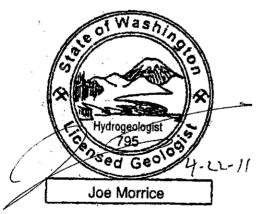
CITY OF WHITE SALMON AQUIFER STORAGE AND RECOVERY FEASIBILITY ASSESSMENT

Prepared for: City of White Salmon

Project No. 090094-001-03 • April 22, 2011

Project funded through Ecology Grant No. G0900235

Ecology Publication Number: 11-12-027



CITY OF WHITE SALMON AQUIFER STORAGE AND RECOVERY FEASIBILITY ASSESSMENT

Prepared for: City of White Salmon

Project No. 090094-001-03 • April 22, 2011

Aspect Consulting, LLC

Joseph N. Morrice, LHG Senior Hydrogeologist jmorrice@aspectconsulting.com Throsty J. Flyn

Timothy J. Flynn, LHG, CGWP Principal Hydrogeologist tflynn@aspectconsulting.com

W:\090094 2009 Water System Imprvmts-ASR Project\Deliverables\ASR FS\White Salmon ASR FS (Final 4-22-11).doc

Contents

1	Intr	oduction	1-1
2	Source Evaluation		
	2.1	Existing Water Rights	2-1
	2.2	Buck Creek Flows	2-2
	2.3	Source Water Available for Storage	2-3
	2.4	Source Water Quality	
3	ASR Target Aquifer		3-1
	3.1	Potential ASR Target Aquifers	3-1
	3.2	Selection of ASR Target Aquifer	
4	Legal Assessment (Water Rights)		
	4.1	Water Right Permits for ASR	
	4.1.1	Water Rights for Source Water	
	4.1.2	Reservoir Permit for Storage	4-1
	4.1.3	Secondary Permit for Use of Stored Water	
	4.2	Permit Processing Options	
	4.2.1	Priority Processing Under the Hillis Rule and RCW 90.03.370	
	4.2.2	Cost Reimbursement Processing	
	4.3	Senior Water Rights in Project Vicinity	
	4.3.1	Potential for Impairment	
	4.3.2	Instream Flows and Agency Consultation	
5	Hyd	Irogeologic System Description	
	5.1	Physical Geography	5-1
	5.2	Geologic Setting	5-1
	5.2.1	Well Locations and Development of Cross Sections	5-2
	5.2.2	Stratigraphy	
	5.2.3	Geologic Structure	
	5.3	Target Aquifer for Storage	
	5.3.1	Overview of the Grande Ronde Basalt Formation	
	5.3.2	Lateral and Vertical Extent	
	5.3.3 5.3.4	Confined or Unconfined Hydraulic Properties	
	5.3.5	Total Storage Volume Available	
	5.3.6	Controls on Groundwater Quality and Potential for Physio-Chemical Changes	
	5.4	Groundwater Flow Directions and Rates of Movement	5-19

ASPECT CONSULTING

	5.4.1	Groundwater Flow Direction and Hydraulic Gradient	
	5.4.2 5.4.3	Groundwater Velocity Interaction with Possible Flow Barriers	5-21 5-21
	5.5	Recoverability of Stored Water	
	5.6	Anticipated Changes to Groundwater System from ASR Project	
	5.7	Estimated Area Potentially Affected by ASR Activities	
	5.8	Location of Wells or Other Sources of Groundwater within the Area Affected by ASR Activities	
	5.9	Location of Natural Hazards, Surface Waters, and Springs Potentially Affected by ASR Project	
	5.10	Chemical/Physical Composition of Source Water and Compatibility with Ambient Groundwater	
		Comparison of Source Water and Groundwater Quality	
		2 Modeling of Water Mixing	
_			
6		rironmental Assessment	
	6.1	Description of Environment within ASR Project Area	
	6.1.1 6.1.2	Proximity to Contaminated AreasLand Use 1	6-1
	6.1.3	Surface Waters, Wetlands, and Floodplains	6-2
	6.2	Potential for Adverse Environmental Impacts within ASR Project Area	6-3
	6.2.1	Natural Hazards Potentially Affected by ASR Project	
	6.2.2	Surface Waters Potentially Affected by ASR Project	
	6.3	Conclusion	6-5
7	Pro	ject Monitoring Plan (Pilot Test Plan)	7-1
	7.1	Pilot Test Overview	7-1
	7.2	ASR Well and Piping	7-1
	7.3	Source Water	7-2
	7.4	Baseline Well Testing	7-3
	7.5	Recharge, Storage, and Recovery Cycles	7-3
	7.6	Hydraulic Monitoring	7-4
	7.7	Water Quality Monitoring	7-5
	7.7.1	Ambient Groundwater in Storage Aquifer	
	7.7.2 7.7.3	Recharge Source Water Stored Water 6	7-6
	7.7.4	Recovered Water	7-6
	7.7.5	Water Quality Monitoring Data Evaluation	
	7.8	Threshold Values	7-7
	7.9	Reporting of Initial Pilot Test	7-7

8	Conceptual Project Operation Plan8					
9	Limitations9-1					
10	References10					
List of Tables						
2.1	Water Right Summary					
2.2	Buck Creek Flows and City of White Salmon Water Use					
4.1	Summary of Existing Surface Water Rights					
4.2	Summary of Existing Groundwater Rights					
5.1	Summary of Well Completion Details in the Project Area					
5.2	Aquifer Hydraulic Parameters, Grande Ronde Basalt					
5.3	Regional and Local Grande Ronde Basalt Groundwater Quality					
5.4	Site-Specific Groundwater Quality Data					
5.5	Summary of Groundwater Level Data, Grande Ronde Basalt					
5.6	Model Results for Different ASR Operational Scenarios					
5.7	Geochemical Model Results for Mixing					
5.8	Geochemical Model Results for Mineral Precipitation					
6.1	Confirmed and Suspected Contaminated Sites					
6.2	Average Historical Monthly Streamflows for the White Salmon River and Tributaries					
6.3	2008 Water Quality Assessment Listings for White Salmon River Subbasin					
7.1	Preliminary Water Quality Monitoring Schedule for Initial ASR Pilot Test					
Lis	t of Figures					
1.1	Site Location Map					
1.2	City of White Salmon Water System Infrastructure					
2.1	Historical Buck Creek Flows					
2.2	Long-Term Precipitation Analysis					
4.1	Distribution of Existing Surface Water Rights					
4.2	Distribution of Existing Groundwater Rights					

ASPECT CONSULTING

5.1	Well	Location and	l Geo	logic	Мар

- 5.2 Cross Section A-A'
- 5.3 Cross Section B-B'
- 5.4 Conceptual Hydrogeologic Model
- 5.5 Distance-Drawdown Curves for Hypothetical ASR Scenarios
- 5.6 Piper Diagram of Groundwater and Surface Water Quality Data
- 5.7 Groundwater Elevation Contour Map Grande Ronde Basalt
- 5.8 Modeled Changes in Head for Scenario 1
- 5.9 Modeled Changes in Head for Scenario 2
- 6.1 Land Use and Contaminated Sites
- 6.2 White Salmon River Discharge, 2005 through 2009
- 6.3 Soil Erosion Hazard and Floodplains

List of Appendices

- A Laboratory Reports for February 2010 Water Quality Data
- B As-Built Plans, City of White Salmon Water System Improvements, 2009
- C Response to Ecology Comments on Draft City of White Salmon Aquifer Storage and Recovery Feasibility Assessment

1 Introduction

This report presents an assessment of the potential for using aquifer storage and recovery (ASR) to augment existing water supplies and meet future water demands within the City of White Salmon's (City) water service area, located within the White Salmon subbasin of Water Resource Inventory Area (WRIA) 29. This water storage project was funded under Columbia River Program Grant Number G0900235, between the City of White Salmon and the Washington State Department of Ecology (Ecology).

The term ASR refers to temporarily storing water in an aquifer for later recovery and use. In the 2000 session, the Washington State Legislature expanded the definition of "reservoir" in Revised Code of Washington (RCW) 90.03.370 to include "any naturally occurring underground geological formation where water is collected and stored for subsequent use as part of an underground artificial storage and recovery project." In March 2003, Ecology adopted a rule (Chapter 173-157 Washington Administration Code [WAC]) pertaining to ASR projects. This rule defines water rights/permitting requirements for an ASR project, the process and information requirements for obtaining an ASR permit, and Ecology's process for reviewing ASR permit applications. This feasibility study report is intended to provide the information requirement to support the ASR permitting process as defined in Chapter 173-157 WAC.

The City faces water supply shortages in annual quantities (Qa) authorized under its existing water rights and, due to decreased well source production, in the instantaneous capacity of its groundwater sources. The City's current water rights authorize annual withdrawals of up to 688 acre-feet per year (afy), compared to past average annual use for the 2003 to 2008 period of approximately 900 afy. Based on the annual water supply deficit, the Washington State Department of Health required the City to institute a moratorium on new connections to the City's water system until sufficient additional annual supply is obtained. Through implementation of severe conservation measures, reduction in unaccounted for water (leak repair), and rate adjustment, the City has significantly reduced annual use but still faces a deficit in meeting both short-term and long-term growth demands.

The City also anticipates problems in meeting peak seasonal demand using its two groundwater sources (Well No. 1 and Well No. 2). Water levels in these wells, especially Well No. 2, have consistently decreased since they were brought online in 2002, reducing well production to the point where it may no longer reliably meet peak demand.

The City has pursued several options to address these shortages, including:

- Applying for new surface water and groundwater rights requesting additional annual and instantaneous quantities;
- Pursuing a long-term lease agreement with the Klickitat County Public Utility
 District (PUD) to provide additional instantaneous and annual water supply under
 the PUD's existing upstream Columbia River surface water rights;

- Installing a slow sand filtration system and chlorination station at its originally authorized surface water source from Buck Creek (a tributary to the White Salmon River) to provide additional instantaneous source capacity; and
- Pursuit of this ASR project to increase well source capacity and total annual volume of water supply.

Figure 1.1 presents a project location map for the ASR project area. Figure 1.2 shows the location of the City's existing water supply wells (Well No. 1 and Well No. 2), the Buck Creek diversion and slow sand filter, and the City's existing water supply infrastructure, including reservoirs and distribution system piping.

Under the proposed ASR project, the City would divert and treat surface water on a seasonal basis (anticipated diversion between November and April) from the existing Buck Creek diversion and inject and store the water in the Grande Ronde Basalt aquifer using Well No. 2. Stored water would then be recovered to meet peak summer water demands. The proposed ASR project would address shortages in the authorized annual quantity and help increase the instantaneous capacity of Well No. 2 during peak demand.

The primary objective of this feasibility study is to identify a target ASR aquifer zone and location, and provide a detailed assessment of the feasibility of applying ASR as a water supply strategy. The ASR feasibility study addresses technical, operational, environmental, legal, and economic considerations associated with applying ASR. This study is structured to provide information required in an application to Ecology for an ASR permit, as specified in Chapter 173-157 WAC.

While this assessment addresses required elements to be included with an ASR application, it is based on available information. Additional site-specific data – resulting from a phased ASR pilot testing program as defined in the Phase II component of the current grant agreement – is needed to verify assumptions and demonstrate the effectiveness of ASR as a viable future water supply strategy. In addition, a demonstration of how implementation of an ASR project will comply with all applicable regulations, including the antidegradation provisions under Washington's Groundwater Quality Standards, is necessary before an ASR permit is issued by Ecology.

Following this introductory section, the remainder of the report is organized as follows:

- **Section 2, Source Evaluation:** An evaluation of quantity and quality of source water potentially available for storage.
- **Section 3, ASR Target Aquifer:** A description of the locations initially considered for ASR, and selection of a target area for the feasibility study.
- **Section 4, Legal Assessment:** A description of an ASR project's prospective water rights for diversion of source water, its storage in a subsurface reservoir, and its beneficial use when recovered from the reservoir.
- Section 5, Hydrogeologic System Description: A description (conceptual model) of the hydrogeologic system pertinent to the project, including evaluation of potential changes in groundwater elevations, changes to groundwater quality, and recoverability of stored water.

- **Section 6, Environmental Assessment:** An assessment of potential adverse environmental impacts to the surrounding area resulting from ASR.
- Section 7, Project Monitoring Plan: Scoping of a project monitoring plan to verify the assumptions of the project conceptual model should the City and Ecology choose to proceed with ASR pilot testing.
- Section 8, Conceptual Project Operation Plan: A conceptual plan generally describing how the City could apply ASR within its overall water supply system, based on the current level of understanding.
- Section 9, Limitations.
- Section 10, References: List of references cited in this document.

The sections of the report are generally organized consistent with the requirements for that element as per Chapter 173-157 WAC.

2 Source Evaluation

To assess the feasibility for the City of White Salmon to use ASR to increase available water supply, it is necessary to first evaluate the quantity and quality of source water potentially available for storage. For this assessment, water from the City's Buck Creek source is evaluated as the water to be stored and subsequently recovered to help meet the City's water supply needs.

The City's surface water diversion on Buck Creek is located about 6 miles northwest of the City and about 4 miles northwest of Well No. 1 and Well No. 2 (Figure 1.2). Buck Creek historically served as the primary source of the City's water supply. In 1999, based on water quality issues and limited surface water treatment capabilities, the City began developing new groundwater sources. Construction of Well No. 1 and Well No. 2 were completed in 1999 and 2001, respectively. The well field provided the City's primary supply with Buck Creek serving as an untreated emergency source.

Water levels and production capacity from the wells, especially Well No. 2, have exhibited a continued decreasing trend since coming online. In response to declining production, the City is currently redeveloping the Buck Creek diversion, both as a continuous treated source of water supply for municipal use and as a potential seasonal source for ASR use. Construction of a slow sand filter for treatment of Buck Creek water was completed in December 2009 and is awaiting final approval from the Washington State Department of Health (DOH) before being brought online. The design capacity of the sand filter is 2.2 cubic feet per second (cfs), or 1,000 gallon per minute (gpm). Additional improvements include upgrading the conveyance system between Buck Creek and the City's existing storage and distribution system, construction of a chlorination station at the Buck Creek source, and installation of controls and valving to allow testing and use of Well No. 2 for ASR.

This section evaluates the City's existing water rights and pending water right applications and the Buck Creek source capacity relative to projected water demands, with the objective of determining the quantity and timing of surplus Buck Creek water that could be made available for ASR. The water quality of the Buck Creek source is also briefly described.

2.1 Existing Water Rights

The City's current water rights and pending water right applications are summarized in Table 2.1. The City holds two surface water rights for diversions from Buck Creek (Certificate Nos. 3474 and 7109) and one surface water right for diversion from an unnamed spring tributary to Jewett Creek (Certificate No. 10252). In 1999, the City applied for and received approval to add two groundwater wells (Well No. 1 and Well No. 2) as points of withdrawal to the Buck Creek water right certificates.

Certificate Nos. 3474 and 7109 each authorize an instantaneous diversion from Buck Creek of up to 2 cfs (4 cfs combined) for municipal supply. Certificate No. 7109 authorizes an annual quantity of 688 afy, while Certificate No. 3474 does not list an annual maximum quantity. The change applications for these certificates as approved by Ecology authorized the addition of groundwater wells as points of withdrawal, and limited the combined diversion from Buck Creek and withdrawals from the wells to an instantaneous rate of 4 cfs or 1,795 gpm and an annual volume of 688 afy.

The City also holds four pending applications for new water rights. One application for a new surface water right (S4-35068), filed August 31, 2005, requests a diversion of 3,000 gpm (6.7 cfs) and 1,500 afy from the White Salmon River. The City submitted a letter to Ecology, dated May 27, 2009, requesting that application S4-35068 be amended to specify Buck Creek as the point of diversion, rather than the White Salmon River. On May 24, 2010, Ecology accepted a second amendment to the application, reducing the requested Qa to 780 afy, additive to existing rights, and reducing the requested Qi to 2.2 cfs, of which 1.2 cfs is additive and 1.0 cfs is non-additive to existing Certificate Nos. 3474 and 7109. Ecology is currently processing this surface water right application as a water budget neutral appropriation. The City proposes to offset the consumptive use of this appropriation with consumptive use mitigation credits available from placement of existing Klickitat County PUD water rights into the state's Trust Water Rights Program.

The three other applications (G4-32539, G4-32540, and G4-32541) were filed in 1997, each requesting new groundwater rights of 1,500 gpm and 1,600 afy from up to three wells. These applications are not related to the ASR project, but are included here for completeness.

The City does not have excess Qa under its existing water rights to support the proposed ASR project. Assuming the City's pending water right application (S4-35068) is approved, the City may be able to implement a limited ASR program. However, this would not address the City's long-term instantaneous or annual water supply needs. The City's objective is to operate an ASR program using a new seasonal surface water right authorizing additional diversion from Buck Creek. This would enable full use of the City's combined wellfield capacity of approximately 3 cfs as well as the full 2.2 cfs treatment capacity at its Buck Creek source.

New water right permits from Ecology that will be required for the project include a new surface water right to divert seasonal flows from Buck Creek, a reservoir permit authorizing aquifer storage of diverted water, and secondary use permits authorizing subsequent recovery of stored water for municipal and instream flow uses. Applications for a surface water diversion permit, reservoir permit, and secondary use permits will be filed as part of Phase II, if the City and Ecology determine that the ASR project is feasible. Additional discussion of the required permits, including permit processing options, is provided in Section 4.

2.2 Buck Creek Flows

Daily flow measurements at the Buck Creek diversion dam are available for the period from November 2001 through April 2004. Stage measurements were collected using a pressure transducer at the Buck Creek diversion and converted to flows based on a rating

curve developed by Bell Design Company (2002b). The diversion dam was constructed with a bypass controlled by a sluice gate. The rating curve was developed with the sluice gate partially open, and is only valid for this configuration.

Flow data are not available after April 2004. In October 2009, the City installed a new pressure transducer at the diversion to collect stage data. The sluice gate is maintained in a closed position and the previously developed rating curve is not valid for converting the recent stage data to flows. The City is currently pursuing modifications to the diversion dam structure, including addition of a weir. Once the weir is completed, flow measurements will resume.

Figure 2.1 presents daily flows at the Buck Creek point of diversion available over the period of November 2001 through April 2004. Table 2.2 summarizes monthly average flows over the same period. Based on these data, minimum monthly average flows of about 18 to 20 cfs occur from July through November, when snowmelt runoff and precipitation are typically low. From December through May, average monthly flows range from about 30 to 70 cfs. The minimum measured daily flows were about 6 cfs for 12 days in November 2001, but otherwise have remained above about 18 cfs (Figure 2.1). As discussed below, November 2001 was the end of an extremely dry water year and the data from this period likely represent extreme drought year low-flows for November.

Figure 2.2 presents the annual precipitation and the cumulative departure from the mean annual precipitation for Hood River (NOAA Station No. 354003), which is the active station closest to the project area. Annual precipitation data are shown for water years ending on September 30, over the period of 1924 through 2009. Data from this station extend back to 1893; however, based on numerous missing data points, the earlier data were not included in this evaluation. Annual precipitation averages 30.2 inches, and ranges from 13.6 inches in water year 1977 to about 47 inches in water year 1997.

Data from water years corresponding to the period when Buck Creek flow measurements were made are shown in red on Figure 2.2. Precipitation for water years 2002 through 2004 (i.e., October 2001 through September 2004) was at or slightly below the long-term average. Precipitation for water year 2001 (October 2000 through September 2001) was 11.4 inches below the long-term average, and was the fourth lowest total over the period of record. This very dry water year immediately preceded the minimum measured flows in Buck Creek in November 2001. Based on these data, the flow measurements from Buck Creek are representative of both average and late-season drought year flows.

2.3 Source Water Available for Storage

The amount of source water available for storage depends on the following factors:

- Physical and legal availability of water at the Buck Creek diversion;
- Water quality treatment capacity of the slow sand filter; and
- Storage capacity and yield of the ASR target aquifer.

Availability of water includes physical availability (flows at the diversion) and legal availability (water right authorization). Physical availability of water (flows) at the Buck Creek diversion and excess treatment capacity are discussed in the remainder of this

section. Legal availability of water, including a summary of potentially affected senior water rights and instream flow requirements that would be evaluated in the water right permitting process, is addressed in Section 4.3. Aquifer yield and storage capacity are addressed in Sections 5.3.1 and 5.3.5, respectively.

For the period November 2001 through April 2004 average monthly flows at the Buck Creek diversion were at least 18 cfs, with minimum daily flows of 6 cfs measured following a drought year. Without further expansion of the recently completed slow sand filtration treatment system, the maximum possible flow that would be diverted from Buck Creek for City supply and ASR purposes is currently constrained to the 2.2 cfs treatment capacity. Given that the minimum daily flows exceed the treatment capacity, physical availability of water at the diversion from November through April is not expected to be a limiting factor for ASR feasibility.

A second constraint is the sand filter treatment capacity available between November and April for ASR use while still meeting the City's water supply demands. For the years 2003 through 2008, the City's annual water use averaged about 890 acre-ft/year (Table 2.2). Peak total use of about 1,030 acre-feet occurred in 2005, but has since declined considerably as the City implemented severe conservation measures, reduced unaccounted for water (leak repairs), and adjusted rates. In the past two years (2008 and 2009) total use had decreased to approximately the maximum annual use of 688 acre-feet authorized under the City's water rights.

On a monthly basis, peak use occurs during the months of June, July, and August, with moderate use in May and September (Table 2.2). From November through April use is fairly consistent at about 50 acre-feet per month, or an average daily demand of about 400 gpm (0.9 cfs). Assuming for the purposes of ASR feasibility that use from November through April is supplied entirely by the Buck Creek diversion, the average excess treatment capacity would be about 600 gpm. Over a six-month period this equates to about 480 acre-feet of excess treatment capacity available for ASR use. Additional excess source capacity could be realized if the City were to use Well No. 1 to meet part of the demand from November through April; however, modification of the conveyance system between the wellfield and the City's distribution system is necessary, since currently the distribution system does not allow simultaneous delivery of water to Well No. 2 for aquifer storage and pumping from Well No. 1 for City use.

2.4 Source Water Quality

Buck Creek water is a very high quality source, meeting all groundwater and surface water quality standards. Notably, sand-filtered source water exhibits low alkalinity, low total dissolved and total suspended solids, and low total organic carbon. Historical water quality problems with the Buck Creek source water were the result of high turbidity and the presence of pathogens (*Giardia* and *Cryptosporidium*) in the raw source water. Treatment with sand filtration and chlorination is expected to address these issues. Section 5.3.6 further details the quality of the proposed ASR source water, relative to ambient groundwater quality in the proposed basalt storage aquifer.

3 ASR Target Aquifer

An initial task in this feasibility study was to identify potential ASR target aquifers. Well No. 1 and Well No. 2 were identified as potential target sites, based on the City's existing water supply well locations and infrastructure (Figure 1.2). The following sections describe these wells and the aquifers they tap, followed by the rationale for selecting Well No.2 as the preferred ASR target site for evaluation in the remainder of this feasibility study.

3.1 Potential ASR Target Aquifers

Well No. 1 was drilled to a depth of 755 feet below ground surface (bgs) in October 1998. The Grande Ronde Basalt was encountered at a depth of 200 feet bgs. An interbed, consisting of silt and sand, was encountered at approximately 360 ft bgs, and the yield steadily increased from about 300 to 1,100 gpm at a depth of 755 ft bgs. The Grande Ronde Basalt encountered while drilling Well No. 1 was highly fractured, likely related to movement along the nearby Hood River Fault (see Section 5.2 for a detailed description of geologic structure and stratigraphy). The axis of a nearby unnamed syncline may also have been the source of additional fracturing in the vicinity of Well No. 1.

A 48-hour constant rate aquifer test was conducted in Well No. 1 in November 1998 (Mark Yinger Associates, 1999). The groundwater level drawdown data from Well No. 1 indicate it is completed in a semi-confined aquifer. The aquifer test also indicates the presence of both a no-flow boundary and a leakage or a recharge boundary. The recharge boundary was interpreted to reflect hydraulic continuity with nearby Northwestern Lake (Figure 1.1) through the highly fractured Grande Ronde Basalt in the vicinity of Well No. 1. The no-flow boundary was interpreted to be the nearby Hood River Fault.

Well No. 2 was drilled to a depth of 1,242 feet bgs in March 2001. The Grande Ronde Basalt was encountered at a depth of 180 feet bgs and between depths of 845 and 870 feet bgs the formation became brecciated, which is likely indicative of a shear zone. As the boring was advanced from 818 to 890 feet bgs, there was an approximately 328-foot increase in head, resulting in free-flowing (artesian) water above ground surface. The shut-in pressure was 98 pounds per square inch (psi), which equates to a static water level of 226 feet above ground surface. The presence of brecciated basalt and the significant increase in head is interpreted to be associated with the fault zone between 845 and 870 feet bgs acting as a vertical/downgradient boundary to groundwater flow.

A 24-hour constant rate aquifer test was conducted in Well No. 2 in April 2001 (Mark Yinger Associates, 2001). The groundwater level drawdown data from Well No. 2 indicate it is completed in a confined aquifer. Confined conditions likely result from the low-permeability flow interiors of the Grande Ronde Basalt overlying the zone tapped by Well No. 2 and the presence of the shear zone. The aquifer test also indicates the presence of a no-flow boundary interpreted to be the nearby Hood River fault. Several observation wells completed in the Grande Ronde Basalt at shallower depths than Well

No. 2 were monitored during the aquifer test. There was no discernible effect on groundwater levels in any of these wells during the aquifer test.

Since coming on-line, Well No. 2 has shown a continued decrease in pumping water level and shut-in pressure, with a current shut-in pressure of approximately 65 to 70 psi.

3.2 Selection of ASR Target Aquifer

Given the available infrastructure, either Well No. 1 or Well No. 2 is suitable for ASR use. However, based on the following operational considerations, physical attributes, and regional use, the aquifer tapped by Well No. 2 is recommended as the preferred ASR target zone for evaluation in the feasibility study:

- Well No. 2 is completed in an aquifer that is vertically confined, and laterally bounded by faults, isolating it from surface water and other aquifers. This contrasts with Well No. 1, which appears to be in hydraulic continuity with surface water of Northwestern Lake.
- The deeper aquifer tapped by Well No. 2 is not tapped by other wells, and ASR using this well would not affect other groundwater users.
- The aquifer tapped by Well No. 2 is artesian, which provides better operational conditions for ASR, minimizing the potential for air entrainment and well screen fouling.
- The decreased shut-in pressure at Well No. 2 indicates that pumping of this well has depressurized the aquifer, making storage available for ASR.
- Although production has declined, Well No. 1 remains a viable source for continued supply, while the viability of Well No. 2 as a continued source is marginal. Increasing potential production from Well No. 2 through ASR would provide a greater benefit to the City's water supply than increasing production from Well No. 1.

Additional information on geologic structure and stratigraphy of the Grande Ronde Basalt in the project area is summarized below and detailed in Section 5.2.

Both Well No. 1 and Well No. 2 are completed in the Grande Ronde Basalt. The aquifer test at Well No. 1 indicated the presence of a no-flow boundary that is likely related to the nearby Hood River fault. This no-flow boundary would prevent the flow of groundwater to the southwest, bounding the aquifer in that direction. However, the constant rate aquifer test also indicated the presence of leakage and/or a recharge boundary, interpreted to result from hydraulic continuity with the overlying Quaternary deposits and Northwestern Lake. The leakage or recharge likely occurs through the intense fracturing in the Grande Ronde Basalt in the vicinity of Well No. 1. If Well No. 1 is in hydraulic continuity with the overlying Quaternary deposits and Northwestern Lake, water stored through ASR could be lost to the lake or nearby domestic wells completed in the Quaternary deposits, reducing the recoverability of stored water. Because this aquifer is not "well-bounded," Well No. 1 is not considered further as a prospective site for ASR in this assessment.

The aquifer tapped by Well No. 2 appears to be well-bounded, with no hydraulic continuity with surface water or aquifers tapped by nearby wells. Well No. 2 is completed beneath relatively massive, unfractured flow interiors of the Grande Ronde Basalt, which act to vertically confine the aquifer. The well is also completed beneath a fault zone that acts as a vertical/downgradient boundary to groundwater flow. Based on the aquifer test, the Hood River fault located to the southwest of Well No. 2 acts as another barrier to groundwater flow. Although not detected during the pumping test, a third fault (Buck Creek fault) located about one mile northeast of Well No. 2 likely also acts as a barrier to groundwater flow.

The geologic structures define a fault block within which the aquifer tapped by Well No. 2 is laterally and vertically isolated from the rest of the Grande Ronde Basalt, overlying Quaternary deposits, and Northwestern Lake. The conclusion that groundwater within the fault block is isolated is supported by the large observed change in head across the shear zone and the strong artesian conditions in Well No. 2; the lack of a significant leakage or a recharge boundary during the aquifer test; and the lack of any detectable drawdown during the aquifer test in nearby wells completed at shallower depths in the Grande Ronde Basalt. The lack of continuity with surface water or other aquifers would minimize potential losses and increase the potential recoverability of water stored in this aquifer through ASR. Based on these considerations, the aquifer tapped by Well No. 2 has been selected as the ASR target aquifer for further evaluation.

4 Legal Assessment (Water Rights)

This section provides an overview of water right permits required under Chapter 173-157 WAC for a prospective ASR project, permit processing options, and an overview of other water rights in the area.

4.1 Water Right Permits for ASR

Water right permits from Ecology that will be required for the ASR project include a new surface water right to divert seasonal flows from Buck Creek, a reservoir permit authorizing aquifer storage of diverted water, and secondary use permits authorizing recovery of stored water for municipal and instream flow uses. Applications for a surface water diversion permit, reservoir permit, and secondary use permit will be submitted as part of Phase II, if the City and Ecology determine that the ASR project is feasible.

4.1.1 Water Rights for Source Water

ASR provides an opportunity for the City to augment its existing water supplies, both in terms of annual quantity of supply and water right authorization. One of the key benefits of ASR is the ability to divert seasonally available surface water (i.e., outside the high demand irrigation season) for placement into storage. In the short term, the City may be able to implement a limited ASR program using existing water rights, assuming successful processing of its pending water right application (S4-35068). However, the City's objective is to operate an ASR program using a new seasonal surface water right authorizing additional diversion from Buck Creek. This would enable full use of the City's combined wellfield capacity of approximately 3 cfs as well as the full 2.2 cfs treatment capacity at its Buck Creek source.

Given the good water quality and reliable flows of Buck Creek and the existing surface water diversion, treatment, and conveyance infrastructure (Section 2), the Buck Creek diversion is a logical source of water for seasonal storage. As discussed in Section 2.3, based on the estimated winter surplus treatment capacity of the slow sand filter, the seasonal water right diversion from Buck Creek for ASR could be on the order of 600 gpm (1.3 cfs) and 480 acre-feet. The final duration and instantaneous and annual quantities of diversion under the requested water right will be refined during the permitting process, based in part on ASR pilot testing to assess storage capacity of the target aquifer. Pilot testing would be performed under the Phase II portion of this project, if funded.

4.1.2 Reservoir Permit for Storage

Under the Washington State water code, a reservoir permit is required to store water above ground or below ground (RCW 90.03.370). Chapter 173-157 WAC outlines the requirements for an application for a right to store water in an ASR program; in this case the reservoir permit is referred to as an ASR permit. This feasibility study is structured to provide information to support an application for an ASR permit.

Prior to submitting an application for an ASR permit, the City should have a preapplication meeting with Ecology water resources staff to discuss the overall proposed ASR program, including plans for pilot testing and monitoring and evaluating potential impacts associated with the program.

In addition, a well used for ASR will need to be registered with the state underground injection control (UIC) program, in accordance with Chapter 90.48 RCW.

4.1.3 Secondary Permit for Use of Stored Water

A new secondary use permit is required to authorize recovery of stored water for municipal and instream flow uses (RCW 90.03.370). The secondary use permit can be applied for and processed as a single application with the reservoir permit.

4.2 Permit Processing Options

Currently, there is a significant backlog of water right applications waiting processing by Ecology under the standard water right permitting procedure. There are other options to the standard processing procedure for Ecology to process an application for a seasonal diversionary right to support ASR. These include the criteria for out-of-priority (i.e., expedited) processing of water rights in proposed amendments to Chapter 173-152 WAC (also known as the Hillis Rule), and the Cost Reimbursement Program authorized under Revised Code of Washington (RCW) 43.21A.690 and RCW 90.03.265. Additionally, under RCW 90.03.370 permits for storage proposals may qualify for expedited processing under certain conditions. An overview of the process for each of these options is presented below.

4.2.1 Priority Processing Under the Hillis Rule and RCW 90.03.370

The current Hillis Rule allows for out-of-priority processing of new water rights only for a public health or safety emergency, or if the proposed use is water budget neutral and would substantially enhance or protect the quality of the natural environment. Inadequate water rights for a public water system to serve existing hook-ups or to accommodate future growth do not constitute a public health or safety emergency under the rule and do not allow for out-of-priority processing.

Ecology has proposed amendments to the Hillis Rule and recently completed the public comment period of the draft Rule amendment. The proposed amendment to the Hillis Rule (draft version dated June 7, 2010) would revise the criteria for out-of-priority processing of water rights. Proposed rule changes potentially applicable to the city of White Salmon's ASR project include allowing out-of-priority (expedited) processing of new diversionary rights into reservoirs that do not conflict with adopted state instream flow rules, federal flow target, or federal biological opinions, and is funded or supported pursuant to RCW 90.90 (Columbia River Basin - Water Supply).

RCW 90.03.370(1)(b) authorizes expedited processing of storage proposals that: do not require a new water right for diversion or withdrawal of the water to be stored; add or change the purpose of use of stored water; increase capacity of existing storage; or are for secondary permits to secure use from existing storage facilities.

Based on the proposed revisions to the Hillis Rule, if adopted, and the criteria for expedited processing in RCW 90.03.370(1)(b), the City could request priority processing of a seasonal diversionary surface water right as a Columbia River Water Supply funded project and, once that right is secured, request priority processing of the reservoir permit and secondary use permits. Adoption of the amendments to the Hillis Rule (Chapter 173-152 WAC) is anticipated for December 2010. The viability of this permitting strategy will need to revisited once Rule amendments are adopted.

4.2.2 Cost Reimbursement Processing

A second option for processing the water rights needed for ASR is to enter Ecology's Cost Reimbursement program, established under RCW 43.21A.690. Under this option, the City would enter into an agreement with Ecology to pay for the cost of hiring a private consultant to evaluate its water right application plus any senior and competing applications for the same source of water. In this case, competing applications would be limited to those requesting diversions or withdrawals during the same period of use (i.e., November through April) as the City. Although Cost Reimbursement can greatly expedite processing of water rights, the cost (if there are a large number of senior applicants requiring processing) can be prohibitively high.

An initial review of Ecology's Water Rights Tracking System (WRTS) indicates there are about 14 pending applications for surface water and groundwater rights in the White Salmon watershed. There are approximately 85 additional applications for surface water diversions from the mainstem Columbia River, two of which appear to be located downstream of the White Salmon River. Additional review of the individual applications would be required to determine whether they propose to use the same source of water during the same period of use as the City's Buck Creek diversion and would thus require processing ahead of the City's application.

Amendments to the Cost Reimbursement process were recently passed by the Washington State legislature under Engrossed Second Substitute Senate Bill 6267 and became effective June 10, 2010. Section 1(b) of amendments to RCW 90.03.265 waive the requirement to pay for the cost of all senior applications from the same source of supply if the application for a new appropriation or amendment of a water right would not diminish the water available to earlier pending applications from the same source of supply. Section 3 of amendments to RCW 90.03.265 allows Ecology, upon request of an applicant, to initiate a coordinated Cost Reimbursement process, in which each applicant would pay for processing of its application at a cost proportionate to the quantity of water requested. Depending on the number of applications ultimately determined to be requesting use of the same source of water as the City, pursuit of the coordinated Cost Reimbursement process would significantly reduce processing costs under this option.

4.3 Senior Water Rights in Project Vicinity

This section provides a summary of the existing water rights in the ASR project area and provides an evaluation of the potential impairment of the senior water rights. Final determination of the potential for impairment would be made as part of the permitting process. A brief discussion of the instream flow rule for the Columbia River and Bureau

of Reclamation operations as they relate to a new surface water appropriation from Buck Creek is also provided.

Figures 4.1 and 4.2 illustrate the distribution of senior surface water rights and groundwater rights, respectively, based on information retrieved from the WRTS. A detailed listing of the surrounding water rights is presented in Tables 4.1 and 4.2. Listed water rights are limited to certificates and permits with source locations within Township 4N, Range 10E and Township 3N, Range 10E, which include the City's Buck Creek surface water diversion and the City's Well No. 1 and Well No. 2. These areas encompass the surface water bodies (i.e., below the Buck Creek diversion and downstream portions of the White Salmon River) and groundwater sources that could be affected by the City's request for additional withdrawals from the Buck Creek diversion and by ASR using Well No. 2.

The water right information is presented by public land survey location (i.e., township, range, and section). The cumulative authorized instantaneous diversion in cfs associated with the surface water rights in each section is posted on Figure 4.1. The cumulative authorized annual withdrawal in afy associated with the groundwater rights in each section is shown on Figure 4.2.

There are 92 surface water certificates and permits and 21 groundwater certificates and permits within the area defined above. The surface water rights authorize a cumulative instantaneous diversion of 102.7 cfs and an annual quantity of about 5,740 afy. The majority of the surface water rights are primarily seasonal irrigation, stock watering, and single and multiple domestic. The groundwater rights authorize a cumulative instantaneous withdrawal of about 2,240 gpm and an annual quantity of about 5,740 afy. The authorized purposes of use for the groundwater rights are primarily seasonal irrigation and single and multiple domestic.

In addition to the water right permits and certificates, there are about 105 surface claims and 43 groundwater claims registered in the area defined above. However, the extent and validity of the existing certificates and claims has not been established. With the exception of one claim (Claim No. 200115) held by Pacific Power and Light for power generation at Condit Dam, the claims are for seasonal irrigation, stock watering, and domestic uses.

4.3.1 Potential for Impairment

Well No. 2 is completed in an aquifer that is vertically confined and laterally bounded by faults, isolating it from surface water and other aquifers. A review of Ecology's well log database and files for nearby groundwater rights did not identify any wells that tap the same aquifer as Well No. 2. Based on the confined and laterally bounded conditions and the lack of other wells tapping the same aquifer as Well No. 2, use of this well for ASR would not impair existing groundwater rights, including water right permit-exempt wells.

The White Salmon Irrigation District holds two water rights (Certificate Nos. 3475 and 8821A) authorizing a combined Qi of 4.5 cfs from Buck Creek for seasonal irrigation and year-round multiple domestic use (Table 4.1 and Figure 4.1). The City of White Salmon's and the White Salmon Irrigation District's are the only water rights diverting from Buck Creek. The Irrigation District's water rights limit the Qi for year-round domestic use to

0.11 cfs, with the remaining 4.39 cfs available for seasonal irrigation. The duration of the irrigation season is not explicitly defined in these water rights; however, the Washington Irrigation Guide (USDA, 2007) indicates the typical irrigation season in nearby Dallesport extends from early May to early October, depending on crop type. Based on this, it is assumed that the maximum use by the White Salmon Irrigation District from mid-October through April is limited to the 0.11 cfs for domestic use.

It is anticipated that the new water right for ASR would request a seasonal diversion from Buck Creek from November through April. Diversion over this period would not compete with the irrigation portion the White Salmon Irrigation District water rights. As discussed in Section 2.2, the minimum daily flows in Buck Creek were 6 cfs and average monthly flows from November through April range from about 18 to 70 cfs. Based on these data, diverting 2.2 cfs (the maximum treatment capacity of the sand filter) from Buck Creek diversion would not impair the domestic portion of the White Salmon Irrigation District water rights.

Two water rights are listed as authorizing diversions from the White Salmon River or Northwestern Lake, downstream of the confluence with Buck Creek. Mount Adams Orchard Corporation holds a water right (Certificate No. S4-25155C) to divert 0.7 cfs from Northwestern Lake for seasonal irrigation. A seasonal diversion from Buck Creek for ASR from November through April is not expected to impair exercise of this existing water right.

The U.S. Department of Fish and Wildlife holds a water right (Certificate No. 6483) to divert 30 cfs from the White Salmon River for fish propagation. The period of use for this water right is not listed. Data from the U.S. Geological Survey (USGS) stream gaging station located downstream of Condit Dam at Underwood (Station No. 14123500) were reviewed to assess whether a new seasonal diversion for ASR from Buck Creek could impair this right. Over the period of record (1915 to 2009), average monthly flows ranged from a low of 625 cfs in August to about 1,500 cfs from February through May. Based on these data, a new seasonal diversion from Buck Creek would not impair the U.S. Department of Fish and Wildlife water right.

4.3.2 Instream Flows and Agency Consultation

There are currently no promulgated minimum instream flows for surface waters of the White Salmon River or Buck Creek that would affect processing of a new water right application for Buck Creek. However, as standard procedure Ecology provides copies of water right applications to relevant state and federal agencies and Indian tribes for their review and comment.

It is expected that agency review will consider potential impacts of a new diversion on Bull Trout, which is listed by the United States Fish and Wildlife Service (USFWS) as a threatened species under the federal Endangered Species Act and is a candidate species for listing by the Washington State Department of Wildlife (WDFW). The White Salmon River below Condit Dam is designated as critical habitat for Bull Trout by the USFWS. Proposed rules under consideration would expand the area designated as critical habitat to the mainstem of the White Salmon River and tributary streams, including Buck Creek (Federal Register, 2010). The WDFW also considers Buck Creek as priority habitat for Bull Trout.

ASPECT CONSULTING

Under Chapter 173-563 WAC (Instream Resources Protection Program for the Mainstem Columbia River) applications for new water rights affecting the Columbia River are evaluated for possible impacts on fish and existing water rights. This evaluation includes, in part, a consultation process with local, state, and federal agencies and Indian tribes. Provisions regarding mitigation or protection of instream flows are determined on a case-by-case basis through the consultation process. At this time it is uncertain what mitigation or instream flow requirements, if any, a new seasonal new water right would be subject to, although it is expected that any new surface water right appropriation will need to be consistent with the Bureau of Reclamation's operations at Bonneville Dam. In addition to flow requirements for power generation, the Bureau of Reclamation operations are subject to Biological Opinions (BiOps) for the USFWS and the National Oceanographic and Atmospheric Administration (NOAA) regarding fisheries resources.

5 Hydrogeologic System Description

5.1 Physical Geography

On a regional scale, the project area includes the southern portion of the White Salmon River subbasin, extending west to Whistling Ridge and east to Bald Mountain (Figure 1.1). From its headwaters on the southwest flanks of Mount Adams, the White Salmon River flows south through the project area past Husum and the west side of the City of White Salmon, before discharging to the Columbia River. The White Salmon River is currently dammed by Condit Dam, forming the Northwestern Lake Reservoir from approximately River Mile 3.5 upstream to approximately River Mile 5. Several tributaries discharge into Northwestern Lake, including Buck Creek, Mill Creek, and Little Buck Creek.

USGS stream gaging stations located upstream of Condit Dam at BZ Corner (Station No. 14122900) and Husum (Station No. 14123000) indicate mean monthly flows in the White Salmon River range from 382 cfs (September) to 1,130 cfs (April) and from 565 cfs (October) to 1,440 cfs (May), respectively. The only tributary between the two stream gaging stations is Gilmer Creek, which generally has relatively low mean monthly flows, ranging from 2 cfs (August) to 91 cfs (December). Based on the gaging data, the White Salmon River likely gains more than 200 cfs in groundwater contributions between BZ Corner and Husum (Aspect, 2009). In addition, numerous springs and seeps have been observed on the slopes east of the White Salmon River, likely discharging from the base of the fine-grained Glacial Lake Missoula – Channeled Scabland flood deposits, formerly referred to as the Bretz Flood deposits (Mark Yinger Associates, 2002a). The USGS stream gaging station located downstream of Condit Dam at Underwood (Station No. 14123500) indicates that the White Salmon River has mean monthly flows downstream of the dam ranging between 597 cfs (October) and 1,490 cfs (May).

Regionally, the mean annual precipitation in the White Salmon River subbasin is estimated to be 59 inches per year, but can range between 35 and 125 inches per year (WPN and Mark Yinger Associates, 2002). The majority of the precipitation occurs between November and March in the form of rain and snow. The nearest NOAA weather observation station in the project area is located at Hood River, Oregon (NOAA Station No. 354003); where the mean annual precipitation is 31.57 inches for the period of record (1924 to 2009). Figure 2.2 provides a summary of the historical precipitation data at the Hood River station. Precipitation in the hills surrounding the City of White Salmon and upriver of Northwestern Lake is expected to be significantly higher due to orographic effects.

5.2 Geologic Setting

To limit potential loss of water injected into the selected aquifer for storage, a preferred ASR location should be sited in an area where the selected aquifer is both horizontally and vertically confined to create a subsurface reservoir. To assist in evaluating the

geologic stratigraphy and structure, detailed geologic cross sections of the project area were developed based on published geologic maps and reports and well log data from the Ecology well log database. The cross sections are geologic interpretations of the data used to construct them and are part of the conceptual model of the presence and thickness of the various basalt flows and sedimentary interbeds, as well as the location of faults and folds, which define the structure within the project area.

The following sections present the methodology used to locate and select well logs for developing the cross sections, interpret stratigraphic conditions and geologic structure of the project area, and describe the conceptual model of the proposed ASR target area.

5.2.1 Well Locations and Development of Cross Sections

Well logs and relevant well completion information (depth, diameter, screen interval, static water level, and unit of completion) for 417 wells completed within the project area were obtained from Ecology's well log database. Well depths and approximate locations of wells described in the logs are shown on Figure 5.1. Table 5.1 provides a summary of relevant well completion information. Wells were initially located at the center of the quarter-quarter section listed in the Ecology well log database (green well locations on Figure 5.1). If a valid Klickitat County tax parcel number was provided for a specific well in the Ecology well log database, the well was located at the center of the respective parcel (purple well locations on Figure 5.1). The locations of several key wells were field verified and located (yellow well locations on Figure 5.1) using a Trimble GeoXT Global Positioning System (GPS) during site visits by Aspect personnel. The mapped GPS locations have a horizontal accuracy of about 3 feet and a vertical accuracy of about 10 feet.

The cross sections used well logs for 23 of the 417 wells within the project area. The relevance of each well log for use in developing the cross sections was assessed based on the completeness and reliability of the materials description on the log and the location of the well within the study area. Based on the geologic map (Figure 5.1) and lithologic descriptions from the well logs, two cross sections were created in the vicinity of City's existing water supply wells (Figures 5.2 and 5.3). The various geologic members of the Wanapum Basalt and Grande Ronde Basalt, including associated interbeds, were interpreted based on composition, color, and thickness, and were correlated on the cross sections to determine both lateral and vertical extent of the various units.

5.2.2 Stratigraphy

Figure 5.1 presents a surficial geologic map of the project area, based on Washington State Department of Natural Resources mapping (Korosec, 1987). The primary geologic units present within the City of White Salmon ASR project area include (from youngest to oldest): Quaternary flood deposits (Glacial Lake Missoula – Channeled Scabland floods), Quaternary volcanic deposits, ancestral White Salmon River alluvial deposits, and Columbia River Basalt Group (CRBG) deposits.

The CRBG was deposited between 17 and 6 million years before present (ybp), during the Miocene epoch, and consisted of a widespread extrusion of numerous basalt flows originating from vents located in the Pasco area (Bauer and Hansen, 2000). The CRBG in the project area includes the geologic formations of the Wanapum Basalt (map unit

Mv[w]) and the older Grande Ronde Basalt (Mv[g]). The Wanapum Basalt can be further subdivided into members, which in the project area primarily consist of the Frenchman Springs member (Mv[wfs]). The Grande Ronde Basalt can also further be subdivided into members based on the magnetic polarity at the time of deposition. Within the project area, the N_2 ($Mv[gN_2]$; normal magnetic polarity) and R_2 ($Mv[gR_2]$; reversed magnetic polarity) members of the Grande Ronde Basalt are present (Tolan et al., 1989).

