

Addendum 7 to Quality Assurance Project Plan

The Puget Sound Assessment and Monitoring Program: Sediment Monitoring Component, 2015 Monitoring in the Bainbridge Basin

July 2015 Publication No. 15-03-118

Publication Information

Addendum

This addendum is on the Department of Ecology's website at <u>https://fortress.wa.gov/ecy/publications/SummaryPages/1503118.html</u>

This addendum is an addition to an original Quality Assurance Project Plan. It is not a correction (errata) to the original plan.

Data for this project will be available on Ecology's Environmental Information Management (EIM) website at <u>www.ecy.wa.gov/eim/index.htm</u>. Search Study ID: UWI2015.

Activity Tracker code

Ecology's Activity Tracker code for this addendum is 01-900.

Original Publication

Quality Assurance Project Plan: The Puget Sound Assessment and Monitoring Program: Sediment Monitoring Component

Publication No. 09-03-121. https://fortress.wa.gov/ecy/publications/publications/0903121.pdf

Authors and Contact Information

Margaret Dutch, Sandra Weakland, Valerie Partridge Environmental Assessment Program Washington State Department of Ecology Olympia, Washington 98504-7710

For more information contact: Communications Consultant, phone 360-407-6834.

Any use of product or firm names in this publication is for descriptive purposes only and does not imply endorsement by the author or the Department of Ecology.

Accommodation Requests: To request ADA accommodation including materials in a format for the visually impaired, call Ecology at 360-407-6834. Persons with impaired hearing may call Washington Relay Service at 711. Persons with speech disability may call TTY at 877-833-6341

Addendum 7 to Quality Assurance Project Plan

The Puget Sound Assessment and Monitoring Program: Sediment Monitoring Component, 2015 Monitoring in the Bainbridge Basin

July 2015

Approved by:

Signature:	Date: July 2015
Margaret Dutch, Author / Project Manager and Sediment Team Lead, EAP	
Signature:	Date: July 2015
Sandra Weakland, Author and EIM Data Lead, EAP	
Signature:	Date: July 2015
Valerie Partridge, Author, EAP	
Signature:	Date: July 2015
Carol Maloy, Author's Unit Supervisor, EAP	
Signature:	Date: July 2015
Jessica Archer, Author's Section Manager, EAP	
Signature:	Date: July 2015
Joel Bird, Director, Manchester Environmental Laboratory	
Signature:	Date: July 2015
Bill Kammin, Ecology Quality Assurance Officer	

Signatures are not available on the Internet version. EAP: Environmental Assessment Program

1.0 Table of Contents

Page	e
2.0 Abstract	4
 4.0 Project Description	4 5 5
 5.0 Organization and Schedule	5 6
6.0 Quality Objectives 6.2 Measurement Quality Objectives	
7.0 Sampling Process Design 1 7.1 Study Design 1 7.1.2 Station Locations 1 7.1.3 Parameters Sampled 1 7.2 Maps 1	1 1 2
 8.0 Sampling Procedures	
9.0 Measurement Methods 1' 9.2 Lab Procedures 1'	
15.0 References	1

List of Figures and Tables

Figure 1. Target stations for the 2015 PSEMP Urban Bays Bainbridge Basin sediment survey
Figure 2. Alternate stations for the 2015 PSEMP Urban Bays Bainbridge Basin sediment survey
Table 1. Proposed schedule for completing the field and laboratory work, data entry intoEIM, and reports for the 2015 PSEMP Urban Bays sediment monitoring program
Table 2. Project budget
Table 3. Laboratory measurement quality objectives for laboratory analysis for ammonia(NH3) and total sulfides (TS) in bulk sediments and in porewater
Table 4. Laboratory measurement quality objectives for pharmaceuticals and personal careproducts (PPCPs) and perfluoroalkyl substances (PFASs).10
Table 5. Locations (latitude/longitude) for 2015 PSEMP Urban Bays Bainbridge Basin sediment survey.
Table 6. Alternate locations (latitude/longitude) for the 2015 PSEMP Urban BaysBainbridge Basin sediment survey.12
Table 7. Parameters measured in sediments for the 2015 PSEMP Urban Bays BainbridgeBasin sediment survey
Table 8. Sample collection and preservation for analyses for ammonia (NH3) and total sulfides (TS) in bulk sediments and in porewater, and for analyses for pharmaceuticals and personal care products (PPCPs) and perfluoroalkyl substances (PFASs) in homogenized sediment
Table 9. Laboratory analysis and reporting requirements for ammonia (NH3) and total sulfides (TS) in bulk sediments and in porewater, and for pharmaceuticals and personal care products (PPCPs) and perfluoroalkyl substances (PFASs) in sediments

2.0 Abstract

This addendum to the 2009 PSEMP Sediment Monitoring Component Quality Assurance Project Plan (QAPP) (Dutch et al., 2009) provides details about sampling locations, parameters, and sampling/analysis schedules for the 2015 Urban Bays sampling program. All other quality assurance elements, including sampling methods, quality control, and data management, are as described in Dutch et al., 2009 and remain unchanged for the Urban Bays sampling program.

