |        |        |        |                |               |              |        |        |        |        |        |         |        |        |        |        |        |         |        |        |
| % TOC     |        | Ξ      |        | 1.5    | 1.5    | 1.5    | 1.5    | 0.7    | 0.7    | 0.7    | 0.7    | Ξ        | Ξ.     |        | _      | 8,9    | 8.9            | 8.9           | 8.9          | 6.5    | 6.5    | 6.5    | 6.5    | 10.9   | 10.9    | 10.9   | 10.9   | 5.6    | 5.6    | 5.6    | 5.6     | 4,6    | . 4.6  |
| % FINES   | 64,099 | 64.099 | 64.099 | 87.82  | 87.82  | 87.82  | 87.82  | 36.505 | 36.505 | 36.505 | 36.505 | 59.897   | 59.897 | 59.897 | 59.897 | 39.352 | 39.352         | 39.352        | 39.352       | 78.305 | 78.305 | 78.305 | 78.305 | 73.65  | 73.65   | 73.65  | 73.65  | 72.313 | 72.313 | 72.313 | 72.313. | 79.718 | 79.718 |
| Depth (m) | 11.4   | 11.4   | 11.4   | 11.1   | 17.1   | Ξ      | 1      | 11.4   | 11.4   | 11.4   | 11.4   | 11.0     | 11.0   | 11.0   | 11.0   | 1.8    | <del>2</del> . | 1.8           | <br>80.      | 4.8    | 4.8    | 4.8    | 8,4    | 1.9    | 1.9     | 1.9    | 1.9    | 7.1    | 7.1    | 7.1    | 7.1     | 8.5    | 8.5    |
| LonSec D  | 27     | 27     | 27     | 43     | 43     | 43     | 43     | 5      | \$     | ٠      | \$     | 43       | 43     | 43     | 43     | 20     | 50.            | 20            | 50           | 51     | 15.    | 51     | 51     | 45     | 45      | 45     | 45     | 54     | 54     | 54     | 54      | 58     | 28     |
| LonMin    | 23     | 23     | 23     | 23     | 23     | 23     | 23     | 24     | 24     | 24     | 24     | 24       | 24     | 24     | 24     | 25     | 25             | 25            | 25           | 25     | 25     | 25     | 25     | 25     | 25      | 25     | 25     | 25     | 25     | 25     | 25      | 25     | 25     |
| LonDeg    | 122    | 122    | 122    | 122    | 122    | 122    | 122    | 122    | 122    | 122    | 122    | 122      | 122    | 122    | 122    | 122    | 122            | 122           | 122          | 122    | 122    | 122    | 122    | 122    | 122     | 122    | 122    | 122    | 122    | 122    | 122     | 122    | 122    |
| LatSec    | 56     | 56     | 56     | m      | m      | ĸ      | m      | 21     | 21     | 77     | 21     | 40       | 40     | 40     | 40     | 33     | 33             | 33            | 33           | 46     | 46     | 46     | 46     | 9      | 9       | 9      | 9      | 7      | 7      | 7      | 7       | 22     | 22     |
| LatMin    | 15     | 15     | 15     | 91     | 16     | 16     | 16     | 16     | 16     | 16     | 16     | 16       | 16     | 16     | 16     | 14     | 14             | 14            | 14           | 14     | 14     | 14     | 14     | 15     | 15      | 15     | 5      | 2      | 15     | 15     | 15      | 15     | 15     |
| LatDeg    | 47     | 47     | 47     | 47     | 47     | 47     | 47     | 47     | 47     | 47     | 47     | 47       | 47     | 47     | 47     | 47     | 47             | 47            | 47           | 47     | 47     | 47     | 47     | 47     | 47      | 47     | 47     | 47     | 47     | 47     | 47      | 47     | 47     |
| <b>*</b>  | 7      | 7      | 7      | 7      | 7      | 7      | 2      | 7      | 7      | 73     | 7      | 74       | 7      | 7      | 73     | 7      | 7              | 7             | 7            | 71     | 7      | 7      | 7      | 7      | 7       | 7      | 7      | 7      | 7      | 7      | 7       | ~      | 73     |
| C         | MO       | MO     | Ω<br>Q | MO     | MO     | MO             | MO            | MO           | MO     | MO     | MO     | MO     | MO     | QW<br>Q | MO     | MO     | MO     | MO     | MO     | MO      | MO     | MO     |
| SAMPLE    | B2     | B3     | B4     | B1     | B2     | B3     | B4     | B      | B2     | B3     | B4     | <u>B</u> | B2     | B3     | B4     | BI     | B2             | B3            | B4           | BI     | B2     | B3     | B4     | В      | B2      | B3     | B4     | BI     | B2     | B3     | B4      | BI     | B2     |
| STATION   | BL-21  | BL-21  | BL-21  | BL-25  | BL-25  | BL-25  | BL-25  | BL-28  | BL-28  | BL-28  | BL-28  | BL-31    | BL-31  | BL-31  | BL-31  | G-11   | CI-11          | CI-11         | <b>:</b> -:: | CI-13  | CI-13  | CI-13  | CI-13  | CI-16  | CI-16   | CI-16  | CI-16  | CI-17  | CI-17  | CI-17  | CI-17   | CI-20  | CI-20  |
| SURVEY    | CBMSQS | CBMSOS | CBMSQS | CBMSQS | CBMSQS   | CBMSQS | CBMSQS | CBMSQS | CBMSQS | CBMSQS         | <b>CBMSOS</b> | CBMSQS       | CBMSQS | CBMSQS | CBMSQS | CBMSQS | CBMSQS | CBMSQS  | CBMSQS | CBMSQS | CBMSQS | CBMSQS | CBMSQS | CBMSQS  | CBMSQS | CBMSQS |

| SDI                | Э      | <b>m</b> | en     | m      | eri    | . "        |        | י ער   | n =4       | - 4          | . 4        |        | ۱ ۲          | 1 4    | ٠ ,     |            |          |        |        | • 4    | · '0   | 9      | Ŋ                                       | 1          | 7      | \$     | 4      | 4      | 4      | 4        | 5      | 4      | 4      |
|--------------------|--------|----------|--------|--------|--------|------------|--------|--------|------------|--------------|------------|--------|--------------|--------|---------|------------|----------|--------|--------|--------|--------|--------|-----------------------------------------|------------|--------|--------|--------|--------|--------|----------|--------|--------|--------|
| TI.                | 99     | 19       | 63     | 62     | 9      | : 63       | : E    | £ 6    | ; <u>7</u> | , T <u>e</u> | : 19       | . 19   | ; %          | . 29   | ; %     | ,          | · c      | • •    | . 2    | 9      | 29     | 65     | 99                                      | pund       | 7      | 99     | 47     | 99     | 99     | 99       | 29     | 64     | 64     |
| ħ                  | 0.603  | 0.534    | 0.446  | 0.579  | 0.556  | 0.538      | 0.475  | 1990   | 0 599      | 0.65         | 0.65       | 0.415  | 0.437        | 0.598  | 0.354   | 0.206      | 0.229    | 0.176  | 0.195  | 0.627  | 0.763  | 0.737  | 0.787                                   | 0.218      | 0.551  | 0.753  | 0.678  | 0.565  | 0.555  | 0.565    | 0.556  | 0.538  | 0.537  |
| й                  | 0.853  | 0.789    | 0.671  | 0.847  | 0.837  | 0.752      | 0.701  | 0.932  | 0.816      | 8.0          | 0.908      | 0.521  | 0.578        | 0.856  | 0.501   | 0.242      | 0.248    | 0.158  | 0.176  | 0.816  | 0.897  | 686'0  | 0.948                                   | 0.131      | 0.595  | 0.963  | 0.834  | 0.835  | 0.857  | 0.886    | 0.897  | 0.837  | 0.793  |
| MISCTX             | 7      | ,        | *****  | 0      | 0      | 0          |        | N      | 0          |              | 0          | 0      | <del>,</del> | 7000   |         | 73         |          | 7      | 7      | 0      | 0      | 0      | 0                                       | 0          | 0      | 0      | 0      | 0      | 0      | 0        |        | -      | 0      |
| CRTX               | m      | 4        | 3      | 3      | 7      | 3          | 5      | 'n     | 4          | m            | 7          |        | 3            | 'n     | 5       | ****       | 7        | 0      | -      | т      | 1      | ťΩ     | 0                                       | 0          | 0      | w      | 7      | 5      | ∞      | <b>∞</b> | 9      | 7      | 5      |
|                    |        | -        | 0      |        |        |            | 0      | -      | 7          | <b>puri</b>  |            | 0      | 0            | 7      | <b></b> | 0          | 0        | 0      | 0      | 0      | 0      | 0      | 0                                       | 0          | 0      | 0      | 0      | 0      | 0      | 1        | 0      |        | 0      |
| IOTAX. E           | 00     | 10       | 6      | œ      | Ξ      | <b>∞</b>   | ∞      | 9      | ĸ          | ν.           | <b>0</b> 0 | 9      | 7            | ø,     | 9       | <b>^</b> O |          | 0      | 0      | 4      | 4      | 9      | S                                       | 0          | 4      | 4      | 4      | s      | 7      | 10       | 9      | 6      | ∞      |
| AMPIX MOTAX ECHTAX | 0      | 0        | 0      | 0      | 0      | 0          | _      | 7      | 0          | 7            | ****       | 0      | -            | 0      | 0       | peri       | <b>t</b> | 0      | 0      | 0      | 0      |        | 0                                       | 0          | 0      | 0      | 0      | 0      |        | 0        | 0      | 0      | 0      |
|                    | 12     | 14       | 16     | 16     | 18     | 13         | 91     | Π      | 12         | 7            | 14         | Ξ      | 10           | =      | 13      | 11         | 9        | S      | 4      | 13     | 10     | 13     | ======================================= | 4          | 7      | 12     | 10     | 20     | 20     | <u>∞</u> | 28     | 18     | 17     |
| ECHAB MISCAB POTAX | 7      | 7        | -      | 0      | 0      | 0          |        | 5      | 0          | -            | 0          | 0      | *****        | -      | 73      | m          | 80       | ∞      | 4      | 0      | 0      | 0      | 0                                       | 0          | 0      | 0      | 0      | 0      | 0      | 0        |        |        | 0      |
| ECHAB 1            | -      | 7        | 0      | 7      | 7      |            | 0      | 4      | 3          | ,            | 2          | 0      | 0            | 3      | proci   | 0          | Ф        | Φ      | 0      | 0      | 0      | 0      | 0                                       | 0          | Ō      | 0      | 0      | 0      | 0      | ,,,,,,   | 0      | 4      | 0      |
| AMPAB ]            | 0      | 0        | 0      | 0      | 0      | 0          |        | 2      | 0          | Ś            | ****       | 0      | 1            | 0      | 0       | part .     |          | 0      | 0      | 0      | 0      |        | 0                                       | 0          | 0.     | 0      | 0      | 0      | -      | 0        | 0      | 0      | 0      |
| CRAB /             | . 61   | 91       | 28     | . 21   | 56     | 62         | 49     | 22     | 12         |              | 9          | ∞      | 13           | 7      | 25      | yout       | 5        | 0      | 2      | e      | -      | m      | 0                                       | 0          | 0      | 21     | 4      | 17     | 38     | 49       | 35     | 62     | 48     |
| SAMPLE             | B2     | B3       | B4     | Ē      | B2     | <b>B</b> 3 | B4     | Bi     | B2         | B3           | B4         | BI     | B2           | B3     | B4      | BI         | B2       | B3     | B4     | BI     | B2     | B3     | B4                                      | . <b>B</b> | B2     | . B3   | B4     | Ħ      | B2     | B3       | B4     | BI     | B2     |
| STATION            | BL-21  | BL-21    | BL-21  | BL-25  | BL-25  | BL-25      | BL-25  | BL-28  | BL-28      | BL-28        | BL-28      | BL-31  | BL-31        | BL-31  | BL-31   | CI-11      | CI-11    | CI-11  | CI-II  | CI-13  | CI-13  | CI-13  | CI-13                                   | CI-16      | CI-16  | CI-16  | CI-16  | CI-17  | CI-17  | CI-17    | CI-17  | CI-20  | CI-20  |
| SURVEY             | CBMSQS | CBMSQS   | CBMSQS | CBMSQS | CBMSQS | CBMSQS     | CBMSQS | CBMSOS | CBMSQS     | CBMSOS       | CBMSQS     | CBMSQS | CBMSQS       | CBMSQS | CBMSQS  | CBMSOS     | CBMSQS   | CBMSQS | CBMSQS | CBMSOS | CBMSQS | CBMSQS | CBMSQS                                  | CBMSQS     | CBMSQS | CBMSOS | CBMSQS | CBMSQS | CBMSQS | CBMSOS   | CBMSQS | CBMSQS | CBMSQS |

TOAB is calculated by summing POAB, MOAB, CRAB, ECHAB, and MISCAB.

| SURVEY        | STATION | SAMPLE     | ပ  | *s | LatDeg | LatMin   | LatSec  | LonDeg | LonMin | LonSec | Depth (m) | % FINES | %TOC 2** | TOAB  | TOTAX | POAB | MOAB |           |
|---------------|---------|------------|----|----|--------|----------|---------|--------|--------|--------|-----------|---------|----------|-------|-------|------|------|-----------|
| CBMSQS        | CI-20   | B3         | MO | 7  | 47     | 15       | 23      | 122    | 25     | . 28   | 8.5       | 79.718  | 4.6      | 570   | 36    | 128  | 380  | 0         |
| CBMSQS        | CI-20   | <b>B</b> 4 | MO | 7  | 47     | 5        | 22      | 122    | 25     | 58     | 8.5       | 79.718  | 46       | 519   | 34    | 129  | 335  | S         |
| CBMSQS        | CI-22   | Bi         | MO | 7  | 47     | 15       | 37      | 122    | 26     | œ      | 9.3       | 28.025  | 1.2      | 512   | . 43  | 259  | 203  | 9         |
| CBMSQS        | CI-22   | B2         | MO | 7  | 47     | 15       | 37      | 122    | 26     | 00     | 9.3       | 28.025  | 1.2      | 619   | 40    | 246  | 293  | ω.        |
| CBMSQS        | CI-22   | B3         | MO | 73 | 47     | 15       | 37      | 122    | 26     | •      | 9.3       | 28.025  | 1.2      | 557   | 42    | 242  | 245  | δ.        |
| CBMSQS        | CI-22   | B4         | MO | 7  | 47     | 15       | 37      | 122    | 26     | 00     | 9.3       | 28,025  | 1.2      | 543   | 50    | 235  | 247  | 7         |
| CBMSQS        | CR-11   | BI         | MO | 7  | 47     | 11       | <b></b> | 122    | 24     | 22     | 5.1       | 4.34    | 0.4      | 429   | 48    | 275  | 66   | 20        |
| CBMSQS        | CR-11   | B2         | MO | 7  | 47     | 17       |         | 122    | 24     | 22     | 5.1       | 4.34    | 0.4      | 298   | 39    | 46   | 98   | ود        |
| CBMSQS        | CR-11   | B3         | MO | ~  | 47     | 17       | •···    | 122    | 24     | 22     | 5.1       | 4.34    | 0.4      | 306   | 54    | 94   | 8    | <u>t-</u> |
| CBMSQS        | CR-11   | B4         | MO | 7  | 47     | 17       | -       | 122    | 24     | 22     | 5.1       | 4.34    | 0.4      | 394   | 09    | 159  | 99   | 9         |
| CBMSQS        | CR-12   | B          | MO | 8  | 47.    | 11       | 30      | 122    | 41     | · rr   | 19.3      | 12.814  | 0.3      | 191   | 56    | 98   | 45   | λ         |
| CBMSQS        | CR-12   | B2         | MO | 73 | 47     | 17       | 30.     | 122    | 41     |        | 19.3      | 12.814  | 0.3      | 215   | 49    | 109  | 99   | 9         |
| CBMSQS        | CR-12   | B3         | MO | 2  | 47     | 17       | 30      | 122    | 41     | e      | 19.3      | 12.814  | 0.3      | 205   | 47    | 16   | 76   | 9         |
| CBMSQS        | CR-12   | B4         | MO | 7  | 47     | 17       | 30      | 122    | 41     | 8      | 19.3      | 12.814  | . 0,3    | 204   | 44    | 77   | 76   | ور        |
| CBMSQS        | CR-13   | B          | MO | 73 | 47     | 18       | geme)   | 122    | 40     | 57     | 2.7       | 7.662   | 0.2      | 197   | 37    | 121  | 57   | <u>t-</u> |
| CBMSQS        | CR-13   | B2         | MO | 73 | 47     | <u>~</u> | ,       | 122    | 40     | 57     | 2.7       | 7.662   | 0.2      | 172   | 44    | 16   | 51   | =         |
| <b>CBMSQS</b> | CR-13   | <b>B</b> 3 | MO | 7  | 47     | 18       | ****    | 122    | 40     | 57     | 2.7       | 7.662   | 0.2      | 144   | 33    | 99   | 99   | 9         |
| CBMSOS        | CR-13   | B4         | MO | 7  | 47     | 18       | -       | 122    | 40     | 57     | 2.7       | 7.662   | 0.2      | . 117 | 31    | 72   | 36   | ڼ         |
| CBMSQS        | CR-14   | BI         | MO | 7  | 47     | 16       | 27      | 122    | 45     | 25     | 2.2       | 23.891  | 0.4      | 141   | 32    | 89   | 42   | C)        |
| CBMSQS        | CR-14   | B2         | MO | 7  | 47     | 16       | 27      | 122    | 45     | 25     | 2.2       | 23.891  | 0.4      | 278   | 31    | 88   | 40   | Q         |
| CBMSQS        | CR-14   | B3         | MO | 7  | 47     | 16       | 27      | .122   | 45     | 25     | 2.2       | 23.891  | 0.4      | 118   | 30    | 65   | *    | . ي       |
| CBMSOS        | CR-14   | B4         | MO | 7  | 47     | 16       | 27      | 122    | 45     | 25     | 2.2       | 23.891  | 0.4      | 127   | 41    | 64   | 52   | 63        |
| CBMSQS        | HY-12   | BI         | MO | 2  | 47     | 15       | 46      | 122    | 23     | 37     | 9.2       | 78.527  | 5.7      | 504   | 23    | 310  | 183  | 60        |
| CBMSQS        | HY-12   | B2         | MO | 7  | 47     | 15       | 46      | 122    | 21     | 37     | 9.2       | 78.527  | 5.7      | 720   | 27    | 473  | 220  | 0         |
| CBMSQS        | HY-12   | B3         | MO | 7  | 47     | 15       | 46      | 122    | 21     | 37     | 9.2       | 78.527  | 5.7      | 835   | 27    | 388  | 371  | -         |
| CBMSQS        | HY-12   | B4         | MO | 7  | 47     | 15       | 46      | 122    | 21     | 37     | 9.2       | 78.527  | 5.7      | 536   | 23    | 307  | 203  | ლ         |
| CBMSQS        | HY-14   | BI         | MO | 7  | 47     | 15       | 51      | 122    | 21     | 51     | 11.6      | 47.935  | 4.5      | 413   | 36    | 392  | 13   | 3         |
| CBMSQS        | HY-14   | B2         | MO | 7  | 47     | 15       | 51      | 122    | 21     | 51     | 11.6      | 47.935  | 4.5      | 355   | 26    | 336  | 7    | 4         |
| CBMSQS        | HY-14   | B3         | MO | 7  | 47     | 15       | 51      | 122    | 21     | 51     | 11.6      | 47,935  | 4.5      | 516   | 26    | 482  | 28   | <b>∞</b>  |
| CBMSQS        | HY-14   | B4 .       | WO | 7  | 47     | ~        | 51      | 122    | 21     | 51     | 11.6      | 47.935  | 4.5      | 113   | 19    | 101  | 10   | 0         |
| CBMSQS        | HY-17   | BI         | MO | 7  | 47     | 15       | 57      | 122    | 77     | 0      | 8.6       | 66,934  | 5.2      | 100   | 20    | 88   | 60   | 6         |
| CBMSQS        | HY-17   | B2         | MO | 71 | 47     | 15       | 57      | 122    | . 22   | 0      | 8.6       | 66,934  | 5.2      | 671   | 24    | 649  | 17   | 7         |
| CBMSQS        | HY-17   | B3         | MO | 73 | 47     | 15       | 57      | 122    | 22     | 0 .    | 8.6       | 66.934  | 5.2      | 327   | 24    | 317  | 9    | 9         |
|               | -       |            |    |    |        |          |         |        |        |        |           |         |          |       |       |      |      |           |

| SURVEY | STATION | SAMPLE | CRAB     | AMPAB.                                  | ECHAB MISCAB | MISCAB | POTAX | AMPTX    | АМРТХ МОТАХ ЕСНТАХ | ЕСНТАХ   | CRTX    | MISCTX      |         |        | - <del></del> | E    | IQS            |
|--------|---------|--------|----------|-----------------------------------------|--------------|--------|-------|----------|--------------------|----------|---------|-------------|---------|--------|---------------|------|----------------|
| CBMSQS | CI-20   | B3     | 9        | 0                                       | 0            | 7      | 82    | 0        | 12                 | 0        |         | S           |         | 0.813  | 0.522         | . 63 | m <sub>.</sub> |
| CBMSQS | CI-20   | B4     | 46       | 2                                       | 5            | 4      | 11    |          |                    |          |         | 7           |         | 0.835  | 0.545         | 63   | 3              |
| CBMSQS | CI-22   | BI     | 47       | 0                                       | æ            | 0      | 28    | 0        | 00                 | 7        |         | 8           | 0       | 0.856  | 0.524         | 19   | 3              |
| CBMSQS | CI-22   | B2     | 74       | ****                                    | ΑÚ           | -      | 23    | ****     | 6                  |          |         | 9           |         | 6.0    | 0.562         | 62   | 4              |
| CBMSQS | CI-22   | B3     | 69       | 1                                       | <b>7····</b> | 0      | . 26  | pared    | 9,                 | proof.   |         | 9           | 0       | 0.937  | 0.577         | 63   | 4              |
| CBMSQS | CI-22   | B4     | 57       | 0                                       | 4            | 0      | 16    | 0        | 6                  | 7        |         | 4           | 0       | 0.846  | 0.567         | 63   | ĸ              |
| CBMSQS | CR-11   | Ħ      | 55       | 13                                      | <b>Proof</b> |        | 27    | 2        | 12                 | <b>,</b> |         |             | _       | 1.093  | 0.65          | 91   | 7              |
| CBMSQS | CR-11   | B2     | 165      | · <b>5</b>                              | 0            |        | 15    | 4        | 14                 | 0        |         | 6           |         | 0.94   | 0.591         | 76   | 9              |
| CBMSQS | CR-11   | B3     | 124      | 33                                      | 0            | 0      | 32    | 9        | 14                 | 0        |         | 7           | 0       | 1,281  | 0.74          | 69   | 12             |
| CBMSQS | CR-11   | B4     | 166      | 15                                      |              |        | 30    | 10       | 14                 | П        |         | м           | _       | 1.181  | 0.664         | 76   | 10             |
| CBMSQS | CR-12   | BI     | 40       | ς.                                      | 17           | m      | 33    | 3        | 15                 |          |         | ς,          | 2       | 1.418  | 0.811         | 73   | 17             |
| CBMSQS | CR-12   | B2     | 34       | 2                                       | 4            | 2      | 29    | 2        | П                  |          |         | 9           | 7       | 1.305  | 0.772         | 69   | 12             |
| CBMSQS | CR-12   | B3     | 19       | т                                       | 18           |        | 33    | 3        | 6                  |          |         | 9           |         | 1.24   | 0.742         | 7.1  | 10             |
| CBMSQS | CR-12   | B4     | 32       | 4                                       | 17           | 2      | 23    | 4        | 6                  | 7        |         | ∞           | 7       | 1.231  | 0.749         | 7.1  | 10             |
| CBMSQS | CR-13   | 18     | 19       | ======================================= | 0            | 0      | 20    | 5        | 6                  | 0        |         | <b>\$</b> 0 | 0       | 1.178  | 0.751         | 29   | 9              |
| CBMSQS | CR-13   | B2     | 22       | 16                                      | 0            | _      | 20    | 7        | 6                  | 0        | Literal | :<br>B      |         | 1.304  | 0.794         | 65   | Ξ              |
| CBMSQS | CR-13   | B3     | 12       | 9                                       | 0            | 0      | 15    | S        | 6                  | 0        |         | 6           | 0       | 1.19   | 0.783         | 19   | 6              |
| CBMSQS | CR-13   | B4     | 6        | 9                                       | 0            | 0      | 91    | 4        | 6                  | 0        |         | 9           | 0       | 1.211  | 0.812         | . 29 | 10             |
| CBMSQS | CR-14   | BI     | 76       |                                         | 0            | 2      | 15    | 3        | 80                 | 0        |         | 9           | 2       | 1.288  | 0.856         | 89   |                |
| BMSQS  | CR-14   | B2     | 150      | 140                                     | 0            | 0      | 17    | 4        | 6                  | 0        |         | S           | 0       | 1.063  | 0.712         | 93   | 9              |
| CBMSQS | CR-14   | B3     | 15       | 10                                      | 0            | 7      | 16    | 9        | •                  |          |         | ŝ           |         | 1.295  | 0.877         | 71   | 13             |
| CBMSQS | CR-14   | B4     | 6        | 9                                       | 0            | 7      | 20    | 4        | 14                 | 0        |         | 9           | · Lemma | 1.319  | 0.818         | 73   | 15             |
| BMSQS  | HY-12   | BI     | PI       | 0                                       | 0            | 0      | 91    | 0        | 4                  | 0        |         | 6           | 0       | 0.836  | 0.614         | 70   | 3              |
| CBMSOS | HY-12   | B2     | 27       | 0                                       | 0            | 0      | 20    | 0        | 33                 | 0        | •       | 4           | 0       | 0.792  | 0.553         | 69   | 3              |
| CBMSQS | HY-12   | B3     | 76       | 0                                       | 0            | 0      | 82    | 0        | S                  | 0        |         | 4           | 0       | 0.811  | 0.567         | 89   | 4              |
| CBMSQS | HY-12   | B4     | , 26     | 0                                       | 0            | 0      | 16    | 0        | 4                  | 0        |         | 33          | 0       | 0.777. | 0.57          | . 89 |                |
| BMSQS  | HY-14   | BI     | 9        | 0                                       | 0            | -      | 27    | 0        | 4                  | 0        |         |             | *****   | 0.851  | 0.547         | 29   | 3              |
| BMSQS  | HY-14   | B2     | š        | 0                                       | 0            | 0      | 20    | 0        | 33                 | 0        |         | 3.          | 0       | 0.816  | 0.576         | 73   | ĸ              |
| CBMSQS | HY-14   | B3     | 9        | 0                                       | 0            | 0      | 19    | 0        | 4                  | 0        |         | 3           | 0       | 0.759  | 0.537         | 89   | κ,             |
| BMSQS  | HY-14   | B4     | 7        | 0                                       | 0            | 0      | 13    | 0        | 4                  | 0        |         | 2           | 0       | 0.89   | 969.0         | 7.2  | 4              |
| SPMSQS | HY-17   | BI     | <b>ω</b> | 0                                       | 0            | 0      | 13    | 0        | S                  | 0        |         | 2           | 0       | 0.917  | 0.705         | 99   | 7              |
| SDMSOS | HY-17   | B2     | 5        | Amen                                    | 0            | 0      | 17    | Posterio | 3                  | 0        |         | **          | 0       | 0.404  | 0.293         | 89   | _              |
| SPMSQS | HY-17   | B3     | 4        | 0                                       | 0            | 0      | 19    | 0        | 3                  | 0        |         | ~           | 0       | 0.447  | 0.324         | 19   |                |

