

MEMO: GROUNDWATER MONITORING IN CHUMSTICK CREEK SUBWATERSHED

Groundwater–Surface Water Interactions along Chumstick Creek and Mission Creek in WRIA 45 Chelan County, Washington

Submitted to: Chelan County Natural Resource Department, Wenatchee, WA

Submitted by: AMEC Geomatrix, Inc., Lynnwood, WA

June 2009

Project 12817.001 Funded by Ecology Grant No. G0800335

MEMO: GROUNDWATER MONITORING IN CHUMSTICK CREEK SUBWATERSHED

Groundwater–Surface Water Interactions along Chumstick Creek and Mission Creek in WRIA 45 Chelan County, Washington

June 15, 2009 Project No. 12817.001

This report was prepared by the staff of AMEC Geomatrix, Inc., under the supervision of the Engineer(s) and/or Geologist(s) whose seal(s) and signature(s) appear hereon.

The findings, recommendations, specifications, or professional opinions are presented within the limits described by the client, in accordance with generally accepted professional engineering and geologic practice. No warranty is expressed or implied.

David R. Haddock, L.Hg Principal Hydrogeologist

Sine .

12817.001

Project:

Memo

To: Lee Duncan, Chelan County Natural Resource Department
From: Dave Haddock and Steve Ellis, AMEC Geomatrix, Inc.
Tel: (425) 921-4000
Fax: (425) 921-4040
Date: June 15, 2009

Subject: Groundwater Monitoring in Chumstick Creek Subwatershed

Groundwater–Surface Water Interactions along Chumstick Creek and Mission Creek in WRIA 45, Chelan County, Washington

1.0 INTRODUCTION

The Wenatchee Watershed (Water Resource Inventory Area [WRIA] 45) has been identified by the Washington State Department of Ecology (Ecology) as one of 16 watersheds in the state where water quantity is a probable limiting factor for anadromous fisheries resources. Increasing competition for hydrologic resources in the watershed in conjunction with seasonal low-flow conditions contribute to inadequate streamflows for fish, particularly during periods of late summer and early fall (Wenatchee Watershed Planning Unit [WWPU], 2006).

In an effort to address the condition of water resources within the Wenatchee Watershed, a final Wenatchee Watershed Management Plan (WWMP) was completed in April 2006. The WWMP identified insufficient streamflow, diminished water quality, and a lack of geologic and hydrologic data on which to evaluate water availability and management strategies within two Wenatchee subwatersheds (Chumstick Creek and Mission Creek). In 2007 existing data were utilized to prepare a water balance for the Chumstick Creek and Mission Creek subwatersheds and recommendations were provided to collect additional data that would reduce uncertainties associated with the water balance (Geomatrix, 2007a; 2007b). One of these recommendations was to install monitoring wells to determine groundwater levels within the aquifer along with water discharge measurements in Chumstick Creek during critical low-flow periods.

This memorandum provides groundwater level measurements, creek discharge measurements, and estimates of hydraulic conductivity measured during 2009.

2.0 STUDY DESIGN

The original study design for this project called for monitoring groundwater levels at six locations within the Chumstick Creek and Mission Creek subwatersheds (AMEC, 2008). The selection of well locations was made to allow for a general understanding of hydrologic conditions

AMEC Geomatrix, Inc. 3500 188th Street SW, Suite 600 Lynnwood, Washington USA 98037-4763 Tel (425) 921-4000 Fax (425) 921-4040 www.amecgeomatrixinc.com

AMEC Geomatrix

Lee Duncan, Chelan County Natural Resource Department June 15, 2009 Page 2 of 6

throughout each subwatershed. The locations were purposely biased to selecting locations within the lower subwatershed where groundwater flow may not be connected to the Chumstick or Mission creeks and instead flows toward the Wenatchee River. The emphasis on the lower watershed would reduce uncertainties associated with the water balance completed in 2007 (Geomatrix, 2007a; 2007a).

Subsequent discussions with Ecology staff and Chelan County Natural Resource Department (NRD) staff resulted in a new study design that was not focused on a water balance for the subwatersheds. The revised study design included the installation of two deep monitoring wells within the Chumstick Creek subwatershed (Figure 1) and no wells within the Mission Creek subwatershed. The primary study objectives were to: (1) evaluate whether more recent data supports Wildrick's (1979) conceptual model for the Chumstick Creek subwatershed, which proposed shallow, deep, and bedrock aquifers; (2) collect data that can be used to estimate hydraulic conductivity; and (3) begin a monitoring program to measure well water levels so that future data collection during low-flow conditions in Chumstick Creek can be used to better understand groundwater–surface water interactions during these periods.

3.0 CONCEPTUAL MODEL FOR CHUMSTICK CREEK SUBWATERSHED

The Wildrick (1979) conceptual model for aquifer characteristics within the Chumstick drainage basin was evaluated prior to selecting the locations where monitoring wells were installed. This model was further evaluated by measuring well water levels at different depths as the wells were installed.

3.1 Conceptual Model Review

Linton Wildrick's 1979 Open File Technical Report for Ecology (*Ground-Water Flow System of the Chumstick Drainage Basin*) discusses the geology and aquifer characteristics of the Chumstick drainage basin. Wildrick describes three distinctive layers of valley-fill deposits overlying the sedimentary sandstone and siltstone bedrock, in order of increasing depth: (1) an uppermost thin deposit (5 to 10 feet thick) of silty sand; (2) a series of clay and silt beds (fine-grained) with minor amounts of sand and gravel; and (3) coarse-grained sand and gravel. Wildrick surmised that three types of aquifers are used in the Chumstick drainage basin: (1) a shallow water table aquifer composed of the uppermost silty sand; (2) a deep aquifer in the lowermost sand and gravel above the bedrock; and (3) a bedrock aquifer within the sandstone bedrock. This conceptual model has important implications for water management with the Chumstick drainage basin as it suggests that water withdrawal from wells that are screened within the two deeper aquifers may have little connection to surface water flows in Chumstick Creek.

