

Up-to-date observations of water quality conditions in Puget Sound and coastal bays

Start here

Summary

Climate & streams

Info

Stephen Gonski

Stories

Diving & critters

Skip Albertson

Tyler Burks Jim Shedd

Dr. Christopher Krembs (Editor)

Personal stories

Combined factors

p. 3

Aerial photos

Meet Stephen Gonski, our ocean acidification expert.

Climate & Streams

p. 6

River flows have rapidly declined from May, but snow-fed river flows in particular have been highly variable toward the end of June. Precipitation levels are below normal with abundant sunshine. With projected drier and warmer conditions, will the remaining snowpack translate to low stream flows in September?

Marine water

Testing an infrared camera

p. 10

Juvenile fish are migrating out of the estuaries and meeting a complex thermal habitat. Will they hit optimal temperatures to grow? See the new infrared images.

Aerial photography

p. 14

A large Noctiluca bloom extends across South Central Basin and coccolithophores bloom in Hood Canal. macroalgae present on many beaches in South Sound, Central Sound, and Whidbey Basin and adrift in Port Madison, South Central Basin, and South Sound.

Editorial assistance provided by:

Suzan Pool, Dany Burgess, and Carol Maloy

Stories Summary

Climate & streams

Combined factors

Marine water

Aerial photos

Info

Meet our new Ocean Acidification Scientist

Stephen Gonski joined our marine team to develop and implement the ocean acidification (OA) component of our monitoring program. He has

worked extensively with biogeochemical sensors and studied OA in both estuarine and coastal ocean systems.

Stephen graduated from the University of Delaware with a BS in Environmental Chemistry and an MS in Oceanography.

Sensor vs. Scientist!

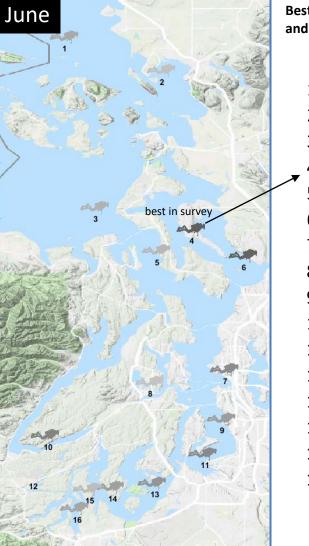
This sensor in Murderkill **Estuary near Delaware Bay** has run afoul. It takes a scientist with a clear mind and fresh ideas (contrary to this sensor's appearance) to tackle estuarine sensor deployments.

Fieldwork has taken him to the Hawai'ian Islands, Norway, Svalbard, and the Canadian Arctic, and now Puget Sound.

Diving & critters

Summary Stories

Climate & streams


Combined factors

s Marine water

Aerial photos

What was the visibility in the water for divers?

est and Worst horizontal visibility nd corresponding depth (ft)										
na corre <u>#</u>	spon <u>Bes</u>	-	<u>Worst</u>							
1	19	98	16	10						
2	13	23	2	7						
3	17	98	14	23						
_ 4	37	98	5	23						
5	16	98	8	7						
6	36	98	5	23						
7	26	59	2	2						
8	13	26	4	3						
9	22	89	6	7						
10	28	57	4	34						
11	27	98	3	5						
12	6	7	6	34						
13	24	98	14	3						
14	21	80	9	8						
15	15	94	11	3						
16	20	30	5	13						

Find depths with high/low visibility

- **Best visibility** was 37 feet, deep in Saratoga Passage (stations 4 and 6), in about same location as last month.
- **Poor visibility** occurred in Oakland Bay (near Shelton), but also in Bellingham Bay.
- We use transmissometer readings from our CTD package and convert them into horizontal visibility. The poster, Underwater Visibility Maps – a Tool for Scuba Divers, is available at: <u>Click here</u>

This is a new feature and we are soliciting feedback (<u>skip.albertson@ecy.wa.gov</u>).

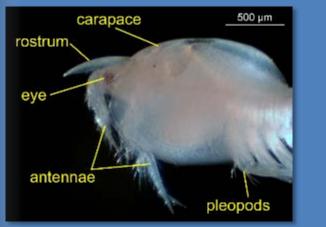
Summary Stories

Diving & critters

Climate & streams

Combined factors

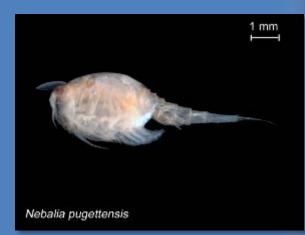
actors Marine water


Aerial photos

s Info

Critter of the Month – The "Unicorn Shrimp"

Dany Burgess & Angela Eagleston Marine Sediment Monitoring Team


Nebalia pugettensis

This critter has no official common name, but with the projection on its head, we think "Unicorn Shrimp" is fitting! The leptostracans aren't actually shrimp, but a primitive group of crustaceans with a unique set of qualities all their own.

