

Eyes Over Puget Sound

Summary

Stories

Diving & critters

Climate & streams

Combined factors

Marine water

Aerial photos

Info

Surface Conditions Report: May and June 2019

Up-to-date observations of water quality conditions in Puget Sound and coastal bays.

Summary conditions at a glance

Summary

MONITORING

MARINE

LONG-TERM

Stories

Diving & critters

Climate & streams

Combined factors

Marine water

Aerial photos

Info

Phillip Dionne Steve Jeffries Todd Sandell

Julianne Ruffner Laura Hermanson

Tyler Burks Jim Shedd

Skip Albertson

Dr. Christopher Krembs (Editor)

Guest contribution

<u>p.3</u>

Anchovies provide new opportunities in Case Inlet.

Personal stories

p. 6

Beach wrack can be a health risk to beachgoers.

Climate & streams

p. 9

Persistent warm and dry conditions this spring result in low river flows. With the snow pack quickly disappearing, Puget Sound will likely be saltier and warmer than normal this summer. Early upwelling and stagnant water in the summer may set the stage for a lot of biological activity.

Water temperature and food web

p. 13

In May, average surface water temperatures are warmer than normal. South Sound and Hood Canal reach optimal temperatures for geoduck growth.

Aerial photography

p. 14

By June, the productive season is in full swing. While *Noctiluca* takes advantage of blooms in Central Sound, Case and other finger Inlets in South Sound enjoy huge numbers of anchovies that attract marine mammals.

Editorial assistance provided by: Carol Maloy, Suzan Pool, Ruth Froese.

Anchovies provide new opportunities in Case Inlet

Summary

Stories

Diving & critters

Climate & streams


Combined factors

Marine water

Aerial photos

Info

Scientists catch anchovies in shallow and deep water of Case Inlet

Large numbers of juvenile anchovy began to appear in South Sound with warmer water in the fall of 2015 and have been present in annual fall surveys since then. Here is an example of 250K juvenile anchovies caught with only one net set.

Anchovies provide new opportunities in Case Inlet

Summary

Stories

Diving & critters

Climate & streams

Combined factors

Marine water

Aerial photos

Info

Hundreds of California sea lions forage on large schools of anchovy in Case Inlet

In February, a large group of California sea lions appeared in Case Inlet. Steve Jeffries, a seasoned Research Scientist with WDFW's Marine Mammal Investigations, knew why. Since January, he monitored, by boat, this group of 400 to 500 sea lions, harbor seals, harbor porpoise, and long-beaked common dolphins. He observed the diverse mammals worked as a team to herd schools of anchovies into deeper areas of Case Inlet. WDFW estimates 800 to 1,000 California sea lion males feed in Puget Sound and Hood Canal each year, arriving in late summer and staying until late spring when they return to rookeries in California.

Anchovies provide new opportunities in Case Inlet

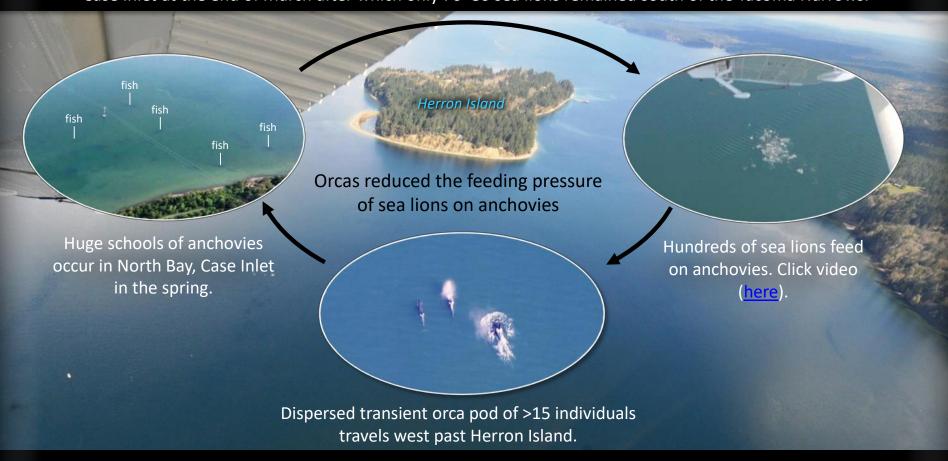
Summary

Stories

Diving & critters

Climate & streams

Combined factors


Marine water

Aerial photos

Info

What happened to the California sea lions and anchovies in Case Inlet?

The feeding frenzy on anchovies continued until a group of 25 transient killer whales moved into Case Inlet at the end of March after which only 70–80 sea lions remained south of the Tacoma Narrows.

Some anchovies appeared in scat samples of marine mammals. Some were trapped and died on beaches after predators chased them into shallow water and during outgoing tides. Yet, many remain in South Sound. Like most forage fish species in Puget Sound, the abundance of anchovies is not monitored, but this dramatic increase in abundance was hard to miss.

Washington BEACH Program – Eyes on the Beach

Summary

Stories

Diving & critters

Climate & streams

Combined factors

Marine water

Aerial photos

Info

Julianne Ruffner & Laura Hermanson

Beach wrack can be a health risk to beachgoers.

Large piles of organic debris can wash up on beaches. This wrack lingers on beaches and shallow waters and acts as a reservoir for bacteria. If you come in contact with bacteria in wrack, sand, or water, your risk of getting sick increases. To prevent you and your family from getting exposed, the BEACH program monitors fecal indicator bacteria and advises beachgoers when bacteria numbers are high. We record the extent of wrack at a beach to better understand its potential risks to human health.

Read swimming tips to minimize your risk of illness while visiting our beaches

Advisories are issued if we see high bacteria in the water.

Washed up wrack on the beach can harbor bacteria.

Signs warn of exposure risk

What can you find underwater?

Summary

Stories

Diving & critters

Climate & streams

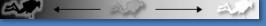
Combined factors

Marine water

Aerial photos

Info

What was the water visibility like for divers?