Each member is generally composed of numerous flows of variable lateral extent that range from several feet to hundreds of feet thick. The thicker flows generally include a sequence (from bottom to top) of basal colonnade, a thicker flow interior consisting of generally massive basalt, and a flow top. The flow top usually consists of vesicular basalt (Bauer et al., 1985), which generally represents the primary water-bearing zone within the flow. Where two stacked flows are in contact, the combined flow top and basal colonnade together are termed the interflow zone. The massive flow interiors of relatively thick flows generally act as an impediment to groundwater flow (except via fracture flow). Thinner flows generally consist of weathered, altered, rubbly, or vesicular flow tops and bottoms with a fractured interior.

Sediments interbedded within the various members of the CRBG (deposited during times between basalt flows) are collectively considered part of the Ellensburg Formation (Mc[e]), and generally consist of terrestrial sediments (silt, sand, and gravel). Within the project area, both the Squaw Creek member (Mc[es]), which overlies the Frenchman Springs member of the Wanapum Basalt, and the Vantage member (Mc[ev]), which occurs between the Wanapum Basalt and the underlying Grande Ronde Basalt are present. The thickness and lateral extent of the interbeds can vary considerably. Sedimentary interbeds within the Grande Ronde Basalt are rare, generally only a few feet thick and of limited lateral extent (Whiteman et al., 1994). Where present, these interbeds vary in grain size from clay to gravel. Depending on the composition, thickness, and lateral extent of the interbeds, they can act as either a barrier or conduit to groundwater flow.

Following the deposition of the CRBG, the ancestral White Salmon River eroded a valley into the CRBG, depositing unconsolidated alluvial sediments consisting primarily of sand and gravel (Qfg). Later, a series of Quaternary volcanic flows flooded the valley bottom, burying the unconsolidated alluvial sediments (Mark Yinger Associates, 2002a). The Quaternary volcanic deposits within the project area include undifferentiated basalts (Qvb and QPLvb); the Ice Cave (Qvb[ic]), North White Salmon (Qvb[wn]), White Salmon (Qvb[ws]), and Underwood (Qvb[uw]) basalts; and the Rattlesnake Creek (Qva[rs]) and McCoy Flat (Qva[mc]) andesites. The Quaternary volcanic deposits generally consist of a mixture of cinder and broken basalt (Korosec, 1987). Finally, unconsolidated finegrained sediments were deposited during the Pleistocene epoch by the Glacial Lake Missoula – Channeled Scabland outburst floods (Qfs).

Of primary hydrogeologic interest in the project area is the Grande Ronde Basalt. This formation is one of the primary water-bearing units within the ASR target area and the formation in which a majority of the municipal water supply wells are completed. Both of the City's existing water supply wells (Well No. 1 and Well No. 2) are completed within the Grande Ronde Basalt. As previously discussed (Section 1), the aquifers tapped by these wells have shown considerable decline in groundwater levels.

5.2.3 Geologic Structure

5.2.3.1 Geologic Structure of the Project Area

The area being evaluated for ASR feasibility is located within the fault-blocked western margin of the CRBG. Evidence indicates that regional compression began during the deposition of the Grand Ronde Basalt, starting 16 million ybp and continuing to today (Reidel et al., 1989). This compression resulted in the formation of the southwestnortheast trending folds (synclines and anticlines), and northwest-southeast and southwest-northeast trending faults (reverse and thrust faults) present in the region. The structural features formed during this period are generally referred to as the Yakima Fold Belt, and include non-cylindrical, asymmetrical, anticlinal ridges separated by synclinal valleys. The folds also generally tend to have emergent high angle reverse faults that transition into low angle thrust faults at depth, with detachment surfaces occurring within the various flows of the CRBG or in the sediments below the CRBG (Reidel et al., 1989). Within the area being evaluated for ASR feasibility, these structures include the concealed syncline beneath Northwestern Lake and Husum and the associated anticline to the southeast, and the high-angle fault (Columbia River fault) associated with the Horse Heaven Hills anticline (Korosec, 1987). Figure 5.1 provides a geologic map illustrating the location of these structures.

The Columbia River fault may predate the formation of the Yakima Fold Belt (Mark Yinger Associates, 2002). However, the geologic map by Korosec (1987) indicates that the Columbia River fault postdates the deposition of the Frenchman Springs member of the Wanapum Basalt, based on the offset observed across the fault, and likely formed as part of the Yakima Fold Belt. Mark Yinger Associates (2002a) also indicates the presence of an unnamed and unmapped reverse fault in the vicinity of the Columbia River fault and the Horse Heaven Hills anticline, which dips to the southeast and transitions into a low angle thrust fault with the shear zone extending through Well No. 2.

The geologic map (Korosec, 1987), also indicates the presence of an unnamed and unmapped shear zone (reverse fault) in the vicinity of Northwestern Lake. This fault accounts for the offset of the Frenchman Springs member of the Wanapum Basalt and the Grande Ronde Basalt that is observed in the vicinity of Northwestern Lake. The presence of this fault is supported by the descriptions of brecciation and cementation in the Well No. 2 well log and the 328-foot difference in head observed across the shear zone. The presence of this structure was noted and shown schematically on cross sections by Mark Yinger Associates (2001 and 2002a). This structure likely dips to the south-southeast and trends parallel to the syncline identified by Bela (1980 on Figure 5.1) in the vicinity of Northwestern Lake (Figure 5.1).

Studies by Reidel et al. (1984) indicate that in addition to the northwest-southeast compression, there was also a component of clockwise rotation along a northwest trending dextral shear system that developed in the anticlines of the Yakima Fold Belt during periods of compression. This clockwise rotation is attributed to right-lateral shear between the westward moving North American continental plate and the northward moving Juan de Fuca oceanic plate. The right-lateral shear led to the creation of several northwest-southeast trending high-angle faults in the project area, including the Hood River and Buck Creek faults (Korosec, 1987). These faults are mapped with the southwestern side downthrown, as illustrated on Figure 5.1.

Significant fracturing was observed during drilling of Well No. 1 (Mark Yinger Associates, 1999). The fracturing is likely associated with the nearby Hood River fault and possibly the axis of the concealed syncline located in the vicinity of Northwestern Lake. Drawdown response during a long-term (48-hour) pumping test of Well No. 1 indicated the presence of a recharge boundary, which was interpreted to indicate continuity of the aquifer zone with Northwestern Lake. Significant fracturing was not observed while drilling Well No. 2, nor did the pumping test of this well indicate the presence of a recharge boundary as was observed with Well No. 1. Based on the significant displacement of the CRBG formations in the project area (Figures 5.2 and 5.3), it is assumed that the faults generally act as barriers to groundwater flow within the CRBG.

5.2.3.2 Geologic Structure of the ASR Target Area

In the ASR target area, the most important structural features are the Hood River and Buck Creek faults, the unnamed/unmapped reverse fault in the vicinity of Northwestern Lake, and the Columbia River fault (Figure 5.1). As discussed below, Well No. 2 is completed in a fault block that is laterally bounded to the southwest by the Hood River fault, to the northeast by the Buck Creek fault, and to the southeast by an apparent unnamed/unmapped reverse fault located in the vicinity of Northwestern Lake. The fault block boundaries act as hydraulic barriers to groundwater flow, isolating groundwater within the fault block. Figure 5.4 presents a schematic block diagram of the City's water supply wells and the interpreted faults and folds bounding the fault block.

The water-bearing zone tapped by Well No. 2 is vertically bounded by the massive flow interiors of the Grande Ronde Basalt. Upgradient recharge to the target aquifer is thought to primarily occur where the water-bearing interflows tapped by Well No. 2 outcrop to the northwest of the well. Based on a rough estimate of the regional dip of the Frenchman Springs member of the Wanapum Basalt and the underlying Grande Ronde Basalt (see conceptual model discussion below), the water-bearing interflows are expected to daylight at a minimum of 8,500 feet upgradient of Well No. 2, although the actual location is uncertain. Based on the relatively rapid decline in water levels and source capacity at Well No. 2, upgradient recharge is likely limited and/or migrates through the formation slowly.

The following section presents the hydrogeologic conceptual model of the ASR target area. Based on the complexity of the geologic conditions and uncertainties in the available data, an alternative interpretation of the geologic structure based on prior work was also considered. Based on evaluation of this alternative hypothesis, as discussed below, it was determined to be unlikely and, therefore, was not considered further in this ASR Feasibility Study.

Conceptual Model of ASR Target Area

The available data indicate that the four fault boundaries forming the fault block of the ASR target area act as barriers to groundwater flow. Based on a 24-hour constant rate aquifer test conducted in Well No. 2, a no-flow boundary was detected at approximately 330 minutes into the test. This hydraulic boundary likely represents the nearby Hood River fault. The Buck Creek fault, which is similar in origin and structure to the Hood River fault, is also expected to act as a no-flow boundary. Based on the geologic map

(Korosec, 1987), it is assumed that the Columbia River fault extends to the surface and acts as an upgradient barrier to groundwater flow within the Grande Ronde Basalt.

Well No. 2 is completed beneath a shear zone, which likely acts as a vertical/downgradient barrier to groundwater flow. This assumption is supported by the observed 328-foot head difference across the shear zone. Based on previous work by Mark Yinger Associates (1999, 2001, and 2002a), this shear zone is interpreted to represent an unnamed/unmapped reverse fault in the vicinity of Northwestern Lake. The unmapped fault is suspected to run sub-parallel to the trace of the synclinal axis approximately coincident with the White Salmon River valley near Northwestern Lake. This fault is likely associated with the inferred concealed compressional structure mapped in the same location.

Recharge of the target aquifer occurs in the fault block between the Columbia River fault and the unnamed/unmapped reverse fault in the vicinity of Northwestern Lake. A dip of approximately 17 degrees to the southeast (Figure 5.1) was calculated for the overlying Frenchman Springs member of the Wanapum Basalt (Mv[wfs]) and Ellensburg Formation (Mc[es]). Assuming this dip is also representative of the underlying Grande Ronde Basalt and does not vary significantly, the water-bearing zones encountered below a depth of 845 feet bgs in Well No. 2 would daylight at least 8,500 feet to the northwest of the well. Although the single calculated dip only provides a rough estimate of the regional dip, it indicates that the water-bearing zones, occurring below a depth of 845 feet bgs in Well No. 2, would likely surface to the south of the Columbia River fault, which is located about 20,000 feet to the northwest. The significantly higher elevation of the recharge zone in addition to Well No. 2 being bound downgradient by the unnamed/unmapped fault in the vicinity of Northwestern Lake, accounts for the artesian conditions in Well No. 2.

The massive basalt flow interiors of the Grande Ronde Basalt act as a vertical hydraulic barrier, limiting areal recharge and vertical leakage of groundwater. If the massive basalt flow interiors within the fault block did not act as a barrier to groundwater flow, groundwater levels in the nearby domestic wells completed at shallower depths in the Grande Ronde Basalt would be impacted by the pumping of Well No. 2. During the 24-hour constant rate aquifer test conducted in Well No. 2 (Mark Yinger Associates, 2001), several observation wells were monitored, including the City of White Salmon's Observation Well No. 2, the Ottman well, and the Spring Creek Hatchery well. Flow from the Spring Creek Hatchery spring was also monitored. There was no discernible impact on groundwater levels in any of these wells or flows at the spring during the aquifer test, indicating that Well No. 2 is isolated from these wells and the spring.

Evaluation of Alternative Interpretation of ASR Target Area

An alternative hypothesis is that the Columbia River fault may extend through Well No. 2. This is a variant on a hypothesis presented in the City of White Salmon Wellhead Protection Plan (Yinger, 2002a). Due to the limited subsurface geologic data (i.e., well logs) available to the north of Northwestern Lake, it is not possible to directly assess the geologic structure in this area and confirm this hypothesis. However, this hypothesis is inconsistent with the anticipated characteristics of shallow faulting within the Grande Ronde Basalt and with observed water level response in nearby wells to pumping of Well No. 2.

In this alternative hypothesis, the Columbia River fault would act as a vertical barrier to groundwater flow, with recharge to the target aquifer occurring in the fault block to the northwest of the Columbia River fault. However, for this to occur, the Columbia River fault would have to transition from a high angle reverse fault in the vicinity of its surface exposure to a relatively low angle (approximately 1.5 degree) thrust fault. It has been suggested that frontal faults associated with the Yakima Fold Belt may be low angle thrust faults at depth, with detachment surfaces within either the CRBG or the sediments underlying the CRBG (Reidel et al., 1989). However, it is unlikely that detachment surfaces and low angle thrust faults formed at such shallow depths (less than 1,000 feet) within the Grande Ronde Basalt. This scenario is considered unlikely and not considered further for this feasibility study.

5.3 Target Aquifer for Storage

A candidate aquifer for water storage and recovery should ideally be both laterally and vertically confined. Leakage of stored water from an inadequately confined reservoir, into either another aquifer or nearby surface waters, would make it unavailable for future recovery from the ASR well.

Based on the available data, the water-bearing zone tapped by Well No. 2 in the Grande Ronde Basalt is a suitable aquifer for water storage and recovery within the ASR target area. Characteristics of the Grande Ronde Basalt aquifer are discussed below. Both of the City's existing water supply wells (Well No. 1 and Well No. 2) are completed in water-bearing zones within the Grande Ronde Basalt. Based on the cross sections (Figures 5.2 and 5.3), Well No. 2 is likely the only well, municipal or domestic, completed in the target aquifer of the fault block discussed above (Section 5.2.3).

5.3.1 Overview of the Grande Ronde Basalt Formation

Within the project area, both the N_2 and R_2 members of the Grande Ronde Basalt are present. The N_2 member consists of the Sentinel Bluffs, Slack Canyon, Field Springs, Winter Water, Umtanum, Ortley, and Armstrong Canyon units. The R_2 member consists of the Meyer Ridge, Grouse Creek, Wapshilla, and Mount Horrible units (Tolan et al., 1989). Due to the variable extent and thickness of the individual units, it can be relatively difficult to distinguish between the N_2 and R_2 members of the Grande Ronde Basalt, especially without detailed physical, chemical, and paleomagnetic data.

Based on the conceptual model discussed in Section 5.2.3, it is likely that the target aquifer is located within the N_2 member of the Grande Ronde Basalt. Recharge of the target aquifer would occur where the water-bearing interflows of the N_2 member are expected to daylight south of the Columbia River fault. Detailed studies in the Pasco Basin (Department of Energy, 1988; Myers and Price, 1981) indicate that the thickness of the N_2 member of the Grande Ronde Basalt ranges between 1,500 and 1,750 feet in that area. The maximum thickness of the CRBG occurs in the Pasco Basin, and it is expected that the thickness of the individual flows of the N_2 member are thinner in the ASR project area. It is also likely that the unnamed/unmapped reverse fault in the vicinity of Northwestern Lake resulted in the uplift and erosion of several hundred feet of the Grande Ronde Basalt sequence in this area. These factors imply the maximum thickness of the N_2 member could be on the order of 1,300 to 1,500 feet. Given the 1,242 feet bgs

depth of completion and 1,060 feet of Grand Ronde Basalt encountered during drilling of Well No. 2, it is likely that Well No. 2 is completed near the bottom of the N₂ member.

5.3.1.1 Lateral and Vertical Confinement

Except where extensive fractures are present or where a basalt flow is exposed at the surface, the relatively massive basalt flow interiors of the Grande Ronde Basalt are expected to provide significant vertical confinement of the water-bearing interflow zones. As discussed in Section 3, the intense fracturing observed in the Grande Ronde Basalt in the vicinity of Well No. 1 likely provides semi-confined aquifer conditions, limiting the vertical confinement provided by the massive basalt flow interiors. The same intense fracturing, likely related to the nearby Hood River fault and possibly the concealed syncline in the vicinity of Northwestern Lake, does not appear to be present at Well No. 2. Therefore, the relatively unfractured, massive basalt flow interiors of the Grande Ronde Basalt are expected to provide the necessary vertical confinement for ASR activities at Well No. 2. The presence of a shear zone, likely related to the unnamed/unmapped reverse fault in the vicinity of Northwestern Lake, also provides additional vertical/downgradient confinement, as demonstrated by the greater than 300-foot head difference across the shear zone.

Based on the geologic map (Figure 5.1), both the N_2 and R_2 members of the Grande Ronde Basalt are exposed at the surface within the project area. The N_2 member is primarily exposed at the surface in the area surrounding the City's water supply wells, while the R_2 member is exposed at the surface in the vicinity of the Columbia River fault. As discussed in Section 5.2.3 and illustrated on Figure 5.4, upgradient recharge to the bounded N_2 aquifer in which Well No. 2 is completed likely occurs where the water-bearing interflows are expected to daylight at the surface, south of the Columbia River fault.

Faults typically act as partial or complete barriers to groundwater flow, providing lateral confinement. Within the ASR target area, both the N_2 and R_2 members of the Grande Ronde Basalt are likely laterally confined to the southwest by the Hood River fault and to the northeast by the Buck Creek fault. The unnamed/unmapped reverse fault in the vicinity of Northwestern Lake also is interpreted to provide lateral confinement to the southeast of the ASR target area.

5.3.1.2 Effect of Condit Dam Removal

Since the target aquifer in the vicinity of Well No. 2 (ASR target area) is vertically confined by the relatively massive flow interiors of the Grande Ronde Basalt and the unnamed/unmapped reverse fault in the vicinity of Northwestern Lake, the aquifer is not believed to be in hydraulic continuity with Northwestern Lake. This is supported by the lack of significant leakage or the observation of a recharge boundary during the 24-hour constant rate aquifer test conducted in Well No 2. The removal of Condit Dam and draining of Northwestern Lake is not expected to significantly affect groundwater levels within the ASR target aquifer and the associated aquifer yield.

Removal of the Condit Dam may potentially affect the City's Well No. 1, based on pumping test results and observed recharge boundary influence, previously described in Section 5.2.3.1.

5.3.1.3 Aquifer Yield

Within the project area, a majority of the water supply wells completed within the Grande Ronde Basalt aquifer are either irrigation or municipal wells (Aspect, 2009). Estimated well yields and specific capacity values (pumping rate divided by drawdown) based on driller's well logs when available, are provided on the cross sections (Figures 5.2 and 5.3). Based on these limited data, the well logs indicate that the Grande Ronde Basalt in general is relatively productive, although highly variable. Reported well yields range between 1 and 1,380 gpm, with specific capacities ranging between 0.29 and 8.22 gallons per minute per foot of drawdown (gpm/ft). It is uncertain whether the reported well yields are limited by quality of well construction, pump capacity, and/or water rights, rather than aquifer yield characteristics.

The City's existing water supply wells completed within the Grande Ronde Basalt aquifer include Well No. 1 and Well No. 2. Well No. 1 had a yield of approximately 650 gpm and a specific capacity of 8.22 gpm/ft based on a 48-hour constant rate aquifer test conducted on November 18, 1998. Well No. 2, completed in the ASR target aquifer, had a yield of approximately 1,380 gpm and a specific capacity of 1.45 gpm/ft during a 24-hour constant rate aquifer test conducted on April 19, 2001. Since starting production in 2001, the sustainable yield from Well No. 2 has decreased to about 600 gpm, as a result of declining available drawdown (water levels) and resulting decrease in specific capacity of the well.

5.3.1.4 Target Aquifer

The water-bearing zones tapped by Well No. 2 was selected as the ASR target aquifer for this feasibility study, based on the hydrogeologic conditions discussed in the preceding sections. The selected ASR target area would allow the City to take advantage of existing water system infrastructure, including conveyance and treatment facilities, and to use Well No. 2 for injection and recovery purposes.

In terms of hydrogeology, this target zone was chosen for the following reasons:

- The presence of relatively massive, unfractured flow interiors of the Grande Ronde Basalt, which provide vertical confinement.
- The presence of the unnamed/unmapped reverse fault in the vicinity of Northwestern Lake which provides additional vertical confinement of the Grande Ronde Basalt aquifer from the overlying Quaternary deposits and Northwestern Lake, as evidenced by a greater than 300-foot head difference across the shear zone. The fault also laterally confines the target aquifer downgradient (southeast) of the ASR target area.
- The presence of the Columbia River fault, which provides lateral confinement of the target aquifer upgradient of the recharge zone.
- The presence of the Hood River and Buck Creek faults, which provide lateral confinement of the target aquifer to the southwest and northeast of the ASR target area, respectively. An ASR well should not be located any closer to the Hood River fault than Well No. 2, due to the expectation of greater no-flow boundary effects.

- The absence of domestic wells completed in the same water-bearing interflows of the N2 member of the Grande Ronde Basalt. Both the injection to and extraction from the target aquifer would be unlikely to affect water levels in surrounding domestic wells, as confirmed by the previous aquifer test conducted in Well No. 2.
- The primary water-bearing zones (870 to 955 feet bgs and 1,050 to 1,100 feet bgs) are moderately productive. The target aquifer within the ASR target area was initially expected to provide a yield of about 1,400 gpm, with a specific capacity of approximately 1.5 gpm/ft, based on the yield and drawdown measured at Well No. 2 (Mark Yinger Associates, 2001). Since starting production in 2001, sustainable yield from Well No. 2 has declined to about 600 gpm.
- The target aquifer is artesian, which provides better operational conditions for ASR, minimizing potential for air entrainment and well screen fouling.
- The water quality of the target aquifer meets drinking water standards.

As required by WAC 173-157-120 for a hydrogeologic conceptual model, the following report subsections describe our current understanding of several parameters pertaining to the target aquifer. These include estimates of lateral and vertical aquifer extent, evaluation of whether the aquifer is confined or unconfined, permeability and transmissivity, total storage volume available, and the potential for physio-chemical changes in the aquifer as a consequence of recharge. Because an ASR pilot test has not been conducted, the following evaluation is based on available data and would be refined under the Phase II portion of this project, if funded.

5.3.2 Lateral and Vertical Extent

On a regional scale, the Grande Ronde Basalt is laterally extensive over the entire White Salmon River subbasin, with a thickness of at least 1,060 feet in the vicinity of the ASR target area (based on depth of Well No. 2). The Grande Ronde Basalt in the vicinity of Well No. 2 consists of both the N₂ and R₂ members, which are each laterally extensive. Based on estimates from the Pasco Basin (Department of Energy, 1988; Myers and Price, 1981) and accounting for regional variation and uplift and erosion of the Grande Ronde Basalt, the N₂ member in the ASR project area is estimated to have a maximum thickness of between 1,300 and 1,500 feet. The water-bearing interflows between the individual basalt flows also appear to be relatively continuous and generally range in thickness between 30 and 60 feet.

In the vicinity of the ASR target area and Well No. 2, the top of the Grande Ronde Basalt is encountered at a depth of 180 feet bgs, equating to an elevation of about 300 feet (MSL). While drilling Well No. 2 artesian (free-flowing) conditions were encountered starting between depths of 845 and 870 feet bgs (elevations of between -365 and -390 feet MSL), with the primary water-bearing interflow zones occurring between 870 and 955 feet bgs (elevation of between -390 and -475 feet MSL) and between 1050 and 1100 feet bgs (elevation of between -570 and -620 feet MSL). Based on the limited data, these water-bearing interflow zones appear to be laterally continuous within the fault block; although, as discussed in Section 5.3.1.1, the water-bearing zones of the target aquifer are likely laterally and vertically confined.

5.3.3 Confined or Unconfined

As discussed in Section 5.2.3, Well No. 2 is completed in a fault block. The target aquifer within the Grande Ronde Basalt is vertically confined by the massive flow interiors of the Grande Ronde Basalt. The presence of a shear zone, associated with the unnamed/unmapped reverse fault in the vicinity of Northwestern Lake, also likely provides additional vertical/downgradient confinement, as evidenced by the greater than 300-foot head difference across the shear zone. This conclusion that the ASR target aquifer is confined is further supported by the fact that Well No. 2 is artesian (free-flowing), while all other nearby domestic wells completed at shallower depths in the Grande Ronde Basalt have depths to groundwater of between 90 and 250 feet bgs (Figures 5.2 and 5.3).

5.3.4 Hydraulic Properties

Table 5.2 presents a compilation of reported values for the hydraulic conductivity (ft/day), transmissivity (ft²/day), and storativity (dimensionless) of the Grande Ronde Basalt aquifer regionally and in the vicinity of the ASR target area. Hydraulic conductivity is a quantitative measure of an aquifer's ability to transmit water; the term is often used interchangeably with permeability. Transmissivity (hydraulic conductivity multiplied by aquifer thickness) is a measure of how much water can move through the aquifer and is a more direct indicator of the aquifer's productivity. Storativity is the product of specific storage and aquifer thickness, where specific storage is defined as the volume of water (cubic feet) that a 1 cubic foot volume of aquifer releases from storage when the hydraulic head drops by 1 foot.

The hydraulic parameters presented in Table 5.2 were compiled from published literature, analysis of local aquifer test data, and estimates derived from available domestic well specific capacity data. Regional data, based primarily on model calibrations and specific capacity data, indicate the transmissivity of the Grande Ronde Basalt aquifer is expected to range between 40 and $16,000 \, \text{ft}^2/\text{day}$, with a hydraulic conductivity between 0.1 and $8.6 \, \text{ft/day}$ (Hansen et al., 1994). The storativity is expected to range between $1 \, \text{x} \, 10^{-5}$ and $1 \, \text{x} \, 10^{-3}$. These regional data provide the general range of expected hydraulic parameters in the Grande Ronde Basalt.

The City's Well No. 2 is the only well completed in the ASR target aquifer. An aquifer test conducted in this well indicated a transmissivity of between 145 and 169 ft²/day, and a hydraulic conductivity of between 1.1 and 1.3 ft/day (Mark Yinger Associates, 2001). Because there are no other wells completed in this aquifer, observation well data required to estimate storativity were not collected.

The transmissivity at Well No. 2 is at least an order of magnitude lower than the transmissivity estimated from pumping tests at two other nearby water supply wells completed in the Grande Ronde Basalt. An aquifer test conducted in the City's Well No. 1, located near Well No. 2 but on the opposite side of the unnamed/unmapped fault, indicates a transmissivity of between 2,090 and 2,350 ft²/day, and a hydraulic conductivity of between 4.0 and 4.5 ft/day (Mark Yinger Associates, 1999). Measurements of water level response in an observation well completed in the same aquifer (Observation Well No. 1) were used to estimate a storativity of between 5.6×10^{-4} and 7.0×10^{-4} . An aquifer test conducted in the Underwood Water District well (WPN

and Mark Yinger Associates, 2002), located to the south of the ASR target area, indicates a transmissivity of approximately 51,400 ft²/day and a hydraulic conductivity of 553 ft/day.

Specific capacity data from domestic wells within the project area were also used to estimate transmissivity and hydraulic conductivity. Four domestic wells completed in the Grande Ronde Basalt aquifer with available specific capacity data were identified in the project area. Transmissivity for a confined aquifer can be estimated from specific capacity data based on the following empirical equation (Driscoll, 1986):

$$T = 2000 \frac{Q}{s}$$

where: T = Transmissivity (gpd/ft)

Q = Yield of well (gpm)

s = Drawdown in well (ft)

Based on the above equation and the thickness of the water-bearing zones listed on the domestic well logs, the transmissivity and hydraulic conductivity of the Grande Ronde Basalt aquifer tapped by the four domestic wells ranges between 22 and 251 ft²/day, and 0.4 and 5.0 ft/day, respectively.

Based on the available data, the transmissivity of the ASR target aquifer tapped by Well No. 2 is estimated to be about 145 to 169 $\rm ft^2/day$. Storativity data for this aquifer are not available. Rather the storativity is assumed to be similar to the values estimated for Well No. 1 (between 5.6 x 10^{-4} and 7.0 x 10^{-4}).

5.3.5 Total Storage Volume Available

WAC 173-157-120 requires an estimation of the total storage volume available in the target aquifer. While it is possible to estimate the total storage volume, such an estimate would depend on the number of ASR wells used for storage and the area of coverage. For the current conceptual evaluation of ASR feasibility, the more pertinent question to address is whether the target aquifer has sufficient storage capacity around the ASR well to accommodate the storage volume desired for an ASR program to meet the City of White Salmon's needs

Well No. 2 is completed in a laterally and vertically confined fault block of the Grande Ronde Basalt, with artesian conditions in the target aquifer. Upon completion in March 2001, the well exhibited a shut-in pressure of 98 pounds per square inch (psi) (about 226 feet of head) and had an estimated specific capacity of 1.45 gpm/ft. However, based on communication with City personnel, Well No. 2 currently requires approximately 65 to 70 psi of shut-in pressure to maintain static, no-flow conditions. At a shut-in pressure of 10 psi, the well produces approximately 120 gpm (Wellman, 2009), indicating a current specific capacity of 0.94 gpm/ft. The capacity of the target aquifer to accommodate additional pressurization, as would occur during artificial recharge via an ASR well, is directly related to available storage capacity in the aquifer. The expected change in head due to potential ASR activities is calculated in the following section to assess the target aquifer storage capacity.

5.3.5.1 Change in Head and Estimated Radius of Influence

Parameters of interest when evaluating a prospective ASR program are the anticipated changes in head with distance, and the radius of influence about an ASR well during recharge (mounding) and recovery (drawdown) cycles. The amount of drawdown or mounding with respect to distance from the ASR well can be calculated from the equation (Driscoll, 1986):

$$dh = \frac{264Q}{T} \log \frac{0.3Tt}{r^2 S}$$

where: dh = the amount of drawdown or mounding (feet)

Q = the pumping/injection rate (gpm)

T =the aquifer transmissivity (gpd/ft)

t = the time of continuous pumping/injection (days)

r =the distance from the well (feet)

S =the aquifer storativity (dimensionless)

Theoretically, the mounding or drawdown in the aquifer will be of the same magnitude for recharge or discharge (pumping), respectively, at a set flow rate, but only different in direction (mounding vs. drawdown).

Using the above equation, the injection rate achievable at a given injection pressure and the radius of influence can be estimated for hypothetical ASR operational scenarios. As previously discussed in the Source Evaluation section (Section 2), it is assumed that Buck Creek water would be available for as much as a 6-month period of time (180 days) between November and April.

For the purposes of analysis in this feasibility study, two scenarios were evaluated. In the first scenario, the injection rate is limited by the injection pressure of about 225 psi that can be delivered to the wellhead by the City's existing infrastructure. As discussed below, under this scenario, water would be continuously injected at a rate of 220 gpm to achieve storage of approximately 175 acre-feet during a given 6-month period.

The second scenario assumes addition of a booster pump and modification of the wellhead at Well No. 2 to allow injection and recovery at higher pressure. Under this scenario, an injection pressure of 375 psi was assumed, allowing continuous injection at a rate of 425 gpm and storage of 340 acre-feet. Water to supply either scenario is expected to be available, based on the available instantaneous flows and treatment capacity in Buck Creek.

A more detailed water system evaluation would be required to assess whether ASR operations at pressures higher than 375 psi is feasible. Higher operating pressure would accommodate increased annual storage volume. For example, using the approach discussed above, it is estimated that annual storage of 500 acre-feet would require an operating pressure of about 525 psi. Actual achievable injection rates and storage and recovery volumes would be determined during ASR pilot testing under the Phase II portion of this project, if funded.

Injection at 225 psi

For the first scenario, the head change (mounding) after 6 months of injection at Well No. 2 is set equal to 160 psi (about 370 feet), the difference between the maximum pressure of 225 psi that can be delivered with the City's existing infrastructure and the shut-in pressure of 65 psi. Assuming a transmissivity of 169 ft²/day and a storativity of 5.6 x 10⁻⁴ (Table 5.2), an injection rate of 220 gpm would result in 370 feet of mounding immediately adjacent to the well after 6 months (lower graph on Figure 5.5). This rate and injection period equates to about 175 acre-feet of storage.

Injection at 375 psi

For the second scenario, the head change (mounding) after 6 months of injection at Well No. 2 is set equal to 310 psi (about 720 feet), the difference between the maximum pressure of 375 psi assumed at the wellhead with system upgrades and the shut-in pressure of 65 psi. Assuming the same aquifer parameters as under the first scenario, an injection rate of 425 gpm would result in about 720 feet of mounding immediately adjacent to the well after 6 months (lower graph on Figure 5.5). This rate and injection period equates to about 340 acre-feet of storage.

Estimated Radius of Influence

The above equation can also be used to estimate the radius of influence, which is the distance from the well (initially assumed to be the same in all directions radially from the well, i.e., no anisotropy) at which groundwater mounding or drawdown will affect the heads. Using the parameters discussed above and setting *dh* to zero, the radius of influence is estimated to be approximately 2.1 miles after 6 months of injection. This equates to a radial area of roughly 13.8 square miles, although it is important to note that the presence of any structures that inhibit groundwater flow (i.e., the Hood River fault, the Buck Creek fault, and the unnamed/unmapped reverse fault in the vicinity of Northwestern Lake) would limit the lateral propagation of the radius of influence across these features. Rather, the radius of influence and greater head changes would likely be extended to the northwest where there are no apparent structural boundaries. Figure 5.5 depicts the relationship between the estimated drawdown or mounding in the aquifer and the radial distance from Well No. 2 for the two scenarios. Note that the radius of influence is independent of the injection rate, but the slope of the line and predicted mounding within the radius is directly proportional to the injection rate.

Although not apparently tapping the same aquifer, the closest well (3N/10E-3K01 on Figure 5.3 and Table 5.1) completed in the same fault block as Well No. 2 is about 1,000 feet to the northwest. This well is completed in basalt, with the bottom of the well completed about 500 feet above the water-bearing zone tapped by Well No. 2. The next closest wells are about 2,000 feet to the northwest, with the deepest (3N/10E-3X01 on Figure 5.3 and Table 5.1) completed in basalt about 300 feet above the interpreted top of the water-bearing zone tapped by Well No. 2.

As shown on Figure 5.5, at an injection rate of 220 gpm for 6 months, mounding could be on the order of 70 feet at a distance of 1,000 feet from Well No. 2 and 50 feet at a distance of 2,000 feet from Well No. 2. At an injection rate of 425 gpm for 6 months, mounding could be on the order of 185 feet at a distance of 1,000 feet from Well No. 2 and 130 feet at a distance of 2,000 feet from Well No. 2.

Since Well No. 2 is vertically confined (Sections 5.3.1.1 and 5.3.3) from nearby domestic wells by the relatively massive flow interiors of the Grande Ronde Basalt, the injection and extraction of water associated with ASR activities at Well No. 2 is not expected to impact the head (static groundwater levels) in any of the nearby domestic wells. Well No. 2 produced about 500 afy for several years after starting production in 2002 with no report of water level impacts in nearby wells. This suggests that the basalt flow interiors do not exhibit significant vertical leakage, even with long-term pumping. Additionally, water proposed for storage would be recovered over the 6 months following injection before a new injection cycle begins, reducing the potential for mounding effects to accrue over time.

5.3.6 Controls on Groundwater Quality and Potential for Physio-Chemical Changes

This section provides the basis for understanding the major controls on water quality within the Grande Ronde Basalt, the target aquifer for ASR. Data and concepts presented in this section are discussed further in Section 5.10, where the compatibility of source water and ambient groundwater is evaluated. In general, basalt mineralogy and residence time of groundwater in the aquifer are the primary controls on ambient groundwater quality. The basic findings are summarized below.

- Grande Ronde Basalt is composed primarily of a volcanic glass matrix and crystalline minerals including plagioclase feldspar, pyroxene, and crystalline titanium-iron oxides. Dissolution of these primary minerals controls the major elemental chemistry of the groundwater.
- In interflow zones, where groundwater flow occurs, a variety of secondary minerals can form from reaction of groundwater and the aquifer matrix. Equilibration with secondary minerals can impact groundwater pH, oxidation-reduction (redox) potential, and the presence of trace metals.
- Across the region, Grande Ronde Basalt groundwater chemistry types include calcium-magnesium bicarbonate, and, less commonly, magnesium bicarbonate, sodium bicarbonate, and calcium-magnesium sulfate-chloride. Calciummagnesium bicarbonate waters are typically fresher (lower total dissolved solids [TDS]) and found closer to recharge zones and at shallower depths.
- Overall, ambient groundwater quality in the target aquifer meets drinking water standards.

These findings are described in greater detail below. An overview of regional geochemical information on the Grande Ronde Basalt is presented first, followed by the site-specific water quality collected for the ASR target aquifer area as part of this feasibility study. Water quality data collected from the proposed Buck Creek source are also presented.

5.3.6.1 Regional Geochemical Information for the Grande Ronde Basalt

Grande Ronde Basalt Mineralogy

The mineralogy of the Grande Ronde Basalt predominantly controls the ambient water quality in the aquifer. Groundwater moves through the basalt flows primarily along vesicular and fractured zones, and the groundwater composition is chemically altered by the dissolution and precipitation of minerals in these interflow zones. Therefore, it is important to identify the mineralogy of the Grande Ronde Basalt and associated sedimentary interbeds to determine the range of potential physiochemical changes in water quality that may occur with implementation of an ASR program.

Each of the major CRBG units is compositionally distinct; however, the bulk mineralogy of the units is generally similar. The unaltered rocks of the CRBG are classified as tholeitic basalts. Fresh basalt samples consist primarily of volcanic glass, composed primarily of silicon, aluminum, and iron, with trace amounts (less than 10% by weight in the oxide form) of magnesium, calcium, sodium, and potassium. Other important mineral components include plagioclase feldspar, pyroxene (augite to sub-calcic augite, diopside), and crystalline titanium-iron oxides of the ilmenite-magnetite solid solutions series (Ames, 1980). Accessory minerals may include apatite, olivine (fayalite), and metallic sulfides (Steinkampf and Hearn, 1996).

Secondary minerals form coatings and skins within fractures. Secondary mineral surfaces generally contain nontronitic smectites (clay mineral byproducts of feldspar weathering), clinoptilolite (zeolite minerals important in ion-exchange processes), amorphous iron oxyhydroxides, and silica. Minor secondary minerals include illite (clay), pyrite (iron sulfide), and calcite (Steinkampf and Hearn, 1996). These minerals may control trace metal concentrations resulting from sorption and ion exchange. Well No. 2 is completed in a fracture zone where secondary sedimentary minerals are thought to be limited. The limited secondary mineral phases expected in the fracture zones are favorable for maintaining high quality water during ASR operations.

Grande Ronde Basalt Groundwater Geochemistry

Regionally, the chemical composition of the Grande Ronde Basalt groundwater depends on the composition and solubility of aquifer minerals, chemical characteristics of the native recharge water, and the amount of time the water is in the aquifer system (residence time). Solutes potentially contributed to groundwater by basalt dissolution include calcium, magnesium, iron, sodium, potassium, silica, sulfates, chloride, fluoride, and bicarbonate. Sulfate may also be derived naturally from the dissolution of metal sulfides (pyrite) or sedimentary interbeds (i.e., gypsum and caliche).

Table 5.3 presents a summary of regional groundwater quality data from the Grande Ronde Basalt. Groundwater can be grouped into different types based on the proportions of the predominant cations and anions present in the water. Groundwater types can be indicative of groundwater residence time and thus location within a regional flow system (e.g., near recharge area or further downgradient). They also serve as an indicator of overall water quality. In general, bicarbonate water types provide the best drinking water quality, whereas sulfate and chloride water types are less desirable.

• On a regional scale, calcium-magnesium bicarbonate is the dominant groundwater type in the Grande Ronde Basalt. Sodium bicarbonate is the next most prevalent type, and calcium-magnesium sulfate-chloride is the least prevalent groundwater type. The sodium bicarbonate and calcium-magnesium sulfate-chloride waters typically occur in deeper wells and locations with long groundwater residence times (distant from recharge sources). Calcium-magnesium bicarbonate waters are typically fresher and are found closer to recharge zones and at shallower depths (Steinkampf, 1989).

Based on the regional groundwater quality data set, the following information is apparent for Grande Ronde Basalt groundwater quality:

- Total Dissolved Solids (TDS) range from 94 to 510 milligrams per liter (mg/L) in the Grande Ronde. TDS values are generally higher in deeper locations. An increase in TDS, usually followed by an increase in sodium, is present in downgradient areas and discharge areas as a result of a longer residence time for rock-water interaction (Whitemann et al., 1994).
- pH ranges from 6.7 to 9.4, with a mean pH of 7.9. The pH of slightly acidic waters (pH less than 7 or the low end of the observed range) is influenced by the production of carbonic acid, which enters the groundwater as dissolved carbon dioxide derived from microbial oxidation of organic matter in soil-rich interflow zones. Low pH waters have a tendency to both increase concentrations of solutes and increase pH by dissolving some minerals. When pH increases above calcite stability (approximately 8.2 pH units), calcite precipitation occurs. Calcite, in this case, can buffer the pH, as well as the dissolved concentrations of calcium, magnesium, iron, and manganese.
- Silica concentrations ranging from 29 to 110 mg/L result from the dissolution of glassy minerals. The solubility of amorphous silica limits these concentrations, and in general buffers pH to about 9.5 (Whiteman et al., 1994). A maximum pH of 9.4 in the more basic Grande Ronde Basalt groundwater is probably controlled by amorphous silica solubility.
- Dissolved oxygen concentrations vary significantly, ranging from anoxic to almost full oxygen saturation (10.2 to 0.1 mg/L). Dissolved oxygen concentrations strongly influence the groundwater's redox potential and affect mineral dissolution and precipitation, in particular for redox-reactive metals such as iron, manganese, and arsenic. Redox conditions in an aquifer are typically highly variable and difficult to determine.

5.3.6.2 Target Aquifer and Buck Creek Source Water Quality

Existing Water Quality Data

Existing water quality data for Well No. 2 and Buck Creek sources were provided by the City. The data set included historical data for all three of the City's water sources, including Well No. 1, augmented by more recent water quality data. Site-specific water quality samples were collected from the City's Well No. 2, completed in the Grande Ronde Basalt target storage aquifer, and the Buck Creek surface water source. The more recent data were based on samples collected on February 17, 2010, by City personnel and

transported to AddyLab analytical laboratory of Vancouver, Washington, using standard chain-of-custody and sample shipping procedures. Laboratory certificates of analysis are provided in Appendix A.

Well No. 2 was sampled following generally accepted groundwater sampling procedures for production wells. The well was purged by pumping for 10 to 20 minutes prior to sampling. Sampling methods involved collecting water from an external spigot/discharge line located at the wellhead, prior to (upstream of) any treatment. The water sample from the Buck Creek source was collected after treatment by the recently completed slow sand filtration system, but prior to any chlorination, as the planned chlorination station for this source is not currently on-line.

Field parameters were measured using hand-held probes. Field parameters include pH, oxidation-reduction potential (ORP), dissolved oxygen, specific conductance, and temperature. All field instruments were calibrated prior to use in accordance with manufacturer's instructions.

Water sample analyses performed by AddyLab include:

- Dissolved target analyte list metals, 23 metals that include common cations (calcium, magnesium, sodium, potassium);
- Major and minor anions (sulfate, chloride, sulfide);
- Total alkalinity;
- Ammonia:
- Orthophosphate and total phosphorus;
- Silica:
- Total organic carbon (TOC);
- Total suspended solids (TSS); and
- Total dissolved solids (TDS).

Water Quality Results

Table 5.4 presents results for the samples collected from Well No. 2 and the Buck Creek source on February 17, 2010, as well as historical water quality data from Well No. 1, Well No. 2, and the Buck Creek source. The historical data include analyses for volatile organics, metals, trihalomethanes (THMs), total hardness, cyanide, fluoride, sulfate, nitrogen species (nitrate and nitrite), TDS, color, radionuclides, turbidity, and specific conductance. Potentially applicable groundwater quality standards, drinking water standards, and surface water criteria are also presented in Table 5.4.

The target aquifer groundwater and the Buck Creek source water are of very good quality. Low TDS, neutral pH, and generally low dissolved metals and sulfide concentrations are all indications of good water quality. The constituents meet groundwater quality standards, drinking water standards, and surface water criteria, with the exception of manganese in the most recent sample from Well No. 2, which exceeded the federal Secondary Maximum Contaminant Level (MCL) of 50 micrograms per liter

(µg/L). Historical data from Well No. 2 indicate manganese concentrations are typically below the Secondary MCL. Secondary MCLs are non-mandatory standards established as guidelines to address potential aesthetic concerns for drinking water, such as odor, taste, or color, but are not considered to present a human health risk.

Chloroform, a disinfection byproduct and THM, was detected in a sample from the Buck Creek source collected in 1998. No other THMs were detected. The chloroform concentration of 2.7 μ g/L was less than the groundwater quality standard of 7 μ g/L and the drinking water standard for total THMs of 80 μ g/L. The presence of THMs is typically due to reaction of chlorine or bromine with organic carbon present in water during treatment. In 1998, Buck Creek source water was chlorinated, but the slow sand filtration system was not in operation. It is expected that the slow sand filter will reduce turbidity and organic carbon content of the source water, in turn reducing the potential for generation of THMs during chlorination.

A piper diagram (Figure 5.6), based on data collected from the City's existing water supply wells (Well No. 1 and Well No. 2) and the Buck Creek source, allows for quick visual comparison of water-types for each source based on the relative concentrations of the major cations (calcium, magnesium, and sodium) and major anions (bicarbonate, sulfate, and chloride). In comparison to Well No. 2, Well No. 1 water contains higher TDS, mostly as calcium-magnesium bicarbonate, suggesting a greater degree of waterrock interaction with carbonate and other evaporate minerals. Higher TDS can indicate older water, but that does not appear to be the explanation for higher TDS observed in Well No. 1 relative to Well No. 2. The major composition of Well No. 1 is generally in equilibrium with calcite (as determined by calcium and alkalinity), while Well No. 2 water-type suggests ion exchange and silicate mineral equilibria that require longer residence times (i.e., higher Na:Ca, higher Mg:Ca, and modeled equilibrium with silicate mineral phases).

5.4 Groundwater Flow Directions and Rates of Movement

Based on Vaccaro (1999), regional groundwater flow within the Grande Ronde Basalt is inferred to be in a southerly direction, toward the Columbia River. In general, local groundwater flow within the CRBG is expected to be toward major surface water bodies, away from anticlinal axes and in the direction of regional geologic dip (Steinkampf, 1989). During the formation of an anticline, the compression of the various basalt flows leads to both the folding and uplift of the respective flows. Erosion of the upper flows will later expose the lower flows at the surface, thus allowing for the areal recharge of the respective flow. For this reason, groundwater generally flows away from these relatively high points of recharge and down the geologic dip.

A groundwater elevation contour map of the Grande Ronde Basalt aquifer for the ASR project area was created based on the well locations provided in the Ecology well log database. These data are as reported by the well drillers at the time of drilling and can span decades in time and be from different seasons. As previously discussed (Section 5.2), wells were initially located at the center of their respective quarter-quarter section; select wells were also located by parcel number or by a Trimble GPS (Well No. 1 and

Well No. 2), to provide more accurate well locations. Ground surface elevations used to convert depth to groundwater measurements to groundwater elevations were determined at the individual well locations using a 10-meter Digital Elevation Model (DEM). Ground surface elevations at Well No. 1 and Well No.2 were measured by GPS. Based on the relatively significant topographic relief, ground surface elevations can vary by about 100 feet within a 40-acre quarter-quarter section for the ASR project area. For this reason, the groundwater elevation contour map provides only a general idea of local groundwater flow directions (100-foot contour interval).

Table 5.5 provides a summary of the groundwater elevation data and Figure 5.7 presents a groundwater elevation contour map (100-foot contour interval) for the upper portion of the Grande Ronde Basalt aquifer. The water level contours do not include the measured water level at Well No. 2, as it appears to tap an aquifer that is distinct from the aquifer(s) tapped by other wells in the area, as discussed below.