4.0 Project Description

Ongoing Sediment Monitoring Programs

The Washington State Department of Ecology (Ecology) Marine Sediment Monitoring Team conducts sediment sampling as part of the Puget Sound Ecosystem Monitoring Program (PSEMP)¹. The PSEMP Sediment Component consists of three annual monitoring programs:

- Long-term² Conducted at ten stations located throughout Puget Sound and sampled annually each April since 1989 (or longer).
- Regional³ Forty stations sampled within one of eight geographic regions annually each June since 1997. Sampling rotates among the regions over a ten-year period. A new set of randomly selected stations are sampled each time a region is revisited. NOTE: Regional sampling will not be conducted in 2015, as per the program's long-range planning schedule.
- Urban Bays⁴ Thirty randomly selected stations sampled within one of six urban bays annually each June since 2007. Sampling rotates among the bays over a six-year period. The same set of randomly selected stations is sampled each time an urban bay is revisited.

2015 Urban Bays survey: Bainbridge Basin

This Quality Assurance Project Plan addendum provides detailed information about the schedule, budget, measurement quality objectives, parameter list, sampling procedures, and measurement methods for the 2015 sediment survey in the Bainbridge Basin of Puget Sound that differs from the original QAPP (Dutch, 2009). The numbering scheme for the sections of this addendum reflects Ecology's current required formatting for QAPPs and is not found in the original QAPP.

¹ Formerly known as the "Puget Sound Assessment and Monitoring Program (PSAMP)"

² Formerly known as "Long-term/Temporal"

³ Formerly known as "Spatial/Temporal"

⁴ An expansion of Ecology's "Urban Waters Initiative"

4.1 Objectives

The objectives of the 2015 Bainbridge Basin sediment survey are to (1) recharacterize sediment quality in the Urban Bays Bainbridge Basin sampling frame and (2) compare these data to 1998 baseline and 2009 data to determine change over time.

4.4 Target Population

The target population of the 2015 Bainbridge Basin sediment survey is the surface soft sediments in the Urban Bays Bainbridge Basin sample frame (Figure 1).

4.5 Study Boundaries

The Urban Bays Bainbridge Basin sample frame consists of the subtidal areas \geq 6 feet deep, west of Bainbridge Island, including Rich Passage, Sinclair Inlet, Dyes Inlet, Liberty Bay, and Port Madison (Figure 1).

5.0 Organization and Schedule

5.4 Project Schedule

Key activities for the PSEMP Long-term sediment monitoring work are listed in Table 1.

Table 1. Proposed schedule for completing the field and laboratory work, data entry into EIM, and reports for the 2015 PSEMP Urban Bays sediment monitoring program.

Field and laboratory work	Due date	Lead staff		
Field work completed	May 2015	Margaret Dutch		
Laboratory analyses completed	Ammonia, Total Sulfides – June 2015 Pharmaceuticals, Personal Care Products – June 2019 Perfluoroalkyl Substances – June 2015 Total Organic Carbon – July 2015 Grain size – September 2015 Chemistry – March 2016 Toxicity – March 2016 Taxonomy – June 2016			
Environmental Information System (EIM)	database			
EIM Study ID	UWI2015			
Product	Due date	Lead staff		
EIM data loaded	July 2016	Sandra Weakland		
EIM QA	August 2016	Margaret Dutch		
EIM complete	September 2016	Sandra Weakland		
Final report				
Author lead / support staff	Valerie Partridge / S	Sandra Weakland, Margaret Dutch		

Sediment Monitoring in the Bainbridge Basin Page 5 – July 2015

Schedule	
Draft due to supervisor	October 2016
Draft due to client/peer reviewer	November 2016
Draft due to external reviewer(s)	December 2016
Final (all reviews done) due to publications coordinator	January 2017
Final report due on web	February 2017

5.5 Limitations on Schedule

PSEMP Urban Bays sampling is usually conducted in June each year. In 2015, sampling will be conducted in May to ensure that PPCP and PFAS laboratory analyses can be completed by the end of the biennium in June.