AMEC Geomatrix, Inc. (AMEC), completed a review of well log data for wells installed after Wildrick (1979) in the vicinity of Wildrick's cross section D-D' (east-west across the middle stretch of the Chumstick) (AMEC, 2008). Particular attention was paid to the nature and extent of the clay layer that Wildrick (1979) suggests acts as an aquitard. The more recent well log data indicates that the nature and extent of this clay layer is highly variable. Some of the lacustrine silt and clay deposits are interspersed with sandy or gravelly clay water-bearing deposits. It appears that many of the wells in the Chumstick Creek subwatershed are installed

Lee Duncan, Chelan County Natural Resource Department June 15, 2009 Page 3 of 6

in these more gravelly horizons located within the "clay" layer, rather than being installed either below or above the clay layer as Wildrick concludes.

It seems that Wildrick's model is oversimplified and the hydrostratigraphy is more complex than Wildrick originally thought 30 years ago. This complexity should not be a particular surprise. During the last large-scale glaciation over 10,000 years ago, the Chumstick Creek subwatershed was filled with a large valley glacier that extended eastward from the Cascade Crest. The glaciers deposited several different geological units, including lacustrine deposits (silts and clay deposited as lake bottom sediments behind glacial ice or moraine dams), outwash deposits (advancing and retreating glaciers deposit primarily sand and gravel sediments in front of the glacier from glacial melt water), and till (a very dense, poorly-sorted mixture of clay, silt, sand and gravel, deposited over thousands of years and included periods of damming and deposition of various types of glaciofluvial deposits, thereby creating a heterogeneous jumble of deposits.

3.2 Well Water Levels During Well Installation

Measuring water levels in nested wells screened at different depths is an established technique for determining the vertical component of hydraulic gradient (Yolcubal et al., 2004). If the clay layers mentioned by Wildrick (1979) were functioning as an aquitard, water levels in wells installed above and below these clay layers would differ. If there are no barriers to vertical water flow, water levels for wells installed at different depths would be the same, providing evidence that multiple aquifers are not present.

Ecology requested that water levels be measured at different depths as the two monitoring wells were being installed to evaluate the likelihood of shallow versus deeper aquifers. At the upper well site, a layer of clay was encountered at a depth of approximately 40 feet below ground surface (bgs). Water levels recorded above and below this clay layer were the same, about 10 feet bgs. At the lower well site, water levels were measured three times during the well installation at 56 feet bgs, 76 feet bgs, and 105 feet bgs. The water levels recorded were the same at all depths (47.2 feet bgs). These data show no evidence for a confined shallow aquifer at the locations where the wells were installed.

4.0 HYDRAULIC CONDUCTIVITY

Hydraulic conductivity (K) defines the rate of movement of water through a porous medium such as a soil or aquifer. Hydraulic conductivity was estimated at each well location from an analysis of the grain size of material in the vicinity of the well screen depth range (Attachment A).

K values were calculated from grain size using the publicly-available program MVASKF. This program calculates K using 10 different empirical equations that have been developed to relate K to grain size (Vukovic and Soro, 1992). The average K value for the different empirical methods is 1.58×10^{-3} meters per second (m/s) for the upper well and 4.10×10^{-2} for the lower well (Table 1).

Lee Duncan, Chelan County Natural Resource Department June 15, 2009 Page 4 of 6

The upper well was screened in poorly-graded sand with gravel and the lower well was screened in well-graded sand with gravel. Both calculated K values from those screened intervals are within the range of standard values for saturated hydraulic conductivity for those kinds of lithologies (Freeze and Cherry, 1979). In addition, these K values are high enough to allow fairly rapid communication between aquifers or between groundwater and surface water.

5.0 MONITORING WELL DATA COLLECTION

5.1 Well Installation

The upper monitoring well was installed on December 9, 2008, by Tumwater Drilling. The total well depth is 120.5 feet bgs; the screen interval is 84 to 94 feet bgs. The log for this well is provided in Attachment B.

The lower monitoring well installation was begun on December 10, 2008, and completed the following day. The total well depth is 114.0 feet bgs; the screen interval is 64.5 to 74.5 feet bgs. The log for this well is provided in Attachment C.

5.2 Methods

NRD staff measured water levels in each well (distance from well casing to water surface) on seven dates from January 28, 2009, and to May 3, 2009 (Table 2). On most dates, the discharge in Chumstick Creek was also measured using a SonTek Acoustic Doppler Velocimeter.

On March 10, 2009, Onset[®] Hobo water level loggers were installed in each well to record water levels every 15 minutes. The distance from the well casing to the water level logger was 85.85 feet and 72.15 feet for the upper and lower wells, respectively. An additional water level logger was installed near each site to measure atmospheric pressure. The Hobo water level loggers measure water depth by recording absolute pressure (pounds per square inch [psi]), which includes pressure from the overlying water and the atmosphere. The atmospheric pressure was subtracted from the absolute pressure to provide a measure of the depth of water above the well water level loggers.

The monitoring of well water levels prior to installation of the Hobo water level loggers measured the distance from the top of the well casing to the water surface. The water level depth recorded by the Hobo loggers was subtracted from distance from the well casing to the logger to convert to common measurement of well water level.

