

## Supporting Information for 2018 Water Quality Assessment

### Supplemental methods, citations, and data sources

Water Quality Program

Washington State Department of Ecology Olympia, Washington

August 2022, Publication 22-10-018

## **Publication Information**

This document is available on the Department of Ecology's website at: https://apps.ecology.wa.gov/publications/summarypages/2210018.html

## **Contact Information**

#### Water Quality Program

P.O. Box 47600 Olympia, WA 98504-7600 Phone: 360-407-6600 **Website<sup>1</sup>:** Washington State Department of Ecology

## **ADA Accessibility**

The Department of Ecology is committed to providing people with disabilities access to information and services by meeting or exceeding the requirements of the Americans with Disabilities Act (ADA), Section 504 and 508 of the Rehabilitation Act, and Washington State Policy #188.

To request an ADA accommodation, contact Ecology by phone at 360-407-6600 or email at <u>303d@ecy.wa.gov</u>. For Washington Relay Service or TTY call 711 or 877-833-6341. Visit Ecology's website for more information.

<sup>&</sup>lt;sup>1</sup> www.ecology.wa.gov/contact

# **Table of Contents**

| List of Figures and Tables                                                 |
|----------------------------------------------------------------------------|
| Document Purpose5                                                          |
| Background Information on the WQA Process6                                 |
| Credible Data Laws and Policies6                                           |
| Water Quality Assessment Methodology7                                      |
| Data Citations to meet RCW 34.05.2727                                      |
| State and Federal Guidance Documents8                                      |
| 2018 WQA Public and Tribal Involvement8                                    |
| Supplemental Methodologies12                                               |
| Dissolved Oxygen Salish Sea Model12                                        |
| Polybrominated Diphenyl Ethers (PBDEs): Use of Fish Consumption Advisories |
| Total Mercury Tissue Data13                                                |
| Non-Native Aquatic Plants14                                                |
| Temperature: Natural Conditions14                                          |
| Numeric Data Sources                                                       |
| EIM                                                                        |
| Water Quality Portal                                                       |
| Other Data Sources                                                         |
| Narrative Data and Information55                                           |
| Ocean Acidification                                                        |
| Microplastics                                                              |
| Other Narrative Submittals77                                               |
| TMDL and Alternative Pollution Control Projects143                         |
| 303(d) List TMDL Prioritization143                                         |
| TMDL Projects                                                              |
| Alternative Pollution Control Projects 4B Analyses159                      |
| Appendix A: 2018 WQA Sediment Category 4B Cleanup Sites                    |

## List of Figures and Tables

| Figure 1. Annual internal Ecology process for water quality improvement projects                                                                                                                     | 146                    |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|
| Figure 2. Alpowa Creek Status                                                                                                                                                                        | 164                    |
| Figure 3. Asotin Creek Watershed Status                                                                                                                                                              |                        |
| Figure 4. Tenmile and Couse Creek Watershed Status                                                                                                                                                   |                        |
| Figure 5. Deadman/Meadow Creek Watershed Status                                                                                                                                                      |                        |
| Figure 6. Steptoe Watershed Status                                                                                                                                                                   |                        |
| Figure 7. Yellowjacket Creek, McCoy Creek, and Camp Creek-Cispus River subwatersheds,                                                                                                                |                        |
| temperature monitoring sites, and 305(b) status                                                                                                                                                      | 213                    |
| <b>Table 1</b> . Studies from EIM with surface water data included in development of the 2018 W <b>Table 2</b> . Studies from EIM with contaminated sediment data included in development of the WOA | QA 16<br>1e 2018<br>32 |
| Table 3. Studies from the Water Quality Portal included in development of the 2018 WQA.                                                                                                              |                        |
| Table 4 USGS monitoring locations from the Portal included in development of the 2018 W                                                                                                              | QA50                   |
| Table 5 Summary of UW/APL pH records collected in Washington State waters                                                                                                                            | 60                     |
| Table 6 Summary of WOCA pteropod Type II+III shell damage (D) data and average water c                                                                                                               | olumn                  |
| average aragonite saturation ( $\Omega$ ) data by sampling station                                                                                                                                   | 64                     |
| Table 7. Studies where location was not within, near or representative of Washington wate                                                                                                            | ers                    |
| and/or study includes organisms not found in Washington waters                                                                                                                                       | 84                     |
| Table 8. Studies where the study intent does not demonstrate designated use impairment                                                                                                               | to                     |
| ambient water conditions at specific locations in Washington; study does not document th                                                                                                             | at                     |
| impairment of the existing or designated use is related to the environmental alteration on                                                                                                           | that                   |
| same waterbody segment or grid                                                                                                                                                                       | 87                     |
| Table 9. Modeled results not appropriate for determining whether water quality standards                                                                                                             | ; in                   |
| Washington are being met in specific waters                                                                                                                                                          |                        |
| <b>Table 10</b> . Submittals from third parties that did not include documentation addressing the and completeness of the information submitted to Ecology, and/or study methods and dat             | accuracy<br>a were     |
| not documented or readily available                                                                                                                                                                  |                        |
| Table 11. Study submittals that fell outside the WQA cycle window of 2006 – 2017                                                                                                                     |                        |
| Table 12. Data associated with a submittal was considered for listing, but did not show exc                                                                                                          | eedances               |
| of the standards, or did not meet data or quality assurance requirements in accordance wi                                                                                                            | tn<br>424              |
| credible data statutes and policies                                                                                                                                                                  |                        |
| Table 13. Study submittals that are not a water quality study, and are not related to deterr                                                                                                         | nining                 |
| amplent water conditions of specific waterbodies in Wasnington                                                                                                                                       |                        |
| <b>Table 14.</b> Temperature summaries at monitoring sites in Yellowjacket Creek, tributaries, ar                                                                                                    |                        |
| Cispus River                                                                                                                                                                                         |                        |
| Table 15. Treatment types, and objectives and definitions of treatments                                                                                                                              |                        |
| Table 17. Projects completed in the Vellowiasket subwatershed through 2025                                                                                                                           | 210                    |
| <b>Table 19.</b> Primary contact recreation bacteria criteria in fresh water                                                                                                                         |                        |
| Table 10. Frimary contact recreation bacteria criteria in marine water                                                                                                                               |                        |
| Table 13. Finnary contact recreation bacteria chiteria in manne Water                                                                                                                                |                        |

## **Document Purpose**

The Washington State Department of Ecology (Ecology) prepared this document during completion of Washington's 2014/2016/2018 Water Quality Assessment (further referred to as 2018 WQA) to meet requirements of the Clean Water Act. The primary purposes of this document are to:

- Provide numeric and narrative data sources that were considered for use in making water quality determinations for the Water Quality Assessment categories
- Provide citation information associated with Washington's 2018 WQA in order to satisfy the U.S. Environmental Protection Agency (EPA) submittal requirements and to meet the requirements of <u>RCW 34.05.272</u><sup>2</sup>
- Document additional assessment methodologies and policy decisions used to support water quality determinations and further supplement <u>Water Quality Program Policy 1-</u> <u>11</u><sup>3</sup>

This document was submitted to EPA with the associated 2018 WQA water quality category determinations, also known as the Integrated Report of the 305(b) report and 303(d) list, in August 2021. The full 2018 WQA can be accessed through <u>Ecology's website</u><sup>4</sup>.

This document is structured into several sections containing the following information:

- Supplemental Methodologies –additional assessment methods used to support water quality determinations for parameters that may or may not have a defined methodology in Policy 1-11.
- Numeric Data Sources citations of numeric-based datasets analyzed to support water quality determinations.
- Narrative Data and Information –narrative data and information submitted for consideration in the WQA and Ecology's use determinations.
- TMDL and Alternative Pollution Control Project Information –information and analyses supporting Category 4A and 4B determinations.

<sup>&</sup>lt;sup>2</sup> https://app.leg.wa.gov/RCW/default.aspx?cite=34.05.272

<sup>&</sup>lt;sup>3</sup> https://apps.ecology.wa.gov/publications/SummaryPages/1810035.html

<sup>&</sup>lt;sup>4</sup> http://www.ecology.wa.gov/303d

## **Background Information on the WQA Process**

The federal Clean Water Act at sections 303(d) and 305(b) require Washington State to assess the water quality status of Washington state waters and periodically report on the status to EPA Region 10. Ecology develops the Water Quality Assessment (WQA) to fulfill this requirement. The purpose of the WQA is to determine if readily available data demonstrates that the water quality for the given waterbody supports the designated uses described in the water quality standards and begin prioritizing clean-up. Ecology accomplishes this by applying methodologies to compare available data and information to water quality standards for surface waters and sediments, following credible data protocols and requirements.

### **Credible Data Laws and Policies**

Washington State law (Water Quality Data Act codified in <u>RCW 90.48.570<sup>5</sup></u> through 90.48.590, also referred to as "Credible Data Act") requires Ecology to use credible data to determine whether any water of the state is to be placed on or removed from the 303(d) list and whether any surface water of the state is supporting its designated use or other classification. Ecology's Credible Data Policy (<u>Policy 1-11, Chapter 2<sup>6</sup></u>) describes the Quality Assurance (QA) measures, guidance, regulations, and existing policies that help ensure the credibility of data and other information used in agency actions relating to surface water quality. This policy applies when evaluating data and information for use in agency decisions when the quality of a surface water of the state is at issue. It is also intended as guidance for all parties interested in submitting data for consideration in decisions related to water quality.

Data are considered credible data if:

- Appropriate quality assurance and quality control procedures were followed and documented in collecting and analyzing water quality samples;
- The samples or measurements are representative of water quality conditions at the time the data were collected;
- The data consist of an adequate number of samples based on the objectives of the sampling, the nature of the water in question, and the parameters being analyzed; and
- Sampling and laboratory analysis conform to methods and protocols generally acceptable in the scientific community as appropriate for use in assessing the condition of the water.

Ecology encourages any party considering submitting numeric or narrative data for consideration in the WQA review both chapters of Policy 1-11 to understand submittal requirements.

<sup>&</sup>lt;sup>5</sup> https://app.leg.wa.gov/RCW/default.aspx?cite=90.48.570

<sup>&</sup>lt;sup>6</sup> https://ecology.wa.gov/DOE/files/3b/3bf2eaab-090b-49d1-8ff4-fd8c82960f7a.pdf

### Water Quality Assessment Methodology

Washington's assessment protocols are described in "Washington's Water Quality Assessment Listing Methodology to Meet Clean Water Act Requirements" (Policy 1-11, Chapter 1). This policy describes the methodologies for how waterbody segments are assessed for determining the status of water quality, using the state's water quality standards as the basis. Ecology applies this policy when evaluating data and information for the Assessment to meet the federal Clean Water Act reporting requirements. The policy is also intended as guidance for all parties that submit data for the Assessment process or are planning data collection efforts for use in future assessments. This policy provides guidance for both numeric data submittals and submittals based on narrative standards.

### Data Citations to meet RCW 34.05.272

Ecology's Water Quality Program (WQ) is required to identify the information sources relied upon in support of certain agency actions defined by RCW 34.05.272. One of the purposes of this document is to meet the requirements of RCW 34.05.272 to provide citation information associated with Washington's 2018 Water Quality Assessment.

RCW 34.05.272 describes eleven categories of information sources that need to be identified with citations used to support the WQA. They include:

- 1. Peer review overseen by an independent third party.
- 2. Review by staff internal to Ecology.
- 3. Review by persons that are external to and selected by Ecology.
- 4. Documented open public review process that is not limited to invited organizations or individuals.
- 5. Federal and state statutes.
- 6. Court and hearings board decisions.
- 7. Federal and state administrative rules and regulations.
- 8. Policy and regulatory documents adopted by local governments.
- 9. Data from primary research, monitoring activities, or other sources, but that has not been incorporated as part of documents reviewed under other processes.
- 10. Records of best professional judgment of Ecology employees or other individuals.
- 11. Sources of information that do not fit into one of the other categories listed.

This document contains the primary citation lists associated with the development of the 2018 Water Quality Assessment and the data sources used or examined as the basis for individual water quality listings. Citations noted in this document include numbers in brackets, following the citation, that identify which of the eleven citation categories relate to the specific citation. In cases where a group of source listings all have the same citation category, the category number is included within the descriptive text above the group of source listings.

### **State and Federal Guidance Documents**

The following are citations for state and federal laws and policies supporting Ecology's WQA determination process:

Washington Administrative Code. Chapter 173-201A WAC. Water Quality Standards for Surface Waters of the State of Washington.<sup>7</sup> [7]

Washington State Department of Ecology. 2018. Water Quality Program Policy, WQP Policy 1-11 Chapter 1. Assessment of Water Quality for the Clean Water Act Section 303(d) andthe 305(b) Integrated Report. Washington State Department of Ecology. Revised July2020, Publication No. 06-10-091.<sup>8</sup> [2, 3, 4]

<u>Washington State Department of Ecology. 2006. Water Quality Program Policy, WQP Policy 1-</u> <u>11 Chapter 2. Ensuring Credible Data for Water Quality Management. Washington State</u> <u>Department of Ecology. Established September 2006.</u><sup>9</sup> [2, 3, 4]

<u>Washington State Department of Ecology. 2011. Waters Requiring Supplemental Spawning and</u> <u>Incubation Protection for Salmonid Species. Washington State Department of Ecology.</u> <u>Revised January 2011. Publication No. 06-10-038.</u><sup>10</sup> [2, 3, 4]

Federal Water Pollution Control Act (the "Clean Water Act") 33 U.S.C. 1251 et seq.<sup>11</sup> [5]

Revised Code of Washington. Chapter 90.48 RCW. Water Pollution Control.<sup>12</sup> [5]

### 2018 WQA Phases

Ecology followed several key steps to develop and submit the final 2018 WQA to EPA for approval, including:

- Updates to the listing methodologies in Policy 1-11, Chapter 1
- Gathering and assembling credible water quality data
- Technical assessment of data to make category determinations
- Tribal and public review of the WQA results
- Final WQA and Candidate 303(d) list submitted to EPA for approval.

Individuals and organizations participated in developing the 2018 WQA by reviewing and commenting on Policy 1-11, submitting readily available data, and reviewing and commenting on the draft 2018 WQA.

<sup>&</sup>lt;sup>7</sup> https://apps.leg.wa.gov/WAC/default.aspx?cite=173-201A

<sup>&</sup>lt;sup>8</sup> https://apps.ecology.wa.gov/publications/SummaryPages/0610038.html

<sup>&</sup>lt;sup>9</sup> https://ecology.wa.gov/DOE/files/3b/3bf2eaab-090b-49d1-8ff4-fd8c82960f7a.pdf

<sup>&</sup>lt;sup>10</sup> https://apps.ecology.wa.gov/publications/SummaryPages/0610038.html

<sup>&</sup>lt;sup>11</sup> https://www.govinfo.gov/content/pkg/USCODE-2018-title33/pdf/USCODE-2018-title33-chap26.pdf

<sup>&</sup>lt;sup>12</sup> https://app.leg.wa.gov/Rcw/default.aspx?cite=90.48

### Updates to Policy 1-11, Chapter 1

Policy 1-11 Chapter 1 had two updates in preparation for the 2018 WQA, one in 2018 and one in 2020.

After EPA approved the last Assessment in 2016, one of the first steps was to conduct a comprehensive public process to update key parts of the listing methodology policy. Highlights of this update included:

- provisions to ensure the use of credible data and to minimize errors in under- and overlisting impaired waters
- revisions to parameter-specific data analysis methods for all parameters
- clarifying information on application of narrative water quality standards in the WQA and data submittal requirements
- improving Ecology's TMDL prioritization process
- and other relevant WQA information

Ecology held a public review on the proposed revisions from February - April, 2018. Revisions to Policy 1-11, Chapter 1 were finalized in November 2018. A <u>response to comments</u><sup>13</sup> was prepared as part of the process.

The 2020 revisions to Policy 1-11, Chapter 1 updated the methodology for assessing bacteria data for water contact recreation use due to an update in surface water quality standards in 2019. Ecology held a public review on the proposed revisions from April 1 – 30, 2020. Revisions to the bacteria methodologies were finalized in July 2020. A <u>response to comments</u><sup>14</sup> was prepared as part of the process.

#### **Call for Data**

Each WQA begins with a "Call for Data", where Ecology invites tribes, governments, stakeholders, and any other interested parties to submit data and information for consideration in the upcoming WQA. Ecology issued two calls, one in 2016<sup>15</sup> and one in 2018<sup>16</sup> to commence Washington's 2018 WQA. Ecology requested that submitters upload numeric data to either Ecology's Environmental Information Management<sup>17</sup> (EIM) database or databases associated with the federal Water Quality Portal<sup>18</sup> (Portal). Ecology also received data and narrative submittals outside of EIM to consider for use in the WQA that were evaluated against narrative water quality standards. The target data window for the 2018 WQA was data collected between January 2006 and December 2017.

<sup>&</sup>lt;sup>13</sup> https://apps.ecology.wa.gov/publications/SummaryPages/1810036.html

<sup>&</sup>lt;sup>14</sup> https://apps.ecology.wa.gov/publications/documents/2010028.pdf

<sup>&</sup>lt;sup>15</sup> http://lawfilesext.leg.wa.gov/law/wsr/2016/03/16-03-088.htm

<sup>&</sup>lt;sup>16</sup> http://lawfilesext.leg.wa.gov/law/wsr/2018/05/18-05-036.htm

<sup>&</sup>lt;sup>17</sup> https://ecology.wa.gov/Research-Data/Data-resources/Environmental-Information-Management-database

<sup>&</sup>lt;sup>18</sup> https://www.waterqualitydata.us/

### **Tribal Review**

Ecology offered all tribes within Washington an opportunity to review and provide input on updates to Policy 1-11 and the draft WQA prior to public review. These tribal reviews were in accordance with the 1997 agreement between Ecology, tribes and EPA, described in the *Cooperative Management of the Clean Water Act 303(d) Program for the Tribes in Washington State, the Washington State Department of Ecology, and the U.S. Environmental Protection Agency Region 10.* Washington does not have Clean Water Act authority on tribal reservation boundaries; the EPA or governing tribe implements Clean Water Act programs on tribal lands. However, Ecology does utilize readily available tribal data and makes water quality determinations on waterbodies draining into or out of tribal reservation boundaries.

Preceding public comment periods for the two Policy 1-11 Chapter 1 revisions, tribal previews were held in 2017 and 2020.

Prior to public review of the draft WQA, Ecology worked directly with Washington tribes and EPA to address concerns regarding the draft WQA results and corrected any errors found. The 2018 WQA tribal review ran from February - March 2021. We received positive feedback from tribes on our efforts to promote an open consultation process this assessment cycle and we look forward to building on these efforts in future assessments.

#### Public Review of Draft 2018 WQA

Ecology held a 60-day public comment period on the draft 2018 WQA from April 8 to June 4, 2021. Ecology held an online webinar/workshop during the comment period and met directly with several parties to address comments and questions that came up during the comment period. All comments received during the public comment period and Ecology's responses are summarized in the <u>Response to Comments 2018 Water Quality Assessment</u><sup>19</sup>. The response to comments publication link was included in Ecology's submittal to EPA, posted on our website, and uploaded into the EPA ATTAINS database for EPA.

