

Washington Regional Haze Reasonably Available Control Technology Analysis for Pulp and Paper Mills

November 2016 Publication no. 16-02-023

Publication and Contact Information

This report is available on the Department of Ecology's website at https://fortress.wa.gov/ecy/publications/SummaryPages/1602023.html

For more information contact:

Air Quality Program P.O. Box 47600 Olympia, WA 98504-7600

Phone: 360-407-6800

Washington	State Department	t of Ecology - wy	ww.ecy.wa.gov
0	- · · · · · · · · ·		

0	Headquarters, Olympia	360-407-6000
0	Northwest Regional Office, Bellevue	425-649-7000
0	Southwest Regional Office, Olympia	360-407-6300
0	Central Regional Office, Yakima	509-575-2490
0	Eastern Regional Office, Spokane	509-329-3400

For special accommodations or documents in alternate format, call (360) 407-6800, 711 (relay service), or 877-833-6341 (TTY).

Washington Regional Haze RACT Analysis for Pulp and Paper Mills

By Gary Huitsing

Air Quality Program Washington State Department of Ecology Olympia, Washington

Table of Contents

			<u>P</u>	'age
Lis	st of F	Figures a	nd Tables	iii
	Figu	res		iii :::
	1 a01	1 1		111
Ac	know	ledgeme	ents	V
Ab	stract	/Execut	ive Summary	vi
Ac	ronyr	ns, Abb	reviations, and Terms	vii
1.		Overvie	ew	1
	1.1.	Bac	kground	1
	1.2.	RA	CT in Washington State	4
	12	1.2.1. Sou	RACT implementation in Washington State	3 6
_	1.5.	500		0
2.		Availat	oility of Additional Controls	7
3.		Demon	strated Emission Limits for Recovery Furnaces and Lime Kilns	14
	3.1.	Den	nonstrated PM emission limits for recovery furnaces and lime kilns	14
	3.2.	Der	nonstrated SO_2 emission limits for recovery furnaces and lime kilns	20
	3.3.	Den	nonstrated NO _X emission limits for recovery furnaces and lime kilns.	27
4.		Estimat	ted Emission Reductions Achievable	33
	4.1.	Esti	mated emission reductions achievable (by facility)	33
		4.1.1.	PTPC estimated emission reductions	34
		4.1.2.	WestRock estimated emission reductions	37
		4.1.3.	Weyerhaeuser estimated emission reductions	40
		4.1.4.	GP Camas estimated emission reductions	42
		4.1.3.	Roise White Wallula estimated emission reductions	43
		4.1.0.	Cosmo estimated emission reductions	51
		4.1.8	Graymont estimated emission reductions	
	4.2.	Esti	mated emission reductions for recovery furnaces achievable	
		(cur	nulative data)	56
	4.3.	Esti	mated emission reductions for lime kilns achievable (cumulative data).59
	4.4.	Dise	cussion of estimated potential emission reductions	61
		4.4.1.	Discussion of estimated potential emission reductions for reco	very
		4.4.2.	Discussion of estimated potential emission reductions for lime kilns	63
5.		Impacts	s of Controls on Visibility	64
-	5.1.	Imp	pacts of pulp and paper mills on visibility (BART modeling analysis).	64
	5.2.	Imp	pacts of pulp and paper mills on visibility (RACT modeling analysis).	66
		5.2.1.	Modeling results	67
		5.2.2.	Additional modeling scenarios	68

6.	Estimated Costs	69
6.1.	Capital and operating costs	69
7.	Conclusions	73
7.1.	PTPC conclusions	74
7.2.	WestRock conclusions	74
7.3.	Weyerhaeuser conclusions	74
7.4.	GP Camas conclusions	74
7.5.	KapStone conclusions	74
7.6.	Boise White Wallula Mill conclusions	74
7.7.	Cosmo specialty fiber mill conclusions	75
7.8.	Graymont lime kiln conclusions	75
Appendi	ces	76
Appendi	x A. Unit Conversions and Permit Limit Information	77
Appendi	x B. Facility Operating and Emissions Data	
Appendi	x C. WSU Report	134
Appendi	x D. Cost Estimates	171

List of Figures and Tables

Page

Figures

Figure 1.	Class I areas in Washington State	3
Figure 2.	Estimated potential PM emission reductions for recovery furnaces	57
Figure 3.	Estimated potential SO ₂ emission reductions for recovery furnaces	57
Figure 4.	Estimated potential NO _X emission reductions for recovery furnaces	58
Figure 5.	Estimated potential PM emission reductions for lime kilns	60
Figure 6.	Estimated potential SO ₂ emission reductions for lime kilns	60
Figure 7.	Estimated potential NO _X emission reductions for lime kilns	61

Tables

Table 1. Washington State Chemical Pulp and Paper Mills	2
Table 2. Mandatory Federal Class I Areas in Washington State ¹	3
Table 3. PM Control Technologies Available for Recovery Furnaces and Lime Kilns	7
Table 4. SO ₂ Control Technologies Available for Recovery Furnaces and Lime Kilns	9
Table 5. NO _X Control Technologies Available for Recovery Furnaces and Lime Kilns	0
Table 6. Demonstrated PM Emission Limits at Recovery Furnaces	15
Table 7. Demonstrated PM Emission Limits at Lime Kilns	8
Table 8. SO2 Emission Limits ¹ Demonstrated at Recovery Furnaces	20
Table 9. SO2 Emission Limits ¹ Demonstrated at Lime Kilns 2	24
Table 10. NO _X Emission Limits ¹ Demonstrated at Recovery Furnaces	27
Table 11. NO _X Emission Limits ¹ Demonstrated at Lime Kilns	30
Table 12. PTPC RF Emission Reductions 3	35
Table 13. PTPC Lime Kiln Emission Reductions	36
Table 14. WestRock Recovery Furnace (No. 4) Emission Reductions	37
Table 15. WestRock Lime Kiln (No. 1) Emission Reductions	38
Table 16. WestRock Lime Kiln (No. 2) Emission Reductions	39
Table 17. Weyerhaeuser Recovery Furnace (No. 10) Emission Reductions	10

Table 18.	Weyerhaeuser Lime Kiln (No. 4) Emission Reductions	1
Table 19.	GP Camas Recovery Furnace (No. 3) Emission Reductions	12
Table 20.	GP Camas Recovery Furnace (No. 4) Emission Reductions	13
Table 21.	GP Camas Lime Kiln (No. 4) Emission Reductions	14
Table 22.	KapStone Recovery Furnace (No. 18) Emission Reductions	15
Table 23.	KapStone Recovery Furnace (No. 19) Emission Reductions	1 6
Table 24.	KapStone Recovery Furnace (No. 22) Emission Reductions	1 7
Table 25.	KapStone Lime Kiln (No. 3) Emission Reductions	18
Table 26.	KapStone Lime Kiln (No. 4) Emission Reductions	19
Table 27.	KapStone Lime Kiln (No. 5) Emission Reductions	50
Table 28.	Boise White Wallula Recovery Furnace (No. 2) Emission Reductions	51
Table 29.	Boise White Wallula Recovery Furnace (No. 3) Emission Reductions	52
Table 30.	Boise White Wallula Lime Kiln Emission Reductions	53
Table 31.	Cosmo Recovery Furnace Emission Reductions	54
Table 32.	Graymont Calcining Lime Kiln (CLK) Emission Reductions	55
Table 33. Recovery	Tons of Potential Pollutant Reduction Based on Proposed RACT Limit Options for Furnaces	56
Table 34. Lime Kiln	Tons of Potential Pollutant Reduction Based on Proposed RACT Limit Options for	59
Table 35.	Visibility Modeling Results: 22nd Highest Delta dv, 2003–2005 (98th Percentile) 6	55
Table 36.	Visibility Modeling Results: 8th Highest Delta dv, (98th Percentile)	57
Table 37.	Recovery Furnace Estimated Control Costs	59
Table 38.	Lime Kiln Estimated Control Costs	12

Acknowledgements

The authors of this report would like to thank the following individuals for their contribution and assistance in preparing this RACT analysis:

- Brian Lamb, Washington State University
- Ravi Vikram, Washington State University
- Serena Chung, Washington State University
- Joseph Vaughan, Washington State University
- Steven J. Gorg, Minnesota Pollution Control Agency (MPCA)
- Eric Kennedy, Maine Department of Environmental Protection (MDEP)
- Gerry Pade, Puget Sound Clean Air Agency (PSCAA)
- Brian Renninger, Puget Sound Clean Air Agency (PSCAA)
- Ann Ingram, Lockheed Martin, EPA Contractor, Info Clearinghouse for Inventories & Emissions Factors (CHIEF) Help Desk Supporting EPA's Measurement Policy Group

The Principle Contributors from Ecology's Staff were:

- Gary Huitsing, Environmental Engineer
- Alan Newman, Environmental Engineer
- Ranil Dhammapala, Acting Science & Engineering Manager (3/14/2015–8/31/2015), Atmospheric Scientist
- Clint Bowman, Air Dispersion Modeler (through 8/31/2016)
- Anya Caudill, Acting Rules and Planning Unit Manager (through 1/31/2016)
- Jeff Johnston, Science & Engineering Manager (through 3/13/2015)

The following Ecology staff also made significant contributions:

- Tina Ebio, Administrative Assistant
- Stephanie Ogle, Waste to Resources Industrial Pulp and Paper Unit Supervisor
- Shingo Yamazaki, Waste to Resources Industrial Pulp and Paper
- Ha Tran, Waste to Resources Industrial Pulp and Paper
- Teddy Le, Waste to Resources Pulp and Paper Unit Supervisor (through 5/31/2016)
- Robert Carruthers, Waste to Resources Industrial Pulp and Paper
- Nancy Lowe, Waste to Resources Industrial Pulp and Paper (through 5/31/2016)
- Marc Heffner, Waste to Resources Industrial Pulp and Paper (through 6/30/2013)
- Nancy Pritchett, Program Development Section Manager
- Rich Hibbard, Environmental Engineer, Program Development Section (through 6/30/2016)
- Bob Burmark, Environmental Engineer, Science & Engineering Section (through 4/1/2016)
- Marc Crooks, Environmental Engineer
- Sally Otterson, Emission Inventory
- Farren Herron-Thorpe, Emission Inventory
- Stephanie Summers, Emission Inventory
- Donna Seegmueller, Admin Services Records/Library
- Carol Johnston, Agency Ops

Abstract/Executive Summary

This report is a follow-up as required in the 2010 Washington Regional Haze State Implementation Plan. Ecology evaluated emission controls applicable to recovery processes at pulp mills. This report also analyzed visibility improvement in federal Class I areas (national parks and certain wilderness areas) that might occur if additional emission controls were required at pulp mills.

Ecology performed the following:

- Evaluated emission limitations and control technologies used worldwide on pulp mills (recovery furnaces/boilers and lime kilns). We found several promising add-on control technologies. We also looked at emission limits in Washington and found that some emission limits were less protective compared to other pulp mills in Washington and in other states.
- Analyzed revised emission limits for each pulp mill.
- Provided achievable visibility improvements based on the revised emission rates. Modeling indicates that if Reasonably Available Control Technology (RACT – additional air pollution controls) were required, visibility would potentially be improved at the Alpine Lakes and Goat Rocks Wildernesses (0.13 deciview and 0.12 deciview, respectively). No other Class I area showed a cumulative improvement of more than 0.1 deciview.

Ecology concluded that the actual emission reductions from the individual pulp mills and the industry as a whole would be relatively costly to implement and visibility improvements in the federal Class I areas would not be observable.

We do not recommend further work to evaluate or require additional air pollution controls for pulp mills in Washington.

Acronyms, Abbreviations, and Terms

А	Stack Area
Acf	Actual Stack Gas Flow Rate
ACFM	Actual Cubic Feet per Minute
acfs	Actual Cubic Feet per Second
ADT	Air Dried Pulp
AIRNOW	Non-IMPROVE sites; a website which provide visual depictions of current and forecast air quality nationwide.
AIRPACT	AIRPACT is a computerized system for predicting air quality (AQ) for the immediate future of one to three days for ID, OR and WA.
An	Sample Nozzle Cross Section
APTI	Air Pollution Training Institute
ATM	Atmosphere (unit of pressure)
BACT	Best Available Control Technology
BART	Best Available Retrofit Technology
BAT	Best Available Techniques in the [Kraft] Pulp and Paper Industry, December 2001, European Commission. BATs are not permit limits, but are based on guidance documents called BREFs (BAT Reference document)
BLS	Black Liquor Solids
BPT	Best Practical Treatment
Bray	Rayleigh Extinction Coefficient
BREF	BAT Reference document
Btu	British thermal unit
Bws	Stack Gas Moisture Fraction
CAA	Clean Air Act
CaCO ₃	Calcium Carbonate
CALMET	California Meteorological Model; a diagnostic 3-dimensional meteorological model
CALPUFF	California Puff Model; an air quality dispersion model
CAMx	Comprehensive Air Quality Model with Extensions
CEMS	Continuous Emissions Monitoring Systems

CFR	Code of Federal Regulations
СМ	Coarse Matter
СМ	Coarse Matter
CMAQ	Community Multi-Scale Air Quality Model
СО	Carbon Monoxide
COGO1	Local Air Monitor Site Abbreviation for Columbia River Gorge at Mt Zion
CORI1	Local Air Monitor Site Abbreviation for Columbia River Gorge at Wishram
Ср	Pitot tube calibration coefficient
D	Diameter of stack
DBA	Doing Business As
Delta dv	Change in deciview
dH	Meter Orifice Pressure
dP	Differential Pressure
dP	Stack Gas Velocity Head
dP^.5	Stack Gas Velocity Head
dv	Deciview; a measure of light extinction
EC	Elemental Carbon
EGF	Electrified Gravel Bed Filter
EI	Emission Inventory
EPA	Environmental Protection Agency
ESP	Electrostatic Precipitator
F1	Conversion Factor
F2	Conversion Factor
F3	Conversion Factor
F4	Conversion Factor
F5	Conversion Factor
FB	Fractional Bias
FE	Fractional Error
FGD	Flue Gas Desulferization

FIP	Federal Implementation Plan
FLM	Federal Land Manager
FNA	Formerly Known As
FS	Forest Service
ft2	Square Feet
g	Gram
GED	Good Equipment Design
GPM	Gallons Per Minute
gr/dscf	Grains per dry standard cubic feet
H ₂ 0/gm	H ₂ 0 per gram
H_2O_2	Hydrogen Peroxide
H_2S	Hydrogen Sulfide
HAP	Hazardous Air Pollutant
HAPs	Hazardous Air Pollutants
HERB	High Energy Recovery Boiler
HG	Mercury
Ht	Stack Height
HVLC	High Volume Low Concentration
Ι	Isokinetic percent
ICCP	Integrated Pollution Prevention Control (ICCP), a reference document on Best Available Techniques [BAT] in the [kraft] Pulp and Paper Industry, December 2001, European Commission
IMPROVE	Interagency Monitoring of Protected Visual Environments
in	Inches
Kg	Kilogram
Кр	Pitot tube constant
KPa	Kilo Pascal
Kraft	Type of chemical pulp and paper mill processes using sulfate. Can be divided into three areas: the making of pulp, recovery of cooking materials, the bleaching of pulp
LAER	Lowest Achievable Emission Rate

Lb/hr	Pounds per hour
Lbmol	Pound Mole
LCPD	Large Combustion Plant Directive of the European Commission.
LEA	Low Excess Air
LK	Lime Kiln
LKEU	Lime Kiln Emission Unit
LNB	Low NO _X Burner
M3	Cubic Meters
MACT	Maximum Achievable Control Technology
MCIP	Meteorology-Chemistry Interface Processor
Md	Stack Gas Mole weight dry
Mf	Mass of particulate: filter
MFB	Mean Fractional Bias
MFE	Mean Fractional Error
mg	milligram
mg/dscf	Milligrams per dry standard cubic feet
MH20	MW of water
MM	Million
Mm-1	Inverse mega meter; a measure of particle extinction
MM5	Meteorological Mesoscale 5
Mn	Mass of particulate: combined samples
MORA1	Local Air Monitor Site Abbreviation for Mt. Rainier National Park
Мр	Mass of particulate: probe wash
Ms	Stack Gas Mole weight wet
MW	Megawatt
MW	Molecular Weight
N_2	Nitrogen
N/A	Not Applicable or Not Available
NCAC	North Carolina Administrative Code

NCASI	National Council of Air and Stream Improvement
NCG	Non Condensable Gases
NESHAP	National Emission Standards for Hazardous Air Pollutants
NG	Natural Gas
NH ₃	Ammonia
(NH4)2SO4	Ammonium Sulfate
NH4	Ammonium
Nm3	Newton – Meters cubed
NO	Nitric oxide
NO ₂	Nitrogen dioxide
NO ₃	Ammonium Nitrate or NH4NO3
NOCA1	Local Air Monitor Site Abbreviation for Glacier Peak Wilderness and North Cascades National Park
NO _X	Nitrogen Oxides
NPS	National Park Service
NSCR	Non-Selective Catalytic Reduction
NSPS	New Source Performance Standards
NSR	New Source Review
NW AIRQUEST	A virtual air quality science center made up of various air quality agencies, tribes, and universities of the Pacific Northwest
NWCAA	Northwest Clean Air Agency
O&M	Operations and Maintenance
O/R	Oxidation/Reduction
O_2	Oxygen
O ₃	Ozone
OBS	Observed
OC	Organic Carbon
OLYM1	Local Air Monitor Site Abbreviation for Olympic National Park
OM	Organic Matter
OMC	Organic Mass Carbon

Pa	Pascal
Pa	Pressure (stack)
PAN	Peroxyacetylnitrate
PASA1	Local Air Monitor Site Abbreviation for Pasayten Wilderness
Pbar	Pressure (barometric)
PCT	Proper Combustion Techniques
PICs	Products of Incomplete Combustion
РКА	Previously Known As
PM	Particulate Matter
PM ₁₀	Coarse Particle Matter or Particulate Matter; with an aerodynamic diameter of 10 micrometers or less
PM _{2.5}	Fine Particles or Particulate Matter; with an aerodynamic diameter of 2.5 micrometers or less
PNW	Pacific Northwest
POA	Primary Organic Aerosol
ppm	parts per million
ppmv	parts per million by volume
ppmvd	parts per million by dry volume
PRP	Preliminary Reasonable Progress
PSAT	Particulate Matter Source Apportionment Technology
PSCAA	Puget Sound Clean Air Agency
PSD	Prevention of Significant Deterioration
Pstd	Pressure at STP
PTPC	Port Townsend Paper Company
Qstd	Dry Stack gas flow rate at STP
R	Ideal gas constant
RACT	Reasonably Available Control Technology
RAVI	Reasonably Attributable Visibility Impairment
RF	Recovery Furnace
RFEU	Recovery Furnace Emission Unit

RH	Regional Haze
RHR	Regional Haze Rule
RMC	WRAP's Regional Modeling Center
RPG	Reasonable Progress Goal
RRF	Relative Response Factors
S Content	Sulfur Content
sat vap press	Saturation Vapor Pressure
SBws	Saturation Moisture Fraction at STP
SCFM	Standard Cubic Feet per Minute
SCR	Selective Catalytic Reduction
SIP	State Implementation Plan
SMOKE	Sparse Matrix Operator Kernel Emissions
SNCR	Selective Non-Catalytic Reduction
SNPA1	Local Air Monitor Site Abbreviation for Alpine Lakes Wilderness
SO_2	Sulfur Dioxide
SO4	Ammonium Sulfate or (NH4)2SO4
SOIL	Fine Soil
SO _X	Sulfur Oxides
STP	Standard Temperature and Pressure
Sulfite chemical pulp and paper process	Similar to Kraft process except that sulfurous acid is used as cooking chemicals instead of sodium hydroxide and sodium sulfide, and a cooking buffer of bisulfite is used with one of four bases (ammonium, calcium, magnesium, or sodium).
Tabs	Temperature absolute
TAPs	Toxic Air Pollutants
TCaO/day	Tons Calcium Oxide per Day
Tm	Dry Gas Meter Temperature
ТРН	Tons Per Hour
TPY	Tons Per Year
TRS	Total Reduced Sulfur

Ts	Stack gas temp
TSP	Total Suspended Particulate
Tstd	Temperature at STP
USDA	U.S. Department of Agriculture
USDA – FS	U.S. Department of Agriculture – Forest Service
USDI	U.S. Department of the Interior
USDI – FWS	U.S. Department of the Interior – Fish & Wildlife Service
USDI – NPS	U.S. Department of the Interior – National Park Service
USGS	U.S. Geological Survey
UW	University of Washington
Vi	Impinger 1
VIEWS	Visibility Information Exchange Web System
Vii	Impinger 2
Viii	Impinger 3
Visibility SIP	Visibility Protection
Viv	Impinger 4
Vm	Sample Volume from meter
Vmstd	Sample Volume
VOC	Volatile Organic Content
Vs	Stack Gas Velocity
Vw	Total Water Volume Condensed
Vwstd	Total Water Volume Condensed at STP
WA	Washington
WAC	Washington Administrative Code
WEP	Weighted Emissions Potential
WESP	Wet Electrostatic Precipitator
WESTAR	Western States Air Resources Council
WHPA1	Local Air Monitor Site Abbreviation for Goat Rocks Wilderness and Mt. Adams Wilderness areas

WHR	Wet Heat Recovery
WRAP	Western Regional Air Partnership
WRF Smoke SMAQ	Weather Research and Forecasting Model Sparse Matrix Operator Kernel Emissions (SMOKE) Modeling System Satellite-Assisted Management Of Air Quality
WSU	Washington State University
Y	Dry Gas Meter Calibration factor

1. Overview

1.1. Background

This Reasonably Available Control Technology (RACT) analysis addressing regional haze (RH), is prepared to fulfill a commitment in the Washington State Department of Ecology (Ecology) Regional Haze State Implementation Plan (SIP) prepared in December of 2010.

Ecology was required to prepare a RH SIP as part of EPA's phase II 1999 visibility rules called the Regional Haze Rule (RHR). This rule focuses on improving visibility in mandatory Class I federal areas. These lands are identified in the Clean Air Act Amendments of 1977, and afforded the highest level of protection from air pollutants. There are 156 of these Class I areas nationwide and include national parks, wilderness areas, and wildlife refuges. All other federal lands in the nation are designated as Class II areas. Washington's eight mandatory federal Class I areas are shown in Figure 1 and listed in Table 2.

One element of the RHR required the state to include a Four-Factor Analysis of emission reduction potential from non-Best Available Retrofit Technology (BART) sources to be used in developing the Reasonable Progress Goals (RPGs) for each Class I area. The four factors to be considered in these analyses are:

- Cost of compliance
- Time necessary for compliance
- Energy and non-air quality impacts of compliance
- Remaining useful life of any potential affected sources

Ecology and the Western Regional Air Partnership (WRAP) developed analyses for point sources of pollutants in Washington to meet the Four-Factor Analysis requirement for non-BART sources in the RHR. This analysis and its result were included in the state's RH SIP.

The analyses in the RH SIP identified specific industries including "pulp and paper and wood products" (pulp & paper mills), as significant emitters of pollutants known to contribute to RH and that have opportunities for emission reductions that could improve visibility in Class I areas.

The pollutants emitted by the pulp and paper and wood products industry in Washington includes sulfur dioxide (SO_2) and oxides of nitrogen (NO_X) (including nitric oxide (NO) and nitrogen dioxide (NO_2) compounds), volatile organic compounds (VOCs), and directly emitted particulate matter (PM). These air pollutants contribute to RH in the following ways:

- Both SO₂ and NO_X gases can form sulfate and nitrate particulate matter, which, as with particulate matter in general, impair visibility.
- VOCs can either condense to form PM or can react with NO_X.

• NO_X is a precursor chemical for peroxyacetyl nitrate (PAN), which is a secondary pollutant present in photochemical smog.

Of the air pollutants emitted from the pulp, paper, and wood products industry, SO_2 and NO_X are the dominant pollutants that contribute to RH in Washington's Class I areas.

As noted in the RH SIP, by identifying individual sources of SO_2 and NO_X (and PM) that impair visibility, the RH SIP sets the stage for assessing the effects of potential new emissions limitations for those sources. One of the mechanisms that can be used for assessing emission limits, includes determining and implementing RACT to potentially provide further progress toward meeting the visibility goal.

This RH RACT analysis focuses emissions from pulp and paper mill recovery furnaces and lime kilns. These combustion units emit SO_2 , NO_X , and PM. At the time of this analysis, there are seven chemical pulp and paper mills in operation in Washington: six sulfate (Kraft) mills and one sulfite mill. The current names of the mills at the time of this analysis, as well as the abbreviated facility names that will be used throughout this analysis are listed in Table 1.

Table 1. Washington State Chemical Pulp and Paper Mills				
Full Name	Mill Type	Abbreviated Name for this Analysis		
Longview Fibre Paper and Packaging, Inc. dba KapStone Kraft Paper Corporation	Kraft	KapStone		
Weyerhaeuser Longview Liquid Packaging	Kraft	Weyerhaeuser		
WestRock CP, LLC	Kraft	WestRock		
Port Townsend Paper Corporation	Kraft	PTPC		
Boise White Paper, LLC	Kraft	Boise White Wallula		
Georgia Pacific Consumer Products (Camas) LLC	Kraft	GP Camas		
Cosmo Specialty Fibers Inc.	Sulfite	Cosmo		

While not at a pulp and paper mill, the lime kiln at the Graymont Western U.S. Inc., (Tacoma Division) (Graymont) facility is included in this analysis due to its similarity to the pulp mill lime kilns. Graymont consists of a lime manufacturing plant and two precipitated calcium carbonate plants. Both of these products are utilized in the manufacture of paper.

A definition of RACT, and how it is implemented in Washington State is included in Section 1.2.

The Class I areas in Washington are shown on Figure 1 and additional details for the mandatory federal Class I areas is included in Table 2. Figure 1 also shows the locations of Graymont and the seven chemical pulp and paper mills currently in operation in Washington.

Figure 1	Class I	areas in	Washington	State
i iguie i.	010331	areas m	washington	Juait

Table 2. Mandatory Federal Class I Areas in Washington State ¹					
Mandatory Class I Area2Site Abbreviation (local air monitor)3Acreage					
Alpine Lakes Wilderness	SNPA1	303,508	USDA-FS		
Glacier Peak Wilderness	NOCA1	464,258	USDA-FS		
North Cascades National Park	NOCA1	503,277	USDI-NPS		
Goat Rocks Wilderness	WHPA1	82,680	USDA-FS		

Table 2. Mandatory Federal Class I Areas in Washington State ¹				
Mandatory Class I Area ²	Site Abbreviation (local air monitor) ³	Acreage	FLM	
Mt. Adams Wilderness	WHPA1	32,356	USDA-FS	
Mt. Rainier National Park	MORA1	235,239	USDI-NPS	
Pasayten Wilderness	PASA1	505,524	USDA-FS	
Olympic National Park	OLYM1	892,578	USDI-NPS	
Total Acres 3,019,420				
1 The USFS is the federal land manager for national wildlife refuges. However, of the 23 national wildlife refuges in Washington State, none of them are part of the group of 21 national wildlife refuges located throughout the other 49 states, which are designated as Class I areas. <http: refugelocatormaps="" refuges="" washington.html="" www.fws.gov=""> and <http: airquality="" areas.html="" refuges="" www.fws.gov=""></http:></http:>				
² Columbia River Gorge, managed by the forest service, is not a Class Larea, but				

- ² Columbia River Gorge, managed by the forest service, is not a Class I area, but is included in regional haze considerations by request of the FLMs. Another Class I area in the state, the Spokane Indian Reservation, is not included in this table because it is not a mandatory Class I area.
- ³ The two monitoring sites near the Columbia River Gorge are at Wishram and Mt. Zion and are referred to as CORI1 and COGO1, respectively.

1.2. RACT in Washington State

RACT is defined in the Revised Code of Washington (RCW) 70.94.030(20) as:

"...the lowest emission limit that a particular source or source category is capable of meeting by the application of control technology that is reasonably available considering technological and economic feasibility. RACT is determined on a case-by-case basis for an individual source or source category taking into account:

- The impact of the source upon air quality,
- The availability of additional controls,
- The emission reduction to be achieved by additional controls,
- The impact of additional controls on air quality, and
- The capital and operating costs of the additional controls.

RACT requirements for a source or source category shall be adopted only after notice and opportunity for comment are afforded."

While RACT, the acronym, includes the words "control technology," RACT is defined in RCW 70.94.030(20) as an "emission limit" based on the application of additional controls.

Other states and the federal Clean Air Act (CAA) may implement RACT differently from the state of Washington (such as limiting it to nonattainment areas). As noted in the RH SIP, however, "a provision of Washington's CAA (RCW 70.94.154) requires existing sources to use

RACT." This requirement then applies to existing sources in attainment areas, nonattainment, and unclassifiable areas.

RACT is implemented in Washington State according to the process described in Section 1.2.1, which lists verbatim key portions from RCW 70.94.154.

1.2.1. RACT implementation in Washington State

RCW 70.94.154 contains the implementing provisions for the RACT process in Washington. Specific to determining RACT, this section of law says:

(1) RACT as defined in RCW 70.94.030 is required for existing sources except as otherwise provided in RCW 70.94.331(9).

(2) RACT for each source category containing three or more sources shall be determined by rule except as provided in subsection (3) of this section.

(3) Source-specific RACT determinations may be performed under any of the following circumstances:

(a) As authorized by RCW 70.94.153;

(b) When required by the federal clean air act;

(c) For sources in source categories containing fewer than three sources;

(d) When an air quality problem, for which the source is a contributor, justifies a source-specific RACT determination prior to development of a categorical RACT rule; or

(e) When a source-specific RACT determination is needed to address either specific air quality problems for which the source is a significant contributor or source-specific economic concerns.

RCW 70.94.154(5) contains additional procedural requirements to be followed when determining RACT.

(5) In determining RACT, ecology and local authorities shall utilize the factors set forth in RCW 70.94.030 and shall consider RACT determinations and guidance made by the federal environmental protection agency, other states and local authorities for similar sources, and other relevant factors. In establishing or revising RACT requirements, ecology and local authorities shall address, where practicable, all air contaminants deemed to be of concern for that source or source category.

Although there are some similarities between a RACT analysis and a Best Available Control Technology (BACT) analysis, the two analyses are defined differently. Per RCW 70.94.030(6), BACT means "an emission limitation based on the maximum degree of reduction for each air pollutant subject to regulation under this chapter emitted from or that results from any new or modified stationary source, that the permitting authority, on a case-by-case basis, taking into account energy, environmental, and economic impacts and other costs, determines is achievable for such a source or modification through application of production processes and available methods, systems, and techniques, including fuel cleaning, clean fuels, or treatment or innovative

fuel combustion techniques for control of each such a pollutant. In no event shall application of BACT result in emissions of any pollutants that will exceed the emissions allowed by any applicable standard under 40 *C.F.R.* Part 60 [NSPS] and Part 61 [NESHAP], as they existed on July 25, 1993, or their later enactments as adopted by reference by the director by rule."

The RACT process includes an economic component that is generally less stringent than BACT in that it applies a reasonableness test for the application of emission limitations based on specific control technologies to a group of existing separate sources constructed of varying age. In contrast, BACT addresses the cost and removal efficiency of emission controls to be included in the construction of new or modified sources. The RACT economic analysis looks at the costs of adding or replacing controls on existing equipment.

We determined and ranked potential emission limitations reflecting the capabilities of different control technologies using a BACT-style approach. This approach provided helpful information to assess potential RACT options for addressing RH. In assessing what constitutes "reasonable" for this RACT analysis, Ecology performed both a quantitative and qualitative analysis. Specifically, a quantitative review of RH impacts using a top-level emission limit allowed Ecology to perform a qualitative analysis of less stringent emission limits as presented in Chapters 4 and 5 of this analysis.

1.3. Source impacts on visibility

This RH RACT analysis is organized as follows:

- Chapter 2 reviews the availability of additional control options for recovery furnaces and lime kilns at pulp and paper mills.
- Chapter 3 presents demonstrated emission limits for recovery furnaces and lime kilns in Washington State, other states, Canada, and Europe.
- Chapter 4 documents a comparison of emission reductions and lower emission limits demonstrated to be reasonably available at pulp and paper mills.
- Chapter 5 documents modeling analyses which estimate impacts of pulp mills upon visibility in Washington Class I areas (and also on Class I areas in surrounding states and provinces), before and after implementing additional controls.
- Chapter 6 provides a survey of general estimated capital and operating costs of the additional controls.
- Chapter 7 presents conclusions of this RH RACT analysis considering the information presented in Chapters 1 through 6.

2. Availability of Additional Controls

This chapter lists control options currently available for recovery furnaces and lime kilns. Available control technologies for PM, SO₂, and NO_X are presented in Tables 3, 4, and 5, respectively. As noted in the table notes, the only criteria for including the listed control options is the availability of the control option. Other considerations are presented in following chapters.

Table 3. PM Control Technologies Available for Recovery Furnaces and Lime Kilns			
Control Technology	Brief Description	Available for RFs (Yes/No) ¹	Available for LKs (Yes/No) ¹
High Energy Recovery Boiler (HERB) ²	HERBs (furnaces) focus on effective air mixing and staging of air injection in the furnace for improved chemical recovery efficiency. This allows the furnace to run with less excess air resulting in less flue gas (less PM emissions) and also lowers the power consumption by the fans.	Yes	N/A
Fabric filters	A fabric filter (baghouse) consists of several fabric filters, typically configured in long, vertically suspended sock-like configurations. Dirty gas enters from one side, often from the outside of the bag, passing through the filter media and forming a particulate cake. The cake is removed by shaking or pulsing the fabric, which loosens the cake from the filter, allowing it to fall into a bin at the bottom of the baghouse. A variety of fabrics is available to cover fuel gas temperatures up to about 650°F. Baghouses are unsuitable for use on water saturated gas streams.	Yes	Yes
Cyclone separator(s)	Cyclone separators remove solids from the air stream by application of centrifugal force. In solid fuel combustion devices like hog fuel boilers, they are commonly used to remove large particles prior to the flue gas entering smaller particle control devices such as baghouses or ESPs. Multi- cyclones are capable of effectively removing particles down to approximately 3 micrometers. ³	Yes	Yes
Settling chambers	Similar to cyclone separators, settling chambers are used to remove large particles prior to the flue gas entering smaller particle control devices. However, whereas cyclone separators use centrifugal force, settling chambers use gravitational force and are limited to removal of particles larger than about 40-60 micrometers. ³	Yes	Yes
Wet scrubber	Wet scrubbers intercept dust particles using droplets of liquid (usually water). The larger, particle-enclosing water droplets are separated from the remaining droplets by gravity. The solid particulates are then separated from the water.	Yes	Yes
ESP (dry)	An electrostatic precipitator (ESP) removes particles from an air stream by electrically charging the particles, then passing them through a force field that causes them to migrate to an oppositely charged collector plate. An ESP generally refers to a dry ESP unless specifically noted otherwise. The dust from the collector plates falls into a collection hopper at the bottom of the ESP. The collection	Yes	Yes

Table 3. PM Control Technologies Available for Recovery Furnaces and Lime Kilns				
Control Technology	Brief Description	Available for RFs (Yes/No) ¹	Available for LKs (Yes/No) ¹	
	efficiency of an ESP depends on particle diameter, electrical field strength, gas flowrate, and plate dimensions. A dry ESP is used for dry pollutants and uses a dry collecting surface.			
Wet ESP (or WESP)	The operation is identical to a dry ESP except that a WESP has a wet collecting surface and can be used for both wet and dry pollutants. The water addition can perform a number of tasks. It can change the electrical properties of the fly ash and can improve (or reduce) removal efficiency. The water is also used to remove sticky ashes from the WESP collector plants or to condense and remove semi-volatile compounds like some high molecular weight organic compounds. Unlike a dry ESP which removes only dry pollutants, a WESP can potentially remove solid, liquid, and soluble gas pollutants.	Yes	Yes	
Electrified gravel bed filters (EGFs)	EGFs are a technique that is no longer implemented in Washington State. It used electricity to generate an electrostatic charge on a moving bed of gravel to collect particulate from a wood-fired boiler. The last unit operating in Washington was recently replaced with a baghouse.	Yes	Yes	
Good operating practices	A properly operated emission unit will minimize the formation of PM_{10} emissions. Proper design of combustion units (e.g., boiler and recovery furnaces) concerns features such as the fuel and combustion air delivery system and the shape and size of the combustion chamber. Good operating practices for combustion units typically consist of controlling parameters such as fuel feed rates and air/fuel ratios.	Yes	Yes	
Note: RF = recov	Note: RF = recovery furnace. LK = lime kilns.			

¹ The only criteria for including the listed control option is availability. Other considerations are presented in Chapters 4 through 6.

- ² Andritz Pulp & Paper. Recovery boilers chemical recovery and green energy. The Andritz solution: High Energy Recovery Boiler (HERB) <www.andritz.com>. At least three HERB units have installed or are being installed in the U.S. per Andritz Pulp & Paper <www.andritz.com>. The three units are IP Valliant, Oklahoma; IP Campti, Louisiana; and PCA, Valdosta, Georgia. It is unclear if the OK and GA units have been included into the latest air permits at the time of this analysis. The Campti unit has been implemented, and permit limits are listed in Chapter 3.
- ³ EPA APTI Course 413, 5th ed., v. 2: *Control of Particulate Matter Emissions Student Manual*, Crowder, J.W.; Smith, T., pp. 5-1, 6-24.

Table 4. SO ₂ (Control Technologies Available for Recovery Furnaces	and Lime	Kilns
Control Technology	Brief Description	Available for RFs (Yes/No) ¹	Available for LKs (Yes/No) ¹
HERB ²	High energy recovery boilers (furnaces) focus on effective air mixing and air injection staging around the burning process for improved efficiency. This allows the furnace to run with less excess air resulting in less flue gas (less SO ₂ emissions) and also lowers the power consumption by the fans.	Yes	N/A
Flue gas desulfurization (FGD) w/wet scrubber	In FGD with a wet scrubber, a solution of sodium or calcium hydroxide absorbs SO ₂ from the flue gas forming sodium or calcium sulfite. The collected sulfite can be further oxidized to sulfate or left as the sulfite. Typically, large quantities of liquid or solid wastes are generated requiring disposal. Typical systems using sodium regenerate the sodium or re-use, while calcium based systems dispose of the calcium sulfate/sulfite.	Yes	Yes
Semi-dry lime hydrate slurry injection FGD w/fabric filter or ESP	For lime hydrate slurry injection, calcium hydroxide in the form of lime slurry is injected into the gas stream. Calcium hydroxide and SO ₂ will react to form calcium sulfite. A fabric filter or ESP will be needed to remove the dry solid reaction products from the gas stream.	Yes	Yes
Dry lime powder injection FGD w/fabric filter or ESP	Dry lime powder injection FGD controls SO ₂ using the same methods as lime hydrate slurry injection and depends on most of the same parameters. As with the lime slurry, a fabric filter or ESP is needed to remove the solid reaction products from the gas stream.	Yes	Yes
Spray dryer w/an ESP FGD	Spray dryer with an ESP FGD requires installation of a spray dryer and an ESP. Dry lime is injected by a spray dryer into the flue gas in the form of fine droplets under well controlled conditions such that the droplets will absorb SO ₂ from the flue gas and then become dry particles because of the evaporation of water. The dry particles are captured by the ESP downstream of the dryer. The captured particles are then removed from the system and disposed.	Yes	Yes
Low sulfur fuel selection	SO ₂ emissions are influenced by the sulfur content of the fuel as well as the sulfur content of the process material. For the recovery furnace, the black liquor solids are both the primary fuel and the material being processed. Fossil fuel is used to start a recovery furnace, and may be used to support the combustion process during operation. Selection of lower sulfur fuel can reduce SO ₂ emissions from the furnace. For the lime kiln, the fuel is the dominant source of sulfur rather than the lime feed.	Yes	Yes
Increased oxygen levels at burner	Increased oxygen levels at the burner have been shown to decrease SO_2 emissions from lime kilns. This is best used with a scrubbing system where the increase in oxygen drives the SO_2 to SO_3 allowing the SO_3 to react with lime or sodium oxide to produce $CaSO_4$ or Na_2SO_4 .	No	Yes

Table 4. SO ₂ Control Technologies Available for Recovery Furnaces and Lime Kilns				
Control Technology	Brief Description	Available for RFs (Yes/No) ¹	Available for LKs (Yes/No) ¹	
Wet heat recovery	Recirculating gasses through a wet heat recovery system before releasing through an exhaust stack.	Yes	No	
Good operating practices	Good operating practices imply that the emission unit is operated within parameters that minimize emissions of air pollutants and maximize combustion efficiency.	Yes	Yes	
¹ The only criteria for including the listed control option is availability. Other considerations are presented in Chapters 4 through 6.				
² Andritz Pulp & Paper. Recovery boilers chemical recovery and green energy. The Andritz solution: High Energy Recovery Boiler (HERB). <www.andritz.com> At least three HERB units have installed or are being installed in the U.S. per Andritz Pulp & Paper <www.andritz.com> The three units are IP Valliant, Oklahoma; IP Campti, Louisiana; and PCA, Valdosta, Georgia. It is unclear if the OK and GA units have been included into the latest air permits at the time of this analysis. The Campti unit has been implemented, and permit limits are listed in Chapter 3.</www.andritz.com></www.andritz.com>				

Table 5. NO _x Control Technologies Available for Recovery Furnaces and Lime Kilns					
Control Technology	Brief Description	Available for RFs (Yes/No) ¹	Available for LKs (Yes/No) ¹		
HERB ²	HERBs (furnaces) focus on effective air mixing around the burning process for improved efficiency. This allows the furnace to run with less excess air resulting in less flue gas (less emissions) and also lowers the power consumption by the fans. Less excess air results in potentially significant NO _X reductions.	Yes	N/A		
Low excess air (LEA)	LEA is a technique where combustion is optimized by reducing the excess air introduced to the unit to the minimum amount necessary for stable, efficient combustion. Excess air is the air supplied in addition to the quantity required for stoichiometric combustion.	Yes	No		
Staged combustion ³	Staged combustion technologies such as overfire air (OFA) reduce NO _x emissions by creating a fuel-rich zone via air staging (diverting a portion of the total amount of air required through separate ports). The highest temperatures are reached in the primary zone, generating thermal NO _x . "The general concept is to burn the fuel with an insufficient amount of air in a primary combustion zone. With insufficient oxygen available for complete combustion, most of the O ₂ is consumed by carbon and hydrogen, leaving less available to form NO _x . As a result the fuel nitrogen combines to form N ₂ (N+N=N ₂). During the few hundredths of a second it takes for combustion to occur, the flame cools slightly. Once this cooling has occurred, the rest of the air is added to complete	Yes	Yes		

Table 5. NO _X Control Technologies Available for Recovery Furnaces and Lime Kilns					
Control Technology	Control Technology Brief Description		Available for LKs (Yes/No) ¹		
	combustion. Since the fuel nitrogen radicals have disappeared, and the flame is too cool to generate a lot of thermal NO _x , relatively little NO _x will be formed in the secondary combustion zone." To determine which ports to divert air to, can be a trial and error process unique to each boiler. A successful setup will be accompanied by a smoky unclean looking fire, not a clear blue flame which operators sometimes misguidedly try to obtain.				
Flue gas recirculation (FGR)	FGR reduces peak flame temperature by recirculating a portion of the flue gas back into the combustion zone as a replacement for combustion air. The recirculated gasses have a lower oxygen content that reduces the peak flame temperature in the combustion zone.	Yes	Yes		
Low NOx burners (LNBs)	LNBs are a technique with limited applicability to pile burning wood-fired boilers and recovery furnaces. LNBs modify the initial combustion conditions to reduce the peak flame temperature, and thereby reduce NO _x formation. They are often used in conjunction with modifications to overfire air systems, where a portion of combustion occurs through ports above or "over" the burners to complete combustion of other gases such as CO. They are most useful when using fuels like natural gas or distillate oil.	Yes	Yes		
Fuel staging/reburning	Fuel staging is also known as "reburning" or "off- stoichiometric combustion." Fuel staging is a technique where ten to twenty percent of the total fuel input is diverted to a second combustion zone downstream of the primary zone. Again, this is a technique to reduce the peak flame temperature during combustion.	Yes	Yes		
Water/steam injection	Water/steam injection into the main flame can reduce the flame temperature and the generation of NO _x . It is an older technique most often used on older burner designs in natural gas and oil-fired boilers and gas turbines. If the flame temperature is sufficiently quenched, the generation of CO can increase and the process efficiency will decrease.	No	Yes		
Mixing air fan	For lime kilns, this technology is a method of staging combustion air through the use of a fan that is mounted on the rotating kiln shell. This can reduce NO _x formation by decreasing peak flame temperatures.	No	Yes		
Good operating practices and proper design	The formation of NO _x can be minimized by proper operation and design practices. Operators can control the combustion stoichiometry to minimize NO _x formation while achieving efficient fuel combustion.	Yes	Yes		

Table 5. NO _X Control Technologies Available for Recovery Furnaces and Lime Kilns						
Control Technology	Brief Description	Available for RFs (Yes/No) ¹	Available for LKs (Yes/No) ¹			
	This is the most basic combustion modification					
	technique available.					
Selective Non- Catalytic Reduction (SNCR)	urea or ammonia is injected into the exhaust gas. High temperatures, normally between 1,600° and 1,900°F, promote the reaction between urea or ammonia (NH ₃) and NO _x to form N ₂ and water. The effectiveness of SNCR systems depends upon inlet NO _x concentration, temperature, mixing, residence time, reagent-to-NO _x ratio, and fuel sulfur content.	Yes	Yes			
Selective Catalytic Reduction (SCR)	SCR is an exhaust gas treatment process in which NH_3 or urea is injected into the exhaust gas upstream of a catalyst bed for exhaust temperatures between 450° and $750^{\circ}F$. In the SCR process, the urea or NH_3 injected into the exhaust is first stored in a liquid storage tank and vaporized before injection. The exhaust/ammonia mixture then passes over the catalyst. The function of the catalyst is to lower the activation energy of the NO decomposition reaction, therefore, lowering the temperature necessary to carry out the reaction. On the catalyst surface, NH_3 and NO or NO ₂ reacts to form diatomic nitrogen (N_2) and water. When operated within the optimum temperature range, the reaction can result in removal efficiencies between 70 and 90 percent. The rate of NO_x removal increases with temperature between 700° and 750°F. As the temperature increases above the optimum temperature, or decreases below the optimum range for a conventional vanadium pentoxide catalyst, the NO_x removal efficiency begins to decrease. Depending on the temperatures involved, low temperature and higher temperature catalyst formulations are available. The effectiveness of an SCR system and the condition of the catalyst. The catalyst can degrade over time due to poisoning, fouling, thermal stress, and erosion by particulates, reducing NO_x removal efficiency.	Yes	Yes			
Non-Selective Catalytic Reduction (NSCR) ³	This technology uses a catalyst without a reagent and requires zero excess air. The catalyst causes NO _x to give up its oxygen to products of incomplete combustion (PICs), CO, and hydrocarbons, causing the pollutants to destroy each other. However, if oxygen is present, the PICs will burn up without destroying the NO _x .	Yes	Yes			
Oxidation/reduction scrubbing	Several proprietary oxidation/reduction (O/R) scrubbing NO _X removal processes are commercially available. The basic elements of a typical process include cooling of the combustion gas stream below	Yes	Yes			

Table 5. NO _x Control Technologies Available for Recovery Furnaces and Lime Kilns					
Control Technology	Brief Description	Available for RFs (Yes/No) ¹	Available for LKs (Yes/No) ¹		
	its dew point to condense water, treat with ozone or sodium chlorite to oxidize NO _X and SO ₂ to their highest oxidized forms, then absorb these oxides as acids in a scrubber. It has been reported that O/R scrubbing has a theoretical NO _X removal efficiency of 95 percent.				
Notes: RF = recovery furnace. LK = lime kiln.					
¹ The only criteria for including the listed control option is availability. Other considerations are presented in Chapters 4 through 6.					
² ANDRITS Pulp & Paper. Recovery boilers chemical recovery and green energy. The Andritz solution: High Energy Recovery Boiler (HERB). <www.andritz.com> At least three HERB units have installed or are being installed in the U.S. per Andritz Pulp & Paper <www.andritz.com> The three units are IP Valliant, Oklahoma; IP Campti, Louisiana; and PCA, Valdosta, Georgia. It is unclear if the OK and GA units have been included into the latest air permits at the time of this analysis. The Campti unit has been implemented, and permit limits are listed in Chapter 3.</www.andritz.com></www.andritz.com>					

³ Source: *NO_X Emissions Control from Stationary Sources, APTI Course 418*, Reorganized 2012 by Brian W. Doyle, PhD, PE, presented February 26-28, 2013, Boise, ID, Department of Environmental Quality.

3. Demonstrated Emission Limits for Recovery Furnaces and Lime Kilns

This chapter presents a survey of demonstrated emission limits for recovery furnaces and lime kilns at existing mills in Washington State. The emission limits are presented in Sections 3.1–3.3, and provide a basis for estimating the potential emission reductions presented in Chapter 4. April 14, 2014, New Source Performance Standards (NSPS) applicable to U.S. Kraft mill recovery furnaces and lime kilns equipped with electrostatic precipitators (ESPs) are also listed in the tables of Sections 3.1–3.3.

The provisions for RACT analysis provided in Sections 1.2 and 1.3 do not restrict consideration of emission limits that are being achieved to only those pulp and paper mills in Washington State. Therefore, while this survey emphasized emission limits that have been demonstrated in Washington State, it also includes information about various pulp and paper mills in other states and also in Canada and Europe. This survey does not include all pulp and paper mills currently in operation, but provides a general framework for emission limits that are being achieved by the individual mills listed based on facility permit information and technical support documents. During this analysis some mills may have discontinued operations or have changed names. This analysis has tried to provide the latest information and includes updated name changes or mill closure information where known.

Concentration based limits in grains per dry standard cubic feet (gr/dscf) and also parts per million (ppm), where provided, were used to compare emission limits between facilities. In some cases, Ecology had to convert units for facilities that use different units.

European Kraft pulp and paper mill information was obtained from the Integrated Pollution Prevention Control (ICCP) Reference Document on Best Available Techniques [BAT] in the [Kraft] Pulp and Paper Industry, December 2001, European Commission. As noted in the ICCP report, "a direct comparison of the emission levels between countries is difficult due to uncertainties in the basis of data (lack of harmonization in the methods of analysis and calculating emissions)." Unit conversions that Ecology estimated from BAT information, are approximately similar to BAT unit conversions performed by the National Council of Air and Stream Improvement (NCASI).

Unit conversion calculations and facility permit limits are provided in Appendix A.

3.1. Demonstrated PM emission limits for recovery furnaces and lime kilns

Table 6 provides a survey of demonstrated recovery furnace emission limits in Washington State and at randomly selected facilities in the U.S., Canada, and Europe. Canadian and European units have been converted to the listed unit for each limit. In most cases it is not known if the units in Section 3.1 are new, rebuilt, or modified, but information is provided where known. If a limit is required by a rule, the rule is listed under the column titled "Limit Reference."

Table 6. Demonstrated PM Emission Limits at Recovery Furnaces					
Location	Facility (RF unit if specified)	Limit: gr/dscf ^{1,2} @ 8% O ₂ (daily) [annual]	Limit Reference	Control Technology	
Europe	LCPDs: ³ low range	(0.011)	IPPC ³	BAT ³ options ⁴	
USA	New/reconstructed after 5/23/13	0.015 ²	NSPS (4/14/14)	ESP	
Louisiana ⁵	Int'l Paper CAMTI (No. 3)	0.015	BACT	[HERB], ESP⁵	
Minnesota	Boise Cascade Int'l Falls (EU320)	0.0165	MACT bubble	ESP (8-fields on)	
Europe	LCPDs ³ : high range	(0.019)	IPPC ³	BAT ³ options ⁴	
Arkansas	Georgia Pacific Crossert (8R)	0.02	BACT	ESP (wet bottom)	
Georgia	Int'l Paper AM (No. 3)	0.021	MACT bubble	ESP	
North Carolina	KapStone (No. 7)	0.021	BACT	ESP: Single stage, cold side 140k ft2 plate area	
Mississippi	Weyerhaeuser NR PW (AA-100)	0.023	BACT	ESP	
Georgia	GP Cedar Springs (No. 3)	0.021	MACT bubble	ESP	
Louisiana	Port Hudson (No. 1)	0.025	BACT	ESP	
Louisiana	Port Hudson (No. 2)	0.025	BACT	ESP	
Alabama	Alabama River Cellulose (No. 1)	0.025	BACT	ESP (two in parallel)	
Alabama	Alabama River Cellulose (No. 2)	0.025	BACT	ESP	
Minnesota	Sappi Cloquet LLC (No. 10)	0.025	BACT	ESP – Envirotech/Buell	
British Columbia	Prince George Vancouver (RB)	0.026	Permit PA2762	ESP	
Washington	Weyerhaeuser (No. 10)	0.027 [0.020]	BART = BACT	ESP	
Washington	Boise White Wallula (No. 3)	0.027 [0.021]	LAER	ESP	
Washington	KapStone (22)	0.027	BACT	ESP	
Maine	Red Shield (# 4)	0.028	MACT alternative	ESP (Flakt dry bottom two fields - compliance w/one field)	
Georgia	GP Cedar Springs (No. 1)	0.030	BACT=MACT	ESP	
Georgia	GP Cedar Springs (No. 2)	0.030	BACT=MACT	ESP	
Idaho	Clearwater Lewiston (No. 5)	0.03	BACT	ESP	
Florida	Palatka (No. 4)	0.030	BACT	ESP: (2 chambers w/6 fields each).	
Washington	GP Camas (No. 3)	0.033	BACT	ESP = 2 chamber, 3 fields; scrubber = packed bed, cross-flow AirPol	

Table 6. Demonstrated PM Emission Limits at Recovery Furnaces					
Location	Facility (RF unit if specified)	Limit: gr/dscf ^{1,2} @ 8% O ₂ (daily) [annual]	Limit Reference	Control Technology	
Washington	GP Camas (No. 4)	0.033	BACT	ESP; scrubber (Teller)	
Idaho	Clearwater Lewiston (No. 4)	0.040	BACT	ESP	
Washington	KapStone (19)	0.040	BACT	ESP	
USA	Modified RFs after 5/23/2013	0.044 ²	NSPS (4/14/14)	ESP	
Georgia	Weyerhaeuser PWM (No. 3)	0.044	NSPS/NESHAP	ESP (east and west units)	
Kentucky	Wycliffe Paper (03)	0.044	NSPS/NESHAP	wet bottom ESP+scrubber	
Oregon	GP Consumer Products (EU24)	0.044	NSPS/NESHAP	ESP	
Oregon	Boise White St Helens (2 & 3) ⁶	0.044	NSPS/NESHAP	ESP	
Oregon	Cascade Pacific (RFEU)	0.044	NSPS/NESHAP	ESP 2 chamber, 4 field	
Washington	Boise White Wallula (No. 2)	0.044	NSPS/NESHAP	ESP	
Washington	KapStone (18)	0.044	BACT	ESP	
Washington	PTPC (RF)	0.044	NSPS/NESHAP	ESP	
Washington	WestRock (No. 4)	0.044	NSPS/NESHAP	ESP	
British Columbia	Catalyst PC Vancouver (#3, w#4 on)	0.051	Permit	Scrubber	
British Columbia	Catalyst PC Vancouver (#4, w#3 on)	0.051	Permit	Scrubber	
British Columbia	Catalyst PC Vancouver (#4, w#3 out)	0.062	Permit	Scrubber	
Georgia	International Paper AM (No. 2)	0.055	MACT bubble	ESP	
British Columbia	Howe Sound Vancouver (E218529)	0.057	Permit	ESP	
Washington	Cosmo (No. 1,2 & 3 common stk)	0.10	WAC 173-410- 040	Multiclones & scrubber ⁷	

Notes: RF = recovery furnace. LK = lime kiln.

¹ gr/dscf = grains per dry standard cubic feet. Where needed, listed values were converted from metric units to these US units and to Standard conditions of 293.15 K. Standard pressure (1 atm) is the same at all facilities and therefore no conversion was needed. Where needed, oxygen content was converted to 8% (from 6% at some Canadian facilities; from 5% at European facilities).

² NSPS = New Source Performance Standards for Kraft pulp mills http://www.gpo.gov/fdsys/pkg/FR-2014-04-04/pdf/2014-06719.pdf . Because the April 14, 2014, NSPS limits are defined to be for filterable PM only, therefore for comparison purposes, the other limits in this table are assumed to be for filterable PM. However, please note the following regarding TSP vs PM₁₀ and filterable vs condensable: particulate limits are listed as total suspended particulate (TSP) even though some facilities have PM10 limits. Other facilities in this table such as for International Paper CAMPTI (No. 3) in LA note updated emission factors (October 2012 permit) to include both filterable plus condensable particulate matter. Yet, the emission limits (at least for the CAMPTI unit) appear to be only for filterable particulate based on an October 22, 2013 (method 5 or 201a only) stack test. Available test data

Table 6. Demonstrated PM Emission Limits at Recovery Furnaces					
Location	Facility (RF unit if specified)	Limit: gr/dscf ^{1,2} @ 8% O ₂ (daily) [annual]	Limit Reference	Control Technology	
showing con condensable	pliance for the Boise Cascade particulate matter.	Int'l Falls, MN (EU3	20) limit included bo	th filterable and	
³ Integrated P [BAT] in the Combustion	³ Integrated Pollution Prevention Control (ICCP) Reference Document on Best Available Techniques [BAT] in the [kraft] Pulp and Paper Industry, December 2001, European Commission. LCPD = Large Combustion Plant Directive of the European Commission				
⁴ General ICCP BAT approach: "In kraft pulp mills, emission of particulates are controlled by electrostatic precipitators and sometimes also in SO2 scrubbers." Specific BAT options for recovery furnaces: The BAT emission levels listed in this table "can generally be achieved by more modern recovery boilers by use of ESP only. Old recovery boilers achieve this (these) levels when they apply ESP and scrubbers. However, scrubbers are mainly applied for removal of SO2." ICCP BAT range for sulfite mills is 0 002 to 0 008 with "electrostatic precipitators and multi-stage scrubbers."					
⁵ At least three HERB units have been or are being installed in the United States per Andritz Pulp & Paper www.andritz.com. The three units are IP Valliant, Oklahoma; IP CAMPTI, Louisiana; and PCA, Valdosta, Georgia. It is unclear if the Oklahoma and Georgia units have been included into the latest air permits at the time of this analysis. The Campti unit has been implemented, and permit limits are listed in this table.					
⁶ Mill recently closed (~late 2012/early 2013).					
⁷ MACT rule dated February 18, 2003; effective May 19, 2003: HAP emissions (via MACT particulate rule) controlled through hog fuel boiler particulate matter per MACT II site specific rule 40CFR63.862(d).					