5.3 Monitoring Results

The water levels in the two monitoring wells are shown in Table 2. The relationship between water level in the upper well and discharge in Chumstick Creek at Station CC8 is linear over the range of monitoring values (Figure 2). The coefficient of determination (R²) is 0.93, which indicates that well water depth in this well provides a good prediction of Chumstick Creek discharge at monitoring Station CC8. Piezometer monitoring at CC8 measured a positive vertical hydraulic gradient (i.e., groundwater entering the creek) in September and November

Lee Duncan, Chelan County Natural Resource Department June 15, 2009 Page 5 of 6

2008 (AMEC, 2009a); therefore, it is not surprising that there is a good correlation between well water levels and creek discharge.

The relationship between water level in the lower well and discharge in Chumstick Creek at Gage 45C060, located approximately 1,500 feet upstream from the confluence with the Wenatchee River, is poor, with an R² value of 0.58 (Figure 2). The well water levels measured during the period of monitoring are below the creek bed, which suggests that groundwater was not entering this region of Chumstick Creek during the well monitoring period. Synoptic surveys of creek discharge and piezometer monitoring during late August to early October 2008 showed that the lower portions of Chumstick Creek are losing reaches, with negative vertical hydraulic gradients (AMEC, 2009a; 2009b).

The water level in the lower well calculated from water level logger data is shown on Figure 3. These data show that water levels in the well rose from mid-March to mid-April and then began to decline through the remainder of the monitoring period which ended in early June 2009. The predicted range of water depths agrees well with the manual measurements of water depth made by NRD staff (Table 2). The water level logger data for the upper well is not presented as the predicted water depth was about four times greater that the manual measurements made by NRD staff. No evidence of malfunction is evident from the Hobo battery voltage readings. NRD staff will be checking their data download procedures to try and determine the cause of this problem.

Sincerely yours, AMEC Geomatrix, Inc.

Steven G. Ellis, PhD Principal Aquatic Scientist Direct Tel.: (425) 921-4022 Direct Fax: (425) 921-4040 E-mail: steve.g.ellis@amec.com

David R. Haddock, L.Hg Principal Hydrogeologist Direct Tel.: (206) 342-1787 Direct Fax: (206) 342-1761 E-mail: dave.haddock@amec.com

SGE p:\chelan county\12817-001 wenatchee wtrshed hydro study\3000 reports\chumstick groundwater\chumstickgwmonitoringmemo061509.doc

Attachments: Tables 1 to 2 Figures 1 to 3 Attachment A – Grain Size Attachment B – Upper Well Monitoring Logs Attachment C – Lower Well Monitoring Logs

Lee Duncan, Chelan County Natural Resource Department June 15, 2009 Page 6 of 6

6.0 **REFERENCES**

- AMEC (AMEC Geomatrix, Inc.), 2008, Quality Assurance Project Plan Groundwater–Surface Water Interactions along Chumstick Creek and Mission Creek in WRIA 45, Chelan County, Washington: Chelan County Natural Resource Department, Wenatchee, Washington.
- AMEC, 2009a, Piezometer Monitoring in Chumstick and Mission Creeks Groundwater– Surface Water Interactions along Chumstick Creek and Mission Creek in WRIA 45, Chelan County, Washington: Chelan County Natural Resource Department, Wenatchee, Washington.
- AMEC, 2009b, Chumstick Creek Subwatershed Synoptic Survey of Creek Discharge Groundwater–Surface Water Interactions along Chumstick Creek and Mission Creek in WRIA 45, Chelan County, Washington: Chelan County Natural Resource Department, Wenatchee, Washington.
- Freeze, R. A., and Cherry, J.A., 1979, Groundwater: Prentice-Hall, Inc., Englewood Cliffs, New Jersey.
- Geomatrix (Geomatrix Consultants, Inc.), 2007a, Current Water Use Characterization and Monitoring Needs, Chumstick Creek Subwatershed, Wenatchee Watershed Water Resource Technical Assistance, Chelan County, Washington: Chelan County Natural Resource Department, Wenatchee, Washington.
- Geomatrix, 2007b, Current Water Use Characterization and Monitoring Needs, Mission Creek Subwatershed, Wenatchee Watershed Water Resource Technical Assistance, Chelan County, Washington: Chelan County Natural Resource Department, Wenatchee, Washington.
- Vukovic, M., and Soro, A., 1992, Determination of Hydraulic Conductivity of Porous Media from Grain-Size Composition: Water Resource Publication, Highlands Ranch, Colorado.
- Wildrick, L., 1979, Ground-Water Flow System of the Chumstick Drainage Basin: Washington State Department of Ecology, Water Resources Investigation Section, Open File Technical Report, Olympia.
- WWPU (Wenatchee Watershed Planning Unit), 2006, Final Wenatchee Watershed Management Plan: Chelan County Natural Resource Department, Wenatchee, Washington.
- Yolcubal, I., Brusseau, M.L., Artiola, J.F., Wierenga, P., and Wilson, L.G., 2004, Environmental Physical Properties and Processes, <u>in</u> Artiola, J.F., Pepper, I.L., and Brusseau, M.L. (eds.), Environmental Monitoring and Characterization: Elsevier Academic Press, London., p. 207-239.