| MOAB      | Towns .  | 18     | 12     | 2      | 6      | 27     | <b>∞</b> | 17     | 19     | 891    | . 94   | 11     | 145    | 49     | 45     | 141    | 93     | 7      | 16     | 7      | œ      | 54     | 28     | 6      | 36     | 119    | 96     | 64     | 103    | 172    | 37     | 51.    | 120    |
|-----------|----------|--------|--------|--------|--------|--------|----------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| POAB N    | 200      | 427    | 353    | 20     | 43     | 24     | ĸ        | 9      | Ś      | 177    | 292    | 339    | 230    | 948    | 764    | 999    | 719    | 50     | 367    | 194    | 16     | 233    | 256    | 19     | 301    | 199    | 648    | 629    | 633    | 396    | 454    | 473    | 345    |
| TOTAX     | 22       | 30     | 22     | Π      | 13     | 6      |          |        | 7      | 27     | 21     | 22     | 23     | 44     | 37     | 54     | 39     | ∞      | 25     | 22     | 17     | 24     | 28     | 16     | 29     | 26     | 24     | 24     | 27     | 33     | 41     | 30     | 33     |
| TOAB      | 517      | 454    | 370    | 22     | 56     | 09     | 15       | 25     | 76     | 390    | 403    | 436    | 401    | 1044   | 832    | 927    | 855    | 53     | 386    | 204    | 109    | 313    | 290    | 36     | 358    | 795    | 781    | 725    | 770    | 601    | 504    | 532    | 507    |
| % TOC 2** | 5.2      | 4.4    | 4.4    | 4.4    | 4.4    | 3.8    | 3.8      | 3.8    | 3.8    | 5.1    | 5.1    | 5.1    | 5.1    | 3.1    | 3.1    | 3.1    | 3.1    | 3.8    | 3.8    | 3.8    | 3.8    | 2.5    | 2.5    | 2.5    | 2.5    | 2.4    | 2.4    | 2.4    | 2.4    | 2.9    | 2.9    | 2.9    | 2.9    |
| % FINES   | 66.934   | 75.527 | 75.527 | 75.527 | 75.527 | 86.45  | 86.45    | 86.45  | 86.45  | 81.516 | 81.516 | 81.516 | 81.516 | 61.099 | 660'19 | 61.099 | 61.099 | 61.148 | 61.148 | 61.148 | 61.148 | 77.486 | 77.486 | 77.486 | 77.486 | 78.065 | 78.065 | 78.065 | 78.065 | 57.154 | 57.154 | 57.154 | 57.154 |
| Depth (m) | 9.8      | 9.5    | 9.5    | 9.5    | 9.5    | 8.6    | 8.6      | 8.6    | 8.6    | 9.1    | 9.1    | 9.1    | 9.1    | 7.8    | 7.8    | 7.8    | 7.8    | 9.6    | 9.6    | 9.6    | 9.6    | 10,2   | 10.2   | 10.2   | 10.2   | 8.9    | 8.9    | 6.8    | 8.9    | 9.4    | 9.4    | 9.4    | 9.4    |
| LonSec    | 0        | 23     | 23     | 23     | 23     | 21     | 21       | 21     | 21     | 21     | 21     | 21     | . 23   | 49     | 49     | 49     | 49     | 9      | 9      | 9      | 9      | 14     | 4      | 41     | 41     | 7      | 2      | 2      | 7      | -      | -      |        | -      |
| LonMin    | 22       | 22     | 22     | 22     | 22     | 22     | 22       | 22     | 22     | 22     | . 22   | 22     | 22     | 22     | 22     | 22     | 22     | 23     | 23     | 23     | 23     | 23     | 23     | 23     | 23     | 24     | 24     | 24     | 24     | 24     | 24     | 24     | 24     |
| LonDeg    | 122      | 122    | 122    | 122    | 122    | 122    | 122      | 122    | 122    | 122    | 122    | 122    | 122    | 122    | 122    | 122    | 122    | 122    | 122    | 122    | 122    | 122    | 122    | 122    | 122    | 122    | 122    | 122    | 122    | 122    | 122    | 122    | 122    |
| LatSec    | 57       | σ,     | 6      | 6      | 6      |        |          | 11     |        | 13     | 13     |        | 13     | 25     | 25     | 25     | 25     | 33     | 33     | 33     | 33     | 41     | 4      | 41     | 4      | 45     | 45     | 45     | 45     | 45     | 45     | 45     | 45     |
| LatMin    |          | 16     | 16     | 16     | 16     | 16     | 16       | 16     | . 16   | 16     | 16     | 16     | 16     | 16     | 16     | 16     | 16     | 16     | 16     | 16     | 16     | 16     | 16     | 16     | 16     | 16     | 16     | 16     | 16     | 16     | 16     | 16     | 16     |
| LatDeg    | 47       | 47     | 47     | 47     | 47     | 47     | . 47     | 47     | 47     | 47     | 47     | 47     | 47     | 47     | 47     | 47     | 47     | 47     | 47     | 47     | 47     | 47     | 47     | 47     | 47     | 47     | 47     | 47     | 47     | 47     | 47     | 47     | 47     |
| *         | 7        | 7      | 7      | 7      | 7      | 7      | 7        | 7      | 7      | 7      | 7      | 7      | (7     | 7      | 7      | 7      | 7      | 7      | 7      | ~      | ~      | 7      | ~      | ~      | ~      | 7      | 7      | 7      | 7      | 7      | 7      | 7      | 7      |
| ပ         | MO       | M      | MO     | MO     | MO     | MO     | MO       | MO     | MO     | MO     | MO     | MO     | MO     | MO     | MO     | MO     | Mo     | MO     | WO     | MO     |
| SAMPLE    | <b>B</b> | B      | B2     | B3     | B4.    | BI     | B2       | B3     | B4     | BI     | B2     | B3     | B4     | BI     | B2     | B3     | B4     | ВІ     | B2     | B3     | 84     | B      | B2     | B3     | B4     | BI     | B2     | B3     | B4     | BI     | . B2   | B3     | B4     |
| STATION   | HY-17    | HY-22  | HY-22  | HY-22  | HY-22  | HY-23  | HY-23    | HY-23  | HY-23  | HY-24  | HY-24  | HY-24  | HY-24  | HY-28  | HY-28  | HY-28  | HY-28  | HY-32  | HY-32  | HY-32  | HY-32  | HY-37  | HY-37  | HY-37  | HY-37  | HY-42  | HY-42  | HY-42  | HY-42  | HY-43  | HY-43  | HY-43  | HY-43  |
| SURVEY    | CBMSQS   | CBMSQS | CBMSOS | CBMSQS | CBMSQS | CBMSQS | CBMSQS   | CBMSQS | CBMSQS | CBMSQS | CBMSQS | CBMSQS | CBMSQS | CBMSOS | CBMSQS |

| SDI                | -      | 7        | -      | 9      | 4      | m      | 4      | v      | en     | m      | 7      | 7          | E      | -       | ,      | \$                 | ю      | æ          | ****   | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | 7      | т           | 73     | 7            | 7      |        |        | -            | _      | . 4         | 7       | 7              | <b>ር</b> ላጎ |
|--------------------|--------|----------|--------|--------|--------|--------|--------|--------|--------|--------|--------|------------|--------|---------|--------|--------------------|--------|------------|--------|----------------------------------------|--------|-------------|--------|--------------|--------|--------|--------|--------------|--------|-------------|---------|----------------|-------------|
| <u> </u>           | 89     | 99       | 99     | . 89   | 64     | 99     | 19     | 58     | 49     | 99     | 67     | 99         | 99     | 99      | 65     | 99                 | . 59   | 29         | 19     | 99                                     | 99     | 29          | 19     | 58           | 29     | 99     | 99     | 99           | 99     | 99          | 65      | 99             | 99          |
| <del>-</del>       | 0.357  | 0.361    | 0.347  | 0.852  | 0.641  | 0.74   | 0.863  | 968'0  | 0.724  | 0.508  | 0.433  | 0.421      | 0.542  | 0.316   | 0.321  | 0.552              | 0.409  | 0.7        | 0.295  | 0.332                                  | 0.452  | 0.494       | 0.407  | 0.846        | 0.374  | 0.299  | 0.317  | 0.317        | 0.299  | 0.447       | 0.372   | 0.363          | 0.47        |
| Ħ                  | 0.48   | 0.534    | 0.466  | 0.887  | 0.714  | 0.706  | 0.729  | 0.933  | 0.612  | 0.727  | 0.572  | 0.565      | 0.739  | 0.52    | 0.504  | 0.956              | 0.651  | 0.632      | 0.412  | 0.446                                  | 0.556  | 0.681       | 0.589  | 1.018        | 0.548  | 0.423  | 0.437  | 0.438        | 0.428  | 6290        | 9.0     | 0.536          | 0.7         |
| MISCIX             | 0      | 0        | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0          | 0      | <b></b> | -      | <del>,,,,,</del> , |        | 0          | 0      |                                        | 0      |             |        | <del>,</del> |        | 0      | -      |              | 0      | 0           | -       | ****           | 0           |
| CRTX               | 2      | 4        | 4      | 0      | m      | 7      | y mod  | 2      |        | 2      | 2      | 5          | 3      | V)      | ∞      | ***                | , 50   | ****       | 64     | 7                                      | -      | 4           | 7      | 4            | æ      | 7      | 2      | ю            | 'n     | 9           | 'n      | <b>r</b> 4     | ω           |
| CHITAX             | 0      |          | 0      | 0      | 0      | 0      | -      | 0      | 0      | ·      | 0      | 0          | 0      | 0       |        | ٣                  | -      | 0          | 0      | 0                                      | 0      | <b>June</b> | -      | 0            | -      | 0      |        | pari         | 0      |             | 2       | 2              | ·0          |
| MOTAX E            | 3      | 5        | 3      | 2      | 3      | 2      | 7      | 5      | 3      | 01     | 9      | 9          | 7      | 7       | 9      | 6                  | 00     |            | \$     | 4                                      | 9      | 7           | \$     | m            | ο,     | 7      | 6      | œ            | 12     | <del></del> | ∞       | 10             | 10          |
| AMPTX MOTAX ECHTAX | 0      | <b>,</b> | 2      | 0      | 2      | 0      | 0      | 0      | 0      | 0      | 0      |            | 0      | 0       | 700    | £                  |        |            | 0      | •••                                    | 0      | 2           | 0      | 0            | 0      | 0      | 0      | 0            |        | 6           | <b></b> | 0              | 0           |
| POTAX              | 17     | 20       | 15     | φ      | 9      | 35     | æ      | 4      | m      | 14     | 13     |            | 5      | 31      | 21     | 29                 | 23     | 9          | 18     | 91                                     | 10     | Ξ           | 61     | œ            | 16     | 01     | 11     |              | 72     | 15          | 25      | 91             | 18          |
| MISCAB             | 0      | 0        | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0          | 0      |         | 7      | 33                 | •      | 0          | 0      | 0                                      | 0      | 2           | yeel   | 1            | 0      | 0      | 7      | 8            | 0      | 0           | 4       | <b>,,,,,</b> , | 0           |
| ECHAB              | 0      | -        | 0      | 0      | 0      | 0      | -      | 0      | 0      |        | 0      | 0          | 0      | 0       | 2      | 10                 | 1      | 0          | 0      | 0                                      | 0      | 1           |        | 0            | 73     | 0      | *****  | <del>,</del> | 0      | *****       | 7       | 7              | 0           |
| AMPAB              | 0      | 7        | 7      | 0      | 2      | 0      | 0      | 0      | 0      | 0      | 0      | ю          | 0      | 0       | 1      | 9                  | кı     | _          | 0      |                                        | 0      | 7           | 0      | 0            | 0      | 0      | 0      | 0            | -      | 4           |         | 0              | 0           |
| CRAB               | 9      | 00       | 8      | 0      | 3      | 6      | -      | 7      | 2      | 44     | 17     | 20         | 26     | 46      | 19     | 102                | 37     |            | m      | <u>ε</u>                               | 4      | 23          | *      | 7            | 61     | 15     | 34     | 28           | 34     | 32          | . 1     | 5              | 42          |
| SAMPLE             | B4     | <b>B</b> | B2     | B3     | B4     | ā      | B2     | B3     | B4     | æ      | B2     | <b>B</b> 3 | B4     | BI      | B2     | B3                 | B4     | <b>B</b> 1 | B2     | B3                                     | B4     | 181         | B2     | B3           | B4     | B1     | B2     | B3           | B4     | BI          | B2      | B3             | B4          |
| STATION            | HY-17  | HY-22    | HY-22  | HY-22  | HY-22  | HY-23  | HY-23  | HY-23  | HY-23  | HY-24  | HY-24  | HY-24      | HY-24  | HY-28   | HY-28  | HY-28              | HY-28  | HY-32      | HY-32  | HY-32                                  | HY-32  | HY-37       | HY-37  | HY-37        | HY-37  | HY-42  | HY-42  | HY-42        | HY-42  | HY-43       | HY-43   | HY-43          | HY-43       |
| SURVEY             | CBMSQS | CBMSQS   | CBMSOS | CBMSQS | CBMSQS | CBMSQS | CBMSOS | CBMSQS | CBMSQS | CBMSQS | CBMSQS | CBMSQS     | CBMSQS | CBMSQS  | CBMSQS | CBMSOS             | CBMSQS | CBMSQS     | CBMSQS | CBMSQS                                 | CBMSQS | CBMSQS      | CBMSQS | CBMSOS       | CBMSQS | CBMSQS | CBMSQS | CBMSQS       | CBMSOS | CBMSQS      | CBMSQS  | CBMSOS         | CBMSQS      |

| MOAB        | 56     | 75     | 20     | 92      | 18     | 39       | 52     | 19     | 464    | 504    | 437    | 380      | 1.7    | 85     | 4      | 153    | 317    | 477    | 13     | 338    | 339    | 416    | 294    | 371    | 242        | 360    | 373    | 393    | 27     | 145    | 91     | 181    | 84     |
|-------------|--------|--------|--------|---------|--------|----------|--------|--------|--------|--------|--------|----------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|------------|--------|--------|--------|--------|--------|--------|--------|--------|
| POAB        | 46     | 96     | 38     | 96      | 614    | 524      | 418    | 354    | 384    | 826    | 716    | 516      | 74     | 572    | 09     | 869    | 505    | 180    | 6      | 332    | 457    | 391    | 477    | 443    | 557        | 499    | 578    | 227    | 251    | 169    | 569    | 364    | 513    |
| TOTAX       | 70     | . 25   | 25     | 28      | 23     | 27       | 27     | 56     | 37     | 41     | 41     | 34       | 91     | 40     | 17     | 53     | 37     | 32     | 12     | 33     | 34     | 28     | 32     | 29     | <b>5</b> ¢ | 32     | 31     | 53     | 37     | 33     | 45     | 58     | 88     |
| TOAB        | 83     | 195    | 101    | 206     | 646    | 577      | 492    | 394    | 904    | 1398   | 1212   | 936      | 105    | 099    | 74     | 873    | 898    | 212    | 26     | 705    | 855    | 843    | 805    | 098    | 834        | \$68   | 186    | 643    | 383    | 361    | 420    | 649    | 886    |
| <b>5</b> ** |        |        |        |         |        |          |        |        |        |        |        |          |        |        |        |        |        | •      |        |        |        |        |        |        |            |        |        |        |        |        |        |        |        |
| % TOC       | 0.3    | 0.3    | 0.3    | 0.3     | 8.     | <u>~</u> | 8.     | 8.1    | 2.3    | 2.3    | 2.3    | 2.3      | 4      | 4      | 4      | 4      | 2.3    | 2.3    | 2.3    | 2.3    | 2.2    | 2.2    | 2.2    | 2.2    | 1.5        | 1.5    | 1.5    | 1.5    | 2.6    | 2.6    | 2.6    | 2.6    | 0.7    |
| % FINES     | 5.617  | 5.617  | 5.617  | 5.617   | 78.288 | 78.288   | 78.288 | 78.288 | 85.723 | 85.723 | 85.723 | 85.723   | 56.142 | 56.142 | 56.142 | 56.142 | 86.001 | 86.001 | 86.001 | 86.001 | 89.465 | 89,465 | 89.465 | 89,465 | 85.108     | 85.108 | 85.108 | 85.108 | 29.28  | 29.28  | 29.28  | 29.28  | 12,569 |
| Depth (m)   | 1.8    | 1.8    | 1.8    | <br>80. | 7.1    | 7.1      | 7.1    | 7.1    | 17.8   | 17.8   | 17.8   | 17.8     | 5.5    | 5.5    | 5.5    | 5.5    | 7.2    | 7.2    | 7.2    | 7.2    | 11.6   | 11.6   | 11.6   | 911.   | 10.2       | 10.2   | 10.2   | 10.2   | 8.0    | 8.0    | 8.0    | 8.0    | 5.7    |
| LonSec      | 57     | 57     | 57     | 57      | 6      | Ø.       | 6      | ο,     | 28     | 58     | 58     | . 58     | 49     | 46     | 49     | 49     | 59     | 59     | . 59   | 59     | ю      | 9      | 3      | m      | 17         | 17     | 17     | 17     | 44     | 44     | 44     | 44     | 54     |
| LonMin      | 23     | 23     | 23     | 23      | 24     | 24       | 24     | 24     | 24     | 24     | 24     | 24       | 25     | 25     | 25     | 25     | 24     | 24     | 24     | 24     | 25     | 25     | 25     | 25     | 25         | 25     | 25     | 25     | 26.    | 26     | 26     | 26     | 27     |
| LonDeg      | 122    | 122    | 122    | 122     | 122    | 122      | 122    | 122    | 122    | 122    | 122    | 122      | 122    | 122    | 122    | 122    | 122    | 122    | 122    | 122    | 122    | 122    | 122    | 122    | 122        | 122    | 122    | 122    | 122    | 122    | 122    | 122    | 122    |
| LatSec      | 46     | 46     | 46     | 46      | 52     | 52       | 52     | 52     | 18     | 18     | 28     | <u>~</u> | 44     | 44     | 44     | 44     | 46     | 46     | 46     | 46     | 55     | 55     | 55     | 55     | 6          | 6      | 6      | 6      | 7      | 7      | 7      | 7      | 37     |
| LatMin      | 91     | 16     | 16     | 16      | 91     | 91       | 16     | 16     | 1.1    | 17     | 11     | 17       | 15     | 15     | 15     | 15     | 15     | 15     | 15     | 15     | 15     | 15     | 15     | 15     | 16         | 91     | 91     | 91     | 91     | 16     | 16     | . 16   | 16     |
| LatDeg      | 47     | 47     | 47     | 47      | 47     | 47       | 47     | 47     | 47     | 47     | 47     | 47       | 47     | 47     | 47     | 47     | 47     | 41     | 47     | 47     | 47     | 47     | 47     | 47     | 47         | 47     | 47     | 47     | 47     | 47     | 47     | 47     | 47     |
| <b>*</b>    | 7      | 7      | 7      | 7       | 73     | 7        | 7      | 71     | 7      | 7      | ~      | 7        | 7      | 7      | 7      | 7      | 7      | 7      | 71     | 2      | 7      | 7      | 7      | 7      | ~          | 7      | 7      | 7      | 7      | 2      | 7      | 7      | 7      |
| Ç,          | MO     | MO     | MO     | MO      | MO     | MO       | MO     | MO     | MO     | MO     | MO     | MO       | MO     | MO     | MO     | MO     | MO     | MO     | MO     | MO     | MO     | MO     | MO     | MO     | Ø<br>Q     | MO     |
| SAMPLE      | B1     | B2     | B3     | B4      | B      | B2       | B3     | B4     | BI     | B2     | B3     | B4       | B1     | B2     | B3     | B4     | B1     | B2     | B3     | B4     | BI     | B2     | B3     | B4     | B1         | B2     | B3     | B4     | B1     | B2     | B3     | B4     | Bl     |
| STATION     | HY-44  | HY-44  | HY-44  | HY-44   | HY-47  | HY-47    | HY-47  | HY-47  | HY-50  | HY-50  | HY-50  | HY-50    | MD-12  | MD-12  | MD-12  | MD-12  | MI-11  | MI-11  | MI-11  | MI-11  | MI-13  | MI-13  | MI-13  | MI-13  | MI-15      | MI-15  | MI-15  | MI-15  | RS-12  | RS-12  | RS-12  | RS-12  | RS-13  |
| SURVEY      | CBMSOS | CBMSQS | CBMSQS | CBMSQS  | CBMSQS | CBMSQS   | CBMSQS | CBMSQS | CBMSQS | CBMSQS | CBMSQS | CBMSQS   | CBMSQS | CBMSQS | CBMSQS | CBMSQS | CBMSQS | CBMSQS | CBMSQS | CBMSQS | CBMSQS | CBMSQS | CBMSQS | CBMSQS | CBMSQS     | CBMSQS | CBMSQS | CBMSQS | CBMSQS | CBMSQS | CBMSQS | CBMSQS | CBMSQS |

| SURVEY | STATION | SAMPLE | CRAB  | AMPAB    | ECHAB | ECHAB MISCAB POTAX | POTAX        | AMPTX       | AMPTX MOTAX ECHTAX | ЕСНТАХ | CRTX | MISCTX                                        | Ħ      | <del></del> , | ш    | SDI      |
|--------|---------|--------|-------|----------|-------|--------------------|--------------|-------------|--------------------|--------|------|-----------------------------------------------|--------|---------------|------|----------|
| CBMSQS | HY-44   | BI     | , m.k | ******   | 0     | 0                  | 10           |             | 7                  | 0      | m    | 0                                             | .0,994 | 0.764         | 69   | 9        |
| CBMSOS | HY-44   | B2     | 22    | 7        | 0     | 0                  | 12           | 2           | 7                  | 0      | S    | 0                                             | 86.0   | 0.701         | 19   | 'n       |
| CBMSQS | HY-44   | B3     | 12    | 2        | 0     | 0                  | 12           | 7           | ∞                  | 0      | 4    | 0                                             | 1.037  | 0.742         | 99   | 7        |
| CBMSQS | HY-44   | B4     | 17    | <b>,</b> | 0     | 0                  | 13           | -           | 10                 | 0      | 4    | 0                                             | 1.039  | 0.718         | 64   | 9        |
| CBMSQS | HY-47   | BI     |       | 0        | 0     | 3                  | 15           | 0           | 3                  | 0      | 4    | -                                             | 0.36   | 0.264         | 19   |          |
| CBMSQS | HY-47   | B2     | 13    | 0        | 0     | -                  | 15           | 0           | 7                  | 0      | 4    | -                                             | 0.438  | 0.306         | 19   |          |
| CBMSQS | HY-47   | B3     | 22    | 0        | 0     | 0                  | 13           | 0           | 11                 | 0      | κŋ   | 0                                             | 0.55   | 0.384         | 99   | 73       |
| CBMSQS | HY-47   | B4     | 61    | -        | 0     | 2                  | . 11         |             | 7                  | 0      | 7    |                                               | 0.557  | 0.394         | 99   | 7        |
| CBMSQS | HY-50   | BI     | 40    | 7        | _     | 5                  | 14           | 2           | 12                 | 2      | 7    | 2                                             | 0.71   | 0.453         | 63   | (3       |
| CBMSQS | HY-50   | B2     | 45    | 0        | 19    | 4                  | 22           | 0           | 13                 | 2      | ъ    | -                                             | 0.669  | 0.415         | 62   | 73       |
| CBMSOS | HY-50   | B3     | 44    | t.       | 10    | 3                  | 19           |             | =                  | ю      | \$   |                                               | 0.639  | 0.396         | 64   | 73       |
| CBMSQS | HY-50   | B4     | 31    | -        | ∞     | -                  | 17           | . ••••      | 6                  | ĸ      | 4    |                                               | 0.651  | 0.425         | 99   | 7        |
| CBMSQS | MD-12   | BI     | 14    | 0        | 0     | 0                  | Ξ            | 0           | 2                  | 0      | m    | 0                                             | 0.967  | 0.803         | 62   | 9        |
| CBMSQS | MD-12   | B2     | 1     | 0        | 0     | 7                  | 24           | 0           | 13                 | 0      | •    | 7                                             | 0.732  | 0.457         | 65   | m        |
| CBMSQS | MD-12   | B3     | 0     | 0        | 0     | 0                  | 10           | 0           | 7                  | 0      | 0    | 0                                             | 0.789  | 0.641         | . 29 | 4        |
| CBMSQS | MD-12   | B4     | 18    | 0        |       | 3                  | 35           | 0           | 13                 |        | m    | -                                             | 0.843  | 0.489         | 99   | 5        |
| CBMSOS | MI-11   | BI     | 43    | 0        | 2     |                    | 23           | 0           | 1                  |        | Ś    |                                               | 0.742  | 0.473         | 65   | 2        |
| CBMSQS | MI-11   | B2     | 61    | -        | 0     | yund               | 14           |             | 12                 | 0      | δ.   | -                                             | 0.597  | 0.396         | 99   | 2        |
| CBMSQS | MI-11   | B3     | 4     | 0        | 0     | 0                  | 4            | 0           | S                  | 0      | m    | 0                                             | 0.994  | 0.921         | 49   | 9        |
| CBMSQS | MI-11   | B4     | 35    | -        | 0     | 0                  | 18           | -           | 6                  | 0      | 9    | 0                                             | 0.781  | 0.514         | 99   | 3        |
| CBMSOS | MI-13   | BI     | 58    | 0        | -     | 0                  | 18           | 0           | 10                 |        | ŝ    | 0                                             | 0.685  | 0.447         | 65   | . 73     |
| CBMSQS | MI-13   | B2     | 34    | 0        | 1     | -                  | 13           | 0           | 6                  | *****  | 4    |                                               | 0.647  | 0.447         | 64   | 2        |
| CBMSQS | MI-13   | B3     | 30    | ****     | 2     | 2                  | 14           | 1           | 10                 | 7      | 9    | <b>, , , , , , , , , , , , , , , , , , , </b> | 0.652  | 0.433         | 65   | 2        |
| CBMSQS | MI-13   | B4     | 40    | 0        | 5     | -                  | 12           | 0           | 1                  | 2      | 7    | -                                             | 0.661  | 0.452         |      | 2        |
| CBMSOS | MI-15   | BI     | 34    | -        | 1     | 0                  | 14           | <del></del> | <i>L</i> -         | gund.  | 4    | 0                                             | 0.646  | 0.457         | 64   | 7        |
| CBMSOS | MI-15   | B2     | 35    | -        | -     | 0                  | 15           |             | 11                 | ₩      | S    | 0                                             | 0.701  | 0.466         | 63   | æ        |
| CBMSOS | MI-15   | B3     | 28    |          | rm1   | -                  | <del>,</del> | _           | 14                 | -      | 4    |                                               | 0.677  | 0.454         | 63   |          |
| CBMSOS | MI-15   | B4     | 22    | 0        |       | 0                  | 12           | 0           | 13                 | und    | ĸ    | 0                                             | 0.749  | 0.512         | 63   | ж        |
| CBMSOS | RS-12   | B1     | 73    | 7        | 0     | 73                 | 19           | 6           |                    | 0      | ∞    | 7                                             | 0.992  | 0.633         | 4    | ላ        |
| CBMSQS | RS-12   | B2     | 45    | -        | 0     | 7                  | 16           |             | 13                 | 0      | m    | •••••                                         | 1.011  | 999.0         | 63   | 5        |
| CBMSQS | RS-12   | B3     | 50    | 7        | 0     | 10                 | 25           | -           | 13                 | 0      | \$   | 7                                             | 1.137  | 0.688         | 65   | 7        |
| CBMSQS | RS-12   | B4     | 35    | 9        | -     | ,                  | 34           | 4           | 01                 |        | 10   | m                                             | 1.042  | 0.591         | 64   | <b>'</b> |
| CBMSQS | RS-13   | BI     | 333   | 88       | 0     | . 47               | 51           |             | 16                 | 0      | 18   | . 5                                           | 1.374  | 0.706         | 49   | 7        |