Well No. 2 is completed in a bounded fault block (Section 5.2.2) and the target aquifer is vertically confined by the massive flow interiors of the Grande Ronde Basalt and the Columbia River fault (Section 5.3.1.1). One nearby domestic well (Ottman well) completed in the same fault block, but at a shallower depth, did not show any water level response during a 24-hour constant rate aquifer test conducted in Well No. 2. Review of the well logs indicates that the other domestic wells completed in the same fault block as Well No. 2 are either completed at much shallower depths and/or exhibit water levels that are inconsistent with the strong artesian conditions at Well No. 2. It is unlikely that any of these wells are completed in the same target aquifer as Well No. 2.

A more refined determination of groundwater flow directions and gradients in the basalt tapped by Well No. 2 will need to be determined following the installation of a monitoring well under the Phase II portion of this project, if funded.

5.4.1 Groundwater Flow Direction and Hydraulic Gradient

As discussed above, there do not appear to be any other wells tapping the same aquifer as Well No. 2. It is expected that groundwater within the ASR target aquifer generally flows south-southeast from the likely recharge area toward Well No. 2. Flow is expected to generally parallel the Buck Creek and Hood River faults, although some leakage across these faults and the unnamed/unmapped fault may occur. Limited leakage may also occur vertically through the massive flow interiors of the Grande Ronde Basalt.

Based on the limited data (Well No. 2 is the only well identified in this zone), it is not possible to develop an accurate estimate of the hydraulic gradient in the ASR target aquifer. The remainder of this section discusses hydraulic gradients and flow direction in the ASR project vicinity, results of which are used as a rough approximation of potential gradients in the ASR target aquifer.

Based on the interpretation of Figure 5.7, local groundwater flow within the upper portions of the Grande Ronde Basalt is generally toward the White Salmon River, indicating that the upper portion of the Grande Ronde Basalt may be in hydraulic continuity with the overlying Quaternary deposits and the White Salmon River.

To the northeast of the Buck Creek fault, groundwater within the Grande Ronde Basalt generally flows toward the White Salmon River and the concealed syncline in the vicinity of Husum (down-dip), and away from the anticline located to the southeast. Gradients in this area range from about 0.06 to 0.16 feet per feet (ft/ft) and potentially reflect the influence of both surface topography and geologic structure (dip). As discussed in Section 5.1, the White Salmon River gains approximately 200 cfs in groundwater contributions between BZ Corner and Husum. Although a large portion of these groundwater gains are likely from the Quaternary deposits, a portion of the gains may be from the underlying Grande Ronde Basalt.

Between the Hood River and Buck Creek faults, in the same fault block as Well No.2, groundwater flow within the upper Grande Ronde Basalt appears to converge on Northwestern Lake. To the north of Northwestern Lake, groundwater flows in a southeast direction toward the concealed syncline (down-dip) located in the vicinity of Northwestern Lake with a gradient of approximately 0.08 ft/ft. This is a moderately high groundwater gradient is likely reflective of the steep surface topography to the north of Northwestern Lake. To the south of Northwestern Lake, it is anticipated that groundwater flows toward the Columbia River in a southeasterly direction, although there is limited well data in this area.

5.4.2 Groundwater Velocity

The hydraulic gradient can be used to determine an average groundwater flow velocity by applying Darcy's Law of the form (Fetter, 2001):

$$V_{x} = -\frac{Kdh}{n_{e}dl}$$

where:

 v_x is the average linear groundwater velocity (ft/day), K is the hydraulic conductivity (ft/day), dh/dl is the hydraulic gradient, and n_e is the effective porosity. An average effective porosity of 0.04 was estimated for individual basalt flows of the CRBG, based on grain density (Hansen et al., 1994). However, the flow-tops and vesicular water-bearing zones were estimated to have a slightly higher range of effective porosities, with an average effective porosity of 0.15 (Whiteman et al., 1994). Therefore, an effective porosity of 0.15 was used to calculate the average groundwater velocity.

As discussed in Section 5.3.4, the hydraulic conductivity of the ASR target aquifer is about 1.3 ft/day. Applying the porosity of 0.15 and the range of hydraulic gradients estimated for the Grande Ronde Basalt in the study area (0.06 to 0.16 ft/ft), the average groundwater velocity in the vicinity of Well No. 2 could range from approximately 0.5 to 1.4 feet/day or about 190 to 510 feet/year. These values likely overestimate groundwater velocities in the target aquifer near Well No. 2, as the nearby Hood River fault and the unnamed/unmapped fault are expected to greatly limit downgradient groundwater flow.

5.4.3 Interaction with Possible Flow Barriers

The ASR target aquifer tapped by Well No. 2 is laterally bounded by the Buck Creek fault, the Hood River fault, and an unnamed/unmapped fault near Northwestern Lake.

The fault block boundaries act as hydraulic barriers to groundwater flow, isolating groundwater within the fault block and limiting flow. The water-bearing zone tapped by Well No. 2 is also vertically bounded by the massive flow interiors of the Grande Ronde Basalt. The conclusion that these features act as hydraulic barriers is further supported by the significantly higher head and strong artesian conditions at Well No. 2 compared to other nearby wells.

Upgradient recharge to the target aquifer is thought to primarily occur where the water-bearing interflows tapped by Well No. 2 outcrop to the northwest of the well. Based on the estimated regional dip of the Frenchman Springs member of the Wanapum Basalt and the underlying Grande Ronde Basalt, the water-bearing interflows are expected to daylight at a minimum of 8,500 feet upgradient of Well No. 2, although the actual location is uncertain.

5.5 Recoverability of Stored Water

A relatively simple numerical groundwater flow model was created using the USGS MODFLOW code to: (1) illustrate schematically the recharge and recovery of a hypothetical ASR system, and estimate the recoverability of the stored water, and (2) anticipate changes to the groundwater system from ASR activities while accounting for boundary effects from the low permeability faults. The numerical groundwater model was created based on the hydrogeologic conceptual model discussed above. A transmissivity of 169 ft²/day was estimated based on results of the pumping test at Well No. 2 and storativity of 5.6 x 10⁻⁴ was estimated based on average literature values for the CRBG (Table 5.2). Low permeability boundaries were simulated along the Buck Creek fault, the Hood River fault, and the unnamed/unmapped fault near Northwestern Lake. Constant head boundary conditions were applied at the upgradient (northwest) and downgradient (southeast) ends of the model to produce a gradient across the fault block in which Well No. 2 is completed.

Groundwater flow direction and velocity are important considerations in how an ASR system is operated to maximize recovery of the stored water. Recoverability (expressed as the percent of the water volume stored that can subsequently be recovered) will typically decrease in aquifers with a higher ambient (natural) groundwater velocity. This occurs because the volume of recharge water stored (the "recharge bulb") flows with the natural groundwater velocity away from the ASR well, potentially to a point that pumping of the ASR well can no longer capture it (draw it back against the ambient flow velocity).

Although there is some uncertainty in the regulatory interpretation of recoverability of stored water through ASR, it is assumed that the full quantity of water stored in a body of public groundwater can be recovered as long as it remains in that body of groundwater.

The main operational components to be examined by the modeling are recharge (injection) and recovery (extraction) rates and durations. It is important to stress that this preliminary modeling is essentially conceptual, to schematically illustrate operational concepts that can improve recoverability of the recharge bulb. Major sources of uncertainty include the ambient hydraulic gradient in the ASR target aquifer tapped by Well No. 2 and the potential degree of leakage across the fault boundaries. Pilot testing

would be needed to better quantify aquifer parameters and water quality in a specific location, as well as recharge and recovery rates. This information would refine the degree of recoverability relative to that indicated by this preliminary modeling. This modeling also assumes no mixing between recharge water and the ambient groundwater. Such mixing would occur along the fringe of the recharge bulb, reducing the volume of "pure" recharge water that could be recovered relative to these modeling simulations. However based on the water quality analysis of the source water (Buck Creek) and groundwater (ASR target zone), water quality issues from mixing is not anticipated (see Section 5.10).

Two operational scenarios were modeled. As previously discussed in Section 5.3.5, one scenario assumes recharge of Buck Creek water for a 6-month period of time (180 days) between November and April at a rate of approximately 225 gpm to achieve storage of 175 acre-feet. Following the recharge period, groundwater would be recovered over a 6-month period of time (180 days) between May and October. A second operational scenario assumed system upgrades to increase the injection rate to 425 gpm over 6 months with storage of 340 acre-feet, followed by 6 months of recovery. Modeling of these two operational scenarios was performed assuming an ambient groundwater velocity in the fault block of about 190 ft/year, which assumes a horizontal hydraulic gradient of 0.06 ft/ft in the ASR target area (Section 5.4).

Results of the modeling for these conceptual operational scenarios are summarized in Table 5.6. The degree of recovery (i.e., capture of the recharge water) is directly dependent on the ambient groundwater velocity, with a higher ambient groundwater velocity resulting in lower recovery. The degree of recovery is also dependent on the amount of leakage across the faults that bound the ASR target aquifer. Less leakage results in higher recovery, as less groundwater is able to exit the fault block before being recovered. The groundwater velocity (hydraulic gradient) and potential leakage across the fault boundaries are not well defined for the ASR target aquifer. As such, results of this modeling should be considered rough approximations of potential recovery of stored water.

In Scenario 1 (recharge at 225 gpm for 6 months; recovery at 225 gpm for 6 months), an estimated 72 percent of the recharge water (130 acre-feet) is recovered based on the modeling. Under this scenario, 50 acre-feet of the recharge water is unrecovered; rather 50 acre-feet of ambient groundwater is recovered (Table 5.6).

In Scenario 2 (recharge at 425 gpm for 6 months; recovery at 425 gpm for 6 months), an estimated 81 percent of the recharge water (275 acre-feet) is recovered based on the modeling. Under this scenario, 65 acre-feet of the recharge water is unrecovered; rather 65 acre-feet of ambient groundwater is recovered (Table 5.6).

The modeling is only a rough approximation of recoverability based on limited data. Because the ASR target aquifer is in a well-bounded fault block that greatly limits downgradient migration of groundwater, the hydraulic gradients and groundwater velocities are expected to be lower than assumed for the modeling. Assuming this is the case, then actual percent recoverability will be higher.

To improve recoverability, one option would be to withdraw at rates in excess of the injection rates. This would result in greater capture downgradient of the well and increase the amount of injected water that could be recovered. Well No. 2 has a sustainable yield

of about 600 gpm, exceeding the modeled injection rates. The increased head following ASR injection would further increase the available drawdown and the capacity of Well No. 2, allowing higher sustained recovery rates than this well can currently achieve. Ultimately, optimization of injection and recovery rates and durations would need to be determined through pilot testing.

In general, the following are observations with respect to recoverability of stored water:

- Recoverability increases with an increase in injection rate;
- Recoverability decreases with an increase in ambient groundwater velocity;
- Recoverability decreases with an increase in leakage across the fault boundaries;
 and
- Recoverability increases if the withdrawal rate exceeds the injection rate.

5.6 Anticipated Changes to Groundwater System from ASR Project

The largest anticipated changes to the groundwater system from an ASR project would be changes in head (drawdown/mounding) and changes in local groundwater flow direction and velocity around the ASR well. Figures 5.8 and 5.9 show the modeled water level change (mounding/drawdown) at the end of a 180-day aquifer recharge period for Scenario 1 and Scenario 2, respectively.

During the 180-day aquifer recharge period for Scenario 1, the maximum mounding near Well No. 2 is estimated to be approximately 400 feet. A modeled 400-foot change in head near the well location is similar to the 370-foot change in head calculated using an analytical solution in Section 5.3.5. The equation applied in Section 5.3.5 assumes an aquifer of infinite areal extent with no boundaries, whereas the numerical model assumes the aquifer system is bound by a low permeability fault boundaries. The modeled change in head in the aquifer north of the well is higher than predicted in Section 5.3.5, with mounding of about 230 and 180 feet at distances of 1,000 and 2,000 feet, respectively.

The maximum modeled mounding near the well for Scenario 2 is about 750 feet. This is similar to the mounding immediately outside the well of 720 feet calculated in Section 5.3.5. The modeled change in head in the aquifer north of the well is higher than predicted in Section 5.3.5, with mounding of about 440 and 340 feet at distances of 1,000 and 2,000 feet, respectively.

5.7 Estimated Area Potentially Affected by ASR Activities

The conceptual model assumes the target aquifer is bound laterally by the Buck Creek fault, the Hood River fault, and an unnamed/unmapped fault near Northwestern Lake. The numerical modeling described above, with aquifer boundary conditions simulating this geologic structure, should provide a more reasonable estimate of the area potentially affected by ASR activities than the radius of influence calculations described in Section 5.3.5.

Based on the modeling of recharge and recovery for operational Scenario 1 and Scenario 2, the estimated area affected by ASR activities is presented on Figures 5.8 and 5.9, respectively. These areas are based on the 50-foot mounding contour from the 180-day recharge period. The model predicts mounding on the order of 50 feet could occur throughout the ASR target aquifer under both scenarios.

5.8 Location of Wells or Other Sources of Groundwater within the Area Affected by ASR Activities

Figures 5.8 and 5.9 show the location of wells completed within the project area, and those within the area potentially affected by ASR activities, according to the Ecology well log database. The figures also distinguish between ranges of well completion depths. As discussed in Section 5.4, there do not appear to be any other wells completed within the target ASR aquifer. Since Well No. 2 is confined (Sections 5.3.1.1 and 5.3.3) from nearby wells by the massive flow interiors of the Grande Ronde Basalt and the fault boundaries, the injection and extraction of water associated with ASR activities at Well No. 2 are not expected to have a significant impact on the head (static groundwater levels) in any of the nearby domestic wells. Well No. 2 has historically produced about 500 acre-feet per year, for several years after starting production in 2002 with no report of water level impacts in nearby wells. This suggests that the basalt flow interiors and fault boundaries do not exhibit significant leakage, even with long-term pumping. Additionally, water proposed for storage would be recovered over the 6 months following injection before a new injection cycle begins, reducing the potential for mounding effects to accrue over time.

5.9 Location of Natural Hazards, Surface Waters, and Springs Potentially Affected by ASR Project

WAC 173-157-120 specifies identification of natural hazards, surface waters, and springs potentially affected by the ASR project as part of the Hydrogeologic Conceptual Model. These same items are also required to be identified and evaluated as part of the Environmental Assessment (WAC 173-157-150), and, therefore, is presented in Section 6.

5.10 Chemical/Physical Composition of Source Water and Compatibility with Ambient Groundwater

This section presents a preliminary water quality analysis of prospective Buck Creek source water and ambient groundwater in the ASR target aquifer at Well No. 2 to identify potential "fatal flaws" in their compatibility if mixed during potential future ASR operations. In particular, compatibility is evaluated with regards to potential for adverse chemical reactions (e.g., mineral precipitation) clogging the ASR aquifer and production well, as well as compliance with the antidegradation policy under the state groundwater quality standards (WAC 173-200-030).

The analysis includes preliminary modeling of the geochemical interactions from mixing the waters within the assumed basalt ASR target aquifer and interaction with the aquifer rock matrix. The modeling makes use of the site-specific water quality data collected for this study and information on regional Grande Ronde Basalt mineralogy (Section 5.3.6), and serves as an initial "fatal flaw" analysis as one component in evaluating ASR feasibility for the City.

Samples of prospective source water for storage were collected from the Buck Creek source, as described in Section 5.6.3. At the time of sample collection (February 2010), construction of a slow sand filter treatment system for the source water had been completed, but a planned chlorination station was not. As a result, this initial analysis does not account for potential effects on source water chemistry resulting from planned chlorination of source water, including the potential generation of THM disinfection byproducts.

5.10.1 Comparison of Source Water and Groundwater Quality

The prospective Buck Creek source water and ambient groundwater are of very good quality, generally meeting drinking water standards (Table 5.4). The source water contains higher dissolved oxygen and lower TDS than ambient groundwater. Since the quality of the recharge water is generally better than the ambient groundwater quality, mixing due to successive ASR cycles may gradually improve groundwater quality in the target aquifer over the long term.

In terms of redox conditions, groundwater at Well No. 2 is a mixed (oxic-anoxic) system with predominantly oxygen (O_2) and manganese (Mn^{4+}) redox processes, based on the moderately high dissolved oxygen saturation (5 mg/L) and elevated manganese concentration without the presence of sulfide. Buck Creek is a mixed (oxic-anoxic) system with O_2 redox processes dominating, based on elevated dissolved oxygen, depressed sulfate, scarce dissolved metals, and no sulfide detected.

The well and source water samples each have relatively low concentrations of dissolved metals. However, other wells in the Grande Ronde Basalt (regionally) have shown relatively high concentrations of dissolved iron, typical of more reducing (suboxic to anoxic) zones than those at Well No. 2.

5.10.2 Modeling of Water Mixing

Geochemical reactions between ambient groundwater, treated source water, and aquifer mineralogy can potentially have unwanted effects on the host aquifer and the quality and quantity of recovered water in an ASR program. Listed below are some of the more common geochemical issues that may arise in association with ASR:

- Mixing of native water and storage water may cause mineral precipitation that can clog the ASR well's open area and decrease well efficiency during storage and recovery.
- Aquifer mineral dissolution can occur, causing a decrease in water quality.

 Reactions between chlorinated drinking water and organic matter in native groundwater can temporarily generate disinfection byproducts (DBPs) including THMs and/or haloacetic acids (HAAs).

The likelihood of these issues occurring, based on data made available for this study, are addressed in the following sections.

5.10.2.1 Potential for Groundwater Quality Changes with ASR

A PHREEQC thermodynamic equilibrium model (Parkhurst et al., 1980) was developed to evaluate the geochemical effects of mixing native groundwater and source water to be stored in the ASR target aquifer. Table 5.7 presents modeled groundwater compositions under different assumptions for the degree of Buck Creek (source) water-groundwater mixing and interaction with the aquifer matrix, including simple mixing with no interaction with the mineral phase, mixing with basalt mineral dissolution, and mixing with complete water-rock interaction (dissolution and precipitation). Model methods and analysis are discussed below.

A simple mixing model assuming 50 percent source water and 50 percent native groundwater suggests that simple mixing of waters will not negatively affect water quality (results presented under "No Mineral Phases" heading in Table 5.7). Temperature, pH, and redox conditions, as well as dissolved ion concentrations, do not vary greatly between the source and ambient groundwater, and the mixed water quality generally improves as the slightly fresher source water dilutes the native groundwater.

A second level of analysis was performed by modeling the mixing of waters in combination with equilibrium basalt mineral dissolution, but not accounting for reprecipitation of metal-oxide minerals. By ignoring the potential for metal-oxide precipitation and assuming equilibrium dissolution, this provides a very conservative assessment of the effects of mineral dissolution on water quality. Results are summarized in Table 5.7 under the heading "Dissolution of Basalt Mineral Phases." This analysis indicates that some metals may be released into solution, primarily iron and to a lesser extent magnesium, calcium, aluminum, and manganese. However, as discussed in the following paragraphs, exposing dissolved iron, aluminum, and manganese to dissolved oxygen leads to the rapid precipitation of relatively insoluble metal oxides, such that precipitation reactions are predicted to quickly generate metal-oxide minerals, removing the freshly dissolved metals from solution and depositing them as coatings on mineral grains.

A third level of analysis was performed by modeling the mixing of waters in combination with potential basalt mineral dissolution and accounting for re-precipitation of metal-oxide minerals. In this analysis, the dissolution of basalt minerals assuming native groundwater-to-source-water mix ratios of 20:80, 50:50, and 80:20 were modeled, followed by modeling of precipitation of iron-, manganese-, and aluminum-oxide minerals. Results of these analyses are presented on Table 5.7 under the heading "Complete Mineral Interaction." Redox conditions in the mixed groundwater are predicted to be more oxidizing than in native groundwater. The more oxidizing conditions are expected to cause precipitation of dissolved iron and manganese as oxide phases, thus removing them from the water. The model suggests that after mineral

reactions have occurred, the ASR storage/native groundwater mix will remain of excellent quality.

5.10.2.2 Potential for Mineral Precipitation

The PHREEQC model was used to evaluate the potential degree of metal-oxide mineral precipitation. Table 5.8 presents model estimated metal-oxide precipitation mass for the three groundwater-to-source-water mix ratios previously discussed. The modeled mixed groundwater oxide composition is predominantly iron-oxide (goethite), with minor amounts of manganese- and aluminum-oxides (birnessite and gibbsite). Of the three modeled mixes, the greatest amount of mineral precipitation is predicted in the 20:80 (Well No. 2:Buck Creek) mix ratio, where approximately 6.5 milligrams of metal-oxide precipitate are conservatively predicted to form per liter of mixed water. Assuming a metal-oxide density of 1.25 grams per cubic centimeter, this precipitated oxide mass would represent about 0.05 percent of the total volume of water injected per ASR cycle.

While the model suggests some mineral precipitation may occur, it is important to note that the metal-oxide precipitation predicted by the model first requires dissolution of metals from basalt minerals under equilibrium conditions. Dissolved iron and manganese were not detected in the Buck Creek source water and ambient groundwater contains relatively low concentrations of dissolved metals, suggesting that the precipitation would be limited. Actual concentrations are likely to vary from the modeled concentrations based on aquifer mineralogy, which was assumed for these simulations based on regional mineralogy data for the Grande Ronde Basalt (see Section 5.3.6). Geochemical testing during potential future ASR pilot testing would be recommended to confirm these model results.

5.10.3 Disinfection Byproducts and the Antidegradation Policy

The Phase I Scope of Work under which this feasibility study was prepared includes a preliminary evaluation of strategies to address compliance with state Groundwater Quality Standards and AKART requirements. Water from the Buck Creek source currently meets these standards; however, because the chlorination station was not online at the time the source water was sampled it is not certain if chlorination will affect water quality. The primary concern is the potential for formation of DBPs. Since source water currently meets applicable standards and it is unknown whether DBPs will be present once the source water is chlorinated, it is premature to evaluate strategies to address compliance with state Groundwater Quality Standards.

Once the chlorination station is on-line, a sample of chlorinated Buck Creek water will be analyzed for water quality parameters, including DBPs. If Buck Creek source water fails to meet state Groundwater Quality Standards, an AKART analysis of source water treatment options would be completed as a component of the Phase II of this project. If DBPs are detected we expect that the antidegradation policy will be a regulatory issue of importance in permitting an ASR program for the City. The remainder of this section discusses the antidegradation policy and the potential for formation of DBPs by chlorination of Buck Creek water.

If the water to be stored during ASR has chemical constituents present at concentrations above that in the ambient groundwater in the storage aquifer, injection into storage could be interpreted to violate the antidegradation provision of the state's Ground Water Quality Standards. The state's groundwater antidegradation policy is stated as follows (WAC 173-200-030):

- A. Existing and future beneficial uses shall be maintained and protected and degradation of groundwater quality that would interfere with or become injurious to beneficial uses shall not be allowed.
- B. Degradation shall not be allowed of high quality groundwaters constituting an outstanding national or state resource, such as waters of national and state parks and wildlife refuges, and waters of exceptional recreational or ecological significance.
- C. Whenever groundwaters are of a higher quality than the criteria assigned for said waters, the existing water quality shall be protected, and contaminants that will reduce the existing quality thereof shall not be allowed to enter such waters, except in those instances where it can be demonstrated to the department's satisfaction that:
 - i. An overriding consideration of the public interest will be served; and
 - ii. All contaminants proposed for entry into said groundwaters shall be provided with all known, available, and reasonable methods of prevention, control, and treatment ("AKART") prior to entry.

For an ASR program, compliance with the antidegradation policy under the state's Groundwater Quality Standards (Chapter 173-200 WAC) requires an analysis of the potential for production and fate of disinfection byproducts (DBPs). Byproducts from chlorine disinfection are THMs including chloroform, bromodichloromethane, dibromochloromethane, and bromoform, as well as HAAs including monochloroacetic acid, dichloroacetic acid, trichloroacetic acid, bromoacetic acid, and dibromoacetic acid. DBPs form from reaction of chlorine or bromine with organic matter in the water.

Drinking water disinfection byproducts are potentially carcinogenic and the EPA has established primary drinking water standards (MCLs) for total THMs and total HAAs of 80 and 60 μ g/L, respectively. DBPs in groundwater are of particular interest with respect to the quality of treated source water to be stored, since they are generally not expected in ambient groundwater.

Historical water quality data from the Buck Creek source indicate the general absence of THMs in the prospective source water for an ASR project, with the exception of a low-level detection of chloroform (2.7 μ g/L, below the state Groundwater Quality Standard of 7 μ g/L). Total THMs in the Buck Creek sample collected in 1998 are 2.7 μ g/L, well below the 80 μ g/L criteria. This sample was of chlorinated source water before construction of the slow sand filter. Source water treated by the slow sand filter is expected to have lower turbidity and TOC concentrations, reducing the potential for generation of DBPs.

THM formation requires only a chlorine oxidant and humic substances (the latter represented here as TOC). Maintaining residual chlorine in the source water is required by state DOH regulation for public water systems. Concentrations of TOC, the other

ASPECT CONSULTING

reactant needed for producing DBPs, is low in the Buck Creek source water after slow sand filtration (0.54 mg/L in February 2010). The low TOC content of the slow sand filter-treated source water suggests that there is limited likelihood of formation of DBP products in the source water prior to ASR injection. Additionally, because the TOC is low it is expected that the City will be able to maintain low residual chlorine concentrations in the treated source water while still meeting water treatment requirements.

Case study data (Pyne, 2005) indicate that DPBs may also form from the reaction of residual chlorine in the treated source water and dissolved organic carbon in the ambient groundwater. The TOC concentration in ambient groundwater at Well No. 2 is very low (less than the 0.5 mg/L reporting limit) and it is expected that residual chlorine in the treated source water will also be low, suggesting that formation of DBPs in the aquifer would be limited. The case study data generally suggest that THMs are degraded biologically in a matter of weeks under anoxic groundwater conditions, but persist under the more oxic conditions expected in the mixture of ambient groundwater and source water. In summary, although the potential for formation of DPBs in treated source water or from reaction of residual chlorine with TOC in ambient groundwater appears to be minimal; furthermore, if DBPs form they are unlikely to significantly attenuate in the aquifer.

If the water to be stored has constituents present at concentrations above that of the ambient groundwater (e.g., disinfection byproducts), the storage could be interpreted to violate the antidegradation provision of the state's Groundwater Quality Standards (WAC 173-200-30). Since the prospective source water meets drinking water standards, beneficial use of the groundwater would not be degraded, thus meeting the intent of the Groundwater Quality Standards. Further, implementation of an ASR program could be interpreted to be in the overriding public interest, providing greater flexibility and reliability for meeting future peak municipal demand without diverting additional Buck Creek flows during the peak summer months. The state ASR rule states "The department shall give strong consideration to the overriding public interest in its evaluation of compliance with groundwater quality protection standards." (WAC 173-157-200[2]).

6 Environmental Assessment

This section provides an assessment of potential impacts to the surrounding environment from implementing an ASR program. The environmental assessment can be used to establish whether a determination of nonsignificance or an environmental impact statement is required for an ASR project, per State Environmental Policy Assessment (SEPA) regulations (Chapter 197-11 WAC).

As discussed in Sections 3 and 5, the aquifer tapped by Well No. 2 is recommended as the preferred target aquifer for ASR. Therefore, this Environmental Assessment focuses on a discussion of potential impacts to the surrounding environment in the vicinity of Well No. 2 (ASR target area). The following information addresses requirements for an environmental assessment as per WAC 173-157-150.

6.1 Description of Environment within ASR Project Area

6.1.1 Proximity to Contaminated Areas

The Ecology Toxics Cleanup Program's on-line databases (Cleanup Site Information) were reviewed to identify nearby areas of known soil or groundwater contamination. Five sites listed in the confirmed and suspected contaminated sites (CSCSs) database were identified within about 5 miles of the ASR target area (Table 6.1 and Figure 6.1). Each of these sites is confirmed as having soil contaminated by petroleum products and, in one case, non-halogenated solvents. Three of the sites are also confirmed as having contaminated groundwater. The identified sites are located at least 2.5 miles to the southeast (downgradient) of the ASR target area.

As discussed in previous sections (Section 5.2.2), the ASR target aquifer is in a well-bound fault block that is bound to the southeast by the unnamed/unmapped reverse fault in the vicinity of Northwestern Lake, which extends through Well No. 2. The ASR target aquifer is also vertically confined by the overlying massive, flow interiors of the Grande Ronde Basalt (Section 5.3.3). Therefore, for any contaminants to reach the target aquifer, groundwater would have to pass through the relatively impermeable unnamed/unmapped reverse fault in the vicinity of Northwestern Lake or the overlying massive basalt flow interiors. Furthermore, as discussed in Section 5.4, regional groundwater flow within the ASR project area is toward the Columbia River, such that any contaminants associated with the CSCSs are located downgradient of the target aquifer. For these reasons, the target aquifer would have very low susceptibility to both existing and potential future surface contamination sources.

6.1.2 Land Use

Figure 6.1 identifies current land use in the ASR project area. A majority of the land use in the ASR project area consists of forest (deciduous, evergreen, and mixed), grasslands/herbaceous, shrub/scrub, hay/pasture, or cultivated crops (primarily orchards). In the

vicinity of the Well No. 2 and the target aquifer, the land use consists primarily of grasslands/herbaceous; however, there is also some developed land, ranging between low and high intensity, located approximately 1,000 feet east of Well No. 2. As discussed above, there are currently no contaminated sites in this area of developed land, with the closest contaminated site located approximately 2.5 miles to the southeast.

6.1.3 Surface Waters, Wetlands, and Floodplains

The ASR project area is located within the White Salmon River subbasin of WRIA 29, which is a major tributary to the Columbia River. The headwaters of the White Salmon River originate from snowmelt runoff and groundwater discharge along the flanks of Mount Adams (WPN and Mark Yinger Associates, 2002). The major tributaries to the White Salmon River in the ASR project area include, from upbasin (north) to downbasin (south): Hangman Creek, Gilmer Creek, Rattlesnake Creek, Indian Creek, Buck Creek, Mill Creek, and Little Buck Creek. The White Salmon River also receives runoff from numerous minor tributaries; however, these flows are considered insignificant relative to the major tributaries. As previously discussed in Section 5.1, additional groundwater contributions to the base flow of the White Salmon River in the ASR project area occur from the Quaternary deposits and possibly the CRBG, as observed between BZ Corner and Husum.

Figure 6.2 presents discharge data for the White Salmon River, measured downstream of Condit Dam, near Underwood (USGS Station No. 14123500), between January 2005 and December 2009. Table 6.2 presents average monthly discharge for three gaging stations on the White Salmon River and for two tributaries (Gilmer Creek and Rattlesnake Creek) for the existing periods of record. Based on Table 6.2, summer low flow periods generally occur in September and October before increasing from November through May.

In addition to the tributaries discussed above, the White Salmon River also receives runoff from numerous springs and seeps in the area. Approximately 22 springs were identified by Hennelly et al. (1994) upstream of the confluence of Gilmer Creek with the White Salmon River. Mark Yinger Associates (2002) indicated that springs and seeps along the slopes to the east of the White Salmon River in the vicinity of the City's existing water supply wells (Well No. 1 and Well No. 2) generally occurred at the base of the Quaternary flood deposits (discussed in Section 5.2.2). Springs may also occur along the slopes of the White Salmon River where the water-bearing interflow zones of the Columbia River Basalt Group (CRBG) outcrop. Additional springs have been reported as discharging to the upper reaches of Buck Creek, north of the Columbia River fault and about 4 to 5 miles northwest of Well No. 2 (Futrell, Redford, Saxton, 1973).

Figure 6.3 illustrates the location of the Federal Emergency Management Agency (FEMA) 100-year floodplain defined within the ASR project area. The 100-year floodplain is limited to areas adjacent to the White Salmon River upstream of BZ Corner, and the White Salmon River at Northwestern Lake and downstream of Condit Dam. Well No. 2 is located approximately 200 feet above the 100-year floodplain near Northwestern Lake.

The USFWS National Wetlands Inventory (NWI) online database was searched to identify wetlands in the ASR project area. Mapped wetlands adjacent to the White

Salmon River are limited an approximately 1.1-acre riverine wetland located about 1/2 mile downstream of Northwestern Lake, a 1.5-acre forested wetland adjacent to Northwestern Lake, and to several small (less than 2 acre) riverine wetlands upstream of Northwestern Lake in the Husum area. Two freshwater emergent wetlands are also mapped on the uplands northeast of Northwestern Lake. No wetlands are mapped within the Buck Creek drainage.

6.2 Potential for Adverse Environmental Impacts within ASR Project Area

6.2.1 Natural Hazards Potentially Affected by ASR Project

Natural hazards within the ASR project area that could potentially result from or be exacerbated by ASR operations include slope stability and erosion, the presence of floodplains, the ground deformation/subsidence, and faults. Based on the well-confined conditions of the target aquifer, ASR operations are not expected to result in significant changes in hydrogeologic conditions (e.g., increased water levels) outside of the target aquifer, and the potential risk of increased natural hazards is considered minimal.

Within the ASR project area, the Soil Conservation Service (SCS) categorizes soils as slight, moderate, severe, or very severe soil erosion hazards based on soil type and the presence of steep slopes. Mapped soil erosion hazards for the ASR project area are shown on Figure 6.3. Generally, soils with a slope of more than 65 percent are classified as very severe soil erosion hazards. Soils with a slope of between 30 and 65 percent are generally classified as severe soil erosion hazards. Soil with a slope of less than 30 percent are classified as moderate or slight soil erosion hazards. The closest area of severe or very severe soil erosion hazards is approximately 1,500 feet to the southwest of Well No. 2, along the White Salmon River south of Northwestern Lake.

Soil erosion hazards may be exacerbated during ASR operation if groundwater levels rise near ground surface during the recharge period. The ASR target aquifer is located at a depth of more than 845 feet bgs (Section 3), and vertically confined by the relatively massive flow interiors of the Grande Ronde Basalt (Section 5.3.3). The effectiveness of the confining unit is demonstrated by the artesian (free-flowing well) conditions at Well No. 2, where the initial shut-in pressure is equivalent to a water level of 226 feet above ground surface (Section 3.1). Based on the confined conditions, increasing the head in the target aquifer during storage is not expected to result in increased head or water levels in overlying aquifers. Therefore, the areas of geologically hazardous soils should not experience increased water levels and would not be affected by ASR operations.

As discussed in Section 6.1.3, Well No. 2 is located approximately 600 to 800 feet south and east of the 100-year floodplain that encompasses the White Salmon River in the vicinity of Northwestern Lake (Figure 6.3). Although the 100-year floodplain is located within the estimated area potentially affected by ASR activities (Section 5.7), no adverse impacts are expected based on the confined nature of the target aquifer.

Ground deformation is not expected to be a problem within the ASR project area. The target aquifer is composed of indurated basalt that should not be susceptible to deformation from increased hydraulic head during the storage period of ASR operations.

Although of limited occurrence and extent, sedimentary interbeds are present within the Grande Ronde Basalt. The interbeds are also indurated, and have limited potential for deformation.

As described in Section 5.2.2, the Buck Creek fault is located approximately 1,000 feet to the southwest of Well No. 2, and the unnamed/unmapped reverse fault in the vicinity of Northwestern Lake extends through Well No. 2. We are unaware of any evidence that either fault is an active seismic hazard. Even if it were, an ASR project is at no greater risk, nor are there are any greater implications if a seismic event does occur, than for a conventional production well. During ASR activities, large water level fluctuations would occur near the ASR well, and decrease in magnitude substantially with distance from the well. Based on groundwater modeling, we predict a head change on the order of 300 to 500 feet at the Buck Creek fault in response to hypothetical ASR recharge scenarios (Figures 5.8 and 5.9). Although this is a significant change in head, the target aquifer already has relatively high heads and is artesian (free-flowing) at Well No. 2. Therefore, the potential pressure change from ASR activities is not expected to pose additional risk for inducing movement along the fault.

6.2.2 Surface Waters Potentially Affected by ASR Project

Figure 6.3 presents the location of the White Salmon River and tributary streams within the ASR project area. The USGS has stream gaging stations on the White Salmon River at BZ Corner (Station No. 14122900), Husum (Station No. 14123000), and Underwood (Station No. 14123500). In addition, the City monitored flows at the Buck Creek diversion from November 2001 through April 2004. Figure 6.2 shows White Salmon River flows at Underwood between 2005 and 2010, while Figure 2.1 illustrates historical Buck Creek flows. There are no minimum instream flows for the White Salmon River and its tributaries defined in Washington State administrative rules. As previously discussed (Section 6.1.3), wetlands within the ASR project area are limited riverine and forested wetland areas adjacent to the White Salmon River and Northwestern Lake, and wetlands located in the uplands northeast of Northwestern Lake.

As summarized in Table 6.4, Ecology has listed several water body segments within the ASR project area as having impaired water quality (Categories 4 or 5). Water bodies listed as impaired and the basis for the listings include:

Impaired by a Non-Pollutant, Not Requiring a TMDL (Category 4C)

■ White Salmon River below Condit Dam – Instream Flow

<u>Impaired and Require a TMDL (Category 5)</u>

- Gilmer Creek Temperature and Fecal Coliform
- Indian Creek Temperature
- Northwestern Lake PCB in Fish Tissue
- Rattlesnake Creek Temperature and Fecal Coliform
- White Salmon River near Gilmer Creek Fecal Coliform

The remaining listed water body segments in the subbasin (Table 6.3) are listed as Waters of Concern (Category 2) for specific parameters. Of the six listings for impaired waters, four (Gilmer Creek, Indian Creek, Rattlesnake Creek, and White Salmon River near Gilmer Creek) are water bodies located at least 3 miles northeast of the ASR target aquifer and at least 2 miles upstream of the confluence of Buck Creek and the White Salmon River. The listing for the White Salmon River below Condit Dam was based on concerns about inadequate flows from Condit Dam raised by resource agencies during relicensing of the dam in 1993.

The most likely surface water features potentially affected by ASR activities are Northwestern Lake, the White Salmon River, and Buck Creek. Potential effects would be most likely to occur from increased seasonal surface water diversions at the Buck Creek source for ASR storage. The increased diversions would be limited to the period of November through April when flows in Buck Creek and the White Salmon River are generally higher, and would be less likely to adversely affect instream flows or habitat. The potential impacts to instream flows and habitat would be addressed during consultation with Indian tribes and applicable state agencies as part of processing a water right for the seasonal diversion from Buck Creek.

Storing water in the target aquifer during ASR operations is not expected to affect nearby surface water features. As previously discussed (Section 5.3.1.2), the target aquifer does not appear to be in hydraulic continuity with Northwestern Lake and the confined conditions of the aquifer are expected to isolate stored water from surface water bodies.

To satisfy the Columbia Basin Water supply grant funding requirements, a portion of the water made available by the ASR project would be conveyed permanently to Ecology for instream flow purposes and possible future appropriation (see Section 8). The method by which water will be conveyed to Ecology has not been finalized, but the City's preferred option will likely include direct discharge of water from the ASR well (Well No. 2) to the White Salmon River. Ambient groundwater quality and the expected quality of water recovered via ASR from Well No. 2 meet applicable surface water quality criteria, and would not be expected to adversely affect surface water of the White Salmon River.

6.3 Conclusion

Based on the discussions above, the potential for adverse environmental impacts within the ASR project area are expected to be minimal as a result of the target aquifer being confined by the overlying massive, flow interiors of the Grande Ronde Basalt. The confined conditions and the presence of faults acting as vertical hydraulic barriers will isolate the ASR target aquifer from nearby surface waters, wetlands, and springs. Potential adverse impacts are likely limited to reduced surface water flows in Buck Creek and the White Salmon River from November through April from increased diversion of water from Buck Creek. Surface water flows in Buck Creek and the White Salmon River are generally higher over this period. Processing of the water rights to authorize ASR, including the new appropriation from the Buck Creek diversion, will require consultation with Indian tribes and state agencies to evaluate the effects on aquatic resources.

Based on this assessment, a determination of nonsignificance under SEPA appears reasonable for operation of an ASR system in the target area. Depending on the scope of

ASPECT CONSULTING

construction for any additional infrastructure required to support an ASR system, additional SEPA review may be appropriate. The need for SEPA review can be considered if and when the City chooses to proceed with ASR pilot testing.

7 Project Monitoring Plan (Pilot Test Plan)

This section summarizes general elements of an ASR pilot test to further evaluate the feasibility of applying ASR as a water supply alternative to help meet City of White Salmon's water demands. A Quality Assurance Project Plan (QAPP) would be developed prior to pilot testing or collection of any new data. The QAPP will include a Sampling and Analysis Plan (SAP) that will describe the objectives, sampling and collection procedures, handling, testing methods, and reporting requirements for any additional physical or chemical data collection planned for the project.

7.1 Pilot Test Overview

An ASR pilot test involves testing the expected ASR program including water recharge, storage, and recovery. The testing includes baseline hydraulic testing to document baseline well performance for both recharge and recovery; water quality sampling and analysis of the recharge water, stored water in the aquifer, and recovered water; water level monitoring of the ASR well and storage aquifer; pressure monitoring of the pump and piping systems to ensure efficient operation; followed by successive cycles of operation under a range of conditions converging on an expected full-scale operational condition. The testing program would start simply, and gradually be adapted and lengthened in duration as testing information is collected and performance evaluated. This plan outlines an initial test program, which would then be refined for additional testing if the initial results are promising.

7.2 ASR Well and Piping

This section provides general recommendations for the wellhead, piping, and appurtenances. More detailed review and design would be warranted as part of the initial Phase II effort if the City chooses to proceed with ASR pilot testing.

Well No. 2 is the recommended target location for conducting ASR pilot testing. In 2009 to support potential use of Well No. 2 for ASR the City completed several improvements to Well No. 2 wellhead piping, the well field piping, and the intertie of the Buck Creek conveyance line with Childs Reservoir and the well field. As-built drawings of the current infrastructure are provided in Appendix B.

The Buck Creek conveyance line runs from the Buck Creek source diversion to the City of White Salmon distribution system (Figure 1.2), with interties to the wellfield and Childs Reservoir. Under normal operation, water from Buck Creek will be treated (slow sand filtration and chlorination) and conveyed by a 14-inch line to the intertie, where it is diverted to Childs Reservoir via a 20-inch line for storage. Water from the wellfield pump station can be simultaneously conveyed to the reservoir via a line that is tied-in to the same 20-inch line. Water from the reservoir is then conveyed back to the 14-inch line below the intertie for distribution in the City's system.

The existing intertie allows water from Buck Creek to be conveyed to the wellfield for injection at Well No. 2, while still providing supply to the City from Childs Reservoir. The system piping is such that water from Buck Creek could be conveyed simultaneously to the reservoir for storage/distribution and to the wellfield for injection at Well No. 2; however, additional pressure control valves may be required to control the proportion of flow conveyed to the reservoir and the wellfield. Evaluation, design, and installation of the necessary valves are recommended prior to performing the ASR pilot test.

Under normal well field operation, water from Well No. 1 and/or Well No. 2 is chlorinated and conveyed to a surge tank reservoir. Water from Well No. 2 can be collected either as natural artesian flow (without pump operation) or actively pumped. Water from the surge tank flows to the pump station and is then conveyed to Childs Reservoir via a single 20-inch line. During ASR injection, treated source water would be conveyed from the Buck Creek intertie to the wellfield by gravity flow, where a second intertie prior to the pump station allows water to be conveyed to the wellhead of Well No. 2. Because there is a single 20-inch line leading from the wellfield to the intertie with Childs Reservoir, Well No. 1 could not be used for water supply during ASR injection under the current configuration.

The Well No. 2 wellhead piping and valves were also improved to allow both injection and extraction of water. A pressure gauge and flow meter were installed to measure operating pressures and instantaneous recharge/withdrawal rates and cumulative flow volumes. The wellhead is plumbed to waste discharge to allow flushing of the piping (to remove pipe scale and sediment) prior to the start of each recharge cycle.

For ASR storage, water could be injected down the discharge piping of a line-shaft turbine pump and/or down the annulus between the well casing/borehole and the pump discharge pipe. Because the well is under artesian conditions potential problems with air entrainment due to cascading water and well screen fouling should be minimal. Recovery of water would occur as either artesian flow or under pumped conditions, as under current operation of Well No. 2.

The current conveyance system is capable of delivering water to Well No. 2 at a pressure of about 225 psi. As discussed in Section 5.3, injection at this pressure would result in estimated annual storage of about 175 acre-feet. Higher injection rates and storage volumes could be achieved if booster pumps were installed near the wellhead to increase the injection pressures. We recommend proceeding with the pilot test using the current system configuration without installing booster pumps; however, if pilot testing is favorable the benefit of installing booster pumps to increase storage should be evaluated.

7.3 Source Water

As described above, the source water for an ASR pilot test would be the same as that planned for full-scale ASR operation using chlorinated water from the Buck Creek diversion. This source water meets drinking water standards and would thus not degrade beneficial use of the target storage aquifer. As mentioned above, the distribution system next to the ASR well must always be flushed prior to beginning recharge to limit introduction of suspended solids into the well.

7.4 Baseline Well Testing

The first step of the ASR pilot test program would be baseline testing of the ASR well. The objective of the baseline testing is to verify the recharge and pumping capacities of the ASR well/pump/piping combination, both of which are used to define the subsequent pilot testing program. It also documents the well's initial hydraulic performance as measured by specific capacity – flow rate in gpm divided by drawdown/mounding in feet – for both recharge and recovery; this baseline measurement allows evaluation of changes in well performance throughout operation.

The baseline testing would start with a one-day step-rate pumping test, involving pumping at progressively higher rates for relatively short durations to document initial specific capacity and well efficiency of the ASR well under varying pumping conditions. Following the step-rate pumping test, a one-day step-rate recharge test would be conducted. It would follow the same general process as the step-rate pumping test, but would involve injecting water into the ASR well at progressively higher rates. From this baseline testing, recharge and recovery rates would be chosen for the balance of the ASR pilot test.

A constant-rate pumping test would not be needed in this baseline testing since aquifer parameters and presence of aquifer boundaries would be determined from data collected during the subsequent long-term recharge and recovery testing cycles.

7.5 Recharge, Storage, and Recovery Cycles

We recommend the following recharge, storage, and recovery cycle for the initial pilot test:

- Recharge at a constant rate (to be determined from baseline testing) for 21 days (3 weeks);
- 28-day (4-week) storage period in which no recharge or recovery occurs, other than periodic minimal pumping for water quality sampling; and
- Recover at a constant rate (to be determined) for 28 days (4 weeks). The recovery
 rate and duration would be determined such that a substantially greater volume of
 water is recovered than recharged (e.g., 150 percent of recharge volume). This
 would allow a more complete assessment of mixing in the aquifer by evaluating
 water quality changes in the recovery water as recovery proceeds.

The above recharge, storage, and recovery time periods would serve as a reasonable starting point for the ASR pilot test. Results from this initial test could then lead to several additional cycles of testing under a range of conditions, with the expectation that the testing would eventually be equivalent to the expected full-scale operational condition. For example, Cities of Seattle and Walla Walla have conducted ASR pilot testing for many years, refining and optimizing operations over that period while putting the recovered water to beneficial use.

7.6 Hydraulic Monitoring

The purpose of an ASR pilot test is to collect sufficient information to predict the long-term performance of an ASR program. To that end, extensive hydraulic and water quality monitoring is necessary throughout the testing program. We recommend installing one monitoring well within a few hundred feet of the ASR well - within the expected extent of the recharge bulb - and completed across the same portion of the target aquifer as the ASR well (Well No. 2).

Although no nearby wells appear to be completed in the ASR target aquifer, monitoring of nearby wells completed in overlying aquifers is also important. Based on the confined nature of the target aquifer, there appears to be a very low probability of adverse impact to other wells, surface water, wetlands, slope stability etc. associated with ASR in the target aquifer. Monitoring of existing wells provides the empirical data needed to confirm that ASR poses no potential adverse impacts to neighboring wells and the environment, and thus determine the need for a project mitigation plan (WAC 173-157-160).