Best and worst horizontal visibility at corresponding vertical depth

	Best Visibility		Worst Visibility	
Location	Horizontal Distance (ft.)	Vertical Depth (ft.)	Horizontal Distance (ft.)	Vertical Depth (ft.)
1	11	98	6	7
2	19	39	12	20
3	16	3	12	82
4	27	89	7	26
5	18	38	14	89
6	33	95	10	5
7	26	57	11	7
8	25	85	9	7
9	49	54	11	5
10	23	20	7	43
11	44	94	3	59
12	37	85	16	41
13	33	77	6	38
14	37	94	6	5
15	9	8	6	31
16	27	49	22	16
17	25	79	17	20
18	17	7	6	43

Find depths with high/low visibility

- Best visibility occurred in Elliott
 Bay near Seacrest Park (location
 9) with 49 ft visibility (at 54 ft
 depth), despite having poor
 visibility near the surface.
- Poor visibility (no diver icon)
 occurred in Hood Canal near the
 surface (location 11) with much
 better visibility below.
- The poster, "Underwater Visibility Maps – a Tool for Scuba Divers," is available here.

Good **Visibility** Poor

This is a new feature and we are soliciting feedback (skip.albertson@ecy.wa.gov).

What can you find underwater?

Summary

Stories

Diving & critters

Climate & streams

Combined factors

Marine water

Aerial photos

Info

How can we tell what might be schooling fish vs. seagrass?



Google images help us figure it out.

Fish move around whereas seagrass don't.

A. Round dark patches in photos taken on 6-4-2019 in Totten Inlet are not present in Google images (date unknown) and therefore very likely schooling fish.

B. The dark patches are missing in Google images yet other nearshore features are preserved

Google image

How much water did we get and what can we expect?

Summary

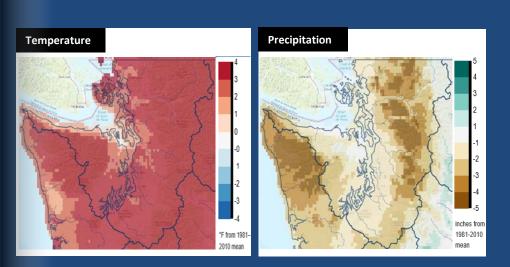
Stories

Diving & critters

Climate & streams

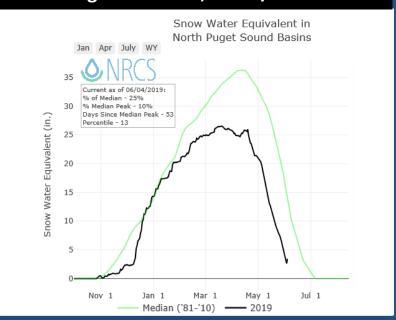
Combined factors

Marine water


Aerial photos

Info

During the previous 30 days, Puget Sound air temperatures were above normal, while precipitation was generally below normal (A). Though some snowpack persists at higher elevations, historical monitoring sites show that overall peak mountain snow volumes in 2019 (black line) were below normal (green line) (B). Persistent warm and dry conditions this spring has also led to the snowpack melting 1-3 weeks early.


A. Northwest Climate Toolbox

Temperature Anomaly from historical mean ranged from +1 to +4 °F in the Puget Sound region during the past 30 days.

Precipitation Anomaly from historical mean ranged from 0 to -5 inches in the Puget Sound region during the past 30 days.

B. Washington SNOTEL, USDA/NRCS

Snow water equivalents for watersheds draining to Puget Sound were below the historical median in 2019 (only showing North Puget Sound). SNOTEL (snow telemetry) monitoring sites indicate that snowpack is nearly gone.

How much water flows into Puget Sound?

Summary

Stories

Diving & critters

Climate & streams

Combined factors

Marine water

Aerial photos

Info

Continued warm and generally dry conditions has led to rivers receiving early and generally reduced peaks in snowmelt, unless coupled with additional precipitation (trend charts, left). Most stream gages are reporting below normal flows and some are the lowest recorded for the date (map, right). These conditions led to drought declarations in some Puget Sound watersheds to occur as early as May 20th, 2019.

Select Puget Sound Streamflow Trends Current Streamflow Conditions as of 6/4/2019 Skagit River near Mt. Vernon USGS Real Time Streamflow Values Much above normal Lake (>90%)second Shawnigar Above normal (76-90%) Normal (25-75%) Daily average discharge, in cubic feet per Below normal (10-24%) Severe hydrologic drought Much below normal lowest - 5th percentile (5-10%)Far below normal (>5%) 5th - 10th percentile Below normal Ozette Lowest recorded 10th - 25th percentile Not Ranked **Ecology Daily Streamflow** 75th - 90th percentile Daily Streamflow Much above normal Highest recorded Much above normal 95th percentile to highest Puyallup River at Puyallup (>90%) Discharge (2019) Above normal (76-90%) Normal (25-75%) Below normal (10-24%) Much below normal (<10%) Lowest recorded Not ranked USGS WaterWatch: CLICK HERE! Current conditions: CLICK HERE!

Climate influences: How well is Puget Sound exchanging its water?

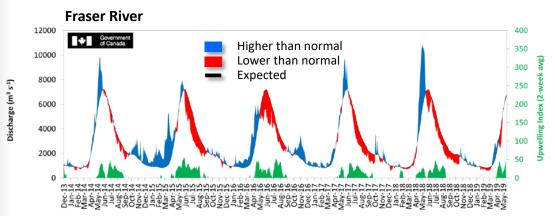
Summary

Stories

Diving & critters

Climate & streams

Combined factors


NPGO

Marine water

Aerial photos

Info

Historically, the peaks of coastal upwelling and the <u>freshet</u> are in sync. In 2018, a strong freshet preceded low flows.

The Fraser River is the major driver of estuarine circulation and water exchange between the Salish Sea and the ocean. Fraser River flows are close to expected levels. Dramatic snow melt in May resulted in well below normal snow pack in British Columbia (here).

How do ocean boundary conditions affect the quality of water we exchange with the ocean?

Recent years' warm water is gone

(RDO) and upwelling is expected.

(PDO) and upwelling is expected (Upwelling Index anomaly). NPGO, which reflects the surface productivity along the coast, is expected as well.

Pacific Decadal Oscillation Index (PDO, temperature, explanation). Upwelling Index (anomalies) (Upwelling, low oxygen, explanation). North Pacific Gyre Oscillation Index (NPGO, productivity, explanation).

What influences Puget Sound's water quality?