| MOAB      | 122    | 172    | 165    | 35     | 57     | 43     | 19     | 0      | 2      | 4      | 0             | 73     | 9        | 15     | 15     | 9        | 410    | 545    | 390    | 331    | 132    | 210    | 193    | 147    | 327    | 202    |                | 79     | 72       | 40     | 36         | 46     | 11     |
|-----------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|---------------|--------|----------|--------|--------|----------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|----------------|--------|----------|--------|------------|--------|--------|
| POAB      | , 199  | 247    | 88     | 518    | 296    | 507    | 724    | 0      | 108    | 115    | 24            | 87     | 99       | 55     | 116    | 192      | 648    | 624    | 393    | 323    | 362    | 619    | 530    | 477    | 1041   | 520    | 894            | 406    | 195      | 99     | 95         | 179    | 118    |
| TOTAX     | 59     | 73     | 46     | 91     | 82     | 84     | 89     | 3      | 31     | 30     | 14            | 21     | 45       | 43     | 51     | 57       | 19     | 21     | 21     | 14     | 22     | 23     | 7      | 21     | 33     | 23     | 27             | 23     | 42       | 30     | 29         | 33     | 38     |
| TOAB      | 512    | 594    | 435    | 705    | 446    | 706    | 861    | 3      | 263    | 175    | 51            | 148    | 80       | 109    | 161    | 229      | 1063   | 1175   | 790    | 959    | 501    | 895    | 725    | 629    | 1395   | 737    | 1024           | 493    | 542      | 147    | 200        | 314    | 218    |
| 2**       |        |        |        |        |        |        |        |        |        |        |               |        |          |        |        |          |        |        |        |        |        |        |        |        |        |        |                |        |          |        |            |        |        |
| % TOC     | 0.7    | 0.7    | 0.7    | 15.1   | 15.1   | 15.1   | 15.1   | 8.8    | 9.0    | 9.0    | 9.0           | 9.0    | 0.3      | 0.3    | 0.3    | 0.3      | 2.1    | 2.1    | 2.1    | 2.1    | 1.6    | 1.6    | 1.6    | 9.1    | 2.5    | 2.5    | 2.5            | 2.5    | 3.5      | 3.5    | 3.5        | 3.5    | 4.6    |
| % FINES   | 12.569 | 12.569 | 12.569 | 23.777 | 23.777 | 23.777 | 23.777 | 33,343 | 3.192  | 3.192  | 3.192         | 3.192  | 5.814    | 5.814  | 5.814  | 5.814    | 79.873 | 79.873 | 79.873 | 79.873 | 76.081 | 76.081 | 76.081 | 76.081 | 80.517 | 80.517 | 80.517         | 80.517 | 28.098   | 28.098 | 28.098     | 28.098 | 49.314 |
| Depth (m) | 5.7    | 5.7    | 5.7    | 9.4    | 9.4    | 9.4    | 9.4    | 8.0    | 6.6    | 6.6    | 6.6           | 6.6    | 20.7     | 20.7   | 20.7   | 20.7     | 12.9   | 12.9   | 12.9   | 12.9   | 12.3   | 12.3   | 12.3   | 12.3   | 11.4   | 11.4   | 11.4           | 11.4   | 2.3      | 2.3    | 2.3        | 2.3    | 4.1    |
| LonSec    | 54     | 54     | 54     | 43     | 43     | 43     | 43     | 12     | 0      | 6      | 6             | 6      | Ü        | 9      | 8      | ٣        | 44     | 44     | 44     | 44     | 53     | 53     | 53     | 53     | 7      | 7      | 7              | 7      | 43       | 43     | 43         | 43     | 45     |
| LonMin    | 27     | 27     | 27     | 28     | 28     | 28     | 28     | 30     | 30     | 30     | 30            | 30     | 30       | 30     | 30     | 30       | 24     | 24     | 24     | 24     | 24     | 24     | 24     | 24     | 25     | 25     | 25             | 25     | 25       | 25     | 25         | 25     | 25     |
| LonDeg    | 122    | 122    | 122    | 122    | 122    | 122    | 122    | 122    | 122    | 122    | 122           | 122    | 122      | 122    | 122    | 122      | 122    | 122    | 122    | 122    | 122    | 122    | 122    | 122    | 122    | 122    | 122            | 122    | 122      | 122    | 122        | 122    | 122    |
| LatSec    | 37     | 37     | 37     |        |        | yeeri  |        | 4      | Ŋ      | ę,     | Ś             | Ŋ      | œ        | 00     | œ      | <b>∞</b> | 59     | 59     | 59     | 59     | S      | \$     | w      | S      | 17     | 17     | 7              | 11     | 49       | 49     | 46         | 49     | 22     |
| LatMin    | 16     | 16     | 16     | 17     | 17     | 17     | 17     | 18     | 81     | 18     | <del>20</del> | 82     | <u>~</u> | 18     | 18     | 81       | 15     | 15     | 15     | 15     | 16     | 16     | 16     | 16     | 16     | 16     | 16             | 16     | 15       | 15     | 15         | 15     | 15     |
| LatDeg    | 4      | 47     | 47     | 47     | 47     | 47     | 47     | 47     | 47     | 47     | 47            | 47     | 47       | 47     | 47     | 47       | 47     | 47     | 47     | 47     | 47     | 47     | 47     | 47     | 47     | 47     | 47             | 47     | 41       | 47     | 47         | 47     | 47     |
| *         | ~      | 7      | 7      | 7      | 7      | 7      | 73     | 7      | 7      | 7      | 7             | 7      | ~        | 7      | ~      | 2        | 7      | 7      | 7      | 7      | 7      | 7      | 7      | 7      | 7      | 7      | 7              | 7      | 7        | 7      | 7          | 7      | 7      |
| C         | MO     | MO     | MO     | MO     | MO     | MO     | M<br>M | MO     | MO     | MO     | MO            | MO     | MO       | MO     | MO     | MO       | MO     | MO     | MO     | MO     | MO     | MO     | MO     | MO     | MO     | MO     | W <sub>0</sub> | MO     | MO       | MO     | <b>M</b> 0 | WO     | MO     |
| SAMPLE    | B2     | B3     | B4     | BI     | B2     | B3     | B4     | BI     | BI     | BZ     | B3            | B4     | 181      | B2     | B3     | B4       | BI     | B2     | B3     | B4     | B1     | B2     | B3     | B4     | 18     | B2     | B3             | B4     | <b>B</b> | B2     | B3         | B4     | BI     |
| STATION   | RS-13  | RS-13  | RS-13  | RS-14  | RS-14  | RS-14  | RS-14  | RS-18  | RS-19  | RS-19  | RS-19         | RS-19  | RS-20    | RS-20  | RS-20  | RS-20    | SI-11  | SI-11  | SI-11  | SI-11  | SI-12  | SI-12  | SI-12  | SI-12  | SI-15  | SI-15  | SI-15          | SI-15  | SP-11    | SP-11  | SP-11      | SP-11  | SP-12  |
| SURVEY    | CBMSQS | CBMSOS | CBMSQS | CBMSQS | CBMSQS        | CBMSQS | CBMSQS   | CBMSQS | CBMSQS | CBMSQS   | CBMSOS | CBMSQS | CBMSQS | CBMSQS | CBMSQS | CBMSOS | CBMSQS | CBMSQS | CBMSQS | CBMSQS | CBMSQS         | CBMSQS | CBMSQS   | CBMSQS | CBMSQS     | CBMSQS | CBMSQS |

| <b>=</b>           | 14     | 82     | 10     | 20     | 22          | 22     | 13     | 8      | . <b>५</b> ೧ | 7      | 5      | 2      | 25       | 18     | 18     | 61     | 7      | ю        | ٣                                       | 7      | 7         | 7      | 7      | 7           | 2        | 2      | _            | 2      | 9      | 10     | œ      | 7        | 13     |
|--------------------|--------|--------|--------|--------|-------------|--------|--------|--------|--------------|--------|--------|--------|----------|--------|--------|--------|--------|----------|-----------------------------------------|--------|-----------|--------|--------|-------------|----------|--------|--------------|--------|--------|--------|--------|----------|--------|
| SDI                |        |        |        |        |             |        |        |        |              |        |        |        |          |        |        |        |        |          |                                         |        |           |        |        |             |          |        |              |        |        |        |        |          |        |
| E                  | 29     | 65     | 64     | 29     | 19          | 62     | 29     | 83     | 59           | 80     | 35     | 65     | 72       | 75     | 83     | 77     | 63     | 79       | 63                                      | 63     | 99        | 65     | 99     | 99          | 99       | 99     | 99           | 65     | 64     | 59     | 62     | 63       | 19     |
| Ē-,                | 0.804  | 0.816  | 0.71   | 0.774  | 0.843       | 0.82   | 0.738  | -      | 0.628        | 0.781  | 0.827  | 0.743  | 0.93     | 0.906  | 0.836  | 0.825  | 0.451  | 0.491    | 0.473                                   | 0.519  | 0.471     | 0.387  | 0.446  | 0.436       | 0.292    | 0.363  | 0.25         | 0.375  | 0.639  | 0.815  | 0.771  | 0.755    | 0.855  |
| H                  | 1.423  | 1.521  | 1.181  | 1.515  | 1.613       | 1.577  | 1.353  | 0.477  | 0.937        | 1.153  | 0.948  | 0.982  | 1.538    | 1.479  | 1.427  | 1,449  | 0.577  | 0.649    | 0.625                                   | 0.595  | 0.633     | 0.526  | 0.511  | 0.577       | 0.444    | 0.495  | 0.358        | 0.511  | 1.037  | 1.203  | 1.127  | 1.147    | 1.351  |
| MISCTX             | ε,     | 4      | ****   | ю      | ю           | 3      | 3      | 0      | 73           | 64     | *****  | 73     | Э        | -      | т      | 3      | 0      | 0        | ,                                       | 0      | <b>,</b>  | 0      | 0      | 0           | 0        | 0      | <del>,</del> | 0      | ,,,,,  | 0      | *****  | 0        | 0      |
| CRTX M             | 13     | 16     | ∞      | 91     | 91          | 17     | 14     | 7      | 6            | 9      | 4      | 9      | <b>∞</b> | 13     | 6      | 6      | 7      | 64       | ю                                       | 2      | m         | 4      | 2      | т           | 4        | 4      | ю            | ы      | 4      | 4      | 9      | S        | 44     |
|                    | 0      |        | 0      | _      | 3           | 0      | 7      |        |              | 0      | . 0    | 0      | 7        |        | ***    |        | 0      |          | 0                                       | 0      | 0         | 0      | 0      | <del></del> |          | 0      | 0            | 0      | 0      | 0      | 0      | -        | 7      |
| AMPTX MOTAX ECHTAX | 13     | 14     | 14     | 6      | 10          | 9      | 5      | 0      | 64           | 4      | 0      | 2      | S        | 5      | 7      | 4      | 9      | 10       | 9                                       | 9      | <b>\$</b> | 6      | 7      | 9           | <b>=</b> |        | 1            | 9      | ∞      | 9      | 4      | 7        | 10     |
| MPTX               | ∞      | 6      | 9      | ٠.     | 6           | ∞.     | 7      | 0      | 4            | 7      | 7      | 'n     | 5        | 10     | . 4    | 7      | ****   | 0        | 0                                       | 0      | 0         | 0      | 0      | 7           |          | -      |              | ****   | 7      | 2      | 3      | <b>,</b> | -      |
| POTAX A            | 30     | 37     | 22     | 61     | 20          | 57     | 43     | 0      | 91           | 17     | 00     | Ξ      | 27       | 23     | 30     | 40     |        | <b>∞</b> | ======================================= | 9      | 10        | 10     | S      | Ξ           | 17       | 17     | 12           | 14     | 28     | 20     | 17     | 61       | 22     |
|                    | 7.     | 150    | -      | 18     | 60          | 23     | 41     | 0      | 15           | 61     | 7      | 10     | 4        |        | 9      | \$     | 0      | 0        |                                         | 0      | -         | 0      | 0      | 0           | 0        | 0      | 71           | 0      | 73     | 0      | 11     | 0        | 0      |
| ECHAB MISCAB       | 0      | -      | 0      | _      | 3           | 0      | 2      | port   | guni         | 0      | 0      | 0      | 73       | 3      |        | -      | 0      | 7        | 0                                       | 0      | 0         | 0      | 0      | ***         |          | 0      | 0            | 0      | 0      | 0      | 0.     |          | 7      |
| AMPAB              | 64     | 25     | 23     | 10     | <del></del> | 25     | 56     | 0      | 10           | 4      | 7      | 13     | 9        | 16     | ∞      | 15     |        | 0        | 0                                       | 0      | 0         | 0      | 0      | 2           | •        | ****   |              | -      | 7      | ∞      | 'n     | \$       | -      |
| CRAB               | 184    | 158    | 180    | 130    | 82          | 119    | 52     | 7      | 127          | 49     | 16     | 49     | 12       | 35     | 23     | 25     | 5      | 4        | 9                                       | 5      | 9         | 9      | 2      | 4           | . 26     | 15     | 17           | ∞      | 237    | 41     | 65     | 79       | 27     |
| SAMPLE             | B2     | B3     | B4     | BI     | B2          | B3     | B4     | BI     | BI           | B2     | B3     | B4     | В        | B2     | B3     | B4     | BI     | B2       | B3                                      | B4     | BI        | B2     | B3     | B4          | B1       | B2     | B3           | B4     | BI     | B2     | B3     | B4       | BI     |
| STATION            | RS-13  | RS-13  | RS-13  | RS-14  | RS-14       | RS-14  | RS-14  | RS-18  | RS-19        | RS-19  | RS-19  | RS-19  | RS-20    | RS-20  | RS-20  | RS-20  | SI-11  | SI-11    | SI-11                                   | SI-11  | SI-12     | SI-12  | SI-12  | SI-12       | SI-15    | SI-15  | SI-15        | SI-15  | SP-11  | SP-11  | SP-11  | SP-11    | SP-12  |
| SURVEY             | CBMSQS | CBMSOS | CBMSQS | CBMSQS | CBMSQS      | CBMSQS | CBMSQS | CBMSQS | CBMSQS       | CBMSQS | CBMSQS | CBMSQS | CBMSOS   | CBMSQS | CBMSOS | CBMSQS | CBMSQS | CBMSQS   | CBMSQS                                  | CBMSQS | CBMSQS    | CBMSQS | CBMSQS | CBMSQS      | CBMSQS   | CBMSQS | CBMSQS       | CBMSQS | CBMSQS | CBMSQS | CBMSQS | CBMSQS   | CBMSQS |

| МОАВ      | 106    | 63     | 63     | 0      | 0           | 0      | 0      | m      | 2      | 4      | т      | 105    | 93     | 06         | 98     | ` | 9        | 26       | 18       | 27       | 29        | 32       | 20       | 91       | 39       | 70           | 15       | 6          | Φ        | 21       | 15       | 01       | 2          |
|-----------|--------|--------|--------|--------|-------------|--------|--------|--------|--------|--------|--------|--------|--------|------------|--------|---|----------|----------|----------|----------|-----------|----------|----------|----------|----------|--------------|----------|------------|----------|----------|----------|----------|------------|
| POAB      | 230    | 293    | 93     | S      | استو        | -      |        | 287    | 257    | 245    | 213    | 129    | 69     | 83         | 131    |   | 2        | Ξ        | 6        | 13       | δ,        | 16       | 9        | 6        | 7        | <b>∞</b>     | . 10     | =          | . 13     | 13       | 18       | 29       | ì          |
| TOTAX     | 46     | 49     | 37     | 3      | 4           | 2      | 5      | 13     | Ξ      | 10     | Π      | 28     | 32     | 27         | 29     |   | 81       | 22       | 18       | 24       | 17        | 31       | 17       | 20       | 23       | <del>2</del> | 22       | 23         | 18       | 20       | 24       | 24       | i          |
| TOAB      | 377    | 399    | 167    | 5      | <b>*3</b> * | ∞      | 6      | 1166   | 321    | 346    | 534    | 270    | 186    | 186        | 226    | ; | 39       | 46       | 31       | 49       | 45        | 68       | 31       | 32       | 57       | 39           | 40       | 36         | 32       | 42       | 43       | Ç        | 2          |
| 5**       |        |        |        |        |             |        |        |        |        |        | •      |        |        |            |        |   |          |          |          |          |           |          |          |          |          |              |          |            |          |          |          |          |            |
| % TOC     | 4.6    | 4.6    | 4.6    | 16     | 16          | 16     | 16     | . 2.1  | 2.1    | 2.1    | 2.1    | 1.5    | 1.5    | 1.5        | 1.5    | • | <b>∞</b> | 1.8      | 1.8      | 1.8      | 1.8       | 1.8      | 1.8      | 1.8      | 1.8      | 1.8          | 2.1      | 2.1        | 2.1      | 2.1      | 2.1      | 6        | ı          |
| % FINES   | 49.314 | 49.314 | 49.314 | 9.99   | 9.99        | 9'99   | 9'99   | 25.901 | 25.901 | 25,901 | 25.901 | 54.851 | 54 851 | 54.851     | 54.851 | ; | 6        | 16       | 16       | 16       | 16        | 94.7     | 94.7     | 94.7     | 94.7     | 94.7         | 1.96     | 96.1.      | 96.1     | 96.1     | 96.1     | ô        | `          |
| Depth (m) | 4.     | 4.1    | 4.1    | 4.3    | 4.3         | 4.3    | 4.3    | 4.8    | 4.8    | 4.8    | 4.8    | 15.4   | 15.4   | 15.4       | 15.4   |   | 13/      | 137      | 137      | 137      | 137       | 139      | 139      | 139      | 139      | 139          | 144      | 144        | 144      | 144      | 144      | -142     |            |
| LonSec D  | 45     | 45     | 45     | 43     | 43          | 43     | 43     | 47     | 47     | 47     | 47     | 53     | 53     | 53         | 53     | ; | 21.3     | 27.3     | . 27.3   | 27.3     | 27.3      | 43.8     | 43.8     | 43.8     | 43.8     | 43.8         | 2.9      | 2.9        | 2.9      | 2.9      | 2.9      | 2.0      | ì          |
| LonMin    | 25.    | 25     | 25     | 25     | 25          | 25     | 25     | 25     | 25     | 25     | 25     | 25     | 25     | 25         | 25     | ; |          | 17       | 11       | 11       | 11        | 11       | 17       | 11       | 11       | 7            | 18       | <b>8</b> 2 | 82       | 18       | 80       | <u>~</u> | 2          |
| LonDeg    | 122    | 122    | 122    | 122    | 122         | 122    | 122    | 122    | 122    | 122    | 122    | 122    | 122    | 122        | 122    |   | 122      | 122      | 122      | 122      | 122       | 122      | 122      | 122      | 122      | 122          | 122      | 122        | 123      | 122      | 122      | 3        | 777        |
| LatSec    | 52     | 52     | 52     | Ś      | Ś           | ď      | £0.    | 'n     | 9      | 9      | 9      | 9      | 9      | 9          | 9      | , | , r      | m        | .m       | ťη       | က         | 7.1      | 7.1      | 7.1      | 7.1      | 7.1          | 11.4     | 4.         | 11.4     | 11.4     | 11.4     | 13.4     | ţ          |
| LatMin    | 15     | 15     | 15     | 16     | 16          | 16     | 16     | 16     | 16     | 16     | 16     | 16     | 16     | 16         | 16     | ; | 36       | 29       | 59       | 59       | 59        | 59       | 59       | 59       | 59       | 59           | 59       | 59         | 59       | 59       | 59       | ç        | ò          |
| LatDeg    | 47     | 47     | 47     | 47     | 47          | 47     | 47     | 47     | 47     | 47     | 47     | 47     | 47     | 47         | 47     | ! | 41       | 47       | 47       | 47       | 47        | 47       | 47       | 47       | 47       | 47           | 47       | 47         | 47       | 47       | 47       | 47       | ř          |
| *         | 7      | 7      | 7      | 7      | 7           | 7      | 7      | 7      | 7      | 7      | 7      | 7      | 2      | 7          | 7      | • | 7        | 7        | 7        | 7        | 7         | 7        | 7        | 7        | 7        | 7            | 7        | 7          | 7        | 7        | 8        | ,        | 4          |
| Ç         | MO     | MO     | MO     | MO     | - QQ        | MO         | MO     |   |          |          |          |          |           |          |          |          |          |              |          |            |          |          |          |          |            |
| SAMPLE    | B2     | B3     | B4     | BI     | <b>B</b> 2  | B3     | B4     | BI     | B2     | B3     | B4     | BI     | B2     | <b>B</b> 3 | B4     |   |          | 7        | ю        | 4        | 5         | yant     | 7        | ę        | 4        | ν.           | ,<br>,   | 7          | ٣        | 4        | ۍ        | ÷        | <b>~</b> • |
| STATION   | SP-12  | SP-12  | SP-12  | SP-14  | SP-14       | SP-14  | SP-14  | SP-15  | SP-15  | SP-15  | SP-15  | SP-16  | SP-16  | SP-16      | SP-16  |   | PG_THIXX | PG_THIXX | PG_T11XX | PG_T11XX | PG_TI11XX | PG_T13XX | PG_T13XX | PG_T13XX | PG_T13XX | PG_T13XX     | PG_T15XX | PG_T15XX   | PG_T15XX | PG_T15XX | PG_T15XX | PGT15    |            |
| SURVEY    | CBMSOS | CBMSQS | CBMSQS | CBMSQS | CBMSQS      | CBMSQS | CBMSQS | CBMSQS | CBMSQS | CBMSQS | CBMSOS | CBMSQS | CBMSQS | CBMSQS     | CBMSQS |   | PSDDAM90 | PSDDAM90 | PSDDAM90 | PSDDAM90 | PSDDAM90  | PSDDAM90 | PSDDAM90 | PSDDAM90 | PSDDAM90 | PSDDAM90     | PSDDAM90 | PSDDAM90   | PSDDAM90 | PSDDAM90 | PSDDAM90 | PSDDA1   | TAGGE!     |

