

Chemical Analysis and Toxicity Testing of Spokane River Sediments Collected in October 2000

July 2001

Publication No. 01-03-019 printed on recycled paper

This report is available on the Department of Ecology home page on the World Wide Web at http://www.ecy.wa.gov/biblio/0103019.html

For additional copies of this publication, please contact:

Department of Ecology Publications Distributions Office

Address: PO Box 47600, Olympia WA 98504-7600

E-mail: ecypub@ecy.wa.gov

Phone: (360) 407-7472

Refer to Publication Number 01-03-019

The Department of Ecology is an equal opportunity agency and does not discriminate on the basis of race, creed, color, disability, age, religion, national origin, sex, marital status, disabled veteran's status, Vietnam era veteran's status, or sexual orientation.

If you have special accommodation needs or require this document in alternative format, please contact Joan LeTourneau, Environmental Assessment Program, at (360)-407-6764 (voice). Ecology's telecommunications device for the deaf (TDD) number at Ecology Headquarters is (360) 407-6006.

Chemical Analysis and Toxicity Testing of Spokane River Sediments Collected in October 2000

by Art Johnson and Dale Norton

Environmental Assessment Program Olympia, Washington 98504-7710

July 2001

303(d) listings addressed in this report: Spokane River WA-57-1010 sediment bioassay failure

Publication No. 01-03-019 printed on recycled paper

This page is purposely blank for duplex printing

Table of Contents

	Page
List of Figures and Tables	ii
Abstract	iii
Acknowledgements	iv
Introduction	1
Sampling Site Selection	3
Sampling Methods	9
Analytical Methods and Data Quality	11
Results and Discussion	15
Chemical Data	
Sediment Quality Guidelines	19
Sediment Bioassays	23
Summary and Conclusions	27
References	29

Appendices

- A. Description of Sediment Sampling Sites
- B. Sediment Sample Log
- C. Chain of Custody
- D. Case Narratives and Chemical Data
- E. Test Reports on Bioassays

List of Figures and Tables

Fi	gures Page	<u>3</u>
1.	Spokane River Locations with Highest Reported Zinc, Cadmium, Lead, Total PCBs, or Total PAH Concentrations in Sediment Samples	4
2.	Sampling Site Locations.	5
3.	Sampling Site Location Details	5
Ta	ibles	
1.	Sample Containers, Preservation, and Holding Times)
2.	Analytical Methods	2
3.	Precision of Laboratory Duplicates 13	3
4.	Summary of Results from Chemical Analyses of Spokane River Sediment Samples 1	5
5.	Detection Frequency for Chemicals Analyzed in Spokane River Sediment Samples 13	3
6.	Sediment Quality Guidelines for Adverse Effects Thresholds to Sediment-Dwelling Organisms and Exceedance Factors for Spokane River Sediment Samples)
7.	Chemicals of Potential Concern Based on Comparison with Sediment Quality Guidelines Effects Thresholds	2
8.	Summary of Results from Microtox Bioassays	3
9.	SQS and CSL Exceedance Calculation for Microtox Test	4
10.	Summary of Results from <i>Chironomus</i> Bioassays	5
11.	Summary of Results from <i>Hyalella</i> Bioassays	5
12.	Summary of Indicators for Sediment Toxicity	7

Abstract

Sediment samples from seven sites in the Spokane River drainage and a reference sample from a nearby lake were subjected to chemical analysis and laboratory toxicity tests. The chemicals analyzed included zinc, cadmium, lead, and other metals; semivolatile organic compounds; PCBs; and pesticides (selected samples only). The toxicity tests included bioassays with Microtox® (pore water), the midge *Chironomus tentans*, and the amphipod *Hyalella azteca*. The chemical and biological data concurred in showing toxicity at two sites above Upriver Dam and at a site in lower Long Lake. Although the level of chemical contamination was low in Latah Creek, the sediments were highly toxic to *Hyalella*. The study did not find strong evidence for toxicity in sediments from the Little Spokane River or upper Long Lake.

.

Acknowledgements

The advice and assistance given on this project by Brett Betts, John Roland, and Peter Adolphson of the Ecology Toxics Cleanup Program is very much appreciated. The good work of the staff at the Ecology Manchester Environmental Laboratory is gratefully acknowledged. The final report was formatted by Carol Norsen and Joan LeTourneau.

Introduction

Sampling conducted by the Washington State Department of Ecology (Ecology) and the U.S. Geological Survey (USGS) has shown that sediments in the Spokane River are contaminated with zinc, cadmium, lead, and polychlorinated biphenyls (PCBs). Direct evidence of sediment toxicity is, however, limited. Most of the sediment bioassays that have been conducted have been for samples from the Spokane River Arm of Lake Roosevelt, the least contaminated part of the river (Bortleson et al., 1994). With few exceptions, a thorough analysis for chemical contaminants has also not been done.

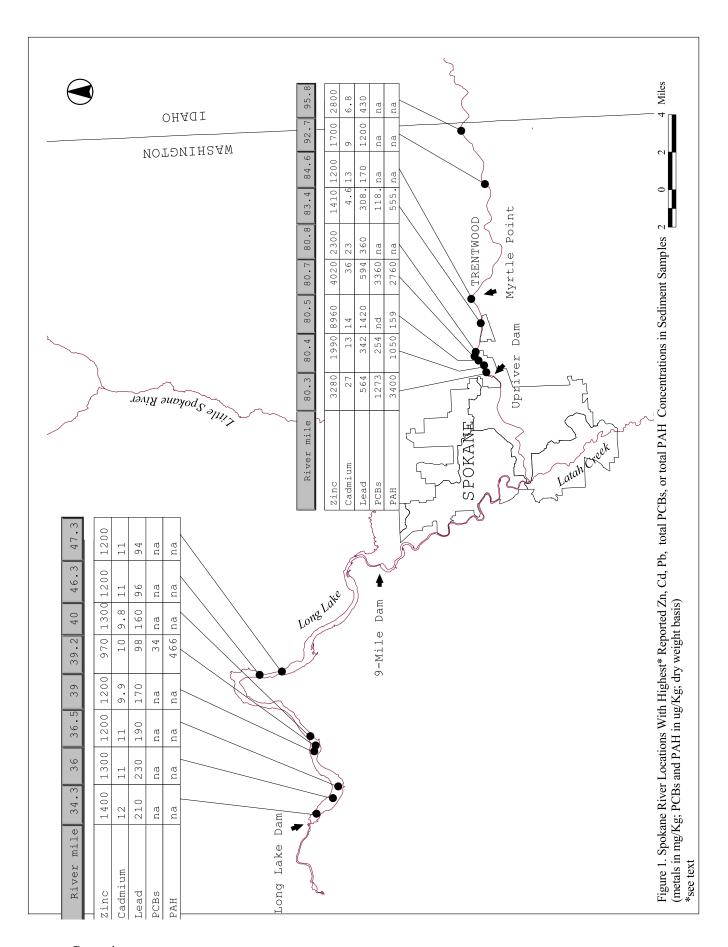
Therefore, the Ecology Toxics Cleanup Program (TCP) initiated a study in the fall of 2000 to more thoroughly assess sediment chemistry and toxicity at selected sites within the Spokane River drainage. The study was conducted by Ecology's Environmental Assessment Program (EAP).

TCP requested that EAP review existing sediment data on the Spokane River to identify the most contaminated, or potentially most contaminated, locations. Eight sites were selected for testing, in consultation with TCP. Field work was conducted during October 23 – 25, 2000. The chemical analyses included zinc, cadmium, lead, and other metals; semivolatile organic compounds; PCBs; and pesticides (selected samples only). Grain size, total organic carbon (TOC), percent solids, and total volatile solids were also determined. Laboratory bioassays were conducted with Microtox® (100% pore water), the midge *Chironomus tentans*, and the amphipod *Hyalella azteca*. The Microtox test measures changes in light output of a bioluminescent marine bacterium, *Vibrio fischeri*. The *Chironomus* and *Hyalella* bioassays were relatively new long-term tests, 20- and 28-days respectively, with mortality and growth as the endpoints.

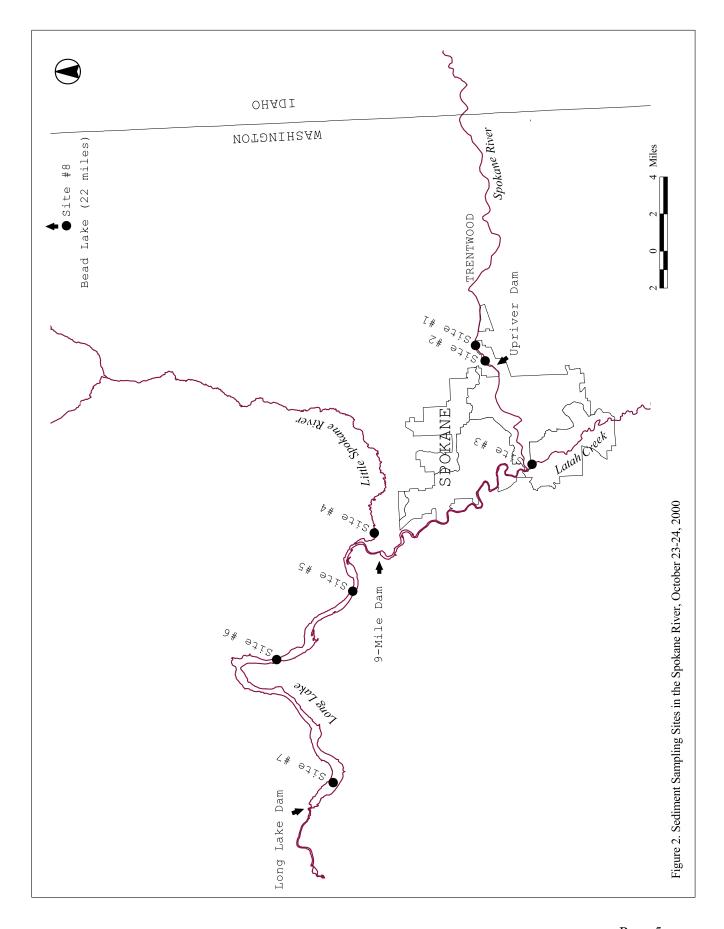
This page is purposely b	lank for duplex printing	

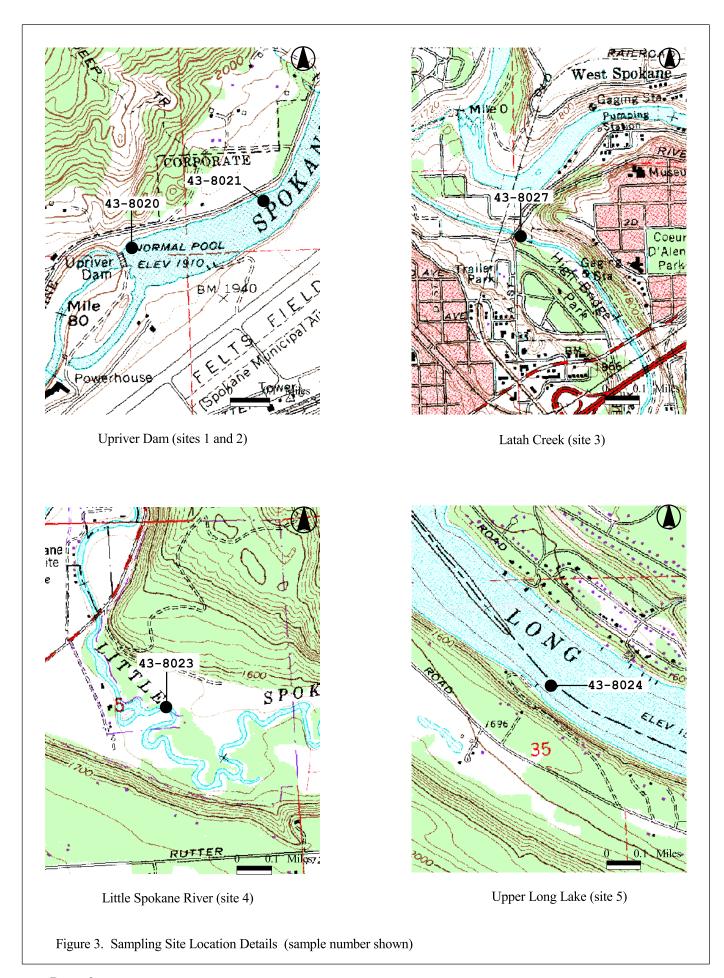
Sampling Site Selection

The following sources of chemical data on Spokane River sediments were reviewed: Bortleson et al. (1994), Johnson et al. (1994), Serdar et al. (1994), EILS (1995), Johnson (1999, 2000), and Grosbois et al. (2001). Figure 1 shows the locations identified through these reports as having the ten highest concentrations of zinc, cadmium, lead, total PCBs, or total polyaromatic hydrocarbons (PAH), and having prominent areas of sediment deposition.

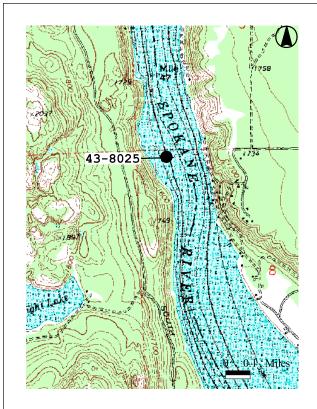

This figure does not include a series of 1998 USGS samples between Myrtle Point (river mile 84.6) and the state line which were taken from small, scattered deposits of material (Horowitz, 1999). The zinc, cadmium, and lead concentrations in some of these samples were in the same range as in the upper river samples plotted in Figure 1 (Grosbois et al., 2001). Also not included were three samples from isolated pockets of bottom sediment material between Upriver Dam (river mile 80.2) and Monroe Street Dam (river mile 74.2) that were somewhat elevated in total PCBs (31 – 390 ug/Kg) (EILS, 1995). These sites are in reaches that are largely non-depositional.

As shown in Figure 1, the most contaminated sediments have been found above Upriver Dam. While metals concentrations continue to be high up to and beyond the state line because of sources in Idaho, PCB concentrations above Trentwood are generally low, major historical sources being located in Trentwood. PAH analysis in the reach between Upriver Dam and the state line has been limited to sediments near the dam, with elevated concentrations being found at two sites.

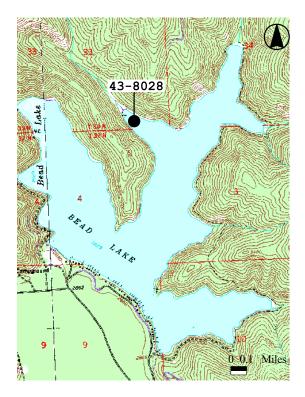

Further downstream, the reach between Latah Creek and Nine-Mile Dam (river mile 58.1) has not been sampled extensively, but appears to have relatively low levels of contamination. Downstream of Nine-Mile Dam, the middle and lower parts of Long Lake have zinc and cadmium concentrations comparable to sediments in the upper river. Two notable tributaries, Latah Creek and the Little Spokane River, contribute suspended and bedload sediment to the river above Long Lake. Long Lake reservoir is a prominent area of sediment deposition within the river. PCBs and PAH have only been analyzed at two locations in Long Lake (river miles 39.2 and 50.0), and concentrations have been moderate to low. The lowest metals, PCB, and PAH concentrations in the mainstem occur in the Spokane Arm.


Based on this information, the eight sites listed below were selected for testing (see Figures 2 and 3).

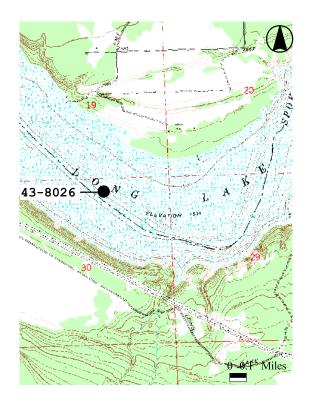
- Site 1: Above Upriver Dam river mile 80.7
- Site 2: At Upriver Dam river mile 80.3
- Site 3: Latah Creek at mouth river mile 72.2
- Site 4: Little Spokane R. at mouth river mile 56.4
- Site 5: Upper Long Lake river mile 53.6
- Site 6: Middle Long Lake river mile 46.8
- Site 7: Lower Long Lake river mile 35.2
- Site 8: Bead Lake (reference sediment)



Page 4



Page 6



Middle Long Lake (site 6)

Bead Lake (site 8)

Figure 3. (continued)

Lower Long Lake (site 7)

Because of the generally non-depositional character of the river between Trentwood and the state line and the limited presence of fine-grained (sand size or less) subaqueous sediment accumulations, no sampling sites were selected in this reach. During the field work, an effort was made to locate submerged deposits of uniformly fine material at the Star Road/Island Bar complex near the state line (river mile 94.7) – where EPA soil samples have averaged 1,410 ug/Kg lead (EPA, 2000a) – but none could be located.

Sites 1 and 2 above Upriver Dam are among the areas most highly contaminated with metals, PCBs, and PAH. Although relatively close together, two sampling sites were selected because of the physical and chemical heterogeneity of the sediments behind the dam (Johnson, 2000).

TCP requested that samples be analyzed from Latah Creek (site 3), a major source of Palouse-derived sediment to the reach behind Nine-Mile Dam. Ecology and USGS analyzed metals in two sediment samples collected at the mouth of Latah Creek and found low concentrations of zinc (45 - 64 mg/Kg), cadmium (<0.1 - <0.5 mg/Kg), and lead (8 - 33 mg/Kg) (Johnson, 1999; Grosbois et al., 2001). Organic compounds were not analyzed at this location.

TCP also requested that sampling be done at the mouth of the Little Spokane River (site 4). Ecology and USGS have analyzed metals in two sediment samples collected at this location and found low concentrations of zinc (60 - 97 mg/Kg), cadmium (<0.1 - 0.1 mg/Kg), and lead (10 - 24 mg/Kg) (Johnson, 1999; Grosbois et al., 2001). Organic compounds have not been analyzed at this location.

Three sites were selected in Long Lake. Site 7 near Long Lake Dam has the highest zinc, cadmium, and lead concentrations in the lake. Relatively high levels of zinc, cadmium, and lead extend upstream to the middle part of the lake at site 6. TCP requested that a third site (5) also be sampled in the upper lake. The site was selected to be near USGS site SRG-8 which has the highest metals concentrations reported for this part of the river: 800 mg/Kg zinc, 7.9 mg/Kg cadmium, and 68 mg/Kg lead (Grosbois et al., 2001).

Sediment bioassays had been conducted previously at two of the sampling sites selected for the present study. Site 1 above Upriver Dam is on the 1998 303(d) water quality limited list based on a sediment sample bioassayed with Microtox and *Hyalella* (Batts and Johnson, 1994). Bioassays conducted for the same study on a sediment sample collected near site 7 in lower Long Lake indicated little or no toxicity. The metals concentrations in that sample, however, were much lower than those previously analyzed from this area of the lake. Results from a third sediment bioassay on a sample from the Spokane Arm also resulted in a 303(d) listing.

TCP had an interest in identifying a reference sediment with natural physical and chemical characteristics comparable to mainstem Spokane River sediments. TCP proposed Bead Lake (site 8) in Pend Oreille County, approximately 40 miles northeast of Spokane, as a reference for the present study. Bead is a 200-acre lake surrounded by U.S. Forest Service (USFS) land, with a few summer homes/cabins along the southwest shore. USFS has analyzed lead and PAH in the lake sediments. The levels are reported to be very low, but the data are not presently available (Wasson, 2000).

A detailed description of each sampling site can be found in Appendix A.

Sampling Methods

The samples from sites 1, 2, 5, 6, 7, and 8 were collected from an Ecology vessel using a 0.1 m² stainless steel van Veen grab. Sampling methods were consistent with PSEP protocols (EPA, 1996) and requirements of the Sediment Management Standards (Ecology, 1995a,b). Site 3 and 4 samples were collected by hand with a stainless steel scoop or stainless steel pipe dredge, respectively. Sampling sites were located and positions recorded using differentially-corrected GPS and landmarks. A grab was considered acceptable if not over-filled with sediment, overlying water was present and not excessively turbid, the sediment surface was relatively flat, and desired depth penetration has been achieved. A field log was maintained during sampling (Appendix B).

All samples were composites of the top 10 cm layer (Ecology, 1995; EPA, 2000b). After siphoning off overlying water, the top10 cm of sediment from each of three-to-five grabs per sampling site (seven or more for the pipe dredge and scoops) were removed with stainless steel scoops, placed in a stainless steel bowl, and homogenized by stirring. Material touching the side walls of the grab was not taken. Samples for the Microtox test were taken with minimum disturbance of the sediment, not homogenized, and the sample containers filled completely (no headspace) to minimize changes in pore water chemistry.

Subsamples of the homogenized sediment were placed in glass jars with Teflon lid liners, cleaned to EPA QA/QC specifications (EPA, 1990). Sample containers, preservation, and holding times are shown in Table 1.

Stainless steel implements used to collect and manipulate the sediments were cleaned by washing with Liquinox detergent, followed by sequential rinses with tap water, dilute nitric acid, deionized water, and pesticide-grade acetone. The equipment was then air-dried and wrapped in aluminum foil. Between-sample cleaning of the van Veen grab consisted of thorough brushing with on-site water.

Sediment samples were placed on ice immediately after collection and transported to the Ecology Manchester Environmental Laboratory within two to three days. Chain-of-custody was maintained (Appendix C).

Table 1. Sample Containers, Preservation, and Holding Times

Analysis	Container	Preservation	Holding Time
Chemistry			
Metals	8-oz. glass; TFE-lined lid	4° C in the dark	6 months
Organics	8-oz. glass; TFE-lined lid	"	7/14 days ^b
TOC	4-oz. glass; TFE-lined lid	"	7/14 days
Grain size	8-oz. glass; TFE-lined lid	"	6 months
Bioassays			
Microtox	1-liter glass; TFE-lined lid	4° C in the dark	14 days
Chironomus	1-liter glass; TFE-lined lid ^a	"	14 days
Hyalella	1-liter glass; TFE-lined lid ^a	"	14 days

^a a total of three liters was collected for the *Chironomus* and *Hyalella* tests.

^b extraction/analysis

Analytical Methods and Data Quality

Table 2 shows the analytical methods used and laboratories that did the work.

Manchester Laboratory staff prepared case narratives on the quality of the chemical data for this project. The reviews include an assessment of sample condition on receipt at the laboratory, compliance with holding times, and results for instrument calibration, procedural blanks, laboratory control samples, surrogates, matrix spikes, and matrix spike duplicates.

No significant problems were encountered in the chemical analyses, and the data are usable as qualified. The case narratives and complete chemical data showing reporting limits of undetected organic compounds are in Appendix D.

The precision of the chemical data reported here can be gauged from results of analyzing duplicate aliquots of selected sediment samples, summarized in Table 3. In most instances, the relative percent difference between duplicates was less than 20%. For those contaminants of greatest concern in the study area – zinc, cadmium, lead, and PCB-1248 – the duplicates agreed within 1%. Poor precision was indicated for dibenzofuran (49%) and benzoic acid (86%). A duplicate analysis was not done for pesticides.

Appendix E contains the bioassay laboratories' descriptions of the procedures used, test conditions, and results for reference toxicants and laboratory controls. Peter Adolphson of TCP reviewed the data packages and concluded that the tests were performed adequately. The raw data from the bioassays are on file at Ecology Headquarters.

Table 2. Analytical Methods

Analysis	Method	Laboratory
Chemistry		
Zinc	ICP - SW6010	Manchester
Cadmium	ICP - SW6010	"
Lead	ICP - SW6010	"
Antimony	ICP - SW6010	"
Beryllium	ICP - SW6010	"
Chromium	ICP - SW6010	"
Copper	ICP - SW6010	"
Nickel	ICP - SW6010	"
Silver	ICP - SW6010	"
Iron	ICP - SW6010	"
Aluminum	ICP - SW6010	"
Selenium	GFAA - SW7740	"
Thallium	GFAA - SW7841	"
Arsenic	GFFA - SW7060	"
Mercury	CVAA - EPA 245.5	"
Semivolatiles	GC/MS - SW8270	"
PCBs	GC/ECD - SW8082	"
OP and N pesticides	GC/AED - SW8085	"
OC pesticides	GC/ECD - SW8081	"
Herbicides	GC/AED - SW8085	"
Total Organic Carbon	Combustion/CO ² - PSEP (1996)	"
Percent Solids	Gravimetric - EPA 160.3	"
Total Volatile Solids	Gravimetric - EPA 160.4	"
Grain Size	Sieve & Pipet - PSEP (1996)	Rosa Environmental
Bioassays		
Microtox pore water	Ecology Protocol (Adolphson, 2000)	Parametrix
Hyalella 28-day	Method 100.4 (EPA, 2000b)	Northwestern Aquatic Sciences
Chironomus 20-day	Method 100.5 (EPA, 2000b)	"

Table 3. Precision of Laboratory Duplicates

[Only detected semivolatiles are shown. Metals concentrations are in mg/Kg; organics are in ug/Kg; dry weight. Metals sample was 438026; organics sample was 438020.]

Analyte	Duplicate #1	Duplicate #2	RPD*
Metals			
Aluminum	31500	27200	15%
Antimony	5.2 J	6.3	19%
Beryllium	0.5 U	0.5 U	0%
Cadmium	20.6	20.4	1%
Chromium	33.6	30.2	11%
Copper	40.1	38.9	3%
Iron	30500	28000	9%
Lead	200	200	0%
Nickel	20.1	18.5	8%
Silver	4.9	4.0	20%
Zinc	1840	1840	0%
Arsenic	16.4	15.2	8%
Selenium	0.42	0.46	9%
Thallium	0.3 U	0.3 U	ND
Mercury	0.300	0.327	9%
Organics			
Total LPAH	1444	1484	3%
Total HPAH	1360	1593	16%
Phenol	214	205	4%
4-Methylphenol	1200	1190	1%
Diethylphthalate	171 UJ	187	>9%
Di-N-butylphthalate	65 UJ	84	>26%
Bis(2-ethylhexyl)phthalate	165 UJ	165	>0%
1,2-Dichlorobenzene	6.4 J	5.3	19%
1,4-Dichlorobenzene	10 J	7.8 J	25%
Retene	4930	5070	3%
Dibenzofuran	45	74	49%
Carbazole	34	31	9%
Benzyl alcohol	83	67	21%
Benzoic acid	578 UJ	231 J	>86%
PCB-1248	1400	1400	0%
PCB-1260	31	27	14%

^{*}relative percent difference (range between duplicates as percent of duplicate mean)

U = not detected at or above the reported result

J = estimated concentration

UJ = not detected at or above the reported estimated result

ND = not detected

This page is purposely blank for duplex printing

Results and Discussion

Chemical Data

Results from the chemical analyses conducted on Spokane River, tributary, and reference sediments are summarized in Table 4

The sediments at most of the sampling sites consisted primarily of sand (>76%). Finer material was encountered in middle and lower Long Lake, where the sediments are largely silt and clay (>96%). TOC was low in Latah Creek, the Little Spokane River, and upper Long Lake (0.2 - 0.5%) compared to other sites (2.3 - 6.7%).

The concentrations of zinc, cadmium, and lead in mainstem sediments were consistent with the historical data for these locations (see Figure 1). The highest concentrations occurred in the sample taken just behind Upriver Dam (site 2). Elevated arsenic and mercury concentrations were also measured at this site, as well as in lower Long Lake. For most of the metals analyzed, there appeared to be a trend toward increasing concentrations going from upper to lower Long Lake. Lower Long Lake (site 7) had the highest concentrations of iron, aluminum, chromium, copper, nickel, arsenic, antimony, and silver among the eight sites sampled (Table 5). This trend may be explained by the fact that finer grained sediments typically contain the majority of the metals associated with sediments in aquatic environments (Horowitz, 1985). Metals concentrations in Latah Creek and the Little Spokane River were low and comparable to Bead Lake.

Thirty-one semivolatile compounds were detected in the sediment samples. The largest number of compounds and, in most cases, the highest concentrations occurred in the sample behind Upriver Dam. The most commonly detected semivolatiles (five or more sites) were PAH, retene, 4-methylphenol, phenol, and dibenzofuran (Table 5). The highest concentrations of these compounds were found behind Upriver Dam or in the sample further above the dam (site 1, retene). Petroleum and combustion of fossil fuel are sources of PAH. Retene, 4-methylphenol, and dibenzofuran are often associated with wood waste. Wood fragments were noted in these samples (Appendix B).

PCBs were detected in all mainstem sediment samples, but not in Latah Creek, the Little Spokane River, or in Bead Lake. The highest concentrations again occurred at the two sites above Upriver Dam, where total PCBs were 1,307 - 1,431 ug/Kg. Previous PCB analyses at these sites had shown similar levels (Figure 1). PCB concentrations were much lower in Long Lake (2.0 - 99 ug/Kg) total PCBs and, as with metals, appeared to increase in a downstream direction.

Pesticide analysis was limited to the samples from Latah Creek and upper and lower Long Lake. Of the 114 chemicals analyzed (Appendix D), only DDE, a DDT breakdown product, was detected and only in lower Long Lake. The concentration was 4.1 ug/Kg.

Table 4. Summary of Results from Chemical Analyses of Spokane River Sediment Samples [Only detected semivolatiles and pesticides are shown. Metals concentrations are in mg/Kg; organics are in ug/Kg; dry weight]

	Above	At		Little	Upper	Middle	Lower	
Location:		Upriver	Latah	Spokane	Long	Long	Long	Bead
Location.	-	-		-	_	_	_	
	Dam	Dam	Creek	River	Lake	Lake	Lake	Lake
Site Number:	1	2	3	4	5	6	7	8
Date (2000):	23-Oct	23-Oct	25-Oct	24-Oct	24-Oct	24-Oct	25-Oct	24-Oct
Sample No. (43-):	8021	8020	8027	8023	8024	8025	8026	8028
Ancillary Parameters (%)								
Gravel (>2mm)	1.5	2.3	0.8	3.4	0.6	0.6	0.0	1.3
Sand (2mm - 62um)	96.0	76.3	97.3	91.3	80.5	3.1	3.6	80.7
Silt (62um - 4um)	0.5	16.4	1.8	4.6	15.9	81.5	48.9	12.8
Clay (<4um)	2.1	5.0	0.2	0.7	3.0	14.8	47.5	5.2
Total Organic Carbon	2.5	6.7	0.3	0.2	0.5	2.3	2.6	3.8
Total Volatile Solids	4.3	4.6	1.1	0.9	1.3	2.8	2.7	1.7
Solids	44	30	77	75	66	43	31	26
Metals								
Iron	14700	17600	17800	12100	17000	24600	29200	14500
Aluminum	10800	14600	8160	8390	9050	20400	29350	11000
Zinc	1650	3010	47	31	391	1130	1840	56
Lead	195	479	5 U	5 U	18	84	200	5 U
Chromium	16	25	14 J	10 J	14	23	32	4.4 J
Copper	13	37	7.2	3.3	8.0	23	40	7.0
Nickel	10	16	8.1	5.0	9.0	14	19	6.5
Cadmium	9.7	23	0.5 U	0.5 U	2.5	11	21	0.5
Arsenic	4.8	13	4.8	7.3	5.3	8.5	16	2.1
Antimony	5 UJ	5.0 J	5 UJ	5 UJ		5.1 J	5.8 J	5 UJ
Silver	2 U	2 U	2.5	2 U	2 U	2 U	4.5	2 U
Selenium	0.3 U	0.61	0.3 U	0.3 U	0.3 U	0.37	0.44	0.3 U
Thallium	0.35	0.3 U						
Beryllium	0.5 UJ	0.5 U						
Mercury	0.080	0.34	0.014	0.008 U	0.024	0.087	0.31	0.030
Low Molecular Weight PAH								
Naphthalene	208	635	3.0 J	6.3 U	6.2 J	108 U	15 J	29
1-Methylnapthalene	15	49	1.5 J	6.3 U	1.5 J	108 U	2.7 J	6.2 J
2-Methylnaphthalene	28	67	2.2 J	6.3 U	2.3 J	108 U	5.6 J	8.8 J
Acenaphthene	8.9	39	5.9 U	6.3 U	1.4 J	108 U	16 U	18 U
Fluorene	19	42	5.9 U	6.3 U	8.5	108 U	20	24
Acenaphthylene	35	156	5.9 U	6.3 U	7.6 UJ	108 U	5.0 J	18 U
Phenanthrene	121	394	5.3 J	2.8 J	34	27 J	29	30
Anthracene	21	59	4.8 J	6.3 U	16	82 J	21	18 U
Total LPAH*	456	1438	17 J	2.8 J	70 J	109 J	98 J	98 J
High Molecular Weight PAF								
Fluoranthene	115	400	5.9 J	4.0 J	48	41 J	55	15 J
Pyrene	120	385	11	6.2 J	51	78 J	64	14 J
Benzo(a)anthracene	24	92	8.6	7.1	35	108 U	35	18 U
Chrysene	47	151	24	2.9 J	40	108 U	57	18 U
Benzo(b)fluoranthene	11 U	119	14	9.9	35	108 U	16 U	18 U
Benzo(k)fluoranthene	52	97	5.9 U	8.5	29	135	16 U	18 U
Benzo(a)pyrene	33	118	11	6.3 U	35	108 U	16 U	18 U
Indeno(1,2,3-cd)pyrene	11 U	15 U	5.9 U	7.0	24 J	108 U	40	18 U
Benzo(ghi)perylene	11 U	15 U	15	8.7	23	108 U	41	18 U
Total HPAH*	391	1360	90 J	54 J	320 J	254 J	292	29 J

Table 4. Chemical Data (cont'd)

Location:	Above Upriver Dam	At Upriver Dam	Latah Creek	Little Spokane River	Upper Long Lake	Middle Long Lake	Lower Long Lake	Bead Lake
Site Number:	1	2	3	4	5	6	7	8
Date (2000):	-	23-Oct	25-Oct	24-Oct	24-Oct	24-Oct	25-Oct	24-Oct
Sample No. (43-):		8020	8027	8023	8024	8025	8026	8028
Sample 140. (43-).	0021	0020	0027	0023	0024	0023	8020	0020
Phenols								
Phenol	149	210	35 UJ	44	31 UJ	108 U	58	54
4-Methylphenol	499	1190	45	26	46	108 U	36	18 U
Phthalate Esters								
Diethylphthalate	160 UJ	187**	20 UJ	16 UJ	25 UJ	231 J	33 UJ	55 UJ
Di-N-butylphthalate	70 UJ	84**	56 UJ	28 UJ	49 UJ	134	25 UJ	1710 E
Bis(2-ethylhexyl)phthalate	98 UJ	165**	101 UJ	45 UJ	92 UJ	433	154 UJ	135 UJ
Butylbenzylphthalate	11 U	15 U	25	6.3 U	7.6 U	108 U	16 U	18 U
Chlorinated Benzenes								
1,2-Dichlorobenzene	11 U	5.9 J	5.9 U	6.3 U	7.6 UJ	108 U	16 U	18 U
1,4-Dichlorobenzene	5.6 J	8.9 J	5.9 U	6.3 U	7.6 UJ	108 U	2.8 J	18 U
Miscellaneous Compounds								
Retene	44200	5000	13	11	171	243	67	71
Dibenzofuran	20	60	5.9 U	3.3 J	7.6 UJ	108 U	5.5 J	15 J
Carbazole	13	33	5.9 U	6.3 U	7.6 J	108 U	16 U	18 U
Benzyl alcohol	11 U	75	13 UJ		7.6 UJ	108 U	16 U	45
Benzoic acid	318 UJ	231** J	131 UJ			2170 U	268 UJ	431 UJ
2,4-Dinitrotoluene	21 U	31 U	12 U	13 U	17	108 U	32 U	37 U
Polychlorinated Biphenyls								
PCB-1016	160 UJ	120 UJ	4.7 U	5.1 U	5.8 U	8.4 U	12 U	13 U
PCB-1221	16 UJ	23 UJ	4.7 U	5.1 U	5.8 U	8.4 U	12 U	13 U
PCB-1232	7.9 UJ	35 UJ	4.7 U	5.1 U	5.8 U	8.4 U	12 U	13 U
PCB-1242	79 UJ	12 UJ	4.7 U	5.1 U	5.8 U	8.4 U	12 U	13 U
PCB-1248	1300	1400	4.7 U	5.1 U	5.8 U	8.3 NJ	_	13 U
PCB-1254	16 UJ	230 UJ	4.7 U	5.1 U	2.0 NJ	8.6 NJ		13 U
PCB-1260	6.8	29	4.7 U	5.1 U	5.8 U	8.4 U	16	13 U
Total PCBs*	1307	1431	ND	ND	2.0 NJ	17 NJ	99	ND
Organochlorine pesticides								
4,4'-DDE	NA	NA	ND	NA	ND	NA	4.1	NA
Organophosphorus pesticides	NA	NA	ND	NA	ND	NA	ND	NA
N-containing pesticides	NA	NA	ND	NA	ND	NA	ND	NA
Herbicides	NA	NA	ND	NA	ND	NA	ND	NA

Detections highlighted in **BOLD**

U = not detected at or above the reported result

J = estimated concentration

UJ = not detected at or above the reported estimated result

NJ = evidence the analyte is present, numerical result is an estimate

ND = not detected

NA = not analyzed

E = concentration exceeds known calibration range, numerical value is an estimate.