Of the facilities surveyed, the lowest demonstrated emissions for the units in Table 6 are the BAT limit range of European facilities that have demonstrated daily emission limits within the range of 0.011 gr/dscf and 0.019 gr/dscf. BATs are not permit limits, but are based on guidance documents called BREFs (BAT Reference document). Of the U.S. facilities surveyed, two had units with emission limits within this range: 0.015 gr/dscf hourly limit [International Paper CAMPTI, LA - new high energy recovery boiler (No. 3)] and 0.0165 gr/dscf hourly limit [Boise Cascade Int'l Falls MN, - existing unit: (EU320)].

In addition, U.S. Kraft recovery furnaces equipped with ESPs that are new or reconstructed after May 23, 2013, are required to meet an NSPS emission limit of 0.015 gr/dscf for filterable PM, and units built before May 23, 2013, must meet an emission limit of 0.044 gr/dscf for filterable PM. (Note: This NSPS requires that all recovery furnace sampling must also measure condensable PM, but condensable particulates are not to be included with filterable emissions when compared against the NSPS limits).

Ecology retains the option of adopting the lowest emission limit in Washington State as a reasonably achievable emission limit for this RACT analysis. The lowest demonstrated emission limit in Washington is 0.027 gr/dscf (hourly limit). This limit has been demonstrated at Weyerhaeuser (No. 10), Boise White Wallula (No. 3), and KapStone (22).

Table 7 provides a survey of demonstrated lime kiln emission limits in Washington State and at randomly selected facilities in the U.S., Canada, and Europe. Canadian and European units have been converted to the listed unit for each limit.

Table 7. Demonstrated PM Emission Limits at Lime Kilns					
Location	Facility (LK unit if specified)	Limit: gr/dscf ^{1,2} at 10% O ₂ (daily)	Limit Reference	Control Technology	
USA	New/reconstructed after 5/23/13	0.010 ²	NSPS (4/14/14)	ESP	
Europe	LCPDs: ³ low range	(0.01)	IPPC ³	BAT ³ options ⁴	
Europe	LCPDs: ³ high range	(0.02)	IPPC ³	BAT ³ options ⁴	
Washington	KapStone (3)	0.030	BACT	venturi scrubber	
Washington	KapStone (4)	0.030	BACT	modified scrubber	
Louisiana	Port Hudson (No. 2)	0.033	BACT	ESP+scrubber	
Mississippi	Weyerhaeuser NR PW (AA-110)	0.033	BACT	ESP	
Alabama	Alabama River Cellulose (No. 1)	0.035	BACT	venturi scrubber	
Alabama	Alabama River Cellulose (No. 2)	0.035	BACT	ESP	
Minnesota	Sappi Cloquet LLC (#10)	0.035	BACT	ESP	
Washington	KapStone (5)	0.035 ng/0.060 oil	BACT	ESP	
Washington	Weyerhaeuser (No. 4)	0.035 ng/0.07 oil	BACT	ESP	
British Columbia	Howe Sound Vancouver (E218529)	0.044	Permit	ESP	
Washington	Graymont	0.05 (coal or ng)	Permit	Baghouse	
Louisiana	Port Hudson (No. 1)	0.050	BACT	High dP scrubber (replaced AirPol H-K scrubber for pet coke fuel)	
Georgia	GP Cedar Springs (No. 2)	0.056	BACT=MACT	venturi scrubber	
USA	Modified LKs after 5/23/13	0.064 ²	NSPS (4/14/14)	ESP	
Arkansas	Georgia Pacific Crossert (#4)	0.064	BACT	scrubber	
Georgia	GP Cedar Springs (No. 1)	0.064	BACT=MACT	venturi scrubber & mist eliminator	
Georgia	Int'l Paper AM (No. 2)	0.064	MACT bubble	venturi scrubber & cyclone	
Idaho	Clearwater Lewiston (No. 3)	0.064	BACT	ESP	
Idaho	Clearwater Lewiston (No. 4)	0.064	BACT	ESP & packed bed scrubber	
Kentucky	Wycliffe Paper (03)	0.064	NSPS/NESHAP	scrubber	
Louisiana	Int'l Paper CAMPTI	0.064	BACT	wet scrubber	
Oregon	GP Consumer Products (EU21)	0.064	NSPS/NESHAP	wet scrubber	
Oregon	Boise White St. Helens ⁵	0.064	NSPS/NESHAP	scrubber	
Oregon	Cascade Pacific (LKEU)	0.064	NSPS/NESHAP	scrubber	
Washington	Boise White, Wallula	0.064 ng/0.12 oil	NSPS/NESHAP	scrubber (baghouse @ hot end of lime kiln)	
Washington	PTPC (LK)	0.064	BACT	scrubber	
Washington	WestRock (No. 1)	0.064	NSPS/NESHAP	scrubber	
Washington	WestRock (No. 2)	0.064	NSPS/NESHAP	scrubber	
British Columbia	Catalyst PC Vancouver (1,2 cmb stk)	0.066	Permit	ESP	
Minnesota	Boise Cascade Int'l Falls (EU340)	0.066	MACT Bubble	wet scrubber	
Table 7. Demonstrated PM Emission Limits at Lime Kilns					
--	------------------------------------	---	---------------------	---	--
Location	Facility (LK unit if specified)	Limit: gr/dscf ^{1,2} at 10% O ₂ (daily)	Limit Reference	Control Technology	
Washington	GP Camas (No. 4)	0.067 ng/0.13 oil	NESHAP (NG)	Ducon rectangular cross-section variable throat venturi scrubber	
Maine	Red Shield	0.130	MACT alternative	venturi scrubber	
North Carolina	Kapstone	0.140	BACT	venturi scrubber	
Georgia	International Paper AM (No. 1)	0.176	MACT bubble	venturi scrubber & cyclone	
British Columbia	Prince George Vancouver	(0.101)	Permit PA2762	Scrubber	
Florida	Palatka (No. 4)	N/A	BACT	cyclone and micromist style scrubber	

Note: LK = lime kiln.

¹ gr/dscf = grains per dry standard cubic feet. Where needed, listed values were converted from metric units to these US units and to Standard conditions of 293.15 K. Standard pressure (1 atm) is the same at all facilities and therefore no conversion was needed. Where needed, oxygen content was converted to 10% (from 5% at European facilities).

² Particulate limits are listed as total suspended particulate (TSP) even though some facilities have PM₁₀ limits. However, because the March 14, 2014, NSPS limits are defined to be for filterable PM only, therefore the other limits in this table are assumed to be for filterable PM.

³ Integrated Pollution Prevention Control (ICCP) Reference Document on Best Available Techniques [BAT] in the [kraft] Pulp and Paper Industry, December 2001, European Commission. LCPD = Large Combustion Plant Directive of the European Commission.

⁴ General ICCP BAT approach: "In kraft pulp mills, emission of particulates are controlled by electrostatic precipitators and sometimes also in SO2 scrubbers." Specific BAT options for lime kilns: The BAT emission levels listed in this table "can generally be achieved when using an ESP."

⁵ Mill recently closed (~late 2012/early 2013).

Of the limits surveyed, the lowest demonstrated or required emission limit for the units in Table 7 are the April 14, 2014, NSPS for lime kilns. Lime kilns equipped with ESPs that are new or reconstructed after May 23, 2013, are required to meet an NSPS emission limit of 0.010 gr/dscf for filterable PM, and units built before May 23, 2013, must meet an emission limit of 0.064 gr/dscf for filterable PM. (Note: This NSPS requires that all lime kiln sampling must also measure condensable PM, but condensable particulate is not to be included with filterable emissions when compared against the NSPS limits).

BAT emissions of European facilities have demonstrated daily emissions within the range of 0.01 gr/dscf and 0.02 gr/dscf (for natural gas or oil). BATs are not permit limits, but are based on BREFs.

Ecology retains the option of adopting the lowest emission limit in Washington State as a reasonably achievable emission limit for this RACT analysis. The lowest demonstrated emission limit in Washington is 0.030 gr/dscf (hourly average limit). This limit has been demonstrated at two Washington lime kilns: KapStone (3) and KapStone (4).

3.2. Demonstrated SO₂ emission limits for recovery furnaces and lime kilns

Table 8 provides a survey of demonstrated SO_2 emission limits for recovery furnaces in Washington State and at randomly selected facilities in the U.S., Canada, and Europe. Canadian and European units have been converted to the listed unit for each limit. In most cases it is not known if the units in Section 3.2 are new, rebuilt, or modified, but information is provided where known. If a limit is required by a rule, the rule is listed under the column titled "Limit Ref."

	Table 8. SO ₂ Emission Limits	s ¹ Demonstrated at	Recovery Furnad	es
Location	Facility (RF unit if specified)	Limit: gr/dscf ^{1,2} ppm @ 8% O ₂	Limit Reference	Control Technology
Europe	LCPDs:1 low range	2-3 ³ (24-hr avg.)	IPPC ¹	BAT ¹ options ⁴
Washington	GP Camas (No. 3)	10 (24-hr avg.)	BACT	scrubber & wet heat recovery
Washington	GP Camas (No. 4)	10 (24-hr avg.)	BACT	scrubber & wet heat recovery
Europe	LCPDs:1 high range	16-18³ (24-hr avg.)	IPPC ¹	BAT ¹ options ⁴
Louisiana ⁵	Int'l Paper CAMTI (No. 3)	20 (3-hr avg.)	BACT	HERB, high solids liquor firing, proper design and operation ⁵
Idaho	Clearwater Lewiston (No. 5)	50 (3-hr avg.)	BACT	Good Operating Practices or none listed in permit
Washington	KapStone (18)	60 (3-hr avg.) [switched to 94 lb/hr units]	WAC 173-405- 040(11)(a)	Good Operating Practices
Washington	KapStone (19)	60 (3-hr avg.) [switched to 149 lb/hr units]	WAC 173-405- 040(11)(a)	Good Operating Practices
Washington	Weyerhaeuser (No. 10)	75 (3-hr avg.)	BART=BACT	Good Operating Practices
Florida	Palatka (No. 4)	100 (24-hr avg.)	BACT	Good Operating Practices or none listed in permit
Alabama	Alabama River Cellulose (No.1)	100	BACT	Good Operating Practices or none listed in permit
Maine	Red Shield (# 4)	100	BPT	Good Operating Practices, fuel sulfur std = 0.5%
North Carolina	Kapstone (No. 7)	110 (3-hr avg.)	BACT	Good Operating Practices or

	Table 8. SO ₂ Emission Limits ¹ Demonstrated at Recovery Furnaces					
Location	Facility (RF unit if specified)	Limit: gr/dscf ^{1,2} ppm @ 8% O ₂	Limit Reference	Control Technology		
				none listed in		
Louisiana	Port Hudson (No. 1)	120	BACT	Good Operating Practices or none listed in permit Good Operating		
Louisiana	Port Hudson (No. 2)	120	BACT	Practices		
Washington	KapStone (22)	120 (3-hr avg.) [switched to 295 lb/hr units]	WAC 173-405- 040(11)(a)	Good Operating Practices		
Mississippi	Weyerhaeuser NR PW (AA-100)	153 (or 200 ppm at 4% O ₂)	BACT	Good Operating Practices or none listed in permit		
Oregon	Cascade Pacific (RFEU)	180	BACT	Good Operating Practices or none listed in permit		
Washington	PTPC (RF)	200	BACT	Good Operating Practices		
Georgia	Weyerhaeuser PWM (No. 3)	200	PSD Limit	Good Operating Practices or none listed in permit		
Minnesota	Sappi Cloquet LLC (#10)	250	Minn R7007.3000	Good Operating Practices or none listed in permit		
Georgia	GP Cedar Springs (No. 1)	300	PSD Limit	Good Operating Practices or none listed in permit		
Georgia	GP Cedar Springs (No. 2)	300	PSD Limit	Good Operating Practices or none listed in permit		
Oregon	GP Consumer Products (EU24)	300 (3-hr avg.)	OAR-340-234- 0210(3)	Good Operating Practices or none listed in permit		
Oregon	Boise White St. Helens (2&3) ⁶	300 (3-hr avg.)	BACT	Good Operating Practices or none listed in permit		
Georgia	GP Cedar Springs (No. 3)	350 (24-hr avg.)	BART	Good Operating Practices or none listed in permit		
Washington	Cosmo (No. 1, 2 & 3 common stk) ⁷	360 ⁷	Order DE95AQ-1034	multiclones (RFs 1,2&3),		

	Table 8. SO ₂ Emission Limits	¹ Demonstrated at	Recovery Furnad	es
Location	Facility (RF unit if specified)	Limit: gr/dscf ^{1,2} ppm @ 8% O ₂	Limit Reference	Control Technology
				absorption tower
				(RF 1&2), evaporator & 3
				SO ₂ venturi
				absorbers in
				series (RF3) ⁷
Washington	WestRock (No. 4)	500 (150 30-day)	WAC 173-405- 040(11)(a)	Good Operating Practices
Washington	Boise White Wallula (No. 2)	500	WAC 173-405- 040(11)(a)	Good Operating Practices
Washington	Boise White Wallula (No. 3)	500	WAC 173-405- 040(11)(a)	Good Operating Practices
Enocell, Finland	Not specified in IPPC ²	≤ 2 (annual avg)	IPPC ²	BAT ² options ⁴
Frövi, Sweden	Not specified in IPPC ²	≤ 2 (annual avg)	IPPC ²	BAT ² options ⁴
Joutseno, Finland	Not specified in IPPC ²	≤ 2 (annual avg)	IPPC ²	BAT ² options ⁴
Dynäs, Sweden	Not specified in IPPC ²	≤ 2 (annual avg)	IPPC ²	BAT ² options ⁴
Pöls AG, Austria	Not specified in IPPC ²	≤ 2 (annual avg)	IPPC ²	BAT ² options ⁴
Oulu, Finland	Not specified in IPPC ²	≤ 2 (annual avg)	IPPC ²	BAT ² options ⁴
Östrand, Sweden	Not specified in IPPC ²	≤ 2 (annual avg)	IPPC ²	BAT ² options ⁴
Varö, Sweden	Not specified in IPPC ²	≤ 2 (annual avg)	IPPC ²	BAT ² options ⁴
Stora Celbi, Portugal	Not specified in IPPC ²	≤ 2 (annual avg)	IPPC ²	BAT ² options ⁴
Vallvik, Sweden	Not specified in IPPC ²	≤ 2 (annual avg)	IPPC ²	BAT ² options ⁴
Mönsteras, Sweden	Not specified in IPPC ²	4 (annual avg)	IPPC ²	BAT ² options ⁴
Obbola, Sweden	Not specified in IPPC ²	4 (annual avg)	IPPC ²	BAT ² options ⁴
Skutskär, Sweden	Not specified in IPPC ²	5 (annual avg)	IPPC ²	BAT ² options ⁴
Bäckhammar, Sweden	Not specified in IPPC ²	5 (annual avg)	IPPC ²	BAT ² options ⁴
Skärblacka, Sweden	Not specified in IPPC ²	6 (annual avg)	IPPC ²	BAT ² options ⁴
Skoghall, Sweden	Not specified in IPPC ²	6 (annual avg)	IPPC ²	BAT ² options ⁴
Wisaforest, Finland	Not specified in IPPC ²	7 (annual avg)	IPPC ²	BAT ² options ⁴
Husum, Sweden	Not specified in IPPC ²	12 (annual avg)	IPPC ²	BAT ² options ⁴
Aspa, Sweden	Not specified in IPPC ²	15 (annual avg)	IPPC ²	BAT ² options ⁴
Ääneskoski, Finland	Not specified in IPPC ²	15 (annual avg)	IPPC ²	BAT ² options ⁴
Kaskinen, Finland	Not specified in IPPC ²	16 (annual avg)	IPPC ²	BAT ² options ⁴

Table 8. SO ₂ Emission Limits ¹ Demonstrated at Recovery Furnaces						
Location	Facility (RF unit if specified)Limit: gr/dscf1,2 ppm @ 8% O2Limit ReferenceCont Technic					
lggesund, Sweden	Not specified in IPPC ²	16 (annual avg)	IPPC ²	BAT ² options ⁴		
Huelva, Spain	Not specified in IPPC ²	17 (annual avg)	IPPC ²	BAT ² options ⁴		
Sunila, Finland	Not specified in IPPC ²	18 (annual avg)	IPPC ²	BAT ² options ⁴		

Note: RF = recovery furnace.

¹ Limit units are hourly unless listed otherwise.

- ² Listed individual European facility emissions are not limits, but are annual average combined SO₂ and TRS emissions levels at "well performing existing pulp mills." Integrated Pollution Prevention Control (ICCP) Reference Document on Best Available Techniques [BAT] in the [kraft] Pulp and Paper Industry, December 2001, European Commission. LCPD = Large Combustion Plant Directive of the European Commission. European low and high range BAT limits units are 24-hour averages. The 2001 report does not separate SO₂ and TRS individually, therefore the amount of SO₂ emissions is assumed to be less than the listed amount, but according to the report: "Gaseous sulphur is mainly SO₂-S. Usually only very small amounts of H₂S is released."
- ³ NCASI calculated a BAT range of 1.8-18 ppm (calculations not shown): NCASI 2009 Environmental Footprint Comparison Tool, Trade-Offs and Co-benefits accompanying SOx and NOx Control (based on 2001 European BAT). Ecology calculated values similar to NCASI, with a range of 3.3 to 16.4 ppm (converting from 2001 BAT inputs in European units of mg/Nm3 at 273K, 101.3 kPa with dry gas and 5% oxygen).
- ⁴ General ICCP BAT approach: "If changes in the fuel or the operation do not give enough reduction of SO₂ emission, removing sulphur oxides from flue gases by absorption in alkaline liquid is considered BAT." Specific BAT options for recovery furnaces: "Recovery boilers with high dry solids content of black liquor release very low SO₂ emissions." BAT range for sulfite mills is 16 to 49 based on the following from ICCP: "reduction of SO₂ emission from flue gases by absorption in alkaline liquid is considered BAT. A removal efficiency for SO₂ of 95 + % is achievable. From recovery boilers equipped with multi-stage scrubber...."
- ⁵ At least three HERB units have been or are being installed in the United States per Andritz Pulp & Paper www.andritz.com. The three units are IP Valliant, Oklahoma; IP Campti, Louisiana; and PCA, Valdosta, Georgia. It is unclear if the Oklahoma and Georgia units have been included into the latest air permits at the time of this analysis. The Campti unit has been implemented, and permit limits are listed in this table.
- ⁶ Mill recently closed (~late 2012/early 2013).
- ⁷ SO₂ was not selected for further evaluation in the 2010 RH SIP for sulfite mills (2010 Regional Haze SIP, p. 10-8 Table 10-2).

The lowest demonstrated emissions (for 1- to 24-hr average ranges) for the units in Table 8 are from 2-3 ppm to 16-18 ppm (24-hr average BAT emission limit of European facilities). BATs are not permit limits, but are based on BREFs.

Ecology also retains the option of adopting the lowest emission limits in Washington State as a reasonably achievable emission limits for this RACT analysis. The lowest demonstrated emission limits in Washington (for 1- to 24-hr average ranges) are 10 ppm (24-hr average at GP Camas, WA units Nos. 3 and 4).

Table 9 provides a survey of demonstrated SO₂ emission limits for lime kilns in Washington State and at randomly selected facilities in the U.S., Canada, and Europe. Canadian and European units have been converted to the listed unit for each limit.

	Table 9. SO ₂ Emission Limits ¹ Demonstrated at Lime Kilns					
Location	Facility (LK unit if specified)	Limit: ^{1,2} ppm @ 10% O ₂	Limit Reference	Control Technology		
Europe	LCPDs: ¹ low range (w/o NCG incineration)	1-2 ³ (24-hr avg.)	IPPC ¹	BAT ¹ options ⁴		
Europe	LCPDs: ¹ high range (w/o NCG incineration)	8 ³ (24-hr avg.)	IPPC ¹	BAT ¹ options ⁴		
Florida	Palatka (No. 4)	16.9	BACT	scrubber		
Alabama	Alabama River Cellulose (No. 1)	50	BACT	scrubber		
Alabama	Alabama River Cellulose (No. 1)	50	BACT	scrubber		
Alabama	Alabama River Cellulose (No. 2)	50	BACT	Good Operating Practices or none listed in permit		
Mississippi	Weyerhaeuser NR PW (AA-110)	50	BACT	Good Operating Practices or none listed in permit		
Washington	KapStone (3)	20 (3-hr avg.)	WAC 173-405- 040(11)(a)	scrubber, Good Operating Practices		
Washington	KapStone (4)	20 (3-hr avg.)	WAC 173-405- 040(11)(a)	scrubber, Good Operating Practices		
Washington	KapStone (5)	20 (3-hr avg.)	WAC 173-405- 040(11)(a)	Good Operating Practices		
Idaho	Clearwater Lewiston (No. 4)	20 (3-hr avg.)	BACT	scrubber, Good Operating Practices		
Europe	LCPDs: ¹ low range (w/ NCG incineration)	42 ³ (24-hr avg.)	IPPC ¹	BAT ¹ = scrubber and/or low sulfur fuel		
Europe	LCPDs: ¹ high range (w/ NCG incineration)	83-105 ³ (24-hr avg.)	IPPC ¹	BAT ¹ = Scrubber and/or low sulfur fuel		
Washington	GP Camas (No. 4)	500	WAC 173-405- 040(11)(a)	Ducon rectangular cross- section variable throat venturi scrubber		
Washington	Weyerhaeuser (No. 4)	500	BACT	low sulfur input (no pulp mill evaporator condensate in lime mud washing)		
Washington	PTPC (RF)	500	WAC 173-405- 040(11)(a)	scrubber		
Washington	WestRock (No. 1)	500	WAC 173-405- 040(11)(a)	scrubber, Good Operating Practices		
Washington	WestRock (No. 2)	500	WAC 173-405- 040(11)(a)	scrubber, Good Operating Practices		

	Table 9. SO ₂ Emissi	on Limits ¹ De	monstrated at Lime	e Kilns
Location	Facility (LK unit if specified)	Limit: ^{1,2} ppm @ 10% O ₂	Limit Reference	Control Technology
Washington	Graymont	1000 (coal or ng)	Permit (facility- wide limit)	baghouse for PM only
Oulu, Finland	Not specified in IPPC ¹	2 (annual avg.)	IPPC ¹	BAT ¹ options ⁴
Husum, Sweden	Not specified in IPPC ¹	3 (annual avg.)	IPPC ¹	BAT ¹ options ⁴
Skoghall, Sweden	Not specified in IPPC ¹	3 (annual avg.)	IPPC ¹	BAT ¹ options ⁴
Dynäs, Sweden	Not specified in IPPC ¹	3 (annual avg.)	IPPC ¹	BAT ¹ options ⁴
Frövi, Sweden	Not specified in IPPC ¹	3 (annual avg.)	IPPC ¹	BAT ¹ options ⁴
Obbola, Sweden	Not specified in IPPC ¹	3 (annual avg.)	IPPC ¹	BAT ¹ options ⁴
Bäckhammar, Sweden	Not specified in IPPC ¹	3 (annual avg.)	IPPC ¹	BAT ¹ options ⁴
Pöls AG, Austria	Not specified in IPPC ¹	3 (annual avg.)	IPPC ¹	BAT ¹ options ⁴
Joutseno, Finland	Not specified in IPPC ¹	3 (annual avg.)	IPPC ¹	BAT ¹ options ⁴
Washington	Boise White Wallula	5 (annual avg.)	Order DE96AQ1078	Scrubber & low sulfur content (1.55%) in oil, Good Operating Practices
Stora Celbi, Portugal	Not specified in IPPC ¹	6 (annual avg.)	IPPC ¹	BAT ¹ options ⁴
Wisaforest, Finland	Not specified in IPPC ¹	8 (annual avg.)	IPPC ¹	BAT ¹ options ⁴
Kaskinen, Finland	Not specified in IPPC ¹	12-30 (annual avg.)	IPPC ¹	BAT ¹ options ⁴
Mönsteras, Sweden	Not specified in IPPC ¹	14-31 (annual avg.)	IPPC ¹	BAT ¹ options ⁴
Skärblacka, Sweden	Not specified in IPPC ¹	14-31 (annual avg.)	IPPC ¹	BAT ¹ options ⁴
Ääneskoski, Finland	Not specified in IPPC ¹	16-33 (annual avg.)	IPPC ¹	BAT ¹ options ⁴
Sunila, Finland	Not specified in IPPC ¹	17-33 (annual avg.)	IPPC ¹	BAT ¹ options ⁴
Aspa, Sweden	Not specified in IPPC ¹	28-41 (annual avg.)	IPPC ¹	BAT ¹ options ⁴
Skutskär, Sweden	Not specified in IPPC ¹	28-41 (annual avg.)	IPPC ¹	BAT ¹ options ⁴

Table 9. SO ₂ Emission Limits ¹ Demonstrated at Lime Kilns				
Location	Facility (LK unit if specified)	Limit: ^{1,2} ppm @ 10% O ₂	Limit Reference	Control Technology
lggesund, Sweden	Not specified in IPPC ¹	44 (annual avg.)	IPPC ¹	BAT ¹ options ⁴
Enocell, Finland	Not specified in IPPC ¹	48 (annual avg.)	IPPC ¹	BAT ¹ options ⁴
Vallvik, Sweden	Not specified in IPPC ¹	81 (annual avg.)	IPPC ¹	BAT ¹ options ⁴
Varö, Sweden	Not specified in IPPC ¹	81 (annual avg.)	IPPC ¹	BAT ¹ options ⁴
Östrand, Sweden	Not specified in IPPC ¹	104 (annual avg.)	IPPC ¹	BAT ¹ options ⁴
Huelva, Spain	Not specified in IPPC ¹	160 (annual avg.)	IPPC ¹	BAT ¹ options ⁴

Note: LK = lime kiln.

¹ Listed individual European facility emissions are not limits, but are annual average combined SO₂ and TRS emissions levels at "well performing existing pulp mills." ICCP reference document on BAT in the [kraft] Pulp and Paper Industry, December 2001, European Commission. LCPD = Large Combustion Plant Directive of the European Commission. European low and high range BAT limits units are 24-hr averages. The 2001 report does not separate SO₂ and TRS individually. Therefore, the amount of SO₂ emissions is assumed to be less than the listed amount, but according to the report: "Gaseous sulphur is mainly SO2-S. Usually only very small amounts of H2S is released." There are two possible values provided in the ICCP report depending on whether an oil fired lime kiln includes non-condensable gas (NCG) incineration or not. For facilities with listed SO₂ levels up to the maximum oil-fired range specified in the report for non-NCG incineration, non-NCG incineration levels of the report, a range of the two emission levels was provided. For facilities with listed SO₂ levels above the minimum oil-fired range for NCG incineration specified in the report, NCG incineration specified in the report.

- ² Limit units are hourly unless listed otherwise.
- ³ NCASI calculated a BAT range of 1.8-105 ppm (calculations not shown): NCASI 2009 Environmental Footprint Comparison Tool, Trade-Offs and Co-benefits accompanying SOx and NOx Control (based on 2001 European BAT). This range is assumed to include lime kilns that perform NCG incineration, as well as those lime kilns that do not perform NCG incineration. Ecology calculated values similar to NCASI, with a range of 1.4 to 83 ppm (converting from 2001 BAT inputs in European units of mg/Nm3 at 273K, 101.3 kPa with dry gas and 5% oxygen). [For lime kilns without NCG incineration, Ecology calculated a range of 1.4 – 8 ppm, and for lime kilns with NCG incineration, Ecology calculated a range of 42-83 ppm].
- ⁴ General ICCP BAT approach: "If changes in the fuel or the operation do not give enough reduction of SO2 emission, removing sulphur oxides from flue gases by absorption in alkaline liquid is considered BAT." Specific BAT options for lime kilns: "Depending on the amount of sulphur (NCG) applied to the lime kiln a scrubber may be required. Another option for SO₂ reduction would be to choose another location for the incinerations of NCG than the lime kiln or use less sulphur containing oil burned as fuel."

The lowest demonstrated emission limits (for 1- to 24-hr average ranges) for the units in Table 9 are from 1-8 ppm (24-hr BAT) for lime kilns that do not incinerate NCGs to 42-105 ppm (24-hr BAT) for lime kilns with incineration of NCGs.

Ecology also retains the option of adopting the lowest emission limits in Washington State as a reasonably achievable emission limits for this RACT analysis. The lowest demonstrated emission limits (for 1-hr to 24-hr average ranges) in Washington are 20 ppm (3-hr average) for units with NCG incineration (KapStone, WA, units 3, 4, and 5).

3.3. Demonstrated NO_X emission limits for recovery furnaces and lime kilns

Table 10 provides a survey of demonstrated NO_X emission limits for recovery furnaces in Washington State and at randomly selected facilities in the U.S., Canada, and Europe. Canadian and European units have been converted to the listed unit for each emission limit. In most cases it is not known if the units in Section 3.3 are new, rebuilt, or modified, but information is provided where known. If a limit is required by a rule, the rule is listed under the column titled "Limit Ref."

Table 10. NO _x Emission Limits ¹ Demonstrated at Recovery Furnaces				
Location	Facility (RF unit if specified)	Limit: ^{1,2} ppm @ 8% O ₂	Limit Reference	Control Technology
Europe	LCPDs:1 low range	36-40 ³ (24- hr avg.)	IPPC ¹	BAT ¹ options ⁴
Europe	LCPDs:1 high range	55-58 ³ (24-hr avg.)	IPPC ¹	BAT ¹ options ⁴
Alabama	Alabama River Cellulose (No. 2)	75	BACT	proper design & operation, combustion control, or not listed
Louisiana⁵	International Paper CAMTI (No. 3)	80 (3-hr avg.)	BACT	High Energy Recovery Boiler [HERB], Proper combustion control ⁵
Mississippi	Weyerhaeuser NR PW (AA-100)	80 (8-hr avg.)	BACT	proper design & operation, combustion control, or not listed
Alabama	Alabama River Cellulose (No. 1)	90	BACT	proper design & operation, combustion control, or not listed
Washington	KapStone (22)	95 (3-hr avg.)	BACT	proper design & operation, combustion control, or not listed
Washington	KapStone (18)	95 (24-hr avg.)	BACT	proper design & operation, combustion control, or not listed
Washington	KapStone (19)	95 (24-hr avg.)	BACT	proper design & operation, combustion control, or not listed
Idaho	Clearwater Lewiston (No. 5)	100	BACT	proper design & operation, combustion control, or not listed
Arkansas	Georgia Pacific Crossert (8R)	110	BACT	BACT = ESP, boiler design, combustion control)

Tabl	e 10. NO _x Emission L	imits ¹ Demons	trated at Recov	ery Furnaces
Location	Facility (RF unit if specified)	Limit: ^{1,2} ppm @ 8% O ₂	Limit Reference	Control Technology
Louisiana	Port Hudson (No. 1)	112	BACT	staged combustion, GED, PCT
Louisiana	Port Hudson (No. 2)	112	BACT	staged combustion, GED, PCT
Washington	Boise White Wallula(No. 3)	112 (24-hr avg.)	BACT	proper design & operation, combustion control, or not listed
Washington	Weyerhaeuser (No. 10)	140 (24-hr avg.)	BART = BACT	staged combustion system
Maine	Red Shield (# 4)	150 (24-hr avg.)	RACT	proper design & operation, combustion control, or not listed
Minnesota	Boise Cascade Int'l Falls (EU320)	80 (30-day avg.)	BACT	proper design & operation, combustion control, or not listed
Florida	Palatka (No. 4)	80 (30-day avg.)	BACT	Four-level overfire air system
Washington	WestRock (No. 4)	85 (30-day avg.)	BACT	proper design & operation, combustion control, or not listed
North Carolina	Kapstone (No. 7)	100 (30-day avg.)	BACT	proper design & operation, combustion control, or not listed
Minnesota	Sappi Cloquet LLC	115 (30-day avg.)	BACT	proper design & operation, combustion control, or not listed
Skärblacka, Sweden	Not specified in IPPC ¹	35 (annual avg.)	IPPC ¹	BAT ¹ options ⁴
Oulu, Finland	Not specified in IPPC ¹	41 (annual avg.)	IPPC ¹	BAT ¹ options ⁴
Wisaforest, Finland	Not specified in IPPC ¹	44 (annual avg.)	IPPC ¹	BAT ¹ options ⁴
Huelva, Spain	Not specified in IPPC ¹	45 (annual avg.)	IPPC ¹	BAT ¹ options ⁴
Mönsteras, Sweden	Not specified in IPPC ¹	48 (annual avg.)	IPPC ¹	BAT ¹ options ⁴
Frövi, Sweden	Not specified in IPPC ¹	51 (annual avg.)	IPPC ¹	BAT ¹ options ⁴
Joutseno, Finland	Not specified in IPPC ¹	51 (annual avg.)	IPPC ¹	BAT ¹ options ⁴
Obbola, Sweden	Not specified in IPPC ¹	51 (annual avg.)	IPPC ¹	BAT ¹ options ⁴
Stora Celbi, Portugal	Not specified in IPPC ¹	51 (annual avg.)	IPPC ¹	BAT ¹ options ⁴
Sunila, Finland	Not specified in IPPC ¹	51 (annual avg.)	IPPC ¹	BAT ¹ options ⁴
Skoghall, Sweden	Not specified in IPPC ¹	56 (annual avg.)	IPPC ¹	BAT ¹ options ⁴
Enocell, Finland	Not specified in IPPC ¹	59 (annual avg.)	IPPC ¹	BAT ¹ options ⁴

Table 10. NO _x Emission Limits ¹ Demonstrated at Recovery Furnaces					
Location	Facility (RF unit if specified)	Limit: ^{1,2} ppm @ 8% O ₂	Limit Reference	Control Technology	
Husum, Sweden	Not specified in IPPC ¹	60 (annual avg.)	IPPC ¹	BAT ¹ options ⁴	
Bäckhammar, Sweden	Not specified in IPPC ¹	60 (annual avg.)	IPPC ¹	BAT ¹ options ⁴	
Dynäs, Sweden	Not specified in IPPC ¹	61 (annual avg.)	IPPC ¹	BAT ¹ options ⁴	
Skutskär, Sweden	Not specified in IPPC ¹	62 (annual avg.)	IPPC ¹	BAT ¹ options ⁴	
Aspa, Sweden	Not specified in IPPC ¹	63 (annual avg.)	IPPC ¹	BAT ¹ options ⁴	
Östrand, Sweden	Not specified in IPPC ¹	67 (annual avg.)	IPPC ¹	BAT ¹ options ⁴	
Kaskinen, Finland	Not specified in IPPC ¹	67 (annual avg.)	IPPC ¹	BAT ¹ options ⁴	
Vallvik, Sweden	Not specified in IPPC ¹	70 (annual avg.)	IPPC ¹	BAT ¹ options ⁴	
lggesund, Sweden	Not specified in IPPC ¹	73 (annual avg.)	IPPC ¹	BAT ¹ options ⁴	
Varö, Sweden	Not specified in IPPC ¹	73 (annual avg.)	IPPC ¹	BAT ¹ options ⁴	
Pöls AG, Austria	Not specified in IPPC ¹	77 (annual avg.)	IPPC ¹	BAT ¹ options ⁴	
Ääneskoski, Finland	Not specified in IPPC ¹	84 (annual avg.)	IPPC ¹	BAT ¹ options ⁴	

Note: RF = recovery furnace.

¹ Listed individual European facility emissions are not limits, but annual average emissions levels at "well performing existing pulp mills." Integrated Pollution Prevention Control (ICCP) Reference Document on Best Available Techniques [BAT] in the [kraft] Pulp and Paper Industry, December 2001, European Commission. LCPD = Large Combustion Plant Directive of the European Commission. European low and high range BAT limits units are 24-hour averages.

- ² Limit units are hourly unless listed otherwise.
- ³ NCASI calculated a BAT range of 40-58 ppm (calculations not shown): NCASI 2009 Environmental Footprint Comparison Tool, Trade-Offs and Co-benefits accompanying SOx and NOx Control (based on 2001 European BAT). Ecology calculated values similar to NCASI, with a range of 36 to 55 ppm (converting from 2001 BAT inputs in European units of mg/Nm3 at 273K, 101.3 kPa with dry gas and 5% oxygen).
- ⁴ General ICCP BAT approach: "The emission of nitrogen oxides can be controlled by burner design (low NO_x burners) and modified combustion conditions (primary methods). Specific BAT options for recovery furnaces: "The design of the recovery boiler (staged air feed systems) can result in relatively low NO_x concentrations." BAT range for sulfite mills is 91 to 137 based on the following from ICCP: "The emission of nitrogen oxides can be controlled by burner design (low NO_x burners) and modified combustion conditions (primary methods). The design of the recovery boiler (staged air feed systems) can result in relatively low NO_x concentrations.... Secondary methods as selective non-catalytic reduction (SNCR) are usually not in operation."
- ⁵ At least three HERB units have been or are being installed in the United States per Andritz Pulp & Paper www.andritz.com. The three units are IP Valliant, Oklahoma; IP Campti, Louisiana; and PCA, Valdosta, Georgia. It is unclear if the Oklahoma and Georgia units have been included into the latest

Table 10. NO _x Emission Limits ¹ Demonstrated at Recovery Furnaces				
Location	Facility (RF unit if specified)	Limit: ^{1,2} ppm @ 8% O ₂	Limit Reference	Control Technology
air permits at the time of this analysis. The Campti unit has been implemented, and permit limits are listed in this table.				

The lowest demonstrated emissions in Table 10 (for 1- to 24-hr average ranges) are from 36-58 ppm (24-hr average for the BAT emission limit range of European facilities). BATs are not permit limits, but are based on BREFs.

Ecology also retains the option of adopting the lowest emission limits in Washington State as a reasonably achievable emission limits for this RACT analysis. The lowest demonstrated emission limits (for 1- to 24-hr average ranges) in Washington are 95 ppm for both a 3-hr average limit (KapStone, WA, unit 22), and 24-hr average limits (KapStone, WA, units 18 and 19).

Table 11 provides a survey of demonstrated NO_X emission limits for lime kilns in Washington State and at randomly selected facilities in the U.S., Canada, and Europe. Canadian and European units have been converted to the listed unit for each limit.

	Table 11. NO _X Emissi	on Limits ¹ Dem	onstrated at L	ime Kilns
Location	Facility (LK unit if specified)	Limit: ^{1,2} ppm @ 10% O ₂	Limit Reference	Control Technology
Europe	LCPDs: ¹ low range (oil)	39-49 ³ (24-hr avg.)	IPPC ¹	BAT ¹ options ⁴
Europe	LCPDs: ¹ high range (oil)	77 ³ (24-hr avg.)	IPPC ¹	BAT ¹ options ⁴
Alabama	Alabama River Cellulose (No. 2)	100	BACT	proper design & operation, combustion control, or none listed in permit
Oregon	Cascade Pacific (LKEU)	112	BACT	proper design & operation, combustion control, or none listed in permit
Europe	LCPDs: ¹ low range (natural gas)	146 ³ (24-hr avg.)	IPPC ¹	BAT ¹ options ⁴
Maine	Red Shield (# 4)	170	RACT	proper design & operation, combustion control, or not listed
Alabama	Alabama River Cellulose (No. 1)	175	BACT	proper design & operation, combustion control, or none listed in permit
Mississippi	Weyerhaeuser NR PW (AA-110)	189 (or 300 ppm at 3.6% O ₂)	BACT	proper design & operation, combustion control, or not listed

	Table 11. NO _X Emissi	on Limits ¹ Dem	onstrated at L	ime Kilns
Location	Facility (LK unit if specified)	Limit: ^{1,2} ppm @ 10% O ₂	Limit Reference	Control Technology
Minnesota	Sappi Cloquet LLC	220	BACT	proper design & operation, combustion control, or not listed
Europe	LCPDs: ¹ high range (natural gas)	231-292 ³ (24- hr avg.)	IPPC ¹	BAT ¹ options ⁴
Oregon	Boise White St Helens⁵	270	BACT	proper design & operation, combustion control, or none listed in permit
Washington	KapStone (5)	275 (24-hr avg.)	BACT	proper design & operation, combustion control, or none listed in permit
Washington	KapStone (3)	340 (24-hr avg.)	BACT	proper design & operation, combustion control, or none listed in permit
Washington	KapStone (4)	340 (24-hr avg.)	BACT	proper design & operation, combustion control, or none listed in permit
Florida	Palatka (No. 4)	114 (30-day avg.)	BACT	proper design & operation, combustion control, or none listed in permit
Bäckhammar, Sweden	Not specified in IPPC ¹	15 (annual avg.)	IPPC ¹	BAT ¹ options ⁴
Huelva, Spain	Not specified in IPPC ¹	23 (annual avg.)	IPPC ¹	BAT ¹ options ⁴
Östrand, Sweden	Not specified in IPPC ¹	31 (annual avg.)	IPPC ¹	BAT ¹ options ⁴
Ääneskoski, Finland	Not specified in IPPC ¹	39 (annual avg.)	IPPC ¹	BAT ¹ options ⁴
Husum, Sweden	Not specified in IPPC ¹	42 (annual avg.)	IPPC ¹	BAT ¹ options ⁴
lggesund, Sweden	Not specified in IPPC ¹	50 (annual avg.)	IPPC ¹	BAT ¹ options ⁴
Skoghall, Sweden	Not specified in IPPC ¹	58 (annual avg.)	IPPC ¹	BAT ¹ options ⁴
Kaskinen, Finland	Not specified in IPPC ¹	62 (annual avg.)	IPPC ¹	BAT ¹ options ⁴
Joutseno, Finland	Not specified in IPPC ¹	65 (annual avg.)	IPPC ¹	BAT ¹ options ⁴
Stora Celbi, Portugal	Not specified in IPPC ¹	65 (annual avg.)	IPPC ¹	BAT ¹ options ⁴
Enocell, Finland	Not specified in IPPC ¹	66 (annual avg.)	IPPC ¹	BAT ¹ options ⁴
Obbola, Sweden	Not specified in IPPC ¹	69 (annual avg.)	IPPC ¹	BAT ¹ options ⁴
Skutskär, Sweden	Not specified in IPPC ¹	73 (annual avg.)	IPPC ¹	BAT ¹ options ⁴
Aspa, Sweden	Not specified in IPPC ¹	77 (annual avg.)	IPPC ¹	BAT ¹ options ⁴
Mönsteras, Sweden	Not specified in IPPC ¹	6 <mark>6-81 (</mark> annual avg.)	IPPC ¹	BAT ¹ options ⁴

	Table 11. NO _x Emissi	on Limits ¹ Dem	onstrated at L	ime Kilns
Location	Facility (LK unit if specified)	Limit: ^{1,2} ppm @ 10% O ₂	Limit Reference	Control Technology
Frövi, Sweden	Not specified in IPPC ¹	66-81 (annual avg.)	IPPC ¹	BAT ¹ options ⁴
Vallvik, Sweden	Not specified in IPPC ¹	70-85 (annual avg.)	IPPC ¹	BAT ¹ options ⁴
Dynäs, Sweden	Not specified in IPPC ¹	70-85 (annual avg.)	IPPC ¹	BAT ¹ options ⁴
Skärblacka, Sweden	Not specified in IPPC ¹	74-89 (annual avg.)	IPPC ¹	BAT ¹ options ⁴
Varö, Sweden	Not specified in IPPC ¹	87-100 (annual avg.)	IPPC ¹	BAT ¹ options ⁴
Oulu, Finland	Not specified in IPPC ¹	91-104 (annual avg.)	IPPC ¹	BAT ¹ options ⁴
Sunila, Finland	Not specified in IPPC ¹	93-106 (annual avg.)	IPPC ¹	BAT ¹ options ⁴
Wisaforest, Finland	Not specified in IPPC ¹	115-126 (annual avg.)	IPPC ¹	BAT ¹ options ⁴
Pöls AG, Austria	Not specified in IPPC ¹	168 (annual avg.)	IPPC ¹	BAT ¹ options ⁴

Note: LK = lime kiln.

¹ Listed individual European facility emissions are not limits, but annual average emissions levels at "well performing existing pulp mills." Integrated Pollution Prevention Control (ICCP) Reference Document on Best Available Techniques [BAT] in the [kraft] Pulp and Paper Industry, December 2001, European Commission. LCPD = Large Combustion Plant Directive of the European Commission. European low and high range BAT limits units are 24-hour averages. Individual facility fuel details are not provided in the 2001 IPPC report. For facilities with listed NOx levels up to the maximum oil-fired range specified in the report, oil was the assumed fuel. For facilities with listed NOx levels within the gas-fired range specified in the report, gas was the assumed fuel (Pöls AG, Austria). For facilities with listed emission levels in between the specified oil and gas fired emission levels of the report, a range consisting of both gas and oil fired kiln emission levels were provided.

- ² Limit units are hourly and at 10% oxygen unless listed otherwise.
- ³ NCASI calculated a BAT range of 49-292 ppm (calculations not shown): NCASI 2009 Environmental Footprint Comparison Tool, Trade-Offs and Co-benefits accompanying SOx and NOx Control (based on 2001 European BAT). This range is assumed to include both gas-fired and oil-fired lime kilns. Ecology calculated values similar to NCASI, with a range of 39 to 231 ppm (converting from 2001 BAT inputs in European units of mg/Nm3 at 273K, 101.3 kPa with dry gas and 5% oxygen). [For lime kilns that are oil fired, Ecology calculated a range of 39–77 ppm, and for lime kilns that are gas fired, Ecology calculated a range of 146-231 ppm].
- ⁴ General ICCP BAT approach: "The emission of nitrogen oxides can be controlled by burner design (low NOx burners) and modified combustion conditions (primary methods). Specific BAT options for lime kilns: "The possibilities to decrease the NOx emissions by adjusting the kiln running parameters, the flame shape, the air distribution and the excess oxygen is limited but can lead to slight reduction of NOx formation (about 10-20%)."
- ⁵ Mill recently closed (~late 2012/early 2013).

The lowest demonstrated emissions (for 1- to 24-hr average ranges) for the units in Table 11 are 39-77 ppm for oil-fired kilns and 146-292 ppm BAT range for gas-fired kilns (24-hour average for the BAT emission limit range of European facilities). BATs are not permit limits, but are based on BREFs.

Ecology also retains the option of adopting the lowest emission limits in Washington State as reasonably achievable emission limits for this RACT analysis. The lowest demonstrated emission limits in Washington are 275 ppm (24-hr average limit at KapStone, WA, unit 5; unit uses oil and/or natural gas).

4. Estimated Emission Reductions Achievable

This section presents emission reductions that are estimated to be achieved for potential SO_2 , NO_X , and PM RACT limits. Ecology interprets "reasonably available" control technology as defined in Section 1.2, to mean those control technologies that are currently demonstrating compliance with the SO_2 , NO_X , and PM emission limits in Sections 3.1–3.3. There may be other control technologies listed in Chapter 2 which are capable of meeting the emission limits in Sections 3.1–3.3, but have not been demonstrated in practice. Potential emission reductions achievable using control technologies that have not been demonstrated in practice are not estimated as part of this RACT analysis.

4.1. Estimated emission reductions achievable (by facility)

In order to compare emission limits between facilities, units were converted to the extent possible given available facility information because some facility permits do not provide emission limits in comparable units. Concentration based limits in gr/dscf and also ppm, where provided, were used to compare emission limits between facilities. In addition, for Washington State pulp mills, recovery furnace and lime kiln compliance tests were compared to facility emission limits and also to potential RACT emission limits in order to estimated potential reductions from RACT options. Unit conversion and permit limit information is provided in Appendix A. Facility operating and emission information is provided in Appendix B and was the basis from which the estimated emission reductions listed in this chapter were calculated.

Estimated emission reductions are the difference between multi-year average annual emissions and the multi-year average annual emissions multiplied by the ratio of emission at the proposed RACT limit to measured emissions (if available) or calculated emissions (if measured emissions not available). This approach included the occasional need to convert mass per time units obtained from emission inventory data into concentration based limits for comparison purposes when compliance test results were unavailable. However, as noted in Section 5.2, the specific average pulp mill emission reductions from this section that are considered as RACT options in Chapter 5, are based on multi-year measured (compliance test) data, not on calculated data. For calculated data, multi-year average annual emission inventory units of tons per year (TPY) were divided by multi-year average annual flow rate units of dry standard cubic feet per minute to provide concentration-based units.

This RACT analysis assumed emission limits with averaging times of 24 hours or less, are to an extent, comparable. For example: a daily (24-hr) limit would need to meet a similar 1-hr or 3-hr limit (etc.) most of the time in order to meet the daily limit. Limits based on averaging periods over 24 hours long were avoided. For example: although the recovery furnace at WestRock has a 150 ppm SO₂ limit for a 30-day rolling average, that facility's 1-hr 500 ppm SO₂ limit was used for similarly shorter averaging period comparison purposes instead.

Recovery furnaces can experience short duration spikes in SO₂ ppm levels and, as a result, some facilities have difficulty meeting short-term recovery furnace concentration emissions limits. One facility in Washington State, KapStone, switched from 3-hr average SO₂ concentration based permit limits of 60 ppm (RFs 18 & 19) to mass emission rate permit limits. However, the facility in Washington State with the lowest permitted recovery furnace SO₂ concentration based emission limit (10 ppm at GP Camas), consistently meets that limit, which is based on a 24-hr averaging period. In addition, the facility in Washington State with the next lowest recovery furnace SO₂ concentration based emission limit (75 ppm at Weyerhaeuser), demonstrates compliance with that limit, which is based on a 3-hr averaging period, and constitutes Ecology's BART determination for that unit per the RH SIP (p. L-374). It should be noted that the 75 ppm SO₂ limit listed in that facility's air operating permit is for conditions when supplemental oil is not used; or, if it is used, the black liquour solids (BLS) firing rate must be greater than 150,000 lb/hr.

This RACT analysis was based on a snapshot of emission inventories between approximately 2003 and 2011 depending on available data and facility operations (i.e., Cosmo did not operate from 2007–2010). Specific facility details may have changed since 2011. For example, at the KapStone facility, this analysis was based on emission inventory information for three recovery furnaces (RF18, RF19, and RF22). However, based on information from Ecology's Industrial Section which manages compliance at pulp mills, it appears that RF18 has not been operated continuously since 2012, but as a possible backup recovery furnace while RF19 is being modified. Eventually it will be permanently shut down under Notice of Construction (NOC) Order 8429. It is required to be shut down once RF19 is placed into operation after it is modified. By including all three recovery furnaces, this RACT analysis conservatively overestimates emission reductions for that facility.

Estimated emission reductions for each individual pulp mill in Washington State are provided in the following subsections. Recovery furnace HERB limits are not included for consideration below because there are currently no HERB units in operation in Washington State.

4.1.1. PTPC estimated emission reductions

PTPC, located in Port Townsend, WA, operates a Kraft pulp and paper mill that manufactures unbleached Kraft pulp, Kraft papers, and lightweight linerboard. Emissions and estimated emission reductions are presented in Tables 12 and 13.

Table 12. PTPC Recovery Furnace Emission Reductions										
Recovery	Potential				Annu Aver	al Emis ages (te	sion ons)			
Furnace	RACT	Proposed	Current	Measured/	NOx	SO ₂	PM	Notes		
Pollutant (units)	Limit (source)	LIMIT Ava Time	Permit Limit	Calculated Emissions	200	105		notoo		
(units)	(300100)	Avg Time	Linit	LIII33IOII3	E: Redu	stimate ctions (d TPY)			
PM (gr/dscf at 8% O ₂)	0.0165 (lowest w/in BAT)	1-hr	0.044	0.027			45	1,2		
PM (gr/dscf at 8% O ₂)	0.019 (Europe BAT)	24-hr	0.044	0.027			34	1,2		
PM (gr/dscf at 8% O ₂)	0.027 (lowest WA limit)	1-hr	0.044	0.027			0	1,2		
SO ₂ (ppm at 8% O ₂)	10 (lowest WA limit: w/Whr	24-hr	200	28		67		1,2		
SO ₂ (ppm at 8% O ₂)	18 (Europe BAT: No Whr)	24-hr	200	28		37		1,2		
SO ₂ (ppm at 8% O ₂)	75 (lowest WA limit: No Whr)	3-hr	200	28		0		1,2		
NOx (ppm at 8% O ₂)	58 (Europe BAT)	24-hr	No limit	51	0			1,2		
NOx (ppm at 8% O ₂)	95 (lowest WA limit)	3-hr	No limit	51	0			1,2		

Notes: --- = not applicable. Ng = natural gas. NCG = non condensable gas incineration. Whr = wet heat recovery.

¹ Measured/calculated emissions are averages of 2003-2009 compliance tests or are calculated from 2003-2008 annual emission averages and other stack parameter information. Sea level pressure assumed for absolute stack pressure (facility is approximately at sea level). NO₂ molecular weight assumed for NO_x (MW = 46).

Table 13. PTPC Lime Kiln Emission Reductions									
	Detential				Annu	al Emis	sion		
Lime Kiln	RACT	Proposed	Current	Measured/	NOx	SO ₂	PM		
Pollutant	Limit	Limit	Permit	Calculated	51	1	23	Notes	
(units)	(source)	Avg Time	Limit	Emissions	E	stimated	k		
					Redu	ctions (tpy)		
PM (gr/dscf at 10% O ₂)	0.02 (Europe BAT: oil or ng)	24-hr	0.064	0.036			10	(1),(2)	
PM (gr/dscf at 10% O ₂)	0.030 (lowest WA limit: oil or ng)	1-hr	0.064	0.036			4	(1),(2)	
SO ₂ (ppm at 10% O ₂)	20 (lowest WA limit w/or w/o NCG)	3-hr	500	4		0		(1),(2)	
SO ₂ (ppm at 10% O ₂)	105 (Europe BAT w/NCG)	24-hr	500	4		0		(1),(2)	
NO _X (ppm at 10% O ₂)	77 (Europe BAT: oil)	24-hr	No limit	81	2			(1),(2)	
NO _X (ppm at 10% O ₂)	275 (lowest WA limit: oil or ng)	24-hr	No limit	81	0			(1),(2)	
NOx (ppm at 10% O ₂)	292 (Europe BAT: ng)	24-hr	No limit	(3)	(3)			(1),(2)	

⁽¹⁾ Measured/calculated emissions are averages of 2003-2009 compliance tests or are calculated from 2003-2008 annual emission averages and other stack parameter information. Sea level pressure assumed for absolute stack pressure (facility is approximately at sea level). NO₂ molecular weight assumed for NO_X (MW = 46).

⁽²⁾ Assumes limits with averaging periods of 24 hours or less are comparable (i.e., a daily limit would need to meet a similar value hourly limit most of the time in order to meet the daily limit).

⁽³⁾ The lime kiln at PTPC burns oil exclusively.

4.1.2. WestRock estimated emission reductions

WestRock is located in Tacoma, WA, and operates a recovery furnace and two lime kilns. Emissions and estimated emission reductions are presented in Tables 14–16.

Table 14. WestRock Recovery Furnace (No. 4) Emission Reductions											
Recovery	Potential				Annu Aver	al Emis ages (to	sion ons)				
Furnace	RACT	Proposed	Current		NOx	SO ₂	Р́М	Notes			
Pollutant	Limit	Limit	Permit	Measured	285	286	26				
(units)	(source)	Avg Time	Limit	Emissions	Reductions (tpv)						
PM (gr/dscf at 8% O ₂)	0.0165 (lowest w/in BAT)	1-hr	0.044	0.005			0	1,2			
PM (gr/dscf at 8% O ₂)	0.019 (Europe BAT)	24-hr	0.044	0.005			0	1,2			
PM (gr/dscf at 8% O ₂)	0.027 (lowest WA limit)	1-hr	0.044	0.005			0	1,2			
SO ₂ (ppm at 8% O ₂)	10 (lowest WA limit: w/Whr	24-hr	500	221		273		1,2			
SO ₂ (ppm at 8% O ₂)	18 (Europe BAT: No Whr)	24-hr	500	221		263		1,2			
SO ₂ (ppm at 8% O ₂)	75 (lowest WA limit: No Whr)	3-hr	500	221		189		1,2			
NOx (ppm at 8% O ₂)	58 (Europe BAT)	24-hr	85	50	0			1,2			
NOx (ppm at 8% O ₂)	95 (lowest WA limit)	3-hr	85	50	0			1,2			

Notes: RF = recovery furnace. --- = not applicable. Ng = natural gas. NCG = non condensable gas incineration. Whr = wet heat recovery.

¹ Measured/calculated emissions are averages of 2005-2011 compliance tests or are calculated from 2005-2009 annual emission averages and other stack parameter information. Sea level pressure assumed for absolute stack pressure (facility is approximately at sea level). NO₂ molecular weight assumed for NO_x (MW = 46).