| SDI                | 12     | 13     | 10     | 7      | 3      | _      | 3      | 7      | 2      | 2       | 2       | *       | 6      | 7      | 9      |             | ` :      |                  | 17        | 1        | 14       | 10       | 12       | · 6        | 9/       | 12       | 14          | 10       | 10       | 14       |           |   |
|--------------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|---------|---------|---------|--------|--------|--------|-------------|----------|------------------|-----------|----------|----------|----------|----------|------------|----------|----------|-------------|----------|----------|----------|-----------|---|
| E                  | 19     | 9      | 53     | 67     | 29     | 19     | . 67   | ∞      | 15     | <u></u> | 10      | 46      | 14     | 36     | 38     | 72          | ţ (      | 3 5              | 65        | 80       | 74       | 67       | 72       | 70         | . 72     | 71       | . 69        | 98       | 82       | 69       | 68        | ! |
| ħ                  | 0.824  | 0.782  | 0.81   | 96.0   |        | 0.544  | 0.946  | 0.301  | 0.455  | 0.476   | 0.428   | 0.805   | 0.758  | 0.755  | 0.733  | 0.881       | 0.00     | 0.000            | 0.852     | 0.772    | 0.862    | 0.936    | 0.911    | 0.758      | 0.909    | 0.929    | 0.935       | 0.921    | 0.897    | 0.929    | 0.939     |   |
| Ħ                  | 1.369  | 1.322  | 1.27   | 0.458  | 0.602  | 0.164  | 0.661  | 0.336  | 0.474  | 0.476   | 0.446   | 1.165   | 1.141  | 1.081  | 1.072  | 1 106       | 1 1 6 5  | 1157             | 1.176     | 0.95     | 1.285    | 1.151    | 1.185    | 1.032      | 1.141    | 1.247    | 1.274       | 1.156    | 1.167    | 1.282    | 1.296     |   |
| MISCTX             | gand   | -      | -      | 0      | 0      | 0      | 0      | ,      |        | 0       | 1       | -       | ****   |        | , more |             | • ***    | •                | • "       |          | 7        | 0        |          |            | <b></b>  | -        | 7           |          |          |          |           |   |
| CRTX               | \$     | . 7    | 5      | 0      | 7      | 0      | 3      | 4      | ,      | 0       | ****    | ю       | 2      | 9      | т      |             |          |                  | , 9       | т        | ∞        | 7        | 2        | 9          | 4        | 7        | 4           | 7        | vs.      | 7        | 9         |   |
| HTAX               | 0      | -      | 0      | 0      | 0      | 0      | 0      | 0      | 0      |         | 0       | 0       | 0      | 0      | 0      |             |          | * <del>-</del>   | . 0       | yand     |          | <b></b>  |          | 2          | ****     | *****    | <del></del> |          | -        | 0        | <b></b> - |   |
| AMPTX MOTAX ECHTAX | 13     | 80     | 10     | 0      | 0      | 0      | 0      |        | 7      | 33      | <u></u> | ∞       | Ξ      | 7      | ∞      | <b>\</b>    |          |                  | . 6       | 7        | 6        | 6        | ∞        | 7          | 9        | 9        | 9           | 9        | 9        | 7        | 4         |   |
| AMPTX              |        | m      | ĸ      | 0      |        | 0      | 0      |        | 0      | 0       | 0       | garest. | 0      |        |        |             |          | • •              | 4         | -        | m        | 0        | i        | 4          | ťή       | 8        | 3           | -        | 2        | \$       | 4         |   |
| POTAX              | 25     | 31     | 20     | m      | 1      | -      | -      | 9      | 9      | £.      | 7       | 16      | 18     | 12     | 11     | 7           | • •      | , <del>o</del> o | ∞         | \$       | 11       | 5        | 7        | 7          | 9        |          | 6           | œ        | 7        | 6        | 12        |   |
| MISCAB             | 3      |        | ,      | 0      | 0      | 0      | 0      |        | -      | 0       | 7       | en.     |        | -      |        |             | -        | · —              | -         |          | ť        | Ó        | m        |            | -        |          | 7           |          |          | 7        |           |   |
| ECHAB M            | 0      | www    | 0      | 0      | 0      | 0      | 0      | 0      | 0      | ī       | 0       | 0       | 0      | 0      | 0      | 2           |          | 2                |           |          | ****     |          | 7        | 7          | 2        | Ammé     | <del></del> |          | -        | 0        | -         |   |
| AMPAB              | 2      | ==     | 3      | 0      | 1      | 0      | 0      |        | 0      | 0       | 0       | 7       | 0      |        | -      |             |          |                  | 4         | 2        | 7        | 0        | -        | 4          | 7        | 7        | 9           | 7        | ۳)       | 9        | 32        |   |
| CRAB               | 36     | 31     | 6      | 0      | 7      | 0      | \$     | 4      | -      | 0       | -       | 33      | 23     |        | ∞      | 4           | 7        |                  | <b>00</b> | Ś        | 16       | 4        | 2        | <b>0</b> 0 | ∞        | 12       | 12          | 00       | 9        | ∞        | σ         |   |
| SAMPLE             | B2     | B3     | B4     | 18     | B2     | B3     | B4     | B      | B2     | B3      | B4      | Bi      | B2 ·   | B3     | B4     | <del></del> | 2        | m                | 4         | \$       |          | . 2      | m        | 4          | 8        |          | 2           | 33       | 4        | ۶.       |           |   |
| STATION            | SP-12  | SP-12  | SP-12  | SP-14  | SP-14  | SP-14  | SP-14  | SP-15  | SP-15  | SP-15   | SP-15   | SP-16   | SP-16  | SP-16  | SP-16  | PG_T11XX    | PG THIXX | PG THIXX         | PG_T11XX  | PG_TIIXX | PG_T13XX | PG_T13XX | PG_T13XX | PG_T13XX   | PG_T13XX | PG_T15XX | PG_T15XX    | PG_T15XX | PG_T15XX | PG_T15XX | PGT15     |   |
| SURVEY             | CBMSQS | CBMSQS | CBMSOS | CBMSOS | CBMSOS | CBMSOS | CBMSQS | CBMSOS | CBMSOS | CBMSOS  | CBMSQS  | CBMSOS  | CBMSQS | CBMSQS | CBMSQS | PSDDAM90    | PSDDAM90 | PSDDAM90         | PSDDAM90  | PSDDAM90 | PSDDAM90 | PSDDAM90 | PSDDAM90 | PSDDAM90   | PSDDAM90 | PSDDAM90 | PSDDAM90    | PSDDAM90 | PSDDAM90 | PSDDAM90 | PSDDA1    |   |

| MOAB      | 12     | 13     | 22     | 19         | 33     | 38     | 19     | 28     | 22           | 54     | 28     | 40     | 35     | 19     | =      | 11     | 10     | 16     | 13     | 115    | 44     | 80     | 107    | 151    | 111    | 74         | 116    | 114    | 96     | 122    | 88     | 190    | 112    |
|-----------|--------|--------|--------|------------|--------|--------|--------|--------|--------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|------------|--------|--------|--------|--------|--------|--------|--------|
| POAB      | 38     | 22     | 29     | 33         | 22     | 56     | 25     | 25     | 34           | 37     | 24     | 33     | 39     | 33     | . 23   | 29     | 29     | 33     | 28     | 53     | 49     |        | 44     | 47     | 30     | ξ.)<br>Em. | 40     | . 34   | 38     | 20     | 28     | 53     | 58     |
| TOTAX     | 27     | 22     | 28     | 29         | 27     | 28     | 30     | 23     | 26           | 35     | 30     | 31     | 32     | 24     | 21     | 31     | 25     | 35     | 24     | 40     | 30     | . 33   | 40     | 39     | 31     | 34         | 37     | 32     | 40     | 23     | 32     | 32     | 38     |
| TOAB .    | 63     | 44     | 69     | <i>L</i> 9 | 75     | 80     | 72     | 72     | 63           | 116    | 72     | 97     | 86     | 144    | 45     | 63     | 59     | 80     | 58     | 187    | 104    | 143    | 187    | 220    | 229    | 206        | 220    | 222    | 218    | 177    | 154    | 250    | 178    |
| **        |        |        |        |            |        |        |        |        |              |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |            |        |        |        | -      |        |        |        |
| % TOC     | 2      | 2      | 2      | 2          | 7      | 2      | 2      | 7      | 2            | 2      | 2      | 2      | 2      | 2      | 1.7    | 1.7    | 1.7    | 1.7    | 1.7    | 1.5    | 1.5    | 1.5    | 1.5    | 5.     | 1.7    | 1.7        | 1.7    | 1.7    | 1.7    | 1.5    | 1.5    | 1.5    | 1.5    |
| % FINES   | 66     | 66     | 66     | 66         | 66     | 66     | 66     | 66     | 66           | 86     | 86     | 86     | 86     | 86     | 8,6    | 86     | 86     | 86     | 86     | 98     | 98     | 98     | 98     | 98     | 85     | 85         | 85     | 85     | 85     | 83     | 83     | 83     | 83     |
| Depth (m) | -142   | -142   | -142   | -142       | -139   | -139   | -139   | -139   | -139         | -139   | -139   | -139   | -139   | -139   | -163   | -163   | -163   | -163   | -163   | -132   | -132   | -132   | -132   | -132   | -125   | -125       | -125   | -125   | -125   | -43    | -43    | -43    | -43    |
| LonSec    | 2.9    | 2.9    | 2.9    | 2.9        | 43.8   | 43.8   | 43.8   | 43.8   | 43.8         | 27.3   | 27.3   | 27.3   | 27.3   | 27.3   | 0      | 0      | 0      | 0      | 0      | 17.6   | 17.6   | 17.6   | 17.6   | 17.6   | 50.05  | 50.05      | 50.05  | 50.05  | 50.02  | 41.17  | 41.17  | 41.17  | 41.17  |
| LonMin    | 18     | 18     | 18     | <u>**</u>  | 11     | 17     | 17     | 11     | 17           |        | 17     | 17     | 17     | 17     | 20     | 20     | 20     | 20     | 20     | 16     | 16     | 16     | 16     | 16     | 23     | 23         | 23     | 23     | 23     | 21     | 21     | 21     | 21     |
| LonDeg    | 122    | 122    | 122    | 122        | 122    | 122    | 122    | 122    | 122          | 122    | 122    | 122    | 122    | 122    | 122    | 122    | . 122  | 122    | 122    | 122    | 122    | 122    | 122    | 122    | 122    | 122        | 122    | 122    | 122    | 122    | 122    | 122    | 122    |
| LatSec    | 11.4   | 11.4   | 11.4   | 11.4       | 7.1    | 7.1    | 7.1    | 7.1    | 7.1          | ж      | 3      | m      | Ю      | e      | 30     | 30     | 30     | 30     | 30     | 19.8   | 19.8   | 19.8   | 19.8   | 19.8   | 7.06   | 7.06       | 7.06   | 7.06   | 7.06   | 46.12  | 46.12  | 46.12  | 46.12  |
| LatMin    | 59     | 59     | 59     | 59         | 59     | 89     | 59     | 59     | 59           | 59     | 59     | 59     | 59     | 59     | 58     | . 58   | 58     | 58     | 58     | 58     | 58     | 58     | 58     | 58     | 36     | 36         | 36     | 36     | 36     | 36     | 36     | 36     | 36     |
| LatDeg    | 47     | 47     | 47     | 47         | 47     | 47     | 47     | 47     | 47           | 47     | 47     | 47     | 47     | 47     | 47     | 47     | 47     | 47     | 47     | 47     | 47     | 47     | 47     | 47     | 47     | 47         | 47     | 47     | 47     | 47     | 47     | 47     | 47     |
| *>        | 7      | 7      | 2      | 7          | 7      | 7      | 7      | 7      | 7            | 7      | 7      | 7      | 7      | 7      | 7      | 7      | 7      | 7      | 7      | 7      | 7      | 73     | 7      | 7      | 7      | 7          | 7      | 7      | 7      | 7      | 2      | 73     | 7      |
| C         |        |        |        |            |        |        |        |        |              |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |            |        |        |        |        |        |        |        |
| SAMPLE    | ч      | т      | 4      | ν          | سب     | 7      | ю      | 4      | <b>v</b> n . |        | 7      | m      | 4      | ς,     |        | 7      | m      | 4      | ν,     |        | 5      | m      | 4      | S      |        | . 2        | ε      | 4      | \$     | 7      | ъ      | 4      | \$     |
| STATION   | PGT15  | PGT15  | PGT15  | PGT15      | PGT13  | PGT13  | PGT13  | PGT13  | PGT13        | PGT11  | PGT11  | PGTII  | PGT11  | PGT11  | PGB02  | PGB02  | PGB02  | PGB02  | PGB02  | PGB01  | PGB01  | PGB01  | PGB01  | PGB01  | EBB04  | EBB04      | EBB04  | EBB04  | EBB04  | EBB03  | EBB03  | EBB03  | EBB03  |
| SURVEY    | PSDDA1 | PSDDA1 | PSDDA1 | PSDDAI     | PSDDA1 | PSDDA1 | PSDDAI | PSDDAI | PSDDA1       | PSDDA1 | PSDDA1 | PSDDA1 | PSDDA1 | PSDDA1 | PSDDAI | PSDDA1 | PSDDA1 | PSDDA1 | PSDDAI | PSDDA1 | PSDDAI | PSDDA1 | PSDDAI | PSDDA1 | PSDDAI | PSDDA1     | PSDDAI | PSDDA1 | PSDDAI | PSDDAI | PSDDA1 | PSDDA1 | PSDDAI |

| SURVEY | STATION | SAMPLE | CRAB | AMPAB | ECHAB                                   | ECHAB MISCAB | POTAX    | AMPTX | AMPTX MOTAX ECHTAX |         | CRTX N    | MISCTX       | Ē     | <b>F</b> -, | E        | SDI |
|--------|---------|--------|------|-------|-----------------------------------------|--------------|----------|-------|--------------------|---------|-----------|--------------|-------|-------------|----------|-----|
| PSDDA1 | PGT15   | '0     | 9    | 44    | 7                                       | 78           | 15       | 73    | 4                  | 7       | m         | 40           | 1.333 | 0.931       | 96       |     |
| PSDDA1 | PGT15   | ю      | 7    | 2     | <b></b>                                 | 29           | 11       | -     | 7.                 |         | 2         | 4            | 1.244 | 0.927       | 85       |     |
| PSDDA1 | PGT15   | 4      | 13   | 4     | 4                                       | 35           | 17       | 2     | 47                 |         | S         | 9            | 1.234 | 0.853       | 83       |     |
| PSDDA1 | PGT15   | S      | ∞    | 7     |                                         | 4            | 13       | . 2   | 9                  | ******* | , 50      | 7            | 1.336 | 0.913       | 80       |     |
| PSDDA1 | PGT13   |        | 16   | 9     | 0                                       | 6            | 10       | 4     | 7                  | 0       | 6         | 73           | 1.268 | 0.886       | 73       |     |
| PSDDAI | PGT13   | 7      | 7    | S     | 4                                       | 2            | ,        | . 4   | 6                  | _       | 5         | -            | 1.233 | 0.852       | 75       |     |
| PSDDAI | PGT13   | 33     | 26   | 22    | 2                                       | m            | 13       | 7     | ∞                  | -       | <b>00</b> | 73           | 1.367 | 0.925       | 80<br>80 |     |
| PSDDA1 | PGT13   | 4      | 14   | ∞     | 2                                       | 2            | 10       | 2     | 7                  | I       | m         | brest        | 1.214 | 0.892       | 98       |     |
| PSDDA1 | PGT13   | S      | 9    |       |                                         | 35           | 1.5      | ***** | 9                  | 1       | 4         | ,            | 1.263 | 0.892       | 82       |     |
| PSDDA1 | PGT11   | _      | 25   | 13    | 0                                       | 3            | 19       | ţ,    | 7                  | 0       | 6         | <b>5</b> 004 | 1.322 | 0.856       | 78       |     |
| PSDDA1 | PGTII   | 2      | 18   | ∞     | -                                       | 4            | 12       | ĸ     | ∞                  |         | ∞         |              | 1.337 | 0.905       | 8        |     |
| PSDDAI | PGT11   | æ      | 23   | 4     | 0                                       | 6            | 15       | ιί    | 9.                 | 0       | 9         | <del>,</del> | 1.281 | 0.859       | 78       |     |
| PSDDA1 | PGT11   |        | 20   | ∞     | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | 9            | 19       | 7     | 9                  | pos     | 4         |              | 1.325 | 0.881       | ∞        |     |
| PSDDA1 | PGT11   | \$     | 06   | \$    | gand                                    |              | 12       | t)    | 5                  | ****    | s         |              | 0.82  | 0.594       | 06       |     |
| PSDDA1 | PGB02   | 1      | 6    | s)    |                                         | 4            | 11       | 2     | 4                  |         | 4         | 7            | 1.198 | 906'0       | 88       |     |
| PSDDAI | PGB02   | 2      | 20   | 6     | 7                                       | 5            | 12       | Ŋ     | ∞                  |         | 6         | m            | 1.383 | 0.927       | 78       |     |
| PSDDA1 | PGB02   | 6      | 16   | 10    | 33                                      | 5            | 10       | 3     | 7                  | 7       | 5         |              | 1.224 | 0.876       | 85       |     |
| PSDDAI | PGB02   | 4      | 27   | 17    | 7                                       | 2            | 15       | 9     | ∞                  | 1       | 6         | 7            | 1.383 | 0.896       | 78       |     |
| PSDDA1 | PGB02   | \$     | 14   | 10    |                                         | 0            | 00       | £.    | œ                  | -       | 7         | 0            | 1.15  | 0.833       | 87       |     |
| PSDDA1 | PGB01   | 1      | 15   | 9     | 2                                       | ,            | 17       | 4     | 6                  | <b></b> | 6         | ,            | 1.124 | 0.701       | 69       |     |
| PSDDA1 | PGB01   | 7      | 6    | 7     | 0                                       | 5            | 20       | 9     | 4                  | 0       | 4         | 7            | 1.113 | 0.754       | 92       |     |
| PSDDAI | PGB01   | 8      | 10   | \$    | 2                                       | 0            | 15       | 5     | 7                  | 7       | 6         | 0            | 0.909 | 0.599       | 74       |     |
| PSDDA1 | PGB01   | 4      | 32   | 7     | 4                                       | 0            | 12       | 7     | 10                 | 33      | 15        | 0            | 1.047 | 0.654       | 70       |     |
| PSDDA1 | PGB01   | S      | 13   | 9     | 7                                       | 7            | 16       | 5     | 10                 | 7       | ∞         | -            | 98.0  | 0.541       | 69 .     |     |
| PSDDA1 | EBB04   | Ι      | 87   | 15    | 0                                       | 5            | 14       | 5     | 5                  | 0       |           |              | 0.974 | 0.653       | 99       |     |
| PSDDA1 | EBB04   | 7      | 100  | 36    | 0                                       | 9            | 13       | 6     | 5                  | 0       | 15        | proof        | 1.12  | 0.731       | 70       |     |
| PSDDA1 | EBB04   | en     | 62   | 20    |                                         | 7            | 15       | 7     | 9                  |         | 14        |              | 1.035 | 0.66        | 19       |     |
| PSDDA1 | EBB04   | 4      | 72   | 16    | 0                                       | 33           | 16       | 9     | <b>.</b>           | 0       | 6.        | -            | 0.944 | 0.627       | 19       |     |
| PSDDAI | EBB04   | \$     | 87   | 16    | 7                                       | 3            | 21       | 9     | 9                  | 2       | 10        | æ            | 1.074 | 0.671       | 89       |     |
| PSDDA1 | EBB03   | 7      | 5    | 4     | 0                                       | 4            | <u>~</u> | -     |                    | 0       | 7         |              | 0.672 | 0.493       | 70       |     |
| PSDDA1 | EBB03   | ĸ      | 7    | Š     | 0                                       | 5            | 19       | 4     | 9                  | 0       | ę         | 7            | 0.953 | 0.633       | 71       |     |
| PSDDA1 | EBB03   | 4      | \$   | 7     | 0                                       | 9            | 17       | 7     | 6                  | 0       | 4         | 7            | 0.73  | 0.485       | 89       |     |
| PSDDA1 | EBB03   | s.     | 7    | 7     | 0                                       | 9            | 25       | 2     | 9                  | 0       | 9         | 6.0          | 0.881 | 0.558       | 70       |     |

| MOAB      | 79     | 36     | 9      | 91     | 74     | 73     | 84     | 198      | 157    | 179    | 207    | 130    | 124    | 184      | 173    | 182    | 215    | 166    | 244    | 198    | 169    | 192    | 195      | 138    | 184    | 2013 33      | ) t      | Ć.             | 235        | 204                      | 203         | 254                        | <u>&amp;</u>         |
|-----------|--------|--------|--------|--------|--------|--------|--------|----------|--------|--------|--------|--------|--------|----------|--------|--------|--------|--------|--------|--------|--------|--------|----------|--------|--------|--------------|----------|----------------|------------|--------------------------|-------------|----------------------------|----------------------|
| POAB      | 89     | 50     | 62     | . 72   | 83     | 198    | 210    | 391      | 296    | 215    | 09     | 09     | 51     | 71       | 45     | 23     | 33     | 33     | 33     | 25     | 4      | 51     | . 57     | 29     | 42     | 11 11        |          | 33/            | 327        | 38                       | 255         | 59                         | 151                  |
| TOTAX     | 43     | 34     | 37     | 39     | 40     | 55     | 49     | 83       | 19     | 59     | 43     | 27     | 29     | 39       | 32     | 29     | 43     | 36     | 37     | 29     | 43     | 35     | 36       | 39     | 33     | 36 66        |          | ጸ              | 86         | 39                       | 75          | 43                         | 29                   |
| TOAB      | 168    | 76     | 144    | 188    | 182    | 326    | 350    | 763      | 556    | 458    | 315    | 209    | 215    | 290      | 255    | 270    | 326    | 288    | 402    | 274    | 292    | 321    | 327      | 242    | 280    | . 00%        | 9 ;      | 419            | 689        | 280                      | 552         | 389                        | 196                  |
| 5**       |        |        |        |        |        |        |        |          |        |        |        |        |        |          |        |        |        |        |        |        |        |        |          |        |        |              | Ī        | Z              | E          |                          | E           |                            |                      |
| % TOC     | 1.4    | 1.4    | 1.4    | 1,4    | 1.4    | 6.0    | 6.0    | 6'0      | 0.9    | 6.0    | 1.4    | 1.4    | 1.4    | <b>*</b> | 1.4    | 2.2    | 2.2    | 2.2    | 2.2    | 2.2    | 2      | 7      | 7        | 2      | 7      | ,,           | 4 6      | 0.8<br>0.8     | 0.8        | 2                        | 6.0         | 9'0                        | . 0.2                |
| % FINES   | 99     | 99     | 99     | 99     | 99     | 17     | 17     | 17       | 17     | 17     | 88     | 88     | 88     | 80       | 88     | 91     | 91     | 16     | 16     | . 91   | 87     | 87     | 87       | 87     | 87     | ×            | 3 6      | 55.0           | 33.6       | 70.72                    | 40          | 97.3                       | 10.3                 |
| Depth (m) | -35    | -35    | -35    | -35    | -35    | -39    | -39    | -39      | -39    | -39    | -146   | -146   | -146   | -146     | -146   | -175   | -175   | -175   | -175   | -175   | -175   | -175   | -175     | -175   | -175   | 0 401        | 77       | 5.76           | 30.8       | 92.3                     | 30.8        | 230.8                      | 92.3                 |
| LonSec D  | 30.2   | 30.2   | 30.2   | 30.2   | 30.2   | 41.5   | 41.5   | 41.5     | 41.5   | 41.5   | 20.2   | 20.2   | 20.2   | 20.2     | 20.2   | 40     | 40     | 40     | 40     | 40     | 20.1   | 20.1   | 20.1     | 20.1   | 20.1   | Ŏ.           | 2 6      | 33             | 17         | 25                       | 91          | 14                         | 43                   |
| LonMin    | 70     | 20     | 20     | 20     | 20     | 7.     | 21     | 21       | 21     | 21     | 27     | 27     | 27     | 27       | 27     | 56     | 56     | 56     | 26     | 26     | 27     | 27     | 27       | 27     | 27     | 7.6          | ì        | <del>5</del> 7 | 24         | 25                       | 23          | 27                         | 78                   |
| LonDeg    | 122    | 122    | 122    | 122    | 122    | 122    | 122    | 122      | 122    | 122    | 122    | 122    | 122    | 122      | 122    | 122    | 122    | 122    | 122    | 122    | 122    | 122    | 122      | 122    | 122    | 123          | 1 :      | 177            | 122        | 122                      | 122         | 122                        | 122                  |
| LatSec    | 0.8    | 8.0    | 8.0    | 0.8    | 0.8    | 20.7   | 20.7   | 20.7     | 20.7   | 20.7   | 13.6   | 13.6   | 13.6   | 13.6     | 13.6   | 0      | 0      | 0      | 0      | 0      | 46.3   | 46.3   | 46.3     | 46.3   | 46.3   | Ę            | r i      | 33             | 42         | ,                        | 21          | 14                         | 12                   |
| LatMin    | 36     | 36     | 36     | 36     | 36     | 35     | 35     | 35       | 35     | 35     | 17     | 17     | 17     | 1        | 11     | 19     | 19     | 19     | 19     | 19     | 28     | 18     | <b>%</b> | 28     | 8      | 5            | 3. 5     | 37             | 37         | 38                       | 37          | 39                         | 39                   |
| LatDeg    | 47     | 47     | 47     | 47     | 47     | 47     | 47     | 47       | 47     | 47     | 47     | 47     | 47     | 47       | 47     | 47     | 47     | 47     | 47     | 47     | 47     | 47     | 47       | 47     | 47     | ţ            | <b>.</b> | 47             | 47         | 47                       | 47          | 47                         | 47                   |
| * °       | 7      | 7      | 7      | 7      | 7      | 73     | 7      | 7        | 64     | 7      | 7      | 7      | 7      | 7        | 7      | 7      | 7      | 2      | 7      | 7      | 7      | 7      | 7        | 73     | 74     | ,            | m)       |                |            | MO 1                     |             | MO 1                       | -                    |
| SAMPLE    |        | 7      | en en  | 4      | 5      | -      | 7      | <b>ም</b> | 4      | 'n     | -      | 7      | 33     | 4        | اک     | *****  | 2      | m      | 4      | 5      | •      | 2      | en.      | 4      | S      |              |          |                |            | (12                      |             | 126)                       |                      |
| STATION   | EBB02  | EBB02  | EBB02  | EBB02  | EBB02  | EBB01  | EBB01  | EBB01    | EBB01  | EBB01  | CBB03  | CBB03  | CBB03  | CBB03    | CBB03  | CBB02  | CBB02  | CBB02  | CBB02  | CBB02  | CBB01  | CBB01  | CBB01    | CBB01  | CBB01  | #75 640      | 010-07#  | X(DUW)-300     | X(DUW)-100 | DUWAM84 XI(DUW)-300 127) | XI(DUW)-100 | DUWAM84 VII(DUW)-750 (126) | VII(DUW)-300         |
| SURVEY    | PSDDA1   | PSDDA1 | PSDDA1 | PSDDA1 | PSDDA1 | PSDDA1 | PSDDA1   | PSDDA1 | PSDDA1 | PSDDA1 | PSDDA1 | PSDDA1 | PSDDA1 | PSDDA1 | PSDDA1 | PSDDA1   | PSDDA1 | PSDDA1 | . DIRECTARGA |          |                | DUWAM84    | DUWAM84 >                | DUWAM84     | DUWAM84                    | DUWAM84 VII(DUW)-300 |
|           |        |        |        |        |        |        |        |          |        |        |        |        |        |          |        |        |        |        |        |        |        |        |          |        |        |              |          |                |            |                          |             |                            |                      |