Summary

Stories

Diving & critters

Climate & streams

Combined factors

Marine water

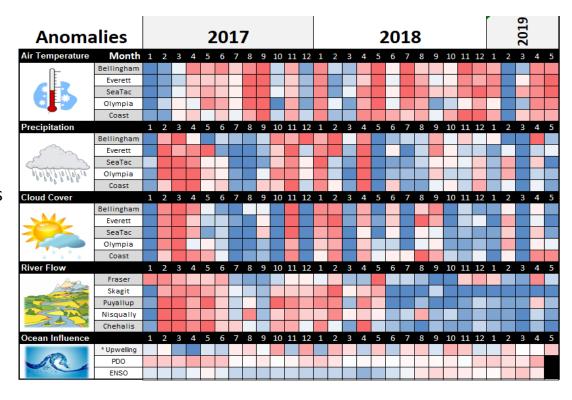
Aerial photos

Info

In the anomaly plot, we want to connect different factors influencing water quality in the context of space and time. Conditions leading up to June 2019 were drier with lower river flows than in Spring 2018. The recent winter has been warmer than the previous two winters, but this February was much colder. Early onset upwelling was a factor in both 2018 and 2019. For recent river and stream inflow, see page 9.

Conditions leading up to June:

Air temperatures were generally warmer this year, except in February and early March.


Precipitation for the past five months was lower than in 2018.

Sunshine (opposite of cloud cover) was higher than the previous winter in all areas except near the coast.

River flows were low through the winter.

Upwelling was more summer-like in early spring during 2018 and 2019. ENSO (MEI2) has showed warming.

All data are from public sources: UW GRAYSKIES; river flows from USGS and Environment Canada; indices from NOAA & UW (PDO).

*Upwelling/downwelling Anomalies (PFEL)

PDO = Pacific Decadal Oscillation

ENSO = El Niño Southern Oscillation

higher

expected

lower

Water temperature affects ecosystem performance

Summary

Stories

Diving & critters

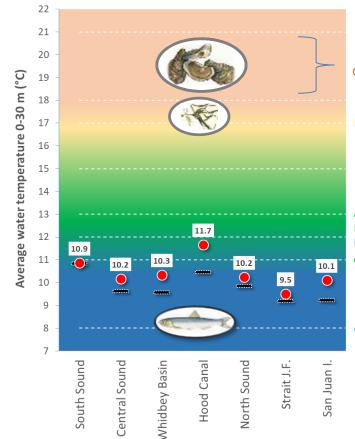
Climate & streams

Combined factors

Marine water

Aerial photos

Info



Can organisms thrive and survive?

The life cycles of organisms respond to temperature. To be successful, the timing of early life stages must line up with good growth conditions.

Temperature is important for growth, but also dictates if certain organisms can overwinter in Puget Sound (e.g., Northern anchovy).

In May, average surface water temperatures (0-30 m deep) were $+0.6 \,^{\circ}\text{C}$ warmer than the baseline (1999 -2016). Optimal temperatures for geoduck growth were reached in both South Sound (at expected temperatures) and Hood Canal (at $+1.2 \,^{\circ}\text{C}$ above baseline). All basins remained at water temperatures needed for herring to spawn.

Optimal temperatures for Puget Sound organisms*

Oyster spawning range

Max temp for bull kelp and coho and Chinook salmon

Increase in HAB toxicity risk >15°C,
Dungeness crab egg production optimum

Anchovy spawning optimum
Herring and salmon growth optimum/
Herring spawning upper range 12°C
Geoduck growth optimum

Anchovy survival minimum

Legend:

- Expected 18-year average
- Cooler than expected
- Warmer than expected

^{*} Help us get these right. We scoured the literature for temperatures important to the success and survival of marine organisms.

What are the conditions at the surface?

Summary

Stories

Diving & critters

Climate & streams

Combined factors

Marine water

Aerial photos

Start here

Info

The productive season with big algal blooms is in full swing. *Noctiluca* takes advantage of blooms in Central Sound and, to a lesser extent, in Hood Canal and Carr Inlet. Case and other finger inlets in South Sound enjoy a huge number of anchovies that attract marine mammals. Jellyfish are present in Budd and Eld Inlets, and macro-algae form along many beaches.

Mixing and fronts:

Tidal eddies in Rich Passage. Fronts at the fringes of large river plumes. Mixing of effluent water to the surface in Grays Harbor.

Jellyfish and fish:

Jellyfish patches present in Budd and Eld Inlets and absent in other places. Numerous schools of fish in south sound inlets.

Suspended sediment:

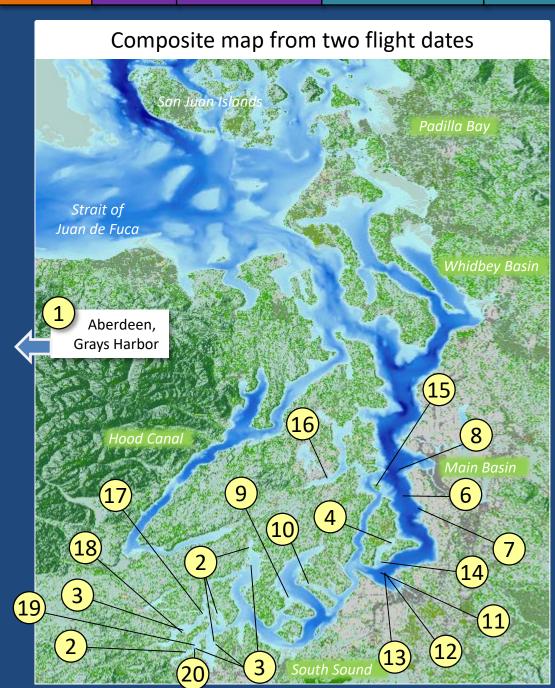
Glacial flour entering with the Puyallup River.

Bloom

Strong brown-green blooms in Central Sound.

Red-brown bloom in Sinclair Inlet and North Bay (Case Inlet).

Green bloom in Carr Inlet and Quartermaster Harbor.


Noctiluca bloom (bright orange) in Central Sound.

Debris:

Orange-colored organic material of *Noctiluca* on a large scale in Central Sound and a smaller scale in Carr Inlet and southern Hood Canal.