TABLES

TABLE 1

HYDRAULIC CONDUCTIVITY (K) ESTIMATES FOR CHUMSTICK CREEK SUBWATERSHED MONITORING WELLS

Chumstick Creek Subwatershed Wenatchee Watershed Water Resource Technical Assistance Chelan County, Washington

MVASKF Empirical Equation	Upper Well in m/s	Lower Well in m/s
HAZEN	1.13E-03	5.12E-02
SLICHTER	2.25E-04	1.48E-02
TERZAGHI	3.28E-04	2.54E-02
BEYER	1.35E-03	4.49E-02
SAUERBREI	9.05E-04	8.28E-02
KRUEGERR	1.74E-03	8.36E-03
KOZENY	1.55E-03	1.42E-02
ZUNKER	1.20E-03	7.95E-03
ZAMARINU	1.47E-03	9.31E-03
USBR	5.88E-03	1.51E-01
Average	1.58E-03	4.10E-02

Note(s)

 K values were calculated using the publicly-available program MVASKF, which calculates K from grain-size data using 10 different empirical equations (Vukovic and Soro, 1992).
 Vukovic, M., and Soro, A., 1992, Determination of Hydraulic Conductivity of Porous Media from Grain-Size Composition: Water Resource Publication, Highlands Ranch, Colorado.

Abbreviation(s)

m/s = meters per second

TABLE 2

WELL WATER LEVEL AND CHUMSTICK CREEK DISCHARGE MEASUREMENTS

Chumstick Creek Subwatershed Wenatchee Watershed Water Resource Technical Assistance Chelan County, Washington

Date: Time	Upper Well Water Level (feet bgs)	Creek Discharge at Sta. CC8 (cfs)	Date: Time	Lower Well Water Level (feet bgs)	Creek Discharge at Gage 45C060 (cfs)
1/28/09/13:00	6.12	NA	1/28/09/13:30	45.68	19 - 20
2/19/09/11:12	6.52	7.08	2/19/09/ 11:30	46.14	13
3/10/09/14:45	5.70	10.90	3/10/09/15:25	45.55	33
3/20/09:/12:25	5.50	12.39	3/20/09:/14:00	45.09	33
3/27/09/12:48	5.00	16.80	3/27/09/13:02	44.75	44.75
4/24/09/11:25	3.26	21.90	4/24/09/11:35	44.40	43
5/3/09/14:20	1.50	NA	5/3/09/14:48	44.85	20.5

Abbreviation(s)

bgs = below ground surface

cfs = cubic feet per second

NA = not available

FIGURES

2817-001/Chumstick Groundwater/Figure

12817-001\Chumstick Groundwater\Figure 2_waterIvl_vs_discharge.xls

ATTACHMENT A

Grain Size

Analytical Resources, Incorporated

Analytical Chemists and Consultants

19 March 2009

Nick Bacher AMEC/Geomatrix 600 University, Suite 1020 Seattle, WA 98101

RE: Project No: Wenatchee Watershed Hydrogeologic Study ARI Job No: OQ60

Dear Nick:

Please find enclosed the Chain-of-Custody (COC) record, sample receipt documentation, and the final results for the samples from the project referenced above. Two soil samples were received intact on March 13, 2009.

The samples were analyzed for grain size as requested.

A copy of these reports will remain on file with ARI. If you have any questions or require additional information, please contact me at your convenience.

Sincerely,

ANALYTICAL RESOURCES, INC.

Mark D. Harris Project Manager 206/695-6210 markh@arilabs.com

Enclosures

cc: file OQ60

MDH/mdh

CHAIN-OF-CUSTODY RECORD			OQUO	b .	SEA 10440
PROJECT NAME: Wengtchee Wa	torshed Hydrogeolonz	- Stuc	lip	DATE: 3309	PAGE (OF)
PROJECT NUMBER: 12817	LABORATORY NAME: ARE	CLIENT INFORMATION:		REPORTING REQUIREMENTS:	
RESULTS TO: Nick Bacher	LABORATORY ADDRESS:				
TURNAROUND TIME: Standard	Tukwila WA				
	LABORATORY CONTACT: Hams			GEOTRACKER REQUIRED	YES NO
hand delivered	LABORATORY PHONE NUMBER:			SITE SPECIFIC GLOBAL ID NO	
SAMPLERS (SIGNATURE):	S ANALYS	SES			
	11/2			0)	
Um Barlin	DHJ			or Other	e Type tainers
	303		CONT		
DATE TIME NOMBER					
14908 1300 Upper-65			1-gal	Ziploc S	
12/10/08 1230 Lower-66			1-gal	Ziploc >	1
					·
				* 	
				-	
RELINQUISHED BY: DATE TIME	RECEIVED BY:	DATE TIME	TOTAL NUMBER OF CONT	AINERS:	
SIGNATURE	Signature: Laws	3/21 Mar	SAMPLING COMMENTS:		
PRINTED NAME: Bacher 3/12/ 11:20	RINTED NAME:	11/19 1428	Please	retain al	(soil not used,
COMPANYAMEZ GMX 179 1925	COMPANY:		hydrom	eter analys	is might be
SIGNATURE:	SÍGNATURE:		run b	ased on 's	ieve data
PRINTED NAME:	PRINTED NAME:				
COMPANY:	COMPANY:				
SIGNATURE:	SIGNATURE:		One Union Square, 600 Un	iversity Street, Suite 1020	
PRINTED NAME:	PRINTED NAME:		Seattle, Washing	ton 98101-4107	📶 Geomatrix
COMPANY:	COMPANY:]	Tel 206.342.1760	Fax 206.342.1761	