The following hydraulic monitoring elements would be conducted throughout the initial pilot test:

- Monitor water levels continuously (data logger) in the ASR well;
- Monitor barometric pressure continuously (data logger) at the ASR well to allow assessment and correction of water level change due to barometric change;
- Monitor water levels continuously in the target aquifer monitoring well (data logger);
- Monitor water levels in accessible neighboring wells completed in aquifers overlying the target aquifer. Potential wells include the City's Well No. 1 and Observation Well Nos. 1 and 2.
- Recharge and recovery flow rates, both instantaneous (gpm) and cumulative volume (gallons).
- Monitor injection pressure at the ASR wellhead throughout recharge.
- Monitor pressure throughout the City's distribution system in the vicinity of the ASR well.

Evaluation of the hydraulic monitoring data would include the following:

- Aquifer parameters (transmissivity, storativity) and identification of hydraulic boundaries to the aquifer.
- Magnitude and extent of recharge mounding and its dissipation with time during the storage period.
- Magnitude and extent of drawdown cone during pumping and its dissipation with time and distance.
- Water level changes at nearby well(s) in shallower water-bearing zones.
- Identification of affected area from ASR.

- Influences of external effects (barometric pressure, pumping of neighboring wells) on aquifer water levels.
- Capture zone extent during recovery. This likely cannot be determined without use of analytical or numerical groundwater modeling tools.
- Baseline well performance (as measured by specific capacity) in both recharge and recovery modes, and changes in that performance following completion of the full ASR cycle conducted in the initial test.
- Distribution system pressure response in the vicinity of the ASR well.

7.7 Water Quality Monitoring

Water quality monitoring will be performed in the ASR well throughout the pilot test for the purposes of:

- Documenting that water being recharged to the target aquifer meets drinking water standards and thus will not degrade beneficial use of the groundwater resource;
- Document the quality of recovered water to meet the City's requirements for returning it to the distribution system;
- Evaluate how mixing of recharge water with ambient groundwater affects recoverability of water meeting drinking water standards and other City requirements, and use this information to adjust duration/rate of recharge and recovery, and duration of storage, to optimize recovery;
- Document fate of disinfection byproducts (THMs/HAAs), if present, and residual chlorine in the storage aquifer; and
- Evaluate water quality changes that can affect hydraulic performance of the ASR well.

Table 7.1 provides a preliminary water quality monitoring schedule (frequency and analytes) for the ASR well during baseline well testing (document ambient groundwater quality), and then during the recharge, storage, and recovery cycles during the initial pilot test. Water quality monitoring for each cycle of the pilot test is further discussed in the following sections. All water quality analyses will be performed at a laboratory certified by the Washington State Department of Ecology and Department of Health. Because ASR is being considered as an alternate municipal water source for the City, Table 7.1 includes a comprehensive analyte list to assess compliance with drinking water standards and the antidegradation policy in the initial test. We recommend that the monitoring schedule in Table 7.1 be adjusted, particularly constituents serving as prospective tracers of the recharge water (i.e., major anions and cations), following completion of the baseline well testing. Likewise, we recommend that the monitoring frequency and analytes be refined in subsequent testing cycles, based on results from the initial test, so as to collect those data of greatest value for documenting ASR performance.

7.7.1 Ambient Groundwater in Storage Aquifer

Analyses of ambient groundwater quality in the storage aquifer will be performed during the baseline step-rate recovery test. The baseline water quality analyses will document background groundwater conditions in the target aquifer preceding the initial recharge cycle. During the baseline step-rate recovery test, the field parameters (temperature, pH, dissolved oxygen, redox potential, specific conductivity) would be monitored at approximately 15-minute intervals (expected pumping duration of up to 8 hours). In addition to the collection of field parameters, a one-time sampling event will be performed near the end of the baseline step-rate recovery test. This sample will be analyzed for a comprehensive suite of general chemistry constituents and disinfection byproducts (Table 7.1).

7.7.2 Recharge Source Water

Water quality analyses of the recharge source water will be performed during the 21-day recharge cycle of the initial pilot test. Field parameters will be measured daily to evaluate general water quality changes in the source water over the recharge duration. Total suspended solids (TSS) will also be analyzed daily to closely track the mass of suspended solids entering the ASR well during recharge. The other constituents in the monitoring program will be analyzed both at the start of the recharge cycle and at an approximate 7-day interval thereafter during the recharge cycle (total of four sample events). Disinfection byproducts will be monitored to document the range of concentrations in the recharge water, and ensure compliance with drinking water standards and the antidegradation policy. Prospective tracers will be monitored during the recharge cycle to document their ranges of concentrations for comparison during the storage and recovery cycles. The comprehensive list of general water quality and drinking water parameters will document the range of concentrations in the source water and confirm that the source water meets drinking water standards.

7.7.3 Stored Water

Water quality monitoring of water stored in the aquifer will occur during the 28-day storage cycle of the pilot test. Field parameters, prospective tracers, and disinfection byproducts will be sampled at an approximately 7-day interval during the storage cycle. Water quality analyses performed during the storage cycle of the pilot test are primarily meant to monitor changes in constituent concentrations from physical mixing and/or chemical reactions between the source water and ambient groundwater. Disinfection byproducts are monitored to ensure they remain below drinking water standards, and to evaluate potential concentration changes caused by their creation (reaction of residual chlorine with natural organic matter) and/or degradation and dispersion in the storage aquifer. The full list of general water quality and drinking water parameters will be analyzed at an approximately 14-day interval to document potential concentration changes relative to the recharge water that may occur during storage (Table 7.1).

7.7.4 Recovered Water

Water quality monitoring of recovered water will occur during the 28-day recovery cycle of the initial pilot test. Field parameters will be measured daily throughout recovery to document general water quality changes. Disinfection byproducts will be sampled and

analyzed at an approximately 3-day interval during the recovery cycle to document compliance with drinking water standards. Tracer constituents will also be analyzed at an approximately 3-day interval, to estimate the proportion of recharge water and ambient groundwater being recovered over time. The full list of general water quality/drinking water parameters will be analyzed at an approximately 7-day interval to document water quality changes throughout recovery and how potentially changing water quality compares with drinking water standards (Table 7.1).

7.7.5 Water Quality Monitoring Data Evaluation

Reported laboratory analytical results will be qualified by the laboratory to identify quality control (QC) concerns in accordance with the specifications of the analytical methods. An independent data quality review summary can also be completed.

The water quality data would be evaluated to evaluate concentrations in the recharge, stored, and recovered waters relative to drinking water standards and the antidegradation policy. In addition, data from the complete program should be evaluated thoroughly to document water quality mixing and help assess recoverability of the recharge water. The fate of disinfection byproducts in the aquifer can be illustrated by plotting concentrations with concentrations of residual chlorine over time throughout the full initial test program.

7.8 Threshold Values

Threshold values for operation of the initial ASR pilot test include:

- Recharge water will meet drinking water standards.
- Recovery pumping rates will be maintained so as to not dewater the pump in the ASR well.
- Recovery water returned to the City's water distribution system will meet state
 drinking water standards for Group A public water systems and other
 requirements that the City may have.

7.9 Reporting of Initial Pilot Test

Following completion of the initial pilot test outlined above, a report of test findings would be prepared for review and discussion prior to proceeding with subsequent testing cycles. The report would include the results and evaluation of the hydraulic and water quality monitoring from the initial test as outlined above. The report should make preliminary conclusions regarding feasible recharge and recovery rates for the ASR well, water quality relative to drinking water standards throughout the duration of the ASR cycle, recoverability of the water recharged, and available storage volume using Well No. 2. If warranted based on water quality differences between source and aquifer ambient water qualities and observed changes in the recovered water, geochemical modeling could also be conducted to evaluate geochemical reactions (e.g., mineral precipitation) that could reduce hydraulic performance of the ASR well. The report should also make recommendations for subsequent testing, including revisions to hydraulic and/or water quality monitoring.

8 Conceptual Project Operation Plan

Although it is premature within a feasibility study to present a plan for operation of an ASR system (as per WAC 173-157-130), this section provides a general concept to illustrate how the City of White Salmon might apply ASR as an additional water source to help meet its future water demands. A more detailed and accurate operation plan would need to be developed following pilot testing of an actual ASR system, should the City choose to proceed with ASR based on demonstrated success of pilot testing.

In concept, application of ASR by the City of White Salmon would involve the following general steps:

- Convey treated water from the Buck Creek diversion in excess of water supply
 needs during the months of November through April to the wellfield. Based on
 the information in Section 2.4, it is anticipated that about 600 gpm or 480 acrefeet of treated Buck Creek water might be available for storage during the months
 of November through April under current system demands. The City would need
 to secure a seasonal water right to divert water from Buck Creek in excess of its
 current authorization;
- Recharge the water into the aquifer tapped by Well No. 2; and
- Subsequently pump the full quantity of stored water from the ASR well during the peak demand months (e.g., June through September).

The quantity of water that can be stored would depend ultimately on achievable injection pressures, the efficiency of Well No. 2, and the surrounding aquifer conditions. Based on existing well performance data and the range of expected injection pressures, annual storage volumes on the order of 175 to 340 acre-feet were estimated for this feasibility study. Actual storage volumes would be determined through pilot testing.

Assuming the upper end of the range of storage volumes is achievable and a new seasonal water right for diversion from Buck Creek of 340 acre-feet is issued for the ASR project, the City would continuously divert water at the Buck Creek diversion. During the months of November through April, the City would use about 320 acre-feet (average of about 400 gpm) to meet demand (or supplement with Well No. 1 supply) while 340 acre-feet of water (425 gpm) is stored via the ASR well. The combined quantity of 825 gpm is well below the 1,000 gpm treatment capacity of the Buck Creek diversion.

Stored water could be withdrawn from Well No. 2 as early as May after the storage period ends. However, it is likely that most of the recovery of stored water would occur from June through September, when system demands are highest. Assuming all of the stored water is recovered over this period, the average pumping rate would be about 630 gpm to remove 340 acre-feet. Well No. 2 is currently capable of yielding about 600 gpm and, with the increase pressures produced during the storage period, should be able to produce higher yields during the recovery period.

ASPECT CONSULTING

Throughout the non-storage months of May through October, demand will be met from a combination of Buck Creek and Well No. 1 and Well No. 2. Buck Creek will likely be used to the full treatment capacity, since it is the City's lowest cost source (gravity-supplied, no pumping costs).

Under the Columbia Basin Water supply grant funding requirements, a portion of the net water savings or "water supplies" resulting from implementation of the ASR project (i.e., water stored and recovered via ASR) shall be permanently conveyed to Ecology. The quantity of water to be conveyed to Ecology is proportionate to Ecology's contribution to the total cost of the project. It is our understanding that 1/3 of the water conveyed to Ecology will be dedicated to instream flows while the remaining 2/3 of the water conveyed to Ecology will be available for appropriation for out-of-stream uses.

The method by which Ecology's portion of the net water savings will be provided has not been finalized, but will be formalized as part of a memorandum of agreement (MOA) to be developed between Ecology and the City. The MOA will also define the timing when Ecology's portion of water will be provided (e.g., a fixed schedule or a variable schedule determined each year). The City's preferred option will likely be to provide Ecology's portion of water as discharge from the ASR well (Well No. 2) directly to the White Salmon River. There is currently a settling pond and waste discharge pipe extending from Well No. 2 to the river; it is expected that this existing infrastructure would be sufficient to convey Ecology's portion of water to the river. One advantage of this approach is that Well No. 2 is under artesian conditions, such that the City could provide water from the well as passive flow without incurring pumping expenses, assuming the passive flow rates are high enough.

9 Limitations

Work for this project was performed and this report prepared in accordance with generally accepted professional practices for the nature and conditions of work completed in the same or similar localities, at the time the work was performed. It is intended for the exclusive use of City of White Salmon for specific application to the referenced property. This report does not represent a legal opinion. No other warranty, expressed or implied, is made.

10 References

- Ames, L.L., 1980, Hanford Basalt Flow Mineralogy: Richland, Washington, Pacific Northwest, Laboratory Report No. PNL-2847, 447 p.
- Aspect Consulting, 2009, Hydrologic Report, Husum/BZ Corner Subarea, Prepared for Klickitat County Planning Department, November 4, 2009.
- Bauer, H.H., J.J. Vaccaro and R.C. Lane, 1985, Maps showing ground-water levels in the Columbia River Basalt and overlying material, spring 1983, southeastern Washington, U.S. Geological Survey Water-Resources Investigations Report 84-4360.
- Bauer, H.H., and Hansen, A.J., Jr., 2000, Hydrology of the Columbia Plateau Regional Aquifer System, Washington, Oregon, and Idaho: U.S. Geological Survey Water-Resources Investigations Report 96-4106.
- Bela, J. L., 1982, Geologic and Neotectonic Evaluation of North-Central Oregon: The Dalles 1° x 2° Quadrangle. Oregon Department of Geology and Mineral Industries, GMS-27.
- Bell Design Company, 2002, Buck Creek Flow Measurements, Prepared for City of White Salmon, June 25, 2002.
- Department of Energy, 1988, Site Characterization Plan Consultation Draft, Reference, Repository Locations, Hanford Site, Washington, U.S. Department of Energy Office of Civilian Radioactive Waste Management, DOE/RW-1064.
- Driscoll, F.G. 1986, Groundwater and Wells (2nd Edition), Johnson Screens, St. Paul, Minnesota.
- Federal Register, 2010, Volume 75, Number 9, January 14, 2010.
- Fetter, C.W., 2001, Applied Hydrogeology (4th Edition), Prentice-Hall Inc., Upper Saddle River, New Jersey.
- Futrell, Redford, Saxton, 1973, Town of White Salmon, Washington, A Report on an Engineering Design Study and preliminary Design of Water System Facilities, December 17, 1973.
- Hansen, Jr. A.J., J.J. Vaccaro, and H.H. Bauer, 1994, Ground-Water Flow Simulation of the Columbia Plateau Regional Aquifer System, Washington, Oregon, and Idaho, U.S. Geological Survey Water-Resources Investigations Report 91-4187.
- Korosec, M.A., compiler, 1987, Geologic map of the Hood River quadrangle, Washington and Oregon: Washington Division of Geology and Earth Resources Open File Reports 87-6.

- Mark Yinger Associates, 1999, Aquifer Test Report Power House Road Test Well City of White Salmon, prepared for Bell Design Company, January 22, 1999.
- Mark Yinger Associates, 2001, Aquifer Test Report Production Well #2 City of White Salmon, prepared for Bell Design Company, May 21, 2001.
- Mark Yinger Associates, 2002, City of White Salmon Wellhead Protection Plan, prepared for City of White Salmon Director of Public Works, May 6, 2002.
- Myers, C.W. and S.M. Price 1981, Subsurface Geology of the Cold Creek Syncline. Prepared for U.S. Department of Energy by Rockwell Hanford Operations, Richland, Washington, RHO-BWI-ST-14.
- Parkhurst, D.L., Thorstenson, D.C., and Plummer, L.N., 1980, PHREEQE--a computer program for geochemical calculations: U.S. Geological Survey Water-Resources Investigations Report 80-96, 195 p. (Revised and reprinted, 1990.)
- Pyne, R.D.G., 2005, Aquifer Storage Recovery: A Guide to Groundwater Recharge through Wells, ASR Press, 608 p.
- Reidel, S.P., G.R. Scott, D.R. Bazard, R.W. Cross, and B. Dick, 1989, Post-12 Million Year Clockwise Rotation in the Central Columbia Plateau, Washington, Tectonics, Vol. 3, No. 2, Pages 251-273, April 1984.
- Steinkampf, W.C., 1989, Water-Quality Characteristics of the Columbia River Regional Aquifer System in Parts of Washington, Oregon, and Idaho, USGS Water-Resources Investigation report 87-4242.
- Steinkampf, W.C., Hearn, P.P., Jr., 1996, Ground-Water Geochemistry of the Columbia Plateau Aquifer System, Washington, Oregon, and Idaho, USGS Open-File Report 95-467.
- Tolan, T.L., Reidel, S.P., Beeson, M.H., Anderson, J.L., Fecht, K.R., and Swanson, D.A., 1989, Revisions to the Estimates of the Areal Extent and Volume of the Columbia River Basalt Group, in Reidel, S.P., and Hooper, P.R., eds, Volcanism and Tectonism in the Columbia River Flood-Basalt Province. Geological Society of America, Special Paper 239.
- Vaccaro, J.J., 1999, Summary of the Columbia Plateau Regional Aquifer-System Analysis, Washington, Oregon, and Idaho, U.S. Geological Survey Professional Paper 1413-A.
- WPN and Mark Yinger Associates, 2002, Wind/White Salmon Watershed (WRIA 29) Level 1 Technical Assessment, Prepared by Envirovision Corporation for WRIA 29 Planning Unit, January 2003.
- Wellman, Mike, 2009, personal communication.
- Whiteman, K.J., J.J. Vaccaro, J.B. Gonthier and H.H. Bauer, 1994, The Hydrogeologic Framework and Geochemistry of the Columbia Plateau Aquifer System, Washington, Oregon, and Idaho. U.S. Geological Survey Professional Paper 1413-B.

Table 2.1 - Water Right Summary

City of White Salmon ASR, White Salmon, Washington

Existing Water Rights

Water Right					
Document Number	Document Type	Source Name	Priority Date	Qi	Qa (acre-feet)
SWC3474	Certificate	Buck Creek	5/18/1923	2 cfs	not listed
CS4-SWC3474	Change ROE	Well Field	4/9/1999	1,795 gpm	688
SWC7109	Certificate	Buck Creek	2/13/1957	2 cfs	688
CS4-SWC7109	Change ROE	Well Field	4/9/1999	1,795 gpm	688
SWC10252	Certificate	Jewett Springs	2/27/1963	1 cfs	688 (non-additive)

Pending Applications

Water Right Document Number	Document Type	Source Name	Priority Date	Qi	Qa (acre-feet)
G4-32539	Application	Up to 3 wells	4/28/1997	1,500 gpm	1,600
G4-32540	Application	Up to 3 wells	4/28/1997	1,500 gpm	1,600
G4-32541	Application	Up to 3 wells	4/28/1997	1,500 gpm	1,600
S4-35068	Application	Buck Creek	9/20/2005	3,000 gpm	1,500

Notes:

Qi - Maximum authorized instantaneous diversion or withdrawal

Qa - Maximum authorized annual diversion or withdrawal

gpm - gallons per minute

cfs - cubic feet per second

The Change ROEs for Certificate Nos. 7109 and 3474 limited the combined instantaneous rate and annual use under these certificates to 4 cfs (1,795 gpm) and 688 acre-feet per year, respectively.

The Change ROEs for Certificate Nos. 7109 and 3474 added Well No. 1 and Well No. 2 as additional points of withdrawal. The Buck Creek source originally authorized under these rights was maintained as a point of diversion.

The annual quantity authorized under Certificate No. 10252 is non-additive to the quantities authorized under Certificate Nos. 7109 and 3474 and associated Change POEs.

Certificate Nos. 7109 and 3474 and associated Change ROEs.

Application S4-35068 originally requested the White Salmon River as the source of appropriation. The application was amended to specify the Buck Creek diversion as the proposed source.

Table 2.2 - Buck Creek Flows and City of White Salmon Water Use

Aquifer Storage and Recovery Feasibility Assessment White Salmon Washington

	Buck Creek Flows (2001 - 2004)			City's Usage (2003 - 2008)			
		Monthly Average	Average Monthly Total	Monthly Average		Average Monthly Total	
Month	Years of Data	(cfs)	(acre-ft)	(cfs)	(gpm)	(acre-ft)	
January	3	61.0	3,749	0.9	412	56.5	
February	3	42.7	2,392	0.8	379	47.4	
March	3	71.0	4,368	0.8	369	50.5	
April	3	61.0	3,630	0.9	404	53.6	
May	2	51.8	3,187	1.3	564	77.3	
June	2	26.1	1,553	1.7	771	102.2	
July	1	20.4	1,252	2.1	950	130.2	
August	2	20.5	1,264	2.0	884	121.1	
September	2	20.5	1,258	1.4	644	85.3	
October	2	20.6	1,269	1.0	455	62.3	
November	3	18.2	1,081	0.9	389	51.6	
December	3	30.7	1,885	0.8	362	49.5	
Yearly Total		-	26,888	-	-	888	

Table 4.1 - Summary of Existing Surface Water RightsAquifer Storage and Recovery Feasibility Assessment
White Salmon, Washington

Fu- #	0	M	D	Dais aite Data	D	0:	LION	0-1	I. A	TDO	00/0	01-14-40	
File #	Cert #		Doc	Priority Date		Qi	UOM	Qa	Ir Acres		QQ/Q	Src's 1stSrc	TDE AM
S4-*15790CWRIS S4-30120CWRIS	7846	DAVISON G E CORBEILLE R & B	Cert Cert	12/4/1959 11/30/1989		0.01	CFS CFS	1	0.5	03.0N 10.0E 01 03.0N 10.0E 01	SW/NW	1 UNNAMED S 1 UNNAMED S	
S4-*02336CWRIS	1545	READ T E	Cert	6/19/1928	-	0.05	CFS		7	03.0N 10.0E 02	OVV/IVV	1 UNNAMED S	
S4-25827GWRIS	1040	HALLETT BRIAN	Cert	4/3/1978		0.04	CFS	8	2.5		SE/NW	1 UNNAMED S	
S4-28887CWRIS		HALLETT BRIAN	Cert	3/12/1986		0.13	CFS	1			SE/NW	2 UNNAMED S	
S4-29171CWRIS		HALLETT BRIAN	Cert	12/26/1986	IR	0.09	CFS		2.5	03.0N 10.0E 02	SE/NW	1 UNNAMED S	STREAM
S4-23463CWRIS		Mt Adams Orchard Corporation	Cert	7/1/1974		0.7	CFS	196	70		NE/NW	1 UNNAMED S	
S4-25155CWRIS		Mt Adams Orchard Corporation	Cert	4/21/1977		0.7	CFS	196	70		NW/NE		STERN LAKE
S4-*18921CWRIS	9719	CONNOLLY M J YOUNGBLOOD AMOS D	Cert	3/24/1965		0.1	CFS CFS	36	9		NW/SW	1 UNNAMED S 1 UNNAMED S	
S4-26815CWRIS S4-01272CWRIS		HENDERSON C V	Cert Cert	5/16/1980 7/12/1962		0.02	CFS	1 81	40		NW/SE NW/NE	1 UNNAMED S 2 UNNAMED S	
S3-+21178CWRIS		ASTON W W SR	Cert	5/18/1973		0.01	CFS	4.6	10		SW/SE	1 UNNAMED S	
S3-+21176CWRIS		CONNOLLY ERSULA	Cert	9/18/1973		0.01	CFS	2	10	03.0N 10.0E 14	SW/SE	1 UNNAMED S	
S4-*12157CWRIS	6483	US Dept Fish & Wildlife	Cert	2/26/1953		30	CFS				SW/NW	1 WHITE SALI	
S4-*01692CWRIS	174	CLARK H C	Cert	4/20/1926		0.25	CFS		15	03.0N 10.0E 24		1 UNNAMED S	
S3-+00900CWRIS		Mt Adams Orchard Corporation	Cert	7/16/1968	IR,DM	0.09	CFS	44.6	15	04.0N 10.0E 01	NW/SE	1 UNNAMED S	SPRING
S3-+00901CWRIS		Mt Adams Orchard Corporation	Cert	7/16/1968	IR,DM	0.1	CFS	44.8	15	04.0N 10.0E 01	SE/SE	1 UNNAMED S	
S3-+00903CWRIS		Mt Adams Orchard Corporation	Cert	7/16/1968		0.04	CFS	5.6		04.0N 10.0E 01	SE/SE	1 UNNAMED S	
S3-+00905CWRIS		Mt Adams Orchard Corporation	Cert	7/16/1968		0.2	CFS	_	25	04.0N 10.0E 01	00/NE	1 UNNAMED S	
S3-+00907CWRIS S3-+00909CWRIS		Mt Adams Orchard Corporation	Cert Cert	7/16/1968 7/16/1968		0.2	CFS CFS	84.1 58.1	30 20	04.0N 10.0E 01 04.0N 10.0E 01	S2/NE SE/SW	1 UNNAMED S	
S3-+00909CWRIS		Mt Adams Orchard Corporation Mt Adams Orchard Corporation	Cert	7/16/1968		0.13	CFS		25	04.0N 10.0E 01	SE/SVV	1 HANGMAN	
S4-*00781CWRIS	1128	MAY G H	Cert	7/31/1908		0.5	CFS	70.0	20	04.0N 10.0E 01	SW/SW	1 GILMER CR	
S4-*04507CWRIS	1575	RAYBURN U W ET AL	Cert	3/4/1938		0.1	CFS		20		SE/SW	1 UNNAMED S	
S4-*05904CWRIS	2705	STRODE B A / C F	Cert	9/24/1943		0.2	CFS		12	04.0N 10.0E 01	SW/SW	1 GILMER CR	
S4-*19515CWRIS	9792	GROSS W A	Cert	3/11/1966		0.01	CFS	1		04.0N 10.0E 01	SW/NW	1 UNNAMED S	
S4-*00628CWRIS	1188	MCFARLAND J M	Cert	5/25/1921	IR,DS	0.3	CFS		15	04.0N 10.0E 02		1 PECK CR *	
S4-*06006CWRIS	2122	HARRISON C R	Cert	4/20/1944		0.02	CFS		1		NW/SE	1 SPRING CR	EEK
S4-*15736CWRIS	8168	KYTE A D ET UX	Cert	10/26/1959		0.06	CFS	9	3	04.0N 10.0E 02	SW/NE	1 PECK CR *	
S4-*15737CWRIS	8218	GROSS G E ET UX	Cert	10/26/1959		0.03	CFS	40			SE/NW	1 PECK CR *	NO PINO
S4-*16281CWRIS	9135	KELLY C / M	Cert	8/18/1960		0.06	CFS	10	5	04.0N 10.0E 02	S/V1/SE	2 UNNAMED S	
S4-01162CWRIS S4-30135		MEYERS LAWRENCE B Mt Adams Orchard Corporation	Cert Cert	7/28/1964 1/2/1990		0.03 2.5	CFS CFS	3 970	805		SW/SE SE/SE	1 UNNAMED S 1 WHITE SALI	
S4-*03971CWRIS	5272	B Z Corners Water Co	Cert	5/1/1934		0.05	CFS	3,0	555	04.0N 10.0E 02	3-/0-	1 B Z CR *	
S3-+21570CWRIS	<u> </u>	HAYS VETA	Cert	8/1/1973		0.01	CFS	1			E2/NW	2 UNNAMED S	SPRING
S4-*00812CWRIS	645	COLBURN C L	Cert	8/29/1922	IR,DS	0.5	CFS		20	04.0N 10.0E 11	N2/SW	1 OLD LOGGII	NG CAMP
S4-*02573CWRIS	1512	MAY G H	Cert	5/3/1929	IR,DS	0.1	CFS		5	04.0N 10.0E 11	SE/NW	1 CEDAR CRE	EK
S4-*04579CWRIS	2357	MCILROY M S	Cert	8/2/1938		0.1	CFS		12	04.0N 10.0E 11	SE/SW	1 EAST SPRIN	
S4-*13303CWRIS	7197	DE LAY A O	Cert	2/23/1955		0.01	CFS		1		NW/SE	1 UNNAMED S	
S4-*13304CWRIS	6881	BAUGHER E J	Cert	2/28/1955	· ·	0.01	CFS		11		NW/SE	1 UNNAMED S	
S4-*14543CWRIS S4-*15669CWRIS	7348 7708	CHAPMAN T A JOHNSON M L ET AL	Cert Cert	10/14/1957 8/28/1959		0.01	CFS CFS				NW/SE NW/SE	1 UNNAMED S	
S4-*15676CWRIS		ARNETT W H / M H	Cert	9/1/1959		0.04	CFS	3	1		NE/NE	1 UNNAMED S	
S4-*15738CWRIS		BEASLEY O M	Cert	10/27/1959		0.03	CFS	3	1		NE/NE	1 UNNAMED S	
S4-*15740CWRIS	8161	BEASLEY I G ET UX	Cert	10/27/1959	-	0.01	CFS	3	1		NE/NE	1 UNNAMED S	
S4-*15741CWRIS	8177	SKIDMORE J	Cert	10/27/1959	DS	0.01	CFS			04.0N 10.0E 11	NE/NE	1 UNNAMED S	SPRING
S4-*15742CWRIS	8162	GROSS H	Cert	10/27/1959	IR,DS	0.01	CFS	3	1	04.0N 10.0E 11	NE/NE	1 UNNAMED S	
S4-28939CWRIS		MCCLAIN C & G	Cert	5/16/1986		0.01	CFS	1			W2/NE	1 MCFARLANI	
S4-29139CWRIS	4.450	NEWTON LORIETA	Cert	10/20/1986		0.01	CFS	1			W2/NE	1 MCFARLANI	
S4-*03234CWRIS S4-*03767CWRIS	1459 1074	BIESANZ W A WALLACE F D	Cert Cert	11/19/1930 12/24/1932	· ·	0.05	CFS CFS		<u>2</u> 5		SW/NW SW/NW	1 CARSTENS 1 CARSTENS	
S4-*20025CWRIS		WEBER DON E	Cert	12/24/1932		0.07	CFS	120	40	04.0N 10.0E 12	SVV/INVV	1 WHITE SALI	
S4-*21184CWRIS	11188	MOON L E	Cert	8/23/1968		0.04	CFS	5	1.5	04.0N 10.0E 12	NW/SW	1 WHITE SALI	
S4-22908CWRIS		BENJAMIN/ENSIMINGER	Cert	4/29/1974		0.01	CFS	2		04.0N 10.0E 12		1 UNNAMED S	
S4-26523GWRIS		Mt Adams Orchard Corporation	Cert	1/8/1980	IR,FP	4	CFS	1431	880	04.0N 10.0E 12		1 WHITE SALI	MON RIVE
S4-30248GWRIS		HENNING-DRIVER K	Cert	4/20/1990	IR,DS	0.09	CFS	6.9	2.95	04.0N 10.0E 12	SW/NW	1 UNNAMED S	
S3-+00336CWRIS		GRIBNER W O	Cert	8/12/1970		0.05	CFS	7.5			NE/SW	1 UNNAMED S	
S4-*03123CWRIS	2360	JONES F T M ET AL	Cert	9/3/1930		33	CFS		60		SE/SE	1 WHITE SALI	
S4-*07298CWRIS		MOORE A F	Cert	7/1/1946		0.01	CFS				SE/SE	1 UNNAMED S	
S4-*14905CWRIS S4-23564CWRIS	8052	MURPHY A D TOLBERT J M & J M	Cert Cert	7/11/1958 6/17/1974		0.01	CFS CFS	49	17	04.0N 10.0E 13 04.0N 10.0E 13	SW/NW NW/NE	1 UNNAMED S 1 WHITE SALI	
S4-*08781CWRIS	3371	GROSS A J	Cert	5/9/1949		0.33	CFS	70	20		SE/NE	1 UNNAMED S	
S4-*09743CWRIS	4726	THOMPSON W R	Cert	7/6/1950		0.13	CFS		3	04.0N 10.0E 14	SE/NE	1 UNNAMED S	
S4-*20206CWRIS		MURPHY L A / B R	Cert	4/19/1967		1	CFS	2			SE/NE	1 UNNAMED S	
S4-*00935ABKCWRIS	3474	White Salmon City	Cert	5/18/1923		2	CFS				SE/SE	1 BUCK CREE	
S4-*14229CWRIS	7109	White Salmon City	Cert	2/13/1957		2	CFS	_			SE/SE	1 BUCK CREE	
S3-+20297CWRIS		CASAD ALICE SILVERTO	Cert	6/14/1972		0.01	CFS	1			SW/SE	1 UNNAMED S	
S3-+20298CWRIS	8054	CASAD ALICE SILVERTO CLARIDGE A J ET	Cert Cert	6/14/1972 11/17/1959		0.01	CFS CFS	1 24	8		SW/SE NW/SE	1 UNNAMED S	
S4-*15769CWRIS S3-+20631CWRIS	0004	SMITH LANE	Cert	11/17/1959	-	0.09	CFS	182	60		SW/SE	1 SPRING CR	
S3-+20631CWRIS S3-+21483CWRIS		SCHAMBRON DUANE ETUX	Cert	8/8/1973		1.5	CFS	529	175		NE/NE	1 WHITE SALI	
S4-22820CWRIS		OLSON KENT C	Cert	4/5/1974		0.01	CFS	2			SW/NW	1 UNNAMED S	
S4-24349CWRIS		SMITH L W ET UX	Cert	7/14/1976		0.12	CFS	19	5	04.0N 10.0E 24	SE/SW	1 UNNAMED S	
S4-27922CWRIS		SMITH LANE	Cert	5/6/1982		10	CFS				SW/SE	1 SPRING CR	
S3-+20661CWRIS		ARMSTRONG LEIGHTON	Cert	12/11/1972		0.02	CFS	2			NE/SW	1 SPRING CR	
S4-*22051CWRIS	11339	MITCHELL L C ET UX	Cert	3/2/1970		0.09	CFS	12.5	4		SE/NE	1 WHITE SALI	
S4-22940CWRIS	1	LOCKE WILLIAM RALPH CARMICHAEL H E	Cert	5/7/1974	, -	0.13	CFS	9	2.5		SE/NE	1 WHITE SALI	
S4-26368C S4-23371CWRIS		FRANK LEO B	Cert Cert	9/4/1979 9/4/1974		0.02	CFS CFS	0.5	0		NW/NW SE/SE	1 UNNAMED S 1 WHITE SALI	
S4-23371CWRIS S4-31663CWRIS		Sky Farm Center Inc	Cert	3/25/1993		0.02	CFS				NW/NE	3 UNNAMED S	
S4-*15868AWCWRIS	08821A	White Salmon Irrigation District	Cert	1/20/1960	-	2	CFS	472	189	04.0N 10.0E 27	,	2 UNNAMED S	
S4-03475C	3475	White Salmon Irrigation District	Cert	5/18/1923	· ·	4.5	CFS				NW/SE	1 BUCK CREE	
S4-31292		Bell Richard	Cert	6/11/1992	IR	0.02	CFS	1	0.5	04.0N 10.0E 35	S2/NW	1 UNNAMED S	SPRING
S4-31293		Bell Richard	Cert	6/11/1992		0.02	CFS	1	0.5		NW/SW	1 UNNAMED S	
S4-*12982CWRIS	7207	MOON H L	Cert	6/14/1954		0.48	CFS	72	24		SE/NW	1 CATHY CR *	
S4-*13522CWRIS	1	Fordyce Spring Inc	Cert	7/13/1955		0.23	CFS				SE/SE	1 LOST CREE	
S4-*16648CWRIS		APLIN S R	Cert	4/25/1961			CFS			04.0N 10.0E 36		1 UNNAMED S	
S4-*20746CWRIS	1	TALBERT H W	Cert	2/14/1968					ΛE		NW/NE	1 WHITE SALI	
S4-*21893CWRIS S4-01133CWRIS	00011	COSTANZO F & L H SCHMID LOREN L	Cert Cert	11/5/1969 2/21/1968		0.9	CFS CFS		45	04.0N 10.0E 36 04.0N 10.0E 36	NE/NE NW/NE	1 WHITE SALI 1 UNNAMED S	
OT UT TOOUTVINIO	<u> </u>												
		WALL MELVILLE F JR	Cert	5/14/1974	ואוטן	0.02	CES	4		04.0N 10.0E 36	INVV/SE	1 UNNAMED S	SPRING
S4-23072CWRIS S4-29830		WALL MELVILLE F JR Kempton Henry	Pmt	5/14/1974 9/28/1988		0.02			7	04.0N 10.0E 36	NW/SE	1 UNNAMED S	

Notes:
Qi - instantaneous rate of diversion
UOM - unit of measure
TRS - Township, Range, Section
QQ/Q - quarter-quarter section
Src - source(s)
CFS - cubic feet per second

Purpose of Use Codes: DM - multiple domestic DS - single domestic FS - fish propagation IR - irrigation
PO - power
ST - stockwater
WL - wildlife propagation

Table 4.2 - Summary of Existing Groundwater RightsAquifer Storage and Recovery Feasibility Assessment
White Salmon, Washington

File #	Cert #	Name	Doc	Priority Date	Purpose	Qi	UOM	Qa	Ir Acres	TRS	QQ/Q	Src's	1stSrc
CG3-22699C		Husum Water Association	Chng/ROE	2/16/2005	MU	20	GPM	11		03.0N 10.0E 02	NE/NE	1	Well 2
G4-27964GWRIS		GIBNEY D R	Cert	6/28/1982	IR,DS	60	GPM	15.2	4.31	03.0N 10.0E 02	NE/SW	1	WELL
G4-31472		Fordyce Spring Inc	Pmt	9/14/1992	DM	80	GPM	56		03.0N 10.0E 02		1	WELL
CS4-SWC7109	7109	White Salmon City	Chng/ROE	4/9/1999	MU	2	CFS			03.0N 10.0E 03	SE/SE	2	WELL
CS4-SWC3474	3474	White Salmon City	Chng/ROE	4/9/1999	MU	2	CFS			03.0N 10.0E 10	NE/NE	2	WELL
G3-+21592CWRIS		WEDRICK LAURENCE	Cert	8/22/1973	DS	8	GPM	2		03.0N 10.0E 13	NE/SE	1	WELL
G4-*06062CWRIS	4117	WEDRICK M S	Cert	9/22/1961	IR,DS	30	GPM	9.6	2	03.0N 10.0E 13	NE/SE	1	WELL
G4-*09545CWRIS	6574	MOORE A F	Cert	6/26/1968	IR,DS	20	GPM	6	2	03.0N 10.0E 13	SW/SW	1	WELL
G4-*08950CWRIS	6384	KRALL N E & M	Cert	9/11/1967	IR,DS	20	GPM	5	1	04.0N 10.0E 11	SE/NE	1	WELL
G4-*09643CWRIS	6418	HALE O G	Cert	8/8/1968	IR,DM	18	GPM	6	1	04.0N 10.0E 11	NE/NE	1	WELL
G4-*09648CWRIS	6707	BAUGHER F L	Cert	8/9/1968	IR,DS	15	GPM	3	1	04.0N 10.0E 11	NE/SE	1	WELL
G4-*10960ALCWRIS	07328A	BELDING C F	Cert	6/12/1970	IR,DS	24	GPM	2.5	0.5	04.0N 10.0E 11	NE/SE	2	WELL
G4-01145CWRIS		RANSIER F ET AL	Cert	7/12/1971	IR,DM	20	GPM	4.8	1	04.0N 10.0E 11	SE/NE	1	WELL
G4-29176CWRIS		PARSONS WILLIAM R	Cert	12/19/1986	IR,DM	13	GPM	5	1	04.0N 10.0E 11	N2/NE	1	WELL
G3-+21687CWRIS		MORRIS EUGENE C & G E	Cert	9/4/1973	DS	10	GPM	2		04.0N 10.0E 13	SE/NW	1	WELL
G4-*01010CWRIS	315	MOORE A F	Cert	10/8/1948	IR	17	GPM	8	2	04.0N 10.0E 13	SW/SE	1	WELL
G4-*04373CWRIS	3774	MOORE A F	Cert	7/3/1956	IR	50	GPM	28	7	04.0N 10.0E 13		1	WELL
G4-*10133CWRIS	6973	ROBBINS J E & D G	Cert	4/15/1969	DS	10	GPM	2		04.0N 10.0E 13	SE/NW	1	WELL
G3-+22699CWRIS		HUSUM WATER SERVICE	Cert	2/19/1974	DM	20	GPM	25		04.0N 10.0E 25		1	WELL
G3-+20529CWRIS		BAKER GEORGE	Cert	9/25/1972	DS	5	GPM	2		04.0N 10.0E 36	SE/NW	1	WELL
G4-25078CWRIS		KITCH ROBERT I	Cert	3/18/1977	DS	9	GPM	2		04.0N 10.0E 36	NE/NW	1	WELL

Table 5.1 - Summary of Well Completion Details in the Project Area

Aquifer Storage and Recovery Feasibility Assessment White Salmon, Washington

Well Yield Data **Water Level Data** Water DEM SWE Yield Drawdown Capacity Depth Dia System (ft bgs) (in.) Well Owner (well log) Label TRS Identifier Elevation Source Date (ft bgs) (ft MSL) (gpm) (ft) (gpm/ft) Date ID 6 CLAUDE CORBEILLE (578) 3N/10E-1E01 8/26/1992 941 Qtr-Qtr Section 8/26/1992 240 E01 110 831 1711 Qtr-Qtr Section 600 6 SCOTT M LOZIER J01 3N/10E-1J01 5/4/2000 5/4/2000 495 1216 65 6 AL PILAND X01 3N/10E-2X01 5/18/1987 522 Qtr-Qtr Section 6 ABEL NEWTON-VAN 3N/10E-2X02 5/15/1993 340 X02 522 Qtr-Qtr Section 145 6 DENNIS CHISHOLM A01 3N/10E-2A01 485 Qtr-Qtr Section 2 NORMAN & MYRNA NORTHROP | SOIL SOLUTIONS 7.5 A02 3N/10E-2A02 4/3/2009 485 Qtr-Qtr Section 120 6 VICTOR BLANDINE 3N/10E-2B01 8/14/1985 311 Qtr-Qtr Section 8/14/1985 10 301 B01 145 6 ED & DIANE SWICK B02 3N/10E-2B02 4/30/1996 311 Qtr-Qtr Section 4/30/1996 59 252 6 DAROLD E WARD B03 311 Qtr-Qtr Section 160 3N/10E-2B03 7/30/1999 40 6 PACIFIC POWER & LIGHT CO B04 3N/10E-2B04 311 Qtr-Qtr Section 11/24/1973 306 40 11 3.6 3/17/2005 100 6 DES VERLEY B05 3N/10E-2B05 311 Qtr-Qtr Section 6 D. K. DICKSON H01 3N/10E-2H01 9/11/1989 584 Qtr-Qtr Section 265 203 6 JAMES SPRING H02 3N/10E-2H02 8/27/1992 584 Qtr-Qtr Section 8/27/1992 533 104 40 0.43 G01 92 220 6 CHARLES MC GRAW 3N/10E-2G01 7/15/1978 472 Qtr-Qtr Section 7/15/1978 368 3N/10E-2G02 4/16/1996 472 Qtr-Qtr Section 457 85 6 CHRISTOPHER HOULT G02 4/16/1996 15 3N/10E-2C01 85 6 DES VERLEY C01 5/15/1990 436 Qtr-Qtr Section 6 TOM HUMBERG 8/11/1986 140 C02 3N/10E-2C02 436 Qtr-Qtr Section 8 FORDYCE SPRINGS INC 145 C03 3N/10E-2C03 6/28/1994 436 Qtr-Qtr Section 6/28/1994 47 389 105 6 TRACY ZOLLER C04 3N/10E-2C04 8/6/1986 436 Qtr-Qtr Section 6 PACICORP REAL ESTATE MGMT 6/13/2003 436 Qtr-Qtr Section 127 C05 3N/10E-2C05 8 FORDYCE SPRINGS 280 3N/10E-2C06 10/26/1994 05182 J 448 GPS 10/26/1994 54 394 C06 260 6 MICHAEL MCCASLIN D01 3N/10E-2D01 7/9/1980 420 Qtr-Qtr Section 407 6 JACK T SIMMS D02 3N/10E-2D02 10/24/1997 420 Qtr-Qtr Section 10/24/1997 13 65 8 KIRK SHARP 100 F01 3N/10E-2F01 9/1/1992 369 Qtr-Qtr Section 9/1/1992 12 357 36.6 6 Pacificorp J01 3N/10E-2J01 1/14/2009 821 Qtr-Qtr Section 5/11/1982 555 Qtr-Qtr Section 5/11/1982 101 454 6 D. R. GIBNEY L01 3N/10E-2L01 200 145 6 P JAMES WANNER M01 3N/10E-2M01 9/16/2003 452 Qtr-Qtr Section 9/16/2003 50 402 125 6 DICK WALTON M02 3N/10E-2M02 9/25/1995 452 Qtr-Qtr Section 6 JAMES WANNER M03 3N/10E-2M03 5/5/2005 211 241 320 5/5/2005 452 Qtr-Qtr Section 520 6 ERIC PLIMMER X01 3N/10E-3X01 5/19/1993 544 Qtr-Qtr Section 290 6 GARY OTTMAN X02 3N/10E-3X02 5/13/1993 544 Qtr-Qtr Section 310 544 Otr-Otr Section 6 WALTER HOWARD X03 3N/10E-3X03 10/13/2005 187 6 SCOTT MAYTUBBY X04 3N/10E-3X04 544 Qtr-Qtr Section 3N/10E-3H01 6 Pacificorp H01 1/13/2009 92.2 319 Qtr-Qtr Section 6 Pacificorp H02 3N/10E-3H02 1/6/2009 319 Otr-Otr Section 80 6 Pacificorp 80 H03 3N/10E-3H03 1/6/2009 319 Otr-Otr Section 3N/10E-3G01 8/6/1996 8/6/1996 375 6 WILLIAM FULTON G01 534 Qtr-Qtr Section 225 309 245 6 JOHN SHIGO NW01 3N/10E-3NW01 4/22/1998 738 Qtr-Qtr Section 6 MARK KING 390 NW02 3N/10E-3NW02 5/23/1994 738 Qtr-Qtr Section 3N/10E-3C01 6 BOYD FITZGERALD 7/15/1995 7/15/1995 419 425 C01 709 Qtr-Qtr Section 290 300 5/20/1993 5/20/1993 489 6 DES VERLEY C02 3N/10E-3C02 709 Qtr-Qtr Section 220 6 ROBERT HUNTINGTON 3N/10E-3C03 6/26/1995 450 615 C03 709 Qtr-Qtr Section 6/26/1995 259 6 BURSETT ATSUKO 3N/10E-3C04 C04 3/16/2000 709 Qtr-Qtr Section 250 709 Qtr-Qtr Section 385 6 BURSETT ATSUKO C05 3N/10E-3C05 3/21/2000 3/21/2000 300 409 6 RICHARD D RYDER 3N/10E-3D01 901 Qtr-Qtr Section 756 270 D01 6/19/2006 6/19/2006 145 115 6 EDWARD SWICK D02 3N/10E-3D02 3/14/2007 901 Qtr-Qtr Section 456 6 CURTIS STEELE F01 3N/10E-3F01 11/3/1995 11/3/1995 275 350 625 Qtr-Qtr Section 485 6 NORL PROCTOR F02 3N/10E-3F02 7/4/1995 625 Qtr-Qtr Section 400 6 WAYNE WOOSTER F03 3N/10E-3F03 10/17/1994 625 Qtr-Qtr Section 10/17/1994 275 350 340 6 MICHAEL GUNDLACH F04 3N/10E-3F04 11/7/2003 625 Qtr-Qtr Section 11/7/2003 265 360 140 6 WAYNE LEASE K01 3N/10E-3K01 6/7/1983 294 Qtr-Qtr Section 1242 14 CITY OF WHITE SALMON Q01 3N/10E-3Q01 4/23/2001 96350 B 477 GPS 11/18/1998 -226 703 180 6 DONALD OMAN L01 3N/10E-3L01 3/12/1992 486 Qtr-Qtr Section 486 Qtr-Qtr Section 145 6 LEN LERITZ L02 3N/10E-3L02 7/14/1993 265 6 WILLIAM PROTHERO JR L03 3N/10E-3L03 8/14/1998 486 Qtr-Qtr Section 100 6 MOSS - STEWARD 430 L04 3N/10E-3L04 6/15/1992 486 Qtr-Qtr Section 6/15/1992 50 436 7/10/2001 345 6 BRIAN UTHMANN M01 3N/10E-3M01 7/10/2001 562 Qtr-Qtr Section 270 292 570 6 JERRY AND BRENDA POWERS M02 3N/10E-3M02 8/4/2005 562 Qtr-Qtr Section 8/4/2005 410 152 6 RAYMOND DOUGDALE 13 60 X01 3N/10E-9X01 6/26/1969 1391 Qtr-Qtr Section 6/26/1969 47 1344 20 1.54 6 HARRY ELLIOT 3N/10E-9B01 3/17/1978 1301 Qtr-Qtr Section 3/17/1978 1246 120 B01 55 65 110 6 DAVID KAPP H01 3N/10E-9H01 4/9/2004 1240 Qtr-Qtr Section 4/6/2004 1175 6 DAVID KAPP G01 3N/10E-9G01 11/3/2006 1309 Qtr-Qtr Section 11/3/2006 80 1229 143 1312 Qtr-Qtr Section 100 6 JIM HOWARD 3N/10E-9Q01 11/28/1977 11/28/1973 1252 Q01 60 8 CITY OF WHITE SALMON 356 A01 3N/10E-10A01 11/13/1998 460 GPS 11/13/1998 111 349 12 CITY OF WHITE SALMON 3N/10E-10A02 11/24/1998 96350 B 438 GPS 11/24/1998 755 A02 125 313 9/2/1999 739 12 CITY OF WHITE SALMON A03 3N/10E-10A03 96350 B 438 GPS 8 CITY OF WHITE SALMON 484 GPS 500 3N/10E-10A04 4/20/1999 4/20/1999 140 344 A04 180 6 JASON SPADARO A05 3N/10E-10A05 8/19/2003 489 Qtr-Qtr Section 155 6 ROBERT ODELL A06 3N/10E-10A06 6/21/2006 489 Qtr-Qtr Section 6/21/2006 77 412 9/15/1999 9/15/1999 125 6 TOM BECKER H01 3N/10E-10H01 480 Qtr-Qtr Section 60 420 12 RON RIGGLEMAN (RIGGLEMAN ORCHARDS) 3N/10E-10J01 3/15/1999 386 Qtr-Qtr Section 3/15/1999 239 185 J01 147 370 6 RON RIGGLEMAN | RIGGLEMAN ORCHARD J02 3N/10E-10J02 4/24/2000 386 Qtr-Qtr Section 8 RON RIGGLEMAN | RIGGLEMAN ORCHARDS 4/18/2000 105 364 0.29 545 J03 3N/10E-10J03 4/18/2000 386 Qtr-Qtr Section 162 224 620 8 RIGGLEMAN ORCHARDS J04 3N/10E-10J04 5/29/2001 386 Qtr-Qtr Section 5/29/2001 162 224 6 ROBERT MARQUEZ 9/5/2001 845 Q01 3N/10E-10Q01 761 Qtr-Qtr Section 9/5/2001 745 16 445 6 DUDLEY CHELTON M01 3N/10E-10M01 8/31/1988 1189 Qtr-Qtr Section 6 WAYNE TENNANT 860 N01 3N/10E-10N01 7/9/1981 1254 Qtr-Qtr Section 7/9/1981 760 494 60 LAWRENCE M WEDRICK 1003 1.25 141 J01 3N/10E-13J01 9/1/1962 1003 Qtr-Qtr Section 6 DIANA SHEPLER 3N/10E-13J02 1003 Qtr-Qtr Section 2/13/2004 2/13/2004 J02 625 15 13 1.15 469 6 DIANA SHEPLER K01 3N/10E-13K01 1/26/1993 903 Qtr-Qtr Section 1/26/1991 380 523 15 16 0.94 775 Parcel 7/24/2008 401 6 ANDY MILLER R01 3N/10E-13R01 7/24/2008 325 450 Q01 4/20/1995 788 Qtr-Qtr Section 4/30/1995 788 160 6 DUSTY MOSS 3N/10E-13Q01 660 6 DUSTY MOSS Q02 3N/10E-13O02 5/3/1995 788 Qtr-Qtr Section 5/3/1995 460 328 841 Parcel 6 MICHAEL MCVEIGH 3N/10E-13P01 2/22/2005 2/22/2005 170 P01 0 841 610 6 MICHAEL MCVEIGH P02 3N/10E-13P02 7/5/2005 842 Qtr-Qtr Section 7/5/2005 455 387 385 6 DAN DARLING N01 3N/10E-13N01 3/30/1987 816 Otr-Otr Section 3N/10E-13N02 6 DAN DARLING N02 10/23/2006 816 Qtr-Qtr Section 10/23/2006 520 296 640 420 8 RAY MEADOWS 579 C01 3N/10E-14C01 12/2/1988 328 Qtr-Qtr Section 12/2/1988 200 128 6 RAY MEADOWS 875 328 Qtr-Qtr Section C02 3N/10E-14C02 4/23/1993 8 RAY MEADOWS C03 3N/10E-14C03 328 Qtr-Qtr Section 12/2/1988 200 128 420 420 8 RAY MEADOWS C04 3N/10E-14C04 328 Qtr-Qtr Section 12/2/1988 200 128 6 RON RIGGLEMAN (RIGGLEMAN ORCHARDS) 3/30/2006 3/30/2006 412 Parcel 400 C05 3N/10E-14C05 267 145 6 GEORGE MERSEREAU 440 K01 3N/10E-14K01 7/19/2007 610 Parcel 7/19/2007 325 285 573 6 JOHN E DEAN R01 3N/10E-14R01 11/3/2005 736 Parcel 11/2/2005 469 267 6 KARL SCHUEMANN 493 AB800 J 767 Otr-Qtr Section 12/28/2006 R02 3N/10E-14R02 12/28/2006 326 441 400 6 ERSULA HOWARD R03 3N/10E-14R03 9/4/2007 767 Qtr-Qtr Section 9/4/2007 300 467 456 6 HOWARD KREPS R04 3N/10E-14R04 6/26/2007 672 Parcel 6/26/2007 365 307 6 PHILIP JONES 3N/10E-15X01 1/29/1975 1/29/1975 X01 600 Qtr-Qtr Section 29 0 600 25 10 2.50 600 Qtr-Qtr Section 320 6 PAUL HOLMAN X02 3N/10E-15X02 7/23/1998 7/23/1998 276 324 19 9.50 160 6 B. VANHORN NE01 3N/10E-15NE01 4/22/1991 560 Qtr-Qtr Section 6 SAM DAVIS 3N/10E-15H01 8/20/2006 540 Qtr-Qtr Section 230 H01 12/7/1990 570 6 JOHN WENDT G01 3N/10E-15G01 12/7/1990 591 Qtr-Qtr Section 298 293 800 6 VERNON ELLSON C01 3N/10E-15C01 7/17/2001 935 Qtr-Qtr Section 7/17/2001 725 210 6 CHARLES SCWARTZ 3N/10E-15F01 9/26/1996 827 Qtr-Qtr Section 9/26/1996 545 F01 450 377 10 70 6 CARL RODGERS P01 3N/10E-15P01 7/16/1970 615 Qtr-Qtr Section 7/16/1970 18 597 50 0.20