Summary Stories Diving & critters Climate & streams Combined factors Marine water Aerial photos Info

Aerial navigation guide Date: 5-13-2019 and 6-4-2019

Click on numbers

riue uata iroini	6/4/2019 (Seattle).	
<u>Time</u>	<u>Pred</u>	High/Low
12:15 AM	6.99	L
5:09 AM	10.78	Н

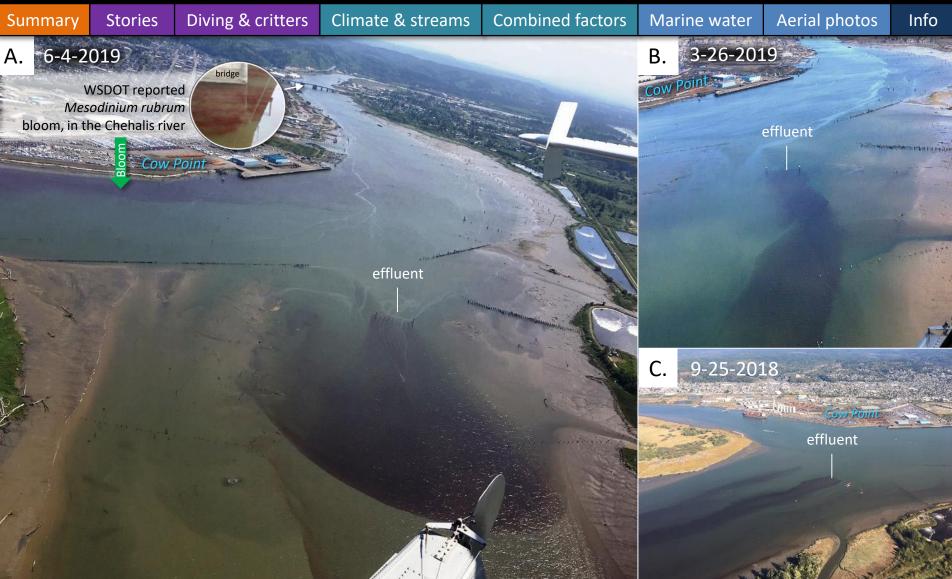
12:17 PM

7:43 PM

-2.83

11.77

Flight Observations
Sunny and hazy


People sharing images

Navigate

A. Effluent from Cosmo Specialty Fiber rises to the surface. June 2019. B. March 2019. C. September 2018. Location: Aberdeen (Grays Harbor)

Schools of fish in shallow regions of South Sound. How do we know it's fish?

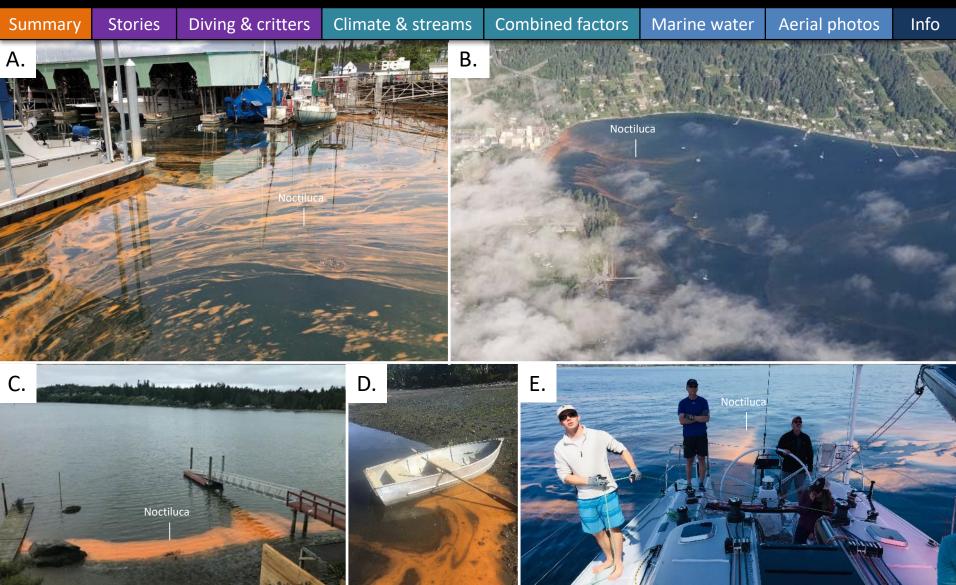
Location: A. Budd Inlet, B. Totten Inlet, C. Case Inlet (North Bay), D. Peale Passage (South Sound)

Schools of fish in shallow regions of South Sound. How do we know its fish?

Location: A. Budd Inlet, B. Case Inlet, C. Totten Inlet, D. Eld Inlet (South Sound)

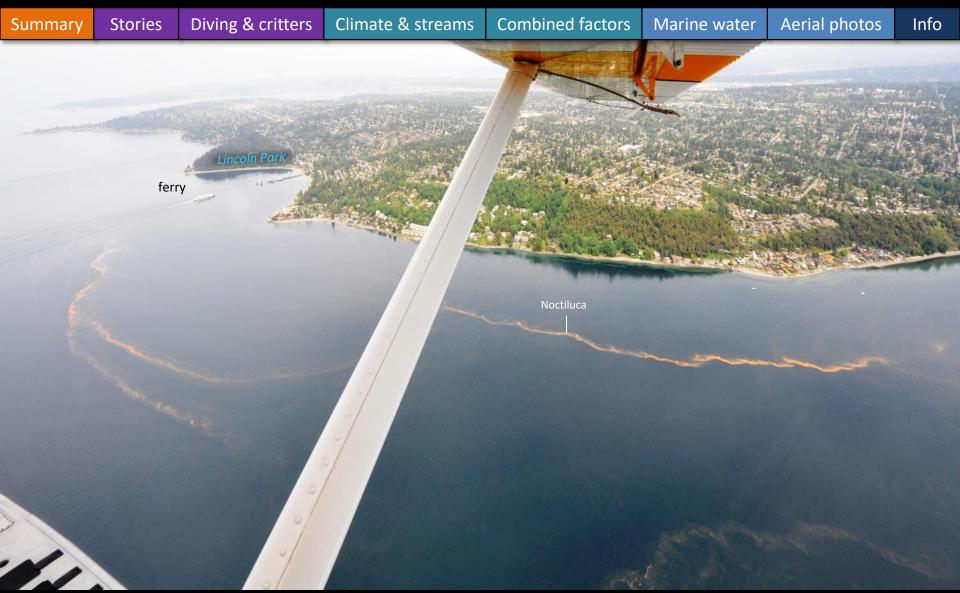
Navigate

Diving & critters Climate & streams **Combined factors** Marine water Aerial photos Info **Stories** Summary Vashon Island Maury Island boat

