

## Concise Explanatory Statement Chapter 173-460 WAC Controls for New Sources of Toxic Air Pollution

Summary of rulemaking and response to comments

November 2019 Publication 19-02-027

# **Publication and Contact Information**

This document is available on the Department of Ecology's website at: <u>https://fortress.wa.gov/ecy/publications/summarypages/1902027.html</u>

For more information contact:

Air Quality Program P.O. Box 47600 Olympia, WA 98504-7600 Phone: 360-407-6800

Washington State Department of Ecology – <u>www.ecology.wa.gov</u>
Headquarters, Olympia 360-407-6000

|   | ······································ |              |
|---|----------------------------------------|--------------|
| • | Northwest Regional Office, Bellevue    | 425-649-7000 |
| • | Southwest Regional Office, Olympia     | 360-407-6300 |
| • | Central Regional Office, Union Gap     | 509-575-2490 |
| • | Eastern Regional Office, Spokane       | 509-329-3400 |

To request ADA accommodation including materials in a format for the visually impaired, call Ecology at 360-407-7668 or email <u>ecyadacoordinator@ecy.wa.gov</u>. People with impaired hearing may call Washington Relay Service at 711. People with speech disability may call TTY at 877-833-6341.

# **Concise Explanatory Statement**

# Chapter 173-460 WAC

# **Controls for New Sources of Toxic Air Pollution**

Air Quality Program

Washington State Department of Ecology

Olympia, Washington

This page is purposely left blank

# **Table of Contents**

|                                                        | Page |
|--------------------------------------------------------|------|
| Introduction                                           | 1    |
| Reasons for Adopting the Rule                          | 2    |
| Differences Between the Proposed Rule and Adopted Rule | 4    |
| WAC 173-460-150: Changes throughout table              | 4    |
| WAC 173-460-150: Pollutant specific changes            | 4    |
| List of Commenters and Response to Comments            | 6    |
| Topic List                                             | 6    |
| Individual Commenter Index                             | 7    |
| Comments on Age dependent adjustment factor            | 9    |
| Response to Age dependent adjustment factor            | 12   |
| Comments on Expand data sources                        | 14   |
| Response to Expand data sources                        | 15   |
| Comments on Expand the scope of the rule               | 16   |
| Response to Expand the scope of the rule               | 16   |
| Comments on General comment                            | 16   |
| Response to General comment                            | 16   |
| Comments on Include hazardous air pollutants           | 16   |
| Response to Include hazardous air pollutants           | 17   |
| Comments on Review least burdensome analysis           | 17   |
| Response to Review least burdensome analysis           | 18   |
| Comments on Confusing names                            | 20   |
| Cresols                                                | 20   |
| Xylene                                                 | 20   |
| Response to Confusing names                            | 20   |
| Comments on specific toxic air pollutants              | 21   |
| Asbestos                                               | 21   |
| Response to Asbestos                                   | 22   |
| Cobalt                                                 | 23   |
| Response to Cobalt                                     | 23   |

| Dimethyl mercury                                | 23 |
|-------------------------------------------------|----|
| Response to Dimethyl mercury                    | 24 |
| Fluorides                                       | 24 |
| Response to Fluorides                           | 24 |
| Libby amphibole asbestos                        | 24 |
| Response to Libby amphibole asbestos            | 25 |
| Mercury averaging period                        | 25 |
| Response to Mercury averaging period            | 26 |
| Mercury, elemental                              | 26 |
| Response to Mercury, elemental                  | 26 |
| Nickel carbonate hydroxide                      | 27 |
| Response to Nickel carbonate hydroxide          | 27 |
| Nickel oxide black                              | 27 |
| Response to Nickel oxide black                  | 27 |
| Trichloropropane                                | 27 |
| Response to Trichloropropane                    |    |
| Remove banned/restricted pollutants             |    |
| Response to Remove banned/restricted pollutants |    |
| Remove criteria air pollutants                  | 29 |
| Response to Remove criteria air pollutants      | 29 |
| Spelling mistakes                               |    |
| Response to Spelling mistakes                   |    |
| Table formatting                                |    |
| Response to Table formatting                    |    |
| Appendix A: Decision-Making Documentation       | 31 |

# Tables

| Table 1: Additional PAH adjusted by age dependent adjustment factors | 13 |
|----------------------------------------------------------------------|----|
| Table 2: New table structure in WAC 173-460-150                      | 21 |
| Table 3: Asbestos toxic air pollutants                               | 22 |

# Acronyms

| APA    | Administrative Procedure Act                 |
|--------|----------------------------------------------|
| ASIL   | Acceptable Source Impact Level               |
| CAS    | Chemical Abstract Service                    |
| IRIS   | Integrated Risk Information Systen           |
| NOS    | Not Otherwise Specified                      |
| PAH    | Polycyclic Aromatic Hydrocarbon              |
| RCW    | Revised Code of Washington                   |
| SQER   | Small Quantity Emission Rate                 |
| TAP    | Toxic Air Pollutant                          |
| t-BACT | Best Available Control Technology for Toxics |
| URF    | Unit Risk Factor                             |
| WAC    | Washington Administrative Code               |

## Introduction

The purpose of a Concise Explanatory Statement is to:

- Meet the Administrative Procedure Act (APA) requirements for agencies to prepare a Concise Explanatory Statement (RCW 34.05.325).
- Provide reasons for adopting the rule.
- Describe any differences between the proposed rule and the adopted rule.
- Provide Ecology's response to public comments.
- This Concise Explanatory Statement provides information on The Washington State Department of Ecology's (Ecology) rule adoption for:

| Title:          | Controls for New Sources of Toxic Air Pollutants |
|-----------------|--------------------------------------------------|
| WAC Chapter(s): | 173-460                                          |
| Adopted date:   | November 22, 2019                                |
| Effective date: | December 23, 2019                                |

To see more information related to this rulemaking or other Ecology rulemakings please visit our website: <u>https://ecology.wa.gov/About-us/How-we-operate/Laws-rules-rulemaking</u>.

# **Reasons for Adopting the Rule**

The purpose of this rule revision is to update the list of toxic air pollutants (TAPs) and their emission thresholds to reflect the most current scientific findings regarding TAPs and health effects.

This rulemaking makes the following changes:

- Updates the list of toxic air pollutants.
- Recalculates:
  - De minimis emission values: De minimis emission values determine whether a facility must use toxics best available control technology and undergo First Tier Review. Projects emitting less than de minimis levels of TAPs are not subject to any pre-construction permit review.
  - Small quantity emission rates (SQER): SQER values determine the degree of emissions modeling required when seeking a permit.
  - Acceptable source impact levels (ASIL): ASILs are concentrations of TAPs in ambient air at or below which a project's impacts may be permitted without the need to submit a site-specific health impact assessment. These levels are set to protect human health and safety. New or modified facilities must meet these levels using initially planned or additional emissions control measures.
- Specifies the number of significant digits of emissions rates (i.e., de minimis and SQERs) and concentrations (i.e., ASILs).
- Updates language in the rule to use the acronym "TAP" instead of toxic air pollutant.

The reasons for the rule amendments are to:

- Align the rule with current scientific information about chemicals, including adjusting for the impacts of early life exposure to a chemical. We are adding some chemicals or modified values based on previous errors in the rule language itself.
- Remove ammonium sulfate as a toxic air pollutant based on our toxicity review in response to a rulemaking petition on this chemical from the Far West Agribusiness Association.
- Improve clarity.
- Remove redundancy.

The "Decision Making Documentation: Updating Chapter 173-460 WAC (revised)" provides the decisions and reasons supporting the rule adoption on the following topics:

- Update the list (add or subtract chemicals): retained 387 toxic air pollutants, removed 8 toxic air pollutants, and added 51 toxic air pollutants.
- Chemicals considered but not added to the toxic air pollutants list: seven (acetone, fuel oil. no 2, kerosene and 4 kerosene-based jet fuels).

- Evaluation of ammonium sulfate: removed.
- Recalculation of ASILs: updated.
- Evaluation of excluding criteria pollutants as TAPs: retained as TAPs.
- Evaluation of the use of early life adjustment factors: included so adjusted appropriate ASILs.
- Review of the existing ASIL for diethyl and dimethyl mercury: revised.
- Evaluation of ASILs for groups of chemicals (toxicity equivalency): no adjustments
- Revision of the small quantity emission rate modeling parameters: updated modeling parameters.
- Recalculation of the small quantity emission rates: recalculated using AERSCREEN model and new modeling parameters.
- Recalculation of de minimis emission values: updated using existing methodology (SQER/20).
- Update the rule to support the rule changes: aligned rule to require two significant digits for emission rates and concentrations.

## Differences Between the Proposed Rule and Adopted Rule

RCW 34.05.325(6)(a)(ii) requires Ecology to describe the differences between the text of the proposed rule as published in the Washington State Register and the text of the rule as adopted, other than editing changes, stating the reasons for the differences.

There are some differences between the proposed rule filed on June 4, 2019 and the adopted rule filed on November 22, 2019. Ecology made these changes for all or some of the following reasons:

- In response to comments we received.
- To ensure clarity and consistency.
- To meet the intent of the authorizing statute.

The following content describes the changes and Ecology's reasons for making them.

### WAC 173-460-150: Changes throughout table

#### Common names and order of toxic air pollutants

We edited the common names and order of chemicals to make it easier to find them in the table. The new system groups chemical families near each other instead of throughout the table.

#### Scientific notation

We simplified the table by providing all values in the scientific notation format. Displaying ASILs, SQERs, and de minimis emission values in the table in two formats – decimal and scientific notation – was confusing.

### WAC 173-460-150: Pollutant specific changes

#### Asbestos

The amendments add six types of asbestos to the list of toxic air pollutants: Actinolite, Amosite, Anthophylite, Chrysotile, Crocidolite, and Tremolite. The ASILs, SQERs, and de minimis emissions levels are identical to those of the general listing for "Asbestos (fibers/cubic centimeter)." This change reduces confusion about the coverage of the existing asbestos group listing.

Actinolite asbestos: CAS<sup>1</sup> 12172-67-7

Amosite asbestos: CAS 12172-73-5

<sup>&</sup>lt;sup>1</sup> The Chemical Abstracts Service Registry Number (CAS) is a unique identifier for each chemical.

Anthophylite asbestos: CAS 17068-78-9 Chrysotile asbestos: CAS 12001-29-5 Crocidolite asbestos: CAS 12001-28-4 Tremolite asbestos: CAS 14567-73-8

#### Cobalt

We added "and compounds, NOS" to clarify that we consider all forms of cobalt compounds equally toxic based on the mass of cobalt in a cobalt compound.

#### **Dimethyl mercury**

We retained the original listing of "dimethyl mercury" because we mistakenly changed the name to "methyl mercury (dimethyl mercury)" when we proposed the rule.

#### Ethyl carbamate

We added urethane as a common name for this chemical because it has the same CAS number.

#### Fluorides

We corrected the misspelling of fluoride in the table in WAC 173-460-150.

#### Libby amphibole asbestos

We corrected the misspelling of amphibole and added "and amphibole, NOS" to be include other varieties of amphiboles to protect public health. This was due to EPA's toxicological review of Libby amphibole asbestos that highlights concerns about of a variety of amphiboles.

#### Nickel carbonate hydroxide

We corrected the CAS number to 12607-70-4.

#### Nickel oxide

We added nickel monoxide and nickel(II) oxide as common names for nickel oxide because they all have the same CAS number.

#### Nickel oxide black

We added CAS 1314-06-3 for this pollutant because the rule did not include one. We added nickel sesquioxide and nickel(III) oxide as common names for nickel oxide black because they all have the same CAS number.

#### Sulfur trioxide

We corrected the CAS number to 7446-11-9.

# List of Commenters and Response to Comments

We accepted comments between June 4 and July 23, 2019. We summarized and edited some of the comments in this section for clarity. You can see the original content of the comments we received at: <u>http://ac.ecology.commentinput.com/?id=t7W9R</u>. These comments remain available online for two years after the rule adoption date.

We grouped comments and topics together and organized them by topic. Under each topic heading, you can see all the comments we received for that topic, followed by our single response to all the comments on that topic.

### **Topic List**

- Age dependent adjustment factor (ADAF)
- Confusing names (cresols & xylenes)
- Expand data sources
- Expand the scope of the rule
- General comment
- Include hazardous air pollutants
- Review least burdensome analysis
- Remove banned/restricted pollutants
- Remove criteria air pollutants
- Spelling mistakes
- Specific toxic air pollutants
  - o Asbestos
  - o Cobalt
  - o Dimethyl mercury
  - o Fluorides
  - Libby amphibole asbestos
  - Mercury averaging period
  - o Mercury, elemental
  - Nickel carbonate hydroxide
  - Nickel oxide black
  - o Trichloropropane
- Table formatting

# **Individual Commenter Index**

We did not get any oral testimony at the public hearing. Commenters can find their comments and the response by scrolling to the topic next to their name.

| Commenter name       | Affiliation                             | Topic of comment                      | Comment<br>number      |
|----------------------|-----------------------------------------|---------------------------------------|------------------------|
| Hoffmann,<br>Jesse   |                                         | Expand the scope of the rule          | I-2-1, I-2-2,<br>I-2-3 |
| Johnson, Giffe       | NCASI                                   | Age dependent adjustment factor       | O-1-1                  |
| Johnson, Giffe       | NCASI                                   | Mercury averaging period              | O-1-2                  |
| Johnson, Giffe       | NCASI                                   | Mercury, elemental                    | 0-1-3                  |
| Kadlec, Matt         |                                         | Dimethyl mercury                      | I-1-1                  |
| Mairose, Paul        | Southwest Clean Air Agency              | Asbestos                              | A-2-4                  |
| Mairose, Paul        | Southwest Clean Air Agency              | Cobalt                                | A-2-14                 |
| Mairose, Paul        | Southwest Clean Air Agency              | Confusing names (cresols and xylene)  | A-2-5,<br>A-2-12       |
| Mairose, Paul        | Southwest Clean Air Agency              | Expand data sources                   | A-2-1                  |
| Mairose, Paul        | Southwest Clean Air Agency              | Fluorides                             | A-2-7                  |
| Mairose, Paul        | Southwest Clean Air Agency              | Include hazardous air pollutants      | A-2-3                  |
| Mairose, Paul        | Southwest Clean Air Agency              | Libby amphibole asbestos              | A-2-6                  |
| Mairose, Paul        | Southwest Clean Air Agency              | Mercury, elemental                    | A-2-8                  |
| Mairose, Paul        | Southwest Clean Air Agency              | Nickel black oxide                    | A-2-11                 |
| Mairose, Paul        | Southwest Clean Air Agency              | Nickel carbonate hydroxide            | A-2-10                 |
| Mairose, Paul        | Southwest Clean Air Agency              | Remove criteria air pollutants        | A-2-2                  |
| Mairose, Paul        | Southwest Clean Air Agency              | Remove banned / restricted pollutants | A-2-13                 |
| Mairose, Paul        | Southwest Clean Air Agency              | Spelling mistakes                     | A-2-15,<br>A-2-16      |
| Mairose, Paul        | Southwest Clean Air Agency              | Table formatting                      | A-2-9                  |
| McCabe,<br>Christian | Northwest Pulp and Paper<br>Association | Age dependent adjustment factor       | O-2-1                  |

| Commenter name       | Affiliation                             | Topic of comment                 | Comment<br>number |
|----------------------|-----------------------------------------|----------------------------------|-------------------|
| McCabe,<br>Christian | Northwest Pulp and Paper<br>Association | General comment                  | O-2-5             |
| McCabe,<br>Christian | Northwest Pulp and Paper<br>Association | Mercury averaging period         | O-2-3             |
| McCabe,<br>Christian | Northwest Pulp and Paper<br>Association | Review least burdensome analysis | O-2-4             |
| McCabe,<br>Christian | Northwest Pulp and Paper<br>Association | Trichloropropane                 | O-2-2             |
| Moody, Robert        | Olympic Region Clean Air<br>Agency      | Spelling mistakes                | A-1-1             |

### Comments on Age dependent adjustment factor

#### Commenter: NCASI, Giffe Johnson - Comment O-1-1

1.0 There is a lack of evidence that the proposed use of an Age Dependent Adjustment Factor (ADAF) will provide health benefits to susceptible populations.

EPA provided guidance for Age Dependent Adjustment Factors (ADAFs) for cancer slope factors to adjust carcinogenic potency during early life stages for substances considered to be 'linear' carcinogens in the document Supplemental Guidance for Assessing Susceptibility from *Early-Life Exposure to Carcinogens*, on which Ecology bases proposed changes to some ASILs. The agency's purpose in proposing these changes is ostensibly to increase protection against cancer from exposure to carcinogens at earlier life stages. However, these life stage-based adjustments are (1) associated with substantial uncertainty; (2) being applied to standards that already contain multiple conservative assumptions; and therefore (3) unlikely to confer any additional public health benefit if implemented in their proposed form. The impact of these proposed changes is that many ASIL values may be substantially reduced, potentially impacting dischargers and government agencies that manage discharges, without clear evidence that a public health benefit will result. The scientific basis of Washington's ASIL values would be strengthened if the agency were to reevaluate and revise its implementation of ADAFs and life stage susceptibility assumptions to be consistent with the current state of scientific evidence regarding early exposure to carcinogens, as well as the substantial limitations found in the EPA guidance document.

#### 1.1 ADAF adjustment

In the proposed ASIL values for several linear, mutagenic carcinogens, including chromium VI and multiple polycyclic aromatic hydrocarbons (PAHs), Ecology proposes to multiply the cancer slope factor (CSF) by a factor of 10 for ages birth to 2 years, and to multiply the CSF by a factor of 3 for ages 2 to less than 16 years. These adjustments are weighted by the time spent in the age range of interest. The justification for increasing the CSF during earlier life stages is the hypothesis that certain types of modes of action for carcinogens have greater impact if they occur at an earlier life stage. For example, it is suggested that mutagenic modes of carcinogenesis may have a greater impact with early life stage exposure because a mutated parent cell may produce a greater number of daughter cells that inherit the mutation due to the rapid proliferation of cells that takes place at an earlier life stage. EPA acknowledges, however, that the scientific underpinnings of ADAFs are not well characterized, and recommends them at least partially on the basis of policy rather than science (underlined for emphasis):

The Agency has also carefully considered both the advantages and disadvantages to extending the default potency adjustment factors to carcinogenic chemicals for which the mode of action remains unknown. It is the Agency's long-standing science policy position that use of the linear low-dose extrapolation approach (without further adjustment) provides adequate public health conservatism in the absence of chemical-specific data indicating differential early-life susceptibility. At the present time, therefore, EPA is recommending

these age-dependent adjustment factors only for carcinogens acting through a mutagenic mode of action based on a combination of analysis of available data and the above-mentioned science policy position. (USEPA 2005, p 35)

Not all carcinogens with a mutagenic mode of action have been demonstrated to confer an exceptional early life stage risk and the degree of impact is poorly characterized. In addition, EPA notes that the linear extrapolation method provides adequate public health conservatism, unadjusted for ADAFs, because of the extremely low risk levels addressed by this approach. Without specific data that early life stage exposure for a substance (at environmentally relevant levels) is having an impact on cancer risk, ADAF application is not likely to confer any public health benefit.

#### 1.2 Impact of ADAFs

By weighting the slope factor for ages 0 to <2 yr by a factor of 10 and weighting the slope factor for ages 2 to <16 yr by a factor of 3, resultant ASILs decrease by approximately 40% compared to the unweighted adult algorithm. Again, this reduction in the standard would apply to all 'linear' carcinogens, characterized by a mutagenic mode of action, and result in lowering the ASIL for at least eight substances.

While the authors of the Supplemental Guidance for Assessing Susceptibility from Early-Life Exposure to Carcinogens put forth some plausible hypotheses to suggest that early life stage exposure may increase risk of developing cancer, the data to support them are limited. This is noted in the EPA document:

The relative rarity in the incidence of childhood cancers and a lack of animal testing guidelines with perinatal exposure impede a full assessment of children's cancer risks from exposure to chemicals in the environment. Unequivocal evidence of childhood cancer in humans occurring from chemical exposures is limited. (USEPA 2005, p 2)

Not only is the underlying data to support or quantify an increased risk of cancer associated with early life stage exposure limited, but at the exposure levels being regulated by the ASIL they are wholly absent. No studies provide direct evidence of any risk at such exposure levels, much less those that characterize differences between early life stage exposure risk and lifetime average exposure risk. It is at these exposure levels that the convention of linear extrapolation requires the disclaimer that the true value of the risk is unknown and may be as low as zero. The intent of the linear extrapolation method is to use an upper bound estimate of dose response (where actual data may exist from animal studies) drawn down to an extremely low acceptable risk (such as 1 in 1,000,000 where no actual data exist) such that the risk from exposure is undetectable, or possibly zero. Assuming that the mechanisms that produce susceptibility at much higher exposures in animals for early life stage cancer risk also exist at exposures orders of magnitude lower is a policy decision, not a science-based decision, as data at these low exposure levels do not exist to support such a decision. Applying additional adjustments to the cancer slope factor at these exposure levels has not been demonstrated to result in any public health benefit.

Again, the idea that early life stage exposure confers additional risk for the development of cancer remains a hypothesis. In the Supplemental Guidance for Assessing Susceptibility from Early-Life Exposure to Carcinogens the authors offer two plausible mechanisms for any observations of increased risk from early life stage exposure (underlined for emphasis):

While the induction of cancer by ionizing radiation and the induction of cancer by chemical mutagens are not identical processes, both involve direct damage to DNA as critical causal steps in the process. In both cases, the impacts of early exposure can be greater than the impacts of later exposures, probably due to some combination of early-life stage susceptibility and the longer periods for observation of effects. (USEPA 2005, p 24)

As noted in the EPA document, most animal studies to evaluate lifetime cancer risk begin after the animals reach sexual maturity, reducing total lifetime exposure to a suspected carcinogen by that amount of time. The authors of the EPA document offer this limited exposure time (i.e., less than a full lifetime due to lack of early stage exposure) as a potential source for an increase in cancer risk from early stage exposure. However, it is important to note that in the traditional risk assessment process for carcinogens, exposures are assumed to be persistent over a 70-year lifetime. This means that even though some exposure period is lost during typical lifetime testing in animals, that exposure is built back into the risk assessment model. Any further adjustment of the model because of this potential mechanism is redundant and not likely to confer additional public health benefit.

In addition, the traditional linear extrapolation method for conducting risk assessment for carcinogens uses an upper bound estimate of the potency of the carcinogen (e.g., the cancer slope factor). This upper bound estimate is purposefully conservative in order to ensure protection for susceptible populations. The result is that risk is always overestimated rather than underestimated with this method, and the degree of overestimation increases as the exposure level decreases. Because of the existing conservatism in the linear extrapolation method used to develop cancer slope factors, modest increases in assumed potency from ADAFs (at higher exposure levels in animal studies) are not likely to confer additional public health benefit at exposures related to the policy-dictated risk management levels of 1 in 100,000 and 1 in 1,000,000, which occur at orders of magnitude lower exposures.

It is also important to consider these proposed changes within the broader context of the conservative assumptions that already exist throughout the ASIL development process. Collectively, using multiple conservative assumptions results in an ASIL that may be far more protective than necessary to meet the risk management goal used to derive it. This phenomenon of greater conservatism embodied by the whole rather than the conservatism of each individual part is referred to as "compounded conservatism." In the ASIL derivation process, compounded conservatism plays a role both in determination of individual factors of the derivation equations (i.e., in toxicity factors and explicit and implicit exposure elements) and in the equations' use of multiple factors, most based on upper bound limits and/or conservative assumptions. Given both the inherent conservative assumptions used in the ASIL process at large, it is unlikely that the use of ADAFs will confer any additional benefit to public health in the ASIL values.

USEPA. 2005. Supplemental Guidance for Assessing Susceptibility from Early-Life Exposure to Carcinogens. EPA/630/R-03/003F. Washington DC Risk Assessment Forum. United States Environmental Protection Agency.

http://epa.gov/cancerguidelines/guidelinescarcinogensupplement.htm.

# Commenter: Northwest Pulp and Paper Association, Christian McCabe - Comment O-2-1

Ecology prepared a white paper on age dependent adjustment factor (ADAF) in deriving ASILs and presented its content to the stakeholder group on February 21st. The National Council for Air and Stream Improvement (NCASI) prepared and submitted a comment letter dated March 20th addressing the ADAF topic and other matters. While Ecology has posted that letter on the rule-making docket, there is no indication the agency considered the NCASI submittal. This initial NWPPA comment is a request that Ecology respond to the NCASI critique of the agency decision to incorporate early-life adjust factors for the 31 mutagenic TAPs.

Those detailed comments will not be reiterated here, but can be characterized as follows:

- There is no science-based evidence of actual and additional benefit to public health associated with application of these ADAF's. The Environmental Protection Agency says as much. Adding the ADAF into the ASIL derivation imparts more conservatism into what is already acknowledged as a fully health protective protocol.
- The effect of the ADAF's will be to reduce the ASILs and de minimis values, and this means additional new source review projects will be captured into the WAC 173-460 permitting processes. In turn, this means more cost and time for permittees and jurisdictional agencies, without corresponding benefit to the regulatory objective of achieving a health protection target.

### Response to Age dependent adjustment factor

In the 2005 Guidelines for Carcinogen Risk Assessment, EPA recognized that "childhood may be a susceptible period" in that "exposures during childhood generally are not equivalent to exposures at other times and may be treated differently from exposures occurring later in life .... In addition, adjustment of unit risk estimates may be warranted when used to estimate risks from childhood exposure ...."<sup>2</sup> The Supplemental Guidance for Assessing Susceptibility from Early-Life Exposure to Carcinogens<sup>3</sup> describes age dependent adjustment factors as a way of addressing uncertainty related to an absence of toxicity data from exposures that occur during early-life. EPA recommends using these factors because risk estimates based on exposures occurring at various life stages may not consider the potential for higher cancer risks from early-life exposures. EPA developed

<sup>&</sup>lt;sup>2</sup> <u>https://www.epa.gov/risk/guidelines-carcinogen-risk-assessment</u> page 1-18.

<sup>&</sup>lt;sup>3</sup> https://www.epa.gov/risk/supplemental-guidance-assessing-susceptibility-early-life-exposure-carcinogens

procedures for adjusting cancer potency estimates only for those carcinogens that act through a mutagenic mode of action.

One of the goals of this rule is to prevent new sources of air pollution from emitting toxic air pollutants at a rate that may pose an unacceptable risk to individuals and communities.

We set the acceptable source impact level (ASIL) at an increased cancer risk rate of 1 in one million based on continuous lifetime exposure beginning at birth to 70 years. While we understand that the assumptions and the methods for quantifying inhalation unit risk factors (e.g., linear low-dose extrapolation upper-bound estimate) generally provide public health protection, it is important to consider children's susceptibility to exposure to carcinogens. In this manner, we follow EPAs guidelines to use age dependent factors to account for children's susceptibility from exposure to pollutants that act through a mutagenic mode of action.

We relied on EPA guidelines for determining which chemicals are considered to act through a mutagenic mode of action (Integrated Risk Information System (IRIS), Regional Screening Levels (RSLs) – User's Guide, and Supplemental Guidance for Assessing Susceptibility from Early-life Exposure to Carcinogens). We adjusted the ASIL value for 30 TAPs based on EPA's early-life adjustment factor: <sup>4</sup>

- 1.66 to account for increased susceptibility among infants and children exposed to mutagenic chemicals.
- 1.22 for trichloroethylene because the mutagenic mode of action applies to kidney tumors, but not for other cancers included in the derivation of the unit risk factor.

In addition, it should be noted that several polycyclic aromatic hydrocarbon (PAH) compounds for which we applied the age dependent adjustment factor were not listed in the Decision Document. These PAHs are included on the toxic air pollutant list based on inhalation unit risk values reported by California Office of Environmental Health Hazard Assessment. Because these chemicals are assumed to cause toxicity in a similar manner as benzo(a)pyrene for which EPA determined acts through a mutagenic mode of action, we also applied the 1.66 adjustment factor in deriving ASILs for the 18 chemicals in Table 1 below.

| Со | mmon Name             | CAS #    |
|----|-----------------------|----------|
| 1. | 2-Acetylaminofluorene | 53-96-3  |
| 2. | 2-Aminoanthraquinone  | 117-79-3 |
| 3. | Benzo[j]fluoranthene  | 205-82-3 |
| 4. | Dibenz[a,h]acridine   | 226-36-8 |

<sup>&</sup>lt;sup>4</sup> "Decision-Making Documentation," May 2019, pages 9-10. https://ecology.wa.gov/Asset-Collections/Doc-Assets/Rulemaking/AQ/WAC173-460\_-18-07/Decision-making-document-(WAC-173-460)-05-19. The ASIL for trichloropropane was not adjusted by an early-life adjustment factor because there is no unit risk value for quantifying increased cancer risk from inhalation exposure to this chemical. See response to Comment O-2-2.

| Con | nmon Name                | CAS #      |
|-----|--------------------------|------------|
| 5.  | Dibenz[a,j]acridine      | 224-42-0   |
| 6.  | Dibenzo[a,e]pyrene       | 192-65-4   |
| 7.  | Dibenzo[a,h]pyrene       | 189-64-0   |
| 8.  | Dibenzo[a,i]pyrene       | 189-55-9   |
| 9.  | Dibenzo[a,l]pyrene       | 191-30-0   |
| 10. | 7H-Dibenzo[c,g]carbazole | 194-59-2   |
| 11. | 1,6-Dinitropyrene        | 42397-64-8 |
| 12. | 1,8-Dinitropyrene        | 42397-65-9 |
| 13. | 5-Nitroacenaphthene      | 602-87-9   |
| 14. | 6-Nitrochrysene          | 7496-02-8  |
| 15. | 2-Nitrofluorene          | 607-57-8   |
| 16. | 1-Nitropyrene            | 5522-43-0  |
| 17. | 4-Nitropyrene            | 57835-92-4 |
| 18. | 5-Methylchrysene         | 3697-24-3  |

It remains to be seen if application of ADAF will lead to greater numbers of Second Tier Review permit activities. It might not but if it does, the number will be relative to the small number required under the current version. In any case, application of ADAF is justified by the need to reduce health cost burden among TAP-exposed populations, which is consistent with the purpose of Chapter 173-460 WAC and the Washington Clean Air Act.

It would be impossible to measure the health benefits of incorporating these agedependent adjustment factors into the ASILs mostly because it is not possible to measure health outcomes at the very low risk levels considered acceptable in this rule (i.e., 1 in one million increased cancer risk). While we can't measure the actual health benefits of this approach, it is appropriate to follow EPA's guidelines to derive ASILs that represent acceptable levels of risk for everyone.

#### **Comments on Expand data sources**

#### Commenter: Southwest Clean Air Agency, Paul Mairose - Comment A-2-1

SWCAA appreciates Ecology updating the science behind many of the pollutants listed in the proposed rule. While this is a good task, there are many toxic chemicals that are not on the list. SWCAA understands the need to have high quality data in which to evaluate public risk from pollutants, to ignore hundreds of pollutants that have not yet been evaluated by one of the three "acceptable" agency is not in the best interest of the public. Many other states and countries have identified methodologies for determining health impacts to the public without being identified on one of the three agencies lists. One must recognize that there is limited funding for the identified three agencies and as such one could not hope that all the cancer-causing pollutants or unhealthy pollutants could be evaluated by these groups in a timely fashion as well as keep the toxicity values for those on the list up to date.