Table 5.1 - Summary of Well Completion Details in the Project Area Aquifer Storage and Recovery Feasibility Assessment White Salmon, Washington

									Water	Level Da	ta		Well Yield Da	ata
Donath	D :-					Water	DEM		water			Viold		Specific
Depth (ft bgs)		Well Owner (well log)	Label	TRS Identifier	Date	System ID	DEM Elevation	Source	Date	SWL (ft bgs)	SWE (ft MSL)	Yield (gpm)	Drawdown (ft)	Capacity (gpm/ft)
95 63			P02 P03	3N/10E-15P02 3N/10E-15P03	5/30/2003			Qtr-Qtr Section Qtr-Qtr Section	9/15/1970 5/30/2003	23 25	592 590			
170	6	CARL RODGERS JR	P04	3N/10E-15P04	9/2/2008		615	Qtr-Qtr Section	9/2/2008	100	515			
345 75		BLAIR SIMPSON FRANK BULTER	N01 N02	3N/10E-15N01 3N/10E-15N02	6/8/1998 6/8/1979			Qtr-Qtr Section Qtr-Qtr Section	6/8/1998 6/8/1979	235 35	485 685			
165 125	6		N03 H01	3N/10E-15N03 3N/10E-16H01	6/12/1979 5/12/1987		720	Qtr-Qtr Section	6/12/1979 5/12/1987	40 95	680 1015			
280	6	ROBERT SNYDER	G01	3N/10E-16G01	7/21/1982		1246	Qtr-Qtr Section Qtr-Qtr Section		95	1015			
160 70		ROBERT SNYDER FRANK BUTLER	G02 R01	3N/10E-16G02 3N/10E-16R01	7/21/1982 8/28/1972			Qtr-Qtr Section Qtr-Qtr Section	7/21/1982 8/28/1972	75 43	1171 849	7.5	20	0.38
105		LEE SHISSLER	R02	3N/10E-16R02	7/7/1997		892	Qtr-Qtr Section	7/7/1997	55	837			
38 41		BZ CORNER BZ CORNER	A01 A02	4N/10E-1A01 4N/10E-1A02	11/6/2006 11/6/2006			Qtr-Qtr Section Qtr-Qtr Section						
20 55		BZ CORNER BZ CORNER	A03 A04	4N/10E-1A03 4N/10E-1A04	11/6/2006 11/6/2006			Qtr-Qtr Section Qtr-Qtr Section						
176		TODD M COLLINS	E01	4N/10E-1E01	2/7/2006	AB566 K	752	Qtr-Qtr Section	2/7/2006	85	667			
154 140		MATT COLLOTON CHAD AND EMILY AMAN	A01 A02	4N/10E-2A01 4N/10E-2A02	6/8/2006 6/20/2006			Qtr-Qtr Section Qtr-Qtr Section	6/8/2006 6/20/2006	97 90	688 695			
310 220			B01 B02	4N/10E-2B01 4N/10E-2B02	8/14/1987 6/19/2002			Qtr-Qtr Section Qtr-Qtr Section						
210	6	MIKE CLARK	B03	4N/10E-2B03	11/11/2003		950	Qtr-Qtr Section						
210 191			B04 B05	4N/10E-2B04 4N/10E-2B05	11/27/2006 9/14/2006			Qtr-Qtr Section Qtr-Qtr Section						
85 145			B06	4N/10E-2B06 4N/10E-2H01	12/12/2007 3/13/1982			Qtr-Qtr Section	3/13/1992	0.5	720			
141		WILLIAM GROSS	H01 H02	4N/10E-2H02	12/24/1977			Qtr-Qtr Section Qtr-Qtr Section	12/24/1977	95 75	739 759			
160 160		GARY WILLIAMS GLEN BUNSELMEYER	H03 H04	4N/10E-2H03 4N/10E-2H04	8/9/2005 7/24/2008			Qtr-Qtr Section Parcel						
200	6	PATRICIA KREPS	G01	4N/10E-2G01	7/31/1996		1049	Qtr-Qtr Section	7/31/1996	105	944			
255 140			D01 R01	4N/10E-2D01 4N/10E-2R01	2/21/2005 6/28/1978			Qtr-Qtr Section Qtr-Qtr Section	2/21/2005 6/28/1978	135 75	1489 641			
165 130	6	FRED MCDAVID	R02 R03	4N/10E-2R02	8/16/1990		716	Qtr-Qtr Section	8/16/1990	85	631 635	25	45	0.56
140	6	RAYMOND DUHEKOP	R04	4N/10E-2R03 4N/10E-2R04	1/12/1977 6/30/1978		716	Qtr-Qtr Section Qtr-Qtr Section	1/12/1977 6/30/1978	81 80	636	25	45	0.56
220 120			Q01 Q02	4N/10E-2Q01 4N/10E-2Q02	3/23/1999 3/17/1999			Qtr-Qtr Section Qtr-Qtr Section	3/23/1999 3/17/1999	120 30	717 807			
150	6	RHONDA CHAPMAN	Q03	4N/10E-2Q03	7/19/2001		837	Qtr-Qtr Section	7/19/2001	100	737			
185 140			N01 NE01	4N/10E-2N01 4N/10E-11NE01	9/3/1998 5/18/1995			Qtr-Qtr Section Qtr-Qtr Section	9/3/1998	100	1430			
260 120	6	RONNIE BRUCE	NE02	4N/10E-11NE02	5/29/2001		753	Qtr-Qtr Section	7/24/1077	90	F00	15	25	0.42
150		CLARA GROSS JACK GROSS	A01 A02	4N/10E-11A01 4N/10E-11A02	7/21/1977 4/30/1979			Qtr-Qtr Section Qtr-Qtr Section	7/21/1977 4/30/1979	80 88	580 572	15 20	35 60	
180 137			A03 A04	4N/10E-11A03 4N/10E-11A04	7/20/1977			Qtr-Qtr Section Qtr-Qtr Section	7/20/1977	93	567	20	80	0.25
130	6	J WIGHT & S HARMON	A05	4N/10E-11A05	8/25/1995		660	Qtr-Qtr Section						
145 160			B01 B02	4N/10E-11B01 4N/10E-11B02	10/2/1997 10/6/1997			Qtr-Qtr Section Qtr-Qtr Section						
145	6		B03 H01	4N/10E-11B03 4N/10E-11H01	3/18/2009			Qtr-Qtr Section Qtr-Qtr Section						
165	6		H02	4N/10E-11H01 4N/10E-11H02	7/25/1997	FS144 G		GPS	7/25/1997	96	591			
155 72		DENNIS L VOIGT E. W. KRALL	H03 H04	4N/10E-11H03 4N/10E-11H04	9/2/1998 5/20/1947			Qtr-Qtr Section Qtr-Qtr Section	9/2/1998	100	593			
140	6	HOBERT NEWMAN	H05	4N/10E-11H05	1/11/1977		693	Qtr-Qtr Section	12/11/1977	87	606	30	48	0.63
130 140		J. R. VERLEY JOHN COOK	H06 H07	4N/10E-11H06 4N/10E-11H07	10/3/1973 8/23/1990			Qtr-Qtr Section Qtr-Qtr Section	10/3/1973 8/23/1990	94 75	599 618			
120 150		L. M. VOIGT SUE & GARY RUDE	H08 H09	4N/10E-11H08 4N/10E-11H09	1/25/1982 1/20/1981			Qtr-Qtr Section Qtr-Qtr Section	1/25/1982 1/20/1981	75 75	618 618			
130			H010	4N/10E-11H010	10/4/1997			Qtr-Qtr Section	10/4/1997	89.5	604	15	10	1.50
140 122		PHILLIP T ZOLLER WILHELM SCHEURNER	H011 H012	4N/10E-11H011 4N/10E-11H012	8/2/1999 6/15/2000	AA049 D		GPS Qtr-Qtr Section	8/2/1999 6/16/2000	91 82	583 611			
180	6		H013	4N/10E-11H013	11/3/2004	47760.4	693	Qtr-Qtr Section	11/3/2004	80	613			
130 135	6		H014 G01	4N/10E-11H014 4N/10E-11G01	3/15/1973	47760 1		GPS Qtr-Qtr Section	3/15/1973	89	753	18	12	1.50
220 108		BONNIE BAEMAN CHARLES WAMSLEY	G02 G03	4N/10E-11G02 4N/10E-11G03	9/30/1994 4/11/1987			Qtr-Qtr Section Qtr-Qtr Section						
130	6	DARREL GILDERHUS	G04	4N/10E-11G04	7/30/1992		842	Qtr-Qtr Section	7/30/1992	78	764			
240 150			G05 G06	4N/10E-11G05 4N/10E-11G06	9/19/1980 8/13/1979			Qtr-Qtr Section Qtr-Qtr Section	9/19/1980 8/13/1979	95 100	747 742	20	30	0.67
158 225			G07 G08	4N/10E-11G07 4N/10E-11G08	7/13/2004 7/9/2004		759	GPS GPS	7/13/2004 7/9/2004	102 122	657 648	22	4	5.50
130		RICK GRAVES ALLAN BUCHITE	C01	4N/10E-11C01	3/21/1996		960	Qtr-Qtr Section	3/21/1996	80	880			
170 125		LYLE FREMOUW ROBERT RUS	C02 C03	4N/10E-11C02 4N/10E-11C03	7/27/1984 7/25/1984			Qtr-Qtr Section Qtr-Qtr Section	7/27/1984 7/25/1984	99 70	861 890			
160	6	WILLIAM PARSONS	C04	4N/10E-11C04	7/24/1984	04005 U	960	Qtr-Qtr Section	7/24/1984	105	855			
205 165		GAYLE PARSONS GAYLE PARSONS	C05 C06	4N/10E-11C05 4N/10E-11C06	12/24/2002 4/12/2005		960	Qtr-Qtr Section Qtr-Qtr Section	12/24/2002 4/12/2005	115 105	845 855			
80 125		DES VERLEY F. L. BAUGHER	D01 J01	4N/10E-11D01 4N/10E-11J01	8/16/1977 8/1/1968			Qtr-Qtr Section Qtr-Qtr Section	8/16/1977	41	1311			
180	6	RICK GRAVES	J02	4N/10E-11J02	9/8/1998		697	Qtr-Qtr Section	9/8/1998	85	612			
130 117		RICK GRAVES RICK GRAVES	J03 J04	4N/10E-11J03 4N/10E-11J04	9/13/2001 9/13/2001			Qtr-Qtr Section Qtr-Qtr Section	9/13/2001 9/13/2001	72 82	625 615			
148	6	RICK GRAVES	J05	4N/10E-11J05	9/27/2002		697	Qtr-Qtr Section	9/27/2002	70	627 582			
130		KEITH ROBISON THOMAS T ARNOLD	J06 K01	4N/10E-11J06 4N/10E-11K01	10/18/2007 8/25/1998		771	Qtr-Qtr Section Qtr-Qtr Section	10/18/2007 8/25/1998	115 55				
105 100			M01 P01	4N/10E-11M01 4N/10E-11P01	4/21/1978		1370	Qtr-Qtr Section Qtr-Qtr Section	4/21/1978		867			
125	6	FRED HEANY	D01	4N/10E-12D01	4/22/1996		834	Qtr-Qtr Section	4/22/1996	90	744			
125 185			E01 E02	4N/10E-12E01 4N/10E-12E02	7/9/1990 7/10/1990			Qtr-Qtr Section Qtr-Qtr Section	7/9/1990 7/10/1990		709 684			
145 165	6	GOSMAN ROB (01480)	E03 SE01	4N/10E-12E03 4N/10E-12SE01	11/8/1999 8/19/1990		784	Qtr-Qtr Section Qtr-Qtr Section	11/8/1999		699			
179	6	ROY MOULTON	J01	4N/10E-12J01	9/12/2007		934	Parcel	9/12/2007	100	834			
168 100			R01 SW01	4N/10E-12R01 4N/10E-12SW01	8/13/1990 12/16/1999			Qtr-Qtr Section Qtr-Qtr Section	8/13/1990	95	833			
140	6	MARK VOEGLE	SW02	4N/10E-12SW02	12/12/1999		646	Qtr-Qtr Section	2/:=:					
118 125			M01 M02	4N/10E-12M01 4N/10E-12M02	9/13/1983 3/10/1994			Qtr-Qtr Section Qtr-Qtr Section	9/13/1983 3/10/1994	82 10	565 637			
140 137	6	TOM WEBER	M03 M04	4N/10E-12M03 4N/10E-12M04	6/11/2003 9/20/2005		647	Qtr-Qtr Section Parcel	6/11/2003	90	557			
120	6	CLINT VOEYELE	P01	4N/10E-12P01	11/9/1999		584	Qtr-Qtr Section	11/9/1999		541			
137 62			P02 P03	4N/10E-12P02 4N/10E-12P03	11/13/1999 12/20/1999			Qtr-Qtr Section Qtr-Qtr Section	11/14/1999 12/20/1999		532 541			
120	6	CLINT VOEGELE	P04	4N/10E-12P04	10/25/1999		584	Qtr-Qtr Section	10/22/1999		543			
98			N01 NE01	4N/10E-12N01 4N/10E-13NE01	4/6/2006			Parcel Qtr-Qtr Section						1

Table 5.1 - Summary of Well Completion Details in the Project Area

Aquifer Storage and Recovery Feasibility Assessment White Salmon, Washington

Well Yield Data **Water Level Data** Water DEM SWE Yield Drawdown Capacity Depth Dia System (ft bgs) (in.) Well Owner (well log) Label TRS Identifier Elevation Source Date (ft bgs) (ft MSL) (gpm) (ft) (gpm/ft) Date ID 6 RON BECKWITH 539 Qtr-Qtr Section 20 B01 4N/10E-13B01 7/15/1986 7/15/1986 55 484 103 GEORGE ZENT SONS H01 4N/10E-13H01 8/21/196 512 Qtr-Qtr Section 4N/10E-13H02 512 Qtr-Qtr Section 103 6 MRS. CORA RAYBURN H02 8/21/1964 135 6 THOMAS ARNOLD NW01 4N/10E-13NW01 11/17/2003 641 Qtr-Qtr Section 11/17/2003 70 571 160 6 TAYLOR GROSS & S JOHNSON C01 4N/10E-13C01 3/26/2002 639 Qtr-Qtr Section 3/26/2002 589 6 FRED A MCDAVID 50 100 D01 4N/10E-13D01 10/27/2004 678 Qtr-Qtr Section 10/27/2004 628 6 ARTHUR KIESLING 105 F01 4N/10E-13F01 7/22/1977 621 Qtr-Qtr Section 7/22/1977 60 561 12 40 0.30 105 6 DOUG YARNELL F02 4N/10E-13F02 9/21/1988 621 Qtr-Qtr Section 103 6 HARRY MERRITT F03 4N/10E-13F03 5/22/1989 5/22/1989 30 591 621 Qtr-Qtr Section 100 6 LEONARD BURRIS F04 4N/10E-13F04 4/21/1995 621 Otr-Otr Section 4/21/1995 50 571 118 6 FRANCISCO CORTEZ E01 4N/10E-13E01 10/2/2002 686 Qtr-Qtr Section 10/8/2002 56 630 6 LAWRENCE ASHLEY K01 4N/10E-13K01 7/20/1972 7/20/1972 44 544 10 10 1.00 84 588 Qtr-Qtr Section 11/5/1992 11/5/1992 110 6 LEE GRIBNER K02 4N/10E-13K02 588 Qtr-Qtr Section 70 518 6/22/2000 135 6 CRUZ AVILA K03 4N/10E-13K03 6/22/2000 588 Qtr-Qtr Section 34 554 4N/10E-13K04 81 6 R A KNAPP K04 588 Qtr-Qtr Section 7/13/1972 44 544 30 10 3.00 6 DANIEL W GORDON 8/23/2004 120 K05 4N/10E-13K05 8/23/2004 588 Qtr-Qtr Section 60 528 77 8 JOHN WENDT K06 4N/10E-13K06 9/21/2007 591 Parcel 9/21/2007 23.5 567 19 8 2.38 6 JAY E. & DELIA ROBBINS R01 4N/10E-13R01 6/16/1970 34856 R 535 Qtr-Qtr Section 300 9/25/1995 9/25/1995 6 C HOOPER & D ZDUNIAK R02 4N/10E-13R02 535 Qtr-Qtr Section 210 325 160 6 GEORGE L YARNELL R03 4N/10E-13R03 10/25/2006 535 Qtr-Qtr Section 10/25/2006 40 495 576 Qtr-Qtr Section 81 6 B A KNAPF Q01 4N/10E-13Q01 7/13/1972 7/13/1972 44 532 30 10 3.00 6 GEO ZENT 4/24/1948 81 4N/10E-13Q02 576 Qtr-Qtr Section Q02 104 6 L. M. ASHLEY Q03 4N/10E-13Q03 5/15/1974 576 Qtr-Qtr Section 53 523 20 12 1.6 9/12/1975 39 6 W. O. GRIBNER Q04 4N/10E-13Q04 9/12/1975 576 Qtr-Qtr Section 537 40 35 1.14 6 GEORGE ZENT 4N/10E-13Q05 576 Qtr-Qtr Section 255 Q05 140 6 DON WEBER SW01 4N/10E-13SW01 6/6/1989 881 Qtr-Qtr Section 100 6 LOWELL MURPHY L01 4N/10E-13L01 8/29/1981 639 Qtr-Qtr Section 8/28/1981 51 588 6 LUTHER ADAMS 4N/10E-13L02 8/26/1981 100 L02 639 Qtr-Qtr Section 4N/10E-13L03 10/30/2001 10/29/2001 110 6 LEE GRIBNER L03 639 Qtr-Qtr Section 35 604 6 JOHN C WENDT 130 L04 4N/10E-13L04 6/27/2002 639 Qtr-Qtr Section 100 6 JOHN DOYLE 4N/10E-13L05 10/24/1995 639 Otr-Otr Section L05 670 Qtr-Qtr Section 3/31/1982 110 6 GARY MEIRHOFER P01 4N/10E-13P01 3/31/1982 45 625 6 RODGER GROSS 802 Qtr-Qtr Section 8/10/1990 98 185 N01 4N/10E-13N01 8/10/1990 704 385 6 CHARLES HOOPER R01 4N/10E-23R01 9/8/1994 923 Otr-Otr Section 9/8/1994 300 623 Q01 0.19 146 6 HARRIET WILSON 4N/10E-23Q01 4/20/2005 1139 Otr-Otr Section 33 1106 12 62 93 6 BOB JARVIS SE01 4N/10E-24SE01 8/27/1974 35 485 30 35 520 Qtr-Qtr Section 0.86 58 6 BRUCE BULICK 4N/10E-24J01 7/27/2007 520 Parcel J01 93 6 BRUCE BULICK J02 4N/10E-24J02 7/27/2007 526 Qtr-Qtr Section 4N/10E-24R01 9/23/1986 9/23/1986 490 135 6 JIM WEBSTER R01 515 Qtr-Qtr Section 25 140 6 MIKE FINLEY Q01 4N/10E-24Q01 7/23/1977 494 Qtr-Qtr Section 0.19 95 6 A. W. FREDRICK H01 4N/10E-25H01 494 Qtr-Qtr Section 6 A. W. FREDRICK 4N/10E-25H02 95 H₀2 7/27/1972 494 Qtr-Qtr Section 4N/10E-25H03 80 6 CLAUDE BLACK H03 10/5/1973 494 Qtr-Qtr Section 3/29/1996 494 Qtr-Qtr Section 6 STEVE MORGAN 4N/10E-25H04 105 H04 6 STEVE G MORGAN 494 Qtr-Qtr Section H05 4N/10E-25H05 8/3/1999 145 503 Qtr-Qtr Section 290 6 HOWARD CARMACHAEL C01 4N/10E-25C01 10/3/1989 3/28/1991 6 RICK KNOWLES C02 4N/10E-25C02 3/28/1991 456 120 503 Qtr-Qtr Section 6 ROBERT KITCH 142 C03 4N/10E-25C03 2/16/1977 503 Qtr-Qtr Section 2/16/1977 67 436 65 0.14 145 6 TERRY MITCHELL F01 4N/10E-25F01 10/1/2001 456 Qtr-Qtr Section 4N/10E-25F02 10/25/1995 110 6 BILL LOCKE F02 10/25/1995 456 Qtr-Qtr Section 431 188 6 ERIC TUNICK E01 4N/10E-25E01 7/7/1993 530 Qtr-Qtr Section 7/7/1993 42 488 260 6 MELVA LOCKE E02 4N/10E-25E02 5/22/1981 530 Qtr-Qtr Section 5/22/1981 478 6 STUART SNEIDER E03 180 4N/10E-25E03 10/6/1977 530 Qtr-Qtr Section 121 6 MERLE REEVES SE01 4N/10E-25SE01 7/10/1996 489 Qtr-Qtr Section 60 6 ART HOISINGTON J01 4N/10E-25J01 6/20/1985 492 Qtr-Qtr Section 6/20/1985 488 6 DICK KELLY 72 110 J02 4N/10E-25J02 8/22/1990 492 Qtr-Qtr Section 8/22/1990 420 180 6 DICK KELLY J03 4N/10E-25J03 5/7/1991 492 Qtr-Qtr Section 5/7/1991 70 422 4/4/2007 421 Parcel 97.5 6 LOUIS VADAY J04 4N/10E-25J04 150 - HUSUM WATER SYSTEM J05 4N/10E-25J05 63440 X 429 GPS 3/30/2002 57 6 JOHN BARRESSE R01 4N/10E-25R01 3/30/2002 461 Otr-Otr Section 452 6 WAYNE BARTON 4N/10E-25R02 4/16/2002 4/26/2002 78 R02 461 Qtr-Qtr Section 45 6 MERLE REEVES Q01 4N/10E-25Q01 7/29/2002 50 411 240 461 Qtr-Qtr Section 7/29/2002 152 6 MERLE REEVES Q02 4N/10E-25Q02 6/4/2008 476 Parcel 5/4/2008 45 431 9/12/2003 477 Qtr-Qtr Section 9/9/2003 90 220 6 JERRY LEWIS M01 4N/10E-25M01 387 288 A01 6/23/1983 193 609 25 70 0.36 6 AMBER YEZEK 4N/10E-26A01 802 Qtr-Qtr Section 6 THOMAS MASSART 5/15/2001 285 A02 4N/10E-26A02 802 Qtr-Qtr Section 5/15/2001 210 592 6 RONALD AND MARY CONNINE 360 A03 4N/10E-26A03 9/7/2000 802 Qtr-Qtr Section 9/7/2000 245 55 963 Qtr-Qtr Section 225 6 BOB KUNZER B01 4N/10E-26B01 3/23/1979 3/23/1979 175 788 320 5/6/1980 6 MICHAEL BEUG B02 4N/10E-26B02 963 Qtr-Qtr Section 5/6/1980 220 743 255 6 CHUCK BRYAN J01 4N/10E-26J01 10/20/1988 563 Qtr-Qtr Section 10/20/1988 192 371 563 Qtr-Qtr Section 6 CHARLES BRYAN J01 12/6/2005 80 483 250 4N/10E-26J01 12/6/2005 6 CASSANDRA CASS 4N/10E-26J02 6/14/2006 899 Parcel 260 J02 298 8 RICK & BETTY HOWARD Q01 4N/10E-26Q01 10/27/1988 584 Qtr-Qtr Section 8 JAMES NIELSEN L01 4N/10E-26L01 8/20/1984 941 Qtr-Qtr Section 6/17/2002 6 VAN G KELLEMS 4N/10E-34P01 1355 Parcel 6/17/2002 1160 310 B01 195 230 6 AUSTIN BELL C01 4N/10E-35C01 7/17/1998 764 Qtr-Qtr Section 7/17/1998 75 689 6 ROBERT NIPPOLT D01 4N/10E-35D01 613 Qtr-Qtr Section 6 JONN ANDERSON 9/7/1988 433 Otr-Otr Section 9/7/1988 205 K01 4N/10E-35K01 160 273 105 6 JOHN JESSUP R01 4N/10E-35R01 11/25/2008 741 Parcel 11/25/2008 40 701 6 THOMAS W RESER 4N/10E-35Q01 4/15/1999 329 Qtr-Qtr Section 4/15/1999 15 314 6 THOMAS RESER 4N/10E-35Q02 11/4/2003 329 Qtr-Qtr Section 160 Q02 11/4/2003 10 319 8/5/1998 105 6 STEVE HOSKINS SW01 4N/10E-35SW01 522 Qtr-Qtr Section 6 SANDRA ANDERSON 4N/10E-35N01 5/1/2008 398 Parcel 5/1/2008 238 465 N01 160 7/31/1972 130 6 GEORGE BAKER 4N/10E-36X01 486 Qtr-Qtr Section 49 437 30 0.50 X01 60 6/25/2002 70 130 6 SIX S CO A01 4N/10E-36A01 6/25/2002 362 Otr-Otr Section 292 6 SIX S CO A02 4N/10E-36A02 6/24/2002 362 Qtr-Qtr Section 6/24/2002 50 312 100 6/19/1997 160 10 HUSUM HILLS GOLF COURSE A03 4N/10E-36A03 34859 A 362 Qtr-Qtr Section 6/19/1997 91 271 G01 9/19/1988 9/19/1988 40 135 6 DAVID BARNETTE 4N/10E-36G01 483 Qtr-Qtr Section 443 6 DAVID GIBNOY 4N/10E-36G02 5/28/1973 483 Qtr-Qtr Section 5/28/1973 58 425 120 G02 140 6 LOREN SCHMID C01 4N/10E-36C01 8/15/1977 472 Qtr-Qtr Section 8/15/1977 420 472 Qtr-Qtr Section 4N/10E-36F01 130 10 BOYD YOUNG F01 6 MC COY HOLLISTON INS CO. F02 4N/10E-36F02 10/7/1973 472 Qtr-Qtr Section 10/7/1973 16 456 60 10/4/1973 120 6 STUART FRASER E01 4N/10E-36E01 10/4/1973 431 Qtr-Qtr Section 61 370 722 Qtr-Qtr Section 140 6 LEO GARVIN J01 11/24/1973 4N/10E-36J01 8 DON STRUCK 85 J02 4N/10E-36J02 5/4/2004 722 Qtr-Qtr Section 5/6/2004 22 700 145 6 ELLEN HENDRYX K01 4N/10E-36K01 3/15/1988 658 Qtr-Qtr Section 3/15/1988 75 583 - QS - 2 - 59 4N/10E-36R01 1102 Qtr-Qtr Section 149 R01 200 6 DALE LOFTHUS Q01 4N/10E-36Q01 10/8/1977 691 Qtr-Qtr Section 10/8/1977 100 591 6 ROSEVE APLIN 9/23/1981 4N/10E-36Q02 200 Q02 691 Qtr-Qtr Section 9/23/1981 91 600 6 SVERRE BAKKE 4N/10E-36L01 5/9/1991 125 L01 499 Qtr-Qtr Section 100 6 THOMAS MOORE L02 4N/10E-36L02 5/7/1992 499 Qtr-Qtr Section 5/7/1982 42 457 4N/10E-36L03 9/13/1999 6 TOM STEVENSON 130 L03 499 Qtr-Qtr Section 9/13/1999 30 469 6 KENDRA DUBY 499 Qtr-Qtr Section 1701 L04 4N/10E-36L04 11/6/2000 11/6/2000 55 444 175 6 CHAD BRUNTON L05 4N/10E-36L05 9/29/2003 499 Qtr-Qtr Section 9/29/2003 75 424 6 TALMAGE ALBERTS 4N/10E-36M01 3/18/1988 471 Qtr-Qtr Section 3/18/1988 421 150 M01 50

Table 5.1 - Summary of Well Completion Details in the Project Area Aquifer Storage and Recovery Feasibility Assessment White Salmon, Washington

													II.V. 115	
						Water			Water	Level Dat	ta		Well Yield Da	ata Specific
Depth (ft bgs)		Well Owner (well log)	Label	TRS Identifier	Date	System ID	DEM Elevation	Source	Date	SWL (ft bgs)	SWE (ft MSL)	Yield (gpm)	Drawdown (ft)	Capacity (gpm/ft)
30	-	QUARRY SITE 7-59	P01	4N/10E-36P01	Date	ID.		Qtr-Qtr Section	Date	(10 063)	(IC IVISE)	(80111)	(10)	(80111/10)
75 320		CLEM CLARK RUSSELL CRIPE	N01	4N/10E-36N01	10/3/1973			Qtr-Qtr Section	2/20/1000	70	450			
1020		MELVIN WALKER	N02 G01	4N/10E-36N02 4N/11E-4G01	3/20/1996 11/21/2006			Qtr-Qtr Section Qtr-Qtr Section	3/20/1996 12/4/2006	70 865	456 1194	12	100	0.12
185		K. W. RIGGLEMAN	E01	4N/11E-5E01	8/13/1962			Qtr-Qtr Section	8/13/1962	80	1553			
915 780		RIGGLEMAN ORCHARDS RIGGLEMAN ORCHARDS	E02 H01	4N/11E-5E02 4N/11E-6H01	6/19/1983 9/6/1979			Qtr-Qtr Section Qtr-Qtr Section	6/20/1983 8/29/1979	740 540	893 1040	195 10	0	
825	8	RON RIGGLEMAN	H02	4N/11E-6H02	1/2/1993		1580	Qtr-Qtr Section						
786 500		MT ADAMS ORCHARDS CORP GERALD STOCKWELL	N01 SE01	4N/11E-6N01 4N/11E-7SE01	5/10/2001 8/11/1995	56397 V		Qtr-Qtr Section Qtr-Qtr Section	5/10/2001	525	720			
620		GERALD STOCKWELL	J01	4N/11E-7J01	8/11/1995			Qtr-Qtr Section						
280 180		JB RANCH E. L. JONES	J02 P01	4N/11E-8J02 4N/11E-8P01	12/8/1973 11/8/1965			Qtr-Qtr Section Qtr-Qtr Section	12/8/1993	260	1710			
300		SOPHIE THOMAS	K01	4N/11E-10K01	11/6/1903			Qtr-Qtr Section						
125		HUGH SHIELDS	K02	4N/11E-10K02	7/24/2001			Qtr-Qtr Section		- 11	4240		00	0.01
150 375		DONALD & LISA FAGEN DAVID DOROCKE	R01 M01	4N/11E-10R01 4N/11E-17M01	10/10/1992 10/2/1995			Qtr-Qtr Section Qtr-Qtr Section		41	1319	1	80	0.01
118		PAUL AND MARY CARLOSS	N01	4N/11E-17N01	6/10/2005			Parcel		32	684	12	33	0.36
176 455		DON STRUCK CHARLES G MONKMAN	N02 A01	4N/11E-17N02 4N/11E-18A01	7/15/2007 2/1/2007			Parcel Qtr-Qtr Section	7/8/2007 2/1/2007	117 345	1110 834			
570	6	TERRY W BRADLEY	A02	4N/11E-18A02	6/23/2008		1042	Parcel	6/23/2008	365	677			
410 470		DES VERLEY DAVID BENSON	B01 C01	4N/11E-18B01 4N/11E-18C01	3/15/2005 10/10/1977			Qtr-Qtr Section Qtr-Qtr Section	3/15/2004 10/10/1977	320 263	803 781	30	190	0.16
135		SHELDON WEINBERG	Q01	4N/11E-18Q01	9/8/1990			Qtr-Qtr Section	9/8/1990		569	30	130	0.10
285		CHARLES SMITH	A01	4N/11E-19A01	10/10/1991			Qtr-Qtr Section	C /2 /1000		FOC			
245 290		THOMAS STOELTING THOMAS PROVENZANO	A02 A03	4N/11E-19A02 4N/11E-19A03	6/3/1999 11/5/2002			Qtr-Qtr Section Qtr-Qtr Section	6/3/1999 11/5/2002	60 100	586 546			
190	6	JIM BLACK BURN	H01	4N/11E-19H01	6/24/1994		722	Qtr-Qtr Section	6/24/1994	99	623	_		_
203 85		BILL PARKS FRANK HUNSAKER	F01 F02	4N/11E-19F01 4N/11E-19F02	7/7/1978 9/7/1989			Qtr-Qtr Section Qtr-Qtr Section	7/7/1978 9/7/1989	96 21	444 519	20	98	0.20
138		TOM COPE	F03	4N/11E-19F03	9/20/2007			Parcel	9/20/2007	66	442			
120 435		SK ORCHARDS JHON S. PARADIS & GENE MAREOTTE	E01 J01	4N/11E-19E01 4N/11E-19J01	5/30/2007 5/26/1974			Parcel Qtr-Qtr Section	5/30/2007 5/26/1974	10 225	429 603			
390		JERRY LEWIS	K01	4N/11E-19K01	9/1/1992			Qtr-Qtr Section	9/1/1992	345	464			
505		MARK HARRIE	K02	4N/11E-19K02	10/30/1991			Qtr-Qtr Section	10/30/1991	345	464			
220 201		TOM CULP DON GENSLER	NW01 C01	4N/11E-20NW01 4N/11E-20C01	9/13/1999 9/18/1993			Qtr-Qtr Section Qtr-Qtr Section	9/18/1992	92	885			
428	6	JOHN ROSS	D01	4N/11E-20D01	6/17/1983		714	Qtr-Qtr Section	6/7/1983	140	574	15	260	0.06
480 320		TJ LUTZ TOM LUTZ	R01 P01	4N/11E-20R01 4N/11E-20P01	10/23/2006 5/17/1982			Qtr-Qtr Section Qtr-Qtr Section	10/23/2006 5/17/1982	275 250	458 570			
425		TOM LUTZ	P02	4N/11E-20P02	8/6/1997			Qtr-Qtr Section	8/6/1997	250	570			
300		KIRK WALSTON	J01	4N/11E-28J01	5/10/2006			Qtr-Qtr Section	5/10/2006	195	2059			
304 445		JOHN KOHEN TED & GRACE LUTZ	R01 D01	4N/11E-28R01 4N/11E-29D01	6/23/1999 4/9/1990			Qtr-Qtr Section Qtr-Qtr Section	4/4/1990	255	357			
370	6	MIKE NYSTROM	A01	4N/11E-30A01	8/13/1997		807	Qtr-Qtr Section	8/13/1997	303	504			
405 365		CARL & JAMES TEEL JAMES TEEL	B01 B02	4N/11E-30B01 4N/11E-30B02	11/11/1993 9/27/2000			Qtr-Qtr Section Qtr-Qtr Section	11/11/1993 9/27/2000	355 300	319 374			
302		MARGARET KANTOLA	G01	4N/11E-30G01	8/5/1999		527	Qtr-Qtr Section	8/5/1999	175	352			
370 215		JAY JOHNSTON BERNIE ELSNER	D01 F01	4N/11E-30D01 4N/11E-30F01	3/11/2005 7/17/1980			Qtr-Qtr Section Qtr-Qtr Section	3/11/2005 7/17/1980		226 453			
205		BERNARD M ELSNER	E01	4N/11E-30E01	8/31/2004			Qtr-Qtr Section	8/31/2004		353			
183		DAVIE WELCH	K01	4N/11E-30K01	9/4/1981	05070.5		Qtr-Qtr Section	0/5/4000	162	405	20	200	0.07
290 80		DANIEL JONES JOHN D WEST	R01 M01	4N/11E-30R01 4N/11E-30M01	8/6/1993 7/28/1999	058705		Qtr-Qtr Section Qtr-Qtr Section	8/6/1993 7/28/1999	162 26	405 496	20	290	0.07
110		HUNSAKER OIL CO. C/O FRANK HUNSAKER	N01	4N/11E-30N01	9/5/1989			Qtr-Qtr Section	9/5/1989		386			
98 65		RICHARD SMITH STEPHEN STAMPFLI	N02 N03	4N/11E-30N02 4N/11E-30N03	5/23/1983 10/11/1996			Qtr-Qtr Section Qtr-Qtr Section	5/23/1983 10/11/1996		404 400			
80	6	W. M. DAVIS	N04	4N/11E-30N04	5/31/1985		414	Qtr-Qtr Section						
80 41		JAY JOHNSTON HERMAN DONLEY	N05 N06	4N/11E-30N05 4N/11E-30N06	3/30/2000 4/6/2002			Qtr-Qtr Section Qtr-Qtr Section	3/30/2000 4/3/2002	23 11	391 403			
80		STEVEN CROW	N07	4N/11E-30N07	9/26/2006			Qtr-Qtr Section	6/26/2006		389			
112	6	MICHAEL CLEMENTS HUSUM DEPT OF NATURAL RESOURCES	N08 N09	4N/11E-30N08 4N/11E-30N09	9/1/2006	NR395 U		Qtr-Qtr Section GPS	9/1/2006	5	409			
160	6	DEREK GOODWIN	B01	4N/11E-30N03	4/12/1995	141333 0		Qtr-Qtr Section	4/12/1995	10	623			
110		DUHRKOP, JOHN (01340)	NW01	4N/11E-31NW01	8/28/1998			Qtr-Qtr Section						
180 200		SCOTT NIELSON KEN DICKEN	NW02 C01	4N/11E-31NW02 4N/11E-31C01	6/12/2006 8/21/1990			Qtr-Qtr Section Qtr-Qtr Section	8/21/1990	65	405			
65		FRED JORGISON	C02	4N/11E-31C02	10/2/2001			Qtr-Qtr Section	10/2/2001	25	445			
67 114		FRED JORGENSEN JERRY SMITH	C03	4N/11E-31C03 4N/11E-31C04	9/28/2005 10/3/2006			Qtr-Qtr Section Qtr-Qtr Section	9/28/2005	20	450			
240		CAM THOMAS	C05	4N/11E-31C05	9/28/2006		470	Qtr-Qtr Section						
80 75		GLENN TAYLOR CLINT COLBERT	C06 D01	4N/11E-31C06 4N/11E-31D01	12/27/2007 8/12/1993			Parcel Qtr-Qtr Section	12/27/2007	30	399			
65		JERRY SMITH	D02	4N/11E-31D01 4N/11E-31D02	7/24/1996			Qtr-Qtr Section	7/24/1996	28	402			
130		MERLIN GRANBERG	D03	4N/11E-31D03	11/7/1988			Qtr-Qtr Section	10/10/2002	45	205			
80 100		JIM AND LORRAINE BRADSHAW SCOTT NIELSON	D04 D05	4N/11E-31D04 4N/11E-31D05	10/10/2002 4/18/2005			Qtr-Qtr Section Qtr-Qtr Section	10/10/2002 4/18/2005	45 20	385 410			
162		HUSUM HILLS GOLF CLUB	D06	4N/11E-31D06	4/15/1969		430	Qtr-Qtr Section	4/15/1965		354	40	28	1.43
220 180		JERRY SMITH DON STRUCK	F01 K01	4N/11E-31F01 4N/11E-31K01	5/31/2005 5/10/2004			GPS Qtr-Qtr Section	5/31/2005 5/10/2004		463 776			
490		MT. ADAMS ORCHARD COMPANY	R01	4N/11E-31R01	6/11/1965	AA988 E		Qtr-Qtr Section	0, 20, 200					
148 190		ALAN SHIPP RICK QUIGLEY	L01 A01	4N/11E-31L01 4N/11E-32A01	5/18/1979 6/30/1994			Qtr-Qtr Section Qtr-Qtr Section	5/28/1979	15	882	10	120	0.08
160		DAVID TURNER	B01	4N/11E-32A01 4N/11E-32B01	8/9/1996			Qtr-Qtr Section Qtr-Qtr Section	8/9/1996	30	973			
60		GARY BALDOZIER	C01	4N/11E-32C01	4/18/1995 6/20/2001		730	Qtr-Qtr Section	4/18/1995	10	720			
260 220		TEX R JACOBS CHARLES BAUGUESS	SW01 P01	5N/10E-26SW01 5N/10E-26P01	6/29/2001 6/26/2001			Qtr-Qtr Section Qtr-Qtr Section	6/26/2001	160	907			
150	6	ORLIS HALE	X01	5N/10E-35X01	3/22/1973		922	Qtr-Qtr Section		104	818		12	1.67
225 167		JOHN E CHANEY LARRY VAUGHAN	R01 Q01	5N/10E-35R01 5N/10E-35Q01	2/14/2006 9/18/2007			Qtr-Qtr Section Parcel	2/14/2006 9/18/2007		786 770			
	6	ANNIE PIPER-BURNS	L01	5N/10E-35L01	10/6/2005		927	Parcel	10/6/2005		807			
215		PATRICIA KREPS	B01	5N/11E-32B01	11/28/1990		1445	Qtr-Qtr Section						
460		HOPP - DEWILDE MILL CO.	NO1	5N/11F-32N01	9/10/19/17		1350	Otr-Otr Section		ļ				
	8	HOPP - DEWILDE MILL CO. MRS. ALLEN	N01 X01	5N/11E-32N01 5N/11E-33X01 5N/11E-34R01	9/10/1947 10/14/1973 9/15/2004		1695	Qtr-Qtr Section Qtr-Qtr Section Qtr-Qtr Section						

Table 5.2 - Aquifer Hydraulic Parameters

Grande Ronde Basalt

Aquifer Storage and Recovery Feasibility Assessment White Salmon, Washington

			Specific	c Capacity	(gpm/ft)	Trans	smissivity (ft	²/day)	Hydraulio	Conductiv	ity (ft/day)	Storativity (Di	imensionless)
Location	Method	Number of Wells	Minimum	Maximum	Geometric Mean	Minimum	Maximum	Mean or Accepted Value	Minimum	Maximum	Mean or Accepted Value	Minimum	Maximum
Columbia Plateau Aquifer System ¹	Model	-	-	-	-	40	16,000	3,700	0.1	8.6	2.3	0.00001	0.00110
City of White Salmon Power House Road Test Well ²	Aquifer Test	1	-	-	-	2,090	2,350	2,350	4.0	4.5	4.5	0.00056	0.00070
City of White Salmon Production Well No. 2 ³	Aquifer Test	1	-	-	-	145	169	169	1.1	1.3	1.3	-	-
Underwood Water District Well ⁴	Aquifer Test	1	-	-	-	-	-	51,400	-	-	553	-	-
Ecology Well Logs ⁵	Specific Capacity Data	4	0.08	0.94	0.23	22	251	61	0.4	5.0	1.2	-	-

Notes:

Transmissivity (in gpd/ft) was calculated for wells without pumping test reports using the following equation: Confined Aquifer (Grande Ronde Basalt):

$$\frac{Q}{s} = \frac{T}{2000}$$

Q is the pumping rate in gallons per minute Δs is the drawdown in feet over a log cycle of time

The hydraulic conductivity for wells without aguifer test reports is based on an assumed saturated thickness of the water-bearing zone of 50 feet.