Table 15. WestRock Lime Kiln (No. 1) Emission Reductions									
	Potential				Annu Aver	al Emis ages (to	sion ons)		
Lime Kiln	RACT	Proposed	Current	Measured/	NOx	SO ₂	PM	Notos	
Pollutant	Limit	Limit Avg Time	Permit	Calculated	43 4 24			Notes	
(units)	(source)	Avg Time		LIIISSIOIIS	E: Redu	stimated ctions (d (tpy)		
PM (gr/dscf at 10% O ₂)	0.02 (Europe BAT: oil or ng)	24-hr	0.064	0.033			9	1,2	
PM (gr/dscf at 10% O ₂)	0.030 (lowest WA limit: oil or ng)	1-hr	0.064	0.033			2	1,2	
SO ₂ (ppm at 10% O ₂)	20 (lowest WA limit w/or w/o NCG	3-hr	500	75		3		1,2	
SO ₂ (ppm at 10% O ₂)	105 (Europe BAT: w/NCG)	24-hr	500	75		0		1,2	
NOx (ppm at 10% O ₂)	77 (Europe BAT: oil)	24-hr	No limit	41	0			1,2	
NOx (ppm at 10% O ₂)	275 (lowest WA limit: oil or ng)	24-hr	No limit	41	0			1,2	
NO _X (ppm at 10% O ₂)	292 (Europe BAT: ng)	24-hr	No limit	41	0			1,2	

¹ Measured/calculated emissions are averages of 2005-2011 compliance tests or are calculated from 2005-2009 annual emission averages and other stack parameter information. Sea level pressure assumed for absolute stack pressure (facility is approximately at sea level). NO₂ molecular weight assumed for NO_x (MW = 46).

Table 16. WestRock Lime Kiln (No. 2) Emission Reductions									
					Annu	al Emis	sion		
Limo Kiln	Potential	Broposod	Current	N			DNS)		
Pollutant	Limit	Limit	Permit	Calculated	2	1	5	Notes	
(units)	(source)	Avg Time	Limit	Emissions	 E:	stimated	<u> </u>		
		-			Redu	ctions (tpy)		
PM (gr/dscf at 10% O ₂)	0.02 (Europe BAT: oil or ng)	24-hr	0.064	0.042			3	1,2	
PM (gr/dscf at 10% O ₂)	0.030 (lowest WA limit: oil or ng)	1-hr	0.064	0.042			1	1,2	
SO ₂ (ppm at 10% O ₂)	20 (lowest WA limit w/or w/o NCG	3-hr	500	73		1		1,2	
SO ₂ (ppm at 10% O ₂)	105 (Europe BAT: w/NCG)	24-hr	500	73		0		1,2	
NOx (ppm at 10% O ₂)	77 (Europe BAT: oil)	24-hr	No limit	6	0			1,2	
NO _X (ppm at 10% O ₂)	275 (lowest WA limit: oil or ng)	24-hr	No limit	6	0			1,2	
NO _X (ppm at 10% O ₂)	292 (Europe BAT: ng)	24-hr	No limit	6	0			1,2	

¹ Measured/calculated emissions are averages of 2005-2011 compliance tests or are calculated from 2005-2009 annual emission averages and other stack parameter information. Sea level pressure assumed for absolute stack pressure (facility is approximately at sea level). NO₂ molecular weight assumed for NO_X (MW = 46).

4.1.3. Weyerhaeuser estimated emission reductions

Weyerhaeuser is located in Longview, WA, and operates a recovery furnace and a lime kiln. Emissions and estimated emission reductions are presented in Tables 17 and 18.

Table 17. Weyerhaeuser Recovery Furnace (No. 10) Emission Reductions											
Recovery	Potential				Annu Aver	al Emis ages (to	sion ons)				
Furnace	RACT	Proposed	Current	Measured/	NOx	SO ₂	PM				
Pollutant	Limit	Limit	Permit	Calculated	584	35	43	Notes			
(units)	(source)	Avg Time	Limit	Emissions	E	stimate	d				
					Redu	ctions ((tpy)				
PM	0.0165										
(gr/dscf at 8%	(lowest w/in	1-hr	0.027	0.004			0	1,2			
O ₂)	BAT)										
PM	0.019										
(gr/dscf at 8%	(Europe	24-hr	0.027	0.004			0	1,2			
O ₂)	BAT)										
PM	0.027						_				
(gr/dscf at 8%	(lowest WA	1-hr	0.027	0.004			0	1,2			
O ₂)	limit)										
SO ₂	10										
(ppm at 8%	(lowest WA	24-hr	/5	2.9		0		1,2			
O ₂)	limit: w/vvhr										
SO ₂	18										
(ppm at 8%		24-hr	75	2.9		0		1,2			
Ö ₂)	BAT: NO										
,	vvnr)										
SO ₂											
(ppm at 8%	(IOWESLIVA	3-hr	75	2.9		0		1,2			
O ₂)	M/hr										
	58										
(nom at 8%	50 (Europe	24-br	140	67	78			12			
(ppin at 0.70)	(Luiope RAT)	24-111	140	07	70			1,2			
NOv	95										
(ppm at 8%	(lowest WA	3-hr	140	67	0			12			
$\left(\frac{1}{2} \right)$	limit)			07	Ŭ			• , -			

Notes: RF = recovery furnace. --- = not applicable. Ng = natural gas. NCG = non condensable gas incineration. Whr = wet heat recovery.

¹ Measured/calculated emissions are averages of 2011-2012 compliance tests or are calculated from 200-2007 annual emission averages and other stack parameter information. Sea level pressure assumed for absolute stack pressure (facility is approximately at sea level w/in 20 ft). NO₂ molecular weight assumed for NO_x (MW = 46).

Table 18. Weyerhaeuser Lime Kiln (No. 4) Emission Reductions									
	Potential				Annu Aver	al Emis ages (to	sion ons)		
Lime Kiln	RACT	Proposed	Current	Measured/	NOx	SO ₂	PM	Notos	
Pollutant (units)	Limit (source)	Limit Ava Time	Permit Limit	Calculated Emissions	129	6 timeter	20 J	NOICES	
((,				Redu	Reductions (tpy)			
PM (gr/dscf at 10% O ₂)	0.02 (Europe BAT: oil or ng)	24-hr	0.035	0.002			0	1,2	
PM (gr/dscf at 10% O ₂)	0.030 (lowest WA limit: oil or ng)	1-hr	0.035	0.002			0	1,2	
SO ₂ (ppm at 10% O ₂)	20 (lowest WA limit w/or w/o NCG	3-hr	500	5.2		0		1,2	
SO ₂ (ppm at 10% O ₂)	105 (Europe BAT: w/NCG)	24-hr	500	5.2		0		1,2	
NOx (ppm at 10% O ₂)	77 (Europe BAT: oil)	24-hr	No limit	156	65			1,2	
NOx (ppm at 10% O ₂)	275 (lowest WA limit: oil or ng)	24-hr	No limit	156	0			1,2	
NO _X (ppm at 10% O ₂)	292 (Europe BAT: ng)	24-hr	No limit	156	0			1,2	

¹ Measured/calculated emissions are averages of 2011-2012 compliance tests or are calculated from 2003-2007 annual emission averages and other stack parameter information. Sea level pressure assumed for absolute stack pressure (facility is approximately at sea level w/in 20 ft). NO₂ molecular weight assumed for NO_x (MW = 46).

4.1.4. **GP** Camas estimated emission reductions

GP Camas is located in Camas, WA, and operates two recovery furnaces and a lime kiln. Emissions and estimated emission reductions are presented in Tables 19–21.

Table 19. GP Camas Recovery Furnace (No. 3) Emission Reductions											
Recovery	Potential				Annu Aver	al Emis ages (to	sion ons)				
Furnace	RACT	Proposed	Current	Measured/	NOx	SO ₂	PM	Natas			
Pollutant	Limit	Limit	Permit	Calculated	119	2	7	Notes			
(units)	(source)	Avg Time	Limit	Emissions	E	stimated	d				
					Reductions (tpy)						
PM	0.0165										
(gr/dscf at 8%	(lowest w/in	1-hr	0.033	0.033			0	1,2			
O ₂)	BAT)										
PM	0.019										
(gr/dscf at 8%	(Europe	24-hr	0.033	0.033			0	1,2			
O ₂)	BAT)										
PM	0.027						-				
(gr/dscf at 8%	(lowest WA	1-hr	0.033	0.033			0	1,2			
O ₂)	limit)										
SO ₂	10		10			•		4.0			
(ppm at 8%	(lowest WA	24-hr	10	0.8		0		1,2			
O ₂)	limit: w/vvnr										
SO ₂	18										
(ppm at 8%		24-hr	10	0.8		0		1,2			
O ₂)	DAT. NU										
	75										
SO ₂	/Jowest W/A										
(ppm at 8%	limit: No	3-hr	10	0.8		0		1,2			
O ₂)	Whr)										
NOx	58										
(ppm at 8%	(Europe	24-hr	No limit	57	0			1.2			
O_2)	BAT)				-			- ,—			
NÓx	95										
(ppm at 8%	(lowest WA	3-hr	No limit	57	0			1,2			
\ddot{O}_2	limit)							-			

Notes: RF = recovery furnace. --- = not applicable. Ng = natural gas. NCG = non condensable gas incineration. Whr = wet heat recovery.

¹ Measured/calculated emissions are averages of 2007-2009 compliance tests or are calculated from 2003-2007 annual emission averages and other stack parameter information. Sea level pressure assumed for absolute stack pressure (facility is approximately at sea level w/in 75 ft). NO₂ molecular weight assumed for NO_x (MW = 46).

Table 20. GP Camas Recovery Furnace (No. 4) Emission Reductions									
Recovery	Potential				Annu Aver	al Emis ages (to	sion ons)		
Furnace	RACT	Proposed	Current	Measured/	NOx	SO ₂	PM	Notos	
Pollutant	Limit	Limit	Permit	Calculated	207	3	65	notes	
(units)	(source)	Avg Time	Limit	Emissions	E	stimated	k		
					Redu	ctions (tpy)		
PM	0.0165								
(gr/dscf at 8% O ₂)	(lowest w/in BAT)	1-hr	0.033	0.020			11	1,2	
PM	0.019								
(gr/dscf at 8% O ₂)	(Europe BAT)	24-hr	0.033	0.020			3	1,2	
PM	0.027								
(gr/dscf at 8%	(lowest WA	1-hr	0.033	0.020			0	1,2	
O ₂)	limit)								
SO ₂	10								
(ppm at 8%	(lowest WA	24-hr	10	1.6		0		1,2	
02)	18								
SO ₂	(Europe								
(ppm at 8%	BAT: No	24-hr	10	1.6		0		1,2	
O ₂)	Whr)								
SO ₂	75								
(ppm at 8%	(lowest WA	3-hr	10	16		0		12	
(ppin at 0 / 0)	limit: No	0 111	10	1.0		Ŭ		1,2	
02) NO	Whr)								
NO _X	58	04 hr	Nie lineit	70	40			4.0	
(ppm at 8%		24-nr	NO IIMIT	73	42			1,2	
	95								
(ppm at 8%	(lowest WA	3-hr	No limit	73	0			12	
O ₂)	limit)	0.11		10	Ŭ			•,-	

Notes: RF = recovery furnace. --- = not applicable. Ng = natural gas. NCG = non condensable gas incineration. Whr = wet heat recovery.

¹ Measured/calculated emissions are averages of 2007-2009 compliance tests or are calculated from 2003-2007 annual emission averages and other stack parameter information. Sea level pressure assumed for absolute stack pressure (facility is approximately at sea level w/in 75 ft). NO₂ molecular weight assumed for NO_x (MW = 46).

	Table 21. GP Camas Lime Kiln (No. 4) Emission Reductions								
					Annu	al Emis	sion		
	Potential	Dreneed	Current	Menoured/	Averages (tons)				
Lime Kiin Pollutant	Limit	Proposed Limit	Permit	Neasured/	104	30 ₂	13	Notes	
(units)	(source)	Ava Time	Limit	Emissions	E	stimated	d		
(,	(,	g			Redu	ctions (tpy)		
PM (gr/dscf at 10% O ₂)	0.02 (Europe BAT: oil or ng)	24-hr	0.067	0.021			1	(1),(2)	
PM (gr/dscf at 10% O ₂)	0.030 (lowest WA limit: oil or ng)	1-hr	0.067	0.021			0	(1),(2)	
SO ₂ (ppm at 10% O ₂)	20 (lowest WA limit w/or w/o NCG)	3-hr	500	2.0		0		(1),(2)	
SO ₂ (ppm at 10% O ₂)	105 (Europe BAT w/NCG)	24-hr	500	2.0		0		(1),(2)	
NO _X (ppm at 10% O ₂)	77 (Europe BAT: oil)	24-hr	No limit	(3)	(3)			(1),(2)	
NO _X (ppm at 10% O ₂)	275 (lowest WA limit: oil or ng)	24-hr	No limit	361	25			(1),(2)	
NO _X (ppm at 10% O ₂)	292 (Europe BAT: ng)	24-hr	No limit	367	20			(1),(2)	

⁽¹⁾ Measured/calculated emissions are averages of 2007-2009 compliance tests or are calculated from 2003-2007 annual emission averages and other stack parameter information. Sea level pressure assumed for absolute stack pressure (facility is approximately at sea level w/in 75 ft). NO₂ molecular weight assumed for NO_X (MW = 46).

⁽²⁾ Assumes limits with averaging periods of 24 hours or less are comparable (i.e., a daily limit would need to meet a similar value hourly limit most of the time in order to meet the daily limit).

⁽³⁾ The LK (No. 4) at GP Camas does not burn oil. The fuel oil burner was decommissioned in early 2011.

4.1.5. KapStone estimated emission reductions

KapStone is located in Longview, WA, and operates three recovery furnaces and three lime kilns. Emissions and estimated emission reductions are presented in Tables 22–27.

	Table 22. KapStone Recovery Furnace (No. 18) Emission Reductions									
Recovery	Potential				Annu Aver	al Emis ages (to	sion ons)			
Furnace	RACT	Proposed	Current		NOx	SO ₂	РM			
Pollutant	Limit	Limit	Permit	Measured	127	12	4	Notes		
(units)	(source)	Avg Time	Limit	Emissions	E: Redu	stimate ctions	d (tpy)			
PM (gr/dscf at 8% O ₂)	0.0165 (lowest w/in BAT)	1-hr	0.044	0.0014			0	1,2		
PM (gr/dscf at 8% O ₂)	0.019 (Europe BAT)	24-hr	0.044	0.0014			0	1,2		
PM (gr/dscf at 8% O ₂)	0.027 (lowest WA limit)	1-hr	0.044	0.0014			0	1,2		
SO ₂ (ppm at 8% O ₂)	10 (lowest WA limit: w/Whr	24-hr	60 (removed)	30		8		1,2		
SO ₂ (ppm at 8% O ₂)	18 (Europe BAT: No Whr)	24-hr	60 (removed)	30		5		1,2		
SO ₂ (ppm at 8% O ₂)	75 (lowest WA limit: No Whr)	3-hr	60 (removed)	30		0		1,2		
NOx (ppm at 8% O ₂)	58 (Europe BAT)	24-hr	95	56	0			1,2		
NO _X (ppm at 8% O ₂)	95 (lowest WA limit)	3-hr	95	56	0			1,2		

Notes: RF = recovery furnace. --- = not applicable. Ng = natural gas. NCG = non condensable gas incineration. Whr = wet heat recovery.

¹ Measured/calculated emissions are averages of 2010-2013 compliance tests or are calculated from 2005-2011 annual emission averages and other stack parameter information. Sea level pressure assumed for absolute stack pressure (facility is approximately at sea level w/in 20 ft). NO₂ molecular weight assumed for NO_x (MW = 46).

	Table 23. Kap	Stone Recove	ery Furnace (No. 19) Emiss	ion Red	luctions	6	
Recovery	Potential				Annu Aver	al Emis ages (to	sion ons)	
Furnace	RACT	Proposed	Current		NOx	SO ₂	PM	Nataa
Pollutant	Limit	Limit	Permit	Measured	173	18	14	Notes
(units)	(source)	Avg Time	Limit	Emissions	E: Redu	stimate ctions	d (tpy)	
PM (gr/dscf at 8% O ₂)	0.0165 (lowest w/in BAT)	1-hr	0.040	0.004			0	1,2
PM (gr/dscf at 8% O ₂)	0.019 (Europe BAT)	24-hr	0.040	0.004			0	1,2
PM (gr/dscf at 8% O ₂)	0.027 (lowest WA limit)	1-hr	0.040	0.004			0	1,2
SO ₂ (ppm at 8% O ₂)	10 (lowest WA limit: w/Whr	24-hr	60 (removed)	28		11		1,2
SO ₂ (ppm at 8% O ₂)	18 (Europe BAT: No Whr)	24-hr	60 (removed)	28		6		1,2
SO ₂ (ppm at 8% O ₂)	75 (lowest WA limit: No Whr)	3-hr	60 (removed)	28		0		1,2
NO _X (ppm at 8% O ₂)	58 (Europe BAT)	24-hr	95	61	8			1,2
NOx (ppm at 8% O ₂)	95 (lowest WA limit)	3-hr	95	61	0			1,2

Notes: RF = recovery furnace. --- = not applicable. Ng = natural gas. NCG = non condensable gas incineration. Whr = wet heat recovery.

¹ Measured/calculated emissions are averages of 2010-2013 compliance tests or are calculated from 2005-2011 annual emission averages and other stack parameter information. Sea level pressure assumed for absolute stack pressure (facility is approximately at sea level w/in 20 ft). NO₂ molecular weight assumed for NO_X (MW = 46).

	Table 24. Kap	Stone Recove	ery Furnace (No. 22) Emiss	ion Red	luctions	6	
Recovery	Potential				Annu Aver	al Emis ages (to	sion ons)	
Furnace	RACT	Proposed	Current		NOx	SO ₂	PM	
Pollutant	Limit	Limit	Permit	Measured	268	60	8	Notes
(units)	(source)	Avg Time	Limit	Emissions	E: Redu	stimate ctions	d (tpy)	
PM (gr/dscf at 8% O ₂)	0.0165 (lowest w/in BAT)	1-hr	0.027	0.001			0	1,2
PM (gr/dscf at 8% O ₂)	0.019 (Europe BAT)	24-hr	0.027	0.001			0	1,2
PM (gr/dscf at 8% O ₂)	0.027 (lowest WA limit)	1-hr	0.027	0.001			0	1,2
SO ₂ (ppm at 8% O ₂)	10 (lowest WA limit: w/Whr	24-hr	120 (removed)	86		53		1,2
SO ₂ (ppm at 8% O ₂)	18 (Europe BAT: No Whr)	24-hr	120 (removed)	86		47		1,2
SO ₂ (ppm at 8% O ₂)	75 (lowest WA limit: No Whr)	3-hr	120 (removed)	86		8		1,2
NO _X (ppm at 8% O ₂)	58 (Europe BAT)	24-hr	95	66	32			1,2
NOx (ppm at 8% O ₂)	95 (lowest WA limit)	3-hr	95	66	0			1,2

Notes: RF = recovery furnace. --- = not applicable. Ng = natural gas. NCG = non condensable gas incineration. Whr = wet heat recovery.

¹ Measured/calculated emissions are averages of 2010-2013 compliance tests or are calculated from 2005-2011 annual emission averages and other stack parameter information. Sea level pressure assumed for absolute stack pressure (facility is approximately at sea level w/in 20 ft). NO₂ molecular weight assumed for NO_X (MW = 46).

	Table 25.	KapStone Lir	ne Kiln (No	. 3) Emission	Reducti	ons		
	_				Annu	al Emis	sion	
	Potential	Duanaaad	0		Aver	ages (to	DNS)	
Lime Kiin Pollutant	Limit	Proposed	Dormit	Mossurad	24	0	7 IVI	Notes
(units)	(source)	Ava Time	Limit	Emissions	E F	stimated	1	
()	(,				Redu	ctions (tpy)	
PM (gr/dscf at 10% O ₂)	0.02 (Europe BAT: oil or ng)	24-hr	0.030	0.01			0	1,2
PM (gr/dscf at 10% O ₂)	0.030 (lowest WA limit: oil or ng)	1-hr	0.030	0.01			0	1,2
SO ₂ (ppm at 10% O ₂)	20 (lowest WA limit w/or w/o NCG	3-hr	20	2.1		0		1,2
SO ₂ (ppm at 10% O ₂)	105 (Europe BAT: w/NCG)	24-hr	20	2.1		0		1,2
NOx (ppm at 10% O ₂)	77 (Europe BAT: oil)	24-hr	340	84	2			1,2
NO _X (ppm at 10% O ₂)	275 (lowest WA limit: oil or ng)	24-hr	340	84	0			1,2
NOx (ppm at 10% O ₂)	292 (Europe BAT: ng)	24-hr	340	84	0			1,2

¹ Measured/calculated emissions are averages of 2010-2013 compliance tests or are calculated from 2005-2011 annual emission averages and other stack parameter information. Sea level pressure assumed for absolute stack pressure (facility is approximately at sea level w/in 20 ft). NO₂ molecular weight assumed for NO_x (MW = 46).

	Table 26.	KapStone Lir	ne Kiln (No	. 4) Emission	Reducti	ons		
				Mossured	Annu	al Emis	sion	
	Potential	Drepeed	Current		Aver NO.	ages (to	DNS)	
Pollutant	Limit	l imit	Permit		54	2	8	Notes
(units)	(source)	Avg Time	Limit	Emissions	E	stimated	1	
		Ū			Redu	ctions (tpy)	
PM (gr/dscf at 10% O ₂)	0.02 (Europe BAT: oil or ng)	24-hr	0.030	0.015			0	1,2
PM (gr/dscf at 10% O ₂)	0.030 (lowest WA limit: oil or ng)	1-hr	0.030	0.015			0	1,2
SO ₂ (ppm at 10% O ₂)	20 (lowest WA limit w/or w/o NCG	3-hr	20	3.3		0		1,2
SO ₂ (ppm at 10% O ₂)	105 (Europe BAT: w/NCG)	24-hr	20	3.3		0		1,2
NOx (ppm at 10% O ₂)	77 (Europe BAT: oil)	24-hr	340	126	21			1,2
NO _X (ppm at 10% O ₂)	275 (lowest WA limit: oil or ng)	24-hr	340	126	0			1,2
NOx (ppm at 10% O ₂)	292 (Europe BAT: ng)	24-hr	340	126	0			1,2

¹ Measured/calculated emissions are averages of 2010-2013 compliance tests or are calculated from 2005-2011 annual emission averages and other stack parameter information. Sea level pressure assumed for absolute stack pressure (facility is approximately at sea level w/in 20 ft). NO₂ molecular weight assumed for NO_x (MW = 46).

	Table 27.	KapStone Lir	ne Kiln (No	. 5) Emission	Reducti	ons		
	Detential				Annu	al Emis	sion	
l ime Kiln	Potential RACT	Proposed	Current		NOv		PM	
Pollutant	Limit	Limit	Permit	Measured	41	1	1	Notes
(units)	(source)	Avg Time	Limit	Emissions	Estimated Reductions (tpy)			
PM (gr/dscf at 10% O ₂)	0.02 (Europe BAT: oil or ng)	24-hr	0.035	0.002			0	1,2
PM (gr/dscf at 10% O ₂)	0.030 (lowest WA limit: oil or ng)	1-hr	0.035	0.002			0	1,2
SO ₂ (ppm at 10% O ₂)	20 (lowest WA limit w/or w/o NCG	3-hr	20	1.9		0		1,2
SO ₂ (ppm at 10% O ₂)	105 (Europe BAT: w/NCG)	24-hr	20	1.9		0		1,2
NOx (ppm at 10% O ₂)	77 (Europe BAT: oil)	24-hr	275	98	9			1,2
NOx (ppm at 10% O ₂)	275 (lowest WA limit: oil or ng)	24-hr	275	98	0			1,2
NO _x (ppm at 10% O ₂)	292 (Europe BAT: ng)	24-hr	275	98	0			1,2

¹ Measured/calculated emissions are averages of 2010-2013 compliance tests or are calculated from 2005-2011 annual emission averages and other stack parameter information. Sea level pressure assumed for absolute stack pressure (facility is approximately at sea level w/in 20 ft). NO₂ molecular weight assumed for NO_x (MW = 46).

4.1.6. Boise White Wallula estimated emission reductions

Boise White Wallula is located in Wallula, WA, and operates two recovery furnaces and a lime kiln. Emissions and estimated emission reductions are presented in Tables 28–30.

Annual Emission	
Recovery Potential Averages (tons)	
Furnace RACT Proposed Current Measured/ NOx SO2 PM	Notos
Pollutant Limit Limit Permit Calculated 67 294 9	Notes
(units) (source) Avg Time Limit Emissions Estimated	
Reductions (tpy)	
PM 0.0165	
(gr/dscf at 8% (lowest w/in 1-hr 0.044 0.006 0	1,2
O ₂) BAT)	
PM 0.019	
(gr/dscf at 8% (Europe 24-hr 0.044 0.006 0	1,2
O ₂) BAT)	
PM 0.027	
(gr/dscf at 8% (lowest WA 1-hr 0.044 0.006 0	1,2
O ₂) limit)	
SO ₂ 10	
(ppm at 8% (lowest WA 24-hr 500 173 277	1,2
O ₂) limit: w/Whr	
SO ₂ 18	
(ppm at 8% (Europe 24-br 500 173 264	12
(pp) BAT: No 21111 000 110 201	1,2
Whr)	
SO ₂ 75	
(ppm at 8% (lowest WA 3-hr 500 173 167	1.2
$\begin{pmatrix} (p) \\ (p$.,_
Whr)	
NOx 58	
(ppm at 8% (Europe 24-hr No limit 57 0	1,2
O ₂) BAT)	
	4.0
(ppm at 8% (lowest VVA 3-nr No limit 5/ 0	1,2

Notes: RF = recovery furnace. --- = not applicable. Ng = natural gas. NCG = non condensable gas incineration. Whr = wet heat recovery.

¹ Measured/calculated emissions are averages of 2005-2012 compliance tests or are calculated from 2005-2011 annual emission averages and other stack parameter information. Sea level pressure assumed for absolute stack pressure (facility is approximately at sea level w/in 100 ft). NO₂ molecular weight assumed for NO_X (MW = 46).

Table	e 29. Boise Wh	nite Wallula Re	covery Fu	rnace (No. 3) E	missior	n Reduc	tions	
Recovery	Potential				Annu Aver	al Emis ages (to	sion ons)	
Furnace	RACT	Proposed	Current		NO _X	SO ₂	PM	Netes
Pollutant	Limit	Limit	Permit	Measured	285	496	15	Notes
(units)	(source)	Avg Time	Limit	Emissions	E	stimate	b	
					Redu	ctions ((tpy)	
PM	0.0165							
(gr/dscf at 8%	(lowest w/in	1-hr	0.027	0.003			0	1,2
O ₂)	BAT)							
PM	0.019	041	0.007	0.000			0	4.0
(gr/dscr at 8%	(Europe	24-nr	0.027	0.003			0	1,2
	DAT) 0.027							
(ar/dscf at 8%	(lowest WA	1-hr	0.027	0.003			0	12
(gi/door at 070	limit)		0.027	0.000			Ŭ	1,2
SO ₂	10							
(ppm at 8%	(lowest WA	24-hr	500	49		395		1,2
O ₂)	limit: w/Whr							
SO ₂	18							
(ppm at 8%	(Europe	24-hr	500	49		314		1,2
Ö ₂)	BAT: NO							,
	75							
SO ₂	/Jowest WA							
(ppm at 8%	limit: No	3-hr	500	49		0		1,2
O ₂)	Whr)							
NO _X	58							
(ppm at 8%	(Europe	24-hr	112	61	14			1,2
O ₂)	BAT)							
NOx	95				•			
(ppm at 8%	(lowest WA	3-hr	112	61	0			1,2
U2)	limit)							

Notes: RF = recovery furnace. --- = not applicable. Ng = natural gas. NCG = non condensable gas incineration. Whr = wet heat recovery.

¹ Measured/calculated emissions are averages of 2005-2012 compliance tests or are calculated from 2005-2011 annual emission averages and other stack parameter information. Sea level pressure assumed for absolute stack pressure (facility is approximately at sea level w/in 100 ft). NO₂ molecular weight assumed for NO_X (MW = 46).

	Table 30. Boise White Wallula Lime Kiln Emission Reductions									
	Potential				Annual Emission Averages (tons)					
Lime Kiln	RACT	Proposed	Current	Measured/	NOx	SO ₂	PM	Notoo		
Pollutant	Limit		Permit	Calculated	59	3	48	Notes		
(units)	(source)	Avg Time	Limit	Emissions	E: Redu	stimated ctions (d (tpy)			
PM (gr/dscf at 10% O ₂)	0.02 (Europe BAT: oil or ng)	24-hr	0.064	0.047			28	1,2		
PM (gr/dscf at 10% O ₂)	0.030 (lowest WA limit: oil or ng)	1-hr	0.064	0.047			18	1,2		
SO ₂ (ppm at 10% O ₂)	20 (lowest WA limit w/or w/o NCG	3-hr	5/yr; 19 lb/day	2.4		0		1,2		
SO ₂ (ppm at 10% O ₂)	105 (Europe BAT: w/NCG)	24-hr	5/yr; 19 lb/day	2.4		0		1,2		
NOx (ppm at 10% O ₂)	77 (Europe BAT: oil)	24-hr	No limit	67	0			1,2		
NOx (ppm at 10% O ₂)	275 (lowest WA limit: oil or ng)	24-hr	No limit	67	0			1,2		
NO _X (ppm at 10% O ₂)	292 (Europe BAT: ng)	24-hr	No limit	67	0			1,2		

¹ Measured/calculated emissions are averages of 2005-2012 compliance tests or are calculated from 2005-2011 annual emission averages and other stack parameter information. Sea level pressure assumed for absolute stack pressure (facility is approximately at sea level w/in 100 ft). NO₂ molecular weight assumed for NO_X (MW = 46).

4.1.7. Cosmo estimated emission reductions

Cosmo is located in Cosmopolis, WA, and operates a sulfite recovery furnace. The sulfite mill process does not include the use of lime kilns. Emissions and estimated emission reductions are presented in Table 31.

Table 31. Cosmo Recovery Furnace Emission Reductions											
Recoverv	Potential				Annu Aver	al Emis ages (te	ssion ons)				
Furnace	RACT	Proposed	Current	Measured/	NOx	SO ₂	PM	Notes			
Pollutant	Limit	Limit	Permit	Calculated	348	169	195	Notes			
(units)	(source)	Avg Time	Limit	Emissions	E	stimate	d				
					Redu	ctions	(tpy)				
PM (gr/dscf at 8% O ₂)	0.0165 (lowest w/in BAT)	1-hr	0.10	0.054			135	(1),(2),(3)			
PM (gr/dscf at 8% O ₂)	0.008 (Europe sulfite BAT)	24-hr	0.10	0.054			166	(1),(2),(3)			
PM (gr/dscf at 8% O ₂)	0.027 (lowest WA limit)	1-hr	0.10	0.054			97	(1),(2),(3)			
SO ₂ (ppm at 8% O ₂)	10 (lowest WA limit w/Whr)	24-hr	360	308		164		(1),(2),(3)			
SO ₂ (ppm at 8% O ₂)	49 (Europe sulfite BAT: No Whr)	24-hr	360	308		142		(1),(2),(3)			
SO ₂ (ppm at 8% O ₂)	75 (lowest WA limit: No Whr)	3-hr	360	308		128		(1),(2),(3)			
NO _X (ppm at 8% O ₂)	137 (Europe sulfite BAT)	24-hr	No limit	86	0			(1),(2),(3)			
NO _X (ppm at 8% O ₂)	95 (lowest WA limit)	3-hr	No limit	86	0			(1),(2),(3)			

Notes: RF = recovery furnace. --- = not applicable. Ng = natural gas. NCG = non condensable gas incineration. Whr = wet heat recovery.

(1) Measured/calculated emissions are averages of 2011-2012 compliance tests or are calculated from emission inventory data. Because the facility did not operate from 2007 through 2010, emission inventories from 2005, 2006 and 2011 were evaluated and 2011 annual emissions were chosen for this evaluation. Sea level pressure assumed for absolute stack pressure (facility is approximately at sea level). NO₂ molecular weight assumed for NO_x (MW = 46).

⁽²⁾ Assumes limits with averaging periods of 24 hours or less are comparable (i.e., a daily limit would need to meet a similar value hourly limit most of the time in order to meet the daily limit).

⁽³⁾ Cosmo is currently the only sulfite mill in WA. Emission limits are compared between sulfate (kraft) mills and this sulfite mill, even though they are different processes. Sulfite mill BAT values were used where noted.
4.1.8. Graymont estimated emission reductions

Graymont is located in Tacoma, WA, and operates a calcining lime kiln. Emissions and estimated emission reductions are presented in Table 32.

Table 32. Graymont Calcining Lime Kiln (CLK) Emission Reductions								
	Detential				Annu	al Emis	sion	
l ime Kiln	Potential	Proposed	Current	Mossured/	NOv	SO2	PM	
Pollutant	Limit	Limit	Permit	Calculated	56	9	63	Notes
(units)	(source)	Avg Time	Limit	Emissions	E	stimate	d	
					Redu	ctions	(tpy)	
PM (gr/dscf at 10% O ₂)	0.02 (Europe BAT for any fuel)	24-hr	0.05	0.012			0	(1),(2),(3)
PM (gr/dscf at 10% O ₂)	0.030 (lowest WA limit for ng)	1-hr	0.05	0.012			0	(1),(2),(3)
SO ₂ (ppm at 10% O ₂)	8 (Europe BAT w/o NCG)	24-hr	1000	12		3		(1),(2),(3)
SO ₂ (ppm at 10% O ₂)	20 (lowest WA limit w/or w/o NCG	3-hr	1000	12		0		(1),(2),(3)
NO _X (ppm at 10% O ₂)	275 (lowest WA limit: oil or ng)	24-hr	No limit	107	0			(1),(2),(3)
NOx (ppm at 10% O ₂)	292 (Europe BAT: ng)	24-hr	No limit	107	0			(1),(2),(3)

Notes: LK = lime kiln. --- = not applicable. Ng = natural gas. NCG = non condensable gas incineration.

(1) Listed emissions are averages of, or calculated from, 2009 & 2011 compliance tests and 2006-2012 emission inventory emissions and other stack parameter information. Based on information from the Puget Sound Clean Air Agency (PSCAA), coal was the primary fuel for most of these years until approximately 2010. Ng was used in 2011-2012. Sea level pressure assumed for absolute stack pressure (facility is approximately at sea level). NO₂ molecular weight assumed for NO_x (MW = 46).

⁽²⁾ Assumes limits with averaging periods of 24 hours or less are comparable (i.e., a daily limit would need to meet a similar value hourly limit most of the time in order to meet the daily limit).

⁽³⁾ Ecology could not find information indicating that the Graymont kiln performs incineration of NCG. Based on information from PSCAA, coal was the primary fuel used for the Graymont lime kiln for most of 2006 through 2010. Ng was used in 2011-2012. PSCAA permit statement of basis indicates the kiln can burn coal or ng. Oil is not listed as fuel source for the kiln.

4.2. Estimated emission reductions for recovery furnaces achievable (cumulative data)

Table 33. Tons of Potential Pollutant Reduction Based on Proposed RACT Limit Options for Recovery Furnaces									
Pollutant/ Avg Period:	PM 1-hr	PM 1-hr	PM 1-hr	SO ₂ 24-hr ¹	SO₂ 24-hr	SO₂ 3-hr	NOx 24-hr	NO _x 3-hr	
Proposed RACT Limit for Recovery Furnace:	0.0165 gr/dscf at 8% O ₂ (basis: BAT; sulfite BAT = 0.008 gr/dscf)	0.019 gr/dscf at 8% O ₂ (basis: BAT; sulfite BAT = 0.008 gr/dscf)	0.027 gr/dscf at 8% O ₂ (basis: WA)	10 ppm at 8% O₂ (basis: GP WA = w/in BAT)	18 ppm at 8% O ₂ (basis: BAT; sulfite BAT = 49 ppm)	75 ppm at 8% O ₂ (basis: lowest WA w/o Whr)	58 ppm at 8% O ₂ (basis: BAT; sulfite BAT = 137 ppm)	95 ppm at 8% O₂ (basis: WA)	
Boise White Wallula No. 3	0	0	0	395	314	0	14	0	
Boise White Wallula No. 2	0	0	0	277	264	167	0	0	
WestRock No. 4	0	0	0	273	263	189	0	0	
Cosmo (1, 2,& 3)	135	166	97	164	142	128	0	0	
PTPC RF	45	34	0	67	37	0	0	0	
Weyerhaeuser No. 10	0	0	0	0	0	0	78	0	
GP Camas No. 4	11	3	0	0	0	0	42	0	
GP Camas No. 3	0	0	0	0	0	0	0	0	
KapStone RF22	0	0	0	53	47	8	32	0	
KapStone RF19	0	0	0	11	6	0	8	0	
KapStone RF18	0	0	0	8	5	0	0	0	
Total	191	203	97	1248	1078	491	176	0	
Notes: RF = recovery furnace. Whr = wet heat recovery									

¹ Based on GP Camas RF Nos. 3 and 4, which have wet heat recovery systems.

Figure 2. Estimated potential PM emission reductions for recovery furnaces

Figure 3. Estimated potential SO₂ emission reductions for recovery furnaces

Figure 4. Estimated potential NO_X emission reductions for recovery furnaces

4.3. Estimated emission reductions for lime kilns achievable (cumulative data)

Table 34	Table 34. Tons of Potential Pollutant Reduction Based on Proposed RACT Limit Options for Lime Kilns							
Pollutant/ Avg Period:	PM (ng or oil) 24-hr	PM (ng or oil) 24-hr	SO₂ (w/o NCG) 24-hr	SO₂ (w/or w/o NCG) 3-hr	SO₂ (w/NCG) 24-hr	NO _x (oil) 24-hr	NO _x (ng or oil) 24-hr	NO _x (gas) 24-hr
Proposed RACT Limit for Lime Kiln:	0.02 gr/dscf at 10% O2 (basis: BAT (ng or oil))	0.030 gr/dscf at 10% O₂ (basis: WA)	8 ppm at 10% O₂ (basis: BAT w/o NCG)	20 ppm at 10% O ₂ (basis: GP WA = w/in BAT w/or w/o NCG)	105 ppm at 10% O₂ (basis: BAT w/NCG)	77 ppm at 10% O2 (basis: BAT (oil))	275 ppm at 10% O₂ (basis: WA w/oil or ng)	292 ppm at 10% O2 (basis: BAT (ng))
Boise White Wallula LK ⁽¹⁾	28	18	N/A	0	0	0	0	0
WestRock No. 1 ⁽¹⁾	9	2	N/A	3	0	0	0	0
WestRock No. 2 ⁽¹⁾	3	1	N/A	1	0	0	0	0
PTPC LK ⁽²⁾	10	4	N/A	0	0	2	0	N/A
Weyerhaeuser No. 4 ⁽¹⁾	0	0	N/A	0	0	65	0	0
GP Camas No. 4 ⁽³⁾	1	0	N/A	0	0	N/A ⁽³⁾	25	20
KapStone LK3 ⁽¹⁾	0	0	N/A	0	0	2	0	0
KapStone LK4 ⁽¹⁾	0	0	N/A	0	0	21	0	0
KapStone LK5 ⁽¹⁾	0	0	N/A	0	0	9	0	0
Graymont CLK No. 1 ⁽⁴⁾	0	0	3	0	N/A ⁽⁵⁾	N/A ⁽⁴⁾	0	0
Total	51	25	3	4	0	99	25	20

Notes: LK = lime kiln. N/A = not applicable or information not available or not found. NCG = non condensable gas incineration.

⁽¹⁾ Ecology found information indicating that the facility has the capability to burn oil or gas in the Lime Kilns.

⁽²⁾ The LK at PTPC burns oil exclusively.

⁽³⁾ The LK (No. 4) at GP Camas does not burn oil. The fuel oil burner was decommissioned in early 2011.

⁽⁴⁾ Based on information from PSCAA, coal was the primary fuel used for the Graymont lime kiln for most of 2006 through 2010. Natural gas was used in 2011-2012. PSCAA permit statement of basis indicates the kiln can burn coal or natural gas. Oil is not listed as fuel source for the kiln.
 ⁽⁵⁾ Factors and that find information in dication that the Comment kills and formation of NGC

⁽⁵⁾ Ecology could not find information indicating that the Graymont kiln performs incineration of NCG.

Figure 5. Estimated potential PM emission reductions for lime kilns

Figure 6. Estimated potential SO₂ emission reductions for lime kilns

Figure 7. Estimated potential NO_X emission reductions for lime kilns

4.4. Discussion of estimated potential emission reductions

This section discusses the potential of adopting the various emission levels presented in Sections 4.1–4.3. An evaluation of the potential actual emissions reductions possible if the option were to be implemented is given based on the calculations presented in Sections 4.2 and 4.3.

4.4.1. Discussion of estimated potential emission reductions for recovery furnaces

Based on the estimated potential emission reductions summarized in Sections 4.2 and 4.3, Ecology makes the following observations regarding the benefits of adopting these limits, and if further consideration is warranted:

- <u>PM</u>:
 - According to Table 6, an HERB unit RF (No. 3), at the International Paper CAMTI facility in Louisiana, achieves an emission limit of 0.015 gr/dscf (at 8% O₂), which is

within European BAT ranges. Implementing the HERB process on an existing recovery furnace would be a significant reconstruction of the furnace. There are currently no HERB units in Washington State and the technology is not considered further.

- The other U.S. facility in Table 6 with emissions within European BAT ranges uses an ESP. According to Table 33 (and Figure 2), the potential benefit of adopting an emission limit of 0.0165 grains/dscf (at 8% O₂) would provide an estimated 191 tpy of pollutant reduction. This limit is based on the use of an ESP with eight fields online versus the more common ESP configuration with two or three fields online. The facility with this control technology implemented it as part of a MACT cumulative emission rate limit alternative covering three emission units (recovery boiler, lime kiln, smelt dissolving tank) as described in 40 CFR 862(a)(1). No recovery furnace controlled by an 8-field ESP is currently operating in Washington State.
- According to Table 33 (and Figure 2), adopting an emission limit of 0.019 grains/dscf (at 8% O₂) would provide an estimated 203 tpy of pollutant reduction. This limit is the upper limit range of the European BAT PM limits for recovery furnaces. [Note: a sulfite BACT limit of 0.008 grains/dscf (at 8% O₂) was used for emission reductions estimates for Washington's sulfite mill (Cosmo)].
- According to Table 33 (and Figure 2), the potential benefit of adopting an emission limit of 0.027 grains/dscf (at 8% O₂) would provide an estimated 97 tpy of PM reduction. This limit is currently demonstrated at three recovery furnaces in Washington State. This limit and control technology can be considered reasonable to adopt for the other recovery furnaces in Washington. This limit is considered for further analysis.
- <u>SO</u>₂:
 - According to Table 33 (and Figure 3), the potential benefit of adopting an emission limit of 10 ppm (at 8% O₂), would provide an estimated 1,248 tpy of pollutant reduction, primarily from one facility. The potential pollutant reductions achievable from adopting this limit, provides the greatest estimated pollutant reduction for the proposed recovery furnaces emission limits in Table 33. Based on the potential benefit of implementing this limit, and because this limit has already been demonstrated at two recovery furnaces in Washington State, this limit is considered for further analysis.
 - According to Table 33 (and Figure 3), the potential benefit of adopting an emission limit of 18 ppm (at 8% O₂), would provide an estimated 1,078 tpy of pollutant reduction. This limit is the upper limit range of the European BAT SO₂ limits for recovery furnaces. [Note: a sulfite BAT limit of 49 ppm (at 8% O₂) was used for emission reductions estimates for Washington's sulfite mill (Cosmo)]. These BAT limits have not been, but could be implemented in Washington State.
 - According to Table 33 (and Figure 3), the potential benefit of adopting an emission limit of 75 ppm (at 8% O₂), would provide an estimated 491 TPY of pollutant reduction. Based on the potential benefit of implementing this limit, and because this

limit has already been demonstrated at a recovery furnace in Washington State, this limit is considered for further analysis.

- <u>NO_X:</u>
 - According to Table 33 (and Figure 4), the potential benefit of adopting an emission limit of 58 ppm (at 8% O₂), would provide an estimated 176 TPY of pollutant reduction. This limit is the upper limit range of the European BAT NO_X limits for recovery furnaces. [Note: a sulfite BAT limit of 137 ppm (at 8% O₂) was used for emission reductions estimates for Washington's sulfite mill (Cosmo)]. These BAT limits have not been implemented in Washington State.
 - According to Table 33 (and Figure 4), the potential benefit of adopting an emission limit of 95 ppm (at 8% O₂), would not provide pollutant reductions based on how recovery furnaces in Washington operated their units during the emission inventory evaluated as part of this analysis. However, adopting this limit could lower the potential to emit levels at some of these facilities, and therefore could be considered for further analysis. This limit has been implemented at three recovery furnaces in Washington State with limit averaging periods of three to 24 hours.

4.4.2. Discussion of estimated potential emission reductions for lime kilns

Based on the estimated potential emission reductions presented in this chapter, Ecology makes the following observations regarding the benefits of adopting these limits, and if further consideration is warranted:

- <u>PM</u>:
 - According to Table 34 (and Figure 5), the potential benefit of adopting an emission limit of 0.02 grains/dscf (at 10% O₂) would provide an estimated 51 TPY of pollutant reduction. This limit is the upper limit range of the European BAT PM limits for lime kilns. This specific limit has not been implemented in Washington State.
 - According to Table 34 (and Figure 5), the potential benefit of adopting an emission limit of 0.030 grains/dscf (at 10% O₂) would provide an estimated 25 TPY of pollutant reduction. This limit has been implemented at two lime kilns in Washington State. Adopting this limit could lower the potential to emit levels at other lime kilns in Washington State, and therefore could be considered for further analysis.
- <u>SO</u>₂:
 - According to Table 34 (and Figure 6), the potential benefit of adopting an emission limit of 8 ppm (at 10% O₂) would provide an estimated 3 TPY of pollutant reduction. This limit is the upper limit range of the European BAT PM limits for lime kilns that do not incinerate NCGs. This specific limit has not been implemented in Washington State.
 - According to Table 34 (and Figure 6), the potential benefit of adopting an emission limit of 20 ppm (at 10% O₂) would provide an estimated 4 TPY of pollutant

reduction. This limit has been implemented at three lime kilns in Washington State, and is therefore considered for further analysis.

• According to Table 34 (and Figure 6), the potential benefit of adopting an emission limit of 105 ppm (at 10% O₂) would not provide pollutant reductions bases on how lime kilns in Washington operated their units during the emission inventory evaluated as part of this analysis.

• <u>NO</u>_X:

- According to Table 34 (and Figure 7), the potential benefit of adopting an emission limit of 77 ppm (at 10% O₂), would provide an estimated 99 TPY of pollutant reduction. This limit is the upper limit range of the European BAT NO_X limits for lime kilns that use fuel oil. This specific limit has not been implemented in Washington State.
- According to Table 34 (and Figure 7), the potential benefit of adopting an emission limit of 275 ppm (at 10% O₂), would provide an estimated 25 TPY of pollutant reduction. This limit has been implemented at one lime kiln in Washington State, which can use either oil or natural gas fuel. Adopting this limit could lower the potential to emit levels at other lime kilns in Washington State, and therefore could be considered for further analysis.
- According to Table 34 (and Figure 7), the potential benefit of adopting an emission limit of 292 ppm (at 10% O₂), would provide an estimated 20 TPY of pollutant reduction. This limit is the upper limit range of the European BAT NO_X limits for lime kilns that use natural gas. Not all lime kilns in Washington have access to natural gas. This specific limit has not been implemented in Washington State.

5. Impacts of Controls on Visibility

The impacts of additional controls are presented in the following subsections. A previous similar study (BART modeling analysis) is included below in Section 5.1 as background information, as it was used in the 2010 RH SIP. Section 5.2 concludes with more current impacts analysis modeling results using the emission reduction estimates in Section 4 of this analysis.

5.1. Impacts of pulp and paper mills on visibility (BART modeling analysis)

This section addresses the impact of pulp and paper mill sources upon visibility in Class I areas in Washington State. Details describing how visibility is measured using units of dv was provided in the RH SIP.

Available visibility modeling results from Chapter 11 of the RHSIP BART analysis, performed for five of the seven pulp mills, is provided in Table 35. The other facilities evaluated and modeled for this RACT review did not meet one or more of the technical criteria to require

BART modeling. The values in Table 35 are the 22nd highest (98th percentile) delta dv and are based on 2003-2005 emissions using the CALPUFF model as described in the BART modeling protocol in Appendix H of the 2010 RH SIP. The results include BART-eligible units at each individual facility and are not necessarily recovery furnaces and/or lime kilns.

As explained in Appendix H of the 2010 RH SIP, the BART modeling protocol including two types of modeling analysis:

- BART Exemption Analysis: to ascertain BART eligible sources, and,
- BART Determination Analysis: to determine visibility impacts for the pre-BART control and post-BART control scenarios on individual BART-eligible units at individual (BART-eligible) sources. (Note: a BART-eligible source refers to the entire facility that has BART-eligible emission units).

The results in Table 35 are from the BART Determination Analysis contained in the RH SIP.

Table 35. Visibility Modeling Results: 22nd Highest Delta dv, 2003–2005 (98th Percentile)								
WA Class I Areas (unless indicated otherwise)	GP Camas ⁽¹⁾	KapStone ⁽¹⁾	РТРС	WestRock	Weyerhaeuser	Boise White Wallula ⁽²⁾	Cosmo ⁽³⁾	
Alpine Lakes Wilderness	0.071	0.21	0.284	0.391	0.4	Not modeled	Not modeled	
Glacier Peak Wilderness	0.045	0.128	0.251	0.256	0.248	Not modeled	Not modeled	
Goat Rocks Wilderness	0.101	0.228	0.137	0.21	0.457	Not modeled	Not modeled	
Mt. Adams Wilderness	0.123	0.251	0.124	0.205	0.44	Not modeled	Not modeled	
Mt. Rainier National Park	0.101	0.3	0.244	0.441	0.595	Not modeled	Not modeled	
North Cascades National Park	N/A	0.111	0.236	0.22	0.218	Not modeled	Not modeled	
Olympic National Park	0.086	0.29	1.306 ⁽⁴⁾	0.383	0.583	Not Modeled	Not Modeled	
Pasayten Wilderness	N/A	N/A	0.125	0.126	NA	Not Modeled	Not Modeled	
Columbia River Gorge (Class II)	2.469	0.517	0.06	0.082	0.675	Not Modeled	Not Modeled	
Mt. Hood (Oregon)	0.381	0.43	N/A	0.147	0.689	Not Modeled	Not Modeled	
Mount Jefferson Wilderness (Oregon)	0.149	0.219	N/A	0.092	0.367	Not Modeled	Not Modeled	
Diamond Peak Wilderness Area (Oregon)	0.044	0.115	N/A	N/A	0.192	Not Modeled	Not Modeled	

Table 35. Visibility Modeling Results: 22nd Highest Delta dv, 2003–2005 (98th Percentile)								
WA Class I Areas (unless indicated otherwise)	GP Camas ⁽¹⁾	KapStone ⁽¹⁾	РТРС	WestRock	Weyerhaeuser	Boise White Wallula ⁽²⁾	Cosmo ⁽³⁾	
Mount Washington Wilderness Area (Oregon)	0.084	0.169	N/A	N/A	0.289	Not Modeled	Not Modeled	
Three Sisters Wilderness Area (Oregon)	0.087	0.178	N/A	N/A	0.291	Not Modeled	Not Modeled	
Eagle Cap Wilderness (Oregon)	N/A	N/A	N/A	N/A	N/A	Not Modeled	Not Modeled	
Crater Lake National Park (Oregon)	0.031	N/A	N/A	N/A	N/A	Not Modeled	Not Modeled	
Strawberry Mountain Wilderness (Oregon)	0.044	N/A	N/A	N/A	N/A	Not Modeled	Not Modeled	
Hells Canyon (Idaho)	N/A	N/A	N/A	N/A	N/A	Not Modeled	Not Modeled	

⁽¹⁾ Visibility reduction values are based on a spatially-varying O₃ background modeling input.

⁽²⁾ No BART-eligible equipment based on age and PTE.

⁽³⁾ Sulfite pulp mills exempt from BART.

⁽⁴⁾ Port Townsend used the NH3-limiting method to model impacts at Olympic NP. Their use of the new IMPROVE equation was undone by Ecology and impacts recalculated. See Table 11-9 of Regional Haze SIP page 11-11.

5.2. Impacts of pulp and paper mills on visibility (RACT modeling analysis)

As with the BART analysis, modeling was used to determine potential improvements in RH based on the proposed RACT options described in this section. However, modeling for this RACT analysis was not bound to the procedures described in the BART modeling protocol in Appendix H of the 2010 RH SIP. Whereas the CALPUFF model was chosen as part of the protocol developed for the BART analysis, a different modeling approach was used for this RACT analysis. Ecology contracted with Washington State University (WSU) for the modeling potion of this analysis. See Appendix C for the full WSU RACT modeling protocol.

The pre-RACT baseline and post-RACT limit control results of the WSU modeling are based on the following:

- For the pre-RACT baseline analysis: a baseline emission inventory using emissions from the year 2007 based on an aggregation of emissions from a comprehensive list of emitting facilities in Washington State (not just pulp mills).
- Post-RACT:¹ Based on Table 33, Figures 2 and 3, and Section 4.4.1, the following maximum potential emission reductions using the lowest demonstrated limits in Washington State were used in this first post-RACT scenario:
 - For recovery furnaces, the lowest SO₂ emission limit demonstrated in Washington State is 10 ppm.
 - For recovery furnaces, the lowest PM emission limit demonstrated in Washington State is 0.027 gr/dscf @ 8% O₂.

Recovery furnace NO_X emission reductions and lime kiln emission reductions for SO_2 , PM, and NO_X were estimated to be considerably less than these two emission reductions and, therefore, were set aside as part of potential future post-RACT modeling scenarios depending on the results of the first post-RACT modeling scenario (see Section 5.2.2).

As detailed in Chapter 4, measured or calculated emissions are averages of multi-year compliance tests or are calculated from averages of multi-year emission inventory emissions and other stack parameter information. Estimated emission reductions are the difference between average annual emissions and the average annual emissions multiplied by the ratio of emission at the proposed RACT limit to measured or calculated emission. Ecology's approach is based on a survey of average emission reductions using average emission inventory emissions from multiple years, so that average individual unit percent reductions are assumed to be applicable to approximately any given year that the facility operated around this timeframe.

As noted in Appendix C, emissions for modeling were taken from 2007 inventories provided by state agencies via NW-AIRQUEST. All of the facilities' multi-year emission inventory emissions that were averaged include the year 2007, except for Cosmo Specialty Fiber. Because the facility did not operate from 2007 through 2010, emission inventories from 2005, 2006, and 2011 were evaluated, and 2011 annual emissions were chosen for this evaluation.

5.2.1. Modeling results

The RACT visibility modeling results from the 2014-2015 WSU RH modeling analysis are provided in Table 36 (See Appendix C for additional WSU RACT modeling results).

Table 36. Visibility Modeling Results: 8th Highest Delta dv, (98th P					
WA Class I Areas (unless indicated otherwise)	∆dv Visibility Impacts due to Potential RACT Limit				
Alpine Lakes Wilderness	0.127				
Glacier Peak Wilderness	0.117				
North Cascades National Park	0.080				

¹ For the first post-RACT analysis, specific pulp mill emission reduction estimates developed in Chapters 2-4 were used, which were based on measured (compliance test) data only, not on calculated data.

Table 36. Visibility Modeling Results: 8th Highest Delta dv, (98th Percentile				
WA Class I Areas (unless indicated otherwise)	∆dv Visibility Impacts due to Potential RACT Limit			
Mount Baker Wilderness	0.057			
Selway Bitterroot Wilderness (Idaho, Montana)	0.053			
Spokane Tribe Class I area	0.053			
Pasayten Wilderness	0.045			
Three Sisters Wilderness Area (Oregon)	0.044			
Mount Washington Wilderness Area (Oregon)	0.041			
Goat Rocks Wilderness	0.038			
Mt. Rainier National Park	0.037			
Hells Canyon Wilderness (Idaho)	0.033			
Mount Jefferson Wilderness (Oregon)	0.031			
Eagle Cap Wilderness (Oregon)	0.030			
Mount Adams Wilderness	0.030			
Columbia River Gorge (WA & Oregon) (Class II)	0.029			
Olympic National Park	0.023			
Mt. Hood Wilderness (Oregon)	0.022			
Sawtooth Wilderness (Idaho)	0.021			
Diamond Peak Wilderness Area (Oregon)	0.018			
Crater Lake National Park (Oregon)	0.017			
Yellowstone National Park (Wyoming)	0.016			
Strawberry Mountain Wilderness (Oregon)	0.015			
Craters of the Moon National Park (Idaho)	0.011			
Mountain Lakes Wilderness (Oregon)	0.009			
Craters of the Moon National Park (Idaho)	0.011			
Mountain Lakes Wilderness (Oregon)	0.009			

The locations with the top three delta dv benefit are Alpine Lakes (0.127), Glacier Peak (0.117), and North Cascades (0.080). The modeled visibility data listed is for grid cells where at least half of the area of the cell was within any Class I wilderness area or national park (or Columbia River Gorge scenic area). In other words, these are the highest grid cell delta dv values. The rest of these areas, including their IMPROVE monitoring locations (if present) have less delta dv benefit. For example, the IMPROVE monitoring site at North Cascades National Park has an 8th highest delta dv benefit of only 0.0136, or about 1/6 the benefit of the grid cell of maximum delta dv benefit (0.080) listed in Table 36.