### **Response to Expand data sources**

During the previous rulemaking in 2009, Ecology derived our ASILs from three reputable sources:

- EPA's Integrated Risk Information System (IRIS)
- California Office of Environmental Health Hazard Assessment's (OEHHA) reference exposure levels and cancer potency factors
- The Agency for Toxic Substances and Disease Registry's (ATSDR) minimal risk levels.

Typically, these agencies involve panels of scientists with expertise on specific chemicals to perform a comprehensive review of the literature and set values based on the weight of existing scientific evidence and degree of consensus within the scientific community. These agencies also provide documentation of the rationale behind the toxicity values they derive. These agencies continue to represent the best scientific authorities.

The Oregon Department of Environmental Quality completed a comprehensive two-year effort in November 2018 to develop its own state health-based air toxics regulatory program. Oregon noted, "While other authoritative agencies exist, [we] ... have concluded that EPA, ATSDR, and California OEHHA meet high standards for scientific credibility. These authoritative sources were also selected because the [toxicity reference values] TRVs they develop are intended to protect sensitive populations, including children."<sup>5</sup>

One of the goals of the current rule revision was to update the ASILs based on the most recent inhalation toxicity values available from these three agencies. We expanded the list of authoritative sources to include Ecology for developing the toxicity value for diethyl mercury and dimethyl mercury.<sup>6</sup> While we did not consider alternative sources of toxicity values for this rulemaking, we are willing to consider and discuss other sources of toxicity values during the course of a future rulemaking to explore the need for other requirements related to toxic air pollutants.

We did not change the rule in response to this comment.

<sup>&</sup>lt;sup>5</sup> Oregon Department of Environmental Quality Agency Staff Report, Action Item G. Nov. 15-16, 2018. <u>https://www.oregon.gov/deq/EQCdocs/11152018\_ItemG\_CAOReport.pdf</u>. Toxicity Reference Values Selection pages 6-7.

<sup>&</sup>lt;sup>6</sup> Ecology's October 10, 2018, Kadlec Presentation "A Dimethyl Mercury Inhalation Risk Screening Concentration." Kadlec, Matt. A Dimethyl Mercury Inhalation Risk Screening Concentration for Public Health Protection. Poster presented at International Society of Exposure Science Conference, 2012 Oct. 28 – Nov. 1; Seattle, WA. Both available at https://ecology.wa.gov/Regulations-Permits/Laws-rules-rulemaking/Rulemaking/WAC173-460.

### Comments on Expand the scope of the rule

#### Commenter: Jesse Hoffmann - Comment I-2-1

I would like the following considered in the new rule-making:

- 1. Consider combined effects of pollutants on health where there may be synergistic detrimental effects as more substances and therefore more variables are introduced.
- 2. Measure which toxins are currently being emitted but not monitored that present hazards to human health and include these in the inventory to monitor in the future.
- 3. Account for quality-of-life impact and symptomatic results of acute emissions exposure.

### Response to Expand the scope of the rule

This proposal is outside the scope of the current rulemaking process. However, we are willing to consider and discuss your suggestions under the exploratory rulemaking process. In August 2018, we announced our intent to update the air toxics rule in stages. This rulemaking action is the first phase of that effort. Once we complete this action, we will begin to look at other updates to the rule and prioritize the changes we may want to make. Refer to the <u>exploratory rulemaking website</u> for more information on this effort (https://ecology.wa.gov/Regulations-Permits/Laws-rules-rulemaking/Rulemaking/WAC-173-460-Exploratory-rulemaking). You can also join our <u>air toxics email list</u> to stay informed about this effort.

#### **Comments on General comment**

# Commenter: Northwest Pulp and Paper Association, Christian McCabe - Comment O-2-5

The Department of Ecology can be complimented on conducting a thorough public involvement/advisory committee process and with the preparation of topic-specific white papers, Preliminary Regulatory Analysis, Decision-Making Documentation, etc.

#### **Response to General comment**

Thank you for your comment.

#### **Comments on Include hazardous air pollutants**

#### Commenter: Southwest Clean Air Agency, Paul Mairose - Comment A-2-3

As a minimum, all of the hazardous air pollutants (HAPs) listed in Title III of the Federal Clean Air Act (except those specifically delisted) should be on the list of pollutants regulated under WAC 173-460. To not have them listed means that a significant number of Hazardous Air Pollutants - specifically identified by Congress, are not otherwise regulated under the New Source Review provisions of WAC 173-460-040. This ignores sound science that serves as the basis for these pollutants being identified by Congress as representing a risk to the public. This unnecessarily complicates and underestimates the health risk to the public when reviewing a new source or modified source under WAC 173-460-040.

### Response to Include hazardous air pollutants

Title III of the Clean Air Act established a list of 187 hazardous air pollutants (originally 189). The Act establishes an air quality permitting structure that relies on emission control equipment to reduce emissions from categories of businesses that emit hazardous air pollutants rather than on an evaluation of the public health impact from a specific pollutant.

Your proposal to regulate the 40 hazardous air pollutants without an inhalation toxicity value as toxic air pollutants is outside the scope of the current rule making process. The state rule relies on an inhalation toxicity value to quantify the human health risk or other serious health effects for each toxic air pollutant. Without a toxicity value, the rule would not establish the acceptable source impact level (ASIL) for these pollutants. Without an ASIL, the rule would not include a small quantity emission rate, nor a de minimis emission value.

Your suggestion presents a concept that is substantially different from the proposed rule. Revising the rule to subject a subset of pollutants to best available control technology for toxics (t-BACT) in WAC 173-460-040 without being subject to the other review requirements in this rule would alter the fundamental design of the rule.

We will have another opportunity to discuss this issue as part of the exploratory rule process. In August 2018, we announced our intent to update the air toxics rule in stages. This rulemaking action is the first phase of that effort. Once we complete this action, we will begin to look at other updates to the rule and prioritize the changes we may want to make. Refer to the <u>exploratory rulemaking website</u> for more information on this effort (https://ecology.wa.gov/Regulations-Permits/Laws-rules-rulemaking/Rulemaking/WAC-173-460-Exploratory-rulemaking). You can also join our <u>air toxics email list</u> to stay informed about this effort.

We did not change the rule in response to this comment.

#### **Comments on Review least burdensome analysis**

# Commenter: Northwest Pulp and Paper Association, Christian McCabe - Comment O-2-4

In its rule development efforts, Ecology has the responsibility to examine alternative versions of a proposed regulation and select the option which is "least burdensome for those required to

comply with it and that will achieve the general goals and specific objectives... (of the statute the rule implements)" RCW 34.05.328. There are at least two examples where the agency ignored or conducted a perfunctory analysis that with a more thorough evaluation would have led to a less burdensome rule while meeting the goals/objectives of RCW 70.94. This omission needs to be addressed.

Age Dependent Adjustment Factor – Ecology's discretionary decision to add this factor into ASIL derivations will trigger an increase in the number of new source review projects subject to WAC 173-460 permitting activities. This means incremental cost and application processing time for both the permittee and jurisdictional agency. The NCASI comment letter points to a lack of tangible/measurable health benefit associated with ADAF. Removing the ADAF would result in a less burdensome regulation without negatively impacting chemical exposures and adverse health outcomes.

Establishing de minimis values – A Small Quantity Emission Rate is recognized as a conservative threshold value, derived from the best science information available, that assumes the acceptable fence line concentration of the TAP will not be exceeded; i.e., the ASIL. Ecology concedes that achievement of the SQER means dispersion modeling to prove ASIL attainment is not required. If the SQER for a TAP is demonstrated, the applicant will assert that tBACT is provided. In its Least Burdensome analysis, the agency choses to retain the derivation of de minimis values at 1/20 of the SQER. The agency analysis on this matter concludes that 1) setting de minimis equal to the SQER or 2) establishing the de minimis values at 1/10 of the SQER would not meet the goals and objective of the statute; i.e., be protective of human health and the environment. But if demonstrating achievement of the conservative SQER provides sufficient evidence of protection, why would setting a de minimis value at 1/10 of the SQER, or even the SQER, not be sufficiently acceptable? De minimis at SQER or 1/10 SQER would trigger fewer projects into WAC 173-460 permitting and is thus clearly less burdensome. Ecology should reconsider its perfunctory analysis which retained the 1/20 factor.

### **Response to Review least burdensome analysis**

Refer to Response to Age Dependent Adjustment Factor for the response on this point.

The development of the updated de minimis emission values involved consideration and balancing of several goals and objectives:

- Protection of human health and the environment.
- Prevent emissions from many small sources.
- Keep the table simple and straightforward.
- Provide consistency by standardizing actions between the two air permitting rules.

The purpose of Washington Clean Air Act, Chapter 70.94 RCW, is to establish the systematic control of new or modified sources emitting toxic air pollutants (TAPs) to

prevent air pollution, reduce emissions to the extent reasonably possible, and maintain such levels of air quality as will protect human health and safety.

A notice of construction application must include a determination that the source will achieve best available control technology. No person is required to submit a notice of construction or receive approval for a new source that Ecology deemed to have de minimis impact on air quality. The Act directs Ecology to identify de minimis new sources by category, size, or emission thresholds. De minimis means "trivial levels of emissions that do not pose a threat to human health or the environment."

#### De minimis equal to SQER

The current rule subjects a project with emissions of any toxic air pollutants equal to or greater than the de minimis emission threshold in WAC 173-460-150 to air toxics permitting requirements.

Emissions less than the de minimis emission threshold require no regulatory review, nor does tBACT apply. Raising the de minimis emission value to equal the higher SQER does not protect human health and the environment because SQER values are not trivial levels of emissions.

The SQERs are a screening tool to simplify permitting. New sources with emissions at or below the SQER satisfy the acceptable source impact analysis requirement of WAC 173-460-070. The purpose of the SQER is to establish a conservative emission level to minimize dispersion modeling requirements for those new sources emitting small quantities.

The rule compares controlled emissions after applying tBACT to the SQER. As discussed during stakeholder meetings, some new sources with emissions lower than the SQER could potentially have ambient impacts in excess of an ASIL. For this reason, many permitting agency staff in the stakeholder group felt it was important to have a de minimis emission value lower than the SQER so that they could consider tBACT. tBACT in these cases would serve to reduce the chances that emissions at or below the SQER could potentially cause a theoretical exceedance of an ASIL.

Establishing the small quantity emission rate as the de minimis emission value would remove most contributors to emissions of toxic air pollution from the permitting arena. Eliminating these projects from any permit review, especially from tBACT analysis, does not protect human health and the environment. We considered this alternative during rulemaking and concluded that it does not meet the goals and objectives of the Washington Clean Air Act.

#### De minimis equal to 1/10 SQER

We added de minimis emission values in 2009 as part of a rulemaking action that integrated the air toxics rule into the overall procedures of permitting air emissions (new source review) in Chapter 173-400 WAC.

We established the de minimis emission values as five percent of the SQER to maintain consistency between these two rules. The general air quality rules in Chapter 173-400 WAC establish de minimis emission values for criteria pollutants equal to five percent of the Prevention of Significant Deterioration significance levels.

The current value represents a protective approach for defining de minimis in the context of permitting. Doubling the threshold could potentially result in fewer projects being subject to permitting and the associated requirement to comply with the control technology to reduce emissions (tBACT). Emissions by multiple small sources can combine concentrations high enough to pose risks to human health and the environment. The Legislature also recognizes this in RCW 70.94.011.

Therefore, we did not evaluate qualitative or quantitative compliance burden of both alternatives in the Regulatory Analyses because the alternatives do not meet the goals and objectives of the Washington Clean Air Act.

### **Comments on Confusing names**

### Cresols

#### Commenter: Southwest Clean Air Agency, Paul Mairose - Comment A-2-5

Cresols (mixture), including m-cresol, o-cresol, p-cresol is on the list with CAS No 1319-77-3. The three isomers each have their own CAS No. Should a person interpret that a single isomer is not toxic but only a mixture of the three is toxic and on the list? All three isomers should be listed separately with their own CAS number.

### Xylene

#### Commenter: Southwest Clean Air Agency, Paul Mairose - Comment A-2-12

The last pollutant listed in the table is "Xylene (mixture), including m-xylene, o-xylene, p-xylene" however the CAS No is 1330-20-7. The individual monomers are also listed with their individual CAS Nos but it is recommended that the naming convention be changed to reflect xylene, m-, xylene, o-, and xylene, p- so these monomers sort next to the mixed isomer listing.

### **Response to Confusing names**

We agree that the proposed method to list the pollutants in the table is confusing so the table will list chemicals alphabetically based on their root name rather than by the positional prefix letter or number at the beginning of a chemical. Under this system, similar chemical names will appear near each other as shown in Table 2 below.

The proposed rule included the three cresol isomers under 2-Methylphenol (o-cresol), 3-Methylphenol (m-cresol), and 4-Methylphenol (p-cresol) each with its own CAS number. We renamed these three chemicals by cresol name followed by the synonym in parentheses.

| Common Name                                                   | CAS #     | Averaging<br>Period | ASIL<br>(µg/m³) | SQER<br>(Ib/averaging<br>period) | De Minimis<br>(Ib/averaging<br>period) |
|---------------------------------------------------------------|-----------|---------------------|-----------------|----------------------------------|----------------------------------------|
| Cresols (mixture), including m-<br>cresol, o-cresol, p-cresol | 1319-77-3 | 24-hr               | 6.0E+02         | 4.4E+01                          | 2.2E+00                                |
| m-Cresol (3-methylphenol)                                     | 108-39-4  | 24-hr               | 6.0E+02         | 4.4E+01                          | 2.2E+00                                |
| o-Cresol (2-methylphenol)                                     | 95-48-7   | 24-hr               | 6.0E+02         | 4.4E+01                          | 2.2E+00                                |
| p-Cresol (4-methylphenol)                                     | 106-44-5  | 24-hr               | 6.0E+02         | 4.4E+01                          | 2.2E+00                                |
| Xylene (mixture), including m-<br>xylene, o-xylene, p-xylene  | 1330-20-7 | 24-hr               | 2.2E+02         | 1.6E+01                          | 8.2E-01                                |
| m-Xylene                                                      | 108-38-3  | 24-hr               | 2.2E+02         | 1.6E+01                          | 8.2E-01                                |
| o-Xylene                                                      | 95-47-6   | 24-hr               | 2.2E+02         | 1.6E+01                          | 8.2E-01                                |
| p-Xylene                                                      | 106-42-3  | 24-hr               | 2.2E+02         | 1.6E+01                          | 8.2E-01                                |

Table 2: New table structure in WAC 173-460-150

### Comments on specific toxic air pollutants

### Asbestos

#### Commenter: Southwest Clean Air Agency, Paul Mairose - Comment A-2-4

Asbestos by name is listed in the table of pollutants with CAS No 1332-21-4. Asbestos is defined in 40 CFR 61 Subpart M as follows: "Asbestos means the asbestiform varieties of serpentinite (chrysotile), riebeckite (crocidolite), cummingtonite-grunerite, anthophyllite, and actinolite-tremolite." Only these specific zeolites are regulated as asbestos. If I was to do a search for tremolite asbestos I would find CAS No 14567-73-8 - not necessarily CAS No 1332-21-4. This may lead a person to determine that tremolite is not on the toxic pollutant list. This should be clarified for each of the zeolites identified as asbestos and listed separately with their specific CAS number.

Erionite is a zeolite commonly thought of as asbestos-like but is not listed in the rule. Erionite is known to be a human carcinogen and is listed by the International Agency for Research on Cancer as a Group 1 Carcinogen. It exists in rock deposits in Oregon and North Dakota among other places in the US. Health Departments in those States have severely restricted mining activities in areas where erionite exists. If found in Washington it could not be regulated under WAC 173-460 because it is not on the list.

### **Response to Asbestos**

Asbestos is the broad name for a group of naturally occurring silicate minerals that crystallize in long thin fibers. There are two main classes of asbestos: serpentine and amphibole.

The only member of the serpentine class is chrysotile. Historically, industry used this form of asbestos most commonly in various fabricated asbestos-containing materials (insulation, brake linings, floor tiles, etc.). There are many different types of amphibole asbestos. The most common types used in commercial products include:

- Actinolite,
- Amosite (occasionally referred to as cummingtonite-grunerite asbestos),
- Anthophyllite.
- Crocidolite, and
- Tremolite,

These forms of asbestos are now regulated.

We agree that we should name specific asbestos types on the list in addition to the general asbestos listing. Therefore, we added these asbestos types and CAS numbers to the list of toxic air pollutants as shown in Table 3 below. The ASIL, SQER, and de minimis emission values are identical to those of the general listing for "Asbestos (fibers/cubic centimeter)."

| Common Name                                        | CAS #      | Averaging<br>Period | ASIL<br>(µg/m³) | SQER<br>(Ib/averaging<br>period) | De Minimis<br>(Ib/averaging<br>period) |
|----------------------------------------------------|------------|---------------------|-----------------|----------------------------------|----------------------------------------|
| Asbestos (fibers/cubic centimeter)                 | 1332-21-4  | year                | 4.3E-06         | 7.1E-04                          | 3.5E-05                                |
| Actinolite asbestos<br>(fibers/cubic centimeter)   | 12172-67-7 | year                | 4.3E-06         | 7.1E-04                          | 3.5E-05                                |
| Amosite asbestos<br>(fibers/cubic centimeter)      | 12172-73-5 | year                | 4.3E-06         | 7.1E-04                          | 3.5E-05                                |
| Anthophylite asbestos<br>(fibers/cubic centimeter) | 17068-78-9 | year                | 4.3E-06         | 7.1E-04                          | 3.5E-05                                |
| Chrysotile asbestos<br>(fibers/cubic centimeter)   | 12001-29-5 | year                | 4.3E-06         | 7.1E-04                          | 3.5E-05                                |
| Crocidolite asbestos<br>(fibers/cubic centimeter)  | 12001-28-4 | year                | 4.3E-06         | 7.1E-04                          | 3.5E-05                                |
| Tremolite asbestos<br>(fibers/cubic centimeter)    | 14567-73-8 | year                | 4.3E-06         | 7.1E-04                          | 3.5E-05                                |

Table 3: Asbestos toxic air pollutants

Numerous other amphiboles exist, even though commercial products never used them and current federal regulations do not name them.

In 2014, EPA published a toxicological review of Libby amphibole asbestos. In this assessment, they identified various forms of amphibole fibers present in Libby amphibole asbestos that caused adverse effects. Based on this assessment, EPA developed a new unit risk factor and reference concentration for Libby amphibole asbestos. Based on the unit risk factor, we included a new toxic air pollutant specific to Libby amphibole asbestos. See response to comment A-2-6 for more details.

While we share concerns regarding the toxicity of erionite fibers, quantitative toxicity values for erionite fibers do not currently exist. Therefore, Ecology did not include it on the list of toxic air pollutants in the rule. We are willing to consider and discuss ways to address or regulate erionite as a toxic air pollutant during the course of a future rulemaking.

### Cobalt

#### Commenter: Southwest Clean Air Agency, Paul Mairose - Comment A-2-14

Cobalt is on the list with CAS No 7440-48-4. This is similar to Comment A-2-8 but in this case cobalt compounds or NOS, are not identified. Is this an oversight? Is there a reason that cobalt would or should be listed by itself as just elemental (without saying elemental)? Previously it was listed as (metal dust or fume).

### **Response to Cobalt**

The 2009 rulemaking changed "cobalt-metal dust or fume" (based on the ACGIH TLV) to "cobalt" based on the minimal risk level (MRL) for cobalt provided by the Agency for Toxic Substances and Disease Registry. A study of respiratory effects in diamond polishers exposed to cobalt particles in the air provided the basis for the MRL for cobalt. The form of cobalt exposure in this study was likely metallic cobalt particles.

The available studies are not adequate to derive separate toxicity values for different cobalt compounds. Therefore, we assume that all forms of cobalt compounds are equally toxic based on the mass of cobalt in a cobalt compound. We selected this approach to be protective of public health.

We renamed the listing for this pollutant as "Cobalt and compounds, NOS."

### **Dimethyl mercury**

#### Commenter: Matt Kadlec - Comment I-1-1

Methylmercury [CH<sub>3</sub>Hg] is not synonymous with Dimethyl mercury [(CH<sub>3</sub>)<sub>2</sub>Hg] but you have it listed as "Methyl mercury (Dimethyl mercury)" with the CAS for dimethyl mercury 593-74-8.

The CAS for Methylmercury (synonym mono-methylmercury ion) is 22967-92-6. It can be emitted into air as different compounds. These forms are about as toxic as dimethyl mercury so it's wise that you listed it, but it should be as "Organomercury Compounds, NOS. CAS ----" in keeping, for example, with the way you listed "Lead & Compounds, NOS." The ASIL, SQER and De minimis for Organomercury Compounds, NOS. should be the same as those for dimethyl mercury.

### **Response to Dimethyl mercury**

We mistakenly changed the name of this toxic air pollutant from "dimethyl mercury" to "methyl mercury (dimethyl mercury)" when we proposed the rule.

Our rulemaking intent was to propose a new ASIL value for dimethyl mercury based on our review of the associated scientific information. We did not intend to change the chemical name nor its CAS number from the current rule. We will retain the name "dimethyl mercury" as it currently exists.

## Fluorides

#### Commenter: Southwest Clean Air Agency, Paul Mairose - Comment A-2-7

The pollutant list contains "Fluorides (flouride containing chemicals), NOS." It is unclear what is meant by fluoride containing chemicals - is it meant to say fluorine containing chemicals? If what is meant is truly fluorides then more explanation is necessary. If it means fluorine, I suspect you do not intend to capture all the PFCs, CFCs or HCFCs. Any listing without a CAS No has great potential to cause confusion.

### **Response to Fluorides**

As fluoride is the negative ion of fluorine, the toxic air pollutants list is referring to ionic compounds of fluoride, such as potassium fluoride, sodium fluoride, and calcium fluoride.

The toxic air pollutant listing for fluorides does not cover all non-ionic (covalent) compounds that contain fluorine (e.g., per- and polyfluoroalkyl substances), only those compounds that contain fluoride.

We did not change the rule as a result of this comment.

### Libby amphibole asbestos

#### Commenter: Southwest Clean Air Agency, Paul Mairose - Comment A-2-6

Libby amphibole asbestos is identified on the proposed list without a CAS No. Is this different than the listing for asbestos CAS No 1332-21-4 - I assume so, and where does it fit in the federal

definition of asbestos as described in Comment A-2-4? On EPA's webpage https://cumulis.epa.gov/supercpad/SiteProfiles/index.cfm?fuseaction=second.Cleanup&id=0801 744 Libby asbestos is referred to as tremolite-actinolite series asbestos, is often called Libby Amphibole asbestos (LA). It seems to fit the definition of asbestos under CAS No 1332-21-4 under Comment A-2-4. Should it be listed separately?

### **Response to Libby amphibole asbestos**

Libby amphibole asbestos does not have an applicable CAS number.

Libby amphibole asbestos does not fit the federal definition of asbestos, but it is a "mixture of amphibole fibers identified in the Rainy Creek complex and present in ore from the vermiculite mine near Libby, Montana."\* Libby amphibole asbestos includes fibers with a range of mineral compositions, including amphibole fibers primarily identified as winchite, richterite, and tremolite, along with magnesio-riebeckite, magnesio-arfvedsonite, and edenite.

The listing of Libby amphibole asbestos as a toxic air pollutant is based on EPA's 2014 toxicological review, which established a reference concentration and unit risk factor (URF) for this mixture of amphibole fibers. The unit risk factors for "Libby amphibole asbestos" and "asbestos" are similar (0.17 per f/cc vs 0.23 per f/cc respectively). Because EPA's toxicological review of Libby amphibole asbestos highlights concerns about a variety of amphiboles, we changed the chemical name in the table from "Libby amphibole asbestos" to "Libby amphibole asbestos, and amphiboles, NOS."

We did not change the rule in response to this comment.

\* U.S. EPA. IRIS Toxicological Review of Libby Amphibole Asbestos (Final Report). U.S. Environmental Protection Agency, Washington, DC, EPA/635/R-11/002F, 2014.

### Mercury averaging period

#### Commenter: NCASI, Giffe Johnson - Comment O-1-2

There appears to be a technical error in the proposed ASIL value or averaging period for mercury. It appears that WAC proposes to adjust the mercury ASIL to  $0.03 \mu g/m3$ , equal to the value selected by the California Office of Environmental Health Hazard Assessment (OEHHA) for chronic inhalation risk. However, WAC does not propose to adjust the averaging period for the mercury ASIL. This presents a mismatch between a concentration representing a chronic (i.e., yearly) exposure and an averaging period more closely related to an acute exposure (i.e., 24 hour). If WAC is to use the OEHHA values for mercury exposure, it would be more correct to either use the OEHHA acute value of  $0.6 \mu g/m3$  or to adjust the averaging time to yearly.

# Commenter: Northwest Pulp and Paper Association, Christian McCabe - Comment O-2-3

The NCASI letter identifies that the proposed ASIL of  $0.030 \,\mu$ g/m3 for Mercury, elemental should appropriately be matched with a yearly averaging period (not the 24-hour period shown in the proposed rule). Please review this discrepancy and resolve the difference.

### **Response to Mercury averaging period**

Consistent with the ASIL derivation method used in the 2009 revision of the rule, we are adopting an ASIL for total inorganic mercury derived by applying a 24-hour time-weighted average to the corresponding OEHHA chronic Reference Exposure Level concentration. This compromise allows issuance of a single ASIL that limits both chronic and acute toxicity risk potentials.

We did not change the rule in response to this comment.

#### Mercury, elemental

#### Commenter: NCASI, Giffe Johnson - Comment O-1-3

Clarity will be needed for implementation of the mercury ASIL. There is an implementation issue with the mercury ASIL. The draft of Table 150 lists "Mercury, CAS # 7439-97-6"; this is the CAS # for elemental mercury (i.e., not oxidized or organic bound). Previous versions of Table 150 have this entry listed as "Mercury, Elemental." The focus on elemental mercury as a key risk driver is reasonable, and care should be taken that oxidized forms of mercury are not subjected to an ASIL developed for elemental mercury. This could be addressed by changing the draft of Table 150 to read "Mercury, Elemental" or through implementation guidance.

#### Commenter: Southwest Clean Air Agency, Paul Mairose - Comment A-2-8

The proposed list contains "Mercury, elemental" as a pollutant. This appears to be the only metal listed this way. Several other metals like copper, nickel, lead, manganese, selenium, chromium, etc., should be listed separately as an elemental component and then separately, as nickel compounds, NOS, as an example. They all should be consistent unless there is a good reason not to be.

#### **Response to Mercury, elemental**

The table lists "Mercury, elemental, CAS # 7439-97-6." We intend for the ASIL to encompass total inorganic mercury.

Total inorganic mercury emissions from sources subject to our rule may exist in different forms. i.e., as gaseous elemental and gaseous oxidized mercury (GEM and GOM). Even though the speciation of the forms emitted is likely to vary among source types and

between facilities, emissions are likely to be mostly GEM. Implementation of the rule will require summing the amounts of mercury in the various inorganic forms a source emits to determine the total inorganic mercury emission.

We did not change the rule in response to this comment.

### Nickel carbonate hydroxide

#### Commenter: Southwest Clean Air Agency, Paul Mairose - Comment A-2-10

It appears that the CAS No for nickel carbonate hydroxide is incorrect. The correct CAS No is 12607-70-4. The listed CAS No 1346-39-3 is not a valid CAS number.

#### **Response to Nickel carbonate hydroxide**

We agree that the CAS number for nickel carbonate hydroxide should be 12607-70-4 so we made that correction.

### Nickel oxide black

#### Commenter: Southwest Clean Air Agency, Paul Mairose - Comment A-2-11

Nickel oxide black is listed without a CAS No. An appropriate CAS No may be 12137-09-6.

### **Response to Nickel oxide black**

Nickel oxide black is synonymous with nickel sesquioxide or nickel(III) oxide. The U.S. National Library of Medicine's ChemIDplus database reports a CAS Number of 1314-06-3 so we used this number.

### Trichloropropane

# Commenter: Northwest Pulp & Paper Association, Christian McCabe - Comment O-2-2

Table 9 of the Decision-Making Documentation identifies 1,2,3-Trichloropropane as being adjusted by an early-life adjustment factor. The proposed ASIL is based on a 24-hour exposure evaluation. Page 7 of the Decision-Making Documentation identifies the appropriateness of the ADAF only for ASIL's with an annual averaging time. Please review this apparent discrepancy and resolve the difference.

### **Response to Trichloropropane**

You are correct that Table 9 of the Decision Making Document identifies 1,2,3-Trichloropropane as having an ASIL value that includes an early-life adjustment factor. This chemical was included on Table 9 of the Decision-Making Documentation in error. While EPA's Regional Screening Level User's Guide identifies this chemical as a mutagen, there is no unit risk value for quantifying increased cancer risk from inhalation exposure to 1,2,3-trichloroprapane. Therefore, the ASIL does not reflect the use of an early-life adjustment factor.

We did not change the rule as a result of this comment.

### **Remove banned/restricted pollutants**

#### Commenter: Southwest Clean Air Agency, Paul Mairose - Comment A-2-13

There are several pollutants (compounds) on the list that are now banned or severely restricted for use in the US. These include several insecticides and pesticides. Why are these on the list? These pollutants/compounds are not allowed in the US by federal rule. It would be better if these items would be separated into their own list in the rule as being prohibited rather than developing or displaying ASILs or SQERs, because they should not be present in our environment. Remember the rule is generally used for permitting purposes, there is no way an agency should be permitting a pollutant that has been federally listed and banned unless it is for a cleanup. This is another example that the basis for listing an item be predicated on the pollutant being listed on one of the three agency's lists. This is a faulty place to build your whole concept of what should be on the state-wide list. It would suggest that these items could be manufactured and/or emitted as part of an NSR activity.

### **Response to Remove banned/restricted pollutants**

Although existing federal laws ban some toxic air pollutants from use or manufacture in the U.S., there are some instances where new or modified sources of air pollution may emit these pollutants into the air. For example, a cleanup of a contaminated site that contains banned chemicals may involve remedies involving the extraction of these pollutants from the soil or groundwater into air.

Another example is that solid waste incinerators may inadvertently produce PCBs or other banned chemicals during the combustion process. While these situations are not common, the rule provides a safeguard by which a permitting agency could include conditions in the permit to limit or prevent the release of these chemicals.

We did not change the rule as a result of this comment.

## Remove criteria air pollutants

### Commenter: Southwest Clean Air Agency, Paul Mairose - Comment A-2-2

Remove the criteria air pollutants from the list that have established National Ambient Air Quality Standards (NAAQS) and State Ambient Air Quality Standards (SAAQS). By having these pollutants listed in separate rules with separate values is confusing at best. If the SAAQS is not sufficient to protect the public, then the SAAQS should be updated. Having these criteria air pollutants on the list just because they exist on one of the three agency lists is a "flag" that maybe the criteria for listing in this rule is not robust and discerning or that the SAAQS should be updated.

## **Response to Remove criteria air pollutants**

We have regulated five criteria air pollutants - carbon monoxide, lead, nitrogen dioxide, ozone, and sulfur dioxide - as toxic air pollutants since 2009 because they met the listing criteria.

During the rule development process, we evaluated whether to retain these pollutants. We reviewed:

- Whether the pollutants continue to meet the listing criteria.
- Current status as a national ambient air quality standard (NAAQS).
- NAAQS status compared to the toxic air pollutant levels.