Analytical Resources, Incorporated Analytical Chemists and Consultants

Cooler Receipt Form

ARI Client: <u>Geometrix</u> COC No(s): <u>10440</u> NA Assigned ARI Job No: <u>OQUO</u>	Project Name: <u>Wenatche</u> Delivered by: Fed-Ex UPS Couri Tracking No:	er Hand Delivered Othe	wogeelogic r:	Study
Preliminary Examination Phase:				
Were intact, properly signed and dated custody seals attach	ed to the outside of to cooler?	YES	NO	
Were custody papers included with the cooler?		YES	NO	
Were custody papers properly filled out (ink, signed, etc.)		YES	NO	

Temperature of Cooler(s)	(°C) (recommended 2.0-6.	0 °C for chemistry)	AMB		
If cooler temperature is our	t of compliance fill out form	1 00070F		Ter	mp Gun ID
Cooler Accepted by:	TH	Date:	3/3/09	Time:	110

Complete custody forms and attach all shipping documents

Log-In Phase:

Was a temperature blank included in the cooler?		YES	NO
What kind of packing material was used? Bubble Wrap Wet Ice Gel Packs Baggies) Foam Blo	ock Paper O	ther:	\bigcirc
Was sufficient ice used (if appropriate)?	NA	YES	NO
Were all bottles sealed in individual plastic bags?	\smile	YES	NO
Did all bottles arrive in good condition (unbroken)?		ES	NO
Were all bottle labels complete and legible?		(YES)	NO
Did the number of containers listed on COC match with the number of containers received?		YES	NO
Did all bottle labels and tags agree with custody papers?		YES	NO
Were all bottles used correct for the requested analyses?		YES	NO
Do any of the analyses (bottles) require preservation? (attach preservation sheet, excluding VOCs)	(NA)	YES	NO
Were all VOC vials free of air bubbles?	NA	YES	NO
Was sufficient amount of sample sent in each bottle?	\bigcirc	YES	NO
Samples Logged by: AVDate:Date:Time:	1545	\smile	
** Notific Dupie of Managements I			

* Notify Project Manager of discrepancies or concerns **

Sample ID on Bottle	Sample ID on COC	Sample ID on Bottle	Sample ID on COC
		•	
Additional Notes, Discrepanci	es. & Resolutions:		
Rv. D	ato		
Cruell Air Durbles			
Small Air occores Peapur	boles' LARGE Air Bubbles	Small → "sm"	
- Zihin 2-4 i	$r_{\rm eff} > 4 {\rm mm}$	Paabubbles -> "-++"	
• • • • •		reabubbles - "pb"	
	• • • •	Large → "lg"	
		8	

101886

Client: Geomatrix, Inc.

ARI Project No.: OQ60

Date: 3/10

Client Project: Wenatchee Watershed Hydrogeologic Client Project No.: 12817

Case Narrative

- 1. Two samples were received on March 13, 2009, and were in good condition.
- 2. The samples were submitted for grain size distribution, according to ASTM D422.
- 3. The data is provided in summary tables and plots.
- 4. There were no noted anomalies in the samples or test method.

Approved by: Title: Geotechnical Division Manage

Geomatrix, Inc. Wenatchee Watershed Hydrogeologic

Sample ID	Depth (ft)	Moisture Content (%)	5"	3"	2"	1.5"	1"	3/4"	1/2"	3/8"	#4	#10	#20	#40	#60	#100	#200
UPPER-65	A	4.60	100.00	100.0	100.0	100.0	100.0	91.7	71.7	61.4	40.4	24.7	15.6	8.9	5.8	4.2	2.8
LOWER-66	В	1.02	100.0	100.0	100.0	100.0	100.0	97.4	75.4	49.8	17.1	8.5	6.3	5.3	4.4	3.4	2.0

Percent Finer Than Indicated Size, By ASTM D422

OQ60

Geomatrix, Inc. Wenatchee Watershed Hydrogeologic

Fercent Relatieu in Each Size Fraction. DV AS IVI D422	Percent Retained in	Each Size	Fraction, E	BV ASTM D422
--	---------------------	-----------	-------------	--------------

Sieve Size (microns)	5"-3"	3-2"	2-1.5"	1.5-1"	1-3/4"	3/4-1/2"	1/2-3/8"	3/8-#4	4750-2000	2000-850	850-425	425-250	250-150	150-75	<75
UPPER-65	0.0	0.0	0.0	0.0	8.3	20.0	10.2	21.0	15.7	9.1	6.7	3.2	1.6	1.4	2.8
LOWER-66	0.0	0.0	0.0	0.0	2.6	22.0	25.5	32.8	8.6	2.2	1.0	1.0	1.0	1.4	2.0

OQ60

. . . .

ATTACHMENT B

Upper Well Monitoring Logs

PROJECT: Wenatchee Chelan Cou	Watershed Hydrogeologic Study unty, WA	Log of Well No.	Upper Deep
BORING LOCATION:	Upper Watershed, Chumstick	GROUND SURFACE ELEVATION	AND DATUM:
	R: Tumwater Drilling	DATE STARTED: D 12/9/08 1 TOTAL DEPTH (ft.): S	DATE FINISHED: 2/9/08 SCREEN INTERVAL (ft.):
		120.5 8 DEPTH TO FIRST COMPL. C	34.0-94.0 CASING:
DRILLING EQUIPMENT:	Schramm 1450 WS	WATER: 10 9.7	
SAMPLING METHOD: B	Bulk sample collected from drill cuttings	N. Bacher	
HAMMER WEIGHT: NA	DROP: NA	N. Bacher	2528
DEPTH (feet) (feet) No. Blows/ Foot	DESCRIPTION NAME (USCS): color, moist, % by wt., plast. density, struct cementation, react. w/HCl, geo. inter. Surface Elevation:	ture, WELL CC AND/O	ONSTRUCTION DETAILS R DRILLING REMARKS
$0 \\ 0 \\ - \\ - \\ 1^{-} \\ - \\ 2^{-} \\ - \\ 3^{-} \\ - \\ $	Sanade Elevatori. WELL GRADED GRAVEL with SAND (GW): brown moist, 70% fine gravel, 30% fine to coarse sand, grave well rounded to 2", occasional gray boulder fragments SANDY SILT (ML): brownish gray moist, 65% fines, 3 fine sand, 5% fine rounded gravel to 2" gray, 70% fines, 30% fine sand,	I is	ffic Box tland concrete 25" borehole Sch. 40 PVC " Hole-Plug Bentonite ps
	Competrix	Drainat No. 40047-004	OAKWELLV (REV. 9/2007)
AMEC	Geomatrix	Project No. 12817.001	Page 1 of /

