

### Addendum to

**Quality Assurance Project Plan** 

Assessment for Chemical Contaminants in Northeastern Washington Area Lakes:

Sampling Additional Lakes and Wetlands for Metals Contamination

August 2012 Publication No. 12-03-115

#### **Publication Information**

#### Addendum

This addendum is an addition to an original Quality Assurance Project Plan. The addendum is not a correction (errata) to the original plan.

This addendum is available on the Department of Ecology's website at <u>https://fortress.wa.gov/ecy/publications/summarypages/1203115.html</u>

Ecology's Activity Tracker Code for this study is 13-038.

#### **Original Publication**

Quality Assurance Project Plan: Assessment for Chemical Contaminants in Northeastern Washington Area Lakes

Publication No. 10-03-119

The Quality Assurance Project Plan is available on the Department of Ecology's website at <u>https://fortress.wa.gov/ecy/publications/summarypages/1003119.html</u>

#### **Authors and Contact Information**

Art Johnson Environmental Assessment Program Washington State Department of Ecology Olympia, Washington 98504-7710

For more information contact:

Communications Consultant Phone: 360-407-6834

> Any use of product or firm names in this publication is for descriptive purposes only and does not imply endorsement by the author or the Department of Ecology.

> If you need this document in a format for the visually impaired, call 360-407-6834. Persons with hearing loss can call 711 for Washington Relay Service. Persons with a speech disability can call 877-833-6341.

#### **DEPARTMENT OF ECOLOGY**

Environmental Assessment Program

August 8, 2012

| TO:      | John Roland, Toxics Cleanup Program, ERO                                                                                                    |  |  |  |  |
|----------|---------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
|          | Mike Hibbler, Regional Manager, Toxics Cleanup Program, ERO                                                                                 |  |  |  |  |
| THROUGH: | Dale Norton, Toxics Studies Unit, Environmental Assessment Program<br>Will Kendra, Statewide Coordination Section, Environmental Assessment |  |  |  |  |
|          | Jenifer Parsons, Section Manager, Eastern Operations Section, Environmental<br>Assessment Program                                           |  |  |  |  |
| FROM:    | Art Johnson, Toxics Studies Unit, Environmental Assessment Program                                                                          |  |  |  |  |
| SUBJECT: | Addendum to Quality Assurance Project Plan for Assessment for Chemical<br>Contaminants in Northeastern Washington Area Lakes:               |  |  |  |  |
|          | Activity Tracker Code: 13-038                                                                                                               |  |  |  |  |
|          | Publication No: 12-03-115                                                                                                                   |  |  |  |  |

The purpose of this addendum is to describe additional sediment sampling to be conducted for waterbodies in the area of Ecology's 2010-11 study *Baseline Characterization for Metals and Organic Compounds in Northeast Washington Lakes, Part 1: Bottom Sediments* (Ecology publication number 11-03-035). ERO-TCP has requested that surface sediment and limited subsurface sediment samples be pursued from additional lakes and wetlands generally located within the historically mapped SO<sub>2</sub> plume impact footprint of the Trail, B.C. smelter. ERO-TCP further requested an exploratory age-dated sediment core be attempted from Cedar Lake near the international border.

The sediment samples will be analyzed for antimony, arsenic, cadmium, lead, mercury, and zinc. These metals were identified in the 2010-11 study as contaminants of concern in northeast Washington lake sediments. TOC and grain-size analyses also will be performed consistent with the original study.

cc: Arianne Fernandez, HWTR- ERO Lisa Brown, HWTR-ERO Jim Bellatty, WQ-ERO Joel Bird, Director, Manchester Environmental Laboratory Bill Kammin, Ecology Quality Assurance Officer Michael Friese, EAP Dave Moore, ERO-TMDL/WU Adriane Borgias, ERO-TMDL/WU Brendan Dowling, ERO-TCP Charles Gruenenfelder, ERO-TCP

### Background

A 2010-11 study by the Washington State Department of Ecology (Ecology) characterized background concentrations of metal and organic contaminants in sediments and fish collected from 17 northeast Washington lakes and rivers (Johnson et al., 2011a,b). Waterbodies thought to exhibit relatively low impact from local human activities were selected for sampling. These data were needed to support cleanup decisions in Ecology's Eastern Region. The study was conducted by Ecology's Environmental Assessment Program (EAP) with the assistance of the Eastern Regional Office (ERO). A Quality Assurance Project Plan (QAPP) guided the project (Johnson, 2010).