We decided to retain these chemicals as toxic air pollutants because they meet the listing criteria and including them provides additional consideration of potential public health impacts that NAAQS compliance alone does not provide.

The de minimis emission values for the criteria pollutants reflect an emission rate in pounds per averaging period based on the levels in WAC 173-400-110(5). Except for lead, the table in WAC 173-460-160 establishes values based on pounds per hour compared to tons per year in the general air quality rule. Providing a shorter averaging period considers the potential for acute health effects from potential short-term spikes of these emissions.

We agree that it would be clearer if the toxic de minimis emission values for criteria pollutants were included in the table in WAC 173-400-110(5). Unfortunately, revising another rule is outside the scope of the current rulemaking process. To ensure this comment is evaluated as part of a future revision, we have added it to our rule-tracking database.

We did not change the rule in response to this comment.

## **Spelling mistakes**

### Commenter: Olympic Region Clean Air Agency, Robert Moody - Comment A-1-1; Southwest Clean Air Agency, Paul Mairose - Comment A-2-15

Libby "amphipole" asbestos should be Libby "amphibole" asbestos.

### Commenter: Paul Mairose - Comment A-2-16

The second fluoride in "Fluorides (flouride containing chemicals), NOS" is misspelled.

## **Response to Spelling mistakes**

Thank-you for your comments. We corrected these spelling errors.

# **Table formatting**

## Commenter: Southwest Clean Air Agency, Paul Mairose - Comment A-2-9

Many of the pollutant names in the list have a period after the name. Is this intentional or is this an oversight?

## **Response to Table formatting**

After reviewing the list of pollutants, we did not find any names followed by a period in the proposed rule language (OTS-1329.5).

# Appendix A: Decision-Making Documentation



# **Decision-Making Documentation**

*Updating Chapter* 173-460 WAC *Controls for New Sources of TAPs* 

Final November 2019

# **Publication and Contact Information**

This document is available for two years on the Department of Ecology's website at: <u>https://ecology.wa.gov/Regulations-Permits/Laws-rules-</u>rulemaking/Rulemaking/WAC173-460

For more information contact:

Air Quality Program P.O. Box 47600 Olympia, WA 98504-7600 Phone: 360-407-6800

Washington State Department of Ecology – <u>www.ecology.wa.gov</u>

| • | Headquarters, Olympia               | 360-407-6000 |
|---|-------------------------------------|--------------|
| • | Northwest Regional Office, Bellevue | 425-649-7000 |
| • | Southwest Regional Office, Olympia  | 360-407-6300 |
| • | Central Regional Office, Union Gap  | 509-575-2490 |
| • | Eastern Regional Office, Spokane    | 509-329-3400 |

To request ADA accommodation including materials in a format for the visually impaired, call Ecology at 360-407-7668 or visit <u>https://ecology.wa.gov/accessibility</u>. People with impaired hearing may call Washington Relay Service at 711. People with speech disability may call TTY at 877-833-6341.

# **Decision-Making Document**

*Updating Chapter* 173-460 WAC *Controls for New Sources of TAPs* 

Air Quality Program

Washington State Department of Ecology

Olympia, Washington

This page is purposely left blank

# **Table of Contents**

| Page                                                                             |
|----------------------------------------------------------------------------------|
| Tablesii                                                                         |
| Acronyms iii                                                                     |
| What we said we would do1                                                        |
| What we did2                                                                     |
| Update the list of TAPs (add or subtract chemicals)                              |
| Chemicals considered but not added to the TAP list                               |
| Evaluation of ammonium sulfate5                                                  |
| Recalculation of ASILs                                                           |
| Evaluation of excluding criteria pollutants as TAPs9                             |
| Evaluation of the use of early life adjustment factors                           |
| Review of the existing ASIL for diethyl and dimethyl mercury 12                  |
| Evaluation of ASILs for groups of chemicals (toxicity equivalency)13             |
| Revision of the small quantity emission rate modeling parameters                 |
| Recalculation of the small quantity emission rates14                             |
| Recalculation of the de minimis emission values15                                |
| Updating the rule to support the rule changes16                                  |
| Appendices17                                                                     |
| Appendix A. 2019 Table of ASILs, SQERs, and De Minimis Emission Values           |
| Appendix B. Retained TAPs32                                                      |
| Appendix C. New TAPs42                                                           |
| Appendix D. TAPs with a More Stringent ASIL44                                    |
| Appendix E. TAPs with a Less Stringent ASIL46                                    |
| Appendix F. TAPs with an Unchanged ASIL48                                        |
| Appendix G. TAPs with an Unchanged ASIL Value (Adjusted by Significant Digits)52 |
| Appendix H. 2019 Rule Language57                                                 |

# Tables

|                                                             | <u>Page</u> |
|-------------------------------------------------------------|-------------|
| Table 1. Changes to the 2009 list of TAPs                   | 3           |
| Table 2. Removed TAPs                                       | 3           |
| Table 3. Chemicals considered but not added to the TAP list | 4           |
| Table 4. ASIL hierarchy                                     | 7           |
| Table 5. 2019 Changes to ASILs                              | 8           |
| Table 6. TAP with corrected averaging period                | 9           |
| Table 7. TAP with corrected ASIL value                      | 9           |
| Table 8. TAP with ASIL deviating from listing hierarchy     | 9           |
| Table 9. TAPs adjusted by age dependent adjustment factor   | 11          |
| Table 10. PAHs adjusted by age dependent adjustment factor  | 12          |
| Table 11. SQER modeling parameters                          | 13          |
| Table 12. SQER conversion factors                           | 15          |
| Table 13: AERSCREEN conversion factors                      | 15          |
| Table 14. Changes to de minimis emission values             | 15          |

# Acronyms

| AERSCREEN       | U.S. Environmental Protection Agency Air Quality Screening Model |
|-----------------|------------------------------------------------------------------|
| ASIL            | Acceptable Source Impact Level                                   |
| ATSDR           | Agency for Toxic Substances and Disease Registry                 |
| СО              | Carbon Monoxide                                                  |
| EPA             | U.S. Environmental Protection Agency                             |
| OEHHA           | California Office of Environmental Health Hazard Assessment      |
| IRIS            | Integrated Risk Information System                               |
| MRL             | Minimal Risk Level                                               |
| NAAQS           | National Ambient Air Quality Standards                           |
| NO <sub>2</sub> | Nitrogen Dioxide                                                 |
| OEHHA           | California Office of Environmental Health Hazard Assessment      |
| O <sub>3</sub>  | Ozone                                                            |
| Pb              | Lead                                                             |
| PBDE            | Polybrominated Diphenyl Ethers                                   |
| PPB             | Parts per Billion                                                |
| REL             | Reference Exposure Level                                         |
| RfC             | Reference Concentration                                          |
| $SO_2$          | Sulfur Dioxide                                                   |
| SQER            | Small Quantity Emissions Rate                                    |
| TAP             | TAP                                                              |
| $\mu g/m^3$     | Micrograms per Meter Cubed                                       |
| URF             | Unit Risk Factor                                                 |

# **Decision-Making Documentation**

The purpose of this rulemaking is to update the list of TAPs (TAPs) in Chapter 173-460 WAC, Controls for New Sources of Toxic Air Pollution Sources, to reflect the latest, best available health effects information. This rule includes air quality permitting requirements for businesses that emit TAPs.

## What we said we would do

In our July 18, 2018 rulemaking announcement, we said we would:

- Update the list of TAPs.
- Recalculate:
  - Acceptable source impact levels (ASILs).
  - Small quantity emission rates (SQERs).
  - De minimis emission values.
- Update the rule to support the changes described above.

Specifically, we said we intended to update the list of TAPs to:

- Add or subtract chemicals based on updated toxicity information available from the U.S. Environmental Protection Agency (EPA), California Office of Environmental Health Hazard Assessment (OEHHA), and Agency for Toxic Substances and Disease Registry (ATSDR). We based our list of TAPs on the inhalation toxicity values established by these three agencies.
- Review ammonium sulfate as a TAP and its associated toxicity value. This is in response to a request from the Far West Agribusiness Association to remove ammonium sulfate from the list of TAPs.
- Evaluate whether the rule should continue to list criteria pollutants as TAPs.
- Evaluate whether to establish additional acceptable source impact levels for specific groups of chemicals with established toxic equivalency factors. This approach would consider mixtures of similar chemicals (i.e., dioxin-like compounds and carcinogenic polycyclic aromatic hydrocarbons) to be a single TAP based on toxic equivalency.
- Revise the small quantity emission rates and de minimis values based on updates to the acceptable source impact levels and the use of the latest version of EPA's AERSCREEN air quality dispersion model.

• Evaluate the use of early life adjustment factors when deriving acceptable source impact levels for chemicals that are considered to cause cancer through a mutagenic mode of action. These chemicals may pose a greater risk to infants and children than is reflected in their toxicity value.

## What we did

During the rule development process, we held seven stakeholder meetings from August 2018 through March 2019. During those meetings, we discussed various topics related to updating the list of TAPs in WAC 173-460-150. This document discusses each topic and our final decision.

## Update the list of TAPs (add or subtract chemicals)

The TAP list in WAC 173-460-150 adopted in 2009 contains 395 chemicals:

- Cancer-causing chemicals (averaging period of one year): 288
- Chemicals with 24-hour averaging period: 93
- Chemicals with 1-hour averaging period: 14

We used the process from the 2009 rulemaking<sup>1</sup> to identify chemicals to add or remove from the list of TAPs:<sup>2</sup>

- The chemical must be listed in one or more of the acceptable data sources; and
- The chemical must have an associated inhalation toxicity value established to quantify human health risk and hazard.

Acceptable data sources that meet high standards for scientific credibility include:

- EPA Integrated Risk Information System (IRIS).
- California Office of Environmental Health Hazard Assessment (OEHHA) reference exposure levels and cancer potency factors.
- Agency for Toxic Substances and Disease Registry (ATSDR) minimal risk levels.

By applying this process, the updated list of TAPs in Appendix A consists of 438 chemicals:<sup>3</sup>

- Cancer-causing chemicals (averaging period of one year): 307
- Chemicals with 24-hour averaging period: 116

<sup>&</sup>lt;sup>1</sup> Appendix B: Setting the Acceptable Source Impact Level, Small Quantity Emission Rates, and De Minimis Values in Patora, K. Final Cost Benefit Analysis Chapter 173-400 WAC and Chapter 173-401 WAC. May 2009. Publication no. 09-02-010.

<sup>&</sup>lt;sup>2</sup> See "Methods to Update the List of TAPs," August 2018 for more details on the process to update the list.

<sup>&</sup>lt;sup>3</sup> See also Annotated 2019 TAP Table June 2019 (Excel spreadsheet).

• Chemicals with 1-hour averaging period: 15

Table 1 summarizes the changes to the 2009 list of TAPs.<sup>4</sup>

| Change                     | 2009 Table<br>(# of TAPs) | Percentage | 2019 Table<br>(# of TAPs) | Percentage |
|----------------------------|---------------------------|------------|---------------------------|------------|
| Retained TAPs (Appendix B) | 387                       | 98         | 387                       | 88         |
| Removed TAPs (Table 2)     | 8                         | 2          |                           |            |
| New TAPs (Appendix C)      |                           |            | 51                        | 12         |
| Total                      | 395                       | 100        | 438                       | 100        |

#### Table 1. Changes to the 2009 list of TAPs

We removed eight TAPs for the reasons noted in Table 2.

#### Table 2. Removed TAPs

| Chemical Common Name                                  | CAS #      | Reason                                                                                                              |  |
|-------------------------------------------------------|------------|---------------------------------------------------------------------------------------------------------------------|--|
| 5-Nitro-o-anisidine                                   | 99-59-2    | Delisted by California                                                                                              |  |
| Ammonium sulfate                                      | 7783-20-2  | Ecology approved petition for removal                                                                               |  |
| Chromic acid                                          | 11115-74-5 | Redundant – covered by Chromic(VI) acid                                                                             |  |
| Chromium hexavalent: soluble, except chromic trioxide |            | Redundant – covered by Chromium(VI) & compounds, NOS                                                                |  |
| Dibromochloromethane                                  | 124-48-1   | Delisted by California                                                                                              |  |
| Melphalan hydrochloride                               | 3223-07-2  | 2 Chemical does not meet TAP listing criteria (no u risk factor)                                                    |  |
| Pentabromodiphenyl ether                              | 32534-81-9 | Redundant – covered by Polybrominated diphenyl ethers (PBDEs) (Containing less than 10 bromine atoms). <sup>5</sup> |  |
| Tetrabromodiphenyl ether                              | 40088-47-9 | Redundant – covered by Polybrominated diphenyl ethers (PBDEs) (Containing less than 10 bromine atoms). <sup>5</sup> |  |

## Chemicals considered but not added to the TAP list

Twelve chemicals met the listing criteria noted above that we do not include as TAPs (Table 3):

• Five chemicals are redundant with another TAP.

<sup>&</sup>lt;sup>4</sup> The 2009 TAP list does not include the insecticide malathion although it met the listing criteria. It is included as a new TAP because it meets the 2019 listing criteria.

<sup>&</sup>lt;sup>5</sup> The ASIL for PBDEs is based on ATSDRs minimal risk level (MRL). An inhalation MRL (or inhalation toxicity value) specific to PBDE-99 [2,2',4,4',5-pentabromodiphenyl ether] does not exist. The MRL does not specify individual PBDE congeners, only that they are "lower brominated."

• Seven chemicals would result in more burden for regulated facilities without providing added public health protection.

| Chemical Common Name                               | CAS #       | Comment                                                                                                   |  |
|----------------------------------------------------|-------------|-----------------------------------------------------------------------------------------------------------|--|
| Acetone                                            | 67-64-1     | Solvent                                                                                                   |  |
| Chromium(VI), chromic acid<br>aerosol mist         | 18540-29-9  | Covered by Chromic(VI) chromic acid                                                                       |  |
| Fuel oil no. 2                                     | 68476-30-2  | Home heating oil (dyed diesel fuel)                                                                       |  |
| JP-4*                                              | 50815-00-4  | U.S. Airforce aircraft fuel (phased out)                                                                  |  |
| JP-5*                                              | 8008-20-6   | Primary fuel used in U.S. Navy aircraft carriers (MIL-DTL-5624)                                           |  |
| JP-7*                                              | HZ0600-22-T | U.S. Air Force aircraft fuel (MIL-DTL-38219)                                                              |  |
| JP-8*                                              | 8008-20-6   | U.S. Air Force military jet fuel (MIL-DTL-83133)                                                          |  |
| Kerosene                                           | 8008-20-6   | Aviation fuel, heating fuel, solvent                                                                      |  |
| PBDE-99 [2,2',4,4',5-<br>pentabromodiphenyl ether] | 60348-60-9  | Covered by Polybrominated diphenyl ethers (PBDEs) [Containing less than 10 bromine atoms] <sup>5</sup>    |  |
| Pentabromodiphenyl ether                           | 32534-81-9  | Covered by Polybrominated diphenyl ethers (PBDEs) [Containing less than 10 bromine atoms] <sup>5</sup>    |  |
| Polybrominated diphenyl ethers (PBDEs)             | 32536-52-0  | Covered by Polybrominated diphenyl ethers<br>(PBDEs) [Containing less than 10 bromine atoms] <sup>5</sup> |  |
| Selenium sulfide                                   | 7446-34-6   | Covered by Selenium & selenium compounds (other than hydrogen selenide)                                   |  |

Table 3. Chemicals considered but not added to the TAP list

\* JP means jet propellant.

### Acetone

Including acetone on the TAP list would have imposed more burden on businesses and permitting agencies. EPA promotes acetone as a Safer Choice<sup>6</sup> chemical because it is best in class for specific functions. EPA notes that acetone has a "low potential for harming either human health or the environment."<sup>7</sup> Including it as a TAP could have unintended consequences by disincentivizing the use of a chemical that we promote as a substitute for more harmful chemicals. Adding the chemical as a TAP does not align the level of review by an applicant and the permitting agency with the risk associated with the emissions from the project.

### Fuels

We did not include these fuels to the TAP list because the rule already regulates the volatile TAPs that comprise each fuel:

<sup>&</sup>lt;sup>6</sup> Refer to EPA's Safer Choice Standard and Criteria found at <u>https://www.epa.gov/saferchoice/standard#tab-2</u>.

<sup>&</sup>lt;sup>7</sup> EPA Memorandum from Dan Rosenblatt to Lois Rossi, "<u>Reassessment of One Exemption from the Requirement</u> of a Tolerance for Acetone," June 13, 2005, page 2.

- Gasoline and diesel fuel contain TAPS such as benzene, toluene, xylenes, n-hexane, and naphthalene.
- Jet fuel contains different TAPs such as benzene, toluene, ethylbenzene, xylene, and naphthalene.<sup>8,9</sup> ATSDR establishes the minimal risk level for jet fuels based on the jet fuel mixture, rather than individual components. Using naphthalene as an example, consideration of these individual TAPs would likely be more stringent than an ASIL based on the jet fuel mixture that is the basis for the JP-8 minimal risk level.

Including these fuels would therefore be duplicative and provide no regulatory benefit.

## Evaluation of ammonium sulfate

Ammonium sulfate is on the 2009 list of TAPs based on California OEHHA's acute reference exposure level for "sulfates." On July 25, 2017, Far West Agribusiness Association (Far West) petitioned Ecology to remove ammonium sulfate from the list of TAPs.<sup>10</sup> Far West contended that Ecology should not consider ammonium sulfate a TAP. As part of this rulemaking, we agreed to evaluate the petition and supporting information provided by consultants for Simplot<sup>11</sup> and Two Rivers Terminal,<sup>12</sup> and existing literature around the short-term respiratory effects of ammonium sulfate. The McGregor Company<sup>13</sup> and Far West Agribusiness Association<sup>14</sup> also supported the removal of this chemical from the list.

We reviewed and considered:

- The basis for including ammonium sulfate on the 2009 list of TAPs.
- Information about potential health effects associated with inhalation of ammonium sulfate.
- Levels of short-term exposure that could pose mild adverse respiratory effects.
- Public health implications of removing ammonium sulfate from the list of TAPs.

Based on our review, we removed ammonium sulfate from the TAP list because this action is not likely to result in increased hazards from new sources of air pollution.<sup>15</sup>

We formed this decision by the following key considerations:

<sup>&</sup>lt;sup>8</sup> ATSDR Jet Fuels JP-4 and JP-7 found at <u>https://www.atsdr.cdc.gov/ToxProfiles/tp76-c3.pdf.</u>

<sup>&</sup>lt;sup>9</sup> ATSDR JP-5, JP-8 and Jet A-Fuels found at <u>https://www.atsdr.cdc.gov/toxprofiles/tp121-c3.pdf</u>.

<sup>&</sup>lt;sup>10</sup> Lukins & Annis, Petition Letter from Far West Agribusiness requesting rulemaking to remove ammonium sulfate as a TAP in WAC 173-460-150. July 25, 2017.

<sup>&</sup>lt;sup>11</sup> Arcadis U.S., Inc. Technical Report Supporting Petition to Remove Ammonium Sulfate from the TAP List. Prepared for J.R. Simplot Company. December 7, 2018.

<sup>&</sup>lt;sup>12</sup> Weeks, D. Comments by Two Rivers Terminal LLC. Submitted December 10, 2018.

<sup>&</sup>lt;sup>13</sup> Morscheck, F. Email from The McGregor Company. January 8, 2019.

<sup>&</sup>lt;sup>14</sup> Fitzgerald, J. Letter from Far West Agribusiness Association. January 16, 2019.

<sup>&</sup>lt;sup>15</sup> Refer to the February 14, 2019 Memorandum "Petition to remove ammonium sulfate for the list of TAPs in WAC 173-460-150" for Ecology's response (Thursday, Feb. 21, 2019 stakeholder meeting).

- The primary study used to determine the reference level (which forms the basis for the ASIL) observed slight changes in airway function after exposure to sulfuric acid and ammonium bisulfate, but not after exposure to ammonium sulfate;
- Sulfates of greater acidity than ammonium sulfate appear to be more likely to cause short-term respiratory effects;
- Ammonium sulfate as a constituent of ambient particulate matter is not unequivocally known to be more toxic than other forms of particulate matter; and
- Existing regulations that address particulate matter emissions from new and existing sources likely address emissions of ammonium sulfate.

We concluded that removing ammonium sulfate from the list of TAPs will not likely result in an increase in short-term respiratory hazards from new sources of air pollution.

## **Recalculation of ASILs**

The ASIL for each chemical reflects the following considerations:

- We derived ASIL values for pollutants in which inhalation toxicity values were available from EPA's IRIS, California OEHHA, and ATSDR minimal risk levels.
  - We deviated from this approach for diethyl and dimethyl mercury. We derived the ASIL for diethyl and dimethyl mercury based on our evaluation of research and other available information.
- We assigned only one ASIL and one concentration averaging period for each TAP.
- We assigned either a short-term ASIL value or a long-term ASIL value but not both.
- We established a short-term ASIL value for a 1-hour or 24-hour averaging period.
- If a TAP has toxicity values based on cancer and non-cancer effects, we established the ASIL based on cancer risk. We used this approach because the concentrations resulting in a lifetime increased cancer risk of one in one million are usually much lower than concentrations associated with non-cancer reference concentrations.
  - We deviated from this approach for 2,4- and 2,6- toluene diisocyanates because the chronic reference exposure level is lower than a level that results in a one in a million lifetime cancer risk.
- We accounted for children's susceptibility from early-life exposure to carcinogens.
- If more than one toxicity value is available for the same TAP, we established the ASIL based on the most recently adopted value.
- In deriving ASIL values based on noncancerous effects, we gave preference to toxicity values based on chronic effects, followed by intermediate values, followed by acute values as shown in Table 4.
  - We deviated from the hierarchy for two chemicals:

- Isoprophyl alcohol. We deviated from the hierarchy for isoprophyl alcohol because the 1-hour acute reference exposure level is lower than the chronic reference exposure level.
- Sulfur dioxide. We deviated from the hierarchy for sulfur dioxide to maintain consistency with how the ASILs values are set for the other criteria pollutants.
- We established ASILs based on chronic RELs, RfCs, and MRLs with 24-hour time weighted averages rather than with annual averages to reflect the decision of one ASIL value per TAP while ensuring that we did not overlook the acute effects of TAPs.
- We established the 24-hour averaging period when the data source did not provide one.
- We did not use draft MRLs, RELs, URFs, or RfCs.
- We converted an MRL from parts-per-billion (ppb) to micrograms per meter cubed (µg/m<sup>3</sup>) assuming 20 degrees Celsius at 1 atmosphere pressure.
- We rounded all values for emission rates and concentrations to two significant digits.
- We retained one look-up table for the TAP values.

#### Table 4. ASIL hierarchy

| Hierarchy | Toxicity Value                   | Averaging Period |  |  |
|-----------|----------------------------------|------------------|--|--|
| 1         | Cancer-causing chemical          | Year (annual)    |  |  |
| 2         | Chronic RfC, chronic REL, or MRL | 24-hour          |  |  |
| 3         | Intermediate MRL                 | 24-hour          |  |  |
| 4         | Acute MRL                        | 24-hour          |  |  |
| 5         | Acute REL                        | 1-hour           |  |  |

We established an ASIL for each TAP using one of the following three formulas.

#### Calculating ASIL values (averaging period of one year)

ASIL = target cancer risk (1 in one million or  $1 \ge 10^{-6}$ ) divided by unit risk factor (( $\mu g/m^3$ )<sup>-1</sup>) times early life adjustment factor

### Calculating ASIL values (24-hour averaging period)

ASIL = chronic reference concentration ( $\mu g/m^3$ ), chronic reference exposure level ( $\mu g/m^3$ ), or minimal risk level ( $\mu g/m^3$ )

### Calculating ASIL values (1-hour averaging period)

ASIL = acute reference exposure level ( $\mu g/m^3$ )

The 2019 changes modified ASIL values for 150 TAPs (including new and removed TAPs). Nine percent of ASILs would become less stringent (values increase), and 27 percent (including new TAPs) would become more stringent (values decrease). ASIL values for 65 percent of TAPs would not change under the 2019 changes (Table 5).

| Changes                                              | 2019 ASIL<br># of TAPs | Percentage |
|------------------------------------------------------|------------------------|------------|
| More stringent than existing value (value decreases) | 67                     | 15         |
| Less stringent than existing value (value increases) | 38*                    | 9          |
| No change                                            | 105                    | 24         |
| No change; value adjusted by significant digits      | 181                    | 41         |
| New TAP                                              | 51                     | 12         |
| Total                                                | 442                    | 100        |

#### Table 5. 2019 Changes to ASILs

\* Includes the four TAPs that were removed and not covered by a 2019 TAP (see Table 2).

For more information on a specific TAP, refer to:

- Appendix A. Complete list of 2019 TAPs.
- Appendix D. TAPs with a More Stringent ASIL.
- Appendix E. TAPs with a Less Stringent ASIL.
- Appendix F. TAPs with an Unchanged ASIL.
- Appendix G. TAPs with an Unchanged ASIL (adjusted by significant digits).

Other changes to specific ASIL values reflect:

- Corrections due to errors in the 2009 table:
  - Averaging period (Table 6).
  - ASIL values (Table 7).
- Deviations to ASIL methodology (Table 8):
  - The ASIL for isopropyl alcohol reflects the 1-hour chronic reference exposure level rather than the 24-hour acute level because it was lower and more protective. The 2019 ASIL is unchanged because the 2009 ASIL already reflects this deviation from the hierarchy.
  - The ASIL for three toluene diisocyanates reflects the lower, more protective, noncancer value rather than the cancer-causing value. We set the ASIL for all other TAPs based on cancer risk if a TAP has toxicity values based on cancer and noncancer effects.

#### Table 6. TAP with corrected averaging period

|                      |         | 2009             | 2019             |
|----------------------|---------|------------------|------------------|
| Chemical Common Name | CAS #   | Averaging Period | Averaging Period |
| Acetonitrile         | 75-05-8 | Year             | 24-hour          |

#### Table 7. TAP with corrected ASIL value

| Chemical Common Name      | CAS #     | 2009 ASIL | 2019 ASIL |
|---------------------------|-----------|-----------|-----------|
| 4-Dimethylaminoazobenzene | 60-11-7   | 76900     | 7.70E-04  |
| Direct black 38           | 1937-37-7 | 47600     | 4.80E-04  |

#### Table 8. TAP with ASIL deviating from listing hierarchy

|                                          |            |           |           | ASIL       | Averaging  |
|------------------------------------------|------------|-----------|-----------|------------|------------|
|                                          |            |           | 2019      | (based on  | Period     |
|                                          |            | 2019 ASIL | Averaging | hierarchy) | (based on  |
| Chemical Common Name                     | CAS #      | (µg/m³)   | Period    | (µg/m³)    | hierarchy) |
| Isopropyl alcohol                        | 67-63-0    | 3.20E+03  | 1-hr      | 7.0E+03    | 24-hour    |
| Toluene diisocyanates (2,4-<br>and 2,6-) | 26471-62-5 | 8.00E-03  | 24-hr     | 9.10E-02   | Year       |
| Toluene-2,4-diisocyanate                 | 584-84-9   | 8.00E-03  | 24-hr     | 9.10E-02   | Year       |
| Toluene-2,6-diisocyanate                 | 91-08-7    | 8.00E-03  | 24-hr     | 9.10E-02   | Year       |

## Evaluation of excluding criteria pollutants as TAPs

The following five TAPs are also criteria pollutants: carbon monoxide (CO), lead (Pb), nitrogen dioxide (NO<sub>2</sub>), ozone (O<sub>3</sub>), and sulfur dioxide (SO<sub>2</sub>). EPA set National Ambient Air Quality Standards (NAAQS) for these pollutants. Chapter 173-476 WAC, Ambient Air Quality Standards contains the federal NAAQS for these pollutants and large and small particles, and a state annual ambient standard for SO<sub>2</sub> that will apply until an area meets the 2010 federal hourly standard.

WAC 173-400-110(5) establishes exemption levels for pollutants subject to air quality permitting in tons per year. This provision also references the de minimis emission levels in WAC 173-460-150 without listing the values.

The rule includes CO, Pb, NO<sub>2</sub>, O<sub>3</sub>, and SO<sub>2</sub> as TAPs because they meet the TAP listing criteria. The ASIL values for NO<sub>2</sub>, SO<sub>2</sub>, and CO reflect a one-hour averaging period because these are non-cancer causing chemicals. Lead is a cancer-causing chemical so its ASIL reflects an averaging period of one year.<sup>16</sup>

We reviewed the NAAQS status and compared it to TAP levels.<sup>17</sup> We retained these chemicals as TAPs because they meet the listing criteria and including them provides additional consideration of potential public health impacts that NAAQS compliance alone does not provide.

<sup>&</sup>lt;sup>16</sup> "Concise Explanatory Statement and Responsiveness Summary for the Adoption of WAC 173-400-110, General Regulations for Air Pollution Sources and Chapter 173-460 WAC, Controls for New Sources of TAPs," May 19, 2009, Publication number 09-02-008, pages 3, 40, and 41.

<sup>&</sup>lt;sup>17</sup> See Gary Palcisko "Criteria Air Pollutants as TAPs" PowerPoint presentation, Nov. 16, 2018.

## Evaluation of the use of early life adjustment factors

The 2009 ASIL values do not reflect an early life adjustment factor for cancer risk. In the 2005 Guidelines for Carcinogen Risk Assessment, EPA recognized that "childhood may be a susceptible period" in that "exposures during childhood generally are not equivalent to exposures at other times and may be treated differently from exposures occurring later in life .... In addition, adjustment of unit risk estimates may be warranted when used to estimate risks from childhood exposure ...."<sup>18</sup> The Supplemental Guidance for Assessing Susceptibility from Early-Life Exposure to Carcinogens<sup>19</sup> describes age dependent adjustment factors as a way of addressing uncertainty related to an absence of toxicity data from exposures that occur during early-life. EPA recommends using these factors because risk estimates based on exposures occurring at various life stages may not consider the potential for higher cancer risks from early-life exposures. EPA developed procedures for adjusting cancer potency estimates only for those carcinogens that act through a mutagenic mode of action.

We relied on three EPA documents to determine which chemicals act through a mutagenic mode of action:

- Integrated Risk Information System (IRIS)
  - Chemical assessment summary for vinyl chloride<sup>20</sup>
  - Chemical assessment summary for trichlorethylene<sup>21</sup>
- Regional Screening Levels (RSLs) User's Guide<sup>22</sup>
- Supplemental Guidance for Assessing Susceptibility from Early-life Exposure to Carcinogens<sup>23</sup>

We adjusted the ASIL values for the 30 TAPs in Table 9 based on EPA's age dependent adjustment factor:  $^{24}$ 

• 1.66 to account for increased susceptibility among infants and children exposed to mutagenic chemicals.

https://www.epa.gov/sites/production/files/2013-09/documents/childrens\_supplement\_final.pdf.

<sup>&</sup>lt;sup>18</sup> <u>https://www.epa.gov/risk/guidelines-carcinogen-risk-assessment</u> page 1-18.

<sup>&</sup>lt;sup>19</sup> <u>https://www.epa.gov/risk/supplemental-guidance-assessing-susceptibility-early-life-exposure-carcinogens</u>

<sup>&</sup>lt;sup>20</sup> Date last revised 8/7/2000. Available at URL:

https://cfpub.epa.gov/ncea/iris/iris\_documents/documents/subst/1001\_summary.pdf.