PROJECT: Wenatchee Watershed Hy Chelan County, WA	drogeologic Study	Well No. Upper Deep (cont'd)
INA COVM Reading Cover Sample Sample Sample Sample Sample Sample Soot Foot Foot Root Sample Sam	DESCRIPTION ME (USCS): color, moist, % by wt., plast. density, structure cementation, react. w/HCl, geo. inter.	e, WELL CONSTRUCTION DETAILS AND/OR DRILLING REMARKS
15(ML 16	.) cont. er level measured: 11.0' yish brown	- 2" Sch. 40 PVC - Quikgrout Slurry - 6.625" borehole
19 WE 70% 20 21 21 21 21 21 21 21 21 21 21 21 21 21	LL GRADED GRAVEL with SAND (GW): brown wet, o fine gravel, 30% fine to coarse sand, gravel is well aded to 1.5"	
24 SILT 30%	TY SAND (SM): brown wet, 70% fine to medium sand low plasticity fines	
	-	
AMEC Geomatr	ix	Project No. 12817.001 Page 2 of 7

PROJE	ECT:	We Che	natche elan C	ee Wat County,	ershed Hydrogeologic Study WA	Log of Well No. Upper Deep (cont'd)				
DEPTH (feet)	Sample No.	Sample	Blows/ ST Foot	OVM Reading	DESCRIPTION NAME (USCS): color, moist, % by wt., pla cementation, react. w/HCl, g	ast. density, structure, eo. inter.			WELL (DET DRILL	CONSTRUCTION AILS AND/OR ING REMARKS
33 34 35 36 37 38 39 40 41 42 44 45 44 45 446 - 467 - 467 - 467 - 467 - 467 - 467 - - 467 - -					(SM) cont. water level measured: 11.5' LEAN CLAY (CL): gray moist, 90% fir fine sand, soft, medium plasticity SILTY SAND (SM): gray wet, 80% fin 20% fines, trace granitic pieces	e to coarse sand,			2" Sch. 40) PVC rehole : Slurry
51 ⁻	<u></u>				· · · · · · · · · · · · · · · · · · ·		 			OAKWELLV (REV. 9/2007)
			MEC	C Ge	omatrix		Pro	oject l	No. 12817.001	Page 3 of 7

PROJE	ECT:	We Che	natche elan C	ee Waters County, W	shed Hydrogeologic Study VA	Log of Well No. Upper Deep (cont'd)				
DEPTH (feet)	Sample No.	Sample 🕁	Blows/ Foot	OVM Reading	DESCRIPTION NAME (USCS): color, moist, % by wt., pla cementation, react. w/HCl, g	ast. density, structure, eo. inter.		WELL CONSTRUCTION DETAILS AND/OR DRILLING REMARKS		
51 	-				(SM) cont.			— 2" Sch. 40 PVC — 6.625" borehole — Quikgrout Slurry		
54 55 56	-				water level measured: 9.7'					
57 58 59	-				WELL GRADED GRAVEL with SAND	(GW): gray wet,				
60 61	-				65% fine gravel, 35% fine to coarse san rounded to 2"	id, gravel well				
63 ⁻ 64 ⁻	-									
65 ⁻ 66 ⁻ 67 ⁻	-									
68 ⁻ 69 ⁻	-							OAKWELLV (REV. 9/2007)		
		A	MEC	C Geoi	matrix		Project No. 1281	7.001 Page 4 of 7		

PROJE	ECT:	We Che	natche elan C	ee Wate County,	ershed Hydrogeologic Study WA	Log of Well No. Upper Deep (cont'd)			
DEPTH (feet)	Sample No.	Sample M	Blows/ Foot	OVM Reading	DESCRIPTION NAME (USCS): color, moist, % by wt., pla cementation, react. w/HCl, ge	l ast. density, structure, eo. inter.	WELL CONS DETAILS A DRILLING R	TRUCTION AND/OR REMARKS	
69	-				(GW) cont.				
70				-	SILTY SAND (SM): gray 85% fine san	d, 15% low	2" Sch. 40 PVC		
71 ⁻	-								
72	-						Quikgrout Slurry	/	
-	-								
73-	-								
74	-								
75									
76-	-								
-	-								
77-	-								
78	-								
79									
-	-								
	-								
81	-								
82	-								
83									
-	-						2/8 Colorado Sil	ica Sand	
- 84	-				POORLY GRADED SAND with GRAVE 90% fine to coarse sand, 10% fine well	EL (SP): gray wet, rounded gravel to		0.010 slot	
85	-				2				
86-	-								
87									
	AMEC Geomatrix Project No. 12817.001 Page 5 of 7								