Fun Leptostracan Facts

- Some species can live in extreme environments, like deep-sea hydrothermal vents.
- Breathe through their legs.
- *N. pugettensis* spend their days buried in the mud of Puget Sound, emerging for a swim at night to feed on particles of organic matter and detritus.

Learn more about leptostracans and other critters on Ecology's EcoConnect blog here

Stories Summary

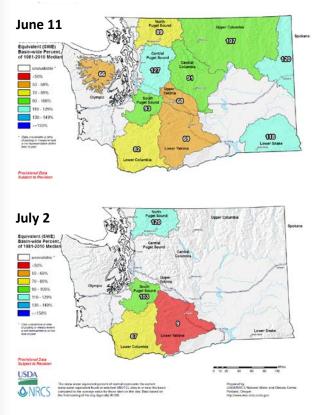
Diving & critters

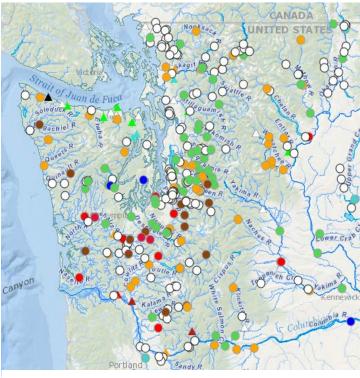
Climate & streams

Combined factors

Marine water

Aerial photos


Info

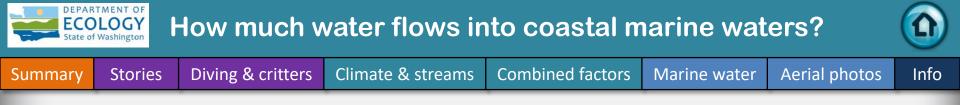

Tyler Burks, Jim Shedd

Near normal air temperatures and continued low precipitation during June have resulted in highly variable freshwater inputs to Puget Sound (map, center). Runoff from snowdominated rivers varied from below to near normal, dependent on remaining snowpack and melt conditions in June (map panel, left). Rain-dominated rivers are much below normal in many cases, with regional exceptions from recent precipitation.

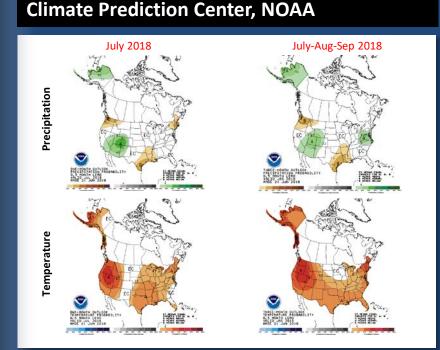
Snowpack Conditions

Current Streamflow Conditions as of 7/2/2018

Current conditions: CLICK HERE!

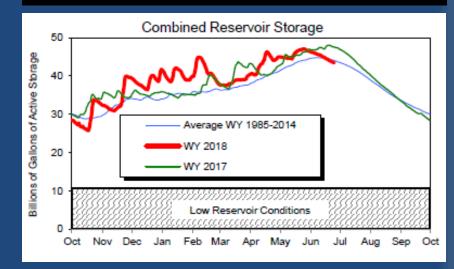

USGS Real Time Streamflow Values

- Much above normal (>90%)
- Above normal (76-90%)
- Normal (25-75%)
- Below normal (10-24%)
- Much below normal (5-10%)
- Far below normal (>5%)
- Lowest recorded
- Not Ranked \cap


Ecology Daily Streamflow

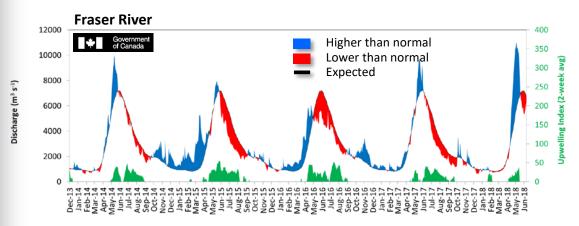
Daily Streamflow

- Highest recorded
- Much above normal (>90%)
- Above normal (76-90%)
- Normal (25-75%)
- Below normal (10-24%)
- Much below normal (<10%)
- Lowest recorded
- Not ranked



Climatologists predict drier and warmer conditions this summer. The current available snowpack is declining but about average for this time of year. Will these conditions translate to low stream flows in September? The reservoirs serving Seattle are near average, and that is good.