<sup>&</sup>lt;sup>21</sup> Date last revised 9/28/2011. Available at URL:

https://cfpub.epa.gov/ncea/iris/iris\_documents/documents/subst/0199\_summary.pdf.

<sup>&</sup>lt;sup>22</sup> EPA Risk Assessment. Regional Screening Levels (RSLs) – Users Guide. November 2018. Available at URL: https://www.epa.gov/risk/regional-screening-levels-rsls-users-guide#mutagens.

<sup>&</sup>lt;sup>23</sup> U.S. EPA (Environmental Protection Agency). (2005). Supplemental Guidance for Assessing Susceptibility from Early-Life Exposure to Carcinogens. U.S. Environmental Protection Agency, Washington, DC, EPA/630/R-03/003F, 2005. Available at URL:

<sup>&</sup>lt;sup>24</sup> See February 14, 2019 Memorandum "Use of early-life adjustment factors in deriving acceptable source impact levels for a subset of TAPs," February 14, 2019 Memorandum "Recommendations for Updating WAC 173-460-150," and October 10, 2019 PowerPoint presentation "Toxicity Equivalence (TEQ) & Relative Potency."

• 1.22 for trichloroethylene because the mutagenic mode of action applies to kidney tumors, but not for other cancers included in the derivation of the unit risk factor.

We did not adjust two chemicals EPA listed as a mutagen.

- Vinyl chloride was not adjusted because the toxicity value already accounts for continuous lifetime exposure from birth.
- 1,2,3-Trichloropropane was not adjusted because there is no unit risk value for quantifying increased cancer risk from inhalation exposure to this chemical.

Table 9. TAPs adjusted by age dependent adjustment factor

|    | Chemical Common Name                      | CAS #      |
|----|-------------------------------------------|------------|
| 1  | 1,2-Dibromo-3-chloropropane               | 96-12-8    |
| 2  | 3-Methylcholanthrene                      | 56-49-5    |
| 3  | 4,4'-Methylenebis(2-chloroaniline) (MOCA) | 101-14-4   |
| 4  | 7,12-Dimethylbenz[a]anthracene            | 57-97-6    |
| 5  | Acrylamide                                | 79-06-1    |
| 6  | Barium chromate                           | 10294-40-3 |
| 7  | Benz(a)anthracene                         | 56-55-3    |
| 8  | Benzidine                                 | 92-87-5    |
| 9  | Benzo(a)pyrene                            | 50-32-8    |
| 10 | Benzo(b)fluoranthene                      | 205-99-2   |
| 11 | Bnezo(k)fluoranthene                      | 207-08-9   |
| 12 | Chloroprene                               | 126-99-8   |
| 13 | Chromic trioxide                          | 1333-82-0  |
| 14 | Chromic(VI) acid                          | 7738-94-5  |
| 15 | Chromium(VI) & compounds, NOS             |            |
| 16 | Chrysene                                  | 218-01-9   |
| 17 | Coke oven emissions                       |            |
| 18 | Dibenz(a,h)anthracene                     | 53-70-3    |
| 19 | Dichloromethane (methylene chloride)      | 75-09-2    |
| 20 | Ethyl carbamate (urethane)                | 51-79-6    |
| 21 | Ethylene oxide                            | 75-21-8    |
| 22 | Indeno(1,2,3-cd)pyrene                    | 193-39-5   |
| 23 | Lead chromate                             | 7758-97-6  |
| 24 | Lead chromate oxide                       | 18454-12-1 |
| 25 | N-Nitrosodiethylamine                     | 55-18-5    |
| 26 | N-Nitrosodimethylamine                    | 62-75-9    |
| 27 | N-nitroso-N-ethylurea                     | 759-73-9   |
| 28 | N-nitroso-N-methylurea                    | 684-93-5   |

|    | Chemical Common Name | CAS #   |
|----|----------------------|---------|
| 29 | Safrole              | 94-59-7 |
| 30 | Trichloroethylene    | 79-01-6 |

We also adjusted the ASIL values for the 18 PAH compounds in Table 10 based on EPA's earlylife adjustment factor. We listed these chemicals because the California OEHHA reports an inhalation unit risk value for these PAHs. They are assumed to cause toxicity in a similar manner as benzo(a)pyrene, a chemical EPA determined acts through a mutagenic mode of action, so we applied an adjustment factor of 1.66.

|    | Chemical Common Name     | CAS#       |
|----|--------------------------|------------|
| 1  | 2-Acetylaminofluorene    | 53-96-3    |
| 2  | 2-Aminoanthraquinone     | 117-79-3   |
| 3  | Benzo[j]fluoranthene     | 205-82-3   |
| 4  | Dibenz[a,h]acridine      | 226-36-8   |
| 5  | Dibenz[a,j]acridine      | 224-42-0   |
| 6  | Dibenzo[a,e]pyrene       | 192-65-4   |
| 7  | Dibenzo[a,h]pyrene       | 189-64-0   |
| 8  | Dibenzo[a,i]pyrene       | 189-55-9   |
| 9  | Dibenzo[a,l]pyrene       | 191-30-0   |
| 10 | 7H-Dibenzo[c,g]carbazole | 194-59-2   |
| 11 | 1,6-Dinitropyrene        | 42397-64-8 |
| 12 | 1,8-Dinitropyrene        | 42397-65-9 |
| 13 | 5-Nitroacenaphthene      | 602-87-9   |
| 14 | 6-Nitrochrysene          | 7496-02-8  |
| 15 | 2-Nitrofluorene          | 607-57-8   |
| 16 | 1-Nitropyrene            | 5522-43-0  |
| 17 | 4-Nitropyrene            | 57835-92-4 |
| 18 | 5-Methylchrysene         | 3697-24-3  |

Table 10. PAHs adjusted by age dependent adjustment factor

## Review of the existing ASIL for diethyl and dimethyl mercury

Due to concerns with the neurotoxicity of diethyl and dimethyl mercury, the 2009 rulemaking established the same ASIL, SQER, and de minimis emission value for these TAPs at a number that is extremely close to zero. This value requires regulatory review of every project with any emissions of these chemicals.<sup>16</sup>

We reviewed the health impacts assessments of several Hanford site cleanup projects that have potential emissions of dimethyl mercury; we have not received any project applications for diethyl mercury emissions. We also evaluated dimethyl mercury research and other available information.<sup>25</sup> Prenatal brain development is sensitive to very small amounts of dimethyl and diethyl mercury. Maternal inhalation of contaminated air exposes the fetus via placental transfer from the maternal bloodstream. Based on our evaluation of this material, we adopted an ASIL of 0.14 ( $\mu$ g/m<sup>3</sup>) for diethyl and dimethyl mercury.

Since we established a new ASIL, we applied the standardized methodology to determine the 2019 SQERs and de minimis emission values for diethyl and dimethyl mercury as we did for the other TAPs.

## Evaluation of ASILs for groups of chemicals (toxicity equivalency)

We considered adding steps to address the toxic equivalence of mixtures of TAPs. We based this on EPA's determination that an individual TAP does not adequately consider the impact of mixtures of dioxin-like compounds and carcinogenic polycyclic aromatic hydrocarbons.<sup>26</sup>

Addressing the toxic equivalency of mixtures would have required adding steps to determine a threshold value. This conflicts with the rulemaking goal of establishing one value for each TAP in the look-up table. By having a single set of comparison values, the 2019 amendments facilitate straightforward, scientifically based compliance. Listing individual chemicals with sufficient supporting information as TAPs with appropriate screening values allows facilities to make individual comparisons.

## Revision of the small quantity emission rate modeling parameters

We established the 2009 SQER value for each ASIL using a screening level air dispersion model (SCREEN 3 Version 96043). Since EPA no longer supports this model, we updated the modeling using AERSCREEN Version 16216. Rather than use one conservative scenario, we examined several possible source and building configurations likely to simulate a realistic yet conservative scenario that is more broadly applicable.<sup>27</sup> Table 11 provides the 2019 modeling parameters.

| Questions in the dispersion model | Point source –<br>parameters reflect | Volume source –<br>parameters reflect |
|-----------------------------------|--------------------------------------|---------------------------------------|
| Model?                            | AERSCREEN Version<br>16216           | AERSCREEN Version<br>16216            |
| Emission rate?                    | 1 gram per second                    | 1 gram per second                     |
| Stack height?                     | 10, 10.5, and 11                     | N/A                                   |

| Table 11. SQER modeling parameters | <b>QER</b> modeling parameters |
|------------------------------------|--------------------------------|
|------------------------------------|--------------------------------|

<sup>&</sup>lt;sup>25</sup> "A Dimethyl Mercury Inhalation Risk Screening Concentration," Matt Kadlec, October 10, 2018. PowerPoint presentation. See also "A Dimethyl Mercury Inhalation Risk Screening Concentration for Public Health Protection," poster presentation, International Society of Exposure Science Conference, October 28 - November 1, 2012, Seattle, Washington.

<sup>&</sup>lt;sup>26</sup> Refer to Palcisko, G. Toxicity Equivalence (TEQ0 & relative potency. October 10, 2018 PowerPoint. Also February 14, 2019 Memorandum by Palcisko, G., and Guilfoil, E. Deriving ASILs for mixtures of dioxin-like compounds and mixtures of polycyclic aromatic hydrocarbon.

<sup>&</sup>lt;sup>27</sup> See January 16, 2019 Memorandum "Updating the Small Quantity Emission Rates," January 23, 2019 PowerPoint "Small Quantity Emission Rates and De Minimis Emission Values," and March 4, 2019 Memorandum

<sup>&</sup>quot;Recommendations for Updating Chapter 173-460 WAC."

| Questions in the dispersion model   | Point source –                 | Volume source –          |  |
|-------------------------------------|--------------------------------|--------------------------|--|
|                                     | parameters reflect             | parameters reflect       |  |
| Stack diameter?                     | 0.33 meters                    | N/A                      |  |
| Exit velocity?                      | 1, 5, and 10 meters per second | N/A                      |  |
| Stack temperature? (assume ambient) | Same as ambient                | Same as ambient          |  |
| Receptors above ground?             | Yes, 1.5 meters                | Yes, 1.5 meters          |  |
| Urban or rural?                     | Rural                          | Rural                    |  |
| Building downwash?                  | Yes                            | N/A <sup>1</sup>         |  |
| Building height?                    | 10 meters                      | 10 meters                |  |
| Minimum horizontal dimension?       | 10 meters                      | 10 meters                |  |
| Maximum horizontal dimension?       | 20 meters                      | 20 meters                |  |
| Complex terrain?                    | No                             | No                       |  |
| Meteorology?                        | Full                           | Full                     |  |
| Use discrete distances?             | Yes, 5 to 50 meters in 5       | Yes, 5 to 50 meters in 5 |  |
|                                     | m increments                   | m increments             |  |
| Terrain height above stack base?    | No                             | No                       |  |

## Recalculation of the small quantity emission rates

We simulated 124 scenarios with AERSCREEN using the various modeling parameters in Table 11. The median of all of the concentrations from the 124 simulations resulted in 4282  $\mu$ g/m<sup>3</sup>. We consider this a robust and sufficiently conservative estimate of the concentration resulting from an emission rate of 1 gram per second.

We used the following calculations, and the conversion factors in Tables 12 and 13 to establish SQER values for the year (annual), 24-hour, and 1-hour ASIL. The 2019 SQERs are 17 percent lower than the 2009 values. Only diethyl and dimethyl mercury are less stringent.

### **Convert Year ASIL to Pounds per Year SQER**

SQER (pound/year) =

$$\left[\frac{\text{Annual ASIL } \left(\frac{\mu g}{m^3}\right) \ge 60 \ \left(\frac{\text{sec}}{\min}\right) \ge 60 \ \left(\frac{\min}{hr}\right) \ge 8760 \ \left(\frac{hr}{yr}\right)}{4282 \ \left(\frac{\mu g}{m^3}\right) \ge 0.1 \ge 453.6 \ \left(\frac{g}{lb}\right)}\right] \middle/ 1 \ \left(\frac{g}{sec}\right)$$

### Convert 24-hour ASIL to Pounds per Day SQER

SQER (pound/day) =

$$\left[\frac{24 - \operatorname{hr}\operatorname{ASIL}\left(\frac{\mu g}{\mathrm{m}^{3}}\right) \times 60 \left(\frac{\operatorname{sec}}{\mathrm{min}}\right) \times 60 \left(\frac{\mathrm{min}}{\mathrm{hr}}\right) \times 24 \left(\frac{\mathrm{hr}}{\mathrm{day}}\right)}{4282 \left(\frac{\mu g}{\mathrm{m}^{3}}\right) \times 0.6 \times 453.6 \left(\frac{g}{\mathrm{lb}}\right)}\right] / 1 \left(\frac{g}{\operatorname{sec}}\right)$$

#### **Convert 1-hour ASIL to Pounds per Hour SQER**

SQER (pound/hour) =

$$\frac{\left[1 - \operatorname{hr}\operatorname{ASIL}\left(\frac{\mu g}{\mathrm{m}^{3}}\right) \times 60 \left(\frac{\operatorname{sec}}{\mathrm{min}}\right) \times 60 \left(\frac{\mathrm{min}}{\mathrm{hr}}\right)}{4282 \left(\frac{\mu g}{\mathrm{m}^{3}}\right) \times 453.6 \left(\frac{g}{\mathrm{lb}}\right)}\right] / 1 \left(\frac{g}{\operatorname{sec}}\right)$$

Convert ppm to µg/m<sup>3</sup>

$$Y\left(\frac{\mu g}{m^3}\right) = \frac{(X \text{ ppm})(\text{molecular weight})}{24.45} x \ 1000$$

#### Table 12. SQER conversion factors

| Calculation      | Carcinogenic TAP | Non-carcinogenic TAP | Acute<br>reference<br>exposure level |
|------------------|------------------|----------------------|--------------------------------------|
| Averaging period | Year             | 24-hour              | 1-hour                               |
| Emission unit    | Grams/second     | Grams/second         | Grams/second                         |
| Formula          | ASIL/(4282*0.1)  | ASIL/(4282*0.6)      | ASIL/4282                            |
| Result           | Pounds/year      | Pounds/day           | Pounds/hour                          |

#### Table 13: AERSCREEN conversion factors

| Convert from   | Convert to               | Multiply hourly value by |
|----------------|--------------------------|--------------------------|
| 1-hour average | 1-hour or 3-hour average | 1                        |
| 1-hour average | 8-hour average           | 0.9                      |
| 1-hour average | 24-hour average          | 0.6                      |
| 1-hour average | Annual average           | 0.1                      |

## Recalculation of the de minimis emission values

De minimis emission values are trivial levels of emissions below which an air permit is not required. After evaluating two alternatives to establish de minimis (de minimis equal to SQER, and SQER divided by 10), we retained the current structure.<sup>28</sup> That is, the rule sets de minimis values 20 times lower than the SQER (SQER/20), except for criteria pollutants. 98.6 percent of the 2019 TAPs have values that are more stringent; 0.5 percent of TAPs have values that are less stringent; and less than one percent of TAPs remain the same (Table 14). We discuss the exception for criteria pollutants in more detail below.

| Change                                                   | # of TAPs | Percentage |
|----------------------------------------------------------|-----------|------------|
| More stringent than existing value (value decreases)*    | 432       | 98.6       |
| Less stringent than existing value (value increases)**   | 2         | 0.5        |
| No change (includes adjustment by significant digits)*** | 4         | 0.9        |
| Total                                                    | 438       | 100        |

\* Includes 51 new TAPs

<sup>&</sup>lt;sup>28</sup> Ibid. Also January 17, 2019 Memorandum "Establishing the Small Quantity Emission Rate as the De Minimis Emission Value," and Ecology 460 Rulemaking Stakeholder Meeting Summary, January 23, 2019 (revised).

\*\* Diethyl and dimethyl mercury

\*\*\* Nitrogen dioxide, sulfur dioxide, carbon monoxide, and lead & compounds, NOS

### **Exception - criteria pollutants**

We retained the 2009 de minimis emission values for nitrogen dioxide, sulfur dioxide, carbon monoxide, and lead. The 2009 rulemaking established a single de minimis emissions value for criteria pollutants that applies to the permitting provisions in two complementary rules: Chapter 173-400 WAC and Chapter 173-460 WAC.<sup>16</sup> Without translating the de minimis emission rates in WAC 173-400-110(5) into 1-hour values for WAC 173-460-150, most projects with a combustion component would not qualify for the de minimis exemption because the values in the air toxics rule would have been lower.

## Updating the rule to support the rule changes

The 2009 rule varies in the number of significant digits used for emission rates and concentrations. To standardize this, we rounded all values to two-significant digits in the table (WAC 173-460-150) and specified that emissions rates (i.e., de minimis and SQERs) and concentrations (i.e., ASILs and modeled ambient impact) in WAC 173-460-040(1), -080(2)(a) and -080(2)(b) must be provided to two-significant digits.

We simplified the table by providing all values in the scientific notation format. Displaying ASILs, SQERs, and de minimis emission values in the table in two formats – decimal and scientific notation – was confusing.

We also updated language in Section 040 and 080 to use the acronym "TAP" instead of TAP.

# Appendices

# Appendix A 2019 Table of ASILs, SQERs, and De Minimis Emission Values

The following table contains the final 2019 acceptable source impact level (ASIL), small quantity emission rate (SQER), and de minimis emission value for each of the 438 TAPs. NOS means not otherwise specified and applies to situations where emission factors for a group of pollutants is reported, but specific isomers, congeners, or chemicals are not reported. CAS means chemical abstract service.

| Chemical Common Name                             | CAS #      | Averaging<br>Period | <b>ASIL</b><br>(µg/m³) | SQER<br>(Ib/averaging<br>period) | De Minimis<br>(lb/averaging<br>period) |
|--------------------------------------------------|------------|---------------------|------------------------|----------------------------------|----------------------------------------|
| Acetaldehyde                                     | 75-07-0    | year                | 3.7E-01                | 6.0E+01                          | 3.0E+00                                |
| Acetamide                                        | 60-35-5    | year                | 5.0E-02                | 8.1E+00                          | 4.1E-01                                |
| Acetonitrile                                     | 75-05-8    | 24-hr               | 6.0E+01                | 4.4E+00                          | 2.2E-01                                |
| 2-Acetylaminofluorene                            | 53-96-3    | year                | 4.6E-04                | 7.5E-02                          | 3.8E-03                                |
| Acrolein                                         | 107-02-8   | 24-hr               | 3.5E-01                | 2.6E-02                          | 1.3E-03                                |
| Acrylamide                                       | 79-06-1    | year                | 6.0E-03                | 9.8E-01                          | 4.9E-02                                |
| Acrylic acid                                     | 79-10-7    | 24-hr               | 1.0E+00                | 7.4E-02                          | 3.7E-03                                |
| Acrylonitrile                                    | 107-13-1   | year                | 3.4E-03                | 5.6E-01                          | 2.8E-02                                |
| Actinomycin D                                    | 50-76-0    | year                | 4.0E-07                | 6.5E-05                          | 3.2E-06                                |
| Alar (daminsozide)                               | 1596-84-5  | year                | 2.0E-01                | 3.2E+01                          | 1.6E+00                                |
| Aldrin                                           | 309-00-2   | year                | 2.0E-04                | 3.3E-02                          | 1.7E-03                                |
| Allyl chloride                                   | 107-05-1   | year                | 1.7E-01                | 2.7E+01                          | 1.4E+00                                |
| 3-Amino-9-ethylcarbazole<br>hydrochloride        | 6109-97-3  | year                | 4.5E-02                | 7.4E+00                          | 3.7E-01                                |
| 2-Amino-3-methyl-9H-pyrido[2,3-<br>b]indole      | 68006-83-7 | year                | 2.9E-03                | 4.8E-01                          | 2.4E-02                                |
| 1-Amino-2-methylanthraquinone                    | 82-28-0    | year                | 2.3E-02                | 3.8E+00                          | 1.9E-01                                |
| 2-Amino-3-methylimidazo-[4,5-<br>f]quinoline     | 76180-96-6 | year                | 2.5E-03                | 4.1E-01                          | 2.0E-02                                |
| 2-Amino-5-(5-nitro-2-furyl)-1,3,4-<br>thiadiazol | 712-68-5   | year                | 2.2E-04                | 3.5E-02                          | 1.8E-03                                |
| A-alpha-c(2-amino-9h-pyrido[2,3-<br>b]indole)    | 26148-68-5 | year                | 8.7E-03                | 1.4E+00                          | 7.1E-02                                |
| 2-Aminoanthraquinone                             | 117-79-3   | year                | 6.4E-02                | 1.0E+01                          | 5.2E-01                                |
| o-Aminoazotoluene                                | 97-56-3    | year                | 9.1E-04                | 1.5E-01                          | 7.4E-03                                |
| 4-Aminobiphenyl                                  | 92-67-1    | year                | 1.7E-04                | 2.7E-02                          | 1.4E-03                                |
| Amitrole                                         | 61-82-5    | year                | 3.7E-03                | 6.0E-01                          | 3.0E-02                                |
| Ammonia                                          | 7664-41-7  | 24-hr               | 5.0E+02                | 3.7E+01                          | 1.9E+00                                |
| Ammonium bisulfate                               | 7803-63-6  | 1-hr                | 1.2E+02                | 2.2E-01                          | 1.1E-02                                |
| Aniline                                          | 62-53-3    | year                | 6.3E-01                | 1.0E+02                          | 5.1E+00                                |

| Chemical Common Name                                                         | CAS #      | Averaging<br>Period | <b>ASIL</b><br>(µg/m³) | SQER<br>(lb/averaging<br>period) | De Minimis<br>(Ib/averaging<br>period) |
|------------------------------------------------------------------------------|------------|---------------------|------------------------|----------------------------------|----------------------------------------|
| o-Anisidine                                                                  | 90-04-0    | year                | 2.5E-02                | 4.1E+00                          | 2.0E-01                                |
| o-Anisidine hydrochloride                                                    | 134-29-2   | year                | 3.2E-02                | 5.2E+00                          | 2.6E-01                                |
| Antimony trioxide                                                            | 1309-64-4  | 24-hr               | 2.0E-01                | 1.5E-02                          | 7.4E-04                                |
| Aramite                                                                      | 140-57-8   | year                | 1.2E-01                | 1.9E+01                          | 9.4E-01                                |
| Tris(1-aziridinyl)phosphine sulfide                                          | 52-24-4    | year                | 2.9E-04                | 4.8E-02                          | 2.4E-03                                |
| Arsenic & inorganic arsenic compounds, NOS                                   | —          | year                | 3.0E-04                | 4.9E-02                          | 2.5E-03                                |
| Arsine                                                                       | 7784-42-1  | 24-hr               | 1.5E-02                | 1.1E-03                          | 5.6E-05                                |
| Asbestos (fibers/cubic centimeter)                                           | 1332-21-4  | year                | 4.3E-06                | 7.1E-04                          | 3.5E-05                                |
| Actinolite asbestos (fibers/cubic centimeter)                                | 12172-67-7 | year                | 4.3E-06                | 7.1E-04                          | 3.5E-05                                |
| Amosite asbestos (fibers/cubic centimeter)                                   | 12172-73-5 | year                | 4.3E-06                | 7.1E-04                          | 3.5E-05                                |
| Anthophylite asbestos<br>(fibers/cubic centimeter)                           | 17068-78-9 | year                | 4.3E-06                | 7.1E-04                          | 3.5E-05                                |
| Chrysotile asbestos (fibers/cubic centimeter)                                | 12001-29-5 | year                | 4.3E-06                | 7.1E-04                          | 3.5E-05                                |
| Crocidolite asbestos (fibers/cubic centimeter)                               | 12001-28-4 | year                | 4.3E-06                | 7.1E-04                          | 3.5E-05                                |
| Libby amphibole asbestos and<br>amphiboles, NOS (fibers/cubic<br>centimeter) | _          | year                | 5.9E-06                | 9.6E-04                          | 4.8E-05                                |
| Tremolite asbestos (fibers/cubic centimeter)                                 | 14567-73-8 | year                | 4.3E-06                | 7.1E-04                          | 3.5E-05                                |
| Auramine                                                                     | 492-80-8   | year                | 4.0E-03                | 6.5E-01                          | 3.2E-02                                |
| Azaserine                                                                    | 115-02-6   | year                | 3.2E-04                | 5.2E-02                          | 2.6E-03                                |
| Azathioprine                                                                 | 446-86-6   | year                | 2.0E-03                | 3.2E-01                          | 1.6E-02                                |
| Azobenzene                                                                   | 103-33-3   | year                | 3.2E-02                | 5.2E+00                          | 2.6E-01                                |
| Barium chromate                                                              | 10294-40-3 | year                | 2.0E-05                | 3.2E-03                          | 1.6E-04                                |
| Benz[a]anthracene                                                            | 56-55-3    | year                | 5.5E-03                | 8.9E-01                          | 4.5E-02                                |
| Benzene                                                                      | 71-43-2    | year                | 1.3E-01                | 2.1E+01                          | 1.0E+00                                |
| Benzidine                                                                    | 92-87-5    | year                | 4.3E-06                | 7.0E-04                          | 3.5E-05                                |
| Benzo[a]pyrene                                                               | 50-32-8    | year                | 1.0E-03                | 1.6E-01                          | 8.2E-03                                |
| Benzo[b]fluoranthene                                                         | 205-99-2   | year                | 5.5E-03                | 8.9E-01                          | 4.5E-02                                |
| Benzo[j]fluoranthene                                                         | 205-82-3   | year                | 5.5E-03                | 8.9E-01                          | 4.5E-02                                |
| Benzo[k]fluoranthene                                                         | 207-08-9   | year                | 5.5E-03                | 8.9E-01                          | 4.5E-02                                |
| Benzyl chloride                                                              | 100-44-7   | year                | 2.0E-02                | 3.3E+00                          | 1.7E-01                                |
| Benzyl violet 4B                                                             | 1694-09-3  | year                | 1.8E-01                | 2.8E+01                          | 1.4E+00                                |
| Beryllium & compounds, NOS                                                   | _          | year                | 4.2E-04                | 6.8E-02                          | 3.4E-03                                |
| Beryllium oxide                                                              | 1304-56-9  | year                | 4.2E-04                | 6.8E-02                          | 3.4E-03                                |
| Beryllium sulfate                                                            | 13510-49-1 | year                | 1.2E-06                | 1.9E-04                          | 9.4E-06                                |

| Chemical Common Name                            | CAS #           | Averaging<br>Period | <b>ASIL</b><br>(µg/m³) | SQER<br>(Ib/averaging<br>period) | <b>De Minimis</b><br>(lb/averaging<br>period) |
|-------------------------------------------------|-----------------|---------------------|------------------------|----------------------------------|-----------------------------------------------|
| beta-Butyrolactone                              | 3068-88-0       | year                | 3.4E-03                | 5.6E-01                          | 2.8E-02                                       |
| beta-Propiolactone                              | 57-57-8         | year                | 2.5E-04                | 4.1E-02                          | 2.0E-03                                       |
| Bis(2-chloroethyl) ether                        | 111-44-4        | year                | 1.4E-03                | 2.3E-01                          | 1.1E-02                                       |
| Bis(chloromethyl) ether                         | 542-88-1        | year                | 7.7E-05                | 1.2E-02                          | 6.2E-04                                       |
| Boron & compounds, NOS                          |                 | 24-hr               | 3.0E+02                | 2.2E+01                          | 1.1E+00                                       |
| Bromobenzene                                    | 108-86-1        | 24-hr               | 6.0E+01                | 4.4E+00                          | 2.2E-01                                       |
| Bromodichloromethane                            | 75-27-4         | year                | 2.7E-02                | 4.4E+00                          | 2.2E-01                                       |
| Bromoform                                       | 75-25-2         | year                | 9.1E-01                | 1.5E+02                          | 7.4E+00                                       |
| Bromomethane (methyl bromide)                   | 74-83-9         | 24-hr               | 5.0E+00                | 3.7E-01                          | 1.9E-02                                       |
| 1-Bromopropane                                  | 106-94-5        | 24-hr               | 1.0E+02                | 7.4E+00                          | 3.7E-01                                       |
| 1,3-Butadiene                                   | 106-99-0        | year                | 3.3E-02                | 5.4E+00                          | 2.7E-01                                       |
| Butylated hydroxyanisole                        | 25013-16-5      | year                | 1.8E+01                | 2.8E+03                          | 1.4E+02                                       |
| C.I. basic red 9<br>monohydrochloride           | 569-61-9        | year                | 1.4E-02                | 2.3E+00                          | 1.1E-01                                       |
| Cadmium & compounds, NOS                        | —               | year                | 2.4E-04                | 3.9E-02                          | 1.9E-03                                       |
| Caprolactam                                     | 105-60-2        | 24-hr               | 2.2E+00                | 1.6E-01                          | 8.2E-03                                       |
| Captafol                                        | 2425-06-1       | year                | 2.3E-02                | 3.8E+00                          | 1.9E-01                                       |
| Captan                                          | 133-06-2        | year                | 1.5E+00                | 2.5E+02                          | 1.2E+01                                       |
| Carbon disulfide                                | 75-15-0         | 24-hr               | 8.0E+02                | 5.9E+01                          | 3.0E+00                                       |
| Carbon monoxide                                 | 630-08-0        | 1-hr                | 2.3E+04                | 4.3E+01                          | 1.1E+00                                       |
| Carbon tetrachloride                            | 56-23-5         | year                | 1.7E-01                | 2.7E+01                          | 1.4E+00                                       |
| Carbonyl sulfide                                | 463-58-1        | 24-hr               | 1.0E+01                | 7.4E-01                          | 3.7E-02                                       |
| Cerium oxide                                    | 1306-38-3       | 24-hr               | 9.0E-01                | 6.7E-02                          | 3.3E-03                                       |
| Chlorambucil                                    | 305-03-3        | year                | 7.7E-06                | 1.2E-03                          | 6.2E-05                                       |
| Chlordane                                       | 57-74-9         | year                | 1.0E-02                | 1.6E+00                          | 8.1E-02                                       |
| Chlordecone                                     | 143-50-0        | year                | 2.2E-04                | 3.5E-02                          | 1.8E-03                                       |
| Chlorendic acid                                 | 115-28-6        | year                | 3.8E-02                | 6.2E+00                          | 3.1E-01                                       |
| Chlorinated paraffins                           | 108171-26-<br>2 | year                | 4.0E-02                | 6.5E+00                          | 3.2E-01                                       |
| Chlorine                                        | 7782-50-5       | 24-hr               | 1.5E-01                | 1.1E-02                          | 5.6E-04                                       |
| Chlorine dioxide                                | 10049-04-4      | 24-hr               | 6.0E-01                | 4.4E-02                          | 2.2E-03                                       |
| 1-Chloro-1,1-difluoroethane                     | 75-68-3         | 24-hr               | 5.0E+04                | 3.7E+03                          | 1.9E+02                                       |
| 3-Chloro-2-methyl-1-propene                     | 563-47-3        | year                | 2.5E-02                | 4.1E+00                          | 2.0E-01                                       |
| 2-Chloroacetophenone                            | 532-27-4        | 24-hr               | 3.0E-02                | 2.2E-03                          | 1.1E-04                                       |
| Chloroalkanes C10-13<br>(chlorinated paraffins) | 85535-84-8      | year                | 4.0E-02                | 6.5E+00                          | 3.2E-01                                       |
| Chlorobenzene                                   | 108-90-7        | 24-hr               | 1.0E+03                | 7.4E+01                          | 3.7E+00                                       |
| Chlorobenzilate                                 | 510-15-6        | year                | 3.2E-02                | 5.2E+00                          | 2.6E-01                                       |
| Chlorodifluoromethane (Freon 22)                | 75-45-6         | 24-hr               | 5.0E+04                | 3.7E+03                          | 1.9E+02                                       |
| Chloroethane (ethyl chloride)                   | 75-00-3         | 24-hr               | 3.0E+04                | 2.2E+03                          | 1.1E+02                                       |