### Candidate 2018 WQA Submitted to EPA

Ecology's submitted the 2018 candidate WQA to EPA on August 31, 2021. The full submission to EPA's ATTAINS database included assessment units information and geometry, water quality determinations, water quality actions, a transmittal letter, our response to comments document, and this supporting information document.

### **EPA Initial Decision and Final Approval**

EPA issued a partial approval of our 2018 WQA on June 8, 2022. Ecology proposed placing certain impaired waterbodies in Category 4A (impaired with a cleanup plan or TMDL) rather than Category 5 (impaired without a cleanup plan), because these we determined these impairments would be addressed by an existing TMDL. EPA did not approve of 115 waterbody/parameter determinations moving to Category 4A because they said there was not

<sup>&</sup>lt;sup>19</sup> https://apps.ecology.wa.gov/publications/summarypages/2210019.html

enough information to support the change. EPA's disapproval of these waterbodies would move them into Category 5.

Additionally, EPA deferred action on 2,100 waterbody/parameter water quality determinations that were based on our natural conditions standards. The deferral was a result of EPA removing Ecology's natural conditions water quality standard following submission on our candidate WQA. EPA's initial decision was subject to a 30-day public comment period.

EPA issued their final approval the 2018 WQA on August 26, 2022. Based on comments received, EPA's decision included moving 114 of the 115 initially disapproved waterbody/parameter determination from Category 4A to Category 5 and deferring action on 2,092 of the 2,100 waterbody/parameter determination. All other water quality determinations were approved.

## **Supplemental Methodologies**

## **Dissolved Oxygen Salish Sea Model**

The Salish Sea Model (SSM) was developed by Pacific Northwest National Laboratory (PNNL) in collaboration with scientists within Ecology's Environmental Assessment Program. The model is a powerful computer tool that can simulate several physical and water quality processes. More specifically, the model can evaluate changes in marine dissolved oxygen levels due to discharges from wastewater plants. For more information on the development, outputs and limitations of the Salish Sea Dissolved Oxygen Model, reference <u>Puget Sound Nutrient Source</u> <u>Reduce Project. Volume 1: Model Updates and Bounding Scenarios (Ecology Publication No. 19-03-001)<sup>20</sup>.</u>

In general, the model was used to "ground-truth" category determinations in marine waters where we found exceedances of the dissolved oxygen numeric criteria based on observational data. While the general WQA process for analyzing dissolved oxygen simply identifies exceedances of the numeric biological criteria, the dissolved oxygen model is actually calculating the potential that human activities are exceeding the 0.2 mg/L natural conditions pieces of the criteria and produce a more accurate reflection of water quality conditions. No water quality determinations were made without observational data present, meaning no determinations were made based on model predictions alone.

Using ArcMap GIS application, we plotted portions of Puget Sound that had observational exceedances of the numeric water quality criteria found through the WQA analysis with the extents of the 2006 and 2014 SSM runs. Categories were assigned as follows:

- Areas where WQA analysis found exceedances of the criteria and the model found human actions are impacting dissolved oxygen were placed in Category 5, impaired.
- Areas where data demonstrated no exceedances of the criteria but were collected in human impacted regions were placed into Category 3, or not enough information.
- Areas where WQA analysis found exceedances but the model predicted humans are not impacting dissolved oxygen were placed in Category 2, or waters of concerns.
- If there were no exceedances of criteria in non-impacted areas, the standard Policy 1-11 dissolved oxygen methodology was applied.

In areas of model uncertainty, also referred to as "masked" areas of the model, we made a best professional judgement call based on the proximity to areas of human influence. If exceedances occurred in a portion of Puget Sound directly adjacent to an area of anthropogenic influence, that area was treated in the same fashion as a human-impacted area. For masked areas that are isolated from areas of Puget Sound identified as impaired, those areas were treated under the methodology outlined in Policy 1-11. A remark is attached to all listings that were subject to

<sup>&</sup>lt;sup>20</sup> https://apps.ecology.wa.gov/publications/SummaryPages/1903001.html

this analysis to indicate the outcome of application of the model. For previous category determinations that did not have more recent data during the assessment window (2006-2017), our policy is to carry forward those category determinations. For these type of listings, we applied the same logic above to refine our category determinations for the 2018 list.

## Polybrominated Diphenyl Ethers (PBDEs): Use of Fish Consumption Advisories

We reviewed the <u>Washington Department of Health (DOH) Fish Consumption Advisories</u> <u>website</u><sup>21</sup> for non-priority pollutant based advisories. Non-priority pollutants do not have numeric criteria in Washington's Water Quality Standards. As of February 2021, there were only three fish consumption advisories in the state for a non-priority pollutant. Three different segments of the Spokane River were issued a fish consumption advisory for polybrominated diphenyl ethers (PBDEs). Within the extent of each fish consumption advisory segment, we found PBDE fish tissue datasets in EIM and noted the locations where data were collected. Within the gathered PBDE tissue dataset, we looked for data that met the three main data usability requirements outlined in Policy 1-11:

- Tissue data had to be collected within the assessment window, which was 1/1/2006 to 12/31/2017 for this assessment cycle.
- The tissue data had to be collected from edible species.
- The data needed to come from an assessable tissue type. For fin-fish, fillet samples are assessed because fillet is the most common edible portion of fish as compared to the whole body.

If a sampling location had data that met the three assessment usability requirements, a Category 5 listing was created for the assessment unit that contained the location.

## **Total Mercury Tissue Data**

The numeric human health criterion for methylmercury (0.03 mg/kg) is expressed as a fish tissue concentration. In the 2018 Assessment Cycle, Ecology used methylmercury, as well as mercury, fish tissue data to evaluate human health. The mercury tissue data used in the assessment met the data requirements outlined in Policy 1-11.

In aquatic environments, microorganisms convert mercury into methylmercury. Fish absorb methylmercury through their gills from the water and from the food they consume. Methylmercury is the bioaccumulative and toxic form of mercury in fish tissue. More than 95% of the total mercury in fish fillet tissue is methylmercury where it is associated with muscle proteins (Bloom, 1995; Driscoll et al., 1994). More recent studies (Lescord et al., 2018) indicate that the percent of methylmercury may be lower than the 95% previously reported, particularly in younger and smaller fish. Ecology's assessment of fish tissue centers on fish tissue collected

<sup>&</sup>lt;sup>21</sup> https://www.doh.wa.gov/CommunityandEnvironment/Food/Fish/Advisories

from non-juvenile fish and on fillet (muscle) tissue, where we assume that methylmercury generally makes up more than 95% of the total mercury.

#### References

Bloom, N.S. (1992). On the chemical form of mercury in edible fish and marine invertebrate tissue. *Can J Fish Aquat Sci*, 49, 1010–1017. [9]

Driscoll, C., Yan, C., Schofield, C., Munson, R., and Holsapple, J. (1994). The Mercury Cycle and Fish in the Adirondack Lakes. *Environment Science and Technology*, 28 (3), 136A-143A. [9]

Lescord, G.L., Johnston, T.A., Branfireun, B.A., and Gunn, J.M. (2018). Percentage of methylmercury in the muscle tissue of freshwater fish varies with body size and age and among species. *Environmental Toxicology and Chemistry*, 37 (10), 2682-2691. [9]

### **Non-Native Aquatic Plants**

Ecology's Washington State Lake Database was accessed in February 2020 to assess for the presence of non-native aquatic plants. Data was downloaded that included lake monitoring data from 1/1/2006 to 12/31/2017 on Class A and Class B weed lists of submersed and floating plants. Any waterbody with documented presence of non-native aquatic plants during the assessment window were placed in Category 4C. Any waterbody that was previously in Category 4C for non-native aquatic plants but had information in the database indicating the listed plants have been "eradicated", were moved to Category 3. Ecology defines eradication as the absence of that plant for at least five years. Private ponds, mitigation ponds, and stormwater ponds were not assessed.

## **Temperature: Natural Conditions**

Ecology's Environmental Assessment Program first began evaluating the potential for natural exceedances of the temperature criteria in marine waters in the 2004 WQA. Since then, staff have built on their knowledge of ocean upwelling, circulation, thermal warming, shoreline modifications, and sedimentation rates in Washington's bays and applied this knowledge within the context of the WQA to improve our water quality determinations. In 2011 staff conducted an analysis evaluating temperature natural conditions in Washington State marine waters, which identified several marine waterbodies where exceedances of the temperature numeric criteria could not be attributed to natural phenomena alone (referred to as Albertson memo, available upon request). The Albertson memo was also used in the 2018 WQA as a basis for determining whether or not natural physical processes in marine waters were driving temperature exceedances.

Using ArcMap GIS application, temperature water quality determinations developed through application of Policy 1-11 were plotted with marine areas where temperature levels cannot be entirely attributed to natural conditions, as defined by the Albertson memo. Categories were assigned as follows:

- Marine waters with observed exceedances of the temperature numeric criteria within likely human impaired areas were placed in Category 2, water of concern. Ecology decided further site specific analysis would be needed to confirm anthropogenic influences before placing the waterbody on the 303(d) list.
- Waters where data demonstrated no exceedances of the criteria in likely human impaired areas were placed in Category 3, not enough information.
- All temperature determinations outside of the likely human impaired areas were placed in Category 1, meets tested criteria, since it is assumed that the sole driver of temperature would be thermal heating by sunlight.

A remark is attached to all listings that were subject to this analysis to indicate the outcome. For previous category determinations that did not have more recent data during the assessment window (2006-2017), our policy is to carry forward those category determinations. For these type of listings, we applied the same logic above to refine our category determinations for the 2018 list.

## **Numeric Data Sources**

The following sections contains citations of numeric-based datasets analyzed to support WQA category determinations. Ecology's primary data sources for the WQA are Ecology's Environmental Information Management (EIM) database and the Water Quality Portal database. However, additional readily available datasets meeting Washington's Credible Data Act requirements (RCW 90.48.50) and Ecology Policy 1-11 quality assurance requirements were also considered. A portion of the studies below may have data collected from waters both within and outside of tribal lands. However, only data from non-tribal and non-treaty tribal waters were used in the assessment. Additionally, this section only documents sources with data during the 2018 WQA data collection window (2006-2017). Data sources used in the last WQA are documented in Ecology Publication No. 16-03-002<sup>22</sup>. Citations and data sources for other past assessments are available upon request.

#### EIM

Ecology's EIM database contains environmental monitoring data collected by Ecology and other parties. EIM includes data for groundwater, watershed habitat health, marine sediments, river and stream water quality, and more. The tables below list studies from Ecology's EIM database that Ecology considered and subsequently used in the development of the 2018 WQA. The first table details studies with surface water quality data. The second table contains studies with contaminated sediments data analyzed by Ecology's Toxics Cleanup Program.

The following EIM studies apply RCW 34.05.272 data source category #9: Data from primary research, monitoring activities, or other sources, but that has not been incorporated as part of documents reviewed under other processes.

| Study ID | Study Name                                                             |
|----------|------------------------------------------------------------------------|
| 17274-01 | Abandoned Mine Lands Initial Investigations                            |
| AAHM0003 | Fecal Coliform Bacteria TMDL for Oakland Bay-Hammersley Inlet          |
| AAHM0004 | TMDL Analysis for Temperature in tribs to Oakland Bay-Hammer           |
| aalb0001 | Colville River Tributaries - Fecal Coliform                            |
| AJOH0048 | PBT Monitoring: Measuring PBDE Levels in Washington Rivers and         |
|          | Lakes                                                                  |
| AJOH0050 | Yakima River 2006 Fish Tissue Survey for Chlorinated Pesticides, PCBs, |
|          | and Dioxins.                                                           |
| AJOH0051 | Marina Copper Study                                                    |
| AJOH0053 | Endosulfan and Dieldrin in Wide Hollow Creek                           |
| AJOH0055 | Yakima River Pesticides and PCBs TMDL: Evaluation of Water Quality     |
|          | Study Findings                                                         |
| AJOH0057 | Puget Sound Boatyard Receiving Water Study                             |

Table 1. Studies from EIM with surface water data included in development of the 2018 WQA

<sup>&</sup>lt;sup>22</sup> https://apps.ecology.wa.gov/publications/documents/1603002.pdf

| Study ID           | Study Name                                                                                                                                                                                                                             |
|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| AJOH0059           | Mercury & Small-Scale Mining                                                                                                                                                                                                           |
| AJOH0060           | Mercury and Copper in Leach Creek                                                                                                                                                                                                      |
| AJOH0061           | Microcystins and Saxitoxin in Western Washington Lakes                                                                                                                                                                                 |
| AJOH0063           | Background Assessment for Chemical Contaminants in Northeastern Washington Area Lakes.                                                                                                                                                 |
| AJOH0065           | Analyzing Chlorinated Pesticide Residues in Fish from Washington<br>Background Lakes and Emerging PBTs in Fish Tissue                                                                                                                  |
| AMB_WQ_Bothell     | Annual Stream Water Quality Monitoring                                                                                                                                                                                                 |
| Ambient Monitoring | King County Ambient Macroinvertebrate Monitoring Program                                                                                                                                                                               |
| AMS001             | Statewide River and Stream Ambient Monitoring-WY2010 to present<br>(Transitional data that has not yet been QA'd will be found in<br>'Statewide River and Stream Ambient Monitoring-WY 2010 to present-<br>2;' User Study ID AMS001-2) |
| AMS001E            | Statewide River and Stream Ambient Monitoring-WY 2000 through WY 2009                                                                                                                                                                  |
| AMS002B            | Lake Mini-Monitoring TP and Secchi                                                                                                                                                                                                     |
| AMS004             | Continuous Stream Monitoring                                                                                                                                                                                                           |
| AMS005             | Continuous Stream Temperature Monitoring                                                                                                                                                                                               |
| AO6557             | Heglar Kronquist Landfill RI/FS, Mead, WA                                                                                                                                                                                              |
| AODE11237          | Port of Tacoma Parcel 15 RI/FS                                                                                                                                                                                                         |
| AODE12803          | Gig Harbor Sportman's Club RI/FS                                                                                                                                                                                                       |
| AODE8258           | Douglas Management Dock (Alaska Marine Lines), Seattle, WA                                                                                                                                                                             |
| AODE8979           | Weyerhaeuser Mill A Former, Everett, WA                                                                                                                                                                                                |
| AODE9000           | Blaine Marina Inc Remedial Investigation, Blaine, WA                                                                                                                                                                                   |
| AQ_Kenmore2012     | Kenmore Sediment and Water Investigation                                                                                                                                                                                               |
| AQCD092002472      | Alcoa Vancouver - Sediment Cleanup Site                                                                                                                                                                                                |
| ASTO0001           | Upper Yakima Basin Temperature TMDL                                                                                                                                                                                                    |
| BBCWQ              | Burnt Bridge Creek - 2016 Water Quality Monitoring                                                                                                                                                                                     |
| BBCWQ06            | Burnt Bridge Creek - 2006 Water Quality Monitoring                                                                                                                                                                                     |
| BBCWQ07            | Burnt Bridge Creek - 2007 Water Quality Monitoring                                                                                                                                                                                     |
| BBCWQ11            | Burnt Bridge Creek - 2011 Water Quality Monitoring                                                                                                                                                                                     |
| BCAR006            | Edison large on-site sewage system (LOSS) - Groundwater study                                                                                                                                                                          |
| BEDI0007           | Water Quality Monitoring for Fecal Coliform Bacteria in Pierre Creek and Burns Creek                                                                                                                                                   |
| BEDI0008           | Medicine Creek Fecal Coliform Investigation Summer 2009                                                                                                                                                                                |
| BEDI0009           | Medicine Creek Water Quality Monitoring for Fecal Coliform Bacteria<br>and Nitrate+Nitrite-Nitrogen                                                                                                                                    |
| BEDI0010           | McAllister Creek Fecal Coliform Bacteria Monitoring Summer 2009                                                                                                                                                                        |
| BEDI0011           | Dobbs Creek Water Quality Monitoring for Fecal Coliform Bacteria                                                                                                                                                                       |
| BEDI0012           | Kennedy Creek Fecal Coliform Bacteria Water Quality Monitoring Study                                                                                                                                                                   |
| BEDI0013           | Upper Kennedy Fecal Coliform Bacteria Investigation, 2008-2009                                                                                                                                                                         |
| BEDI0014           | South Prairie Creek; Inglin Creek Drain Tile T4DT                                                                                                                                                                                      |
| BEDI0016           | Black Creek Temperature Monitoring (06/24/2010 - 09/02/2010)                                                                                                                                                                           |
| BEDI0017           | Humptulips River Temperature Monitoring                                                                                                                                                                                                |

| Study ID      | Study Name                                                                                                                                                               |
|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| BEDI0018      | Dungeness Seep Study for Fecal Coliform Bacteria                                                                                                                         |
| BEDI0019      | Bowman Creek Fecal Coliform Characterization                                                                                                                             |
| BEDI0020      | Pussyfoot Creek Fecal Coliform Bacteria Characterization Monitoring                                                                                                      |
| BEDI0021      | Second Creek Fecal Coliform Characterization                                                                                                                             |
| BEDI0022      | Lower Salmon Creek Watershed Fecal Coliform Bacteria Monitoring                                                                                                          |
| BERA0003      | South Puget Sound Fish and Shellfish Tissue Verification of 303(d)<br>Listings                                                                                           |
| BERA0004      | Similkameen River and Palmer Lake Investigation of Arsenic in Fish Tissue                                                                                                |
| BERA0005      | Potholes Reservoir: Screening Survey for Dieldrin, other Chlorinated Pesticides, and PCBs in Fish, Water, and Sediments                                                  |
| BERA0007      | Assessment of Toxicity in North Creek, Gig Harbor                                                                                                                        |
| BERA0008      | Integrated Ambient Monitoring Pilot - Potential Causes for Impairment<br>of Rainbow Trout Early Lifestages and Loss of Benthic Biodiversity in<br>Indian Creek           |
| BERA0009      | Spokane River Toxics Preliminary Monitoring 2012 through 2013 - In Support of the Long-term Toxics Monitoring Strategy                                                   |
| BERA0010      | Integrated Ambient Monitoring Follow-up Study in Indian Creek - Phase II Study                                                                                           |
| BERA0011      | Lake Spokane PCBs in Carp                                                                                                                                                |
| BERA0012      | Spokane River PCBs and other Toxics: Long-Term Monitoring at the Spokane Tribal Boundary                                                                                 |
| BlackCr       | Black Creek Temperature Monitoring (06/01/2006 - 10/01/2006)                                                                                                             |
| Boise Ambient | King County Boise Creek Ambient Monitoring Project                                                                                                                       |
| Brwa0007      | Squalicum Creek Stormwater Pilot Total Maximum Daily Load                                                                                                                |
| BSAC0001      | Continuous Nitrate Monitoring in the Deschutes River during the 2010<br>Water Year                                                                                       |
| BUDD07        | Budd Inlet Sediment Characterization                                                                                                                                     |
| C0500017      | Little Spokane River Bacteria, Phosphorus, and Temperature TMDL Surveys                                                                                                  |
| C0500079      | Hood Canal Salmon Enhancement Group Molluscan Study                                                                                                                      |
| C0800174      | Fidalgo Bay Nearshore Non-Point Watershed Assesement                                                                                                                     |
| C0900063      | Investigation of fecal coliform sources in Juanita Creek basin                                                                                                           |
| C1100043      | Burnt Bridge Creek Bacteria Source Reduction Project                                                                                                                     |
| C1200226      | WDFW Puget Sound Ecosystem Monitoring Program (PSEMP) Toxics in<br>Biota Study- Toxic Contaminants in Dungeness Crab and Spot Prawn<br>from Puget Sound, Washington, USA |
| CamasBKGRM121 | Camas WWTP Receiving Water Study                                                                                                                                         |
| CAME001       | Brominated Flame Retardants, Chlorinated Paraffins, and<br>Hexabromocyclododecane in WA Rivers and Lakes                                                                 |
| CAME002       | Statewide Survey of Per- and Poly-fluoroalkyl Substances in Washington State Rivers and Lakes                                                                            |
| CAME003       | Flame Retardants in Ten Washington State Waterbodies                                                                                                                     |
| CampBRAU2C    | US ARMY Camp Bonneville RAU-2C                                                                                                                                           |
| CBRO0001      | Dungeness Watershed Fecal Coliform TMDL Effectiveness Monitoring                                                                                                         |