¹ Ground-Water Flow Simulation of the Columbia Plateau Regional Aquifer System, Washington, Oregon, and Idaho (Hansen, Vacarro, and Bauer, 1994).

² Aquifer Test Report - Power House Road Test Well (Mark Yinger Associates, 1999).

³ Aquifer Test Report - Production Well #2 (Mark Yinger Associates, 2001).

⁴ WRIA 29 Hydrology and Geology Assessment (WPN & Mark Yinger Associates, 2002).

⁵ Washington State Department of Ecology Well Log Database.

Table 5.3 - Regional and Local Grande Ronde Basalt Groundwater Quality

Aquifer Storage and Recovery Feasibility Assessment White Salmon, Washington

		Regi	onal Data		Site	-Specific D	ata
Constituent	Number of Analyses	Maximum Concentration	Mean Concentration	Minimum Concentration	Well No. 1 (11/23/05)	Well No. 2 (2/17/10)	Source Water (2/17/10)
Temperature (°C)	202	36.7	18.3	7.6	-	12.2	5.5
pH (standard units)	202	9.4	7.89	6.7	-	8.16	8.05
Dissolved oxygen (DO)	160	10.2	2.6	0.1	-	5.00	10.85
Specific conductance (uS/cm)	203	830	311.7	119	-	100	50
Calcium (Ca)	203	88	22.9	0.95	21.0	8.87	5.73
Magnesium (Mg)	203	33	10.3	0.01	9.3	3.17	1.87
Sodium (Na)	203	90	27.7	4.1	8.00	7.81	2.39
Potassium (K)	203	13	4.9	1.1	1	2.55	1.13
Chloride (CI)	203	45	6.9	0.8	1.30	1.20	1.16
Sulfate (SO ₄)	203	96	14	0.2	2.5	2.87	0.53
Alkalinity (CaCO ₃)	-	-	-	-	90.0	52.5	29.0
Bicarbonate (HCO3)	203	339	169.9	42	-	-	-
Carbonate (CO ₃)	20	56	18.7	2	-	-	-
Silica (SiO2)	203	110	57.2	29	-	37.7	24.9
Iron (Fe) (ug/L)	203	760	51	3	100 U	80	50 U
Manganese (Mn) (ug/L)	203	810	15	1	0.2 U	93	5 U
Total Dissolved Solids (TDS)	183	510	235	94	150	96	46

Notes:

U - Not detected at associated detection limit. "-" Not analyzed.

Values in milligrams per liter (mg/L) unless otherwise indicated.

Regional water quality data from Water-Quality Characteristics of the Columbia Plateau Regional Aquifer System in

Parts of Washington, Oregon, and Idaho (Steinkampf, 1989).

Total hardness was used as a substitute for alkalinity for Well No. 1.

Source water is sand filtered, unchlorinated surface water from Buck Creek, provided as a comparison.

Table 5.4 - Site-Specific Groundwater Quality DataAquifer Storage and Recovery Feasibility Assessment White Salmon, Washington

		Groun	dwater	<u> </u>		Source	Water	<u> </u>	w	ashington Reg	gulatory Standa	ards
									Primary or	Groundwater	Surface Warface	ater Criteria Chronic Surface
Chemical Name etals (EPA 6000 series Methods)	Well No. 1 (11/23/05)	Well No. 2 (9/21/05)	Well No. 2 (9/29/09)	Well No. 2 (2/17/10)	Buck Creek (5/7/97)	Buck Creek (8/31/98)	Buck Creek (11/4/08)	Buck Creek (2/17/10)	Secondary MCLs	Quality Standards (WAC 173-200)	Water Quality Criteria (WAC 173-201A)	Water Quality Criteria (WAC 173-201A
Dissolved Aluminum in ug/L	0.5.11	0.5.11	1 U	10 U	0.5.11			28 1 U	6			
Dissolved Antimony in ug/L Dissolved Arsenic in ug/L	0.5 U 0.5 U	0.5 U 0.5 U	1 U	1 U	0.5 U 0.5 U			1 U	10		360	1:
Dissolved Barium in ug/L Dissolved Berylium in ug/L	1.7 0.5 U	1.2 0.5 U	1 1 U	3 2 U	3 0.5 U			3 2 U	2000	1000		
Dissolved Cadmium in ug/L Dissolved Calcium in ug/L	0.2 U 21000	0.2 U 9500	1 U	1 U 8870	0.2 U 5000			1 U 5730	5	10	3.7**	1.0
Dissolved Chromium in ug/L Dissolved Cobalt in ug/L	1	1 U	10 U	5 U 1 U	1 U			5 U 1 U	100	50	549**	178
Dissolved Copper in ug/L	1 U	1 U	5 U	5 U	20 U			5 U	1300	1000	17**	11
Dissolved Iron in ug/L Dissolved Lead in ug/L	100 U 2 U	100 U 0.3	110 1 U	80 1 U	50 U 0.9			50 U 1 U	300 15	300 50	65**	;
Dissolved Magnesium in ug/L Dissolved Manganese in ug/L	9300 0.2 U	3800 7.6	8	3170 93	2000 5 U			1870 5 U	50	50		
Dissolved Mercury in ug/L Dissolved Nickel in ug/L	0.4 U 0.5 U	0.4 U 0.5 U	0.2 U 5 U	0.2 U 1 U	0.5 U 10 U			0.2 U 1 U	2 100	2	2.1 1415**	0.0 15
Dissolved Potassium in ug/L				2550				1130				101
Dissolved Selenium in ug/L Dissolved Silver in ug/L	5 U 0.5 U	5 U 0.5 U	5 U 10 U	5 U 1 U	1 U 1.1			5 U 1 U	50 100	10 50	20 3.4**	
Dissolved Sodium in ug/L Dissolved Thallium in ug/L	8000 0.2 U	7000 0.2 U	7500 1 U	7810 1 U	2900 0.2 U			2390 1 U	20000			
Dissolved Vanadium in ug/L Dissolved Zinc in ug/L	6	25	34	1 U 5 U	20 U			2 U 5 U	5000	5000	114**	10:
olatile Organics (EPA Method 524.2)					20 0	I			3000	3000	114	10.
1,1,1,2-Tetrachloroethane in ug/L 1,1,1-Trichloroethane in ug/L	0.5 U 0.5 U	0.5 U 0.5 U	0.5 U 0.5 U			0.5 U 0.5 U			200	200		
1,1,2,2-Tetrachloroethane in ug/L 1,1,2-Trichloroethane in ug/L	0.5 U 0.5 U	0.5 U 0.5 U	0.5 U 0.5 U			0.5 U 0.5 U			5			
1,1-Dichloroethane in ug/L 1,1-Dichloroethene in ug/L	0.5 U 0.5 U	0.5 U 0.5 U	0.5 U 0.5 U			0.5 U 0.5 U			7	1		
1,1-Dichloropropene in ug/L	0.5 U	0.5 U	0.5 U			0.5 U			,			
1,2,3-Trichloropenzene in ug/L 1,2,3-Trichloropropane in ug/L	0.5 U 0.5 U	0.5 U 0.5 U	0.5 U 0.5 U			0.5 U 0.5 U						
1,2,4-Trichlorobenzene in ug/L 1,2,4-Trimethylbenzene in ug/L	0.5 U 0.5 U	0.5 U 0.5 U	0.5 U 0.5 U			0.5 U 0.5 U			70			
1,2-Dibromo-3-chloropropane in ug/L 1,2-Dibromomethane ug/L	0.5 U 0.5 U	0.5 U 0.5 U	0.5 U 0.5 U			0.5 U 0.5 U				0.001		
1,2-Dichlorobenzene in ug/L	0.5 U	0.5 U	0.5 U			0.5 U			600			
1,2-Dichloroethane (EDC) in ug/L 1,2-Dichloropropane in ug/L	0.5 U 0.5 U	0.5 U 0.5 U	0.5 U 0.5 U			0.5 U 0.5 U			5 5	0.5 0.6		
1,3,5-Trimethylbenzene in ug/L 1,3-Dichlorobenzene in ug/L	0.5 U 0.5 U	0.5 U 0.5 U	0.5 U 0.5 U			0.5 U 0.5 U						
1,3-Dichloropropane in ug/L 1,4-Dichlorobenzene in ug/L	0.5 U 0.5 U	0.5 U 0.5 U	0.5 U 0.5 U			0.5 U 0.5 U			75	0.2		
2,2-Dichloropropane in ug/L	0.5 U	0.5 U	0.5 U			0.5 U			73	-		
2-Chlorotoluene in ug/L 4-Chlorotoluene in ug/L	0.5 U 0.5 U	0.5 U 0.5 U	0.5 U 0.5 U			0.5 U 0.5 U						
p-Isopropyltoluene in ug/L Benzene in ug/L	0.5 U 0.5 U	0.5 U 0.5 U	0.5 U 0.5 U			0.5 U 0.5 U			5	1		
Bromobenzene in ug/L Bromomethane in ug/L	0.5 U 0.5 U	0.5 U 0.5 U	0.5 U 0.5 U			0.5 U 0.5 U						
Carbon tetrachloride in ug/L Chlorobenzene in ug/L	0.5 U 0.5 U	0.5 U 0.5 U	0.5 U 0.5 U			0.5 U 0.5 U			5 100	0.3		
Bromochloromethane in ug/L	0.5 U	0.5 U	0.5 U			0.5 U			100			
Chloroethane in ug/L Chloromethane in ug/L	0.5 U 0.5 U	0.5 U 0.5 U	0.5 U 0.5 U			0.5 U 0.5 U						
cis-1,2-Dichloroethene in ug/L cis-1,3-Dichloropropene in ug/L	0.5 U 0.5 U	0.5 U 0.5 U	0.5 U 0.5 U			0.5 U 0.5 U			70			
Dibromomethane in ug/L Dichlorodifluoromethane in ug/L	0.5 U 0.5 U	0.5 U 0.5 U	0.5 U 0.5 U			0.5 U 0.5 U						
Ethylbenzene in ug/L	0.5 U	0.5 U	0.5 U			0.5 U			700			
Hexachlorobutadiene in ug/L Isopropylbenzene in ug/L	0.5 U 0.5 U	0.5 U 0.5 U	0.5 U 0.5 U			0.5 U 0.5 U						
Methylene chloride in ug/L Methyl tert-butyl ether	0.5 U	0.5 U	0.5 U 1 U			0.5 U			5			
Naphthalene in ug/L n-Butylbenzene in ug/L	0.5 U 0.5 U	0.5 U 0.5 U	0.5 U 0.5 U			0.5 U 0.5 U						
n-Propylbenzene in ug/L sec-Butylbenzene in ug/L	0.5 U 0.5 U	0.5 U 0.5 U	0.5 U 0.5 U			0.5 U 0.5 U						
Styrene in ug/L	0.5 U	0.5 U	0.5 U			0.5 U			100			
tert-Butylbenzene in ug/L Tetrachloroethene (PCE) in ug/L	0.5 U 0.5 U	0.5 U 0.5 U	0.5 U 0.5 U			0.5 U 0.5 U			5	0.8		
Toluene in ug/L trans-1,2-Dichloroethene in ug/L	0.5 U 0.5 U	0.5 U 0.5 U	0.5 U 0.5 U			0.8 0.5 U			1000 100			
trans-1,3-Dichloropropene in ug/L Trichloroethene (TCE) in ug/L	0.5 U 0.5 U	0.5 U 0.5 U	0.5 U 0.5 U			0.5 U 0.5 U			5	3		
Trichlorofluoromethane in ug/L	0.5 U	0.5 U	0.5 U			0.5 U						
Vinyl chloride in ug/L Xylenes (total) in ug/L	0.5 U 0.5 U	0.5 U 0.5 U	0.5 U 0.5 U			0.5 U 0.5 U			10000	0.02		
rihalomethanes (EPA Method 524.2) Bromodichloromethane in ug/L	0.5 U	0.5 U				0.5 U				0.3		
Bromoform in ug/L Chloroform in ug/L	0.5 U 0.5 U	0.5 U 0.5 U				0.5 U 2.7				5 7		
Dibromochloromethane in ug/L	0.5 U 0.5 U	0.5 U 0.5 U				0.5 U 2.7			80	0.5		
Total Trihalomethanes in ug/L * onventionals (APHA/EPA Methods)	U.5 U	U.5 U	<u> </u>	<u> </u>	I	<u> </u>	<u> </u>	<u> </u>	80	<u> </u>		<u> </u>
Alkalinity in mg/L as CaCO₃ Total Hardness in mg/L	90	39	46	52.5	21			29				
Chloride in mg/L Cyanide in mg/L	1.3 0.005 U	1.2 0.005 U	0.04 U	1.2	1.7 0.005 U			1.16	25 0.2		860	2
Fluoride in mg/L	0.2 U	0.2 U	0.08 J	2.07	0.2 U			0.52 1	2	4		
Sulfate in mg/L Sulfide in mg/L	2.5	2.6	2.5	2.87 0.1 U	0.4			0.53 J 0.1 U	250	250		
Silica as SiO₂ in mg/L Nitrate as Nitrogen in mg/L	0.1	0.1 U	0.02 J	37.7	0.01 U		0.1 U	24.9	10	10		
Nitrite as Nitrogen in mg/L Ammonia as Nitrogen in mg/L	0.1 U	0.1 U	0.1 U	0.02 J	0.01 U			0.01 J	1		**	
Orthophosphate as Phosphorous in mg/L				0.1 U				0.1 U				
Total Phosphorous in mg/L Total Organic Carbon (TOC) in mg/L		80		0.048 0.5 U			1.5	0.019 0.54				
Total Dissolved Solids (TDS) in mg/L	150		_	96	40	1	i	46	500	500		

Table 5.4 - Site-Specific Groundwater Quality DataAquifer Storage and Recovery Feasibility Assessment
White Salmon, Washington

	Groundwater					Source	Water		W	ashington Re	gulatory Standa	ards
											Surface Wa	ater Criteria
Chemical Name	Well No. 1 (11/23/05)	Well No. 2 (9/21/05)	Well No. 2 (9/29/09)	Well No. 2 (2/17/10)	Buck Creek (5/7/97)	Buck Creek (8/31/98)	Buck Creek (11/4/08)	Buck Creek (2/17/10)	Primary or Secondary MCLs (WAC 246-290)	Groundwater Quality Standards (WAC 173-200)	Acute Surface Water Quality Criteria (WAC 173-201A)	Chronic Surface Water Quality Criteria (WAC 173-201A)
Radionuclides ***	, , , , , , , , , , , , , , , , , , , ,	(4, = 1, 44)	(0.=0.00)	(=, ,	(6,1,61)	(0,0.,00)	(, , , , , , , , ,	(=,,,	((
Gross Alpha in pCi/L	2.9 +/- 0.9		1.9 +/- 0.8							15		
Radium 228 in pCi/L	0.7 +/- 0.7 U		0.9 +/- 0.8							5		
Field Parameters	=								-			
Temperature Celsius				12.2				5.5				
Turbidity in NTU	0.37	0.32	1.03		0.24							
Specific Conductance in uS/cm	210	120	113	100	45			50	700			
pH				8.16				8.05		6.5 - 8.5		
Dissolved Oxygen in mg/L				5.00				10.85				
Eh (ORP) in mvolts				-47				-24				

MCL - Federal Drinking Water Maximum Contaminant Level

Secondary MCLs are in italics.

 $^{^{\}star}\,$ Totals calculated as sum of detected values only.

^{**} Metals criteria are calculated values at hardness of 100 mg/L. Ammonia value is pH dependent. refer to formulas provided in WAC 173-201A-240.

Table 5.5 - Summary of Groundwater Level Data Grande Ronde Basalt

Aquifer Storage and Recovery Feasibility Assessment

White Salmon, Washington

							Well Location (SPS83)		3)	Wate	er Level Dat	a		Well Yield Data		
									2504			C14/1	CIAIT	Nº 1.1		Specific
Depth	Dia.		1			Water	V Coord	V Coord	DEM	Course	Data	SWL	SWE (ft MCI)	Yield	Drawdown (#4)	Capacity
(ft bgs)	(in.)	Well Owner (well log)	Label	TRS Identifier		System ID	X Coord	Y Coord		Source	Date	(ft bgs)	(ft MSL)	(gpm)	(ft)	(gpm/ft)
240		CLAUDE CORBEILLE (578)	E01	3N/10E-1E01	8/26/1992 5/4/2000		1384073	163402		Qtr-Qtr Section	8/26/1992 5/4/2000	110	831			
600 280		S SCOTT M LOZIER FORDYCE SPRINGS	J01 C06	3N/10E-1J01 3N/10E-2C06	10/26/1994	05182 J	1387995 1382347	162113 164359	448	Qtr-Qtr Section	10/26/1994	495	1216 394			
320		JAMES WANNER	M03	3N/10E-2C06 3N/10E-2M03	5/5/2005	051821	1378861	162081		Qtr-Qtr Section	5/5/2005	54 211	241			
425		BOYD FITZGERALD	C01	3N/10E-2IVIO3	7/15/1995		1374925	164786		Qtr-Qtr Section	7/15/1995	290	419			i
300		DES VERLEY	C02	3N/10E-3C01 3N/10E-3C02	5/20/1993		1374925	164786		Qtr-Qtr Section	5/20/1993	290	419			
615		ROBERT HUNTINGTON	C02	3N/10E-3C02 3N/10E-3C03	6/26/1995		1374925	164786		Qtr-Qtr Section	6/26/1995	259	450			i
385		BURSETT ATSUKO	C05	3N/10E-3C05	3/21/2000		1374925	164786		Qtr-Qtr Section	3/21/2000	300	409			
270		RICHARD D RYDER	D01	3N/10E-3C03	6/19/2006		1374923	164818		Qtr-Qtr Section	6/19/2006	145	756			
456		CURTIS STEELE	F01	3N/10E-3F01	11/3/1995		1374927	163489		Qtr-Qtr Section	11/3/1995	275	350			 I
400		WAYNE WOOSTER	F03	3N/10E-3F03	10/17/1994		1374927	163489		Qtr-Qtr Section	10/17/1994	275	350			 I
340		MICHAEL GUNDLACH	F04	3N/10E-3F04	11/7/2003		1374927	163489		Qtr-Qtr Section	11/7/2003	265	360			
375		WILLIAM FULTON	G01	3N/10E-3G01	8/6/1996		1376237	163451		Qtr-Qtr Section	8/6/1996	225	309			
345		BRIAN UTHMANN	M01	3N/10E-3M01	7/10/2001		1373620	162233		Qtr-Qtr Section	7/10/2001	270	292			
570		JERRY AND BRENDA POWERS	M02	3N/10E-3M02	8/4/2005		1373620	162233		Qtr-Qtr Section	8/4/2005	410	152			
1242		CITY OF WHITE SALMON	Q01	3N/10E-3Q01	4/23/2001	96350 B	1376870	161114	477		11/18/1998	-226	703			 I
356		CITY OF WHITE SALMON	A01	3N/10E-10A01	11/13/1998	30330 B	1376704	160228	460		11/13/1998	111	349			
755		CITY OF WHITE SALMON	A02	3N/10E-10A02	11/24/1998	96350 B	1376733	160097	438		11/24/1998	125	313			
500		CITY OF WHITE SALMON	A04	3N/10E-10A04	4/20/1999	30330 B	1376927	160879	484		4/20/1999	140	344			
545		RON RIGGLEMAN RIGGLEMAN ORCHARDS	J03	3N/10E-10J03	4/18/2000		1377541	156849		Qtr-Qtr Section	4/18/2000	162	224	105	364	0.29
860		WAYNE TENNANT	N01	3N/10E-10N01	7/9/1981		1373607	155662		Qtr-Qtr Section	7/9/1981	760	494	103	301	0.23
845		ROBERT MARQUEZ	Q01	3N/10E-10Q01	9/5/2001		1376223	155576		Qtr-Qtr Section	9/5/2001	745	16			
469		DIANA SHEPLER	K01	3N/10E-13K01	1/26/1993		1386532	151532		Qtr-Qtr Section	1/26/1991	380	523	15	16	0.94
420		RAY MEADOWS 579	C01	3N/10E-14C01	12/2/1988		1380101	154217		Qtr-Qtr Section	12/2/1988	200	128			
800		VERNON ELLSON	C01	3N/10E-15C01	7/17/2001		1374888	154298		Qtr-Qtr Section	7/17/2001	725	210			
545		CHARLES SCWARTZ	F01	3N/10E-15F01	9/26/1996		1374841	152987		Qtr-Qtr Section	9/26/1996	450	377			
110		LEE GRIBNER	L03	4N/10E-13L03	10/30/2001		1385624	183353		Qtr-Qtr Section	10/29/2001	35	604			I
300		C HOOPER & D ZDUNIAK	R02	4N/10E-13R02	9/25/1995		1388198	181978		Qtr-Qtr Section	9/25/1995	210	325			
385	(CHARLES HOOPER	R01	4N/10E-23R01	9/8/1994		1382864	176645		Qtr-Qtr Section	9/8/1994	300	623			
220	(JERRY LEWIS	M01	4N/10E-25M01	9/12/2003		1384163	172639	477	Qtr-Qtr Section	9/9/2003	90	387			 I
360	(RONALD AND MARY CONNINE	A03	4N/10E-26A03	9/7/2000		1382847	175296		Qtr-Qtr Section	9/7/2000	245	557			
310	(VAN G KELLEMS	B01	4N/10E-34B01	6/17/2002		1376116	170062	1355	Qtr-Qtr Section	6/17/2002	195	1160			1
465	(SANDRA ANDERSON	N01	4N/10E-35N01	5/1/2008		1380488	166055		Parcel	5/1/2008	160	238			
160	10	HUSUM HILLS GOLF COURSE	A03	4N/10E-36A03	6/19/1997	34859 A	1388036	170009	362	Qtr-Qtr Section	6/19/1997	91	271			
120	(STUART FRASER	E01	4N/10E-36E01	10/4/1973		1384118	168674	431	Qtr-Qtr Section	10/4/1973	61	370			1
1020	(MELVIN WALKER	G01	4N/11E-4G01	11/21/2006		1402709	195103	2059	Qtr-Qtr Section	12/4/2006	865	1194	12	100	0.12
915	3	RIGGLEMAN ORCHARDS	E02	4N/11E-5E02	6/19/1983	20540 Q	1394970	195191	1633	Qtr-Qtr Section	6/20/1983	740	893	195	0	-
786	8	MT ADAMS ORCHARDS CORP	N01	4N/11E-6N01	5/10/2001	56397 V	1389657	192622	1245	Qtr-Qtr Section	5/10/2001	525	720			1
320	(TOM LUTZ	P01	4N/11E-20P01	5/17/1982		1396052	176553	820	Qtr-Qtr Section	5/17/1982	250	570			<u> </u>
425	(TOM LUTZ	P02	4N/11E-20P02	8/6/1997		1396052	176553	820	Qtr-Qtr Section	8/6/1997	250	570			
480	(TJ LUTZ	R01	4N/11E-20R01	10/23/2006		1398537	176432		Qtr-Qtr Section	10/23/2006	275	458			
300	(KIRK WALSTON	J01	4N/11E-28J01	5/10/2006		1403804	172646	2254	Qtr-Qtr Section	5/10/2006	195	2059			
445	(TED & GRACE LUTZ	D01	4N/11E-29D01	4/9/1990		1394770	175285	612	Qtr-Qtr Section	4/4/1990	255	357			
370		JAY JOHNSTON	D01	4N/11E-30D01	3/11/2005		1389434	175395		Qtr-Qtr Section	3/11/2005	295	226			
160	(DEREK GOODWIN	B01	4N/11E-31B01	4/12/1995		1391936	170044		Qtr-Qtr Section	4/12/1995	10	623			
200		KEN DICKEN	C01	4N/11E-31C01	8/21/1990		1390638	170034		Qtr-Qtr Section	8/21/1990	65				<u> </u>
148	(ALAN SHIPP	L01	4N/11E-31L01	5/18/1979		1390569	167440	897	Qtr-Qtr Section	5/28/1979	15	882	10	120	0.08

Well data compiled from the Washington State Department of Ecology Well Log Database (May 2009).

White Salmon Well No. 2 water level data (highlighted) not included in the Groundwater Elevation Contour Map, due to the well being completed in a different aquifer.

Aspect Consulting

Table 5.6 - Model Results for Different ASR Operational Scenarios

Aquifer Storage and Recovery Feasibility Assessment White Salmon, Washington

		Recharge			Recovery		Estimated Recovery of Stored Water					
								Volume	Volume			
Operational	Time	Rate	Volume	Time	Rate	Volume	Recovery	Recovered	Unrecovered			
Scenario	(Days)	(gpm)	(acre-ft)	(Days)	(gpm)	(acre-ft)	%	(acre-ft)	(acre-ft)			
1	180	225	180	180	225	180	72	130	50			
2	180	425	340	180	425	340	81	275	65			

Table 5.7 - Geochemical Model Results for Mixing

Aquifer Storage and Recovery Feasibility Assessment White Salmon, Washington

Mixing Ratios Well No.2:Buck Creek

Water Quality	Well No. 2	No Mineral Phase Interaction ¹	Basalt Mineral Phases Interaction Only ²	•	e Mineral-Intera	1	Buck Creek
Constituent	Groundwater	50:50 Mix	50:50 Mix	80:20 Mix	50:50 Mix	20:80 Mix	Source Water
Temperature(°C)	12.20	8.85	8.85	10.86	8.85	6.84	5.50
pH (standard units)	8.16	8.13	8.23	8.18	8.24	8.31	8.05
pe (standard units)	2.90	13.68	13.52	13.38	13.52	13.64	14.06
Dissolved Oxygen (DO)	5.00	7.93	5.20	3.43	5	6.93	10.85
Calcium (Ca)	8.87	7.30	9.14	9.30	9.14	9.00	5.73
Magnesium (Mg)	3.17	2.52	3.66	3.58	3.66	3.76	1.87
Sodium (Na)	7.81	5.10	5.10	6.73	5.10	3.48	2.39
Potassium (K)	2.55	1.84	1.85	2.27	1.85	1.42	1.13
Aluminum (AI)	0.009	0.02	0.05	0.0006	0.0006	0.0005	0.03
Iron (Fe)	0.08	0.07	3.46	0.00	0.00	0.00	0.05
Manganese (Mn)	0.09	0.05	0.10	0.00	0.00	0.00	0.01
Chloride (CI)	1.20	1.18	1.18	1.19	1.18	1.17	1.16
Alkalinity (as CaCO ₃)	52.20	40.62	49.24	48.70	45.68	42.76	29.01
Sulfate (SO ₄)	2.87	1.70	5.54	6.24	5.54	4.84	0.53
Barium (Ba)	0.003	0.003	0.001	0.001	0.001	0.001	0.003
Phosphate (HPO ₄)	0.05	0.03	0.03	0.04	0.03	0.02	0.02
Silica (SiO ₂)	37.71	31.31	33.89	36.34	33.89	31.55	24.91

¹ Mix generated using PHREEQC. Waters were mixed at 1:1 ratio with no rock-interations.

² Mix generated using PHREEQC. Waters were mixed at 1:1 ratio and allowed to dissolve basalt mineral phases. No metal-oxide precipitation allowed.

³ Mix generated using PHREEQC. Waters were mixed and allowed to equilibrate with basalt mineral phases, followed by metal oxide precipitation. Values in milligrams per liter (mg/L) unless otherwise indicated.

Table 5.8 - Geochemical Model Results for Mineral Precipitation

Aquifer Storage and Recovery Feasibility Assessment White Salmon, Washington

Mix Ratios of Well No. 2	2:Buck	Creek
--------------------------	--------	-------

Mineral Phases	20:80 Mix	50:50 Mix	80:20 Mix
mg oxide per liter water			
Birnessite	0.02	0.02	0.02
Goethite	1.70	1.45	1.25
Gibbsite	4.82	4.83	4.84
Total	6.54	6.30	6.10
percent oxide by volume (as:	sume 1.25 g/cm³ bull	density of hydrate	d metal-oxides)
Birnessite	0.0002%	0.0002%	0.0002%
Goethite	0.01%	0.01%	0.01%
Gibbsite	0.04%	0.04%	0.04%
Total	0.05%	0.05%	0.05%

Table 6.1 - Confirmed and Suspected Contaminated Sites

Aquifer Storage and Recovery Feasibility Assessment White Salmon, Washington

FS ID	City	Site Name	Address	Zip	Ecology Status	Site Type	Rank Status	Affected Media	Affected Media Status	Petroleum Products	Non Halogenated Solvents
403	WHITE SALMON	Town Pump Gas Station	521 E JEWETT BLVD	98672	RA conducted, residual contam. left, instit contrl	Program Plan	1	Groundwater	Confirmed	Confirmed	
403	WHITE SALMON	Town Pump Gas Station	521 E JEWETT BLVD	98672	RA conducted, residual contam. left, instit contrl	Program Plan	1	Surface Water	Confirmed	Confirmed	
403	WHITE SALMON	Town Pump Gas Station	521 E JEWETT BLVD	98672	RA conducted, residual contam. left, instit contrl	Program Plan	1	Soil	Confirmed	Confirmed	
13233349	BINGEN	WILSON OIL II	117 E STEUBEN	98605	Awaiting SHA			Soil	Confirmed	Confirmed	
28537434	BINGEN	HUNSAKER OIL COMPANY INC BINGEN	102 E STEUBEN	98605	Ranked, Awaiting RA	Independent	5	Groundwater	Confirmed	Confirmed	Confirmed
28537434	BINGEN	HUNSAKER OIL COMPANY INC BINGEN	102 E STEUBEN	98605	Ranked, Awaiting RA	Independent	5	Soil	Confirmed	Confirmed	Confirmed
61834259	BINGEN	Unocal Bulk Plant 0046	217 E STEUBEN	98605	Ranked, Awaiting RA		3	Soil	Confirmed	Confirmed	
61834259	BINGEN	Unocal Bulk Plant 0046	217 E STEUBEN	98605	Ranked, Awaiting RA		3	Groundwater	Confirmed	Confirmed	
76225533	WHITE SALMON	KLICKITAT COUNTY SHOP WHITE SALMON	CHILDS RD	98672	Awaiting SHA	Independent		Soil	Confirmed	Confirmed	

Notes:

SHA - site hazard assessment

RA - remedial action

Rank status - 1 represents highest risk, 5 represents lowest risk

Table 6.2 - Average Historical Monthly Streamflows for the White Salmon River and Tributaries

Aquifer Storage and Recovery Feasibility Assessment White Salmon, Washington

White Salmon River near Underwood USGS # 14123500 (period of record 1912 - 2009)

	Month	Jan.	Feb.	Mar.	Apr.	May	Jun.	Jul.	Aug.	Sep.	Oct.	Nov.	Dec.
nce	90%	574	705	857	1010	918	708	563	482	458	452	482	534
edar low:	50%	1080	1310	1380	1440	1490	1170	826	670	608	597	667	892
Exe	10%	2400	2520	2300	2040	2100	1910	1290	927	817	818	1280	1920

White Salmon River at Husum USGS # 14123000 (period of record 1909 - 1962)

	Month	Jan.	Feb.	Mar.	Apr.	May	Jun.	Jul.	Aug.	Sep.	Oct.	Nov.	Dec.
nce	90%	489	550	738	994	919	720	552	469	458	443	430	472
eedar Tow	50%	879	980	1080	1300	1440	1200	829	670	609	565	640	700
Exe F	10%	1824	1820	1784	1780	1860	1751	1235	870	775	720	1182	1440

White Salmon River at BZ Corner USGS # 14122900 (period of record 1958 - 1965)

	Month	Jan.	Feb.	Mar.	Apr.	May	Jun.	Jul.	Aug.	Sep.	Oct.	Nov.	Dec.
nce	90%	735	703	634	722	860	643	465	357	315	335	344	458
eda	50%	735	950	835	1130	1140	935	603	462	382	405	521	668
Ехе	10%	1500	1713	1432	1542	1530	1361	750	540	493	576	1280	1160

Gilmer Creek (period of record 1995 - 1997)

Month	Jan.	Feb.	Mar.	Apr.	May	Jun.	Jul.	Aug.	Sep.	Oct.	Nov.	Dec.
Average Flow	38	68	74	14	10	8	3	2	4	1	3	91

Rattlesnake Creek (period of record 1995 - 1997)

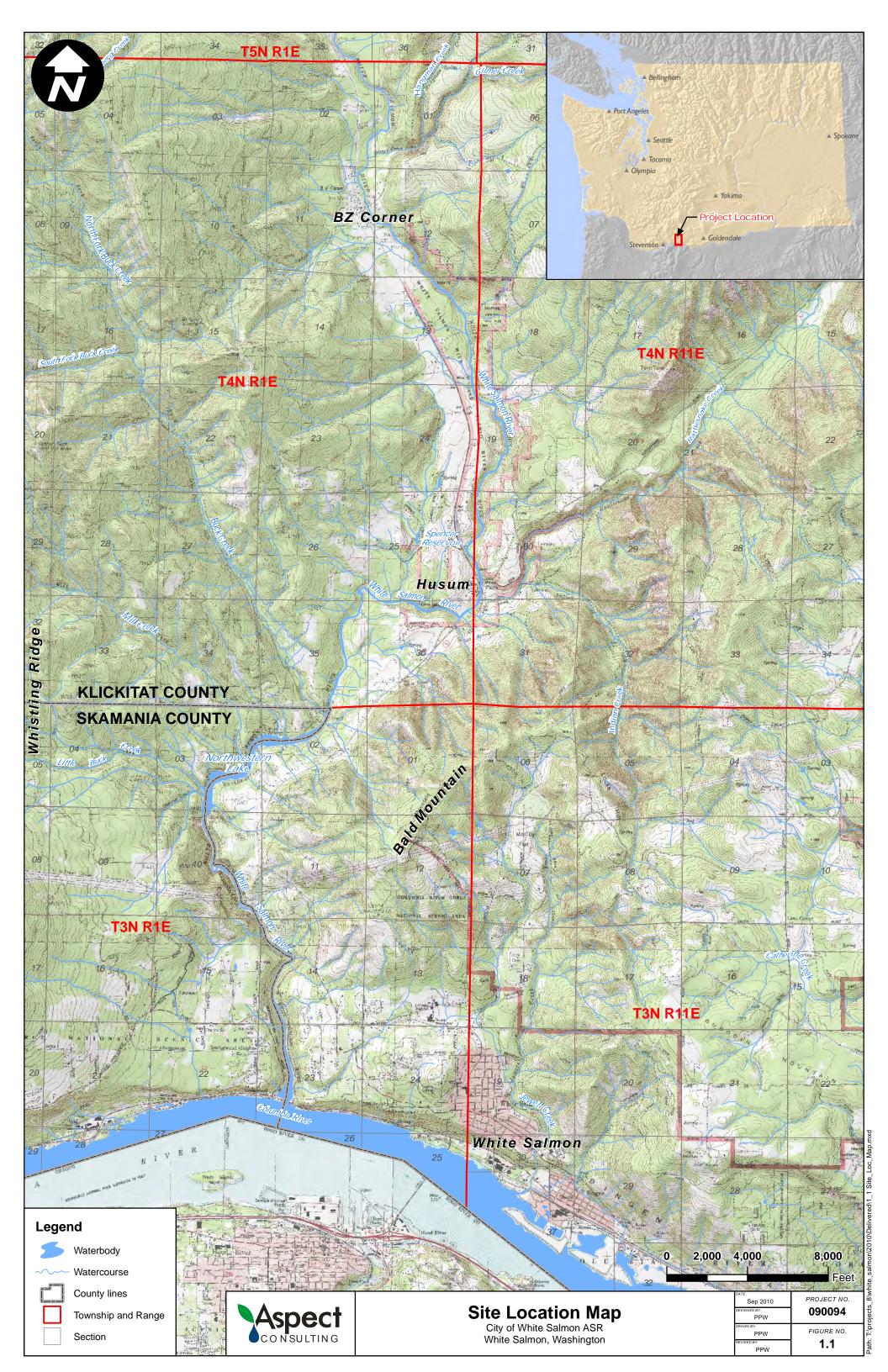
u		,										
Month	Jan.	Feb.	Mar.	Apr.	May	Jun.	Jul.	Aug.	Sep.	Oct.	Nov.	Dec.
Average Flow	196	380	284	32	13	4	3	2	3	3	6	491

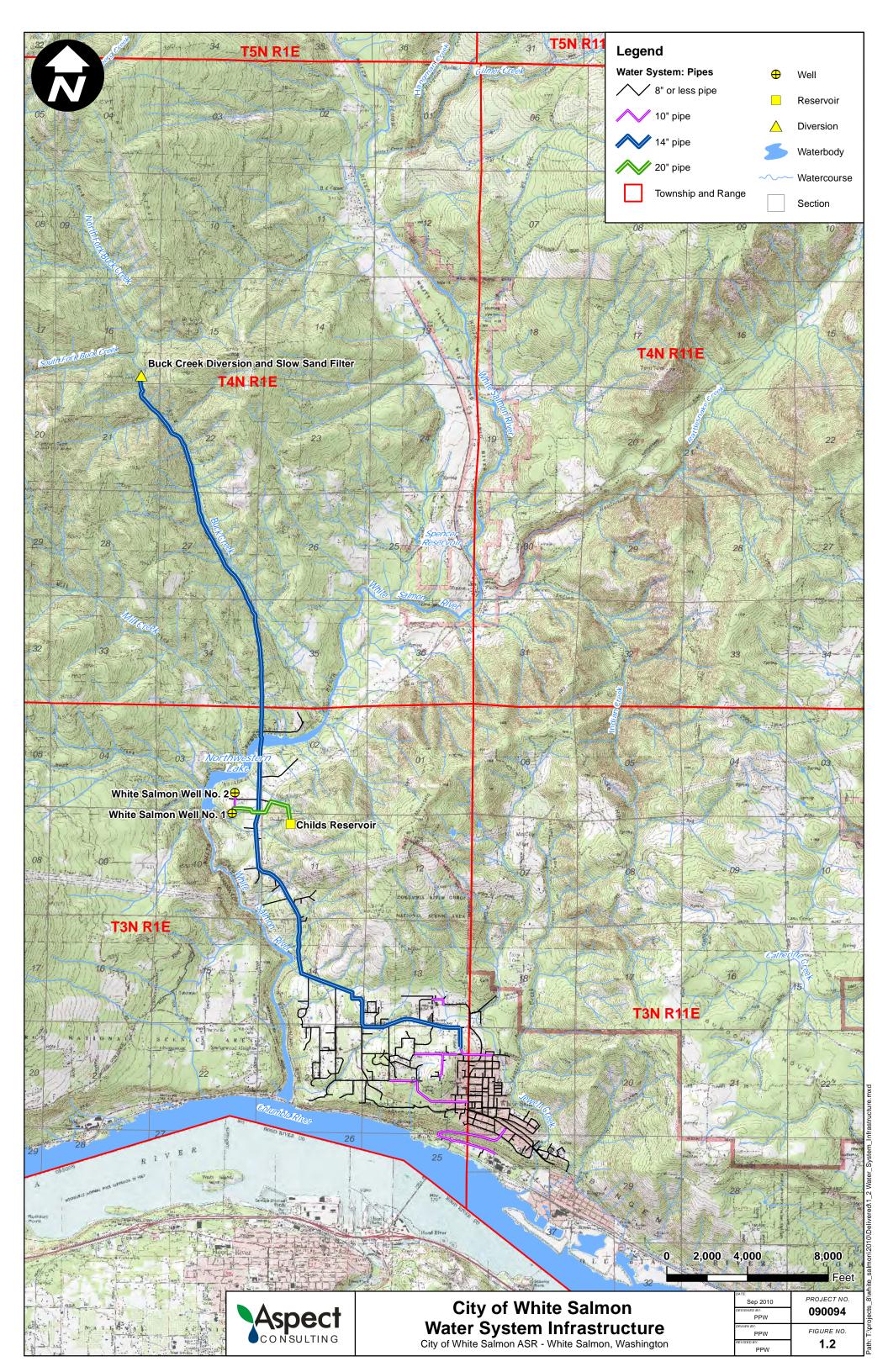
Table 6.3 - 2008 Water Quality Assessment Listings for White Salmon River Subbasin

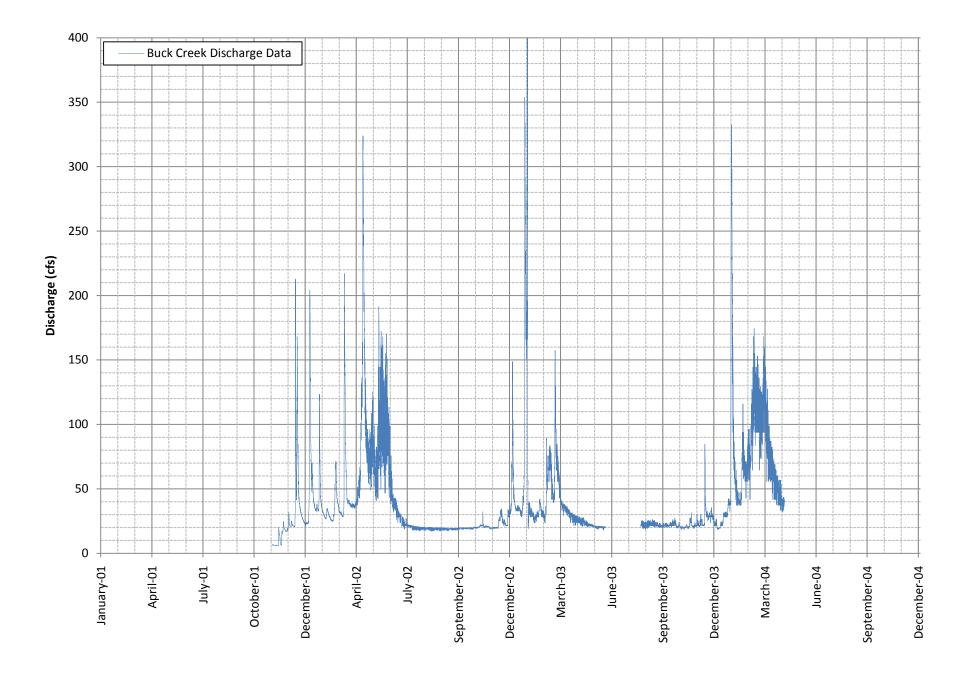
Aquifer Storage and Recovery Feasibility Assessment White Salmon, Washington

Listing Detail	Category	WRIA	Water Body Name	Parameter	Medium
21582	2	29	Buck Creek	Fecal Coliform	Water
16775	5	29	Gilmer Creek	Fecal Coliform	Water
5882	5	29	Indian Creek	Temperature	Water
51618	2	29	Northwestern Lake	2,3,7,8-TCDD TEQ	Tissue
52675	5	29	Northwestern Lake	PCB	Tissue
5884	5	29	Rattlesnake Creek	Temperature	Water
5885	5	29	Rattlesnake Creek	Temperature	Water
5886	5	29	Rattlesnake Creek	Fecal Coliform	Water
21617	2	29	Rattlesnake Creek	рН	Water
6222	4C	29	White Salmon River below Condit Dam	Instream Flow	Habitat
21580	2	29	White Salmon River below Condit Dam	Fecal Coliform	Water
51055	2	29	White Salmon River below Condit Dam	pH	Water
5889	5	29	White Salmon River near Gilmer Creek	Fecal Coliform	Water

Water quality categories:

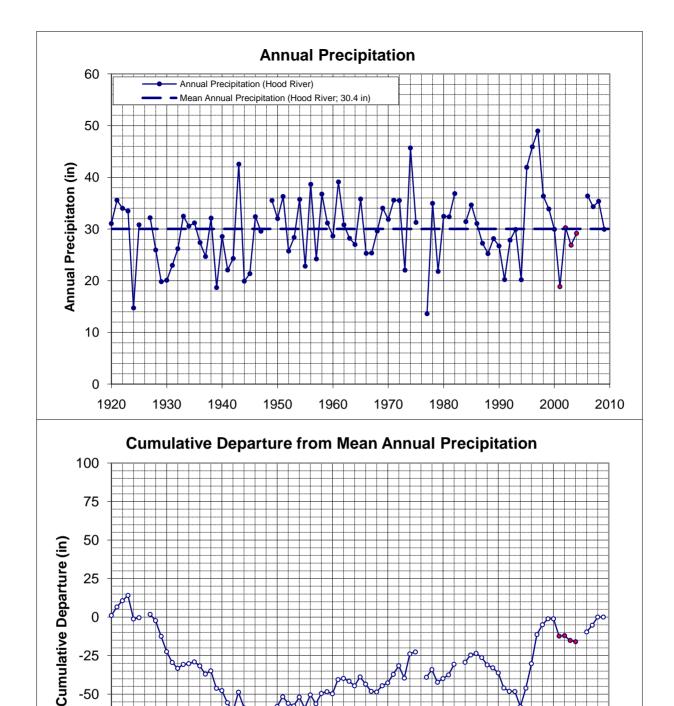

- 2) Waters of Concern: available data are not sufficient to show impairment but do raise a concern.
- 4) Impaired but Does Not Require a TMDL (3 subcategories):
 - 4A) Has a TMDL: water is impaired by a pollutant and a TMDL has already been prepared.
 - 4B) Has a Pollution Control Project in place: water is impaired by a pollutant and another agency has prepared a plan that Ecology expects will improve water quality in a manner comparable to a TMDL and has active implementation ongoing.
 - 4C) Impaired by a Non-Pollutant: impaired by aquatic habitat degradation that is not the result of a pollutant (such as loss of spawning gravel or channel incision).
- 5) Impaired [the 303(d) list]: waters that do not meet an applicable water quality standard for one or more pollutants. A TMDL is required for each waterbody segment on the 303(d) list.


Table 7.1. Preliminary Water Quality Monitoring Schedule for Initial ASR Pilot Test


Aquifer Storage and Recovery Feasibility Assessment White Salmon, Washington

		Frequenc	y of Analysis	
Stage of Initial Pilot Test	Field Parameters	General Chemistry/Drinking Water Parameters	Prospective Tracers	Disinfection Byproducts
Baseline Testing Step Recovery Test Step Recharge Test	15-minute interval -	1 time event -	1 time event	1 time event
ASR Testing Recharge (21 days) Storage (42 days) Recovery (28 days) Post-ASR Testing Step Recovery Test Step Recharge Test	Daily 7-day interval Daily 15-minute interval -	7-day interval 14-day interval 7-day interval - -	7-day interval 7-day interval 3-day interval - -	7-day interval 7-day interval 3-day interval - -
Constituents	Temperature pH Dissolved Oxygen Redox Potential Specific Conductivity Turbidity Methane Hydrogen Sulfide	General Chemistry Alkalinity TDS TSS** Silica Total Organic Carbon Additional Anions Bromide Fluoride Nitrate-N Nitrite-N Metals Arsenic Antimony Aluminum Barium Beryllium Cadmium Chromium Chromium Copper Iron Lead Manganese Mercury Nickel Selenium Silica Silver Thallium Zinc	Major Cations Calcium Magnesium Potassium Sodium Major Anions Bicarbonate Chloride Sulfate	Trihalomethanes (THMs) Chloroform Bromoform Bromodichloromethane Dibromochloromethane Haloacetic Acids (HAAs) Monochloroacetic Acid Dichloroacetic Acid Trichloroacetic Acid Monobromoacetic Acid Bromochloroacetic Acid Bromochloroacetic Acid Residual Chlorine

^{**:} TSS will be analyzed daily throughout the recharge period.