| Chemical Common Name                                          | CAS #      | Averaging<br>Period | <b>ASIL</b><br>(µg/m³) | SQER<br>(Ib/averaging<br>period) | <b>De Minimis</b><br>(lb/averaging<br>period) |
|---------------------------------------------------------------|------------|---------------------|------------------------|----------------------------------|-----------------------------------------------|
| Chloroform                                                    | 67-66-3    | year                | 4.3E-02                | 7.1E+00                          | 3.5E-01                                       |
| Chloromethane (methyl chloride)                               | 74-87-3    | 24-hr               | 9.0E+01                | 6.7E+00                          | 3.3E-01                                       |
| Chloromethyl methyl ether                                     | 107-30-2   | year                | 1.4E-03                | 2.4E-01                          | 1.2E-02                                       |
| 4-Chloro-o-phenylenediamine                                   | 95-83-0    | year                | 2.2E-01                | 3.5E+01                          | 1.8E+00                                       |
| p-Chloro-o-toluidine                                          | 95-69-2    | year                | 1.3E-02                | 2.1E+00                          | 1.1E-01                                       |
| Chloropicrin                                                  | 76-06-2    | 24-hr               | 4.0E-01                | 3.0E-02                          | 1.5E-03                                       |
| Chloroprene                                                   | 126-99-8   | year                | 2.0E-03                | 3.3E-01                          | 1.6E-02                                       |
| Chlorothalonil                                                | 1897-45-6  | year                | 1.1E+00                | 1.8E+02                          | 9.1E+00                                       |
| Chlorozotocin                                                 | 54749-90-5 | year                | 1.4E-05                | 2.4E-03                          | 1.2E-04                                       |
| Chromic trioxide                                              | 1333-82-0  | year                | 7.7E-06                | 1.3E-03                          | 6.3E-05                                       |
| Chromic(VI) acid                                              | 7738-94-5  | year                | 9.1E-06                | 1.5E-03                          | 7.4E-05                                       |
| Chromium(III), insoluble particulates, NOS                    |            | 24-hr               | 5.0E+00                | 3.7E-01                          | 1.9E-02                                       |
| Chromium(III), soluble particulates, NOS                      |            | 24-hr               | 1.0E-01                | 7.4E-03                          | 3.7E-04                                       |
| Chromium(VI) & compounds, NOS                                 |            | year                | 4.0E-06                | 6.5E-04                          | 3.3E-05                                       |
| Chrysene                                                      | 218-01-9   | year                | 5.5E-02                | 8.9E+00                          | 4.5E-01                                       |
| Cinnamyl anthranilate                                         | 87-29-6    | year                | 7.7E-01                | 1.2E+02                          | 6.2E+00                                       |
| Cobalt and compounds, NOS                                     | 7440-48-4  | 24-hr               | 1.0E-01                | 7.4E-03                          | 3.7E-04                                       |
| Coke oven emissions                                           |            | year                | 9.7E-04                | 1.6E-01                          | 7.9E-03                                       |
| Copper & compounds                                            |            | 1-hr                | 1.0E+02                | 1.9E-01                          | 9.3E-03                                       |
| p-Cresidine                                                   | 120-71-8   | year                | 2.3E-02                | 3.8E+00                          | 1.9E-01                                       |
| Cresols (mixture), including m-<br>cresol, o-cresol, p-cresol | 1319-77-3  | 24-hr               | 6.0E+02                | 4.4E+01                          | 2.2E+00                                       |
| m-Cresol (3-methylphenol)                                     | 108-39-4   | 24-hr               | 6.0E+02                | 4.4E+01                          | 2.2E+00                                       |
| o-Cresol (2-methylphenol)                                     | 95-48-7    | 24-hr               | 6.0E+02                | 4.4E+01                          | 2.2E+00                                       |
| p-Cresol (4-methylphenol)                                     | 106-44-5   | 24-hr               | 6.0E+02                | 4.4E+01                          | 2.2E+00                                       |
| Cumene                                                        | 98-82-8    | 24-hr               | 4.0E+02                | 3.0E+01                          | 1.5E+00                                       |
| Cupferron                                                     | 135-20-6   | year                | 1.6E-02                | 2.6E+00                          | 1.3E-01                                       |
| Cyclohexane                                                   | 110-82-7   | 24-hr               | 6.0E+03                | 4.4E+02                          | 2.2E+01                                       |
| Cyclophosphamide (anhydrous)                                  | 50-18-0    | year                | 5.9E-03                | 9.6E-01                          | 4.8E-02                                       |
| Cyclophosphamide (hydrated)                                   | 6055-19-2  | year                | 6.3E-03                | 1.0E+00                          | 5.1E-02                                       |
| D & C red no. 9                                               | 5160-02-1  | year                | 6.7E-01                | 1.1E+02                          | 5.4E+00                                       |
| Dacarbazine                                                   | 4342-03-4  | year                | 7.1E-05                | 1.2E-02                          | 5.8E-04                                       |
| Dantron                                                       | 117-10-2   | year                | 4.5E-02                | 7.4E+00                          | 3.7E-01                                       |
| Di(2-ethylhexl)phthalate                                      | 117-81-7   | year                | 4.2E-01                | 6.8E+01                          | 3.4E+00                                       |
| 2,4-Diaminoanisole                                            | 615-05-4   | year                | 1.5E-01                | 2.5E+01                          | 1.2E+00                                       |
| 2,4-Diaminoanisole sulfate                                    | 39156-41-7 | year                | 2.7E-01                | 4.4E+01                          | 2.2E+00                                       |
| 4,4'-Diaminodiphenyl ether                                    | 101-80-4   | year                | 2.5E-02                | 4.1E+00                          | 2.0E-01                                       |

| Chemical Common Name                       | CAS #    | Averaging<br>Period | <b>ASIL</b><br>(µg/m³) | SQER<br>(lb/averaging<br>period) | <b>De Minimis</b><br>(lb/averaging<br>period) |
|--------------------------------------------|----------|---------------------|------------------------|----------------------------------|-----------------------------------------------|
| 2,4-Diaminotoluene (2,4-toluene diamine)   | 95-80-7  | year                | 9.1E-04                | 1.5E-01                          | 7.4E-03                                       |
| Diazinon                                   | 333-41-5 | 24-hr               | 1.0E+01                | 7.4E-01                          | 3.7E-02                                       |
| Dibenz[a,h]acridine                        | 226-36-8 | year                | 5.5E-03                | 8.9E-01                          | 4.5E-02                                       |
| Dibenz[a,h]anthracene                      | 53-70-3  | year                | 5.0E-04                | 8.2E-02                          | 4.1E-03                                       |
| Dibenz[a,j]acridine                        | 224-42-0 | year                | 5.5E-03                | 8.9E-01                          | 4.5E-02                                       |
| Dibenzo[a,e]pyrene                         | 192-65-4 | year                | 5.5E-04                | 8.9E-02                          | 4.5E-03                                       |
| Dibenzo[a,h]pyrene                         | 189-64-0 | year                | 5.5E-05                | 8.9E-03                          | 4.5E-04                                       |
| Dibenzo[a,i]pyrene                         | 189-55-9 | year                | 5.5E-05                | 8.9E-03                          | 4.5E-04                                       |
| Dibenzo[a,l]pyrene                         | 191-30-0 | year                | 5.5E-05                | 8.9E-03                          | 4.5E-04                                       |
| 7H-Dibenzo[c,g]carbazole                   | 194-59-2 | year                | 5.5E-04                | 8.9E-02                          | 4.5E-03                                       |
| 1,2-Dibromo-3-chloropropane<br>(DBCP)      | 96-12-8  | year                | 3.2E-04                | 5.2E-02                          | 2.6E-03                                       |
| Tris(2,3-dibromopropyl)phosphate           | 126-72-7 | year                | 1.5E-03                | 2.5E-01                          | 1.2E-02                                       |
| 1,4-Dichlorobenzene                        | 106-46-7 | year                | 9.1E-02                | 1.5E+01                          | 7.4E-01                                       |
| 3,3'-Dichlorobenzidine                     | 91-94-1  | year                | 2.9E-03                | 4.8E-01                          | 2.4E-02                                       |
| DDD<br>(dichlorodiphenyldichloroethane)    | 72-54-8  | year                | 1.4E-02                | 2.4E+00                          | 1.2E-01                                       |
| DDE<br>(dichlorodiphenyldichloroethylene)  | 72-55-9  | year                | 1.0E-02                | 1.7E+00                          | 8.4E-02                                       |
| DDT(dichlorodiphenyltrichloroetha ne)      | 50-29-3  | year                | 1.0E-02                | 1.7E+00                          | 8.4E-02                                       |
| 1,1-Dichloroethane (ethylidene dichloride) | 75-34-3  | year                | 6.3E-01                | 1.0E+02                          | 5.1E+00                                       |
| trans-1,2-Dichloroethene                   | 156-60-5 | 24-hr               | 8.1E+02                | 6.0E+01                          | 3.0E+00                                       |
| 1,1-Dichloroethylene (1,1-DCE)             | 75-35-4  | 24-hr               | 2.0E+02                | 1.5E+01                          | 7.4E-01                                       |
| Dichloromethane                            | 75-09-2  | year                | 6.0E+01                | 9.8E+03                          | 4.9E+02                                       |
| 1,2-Dichloropropane (propylene dichloride) | 78-87-5  | year                | 1.0E-01                | 1.6E+01                          | 8.1E-01                                       |
| 1,3-Dichloropropene                        | 542-75-6 | year                | 2.5E-01                | 4.1E+01                          | 2.0E+00                                       |
| 2,3-Dichloropropene                        | 78-88-6  | 24-hr               | 9.2E+00                | 6.8E-01                          | 3.4E-02                                       |
| Dichlorvos (DDVP)                          | 62-73-7  | year                | 1.2E-02                | 2.0E+00                          | 9.8E-02                                       |
| Dieldrin                                   | 60-57-1  | year                | 2.2E-04                | 3.5E-02                          | 1.8E-03                                       |
| Diesel engine exhaust, particulate         | _        | year                | 3.3E-03                | 5.4E-01                          | 2.7E-02                                       |
| Diethanolamine                             | 111-42-2 | 24-hr               | 3.0E+00                | 2.2E-01                          | 1.1E-02                                       |
| Diethylstilbestrol                         | 56-53-1  | year                | 1.0E-05                | 1.6E-03                          | 8.1E-05                                       |
| 1,1-Difluoroethane                         | 75-37-6  | 24-hr               | 4.0E+04                | 3.0E+03                          | 1.5E+02                                       |
| Diglycidyl resorcinol ether                | 101-90-6 | year                | 2.0E-03                | 3.3E-01                          | 1.7E-02                                       |
| Dihydrosafrole                             | 94-58-6  | year                | 7.7E-02                | 1.2E+01                          | 6.2E-01                                       |
| 4-Dimethylaminoazobenzene                  | 60-11-7  | year                | 7.7E-04                | 1.2E-01                          | 6.2E-03                                       |

| Chemical Common Name                                                                        | CAS #      | Averaging<br>Period | ASIL<br>(µg/m³) | SQER<br>(lb/averaging<br>period) | De Minimis<br>(lb/averaging<br>period) |
|---------------------------------------------------------------------------------------------|------------|---------------------|-----------------|----------------------------------|----------------------------------------|
| trans-2[(dimethylamino)-<br>methylimino]-5-[2-(5-nitro-2-furyl)-<br>vinyl]-1,3,4-oxadiazole | 55738-54-0 | year                | 7.7E-03         | 1.2E+00                          | 6.2E-02                                |
| 7,12-Dimethylbenz[a]anthracene                                                              | 57-97-6    | year                | 8.5E-06         | 1.4E-03                          | 6.9E-05                                |
| Dimethyl carbamoyl chloride                                                                 | 79-44-7    | year                | 2.7E-04         | 4.4E-02                          | 2.2E-03                                |
| 1,1-Dimethylhydrazine                                                                       | 57-14-7    | 24-hr               | 5.0E-01         | 3.7E-02                          | 1.9E-03                                |
| 1,2-Dimethylhydrazine                                                                       | 540-73-8   | year                | 6.3E-06         | 1.0E-03                          | 5.1E-05                                |
| Dimethylvinylchloride                                                                       | 513-37-1   | year                | 7.7E-02         | 1.2E+01                          | 6.2E-01                                |
| 1,6-Dinitropyrene                                                                           | 42397-64-8 | year                | 5.5E-05         | 8.9E-03                          | 4.5E-04                                |
| 1,8-Dinitropyrene                                                                           | 42397-65-9 | year                | 5.5E-04         | 8.9E-02                          | 4.5E-03                                |
| 2,4-Dinitrotoluene                                                                          | 121-14-2   | year                | 1.1E-02         | 1.8E+00                          | 9.1E-02                                |
| 1,4-Dioxane                                                                                 | 123-91-1   | year                | 2.0E-01         | 3.2E+01                          | 1.6E+00                                |
| 1,2-Diphenylhydrazine<br>(hydrazobenzene)                                                   | 122-66-7   | year                | 4.0E-03         | 6.5E-01                          | 3.2E-02                                |
| Direct black 38                                                                             | 1937-37-7  | year                | 4.8E-04         | 7.7E-02                          | 3.9E-03                                |
| Direct blue 6                                                                               | 2602-46-2  | year                | 4.8E-04         | 7.7E-02                          | 3.9E-03                                |
| Direct brown 95                                                                             | 16071-86-6 | year                | 5.3E-04         | 8.5E-02                          | 4.3E-03                                |
| Disperse blue 1                                                                             | 2475-45-8  | year                | 7.7E-01         | 1.2E+02                          | 6.2E+00                                |
| Disulfoton                                                                                  | 298-04-4   | 24-hr               | 2.0E-01         | 1.5E-02                          | 7.4E-04                                |
| Epichlorohydrin                                                                             | 106-89-8   | year                | 4.3E-02         | 7.1E+00                          | 3.5E-01                                |
| 1,2-Epoxybutane                                                                             | 106-88-7   | 24-hr               | 2.0E+01         | 1.5E+00                          | 7.4E-02                                |
| Estradiol 17B                                                                               | 50-28-2    | year                | 9.1E-05         | 1.5E-02                          | 7.4E-04                                |
| Ethyl benzene                                                                               | 100-41-4   | year                | 4.0E-01         | 6.5E+01                          | 3.2E+00                                |
| Ethyl carbamate (urethane)                                                                  | 51-79-6    | year                | 2.1E-03         | 3.4E-01                          | 1.7E-02                                |
| Ethylene dibromide (EDB, 1,2-<br>dibromoethane)                                             | 106-93-4   | year                | 1.7E-03         | 2.7E-01                          | 1.4E-02                                |
| Ethylene dichloride (EDC, 1,2-<br>dichloroethane)                                           | 107-06-2   | year                | 3.8E-02         | 6.2E+00                          | 3.1E-01                                |
| Ethylene glycol                                                                             | 107-21-1   | 24-hr               | 4.0E+02         | 3.0E+01                          | 1.5E+00                                |
| Ethylene glycol monobutyl ether                                                             | 111-76-2   | 24-hr               | 8.2E+01         | 6.1E+00                          | 3.0E-01                                |
| Ethylene glycol monoethyl ether (2-ethoxyethanol)                                           | 110-80-5   | 24-hr               | 7.0E+01         | 5.2E+00                          | 2.6E-01                                |
| Ethylene glycol monoethyl ether acetate                                                     | 111-15-9   | 24-hr               | 3.0E+02         | 2.2E+01                          | 1.1E+00                                |
| Ethylene glycol monomethyl ether (2-methoxyethanol)                                         | 109-86-4   | 24-hr               | 6.0E+01         | 4.4E+00                          | 2.2E-01                                |
| Ethylene glycol monomethyl ether acetate                                                    | 110-49-6   | 24-hr               | 9.0E+01         | 6.7E+00                          | 3.3E-01                                |
| Ethylene oxide                                                                              | 75-21-8    | year                | 2.0E-04         | 3.3E-02                          | 1.6E-03                                |
| Ethylene thiourea                                                                           | 96-45-7    | year                | 7.7E-02         | 1.2E+01                          | 6.2E-01                                |
| Ethyleneimine                                                                               | 151-56-4   | year                | 5.3E-05         | 8.5E-03                          | 4.3E-04                                |

| Chemical Common Name                           | CAS #      | Averaging<br>Period | ASIL<br>(µg/m³) | SQER<br>(lb/averaging<br>period) | De Minimis<br>(Ib/averaging<br>period) |
|------------------------------------------------|------------|---------------------|-----------------|----------------------------------|----------------------------------------|
| Ferric sulfate                                 | 10028-22-5 | 1-hr                | 1.2E+02         | 2.2E-01                          | 1.1E-02                                |
| Fluorides (fluoride containing chemicals), NOS | -          | 24-hr               | 1.3E+01         | 9.6E-01                          | 4.8E-02                                |
| Fluorine gas F <sub>2</sub>                    | 7782-41-4  | 24-hr               | 1.6E+01         | 1.2E+00                          | 5.9E-02                                |
| Formaldehyde                                   | 50-00-0    | year                | 1.7E-01         | 2.7E+01                          | 1.4E+00                                |
| Furmecyclox                                    | 60568-05-0 | year                | 1.2E-01         | 1.9E+01                          | 9.4E-01                                |
| Furylfuramide                                  | 3688-53-7  | year                | 1.4E-02         | 2.4E+00                          | 1.2E-01                                |
| Glu-P-1                                        | 67730-11-4 | year                | 7.1E-04         | 1.2E-01                          | 5.8E-03                                |
| Glu-P-2                                        | 67730-10-3 | year                | 2.5E-03         | 4.1E-01                          | 2.0E-02                                |
| Glutaraldehyde                                 | 111-30-8   | 24-hr               | 8.0E-02         | 5.9E-03                          | 3.0E-04                                |
| Guthion (azinphos-methyl)                      | 86-50-0    | 24-hr               | 1.0E+01         | 7.4E-01                          | 3.7E-02                                |
| Gyromitrin                                     | 16568-02-8 | year                | 3.4E-04         | 5.6E-02                          | 2.8E-03                                |
| HC blue 1                                      | 2784-94-3  | year                | 6.7E-02         | 1.1E+01                          | 5.4E-01                                |
| Heptachlor                                     | 76-44-8    | year                | 7.7E-04         | 1.2E-01                          | 6.2E-03                                |
| Heptachlor epoxide                             | 1024-57-3  | year                | 3.8E-04         | 6.2E-02                          | 3.1E-03                                |
| Heptachlorodibenzo-p-dioxin, NOS               | 37871-00-4 | year                | 2.6E-06         | 4.3E-04                          | 2.1E-05                                |
| Hexachlorobenzene                              | 118-74-1   | year                | 2.2E-03         | 3.5E-01                          | 1.8E-02                                |
| Hexachlorobutadiene                            | 87-68-3    | year                | 4.5E-02         | 7.4E+00                          | 3.7E-01                                |
| Hexachlorocyclohexane                          | 608-73-1   | year                | 9.1E-04         | 1.5E-01                          | 7.4E-03                                |
| alpha-Hexachlorocyclohexane                    | 319-84-6   | year                | 1.3E-03         | 2.1E-01                          | 1.1E-02                                |
| beta-Hexachlorocyclohexane                     | 319-85-7   | year                | 2.3E-03         | 3.8E-01                          | 1.9E-02                                |
| gamma-Hexachlorocyclohexane<br>(lindane)       | 58-89-9    | year                | 3.2E-03         | 5.2E-01                          | 2.6E-02                                |
| Hexachlorocyclopentadiene                      | 77-47-4    | 24-hr               | 2.0E-01         | 1.5E-02                          | 7.4E-04                                |
| Hexachlorodibenzo-p-dioxins,<br>NOS            | 34465-46-8 | year                | 2.6E-07         | 4.3E-05                          | 2.1E-06                                |
| Hexachloroethane                               | 67-72-1    | year                | 9.1E-02         | 1.5E+01                          | 7.4E-01                                |
| Hexamethylene diisocyanate                     | 822-06-0   | 24-hr               | 7.0E-02         | 5.2E-03                          | 2.6E-04                                |
| n-Hexane                                       | 110-54-3   | 24-hr               | 7.0E+02         | 5.2E+01                          | 2.6E+00                                |
| 2-Hexanone                                     | 591-78-6   | 24-hr               | 3.0E+01         | 2.2E+00                          | 1.1E-01                                |
| Hydrazine                                      | 302-01-2   | year                | 2.0E-04         | 3.3E-02                          | 1.7E-03                                |
| Hydrazine sulfate                              | 10034-93-2 | year                | 1.2E-03         | 1.9E-01                          | 9.4E-03                                |
| Hydrogen chloride                              | 7647-01-0  | 24-hr               | 9.0E+00         | 6.7E-01                          | 3.3E-02                                |
| Hydrogen cyanide                               | 74-90-8    | 24-hr               | 8.0E-01         | 5.9E-02                          | 3.0E-03                                |
| Hydrogen fluoride                              | 7664-39-3  | 24-hr               | 1.4E+01         | 1.0E+00                          | 5.2E-02                                |
| Hydrogen sulfide                               | 7783-06-4  | 24-hr               | 2.0E+00         | 1.5E-01                          | 7.4E-03                                |
| Indeno[1,2,3-cd]pyrene                         | 193-39-5   | year                | 5.5E-03         | 8.9E-01                          | 4.5E-02                                |
| Isophorone                                     | 78-59-1    | 24-hr               | 2.0E+03         | 1.5E+02                          | 7.4E+00                                |
| Isopropyl alcohol                              | 67-63-0    | 1-hr                | 3.2E+03         | 5.9E+00                          | 3.0E-01                                |

| Chemical Common Name                         | CAS #      | Averaging<br>Period | ASIL<br>(µg/m³) | SQER<br>(lb/averaging<br>period) | <b>De Minimis</b><br>(lb/averaging<br>period) |
|----------------------------------------------|------------|---------------------|-----------------|----------------------------------|-----------------------------------------------|
| Lasiocarpine                                 | 303-34-4   | year                | 4.5E-04         | 7.4E-02                          | 3.7E-03                                       |
| Lead & compounds, NOS                        | —          | year                | 8.3E-02         | 1.4E+01                          | 1.0E+01                                       |
| Lead acetate                                 | 301-04-2   | year                | 1.3E-02         | 2.0E+00                          | 1.0E-01                                       |
| Lead chromate oxide                          | 18454-12-1 | year                | 4.2E-05         | 6.9E-03                          | 3.4E-04                                       |
| Lead chromate                                | 7758-97-6  | year                | 2.5E-05         | 4.1E-03                          | 2.0E-04                                       |
| Lead phosphate                               | 7446-27-7  | year                | 8.3E-02         | 1.4E+01                          | 6.8E-01                                       |
| Lead subacetate                              | 1335-32-6  | year                | 9.1E-02         | 1.5E+01                          | 7.4E-01                                       |
| Malathion                                    | 121-75-5   | 24-hr               | 2.0E+01         | 1.5E+00                          | 7.4E-02                                       |
| Maleic anhydride                             | 108-31-6   | 24-hr               | 7.0E-01         | 5.2E-02                          | 2.6E-03                                       |
| Manganese & compounds                        | —          | 24-hr               | 3.0E-01         | 2.2E-02                          | 1.1E-03                                       |
| Melphalan                                    | 148-82-3   | year                | 2.7E-05         | 4.4E-03                          | 2.2E-04                                       |
| Mercury, elemental                           | 7439-97-6  | 24-hr               | 3.0E-02         | 2.2E-03                          | 1.1E-04                                       |
| Diethyl mercury                              | 627-44-1   | 24-hr               | 1.4E-01         | 1.0E-02                          | 5.2E-04                                       |
| Dimethyl mercury                             | 593-74-8   | 24-hr               | 1.4E-01         | 1.0E-02                          | 5.2E-04                                       |
| Methyl alchohol (methanol)                   | 67-56-1    | 24-hr               | 2.0E+04         | 1.5E+03                          | 7.4E+01                                       |
| 3-Methylcholanthrene                         | 56-49-5    | year                | 9.6E-05         | 1.6E-02                          | 7.8E-04                                       |
| 5-Methylchrysene                             | 3697-24-3  | year                | 5.5E-04         | 8.9E-02                          | 4.5E-03                                       |
| 4,4'-Methylenebis(2-chloroaniline)<br>(MOCA) | 101-14-4   | year                | 1.4E-03         | 2.3E-01                          | 1.1E-02                                       |
| 4,4'-Methylenebis(2-methylaniline)           | 838-88-0   | year                | 3.8E-03         | 6.2E-01                          | 3.1E-02                                       |
| 4,4'-Methylenebis(N,N'-<br>dimethyl)aniline  | 101-61-1   | year                | 7.7E-02         | 1.2E+01                          | 6.2E-01                                       |
| 4,4'-Methylenedianiline                      | 101-77-9   | year                | 2.2E-03         | 3.5E-01                          | 1.8E-02                                       |
| 4,4'-Methylenedianiline<br>dihydrochloride   | 13552-44-8 | year                | 2.2E-03         | 3.5E-01                          | 1.8E-02                                       |
| Methylene diphenyl diisocyanate<br>(MDI)     | 101-68-8   | 24-hr               | 8.0E-02         | 5.9E-03                          | 3.0E-04                                       |
| Methyl ethyl ketone                          | 78-93-3    | 24-hr               | 5.0E+03         | 3.7E+02                          | 1.9E+01                                       |
| Methyl isobutyl ketone (MIBK, hexone)        | 108-10-1   | 24-hr               | 3.0E+03         | 2.2E+02                          | 1.1E+01                                       |
| Methyl isocyanate                            | 624-83-9   | 24-hr               | 1.0E+00         | 7.4E-02                          | 3.7E-03                                       |
| Methyl methacrylate                          | 80-62-6    | 24-hr               | 7.0E+02         | 5.2E+01                          | 2.6E+00                                       |
| Methyl methanesulfonate                      | 66-27-3    | year                | 3.6E-02         | 5.8E+00                          | 2.9E-01                                       |
| 2-Methyl-1-nitroanthraquinone                | 129-15-7   | year                | 8.3E-04         | 1.4E-01                          | 6.8E-03                                       |
| N-Methyl-N-nitro-N-<br>nitrosoguanidine      | 70-25-7    | year                | 4.2E-04         | 6.8E-02                          | 3.4E-03                                       |
| Methyl tert-butyl ether                      | 1634-04-4  | year                | 3.8E+00         | 6.2E+02                          | 3.1E+01                                       |
| Methylthiouracil                             | 56-04-2    | year                | 9.1E-03         | 1.5E+00                          | 7.4E-02                                       |
| Michler's ketone                             | 90-94-8    | year                | 4.0E-03         | 6.5E-01                          | 3.2E-02                                       |
| Mirex                                        | 2385-85-5  | year                | 2.0E-04         | 3.2E-02                          | 1.6E-03                                       |

| Chemical Common Name                                       | CAS #      | Averaging<br>Period | ASIL<br>(µg/m³) | SQER<br>(lb/averaging<br>period) | <b>De Minimis</b><br>(lb/averaging<br>period) |
|------------------------------------------------------------|------------|---------------------|-----------------|----------------------------------|-----------------------------------------------|
| Mitomycin C                                                | 50-07-7    | year                | 4.3E-07         | 7.1E-05                          | 3.5E-06                                       |
| Monocrotaline                                              | 315-22-0   | year                | 3.4E-04         | 5.6E-02                          | 2.8E-03                                       |
| N,N-Dimethylformamide                                      | 68-12-2    | 24-hr               | 8.0E+01         | 5.9E+00                          | 3.0E-01                                       |
| Naphthalene                                                | 91-20-3    | year                | 2.9E-02         | 4.8E+00                          | 2.4E-01                                       |
| 2-Naphthylamine                                            | 91-59-8    | year                | 2.0E-03         | 3.2E-01                          | 1.6E-02                                       |
| Nickel & compounds, NOS                                    |            | year                | 3.8E-03         | 6.2E-01                          | 3.1E-02                                       |
| Nickel acetate                                             | 373-02-4   | year                | 1.2E-02         | 1.9E+00                          | 9.4E-02                                       |
| Nickel carbonate                                           | 3333-67-3  | year                | 7.8E-03         | 1.3E+00                          | 6.3E-02                                       |
| Nickel carbonate hydroxide                                 | 12607-70-4 | year                | 6.6E-03         | 1.1E+00                          | 5.4E-02                                       |
| Nickel carbonyl                                            | 13463-39-3 | year                | 1.1E-02         | 1.8E+00                          | 9.1E-02                                       |
| Nickel chloride                                            | 7718-54-9  | year                | 8.5E-03         | 1.4E+00                          | 6.9E-02                                       |
| Nickel hydroxide                                           | 12054-48-7 | year                | 6.1E-03         | 9.9E-01                          | 4.9E-02                                       |
| Nickel nitrate hexahydrate                                 | 13478-00-7 | year                | 1.9E-02         | 3.1E+00                          | 1.5E-01                                       |
| Nickel oxide (nickel monoxide,<br>nickel(II) oxide)        | 1313-99-1  | year                | 4.9E-03         | 7.9E-01                          | 4.0E-02                                       |
| Nickel oxide black (nickel sesquioxide, nickel(III) oxide) | 1314-06-3  | year                | 5.4E-03         | 8.8E-01                          | 4.4E-02                                       |
| Nickel refinery dust                                       | —          | year                | 4.2E-03         | 6.8E-01                          | 3.4E-02                                       |
| Nickel subsulfide                                          | 12035-72-2 | year                | 2.1E-03         | 3.4E-01                          | 1.7E-02                                       |
| Nickel sulfate                                             | 7786-81-4  | year                | 1.0E-02         | 1.6E+00                          | 8.2E-02                                       |
| Nickel sulfate hexahydrate                                 | 10101-97-0 | year                | 1.7E-02         | 2.8E+00                          | 1.4E-01                                       |
| Nickel sulfide                                             | 11113-75-0 | year                | 6.0E-03         | 9.7E-01                          | 4.8E-02                                       |
| Nickelocene                                                | 1271-28-9  | year                | 1.2E-02         | 2.0E+00                          | 1.0E-01                                       |
| Nifurthiazole                                              | 3570-75-0  | year                | 1.5E-03         | 2.5E-01                          | 1.2E-02                                       |
| Nitric acid                                                | 7697-37-2  | 1-hr                | 8.6E+01         | 1.6E-01                          | 8.0E-03                                       |
| Nitrilotriacetic acid                                      | 139-13-9   | year                | 6.7E-01         | 1.1E+02                          | 5.4E+00                                       |
| Nitrilotriacetic acid, trisodium salt monohydrate          | 18662-53-8 | year                | 3.4E-01         | 5.6E+01                          | 2.8E+00                                       |
| Nitrobenzene                                               | 98-95-3    | year                | 2.5E-02         | 4.1E+00                          | 2.0E-01                                       |
| Nitrofen                                                   | 1836-75-5  | year                | 4.3E-02         | 7.1E+00                          | 3.5E-01                                       |
| 2-Nitrofluorene                                            | 607-57-8   | year                | 5.5E-02         | 8.9E+00                          | 4.5E-01                                       |
| Nitrofurazone                                              | 59-87-0    | year                | 2.7E-03         | 4.4E-01                          | 2.2E-02                                       |
| 1-[(5-Nitrofurfurylidene)-amino]-2-<br>imidazolidinone     | 555-84-0   | year                | 2.0E-03         | 3.2E-01                          | 1.6E-02                                       |
| N-[4-(5-nitro-2-furyl)-2-thiazolyl]-<br>acetamide          | 531-82-8   | year                | 2.3E-03         | 3.8E-01                          | 1.9E-02                                       |
| Nitrogen dioxide                                           | 10102-44-0 | 1-hr                | 4.7E+02         | 8.7E-01                          | 4.6E-01                                       |
| 2-Nitropropane                                             | 79-46-9    | 24-hr               | 2.0E+01         | 1.5E+00                          | 7.4E-02                                       |
| 1-Nitropyrene                                              | 5522-43-0  | year                | 5.5E-03         | 8.9E-01                          | 4.5E-02                                       |
| 4-Nitropyrene                                              | 57835-92-4 | year                | 5.5E-03         | 8.9E-01                          | 4.5E-02                                       |