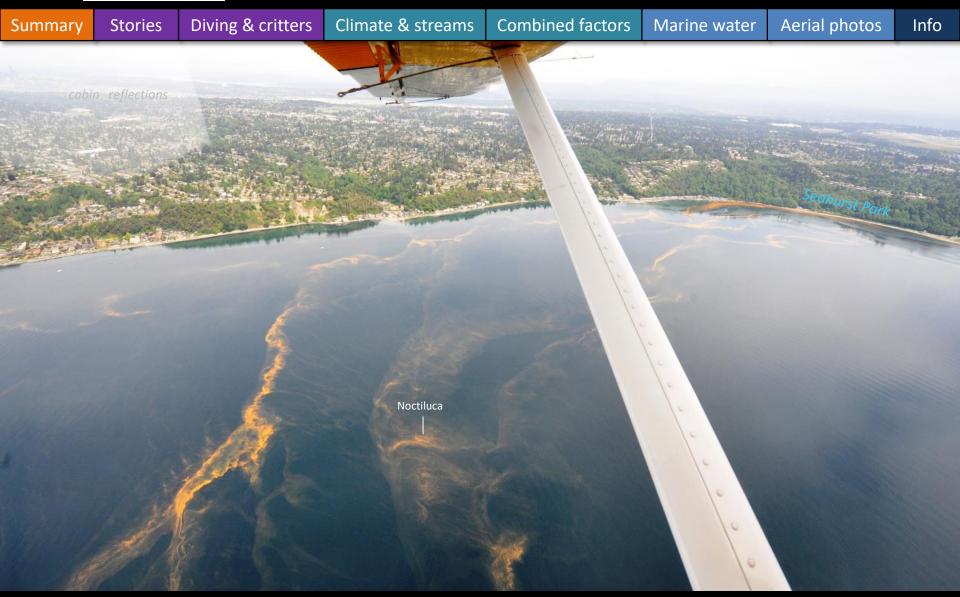

Organic debris floating at surface.

Location: Quartermaster Harbor (Central Sound), 2:08 AM

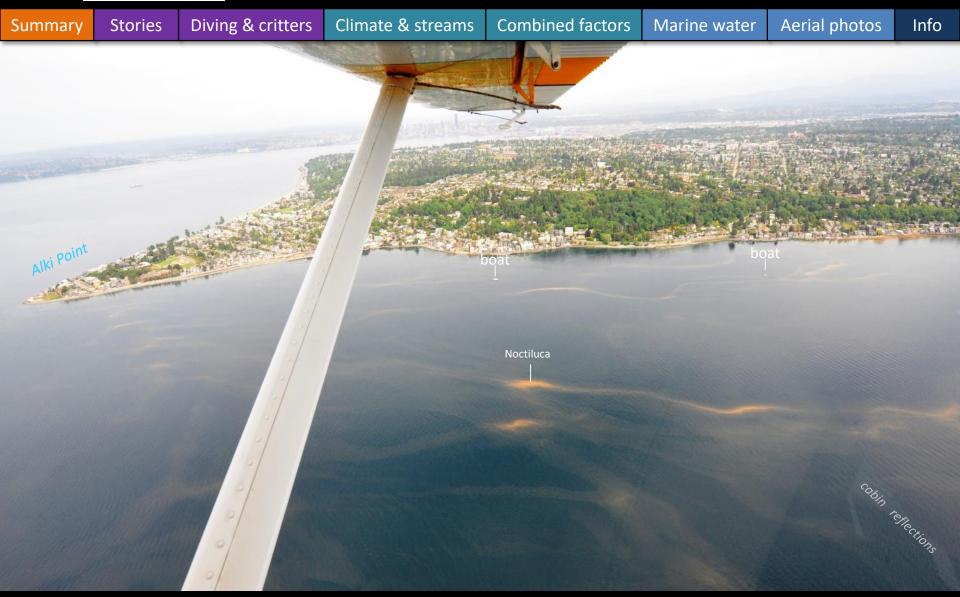
Navigate


We share people's experiences with Noctiluca on the water. Thank you for the great contributions. Location: A. Des Moines Marina, B. Holmes Harbor, C. Edmonds, D. Port Blakely, E. Central Sound

Navigate


Large Noctiluca bloom stretching from Poverty Bay to West Point.
Location: Arroyo Heights, Fauntleroy (Central Sound), 2:14 PM

Navigate


Large Noctiluca bloom stretching from Poverty Bay to West Point.

Location: Shorewood (Central Sound), 2:15 PM

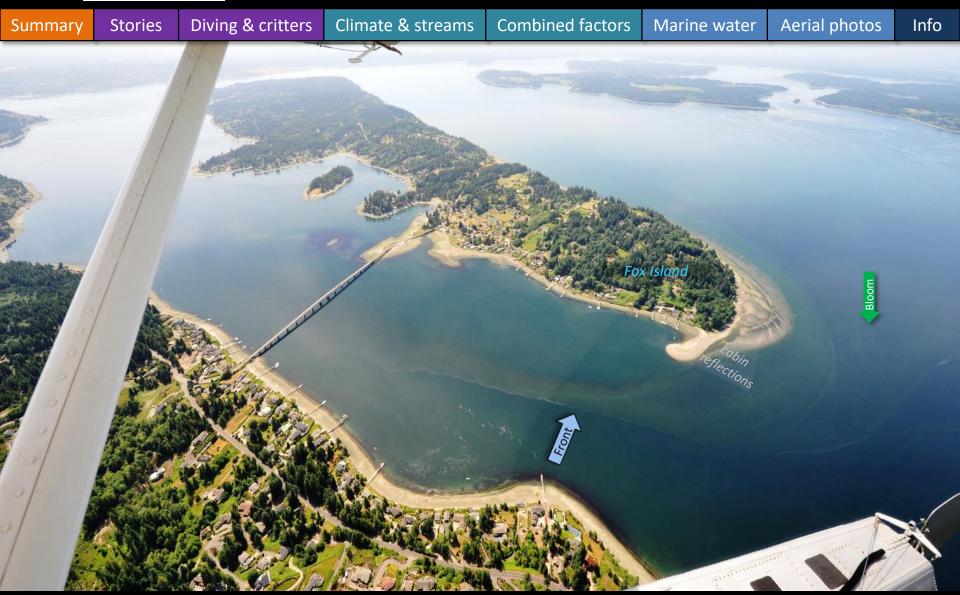
Navigate

Large Noctiluca bloom stretching from Poverty Bay to West Point. Location: Alki Point, West Seattle (Central Sound), 2:25 PM