The maps on the top show higher probability of below normal precipitation in the NW. The maps on the bottom show a higher probability of higher temperatures in the west. <u>Click here</u>


Seattle Public Utilities Water System Synopsis

The combined reservoir storage of Chester Morse Lake, Masonry Pool, Masonry Pool, Lake Youngs, and South Fork Tolt Reservoir is near the long term average for this time of the year. WY = water year. <u>Click here</u>



Historically, peaks of coastal upwelling and the <u>freshet</u> are in sync. Will they be this year?

The Fraser River is the major driver of estuarine circulation and water exchange with the ocean. Fraser River flows have rapidly fallen and the snowpack in BC is below normal (Basin Snow Water Index)

Three-year running average of PDO, Upwelling, and NPGO indices

How do ocean boundary conditions affect the quality of water we exchange with the ocean? Past years' warm water is gone (PDO),

upwelling is neutral (Upwelling Index anomaly), and surface productivity along the coast is lower (NPGO).

Pacific Decadal Oscillation Index (**PDO, temperature**, <u>explanation</u>). Upwelling Index (anomalies) (**Upwelling, low** oxygen, <u>explanation</u>). North Pacific Gyre Oscillation Index (**NPGO, productivity**, <u>explanation</u>).

Stories Summary

Climate & streams

Combined factors

Aerial photos Marine water

Info

Climate and natural influences include weather, river flows, and the adjacent ocean conditions that affect our marine waters. This graphic provides context for interpreting Puget Sound marine conditions. All data are from public sources: weather from UW GRAYSKIES; river flows from USGS and Environment Canada; indices from NOAA, UW (PDO), and E. Di Lorenzo (NPGO).

Summary:

Air temperatures were above normal for May, but closer to normal in June.

Precipitation levels have been below normal in May and June.

Sunshine levels have been above normal (low cloud cover).

River flows are much lower in June than May, but highly variable during the past week.

Upwelling is normal, but lower than in May. ENSO is slightly positive, indicating the end of La Niña.

Anoma	lies			2	01	L 6							2	20	1	7						2	20	1	8				
Air Temperature	Month	6	7	8	9	10	11	12	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	4	5	6			
ſ⊢	Bellingham																											4.0	
	Everett																											2.0	
	SeaTac																											0.0	°C
	Olympia																											-2.0	
	Coast																											-4.0	
Precipitation		6	7	8	9	10	11	12	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	4	5	6			
~	Bellingham																											0.50	
Se mar	Everett																											0.25	
Gunning.	SeaTac																											0.00	
09099,9109090,0	Olympia																											-0.25	
Cloud Cover	Coast	c	-7	0	0	10	11	10	1	2	2		-	c	_	0	0	10	11	10	1	2	2		-	c		-0.50	
Cloud Cover	Bellingham	0	· '	ð	9	10	11	12	1	2	3	4	2	0	_	ŏ	9	10	11	12	T	2	3	4	<u>э</u>	0		2	
	Everett																											1	
	SeaTac		-							-									-									0	8 ^{ths}
	Olympia																											-1	Ŭ
	Coast																											-2	
River Flow		6	7	8	9	10	11	12	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	4	5	6	Factor		
Aug	Fraser																										2	100	
	Skagit																										1	50	
A CARLER OF A	Puyallup																										1	0	m ³ s
A PAA	Nisqually																										1	-50	
	Chehalis																										1	-100	
Ocean Influence		6	7	8	9	10	11	12	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	4	5	6			
	* Upwelling																												
	PDO																												
	NPGO																												
	ENSO																												