5.2.2. Additional modeling scenarios

Because the results obtained from the first post-RACT modeling analysis described in Sections 5.2 and 5.2.1 do not show sufficient delta dv benefit (less than 0.13 dv impacts at highest modeled grid cell), Ecology determined that additional post-RACT modeling scenarios using smaller RACT limited emission reductions would not be useful.

6. Estimated Costs

This chapter presents the estimated costs for facilities in Washington to achieve the emission reductions presented in Chapter 4.

Ecology is interpreting "reasonably available" control technology as defined in Section 1.2, to mean the best performing control technologies that are currently demonstrating compliance with the emission limits in Sections 3.1–3.3. There may be other control technologies listed in Chapter 2, which are capable of meeting the emission rates and estimated emission reductions presented in Chapter 4, which have not been demonstrated in practice. We have only estimated costs to implement control technologies that have been demonstrated in practice.

Prior to implementing a RACT limit, Ecology intended to work closely with the source category sources to develop a more accurate cost evaluation.² As the visibility improvement modeling presented in Chapter 5 and Appendix C shows minimal visibility improvement, Ecology does not believe that it is necessary to develop mill specific cost estimates for implementing the evaluated RACT limits. However, Ecology is providing the following general estimates of costs based on the cost references listed in Section 6.1.

6.1. Capital and operating costs

Table 37. Recovery Furnace Estimated Control Costs						
Control Technology Option	Capital Costs (\$) [O&M Costs if Available]	Total Annual Costs (\$)	Note(s)			
HERB (PM, SO ₂ , NO _X)	100 to ~300 million (250 million Euro)	12–22 million	1,2,,8			
Add scrubber to ESP (PM, SO ₂)	12 million	3–9 million	2,3			
WESP (PM)	1.1–13.9 million [0.3–13.9 million]	0.5–16.3 million	4			
Good Operating Practices (SO ₂)	Currently used					
Staged combustion control [may include FGR, low excess air, overfire air, LNB, secondary, tertiary, quartenary combustion] (NO _x)	Currentl	y used				
Improve and/or rebuild ESP (PM)	Using ESP improvements, the BART analysis [August 2009-Appendix L] of the Ecology 2010 Regional Haze SIP for PTPC estimated a 53 ton per year reduction at \$5,100 per ton. A similar BART analysis for Weyerhaeuser estimated a 33 ton per year reduction at \$122,000 per top if an additional ESP field was installed					

Estimated costs to implement control technologies that have been demonstrated in practice are presented in Tables 37 and 38 for recovery furnaces and lime kilns, respectively.

² Ecology memorandum: *The Five RACT Criteria and how Ecology Should Implement Them*, Wayne Wooster, June 14, 1993.

Table 37. Recovery Furnace Estimated Control Costs							
Control Technology Option	Capital Costs (\$) [O&M Costs if Available]	Total Annual Costs (\$)	Note(s)				
	The total installed cost for a typical reference (5) was 5.7 million.	ESP rebuild from					
	The Kotka Mill in Finland recently (million euros (\$3.8 million) into boil recovery boiler. Improvements incl bottom of the boiler and implement technology.	1					
Recovery boiler optimization [including wet heat recovery/secondary, tertiary, quaternary air /HVLC gas incineration] (PM, SO ₂ , NO _X)	 wet heat recovery has been demonstrated at GP Camas for its two RFs. Costs specific to the wet heat recovery portion of the recovery furnaces is difficult to isolate, but appears to have been part of an overall recovery furnace and smelt dissolver vent recovery modernization project with estimates as follows: \$2.7 million ESP with total annual costs of \$417,750; \$1.7 million Cross-flow scrubber with total annual costs of \$419,800; \$175,000 Packed bed scrubber with total annual costs 						
Fabric filters-baghouse (PM)	This technology has not been dem surveyed in Chapter 3 (due to tech Costs are not considered.	onstrated in practice at t nical or economic infeas	he mills ibilities).				
Cyclone separator (PM)	This technology has not been demonstrated in practice at the mills surveyed in Chapter 3 (due to technical or economic infeasibilities Costs are not considered.						
Electrified gravel bed filters (PM)	This technology has not been dem surveyed in Chapter 3 (due to tech Costs are not considered.	onstrated in practice at t nical or economic infeas	he mills ibilities).				
Flue gas desulfurization (FGD) w/wet scrubber (SO ²)	This technology has not been demonstrated in practice at the mills surveyed in Chapter 3 (due to technical or economic infeasibilities). Costs are not considered.						
Semi-dry lime hydrate slurry injection FGD (SO ₂)	This technology has not been dem surveyed in Chapter 3 (due to tech Costs are not considered.	onstrated in practice at t nical or economic infeas	he mills ibilities).				
Dry lime powder injection FGD (SO ₂)	This technology has not been dem surveyed in Chapter 3 (due to tech Costs are not considered.	onstrated in practice at t nical or economic infeas	he mills ibilities).				
Spray dryer w/an ESP FGD (SO ₂)	This technology has not been dem surveyed in Chapter 3 (due to tech Costs are not considered.	onstrated in practice at t nical or economic infeas	he mills ibilities).				
Low sulfur fuel selection (SO ₂)	This technology has not been dem surveyed in Chapter 3 (due to tech Costs are not considered.	onstrated in practice at t nical or economic infeas	he mills ibilities).				
Selective non-catalytic reduction (SNCR) [NOx]	This technology has not been dem surveyed in Chapter 3 (due to tech Costs are not considered.	onstrated in practice at t nical or economic infeas	he mills ibilities).				
Selective catalytic reduction (SCR) [NO _x]	This technology has not been dem surveyed in Chapter 3 (due to tech Costs are not considered.	onstrated in practice at t nical or economic infeas	he mills ibilities).				
Oxidation/reduction scrubbing (NOx)	This technology has not been demonstrated in practice at the mills surveyed in Chapter 3 (due to technical or economic infeasibilities). Costs are not considered.						

	Table 37.	Recovery Furnace Estimated Con	trol Costs	1				
	Control Technology Option	Capital Costs (\$) [O&M Costs if Available]	Total Annual Costs (\$)	Note(s)				
1	¹ HERB annualized cost based on Andritz Pulp & Paper. Recovery boilers Chemical recovery and green energy. The Andritz solution: High Energy Recovery Boiler (HERB). www.andritz.com Annual costs based on high energy boiler costs ranging from 80 to 150 million Euros converted to USD at \$1.25/Euro: (approximate average of \$/Euro from 2011 – 2015). Higher end costs of 250 million Euro found for Iggesund Paperboard's Swedish paperboard mill Published: Thu, 2014-06-19 10:07 www.pulpapernews.com). Other references: June/July 2007 Enviro-Friendly. Acuna & Associates webpages. www.pulpapernews.com article dated June 13, 2012. www.pressportal.ch press webpage regarding Andritz. Boiler improvement information from www.pulpapernews.com article dated November 9, 2012. At least three HERB units have been or are installed in the United States per Andritz Pulp & Paper www.andritz.com. The three units are IP Valliant, Oklahoma; IP Campti, Louisiana; and PCA, Valdosta, Georgia. It is unclear if the Oklahoma and Georgia units have been included into their latest air permits at the time of this analysis. The Campti unit has been implemented, and permit limits for this facility are listed in chapter 3.							
2	² Cost estimates are based on the assumption that the listed control option is able to reduce emissions to the emission levels of facilities currently using those technologies. However, unknown facility details and variable costs from different vendors could have a significant effect on estimated control technology costs.							
3	 ³ Based on Ecology BART analysis [August 2009 (Appendix L of 2010 Regional Haze SIP] for PTPC, estimated annualized costs were approximately: \$8.5 million (\$20,383/ton) and for Weyerhaeuser, (annualized costs were approximately: 3.3 million (\$28,000/ton). Total costs (including installation) for retrofitting a recovery furnace ESP with a scrubber are listed in a 1/31/2007 EPA document as approximately \$12 million (letter from EPA addressed to Division of Air Quality, North Carolina Department of Environment and Natural Resources). 							
4	on capital costs obtained from EPA on capital costs of \$20-\$40 per scfm; applied to each average s water content for each facility.	scfm; O&M costs of \$5-40 per scfm; scfm flow rate calculated from averaging See Appendix D.	; annualized costs of \$9- ge dscfm flow rates and a	based \$47 per average				
5	³ The total installed cost estimates for base and most advanced ESP designs ranged from \$9.6 to \$12.2 million ("Advanced ESP Designs for Black Liquor Recovery Boilers", Grieco., et al other, August 12, 2012. Griego indicated costs of \$5.7 million for an assumed typical ESP rebuild. However, the PM reductions under this scenario would be less (based on 0.039 gr/dscf at 8% oxygen) than what was condisidered for this RACT analysis (based on 0.027 gr/dscf at 8% oxygen).							
6	Annualized costs based on Eco Haze SIP] for Port of Port Town	logy BART analysis [August 2009 (A send (\$270,000) and Weyerhaeuse	Appendix L of 2010 Regions Regi	onal				
7	Letter to Alan Butler, Ecology fr Recovery Modernization PSD F from Alan Butler to Bill Powers	om Candice Hatch, CH2M Hill., Can Permit Application., October 7, 1988, dated April 6, 1989.	nas Mill (GP Camas) Ene as part of Telecopy Trar	ergy and nsmittal				
8	Cosmo is currently the only sulf emission limit comparisons betw	ite mill operating in Washington. Po veen sulfate (kraft) and sulfite mills v	Ilutant reductions are bas which are different proces	sed on sses.				

Table 38. Lime Kiln Estimated Control Costs							
Control Technology Option	Capital Costs (\$) [O&M Costs if Available]	Total Annual Costs (\$)	Note(s)				
New scrubber or add scrubber after existing lime kiln ESP if present (PM, SO ₂)	12 million		1,2,5				
Add WESP (PM)	0.2–2.6 million [0.04–2.6 million]	0.08–3 million	3				
Replace scrubber w/WESP (PM)	Estimated BART capital costs of replacing a venture scrubbe considered a high cap	f 1.5 million/kiln for er w/a WESP is bital cost.	4				
Replace scrubber w/dry ESP (PM)	Not recommend	bed	4				
Fuel selection – use less gas and more oil (NOx)			5				
Low sulfur fuels, low sulfur lime mud (SO ₂)			5				
Fabric filters-baghouse (PM)	This technology has not been der mills surveyed in Chapter 3 (due infeasibilities). Costs are not con	monstrated in practice to technical or econon sidered.	at the nic				
Cyclone separator (PM)	Cyclone separator (PM) This technology has not been demonstrated in practice mills surveyed in Chapter 3 (due to technical or econor infeasibilities). Costs are not considered.						
Electrified gravel bed filters (PM) This technology has not been demonstrated in practice mills surveyed in Chapter 3 (due to technical or econom infeasibilities). Costs are not considered.							
Flue gas desulfurization (FGD) w/wet scrubber (SO ²)	This technology has not been demonstrated in practice at the mills surveyed in Chapter 3 (due to technical or economic infeasibilities). Costs are not considered.						
Semi-dry lime hydrate slurry injection FGD (SO ₂)	This technology has not been den mills surveyed in Chapter 3 (due infeasibilities). Costs are not cons	monstrated in practice to technical or econon sidered.	at the nic				
Dry lime powder injection FGD (SO ₂)	This technology has not been der mills surveyed in Chapter 3 (due infeasibilities). Costs are not cons	monstrated in practice to technical or econon sidered.	at the nic				
Spray dryer w/an ESP FGD (SO ₂)	This technology has not been del mills surveyed in Chapter 3 (due infeasibilities). Costs are not cons	monstrated in practice to technical or econon sidered.	at the nic				
Low sulfur fuel selection (SO ₂)	This technology has not been der mills surveyed in Chapter 3 (due infeasibilities). Costs are not cons	monstrated in practice to technical or econon sidered.	at the nic				
Increased oxygen levels at burner (SO ₂)	This technology has not been der mills surveyed in Chapter 3 (due infeasibilities). Costs are not cons	monstrated in practice to technical or econon sidered.	at the nic				
Water/steam injection (NOx)	This technology has not been demonstrated in practice at the mills surveyed in Chapter 3 (due to technical or economic infeasibilities). Costs are not considered.						
Mid-kiln firing (NOx)	This technology has not been den mills surveyed in Chapter 3 (due infeasibilities). Costs are not cons	monstrated in practice to technical or econon sidered.	at the nic				
Mixing air fan (NO _x)	This technology has not been der mills surveyed in Chapter 3 (due infeasibilities). Costs are not cons	monstrated in practice to technical or econon sidered.	at the nic				

Table 38. Lime Kiln Estimated Control Costs							
Control Technology Option	Capital Costs (\$) [O&M Costs if Available]	Total Annual Costs (\$)	Note(s)				
Selective non-catalytic reduction (SNCR) [NOx]	This technology has not been demonstrated in practice at the mills surveyed in Chapter 3 (due to technical or economic infeasibilities). Costs are not considered.						
Selective catalytic reduction (SCR) [NOx]	This technology has not been demonstrated in practice at the mills surveyed in Chapter 3 (due to technical or economic infeasibilities). Costs are not considered.						
Oxidation/reduction scrubbing (NO _X)	ion/reduction scrubbing This technology has not been demonstrated in practice at the mills surveyed in Chapter 3 (due to technical or economic infeasibilities). Costs are not considered.						
¹ Cost estimates are based on the assumption that the listed control option is able to reduce emissions to the emission levels of facilities currently using those technologies. However, due to unknown facility details and variable costs from different vendors could have significant effect on costs.							

- ² Assumes the costs of retrofitting a lime kiln ESP with a scrubber is approximately similar to retrofitting a recovery furnace ESP with a scrubber. Total costs (including installation) for retrofitting a recovery furnace ESP with a scrubber are listed in a 1/31/2007 EPA document as approximately \$12 million (letter from EPA addressed to Division of Air Quality, North Carolina Department of Environment and Natural Resources)
- ³ Wet electrostatic precipitator costs obtained from EPA-452/F-03-030 Air Pollution Control Technology Fact Sheet based on capital costs of \$20-\$40 per scfm; O&M costs of \$5-40 per scfm; annualized costs of \$9-\$47 per scfm; applied to each average scfm flow rate calculated from average dscfm flowrates and average water content for each facility. See Appendix D.
- ⁴ In Maine, the "replacement of the existing venture scrubbers with WESPs would result in high capital costs (\$1.5 million per kiln)." Replacing existing venturi scrubbers with dry ESPs "could increase SO2 emissions from the lime kilns when compared to use of the venturi scrubbers." In Maine, "the use of the existing venturi scrubbers to control PM10 emissions from… (lime kilns)… represents BART." (73956 Federal Register / Vol. 76, No. 229 / Tuesday, November 29, 2011 / Proposed Rules 40 CFR Part 52 [EPA–R01–OAR–2010–1043; A–1–FRL–9496–5], Approval and Promulgation of Air Quality Implementation Plans; Maine; Regional Haze).
- ⁵ Based on the results of Section 5, specific costs were not pursued for all control options.

7. Conclusions

An impact of 0.5 dv was considered the minimum visibility impact for a source to be subject to BART. While a potential visibility improvement of 0.5 dv or more would have clearly triggered a more in-depth evaluation of the RACT/Four-Factor reasonable progress factors, the significantly smaller annual visibility improvements that have been modeled were determined to be too small to pursue further at this time. As noted in Section 4, this RACT analysis was based on a snapshot of emission inventories between approximately 2003 and 2011. A conservative approach was used for this RACT analysis so that if specific facility details have changed since 2011, the following conclusions of this analysis are assumed to be the same.

These factors are discussed for each of the seven facilities in the subsections below.

7.1. PTPC conclusions

Based on the modeling results presented in Chapter 5 and Appendix C, Ecology is not proposing that PTPC adopt the potential RACT limits considered in Chapter 4. Ecology believes that the potential visibility improvements are too minimal to justify the cost of implementing these RACT limits. Other RACT requirements are not being considered at this time.

7.2. WestRock conclusions

Based on the modeling results presented in Chapter 5 and Appendix C, Ecology is not proposing that WestRock adopt the potential RACT limits considered Chapter 4. Ecology believes that the potential visibility improvements are too minimal to justify the cost of implementing these RACT limits. Other RACT requirements are not being considered at this time.

7.3. Weyerhaeuser conclusions

Based on the modeling results presented in Chapter 5 and Appendix C, Ecology is not proposing that Weyerhaeuser adopt the potential RACT limits considered Chapter 4. Ecology believes that the potential visibility improvements are too minimal to justify the cost of implementing these RACT limits. Other RACT requirements are not being considered at this time.

7.4. GP Camas conclusions

Based on the modeling results presented in Chapter 5 and Appendix C, Ecology is not proposing that GP Camas adopt the potential RACT limits considered Chapter 4. Ecology believes that the potential visibility improvements are too minimal to justify the cost of implementing these RACT limits. Other RACT requirements are not being considered at this time.

7.5. KapStone conclusions

Based on the modeling results presented in Chapter 5 and Appendix C, Ecology is not proposing that KapStone adopt the potential RACT limits considered in Chapter 4. Ecology believes that the potential visibility improvements are too minimal to justify the cost of implementing these RACT limits. Other RACT requirements are not being considered at this time.

7.6. Boise White Wallula Mill conclusions

Based on the modeling results presented in Chapter 5 and Appendix C, Ecology is not proposing that Boise White Wallula adopt the potential RACT limits considered in Chapter 4. Ecology believes that the potential visibility improvements are too minimal to justify the cost of implementing these RACT limits. Other RACT requirements are not being considered at this time.

7.7. Cosmo specialty fiber mill conclusions

Based on the modeling results presented in Chapter 5 and Appendix C, Ecology is not proposing that Cosmo adopt the potential RACT limits considered in Chapter 4. Ecology believes that the potential visibility improvements are too minimal to justify the cost of implementing these RACT limits. Other RACT requirements are not being considered at this time.

7.8. Graymont lime kiln conclusions

Based on the modeling results presented in Chapter 5 and Appendix C, Ecology is not proposing that the Graymont lime kiln adopt the potential RACT limits considered in Chapter 4. Ecology believes that the potential visibility improvements are too minimal to justify the cost of implementing these RACT limits. Other RACT requirements are not being considered at this time.

Appendices

Appendix A. Unit Conversions and Permit Limit Information

Section A-1 Unit Conversions

		Lincit A. an/deaf	Limit B: Daily		ma (deem	ma (daam	ma/Nm2		
Location	Facility (DF Linit if an addied)	Limit A: gr/dscr	avg: gr/dscf	Flow range	mg/ascm	mg/ascm	mg/Nm3	Kg ISP/	
Location	Facility (RF Onit il specified)	(at 8% 02)	(at 8% O2)	(ms/Adt)	(at 8% 02)	(at 6% 02)	(al5%02)	ADI	m s /min
Europe	LCPDs ^b : low range	NA	0.011	7000-9000	26		30	0.2	
USA	New/reconstructed after 5/23/2013	0.015							
Louisiana (e)	International Paper CAMTI (No. 3)	0.015							
Minnesota	Boise Cascade Int'l Falls (EU320)	0.0165							
Europe	LCPDs ^b : high range	NA	0.019	7000-9000	44		50	0.5	
Arkansas	Georgia Pacific Crossert (8R)	0.02							
Georgia	International Paper AM (No. 3)	0.021							
North Carolina	Kapstone (No. 7)	0.021							
Mississippi	Weyerhaeuser NR PW (AA-100)	0.023							
Georgia	GP Cedar Springs (No. 3)	0.024							
Louisiana	Port Hudson (No. 1)	0.025							
Louisiana	Port Hudson (No. 2)	0.025							
Alabama	Alabama River Cellulose (No. 1)	0.025							
Alabama	Alabama River Cellulose (No. 2)	0.025							
Minnesota	Sappi Cloquet LLC (#10)	0.025							
British	Prince George Vancouver (RB)	0.026			60				5550
Washington	Weyerhaeuser (No. 10)	0.027							
Washington	Boise White Wallula (No. 3)	0.027							
Washington	Kapstone (22)	0.027							
Maine	Red Shield (# 4)	0.028							
Georgia	GP Cedar Springs (No. 1)	0.030							
Georgia	GP Cedar Springs (No. 2)	0.030							
Idaho	Clearwater Lewiston (No. 5)	0.03							
Florida	Palatka (No. 4)	0.030							
Washington	GP Camas (No. 3)	0.033			75				
Washington	GP Camas (No. 4)	0.033			75				
Idaho	Clearwater Lewiston (No. 4)	0.040							
Washington	Kapstone (19)	0.040							
USA	Modified RFs after 5/23/2013	0.044							
Georgia	Weyerhaeuser PWM (No. 3)	0.044			0.10				
Kentucky	Wycliffe Paper (03)	0.044							
Oregon	GP Consumer Products (EU24)	0.044							
Oregon	Boise White St Helens (2 & 3)	0.044							
Oregon	Cascade Pacific (RFEU)	0.044							
Washington	Boise White Wallula (No. 2)	0.044							
Washington	Kapstone (18)	0.044							
Washington	PTPC (RF)	0.044							
Washington	WestRock (No. 4)	0.044							
British	Catalyst PC Vancouver (#3, w#4 on)	0.051			117	135			7000
British	Catalyst PC Vancouver (#4, w#3 on)	0.051			117	135			7000
British	Catalyst PC Vancouver (#4, w#3 out)	0.062			143	165			9000
Georgia	International Paper AM (No. 2)	0.055							
British	Howe Sound Vancouver (E218529)	0.057			130	150			5950
Washington	Cosmo (No. 1,2 & 3 common stk)	0.10							
Europe									
(sulphite)	LCPDs* for Paper Sector (low range)	NA	0.002	6000-7000	4		5	0.02	
				_					
Europe			0.000	cooo 7005	47		20	0.45	
(sulphite)	LCPDs ⁺ for Paper Sector (high range)	NA	0.008	6000-7000	17		20	0.15	1

Recovery Furnace Particulate Matter Unit Conversions

		Limit A: gr/dscf	Limit B: gr/dscf (at 10% O2)		F: flow rate	mg/dscm	mg/Nm3	kg TSP/	
Location	Facility (LK Unit if specified)	(at 10% O2)	daily avg	Limit B Ref:	(m3/Adt)	(at 10% O2)	(at5%O2)	ADt	m3/min
USA	New/reconstructed after 5/23/2013	0.010							
Europe	LCPDs ^b : low range	NA	0.01	IPPC	1000	22	30	0.03	
Europe	LCPDs ^b : high range	NA	0.02	IPPC	1000	37	50	0.05	
Washington	Kapstone (3)	0.030							
Washington	Kapstone (4)	0.030							
Louisiana	Port Hudson (No. 2)	0.033							
Mississippi	Weyerhaeuser NR PW (AA-110)	0.033							
Alabama	Alabama River Cellulose (No. 1)	0.035							
Alabama	Alabama River Cellulose (No. 2)	0.035							
Minnesota	Sappi Cloquet LLC (#10)	0.035							
Washington	Kapstone (5)	0.035 ng / 0.060							
Washington	Weyerhaeuser (No. 4)	0.035 ng / 0.07							
British	Howe Sound Vancouver (E218529)	0.044				100			1035
Washington	Graymont	0.05 (coal or ng)							
Louisiana	Port Hudson (No. 1)	0.05							
Georgia	GP Cedar Springs (No. 2)	0.056							
USA	Modified LKs after 5/23/2013	0.064							
Arkansas	Georgia Pacific Crossert (#4)	0.064							
Georgia	GP Cedar Springs (No. 1)	0.064							
Georgia	International Paper AM (No. 2)	0.064							
Georgia	Weyerhaeuser PWM (No. 2)	0.064							
Idaho	Clearwater Lewiston (No. 3)	0.064							
Idaho	Clearwater Lewiston (No. 4)	0.064							
Kentucky	Wycliffe Paper (03)	0.064							
Louisiana	International Paper CAMPTI	0.064							
Oregon	GP Consumer Products (EU21)	0.064							
Oregon	Boise White St Helens	0.064							
Oregon	Cascade Pacific (LKEU)	0.064							
Washington	Boise White Wallula	0.064 ng / 0.12							
Washington	PTPC (LK)	0.064							
Washington	WestRock (No. 1)	0.064							
Washington	WestRock (No. 2)	0.064							
British	Catalyst PC Vancouver (1,2 cmb stk)	0.066				150			950
Minnesota	Boise Cascade Int'l Falls (EU340)	0.066							
Washington	GP Camas (No. 4)	0.067 ng/ 0.13 oil							
Maine	Red Shield	0.13							
North Carolina	Kapstone	0.14							
Georgia	International Paper AM (No. 1)	0.176							
British	Prince George Vancouver	0.201	0.101			460			850
					1			1	1

Lime Kiln Particulate Matter Unit Conversions

Recovery Furnace SO₂ Unit Conversions

Location	Facility (RF Unit if specified)	Limit A: ppm (at 8% O2)	Limit C: 24- hr avg ppm (at 8% O2)	Limit E: Annual ppm (at 8% O2)	mg/dscm (at 8% O2)	mg/Nm3 (at5%O2)	kg S/ ADt
Europe	LCPDs ^b low range	3 3 (24-hr avg)	33		9	10	0.1
Washington	GP Camas (No. 3)	10 (24-hr avg)	10			10	0.1
Washington	GP Camas (No. 4)	10 (24-hr avg)	10				
Europe	LCPDs ^b : high range	16 (24-hr avg)	16.4		44	50	0.4
Louisiana	International Paper CAMTI (No. 3)	20 (3-hr avg)					
Idano	Clearwater Lewiston (No. 5)	60 (3-hr avg) [switched to lb/hr					
Washington	Kapstone (18)	units					
XX7 1 .	K (10)	60 (3-hr avg) [switched to lb/hr					
Washington	Kapstone (19) Wayarbaayaar (No. 10)	units 75 (2 br avg)					
Florida	Palatka (No. 4)	100 (24-br avg)					
Alabama	Alabama River Cellulose (No.1)	100 (24 m uvg)					
Alabama	Alabama River Cellulose (No.2)	100					
Maine	Red Shield (# 4)	100					
North Carolina	Kapstone (No. 7)	110 (3-hr avg)		75			
Louisiana	Port Hudson (No. 1)	120					
Louisiana	Port Hudson (No. 2)						
Washington	Kapstone (22)	120 (3-hr avg) [switched to lb/hr units]					
Mississippi	Weverhaeuser NR PW (AA-100)	153					
Oregon	Cascade Pacific (RFEU)	180					
Washington	PTPC (RF)	200					
Georgia	Weyerhaeuser PWM (No. 3)	200					
Minnesota	Sappi Cloquet LLC (#10)	250					
Georgia	GP Cedar Springs (No. 1)	300					
Georgia	GP Cedar Springs (No. 2) GP Consumer Products (EU24)	300 (3 hr avg)	200				
Oregon	Boise White St Helens (2&3)	300 (3-hr avg)	300				
Georgia	GP Cedar Springs (No. 3)	350 (24-hr avg)	350				
Washington	Cosmo (No. 1,2 & 3 common stk) (c)	360 (c)					
Washington	WestRock (No. 4)	500 (150 30-day)					
Washington	Boise White Wallula (No. 2)	500					
Washington	Boise White Wallula (No. 3)	500		0.1	0.21	0.24	(-)
Enocen, Finland Frövi Sweden	Not specified in IPPC ^b	≤ 2 (annual avg) ≤ 2 (annual avg)		0.1	0.21	0.24	(a)
Joutseno, Finland	Not specified in IPPC ^b	≤ 2 (annual avg) ≤ 2 (annual avg)		0.5	1.3	1.5	(a)
Dynäs, Sweden	Not specified in IPPC ^b	$\leq 2 \text{ (annual avg)}$		0.7	1.7	2.0	(a)
Pöls AG, Austria	Not specified in IPPC ^b	≤ 2 (annual avg)		0.7	1.7	2.0	(a)
Oulu, Finland	Not specified in IPPC ^b	≤ 2 (annual avg)		0.9	2.4	2.8	(a)
Ostrand, Sweden	Not specified in IPPC ^b	≤ 2 (annual avg)		1.5	4.1	4.7	(a)
Varo, Sweden Store Calbi Portugal	Not specified in IPPC ^b	≤ 2 (annual avg)		1.5	4.1	4.7	(a)
Vallvik Sweden	Not specified in IPPC ^b	≤ 2 (annual avg) ≤ 2 (annual avg)		2.0	5.2	6.0	(a)
Mönsteras, Sweden	Not specified in IPPC ^b	4 (annual avg)		3.7	9.9	11.3	(a)
Obbola, Sweden	Not specified in IPPC ^b	4 (annual avg)		3.7	9.9	11.3	(a)
Skutskär, Sweden	Not specified in IPPC ^b	5 (annual avg)		5.0	13.4	15.3	(a)
Bäckhammar,	Not specified in IPPC ^b	5 (annual avg)		5.0	13.4	15.3	(a)
Skärblacka, Sweden	Not specified in IPPC ^b	6 (annual avg)		6.3	16.8	19.3	(a)
Skognall, Sweden Wisaforest Finland	Not specified in IPPC ^b	6 (annual avg)		6.5	10.8	19.3	(a)
Husum, Sweden	Not specified in IPPC ^b	12 (annual avg)		12.0	31.9	36.7	(a)
Aspa, Sweden	Not specified in IPPC ^b	15 (annual avg)		14.6	38.9	44.7	(a)
Ääneskoski, Finland	Not specified in IPPC ^b	15 (annual avg)		15.5	41.2	47.3	(a)
Kaskinen, Finland	Not specified in IPPC ^b	16 (annual avg)		16.0	42.6	48.9	(a)
Iggesund, Sweden	Not specified in IPPC ^b	16 (annual avg)		16.4	43.6	50.0	(a)
Huelva, Spain	Not specified in IPPC ^b	17 (annual avg)		16.8	44.7	51.3	(a)
British Columbia	Prince George Vancouver (RB)	18 (annual avg)		17.8	47.4	54.4	(a)
Minnesota	Boise Cascade Int'l Falls (EU320)	NA			50		
Arkansas	Georgia Pacific Crossert (8R)	NA					
Georgia	International Paper AM (No. 3)	NA					
Georgia	International Paper AM (No. 2)	NA					
Idaho	Clearwater Lewiston (No. 4)	NA					
Kentucky	Wycliffe Paper (03)	NA					
British Columbia	Catalyst PC Vancouver (#3, W#4 on)	as specified in S content of fuel	<u> </u>				
British Columbia	Catalyst PC Vancouver (#4, w#3 out)	"as specified in S content of fuel					
British Columbia	Howe Sound Vancouver (E218529)	NA	1				
Europe (sulphite)	LCPDs* for Paper Sector (low range)	16 (24-hr avg)	16.4		44	50	0.3
Europe (sulphite)	LCPDs* for Paper Sector (high range)	49 (24-hr avg)	49.1		131	150	1.0
Notes: (a) See European Mills	Summary						

Lime Kiln SO₂ Unit Conversions

			Oil fired w/o NCG: Limit C:ppm 24-	Oil fired wNCG: Limit C:ppm	Oil fired w/o NCG: Limit D: Annual ppm	Oil fired w NCG: Limit D: Annual ppm	Oil fired w/o NCG: g/dscm (at
Location	Facility (LK Unit if specified)	Limit A: ppm (at 10% O2)	hr avg	24-hr avg	(at 10% O2)	(at 10% O2)	10% O2)
Europe	LCPDs ^b : low range (w/o NCG incineration)	1.4 (24-hr avg)	1.4				4
Europe Florida	Palatka (No. 4)	8 (24-hr avg) 16.9	8.3				22
Alabama	Alabama River Cellulose (No. 1)	50					
Alabama	Alabama River Cellulose (No. 2)	50					
Washington	Weyerhaeuser NR PW (AA-110) Kapstone (3)	50 20 (3-hr avg)					
Washington	Kapstone (4)	20 (3-hr avg)					
Washington	Kapstone (5)	20 (3-hr avg)					
Idaho	Clearwater Lewiston (No. 4)	20 (3-hr avg)		41 E			
Europe	LCPDs ^b : high range (w/ NCG incineration)	83 (24-hr avg)		83.0			
Washington	GP Camas (No. 4)	500					
Washington	Weyerhaeuser (No. 4)	500					
Washington	PTPC (RF) WestBock (No. 1)	500					
Washington	WestRock (No. 2)	500					
Washington	Graymont	1000 (coal or ng)					
Oulu, Finland	Not specified in IPPC ^b	2 (annual avg)			2	22	4.4
Husum, Skoghall	Not specified in IPPC ^b	3 (annual avg) 3 (annual avg)			3	23	7.4
Dynäs,	Not specified in IPPC ^b	3 (annual avg)			3	23	7.4
Frövi, Sweden	Not specified in IPPC ^b	3 (annual avg)			3	23	7.4
Obbola,	Not specified in IPPC ^b	3 (annual avg)			3	23	7.4
Backhammar,	Not specified in IPPC ⁶	3 (annual avg)			3	23	7.4
Joutseno,	Not specified in IPPC ^b	3 (annual avg)			3	23	8.8
Washington	Boise White Wallula	5 (annual avg)					
Stora Celbi,	Not specified in IPPC ^b	6 (annual avg)			6	25	14.7
Wisaforest,	Not specified in IPPC ^b	8 (annual avg)			8	27	22.1
Mönsteras.	Not specified in IPPC ^b	14-31 (annual avg)			14	30	36.8
Skärblacka,	Not specified in IPPC ^b	14-31 (annual avg)			14	31	36.8
Ääneskoski,	Not specified in IPPC ^b	16-33 (annual avg)			16	33	43.5
Sunila, Finland	Not specified in IPPC ^b	17-33 (annual avg) 28-41 (annual avg)			17	33	44.9
Skutskär,	Not specified in IPPC ^b	28-41 (annual avg) 28-41 (annual avg)			28	41	73.7
lggesund,	Not specified in IPPC ^b	44 (annual avg)			30	44	81.0
Enocell,	Not specified in IPPC ^b	48 (annual avg)			37	48	98.0
Vallvik, Varö Sweden	Not specified in IPPC ^b	81 (annual avg) 81 (annual avg)			80	81	213.7
Östrand,	Not specified in IPPC ^b	104 (annual avg)			111	104	294.7
Huelva, Spain	Not specified in IPPC ^b	160 (annual avg)			185	160	493.6
Louisiana	International Paper CAMTI (No. 3)	NA					
North Carolina	Kapstone (No. 7)	NA					
British	Prince George Vancouver (RB)	NA					
Maine	Red Shield (# 4)	NA					
Louisiana	Port Hudson (No. 1)	NA					
Minnesota	Sappi Cloquet LLC	NA					
Georgia	GP Cedar Springs (No. 1)	NA					
Georgia	GP Cedar Springs (No. 2)	NA					
Oregon	Cascade Pacific (LKEU)	TBD per permit					
Georgia	Weverhaeuser PWM (No. 2)	NA					
Georgia	International Paper AM (No. 1)	NA					
Georgia	International Paper AM (No. 2)	NA					
Idaho	Clearwater Lewiston (No. 3)	NA					
Oregon	GP Consumer Products (EU21)	NA					-
Oregon	Boise White St Helens	NA					
British		"as specified in S content					
Columbia	Catalyst PC Vancouver (#3, w#4 on)	United reg					
British Columbia	Catalyst PC Vancouver (#4, w#3 on)	as specified in S content of fuel reg"					
British		"as specified in S content					
Columbia	Catalyst PC Vancouver (#4, w#3 out)	or ruer reg					
British Notes:	Howe Sound Vancouver (E218529)	NA	l		l	l	
(a) See European	Mills Summary						

Location	Facility (I K Unit if spacified)	Limit A: ppm (at	Oil fired w NCG: g/dscm	Oil fired w/o NCG: mg/Nm3 (at5%Q2)	Oil fired w/o NCG: kg S/	Oil fired w NCG: mg/Nmc (at5%Q2)	Oil fired w NCG: kg S/
Location	LCPDs ^b : low range (w/o NCG	1076 (02)	(at 10 / 6 O2)	(at57602)	ADI	(at57602)	ADI
Europe	incineration)	1.4(24-hr avg)		5	0.005		
Europe Florida	Palatka (No. 4)	8 (24-hr avg) 16.9			0.03		
Alabama	Alabama River Cellulose (No. 1)	50					
Alabama	Alabama River Cellulose (No. 2)	50					
Mississippi Washington	Weyerhaeuser NR PW (AA-110)	50 20 (3-br avg)					
Washington	Kapstone (4)	20 (3-hr avg)					
Washington	Kapstone (5)	20 (3-hr avg)					
Idaho	Clearwater Lewiston (No. 4)	20 (3-hr avg)	111			150	0.1
Europe	LCPDs ^b : low range (w/ NCG	42 (24-hr avg) 83 (24-hr avg)	221			300	0.1
Washington	GP Camas (No. 4)	500	221			500	0.5
Washington	Weyerhaeuser (No. 4)	500					
Washington	PTPC (RF)	500					
Washington	WestRock (No. 1) WestRock (No. 2)	500					
Washington	Graymont	1000 (coal or ng)					
Oulu, Finland	Not specified in IPPC ^b	2 (annual avg)	58.6	6.0	(a)	79.5	(a)
Husum,	Not specified in IPPC ^b	3 (annual avg)	60.8	10.0	(a)	82.5	(a)
Skognall, Dynäs	Not specified in IPPC ^b	3 (annual avg)	60.8	10.0	(a)	82.5	(a)
Frövi, Sweden	Not specified in IPPC ^b	3 (annual avg)	60.8	10.0	(a)	82.5	(a)
Obbola,	Not specified in IPPC ^b	3 (annual avg)	60.8	10.0	(a)	82.5	(a)
Bäckhammar,	Not specified in IPPC ^b	3 (annual avg)	60.8	10.0	(a)	82.5	(a)
Joutseno.	Not specified in IPPC ^b	3 (annual avg)	61.9	12.0	(a)	82.5	(a)
Washington	Boise White Wallula	5 (annual avg)	01.5	1210	(a)	0110	(a)
Stora Celbi,	Not specified in IPPC ^b	6 (annual avg)	66.3	20.0	(a)	90.0	(a)
Wisaforest,	Not specified in IPPC ^b	8 (annual avg)	71.8	30.0	(a)	97.5	(a)
Mönsteras.	Not specified in IPPC ^b	12-30 (annual avg) 14-31 (annual avg)	82.9	50.0	(a)	112.5	(a)
Skärblacka,	Not specified in IPPC ^b	14-31 (annual avg)	82.9	50.0	(a)	112.5	(a)
Ääneskoski,	Not specified in IPPC ^b	16-33 (annual avg)	87.9	59.0	(a)	119.3	(a)
Sunila,	Not specified in IPPC ^b	17-33 (annual avg)	89.0	61.0	(a)	120.8	(a)
Skutskär,	Not specified in IPPC ^b	28-41 (annual avg) 28-41 (annual avg)	110.5	100.0	(a)	150.0	(a)
Iggesund,	Not specified in IPPC ^b	44 (annual avg)	116.0	110.0	(a)	157.5	(a)
Enocell,	Not specified in IPPC ^b	48 (annual avg)	128.8	133.0	(a)	174.8	(a)
Vallvik, Varö Sweden	Not specified in IPPC ^b	81 (annual avg)	215.5	290.0	(a)	292.5	(a)
Östrand,	Not specified in IPPC ^b	104 (annual avg)	276.3	400.0	(a)	375.0	(a)
Huelva, Spain	Not specified in IPPC ^b	160 (annual avg)	425.5	670.0	(a)	577.5	(a)
Louisiana	International Paper CAMTI (No. 3)	NA	-				
Minnesota North Carolina	Boise Cascade Int'l Falls (EU320) Kapstone (No. 7)	NA					
British	Prince George Vancouver (RB)	NA					
Maine	Red Shield (# 4)	NA					
Louisiana	Port Hudson (No. 1)	NA					
Minnesota	Sappi Cloquet LLC	NA					
Georgia	GP Cedar Springs (No. 1)	NA					
Georgia	GP Cedar Springs (No. 2)	NA					
Oregon	Cascade Pacific (LKEU)	TBD per permit					
Georgia	Weverhaeuser PWM (No. 2)	NA					
Georgia	International Paper AM (No. 1)	NA					
Georgia	International Paper AM (No. 2)	NA					
Idaho Kentucky	Clearwater Lewiston (No. 3) Wycliffe Paper (03)	NA					
Oregon	GP Consumer Products (EU21)	NA					
Oregon	Boise White St Helens	NA					
British Columbia	Catalyst PC Vancouver (#3, w#4 on)	"as specified in S content of fuel reg"					
British Columbia	Catalyst PC Vancouver (#4, w#3 on)	"as specified in S content of fuel reg"					
British Columbia	Catalyst PC Vancouver (#4, w#3 out)	"as specified in S content of fuel reg"					
British	Howe Sound Vancouver (E218529)	NA					
Notes: (a) See European	Mills Summary						

Lime Kiln SO₂ Unit Conversions (Continued)

Recovery Furnace NOx Unit Conversions

Location	Facility (RF Unit if specified)	Limit A: ppmd (at 8% O2)	Limit C: 24-hr avg: ppm (at 8% O2)	Annual ppm (@8%O2)	mg/dscm (at 8% O2)	mg/Nm3 (at5%O2)	kg NOx/ ADt
Europe	LCPDs ^b : low range	36 (24-hr avg)	36		70	80	0.7
Europe	LCPDs ^b : high range	55 (24-hr avg)	55		105	120	1.1
Alabama	Alabama River Cellulose (No. 2)	75					
Louisiana	International Paper CAMTI (No. 3)	80 (3-hr avg)					
Mississippi	Weyerhaeuser NR PW (AA-100)	80 (8-hr avg)					
Alabama	Alabama River Cellulose (No. 1)	90 05 (2 br avg)					
Washington	Kapstone (18)	95 (3-iii avg) 95 (24-hr avg)	95				
Washington	Kapstone (19)	95 (24-hr avg)	95				
Idaho	Clearwater Lewiston (No. 5)	100					
Arkansas	Georgia Pacific Crossert (8R)	110					
Louisiana	Port Hudson (No. 1)	112					
Louisiana	Port Hudson (No. 2)	112					
Washington	Boise White Wallula (No. 3)	112 (24-hr avg)	112				
Washington	Weyerhaeuser (No. 10) Rod Shield (# 4)	140 (24-hr avg)	140				
Minnesota	Boise Cascade Int'l Falls (FI1320)	130 (24-111 avg) 80 (30-day avg)					
Florida	Palatka (No. 4)	80 (30-day avg)					
Washington	WestRock (No. 4)	85 (30-day avg)					
North Carolina	Kapstone (No. 7)	100 (30-day avg)					
Minnesota	Sappi Cloquet LLC	115 (30-day avg)					
Skärblacka, Sweden	Not specified in IPPC ^b	35 (annual avg)		35	66	76	(a)
Oulu, Finland	Not specified in IPPC [®]	41 (annual avg)		41	79	91	(a)
Wisaforest, Finland	Not specified in IPPC	44 (annual avg)		44	84	96.4	(a)
Huelva, Spain Mönstoras, Swodon	Not specified in IPPC [*]	45 (annual avg)		45	85	98	(a)
Frövi Sweden	Not specified in IPPC ^b	46 (annual avg)		51	97	103	(a)
Joutseno, Finland	Not specified in IPPC ^b	51 (annual avg)		51	97	111.3	(a)
Obbola, Sweden	Not specified in IPPC ^b	51 (annual avg)		51	98	112	(a)
Stora Celbi, Portugal	Not specified in IPPC ^b	51 (annual avg)		51	98	112	(a)
Sunila, Finland	Not specified in IPPC ^b	51 (annual avg)		51	98	112.9	(a)
Skoghall, Sweden	Not specified in IPPC ^b	56 (annual avg)		56	108	124	(a)
Enocell, Finland	Not specified in IPPC [®]	59 (annual avg)		59	112	128.6	(a)
Husum, Sweden	Not specified in IPPC ^o	60 (annual avg)		60	114	131	(a)
Dunäs Sweden	Not specified in IPPC	61 (appual avg)		60	115	132	(b)
Skutskär, Sweden	Not specified in IPPC ^b	62 (annual avg)		62	119	134	(a)
Aspa, Sweden	Not specified in IPPC ^b	63 (annual avg)		63	121	139	(a)
Östrand, Sweden	Not specified in IPPC ^b	67 (annual avg)		67	127	146	(a)
Kaskinen, Finland	Not specified in IPPC ^b	67 (annual avg)		67	128	146.6	(a)
Vallvik, Sweden	Not specified in IPPC ^b	70 (annual avg)		70	134	154	(a)
Iggesund, Sweden	Not specified in IPPC	73 (annual avg)		73	139	160	(a)
Varo, Sweden	Not specified in IPPC [®]	73 (annual avg)		/3	140	161	(a)
Pois AG, Austria Ääneskoski Einland	Not specified in IPPC	77 (annual avg) 84 (appual avg)		84	148	184.8	(a)
Georgia	GP Cedar Springs (No. 1)	NA			101	104.0	(a)
Georgia	GP Cedar Springs (No. 2)	NA					
Georgia	GP Cedar Springs (No. 3)	NA					
Georgia	International Paper AM (No. 2)	NA					
Georgia	International Paper AM (No. 3)	NA					
Georgia	Weyerhaeuser PWM (No. 3)	NA					
Kentucky	Vucliffe Paper (03)	NA		1			
Oregon	Cascade Pacific (BEELI)	TBD per permit					
Oregon	GP Consumer Products (EU24)	No limit in permit					
Oregon	Boise White St Helens (2&3)	No limit in permit					
Washington	Boise White Wallula (No. 2)	NA					
Washington	Cosmo (No. 1,2 & 3 common stk)	NA					
Washington	GP Camas (No. 3)	NA					
Washington	GP Camas (No. 4)	NA					
washington British Columbia	PTPC (KF) Catalyst BC Vancouver (#2, w#4, cm)	NA NA		ł		-	
British Columbia	Catalyst PC Vancouver (#4, w#3 op)	NΔ					
British Columbia	Catalyst PC Vancouver (#4, w#3 oiit)	NA		l			
British Columbia	Howe Sound Vancouver (E218529)	NA		1			
British Columbia	Prince George Vancouver (RB)	11.3			30		
Europe-sulphite	LCPDs ^b : low range	91 (24-hr avg)	91		174	200	1.0
Europe-sulphite	LCPDs ^b : high range	137 (24-hr avg)	137		261	300	2.0
Notes:							
(a) See European Mills S	ummarv						

Lime Kiln NOx Unit Conversions

					Annual range	Nat Gas	Oil fired: annual	Nat Gas
		Limit A: ppmd	Oil fired: 24- hr avg: ppm	Nat Gas fired: 24-hr avg: nnm	ppm	fired:	avg: ppm	fired: mg/Nm3(
Location	Facility (LK Unit if specified)	(at 10% O2)	(at 10% O2)	(at 10% O2)	@10%0 2	annua Lave:	(at 10% 02)	at 10%02)
Europe	LCPDs ^b : low range (oil)	39 (24-hr avg)	39					
Europe	LCPDs ^b : high range (oil)	77 (24-hr avg)	77					
Alabama	Alabama River Cellulose (No. 2)	100						
Oregon	Cascade Pacific (LKEU)	112 146 (24 br avg)		146				280
Maine	Red Shield (# 4)	140 (24-fif avg) 170		140				280
Alabama	Alabama River Cellulose (No. 1)	175						
Mississippi	Weyerhaeuser NR PW (AA-110)	189 (or 300						189
Minnesota	Sappi Cloquet LLC	220						
Europe	LCPDs ^D : high range (natural gas)	231 (24-hr avg)		231				442
Uregon	Boise White St Helens	270 275 (24 br avg)						
Washington	Kapstone (3)	340 (24-hr avg)						
Washington	Kapstone (4)	340 (24-hr avg)						
Florida	Palatka (No. 4)	114 (30-day						
Bäckhammar,	Not specified in IPPC ^b	15 (annual avg)			15	2	15	3
Huelva, Spain	Not specified in IPPC ^o	23 (annual avg)			23	2	23	4
Östrand,	Not specified in IPPC ⁶	31 (annual avg)			31	11	31	21
Aaneskoski,	Not specified in IPPC	39 (annual avg)			39	20	39	38
lggesund.	Not specified in IPPC ^b	50 (annual avg)			50	32	50	61
Skoghall,	Not specified in IPPC ^b	58 (annual avg)			58	40	58	77
Kaskinen,	Not specified in IPPC ^b	62 (annual avg)			62	45	62	85
Joutseno,	Not specified in IPPC ^b	65 (annual avg)			65	48	65	92
Stora Celbi,	Not specified in IPPC ^b	65 (annual avg)			65	49	65	94
Enocell,	Not specified in IPPC ^b	66 (annual avg)			66	49	66	94
Obbola, Skutskär	Not specified in IPPC	59 (annual avg)			73	53	69 73	102
Aspa. Sweden	Not specified in IPPC ^b	77 (annual avg)		-	73	62	73	110
Mönsteras,	Not specified in IPPC ^b	66-81 (annual			66-81	66	81	126
Frövi, Sweden	Not specified in IPPC ^b	66-81 (annual			66-81	66	81	126
Vallvik,	Not specified in IPPC ^b	70-85 (annual			70-85	70	85	134
Dynäs,	Not specified in IPPC [®]	70-85 (annual			70-85	70	85	134
Skarblacka,	Not specified in IPPC ⁶	74-89 (annual			74-89	74	89	142
Oulu Finland	Not specified in IPPC	91-104 (annual			91-104	91	100	107
Sunila, Finland	Not specified in IPPC ^b	93-106 (annual			93-106	93	101	179
Wisaforest,	Not specified in IPPC ^b	115-126			115-126	115	126	220
Pöls AG,	Not specified in IPPC ^b	168 (annual avg)			168	168	173	321
Arkansas	Georgia Pacific Crossert (#4)	NA						
Georgia	GP Cedar Springs (No. 1)	NA						
Georgia	International Paper AM (No. 2)	NA						
Georgia	International Paper AM (No. 3)	NA						
Georgia	Weyerhaeuser PWM (No. 2)	NA						
Idaho	Clearwater Lewiston (No. 4)	NA						
Idaho	Clearwater Lewiston (No. 5)	NA						
Kentucky	Wycliffe Paper (03)	NA						
Louisiana	Port Hudson (No. 2)	NA						
Louisiana	International Paper CAMTI (No. 3)	NA						
Minnesota	Boise Cascade Int'l Falls (EU320)	NA						
North Carolina	Kapstone (No. 7)	NA						
Oregon	GP Consumer Products (EU21)	NA						
Washington	Boise White Wallula	NA						
Washington	OF Camas (NO. 4) PTPC (RE)	NA NA						
Washington	WestRock (No. 1)	NA						
Washington	WestRock (No. 2)	NA						
Washington	Weyerhaeuser (No. 4)	NA						
British	Catalyst PC Vancouver (#3, w#4 on)	NA						
British	Catalyst PC Vancouver (#4, w#3 on)	NA						
British	Lataiyst PC Vancouver (#4, w#3 out)	NA						
British	Prince George Vancouver (E218529)	NA						
Notes:								
(a) See European	Mills Summary							

Lime Kiln N	Ox Unit Conv	versions (Continued	I)
-------------	--------------	---------------------	----

		Limit A: ppmd	Oil fired : mg/Nm3(at	Nat Gas fired: mg/Nm3	Nat Gas fired: kg NOx/	Oil fired : mg/Nm3	Oil fired: kg NOx/
Location	Facility (LK Unit if specified)	(at 10% O2)	10%O2)	(at5%O2)	ADt	(at5%O2)	ADt
Europe	LCPDs ^b : low range (oil)	39 (24-hr avg)	74			100	0.1
Lurope	LCPDs ² : high range (oil) Alabama River Cellulose (No. 2)	77 (24-hr avg)	147			200	0.2
Oregon	Cascade Pacific (LKEU)	112					
Europe	LCPDs ^b : low range (natural gas)	146 (24-hr avg)		380	0.4		
Maine	Red Shield (# 4)	170					
Alabama	Alabama River Cellulose (No. 1)	175					
Mississippi	Weyerhaeuser NR PW (AA-110)	189 (or 300 ppm					
Furope	Sappi Cloquet LLC	220 231 (24-br avg)		600	0.6		
Oregon	Boise White St Helens	270		000	0.0		
Washington	Kapstone (5)	275 (24-hr avg)					
Washington	Kapstone (3)	340 (24-hr avg)					
Washington	Kapstone (4)	340 (24-hr avg)					
Florida	Palatka (No. 4)	114 (30-day avg)	20	4	(a)	40	(a)
Huelva Snain	Not specified in IPPC	23 (annual avg)	29	6	(a)	40	(a)
Östrand,	Not specified in IPPC ^b	31 (annual avg)	59	28	(a)	80	(a)
Ääneskoski,	Not specified in IPPC ^b	39 (annual avg)	74	51	(a)	101	(a)
Husum,	Not specified in IPPC ^b	42 (annual avg)	81	61	(a)	110	(a)
Iggesund,	Not specified in IPPC ^b	50 (annual avg)	96	83	(a)	130	(a)
Skoghall,	Not specified in IPPC	58 (annual avg)	111	105	(a)	150	(a)
loutseno	Not specified in IPPC	62 (annual avg)	118	110	(a)	160	(a)
Stora Celbi.	Not specified in IPPC ^b	65 (annual avg)	124	125	(a) (a)	100	(a)
Enocell,	Not specified in IPPC ^b	66 (annual avg)	126	128	(a)	171	(a)
Obbola,	Not specified in IPPC ^b	69 (annual avg)	133	138	(a)	180	(a)
Skutskär,	Not specified in IPPC ^b	73 (annual avg)	140	149	(a)	190	(a)
Aspa, Sweden	Not specified in IPPC	77 (annual avg)	147	160	(a)	200	(a)
Frövi Sweden	Not specified in IPPC	66-81 (annual	155	1/1	(a)	210	(a)
Vallvik,	Not specified in IPPC ^b	70-85 (annual	162	182	(a)	220	(a)
Dynäs,	Not specified in IPPC ^b	70-85 (annual	162	182	(a)	220	(a)
Skärblacka,	Not specified in IPPC ^b	74-89 (annual	169	193	(a)	230	(a)
Varö, Sweden	Not specified in IPPC ^D	87-100 (annual	192	226	(a)	260	(a)
Oulu, Finland	Not specified in IPPC ⁵	91-104 (annual	199	237	(a)	270	(a)
Wisaforest.	Not specified in IPPC ^b	115-126 (annual	203	298.6	(a)	326	(a)
Pöls AG,	Not specified in IPPC ^b	168 (annual avg)	332	435	(a)	450	(a)
Arkansas	Georgia Pacific Crossert (#4)	NA					
Georgia	GP Cedar Springs (No. 1)	NA					
Georgia	GP Cedar Springs (No. 2)	NA					
Georgia	International Paper AM (No. 2)	NA					
Georgia	Weverhaeuser PWM (No. 2)	NA					
Idaho	Clearwater Lewiston (No. 4)	NA					
Idaho	Clearwater Lewiston (No. 5)	NA					
Kentucky	Wycliffe Paper (03)	NA					
Louisiana	Port Hudson (No. 1)	NA					
Louisiana	International Paper CAMTI (No. 3)	NA					
Minnesota	Boise Cascade Int'l Falls (EU320)	NA					
North Carolina	Kapstone (No. 7)	NA					
Oregon	GP Consumer Products (EU21)	NA					
Washington	Boise White Wallula	NA					
Washington	GP Camas (NO. 4) PTPC (RF)	NA NA					
Washington	WestRock (No. 1)	NA			1	1	
Washington	WestRock (No. 2)	NA			İ	İ	l
Washington	Weyerhaeuser (No. 4)	NA					
British	Catalyst PC Vancouver (#3, w#4 on)	NA					
British	Catalyst PC Vancouver (#4, w#3 on)	NA					
British	Lataryst PC vancouver (#4, W#3 OUT)	NA NA					
British	Prince George Vancouver (RB)	NA			1	1	
Notes:			•	•	•	•	•
(a) See European	Mills Summary						

European Mills Summary

		Estimated Annual Averag	ge Calculations (5),(6)		
		(oil fired)	(gas fired)		(oil w/o ncg incineration)
	Recovery Boiler	Lime Kiln	Lime Kiln	Recovery Boiler	Lime Kiln
	NOx	NOx (4)	NOx (4)	SO2 (1),(2)	SO2 (1),(2)
Facility	mg/Nm3	mg/Nm3	mg/Nm3	mg/Nm3	mg/Nm3
Aspa, Sweden	139	200	160	44.7	100.0
Iggesund, Sweden	160	130	83	50.0	110.0
Husum, Sweden	131	110	61	36.7	10.0
Mönsteras, Sweden	105	210	171	11.3	50.0
Östrand, Sweden	146	80	28	4.7	400.0
Skutskär, Sweden	136	190	149	15.3	100.0
Skärblacka, Sweden	76	230	193	19.3	50.0
Skoghall, Sweden	124	150	105	19.3	10.0
Vallvik, Sweden	154	220	182	6.0	290.0
Varö, Sweden	161	260	226	4.7	290.0
Dynäs, Sweden	134	220	182	2.0	10.0
Frövi, Sweden	111	210	171	0.7	10.0
Obbola, Sweden	112	180	138	11.3	10.0
Bäckhammar, Sweden	132	40	4	15.3	10.0
Huelva, Spain	98	60	6	51.3	670.0
Pöls AG, Austria	170	450	435	2.0	10.0
Stora Celbi, Portugal	112	170	127	4.7	20.0
Enocell, Finland	128.6	171	128	0.2	133.0
Oulu, Finland	91	270	237	2.8	6.0
Ääneskoski, Finland	184.8	101	51	47.3	59.0
Kaskinen, Finland	146.6	160	116	48.9	44.0
Sunila, Finland	112.9	275	243	54.4	61.0
Joutseno, Finland	111.3	168	125	1.5	12.0
Wisaforest, Finland	96.4	326	299	20.4	30.0
Notes:					
ICCP reference O2 content = 5%	For mg/Nm3, the N stands	for normal conditions or standard	European conditions of 0 degree	es Celsius and sea level press	ure (101.3 kPa).
Inflated value - includes S from the second s second second sec	om TRS [From IPPC Dec 2001	L document: "Gaseous sulphur is m	ainly SO2-S. Usually only very s	mall amounts of H2S is released	ed (usually below 10 mg
H2S/Nm3)"]					
(2) SO2 trendline was calculated	d from information provided	even though y-intercept of zero w	ould normally be assumed. Re	sults were positive except for	the recovery boiler
calculated SO2 value (mg/Nm3)	at Enocell, Finland. To avoi	d a negative calculated result at thi	is facility, the mg/Nm3 value wa	is estimated as a scaled fracti	on of the kg/ADt ratio of the
next lowest SO2 emitting facilit	y (Frovi, Sweden).				
(3) Source data values of <0.01,	were set to 0.00999 as cons	servative approximations.			
(4) NOx Trendline was calculate	d from information provide	d even though y-intercept of zero w	vould normally be assumed. Re	sults were positive except fo	r gas fired lime kiln calculated
NOx value (mg/Nm3) at Backha	mmar, Sweden. To avoid a	negative calculated result at this fa	cility, the mg/Nm3 value was es	timated as a scaled fraction of	of the kg/ADt ratio of the next
lowest NOx emitting facility (Hu	ielva, Spain).				
(5) Source data: Integrated Po Commission.	llution Prevention Control (I	CCP) Reference Document on Best	Available Techniques in the Pul	p and Paper Industry, Decemi	per 2001, European
(6) Whether an individual facilit	v's lime kiln(s) is gas fired or	oil fired for NOx. and whether it is	oil fired with non-condensable	gas incineration, or without r	non-condensable gas
incineration for SO2 were not k	nown. Ranges of values we	re calculated for both NOx options	and both SO2 options. For NOx	values within or close to the	pil-fired range, oil was the
assumed fuel. For NOx values w	within or close to the gas-fire	d range, gas was the assumed fuel	For values in between, both ga	s and oil fired ranges were pr	ovided.
	the gus me			e and an in containges were pr	

European Mills Summary (Continued)

		Estimated Annual Average	e Calculations (5),(6)		
	(oil & ncg				
	incineration)				
	Lime Kiln	Recovery Boiler	Lime Kiln	Recovery Boiler	Lime Kiln
	SO2 (1),(2)	NOx	NOx	SO2	SO2 (3)
Facility	mg/Nm3	kg/Adt	kg/Adt	kg/Adt	kg/Adt
Aspa, Sweden	150.0	1.29	0.20	0.36	0.1
Iggesund, Sweden	157.5	1.5	0.13	0.4	0.11
Husum, Sweden	82.5	1.21	0.11	0.3	0.01
Mönsteras, Sweden	112.5	0.95	0.21	0.11	0.05
Östrand, Sweden	375.0	1.36	0.08	0.06	0.4
Skutskär, Sweden	150.0	1.26	0.19	0.14	0.1
Skärblacka, Sweden	112.5	0.66	0.23	0.17	0.05
Skoghall, Sweden	82.5	1.14	0.15	0.17	0.00999
Vallvik, Sweden	292.5	1.44	0.22	0.07	0.29
Varö, Sweden	292.5	1.51	0.26	0.06	0.29
Dynäs, Sweden	82.5	1.24	0.22	0.04	0.00999
Frövi, Sweden	82.5	1.01	0.21	0.03	0.01
Obbola, Sweden	82.5	1.02	0.18	0.11	0.00999
Bäckhammar, Sweden	82.5	1.22	0.04	0.14	0.01
Huelva, Spain	577.5	0.88	0.06	0.41	0.67
Pöls AG, Austria	82.5	1.6	0.45	0.04	0.00999
Stora Celbi, Portugal	90.0	1.02	0.17	0.06	0.02
Enocell, Finland	174.8	1.186	0.171	0.011	0.133
Oulu, Finland	79.5	0.81	0.27	0.046	0.006
Ääneskoski, Finland	119.3	1.748	0.101	0.38	0.059
Kaskinen, Finland	108.0	1.366	0.16	0.392	0.044
Sunila, Finland	120.8	1.029	0.275	0.433	0.061
Joutseno, Finland	84.0	1.013	0.168	0.036	0.012
Wisaforest, Finland	97.5	0.864	0.326	0.178	0.03
Notes:					
ICCP reference 02 content = 5%	6 For mg/Nm3 the N stands	for normal conditions or standard F	European conditions of 0 deg	rees Celsius and sea level press	ure (101 3 kPa)
(1) Inflated value - includes S fr	om TRS [From IPPC Dec 2001	document: "Gaseous sulphur is m	ainly SO2-S. Usually only year	small amounts of H2S is release	ed (usually below 10 mg
H2S/Nm3)"]		document. Gaseous sulphur is m	anny 502-5. Osdany only very	sinal anounts of fizs is releas	ed (usually below 10 mg
(2) SO2 Trendline was calculate	d from information provided	even though y-intercept of zero we	ould normally be assumed. F	Results were positive except for	the recovery boiler
calculated SO2 value (mg/Nm3) at Enocell, Finland. To avoid	d a negative calculated result at this	s facility, the mg/Nm3 value w	vas estimated as a scaled fraction	on of the kg/ADt ratio of the
next lowest SO2 emitting facilit	y (Frovi, Sweden).				
(3) Source data values of <0.01,	, were set to 0.00999 as cons	ervative approximations.			
(4) NOx Trendline was calculate	ed from information provided	l even though y-intercept of zero w	ould normally be assumed. F	Results were positive except for	gas fired lime kiln calculated
NOx value (mg/Nm3) at Backha	mmar, Sweden. To avoid a r	egative calculated result at this fac	ility, the mg/Nm3 value was e	estimated as a scaled fraction o	f the kg/ADt ratio of the next
lowest NOx emitting facility (Hu	uelva, Spain).				
(5) Source data: Integrated Po	llution Prevention Control (IC	CCP) Reference Document on Best A	vailable Techniques in the Pu	ulp and Paper Industry, Decemb	er 2001, European
Commission.	a de litere della (a) in ann (* 11	all fine d fee NOV and wheel 111	- 11 Standardship and a start 11	· · · · · · · · · · · · · · · · · · ·	ant and a second second later
(b) whether an individual facilit incineration for SO2 were not k	ty's time klin(s) is gas fired or nown. Ranges of values wer	ou fired for NOX, and whether it is e calculated for both NOx options a	on tirea with non-condensablend both SO2 options. For NO	e gas incineration (ncg), or with x values within or close to the c	out non-condensable gas vil-fired range, oil was the

assumed fuel. For NOx values within or close to the gas-fired range, gas was the assumed fuel. For values in between, both gas and oil fired ranges were provided.