An important finding from the 2010-11 study was the occurrence of elevated levels of antimony, arsenic, cadmium, lead, mercury, and zinc in the sediments of lakes from the western part of the study area along the Upper Columbia River. The probable source of contamination was concluded to be historical transboundary air pollution from the Trail smelter in British Columbia and potentially to a lesser extent limited contribution from an historic smelter in Northport, Washington.

The project report included interpretation of previously unpublished Ecology data on metals concentrations in an age-dated sediment core from Black Lake, centrally located within the study area. The core, collected in 2009, documented changes in lead and mercury inputs over time and showed a steady increase in concentrations until the late 1900s. The deeper layers of the core provided an historical benchmark for background concentrations of lead, mercury, and other metals.

The ERO Toxics Cleanup Program (TCP) has requested that sediment sampling be conducted to assess metals contamination in additional northeast Washington waterbodies near the U.S.-Canadian (British Columbia) border. TCP wants to further evaluate lacustrine sediment metal concentrations within portions of the upper Columbia River watershed where smelter-related impacts may also be more evident. The additional study will also initiate an evaluation of metals contamination associated with selected wetlands within this same geographic region.

TCP has investigated a number of candidate lakes and wetlands as potential new sampling sites for 2012. Ten preferred waterbodies have been recommended to EAP for sediment sampling. TCP also has requested collection of an age-dated sediment core from Cedar Lake to potentially improve current understanding of smelter emissions history and associated impacts. Cedar Lake, located four miles south of the international boundary, was sampled for surface sediment in the 2010-11 study.

The supplemental lake and wetland sediment investigation will follow the sampling design considerations, measurement quality objectives, field procedures, and analytical methods for metals and ancillary parameters described in the previous 2010-11 sediment study QAPP, except as detailed in this addendum. Sediment coring, sectioning, and age-dating will follow the QAPP used to obtain the Black Lake core mentioned above (Coots, 2006). Field work for the proposed study will be conducted by EAP and TCP personnel during September and October of 2012. A draft project report is anticipated in March 2013, prepared by EAP.

# **Objectives**

- Further characterize sediment metal concentrations from selected upland lakes and wetlands in the proximity of the historically mapped SO<sub>2</sub> damage zone associated primarily with the Trail, BC smelter.
- Evaluate historical changes in selected metals concentrations within the sediment profile at one near-border lake.
- Initiate an evaluation of metals in wetland environments.
- Evaluate sedimentation rates of lakes within the SO<sub>2</sub> damage zone, as feasible.
- Obtain sediment samples for archiving.

# Sampling Sites and Procedures

TCP has selected a list of preferred waterbodies for sediment sampling, presented in Table 1. Their locations are shown in Figure 1. Ease of access to these waterbodies, and potential humanrelated impacts (e.g., proximity of roads, historical mining, general land use) were evaluated as part of a field reconnaissance survey conducted during the early summer of 2012.

Surface sediment samples will be collected from 10 waterbodies (lakes or wetlands), as identified in Table 1. Subsurface sediment profile samples will also be collected from the four designated lakes or wetlands, as feasible. In addition, an effort will be made to obtain a sediment box core from Cedar Lake, previously sampled for surface sediment in 2010. Williams and Phalon Lakes, about 20 miles southwest of Cedar, are alternate coring sites if an acceptable box core cannot be obtained from Cedar Lake. The size of the boat needed as a box coring platform for this project precludes similar coring of other lakes that might otherwise be appropriate for this objective, but which lack adequate road access and/or boat ramps.

As feasible, surface sediment samples from open water areas will be collected from the top 10 cm of the sediment column using a stainless steel Ponar grab, following an EAP SOP (Blakley, 2008). One composite sample will be prepared for each waterbody by pooling material obtained along a three-grab transect from shallower water to deeper water. The same procedures were followed for the 2010-11 study. For the wetland-dominated environments, the collection of composite three-grab surface sediment samples also will be performed with a Ponar grab, hand corer, shovel, or stainless steel scoops, as feasible depending on conditions. The same general surficial sediment horizon will be targeted as for the lakes, but samples of any surficial vegetation layer will be excluded from the samples.