5.6 Budget

The proposed budget for the PSEMP Urban Bays Bainbridge Basin sediment survey is provided in Table 2.

Parameter	Number of Samples	Number of QA Samples	Total Number of Samples	Cost Per Sample	MEL 25% Overhead/Sample	Lab	Total
TOC	33	3 (field split)	36	\$43.60			\$1,569.60 [*]
Metals	33	3 (field split)	36	\$197.00			\$7,092.00*
PAHs and phthalates	33	3 (field split)	36	\$415.00		Manchester	\$14,940.00 [*]
PCB Aroclors and congeners	33	3 (field split)	36	\$175.00		Environmental	\$6,300.00 [*]
PBDEs	33	3 (field split)	36	\$190.00		Laboratory	\$6,840.00 [*]
MS/MSD QC	1/batch of 20, all MEL analyses	2/MEL analysis	2/MEL analysis	\$1,020.60			\$2,041.20 [*]
Pharmaceuticals and Personal Care Products	33	0	33	\$1,650.00	\$412.50	AXYS	\$68,062.50 [*]
Perfluoroalkyl Substances	33	0	33	\$350.00	\$87.50	Environmental Laboratory	\$14,437.50 [*]
Total Solids	33	3 (field split)	36	\$5.00 [†]			\$180.00 [*]
Total Sulfides (bulk sediment)	33	3 (field split)	36	\$30.00 [†]		Analytical	\$1,080.00*
Total Sulfides (porewater)	33	3 (field split)	36	\$20.00 [†]		Resources,	\$720.00 [*]
Ammonia (NH ₃) (bulk sediment)	33	3 (field split)	36	\$25.00 [†]		Inc.	\$900.00 [*]
Ammonia (NH ₃) (porewater)	33	3 (field split)	36	\$15.00 [†]			\$540.00 [*]
Porewater Extraction			36	\$75.00		Materials Testing and Consulting, Inc. (MTC)	\$2,700.00 [*]
Archive bottles			36	\$2.50			\$90.00 [*]
Grain Size	33	3 (field split)	36	\$80.00		MTC	\$2,880.00**

Table 2. Project budget.

Parameter	Number of Samples	Number of QA Samples	Total Number of Samples	Cost Per Sample	MEL 25% Overhead/Sample	Lab	Total
Amphipod survival toxicity test	33	0	33	\$450.00		Northwestern Aquatic Services	\$14,850.00 ^{**}
Sea urchin fertilization toxicity test	33	0	33	\$450.00			\$14,850.00**
Sample courier			2 trips	\$425.00		Dependable Courier Service	\$850.00 [*]
Taxonomic identification	33	0	33	\$420.00		Contract Regional Taxonomists	\$13,860.00**
						Total:	\$174,782.80

[†] QC samples included in cost ^{*}2013-2015 biennium ^{**}2015-2017 biennium

6.0 Quality Objectives

6.2 Measurement Quality Objectives

The Measurement Quality Objectives (MQOs) for ammonia and total sulfides are given in Table 3; the MQOs for pharmaceuticals, personal care products, and perfluoroalkyl substances are given in Table 4. MQOs for all other parameters are given in the original QAPP (Dutch et al., 2009) and remain unchanged.

Table 3. Laboratory measurement quality objectives for laboratory analysis for ammonia (NH_3) and total sulfides (TS) in bulk sediments and in porewater.

Parameter	Field Blank	Field Replicate	Initial Calibration	Continuing Calibration	Calibration Blanks	Laboratory Control Samples	Matrix Spikes	Laboratory Replicates	Method Blank
Total Solids			Not applicable	Not applicable	Not applicable	Not applicable	Not applicable		
Ammonia (bulk sediments)		Duplicate		90 -110% recovery (calibration verification blank should	Analyte concentration < Practical	80 -120%		Triplicate analyses on one of every	
Ammonia (porewater)	RPD < 20%	analysis for 10% of samples, RPD < 20%	Correlation coefficient for the standard	vithin 10% of its prepared concentration)	Quantitation Limit (PQL)	recovery	75 -125% recovery	20 samples; 20% Relative Standard Deviation	Analyte concentration < PQL
Total Sulfides (bulk sediments)			curve > 0.990	85 -115%	Not	65 -135%		(RSD)	
Total Sulfides (porewater)				recovery	applicable	recovery			

Table 4. Laboratory measurement quality objectives for pharmaceuticals and personal care products (PPCPs) and perfluoroalkyl substances (PFASs).