	PM	SO2	NOx
kg/ADt Pulp	mg/Nm3	mg/Nm3	mg/Nm3
0.1		10	
0.2	30		
0.4		50	
0.5	50		
0.7			80
1.1			120
m	66.667	133.33	100
y(2)	16.667	-3.333	10
ecovery Furnace Gas flow range	Low	High	
m3/Adt	7,000	9,000	
ft3/Adt	247.203	317.832	

European Mills Summary (Continued) Plot of kg/<u>ADt pulp based on values from IPPC Dec 2001 pag</u>e 106-108

Lime Kiln BAT Ranges							
kg/ADt Pulp	PM (mg/Nm3)	SO2 (oil w/o ncg incineration) (mg/Nm3)	SO2 (oil & ncg incineration) (mg/Nm3)	NOx (oil fired) (mg/Nm3)	NOx (gas fired) (mg/Nm3)		
0.005		5					
0.01							
0.02							
0.03	30	30					
0.05	50						
0.1			150	100			
0.2				200			
0.3			300				
0.4					380		
0.6					600		
0.7							
1.1							
m	1000	1000	750	1000	1100		
y(2)	0	0	75	0	-60		
Line Kile Cool							
Lime Kiln Gas fl	ow range						
m3/Adt	1,000						
ft3/Adt	35,315						

European Mills Summary (Continued) Plot of kg/ADt pulp based on values from IPPC Dec 2001 page 106-108

Section A.2 Permit Limit Information

[This section contains the original format of the pulp mill survey and contains most of the permit limit information found. The full list of pulp mill limits is contained in the main body text of the RACT analysis.]

			REGIONAI	HAZE RACT AN	ALYSIS	- SUPPORTING MATERIAL	
			Pulp & Paper Mills				
			Recove				
	Facility/			BACT Demonstrated in Practice? Yes/No		Summary of Other Bules (BABT	
State	Unit	Pollutant	BACT	(reference & date)	RACT	LAER. NSPS. MACT. State rules. etc.)	Comments/Notes
Louisiana	Port Hudson Operat	ions Georgi	a-Pacific Consumer Operations, LLC	State facility ID #:2617			
Recovery 1. (2.81*	Recovery Furnace No 1. (2.81* MM lbs/day BLS)	PM/ PM10:	0.025 gr/dscf; 42.11 lbs/hr. ESP	Yes (Source test; Sept 19-20, 2012)	NA	PM<=4.0 lbs/equiv pulp ton : *PM<=0.044 gr/dscf @8%02: NSPS 40CFR60.282 subpart BB. NESHAP 40CFR62 sec NM	*3.32 MM lbs/day max; Limit for combined furnaces = 1.216 MM tpy *Permit specifies this limit for PM10 (not PM), both CFRs however list the limit for PM (not PM10).
		NOx:	112 ppmv @8% O2; 156.20 lbs/hr. GED, PCT		NA	NA	
		SO2:	120 ppmv @8% O2: 5.88 lbs/hr	Stack test results not found	NA	<=2000 ppmv @ STP: LAC 33:III.1503.C	
	Recovery Furnace No 2. (3.96* MM lbs/day)	PM/ PM10:	0.025 gr/dscf; 64.57 lbs/hr. ESP	Yes (Source test; Sept 19-20, 2012)	NA	PM<=4.0 lbs/equiv pulp ton : LAC 33:III.2301.D.1.a 'PM<=0.044 gr/dscf@8%02: NSPS 40CFR60.282 subpart BB. NESHAP	*4.6 MM lbs/day max; Limit for combined furnaces = 1.216 MM tpy *Permit specifies this limit for PM10 (not PM), both CFRs however list the limit for PM (not PM10).
		NOx:	112 ppmv @8% O2; 216.45 lbs/hr. GED, PCT.		NA	40CFR63.862 MM NA	
		SO2:	120 ppmv @8% O2: 7.86 lbs/hr	Stack test results not found	NA	<=2000 ppmv @ STP: LAC 33:III.1503.C	
	Lime Kiln No. 1 (340 TCaO/day)	1 PW/ r) PM10:	0.05 gr/dscf; 25.76 lbs/hr; wet scrubber	Yes, w/ replacement high dp scrubber (3/4/2010 test); [Not with orig AirPol H-K scrubber using pet coke per 8/12/2005 ltr]	NA	PM<=1.0 lbs/equiv pulp ton ("subsumed by BACT"): LAC 33:III.2301.D.1.c	EPA allowed violation to go unfined due to hurricane Rita (post Katrina) natural gas ration. EPA required the extra 8.6 tons PM that were emited due to burning pet coke to be mitigated. Issued deadline for new scrubber.
						*PM<=0.066 gr/dscf @10%O2: NSPS 40CFR60.282	*Listed as 0.15 g/dscm in both CFRs cited. Differer in English units (0.066 gr/dscf vs 0.064 gr/dscf) assumed to be rounding error. Also, Permit specifi
						*PM<=0.064 gr/dscf@10%O2: NESHAP	apply the limit for PM10 (not PM), both CFRs however apply the limit for PM (not PM10).
		NOx:	48.78 lbs/hr; GED* & PCT*	NA	NA	NA	*GED = Good Equipment Design; *PCT = Proper Combustion Techniques
		SO2:	3.26 lbs/hr: Using wet scrubber and mud washing	NA	NA	NA	
	Lime Kiln No. 2 (340 TCaO/day)	2 PM/ y) PM10:	0.033 gr/dscf; 20.45 lbs/hr; ESP + wet scrubber	Yes (GP ltr 8/12/2005)	NA	PM<=1.0 lbs/equiv pulp ton: LAC 33:III.2301.D.1.c "PM<=0.066 gr/dscf@10%O2: NSPS 40CFF60.282	*Listed as 0.15 g/dscm in both CFRs cited. Difference
						*PM<=0.064 gr/dscf@10%O2: NESHAP 40CFR63.862 MM	assumed to be rounding error. Also, Permit specifies this limit for PM10 (not PM), both CFRs however apply the limit for PM (not PM10).
		NOx:	38.75 lbs/hr; GED* & PCT*	NA	NA	NA	*GED = Good Equipment Design; *PCT = Proper Combustion Techniques
		SO2:	2.59 lbs/hr: Using wet scrubber and mud washing	NA	NA	NA	
Maine	Red Shield Acquisiti	on LLC (forr	merly GP), Old Town, Maine, Penobs	cot County		:	
-------	---	---	--	---	--	---	--
	#4 Recovery Boiler (2.57 MM lb/day black LS; 375 MMBtu/hr #6, #2, and/or diesel fuel)	PM:	*0.028 gr/dscf; ; **BPT(for PM and PM10): 34.3 lb/hr BLS, 37.4 lb/hr oil. Flakt dry bottom two field ESP (compliance obtained with just 1 field)	*0.028 gr/dscf; ; *BPT(for PM and PM10): 34.3 lb/hr BLS, 37.4 lb/hr oil. Flakt dry bottom two field ESP sompliance obtained with just 1 field) Flakt dry bottom two field ESP tompliance obtained with just 1 field) *DEP (11/27/2012 conversation with Gary Huitsing of WA State Dept of Ecology).	NA	<=4.0 lbs/equiv pulp ton; : CMR 06-096.105.(2) <=*0.044 gr/dscf@8%O2 : NSPS 40CFR60.282 subpart BB (NA due to cost); NESHAP 40CFR63.862 MM 0.3 lbs/MMBtu : CMR 06-096.103(2)(A)(4); [incorrect ref: should be CMR 06- 096.103(2)(A)(3)(b)]	*Alternative to 0.044 gr/dscf allowed per MACT rule. **Best Practical Treatment (BPT) means that method which controls or reduces emissions of regulated pollutants to the lowest possible level considering: then existing state of technology, effectiveness of available alternatives for reducing emissions from the source being considered, and economic feasibility for the type establishment involved.
		NOx:	May 8, 1996 RACT appears to have replaced previous BACT determinations. **BPT: 154.4 lb/hr BLS, 182.2 lb/hr oil.		120 ppmv wet@8% O2 or 12%CO; *150 ppmv	RACT: CMR 06-096.138.3.C.1	*From State rule referenced in Permit. (120 ppm wet converted to dry basis). **(BPT = see definition above)
		SO2:	**BPT: 100 ppm; 143 lb/hr BLS, 196.5 lb/hr oil.		NA	NA	**(BPT = see definition above)
	Lime Kiln System (64 MMBtu/hr)	PM:	*0.13 gr/dscf; variable throat wet venturi scrubber. **BPT(for PM and PM10): 32.9 lb/hr.	Yes. No current BACT (or RACT) non- demonstration issues in state for recovery furnaces and lime kilns	NA	<=1.0 lbs/equiv pulp ton: CMR 06-096.105.(2) PM<=*0.064 gr/dscf@10%O2 : NSPS 40CFR60.282; NESHAP 40CFR63.862 MM	*Alternative to 0.064 gr/dscf allowed per MACT rule. **(BPT = see definition above)
		NOx:	May 8, 1996 RACT appears to have replaced previous BACT determinations. **BPT: 36.0 lb/hr.	MDEP (11/27/2012 conversation with Gary Huitsing of WA State Dept of Ecology).	120 ppmv wet@10 %O2; or *170	RACT: CMR 06-096.138.3.E.1	**(BPT = see definition above)
		SO2: **BPT: 7.1 lbs/hr (emission concentration not provided); variable throat wet venturi scrubber.	NA	NA	**(BPT = see definition above)		

North Caro KapStone Kra	it Paper Corporat	ion, Roanaoke Rapids, North Carolin	a, Halifax County		:	
No. 7 Re F	covery PM Irnace	0.021 gr/dscf @8% O2; 144 tpy per consecutive 12-month period;	Yes, per Air Permit Review accompanying	NA	<=3.0 lbs/equiv pulp ton; : 15A NCAC 2D.0508	*Single stage, cold side 140k ft2 plate area.
		ESP*	Permit (No. 01649T53)		<=*0.044 gr/dscf@8%02 : NSPS 40CFR60.282 subpart BB; 15A NCAC 2D.0524	
	NOx	100 ppm @8%O2 (30-day rolling avg); 626 tpy (per 12-month consecutive period)		NA		
	SO2	75 ppm @8%O2 (annual rolling avg); 110 ppm @8%O2 (3-hr avg); 571 tpy per consecutive 12-month period		NA	2.3 lbs/MMBtu : 15A NCAC 2D.0516	
Lime Kiln	System PM	0.14 gr/dscf @10%O2; Variable throat wet venturi scrubber.	Yes, per Air Permit Review accompanying Permit (No. 01649T53)	NA	<=0.5 lbs/equiv pulp ton: 15A NCAC 2D.0508	
	NOx	. NA	-		:	
	SO2	Variable throat wet venturi scrubber.		NA	2.3 lbs/MMBtu : 15A NCAC 2D.0516	

Alabama	ALADAMIA RIVER GELLOLOSE LLO (PRA: ALADAMIA RIVER FULF MILL CO ING); FO BOA 301403 MONIG									
	No. 1 Recovery Boiler (2,600 tons dry BLS/day capacity)	PM:	0.025 gr/dscf @8%O2; 74 lb/hr; two ESPs in parallel	Yes, based on stack tests: 5/24/20012	NA	<=4.0 lbs/equiv pulp ton; : 335-3-407.2.a <=0.044 gr/dscf @8%02: NSPS 40CFR60.282 subpart BB. NESHAP 40CFR63.862 MM				
	_			-		0.1 lbs/MMBtu : Not provided				
		NOx:	90 ppmv @8% O2; 223 lb/hr		NA	0.3 lbs/MMBtu : Not provided				
		SO2:	100 ppmv @8% O2; 345 lb/hr		NA	0.8 lbs/MMBtu : Not provided				
	No. 2 Recovery Boiler (3,200 tons dry BL S/day capacity)	PM:	0.025 gr/dscf @8%O2; 77 lb/hr; ESP	Yes, based on stack tests: 4/12/20012: 2/29/20012	NA	<=4.0 lbs/equiv pulp ton; : 335-3-407.2.a <=0.044.gr/dscf@8%02: NSPS 40CER60.282				
	Deb/day sapasity			1, 12,200 12, 2,20,200 12		subpart BB. NESHAP 40CFR63.862 MM				
	_					0.1 lbs/MMBtu : Not provided				
		NOx:	75 ppmv @8% O2; 192.7 lb/hr	-	NA	NA				
		SO2:	100 ppmv @8% O2; 357.3 lb/hr (BLS) 0.3 lb/MMBtu (oil)		NA	0.3 lbs/MMBtu : Not provided				
	No. 1 Lime Kiln (420 tons/day as CaO	PM:	0.035 gr/dscf @10%O2(gas) and 14.7 lb/hr;	7 Yes, based on stack tests: t 5/24/2007; 5/25/2007	NA	<=1.0 lbs/equiv pulp ton: 335-3-407.2.c				
	capacity)		0.064 gr/dscf @10%O2 (oil/CTO/pe coke) and 24.6 lb/hr;			PM<=0.066 gr/dscf@10%O2: NSPS 40CFR60.282				
			venturi scrubber			PM<=0.064 gr/dscf@10%O2: NESHAP 40CFR63.862 MM				
		NOx:	175 ppmv @10%O2 and 58.9 lb/hr	-	NA	NA				
		SO2:	50 ppmv @10% O2 and 23.3 lb/hr; venturi scrubber		NA	NA				
	No. 2 Lime Kiln (540	PM:	0.035 gr/dscf @10%O2(gas) and 14.6	Yes, based on stack	NA	<=1.0 lbs/equiv pulp ton: 335-3-407.2.c				
	tons/day as CaO capacity)		lb/hr; 0.064 gr/dscf @10%O2 (oil/CTO/pet	tests: 4/3/20012		PM<=0.066 gr/dscf@10%O2: NSPS 40CFR60.282				
			coke) and 29.2 lb/hr; ESP			PM<=0.064 gr/dscf@10%O2: NESHAP 40CFR63.862 MM				
		NOx:	100 ppmv @10%O2 and 36.3 lb/hr		NA	NA				
		SO2:	50 ppmv @10% O2 and 25.3 lb/hr		NA	NA				

Florida	Palatka Mill; Georgia	-Pacific Co	nsumer Operations LLC, Palatka FL,	Putnam County		:	
	No.4 Recovery Boiler (210,000 lbs/hr black LS; 1345 MMBtu/hr)	PM:	0.030 gr/dscf @8% O2; 75.6 lb/hr; ULSD=15ppmw; ESP (12 fields*).	Could not find testing data, but according to website, the facility passed the most recent 5-yr compliance inspection on 9/5/2012	NA	<=3 lbs/3000 lbs BLS fed; : 62-296.404(2)a : :	* ESP has two chambers of 6 fields each. Tube replacement considerations.
		NOx:	NOx: 80 ppmvd @8% O2 and 168.5 lb/hr.		NA	NA	
		SO2:	100 ppmvd @8% O2; 292.8 lbs/hr (cap = 153.9 tpy).		NA	NA	
	No. 4 Lime Kiln (41.5 tons/hr lime mud solids; 19.4 tons quicklime per hr)	PM:	0.55 lb/ton lime mud solids; 22.9 lb/hr; venturi scrubber.		NA	NA :	8/21/2009 FDEP authorization to install dual orifice implingement tray and chevron mist eliminator in scrubber separator tank of No. 4 lime kiln. Purpose: to improve
	-	NOx:	140 ppmvd @10% O2 and 52.4 lb/hr	_	NA	NA	performance and pm removal
		SO2:	16.9 ppmvd @10%O2 and 9.1 lb/hr; venturi scrubber.		NA	NA	efficiency of scrubber. Could not find information indicating noncompliance prior to this.
Mississip	o Weyerhaeuser NR C	ompany, Co	lumbus Cellulose Fibers, Columbus	s, MS, Lowndes County		:	
	Recovery Boiler-AA- 100; (6.3 MM lbs BLS/day)	ecovery Boiler-AA- 100; PM10 3 MM lbs BLS/day)	PM/ 0.023 gr/dscf @8% O2; In PM10: not to exceed 93 lbs/hr and 407.3 tpy; ESP.	Information not provided on state website	NA	PM<=4.0 lbs/equiv pulp ton; : APC-S-1 Section 3.5	
						E(PM)=0.08808*I-0.1667: E=emission limit(lbs/MMBTU/hr); I=heat input(MMBTU/hr): APC-S-1 Section 3.4(a)(2);	
						PM<=0.044 gr/dscf@8%O2: NSPS 40CFR60.282 subpart BB. NESHAP 40CFR63.862 MM	
		NOx:	80 ppmvd @8% O2 not to exceed 272.6 lbs/hr and 1193.9 tpy.		NA	NA	
		SO2:	200 ppmvd @4% O2; not to exceed 724.2 lbs/hr and 3172.1 tpy.		NA	4.8 lbs/MMBTU [*0.5 lb/MMBTU]: APC-S-1 Section 4.1(a) [*NSPS 40CFR60.42b(d) subpart Db]	*Applies for oil other than very low sulfur oil
	Lime Kiln-AA-110 (420 tons per day)	PM/ PM10:	0.033 gr/dscf @10% O2; not to exceed 12.67 lbs/hr and 55.5		NA	PM<=*0.067 gr/dscf@10%O2; **0.13 gr/dscf@10%O2: NSPS 40CFR60.282	*Applies when burning gaseous fossil fuel
			tpy; ESP.			PM<=**0.064 gr/dscf@10%O2: NESHAP 40CFR63.862 MM	
						E(PM)=4.1*p0.67: APC-S-1 Section 3.6(a)	E=emission limit(lbs/hr); p=process weight input rate(tph)
		NOx	300 ppmvd @3.6% O2 not to exceed 60.9 lbs/hr and 266.7 tpy.	eed	NA	NA	
		SO2:	*50 ppmvd @10% O2; not to exceed 22.42 lbs/hr and 98.2 tpy.		NA	500 ppmv : APC-S-1 Section 4.2(a)	*When controlling NCG in lieu of the NCG incinerator, 450 ppmv@7%O2 not to exceed 110 lbs/hr and 98.2 tpy

Georgia Weyerhaeuser Compuny - Port Wentworth Mill, Port Wetworth, GA, Chattan County Image: Compute State Sta								
No. 3 Recovery Bolier PM East and West ESP. 11/13/2000 peformance ex0-044 gridsof@895/02: NSPS with two stacks PM (see comments regarding emissions) its its substanding ex1 regulates how emissions with less than 100% of allowable PM and	Georgia	Weyerhaeuser Comp	any - Port V	Ventworth Mill, Port Wetworth, GA,	Chatham County		:	
Image: Second		No. 3 Recovery Boiler with two stacks	РМ	PM East and West ESP. (see comments regarding emissions)	11/13/2000 peformance test results show emissions with less than 100% of allowable PM and NOx for the Recovery Boiler. Test results for SO2 and	NA	<=0.044 gr/dscf@8%02: NSPS 40CFR60.282(a)(1)(i); NESHAP 40CFR63.862 (a)(1)(i)(A) < 47 lbs/hr: 40CFR52.21 (PSD)	PSD limit: "The facility has accepted the following limits under PSD."
NOx NOx SO2: SO2: SO2: SO2: NA 174.3 lbs/hr: Avoidance of 40CFR52.21 (PSD) PSD avoidanc "The facility h following limit review." SO2: SO2: NA < 200 lbs/hr @8%O2 : '(see note)					Lime kiln not found on state website.		 (a) E=4.1*p0.67; (b) E=55*P0.11- 40: Equipment SIP Rule Standards: 391-3-102(2)(e)1(i); E=emission limit(lbs/hr); p=process weight input rate(tph) excluding moisture. (a) for p <= 30 tpy; (b) for p > 30tpy: 	
SO2: SO2: SO2: SO2: NA < 200 lbs/hr @8%O2 : "(see note)			NOx		NA	174.3 lbs/hr: Avoidance of 40CFR52.21 (PSD)	PSD avoidance: "The facility has accepted the following limits to avoid PSD review."	
No. 2 Lime Kiln PM ESP. (see comments regarding emissions) FM ESP. (see comments regarding emissions) FM Image: Comments regarding emissions) FM Image: Comments regarding emissions) FM Image: Comments regarding emissions) FM Image: Comments regarding emissions) FM Image: Comments regarding emissions) FM Image: Comment regarding emissions) FM Image: Comment regarding emissions) FM Image: Comment regarding emissions) FM Image: Comment regarding emissions) FM Image: Comment regarding emissions) FM Image: Comment regarding emissions) FM Image: Comment regarding emissions) FM Image: Comment regarding emissions) FM Image: Comment regarding emissions) FM Image: Comment regarding emissions) FM Image: Comment regarding emissions) FM Image: Comment regarding emissions) FM Image: Comment regarding emissions) FM Image: Comment regarding emissions) FM Image: Comment regarding emissions) FM <t< td=""><td></td><td></td><td>SO2:</td><td></td><td></td><td>NA</td><td>< *200 lbs/hr @8%02 : *(see note)</td><td>PSD limit: "The facility has accepted the following limits under PSD." "Previously = 500 lbs/hr until 12/23/2009; The 500 lbs/hr limit was based on 40CFR52.21; the 200 lbs/hr limit was adapted to eliminate need to convert CEMS data to lbs/hr value.</td></t<>			SO2:			NA	< *200 lbs/hr @8%02 : *(see note)	PSD limit: "The facility has accepted the following limits under PSD." "Previously = 500 lbs/hr until 12/23/2009; The 500 lbs/hr limit was based on 40CFR52.21; the 200 lbs/hr limit was adapted to eliminate need to convert CEMS data to lbs/hr value.
Image: Nox: Nox: Not image: Not image: Not imag		No. 2 Lime Kiln	PM	ESP. (see comments regarding emissions)		NA	PM<=0.064 gr/dscf@10%02: NSPS 40CFR60.282; NESHAP 40CFR63.862; 40CFR52.21	PSD limit: "The facility has accepted the following limits under PSD."
NOx: NA NA					-		(a) E=4.1*p0.67; (b) E=55*P0.11- 40: Equipment SIP Rule Standards: 391-3-102(2)(e)1(i)	E=emission limit(lbs/hr); p=process weight input rate(tph) excluding moisture. (a) for p <= 30 tpy; (b) for p > 30tpy:
			NOx:			NA	NA	
SO2: NA 49.6 lbs/hr: 40CFR52.21 (PSD) PSD limit: "The accepted the funder PSD."			SO2:			NA	49.6 lbs/hr: 40CFR52.21 (PSD)	PSD limit: "The facility has accepted the following limits under PSD."

Georgia	Georgia-Pacific Ceda	ar Springs L	LC, Cedar Springs, GA, Early Cour	ity		-	
	Recovery Boiler No. 1	PM:	*0.030 gr/dscf @8%O2 ESP.	Yes. Performance test results (year 2000): 0.0151 gr/drsc @8%O2	NA	*PM<=0.030 gr/dscf @8% O2: 40CFR52.21; NESHAP 40CFR63.862; NSPS 40CFR Subpart BB subsumed	MACT MM limit; *PSD limit: "The facility is a major source under PSD. The facility is subject to the following PSD limits." "This is the same as the PSD BACT limit."
						PM<= 46 lbs/hr:	PSD limit: "The facility is a major source under PSD. The facility is
		NOx:			NA	154 lbs/hr; 0.2 lbs MMBtu heat input:	PSD limit: "The facility is a major source under PSD. The facility is subject to the following PSD limits."
		SO2:			NA	< 300 ppm@8%O2; 535 lbs/hr:	PSD limit: "The facility is a major source under PSD. The facility is subject to the following PSD limits."
	Recovery Boiler No. 2	ry Boiler No. 2 PM *0.030 gr/dscf @8%O2 Yes. Performance test resu ESP. (year 2000): 0.0114 gr/drsc @8%d		Yes. Performance test results (year 2000): 0.0114 gr/drsc @8%O2	NA	*PM<=0.030 gr/dscf @8% O2: 40CFR52.21; NESHAP 40CFR63.862; NSPS 40CFR Subpart BB subsumed	MACT MM limit; *PSD limit: "The facility is a major source under PSD. The facility is subject to the following PSD limits." "This is the same as the PSD BACT limit."
		NOx				PM<=46 lbs/hr:	PSD limit: "The facility is a major source under PSD. The facility is subject to the following PSD limits."
	_				NA	154 lbs/hr; 0.2 lbs MMBtu heat input:	PSD limit: "The facility is a major source under PSD. The facility is subject to the following PSD limits."
		SO2:			NA	< 300 ppm@8%O2; 535 lbs/hr:	PSD limit: "The facility is a major source under PSD. The facility is subject to the following PSD limits."
	Recovery Boiler No. 3	PM	See NESHAP limit	Yes. Performance test results	NA	PM<=0.024 gr/dscf @8% O2: NESHAP 40CFR63.862	Georgia rule subsumed by listed NESHAP.
	-	ESP. (year 2000): 0.0066 gr/drsc @8%/	(year 2000): 0.0066 gr/drsc @8%O2		PM<= 49.7 lbs/hr:	PSD limit: "The facility is a major source under PSD. The facility is subject to the following PSD limits."	
		NOx:			NA	:	
		SO2:			NA	*350 ppmvd @8%O2 (Intall CEMS): 40CFR Part 51 Appendix Y- BART	*When firing black liquor for complete 24-hr block period.

Georgia	Georgia-Pacific Ceda	ar Springs L	LC, Cedar Springs, GA, Early Count	у		:	
	Lime Kiln No. 1; (250 CaO tpd - unchanged per LK2 modification)	PM/ PM10	See comments regarding emission limits listed in site Permit; Venturi Scrubber	Yes. Performance test results (year 2000): 0.0399 gr/drsc	NA	PM<=0.064 gr/dscf @10% O2: NESHAP 40CFR63.862	PSD limit: "The facility has accepted the following limits under PSD." Georgia rule subsumed by listed NESHAP.
				@10%O2		PM<=17.62 lbs/hr; PM10<=15.18 lbs/hr: Avoidance of 40CFR52.21, 40CFR52.21 BACT subsumed	PSD avoidance: "The facility has accepted the following limits to avoid PSD review." "PM emissions were limited to 20 lbs/hr. The limit was subsumed by more stringent PSD avoidance limits for PM/PM10."
		NOx:			NA	14.06 lbs/hr: Avoidance of 40CFR52.21	PSD avoidance: The facility has accepted the following limits to avoid PSD review.
		SO2:	Venturi Scrubber		NA	13.54 lbs/hr: Avoidance of 40CFR52.21, 40CFR52.21 BACT subsumed	PSD avoidance: "The facility has accepted the following limits to avoid PSD review." "SO2 emissions were limited to 113 lbs/hr. The limit was subsumed by a more stringent PSD avoidance limit.
	Lime Kiln No. 2 (Previous capacity of 250 tpd CaO increased to 300 tpd	ime Kiln No. 2 us capacity of 250 tpd CaO sed to 300 tpd	See comments regarding emission limits listed in site Permit; Micro Mist Scrubber [replaced Venturi	Yes for PM Performance test results (year 2000) 0.0354 gr/drsc @10%O2.	NA	PM<=0.056 gr/dscf@10%02: NESHAP 40CFR63.862	PSD limit: "The facility has accepted the following limits under PSD." Georgia rule subsumed by listed NESHAP.
	due to preheating via new lime mud flash dryer per 4/18/2007 Permit)	o preneating via w lime mud flash er per 4/18/2007 Permit)	c	No specific reason is provided for replaceing the venturi scrubber by a Micro Mist scrubber in 2007 other than to "control emissions from the No. 2 Lime Kiln".		PM<=12.28 lbs/hr; PM10<=10.71 lbs/hr: Avoidance of 40CFR52.21, 40CFR52.21 BACT subsumed	PSD avoidance: "The facility has accepted the following limits to avoid PSD review." "PM emissions were limited to 20 lbs/hr. The limit was subsumed by more stringent PSD avoidance limits for PM/PM10."
		NOx:			NA	16.87 lbs/hr: Avoidance of 40CFR52.21	PSD avoidance: The facility has accepted the following limits to avoid PSD review.
		SO2:			NA	16.25 lbs/hr: Avoidance of 40CFR52.21, 40CFR52.21 BACT subsumed	PSD avoidance: "The facility has accepted the following limits to avoid PSD review." "SO2 emissions were limited to 113 lbs/hr. The limit was subsumed by a more stringent PSD avoidance limit.
Georgia	International Paper -	- Augusta M	ill, Augusta, GA, Richmond County			:	
		PM	(0.021 gr/dscf @8%O2)	Yes, demonstrated with 0.015 gr/dscf@8%O2 in March 2004		:	

Idaho	Clearwater Paper Cor						
	Recovery Furnace No. 4	PM	0.040 gr/dscf @8% O2; ESP		NA	PM<=0.044 gr/dscf @8% O2 :NESHAP 40CFR63.862(a)(1)(i)	PM surrogate for HAPS
		NOx:	NA	NA	NA	NA	
		SO2:	NA	NA	NA	NA	
	Recovery Furnace No. 5	PM	0.03 gr/dscf; 58 lbs/hr; ESP (97.7% efficient)		NA	PM<=0.044 gr/dscf	PM surrogate for HAPS
		NOx:	100 ppm; 160 lb/hr; 700 tpy		NA	NA	
		SO2:	50 ppm; 112 lb/hr; 490 tpy		NA	ΝΑ	
	Lime Kiln No. 3	PM	5.2 lb/hr each kiln; (27 tpy combined with Lime Kiln No 4) ESP		NA	PM<=0.064 gr/dscf @*10% O2 : NESHAP 40CFR63.862	PM surrogate for HAPS; *(8% O2 listed in permit - assume 10% per 40CFR862)
		PM10	5.2 lb/hr each kiln; (17.3 tpy combined kilns) ESP			<u>:</u>	
		NOx:	766 lb/day (each kiln); 113 tpy (combined with Lime Kiln No		NA	NA	
		SO2:	153 lb/3-hr; 21 tpy		NA	NA	
	Lime Kiln No. 4	PM	5.2 lb/hr each kiln; (27 tpy combined with Lime Kiln No 4) ESP		NA	PM<=0.064 gr/dscf @*10% O2 : NESHAP 40CFR63.862	PM surrogate for HAPS; *(8% O2 listed in permit - assume 10% per 40CFR862)
		PM10	5.2 lb/hr each kiln; (17.3 tpy combined kilns) ESP				
		NOx:	766 lb/day (each kiln); 113 tpy (combined with Lime Kiln No		NA	NA NA	
		SO2:	20 ppmv; 10.4 lb/3-hr; 15 tpy Packed bed scrubber downstream of ESP		NA	NA NA	

Oregon	Cascade Pacific Pulp	o, LLC, Halse	ey OR, Linn County				
	Recovery Furnace RFEU	РМ	 2.77 lb/air dired ton (1.38 kg/mt) daily avg; 1.91 lb/air dired ton (0.95 kg/mt) monthly avg. ESP 		NA	PM<=0.044 gr/dscf @8% O2 NESHAP 40CFR63.862(a)(1)(i)	PM surrogate for HAPS
		NOx:	NA	NA	NA	NA NA	
	•	SO2:	180 ppm@8%O2	NA	NA	300 ppm @8%O2 OAR 340-234-0240(4)	
	Lime Kiln LKEU	РМ	0.50 lb/air dired ton (025 kg/mt) daily avg [NG]; 1.00 lb/air dired ton (0.50 kg/mt) daily avg [oil or pet coke. ESP		NA	PM<=0.064 gr/dscf @10% O2 NESHAP 40CFR63.862	
		NOx:	 112 ppm @10%O2 [NG or oil with existing burner]; 185 ppm @10%O2 [with pet coke burner]; 1000 ppm @10%O2 [if different burner installed] 		NA	NA NA	
		SO2:	NA		NA	NA NA	

Washingto	LONGVIEW FIBRE PAP	ER AND PAC	KAGING, INC,(dba KapStone) Long	gview, WA, Cowlitz County.	:	
	Recovery Furnace 18	PM/ PM10:	/ 0.044 gr/dscf @8% O2 : 1-hr avg;	NA	PM<=0.10 gr/dscf @8% O2 1-hr avg: WAC 173-405-040(1)(a)	
			219 tpy 12-month total; ESP (no scrubber)		PM<=0.044 gr/dscf @8% O2 : NESHAP 40CFR63.862(a)i; 40CFR63.864(d)&(k); 40CFR63.6(h)(SSM exclusion)	PM surrogate for HAPS
		NOx:	95 ppmdv @8%O2, 24-hr avg; 452 TPY 12 month total	NA	:	
		SO2:	94 lbs/hr, 3-hr avg; 202 tpy 12 month total	NA	500 ppm@8%O2; 1-hr avg.: WAC 173-405- 040(11)(a)	
	Recovery Furnace 19	PM/ PM10:	PM/ 0.040 gr/dscf @8% O2 M10: 1-hr avg; 292 tpy 12-month total; ESP	NA	PM<=0.10 gr/dscf @8% O2 1-hr avg: WAC 173-405-040(1)(a)	
					PM<=0.044 gr/dscf @8% O2 : NESHAP 40CFR63.862(a)i; 40CFR63.864(d)&(k); 40CFR63.6(h)(SSM exclusion)	PM surrogate for HAPS
		NOx:	95 ppmdv @8%O2, 24-hr avg; 753 TPY 12 month total	NA		
		SO2:	149 lbs/hr, 3-hr avg; 301 tpy 12 month total	NA	500 ppm@8%O2; 1-hr avg.: WAC 173-405- 040(11)(a)	
	Recovery Furnace 22	PM/ PM10:	0.027 gr/dscf @8% O2 1-hr avg;	NA	PM<=0.10 gr/dscf @8% O2 1-hr avg: WAC 173-405-040(1)(a)	
			256 tpy 12-month total; ESP		PM<=0.044 gr/dscf @8% O2 : NESHAP 40CFR63.862(a)i; 40CFR63.864(d)&(k); 40CFR63.6(h)(SSM exclusion)	PM surrogate for HAPS
		NOx:	95 ppmdv @8%O2, 24-hr avg; 735 TPY 12 month total	NA		
		SO2:	295 lbs/hr, 3-hr avg; 301 tpy 12 month total	NA	500 ppm@8%O2; 1-hr avg.: WAC 173-405- 040(11)(a)	

to LONGVIEW FIBRE PAPI	ER AND PAC	KAGING, INC,(dba KapStone) Longview, W/	A, Cowlitz County.		
Recovery Furnace 15 (out of service)	₽M/ PM10:	0 .033 gr/dscf @8% O2 1 hr avg; 182.5 tpy 12-month total;	AA-	PM<=0.10 gr/dscf @8% O2 1-hr avg: WAC 173-405-040(1)(a)	
		ESP & Scrubbor		PM<=0.044 gr/dscf @8% O2 : 40CFR63.862(a)i; 40CFR63.864(d)&(k); 40CFR63.6(h)(SSM exclusion)	PM surrogate for HAPS
	N Ox:	95 ppmdv @8%O2, 24 hr avg; 434 TPY 12 month total	NA.		
	\$02:	60 ppmdv @8% O2, 3-hr avg; 365 tpy 12 month total	AA-	500 ppm@8%O2; 1-hr avg.: WAC 173-405- 040(11)(a)	
Lime Kiln 3	PM/ PM10:	0.030 gr/dscf @10% O2 1-hr avg;	NA	PM<=0.13 gr/dscf @10% O2, 1-hr avg: WAC 173-405-040(3)(a)	
		34 tpy 12-month total; *venturi scrubber		PM<=0.064 gr/dscf @10% O2 : NESHAP 40CFR63.862(a)i; 40CFR63.864(e)&(k); 40CFR63.6(f)(SSM exclusion)	PM surrogate for HAPS
	NOx:	340 ppmdv @10%O2, 24-hr avg; 238 TPY 12 month total	NA	:	
	SO2:	*20 ppmdv @10% O2, 3-hr avg; 27 tpy 12 month total; *venturi scrubber	NA	500 ppm @10%O2; 1-hr avg.: WAC 173-405- 040(11)(a)	*SO2 is typically controlled using operational practices, but caustic addition to the scrubber water is used when operational conditions vary from establised standards.
Lime Kiln 4	PM/ PM10:	0.030 gr/dscf @10% O2 1-hr avg;	NA	PM<=0.13 gr/dscf @10% O2, 1-hr avg: WAC 173-405-040(3)(a)	
		35.6 tpy 12-month total; *venturi scrubber		PM<=0.064 gr/dscf @10% O2 : NESHAP 40CFR63.862(a)i; 40CFR63.864(e)&(k); 40CFR63.6(f)(SSM exclusion)	PM surrogate for HAPS
	NOx:	340 ppmdv @10%O2, 24-hr avg; 248 TPY 12 month total	NA	2	
	SO2:	*20 ppmdv @10% O2, 3-hr avg; 28 tpy 12 month total; *venturi scrubber	NA	500 ppm @10%O2; 1-hr avg.: WAC 173-405- 040(11)(a)	*SO2 is typically controlled using operational practices, but caustic addition to the scrubber water is used when operational conditions yary from establised standards

Washingto LONGVIEW FIBRE PAPER		CKAGING, INC,(dba KapStone) Longv	view, WA, Cowlitz County.	:	
Lime Kiln 5	PM/ PM10:	*0.035 gr/dscf @10% O2 1-hr avg;	NA	PM<=*0.067 gr/dscf @10% O2 : NESHAP 40CFR63.862(a)3	*When firing natural gas. ** When firing oil.
		0.060 gr/dscf @10% O2 1-hr avg; 69 tpy 12-month total;		PM<=0.13 gr/dscf @10% O2, 1-hr avg: NSPS 40 CFR 60.282(a)3	
		LOF		PM<=0.13 gr/dscf @10% O2, 1-hr avg: WAC 173-405-040(3)(a)	For both natural gas and oil
				PM<=0.064 gr/dscf @10% O2 : NESHAP 40CFR63.862(a)i; 40CFR63.864(e)&(k); 40CFR63.6(f)(SSM exclusion)	PM surrogate for HAPS
	NOx:	275 ppmdv @10%O2, 24-hr avg; 262 TPY 12 month total	NA	-	
	SO2:	20 ppmdv @10% O2, 3-hr avg; 28 tpy 12 month total	NA	500 ppm @10%O2; 1-hr avg.: WAC 173-405- 040(11)(a)	
Lime Kiln 1	PM/	0.030 gr/dscf @10% O2	NA	PM<=0.13 gr/dscf @10% O2, 1-hr avg: WAC	
(out of service)	FINITO	20 tpy 12-month total; *venturi scrubber		PM<=0.064 gr/dscf @10% O2 : 40CFR63.862(a)i; 40CFR63.864(e)&(k); 40CFR63.6(f)(SSM exclusion)	PM surrogate for HAPS
	NOx:	340 ppmdv @10%O2, 24 hr avg; 139 TPY 12 month total	NA.	:	
	\$02:	*20 ppmdv @10% O2, 3-hr avg; 16 tpy 12 month total	NA.	500 ppm @10%O2; 1-hr avg.: WAC 173-405- 040(11)(a)	*SO2 is typically controlled using operational practices, but caustic addition to the scrubber water is used when operational conditions vary from establised standards.
Lime Kiln 2 (out of	PM/ PM10:	0.030 gr/dscf @10% O2 1-hr avg;	NA.	PM<=0.13 gr/dscf @10% O2, 1-hr avg: WAC 173-405-040(3)(a)	
service)		20 tpy 12 month total; *venturi scrubber		PM<=0.064 gr/dscf @10% O2 : 40CFR63.862(a)i; 40CFR63.864(e)&(k); 40CFR63.6(f)(SSM exclusion)	PM surrogate for HAPS
	NOx:	340 ppmdv @10%O2, 24-hr avg; 139 TPY 12 month total	NA	-	
	\$02:	* 20 ppmdv @10% O2, 3 hr avg; 1 6 tpy 12 month tota l	NA.	500 ppm @10%O2; 1-hr avg.: WAC 173-405- 040(11)(a)	*SO2 is typically controlled using operational practices, but caustic addition to the scrubber water is used when operational conditions vary from establised standards

Washingto	Georgia-Pacific Cons	umers Proc	ducts (GP Camas) LLC, [PKA: JAMES	RIVER CORP] Camas, V	VA, Clark	-	
	No. 3 Kraft Recovery Furnace (tpy bubble emission	PM10:	0.033 gr/dscf (0.075 g/dscm) @8% O2 avg of 3 one-hr runs; ESP->	Yes, per support document (SUP DOC 031506FIN.doc) available on Ecology	NA	PM<=0.044 gr/dscf (0.10 g/dscm) @8% O2 hourly avg.: NESHAP 40CFR63.862(a)i; 40CFR63.864(e)&(k); 40CFR63.6(f)(SSM exclusion)	PM surrogate for HAPS
	Imit for No. 3 and No 4 furnaces combined: PM10<=328; NOx <=609; SO2<=46.2)		caustic scrubber*-> wet heat recovery system	Industrial section website.		PM10<=0.10 gr/dscf @8% O2; avg three 1-hr runs: WAC 173-405-040(1)(a)	*(packed bed, cross-flow AirPol)
		NOx:	1.3 lb/ton (0.65 kg/Mg) bls fired		NA	:	
		SO2:	10 ppm @8% O2, 24-hr avg; scrubber*		NA	:	
	No. 4 Kraft Recovery Furnace (tpy bubble emission limit for No. 3 and No 4 furnaces combined: PM10<=328; NOx <=609; SO2<=46.2)	PM10:	0.033 gr/dscf (0.075 g/dscm) @8% O2 1-hr avg; ESP -> caustic scrubber -> wet heat recovery system	Yes, per support document (SUP DOC 031506FIN.doc) available on Ecology Industrial section website.	NA	PM<=0.044 gr/dscf (0.10 g/dscm) @8% O2 hourly avg.: NESHAP 40CFR63.862(a)i; 40CFR63.864(e)&(k); 40CFR63.6(f)(SSM exclusion) :	PM surrogate for HAPS
		NOx:	1.5 lb/ton (0.75 kg/Mg) bls fired		NA	:	
		SO2:	10 ppm @8% O2, 24-hr avg; caustic scrubber		NA	:	
	Lime Kiln 4	PM10:	0.13 gr/dscf (0.295 g/dscm) @10% O2 1-hr avg; wet scrubber	Yes, per support document (SUP DOC 031506FIN.doc) available on Ecology	NA	PM<=*0.067 gr/dscf (0.152 d/dscm) @10% O2; 3 one-hr runs: NESHAP 40CFR63.862(a)3	*When firing natural gas (88 tpy limit).
				Industrial section website.		PM<=**0.13 gr/dscf (0.295 g/dscm) @10% O2, 1-hr avg: NSPS 40 CFR 60.282(a)3	** When firing fuel oil (44 tpy limit).
					NA	PM<=0.064 gr/dscf (0.15 g/dscm) @10% O2 hourly avg: NESHAP 40CFR63.862(a)i; 40CFR63.864(e)&(k); 40CFR63.6(f)(SSM exclusion)	PM surrogate for HAPS
		NOx:	234 tpy annual average		NA	:	
		SO2:	36.1 tpy annual average;		NA	500 ppm @10%O2; 1-hr avg.: WAC 173-405- 040(11)(a)	
			wet scrubber				

Washingto	Cosmo Specialty Fib	ers, Inc. (Co	osmo) [Previously owned by Weyerl	naeuser], Cosmopolis, W	/A, Grays		
	Recovery Boilers No. 1, 2, and 3 (common stack)	PM:	(See Summary of Other Rules) multi-cyclones*	Yes, per permit support document (No. 00080- 9) available on Ecology Industrial section	NA	0.10 gr/dscf @8% O2;: WAC 173-410- 040(2)(a); and Order DE 95AQ-1034 (Attachment B)	
				website.		*<=10.0 lbs/hr (4.535 kg/hr) : 40CFR63.862(d) (MACT rule dated February 18, 2003; effective May 19, 2003)	*Special site specific MACT rule for PM (as a surrogate for HAPS). PM is controlled through hog fuel holder instead of recovery furrace
		NOx:	NA		NA	:	
		SO2:	(See Summary of Other Rules) Absorption tower/ venturi absorbers*		NA	800 ppm hrly avg.: WAC 173-410-040(d); 40CFR64; and WAC 173-401-615(4)	*Recovery Boilers No. 1 and 2, flow from multicyclone to an absorption tower; *Recovery Boiler No. 3 flows from multicyclone to dual purpose
					NA	360 ppm hrly avg.: Order DE 95AQ-1034 (Attachment B)	cooler/cyclone evaporator, and three venturi SO2 absorbers in
Washingto	Port Townsend Pape	r Corporati	on (PTPC), Port Townsend, WA, Jeff	erson County		:	
	Recovery Furnace	PM:	(See Summary of Other Rules)	Yes. Multiple source tests per support	NA	0.08 gr/dscf @8% O2; 1-hr avg: Order 2892- 05AQ; and 40 CER 64 6 (c) for CAM	
			LOI	(PTSUPA20.DOC)		0.10 gr/dscf @8% O2;: WAC 173-405-040	
						PM<=0.044 gr/dscf @8% O2 hourly avg.: NESHAP 40CFR63.862	PM surrogate for HAPS
		NOx:	NA		NA	:	
		SO2:	200 ppm @8%O2 1-hr avg.	Yes. Multiple source tests per support document (PTSUPA20.DOC)	NA	500 ppm hrly avg.: WAC 173-410-040	
	Lime Kiln	PM:	(See Summary of Other Rules) Venturi Scrubber	Yes. Multiple source tests per support document	NA	0.13 gr/dscf @10% 02; 1-hr avg.: WAC 173- 405-040; and 40 CFR 64.6 (c) for CAM	
				(PTSUPA20.DOC)		PM<=0.064 gr/dscf @10% O2 hourly avg.: 40CFR63.862	PM surrogate for HAPS
		NOx:	NA		NA		
		SO2:	(See Summary of Other Rules) Venturi Scrubber	Yes. Multiple source tests per support document (PTSUPA20.DOC)	NA	500 ppm hrly avg.: WAC 173-410-040	

Washingto	WestRock, Tacoma, W	A, Pierce (County			:	
	Recovery Furnace # 4.	PM:	(See Summary of Other Rules)		NA	0.10 gr/dscf @8% 02;: WAC 173-405-040	
	(669 tpy as 12-month rolling avg)		ESP			PM<=0.044 gr/dscf @8% O2 hourly avg.: NESHAP 40CFR63.862	PM surrogate for HAPS
		NOx:	85 ppm @8% O2, 30-day rolling avg; 515 tpy as 12-month rolling avg.		NA		
		SO2:	150 ppm @8%O2, 30-day rolling avg; 669 tons /yr as 12-month rolling avg.		NA	500 ppm hrly avg.: WAC 173-410-040	
	Lime Kilns #s 1 & 2.	PM:	(See Summary of Other Rules)	Yes, avg of three tests on 7/27/04 and 8/9/04	NA	0.13 gr/dscf @10% 02; 1-hr avg.: WAC 173- 405-040	
			Scrubber			PM<=0.064 gr/dscf @10% 02 hourly avg.: NESHAP 40CFR63.862	PM surrogate for HAPS
		NOx:	NA		NA	:	
		SO2:	(See Summary of Other Rules); Scrubber		NA	500 ppm hrly avg.: WAC 173-410-040	

Washingto	Weyerhaeuser Long	view, WA, C	owlitz County		·	
	Recovery Furnace # 10.	PM/ PM10:	0.027 gr/dscf @8% O2 avg of three 1- hr runs; 0.020 gr/dscf @8% annually; 252 tpy;	NA	Same as BACT limits: BART = "Current BACT limits in PSD 92-03, Ammendment 4"	
			ESP		PM<=0.10 gr/dscf @8% 02; avg of three 1-hr runs: WAC 173-405-040	
					PM<=0.044 gr/dscf @8% O2 hourly avg.: NESHAP 40CFR63.862	PM surrogate for HAPS
		NOx:	140 ppm @ 8% O2, 24 hr avg; 1179 tpy annual avg	NA	Same as BACT limit: BART = "Current BACT limit in PSD 92-03, Ammendment 4"	
		SO2:	75 ppm @8%O2, 3 hr avg (when not using suppl oil or when using suppl oil and BLS firing rate >150.000 lbs/hr):		: WAC 173-410-040	
			500 ppm 3-hr avg (when BLS firing rate <120,000 lbs/hr and firing suppl oil): 586 tpy*		Same as BACT limit: BART = "Current BACT limit in PSD 92-03, Ammendment 4"	Quote from WA State Regional Haze SIP, Dec 2010 (p.L-374)
				NA	1000 ppm hrly avg. (when firing oil): WAC 173-410-040(11)(b)	*586 tpy + 0.036 tpy for each hr of NCG incinerator operation. The combined total not to exceed 884 tpy.
	Lime Kiln	PM	*0.035 gr/dscf @10% O2 (gas fired); 0.07 gr/dscf @10% O2 (oil fired);	NA	PM<=*0.067 gr/dscf @10% O2 : NESHAP 40CFR63.862(a)3; WAC173-405-040	*When firing natural gas.
			ESP		PM<=**0.13 gr/dscf @10% O2, 1-hr avg: NSPS 40 CFR 60.282(a)3	S **For liquid fossil fuel
					PM<=0.064 gr/dscf @10% O2 : NESHAP 40CFR63.862	PM surrogate for HAPS
		NOx:	NA	NA	NA	
		SO2:	NA	NA	500 ppm @10%O2; 1-hr avg.: WAC 173-405- 040(11)(a)	

Washingto	Boise White Wallula	, WA, Walla V	Valla County			:	
	No. 2 Recovery Furnace	PM	0.044 gr/dscf @8% O2 1-hr avg;	Yes for Particulate (multiple years of data	NA	PM<=0.1 gr/dscf @8% O2 avg three 1-hr tests: WAC 173-400-091	
			476 ibs/day rolling annual avg; ESP	file name: "1/7/2005 Boise Cascade AOP		PM<=0.044 gr/dscf @8% O2 :NESHAP 40CFR63.862(a)(1)(i)	PM surrogate for HAPS
				Fact Sheet.doc")		PM<=75 tpy; PM10<=63 tpy PM10 (12-month rolling avg);: Order No. DE 02AQ91S-5019;	
		NOx:	NA		NA	NA	
		SO2:	5424 lbs/day rolling annual avg			500 ppm@8%O2; 1-hr avg.: WAC 173-405- 040(11)(a)	
					NA	585 tpy 12-month rolling avg.: Order No. DE 02AQ91S-5019; WAC 173-400-091	
	No. 3 Recovery Furnace	PM/ PM10:	See Summary of Other Rules (LAER) ESP	Yes for Particulate (multiple years of data per support document file name: "1/7/2005 Boise Cascade AOP	NA	0.027 gr/dscf @8% O2 avg of three 1-hr runs; 0.021 gr/dscf @8% annually; 186 tpy; : LAER for state non-attainment area NSR (per WAC 173-400-112)	
				Fact Sheet.doc")		PM<=0.1 gr/dscf @8% O2 avg three 1-hr tests: WAC 173-405-040	
						PM<=0.044 gr/dscf @8% O2 :NESHAP 40CFR63.862(a)(1)(i)	PM surrogate for HAPS
		NOx:	112 ppmvd @ 8% O2, daily avg; 825 tpy		NA	NA	
		SO2:	*1301 12 month rolling annual avg			500 ppm@8%O2; 1-hr avg.: WAC 173-405- 040(11)(a)	*PSD condition as BACT avoidance limit.