Aspect Consulting
4/22/2011
W:\090094 2009 Water System Imprvmts-ASR Project\Deliverables\ASR FS\figures\Figure 2.1 - Historical Buck Creek Flows

Figure 2.1 - Historical Buck Creek Flows

Aquifer Storage and Recovery Feasibility Assessment

White Salmon, Washington

Notes:

-50

-75

-100

1920

Annual precipitation data from Hood River (NOAA Station No. 354003).

1940

Annual data are the water year ending September 30.

1930

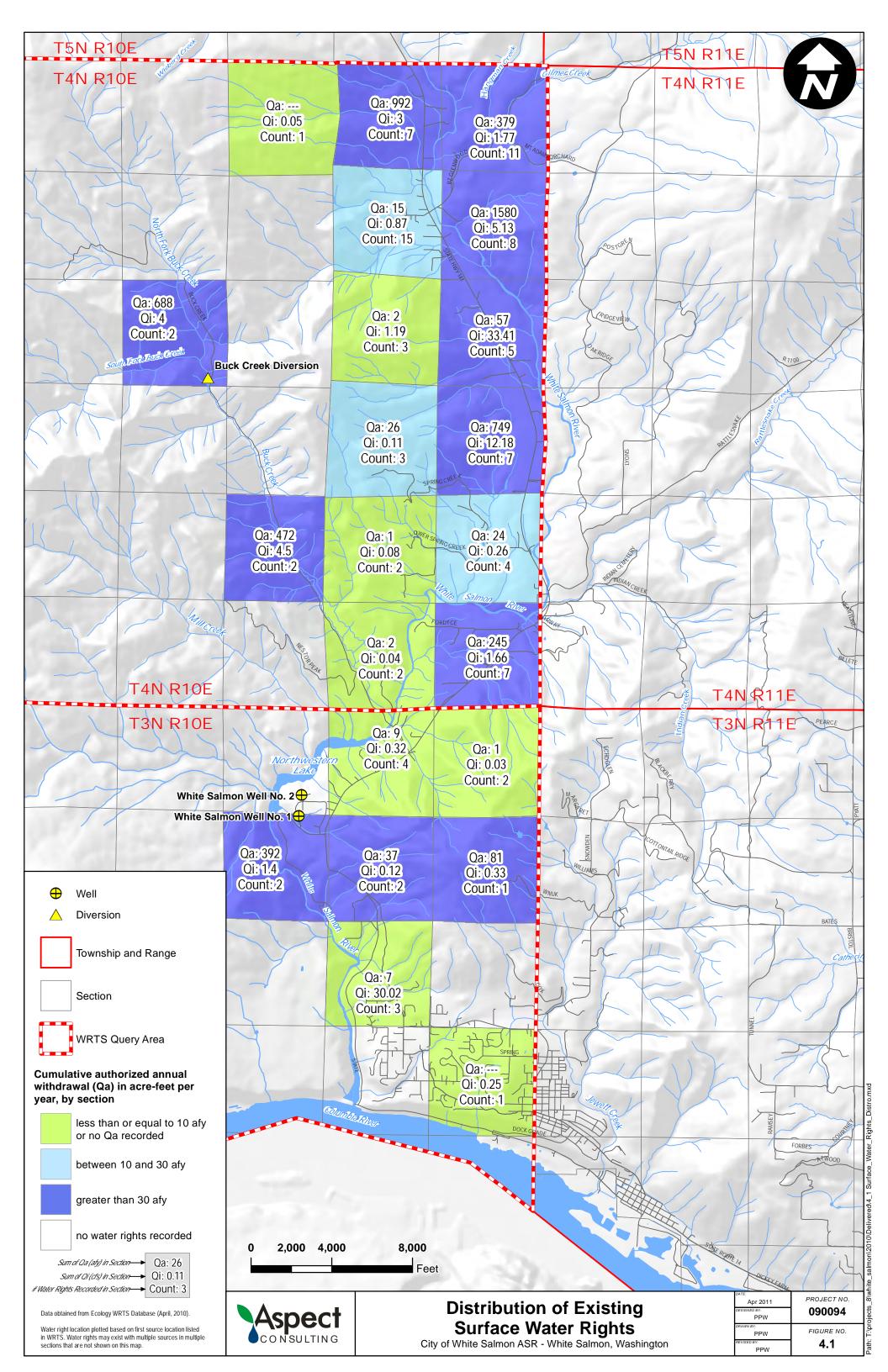
Individual months with more than 5 days of missing data were not used for either monthly or annual statistics.

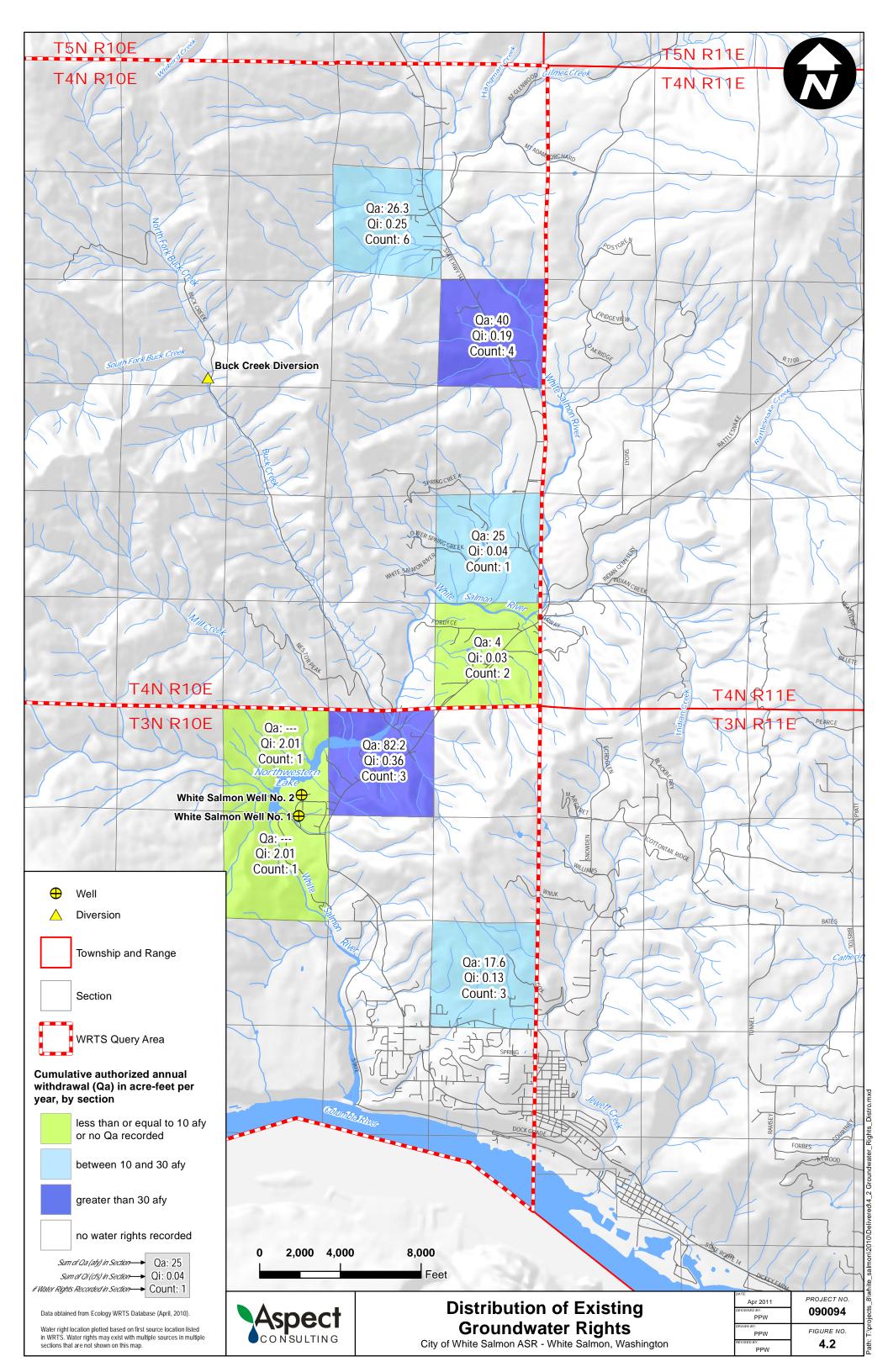
1960

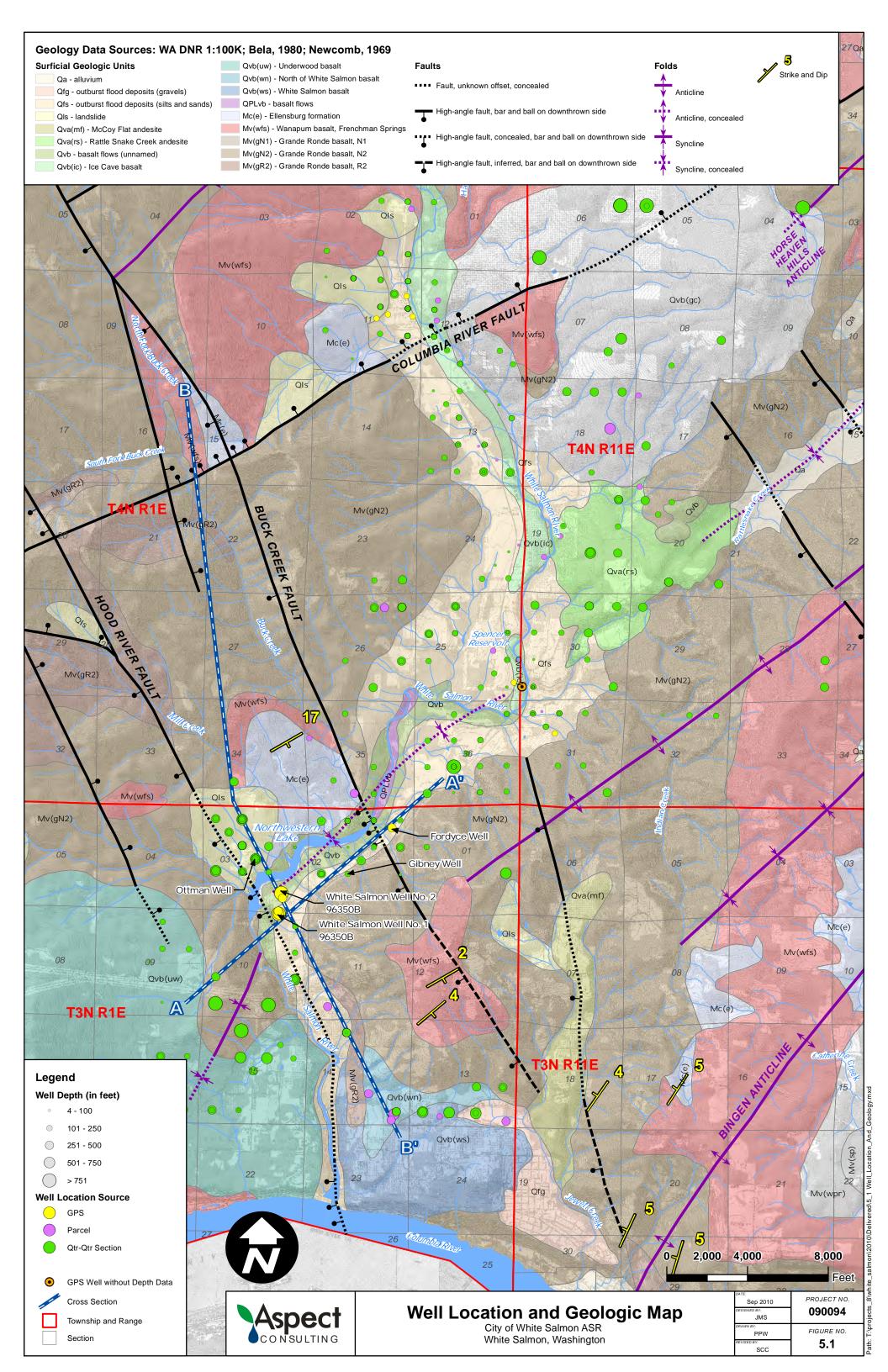
1970

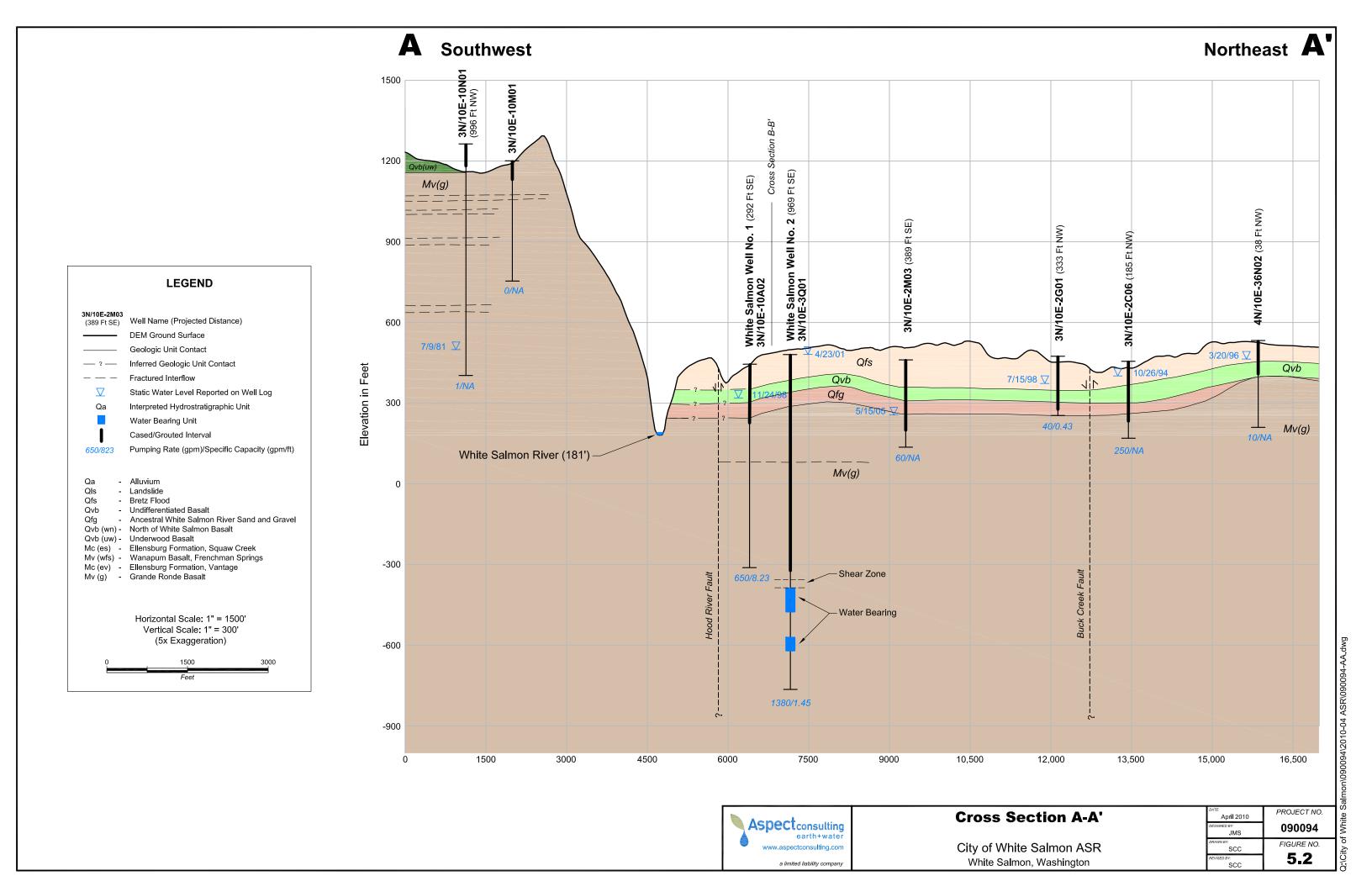
1980

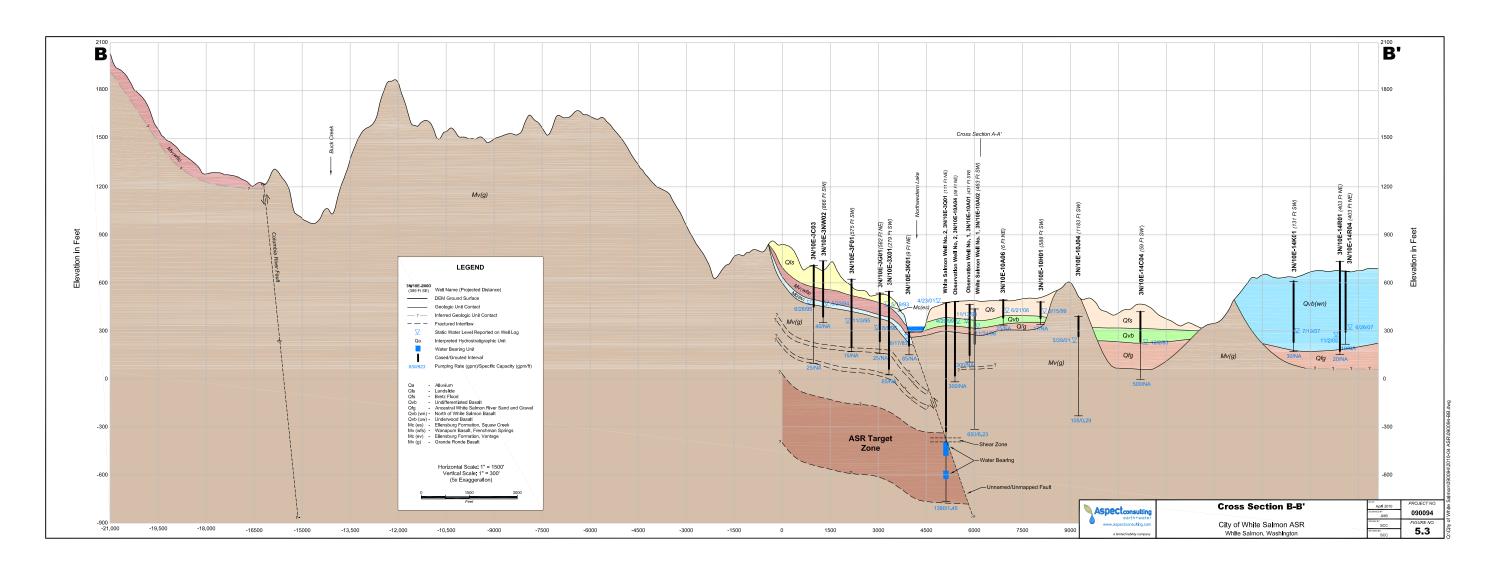
Precipitation data points corresponding to years with Buck Creek flow measurements are shown in red.

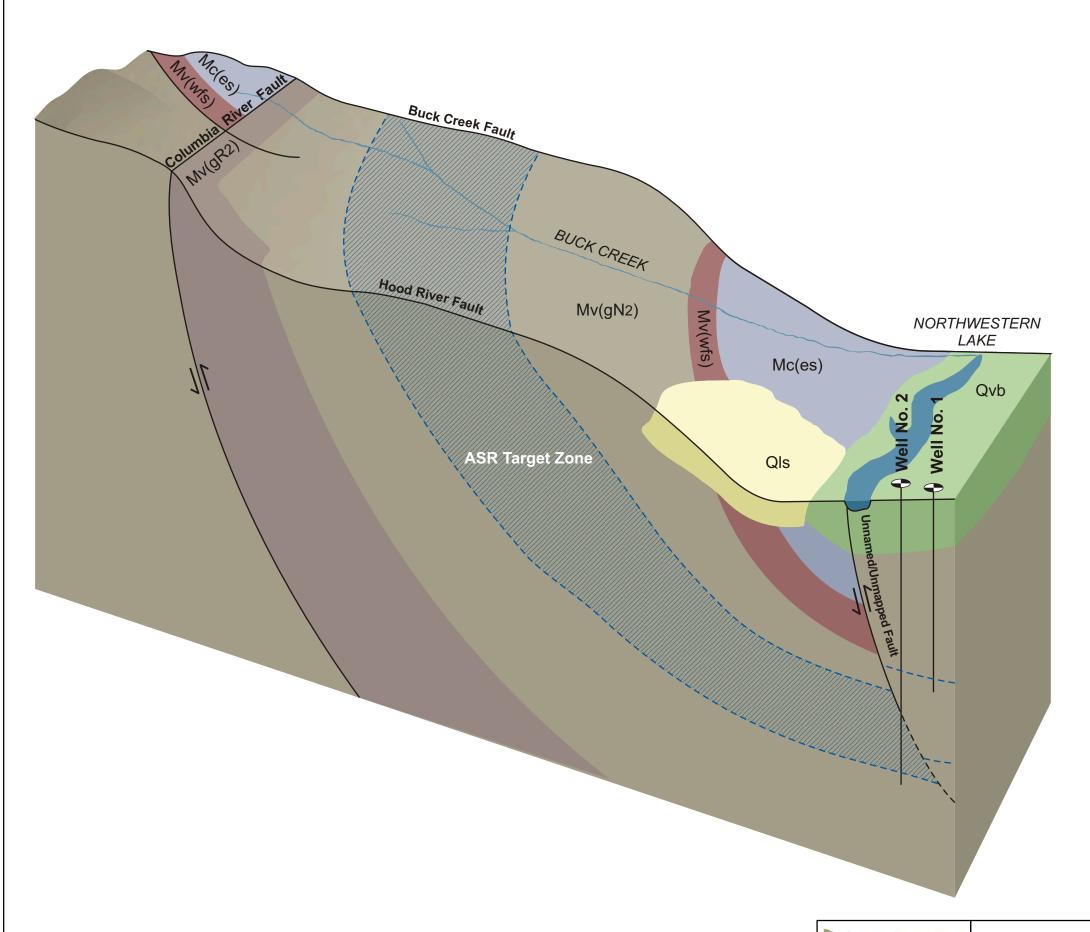

1950

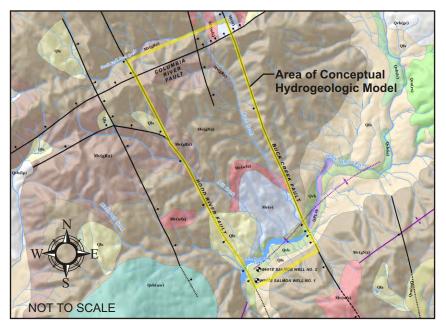

Figure 2.2 **Long-Term Precipitation Analysis**

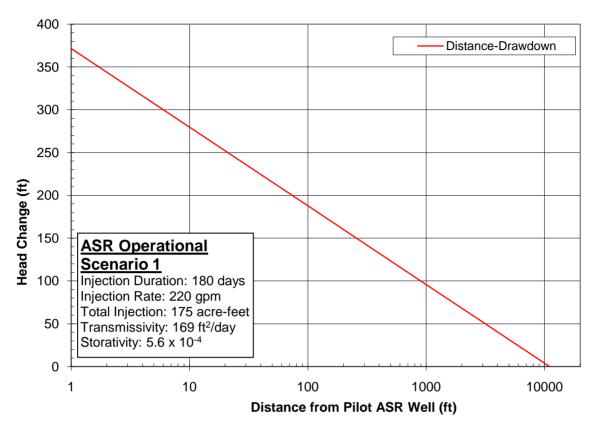

2000


2010


1990







Aspect consulting a limited liability company

Conceptual Hydrogeologic Model City of White Salmon ASR White Salmon, Washington

DATE: April 2010 DESIGNED BY: JMS	PROJECT NO. 090094
DRAWN BY: EG REVISED BY:	FIGURE NO.
-	5.4

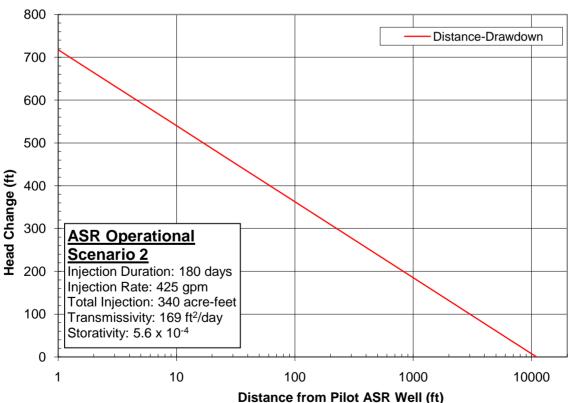
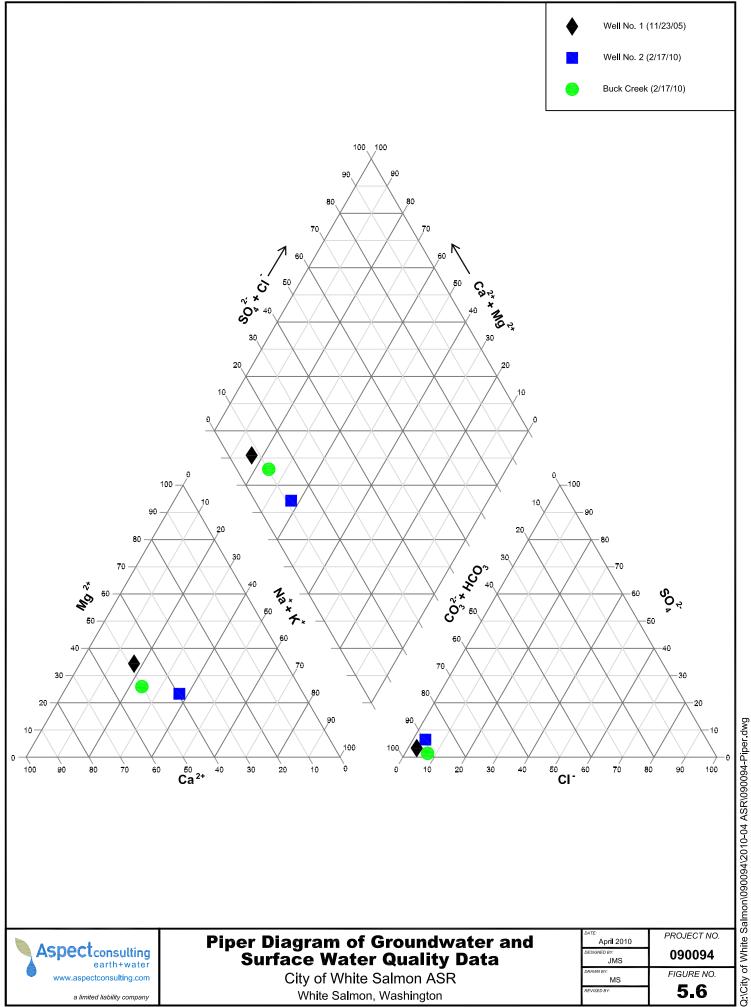
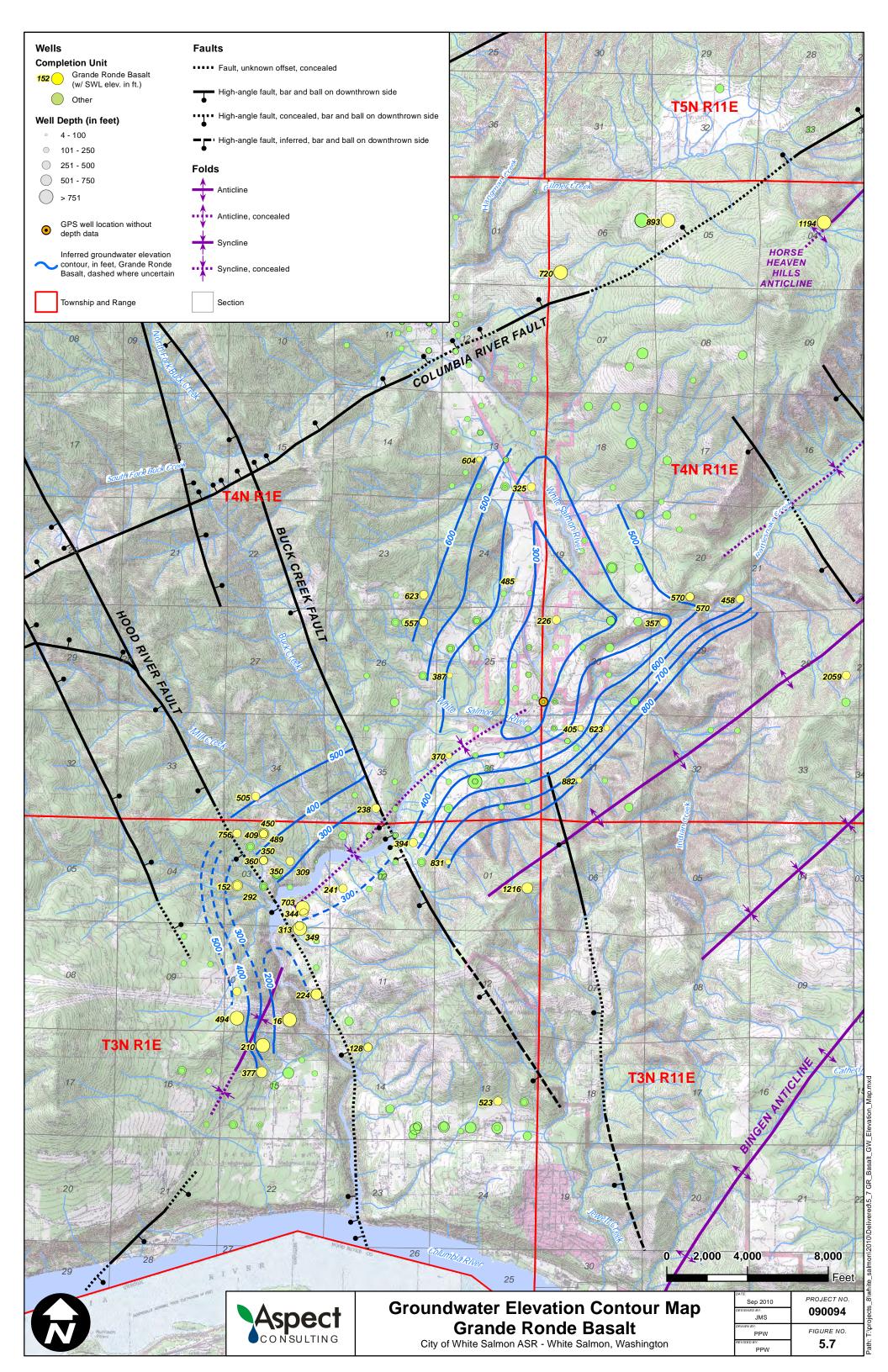
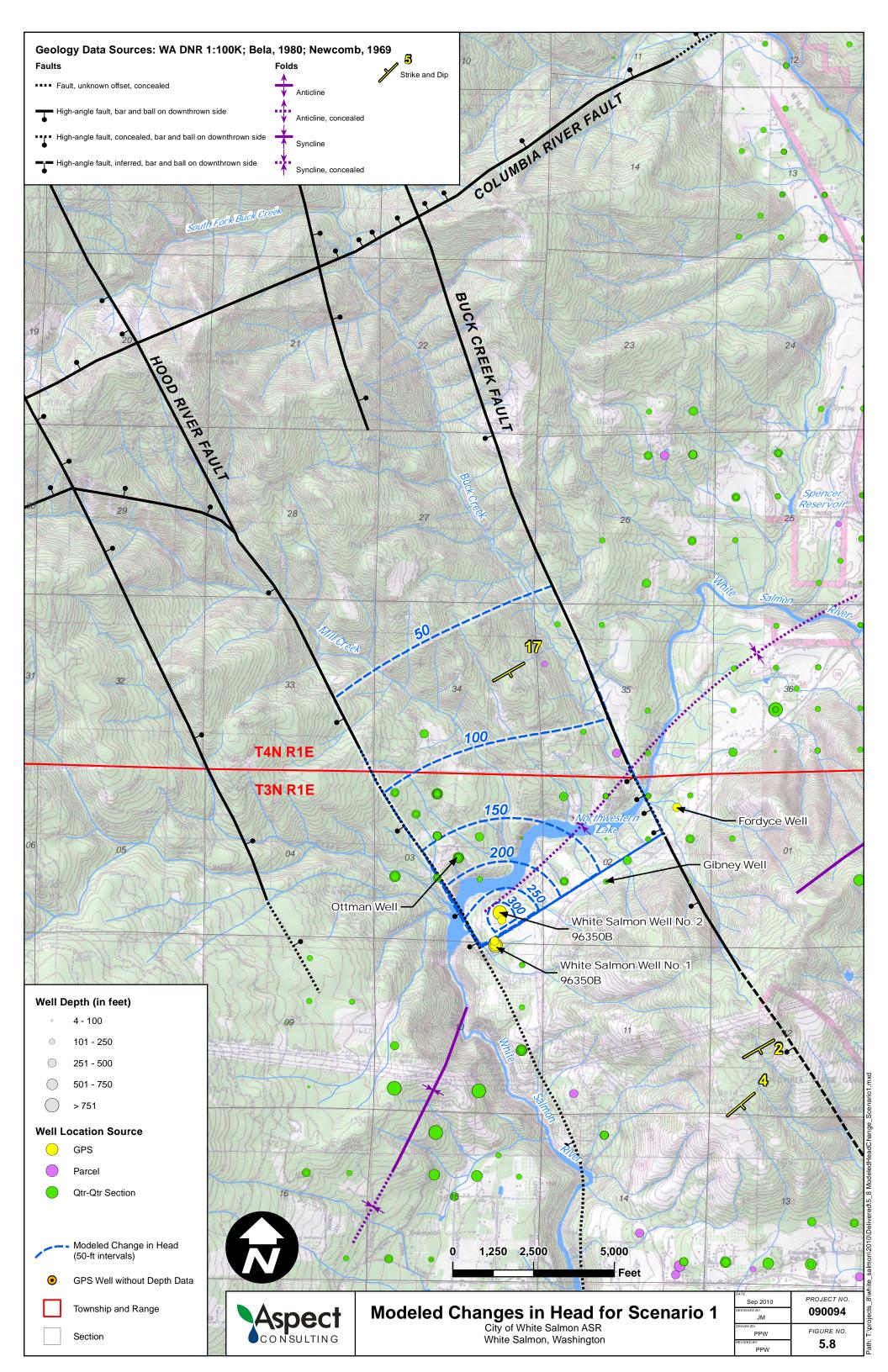
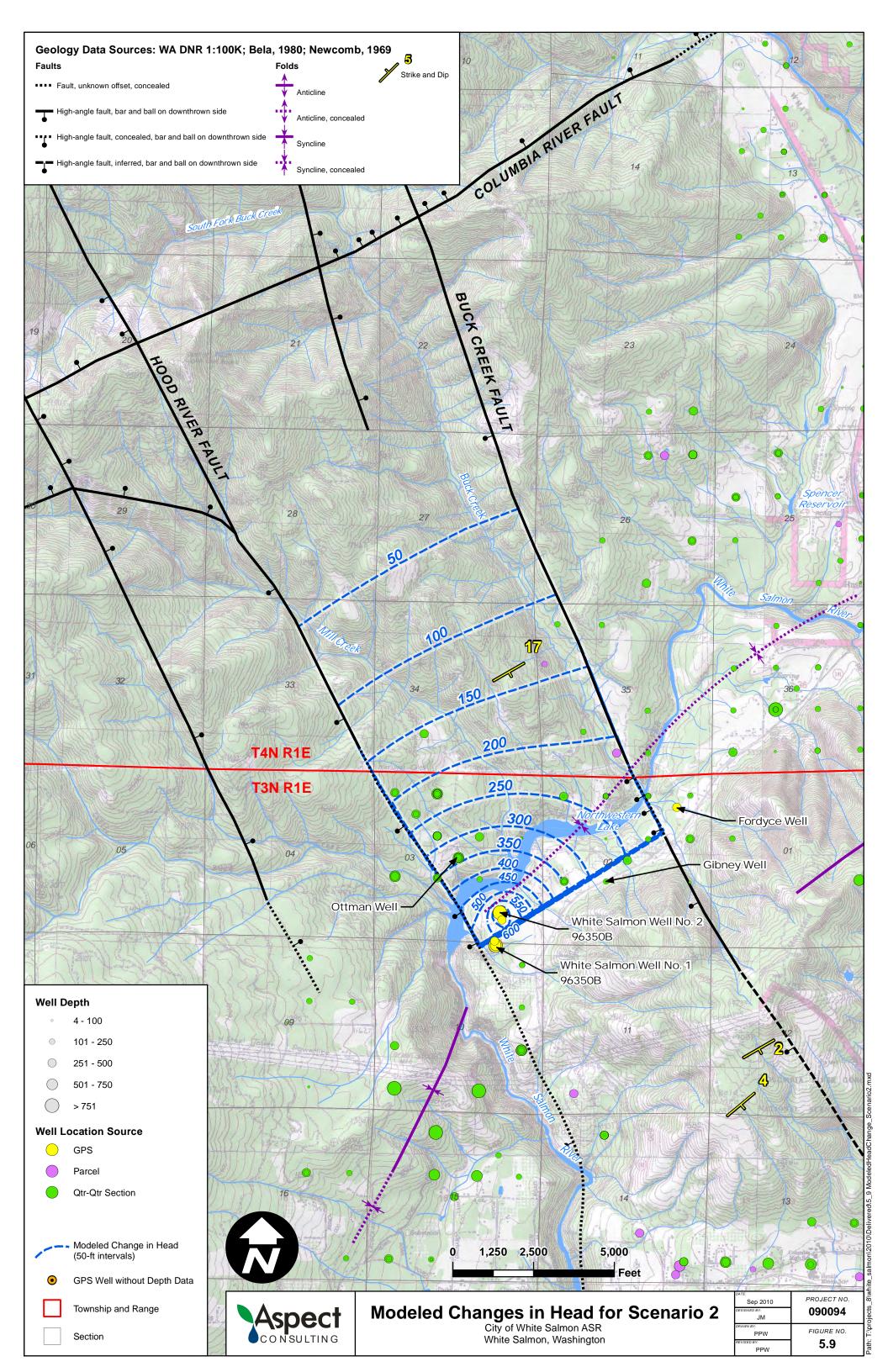
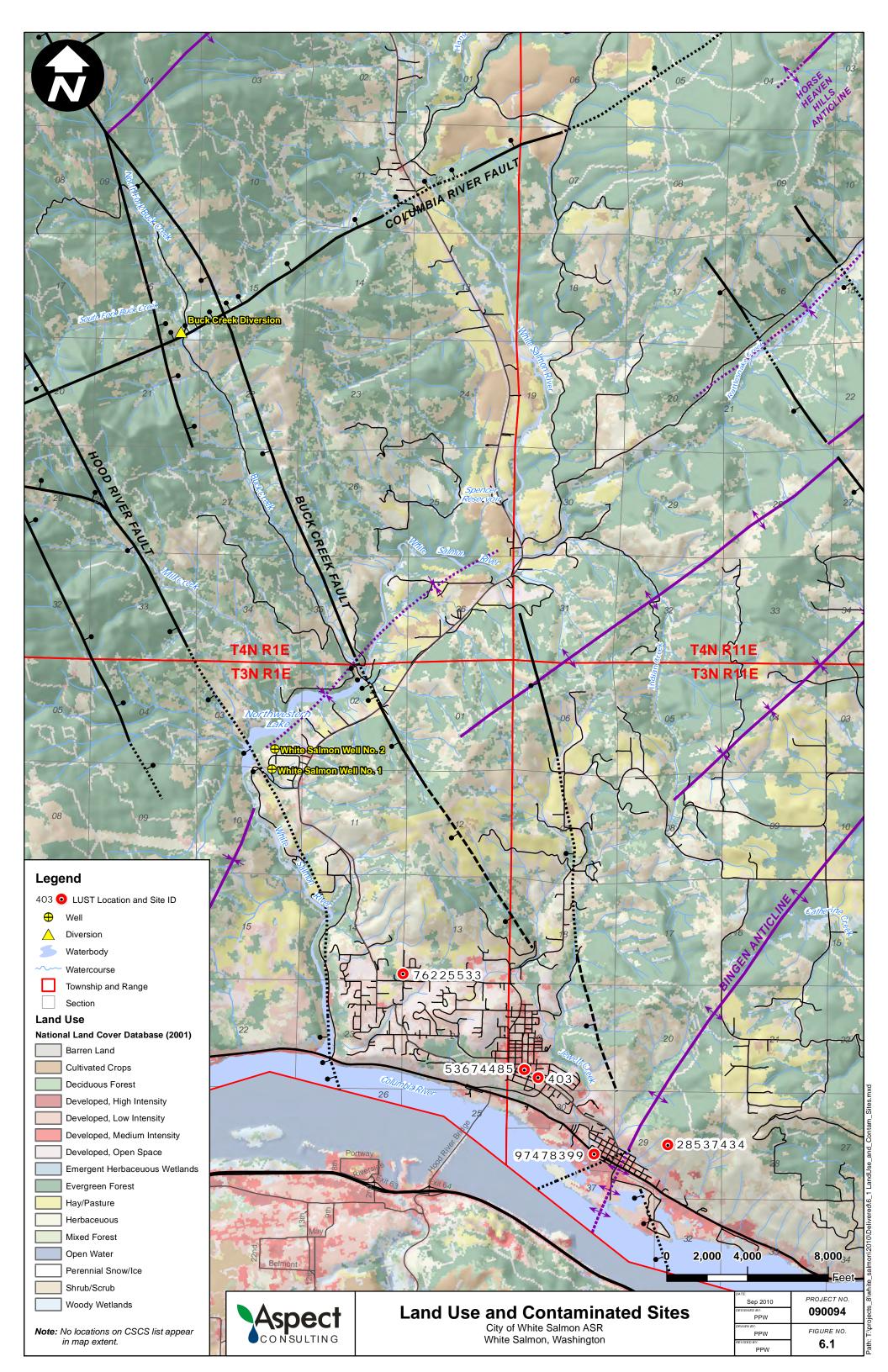



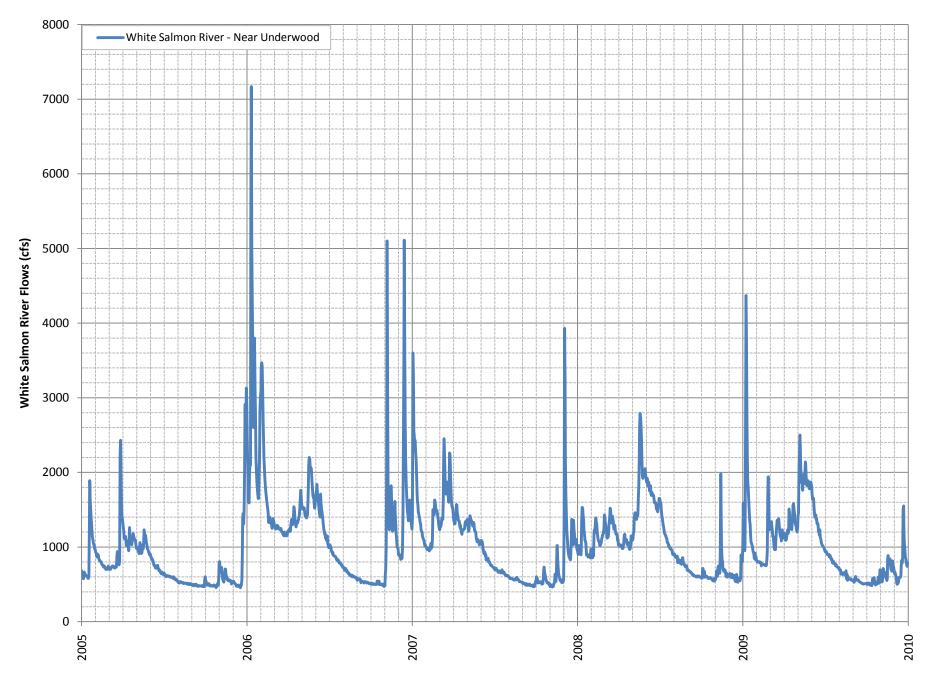
Figure 5.5 Distance-Drawdown Curves for Hypothetical ASR Scenarios

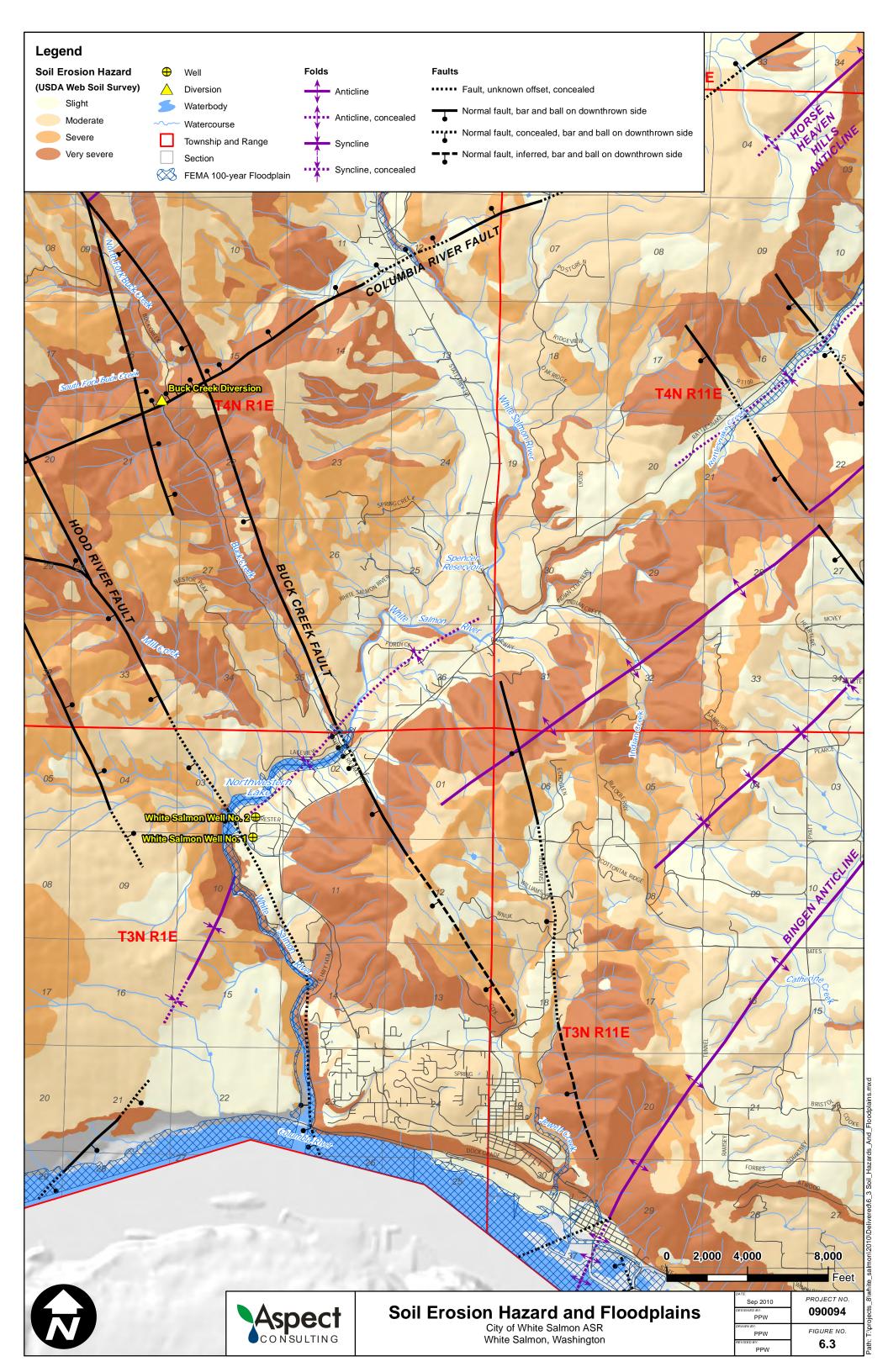





Piper Diagram of Groundwater and Surface Water Quality Data


City of White Salmon ASR White Salmon, Washington


April 2010	PROJECT NO.
DESIGNED BY: JMS	090094
DRAWN BY: MS	FIGURE NO.
REVISED BY:] 5.6



Aspect Consulting 4/22/2011

Figure 6.2 - White Salmon River Discharge, 2005 through 2009

Aquifer Storage and Recovery Feasibility Assessment

White Salmon, Washington

APPENDIX A

Laboratory Reports for February 2010 Water Quality Data

Phone: 360 750-0055 Fax: 360 750-0057 Email: addylab@wa-net.