Parameter	Field Blank	Field Replicate (Split Sample)	Analytical (Laboratory) Replicate	Laboratory Control Sample	Reference Material	Method Blank	Matrix Spike (and Matrix Spike Duplicate)	Surrogate Spike
Pharmaceuticals and Personal Care Products (PPCPs)	RPD < 20%	RPD < 20%	Compound- specific RPD < 40%	Compound -specific	Not applicable	Analyte concentration < MDL; if ≥ MDL, lowest analyte conc'n must be ≥ 10x blank conc'n	Not applicable	Compound -specific
Perfluoroalkyl Substances (PFASs)	RPD ≤ 20%	RPD ≤ 20%	Compound- specific RPD ≤ 40%	Compound -specific	Not applicable	Analyte concentration < MDL; if ≥ MDL, lowest analyte conc'n must be ≥ 10x blank conc'n	Recovery compound- specific; RPDs < 40%	Compound -specific

RPD: Relative Percent Difference

MDL: Method Detection Limit

Method Blanks - analyzed to assess possible laboratory contamination of samples associated with all stages of preparation and analysis of sample extracts.

Surrogate Spike Compounds - a type of check standard that is added to each sample in a known amount prior to extraction or purging.

Analytical replicates - provide precision information on the actual samples; useful in assessing potential samples heterogeneity and matrix effects.

Matrix Spikes - percent recoveries of matrix spikes are reported, should include a wide range of representative analyte types, compounds should be spiked about 5x the concentration of compounds in the sample or 5x the quantification limit.

Laboratory Control Samples - sometimes called check standards or laboratory control samples, are method blanks spiked with surrogate compounds and analytes; useful in verifying acceptable method performance prior to and during routine analysis of samples.

Reference Materials - a material or substance whose property values are sufficiently well established to be used for calibration of an apparatus, the assessment of a measurement method, or for assigning values to materials.

7.0 Sampling Process Design

7.1 Study Design

7.1.2 Station Locations

A total of 33 stations will be sampled. Those same 33 sites were originally selected and sampled in 1998, and resampled in 2009 (Figure 1, Table 5). Alternate station locations are proposed, in case a station location cannot be sampled (Figure 2, Table 6).

Table 5. Locations (latitude/longitude) for 2015 PSEMP Urban Bays Bainbridge Basin sediment survey.

Target Station	Stratum	Location		Location imal degrees)
Station			Latitude	Longitude
124	Rural	Port Madison	47.71381	-122.52732
125	Rural	Port Madison	47.73306	-122.53726
126	Rural	Port Madison	47.72603	-122.53051
142	Urban	Liberty Bay	47.72316	-122.64702
143	Urban	Liberty Bay	47.72035	-122.64899
144	Urban	Liberty Bay	47.72183	-122.64211
145	Passage	Keyport	47.71468	-122.62932
146	Passage	Keyport	47.71939	-122.64130
147	Passage	Keyport	47.70651	-122.63555
148	Passage	North West Bainbridge	47.69294	-122.61013
149	Passage	North West Bainbridge	47.68877	-122.58892
150	Passage	North West Bainbridge	47.68123	-122.58550
151	Passage	South West Bainbridge	47.64943	-122.60349
152	Passage	South West Bainbridge	47.60237	-122.58907
153	Passage	South West Bainbridge	47.62584	-122.58124
154	Passage	Rich Passage	47.59342	-122.53736
155	Passage	Rich Passage	47.60060	-122.55375
156	Passage	Rich Passage	47.57922	-122.58412
157	Passage	Port Orchard	47.56905	-122.60235
158	Passage	Port Orchard	47.56951	-122.58731
159	Passage	Port Orchard	47.56620	-122.61089
160	Harbor	Sinclair Inlet	47.53423	-122.67688
161	Harbor	Sinclair Inlet	47.54373	-122.64146
162	Harbor	Sinclair Inlet	47.54724	-122.64148
163	Harbor	Sinclair Inlet	47.54572	-122.65406
164	Harbor	Sinclair Inlet	47.54900	-122.66538

Target Station	Stratum	Location	Station Location (NAD 83, decimal degrees)			
Station			Latitude	Longitude		
165	Harbor	Sinclair Inlet	47.54726	-122.66643		
166	Passage	Port Washington Narrows	47.60889	-122.66347		
167	Passage	Port Washington Narrows	47.58473	-122.66301		
168	Passage	Port Washington Narrows	47.58835	-122.65993		
169	Urban	Dyes Inlet	47.63572	-122.67908		
170	Urban	Dyes Inlet	47.61308	-122.70134		
171	Urban	Dyes Inlet	47.62739	-122.69190		

Table 6. Alternate locations (latitude/longitude) for the 2015 PSEMP Urban Bays Bainbridge Basin sediment survey.