A 13 x 3 x 50 cm Wildco stainless steel box corer will be used to obtain a sediment core from the center of Cedar Lake, near the point of maximum lake depth. The same device was used at Black Lake. The EAP SOP for collecting box cores of freshwater sediments will be followed (Furl and Meredith, 2008).

As with Black Lake, the Cedar Lake core will be sectioned at intervals of 1-2 cm thickness, increasing to 5 cm for the deeper layers. The core will be age-dated using the lead-210 technique (Furl, 2007). The 40 cm core from Black Lake was partitioned into 15 discrete layers. Each layer was analyzed to create a vertical profile with specific age markers identified; a similar approach is anticipated for the Cedar Lake core, depending on conditions.

Vertical variation in metals concentrations in subsurface sediments from four lakes and wetlands will be investigated: tentatively Silver Crown Lake, Phillips Lake, the wetland near Cedar Lake, and the Dry Lake wetland. A gravity coring device or hand corer consisting of a stainless steel tube with plastic core liner and core catcher will initially be used. If that method is unsuccessful the sediment/soil profile will be obtained by hand coring or digging a shallow pit along the margins in unsaturated soils (i.e., no standing water) and taking samples from the sidewalls with stainless steel implements. A lower level of vertical resolution will be pursued for these sites. Three increments will be analyzed: 0-10 cm, 10-20 cm, and >20 cm. These samples will not be age-dated.

| Name                                               | Longitude  | Latitude  | Township and Range    | Topo Quad   | Notes                                                                                                                                                                        | Planned Action                            |
|----------------------------------------------------|------------|-----------|-----------------------|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|
| Silver Crown Lake                                  | -117.77764 | 48.909341 | SW1/4 Sec4 T39N R40E  | Northport   | immediately east of<br>Northport; foot trail access                                                                                                                          | surface/subsurface<br>profile             |
| Elbow Lake                                         | -117.98424 | 48.947674 | sec 21 T40N R38E      | Belshazzar  | NW of Pepoon Lk.; Crown<br>Creek drainage; Colville NF;<br>small boat portage required                                                                                       | surface grab                              |
| Phalon Lake                                        | -117.89791 | 48.78342  | NW1/4 sec21 T38N R39E | China Bend  | NE of Williams Lk.;<br>restricted access managed by<br>WDFW; small boat launch                                                                                               | surface grab<br>(alternate box core site) |
| Glasgo Lakes<br>(Dilly or Ryan)                    | -118.04859 | 48.78991  | sec13 T38N R38E       | Bossburg    | Dilly Lk. (primary) or Ryan<br>Lk. (secondary); west of<br>North Gorge Campground;<br>private access; short small<br>boat portage required                                   | surface grab                              |
| Bowen Lake*                                        | -117.94283 | 48.839043 | N1/2 sec35 T39N R38E  | China Bend  | NW of China Bend; private<br>access; short small boat<br>portage required                                                                                                    | surface grab                              |
| Phillips Lake                                      | -117.76729 | 48.953788 | sec19                 | Northport   | Small remote pond; access<br>via 4WD logging road;<br>private access; short small<br>boat portage required                                                                   | surface/subsurface<br>profile             |
| Peterson Swamp*                                    | -117.91082 | 48.714047 | NW1/4 sec16 T37N R39E | Eco Valley  | extensive wetland with<br>possible ag-related drainage<br>control near north end; near<br>well used dirt road; south<br>portion on state land is<br>undisturbed; foot access | surface grab                              |
| Wetland near Cedar Lake*<br>(west of Red Top Mtn.) | -117.58122 | 48.969277 | SW1/4 sec13 T40N R41E | Leadpoint   | access via logging roads; N-<br>NE of Cedar Lk. near base of<br>Red Top Mtn.                                                                                                 | surface/subsurface<br>profile             |
| Dry Lake wetland*                                  | -117.97093 | 48.712454 | sec13 T37N R38E       | Echo Valley | elongate wetland complex;<br>access ~1 mile south of<br>intersection of Evans Cutoff<br>Rd and Echo Valley Rd; state<br>land; foot access                                    | surface/subsurface<br>profile             |