| Study ID        | Study Name                                                                                       |
|-----------------|--------------------------------------------------------------------------------------------------|
| CBUR0002        | Pesticides in Salmonid-Bearing Streams, Year 3                                                   |
| CBUR0003        | Pesticides in Salmonid-Bearing Streams, Year 4                                                   |
| CBUR0004        | Pesticides in Salmonid-Bearing Streams, Year 5                                                   |
| CBUR0006        | Pesticides in Salmonid-Bearing Streams, Year 6                                                   |
| CBUR0007        | A Study of Copper Discharge from Irrigation Canals                                               |
| CC-LISP         | Long-term Index Site Project (LISP), Clark County                                                |
| CC-SCMP         | Clark County NPDES Salmon Creek Monitoring Project                                               |
| CC-SNAPBACT     | Stormwater Needs Assessment Program; Focused Assessment                                          |
| CC-SNAPCHAR     | Stormwater Needs Assessment Program subwatershed characterization                                |
| CC-TEMP         | Clark County Continuous Stream Temperature                                                       |
| CC-VOLMGIB      | Clark County Volunteer Monitoring Ambient Stream Monitoring                                      |
| CC-VOLMONAM     | Clark County Volunteer Monitoring, Ambient Stream Monitoring                                     |
| CCC1-06         | Volunteer Water Quality Monitoring: Baseline Monitoring of the Upper Columbia River Shoreline    |
| CCHL46954465    | Cowlitz County Headquarters Landfill (aka Weyerhaeuser Regional Landfill) Groundwater Monitoring |
| CCOF0003        | Lower Okanogan River Basin DDT and PCB TMDL Effectiveness<br>Monitoring, 2008                    |
| CCOF0004        | 2007 Lake Chelan Wapato Basin TMDL Effectiveness Monitoring for<br>Total Phosphorus              |
| CCTWLDM1079     | Cowlitz County Tennant Way Landfill Detection Monitoring                                         |
| CCWR_002        | City of Port Angeles (PA-fecal)                                                                  |
| CCWR_003        | Streamkeepers monitoring (SK_suite)                                                              |
| CCWR_004        | SK_fecal                                                                                         |
| CCWR_034        | Clallam County Environmental Health                                                              |
| CCWR_049        | Quileute Tribe monitoring                                                                        |
| CCWR_053        | Lincoln HS Monitoring                                                                            |
| CCWR_055        | Storm surface water EPA Grant 2008-2009                                                          |
| CCWR_058        | Clean Water District monitoring                                                                  |
| CCWR_061        | Storm surface water EPA Grant 2010-2011                                                          |
| CCWR_062        | WRIA 19 stormwater sediment study                                                                |
| CFA_WQ14        | Chehalis Flood Authority Water Quality Monitoring                                                |
| cfur0003        | PBT Monitoring: Measuring PFC Levels in Washington                                               |
| CFUR0005        | PBDE Flame Retardants in Spokane River Fish Tissues and Osprey Eggs.                             |
| CFUR0006        | Speciated Mercury in the Lake Ozette Drainage.                                                   |
| cfur0008        | Mercury Screening in Lake Ozette Sockeye                                                         |
| CHPI004         | Waitsburg WWTP Groundwater Study - Evaluation of Nutrient Loading to the Touchet River           |
| Clarks Creek DO | Clarks Creek Dissolved Oxygen Study                                                              |
| CNF WQ TMDL     | Colville National Forest Water Quality TMDL Monitoring                                           |
| COS_WQ          | City of Shoreline Ambient Stream Monitoring 2007-2015                                            |
| CRBHHRA12       | Columbia River Component Risk Assessment: Baseline Human Health<br>Risk Assessment               |

| Study ID             | Study Name                                                                         |
|----------------------|------------------------------------------------------------------------------------|
| CRK-06               | Volunteer Water Quality Monitoring: Baseline Monitoring of Columbia                |
|                      | River Tributaries                                                                  |
| DBAT0004             | Skokomish River Basin Fecal Coliform TMDL Attainment Monitoring                    |
| DCWA2018-CRMonit     | Columbia River Water Quality Monitoring 2018                                       |
| DCWA2019-CRMonit     | Columbia River Water Quality Monitoring 2019                                       |
| DCWA2019-ExtCRMonit  | Extended Columbia River Water Quality Monitoring 2019                              |
| ddug0001             | Nason Creek Oxbow Reconnection Monitoring                                          |
| DDUG0002             | Yakima Area Creeks Temperature Assessment                                          |
| DGRA0001             | Walla Walla River Chlorinated Pesticides Source Characterization                   |
| DMMP_Dioxin_2005-07  | DNR Dioxin Study                                                                   |
| DryForkCreek         | City of Pullman Fecal Coliform Bacteria Monitoring of Dry Fork Creek               |
| DSAR0004             | Pesticides in Salmonid-Bearing Streams, Year 7                                     |
| DSAR0005             | Pesticides in Salmonid-Bearing Streams, Skagit-Samish Intensive<br>Sampling        |
| DSAR0006             | Pesticides in Salmonid-Bearing Streams, Year 8                                     |
| DSAR0007             | Pesticides in Salmonid-Bearing Streams, Year 9                                     |
| DSAR0008             | Pesticides in Salmonid-Bearing Streams, Comparison of Grab vs Depth<br>Integration |
| DSAR0009             | Pesticides in Salmonid-Bearing Streams, Year 10                                    |
| DSAR0010             | Pesticides in Salmonid-Bearing Streams, Year 11                                    |
| DSAR0011             | Pesticides in Salmonid-Bearing Streams, Copper Assessment                          |
| DSER0016             | PCBs, PBDEs, and Selected Metals in Spokane River Fish, 2005                       |
| EFLewisSA            | East Fork Lewis Fecal Coliform Bacteria and Temperature Source                     |
|                      | Assessment                                                                         |
| EFLRTMDL             | East Fork Lewis River TMDL technical study for Temperature and Bacteria (WRIA27)   |
| EG150077             | Hood Canal Priority Basins                                                         |
| EG160640             | Quilcene-Dabob Bay Pollution Identification and Correction                         |
| EKCDAmbientWQ        | WRIA 31 TMDL                                                                       |
| EPABEACH             | WA State BEACH (Beach Environmental Assessment, Communication, and Health) Program |
| EPALR05B             | USEPA 2005 Phase 1 Fish Tissue Sampling: RI/FS Upper Columbia River/               |
|                      | Lake Roosevelt                                                                     |
| Ephrata Landfill_592 | Ephrata Landfill, Ephrata, Grant County WA                                         |
| EURM0001             | Tieton and Lower Naches Temperature Study                                          |
| FBCPDX48             | Supplementary Fidalgo Bay and Custom Plywood Mill Sediment Dioxin                  |
|                      | Study, Anacortes, WA: Data Report                                                  |
| FCCD 1_WQ            | WRIA 44/50 stream monitoring                                                       |
| Fecal_TMDL_Bothell   | North and Swamp Creeks TMDL Fecal Bacteria Results                                 |
| FFCMP13              | Freshwater Fish Contaminant Monitoring Program 2013                                |
| FFCMP14              | Freshwater Fish Contaminant Monitoring Program 2014                                |
| FFCMP15              | Freshwater Fish Contaminant Monitoring Program 2015                                |
| FFCMP16              | Freshwater Fish Contaminant Monitoring Program 2016                                |
| FIDALG08             | Fidalgo Bay Sediment Investigation                                                 |

| Study ID   | Study Name                                                                                                                                                                                                                                                                  |
|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| FS1203     | B&L Wood Waste Landfill, Fife Way and Puget Power Rd, Tacoma, WA                                                                                                                                                                                                            |
| FS1554858  | Van Stone Mine Site, CS461, Colville, WA                                                                                                                                                                                                                                    |
| FS2018     | The Boeing Company, Auburn Fabrication Division Plant                                                                                                                                                                                                                       |
| FS2699     | Sisco Landfill Site                                                                                                                                                                                                                                                         |
| FS53481373 | Kaiser Trentwood Remedial Investigation, Spokane, WA                                                                                                                                                                                                                        |
| FS787      | Palouse Producers, Palouse, WA                                                                                                                                                                                                                                              |
| FS84531356 | USG Interiors Highway 99 Cleanup Site, Tacoma, WA                                                                                                                                                                                                                           |
| FS9        | Kimberly-Clark Worldwide Site, Everett, WA                                                                                                                                                                                                                                  |
| G0100038   | Local Involvement in Resource Issues                                                                                                                                                                                                                                        |
| G0200280   | Chehalis River Council Volunteer Monitoring Project                                                                                                                                                                                                                         |
| G0200377   | Fecal Coliform Baseline Study                                                                                                                                                                                                                                               |
| G0300021   | Water Quality Monitoring Implementation                                                                                                                                                                                                                                     |
| G0300037   | Lower Palouse River Scoping Project                                                                                                                                                                                                                                         |
| G0300114   | Garfield County Riparian Restoration                                                                                                                                                                                                                                        |
| G0300181   | Water Resources Protection Program (Burnt Bridge Creek)                                                                                                                                                                                                                     |
| G0300201   | Newman Lake Watershed Monitoring & Education                                                                                                                                                                                                                                |
| G0300233   | West Branch Hylebos Creek Restoration                                                                                                                                                                                                                                       |
| G0400133   | Skagit County Monitoring Program (Grant: G0400133, 12/22/2003 - 12/31/2008)                                                                                                                                                                                                 |
| G0400199   | Deschutes River/Budd Inlet TMDL                                                                                                                                                                                                                                             |
| G0400200   | Urban Streams Riparian Restoration, Cleanup and TMDL Action Plan                                                                                                                                                                                                            |
| G0400264   | French Creek BMP Monitoring and Implementation                                                                                                                                                                                                                              |
| G0400274   | DDT Concentrations in Lake Chelan Water Measured Using<br>Semipermeable Membrane Devices (SPMDs) and a Large-Volume Solid-<br>Phase Extraction Device. Sediment Organochlorine Pesticide<br>Concentrations near Tributary and Irrigation Drain Discharges to Lake<br>Chelan |
| G0500025   | Clallam County-Wide Monitoring CCWF Task 3                                                                                                                                                                                                                                  |
| G0500033   | Riparian Enhancement and Monitoring                                                                                                                                                                                                                                         |
| G0500076   | Ten Mile Creek Watershed Restoration Project- 4Mile Creek Focus Area<br>Monitoring                                                                                                                                                                                          |
| G0500118   | South Prairie Creek Restoration Project                                                                                                                                                                                                                                     |
| G0500122   | Colville River TMDL Implementation Project                                                                                                                                                                                                                                  |
| G0500140   | Bellingham Salmon Habitat Restoration and TMDL                                                                                                                                                                                                                              |
| G0500151   | Bainbridge Island Water Quality Monitoring Program                                                                                                                                                                                                                          |
| G0500173   | Dyes Inlet Restoration Project                                                                                                                                                                                                                                              |
| G0500175   | Snoqualmie Watershed Agricultural Assistance Team Project                                                                                                                                                                                                                   |
| G0600071   | Cottage Lake Phosphorus Reduction Project                                                                                                                                                                                                                                   |
| G0600178   | Long Lake Integrated Management Plan                                                                                                                                                                                                                                        |
| G0600241   | Pend Oreille TMDL Data Gathering Project                                                                                                                                                                                                                                    |
| G0600283   | Little Klickitat TMDL Implementation Project, Task 2 Monitoring                                                                                                                                                                                                             |
| G0600323   | Stillaguamish Sub-Basin TMDL                                                                                                                                                                                                                                                |
| G0600332   | Skokomish Annas Bay Restoration Study                                                                                                                                                                                                                                       |

| Study ID  | Study Name                                                                                                            |
|-----------|-----------------------------------------------------------------------------------------------------------------------|
| G0600345  | Totten/Eld Inlet TMDL Response                                                                                        |
| G0600378  | Mason County's Hood Canal Septic System Surveys and Database<br>Enhancement                                           |
| G0700093  | Chimacum Creek Clean Water Project                                                                                    |
| G0700116  | WRIA 22-23 Water Quality Monitoring                                                                                   |
| G0700126  | Little Bear Pollution Identification/Correction                                                                       |
| G0700145  | Livestock Implementation Project                                                                                      |
| G0700165  | Pine Creek Enhancement Phase 2, Task 5 Water Quality Monitoring                                                       |
| G0700167  | Palouse River Implementation Project B                                                                                |
| G0700243  | Hansen Creek / Red Creek Restoration Project                                                                          |
| G0700316  | Swamp Creek Water Pollution Prevention                                                                                |
| G0800014  | Loon Lake Water Quality Monitoring Program                                                                            |
| G0800055  | Hood Canal Clean Water Project                                                                                        |
| G0800056  | Discovery Bay Clean Water Project                                                                                     |
| G0800097  | NF Palouse River TMDL Implementaiton Project                                                                          |
| G0800099  | Achieving Environmental Compliance- AEC                                                                               |
| G0800113  | Jump Off Joe Creek Restoration Project                                                                                |
| G0800132a | Whatcom Creek Watershed Bacteria TMDL CCWF Grant No G0800132                                                          |
| G0800132b | Bellingham Water Quality and Habitat Improvement: Long-term<br>Temperature and Shade Monitoring of Whatcom Creek      |
| G0800327  | Holmes Harbor Bacteria Source Identification/Remedy                                                                   |
| G0800328  | Lincoln County Implementation Project                                                                                 |
| G0800355  | Little Pend Oreille River Watershed Water Quality Monitoring                                                          |
| G0800396  | Little Klickitat Temperature TMDL Implementation Project                                                              |
| G0800398  | WRIA 31 Water Quality Remediation and Evaluation, Task 4 Water<br>Quality Monitoring                                  |
| G0800469  | South Fork Stillaguamish Tributaries Restoration                                                                      |
| G0800516  | Lake Steilacoom Calcium Hydroxide Treatment Routine Monitoring                                                        |
| G0800611  | Lake Assessment and Toxic Cyanobacteria Monitoring Project                                                            |
| G0800616  | Miller Creek Sub-basin Investigative Water Quality Monitoring; Grant G0800616 Miller-Pilchuck Creeks TMDL Improvement |
| G0800618  | Juanita Creek Basin Stormwater Retrofitting Analysis Project                                                          |
| G0900050  | Sinclair Inlet Restoration/Protection Project                                                                         |
| G0900051  | Kittitas Multi-TMDL Compliance Project                                                                                |
| G0900067  | Mats Mats Bay Water Quality Improvement Program                                                                       |
| G0900073  | Day Creek Habitat Restoration: temperature effectiveness monitoring for introduced large in-channel wood.             |
| G0900074  | Hansen Creek Alluvial fan                                                                                             |
| G0900076  | Lone Lake Restoration and Implementation Project                                                                      |
| G0900201  | Hammonds Lake Nutrient Source Study                                                                                   |
| G1000099  | WRIA 44/50 Long Term Monitoring Program                                                                               |
| G1000122  | Northshore Hood Canal Pollution Identification and Correction                                                         |

| Study ID            | Study Name                                                                                                                                                                                                                                |
|---------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| G1000151            | Water Quality Improvement Through Beaver Restoration in the                                                                                                                                                                               |
|                     | Methow River Watershed                                                                                                                                                                                                                    |
| G1000282            | Methow Subbasin Water Quality Restoration and Monitoring Program                                                                                                                                                                          |
| G1000301            | Liberty Bay Watershed Restoration Project                                                                                                                                                                                                 |
| G1000342            | Chamokane Creek Watershed Implementation Plan                                                                                                                                                                                             |
| G1000349            | Stillaguamish Temperature TMDL Adaptive Assessment and<br>Implementation Project                                                                                                                                                          |
| G1000530            | South Sound GREEN Fecal Coliform Bacteria Monitoring in Dobbs Creek                                                                                                                                                                       |
| G1000531            | Washington State University Puyallup Research and Extension Center<br>Clarks Creek Water Quality, Science, Restoration, and Implementation<br>Program                                                                                     |
| G1100174            | Clean Water District 2013-14                                                                                                                                                                                                              |
| G1100177            | Little Klickitat TMDL                                                                                                                                                                                                                     |
| G1100189            | Hood Canal Watershed Clean Water Project                                                                                                                                                                                                  |
| G1100202            | pierce county shellfish project                                                                                                                                                                                                           |
| G1100251            | Jefferson County Lakes Toxic Algae Project                                                                                                                                                                                                |
| G1200001a           | Lake Ketchum Algae Control Plan (Water Quality Data)                                                                                                                                                                                      |
| G1200017 B-IBI      | B-IBI Monitoring, North Fork West Hylebos Creek                                                                                                                                                                                           |
| G1200127            | Northeast Jefferson Clean Water Project                                                                                                                                                                                                   |
| G1200280            | Maxwelton Bacteria Source Identification                                                                                                                                                                                                  |
| G1200337            | Little Klickitat TMDL Implementation                                                                                                                                                                                                      |
| G1200408            | Bear Creek Livestock BMP Continuation                                                                                                                                                                                                     |
| G1300059            | Walla Walla Conservation District Water Monitoring, 2015-2016                                                                                                                                                                             |
| G1300075            | Ebey's Prairie Watershed Stormwater Remediation Project                                                                                                                                                                                   |
| G1300080            | Squalicum Creek Water Quality and Biotic Integrity Improvements                                                                                                                                                                           |
| G1300080 & G1400398 | Squalicum Creek Water Quality and Biotic Integrity Improvements, Phase 2                                                                                                                                                                  |
| G1300083            | WDFW Puget Sound Ecosystem Monitoring Program (PSEMP) Toxics in<br>Biota Study - Toxic contaminants in juvenile Chinook salmon<br>(Oncorhynchus tshawytscha) migrating through estuary, nearshore and<br>offshore habitats of Puget Sound |
| G1300102            | White Salmon River Fecal Coliform Bacteria Monitoring                                                                                                                                                                                     |
| G1400003            | Jefferson County Toxic Cyanobacteria Project                                                                                                                                                                                              |
| G1400004            | Lake Ketchum Algae Control Implementation                                                                                                                                                                                                 |
| G1400400            | Squalicum Creek Watershed Monitoring and Social Marketing Clean<br>Water Project                                                                                                                                                          |
| G1400424            | Little Klickitat TMDL Implementation Project 6                                                                                                                                                                                            |
| G1400428            | Swale Creek Implementation Project                                                                                                                                                                                                        |
| G1400435            | Drayton Harbor/Semiahmoo Bay Water Quality Enhancement Project                                                                                                                                                                            |
| G1400458            | Strait Water Quality Partnership Task 2 - Pillar Point Shellfish<br>Downgrade Response                                                                                                                                                    |
| G1400475            | Waughop Lake Management Plan                                                                                                                                                                                                              |
| G1400501            | Shade Monitoring for the Wenatchee Basin Water Quality Restoration Project                                                                                                                                                                |