	Station Location				
Alternate Station	(NAD 83, decimal degrees)				
Station	Latitude	Longitude			
10	47.60193	-122.67997			
26	47.59712	-122.55054			
28	47.61891	-122.67585			
40	47.73365	-122.65264			
74	47.53151	-122.67685			
106	47.54641	-122.64810			
108	47.63527	-122.69844			
136	47.72145	-122.50603			
138	47.59444	-122.68152			
156	47.61800	-122.69088			
168	47.71895	-122.53153			
170	47.54814	-122.65487			
202	47.56099	-122.59580			
232	47.69089	-122.59153			
264	47.68104	-122.60264			
306	47.54440	-122.63915			
322	47.53619	-122.66865			

7.1.3 Parameters Sampled

Standard sediment quality field measurements, macroinvertebrate abundance, grain size, total organic carbon, and metals will continue to be collected as per Dutch et al., 2009. A reduced list of organics will also be collected. Ammonia (NH₃) and total sulfides in bulk sediments and porewater are being added due to their potential toxicity to the benthic invertebrate assemblages (Table 7). A comparison will be conducted to determine differences in the levels of these parameters in the two sediment fractions. The parameter of total solids is added to allow for calculation of these ammonia and total sulfide values for bulk sediments in dry weight. Pharmaceuticals and personal care products (PPCP), and perfluoroalkyl substances (PFAS) are added to establish baseline data for these chemicals.

Table 7. Parameters measured in sediments for the 2015 PSEMP Urban Bays Bainbridge Basin sediment survey.

Field Measurements	Diethylphthalate	PBDE-49
Sediment temperature	Dimethylphthalate	PBDE-66
Salinity of overlying water	Di-N-Butylphthalate	PBDE-71
2	Di-N-Octyl Phthalate	PBDE-99
Macroinvertebrate	5	PBDE-100
Abundance	Polycyclic Aromatic	PBDE-138
Total Abundance	Hydrocarbons	PBDE-153
Major Taxa Abundance		PBDE-154
Taxa Richness	LPAHs	PBDE-183
Calculated values:	1,6,7-Trimethylnaphthalene	PBDE-184
Pielou's Evenness	1-Methylnaphthalene	PBDE-191
Swartz Dominance Index	1-Methylphenanthrene	PBDE-209
Swartz Dominance mdex	2,6-Dimethylnaphthalene	
Convertionals	2-Methylnaphthalene	Polychlorinated Biphenyls
Conventionals	2-Methylphenanthrene	Aroclors
Grain size	Acenaphthene	PCB-1016
Total organic carbon	Acenaphthylene	PCB-1221
Ammonia	Anthracene	PCB-1232
Total sulfides	Biphenyl	PCB-1242
Total solids	Dibenzothiophene	PCB-1248
	Fluorene	PCB-1254
Toxicity	Naphthalene	PCB-1260
Sea urchin fertilization success	Phenanthrene	PCB-1262
(porewater)	Retene	PCB-1268
Amphipod survival (bulk	Calculated values:	1 CD-1200
sediment)	total LPAH	Congeners
		PCB-8
Metals	HPAHs	PCB-18
Priority Pollutant Metals	Benzo(a)anthracene	PCB-28
Arsenic	Benzo(a)pyrene	PCB-44
Cadmium	Benzo(b)fluoranthene	PCB-52
Chromium	Benzo[e]pyrene	PCB-66
Copper	Benzo(g,h,i)perylene	PCB-77
Lead	Benzo(k)fluoranthene	PCB-101
Mercury	Chrysene	PCB-105
Nickel	Dibenzo(a,h)anthracene	PCB-118
Selenium	Fluoranthene	PCB-126
Silver	Indeno(1,2,3-c,d)pyrene	PCB-128
Zinc	Perylene	PCB-138
	Pyrene	PCB-153
Element	Calculated values:	PCB-169
Tin	total HPAH	PCB-170
	total Benzofluoranthenes	PCB-180
Organics	total Delizoffuoralitienes	PCB-180 PCB-187
	Polybrominated	PCB-187 PCB-195
Phthalate Esters	Diphenylethers	PCB-195 PCB-206
Bis(2-Ethylhexyl) Phthalate	PBDE-47	PCB-200 PCB-209
Butylbenzylphthalate	I DDL-4/	I CD-207