|              | 70           | 73         | 67     | 71     | 70     | 69     | 71     |        | 69     | 89     | 09     | 62     | 64     | 58     | 56     | 51     | 52             | 54                                      | 52     | 53     | 55     | 54     | 54     | 53     | 21          | Q       | 200        | , 09       | ) (               | 69             | 69          | 63                         | 82                   |  |
|--------------|--------------|------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|----------------|-----------------------------------------|--------|--------|--------|--------|--------|--------|-------------|---------|------------|------------|-------------------|----------------|-------------|----------------------------|----------------------|--|
|              | 0.823        | 0.889      | 0.829  | 0.735  | 0.856  | 0.775  | 0.781  | 0.743  | 0.765  | 0.727  | 0.619  | 0,673  | 0.63   | 0.614  | 0.629  | 0.624  | 0.616          | 9990                                    | 0.632  | 0,611  | 0.649  | 0.633  | 0.622  | 0.648  | 0.585       |         |            | -          |                   |                |             |                            |                      |  |
| ī:           | 1.344        | 1.361      | 1.299  | 1.17   | 1.372  | 1,348  | 1.319  | 1.426  | 1.365  | 1,287  | 1.011  | 0.963  | 0.922  | 0.976  | 0.946  | 0.913  | 1.007          | 1.037                                   | 0.991  | 0.894  | 1.06   | 0.978  | 0.967  | 1.032  | 0.873       |         |            |            |                   |                |             |                            |                      |  |
| MISCTX       | т            | 82         | m      | ю      | נייז   | m      | 0      | 7      | ****   | 7      | ĸ      | m      | ĸ      | 7      | 4      | -      | m              | ťΥ                                      | 7      | 0      | 60     | т      | 4      | m      | m           | r       | i er       | ) (*       | ٠ ٧               | ¢.             | 4           | 7                          | 0                    |  |
| CRTX M       | 7            | 9          | 9      | δ.     | 7      | 14     | 6      | . 11   | 12     | 90     | 14     | Ŋ      | 0      | 01     | 12     | 12     | 20             | 18                                      | 19     | 14     | 18     | 13     | 20     | 20     | 12          | 0 33    | 2          | , 1        |                   | ⊇.             | 7           | П                          | 16                   |  |
|              | 0            | 2          | *****  | 1      | 0      | ymad   | 0      | m      | -      | 7      |        | 2      |        | -      | 7      | 0      | 7              | ****                                    |        |        | -      | 2      | -      |        | 7           | ,-      | , <u>,</u> | 0.5        | ;                 |                | 7           | ٣                          |                      |  |
| МОТАХ ЕСНТАХ |              | <i>L</i> - | 6      | 1      | ∞      | 10     | -      | 14     | 14     | ,      | 7      | 4      | 4      | ₩      | 4      | φ,     | 6              | ν,                                      | 90     | 9      | 9      | 7      | 4      | 9      | 5           | 9 6     | · ·        | 13         | , ,               | 'n             | 15          | 10                         | 7                    |  |
| AMPTX 1      | 6            | 4          |        |        | 3      | ю      | 7      | 5      | 4      | 7      | 7      | ю      | \$     | Ś      | 9      | 6      | possi<br>eneri | ======================================= | 12     | 7      | 6      | 9      | 6      | 6      | 7           | 7.5     | ,          |            |                   | 4              | Э           | 9                          | 9                    |  |
| POTAX /      | 25           | <u></u>    | 21     | 24     | 24     | 29     | 29     | 48     | 33     | 38     | 61     | 15     | 15     | 22     | 13     | 00     | 6              | 12                                      | ∞      | ∞      | 15     | 13     | 1      | 10     | <del></del> | 15 33   | 3.7        | 54         | 3,5               | 3              | 14          | 6                          | 33                   |  |
| MISCAB       | 9            | 59         | 30     | 38     | 47     | 8      | 0      | 90     |        | 4      | 16     | 19     | 28     | 7      | 21     | 4      | 6              | 5                                       | 9      | 0      | 454    | 357    | 400    | 387    | 652         | 9       | 23         | <u>«</u>   | ,                 | 77             | 13          |                            | 0                    |  |
| ECHAB M      | 0            | 7          | -      | 7      | 0      | -      | 0      | 7      | 2      | ო      | 3      | E      | 5      | -      | 44     | 0      | 2              |                                         | +****  | 2.     | -      | 9      | 7      | 7      | 7           | -       | 0.5        | 0.5        |                   |                | 7           | 4                          |                      |  |
| AMPAB E      | 8            | 4          | δ.     |        | 9      | 33     | 7      | 14     | \$     | 9      | 14     | 4      | ١.     | 'n     | 13     | 20     | 28             | 25                                      | 36     | 12     | 24     | 16     | 18     | 15     | 14          | 6       | -          | 10.5       | 71                | 01             | <u>_</u>    | 12                         |                      |  |
| CRAB         | 21           | <b>o</b> o | 16     | 21     | 23     | 53     | 26     | 166    | 100    | 61     | 42     | 15     | 35     | 29     | 32     | 65     | 72             | 88                                      | 123    | 49     | 72     | 72     | 73     | 71     | 51          | 80.33   |            | 119        | 37                | ñ i            | 78          | 72                         | 23                   |  |
| SAMPLE       | <b>,,,,,</b> | 7          | 3      | 4      | 5      | -      |        | 3      | 4      | 'n     |        | 7      | ιn     | 4      | ψ.     |        | 7              | 33                                      | **     | 5      |        | 7      | т      | 4      | 85          |         |            |            | (7.0              | ( , ,          |             | 126)                       |                      |  |
| STATION      | EBB02        | EBB02      | EBB02  | EBB02  | EBB02  | EBB01  | EBB01  | EBB01  | EBB01  | EBB01  | CBB03  | CBB03  | CBB03  | CBB03  | CBB03  | CBB02  | CBB02          | CBB02                                   | CBB02  | CBB02  | CBB01  | CBB01  | CBB01  | CBB01  | CBB01       | #25-640 | X(DUW)-300 | X(DUW)-100 | XI/DI IW)-300 127 | M(2011)-200 E. | XI(DUW)-100 | DUWAM84 VII(DUW)-750 (126) | VII(DUW)-300         |  |
| SURVEY       | PSDDA1       | PSDDA1     | PSDDA1 | PSDDA1 | PSDDAI | PSDDA1 | PSDDAI         | PSDDAI                                  | PSDDA1 | PSDDAI | PSDDAI | PSDDA1 | PSDDA1 | PSDDA1 | PSDDA1      | DUWAM84 | DUWAM84    | DUWAM84    | DIWAM84 X         | , tommon       | DUWAM84     | DUWAM84 \                  | DUWAM84 VII(DUW)-300 |  |

TOAB is calculated by summing POAB, MOAB, CRAB, ECHAB, and MISCAB.

| MOAB        | 212                  | 29                    | 147                   | 135                   | 42                    | -                     | 51                    | 36                    | 147            | 362                                           | 137                 | 184                     | 104       | 15                      | 147                      | 36                       | 271                      | 620                       | 163                      | 169        | 143      | 206                     | 119.5     | 196.5                     | 265.5       | 186                      | 203                      | 116.5     | 231.5                    | 199        | 298.5                      | 134               | 166.5      |
|-------------|----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|----------------|-----------------------------------------------|---------------------|-------------------------|-----------|-------------------------|--------------------------|--------------------------|--------------------------|---------------------------|--------------------------|------------|----------|-------------------------|-----------|---------------------------|-------------|--------------------------|--------------------------|-----------|--------------------------|------------|----------------------------|-------------------|------------|
| POAB        | 301                  | 13                    | 228                   | 1117                  | 234                   | 16                    | 10                    | 32                    | 107            | 309                                           | 482                 | 842                     | 154       | 148                     | 45                       | 09                       | 263                      | 125                       | 56                       | 38         | 65.5     | 39.5                    | 113       | 32.5                      | 42.5        | 24                       | 49.5                     | 286       | 34.5                     | 189.5      | . 88                       | 56                | 137        |
| TOTAX       | 113                  | 34                    | 105                   | 114                   | 118                   | 31                    | 35                    | 33                    | 89             | 66                                            | 128                 | 102                     | 70        | 45                      | 43                       | 26                       | 73                       | 59                        | 35                       | 39         | 60.5     | 44                      | 75.5      | 34.5                      | 41.5        | 33.5                     | 43                       | 100       | 38.5                     | 103        | 42.5                       | 37                | 89.5       |
| TOAB        | 759                  | 165                   | 508                   | 441                   | 549                   | 186                   | 133                   | 180                   | 340            | 720                                           | 844                 | 1445                    | 333       | 201                     | 231                      | 106                      | 772                      | 792                       | 226                      | 253        | 716.5    | 278.5                   | 331       | 282.5                     | 372         | 246.5                    | 315                      | 960.5     | 293                      | 601.5      | 408.5                      | 199               | 931        |
| <b>5</b> ** |                      |                       |                       |                       | F                     | _                     | ~~                    | E                     | FN             | FN                                            | FN                  |                         | _         | _                       | ,                        |                          | ••                       |                           |                          |            |          | _                       |           | _                         |             |                          |                          |           |                          |            |                            |                   |            |
| % TOC       | 0.8                  | 2.3                   | 0.3                   | 0.2                   | 0.3                   | 1,4                   | 3.7                   | 1.4                   | 1.5            | 9.0                                           | 0.8                 | 4.                      | 1.4       | 0.9                     | .,                       | 1.8                      | 8.0                      | 2.5                       | 2.4                      | 2.3        | 0.2      | 1.9                     | 0.3       | 2.4                       | 2.4         | 2.4                      | 2.3                      | 0.1       | 2.2                      | 0.2        | 2.4                        | 2.5               | 0.4        |
| % FINES     | 13.7                 | 96.62                 | 19.6                  | 6.2                   | 6                     | 99                    | 84.3                  | 1.99                  | 69.1           | 23.2                                          | 36                  | 54.05                   | 67.48     | 29.7                    | 94.04                    | 68.42                    | 29.57                    | 69.11                     | 90.71                    | 86.78      | 4.83     | 75.33                   | 7.29      | 89.4                      | 85.87       | 89.44                    | 91.55                    | 3.81      | 86.74                    | 11.23      | 88.75                      | 88.04             | 6.93       |
| Depth (m)   | 30.8                 | 230.8                 | 92.3                  | 30.8                  | 61.5                  | 236.3                 | 185                   | 186.5                 | 87.8           | 92.3                                          | 30.8                | 15.4                    | 61.5      | 15.4                    | 92.3                     | 61.5                     | 15.4                     | 61.5                      | 184.6                    | 184.6      | 15.4     | 123.1                   | 61.5      | 184.6                     | 184.6       | 184.6                    | 153.8                    | 15.4      | 123.1                    | 61.5       | 184.6                      | 184.6             | 15.4       |
| LonSec      | 17                   | 22                    | . 22                  | 7                     | 53                    | 29                    | 32                    | 15                    |                | 25                                            | 10                  | 54                      | 28        | 12                      | 22                       | 15                       | .35                      | 3\$                       | 28                       | 27         | <b>∞</b> | 31                      | <b>∞</b>  | 28                        | 40          | 45                       | 23                       | 20        | ∞                        | 22         | 23                         | 50                | 37         |
| LonMin      | 26                   | 27                    | 26                    | 26                    | 27                    | 26                    | 25                    | 25                    | 29             | 25                                            | 25                  | 21                      | 21        | 21                      | 21                       | 21                       | 20                       | 20                        | 24                       | 25         | 24       | 24                      | 24        | 24                        | 24          | 24                       | 24                       | 23        | 24                       | 23         | 24                         | 24                | 23         |
| LonDeg      | 122                  | 122                   | 122                   | 122                   | 122                   | 122                   | 122                   | 122                   | 122            | 122                                           | 122                 | 122                     | 122       | 122                     | 122                      | 122                      | 122                      | 122                       | 122                      | 122        | 122      | 122                     | 122       | 122                       | 122         | 122                      | 122                      | 122       | 122                      | 122        | 122                        | 122               | 122        |
| LatSec      | -                    | 30                    | 30                    | 37                    | \$                    | 38                    | 42                    | 46                    | 0              | <u>,                                     </u> | 6                   | Ξ                       | 52        | 23                      | 16                       | 38                       | 31                       | 31                        | 11                       | 46         | 14       | 26                      | 22        | 41                        | 49          | 29                       | 4                        | 31        | 37                       | 39         | 40                         | 38                | 45         |
| LatMin      | 39                   | 38                    | 38                    | 38                    | 32                    | 32                    | 32                    | 33                    | 34             | 38                                            | 38                  | 35                      | 35        | 35                      | 36                       | 35                       | 35                       | 35                        | 36                       | 36         | 35       | 35                      | 35        | 36                        | 36          | 36                       | 36                       | 35        | 35                       | 35         | 36                         | 36                | 35         |
| LatDeg      | 47                   | 47                    | 47                    | 47                    | 47                    | 47                    | 47                    | 47                    | 47             | 47                                            | 47                  | 47                      | 47        | 47                      | 47                       | 47                       | 47                       | 47                        | 47                       | 47         | 47       | 47                      | 47        | 47                        | 47          | 47                       | 47                       | 47        | 47                       | 47         | 47                         | 47                | . 47       |
| <b>*</b>    |                      | -                     | ****                  | -                     | ,                     | ~~                    | -                     | <del></del> '         | emel           | ****                                          |                     | umi                     | - power   |                         | <b>y</b>                 | <del>,</del>             | •                        | -                         | -                        | -          | -        | Trans,                  | -         | _                         |             | ••••                     |                          |           |                          | -          | _                          | P1                |            |
| ပ           |                      |                       |                       |                       |                       |                       |                       |                       |                |                                               |                     | MO                      |           | MO                      | MO                       | MO                       | MO                       | MO                        | MO                       |            |          | MO                      |           | MO                        |             | MO                       | MO                       |           | MO                       |            | MO                         | MO                |            |
| SAMPLE      |                      |                       |                       |                       | _                     |                       |                       | _                     | 9              |                                               |                     |                         |           |                         | <b></b>                  | es.                      | •                        | 5)                        | 6                        |            |          |                         |           | (0)                       |             | <b>(</b>                 | •                        |           | G                        |            | 16)                        | 5)                | -          |
| STATION     | DUWAM84 VII(DUW)-100 | DUWAM84 VIII(DUW)-750 | DUWAM84 VIII(DUW)-300 | DUWAM84 VIII(DUW)-100 | DUWAM84 SS-7(DUW)-200 | DUWAM84 SS-5(DUW)-770 | DUWAM84 SS-4(DUW)-600 | DUWAM84 SS-3(DUW)-600 | SS-11(DUW)-300 | DUWAM84 IX(DUW)-300                           | DUWAM84 IX(DUW)-100 | DUWAM84 BX(1)-50 (120)] | BX(1)-200 | DUWAM84 BXI(2)-50 (121) | DUWAM84 BXI(2)-300 (123) | DUWAM84 BXI(2)-200 (122) | DUWAM84 BXII(2)-50 (124) | DUWAM84 BXII(2)-200 (125) | DUWAM84 BV(24)-600 (110) | BV(1)N-600 | BV(1)-50 | DUWAM84 BV(1)-400 (109) | BV(1)-200 | DUWAM84 BVI(37)-600 (130) | BVI(1)N-600 | DUWAM84 BVI(1)-600 (113) | DUWAM84 BVI(1)-500 (111) | BVI(1)-50 | DUWAM84 BVI(1)-400 (112) | BVI(1)-200 | DUWAM84 BVII(1)N-600 (116) | BVII(1)-600 (115) | BVII(1)-50 |
| SURVEY      | DUWAM84              | DUWAM84               | DUWAM84               | DUWAM84               | DUWAM84               | DUWAM84               | DUWAM84               | DUWAM84               | DUWAM84        | DUWAM84                                       | DUWAM84             | DUWAM84 1               | DUWAM84   | DUWAM84 1               | DUWAM84                  | DUWAM84                  | DUWAM84                  | DUWAM84                   | DUWAM84                  | DUWAM84    | DUWAM84  | DUWAM84                 | DUWAM84   | DUWAM84                   | DUWAM84     | DUWAM84                  | DUWAM84                  | DUWAM84   | DUWAM84                  | DUWAM84    | DUWAM84 1                  | DUWAM84 B         | DUWAM84    |

| SDI                |                      |                       |                       |               |               |               |               |               |                |                     |             |                         |           |                         |                          |                          |                          |                           |                          |              |          |                         |           |                           |             |                          |                  |           |                  |            |                            |                           |            |
|--------------------|----------------------|-----------------------|-----------------------|---------------|---------------|---------------|---------------|---------------|----------------|---------------------|-------------|-------------------------|-----------|-------------------------|--------------------------|--------------------------|--------------------------|---------------------------|--------------------------|--------------|----------|-------------------------|-----------|---------------------------|-------------|--------------------------|------------------|-----------|------------------|------------|----------------------------|---------------------------|------------|
| ITI                | 78                   | 64                    | 69                    | 72            | 68            | 56            | 65            | 99            | 02             | 71                  | 82          | 64                      | 73        | 64                      | ; %                      | . 22                     | 99                       | 65                        | . 2                      | 65           | 69       | 64                      | 71        | 99                        | 63          | 62                       | 64               | 73        | 62               | 73         | 19                         | 63                        | 73         |
| ï.,                |                      |                       |                       |               |               |               |               |               |                |                     |             |                         |           |                         |                          |                          |                          |                           |                          |              |          |                         |           |                           |             |                          |                  |           |                  |            |                            |                           |            |
| <b>±</b>           |                      |                       |                       |               |               |               |               |               |                |                     |             |                         |           |                         |                          |                          |                          |                           |                          |              |          |                         |           |                           |             |                          |                  |           |                  |            |                            |                           |            |
| MISCTX             | М                    | <b>post</b>           | 0                     | 7             | emme          | -             | 6             | 3             |                |                     | 5           | ť'n                     | 62        | •                       | -                        |                          | 0                        | ю                         |                          | æ            | 2        | 2                       | <b>-</b>  | -                         |             | •                        | 2                | 0         | 7                | 7          | 0                          | 4                         | 7          |
| CRTX               | 24                   | œ                     | 23                    | 25            | 25            | 0             | 80            | 10            | 12             | 21                  | 28          | 19                      | 19        | 10                      | 12                       | 1                        | 7                        | 13                        | 6                        | ∞            | 20       | φ.                      | 17        | 8.5                       | 11.5        | 7.5                      | 12.5             | 21        | 11               | 25         | 10                         | 10.5                      | 70         |
|                    | m                    | 73                    |                       | 4             | Ξ             |               | -             |               | 2              | ťħ                  | 9           | m                       | -         |                         |                          |                          |                          | ~                         | 0.5                      |              |          | 0.5                     |           | -                         | 7           | 1.5                      | -                | 5.5       | 0.5              | 3.5        | 1.5                        | 5.1                       | ťΩ         |
| MOTAX E            | 24                   | 10                    | 14                    | 15            | 15            | <b>∞</b>      | Ξ             | ∞             | 6              | 13                  | 21          | 14                      |           | ∞                       | ś                        | 4                        | 14                       | 7                         | 6                        | 6            | 11.5     | <b>∞</b>                | 15        | 6                         | 6           | 10                       | 8.5              | 19        | 9                | 14         | 10.5                       | 9.5                       | 18.5       |
| AMPTX MOTAX ECHTAX | 12                   | 7                     | 13                    | 14            | _             | 4             | 4             | Ş             | 4              | 6                   | 15          | 7                       | 6         | 4                       | Ś                        | 4                        | 3                        | 5                         | 4.5                      | 4.5          | 10.5     | 4.5                     | 7.5       | 4                         | 4           | 4                        | 4.5              | 9.5       | ĸ                | 10.5       | 3.5                        | 4.5                       | 6          |
| POTAX .            | 49                   | 12                    | 58                    | 57            | 98            | 12            | 12            | 4             | 40             | 57                  | 57          | 99                      | 36        | 22                      | 24                       | 15                       | 37                       | 34                        | 14.5                     | 61           | 25.5     | 24.5                    | 39.5      | 14.5                      | . 61        | 13                       | 19.5             | 46.5      | 18.5             | 51         | 18.5                       | 14.5                      | 38.5       |
| MISCAB             | 10                   | -                     | 0                     | 2             | ĸ,            | m             | =             | 00            | 9              | ٩                   | 14          | 4                       | 33        | 73                      |                          | 7                        | 0                        | 4                         |                          | 6            | 9        | 4                       | 9         | 'n                        | -           | ťΩ                       | ю                | 0         | ∞                | т          | 0                          | 47                        | 9          |
| ECHAB 1            | 21                   | 3                     | 7                     | 10            | 114           |               | 2             |               | т              | 4                   | 51          | 17                      | *****     |                         | 2                        |                          | ξĐ                       |                           | 0.5                      |              |          | 0.5                     | 1.5       | 2.5                       | 3           | ę                        | 1.5              | 31.5      | 0.5              | \$         | 7                          | m                         | 10         |
| AMPAB              | 38                   | 01                    | 31                    | 27            | 31            | 4             | 6             | 24            | 61             | 16                  | 3.7         | 14                      | 15        | 13                      | 25                       | 4                        | 4                        | 27                        | 10                       | <u>&amp;</u> | 66.5     | 0,                      | 16.5      | 15.5                      | 12          |                          | 13               | 40.5      | 6.5              | 21         | 11                         | 21                        | 99         |
| CRAB               | 206                  | 68                    | 74                    | 141           | 126           | 26            | 57            | 109           | 70             | 39                  | 134         | 385                     | 74        | 21                      | 36                       | 01                       | 227                      | 42                        | 34.5                     | 43           | 501      | 30                      | 91.5      | 52                        | 19          | 32                       | 59.5             | 202       | 24               | 148.5      | 48                         | 35                        | 598.5      |
| SAMPLE             |                      |                       |                       |               |               |               |               |               | _              |                     |             |                         |           |                         |                          |                          |                          |                           |                          |              |          |                         |           | _                         |             |                          |                  |           |                  |            | (9                         | •                         |            |
| STATION            | 7I(DUW)-100          | DUWAM84 VIII(DUW)-750 | DUWAM84 VIII(DUW)-300 | VIII(DUW)-100 | SS-7(DUW)-200 | SS-5(DUW)-770 | SS-4(DUW)-600 | SS-3(DUW)-600 | SS-11(DUW)-300 | X(DUW)-300          | IX(DUW)-100 | DUWAM84 BX(1)-50 (120)] | BX(1)-200 | DUWAM84 BXI(2)-50 (121) | DUWAM84 BXI(2)-300 (123) | DUWAM84_BXI(2)-200 (122) | DUWAM84 BXII(2)-50 (124) | DUWAM84 BXII(2)-200 (125) | DUWAM84 BV(24)-600 (110) | BV(1)N-600   | BV(1)-50 | DUWAM84 BV(1)-400 (109) | BV(1)-200 | DUWAM84 BVI(37)-600 (130) | BVI(1)N-600 | DUWAM84 BVI(1)-600 (113) | BVI(1)-500 (111) | BVI(1)-50 | BVI(1)-400 (112) | BVI(1)-200 | DUWAM84 BVII(1)N-600 (116) | DUWAM84 BVII(1)-600 (115) | BVII(1)-50 |
| SURVEY             | DUWAM84 VII(DUW)-100 | DUWAM84 \             | DUWAM84 1             | DUWAM84       |               | DUWAM84 S     | DUWAM84 S     | DUWAM84 S     | DUWAM84 S      | DUWAM84 IX(DUW)-300 | DUWAM84 I   | DUWAM84 E               | DUWAM84   | DUWAM84 B               | DUWAM84 E                | DUWAM84 E                | DUWAM84 E                | DUWAM84 E                 | DUWAM84 B                |              | DUWAM84  | DUWAM84 B               | DUWAM84   | DUWAM84 B                 | DUWAM84     | DUWAM84 B                | DUWAM84 B        | DUWAM84   |                  | DUWAM84    | DUWAM84 B                  | DUWAM84 B                 | DUWAM84    |