^{*} detected compounds only

^{**} not detected in duplicate sample

Table 5. Detection Frequency for Chemicals Analyzed in Spokane River Sediment Samples [Metals concentrations are in mg/Kg; organics are in ug/Kg; dry weight]

	Detection			
Analyte	Frequency	Maximum	Minimum	Location of Maximum
Metals				
Iron	8/8	29200	12100	Lower Long Lake (site 7)
Aluminum	8/8	29350	8160	Lower Long Lake (site 7)
Zinc	8/8	3010	31	Upriver Dam (site 2)
Chromium	8/8	32	4.4	Lower Long Lake (site 7)
Copper	8/8	40	3.3	Lower Long Lake (site 7)
Nickel	8/8	19	5.0	Lower Long Lake (site 7)
Arsenic	8/8	16	2.1	Lower Long Lake (site 7)
Mercury	7/8	0.34	0.008 U	Upriver Dam (site 2)
Cadmium	6/8	23	0.5 U	Upriver Dam (site 2)
Lead	5/8	479	5 U	Upriver Dam (site 2)
Antimony	3/8	5.8	5 UJ	Lower Long Lake (site 7)
Selenium	3/8	0.61	0.3 U	Upriver Dam (site 2)
Silver	2/8	4.5	2 U	Lower Long Lake (site 7)
Thallium	1/8	0.35	0.3 U	Upriver Dam (site 1)
Beryllium	0/8	0.5 U	0.5 U	not detected
Organics				
LPAH	8/8	1438	2.8 J	Upriver Dam (site 2)
НРАН	8/8	1360	29 J	Upriver Dam (site 2)
Retene	8/8	44200	11	Upriver Dam (site 1)
4-Methylphenol	6/8	1190	18 U	Upriver Dam (site 2)
Phenol	5/8	210	31 UJ	Upriver Dam (site 2)
Dibenzofuran	5/8	60	3.3 J	Upriver Dam (site 2)
PCB-1248	4/8	1400	4.7 U	Upriver Dam (site 2)
Di-N-butylphthalate	3/8	1710	25 UJ	Bead Lake (site 8)
1,4-Dichlorobenzene	3/8	8.9 J	2.8 J	Upriver Dam (site 2)
Carbazole	3/8	33	5.9 U	Upriver Dam (site 2)
PCB-1254	3/8	230	2.0 NJ	Lower Long Lake (site 7)
PCB-1260	3/8	29	4.7 U	Upriver Dam (site 2)
Diethylphthalate	2/8	231	16 UJ	Middle Long Lake (site 6)
Bis(2-ethylhexyl)phthalate	2/8	433	45 UJ	Middle Long Lake (site 6)
Benzyl alcohol	2/8	75	6.3 U	Upriver Dam (site 2)
Butylbenzylphthalate	1/8	25	6.3 U	Latah Creek (site 3)
1,2-Dichlorobenzene	1/8	5.8 J	5.9 U	Upriver Dam (site 2)
Benzoic acid	1/8	231	131 UJ	Upriver Dam (site 2)
2,4-Dinitrotoluene	1/8	17	12 U	Upper Long Lake (site 5)
4,4'-DDE	1/3	4.1	0.64 U	Lower Long Lake (site 7)

Detections highlighted in **BOLD**

U = not detected at or above the reported result

J = estimated concentration UJ = not detected at or above the reported estimated result

Sediment Quality Guidelines

There are no Washington State standards or EPA national criteria for chemical contaminants in freshwater sediments. Therefore, as one means of assessing the potential hazard to sediment-dwelling organisms, in addition to the bioassays, the chemical data were compared to sediment quality guidelines from other sources. These are listed below in order of preference.¹

- 1. Lowest Apparent Effect Threshold (Cubbage et al., 1997)
- 2. Consensus-based Threshold Effect Concentrations (MacDonald et al., 2000)
- 3. Lowest Effect Level (Persaud et al., 1993)
- 4. Effects Range Medium (Ingersoll et al., 1996)
- 5. British Columbia Freshwater Sediment Working Guidelines (Nagpal et al., 1995)
- 6. Ecotox Thresholds (EPA, 1996b)
- 7. Washington State Marine Sediment Quality Standards (WAC 174-204)
- 8. Marine Apparent Effects Thresholds (Barrick et al., 1988)

The guidelines used in this assessment are for effects thresholds (i.e., concentrations below which harmful effects on sediment dwelling organisms are not expected to occur). The Cubbage et al. lowest apparent effects thresholds were developed from data on Washington State freshwater sediments. These values were given first preference in comparing to the chemical data. The consensus-based threshold effect concentrations of MacDonald et al. integrate work done by a number of investigators, including Cubbage et al., Persaud et al., and Ingersoll et al., listed above. These values were used wherever a Cubbage et al. value was not available. In an effort to be conservative in assessing the potential for sediment toxicity, the MacDonald et al. values were also used in several instances where they were lower than the Cubbage values. The EPA ecotox thresholds were considered least preferred of the six sets of freshwater guidelines, since these are calculated values based on equilibrium partitioning theory rather than bioassays or benthic invertebrate data as in the other references. Where no freshwater sediment guidelines were available, a Washington State marine standard was used, or, failing that, a marine apparent effects threshold determined by Barrick et al.

Table 6 shows sediment guideline exceedance factors for each of the chemicals detected in the present study. An exceedance factor was calculated as the chemical concentration divided by the selected guideline. A ratio greater than 1 indicates the concentration of that chemical may adversely affect sediment-dwelling organisms. The reporting limit was used in instances where a chemical was not detected at a particular site.

Page 19

¹ TCP is currently funding work to assemble recommended freshwater sediment quality guidelines. Therefore, the present report's approach and conclusions regarding exceedances of sediment guidelines should be considered preliminary (Betts, 2001).

Table 6. Sediment Quality Guidelines for Adverse Effects Thresholds to Sediment-Dwelling Organisms and Exceedance Factors for Spokane River Sediment Samples [exceedances >1 highlighted in BOLD]

	Effects	Above	At		Little	Upper	Middle	Lower	
	Threshold	Upriver	Upriver	Latah	Spokane	Long	Long	Long	Bead
Chemical	Concentration	Dam	Dam	Creek	River	Lake	Lake	Lake	Lake
		(site 1)	(site 2)	(site 3)	(site 4)	(site 5)	(site 6)	(site 7)	(site 8)
Metals (mg/Kg, dry weight)	ght)								
Iron	$20,\!000^a$	0.7	6.0	6.0	9.0	6.0	1.2	1.5	0.7
Aluminum	$58,000^{\mathrm{g}}$	0.2	0.3	0.1	0.1	0.2	9.0	0.5	0.2
Zinc	121 ^b	14	25	6.0	0.3	3.2	9.3	15	0.5
Lead	36 ^b	5.4	13	0.1	0.1	0.5	2.3	9.6	0.1
Chromium	43 ^b	0.4	9.0	0.3	0.2	0.3	0.5	0.7	0.1
Copper	32 ^b	0.4	1.2	0.2	0.1	0.2	0.7	1.2	0.2
Nickel	46°	0.2	0.3	0.2	0.1	0.2	0.3	0.4	0.1
Cadmium	0.99^{b}	8.6	23	0.5	0.5	2.5	11	21	0.5
Arsenic	9.8 ^b	0.5	1.3	0.5	0.7	0.5	6.0	1.6	0.2
Antimony	3^{c}	<1.7	1.7	<1.7	<1.7	<1.7	1.7	1.9	<1.7
Silver	4.5°	<0.4	<0.4	9.0	<0.4	<0.4	<0.4	1.0	<0.4
Selenium	5^{f}	<0.1	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Thallium	na	1	!	!	!	:	!	:	1
Beryllium	na	1	:	1	:	!	!	1	1
Mercury	0.56°	0.1	9.0	<0.1	<0.1	<0.1	0.2	9.0	<0.1
Organics (ug/Kg, dry weight)	eight)								
Total PAH	$1,610^{\rm b}$	<0.1	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Phenol	48°	3.1	4.4	<0.7	6.0	9.0>	<2.3	1.2	1.1
4-Methylphenol	670°	0.7	1.8	<0.1	<0.1	<0.1	<0.2	<0.1	<0.1
Diethylphthalate	$1600^{\rm d}$	<0.1	<0.1	<0.1	<0.1	<0.1	<0.2	<0.1	<0.1
Total PAH	$1,610^{b}$	<0.1	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1

Table 6. Sediment Quality Exceedances (continued)

Chemical	Effects Threshold Concentration	Above Upriver Dam (site 1)	At Upriver Dam (site 2)	Latah Creek (site 3)	Little Spokane River (site 4)	Upper Long Lake (site 5)	Middle Long Lake (site 6)	Lower Long Lake (site 7)	Bead Lake (site 8)
Organics (cont'd) (ug/Kg, dry weight)	ry weight)								
Phenol	48°	3.1	4. 4.	<0.7	6.0	9.0>	<2.3	1.2	1.1
4-Methylphenol	670°	0.7	1.8	<0.1	<0.1	<0.1	<0.2	<0.1	<0.1
Diethylphthalate	$1600^{ m d}$	<0.1	<0.1	<0.1	<0.1	<0.1	<0.2	<0.1	<0.1
Di-N-butylphthalate	43°	<1.6	2.0	<1.3	<0.7	<1.1	3.1	9.0>	40
Bis(2-ethylhexyl)phthalate	750°	<0.1	0.2	<0.1	<0.1	<0.1	9.0	<0.2	<0.2
Butylbenzylphthalate	27000^{d}	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
1,2-Dichlorobenzene	820 ^d	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
1,4-Dichlorobenzene	840^{d}	<0.1	<0.1	<0.1	<0.1	0.1	0.1	<0.1	<0.1
Retene	$1,700^{\rm h}$	26	3.0	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzofuran	$32,000^{\circ}$	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Carbazole	140^{c}	<0.1	0.2	<0.1	<0.1	<0.1	<0.7	<0.1	<0.1
Benzyl alcohol	57°	<0.2	1.3	<0.2	<0.1	<0.1	<1.9	<0.3	8.0
Benzoic acid	$650^{\rm e}$	0.5	0.4	0.2	0.2	0.2	<3.4	0.4	0.7
2,4-Dinitrotoluene	na	;	:	;	;	!	;	!	!
Total PCBs	21^{c}	62	89	<0.2	<0.2	<0.1	8.0	4.7	<0.6
4,4'-DDE	3.2^{b}	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	1.3	<0.1
									Ĭ

^aLowest Effect Level (Persaud et al., 1993)

^bConsensus-based Threshold Effect Concentrations (MacDonald et al., 2000)

^cLowest Apparent Effect Threshold (Cubbage et al., 1997)

^dEcotox Threshold @ 2.4% TOC (EPA, 1996b; exceedances adjusted for TOC content of the sample in question)

^eWashington State Marine Sediment Standard (174-204 WAC)

British Columbia Freshwater Sediment Quality Working Guidelines (Nagpal et al., 1995)

Effects Range Medium (Ingersoll et al., 1996; effects range low guideline in this reference considered unreliable)

¹Marine Apparent Effects Threshold (Barrick et al., 1988)

na = sediment guideline not available

The results of this comparison identify 14 chemicals of potential concern, as summarized below in Table 7. However, seven of these – iron, copper, arsenic, antimony, 4-methylphenol, benzyl alcohol, and DDE – exceeded thresholds by less than a factor of 2. Exceedance factors greater the 2 were limited to zinc, lead, cadmium, phenol, retene, PCBs, and di-N-butylphthalate. The high di-N-butylphthalate concentration in Bead Lake sediments, and resulting large exceedance factor, is unexplained and seems anomalous in light of the lack of anthropogenic sources of this contaminant to the lake.

Table 7. Chemicals of Potential Concern (exceedance factor > 1) Based on Comparison with Sediment Quality Guidelines Effects Thresholds

	Sample Location										
Chemical	Above Upriver Dam (site 1)	At Upriver Dam (site 2)	Latah Creek (site 3)	Little Spokane River (site 4)	Upper Long Lake (site 5)	Middle Long Lake (site 6)	Lower Long Lake (site 7)	Bead Lake (site 8)			
Primary Concern											
Zinc	14	25			3.2	9.3	15				
Lead	5.4	13				2.3	5.6				
Cadmium	9.8	23			2.5	11	21				
Phenol	3.1	4.4					1.2	1.1			
Di-N-butylphthalate		2.0				3.1		40			
Retene	26	3.0									
Total PCBs	62	68					4.7				
Secondary Concern											
Iron						1.2	1.5				
Copper		1.2					1.2				
Arsenic		1.3					1.6				
Antimony		1.7				1.7	1.9				
Benzyl alcohol		1.3									
4,4'-DDE							1.3				

Sediment Bioassays

Results of the Microtox pore water bioassays are summarized in Table 8. In this test, readings of percent change in light emission by *Vibrio* bacteria on exposure to 100% sediment pore water (salinity adjusted) are taken at 5 minutes and 15 minutes. Results were compared to the laboratory control and the Bead Lake reference sediment.

Toxicity was indicated for the two sites above Upriver Dam, which were significantly different for both measurement intervals from both the control and Bead Lake reference sediment. The Latah Creek and Little Spokane samples indicated toxicity at the 15 and 5 minute interval, respectively, when compared to the reference sediment, but not when compared to the control.

Table 8. Summary of Results from Microtox Bioassays

	Site	Sample	•	ly different l at p=0.05?	Significantly different from reference at p=0.05?		
Site Name	No.	No.	T _{5-minute}	T _{15-minute}	T _{5-minute}	T _{15-minute}	
Above Upriver Dam	1	43-8021	Yes	Yes	Yes	Yes	
At Upriver Dam	2	43-8020	Yes	No	Yes	Yes	
Latah Creek	3	43-8027	No	No	No	Yes	
Little Spokane River	4	43-8023	No	No	Yes	No	
Upper Long Lake	5	43-8024	No	No	No	No	
Middle Long Lake	6	43-8025	No	No	No	No	
Lower Long Lake	7	43-8026	No	No	No	No	
Bead Lake (reference)	8	43-8028	No	No			

TCP uses results of the Microtox pore water test to make a best professional judgment determination of whether sediment samples exceed Ecology Sediment Quality Standards (SQS) or Cleanup Screening Levels (CSL) (Adolphson, 2000). Currently, equal weight is given to results from the 5 and 15 minute readings, but TCP may consider re-evaluating this position (Adolphson, 2001).

Relative percent differences between reference and test results of \geq 15% indicate a SQS failure. Relative percent differences between reference and test results of \geq 25% indicate a CSL failure. As shown in Table 9, the CSL was exceeded at Upriver Dam sites 1 and 2 (5 minute reading only). The 15 minute reading at site 1 exceeded the SQS but not the CSL.

Table 9. SQS and CSL Exceedance Calculation for Microtox Test

Site Name	Site No.	Sample No.	Exposure Time	Reference Sediment (mean)	Sediment Samples (mean)	RPD (%)
Above Upriver Dam	1	43-8021	$T_{5\text{-minute}}$	105.4	52.0	68**
"			$T_{15\text{-minute}}$	79.6	58.0	31**
At Upriver Dam	2	43-8020	$T_{5\text{-minute}}$	105.4	58.0	58**
"			$T_{15\text{-minute}}$	79.6	67.8	16*
Latah Creek	3	43-8027	$T_{5\text{-minute}}$	87.4	80.4	8
"			$T_{15\text{-minute}}$	78.8	70.4	11
Little Spokane River	4	43-8023	$T_{5\text{-minute}}$	105.4	92.4	13
"			$T_{15\text{-minute}}$	79.6	74.8	6
Upper Long Lake	5	43-8024	$T_{5\text{-minute}}$	105.4	90.8	15
"			$T_{15\text{-minute}}$	79.6	73.4	8
Middle Long Lake	6	43-8025	$T_{5\text{-minute}}$	87.4	85.6	2
"			$T_{15\text{-minute}}$	78.8	74.4	6
Lower Long Lake	7	43-8026	$T_{5\text{-minute}}$	87.4	75.8	14
"			$T_{15\text{-minute}}$	78.8	69.4	13

RPD = relative percent difference = ((reference mean - sample mean) / ((reference mean - sample mean)/2)) x 100 * greater than 15% (SQS) ** greater than 25% (CSL)

Table 10 summarizes results from the *Chironomus* bioassays. *Chironomus* confirmed the toxicity of the sample collected behind Upriver Dam (site 2), with significant mortality (94%) compared to both the control and reference sediment. The growth endpoint could not be evaluated for this sample because there were only two survivors. In contrast to Microtox, no toxicity was evident for the sample collected further upstream of the dam (site 1). *Chironomus* growth in lower Long Lake and in Bead Lake sediments was significantly lower than in laboratory control sediments, but not so for lower Long Lake when compared to the Bead Lake reference.

Table 10. Summary of Results from Chironomus Bioassays

	Sample	Percent mortality	Mortality Significantly > control	Significantly > reference	Ave. wt. (mg) per larvae	Growth Significantly < control	Significantly < reference	
Site Name (No.)	No.	(mean ± SD)	at p=0.05?	at p=0.05?	$(\text{mean} \pm \text{SD})$	at p=0.05?	at p=0.05?	
Laboratory Control		28.8 <u>+</u> 20.3		No	1.12 ± 0.25			
Above Upriver Dam (1)	43-8021	25.0 <u>+</u> 14.1	No	No	1.06 ± 0.34	No	No	
At Upriver Dam (2)	43-8020	93.8 <u>+</u> 11.9	Yes	Yes	0.20 ± 0.20	(a)	(a)	
Latah Creek (3)	43-8027	32.5 <u>+</u> 18.3	No	No	1.16 ± 0.14	No	No	
Little Spokane River (4)	43-8023	15.0 <u>+</u> 13.1	No	No	1.00 <u>+</u> 0.12	No	No	
Upper Long Lake (5)	43-8024	37.5 <u>+</u> 21.2	No	No	1.18 ± 0.37	No	No	
Middle Long Lake (6)	43-8025	46.3 <u>+</u> 23.3	No	No	1.00 ± 0.22	No	No	
Lower Long Lake (7)	43-8026	27.5 <u>+</u> 21.2	No	No	0.82 <u>+</u> 0.12	Yes	No	
Bead Lake (8) (reference sample)	43-8028	26.3 ± 27.2	No		0.47 ± 0.19	Yes		

⁽a) unable to analyze due to only two survivors

All samples were toxic (mortality and/or growth) in the *Hyalella* bioassays when compared to the control, but not when compared to the reference sediment (Table 11). There was near total mortality of *Hyalella* in Latah Creek sediments, a marked contrast to results for *Chironomus*.

Nothing could be found in the test procedures or physical nature of the sediments to explain the reason for the high mortality (84%) and poor growth of *Hyalella* in Bead Lake sediments. Whatever the reason for these results, the Bead Lake sediment sample was not a useful reference for *Hyalella*, or *Chironomus*, as indicated by the growth endpoint.

Table 11. Summary of Results from *Hyalella* Bioassays

			Mortality		Growth				
Site Name (No.)	Sample No.	Percent mortality (mean <u>+</u> SD)	Significantly > control at p=0.05?	Significantly > reference at p=0.05?	Ave. wt. (mg) per amphipod (mean ± SD)	Significantly < control at p=0.05?	Significantly < reference at p=0.05?		
Laboratory Control		3.8 <u>+</u> 7.4			0.26 ± 0.04				
Above Upriver Dam (1)	43-8021	16.3 <u>+</u> 7.4	Yes	No	0.23 <u>+</u> 0.04	No	No		
At Upriver Dam (2)	43-8020	48.8 <u>+</u> 20.3	Yes	No	0.20 ± 0.06	Yes			
Latah Creek (3)	43-8027	98.8 <u>+</u> 3.5	Yes	No	0.05 ± 0.00	(a)	(a)		
Little Spokane River (4)	43-8023	33.8 <u>+</u> 19.2	Yes	No	0.16 <u>+</u> 0.03	Yes	No		
Upper Long Lake (5)	43-8024	13.8 ± 13.0	Yes	No	0.15 ± 0.02	Yes	No		
Middle Long Lake (6)	43-8025	13.8 <u>+</u> 16.9	No	No	0.12 <u>+</u> 0.03	Yes	No		
Lower Long Lake (7)	43-8026	36.3 <u>+</u> 16.9	Yes	No	0.08 <u>+</u> 0.02	Yes	No		
Bead Lake (8) (reference sample)	43-8028	83.8 ± 25.0	Yes		0.09 <u>+</u> 0.02	Yes			

⁽a) unable to analyze due to only one survivor

Summary and Conclusions

The results of the sediment guideline comparison and the bioassays are summarized in Table 12.

Table 12. Summary of Indicators for Sediment Toxicity

				0 1 1					
	Sample Location Above At Little Unper Middle Love								
	Above	At		Little	Upper	Middle	Lower		
	Upriver	Upriver	Latah	Spokane	Long	Long	Long	Bead	
	Dam	Dam	Creek	River	Lake	Lake	Lake	Lake	
Toxicity Indicator	(site 1)	(site 2)	(site 3)	(site 4)	(site 5)	(site 6)	(site 7)	(site 8)	
Chemicals > 2x Effects Thresholds									
Zinc	yes	yes	no	no	yes	yes	yes	no	
Lead	yes	yes	no	no	no	yes	yes	no	
Cadmium	yes	yes	no	no	yes	yes	yes	no	
Phenol	yes	yes	no	no	no	no	no	no	
Di-N-butylphthalate	no	no	no	no	no	yes	no	yes	
Retene	yes	yes	no	no	no	no	no	no	
Total PCBs	yes	yes	no	no	no	no	yes	no	
Bioassay Response									
Toxic in Microtox test*	yes	no	no	no	no	no	no	no**	
Toxic to Chironomus (mortality)**	no	yes	no	no	no	no	no	no	
Toxic to Chironomus (growth)**	no	yes	no	no	no	no	yes	yes	
Toxic to <i>Hyalella</i> (mortality)**	yes	yes	yes	yes	yes	no	yes	yes	
Toxic to <i>Hyalella</i> (growth)**	no	yes							

^{*}relative to reference sediment

The sediment guidelines used in the present assessment were substantially exceeded (by at least a factor of 2) above Upriver Dam at sites 1 and 2 and in middle and lower Long Lake at sites 6 and 7, indicating that toxicity would be likely to occur. The zinc and cadmium concentrations at all of these sites exceeded toxicity thresholds by factors of approximately 10 or more. PCBs levels at both Upriver Dam sites exceeded thresholds by factors of 62 - 68. Lead, phenol, di-N-butylphthalate, and retene were also above guidelines at two or more of these sites.

^{**}relative to laboratory control

Threshold effect concentrations for zinc and cadmium were slightly exceeded in upper Long Lake (factors of 2 to 3) suggesting a potential for some level of adverse effect. Based on the chemical data, no chemical-induced toxicity would be expected to occur at Latah Creek or Little Spokane River.

Sediment guidelines were exceeded for phenol and di-N-butylphthalate in Bead Lake sediments, but only marginally for phenol. The phthalate result for Bead Lake seems anomalous, as previously mentioned.

Results from two of three sediment bioassays indicate sediment toxicity at Upriver Dam sites 1 and 2, in lower Long Lake, and in Bead Lake. These findings are in agreement with the chemical data. Middle Long Lake had several chemicals at levels of potential concern but, except for reduced growth of *Hyalella*, was nontoxic in the bioassays. The bioassays and chemical results for Upriver Dam site 1 confirm the validity of the current 303(d) listing.

This survey did not find strong multiple lines of evidence for toxicity in sediments from Latah Creek, the Little Spokane River, or in upper Long Lake. However, although the level of chemical contamination appeared to be low in Latah Creek and no toxicity was observed in the Microtox or *Chironomus* tests, the sediments were highly toxic to *Hyalella*.

References

Adolphson, P. 2000 (draft final). Microtox® 100 Percent Sediment Porewater Toxicity Assessment. Washington State Dept. of Ecology, Olympia, WA.

Adolphson, P. 2001. Personal communication. Toxics Cleanup Program, Washington State Dept. of Ecology, Olympia, WA.

Barrick, R., S. Becker, L. Brown, H. Beller, and R. Pastorok. 1988. Sediment Quality Values Refinement. Vol. 1. 1988 Update and Evaluation of Puget Sound AET. Prep for Puget Sound Estuary Prog., EPA Seattle. PTI Environmental Services, Bellevue, WA.

Batts, D. and A. Johnson. 1994. Bioassays of Spokane River Sediments (Final). Memorandum to C. Nuechterlein and P. Hallinan. Washington State Dept. of Ecology, Olympia, WA. Pub. No. 97-323a.

Betts, B. 2001. Personal communication. Toxics Cleanup Program, Washington State Dept. of Ecology, Olympia, WA.

Bortleson, G. et al. 1994. Sediment-Quality Assessment of Franklin D. Roosevelt Lake and the Upstream Reach of the Columbia River, Washington, 1992. U.S. Geological Survey. Open File Rept. 94-315.

Cubbage, J., D. Batts, and S. Breidenbach. 1997. Creation and Analysis of Freshwater Sediment Quality Values in Washington State. Washington State Dept. of Ecology, Olympia, WA. Pub. No. 97-323a.

Ecology. 1995a. Sediment Management Standards. Washington Administrative Code (WAC) Chapter 173-204.

Ecology. 1995b (draft). Guidance on the Development of Sediment Sampling and Analysis Plans Meeting the Requirements of the Sediment Management Standards (Chapter 173-204 WAC). Washington State Dept. of Ecology, Olympia, WA.

EILS. 1995. Department of Ecology 1993-94 Investigation of PCBs in the Spokane River. Environmental Investigations & Laboratory Services, Washington State Dept. of Ecology, Olympia, WA. Pub. No. 95-310.

EPA. 1990. Specifications and Guidance for Obtaining Contaminant-Free Sample Containers. OSWER Directive #93240.0-05. U.S. Environmental Protection Agency.

EPA. 1996a. Puget Sound Estuary Program (PSEP): Recommended Protocols for Measuring Selected Environmental Variables in Puget Sound. U.S. Environmental Protection Agency, Region 10, Office of Puget Sound, Seattle, WA.

EPA. 1996b. Ecotox Thresholds. ECO Update 3(2):1-12. Office of Solid Waste and Emergency Response, U.S. Environmental Protection Agency.

EPA. 2000a. Draft Screening Level Human Health Risk Assessment, Spokane River Common Use Areas, Washington. U.S. Environmental Protection Agency.

EPA. 2000b. Methods for Measuring the Toxicity and Bioaccumulation of Sediment Associated Contaminants with Freshwater Invertebrates, Second Edition. U.S. Environmental Protection Agency. EPA-600-R-99-064.

Grosbois, C., A. Horowitz, J. Smith, and K. Elrick. 2001. The Effect of Mining and Related Activities on the Sediment-Trace Element Geochemistry of Lake Coeur d'Alene, Idaho, USA – Part 3: Downstream Effects on the Spokane River Basin. Hydrogeol. Proc. in press.

Horowitz, A. 1999. Personal communication. U.S. Geological Survey, Athens, GA.

Ingersoll, C.G., P.S. Haverland, E.C. Brunsen, T.J. Canfield, F.J. Dwyer, C.E. Henke, N.E. Kemble, M.R. Mount, R.G. Fox. 1996. Calculation and Evaluation of Sediment Effect Concentrations for the Amphipod *Hyalella azteca* and the Midge *Chironomus riparius*. J. Gr. Lakes Res. 22(3):602-623.

Johnson, A. 1999. Metals Concentrations in Spokane River Sediments Collected with USGS in 1998. Washington State Dept. of Ecology, Olympia, WA. Pub. No. 99-330.

Johnson, A. 2000. Reconnaissance Survey on Metals, Semivolatiles, and PCBs in Sediment Deposits Behind Upriver Dam, Spokane River. Washington State Dept. of Ecology, Olympia, WA. Pub. No. 00-03-021.

Johnson, A., D. Serdar, and D. Davis. 1994. Results of 1993 Screening Survey on PCBs and Metals in the Spokane River. Washington State Dept. of Ecology, Olympia, WA. Pub. No. 94-e24.

MacDonald, D.D., C.G. Ingersoll, and T.A. Berger. 2000. Development and Evaluation of Consensus-Based Sediment Quality Guidelines for Freshwater Ecosystems. Arch. Environ. Contam. Toxicol. 39:20-31.

Nagpal, N.K., L.W. Pommen, and L.G. Swain. 1995. Approved Working Criteria for Water Quality. British Columbia Ministry of Environment, Lands, and Parks. ISBN 0-7726-2522. Victoria, BC.

Persaud, D., R. Jaagumagi, and A. Hayton. 1993. Guidelines for the Protection and Management of Aquatic Sediment Quality in Ontario. Ontario Ministry of the Environment and Energy, ISBN 0-7729-9248-7.

Serdar, D., A. Johnson, and D. Davis. 1994. Survey of Chemical Contaminants in Ten Washington Lakes. Washington State Dept. of Ecology, Olympia, WA. Pub. No. 94-154.

Wasson, B. 2000. Personal communication. U.S. Forest Service, Colville, WA.

Appendices

Appendix A.

Description of Sediment Sampling Sites

Appendix A. Description of Sediment Sampling Sites in the Spokane River and Vicinity, October 23-24, 2000

Site Name	Site No.	Sample No.	Description*	Depth (ft.)	Latitude**	Longitude
Above Upriver Dam	1	43-8021	Off right bank, 0.4 mile above dam, river mile 80.6	21	47° 41.272'	117° 19.242'
At Upriver Dam	2	43-8020	Off right bank, just above safety cable approx. 100 yards above dam, river mile 80.2	27	47° 41.186'	117° 19,647'
Latah Creek	3	43-8027	Immediately above Riverside Ave. bridge	1	47° 39.28'	117° 27.22'
Little Spokane River	4	43-8023	Above highway 291, river mile 1.4	3	47° 46.74'	117° 31.29'
Upper Long Lake	5	43-8024	Left side of channel, off brown boat house, river mile 53.6	33	47° 47.863'	117° 35.543'
Middle Long Lake	6	43-8025	Embayment at river mile 47.2, long concrete bulkhead on right bank	66	47° 51.590'	117° 39.903'
Lower Long Lake	7	43-8026	River mile 36.0, 2.1 miles above Long Lake Dam	53	47° 48.778'	117°47.894'
Bead Lake	8	43-8028	Lake is 7 miles NNW of Newport, sample was in north arm, west inlet	30	48° 18.626'	117° 06.801'

^{*}facing downstream **NAD 83

Appendix B.

Sediment Sampling Log

Appendix B. Sediment Sample Log for Spokane River Sediment Bioassay Project

	Sample Description	Brown sandy-silt with slight H ₂ S odor	Brown sandy-silt with slight H ₂ S odor	Brown sandy-silt with slight H ₂ S odor, wood chips, small sticks	Brown sand with some silt, wood and plant fragments	Brown sand with some silt, wood and plant fragments	Brown sand with some silt, wood and plant fragments	Brown sandy silt	Brown sandy silt, thin wood layer at ~5cm	Brown sandy silt	Brown silty sand	Brown silty sand	Brown silty sand	Dark green/brown silt, soft	Dark green/brown silt, soft	Dark green/brown silt, soft	Brown/gray silt, soft	Brown/gray silt, soft	Brown/gray silt, soft	Sand		Sand	
Sediment	Penetration (cm)	17	17	15	12	13	13	17	17	17	14	12	14	17	17	17	17	17	17	~10		~5-10	
	Time	1415	1500	1510	1530	1545	1555	1135	1140	1150	1445	1455	1500	1525	1540	1550	940	950	1000	0730		1730	
Date	(2000)	23-Oct	23-Oct	23-Oct	23-Oct	23-Oct	23-Oct	24-Oct	24-Oct	24-Oct	24-Oct	24-Oct	24-Oct	24-Oct	24-Oct	24-Oct	25-Oct	25-Oct	25-Oct	25-Oct		24-Oct	
Depth	(ft.)	27	27	27	21	21	21	30	29	29	33	33	31	99	99	99	53	53	53	_		3	
	Grab No.	1	2	κ		2	æ		2	κ	1	2	8	1	2	æ	1	2	æ	*		* *	
Station	(Site No./Sample No.)	Above Upriver Dam	(1/43-8021)		At Upriver Dam	(2 / 43-8020)		Bead Lake	(8 / 43-8028)		Upper Long Lake	(5/43-8024)		Middle Long Lake	(6/43-8025)		Lower Long Lake	(7 / 43-8026)		Latah Cr.	(3 / 43-8027)	Little Spokane River	(4 / 43-8023)

*multiple grabs with stainless steel scoop **multiple grabs with stainless steel pipe dredge

Appendix C.

Chain of Custody

Note to reader:

This chain-of-custody form shows sample number 438020 as *Upriver #1* and 438021 as *Upriver #2*, station identifications assigned in the field. However, in the text, figures, and tables in the main body of this report 438021 is referred to as *Above Upriver Dam, Site No. 1* and 438020 is *At Upriver Dam, Site No. 2*. This was done to maintain a downstream sequence of increasing site numbers, beginning with No. 1.

Laboratory Analyses Required

Project Name: Spakane Sellary Acassuys

, <u>;</u>		Frogram:	ENF														
j 6	FIG. ————————————————————————————————————	_	Mail Ston.	511	,	I	Preliminary Investigation	/ Investigation	□ For H	Por HW Designation		Date Res	Date Results needed by:	\.		1	
Send R	Sulls to:	기	Mail Stop.				Monitoring		For N	For NPDES	24.45	Z Inere	M Inere is a UAPP for this project	r this project			
Sam	Sampling					Ű	General Chemistry	stry		Miero	- در	Metals	S		Organic	Organic Chemistry	2
Date	Time	Field	Lab		SJƏL	ıte Weak ilids	abilo2 .	level		NOW [<u> </u>		☐ Total ☐ Total Rec.	10.0 10 () 10.0 10.0	laux1.	poi	
		Station		oqe	ntain	o2 eliti		□ low □ filte	ج نہ	aw. □ar	12 13/1		☐ Dissolved		- M (?)	iłiboM	
Year:		Identification	Number	၂ es	იე	s y b b c c d d d d d d d d d d d	evlose day) (ysb ease ease (kitite	μλι □ .so: [15	motile 	ueos u	etale) (pH) (gH) (gubivibni)			HCID les ts	1.91	
2000						eanbra rdnest rbidity Chlori solide tal So tal	tal Dis NSOI O O O O O O O O O O O O O O	fig Ph Aqohi siste sitte MqT Iqotol	 	tal Co Joli	SW/c SOS	stonth	-	VI	ese rbicid TPH-F	TPH-G TPH-C TPH-A	
Mo	ΗM		- 1		N	6 표하고 수이	07 08 08 01 08 01 01 01		1(,,	To!	101	l Me		10 [90 9H W	W.	
16 2 3		# * 0 > : > C	00000820	2 2	-		<u> </u>	*	, V	*	7			<u> </u>	×		
22 \		N # * 0 Z : 2	2				×	*		\ X	V			X	*		
1 24		11 + 11 1 SOK	2 2				V Y	Y		7	X			_	*		
7.4		770000	62				X 국	×		\	Y X			5	Z		
7,4		インジョウファージャ	7				Y			マ	X X			-	X		-
2 5		このとしなって木	77				¥	X		γ	$\chi = yy$			- ` x	X		
2.5			7-2				入 ×			×	Y X			7	×		
7 24		Road CV	\$Z +	-	I A		Y T		- 52°	4 y	×			-	*		
\							*,										
											* * * * * * * * * * * * * * * * * * *						
Project Officer:		All Johnson		င်	ain o	Chain of Custody Record	cord						1000				
Phone number		407.6766	Relinquished By	shed B	ان	Receiv	Received By:	, L	Mo Da Hr Mn	L	زد	CONDITION OF SEA	ol ocals		3	Confinents	
Somologie.	7	10627	S.	>	3	₹ 70 ×	Walkin	00 10	311150	5 CO12	2638	<u>, </u>					
Sample		Nordon			•					2100	1686,00	·.					
			000	3	1/2	11/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1	White	20700	00/01/20100		JE861.20	S 771	27×2	•			
			JAME!	1 XI	É		44 (200)	20/00	9	C1:00	عان و	TAT	tHC+		1		
Recorder:	<	しているのと	Comments:		2	E1, 22h	2208	dy's m	Spain		BNAS	av cl	PIBS	4000			
Date:	7	00 - 30		COX.	٠ ٢	126	J	大 フ 4	2 1 CW K	100	on a serious	2.22	VOYOU	2			
ECY 040-115Rev. 4/96	tev. 4/96				Š Š	Ke ros	a during s	٥									

Appendix D.