PROJECT: Wenatchee Watershed Hydrogeologic Stud Chelan County, WA	Log of Well No. Upper Deep (cont'd)
HILD SAMPLES COVM BIOWS/ Sample Sample Sample Sample Sample Ceet	DESCRIPTION moist, % by wt., plast. density, structure, ion, react. w/HCl, geo. inter.
87 - 88 ⁻ - 89 ⁻ -	- 6.625" borehole - 2" Sch. 40 PVC 0.010 slot screen
90 ⁻ 91 ⁻ 91 ⁻ 92 ⁻ 92 ⁻	I: gray wet, 70% fine gravel, 20% -<
93 ⁻ - 94 ⁻ - 95 ⁻	2" Sch. 40 PVC endcap
96 ⁻ - 97 ⁻ - 98 ⁻	Image:
99 ⁻ 100 ⁻ 101 ⁻ 101 ⁻ 101 ⁻	
102 	
AMEC Geomatrix	Image: Control of the second

PROJE	ECT:	We Che	natche elan C	e Waters county, W	shed Hydrogeologic Study /A	Log of Well No. Upper Deep (cont'd)				
DEPTH (feet)	Sample No.	Sample A	Blows/ Foot	OVM Reading	DESCRIPTION NAME (USCS): color, moist, % by wt., plas cementation, react. w/HCl, ged	t. density, structure,). inter.	WELL DE DRIL	CONSTRUCTION TAILS AND/OR LING REMARKS		
105 - 106 ⁻	_				(GM) cont.					
- 107 ⁻	-									
108-	_							bugh		
110 ⁻	-									
111 ⁻	-									
112 ⁻ - 113 ⁻	-									
- 114 ⁻ -	-									
115-	_									
116 - 117 ⁻	_									
- 118 ⁻ -										
119	-									
120	-				Bottom of boring at 120.5 feet.					
- 122 ⁻										
123								OAKWELLV (REV. 9/2007)		
	AMEC Geomatrix Project No. 12817.001 Page 7 of 7									

ATTACHMENT C

Lower Well Monitoring Logs

PROJE	CT:	Wer Che	natche Ian C	e Wate	ershed Hydrogeologic Study WA	Lo	Log of Well No. Lower Deep			
BORIN	G LO	CAT	ION:	Lowe	er Watershed, Chumstick	GROUND	SURFACE ELEVATIO	ON AND DATUM:		
DRILLI	NG C	ONT	RACT	OR:	Tumwater Drilling	DATE ST/ 12/10/08	ARTED:	DATE FINISHED: 12/11/08		
DRILLI	NG M	ETH	IOD:	Air rot	tary	TOTAL DEPTH (ft.): SCREEN INTERVAL (ft.): 114.0 64.5-74.5				
DRILLI	NG E	QUIF	PMEN	T: So	chramm T450 WS	DEPTH TO WATER:	OFIRST COMPL 47 47.2	CASING:		
SAMPI	LING I	MET	HOD:	Bulk s	sample collected from drill cuttings	LOGGED N. Bache	BY: er			
HAMM	ER W	EIGI	HT: N	IA	DROP: NA	RESPON N. Bache	SIBLE PROFESSION/ er	AL: REG. NO. 2528		
DEPTH (feet)	Certin (feet) (feet) <u>ample</u> Sample Foot CVM Reading		OVM Reading	DESCRIPTION NAME (USCS): color, moist, % by wt., plast. density, structure cementation, react. w/HCl, geo. inter.		WELI AN	L CONSTRUCTION DETAILS D/OR DRILLING REMARKS			
0	ű	ö	<u> </u>		Surface Elevation:	5%		Traffic Box		
-					low-plasticity fines, 5% trace well rounded gravel to 1.5	5"				
1-							-₩ ₩	6.625" borehole		
	$\left \right $							Portland concrete		
2	$\left \right $							2" Sch. 40 PVC		
-										
3										
-										
4										
-										
5										
6								3/8" Hole-Plua Bentonite		
								Chips		
8-										
_					Solid rock					
9-										
10-										
	$\left \right $									
11	$\left \right $									
-										
12					moist			Quikgrout Slurry		
-										
13										
-	1									
14	1									
15								OAKWELLV (REV. 9/2007)		
		Aſ	MEU	, 960	omatrix		F10ject No. 12817.00	Page 1 of /		

PROJE	ECT:	We Che	natche elan C	ee Wat County,	ershed Hydrogeologic Study WA	Log of Well No. Lower Deep (cont'd)				
DEPTH (feet)	Sample No.	Sample 🖞	Blows/ Sar	OVM Reading	DESCRIPTION NAME (USCS): color, moist, % by wt., pla cementation, react. w/HCl, g	ast. density, structure, eo. inter.	WEI C DF	LL CONSTRUCTION DETAILS AND/OR RILLING REMARKS		
15					(SM) cont.			. 40 PVC		
16 ⁻	-						- Quikgi	rout Slurry		
17								borenoie		
-										
-	_				boulders chunks of rock, very dusty					
19-	-									
20-	_									
21										
-	-									
-	-									
23	-									
24										
25	_									
26	-									
-										
27	-									
28										
29-	_									
30										
31-										
-										
32										
33-								OAKWELLV (REV. 9/2007)		
		Δ	MEC	C Ge	omatrix		Project No. 12817.001	Page 2 of 7		