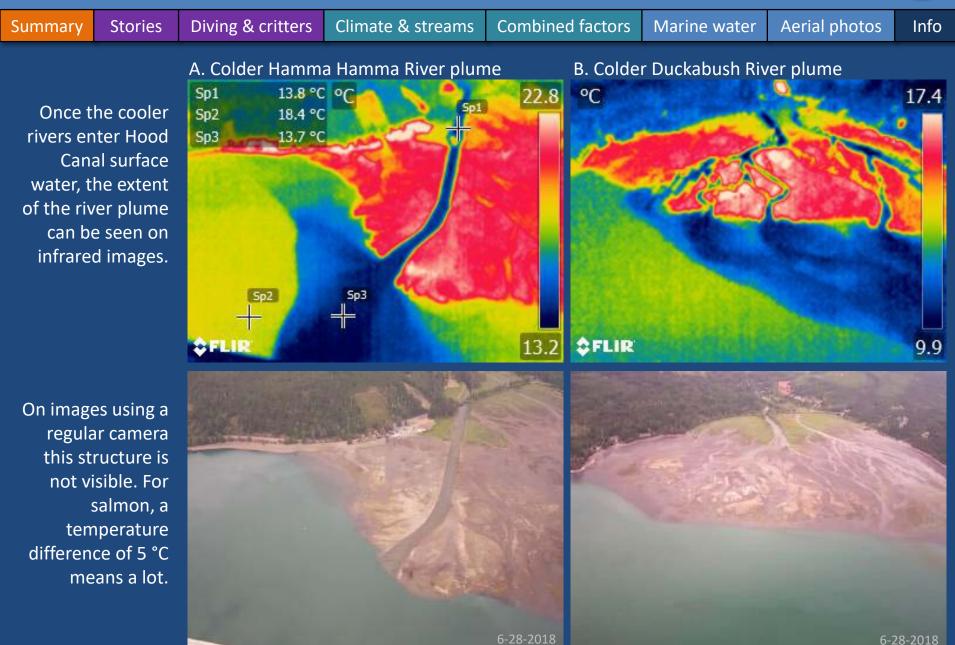
higher

expected

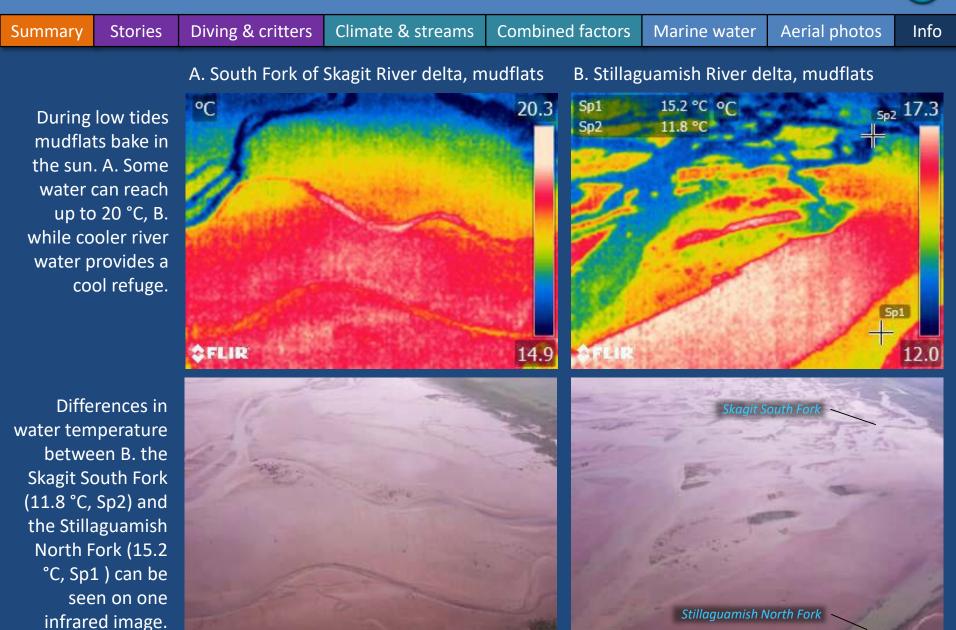
lower


No data

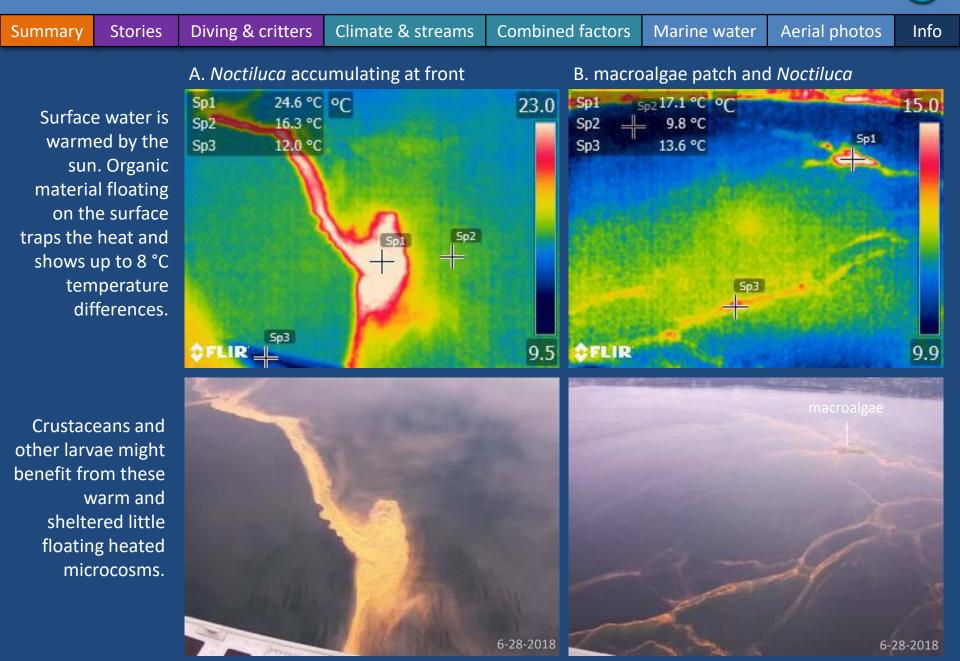
*Upwelling/downwelling Anomalies (PFEL)


PDO = Pacific Decadal Oscillation

NPGO = North Pacific Gyre Oscillation ENSO = El Niño Southern Oscillation


Did you know: River deltas can have complex temperatures

Did you know: The infrared camera shows what the eye can't see



Did you know: Water on mudflats can have different temperatures

6-28-2018

Did you know: Patches of drifting organic material are warmer

State o	f Washington	What are co	onditions	s at tl	he surface?			U
Summary	Stories	Diving & critters	Climate & st	reams	Marine water	Aerial photos	Info	
	pre pre	esent on many beacl	hes of South S	ound, C	n and a coccolithoph Central Sound, and W ral Basin, and South S	hidbey Basin. Ma	acroalgae drifting	at