Case Narratives and Chemical Data

Note to reader:

These laboratory data sheets show sample number 438020 as *Upriver #1* and 438021 as *Upriver #2*, station identifications assigned in the field. However, in the text, figures, and tables in the main body of this report 438021 is referred to as *Above Upriver Dam, Site No. 1* and 438020 is *At Upriver Dam, Site No. 2*. This was done to maintain a downstream sequence of increasing site numbers, beginning with No. 1.

Washington State Department of Ecology Manchester Laboratory

December 22, 2000

TO: Art Johnson

FROM: Kamilee Ginder, Chemist

SUBJECT: General Chemistry Quality Assurance Memo for Spokane Sediment Bioassays

SUMMARY

The data generated by the analysis of these samples can be used without qualification. All analyses requested were evaluated by established regulatory quality assurance guidelines.

SAMPLE INFORMATION

Samples for Spokane Sediment Bioassays Week 43 project were collected 10/23/00 - 10/25/00 and received by Manchester Environmental Laboratory on 10/26/00 in good condition with seals intact. Sample containers were shared between % Solids, % Volatile Solids, Total Organic Carbon, Base/Neutral/Acids and Polychlorinated Biphenyls. Total Organic Carbon sample portions were split from the rest on 11/3/00 and frozen until analysis to comply with holdtime limitations as per Puget Sound Sediment Protocol.

HOLDING TIMES

All analyses were performed within established EPA holding times.

ANALYSIS PERFORMANCE

Instrument Calibration

Instrument calibration was checked by initial calibration verification standards and blanks. All initial and continuing calibration verification standards were within control limits. A correlation coefficient of 0.995 or greater was met. Balances are professionally calibrated yearly and calibrated in-house daily. Oven temperature is recorded before and after each analysis batch.

Procedural Blanks

The procedural blanks associated with these samples showed no significant analytical levels of analytes.

Spiked Sample Analysis

Spiked sample analyses were performed where applicable with all spike recoveries within acceptance limits of $\pm 25\%$. Spiked sample analysis is performed at a frequency of at least 5%.

Precision Data

Spiked sample results and duplicate sample results were used to evaluate precision on this sample set. Relative Percent Differences (RPD) for general chemistry parameters were within acceptance limits of $\pm 20\%$ for duplicate analysis. Laboratory duplication is performed at a frequency of at least 10%. Precision and accuracy specifications are based on sample concentrations greater than four times the reporting limit. For results near the reporting limit, the criteria are not guaranteed to be better than $\pm 10\%$ the method detection limit.

Laboratory Control Sample(LCS) Analyses

LCS analyses were within the windows established for each parameter.

Other Quality Assurance Measures and Issues

The "U" qualification indicates that the analyte was not detected at or above the reporting limit.

Please call Jim Ross at (360) 871-8808 or Kamilee Ginder at (360) 871-8826 to further discuss this project.

cc: Project File

Department of Ecology

Analysis Report for

Percent Solids

Project Name: Spokane Sediment Bioassays LIMS Project ID: 4358-00

Project Officer: Art Johnson Method: EPA 160.3

Date Reported: 31-OCT-00 Matrix: Sediment/Soil

Analyte: Solids

Sample	QC	Field ID	Result	Qualifier	Units	Collected	Analyzed
00438020		UPRIVER #1	30.4		%	10/23/00	10/26/00
00438021		UPRIVER #2	43.6		%	10/23/00	10/26/00
00438023		LITTLESPK	75.7		%	10/24/00	10/26/00
00438023	Duplicate		75.0		%	10/24/00	10/26/00
00438024	-	UPLONGLK	65.7		%	10/24/00	10/26/00
00438025		MIDLONGLK	43.0		%	10/24/00	10/26/00
00438026		LOWLONGLK	31.2		%	10/25/00	10/26/00
00438027		LATAH CR	77.0		%	10/25/00	10/26/00
00438028		BEAD LK	25.9		%	10/24/00	10/26/00

Authorized By:	Release Date:	Page: 1

Department of Ecology

Analysis Report for

Total Volatile Solids

Project Name: Spokane Sediment Bioassays LIMS Project ID: 4358-00

Project Officer: Art Johnson

Date Reported: 31-OCT-00

Method: EPA 160.4

Matrix: Sediment/Soil

Analyte: Total Volatile Solids

Sample	QC	Field ID	Result	Qualifier	Units	Collected	Analyzed
00438020		UPRIVER #1	4.6		%	10/23/00	10/26/00
00438021		UPRIVER #2	4.3		%	10/23/00	10/26/00
00438023		LITTLESPK	0.9		%	10/24/00	10/26/00
00438023	Duplicate		0.9		%	10/24/00	10/26/00
00438024	•	UPLONGLK	1.3		%	10/24/00	10/26/00
00438025		MIDLONGLK	2.8		%	10/24/00	10/26/00
00438026		LOWLONGLK	2.7		%	10/25/00	10/26/00
00438027		LATAH CR	1.1		%	10/25/00	10/26/00
00438028		BEAD LK	1.7		%	10/24/00	10/26/00

Authorized By:	Release Date:	Page: 1

Department of Ecology

Analysis Report for

Total Organic Carbon (70 C)

Project Name: Spokane Sediment Bioassays LIMS Project ID: 4358-00

Project Officer: Art Johnson Method: PSEP-TOC

Date Reported: 21-DEC-00

Matrix: Frozen Sediment/Soil
Analyte: Total Organic Carbon

Sample	QC	Field ID	Result	Qualifier	Units	Collected	Analyzed
00438020		UPRIVER #1	6.9		%	10/23/00	12/11/00
00438020	Duplicate		7.1		%	10/23/00	12/11/00
00438021		UPRIVER #2	2.5		%	10/23/00	12/06/00
00438023		LITTLESPK	0.2		%	10/24/00	12/06/00
00438024		UPLONGLK	0.5		%	10/24/00	12/06/00
00438024	Matrix	Spike	101%			10/24/00	12/06/00
00438025		MIDLONGLK	2.2		%	10/24/00	12/06/00
00438026		LOWLONGLK	2.5		%	10/25/00	12/06/00
00438026	Duplicate		2.5		%	10/25/00	12/06/00
0438026	Replicate		2.5		%	10/25/00	12/06/00
00438027	•	LATAH CR	0.3		%	10/25/00	12/06/00
00438028		BEAD LK	3.6		%	10/24/00	12/11/00

Authorized By:	R	elease Date:	Page: 1
----------------	---	--------------	---------

Department of Ecology

Analysis Report for

Total Organic Carbon (70C)

Project Name: Spokane Sediment Bioassays LIMS Project ID: 4358-00

Project Officer: Art Johnson Method: PSEP-TOC

Date Reported: 21-DEC-00

Matrix: Frozen Sediment/soil
Analyte: Total Organic Carbon

Sample	QC	Field ID	Result	Qualifier	Units	Collected	Analyzed
00438020		UPRIVER #1	6.6		%	10/23/00	12/11/00
00438020	Duplicate		6.8			10/23/00	12/11/00
00438021		UPRIVER #2	2.5		%	10/23/00	12/06/00
00438023		LITTLESPK	0.2		%	10/24/00	12/06/00
00438024		UPLONGLK	0.5		%	10/24/00	12/06/00
00438024	Matrix	Spike	101			10/24/00	12/06/00
00438025		MIDLONGLK	2.3		%	10/24/00	12/06/00
00438026		LOWLONGLK	2.6		%	10/25/00	12/06/00
00438026	Duplicate		2.6			10/25/00	12/06/00
00438026	Replicate		2.5			10/25/00	12/06/00
00438027	-	LATAH CR	0.3		%	10/25/00	12/06/00
00438028		BEAD LK	3.8		%	10/24/00	12/11/00

Authorized By:	Release Date:	Page: 1
----------------	---------------	---------

State of Washington Department of Ecology Manchester Environmental Laboratory 7411 Beach Dr. East Port Orchard WA. 98366

December 5, 2000

Project: Spokane Sediments

Samples: 43-8020-21, 8023-28

Laboratory: Rosa Environmental

By: Pam Covey

Case Summary

These samples required eight (8) Grain Size analyses on soil samples using Puget Sound Estuary Protocol (PSEP) method for gravel, sand, silt and clay fractions only. One sample was analyzed in triplicate. The samples were received at the Manchester Environmental Laboratory and transported to the contract lab on October 27, 2000 for Grain Size analyses.

The analyses were reviewed for qualitative and quantitative accuracy, validity and usefulness. See narrative from Rosa for further explanation on sample analysis anomalies.

The results are acceptable for use as reported.

Client: WDOE, Manchester Laboratory REGL Project No.: 1004-037

Client Project No.: Spokane Sediments Sample Batch No.: 1004-037-01

Case Narrative

- 1. Samples were received on October 27, 2000, and were in good condition.
- 2. The apparent grain size distributions were measured according to PSEP methods.
- 3. A triplicate was run, and is reported in the attached QA summary.
- 4. Samples 43-8021 and 43-8027 did not meet the requirement of between 5 and 25 grams of material (passing the #230 sieve) required in the pipette portion of the analysis. For these samples, the maximum of sample was used so they were not reprocessed.

5. There were no other anomalies to the samples or the testing.

Laboratory Loady

Approved by:

Laboratory Manager

Date: 11/22/00

Date: 11 27 60

Rosa Environmental and Geotechnical Laboratory, LLC

Wash Dept of Ecology Spokane Sediments

Major Components of Apparent Grain Size Distribution by PSEP Methodology	Number Gravel Sand Silt Clay	(>2,000) $(2,000< x <62.5)$ $(62.5< x <4)$ (<4)	326 A 0.0 2.8 50.5 46.6	326 B 0.0 3.6 48.9 47.5	326 C 0.1 3.6 47.2 49.1	8024 0.6 80.5 15.9 3.0	8025 0.6 3.1 81.5 14.8	8027 0.8 97.3 1.8 0.2	8028 1.3 80.7 12.8 5.2	3020 2.3 76.3 16.4 5.0	8021 1.5 96.0 0.5 2.1	8023 3.4 91.3 4.6 0.7
Major Com	Sample Number		438026 A	438026 B	438026 C	438024	438025	438027	438028	438020	438021	438023

1. Testing performed according to PSEP "Apparent Grain Size Distribution" protocol, with modifications for determination of only the major components 1004-037 1.

Rosa Environmental and Geotechnical Laboratory, LLC

Wash Dept of Ecology Spokane Sediments

		Clay	(<4)	46.6	47.5	49.1	47.77	1.04	2.18
	Silt	(62.5 < x < 4)		5.05	48.9	47.2	48.87	1.36	2.79
QA Summary	Sand	(2,000 < x)	<62.5)	2.8	3.6	3.6	3.35	0.37	10.97
	Gravel	(>2,000)		0.0	0.0	0.1	0.02	0.02	80.78
	Sample Number	1		438026 A	438026 B	438026 C	Average	STD,EV	%RSD

1004-037

Washington Department of Ecology Manchester Environmental Laboratory 7411 Beach Drive Fast Port Orchard, WA 98366

January 9, 2001

TO: Art Johnson

FROM: Jim Ross, Manchester Lab

SUBJECT: Metals Quality Assurance memo for the Spokane Sediment Bioassays

SUMMARY

Antimony spike recoveries were low (43,46%). Chromium was detected in the prep blank at 2.2 mg/Kg. All antimony data was qualified as estimated. Chromium data below 22 mg/Kg was qualifies as estimated. All other data for this project met all QA and QC criteria and can be used without qualification.

SAMPLE RECEIPT

The samples were received by the Manchester laboratory on 10/26/00 in good condition.

HOLDING TIMES

All analyses were performed within the specified holding time (28 days mercury, 180 days all other metals).

INSTRUIVIENT CALIBRATION

Instrument calibration was performed before each ;analytical run and checked by initial calibration verification standards and blanks. Continuing calibration standards and blanks were analyzed at a frequency of 10 % during the run and again at the end of the analytical run. All initial and continuing calibration verification standards and blanks were within the relevant control limits (90110%).

PROCEDURAL BLANKS

Chromium was present (2.2 mg/Kg) in the procedural blank. Sample results less than ten times the blank level were qualified as estimated. The procedural blanks associated with this sample showed no other analytically significant levels of requested analyte.

SPIKED SAMPLE ANALYSES

Antimony spike recoveries were low (43, 46 %). All antimony results are qualified as estimated values. All other spike and duplicate spike recoveries were all within relevant control limits (75-125%).

PRECISION DATA

Precision estimates based on duplicate spike analysis were all within the acceptance criteria for duplicate analysis (± 20 %) for all analytes.

LABORATORY CONTROL SAMPLE (LCS) ANALYSES

The LCS used for this project was in control for all analytes.

Please call Jim Ross at (360) 871-8808 to further discuss this project.

Department of Ecology

Analysis Report for

Inductively Coupled Plasma

Project Name: Spokane Sediment Bioassays LIMS Project ID: 4358-00

Sample: M0308SB1

Field ID: Laboratory Method Bank
Project Officer: Art Johnson

Date Prepared: 11/03/00
Date Analyzed: 12/21/00

Method: SW6010
Matrix: Sediment/Soil
Units: ug/Kg dw

Result Qualifier Analyte 5 Aluminum U Antimony 5 U Beryllium 0.5 U Cadmium 0.5 U Chromium 2.2 Copper U 1 Iron 5 U Lead 5 U Nickel U 1 Silver 2 U U Zinc 1

Authorized By:	Release Date:	Page: 1

Department of Ecology

Analysis Report for

Inductively Coupled Plasma

Project Name: Spokane Sediment Bioassays LIMS Project ID: 4358-00

Sample: M0308SL1 Method: SW6010
Field ID: Laboratory Control Sample Date Prepared: 11/03/00 Matrix: Sediment/Soil

Project Officer: Art Johnson Date Analyzed: 12/21/00 Units: %

Analyte	Result	Qualifier
Aluminum	95	
Antimony	84	
Beryllium	116	
Cadmium	106	
Chromium	115	
Copper	102	
Iron	78	
Lead	110	
Nickel	110	
Silver	114	
Zinc	103	

Authorized By:_____ Release Date:_____

Page: 1

Department of Ecology

Analysis Report for

Inductively Coupled Plasma

Project Name: Spokane Sediment Bioassays			LIMS Project ID: 4358-00	
Sample: 00438020	Date Collec	ted: 10/23/00	Method: SW6010 Matrix: Sediment/Soil Units: mg/KG dw	
Field ID: UPRIVER #1		red: 11/03/00		
Project Officer: Art Johnson		zed: 12/21/00		
Analyte	Result	Qualifier		
Aluminum	14600			
Antimony	5.0	J		
Beryllium	0.5	U		
Cadmium	22.6	-		
Chromium	25.0			
Copper	37.0			
fron	17600			
Lead	479			
Nickel	15.9			
Silver	2	U		
Zinc	3010	_		
uthorized By:				

Department of Ecology

Analysis Report for

Inductively Coupled Plasma

Project Name: Spokane Sediment Bioassays			LIMS Project ID: 4358-00	
Sample: 00438021	Date Collec	ted: 10/23/00	Method: SW6010 Matrix: Sediment/Soil Units: mg/KG dw	
Field ID: UPRIVER #2	Date Prepa	red: 11/03/00		
Project Officer: Art Johnson	Date Analy	zed: 12/21/00		
Analyte	Result	Qualifier		
Aluminum	10800			
Antimony	5	UJ		
Beryllium	0.5	U		
Cadmium	9.64			
Chromium	16.4	J		
Copper	12.9			
ron	14700			
ead	195			
lickel	10.5			
ilver	2	U		
inc	1650			

Authorized By:_____ Release Date:_____

Page: 1

Department of Ecology

Analysis Report for

Inductively Coupled Plasma

Project Name: Spokane Sediment Bioassays			LIMS Project ID: 4358-00
Sample: 00438023	Date Collected: 10/24/00		Method: SW6010
Field ID: LITTLESPK	Date Prepa	red: 11/03/00	Matrix: Sediment/Soil
Project Officer: Art Johnson		zed: 12/21/00	Units: mg/KG dw
Analyte	Result	Qualifier	
Aluminum	8390		
Antimony	5	UJ	
Beryllium	0.5	U	
Cadmium	0.5	U	
Chromium	10.5	$\ddot{\mathbf{J}}$	
Copper	3.3	•	
ron	12100		
Lead	5	U	
Nickel	5.0	-	
Silver	2	U	
Zinc	30.7		

Authorized By:_____ Release Date:_____

Department of Ecology

Analysis Report for

Inductively Coupled Plasma

Project Name: Spokane Sediment Bioassays			LIMS Project ID: 4358-00	
Sample: 00438024	Date Collected: 10/24/00		Method: SW6010	
Field ID: UPLONGLK		Prepared: 11/03/00	Matrix: Sediment/Soil	
Project Officer: Art Johnson	Date	Analyzed: 12/21/00	Units: mg/kg dw	
Analyte	Result	Qualifier		
Aluminum	9050			
Antimony	5	UJ		
Beryllium	0.5	U		
Cadmium	2.5			
Chromium	13.5	J		
Copper	7.95	J		
ron	17000			
∠ead	18			
Vickel	9.0			
ilver	2	U		
Zinc	- 391			

Authorized By:	Release Date:	Dogge 1	
Authorized by.	Release Date.	Page: I	1

Department of Ecology

Analysis Report for

Inductively Coupled Plasma

Project Name: Spokane Sediment Bioassays		LIMS Project ID: 4358-00
Sample: 00438024 (Matrix Spike – LMX1) Field ID: UPLONGLK Project Officer: Art Johnson		Method: SW6010 Matrix: Sediment/Soil Units: % Recovery
Analyte	desult Qualifier	
Aluminum Antimony Beryllium Cadmium Chromium Copper Iron Lead Nickel Aluminum 9 Cadmium 9 Cadmium 9 Copper 9 Iron 9	NC 3 8 3 6 3 NC 6 3 NC	

Authorized By:_____ Release Date:_____

Department of Ecology

Analysis Report for

Inductively Coupled Plasma

Project Name: Spokane Sediment Bioassa	IVS	LIMS Project ID: 4358-00
Sample: 00438024 (Matrix Spike – LMX Field ID: UPLONGLK Project Officer: Art Johnson		Method: SW6010 Matrix: Sediment/Soil Units: % Recovery
Analyte	Result Qualifier	
Aluminum Antimony Beryllium Cadmium Chromium Copper Iron Lead Nickel Silver Zinc	NC 46 100 95 97 93 NC 93 94 106 94	

Authorized By:_____ Release Date:_____

Department of Ecology

Analysis Report for

Inductively Coupled Plasma

Project Name: Spokane Sediment E	Bioassays	LIMS Project ID: 4358-00
Sample: 00438025	Date Collected	: 10/24/00 Method: SW6010
Field ID: MIDLONGLK	Date Prepared	
Project Officer: Art Johnson	Date Analyzed	
Analyte	Result Qualifie	
	2105uit Quumit	<u>*</u>
Aluminum	20400	
Antimony	5.1 J	
Beryllium	0.5 U	
Cadmium	10.8	
Chromium	22.6	
Copper	23.2	
Iron	24600	
Lead	84	
Nickel	14.3	
Silver	2 U	
Zinc	1130	
uthorized By:		Page:

Department of Ecology

Analysis Report for

Inductively Coupled Plasma

Project Name: Spokane Sediment E	Bioassays	LIMS Project ID: 4358-00
Sample: 00438026	Date Collected: 10/25/00	Method: SW6010
Field ID: LOWLONGLK	Date Prepared: 11/03/00	Matrix: Sediment/Soil
Project Officer: Art Johnson	Date Analyzed: 12/21/00	Units: mg/Kg dw
Analyte	Result Qualifier	
	<u> </u>	
Aluminum	31500	
Antimony	5.2 J	
Beryllium	0.5 U	
Cadmium	20.6	
Chromium	33.6	
Copper	40.1	
Iron	30500	
Lead	200	
Nickel	20.1	
Silver	4.9	
Zinc	1840	
uthorized By:	Release Date:	Page:

Department of Ecology

Analysis Report for

Inductively Coupled Plasma

ield ID: LOWLONGLK	plicate – LDP1) Dat		
roject Officer: Art Johnson	Dat	e Collected: 10/25/00 e Prepared: 11/03/00 e Analyzed: 12/21/00	Method: SW6010 Matrix: Sediment/Soil Units: mg/Kg dw
nalyte	Result	Qualifier	
luminum	27200		
antimony	6.3	J	
eryllium	0.5	U	
admium	20.4		
Chromium	30.2		
Copper	38.9		
ron	28000		
ead	200		
lickel	18.5		
ilver	4.0		
inc	1840		

Authorized By:_____ Release Date:_____

Department of Ecology

Analysis Report for

Inductively Coupled Plasma

Project Name: Spokane Sediment l	LIMS Project ID: 4358-00		
Sample: 00438027 Field ID: LATAH CR		Collected: 10/25/00	Method: SW6010
		Prepared: 11/03/00	Matrix: Sediment/Soil
Project Officer: Art Johnson	Date	Analyzed: 12/21/00	Units: mg/Kg dw
Analyte	Result	Qualifier	
Aluminum	8160		
Antimony	5	UJ	
Beryllium	0.5	U	
Cadmium	0.5	U	
Chromium	13.8	\mathbf{J}	
Copper	7.24		
Iron	17800		
Lead	5		
Nickel	8.1		
Silver	2.5		
Zinc	46.9		

Authorized By:_____ Release Date:_____

Department of Ecology

Analysis Report for

Inductively Coupled Plasma

Project Name: Spokane Sediment Bioassays			LIMS Project ID: 4358-00	
ample: 00438028 Date Collected: 10/24/00		Method: SW6010		
Field ID: BEAD LK		Prepared: 11/03/00	Matrix: Sediment/Soil	
Project Officer: Art Johnson		e Analyzed: 12/21/00	Units: mg/Kg dw	
Analyte	Result	Qualifier		
Aluminum	11000			
Antimony	5	UJ		
Beryllium	0.5	U		
Cadmium	0.51			
Chromium	4.4	J		
Copper	7.04			
Iron	14500			
Lead	5	U		
Nickel	6.5			
Silver	2	U		
Zinc	56.4			

Page: 1

Authorized By: Release Date:

Department of Ecology

Analysis Report for

Arsenic

Project Name: Spokane Sediment Bioassays LIMS Project ID: 4358-00

Project Officer: Art Johnson

Date Reported: 17-NOV-00

Method: SW7060

Matrix: Sediment/Soil

Analyte: Arsenic

Sample	QC	Field ID	Result	Qualifier	Units	Collected	Analyzed
00438020		UPRIVER #1	12.6		Mg/Kg dw	10/23/00	11/07/00
00438021		UPRIVER #2	4.80		Mg/Kg dw	10/23/00	11/07/00
00438023		LITTLESPK	7.27		Mg/Kg dw	10/24/00	11/07/00
00438024		UPLONGLK	5.26		Mg/Kg dw	10/24/00	11/07/00
00438024	Matrix	Spike	78 %			10/24/00	11/07/00
00438024	Matrix	Spike	91 %			10/24/00	11/07/00
00438025		MIDLONGLK	8.53		Mg/Kg dw	10/24/00	11/07/00
00438026		LOWLONGLK	16.4		Mg/Kg dw	10/25/00	11/07/00
00438026	Duplicate		15.2		Mg/Kg dw	10/25/00	11/07/00
00438027	-	LATAH CR	4.79		Mg/Kg dw	10/25/00	11/07/00
00438028		BEAD LK	2.1		Mg/Kg dw	10/24/00	11/07/00
M0308SB1			0.3	\mathbf{U}	Mg/Kg dw		11/07/00
M0308SL1			117		%		11/07/00

Authorized By:	Release Date:	Page: 1

Department of Ecology

Analysis Report for

Selenium

Project Name: Spokane Sediment Bioassays LIMS Project ID: 4358-00

Project Officer: Art Johnson Method: SW7740 **Date Reported:** 17-NOV-00 Matrix: Sediment/Soil **Analyte:** Selenium

Field ID

Sample

00438020

00438021

00438023

00438024

QC

Result Qualifier Units Collected Analyzed Mg/Kg dw **UPRIVER #1** 10/23/00 0.61 11/07/00 Mg/Kg dw 0.3 10/23/00 **UPRIVER #2** 11/07/00 Mg/Kg dw LITTLESPK 0.3 10/24/00 11/07/00 0.3 Mg/Kg dw 11/07/00 **UPLONGLK** 10/24/00

00438024 00438024 00438025 00438026 00438026 00438027 00438028 M0308SB1 M0308SL1	Matrix Matrix Duplicate	Spike Spike MIDLONGLK LOWLONGLK LATAH CR BEAD LK	112 % 111 % 0.37 0.42 0.46 0.3 0.3 102	U	Mg/Kg dw Mg/Kg dw Mg/Kg dw Mg/Kg dw Mg/Kg dw Mg/Kg dw %	10/24/00 10/24/00 10/25/00 10/25/00 10/25/00 10/25/00 10/24/00	11/07/00 11/07/00 11/07/00 11/07/00 11/07/00 11/07/00 11/07/00 11/07/00

Authorized By:	Release Date:	Page: 1

Department of Ecology

Analysis Report for

Thallium

Project Name: Spokane Sediment Bioassays LIMS Project ID: 4358-00

Project Officer: Art Johnson

Date Reported: 05-DEC-00

Method: SW7841

Matrix: Sediment/Soil

Analyte: Thallium

Sample	QC	Field ID	Result	Qualifier	Units	Collected	Analyzed
00438020		UPRIVER #1	0.3	U	Mg/Kg dw	10/23/00	11/06/00
00438021		UPRIVER #2	0.35		Mg/Kg dw	10/23/00	11/06/00
00438023		LITTLESPK	0.3	U	Mg/Kg dw	10/24/00	11/06/00
00438024		UPLONGLK	0.3	U	Mg/Kg dw	10/24/00	11/06/00
00438024	Matrix	Spike	87 %			10/24/00	11/06/00
00438024	Matrix	Spike	80 %			10/24/00	11/06/00
00438025		MIDLONGLK	0.3	U	Mg/Kg dw	10/24/00	11/06/00
00438026		LOWLONGLK	0.3	U	Mg/Kg dw	10/25/00	11/06/00
00438026	Duplicate			U	Mg/Kg dw	10/25/00	11/06/00
00438027	_	LATAH CR	0.3	U	Mg/Kg dw	10/25/00	11/06/00
00438028		BEAD LK	0.3	U	Mg/Kg dw	10/24/00	11/06/00
M0308SB1			0.3	U	Mg/Kg dw		11/06/00
M0308SL1			114		%		11/06/00

Authorized By:	R	elease Date:	Page: 1
----------------	---	--------------	---------

Department of Ecology

Analysis Report for

Mercury

Project Name: Spokane Sediment Bioassays LIMS Project ID: 4358-00

Project Officer: Art Johnson

Method: EPA245.5

Date Reported: 04-JAN-01

Matrix: Sediment/Soil

Analyte: Mercury

Sample	QC	Field ID	Result	Qualifier	Units	Collected	Analyzed
00438020		UPRIVER #1	0.339		Mg/Kg dw	10/23/00	11/06/00
00438021		UPRIVER #2	0.080		Mg/Kg dw	10/23/00	11/06/00
00438023		LITTLESPK	0.008	U	Mg/Kg dw	10/24/00	11/06/00
00438024		UPLONGLK	0.024		Mg/Kg dw	10/24/00	11/06/00
00438024	Matrix	Spike	92 %			10/24/00	11/06/00
00438024	Matrix	Spike	91 %			10/24/00	11/06/00
00438025		MIDLONGLK	0.087		Mg/Kg dw	10/24/00	11/06/00
00438026		LOWLONGLK	0.300		Mg/Kg dw	10/25/00	11/06/00
00438026	Duplicate		0.327		Mg/Kg dw	10/25/00	11/06/00
00438027		LATAH CR	0.014		Mg/Kg dw	10/25/00	11/06/00
00438028		BEAD LK	0.030		Mg/Kg dw	10/24/00	11/06/00
M0311SG1			101		%		11/06/00
M0308SH1			0.006	\mathbf{U}	Mg/Kg dw		11/06/00

Authorized By:	Release Date:	Page: 1

This page is purposely blank for duplex printing

MANCHESTER ENVIRONMENTAL LABORATORY

7411 Beach Drive E., Port Orchard Washington 98366

January 22, 2001

Subject: Spokane Sediment Bioassays

Samples: 00438020 - 021, 023 - 028

Project ID: 435800

Project Officer: Art Johnson

By: Greg Perez

SEMIVOLATILE ORGANICS

ANALYTICAL METHODS:

The samples were extracted following the EPA SW-846 8270 procedure. Extracts were cleaned up using Gel Permeation Chromatography (GPC): Analysis was by capillary gas chromatography with mass spectrometry (GC/MS). Routine QA/QC procedures were performed with the analyses.

HOLDING TIMES:

The samples were stored at 4 degrees C until extraction. They were extracted and analyzed within the recommended holding times.

BLANKS:

Low levels of some analytes were detected in the laboratory blanks. An analyte is considered native to the sample when the on-column concentration is at least five times greater than in the associated method blanks. A phthalate is considered native to the sample when the concentration is at least ten times greater than in the associated method blanks.

SURROGATES:

The standard Manchester Laboratory Base/Neutral/Acid (BNA) surrogates were added to the sample prior to extraction. All surrogate recoveries were within acceptable limits.

MATRIX SPIKE AND MATRIX SPIKE DUPLICATE:

Recoveries for most compounds were acceptable. Those few compounds which were not recovered were qualified. Retene is not in the spiking solution and has been qualified as not calculated (NC).

COMMENTS:

The data is acceptable for use as reported. Sample 438020 was sampled in duplicate. Both duplicates required dilution. These dilutions have been labeled DILI and DIL2. DIL2 is the dilution of the duplicate sample. Sample 438025 was diluted because of aldol condensate interference.

DATA QUALIFIER CODES:

U - The analyte was not detected at or above the reported value.

J - The analyte was positively identified. The associated numerical value is an estimate.

UJ - The analyte was not detected at or above the reported estimated result.

REJ - The data are unusable for all purposes.

NAF - Not analyzed for.

N - There is evidence the analyte is present in the sample.

NJ - There is evidence that the analyte is present. The associated numerical result is an estimate.

E - This qualifier is used when the concentration of the associated value exceeds the known calibration range. The associated numerical result is an estimate.

bold - The analyte was present in the sample. (Visual Aid to locate detected compounds on report sheet.)

Department of Ecology

Analysis Report for

Base/Neutral/Acids Low level targets only

Project Name: Spokane Sediment Bioassays LIMS Project ID: 4358-00

Sample: 00438020Date Collected: 10/23/00Method: SW8270Field ID: UPRIVER #1Date Prepared: 11/01/00Matrix: Sediment/SoilProject Officer: Art JohnsonDate Analyzed: 11/21//00Units: ug/Kg dw

Analyte	Result	Qualifier	Analyte	Result	Qualifie
Phenol	214		2,4-Dinitrotoluene	31	U
Bis(2-Chloroethyl)Ether	15	U	2,6-Dinitrotoluene	15U	U
2-Chlorophenol	15	U	Diethylphthalate	171	UJ
1, 3-Dichlorobenzene	15	U	4-Chlorophenyl-Phenylether	15	U
1,4-Dichlorobenzene	10	J	Fluorene	43	
Benzyl Alcohol	83		4-Nitroaniline	61	U
1,2-Dichlorobenzene	6.4	J	4,6-Dinitro-2-Methylphenol	153	U
2-Methylphenol	15	U	N-Nitrosodiphenylamine	15	U
2,2'-Oxybis[1-chloropropane]	15	U	4-Bromophenyl-Phenylether	15	U
4-Methylphenol	1480	${f E}$	Hexachlorobenzene	15	U
N-Nitroso-Di-N-Propylamine	15	U	Pentachlorophenol	15	UJ
Hexachloroethane	15	U	Phenanthrene	431	
Nitrobenzene	15	U	Anthracene	72	
Isophorone	15	U	Carbazole	34	
2-Nitrophenol	15	U	Di-N-Butylphthalate	65	UJ
2,4-Dimethylphenol	15	U	Fluoranthene	464	
Benzoic Acid	578	UJ	Pyrene	430	
Bis(2-Chloroethoxy)Methane	15	U	Retene	5650	${f E}$
2,4-Dichlorophenol	15	U	Butylbenzylphthalate	15	U
1,2,4-Trichlorobenzene	15	U	3,3'-Dichlorobenzidine	31	U
Naphthalene	632		Benzo(a)anthracene	113	
4-Chloroaniline	15	U	Bis(2-Ethylhexyl) Phthalate	165	UJ
Hexachlorobutadiene	15	U	Chrysene	182	
4-Chloro-3-Methylphenol	15	U	Di-N-Octyl Phthalate	15	U
2-Methylnaphthalene	68		Benzo(b)fluoranthene	146	
1-Methylnaphthalene	55		Benzo(k)fluoranthene	121	
Hexachlorocyclopentadiene	15	\mathbf{U}	Benzo(a)pyrene	137	
2,4,6-Trichlorophenol	15	U	Indeno(1,2,3-cd)pyrene	15	U
2,4,5-Trichlorophenol	15	U	Dibenzo(a,h)anthracene	15	U
2-Chloronaphthalene	15	U	Benzo(ghi)perylene	15	U
2-Nitroaniline	15	U			
Dimethylphthalate	18	UU	Surrogate Recoveries		
Acenaphthylene	154				
3-Nitroaniline	15	U	D5-Nitrobenzene	66	%
Acenaphthene	40	3	2-Fluorobiphenyl	86	%
2,4-Dinitrophenol	306	U	Terphenyl-D14	87	%
4-Nitrophenol	61	Ü	Pyrene-D10	84	%
Dibenzofuran	45	3	D5-Phenol	89	%

Authorized By	y:	Release Date:	Page: 1	ı

Department of Ecology

Analysis Report for

Base/Neutral/Acids Low level targets only

Project Name: Spokane Sediment B	LIMS Project ID: 4358-00			
Sample: 00438020 Field ID: UPRIVER #1 Project Officer: Art Johnson	Date Collected: 10/23/00 Date Prepared: 11/01/00 Date Analyzed: 11/21/00		Matrix: Sediment/Soil	
Surrogate Recoveries (continued)				
2-Fluorophenol	86	0/0		
Authorized By:	R	elease Date:		Page: 2

Department of Ecology

Analysis Report for

Base/Neutral/Acids Low level targets only

Project Name: Spokane Sediment Bioassays LIMS Project ID: 4358-00

Sample: 00438020Date Collected: 10/23/00Method: SW8270Field ID: UPRIVER #1Date Prepared: 11/01/00Matrix: Sediment/SoilProject Officer: Art JohnsonDate Analyzed: 11/21//00Units: ug/Kg dw

Tentatively Identified Compounds

CAS Number	CAS Number Analyte Description		Qualifier
1123097	2-Cyclohexen-l-one, 3,5-dimethyl	626	NJ
1560925	Hexadecane, 2-methyl	13000	NJ
13980126	cis-9,10-Epoxyoctadecan-l-of	2400	NJ
2091294	9-Hexadecenoic acid	10400	NJ
10544500	Sulfur, mot. (S8)	3940	NJ
1599673	1-Docosene	53600	NJ
593497	Heptacosane	5810	NJ
55255577	Naphthalene, 1-decyl-1, 2, 3, 4-tetrahydro	37600	NJ
83476	.gammaSitosterol	53500	NJ

Authorized By:	Release Date:	Page: 3
11001120002	11010460 2 4101	

Department of Ecology

Analysis Report for

Base/Neutral/Acids Low level targets only

Project Name: Spokane Sediment Bioassays LIMS Project ID: 4358-00

Sample: 00438020 (Duplicate – LDP1)Date Collected: 10/23/00Method: SW8270Field ID: UPRIVER #1Date Prepared: 11/01/00Matrix: Sediment/SoilProject Officer: Art JohnsonDate Analyzed: 11/27/00Units: ug/Kg dw

