DEPARTMENT OF ECOLOGY State of Washington Eyes Over Puget Sound

Summary

Herring & planes

Climate & streams

Combined factors

ctors Marine water

Aerial photos

Publication No. 21-03-073

Data

Surface Conditions Report: April 1, 2021

Up-to-date observations of water quality conditions in Puget Sound and coastal bays

Summary conditions at a glance

Climate & streams

Data

Aerial photos

Herring & planes

Mike MacKay

Herring & planes, p. 3-4

Combined factors

Capturing these events from a plane provides valuable information.

Marine water

Climate & streams, p. 5-7

After a wet winter, spring has been noticeably drier, warmer, and sunnier, and river flows are near normal levels.

Skip Albertson

Water quality, p. 8-9

Salinity in coastal bays and Puget Sound is higher, especially in areas with rain-fed river sources.

Julia Bos

Dr. Christopher Krembs

Aerial photography, p. 10-38

The spring bloom is developing, though not very pronounced, but *Noctiluca* is already visibly present in Hood Canal." Suspended sediment frequently seen near rivers and creeks, failing bluffs, and human activities. Oil sheen in Salmon Bay.

Editor: Dr. Christopher Krembs, editorial assistance: Valerie Partridge, Elisa Rauschl.

Capturing spawning events from a plane

Explore aerial observations of herring spawn events in Whatcom County 2015 – 2021 by Mike MacKay

Capturing spawning events from the plane

DEPARTMENT OF

In 2000, the state Department of Natural Resources created the Cherry Point Aquatic Reserve to "protect the significant environmental resource" of the area — including herring.

Climate: How well is the Salish Sea exchanging its water?

Fraser River (at midnight)

The Fraser River is the major driver of <u>estuarine circulation</u> and water exchange between the Salish Sea and the ocean. The Fraser River flows normalize after high flows in 2020 and winter 2021.

Three-year running average of PDO and Upwelling Indices

How do ocean boundary conditions affect the quality of water the Salish Sea exchanges with the ocean? Water has gradually cooled (PDO). Upwelling (Upwelling Index <u>anomaly</u>) is at expected level.

Pacific Decadal Oscillation Index (**PDO**, temperature, <u>explanation</u>). Upwelling Index (anomalies) (Upwelling, low oxygen, <u>explanation</u>).

Summary	Herring & planes	Climate & streams	Combined factors	Marine water	Aerial photos	Data
The Skagit River is the largest freshwater source for Puget Sound. It is a river that is regulated.						

Skagit River (at midnight USGS)

The Skagit River freshet is no longer clearly pronounced, because it is a regulated system for hydroelectric power generation. However, drought years and low flows can be seen in the river's discharge data. In the last year, flows of the Skagit appear more normal.

Normal river flows drive "natural" nutrient inputs and keep the water cool.

River flows and upwelling in the summer influence our water quality.

Rivers strengthen estuarine circulation in the Salish Sea. This is important in the summer.

Upwelled ocean water provides cool, nutrient-rich water.

For that to happen, we need northerly winds and good river flows (a good snowpack) during periods of water exchange through Admiralty Reach (neap tides).

Summary Herring & planes Climate & streams Combined factors Marine water Aerial photos Data Image: Stream in the anomaly plot, we want to connect different factors influencing water quality in the context of space and time. We do this with a heat map and anomalies by month for selected regions from north to south. Image: Stream in the stream in the

Conditions leading up to April:

Air temperatures were generally warmer this winter, but February and March were cold.

Precipitation has been below normal in March and April, an abrupt change from January and February.

Cloud cover has been low in March and April.

River flows have been higher than normal but are returning to normal.

Downwelling was less pronounced in February. PDO is lower and La Niña remains.

All data are from public sources: UW GRAYSKIES; river flows from USGS and Environment Canada; indices from NOAA & UW (PDO).

*Upwelling/downwelling Anomalies (PFEL)

PDO = Pacific Decadal Oscillation

ENSO = El Niño Southern Oscillation

higher

expected

No data

lower

Summary	Herring & planes	Climate & streams	Combined factors	Marine water	Aerial photos	Data
	Marine water o Coastal Bays T: Warmer S: Max Salin DO: Lower	conditions: 2021 tem	perature, salinity, ar Salish Sea T: Expected temp S: Saltier at deptl DO: Variable. April	os h, especially Strai	it of JdF/San Juans	

Record highs in January and February for both precipitation and river discharge switched to record lows in March and April This impacted salinity in coastal bays and Puget Sound, especially areas that have rain-fed river sources.

Summary

Climate & streams

Combined factors

Marine water

Aerial photos

Data

Stay up-to-date on unfolding stories relevant to our region

The Marine Waters Work Group (PSEMP) releases a summary of its bimonthly Marine Condition Update, covering the Puget Sound region, coastal waters, and the North Pacific.

To participate in the webinar every other month, join our email list by emailing Iris Kemp (ikemp@lltk.org) or the Marine Waters Work Group (marinewaters@psemp.org).

Stay plumbed into the the information stream...

What's the story so far?

Go to the webpage and read detailed discussion summaries.

What were the conditions at the surface on 4-1-2021?

Jellyfish and fish:

Small but numerous patches of jellyfish in Budd Inlet, some patches in Eld Inlet and Sinclair Inlet.

Suspended sediment:

Nearshore in Port Madison, Whidbey Island, Port Susan, Swinomish Canal, Joe Leary Slough, Nooksack River delta, Sucia and Matia Islands, Hood Canal, Squaxin Island.

Visible blooms:

Noctiluca blooming in southern Hood Canal. Many places with phytoplankton discoloration. A small red-brown bloom in Budd Inlet.

Debris: Organic debris not very abundant.

Bloom

Summary

Aerial navigation guide Date: 4-1-2021

Click on numbers

Flight Observations South Sound: low clouds; north of Tacoma: broken ceiling, sunny.

Contribute observations

GEOGRAPHIC

Tide data from 4-1-2021 (Seattle):

<u>Time</u>	<u>Pred (ft)</u>	<u>High/Low</u>
02:02 AM	4.73	L
07:43 AM	11.71	Н
02:33 PM	-1.39	L
09:28 PM	11.07	Н

North West Environmental Moorings real-time data

Herring & planes

Climate & streams

Combined factors

Marine water

Aerial photos

Data

Connect aerial observation with data from ORCA moorings

NANOOS NVS Data Explorer

View products by mooring

Puget Sound

- ¹ Carr Inlet
- 2 Dabob Bay
- ³ Hoodsport
- **4** Hansville
- **5** Point Wells
- **6** Twanoh

Salish Sea Bellingham Bay

Thayne Yazzie, NWIC, Robert Daniels, UW/APL

A. Organic material patch. B and C. small but numerous patches of jellyfish on west (B) and east side of Inlet. Location: Budd Inlet (South Sound), 11:57 AM

Front with organic debris accumulations and big patch of organic material. Location: Off Haley State Park, Case Inlet (South Sound), 12:25 PM

Suspended sediment nearshore. Location: West Port Madison Nature Reserve, Port Madison (Central Sound), 12:47 PM

Patches of jellyfish. Location: Sinclair Inlet (Central Sound), 12:35 PM

Internal waves running northward (right) in Saratoga Passage. The interaction with the surface makes them visible. Location: Near Anderson Cave (Whidbey Basin), 1:11 PM

A. Stillaguamish River plume with bloom of phytoplankton. B. Water with sediment and bloom flowing from Port Susan into Possession Sound. Location: A. Saratoga Passage, B. Hat Island (Whidbey Basin), 1:02 PM

Remnants of the mudslide in January are still visible and leave a trail of sediment during the incoming tide. Location: Whidbey Island (Central Sound), 12:58 PM

Sediment-rich water of the Stillaguamish River flowing both into A. & B. Port Susan and C. & D. Skagit Bay. Location: Camano Island (Whidbey Basin), 1:16 PM

A. Rain and flooded fields carry much sediment into local drainage channels that B. enter Swinomish Channel. Location: La Conner (Swinomish Reservation), 1:23 PM

Dense gold-olive green-colored diatom mats form in the shallows of the southern reaches of Padilla Bay. Location: Padilla Bay (North Sound), 1:26 PM

Eelgrass beds of Padilla Bay. A. Tidal gully carrying whitish material (likely not sediment). B. Joe Leary Slough with sediment C. traveling past Hat Island. D. Patches devoid of eelgrass. Location: Padilla Bay (North Sound), 1:27 PM

Nooksack River plume with suspended sediment. A. From a distance. B. Close-up showing fine structure of sediment entering the bay. Location: Bellingham Bay (North Sound), 1:36 PM

A. Lummi Bay with Lummi River delta, B. diked aquatic enclosure, and C. marina. D. near-shore suspended sediment. Location: A.-C. Lummi Bay, D. Cherry Point (North Sound), 1:39 PM

Birch Bay with A. suspended sediment forming over the shallows on low tide, B. front separating different water masses, C. Terrel Creek discharging brown water. Location: Birch Bay (North Sound), 1:46 PM

Seagrass in Semiahmoo Bay and suspended sediment forming in Drayton Harbor on low tide. Location: Birch Bay (North Sound), 1:49 PM

Blaine Harbor at low tide. Location: Drayton Harbor (North Sound), 1:48 PM

Sediment shows circulation pattern of sediment-rich water through Echo Bay. Location: Sucia Island (San Juan Islands), 1:58 PM

Sediment shows circulation pattern of sediment-rich water mixing south of Matia Island. Location: Matia Island (San Juan Islands), 1:58 PM

Beginning of a spring bloom in Westcott Bay. Location: Westcott Bay, Roche Harbor (San Juan Island), 2:09 PM

A. View of San Juan Island and Lopez Island. B. View of False Bay and Haro Strait, San Juan Island. Location: San Juan Island (San Juan Islands), 2:14 PM

Sediment-rich water with bloom showing current pattern and mixing. Location: Northern Hood Canal (Hood Canal), 2:42 PM

A. Suspended sediment east of Ballard bridge. B. Oil Sheen amongst boats of North West Dock. Location: Salmon Bay, Seattle (Central Sound) 2:51 PM

Populated bays do not show strong blooming activity. A. Rosendale, B. Horsehead Bay, C. Gig Harbor, D. Quartermaster Harbor. Location: Southern Kitsap Peninsula and Vashon Island (South and Central Sound), 3:32 PM

Suspended sediment nearshore, likely in association with human activity. Location: Squaxin Island (South Sound), 3:42 PM

Red-brown bloom and suspended sediment. Location: Budd Inlet (South Sound), 3:48 PM

People contribute their observations

26)

A. Spawning herring, off Carkeek Park, Seattle. B. Nearshore Noctiluca bloom and macroalgae, NE between Belfair and Union.

Help us cover important events in Puget Sound

Summary

Climate & streams

Combined factors

Marine water

Aerial photos

Data

ACADEMY OF

NATIONAL GEOGRAPHIC

Help us to document important environmental events and places on Puget Sounds waters and beaches.

Click on the images above what you want to report

A Community for Naturalists, Eyes Over Puget Sound

Start reporting observations and share them with with us.

Long-term monitoring data from Puget Sound and Coastal Bays

- 39 stations sampled monthly
- 16 physical, chemical, biogeochemical parameters

https://apps.ecology.wa.gov/eim/search/SMP/MarineAmbientSearch.aspx?StudyMonitoringProgramUserId=MarineAmbient&StudyMonitoringProgramUserIdSearchType=Equals

Find past editions of EOPS on the next pages

Data

Summary

Climate & streams Combined factors

Marine water

Aerial photos

We have published 92 editions!

Find all previous Eyes Over Puget Sound editions at the end of this document.

Recommended Citation (example for September 2018 edition):

Washington State Department of Ecology. 2018. Eyes Over Puget Sound: Surface Conditions Report, September 17, 2018. Publication No. 18-03-075. Olympia, WA. https://fortress.wa.gov/ecy/publications/documents/1803075.pdf.

Contact: Dr. Christopher Krembs <u>Christopher.Krembs@ecy.wa.gov</u> Marine Monitoring Unit Environmental Assessment Program Washington State Department of Ecology

> <u>Subscribe</u> to the Eyes Over Puget Sound email listserv.

Eyes Over Puget Sound past and present publications

Access all EOPS reports in Ecology's biblio system

January_14_2021, Publication No. 21-03-070

Jan_10_2020, Publication No. 20-03-070

March_26_2019, Publication No. 19-03-072

June_17_2021 Publication No. 21-03-074

October_26_2020, Publication No. 20-03-073

October_30_2019, Publication No. 19-03-076

February_21_2019 Publication No. 19-03-071

April_1_2021 Publication No. 21-03-073

September_28_2020, Publication No. 20-03-072

September_12_2019, Publication No. 19-03-075

January_10_2019, Publication No. 19-03-070

March_11_2021 Publication No. 21-03-072

No coverage due to COVID-19 pandemic from April-September

July_29_2019 Publication No. 19-03-074

November_6_2018, Publication No. 18-03-075

February_3_2021 Publication No. 21-03-071

March_16_2020, Publication No. 20-03-071

June_4_2019, Publication No. 19-03-073

September_17_2018, Publication No. 18-03-074

July_16_2018, Publication No. 18-03-073

October_31_2017, Publication No. 17-03-073

November_22_2016, Publication No. 16-03-078

May_2_2016, Publication No. 16-03-073

June_28_2018, Publication No. 18-03-072

August_28_2017, Publication No. 17-03-072

September_26_2016, Publication No. 16-03-077

April_6_2016, Publication No. 16-03-072

May_22_2018, Publication No. 18-03-025

July_24_2017, Publication No. 17-03-071

August_24_2016, Publication No. 16-03-076

March_16_2016, Publication No. 16-03-071

April_19_2018, Publication No. 18-03-071

June_6_2017, Publication No. 17-03-070

July_20_2016, Publication No. 16-03-075

February_8_2016, Publication No. 16-03-070

Winter 2018, Publication No. 18-03-070

December 31 2016, Publication No. 16-03-079

June_27_2016, Publication No. 16-03-074

December_30_2015, Publication No. 15-03-080

December_14_2015, Publication No. 15-03-079

October_6_2015, Publication No. 15-03-078

September_21_2015, Publication No. 15-03-077

August_8_2015, Publication No. 15-03-076

July_6_2015, Publication No. 15-03-075

June_8_2015, Publication No. 15-03-074

December_30_2014, Publication No. 14-03-080

July_28_2014, Publication No. 14-03-075

April_29_2015, Publication No. 15-03-073

November_17_2014, Publication No. 14-03-079

June_23_2014, Publication No. 14-03-074

March_24_2015, Publication No. 15-03-072

October_29_2014, Publication No. 14-03-078

May_12_2014, Publication No. 14-03-073

February_17_2015, Publication No. 15-03-071

September_16_2014, Publication No. 14-03-077

April_21_2014, Publication No. 14-03-072

January_28_2015, Publication No. 15-03-070

August_18_2014, Publication No. 14-03-076

March_24_2014, Publication No. 14-03-071

February_4_2014, Publication No. 14-03-070

August_21_2013, Publication No. 13-03-077

Mar_25_2013, Publication No. 13-03-072

October_8_2012, Publication No. 12-03-079

December_31_2013, Publication No. 13-03-081

July_15_2013, Publication No. 13-03-076

February_26_2013, Publication No. 13-03-071

September_11_2012, Publication No. 12-03-078

November_21_2013, Publication No. 13-03-080

June_17_2013, Publication No. 13-03-075

January_15_2013, Publication No. 13-03-070

August_27_2012, Publication No. 12-03-077

October_28_2013, Publication No. 13-03-079

May_20_2013, Publication No. 13-03-074

December_13_2012, Publication No. 12-03-081

July_31_2012, Publication No. 12-03-076

September_11_2013, Publication No. 13-03-078

April_8_2013, Publication No. 13-03-073

November_8_2012, Publication No. 12-03-080

June_12_2012, Publication No. 12-03-075

May_14_2012, Publication No. 12-03-074

December_5_2011, Publication No. 11-03-082

July_6_2011, Publication No. 11-03-077

April_23_2012, Publication No. 12-03-073

November_15_2011, Publication No. 11-03-081

June_20_2011, Publication No. 11-03-076

March_19_2012, Publication No. 12-03-072

October_17_2011, Publication No. 11-03-080

June_6_2011, Publication No. 11-03-075

February_27_2012, Publication No. 12-03-071

September_12_2011, Publication No. 11-03-079

May_4_2011, Publication No. 11-03-074

January_30_2012, Publication No. 12-03-070

August_8_2011, Publication No. 11-03-078

April_27_2011, Publication No. 11-03-073