| MOAB      | 179.5             | 182.5       | 321           | 278.5        | 97.5        | 195.5        | 77.5         | 314            | 317                      | 170                      | 490             | 483.5      | 32.5               | 282               | 41.5             | 210.5     | 98         | 269.5      | 272.5           | 433         | 124             | 71        | 84         | 126        | 107               | 222        | Ξ           | 177              | 174.5        | 146.5         | 233          | 267.5              | 320         |
|-----------|-------------------|-------------|---------------|--------------|-------------|--------------|--------------|----------------|--------------------------|--------------------------|-----------------|------------|--------------------|-------------------|------------------|-----------|------------|------------|-----------------|-------------|-----------------|-----------|------------|------------|-------------------|------------|-------------|------------------|--------------|---------------|--------------|--------------------|-------------|
| POAB      | 19                | 204.5       | 59            | 68.5         | 995         | 86.5         | 210          | 33.5           | 4                        | 156                      | 412             | 177        | 22                 | 13                | 16               | 82.5      | 48         | 174        | 36.5            | 151         | 171             | 142       | 148        | 563        | 100               | 517        | 122         | 137              | 171.5        | 235.5         | 26           | 27.5               | 15          |
| TOTAX     | 40.5              | 16          | 47.5          | 47.5         | 129         | 50.5         | 90.5         | 43             | 38                       | 99                       | 100             | 81         | 40                 | 33.5              | 31               | 99        | 39.5       | 103        | 43              | 138         | 98              | 102       | . 80       | 178        | 98                | 138        | 62          | 69               | 86           | 124           | 40           | 40.5               | 35          |
| TOAB      | 281.5             | 532         | 460           | 437          | 1072.5      | 304          | 417.5        | 402.5          | 397                      | 367                      | 1242            | 762.5      | 102                | 339.5             | 68               | 755       | 177        | 615.5      | 350.5           | 757         | 441             | 683       | 299        | 686        | 282               | 1006       | 343         | 458              | 965.5        | 583           | 351.5        | 401.5              | 421.5       |
| % TOC 2** | 2.4               | 0.4         | 7             | 7            | 0.2         | 2            | 9.0          | 2.4            | 7                        | 1.9                      | 1.5             | 1.1        | 2.4                | 2.5               | 2.4              | 0.1       | 6.0        | 0.5        | 2.1             | 0.5         | 1.2             | 0.2       | 0.3        | 8.0        | 1.2               | 0.2        | 1.4         | 1.9              | 0.2          | 0.3           | 2.4          | 2.4                | 2.4         |
| % FINES   | 81.36             | 9.15        | 61.09         | 72.33        | 4.5         | 72.84        | 19.69        | 92             | 82.18                    | 69.83                    | 35.42           | 38.27      | 97.6               | 92.56             | 95.65            | 3.4       | 28.25      | =          | 87.8            | 10.31       | 86.87           | 2.31      | 9.53       | 8.26       | 34.83             | 11.67      | 18.59       | 67.54            | 5.02         | 6.93          | 91.74        | 95.63              | 95.6        |
| Depth (m) | 123.1             | 61.5        | 184.6         | 184.6        | 15.4        | 123.1        | 61.5         | 153.8          | 123.1                    | 92.3                     | 15.4            | 61.5       | 184.6              | 184.6             | 184.6            | 15.4      | 123.1      | 61.5       | 153.8           | 61.5        | 184.6           | 15.4      | 123.1      | 61.5       | 184.6             | 15.4       | 123.1       | 243.7            | 15.4         | 61.5          | 184.6        | 184.6              | 196.9       |
| LonSec    | 22                | 41          | 99            | 53           | 19          | 44           | 35           | 43             | 57                       | 29                       | 17              | 32         | 34                 | 48                | 13               | 36        | 53         | 47         | 0               | 19          | 22              | 13        | 41         | 18         | 50                | 38         | 0           | 47               | <b>.4</b>    | 4             | 39           | 16                 | ю           |
| LonMin    | 23                | 23          | 23            | 23           | 23          | 23           | 23           | 24             | 21                       | 22                       | 22              | 23         | 25                 | . 25              | 25               | 24        | 24         | 24         | 25              | 28          | 25              | 25        | 25         | 25         | 27                | 28         | 28          | 26               | 25           | 25            | 26           | 26                 | 26          |
| LonDeg    | 122               | 122         | 122           | 122          | 122         | 122          | 122          | 122            | 122                      | 122                      | 122             | 122        | 122                | 122               | 122              | 122       | 122        | 122        | 122             | 122         | 122             | 122       | 122        | 122        | 122               | 122        | 122         | 122              | 122          | 122           | 122          | 122                | 122         |
| LatSec    | 59                | . 49        | 43            | 35           | 4           | 25           | 15           | 49             | 37                       | 50                       | 9               | 27         | 7                  | 43                | 49               | 58        | 24         | <b>6</b> 0 | 31              | 43          | 28              | 40        | 46         | 44         | 34                | 52         | 36          | 47               | m            | 8             | 33           | 59                 | 53          |
| LatMin    | 35                | 35          | 36            | 36           | 36          | 36           | 36           | 35             | 36                       | 35                       | 35              | 35         | 36                 | 36                | 35               | 34        | 35         | 35         | 35              | 34          | 34              | 34        | 34         | 34         | 34                | 34         | 34          | 34               | 35           | 35            | 36           | 35                 | 35          |
| LatDeg    | 47                | 47          | 47            | 47           | 47          | 47           | 47           | 47             | 47                       | 47                       | 47              | 47         | 47                 | 47                | 47               | 47        | 47         | 47         | . 47            | 47          | 47              | 47        | 47         | 47         | 47                | 47         | 47          | 47               | 47           | 47            | 47           | 47                 | 47          |
| <b>*</b>  | <b>,</b> ,        |             | _             | <b>g</b> met | -           |              | -            | _              |                          | <b>-</b>                 |                 |            | -                  | -                 |                  | -         | -          |            | -               |             |                 | -         | ****       |            |                   | -          | _           | -                | *****        | ****          |              |                    | _           |
| O         | MO                |             |               |              |             |              |              | WO             | MO                       | MO                       | MO              |            | MO                 | MO                | MO               |           |            |            | MO              |             | MO              |           |            |            | MO                |            |             | MO               |              |               |              | MO                 |             |
| SAMPLE    | 4                 |             |               |              |             |              |              | -              | <u>@</u>                 | €<br>€                   |                 |            | 108)               | 07)               | 9)               |           |            |            | (               |             |                 |           |            |            | 12)               |            |             | _                |              |               |              | )5)                |             |
| STATION   | BVII(1)-400 (114) | BVII(1)-200 | BVIII(1)N-600 | BVIII(1)-600 | BVIII(1)-50 | BVIII(1)-400 | BVIII(1)-200 | BV32-500 (128) | DUWAM84 BIX(2)-400 (119) | DUWAM84 BIX(2)-300 (118) | BIX(1)-50 (117) | BIX(1)-200 | BIV(34)C-600 (108) | BIV(1)N-600 (107) | BIV(1)-600 (106) | BIV(1)-50 | BIV(1)-400 | BIV(1)-200 | BIV35-500 (129) | BII(2)W-200 | BH(2)-600 (104) | BII(2)-50 | BII(2)-400 | BII(2)-200 | BII(1)W-600 (102) | BII(1)W-50 | BII(1)W-400 | BII(1)-792 (103) | BIII.5(1)-50 | BIII.5(1)-200 | BIII(1)N-600 | BIII(1)C-600 (105) | BIII(1)-640 |
| SURVEY    | DUWAM84           | DUWAM84     | DUWAM84       | DUWAM84      | DUWAM84     | DUWAM84      | DUWAM84      | DUWAM84        | DUWAM84                  | DUWAM84                  | DUWAM84 I       | DUWAM84    | DUWAM84            | DUWAM84           | DUWAM84 I        | DUWAM84   | DUWAM84    | DUWAM84    | DUWAM84         | DUWAM84     | DUWAM84 1       | DUWAM84   | DUWAM84    | DUWAM84    | DUWAM84 I         | DUWAM84    | DUWAM84     | DUWAM84 E        | DUWAM84      | DUWAM84       | DUWAM84      | DUWAM84 E          | DUWAM84     |

| SDI          |                           |             |               |              |             |              |              |                        |                          |                          |                 |            |                            |                           |                  |           |            |            |                 |             |                  |           |            |            |                   |            |             |                  |              |               |              |                    |                                        |
|--------------|---------------------------|-------------|---------------|--------------|-------------|--------------|--------------|------------------------|--------------------------|--------------------------|-----------------|------------|----------------------------|---------------------------|------------------|-----------|------------|------------|-----------------|-------------|------------------|-----------|------------|------------|-------------------|------------|-------------|------------------|--------------|---------------|--------------|--------------------|----------------------------------------|
| E            | 64                        | 71          | 64            | 64           | 84          | 99           | 9/           | 62                     | 65                       | 69                       | 65              | 64         | 99                         | 64                        | 49               | 89        | 53         | 71         | 62              | 89          | 77               | 99        | 83         | 8          | 77                | 80         | 75          | 99               | 77           | 92            | 64           | 64                 | 64                                     |
| ï-,          |                           |             |               |              |             |              |              |                        |                          |                          |                 |            |                            | -                         |                  | -         |            |            |                 |             |                  |           |            |            |                   |            |             |                  |              |               |              |                    |                                        |
| Ħ            |                           |             |               |              |             |              |              |                        |                          |                          |                 |            |                            |                           |                  |           |            |            |                 |             |                  |           |            |            |                   |            |             |                  |              |               |              |                    |                                        |
| MISCTX       | m                         | 2           | 9             | 7            | 4           | 3            | es           | 6                      | m                        | 4                        | -               | 7          | 7                          | -                         | 2                |           | 71         | gend       | 7               |             | m                | *****     | 0          | 0          | 0                 | 0          | 4           | 4                | ~            | ю             | 3            | grand,             | 2                                      |
| CRTX         | 9.5                       | 19.5        | 14.5          | 12           | 38          | 10.5         | 11           | 9.5                    | 10                       | 20                       | 17              | 23.5       | 12                         | pand<br>pand              | 0/               | 17.5      | 0          | 21         | 12.5            | 22          | 23               | 31        | 20         | 51         | 23                | 27         | 17          | 21               | 28.5         | 28            | 10.5         | Ξ                  | 11.5                                   |
| CHTAX        | ******                    | 2           | 0.5           |              | 9           | ·            | 9            | 7                      | 0.5                      | 0.5                      | 0.5             |            | 2.5                        | yard.                     | 7                | 0.5       | ю          | 4.5        | -               |             |                  | ·         | -          | 'n         | 77                | 7          | 4           |                  | 4            | 4.5           | 1.5          | 1.5                |                                        |
| МОТАХ ЕСНТАХ | 9                         | 19.5        | 9.5           | 10.5         | 22.5        | 12           | 14           | 12                     | Ś                        | 20                       | 17              | 4          | 10                         | 10.5                      | \$               | 17.5      | 8.5        | 17.5       | 6               | 16          | 12               | 61        | 13         | 24         | 15                | 28         | 12          | ••••             | 19           | 18.5          | 6            | ∞                  | 9.5                                    |
| AMPTX        | m                         | ∞           | 9             | 5.5          | 24.5        | 4            | 7            | Ś                      | 9                        | 9                        | 5               | 4          | 5.5                        | 9                         | 3.5              | 10        | 3.5        | 7          | 4.5             | ∞           |                  | 15        | 12         | 30         | 10                | 13         | 6           | 10               | 17.5         | 13            | 'n           | 3.5                | 4.5                                    |
| POTAX        | 22.5                      | 44          | . 21.5        | 21.5         | 51          | 25.5         | 46           | 18                     | 20                       | 34                       | 54              | 45         | 14                         | 10.5                      | 12.5             | 29        | 17         | 51.5       | 18.5            | 41          | 43               | 43        | 44         | 78         | 39                | 64         | 23          | 34               | 40.5         | 60.5          | 17           | 16                 | ************************************** |
| MISCAB       | 71                        | 4           | 12            | 3            | 7           | 13           | 7            | 238                    | 86                       | 72                       | 4               | 7          | 9                          | 7                         | 9                | ∞         | 9          |            | 7               |             | 4                | 2         | 0          | 0          | 0                 | 0          | 10          | 11               | m            | 22            | 13           | 4                  | 9,                                     |
| ECHAB        | 1.5                       | 2.5         | 0.5           | •            | 64.5        | -            | 62.5         | 2                      | 1.5                      | 0.5                      | 1.5             | 2.5        | •                          | -                         | 3                | 0.5       | 6          | 11         | 2               | -           | 7                |           | 4          | 81         | 2                 | 59         | 13          |                  | 8            | 26.5          | 2            | 7                  | 3.5                                    |
| AMPAB        | 6.5                       | 20.5        | 14            | 16           | 147.5       | 7            | 11.5         | ∞                      | 7                        | 6.5                      | 3               | 7          | =                          | 15                        | 12.5             | 101       | 8.5        | 15         | 7.5             | 61          | 30               | 224       | 25         | 86         | 27                | 27         | 31          | 23               | 120.5        | 31.5          | 15.5         | 6.5                | 6                                      |
| CRAB         | 32.5                      | 131         | 11            | 83.5         | 322         | 19           | 4            | 49                     | 34                       | 36                       | 320             | 80.5       | 37                         | 43                        | 25.5             | 460       | 26         | 142.5      | 64.5            | 160         | 19               | 439       | 35         | 222        | 26                | 185        | 52          | 133              | 595.5        | 134.5         | 80           | 66                 | 80                                     |
| SAMPLE       | 14)                       |             |               |              |             |              |              |                        | 6                        | 8)                       |                 |            | (108)                      | (20)                      | (9               |           |            |            | <u> </u>        |             | •                |           |            |            | 02)               |            |             |                  |              |               |              | )2)                |                                        |
| STATION      | DUWAM84 BVII(1)-400 (114) | BVII(1)-200 | BVIII(1)N-600 | BVIII(1)-600 | BVIII(1)-50 | BVIII(1)-400 | BVIII(1)-200 | DUWAM84 BV32-500 (128) | DUWAM84 BIX(2)-400 (119) | DUWAM84 BIX(2)-300 (118) | BIX(1)-50 (117) | BIX(1)-200 | DUWAM84 BIV(34)C-600 (108) | DUWAM84 BIV(1)N-600 (107) | BIV(1)-600 (106) | BIV(1)-50 | BIV(1)-400 | BIV(1)-200 | BIV35-500 (129) | BII(2)W-200 | BII(2)-600 (104) | BII(2)-50 | BII(2)-400 | BII(2)-200 | BII(1)W-600 (102) | BII(1)W-50 | BII(1)W-400 | BII(1)-792 (103) | BIII.5(1)-50 | BIII.5(1)-200 | BIII(1)N-600 | BIII(1)C-600 (105) | BIII(1)-640                            |
| SURVEY       | DUWAM84                   | DUWAM84     | DUWAM84       | DUWAM84      | DUWAM84     | DUWAM84      | DUWAM84      | DUWAM84                | DUWAM84                  | DUWAM84                  | DUWAM84 I       | DUWAM84    | DUWAM84                    | DUWAM84                   | DUWAM84 E        | DUWAM84   | DUWAM84    | DUWAM84    | DUWAM84 E       | DUWAM84     | DUWAM84 E        | DUWAM84   | DUWAM84    | DUWAM84    | DUWAM84 E         | DUWAM84    | DUWAM84     | DUWAM84 B        | DUWAM84      | DUWAM84       | DUWAM84      | DUWAM84 B          | DUWAM84                                |

| MOAB        | 194.5       | 155.5       | 15         | 274         | 159         | 101        | 61 .             | 132        | 49         | 126     | 126.5  | 54     | 68      | 52.4     | 135.2  | 9.06     | 108     | 146.25 | 130.25 | 177    | 11       | 713    | 1997   | 4544   | 199    | 1116   | 1247   | 1436   | 2270   | 2193   | 2460   |
|-------------|-------------|-------------|------------|-------------|-------------|------------|------------------|------------|------------|---------|--------|--------|---------|----------|--------|----------|---------|--------|--------|--------|----------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| POAB        | 91          | 225.5       | 10         | 19          | 184         | 25         | 61               | 99         | 159        | 88      | 167.25 | 180.8  | 222     | 213      | 220.8  | 258.8    | 124,2   | 136.5  | 110    | 219    | 364.75   | 1537   | 5830   | 2230   | 1623   | 4263   | 1393   | 3103   | 1810   | 1563   | 1397   |
| TOTAX       | 34          | 80.5        | . 15       | 9           | 93          | 35         | 34               | 51         | 101        | 52      | 58.75  | 76.2   | 80.8    | 85.2     | 104.4  | 103      | 55.4    | 63.75  | 56     | 101.2  | 90       |        |        |        |        |        |        |        |        |        |        |
| TOAB        | 257.5       | 485         | 39         | 391         | 178         | 210        | 109              | 278        | 325        | 258     | 431.25 | 332.6  | 456     | 347.2    | 498.6  | 546.4    | 369     | 504.25 | 391.25 | 589.6  | \$15.75  | 3397   | 9406   | 7511   | 3134   | 6378   | 3670   | 6026   | 6107   | 5543   | 5734   |
| <b>5</b> ** |             |             |            |             |             |            |                  |            |            |         |        |        |         |          |        |          |         |        |        |        |          |        |        |        | •      |        |        |        |        |        |        |
| % TOC       | 2.5         | 0.5         | 0.2        | 6.0         | 4.0         | 2          | 1.8              | 8.0        | 0.5        | 1.7     | 0.2    | 0.4    | 0.4     | 0.4      | 1.5    | 0.4      | 0.2     | 0.2    | 0.2    | 1.5    | 0.4      | 3.2    | 1.1    | 6.0    | 1.9    | 8:     | 0.5    | 2.4    | 1      | 2      | 1.3    |
| % FINES     | 92.6        | 19.2        | 2.3        | 38.8        | 10.5        | 9'9'       | 93.8             | 44.4       | 8.2        | 82      | 88.4   | 43.2   | 26.2    | 72       | 56.1   | 71.3     |         | 96.2   | 76     | 51.9   | 93.5     | 99     | 62.5   | 9.2    | 52.4   | 49.7   | 7.9    | 10.7   | 50.8   | 10.8   | 10.7   |
| Depth (m)   | 184.6       | 123.1       | 15.4       | 123.1       | 61.5        | 221.5      | 184.6            | 123.1      | 61.5       | 123.1   | 30.8   | 107.7  | 92.3    | 46.2     | 46.2   | 92.3     | 30.8    | 30.8   | 30.8   | 92.3   | 30.8     | -11.3  | -11.3  | -14.9  | -13.1  | -14.6  | -16.8  | -17.7  | -17.4  | -17.7  | -10    |
| LonSec D    | 40          | 20          | 10         | 18          | 22          | 12         | 22               | 10         | 7          |         | 57     | 16     | 13      | <b>∞</b> | 12     | 3        | . 53    | 53     | ₩.     | 52     | <b>5</b> | 33.97  | 27.59  | 15.15  | 5.22   | 3.05   | 54.54  | 48.17  | 36.91  | 4.78   | 34.93  |
| LonMin      | 52          | 25          | 28         | 27          | 27          | 26         | 24               | 24         | 24         |         | 23     | 24     | 24      | 24       | 25     | 25       | 24      | 24     | 25     | 25     | 22       | 30     | 30     | 30     | 30     | 30     | 29     | 23     | 29     | 30     | 30     |
| LonDeg      | 122         | 122         | 122        | 122         | 122         | 122        | 122              | 122        | 122        |         | 122    | 122    | 122     | 122      | 122    | 122      | 122     | 122    | 122    | 122    | 122      | 122    | 122    | 122    | 122    | 122    | 122    | 122    | 122    | 122    | 122    |
| LatSec      | 37          | 9           | 57         |             | 12          | 37         | 16               | 22         | 13         |         | 38     | 41     | 39      | 38       | 6      | 12       | 15      | 20     | 22     | 20     | 43       | 9.71   | 11.97  | 17.88  | 25.26  | 20.89  | 15.56  | 12.46  | 6.38   | 43.02  | 44.97  |
| LatMin      | 36          | 35          | 30         | 31          | 31          | 31         | 32               | 32         | 32         |         | 31     | 31     | 31      | 31       | 34     | 34       | 37      | 34     | 34     | 34     | 34       | 37     | 37     | 37     | 37     | 37     | 37     | 37     | 37     | 35     | 35     |
| LatDeg      | 47          | 47          | 47         | 47          | 47          | 47         | 47               | 47         | 47         |         | 47     | 47     | 47      | 47       | 47     | 47       | 47      | 47     | 47     | 47     | 47       | 47     | 47     | 47     | 47     | 47     | 47     | 47     | 47     | 47     | 47     |
| <b>%</b>    | <b>9.m4</b> | -           |            |             | -           |            | -                | -          | ***        | proof.  | ,      |        | <b></b> |          | -      | <b>,</b> | ,       | ,,     | -      |        | ••••     | ~      | 73     | ~      | 7      | 7      | 7      | 7      | 4      | 74     | 71     |
| O<br>U      |             |             |            |             |             |            | MO               |            |            |         | MO     | MO     | MO      | MO       | MO     | MO       | MO      | MO     | MO     | MO     | MO       | MO     | MO     | MO     | MO     | MO     | MO     | MO     | MO     | WO     | MO     |
| SAMPLE      |             |             |            | _           | _           |            | 101)             |            |            |         |        |        |         |          | -      |          |         |        |        |        |          |        |        |        |        |        |        |        |        |        |        |
| STATION     | BIII(1)-600 | BIII(1)-400 | A(DUW)W-50 | A(DUW)W-400 | A(DUW)W-200 | A(DUW)-720 | A(DUW)-600 (101) | A(DUW)-400 | A(DUW)-200 | BX-400  | LSUV01 | LSUU03 | LSUU02  | LSUU01   | LSLR02 | LSLP02   | LSKR06- | LSKR05 | LSKR04 | LSKN02 | LSJR02   | EH-16  | EH-15  | EH-08  | EH-06  | EH-05  | EH-03  | EH-02  | EH-01  | BH-02  | BH-01  |
| SURVEY      | DUWAM84     | DUWAM84     | DUWAM84    | DUWAM84     | DUWAM84     | DUWAM84    | DUWAM84          | DUWAM84    | DUWAM84    | DUWAM84 | ALKI   | ALKI   | ALKI    | ALKI     | ALKI   | ALKI     | ALKI    | ALKI   | ALKI   | ALKI   | ALKI     | EHCHEM | ЕНСНЕМ |

| SDI                |             |             |            |              |                     |            |                  |            |                                         | •       |    |        |        |        |        |        |        |         |        |        |        |        |   |        |        |        |        |        |        |        |        |        |        |
|--------------------|-------------|-------------|------------|--------------|---------------------|------------|------------------|------------|-----------------------------------------|---------|----|--------|--------|--------|--------|--------|--------|---------|--------|--------|--------|--------|---|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| Ш                  | 63          | 75          | 88         | 29           | ; %                 | ;          | 29               | ; %        | 76                                      | - 89    |    |        |        |        |        |        |        |         |        |        |        |        |   |        |        |        |        |        |        |        |        |        |        |
| <b>F-</b> ,        |             |             |            |              |                     |            |                  |            |                                         |         |    |        |        |        |        |        |        |         |        |        |        |        |   |        |        |        |        |        |        |        |        |        |        |
| Ħ                  |             |             |            |              |                     |            |                  |            |                                         |         |    |        |        |        | •      |        |        |         |        |        |        |        |   |        |        |        |        |        |        |        |        |        |        |
| MISCTX             | 4           | 74          |            | 4            | 7                   | 7          | 7                | ****       | 5                                       | 7       | 2  |        | т      |        | 0      | 7      | ,      |         | ٣      | 'n     | 7      | 0      |   |        | 3      | m      | E      | 4      | 'n     | .7     | 7      | 2      |        |
| CRTX               | 12          | <u>oc</u>   | 9          | Ž            | 23                  | 13         | 6                | 61         | 20                                      | 5       |    | 14     | 18.6   | 20.2   | 18.2   | 26.4   | 27.4   | 14.8    | 17.25  | 15.75  | 27.2   | 25     |   |        |        |        | •      |        |        |        |        |        |        |
| HTAX               |             | 3.5         |            | 3            | m                   |            | 2                | m          | 7                                       |         |    |        |        |        |        |        |        |         |        |        |        |        |   |        |        |        |        |        |        |        |        |        |        |
| AMPTX MOTAX ECHTAX | <b>∞</b>    | 21          | 7          | 01           | 91                  | ∞          | 6                | œ          | 13                                      | 9       |    | 13.75  | 10.6   | 10.8   | 14.2   | 20.6   | 11.2   | 12.6    | 16.25  | 13.5   | 13.8   | 10.5   |   |        |        |        |        |        |        |        |        |        |        |
| AMPTX 1            | ŧη          | 9           | m          | gund<br>gund | 10                  | 4          | 'n               | 10         | 6                                       | 7       |    |        |        |        |        |        |        |         |        |        |        |        |   |        |        |        |        |        |        |        |        |        |        |
| POTAX              | 11.5        | 42          | 7          | 30           | 45                  | I          | 12               | 17         | 49                                      | 31      |    | 28.25  | 45     | 44     | 48.2   | 51     | 59     | 26.4    | 28.75  | 25.5   | 55     | 50.25  |   |        |        |        |        |        |        |        |        |        |        |
| MISCAB             | 22          | 2           | 4          | ş            | 5                   | 9          | 2                | ••••       | ======================================= | 21      | 91 |        | 4      |        | 0      | S      | 2      | 32      | 31     | 22     | 4      | 0      |   |        | 178    | 109    | 100    | 18     | 18     | 7      | 21     | 90     | Ŋ      |
| ECHAB 1            | ****        | 11.5        |            | ۳)           | 7                   |            | 9                | 4          | 28                                      |         |    |        |        |        |        |        |        |         |        |        |        |        |   | £      | 10     | 1      | 7      | 13     |        | 17     |        | 01     | 7      |
| AMPAB              | 12          | 14.5        | 10         | 35           | 16                  | 10         | 17               | 8          | 17                                      | ****    |    |        |        |        |        |        |        |         |        |        |        | •      | ē |        |        |        |        |        |        |        |        |        |        |
| CRAB               | 44.5        | 42.5        | 14         | 44           | 93                  | 83         | 63               | 74         | 75                                      | 39      |    | 108.5  | 92.2   | 8.96   | 91.6   | 115.2  | 127.4  | 133.4   | 216    | 145.5  | 135.4  |        |   | 1144   | 1563   | 714    | 837    | 950    | 1020   | 1463   | 2017   | 1747   | 1853   |
| SAMPLE             |             |             |            |              |                     |            | 01)              |            |                                         |         |    |        |        |        |        |        |        |         |        |        |        |        |   |        |        |        |        |        |        |        |        |        |        |
| STATION            | BIII(1)-600 | BIII(1)-400 | A(DUW)W-50 | A(DUW)W-400  | (DUW)W-200          | A(DUW)-720 | A(DUW)-600 (101) | A(DUW)-400 | A(DUW)-200                              | BX-400  |    | LSUV01 | TSON03 | LSUU02 | LSUU01 | LSLR02 | LSLP02 | LSKR06- | LSKR05 | LSKR04 | LSKN02 | LSJR02 |   | EH-16  | EH-15  | EH-08  | EH-06  | EH-05  | EH-03  | EH-02  | EH-01  | BH-02  | BH-01  |
| SURVEY             | DUWAM84     | DUWAM84     |            | DUWAM84 A    | DUWAM84 A(DUW)W-200 | DUWAM84    | DUWAM84 A        | DUWAM84    | DUWAM84                                 | DUWAM84 |    | ALKI   | ALKI   | ALKİ   | ALKI   | ALKI   | ALKI   | ALKI    | ALKI   | ALKI   | ALKI   | ALKI   |   | EHCHEM | БНСНЕМ |

TOAB is calculated by summing POAB, MOAB, CRAB, ECHAB, and MISCAB.