Analyte	Result	Qualifier	Analyte	Result	Qualifier
Phenol	205		2,4-Dinitrotoluene	31	U
Bis(2-Chloroethyl)Ether	15	U	2,6-Dinitrotoluene	15	U
2-Chlorophenol	15	U	Diethylphthalate	187	
1, 3-Dichlorobenzene	15	U	4-Chlorophenyl-Phenylether	15	U
1,4-Dichlorobenzene	7.8	J	Fluorene	40	
Benzyl Alcohol	67		4-Nitroaniline	61	U
1,2-Dichlorobenzene	5.3	J	4,6-Dinitro-2-Methylphenol	152	U
2-Methylphenol	15	U	N-Nitrosodiphenylamine	15	U
2,2'-Oxybis[1-chloropropane]	15	U	4-Bromophenyl-Phenylether	15	U
4-Methylphenol	1220	E	Hexachlorobenzene	15	U
N-Nitroso-Di-N-Propylamine	15	U	Pentachlorophenol	15	U
Hexachloroethane	15	U	Phenanthrene	357	
Nitrobenzene	15	U	Anthracene	46	
Isophorone	15	U	Carbazole	31	
2-Nitrophenol	15	U	Di-N-Butylphthalate	84	
2,4-Dimethylphenol	15	U	Fluoranthene	335	
Benzoic Acid	231	J	Pyrene	339	
Bis(2-Chloroethoxy)Methane	15	U	Retene	5660	E
2,4-Dichlorophenol	15	U	Butylbenzylphthalate	15	U
1,2,4-Trichlorobenzene	15	U	3,3'-Dichlorobenzidine	31	U
Naphthalene	637		Benzo(a)anthracene	71	
4-Chloroaniline	15	U	Bis(2-Ethylhexyl) Phthalate	165	
Hexachlorobutadiene	15	U	Chrysene	119	
4-Chloro-3-Methylphenol	15	U	Di-N-Octyl Phthalate	15	U
2-Methylnaphthalene	65		Benzo(b)fluoranthene	91	
1-Methylnaphthalene	42		Benzo(k)fluoranthene	73	
Hexachlorocyclopentadiene	15	U	Benzo(a)pyrene	98	
2,4,6-Trichlorophenol	15	U	Indeno(1,2,3-cd)pyrene	15	U
2,4,5-Trichlorophenol	15	U	Dibenzo(a,h)anthracene	15	U
2-Chloronaphthalene	15	U	Benzo(ghi)perylene	15	U
2-Nitroaniline	15	U			
Dimethylphthalate	15	U	Surrogate Recoveries		
Acenaphthylene	157				
3-Nitroaniline	15	U	D5-Nitrobenzene	60	%
Acenaphthene	37		2-Fluorobiphenyl	75	%
2,4-Dinitrophenol	305	U	Terphenyl-D14	81	%
4-Nitrophenol	61	U	Pyrene-D10	79	%
Dibenzofuran	74		D5-Phenol	75	%

Authorized By: Release Date: Page: 4

Department of Ecology

Analysis Report for

Base/Neutral/Acids Low level targets only

Project Name: Spokane Sediment Bioas	ssays	LIMS Project ID: 4358-00
Sample: 00438020 DUPLICATE – LDP1 Field ID: UPRIVER #1 Project Officer: Art Johnson	Date Collected: 10/23/00 Date Prepared: 11/01/00 Date Analyzed: 11/27/00	Method: SW8270 Matrix: Sediment/Soil Units: ug/Kg dw
Surrogate Recoveries (continued)		
2-Fluorophenol	73 %	
Authorized By:	Release Date:	Page: 5

Department of Ecology

Analysis Report for

Base/Neutral/Acids Low level targets only

Project Name: Spokane Sediment Bioassays LIMS Project ID: 4358-00

Sample: 00438020 (Duplicate – LDP1)Date Collected: 10/23/00Method: SW8270Field ID: UPRIVER #1Date Prepared: 11/01/00Matrix: Sediment/SoilProject Officer: Art JohnsonDate Analyzed: 11/27//00Units: ug/Kg dw

Tentatively Identified Compounds

CAS Number	Analyte Description	Result	Qualifier
483772	Naphthalene, 1, 2, 3, 4-tetrahydro-1, 6-dimethyl-4-(1-m	2980	NJ
1560925	Hexadecane, 2-methyl	1370	NJ
2091294	9-Hexadecenoic acid	2780	NJ
5153924	1 H-Naphtho(2,1-bJpyran, 4a, 5, 6, 6a, 7, 8, 9,10, IOa, IOb	5480	NJ
38754948	s-Indacen-1(2H)-on e, 3, 5, 6, 7-tetrahydro3, 3, 4, 5, 5, 8	4870	NJ
1599673	1-Docosene	10400	NJ
7683649	Squalene	2050	NJ
630035	Nonacosane	11000	NJ
629969	1-Eicosanol	10300	NJ
55255577	Naphthalene, 1-decyl-1, 2, 3, 4-tetrahydro	5420	NJ
83476	. gammaSitosterol	9130	NJ
638959	. alphaAmyrin	1400	NJ
93287	Phenol, 2-methoxy-4-(2-propenyt)-, acetate	1440	NJ

Authorized By:	Dalaga Da	40.	Do 201 6
Aumorized by:	Release Da	le:	Page: 6
	11010430 2 4	•••	

Department of Ecology

Analysis Report for

Base/Neutral/Acids Low level targets only

Project Name: Spokane Sediment Bioassays LIMS Project ID: 4358-00

Sample: 00438020 (Dilution – DIL1)Date Collected: 10/23/00Method: SW8270Field ID: UPRIVER #1Date Prepared: 11/01/00Matrix: Sediment/SoilProject Officer: Art JohnsonDate Analyzed: 12/06/00Units: ug/Kg dw

Analyte	Result	Qualifier	Analyte	Result	Qualifi
Phenol	150	J	2,4-Dinitrotoluene	306	U
Bis(2-Chloroethyl)Ether	153	U	2,6-Dinitrotoluene	153	U
2-Chlorophenol	153	U	Diethylphthalate	202	
1, 3-Dichlorobenzene	153	U	4-Chlorophenyl-Phenylether	153	U
1,4-Dichlorobenzene	17	J	Fluorene	148	J
Benzyl Alcohol	153	U	4-Nitroaniline	613	U
1,2-Dichlorobenzene	153	U	4,6-Dinitro-2-Methylphenol	1530	UJ
2-Methylphenol	153	U	N-Nitrosodiphenylamine	153	U
2,2'-Oxybis[1-chloropropane]	153	U	4-Bromophenyl-Phenylether	153	U
4-Methylphenol	1200		Hexachlorobenzene	153	U
N-Nitroso-Di-N-Propylamine	153	U	Pentachlorophenol	153	UJ
Hexachloroethane	153	U	Phenanthrene	313	
Nitrobenzene	153	U	Anthracene	142	J
Isophorone	153	U	Carbazole	153	U
2-Nitrophenol	153	U	Di-N-Butylphthalate	172	
2,4-Dimethylphenol	153	U	Fluoranthene	354	
Benzoic Acid	3060	U	Pyrene	417	
Bis(2-Chloroethoxy)Methane	153	U	Retene	4930	
2,4-Dichlorophenol	153	U	Butylbenzylphthalate	153	U
1,2,4-Trichlorobenzene	153	U	3,3'-Dichlorobenzidine	306	U
Naphthalene	528		Benzo(a)anthracene	229	
4-Chloroaniline	153	U	Bis(2-Ethylhexyl) Phthalate	386	
Hexachlorobutadiene	153	U	Chrysene	143	J
4-Chloro-3-Methylphenol	153	U	Di-N-Octyl Phthalate	153	U
2-Methylnaphthalene	55	J	Benzo(b)fluoranthene	273	
1-Methylnaphthalene	46	J	Benzo(k)fluoranthene	244	
Hexachlorocyclopentadiene	153	UJ	Benzo(a)pyrene	153	U
2,4,6-Trichlorophenol	153	UJ	Indeno(1,2,3-cd)pyrene	153	U
2,4,5-Trichlorophenol	153	U	Dibenzo(a,h)anthracene	153	U
2-Chloronaphthalene	153	U	Benzo(ghi)perylene	153	U
2-Nitroaniline	153	U			
Dimethylphthalate	153	\mathbf{U}	Surrogate Recoveries		
Acenaphthylene	118	J	~		
3-Nitroaniline	153	\mathbf{U}	D5-Nitrobenzene	64	%
Acenaphthene	26	J	2-Fluorobiphenyl	66	%
2,4-Dinitrophenol	3060	UJ	Terphenyl-D14	75	%
4-Nitrophenol	613	U	Pyrene-D10	73	%
Dibenzofuran	38	J	D5-Phenol	76	%

Authorized By:_____ Release Date:_____ Page: 7

Department of Ecology

Analysis Report for

Base/Neutral/Acids Low level targets only

Project Name: Spokane Sediment Bioas	LIMS Project ID: 4358-00	
Sample: 00438020 (Dilution – DIL1) Field ID: UPRIVER #1 Project Officer: Art Johnson	Date Collected: 10/23/00 Date Prepared: 11/01/00 Date Analyzed: 12/06/00	Method: SW8270 Matrix: Sediment/Soil Units: ug/Kg dw
Surrogate Recoveries (continued)		
2-Fluorophenol	77 %	

Authorized By:_____ Release Date:____

Department of Ecology

Analysis Report for

Base/Neutral/Acids Low level targets only

Project Name: Spokane Sediment Bioassays LIMS Project ID: 4358-00

Sample: 00438020 (Dilution – DIL2)Date Collected: 10/23/00Method: SW8270Field ID: UPRIVER #1Date Prepared: 11/01/00Matrix: Sediment/SoilProject Officer: Art JohnsonDate Analyzed: 12/06/00Units: ug/Kg dw

Analyte	Result	Qualifier	Analyte	Result	Qualif
Phenol	128	J	2,4-Dinitrotoluene	305	U
Bis(2-Chloroethyl)Ether	152	U	2,6-Dinitrotoluene	152	U
2-Chlorophenol	152	U	Diethylphthalate	236	
1, 3-Dichlorobenzene	152	U	4-Chlorophenyl-Phenylether	152	U
1,4-Dichlorobenzene	152	U	Fluorene	145	J
Benzyl Alcohol	152	U	4-Nitroaniline	609	U
1,2-Dichlorobenzene	152	U	4,6-Dinitro-2-Methylphenol	1520	UJ
2-Methylphenol	152	U	N-Nitrosodiphenylamine	152	U
2,2'-Oxybis[1-chloropropane]	152	U	4-Bromophenyl-Phenylether	152	U
4-Methylphenol	1190		Hexachlorobenzene	152	U
N-Nitroso-Di-N-Propylamine	152	U	Pentachlorophenol	152	UJ
Hexachloroethane	152	U	Phenanthrene	306	
Nitrobenzene	152	U	Anthracene	135	${f J}$
Isophorone	152	U	Carbazole	152	U
2-Nitrophenol	152	U	Di-N-Butylphthalate	160	
2,4-Dimethylphenol	152	U	Fluoranthene	307	
Benzoic Acid	3050	U	Pyrene	332	
Bis(2-Chloroethoxy)Methane	152	U	Retene	5070	
2,4-Dichlorophenol	152	U	Butylbenzylphthalate	152	U
1,2,4-Trichlorobenzene	152	U	3,3'-Dichlorobenzidine	305	U
Naphthalene	589		Benzo(a)anthracene	205	
4-Chloroaniline	152	U	Bis(2-Ethylhexyl) Phthalate	379	
Hexachlorobutadiene	152	U	Chrysene	104	J
4-Chloro-3-Methylphenol	152	U	Di-N-Octyl Phthalate	152	U
2-Methylnaphthalene	58	J	Benzo(b)fluoranthene	305	
1-Methylnaphthalene	36	J	Benzo(k)fluoranthene	152	U
Hexachlorocyclopentadiene	152	UJ	Benzo(a)pyrene	284	
2,4,6-Trichlorophenol	152	U	Indeno(1,2,3-cd)pyrene	152	U
2,4,5-Trichlorophenol	152	U	Dibenzo(a,h)anthracene	152	U
2-Chloronaphthalene	152	U	Benzo(ghi)perylene	219	
2-Nitroaniline	152	U			
Dimethylphthalate	152	\mathbf{U}	Surrogate Recoveries		
Acenaphthylene	132	J	_		
3-Nitroaniline	152	\mathbf{U}	D5-Nitrobenzene	56	%
Acenaphthene	32	J	2-Fluorobiphenyl	66	%
2,4-Dinitrophenol	3050	UJ	Terphenyl-D14	74	%
4-Nitrophenol	609	U	Pyrene-D10	71	%
Dibenzofuran	152	U	D5-Phenol	75	%

Authorized By:______ Release Date:______ Page: 9

Department of Ecology

Analysis Report for

Base/Neutral/Acids Low level targets only

Project Name: Spokane Sediment Bioa	ssays	LIMS Project ID: 4358-00
Sample: 00438020 (Dilution – DIL2) Field ID: UPRIVER #1 Project Officer: Art Johnson	Date Collected: 10/23/00 Date Prepared: 11/01/00 Date Analyzed: 12/06/00	Method: SW8270 Matrix: Sediment/Soil Units: ug/Kg dw
Surrogate Recoveries (continued)		
2-Fluorophenol	73 %	
Authorized By:	Release Date:	Page: 10

Department of Ecology

Analysis Report for

Base/Neutral/Acids Low level targets only

Project Name: Spokane Sediment Bioassays LIMS Project ID: 4358-00

Sample: 00438021Date Collected: 10/23/00Method: SW8270Field ID: UPRIVER #2Date Prepared: 11/01/00Matrix: Sediment/SoilProject Officer: Art JohnsonDate Analyzed: 11/21/00Units: ug/Kg dw

Analyte	Result	Qualifier	Analyte	Result	Qualifier
Phenol	149	<u> </u>	2,4-Dinitrotoluene	21	U
Bis(2-Chloroethyl)Ether	11	U	2,6-Dinitrotoluene	11	U
2-Chlorophenol	11	U	Diethylphthalate	160	U
1, 3-Dichlorobenzene	11	U	4-Chlorophenyl-Phenylether	11	U
1,4-Dichlorobenzene	5.6	J	Fluorene	19	
Benzyl Alcohol	11	U	4-Nitroaniline	43	U
1,2-Dichlorobenzene	11	U	4,6-Dinitro-2-Methylphenol	107	U
2-Methylphenol	11	U	N-Nitrosodiphenylamine	11	U
2,2'-Oxybis[1-chloropropane]	11	U	4-Bromophenyl-Phenylether	11	U
4-Methylphenol	499		Hexachlorobenzene	11	U
N-Nitroso-Di-N-Propylamine	11	U	Pentachlorophenol	11	U
Hexachloroethane	11	U	Phenanthrene	121	
Nitrobenzene	11	U	Anthracene	21	
Isophorone	11	U	Carbazole	13	
2-Nitrophenol	11	U	Di-N-Butylphthalate	70	U
2,4-Dimethylphenol	11	U	Fluoranthene	115	
Benzoic Acid	318	UJ	Pyrene	120	
Bis(2-Chloroethoxy)Methane	11	U	Retene	39800	
2,4-Dichlorophenol	11	U	Butylbenzylphthalate	11	U
1,2,4-Trichlorobenzene	11	U	3,3'-Dichlorobenzidine	21	U
Naphthalene	208		Benzo(a)anthracene	24	
4-Chloroaniline	11	U	Bis(2-Ethylhexyl) Phthalate	98	U
Hexachlorobutadiene	11	U	Chrysene	47	
4-Chloro-3-Methylphenol	11	U	Di-N-Octyl Phthalate	11	U
2-Methylnaphthalene	28		Benzo(b)fluoranthene	11	U
1-Methylnaphthalene	15		Benzo(k)fluoranthene	52	
Hexachlorocyclopentadiene	11	U	Benzo(a)pyrene	33	
2,4,6-Trichlorophenol	11	U	Indeno(1,2,3-cd)pyrene	11	U
2,4,5-Trichlorophenol	11	U	Dibenzo(a,h)anthracene	11	U
2-Chloronaphthalene	11	U	Benzo(ghi)perylene	11	U
2-Nitroaniline	11	U			
Dimethylphthalate	11	U.	Surrogate Recoveries		
Acenaphthylene	35				
3-Nitroaniline	11	U	D5-Nitrobenzene	79	%
Acenaphthene	8.9	J	2-Fluorobiphenyl	88	%
2,4-Dinitrophenol	214	U	Terphenyl-D14	91	%
4-Nitrophenol	43	U	Pyrene-D10	89	%
Dibenzofuran	20		D5-Phenol	92	%

Authorized By:______ Release Date:______ Page: 1

Department of Ecology

Analysis Report for

Base/Neutral/Acids Low level targets only

Project Name: Spokane Sediment Bioa	ssays	LIMS Project ID: 4358-	-00
Sample: 00438021 Field ID: UPRIVER #2 Project Officer: Art Johnson	Date Collected: 10/23/00 Date Prepared: 11/01/00 Date Analyzed: 12/06/00	Method: SW8270 Matrix: Sediment/Soil Units: ug/Kg dw	
Surrogate Recoveries (continued)			
2-Fluorophenol	87 %		
Authorized By:	Release Date:		Page: 2

Department of Ecology

Analysis Report for

Base/Neutral/Acids Low level targets only

Project Name: Spokane Sediment Bioassays LIMS Project ID: 4358-00

Sample: 00438021Date Collected: 10/23/00Method: SW8270Field ID: UPRIVER #2Date Prepared: 11/01/00Matrix: Sediment/SoilProject Officer: Art JohnsonDate Analyzed: 11/27//00Units: ug/Kg dw

Tentatively Identified Compounds

CAS Number	Analyte Description	Result	Qualifier
39029419	gamma-cadinene	1810	NJ
30021740	Naphthalene, 1, 2, 3, 4, 4a, 5, 6, 8a-octahydro7-7-methyl-4	3700	NJ
483772	Naphthalene, 1,2,3,4-tetrahydro-1,6-dimethyl-4-(1-m	6420	NJ
503457	Cyclohexene, 3, 3, 5-trimethyl-	472	NJ
941695	N-Phenylmaleimide	232	NJ
295170	Cyclotetradecane	343	NJ
297030	Cyclotetracosane	1180	NJ
77899106	(Z)14-Tricosenyl formate	534	NJ
630035	Nonacosane	1080	NJ
20834064	Dodecanoic acid, hexadecyl ester	1490	NJ
112889	1-Octadecene	4180	NJ
83476	.gammaSitosterol	4550	NJ

Authorized By:	Release Date:	Page: 3
radionized by.	 release Date.	1 ugo. 3

Department of Ecology

Analysis Report for

Base/Neutral/Acids Low level targets only

Project Name: Spokane Sediment Bioassays LIMS Project ID: 4358-00

Sample: 00438021 (Dilution – DIL1)Date Collected: 10/23/00Method: SW8270Field ID: UPRIVER #2Date Prepared: 11/01/00Matrix: Sediment/SoilProject Officer: Art JohnsonDate Analyzed: 12/06/00Units: ug/Kg dw

Analyte	Result	Qualifier	Analyte	Result	Qualifier
Phenol	1070	U	2,4-Dinitrotoluene	1070	U
Bis(2-Chloroethyl)Ether	1070	U	2,6-Dinitrotoluene	1070	U
2-Chlorophenol	1070	U	Diethylphthalate	791	J
1, 3-Dichlorobenzene	1070	U	4-Chlorophenyl-Phenylether	1070	U
1,4-Dichlorobenzene	1070	U	Fluorene	1070	U
Benzyl Alcohol	1070	U	4-Nitroaniline	1070	U
1,2-Dichlorobenzene	1070	U	4,6-Dinitro-2-Methylphenol	4280	UJ
2-Methylphenol	1070	U	N-Nitrosodiphenylamine	1070	U
2,2'-Oxybis[1-chloropropane]	1070	U	4-Bromophenyl-Phenylether	1070	U
4-Methylphenol	1610		Hexachlorobenzene	1070	U
N-Nitroso-Di-N-Propylamine	1070	U	Pentachlorophenol	1070	UJ
Hexachloroethane	1070	U	Phenanthrene	1070	U
Nitrobenzene	1070	U	Anthracene	1070	U
Isophorone	1070	U	Carbazole	1070	U
2-Nitrophenol	1070	U	Di-N-Butylphthalate	1070	U
2,4-Dimethylphenol	1070	U	Fluoranthene	108	J
Benzoic Acid	21400	U	Pyrene	483	J
Bis(2-Chloroethoxy)Methane	1070	U	Retene	44200	
2,4-Dichlorophenol	1070	U	Butylbenzylphthalate	1070	U
1,2,4-Trichlorobenzene	1070	U	3,3'-Dichlorobenzidine	1070	U
Naphthalene	438	J	Benzo(a)anthracene	1070	U
4-Chloroaniline	1070	U	Bis(2-Ethylhexyl) Phthalate	1070	U
Hexachlorobutadiene	1070	U	Chrysene	1070	U
4-Chloro-3-Methylphenol	1070	U	Di-N-Octyl Phthalate	1070	U
2-Methylnaphthalene	1070	U	Benzo(b)fluoranthene	1070	U
1-Methylnaphthalene	1070	U	Benzo(k)fluoranthene	1070	U
Hexachlorocyclopentadiene	1070	UJ	Benzo(a)pyrene	1070	U
2,4,6-Trichlorophenol	1070	U	Indeno(1,2,3-cd)pyrene	1070	U
2,4,5-Trichlorophenol	1070	U	Dibenzo(a,h)anthracene	1070	U
2-Chloronaphthalene	1070	U	Benzo(ghi)perylene	1070	U
2-Nitroaniline	1070	U			
Dimethylphthalate	1070	U	Surrogate Recoveries		
Acenaphthylene	1070	U			
3-Nitroaniline	1070	U	D5-Nitrobenzene	76	%
Acenaphthene	1070	U	2-Fluorobiphenyl	36	%
2,4-Dinitrophenol	10700	UJ	Terphenyl-D14	51	%
4-Nitrophenol	1070	U	Pyrene-D10	59	%
Dibenzofuran	1070	U	D5-Phenol	106	%

Authorized By:	Release Date:	P	'age: 4	ł
----------------	---------------	---	---------	---

Department of Ecology

Analysis Report for

Base/Neutral/Acids Low level targets only

Project Name: Spokane Sediment Bioassays			LIMS Project ID: 4358-00	
Sample: 00438021 (Dilution – D1L1) Field ID: UPRIVER #2 Project Officer: Art Johnson	Date Prepa	cted: 10/23/00 hred: 11/01/00 zed: 12/06/00	Method: SW8270 Matrix: Sediment/Soil Units: ug/Kg dw	
Surrogate Recoveries (continued)				
2-Fluorophenol	77	%		
Authorized By:	<u>Re</u>	lease Date:	Pag	ge: 5

Department of Ecology

Analysis Report for

Base/Neutral/Acids Low level targets only

Project Name: Spokane Sediment Bioassays LIMS Project ID: 4358-00

Sample: 00438021 (Dilution – D1L1)Date Collected: 10/23/00Method: SW8270Field ID: UPRIVER #2Date Prepared: 11/01/00Matrix: Sediment/SoilProject Officer: Art JohnsonDate Analyzed: 12/06/00Units: ug/Kg dw

Tentatively Identified Compounds

CAS Number	Analyte Description	Result	Qualifier
74744299	3-Undecen-5 yne, (E)-	914	NJ
7715448	2(1 H)-Phenanthrenone, 3, 4, 4a, 4b, 5, 6, 7, 8,10, 10a-deca	1400	NJ
629970	Docosane	3480	NJ
638664	Octadecanal	3270	NJ
1560890	Heptadecane, 2-methyl-	3440	NJ
38754948	s-Indacen-1(2H)-one, 3, 5, 6, 7-tetrahydro-3, 3, 4, 5, 5, 8	6550	NJ
61141579	Cyclohexene, 1-ethyl-6-ethylidene-	4500	NJ
30021740	Naphthalene, 1, 2, 3, 4, 4a, 5, 6, 8a-octahydro-7-methyl-4	9660	NJ
483772	Naphthalene, 1, 2, 3, 4-tetrahydro-1, 6-dimethyl-4-(1-m	15500	NJ

Authorized By:	Release Date:	 Page: 6

Department of Ecology

Analysis Report for

Base/Neutral/Acids Low level targets only

Project Name: Spokane Sediment Bioassays LIMS Project ID: 4358-00

Sample: 00438023Date Collected: 10/24/00Method: SW8270Field ID: LITTLESPKDate Prepared: 11/01/00Matrix: Sediment/SoilProject Officer: Art JohnsonDate Analyzed: 11/21/00Units: ug/Kg dw

Analyte	Result	Qualifier	Analyte	Result	Qualifier
Phenol	44		2,4-Dinitrotoluene	13	U
Bis(2-Chloroethyl)Ether	6.3	U	2,6-Dinitrotoluene	6.3	U
2-Chlorophenol	6.3	U	Diethylphthalate	16	UJ
1, 3-Dichlorobenzene	6. 3	U	4-Chlorophenyl-Phenylether	6. 3	U
1,4-Dichlorobenzene	6.3	U	Fluorene	6.3	U
Benzyl Alcohol	6.3	U	4-Nitroaniline	25	U
1,2-Dichlorobenzene	6.3	U	4,6-Dinitro-2-Methylphenol	63	U
2-Methylphenol	6.3	U	N-Nitrosodiphenylamine	6.3	U
2,2'-Oxybis[1-chloropropane]	6.3	U	4-Bromophenyl-Phenylether	6.3	U
4-Methylphenol	26		Hexachlorobenzene	6.3	U
N-Nitroso-Di-N-Propylamine	6.3	U	Pentachlorophenol	6.3	UJ
Hexachloroethane	6.3	U	Phenanthrene	2.8	J
Nitrobenzene	6.3	U	Anthracene	6.3	U
Isophorone	6.3	U	Carbazole	6:3	U
2-Nitrophenol	6.3	U	Di-N-Butylphthalate	28	UJ
2,4-Dimethylphenol	6.3	U	Fluoranthene	4.0	J
Benzoic Acid	134	UJ	Pyrene	6.2	J
Bis(2-Chloroethoxy)Methane	6.3	U	Retene	11	
2,4-Dichlorophenol	6.3	U	Butylbenzylphthalate	6.3	U
1,2,4-Trichlorobenzene	6.3	U	3,3'-Dichlorobenzidine	13	U
Naphthalene	6.3	U	Benzo(a)anthracene	7.1	
4-Chloroaniline	6.3	U	Bis(2-Ethylhexyl) Phthalate	45	UJ
Hexachlorobutadiene	6.3	U	Chrysene	2.9	J
4-Chloro-3-Methylphenol	6.3	U	Di-N-Octyl Phthalate	6.3	U
2-Methylnaphthalene	6.3	U	Benzo(b)fluoranthene	9.9	
1-Methylnaphthalene	6.3	U	Benzo(k)fluoranthene	8.5	
Hexachlorocyclopentadiene	6.3	U	Benzo(a)pyrene	6.3	U
2,4,6-Trichlorophenol	6.3	U	Indeno(1,2,3-cd)pyrene	7.0	
2,4,5-Trichlorophenol	6.3	U	Dibenzo(a,h)anthracene	6.3	U
2-Chloronaphthalene	6.3	U	Benzo(ghi)perylene	8.7	
2-Nitroaniline	6.3	U			
Dimethylphthalate	6.3	U	Surrogate Recoveries		
Acenaphthylene	6.3	U			
3-Nitroaniline	6.3	U	D5-Nitrobenzene	85	%
Acenaphthene	6.3	U	2-Fluorobiphenyl	81	%
2,4-Dinitrophenol	126	U	Terphenyl-D14	89	%
4-Nitrophenol	25	U	Pyrene-D10	84	%
Dibenzofuran	3.3	J	D5-Phenol	87	%

A 41 ' 1D	Release Date:	D 1
Authorized By:	Kelease Date.	Page: 1

Department of Ecology

Analysis Report for

Base/Neutral/Acids Low level targets only

Project Name: Spokane Sediment B	LIMS Project ID: 4358-00		
Sample: 00438023 Field ID: LITTLESPK Project Officer: Art Johnson	Date Collected: 10/24/00 Date Prepared: 11/01/00 Date Analyzed: 11/21/00	Method: SW8270 Matrix: Sediment/Soil Units: ug/Kg dw	
Surrogate Recoveries (continued)			
2-Fluorophenol	81 %		
Authorized By:	Release <u>Date</u> :	Pag	e: 2

Department of Ecology

Analysis Report for

Base/Neutral/Acids Low level targets only

Project Name: Spokane Sediment Bioassays LIMS Project ID: 4358-00

Sample: 00438023Date Collected: 10/24/00Method: SW8270Field ID: LITTLESPKDate Prepared: 11/01/00Matrix: Sediment/SoilProject Officer: Art JohnsonDate Analyzed: 11/21/00Units: ug/Kg dw

Tentatively Identified Compounds

CAS Number	Analyte Description	Result	Qualifier
926658	Propane, 2-(ethenyloxy)-	568	NJ
16015115	2H-Pyran, 3,4-dihydro-6-methyl-	624	NJ
627087	Propane, 1-(1-methylethoxy)-	2620	NJ
592132	Hexane, 2, 5-dimethyl-	160	NJ
13950215	2H-Pyrrol-2-one, 1,5-dihydro-l-methyl-	1580	NJ
4436753	3-Hexene-2, 5-dione	945	NJ
103822	Benzeneacetic acid	158	NJ
150867	Phytol	18	NJ
630035	Nonacosane	20	NJ
629969	1-Eicosanol	154	NJ
254615	Pyrido(2, 3-dlpyrimidine	139	NJ
143282	Oleyl Alcohol	25	NJ

Authorized By:	Release Date:	Page: 3
ridilolized by.	 Release Date.	 r age. 3

Department of Ecology

Analysis Report for

Base/Neutral/Acids Low level targets only

Project Name: Spokane Sediment Bioassays LIMS Project ID: 4358-00

Sample: 00438024Date Collected: 10/24/00Method: SW8270Field ID: UPLONGLKDate Prepared: 11/01/00Matrix: Sediment/SoilProject Officer: Art JohnsonDate Analyzed: 11/21/00Units: ug/Kg dw

Analyte	Result	Qualifier	Analyte	Result	Qualifier
Phenol	31	UJ	2,4-Dinitrotoluene	17	
Bis(2-Chloroethyl)Ether	7.6	U	2,6-Dinitrotoluene	7.6	U
2-Chlorophenol	7.6	U	Diethylphthalate	25	UJ
1, 3-Dichlorobenzene	7. 6	U	4-Chlorophenyl-Phenylether	7.6	U
1,4-Dichlorobenzene	7.6	U	Fluorene	8.5	
Benzyl Alcohol	7.6	U	4-Nitroaniline		REJ
1,2-Dichlorobenzene	7.6	U	4,6-Dinitro-2-Methylphenol	76	U
2-Methylphenol	7.6	U	N-Nitrosodiphenylamine	7.6	U
2,2'-Oxybis[1-chloropropane]	7.6	U	4-Bromophenyl-Phenylether	7.6	U
4-Methylphenol	46		Hexachlorobenzene	7.6	U
N-Nitroso-Di-N-Propylamine	7.6	U	Pentachlorophenol	7.6	UJ
Hexachloroethane	7.6	UJ	Phenanthrene	34	
Nitrobenzene	7.6	U	Anthracene	16	
Isophorone	7.6	U	Carbazole	7.6	J
2-Nitrophenol	7.6	U	Di-N-Butylphthalate	49	UJ
2,4-Dimethylphenol	7.6	U	Fluoranthene	48	
Benzoic Acid	134	UJ	Pyrene	51	
Bis(2-Chloroethoxy)Methane	7.6	U	Retene	171	
2,4-Dichlorophenol	7.6	U	Butylbenzylphthalate	7.6	U
1,2,4-Trichlorobenzene	7.6	U	3,3'-Dichlorobenzidine		REJ
Naphthalene	6.2	J	Benzo(a)anthracene	35	
4-Chloroaniline		REJ	Bis(2-Ethylhexyl) Phthalate	92	UJ
Hexachlorobutadiene	7.6	U	Chrysene	40	
4-Chloro-3-Methylphenol	7.6	U	Di-N-Octyl Phthalate	7.6	U
2-Methylnaphthalene	2.3	J	Benzo(b)fluoranthene	35	
1-Methylnaphthalene	1.5	J	Benzo(k)fluoranthene	29	
Hexachlorocyclopentadiene		REJ	Benzo(a)pyrene	35	
2,4,6-Trichlorophenol	7.6	U	Indeno(1,2,3-cd)pyrene	24	J
2,4,5-Trichlorophenol	7.6	U	Dibenzo(a,h)anthracene	7.6	U
2-Chloronaphthalene	7.6	U	Benzo(ghi)perylene	23	
2-Nitroaniline	7.6	U			
Dimethylphthalate	7.6	U	Surrogate Recoveries		
Acenaphthylene	7.6	U			
3-Nitroaniline		REJ	D5-Nitrobenzene	75	%
Acenaphthene	1.4	J	2-Fluorobiphenyl	94	%
2,4-Dinitrophenol		REJ	Terphenyl-D14	103	%
4-Nitrophenol	30	U	Pyrene-D10	97	%
Dibenzofuran	7.6	U	D5-Phenol	99	%

A41 1 D	D-1 D-4	D 1
Authorized By:	Release Date:	Page: 1

Department of Ecology

Analysis Report for

Base/Neutral/Acids Low level targets only

Project Name: Spokane Sediment Bioassays		LIMS Project ID: 435	8-00
Sample: 00438024 Field ID: UPLONGLK Project Officer: Art Johnson	Date Collected: 10/ Date Prepared: 11/ Date Analyzed: 11/	/01/00 Matrix: Sediment/Soil	
Surrogate Recoveries (continued)			
2-Fluorophenol	94 %		
Authorized By:	Release Da	te:	Page: 2

Department of Ecology

Analysis Report for

Base/Neutral/Acids Low level targets only

Project Name: Spokane Sediment Bioassays LIMS Project ID: 4358-00

Sample: 00438024Date Collected: 10/24/00Method: SW8270Field ID: UPLONGLKDate Prepared: 11/01/00Matrix: Sediment/SoilProject Officer: Art JohnsonDate Analyzed: 11/21/00Units: ug/Kg dw

Tentatively Identified Compounds

CAS Number	Analyte Description	Result	Qualifier
814788	3-Buten-2-one, 3-methyl-	2600	NJ
4245765	N-Methyl-N'-nitroguanidine	292	NJ
141797	3-Penten-2-one, 4-methyl-	2530	NJ
10473140	3-Buten-2-ol, 3-methyl-	318	NJ
627087	Propane, 1-(1-methylethoxy)-	2830	NJ
17038287	1,3-Diazabicyclo[3.I.OJhexane	2450	NJ
4436753	3-Hexene-2, 5-dione	731	NJ
1123097	2-Cyclohexen-l-one, 3,5-dimethyl-	552	NJ
36794646	2, 3, 3-Trimethylbutanol	294	NJ
1599673	1-Docosene	236	NJ
77899106	(Z)14-Tricosenyl formate	130	NJ
630035	Nonacosane	786	NJ
629970	Docosane	190	NJ
629969	1-Eicosanol	1190	NJ
57885	Cholesterol	955	NJ
254615	Pyrido[2, 3-d1pyrimidine	4070	NJ
83476	. gammaSitosterol	2850	NJ

Authorized By:	Release Date:	Page: 3
radionized by.	 recrease Bate.	 1 450. 5

Department of Ecology

Analysis Report for

Base/Neutral/Acids Low level targets only

Project Name: Spokane Sediment Bioassays LIMS I	roject ID: 4358-00
---	---------------------------

Sample: 00438024 (Matrix Spike – LMX1)Date Collected: 10/24/00Method: SW8270Field ID: UPLONGLKDate Prepared: 11/01/00Matrix: Sediment/SoilProject Officer: Art JohnsonDate Analyzed: 11/27/00Units: % Recovery