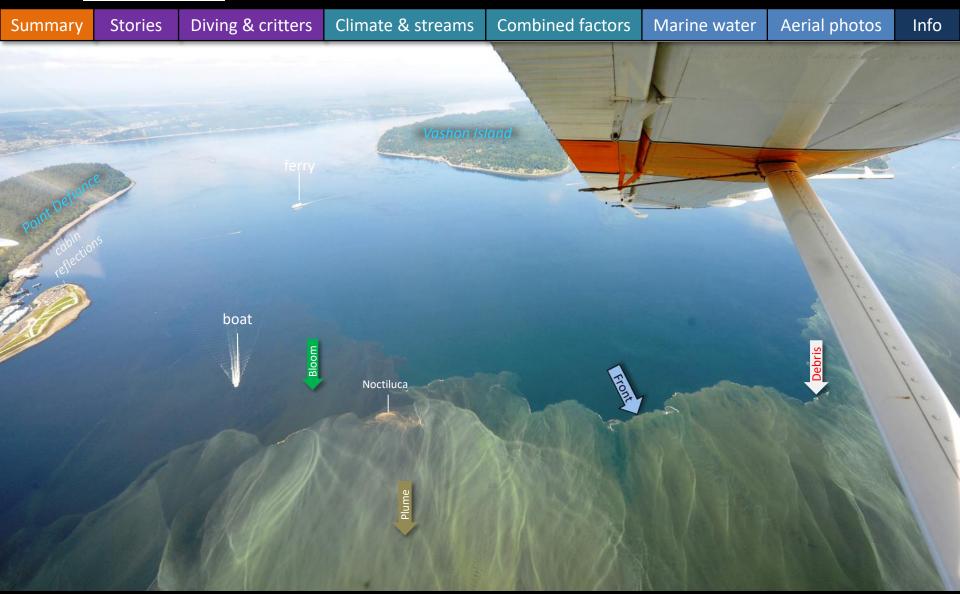
Navigate

Diving & critters **Combined factors** Stories Climate & streams Marine water Aerial photos Info Summary Noctiluca macro-algae

Red-brown and turquoise bloom and organic material at the surface. Macro-algae developing on beaches.

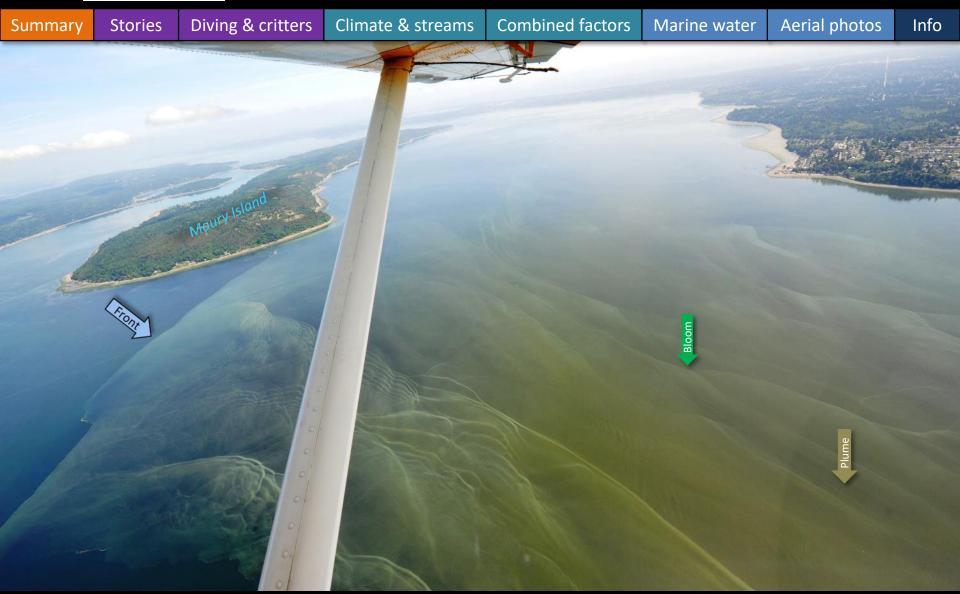

Location: Pitt Passage, McNeil Island (Carr Inlet), 11:43 PM

Navigate


Water with red-brown bloom flowing around Fox Island Sand Spit.
Location: Fox Island (Carr Island), 11:45 AM

Navigate

Noctiluca, dark brown bloom, and glacial flour in the Puyallup River plume reaching westward.


Location: Commencement Bay (Central Sound), 11:51 PM

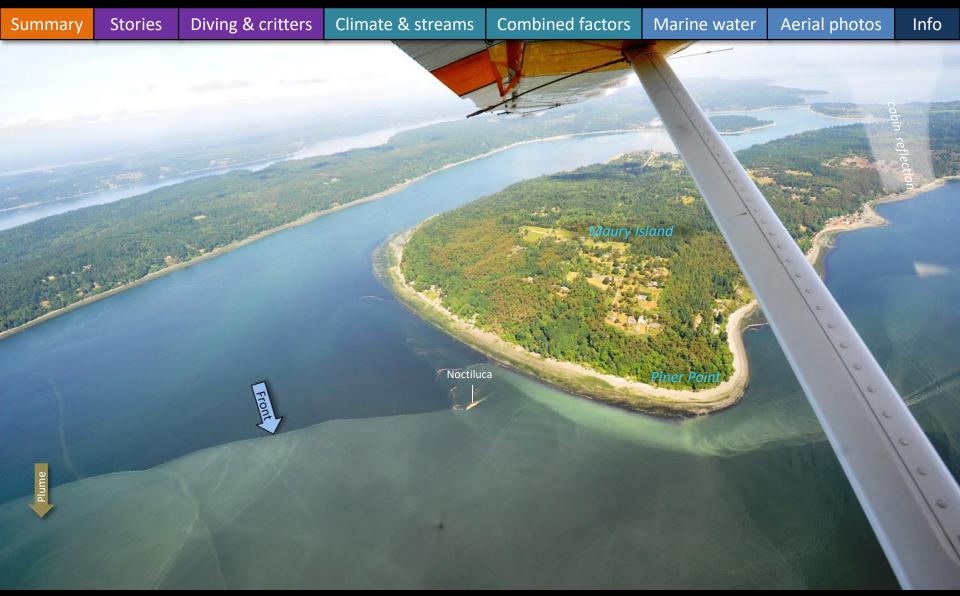
Navigate

Greenish bloom and glacial flour in the Puyallup River plume extending northward.