Personal Care Products and Pharmaceuticals

List 1 - Acid Extraction in Positive Ionization

Acetaminophen Ampicillin 1 Azithromycin Caffeine Carbadox Carbamazepine Cefotaxime Ciprofloxacin Clarithromycin Clinafloxacin Cloxacillin Dehydronifedipine Digoxigenin Digoxin Diltiazem 1,7-Dimethylxanthine Diphenhydramine Enrofloxacin Erythromycin-H20 Flumequine Fluoxetine Lincomycin Lomefloxacin Miconazole Norfloxacin Norgestimate Ofloxacin Ormetoprim Oxacillin Oxolinic acid Penicillin G Penicillin V Roxithromycin Sarafloxacin Sulfachloropyridazine Sulfadiazine Sulfadimethoxine Sulfamerazine Sulfamethazine Sulfamethizole Sulfamethoxazole Sulfanilamide Sulfathiazole Thiabendazole Trimethoprim Tylosin Virginiamycin

List 2 - Tetracyclines in Positive Ionization

Anhydrochlortetracycline Anhydrotetracycline Chlortetracycline Demeclocycline Doxycycline 4-Epianhydrochlortetracycline 4-Epichlortetracycline 4-Epichlortetracycline 4-Epioxytetracycline 4-Epitetracycline Isochlortetracycline Minocycline Oxytetracycline Tetracycline

List 3 - Acid Extraction in Negative Ionization

Bisphenol A Furosemide Gemfibrozil Glipizide Glyburide Hydrochlorothiazide 2-hydroxy-ibuprofen Ibuprofen Naproxen Triclocarban Triclosan Warfarin

List 4 - Basic Extraction in Positive Ionization

Albuterol Amphetamine Atenolol Atorvastatin Cimetidine Clonidine Codeine Cotinine Enalapril Hydrocodone Metformin Oxycodone Ranitidine Triamterene

List 5 - Acid Extraction in Positive Ionization

Alprazolam Amitriptyline Amlodipine Benzovlecgonine Benztropine Betamethasone Cocaine DEET Desmethyldiltiazem Diazepam Fluocinonide Fluticasone propionate Hydrocortisone 10-hydroxy-amitriptyline Meprobamate Methylprednisolone Metoprolol Norfluoxetine Norverapamil Paroxetine Prednisolone Prednisone Promethazine Propoxyphene Propranolol Sertraline Simvastatin Theophylline Trenbolone Trenbolone acetate Valsartan Verapamil

Perfluoroalkyl Substances

Carboxylic Acids

Perfluorobutanoate (PFBA) Perfluoropentanoate (PFPeA) Perfluorohexanoate (PFHxA) Perfluoroheptanoate (PFHpA) Perfluorooctanoate (PFOA) Perfluorononanoate (PFDA) Perfluorodecanoate (PFDA) Perfluorodecanoate (PFUnA) Perfluorododecanoate (PFDoA)

Sulphonic Acids

Perfluorobutanesulfonate (PFBS) Perfluorohexanesulfonate (PFHxS) Perfluorooctanesulfonate (PFOS) Perfluorooctane sulfonamide (PFOSA)

7.2 Maps

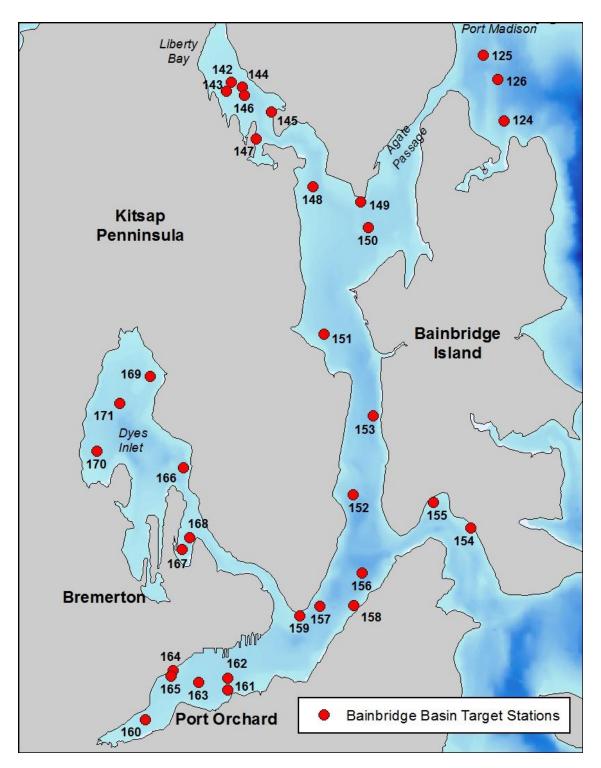


Figure 1. Target stations for the 2015 PSEMP Urban Bays Bainbridge Basin sediment survey.