Ma		ng in Quilcene Bay macroalgae	Front		<mark>g and Fronts:</mark> fronts visible in Dan	a Passage.	Start h	ere
X					<u>sh:</u> ional jellyfish patch na River. No jellyfish			
1			Plume		n <mark>ded sediment:</mark> nded sediments nea	arshore due to	very low tides.	
Dabob E	Bay with strong	coccolithophore bloom	Bloom	Orang Turqu	<mark>e blooms:</mark> se <i>Noctiluca</i> bloom i oise coccolithophor rown blooms in fing	e bloom in Hoo	d Canal.	ort

Red-brown blooms in finger inlets of South Sound and Port Townsend Bay.

Debris:

Debris

Noctiluca bloom surfacing along Normandy Park, numerous macroalgae adrift in Central and South Sound.

Combined factors

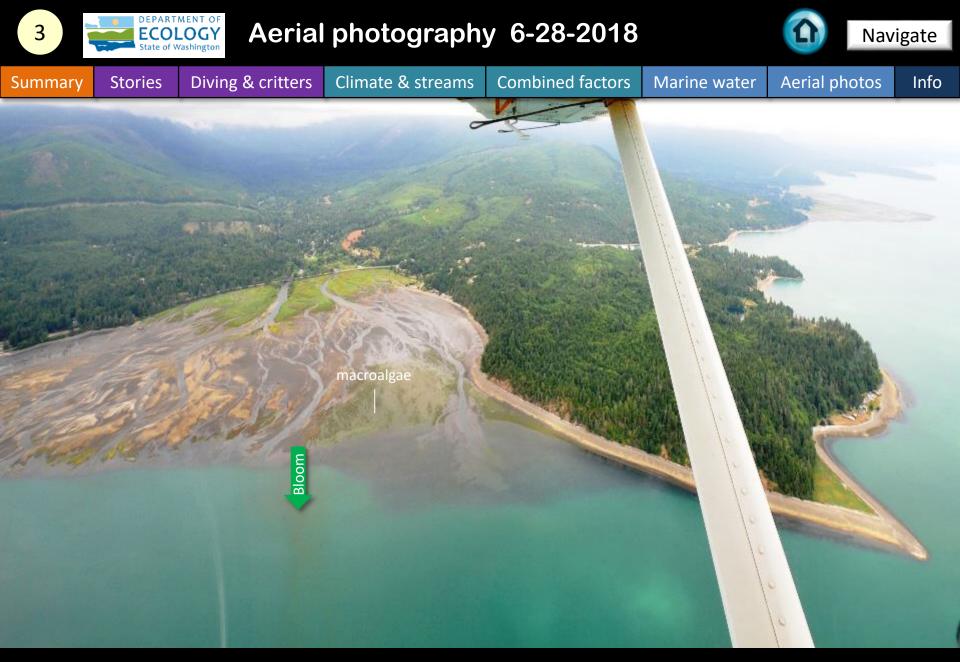
Info

Click on numbers San Juan Islands Padilla Bay 6 Strait of Juan de Fuca 5 3 Main Basin Hood Can 10 (14) 11 12 13) (18) (15) (16)