| Study ID             | Study Name                                                                             |
|----------------------|----------------------------------------------------------------------------------------|
| G1400520             | WRIA 31 Implementation & Monitoring                                                    |
| G1400530             | Hood Canal Clean Streams Initiative                                                    |
| G1400543             | Skagit Flats South Water Quality Monitoring                                            |
| G1400575             | Spanaway Lake Management Plan                                                          |
| G1400587             | 2014 Pierce County Shellfish Project                                                   |
| G1500046             | Penrose Point Nutrient Reduction Project                                               |
| GMER0004             | Union River FC TMDL Attainment Monitoring                                              |
| GPEL0008             | Old Stillaguamish River TMDL                                                           |
| GPEL0010             | Lower White River pH TMDL                                                              |
| Green RivEquipBlank  | Green River PCB Equipment Blank Study Data Report                                      |
| Green RivSurfWater1  | Lower Duwamish Waterway Source Control: Green River Watershed                          |
|                      | Surface Water Data Report                                                              |
| GRNRVLD13            | Green River Loading Study - Phase 1                                                    |
| GRNRVLD14            | Green River Loading Study - Phase 2                                                    |
| GRNRVLD16            | Green River Loading Study - Phase 3                                                    |
| GTUT0001             | Pesticides in Salmonid-Bearing Streams, Year 12                                        |
| GTUT0002             | Pesticides in Salmonid-Bearing Streams, Year 13                                        |
| GTUT0003             | Pesticides in Salmonid-Bearing Streams, Year 14                                        |
| HANSVLGS             | Hansville General Store, Hansville, WA                                                 |
| HgFish05             | Mercury Trends in Fresh Water Fish 2005                                                |
| HgFish06             | Mercury Trends in Freshwater Fish 2006                                                 |
| HgFish07             | Mercury Trends in Freshwater Fish 2007                                                 |
| HgFish08             | Mercury Trends in Freshwater Fish 2008                                                 |
| HgFish09             | Mercury Trends in Freshwater Fish 2009                                                 |
| HgFish10             | Mercury Trends in Freshwater Fish 2010                                                 |
| HgFish11             | Measuring Mercury Trends in Freshwater Fish in Washington State, 2011 Sampling Results |
| HgFish12             | Measuring Mercury Trends in Freshwater Fish in Washington State, 2012 Sampling Results |
| HgFish13             | Measuring Mercury Trends in Freshwater Fish in Washington State, 2013 Sampling Results |
| HgFish14             | Measuring Mercury Trends in Freshwater Fish in Washington State, 2014 Sampling Results |
| HgFish15             | Measuring Mercury Trends in Freshwater Fish in Washington State, 2015 Sampling Results |
| HgFish16             | Measuring Mercury Trends in Freshwater Fish in Washington State, 2016 Sampling Results |
| HgFish17             | Measuring Mercury Trends in Freshwater Fish in Washington State, 2017 Sampling Results |
| HoldMine             | Holden Mine Remediation, Holden, WA                                                    |
| Island_County_AEC_WQ | Island County Water Quality Monitoring Program                                         |
| IslandCountyPIC      | Island County Pollution Identification and Correction Study                            |
| IslandCoWQ           | Island County Water Quality Program                                                    |
| JCRE0001             | Crystal Creek Multi-Parameter TMDL Effectiveness Monitoring                            |

| Study ID            | Study Name                                                                                                                |
|---------------------|---------------------------------------------------------------------------------------------------------------------------|
| JDURK0001           | Wilson Creek Sub-Basin Fecal Coliform Monitoring                                                                          |
| JeldWen12           | Jeld Wen Former Nord Door Site - Sediments                                                                                |
| jfie0001            | Padilla Bay Tributaries Fecal Coliform Bacteria Total Maximum Daily<br>Load                                               |
| JICA0000            | South Fork Palouse River TMDL*please see Study Comment field<br>below*                                                    |
| JICA0001            | Palouse River TMDL*please see Study Comment field below*                                                                  |
| JICA0002            | Wide Hollow Creek Water Quality Study for Aquatic Life Use                                                                |
| JICA0003            | Okanogan River Tributaries 303(d) pH Listings Verification Study                                                          |
| JJOY0005            | Hangman Creek Dissolved Oxygen and pH TMDL                                                                                |
| jjoy0006            | Upper Crab Creek TMDL Study                                                                                               |
| jjoy0007            | Little Spokane River Dissolved Oxygen & pH TMDL                                                                           |
| jjoy0009            | Little Spokane Fish Hatchery Characterization                                                                             |
| JKAR0001            | Fecal coliform bacteria monitoring: South Prairie Creek tributaries assessment including Inglin Creek and Spiketon Ditch. |
| JKAR0002            | Skagit Bay Fecal Coliform Bacteria Loading Assessment                                                                     |
| JKAR0003            | Cherry and Ames Creeks (Snoqualmie River Tributaries) Dissolved<br>Oxygen Study                                           |
| JKAR0004            | Clover Creek multiple parameter TMDL                                                                                      |
| jkar0005            | North River Temperature and Bacteria Verification Study                                                                   |
| jros0001            | Goosmus Creek                                                                                                             |
| jros0003            | Little Spokane River Fish Hatchery                                                                                        |
| JROS0009            | Colfax Floodworks Fecal Coliform Study                                                                                    |
| jros0011            | Crab Creek Alternate Feed Route Study                                                                                     |
| JROS0020            | Lake Spokane Nutrient Monitoring                                                                                          |
| JROS0021            | Asotin Creek FC Study                                                                                                     |
| JROS0022            | Inland Empire Paper Company Source Water Study                                                                            |
| JROS0023            | New Spokane WWTP Monitoring                                                                                               |
| JROS0024            | Deep Lake Monitoring                                                                                                      |
| JROS0025            | Walla Walla Multiple DO, pH and Bacteria TMDL Effectiveness<br>Monitoring                                                 |
| JROSL001            | Rocky Ford Creek Monitoring 2006                                                                                          |
| JROSL004            | Pataha Creek Effectiveness Monitoring 2005                                                                                |
| JROSL007            | Garfield County Implementation Monitoring                                                                                 |
| JROSL008            | Asotin County Implementation Monitoring                                                                                   |
| KC-marine-tissue    | King County MarineTissue Monitoring                                                                                       |
| KC_Minor_Lakes      | King County Minor Lakes Monitoring Program                                                                                |
| KClake-1            | King County Routine Major Lakes Ambient Monitoring                                                                        |
| KCmar-1             | King County Routine Marine Ambient Monitoring                                                                             |
| KCPIC_Quartermaster | Quartermaster Harbor Pathogens Reduction Project - National Estuary<br>Program Grant                                      |
| KCsb-1              | King County Swimming Beach Monitoring Program                                                                             |
| KCstrm-1            | King County Routine Ambient and Wet Weather Streams Monitoring                                                            |

| Study ID             | Study Name                                                                                                                                                                                                 |
|----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| KITSAPWQ             | Kitsap Public Health District Surface Water Trend Monitoring                                                                                                                                               |
| KNRD TS Temperature  | KNRD Time Series Temperature Monitoring Network                                                                                                                                                            |
| KTWQ                 | Kalispel Tribe Water Quality Monitoring Network                                                                                                                                                            |
| LDW-KC-Waters        | King County Water sampling (Lower Duwamish River)                                                                                                                                                          |
| LDWAOC3              | Lower Duwamish Waterway Administrative Order on Consent (third amendment)                                                                                                                                  |
| LDWEnglishSole2007   | 2007 PSAMP Groundfish Contaminant Survey                                                                                                                                                                   |
| LDWFishCrabClam2007  | FISH, CRAB, AND CLAM TISSUE COLLECTION AND CHEMICAL ANALYSES<br>FOR ADDITIONAL FISH, CRAB, AND CLAM SAMPLING IN THE LOWER<br>DUWAMISH WATERWAY IN 2007                                                     |
| LDWGSW0717           | Lower Duwamish Waterway, Groundwater Sampling for PCB Congeners and Aroclors                                                                                                                               |
| LKFenwick_WQ         | Water Quality for Lake Fenwick                                                                                                                                                                             |
| LKMeridian_WQ        | Water Quality for Lake Meridian                                                                                                                                                                            |
| LKSpokaneNutrient_WQ | Lake Spokane Nutrients Monitoring                                                                                                                                                                          |
| LoonLake WQ          | Loon Lake Water Quality Monitoring Program, Continuous                                                                                                                                                     |
| LSP3                 | Little Squalicum Park Remedial Investigation/Feasibility Study (data collected by Integral and the City of Bellingham during the LSP RI/FS phase)                                                          |
| LSUL0001             | Puyallup River Fecal Coliform Bacteria TMDL                                                                                                                                                                |
| LVDITCH-2010         | Fecal Coliform in Longview Ditches and Lake Sacajawea 2010                                                                                                                                                 |
| Lynnwood_TMDL        | Swamp Creek Watershed, Fecal Coliform Bacteria TMDL, Lynnwood, WA                                                                                                                                          |
| MarineWater          | Long-term marine water column monitoring 1999-present.<br>(Transitional data that has not yet been through a documented Data<br>Entry Review process can be found in EIM Study ID "MarineWater-<br>Pâ€I?). |
| MasonHCPIC_WQ        | Mason County's Hood Canal Septic System Surveys and Database<br>Enhancement – stage 1                                                                                                                      |
| MBEL0002             | Lake Ballinger Monitoring Project                                                                                                                                                                          |
| mifr0001             | Status Monitoring for the Upper Yakima River Suspended Sediment and Organochlorine Pesticide TMDL                                                                                                          |
| MIFR0002             | Little Spokane River PCBs in Fish Tissue Verification Study                                                                                                                                                |
| mifr0003             | Spokane Fish Hatchery PCB Evaluation                                                                                                                                                                       |
| MIKA0001             | Giffin Lake, Yakima County Phosphorus Verification Monitoring                                                                                                                                              |
| MIKA0002             | Myron Lake, Yakima County Ammonia Verification Monitoring                                                                                                                                                  |
| MIT_SCWQ             | Muckleshoot Indian Tribe Fisheries Department Lake Washington Ship<br>Canal Water Quality Project                                                                                                          |
| MonroeWQ             | City of Monroe TMDL water quality monitoring for fecal coliform bacteria                                                                                                                                   |
| Monte Cristo         | Monte Cristo Mining Area Remedial Investigation                                                                                                                                                            |
| MRED0002             | Hangman Hills Sewage Treatment Plant Nutrient Loading and Groundwater Study                                                                                                                                |
| MROB0001             | Deschutes River Watershed (WRIA 13), multi-parameter TMDL                                                                                                                                                  |
| MROB0004             | South Puget Sound Dissolved Oxygen Study, Phase 2                                                                                                                                                          |

| Study ID             | Study Name                                                                                                                    |
|----------------------|-------------------------------------------------------------------------------------------------------------------------------|
| MROB002              | Bear Evans Temperature and DO TMDL                                                                                            |
| MROB003              | Green River and Newaukum Creek Temperature and Dissolved Oxygen Study                                                         |
| MSVL_MUNSONCREEK2017 | Munson Creek TMDL 2017                                                                                                        |
| MVON001              | Stillaguamish River-Dissolved OxygenAdditional Study for Low Dissovled Oxygen Levels Below The City of Arlington.             |
| MVP003               | Additional Study of Low Dissolved Oxygen Levels In The Upper<br>Stillaguamish River Main Stem                                 |
| MVP004               | Gibbons Creek Effectiveness Monitoring                                                                                        |
| NCRI0001             | Snoqualmie River Temperature TMDL                                                                                             |
| NFPR                 | North Fork Palouse River BMP effectiveness monitoring                                                                         |
| NFTOUTLE             | North Fork Toutle River Water Temperature Study                                                                               |
| NMat0001             | Drayton Harbor Watershed Fecal Coliform TMDL                                                                                  |
| NMat0002             | Lower White River Nutrients and pH Study                                                                                      |
| NMat0003             | Phase 2: High Summer Bacteria Concentrations in Streams                                                                       |
| NMat0004             | Salmon Creek Low DO and pH Study                                                                                              |
| NMat0005             | Fecal Coliform MPN method comparison study                                                                                    |
| NMat0006             | Chehalis River Tributaries Supplemental Temperature and Flow<br>Monitoring 2017                                               |
| NSEA_TerrellCr_WQ    | NSEA Water Quality on Terrell Creek                                                                                           |
| OCCSED16             | Occidental Chemical Corporation (OCC), Data Summary Report Hylebos<br>Sediment and Porewater Sampling Program 2016            |
| OGEO0001             | Willapa River Fecal Coliform Bacteria Verification Study                                                                      |
| PAND0002             | OP Pesticides in Grayland Ditch                                                                                               |
| PAND0004             | Henderson Inlet Fecal Coliform Effectiveness Monitoring                                                                       |
| PASED08              | Port Angeles Harbor Sediment Investigation.                                                                                   |
| PbTrends09           | PBT Trend Monitoring: Lead in Suspended Particulate Matter, 2009                                                              |
| PbTrends10           | PBT Trend Monitoring: Lead in Suspended Particulate Matter 2010                                                               |
| PbTrends11           | PBT Trend Monitoring: Lead in Suspended Particulate Matter 2011                                                               |
| PbTrends12           | PBT Trend Monitoring: Measuring Lead in Suspended Particulate<br>Matter from Washington State Rivers and Lakes, 2012 Results. |
| PbTrends13           | PBT Trend Monitoring: Measuring Lead in Suspended Particulate<br>Matter from Washington State Rivers and Lakes, 2013 Results. |
| PbTrends14           | PBT Trend Monitoring: Measuring Lead in Suspended Particulate<br>Matter from Washington State Rivers and Lakes, 2014 Results. |
| PbTrends15           | PBT Trend Monitoring: Measuring Lead in Suspended Particulate<br>Matter from Washington State Rivers and Lakes, 2015 Results. |
| PbTrends16           | PBT Trend Monitoring: Measuring Lead in Suspended Particulate<br>Matter from Washington State Rivers and Lakes, 2016 Results. |
| PCSWQD               | Pierce County Surface Water Quality Upland Sampling                                                                           |
| PeabodySID2012       | Peabody Creek Stressor Identification Study 2012                                                                              |
| PipersFC001          | Piper's Creek Microbial Source Tracking Study                                                                                 |
| PlumcreekWQ          | Lookout Creek Temperature monitoring                                                                                          |
| PortGamble09         | Port Gamble Bay Remedial Investigation and Feasibility Study                                                                  |

| Study ID           | Study Name                                                                                                                                                            |
|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PORTGAMBLE2011     | Port Gamble Bay Supplemental Remedial Investigation 2011                                                                                                              |
| PortGardner_08     | Sediment Characterization Study in Port Gardner and Lower Snohomish<br>Estuary, Port Gardner, WA. Reload 4/10/2010. Revised by Jonathan<br>Newer of SAIC - Bothell WA |
| PSTox001           | Toxics in Surface Runoff to Puget Sound                                                                                                                               |
| RCOO0004           | Lake Chelan DDT and PCBs in Fish TMDL                                                                                                                                 |
| RCOO0006           | Vancouver Lake PCBs, Chlorinated Pesticides, and Dioxins in Fish Tissue and Sediment Investigation                                                                    |
| RCOO0008           | West Medical Lake PCBs, Dioxins and Furans in Fish, Sediment, and Wastewater Treatment Plant Effluent                                                                 |
| RCOO0009           | Copper and Zinc Levels in Des Moines, Massey, and McSorley Creeks,<br>King County                                                                                     |
| RCOO0010           | Puget Sound Toxics Loading Analysis: Characterization of Toxic<br>Chemicals in Puget Sound and Major Tributaries, 2009-10                                             |
| RCOO0016           | Puget Sound Basin Railroad Track PAH and Metals Baseline Study                                                                                                        |
| RESources_LNKSK_WQ | TMDL fecal coliform monitoring in the lower Nooksack River.                                                                                                           |
| Rivers             | Rivers B-IBI sampling                                                                                                                                                 |
| RSM_EFS1           | Redmond Paired Watershed Study _ Final                                                                                                                                |
| RSMP_PC_PMNM2015   | Regional Stormwater Monitoring Program Puget Marine Nearshore<br>Mussels (Pierce)                                                                                     |
| RSMP_PC_PMSB2015   | Regional Stormwater Monitoring Program Puget Marine Shoreline<br>Bacteria (Pierce)                                                                                    |
| S356THST_SAM_STUDY | Effectiveness Monitoring of the South 356th Street Retrofit and Expansion Project, Federal Way, WA                                                                    |
| SAM_MNM            | Stormwater Action Monitoring Program Puget Nearshore Mussels                                                                                                          |
| SAM_PC_MNM2017     | Stormwater Action Monitoring Program – Pierce County – Puget Nearshore Mussels                                                                                        |
| SAM_PLES           | Stormwater Action Monitoring Program Puget Lowland Ecoregion Streams                                                                                                  |
| SCBIDWQD           | Routine monthly monitoring of water quality in canals and return flows of the South Columbia Basin Irrigation District                                                |
| SCL_BWQS           | Water Quality Monitoring Program, Boundary Hydroelectric Project<br>(FERC No. 2144)                                                                                   |
| SCMP_WQ            | Skagit County Monitoring Program (01/01/2009 - )                                                                                                                      |
| SCOL0001           | Weaver Creek (Mason County) Fecal Coliform TMDL Attainment<br>Monitoring                                                                                              |
| scol0002           | White Salmon River Watershed Fecal Coliform Bacteria Attainment<br>Monitoring Study                                                                                   |
| SCOL0003           | Deschutes River Multi-parameter Total Maximum Daily Load<br>Effectiveness Monitoring Pilot Project                                                                    |
| SCTA0001           | Dayton and Waitsburg TMDL Fine-Tuning                                                                                                                                 |
| SCTPWQCR           | Columbia River Background Water Quality near the SCTP                                                                                                                 |
| SGOL008            | Zinc and Copper Concentrations in an Industrial Area Creek during Storm Events.                                                                                       |
| SGOL009            | Lead and Copper Concentrations in North Creek, Gig Harbor                                                                                                             |