Client: Sample Matrix:

City of White Salmon Drinking Water—S01

Date Collected:

2/17/10

Lab #:

14470127/14490127

Reference #:

10AL0178

Date Received: 2/17/10

Collected By: **Report Date:**

Troy 3/2/10

Analyte	Result Units	MRL	Method	Date Analyzed	Batch	Analyst
TSS	ND mg/L	5.0	SM 2540 D	2/19/10	5A-113	SV
Ammonia-N	0.01 J mg/L	0.05	EPA 350.3	3/1/10	4B-038	sv
Alkalinity	29 mg/L	10.0	SM 2320 B	2/22/10	5A-114	sv
TDS	46 mg/L	15	SM 2540 C	2/22/10	5A-116	SV
Chloride	1.16 mg/L	1.00	EPA 300.0	2/18/10	7-123	SV
Sulfate	0.53 J mg/L	1.00	EPA 300.0	2/18/10	7-123	SV
Orthophosphate	ND mg/L	0.10	EPA 300.0	2/18/10 0254	7-123	SV

Definitions:

TSS Total Suspended Solids

TDS **Total Dissolved Solids**

Biochemical Oxygen Demand BOD

mg/L milligram per Liter microgram per Liter ug/L MRL Method Reporting Limit

ND Analyte Not Detected at or above the Method Detection Level (MDL).

J An estimate that is less than the MRL but greater than or equal to the MDL.

Metals analyzed by ESC Lab.

Test results for pH, color, anions except o-phosphorus, E. coli, coliform bacteria and turbidity conducted by AddyLab meet all the requirements of NELAC, unless otherwise stated in writing, and relate only to these samples.

Date 3/2/10 Reviewed

Client

File

Corporate Office

Burlington WA | 1620 S Walnut St - 98233 800.755,9295 • 360,757.1400 • 360,757.1402iax

Bellingham WA 805 Orchard Dr Suite 4 - 98225

360.671.0688 • 360.671.1577fax

INORGANIC COMPOUNDS (IOC) REPORT

Client Name: Addy Lab 2517 East Evergreen Blvd Vancouver, WA 98661

Reference Number: 10-02246

Project: 10AL0178

System Name: CITY OF WHITE SALMON

Sample Number: 10AL0178

System ID Number: 96350B DOH Source Number: 01

Lab Number: 046-05007 Collect Date: 2/17/10 07:11

Multiple Sources:

Date Received: 2/18/10

Sample Type: B - Before treatment

Report Date: 3/1/10 Sampled By: Troy Rosenburg

Sample Purpose: Investigative or Other Sample Location: (S01) Buck Creek

Sampler Phone: 509-493-1137

County: Klickitat

Released by:

-	1	RESULTS	UNITS	SRL	Trigger	MCL	Analyst	METHOD	Analyzed	COMMENT
	EPA Regulated									
4	ARSENIC	ND	mg/L	0.001	0.010		mvp	200.8	02/22/10	
5	BARIUM	0.003	mg/L	0.001	2		mvp	200.8	02/22/10	
6	CADMIUM	ND .	mg/L	0.001	0.005		mvp	200.8	02/22/10	
7	CHROMIUM	ND	mg/L	0.005	0.1		mvp	200.8	02/22/10	
11	MERCURY	ND	mg/L	0.0002	0.002	0.002	ccn	245.1	02/19/10	
12	SELENIUM	ND	mg/L	0.005	0.05		mvp	200.8	02/22/10	
110	BERYLLIUM	ND	mg/L	0.002	0.004		mvp	200.8	02/22/10	
111	NICKEL	ND	mg/L	0.001	0.1		mvp	200.8	02/22/10	
112	ANTIMONY	ND	mg/L	0.001	0.006		mvp	200.8	02/22/10	
113	THALLIUM	ND	mg/L	0.001	0.002		mvp	200.8	02/22/10	
	EPA Regulated (Secondary)									
8	IRON	ND	mg/L	0.050	0.3		bj	200.7	02/23/10	
10	MANGANESE	ND	mg/L	0.005	0.05		mvp	200.8	02/22/10	
13	SILVER	ND	mg/L	0.001	0.05		mvp	200.8	02/22/10	
24	ZINC	ND	mg/L	0.005	5		mvp	200.8	02/22/10	
	State Regulated		1 0 0							
14	SODIUM	2.39	mg/L	5.0			bj	200.7	02/23/10	
17	CALCIUM	5.73	mg/L	0.500			bi	200.7	02/23/10	
	MAGNESIUM	1.87	mg/L	0.500			bi	200.7	02/23/10	
	POTASSIUM	1.13	mg/L	0.500			bi	200.7	02/23/10	
		1.10	l'ilg/L	0.500			•	200.7	J. J	
•	State Unregulated	ND		0.001			mun	200.8	20100110	
9	LEAD	ND	mg/L				mvp	200.8	02/22/10	
23	COPPER	ND	mg/L	0.005			mvp	200.8	02/22/10	
			-							
			ĺ							
				1						

An * in front of the parameter name indicates it is not NELAP accredited but it is accredited through WSDOH or USEPA Region 10. These test results meet all the requirements of NELAC, unless otherwise stated in writing, and relate only to these samples.

If you have any questions concerning this report contact us at the above phone number.

SRL (State Reporting Level): indicates the minimum reporting level required by the Washington Department of Health (DOH).

MCL (Maximum Contaminant Level) maximum permissible level of a contaminant in water established by EPA; Federal Action Levels are 0.015 mg/L for Lead and 1.3 mg/L for Copper. Sodium has a recommended limit of 20 mg/L. A blank MCL value indicates a level is not currently established.

Trigger Level: DoH Drinking Water Response level. Systems with compounds detected in excess of this level are required to take additional samples. Contact your regional DOH office.

ND (Not Detected): indicates that the parameter was not detected above the Specified Reporting Limit (SRL).

Burlington WA Corporate Office

1620 S Walnut St - 98233

800.755.9295 • 360.757.1400 • 360.757.1402fax

Bellingham WA 805 Orchard Dr Suite 4 - 98225 360.671.0688 • 360.671.1577fax

Page 1 of 1

INORGANIC COMPOUNDS (IOC) REPORT

Client Name: Addy Lab

2517 East Evergreen Blvd Vancouver, WA 98661

Project: 10AL0178

Field ID: 10AL0178

VANADIUM

18496-25-8 *HYDROGEN SULFIDE

*TOTAL PHOSPHORUS

TOTAL ORGANIC CARBON

Sample Description: (S01) Buck Creek

Sampled By: Troy Rosenburg Sample Date: 2/17/10 7:11

Reference Number: 10-02246

Lab Number: -05007

Report Date: 3/1/10 Date Received: 2/18/10

Sampler Phone: 509-493-1137

02/24/10

02/23/10

02/24/10

Released By:

200.7

SM4500-P F

SM5310 B

SM4500-S2 E

bj

spl

ccn

COMMENT RESULT MCL **Analyst METHOD** Analyze CAS UNITS PQL MDL Compound 24.9 200.7 02/23/10 *SILICA 0.05 0.007 7631-86-9 ma/L bj 7429-90-5 ALUMINUM 0.028 0.010 0.10 200.7 02/23/10 mg/L bj ND 02/23/10 *COBALT 0.001 0.001 200.7 7440-48-4 bj mg/L 02/23/10 ND

0.002

0.010

0.100

0.50

0.004

0.085

0.0026

mg/L

ma/L

mg/L

mg/L

0.019

ND

0.54

NOTES:

7440-62-2

7723-14-0

E-10195

MCL (Maximum Contaminant Level) maximum permissible level of a contaminant in water established by EPA; Federal Action Levels are 0.015 mg/L for Lead and 1.3 mg/L for Copper. Sodium has a recommended limit of 20 mg/L. A blank MCL value indicates a level is not currently established.

MDL Method Detection Limit is a theoretical detection limit at which there is a 99% certainty that the analyte concentration is greater than zero.

ND = Not detected above the listed practical quantitation limit (PQL) or not above the Method Detection Limit (MDL), if requested.

An * in front of the parameter name indicates it is not NELAP accredited but it is accredited through WSDOH or USEPA Region 10.

These test results meet all the requirements of NELAC, unless otherwise stated in writing, and relate only to these samples. If you have any questions concerning this report contact us at the above phone number.

PQL Practical Quantitation Limit indicates the lower level of quantitation at which an analyte can be determined with a confidence of plus or minus 20%

Phone: 360 750-0055 Fax: 360 750-0057 Email: addylab@wa-net.

Client: City of White Salmon Sample Matrix: Drinking Water—S04

Date Collected: 2/17/10

Lab #: 14470128/14490128

Reference #: 10AL017
Date Received: 2/17/10
Collected By: Troy
Report Date: 3/2/10

Analyte	Result	Units	MRL	Method	Date Analyzed	Batch	Analyst
TSS	ND	mg/L	5.0	SM 2540 D	2/19/10	5A-113	sv
Ammonia-N	0.02 J	mg/L	0.05	EPA 350.3	3/1/10	4B-038	sv
Alkalinity	52.5	mg/L	10.0	SM 2320 B	2/22/10	5A-114	SV
TDS	96	mg/L	15	SM 2540 C	2/22/10	5A-116	SV
Chloride	1.20	mg/L	1.00	EPA 300.0	2/18/10	7-123	SV
Sulfate	2.87	mg/L	1.00	EPA 300.0	2/18/10	7-123	SV
Orthophosphate	ND	mg/L	0.10	EPA 300.0	2/18/10 0312	7-123	SV

Definitions: TSS Total Suspended Solids

TDS Total Dissolved Solids

BOD Biochemical Oxygen Demand

mg/L milligram per Liter
ug/L microgram per Liter
MRL Method Reporting Limit

ND Analyte Not Detected at or above the Method Detection Level (MDL).
 J An estimate that is less than the MRL but greater than or equal to the MDL.

* Metals analyzed by ESC Lab.

1

Test results for pH, color, anions except o-phosphorus, E. coli, coliform bacteria and turbidity conducted by AddyLab meet all the requirements of NELAC, unless otherwise stated in writing, and relate only to these samples.

Reviewed _	TAN	Date	3/2/10	
Client	File			

Corporate Office

Burlington WA | 1620 S Walnut St - 98233

800.755.9295 • 360.757.1400 • 360.757.1402fax Bellingham WA 805 Orchard Dr Suite 4 - 98225

360.671.0688 • 360.671.1577fax

INORGANIC COMPOUNDS (IOC) REPORT

Client Name: Addy Lab 2517 East Evergreen Blvd

Vancouver, WA 98661

Reference Number: 10-02233

Project: 10AL0179

System Name: CITY OF WHITE SALMON

Sample Number: 10AL0179

System ID Number: 96350B

Lab Number: 046-04988 Collect Date: 2/17/10 07:38

DOH Source Number: 04

Multiple Sources:

Date Received: 2/18/10

Sample Type: B - Before treatment Sample Purpose: Investigative or Other Report Date: 3/1/10

Sampled By: Troy

Sample Location: SO4 Well #2

Sampler Phone: 509-493-1137

Released by:

County: Klickitat

DOH#	ANALYTES	RESULTS	UNITS	SRL	Trigger	MCL	Analyst	METHOD	Analyzed	COMMENT
	EPA Regulated									
4	ARSENIC	ND	mg/L	0.001	0.010		mvp	200.8	02/22/10	
5	BARIUM	0.003	mg/L	0.001	2		mvp	200.8	02/22/10	
6	CADMIUM	ND	mg/L	0.001	0.005	-	mvp	200.8	02/22/10	
7	CHROMIUM	ND	mg/L	0.005	0.1		mvp	200.8	02/22/10	
11	MERCURY	ND	mg/L	0.0002	0.002	0.002	ccn	245.1	02/19/10	
12	SELENIUM	ND	mg/L	0.005	0.05		mvp	200.8	02/22/10	
110	BERYLLIUM	ND	mg/L	0.002	0.004		mvp	200.8	02/22/10	
111	NICKEL	ND	mg/L	0.001	0.1		mvp	200.8	02/22/10	
112	ANTIMONY	ND	mg/L	0.001	0.006		mvp	200.8	02/22/10	
113	THALLIUM	ND	mg/L	0.001	0.002		mvp	200.8	02/22/10]
	EPA Regulated (Secondary)									
8	IRON.	0.08	mg/L	0.050	0.3		bi	200.7	02/23/10	
10	MANGANESE	0.093	mg/L	0.005	0.05		mvp	200.8	02/22/10	
13	SILVER	ND	mg/L	0.001	0.05		mvp	200.8	02/22/10	
24	ZINC	ND	mg/L	0.005	5		mvp	200.8	02/22/10	
	State Regulated									
14	SODIUM	7.81	mg/L	5.0			bi	200.7	02/23/10	
	CALCIUM	8.87	mg/L	0.500			bj	200.7	02/23/10	
	MAGNESIUM	3.17	mg/L	0.500			bj	200.7	02/23/10	
	POTASSIUM	2.55	mg/L	0.500			bj	200.7	02/23/10	
	State Unregulated							•		
9	LEAD	ND	mg/L	0.001			mvp	200.8	02/22/10	
23	COPPER	ND	mg/L	0.005			mvp	200.8	02/22/10	
	··									
		İ								
							-			

SRL (State Reporting Level): indicates the minimum reporting level required by the Washington Department of Health (DOH).

MCL (Maximum Contaminant Level) maximum permissible level of a contaminant in water established by EPA; Federal Action Levels are 0.015 mg/L for Lead and 1.3 mg/L for Copper. Sodium has a recommended limit of 20 mg/L. A blank MCL value indicates a level is not currently established.

Trigger Level: DOH Drinking Water Response level. Systems with compounds detected in excess of this level are required to take additional samples. Contact your regional DOH office.

ND (Not Detected): indicates that the parameter was not detected above the Specified Reporting Limit (SRL).

An * in front of the parameter name indicates it is not NELAP accredited but it is accredited through WSDOH or USEPA Region 10.

These test results meet all the requirements of NELAC, unless otherwise stated in writing, and relate only to these samples.

If you have any questions concerning this report contact us at the above phone number.

Burlington WA Corporate Office

1620 S Walnut St - 98233

800.755.9295 • 360.757.1400 • 360.757.1402fax Bellingham WA 805 Orchard Dr Suite 4 - 98225

360.671.0688 • 360.671.1577fax

Page 1 of 1

INORGANIC COMPOUNDS (IOC) REPORT

Client Name: Addy Lab

2517 East Evergreen Blvd Vancouver, WA 98661

Project: 10AL0179

Field ID: 10AL0179

Sample Description: SO4 Well #2

Sampled By: Troy

Sample Date: 2/17/10 7:38

Reference Number: 10-02233

Lab Number: -04988

Report Date: 3/1/10 Date Received: 2/18/10

Sampler Phone: 509-493-1137

Released By:

CAS	Compound	RESULT	UNITS	PQL	MDL	MCL	Analys	st METHOD	Analyze	COMMENT
7631-86-9	*SILICA	37.7	mg/L	0.05	0.007		bj	200.7	02/23/10	
7429-90-5	ALUMINUM	ND	mg/L	0.010	0.10		bj	200.7	02/23/10	
7440-48-4	*COBALT	ND	mg/L	0.001	0.001		bj	200.7	02/23/10	
7440-62-2	*VANADIUM	ND	mg/L	0.001	0.004		bj	6010B	02/23/10	
7723-14-0	*TOTAL PHOSPHORUS	0.048	mg/L	0.010	0.0026		spl	SM4500-P F	02/24/10	
18496-25-8	*HYDROGEN SULFIDE	ND	mg/L	0.100			ccn	SM4500-S2 E	02/24/10	
E-10195	TOTAL ORGANIC CARBON	ND	mg/L	0.50	0.085		bj	SM5310 B	02/23/10	

NOTES:

MCL (Maximum Contaminant Level) maximum permissible level of a contaminant in water established by EPA; Federal Action Levels are 0.015 mg/L for Lead and 1.3 mg/L for Copper. Sodium has a recommended limit of 20 mg/L. A blank MCL value indicates a level is not currently established.

MDL Method Detection Limit is a theoretical detection limit at which there is a 99% certainty that the analyte concentration is greater than zero.

ND = Not detected above the listed practical quantitation limit (PQL) or not above the Method Detection Limit (MDL), if requested.

An * in front of the parameter name indicates it is not NELAP accredited but it is accredited through WSDOH or USEPA Region 10.

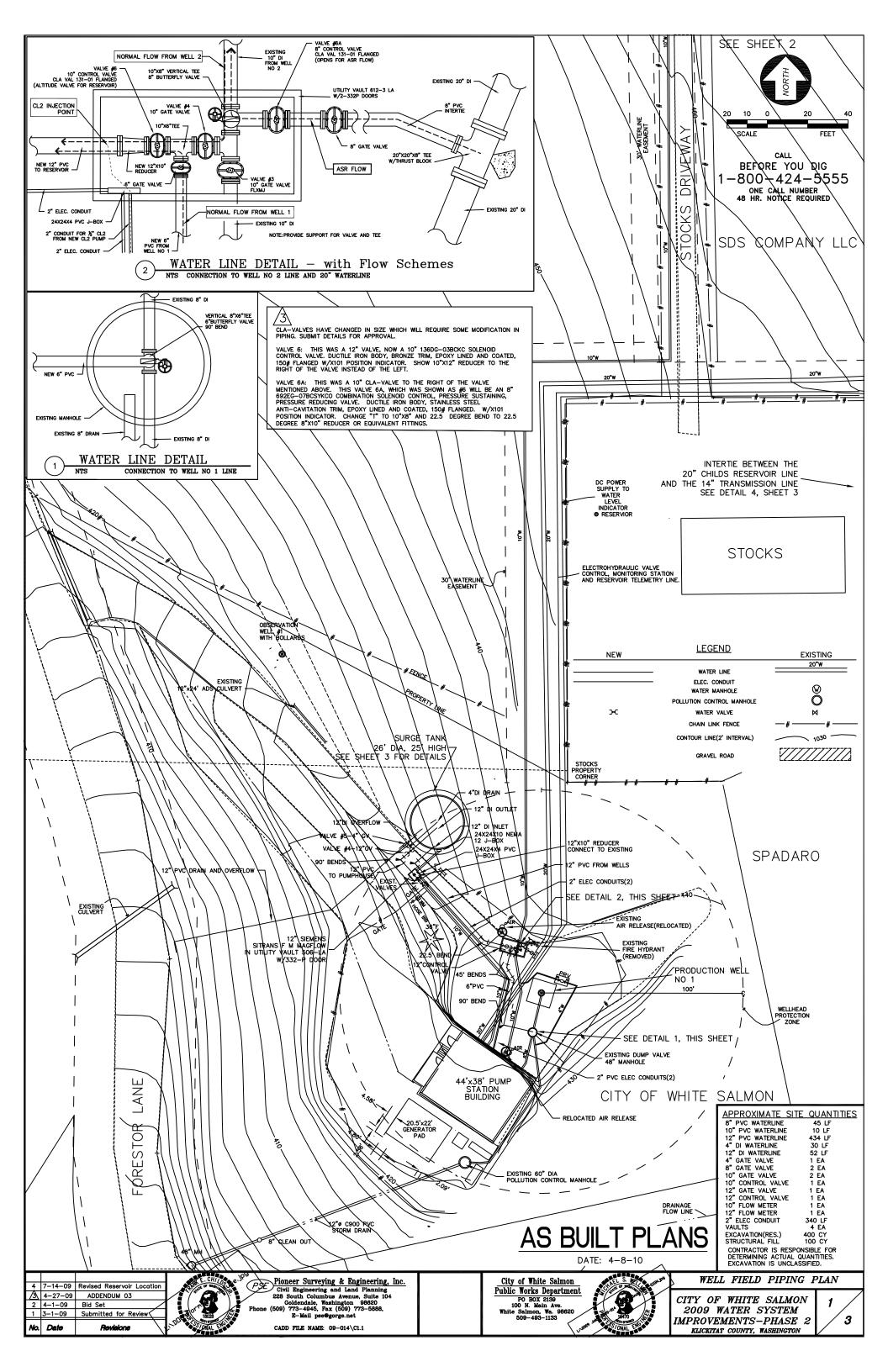
These test results meet all the requirements of NELAC, unless otherwise stated in writing, and relate only to these samples. If you have any questions concerning this report contact us at the above phone number.

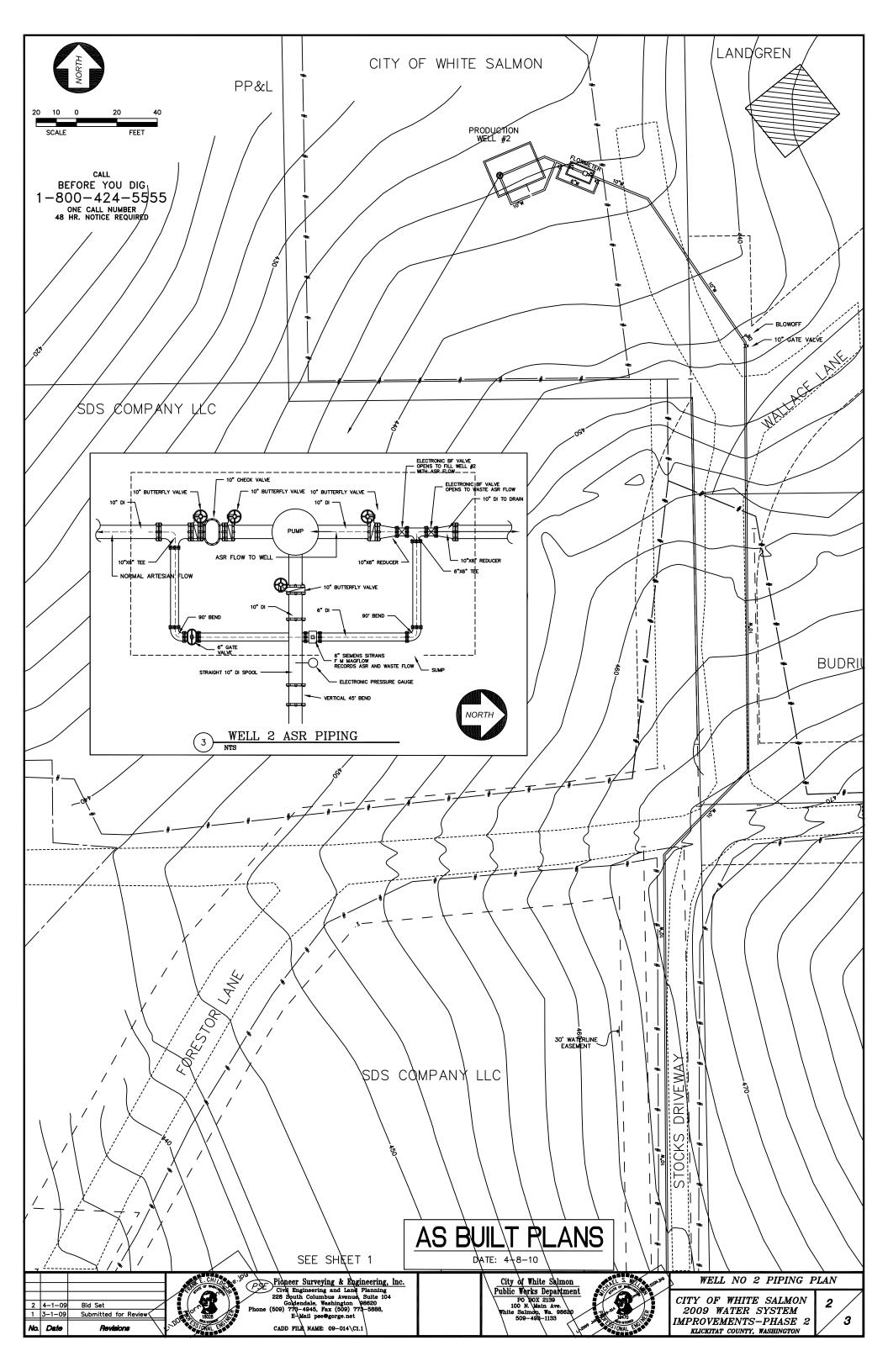
PQL Practical Quantitation Limit indicates the lower level of quantitation at which an analyte can be determined with a confidence of plus or minus 20%.

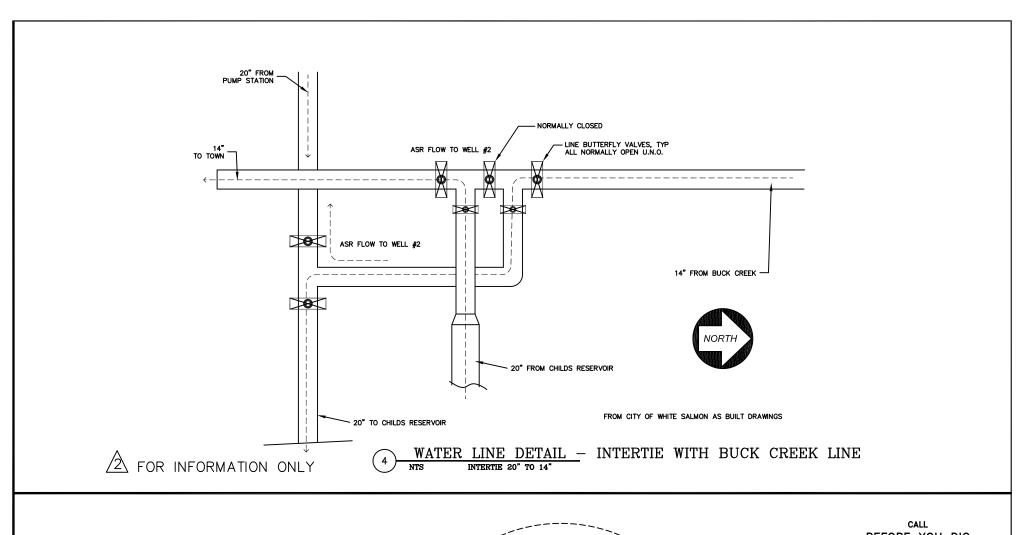
2517 E. Bvergreen Blvd. Vancouver, WA. 98661

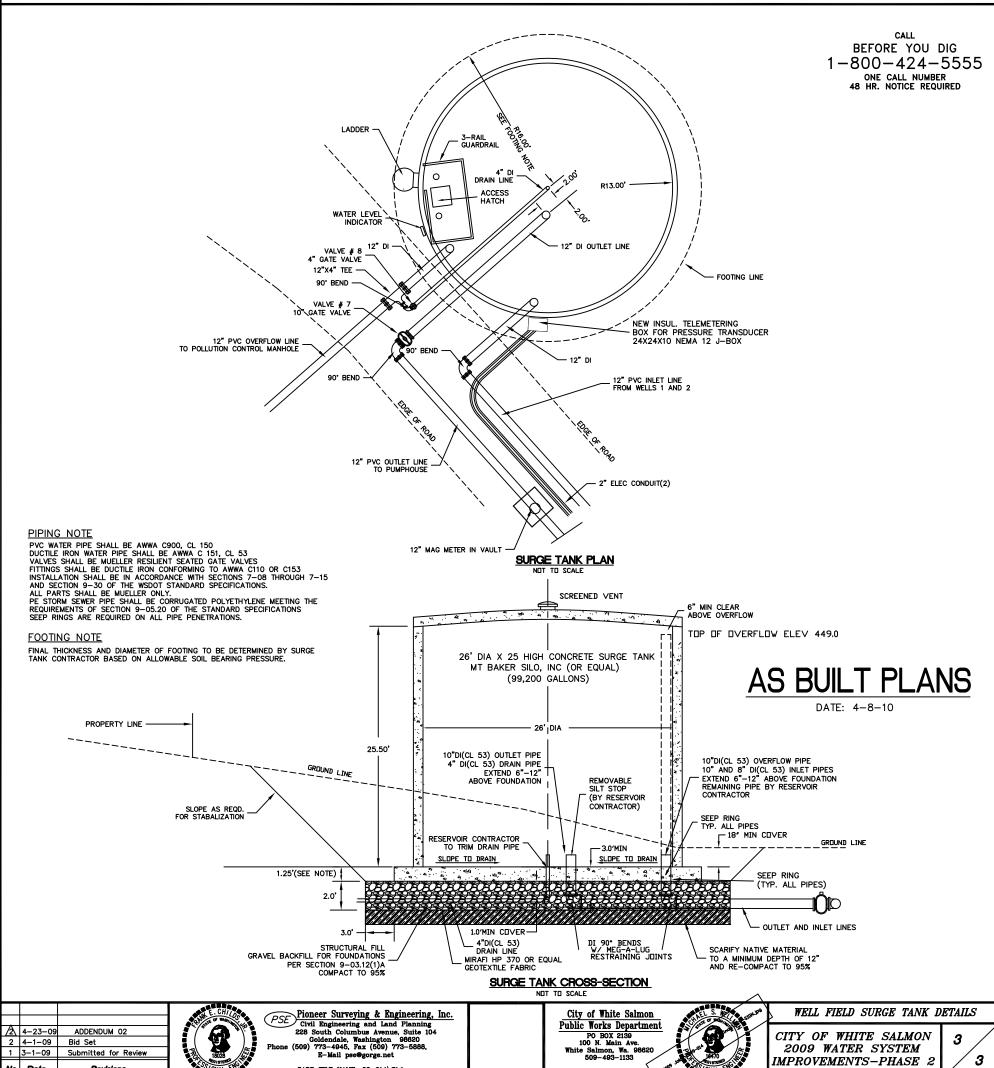
Phone: 360-750-0055 Fax: 360-750-0057 Email: info@addylab.com

PRINT NAME JEHT BUCK /4/ FIRMS CHIM DE SHOTIN	iggerenden.	PRINT NAME: TROY RECORDING FIRM CITY of WARES TIME: 8137 AM	All Distriction of the Control of th			9. SWIFICE 2-17-10/7138AMN	A CONTRACTOR CONTRACTOR	2-17-10/7:189.mm		1. too 2-17-10/12#1	IDENTIFICATION DATE/TIME LL	SAMPLING	SAMPLED BY: 1704 963505	PROJECT NAME:		ADDRESS みのプロ するできる		
SHOTIME OF 23 PRINT NAME: FIRM:	2-17-10 RECEIVED BY: HH 3:	ME 8/37 AM PRINT NAME: FIRM	DATE: 2-17-10 RECHIVED BY:			10-02200		***						REQUESTED ANALYSES			INVOICE TO CASO OF SOME OF SOM	CHAIN OF CUSTODY REPORT
TIME: 0840 COC REV		SS N	DATE O CHARGO	1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1	2000 C 10		10 02253			(m, o, o) CONT. COMMENTS	3	48	OTHER Please Specify	S70	7D) Postpleum Hydrocarbon Analyses	10 7 5 4 3 2 1 <1	TURNAROUND REQUEST in Business Days* Organic & horganic Analyses	でものにな




2517 E. Evergreen Blyd. Vancouver, WA 98661 Phone: (360) 750-0055 Fax: (360) 750-0057 Email: reports@addylab.com


CLIENT & BILLING INFO		/SI) for Inorgani	c & Organic Ch	mical Analysis
Report To: +on Sm	+	Bill To: Cotta	of White Sal	n a Same As Report To
Address: *	2homis/U	Address: J		Av. C/V Same As (epoil in
City: White Salmon State: WA	Zip:986-72	City: White S	O Main Salmos State: Wx	7,
Phone: 509 493 1137 F	ax.	Phone: 503		Zlp:98672-
Email: TomS DOL White-Sam	ion a NJA a NS	P.O.#: 2/3°	493 1133 1	
SVIIGO. Tro/				
Project Name:				
SAMPLING INFORMATION	DN .			
1. Date Collected: 2. ピカノの	Time Collected:	(AM) PM		
2. Collected By: TROY		<u> </u>	493 1137	
Specific Location where sample take		10.11 # 2	* 1 > * 1 > 1	
 If taken from Distribution, indicate a 	ddress:			
5. DOH Source Number: SO 4 (If Sample blended from more than one 3. Group: (A) B 7. System Name: Coty o 3. Source Type: Surface Well/ 3. County Kickitat 4. Check here if this analysis is for o 1. Sample taken (Before Treatment) 2. Treatment Type: None Aera	F White Se Ground Water Well Field compliance with State regular After Treatment No T	Spring Purchase	ed	ere if this is a New Source.
	For Labo	ratory Use only		
me & Date received	Reference #:			
			Date	Analyzed:
				<u> </u>
Addy Lab LLC	WSIN	/erson 1	And .	Janne L


APPENDIX B

As-Built Plans, City of White Salmon Water System Improvements, 2009

KLICKITAT COUNTY, WASHINGTON

CADD FILE NAME: 09-014\C1.1

Date

APPENDIX C

Response to Ecology Comments on Draft City of White Salmon Aquifer Storage and Recovery Feasibility Assessment

MEMORANDUM

Project No.: 090094-001-03

April 19, 2011

To: Tom Mackie – Washington State Department of Ecology

cc: Pat Munyan – City of White Salmon

Dan Haller – Washington State Department of Ecology

From: Tim Flynn, LHG

Joe Morrice, LHG

Re: Response to Ecology Comments on Draft City of White Salmon Aquifer

Storage and Recovery Feasibility Assessment

The following presents our response to Washington State Department of Ecology's (Ecology) letter dated January 11, 2011 (attached), providing comments on the draft City of White Salmon Aquifer Storage and Recovery Feasibility Assessment dated September 9, 2010. The numbered responses below correspond to those in the Ecology letter. Replacement text, tables, and figures noted below have been incorporated into the final report.

- 1. The existing infrastructure will allow water from Buck Creek to be conveyed to the wellfield for injection at Well No. 2, while still providing supply to the City from Childs Reservoir. The system piping is such that water from Buck Creek could be conveyed simultaneously to the reservoir for storage/distribution and to the wellfield for injection at Well No. 2; however, additional pressure control valves as well as other infrastructure improvements may be required to control the proportion of flow conveyed to the reservoir and the wellfield. Evaluation, design, and installation of the necessary valves are recommended prior to performing the ASR pilot test.
- 2. Yes, the existing conveyance system (with modifications identified above) and existing Well No. 2 are planned for the ASR pilot testing and, if the project advances to implementation, are planned for use for full scale operation.
- 3. Agreed. A meeting with the City of White Salmon and Ecology to discuss first steps to developing a memorandum of agreement (MOA) between the City and Ecology was held March 24, 2011. In addition, the response to comments on the draft FS and the scope of the Phase II effort were also discussed.
- 4. The well casing terminates about 40 feet above the brecciated zone in fractured basalt. The fractures are described in the well log as being cemented with hard, greenish-white cement. As noted in the comment, potential leakage to shallower aquifers through the uncased borehole above the brecciated zone is not evaluated in the FS. Monitoring of Observation Well No. 2 and the Ottman well during initial testing of Well No. 2, and continued monitoring of the Ottman well after Well No. 2 was put into production (see response to comment number 11 below) do not indicated hydraulic continuity between the deeper ASR target zone and upper zones of the basalt. Based on these observations we do not believe leakage from the borehole above the brecciated zone is significant, but will plan to monitor water levels in the City's observation

April 19, 2011 Project No.: 090094-001-03

wells and the Ottman well prior to and during the ASR pilot test to further evaluate potential leakage.

- 5. Although there are differences in the water quality between the upper and lower zones of the Grande Ronde (e.g., Well No. 1, completed in the upper Grande Ronde has higher TDS and higher proportion of calcium and magnesium than Well No. 2), we do not believe these differences are distinct enough that monitoring water quality from the upper Grande Ronde will prove useful for evaluating potential leakage. Evaluation of water quality data would be further complicated by the similar cation/anion signatures of Buck Creek water (planned for injection at Well No. 2) and water from Well No. 1 (see piper diagram, Figure 5.6 of the FS). Instead, we propose to rely on the hydraulic monitoring discussed in response to comment number 4 to evaluate leakage.
- 6. The units of Buck Creek flows and City water usage on Table 2 are consistent with each other; however the table headings may have been confusing. A replacement Table 2.2 is provided in the final report.
- 7. Agreed. Replacement Figures 4.1 and 4.2 are provided in the final report.
- 8. The White Salmon Irrigation District (WSID) water rights authorize year-round use of water (0.11 cfs) for domestic purposes, and seasonal use of water (4.39 cfs) for irrigation purposes. The period of use for irrigation is not specified, but based on the Washington Irrigation Guide should generally be from early May through early October. A new seasonal diversion from Buck Creek to serve the ASR project is proposed from November through April. This new diversion would be in addition to the domestic portion of the WSID water rights, but is not expected to compete with the larger irrigation portion.
- 9. We feel the pilot test and monitoring activities are closely linked, and that it is appropriate for the FS to outline the water quality and hydraulic monitoring in the pilot test program description. Please note that as part of Phase II a QAPP and SAP will be prepared, incorporating and expanding on the monitoring plans in Section 7. The QAPP will specify the type and quality of data required to evaluate pilot test effectiveness and the SAP will describe objectives, sampling procedures, testing and analysis methods, and reporting requirements for data collected during the pilot test. Monitoring activities proposed in the FS will be updated and incorporated into the QAPP and SAP.
- 10. Comment noted. Necessary permit applications, including a temporary water right permit to allow use of Buck Creek water for the pilot test, will be completed under the initial task of Phase 2.
- 11. The potential for springs to form where interflows of the CRBG outcrop at the White Salmon River are hypothetical; we are not aware that springs in this area have been observed or mapped. Review of water level monitoring data collected from the Ottman well, located about ½ mile northwest of Well No. 2, support the conclusion that ASR activities at Well No. 2 will not significantly affect groundwater elevations in shallower aquifers or, by extension, springs and seeps fed by the shallower aquifers.

Project No.: 090094-001-03

The Ottman well is completed in the Grande Ronde Basalt with a screened interval between elevations of approximately 210 and 250 feet. This screened interval is about the same elevation as where springs, if present, would form at CRBG outcrops along the White Salmon River. With the exception of short-term drawdown apparently due to pumping of the Ottman well itself, water level elevations measured at this well on a weekly to monthly interval have remained within a very narrow range of about 290 to 292 feet, with no apparent long-term trends. Based on these observations, the more than 500 feet of basalt overlying the aquifer tapped by Well No. 2 effectively isolates this deeper aquifer from shallower aquifers, and ASR activities are not expected to affect shallower groundwater elevations or associated springs. Consequently we do not think it is necessary to monitor individual springs and instead propose to continue monitoring the Ottman well during the pilot test to evaluate potential impacts of ASR activities to shallower groundwater and springs.

In response to the second comment, yes, details of the hydraulic (and water quality) monitoring will be provided in the QAPP.

- 12. Comment noted. The amount of stored water that is recoverable for subsequent use will be evaluated further in the pilot test program, and would ultimately be quantified in either the ASR reservoir or secondary use permits.
- 13. The springs contributing to Buck Creek are located north of the Columbia River Fault, about 4 to 5 miles northwest of Well No. 2. As discussed in the FS, the ASR target aquifer likely outcrops to the south of the fault. In this case, the target aquifer would not be hydraulically connected to the spring system farther north and ASR activities would not affect the springs contributing to Buck Creek. Alternatively, if the ASR target aquifer does not outcrop but continues to the north, it would be truncated by the Columbia River Fault. The fault is expected to act as a hydraulic barrier, limiting the connection between groundwater north and south of the fault, such that ASR activities would not be expected to affect the springs. Regardless, monitoring of water levels in a monitoring well completed in the ASR target aquifer near Well No. 2 will allow for more accurate evaluation of potential groundwater mounding from ASR activities to evaluate whether impacts to springs are likely.
- 14. Comment noted. Replacement text for Section 6 is provided in the final report.
- 15. It is anticipated that the "net water savings" will be provided by a discharge to the White Salmon River. Replacement text for Section 6 includes a discussion of surface waters potentially affected by this discharge.
- 16. Comment noted. Requested additional details will be provided in the QAPP/SAP.
- 17. Comment noted. Replacement text for Section 8 is provided in the final report.

Project No.: 090094-001-03

Limitations

Work for this project was performed and this memorandum prepared in accordance with generally accepted professional practices for the nature and conditions of work completed in the same or similar localities, at the time the work was performed. It is intended for the exclusive use of the City of White Salmon for specific application to the referenced property. This memorandum does not represent a legal opinion. No other warranty, expressed or implied, is made.

Attachments

Ecology comment letter, dated January 11, 2011

Document2

STATE OF WASHINGTON DEPARTMENT OF ECOLOGY

15 W Yakima Ave, Ste 200 • Yakima, WA 98902-3452 • (509) 575-2490

January 11, 2011

Timothy J. Flynn Aspect Consulting, LLC 179 Madrone Lane N Bainbridge Island, WA 98110

RE: Comments on draft City of White Salmon Aquifer Storage and Recovery Feasibility Assessment dated September 9, 2010. White Salmon, Washington. Columbia River Program Grant # G0900235

Dear Tim:

The Washington State Department of Ecology (Ecology) Water Resources Program has completed its review of the draft City of White Salmon Aquifer Storage and Recovery Feasibility Assessment dated September 9, 2010 and submitted on September 15, 2011 on behalf of the City of White Salmon, Washington. Based on our review, Ecology offers the following comments:

- 1. It looks, from the report, that no capital investment is needed to proceed to pilot. Is this correct?
- 2. Will the ASR project rely on existing conveyance and existing well?
- 3. We would like to meet with the City to discuss more specifically how the State's 1/3 for in stream flow will work before the pilot phase of the project. For example, where, when do we get it and who pays if there are O&M costs, etc. (This will be the subject of an MOA between the City and the State.)
- 4. It should be noted that the well casing does not extend to the brecciated zone interpreted to be the upper boundary of the artesian aquifer. Leakage to shallower aquifers through this uncased portion of the well into Grand Ronde Basalt above the brecciated zone is not addressed in the Feasibility Assessment and should be one focus for later investigation and monitoring as the project moves forward.
- 5. The Feasibility Assessment includes a good water quality monitoring plan. Monitoring of the Grande Ronde above the brecciated zone should be included to detect leakage from the uncased portion of Well No 2 above the brecciated zone aquifer boundary.

ecol Dors

Mr. Timothy J. Flynn January 11, 2011 Page 2

- 6. <u>Table 2.2</u> Buck Creek Flows and City of White Salmon Water Use. Comment the instantaneous rates (cfs) would be more comparable if they were reported for the same time period; as it is now the average flows for Buck Creek are monthly and the average use by the City is daily.
- 7. Page 4-4, 2nd Paragraph "The cumulative authorized instantaneous diversion in cfs associated with the surface water rights in each section is posted on Figure 4.1. The cumulative authorized annual withdrawal in afy associated with the groundwater rights in each section is shown on Figure 4.2." Comment cumulative quantities are reported in two different units; surface water authorizations are reported as an instantaneous rate and groundwater authorizations are reported as an annual volume; suggest the cumulative quantities be reported as both an instantaneous rate (cfs) and an annual volume (afy) for both surface water and groundwater authorizations. Figures should be changed accordingly.
- 8. Page 4-5, 1st and 2nd Paragraphs "Based on this, it is assumed that the maximum use by the White Salmon Irrigation District from mid-October through April is limited to the 0.11 cfs for domestic use." "It is anticipated that the new water right for ASR would request a seasonal diversion from Buck Creek from November through April. Diversion over this period would not compete with the irrigation portion the White Salmon Irrigation District water rights." Comment If the Irrigation District has water use through April, a diversion for the ASR project in April would be in competition.
- 9. Page 7-1, Section 7 Project Monitoring Plan (Pilot Test Plan) Comment most of Section 7 appears to discuss the operational details of the "Pilot Test Plan" rather than the "Monitoring Plan." It might be useful to break out the actual "Monitoring Plan" (Section 7.6) from Section 7 and create a new section specific to the "Monitoring Plan".
- 10. <u>Page 7-3, Section 7.5 Recharge, Storage, and Recovery Cycles</u> Comment Any beneficial use of water during testing would require a Temporary Permit.
- 11. Page 7-4, Section 7.6 Hydraulic Monitoring Comment Section 6.1.3 states that "Additional springs may also occur along the slopes of the White Salmon River where the water-bearing interflow zones of the Columbia River Basalt Group (CRBG) outcrop." If the locations of any of these springs are known they should be monitored before, during, and after testing as well in order to determine if there is any change that can be attributed to ASR operations. As an alternative another monitoring well west of the Hood River Fault and east of the White Salmon River could prove useful in determining the hydraulic nature of the fault at depth (i.e., isolation of spring source water from ASR reservoir). Comment It is assumed that hydraulic monitoring details (frequency, length of time, methods, etc.) will be documented in the QAPP.

Mr. Timothy J. Flynn January 11, 2011 Page 3

- 12. <u>Page 8-1, Section 8 Conceptual Project Operation Plan</u> Several statements are made in this section with regard to pumping the full quantity of stored water from the ASR well.
 - o "Subsequently pump the full quantity of stored water from the ASR well during the peak demand months (e.g., June through September)."
 - "Assuming all of the stored water is recovered over this period, the average pumping rate would be about 630 gpm to remove 340 acre-feet."
 - Comment Since 100% recovery of the stored water is not likely possible, the volume extracted for secondary use is likely to be less than the volume pumped into aquifer storage.
- 13. Section 5. Much of the flow in Buck Creek, especially late season flow, is reported to be from springs located in Township 4 North, Range 10 East, Sections 8, 9, 16, 17, 19, and 20 ¹. Please discuss the significance of these springs with respect to the surface water flows in Buck Creek, their occurrence (geologic, structural, and hydrogeologic setting), and relationship to the target aquifer. As with Comment No. 11, if the locations of these springs are known, they may need to be monitored before, during, and after testing as well in order to determine if there is any change that can be attributed to ASR operations.
- 14. Section 6.1.3. Please include a discussion of the springs listed in Comment No. 13 in this section.
- 15. Section 6.2.2. If the "net water savings" per Ecology grant # 0900235, Special Terms and Conditions, Paragraph C includes a discharge to surface water, that discharge should be discussed here.
- 16. Section 7. In addition to those things that are listed, please also include the following in the SAP: sampling schedule, description of QA/QC samples, procedures for analysis of samples (detection or quantification limits, analytical methods, and lab QA/QC).
- 17. Section 8. Please include how "net water savings" per Ecology Grant # 0900235, Special Terms and Conditions, Paragraph C, will be satisfied operationally.

Ecology would like to thank Aspect Consulting for the considerable effort that has gone into this draft feasibility assessment. Final approval will be issued after the resolution of the comments listed above.

¹ Futrell, Redford, and Saxton, 1973, "Town of White Salmon Washington - A Report on an Engineering Study and Preliminary Design of Water System Facilities" Engineering Report submitted to the Town of White Salmon.

Mr. Timothy J. Flynn January 11, 2011 Page 4

Please call me at (509) 249-6298 and we will set up a meeting or telephone call to work through the comments.

Sincerely,

Thomas L. Mackie, LHG Technical Unit Supervisor Water Resources Program

TLM:gh 110128

Ecopy: Dan Haller, OCR