PROJE	ECT:	We Che	natche elan C	ee Wat County,	ershe WA	ed Hydrogeologic Study	Log of Wel	11	lo.	Lower Deep	(cont'd)
DEPTH (feet)	Sample No.	Sample ∄	Blows/ Foot	OVM Reading		DESCRIPTION NAME (USCS): color, moist, % by wt., pla cementation, react. w/HCl, g	ast. density, structure, eo. inter.			WELL C DET, DRILL	CONSTRUCTION AILS AND/OR ING REMARKS
					•	boulders cont. moist				2" Sch. 40 6.625" bor Quikgrout	I PVC ehole Slurry
42 ⁻ - 43 ⁻ - 44 ⁻ - 46 ⁻ - 46 ⁻ - 48 ⁻ - - 48 ⁻ - - 50 ⁻ - 51 ⁻						POORLY GRADED SAND (SP): light to fine sand, metallic flecks	prown moist, 100%				
		Δ	MF	Ge	om	atrix		Pr	oject I	No. 12817.001	OAKWELLV (REV. 9/2007)
		A	TEL			αιιλ		L			. 490 0 01 /

PROJE	CT:	Wei Che	natche elan C	e Wat county,	tershed Hydrogeologic Study , WA	Log of We	ll No. Lower Deer	o (cont'd)
DEPTH (feet)	Sample No.	Sample	Blows/ Soot	OVM Reading	DESCRIPTION NAME (USCS): color, moist, % by wt., p cementation, react. w/HCl,	ast. density, structure, jeo. inter.	WELL DE DRIL	CONSTRUCTION TAILS AND/OR LING REMARKS
51	-				(SP) cont.		2" Sch. 4	10 PVC orehole
53 ⁻ - 54 ⁻ -	-				WELL GRADED GRAVEL with SAND 75% fine gravel, 25% fine to medium s gravel to 1.5"	(GW): brown wet, and, well rounded		ut Slurry
55 ⁻ 56 ⁻ - 57 ⁻	-				90% fine gravel, 10% coarse to fine s	and		
58 ⁻ - 59 ⁻ -								
61 ⁻ 62 ⁻								
63 ⁻ - 64 ⁻ -	-				♦ 85% fine gravel, 15% coarse sand		- 2/8 Color	rado Silica Sand
65 ⁻ - 66 ⁻ -	-						2" Sch. 4 screen	40 PVC 0.010 slot
67 ⁻	-							
								OAKWELLV (REV. 9/2007)
		A	MEC	C Ge	omatrix		Project No. 12817.001	Page 4 of 7

PROJE	ECT:	We Che	natche elan C	e Wate county, V	rshed Hydrogeologic Study WA	Log of Well No. Lower Deep (cont'd)				
DEPTH (feet)	Sample No.	Sample M	Blows/ Foot	OVM Reading	DESCRIPTION NAME (USCS): color, moist, % by wt., pla cementation, react. w/HCl, ge	ist. density, structure, eo. inter.	WELL O DET DRILL	CONSTRUCTION AILS AND/OR LING REMARKS		
69					(GW) cont.			0 PVC 0.010 slot		
70-	-						screen			
71-							■ 6.625" bo	prehole		
72							2/8 Color	ado Silica Sand		
73-										
74	-									
75							2" Sch. 4	0 PVC endcap		
76										
77 ⁻							native sio	ugn		
78 ⁻				-	SILTY SAND (SM): brown wet, 85% fil	ne to medium sand,				
79	-				15% low-plasticity fines, grades from sa sand	nd to slightly silty				
80 ⁻										
81 ⁻										
- 82 ⁻										
83-										
-										
84										
85										
86-										
87								OAKWELLV (REV. 9/2007)		
	AMEC Geomatrix Project No. 12817.001 Page 5 of 7									

PROJE	ECT:	We Che	natche elan C	e Wat county,	ershed Hydrogeologic Study WA	Log of Well No. Lower Deep (cont'd)				
DEPTH (feet)	Sample No.	Sample d	Blows/ Foot	OVM Reading	DESCRIPTION NAME (USCS): color, moist, % by wt., pla cementation, react. w/HCl, ge	st. density, structure, :o. inter.	WELL (DET DRILL	CONSTRUCTION AILS AND/OR ING REMARKS		
87					(SM) cont.					
88-	-						6.625" bo	rehole		
89-	-									
90-	-									
91-	-									
92-	-									
93-	-									
94 -	-									
95-	-						native slo	ugh		
96-	-									
97-	-									
98-	-									
99-	-									
100 ⁻	-									
101 -	-									
102 -	-									
103 ⁻										
104 ⁻										
105	-							OAKWELLV (REV. 9/2007)		
	AMEC Geomatrix Project No. 12817.001 Page 6 of 7									

PROJE	ECT:	We Che	natche elan C	ee Wat County,	ershed Hydrogeologic Study WA	Log of Well	No. Lower Deep	o (cont'd)
DEPTH (feet)	Sample No.	Sample A	Blows/ Foot	OVM Reading	DESCRIPTION NAME (USCS): color, moist, % by wt., p cementation, react. w/HCl, y	ast. density, structure, geo. inter.	WELL DE ⁻ DRILI	CONSTRUCTION TAILS AND/OR LING REMARKS
105					(SM) cont.			
106	-							bugh
107-	-							
108-	-				SANDSTONE brown with conglomora	ted gravel		
109-	-							
110	-							
111 ⁻	-							
112	-							
113	-				₩	_		
114					brown gray no gravel Bottom of boring at 114 feet		_	
115_	-				bollom of boning at 114 lect.		-	
116 ⁻	-						-	
117 -	-						-	
118 ⁻	-						-	
119 ⁻	-						-	
120								
121							-	
122							_	
123								OAKWELLV (REV. 9/2007)
1		A	MEC	C Ge	omatrix	F	Project No. 12817.001	Page 7 of 7