| Study ID             | Study Name                                                                                                                                               |
|----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|
| Skok_Estuary_Monitor | Skokomish Estuary monitoring                                                                                                                             |
| SLIP4_RAC            | Slip 4 Removal Action Construction 2012                                                                                                                  |
| SNOCO_TMDLMONITORING | Snohomish County Surface Water Management Fecal Coliform Bacteria TMDL Monitoring                                                                        |
| SNOCOPIC_LowerStilly | Lower Stillaguamish Pollution Identification and Correction Program                                                                                      |
| SnohomishSTRMWTR_WQ  | City of Snohomish QAPP                                                                                                                                   |
| SnoLakes             | Snohomish County Lake Management Program                                                                                                                 |
| SPC_TMDL_WQ          | South Prairie Creek Restoration Monitoring                                                                                                               |
| SPILDW06             | Sediment Profile Imaging Feasibility Study - Lower Duwamish<br>Waterway                                                                                  |
| SPU_stream_bact      | SPU Urban Stream Bacteria Study                                                                                                                          |
| SRRTTF-2014          | Spokane River Regional Toxics Task Force 2014 Synoptic Dry Weather                                                                                       |
|                      | Survey and Confidence Testing for PCBs in Surface Water                                                                                                  |
| SRRTTF-2015          | Spokane River Regional Toxics Task Force 2015 Synoptic Dry Weather Survey                                                                                |
| SRRTTF-2016          | Spokane River Regional Toxics task Force 2016 Monthly Monitoring                                                                                         |
| SRRTTF-GW2016        | Spokane River Regional Toxics Task Force 2016 Groundwater Sampling for PCBs in the Spokane Valley-Rathdrum Prairie Aquifer                               |
| STEB0002             | Burnt Bridge Creek Fecal Coliform Bacteria, Dissolved Oxygen, and                                                                                        |
|                      | Temperature Total Maximum Daily Load Technical Study                                                                                                     |
| SuqTribeStreamTemps  | Water Temperatures in Selected Streams of Kitsap County                                                                                                  |
| ThorntonMatthewsFC01 | Thornton Creek and Matthews Beach Microbial Source Tracking Study                                                                                        |
| tist0000             | West Medical Lake verification monitoring                                                                                                                |
| tist0001             | Deadman/Meadow/Alpowa FC, DO, pH, and Temp STI monitoring                                                                                                |
| tist0002             | Hangman Creek dissolved oxygen, pH, and nutrients pollutant source assessment                                                                            |
| TMDL2017SC           | NPDES required monthly TMDL Swamp Creek monitoring                                                                                                       |
| TNC 1_WQ             | Groundwater level monitoring WRIA 44/50                                                                                                                  |
| TSWA0001             | Samish Bay Fecal Coliform Bacteria TMDL                                                                                                                  |
| TSWA0002             | Liberty Bay Fecal Coliform TMDL                                                                                                                          |
| TSWA0003             | Lacamas Creek Fecal Coliform, Temperature, Dissolved Oxygen, and pH<br>Total Maximum Daily Load                                                          |
| TSWA0004             | French Creek and Pilchuck River Temperature, Dissolved Oxygen, and                                                                                       |
|                      | North Ocean Beaches Fecal Coliform TMDL and Source ID Study                                                                                              |
| TUWS35TM             | Tucannon River Watershed Temperature TMDI                                                                                                                |
|                      | Phase I Upper Columbia River Site CERCLA RI/ES - Eich Tissue Data                                                                                        |
| Upper GreenSurfWater | Lower Duwamish Waterway Source Control: Upper and Middle Green                                                                                           |
|                      | River Surface Water Data Report                                                                                                                          |
| USNKPLTM             | Keyport Area 8 Biological Evaluation                                                                                                                     |
| USNKPLTM16           | Keyport Area 8 Tissue/Sediment Evaluation                                                                                                                |
| USNSILTM2003-07      | US Navy Bremerton Naval Complex Operable Unit B Marine<br>Monitoring, Bremerton, WA. Combined 3 years of data from 2003 2005<br>and 2007 into one study. |

| Study ID           | Study Name                                                                                                 |
|--------------------|------------------------------------------------------------------------------------------------------------|
| USNSILTM2014-15    | US Navy NBK Bremertion Operable Unit B Marine 2014-15 Sinclair Inlet                                       |
|                    | Marine Monitoring, Bremerton, WA                                                                           |
| UWI_EB07           | Surface Sediment and Fish Tissue Chemistry in Greater Elliott Bay                                          |
|                    | (Seattle) -Urban Waters Initiative                                                                         |
| Vashon             | King County Vashon Island Macroinvertebrate Monitoring Project                                             |
| VCNW1264           | Des Moines Creek Regional Retention/Detention Facility Arsenic Issues                                      |
|                    | Investigation by Des Moines Creek Basin Committee                                                          |
| VCSW0889           | Pacific Northwest Salmon Center Brownfields Cleanup, Belfair, WA                                           |
| WA0001317          | Pend Oreille Mine Ground & Surface water                                                                   |
| WA0032182          | Carnation Wastewater Treatment Plant - Temperature Monitoring<br>Study for NPDES Permit #WA0032182         |
| WADOH_Marine_Fecal | Shellfish Growing Area Program - Marine Water Quality Monitoring                                           |
| WAR044001_S8B      | Clark County Phase I Municipal Stormwater Permit (2013 - 2018)                                             |
| WAR044001_S8D      | Clark County Phase I Municipal Stormwater Permit                                                           |
| WAR044002_S8D      | Pierce County Phase I Municipal Stormwater Permit                                                          |
| WB1577RIFS         | Solid Wood Inc. (West Bay Park) RI/FS, Olympia, WA. Agreed Order #                                         |
|                    | DE-08-TCP SR-5415                                                                                          |
| WDFW 11-1916       | WDFW Mussel Watch Pilot Expansion project - toxic contaminants in                                          |
|                    | Puget Sound nearshore biota: a large-scale synoptic survey using                                           |
|                    | transplanted mussels (Mytilus trossulus)                                                                   |
| WDFW_TBiOS_Chinook | Contaminants Reveal Spatial Segregation of Sub-adult Chinook Salmon<br>Residing and Feeding in Puget Sound |
| WDFW_TBiOS_EngSole | Contaminants in Puget Sound English Sole Muscle tissues                                                    |
| WEHI0001           | Type N Experimental Buffer Treatment StudyCompetent Lithologies                                            |
| WEHI0002           | Extensive Riparian Status and Trends                                                                       |
| WEHI0003           | Type N Experimental Buffer Treatment StudyIncompetent Lithologies                                          |
| WHM_EFF0           | Watershed Health data for Monitoring the Effectiveness of Pollution                                        |
| _                  | Control Activities on Agricultural Lands, Bertrand Creek                                                   |
| WHM_EFF2           | Watershed Health data for Henderson Inlet Fecal Coliform TMDL                                              |
|                    | Effectiveness Monitoring                                                                                   |
| WHM_EFF3           | Effectiveness Monitoring of TMDL and Salmon Recovery Activities on                                         |
|                    | Newaukum River                                                                                             |
| WHM_EPA            | Status and Trends Puget Sound Region Sentinel Site Monitoring                                              |
| WHM_WHB            | Wide Hollow Creek Water Quality Study for Aquatic Life Use                                                 |
|                    | (Bioassessment and Habitat Component)                                                                      |
| WHOB001            | Pine Creek Toxaphene Source Assessment                                                                     |
| WHOB002            | Wenatchee River PCB Source Assessment                                                                      |
| WHOB003            | Assessment of Methods for Sampling Low-Level Toxics in Surface<br>Waters                                   |
| WHOB004            | Copper, Zinc, and Lead in Select Marinas of Puget Sound                                                    |
| WillBacT           | Riverdale Creek Verification Study                                                                         |
| WJW00002           | Puyallup and White Rivers Dissolved Oxygen and Temperature Data<br>Summary Report                          |
| WPAH13             | 2013 Western Port Angeles Harbor RI/FS Sediment Sampling                                                   |
| WQALWAND           | Lake Whatcom Tributary Monitoring Project                                                                  |

| Study ID             | Study Name                                                                              |
|----------------------|-----------------------------------------------------------------------------------------|
| WQAMFNWT             | City of Bellingham Nooksack River Middle Fork Water Temperature                         |
|                      | Monitoring Program                                                                      |
| WQASCAMB             | Snohomish County Surface Water Ambient Monitoring                                       |
| WQC-2016-00082       | Improving Water Quality: Riparian Restoration on Lower Yellowhawk<br>Creek              |
| WQC-2016-0014        | Monitoring the Effectiveness of Riparian Buffers on the South Fork of the Palouse River |
| WQC-2016-00371       | Douglas County Water Quality Improvement Program                                        |
| WQC-2016-CHCoNR-0247 | Lake Chelan Long Term Monitoring                                                        |
| WQC-2017-00167       | Strait Priority Areas Project                                                           |
| WQC-2017-00168       | Central Hood Canal Pollution Identification and Correction                              |
| WQC2015CwCoHH00129   | Water Quality Testing & Improvement at Two Cowlitz County Lakes                         |
| WQC2016MCFEG00215    | Yakima River Side Channels Project                                                      |
| WQC2016OkHiAl00126   | Monitoring Program for the Triple Creek Wetland Restoration Project                     |
| WSTMP05              | Washington State Toxics Monitoring Program: Exploratory Monitoring 2005.                |
| WSTMP06              | Washington State Toxics Monitoring Program: Exploratory Monitoring 2006.                |
| WSTMP07              | Washington State Toxics Monitoring Program: Exploratory Monitoring 2007.                |
| WSTMP08              | Washington State Toxics Monitoring Program: Exploratory Monitoring 2008.                |
| WSTMP09              | Washington State Toxics Monitoring Program: Exploratory Monitoring 2009.                |
| WSTMP10              | Washington State Toxics Monitoring Program: Exploratory Monitoring 2010                 |
| WSTMP12              | Washington State Toxics Monitoring Program: Exploratory Monitoring 2012                 |
| WWP1Y0               | Whatcom Waterway Phase 1 Cleanup Year 0                                                 |
| WWP1Y1               | Whatcom Waterway Phase 1 Compliance Monitoring Year 1                                   |
| YUTTMDL              | Yakima Urban Tributaries Fecal Coliform TMDL                                            |

**Table 2**. Studies from EIM with contaminated sediment data included in development of the2018 WQA

| Study ID          | Study Name                                                                                                   |
|-------------------|--------------------------------------------------------------------------------------------------------------|
| 53ACSO96          | King County's NPDES CSO Subtidal Sed                                                                         |
| 63ACSO97          | NPDES 63rd Ave CSO Baseline Study, 1997                                                                      |
| AGS_NPDES_2007    | American Gold Seafoods 2007 NPDES Sampling at Puget Sound salmon net pens                                    |
| AGS_NPDES_2010    | NPDES Sampling during 2010: American Gold Seafoods Net-Pen<br>Sites in Puget Sound                           |
| AJOH0005          | Spokane River PCBs, 1993-1994                                                                                |
| AJOH0049          | Toxics in stormwater runoff from PS boatyards.                                                               |
| AK_CSO97          | NPDES Alaska CSO Baseline Study                                                                              |
| ALCOA90           | ALCOA Aluminum - Class 2 Inspection                                                                          |
| ALDRWD04          | Sediment Sampling Results, Walderwood Picnic Point<br>Wastewater Treatment Facility. Original name: ALDRWD04 |
| ALKI01            | NPDES Alki Subtidal Monitoring 2001                                                                          |
| ALKI9497          | NPDES Alki Subtidal Monitoring 1994-1997                                                                     |
| ANCHOR90          | Anchor Cove Condominium Marina Project.                                                                      |
| AODE5095          | Jeld Wen Inc., Former Nord Door Site Groundwater, Soil and 2009 Sediments, Everett, WA                       |
| AODE5272          | West Bay Marina Remedial Investigation, Olympia, WA                                                          |
| AODE5572          | Port of Everett North Marina West End Site, Soil, Groundwater and Sediment Characterization. Everett. WA.    |
| AODE8979          | Weverhaeuser Mill A Former, Everett, WA                                                                      |
| AODE9001          | Westman Marine Remedial Investigation, Blaine, WA                                                            |
| AQKeyport2011     | Keyport Lagoon Sediment Characterization - 2011                                                              |
| AQMauryIsland2008 | Glacier Northwest, Inc., Maury Island Dock Reconstruction                                                    |
| AR-94-02          | NRDA Sed. Svy of Comm & Elliott Bays                                                                         |
| ARCOCP00          | Arco Cherry Point NPDES Characterization                                                                     |
| ARCOCP01          | BP ARCO Cherry Point NPDES Sed Rechar                                                                        |
| ARCOCPC2          | ARCO Cherry Point Refinery Class 2 Insp.                                                                     |
| BB_RB             | Bellingham Bay Regional Background Characterization                                                          |
| BCECW11           | Bay Center Marina Entrance Channel, DY12                                                                     |
| BCWTAC95          | Boise Cascades West Tacoma Mill Baseline                                                                     |
| BCWTACC2          | Boise Cascade's West Tacoma Mill Class 2                                                                     |
| BERA0001          | Verification of 303(d) Listed Sites in NWRO, CRO and ERO                                                     |
| BHPSED19          | Blakely Harbor Park Sediment Investigation 2019                                                              |
| BLAKEISL          | WSPRC BLAKE ISLAND MD DY89                                                                                   |
| BLGM_91A          | Maint./other dredging of Bellingham Bay.                                                                     |
| BLGMMETL          | Metals Results from Bellingham Bay                                                                           |
| BN_SF_HV          | BN_SF RR Harborview Park Investigation                                                                       |
| BOISECAS          | Boise Cascade Mill - Class 2 Inspection                                                                      |

| Study ID             | Study Name                                                                                                                       |
|----------------------|----------------------------------------------------------------------------------------------------------------------------------|
| BOLD 2008            | Puget Sound Sediment PCB and Dioxin 2008 Survey. Also known as BOLD STUDY                                                        |
| BPCP06               | RETEC BP Cherry Point 2006                                                                                                       |
| BPCP16               | BP Cherry Point 2016 NPDES Sampling                                                                                              |
| BPFERNC2             | BP Oil Refinery Class II Inspection                                                                                              |
| BremSed2015          | City of Bremerton Sediment Monitoring 2015                                                                                       |
| BREMTP98             | '98 Bremerton WTP NPDES Sed. Mon. Report                                                                                         |
| BRTCSO97             | NPDES Barton CSO Baseline Study                                                                                                  |
| Budd Inlet Hardel 07 | C396_Hardel EIM Results. Original User Study ID was C396.                                                                        |
|                      | Updated 10/21/08 per Sharon R. Brown.                                                                                            |
| BUDD07               | Budd Inlet Sediment Characterization                                                                                             |
| BUDD98               | BUDD INLET                                                                                                                       |
| BUDINLET             | Budd Inlet Sediment Survey Project                                                                                               |
| CAPSM07              | Cap Sante Boat Haven - West Basin Redevelopment Project,<br>Recency Extension, DY08                                              |
| CARKEK00             | Carkeek Park Outfall Monitoring 2000                                                                                             |
| CBMSQS               | Commencement Bay RI Main Sed. Qual. Sur.                                                                                         |
| CBSDSM17             | Commencement Bay Dredged Material Disposal Site Monitoring, 2017                                                                 |
| CENKIT10             | Central Kitsap Wastewater Treatment Facility (NPDES Permit<br>Renewal -2010). GeoEngineers original name: NPDES-WA-<br>003052-0. |
| CENKIT99             | Central Kitsap WWTP NPDES monitoring                                                                                             |
| CG36P05              | US Coast Guard Pier 36 - Post Dredge Characterization, DY06                                                                      |
| CHAMBR95             | Chambers Creek WWTP Marine Sediment Mon.                                                                                         |
| CHEVPW04             | Chevron Point Wells Supplemental Study                                                                                           |
| CHEVPW95             | Chevron Point Wells Terminal 95                                                                                                  |
| CHNC0606             | Baker Bay - Chinook Channel Sediment June 2006                                                                                   |
| CHNK0787             | Chinook Channel 1987                                                                                                             |
| CNKTSPC2             | Central Kitsap WTP 1988 Class II Inspec.                                                                                         |
| CoEvOutf17           | 2017 City of Everett Deep Water Outfall DNR Easement Sampling                                                                    |
| COLM0900             | Columbia River Mouth- O & M                                                                                                      |
| CONOCO04             | ConocoPhillips NPDES Permit Support                                                                                              |
| CPRESS02             | Cypress Island 2002 NPDES                                                                                                        |
| CPSD9497             | Ambient Subtidal Monitoring 1994-1997                                                                                            |
| CSFSED17             | Cosmo Specialty Fibers Baseline Sediment Sampling                                                                                |
| DAC-HY94             | Commencement Bay Nat.Res. Assessment                                                                                             |
| DAISPA99             | Daishowa-Port Angeles NPDES Monitoring                                                                                           |
| DENN9496             | Denny Way Cap Monitoring 1994-96                                                                                                 |
| DKC0605              | Driftwood Key Community Club, DY06                                                                                               |
| DSER0008             | Lake Roosevelt Sediment Toxicity (duplicate study LKROOS01 deleted on 12-26-2012)                                                |

| Study ID   | Study Name                                                      |
|------------|-----------------------------------------------------------------|
| DSER0014   | Screening San Juan Harbor sediments for toxicants               |
| DUWSU12    | Duwamish Waterway, East Waterway and West Waterway              |
|            | Subsurface Sediment Characterization                            |
| EBCHEM     | 1985 Elliott Bay sediment survey                                |
| EDMDUNOC   | City of Edmonds Unocal Study                                    |
| EDMDWTC2   | Edmonds WTP Class II Inspection                                 |
| EDMOND08   | City of Edmonds NPDES Sediment Analysis                         |
| EDMOND95   | Edmonds WWTP Baseline                                           |
| EEWSed13   | Everett East Waterway - Sediment Characterization               |
| EHCHEM94   | Eagle Harbor PreDesign Sediment Sampling                        |
| EIGHTBAY   | 1985 Puget Sound Eight-Bay survey.                              |
| EVCHEM     | 1985 Everett Hbr. chem. & biota data.                           |
| EVEOM11    | Corps of Engineers Snohomish River Navigation Channel           |
|            | Maintenance Dredging, DY12                                      |
| EVEOM17    | Snohomish River Federal Navigation Channel Dredged Material     |
|            | Characterization DY2018                                         |
| EVRT10TH   | Everett Harbor 10th St. boat ramp expan.                        |
| EVTWE494   | Weyerhauser Everett, WA                                         |
| EVWEYCII   | Weyerhaeuser, Everett Class II Inspectio                        |
| EWST298    | USACE/Port of Seattle East Waterway Stage 2, DY00               |
| FERNDALE   | Ferndale WWTP - Class 2 Inspection                              |
| FIDALG08   | Fidalgo Bay Sediment Investigation                              |
| FIDLGO97   | Survey of Fidalgo Bay                                           |
| FS1206878  | Grit contamination in Blair Waterway.                           |
| FS1385     | Cascade Pole Long-term Groundwater Compliance Monitoring        |
|            | and Sediment Sampling, Olympia, WA                              |
| FS95275518 | Former Irondale Iron and Steel Plant, Irondale, WA              |
| FWLKUN01   | Lake Union Sediment Quality Study                               |
| FWSPOR00   | Chemical Analysis and Toxicity Testing of Spokane River         |
|            | Sediments Collected in October 2000                             |
| FWUPCR05   | USEPA Phase I Sediment Sampling Upper Columbia River/Lake       |
|            | Roosevelt Site CERCLA RI/FS                                     |
| G1300053   | Budd Inlet Sediment Site Surface and Subsurface Sediment        |
|            | Investigation                                                   |
| GAMBLE06   | Port Gamble Dredging 2006                                       |
| GE1006     | Ecology Tier 1 Site Investigation - Former Port Blakely Mill    |
| 05100.1    | Bainbridge Island, Washington                                   |
| GEI024     | Ecology Tier 2 Site Investigation - Guemes Channel              |
| GHSED18    | Gig Harbor Sediment Study 2018                                  |
| GHSI       | Grays Harbor Sediment Screening Study. Duplicate study found in |
|            | EIIVI GKAYH_99 Was erased on U3-25-2013.                        |
| GPBASE93   | GP Baseline Sed. Character., '93 NPDES                          |