Aerial photography and navigation guide **Date: 6-28-2018**

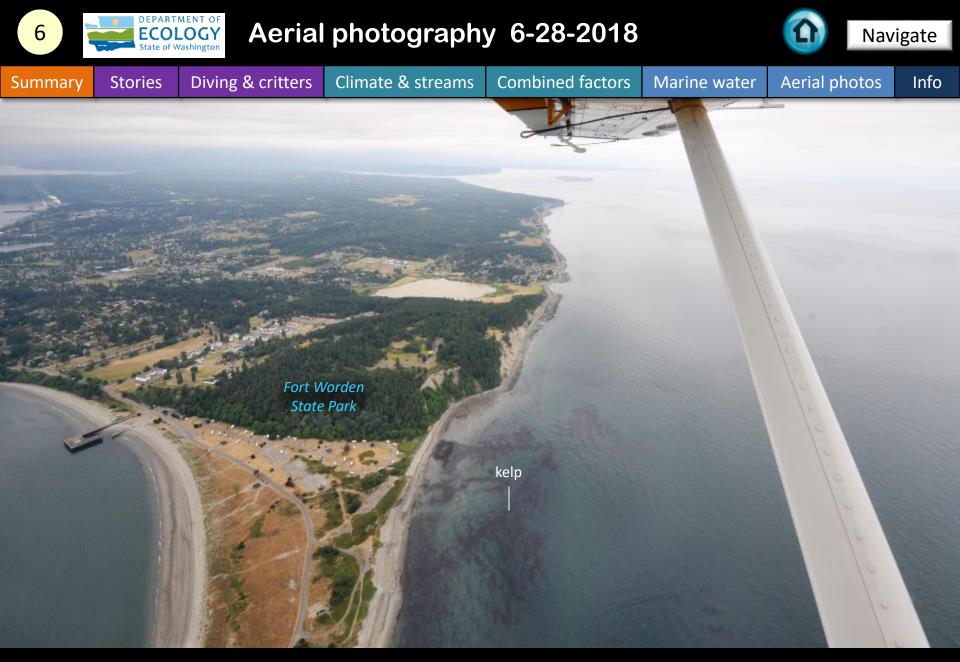
Tide data from June 28, 2018 (Seattle):								
	Height (ft)	High/Low						
12:13 AM	7.03	L						
04:47 AM	10.02	Н						
11:48 AM	-1.61	L						
7:27 PM	11.42	Н						

Flight Information:


Low ceiling low visibility. – - Flight routes

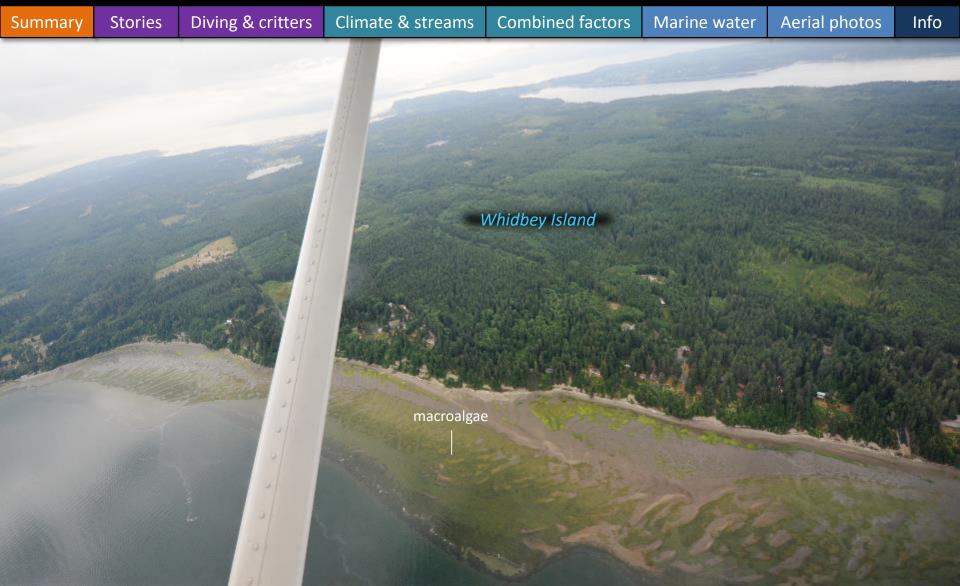
Skokomish River delta at very low tide exposing macroalgae. Location: Union (Hood Canal), 12:06 PM