| Chemical Common Name           | CAS #      | Averaging<br>Period | ASIL<br>(µg/m³) | SQER<br>(lb/averaging<br>period) | De Minimis<br>(lb/averaging<br>period) |
|--------------------------------|------------|---------------------|-----------------|----------------------------------|----------------------------------------|
| 5-Nitroacenaphthene            | 602-87-9   | year                | 1.6E-02         | 2.6E+00                          | 1.3E-01                                |
| 6-Nitrochrysene                | 7496-02-8  | year                | 5.5E-05         | 8.9E-03                          | 4.5E-04                                |
| N-Nitrosodiethanolamine        | 1116-54-7  | year                | 1.3E-03         | 2.0E-01                          | 1.0E-02                                |
| N-Nitrosodiethylamine          | 55-18-5    | year                | 6.0E-05         | 1.0E-02                          | 4.9E-04                                |
| N-Nitrosodimethylamine         | 62-75-9    | year                | 1.3E-04         | 2.1E-02                          | 1.1E-03                                |
| N-Nitrosodi-N-butylamine       | 924-16-3   | year                | 3.2E-04         | 5.2E-02                          | 2.6E-03                                |
| N-Nitrosodi-N-propylamine      | 621-64-7   | year                | 5.0E-04         | 8.1E-02                          | 4.1E-03                                |
| N-Nitrosodiphenylamine         | 86-30-6    | year                | 3.8E-01         | 6.2E+01                          | 3.1E+00                                |
| p-Nitrosodiphenylamine         | 156-10-5   | year                | 1.6E-01         | 2.6E+01                          | 1.3E+00                                |
| N-Nitrosomorpholine            | 59-89-2    | year                | 5.3E-04         | 8.5E-02                          | 4.3E-03                                |
| N-Nitroso-N-ethylurea          | 759-73-9   | year                | 7.8E-05         | 1.3E-02                          | 6.4E-04                                |
| N-Nitroso-N-methylethylamine   | 10595-95-6 | year                | 1.6E-04         | 2.6E-02                          | 1.3E-03                                |
| N-Nitroso-N-methylurea         | 684-93-5   | year                | 1.8E-05         | 2.9E-03                          | 1.4E-04                                |
| N-Nitroso-N-methylurethane     | 615-53-2   | year                | 3.2E-05         | 5.2E-03                          | 2.6E-04                                |
| N-Nitrosonornicotine           | 16543-55-8 | year                | 2.5E-03         | 4.1E-01                          | 2.0E-02                                |
| N-Nitrosopiperidine            | 100-75-4   | year                | 3.7E-04         | 6.0E-02                          | 3.0E-03                                |
| N-Nitrosopyrrolidine           | 930-55-2   | year                | 1.7E-03         | 2.7E-01                          | 1.4E-02                                |
| Oleum                          | 8014-95-7  | 1-hr                | 1.2E+02         | 2.2E-01                          | 1.1E-02                                |
| Ozone                          | 10028-15-6 | 1-hr                | 1.8E+02         | 3.3E-01                          | 2.0E-02                                |
| Parathion                      | 56-38-2    | 24-hr               | 2.0E-05         | 1.5E-06                          | 7.4E-08                                |
| Pentachlorophenol              | 87-86-5    | year                | 2.2E-01         | 3.5E+01                          | 1.8E+00                                |
| Perchloroethylene              | 127-18-4   | year                | 1.6E-01         | 2.7E+01                          | 1.3E+00                                |
| Phenacetin                     | 62-44-2    | year                | 1.6E+00         | 2.6E+02                          | 1.3E+01                                |
| Phenazopyridine                | 94-78-0    | year                | 2.0E-02         | 3.3E+00                          | 1.7E-01                                |
| Phenazopyridine hydrochloride  | 136-40-3   | year                | 2.3E-02         | 3.8E+00                          | 1.9E-01                                |
| Phenesterin                    | 3546-10-9  | year                | 2.3E-05         | 3.8E-03                          | 1.9E-04                                |
| Phenobarbital                  | 50-06-6    | year                | 7.7E-03         | 1.2E+00                          | 6.2E-02                                |
| Phenol                         | 108-95-2   | 24-hr               | 2.0E+02         | 1.5E+01                          | 7.4E-01                                |
| Phenoxybenzamine               | 59-96-1    | year                | 1.1E-03         | 1.8E-01                          | 9.1E-03                                |
| Phenoxybenzamine hydrochloride | 63-92-3    | year                | 1.3E-03         | 2.1E-01                          | 1.1E-02                                |
| o-Phenylphenate, sodium        | 132-27-4   | year                | 1.2E+00         | 1.9E+02                          | 9.4E+00                                |
| Phosgene                       | 75-44-5    | 24-hr               | 3.0E-01         | 2.2E-02                          | 1.1E-03                                |
| Phosphine                      | 7803-51-2  | 24-hr               | 8.0E-01         | 5.9E-02                          | 3.0E-03                                |
| Phosphoric acid                | 7664-38-2  | 24-hr               | 7.0E+00         | 5.2E-01                          | 2.6E-02                                |
| Phosphorus                     | 7723-14-0  | 24-hr               | 2.0E+01         | 1.5E+00                          | 7.4E-02                                |
| Phosphorus, white              | 12185-10-3 | 24-hr               | 2.0E+01         | 1.5E+00                          | 7.4E-02                                |
| Phthalic anhydride             | 85-44-9    | 24-hr               | 2.0E+01         | 1.5E+00                          | 7.4E-02                                |
| Polybrominated biphenyls       |            | year                | 1.2E-04         | 1.9E-02                          | 9.4E-04                                |

| Chemical Common Name                                                                 | CAS #      | Averaging<br>Period | <b>ASIL</b><br>(µg/m³) | SQER<br>(Ib/averaging<br>period) | De Minimis<br>(Ib/averaging<br>period) |
|--------------------------------------------------------------------------------------|------------|---------------------|------------------------|----------------------------------|----------------------------------------|
| Polybrominated diphenyl ethers<br>(PBDEs) [containing less than 10<br>bromine atoms] |            | 24-hr               | 6.0E+00                | 4.4E-01                          | 2.2E-02                                |
| Polychlorinated biphenyls (PCBs), NOS                                                | 1336-36-3  | year                | 1.8E-03                | 2.8E-01                          | 1.4E-02                                |
| PCB 77 (3,3',4,4'-<br>tetrachlorobiphenyl)                                           | 32598-13-3 | year                | 2.6E-04                | 4.3E-02                          | 2.1E-03                                |
| PCB 81 (3,4,4',5-<br>tetrachlorobiphenyl)                                            | 70362-50-4 | year                | 9.1E-05                | 1.5E-02                          | 7.4E-04                                |
| PCB 105 (2,3,3',4,4'-<br>pentachlorobiphenyl)                                        | 32598-14-4 | year                | 9.1E-04                | 1.5E-01                          | 7.4E-03                                |
| PCB 114 (2,3,4,4',5-<br>pentachlorobiphenyl)                                         | 74472-37-0 | year                | 9.1E-04                | 1.5E-01                          | 7.4E-03                                |
| PCB 118 (2,3',4,4',5-<br>pentachlorobiphenyl)                                        | 31508-00-6 | year                | 9.1E-04                | 1.5E-01                          | 7.4E-03                                |
| PCB 123 (2,3',4,4',5'-<br>pentachlorobiphenyl)                                       | 65510-44-3 | year                | 9.1E-04                | 1.5E-01                          | 7.4E-03                                |
| PCB 126 (3,3',4,4',5-<br>pentachlorobiphenyl)                                        | 57465-28-8 | year                | 2.6E-07                | 4.3E-05                          | 2.1E-06                                |
| PCB 156 (2,3,3',4,4',5-<br>hexachlorobiphenyl)                                       | 38380-08-4 | year                | 9.1E-04                | 1.5E-01                          | 7.4E-03                                |
| PCB 157 (2,3,3',4,4',5'-<br>hexachlorobiphenyl)                                      | 69782-90-7 | year                | 9.1E-04                | 1.5E-01                          | 7.4E-03                                |
| PCB 167 (2,3',4,4',5,5'-<br>hexachlorobiphenyl)                                      | 52663-72-6 | year                | 9.1E-04                | 1.5E-01                          | 7.4E-03                                |
| PCB 169 (3,3',4,4',5,5'-<br>hexachlorobiphenyl)                                      | 32774-16-6 | year                | 9.1E-07                | 1.5E-04                          | 7.4E-06                                |
| PCB 189 (2,3,3',4,4',5,5'-<br>heptachlorobiphenyl)                                   | 39635-31-9 | year                | 9.1E-04                | 1.5E-01                          | 7.4E-03                                |
| 1,2,3,4,6,7,8-Heptachlorodibenzo-<br>p-dioxin (HpCDD)                                | 35822-46-9 | year                | 2.6E-06                | 4.3E-04                          | 2.1E-05                                |
| 1,2,3,4,7,8-Hexachlorodibenzo-p-<br>dioxin (HxCDD)                                   | 39227-28-6 | year                | 2.6E-07                | 4.3E-05                          | 2.1E-06                                |
| 1,2,3,6,7,8-Hexachlorodibenzo-p-<br>dioxin (HxCDD)                                   | 57653-85-7 | year                | 2.6E-07                | 4.3E-05                          | 2.1E-06                                |
| 1,2,3,7,8,9-Hexachlorodibenzo-p-<br>dioxin (HxCDD)                                   | 19408-74-3 | year                | 2.6E-07                | 4.3E-05                          | 2.1E-06                                |
| 1,2,3,4,6,7,8,9-Octachlorodibenzo-<br>p-dioxin (OCDD)                                | 3268-87-9  | year                | 9.1E-05                | 1.5E-02                          | 7.4E-04                                |
| 1,2,3,7,8-Pentachlorodibenzo-p-<br>dioxin (PeCDD)                                    | 40321-76-4 | year                | 2.6E-08                | 4.3E-06                          | 2.1E-07                                |
| 2,3,7,8-Tetrachlorodibenzo-p-<br>dioxin (TCDD)                                       | 1746-01-6  | year                | 2.6E-08                | 4.3E-06                          | 2.1E-07                                |
| 2,3,7,8-Tetrachlorodibenzo-p-<br>dioxin & related compounds, NOS                     |            | year                | 2.6E-08                | 4.3E-06                          | 2.1E-07                                |

| Chemical Common Name                                            | CAS #      | Averaging<br>Period | <b>ASIL</b><br>(µg/m³) | SQER<br>(Ib/averaging<br>period) | De Minimis<br>(lb/averaging<br>period) |
|-----------------------------------------------------------------|------------|---------------------|------------------------|----------------------------------|----------------------------------------|
| 1,2,3,4,6,7,8-<br>Heptachlorodibenzofuran<br>(HpCDF)            | 67562-39-4 | year                | 2.6E-06                | 4.3E-04                          | 2.1E-05                                |
| 1,2,3,4,7,8,9-<br>Heptachlorodibenzofuran<br>(HpCDF)            | 55673-89-7 | year                | 2.6E-06                | 4.3E-04                          | 2.1E-05                                |
| 1,2,3,4,7,8-<br>Hexachlorodibenzofuran (HxCDF)                  | 70648-26-9 | year                | 2.6E-07                | 4.3E-05                          | 2.1E-06                                |
| 1,2,3,6,7,8-<br>Hexachlorodibenzofuran (HxCDF)                  | 57117-44-9 | year                | 2.6E-07                | 4.3E-05                          | 2.1E-06                                |
| 1,2,3,7,8,9-<br>Hexachlorodibenzofuran (HxCDF)                  | 72918-21-9 | year                | 2.6E-07                | 4.3E-05                          | 2.1E-06                                |
| 2,3,4,6,7,8-<br>Hexachlorodibenzofuran (HxCDF)                  | 60851-34-5 | year                | 2.6E-07                | 4.3E-05                          | 2.1E-06                                |
| 1,2,3,4,6,7,8,9-<br>Octachlorodibenzofuran (OCDF)               | 39001-02-0 | year                | 9.1E-05                | 1.5E-02                          | 7.4E-04                                |
| 1,2,3,7,8-Pentachlorodibenzofuran<br>(PeCDF)                    | 57117-41-6 | year                | 9.1E-07                | 1.5E-04                          | 7.4E-06                                |
| 2,3,4,7,8-Pentachlorodibenzofuran<br>(PeCDF)                    | 57117-31-4 | year                | 9.1E-08                | 1.5E-05                          | 7.4E-07                                |
| 2,3,7,8-Tetrachlorodibenzofuran<br>(TcDF)                       | 51207-31-9 | year                | 2.6E-07                | 4.3E-05                          | 2.1E-06                                |
| Ponceau 3R                                                      | 3564-09-8  | year                | 2.2E-01                | 3.5E+01                          | 1.8E+00                                |
| Ponceau MX                                                      | 3761-53-3  | year                | 7.7E-01                | 1.2E+02                          | 6.2E+00                                |
| Potassium bromate                                               | 7758-01-2  | year                | 7.1E-03                | 1.2E+00                          | 5.8E-02                                |
| Procarbazine                                                    | 671-16-9   | year                | 2.5E-04                | 4.1E-02                          | 2.0E-03                                |
| Procarbazine hydrochloride                                      | 366-70-1   | year                | 2.9E-04                | 4.8E-02                          | 2.4E-03                                |
| 1,3-Propane sultone                                             | 1120-71-4  | year                | 1.4E-03                | 2.4E-01                          | 1.2E-02                                |
| Propionaldehyde                                                 | 123-38-6   | 24-hr               | 8.0E+00                | 5.9E-01                          | 3.0E-02                                |
| Propylene                                                       | 115-07-1   | 24-hr               | 3.0E+03                | 2.2E+02                          | 1.1E+01                                |
| Propylene glycol                                                | 57-55-6    | 24-hr               | 2.8E+01                | 2.1E+00                          | 1.1E-01                                |
| Propylene glycol dinitrate                                      | 6423-43-4  | 24-hr               | 2.8E-01                | 2.1E-02                          | 1.0E-03                                |
| Propylene glycol monomethyl ether                               | 107-98-2   | 24-hr               | 7.0E+03                | 5.2E+02                          | 2.6E+01                                |
| Propylene oxide                                                 | 75-56-9    | year                | 2.7E-01                | 4.4E+01                          | 2.2E+00                                |
| Propylthiouracil                                                | 51-52-5    | year                | 3.4E-03                | 5.6E-01                          | 2.8E-02                                |
| Refractory ceramic fibers<br>(fibers/cubic centimeter)          | —          | 24-hr               | 3.0E-02                | 2.2E-03                          | 1.1E-04                                |
| Reserpine                                                       | 50-55-5    | year                | 3.2E-04                | 5.2E-02                          | 2.6E-03                                |
| Safrole                                                         | 94-59-7    | year                | 9.6E-03                | 1.6E+00                          | 7.8E-02                                |
| Selenide, hydrogen                                              | 7783-07-5  | 1-hr                | 5.0E+00                | 9.3E-03                          | 4.6E-04                                |
| Selenium & selenium compounds<br>(other than hydrogen selenide) | _          | 24-hr               | 2.0E+01                | 1.5E+00                          | 7.4E-02                                |

| Chemical Common Name                      | CAS #      | Averaging<br>Period | <b>ASIL</b><br>(µg/m³) | SQER<br>(Ib/averaging<br>period) | De Minimis<br>(Ib/averaging<br>period) |
|-------------------------------------------|------------|---------------------|------------------------|----------------------------------|----------------------------------------|
| Silica, crystalline (respirable)          | 7631-86-9  | 24-hr               | 3.0E+00                | 2.2E-01                          | 1.1E-02                                |
| Sodium hydroxide                          | 1310-73-2  | 1-hr                | 8.0E+00                | 1.5E-02                          | 7.4E-04                                |
| Sodium sulfate                            | 7757-82-6  | 1-hr                | 1.2E+02                | 2.2E-01                          | 1.1E-02                                |
| Sterigmatocystin                          | 10048-13-2 | year                | 1.0E-04                | 1.6E-02                          | 8.1E-04                                |
| Streptozotocin                            | 18883-66-4 | year                | 3.2E-05                | 5.2E-03                          | 2.6E-04                                |
| Styrene                                   | 100-42-5   | 24-hr               | 8.7E+02                | 6.5E+01                          | 3.2E+00                                |
| Styrene oxide                             | 96-09-3    | year                | 2.2E-02                | 3.5E+00                          | 1.8E-01                                |
| Sulfallate                                | 95-06-7    | year                | 1.9E-02                | 3.0E+00                          | 1.5E-01                                |
| Sulfur dioxide                            | 7446-09-5  | 1-hr                | 6.6E+02                | 1.2E+00                          | 4.6E-01                                |
| Sulfur mustard                            | 505-60-2   | 24-hr               | 2.0E-02                | 1.5E-03                          | 7.4E-05                                |
| Sulfur trioxide                           | 7446-11-9  | 1-hr                | 1.2E+02                | 2.2E-01                          | 1.1E-02                                |
| Sulfuric acid                             | 7664-93-9  | 24-hr               | 1.0E+00                | 7.4E-02                          | 3.7E-03                                |
| Tertiary-butyl acetate                    | 540-88-5   | year                | 7.7E-01                | 1.2E+02                          | 6.2E+00                                |
| 1,1,1,2-Tetrachloroethane                 | 630-20-6   | year                | 1.4E-01                | 2.2E+01                          | 1.1E+00                                |
| 1,1,2,2-Tetrachloroethane                 | 79-34-5    | year                | 1.7E-02                | 2.8E+00                          | 1.4E-01                                |
| 1,1,1,2-Tetrafluoroethane                 | 811-97-2   | 24-hr               | 8.0E+04                | 5.9E+03                          | 3.0E+02                                |
| Tetrahydrofuran                           | 109-99-9   | 24-hr               | 2.0E+03                | 1.5E+02                          | 7.4E+00                                |
| Thioacetamide                             | 62-55-5    | year                | 5.9E-04                | 1.0E-01                          | 4.8E-03                                |
| 4,4-Thiodianiline                         | 139-65-1   | year                | 2.3E-04                | 3.8E-02                          | 1.9E-03                                |
| Thiourea                                  | 62-56-6    | year                | 4.8E-02                | 7.7E+00                          | 3.9E-01                                |
| Titanium tetrachloride                    | 7550-45-0  | 24-hr               | 1.0E-01                | 7.4E-03                          | 3.7E-04                                |
| Toluene                                   | 108-88-3   | 24-hr               | 5.0E+03                | 3.7E+02                          | 1.9E+01                                |
| Toluene diisocyanates (2,4- and 2,6-)     | 26471-62-5 | 24-hr               | 8.0E-03                | 5.9E-04                          | 3.0E-05                                |
| Toluene-2,4-diisocyanate                  | 584-84-9   | 24-hr               | 8.0E-03                | 5.9E-04                          | 3.0E-05                                |
| Toluene-2,6-diisocyanate                  | 91-08-7    | 24-hr               | 8.0E-03                | 5.9E-04                          | 3.0E-05                                |
| o-Toluidine                               | 95-53-4    | year                | 2.0E-02                | 3.2E+00                          | 1.6E-01                                |
| o-Toluidine hydrochloride                 | 636-21-5   | year                | 2.7E-02                | 4.4E+00                          | 2.2E-01                                |
| Toxaphene (polychlorinated camphenes)     | 8001-35-2  | year                | 2.9E-03                | 4.8E-01                          | 2.4E-02                                |
| 1,1,1-Trichloroethane (methyl chloroform) | 71-55-6    | 24-hr               | 5.0E+03                | 3.7E+02                          | 1.9E+01                                |
| 1,1,2-Trichloroethane (vinyl trichloride) | 79-00-5    | year                | 6.3E-02                | 1.0E+01                          | 5.1E-01                                |
| Trichloroethylene (TCE)                   | 79-01-6    | year                | 2.1E-01                | 3.4E+01                          | 1.7E+00                                |
| 2,4,6-Trichlorophenol                     | 88-06-2    | year                | 3.2E-01                | 5.2E+01                          | 2.6E+00                                |
| 1,2,3-Trichloropropane                    | 96-18-4    | 24-hr               | 3.0E-01                | 2.2E-02                          | 1.1E-03                                |
| Triethylamine                             | 121-44-8   | 24-hr               | 2.0E+02                | 1.5E+01                          | 7.4E-01                                |
| 1,2,3-Trimethylbenzene                    | 526-73-8   | 24-hr               | 6.0E+01                | 4.4E+00                          | 2.2E-01                                |
| 1,2,4-Trimethylbenzene                    | 95-63-6    | 24-hr               | 6.0E+01                | 4.4E+00                          | 2.2E-01                                |

| Chemical Common Name                                         | CAS #      | Averaging<br>Period | ASIL<br>(µg/m³) | SQER<br>(lb/averaging<br>period) | De Minimis<br>(lb/averaging<br>period) |
|--------------------------------------------------------------|------------|---------------------|-----------------|----------------------------------|----------------------------------------|
| 1,3,5-Trimethylbenzene                                       | 108-67-8   | 24-hr               | 6.0E+01         | 4.4E+00                          | 2.2E-01                                |
| Tryptophan-P-1                                               | 62450-06-0 | year                | 1.4E-04         | 2.2E-02                          | 1.1E-03                                |
| Tryptophan-P-2                                               | 62450-07-1 | year                | 1.1E-03         | 1.8E-01                          | 8.9E-03                                |
| Uranium, insoluble compounds, NOS                            | _          | 24-hr               | 8.0E-01         | 5.9E-02                          | 3.0E-03                                |
| Uranium, soluble salts, NOS                                  | _          | 24-hr               | 4.0E-02         | 3.0E-03                          | 1.5E-04                                |
| Vanadium (fume or dust)                                      | 7440-62-2  | 24-hr               | 1.0E-01         | 7.4E-03                          | 3.7E-04                                |
| Vanadium pentoxide                                           | 1314-62-1  | 1-hr                | 3.0E+01         | 5.6E-02                          | 2.8E-03                                |
| Vinyl acetate                                                | 108-05-4   | 24-hr               | 2.0E+02         | 1.5E+01                          | 7.4E-01                                |
| Vinyl bromide                                                | 593-60-2   | 24-hr               | 3.0E+00         | 2.2E-01                          | 1.1E-02                                |
| Vinyl chloride                                               | 75-01-4    | year                | 1.1E-01         | 1.8E+01                          | 9.2E-01                                |
| Xylene (mixture), including m-<br>xylene, o-xylene, p-xylene | 1330-20-7  | 24-hr               | 2.2E+02         | 1.6E+01                          | 8.2E-01                                |
| m-Xylene                                                     | 108-38-3   | 24-hr               | 2.2E+02         | 1.6E+01                          | 8.2E-01                                |
| o-Xylene                                                     | 95-47-6    | 24-hr               | 2.2E+02         | 1.6E+01                          | 8.2E-01                                |
| p-Xylene                                                     | 106-42-3   | 24-hr               | 2.2E+02         | 1.6E+01                          | 8.2E-01                                |

### Appendix B Retained TAPs

The following table contains the list of 387 TAPs from the 2009 rule that remain on the final 2019 list. NOS means not otherwise specified and applies to situations where emission factors for a group of pollutants is reported, but specific isomers, congeners, or chemicals are not reported. CAS means chemical abstract service.

|    | Chemical Common Name for TAP Remaining on List    | CAS #      |
|----|---------------------------------------------------|------------|
| 1  | 1,1,1,2-Tetrachloroethane                         | 630-20-6   |
| 2  | 1,1,1,2-Tetrafluoroethane                         | 811-97-2   |
| 3  | 1,1,1-Trichloroethane (methyl chloroform)         | 71-55-6    |
| 4  | 1,1,2,2-Tetrachloroethane                         | 79-34-5    |
| 5  | 1,1,2-Trichloroethane (vinyl trichloride)         | 79-00-5    |
| 6  | 1,1-Dichloroethane (ethylidene dichloride)        | 75-34-3    |
| 7  | 1,1-Dichloroethylene (1,1-DCE)                    | 75-35-4    |
| 8  | 1,1-Difluoroethane                                | 75-37-6    |
| 9  | 1,1-Dimethylhydrazine                             | 57-14-7    |
| 10 | 1,2,3,4,6,7,8,9-Octachlorodibenzofuran (OCDF)     | 39001-02-0 |
| 11 | 1,2,3,4,6,7,8,9-Octachlorodibenzo-p-dioxin (OCDD) | 3268-87-9  |
| 12 | 1,2,3,4,6,7,8-Heptachlorodibenzofuran (HpCDF)     | 67562-39-4 |
| 13 | 1,2,3,4,6,7,8-Heptachlorodibenzo-p-dioxin (HpCDD) | 35822-46-9 |
| 14 | 1,2,3,4,7,8,9-Heptachlorodibenzofuran (HpCDF)     | 55673-89-7 |
| 15 | 1,2,3,4,7,8-Hexachlorodibenzofuran (HxCDF)        | 70648-26-9 |
| 16 | 1,2,3,4,7,8-Hexachlorodibenzo-p-dioxin (HxCDD)    | 39227-28-6 |
| 17 | 1,2,3,6,7,8-Hexachlorodibenzofuran (HxCDF)        | 57117-44-9 |
| 18 | 1,2,3,6,7,8-Hexachlorodibenzo-p-dioxin (HxCDD)    | 57653-85-7 |
| 19 | 1,2,3,7,8,9-Hexachlorodibenzofuran (HxCDF)        | 72918-21-9 |
| 20 | 1,2,3,7,8,9-Hexachlorodibenzo-p-dioxin (HxCDD)    | 19408-74-3 |
| 21 | 1,2,3,7,8-Pentachlorodibenzofuran (PeCDF)         | 57117-41-6 |
| 22 | 1,2,3,7,8-Pentachlorodibenzo-p-dioxin (PeCDD)     | 40321-76-4 |
| 23 | 1,2,3-Trichloropropane                            | 96-18-4    |
| 24 | 1,2-Dibromo-3-chloropropane (DBCP)                | 96-12-8    |
| 25 | 1,2-Dichloropropane (propylene dichloride)        | 78-87-5    |
| 26 | 1,2-Dimethylhydrazine                             | 540-73-8   |
| 27 | 1,2-Diphenylhydrazine (hydrazobenzene)            | 122-66-7   |
| 28 | 1,2-Epoxybutane                                   | 106-88-7   |
| 29 | 1,3-Butadiene                                     | 106-99-0   |
| 30 | 1,3-Dichloropropene                               | 542-75-6   |
| 31 | 1,3-Propane sultone                               | 1120-71-4  |
| 32 | 1,4-Dichlorobenzene                               | 106-46-7   |
| 33 | 1,4-Dioxane                                       | 123-91-1   |

|    | Chemical Common Name for TAP Remaining on List               | CAS #      |
|----|--------------------------------------------------------------|------------|
| 34 | 1,6-Dinitropyrene                                            | 42397-64-8 |
| 35 | 1,8-Dinitropyrene                                            | 42397-65-9 |
| 36 | 1-[(5-Nitrofurfurylidene)-amino]-2-imidazolidinone           | 555-84-0   |
| 37 | 1-Amino-2-methylanthraquinone                                | 82-28-0    |
| 38 | 1-Chloro-1,1-difluoroethane                                  | 75-68-3    |
| 39 | 1-Nitropyrene                                                | 5522-43-0  |
| 40 | 2,3,4,6,7,8-Hexachlorodibenzofuran (HxCDF)                   | 60851-34-5 |
| 41 | 2,3,4,7,8-Pentachlorodibenzofuran (PeCDF)                    | 57117-31-4 |
| 42 | 2,3,7,8-Tetrachlorodibenzofuran (TcDF)                       | 51207-31-9 |
| 43 | 2,3,7,8-Tetrachlorodibenzo-p-dioxin & related compounds, NOS |            |
| 44 | 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD)                   | 1746-01-6  |
| 45 | 2,4,6-Trichlorophenol                                        | 88-06-2    |
| 46 | 2,4-Diaminoanisole                                           | 615-05-4   |
| 47 | 2,4-Diaminoanisole sulfate                                   | 39156-41-7 |
| 48 | 2,4-Diaminotoluene (2,4-toluene diamine)                     | 95-80-7    |
| 49 | 2,4-Dinitrotoluene                                           | 121-14-2   |
| 50 | 2-Acetylaminofluorene                                        | 53-96-3    |
| 51 | 2-Amino-3-methyl-9H pyrido[2,3-b]indole                      | 68006-83-7 |
| 52 | 2-Amino-3-methylimidazo-[4,5-f]quinoline                     | 76180-96-6 |
| 53 | 2-Amino-5-(5-Nitro-2-Furyl)-1,3,4-Thiadiazol                 | 712-68-5   |
| 54 | 2-Aminoanthraquinone                                         | 117-79-3   |
| 55 | 2-Chloroacetophenone                                         | 532-27-4   |
| 56 | 2-Methyl-1-nitroanthraquinone                                | 129-15-7   |
| 57 | 2-Methylphenol (o-cresol)                                    | 95-48-7    |
| 58 | 2-Naphthylamine                                              | 91-59-8    |
| 59 | 2-Nitrofluorene                                              | 607-57-8   |
| 60 | 2-Nitropropane                                               | 79-46-9    |
| 61 | 3,3'-Dichlorobenzidine                                       | 91-94-1    |
| 62 | 3-Amino-9-ethylcarbazole hydrochloride                       | 6109-97-3  |
| 63 | 3-Chloro-2-methyl-1-propene                                  | 563-47-3   |
| 64 | 3-Methylcholanthrene                                         | 56-49-5    |
| 65 | 3-Methylphenol (m-cresol)                                    | 108-39-4   |
| 66 | 4,4'-Diaminodiphenyl ether                                   | 101-80-4   |
| 67 | 4,4'-Methylenebis(2-chloroaniline) (MOCA)                    | 101-14-4   |
| 68 | 4,4'Methylenebis(2-methylaniline)                            | 838-88-0   |
| 69 | 4,4'-Methylenebis(n,n'-dimethyl)aniline                      | 101-61-1   |
| 70 | 4,4'-Methylenedianiline                                      | 101-77-9   |
| 71 | 4,4'-Methylenedianiline dihydrochloride                      | 13552-44-8 |
| 72 | 4,4-Thiodianiline                                            | 139-65-1   |
| 73 | 4-Aminobiphenyl                                              | 92-67-1    |
| 74 | 4-Chloro-o-phenylenediamine                                  | 95-83-0    |
| 75 | 4-Dimethylaminoazobenzene                                    | 60-11-7    |