#### Table 1. Lakes and Wetlands Selected for Sediment Sampling in 2012.

| Name                            | Longitude  | Latitude | Township and Range    | Topo Quad  | Notes                                                                                                                       | Planned Action          |
|---------------------------------|------------|----------|-----------------------|------------|-----------------------------------------------------------------------------------------------------------------------------|-------------------------|
| Bodie-Stoddard Mtn.<br>Wetland* | -117.77941 | 48.86236 | NE1/4 sec29 T39N R40E | Onion Cr.  | Wetland complex SE of<br>Bodie Mtn.; access via dirt<br>road off of Bodie Mtn. Rd.;<br>short small boat portage<br>required | surface grab            |
| Cedar Lake                      | -117.594   | 48.943   |                       | Leadpoint  | sampled in 2010; boat ramp access                                                                                           | box core                |
| Williams Lake                   | -117.968   | 48.755   | sec36 T38N R38E       | China Bend | alternate site - sampled in 2010; boat ramp access                                                                          | alternate box core site |

\* wetland dominated



Figure 1. Location of Lakes and Wetlands Selected for Sediment Sampling in Relation to the General Area Impacted by the Historic Trail,  $BC SO_2$  Smelter Plume (red shade).

Black Lake coring site for the 2010-11 study also shown as triangle.

## **Chemical Analysis**

All sediment samples will be analyzed for antimony, arsenic, cadmium, lead, mercury, and zinc using the same procedures and laboratory (Manchester) as employed for the 2010-11 samples. Metals will be analyzed using inductively-coupled plasma/mass spectrometry (ICP/MS) by EPA 3050B/200.8 and cold vapor atomic absorbance (CVAA – mercury only). These metals were identified as contaminants of concern in northeast Washington lake sediments. Grain size (percent gravel, sand, silt, and clay) and total organic carbon (TOC) will be analyzed, except for grain size in the box core increments due to small sample size. A separate Ponar grab for grain size will be taken of the top-10 cm layer at the box core site.

Lead-210 activity will be determined in the box core samples to establish time horizons, consistent with the 2010-11 study. These samples will be analyzed using gas flow proportional counting (EPA Method 9310, SW-846). The core from Black Lake collected in 2009 was analyzed by this method.

The same types of quality control (QC) samples will be used for the 2012 sampling as in 2010/2011. Duplicate (split) samples will be prepared in the field to assess the variability in the data. Laboratory QC samples will include method blanks, matrix spikes, and laboratory control samples, as appropriate.

# Lab Cost Estimate

| Sample Type &<br>Analysis                    | Samples     | QC<br>Duplicates | Cost  | Subtotals |  |  |
|----------------------------------------------|-------------|------------------|-------|-----------|--|--|
| Surface Sediments (1 co                      |             |                  |       |           |  |  |
| As, Cd, Pb, Sb, Zn                           | 10          | 1                | \$118 | \$1,298   |  |  |
| Hg                                           | 10          | 1                | \$50  | \$550     |  |  |
| Grain Size                                   | 11          | 1                | \$100 | \$1,200   |  |  |
| TOC                                          | 10          | 1                | \$46  | \$506     |  |  |
|                                              |             |                  |       | \$3,554   |  |  |
| Box Core Increments (1                       | 5 per core) |                  |       |           |  |  |
| As, Cd, Pb, Sb, Zn                           | 15          | 1                | \$118 | \$1,888   |  |  |
| Hg                                           | 15          | 1                | \$50  | \$800     |  |  |
| Pb210*                                       | 15          | 1                | \$200 | \$4,000   |  |  |
| TOC                                          | 15          | 1                | \$46  | \$920     |  |  |
|                                              |             |                  |       | \$7,608   |  |  |
| Gravity or Hand Core Increments (3 per core) |             |                  |       |           |  |  |
| As, Cd, Pb, Sb, Zn                           | 12          | 1                | \$118 | \$1,534   |  |  |
| Hg                                           | 12          | 1                | \$50  | \$650     |  |  |
| Grain Size                                   | 12          | 1                | \$100 | \$1,300   |  |  |
| TOC                                          | 12          | 1                | \$46  | \$598     |  |  |
|                                              |             |                  |       | \$4,082   |  |  |
|                                              | \$15,244    |                  |       |           |  |  |

Table 2. Estimated Cost of Sediment Sample Analyses.