## APPENDIX C CLUSTER ANALYSES WITHIN UNCONTAMINATED HABITAT CATEGORIES

| * |  |   |  |   |  |
|---|--|---|--|---|--|
|   |  |   |  |   |  |
|   |  |   |  |   |  |
|   |  |   |  |   |  |
|   |  |   |  |   |  |
| • |  |   |  |   |  |
|   |  | • |  |   |  |
|   |  |   |  |   |  |
|   |  |   |  |   |  |
|   |  |   |  |   |  |
|   |  |   |  |   |  |
|   |  |   |  | · |  |
|   |  |   |  |   |  |
|   |  |   |  |   |  |
|   |  |   |  |   |  |
|   |  |   |  |   |  |

## Appendix C1 0-20% Fines Habitat Category

|   | · |  |
|---|---|--|
|   |   |  |
|   |   |  |
|   |   |  |
|   | · |  |
|   |   |  |
|   |   |  |
|   |   |  |
|   |   |  |
|   |   |  |
|   |   |  |
|   |   |  |
|   |   |  |
| , |   |  |
|   |   |  |
|   |   |  |
|   |   |  |
|   |   |  |
|   |   |  |

#### C:\A94-01\SYSFILES\FINES20.SYS

>CLUSTER

43

43

- >LABEL=STATION\$
- >DISTANCE=EUCLIDEAN
- >LINKAGE=SINGLE
- >JOIN ARAB POAB MOAB ECHAB MISCAB / ROWS

DISTANCE METRIC IS EUCLIDEAN DISTANCE SINGLE LINKAGE METHOD (NEAREST NEIGHBOR)

# TREE DIAGRAM DISTANCES 0.000 200.000 15 15 15 15 15 44 47 47 47 R 9 R 9 R 9 43 22 15 43 47 R308 47 27 27 27

|   |       |     | 1.1 1                                   | 1 1 1 1 | ŧ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ı                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
|---|-------|-----|-----------------------------------------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|   | 43    | +-+ |                                         |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|   | 47    |     |                                         |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|   | 47    | ++  |                                         |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | the same of the sa |  |
|   | 69    |     |                                         |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|   | 69    |     |                                         |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| • | 69    |     |                                         |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|   | R 9   |     |                                         |         | <u> </u><br> <br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|   | 47    | ++  |                                         |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|   | 15    |     |                                         |         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|   | 15    |     |                                         |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|   | 47    |     |                                         |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|   | 28    |     |                                         |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|   | 37    |     |                                         |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|   | 37    |     |                                         |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|   | 44    | +   |                                         |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|   | 37    | 1   |                                         |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|   | 32    | +-  |                                         |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|   | 32    |     |                                         |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|   | 32    | +   |                                         |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|   | 32    |     |                                         |         | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | E U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
|   | 32    | +   |                                         |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|   | 32    |     |                                         |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|   | 44    | +-  |                                         |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|   | 44    | +-  |                                         |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|   | 37    |     |                                         |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|   | 44    |     |                                         |         | ar and a second an |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|   | 47    | +   |                                         |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|   | R308  |     |                                         |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <br> -<br> -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
|   | R308  | ++  |                                         |         | The approximation of the state  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|   | R 9   |     |                                         |         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|   | B-75W |     | *************************************** |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|   |       |     | . , ,                                   | , , ,   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |

| 37    |    | ###################################### | 41,000                                  |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |
|-------|----|----------------------------------------|-----------------------------------------|------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| 46    | ++ |                                        |                                         | İ                            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |   |
| 47    |    |                                        | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |
| 46    |    |                                        | A                                       |                              | 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |   |
| 44    |    |                                        |                                         |                              | of Management of Management of Management of Management of Management of Management of Management of Management of Management of Management of Management of Management of Management of Management of Management of Management of Management of Management of Management of Management of Management of Management of Management of Management of Management of Management of Management of Management of Management of Management of Management of Management of Management of Management of Management of Management of Management of Management of Management of Management of Management of Management of Management of Management of Management of Management of Management of Management of Management of Management of Management of Management of Management of Management of Management of Management of Management of Management of Management of Management of Management of Management of Management of Management of Management of Management of Management of Management of Management of Management of Management of Management of Management of Management of Management of Management of Management of Management of Management of Management of Management of Management of Management of Management of Management of Management of Management of Management of Management of Management of Management of Management of Management of Management of Management of Management of Management of Management of Management of Management of Management of Management of Management of Management of Management of Management of Management of Management of Management of Management of Management of Management of Management of Management of Management of Management of Management of Management of Management of Management of Management of Management of Management of Management of Management of Management of Management of Management of Management of Management of Management of Management of Management of Management of Management of Management of Management of Management of Management of Management of Management of Management of Management of Management of Management of Management of |   |
| 44    | +- |                                        |                                         |                              | ***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   |
| 44    |    |                                        |                                         |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |
| 28    |    |                                        | Vinc. 1919 (1919)                       |                              | TOTAL PARTY AND AND AND AND AND AND AND AND AND AND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   |
| PS-04 |    |                                        |                                         | 11                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |
| 31    |    |                                        |                                         |                              | THE VARIABLE STREET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   |
| 37    |    |                                        |                                         |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |
| 31    |    |                                        |                                         |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |
| D-50E |    |                                        | W                                       |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |
| 27    |    |                                        |                                         |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | • |
| 46    |    |                                        |                                         |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |
| PS-03 |    |                                        |                                         |                              | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |   |
| PS-03 | ++ |                                        |                                         |                              | # A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | · |
| PS-03 | +  |                                        |                                         |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |
| PS-03 |    |                                        |                                         |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |
| PS-03 |    |                                        |                                         |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |
| 69    |    |                                        |                                         |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |
| E-50W |    |                                        |                                         |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |
| 36    | ++ |                                        |                                         |                              | a revision — manifest                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |   |
| 69    |    |                                        |                                         |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |
| 36    |    |                                        |                                         |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |
| PS-04 |    |                                        |                                         |                              | # B 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 10 |   |
| PS-04 | -+ |                                        |                                         |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | · |
| 69    |    |                                        | H                                       | 16. employation - 4.4-4-4-4- | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |   |
| 46    |    |                                        |                                         |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |
| 46    |    |                                        |                                         |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |
| 69    | +  |                                        |                                         |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |
| 32    |    |                                        |                                         |                              | Way-mark recovery                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |   |
|       |    |                                        |                                         |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |

| 32    |      |   |
|-------|------|---|
| 32    |      |   |
| 32    |      |   |
| 46    |      |   |
| 44    |      |   |
| 37    | +    |   |
| R308  | ++   |   |
| 44    |      |   |
| PS-04 |      |   |
| 28    |      |   |
| PS-04 | ++   |   |
| 16    |      |   |
| R301  |      |   |
| 44    |      |   |
| R301  |      |   |
| 16    |      |   |
| 16    |      |   |
| R103  |      |   |
| R103  |      |   |
| 39    | ++1  | , |
| 39    |      |   |
| 39    | +-   | 2 |
| 39    | ++   |   |
| R301  |      |   |
| 39    | +-+} |   |
| 39    |      |   |
| 6     |      |   |
| R103  |      |   |
| 39    |      |   |
| 36    |      |   |
| 39    | ++   |   |
|       |      |   |

| •      |    |
|--------|----|
| 39     | +  |
| 36     |    |
| NG-02  |    |
| NG-02  |    |
| NG-02  |    |
| NG-02  |    |
| 31     |    |
| 36     |    |
| 36     |    |
| SD-01  |    |
| SD-01  |    |
| SD-01  | -+ |
| SD-01  | -  |
| SD-01  |    |
| NG-02  |    |
| 44     |    |
| 15     |    |
| 47     |    |
| 15     |    |
| K5-75E | +  |
| N-75W  |    |
| E-75E  |    |
| D-50W  |    |
| R301   |    |
| 27     |    |
| 36     |    |
| SD-02  |    |
| 22     |    |

|       | ++  |
|-------|-----|
| H-75W |     |
| H-75E |     |
| K-50E |     |
| 27    |     |
| 50    | ++1 |
| 50    |     |
| 22    |     |
| 23    |     |
| 22    |     |
| 22    |     |
| 22    |     |
| 22    |     |
| 22    |     |
| 22    | +   |
| 23    |     |
| 22    |     |
| 23    |     |
| 6     |     |
| 6     |     |
| 15    |     |
| 15    |     |
| 50    |     |
| 27    |     |
| 43    |     |
| 43    | +-  |
| 43    |     |
| 43    |     |
| 43    | +   |
| 43    |     |
| 43    |     |
| 43    |     |
|       |     |

|   | 43    |    |
|---|-------|----|
|   | 43    |    |
| ı | J-75E |    |
|   | K-50E |    |
|   | E-50E |    |
|   | E-50E |    |
|   | C-50E |    |
|   | 22    |    |
|   | 13    |    |
|   | 25    |    |
|   | NG-06 |    |
|   | NG-06 |    |
|   | 25    |    |
|   | NG-06 |    |
|   | NG-06 |    |
| ÷ | 25    | +  |
|   | 13    | +  |
|   | 22    | ++ |
|   | NG-06 |    |
|   | 25    |    |
|   | 13    | +  |
|   | 13    |    |
|   | 13    | +  |
|   | 13    | +  |
|   | 13    | +  |
|   | 13    |    |
| ı |       |    |
| , |       |    |
|   |       |    |
|   |       |    |
|   |       |    |
|   |       |    |

### Appendix C2 20-50% Fines Habitat Category

|   | ·<br>· . |  | · |   |
|---|----------|--|---|---|
| * |          |  |   |   |
|   |          |  |   |   |
|   |          |  |   | · |
|   |          |  |   |   |
|   |          |  |   |   |
|   |          |  |   | , |
|   |          |  |   |   |
|   |          |  |   |   |
|   |          |  |   |   |
|   |          |  |   |   |
|   |          |  |   |   |
|   |          |  |   |   |
|   |          |  |   |   |
|   |          |  |   |   |
|   |          |  | • |   |

#### C:\A94-01\SYSFILES\FINES50.SYS

- >LABEL=STATION\$
- >DISTANCE=EUCLIDEAN
- >LINKAGE=SINGLE
- >JOIN ARAB POAB MOAB ECHAB MISCAB / ROWS

DISTANCE METRIC IS EUCLIDEAN DISTANCE SINGLE LINKAGE METHOD (NEAREST NEIGHBOR)

TREE DIAGRAM

DISTANCES

500.000

|       | 0.000 |
|-------|-------|
| 47    |       |
| 18    |       |
| 18    |       |
| 18    |       |
| R206  | +     |
| R206. |       |
| R206  |       |
| 18    |       |
| 18    |       |
| R206  | +     |
| 18    | +     |
| R206  | +     |
| 18    |       |
| 18    |       |
| 18    | +     |
| 33    |       |
| 33    | +     |
| 40    | +     |
| 10    |       |
| 10    |       |
| 10    | +     |
| 10    |       |
| 10    | +     |
| 10    | +     |
| 30    | +     |

| ı    | 111111 11     |
|------|---------------|
| 71   | +             |
| 71   | +             |
| 71   |               |
| 69   |               |
| 69   |               |
| 69   |               |
| 69   |               |
| 40   |               |
| 33   |               |
| 33 . |               |
| 33   |               |
| 40   | +             |
| 0033 | +             |
| 33   |               |
| 40   | +             |
| 33   | +             |
| 0033 |               |
| 33   |               |
| R111 | +             |
| 30   |               |
| 30   | -+            |
| R111 |               |
| 30   |               |
| 69   | +             |
| 30   | -             |
| 0033 | -             |
| 30   | . ! ! ! ! ! ! |
| 30   | -+            |
| 30   | -+ +          |
| R209 | -+            |
| 30   |               |
|      |               |

|                                       | R209  |                                        |
|---------------------------------------|-------|----------------------------------------|
|                                       | R209  | +                                      |
|                                       | R209  |                                        |
|                                       |       |                                        |
|                                       | R209  |                                        |
|                                       | SR-08 | +                                      |
|                                       | SR-08 |                                        |
|                                       | 47    | +                                      |
|                                       | 47    |                                        |
|                                       | 10    |                                        |
| 1                                     | 10    |                                        |
| · · · · · · · · · · · · · · · · · · · | 11    |                                        |
| - Account                             | 11    |                                        |
|                                       | 11    |                                        |
|                                       | 11    |                                        |
|                                       | 11    | +-                                     |
|                                       | 11    |                                        |
|                                       | 11    |                                        |
| . •                                   | 11    | ************************************** |
|                                       |       |                                        |
|                                       |       |                                        |
|                                       |       |                                        |
| ·                                     |       |                                        |
|                                       |       |                                        |
|                                       |       |                                        |

•

Appendix C3
50-80% Fines Habitat Category

#### C:\A94-01\SYSFILES\FINES80.SYS

>LABEL=STATION\$ ·

>DISTANCE=EUCLIDEAN

>LINKAGE=SINGLE

>JOIN ARAB POAB MOAB ECHAB MISCAB / ROWS

DISTANCE METRIC IS EUCLIDEAN DISTANCE SINGLE LINKAGE METHOD (NEAREST NEIGHBOR)

#### TREE DIAGRAM



|      |                                   | •             |                     |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |
|------|-----------------------------------|---------------|---------------------|----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|
| 2    |                                   |               |                     | ************************************** |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |
| R207 |                                   |               |                     |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |
| R205 |                                   |               |                     |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |
| R205 |                                   |               |                     | ************************************** |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |
| R205 |                                   |               |                     |                                        | !<br> <br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                         |
| R205 |                                   |               |                     |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | *************************************** |
| R205 |                                   |               | '                   |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | #<br>#<br>#<br>#                        |
| R207 |                                   |               |                     |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <br> <br>                               |
| 18   |                                   |               |                     | 77 2004                                | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                                       |
| R207 |                                   |               |                     |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |
| R207 |                                   |               |                     |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |
| 18   |                                   |               |                     |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |
| R207 |                                   |               |                     |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |
| 2    |                                   |               |                     | V                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |
| 2    |                                   |               |                     |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |
| 0030 |                                   |               |                     |                                        | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                         |
| 0030 | Aur use an are ere ere are all an |               |                     |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |
| 30   |                                   |               |                     |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |
| 0030 | +                                 |               |                     |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |
| 71   |                                   |               |                     |                                        | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                         |
| 8    |                                   |               | -                   |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |
| 8    |                                   |               |                     |                                        | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                         |
| 8    |                                   |               |                     |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |
| 71   |                                   |               |                     |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |
| 71   |                                   | ,             |                     |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |
| 8    |                                   | ,             |                     |                                        | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                         |
| 8    |                                   |               | ļ                   |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |
| 8    |                                   |               | . [                 |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |
| 8    |                                   |               |                     |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ٠                                       |
| 2    |                                   |               | se minore assession | W- 111000111                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |
| 8    |                                   | ,<br>,        |                     |                                        | T y supplied and a supplied and a supplied and a supplied and a supplied and a supplied and a supplied and a supplied and a supplied and a supplied and a supplied and a supplied and a supplied and a supplied and a supplied and a supplied and a supplied and a supplied and a supplied and a supplied and a supplied and a supplied and a supplied and a supplied and a supplied and a supplied and a supplied and a supplied and a supplied and a supplied and a supplied and a supplied and a supplied and a supplied and a supplied and a supplied and a supplied and a supplied and a supplied and a supplied and a supplied and a supplied and a supplied and a supplied and a supplied and a supplied and a supplied and a supplied and a supplied and a supplied and a supplied and a supplied and a supplied and a supplied and a supplied and a supplied and a supplied and a supplied and a supplied and a supplied and a supplied and a supplied and a supplied and a supplied and a supplied and a supplied and a supplied and a supplied and a supplied and a supplied and a supplied and a supplied and a supplied and a supplied and a supplied and a supplied and a supplied and a supplied and a supplied and a supplied and a supplied and a supplied and a supplied and a supplied and a supplied and a supplied and a supplied and a supplied and a supplied and a supplied and a supplied and a supplied and a supplied and a supplied and a supplied and a supplied and a supplied and a supplied and a supplied and a supplied and a supplied and a supplied and a supplied and a supplied and a supplied and a supplied and a supplied and a supplied and a supplied and a supplied and a supplied and a supplied and a supplied and a supplied and a supplied and a supplied and a supplied and a supplied and a supplied and a supplied and a supplied and a supplied and a supplied and a supplied and a supplied and a supplied and a supplied and a supplied and a supplied and a supplied and a supplied and a supplied and a supplied and a supplied and a supplied and a supplied and a su |                                         |
| 8    |                                   | an administra | <u> </u>            | 1                                      | [                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                         |

| 8    | ++                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                         |                  |                                         |   |    |   |   |   |   |
|------|---------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|-----------------------------------------|------------------|-----------------------------------------|---|----|---|---|---|---|
| 8    |                                       | ***************************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                         |                                         |                  |                                         |   |    |   |   | • | • |
| 8    | +-                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                         | •                |                                         |   |    |   |   |   |   |
| 71   | +-                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                         |                  |                                         |   |    |   |   |   |   |
| 8    |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                         |                  |                                         |   |    |   |   |   |   |
| 71   | ****                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                         |                  |                                         |   |    |   |   |   |   |
| 2    |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                         |                  |                                         |   |    |   |   |   |   |
| 2    | +-                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                         |                  | 111111111111111111111111111111111111111 |   |    |   |   |   |   |
| 71   |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                         |                  |                                         |   |    |   |   |   |   |
| 8    | +                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                         |                  | 1                                       |   |    |   |   |   |   |
| 8    | ++                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                         |                  |                                         |   |    |   |   |   | • |
| 71   |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                         | WAS THE VALUE OF |                                         |   |    |   |   |   |   |
| 71   | +   <br>    <br>+-                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ]                                       |                                         |                  |                                         |   |    |   |   |   |   |
| 71   |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                         |                  |                                         |   |    |   |   |   |   |
| R302 |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                         |                  |                                         | ÷ |    |   |   |   | • |
| 2    |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                         |                  | -                                       |   |    |   |   |   |   |
| 2    | , , , , , , , , , , , , , , , , , , , |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                         |                  |                                         |   | ٠. | • |   |   |   |
| 18   |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                         |                  | į                                       |   |    |   |   |   |   |
| R302 | +                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                         |                  |                                         |   |    |   |   |   |   |
| R302 |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                         |                  |                                         |   |    |   |   |   |   |
| 70   |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                         |                  |                                         |   |    |   | ř |   |   |
| 70   | +                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                         |                  |                                         |   |    |   |   |   |   |
| 70   | <br>+-                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         | *************************************** |                  |                                         |   |    |   |   |   |   |
| 70   |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                         |                  | *************************************** |   |    |   |   |   |   |
| 70   | <b></b>                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                         |                  |                                         |   |    |   |   |   |   |
| 70   | -       +-                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         | **************************************  |                  | *************************************** |   |    |   |   |   |   |
| 70   | +                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                         |                  |                                         |   |    |   |   |   |   |
| 70   | -                                     | Antistructure of the state of t |                                         |                                         |                  |                                         |   |    |   |   |   |   |
| 70   | -+                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                         |                  |                                         |   |    |   |   |   |   |
| 70   |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                         |                  | overver business .                      |   |    |   |   |   | • |
| 70   | <b>!</b><br>+-                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | *************************************** | <u> </u><br>                            |                  |                                         |   |    |   |   |   |   |
|      |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                         |                  |                                         |   |    |   |   |   |   |

| 70   |                                            | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |
|------|--------------------------------------------|---------------------------------------|
| R303 | 4                                          |                                       |
| R303 |                                            |                                       |
| R303 | And 100 and 100                            |                                       |
| R303 |                                            | 7                                     |
| 23   | age and and age and this pair age age age. |                                       |
| 30   | من هذه الله الله الله الله الله الله الله  | <br>                                  |
| 30   |                                            |                                       |
| 23   |                                            | <br>                                  |

Appendix C4 80-100% Fines Habitat Category

>CLUSTER

0048

- >LABEL=STATION\$
- >DISTANCE=EUCLIDEAN
- >LINKAGE=SINGLE
- >JOIN ARAB POAB MOAB ECHAB MISCAB / ROWS

DISTANCE METRIC IS EUCLIDEAN DISTANCE SINGLE LINKAGE METHOD (NEAREST NEIGHBOR)

## TREE DIAGRAM DISTANCES 1000.000 0.000 41 41 41 20 20 20 20 20 R203 0020 0020 0020 20 20 LSUV01 1 R106 R106 . 1 1 48 48 48 0048

|       | 1.1         |
|-------|-------------|
| 20    | -+          |
| 20    |             |
| 20    | #    <br>   |
| 20    | +           |
| 20    |             |
| R203  |             |
| R203  |             |
| R203  | +           |
| R203  | -           |
| R204  |             |
| R204  | <del></del> |
| 48    | -           |
| 48    | +           |
| 48    | +           |
| 48    | +           |
| 48    |             |
| SR-07 |             |
| SR-07 | +           |
| 49    | 41          |
| 49    | + 1 1       |
| 49    | #   I       |
| R204  | +           |
| R204  | +           |
| R102  |             |
| R102  |             |
| R101  | +           |
| 49    | +           |
| QM-2  | -           |

| 4      |   | - [ ]      |
|--------|---|------------|
| R204   | ٠ | -          |
| 5      |   | ~ +        |
| 4      |   | -+         |
| 4      |   |            |
| 4      |   | ++         |
|        |   | +          |
| 4      |   | +          |
| 5      |   |            |
| 5      |   | + + + +    |
| 5      |   | +          |
| 5      |   | +          |
| 5      |   | -   -      |
| 5      |   | -+ <br>    |
| 5<br>4 |   | -+         |
| 4      |   | -  <br>+ + |
| 4      |   | -          |
| R102   |   | -+1        |
| 0018   |   | -+         |
| 5      |   |            |
| R101   |   | -          |
| R101   |   |            |
| 0018   |   | -          |
| 0018   |   | -    <br>- |
| 0012   |   | -+         |
| 0012   |   | -+         |
| 0012   |   | -+         |
| 12     |   | -+ <br> -  |
| 12     |   | -          |
| 12     |   | +          |
| 12     |   | -          |
| 12     |   | -          |

|        | ·<br>                                  |
|--------|----------------------------------------|
| 12     | +                                      |
| 12     | +                                      |
| 12     |                                        |
| 12     | <del> </del>  <br>  <del> </del>       |
| 1 .    | +  <br>                                |
| 4      | -+ <br>++                              |
| R106   |                                        |
| 0048   | <br>++                                 |
| 48     |                                        |
| 1      |                                        |
| .1     | <br>++                                 |
| 1      |                                        |
| R109   |                                        |
| R109   | #    <br>                              |
| R109   |                                        |
| 1      | -                                      |
| 1      | ••••                                   |
| 1 .    | <br>++                                 |
| 1      | +                                      |
| 1      |                                        |
| 1      |                                        |
| 1      |                                        |
| LSKR05 |                                        |
| 1      | ************************************** |

# APPENDIX D PLOTS OF BENTHIC ENDPOINTS PRIOR TO REMOVAL OF OUTLIER SAMPLES IDENTIFIED BY ± 1.96 STANDARD NORMAL DEVIATES

|  |  |  | en en en en en en en en en en en en en e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|--|--|--|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|  |  |  | <ul> <li>Complete the adjust a plantage of the complete and the complete and the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete</li></ul> |
|  |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|  |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

## Appendix D1 0-20% Fines Habitat Category

|    | · . |  |   |
|----|-----|--|---|
|    |     |  |   |
|    |     |  |   |
|    |     |  | · |
|    |     |  |   |
|    |     |  |   |
|    |     |  |   |
|    |     |  |   |
|    |     |  |   |
| •• |     |  |   |





























## Appendix D2 20-50% Fines Habitat Category

|   |          |   |   | - |
|---|----------|---|---|---|
|   |          |   |   |   |
|   |          |   |   |   |
|   |          |   |   |   |
|   |          |   |   |   |
|   |          |   |   |   |
|   |          |   |   |   |
|   |          |   |   |   |
|   |          |   |   |   |
|   |          |   |   |   |
|   |          |   |   |   |
|   |          |   |   |   |
|   |          |   |   |   |
|   |          |   |   |   |
|   | <b>Y</b> |   |   |   |
|   |          |   |   |   |
|   |          |   |   |   |
|   |          | • |   |   |
|   |          |   |   |   |
|   |          |   |   |   |
| · |          |   |   |   |
|   |          |   | • |   |
|   |          |   |   |   |
|   |          |   |   |   |
|   |          |   |   |   |
|   |          |   |   |   |
|   |          |   |   |   |
|   |          |   |   |   |
|   |          |   |   |   |
|   |          |   | • |   |
|   |          |   |   |   |
|   |          |   |   |   |
|   |          |   |   |   |
|   |          |   |   |   |
|   |          |   |   |   |
|   |          | • |   |   |
|   |          |   |   |   |
|   |          | • |   |   |
|   |          |   |   |   |
|   | •        |   |   |   |
|   |          |   |   |   |
|   |          |   |   |   |
|   |          |   |   |   |
|   |          |   |   |   |
|   |          |   |   |   |
|   |          |   |   |   |
|   |          |   |   |   |
|   |          |   |   |   |
|   |          |   |   |   |
|   |          |   | • |   |
|   |          |   |   |   |
|   |          |   |   |   |
|   |          |   |   |   |
|   |          |   |   |   |
|   |          | · |   |   |





























## Appendix D3 50-80% Fines Habitat Category

|   | · |   | • |   |   |   |
|---|---|---|---|---|---|---|
|   |   |   |   |   |   |   |
|   |   |   |   |   |   |   |
|   |   |   |   |   |   |   |
|   |   |   |   |   |   |   |
|   |   |   |   |   |   |   |
|   |   |   |   |   |   |   |
|   |   |   |   |   |   |   |
|   |   |   |   |   |   |   |
|   |   |   |   |   |   |   |
|   |   |   |   |   |   |   |
|   |   |   |   |   |   |   |
|   |   |   |   | • |   |   |
| • |   |   |   |   |   |   |
|   |   |   |   |   |   |   |
|   |   |   |   |   |   |   |
|   |   |   |   |   | • |   |
|   |   |   |   |   |   |   |
|   |   |   |   |   |   |   |
|   |   |   |   |   |   | • |
|   |   |   |   | · |   |   |
|   |   |   |   |   |   |   |
|   |   |   |   |   |   |   |
|   |   |   |   |   |   |   |
|   |   |   |   |   |   |   |
|   |   |   |   |   |   |   |
|   |   |   |   |   |   |   |
|   |   |   |   |   |   |   |
|   |   |   |   |   |   |   |
|   |   |   |   |   | • | • |
|   |   |   |   |   |   |   |
|   |   |   |   | • |   |   |
|   |   |   |   |   |   |   |
|   |   |   |   |   |   |   |
|   |   |   |   |   | • |   |
|   |   |   |   |   |   |   |
|   |   | • |   |   |   |   |
|   |   |   |   |   |   |   |
|   |   |   |   |   |   |   |
|   |   |   |   |   |   |   |
|   |   |   |   |   |   |   |
|   |   | • |   |   |   |   |
|   |   |   | • |   |   |   |
|   |   |   |   |   |   |   |
|   |   |   |   |   |   |   |
|   |   |   |   |   |   | • |
|   |   |   |   |   |   |   |
|   |   |   |   |   |   |   |
|   |   |   |   |   |   |   |
|   |   |   |   |   |   |   |
|   |   |   |   |   |   |   |
|   |   |   |   |   |   |   |
|   |   |   |   |   | • |   |
|   |   |   |   |   |   |   |
|   |   |   |   |   |   |   |
|   |   |   |   |   |   |   |





