| Study ID         | Study Name                                                                                                                  |
|------------------|-----------------------------------------------------------------------------------------------------------------------------|
| GPCAM17          | Sediment Monitoring at Georgia-Pacific (Camas) for NPDES<br>Permit No. WA0000256                                            |
| GRAYS_08         | Dredged Material Characterization for Grays Harbor Navigational<br>Channel Maintenance Dredging, Grays Harbor, WA 2008-2009 |
| GRAYS00          | USACE Grays Harbor O&M, DY01                                                                                                |
| GRAYS04          | USACE Grays Harbor O&M, DY05                                                                                                |
| GRAYS06          | USACE Grays Harbor Navigation Channel Maintenance Dredging,<br>DY08                                                         |
| GRAYS11          | USACE Grays Harbor Navigation Channel O&M - DY 12                                                                           |
| GRAYS177         | USACE Grays Harbor O&M, DY02                                                                                                |
| GRAYS297         | Army Corps of Engineers - Grays Harbor dredged material characterization - 2010                                             |
| GRAYS98          | USACE Grays Harbor O&M, DY99                                                                                                |
| HANSEN12         | Hansen Boat Company, 30Aug2012 Surface Sediment Sampling, NPDES Permit WA0031909                                            |
| HARIS03A         | Harris Ave Shipyard Supp Invest7-24-2003                                                                                    |
| HIRIPH2          | Harbor Island Phase II RI                                                                                                   |
| HYLE9496         | Hylebos Waterway PRD Event 1A, 1B & 1C                                                                                      |
| IJW05            | RETEC I&J Waterway Surface Sampling 2005                                                                                    |
| ILWA0787         | Ilwaco Channel 1987                                                                                                         |
| ILWC0606         | Baker Bay - West Ilwaco Channel Sediment June 2006                                                                          |
| INTLCO15         | 2015 Alcoa Intalco NPDES Sediment Characterization                                                                          |
| INTLCO88         | DOE 88 Intalco C2 Monitoring Inspection                                                                                     |
| INTLCO93         | 1993 WDNR Impact Zone Study at Intalco                                                                                      |
| INTLCO99         | Intalco Sediment Investigation                                                                                              |
| ITT_94           | ITTRAYONIER, PLANTCLOSUREMONITORING                                                                                         |
| JCKSON94         | Jackson Park Housing Complex OU2                                                                                            |
| JeldWen12        | Jeld Wen Former Nord Door Site - Sediments                                                                                  |
| JeldWen13        | Jeld Wen Former Nord Door Site - 2013 Sediments                                                                             |
| KC_CSO_2011      | King County CSO Sediment Quality Characterization 2011 - NPDES Permit No. WA-002918-1                                       |
| KC_CSO_2013      | King County CSO Sediment Quality Characterization 2013 - NPDES Permit No. WA-002918-1                                       |
| KC_CSO_2018      | King County CSO Sediment Characterization 2018 for NPDES<br>Permit No. WA-002918-1                                          |
| KCintertidal-sed | King County Ambient Intertidal Sediment sampling                                                                            |
| KCmar-1          | King County Routine Marine Ambient Monitoring                                                                               |
| KCOutf12         | 2012 Kimberly Clark Deep Water Outfall NPDES Sampling                                                                       |
| KEYPORT          | The Navy's Keyport RI Report                                                                                                |
| KEYPRT92         | Navy/Keyport Final RI Report of 10/25/93                                                                                    |
| KIMCLK04         | Kimberly-Clark Outfall 100 Baseline Sediment Samp                                                                           |
| KINGST02         | Kitsap County Outfall                                                                                                       |

| Study ID        | Study Name                                                   |
|-----------------|--------------------------------------------------------------|
| KINGST19        | 2019 Kingston Waste Water Treatment Plant, Surface Sediment  |
|                 | Sampling, NPDES Permit WA0032077                             |
| KITSAP03        | Kitsap Transit/Sidney Landing Investigat                     |
| KTSPMON2        | Sinclair and Dyes Inlet monitoring 91-92                     |
| LAK99           | Lakehaven Utility District NPDES 1999 Lakehaven              |
| LAKEROOS        | Review of L. Roosevelt Synoptic Data                         |
| LAKOTA05        | Lakota Sediment Sampling                                     |
| LAKOTA16        | Lakota Wastewater Treatment Plant Sediment Monitoring Study  |
| LCBWRS93        | Lower Columbia Backwater Recon. Survey                       |
| LKUNDRDK        | Lake Union Drydock Sediment Monitoring                       |
| LKUNION         | Survey of Contaminants in Lake Union                         |
| LKWA00          | Lake Washington Baseline Sed Study 2000                      |
| LONGVW90        | Longview Fibre Co Class 2 Inspection                         |
| LOTT_96         | Budd Inlet - LOTT 1996 NPDES Sed. Monitoring Report          |
| LSAMM99         | Lake Sammamish Baseline Sediment Stdy 99                     |
| Lucca's Landing | Lucca's Landing sediment sampling for DNR Lease              |
| LUUCSO00        | King County Lake Union University Regulator CSO              |
| LYNNWD09        | City of Lynnwood WWTP Baseline Sediment Monitoring 2009      |
| LYNNWD95        | Lynnwood WWTP Baseline                                       |
| MAGCSO96        | NPDES Magnolia CSO Baseline Study, 1996                      |
| MALINS          | 1980 NOAA OMPA-19 survey of Elliott Bay.                     |
| MBTL12          | 2012 NPDES Sediment Characterization for Outfalls 001S and   |
|                 | 002A - Millennium Bulk Terminals, Longview, WA. NPDES Permit |
|                 | WA000086.                                                    |
| MCPLC_2012      | McFarland Cascade 2012. NPDES Permit No. WA00379563.         |
| MCRNH0917       | Mouth of the Columbia River North Head Baseline Survey       |
| MESHOU16        | MHCC Outfall Sediment Sampling and Analysis                  |
| MIDWAY02        | Midway Sewer Outfall #1 Baseline                             |
| MIDWAY06        | Midway Sewer District Sed Sampling                           |
| MIDWAY07        | Midway WWTP 2007 Supplemental Sediment Sampling              |
| MIDWAY95        | MIDWAY BASELINE                                              |
| MONAK05         | Anderson/Ketron DMMP Dredged Material Disposal Site - 2005   |
|                 | Full Monitoring                                              |
| MONCB03         | 2003 Tiered-Full Monitoring of the DMMP Commencement Bay     |
|                 | Dredged Material Disposal Site                               |
| MONCB04         | 2004 Tiered-Full Monitoring at Commencement Bay              |
| MONCB05         | 2005 Commencement Bay Site Physical Monitoring and Phenol    |
|                 | Study                                                        |
| MONCB191        | 2003 Tiered-Full Monitoring in Com Bay                       |
| MONEB13         | Elliott Bay DMMP Monitoring, Partial, 2013                   |
| MURCSO97        | NPDES CSO Subtidal sediments, 1997                           |
| NAVYHPFC        | Everett Homeport (full characterization)                     |
| Study ID            | Study Name                                                       |
|---------------------|------------------------------------------------------------------|
| NAVYHPII            | U.S. Navy Homeport Element II Full Char.                         |
| NAVYMANC            | US Navy Manchester Fuel Pier Replacement                         |
| NB_CSO96            | Magnolia, North Beach, 53rd Street CSO's                         |
| NBLA0002            | Ostrich Bay Sediment Monitoring                                  |
| NBLA0006            | Evaluation of Candidate Freshwater Sediment Reference Sites      |
| NOP_RB              | North Olympic Peninsula Regional Background Characterization     |
| NPI_PA_001_002_2010 | Sediment Sampling for Nippon Paper Industries                    |
| NPI_PA_002_2010     | National Parks Service Sediment Sampling for Nippon Paper        |
|                     | Industries outfall 002 replacement.                              |
| OAKHAR04            | Crescent Harbor WWTP                                             |
| OAKHBR06            | Oak Harbor Sediment Sampling                                     |
| OAKSED08            | 2008 Oakland Bay Sediment Characterization of intertidal and     |
|                     | subtidal areas from Hammersley Inlet to upper Oakland Bay,       |
|                     | Mason County, Washington.                                        |
| OBCLAM97            | Jackson Park/Erlands Point Clam and Sediment Samples near        |
|                     | Ostrich Bay in Dyes Inlet (former Study Name Clam study, Ostrich |
|                     | Bay). Samples Analyzed Independently by Navy. See also Study     |
|                     | AJOH0027.                                                        |
| OLYHAR88            | USACE Olympia Harbor Navigation Improvement FC, DY 89            |
| OLYTERC2            | Olympus Terrace WTP Class II Inspection                          |
| OU2CON97            | Confirmatory Study OU 2, JPHC/NHB site                           |
| P53MON92            | Pier 53-55 Sed Cap & ENR Remed Project                           |
| P66CAP              | PIER66 SEDIMENT CAP/CENTRAL WATERFRONT                           |
| PA_STP04            | Port Angeles NPDES Sediment Analysis                             |
| PA_STP96            | 1996City of Port Angeles NPDES Report                            |
| PADDE00             | Port of Bellingham, Padden Creek, DY01                           |
| PAINEFLD            | Survey for Contaminants at Paine Field                           |
| PASED08             | Port Angeles Harbor Sediment Investigation.                      |
| PGB-HERRING-SED2014 | Port Gamble Bay Sediment Sampling in 2014 for Herring Embryo     |
|                     | Mortality Study                                                  |
| PGHO&M94            | USACE Grays Harbor O&M, DY94'                                    |
| PGHO&M96            | USACE Grays Harbor O&M, DY96                                     |
| PGHT294             | Grays Harbor, Port of, Terminal 2, DY94                          |
| PGM1010             | Port Gardner Dredged Material Disposal Site Monitoring, 2010     |
| Phillips66_2015     | Phillips 66 Ferndale NPDES Sediment Sampling 2015                |
| Phillips66_2017     | Phillips 66 Ferndale NPDES Sediment Sampling 2017                |
| Phillips66_2019     | Phillips 66 Ferndale Refinery Wharf Causeway Replacement         |
|                     | Sediment Characterization                                        |
| POGHT07-1           | Port of Grays Harbor - Terminal 1, 2 and 4, DY08                 |
| POGHT07-2           | Port of Grays Harbor - Terminal 3 Maintenance Dredging, DY09     |
| POLARIS             | Crowley Marine Services Base Sed Samp                            |
| PortGamble09        | Port Gamble Bay Remedial Investigation and Feasibility Study     |

| Study ID       | Study Name                                                     |
|----------------|----------------------------------------------------------------|
| PORTGAMBLE2011 | Port Gamble Bay Supplemental Remedial Investigation 2011       |
| PortGardner_08 | Sediment Characterization Study in Port Gardner and Lower      |
|                | Snohomish Estuary, Port Gardner, WA. Reload 4/10/2010.         |
|                | Revised by Jonathan Newer of SAIC - Bothell WA                 |
| PortGardner_RB | Port Gardner Regional Background Characterization              |
| POS2R03        | Port of Seattle - East Waterway Stage II Recency Testing, DY04 |
| POSDMC16       | Des Moines Creek Basin Outfall Surface Sediment Sampling       |
| POSTPT03       | Post Point NPDES Sediment Sampling, 2003                       |
| POSTPT87       | Post Point Treatm Plant, B'ham Cty, 1987                       |
| POSTPT96       | Post Point Treatm Plant, B'ham Cty, 1996                       |
| POTBD98        | USACE Blair Waterway Deepening, DY99                           |
| POTP413        | Port of Tacoma Pier 4 Reconfiguration Project, DY14            |
| POV89_EI       | Port of Vancouver Bioassays for Copper                         |
| PPTox07        | Sediment toxicity study near Post Point wastewater treatment   |
|                | plant outfalls (Bellingham Bay, Washington)                    |
| PSAMP_HP       | Puget Sound Assessment and Monitoring Program's historical     |
|                | sediment monitoring program 1989-1995                          |
| PSAMP_LT       | The Puget Sound Assessment and Monitoring Program's Long-      |
|                | Term Temporal Monitoring                                       |
| PSAMP_SP       | The Puget Sound Assessment and Monitoring Program's (PSAMP)    |
|                | Spatial/Temporal Monitoring                                    |
| PSAMPNOA       | A Cooperative Agreement with the Puget Sound Assessment and    |
|                | Monitoring Program and the National Oceanic and Atmospheric    |
|                | Administration(NOAA) National Status and Trends (NS&T)         |
|                | Program to jointly examine measures of sediment quality        |
|                | throughout Puget Sound.                                        |
| PSDDA_00       | Elliott Bay Full Monitoring                                    |
| PSDDA_01       | Full monitoring of Commencement Bay                            |
| PSDDA_02       | Tiered-Partial Monitoring of Elliott Bay                       |
| PSDDA1         | PSDDA Phase I Survey of Disposal Sites                         |
| PSDDA2         | PSDDA Phase 2 Survey of Disposal Sites                         |
| PSDDAM90       | 1990 PSDDA Post-Disposal Site Monitoring                       |
| PSEMP_LT       | Puget Sound Ecosystem Monitoring Program Long Term             |
|                | Sediment Component                                             |
| PSNS90         | Puget Snd Naval Shipyard Site Inspec. 90                       |
| PSREF90        | Puget Sound Reference Areas Survey                             |
| PST18_P2       | Port of Seattle, T18 Phase 2, DY97                             |
| PST9117        | Port of Seattle T-91 Submerged Lands Preliminary Investigation |
|                | Sediment Characterization Results Phase 1                      |
| PST9118        | Port of Seattle T-91 Submerged Lands Preliminary Investigation |
|                | Sediment Characterization Results Phase 2                      |
| PSYSEA98       | Portland Shipyard Sed. Inv.                                    |

| Study ID        | Study Name                                                                                      |
|-----------------|-------------------------------------------------------------------------------------------------|
| PT_2001         | Pope & Talbot Landfill 2&3                                                                      |
| PT_PG1          | Pope and Talbot - Port Gamble 1                                                                 |
| PTORCHC2        | Port Orchard WTP Class II Inspection                                                            |
| PTPC2014        | Port Townsend Paper Corporation NPDES Sediment Data - 2014                                      |
| PTWNPCC2        | Pt. Townsend Paper Company Class 2                                                              |
| PTWNPENR        | Port Townsend Pen-Reared Salmon Mortal.                                                         |
| QUEBAX1         | PAH's in L. Wash. at Quen/Baxter Phase 1                                                        |
| QUEDAL00        | Quendall Terminals                                                                              |
| QUILL17         | Quillayute River Federal Navigation Channel and Boat Basin<br>Dredged Material Characterization |
| QUILL301        | Army Corps of Engineers - Quillayute dredged material characterization - 2010                   |
| RAYON98         | Rayonier, DY98                                                                                  |
| RAYONR05        | Former Rayonier Mill Site                                                                       |
| RAYSED09        | Former Rayonier WWTP Outfall Sediment Baseline                                                  |
|                 | Monitoring, Port Angeles, Washington                                                            |
| RED99           | Lakehaven Utility District NPDES 1999 Redondo                                                   |
| REDONDO         | Redondo Sediment Sampling                                                                       |
| REDONDO09       | Redondo Poverty Bay - Lakehaven Utility District Wastewater                                     |
|                 | Treatment Outfall DNR lease and NPDES requirements. Name changed from LUD09.                    |
| REDONDO16       | Redondo Wastewater Treatment Plant Sediment Monitoring                                          |
| RENT01          | NPDES Benton (South Plant) Subtidal 2001                                                        |
| RENT9497        | NPDES Renton Subtidal Monitoring 1994-97                                                        |
| RENT99          | NPDES Renton Subtidal Monitoring 1999                                                           |
| REYNOLDS        | Revnolds Aluminum - Class 2 Inspection                                                          |
| RICH9496        | Richmond Beach IT Monitoring 1994-96                                                            |
| BILEY001        | South Puget Sound toxicants in sediments                                                        |
| RPMESI97        | Rayonier Pulp Mill Expanded Site Inspection 1997, TDD:97-06-<br>0010                            |
| RSMP_PC_MNS2016 | Regional Stormwater Monitoring Program Puget Marine<br>Nearshore Sediments (Pierce)             |
| RTTAC14         | RockTenn NPDES Sediment Analysis 2014                                                           |
| RUSTWY15        | Marine Sediment Sampling along Ruston Way, Commencement<br>Bay                                  |
| SCDMET03        | Sinclair-Dyes Metals Verification Study                                                         |
| SCLAIR94        | Sinclair Inlet monitoring, 1994                                                                 |
| SCOTT95         | Scott Paper Co. Baseline Sediment Survey                                                        |
| SEACRE97        | Seacrest Preliminary Study '97                                                                  |
| SEQUIM97        | City of Sequim Outfall Sampling                                                                 |
| SHANPT95        | Shannon Point Seafoods Phase I SAP                                                              |