Analyte	Result	Qualifier	Analyte	Result	Qualifier
Phenol	77		2,6-Dinitrotoluene	44	
Bis(2-Chloroethyl)Ether	69		Diethylphthalate	59	
2-Chlorophenol	66		4-Chlorophenyl-Phenylether	59	
1, 3-Dichlorobenzene	52		Fluorene	55	
1,4-Dichlorobenzene	52		4-Nitroaniline	0	
Benzyl Alcohol	72		4,6-Dinitro-2-Methylphenol	30	
1,2-Dichlorobenzene	55		N-Nitrosodiphenylamine	54	
2-Methylphenol	64		4-Bromophenyl-Phenylether	71	
2,2'-Oxybis[1-chloropropane]	72		Hexachlorobenzene	62	
4-Methylphenol	60		Pentachlorophenol	33	
N-Nitroso-Di-N-Propylamine	75		Phenanthrene	71	
Hexachloroethane	30		Anthracene	60	
Nitrobenzene	53		Carbazole	82	
Isophorone	71		Di-N-Butylphthalate	74	
2-Nitrophenol	31		Fluoranthene	68	
2,4-Dimethylphenol	73		Pyrene	64	
Benzoic Acid	60		Retene		NC
Bis(2-Chloroethoxy)Methane	64		Butylbenzylphthalate	79	
2,4-Dichlorophenol	132		Benzo(a)anthracene	62	
1,2,4-Trichlorobenzene	55		Bis(2-Ethylhexyl) Phthalate	107	
Naphthalene	60		Chrysene	69	
4-Chloroaniline	0		Di-N-Octyl Phthalate	85	
Hexachlorobutadiene	55		Benzo(b)fluoranthene	70	
4-Chloro-3-Methylphenol	71		Benzo(k)fluoranthene	56	
2-Methylnaphthalene	63		Benzo(a)pyrene	59	
Hexachlorocyclopentadiene	0		Indeno(1,2,3-cd)pyrene	85	
2,4,6-Trichlorophenol	68		Dibenzo(a,h)anthracene	76	
2,4,5-Trichlorophenol	63		Benzo(ghi)perylene	62	
2-Chloronaphthalene	65				
2-Nitroaniline	63		Surrogate Recoveries		
Dimethylphthalate	65				
Acenaphthylene	68		D5-Nitrobenzene	80	%
3-Nitroaniline	0		2-Fluorobiphenyl	67	%
Acenaphthene	68		Terphenyl-D14	70	%
2,4-Dinitrophenol	0		Pyrene-D10	67	%
4-Nitrophenol	83		D5-Phenol	99	%
Dibenzofuran	64		2-Fluorophenol	64	%
2,4-Dinitrotoluene	30				•

A 41 ' 1 D	D 1 D 4	D 1
Authorized By:	Release Date:	Page: 4

Department of Ecology

Analysis Report for

Base/Neutral/Acids Low level targets only

Project Name: Spokane Sediment Bioassays LIMS Project ID: 4358-00

Sample: 00438024 (Matrix Spike – LMX2)Date Collected: 10/24/00Method: SW8270Field ID: UPLONGLKDate Prepared: 11/01/00Matrix: Sediment/SoilProject Officer: Art JohnsonDate Analyzed: 11/27/00Units: % Recovery

Analyte	Result	Qualifier	Analyte	Result	Qualifier
Phenol	51		2,6-Dinitrotoluene	33	
Bis(2-Chloroethyl)Ether	72		Diethylphthalate	53	
2-Chlorophenol	61		4-Chlorophenyl-Phenylether	52	
1, 3-Dichlorobenzene	47		Fluorene	56	
1,4-Dichlorobenzene	50		4-Nitroaniline	15	
Benzyl Alcohol	56		4,6-Dinitro-2-Methylphenol	27	
1,2-Dichlorobenzene	56		N-Nitrosodiphenylamine	61	
2-Methylphenol	52		4-Bromophenyl-Phenylether	71	
2,2'-Oxybis[1-chloropropane]	75		Hexachlorobenzene	71	
4-Methylphenol	51		Pentachlorophenol	35	
N-Nitroso-Di-N-Propylamine	74		Phenanthrene	69	
Hexachloroethane	21		Anthracene	63	
Nitrobenzene	51		Carbazole	85	
Isophorone	66		Di-N-Butylphthalate	64	
2-Nitrophenol	25		Fluoranthene	73	
2,4-Dimethylphenol	66		Pyrene	66	
Benzoic Acid	62		Retene		NC
Bis(2-Chloroethoxy)Methane	64		Butylbenzylphthalate	78	
2,4-Dichlorophenol	124		Benzo(a)anthracene	0	
1,2,4-Trichlorobenzene	55		Bis(2-Ethylhexyl) Phthalate	65	
Naphthalene	63		Chrysene	101	
4-Chloroaniline	0		Di-N-Octyl Phthalate	71	
Hexachlorobutadiene	51		Benzo(b)fluoranthene	89	
4-Chloro-3-Methylphenol	70		Benzo(k)fluoranthene	72	
2-Methylnaphthalene	62		Benzo(a)pyrene	65	
Hexachlorocyclopentadiene	0		Indeno(1,2,3-cd)pyrene	66	
2,4,6-Trichlorophenol	71		Dibenzo(a,h)anthracene	77	
2,4,5-Trichlorophenol	72		Benzo(ghi)perylene	81	
2-Chloronaphthalene	70			68	
2-Nitroaniline	64		Surrogate Recoveries		
Dimethylphthalate	73		_		
Acenaphthylene	74		D5-Nitrobenzene	52	%
3-Nitroaniline	0		2-Fluorobiphenyl	68	%
Acenaphthene	73		Terphenyl-D14	71	%
2,4-Dinitrophenol	0		Pyrene-D10	67	%
4-Nitrophenol	85		D5-Phenol	59	%
Dibenzofuran	66		2-Fluorophenol	62	%
2,4-Dinitrotoluene	0				

A 41 ' 1 D	Release Date:	D =
Authorized By:	Keleace Date.	Page: 5

Department of Ecology

Analysis Report for

Base/Neutral/Acids Low level targets only

Project Name: Spokane Sediment Bioassays LIMS Project ID: 4358-00

Sample: 00438025Date Collected: 10/24/00Method: SW8270Field ID: MIDLONGLKDate Prepared: 11/01/00Matrix: Sediment/SoilProject Officer: Art JohnsonDate Analyzed: 11/27/00Units: ug/Kg dw

Analyte	Result	Qualifier	Analyte	Result	Qualifier
Phenol	108	U	2,4-Dinitrotoluene	217	U
Bis(2-Chloroethyl)Ether	108	U	2,6-Dinitrotoluene	108	U
2-Chlorophenol	108	U	Diethylphthalate	231	J
1, 3-Dichlorobenzene	108	U	4-Chlorophenyl-Phenylether	108	U
1,4-Dichlorobenzene	108	U	Fluorene	108	U
Benzyl Alcohol	108	U	4-Nitroaniline	434	U
1,2-Dichlorobenzene	108	U	4,6-Dinitro-2-Methylphenol	1080	U
2-Methylphenol	108	U	N-Nitrosodiphenylamine	108	U
2,2'-Oxybis[1-chloropropane]	108	U	4-Bromophenyl-Phenylether	108	U
4-Methylphenol	108	U	Hexachlorobenzene	108	U
N-Nitroso-Di-N-Propylamine	108	U	Pentachlorophenol	108	UJ
Hexachloroethane	108	U	Phenanthrene	27	J
Nitrobenzene	108	U	Anthracene	82	J
Isophorone	108	U	Carbazole	108	U
2-Nitrophenol	108	U	Di-N-Butylphthalate	134	
2,4-Dimethylphenol	108	U	Fluoranthene	41	J
Benzoic Acid	2170	U	Pyrene	78	J
Bis(2-Chloroethoxy)Methane	108	U	Retene	243	
2,4-Dichlorophenol	108	U	Butylbenzylphthalate	108	U
1,2,4-Trichlorobenzene	108	U	3,3'-Dichlorobenzidine	217	U
Naphthalene	108	U	Benzo(a)anthracene	108	U
4-Chloroaniline	108	U	Bis(2-Ethylhexyl) Phthalate	433	
Hexachlorobutadiene	108	U	Chrysene	108	U
4-Chloro-3-Methylphenol	108	U	Di-N-Octyl Phthalate	108	U
2-Methylnaphthalene	108	U	Benzo(b)fluoranthene	108	U
1-Methylnaphthalene	108	U	Benzo(k)fluoranthene	135	
Hexachlorocyclopentadiene	108	U	Benzo(a)pyrene	108	U
2,4,6-Trichlorophenol	108	U	Indeno(1,2,3-cd)pyrene	108	U
2,4,5-Trichlorophenol	108	U	Dibenzo(a,h)anthracene	108	U
2-Chloronaphthalene	108	U	Benzo(ghi)perylene	108	U
2-Nitroaniline	108	U			
Dimethylphthalate	108	U	Surrogate Recoveries		
Acenaphthylene	108	U	S		
3-Nitroaniline	108	U	D5-Nitrobenzene	39	%
Acenaphthene	108	U	2-Fluorobiphenyl	60	%
2,4-Dinitrophenol	2170	UJ	Terphenyl-D14	65	%
4-Nitrophenol	434	UJ	Pyrene-D10	63	%
Dibenzofuran	108	U	D5-Phenol	66	%

Authorized By:	Release Date:	Page: 1
Audiolized Dy.	Release Date.	r age. r

Department of Ecology

Analysis Report for

Base/Neutral/Acids Low level targets only

Project Name: Spokane Sediment Bioassays		LIMS Project ID: 4358-00	
Sample: 00438025 Field ID: MIDLONGLK Project Officer: Art Johnson	Date Collected: 10/24/00 Date Prepared: 11/01/00 Date Analyzed: 11/27/00	Method: SW8270 Matrix: Sediment/Soil Units: ug/Kg dw	
Surrogate Recoveries (continued)			
2-Fluorophenol	68 %		
Authorized By:	Release Date:	Page: 2	

Department of Ecology

Analysis Report for

Base/Neutral/Acids Low level targets only

Project Name: Spokane Sediment Bioassays LIMS Project ID: 4358-00

Sample: 00438026Date Collected: 10/24/00Method: SW8270Field ID: MIDLONGLKDate Prepared: 11/01/00Matrix: Sediment/SoilProject Officer: Art JohnsonDate Analyzed: 11/27/00Units: ug/Kg dw

Tentatively Identified Compounds

CAS Number	Analyte Description	Result	Qualifier
627087	Propane, 1-(1-methylethoxy)-	7250	NJ
102608537	3, 7,11,15-Tetramethyl-2-hexadecen-l-of	957	NJ
150867	Phytol	4170	NJ
638664	Octadecanal	989	NJ
593497	Heptacosane	6440	NJ
3079285	Decane, 1-(methylsulfinyl)-	917	NJ
2765119	Pentadecanal-	2660	NJ
630035	Nonacosane	1700	NJ
630068	Hexatriacontane	1530	NJ
80977	Cholestanol	1970	NJ
57885	Cholesterol	3760	NJ
55255577	Naphthalene, 1-decyl-1, 2, 3, 4-tetrahydro-	11300	NJ

Authorized By:	 Release Date:	Page: 3
		 6

Department of Ecology

Analysis Report for

Base/Neutral/Acids Low level targets only

Project Name: Spokane Sediment Bioassays LIMS Project ID: 4358-00

Sample: 00438026Date Collected: 10/25/00Method: SW8270Field ID: LOWLONGLKDate Prepared: 11/01/00Matrix: Sediment/SoilProject Officer: Art JohnsonDate Analyzed: 11/27/00Units: ug/Kg dw

Analyte	Result	Qualifier	Analyte	Result	Qualifier
Phenol	58		2,4-Dinitrotoluene	32	U
Bis(2-Chloroethyl)Ether	16	U	2,6-Dinitrotoluene	16	U
2-Chlorophenol	16	U	Diethylphthalate	33	UJ
1, 3-Dichlorobenzene	16	U	4-Chlorophenyl-Phenylether	16	U
1,4-Dichlorobenzene	2.8	J	Fluorene	20	
Benzyl Alcohol	16	U	4-Nitroaniline	64	U
1,2-Dichlorobenzene	16	U	4,6-Dinitro-2-Methylphenol	159	U
2-Methylphenol	16	U	N-Nitrosodiphenylamine	16	U
2,2'-Oxybis[1-chloropropane]	16	U	4-Bromophenyl-Phenylether	16	U
4-Methylphenol	36		Hexachlorobenzene	16	U
N-Nitroso-Di-N-Propylamine	16	U	Pentachlorophenol	16	UJ
Hexachloroethane	16	U	Phenanthrene	29	
Nitrobenzene	16	U	Anthracene	21	
Isophorone	16	U	Carbazole	16	U
2-Nitrophenol	16	U	Di-N-Butylphthalate	25	UJ
2,4-Dimethylphenol	16	U	Fluoranthene	55	
Benzoic Acid	268	UJ	Pyrene	64	
Bis(2-Chloroethoxy)Methane	16	U	Retene	67	
2,4-Dichlorophenol	16	U	Butylbenzylphthalate	16	U
1,2,4-Trichlorobenzene	16	U	3,3'-Dichlorobenzidine	32	U
Naphthalene	15	J	Benzo(a)anthracene	35	
4-Chloroaniline	16	U	Bis(2-Ethylhexyl) Phthalate	154	UJ
Hexachlorobutadiene	16	U	Chrysene	57	
4-Chloro-3-Methylphenol	16	U	Di-N-Octyl Phthalate	16	U
2-Methylnaphthalene	5.6	J	Benzo(b)fluoranthene	16	U
1-Methylnaphthalene	2.7	J	Benzo(k)fluoranthene	16	U
Hexachlorocyclopentadiene	16	U	Benzo(a)pyrene	16	U
2,4,6-Trichlorophenol	16	U	Indeno(1,2,3-cd)pyrene	40	
2,4,5-Trichlorophenol	16	U	Dibenzo(a,h)anthracene	16	U
2-Chloronaphthalene	16	U	Benzo(ghi)perylene	41	
2-Nitroaniline	16	U			
Dimethylphthalate	16	U	Surrogate Recoveries		
Acenaphthylene	5	J			
3-Nitroaniline	16	U	D5-Nitrobenzene	62	%
Acenaphthene	16	U	2-Fluorobiphenyl	67	%
2,4-Dinitrophenol	318	UJ	Terphenyl-D14	72	%
4-Nitrophenol	64	UJ	Pyrene-D10	69	%
Dibenzofuran	5.5	J	D5-Phenol	64	%

A41 1 D	D-1 D-4	D 1
Authorized By:	Release Date:	Page: 1

Department of Ecology

Analysis Report for

Base/Neutral/Acids Low level targets only

Project Name: Spokane Sediment B	Project Name: Spokane Sediment Bioassays		
Sample: 00438026 Field ID: LOWLONGLK Project Officer: Art Johnson	Date Collected: 10/25/00 Date Prepared: 11/01/00 Date Analyzed: 11/27/00	Method: SW8270 Matrix: Sediment/Soil Units: ug/Kg dw	
Surrogate Recoveries (continued)			
2-Fluorophenol	61 %		
Authorized By:	Release <u>Date</u> :	Page:	2

Department of Ecology

Analysis Report for

Base/Neutral/Acids Low level targets only

Project Name: Spokane Sediment Bioassays LIMS Project ID: 4358-00

Sample: 00438026Date Collected: 10/25/00Method: SW8270Field ID: LOWLONGLKDate Prepared: 11/01/00Matrix: Sediment/SoilProject Officer: Art JohnsonDate Analyzed: 11/27/00Units: ug/Kg dw

Tentatively Identified Compounds

CAS Number	Analyte Description	Result	Qualifier
110747	Formic acid, propyl ester	1560	NJ
4436753	3-Hexene-2, 5-dione	2260	NJ
1123097	2-Cyclohexen-l-one, 3,5-dimethyl-	1230	NJ
150867	Phytol	68	NJ
1599673	1-Docosene	1210	NJ
7683649	Squalene	372	NJ
630035	Nonacosane	216	NJ
630046	Hentfacontane	27	NJ
1892122	Cyclododecanemethanol	29	NJ
93989005	2-Ethoxy-l-methyl-6-oxo-1,2-azaphosphinane 2-oxide	52	NJ
1678315	a'-Neogammacer-22(29)-en-3-ol, (3.beta.,21.beta.)-	34	NJ
515139	Cyclohexane, 1-ethenyl-l-methyl-2,4-bis(1-methyleth	262	NJ
473154	2-Naphthalenemethanol, decahydro alpha.	46	

Authorized By:	 Release Date:	 Page: 3

Department of Ecology

Analysis Report for

Base/Neutral/Acids Low level targets only

Project Name: Spokane Sediment Bioassays LIMS Project ID: 4358-00

Sample: 00438027Date Collected: 10/25/00Method: SW8270Field ID: LATAH CRDate Prepared: 11/01/00Matrix: Sediment/SoilProject Officer: Art JohnsonDate Analyzed: 11/27/00Units: ug/Kg dw

35 5.9 5.9 5.9 5.9	UJ U U U	2,4-Dinitrotoluene 2,6-Dinitrotoluene Diethylphthalate	12 5.9	U U
5.9 5.9 5.9	U	2,6-Dinitrotoluene	5.9	II
5. 9 5.9		Diethylphthalate		U
5.9	U		20	UJ
		4-Chlorophenyl-Phenylether	5.9	U
13	U	Fluorene	5.9	U
13	UJ	4-Nitroaniline	2',4	U
5.9	U	4,6-Dinitro-2-Methylphenol	59	U
5.9	U	N-Nitrosodiphenylamine	5.9	U
5.9	U	4-Bromophenyl-Phenylether	5.9	U
45		Hexachlorobenzene	5.9	U
5.9	U	Pentachlorophenol	5.9	UJ
5.9	U	Phenanthrene	5.3	J
5.9	U	Anthracene	4.8	J
5.9	U	Carbazole	5.9	U
5.9	U	Di-N-Butylphthalate	56	UJ
5.9	U	Fluoranthene	5.9	J
131	UJ	Pyrene	11	
5.9	U	Retene	13	
5.9	U	Butylbenzylphthalate	25	
5.9	U	3,3'-Dichlorobenzidine	12	U
3.0	J	Benzo(a)anthracene	8.6	
5.9	U	Bis(2-Ethylhexyl) Phthalate	101	UJ
5.9	U	Chrysene	24	
5.9	U	Di-N-Octyl Phthalate	5.9	U
2.2	J	Benzo(b)fluoranthene	14	
1.5	J	Benzo(k)fluoranthene	5.9	U
5.9	U	Benzo(a)pyrene	11	
5.9	U	Indeno(1,2,3-cd)pyrene	5.9	U
5.9	U	Dibenzo(a,h)anthracene	5.9	U
5.9	U	Benzo(ghi)perylene	15	
5.9	U			
5.9	U	Surrogate Recoveries		
5.9	U			
5.9	U	D5-Nitrobenzene	60	%
5.9	U	2-Fluorobiphenyl	62	%
118	$\mathbf{U}\mathbf{J}$	Terphenyl-D14	68	%
24	UJ	Pyrene-D10	65	%
5.9	U	D5-Phenol	65	%
	5.9 5.9 5.9 5.9 5.9 5.9 5.9 5.9	5.9 U	5.9 U 4,6-Dinitro-2-Methylphenol 5.9 U N-Nitrosodiphenylamine 5.9 U 4-Bromophenyl-Phenylether 45 Hexachlorobenzene 5.9 U Pentachlorophenol 5.9 U Phenanthrene 5.9 U Anthracene 5.9 U Carbazole 5.9 U Di-N-Butylphthalate 5.9 U Fluoranthene 5.9 U Retene 5.9 U Butylbenzylphthalate 5.9 U Butylbenzylphthalate 5.9 U Bis(2-Ethylhexyl) Phthalate 5.9 U Chrysene 5.9 U Di-N-Octyl Phthalate 5.9 U Di-N-Octyl Phthalate 5.9 U Benzo(b)fluoranthene 5.9 U Benzo(a)pyrene 5.9 U Dibenzo(a,h)anthracene 5.9 U Benzo(ghi)perylene 5.9 U Surrogate Recoveries </td <td>5.9 U 4,6-Dinitro-2-Methylphenol 59 5.9 U N-Nitrosodiphenylamine 5.9 5.9 U 4-Bromophenyl-Phenylether 5.9 5.9 U Pentachlorophenol 5.9 5.9 U Pentachlorophenol 5.9 5.9 U Pentachlorophenol 5.9 5.9 U Phenanthrene 5.9 5.9 U Anthracene 4.8 5.9 U Carbazole 5.9 5.9 U Di-N-Butylphthalate 56 5.9 U Fluoranthene 5.9 5.9 U Fluoranthene 5.9 131 UJ Pyrene 11 5.9 U Retene 13 5.9 U Butylbenzylphthalate 25 5.9 U Bis(2-Ethylhenylphthalate 25 5.9 U Di-N-Octyl Phthalate 101 5.9 U Di-N-Octyl Phthalate 5.9</td>	5.9 U 4,6-Dinitro-2-Methylphenol 59 5.9 U N-Nitrosodiphenylamine 5.9 5.9 U 4-Bromophenyl-Phenylether 5.9 5.9 U Pentachlorophenol 5.9 5.9 U Pentachlorophenol 5.9 5.9 U Pentachlorophenol 5.9 5.9 U Phenanthrene 5.9 5.9 U Anthracene 4.8 5.9 U Carbazole 5.9 5.9 U Di-N-Butylphthalate 56 5.9 U Fluoranthene 5.9 5.9 U Fluoranthene 5.9 131 UJ Pyrene 11 5.9 U Retene 13 5.9 U Butylbenzylphthalate 25 5.9 U Bis(2-Ethylhenylphthalate 25 5.9 U Di-N-Octyl Phthalate 101 5.9 U Di-N-Octyl Phthalate 5.9

A .1 ' 1 D	D 1 D .	D 1
Authorized By:	Release Date:	Page: 1
Authorized DV.	NCICASC Datc.	1 420. 1

Department of Ecology

Analysis Report for

Base/Neutral/Acids Low level targets only

Project Name: Spokane Sediment Bioassays		LIMS Project ID: 4358-00		
Sample: 00438027 Field ID: LATAH CR Project Officer: Art Johnson	Date Collected: 10/25/00 Date Prepared: 11/01/00 Date Analyzed: 11/27/00	Method: SW8270 Matrix: Sediment/Soil Units: ug/Kg dw		
Surrogate Recoveries (continued)				
2-Fluorophenol	62 %			
Authorized By:	Release Date:	Page:	2	

Department of Ecology

Analysis Report for

Base/Neutral/Acids Low level targets only

Project Name: Spokane Sediment Bioassays LIMS Project ID: 4358-00

Sample: 00438027Date Collected: 10/25/00Method: SW8270Field ID: LATAH CRDate Prepared: 11/01/00Matrix: Sediment/SoilProject Officer: Art JohnsonDate Analyzed: 11/27/00Units: ug/Kg dw

Tentatively Identified Compounds

CAS Number	Analyte Description	Result	Qualifier
4436753	3-Hexene-2,5-dione	1000	NJ
1123097	2-Cyclohexen-l-one, 3,5-dimethyl-	471	NJ
54725734	1, 8-Nonanediol, 8-methyl-	161	NJ
7704349	Sulfur	449	NJ
150867	Phytol	31	NJ
74685339	3-Eicosene, (E)-	34	NJ
630035	Nonacosane	127	NJ
630046	Hentfacontane	77	NJ
629969	1-Eicosanol	63	NJ
254615	Pyrido[2,3-d]pyrimidine	906	NJ
83476	. gammaSitosterol	404	NJ

Authorized By:	 Release Date:	 Page: 3

Department of Ecology

Analysis Report for

Base/Neutral/Acids Low level targets only

Project Name: Spokane Sediment Bioassays LIMS Project ID: 4358-00

Sample: 00438028Date Collected: 10/24/00Method: SW8270Field ID: BEAD LKDate Prepared: 11/01/00Matrix: Sediment/SoilProject Officer: Art JohnsonDate Analyzed: 11/27/00Units: ug/Kg dw

			•	0 0	
Analyte	Result	Qualifier	Analyte	Result	Qualifier
Phenol	54		2,4-Dinitrotoluene	37	U
Bis(2-Chloroethyl)Ether	18	U	2,6-Dinitrotoluene	18	U
2-Chlorophenol	18	U	Diethylphthalate	55	$\mathbf{U}\mathbf{J}$
1, 3-Dichlorobenzene	18	U	4-Chlorophenyl-Phenylether	18	U
1,4-Dichlorobenzene	18	U	Fluorene	24	
Benzyl Alcohol	45		4-Nitroaniline	73	U
1,2-Dichlorobenzene	18	U	4,6-Dinitro-2-Methylphenol	182	U
2-Methylphenol	18	U	N-Nitrosodiphenylamine	18	U
2,2'-Oxybis[1-chloropropane]	18	U	4-Bromophenyl-Phenylether	18	U
4-Methylphenol	18	U	Hexachlorobenzene	18	U
N-Nitroso-Di-N-Propylamine	18	U	Pentachlorophenol	18	UJ
Hexachloroethane	18	U	Phenanthrene	30	
Nitrobenzene	18	U	Anthracene	18	U
Isophorone	18	U	Carbazole	18	U
2-Nitrophenol	18	U	Di-N-Butylphthalate	1710	E
2,4-Dimethylphenol	18	U	Fluoranthene	15	J
Benzoic Acid	431	UJ	Pyrene	14	J
Bis(2-Chloroethoxy)Methane	18	U	Retene	71	
2,4-Dichlorophenol	18	U	Butylbenzylphthalate	18	U
1,2,4-Trichlorobenzene	18	U	3,3'-Dichlorobenzidine	37	U
Naphthalene	29		Benzo(a)anthracene	18	U
4-Chloroaniline	18	U	Bis(2-Ethylhexyl) Phthalate	135	UJ
Hexachlorobutadiene	18	U	Chrysene	18	U
4-Chloro-3-Methylphenol	18	U	Di-N-Octyl Phthalate	18	U
2-Methylnaphthalene	8.8	J	Benzo(b)fluoranthene	18	U
1-Methylnaphthalene	6.2	J	Benzo(k)fluoranthene	18	U
Hexachlorocyclopentadiene	18	U	Benzo(a)pyrene	18	U
2,4,6-Trichlorophenol	18	U	Indeno(1,2,3-cd)pyrene	18	U
2,4,5-Trichlorophenol	18	U	Dibenzo(a,h)anthracene	18	U
2-Chloronaphthalene	18	U	Benzo(ghi)perylene	18	U
2-Nitroaniline	18	U			
Dimethylphthalate	18	U	Surrogate Recoveries		
Acenaphthylene	18	U			
3-Nitroaniline	18	U	D5-Nitrobenzene	71	%
Acenaphthene	18	U	2-Fluorobiphenyl	76	%
2,4-Dinitrophenol	365	U	Terphenyl-D14	79	%
4-Nitrophenol	73	U	Pyrene-D10	75	%
Dibenzofuran	15	J	D5-Phenol	74	%

Authorized By:	Release Date:	D 1
Allthorized RV.	Keleace Hate.	Page: 1
Authorized DV.	Neicase Date.	i age. i

Department of Ecology

Analysis Report for

Base/Neutral/Acids Low level targets only

Project Name: Spokane Sediment B	Project Name: Spokane Sediment Bioassays	
Sample: 00438028 Field ID: BEAD LK Project Officer: Art Johnson	Date Collected: 10/24/00 Date Prepared: 11/01/00 Date Analyzed: 11/27/00	Method: SW8270 Matrix: Sediment/Soil Units: ug/Kg dw
Surrogate Recoveries (continued)		
2-Fluorophenol	74 %	
Authorized By:	Release Date:	Page: 2

Department of Ecology

Analysis Report for

Base/Neutral/Acids Low level targets only

Project Name: Spokane Sediment Bioassays LIMS Project ID: 4358-00

Sample: 00438028Date Collected: 10/24/00Method: SW8270Field ID: BEAD LKDate Prepared: 11/01/00Matrix: Sediment/SoilProject Officer: Art JohnsonDate Analyzed: 11/27/00Units: ug/Kg dw

Tentatively Identified Compounds

CAS Number	Analyte Description	Result	Qualifier
629732	1-Hexadecene	4340	NJ
150867	Phytol	620	NJ
593497	Heptacosane	653	NJ
6971400	17-Pentatriacontene	444	NJ
2136701	Ethanol, 2-fetradecyloxy)-	1200	NJ
106252	2, 6-Octadien-l-ol, 3, 7-dimethyl-, (Z)-	350	NJ
630035	Nonacosane	659	NJ
20834064	Dodecanoic acid, hexadecyl ester	1920	NJ
1599673	1-Docosene	259	NJ
295658	Cyclohexadecane	295	NJ
2917615	Methanol, (dimethylsilylene)bis-, diacetate	1990	NJ

	.	~ ^
Authorized By:	Release Date:	Page: 3

Department of Ecology

Analysis Report for

Base/Neutral/Acids Low level targets only

Project Name: Spokane Sediment Bioassays LIMS Project ID: 4358-00

Sample: OBS0306A1

Method: SW8270 Field ID: Laboratory Method Blank **Date Prepared:** 11/01/00 Matrix: Sediment/Soil Project Officer: Art Johnson **Date Analyzed:** 11/21/00 **Units:** ug/Kg dw

Phenol 29	Analyte	Result	Qualifier	Analyte	Result	Qualifier
Bis(2-Chloroethyl)Ether	Phenol	29		2,4-Dinitrotoluene	35	U
2-Chlorophenol 17 U Diethylphthalate 385 1, 3-Dichlorobenzene 17 U 4-Chlorophenyl-Phenylether 17 U 1,4-Dichlorobenzene 17 U Fluorene 17 U Benzyl Alcohol 28 4-Nitroaniline 69 U 1,2-Dichlorobenzene 17 U 4,6-Dinitro-2-Methylphenol 173 U 2-Methylphenol 17 U N-Nitrosodiphenylamine 1,7 U 2,2'-Oxybis[1-chloropropane] 17 U Alemonophenyl-Phenylether 1,7 U 4-Methylphenol 17 U Hexachlorobenzene 1,7 U 4-Methylphenol 17 U Hexachlorophenol 17 U N-Nitroso-Di-N-Propylamine 17 U Phenanthrene 4,1 J Nitrobenzene 17 U Phenanthrene 4,1 J Nitrobenzene 17 U Anthracene 17 U 2,4-Dimethylphenol 17			U			
1, 3-Dichlorobenzene 17 U 4-Chlorophenyl-Phenylether 17 U 1,4-Dichlorobenzene 17 U Fluorene 17 U Benzyl Alcohol 28 4-Nitroaniline 69 U 1,2-Dichlorobenzene 17 U 4,6-Dinitro-2-Methylphenol 173 U 2-Methylphenol 17 U 4-Bromophenyl-Phenylether 1.7 U 4-Methylphenol 17 U 4-Bromophenyl-Phenylether 1.7 U 4-Methylphenol 17 U Hexachlorobenzene 1.7 U N-Nitroso-Di-N-Propylamine 17 U Hexachlorophenol 17 U Hexachloroethane 17 U Pentachlorophenol 17 U Hexachloroethane 17 U Phenanthrene 4.1 J Nitrobenzene 17 U Anthracene 17 U 2-Nitrophenol 17 U Di-N-Butylphthalate 90 2,4-Dimethylphenol 17		17	U		385	
1,4-Dichlorobenzene		17	U		17	U
1,2-Dichlorobenzene		17	U		17	U
1,2-Dichlorobenzene	Benzyl Alcohol	28		4-Nitroaniline	69	U
2-Methylphenol		17	U	4,6-Dinitro-2-Methylphenol	173	U
2,2'-Oxybis[1-chloropropane] 17	2-Methylphenol	17	U	N-Nitrosodiphenylamine	1.7	U
4-Methylphenol 17 U Hexachlorobenzene 1.7 U N-Nitroso-Di-N-Propylamine 17 U Pentachlorophenol 17 UJ Hexachloroethane 17 U Phenanthrene 4.1 J Nitrobenzene 17 U Anthracene 17 U Isophorone 17 U Carbazole 17 U 2-Nitrophenol 17 U Di-N-Butylphthalate 90 90 2,4-Dimethylphenol 17 U Fluoranthene 17 U Benzoic Acid 305 J Pyrene 17 U Beis(2-Chloroethoxy)Methane 17 U Retene 17 U 2,4-Dichlorophenol 17 U Butylbenzylphthalate 17 U 1,2,4-Trichlorobenzene 17 U Benzo(a)anthracene 16 J 4-Chloroaniline 17 U Benzo(a)anthracene 16 J 4-Chloroaniline 17 U<	2,2'-Oxybis[1-chloropropane]	17	U		1.7	U
N-Nitroso-Di-N-Propylamine 17		17	U		1.7	U
Nitrobenzene		17	U	Pentachlorophenol	17	UJ
Isophorone	Hexachloroethane	17	U	Phenanthrene	4.1	J
2-Nitrophenol 17 U Di-N-Butylphthalate 90 2,4-Dimethylphenol 17 U Fluoranthene 17 U Benzoic Acid 305 J Pyrene 17 U Bis(2-Chloroethoxy)Methane 17 U Retene 17 U 2,4-Dichlorophenol 17 U Butylbenzylphthalate 17 U 1,2,4-Trichlorobenzene 17 U Butylbenzylphthalate 17 U Naphthalene 17 U Benzo(a)anthracene 16 J 4-Chloroaniline 17 U Bis(2-Ethylhexyl) Phthalate 47 Hexachlorobutadiene 17 U Chrysene 17 U 4-Chloro-3-Methylphenol 17 U Di-N-Octyl Phthalate 17 U 2-Methylnaphthalene 17 U Benzo(b)fluoranthene 17 U 1-Methylnaphthalene 17 U Benzo(a)pyrene 17 U 1-Mexachlorocyclopentadiene 17	Nitrobenzene	17	U	Anthracene	17	U
2,4-Dimethylphenol 17 U Fluoranthene 17 U Benzoic Acid 305 J Pyrene 17 U Bis(2-Chloroethoxy)Methane 17 U Retene 17 U 2,4-Dichlorophenol 17 U Butylbenzylphthalate 17 U 1,2,4-Trichlorobenzene 17 U 3,3'-Dichlorobenzidine 35 U Naphthalene 17 U Benzo(a)anthracene 16 J 4-Chloroaniline 17 U Bis(2-Ethylhexyl) Phthalate 47 Hexachlorobutadiene 17 U Chrysene 17 U 4-Chloro-3-Methylphenol 17 U Di-N-Octyl Phthalate 17 U 2-Methylnaphthalene 17 U Benzo(b)fluoranthene 17 U 1-Methylnaphthalene 17 U Benzo(k)fluoranthene 17 U 1-Methylnaphthalene 17 U Benzo(a)pyrene 17 U 2,4,6-Trichlorophenol	Isophorone	17	U	Carbazole	17	U
Benzoic Acid 305 J Pyrene 17 U Bis(2-Chloroethoxy)Methane 17 U Retene 17 U 2,4-Dichlorophenol 17 U Butylbenzylphthalate 17 U 1,2,4-Trichlorobenzene 17 U Butylbenzylphthalate 35 U Naphthalene 17 U Benzo(a)anthracene 16 J 4-Chloroaniline 17 U Bis(2-Ethylhexyl) Phthalate 47 Hexachlorobutadiene 17 U Chrysene 17 U 4-Chloro-3-Methylphenol 17 U Di-N-Octyl Phthalate 17 U 2-Methylnaphthalene 17 U Benzo(b)fluoranthene 17 U 1-Methylnaphthalene 17 U Benzo(k)fluoranthene 17 U 1-Methylnaphthalene 17 U Benzo(a)pyrene 17 U 1-A,6-Trichlorophenol 17 U Dibenzo(a,h)anthracene 17 U 2,4,5-Trichloropheno	2-Nitrophenol	17	U	Di-N-Butylphthalate	90	
Bis(2-Chloroethoxy)Methane17URetene17U2,4-Dichlorophenol17UButylbenzylphthalate17U1,2,4-Trichlorobenzene17U3,3'-Dichlorobenzidine35UNaphthalene17UBenzo(a)anthracene16J4-Chloroaniline17UBis(2-Ethylhexyl) Phthalate47Hexachlorobutadiene17UChrysene17U4-Chloro-3-Methylphenol17UDi-N-Octyl Phthalate17U2-Methylnaphthalene17UBenzo(b)fluoranthene17U1-Methylnaphthalene17UBenzo(k)fluoranthene17UHexachlorocyclopentadiene17UBenzo(a)pyrene17U2,4,6-Trichlorophenol17UIndeno(1,2,3-cd)pyrene17U2,4,5-Trichlorophenol17UDibenzo(a,h)anthracene17U2-Chloronaphthalene17UBenzo(ghi)perylene17U	2,4-Dimethylphenol	17	U	Fluoranthene	17	U
2,4-Dichlorophenol17UButylbenzylphthalate17U1,2,4-Trichlorobenzene17U3,3'-Dichlorobenzidine35UNaphthalene17UBenzo(a)anthracene16J4-Chloroaniline17UBis(2-Ethylhexyl) Phthalate47Hexachlorobutadiene17UChrysene17U4-Chloro-3-Methylphenol17UDi-N-Octyl Phthalate17U2-Methylnaphthalene17UBenzo(b)fluoranthene17U1-Methylnaphthalene17UBenzo(k)fluoranthene17UHexachlorocyclopentadiene17UBenzo(a)pyrene17U2,4,6-Trichlorophenol17UIndeno(1,2,3-cd)pyrene17U2,4,5-Trichlorophenol17UDibenzo(a,h)anthracene17U2-Chloronaphthalene17UBenzo(ghi)perylene17U		305	J	Pyrene	17	U
1,2,4-Trichlorobenzene17U3,3'-Dichlorobenzidine35UNaphthalene17UBenzo(a)anthracene16J4-Chloroaniline17UBis(2-Ethylhexyl) Phthalate47Hexachlorobutadiene17UChrysene17U4-Chloro-3-Methylphenol17UDi-N-Octyl Phthalate17U2-Methylnaphthalene17UBenzo(b)fluoranthene17U1-Methylnaphthalene17UBenzo(k)fluoranthene17UHexachlorocyclopentadiene17UBenzo(a)pyrene17U2,4,6-Trichlorophenol17UIndeno(1,2,3-cd)pyrene17U2,4,5-Trichlorophenol17UDibenzo(a,h)anthracene17U2-Chloronaphthalene17UBenzo(ghi)perylene17U	Bis(2-Chloroethoxy)Methane	17	U	Retene	17	U
Naphthalene17UBenzo(a)anthracene16J4-Chloroaniline17UBis(2-Ethylhexyl) Phthalate47Hexachlorobutadiene17UChrysene17U4-Chloro-3-Methylphenol17UDi-N-Octyl Phthalate17U2-Methylnaphthalene17UBenzo(b)fluoranthene17U1-Methylnaphthalene17UBenzo(k)fluoranthene17UHexachlorocyclopentadiene17UBenzo(a)pyrene17U2,4,6-Trichlorophenol17UIndeno(1,2,3-cd)pyrene17U2,4,5-Trichlorophenol17UDibenzo(a,h)anthracene17U2-Chloronaphthalene17UBenzo(ghi)perylene17U	2,4-Dichlorophenol	17	U	Butylbenzylphthalate	17	U
4-Chloroaniline17UBis(2-Ethylhexyl) Phthalate47Hexachlorobutadiene17UChrysene17U4-Chloro-3-Methylphenol17UDi-N-Octyl Phthalate17U2-Methylnaphthalene17UBenzo(b)fluoranthene17U1-Methylnaphthalene17UBenzo(k)fluoranthene17UHexachlorocyclopentadiene17UBenzo(a)pyrene17U2,4,6-Trichlorophenol17UIndeno(1,2,3-cd)pyrene17U2,4,5-Trichlorophenol17UDibenzo(a,h)anthracene17U2-Chloronaphthalene17UBenzo(ghi)perylene17U	1,2,4-Trichlorobenzene	17	U	3,3'-Dichlorobenzidine	35	U
Hexachlorobutadiene17UChrysene17U4-Chloro-3-Methylphenol17UDi-N-Octyl Phthalate17U2-Methylnaphthalene17UBenzo(b)fluoranthene17U1-Methylnaphthalene17UBenzo(k)fluoranthene17UHexachlorocyclopentadiene17UBenzo(a)pyrene17U2,4,6-Trichlorophenol17UIndeno(1,2,3-cd)pyrene17U2,4,5-Trichlorophenol17UDibenzo(a,h)anthracene17U2-Chloronaphthalene17UBenzo(ghi)perylene17U	Naphthalene	17	U	Benzo(a)anthracene	16	J
4-Chloro-3-Methylphenol17UDi-N-Octyl Phthalate17U2-Methylnaphthalene17UBenzo(b)fluoranthene17U1-Methylnaphthalene17UBenzo(k)fluoranthene17UHexachlorocyclopentadiene17UBenzo(a)pyrene17U2,4,6-Trichlorophenol17UIndeno(1,2,3-cd)pyrene17U2,4,5-Trichlorophenol17UDibenzo(a,h)anthracene17U2-Chloronaphthalene17UBenzo(ghi)perylene17U	4-Chloroaniline	17	U	Bis(2-Ethylhexyl) Phthalate	47	
2-Methylnaphthalene17UBenzo(b)fluoranthene17U1-Methylnaphthalene17UBenzo(k)fluoranthene17UHexachlorocyclopentadiene17UBenzo(a)pyrene17U2,4,6-Trichlorophenol17UIndeno(1,2,3-cd)pyrene17U2,4,5-Trichlorophenol17UDibenzo(a,h)anthracene17U2-Chloronaphthalene17UBenzo(ghi)perylene17U	Hexachlorobutadiene	17	U	Chrysene	17	U
1-Methylnaphthalene17UBenzo(k)fluoranthene17UHexachlorocyclopentadiene17UBenzo(a)pyrene17U2,4,6-Trichlorophenol17UIndeno(1,2,3-cd)pyrene17U2,4,5-Trichlorophenol17UDibenzo(a,h)anthracene17U2-Chloronaphthalene17UBenzo(ghi)perylene17U	4-Chloro-3-Methylphenol	17	U	Di-N-Octyl Phthalate	17	U
Hexachlorocyclopentadiene17UBenzo(a)pyrene17U2,4,6-Trichlorophenol17UIndeno(1,2,3-cd)pyrene17U2,4,5-Trichlorophenol17UDibenzo(a,h)anthracene17U2-Chloronaphthalene17UBenzo(ghi)perylene17U	2-Methylnaphthalene	17	U	Benzo(b)fluoranthene	17	U
2,4,6-Trichlorophenol17UIndeno(1,2,3-cd)pyrene17U2,4,5-Trichlorophenol17UDibenzo(a,h)anthracene17U2-Chloronaphthalene17UBenzo(ghi)perylene17U	1-Methylnaphthalene	17	U	Benzo(k)fluoranthene	17	U
2,4,5-Trichlorophenol17UDibenzo(a,h)anthracene17U2-Chloronaphthalene17UBenzo(ghi)perylene17U	Hexachlorocyclopentadiene	17	U	Benzo(a)pyrene	17	U
2-Chloronaphthalene 17 U Benzo(ghi)perylene 17 U	2,4,6-Trichlorophenol	17	U	Indeno(1,2,3-cd)pyrene	17	U
	2,4,5-Trichlorophenol	17	U	Dibenzo(a,h)anthracene	17	U
2-Nitroaniline 17 U	2-Chloronaphthalene	17	U	Benzo(ghi)perylene	17	U
	2-Nitroaniline	17	U			
Dimethylphthalate 6.9 J Surrogate Recoveries	Dimethylphthalate	6.9	J	Surrogate Recoveries		
Acenaphthylene 17 U		17	U	G		
3-Nitroaniline 17 U D5-Nitrobenzene 88 %	3-Nitroaniline	17	U	D5-Nitrobenzene	88	%
Acenaphthene 17 U 2-Fluorobiphenyl 84 %	Acenaphthene	17				
2,4-Dinitrophenol 346 U Terphenyl-D14 90 %		346	U			
4-Nitrophenol 69 U Pyrene-D10 84 %						
Dibenzofuran 17 U D5-Phenol 68 %					68	