Washingto	Boise White Wallula.	WA. Walla \	Walla County				
	Lime Kiln	PM	0.12 gr/dscf @10%O2 when firing fuel oil; 906 lbs/day for fuel oil;	Yes for Particulate (multiple years of data per support document	NA	PM<=0.064 gr/dscf @10% O2 : NESHAP 40CFR63.862	PM surrogate for HAPS
			annual avg)	Boise Cascade AOP Fact Sheet.doc")		PM<=*0.066 gr/dscf @10% O2 : NESHAP 40CFR60.282	*When firing natural gas.
			Scrubber			PM<=**0.13 gr/dscf @10% 02: NSPS 40 CFR 60.282	**For liquid fossil fuel
						PM<=0.13 gr/dscf @10% O2: WAC 173-405- 040(3)	
		NOx:	NA		NA	NA	
		SO2:	*5 ppmvd @10% O2; **19 lbs/day (rolling annual avg);		NA	500 ppm @10%O2; 1-hr avg.: WAC 173-405- 040(11)(a)	*Order DE 96-AQI078; **PSD-X-77-04 as consolidated in Order DE 96-AQI078
			***1.55% sulfur content in fuel oil; ***15.8 ppmvd at 10%O2 and 147.7 Ibs/day (rolling annual avg) for oil above 1 gpm				***PSD X-77-04 Amendment 2

Appendix B. Facility Operating and Emissions Data

		Facility:	Port Hudson	Port Hudson	Boise White	Int'l Paper
-			Zachary, LA	Zachary, LA	Int'l Falls MN.	Camti, LA
		Run ID or Unit ID:	1	2		1
Pressure (stack absolute)	Ps	in HG	30.057	30.069		29.926
Pressure (barometric)	Pbar	in HG	30.09	30.10		29.97
Pressure (stack)	Pa	in H20	-0.45	-0.42		-0.6
Conversion Factor	F1	inH20/inHg	13.6	13.6		13.6
Total water condensed	Vwstd	scf H2)				
	f	scf H20/gm	0.04715			
Total water condensed	Vw	std ft3	11.91010	12.46219		13.03316
total impinger wt						276.2
Impinger 1	Vi	σ	187.6	206.2		270.2
Impinger 2	Vii	σ	45.2	36.3		
Impinger 3	Viii	σ	6	57		
Impinger 4	Viv	5 a	13.6	15.0		
Ideal gas constant	P	(inHG)(ft3)/(R-lbmol)	21.85	21.85		21.85
Temperature abs	Tabs	R (459 67)	460	460		460
Temp std	Tetd	R (45).07) R (527.67)	400 528	400		400
Conversion Easter	E2	g/lb (should be	452.50	452 50		452 50
Dressure (std)	T-Z Datid	g/10 (should be	400.00	433.39		455.59
MW of water	MH20	lh/lhmolo	18 015	18 015		18 015
ivi w of water	WI120	10/10111010	16.015	16.015		16.015
Formula Volume	Vmat 1	daaf	AE 257	46 21770		44 21 501
Sample Volume	Vmstd	dof	45.250	40.31779		44.31501
Sample volume from meter	V III V	uci	40./14	48.236		45.74
Dry gas mtr cal factor	Y	no units	0.991	0.991		0.996
Meter orifice pressure	dH	in H20	1.9021	2.0938		1.9075
Dry gas meter temp	Tm	F	85.7	91.0		86.3
	n	10/ /100	0.00004	0.01001		0.00707
Stack Gas Moisture Fraction	Bws	vol%/100	0.20834	0.21201		0.22726
Saturation Moisture Fraction@STP	SBws	(sat vap press)/Ps	0.20834	0.21201		0.22726
same as BWS (because Bws>SBws)						
Stack Gas Mole weight dry	Md	lb/lbmole	30.560	30.506		30.412
Oxygen conc in stack	conc O2	%/100	0.0559	0.0599		0.06
CO2 conc in stack	conc CO2	%/100	0.1451	0.1409		0.135
N2 conc in stack	con N2	%/100	0.7991	0.7992		0.805
			1.0001			
Stack Gas Mole weight wet	Ms	lb/lbmole	27.946	27.858		27.594
Stack Area	Α	ft2	80.5156	80.5156	75.9436	122.7185
Diameter of stack	D	inches	121.5	121.5	118	150
Conversion Factor	F3	in/ft	12	12	12	12
Stack Gas Velocity	Vs	ft/sec	53.5051	56.2279	61.44908	70.7728
Pitot tube constant	Кр	test Vs:	85.49	85.49		85.49
Pitot tube calibration coef	Ср		0.84	0.84		0.84
Stack Gas Velocity Head	dP	in H20	0.549	0.603		0.963
Stack Gas Velocity Head	dP^.5		0.741			0.9815
Stack gas temp	Ts	F	390	391.3	391	372.6667
flow check						
Stack Ht	Ht	Ft				
Actual Stack Gas Flow Rate	Acf	acfm	258480	271633	280000	521,108
		acfs				,
Conversion Factor	F5	sec/min	60	60	60	60
Dry std Stack gas flow rate	Qstd	dscfm	127691	133417	145000	255,392
Dry std Stack gas flow rate	Qstd	dscf/hr	7661487	8005033		15,323,511
Conversion Factor	F4	sec/hr	3600	3600		3600
	Qstd	dscf/min				
Isokinetic percent	I	%	103.69	101.57		100.07
sample nozzle cross section	An	ft2	0.00045869	0.00045869		0.00035466
length of sample test	theta	minutes	60			
Mass of part: combined samples	Mn	mg	8.4	9.8		0.6
Mass of part: probe wash	Mp	mg	3.8	4.9		0.4
Mass of part: filter	Mf	mg	4.6	4.9		0.2
	İ	0		,		
Unit Totals (tons per vear)	PM10					
Unit Totals (tons per year)	SO2					
Unit Totals (tons per year)	NOx		1	1		
Facility Totals (tons per year)	PM10					
Facility Totals (tons per year)	TSP					
Facility Totals (tons per year)	SO2			1	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
Facility Totals (tons per year)	NOx		1	1		
· · · · · · · · · · · · · · · · · · ·						

Facilit	y Sp	oecific (Operating	and	Emissions	Data	(PTPC)
---------	------	-----------	-----------	-----	-----------	------	--------

		Facility:	PTPC	PTPC	PTPC	PTPC	PTPC	PTPC	PTPC
		racinty.	2002	2004	2005	2006	2007	2008	2002
			2005	2004	2003	2000	2007	2008	2005-
		Run ID or Unit ID:		RF	RF	RF	KF	RF	RF Avg
Pressure (stack absolute)	Ps	in HG	29.92	29.92	29.92	29.92	29.92	29.92	29.92
Pressure (barometric)	Pbar	in HG							
Pressure (stack)	Pa	in H20							
Conversion Factor	F1	inH20/inHg							
Total water condensed	Vwetd	sof H2)							
Total water condensed	f	sof H20/am							
	1	sci fi20/gili							
Total water condensed	Vw	std ft3							
total impinger wt									
Impinger 1	Vi	g							
Impinger 2	Vii	g							
Impinger 3	Viii	g							
Impinger 4	Viv	ø							
Ideal gas constant	P	(inHG)(ft3)/(P_							
Tamparatura aba	Taba	P (450 67)	460	460	460	460	460	460	
Temperature abs	Tabs	R (439.07)	400	400	400	400	400	400	
I emp std	1 std	R (527.67)	528	528	528	528	528	528	
Conversion Factor	F2	g/lb (should be							
Pressure (std)	Pstd	in HG	29.92	29.92	29.92	29.92	29.92	29.92	
MW of water	MH20	lb/lbmole	18.015	18.015	18.015	18.015	18.015	18.015	
Sample Volume	Vmstd	dscf							
Sample Volume from meter	Vm	def			1	1		1	
Dry gas mtr col faster	V	no unite			1			1	
Dry gas mit cai factor	1	ino units							
Meter orifice pressure	dH	in H20							
Dry gas meter temp	Tm	F							
Stack Gas Moisture Fraction	Bws	vol%/100	0.17	0.19	0.18	0.17	0.18	0.18	0.1783
Saturation Moisture Fraction@STP	SBws	(sat vap press)/Ps							
same as BWS (because Bws>SBws)		(and) F F (and) - a							
same as DWB (because DW3>BDW3)									
Stade Car Mala mainhé dem	Ma	11. /11	20.9/7	20 (75	20.025	20.970	20 (51	20.771	ANG
Stack Gas Mole weight dry	Ma	ID/IDmole	29.807	29.075	30.035	29.879	29.051	29.//1	AVG
Oxygen conc in stack	conc O2	%/100	0.112	0.128	0.098	0.111	0.13	0.12	0.1165
CO2 conc in stack	conc CO2	%/100	0.088	0.072	0.102	0.089	0.07	0.08	
N2 conc in stack	con N2	%/100	0.8	0.8	0.8	0.8	0.8	0.8	
Stack Gas Mole weight wet	Ms	lb/lbmole	27.852	27.460	27.872	27.862	27.556	27.655	
	1								
Eta da Arra		82	(2 (172	(2 (172	(2 (172	(2 (172	(2 (172	(2 (172	
Stack Area	A	112	03.01/3	03.01/3	03.01/3	03.01/3	03.01/3	03.01/3	
Diameter of stack	D	inches	108	108	108	108	108	108	
Conversion Factor	F3	in/ft	12	12	12	12	12	12	
Stack Gas Velocity	Vs	ft/sec	78.1706	85.3982	96.2632	90.7615	89.5197	70.9399	
Pitot tube constant	Kp	test Vs:							
Pitot tube calibration coef	Cn								
Stock Gos Valoaity Hand	dD	in H20							
Stack Gas Velocity Head	JDA 5	1111120							AVC
Stack Gas velocity Head	ur .	E	217	224	071	200	212	202	AVG
Stack gas temp	15	F	317	334	3/1	309	313	302	324
flow check			298,380	325,968	367,440				
Stack Ht	Ht	Ft							
Actual Stack Gas Flow Rate	Acf	acfm	298380	325968	367440	346440	341700	270780	325118
		acfs	4973	5432.8	6124	5774	5695	4513	-
Conversion Fester	E5	sec/min	40	60	60	60	60		
Conversion racion	15	see/mm	00	00	00	00	00	00	AVC
	0.11	1.0	1 (0.001		101 110	105 100			AVG
Dry std Stack gas flow rate	Qstd	dscfm	168,291	175,579	191,440	197,430			1/9664
Dry std Stack gas flow rate	Qstd	dscf/hr	10,097,456	10,534,760	11,486,413		11,483,24	9,231,253	
Conversion Factor	F4	sec/hr	3600	3600	3600	3600	3600	3600	
	Qstd	dscf/min							
Isokinetic percent	Ι	%							
sample nozzle cross section	An	ft2							
length of sample test	theta	minutes			1	1		1	
length of sample test	theta	minutes			1				
Mana Rasata ang bi bi bi	Ma								
iviass of part: combined samples	Mn	mg							
Mass of part: probe wash	Мр	mg							
Mass of part: filter	Mf	mg							
									AVG
Unit Totals (tons per year)	PM10		100	75	150	144	139	85	116
Unit Totals (tons per year)	502	1	106	102	196	195	26	<u>ل</u>	105
Unit Totals (tons per year)	NOv		170	176	102	195	20	242	204
Easility T-t-1- (tons per year)	DM10		1/6	1/0	193	103	204	242	200
Facility 1 otals (tons per year)	PM10		331	301	553	340	340	292	324
Facility Totals (tons per year)	TSP		515	478	514	589	580	512	531
Facility Totals (tons per year)	SO2		351	349	410	287	123	50	262
Facility Totals (tons per year)	NOx	I	516	544	581	551	565	519	546

I demity b	peeme	operating an				0 00	, in the second second	,	
		Facility:	PTPC	PTPC	PTPC	PTPC	PTPC	PTPC	PTPC
			2003	2004	2005	2006	2007	2008	2003-
		Run ID or Unit ID:	IK	IK	IK	IK	IK	IK	ΙΚΑνσ
D	D.	in HC	20.02	20.02	20.02	20.02	20.02	20.02	LKAvg
Pressure (stack absolute)	PS	In HG	29.92	29.92	29.92	29.92	29.92	29.92	
Pressure (barometric)	Pbar	in HG						1	
Pressure (stack)	Pa	in H20						1	
Conversion Factor	F1	inH20/inHg							
Conversion Fuetor		initizo/ initig							
m		(110)						L	
Total water condensed	Vwstd	set H2)							
	f	scf H20/gm						1	
Total water condensed	Vw	std ft3							
total impinger wt		blu He							
totai inipiligei wi	\$ 7'							L	
Impinger I	V1	g						L	
Impinger 2	Vii	g						1	
Impinger 3	Viii	g						1	
Impinger 4	Viv	σ							
Inipilger 4	D	5 (i=UC)(#2)/(D_II===1)						├─── ┤	
Ideal gas constant	ĸ	(IIIHG)(IIS)/(R-IDIIIOI)						<u> </u>	
Temperature abs	Tabs	R (459.67)	460	460	460	460	460	460	
Temp std	Tstd	R (527.67)	528	528	528	528	528	528	
Conversion Factor	F2	g/lb (should be							
Pressure (std)	Petd	in HG	20.02	20.02	20.02	20.02	20.02	20.02	
Tressure (stu)	1 stu	11110	2).)2	2).)2	2).)2	2).)2	2).)2	2).)2	
MW of water	MH20	Ib/Ibmole	18.015	18.015	18.015	18.015	18.015	18.015	ļ
	<u> </u>	l				<u> </u>		I	
Sample Volume	Vmstd	dscf						ı ——)	
Sample Volume from meter	Vm	def				İ		()	
Demonstration Include	v	ao maita				ł			
Dry gas mtr cal factor	ĭ	no units]	
Meter orifice pressure	dH	in H20				L			L
Dry gas meter temp	Tm	F						ı —	
Starls Car Maistern Frantian	D		0.20	0.26	0.20	0.27	0.20	0.20	0.275
Stack Gas Moisture Fraction	BWS	V01%/100	0.20	0.20	0.29	0.27	0.28	0.29	0.275
Saturation Moisture Fraction@STP	SBws	(sat vap press)/Ps							
same as BWS (because Bws>SBws)								1	
Stool: Cos Molo maight due	Ma	lh/lhmala	20 121	20.110	20.170	20.264	20.249	20.402	AVC
Stack Gas Mole weight ury	Mu	10/101101e	30.131	30.119	30.179	30.204	30.340	30.492	AVG
Oxygen conc in stack	conc O2	%/100	0.09	0.091	0.086	0.079	0.072	0.06	0.07967
CO2 conc in stack	conc CO2	%/100	0.11	0.109	0.114	0.121	0.128	0.14	
N2 conc in stack	con N2	%/100	0.8	0.8	0.8	0.8	0.8	0.8	
		,							
			2(001	24 052	26.652	26.056	26.004	26.052	
Stack Gas Mole weight wet	MS	Ib/Ibmole	26.981	26.972	26.652	26.956	26.894	26.873	
								1	
								1	
Stack Area	٨	ft?	28 2743	28 2743	28 2743	28 27/3	28 2743	28 27/13	
Diamater of starle	n D	in the s	20.2743	20.2743	20.2743	20.2745	20.2743	20.2743	
Diameter of stack	D	inches	12	12	12	12	12	12	
Conversion Factor	F3	in/ft	12	12	12	12	12	12	
								1	
Stack Gas Velocity	Vs	ft/sec	17 6131	15 8448	15 8801	15 3850	16 8704	15 5618	
Ditat tube constant	V.	toot Vo.	17.01.51	10.0440	15.0001	15.5050	10.0704	15.5010	
Pitot tube constant	кр	test vs:						L	
Pitot tube calibration coef	Ср							1	
Stack Gas Velocity Head	dP	in H20						1	
Stack Gas Velocity Head	dP^.5								AVG
Steak gas tamp	Te	F	156	155	155	152	155	155	155
Stack gas tellip	15	*	150	155	155	155	155	133	100
flow check			29,880	26,880	26,940	26,100	28,620	6,400	
								L	L
Stack Ht	Ht	Ft						ı —	
Actual Stack Cas Flow Bata	Aof	aafm	20660	26000	26040	26100	28620	26400	
Actual Stack Gas Flow Rate	ACI	acim	29880	20880	20940	20100	28620	20400	
	ļ	acfs	498	448	449	435	477	440	1
Conversiion Factor	F5	sec/min	60	60	60	60	60	60	
									AVG
Dry etd Stack gas flow rate	Octd	deefm	18 052	17.077	16 422	16 411	17 601		
Dry stu Stack gas now rate	Qsiu	da e f de a	1 1 27 1 47	1.024.620	10,422	10,411	1 0(1 491	├─── ┤	
Dry std Stack gas now rate	Qsta	dsci/nr	1,137,147	1,024,639	985,294	84,004	1,001,481	L	
Conversion Factor	F4	sec/hr	3600	3600	3600	3600	3600	3600	
	Qstd	dscf/min						1	
Isokinetic percent	Ĩ	%							
sample percent	An	ft2							
sample nozzle cross section	All	112						L	
length of sample test	theta	minutes						<u>ا</u> ا	
								1	
Mass of part: combined samples	Mn	mg						()	
Mass of part: probe work						1			
mass of part, probe wash	Mn	ma						,	
	Mp	mg							
Mass of part: filter	Mp Mf	mg mg						ļļ	
Mass of part: filter	Mp Mf	mg mg							AVG
Mass of part: filter Unit Totals (tons per year)	Mp Mf PM10	mg mg	27	27	20	26	15	23	AVG 23
Mass of part: filter Unit Totals (tons per year) Unit Totals (tons per year)	Mp Mf PM10 SO2	mg mg	27	27	20	26	15	23	AVG 23 1
Mass of part: filter Unit Totals (tons per year) Unit Totals (tons per year) Unit Totals (tons per year)	Mp Mf PM10 SO2 NOx	mg mg	27 1 50	27 2	20 2	26 1	15 1 24	23 1 30	AVG 23 1
Mass of part: filter Unit Totals (tons per year) Unit Totals (tons per year) Unit Totals (tons per year)	Mp Mf PM10 SO2 NOx	mg mg	27 1 59	27 2 59	20 2 64	26 1 62	15 1 34	23 1 30	AVG 23 1 51
Mass of part: filter Unit Totals (tons per year) Unit Totals (tons per year) Unit Totals (tons per year) Facility Totals (tons per year)	Mp Mf PM10 SO2 NOx PM10	mg mg	27 1 59 331	27 2 59 301	20 2 64 333	26 1 62 346	15 1 34 340	23 1 30 292	AVG 23 1 51 324
Mass of part: filter Unit Totals (tons per year) Unit Totals (tons per year) Unit Totals (tons per year) Facility Totals (tons per year) Facility Totals (tons per year)	Mp Mf PM10 SO2 NOx PM10 TSP	mg mg	27 1 59 331 515	27 2 59 301 478	20 2 64 333 514	26 1 62 346 589	15 1 34 340 580	23 1 30 292 512	AVG 23 1 51 324 531
Mass of part: filter Unit Totals (tons per year) Unit Totals (tons per year) Unit Totals (tons per year) Facility Totals (tons per year) Facility Totals (tons per year) Facility Totals (tons per year)	Mp Mf PM10 SO2 NOx PM10 TSP SO2	mg mg	27 1 59 331 515 351	27 2 59 301 478 349	20 2 64 333 514 410	26 1 62 346 589 287	15 1 34 340 580 123	23 1 30 292 512 50	AVG 23 1 51 324 531 262

Facility Specific Operating and Emissions Data (PTPC - Continued)

racine, operating and Emissions Data (Westweek)

		Facility:	WestRock	WestRock	WestRock	WestRock	WestRock	WestRock
		T defint y.	2005	2006	2007	2009	2000	2005 2000
			2003	2006	2007	2008	2009	2003-2009
		Run ID or Unit ID:	rf	rf	rf	rf	rf	RF AVG
Pressure (stack absolute)	Ps	in HG	29.92	29.92	29.92	29.92	29.92	
Pressure (barometric)	Pbar	in HG						
Pressure (stack)	Pa	in H20						
Conversion Eactor	F1	inH20/inHa		1				
Conversion ractor	11	iii120/iii1g						
Total water condensed	Vwstd	scf H2)						
	f	scf H20/gm						
Total water condensed	Vw	std ft3						
total impinger wt								
total impliger we	17:	-						
Impliger 1	VI	25						
Impinger 2	Vii	g						
Impinger 3	Viii	g						
Impinger 4	Viv	g						
Ideal gas constant	D	(inHC)(ft2)/(P_lbmol)						
Targas constant	Taba	D (450 (7)	460	470	460	460	470	
Temperature abs	Tabs	R (459.67)	460	460	460	460	460	
Temp std	Tstd	R (527.67)	528	528	528	528	528	
Conversion Factor	F2	g/lb (should be						
Pressure (std)	Pstd	in HG	29.92	29.92	29.92	29.92	29.92	
MW of water	MH20	lh/lhmolo	18.015	18 015	18 015	18 015	18 015	
ivi w of Water	WI1120	10/1011010	10.015	10.015	10.015	10.015	10.015	
Sample Volume	Vmstd	dscf						
Sample Volume from meter	Vm	dcf						
Dry gas mtr cal factor	Y	no units						
Meter orifice pressure	dH	in H20	1	1	1			
meter office pressure	Tm	E		ł				
Dry gas meter temp	1 m	F						
Stack Gas Moisture Fraction	Bws	vol%/100	0.247	0.228	0.25	0.229	0.231	0.237
Saturation Moisture Fraction@STP	SBws	(sat van press)/Ps						
came as BWS (because Dwos CDros)		(and the press/15						
same as bws (because bws>sbws)								
Stack Gas Mole weight dry	Md	lb/lbmole	30.480	30.396	30.516	30.516	30.300	AVG
Oxygen conc in stack	conc O2	%/100	0.061	0.068	0.058	0.058	0.076	0.0642
CO2 conc in stack	conc CO2	%/100	0.139	0.132	0.142	0.142	0.124	
N2 cone in stack	cone COL	0/ /100	0.15	0.152	0.112	0.1.12	0.121	
IN2 COLIC III STACK	COII IN2	%/100	0.0	0.0	0.0	0.0	0.0	
Stack Gas Mole weight wet	Ms	lb/lbmole	27.401	27.573	27.391	27.653	27.462	
	1			1				
Stock Anon		812	152 0280	152 0290	152 0290	152 0290	152 0280	
Stack Area	A	112	155.9560	155.9560	155.9560	155.9560	155.9560	
Diameter of stack	D	inches	168	168	168	168	168	
Conversion Factor	F3	in/ft	12	12	12	12	12	
Stack Cas Valocity	Ve	ft/sec	37 3502	37 2358	38 5740	35 2730	37 0170	
Direct table sentent	V.S	test Mar	511.5572	5712550	50.5740	33.2137	51.5117	
Pitot tube constant	кр	test vs:						
Pitot tube calibration coef	Ср							
Stack Gas Velocity Head	dP	in H20						
Stack Gas Velocity Head	dP^.5							AVG
Stack gas tomp	Ts	F	377	378	383	388	372	380
Stack gas temp		+ -	245 0/0	242.030	256 200	225 000	250.220	500
How check	ł		343,000	343,920	330,280	343,800	350,220	
Stack Ht	Ht	Ft						
Actual Stack Gas Flow Rate	Acf	acfm	345060	343920	356280	325800	350220	344 256
ouen ous riow func		aafa	5751	5720	5020	5420	5927	0,400
	75	acts	5151	5132	3730	5430	3037	
Conversion Factor	FS	sec/min	00	60	00	60	60	
								AVG
Dry std Stack gas flow rate	Qstd	dscfm	163,907	167,288	167,363	156,402	170,914	165,175
Dry std Stack gas flow rate	Östd	dscf/hr	9.834.433	10.037.276	10.041.77	9,384.146	10.254.84	
Convorsion Foster	F4	sec/br	3600	3600	3600	3600	3600	
Conversion Pactor	0.41	Josef III	5000	5000	5000	5000	5000	
	Qsta	usci/min		ł		ļ	ļ	
Isokinetic percent	1	%						
sample nozzle cross section	An	ft2						
length of sample test	theta	minutes						
	1		1	1	1			
Mass of nexts, combined cor-	Ma			ł				
mass of part: combined samples	NIII	шу		ł				
Mass of part: probe wash	Mp	mg						
Mass of part: filter	Mf	mg						
i								AVG
Unit Totale (tone par year)	PM10	1	13	23	46	20	10	26
Unit Totals (tons per year)	502	1	1.5	20	400	200	110	20
Unit Totals (tons per year)	502		293	238	400	390	110	280
Unit Totals (tons per year)	NOx		291	294	281	303	257	285
Facility Totals (tons per year)	PM10		103	75	117	87	76	92
Facility Totals (tons per year)	TSP		121	94	147	105	87	111
Eacility Totals (tons per your)	502	i	379	502	602	625	310	504
Facility Totals (tolls per year)	NO-	1	510	505	700	600	217	500
Facility Lotals (tons per year)	NUX	1	010	/43	/08	084	808	/11

J	· · · · ·	Equility:	WastPoak	WastPook	WastBook	WestPook	WastPook	WastPook
		Facility:	WestRock 2005	WestRock	WestRock	WESTROCK	WestRock	WestRock
		D ID VI	2005	2006	2007	2008	2009	2005-2009
	_	Run ID or Unit ID:	lk l	lk1	lk l	lk 1	lk l	LK I Avg
Pressure (stack absolute)	Ps	in HG	29.92	29.92	29.92	29.92	29.92	
Pressure (barometric)	Pbar	in HG						
Pressure (stack)	Pa	in H20						
Conversion Factor	F1	inH20/inHg						
Total water condensed	Vwstd	scf H2)						
	f	scf H20/gm						
Total water condensed	Vw	std ft3						
total impinger wt		514 115						
Impinger 1	V;	<i>a</i>						
Impinger 1	VI	8						
Impinger 2	V 11	g						
Impinger 3	V111	g						
Impinger 4	Viv	g						
Ideal gas constant	R	(inHG)(ft3)/(R-lbmol)						
Temperature abs	Tabs	R (459.67)	460	460	460	460	460	
Temp std	Tstd	R (527.67)	528	528	528	528	528	
Conversion Factor	F2	g/lb (should be						
Pressure (std)	Pstd	in HG	29.92	29.92	29.92	29.92	29.92	
MW of water	MH20	lb/lbmole	18 015	18 015	18 015	18 015	18 015	
	111120	10/10/10/10	10.015	10.015	10.015	10.015	10:015	
Sample Volume	Vmetd	deef						
Sample Volume	Vinstu	dof						
Sample volume from meter	V III V	uci					I	
Dry gas mtr cal factor	Y	no units						
Meter orifice pressure	dH	in H20						
Dry gas meter temp	Tm	F						
Stack Gas Moisture Fraction	Bws	vol%/100	0.291	0.346	0.284	0.345	0.346	0.322
Saturation Moisture Fraction@STP	SBws	(sat vap press)/Ps						
same as BWS (because Bws>SBws)								
Stack Cas Mole weight dry	Md	lb/lbmole	30.900	30.696	30.612	30.636	30 384	AVC
Orwgon cone in stock	anna O2	0/10/10/10/10	0.026	0.070	0.05	0.030	0.060	0.0472
CO2 cone in stack	cone O2	7 6/100	0.020	0.043	0.05	0.152	0.121	0.0472
CO2 cone in stack	cone CO2	%/100	0.174	0.137	0.13	0.132	0.131	
N2 conc in stack	con N2	%/100	0.8	0.8	0.8	0.8	0.8	
Stack Gas Mole weight wet	Ms	lb/lbmole	27.151	26.308	27.034	26.282	26.104	
Stack Area	Α	ft2	12.5664	12.5664	12.5664	12.5664	12.5664	
Diameter of stack	D	inches	48	48	48	48	48	
Conversion Factor	 F3	in/ft	12	12	12	12	12	
Conversion ractor	15	iii/it	12	12	12	12	12	
Staals Cas Valasity	Va	St/200	49 2025	EE 46EE	47 1904	49 5422	56 2409	
Stack Gas velocity	VS	It/sec	40.3035	55.4055	4/.1094	40.5425	50.5408	
Pitot tube constant	Кр	test Vs:						
Pitot tube calibration coef	Ср							
Stack Gas Velocity Head	dP	in H20						
Stack Gas Velocity Head	dP^.5							AVG
Stack gas temp	Ts	F	157	162	158	156	162	159
flow check	1		36,420	41,820	35,580	36,600	42,480	AVG
Stack Ht	Ht	Ft						
	1		İ					
Actual Stack Gas Flow Rate	Acf	acfm	36420	41820	35580	36600	42480	38580
Account outer Ous FIOW Rate	1101	acte	607	607	502	610	709	50500
Conversion P	E5	acis	60	60	575	60	100	
Conversion Factor	гэ	SCC/IIIIII	υu	00	υU	00	00	AVC
	A 11					a a -		AVG
Dry std Stack gas flow rate	Qstd	dscfm	22,097	23,217	21,765	20,548	23,583	22,242
Dry std Stack gas flow rate	Qstd	dscf/hr	1,325,825	1,393,017	1,305,917	1,232,897	1,415,002	
Conversion Factor	F4	sec/hr	3600	3600	3600	3600	3600	
	Qstd	dscf/min						
Isokinetic percent	Ι	%						
sample nozzle cross section	An	ft2						
length of sample test	theta	minutes	1					
ising in or sample test								
Mass of part: combined samples	Mn	ma	1					
Maga Contractor and	Ma	mg						
Mass of part: probe wash	Mp	nig						
Mass of part: filter	Mt	mg						
								AVG
Unit Totals (tons per year)	PM10		30	19	28	22	19	23.6
Unit Totals (tons per year)	SO2		1	3	1	5	8	3.6
Unit Totals (tons per year)	NOx		42	42	39	37	54	42.8
Facility Totals (tons per year)	PM10		103	75	117	87	76	92
Facility Totals (tons per year)	TSP		121	94	147	105	87	111
Eacility Totale (tone per year)	502		378	503	603	635	310	506
Facility Totals (tons per year)	NOx		610	743	708	684	808	711

Facility Specific Operating and Emissions Data (WestRock - Continued)

		Facility	WastBook	WestPook	WastPook	WastPook	WastPook	WastPoak
		Pacinty.	2005	2006	2007	2000	2000	2005 2000
			2005	2006	2007	2008	2009	2005-2009
		Run ID or Unit ID:	IK2	IK2	IK2	IK2	IK2	LK 2 Avg
Pressure (stack absolute)	Ps	in HG	29.92	29.92	29.92	29.92	29.92	
Pressure (barometric)	Pbar	in HG						
Pressure (stack)	Pa	in H20						
Conversion Factor	F1	inH20/inHg						
Total water condensed	Vwstd	scf H2)						
	f	scf H20/gm						
Total water condensed	Vw	std ft3						
total impinger wt		stante						
Impinger 1	V;	~						
Impinger 1	VI	8						
Inpluger 2	VII	8						
Impinger 3	V 111	g						
Impinger 4	Viv	g						
Ideal gas constant	R	(inHG)(ft3)/(R-lbmol)						
Temperature abs	Tabs	R (459.67)	460	460	460	460	460	
Temp std	Tstd	R (527.67)	528	528	528	528	528	
Conversion Factor	F2	g/lb (should be						
Pressure (std)	Pstd	in HG	29.92	29.92	29.92	29.92	29.92	
MW of motor	MIIO	lh/hmolo	19.015	18 015	19.015	19.015	19 015	
www.orwater	M1120	10/10111010	10.015	10.015	10.015	10.015	10.015	
	*7 . *	1.0						
Sample Volume	Vmstd	ascf						
Sample Volume from meter	Vm	dcf						
Dry gas mtr cal factor	Y	no units						
Meter orifice pressure	dH	in H20						
Dry gas meter temp	Tm	F						
Dry gas meter temp			1	1				
Stack Cas Maisture Fraction	Bwe	vol%/100	0 222	0.17	0.117	0.126	0.140	0.161
Stack Gas Moisture Fraction	SDw5	(act you par)/D-	0.433	0.17	0.11/	0.130	0.147	0.101
Saturation Moisture Fraction@STP	SBWS	(sat vap press)/Ps						
same as BWS (because Bws>SBws)								
Stack Gas Mole weight dry	Md	lb/lbmole	30.504	30.672	30.720	30.432	30.492	AVG
Oxygen conc in stack	conc O2	%/100	0.059	0.045	0.041	0.065	0.06	0.054
CO2 conc in stack	conc CO2	%/100	0.141	0.155	0.159	0.135	0.14	
N2 conc in stack	con N2	%/100	0.8	0.8	0.8	0.8	0.8	
Stock Cos Mole weight wet	Me	lh/lhmolo	27 504	28 520	20 222	28 742	28 622	
Stack Gas Mole weight wet	IVIS	1D/1DIII0le	21.374	20.320	27.233	20.743	20.033	
Stack Area	Α	ft2	12.5664	12.5664	12.5664	12.5664	12.5664	
Diameter of stack	D	inches	48	48	48	48	48	
Conversion Factor	F3	in/ft	12	12	12	12	12	
Stack Gas Velocity	Vs	ft/sec	26,4993	15.9951	12.0162	11.9366	12,7324	
Pitot tube constant	Kn	test Vs:						
Pitot tube collibration coof	Cn	test vs.						
Steely Cas Valasity Hand	JD	in 1120						
Stack Gas Velocity Head	UP IDA 7	III H20						1710
Stack Gas Velocity Head	ar	P		100	10.5	101	100	AVG
Stack gas temp	18	F	144	133	126	121	129	130.6
flow check			19,980	12,060	9,060	9,000	9,600	
Stack Ht	Ht	Ft						
Actual Stack Gas Flow Rate	Acf	acfm	19980	12060	9060	9000	9600	11940
		acfs	333	201	151	150	160	
Conversion Easter	E5	sec/min	60	60	60	60	60	
Conversion ractor	1.5	500/mm	00	00	00	00	00	AVC
Deve et al Stanla and Maria	0.41	J P	12.207	0.012	F 200	.	7 224	0.001
Dry std Stack gas flow rate	Usta	ascim	13,396	8,913	7,208	7,067	7,524	8,781
Dry std Stack gas flow rate	Qstd	asci/hr	803,783	534,756	432,490	423,999	439,411	
Conversion Factor	F4	sec/hr	3600	3600	3600	3600	3600	
	Qstd	dscf/min						
Isokinetic percent	Ι	%						
sample nozzle cross section	An	ft2	1					
length of sample test	theta	minutes						
	1		1					
Mass of nart: combined samples	Mn	mø	1	1				
Mass of part: probe week	Mp	mg						
Mass of part. Probe Wash	Mf	mg						
Mass of part: filter	1V11	mg						11/0
								AVG
Unit Totals (tons per year)	PM10		6	4	5	4	5	4.8
Unit Totals (tons per year)	SO2		1	1	2	2	0	1.2
Unit Totals (tons per year)	NOx		1	1	2	2	6	2.4
Facility Totals (tons per year)	PM10		103	75	117	87	76	92
Facility Totals (tons per year)	TSP		121	94	147	105	87	111
Facility Totals (tons per year)	SO2		378	503	693	635	319	506
Facility Totals (tons per year)	NOx		610	743	708	684	808	711

Facility Specific Operating and Emissions Data (WestRock - Continued)

Facility Specific O	perating and	Emissions Data	(Weverhaeuser)
r acmey opecific O	per anns ana	Limbolono Dau	(() cyci macusci)

-		Facility:	Weverhaeus	Weverhaeus	Weverhaeus	Weverh	Weverhae	Weverhaeus
	1		2003	2004	2005	2006	2007	2003-2007
	1	Run ID or Unit ID-	rf	rf	rf	rf	rf	RF Avo
Pressure (stack absolute)	Ps	in HG	29.92	29.92	29.92	29.92	29.92	
Pressure (barometric)	Phar	in HG	27.72	27.72	27.72	27.72	27.72	
Pressure (stack)	Pa	in H20						
Conversion Eactor	F1	inH20/inHg						
Conversion Factor	11	hiri20/hirig						
Total water condensed	Vwetd	cof H2)						
Total water condensed	v wstu	set II2)						
T-t-l	I Varia	sci 1120/gili						
Total water condensed	vw	stu ito						
total impinger wt	X7:	-						
Impinger 1	V1	5						
Impinger 2	VII	5						
Impinger 3	VIII	5						
Impinger 4	VIV	g						
Ideal gas constant	R	(inHG)(ft3)/(R-lbmol)	1.10	1.50	1.40	110	1.10	
Temperature abs	Tabs	R (459.67)	460	460	460	460	460	
Temp std	Tstd	R (527.67)	528	528	528	528	528	
Conversion Factor	F2	g/lb (should be						
Pressure (std)	Pstd	in HG	29.92	29.92	29.92	29.92	29.92	
MW of water	MH20	lb/lbmole	18.015	18.015	18.015	18.015	18.015	
Sample Volume	Vmstd	dscf						
Sample Volume from meter	Vm	dcf						
Dry gas mtr cal factor	Y	no units						
Meter orifice pressure	dH	in H20						
Dry gas meter temp	Tm	F						
Stack Gas Moisture Fraction	Bws	vol%/100	0.29	0.28	0.26	0.28	0.2775	0.2775
Saturation Moisture Fraction@STP	SBws	(sat vap press)/Ps						
same as BWS (because Bws>SBws)								
Stack Gas Mole weight dry	Md	lb/lbmole	30.372	30.492	30.312	30.504	30.420	AVG
Oxygen conc in stack	conc O2	%/100	0.07	0.06	0.075	0.059	0.066	0.0660
CO2 conc in stack	conc CO2	%/100	0.13	0.14	0.125	0.141	0.134	
N2 conc in stack	con N2	%/100	0.8	0.8	0.8	0.8	0.8	
Stack Gas Mole weight wet	Ms	lb/lbmole						
Stack Area	Α	ft2	153.9380	153.9380	153.9380	153.938	153.9380	
Diameter of stack	D	inches	168	168	168	168	168	
Conversion Factor	F3	in/ft	12	12	12	12	12	
Stack Gas Velocity	Vs	ft/sec	58.6859	55.4314	55.5613	63.3956	63.5300	
Pitot tube constant	Кр	test Vs:						
Pitot tube calibration coef	Ср							
Stack Gas Velocity Head	dP	in H20						
Stack Gas Velocity Head	dP^.5							AVG
Stack gas temp	Ts	F	362	357	373	387	388	373
flow check			542,040	511,980	513,180	585,540	586,781	
Stack Ht	Ht	Ft						
Actual Stack Gas Flow Rate	Acf	acfm	542040	511980	513180	585540	586800	547,908
		acfs	9034	8533	8553	9759	9780	
Converstion Factor	F5	sec/min	60	60	60	60	60	
								AVG
Dry std Stack gas flow rate	Qstd	dscfm	247,202	238,230	240,708	262,809	263,968	250,583
Dry std Stack gas flow rate	Qstd	dscf/hr	14,832,114	14,293,830	14,442,475	15,768,	15,838,10	
Conversion Factor	F4	sec/hr	3600	3600	3600	3600	3600	
	Qstd	dscf/min						
Isokinetic percent	I	%						
sample nozzle cross section	An	ft2						
length of sample test	theta	minutes						
		1						
Mass of part: combined samples	Mn	mg						
Mass of part: probe wash	Mp	mg	ĺ					
Mass of part: filter	Mf	mg	ĺ					
	l	0	ĺ					AVG
Unit Totals (tons per year)	PM10		50	45	32	50	40	43
Unit Totals (tons per year)	SO2		26	20	50	42	38	35
Unit Totals (tons per year)	NOx		627	541	483	601	666	584
Facility Totals (tons per year)	PM10		279	196	173	191	89	186
Facility Totals (tons per year)	TSP		375	278	244	211	na na	277
Eacility Totals (tons per year)	502		967	1047	2-+++ 854	710	775	2// 872
Eacility Totals (tons per year)	NOx		2487	2060	1050	2057	2630	2.240
racinty rotals (tons per year)	1104	1	270/	2007	1/37	2037	2030	242HU

		Facility:	Weyerhaeus	Weyerhaeus	Weyerhaeus	Weyerh	Weyerhae	Weyerhaeus
			2003	2004	2005	2006	2007	2003-2007
		Run ID or Unit ID:	lk	lk	lk	lk	lk	LK Avg
Pressure (stack absolute)	Ps	in HG	29.92	29.92	29.92	29.92	29.92	
Pressure (barometric)	Pbar	in HG						
Pressure (stack)	Pa	in H20						
Conversion Factor	F1	inH20/inHg						
Total water condensed	Vwstd	sef H2)						
	f	scf H20/gm						
Total water condensed	Vw	std ft3						
total impinger wt		510 115						
Impinger 1	Vi	a						
Impinger 2	Vii	а а						
Impinger 3	Viii	а а						
Impinger 4	Viv	g						
Ideal gas constant	D	(inHC)(ft2)/(P_lbmol)						
Tamparatura aba	Taba	P (450 67)	460	460	460	460	460	
Temperature abs	Tabs	R (453.07) P (527.67)	528	528	528	528	528	
Conversion Factor	E2	g/lb (should be	528	528	528	528	528	
Procession Factor	Petd	in HC	20.02	20.02	20.02	20.02	20.02	
Flessure (std)	r siu	III IIO	19.015	19.015	19.015	27.72	19.015	
NIW OI Water	MIEZ0	10/1011101e	10.015	10.015	10.015	10.015	10.015	
Formula Volume	Vmot J	daaf						
Sample Volume	vmstd	usci						
Sample Volume from meter	vm V	uci no vnito						
Dry gas mtr cal factor	I	ino units						
Meter orifice pressure	dH	in H20						L
Dry gas meter temp	Tm	F						
Stack Gas Moisture Fraction	Bws	vol%/100	0.29	0.3	0.3	0.31	0.3	0.3
Saturation Moisture Fraction@STP	SBws	(sat vap press)/Ps						
same as BWS (because Bws>SBws)								
Stack Gas Mole weight dry	Md	lb/lbmole	30.252	30.252	30.011	30.252	30.191	AVG
Oxygen conc in stack	conc O2	%/100	0.08	0.08	0.1	0.08	0.085	0.0850
CO2 conc in stack	conc CO2	%/100	0.12	0.12	0.1	0.12	0.115	
N2 conc in stack	con N2	%/100	0.8	0.8	0.8	0.8	0.8	
Stack Gas Mole weight wet	Ms	lb/lbmole						
Stack Area	Α	ft2	12.5664	12.5664	12.5664	12.5664	12.5664	
Diameter of stack	D	inches	48	48	48	48	48	
Conversion Factor	F3	in/ft	12	12	12	12	12	
Stack Gas Velocity	Vs	ft/sec	41.1416	94.2993	67.8000	74.3254	75.6000	
Pitot tube constant	Kp	test Vs:						
Pitot tube calibration coef	Ср							
Stack Gas Velocity Head	dP	in H20						
Stack Gas Velocity Head	dP^.5							AVG
Stack gas temp	Ts	F	388	396	380	390	391	389
flow check			31,020	71,100	51,120	56,040	57,001	
Stack Ht	Ht	Ft						
Actual Stack Gas Flow Rate	Acf	acfm	31020	71100	51120	56040	57000	53,256
		acfs	517	1185	852	934	950	,
Converstion Factor	F5	sec/min	60	60	60	60	60	
				. *			. *	AVG
Dry std Stack gas flow rate	Ostd	dscfm	13,713	30,699	22,493	24,019	24,756	23,136
Dry std Stack gas flow rate	Ostd	dscf/hr	822.791	1,841.955	1,349.568	1,441.1	1,485.377	.,
Conversion Factor	F4	sec/hr	3600	3600	3600	3600	3600	
	Ostd	dscf/min						
Isokinetic percent	I	%						
sample nozzle cross section	An	ft2						
length of sample test	theta	minutes						
					1			
Mass of part: combined samples	Mn	mg			1			
Mass of part: probe wash	Mp	mg			1			
Mass of part: filter	Mf	mg			1			
Mass of part. Inter								AVC
Unit Totals (tons ner vear)	PM10		88	2	1	9	1	20
Unit Totals (tons per year)	502		3	4	12	7	4	6
Unit Totals (tons per year)	NOx		104	100	158	147	135	120
Eacility Totals (tons per year)	DM10		270	100	130	14/	133	147
Facility Totals (tons per year)	TSP		219	270	2/3	211	07	100
Facility Totals (tons per year)	151		067	2/0	244 951	710	118	2//
Facility Totals (tons per year)	502 NOv		90/	1047	804	/19	1/5	ð/2 2 240
Facility 1 otals (tons per year)	NUX	1	2487	2069	1959	2057	2030	2,240

Facility Specific Operating and Emissions Data (Weyerhaeuser - Continued)

Facility	Specific	Operating	and Emi	ssions Da	nta (GP	Camas)
	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	~ p •				C M

		Facility:	GP Camas	GPCamas	GPCamas	GPCam	GPCamas	avo
	1	r acinty.	2002	2004	2005	2004	2007	2002 2007
			2005	2004	2005	2000	2007	2005-2007
B (4.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1	n	Run ID or Unit ID:	r14	ri4	rt4	rt4	ri4	KF4 Avg
Pressure (stack absolute)	Ps	in HG	29.84	29.84	29.84	29.84	29.84	
Pressure (barometric)	Pbar	in HG						
Pressure (stack)	Pa	in H20						
Conversion Factor	F1	inH20/inHg						
Total water condensed	Vwstd	scf H2)						
	f	scf H20/gm						
Total water condensed	Vw	std ft3						
total impinger wt								
Impinger 1	Vi	σ						
Impinger 2	Vii	5 a						
Impinger 3	Viii	5 a						
Impinger 5	Vin	<u>s</u>						
Inipiliger 4	VIV	g						
Ideal gas constant	R	(inHG)(ft3)/(R-lbmol)	1.10	1.50	1.40	1.10	1.40	
Temperature abs	Tabs	R (459.67)	460	460	460	460	460	
Temp std	Tstd	R (527.67)	528	528	528	528	528	
Conversion Factor	F2	g/lb (should be						
Pressure (std)	Pstd	in HG	29.92	29.92	29.92	29.92	29.92	
MW of water	MH20	lb/lbmole	18.015	18.015	18.015	18.015	18.015	
Sample Volume	Vmstd	dscf						
Sample Volume from meter	Vm	dcf						
Dry gas mtr cal factor	Y	no units						
Meter orifice pressure	dH	in H20	1			1		
Dry gas meter temp	Tm	F						
Dry gas meter temp	1	•						
Stock Cos Moisture Fraction	Dure	vol9//100	0.2	0.2	0.22	0.21	0.29	0.224
Stack Gas Moisture Fraction	BWS	V01%/100	0.2	0.2	0.23	0.21	0.28	0.224
Saturation Moisture Fraction@STP	SBws	(sat vap press)/Ps						
same as BWS (because Bws>SBws)								
Stack Gas Mole weight dry	Md	lb/lbmole	30.372	30.372	30.372	30.372	30.312	AVG
Oxygen conc in stack	conc O2	%/100	0.07	0.07	0.07	0.07	0.075	0.0710
CO2 conc in stack	conc CO2	%/100	0.13	0.13	0.13	0.13	0.125	
N2 conc in stack	con N2	%/100	0.8	0.8	0.8	0.8	0.8	
Stack Gas Mole weight wet	Ms	lb/lbmole						
Stools Anno		812	62 6172	62 6172	62 6172	62 6172	62 6172	
Stack Area	A	112	100	100	100	100	100	
Diameter of stack	D	inches	108	108	108	108	108	
Conversion Factor	F3	in/ft	12	12	12	12	12	
Stack Gas Velocity	Vs	ft/sec	31.9096	34.2046	30.8407	31.3437	36.1694	
Pitot tube constant	Кр	test Vs:						
Pitot tube calibration coef	Ср							
Stack Gas Velocity Head	dP	in H20						
Stack Gas Velocity Head	dP^.5							AVG
Stack gas temp	Ts	F	139	140	145	143	154	144
flow check			121,800	130.560	117.720	119,640	138,060	
no chock	1	1	,000		,,,	,0.0	,000	
Ctask Ut	Ht	Ft						
Stack Hi	110							
Astual Stack Cas El D-+-	Ace	aafm	121000	120540	117720	110440	128040	105 557
Actual Stack Gas Flow Rate	ACI	acim	121800	150500	11//20	119040	136000	125,550
	77	acis	2030	2176	1962	1994	2501	
Conversion Factor	F5	sec/min	60	60	60	60	60	110
								AVG
Dry std Stack gas flow rate	Qstd	dscfm	85,661	91,668	78,896	82,539	85,252	84,803
Dry std Stack gas flow rate	Qstd	dscf/hr	5,139,642	5,500,109	4,733,779	4,952,3	5,115,103	
Conversion Factor	F4	sec/hr	3600	3600	3600	3600	3600	
	Qstd	dscf/min						
Isokinetic percent	I	%						
sample nozzle cross section	An	ft2						
length of sample test	theta	minutes						
	1		1			1		
Mass of part: combined samples	Mn	ma						
Mass of parts probe week	Mn	<u>6</u> mg						
Mass of part: probe Wash	Mf	mg						
Mass of part: filter	MI	mg						110
TT I I III I I	D1 (1-						— —	AVG
Unit Totals (tons per year)	PM10		74	74	52	50	75	65
Unit Totals (tons per year)	SO2		2	4	3	3	3	3
Unit Totals (tons per year)	NOx		173	166	224	223	251	207
Facility Totals (tons per year)	PM10		174	191	254	233	236	218
Facility Totals (tons per year)	TSP		188	195	259	240	239	224
Facility Totals (tons per year)	SO2		66	151	18	13	21	54
Facility Totals (tons per year)	NOx		772	709	783	765	660	738

~ 1		Easilitan	CD Comes	CD Comos	CDComes	CDCom	CDComes	
		Facility:	Or Callias	Or Callias	Or Callias	Greatin	or callias	avg
		l	2003	2004	2005	2006	2007	2003-2007
		Run ID or Unit ID:	rf3	rf3	rf3	rf3	rf3	RF3 Avg
Pressure (stack absolute)	Ps	in HG	29.84	29.84	29.84	29.84	29.84	
Pressure (barometric)	Phar	in HG						
Pressure (stack)	Pa	in H20						
Conversion Foster	F1	in H20						
Conversion Factor	FI	inH20/inHg						
Total water condensed	Vwstd	scf H2)						
	f	scf H20/gm						
Total water condensed	Vw	std ft3						
total water condensed		stulits						
total inipiliger wi	x 7'							
Impinger 1	V1	g						
Impinger 2	Vii	g						
Impinger 3	Viii	g						
Impinger 4	Viv	g						
Ideal gas constant	R	(inHG)(ft3)/(R-lbmol)						
Tamparatura aka	Taha	D (450 67)	460	460	460	460	460	
Temperature abs	Tabs	R (439.07)	400	400	400	400	400	
Temp std	Tstd	R (527.67)	528	528	528	528	528	
Conversion Factor	F2	g/lb (should be						
Pressure (std)	Pstd	in HG	29.92	29.92	29.92	29.92	29.92	
MW of water	MH20	lb/lbmole	18 015	18 015	18 015	18 015	18 015	
Mitt of water	101120	10/10/10/10/1	10.015	10.015	10.012	10.015	10.012	
6	Verset 1	16						
Sample Volume	vmstd	asci					ļ ļ	
Sample Volume from meter	Vm	dcf						
Dry gas mtr cal factor	Y	no units						
Meter orifice pressure	dH	in H20						
Dry gas matar town	Tm	F						
Dry gas meter temp	1111	1						
			0.55		0.51		0.17	0.5
Stack Gas Moisture Fraction	Bws	vol%/100	0.22	0.18	0.21	0.2	0.19	0.2
Saturation Moisture Fraction@STP	SBws	(sat vap press)/Ps						
same as BWS (because Bws>SBws)								
Same as B (15 (Sectase B (15) 5B (15)			avg of					
Starl Car Mala malakt dam	Ma	11. //1	20 504	20.402	20.402	20.402	20.540	AVC
Stack Gas Mole weight dry	Ma	ID/IDmole	30.504	30.492	30.492	30.492	30.540	AVG
Oxygen conc in stack	conc O2	%/100	na	0.06	0.06	0.06	0.056	0.0590
CO2 conc in stack	conc CO2	%/100	na	0.14	0.14	0.14	0.144	
N2 conc in stack	con N2	%/100	0.8	0.8	0.8	0.8	0.8	
Stock Cos Mole weight wet	Me	lb/lbmolo						
Stack Gas Mole weight wet	IVIS	10/101101e						
Stack Area	Α	ft2	63.6173	63.6173	63.6173	63.6173	63.6173	
Diameter of stack	D	inches	108	108	108	108	108	
Conversion Factor	F3	in/ft	12	12	12	12	12	
Conversion Factor	15	iii/it	12	12	12	12	12	
Stack Gas Velocity	Vs	ft/sec	22.1638	25.3076	19.8531	19.5702	19.1300	
Pitot tube constant	Kp	test Vs:						
Pitot tube calibration coef	Ср							
Stack Gas Velocity Head	dP	in H20						
Stack Gas Velocity Head	dPA 5							AVC
Stack Gas velocity Head	ur".J	E	140	107	144	1.41	107	AVG
Stack gas temp	18	г	143	136	144	141	157	140
flow check			84,600	96,600	75,780	74,700	73,020	
Stack Ht	Ht	Ft						
						1		
Actual Stock Cas Flow Bata	Aof	aafm	8/600	06600	75790	74700	73020	80.040
Actual Stack Gas Flow Kate	ACI	aciiii e	04000	50000	10/00	/4/00	13020	00,940
		acts	1410	1610	1263	1245	1217	
Converstion Factor	F5	sec/min	60	60	60	60	60	
								AVG
Dry std Stack gas flow rate	Ostd	dscfm	57,626	69,987	52,193	52,361	52,170	56,867
Dry std Stack gas flow rate	Ostd	dscf/br	3 457 563	4 199 205	3 131 606	3 141 6	3 130 220	
Commission E	E4	0.00/m	2600	7,177,205	2600	2600	2600	
Conversion Factor	F4	sec/nr	3000	3000	3000	3000	0000	
	Qstd	dscf/min						
Isokinetic percent	Ι	%						
sample nozzle cross section	An	ft2						
length of sample test	theta	minutes						
longin of sample test								
Mana Ranata anakina Jama P	Ma							
wass of part: combined samples	Mn	mg					└────┤	
Mass of part: probe wash	Мр	mg						
Mass of part: filter	Mf	mg						
· · ·								AVG
Unit Totals (tons nor)	PM10	ł	9	9	0	5	2	7
Unit Totals (tons per year)	502	l	0	0	7	2	د د	2
Unit Totals (tons per year)	502 NO		2	2	3	2	2	4
Unit Totals (tons per year)	NOx	l	138	140	157	102	58	119
Facility Totals (tons per year)	PM10		174	191	254	233	236	218
Facility Totals (tons per vear)	TSP		188	195	259	240	239	224
Eacility Totale (tone per year)	502		66	151	18	13	21	54
Facility Totals (tons per year)	NOv	1	770	700	792	765	660	739
racinity rotais (tons per year)	TIOX	1	112	/09	/05	/05	000	/30

Facility Specific Operating and Emissions Data (GP Camas - Continued)