| Study ID         | Study Name                                                  |  |  |
|------------------|-------------------------------------------------------------|--|--|
| SHEBA20          | Shelter Bay Marina sediment characterization DY20           |  |  |
| SHELL04          | Shell Puget Sound Refinery                                  |  |  |
| SHELL92          | Shell Oil Sediment Baseline                                 |  |  |
| SHELTON WWTP     | Shelton WWTP Outfall Baseline Sediment Monitoring Study by  |  |  |
|                  | City of Shelton                                             |  |  |
| SIMILK00         | Similkameen River Sediments                                 |  |  |
| SIMPSN87         | Baseline Monitoring Simpson Tacoma                          |  |  |
| SIMPSON          | Simpson NPDES Sediment Analysis 2004                        |  |  |
| SINCLET          | Lower Sinclair Inlet Sediment PCB Study                     |  |  |
| SITCUMRI         | Port of Tacoma RI/NRDA (Sitc/Mlwk/Blair)                    |  |  |
| South_Plant_2017 | 2017 South Plant WWTP NPDES Outfall Study - Sediment        |  |  |
|                  | Sampling Events                                             |  |  |
| South_Plant_2018 | 2018 South Plant WWTP NPDES Outfall Study - Sediment        |  |  |
|                  | Sampling Event                                              |  |  |
| SPILDW06         | Sediment Profile Imaging Feasibility Study - Lower Duwamish |  |  |
|                  | Waterway                                                    |  |  |
| SPOK2000         | Spokane River Sediments October 2000                        |  |  |
| SPUCSO062WQ      | CSO Outfall 62 Post Construction Compliance Report          |  |  |
| SPUCSO095WQ      | Seattle Public Utilities CSO Outfall 95 Post Construction   |  |  |
|                  | Monitoring Compliance Report                                |  |  |
| SQMMON91         | 91 Pt. of Port Angeles Sediment Monitori                    |  |  |
| SQMMON92         | 92 Pt. of Port Angeles Sediment Monitori                    |  |  |
| SQUAL95          | Squalicum Waterway Sediment Characterizn                    |  |  |
| STEILLK2         | Copper in Steilacoom Lake - Phase 2                         |  |  |
| SWINC09          | USACE Swinomish Channel O&M, DY10                           |  |  |
| SWINC17          | Swinomish Channel Federal Navigation Channel Dredged        |  |  |
|                  | Material Characterization DY2018                            |  |  |
| SWINR02          | USACE Swinomish Channel O&M, DY03                           |  |  |
| SWSSD10SEDS      | SW Suburban Sewer District Salmon Creek Burien WTTP         |  |  |
|                  | Sediment Monitoring by Michael A. Kyte, Nisqually Aquatic   |  |  |
|                  | Technologies.                                               |  |  |
| SWSSD96          | Southwest Suburban Sewer District                           |  |  |
| TACCENC2         | Tacoma Central WTP Class II Inspection                      |  |  |
| TERM5_91         | Terminal 5 W. Waterway maint. dredging                      |  |  |
| TERMNL91         | Terminal 91, W. side apron construction                     |  |  |
| TESORO01         | TESORO SEDIMENT CHEMISTRY 2001 Sampling                     |  |  |
| TEXACO95         | Texaco Class 2                                              |  |  |
| TODD05_Y5        | Todd Shipyards Sediment Operable Unit Year 5                |  |  |
| TPETM06          | USACE Willapa Bay, Toke Point Entrance Channel and Tokeland |  |  |
|                  | Marina, DY07                                                |  |  |
| TPPS3AB          | TPPS Phase III A & B                                        |  |  |
| TXNPDS92         | Texaco Anacortes NPDES Sediment Studies                     |  |  |

| Study ID        | Study Name                                                        |
|-----------------|-------------------------------------------------------------------|
| USNSILTM2003-07 | US Navy Bremerton Naval Complex Operable Unit B Marine            |
|                 | Monitoring, Bremerton, WA. Combined 3 years of data from          |
|                 | 2003 2005 and 2007 into one study.                                |
| USNSILTM2018    | US Navy NBK Bremerton Operable Unit B Marine 2018 Sinclair        |
|                 | Inlet Marine Monitoring, Bremerton WA                             |
| UWI             | Urban Waters Initiative                                           |
| UWI_EB07        | Surface Sediment and Fish Tissue Chemistry in Greater Elliott Bay |
|                 | (Seattle) -Urban Waters Initiative                                |
| WB1577RIFS      | Solid Wood Inc. (West Bay Park) RI/FS, Olympia, WA. Agreed        |
|                 | Order # DE-08-TCP SR-5415                                         |
| West_Point_2011 | 2011 West Point WWTP Outfall Study Sediment Sampling Event        |
| WEYLONG         | Weyerhaeuser Co Class 2 Inspection                                |
| WHAPRD02        | Whatcom WW Pre-Remedial Design Eval                               |
| WHOB004         | Copper, Zinc, and Lead in Select Marinas of Puget Sound           |
| WP1&2_96        | West Point EBO Baseline Study Phase 1                             |
| WPNT00          | NPDES West Pt Subtidal Monitoring 2000                            |
| WPNT06          | West Point, King County, NPDES Sediment Monitoring                |
| WPNT9497        | West Point Subtidal NPDES Monit. 1994-97                          |
| WWP1Y0          | Whatcom Waterway Phase 1 Cleanup Year 0                           |
| WWP1Y1          | Whatcom Waterway Phase 1 Compliance Monitoring Year 1             |
| WWPRDI08        | Whatcom Waterway Pre-Remedial Design Investigation                |

# Water Quality Portal

The Water Quality Portal is a publicly accessible database supported by the U.S. Geological Survey (USGS), Environmental Protection Agency (EPA), and the National Water Quality Monitoring Council (NWQMC). The Portal houses data from the USGS National Water Information System (NWIS), EPA Storage and Retrieval (STORET) data warehouse, and U.S. Department of Agriculture Sustaining the Earth's Watersheds – Agricultural Research Database (STEWARDS). The following tables list studies and USGS monitoring locations from the Portal database that Ecology considered and subsequently used in the development of the 2018 WQA. Monitoring locations from USGS stations are not directly linked to StudyID's within the Portal. Therefore, USGS locations included in the 2018 WQA are listed in a separate table.

The following Water Quality Portal studies apply RCW 34.05.272 data source category #9: Data from primary research, monitoring activities, or other sources, but that has not been incorporated as part of documents reviewed under other processes.

| Study ID                     | Organization ID  | Study Name                                                       | Organization Name                                         |
|------------------------------|------------------|------------------------------------------------------------------|-----------------------------------------------------------|
| 106 CWA                      | JSKTRIBE_WQX     | Sequim Bay Basin Fresh Water Stream                              | Jamestown SKlallam Tribe                                  |
|                              |                  | Nutrient and Bacteria Sampling Program                           |                                                           |
| 2009_summer_stream_t<br>emp  | PGSTNATR_WQX     | Summer Stream Temperature                                        | Port Gamble S'Klallam Tribe                               |
| 4                            | CTUIR_WQX        | Temperature Monitoring Program                                   | Confederated Tribes of the Umatilla<br>Indian Reservation |
| 61                           | CLALLAMCODCD     | Storm surface water EPA Grant 2010-<br>2011                      | Clallam County-DCD                                        |
| BBMONIT                      | WHATCOM_WQX      | Birch Bay FC Monitoring                                          | Whatcom County Public Works                               |
| BBMONIT;EPABEACH             | WHATCOM_WQX      | NA                                                               | Whatcom County Public Works                               |
| CDAWAT_Streams_2005          | CDATWATRES       | CDATstreams                                                      | Coeur D'Alene Tribe                                       |
| CDAWAT_Streams_2006          | CDATWATRES       | CDATstreams                                                      | Coeur D'Alene Tribe                                       |
| CDAWAT_Streams_2007          | CDATWATRES       | CDATstreams                                                      | Coeur D'Alene Tribe                                       |
| CONTAMB                      | PUYALLUP_WQX     | Continuous Ambient Monitoring                                    | Puyallup Tribe of Indians                                 |
| CONTMON                      | PUYALLUP_WQX     | Continuous Temperature Monitoring                                | Puyallup Tribe of Indians                                 |
| CWA_2562                     | QUILEUTE_WQX     | Quileute Water Quality                                           | Quileute Natural Resources<br>(Washington)                |
| CWDA                         | JCPH_WQX         | Clean Water District Activities                                  | Jefferson County Public Health                            |
| Cypress Island               | SAMISHINDIAN_WQX | Cypress Island                                                   | Samish Indian Nation                                      |
| DOH Contract No.<br>N22580-1 | SKAGITCOUNTY_WQX | Skagit County Pollution Identification and<br>Correction Program | Skagit County                                             |
| Drayton_Harbor_WQ            | NOOKSACK_WQX     | Drayton Harbor Watershed Water<br>Quality Monitoring             | Nooksack Indian Tribe                                     |
| DWQMON                       | PUYALLUP_WQX     | Discrete Water Quality Monitoring                                | Puyallup Tribe of Indians                                 |
| ELDPICSAMPLES                | THURSTONCOUNTY   | ELD SHORELINE SAMPLING P.I.C. GRANT                              | Thurston County Health Department                         |
| EMAP/REMAP/CEMAP             | OREGONDEQ        | EMAP/REMAP/CEMAP                                                 | State of Oregon Dept. of                                  |
|                              |                  |                                                                  | Environmental Quality                                     |
| EPA_REG_EFF                  | KINGCOUNTY       | EPA Regulatory Effectiveness                                     | King County (Washington)                                  |
| EPABEACH;SWQMP               | SWINOMISH        | NA                                                               | Swinomish Indian Tribal Community                         |

**Table 3**. Studies from the Water Quality Portal included in development of the 2018 WQA

| Study ID                               | <b>Organization ID</b> | Study Name                                                                          | Organization Name                                        |
|----------------------------------------|------------------------|-------------------------------------------------------------------------------------|----------------------------------------------------------|
| EPABEACH;TRTUL_WQ_A<br>MB              | TRTUL_WQX              | NA                                                                                  | Tulalip Tribes of Washington                             |
| ESD 253A                               | R100EA                 | 2012 NLA Lake Fish Tissue Hg                                                        | EPA Region 10 Office of<br>Environmental Assessment      |
| Fidalgo Bay                            | SAMISHINDIAN_WQX       | Fidalgo Bay                                                                         | Samish Indian Nation                                     |
| GriffinCk                              | SNOQUALM_WQX           | GriffinCk                                                                           | Snoqualmie Tribe                                         |
| Hansen                                 | UPPERSKAGIT            | Hansen Creek Restoration Project                                                    | Upper Skagit Indian Tribe                                |
| Hood Canal Regional<br>Pollution       | KITSAPCHD_WQX          | The Hood Canal Regional Pollution<br>Identification and Correction (PIC)<br>Program | Kitsap County Health District                            |
| IDEQ LEW SW                            | IDEQ_WQX               | IDEQ Lewiston Office Surface Water<br>Program Sampling                              | Idaho Department Of Environmental<br>Quality DEQ         |
| JSKTRIBE                               | JSKTRIBE               | JAMESTOWN WQ PROGRAM                                                                | Jamestown SKlallam Tribe                                 |
| KC_QUARTERMASTER                       | KINGCOUNTY             | Quartermaster Harbor Marine Water<br>Quality                                        | King County (Washington)                                 |
| KimCkWQ                                | SNOQUALM_WQX           | KimCkWQ                                                                             | Snoqualmie Tribe                                         |
| KINGCO_422027                          | KINGCOUNTY             | King County 2014 Lake WA PCB/PBDE<br>Loadings Study                                 | King County (Washington)                                 |
| KNRD FT-2009                           | KNRD_WQX               | KNRD 2009 Fish Tissue Analysis                                                      | Kalispel Indian Community of the<br>Kalispel Reservation |
| KNRD FT-2011                           | KNRD_WQX               | KNRD 2011 Fish Tissue Analysis                                                      | Kalispel Indian Community of the<br>Kalispel Reservation |
| KNRD FT-2017                           | KNRD_WQX               | KNRD 2017 Fish Tissue Analysis                                                      | Kalispel Indian Community of the<br>Kalispel Reservation |
| KNRD Inorganics and<br>Metals          | KNRD_WQX               | Inorganics and Metals Sampling Project                                              | Kalispel Indian Community of the<br>Kalispel Reservation |
| KNRD Water Quality<br>Monitoring       | KNRD_WQX               | Water Quality Monitoring Project                                                    | Kalispel Indian Community of the<br>Kalispel Reservation |
| KNRD-Timeseries Daily-                 | KNRD_WQX               | KNRD Temperature Daily Summary Data                                                 | Kalispel Indian Community of the                         |
| Min Max Mean                           |                        | Project (Min, Max, Mean, 7DADM)                                                     | Kalispel Reservation                                     |
| KPH_EPA_ShellfishProt_2<br>010thru2014 | KITSAPCHD_WQX          | Kitsap County Shellfish Restoration<br>Protection                                   | Kitsap County Health District                            |

| Study ID                                                | <b>Organization ID</b> | Study Name                                       | Organization Name                               |
|---------------------------------------------------------|------------------------|--------------------------------------------------|-------------------------------------------------|
| Lake Campbell                                           | SAMISHINDIAN_WQX       | Lake Campbell                                    | Samish Indian Nation                            |
| Lake Symington Nutrient<br>Grant                        | KITSAPCHD_WQX          | Lake Symington Nutrient Reduction<br>Project     | Kitsap County Health District                   |
| LC_WQ                                                   | SAMISHINDIAN_WQX       | Lake Campbell Water Quality Monitoring           | Samish Indian Nation                            |
| LUMMI001                                                | LUMMINSN               | Lummi Nation Water Quality Monitoring<br>Program | LummiNation (Washington)                        |
| LUMMI002                                                | LUMMINSN_WQX           | Surface Water - Incident Response                | LummiNation (Washington)                        |
| LUMMI004                                                | LUMMINSN_WQX           | Surface Water - DOH Support                      | LummiNation (Washington)                        |
| LUMMI006                                                | LUMMINSN_WQX           | Marietta Channel Study                           | LummiNation (Washington)                        |
| LUMMI017                                                | LUMMINSN_WQX           | Surface Water - Nutrient Monitoring              | LummiNation (Washington)                        |
| LUMMI018                                                | LUMMINSN_WQX           | Surface Water - Regular Monitoring               | LummiNation (Washington)                        |
| LUMMI019                                                | LUMMINSN_WQX           | Surface Water - First Flush WQ<br>Monitoring     | LummiNation (Washington)                        |
| LUMMI021                                                | LUMMINSN_WQX           | Surface Water - Investigation                    | LummiNation (Washington)                        |
| LUMMI023                                                | LUMMINSN_WQX           | ZAPS                                             | LummiNation (Washington)                        |
| LUMMI024                                                | LUMMINSN_WQX           | SW - DOH Support Special Sampling                | LummiNation (Washington)                        |
| MKWQ                                                    | МАКАН                  | makah water quality                              | Makah Tribe (Washington)                        |
| MM_PDDN                                                 | MIDNITE_2              | Midnite Mine Pre-Design Data Needs               | Midnite Mine Environmental Data                 |
| NALMS_SECCHI_DIPIN                                      | NALMS                  | Secchi Dip In                                    | North American Lake Management<br>Society       |
| NARS_NLA2007;NARS_N<br>LA2007_ECOREGION_W<br>MT         | NARS_WQX               | NA                                               | EPA National Aquatic Resources<br>Survey (NARS) |
| NARS_NLA2007;NARS_N<br>LA2007_ECOREGION_XE<br>R         | NARS_WQX               | NA                                               | EPA National Aquatic Resources<br>Survey (NARS) |
| National Water Quality<br>Assessment Program<br>(NAWQA) | USGS-WA                | NA                                               | USGS Oregon Water Science Center                |

| Study ID                                                | Organization ID | Study Name                                                                                          | Organization Name                                                                                        |
|---------------------------------------------------------|-----------------|-----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|
| National Water Quality<br>Assessment Program<br>(NAWQA) | USGS-OR         | NA                                                                                                  | USGS Washington Water Science<br>Center                                                                  |
| NCCA_NCA199706;NCCA<br>_WEMAP200506                     | NARS_WQX        | NA                                                                                                  | EPA National Aquatic Resources<br>Survey (NARS)                                                          |
| NEP_2016_WSDA                                           | WSDA_WQX        | NEP_2016_WSDA                                                                                       | Washington State Department of<br>Agriculture, Dairy Nutrient<br>Management Program                      |
| Nooksack_Temp                                           | NOOKSACK_WQX    | Nooksack River Watershed Temperature<br>Monitoring                                                  | Nooksack Indian Tribe                                                                                    |
| NooksackWaterQuality                                    | NOOKSACK_WQX    | Nooksack River Watershed Sampling                                                                   | Nooksack Indian Tribe                                                                                    |
| Nov08Waters                                             | SBITENV_WQX     | Shoalwater Tribe Water Monitoring                                                                   | Shoaltwater Bay Tribe (Washington)                                                                       |
| NRSA0809                                                | OST_SHPD        | USEPA National Aquatic Resource                                                                     | USEPA, Office of Water, Office of                                                                        |
|                                                         |                 | Assessment - National Rivers and<br>Streams Assessment 2008-2009                                    | Science and Technology, Standards and Health Protection Division                                         |
| NRSA1314                                                | OST_SHPD        | USEPA National Aquatic Resource<br>Assessment - National Rivers and<br>Streams Assessment 2013-2014 | USEPA, Office of Water, Office of<br>Science and Technology, Standards<br>and Health Protection Division |
| Off_Res                                                 | UPPERSKAGIT     | Off_Reservation                                                                                     | Upper Skagit Indian Tribe                                                                                |
| OZETTERIVER                                             | MAKAH_WQX       | OZETTE RIVER PROJECTS                                                                               | Makah Indian Tribe of the Makah<br>Indian Reservation                                                    |
| PC-00J326-01                                            | TPCHD_WQX       | Pierce County Pollution Identification and Correction Project                                       | Tacoma-Pierce County Health<br>Department (Washington)                                                   |
| PC-00J888-01                                            | TPCHD_WQX       | Tacoma-Pierce PIC Round 6 C17128                                                                    | Tacoma-Pierce County Health<br>Department (Washington)                                                   |
| Pesticide Stewardship<br>Partnerships                   | OREGONDEQ       | Pesticide Stewardship Partnerships                                                                  | State of Oregon Dept. of<br>Environmental Quality                                                        |
| PGST_RESWQ                                              | PGSTNATR_WQX    | Port Gamble S'Klallam Tribe Reservation<br>Monitoring                                               | Port Gamble S'Klallam Tribe                                                                              |
| PGST_WQ                                                 | PGSTNATR_WQX    | Port Gamble SKlallam Tribe Water<br>Quality                                                         | Port Gamble S'Klallam Tribe                                                                              |

| Study ID           | Organization ID     | Study Name                                                          | Organization Name                                              |
|--------------------|---------------------|---------------------------------------------------------------------|----------------------------------------------------------------|
| PICPILOT2015       | CLALLAMCOUNTYEH_WQX | Pollution Identification and Correction<br>Pilot Area 2015          | Clallam County Environmental Health<br>Services                |
| PICPILOT2016       | CLALLAMCOUNTYEH_WQX | Pollution Identification and Correction<br>Pilot Area 2016          | Clallam County Environmental Health<br>Services                |
| PICPILOT2017       | CLALLAMCOUNTYEH_WQX | Pollution Identification and Correction<br>Pilot Area 2017          | Clallam County Environmental Health<br>Services                |
| PO-00J12301        | TPCHD_WQX           | Pierce County Shellfish Watersheds<br>Project                       | Tacoma-Pierce County Health<br>Department (Washington)         |
| PRWM               | PUYALLUP_WQX        | Puyallup River Watershed Monitoring                                 | Puyallup Tribe of Indians                                      |
| QINNRSA16          | QIN_WQX             | Quinault Rivers and Streams Assessment using EPA's NRSA Protocol    | Quinault Indian Nation                                         |
| QuendallTerminals  | ASPECT_WQX          | Quendall Terminals                                                  | Aspect Consulting                                              |
| QWRIA21P3          | QIN_WQX             | Ambient Water Quality                                               | Quinault Indian Nation                                         |
| QWRIA21P5          | QIN_WQX             | 2011 Queets River Watershed Peak<br>Water Temperature               | Quinault Indian Nation                                         |
| QWRIA21P8          | QIN_WQX             | 2011 Queets River Watershed Thermal<br>Infrared Radiometry Flight   | Quinault Indian Nation                                         |
| ResWQ              | SNOQUALM_WQX        | 106                                                                 | Snoqualmie Tribe                                               |
| SCMP               | SKAGITCOUNTY_WQX    | Skagit County Monitoring Program                                    | Skagit County                                                  |
| SemiahmooWatershed | NOOKSACK_WQX        | Semiahmoo Spit Water Quality<br>Monitoring                          | Nooksack Indian Tribe                                          |
| SFEW               | SQUAXIN             | Shellfish - Early Warning and intensive<br>water quality monitoring | Squaxin Island Tribe                                           |
| SFPS               | SQUAXIN             | Shellfish - Pathogens in marine sediment                            | Squaxin Island Tribe                                           |
| SITRIPAQ           | SQUAXIN             | On-reservation - riparian and aquatic habitat                       | Squaxin Island Tribe                                           |
| SNOWQ              | SNOQUALM            | Surface Water Quality Monitoring                                    | Snoqualmie Tribe Environmental & Natural Res Dep(Washington)   |
| SNOWQ              | SNOQUALM_WQX        | 106 Water Quality Sampling                                          | Snoqualmie Tribe                                               |
| SoosCreek          | MIT_WQX             | 2015_Soos Creek Stormwater Monitoring                               | Muckleshoot Indian Tribe                                       |
| SRWWQM             | SKAGITWG_WQX        | Skagit River Watershed Water Quality<br>Monitoring                  | Skagit River Watershed Grant (TNC,<br>SRSC, WWAA) - Washington |