A .1 ' 1 D	D 1 D .	D 1
Authorized By:	Release Date:	Page: 1
Authorized DV.	NCICASC Datc.	1 420. 1

Department of Ecology

Analysis Report for

Base/Neutral/Acids Low level targets only

Project Name: Spokane Sediment Bioassays		LIMS Project ID: 4358-00)
Sample: OBS0306A1 Field ID: Laboratory Method Blank Project Officer: Art Johnson	Date Prepared: 11/01/00 Date Analyzed: 11/21/00	Method: SW8270 Matrix: Sediment/Soil Units: ug/Kg dw	
Surrogate Recoveries (continued)			
2-Fluorophenol	56 %		
Authorized By:	Release Date:		Page: 2

Department of Ecology

Analysis Report for

Base/Neutral/Acids Low level targets only

Project Name: Spokane Sediment Bioassays LIMS Project ID: 4358-00

Sample: OBS0306A1

Field ID: Laboratory Method Blank
Project Officer: Art Johnson

Date Prepared: 11/01/00
Date Analyzed: 11/21/00

Method: SW8270
Matrix: Sediment/Soil
Units: ug/Kg dw

Tentatively Identified Compounds

CAS Number	Analyte Description	Result	Qualifier
79094	Propanoic acid	307	NJ
7778850	Propane, 1,2-dimethoxy-	1960	NJ
141797	3-Penten-2-one, 4-methyl-	287	NJ
10473140	3-Buten-2-ol, 3-methyl-	1190	NJ
123422	2-Pentanone, 4-hydroxy-4-methyl-	26700	NJ
6728263	2-Hexenal, (E)-	519	NJ
79345	1,1, 2, 2-Tetrachloroethane	489	NJ
110134	2, 5-Hexanedione	1290	NJ
13950215	2H-Pyrrol-2-one, 1,5-dihydro-l-methyl-	5890	NJ
631572	Propanenitrile, 2-oxo-	332	NJ
1638160	2-Propanol, 1,1'-((1-methyl-1,2-ethanediyl)bis(oxy)	335	NJ
822866	Cyclohexane, 1,2-dichloro-, trans-	408	NJ
3508789	2,4-Pentanedione, 3-(2 propenyl)-	256	NJ
2847725	Decane, 4-methyl-	337	NJ
18217124	2-Heptanone, 5-methyl-	486	NJ
18435455	1-Nonadecene	763	NJ
1599673	1-Docosene	837	NJ
297245	Cyclooctacosane	1170	NJ
1560958	Tetradecane, 2-methyl-	199	NJ

Authorized By:	Release Date:	Page: 3
riamonized by.	release Bate.	 I ugo. 5

Department of Ecology

Analysis Report for

Base/Neutral/Acids Low level targets only

Project Name: Spokane Sediment Bioassays LIMS Project ID: 4358-00

Sample: OBS0306A2

Method: SW8270 Field ID: Laboratory Method Blank **Date Prepared:** 11/01/00 Matrix: Sediment/Soil Project Officer: Art Johnson **Date Analyzed:** 11/21/00 Units: ug/Kg dw

Analyte	Result	Qualifier	Analyte	Result	Qualifier
Phenol	24		2,4-Dinitrotoluene	36	
Bis(2-Chloroethyl)Ether	17	U	2,6-Dinitrotoluene	17	U
2-Chlorophenol	17	U	Diethylphthalate	386	
1, 3-Dichlorobenzene	17	U	4-Chlorophenyl-Phenylether	17	U
1,4-Dichlorobenzene	17	U	Fluorene	17	U
Benzyl Alcohol	17	U	4-Nitroaniline	69	U
1,2-Dichlorobenzene	17	U	4,6-Dinitro-2-Methylphenol	173	U
2-Methylphenol	17	U	N-Nitrosodiphenylamine	17	U
2,2'-Oxybis[1-chloropropane]	17	U	4-Bromophenyl-Phenylether	1.7	U
4-Methylphenol	17	U	Hexachlorobenzene	1.7	U
N-Nitroso-Di-N-Propylamine	17	U	Pentachlorophenol	1.7	UJ
Hexachloroethane	17	U	Phenanthrene	3.6	J
Nitrobenzene	17	U	Anthracene	17	U
Isophorone	17	U	Carbazole	17	U
2-Nitrophenol	17	U	Di-N-Butylphthalate	76	
2,4-Dimethylphenol	17	U	Fluoranthene	1.3	J
Benzoic Acid	267	${f J}$	Pyrene	8.6	J
Bis(2-Chloroethoxy)Methane	17	U	Retene	17	U
2,4-Dichlorophenol	17	U	Butylbenzylphthalate	29	
1,2,4-Trichlorobenzene	17	U	3,3'-Dichlorobenzidine	35	U
Naphthalene	17	U	Benzo(a)anthracene	15	J
4-Chloroaniline	17	U	Bis(2-Ethylhexyl) Phthalate	49	
Hexachlorobutadiene	17	U	Chrysene	17	U
4-Chloro-3-Methylphenol	17	U	Di-N-Octyl Phthalate	17	U
2-Methylnaphthalene	17	U	Benzo(b)fluoranthene	17	U
1-Methylnaphthalene	17	U	Benzo(k)fluoranthene	17	U
Hexachlorocyclopentadiene	17	U	Benzo(a)pyrene	17	U
2,4,6-Trichlorophenol	17	U	Indeno(1,2,3-cd)pyrene	17	U
2,4,5-Trichlorophenol	17	U	Dibenzo(a,h)anthracene	17	U
2-Chloronaphthalene	17	U	Benzo(ghi)perylene	17	U
2-Nitroaniline	17	U			
Dimethylphthalate	9	J	Surrogate Recoveries		
Acenaphthylene	17	U			
3-Nitroaniline	17	U.	D5-Nitrobenzene	82	%
Acenaphthene	17	U	2-Fluorobiphenyl	80	%
2,4-Dinitrophenol	346	U	Terphenyl-D14	84	%
4-Nitrophenol	69	U	Pyrene-D10	79	%
Dibenzofuran	17	U	D5-Phenol	60	%

A 41 ' 1D	Release Date:	D 1
Authorized By:	Release Date.	Page: 1
	NCICASC DAIC.	i age. i

Department of Ecology

Analysis Report for

Base/Neutral/Acids Low level targets only

Project Name: Spokane Sediment Bioassays		LIMS Project ID: 4358-00	
Sample: OBS0306A2 Field ID: Laboratory Method Blank Project Officer: Art Johnson	Date Prepared: 11/01/00 Date Analyzed: 11/21/00	Method: SW8270 Matrix: Sediment/Soil Units: ug/Kg dw	
Surrogate Recoveries (continued)			
2-Fluorophenol	52 %		
Authorized By:	Release Date:	Pag	ge: 2

Department of Ecology

Analysis Report for

Base/Neutral/Acids Low level targets only

Project Name: Spokane Sediment Bioassays LIMS Project ID: 4358-00

Sample: OBS0306A2

Field ID: Laboratory Method Blank
Project Officer: Art Johnson

Date Prepared: 11/01/00
Date Analyzed: 11/21/00

Method: SW8270
Matrix: Sediment/Soil
Units: ug/Kg dw

Tentatively Identified Compounds

CAS Number	Analyte Description	Result	Qualifier
105317	1-Hexyn-3-of	1500	NJ
141797	3-Penten-2-one, 4-methyl-	582	NJ
10473140	3-Buten-2-ol, 3-methyl-	1250	NJ
123422	2-Pentanone, 4-hydroxy-4-methyl-	27700	NJ
79345	1,1, 2, 2-Tetrachloroethane	567	NJ
110134	2, 5-Hexanedione	1640	NJ
13950215	2H-Pyrrol-2-one, 1,5-dihydro-1-methyl-	5590	NJ
6714007	5-Hepten-2-one	454	NJ
822866	Cyclohexane, 1,2-dichloro-, trans-	378	NJ
70856143	(E)-3-Isopropyl-6-oxo-2-heptenal	421	NJ
6975980	Decane, 2-methyl-	291	NJ
6064273	6-Dodecanone	649	NJ
57103	Hexadecanoic acid	535	NJ
119937	f1,1'-Biphenyl)-4,4'-diamine, 3,3'-dimethyl-	204	NJ
57114	Octadecanoic acid	62	NJ
629969	1-Eicosanol	1780	NJ
83487	Stigmasterol	1070	NJ

Authorized By:	Release Date:	Page: 3

7411 Beach DR E, Port Orchard Washington 98366

CASE NARRATI VE

December 7, 2000

Subject: Spokane Sediment Bioassays

Samples: 00438020 - 00438021, 00438023 - 00438028

Case No. 435800 Officer: Art Johnson

By: Myrna Mandjikov,

PCB Aroclor Analysis of the Spokane Sediments

SUMMARY:

Aroclor 1248 is found to be at much higher levels in samples 00438020 and 00438021 than in the rest of the samples analyzed for this project.

Due to high levels of Aroclor 1248 interference, many Aroclor results are reported with estimated reporting limits. The quantitation limit reported is an estimate of the minimum amount of the Aroclor that could be positively identified above the 1248 contamination present in a particular sample.

Results reported below the laboratory reporting limit are qualified with "J".

In a few samples, PCB congeners are found that indicate the presence of Aroclors at or below the laboratory reporting limit. These congeners are not in the proper ratios to produce an identifiable PCB pattern. This phenomenon could result from either degradation of the Aroclor (biological, combustion) or contamination. These results are calculated using the mean value of the indicating Aroclor congeners. Because the percent relative standard deviation between these peaks sometimes exceeds 100%, the results are qualified, "NJ", to note that evidence of the Aroclor is present but the result is an estimate.

The data is useable as qualified.

METHODS:

The samples were extracted into acetone by Soxhlet extraction. Each extract was then eluted through a Florisil® column, with a 94% hexane / 6% preserved diethyl ether solution.

The extracts were solvent exchanged to iso-octane and treated with elemental mercury to remove sulfur and then treated with concentrated sulfuric acid. At this point each extract was analyzed by GC-ECD.

These methods are modifications of EPA SW-846 methods 3540, 3550, 3620, 3665, and 8082.

BLANKS:

No target analytes were detected in the blanks.

SURROGATES:

All samples and blanks were spiked with decachlorobiphenyl (DCB) prior to extraction. All surrogate recoveries are within the acceptable range of 50 % - 150 % of the reference value.

DUPLICATE SAMPLES:

Sample 00438020 was prepared in duplicate. The relative percent differences (RPD) between the analytes are:

Aroclor	RPD
1248	0.0
1260	3.2

SPIKED SAMPLES AND SPIKED SAMPLE DUPLICATES

Sample 00438024 was prepared in triplicate. Two replicates of the sample were spiked with aroclors 1016 and 1260. All analytes recovered within the method control limits of 50 % - 150 %.

	LMX 1	LMX2	RPI)
Aroclor 1016		96	105	9.2
Aroclor 1260		84	90	6.9

HOLDING TIMES:

The sample was extracted and analyzed within the recommended holding times.

DATA QUALIFIERS:

Code	Definition
E	Reported result is an estimate because it exceeds the calibration.
J	The analyte was positively identified. The associated numerical result is an estimate.
N	There is evidence the analyte is present in this sample.
NJ	There is evidence that the analyte is present. The associated numerical result is an estimate.
NAF	Not analyzed for.
NC	Not calculated.
REJ	The data are unusable for all purposes.
U	The analyte was not detected at or above the reported result.
UJ	The analyte was not detected at or above the reported estimated result.
Bold Type	The analyte was present in the sample. Used as a visual aid to locate detected compounds on the report sheet.

Comments on this data package:

Due to catastrophic failure of the instrument computer, some data, calibration, and method files were destroyed before the documentation package for this project was completed.

All the samples and controls had been processed with valid calibrations and all Aroclor calibration verification standards were in control. One closing control for Aroclor 1254 was saved and demonstrates that the system was still in control after the analysis of the sample dilutions.

According to SW-846 method 8082, the Aroclors are expected to behave similarly. It is recommended by this method that 1016 and 1260 be used to demonstrate that all Aroclors are within control, making it unnecessary to analyze all Aroclors on a 10 -20% basis. Since 1254 behaves no differently than 1016 or 1260, the results of this standard should be acceptable to show that the analysis is in control for all the Aroclors.

Department of Ecology

Analysis Report for

Polychlorinated Biphenyls

Project Name: Spokane Sedimer	LIMS Project ID: 4358-00			
Sample: 00438020	Date Collected	: 10/23/00	Method: SW8082	
Field ID: UPRIVER #1	Date Prepared: 11/01/00 Date Analyzed: 11/09/00		Matrix: Sediment/Soil	
Project Officer: Art Johnson			Units: ug/Kg dw	
Analyte	Result	Qualifier		
PCB - 1016	120	UJ		
PCB - 1221	23	UJ		
PCB - 1232	35	UJ		
PCB - 1242	12	UJ		
PCB - 1248	1400			
PCB - 1254	230	UJ		
PCB - 1260	31			
Decachlorobiphenyl	66	0/0		

Department of Ecology

Analysis Report for

Polychlorinated Biphenyls

Sample: 00438020 (Duplicate – LPD1 Field ID: UPRIVER #1 Project Officer: Art Johnson	Date Collected: 10/23/00 Date Prepared: 11/01/00 Date Analyzed: 11/09/00		Method: SW8082 Matrix: Sediment/Soil Units: ug/Kg dw
Analyte	Result	Qualifier	
PCB - 1016	110	UJ	
PCB - 1221	21	UJ	
PCB - 1232	32	UJ	
PCB - 1242	11	UJ	
PCB - 1248	1400		
PCB - 1254	210	UJ	
PCB - 1260	27		
Decachlorobiphenyl	57	%	

Department of Ecology

Analysis Report for

Polychlorinated Biphenyls

Field ID: UPRIVER #2 Project Officer: Art Johnson Date	e Prepared	1: 10/23/00	N. (1. 1. GYY)0000
	Date Collected: 10/23/00 Date Prepared: 11/01/00 Date Analyzed: 11/09/00		Method: SW8082 Matrix: Sediment/Soil Units: ug/Kg dw
Analyte	Result	Qualifier	
PCB - 1016	160	UJ	
PCB - 1221	16	UJ	
PCB - 1232	7.9	UJ	
PCB - 1242	79	UJ	
PCB - 1248	1300		
PCB - 1254	16	UJ	
PCB - 1260	618	J	
Decachlorobiphenyl	66	0/0	

Release Date:

Page: 1

Department of Ecology

Analysis Report for

Polychlorinated Biphenyls

Date Collected: 10/24/00 Matrix: Sediment/Soil Date Analyzed: 11/01/00 Date Analyzed: 11/07/00 Date Analyzed: 11/0	Project Name: Spokane Sedimen	LIMS Project ID: 4358-00		
PCB - 1016 PCB - 1221 PCB - 1232 PCB - 1242 PCB - 1242 PCB - 1248 PCB - 1254 PCB - 1254 PCB - 1260 Surrogate Recoveries	Field ID: LITTLESPK	Date Prepared: 11/01/00		Matrix: Sediment/Soil
PCB - 1221	Analyte	Result	Qualifier	
PCB - 1232 5.1 U PCB - 1242 5.1 U PCB - 1248 5.1 U PCB - 1254 5.1 U PCB - 1260 5.1 U Surrogate Recoveries	PCB - 1016		U	
PCB - 1242 5.1 U PCB - 1248 5.1 U PCB - 1254 5.1 U PCB - 1260 5.1 U Surrogate Recoveries	PCB - 1221	5.1	U	
PCB - 1248 5.1 U PCB - 1254 5.1 U PCB - 1260 5.1 U Surrogate Recoveries	PCB - 1232	5.1	U	
PCB - 1254	PCB - 1242	5.1	U	
PCB - 1260 5.1 U Surrogate Recoveries	PCB - 1248	5.1	U	
Surrogate Recoveries	PCB - 1254	5.1	U	
	PCB - 1260	5.1	U	
Decachlorobiphenyl 70 %				
	Decachlorobiphenyl	70	%	

Release Date:

Page: 1

Department of Ecology

Analysis Report for

Polychlorinated Biphenyls

	Project Name: Spokane Sediment Bioassays			
Sample: 00438024 Field ID: UPLONGLK Project Officer: Art Johnson	Date Collected: 10/24/00 Date Prepared: 11/01/00 Date Analyzed: 11/07/00		Method: SW8082 Matrix: Sediment/Soil Units: ug/Kg dw	
Analyte	Result	Qualifier		
PCB - 1016	5.8	U		
PCB - 1221	5.8	U		
PCB - 1232	5.8	U		
PCB - 1242	5.8	U		
PCB - 1248	5.8	U		
PCB - 1254	2.0	NJ		
PCB - 1260	5.8	U		
Surrogate Recoveries Decachlorobiphenyl	74	%		

Release Date:

Page: 1

Department of Ecology

Analysis Report for

Polychlorinated Biphenyls

Project Name: Spokane Sediment Bioassa	LIMS Project ID: 4358-00		
Sample: 00438024 (Matrix Spike – LMX1) Field ID: UPLONGLK Project Officer: Art Johnson	Date I	Collected: 10/24/00 Prepared: 11/01/00 Analyzed: 11/07/00	Method: SW8082 Matrix: Sediment/Soil Units: ug/Kg dw
Analyte	Result	Qualifier	
PCB - 1016 PCB - 1221	96 84		
Surrogate Recoveries			
Decachlorobiphenyl	85	%	

Release Date:

Page: 2

Department of Ecology

Analysis Report for

Polychlorinated Biphenyls

Project Name: Spokane Sediment Bioassa	LIMS Project ID: 4358-00			
Sample: 00438024 (Matrix Spike – LMX2)		Collected: 10/24/00	Method: SW8082	
Field ID: UPLONGLK		Prepared: 11/01/00	Matrix: Sediment/Soil	
Project Officer: Art Johnson	Date A	Analyzed: 11/07/00	Units: ug/Kg dw	
		0		
Analyte	Result	Qualifier		
PCB - 1016	105			
PCB - 1221	96			
Surrogate Recoveries				
Decachlorobiphenyl	85	0/0		
Authorized By:	Rel	ease Date:	Page: 3	

Department of Ecology

Analysis Report for

Polychlorinated Biphenyls

Project Name: Spokane Sediment Bioassays		LIMS Project ID: 4358-00	
Sample: 00438025 Field ID: MIDLONGLK Project Officer: Art Johnson	Date Collected: 10/24/00 Date Prepared: 11/01/00 Date Analyzed: 11/08/00		Method: SW8082 Matrix: Sediment/Soil Units: ug/Kg dw
Analyte	Result	Qualifier	
PCB - 1016	8.4	U	
PCB - 1221	8.4	U	
PCB - 1232	8.4	U	
PCB - 1242	8.4	U	
PCB - 1248	8.3	NJ	
PCB - 1254	8.6	NJ	
PCB - 1260	4.2	UJ	
Surrogate Recoveries			
Decachlorobiphenyl	87	%	

Release Date:

Page: 1

Department of Ecology

Analysis Report for

Polychlorinated Biphenyls

Project Name: Spokane Sediment Bioassays			LIMS Project ID: 4358-00	
Sample: 00438026 Field ID: LOWLONGLK Project Officer: Art Johnson	Date Collected: 10/25/00 Date Prepared: 11/01/00 Date Analyzed: 11/08/00		Method: SW8082 Matrix: Sediment/Soil Units: ug/Kg dw	
Analyte	Result	Qualifier		
PCB - 1016	12	U		
PCB - 1221	12	U		
PCB - 1232	12	U		
PCB - 1242	25	U		
PCB - 1248	44			
PCB - 1254 PCB - 1260	39 16			
Surrogate Recoveries				
Decachlorobiphenyl	78	0/0		

Department of Ecology

Analysis Report for

Polychlorinated Biphenyls

Date Collected: 10/25/00 Method: SW8082 Date Prepared: 11/01/00 Date Analyzed: 11/08/00 Date Analyzed: 11/08/00	Project Name: Spokane Sediment Bioassays			LIMS Project ID: 4358-00
PCB - 1016	Field ID: LATAH CR	Date Prepared: 11/01/00		Matrix: Sediment/Soil
PCB - 1221	Analyte	Result	Qualifier	
PCB - 1232	PCB - 1016	4.7	U	
PCB - 1242	PCB - 1221	4.7	U	
PCB - 1248	PCB - 1232		U	
PCB - 1254 4.7 U PCB - 1260 4.7 U Surrogate Recoveries			U	
PCB - 1260 4.7 U Surrogate Recoveries				
Surrogate Recoveries				
	PCB - 1260	4.7	U	
Decacnioropiphenyl 80 %		00	0/	
	Decachlorobiphenyl	80	%	

Release Date:

Page: 1

Department of Ecology

Analysis Report for

Polychlorinated Biphenyls

Project Name: Spokane Sediment Bioassays			LIMS Project ID: 4358-00
Sample: 00438028 Field ID: BEAD LK Project Officer: Art Johnson	Date Collected: 10/24/00 Date Prepared: 11/01/00 Date Analyzed: 11/08/00		Method: SW8082 Matrix: Sediment/Soil Units: ug/Kg dw
Analyte	Result	Qualifier	
PCB - 1016	13	U	
PCB - 1221	13	U	
PCB - 1232	13	U	
PCB - 1242	13	U	
PCB - 1248	13	U	
PCB - 1254	13	U	
PCB - 1260	13	U	
Surrogate Recoveries			
Decachlorobiphenyl	72	0/0	

Department of Ecology

Analysis Report for

Polychlorinated Biphenyls

Release Date:

Page: 1

Department of Ecology

Analysis Report for

Polychlorinated Biphenyls

Project Name: Spokane Sediment B	LIMS Project ID: 4358-00		
Sample: OBS0306B2 Field ID: Laboratory Method Bank Project Officer: Art Johnson	Date Prepared: 11/01/00 Date Analyzed: 11/08/00		Method: SW8082 Matrix: Sediment/Soil Units: ug/Kg dw
Analyte	Result	Qualifier	
PCB - 1016	4.7	U	
PCB - 1221	4.7	U	
PCB - 1232	4.7	U	
PCB - 1242	4.7	U	
PCB - 1248	4.7	U	
PCB - 1254	4.7	U	
PCB - 1260	4.7	U	
Surrogate Recoveries			
Decachlorobiphenyl	78	%	

Department of Ecology

Analysis Report for

Polychlorinated Biphenyls

Project Name: Spokane Sedimen	nt Bioassays		LIMS Project ID: 4358-00
Sample: OCS0306			Method: SW8082
Field ID: NIST SRM 1944	Date Prepared	: 11/01/00	Matrix: Sediment/Soil
Project Officer: Art Johnson	Date Analyzed		Units: ug/Kg dw
Analyte	Result	Qualifier	
PCB - 1016	600	UJ	
PCB - 1221	200	$\mathbf{U}\mathbf{J}$	
PCB - 1232	600	$\mathbf{U}\mathbf{J}$	
PCB - 1242	440	${f J}$	
PCB - 1248	800	J	
PCB - 1254	810		
PCB - 1260	380		
Decachlorobiphenyl	98	0/0	
Authorized By:	Rel	lease Date:	I

From: Mandjikov, Myrna L

Sent: Tuesday, December 12, 2000 10:04 AM

To: Johnson, Art

Subject: RE: Spokane Sediment PCBs 438020-21, 23-28

I'm sorry I should have discussed it. There are no certified values for Aroclors in SRM 1244. It is certified for congeners. However, I am tracking the mean and standard deviation data on this reference material. 1242 is estimated as it is affected by 1248 interference.

In the past we have not been running reference material on small project unless requested. As a result of the audit, we'll be running it more often. I do not have any reference material for aroclors in sediment samples at this time so I used NIST 1244 because it is what we've been using for the majority of work this year.

	Mean	Stdev	%RSD
1242	450 pg/uL J	105	23
1248	780 pg/uL	50	6
1254	680 pg/u L	87	13
1260	335 pg/UL	31	9

----Original Message----

From: Johnson, Art

Sent: Tuesday, December 12, 2000 8:13 AM

To: Mandjikov, Myrna L

Subject: Spokane Sediment PCBs 438020-21, 23-28

Myrna,

I got the above data today and it looks like you did another great job. Results fall in nicely with previous samples at these sites. Thank you.

Could you please provide me with the name and certified values for NIST SRM 1944? Was there a reason for not mentioning the SRM in the case narrative?

Art

This page is purposely blank for duplex printing

7411 Beach Dr E, Port Orchard Washington 98366

CASE NARRATIVE

March 27, 2001

Subject: Spokane River - Sediment Samples

Sample(s): 00438024, 26 & 27

Officer(s): Art Johnson By: Norman Olson

Organics Analysis Unit

Pesticide Analysis

ANALYTICAL METHOD(S):

The sediment samples for nitrogen-containing, organophosphorous and chlorinated pesticides (Npest, Oppest and Clpest) were extracted following Manchester Laboratory's standard operating procedure for the extraction of pesticides. The samples were extracted with acetone using a Soxhlet apparatus and solvent exchanged to hexane. Following extraction the extracts received Florisil column clean-up collecting a single 100% diethylether (preserved) fraction. The extracts were analyzed for Npest and Oppest by capillary Gas Chromatography with Atomic Emission Detection (GC/AED) following EPA SW-846 Method 8085. The extracts were analyzed for Clpest by capillary Gas Chromatography with Electron Capture Detection (GC/ECD) following EPA SW-846 Method 8081. Confirmation of detected pesticides is performed by Gas Chromatography with Ion-Trap mass spectrometry (GC/ITD), comparisons of elemental ratios of heteroatoms to empirical formulas or dual dissimilar column comparison.

Target analytes have a respective practical quantitation limit (PQL) that is higher than the corresponding method detection limit (MDL). If a target analyte is detected and its identification is unambiguously confirmed at a concentration below its PQL, the reported concentration is qualified as an estimate, 'f qualifier.

BLANKS:

No target compounds were detected in the laboratory blanks. Hence, the blanks demonstrate the system was free from contamination.

HOLDING TIMES:

All samples were extracted and analyzed within the method holding times.

SURROGATE(S): 1,3-Dimethyl-2-nitrobenzene (DMNB), Decachlorobiphenyl (DCB), 4,4'-**Dibromo-octafluorobiphenyl (DBOB),** Tetrachloro-m-xylene (TMX) and triphenylphosphate (TPP) recoveries from the samples and the blank were within the acceptable limits, except for the TMX recovery from sample 00438024 at 44%. Because the other surrogate recoveries were acceptable in this sample no qualifiers were applied.

DMNB recoveries are generally expected to be lower than the other surrogate compounds due to its relative volatility. DMNB is more volatile than the target analytes and thus gives an indication of maximum losses during the concentration steps of the sample preparation procedure.

MATRIX SPIKING:

No matrix spikes were requested

COMMENTS:

Trace levels of tetrabromobiphenylether and pentabromobiphenylethers were detected in sample 00438024 at approximately 4 ug/Kg and 7 ug/Kg, respectively. These numbers should be considered rough estimates.

The reported target list for each parameter contains fewer compounds then the associated parameter lists generally reported for water sample analysis. This difference in the compound list is due to method performance relative to the compounds obtained when the required clean-up steps are included in the soil sample preparation procedure.

The data is useable as qualified.

DATA QUALIFIER CODES

U -	The analyte was not	t detected at or above	the reported result.

- J The analyte was positively identified. The associated numerical result is an estimate.
- UJ The analyte was not detected at or above the reported estimated result.
- REJ The data are unusable for all purposes.
- NAF Not analyzed for.
- N For organic analytes there is evidence the analyte is present in this sample.
- NJ There is evidence that the analyte is present. The associated numerical result is an estimate.
- NC Not Calculated
- E This qualifier is used when the concentration of the associated value exceeds the known calibration range.