|     | Chemical Common Name for TAP Remaining on List | CAS #      |
|-----|------------------------------------------------|------------|
| 76  | 4-Methylphenol (p-cresol)                      | 106-44-5   |
| 77  | 4-Nitropyrene                                  | 57835-92-4 |
| 78  | 5-Methylchrysene                               | 3697-24-3  |
| 79  | 5-Nitroacenaphthene                            | 602-87-9   |
| 80  | 6-Nitrochrysene                                | 7496-02-8  |
| 81  | 7,12-Dimethylbenz[a]anthracene                 | 57-97-6    |
| 82  | 7H-Dibenzo[c,g]carbazole                       | 194-59-2   |
| 83  | A-alpha-c(2-amino-9h-pyrido[2,3-b]indole)      | 26148-68-5 |
| 84  | Acetaldehyde                                   | 75-07-0    |
| 85  | Acetamide                                      | 60-35-5    |
| 86  | Acetonitrile                                   | 75-05-8    |
| 87  | Acrolein                                       | 107-02-8   |
| 88  | Acrylamide                                     | 79-06-1    |
| 89  | Acrylic acid                                   | 79-10-7    |
| 90  | Acrylonitrile                                  | 107-13-1   |
| 91  | Actinomycin D                                  | 50-76-0    |
| 92  | Alar (daminsozide)                             | 1596-84-5  |
| 93  | Aldrin                                         | 309-00-2   |
| 94  | Allyl chloride                                 | 107-05-1   |
| 95  | Amitrole                                       | 61-82-5    |
| 96  | Ammonia                                        | 7664-41-7  |
| 97  | Ammonium bisulfate                             | 7803-63-6  |
| 98  | Aniline                                        | 62-53-3    |
| 99  | Antimony trioxide                              | 1309-64-4  |
| 100 | Aramite                                        | 140-57-8   |
| 101 | Arsenic & inorganic arsenic compounds, NOS     |            |
| 102 | Arsine                                         | 7784-42-1  |
| 103 | Asbestos (fibers/cubic centimeter)             | 1332-21-4  |
| 104 | Auramine                                       | 492-80-8   |
| 105 | Azaserine                                      | 115-02-6   |
| 106 | Azathioprine                                   | 446-86-6   |
| 107 | Azobenzene                                     | 103-33-3   |
| 108 | Barium chromate                                | 10294-40-3 |
| 109 | Benz[a]anthracene                              | 56-55-3    |
| 110 | Benzene                                        | 71-43-2    |
| 111 | Benzidine                                      | 92-87-5    |
| 112 | Benzo[a]pyrene                                 | 50-32-8    |
| 113 | Benzo[b]fluoranthene                           | 205-99-2   |
| 114 | Benzo[j]fluoranthene                           | 205-82-3   |
| 115 | Benzo[k]fluoranthene                           | 207-08-9   |
| 116 | Benzyl chloride                                | 100-44-7   |
| 117 | Benzyl violet 4B                               | 1694-09-3  |

|     | Chemical Common Name for TAP Remaining on List | CAS #       |
|-----|------------------------------------------------|-------------|
| 118 | Beryllium & compounds, NOS                     |             |
| 119 | Beryllium oxide                                | 1304-56-9   |
| 120 | Beryllium sulfate                              | 13510-49-1  |
| 121 | beta-Butyrolactone                             | 3068-88-0   |
| 122 | beta-Propiolactone                             | 57-57-8     |
| 123 | Bis(2-chloroethyl) ether                       | 111-44-4    |
| 124 | Bis(chloromethyl) ether                        | 542-88-1    |
| 125 | Bromodichloromethane                           | 75-27-4     |
| 126 | Bromoform                                      | 75-25-2     |
| 127 | Bromomethane (methyl bromide)                  | 74-83-9     |
| 128 | Butylated hydroxyanisole                       | 25013-16-5  |
| 129 | C.I. basic red 9 monohydrochloride             | 569-61-9    |
| 130 | Cadmium & compounds, NOS                       |             |
| 131 | Captafol                                       | 2425-06-1   |
| 132 | Captan                                         | 133-06-2    |
| 133 | Carbon disulfide                               | 75-15-0     |
| 134 | Carbon monoxide                                | 630-08-0    |
| 135 | Carbon tetrachloride                           | 56-23-5     |
| 136 | Chlorambucil                                   | 305-03-3    |
| 137 | Chlordane                                      | 57-74-9     |
| 138 | Chlordecone                                    | 143-50-0    |
| 139 | Chlorendic Acid                                | 115-28-6    |
| 140 | Chlorinated paraffins                          | 108171-26-2 |
| 141 | Chlorine                                       | 7782-50-5   |
| 142 | Chlorine dioxide                               | 10049-04-4  |
| 143 | Chloroalkanes C10-13 (chlorinated paraffins)   | 85535-84-8  |
| 144 | Chlorobenzene                                  | 108-90-7    |
| 145 | Chlorobenzilate (ethyl-4,4'-dichlorobenzilate) | 510-15-6    |
| 146 | Chlorodifluoromethane (Freon 22)               | 75-45-6     |
| 147 | Chloroethane (ethyl chloride)                  | 75-00-3     |
| 148 | Chloroform                                     | 67-66-3     |
| 149 | Chloromethane (methyl chloride)                | 74-87-3     |
| 150 | Chloromethyl methyl ether                      | 107-30-2    |
| 151 | Chloropicrin                                   | 76-06-2     |
| 152 | Chlorothalonil                                 | 1897-45-6   |
| 153 | Chlorozotocin                                  | 54749-90-5  |
| 154 | Chromic trioxide                               | 1333-82-0   |
| 155 | Chromic(VI) acid                               | 7738-94-5   |
| 156 | Chromium(VI) & compounds, NOS                  |             |
| 157 | Chrysene                                       | 218-01-9    |
| 158 | Cinnamyl Anthranilate                          | 87-29-6     |
| 159 | Cobalt and compounds, NOS                      | 7440-48-4   |

|     | Chemical Common Name for TAP Remaining on List | CAS #      |
|-----|------------------------------------------------|------------|
| 160 | Coke oven emissions                            |            |
| 161 | Copper & compounds                             |            |
| 162 | Cumene                                         | 98-82-8    |
| 163 | Cupferron                                      | 135-20-6   |
| 164 | Cyclohexane                                    | 110-82-7   |
| 165 | Cyclophosphamide (anhydrous)                   | 50-18-0    |
| 166 | Cyclophosphamide (hydrated)                    | 6055-19-2  |
| 167 | D & C red no. 9                                | 5160-02-1  |
| 168 | Dacarbazine                                    | 4342-03-4  |
| 169 | Dantron                                        | 117-10-2   |
| 170 | Di(2-ethylhexl)phthalate                       | 117-81-7   |
| 171 | Diazinon                                       | 333-41-5   |
| 172 | Dibenz[a,h]acridine                            | 226-36-8   |
| 173 | Dibenz[a,h]anthracene                          | 53-70-3    |
| 174 | Dibenz[a,j]acridine                            | 224-42-0   |
| 175 | Dibenzo[a,e]pyrene                             | 192-65-4   |
| 176 | Dibenzo[a,h]pyrene                             | 189-64-0   |
| 177 | Dibenzo[a,i]pyrene                             | 189-55-9   |
| 178 | Dibenzo[a,l]pyrene                             | 191-30-0   |
| 179 | Dichlorodiphenyldichloroethane (DDD)           | 72-54-8    |
| 180 | Dichlorodiphenyldichloroethylene (DDE)         | 72-55-9    |
| 181 | Dichlorodiphenyltrichloroethane (DDT)          | 50-29-3    |
| 182 | Dichloromethane (methylene chloride)           | 75-09-2    |
| 183 | Dichlorvos (DDVP)                              | 62-73-7    |
| 184 | Dieldrin                                       | 60-57-1    |
| 185 | Diesel engine exhaust, particulate             |            |
| 186 | Diethanolamine                                 | 111-42-2   |
| 187 | Diethyl mercury                                | 627-44-1   |
| 188 | Diethylstilbestrol                             | 56-53-1    |
| 189 | Diglycidyl resorcinol ether                    | 101-90-6   |
| 190 | Dihydrosafrole                                 | 94-58-6    |
| 191 | Dimethyl carbamoyl chloride                    | 79-44-7    |
| 192 | Dimethylvinylchloride                          | 513-37-1   |
| 193 | Direct black 38                                | 1937-37-7  |
| 194 | Direct blue 6                                  | 2602-46-2  |
| 195 | Direct brown 95                                | 16071-86-6 |
| 196 | Disperse blue 1                                | 2475-45-8  |
| 197 | Disulfoton                                     | 298-04-4   |
| 198 | Epichlorohydrin                                | 106-89-8   |
| 199 | Estradiol 17B                                  | 50-28-2    |
| 200 | Ethyl benzene                                  | 100-41-4   |
| 201 | Ethyl carbamate (urethane)                     | 51-79-6    |

|     | Chemical Common Name for TAP Remaining on List      | CAS #      |
|-----|-----------------------------------------------------|------------|
| 202 | Ethylene dibromide (EDB, 1,2-Dibromoethane)         | 106-93-4   |
| 203 | Ethylene dichloride (EDC, 1,2-Dichloroethane)       | 107-06-2   |
| 204 | Ethylene glycol                                     | 107-21-1   |
| 205 | Ethylene glycol monobutyl ether (2-Butoxyethanol)   | 111-76-2   |
| 206 | Ethylene glycol monoethyl ether (2-Ethoxyethanol)   | 110-80-5   |
| 207 | Ethylene glycol monoethyl ether acetate             | 111-15-9   |
| 208 | Ethylene glycol monomethyl ether (2-Methoxyethanol) | 109-86-4   |
| 209 | Ethylene glycol monomethyl ether acetate            | 110-49-6   |
| 210 | Ethylene oxide                                      | 75-21-8    |
| 211 | Ethylene thiourea                                   | 96-45-7    |
| 212 | Ethyleneimine                                       | 151-56-4   |
| 213 | Ferric sulfate                                      | 10028-22-5 |
| 214 | Fluorides (fluride ocontaining chemicals), NOS      |            |
| 215 | Fluorine gas                                        | 7782-41-4  |
| 216 | Formaldehyde                                        | 50-00-0    |
| 217 | Furmecyclox                                         | 60568-05-0 |
| 218 | Furylfuramide                                       | 3688-53-7  |
| 219 | Glu-P-1                                             | 67730-11-4 |
| 220 | Glu-P-2                                             | 67730-10-3 |
| 221 | Glutaraldehyde                                      | 111-30-8   |
| 222 | Gyromitrin                                          | 16568-02-8 |
| 223 | HC Blue 1                                           | 2784-94-3  |
| 224 | Heptachlor                                          | 76-44-8    |
| 225 | Heptachlor epoxide                                  | 1024-57-3  |
| 226 | Heptachlorodibenzo-p-dioxin, NOS                    | 37871-00-4 |
| 227 | Hexachlorobenzene                                   | 118-74-1   |
| 228 | Hexachlorobutadiene                                 | 87-68-3    |
| 229 | alpha-Hexachlorocyclohexane                         | 319-84-6   |
| 230 | beta-Hexachlorocyclohexane                          | 319-85-7   |
| 231 | gamma-Hexachlorocyclohexane (lindane)               | 58-89-9    |
| 232 | Hexachlorocyclohexanes                              | 608-73-1   |
| 233 | Hexachlorocyclopentadiene                           | 77-47-4    |
| 234 | Hexachlorodibenzo-p-dioxin, NOS                     | 34465-46-8 |
| 235 | Hexachloroethane                                    | 67-72-1    |
| 236 | Hexamethylene diisocyanate                          | 822-06-0   |
| 237 | Hydrazine                                           | 302-01-2   |
| 238 | Hydrazine sulfate                                   | 10034-93-2 |
| 239 | Hydrochloric acid                                   | 7647-01-0  |
| 240 | Hydrogen cyanide                                    | 74-90-8    |
| 241 | Hydrogen fluoride                                   | 7664-39-3  |
| 242 | Hydrogen sulfide                                    | 7783-06-4  |
| 243 | Indeno[1,2,3-cd]pyrene                              | 193-39-5   |

|     | Chemical Common Name for TAP Remaining on List    | CAS #      |
|-----|---------------------------------------------------|------------|
| 244 | Isophorone                                        | 78-59-1    |
| 245 | Isopropyl alcohol                                 | 67-63-0    |
| 246 | Lasiocarpine                                      | 303-34-4   |
| 247 | Lead & compounds, NOS                             |            |
| 248 | Lead acetate                                      | 301-04-2   |
| 249 | Lead chromate oxide                               | 18454-12-1 |
| 250 | Lead chromate                                     | 7758-97-6  |
| 251 | Lead subacetate                                   | 1335-32-6  |
| 252 | Maleic anhydride                                  | 108-31-6   |
| 253 | Manganese & compounds                             |            |
| 254 | Melphalan                                         | 148-82-3   |
| 255 | Mercury, elemental                                | 7439-97-6  |
| 256 | Methanol                                          | 67-56-1    |
| 257 | Methyl ethyl ketone                               | 78-93-3    |
| 258 | Methyl isobutyl ketone (MIBK, hexone)             | 108-10-1   |
| 259 | Methyl isocyanate                                 | 624-83-9   |
| 260 | Dimethyl mercury                                  | 593-74-8   |
| 261 | Methyl methacrylate                               | 80-62-6    |
| 262 | Methyl methanesulfonate                           | 66-27-3    |
| 263 | Methyl tert-butyl ether                           | 1634-04-4  |
| 264 | Methylene diphenyl diisocyanate (MDI)             | 101-68-8   |
| 265 | Methylthiouracil                                  | 56-04-2    |
| 266 | Michler's ketone                                  | 90-94-8    |
| 267 | Mirex                                             | 2385-85-5  |
| 268 | Mitomycin C                                       | 50-07-7    |
| 269 | Monocrotaline                                     | 315-22-0   |
| 270 | N,N-Dimethylformamide                             | 68-12-2    |
| 271 | n-[4-(5-nitro-2-furyl)-2-thiazolyl]-acetamide     | 531-82-8   |
| 272 | Naphthalene                                       | 91-20-3    |
| 273 | n-Hexane                                          | 110-54-3   |
| 274 | Nickel refinery dust                              |            |
| 275 | Nickel subsulfide                                 | 12035-72-2 |
| 276 | Nifurthiazole                                     | 3570-75-0  |
| 277 | Nitric acid                                       | 7697-37-2  |
| 278 | Nitrilotriacetic acid                             | 139-13-9   |
| 279 | Nitrilotriacetic acid, trisodium salt monohydrate | 18662-53-8 |
| 280 | Nitrofen                                          | 1836-75-5  |
| 281 | Nitrofurazone                                     | 59-87-0    |
| 282 | Nitrogen dioxide                                  | 10102-44-0 |
| 283 | N-Methyl-N-nitro-N-nitrosoguanidine               | 70-25-7    |
| 284 | N-Nitrosodiethanolamine                           | 1116-54-7  |
| 285 | N-Nitrosodiethylamine                             | 55-18-5    |

|     | Chemical Common Name for TAP Remaining on List | CAS #      |
|-----|------------------------------------------------|------------|
| 286 | N-Nitrosodimethylamine                         | 62-75-9    |
| 287 | N-Nitrosodi-n-butylamine                       | 924-16-3   |
| 288 | N-Nitrosodi-n-propylamine                      | 621-64-7   |
| 289 | N-Nitrosodiphenylamine                         | 86-30-6    |
| 290 | N-Nitrosomorpholine                            | 59-89-2    |
| 291 | N-Nitroso-N-ethylurea                          | 759-73-9   |
| 292 | N-Nitroso-N-methylethylamine                   | 10595-95-6 |
| 293 | N-Nitroso-N-methylurea                         | 684-93-5   |
| 294 | N-Nitroso-n-methylurethane                     | 615-53-2   |
| 295 | N-Nitrosonornicotine                           | 16543-55-8 |
| 296 | N-Nitrosopiperidine                            | 100-75-4   |
| 297 | N-Nitrosopyrrolidine                           | 930-55-2   |
| 298 | o-Aminoazotoluene                              | 97-56-3    |
| 299 | o-Anisidine                                    | 90-04-0    |
| 300 | o-Anisidine hydrochloride                      | 134-29-2   |
| 301 | o-Phenylphenate, sodium                        | 132-27-4   |
| 302 | o-Toluidine                                    | 95-53-4    |
| 303 | o-Toluidine hydrochloride                      | 636-21-5   |
| 304 | Ozone                                          | 10028-15-6 |
| 305 | PCB 77 [3,3',4,4'-tetrachlorobiphenyl]         | 32598-13-3 |
| 306 | PCB 81 [3,4,4',5-tetrachlorobiphenyl]          | 70362-50-4 |
| 307 | PCB 105 [2,3,3',4,4'-pentachlorobiphenyl]      | 32598-14-4 |
| 308 | PCB 114 [2,3,4,4',5-pentachlorobiphenyl]       | 74472-37-0 |
| 309 | PCB 118 [2,3',4,4',5-pentachlorobiphenyl]      | 31508-00-6 |
| 310 | PCB 123 [2,3',4,4',5'-pentachlorobiphenyl]     | 65510-44-3 |
| 311 | PCB 126 [3,3',4,4',5-pentachlorobiphenyl]      | 57465-28-8 |
| 312 | PCB 156 [2,3,3',4,4',5-hexachlorobiphenyl]     | 38380-08-4 |
| 313 | PCB 157 [2,3,3',4,4',5'-hexachlorobiphenyl]    | 69782-90-7 |
| 314 | PCB 167 [2,3',4,4',5,5'-hexachlorobiphenyl]    | 52663-72-6 |
| 315 | PCB 169 [3,3',4,4',5,5'-hexachlorobiphenyl]    | 32774-16-6 |
| 316 | PCB 189 [2,3,3',4,4',5,5'-heptachlorobiphenyl] | 39635-31-9 |
| 317 | p-Chloro-o-toluidine                           | 95-69-2    |
| 318 | p-Cresidine                                    | 120-71-8   |
| 319 | Pentachlorophenol                              | 87-86-5    |
| 320 | Perchloroethylene                              | 127-18-4   |
| 321 | Phenacetin                                     | 62-44-2    |
| 322 | Phenazopyridine                                | 94-78-0    |
| 323 | Phenazopyridine hydrochloride                  | 136-40-3   |
| 324 | Phenesterin                                    | 3546-10-9  |
| 325 | Phenobarbital                                  | 50-06-6    |
| 326 | Phenol                                         | 108-95-2   |
| 327 | Phenoxybenzamine                               | 59-96-1    |

|     | Chemical Common Name for TAP Remaining on List               | CAS #      |
|-----|--------------------------------------------------------------|------------|
| 328 | Phenoxybenzamine hydrochloride                               | 63-92-3    |
| 329 | Phosgene                                                     | 75-44-5    |
| 330 | Phosphine                                                    | 7803-51-2  |
| 331 | Phosphoric acid                                              | 7664-38-2  |
| 332 | Phosphorus                                                   | 7723-14-0  |
| 333 | Phthalic anhydride                                           | 85-44-9    |
| 334 | p-Nitrosodiphenylamine                                       | 156-10-5   |
| 335 | Polybrominated biphenyls                                     |            |
| 336 | Polychlorinated biphenyls (PCBs)                             | 1336-36-3  |
| 337 | Ponceau 3R                                                   | 3564-09-8  |
| 338 | Ponceau MX                                                   | 3761-53-3  |
| 339 | Potassium bromate                                            | 7758-01-2  |
| 340 | Procarbazine                                                 | 671-16-9   |
| 341 | Procarbazine hydrochloride                                   | 366-70-1   |
| 342 | Propylene                                                    | 115-07-1   |
| 343 | Propylene glycol                                             | 57-55-6    |
| 344 | Propylene glycol dinitrate                                   | 6423-43-4  |
| 345 | Propylene glycol monomethyl ether                            | 107-98-2   |
| 346 | Propylene oxide                                              | 75-56-9    |
| 347 | Propylthiouracil                                             | 51-52-5    |
| 348 | Refractory ceramic fibers (fibers/cubic centimeter)          |            |
| 349 | Reserpine                                                    | 50-55-5    |
| 350 | Safrole                                                      | 94-59-7    |
| 351 | Selenide, hydrogen                                           | 7783-07-5  |
| 352 | Selenium & selenium compounds (other than hydrogen selenide) |            |
| 353 | Silica, crystalline (respirable)                             | 7631-86-9  |
| 354 | Sodium hydroxide                                             | 1310-73-2  |
| 355 | Sodium sulfate                                               | 7757-82-6  |
| 356 | Sterigmatocystin                                             | 10048-13-2 |
| 357 | Streptozotocin                                               | 18883-66-4 |
| 358 | Styrene                                                      | 100-42-5   |
| 359 | Styrene oxide                                                | 96-09-3    |
| 360 | Sulfallate                                                   | 95-06-7    |
| 361 | Sulfur dioxide                                               | 7446-09-5  |
| 362 | Sulfur mustard                                               | 505-60-2   |
| 363 | Sulfuric acid                                                | 7664-93-9  |
| 364 | Thioacetamide                                                | 62-55-5    |
| 365 | Thiourea                                                     | 62-56-6    |
| 366 | Titanium tetrachloride                                       | 7550-45-0  |
| 367 | Toluene                                                      | 108-88-3   |
| 368 | Toluene diisocyanates (2,4- and 2,6-)                        | 26471-62-5 |

|     | Chemical Common Name for TAP Remaining on List                                          | CAS #      |
|-----|-----------------------------------------------------------------------------------------|------------|
| 369 | Toluene-2,4-diisocyanate                                                                | 584-84-9   |
| 370 | Toluene-2,6-diisocyanate                                                                | 91-08-7    |
| 371 | Toxaphene (polychlorinated camphenes)                                                   | 8001-35-2  |
| 372 | Trans-1,2-dichloroethene                                                                | 156-60-5   |
| 373 | Trans-2[(dimethylamino)-methylimino]-5-[2-(5-nitro-2-furyl)-vinyl]-<br>1,3,4-oxadiazole | 55738-54-0 |
| 374 | Trichloroethylene (TCE)                                                                 | 79-01-6    |
| 375 | Triethylamine                                                                           | 121-44-8   |
| 376 | Tris-(1-Aziridinyl)phosphine sulfide                                                    | 52-24-4    |
| 377 | Tris(2,3-dibromopropyl)phosphate                                                        | 126-72-7   |
| 378 | Tryptophan-P-1                                                                          | 62450-06-0 |
| 379 | Tryptophan-P-2                                                                          | 62450-07-1 |
| 380 | Vanadium (fume or dust)                                                                 | 7440-62-2  |
| 381 | Vanadium pentoxide                                                                      | 1314-62-1  |
| 382 | Vinyl acetate                                                                           | 108-05-4   |
| 383 | Vinyl bromide                                                                           | 593-60-2   |
| 384 | Vinyl chloride                                                                          | 75-01-4    |
| 385 | m-Xylene                                                                                | 108-38-3   |
| 386 | o-Xylene                                                                                | 95-47-6    |
| 387 | p-Xylene                                                                                | 106-42-3   |

# Appendix C New TAPs

The following table contains the list of 51 chemicals added in 2019. NOS means not otherwise specified and applies to situations where emission factors for a group of pollutants is reported, but specific isomers, congeners, or chemicals are not reported. CAS means chemical abstract service.

|    | Chemical Common Name for New TAP                                       | CAS #      |
|----|------------------------------------------------------------------------|------------|
| 1  | Libby amphibole asbestos and amphiboles, NOS (fibers/cubic centimeter) |            |
| 2  | Actinolite asbestos (fibers/cubic centimeter)                          | 12172-67-7 |
| 3  | Amosite asbestos (fibers/cubic centimeter)                             | 12172-73-5 |
| 4  | Anthophylite asbestos (fibers/cubic centimeter)                        | 17068-78-9 |
| 5  | Chrysotile asbestos (fibers/cubic centimeter)                          | 12001-29-5 |
| 6  | Crocidolite asbestos (fibers/cubic centimeter)                         | 12001-28-4 |
| 7  | Tremolite asbestos (fibers/cubic centimeter)                           | 14567-73-8 |
| 8  | Boron & compounds, NOS                                                 |            |
| 9  | Bromobenzene                                                           | 108-86-1   |
| 10 | 1-Bromopropane                                                         | 106-94-5   |
| 11 | Caprolactam                                                            | 105-60-2   |
| 12 | Carbonyl sulfide                                                       | 463-58-1   |
| 13 | Cerium oxide                                                           | 1306-38-3  |
| 14 | Chloroprene                                                            | 126-99-8   |
| 15 | Chromium(III), insoluble particulates                                  |            |
| 16 | Chromium(III), soluble particulates                                    |            |
| 17 | Cresols (mixture), including m-cresol, o-cresol, p-cresol              | 1319-77-3  |
| 18 | 2,3-Dichloropropene                                                    | 78-88-6    |
| 19 | Guthion (azinphos-methyl)                                              | 86-50-0    |
| 20 | 2-Hexanone                                                             | 591-78-6   |
| 21 | Lead phosphate                                                         | 7446-27-7  |
| 22 | Malathion                                                              | 121-75-5   |
| 23 | Nickel & compounds, NOS                                                |            |
| 24 | Nickel acetate                                                         | 373-02-4   |
| 25 | Nickel carbonate                                                       | 3333-67-3  |
| 26 | Nickel carbonate hydroxide                                             | 12607-70-4 |
| 27 | Nickel carbonyl                                                        | 13463-39-3 |
| 28 | Nickel chloride                                                        | 7718-54-9  |
| 29 | Nickel hydroxide                                                       | 12054-48-7 |
| 30 | Nickel nitrate hexahydrate                                             | 13478-00-7 |
| 31 | Nickel oxide (nickel monoxide, nickel(II) oxide)                       | 1313-99-1  |

|    | Chemical Common Name for New TAP                                               | CAS #      |
|----|--------------------------------------------------------------------------------|------------|
| 32 | Nickel oxide black (nickel sesquioxide, nickel(III) oxide)                     | 1314-06-3  |
| 33 | Nickel sulfate                                                                 | 7786-81-4  |
| 34 | Nickel sulfate hexahydrate                                                     | 10101-97-0 |
| 35 | Nickel sulfide                                                                 | 11113-75-0 |
| 36 | Nickelocene                                                                    | 1271-28-9  |
| 37 | Nitrobenzene                                                                   | 98-95-3    |
| 38 | Oleum                                                                          | 8014-95-7  |
| 39 | Parathion                                                                      | 56-38-2    |
| 40 | Phosphorus, white                                                              | 12185-10-3 |
| 41 | Polybrominated diphenyl ethers (PBDEs) [Containing less than 10 bromine atoms] |            |
| 42 | Propionaldehyde                                                                | 123-38-6   |
| 43 | Sulfur trioxide                                                                | 7446-11-9  |
| 44 | Tertiary-butyl acetate                                                         | 540-88-5   |
| 45 | Tetrahydrofuran                                                                | 109-99-9   |
| 46 | 1,2,3-Trimethylbenzene                                                         | 526-73-8   |
| 47 | 1,2,4-Trimethylbenzene                                                         | 95-63-6    |
| 48 | 1,3,5-Trimethylbenzene                                                         | 108-67-8   |
| 49 | Uranium, insoluble compounds, NOS                                              |            |
| 50 | Uranium, soluble salts, NOS                                                    |            |
| 51 | Xylene (mixture), including m-xylene, o-xylene, p-xylene                       | 1330-20-7  |

# Appendix D TAPs with a More Stringent ASIL

The following table contains the list of 67 TAPs with a 2019 ASIL that is more stringent than the 2009 ASIL. NOS means not otherwise specified and applies to situations where emission factors for a group of pollutants is reported, but specific isomers, congeners, or chemicals are not reported. CAS means chemical abstract service.

|    | Chemical Common Name with More Stringent ASIL     | CAS #      |
|----|---------------------------------------------------|------------|
| 1  | 1,2,3,4,6,7,8,9-Octachlorodibenzofuran (OCDF)     | 39001-02-0 |
| 2  | 1,2,3,4,6,7,8,9-Octachlorodibenzo-p-dioxin (OCDD) | 3268-87-9  |
| 3  | 1,2,3-Trichloropropane                            | 96-18-4    |
| 4  | 1,2-Dibromo-3-chloropropane (DBCP)                | 96-12-8    |
| 5  | 1,6-Dinitropyrene                                 | 42397-64-8 |
| 6  | 1,8-Dinitropyrene                                 | 42397-65-9 |
| 7  | 1-Nitropyrene                                     | 5522-43-0  |
| 8  | 2-Acetylaminofluorene                             | 53-96-3    |
| 9  | 2-Aminoanthraquinone                              | 117-79-3   |
| 10 | 2-Nitrofluorene                                   | 607-57-8   |
| 11 | 3-Methylcholanthrene                              | 56-49-5    |
| 12 | 4,4'-Methylenebis(2-chloroaniline) (MOCA)         | 101-14-4   |
| 13 | 4,4'-Methylenedianiline dihydrochloride           | 13552-44-8 |
| 14 | 4-Dimethylaminoazobenzene                         | 60-11-7    |
| 15 | 4-Nitropyrene                                     | 57835-92-4 |
| 16 | 5-Methylchrysene                                  | 3697-24-3  |
| 17 | 5-Nitroacenaphthene                               | 602-87-9   |
| 18 | 6-Nitrochrysene                                   | 7496-02-8  |
| 19 | 7,12-Dimethylbenz[a]anthracene                    | 57-97-6    |
| 20 | 7H-Dibenzo[c,g]carbazole                          | 194-59-2   |
| 21 | Arsine                                            | 7784-42-1  |
| 22 | Asbestos (fibers/cubic centimeter)                | 1332-21-4  |
| 23 | Benz[a]anthracene                                 | 56-55-3    |
| 24 | Benzidine                                         | 92-87-5    |
| 25 | Benzo[b]fluoranthene                              | 205-99-2   |
| 26 | Benzo[j]fluoranthene                              | 205-82-3   |
| 27 | Benzo[k]fluoranthene                              | 207-08-9   |
| 28 | Chlorine                                          | 7782-50-5  |
| 29 | Chromic trioxide                                  | 1333-82-0  |
| 30 | Chromic(VI) acid                                  | 7738-94-5  |
| 31 | Chromium(VI) & compounds, NOS                     |            |

|    | Chemical Common Name with More Stringent ASIL     | CAS #      |
|----|---------------------------------------------------|------------|
| 32 | Chrysene                                          | 218-01-9   |
| 33 | Coke oven emissions                               |            |
| 34 | Dibenz[a,h]acridine                               | 226-36-8   |
| 35 | Dibenz[a,h]anthracene                             | 53-70-3    |
| 36 | Dibenz[a,j]acridine                               | 224-42-0   |
| 37 | Dibenzo[a,e]pyrene                                | 192-65-4   |
| 38 | Dibenzo[a,h]pyrene                                | 189-64-0   |
| 39 | Dibenzo[a,i]pyrene                                | 189-55-9   |
| 40 | Dibenzo[a,l]pyrene                                | 191-30-0   |
| 41 | Dimethylvinylchloride                             | 513-37-1   |
| 42 | Direct black 38                                   | 1937-37-7  |
| 43 | Disulfoton                                        | 298-04-4   |
| 44 | Ethyl carbamate (urethane)                        | 51-79-6    |
| 45 | Ethylene dibromide (EDB, 1,2-Dibromoethane)       | 106-93-4   |
| 46 | Ethylene glycol monobutyl ether (2-Butoxyethanol) | 111-76-2   |
| 47 | Ethylene oxide                                    | 75-21-8    |
| 48 | Hydrogen cyanide                                  | 74-90-8    |
| 49 | Indeno[1,2,3-cd]pyrene                            | 193-39-5   |
| 50 | Lead chromate oxide                               | 18454-12-1 |
| 51 | Lead chromate                                     | 7758-97-6  |
| 52 | Mercury, elemental                                | 7439-97-6  |
| 53 | Methylene diphenyl diisocyanate (MDI)             | 101-68-8   |
| 54 | N-Nitrosodiethylamine                             | 55-18-5    |
| 55 | N-Nitrosodimethylamine                            | 62-75-9    |
| 56 | N-Nitroso-N-ethylurea                             | 759-73-9   |
| 57 | N-Nitroso-N-methylurea                            | 684-93-5   |
| 58 | PCB 169 [3,3',4,4',5,5'-hexachlorobiphenyl]       | 32774-16-6 |
| 59 | PCB 81 [3,4,4',5-tetrachlorobiphenyl]             | 70362-50-4 |
| 60 | Perchloroethylene                                 | 127-18-4   |
| 61 | Safrole                                           | 94-59-7    |
| 62 | Sulfur mustard                                    | 505-60-2   |
| 63 | Toluene diisocyanates (2,4- and 2,6-)             | 26471-62-5 |
| 64 | Toluene-2,4-diisocyanate                          | 584-84-9   |
| 65 | Toluene-2,6-diisocyanate                          | 91-08-7    |
| 66 | Trichloroethylene (TCE)                           | 79-01-6    |
| 67 | Vanadium (fume or dust)                           | 7440-62-2  |