Appendix D4 80-100% Fines Habitat Category

|  |  |   | , |  |  |
|--|--|---|---|--|--|
|  |  |   |   |  |  |
|  |  |   |   |  |  |
|  |  |   |   |  |  |
|  |  |   |   |  |  |
|  |  | · |   |  |  |
|  |  |   |   |  |  |
|  |  |   | , |  |  |
|  |  |   |   |  |  |
|  |  |   |   |  |  |
|  |  |   |   |  |  |
|  |  |   |   |  |  |
|  |  |   |   |  |  |
|  |  |   |   |  |  |
|  |  |   |   |  |  |
|  |  |   |   |  |  |
|  |  |   |   |  |  |





























## APPENDIX E SUMMARY STATISTICS FOR BENTHIC ENDPOINTS IN UNCONTAMINATED HABITAT CATEGORIES

|     |   | · | · |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-----|---|---|---|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     |   |   |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|     |   |   |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|     |   |   |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|     |   |   |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|     |   |   |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|     | · |   |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|     |   |   |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| · • |   |   |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|     |   |   |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|     |   |   |   | Complete section of the section of t |
|     |   |   |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|     |   |   |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

Table E1. Summary statistics for total abundance.

|                | TOAB20    | TOAB50    | TOAB80    | TOAB100   |
|----------------|-----------|-----------|-----------|-----------|
|                |           |           |           |           |
| MEAN           | 491.413   | 494.217   | 343.481   | 307.01    |
| STANDARD DEV   | 196.614   | 152.713   | 187.248   | 129.01    |
| STD. ERROR     | 14.495    | 18.385    | 21.067    | 13.099    |
| VARIANCE       | 38656.998 | 23321.408 | 35061.971 | 16643.469 |
| UPPER 95% C.L. | 519.823   | 530.252   | 384.772   | 332.684   |
| LOWER 95% C.L. | 463.003   | 458.182   | 302.190   | 281.336   |
| C.V.           | 0.4       | 0.309     | 0.545     | 0.42      |
| RANGE          | 937       | 672       | 851       | 554       |
| MINIMUM        | 57        | 192       | 43        | 90        |
| MAXIMUM        | 994       | 864       | 894       | 644       |
| N OF CASES     | 184       | 69        | 79        | 97        |

Table E2. Summary statistics for total taxa.

|                | TOTAX20 | TOTAX50 | TOTAX80 | TOTAX100 |
|----------------|---------|---------|---------|----------|
| MEAN           | 68.656  | 64,409  | 51.815  | 32.97    |
| STANDARD DEV   | 21.554  | 14.331  | 13.823  | 8.789    |
| STD. ERROR     | 1.593   | 1.764   | 1.536   | 0.883    |
| UPPER 95% C.L. | 71.778  | 67.866  | 54.826  | 34.701   |
| LOWER 95% C.L. | 65.534  | 60.952  | 48.804  | 31,239   |
| VARIANCE       | 464,59  | 205.384 | 191.078 | 77.254   |
| C.V.           | 0.314   | 0.223   | 0.267   | 0.267    |
| RANGE          | 90      | 59      | 61      | 34       |
| MINIMUM        | 25      | 30      | 19      | 18       |
| MAXIMUM        | 115     | 89      | 80      | 52       |
| N OF CASES     | 183     | 66      | 81      | 99       |

Table E3. Summary statistics for crustacea abundance.

|                | CRAB20   | CRAB50   | CRAB80   | CRAB100  |
|----------------|----------|----------|----------|----------|
|                |          |          |          |          |
| MEAN           | 120.378  | 103.338  | 51.156   | 75.806   |
| STANDARD DEV   | 77.710   | 63.773   | 52.746   | 71.848   |
| STD. ERROR     | 5.792    | 7.734    | 6.011    | 7.258    |
| VARIANCE       | 6038.784 | 4066.973 | 2782.186 | 5162.137 |
| UPPER 95% C.L. | 131.730  | 118.497  | 62.938   | 90.032   |
| LOWER 95% C.L. | 109.026  | 88.179   | 39.374   | 61.580   |
| C.V.           | 0.646    | 0.617    | 1.031    | 0.948    |
| RANGE          | 292      | 220      | 250      | 252      |
| MINIMUM        | 6        | 2        | 0        | 0        |
| MAXIMUM        | 298      | 222      | 250      | 252      |
| N OF CASES     | 180      | 68       | 77       | 98       |

Table E4. Summary statistics for crustacea taxa.

|                | CRTAX20 | CRTAX50 | CRTAX80 | CRTAX100 |
|----------------|---------|---------|---------|----------|
| MEAN           | 12.099  | 10.288  | 6.9     | 4.893    |
| STANDARD DEV   | 4.573   | 4.098   | 3.137   | 1.793    |
| STD. ERROR     | 0.34    | 0.504   | 0.351   | 0.177    |
| UPPER 95% C.L. | 12.765  | 11.277  | 7.588   | 5.24     |
| LOWER 95% C.L. | 11.433  | 9.299   | 6.212   | 4.546    |
| VARIANCE       | 20.912  | 16.793  | 9.838   | 3.214    |
| C.V.           | 0.378   | 0.398   | 0.455   | 0.366    |
| RANGE          | 21      | 19      | 13      | 10       |
| MINIMUM        | 2       | . 1     | 0       | 0        |
| MAXIMUM        | 23      | 20      | 13      | 10       |
| N OF CASES     | 181     | - 66    | 80      | 103      |

Table E5. Summary statistics for amphipod abundance.

|                | AMPAB20 | AMPAB50   | AMPAB80 | AMPAB100 |
|----------------|---------|-----------|---------|----------|
| 3 (T) 43 (     | 20.505  | 4 # ^ 4 A |         |          |
| MEAN           | 20.505  | 15.048    | 13.397  | 27.796   |
| STANDARD DEV   | 24.260  | 13.847    | 13.906  | 19.505   |
| STD. ERROR     | 2.489   | 1.520     | 1.752   | 1.430    |
| VARIANCE       | 588.572 | 191.729   | 193.372 | 380.434  |
| UPPER 95% C.L. | 25.383  | 18.027    | 16.831  | 30.599   |
| LOWER 95% C.L. | 15.627  | 12.069    | 9.963   | 24.993   |
| C.V.           | 1.183   | 0.920     | 1.038   | 0.702    |
| RANGE          | 139     | 48        | 59      | 74       |
| MINIMUM        | 0       | 0         | 0       | 1        |
| MAXIMUM        | 139     | 48        | 59      | 75       |
| N OF CASES     | 95      | 83        | 63      | 186      |

Table E6. Summary statistics for amphipod taxa.

|                | AMPTAX20 | AMPTAX50 | AMPTAX80 | AMPTAX100 |
|----------------|----------|----------|----------|-----------|
| MEAN           | 6.605    | 4.758    | 3.128    | 2.065     |
| STANDARD DEV   | 3.054    | 2.735    | 1.797    | 0,992     |
| STD. ERROR     | 0.225    | 0.337    | 0.203    | 0.103     |
| VARIANCE       | 9.327    | 7.479    | 3.230    | 0.985     |
| UPPER 95% C.L. | 7.046    | 5.419    | 3,526    | 2,267     |
| LOWER 95% C.L. | 6.164    | 4.199    | 2.730    | 1.863     |
| C.V.           | 0.462    | 0.575    | 0.575    | 0.480     |
| RANGE          | 12       | 11       | 7        | 4         |
| MINIMUM        | 1        | 0        | 0        | 0         |
| MAXIMUM        | 13       | 11       | 7        | 4         |
| N OF CASES     | 185      | 66       | 78       | 92        |

Table E7. Summary statistics for polychaete abundance.

|                | POAB20    | POAB50   | POAB80   | POAB100  |
|----------------|-----------|----------|----------|----------|
|                | ·         |          |          |          |
| MEAN           | 197.197   | 224.299  | 146.707  | 88.340   |
| STANDARD DEV   | 124.785   | 97.822   | 68.331   | 57.195   |
| STD. ERROR     | 9.353     | 11.951   | 7.546    | 5.807    |
| VARIANCE       | 15571.413 | 9569.061 | 4669.074 | 3271.310 |
| UPPER 95% C.L. | 215.529   | 247.723  | 161.497  | 99.722   |
| LOWER 95% C.L. | 178.865   | 200.875  | 131.917  | 76.958   |
| C.V.           | 0.633     | 0.436    | 0.466    | 0.647    |
| RANGE          | 600       | 387      | 271      | 255      |
| MINIMUM        | 10        | 62       | 16       | 11       |
| MAXIMUM        | 610       | 449      | 287      | 266      |
| N OF CASES     | 178       | . 67     | 82       | 97       |

Table E8. Summary statistics for polychaete taxa.

|                | POTAX20 | POTAX50 | POTAX80  | POTAX100 |
|----------------|---------|---------|----------|----------|
|                |         |         |          | ,        |
| MEAN           | 33.959  | 37.544  | - 27.926 | 15.687   |
| STANDARD DEV   | 13.26   | 10.356  | 7.989    | 6.295    |
| STD. ERROR     | 0.954   | 1.256   | 0.888    | 0.633    |
| UPPER 95% C.L. | 35.829  | 40.014  | 29.666   | 16.928   |
| LOWER 95% C.L. | 32,089  | 35.098  | 26.186   | 14.446   |
| VARIANCE       | 175.832 | 107.237 | 63.819   | 39.625   |
| C.V.           | 0.39    | 0.276   | 0.286    | 0.401    |
| RANGE          | 59      | 41      | 35       | 25       |
| MINIMUM        | 6       | 19      | 9        | . 5      |
| MAXIMUM        | 65      | 60      | 44       | 30       |
| N OF CASES     | 193     | 68      | 81       | 99       |

Table E9. Summary statistics for mollusca abundance.

| a de la companya de | MOAB20   | MOAB50   | MOAB80    | MOAB100  |
|---------------------------------------------------------------------------------------------------------------|----------|----------|-----------|----------|
|                                                                                                               |          |          |           |          |
| MEAN                                                                                                          | 87.748   | 109.523  | 111.231   | 64.071   |
| STANDARD DEV                                                                                                  | 61.800   | 82.206   | 120.448   | 39.922   |
| STD. ERROR                                                                                                    | 4.632    | 10.196   | 13.638    | 4.033    |
| VARIANCE                                                                                                      | 3819.300 | 6757.785 | 14507.686 | 1593.778 |
| UPPER 95% C.L.                                                                                                | 96.827   | 129.507  | 137.961   | 71.976   |
| LOWER 95% C.L.                                                                                                | 78.669   | 89.539   | 84.501    | 56.166   |
| C.V.                                                                                                          | 0.704    | 0.751    | 1.083     | 0.623    |
| RANGE                                                                                                         | 300      | 330      | 503       | 166      |
| MINIMUM                                                                                                       | . 18     | 16       | 0         | 5        |
| MAXIMUM                                                                                                       | 318      | 346      | 503       | 171      |
| N OF CASES                                                                                                    | 178      | 65       | 78        | 98       |

Table E10. Summary statistics for mollusc taxa.

|                | MOTAX20 | MOTAX50 | MOTAX80 | MOTAX100      |
|----------------|---------|---------|---------|---------------|
| MEAN           | 16.265  | 13.061  | 12.902  | 0.22          |
| STANDARD DEV   | 4.584   | 3.721   | 4.893   | 9.32<br>3.378 |
| STD. ERROR     | 0.337   | 0.458   | 0.54    | 0.338         |
| UPPER 95% C.L. | 16.926  | 13.959  | 13.960  | 9.982         |
| LOWER 95% C.L. | 15.604  | 12.163  | 11.844  | 8.658         |
| VARIANCE       | 21.011  | 13.842  | 23.941  | 11.412        |
| C.V.           | 0.282   | 0.285   | 0.379   | 0.362         |
| RANGE          | 23      | 16      | 22      | 13            |
| MINIMUM        | . 3     | . 5     | 2       | 3             |
| MAXIMUM        | 26      | 21      | 24      | 16            |
| N OF CASES     | 185     | 66      | 82      | 100           |

Table E11. Summary statistics for Shannon-Wiener diversity index.

|                | H20   | H50   | H80   | H100  |
|----------------|-------|-------|-------|-------|
|                |       |       |       |       |
| MEAN           | 1.34  | 1.314 | 1.231 | 1.058 |
| STANDARD DEV   | 0.228 | 0.218 | 0.217 | 0.176 |
| STD. ERROR     | 0.017 | 0.026 | 0.023 | 0.018 |
| UPPER 95% C.L. | 1.373 | 1.365 | 1.276 | 1.093 |
| LOWER 95% C.L. | 1.307 | 1.263 | 1.186 | 1.073 |
| VARIANCE       | 0.052 | 0.048 | 0.047 | 0.031 |
| C.V.           | 0.17  | 0.166 | 0.176 | 0.166 |
| RANGE          | 1.068 | 0.972 | 0.806 | 0.649 |
| MINIMUM        | 0.727 | 0.622 | 0.832 | 0.681 |
| MAXIMUM        | 1.795 | 1.594 | 1.638 | 1.33  |
| N OF CASES     | 185   | 69    | . 86  | 95    |

Table E12. Summary statistics for Pelou's evenness index.

|                | J20   | J50   | J80   | J100  |
|----------------|-------|-------|-------|-------|
|                |       |       |       |       |
| MEAN           | 0.737 | 0.724 | 0.739 | 0.709 |
| STANDARD DEV   | 0.090 | 0.096 | 0.012 | 0.109 |
| STD. ERROR     | 0.007 | 0.012 | 0.012 | 0.011 |
| VARIANCE       | 0.008 | 0.009 | 0.017 | 0.012 |
| UPPER 95% C.L. | 0.751 | 0.762 | 0.749 | 0.731 |
| LOWER 95% C.L. | 0.723 | 0.716 | 0.695 | 0.687 |
| C.V.           | 0.122 | 0.132 | 0.148 | 0.153 |
| RANGE          | 0.376 | 0.454 | 0.377 | 0.409 |
| MINIMUM        | 0.533 | 0.421 | 0.545 | 0.481 |
| MAXIMUM        | 0.909 | 0.875 | 0.922 | 0.890 |
| N OF CASES     | 182   | 69    | 86    | 99    |

Table E13. Summary statistics for infaunal trophic index.

|                | ITI20  | ITI50  | ITI80  | IT1100 |
|----------------|--------|--------|--------|--------|
|                |        |        |        |        |
| MEAN           | 74.377 | 71.585 | 70.229 | 77.198 |
| STANDARD DEV   | 6.703  | 5.67   | 7.004  | 9,934  |
| STD. ERROR     | 0.495  | 0.703  | 0.769  | 0.988  |
| UPPER 95% C.L. | 75.307 | 72.963 | 71.730 | 79.134 |
| LOWER 95% C.L. | 73.367 | 70.207 | 68.728 | 75.262 |
| VARIANCE       | 44.928 | 32,153 | 49.057 | 98.680 |
| C.V.           | 0.09   | 0.079  | 0.1    | 0.129  |
| RANGE          | 28     | 18     | 32     | 42     |
| MINIMUM        | 60     | 66     | 52     | 54     |
| MAXIMUM        | 88     | 84     | 84     | 96     |
| N OF CASES     | 183    | . 65   | 83     | 101    |

Table 14. Summary statistics for Swartz's dominance index.

|                | SDI20  | SD150  | SDI80  | SDI100 |
|----------------|--------|--------|--------|--------|
|                |        |        |        |        |
| MEAN           | 14.194 | 13.779 | 11.024 | 6.939  |
| STANDARD DEV   | 7.377  | 5.439  | 5.493  | 2.693  |
| STD. ERROR     | 0.541  | 0.66   | 0.599  | 0.272  |
| UPPER 95% C.L. | 15.254 | 15.073 | 12.198 | 7.472  |
| LOWER 95% C.L. | 13.134 | 12.485 | 9.85   | 6.406  |
| VARIANCE       | 54.416 | 29.577 | 30.168 | 7.254  |
| C.V.           | 0.52   | 0.395  | 0.498  | 0.388  |
| RANGE          | 35     | 22     | . 18   | 10     |
| MINIMUM        | 2      | 2      | 4      | 2      |
| MAXIMUM        | 37     | 24     | 22     | 12     |
| N OF CASES     | 186    | 68     | 84     | 98     |

## APPENDIX F FREQUENCY DISTRIBUTIONS OF BENTHIC ENDPOINT DATA FOR UNCONTAMINATED HABITAT CATEGORIES

|  | • |   |
|--|---|---|
|  |   |   |
|  |   | : |
|  |   |   |
|  |   |   |
|  |   |   |
|  |   |   |
|  |   |   |
|  |   | · |
|  |   |   |
|  |   |   |
|  |   |   |
|  |   |   |
|  |   |   |
|  |   |   |
|  |   |   |
|  |   |   |
|  |   |   |
|  |   |   |
|  |   |   |

Appendix F1
0-20% Fines Habitat Category

|   |   |  |   | • |   |   |
|---|---|--|---|---|---|---|
|   |   |  |   |   |   |   |
|   |   |  |   |   |   |   |
|   |   |  |   |   |   |   |
|   |   |  |   |   |   |   |
|   |   |  | · |   |   |   |
|   |   |  |   |   |   |   |
|   |   |  |   |   |   |   |
|   |   |  |   |   |   |   |
|   |   |  |   |   | • |   |
|   |   |  |   |   |   |   |
|   |   |  |   |   |   |   |
|   |   |  |   |   |   |   |
|   |   |  |   |   |   |   |
|   |   |  |   |   |   | ( |
|   | · |  |   |   |   |   |
| • |   |  |   |   |   |   |





Frequency Distribution Arthropod Abundance: Fines <20%



Frequency Distribution No. of Arthropod Taxa: Fines <20%





Frequency Distribution No. of Annelid Taxa: Fines <20%





Frequency Distribution No. of Molluscan Taxa: Fines <20%



Frequency Distribution Amphipod Abundance: Fines <20%



Frequency Distribution No. of Amphipod Taxa: Fines <20%













| · |   |                                                                                                                                                                                                                                 |   |     |   |
|---|---|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|-----|---|
|   |   | ·                                                                                                                                                                                                                               |   |     |   |
|   | · |                                                                                                                                                                                                                                 |   |     |   |
|   |   |                                                                                                                                                                                                                                 |   |     |   |
|   | ~ |                                                                                                                                                                                                                                 | , | ·   | • |
|   |   |                                                                                                                                                                                                                                 |   |     |   |
|   |   |                                                                                                                                                                                                                                 |   |     |   |
|   |   |                                                                                                                                                                                                                                 |   |     |   |
|   |   | e de la companya de la companya de la companya de la companya de la companya de la companya de la companya de<br>La companya de la co |   |     |   |
|   |   |                                                                                                                                                                                                                                 |   |     |   |
|   |   |                                                                                                                                                                                                                                 |   | · . |   |
|   |   |                                                                                                                                                                                                                                 |   |     |   |
|   |   | •                                                                                                                                                                                                                               |   |     |   |

Appendix F2 20-50% Fines Habitat Category

|   | , |   |  |
|---|---|---|--|
|   |   |   |  |
|   |   |   |  |
|   |   |   |  |
|   |   |   |  |
|   | · |   |  |
|   |   |   |  |
| - |   |   |  |
| · |   |   |  |
|   |   |   |  |
|   |   |   |  |
|   |   | · |  |



## Frequency Distribution TOTAX-50: Fines 20-50%































Appendix F3
50-80% Fines Habitat Category

|  | 4 |
|--|---|
|  |   |
|  |   |
|  |   |
|  |   |
|  |   |
|  | • |
|  |   |
|  |   |
|  |   |
|  |   |
|  |   |
|  |   |
|  |   |
|  |   |
|  |   |
|  |   |
|  |   |
|  |   |
|  |   |
|  |   |
|  |   |
|  |   |
|  |   |
|  |   |
|  |   |



Frequency Distribution TOTAX-80: Fines 50-80%



























Appendix F4
80-100% Fines Habitat Category

|                                                     |                        | 大大说,"是是一个大,我们在这个一样,一个大小,我们一样,一个一个一个大大大,不是一个人,不是一个一个                  | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |
|-----------------------------------------------------|------------------------|----------------------------------------------------------------------|---------------------------------------|
|                                                     |                        |                                                                      |                                       |
|                                                     |                        |                                                                      |                                       |
|                                                     |                        |                                                                      |                                       |
|                                                     |                        | 일일(19일) 그리고 얼마나 이렇게 되는 그리는 이 기가를 받는                                  |                                       |
|                                                     | 电电影 化氯化银矿 医乳腺管 经收益     | 연락은 항상을 살아들은 하는 시간이 되는 것이 같은 말로 되었다.                                 |                                       |
|                                                     |                        | 그래면 그리고 하다는 것은 물로 말라는 그 그리고 있는데 나를 받았다.                              |                                       |
|                                                     |                        |                                                                      | 스타면 병                                 |
|                                                     |                        |                                                                      |                                       |
|                                                     |                        | 일어로 돌려 가는 사람들이 가는 이 분들이는 일 분들이는 글 모르는데                               |                                       |
|                                                     |                        | 강물을 가게 하지 않아 가는 이렇게 그리고 있는 것을 위한 것을 하는 것 같다.                         |                                       |
|                                                     |                        | Heraid Fig. 1984. 그런 하고 1982 1982 1982 1982 1982 1982 1982 1982      | ·音声音 中華                               |
|                                                     | 시작 사람이 들은 하다 하나요?      |                                                                      |                                       |
|                                                     |                        | 경찰하다 아들면 되는 것은 그들이 하는 모든 사람들이 되었다.                                   |                                       |
|                                                     |                        | 일이 하는 것 같은 그 사람이 하는 것 같아 없는 것 같아 되는 일 때 하는                           |                                       |
| 그는 그림으로 된 신경되어 본 경기                                 |                        | 그리면 그리는 얼마를 하는 일이 되는 그리면 하면 되고 있는 것 같습니다. 누                          |                                       |
| 그는 그는 얼굴하는 그를 그루고싶다.                                | 발생들은 영화를 받았는데 다        | 그 있는 일을 잃어 가득하는 그들은 하는 일 사람들이 만든 것이 없는 것이다.                          |                                       |
| 그는 지수를 가게 된 것 같아요?                                  |                        | 그들 물수를 보고 말했다고 하는 사람들은 본 이번 하고 하는 물을 받는                              |                                       |
| 二十二 化氯化二甲基 经证券收益 医                                  |                        |                                                                      |                                       |
|                                                     |                        |                                                                      |                                       |
|                                                     |                        | B리하는 물론 하다는 어린하고, 그 사는 트리는 스타트 회사 도는 단.                              |                                       |
|                                                     |                        |                                                                      |                                       |
|                                                     |                        |                                                                      |                                       |
|                                                     |                        |                                                                      |                                       |
|                                                     |                        | 병상으로 눈을 만들고 있는 하는 병을 그렇는데 그들도 원각을 모음하다                               | ····································· |
|                                                     |                        |                                                                      |                                       |
|                                                     |                        |                                                                      |                                       |
|                                                     |                        |                                                                      |                                       |
|                                                     | 나는 아내는 얼마를 다 하를 다 되었다. |                                                                      |                                       |
|                                                     |                        |                                                                      |                                       |
|                                                     | 등 등 기계 회사 회사 가는 것 같다.  |                                                                      |                                       |
|                                                     |                        | [설문화] - [1] - [설문화] - [설문화 - [설문화] - [설문화] - [설문화]                   |                                       |
|                                                     |                        |                                                                      |                                       |
|                                                     |                        | 등학문들은 사람이 다른 등학생 동안에 가장 말이 지수를 받는데 한 심하다.                            |                                       |
|                                                     |                        | 요즘 사람은 사이 전쟁으로 하는데 그렇게 된 요요하셨다. 보고 없다                                |                                       |
|                                                     | 하는 경상하는 보는 보는 다음이 되고   |                                                                      |                                       |
|                                                     | 그는 이 그는 그가 그 가는 것 같다.  |                                                                      |                                       |
|                                                     |                        | 프랑스 등 경기는 가는 불작을 통한 학생들 등을 가고 보는 것이라고 있다.                            |                                       |
|                                                     |                        | 항문 트립트를 살아 그렇게 하는 보면 하나는 사람은 사람들은 나는 사람이다.                           |                                       |
|                                                     |                        |                                                                      |                                       |
| 化二十二烷基 医细胞 医二甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基 |                        | 医抗性性 经收益 医乳腺性 经收益 医多种性 医电影 化二氯甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基 |                                       |
|                                                     |                        |                                                                      |                                       |
|                                                     |                        |                                                                      |                                       |
|                                                     |                        |                                                                      |                                       |
|                                                     |                        |                                                                      |                                       |
|                                                     |                        |                                                                      |                                       |
|                                                     |                        |                                                                      |                                       |
|                                                     |                        |                                                                      |                                       |
|                                                     |                        |                                                                      |                                       |
|                                                     |                        |                                                                      |                                       |
|                                                     |                        |                                                                      |                                       |
|                                                     |                        |                                                                      |                                       |
|                                                     |                        |                                                                      |                                       |
|                                                     |                        |                                                                      |                                       |
|                                                     |                        |                                                                      |                                       |
|                                                     |                        |                                                                      |                                       |
|                                                     |                        |                                                                      |                                       |
|                                                     |                        |                                                                      |                                       |
|                                                     |                        |                                                                      |                                       |
|                                                     |                        |                                                                      |                                       |
|                                                     |                        |                                                                      |                                       |
|                                                     |                        |                                                                      |                                       |
|                                                     |                        |                                                                      |                                       |
|                                                     |                        |                                                                      |                                       |
|                                                     |                        |                                                                      |                                       |
|                                                     |                        |                                                                      |                                       |
|                                                     |                        |                                                                      |                                       |
|                                                     |                        |                                                                      |                                       |
|                                                     |                        |                                                                      |                                       |
|                                                     |                        |                                                                      |                                       |
|                                                     |                        |                                                                      |                                       |
|                                                     |                        |                                                                      |                                       |
|                                                     |                        |                                                                      |                                       |
|                                                     |                        |                                                                      |                                       |
|                                                     |                        |                                                                      |                                       |
|                                                     |                        |                                                                      |                                       |
|                                                     |                        |                                                                      |                                       |
|                                                     |                        |                                                                      |                                       |
|                                                     |                        |                                                                      |                                       |





Frequency Distribution ARAB-100: Fines 80-100%



Frequency Distribution ARAB-100: Fines 80-100%

Log 10 transformed



Frequency Distribution ARTAX-100: Fines 80-100%





Frequency Distribution POTAX-100: Fines 80-100%





Frequency Distribution MOTAX-100: Fines 80-100%





Frequency Distribution AMPHITAX-100: Fines 80-100%