		Facility:	GP Camas	GP Camas	GP Camas	GPCam	GPCamas	avg
		r ucinity.	2003	2004	2005	2006	2007	2003-2007
		Run ID or Unit ID.	2005	2004	2005	2000	2007	LK Ave
Dussauns (stack at 1 4-)	Da	in UC	16	1K 20.94	1K 20.94	1K 20.94	1K 20.94	LK AVg
r ressure (stack absolute)	FS Dhon	in HG	47.84	27.04	27.04	29.84	27.84	
Pressure (barometric)	r'bar Do	III HU in 1120						
Pressure (stack)	Pa	in H20						
Conversion Factor	F1	inH20/inHg						
Total water condensed	Vwstd	scf H2)						
	f	scf H20/gm						
Total water condensed	Vw	std ft3						
total impinger wt								
Impinger 1	Vi	σ						
Impinger 2	Vii	<u>в</u>						
Impinger 2	VII	- <u> </u>						
Impliger 3	VIII	8						
Impinger 4	VIV	g						
Ideal gas constant	R	(inHG)(ft3)/(R-lbmol)						
Temperature abs	Tabs	R (459.67)	460	460	460	460	460	
Temp std	Tstd	R (527.67)	528	528	528	528	528	
Conversion Factor	F2	g/lb (should be						
Pressure (std)	Pstd	in HG	29.92	29.92	29.92	29.92	29.92	
MW of water	MH20	lb/lbmole	18.015	18.015	18.015	18.015	18.015	
Sample Volume	Vmstd	dscf						
Sample Volume from meter	Vm	def						
Dry gas mtr cal factor	V	no units						
Material Carrier	1	in U20						
Meter orifice pressure	dH	III H20						
Dry gas meter temp	1 m	F		-	-			
					_			
Stack Gas Moisture Fraction	Bws	vol%/100	0.35	0.32	0.39	0.4	0.41	0.374
Saturation Moisture Fraction@STP	SBws	(sat vap press)/Ps						
same as BWS (because Bws>SBws)	1							
Stack Gas Mole weight dry	Md	lb/lbmole	30.732	30.852	30.852	30.852	30.996	AVG
Oxygen conc in stack	conc O2	%/100	0.04	0.03	0.03	0.03	0.018	0.0296
CO2 conc in stack	conc CO2	%/100	0.16	0.03	0.03	0.03	0.182	0.0270
N2 cone in stack	cone CO2	%/100	0.10	0.17	0.17	0.17	0.102	
IN2 COLE III STACK	COIL IN2	76/100	0.0	0.0	0.0	0.0	0.0	
Stack Gas Mole weight wet	INIS	ID/IDmole						
Stack Area	Α	ft2	19.6350	19.6350	19.6350	19.6350	19.6350	
Diameter of stack	D	inches	60	60	60	60	60	
Conversion Factor	F3	in/ft	12	12	12	12	12	
Stack Gas Velocity	Vs	ft/sec	9,7276	11.0517	9.4729	7.7413	5.8569	
Pitot tube constant	Kn	test Vs:						
Pitot tube calibration coef	Cn	test vs.						
Stack Gas Valoaity Haad	dD	in H20						
Stack Gas Velocity Head	dDA 5	111 1120						AVC
Stack Gas velocity Head	ur	F	1.40	150	160	150	159	AVG
Stack gas temp	18	Г	149	150	100	159	158	155
flow check		L	11,460	13,020	11,160	9,120	6,900	
Stack Ht	Ht	Ft						
Actual Stack Gas Flow Rate	Acf	acfm	11460	13020	11160	9120	6900	10,332
		acfs	191	217	186	152	115	
Converstion Factor	F5	sec/min	60	60	60	60	60	
								AVG
Dry std Stack gas flow rate	Ostd	dscfm	6.441	7.643	5,782	4.655	3.469	5.598
Dry etd Stack gas flow rate	Ostd	dscf/hr	386 / 50	458 577	346 016	279 304	208 130	0,070
Conversion Posto	E4	coc/hr	2600	2600	2600	217,304	2600	
Conversion Factor	F4 Oatd	SCC/III doof/min	3000	5000	3000	3000	3000	
x 1. <i>d</i>	Usta	usci/min						
Isokinetic percent	1	%						
sample nozzle cross section	An	tt2						
length of sample test	theta	minutes						
Mass of part: combined samples	Mn	mg						
Mass of part: probe wash	Mp	mg						
Mass of part: filter	Mf	mg						
intes of part litter		0						AVG
Unit Totals (tons nor mar)	PM10		17	15	19	9	8	12
Unit Totals (tons per year)	502		1/	1.0	10	0	0	13
Unit Totals (tons per year)	504 NO-		0	1	1	1	1	104
Unit Totals (tons per year)	NUX		83	//	150	132	/9	104
Facility Totals (tons per year)	PM10		174	191	254	233	236	218
Facility Totals (tons per year)	TSP		188	195	259	240	239	224
Facility Totals (tons per year)	SO2		66	151	18	13	21	54
Facility Totals (tons per year)	NOx		772	709	783	765	660	738

Facility Specific Operating and Emissions Data (GP Camas - Continued)

-	ucinty	Speeme Op.	ci atin	Suna			a (map	<i>juine</i>		
		Facility:	KaptS	KaptSto	KaptSto	KaptStone	KaptStone	KaptStone	KaptSton	KaptSton
			2005	2006	2007	2008	2009	2010	2011	2005-
		Run ID or Unit ID:	rf 18	rf 18	rf 18	rf 18	rf 18	rf 18	rf 18	PE 18 avg
	D	Kull ID of Ollit ID.	11 10	11 18	11 18	11 18	11 18	11 18	11 10	KI' 10 avg
Pressure (stack absolute)	PS	In HG	29.92	29.92	29.92	29.92	29.92	29.92	29.92	
Pressure (barometric)	Pbar	in HG								
Pressure (stack)	Pa	in H20								
Conversion Factor	F1	inH20/inHg								
Conversion 1 detor		iiii 120/ iii 1g								
Total water condensed	Vwst	set H2)								
	f	scf H20/gm								
Total water condensed	Vw	std ft3								
total impinger wt										
total impliger we	\$7:									
Impinger 1	V1	g								
Impinger 2	Vii	g								
Impinger 3	Viii	g								
Impinger 4	Viv	σ								
Ideal and constant	D	(inUC)(#2)/(D lhmal)								
Ideal gas colistalit	R	(IIIHG)(It3)/(R-IDIIIOI)	1.40	1.40	1.40	1.40	1.40	1.40	1.40	
Temperature abs	Tabs	R (459.67)	460	460	460	460	460	460	460	
Temp std	Tstd	R (527.67)	528	528	528	528	528	528	528	
Conversion Factor	F2	g/lb (should be								
Pressure (std)	Pstd	in HG	29.92	29.92	29.92	29.92	29.92	29.92	29.92	
Tressure (stu)	1 Stu	11110	10.01	2).)2	10.015	10.015	10.015	10.015	10.015	
MW of water	MH20	io/ibmoie	10.01	18.015	18.015	18.015	18.015	18.015	18.015	
Sample Volume	Vmst	dscf								
Sample Volume from meter	Vm	dcf								
Dry gas mtr cal factor	Y	no units			1	1				
Dry gas intr carractor	1	1. 1120								
Meter orifice pressure	dH	in H20								
Dry gas meter temp	Tm	F								
Stack Cas Moisture Fraction	Bwe	vol%/100	0.254	0.283	0.312	0.271	na	0.244	0.255	0.26983
Stack Gas Moisture Fraction	CD	(act area areas)/D-	0.254	0.205	0.512	0.271	na	0.244	0.235	0.20705
Saturation Moisture	SBWS	(sat vap press)/Ps								
same as BWS (because										
Stack Gas Mole weight dry	Md	lb/lbmole	30.19	30.215	30.155	30.095		30.011	30.071	AVG
Orween come in stack		9/ /100	0.095	0.092	0.000	0.002	20	0.1	0.005	0.0007
Oxygen conc in stack	conc	%/100	0.085	0.083	0.088	0.093	па	0.1	0.095	0.0907
CO2 conc in stack	conc	%/100	0.115	0.117	0.112	0.107		0.1	0.105	
N2 conc in stack	con	%/100	0.8	0.8	0.8	0.8	0.8	0.8	0.8	
Stack Cas Mole weight wet	Me	lb/lbmole								
Stack Gas Mole weight wet	1915	10/10110K								
Stack Area	Α	ft2	103.8	103.868	103.868	103.8689		103.8689	103.8689	
Diameter of stack	D	inches	138	138	138	138	138	138	138	
Conversion Foster	E2	inches	130	12	130	10	130	130	12	
Conversion Factor	F3	III/It	12	12	12	12	12	12	12	
Stack Gas Velocity	Vs	ft/sec	44.08	44.4118	41.1576	49.6395		48.8789	44.9028	
Pitot tube constant	Kp	test Vs:								
Pitot tube calibration coef	Cn									
	- CP	. 1120								
Stack Gas velocity Head	dP	in H20								
Stack Gas Velocity Head	dP^.5									AVG
Stack gas temp	Ts	F	243	256	244	247	na	206	237	239
flow check			274.7	276,780	256.500	309.360		304.620	279.840	
now ender			_ // i,/	2/0,/00	200,000	203,200		001,020	2///010	
0	114	E4	214							
Stack Ht	нı	гі	214	L			-			
Actual Stack Gas Flow Rate	Acf	acfm	27474	276780	256500	309360	na	304620	279840	283,640
		acfs	4579	4613	4275	5156	na	5077	4664	
Conversion Factor	F5	sec/min	60	60	60	60	60	60	60	
Conversion 1 actor	15	seermin	00	00	00	00	00	00	00	AVC
D 1101 1 -						1 (0)		100		AVG
Dry std Stack gas flow rate	Qstd	dscfm	153,9	146,344	132,354	168,425	na	182,574	157,931	156,927
Dry std Stack gas flow rate	Qstd	dscf/hr	9,236,	8,780,6	7,941,2	10,105,492	na	10,954,465	9,475,856	
Conversion Factor	F4	sec/hr	3600	3600	3600	3600	3600	3600	3600	
	Ostd	dscf/min								
Isolainotia noncont	- Vara I	04								
isokinetic percent	1	70		L			-			
sample nozzle cross section	An	tt2								
length of sample test	theta	minutes								
	1				l	l				
Mass of parts combined	Mr	ma								
Mass of part: combined	MIII M	шg								
Mass of part: probe wash	Мр	mg								
Mass of part: filter	Mf	mg								
										AVG
Unit Totale (tone per year)	PM10		3	2	3	6	na	Δ	6	4
Unit Totals (tons per year)	502	h	17	12	10	0	na	+	12	12
Unit Totals (tons per year)	502		1/	12	10	9	na	12	13	12
Unit Totals (tons per year)	NOx		125	132	159	141	na	72	132	127
Facility Totals (tons per year)	PM10		163	121	114	76	81	87	81	103
Facility Totals (tons per year)	TSP		176	132	119	81	86	91	85	110
Eacility Totals (tons per year)	502		220	274	275	291	201	220	202	244
racinty rotais (tons per year)	504		1402	1541	213	201	1164	1201	1272	1 400
Equility Total: (to a more a second										

Facility Specific () perating and	Emissions	Data (K	apStone)
r actine, opecifie (per aving and			

	~P···	Eacility	KontS	KontSto	KontSto	KontStone	KontStone	KantStona	KontSton	VantSton
		Pacifity.	2005	2006	2007	2008	2000	2010	2011	2005
		Pup ID or Unit ID:	2005 rf10	2006 rf10	2007 rf10	2008 rf10	2009 rf10	2010 rf10	2011 rf10	2003- PE 10 avg
Processing (stack absolute)	De	in HC	20.02	20.02	20.02	20.02	20.02	20.02	20.02	KI 19 avg
Procesure (barometria)	Dhor	in HG	49.94	49.94	23.32	23.32	29.92	47.74	29.92	
Pressure (stack)	Po	in H20								
Conversion Factor	F a E1	inH20/inHg								
Conversion Factor	FI	liiH20/liiHg								
Total water condensed	Vmat	asf 112)								
Total water condensed	v wst	set H2)								
T-t-l-m-t-m-t-m-l-m-t-l	1	sci H20/giii								
Total water condensed	vw	sta its								
total impinger wt	¥7:	-								
Impinger 1	V1	g								
Impinger 2	V 11	g								
Impinger 3	V111	g								
Impinger 4	V IV	g								
Ideal gas constant	R	(inHG)(ft3)/(R-lbmol)	1.50	1.10	1.10	1.40	1.40	1.70	1.40	
Temperature abs	Tabs	R (459.67)	460	460	460	460	460	460	460	
Temp std	Tstd	R (527.67)	528	528	528	528	528	528	528	
Conversion Factor	F2	g/lb (should be								
Pressure (std)	Pstd	in HG	29.92	29.92	29.92	29.92	29.92	29.92	29.92	
MW of water	MH20	lb/lbmole	18.01	18.015	18.015	18.015	18.015	18.015	18.015	
Sample Volume	Vmst	dscf								
Sample Volume from meter	Vm	dcf								
Dry gas mtr cal factor	Y	no units								
Meter orifice pressure	dH	in H20								
Dry gas meter temp	Tm	F								
Stack Gas Moisture Fraction	Bws	vol%/100	0.287	0.287	0.281	0.297	0.265	0.249	0.265	0.27586
Saturation Moisture	SBws	(sat vap press)/Ps								
same as BWS (because										
Stack Gas Mole weight dry	Md	lb/lbmole	30.31	30.312	30.240	30.215	30.131	30.095	30.095	AVG
Oxygen conc in stack	conc	%/100	0.075	0.075	0.081	0.083	0.09	0.093	0.093	0.0843
CO2 conc in stack	conc	%/100	0.125	0.125	0.119	0.117	0.11	0.107	0.107	
N2 conc in stack	con	%/100	0.8	0.8	0.8	0.8	0.8	0.8	0.8	
Stack Gas Mole weight wet	Ms	lb/lbmole								
Stack Area	Α	ft2	143.1	143.138	143.138	143,1388	143,1388	143,1388	143.1388	
Diameter of stack	D	inches	162	162	162	162	162	162	162	
Conversion Eactor	F3	in/ft	12	12	12	12	12	12	12	
Conversion Factor	15	in/it	12	12	12	12	12	12	12	
Stack Cas Valocity	Ve	ft/sec	36.85	37 2436	30 8424	45 4664	40.6598	42 6858	41 4982	
Pitot tube constant	Kn	test Ve	50.05	57.2450	37.0424	45.4004	40.0370	42.0050	41.4702	
Pitot tube calibration coef	Cp	test vs.								
Stack Gas Velocity Head	dP	in H20								
Stack Gas Velocity Head	dPA 5	III 1120								AVC
Stack Gas Velocity field	Te	F	246	247	251	253	242	255	220	246
flow sheels	15	1	240	210.940	242 190	200.480	242	255	256 400	240
HOW CHECK			510,5	519,000	342,100	390,400	549,200	300,000	350,400	
Ctopl-TL	LI+	Et.	109							
Stack Ht	пі	1't	198							
		6	21650	210970	242190	200490	240200	266600	256400	240 544
Actual Stack Gas Flow Rate	ACI	acim	51030	519800	5702	390480	549200	500000	50400	348,740
Commention Footon	175	acis	5275	5551	5703	6508	5820	6110	5940	
Conversion Factor	F5	sec/min	60	60	60	60	60	60	00	AVC
Dem et l Ote els en i	0-23	1	1(0.5	150 210	103 504	202 202	102.047	202 211	200 5 12	AVG
Dry std Stack gas flow rate	Qstd	dscfm	108,7	1/0,319	182,704	203,282	193,045	203,311	200,743	188,882
Dry std Stack gas now rate	Qstd	dsci/hr	10,12	10,219,	10,962,	12,196,908	11,582,695	12,198,645	12,044,56	
Conversion Factor	F4	sec/nr	3000	3000	0000	3000	3000	3000	3000	
Tashinatia man	Qstd	asci/min								
isokinetic percent	1	70								
sample nozzle cross section	An	π2	L	ļ	ļ					
length of sample test	tneta	minutes								
Mass of part: combined	Mn	mg								
Mass of part: probe wash	Mp	mg								
Mass of part: filter	Mť	mg								
										AVG
Unit Totals (tons per year)	PM10		10	33	13	6	16	11	6	14
Unit Totals (tons per year)	SO2		9	15	6	20	41	20	14	18
Unit Totals (tons per year)	NOx		302	182	137	61	172	182	173	173
Facility Totals (tons per year)	PM10		163	121	114	76	81	87	81	103
Facility Totals (tons per year)	TSP		176	132	119	81	86	91	85	110
Facility Totals (tons per year)	SO2		239	274	275	281	201	239	202	244
Facility Totals (tons per year)	NOx	I	1493	1541	1488	1440	1164	1301	1372	1,400

	~ P · · ·	E aller	Kent	K	V	Kentfrank	Kent Channe	K	Kant Stan	V
		Facility:	KaptS	KaptSto	KaptSto	KaptStone	KaptStone	KaptStone	KaptSton	KaptSton
			2005	2006	2007	2008	2009	2010	2011	2005-
		Run ID or Unit ID:	rf22	rf22	rf22	rf22	rf22	rf22	rf22	RF 22 avg
Pressure (stack absolute)	Ps	in HG	29.92	29.92	29.92	29.92	29.92	29.92	29.92	
Pressure (barometric)	Pbar	in HG								
Pressure (stack)	Pa	in H20								
Conversion Factor	F1	inH20/inHg								
Total water condensed	Vwst	scf H2)								
	f	scf H20/gm								
Total water condensed	Vw	std ft3								
total water condensed		310 115								
totai iliipiliger wi	¥7:	-								
Impinger 1	V1	5								
Impinger 2	Vii	g								
Impinger 3	Viii	g								
Impinger 4	Viv	g								
Ideal gas constant	R	(inHG)(ft3)/(R-lbmol)								
Temperature abs	Tabs	R (459.67)	460	460	460	460	460	460	460	
Temp std	Tstd	R (527.67)	528	528	528	528	528	528	528	
Conversion Factor	F2	g/lb (should be								
Pressure (std)	Pstd	in HG	29.92	29.92	29.92	29.92	29.92	29.92	29.92	
MW of water	MH20	lh/lhmolo	18.01	18 015	18 015	18 015	18 015	18 015	18 015	
WW OI water	WI1120	10/1011016	10.01	10.015	10.015	10.015	10.015	10.015	10.013	
Somula Valum -	Vm4	deef								
Sample Volume	v mst	usci								
Sample Volume from meter	Vm	act								
Dry gas mtr cal factor	Y	no units								
Meter orifice pressure	dH	in H20								
Dry gas meter temp	Tm	F								
Stack Gas Moisture Fraction	Bws	vol%/100	0.242	0.218	0.223	0.211	0.21	0.226	0.203	0.219
Saturation Moisture	SBws	(sat vap press)/Ps								
same as BWS (because	0210	(out tup press)/rs								
sume as B WB (because										
Stooly Cog Male weight dwy	ма	lh/lhmala	20.45	20.260	20.276	20.272	20.469	20.490	20.249	AVC
Stack Gas Mole weight dry	Mu		30.45	30.300	30.270	30.372	30.408	30.460	30.346	AVG
Oxygen conc in stack	conc	%/100	0.063	0.071	0.078	0.07	0.062	0.061	0.072	0.0681
CO2 conc in stack	conc	%/100	0.137	0.129	0.122	0.13	0.138	0.139	0.128	
N2 conc in stack	con	%/100	0.8	0.8	0.8	0.8	0.8	0.8	0.8	
Stack Gas Mole weight wet	Ms	lb/lbmole								
Stack Area	Α	ft2	103.8	103.868	103.868	103.8689	103.8689	103.8689	103.8689	
Diameter of stack	D	inches	138	138	138	138	138	138	138	
Conversion Eactor	E3	in/ft	12	12	12	12	12	12	12	
Conversion Factor	15	in it	12	12	12	12	12	12	12	
Stools Cog Valasity	Va	St lago	47.92	42 2225	47 6272	46 1726	50 7562	44 1519	47 2674	
Stack Gas velocity	VS	It/sec	47.02	45.5555	47.0275	40.1750	50.7505	44.1510	47.3074	
Pitot tube constant	Кр	test Vs:								
Pitot tube calibration coef	Ср									
Stack Gas Velocity Head	dP	in H20								
Stack Gas Velocity Head	dP^.5									AVG
Stack gas temp	Ts	F	271	267	264	281	291	572	341	327
flow check			298,0	270,060	296,820	287,760	316,320	275,160	295,200	
Stack Ht	Ht	Ft	246							
Actual Stack Cas Flow Rote	Acf	acfm	29808	270060	296820	287760	316320	275160	295200	201 3/13
Actual Stack Gas Flow Rate	Att	actini	27808	270000	4047	4706	5272	1596	4020	271,343
Correction Eq. (175	acts	4700	401	474/	+/90	5414	4000	4720	
Conversion Factor	F5	sec/min	60	60	60	60	00	60	00	110
D 110 1 -		1.0	4 67 1		4 60			100		AVG
Dry std Stack gas flow rate	Qstd	dscfm	163,1	153,379	168,194	161,779	175,690	108,963	155,087	155,185
Dry std Stack gas flow rate	Qstd	dscf/hr	9,791,	9,202,7	10,091,	9,706,762	10,541,417	6,537,802	9,305,235	
Conversion Factor	F4	sec/hr	3600	3600	3600	3600	3600	3600	3600	
	Qstd	dscf/min								
Isokinetic percent	Ι	%								
sample nozzle cross section	An	ft2								
length of sample test	theta	minutes								
ing in or sample test										
Mass of parts combined	Mr	ma								
Mana of rest and here 1	Ma	шg								
Mass of part: probe wash	Mp	mg						-		-
Mass of part: filter	Mf	mg								
										AVG
Unit Totals (tons per year)	PM10		11	4	5	8	13	8	5	8
Unit Totals (tons per year)	SO2		58	53	47	60	48	87	66	60
Unit Totals (tons per year)	NOx		245	242	251	274	280	297	288	268
Facility Totals (tons per year)	PM10		163	121	114	76	81	87	81	103
Facility Totals (tons per year)	TSP		176	132	119	81	86	91	85	110
Facility Totals (tons per year)	502		230	274	275	281	201	230	202	244
Facility Totals (tons per year)	NOv		1493	1541	1488	1440	1164	1301	1372	1 400

	~ P · · ·	Facility	KoptS	VantSto	KontSto	KantStona	KontStone	KontStone	KontSton	VantSton
		Facility:	Kapis	Rapisio	Kapisto	Kapistone	Kapistone	Kapisione	Kapision	Kapision
			2005	2006	2007	2008	2009	2010	2011	2005-
		Run ID or Unit ID:	lk3	lk3	lk3	lk3	lk3	lk3	lk3	LK 3 avg
Pressure (stack absolute)	Ps	in HG	29.92	29.92	29.92	29.92	29.92	29.92	29.92	
Pressure (barometric)	Pbar	in HG								
Pressure (stack)	Pa	in H20								
Conversion Factor	F1	inH20/inHg								
Total water condensed	Vwst	scf H2)								
	f	scf H20/gm								
Total water condensed	Vw	std ft3								
total impinger wt										
Impinger 1	Vi	g								
Impinger 2	Vii	g								
Impinger 3	Viii	g								
Impinger 4	Viv	g								
Ideal gas constant	R	(inHG)(ft3)/(R-lbmol)								
Temperature abs	Tabs	R (459 67)	460	460	460	460	460	460	460	
Temp std	Tetd	P (527 67)	528	528	528	528	528	528	528	
Conversion Faster	E2	g/lb (should be	528	520	528	526	528	520	528	
Bracoura (etd)	T2 Detd	in HG	20.02	20.02	20.02	20.02	20.02	20.02	20.02	
Plessule (std)	PSIU	III HG	29.92	29.92	29.92	29.92	29.92	29.92	29.92	
MW of water	MH20	lb/lbmole	18.01	18.015	18.015	18.015	18.015	18.015	18.015	
	¥7 ·	1.6		-						
Sample Volume	Vmst	aser								
Sample Volume from meter	Vm	dcf								
Dry gas mtr cal factor	Y	no units								
Meter orifice pressure	dH	in H20								
Dry gas meter temp	Tm	F								
Stack Gas Moisture Fraction	Bws	vol%/100	0.252	0.265	0.296	0.273	0.256	0.165	0.221	0.2469
Saturation Moisture	SBws	(sat vap press)/Ps								
same as BWS (because		· · · ·								
Stack Gas Mole weight dry	Md	lb/lbmole	30.11	30.360	30.360	30.179	29.867	29.963	30.107	AVG
Ovygen conc in stack	conc	%/100	0.091	0.071	0.071	0.086	0.112	0 104	0.092	0.0896
CO2 conc in stack	conc	%/100	0.109	0.129	0.129	0.114	0.088	0.096	0.092	0.0070
N2 cone in stack	conc	%/100	0.107	0.12)	0.12)	0.114	0.000	0.090	0.100	
N2 COLC III STACK	con	%/100	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Starb Gar Mala mainh mat	M-	11. (11								
Stack Gas Mole weight wet	MIS	ID/IDmole								
Stack Area	A	ft2	28.27	28.2743	28.2743	28.2743	28.2743	28.2743	28.2743	
Diameter of stack	D	inches	72	72	72	72	72	72	72	
Conversion Factor	F3	in/ft	12	12	12	12	12	12	12	
Stack Gas Velocity	Vs	ft/sec	14.96	10.9640	12.3080	12.5202	14.1117	13.0507	11.3884	
Pitot tube constant	Кр	test Vs:								
Pitot tube calibration coef	Ср									
Stack Gas Velocity Head	dP	in H20								
Stack Gas Velocity Head	dP^.5									AVG
Stack gas temp	Ts	F	149	148	155	153	151	135	148	148
flow check			25.38	18.600	20.880	21,240	23.940	22.140	19.320	
			,_ ~		,	,	,	,		
Stack Ht	Ht	Ft				1		1	1	
Stack III										
Actual Stack Cas Flow Pata	Acf	acfm	25380	18600	20880	21240	23940	22140	19320	21 643
Actual Stack Gas Flow Kale	nu	actin	422	310	20000	254	200	360	320	21,043
Convention Foster	175	acis	423	510	540	554	599	509	522	
Conversion Factor	гэ	SCC/IIIIII	00	00	00	00	00	00	00	AVC
Deve et al Ctarala de la	0.41	16	16.45	11.050	10 (20	12 200	15 202	16 405	13.050	AVG
Dry std Stack gas flow rate	Ostd	dscim	16,45	11,8/2	12,620	13,300	15,392	16,405	13,0/0	14,160
Dry std Stack gas flow rate	Qstd	dscf/hr	987,5	/12,331	/5/,205	798,020	923,509	984,311	/84,199	
Conversion Factor	F4	sec/hr	3600	3600	3600	3600	3600	3600	3600	
	Qstd	dscf/min								
Isokinetic percent	I	%								
sample nozzle cross section	An	ft2								
length of sample test	theta	minutes								
Mass of part: combined	Mn	mg								
Mass of part: probe wash	Mp	mg								
Mass of part: filter	Mf	mg								
										AVG
Unit Totals (tons per year)	PM10	1	13	2	2	3	2	2	0	3
Unit Totals (tons per year)	SO2	1	1	1	0	0	õ	ō	ő	0
Unit Totals (tons per year)	NOv		5/	56	12	21	12	8	3	24
Facility Totals (tons per year)	PM10		163	121	114	76	81	87	81	103
Facility Totals (tons per year)	TSP		176	132	114	<u>81</u>	86	01	85	110
Easility Totals (tons per year)	13F 502		220	274	275	201	201	220	202	244
Eacility Totals (tons per year)	NOv		1/02	1541	1/99	1440	1164	1301	1272	1 400
· · · · · · · · · · · · · · · · · · ·		-							/ /	

	~p···	E aller	Kent	Keret Sta	V	Kentfirme	KentGran	W	Kant Star	IZ Ct
		Facility:	KaptS	KaptSto	KaptSto	KaptStone	KaptStone	KaptStone	KaptSton	KaptSton
			2005	2006	2007	2008	2009	2010	2011	2005-
		Run ID or Unit ID:	lk4	lk4	lk4	lk4	lk4	lk4	lk4	LK 4 avg
Pressure (stack absolute)	Ps	in HG	29.92	29.92	29.92	29.92	29.92	29.92	29.92	
Pressure (barometric)	Pbar	in HG								
Pressure (stack)	Pa	in H20								
Conversion Factor	F1	inH20/inHg								
Total water condensed	Vwst	scf H2)								
	f	scf H20/gm								
Total water condensed	Vw	std ft3								
Total water condensed	***	stufito								
total impinger wt										
Impinger 1	V1	g								
Impinger 2	Vii	g								
Impinger 3	Viii	g								
Impinger 4	Viv	g								
Ideal gas constant	R	(inHG)(ft3)/(R-lbmol)								
Temperature abs	Tabs	R (459.67)	460	460	460	460	460	460	460	
Temp std	Tstd	R (527 67)	528	528	528	528	528	528	528	
Conversion Eactor	F2	g/lb (should be	520	020	520	520	520	520	520	
Prossure (etd)	Potd	in HG	20.02	20.02	20.02	20.02	20.02	20.02	20.02	
Plessure (std)	Pstu		29.92	29.92	29.92	29.92	29.92	29.92	29.92	
MW of water	MH20	id/lbmole	18.01	18.015	18.015	18.015	18.015	18.015	18.015	
Sample Volume	Vmst	dscf								
Sample Volume from meter	Vm	dcf								
Dry gas mtr cal factor	Y	no units								
Meter orifice pressure	dH	in H20								1
Dry gas meter temp	Tm	F								1
Dry gas meter temp		<u> </u> -								
Starb Car Maistern Frantian	D		0.242	0.226	0.225	0.224	0.149	0.200	0.196	0.2097
Stack Gas Moisture Fraction	BWS	V01%/100	0.245	0.220	0.223	0.224	0.148	0.209	0.180	0.2087
Saturation Moisture	SBws	(sat vap press)/Ps								
same as BWS (because										
Stack Gas Mole weight dry	Md	lb/lbmole	30.67	30.552	30.504	30.576	30.360	30.540	30.660	AVG
Oxygen conc in stack	conc	%/100	0.045	0.055	0.059	0.053	0.071	0.056	0.046	0.0550
CO2 conc in stack	conc	%/100	0.155	0.145	0.141	0.147	0.129	0.144	0.154	
N2 conc in stack	con	%/100	0.8	0.8	0.8	0.8	0.8	0.8	0.8	
IN2 COLE III STACK	con	/8/100	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Starb Car Mala mainht mat	М.	11. /11								
Stack Gas Mole weight wet	IVIS	ID/IDIII0Ie								
Stack Area	Α	ft2	38.48	38.4845	38.4845	38.4845	38.4845	38.4845	38.4845	
Diameter of stack	D	inches	84	84	84	84	84	84	84	
Conversion Factor	F3	in/ft	12	12	12	12	12	12	12	
Stack Gas Velocity	Vs	ft/sec	8.938	8.0292	9.0166	9.3804	8,7048	8.8347	8.2111	
Pitot tube constant	Kn	test Ve:	0.750	0.02/2	2.0100	7.5004	0.7040	0.0047	0.2111	
Pitot tube constant	Kp Cn	test vs.								
Pitot tube calibration coel	Ср	. 1120								
Stack Gas velocity Head	dP	1n H20								
Stack Gas Velocity Head	dP^.5									AVG
Stack gas temp	Ts	F	140	141	140	140	124	139	136	137
flow check			20,64	18,540	20,820	21,660	20,100	20,400	18,960	
Stack Ht	Ht	Ft								
					l					1
Actual Stack Cas Flow Rote	Acf	acfm	20640	18540	20820	21660	20100	20400	18960	20 160
Terum States Gas Flow Rate		acte	20040	300	3/7	361	325	3/0	316	20,100
Committee Footon	175	acis	544	309	547	501	335	540	510	
Conversion Factor	гэ	SCC/IIIII	00	00	00	00	υU	υU	00	110
										AVG
Dry std Stack gas flow rate	Qstd	dscfm	13,75	12,607	14,199	14,791	15,483	14,224	13,673	14,104
Dry std Stack gas flow rate	Qstd	dscf/hr	824,9	756,417	851,954	887,471	928,983	853,424	820,355	
Conversion Factor	F4	sec/hr	3600	3600	3600	3600	3600	3600	3600	
	Qstd	dscf/min								
Isokinetic percent	Ĩ	%								
sample nozzle cross section	An	ft2			l					1
length of sample test	theta	minutes								
longen of sample test	uncta	minutes								
Manager and the state	M									
Mass of part: combined	Mn	mg								
Mass of part: probe wash	Мр	mg								
Mass of part: filter	Mf	mg								
										AVG
Unit Totals (tons per year)	PM10		8	6	13	7	4	8	12	8
Unit Totals (tons per year)	SO2		3	4	1	1	1	1	1	2
Unit Totals (tons per year)	NOv		30	82	74	34	37	51	70	54
Eacility Totals (tons per year)	PM10	i	163	121	114	76	81	87	<u>81</u>	102
Eacility Totals (tons per year)	TCD	1	105	122	114	21	01 Q2	01	01	103
Facility Totals (tons per year)	15P		1/0	132	119	01	00	91	60	110
Facility Totals (tons per year)	502		239	2/4	2/5	281	201	239	202	244
Facility Totals (tons per year)	NOx	1	1493	1541	1488	1440	1164	1301	1372	1,400

Facility Specific Operating and Emissions Data (KapStone - Continued)

	~	Facility	KoptS	VantSto	KontSto	KantStona	KontStone	KontStone	KontSton	KantSton
		Pacifity.	2005	2006	2007	2008	2000	2010	2011	2005
		Pup ID or Unit ID:	2005	2006	2007	2008	2009	2010	2011	2003-
Procesure (stack absolute)	De	in HC	20.02	20.02	20.02	20.02	20.02	20.02	20.02	LK 5 avg
Processing (bacomatria)	Dhor	in HG	49.94	49.94	29.92	23.32	49.94	29.92	29.92	
Pressure (stack)	Po	in H20								
Conversion Fester	F d T21	in 1120								
Conversion Factor	FI	liiH20/liiHg								
Total water condensed	Vmat	and H2)								
Total water condensed	v wst	set H2)								
	1	sci H20/gili								
Total water condensed	VW	std ft3								
total impinger wt	***									
Impinger 1	V1	g								
Impinger 2	Vii	g								
Impinger 3	Viii	g								
Impinger 4	Viv	g								
Ideal gas constant	R	(inHG)(ft3)/(R-lbmol)								
Temperature abs	Tabs	R (459.67)	460	460	460	460	460	460	460	
Temp std	Tstd	R (527.67)	528	528	528	528	528	528	528	
Conversion Factor	F2	g/lb (should be								
Pressure (std)	Pstd	in HG	29.92	29.92	29.92	29.92	29.92	29.92	29.92	
MW of water	MH20	lb/lbmole	18.01	18.015	18.015	18.015	18.015	18.015	18.015	
Sample Volume	Vmst	dscf								
Sample Volume from meter	Vm	dcf								
Dry gas mtr cal factor	Y	no units								
Meter orifice pressure	dH	in H20					l		İ	
Dry gas meter temp	Tm	F					İ			
Dry gas meter temp		-								
Stack Gas Moisture Fraction	Bws	vol%/100	0.286	0.314	0 303	0.281	0.302	0.297	0.298	0 2973
Saturation Moisture	SBws	(sat van press)/Ps	0.200	0.011	0.505	0.201	0.502	0.277	0.270	0.2775
same as BWS (because	50 %5	(sat vap press)/1 s								
same as B w3 (because										
Stooly Cog Male weight dwy	ма	lh/lhmala	20.42	20 212	20 599	20.576	20 504	20.564	20 612	AVC
Stack Gas Mole weight ury	Mu	10/101101e	30.42	0.075	30.300	30.370	0.050	30.304	30.012	AVG
Oxygen conc in stack	conc	%/100	0.124	0.075	0.052	0.053	0.059	0.054	0.05	0.0584
CO2 cone in stack	conc	%/100	0.134	0.125	0.148	0.147	0.141	0.146	0.15	
N2 conc in stack	con	%/100	0.8	0.8	0.8	0.8	0.8	0.8	0.8	
Stack Gas Mole weight wet	Ms	lb/lbmole								
Stack Area	A	ft2	15.90	15.9043	15.9043	15.9043	15.9043	15.9043	15.9043	
Diameter of stack	D	inches	54	54	54	54	54	54	54	
Conversion Factor	F3	in/ft	12	12	12	12	12	12	12	
Stack Gas Velocity	Vs	ft/sec	23.51	27.0996	25.1504	15.7819	17.4795	18.6742	17.1023	
Pitot tube constant	Кр	test Vs:								
Pitot tube calibration coef	Ср									
Stack Gas Velocity Head	dP	in H20								
Stack Gas Velocity Head	dP^.5									AVG
Stack gas temp	Ts	F	281	284	275	333	326	338	341	311
flow check			22.44	25.860	24,000	15.060	16.680	17.820	16.320	
			,		,	,				
Stack Ht	Ht	Ft			l		İ			
	-									
Actual Stack Gas Flow Rate	Acf	acfm	22440	25860	24000	15060	16680	17820	16320	19,740
Actual Stack Gas Flow Kate	nei	acfs	374	431	400	251	278	297	272	17,740
Conversion Factor	F5	sec/min	60	60	60	60	60	60	60	
Conversion 1 detor	15	seermin	00	00	00	00	00	00	00	AVC
Dry etd Stack and flow rote	Octd	deefm	11.41	12 500	12 017	7 210	7 821	8 280	7 552	0 556
Dry std Stack gas flow rate	Octd	deof/br	684.0	755 270	721.011	122 570	460.261	407 221	1,332	3,330
Dry stu Stack gas now rate	Qsiu E4	user/m	2600	2600	2600	432,379	409,201	497,331	455,117	
Conversion Factor	1'4 Oct-1	deaf/min	5000	5000	5000	5000	5000	5000	5000	
I 1	Usia									
isokinetic percent	1	70								<u> </u>
sample nozzle cross section	An	π2		ļ						
length of sample test	theta	minutes								
Mass of part: combined	Mn	mg								
Mass of part: probe wash	Мр	mg								
Mass of part: filter	Mf	mg								
										AVG
Unit Totals (tons per year)	PM10		2	0	0	2	3	1	2	1
Unit Totals (tons per year)	SO2		1	1	1	2	1	2	2	1
Unit Totals (tons per year)	NOx		26	20	47	61	35	37	58	41
Facility Totals (tons per year)	PM10		163	121	114	76	81	87	81	103
Facility Totals (tons per year)	TSP		176	132	119	81	86	91	85	110
Facility Totals (tons per year)	SO2		239	274	275	281	201	239	202	244
Facility Totals (tons per year)	NOx		1493	1541	1488	1440	1164	1301	1372	1,400
<u> </u>		enne operation	5 une			Duite (D)		ic munit	iiu)	
---------------------------------	-------------	-----------------------	----------	---------	---------	-----------	------------	------------	-----------	---------
		Facility:	Boise	Boise	Boise	Boise	Boise	Boise	Boise	Boise
			2005	2006	2007	2008	2000	2010	2011	2005
			2005	2000	2007	2008	2009	2010	2011	2005-
		Run ID or Unit ID:	rf2	rf2	rf2	rf2	rf2	rf2	rf2	Rf2 avg
Pressure (stack absolute)	Ps	in HG	29.92	29.92	29.92	29.92	29.92	29.92	29.92	
Tressure (stack absolute)	15		27.72	27.72	27.72	27.72	27.72	27.72	27.72	
Pressure (barometric)	Pbar	in HG								
Pressure (stack)	Pa	in H20								
Conversion Foster	E1	inU20/inUa					1			
Conversion Factor	ГІ	liiH20/liiHg								
Total water condensed	Vwet	sef H2)								
Total water condensed	1 wat	301112)								
	t	set H20/gm								
Total water condensed	Vw	std ft3								
Total water condensed		starto								
total impinger wt										
Impinger 1	Vi	g								
Impingor 2	Vii	<i>a</i>								
mpinger 2	V II	20								
Impinger 3	Viii	g								
Impinger 4	Viv	σ								
mpinger 4	V IV	5								
Ideal gas constant	R	(inHG)(ft3)/(R-lbmol)								
Temperature abs	Tabs	R (459 67)	460	460	460	460	460	460	460	
Temperature abs	Tubs	R (455.07)	400	400	400	400	400	400 500	400	
Temp std	1 std	R (527.67)	528	528	528	528	528	528	528	
Conversion Factor	F2	g/lb (should be								
Dressure (std)	Datid	in UC	20.02	20.02	20.02	20.02	20.02	20.02	20.02	
Pressure (std)	Pstd	in HG	29.92	29.92	29.92	29.92	29.92	29.92	29.92	
MW of water	MH20	lb/lbmole	18.01	18.015	18.015	18.015	18.015	18.015	18.015	
		1								
		1.0	l		l		ł			
Sample Volume	Vmst	dscf	1		1	1		1	1	
Sample Volume from meter	Vm	def								
Sumple Folume nom meter	* 111 X7									
Dry gas mtr cal factor	Y	no units	L		L	L	L		L	
Meter orifice pressure	dH	in H20								
Day	Tw	E	1		1	1	1		1	
Dry gas meter temp	1 m	Г				l				
1	I –				I			I	I	
Stock Cos Maisture Function	Dura	vol9//100	0.222	0.251	0.267	0.246	0.227	0.22	0.252	0.2427
Stack Gas Moisture Fraction	BWS	V01%/100	0.222	0.231	0.207	0.240	0.257	0.25	0.235	0.2437
Saturation Moisture	SBws	(sat vap press)/Ps								
same as BWS (because										
same as D WS (because										
Stack Gas Mole weight dry	Md	lb/lbmole	29.98	30.119	30.011	30.059	29.867	29.975	30.191	AVG
Stack Gas Moke weight dry	mu		27.70	0.001	0.011	0.005	27.007	20010	0.005	20001
Oxygen conc in stack	conc	%/100	0.102	0.091	0.1	0.096	0.112	0.103	0.085	0.0984
CO2 conc in stack	conc	%/100	0.098	0.109	0.1	0.104	0.088	0.097	0.115	
10		01 (100	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
N2 conc in stack	con	%/100	0.8	0.8	0.8	0.8	0.8	0.8	0.8	
Stock Cos Mole weight wet	Me	lh/lhmala								
Stack Gas Mole weight wet	1415	ID/IDIII0IC								
Stack Area	Α	ft2	62.21	62.2114	62.2114	62.2114	62.2114	62.2114	62.2114	
Diameter of stack	D	inches	106.8	106.8	106.8	106.8	106.8	106.8	106.8	
Diameter of stack	D	inches	100.0	100.0	100.0	100.0	100.0	100.0	100.0	
Conversion Factor	F3	in/ft	12	12	12	12	12	12	12	
	X 7	6.1	22.25	21 2501	22.4207	22,4225	00.4555	24.2046	45 1002	
Stack Gas velocity	VS	ft/sec	23.25	21.2501	22.4396	22.4235	22.4557	24.3846	25.1883	
Pitot tube constant	Kp	test Vs:								
Pitot tube calibration as of	Cn		1		1	1	1	1	İ	
Pilot tube calibration coel	Ср									
Stack Gas Velocity Head	dP	in H20	I		1			1	1	
Stack Gas Valocity Hood	dP^ 5									AVC
Stack Gas velocity field	ui .5	F	225	000	000	005	007	0.10	2.1.1	AIU
Stack gas temp	1.8	F	327	333	283	305	335	342	344	324
flow check			86.82	79,320	83,760	83 700	83,820	91,020	94,020	
HOW CHECK		1	00,02	17,540	00,700	05,700	00,020	21,040	24,040	
						L				
Stack Ht	Ht	Ft								
	1	1	1		1	1	1	1	İ	
										L
Actual Stack Gas Flow Rate	Acf	acfm	86820	79320	83760	83700	83820	91020	94020	86,066
		acfs	1447	1322	1306	1305	1307	1517	1567	
	175		1-1-11/	1344	1570		1371	1317	1307	
Conversion Factor	FD	sec/min	60	60	60	60	60	60	60	
										AVG
Dury and Stools	Oct 1	daafm	45 21	20 557	42 (20	42 559	42 477	AC 1 41	46 100	42 820
Dry stu Stack gas flow rate	Qsta	uscim	45,31	37,557	43,030	40,558	42,470	40,141	40,123	43,829
Dry std Stack gas flow rate	Qstd	dscf/hr	2,719.	2,373,4	2,617.8	2,613,488	2,548,533	2,768,461	2,767,387	
Conversion Easter	F4	sec/br	3600	3600	3600	3600	3600	3600	3600	
Conversion Factor	Г4	SCC/III	3000	3000	5000	5000	5000	5000	5000	
1	Qstd	dscf/min	1		1	1		1	1	
Isokinetic nercent	T	%								
isokinene percent	-	70 50				I			<u> </u>	
sample nozzle cross section	An	n2	L							
length of sample test	theta	minutes								
length of sumple test	unctu		ł		ł	1	ł			
		I	L							
Mass of part: combined	Mn	mg								
Mass of sector and a	Ma	8	1		1	1	1		1	
Mass of part: probe wash	мр	mg								
Mass of part: filter	Mf	mg	I		I			I	I	
	1		1		1	1	1	i i	1	AVC
			<u> </u>			1	<u> </u>			AVG
Unit Totals (tons per year)	PM10	1	20	8	6	7	10	10	5	9
Unit Totals (tone nor year)	502	1	255	220	260	359	255	322	357	204
Unit Totals (tons per year)	504		233	239	200	550	233	332	552	494
Unit Totals (tons per year)	NOx	1	65	64	63	73	59	74	71	67
Facility Totals (tons per year)	PM10		213	218	184	157	131	131	127	166
Excluse Texal	10110	1	215	200	270	227	1.51	1.51	140	100
Facility Totals (tons per year)	TSP	l	295	500	270	227	156	156	149	222
Facility Totals (tons per year)	SO2		793	1247	684	780	713	802	793	830
E alles Tetal	NC	1	775	770	771	1072	0.41	070		050
racinity rotais (tons per year)	NUX	1	/04	//8	//1	10/3	841	839	801	006

Facility Specific Operating and Emissions Data (Boise While Wallula)

		Facility:	Boise	Boise	Boise	Boise	Boise	Boise	Boise	Boise
			2005	2006	2007	2008	2009	2010	2011	2005-
		Run ID or Unit ID:	rf3	rf3	rf3	rf3	rf3	rf3	rf3	Rf3 avg
Pressure (stack absolute)	Ps	in HG	29.92	29.92	29.92	29.92	29.92	29.92	29.92	
Pressure (barometric)	Pbar	in HG								
Pressure (stack)	Pa	in H20								
Conversion Factor	F1	inH20/inHg								
Total water condensed	Vwst	scf H2)								
	f	scf H20/gm								
Total water condensed	Vw	std ft3								
total impinger wt										
Impinger 1	Vi	g								
Impinger 2	Vii	g								
Impinger 3	Viii	g								
Impinger 4	Viv	g								
Ideal gas constant	R	(inHG)(ft3)/(R-lbmol)	1.40	1.40	1.60	1.10	1.50	1.10	1.40	
Temperature abs	Tabs	R (459.67)	460	460	460	460	460	460	460	
Temp std	Tstd	R (52/.6/)	528	528	528	528	528	528	528	
Conversion Factor	F2	g/lb (should be	20.02	20.02	20.02	20.02	20.02	20.02	20.02	
Pressure (std)	Pstd	in HG	29.92	29.92	29.92	29.92	29.92	29.92	29.92	
MW of water	MH20	lb/lbmole	18.01	18.015	18.015	18.015	18.015	18.015	18.015	
Sample Voluma	Vmat	deef								
Sample Volume from meter	Vm	def					1			
Dry gas mtr cal factor	VIII	no units					1			
Meter orifice process	dH	in H20					1			ł
Dry gas motor term	Tm	ш п20 Е					1			ł
Dry gas meter temp	1111	1					1			
Stack Gas Moistura Fraction	Bwe	vol%/100	0.223	0.246	0.239	0.24	0.247	0.245	0.238	0 239714
Saturation Moisture	SBwe	(set ven press)/Ps	0.225	0.240	0.237	0.24	0.247	0.245	0.238	0.237714
same as BWS (because	50 45	(sat vap press)/1 s								
same as DWS (because										
Stack Gas Mole weight dry	Md	lb/lbmole	30.44	30.444	30.324	30.456	30.456	30.540	30.624	AVG
Oxygen conc in stack	conc	%/100	0.064	0.064	0.074	0.063	0.063	0.056	0.049	0.0619
CO2 conc in stack	conc	%/100	0.136	0.136	0.126	0.137	0.137	0.144	0.151	0.001/
N2 conc in stack	con	%/100	0.8	0.8	0.8	0.8	0.8	0.8	0.8	
Stack Gas Mole weight wet	Ms	lb/lbmole								
, and the second s										
Stack Area	Α	ft2	132.7	132.732	132.732	132.7323	132.7323	132.7323	132.7323	
Diameter of stack	D	inches	156	156	156	156	156	156	156	
Conversion Factor	F3	in/ft	12	12	12	12	12	12	12	
Stack Gas Velocity	Vs	ft/sec	40.41	39.6512	40.7964	42.0696	43.9531	24.3874	42.3032	
Pitot tube constant	Кр	test Vs:								
Pitot tube calibration coef	Ср									
Stack Gas Velocity Head	dP	in H20								
Stack Gas Velocity Head	dP^.5	_								AVG
Stack gas temp	Ts	F	357	365	358	382	409	394	401	381
flow check			321,8	315,780	324,900	335,040	350,040	194,220	336,900	
a 1	TT.	E.								
Stack Ht	Ht	Ft								
Astro-16to-de C EL D :	A - C	P	22104	215700	224000	225040	250040	10/220	226000	211.244
Actual Stack Gas Flow Rate	Acf	acim	52184	5262	524900	55040	5924	194220	330900	311,246
Conversion Factor	E5	acts	5364	5265	5415	5584	5834	5257	2012	
Conversion Factor	гэ	SCC/IIIIII	00	00	00	00	00	00	00	AVC
Dry std Stack gas flow rate	Ostd	dsefm	161.6	152 383	159 503	159 673	160 150	90 660	157 430	148 786
Dry std Stack gas flow rate	Ostd	dscf/hr	9.696	9,142.9	9.575.6	9,580 393	9.608 997	5,439 616	9,445 784	170,/00
Conversion Factor	F4	sec/hr	3600	3600	3600	3600	3600	3600	3600	
conversion ractor	Ostd	dscf/min	5500	2300	2300	5500	5500	5500	5500	1
Isokinetic percent	I	%				l		İ	İ	1
sample nozzle cross section	An	ft2				l		l	l	İ
length of sample test	theta	minutes								
					1	l		İ	İ	l l
Mass of part: combined	Mn	mg								
Mass of part: probe wash	Мр	mg								
Mass of part: filter	Mf	mg								
										AVG
Unit Totals (tons per year)	PM10		29	13	12	12	12	14	12	15
Unit Totals (tons per year)	SO2		506	968	333	374	428	441	420	496
Unit Totals (tons per year)	NOx		286	274	244	294	297	306	292	285
Facility Totals (tons per year)	PM10		213	218	184	157	131	131	127	166
Facility Totals (tons per year)	TSP		295	300	270	227	156	156	149	222
Facility Totals (tons per year)	SO2		793	1247	684	780	713	802	793	830
Facility Totals (tons per year)	NOx	I	764	778	771	1073	841	859	861	850

Facility Specific Operating and Emissions Data (Boise While Wallula - Continued)

		Facility:	Boise	Boise	Boise	Boise	Boise	Boise	Boise	Boise
			2005	2006	2007	2008	2009	2010	2011	2005-
		Run ID or Unit ID:	LK	LK	LK	LK-oil	LK	LK	LK	LK avg
Pressure (stack absolute)	Ps	in HG	29.92	29.92	29.92	29.92	29.92	29.92	29.92	
Pressure (barometric)	Phar	in HG								
Pressure (stack)	Pa	in H20								
Conversion Eactor	F1	inH20/inHg								
Conversion Factor		initizo/initg				-				
Total water condensed	Vwet	sof H2)								
Total water condensed	f	sof H20/am								
Total motor condensed	Van	set fi20/gin								
Total water condensed	vw	stu 115				-				
International In	V:	~								
Impinger 1	VI	g				-				
Impinger 2	VII	8								
Impinger 5	VIII	g				-				
Ideal and constant	D	$\frac{g}{(mUC)(fr2)/(D,lhmol)}$				-				
Torren arastura aka	K	(IIIIIG)(IIG)/(R-IDIIIOI)	460	460	460	460	460	460	460	
Temperature abs	Tabs	R (439.07)	400 509	528	400 528	400 529	400 529	400 529	528	
Conversion Feater	T SLU	R (327.07)	328	328	328	328	328	328	328	
Decouver (atd)	F2 Dated	g/10 (should be	20.02	20.02	20.02	20.02	20.02	20.02	20.02	
Pressure (std)	PSIU MIL20	III HG	29.92	29.92	29.92	29.92	29.92	29.92	29.92	
wiw of water	MH20	10/1011101e	10.01	10.015	10.015	10.015	10.015	10.015	10.015	
Sample Volumo	Vmet	deef				ł	1	ł	ł	+
Sample Volume from motor	Vm	def				1			1	1
Dry gos mtr oal faster	VIII	no unite				ł	1	ł	ł	+
Motor arif as press	1	in U20								
Dry and mater to the	un Tm	ш П20 Е								
Dry gas meter temp	1111	1 [.]				<u> </u>	1		1	+
Stack Cas Moistuna Enastian	Bwe	vol%/100	0 327	0 350	0.341	0.351	0 330	0 350	0 326	0 3/31
Stack Gas Moisture Fraction	SPare	(cot yop proce)/Bc	0.327	0.339	0.541	0.331	0.339	0.339	0.320	0.5451
same as PWS (because	SDWS	(sat vap press)/1 s								
same as B w 3 (because										
Stack Cas Mole weight dry	Md	lb/lbmole	30.60	30 576	30 332	30 576	30 552	30 720	30.648	AVC
Owneen cone in stock	aona	9//100	0.051	0.053	0.0733	0.053	0.055	0.041	0.040	01
CO2 conc in stack	conc	%/100	0.140	0.147	0.1267	0.033	0.145	0.159	0.047	0.1
N2 cone in stack	conc	%/100	0.14)	0.147	0.1207	0.147	0.145	0.157	0.155	+
N2 cone in stack	COII	76/100	0.0	0.0	0.0	0.0	0.0	0.0	0.0	-
Stack Cas Mole weight wet	Me	lb/lbmole								-
Stack Gas Mole weight wet	1413	10/101101C								
						-				
Stack Area	٨	ft/2	28.27	28 2743	28 2743	28 2743	28 2743	28 2743	28 2743	
Diameter of stack	n D	inches	72	72	72	72	72	72	72	
Conversion Eactor	E3	in/ft	12	12	12	12	12	12	12	
Conversion Factor	15	ni/it	12	12	12	12	12	12	12	-
Stack Cas Valocity	Ve	ft/sec	23.55	27 4808	20 1596	10 0121	18 7803	18 7803	16 6228	
Pitot tube constant	Kn	test Ve	45.55	27.4000	20.1370	10.0121	10.7005	10.7005	10.0220	
Pitot tube calibration coef	Cn	test vs.								
Stack Gas Velocity Head	dP	in H20								
Stack Gas Velocity Head	dP^ 5	III 1120				-				AVC
Stack gas temp	Ts	F	164	162	152	161	159	160	161	160
flow check	10	-	39.96	46 620	34 200	33 780	31 860	31.860	28 200	100
How check			57,70	40,020	54,200	55,760	51,000	51,000	20,200	
Stack Ht	Ht	Ft				1	1	1	1	1
State III			1			t	1	1	1	1
Actual Stack Gas Flow Rate	Acf	acfm	39960	46620	34200	33780	31860	31860	28200	35,211
June State Sub Lion Adde	*	acfs	666	777	570	563	531	531	470	
Converstion Factor	F5	sec/min	60	60	60	60	60	60	60	
										AVG
Dry std Stack gas flow rate	Ostd	dscfm	22.75	25,367	19,444	18.640	17,963	17,392	16.160	19.675
Dry std Stack gas flow rate	Qstd	dscf/hr	1,365,	1,522,0	1,166,6	1,118,402	1,077,809	1,043,512	969,622	1
Conversion Factor	F4	sec/hr	3600	3600	3600	3600	3600	3600	3600	
	Qstd	dscf/min								
Isokinetic percent	I	%								
sample nozzle cross section	An	ft2								
length of sample test	theta	minutes								
· · ·										_
Mass of part: combined	Mn	mg								
Mass of part: probe wash	Мр	mg								
Mass of part: filter	Mf	mg								
					used	oil for part of 20	007-2008			AVG
Unit Totals (tons per year)	PM10		50	74	45	49	41	42	37	48
Unit Totals (tons per year)	SO2		2	10	0	1	2	3	0	3
Unit Totals (tons per year)	NOx		86	82	42	52	48	51	54	59
Facility Totals (tons per year)	PM10		213	218	184	157	131	131	127	166
Facility Totals (tons per year)	TSP		295	300	270	227	156	156	149	222
Facility Totals (tons per year)	SO2		793	1247	684	780	713	802	793	830
Facility Totals (tons per year)	NOx		764	778	771	1073	841	859	861	850

Facility Specific Operating and Emissions Data (Boise While Wallula - Continued)