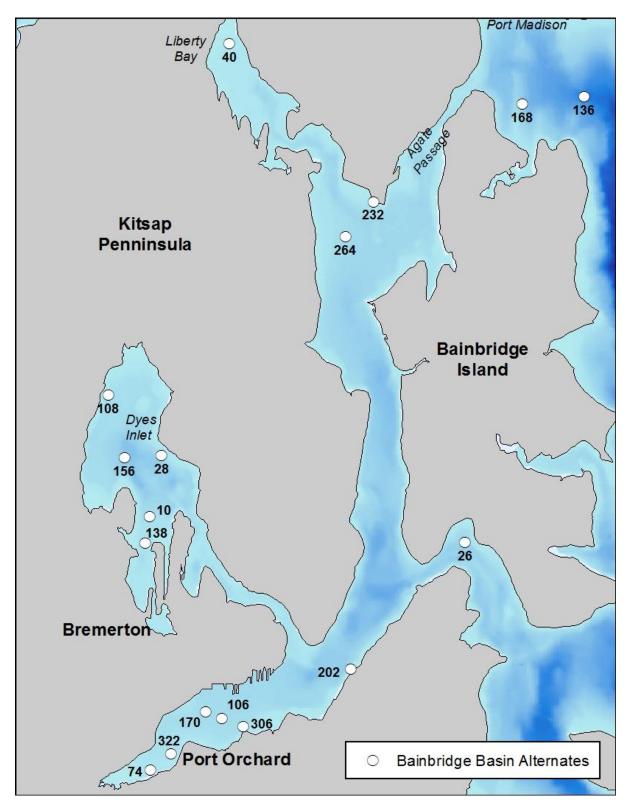


Figure 2. Alternate stations for the 2015 PSEMP Urban Bays Bainbridge Basin sediment survey.

8.0 Sampling Procedures

8.2 Containers, Preservation Methods, Holding Times

Sample collection and preservation of sediment samples for analyses for ammonia, total sulfides, pharmaceuticals, personal care products, and perfluoroalkyl substances are given in Table 8. Sample collection and preservation of sediment samples for all other analyses are given in the original QAPP (Dutch et al., 2009).

9.0 Measurement Methods

9.2 Lab Procedures

Laboratory analysis and reporting requirements for analyses for ammonia, total sulfides, pharmaceuticals, personal care products, and perfluoroalkyl substances are given in Table 9. Laboratory analysis and reporting requirements for all other analyses are given in the original QAPP (Dutch et al., 2009).

Table 8. Sample collection and preservation for analyses for ammonia (NH3) and total sulfides (TS) in bulk sediments and in porewater, and for analyses for pharmaceuticals and personal care products (PPCPs) and perfluoroalkyl substances (PFASs) in homogenized sediment.

Parameter	Size of Sediment Sample	Container	Preservation	Maximum Holding Time
Total Solids (bulk sediments)	4 oz (50g for lab work)	4 oz wide-mouth glass jar with Teflon-lined lid	Refrigerate at 4°C	14 days
Ammonia (bulk sediments)	4 oz (25g for lab work)	4 oz wide-mouth glass jar with Teflon-lined lid	Refrigerate at 4°C, sample should not be homogenized in field, no headspace or air pockets should remain	7 days
Total Sulfides (bulk sediments)	2 oz (50g for lab work)	2 oz wide-mouth glass jar with Teflon-lined lid	4°C, 5ml of 2 N zinc acetate for a 250 ml sample, sample should not be homogenized in field, no headspace or air pockets should remain	7 days
Ammonia/ Total Sulfides (porewater)	32 oz (600g for lab work)	32 oz wide mouth glass jar with Teflon-lined lid	Refrigerate at 4°C, sample should not be homogenized in field, no headspace or air pockets should remain	7 days
Pharmaceuticals and Personal Care Products (PPCPs) (homogenized sediment)	8 oz	8 oz HDPE internally certified by contract lab	Wrap in aluminum foil and place in ice chest with dry ice immediately after field collection. Freeze as soon as possible. Store in dark at less than -10°C until analyzed	* Freezing encouraged to minimize degradation. Extract within 48 hours if not frozen or within 7 days of collection if frozen. Extract within 48 hours of removal from freezer. Analyze extracts within 40 days of extraction.
Perfluoroalkyl Substances (PFASs) (homogenized sediment)	8 oz	8 oz HDPE internally certified by contract lab	Refrigerate at 4ºC <u>+</u> 2ºC (CAS)	* 14 days to extraction (CAS)

* These are suggested holding times only. Formal holding time studies have not been performed or published for this analysis.