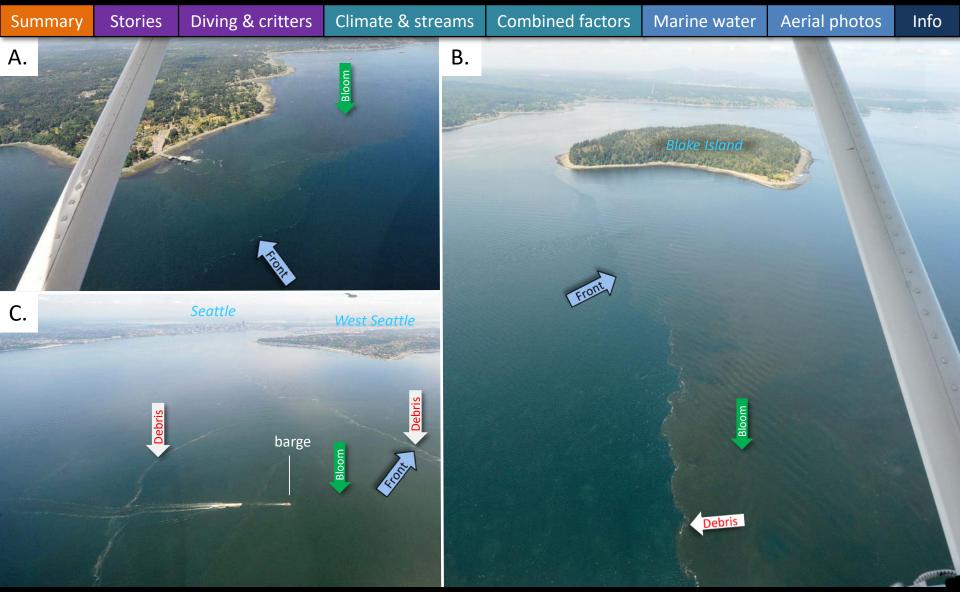
Location: Commencement Bay (Central Sound), 11:51 PM

Navigate

Greenish bloom and glacial flour in the Puyallup River plume might be Noctiluca prior to surfacing.


Location: Commencement Bay (Central Sound), 11:52 AM

Navigate



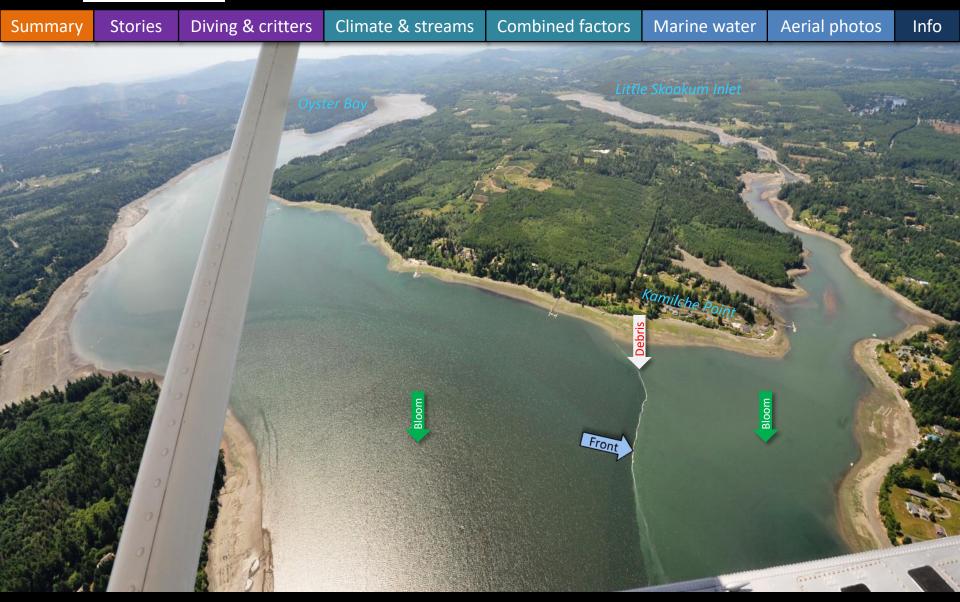
Noctiluca and glacial flour in the Puyallup River plume. Location: Maury Island (Central Sound), 11:52 AM

Navigate

Dark brown bloom (diatoms) organic material stretching from Edmonds to Commencement Bay. Location: A. Southworth, B. Blake Island, C. Across Elliott Bay (Central Sound), 12:00 PM

Navigate

Diving & critters Climate & streams **Combined factors** Marine water Aerial photos Info **Stories** Summary macro-algae boat macro-algae


Water in dark and light green meeting along front. Macro-algae on beaches. Location: Annapolis, Sinclair Inlet (Central Sound), 12:26 PM

Navigate

Water with red-brown and turquoise bloom meeting along front.

Location: Totten Inlet (South Sound), 1:54 PM

Navigate

Combined factors Summary Diving & critters Climate & streams Marine water Aerial photos Info **Stories** boat Steamboat Island fish fish

Red-brown bloom and schools of fish.

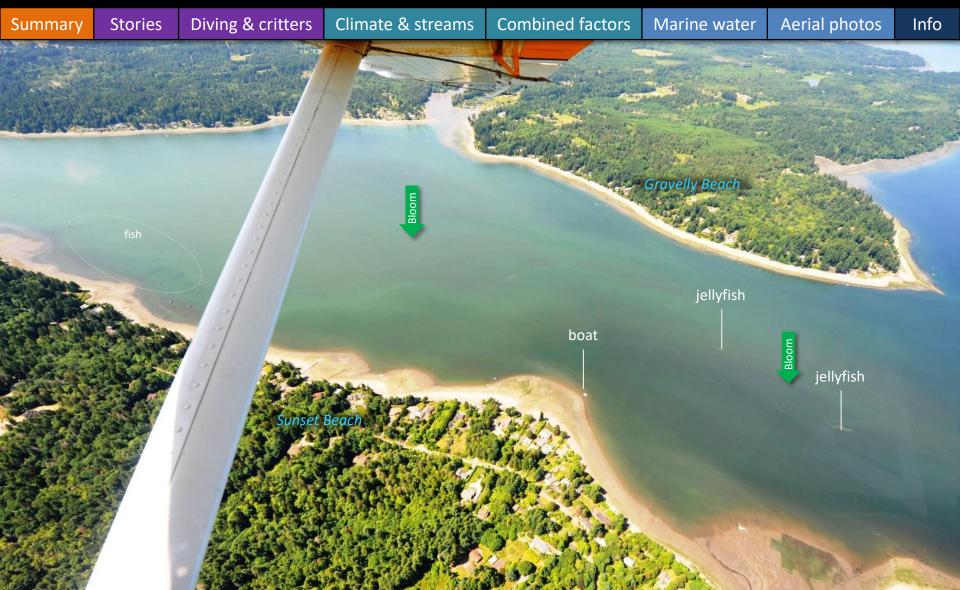
Location: Totten Inlet (South Sound), 1:54 PM

Navigate

Combined factors Diving & critters Climate & streams Marine water Aerial photos Info Summary **Stories** boat jellyfish jellyfish Front

Jellyfish aggregations.