Hamma Hamma River delta at low tide exposing macroalgae. Stephen taking infrared images of estuaries. Location: Eldon (Hood Canal), 12:13 PM


Duckabush River delta at very low tide exposing macroalgae. Turquoise coccolithophore bloom Location: Duckabush River (Hood Canal), 12:18 PM

Dosewallips River delta at very low tide exposing macroalgae and green water. Location: Dosewallips River (Hood Canal), 12:20 PM

Red-brown and warmer water (13.8 °C) with turquoise color meeting in Port Townsend Bay. Location: Off Indian Island (North Sound), 12:34 PM



Kelp beds north of coast, off Fort Worden State Park. Location: Fort Worden State Park (Admiralty Reach), 12:37 PM

Aerial photography 6-28-2018

Macroalgae growing in large mats on beaches north of Langley. Location: Saratoga Passage (Whidbey Basin), 12:56 PM

Macroalgae mats on beaches and drifting in Port Madison. Location: Port Madison (Central Sound), 1:11 PM

Large ribbons of Noctiluca accumulating at the surface and beaches. Location: Three Tree Point (Central Sound), 1:29 PM

Noctiluca accumulating at the surface and beaches. Location: Normandy Park (Central Sound), 1:46 PM

Ribbons of Noctiluca accumulating at beaches from Normandy Park to Des Moines. Location: Normandy Park and Des Moines (Central Sound), 1:29 PM

Large ribbons of Noctiluca accumulating at the surface. Location: Off Chautauqua, Vashon Island (Central Sound), 1:30 PM

Large ribbons of Noctiluca and macroalgae accumulating at the surface. Location: Poverty Bay (Central Sound), 1:34 PM

Front off Piner Point and sediment-rich water from the Puyallup River plume. Location: Maury Island (Central Sound), 1:36 PM

McNeil Island

Navigate

Info

macroalgae

Macroalgae growing in large mats on northern beaches of McNeil Island. Location: McNeil Island (South Sound), 1:46 PM

Macroalgae drifting in mats south of McNeil Island. Location: McNeil Island (South Sound), 1:16 PM

Red-brown bloom next to tidal front. Floating macroalgae mats. Location: Dana Passage (South Sound), 1:53 PM

Red-brown bloom. No jellyfish. Macroalgae on beaches. Location: Eld Inlet (South Sound), 1:57 PM

Red-brown bloom. Location: Eld Inlet (South Sound), 2:00 PM

Red-brown bloom. Location: Budd Inlet (South Sound), 2:00 PM

Summary

Diving & critters Clin

Climate & streams C

s Combined factors

tors Marine water

Aerial photos Info

We have published 74 editions!

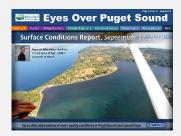
Stories

Find all previous Eyes Over Puget Sound editions at the end of this document.

Recommended Citation (*example from August 2017*): Washington State Department of Ecology. 2017. Eyes Over Puget Sound, Surface Conditions Report, August 28, 2017. Ecology Publication No. 17-03-072. <u>https://fortress.wa.gov/ecy/publications/documents/1703072.pdf</u>

Contact: Dr. Christopher Krembs, <u>ckre461@ecy.wa.gov</u> Marine Monitoring Unit Environmental Assessment Program WA Department of Ecology

You may subscribe or unsubscribe to the Eyes Over Puget Sound email listserv by going to:


http://listserv.ecology.wa.gov/scrip ts/wa-ECOLOGY.exe?A0=ECOLOGY-EYES-OVER-PUGET-SOUND

March_16_2020, Publication No. 20-03-071

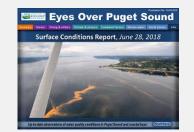
June_4_2019, Publication No. 19-03-073

September_17_2018, Publication No. 18-03-074


Winter_2018, Publication No. 18-03-070

Jan_10_2020, Publication No. 20-03-070

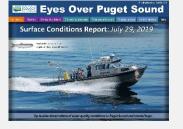
March_26_2019 Publication No. 19-03-072

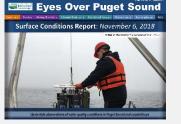

July_16_2018, Publication No. 18-03-073

October_30_2019, Publication No. 19-03-076

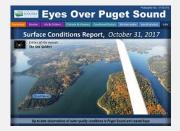
February_21_2019, Publication No. 19-03-071