### Appendix E TAPs with a Less Stringent ASIL

The following table contains the list of 38 TAPs with a 2019 ASIL that is less stringent than the 2009 ASIL. The list includes the four removed TAPs in Table 2 not covered by a 2019 TAP. CAS means chemical abstract service.

|    | Chemical Common Name with Less Stringent ASIL | CAS #      |
|----|-----------------------------------------------|------------|
| 1  | Acrolein                                      | 107-02-8   |
| 2  | Acrylamide                                    | 79-06-1    |
| 3  | Ammonia                                       | 7664-41-7  |
| 4  | Ammonium sulfate (removed)                    | 7783-20-2  |
| 5  | 5-Nitro-o-anisidine (removed)                 | 99-59-2    |
| 6  | Barium chromate                               | 10294-40-3 |
| 7  | Benzene                                       | 71-43-2    |
| 8  | Benzo[a]pyrene                                | 50-32-8    |
| 9  | 1,3-Butadiene                                 | 106-99-0   |
| 10 | Carbon tetrachloride                          | 56-23-5    |
| 11 | Chlordane                                     | 57-74-9    |
| 12 | Chlorine dioxide                              | 10049-04-4 |
| 13 | Di(2-ethylhexl)phthalate                      | 117-81-7   |
| 14 | Diazinon                                      | 333-41-5   |
| 15 | Dibromochloromethane (removed)                | 124-48-1   |
| 16 | Dichloromethane (methylene chloride)          | 75-09-2    |
| 17 | 1,3-Dichloropropene                           | 542-75-6   |
| 18 | Diethyl mercury                               | 627-44-1   |
| 19 | 1,4-Dioxane                                   | 123-91-1   |
| 20 | Heptachlor                                    | 76-44-8    |
| 21 | Hexachlorobenzene                             | 118-74-1   |
| 22 | Manganese & compounds                         |            |
| 23 | Melphalan hydrochloride (removed)             | 3223-07-2  |
| 24 | Methanol                                      | 67-56-1    |
| 25 | Dimethyl mercury                              | 593-74-8   |
| 26 | PCB 105 [2,3,3',4,4'-pentachlorobiphenyl]     | 32598-14-4 |
| 27 | PCB 114 [2,3,4,4',5-pentachlorobiphenyl]      | 74472-37-0 |
| 28 | PCB 118 [2,3',4,4',5-pentachlorobiphenyl]     | 31508-00-6 |
| 29 | PCB 123 [2,3',4,4',5'-pentachlorobiphenyl]    | 65510-44-3 |
| 30 | PCB 156 [2,3,3',4,4',5-hexachlorobiphenyl]    | 38380-08-4 |
| 31 | PCB 157 [2,3,3',4,4',5'-hexachlorobiphenyl]   | 69782-90-7 |
| 32 | PCB 167 [2,3',4,4',5,5'-hexachlorobiphenyl]   | 52663-72-6 |

#### Decision Making Documentation

|    | Chemical Common Name with Less Stringent ASIL  | CAS #      |
|----|------------------------------------------------|------------|
| 33 | PCB 189 [2,3,3',4,4',5,5'-heptachlorobiphenyl] | 39635-31-9 |
| 34 | 1,2,3,7,8-Pentachlorodibenzofuran (PeCDF)      | 57117-41-6 |
| 35 | 2,3,4,7,8-Pentachlorodibenzofuran (PeCDF)      | 57117-31-4 |
| 36 | 1,1,1-Trichloroethane (Methyl chloroform)      | 71-55-6    |
| 37 | 2,4,6-Trichlorophenol                          | 88-06-2    |
| 38 | Vinyl chloride                                 | 75-01-4    |

### Appendix F TAPs with an Unchanged ASIL

The following table contains the list of 105 TAPs with a 2019 ASIL unchanged from the 2009 ASIL. NOS means not otherwise specified and applies to situations where emission factors for a group of pollutants is reported, but specific isomers, congeners, or chemicals are not reported. CAS means chemical abstract service.

|    | Chemical Common Name with Unchanged ASIL Value | CAS #       |
|----|------------------------------------------------|-------------|
| 1  | Acetaldehyde                                   | 75-07-0     |
| 2  | Acetonitrile                                   | 75-05-8     |
| 3  | Acrylic acid                                   | 79-10-7     |
| 4  | Actinomycin D                                  | 50-76-0     |
| 5  | 2-Amino-3-methylimidazo-[4,5-f]quinoline       | 76180-96-6  |
| 6  | Amitrole                                       | 61-82-5     |
| 7  | Ammonium bisulfate                             | 7803-63-6   |
| 8  | o-Anisidine                                    | 90-04-0     |
| 9  | beta-Propiolactone                             | 57-57-8     |
| 10 | Bromodichloromethane                           | 75-27-4     |
| 11 | Bromomethane (methyl bromide)                  | 74-83-9     |
| 12 | Carbon disulfide                               | 75-15-0     |
| 13 | Carbon monoxide                                | 630-08-0    |
| 14 | 1-Chloro-1,1-difluoroethane                    | 75-68-3     |
| 15 | 3-Chloro-2-methyl-1-propene                    | 563-47-3    |
| 16 | Chlorinated paraffins                          | 108171-26-2 |
| 17 | Chloroalkanes C10-13 (chlorinated paraffins)   | 85535-84-8  |
| 18 | Chlorobenzene                                  | 108-90-7    |
| 19 | Chlorodifluoromethane (Freon 22)               | 75-45-6     |
| 20 | Chloroethane (ethyl chloride)                  | 75-00-3     |
| 21 | Chloromethane (methyl chloride)                | 74-87-3     |
| 22 | Chloropicrin                                   | 76-06-2     |
| 23 | Cobalt and compounds, NOS                      | 7440-48-4   |
| 24 | Copper & compounds                             |             |
| 25 | o-Cresol (2-Methylphenol)                      | 95-48-7     |
| 26 | m-Cresol (3-Methylphenol)                      | 108-39-4    |
| 27 | p-Cresol (4-Methylphenol)                      | 106-44-5    |
| 28 | Cumene                                         | 98-82-8     |
| 29 | Cyclohexane                                    | 110-82-7    |
| 30 | 2,4-Diaminoanisole sulfate                     | 39156-41-7  |
| 31 | 4,4'-Diaminodiphenyl ether                     | 101-80-4    |

|    | Chemical Common Name with Unchanged ASIL Value      | CAS #      |
|----|-----------------------------------------------------|------------|
| 32 | 1,1-Dichloroethylene (1,1-DCE)                      | 75-35-4    |
| 33 | Dichlorvos (DDVP)                                   | 62-73-7    |
| 34 | Diethanolamine                                      | 111-42-2   |
| 35 | Diethylstilbestrol                                  | 56-53-1    |
| 36 | 1,1-Difluoroethane                                  | 75-37-6    |
| 37 | Dimethyl carbamoyl chloride                         | 79-44-7    |
| 38 | 1,1-Dimethylhydrazine                               | 57-14-7    |
| 39 | 1,2-Epoxybutane                                     | 106-88-7   |
| 40 | Ethyl benzene                                       | 100-41-4   |
| 41 | Ethylene glycol                                     | 107-21-1   |
| 42 | Ethylene glycol monoethyl ether (2-Ethoxyethanol)   | 110-80-5   |
| 43 | Ethylene glycol monoethyl ether acetate             | 111-15-9   |
| 44 | Ethylene glycol monomethyl ether (2-Methoxyethanol) | 109-86-4   |
| 45 | Ethylene glycol monomethyl ether acetate            | 110-49-6   |
| 46 | Ferric sulfate                                      | 10028-22-5 |
| 47 | Fluorides (fluoride containing chemicals), NOS      |            |
| 48 | Glu-P-2                                             | 67730-10-3 |
| 49 | Glutaraldehyde                                      | 111-30-8   |
| 50 | Hexachlorocyclohexane, alpha-                       | 319-84-6   |
| 51 | Hexachlorocyclopentadiene                           | 77-47-4    |
| 52 | Hexamethylene diisocyanate                          | 822-06-0   |
| 53 | n-Hexane                                            | 110-54-3   |
| 54 | Hydrochloric acid                                   | 7647-01-0  |
| 55 | Hydrogen fluoride                                   | 7664-39-3  |
| 56 | Hydrogen sulfide                                    | 7783-06-4  |
| 57 | Isophorone                                          | 78-59-1    |
| 58 | Isopropyl alcohol                                   | 67-63-0    |
| 59 | Maleic anhydride                                    | 108-31-6   |
| 60 | Melphalan                                           | 148-82-3   |
| 61 | Methyl ethyl ketone                                 | 78-93-3    |
| 62 | Methyl isobutyl ketone (MIBK, hexone)               | 108-10-1   |
| 63 | Methyl isocyanate                                   | 624-83-9   |
| 64 | Methyl methacrylate                                 | 80-62-6    |
| 65 | Michler's ketone                                    | 90-94-8    |
| 66 | N,N-Dimethylformamide                               | 68-12-2    |
| 67 | Nickel refinery dust                                |            |
| 68 | Nitric acid                                         | 7697-37-2  |

|     | Chemical Common Name with Unchanged ASIL Value               | CAS #      |
|-----|--------------------------------------------------------------|------------|
| 69  | Nitrofurazone                                                | 59-87-0    |
| 70  | Nitrogen dioxide                                             | 10102-44-0 |
| 71  | 2-Nitropropane                                               | 79-46-9    |
| 72  | N-Nitrosodi-n-propylamine                                    | 621-64-7   |
| 73  | N-Nitrosonornicotine                                         | 16543-55-8 |
| 74  | N-Nitrosopiperidine                                          | 100-75-4   |
| 75  | Ozone                                                        | 10028-15-6 |
| 76  | p-Chloro-o-toluidine                                         | 95-69-2    |
| 77  | Phenol                                                       | 108-95-2   |
| 78  | Phenoxybenzamine hydrochloride                               | 63-92-3    |
| 79  | Phosgene                                                     | 75-44-5    |
| 80  | Phosphine                                                    | 7803-51-2  |
| 81  | Phosphoric acid                                              | 7664-38-2  |
| 82  | Phosphorus                                                   | 7723-14-0  |
| 83  | Phthalic anhydride                                           | 85-44-9    |
| 84  | Procarbazine                                                 | 671-16-9   |
| 85  | Propylene                                                    | 115-07-1   |
| 86  | Propylene glycol monomethyl ether                            | 107-98-2   |
| 87  | Propylene oxide                                              | 75-56-9    |
| 88  | Refractory ceramic fibers (fibers/cubic centimeter)          |            |
| 89  | Selenide, hydrogen                                           | 7783-07-5  |
| 90  | Selenium & selenium compounds (other than hydrogen selenide) |            |
| 91  | Silica, crystalline (respirable)                             | 7631-86-9  |
| 92  | Sodium hydroxide                                             | 1310-73-2  |
| 93  | Sodium sulfate                                               | 7757-82-6  |
| 94  | Sterigmatocystin                                             | 10048-13-2 |
| 95  | Sulfur dioxide                                               | 7446-09-5  |
| 96  | Sulfuric acid                                                | 7664-93-9  |
| 97  | 1,1,1,2-Tetrafluoroethane                                    | 811-97-2   |
| 98  | Titanium tetrachloride                                       | 7550-45-0  |
| 99  | Toluene                                                      | 108-88-3   |
| 100 | o-Toluidine hydrochloride                                    | 636-21-5   |
| 101 | Triethylamine                                                | 121-44-8   |
| 102 | Tryptophan-P-2                                               | 62450-07-1 |
| 103 | Vanadium pentoxide                                           | 1314-62-1  |
| 104 | Vinyl acetate                                                | 108-05-4   |

|     | Chemical Common Name with Unchanged ASIL Value | CAS #    |
|-----|------------------------------------------------|----------|
| 105 | Vinyl bromide                                  | 593-60-2 |

# Appendix G TAPs with an Unchanged ASIL Value (Adjusted by Significant Digits)

The following table contains the list of 181 TAPs with a 2019 ASIL adjusted for two significant digits from the 2009 ASIL. We consider these unchanged values. NOS means not otherwise specified and applies to situations where emission factors for a group of pollutants is reported, but specific isomers, congeners, or chemicals are not reported. CAS means chemical abstract service.

|    | Chemical Common Name with Unchanged ASIL (Adjusted by Significant Digits) | CAS #      |
|----|---------------------------------------------------------------------------|------------|
| 1  | 1,1,1,2-Tetrachloroethane                                                 | 630-20-6   |
| 2  | 1,1,2,2-Tetrachloroethane                                                 | 79-34-5    |
| 3  | 1,1,2-Trichloroethane (vinyl trichloride)                                 | 79-00-5    |
| 4  | 1,1-Dichloroethane (ethylidene dichloride)                                | 75-34-3    |
| 5  | 1,2,3,4,6,7,8-Heptachlorodibenzofuran (HpCDF)                             | 67562-39-4 |
| 6  | 1,2,3,4,6,7,8-Heptachlorodibenzo-p-dioxin (HpCDD)                         | 35822-46-9 |
| 7  | 1,2,3,4,7,8,9-Heptachlorodibenzofuran (HpCDF)                             | 55673-89-7 |
| 8  | 1,2,3,4,7,8-Hexachlorodibenzofuran (HxCDF)                                | 70648-26-9 |
| 9  | 1,2,3,4,7,8-Hexachlorodibenzo-p-dioxin (HxCDD)                            | 39227-28-6 |
| 10 | 1,2,3,6,7,8-Hexachlorodibenzofuran (HxCDF)                                | 57117-44-9 |
| 11 | 1,2,3,6,7,8-Hexachlorodibenzo-p-dioxin (HxCDD)                            | 57653-85-7 |
| 12 | 1,2,3,7,8,9-Hexachlorodibenzofuran (HxCDF)                                | 72918-21-9 |
| 13 | 1,2,3,7,8,9-Hexachlorodibenzo-p-dioxin (HxCDD)                            | 19408-74-3 |
| 14 | 1,2,3,7,8-Pentachlorodibenzo-p-dioxin (PeCDD)                             | 40321-76-4 |
| 15 | 1,2-Dichloropropane (propylene dichloride)                                | 78-87-5    |
| 16 | 1,2-Dimethylhydrazine                                                     | 540-73-8   |
| 17 | 1,2-Diphenylhydrazine (hydrazobenzene)                                    | 122-66-7   |
| 18 | 1,3-Propane sultone                                                       | 1120-71-4  |
| 19 | 1,4-Dichlorobenzene                                                       | 106-46-7   |
| 20 | 1-[(5-Nitrofurfurylidene)-amino]-2-imidazolidinone                        | 555-84-0   |
| 21 | 1-Amino-2-methylanthraquinone                                             | 82-28-0    |
| 22 | 2,3,4,6,7,8-Hexachlorodibenzofuran (HxCDF)                                | 60851-34-5 |
| 23 | 2,3,7,8-Tetrachlorodibenzofuran (TcDF)                                    | 51207-31-9 |
| 24 | 2,3,7,8-Tetrachlorodibenzo-p-dioxin & related compounds, NOS              |            |
| 25 | 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD)                                | 1746-01-6  |
| 26 | 2,4-Diaminoanisole                                                        | 615-05-4   |
| 27 | 2,4-Diaminotoluene (2,4-Toluene diamine)                                  | 95-80-7    |
| 28 | 2,4-Dinitrotoluene                                                        | 121-14-2   |
| 29 | 2-Amino-3-methyl-9H pyrido[2,3-b]indole                                   | 68006-83-7 |
| 30 | 2-Amino-5-(5-Nitro-2-Furyl)-1,3,4-Thiadiazol                              | 712-68-5   |

|    | Chemical Common Name with Unchanged ASIL (Adjusted by Significant Digits) | CAS #      |
|----|---------------------------------------------------------------------------|------------|
| 31 | 2-Chloroacetophenone                                                      | 532-27-4   |
| 32 | 2-Methyl-1-nitroanthraquinone                                             | 129-15-7   |
| 33 | 2-Naphthylamine                                                           | 91-59-8    |
| 34 | 3,3'-Dichlorobenzidine                                                    | 91-94-1    |
| 35 | 3-Amino-9-ethylcarbazole hydrochloride                                    | 6109-97-3  |
| 36 | 4,4'Methylenebis(2-methylaniline)                                         | 838-88-0   |
| 37 | 4,4'-Methylenebis(N,N'-dimethyl)aniline                                   | 101-61-1   |
| 38 | 4,4'-Methylenedianiline                                                   | 101-77-9   |
| 39 | 4,4-Thiodianiline                                                         | 139-65-1   |
| 40 | 4-Aminobiphenyl                                                           | 92-67-1    |
| 41 | 4-Chloro-o-phenylenediamine                                               | 95-83-0    |
| 42 | A-alpha-c(2-amino-9h-pyrido[2,3-b]indole)                                 | 26148-68-5 |
| 43 | Acetamide                                                                 | 60-35-5    |
| 44 | Acrylonitrile                                                             | 107-13-1   |
| 45 | Alar (daminsozide)                                                        | 1596-84-5  |
| 46 | Aldrin                                                                    | 309-00-2   |
| 47 | Allyl chloride                                                            | 107-05-1   |
| 48 | Aniline                                                                   | 62-53-3    |
| 49 | Antimony trioxide                                                         | 1309-64-4  |
| 50 | Aramite                                                                   | 140-57-8   |
| 51 | Arsenic & inorganic arsenic compounds, NOS                                |            |
| 52 | Auramine                                                                  | 492-80-8   |
| 53 | Azaserine                                                                 | 115-02-6   |
| 54 | Azathioprine                                                              | 446-86-6   |
| 55 | Azobenzene                                                                | 103-33-3   |
| 56 | Benzyl chloride                                                           | 100-44-7   |
| 57 | Benzyl violet 4B                                                          | 1694-09-3  |
| 58 | Beryllium & compounds, NOS                                                |            |
| 59 | Beryllium oxide                                                           | 1304-56-9  |
| 60 | Beryllium sulfate                                                         | 13510-49-1 |
| 61 | beta-Butyrolactone                                                        | 3068-88-0  |
| 62 | Bis(2-chloroethyl) ether                                                  | 111-44-4   |
| 63 | Bis(chloromethyl) ether                                                   | 542-88-1   |
| 64 | Bromoform                                                                 | 75-25-2    |
| 65 | Butylated hydroxyanisole                                                  | 25013-16-5 |
| 66 | C.I. basic red 9 monohydrochloride                                        | 569-61-9   |
| 67 | Cadmium & compounds, NOS                                                  |            |
| 68 | Captafol                                                                  | 2425-06-1  |
| 69 | Captan                                                                    | 133-06-2   |
| 70 | Chlorambucil                                                              | 305-03-3   |
| 71 | Chlordecone                                                               | 143-50-0   |

|     | Chemical Common Name with Unchanged ASIL (Adjusted by Significant Digits) | CAS #      |
|-----|---------------------------------------------------------------------------|------------|
| 72  | Chlorendic Acid                                                           | 115-28-6   |
| 73  | Chlorobenzilate (ethyl-4,4'-dichlorobenzilate)                            | 510-15-6   |
| 74  | Chloroform                                                                | 67-66-3    |
| 75  | Chloromethyl methyl ether                                                 | 107-30-2   |
| 76  | Chlorothalonil                                                            | 1897-45-6  |
| 77  | Chlorozotocin                                                             | 54749-90-5 |
| 78  | Cinnamyl Anthranilate                                                     | 87-29-6    |
| 79  | Cupferron                                                                 | 135-20-6   |
| 80  | Cyclophosphamide (anhydrous)                                              | 50-18-0    |
| 81  | Cyclophosphamide (hydrated)                                               | 6055-19-2  |
| 82  | D & C red no. 9                                                           | 5160-02-1  |
| 83  | Dacarbazine                                                               | 4342-03-4  |
| 84  | Dantron                                                                   | 117-10-2   |
| 85  | Dichlorodiphenyldichloroethane (DDD)                                      | 72-54-8    |
| 86  | Dichlorodiphenyldichloroethylene (DDE)                                    | 72-55-9    |
| 87  | Dichlorodiphenyltrichloroethane (DDT)                                     | 50-29-3    |
| 88  | Dieldrin                                                                  | 60-57-1    |
| 89  | Diesel engine exhaust, particulate                                        |            |
| 90  | Diglycidyl resorcinol ether                                               | 101-90-6   |
| 91  | Dihydrosafrole                                                            | 94-58-6    |
| 92  | Direct blue 6                                                             | 2602-46-2  |
| 93  | Direct brown 95                                                           | 16071-86-6 |
| 94  | Disperse blue 1                                                           | 2475-45-8  |
| 95  | Epichlorohydrin                                                           | 106-89-8   |
| 96  | Estradiol 17B                                                             | 50-28-2    |
| 97  | Ethylene dichloride (EDC, 1,2-dichloroethane)                             | 107-06-2   |
| 98  | Ethylene thiourea                                                         | 96-45-7    |
| 99  | Ethyleneimine                                                             | 151-56-4   |
| 100 | Fluorine gas                                                              | 7782-41-4  |
| 101 | Formaldehyde                                                              | 50-00-0    |
| 102 | Furmecyclox                                                               | 60568-05-0 |
| 103 | Furylfuramide                                                             | 3688-53-7  |
| 104 | Glu-P-1                                                                   | 67730-11-4 |
| 105 | Gyromitrin                                                                | 16568-02-8 |
| 106 | HC Blue 1                                                                 | 2784-94-3  |
| 107 | Heptachlor epoxide                                                        | 1024-57-3  |
| 108 | Heptachlorodibenzo-p-dioxin, NOS                                          | 37871-00-4 |
| 109 | Hexachlorobutadiene                                                       | 87-68-3    |
| 110 | beta-Hexachlorocyclohexane                                                | 319-85-7   |
| 111 | gamma-Hexachlorocyclohexane (lindane)                                     | 58-89-9    |
| 112 | Hexachlorocyclohexanes                                                    | 608-73-1   |

|     | Chemical Common Name with Unchanged ASIL (Adjusted by Significant Digits) | CAS #      |
|-----|---------------------------------------------------------------------------|------------|
| 113 | Hexachlorodibenzo-p-dioxin, NOS                                           | 34465-46-8 |
| 114 | Hexachloroethane                                                          | 67-72-1    |
| 115 | Hydrazine                                                                 | 302-01-2   |
| 116 | Hydrazine sulfate                                                         | 10034-93-2 |
| 117 | Lasiocarpine                                                              | 303-34-4   |
| 118 | Lead & compounds, NOS                                                     |            |
| 119 | Lead acetate                                                              | 301-04-2   |
| 120 | Lead subacetate                                                           | 1335-32-6  |
| 121 | Methyl methanesulfonate                                                   | 66-27-3    |
| 122 | Methyl tert-butyl ether                                                   | 1634-04-4  |
| 123 | Methylthiouracil                                                          | 56-04-2    |
| 124 | Mirex                                                                     | 2385-85-5  |
| 125 | Mitomycin C                                                               | 50-07-7    |
| 126 | Monocrotaline                                                             | 315-22-0   |
| 127 | m-Xylene                                                                  | 108-38-3   |
| 128 | n-[4-(5-nitro-2-furyl)-2-thiazolyl]-acetamide                             | 531-82-8   |
| 129 | Naphthalene                                                               | 91-20-3    |
| 130 | Nickel subsulfide                                                         | 12035-72-2 |
| 131 | Nifurthiazole                                                             | 3570-75-0  |
| 132 | Nitrilotriacetic acid                                                     | 139-13-9   |
| 133 | Nitrilotriacetic acid, trisodium salt monohydrate                         | 18662-53-8 |
| 134 | Nitrofen                                                                  | 1836-75-5  |
| 135 | N-Methyl-N-nitro-N-nitrosoguanidine                                       | 70-25-7    |
| 136 | N-Nitrosodiethanolamine                                                   | 1116-54-7  |
| 137 | N-Nitrosodi-n-butylamine                                                  | 924-16-3   |
| 138 | N-Nitrosodiphenylamine                                                    | 86-30-6    |
| 139 | N-Nitrosomorpholine                                                       | 59-89-2    |
| 140 | N-Nitroso-N-methylethylamine                                              | 10595-95-6 |
| 141 | N-Nitroso-n-methylurethane                                                | 615-53-2   |
| 142 | N-Nitrosopyrrolidine                                                      | 930-55-2   |
| 143 | o-Aminoazotoluene                                                         | 97-56-3    |
| 144 | o-Anisidine hydrochloride                                                 | 134-29-2   |
| 145 | o-Phenylphenate, sodium                                                   | 132-27-4   |
| 146 | o-Toluidine                                                               | 95-53-4    |
| 147 | o-Xylene                                                                  | 95-47-6    |
| 148 | PCB 126 [3,3',4,4',5-pentachlorobiphenyl]                                 | 57465-28-8 |
| 149 | PCB 77 [3,3',4,4'-tetrachlorobiphenyl]                                    | 32598-13-3 |
| 150 | p-Cresidine                                                               | 120-71-8   |
| 151 | Pentachlorophenol                                                         | 87-86-5    |
| 152 | Phenacetin                                                                | 62-44-2    |
| 153 | Phenazopyridine                                                           | 94-78-0    |

|     | Chemical Common Name with Unchanged ASIL (Adjusted by Significant Digits)               | CAS #      |
|-----|-----------------------------------------------------------------------------------------|------------|
| 154 | Phenazopyridine hydrochloride                                                           | 136-40-3   |
| 155 | Phenesterin                                                                             | 3546-10-9  |
| 156 | Phenobarbital                                                                           | 50-06-6    |
| 157 | Phenoxybenzamine                                                                        | 59-96-1    |
| 158 | p-Nitrosodiphenylamine                                                                  | 156-10-5   |
| 159 | Polybrominated biphenyls                                                                |            |
| 160 | Polychlorinated biphenyls (PCBs)                                                        | 1336-36-3  |
| 161 | Ponceau 3R                                                                              | 3564-09-8  |
| 162 | Ponceau MX                                                                              | 3761-53-3  |
| 163 | Potassium bromate                                                                       | 7758-01-2  |
| 164 | Procarbazine Hydrochloride                                                              | 366-70-1   |
| 165 | Propylene glycol                                                                        | 57-55-6    |
| 166 | Propylene glycol dinitrate                                                              | 6423-43-4  |
| 167 | Propylthiouracil                                                                        | 51-52-5    |
| 168 | p-Xylene                                                                                | 106-42-3   |
| 169 | Reserpine                                                                               | 50-55-5    |
| 170 | Streptozotocin                                                                          | 18883-66-4 |
| 171 | Styrene                                                                                 | 100-42-5   |
| 172 | Styrene oxide                                                                           | 96-09-3    |
| 173 | Sulfallate                                                                              | 95-06-7    |
| 174 | Thioacetamide                                                                           | 62-55-5    |
| 175 | Thiourea                                                                                | 62-56-6    |
| 176 | Toxaphene (polychlorinated camphenes)                                                   | 8001-35-2  |
| 177 | Trans-1,2-dichloroethene                                                                | 156-60-5   |
| 178 | Trans-2[(dimethylamino)-methylimino]-5-[2-(5-nitro-2-furyl)-<br>vinyl]-1,3,4-oxadiazole | 55738-54-0 |
| 179 | Tris-(1-Aziridinyl)phosphine sulfide                                                    | 52-24-4    |
| 180 | Tris(2,3-dibromopropyl)phosphate                                                        | 126-72-7   |
| 181 | Tryptophan-P-1                                                                          | 62450-06-0 |

# Appendix H 2019 Rule Language

The table in WAC 173-460-150 (Appendix A) adjusts all values to two significant digits for emissions rates (i.e., de minimis and SQERs) and concentrations (i.e., ASILs). To align with this action, the 2019 rule language specifies that all emission rates and concentrations must be rounded to two significant digits. The rule also updates the rule language to use the acronym "TAP" instead of TAP. Existing language is struck out and new language is underlined.

WAC 173-460-040 New source review.

- (1) Applicability and exemptions. This chapter supplements the new source review requirements of WAC 173-400-110 by adding review requirements for new and modified TAP sources. ... An action that requires a notice of construction application under WAC 173-400-110 is subject to the review requirements of this chapter, unless the emissions before control equipment of each ((TAP)) TAP (rounded to two significant digits) from a new source or the increase in emissions from each modification is less than the applicable de minimis emission threshold for that TAP listed in WAC 173-460-150.
- (2) ...
- (3) The permitting authority that is reviewing a notice of construction application for a new or modified TAP source must ensure that:
  - (a) The new or modified emission units use tBACT for emissions control for the ((TAPs)) <u>TAPs</u> with emission increases that trigger the need to submit a notice of construction application; and

WAC 173-460-080 First tier review.

- (1) ...
- (2) The acceptable source impact analysis requirement of WAC 173-460-070 can be satisfied for any TAP using either dispersion modeling or the small quantity emission rate.
  - (a) Dispersion modeling. ... The notice of construction application must demonstrate that the modeled ambient impact (rounded to two significant digits) of the aggregate emissions increase of each TAP does not exceed the ASIL for that TAP as listed in WAC 173-460-150. ...
  - (b) Small quantity emission rates. An applicant may show for any TAP that the increase in emissions of that TAP (rounded to two significant digits), after application of tBACT, is less than the small quantity emission rate listed for that TAP in WAC 173-460-150.