		Facility:	Cosmo	Cosmo	Cosmo	avo
		r uenity:	2005	2006	2011	(not used)
		Due ID on Unit ID:	DD(1.2)	DD(1.2)	DD(1.2)	2011 data used
Development (stards - basket)	D-	Kun ID of Unit ID:	KB(1-5)	RD(1-3)	RD(1-3)	2011 data used
Pressure (stack absolute)	PS	In HG	29.92	29.92	29.92	
Pressure (barometric)	Pbar	in HG				
Pressure (stack)	Pa	in H20				
Conversion Factor	F1	inH20/inHg				
Total water condensed	Vwst	scf H2)				
	f	scf H20/gm				
Total water condensed	Vw	std ft3				
total impinger wt						
Impinger 1	Vi	σ				
Impinger 2	Vii	<u>в</u>				
Impinger 2	Viii	9 <u>5</u>				
Implinger 5	VIII	8				
Impinger 4	V IV	g				
Ideal gas constant	R	(inHG)(ft3)/(R-lbmol)				
Temperature abs	Tabs	R (459.67)	460	460	460	
Temp std	Tstd	R (527.67)	528	528	528	
Conversion Factor	F2	g/lb (should be				
Pressure (std)	Pstd	in HG	29.92	29.92	29.92	
MW of water	MH20	lb/lbmole	18.015	18.015	18.015	
Sample Volume	Vmet	dscf			1	1
Sample Volume from motor	Vm	def			1	
Dry ges mits sol for the	VIII	uci no unite			1	+
Dry gas mir cai factor	1	ino unins				
Meter orifice pressure	dH	in H20				
Dry gas meter temp	Tm	F			1	
					I	
Stack Gas Moisture Fraction	Bws	vol%/100	0.204	0.19	0.2	
Saturation Moisture	SBws	(sat vap press)/Ps				
same as BWS (because						
,						
Stack Gas Mole weight dry	Md	lb/lbmole	30.576	30.372	30.312	AVG
Ovygen conc in stack	conc	%/100	0.053	0.07	0.075	0.0660
CO2 come in stack	conc	%/100 %/100	0.147	0.12	0.125	0.0000
N2 cone in stack	conc	%/100	0.147	0.13	0.125	
IN2 CORC IN STACK	con	%/100	0.8	0.8	0.8	
Stack Gas Mole weight wet	Ms	lb/lbmole				
Stack Area	Α	ft2	50.2655	50.2655	50.2655	
Diameter of stack	D	inches	96	96	96	
Conversion Factor	F3	in/ft	12	12	12	
Stack Cas Velocity	Ve	ft/sec	48 4826	51 7453	58 5889	
Ditat tube constant	Va	test Va	40,4020	51.7455	50.5007	
Pitot tube constant	Кр	test vs:				
Pitot tube calibration coef	Ср					
Stack Gas Velocity Head	dP	in H20				
Stack Gas Velocity Head	dP^.5					AVG
Stack gas temp	Ts	F	140	141	140	140
flow check			146,220	156,060	176,700	
Stack Ht	Ht	Ft	140	140	140	140
				-		
Actual Stack Cas Flow Rate	Acf	acfm	146220	156060	176700	159 660
Ternar Stack Gus Flow Rate	.101	acfs	2437	2601	2045	10,000
Conversion Easter	F5	sec/min	60 60	60	274J 60	1
Conversion Factor	r3	500/111111	00	00	00	110
D (16) 1 7 (0.0	1.0	102	111 074	10:007	AVG
Dry std Stack gas flow rate	Qstd	dscfm	102,424	111,054	124,397	112,625
Dry std Stack gas flow rate	Qstd	dscf/hr	6,145,451	6,663,269	7,463,808	
Conversion Factor	F4	sec/hr	3600	3600	3600	
	Qstd	dscf/min				
Isokinetic percent	Ι	%				
sample nozzle cross section	An	ft2				
length of sample test	theta	minutes			1	
0r. tost					1	1
Mass of parts combined	Mr	ma			1	
Mass of parts make west	Mr	mg			1	+
Mass of part: probe wash	Mp	mg				
Mass of part: filter	MI	mg	-			
					Į	AVG
Unit Totals (tons per year)	PM10		220	109	195	175
Unit Totals (tons per year)	SO2		211	187	169	189
Unit Totals (tons per year)	NOx		308	128	348	261
Facility Totals (tons per year)	PM10		313	145	272	243
Facility Totals (tons per year)	TSP		314	146	273	244
Facility Totals (tons per year)	SO2		286	274	214	258
Facility Totals (tons per year)	NOx		341	149	367	286

Facility Specific Operating and Emissions Data (Cosmo)

			2001	2002	2005	2004	2005	2000	2007	2000
		Run ID or Unit ID:	clk	clk	clk	clk	clk	clk	clk	clk
Pressure (stack absolute)	Ps	in HG	29.92	29.92	29.92	29.92	29.92	29.92	29.92	29.92
Pressure (barometric)	Pbar	in HG								
Pressure (stack)	Pa	in H20								
Conversion Factor	F1	inH20/inHg								
Total water condensed	Vwst	scf H2)								
	f	scf H20/gm								
Total water condensed	Vw	std ft3								
total impinger wt										
Impinger 1	Vi	g								
Impinger 2	Vii	g								
Impinger 3	Viii	g								
Impinger 4	Viv	g								
Ideal gas constant	R	(inHG)(ft3)/(R-lbmol)								
Temperature abs	Tabs	R (459.67)	460	460	460	460	460			
Temp std	Tstd	R (527.67)	528	528	528	528	528			
Conversion Factor	F2	g/lb (should be								
Pressure (std)	Pstd	in HG	29.92	29.92	29.92	29.92	29.92			
MW of water	MH20	lb/lbmole	18.01	18.015	18.015	18.015	18.015			
Sample Volume	Vmst	dscf								
Sample Volume from meter	Vm	dcf								
Dry gas mtr cal factor	Y	no units								
Meter orifice pressure	dH	in H20								
Dry gas meter temp	Tm	F								
Stack Gas Moisture Fraction	Bws	vol%/100								
Saturation Moisture	SBws	(sat vap press)/Ps								
same as BWS (because										
Stack Gas Mole weight dry	Md	lb/lbmole								
Oxygen conc in stack	conc	%/100								
CO2 conc in stack	conc	%/100								
N2 conc in stack	con	%/100								
Stack Gas Mole weight wet	Ms	lb/lbmole								
Stack Area	Α	ft2								
Diameter of stack	D	inches								
Conversion Factor	F3	in/ft				1		1		

Facility Specific Operating and Emissions Data (Graymont)
 Facility:
 Gray Graymo
 Graymont
 Graymont Graymont
 Graymont
 Graymont
 Graymont
 Graymont
 Graymont
 Graymont
 Graymont
 Graymont
 Graymont
 Graymont
 Graymont
 Graymont
 Graymont
 Graymont
 Graymont
 Graymont
 Graymont
 Graymont
 Graymont
 Graymont
 Graymont
 Graymont
 Graymont
 Graymont
 Graymont
 Graymont
 Graymont
 Graymont
 Graymont
 Graymont
 Graymont
 Graymont
 Graymont
 Graymont
 Graymont
 Graymont
 Graymont
 Graymont
 Graymont
 Graymont
 Graymont
 Graymont
 Graymont
 Graymont
 Graymont
 Graymont
 Graymont
 Graymont
 Graymont
 Graymont
 Graymont
 Graymont
 Graymont
 Graymont
 Graymont
 Graymont
 Graymont
 Graymont
 Graymont
 Graymont
 Graymont
 Graymont
 Graymont
 Graymont
 Graymont
 Graymont
 Graymont
 Graymont
 Graymont
 Graymont
 Graymont
 Graymont
 Graymont

Stack Gas Velocity

Actual Stack Gas Flow Rate

Dry std Stack gas flow rate

Dry std Stack gas flow rate

Mass of part: combined

Isokinetic percent

Pitot tube constant

Pitot tube calibration coef Cp Stack Gas Velocity Head dP

Stack Gas Velocity Head dP^.5

Converstion Factor

Conversion Factor

sample nozzle cross section An length of sample test theta

Mass of part: probe wash Mp Mass of part: filter Mf

Unit Totals (tons per year) PM10

Unit Totals (tons per year)SO2Unit Totals (tons per year)NOx

Facility Totals (tons per year) PM10

Facility Totals (tons per year) TSP

Facility Totals (tons per year) SO2

Facility Totals (tons per year) NOx

Stack gas temp

Stack Ht Ht

Vs

Кр

Ts

Acf

F5

Qstd

Qstd

Qstd

Mn

F4

Ι

ft/sec

test Vs:

in H20

F

Ft

acfm

sec/min

dscfm

dscf/hr

sec/hr

% ft2

mg

mg mg

dscf/min

minutes

acfs

151

109

263

154

109

284

148

101 283

139

37 268

83

10

58

150

na

10

58

81

9

57

148

na

9 57

82

10

57

148

na

10

57

146

Facility	opeer	ne operating	g anu i	211115510	ns Data	Ulay	mont -	Contin	ucu)	
		Facility:	Graymont	Graymont	Graymont	Graymont	gm avg	compliance	compliance	
			2009	2010	2011	2012		Nov/2009	Aug/2011	Nov/20
		Run ID or Unit ID:	clk	clk	clk	clk		avg	avg	run 1
Pressure (stack absolute)	Ps	in HG	29.92	29.92	29.92	29.92	avg of	29.80	30.2	29.60
Pressure (barometric)	Pbar	in HG								29.6
Pressure (stack)	Pa	in H20								0
Conversion Factor	F1	inH20/inHg								13.6
Conversion Factor	11	min20/ming								15.0
Total water condensed	Vwet	cof U2)						1 87	-	16
Total water condensed	e wst	sef II2)						1.07	ł	0.04715
	I	sci H20/gm						1 00 1	-	0.04715
Total water condensed	Vw	std ft3						1.884		1.633
total impinger wt								34.6		34.6
Impinger 1	Vi	g								
Impinger 2	Vii	g								
Impinger 3	Viii	g								
Impinger 4	Viv	g								
Ideal gas constant	R	(inHG)(ft3)/(R-						21.85		21.85
Temperature abs	Tabs	R (459 67)						460		460
Temp std	Tetd	P (527 67)						528		528
Conversion Factor	E2	g/lb (should be						452.50	-	452 50
Diversion Factor	P-t-l	g/ID (should be						455.59		433.39
Pressure (std)	Pstd	in HG						29.92		29.92
MW of water	MH20	lb/lbmole						18.015		18.015
									L	L
Sample Volume	Vmst	dscf					62	67.038	57.121	62.891
Sample Volume from meter	Vm	dcf								
Dry gas mtr cal factor	Y	no units		1						
Meter orifice pressure	dH	in H20								
Dry gas meter temp	Tm	F		l			1			
gas meter temp	1			1	1		1		t	
Stack Gas Moistura Fraction	Bwe	vol%/100					0.0271	0 0273	0.0268	0.0253
Stack Gas Moisture Fraction	SDurs	(act you press)/Da					0.0271	0.0275	0.0208	0.0233
Saturation Moisture	SDWS	(sat vap press)/rs								
same as BWS (because										
Stack Gas Mole weight dry	Md	lb/lbmole						29.33	29.55	29.15
Oxygen conc in stack	conc	%/100					0.181	0.187	0.174	0.196
CO2 conc in stack	conc	%/100								0.022
N2 conc in stack	con	%/100								0.782
Stack Gas Mole weight wet	Ms	lb/lbmole						29.02	29.24	28.86
Studie Gus Hote Weight wet	1110	10/10/11/10						22102		20100
Stools Anoo		812							ł	ł
Stack Alea	A D	itt2								
Diameter of stack	D	Inches								10
Conversion Factor	F3	in/ft						12	12	12
Stack Gas Velocity	Vs	ft/sec						1.45		1.39
Pitot tube constant	Кр	test Vs:						85.49		85.49
Pitot tube calibration coef	Ср							0.84		0.84
Stack Gas Velocity Head	dP	in H20						0.0005		0.0005
Stack Gas Velocity Head	dP^.5							0.022		0.022
Stack gas temp	Ts	F					217	183.9	250.5	187.1
Stack gas temp	15	1					217	105.7	230.3	107.1
									ł	ł
Cr1 TT.	114	T4							ł	├ ───┤
Stack Ht	Ηt	гі							ł	<u>↓</u>
			-				00.000	0057		<u> </u>
Actual Stack Gas Flow Rate	Acf	acfm					82690	88331	77049	0
		acfs								
Converstion Factor	F5	sec/min						60		60
Dry std Stack gas flow rate	Qstd	dscfm		1			63224	70191	56257	0
Dry std Stack gas flow rate	Qstd	dscf/hr						0		0
Conversion Factor	F4	sec/hr						3600		3600
Contension Factor	Ostd	dscf/min						0	ł	0
Isokinatic parcent	I	%						96.23		95.08
sample nozzla gross sociar	An	ff2					1	0.43	<u> </u>	0.0094
sample nozzle cross section	thata	niz minutos					ł	120	<u> </u>	120
length of sample test	tneta	minutes						120	 	120
									 	ļ
Mass of part: combined	Mn	mg							Ļ	
Mass of part: probe wash	Мр	mg								ļ
Mass of part: filter	Mf	mg						23.68	<u> </u>	23.68
							AVG			
Unit Totals (tons per year)	PM10		77	78	21	21	63			
Unit Totals (tons per year)	SO2		9	9	9	5	9			
Unit Totals (tons per year)	NOx		54	54	54	58	56			
Facility Totals (tons per year)	PM10		141	142	85	101	131			
Facility Totals (tons per year)	TSP		pa	. 12 pa	na	n9			<u> </u>	
Facility Totals (tons per year)	502		0	0	0	5	0		ł	<u> </u>
Facility Totals (tons per year)	NO-		7	54	7	<u>ې</u>	7		ł	<u> </u>
racinity rotais (tons per year)	NUX		54	54	54	38	- 00		1	1

Facility Specific Operating and Emissions Data (Graymont - Continued)

		Avg flow	•	•	Date	• Modification or Rebuild	Additional Modified/	Additional Modification/
Facility/Equip Type	Unit ID	rate (acfm):	Date Constructed	Control Details	modified or rebuilt	details	Rebuild Dates	Rebuild Details
GP Camas (Recovery	N	00.040	1057	2 chamber, 3 field ESP + venturi & Teller	1000 1000	new 2-chamber, 3-fld ESP + AirPol cross flow packed bed SCRUBBER + wet heat	2005/2006	Secondary air incineration of
Furnace)	No. 3	80,940	1957	scrubbers	1990-1992 1981-1984,	2 chamber, 4 field ESP +	2005/2006	HVLC Secondary air
GP Camas (Recovery Furnace)	No. 4	125,556	1975	ESP	(ESP rebuilt in 1998)	Teller SCRUBBER + wet heat rcvy	2005/2006	incineration of HVLC
KapStone (Recovery Furnace)	RF18	283,640	1965	ESP	(a)	To be permtly shut down (a)	na	na
KapStone (Recovery Furnace)	RF19	348,746	1975	ESP	(a)	Steam modifications. More efficient dry bottom ESP (a)	na	na
KapStone (Recovery Furnace)	RF22	291,343	1992	ESP	na	na	na	na
PTPC (Recovery Furnace)	RF	325,118	1968	ESP	1968-1976	na	na	na
WestRock (Recovery Furnace)	No. 4	344,256	1973	ESP	na	na	na	na
WestRock (Recovery					1965, '73	2nd ESP inst ('65), scrbr ('73), rblt ('81); 1st ESP rblt		permtly shut
Furnace)	No. 3	301,000	1961	1st ESP	1981-85	('85)	1998	down
Weyerhauser (Recovery Furnace)	No. 10	547.908	1975	RF No. 10 w/ESP replaced DCE 3,4,5 inst 1948, '52-'56)	1995	Kraft modernization project: Upgrade to hi-conc BL firing and added 3rd ESP chamber	1978	Sulphite mill installed 1931 discontinued. Kraft RF10 continues
Boise White Wallula (Recovery Furnace)	No. 2	86.066	1962	ESP	1995	tri-level air equip (PSD-95- 04) is now stand alone romt	na	na
Boise White Wallula (Recovery Furnace)	No. 3	311 246	1978-80	FSP	1995	tri-level air equip (PSD-95- (4) is now stand alone romt	1996	3rd ESP cell added to allow maintenance on primary cells during operation
Cosmo (Recovery Furnace)	(1,2 & 3)	159,660	1978-80 1957 (1&2); '66 (#3)	(1&2 mltclones + 3 abs twrs; 3: mltclones +cyclone+3 vent scrubbers) 1,2,3: combined thru vent scbr	2003	MACT II site specific: Control PM in hogged fuel dryer instead of RFs as surragte for HAPS	na	na
GP Camas (Lime Kiln)	No.4	10,332	1977-79	Ducon x-section variable throat vent scbr. New "state of the art" lime kiln (No.4) replaced 3 old lime kilns from 1955-57.	na	na	na	na
KapStone (Lime Kiln)	LK3	21,643	1970	Ducon vent scr, lime mud oxidation	na	na	na	na
KapStone (Lime Kiln)	LK4	20,160	1955	AirPol HydroKenetic vent scr, lime mud oxidation	????	Scrubber modified	na	na
KapStone (Lime Kiln)	LK5	19,740	1982	ESP: H2O2 added to shower water on mud filters	na	na	na	na
PTPC (Lime Kiln)	LK	27.470	1975	Venturi scrubber	na	na	na	na
WestRock (Lime Kiln)	No.1	38,580	1960	Venturi scrubber	na	na	na	na
WestRock (Lime Kiln)	No 2	11 940	1973	Venturi scrubber	na	na	na	na
Weyerhauser (Lime	110.2	52.055	1005	ESP	na	na	na	na
Boise White Wallula	#4	35 211	1980	Scribber	na 1998	na baghouse added to hot end of LK to reduce dust	na 2012	na Modified scrubber
Graymont (Lime Kiln)	raymont (Lime Kiln) Kiln #1 82.690 found) Bachouse							
Notes: (a) "Within 7 days after the permanently retired." Source	modified RF19 ee: June 2, 2011	9 is placed in Ecology lett	operation, a letter i er and NOC 8429.	informing Ecology of the date Based on condition of modify	the modified unit v ing RF19 Date: TE	was placed in operation and the da BD.	te by which RF1	8 must be

Washington State Pulp Mills and Graymont Facility Information

Appendix C. WSU Report

APPENDIX C Regional Haze RACT Analysis: Modeling Protocol and Results

Section C.0 Summary	1
Section C.1 Introduction	2
Section C.2 Technical Note: Choosing an Efficient Period to Model for Regional Haze	2
Section C.3 Models and Methods	. 11
C.3.1 Brief Model Description	. 11
C.3.2 Calculation of Deciview in CMAQ	. 12
Section C.4 Description of Modeling Scenarios	. 13
C.4.1 Baseline Emissions (1st Modeling Scenario)	. 13
C.4.2 RACT Limited Emissions (2 nd Modeling Scenario)	. 15
Section C.5 Regional Haze Modeling Results and Discussion	. 17
C.5.1 PM2.5 Model Performance Evaluation Results	. 17
C.5.2 Visibility Modeling Results	. 22
Section C.6 Conclusions	. 35
Section C.7 References	. 36

Section C.0 Summary

This report discusses impacts on regional visibility associated with the implementation of Reasonably Available Control Technology (RACT) for emissions of SO₂ and PM_{2.5} from pulp and paper facilities in Washington State. Facilities considered include: Boise White Paper, LLC, (Boise White Wallula), WestRock CP, LLC (WestRock), Cosmo Specialty Fibers Inc., (Cosmo), Port Townsend Paper Corporation (PTPC), Weyerhaeuser Longview Liquid Packaging (Weyerhauser), Georgia Pacific Consumer Products (Camas) LLC (GP Camas), and Longview Fibre Paper and Packaging, Inc. dba KapStone Kraft Paper Corporation (KapStone). Washington State University's AIRPACT4 modeling framework which is based on WRF-SMOKE-CMAQ is employed for modeling visibility improvements attributable to RACT. Based on visibility data from the Interagency Monitoring of Protected Visual Environments (IMPROVE) sites in the Pacific Northwest (PNW), May 2009 – April 2010 was identified as a suitable period for which baseline and RACT emissions were modeled. While model performance criteria for particulate sulfate were met at all 20 IMPROVE sites in the PNW, they were satisfied at 16 and 7 of these

sites for PM_{2.5} and organic carbon, respectively. The mean fractional bias calculated over all IMPROVE sites was -31% for PM_{2.5} and was largest for organic carbon (-70%). Results from this modeling study show that RACT implementation in the pulp and paper industry does little to improve visibility in Class I areas. Only Alpine Lakes Wilderness and Glacier Peak Wilderness have modeled 8th highest delta deciviews greater than 0.1 dv. The 8th highest deciview change was less than 0.05 dv at all of the IMPROVE sites. The largest deciview change at a non- IMPROVE site in Washington was 0.6 dv at Mesa.

Section C.1 Introduction

Visibility impairment due to fine particles which scatter and absorb light is termed as regional haze. Regional haze is formed due to multitude of sources both anthropogenic and natural- such as motor vehicles, industrial activities, power plants, wildfires, windblown dust etc. and are located across a large geographical area. Under the Clean Air Act, EPA is required to protect the visibility in mandatory class I areas from impairment due to anthropogenic air pollution. States are required to submit progress towards regional haze rule as a part of the State Implementation Plan (SIP). Washington Department of Ecology contracted with Washington State University (WSU) for the modeling portion of this RACT analysis. In the sections below we describe the rational for selecting the modeling period; a brief description of the model and its various components, and a description of Baseline emission (BASE) and Reasonably Available Control Technology limited emission (RACT) cases. An analysis of model evaluation for PM_{2.5} and visibility and potential changes in visibility due to the emission changes are then presented.

Section C.2 Technical Note: Choosing an Efficient Period to Model for Regional Haze

By Clint Bowman

The analysis described in this note seeks to find a data set suitable for the air quality modeling necessary to support the next phase of the Regional Haze SIP. It seeks to find a period that is both representative of the prevailing visibility in the Class I areas and is efficient in resource

requirements. Because the metrics that determine an acceptable SIP consider only the best and worst quintiles of the distribution of visibility, this analysis seeks to find 365 day periods that have greater than average numbers of observations in those quintiles. It uses IMPROVE monitoring data from 20 western sites for the years 2007 through 2012.

Figure C.1 shows the location of 23 IMPROVE sites in the Northwest. They are color coded to show sites that have a strong seasonal variability (15 yellow markers)--specifically they have a higher proportion of poor visibility days in the winter and a lower proportion of poor visibility days in the summer compared with the incidence of good visibility days. The other set (5 red markers) seem to have a long six year period that peaks during the winter of 2009-2010 and a weak to non-existent seasonal component. The three sites with grey symbols were not used in this analysis.

Figure C.1: IMPROVE Sites in the Pacific Northwest

Observations are classified in the extreme quintiles by computing the 20th and 80th percentile extinction using the entire six years of observations at each site. Figure C.2, C.3, and C.4 are

time series of aerosol extinction coded so that observations falling in the middle three quintiles are plotted as zero, the worst visibilities are plotted as ones, and the best are plotted as minus one. The red line running through each timeseries is a running sum beginning with January 1, 2007. Time periods when there was a preponderance of poor visibility days show clearly as a positive slope. Conversely, periods of better visibility are shown by a negative slope.

Figure C.2 groups together sites that have a six month period of poor visibility beginning in 2009 followed by six months of good visibility. These sites also show a strong seasonal component. Figure C.3 is a similar time series for the sites that have a lesser seasonal component. The red lines show the boundaries of the period defined by the first group. Figure C.4 shows the three sites that can be best characterized as having a three year long period of worsening visibility followed by three years of improving visibility. Puget Sound (PUSO1) and White Pass (WHPA1) could be reasonably correlated but the site in Glacier National Park doesn't seem to fit.

Figure C.2: Time series of IMPROVE sites that exhibit strong seasonality.

Figure C.4: Time series of IMPROVE sites with multi-year trends.

One additional goal is to find a one year period that will be computationally efficient. The ideal would be to find a twelve month period that minimizes the number of average observations by

having only observations in the two extreme quintiles. To find periods that maximize the population of observations in the extreme quintiles, a running 365 day (122 of every third day observations) count of observations falling in the central three quintiles (between the 20th and 80th percentiles) was computed for each site and plotted in Figure C.5, C.6 and C.7 for the three groups of sites. The points are plotted at the 365th day. Most of the sites seem to reach a minimum in April 2010 which implies that the period from May 1, 2009 through April 30, 2010 may be the most efficient consecutive 12 month period.

Figure C.5: Time series of running sum of middle quintile occurrences and observed species contributing to visibility degradation.

The lower portion of each of these figures shows the time series of extinction using the daily maximum observation of all 20 sites produced by the six species known to contribute to visibility degradation: ammonium sulfate, ammonium nitrate, elemental carbon, coarse mass, organic matter (OMC), and sea salt. The wintertime increase in ammonium nitrate (the red series) is prominent in nearly every panel. The wildfires of 2007 and 2012 show prominently in the OMC time series. The two vertical black lines, drawn at May 1, 2009 and April 30, 2010, delineate the proposed twelve month period that can be used for air quality modeling to support the Regional Haze SIP analysis.

Site	Best	Neutral	Worst
PASA1	22	70	28
OLYM1	25	66	29
NOCA1	29	64	27
MORA1	27	65	28
MONT1	15	90	15
GAMO1	18	72	30
CRLA1	22	76	22
MOHO1	28	66	26
SNPA1	27	61	32
SULA1	16	85	19
THSI1	21	63	36
CORI1	17	72	31
CRMO1	18	88	14
HECA1	13	94	13
KALM1	23	73	24
SAWT1	8	86	26
STAR1	18	71	31
PUSO1	23	68	29
WHPA1	23	59	38
GLAC1	20	80	20

Table C.1: Number of occurrences of the best and worst quintile visibilities. Sites with fewer than 74 in the Neutral column are better than the long-term average when analyzing for the

extreme quintiles

Figure C.6: Time series of cumulative days with visibilities in the middle quintiles

Figure C.7: Time series of cumulative days with visibilities in the middle quintiles.

Section C.3 Models and Methods

For this study, WSU's air quality forecasting system AIRPACT-4 (<u>http://lar.wsu.edu/airpact</u>) was used in a retrospective mode. Different components of the model and data used for each are briefly described in the sections below.

C.3.1 Brief Model Description

Spatial Domain: The modeling study uses the 4-km AIRPACT-4 domain of 258 cells east-west by 285 cells north-south, composed of cells of 4 km by 4 km, as shown in Figure C.8.

Figure C.8: The 4-km domain used in AIRPACT-4 is 258 cells east-west and 285 cells northsouth, with the grid-cells being 4 km by 4 km. (from Vaughan et al., manuscript under review)

Time Duration: The period for this study was May 2009 – April 2010. The rationale for selecting this time period is given in Section C.2. AIRPACT-4 model reruns were performed for both the base case and RACT case.

Meteorology: The meteorological data for the study were acquired from the UW Pacific Northwest Environmental Forecasts and Observations mesoscale forecasting system, which runs nested domains of 36, 12, 4 and 1.33-km grid spacing. For the current work, archived 4-km WRF forecasts were reprocessed using MCIP v 3.6. It is important to recognize that the meteorological model output represents forecast conditions and is not based on any re-analysis incorporating weather observations. Performance of meteorological model is continuously evaluated and evaluation results are available at the website: http://www.atmos.washington.edu/mm5rt/

Chemical Transport Modeling: The Community Multi-scale Air Quality Model, (CMAQ v4.7.1) was used on a 4-km grid with SAPRC99 chemistry and AE5 aerosol treatment. **Boundary conditions:** The chemical boundary conditions were monthly mean chemical concentrations at the boundaries obtained by downscaling hourly output from MOZART-4 simulations (Emmons *et al.*, 2010).

Initial conditions: For the first day of the modeling period (May 1, 2009), initial conditions were based on idealized initial conditions. Subsequent daily runs in both the base case and RACT case used prior day results as initial conditions.

Emissions: Emissions for the model were taken from 2007 inventories provided by state agencies via NW-AIRQUEST. Emissions were processed using the SMOKE modeling system for point, area, mobile and biogenic sources. Emissions from forest fires were not included during any of the model runs. Two different emission scenarios were used which are described in Section C.4

C.3.2 Calculation of Deciview in CMAQ

CMAQ uses two different approaches for calculation of extinction coefficients: the Mie theory method and the reconstructed extinction method. The reconstructed extinction coefficient calculation method is similar to the IMPROVE method (Byun & Ching, 1999), and uses the following formula:

$$\beta_{ext} = 3 * f(RH) * \{ [(NH_4)_2SO_4] + [(NH_4NO_3] \} + 4 * [OM] + 10 * [EC] + 1 * [Soil] + 0.6 * [Coarse Mass] + \beta_{Ray}$$
(C1)

Where $[SO_4^{2-}]$, $[NO_3^{-}]$, $[NH_4^+]$, [OM], [EC] and [Soil] are the concentrations ($\mu g/m^{-3}$) of sulfate, nitrate, ammonia, organic mass, elemental carbon and, soil respectively in PM_{2.5}. *f*(RH) is a dimensionless relative humidity adjustment factor. [CM] is the concentration of coarse particulate matter, which is not used because of the large uncertainties in the coarse particulate matter emission inventory. β_{Ray} is the Rayleigh extinction coefficient. β_{ext} is converted to deciviews using the following relationship:

$$DCV = 10 * \ln(\beta_{ext}/10) \tag{C2}$$

Under many conditions, a change of 1 deciview is perceptible by humans. However, a similar decrease in particle loading during a hazy condition will have less impact on visibility compared to a clean day. Natural visibility in Western US is estimated to be 178 - 186 km which corresponds to approximate deciview value of 8 dv (Malm, 1999) (Figure C.9)

Extinction (Mm ¹)	10	20	30	40	50	70 100	200	300	400	500	700 1000
Deciviews (dv)	 	7	11	14	 16 	 19 23 	30	34	37	39	42 46
Visual Range (km)	400	200	130	100	80	60 40	20	13	10	8	6 4

Figure C.9: Comparison of extinction, deciviews and visual range (Source: Malm, 1999)

Section C.4 Description of Modeling Scenarios

The pre-RACT baseline and the post-RACT model runs are summarized in Sections C.4.1 and C.4.2:

C.4.1 Baseline Emissions (1st Modeling Scenario)

The 2007 emission inventory was used for this scenario except for an adjustment to the Cosmo facility. Because Cosmo did not operate from 2007 -2010, emission inventories indicate that there were no emissions from this facility for those years. After an evaluation of emission inventories for the years 2005, 2006, and 2011, the 2011 data were used to represent Cosmo's emissions in the base case. However, an error in processing the emission files resulted in no base case emissions for the Cosmo facility. This was addressed, without re-running the base case, as described below.

For Cosmo the RACT case involves both SO_2 and $PM_{2.5}$ reductions. The net reduction in emissions is calculated between base case and RACT case as shown in Table C.2. Weighing of PM emissions by particulate species fraction for the SCC codes associated with Cosmo and their respective extinction coefficients don't result in significant changes to this percentage.

Case	PM10	NOx	PM _{2.5}	SO ₂			
BASE emissions	272	367.13	272	214			
RACT emissions	272	367.13	174.5	50.07			
Net reduction of	=1- $(PM_{10} + NOx)$	+ PM _{2.5} + SO ₂) _{RAC}	$T/(PM_{10} + NO)$	$x + PM_{2.5} +$			
emissions	SO ₂) _{BASE}						
	=1- (864.33/1125.)	(13)*100 = 23.2%					

Table C.2: Cosmo emissions for the Base and RACT cases.

The BASE case with Cosmo emissions included (i.e. true baseline) is then approximated by linearly upscaling the RACT case deciviews attributable to Cosmo, by the net emissions change:

BASE with Cosmo impacts = (RACT- BASE without Cosmo) / (1-0.232).

This increase in deciviews is applied to an array of grid cells around the Cosmo facility (all cells lying between row 165-225 and column 15-60) (Figure C.10). The deciview results after adjustment for these grid cells are then incorporated into the overall BASE case results and this adjusted BASE case is used for calculating the 8th highest delta deciviews.

Figure C.10: Area in the domain where base case deciview is increased is shown in the red box C.4.2 RACT Limited Emissions (2nd Modeling Scenario)

For this scenario, Ecology applied RACT limit adjustments to the baseline scenario described in Section C.4.1. As detailed in Chapter 4, measured or calculated emissions are averages of compliance tests or are calculated from averages of multi-year emission inventory emissions and other stack parameter information. Estimated emission reductions are the difference between average annual emissions and the average annual emissions multiplied by the ratio of emission at the proposed RACT limit to measured or calculated emission. Ecology's approach is based on a survey of average emission reductions using average emission inventory emissions from multiple years, so that the average individual unit percent reduction is assumed to be applicable to approximately any given year that the facility operated around this timeframe.

Based on Table 4.2.1, Figures 4.2.1, 4.2.2, and Section 4.4.1, the following maximum potential emission reductions using the lowest demonstrated limits in Washington State were used in this scenario:

- For recovery furnaces, the lowest SO₂ emission limit demonstrated in Washington State is 10 parts per million (ppm),
- For recovery furnaces, the lowest PM emission limit demonstrated in Washington State is 0.027 gr/dscf @ 8% O2.

Recovery furnace NOx emission reductions and lime kiln emission reductions for SO₂, PM, and NOx were less than these two emission reductions, and therefore, were set aside for potential future modeling scenarios depending on the results of the second scenario. Based on the results of the second scenario presented in the next section (Section C.5), Ecology determined that additional modeling scenarios were not needed.

The following percentage reductions from the baseline emissions were used:

Facility	Total Facility for SO ₂ a	Emissions (tpy) and PM _{2.5}	Percent Emission Reductions below Individual Recovery Eurnace Unit SO2	Percent Emission Reductions below Individual Recovery Eurnace
Facility	SO2 BASE (RACT)	PM _{2.5} BASE (RACT)	Baseline using Potential RACT limit(a)(b)	Unit PM Baseline using Potential RACT limit (a)(b)
Boise White Wallula	684 (157)	179 (179)	(94% / 80%)	0%
WestRock	693 (313)	105 (105)	(95%)	0%
Cosmo	214 (50)	272 (174.5)	(97%)	(50%)
PTPC	123 (106)	261 (261)	(64%)	0%
Weyerhaeuser	-	-	0%	0%
GP Camas	-	-	0%	0%
KapStone	275 (223)	109 (109)	(67%/64%/88%)	0%

Table C.3: Facility Emissions and Post-RACT Adjustments

(a) Total facility emission reductions below baseline emissions are based on each facility's recovery furnace emission reductions from each unit specific baseline emissions. For facilities with multiple recovery furnaces, the respective recovery furnace identifiers are as follows: Boise White Wallula (Recovery Furnace No. 2/Recovery Furnace No. 3); Kapstone (Recovery Furnace 18/ Recovery Furnace 19/ Recovery Furnace 22)

(b) These emission reductions are based on using a potential 10 parts per million (ppm) SO2 RACT limited emission and a potential 0.027 gr/dsef @ 8% O2 PM RACT limited emission.

These emissions, including the Cosmo facility, were included in the RACT simulation case.

Section C.5 Regional Haze Modeling Results and Discussion

In the sections below, we describe the results from model performance evaluation for different $PM_{2.5}$ species. This is followed by presentation of the effects of the RACT implementation on visibility in wilderness areas in Washington, Oregon, Idaho and Montana.

C.5.1 PM_{2.5} Model Performance Evaluation Results

The mean contribution of different species to total $PM_{2.5}$ mass at all the sites for different seasons for years 2009-10 is shown in Figure C.11. OC and $(NH_4)_2SO_4$ are the dominate species contributing to total $PM_{2.5}$ mass for summer and fall months. The contribution of NH_4NO_3 becomes significant during winter months. While there are obvious differences in total $PM_{2.5}$ mass concentration between the observations and the model results, the relative contributions of different species is approximately the same.

Figure C.11: Observed and modeled seasonal mean of $PM_{2.5}$ for the 2009-10 modeling period. The Mean Fractional Bias (MFB) and Mean Fractional Error (MFE) (Table C.4) were used for model performance evaluation; these measures have been suggested to be the preferred model performance measures for $PM_{2.5}$ evaluation purposes (Boylan and Russell, (2009).

Table C.4: Metric used for model performance evaluation

Metric	Equation
Mean Fractional Bias (%) (-200% to +200%)	$FB = \frac{1}{N} \sum_{i=1}^{N} \frac{(C_m - C_o)}{(C_m + C_o)/2}$

Mean Fractional Error (%) (0% to +200%) $FE = \frac{1}{N} \sum_{i=1}^{N} \frac{|C_m - C_o|}{(C_m + C_o)/2}$

MFB and MFE were calculated over all IMPROVE sites for each of the model species shown in the Table C.5. Elemental carbon and sulfate have low bias compared to other species and MFB is close to the median MFB from various model studies reported in Simon et. al. (2012) (Figure C.12). Organic carbon and ammonium aerosols each have a large negative bias and a much lower than the median MFB reported in Simon et al. (2012). However, Simon et. al. report larger negative bias for nitrate and ammonium in the western US compared to the eastern US. In general, the model performance summarized here is similar to results from other air quality model evaluation studies.

PM Species	MFB (%)	MFE
Total PM _{2.5}	-31	72
Organic Carbon (OC)	-70	103
Elemental Carbon (EC)	-12	75
Sulfate (SO4 ²⁻)	9	52
Nitrate (NO ₃ ⁻)	-42	115
Ammonium (NH4 ⁺)	-37	67

Table C.5: MFB and MFE for all PM2.5 species (calculated over all IMPROVE sites)

Figure C.12: PM MFB/MFE from various modeling studies reported in Simon et. al. (2012)

The MFB and MFE at each individual IMPROVE site in the modeling domain is shown in the Table C.6.

Table C.6: PM_{2.5} Mean Fractional Bias (MFB) and Mean Fractional Error (MFE) at each IMPROVE site in the model domain

Site			PM	I _{2.5}	PM C	C	PM	SO₄	# Obs
No	Site Name	Site ID	MFB	MFE	MFB	MFE	MFB	MFE	
110.			(%)	(%)	(%)	(%)	(%)	(%)	Ν
1	Craters of								
1.	the Moon	160230101	-48	83	-86	104	0	43	115
2.	Sawtooth	160370002	-83	88	-164	164	3	45	102
3.	Glacier	300299001	-13	54	-90	93	-11	48	115
4.	Gates of the Mountains	300499000	-24	85	-69	106	11	54	104
5.	Monture	300779000	-75	88	-125	126	-8	51	113
6.	Sula Peak	300819000	41	71	-48	95	1	42	108
7.	Mt Hood	410050010	29	65	38	101	34	59	115
8.	Kalmiopsis	410330010	-67	72	-118	119	20	58	119
9.	Crater Lake	410358001	-54	72	-84	103	11	50	117
10.	Three Sisters	410390070	-17	73	-54	92	26	57	115
11.	Starkey	410610010	-66	82	-107	120	-8	44	122
12.	Hells Canyon	410630002	-60	78	-109	111	-5	38	115
13.	Olympic	530090020	-15	55	-20	83	13	46	120
14.	Snoqualmie Pass	530370004	-31	75	-71	99	5	57	121
15.	Wishram CORI	530390011	-43	60	-76	81	-14	47	122
16.	White Pass	530410007	-18	75	-36	106	34	65	118
17.	Pasayten	530470012	-38	84	-73	115	20	59	113
18.	Mt Rainier	530530014	-35	55	-38	78	13	56	117
19.	North Cascades	530730022	-53	76	-73	115	3	56	120
20.	Seattle Beacon Hill	530330080	38	53	11	48	39	58	119

The MFB and MFE for total $PM_{2.5}$, organics carbon and sulfate are shown in Figure C.13, where the MFB and MFE are compared to performance goals and criteria. These graphs show that the model has reasonably good performance with 16 out of 20 IMPROVE sites within the performance criteria¹ for PM_{2.5}, 7 out of 20 sites within the performance criteria for OC and all sites within the criteria for sulfate.

The MFB and MFE show strong seasonal behavior for all PM_{2.5} species (Figure C.14). In general, the MFB (calculated for all sites) shows an underprediction during summer and slight overprediction during winter. Also the interquartile range is largest during the winter months,

¹ Sites outside MFB are:Sawtooth, Monture, Kalmiopsis, Starkey

whereas summer months exhibit a relatively small interquartile range, with most MFB values being negative, indicating that model performance is a strong function of the site location.

Summary of the model performance evaluation results:

- 1. Organic carbon and ammonium sulfate dominate PM_{2.5} mass for most part of the year. Ammonium nitrate also becomes important during winter months.
- 2. The model performance evaluation against MFB and MFE goals and criteria indicates that model demonstrates reasonable performance for PM_{2.5}, EC, SO₄²⁻ and NH₄⁺.
- 3. The model overpredicts PM_{2.5} during winter and underpredicts during other times of year. This seasonality is observed for all PM species.
- 4. The negative bias in OC during late summer and early fall may be due to the omission of wildfire emissions from CMAQ during June-September.

Figure C.13: MFB and MFE in PM2.5, OC and sulfate aerosol mass prediction for all IMPROVE sites for the study period

Figure C.14: Box-whisker plots showing monthly variation in MFB and MFE in PM2.5 aerosol mass prediction at all IMPROVE sites

C.5.2 Visibility Modeling Results

C.5.2.1 Visibility Model Evaluation

Modeled visibility data were extracted and the reconstructed deciviews and extinction coefficients were compared to these visibility parameters based on the IMPROVE data. Time series of modeled and observed deviciews, shown in Figure C.15-C.16, exhibit a high degree of variability over time and by site. At some times and sites, the modeled deciview is much higher than observed, while at other times and sites, the reverse is true.

22

Figure C.15: Time series for comparison of modeled and observed deciviews at North Cascades (top), and Pasayten (bottom)

Figure C.17 shows the QQ plot of observed and modeled deciviews for all the IMPROVE sites. The model underpredicts deciviews by 2-5 deciviews when deciviews between 5-20 are observed. The predictions are closer to observations at higher deciviews. The differences between model and observations for visibility are, in part, related to errors in meteorological model results for relative humidity (see discussion in C.5.2.4).

Figure C.17: QQ plot of observed and modeled deciviews at all IMPROVE sites

C5.2.2 Deciview differences between RACT and BASE case model runs

Table C.7 shows the deciview differences for the worst and 8th worst visibility days between the RACT and BASE case model runs for IMPROVE sites in Washington. The differences between the RACT and BASE cases are very small relative to BASE case deciviews in the range from 3 to 25. Thus, effectively there is no observable difference between BASE and RACT visibility at IMPROVE sites in Washington.

	Site name	Observed dy	Mode	Ada	
	Site name	Observed dv	BASE	RACT	Δυν
	North Cascades	25.552	5.460	5.458	0.002
	MtRainier	18.795	6.832	6.827	0.004
	Pasayten	24.482	3.182	3.181	0.001
1ª Uighest	White Pass	29.939	5.518	5.516	0.002
1 Highest	Wishram CORI	28.791	25.488	25.486	0.002
	Snoqualmie Pass	20.421	5.709	5.707	0.002
	Seattle Beacon	25.437	18.946	18.946	0.000
	Olympic	19.903	10.866	10.866	0.000
	North Cascades	15.958	4.695	4.693	0.002
1 st Highest 8 th Highest	MtRainier	16.827	11.787	11.779	0.008
	Pasayten	12.450	2.177	2.176	0.001
8th Highest	White Pass	13.417	7.311	7.308	0.003
o Ingliest	Wishram CORI	22.946	6.921	6.918	0.003
	Snoqualmie Pass	16.960	5.336	5.336	0.000
	Seattle Beacon	22.564	14.369	14.369	0.000
	Olympic	15.038	5.770	5.769	0.000

Table C.7: Deciview difference for 1s	^t highest and 8 th	highest observ	ed deciview	for sites ir
	Washington			

Since no meaningful difference was observed between the RACT and BASE case visibility at the IMPROVE sites during the days of 1^{st} and 8^{th} highest deciviews, we also show the 1^{st} and 8^{th} highest deciview differences between RACT and BASE case (Table C.8). While these results show that the improvement in visibility due to RACT emissions reduction does not necessarily occur during the worst visibility days, even the largest differences are quite small. The highest Δdv was 0.287 at White Pass in Washington, followed by 0.155 at Snoqualmie Pass.

In Table C.9, we also show highest deciview differences between the RACT and BASE cases for Non-IMPROVE sites (AIRNOW sites). Only those sites where the maximum Δdv was greater than 0.10 were tabulated. At these sites, larger visibility improvements are seen compared to IMPROVE sites, with the maximum Δdv equal to 0.61 at Mesa in Washington. However, for these maximum differences, the change between the RACT and BASE cases is still quite small.

IMPROVE Sites in WA & OR		Δdv (BASE case – RACT case)		
Site ID	Site Name	1 st highest	8 th highest	
530410007	White Pass (WA)	0.2869	0.0173	
530370004	Snoqualmie Pass (WA)	0.1553	0.049	
530470012	Pasayten (WA)	0.0803	0.0157	
530530014	Mt Rainier (WA)	0.062	0.0112	
530330080	Seattle Beacon (WA)	0.0601	0.0167	
530390011	Wishram CORI (WA)	0.037	0.0129	
410358001	Crater Lake (OR)	0.0294	0.0038	
530730022	North Cascades (WA)	0.0183	0.0136	
530090020	Olympic (WA)	0.0113	0.0023	
410330010	Kalmiopsis (OR)	0.0181	0.0015	
410390070	Three Sisters (OR)	0.0247	0.0057	
410610010	Starkey (OR)	0.0418	0.0168	
410630002	Hells Canyon (OR)	0.0123	0.0045	

Table C.8: 1st Highest and 8th highest deciview differences at IMPROVE sites in WA and OR (Δdv may not correspond to worst visibility days)

Table C.9: 1st Highest and 8th highest deciview differences at selected Non IMPROVE sites in WA and OR (∆dv may not correspond to worst visibility days)

Non-IMI	PROVE Sites in WA & OR	Adv (BASE case – RACT case)		
Site ID	Site Name	1 st highest	8 th highest	
530210002	Mesa-Pepoit Way	0.61	0.09	
410591003	Hermiston - Municipal Airport	0.48	0.20	
530272002	Aberdeen-Division St	0.42	0.26	
410590121	Pendleton - McKay Creek	0.39	0.15	
530750005	Lacrosse-Hill St	0.32	0.06	
530710005	Walla Walla-12th St	0.31	0.07	
530010003	Ritzville-Alder St	0.27	0.07	
530750006	Rosalia-Josephine St	0.27	0.04	
530332004	Kent-James & Central	0.24	0.06	
530330023	Enumelaw Mud Mt (SO)	0.19	0.02	
530330017	North Bend Way (SO)	0.17	0.05	
530330039	Seattle-Queen Anne Hill	0.17	0.04	
530630001	Cheney-Turnbull	0.15	0.05	
530270008	Oakville-Chehalis Tribe	0.15	0.10	
530130002	Dayton-W Main	0.15	0.05	
530330024	Lake Forest Park-Town Center	0.14	0.04	
530530012	Mt Rainier- Jackson Visitor Ctr	0.13	0.01	
530330037	Bellevue-Bellevue Way	0.13	0.05	

Non-IMPROVE Sites in WA & OR		Δdv (BASE case – RACT case)		
Site ID	Site Name	1 st highest	8 th highest	
530670013	Lacey-College St	0.12	0.06	
530490002	Raymond Commercial St.	0.12	0.05	
530530031	Tacoma-Alexander Ave	0.12	0.06	
530450007	Shelton-W Franklin	0.11	0.07	
410170122	Bend - Road Department	0.11	0.01	
530251002	Moses Lake-Balsam St	0.11	0.06	
530639999	Airway Heights-West 12th	0.10	0.04	

C.5.2.3 Impact on Visibility in National Parks and Wilderness Areas

The modeled visibility data for the BASE and RACT cases were extracted and the 8th highest deciview difference was calculated for grid cells where at least half of the area of the cell was within any Class I wilderness area or national park. The maximum 8th highest Δ dv occurring within each Class I area is shown in Table C.10. Modeled Δ dv are small with improvements greater than 0.1 dv occurring at only two locations – Alpine Lake Wilderness, and Glacier Peak Wilderness as shown in the table below. Thus, improvements in these areas due to potential RACT limits on emissions are very small.

Table C.10: 8 th highest delta deciview over modeled period (98	th percentile delta deciview)
Tuble e.ro. o ingliebt defai deerview over modeled period (se	percentile della deellien,

S. No.	Class I / Wilderness areas in WA/OR/ID	Row # in model domain	Column # in model domain	Δdcv Visibility Impacts due to Potential RACT limit
1.	Alpine Lakes Wilderness	200	83	0.127
2.	Columbia River Gorge NP	144	82	0.029
3.	Crater Lake NP	76	64	0.017
4.	Craters of the Moon NP	94	232	0.011
5.	Diamond Peak Wilderness	90	64	0.018
6.	Eagle Cap Wilderness	136	159	0.030
7.	Gearhart Mountain Wilderness	61	89	0.007
8.	Glacier Peak Wilderness	208	85	0.117
9.	Goat Rocks Wilderness	168	78	0.038
10.	Hells Canyon Wilderness	150	168	0.033
11.	Kalmiopsis Wilderness	54	28	0.006
12.	Mount Adams Wilderness	161	77	0.030
13.	Mount Baker Wilderness	228	69	0.057
14.	Mount Hood Wilderness	140	72	0.022
S. No.	Class I / Wilderness areas in WA/OR/ID	Row # in model domain	Column # in model domain	Δdcv Visibility Impacts due to Potential RACT limit
--------	---	-----------------------------	--------------------------------	--
15.	Mount Jefferson Wilderness	117	71	0.031
16.	Mount Rainier NP	179	72	0.037
17.	Mount Washington Wilderness	111	70	0.041
18.	Mountail Lakes Wilderness	58	64	0.009
19.	North Cascades NP	223	83	0.080
20.	Olympic National Park	198	35	0.023
21.	Pasayten Wilderness	228	93	0.045
22.	Sawtooth Wilderness	109	200	0.021
23.	Selway Bitterroot Wilderness	167	194	0.053
24.	Spokane Tribe Class I area	209	138	0.053
25.	Strawberry Mt Wilderness	110	132	0.015
26.	Three Sisters Wilderness	104	72	0.044
27.	Yellowstone National Park	124	277	0.016

8th Highest delta deciview

Figure C.18: Map of 8th highest deciview difference due to potential RACT emission limits. Class I boundaries are also shown

A map of the 8th highest deciview difference is shown in Figure C.18. Most of the change in 8th highest Δ dv occurs in southwestern Washington, potentially due to RACT emissions reduction from the Cosmo facility. Similar to this, Figure C.19- C.20 show the delta deciviews observed at various grid cells lying in National Parks or wilderness areas in PNW and Washington. As seen from Figure C.19 - C.20, a deciview change of more than 0.1 is observed only at a few grid cells all in Alpine Lake Wilderness and Glacier Peak Wilderness.

Figure C.19: 8th highest change in deciviews observed at grid cells in National Parks / Class I Wilderness Areas in PNW

Figure C.20: 8th highest change in deciviews observed at grid cells in National Parks / Class I Wilderness Areas in WA

C.5.2.4 Deciview dependence on Relative Humidity Factor [f(RH)] during summer and winter

Because the model did a reasonably good job in predicting individual $PM_{2.5}$ species and total $PM_{2.5}$ mass concentration, but had poor performance for visibility, we investigated model performance for humidity in terms of the relative humidity factor (*f*(RH) used to calculate deciviews. We used constant mean concentrations for summer and winter for each species (Table C.11) with a range of *f*(RH) values from 1 to 21. With the fixed concentrations and varying *f*(RH), deciviews were calculated according to equations C1 and C2. As shown in Figure C.21, the deciview depends strongly on *f*(RH); errors in predicting *f*(RH) will be exhibited as errors in predicting visibility. Since *f*(RH) varied significantly for some days at some locations (Figure C.22) during winter months and was consistently underpredicted at all sites during summer months, these differences dominate errors in predicted concentrations.

S. No.	Species	Case 1 (Summer)		Case 2 (Winter)		
		Modeled Concentration (μg /m³)	Observed Concentration (µg /m³)	Modeled Concentration (μg /m³)	Observed Concentration (µg/m³)	
1.	EC	0.15	0.2	0.2	0.15	
2.	NH4	0.2	0.35	0.2	0.15	
3.	SO4	0.6	1	0.5	0.2	
4.	NO3	0.05	0.15	0.4	0.2	
5.	OC	0.3	1.5	0.5	0.5	
6.	Others	0.6	2	1	0.1	
7.	Total	1.9	5.2	2.8	1.3	

Table C.11: Concentrations used for showing f(RH) dependence of deciview

Figure C.21: Illustrating dependence of deciviews on f(RH) with fixed PM concentration

Figure C.22: Observed versus modeled RH factor at two locations in Washington

Section C.6 Conclusions

AIRPACT-4 model performance was evaluated for total $PM_{2.5}$ and PM species at all IMPROVE sites. Comparison of MFB and MFE against the MFB/MFE goals and criteria show that AIRPACT-4 does a good job, except for PM-OC, which also impacts total $PM_{2.5}$ prediction

performance. Based on the CMAQ modeling results presented in the previous sections, we can conclude that predicted improvements in visibility due to potential RACT limits at Washington Pulp and Paper facilities are negligible in national parks and the Class I wilderness areas . Modeled 8th highest Δdv are small with the improvement greater than 0.1dv occurring at only two locations – Alpine Lake Wilderness (0.127 Δdv) and Glacier Peak Wilderness (0.117 Δdv). Maximum modeled improvement doesn't occur on the days of worst visibility for any of the IMPROVE sites in Washington. At some Non-IMPROVE sites, the change in dv is relatively large compared to IMPROVE sites. The relative humidity factor, *f*(RH) plays significant role in the visibility determination and, poor model performance for f(RH) is inhibiting model performance for visibility.

Section C.7 References

Boylan, James W., and Armistead G. Russell. "PM and light extinction model performance metrics, goals, and criteria for three-dimensional air quality models." *Atmospheric environment* 40.26 (2006): 4946-4959.

Byun D. W. and Ching J.K.S. (editors). "Science Algorithms of the EPA Models-3 Community Multiscale Air Quality Modelling (CMAQ) System". Accessed from USEPA website: http://www.epa.gov/amad/CMAQ/CMAQdocumentation.html

Joseph. K. Vaughan, Serena H. Chung, Farren L. Herron-Thorpe, Emmons Louisa, Lamb Brian K., Zhang Rui, Jaffe Daniel A., Nicole L. Wigder, George H. Mount. "Assessing the Effect of Boundary Ozone Inflow for the Pacific Northwest Region using the AIRPACT-4 Air-Quality Forecast System" Manuscript under preparation (2015).

Simon, Heather, Kirk R. Baker, and Sharon Phillips. "Compilation and interpretation of photochemical model performance statistics published between 2006 and 2012." *Atmospheric Environment* 61 (2012): 124-139.

Emmons, L. K., Walters, S., Hess, P. G., Lamarque, J.-F., Pfister, G. G., Fillmore, D., Granier, C., Guenther, A., Kinnison, D., Laepple, T., Orlando, J., Tie, X., Tyndall, G., Wiedinmyer, C., Baughcum, S. L., and Kloster, S. Description and evaluation of the Model for Ozone and Related chemical Tracers, version 4 (MOZART-4), (2010) *Geosci. Model Dev.*, *3*, 43-67.

Malm, W. C. "Introduction to Visibility". (1999). Cooperative Institute for Research in the Atmosphere, Colorado State University.

Appendix D. Cost Estimates

Appendix D Cost Estimates

Cost estimates in Chapter 6 were based on references provided in Tables 37 and 38 of Chapter 6.

WESP	Capital Cost	Capital Cost	O&M Costs	O&M Costs	Annualized Costs	Annualized Costs
	Low range	High range	Low range	High range	Low range	High range
	\$/scfm	\$/scfm	\$/scfm	\$/scfm	\$/scfm	\$/scfm
Recovery						
Furnaces	\$20	\$40	\$5	\$40	\$9	\$47
PTPC	\$4,373,153	\$8,746,307	\$1,093,288	\$8,746,307	\$1,967,919	\$10,276,911
WestRock 4	\$4,329,617	\$8,659,235	\$1,082,404	\$8,659,235	\$1,948,328	\$10,174,601
Weyerhaeuser			4	•	4	
10	\$6,936,567	\$13,873,133	\$1,734,142	\$13,873,133	\$3,121,455	\$16,300,931
GP Camas 4	\$2,185,649	\$4,371,298	\$546,412	\$4,371,298	\$983,542	\$5,136,275
GP Camas 3	\$1,421,687	\$2,843,375	\$355,422	\$2,843,375	\$639,759	\$3,340,966
KapStone 18	\$4,298,397	\$8,596,794	\$1,074,599	\$8,596,794	\$1,934,279	\$10,101,233
KapStone 19	\$5,216,699	\$10,433,398	\$1,304,175	\$10,433,398	\$2,347,514	\$12,259,242
KapStone 22	\$3,973,999	\$7,947,997	\$993,500	\$7,947,997	\$1,788,299	\$9,338,897
Boise White		40.040.400		40.040.400		
Wallula 2	\$1,159,055	\$2,318,109	\$289,764	\$2,318,109	\$521,575	\$2,723,779
Wallula 3	\$3 913 946	\$7 827 893	\$978 487	\$7 827 893	\$1 761 276	\$9 197 774
Cosmo 1 2 3	\$3 109 920	\$6 219 840	\$777.480	\$6 219 840	\$1 399 464	\$7 308 312
	\$1,159,055	\$2,213,840	\$789 764	\$7 318 109	\$1,555,404 \$521 575	\$7,508,512
May	\$1,139,033	\$2,318,109	\$ 203,704	\$2,518,109 ¢12 072 122	¢2 121 /55	\$2,723,773
IVIAX	\$0,930,307	\$13,873,133	Ş1,754,142	\$13,673,133	\$5,121,455	\$10,500,951
Lime Kilns	Capital Cost	Capital Cost	O&M Costs	O&M Costs	Annualized Costs	Annualized Costs
PTPC LK	\$471,936	\$943,873	\$117,984	\$943,873	\$212,371	\$1,109,051
WestRock 1	\$656 <i>,</i> 499	\$1,312,999	\$164,125	\$1,312,999	\$295,425	\$1,542,773
WestRock 2	\$209,332	\$418,664	\$52,333	\$418,664	\$94,199	\$491,930
Weyerhaeuser						
4	\$661,034	\$1,322,068	\$165,258	\$1,322,068	\$297,465	\$1,553,429
GP Camas 4	\$178,848	\$357,697	\$44,712	\$357,697	\$80,482	\$420,294
KapStone 3	\$376,020	\$752,040	\$94,005	\$752,040	\$169,209	\$883,646
KapStone 4	\$356,477	\$712,954	\$89,119	\$712,954	\$160,415	\$837,721
KapStone 5	\$271,984	\$543,969	\$67,996	\$543,969	\$122,393	\$639,163
Boise White						
Wallula	\$599 <i>,</i> 056	\$1,198,113	\$149,764	\$1,198,113	\$269,575	\$1,407,783
Graymont	\$1,299,635	\$2,599,270	\$324,909	\$2,599,270	\$584,836	\$3,054,143
Min	\$178,848	\$357,697	\$44,712	\$357,697	\$80,482	\$420,294
Max	\$1,299,635	\$2,599,270	\$324,909	\$2,599,270	\$584,836	\$3,054,143

Wet electrostatic precipitator estimates provided below: