

## Addendum 3 to Quality Assurance Project Plan

Prevalence and Persistence of Cyanotoxins in Lakes of the Puget Sound Basin

September 2021 Publication 21-03-115

## **Publication Information**

This Quality Assurance Project Plan Addendum is on the Department of Ecology's website at <u>https://apps.ecology.wa.gov/publications/SummaryPages/2103115.html</u> This is an addition to an original Quality Assurance Project Plan (QAPP). It is not a correction (errata) to the original plan.

This QAPP addendum was approved to begin work in May 2021. It was finalized and approved for publication in August 2021.

#### Suggested citation for this addendum:

Hobbs, W. 2021. Addendum 3 to Quality Assurance Project Plan: Prevalence and Persistence of Cyanotoxins in Lakes of the Puget Sound Basin. Publication 21-03-115. Washington State Department of Ecology, Olympia.

https://apps.ecology.wa.gov/publications/SummaryPages/2103115.html.

Data for this project will be available on Ecology's Environmental Information Management (EIM) website at <u>EIM Database</u>. Search Study ID WHOB008.

Activity Tracker code: 21-008.

#### **Original Quality Assurance Project Plan:**

Hobbs, W. 2018. Quality Assurance Project Plan: Prevalence and Persistence of Cyanotoxins in Lakes of the Puget Sound Basin. Publication 18-03-115. https://apps.ecology.wa.gov/publications/SummaryPages/1803115.html.

## **Contact Information**

Publications Coordinator Environmental Assessment Program Washington State Department of Ecology P.O. Box 47600 Olympia, WA 98504-7600 Phone: 360-407-6764

| Washington State Department of Ecology - | - <u>ecology.wa.gov</u> |
|------------------------------------------|-------------------------|
| Headquarters, Olympia                    | 360-407-6000            |
| Northwest Regional Office, Bellevue      | 425-649-7000            |
| Southwest Regional Office, Olympia       | 360-407-6300            |
| Central Regional Office, Union Gap       | 509-575-2490            |
| Eastern Regional Office, Spokane         | 509-329-3400            |

Any use of product or firm names in this publication is for descriptive purposes only and does not imply endorsement by the author or the Department of Ecology.

To request ADA accommodation for disabilities, or printed materials in a format for the visually impaired, call the Ecology ADA Coordinator at 360-407-6831 or visit <u>https://ecology.wa.gov/accessibility</u>. People with impaired hearing may call Washington Relay Service at 711. People with speech disability may call TTY at 877-833-6341.

## Addendum 3 to Quality Assurance Project Plan

## Prevalence and Persistence of Cyanotoxins in Lakes of the Puget Sound Basin

by William Hobbs

September 2021

#### Approved by:

| Signature:                                                   | Date: |
|--------------------------------------------------------------|-------|
| Jessica Archer, Client and Author's Section Manager, EAP,    |       |
| Signature:<br>William Hobbs, Author / Project Manager, EAP   | Date: |
| winnani Hobos, Author / Hojeet Manager, EAr                  |       |
| Signature:                                                   | Date: |
| James Medlen, Author's Unit Supervisor, EAP                  |       |
| Signature:                                                   | Date: |
| Stacy Polkowske, Section Manager for Project Study Area, EAP |       |
| Signature:                                                   | Date: |
| Alan Rue, Director, Manchester Environmental Laboratory      |       |
| Signature:                                                   | Date: |
| Arati Kaza, Ecology Quality Assurance Officer                |       |

Signatures are not available on the Internet version. EAP: Environmental Assessment Program

## **Table of Contents**

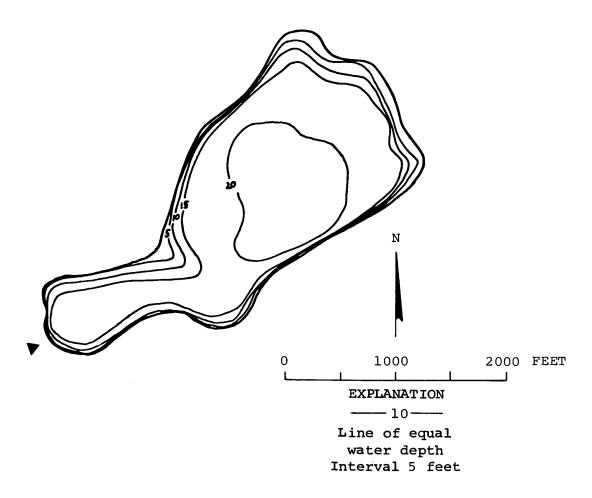
| 3.0  | Background                                      | 3  |
|------|-------------------------------------------------|----|
| 3.1  | Introduction and problem statement              |    |
| 3.2  | Study area and surroundings                     |    |
| 4.0  | Project Description                             | 10 |
| 4.1  | Project goals                                   | 10 |
| 4.2  | Project objectives                              | 10 |
| 4.4  | Tasks required                                  | 10 |
| 5.0  | Organization and Schedule                       | 11 |
| 5.1  | Key individuals and their responsibilities      |    |
| 5.2  | Special training and certifications             | 12 |
| 5.4  | Proposed project schedule                       | 12 |
| 5.5  | Budget and funding                              |    |
| 6.0  | Quality Objectives                              | 14 |
| 6.2  | Measurement quality objectives                  |    |
| 7.0  | Study Design                                    | 15 |
| 7.2  | Field data collection                           |    |
| 7.5  | Possible challenges and contingencies           | 15 |
| 8.0  | Field Procedures                                | 15 |
| 8.1  | Invasive species evaluation                     |    |
| 8.2  | Measurement and sampling procedures             | 15 |
| 8.3  | Containers, preservation methods, holding times |    |
| 9.0  | Laboratory Procedures                           | 17 |
| 9.1  | Lab and field procedures table                  |    |
| 9.4  | Laboratories accredited for methods             |    |
| 15.0 | References                                      | 18 |

The numbered headings in this document correspond to the headings used in the original QAPP. Only relevant sections are included; therefore, some numbered headings are missing, and the text begins at 3.0.

# 3.0 Background

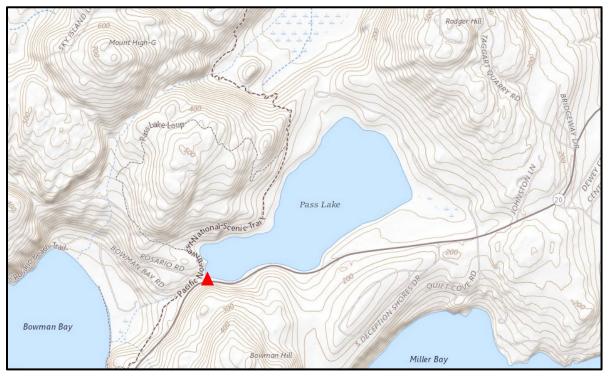
### 3.1 Introduction and problem statement

During the summer and fall of 2019, the Washington State Department of Ecology (Ecology) deployed a multi-parameter water quality data logger (sonde) in Spanaway Lake, Pierce County (Wong and Hobbs, 2020a). The main goal of the study was to establish a relationship between sonde measurements and cyanobacteria harmful algae bloom (cyanoHABs) events that could be used as a predictive tool. A fluorometric probe on the sonde allowed for the continuous measurement of phycocyanin, the main pigment in cyanobacteria. The study identified microcystin as the main cyanotoxin produced during the blooms.

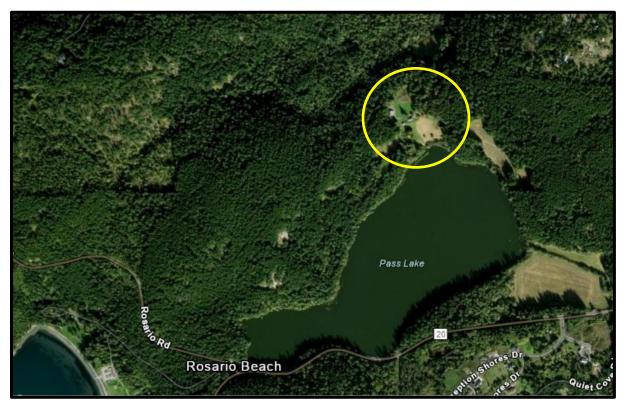

Ecology's previous work established the utility of using the fluorometric probe to infer cyanobacteria production and associated microcystin production over time at a single sample location in the lake. However, the earlier work did not investigate the associations among water column nutrients, cyanobacteria communities, and microcystin production. The current project will assess water column nutrient concentrations, cyanobacteria communities, and microcystin-producing genes from May to November 2021 in Spanaway Lake. We will also measure the concentration and composition of microcystin in the water. Overall, this project contributes to our further understanding and development of techniques and indicators to rapidly identify cyanoHABs.

Ecology's earlier work on cyanoHABs has also included investigations into the historical prevalence of cyanobacteria at Anderson Lake, Jefferson County using a dated sediment core (Hobbs et al., 2021). At the request of Washington State Parks and Recreation, the current project will also investigate the historical presence of cyanobacteria in Pass Lake within Deception Pass State Park. The study will use the same algal proxies as previous work and also analyze an age-dated sediment core for the presence of cyanotoxin-producing genes, as per the original QAPP (Hobbs, 2018).

## 3.2 Study area and surroundings


Details on Spanaway Lake have been covered in previous Quality Assurance Project Plans and reports (Wong and Hobbs, 2020a; Hobbs, 2020).

Pass Lake is located on Fidalgo Island in Skagit County, within the Deception Pass State Park. It is a small kettle lake (~95 acres) with a maximum depth of about 20-25 feet (Figure 1). There is one engineered outlet stream on the southwest shoreline which drains to Bowman Bay in the Puget Sound (Figure 2). The outlet flow is controlled by lake level reaching a culvert. It is not clear exactly when the culvert was installed, but likely in the 1930s when many construction projects took place in Deception Pass State Park. A small perennial inlet stream is present on the northeast shoreline of the lake. There has been no major hydrologic study of the lake, but it is likely a seepage or spring lake where groundwater inputs dominate the hydrology. The lake watershed is mainly forested parkland with a park residence on the north shore (Figure 3).




#### Figure 1. Bathymetric map of Pass Lake, Deception Pass State Park.

Since the early 1900s, the lake has been managed as a trout fishery by the Washington Department of Fish and Wildlife (formerly the Department of Game). There have been many fish introductions and two major fish eradications using rotenone (1946 and 1959) (Personal communications: Justin Spinelli, Washington Department of Fish and Wildlife, and Julie Morse, Washington State Parks and Recreation).



**Figure 2. Topographic map of the Pass Lake watershed.** Red triangle is the location of the outlet.



**Figure 3. Arial photograph of Pass Lake.** The park residence is highlighted by the yellow circle.

#### 3.2.2 Parameters of interest and potential sources

The majority of the parameters have been described in the previous QAPP and addenda. There are several additional water quality parameters that will be collected at Spanaway Lake to characterize water chemistry and nutrient concentrations (Table 1). Monthly samples will be collected for major anions (bromide, chloride, fluoride, nitrite, nitrate and sulfate) and major cations (calcium, magnesium, sodium and potassium). In addition, to previously sampled nutrient parameters (see Hobbs, 2018; total phosphorus, total nitrogen, ammonia, and nitrite-nitrate), we will sample orthophosphate.

| Parameter                                           | Sample<br>frequency | Depth                                             |
|-----------------------------------------------------|---------------------|---------------------------------------------------|
| Microcystin variants                                | monthly             | Integrated surface water sample                   |
| Total Microcystin - ELISA                           | weekly              | Integrated surface water sample                   |
| Chlorophyll <i>a</i>                                | weekly              | Integrated surface water sample and profile       |
| Phycocyanin                                         | weekly              | Integrated surface water sample and profile       |
| Total phosphorus (TP)                               | weekly              | Integrated surface water sample and bottom waters |
| Orthophosphate (PO <sub>4</sub> )                   | weekly              | Integrated surface water sample and bottom waters |
| Nitrite-Nitrate (NO <sub>2</sub> –NO <sub>3</sub> ) | weekly              | Integrated surface water sample and bottom waters |
| Ammonia (NH <sub>3</sub> )                          | weekly              | Integrated surface water sample and bottom waters |
| Total persulfate nitrogen (TPN)                     | weekly              | Integrated surface water sample                   |
| Major cations and metals                            | monthly             | Integrated surface water sample and bottom waters |
| Major anions                                        | monthly             | Integrated surface water sample and bottom waters |

Table 1. List of the water quality parameters of interest at Spanaway Lake.

Major anions = bromide, chloride, fluoride and sulfate;

Major cations and metals = calcium, potassium, magnesium, sodium, iron and aluminum.

#### 3.2.3 Summary of previous studies and existing data

Previous results from Spanaway Lake are covered in the QAPP addendum by Hobbs (2020).

The water quality of Pass Lake has been monitored by the Institute for Watershed Studies at Western Washington University (WWU) since 2006. Shoreline grab samples have been taken once or twice a year during the spring and summer (Table 2). We will not be monitoring nutrients in Pass Lake for this study. The purpose of Table 2 is to show that Pass Lake appears to have similar nutrient concentrations from year to year.

|                |                               |               |     |                | 1               |               |                    | 1             | 1            |               |              |               |
|----------------|-------------------------------|---------------|-----|----------------|-----------------|---------------|--------------------|---------------|--------------|---------------|--------------|---------------|
| Sample<br>date | Dissolved<br>oxygen<br>(mg/L) | Temp<br>(° C) | рН  | SpC<br>(µS/cm) | Chl a<br>(µg/L) | Alk<br>(mg/L) | Turbidity<br>(NTU) | NH3<br>(µg/L) | TN<br>(µg/L) | NO3<br>(µg/L) | TP<br>(µg/L) | SRP<br>(µg/L) |
| 8/22/2006      | 8.5                           | 19.9          | 8.8 | 296            | NA              | 81.2          | 6.53               | <10           | 862.5        | <10           | 29.6         | <3            |
| 3/27/2007      | 10.6                          | 9.5           | 7.6 | 278            | 9               | 73.3          | 2.51               | 69.7          | 674.3        | <10           | 13.2         | <3            |
| 8/14/2007      | 9.7                           | 20.1          | 8.4 | 291            | 41.2            | 79.6          | 6.68               | <10           | 793.2        | <10           | 29.9         | 4.6           |
| 5/27/2008      | 9.6                           | 17            | 8   | 280            | 1.7             | 73            | 0.87               | <10           | NA           | <10           | NA           | <3            |
| 8/27/2008      | 8.8                           | 20            | 8.6 | 288            | 9.9             | 76.3          | 4.1                | 20.7          | 655.7        | <10           | 30.5         | 5.6           |
| 5/14/2009      | 9.9                           | 16.2          | 8.1 | 276            | 1.4             | 70.1          | 1.01               | 15.7          | 576          | <10           | 7.8          | <3            |
| 8/24/2009      | 9.7                           | 20.3          | 8.5 | 294            | 11.2            | 77.4          | 3.6                | <10           | 737          | <10           | 31.7         | 6.6           |
| 3/25/2010      | 9.7                           | 10.5          | 8.1 | 281            | NA              | 75.4          | 2.13               | 15.9          | 668          | <10           | 11.5         | <3            |
| 7/7/2010       | 8.5                           | 19.2          | 8.1 | 284            | 6.5             | 75            | 2.96               | <10           | 705          | <10           | 17.1         | 5.5           |
| 7/20/2011      | 7.6                           | 19.5          | 8.1 | 279            | 5.9             | 73.6          | 2                  | <10           | 527          | <10           | 8.6          | 6.9           |
| 7/24/2012      | 9.1                           | 19.2          | 8.1 | 278            | 6.2             | 72.4          | 2.07               | <10           | 580          | <10           | 15           | 5.1           |
| 7/31/2013      | 9.1                           | 20.3          | 8.3 | 284            | 16.6            | 76.3          | 2.52               | <10           | 682.3        | <10           | 19.6         | <3            |
| 9/3/2014       | 8.2                           | 19.7          | 8.4 | 59.8           | 19.7            | 79.4          | 5.38               | <10           | 579          | <10           | 20.1         | <3            |
| 7/13/2015      | 8.1                           | 21            | 7.8 | 282            | 14.1            | 76.5          | 3.2                | 10.9          | 667.1        | <10           | 27.5         | <3            |
| 7/6/2016       | 8.1                           | 19.5          | 7.7 | 269            | 0.1             | 73.9          | 2.9                | <10           | 719.9        | <10           | 22           | <3            |
| 7/10/2017      | NA                            | NA            | 7.7 | 274            | 5.3             | 64.8          | 0.9                | 15.1          | 600.7        | <10           | 24.7         | 3.3           |
| 7/23/2018      | 9.4                           | 22.1          | 8.7 | 271.1          | 13.5            | 69.5          | 3.46               | <10           | 680          | <10           | 26.7         | <3            |
| 8/19/2019      | 10                            | 20.7          | 8.7 | 282.7          | 33.2            | 76            | 9.15               | <10           | 834          | <10           | 74           | 6.6           |
| 8/31/2020      | 9                             | 20            | 8.8 | 277.9          | 73.5            | 75.4          | 32.1               | 15.3          | 2076         | <10           | 231.2        | 11.9          |

Table 2. Water quality monitoring results of Pass Lake (Institute for Watershed Studies, WWU).

 $Temp = temperature; \ SpC = specific \ conductance; \ Chl \ a = chlorophyll \ a; \ Alk = alkalinity; \ NH_3 = ammonia; \ TN = total \ nitrogen; \ NO_3 = nitrate; \ TP = total \ phosphorus; \ SRP = soluble \ reactive \ phosphorus; \ and \$ 

Data available at <a href="https://www.wwu.edu/iws/">https://www.wwu.edu/iws/</a>

Since 2012, Pass Lake has been experiencing noticeable blooms of cyanobacteria that have been sampled and analyzed for cyanotoxins under Ecology's Freshwater Algae Program. Data are available at <a href="https://www.nwtoxicalgae.org/">https://www.nwtoxicalgae.org/</a>. Both microcystin and anatoxin-a are prevalent in Pass Lake and generally concentrations are highest around September and October (Figures 4 and 5). It is likely this time of the year when the lake is undergoing mixing as the surface water temperatures decrease.

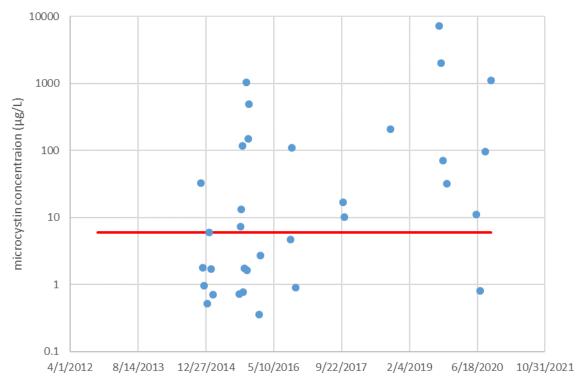
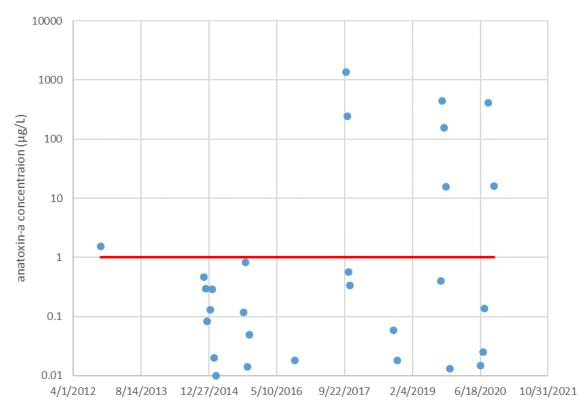




Figure 4. Microcystin concentrations at Pass Lake since 2012.

Red line is the Washington State Department of Health Recreational guideline (6  $\mu$ g/L).



#### Figure 5. Anatoxin-a concentrations at Pass Lake since 2012.

Red line is the Washington State Department of Health Recreational guideline (1  $\mu$ g/L).

## 4.0 Project Description

#### 4.1 Project goals

The goals of this project are to establish:

- Associations among nutrients, cyanobacteria communities, and cyanotoxin production in Spanaway Lake during the summer of 2021.
- The historical prevalence of cyanobacteria in Pass Lake, in Deception Pass State Park, using a dated sediment core.

### 4.2 Project objectives

The objectives of this study are to:

- Collect weekly samples from a central sample location on Spanaway Lake to assess nutrient concentrations in the surface and bottom waters and corresponding cyanobacteria communities and microcystin production.
- Assess the historic prevalence of cyanobacterial pigments and cyanotoxin-producing genes in the sediments of Pass Lake, Deception Pass State Park.

### 4.4 Tasks required

Specific tasks under this project include the following:

- Write a QAPP addendum for the project.
- Measure weekly water column profiles of Spanaway Lake at the deepest point in the lake using a multiprobe sonde. Parameters include dissolved oxygen, conductivity, pH, temperature, fluorometric chlorophyll a (in reflectance units; RFU) and phycocyanin (RFU).
- Collect weekly samples from Spanaway Lake at the central deepest point in the lake, from the surface and deep waters.
- Collect phytoplankton samples and net tows for identification of algal groups from Spanaway Lake.
- Collect a sediment core from Pass Lake at the deepest location.
- Subsample the core at Ecology for dating, geochemical analysis, and sedimentary algal pigments.
- Construct an age-depth model for the sediment core.
- Review and assess data quality and laboratory results.
- Write separate short reports for the monitoring of Spanaway Lake and the sediment core from Pass Lake.

# 5.0 Organization and Schedule

#### 5.1 Key individuals and their responsibilities

#### Table 3. Organization of project staff and responsibilities.

| Staff                                                                     | Title                                                        | Responsibilities                                                                                                                                                                                                                                                                                         |
|---------------------------------------------------------------------------|--------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Jessica Archer<br>SCS, EAP<br>Phone: 360-407-6698                         | EAP Client and<br>Section Manager for<br>the Project Manager | Provides internal review of the QAPP, approves the budget,<br>and approves the final QAPP.                                                                                                                                                                                                               |
| William Hobbs, PhD<br>TSU, SCS<br>Phone: 360-407-7512                     | Project Manager                                              | Writes the QAPP. Oversees field sampling and transportation<br>of samples to the laboratory. Conducts QA review of data,<br>analyzes and interprets data, and enters data into EIM.<br>Manages receives analytical results from all labs (see Section<br>9.4). Writes the draft report and final report. |
| James Medlen<br>TSU, SCS<br>Phone: 360-407-6194                           | Unit Supervisor for the Project Manager                      | Provides internal review of the QAPP, and approves the final QAPP.                                                                                                                                                                                                                                       |
| Alan Rue<br>Manchester Environmental<br>Laboratory<br>Phone: 360-871-8801 | Director                                                     | Reviews and approves the final QAPP. Oversees analysis of water samples for supplemental nutrient parameters.                                                                                                                                                                                            |
| Francis Sweeney<br>King County Environmental Lab<br>Phone: 206-477-7117   | Director, Aquatic<br>Toxicology                              | Reviews draft QAPP, coordinates with Project Manager.<br>Analyzes sediment samples for microcystins.                                                                                                                                                                                                     |
| Rochelle Labiosa<br>EPA<br>Phone: 206-553-1172                            | Region 10<br>Project Manager -<br>Innovation Grant           | Reviews draft QAPP, coordinates with Project Manager for<br>the analysis of sediments for microcystin genes.                                                                                                                                                                                             |
| Arati Kaza Ecology Quality<br>Phone: 360-407-6964 Officer                 |                                                              | Reviews the draft QAPP and approves the final QAPP. May comment on the final report.                                                                                                                                                                                                                     |

EAP: Environmental Assessment Program; EIM: Environmental Information Management database; QAPP: Quality Assurance Project Plan; SCS: Statewide Coordination Section; TSU: Toxic Studies Unit; EPA: US Environmental Protection Agency.

### 5.2 Special training and certifications

A research permit with Washington State Parks and Recreation will be required to collect a core from Pass Lake. Ecology will apply for the research permit in the summer of 2021, and coring will take place in the fall of 2021.

#### 5.4 Proposed project schedule

The proposed project schedule (Tables 4-6) assumes no further delays due to compliance with Ecology's response plan to the COVID pandemic.

Table 4. Proposed schedule for completing field and laboratory work.

| Field and laboratory work     | Due date      | Lead staff            |  |  |
|-------------------------------|---------------|-----------------------|--|--|
| Field work completed          | November 2021 | William Hobbs         |  |  |
| Laboratory analyses completed | April 2022    | MEL and contract labs |  |  |

 Table 5. Proposed schedule for data entry into the Environmental

 Information Management (EIM) database. EIM Study ID WHOB008.

| Product               | Due date    | Lead staff    |  |  |
|-----------------------|-------------|---------------|--|--|
| EIM data loaded       | June 2022   | TBD           |  |  |
| EIM data entry review | July 2022   | William Hobbs |  |  |
| EIM complete          | August 2022 | TBD           |  |  |

#### Table 6. Proposed schedule for project reporting.

| Tasks                                    | Due Date       | Lead staff    |
|------------------------------------------|----------------|---------------|
| Draft due to supervisor                  | September 2022 | William Hobbs |
| Draft due to client/peer reviewer        | October 2022   | William Hobbs |
| Final (all reviews done) due to pub team | November 2022  | William Hobbs |
| Final report due on web                  | December 2022  | William Hobbs |

## 5.5 Budget and funding

The detailed budget for the laboratory expenses is outlined in Tables 7 and 8. All laboratory contracts are handled by the project manager and not through MEL. For the Spanaway Lake water samples (Table 8), some in-house lab costs will be billed in FY21 (~\$3,200); all remaining lab costs will be billed in FY22.

|                                           | Ері | Hypo/<br>Chl<br>max | Samples | QA    | Per<br>sample<br>cost | In-<br>house<br>(\$) | Contract<br>(\$) | Lab     |
|-------------------------------------------|-----|---------------------|---------|-------|-----------------------|----------------------|------------------|---------|
| Total phosphorus                          | 26  | 26                  | 52      | 6     | 20                    | 1160                 | -                | MEL     |
| Orthophosphate                            | 26  | 26                  | 52      | 6     | 20                    | 1160                 | -                | MEL     |
| Total persulfate<br>nitrogen              | 26  | -                   | 26      | 6     | 20                    | 640                  | -                | MEL     |
| Ammonia/ NO <sub>3</sub> -NO <sub>2</sub> | 26  | 26                  | 52      | 6     | 30                    | 1740                 | -                | MEL     |
| Chlorophyll a                             | 26  |                     | 26      | 6     | 50                    | 1600                 | -                | MEL     |
| Major anions                              | 5   | 5                   | 10      | 3     | 65                    | 845                  | -                | MEL     |
| Major cations and metals                  | 5   | 5                   | 10      | 3     | 100                   | 1300                 | -                | MEL     |
| POC-PN with stable isotopes               | 26  | -                   | 26      | 6     | 15                    | -                    | 480              | UCSC    |
| Phycocyanin                               | 14  | -                   | 14      | 3     | 50                    | -                    | 850              | WWU     |
| MC Elisa                                  | 26  | -                   | 26      | 6     | 65                    | -                    | 2080             | KCEL    |
| MC variants                               | 5   | -                   | 5       | -     | 175                   | -                    | 875              | KCEL    |
| MC genes                                  | 26  | 26                  | 52      | -     | 0                     | -                    | 0                | EPA-ORD |
|                                           |     | Total               | 8,445   | 4,285 | \$12,730              |                      |                  |         |

Table 7. Detailed project budget for water quality monitoring at Spanaway Lake

Major anions = bromide, chloride, fluoride, and sulfate.

Major cations and metals = calcium, potassium, magnesium, sodium, iron, and aluminum.

Epi = epilimnion (surface waters); Hypo/Chl max = hypolimnion (bottom waters) or chlorophyll a maximum; NO<sub>3</sub>-NO<sub>2</sub> = nitrate-nitrite as N; POC-PN = particulate organic carbon and particulate nitrogen;

MC = microcystin; MEL = Manchester Environmental Lab; UCSC = University of California- Santa Cruz;

WWU = Western Washington University; KCEL = King County Environmental Lab;

EPA-ORD = US Environmental Protection Agency – Office of Research and Development.

 Table 8. Detailed project budget for the Pass Lake sediment core.

|                       | Number<br>of<br>samples | Number<br>of QA<br>samples | Cost per<br>sample<br>(\$) | In-house<br>cost per<br>sample (\$) | Contract<br>(\$) | Subtotal<br>(\$) |
|-----------------------|-------------------------|----------------------------|----------------------------|-------------------------------------|------------------|------------------|
| C:N & isotopes        | 20                      | 20                         | 15                         | -                                   | 600              | 600              |
| Loss-on-ignition      | 25                      | -                          | 50                         | 1,250                               | _                | 1,250            |
| Pigments              | 20                      | 2                          | 105                        | _                                   | 2,310            | 2,310            |
| Radioisotopes (alpha) | 16                      | -                          | 150                        | _                                   | 2,400            | 2,400            |
| Radioisotopes (gamma) | 10                      | _                          | 150                        | _                                   | 1,500            | 1,500            |
|                       |                         |                            | Total                      | \$1,250                             | \$6,810          | \$8,060          |

C:N = Carbon : Nitrogen (molar)

## 6.0 Quality Objectives

#### 6.2 Measurement quality objectives

The measurement quality objectives (MQOs) for the analytical data in this study are detailed in Table 9. For completeness all the water quality parameters are included as well as being detailed in the previous QAPP and associated addenda (Hobbs, 2018; Wong and Hobbs, 2020b). All sediment parameter MQOs follow the QAPP by Hobbs (2020).

#### 6.2.1 Targets for precision, bias, and sensitivity

| Parameter                        | Verification<br>standards<br>(LCS, CRM, CCV)<br>(% recovery<br>limits) | Spiked blank<br>(% recovery<br>limits) | Duplicate<br>samples<br>(RPD <sup>b</sup> ) | Matrix<br>spikes<br>(% recovery<br>limits) | Matrix<br>spike<br>duplicates<br>(RPD <sup>b</sup> ) | Lowest<br>concentrations<br>of interest |
|----------------------------------|------------------------------------------------------------------------|----------------------------------------|---------------------------------------------|--------------------------------------------|------------------------------------------------------|-----------------------------------------|
| Microcystin<br>variants          | CCV low: 50–150<br>CCV mid: 70–130<br>CCV high: 70–130                 | 70–130                                 | 40                                          | 70–130                                     | 40                                                   | 0.2 μg/L                                |
| Microcystin -<br>ELISA           | PC 70 – 130                                                            | NA                                     | 60 - 140                                    | 0-45                                       | 50 - 150                                             | 0.15 μg/L                               |
| Chlorophyll a                    | CCV 90-110                                                             | NA                                     | 20                                          | NA                                         | NA                                                   | 0.004 mg/L                              |
| Phycocyanin                      | NA                                                                     | <reporting<br>Limit</reporting<br>     | NA                                          | 20                                         | NA                                                   | 8 µg/L                                  |
| ТР                               | CCV 90-110                                                             | 80–120                                 | 20                                          | 75–125                                     | 20                                                   | 0.0024 mg/L                             |
| NO <sub>2</sub> -NO <sub>3</sub> | CCV 90-110                                                             | 80–120                                 | 20                                          | 75–125                                     | 20                                                   | 0.01 mg/L                               |
| NH3                              | CCV 90–110                                                             | 80–120                                 | 20                                          | 75–125                                     | 20                                                   | 0.01 mg/L                               |
| Total persulfate N               | CCV 90-110                                                             | 80–120                                 | 20                                          | 75–125                                     | 20                                                   | 0.025 mg/L                              |
| Orthophosphate                   | CCV 90-110                                                             | 80–120                                 | 20                                          | 75–125                                     | 20                                                   | 0.003 mg/L                              |
| Sodium                           | LCS 85-115%                                                            | 70-130%                                | <30%                                        | 75-125%                                    | <30%                                                 | 0.025 mg/L                              |
| Magnesium                        | LCS 85-115%                                                            | 70-130%                                | <30%                                        | 75-125%                                    | <30%                                                 | 0.025 mg/L                              |
| Potassium                        | LCS 85-115%                                                            | 70-130%                                | <30%                                        | 75-125%                                    | <30%                                                 | 0.25 mg/L                               |
| Calcium                          | LCS 85-115%                                                            | 70-130%                                | <30%                                        | 75-125%                                    | <30%                                                 | 0.025 mg/L                              |
| Iron                             | LCS 85-115%                                                            | 70-130%                                | <30%                                        | 75-125%                                    | <30%                                                 | 0.025 mg/L                              |
| Aluminum                         | LCS 85-115%                                                            | 70-130%                                | <30%                                        | 75-125%                                    | <30%                                                 | 0.025 mg/L                              |
| Sulfate                          | LCS 90-110%                                                            | 70-130%                                | <30%                                        | 75-125%                                    | <30%                                                 | 0.30 mg/L                               |
| Chloride                         | LCS 90-110%                                                            | 70-130%                                | <30%                                        | 75-125%                                    | <30%                                                 | 0.10 mg/L                               |
| Bromide                          | LCS 90-110%                                                            | 70-130%                                | <30%                                        | 75-125%                                    | <30%                                                 | 0.025 mg/L                              |
| Fluoride                         | LCS 90-110%                                                            | 70-130%                                | <30%                                        | 75-125%                                    | <30%                                                 | 0.10 mg/L                               |

 Table 9: Measurement quality objectives for water quality parameters.

<sup>a</sup> LCS = laboratory control sample; CRM = certified reference materials; CCV = continuing calibration verification standard.

<sup>b</sup> Relative Percent Difference

# 7.0 Study Design

### 7.2 Field data collection

#### 7.2.1 Sampling locations and frequency

The sample location on Spanaway Lake remains the same as detailed in the previous QAPP (Hobbs, 2020).

The sample location on Pass Lake will target the deepest location (Figure 1). The sediment core will be collected using a percussion-type corer as per the original QAPP (Hobbs, 2018). The sediment core will be subsampled following transport back to the Ecology, Headquarters lab, in Lacey, Washington. All samples will be frozen following subsampling. Samples will be shipped to the lab frozen or freeze dried, depending on the analytical method requirements.

## 7.5 Possible challenges and contingencies

Current and future COVID policies and protocols applicable to all field work will be followed.

There are no foreseeable issues of access to Spanaway Lake or Pass Lake.

Possible challenges with the sediment core collection on Pass Lake is recovering enough sediment (length of core) to achieve the necessary radioisotope threshold for dating. As a contingency we have included the necessary budget to accommodate additional sample analysis.

# 8.0 Field Procedures

## 8.1 Invasive species evaluation

Field personnel for this project are required to be familiar with and follow the procedures described in SOP EAP070, *Minimizing the Spread of Invasive Species* (Parsons et al., 2018). Our study area is not considered to be of high concern for invasive species. Sampling events will be day trips, with sufficient time in between to allow for decontamination by drying (48 hours).

## 8.2 Measurement and sampling procedures

Representative water quality samples of the surface waters of Spanaway Lake will be collected using an integrated sampler. The upper 1m of the epilimnion of the lake water will be homogenized and distributed into sample containers. This approach follows standard limnological protocols as described in EPA's guidance for the National Lakes Assessment (USEPA, 2017a). Water samples representative of the bottom waters or hypolimnion, will be collected with Kemmerer bottle to capture a discrete sample at depth.

### 8.3 Containers, preservation methods, holding times

All necessary containers, preservatives and holding times for all water quality samples are listed in Table 10. Sediment containers have been described in the previous QAPP and associated addenda (Hobbs, 2018; Hobbs 2020).

| Parameter                        | Minimum<br>quantity<br>required | Container                             | Preservative                       | Holding time                                      |  |
|----------------------------------|---------------------------------|---------------------------------------|------------------------------------|---------------------------------------------------|--|
| MC variants                      | 100 ml                          | 125 ml amber glass<br>bottle          | cool at 4°C or<br>freeze           | 48 hrs<br>(1 month frozen)                        |  |
| MC - ELISA                       | 100 ml                          | 125 ml amber glass<br>bottle          | cool at 4°C or<br>freeze           | 48 hrs<br>(1 month frozen)                        |  |
| Chlorophyll <i>a</i>             | 0.25–1 L,<br>filtered           | field filter in glass<br>tube         | acetone                            | 24 hrs to filtration; 28<br>days after filtration |  |
| Phycocyanin                      | 400 mL                          | 500 mL amber<br>polyethylene bottle   | cool to 4°C,<br>overnight shipping | 60 days<br>after frozen                           |  |
| ТР                               | 60 ml                           | 125 ml clear<br>Nalgene               | 1:1 HCl                            | 28 days                                           |  |
| PO <sub>4</sub>                  | 60 ml                           | 125 ml amber<br>Nalgene               | cool at 4°C                        | 48 hrs<br>field filtered                          |  |
| NO <sub>2</sub> -NO <sub>3</sub> | 60 ml                           | 125 ml clear<br>Nalgene               | 1:1 H <sub>2</sub> SO <sub>4</sub> | 28 days                                           |  |
| NH <sub>3</sub>                  | 60 ml                           | 125 ml clear<br>Nalgene               | 1:1 H <sub>2</sub> SO <sub>4</sub> | 28 days                                           |  |
| Total persulfate N               | 60 ml                           | 125 ml clear<br>Nalgene               | 1:1 H <sub>2</sub> SO <sub>4</sub> | 28 days                                           |  |
| Major cations and metals         | 100 ml                          | 500 mL HDPE<br>bottle; field filtered | 1:1 HNO₃,<br>cool to ≤6°C          | 6 months                                          |  |
| Major anions                     | 60 ml                           | 500 mL HDPE                           | cool to ≤6 °C                      | 28 days                                           |  |

Major anions = bromide, chloride, fluoride and sulfate.

Major cations and metals = calcium, potassium, magnesium, sodium, iron and aluminum.  $NO_3-NO_2$  = nitrate-nitrite as N.

## 9.0 Laboratory Procedures

#### 9.1 Lab and field procedures table

| Lab                    | Analyte                            | Sample<br>matrix                     | Samples | Expected range<br>of results                                                                                                                                                       | Method<br>detection<br>limit | Reporting<br>limit                          | Sample prep<br>method                                       | Analytical<br>(instrumental)<br>method                  |
|------------------------|------------------------------------|--------------------------------------|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|---------------------------------------------|-------------------------------------------------------------|---------------------------------------------------------|
| KCEL                   | Microcystin<br>variants            | Water                                | 5       | <mdl 100="" l<="" td="" to="" µg=""><td>0.04 µg/L</td><td>0.2 μg/L</td><td>KCEL SOP 469<br/>(Mekebri et al<br/>2009)</td><td>KCEL SOP<br/>473 (Mekebri<br/>et al. 2009)</td></mdl> | 0.04 µg/L                    | 0.2 μg/L                                    | KCEL SOP 469<br>(Mekebri et al<br>2009)                     | KCEL SOP<br>473 (Mekebri<br>et al. 2009)                |
| KCEL                   | Microcystin -<br>ELISA             | Water                                | 26      | Limit – 4000 µg/L                                                                                                                                                                  | 0.15 μg/L                    | 0.15 μg/L                                   | KCEL SOP<br>#465                                            | ELISA-<br>Abraxis ADDA<br>(KCEL SOP<br>#465)            |
| MEL                    | Chlorophyll a                      | Water                                | 26      | 1 μg/L to 100 μg/L                                                                                                                                                                 | NA                           | 0.004 to 0.05<br>mg/L                       | SM10200-H1                                                  | SM10200-H3                                              |
| IWS-WWU                | phycocyanin                        | Water                                | 14      | <reporting limit="" –<br="">20 µg/L</reporting>                                                                                                                                    | 8 μg/L                       | 8 μg/L                                      | USEPA (2017b)                                               | EPA (2017);<br>Kasinak et al.<br>(2015)                 |
| MEL                    | TP                                 | Water                                | 52      | <mrl 1="" l<="" mg="" td="" to=""><td>0.005 mg/L</td><td>0.0024 mg/L</td><td>SM4500-P B5</td><td>SM4500-P H</td></mrl>                                                             | 0.005 mg/L                   | 0.0024 mg/L                                 | SM4500-P B5                                                 | SM4500-P H                                              |
| MEL                    | orthophosphate                     | Water                                | 52      | <mrl 1="" l<="" mg="" td="" to=""><td>0.005 mg/L</td><td>0.0024 mg/L</td><td>SM4500 PG</td><td>SM4500-P G</td></mrl>                                                               | 0.005 mg/L                   | 0.0024 mg/L                                 | SM4500 PG                                                   | SM4500-P G                                              |
| MEL                    | NO <sub>2</sub> -NO <sub>3</sub>   | Water                                | 52      | <mrl 1="" l<="" mg="" td="" to=""><td>0.005 mg/L</td><td>0.01 mg/L</td><td>SM4500NO3I</td><td>SM4500-NO3 I</td></mrl>                                                              | 0.005 mg/L                   | 0.01 mg/L                                   | SM4500NO3I                                                  | SM4500-NO3 I                                            |
| MEL                    | NH3                                | Water                                | 52      | <mrl 1="" l<="" mg="" td="" to=""><td>0.006 mg/L</td><td>0.01 mg/L</td><td>SM4500NH3</td><td>SM4500-NH3<br/>H</td></mrl>                                                           | 0.006 mg/L                   | 0.01 mg/L                                   | SM4500NH3                                                   | SM4500-NH3<br>H                                         |
| MEL                    | Total persulfate<br>N              | Water                                | 26      | <mrl 2="" l<="" mg="" td="" to=""><td>0.013 mg/L</td><td>0.025 mg/L</td><td>SM4500-N B</td><td>SM4500-N B</td></mrl>                                                               | 0.013 mg/L                   | 0.025 mg/L                                  | SM4500-N B                                                  | SM4500-N B                                              |
| MEL                    | Major cations and metals           | water                                | 10      | 0.025–500 μg/L                                                                                                                                                                     | 0.025 μg/L                   | 0.025 μg/L                                  | EPA 200.7                                                   | EPA 200.7                                               |
| MEL                    | Major anions                       | water                                | 10      | 0.025–500 μg/L                                                                                                                                                                     | 0.025–<br>0.3 μg/L           | 0.025–0.3<br>μg/L                           | NA                                                          | EPA 300.0                                               |
| EPA                    | mRNA                               | Water and<br>Sediment<br>core        | 75      | 100 to 250 base<br>pairs                                                                                                                                                           | 0.5 ng/<br>mL                | 97% identity<br>match base<br>pairs library | (sediment)<br>Qiagen – Rneasy<br>Powersoil total<br>RNA kit | Agilent 2100<br>Bioanalyzer                             |
| MEL                    | LOI                                | Sediment<br>core                     | 25      | 1 - 80%                                                                                                                                                                            | 1%                           | 1%                                          | ASTM D7348-<br>13                                           | LOI (Heiri et<br>al., 2001)                             |
| SMM                    | <sup>210</sup> Pb<br>radioisotopes | Sediment<br>core                     | 16      | < 0.45 - 30 pCi/g                                                                                                                                                                  | NA                           | 0.45 pCi/g                                  | Eakins and<br>Morrison, 1978                                | Alpha<br>Spectroscopy<br>(Eakins and<br>Morrison, 1978) |
| Dr. Rolf<br>Vinebrooke | algal pigments                     | Sediment<br>core                     | 22      | 0.1 to 2000 nmole<br>pigment                                                                                                                                                       | NA                           | 0.1 nmole                                   | Leavitt and<br>Hodgson, 2001                                | HPLC<br>(Mantoura and<br>Llewellyn,<br>1983)            |
| UC-Santa<br>Cruz       | TOC:N and isotopes                 | Sediment<br>core and<br>particulates | 66      | 0.1 - 2.0 (%N); 1.0<br>- 15 (%C)                                                                                                                                                   | NA                           | 0.10%                                       | lyophilization                                              | ‡ stable<br>isotopes of N<br>and C                      |

#### Table 11. Measurement methods (laboratory).

KCEL: King County Environmental Lab; MEL: Manchester Environmental Lab; SMM: Science Museum of Minnesota;

IWS-WWU: Institute for Watershed Studies - Western Washington University; LOI: loss-on-ignition;

<sup>‡</sup> Costech Elemental Analyzer, Conflo III, MAT253

### 9.4 Laboratories accredited for methods

All analyses for nutrients will be carried out at MEL. Other parameters are being analyzed by contract labs using non-accredited methods. The following contract labs will be used during this project:

- Water MC variants and ELISA –King County Environmental Lab (not accredited; waiver required).
- Water and sediment mRNA US Environmental Protection Agency, Office of Research and Development, Cincinnati, OH (not accredited, waiver required).
- Sediment and particulate TOC-TN and isotopes University of Santa Cruz, Isotope Lab (not accredited; waiver required).
- Sediment core algal pigments Dr. Rolf Vinebrooke, University of Alberta (not accredited; waiver required).
- Sediment core radioisotopes Science Museum of Minnesota (not accredited; waiver required).

## 15.0 References

- Eakins, J. D., & Morrison, R. T. 1978. A new procedure for the determination of lead-210 in lake and marine sediments. The International Journal of Applied Radiation and Isotopes, 29, 531– 536.
- Heiri, O., Lotter, A., & Lemcke, G. 2001. Loss on ignition as a method for estimating organic and carbonate content in sediments. Journal of Paleolimnology, 25, 101–110.
- Hobbs, W. 2018. Quality Assurance Project Plan: Prevalence and Persistence of Cyanotoxins in Lakes of the Puget Sound Basin. Publication 18-03-115. Washington State Department of Ecology, Olympia. https://apps.ecology.wa.gov/publications/SummaryPages/1803115.html.
- Hobbs, W. 2020. Addendum 2 to Quality Assurance Project Plan: Prevalence and Persistence of Cyanotoxins in Lakes of the Puget Sound Basin. Publication 20-03-114. Washington State Department of Ecology, Olympia.
   <a href="https://apps.ecology.wa.gov/publications/SummaryPages/2003114.html">https://apps.ecology.wa.gov/publications/SummaryPages/2003114.html</a>.
- Hobbs, W. O., Dreher, T. W., Davis, E. W., Vinebrooke, R. D., Wong, S., Weissman, T., & Dawson, M. 2021. Using a lake sediment record to infer the long-term history of cyanobacteria and the recent rise of an anatoxin producing *Dolichospermum* sp. Harmful Algae, 101, 101971.
- Kasinak, J. E., B. M. Holt, M. F. Chislock, and A. E. Wilson. 2015. Benchtop Fluorometry of Phycocyanin as a Rapid Approach for Estimating Cyanobacterial Biovolume. Journal of Plankton Research, 37(1):248–257.

- Leavitt, P. R., & Hodgson, D. A. 2001. Sedimentary pigments. In: Smol, J. P., Birks, H. J. B., & Last, W. M. (eds), Tracking environmental change using lake sediments. Developments in Paleoenvironmental Research, 3, 295–325.
- Mekebri, A., Blondina, G. J., & Crane, D. B. 2009. Method validation of microcystins in water and tissue by enhanced liquid chromatography tandem mass spectrometry. Journal of chromatography A, 1216, 3147-3155.
- Mantoura, R. F. C., & Llewellyn, C. A. 1983. The rapid determination of algal chlorophyll and carotenoid pigments and their breakdown products in natural waters by reversed-phase highperformance liquid chromatography. Analytica Chima Acta, 151, 297-314.
- Parsons, J., Hallock, D., Seiders, K., Ward, B., Coffin, C., Newell, E., Deligeannis, C., & Welch, K. 2018. Standard operating procedure EAP070, version 2.2: Minimize the spread of invasive species. Washington State Department of Ecology, Olympia, WA. SOP Number EAP070. Published SOPs
- USEPA. 2017a. National Lakes Assessment 2017. Field Operations Manual. EPA 841-B-16-002. U.S. Environmental Protection Agency, Washington, DC.
- USEPA. 2017b. Quality Assurance Program Plan for the Cyanobacteria Monitoring Collaborative Program. United States Environmental Protection Agency. North Chelmsford, MA. https://cyanos.org/wp-content/uploads/2017/04/cmc\_qapp\_final.pdf
- Wong, S. and W.O. Hobbs. 2020a. Exploring the Use of Fluorometric Sensors to Monitor Harmful Algal Blooms in Lakes. Publication 20-03-010. Washington State Department of Ecology, Olympia. https://apps.ecology.wa.gov/publications/SummaryPages/2003010.html.

Wong, S. and Hobbs, W. 2020b. Quality Assurance Project Plan Addendum: Prevalence and Persistence of Cyanotoxins in Lakes of the Puget Sound Basin. Publication 20-03-102. Washington State Department of Ecology, Olympia.

https://apps.ecology.wa.gov/publications/SummaryPages/2003102.html.