June_28_2018, Publication No. 18-03-072


September_12_2019, Publication No. 19-03-075


January_10_2019 Publication No. 19-03-070

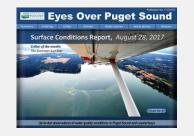
May_22_2018, Publication No. 18-03-025


July_29_2019 Publication No. 19-03-074

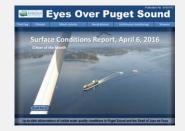
November_6_2018, Publication No. 18-03-075

April_19_2018, Publication No. 18-03-071

October_31_2017, Publication No. 17-03-073


November_22_2016, Publication No. 16-03-078

May_2_2016, Publication No. 16-03-073


December_14_2015, Publication No. 15-03-079

August_28_2017, Publication No. 17-03-072

September_26_2016, Publication No. 16-03-077

April_6_2016, Publication No. 16-03-072

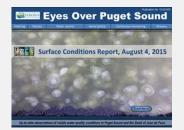
October_6_2015, Publication No. 15-03-078

July_24_2017, Publication No. 17-03-071

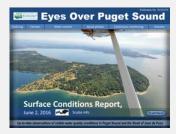
August_24_2016, Publication No. 16-03-076

March_16_2016, Publication No. 16-03-071


September_21_2015, Publication No. 15-03-077


June_6_2017, Publication No. 17-03-070

July_20_2016, Publication No. 16-03-075


February_8_2016, Publication No. 16-03-070

August_8_2015, Publication No. 15-03-076

December_31_2016, Publication No. 16-03-079

June_27_2016, Publication No. 16-03-074

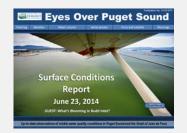
December_30_2015, Publication No. 15-03-080

July_6_2015, Publication No. 15-03-075

June_8_2015, Publication No. 15-03-074

December_30_2014, Publication No. 14-03-080

July_28_2014, Publication No. 14-03-075


February_4_2014, Publication No. 14-03-070

April_29_2015, Publication No. 15-03-073

November_17_2014, Publication No. 14-03-079

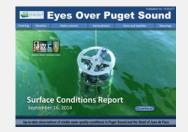
June_23_2014, Publication No. 14-03-074

December_31_2013, Publication No. 13-03-081

Eyes Over Puget Sound


March_24_2015, Publication No. 15-03-072

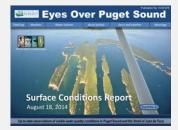
October_29_2014, Publication No. 14-03-078


May_12_2014, Publication No. 14-03-073

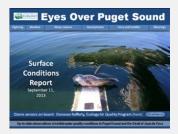
November_21_2013, Publication No. 13-03-080

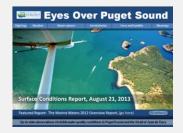
February_17_2015, Publication No. 15-03-071

September_16_2014, Publication No. 14-03-077


April_21_2014, Publication No. 14-03-072

October_28_2013, Publication No. 13-03-079


January_28_2015, Publication No. 15-03-070


August_18_2014, Publication No. 14-03-076

March_24_2014, Publication No. 14-03-071

September_11_2013, Publication No. 13-03-078

August_21_2013, Publication No. 13-03-077

Mar_25_2013, Publication No. 13-03-072

October_8_2012, Publication No. 12-03-079

May_14_2012, Publication No. 12-03-074

July_15_2013, Publication No. 13-03-076

February_26_2013, Publication No. 13-03-071

September_11_2012, Publication No. 12-03-078

April_23_2012, Publication No. 12-03-073

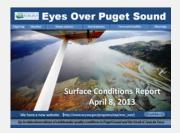
June_17_2013, Publication No. 13-03-075

January_15_2013, Publication No. 13-03-070


August_27_2012, Publication No. 12-03-077

March_19_2012, Publication No. 12-03-072

May_20_2013, Publication No. 13-03-074


December_13_2012, Publication No. 12-03-081

July_31_2012, Publication No. 12-03-076

February_27_2012, Publication No. 12-03-071

April_8_2013, Publication No. 13-03-073

November_8_2012, Publication No. 12-03-080

June_12_2012, Publication No. 12-03-075

January_30_2012, Publication No. 12-03-070