\*includes 25% surcharge for contracting and data review by MEL

# Reporting

Data from this investigation will be compiled, analyzed, and reported. EAP will prepare a supplemental summary report as requested by TCP. A draft of the report will be provided to TCP on or before March 2013.

# Schedule

| Field and laboratory work                                | Due date                     | Lead staff                  |  |  |  |
|----------------------------------------------------------|------------------------------|-----------------------------|--|--|--|
| Field work completed                                     | October 2012                 | Randy Coots, Michael Friese |  |  |  |
| Laboratory analyses completed                            | December 2012                |                             |  |  |  |
| Environmental Information System (EIM) database          |                              |                             |  |  |  |
| EIM user study ID                                        | ID number AJOH0066           |                             |  |  |  |
| Product                                                  | Due date                     | Lead staff                  |  |  |  |
| EIM data loaded                                          | April 2013                   | Michael Friese              |  |  |  |
| EIM quality assurance                                    | May 2013                     | Michael Friese              |  |  |  |
| EIM complete                                             | June 2013                    | Michael Friese              |  |  |  |
| Final report                                             |                              |                             |  |  |  |
| Author lead / support staff                              | Art Johnson / Michael Friese |                             |  |  |  |
| Schedule                                                 |                              |                             |  |  |  |
| Draft due to supervisor                                  | February 2013                |                             |  |  |  |
| Draft due to client/peer reviewer                        | March 2013                   |                             |  |  |  |
| Draft due to external reviewer(s)                        | April 2013                   |                             |  |  |  |
| Final (all reviews done) due to publications coordinator | May 2013                     |                             |  |  |  |
| Final report due on web                                  | June 2013                    |                             |  |  |  |

### References

Blakley, N., 2008. Standard Operating Procedures for Obtaining Freshwater Sediment Samples. Washington State Department of Ecology, Olympia, WA. EAP SOP #040.

Coots, R., 2006. Quality Assurance Project Plan: Depositional History of Mercury in Selected Washington Lakes Determined from Sediment Cores. Washington State Department of Ecology, Olympia, WA. Publication No. 06-03-113. https://fortress.wa.gov/ecy/publications/publications/0603113.pdf

Furl, C., 2007. History of Mercury in Selected Washington Lakes Determined from Age-Dated Sediment Cores: 2006 Sampling Results. Washington State Department of Ecology, Olympia, WA. Publication No. 07-03-019. https://fortress.wa.gov/ecy/publications/SummaryPages/0703019.html

Furl, C. and C. Meredith, 2008. Standard Operating Procedures for Collection of Freshwater Sediment Cores Samples Using a Box or KB Corer. Washington State Department of Ecology, Olympia, WA. EAP SOP #038.

Johnson, A., 2010. Quality Assurance Project Plan Assessment for Chemical Contaminants in Northeastern Washington Area Lakes. Washington State Department of Ecology, Olympia, WA. Publication No. 10-03-119.

https://fortress.wa.gov/ecy/publications/summarypages/1003119.html

Johnson, A., M. Friese, J. Roland, C. Gruenenfelder, B. Dowling, A. Fernandez, and T. Hamlin, 2011a. Background Characterization for Metals and Organic Compounds in Northeast Washington Lakes, Part 1: Bottom Sediments. Washington State Department of Ecology, Olympia, WA. Publication No. 11-03-035.

https://fortress.wa.gov/ecy/publications/summarypages/1103035.html

Johnson, A., M. Friese, J. Roland, C. Gruenenfelder, B. Dowling, A. Fernandez, and T. Hamlin, 2011b. Background Characterization for Metals and Organic Compounds in Northeast Washington Lakes, Part 2: Fish Tissue. Washington State Department of Ecology, Olympia, WA. Publication No. 11-03-054.

https://fortress.wa.gov/ecy/publications/summarypages/1103054.html