Department of Ecology

Analysis Report for

Nitrogen Containing Pesticides

	Tuttogen	Containing	Conclues			
Project Name: Spokane Sedimen	t Bioassays			LIMS Project I	D: 435	58-00
Sample: 00438024	D	ate Collected	l: 10/24/00	Method: SW808	35	
Field ID: UPLONGLK	D	Oate Prepared	l : 12/14/01	Matrix: Frozen	Sedin	nent/Soil
Project Officer: Art Johnson	D	ate Analyzed	1: 03/12/01	Units: ug/Kg d	lw	
Analyte	Result	Qualifier				
Dichlobenil	18	U	Surrogate F	Recoveries		
Propachlor (Ramrod)	22	U				
Ethalfluralin (Sonalan)	14	U	1,3-Dimethy	yl-2-nitrobenzene	28	%
Treflan (Trifluralin)	14	U				
Simazine	9.1	U				
Atrazine	9.1	U				
Pronamide (Kerb)	36	U				
Terbacil	27	U				
Metribuzin	9.1	UJ				
Alachlor	33	U				
Metolachlor	36	U				
Diphenamid	27	UJ				
Pendimethalin	14	U				
Napropamide	27	U				
Oxyfluorfen	36	U				
Eptam	18	U				
Butylate	18	U				
Vernolate	18	U				
Cycloate	18	U				
Benefin	14	U				
Propazine	9.1	U				
Triallate	27	U				
Ametryn	9.1	UJ				
Terbutryn (Igran)	9.1	UJ				
Pebulate	18	U				
Molinate	18	U				
Chlorpropham	36	U				
Triadimefon	24	U				
MGK264	73	U				
Butachlor	55	U				
Fenarimol	27	U				
Diuron	55	UJ				
Di-allate (Avadex)	64	U				
Profluralin	22	U				

Release Date:

Page: 1

Department of Ecology

Analysis Report for

Nitrogen Containing Pesticides

	Nitrogen	Containing	resuciaes	
Project Name: Spokane Sediment	Bioassays			LIMS Project ID: 4358-00
Sample: 00438026	D	ate Collected	l: 10/25/00	Method: SW8085
Field ID: LOWLONGLK		ate Prepared		Matrix: Frozen Sediment/Soil
Project Officer: Art Johnson		ate Analyzed		Units: ug/Kg dw
Analyte	Result	Qualifier		
Dichlobenil	39	U	Surrogate R	ecoveries
Propachlor (Ramrod)	47	U		
Ethalfluralin (Sonalan)	29	U	1.3-Dimethy	d-2-nitrobenzene 26 %
Treflan (Trifluralin)	29	U		
Simazine	19	U		
Atrazine	19	U		
Pronamide (Kerb)	78	U		
Terbacil	58	U		
Metribuzin	19	UJ		
Alachlor	70	U		
Metolachlor	78	U		
Diphenamid	58	UJ		
Pendimethalin	29	U		
Napropamide	58	U		
Oxyfluorfen	78	U		
Eptam	39	U		
Butylate	39	U		
Vernolate	39	U		
Cycloate	39	U		
Benefin	29	U		
Propazine	19	U		
Triallate	58	U		
Ametryn	19	UJ		
Terbutryn (Igran)	19	UJ		
Pebulate	39	U		
Molinate	39	U		
Chlorpropham	39	U		
Triadimefon	78	U		
MGK264	51	U		
Butachlor	160	U		
Fenarimol	120	U		
Diuron	58	UJ		
Di-allate (Avadex)	120	U		
Profluralin	140	U		
Cyanazine	29	UJ		

Release Date:

Page: 1

Department of Ecology

Analysis Report for

Nitrogen Containing Pesticides

Project Name: Spokane Sediment Bioassays		Nitrogen	n Containing Pe	sticides	
Date Proparet: 02/14/01 Matrix: Frozen Sediment/So Date Analyzed: 03/12/01 Units: ug/Kg dw Units: ug/Kg dw	Project Name: Spokane Sedimer	nt Bioassays			LIMS Project ID: 4358-00
Analyte	Field ID: LATAH CR	\mathbf{L}	Date Prepared:	02/14/01	Matrix: Frozen Sediment/Soil
Dichlobenil			•		<u> </u>
Propachlor (Ramrod) 19		16		Surrogate R	ecoveries
Ethalfluralin (Sonalan) 12	Propachlor (Ramrod)	19		O	
Treflan (Trifluralin) 12 U Simazine 8.0 U Atrazine 8.0 U Pronamide (Kerb) 32 U Terbacil 24 U Metribuzin 8.0 UJ Alachlor 29 U Metolachlor 32 U Diphenamid 24 UJ Pendimethalin 12 U Napropamide 24 U Oxyfluorfen 32 U Eptam 16 U Butylate 16 U Vernolate 16 U Cycloate 16 U Benefin 12 U Propazine 8.0 U Triallate 24 U Ametryn 8.0 UJ Terbutryn (Igran) 8.0 UJ Pebulate 16 U Molinate 16 U Chlorpropham 32 <td></td> <td>12</td> <td>\mathbf{U} 1</td> <td>,3-Dimethy</td> <td>l-2-nitrobenzene 40 %</td>		12	\mathbf{U} 1	,3-Dimethy	l-2-nitrobenzene 40 %
Simazine 8.0 U Atrazine 8.0 U Pronamide (Kerb) 32 U Terbacil 24 U Metribuzin 8.0 UJ Alachlor 29 U Metolachlor 32 U Diphenamid 24 UJ Pendimethalin 12 U Napropamide 24 U Oxyfluorfen 32 U Eptam 16 U Butylate 16 U Vernolate 16 U Cycloate 16 U Benefin 12 U Propazine 8.0 U Triallate 24 U Ametryn 8.0 UJ Terbutryn (Igran) 8.0 UJ Pebulate 16 U Molinate 16 U Chlorpropham 32 U Triadimefon 21	` ,	12		,	
Pronamide (Kerb) 32 U Terbacil 24 U Metribuzin 8.0 UJ Alachlor 29 U Metolachlor 32 U Diphenamid 24 UJ Pendimethalin 12 U Napropamide 24 U Oxyfluorfen 32 U Eptam 16 U Butylate 16 U Vernolate 16 U Vernolate 16 U Cycloate 16 U Benefin 12 U Propazine 8.0 U Triallate 24 U Ametryn 8.0 UJ Terbutryn (Igran) 8.0 UJ Pebulate 16 U Molinate 16 U Chlorpropham 32 U Triadimefon 21 U MGK264 64 <t< td=""><td>,</td><td>8.0</td><td>U</td><td></td><td></td></t<>	,	8.0	U		
Pronamide (Kerb) 32 U Terbacil 24 U Metribuzin 8.0 UJ Alachlor 29 U Metolachlor 32 U Diphenamid 24 UJ Pendimethalin 12 U Napropamide 24 U Oxyfluorfen 32 U Eptam 16 U Butylate 16 U Vernolate 16 U Vernolate 16 U Cycloate 16 U Benefin 12 U Propazine 8.0 U Triallate 24 U Ametryn 8.0 UJ Terbutryn (Igran) 8.0 UJ Pebulate 16 U Molinate 16 U Chlorpropham 32 U Triadimefon 21 U MGK264 64 <t< td=""><td>Atrazine</td><td>8.0</td><td>U</td><td></td><td></td></t<>	Atrazine	8.0	U		
Terbacil 24 U Metribuzin 8.0 UJ Alachlor 29 U Metolachlor 32 U Diphenamid 24 UJ Pendimethalin 12 U Napropamide 24 U Oxyfluorfen 32 U Eptam 16 U Butylate 16 U Vernolate 16 U Cycloate 16 U Benefin 12 U Propazine 8.0 U Triallate 24 U Ametryn 8.0 UJ Terbutryn (Igran) 8.0 UJ Pebulate 16 U Molinate 16 U Chlorpropham 32 U Triadimefon 21 U MGK264 64 U Butachlor 48 U Fenarimol 24 U <td></td> <td>32</td> <td>U</td> <td></td> <td></td>		32	U		
Alachlor 29 U Metolachlor 32 U Diphenamid 24 UJ Pendimethalin 12 U Napropamide 24 U Oxyfluorfen 32 U Eptam 16 U Butylate 16 U Vernolate 16 U Cycloate 16 U Benefin 12 U Propazine 8.0 U Triallate 24 U Ametryn 8.0 UJ Terbutryn (Igran) 8.0 UJ Pebulate 16 U Molinate 16 U Chlorpropham 32 U Triadimefon 21 U MGK264 64 U Butachlor 48 U Fenarimol 24 U Diuron 48 U	` /	24	U		
Metolachlor 32 U Diphenamid 24 UJ Pendimethalin 12 U Napropamide 24 U Oxyfluorfen 32 U Eptam 16 U Butylate 16 U Vernolate 16 U Cycloate 16 U Benefin 12 U Propazine 8.0 U Triallate 24 U Ametryn 8.0 UJ Terbutryn (Igran) 8.0 UJ Pebulate 16 U Molinate 16 U Chlorpropham 32 U Triadimefon 21 U MGK264 64 U Butachlor 48 U Fenarimol 24 U Diuron 48 U	Metribuzin	8.0	UJ		
Diphenamid 24 UJ Pendimethalin 12 U Napropamide 24 U Oxyfluorfen 32 U Eptam 16 U Butylate 16 U Vernolate 16 U Cycloate 16 U Benefin 12 U Propazine 8.0 U Triallate 24 U Ametryn 8.0 UJ Terbutryn (Igran) 8.0 UJ Pebulate 16 U Molinate 16 U Chlorpropham 32 U Triadimefon 21 U MGK264 64 U Butachlor 48 U Fenarimol 24 U Diuron 48 UJ	Alachlor	29	U		
Pendimethalin 12 U Napropamide 24 U Oxyfluorfen 32 U Eptam 16 U Butylate 16 U Vernolate 16 U Cycloate 16 U Benefin 12 U Propazine 8.0 U Triallate 24 U Ametryn 8.0 UJ Terbutryn (Igran) 8.0 UJ Pebulate 16 U Molinate 16 U Chlorpropham 32 U Triadimefon 21 U MGK264 64 U Butachlor 48 U Fenarimol 24 U Diuron 48 UJ	Metolachlor	32	U		
Napropamide 24 U Oxyfluorfen 32 U Eptam 16 U Butylate 16 U Vernolate 16 U Cycloate 16 U Benefin 12 U Propazine 8.0 U Triallate 24 U Ametryn 8.0 UJ Terbutryn (Igran) 8.0 UJ Pebulate 16 U Molinate 16 U Chlorpropham 32 U Triadimefon 21 U MGK264 64 U Butachlor 48 U Fenarimol 24 U Diuron 48 UJ	Diphenamid	24	UJ		
Oxyfluorfen 32 U Eptam 16 U Butylate 16 U Vernolate 16 U Cycloate 16 U Benefin 12 U Propazine 8.0 U Triallate 24 U Ametryn 8.0 UJ Terbutryn (Igran) 8.0 UJ Pebulate 16 U Molinate 16 U Chlorpropham 32 U Triadimefon 21 U MGK264 64 U Butachlor 48 U Fenarimol 24 U Diuron 48 UJ	Pendimethalin	12	U		
Oxyfluorfen 32 U Eptam 16 U Butylate 16 U Vernolate 16 U Cycloate 16 U Benefin 12 U Propazine 8.0 U Triallate 24 U Ametryn 8.0 UJ Terbutryn (Igran) 8.0 UJ Pebulate 16 U Molinate 16 U Chlorpropham 32 U Triadimefon 21 U MGK264 64 U Butachlor 48 U Fenarimol 24 U Diuron 48 UJ	Napropamide	24	U		
Butylate 16 U Vernolate 16 U Cycloate 16 U Benefin 12 U Propazine 8.0 U Triallate 24 U Ametryn 8.0 UJ Terbutryn (Igran) 8.0 UJ Pebulate 16 U Molinate 16 U Chlorpropham 32 U Triadimefon 21 U MGK264 64 U Butachlor 48 U Fenarimol 24 U Diuron 48 UJ		32	U		
Vernolate 16 U Cycloate 16 U Benefin 12 U Propazine 8.0 U Triallate 24 U Ametryn 8.0 UJ Terbutryn (Igran) 8.0 UJ Pebulate 16 U Molinate 16 U Chlorpropham 32 U Triadimefon 21 U MGK264 64 U Butachlor 48 U Fenarimol 24 U Diuron 48 UJ	Eptam	16	U		
Cycloate 16 U Benefin 12 U Propazine 8.0 U Triallate 24 U Ametryn 8.0 UJ Terbutryn (Igran) 8.0 UJ Pebulate 16 U Molinate 16 U Chlorpropham 32 U Triadimefon 21 U MGK264 64 U Butachlor 48 U Fenarimol 24 U Diuron 48 UJ	Butylate	16	U		
Benefin 12 U Propazine 8.0 U Triallate 24 U Ametryn 8.0 UJ Terbutryn (Igran) 8.0 UJ Pebulate 16 U Molinate 16 U Chlorpropham 32 U Triadimefon 21 U MGK264 64 U Butachlor 48 U Fenarimol 24 U Diuron 48 UJ	Vernolate	16	U		
Propazine 8.0 U Triallate 24 U Ametryn 8.0 UJ Terbutryn (Igran) 8.0 UJ Pebulate 16 U Molinate 16 U Chlorpropham 32 U Triadimefon 21 U MGK264 64 U Butachlor 48 U Fenarimol 24 U Diuron 48 UJ	Cycloate	16	U		
Triallate 24 U Ametryn 8.0 UJ Terbutryn (Igran) 8.0 UJ Pebulate 16 U Molinate 16 U Chlorpropham 32 U Triadimefon 21 U MGK264 64 U Butachlor 48 U Fenarimol 24 U Diuron 48 UJ	Benefin	12	U		
Ametryn 8.0 UJ Terbutryn (Igran) 8.0 UJ Pebulate 16 U Molinate 16 U Chlorpropham 32 U Triadimefon 21 U MGK264 64 U Butachlor 48 U Fenarimol 24 U Diuron 48 UJ	Propazine	8.0	U		
Terbutryn (Igran) 8.0 UJ Pebulate 16 U Molinate 16 U Chlorpropham 32 U Triadimefon 21 U MGK264 64 U Butachlor 48 U Fenarimol 24 U Diuron 48 UJ	Triallate	24	U		
Pebulate 16 U Molinate 16 U Chlorpropham 32 U Triadimefon 21 U MGK264 64 U Butachlor 48 U Fenarimol 24 U Diuron 48 UJ	Ametryn	8.0	UJ		
Molinate16UChlorpropham32UTriadimefon21UMGK26464UButachlor48UFenarimol24UDiuron48UJ	Terbutryn (Igran)	8.0	UJ		
Chlorpropham 32 U Triadimefon 21 U MGK264 64 U Butachlor 48 U Fenarimol 24 U Diuron 48 UJ	Pebulate	16	U		
Triadimefon 21 U MGK264 64 U Butachlor 48 U Fenarimol 24 U Diuron 48 UJ	Molinate		U		
MGK264 64 U Butachlor 48 U Fenarimol 24 U Diuron 48 UJ	Chlorpropham		U		
Butachlor 48 U Fenarimol 24 U Diuron 48 UJ			U		
Fenarimol 24 U Diuron 48 UJ			U		
Diuron 48 UJ			U		
			_		
Di-allate (Avadex) 56 U					
Profluralin 19 U					
Cyanazine 12 UJ	Cyanazine	12	UJ		

Release Date:

Page: 1

Department of Ecology

Analysis Report for

Nitrogen Containing Pesticides

	Minogen	Containing	resticiues	
Project Name: Spokane Sediment E	Bioassays			LIMS Project ID: 4358-00
Sample: OBS1045A1				Method: SW8085
Field ID: Laboratory Method Bank	D	ate Prepared	l: 02/14/01	Matrix: Frozen Sediment/Soil
Project Officer: Art Johnson		ate Analyzed		Units: ug/Kg dw
Analyte	Result	Qualifier		
Dichlobenil	15	U	Surrogate R	Recoveries
Propachlor (Ramrod)	19	U		
Ethalfluralin (Sonalan)	12	U	1,3-Dimethy	yl-2-nitrobenzene 28 %
Treflan (Trifluralin)	12	U		
Simazine	7.7	U		
Atrazine	7.7	U		
Pronamide (Kerb)	31	U		
Terbacil	23	U		
Metribuzin	7.7	UJ		
Alachlor	28	U		
Metolachlor	31	U		
Diphenamid	23	UJ		
Pendimethalin	12	U		
Napropamide	23	U		
Oxyfluorfen	31	U		
Eptam	15	U		
Butylate	15	U		
Vernolate	15	U		
Cycloate	15	U		
Benefin	12	U		
Propazine	7.7	U		
Triallate	23	U		
Ametryn	7.7	UJ		
Terbutryn (Igran)	7.7	UJ		
Pebulate	15	U		
Molinate	15	U		
Chlorpropham	31	U		
Triadimefon	20	U		
MGK264	62	U		
Butachlor	46	U		
Fenarimol	23	U		
Diuron	46	UJ		
Di-allate (Avadex)	54	U		
Profluralin	19	U		
Cyanazine	12	UJ		

Release Date:

Page: 1

Department of Ecology

Analysis Report for

Nitrogen Containing Pesticides

	Nitroger	Containing	Pesticides	
Project Name: Spokane Sediment B	Sioassays			LIMS Project ID: 4358-00
Sample: OBS1045A2				Method: SW8085
Field ID: Laboratory Method Blank	Ι	Oate Prepared	1: 02/14/01	Matrix: Frozen Sediment/Soil
Project Officer: Art Johnson		Date Analyzed		Units: ug/Kg dw
Analyte	Result	Qualifier		<u> </u>
Dichlobenil	15	Ü	Surrogate F	Recoveries
Propachlor (Ramrod)	19	U	Ö	
Ethalfluralin (Sonalan)	12	U	1,3-Dimethy	yl-2-nitrobenzene 51 %
Treflan (Trifluralin)	12	U		
Simazine	7.7	U		
Atrazine	7.7	U		
Pronamide (Kerb)	31	U		
Terbacil	23	Ū		
Metribuzin	7.7	UJ		
Alachlor	28	U		
Metolachlor	31	U		
Diphenamid	23	UJ		
Pendimethalin	12	U		
Napropamide	23	U		
Oxyfluorfen	31	U		
Eptam	15	U		
Butylate	15	U		
Vernolate	15	U		
Cycloate	15	U		
Benefin	12	U		
Propazine	7.7	U		
Triallate	23	U		
Ametryn	7.7	UJ		
Terbutryn (Igran)	7.7	UJ		
Pebulate	15	U		
Molinate	15	U		
Chlorpropham	31	U		
Triadimefon	20	U		
MGK264	62	U		
Butachlor	46	U		
Fenarimol	23	U		
Diuron	46	UJ		
Di-allate (Avadex)	54	U		
Profluralin	19	U		
Cyanazine	12	UJ		
	12	UJ		

Release Date:

Page: 1

Department of Ecology

Analysis Report for

Organophosphorous Pesticides (GC/AED)

Project Name: Spokane Sedime	ent Bioassays	3	LIMS Project ID: 4358-00
Sample: 00438024 Field ID: UPLONGLK Project Officer: Art Johnson		Date Collected: 10/24/00 Date Prepared: 02/14/01 Date Analyzed: 03/12/01	Method: SW8085 Matrix: Frozen Sediment/Soil Units: ug/Kg dw
Analyte	Result		
Sulfotepp	5.5	U	
Fonofos	5.5	U	
Methyl Chlorpyrifos	7.3	U	
Fenitrothion	6.4	U	
Malathion	7.3	U	
Chlorpyriphos	7.3	U	
Merphos (1 & 2)	11	U	
Ethion	6.4	U	
Carbophenothion	9.1	U	
EPN	9.1	U	
Azinphos Ethyl	15	U	
Ethoprop	7.3	U	
Diazinon	7.3	U	
Methyl Parathion	6.4	U	
Ronnel	6.4	U	
Parathion	7.3	U	
Imidan	10	U	
Azinphos (Guthion)	15	U	
Coumaphos	13	U	
Dioxathion	15	UJ	
	18		
Propetamphos Tribufos (DEE)	18	UJ U	
Tribufos (DEF)			
Abate (Temephos)	55	UJ	
Surrogate Recoveries			

Department of Ecology

Analysis Report for

Project Name: Spokane Sedime	LIMS Project ID: 4358-00		
Sample: 00438026 Field ID: LOWLONGLK Project Officer: Art Johnson		Date Collected: 10/25/00 Date Prepared: 02/14/01 Date Analyzed: 03/12/01	Method: SW8085 Matrix: Frozen Sediment/Soil Units: ug/Kg dw
Analyte	Resu		•
Sulfotepp	12	U	
Fonofos	12	U	
Methyl Chlorpyrifos	16	U	
Fenitrothion	14	U	
Malathion	16	U	
Chlorpyriphos	16	U	
Merphos (1 & 2)	23	U	
Ethion	14	U	
Carbophenothion	19	U	
EPN	19	U	
Azinphos Ethyl	31	U	
Ethoprop	16	U	
Diazinon	16	U	
Methyl Parathion	14	U	
Ronnel	14	U	
Parathion	16	U	
Imidan	21	U	
Azinphos (Guthion)	31	U	
Coumaphos	23	U	
Dioxathion	33	UJ	
Propetamphos	39	UJ	
Tribufos (DEF)	27	U	
Abate (Temephos)	120	UJ	
Surrogate Recoveries			

Department of Ecology

Analysis Report for

Project Name: Spokane Sediment Bioassays				
Ι	Date Prepared: 02/14/01	Method: SW8085 Matrix: Frozen Sediment/So Units: ug/Kg dw		
Result	Qualifier			
10	II			
48	UJ			
	I I	4.8 U 4.8 U 6.4 U 5.6 U 7/4 U 6.4 U 9.6 U 5.6 U 8.0 U 8.0 U 13 U 6.4 U 6.4 U 5.6 U 5.6 U 13 U 6.4 U 6.4 U 5.6 U 5.		

Department of Ecology

Analysis Report for

Project Name: Spokane Sediment I	LIMS Project ID: 4358-00		
Sample: OBS1045A1 Field ID: Laboratory Method Blank Project Officer: Art Johnson		Date Prepared: 02/14/01 Date Analyzed: 03/12/01	Method: SW8085 Matrix: Frozen Sediment/Soi Units: ug/Kg dw
Analyte	Result	Qualifier	
0.16.4	4.6	TT	
Sulfotepp	4.6	U	
Fonofos	4.6	U	
Methyl Chlorpyrifos	6.2	U	
Fenitrothion	5.4	U	
Malathion	6.2	U	
Chlorpyriphos	6.2	U	
Merphos (1 & 2)	9. 3	U	
Ethion	5.4	U	
Carbophenothion	7.7	U	
EPN	7.7	U	
Azinphos Ethyl	12	U	
Ethoprop	6.2	U	
Diazinon	6.2	U	
Methyl Parathion	5.4	U	
Ronnel	5.4	U	
Parathion	6.2	U	
Imidan	8.5	U	
Azinphos (Guthion)	12	U	
Coumaphos	9.3	U	
Dioxathion	13	UJ	
Propetamphos	15	UJ	
Tribufos (DEF)	11	U	
Abate (Temephos)	46	UJ	
Surrogate Recoveries			

Department of Ecology

Analysis Report for

Project Name: Spokane Sediment B	ioassays	S		LIMS Project ID: 43	358-00
Sample: OBS1045A2 Field ID: Laboratory Method Blank Project Officer: Art Johnson		Date Prepared: Date Analyzed:		Method: SW8085 Matrix: Frozen Sedi Units: ug/Kg dw	ment/Soil
Analyte	Result	Qualifier			
Sulfotepp	4.6	U			
Fonofos	4.6	U			
Methyl Chlorpyrifos	6.2	U			
Fenitrothion	5.4	U			
Malathion	6.2	U			
Chlorpyriphos	6.2	U			
Merphos (1 & 2)	9.3	U			
Ethion	5.4	U			
Carbophenothion	7.7	U			
EPN	7.7	U			
Azinphos Ethyl	12	U			
Ethoprop	6.2	U			
Diazinon	6.2	U			
Methyl Parathion	5.4	U			
Ronnel	5.4	Ü			
Parathion	6.2	U			
Imidan	8.5	U			
Azinphos (Guthion)	12	U			
Coumaphos	9.3	U			
Dioxathion	13	UJ			
Propetamphos	15	UJ			
Tribufos (DEF)	13	U			
	46	UJ			
Abate (Temephos)	40	UJ			
Surrogate Recoveries					
Triphenyl Phosphate	77	%			
Authorized By:		Release Date	e:		Page: 1

Department of Ecology

Analysis Report for

	Ciliorini	ated Pesticides (GC/AED)	
Project Name: Spokane Sediment	LIMS Project ID: 4358-00		
Sample: 00438024		Date Collected: 10/24/00	Method: SW8085
Field ID: UPLONGLK		Date Prepared: 02/14/01	Matrix: Frozen Sediment/Soil
Project Officer: Art Johnson		Date Analyzed: 03/12/01	Units: ug/Kg dw
Analyte	Result		
Alpha-BHC	0.73	U	
Beta-BHC	0.73	U	
Gamma-BHC (Lindane)	0.73	U	
Delta-BHC	0.73	U	
Heptachlor	0.73	U	
Aldrin	0.73	U	
Heptachlor Epoxide	0.73	U	
Trans-Chlordane (Gamma)	0.73	U	
Cis-Chlordane (Alpha-Chlordane	0.73	U	
Endosulfan I	0.73	U	
Dieldrin	0.73	U	
4,4'-DDE	0.73	U	
Endrin	0.73	U	
Endosulfan II	0.73	U	
4,4'-DDD	0.73	U	
Endrin Aldehyde	0.73	U	
Endosulfan Sulfate	0.73	U	
4,4'-DDT	0.73	U	
Endrin Ketone	0.73	U	
Methoxychlor	0.73	U	
Alpha-Chlordene	0.73	U	
Gamma-Chlordene	0.73	U	
Oxychlordane	0.73	U	
DDMU	0.73	U	
Cis-Nonachlor	0.73	U	
2,4'-DDE	0.73	U	
Trans-Nonachlor	0.73	U	
2,4'-DDD	0.73	U	
2,4'-DDT	0.73	U	
Mirex	0.73	U	
Toxaphene	29	U	
•			
Surrogate Recoveries			
4,4-Dibromooctaflurobiphenyl	52	%	
Tetrachloro-m-xylene	44	%	
Decachlorobiphenyl	64	%	
Authorized By:		Release Date:	Page: 1

Department of Ecology

Analysis Report for

Project Name: Spokane Sediment Bioassays			LIMS Project ID: 4358-00
Sample: 00438026 Field ID: LOWLONGLK Project Officer: Art Johnson		Date Collected: 10/25/00 Date Prepared: 02/14/01 Date Analyzed: 03/12/01	Method: SW8085 Matrix: Frozen Sediment/Soil Units: ug/Kg dw
Analyte	Result	Qualifier	
Alpha-BHC	1.6	U	
Beta-BHC	1.6	U	
Gamma-BHC (Lindane)	1.6	U	
Delta-BHC	1.6	U	
Heptachlor	1.6	U	
Aldrin	1.6	U	
Heptachlor Epoxide	1.6	U	
Trans-Chlordane (Gamma)	1.6	U	
Cis-Chlordane (Alpha-Chlordane	1.6	U	
Endosulfan I	1.6	U	
Dieldrin	1.6	U	
4,4'-DDE	4.1		
Endrin	1.6	U	
Endosulfan II	1.6	U	
4,4'-DDD	1.6	U	
Endrin Aldehyde	1.6	U	
Endosulfan Sulfate	1.6	U	
4,4'-DDT	1.6	U	
Endrin Ketone	1.6	U	
Methoxychlor	1.6	U	
Alpha-Chlordene	1.6	U	
Gamma-Chlordene	1.6	U	
Oxychlordane	1.6	U	
DDMU	1.6	U	
Cis-Nonachlor	1.6	U	
2,4'-DDE	1.6	U	
Trans-Nonachlor	1.6	U	
2,4'-DDD	1.6	U	
2,4'-DDT	1.6	U	
Mirex	1.6	U	
Toxaphene	62	U	
1	•		
Surrogate Recoveries			
4,4-Dibromooctaflurobiphenyl	66	%	
Tetrachloro-m-xylene	59	%	
Decachlorobiphenyl	69	%	
Authorized By:		Release Date:	Page: 1

Department of Ecology

Analysis Report for

D. AM. C. I. C. I.		ated Testicides (GC/AED)		
Project Name: Spokane Sediment	Project Name: Spokane Sediment Bioassays			
Sample: 00438027		Date Collected: 10/25/00	Method: SW8085	
Field ID: LATAH CR		Date Prepared: 02/14/01	Matrix: Frozen Sediment/Soil	
Project Officer: Art Johnson		Date Analyzed: 03/12/01	Units: ug/Kg dw	
Analyte	Result	Qualifier		
Alpha-BHC	0.64	U		
Beta-BHC	0.64	U		
Gamma-BHC (Lindane)	0.64	U		
Delta-BHC	0.64	U		
Heptachlor	0.64	U		
Aldrin	0.64	U		
Heptachlor Epoxide	0.64	U		
Trans-Chlordane (Gamma)	0.64	U		
Cis-Chlordane (Alpha-Chlordane	0.64	U		
Endosulfan I	0.64	U		
Dieldrin	0.64	U		
4,4'-DDE	0.64	u		
Endrin	0.64	U		
Endosulfan II	0.64	U		
4,4'-DDD	0.64	U		
Endrin Aldehyde	0.64	U		
Endosulfan Sulfate	0.64	U		
4,4'-DDT	0.64	U		
Endrin Ketone	0.64	U		
Methoxychlor	0.64	U		
Alpha-Chlordene	0.64	U		
Gamma-Chlordene	0.64	U		
Oxychlordane	0.64	U		
DDMU	0.64	U		
Cis-Nonachlor	0.64	U		
2,4'-DDE	0.64	U		
Trans-Nonachlor	0.64	U		
2,4'-DDD	0.64	U		
2,4'-DDT	0.64	U		
Mirex	0.64	U		
Toxaphene	26	U		
Surrogate Recoveries				
4,4-Dibromooctaflurobiphenyl	55	%		
Tetrachloro-m-xylene	50	%		
Decachlorobiphenyl	60	%		
Authorized By:		Release Date:	Page: 1	

Department of Ecology

Analysis Report for

Project Name: Spokane Sediment	Bioassays	3	LIMS Project ID: 4358-00
Sample: OBS1045A2			Method: SW8085
Field ID: Laboratory Method Blanl	l _r	Date Prepared: 02/14/01	Matrix: Frozen Sediment/Soil
Project Officer: Art Johnson	X.	Date Analyzed: 03/12/01	Units: ug/Kg dw
Analyte	Result		Chits: ug/kg uw
Alpha-BHC	0.62	U	
Beta-BHC	0.62	Ü	
Gamma-BHC (Lindane)	0.62	Ü	
Delta-BHC	0.62	U	
Heptachlor	0.62	U	
Aldrin	0.62	U	
Heptachlor Epoxide	0.62	U	
Trans-Chlordane (Gamma)	0.62	Ü	
Cis-Chlordane (Alpha-Chlordane	0.62	U	
Endosulfan I	0.62	U	
Dieldrin	0.62	U	
4,4'-DDE	0.62	u	
Endrin	0.62	U	
Endosulfan II	0.62	U	
4,4'-DDD	0.62	U	
Endrin Aldehyde	0.62	U	
Endosulfan Sulfate	0.62	U	
4,4'-DDT	0.62	U	
Endrin Ketone	0.62	U	
Methoxychlor	0.62	U	
Alpha-Chlordene	0.62	U	
Gamma-Chlordene	0.62	U	
Oxychlordane	0.62	U	
DDMU	0.62	U	
Cis-Nonachlor	0.62	U	
2,4'-DDE	0.62	U	
Trans-Nonachlor	0.62	U	
2,4'-DDD	0.62	U	
2,4'-DDT	0.62	U	
Mirex	0.62	U	
Toxaphene	25	U	
Surrogate Recoveries			
4,4-Dibromooctaflurobiphenyl	55	%	
Tetrachloro-m-xylene	50	%	
Decachlorobiphenyl	60	%	
Authorized By:		Release Date:	Page: 1

7411 Beach Dr E, Port Orchard Washington 98366

CASE NARRATIVE

March 21, 2001

Subject: Spokane Sediment Bioassays Project

Sample(s): 00438024, 26 and 27

Officer(s): Art Johnson

By: Bob Carrell

Organics Analysis Unit

ACID HERBICIDE ANALYSIS

ANALYTICAL METHOD(S): (Draft EPA Method 8085)

The sediment samples for acid herbicides were extracted following Manchester Laboratory's standard operating procedure for the extraction of herbicides. The herbicide sample was hydrolyzed at pH > 12, extracted with diethyl ether at pH < 2, solvent exchanged and derivatized along with two method blanks. These extracts were analyzed by capillary Gas Chromatography and Atomic Emission Detection (GC/AED). Confirmation of herbicides is performed by Gas Chromatography and Ion-Trap mass spectrometry (GC/ITD) or comparisons of elemental ratios of hetero-atoms to empirical formulas.

The method utilizes compound independent calibration (CIC) for quantitation of detected compounds. A calibration validation is performed each time CIC is used for target compounds. This is done by comparison of CIC to a single point calibration (SPC) of the target analyte being quantitated.

All analytes have a respective practical quantitation limit (PQL) that is higher than the corresponding method detection limit (MDL). If a target analyte is detected and its identification is unambiguously confirmed at a concentration below its PQL, the reported concentration is qualified as an estimate,' J' qualifier.

HOLDING TIMES:

The sample was extracted and analyzed within the method holding times.

BLANKS:

No target compounds were detected in the laboratory blank at or above the practical quantitation limits (PQL's) thus demonstrating that the system was free from contamination.

SURROGATES:

The surrogate recoveries for the 2,4-dichlorophenylacetic acid and 2,4,6-tribromophenol surrogates were acceptable, ranging from 26% to 47% and 29% to 39% respectively, except for 2,4,dichlorophenylacetic acid on the method blank OBS1045AIH (14%). Since the second surrogate for that blank was at an acceptable level and both surrogates for the second blank were at acceptable levels, no qualifiers were added due to surrogate recoveries.

MATRIX SPIKING:

N/A

COMMENTS:

The target analytes picloram and dinoseb received the `UJ' qualifier because we traditionally experience highly variable recoveries for these compounds.

The data is useable as qualified.

DATA QUALIFIER CODES

U - The analyte was not detected at or above the reported resu	ılt.
--	------

J - The analyte was positively identified. The associated numerical result is an estimate.

UJ - The analyte was not detected at or above the reported estimated result.

REJ - The data are unusable for all purposes.

NAF - Not analyzed for.

N - For organic analytes there is evidence the analyte is present in this sample.

NJ - There is evidence that the analyte is present. The associated numerical result is an estimate.

NC - Not Calculated

E - This qualifier is used when the concentration of the associated value exceeds the known calibration range.