Location: Eld Inlet (South Sound), 1:57 PM


ECOLOGY State of Washington

Aerial photography 6-4-2019

Navigate

Patches of a red-brown bloom, schools of fish, and jellyfish.

Location: Eld Inlet (South Sound), 1:57 PM

Find past editions of EOPS on the next pages

Summary

Stories

Diving & critters

Climate & streams

Combined factors

Marine water

Aerial photos

Info

We have published 81 editions!

Find all previous Eyes Over Puget Sound editions at the end of this document.

Recommended Citation (example for September 2018 edition):

Washington State Department of Ecology. 2018. Eyes Over Puget Sound: Surface Conditions Report, September 17, 2018. Publication No. 18-03-075. Olympia, WA. https://fortress.wa.gov/ecy/publications/documents/1803075.pdf.

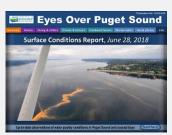
Contact:

Dr. Christopher Krembs
Christopher.Krembs@ecy.wa.gov
Marine Monitoring Unit
Environmental Assessment Program
Washington State
Department of Ecology

<u>Subscribe</u> to the Eyes Over Puget Sound email listserv.

Jan_10_2020, Publication No. 20-03-070

March_26_2019 Publication No. 19-03-072


July_16_2018, Publication No. 18-03-073

October_30_2019, Publication No. 19-03-076

February_21_2019, Publication No. 19-03-071

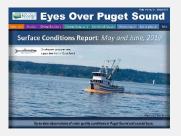
June_28_2018, Publication No. 18-03-072

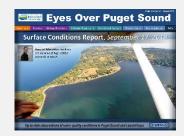
September_12_2019, Publication No. 19-03-075

January_10_2019, Publication No. 19-03-070

May_22_2018, Publication No. 18-03-025

July_29_2019
Publication No. 19-03-074


November_6_2018, Publication No. 18-03-075


April_19_2018, Publication No. 18-03-071

March_16_2020, Publication No. 20-03-071


June_4_2019, Publication No. 19-03-073

September_17_2018, Publication No. 18-03-074

Winter_2018, Publication No. 18-03-070

October_31_2017, Publication No. 17-03-073

November_22_2016, Publication No. 16-03-078

May_2_2016, Publication No. 16-03-073

December_14_2015, Publication No. 15-03-079

August_28_2017, Publication No. 17-03-072

September_26_2016, Publication No. 16-03-077

April_6_2016, Publication No. 16-03-072

October_6_2015, Publication No. 15-03-078


July_24_2017, Publication No. 17-03-071

August_24_2016, Publication No. 16-03-076

March_16_2016, Publication No. 16-03-071

September_21_2015, Publication No. 15-03-077

June_6_2017, Publication No. 17-03-070

July_20_2016, Publication No. 16-03-075


February_8_2016,
Publication No. 16-03-070

August_8_2015, Publication No. 15-03-076

December_31_2016, Publication No. 16-03-079

June_27_2016, Publication No. 16-03-074

December_30_2015, Publication No. 15-03-080

July_6_2015, Publication No. 15-03-075

June_8_2015, Publication No. 15-03-074

December_30_2014, Publication No. 14-03-080

July_28_2014, Publication No. 14-03-075

February_4_2014, Publication No. 14-03-070

April_29_2015, Publication No. 15-03-073

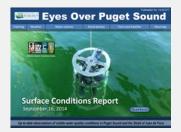
November_17_2014, Publication No. 14-03-079

June_23_2014, Publication No. 14-03-074

December_31_2013, Publication No. 13-03-081

March_24_2015, Publication No. 15-03-072


October_29_2014, Publication No. 14-03-078


May_12_2014, Publication No. 14-03-073

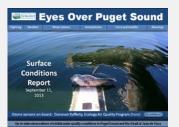
November_21_2013, Publication No. 13-03-080

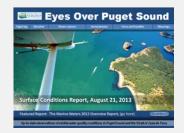
February_17_2015, Publication No. 15-03-071

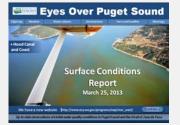
September_16_2014, Publication No. 14-03-077

April_21_2014, Publication No. 14-03-072

October_28_2013, Publication No. 13-03-079


January_28_2015, Publication No. 15-03-070


August_18_2014, Publication No. 14-03-076


March_24_2014, Publication No. 14-03-071

September_11_2013, Publication No. 13-03-078

August_21_2013, Publication No. 13-03-077

Mar_25_2013, Publication No. 13-03-072

October_8_2012, Publication No. 12-03-079

May_14_2012, Publication No. 12-03-074

July_15_2013, Publication No. 13-03-076

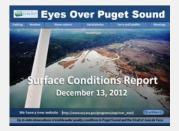
February_26_2013, Publication No. 13-03-071

September_11_2012, Publication No. 12-03-078

April_23_2012, Publication No. 12-03-073

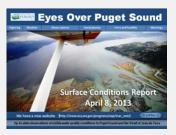
June_17_2013, Publication No. 13-03-075

January_15_2013, Publication No. 13-03-070


August_27_2012, Publication No. 12-03-077


March_19_2012, Publication No. 12-03-072

May_20_2013, Publication No. 13-03-074


December_13_2012, Publication No. 12-03-081


July_31_2012, Publication No. 12-03-076

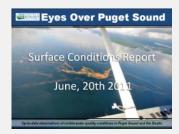

February_27_2012, Publication No. 12-03-071

April_8_2013, Publication No. 13-03-073

November_8_2012, Publication No. 12-03-080

June_12_2012, Publication No. 12-03-075

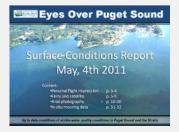
January_30_2012, Publication No. 12-03-070


December_5_2011, Publication No. 11-03-082

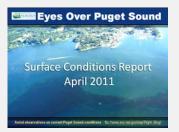
July_6_2011, Publication No. 11-03-077

November_15_2011, Publication No. 11-03-081

June_20_2011, Publication No. 11-03-076


October_17_2011, Publication No. 11-03-080

June_6_2011, Publication No. 11-03-075


September_12_2011, Publication No. 11-03-079

May_4_2011, Publication No. 11-03-074

August_8_2011, Publication No. 11-03-078

April_27_2011, Publication No. 11-03-073