Table 9. Laboratory analysis and reporting requirements for ammonia (NH3) and total sulfides (TS) in bulk sediments and in porewater, and for pharmaceuticals and personal care products (PPCPs) and perfluoroalkyl substances (PFASs) in sediments.

Parameter	Extraction Method	Clean-up Method	Analysis Method	Technique/ Instrument	Expected Range of Results	Required Reporting Limit
Total Solids	Not applicable	Not applicable	PSEP, 1986/ASTM D-422	Muffle furnace – 550°C	0.01 – 100%	0.01%
Ammonia (bulk sediments)	Not applicable	Not applicable	Standard Methods	Automated phenate, flow injection analysis (FIA). Measures ammonia as NH3-N under alkaline conditions.	Unknown	0.1 mg/Kg
Ammonia (porewater)	Centrifugation of bulk sediments (DMMP/SMS, 1998)	Not applicable	1995 4500-NH3 H or EPA 350.1M (water)		0.01 – 1.00 mg/L	0.01 mg/L
Total Sulfides (bulk sediments) (PSEP, 1986)	Sediment is acidified under anoxic conditions to release sulfide as H_2S . The released H_2S gas is then trapped in zinc acetate solution to precipitate sulfide (as zinc or sodium sulfide). Finish analysis is conducted on the trapping solution.	Not applicable	Plumb, 1981; Standard Methods, 1995 4500-S ²⁻ D-00; PSEP, 1986	lodometric titration and methylene blue colorimetry	1.0 mg/kg	10.0 mg/kg dry weight (to nearest 0.1 unit)
Total Sulfides (porewater)	Centrifugation of bulk sediments (DMMP/SMS, 1998)	Not applicable			0.05 mg/L	
Pharmaceuticals and Personal Care Products (PPCPs)	Sonication with aqueous buffered acetonitrile and pure acetonitrile, concentrate then dilute with ultra pure water.	Solid-phase extraction cartridge then filtered	USEPA 1694	HPLC/ESI-MS/MS. High performance liquid chromatography with triple quadrupole mass spectrometer in positive and negative electrospray ionization modes using isotope dilution and internal standard quantitation techniques	Unknown	1-1,000 μg/kg dry weight

Parameter	Extraction Method	Clean-up Method	Analysis Method	Technique/ Instrument	Expected Range of Results	Required Reporting Limit
Perfluoroalkyl Substances (PFASs)	Shake extraction with dilute acetic acid solution then methanolic ammonium hydroxide solution. Combine supernatants and treat with ultra pure carbon powder and diluted with ultra pure water.	Weak anion exchange sorbent solid- phase extraction	MLA-041. Internal AXYS method	HPLC/ESI-MS/MS. High performance liquid chromatography with triple quadrupole mass spectrometer in negative electrospray ionization mode using internal standard.	Unknown	0.1 μg/kg dry weight

DMMP/SMS. 1998. DMMP Clarification Paper/SMS Technical Information Memorandum: Tributyltin Analysis: Clarification of Interstitial Water Extraction and Analysis Methods – Interim. Prepared by Erika Hoffman (EPA Region 10) for the DMMP agencies.

Standard Methods for the Examination of Water and Wastewater. 1995. 19th Ed.

Puget Sound Estuary Program (PSEP). 1986. Recommended Protocols for Measuring Conventional Sediment Variables in Puget Sound. Prepared for U.S. Environmental Protection Agency Region 10, Office of Puget Sound, Seattle, WA and Puget Sound Water Quality Authority, Olympia, WA by Tetra Tech, Inc., Bellevue, WA. 25 pp.

Plumb, R.H., Jr. 1981. Procedure for Handling and Chemical Analysis of Sediment and Water Samples, Technical Report EPA/CE-81-1, prepared by Great Lakes Laboratory, State University College at Buffalo, Buffalo, N.Y., for the U.S. Environmental Protection Agency/Corps of Engineers Technical Committee on Criteria for Dredged and Fill Material. Published by the U.S. Army Engineer Waterways Experiment Station, CE, Vicksburg, Mississippi.

15.0 References

Dutch, M., V. Partridge, S. Weakland, K. Welch, and E. Long. 2009. Quality Assurance Project Plan: The Puget Sound Assessment and Monitoring Program Sediment Monitoring Component. Washington State Department of Ecology, Olympia, WA. Publication No. 09-03-121. <u>https://fortress.wa.gov/ecy/publications/SummaryPages/0903121.html</u>