Department of Ecology

Analysis Report for

	Cinorii	lated Pesticides (GC/AED)	
Project Name: Spokane Sediment	Bioassay	s	LIMS Project ID: 4358-00
Sample: OBS1045A1			Method: SW8085
Field ID: Laboratory Method Blank	<i>C</i>	Date Prepared: 02/14/01	Matrix: Frozen Sediment/Soil
Project Officer: Art Johnson	•	Date Analyzed: 03/12/01	Units: ug/Kg dw
Analyte	Result	· ·	0.22000 0.86.128.000
Alpha-BHC	0.62	U	
Beta-BHC	0.62	U	
Gamma-BHC (Lindane)	0.62	U	
Delta-BHC	0.62	U	
Heptachlor	0.62	U	
Aldrin	0.62	U	
Heptachlor Epoxide	0.62	U	
Trans-Chlordane (Gamma)	0.62	U	
Cis-Chlordane (Alpha-Chlordane	0.62	U	
Endosulfan I	0.62	U	
Dieldrin	0.62	U	
4,4'-DDE	0.62	u	
Endrin	0.62	U	
Endosulfan II	0.62	U	
4,4'-DDD	0.62	U	
Endrin Aldehyde	0.62	U	
Endosulfan Sulfate	0.62	U	
4,4'-DDT	0.62	U	
Endrin Ketone	0.62	U	
Methoxychlor	0.62	U	
Alpha-Chlordene	0.62	U	
Gamma-Chlordene	0.62	U	
Oxychlordane	0.62	U	
DDMU	0.62	U	
Cis-Nonachlor	0.62	U	
2,4'-DDE	0.62	U	
Trans-Nonachlor	0.62	U	
2,4'-DDD	0.62	U	
2,4'-DDT	0.62	U	
Mirex	0.62	U	
Toxaphene	25	U	
Surrogate Recoveries			
4,4-Dibromooctaflurobiphenyl	72	%	
Tetrachloro-m-xylene	65	%	
Decachlorobiphenyl	82	%	
Authorized By:		Release Date:	Page: 1

Department of Ecology

Analysis Report for

Project Name: Spokane Sedimen	LIMS Project ID: 4358-00		
Sample: OBS1045A1H Field ID: Laboratory Method Blank Project Officer: Art Johnson		Date Prepared: 02/14/01 Date Analyzed: 03/12/01	Method: SW8085 Matrix: Frozen Sediment/Soi Units: ug/Kg dw
Analyte	Resu	·	## ## ## ## ## ## ## ## ## ## ## ## ##
2,4,6-Trichlorophenol	41	U	
3,5-Dichlorobenzoic Acid	68	U	
4-Nitrophenol	120	U	
2,4,5-Trichlorophenol	41	U	
Dicamba I	68	U	
2,3,4,6-Tetrachlorophenol	37	U	
MCPP (Mecoprop)	140	U	
MCPA	140	U	
Dichlorprop	74	Ü	
Bromoxynil	68	U	
2,4-D	68	U	
2,3,4,5-Tetrachlorophenol	37	U	
Trichlopyr	57	U	
Pentachlorophenol	34	U	
2,4,5-TP (Silvex)	54	U	
2,4,5-T	54	U	
2,4-DB	81	U	
Dinoseb	100	UJ	
Bentazon	100	U	
Ioxynil	68	U	
Picloram	68	UJ	
Dacthal (DCPA)	54	U	
2,4,5-TB	61	U	
Acifluorfen (Blazer)	270	U	
Diclofop-Methyl	100	U	
Bictorop Meany?	100	C	
Surrogate Recoveries			
2,4-Dichloropheylacetic acid	14	%	
2,4,6-Tribromophenol	29	%	
Authorized By:		Release Date:	Page: 1

Department of Ecology

Analysis Report for

Project Name: Spokane Sedimen	LIMS Project ID: 4358-00		
Sample: OBS1045A2H Field ID: Laboratory Method Blank Project Officer: Art Johnson		Date Prepared: 02/14/01 Date Analyzed: 03/12/01	Method: SW8085 Matrix: Frozen Sediment/Soi Units: ug/Kg dw
Analyte	Resu	· ·	emist agrig av
2,4,6-Trichlorophenol	41	U	
3,5-Dichlorobenzoic Acid	68	U	
4-Nitrophenol	120	U	
2,4,5-Trichlorophenol	41	U	
Dicamba I	68	U	
2,3,4,6-Tetrachlorophenol	37	U	
MCPP (Mecoprop)	140	U	
MCPA	140	U	
Dichlorprop	74	U	
Bromoxynil	68	U	
2,4-D	68	U	
2,3,4,5-Tetrachlorophenol	37	U	
Trichlopyr	57	U	
Pentachlorophenol	34	U	
2,4,5-TP (Silvex)	54	U	
2,4,5-T	54	U	
2,4-DB	81	U	
Dinoseb	100	UJ	
Bentazon	100	U	
Ioxynil	68	U	
Picloram	68	UJ	
Dacthal (DCPA)	54	U	
2,4,5-TB	61	U	
Acifluorfen (Blazer)	270	U	
Diclofop-Methyl	100	U	
1 3			
Surrogate Recoveries			
2,4-Dichloropheylacetic acid	26	%	
2,4,6-Tribromophenol	39	%	
Authorized By:		Release Date:	Page: 1

Department of Ecology

Analysis Report for

Project Name: Spokane Sedimer	nt Bioassays		LIMS Project ID: 4358-00
Sample: 00438024 Field ID: UPLONGLK Project Officer: Art Johnson		Date Collected: 10/24/00 Date Prepared: 02/14/01 Date Analyzed: 03/12/01	Method: SW8085 Matrix: Frozen Sediment/So Units: ug/Kg dw
Analyte	Result	Qualifier	<u> </u>
2,4,6-Trichlorophenol	41	U	
3,5-Dichlorobenzoic Acid	68	U	
4-Nitrophenol	120	U	
2,4,5-Trichlorophenol	41	U	
Dicamba I	68	U	
2,3,4,6-Tetrachlorophenol	37	U	
MCPP (Mecoprop)	140	U	
MCPA	140	Ü	
Dichlorprop	74	Ü	
Bromoxynil	68	U	
2,4-D	68	Ü	
2,3,4,5-Tetrachlorophenol	37	Ü	
Trichlopyr	57	Ü	
Pentachlorophenol	34	U	
2,4,5-TP (Silvex)	54	Ü	
2,4,5-T	54	Ü	
2,4-DB	81	Ü	
Dinoseb	100	UJ	
Bentazon	100	U	
Ioxynil	68	Ü	
Picloram	68	UJ	
Dacthal (DCPA)	54	U	
2,4,5-TB	61	U	
Acifluorfen (Blazer)	270	U	
Diclofop-Methyl	100	U	
2.00.00p			
Surrogate Recoveries			
2,4-Dichloropheylacetic acid	47	%	
2,4,6-Tribromophenol	38	%	
Authorized By:		Release Date:	Page: 1

Department of Ecology

Analysis Report for

Project Name: Spokane Sedimer		LIMS Project ID: 4358-00		
Sample: 00438026 Field ID: LOWLONGLK Project Officer: Art Johnson		Date Collected: 10/25/00 Date Prepared: 02/14/01 Date Analyzed: 03/20/01	Method: SW8085 Matrix: Frozen Sediment/S Units: ug/Kg dw	
Analyte	Result	Qualifier		
2,4,6-Trichlorophenol	93	Ü		
3,5-Dichlorobenzoic Acid	150	U		
4-Nitrophenol	270	U		
2,4,5-Trichlorophenol	93	U		
Dicamba I	150	U		
2,3,4,6-Tetrachlorophenol	86	U		
MCPP (Mecoprop)	310	U		
MCPA	310	U		
Dichlorprop	170	U		
Bromoxynil	150	U		
2,4-D	150	U		
2,3,4,5-Tetrachlorophenol	86	U		
Trichlopyr	130	U		
Pentachlorophenol	78	Ū		
2,4,5-TP (Silvex)	120	U		
2,4,5-T	120	U		
2,4-DB	190	U		
Dinoseb	230	UJ		
Bentazon	230	U		
Ioxynil	150	U		
Picloram	150	UJ		
Dacthal (DCPA)	120	U		
2,4,5-TB	140	U		
Acifluorfen (Blazer)	620	U		
Diclofop-Methyl	230	U		
Surrogate Recoveries				
2,4-Dichloropheylacetic acid	43	%		
2,4,6-Tribromophenol	35	%		
Authorized By:		Release Date:	Page: 1	

Department of Ecology

Analysis Report for

Project Name: Spokane Sedimer	t Bioassays		LIMS Project ID: 4358-00
Sample: 00438027 Field ID: LATAH CR Project Officer: Art Johnson		Date Collected: 10/25/00 Date Prepared: 02/14/01 Date Analyzed: 03/20/01	Method: SW8085 Matrix: Frozen Sediment/Soil Units: ug/Kg dw
Analyte	Result	Qualifier	
2,4,6-Trichlorophenol	35	U	
3,5-Dichlorobenzoic Acid	58	U	
4-Nitrophenol	100	U	
2,4,5-Trichlorophenol	35	U	
Dicamba I	58	U	
2,3,4,6-Tetrachlorophenol	32	U	
MCPP (Mecoprop)	120	U	
MCPA	120	U	
Dichlorprop	64	U	
Bromoxynil	58	U	
2,4-D	58	U	
2,3,4,5-Tetrachlorophenol	32	U	
Trichlopyr	49	U	
Pentachlorophenol	29	U	
2,4,5-TP (Silvex)	47	U	
2,4,5-T	47	U	
2,4-DB	70	U	
Dinoseb	88	UJ	
Bentazon	88	U	
Ioxynil	58	U	
Picloram	58	UJ	
Dacthal (DCPA)	47	U	
2,4,5-TB	53	U	
Acifluorfen (Blazer)	230	U	
Diclofop-Methyl	88	U	
Surrogate Recoveries			
2,4-Dichloropheylacetic acid	47	%	
2,4,6-Tribromophenol	36	%	
Authorized By:		Release Date:	Page: 1

Appendix E.

Test Reports on Bioassays

This page is purposely blank for duplex printing

Microtox Bioassay

1. INTRODUCTION

Parametrix, Inc. was contracted to perform bioassays on eight freshwater sediment samples provided by the Washington Department of Ecology (WDOE), using the Microtox[®] Reagent: *Vibrio fischeri*, a bio-luminescent marine bacterium. The sediment samples were collected in October 2000. The 100 percent sediment porewater Microtox[®] testing was conducted on 1 November 2000. This report summarizes the final bioassay results.

2. METHODS AND MATERIALS

2.1 Test Sediment

Eight sediment samples were delivered to Parametrix's Environmental Toxicology Laboratory on 27 October 2000. Upon arrival, appropriate chain-of-custody procedures were followed, sample labels were checked against the chain-of-custody (COC) form, containers inspected for damage that may have occurred during shipping, and sediment volumes were determined to be adequate. Samples were stored in the dark at 4°C until test initiation.

2.2 Biological Procedures

The Microtox[®] test was conducted according to the Draft Final 8/15/00 procedure developed by Peter Adolphson of Washington State Department of Ecology.

For the Microtox® 100 percent sediment porewater assessment method, 300 ml of both reference and test sediments were centrifuged at approximately 4500G for 30 minutes resulting in approximately 50 ml of pore water. Approximately 50 mls of porewater was then pipetted into a clean glass container. The remaining porewater was set aside for reducing salinity should the initial salinity adjustment exceed 22 ppt. The samples were then adjusted for salinity using dry salts, dissolved oxygen (DO) by gentle aeration or agitation, and pH by the addition of 0.5N NaOH or HCl. A control test solution was prepared by using deionized water and adjusting salinity, DO and pH as above. The prepared samples were then allowed to equilibrate for 15 minutes at 15°C prior to inoculation of the bacteria.

A vial of freeze-dried bacteria (*V. fisheri*) was rehydrated with 1.0 mL of reconstitution solution, covered with parafilm, stored in a 4°C well on the analyzer, and used within four hours of rehydration for testing.

To each of the test cuvettes, $10 \,\mu\text{L}$ of the rehydrated bacterial suspension was added at 30 second intervals and mixed immediately using a 1 ml pipette and allowed to incubate for 5 minutes at 15°C. At the initial (I_0) 5 minute mark, the first control vial is placed into the read chamber to "set" the instrument. At 30-second intervals each cuvette (inclusive of A1) is placed into the read chamber for the initial reading (I_0). Second and third readings are taken at 5 (I_5) and 15 (I_{15}) minutes respectively.

2.3 Negative and Positive Controls

Laboratory controls are necessary to ensure the validity of test results. The Microtox[®] test is deemed acceptable if the EC50 for the phenol reference toxicant test falls between 12.5 and 30 mg/L. A summary of test conditions is located in Table 1.

2.4 Source of Test Organisms

Microtox® reagent, *V. fischeri*, was obtained from Azur Environmental, Carlsbad, California, and was used within four hours of reconstitution. A reference toxicant, phenol, was used to assess the relative health of the *V. fischeri* and to ensure that their sensitivity fell within an expected concentration range.

2.5 Data Analysis

All test sediments were compared to both the control and reference sediment. The t-test method was used to determine statistical differences between the test samples and the control and reference samples.

Table 1. Summary of test conditions for the Sediment Porewater Microtox® assay.

Job Name: Washington Department of Ecology Job Number: 555-1583-63 (2000)

Dates: 1 November 2000

Test Protocol: Microtox[®] 100 percent sediment porewater assessment, 8/15/00 draft final.

Test Material: 8 sediment samples supplied by the Washington State Department of

Ecology

Test Organisms: Vibrio fischeri

Stock Volume/Test Chamber: 10 μl
Volume/Test Chamber: 1,000 μL

Test Concentrations: Control and 100 %, with a reference sediment

Replicates: 5 pseudo replicates

Reference Toxicant: Phenol

Test Duration: 15 minutes

Control/Dilution Media: Azur Microtox[®] Diluent

Test Chambers: 3.5 ml glass cuvettes

Temperature: $15 \pm 1^{\circ}$

Effect Measured: Percent light change

Test Acceptability: EC50 of reference toxicant between 12.5 and 30 mg/L

3. RESULTS

A summary of test results is presented in Table 2 below. All original raw data, chain-of-custody form, and project notes are maintained at Parametrix's office in the project file. Copies of the raw data and reference toxicant test data can be found in Appendix A.

Results for the Microtox $^{\circledR}$ 100 percent sediment porewater assay indicated toxicity in sample number 438021 was significantly different relative to both the control and the reference sediment (see Table 2). Sample number 438020 was significantly different when compared to the reference sediment and to the control at the T_5 interval. Sample 438023 was significantly different when compared to the reference sediment at T_5 and sample 438027 was significantly different relative to the reference sediment at T_{15} .

Table 2. Summary of test results.

	Light Measurement Intervals		
Evaluation using Homoscedastic t-Test	T ₅	T ₁₅	
CONTROL COMPARISONS			
Sample 438020 to Control	Significant (p<0.05)	Not significant (p≥0.05)	
Sample 438021 to Control	Significant (p<0.05)	Significant (p<0.05)	
Sample 438023 to Control	Not significant (p≥0.05)	Not significant (p≥0.05)	
Sample 438024 to Control	Not significant (p≥0.05)	Not significant (p≥0.05)	
Sample 438025 to Control	Not significant (p≥0.05)	Not significant (p≥0.05)	
Sample 438026 to Control	Not significant (p≥0.05)	Not significant (p≥0.05)	
Sample 438027 to Control	Not significant (p≥0.05)	Not significant (p≥0.05)	
REFERENCE COMPARISONS			
Sample 438020 to Reference	Significant (p<0.05)	Significant (p<0.05)	
Sample 438021 to Reference	Significant (p<0.05)	Significant (p<0.05)	
Sample 438023 to Reference	Significant (p<0.05)	Not significant (p≥0.05)	
Sample 438024 to Reference	Not significant (p≥0.05)	Not significant (p≥0.05)	
Sample 438025 to Reference	Not significant (p≥0.05)	Not significant (p≥0.05)	
Sample 438026 to Reference	Not significant (p≥0.05)	Not significant (p≥0.05)	
Sample 438027 to Reference	Not significant (p≥0.05)	Significant (p<0.05)	
Reference Toxicant	Acceptable	Acceptable	

4. REFERENCE

Microtox[®] Draft Final, 8/15/00; developed by Peter Adolphson of Washington State Department of Ecology.

This page is purposely blank for duplex printing

Hyalella azteca Bioassay

TEST IDENTIFICATION

Test No.: 627-1

<u>Title</u>: Toxicity of freshwater sediments using a 28-day amphipod, *Hyalella azteca*, sediment bioassay.

Protocol No.: NAS-XXX-HA4c, February 11, 2000, Revision 1 (9-7-00). Based on ASTM 1996 (Standard test methods for measuring the toxicity of sediment-associated contaminants with fresh water invertebrates, E1706-95b), Am. Soc. Test. Mat. Phila., PA, and EPA Method 100.1 (Methods for measuring the toxicity and bioaccumulation of sediment-associated contaminants with freshwater invertebrates, EPA/600/R-94/024).

STUDY MANAGEMENT

Study Sponsor: Washington Dept. of Ecology, Manchester Lab, 7411 Beach Dr. East, Port Orchard, WA 98366

Sponsor's Study Monitor: Ms. Pam Covey

Testing Laboratory: Northwestern Aquatic Sciences, P.O. Box 1437, Newport, OR 97365

<u>Test Location</u>: Newport laboratory

<u>Laboratory's Study Personnel</u> G.J. Irissarri, B.S., Proj. Man./Study Dir.; L.K. Nemeth, M.B.A., QA Officer; R.S. Caldwell, PhD, Senior Aq. Toxicologist; G.A. Buhler, B.S., Aq. Toxicologist; M.S. Redmond, M.S., Aq. Toxicologist; G. Hayes, B.S., Tech.

Study Schedule:

Test Beginning: 11-2-00, 1145 hrs. Test Ending: 11-30-00, 1230 hrs.

<u>Disposition of Study Records</u>: All specimens, raw data, reports and other study records are stored according to Good Laboratory Practice regulations at Northwestern Aquatic Sciences, 3814 Yaquina Bay Rd., Newport, OR 97365

<u>Good Laboratory Practices</u>: The test was conducted following the principles of Good Laboratory Practices (GLP) as defined in the EPA/TSCA Good Laboratory Practice regulations revised August 17, 1989 (40 CFR Part 792).

<u>Statement of Quality Assurance</u>: The test data were reviewed by the Quality Assurance Unit to assure that the study was performed in accordance with the protocol and standard operating procedures. This report is an accurate reflection of the raw data.

TEST MATERIAL

<u>Test Sediments</u>: Unidentified freshwater test sediments. Details are as follows:

NAS Sample No.	6897F	6898F	6899F	6900F
Description	43-8020	43-8021	43-8023	43-8024
Collection Date	10-23-00	10-23-00	10-24-00	10-24-00
Receipt Date	10-27-00	10-27-00	10-27-00	10-27-00
NAS Sample No. Description Collection Date Receipt Date	6901F	6902F	6903F	6904F
	43-8025	43-8026	43-8027	43-8028
	10-24-00	10-25-00	10-25-00	10-24-00
	10-27-00	10-27-00	10-27-00	10-27-00

<u>Control Sediment</u>: The negative control sediment (NAS#6905F) was collected on 10-27-00 from an area approximately one mile east of the Hwy. 101 bridge at Beaver Creek, approx. 8 miles south of Newport, OR. The control sediment was press sieved through a 0.5 mm screen.

Storage: All test, reference and control sediments were stored at 4°C in the dark until used.

TEST WATER

Source: Moderately hard synthetic water prepared from Milli-Q[®] deionized water.

<u>Dates of Preparation</u>: 11-1-00, 11-6-00, 11-13-00, 11-20-00, 11-27-00

Water Quality: pH 8.0, 8.2, 8.0, 8.2, conductivity 310, 320, 320, 300, 300 µmhos/cm; hardness 85, 94, 94,

85, 85 mg/L as CaCO₃; alkalinity 70, 70, 70, 70, 70 mg/L as CaCO₃.

Pretreatment: Aerated ≥24 hr.

TEST ORGANISMS

Species: Hyalella azteca, amphipod.

Age/Size: 10-12 days old

Source: Chesapeake Cultures, Hayes, VA; received 11-1-00

<u>Acclimation</u>: Temperature, 19.9 ± 3.6 °C; dissolved oxygen, 11.6 ± 4.9 mg/L; pH, 8.1 ± 0.1 ; conductivity,

 $355 \pm 21 \mu \text{mhos/cm}$; hardness, $128 \pm 36 \text{ mg/L}$ as $CaCO_3$; and alkalinity, $140 \pm 57 \text{mg/L}$ as $CaCO_3$.

TEST PROCEDURES AND CONDITIONS

The following is an abbreviated statement of the test procedures and a statement of the test conditions actually employed. See the test protocol (Appendix I) for a more detailed description of the test procedures used in this study.

Test Chambers: 300 ml high-form glass beakers

Test Volumes: 100 ml sediment layer; 175 ml test water.

Replicates/Treatment: 8 Organisms/Treatment: 80

Water Volume Changes: 2 water volumes per day

Aeration: None.

Feeding: Animals are fed 1.5 ml of YCT suspension per beaker daily.

<u>Effects Criteria</u>: <u>Effects Criteria</u>: 1) survival after 28 days, and 2) average individual biomass (based on dry weight) after 28 days. Death is defined as no visible movement or response to tactile stimulation. Missing organisms were considered to be dead.

<u>Water Quality and Other Test Conditions</u>: The temperature, dissolved oxygen, conductivity, pH, hardness, alkalinity, sulfide and ammonia-nitrogen were measured in the overlying water of one replicate test container per treatment on days 0 and 28 of the test. Temperature and dissolved oxygen were measured daily in the overlying water of one replicate test container per treatment. Hardness and alkalinity were measured with titrimetric methods. Sulfide and ammonia-N were measured using Hach test kits based on the methylene blue (EPA Method 376.2) and salicylate (Clin. Chim. Acta 14:403, 1996) colorimetric methods, respectively; samples were not distilled prior to analysis. The photoperiod was 16:8, L:D.

DATA ANALYSIS METHODS

Survival and individual biomass were calculated for each replicate as follows:

percent survival = 100 x (number surviving/initial number tested) average individual biomass = (final wt. - tare wt.)/number weighed, where:

final wt. = tare wt. + dry weight of organisms recovered on day 28, in mg

Means and standard deviations for the biological endpoints described above, and for water quality data, were computed using Microsoft Excel 2000. The value for mortality and individual biomass for each test sediment was statistically compared against its appropriate reference and control sediment. An arcsine square root transformation was performed on proportional mortality data before analysis. Following determination of normality and homogeneity of variances, a one-tailed Student T-test, Mann-Whitney or Approximate T test was conducted at the 0.05 level of significance. The statistical software used was BioStat (Beta v.2.0c) bioassay software developed by the U.S. Army Corps of Engineers, Seattle District.

PROTOCOL DEVIATIONS

Although the dissolved oxygen level (3.2 mg/L) in the water quality beaker for sediment 43-8020 dropped below 3.48 mg/L (40% saturation) on day 27 and is therefore a deviation of NAS protocol, EPA /600/R-99/064 allows a dissolved oxygen level as low as 2.5 mg/L before aeration is required.

REFERENCE TOXICANT TEST

The reference toxicant test is a standard multi-concentration toxicity test using cadmium as $CdCl_2 \cdot 2\frac{1}{2} H_2O$, to evaluate the performance of the test organisms used in the sediment toxicity test. The performance is evaluated by comparing the results of this test with historical results obtained at the laboratory. A summary of the reference toxicant test result is given below. The reference toxicant test raw data are found in Appendix III.

Test No.: 999-1218

Reference Toxicant and Source: Cadmium as CdCl₂ • 2½ H₂O, Mallinckrodt Lot #TNZ, 1.0 mg/ml stock

prepared 12-2-99. <u>Test Date</u>: 11-2-00.

<u>Dilution Water Used</u>: Moderately hard synthetic water prepared from Milli-Q[®] deionized water. <u>Result</u>: 96-hr LC50, 8.84 μ g/L. This result is within the laboratory's control chart warning limits

 $(2.72 - 21.9 \mu g/L)$.

TEST RESULTS

Observations of water quality in the overlying water throughout the test are summarized in Table 1. A detailed tabulation of the water quality results by sample and test day can be found in Appendix II. The means and standard deviations of percent mortality and growth (weight) of *Hyalella* exposed for 28 days to sediments are summarized in Table 2 and Table 3, respectively. Detailed data organized by sample and replicate, and summary statistics for these observations, are given in Appendix II.

All water quality observations of overlying water temperature and dissolved oxygen were within the protocol specified ranges, except as noted above. Sulfide and ammonia-N in the overlying water measured at <0.5 mg/L and <0.02 mg/L respectively, for day 0 and day 28 for all samples.

The test met the acceptability criteria specified in the protocol with 96.3% mean control survival (80% required). The reference toxicant (positive control) result was within the laboratory's control chart limits (8.84 μ g/L; control chart mean \pm 2 S.D. = 12.3 \pm 9.59).

All test and reference sediments, except for 43-8025 (NAS#6901F) resulted in mortalities that were statistically significantly greater ($\alpha = 0.05$) than that of the control. No test sediment mean mortality was significantly higher ($\alpha = 0.05$) than that of the reference. The reference sediment produced a mean mortality of 83.8%.

The test sediments, 43-8020 (NAS#6897F), 43-8023 (NAS#6899F), 43-8024 (NAS#6900F), 43-8025 (NAS#6901F), 43-8026 (6902F), and the reference sediment 43-8028 (NAS#6904F) produced individual mean biomasses statistically significantly less (α = 0.05) than that of the control. Sediment 43-8027 (NAS#6903F) could not be statistically analyzed against the control or reference for biomass due to having only one replicate with surviving animals. No sediment resulted in a dry weight measurement statistically significantly less (α = 0.05) than the reference.

JDY APPROVAL			
Project Manager/ Study Director	Date	Quality Assurance Unit	Date
Laboratory Director	Date		

Table 1. Summary of water quality conditions during tests of the amphipod, *Hyalella azteca*, exposed to freshwater sediments.

Water Quality Parameter	Mean \pm S.D.	Minimum	Maximum	N
Temperature (°C)	22.7 ± 0.3	22.1	23.4	261
Dissolved oxygen (mg/L)	5.5 ± 0.9	3.2	7.7	261
Conductivity (µmhos/cm)	332 ± 39	300	470	18
рН	7.7 ± 0.1	7.5	7.8	18
Hardness (mg/L as CaCO ₃)	88 ± 5	85	102	18
Alkalinity (mg/L as CaCO ₃)	74 ± 8	70	90	18
Sulfides (mg/L)		< 0.02	< 0.02	18
Total ammonia (mg/L)		< 0.5	< 0.5	18

Table 2. Mortality results of *Hyalella azteca* exposed to freshwater sediments for 28-days.

Sample description	Percent mortality (Mean ± SD)	Significantly greater than the control at $\alpha = 0.05$?	Significantly greater than the reference at $\alpha = 0.05$?
	/	control at a 0.05:	
Control (NAS#6905F)	3.8 ± 7.4		Yes
43-8020 (NAS#6897F)	48.8 ± 20.3	Yes	No
43-8021 (NAS#6898F)	16.3 ± 7.4	Yes	No
43-8023 (NAS#6899F)	33.8 ± 19.2	Yes	No
43-8024 (NAS#6900F)	13.8 ± 13.0	Yes	No
43-8025 (NAS#6901F)	13.8 ± 16.9	No	No
43-8026 (NAS#6902F)	36.3 ± 16.9	Yes	No
43-8027 (NAS#6903F)	98.8 ± 3.5	Yes	No
43-8028 (NAS#6904F)*	83.8 ± 25.0	Yes	

^{*}Reference sediment

Table 3. Growth results of *Hyalella azteca* exposed to freshwater sediments for 28-days.

Sample description	Average wt/amphipod (mg) (Mean ± SD)	Significantly less than the control at $\alpha = 0.05$?	Significantly less than the reference at $\alpha = 0.05$?
Control (NAS#6905F)	0.26 ± 0.04		Yes
43-8020 (NAS#6897F)	0.20 ± 0.06	Yes	No
43-8021 (NAS#6898F)	0.23 ± 0.04	No	No
43-8023 (NAS#6899F)	0.16 ± 0.03	Yes	No
43-8024 (NAS#6900F)	0.15 ± 0.02	Yes	No
43-8025 (NAS#6901F)	0.12 ± 0.03	Yes	No
43-8026 (NAS#6902F)	0.08 ± 0.02	Yes	No
43-8027 (NAS#6903F)	0.05 ± 0.00	1	1
43-8028 (NAS#6904F)*	0.09 ± 0.02	Yes	

^{*}Reference sediment

¹Unable to analyze due to only one survivor

Chironomus tentans Bioassay

TEST IDENTIFICATION

Test No.: 627-2

<u>Title</u>: Toxicity of freshwater sediments using a 20-day midge, *Chironomus tentans*, sediment bioassay. <u>Protocol No.</u>: NAS-XXX-CT4c, October 18, 2000. Based on ASTM 1996 (Standard test methods for measuring the toxicity of sediment-associated contaminants with fresh water invertebrates, E1706-95b), Am. Soc. Test. Mat. Phila., PA, and EPA Method 100.5 (Methods for measuring the toxicity and bioaccumulation of sediment-associated contaminants with freshwater invertebrates, EPA/600/R-99/064).

STUDY MANAGEMENT

Study Sponsor: Washington Dept. of Ecology, Manchester Lab, 7411 Beach Dr. East, Port Orchard, WA 98366

Sponsor's Study Monitor: Ms. Pam Covey

Testing Laboratory: Northwestern Aquatic Sciences, P.O. Box 1437, Newport, OR 97365

<u>Test Location</u>: Newport laboratory

<u>Laboratory's Study Personnel:</u> G.J. Irissarri, B.S., Proj. Man./Study Dir.; L.K. Nemeth, M.B.A., QA Officer; R.S. Caldwell, PhD, Senior Aq. Toxicologist; G.A. Buhler, B.S., Aq. Toxicologist; M.S. Redmond, M.S., Aq. Toxicologist; G. Hayes, B.S., Tech.

Study Schedule:

Test Beginning: 11-2-00, 1330 hrs. Test Ending: 11-22-00, 1030 hrs.

<u>Disposition of Study Records</u>: All specimens, raw data, reports and other study records are stored according to Good Laboratory Practice regulations at Northwestern Aquatic Sciences, 3814 Yaquina Bay Rd., Newport, OR 97365

Good Laboratory Practices: The test was conducted following the principles of Good Laboratory Practices (GLP) as defined in the EPA/TSCA Good Laboratory Practice regulations revised August 17, 1989 (40 CFR Part 792).

<u>Statement of Quality Assurance</u>: The test data were reviewed by the Quality Assurance Unit to assure that the study was performed in accordance with the protocol and standard operating procedures. This report is an accurate reflection of the raw data.

TEST MATERIAL

Test Sediments: Unidentified freshwater test sediments. Details are as follows:

NAS Sample No.	6897F	6898F	6899F	6900F
Description	43-8020	43-8021	43-8023	43-8024
Collection Date	10-23-00	10-23-00	10-24-00	10-24-00
Receipt Date	10-27-00	10-27-00	10-27-00	10-27-00
-				
NAS Sample No.	6901F	6902F	6903F	6904F
NAS Sample No. Description	6901F 43-8025	6902F 43-8026	6903F 43-8027	6904F 43-8028

<u>Control Sediment</u>: The negative control sediment (NAS#6905F) was collected on 10-27-00 from an area approximately one mile east of the Hwy. 101 bridge at Beaver Creek, approx. 8 miles south of Newport, OR. The control sediment was press sieved through a 0.5 mm screen.

Storage: All test, reference and control sediments were stored at 4°C in the dark until used.

TEST WATER

Source: Moderately hard synthetic water prepared from Milli-Q[®] deionized water.

<u>Dates of Preparation</u>: 11-1-00, 11-6-00, 11-13-00, 11-20-00

Water Quality: pH 8.0, 8.2, 8.0, 8.0; conductivity 310, 320, 320, 300 µmhos/cm; hardness 85, 94, 94, 85 mg/L

as $CaCO_3$; alkalinity 70, 70, 70, 70 mg/L as $CaCO_3$.

<u>Pretreatment</u>: Aerated ≥24 hr.

TEST ORGANISMS

<u>Species</u>: *Chironomus tentans*, midge. <u>Age/Size</u>: 1st instar, <24 hrs. old

Source: NAS cultures, originally obtained from EPA, Duluth, MN.

<u>Acclimation</u>: Temperature, 23.0 ± 0.7 °C; dissolved oxygen, 6.2 ± 0.5 mg/L; pH, 7.7 ± 0.2 ; conductivity,

 $383 \pm 30 \mu mhos/cm$; hardness, $107 \pm 6 mg/L$ as CaCO₃; and alkalinity, $85 \pm 7 mg/L$ as CaCO₃.

TEST PROCEDURES AND CONDITIONS

The following is an abbreviated statement of the test procedures and a statement of the test conditions actually employed. See the test protocol (Appendix I) for a more detailed description of the test procedures used in this study.

Test Chambers: 300 ml high-form glass beakers

Test Volumes: 100 ml sediment layer; 175 ml test water.

Replicates/Treatment: 8 Organisms/Treatment: 80

Water Volume Changes: 2 water volumes per day

Aeration: None.

<u>Feeding</u>: Animals were fed 1.5 ml of TetraFin suspension (1.5 ml contains 6 mg dry solids) per beaker daily. <u>Effects Criteria</u>: 1) survival after 20 days, and 2) average individual biomass (based on ash-free dry weight) after 20 days. Death is defined as no visible movement or response to tactile stimulation. Missing organisms were considered to be dead.

Water Quality and Other Test Conditions: The temperature, dissolved oxygen, conductivity, pH, hardness, alkalinity, sulfide and ammonia-nitrogen were measured in the overlying water of one replicate test container per treatment on days 0 and 20 of the test. Temperature and dissolved oxygen were measured daily in the overlying water of one replicate test container per treatment. Hardness and alkalinity were measured with titrimetric methods. Sulfide and ammonia-N were measured using Hach test kits based on the methylene blue (EPA Method 376.2) and salicylate (Clin. Chim. Acta 14:403, 1996) colorimetric methods, respectively; samples were not distilled prior to analysis. The photoperiod was 16:8, L:D.

DATA ANALYSIS METHODS

Survival and individual biomass were calculated for each replicate as follows:

percent survival = 100 x (number surviving/initial number tested) average individual ash-free biomass = (final wt. – ashed dry wt.)/number weighed, where:

ash-free dry wt. = dry weight of organisms recovered on day 20 – ashed dry weight, in mg

Means and standard deviations for the biological endpoints described above, and for water quality data, were computed using Microsoft Excel 2000. The value for mortality and individual biomass for each test sediment was statistically compared against its appropriate reference and control sediment. An arcsine square root transformation was performed on proportional mortality data before analysis. Following determination of normality and homogeneity of variances, a one-tailed Student T-test, Mann-Whitney or Approximate T test was conducted at the 0.05 level of significance. The statistical software used was BioStat (Beta v.2.0c) bioassay software developed by the U.S. Army Corps of Engineers, Seattle District.

PROTOCOL DEVIATIONS

None

TEST RESULTS

Observations of water quality in the overlying water throughout the test are summarized in Table 1. A detailed tabulation of the water quality results by sample and test day can be found in Appendix II. The means and standard deviations of percent mortality and growth (weight) of midges exposed for 20 days to sediments are summarized in Table 2 and Table 3, respectively. Detailed data organized by sample and replicate, and summary statistics for these observations, are given in Appendix II.

All water quality observations of overlying water temperature and dissolved oxygen were within the protocol specified ranges. Sulfide and ammonia-N in the overlying water measured at <0.5 mg/L and <0.02 mg/L respectively, for day 0 and day 20 for all samples except for sediments 43-8025 (NAS#6900F) and 43-8025 (NAS#6901F) which both measured 0.5 mg/L for ammonia on day 0.

The test met acceptability criteria specified in the protocol with 71.3% mean control survival (70% required) and a 1.12mg average individual ash-free control weight (0.48 mg required).

With a mortality of 93.8%, 43-8020 (NAS#6897F) was the only test sediment that resulted in survival that was statistically significantly different ($\alpha = 0.05$) from that of either the control and/or reference sediments.

Two sediments produced statistically significant (α = 0.05) reductions in final biomass relative to the control mean weight: 43-8026 (NAS#6902F) with an individual ash-free weight of 0.82 mg and the reference, 43-8028 (NAS#6904F) with an individual ash-free weight of 0.47 mg. Sediment 43-8020 (NAS#6897F) could not be statistically analyzed against the control or reference for biomass due to having only two replicates with surviving animals. No test sediment resulted in a statistically significant (α = 0.05) reduction in ash-free biomass relative to the reference sediment.

STUDY APPROVAL

Project Manager/Study Director	Date	Quality Assurance Unit	Date
Laboratory Director	Date		

Table 1. Summary of water quality conditions during tests of the midge, *Chironomus tentans*, exposed to freshwater sediments.

Water Quality Parameter	Mean \pm S.D.	Minimum	Maximum	N
Temperature (°C)	22.5 ± 0.2	22.1	23.2	189
Dissolved oxygen (mg/L)	4.8 ± 1.2	2.8	7.6	189
Conductivity (µmhos/cm)	345 ± 45	320	520	18
PH	7.6 ± 0.1	7.5	7.7	18
Hardness (mg/L as CaCO ₃)	89 ± 5	85	94	18
Alkalinity (mg/L as CaCO ₃)	71 ± 6	60	90	18
Sulfides (mg/L)		< 0.02	< 0.02	18
Total ammonia (mg/L)		< 0.5	0.5	18

Table 2. Mortality results of *Chironomid tentans* exposed to freshwater sediments for 20-days.

Sample description	Percent mortality (Mean ± SD)	Significantly greater than the control at $\alpha = 0.05$?	Significantly greater than the reference at $\alpha = 0.05$?
Control (NAS#6905F)	28.8 ± 20.3		No
43-8020 (NAS#6897F)	93.8 ± 11.9	Yes	Yes
43-8021 (NAS#6898F)	25.0 ± 14.1	No	No
43-8023 (NAS#6899F)	15.0 ± 13.1	No	No
43-8024 (NAS#6900F)	37.5 ± 21.2	No	No
43-8025 (NAS#6901F)	46.3 ± 23.3	No	No
43-8026 (NAS#6902F)	27.5 ± 21.2	No	No
43-8027 (NAS#6903F)	32.5 ± 18.3	No	No
43-8028 (NAS#6904F)*	26.3 ± 27.2	No	

^{*} Reference sediment

Table 3. Growth results of *Chironomus tentans* exposed to freshwater sediments for 20-days.

Sample description	Average Ash-Free Dry wt/Larvae (mg) (Mean ± SD)	Significantly less than the control at $\alpha = 0.05$?	Significantly less than the reference at $\alpha = 0.05$?
Control (NAS#6905F)	1.12 ± 0.25		Yes
43-8020 (NAS#6897F)	0.20 ± 0.20	1	 ¹
43-8021 (NAS#6898F)	1.06 ± 0.34	No	No
43-8023 (NAS#6899F)	1.00 ± 0.12	No	No
43-8024 (NAS#6900F)	1.18 ± 0.37	No	No
43-8025 (NAS#6901F)	1.00 ± 0.22	No	No
43-8026 (NAS#6902F)	0.82 ± 0.12	Yes	No
43-8027 (NAS#6903F)	1.16 ± 0.14	No	No
43-8028 (NAS#6904F)*	0.47 ± 0.19	Yes	

^{*} Reference sediment ¹Unable to analyze due to only 2 replicates with survivors