| Study ID               | Organization ID  | Study Name                                       | Organization Name                                                |
|------------------------|------------------|--------------------------------------------------|------------------------------------------------------------------|
| Statewide Toxics       | OREGONDEQ        | Statewide Toxics Monitoring                      | State of Oregon Dept. of                                         |
|                        |                  |                                                  | Environmental Quality                                            |
| SumasMountain200905    | R10SUMASMOUNTAIN | Sumas Mountain Asbestos Site - Soil,             | EPA Region 10 Superfund Sumas                                    |
|                        |                  | Sediment and Water Sampling, May 12-<br>13, 2009 | Mountain Asbestos Site                                           |
| SUQ_WQMD               | SUQUAMISH        | Suquamish Tribe Monitoring                       | Suquamish Tribe                                                  |
| Surface Water Ambient  | OREGONDEQ        | Surface Water Ambient Monitoring                 | State of Oregon Dept. of<br>Environmental Quality                |
| SW Network             | BUNKER_USGS      | USGS Project SW Network                          | Bunker Hill Mining and Metallurgical<br>Complex (Region 10) USGS |
| SWQM                   | ELWHAWQ1_WQX     | Surface Water Quality Monitoring                 | Lower Elwha Klallam Tribe                                        |
| SWQM                   | SBITENV_WQX      | Water Quality Monitoring                         | Shoaltwater Bay Tribe (Washington)                               |
| SWQM                   | SKOKDATA_WQX     | Skokomish Surface Water Quality                  | Shoaltwater Bay Tribe (Washington)                               |
|                        |                  | Monitoring Program                               |                                                                  |
| SWQM                   | SBITENV          | Water Quality Monitoring                         | Skokomish Indian Tribe of the                                    |
|                        |                  |                                                  | Skokomish Reservation, Washington                                |
| SWQMP                  | SWINOMISH        | Swinomish Water Quality Monitoring<br>Program    | Swinomish Indian Tribal Community                                |
| TCFCMP2012-2013        | NSEA             | Terrell Creek Fecal Coliform Monitoring          | Nooksack Salmon Enhancement                                      |
|                        |                  | Project                                          | Association                                                      |
| TMDL                   | OREGONDEQ        | Total Maximum Daily Load Sampling                | State of Oregon Dept. of                                         |
|                        |                  |                                                  | Environmental Quality                                            |
| TWG                    | JSKTRIBE_WQX     | Targeted Watershed Grant                         | Jamestown SKlallam Tribe                                         |
| USGS 100               | R10BUNKER        | USGS CDA Sampling Locations                      | EPA Region 10 Superfund Bunker Hill                              |
|                        |                  |                                                  | Mining and Metallurgical Complex                                 |
| Water Quality Response | OREGONDEQ        | Water Quality Response Monitoring                | State of Oregon Dept. of                                         |
|                        |                  |                                                  | Environmental Quality                                            |
| WCOAST                 | EMAP_CS_WQX      | EMAP-West 1999-2006 Coastal                      | Environmental Monitoring and                                     |
|                        |                  | Monitoring                                       | Assessment Program EPA                                           |
| WhiteandGreenRiver     | MIT_WQX          | White and Green River Water Quality              | Muckleshoot Indian Tribe                                         |
|                        |                  | Monitoring Project                               |                                                                  |

| Study ID          | Organization ID | Study Name                                              | Organization Name                                  |
|-------------------|-----------------|---------------------------------------------------------|----------------------------------------------------|
| WhiteRiver        | MIT_WQX         | White River Water Quality Monitoring<br>Project         | Muckleshoot Indian Tribe                           |
| WhiteRiverCTemp   | MIT_WQX         | White River Continuous Temperature<br>Monitoring        | Muckleshoot Indian Tribe                           |
| WS-96073601       | THCOENVHWA_WQX  | Thurston County Targeted Watershed<br>Project-Nisqually | Thurston County Environmental<br>Health            |
| YAKAMA_NATION_WQD | YAKAMA_WQX      | 2016_Water_Quality_Data                                 | Confederated Tribes and Bands of the Yakama Nation |

| <b>USGS Station ID</b> | Location Description                              |
|------------------------|---------------------------------------------------|
| 12040680               | LAKE HOH NEAR FORKS, WA                           |
| 12043454               | LAPOEL CREEK NEAR FAIRHOLM, WA                    |
| 12043467               | SMITH CREEK NEAR FAIRHOLM, WA                     |
| 12043530               | BARNES CREEK NEAR PIEDMONT, WA                    |
| 12043950               | PIEDMONT CREEK AT PIEDMONT, WA                    |
| 12044000               | LYRE RIVER AT PIEDMONT, WA                        |
| 12046506               | ELWHA RIVER AT STRATTON RD, NR PORT ANGELES, WA   |
| 12046690               | TUMWATER CREEK NEAR PORT ANGELES, WA              |
| 12047013               | WHITE CREEK DS OF WABASH ST NR PORT ANGELES, WA   |
| 12047305               | SURVEYOR CREEK NEAR LITTLE OKLAHOMA, WA           |
| 12047440               | BAGLEY CREEK NEAR LITTLE OKLAHOMA, WA             |
| 12047660               | HEATHER LAKE NEAR SEQUIM, WA                      |
| 12048050               | CANYON CREEK NEAR SEQUIM, WA                      |
| 12050245               | SNOW CREEK ABOVE NF-2814 ROAD NEAR MAYNARD, WA    |
| 12051995               | UNNAMED TRIB TO LITTLE QUILCENE R NR QUILCENE, WA |
| 12053810               | MILK LAKE NEAR ELDON, WA                          |
| 12058495               | DOW CREEK BLW N LAKE CUSHMAN RD NR HOODSPORT, WA  |
| 12062580               | UNNAMED TRIBUTARY TO LYNCH COVE NEAR BELFAIR, WA  |
| 12063050               | TRIBUTARY TO UNION RIVER NEAR BELFAIR, WA         |
| 12063280               | BEAR CREEK NEAR SUNNYSLOPE, WA                    |
| 12070220               | STEEL CREEK NEAR GLUDS POND NEAR BROWNSVILLE, WA  |
| 12072160               | GORST CREEK BELOW HEINS CREEK NEAR GORST, WA      |
| 12072370               | GORST CREEK AT W BELFAIR VALLEY RD AT GORST, WA   |
| 12072430               | ANDERSON CREEK NEAR ANDERSON ROAD NEAR GORST, WA  |
| 12072480               | BLACKJACK CREEK DS OF HWY 16 NEAR FERNWOOD, WA    |
| 12072510               | BLACKJACK CREEK AT MOUTH AT PORT ORCHARD, WA      |
| 12072520               | ANNAPOLIS CREEK AT ARNOLD AVENUE AT ANNAPOLIS, WA |
| 12072530               | OLNEY CREEK NEAR MOUTH AT ANNAPOLIS, WA           |
| 12073905               | UNNAMED TRIBUTARY TO COULTER CREEK NEAR ALLYN, WA |
| 12076530               | GOLDSBOROUGH CREEK NR GRAVEL PITS NR SHELTON, WA  |
| 12077565               | MILL CREEK NEAR SE TRILLIUM LN NEAR SHELTON, WA   |
| 12078210               | UNNAMED TRIBUTARY TO SKOOKUM CR NR KAMILCHE, WA   |
| 12078920               | DESCHUTES RIVER NR SHELL ROCK RIDGE NEAR VAIL, WA |
| 12078930               | DESCHUTES RIVER NEAR VAIL, WA                     |
| 12080750               | WOODLAND CREEK AT DRAHAM ROAD NEAR OLYMPIA, WA    |
| 12081516               | MCALLISTER CREEK ESTUARY NEAR OLYMPIA, WA         |
| 12088490               | POWELL CREEK NEAR MCKENNA, WA                     |
| 12089710               | YELM CREEK DOWNSTREAM FM 123RD AVE SE NR YELM, WA |
| 12089970               | NISQUALLY RIVER NEAR YELM, WA                     |
| 12091956               | EUNICE LAKE NEAR CARBONADO, WA                    |

Table 4 USGS monitoring locations from the Portal included in development of the 2018 WQA.

| <b>USGS Station ID</b> | Location Description                               |  |  |  |  |
|------------------------|----------------------------------------------------|--|--|--|--|
| 12096700               | HIDDEN LAKE NEAR GREENWATER, WA                    |  |  |  |  |
| 12098700               | WHITE RIVER AT HEADWORKS AB FLUME NR BUCKLEY, WA   |  |  |  |  |
| 12099060               | WHITE RIVER CANAL ABV LAKE TAPPS NEAR BUCKLEY, WA  |  |  |  |  |
| 12101100               | LAKE TAPPS DIVERSION AT DIERINGER, WA              |  |  |  |  |
| 12113390               | DUWAMISH RIVER AT GOLF COURSE AT TUKWILA, WA       |  |  |  |  |
| 12113400               | DUWAMISH RIVER AT TUKWILLA, WA                     |  |  |  |  |
| 12113406               | DUWAMISH R AT 42ND AVE BRIDGE AT DUWAMISH, WA      |  |  |  |  |
| 12113415               | DUWAMISH R AT E MARGINAL WAY BR AT DUWAMISH, WA    |  |  |  |  |
| 12113425               | DUWAMISH R AT 102ND ST BRIDGE AT DUWAMISH, WA      |  |  |  |  |
| 12156395               | MUNSON CREEK NEAR 73RD DR NE NEAR MARYSVILLE, WA   |  |  |  |  |
| 12156950               | UNNAMED TRIB TO MF QUILCEDA CR NR MARYSVILLE, WA   |  |  |  |  |
| 12162980               | JIM CREEK BELOW LITTLE JIM CREEK NEAR OSO, WA      |  |  |  |  |
| 12163020               | JIM CREEK ABOVE HATCHERY CREEK NEAR OSO, WA        |  |  |  |  |
| 12163990               | JIM CREEK BELOW NICKS ROAD NEAR ARLINGTON, WA      |  |  |  |  |
| 12164050               | JIM CREEK AT JORDAN ROAD NEAR ARLINGTON, WA        |  |  |  |  |
| 12165000               | SQUIRE CREEK NEAR DARRINGTON, WA                   |  |  |  |  |
| 12166300               | NF STILLAGUAMISH RIVER NEAR OSO, WA                |  |  |  |  |
| 12167500               | ARMSTRONG CREEK NEAR ARLINGTON, WA                 |  |  |  |  |
| 12167650               | STILLAGUAMISH RIVER AT RM 12.2 NEAR ARLINGTON, WA  |  |  |  |  |
| 12168650               | PILCHUCK CREEK NEAR MOUTH NEAR SILVANA, WA         |  |  |  |  |
| 121689962              | PRAIRIE CRREK NEAR 74TH AVE NE NEAR ARLINGTON, WA  |  |  |  |  |
| 12169990               | CHURCH CREEK AT JENSEN ROAD NEAR STANWOOD, WA      |  |  |  |  |
| 12170050               | STILLAGUAMISH RIVER NR THOMLE ROAD NR STANWOOD, WA |  |  |  |  |
| 12170300               | STILLAGUAMISH RIVER NEAR STANWOOD, WA              |  |  |  |  |
| 12178080               | NEWHALEM CREEK ABOVE EAST FORK NEAR NEWHALEM, WA   |  |  |  |  |
| 12178700               | LOWER THORNTON LAKE NEAR NEWHALEM, WA              |  |  |  |  |
| 12178730               | THORNTON CREEK NEAR NEWHALEM, WA                   |  |  |  |  |
| 12181090               | SOUTH CASCADE MIDDLE TARN NEAR MARBLEMOUNT, WA     |  |  |  |  |
| 12181095               | SOUTH CASCADE LAKE NEAR MARBLEMOUNT, WA            |  |  |  |  |
| 12181100               | SF CASCADE R AT S CASCADE GL NR MARBLEMOUNT, WA    |  |  |  |  |
| 12181200               | SALIX CREEK AT S CASCADE GL NEAR MARBLEMOUNT, WA   |  |  |  |  |
| 12181450               | HIDDEN LAKE NEAR MARBLEMOUNT, WA                   |  |  |  |  |
| 1220070110             | UNNAMED TRIB TO FISHER C NR MILLTOWN RD NR CONWAY  |  |  |  |  |
| 12203542               | WHATCOM CREEK UPS OF MEADOR AVE AT BELLINGHAM, WA  |  |  |  |  |
| 12210700               | NOOKSACK RIVER AT NORTH CEDARVILLE, WA             |  |  |  |  |
| 12213100               | NOOKSACK RIVER AT FERNDALE, WA                     |  |  |  |  |
| 12213505               | CALIFORNIA CREEK NEAR PLEASANT VALLEY, WA          |  |  |  |  |
| 12214350               | SUMAS RIVER AT SOUTH PASS ROAD AT NOOKSACK, WA     |  |  |  |  |
| 12215000               | JOHNSON CREEK AT SUMAS, WA                         |  |  |  |  |
| 12215650               | COPPER LAKE NEAR GLACIER, WA                       |  |  |  |  |
| 12419495               | SPOKANE RIVER AT STATELINE BR NR GREENACRES, WA    |  |  |  |  |
| 12450880               | STILLETO LAKE NEAR STEHEKIN, WA                    |  |  |  |  |

| <b>USGS Station ID</b> | Location Description                              |  |  |  |  |
|------------------------|---------------------------------------------------|--|--|--|--|
| 12472900               | COLUMBIA R AT VERNITA BR NR PRIEST RAPIDS DAM, WA |  |  |  |  |
| 12473520               | COLUMBIA RIVER AT RICHLAND, WA                    |  |  |  |  |
| 12494450               | NACHES RIVER AT RM 12.2 NEAR NACHES, WA           |  |  |  |  |
| 12498690               | NACHES RIVER ABOVE DIVERSION DAM NEAR YAKIMA, WA  |  |  |  |  |
| 12498990               | NACHES RIVER AT 40TH AVENUE NEAR YAKIMA, WA       |  |  |  |  |
| 12504490               | SUNNYSIDE CANAL AT DIVERSION NEAR PARKER, WA      |  |  |  |  |
| 12504509               | JOINT DRAIN 32 AT OUTLOOK RD NEAR SUNNYSIDE, WA   |  |  |  |  |
| 12505040               | YAKIMA RIVER AT RM 103 NEAR WAPATO, WA            |  |  |  |  |
| 12505045               | YAKIMA RIVER AT RM 102.8 NEAR PARKER, WA          |  |  |  |  |
| 12505060               | YAKIMA RIVER AT RM 102.6 NEAR PARKER, WA          |  |  |  |  |
| 12505085               | YAKIMA RIVER AT RM 100.8 NEAR DONALD, WA          |  |  |  |  |
| 12505090               | YAKIMA RIVER AT RM 100.7 NEAR DONALD, WA          |  |  |  |  |
| 12505150               | ROZA CANAL WASTEWAY NUMBER 3 NEAR SAWYER, WA      |  |  |  |  |
| 12505180               | ROZA CANAL WASTEWAY NO 3 BLW HWY 12 NR SAWYER, WA |  |  |  |  |
| 12505270               | YAKIMA RIVER AT RM 94.4 NEAR BUENA, WA            |  |  |  |  |
| 12505300               | YAKIMA RIVER NEAR TOPPENISH, WA                   |  |  |  |  |
| 12505310               | YAKIMA RIVER BELOW HIGHWAY 22 NEAR TOPPENISH, WA  |  |  |  |  |
| 12505315               | BUENA DRAIN AT WESTBOUND I-82 NEAR BUENA, WA      |  |  |  |  |
| 1250532100             | YAKIMA RIVER BLW N MYERS RD BRIDGE RB NR ZILLAH   |  |  |  |  |
| 1250532110             | YAKIMA RIVER BLW N MYERS RD BRIDGE LB NR ZILLAH   |  |  |  |  |
| 1250532200             | YAKIMA RIVER AT RM 90.4 NEAR ZILLAH, WA           |  |  |  |  |
| 1250532210             | YAKIMA RIVER AT RM 90.3 NEAR ZILLAH, WA           |  |  |  |  |
| 1250532400             | YAKIMA RIVER 3 FT FROM RB AT RM 89 NR ZILLAH, WA  |  |  |  |  |
| 1250532410             | YAKIMA RIVER 20 FT FROM RB AT RM 89 NR ZILLAH, WA |  |  |  |  |
| 12505325               | YAKIMA RIVER AT RM 88.1 NEAR TOPPENISH, WA        |  |  |  |  |
| 12505330               | YAKIMA RIVER AB E TOPPENISH DRAIN NR GRANGER, WA  |  |  |  |  |
| 12505445               | JOINT DRAIN AT YAKIMA VALLEY HWY AT GRANGER, WA   |  |  |  |  |
| 12505448               | JOINT DRAIN 28 NEAR GRANGER, WA                   |  |  |  |  |
| 12508670               | DID 7 DRAIN NEAR MABTON, WA                       |  |  |  |  |
| 12508785               | JOINT DRAIN NEAR S 1ST STREET AT SUNNYSIDE, WA    |  |  |  |  |
| 12508788               | SULPHUR CR WASTEWAY AT SHELLER RD AT SUNNYSIDE WA |  |  |  |  |
| 12508790               | DID 18 DRAIN AT SUNNYSIDE, WA                     |  |  |  |  |
| 12508810               | WASHOUT DRAIN AT SUNNYSIDE, WA                    |  |  |  |  |
| 12508825               | JOINT DRAIN 40.2 NR TEAR RD NEAR SUNNYSIDE, WA    |  |  |  |  |
| 12508835               | JOINT DRAIN FROM ROUGK LN NEAR SUNNYSIDE, WA      |  |  |  |  |
| 12508840               | DID 3 DRAIN NEAR SUNNYSIDE, WA                    |  |  |  |  |
| 12508988               | DRAIN 31 AT WEST CHARVET RD AT MABTON, WA         |  |  |  |  |
| 12508997               | GRANDVIEW DRAIN AT CHASE ROAD NEAR GRANDVIEW, WA  |  |  |  |  |
| 12509057               | JOINT DRAIN 1 AT BUS RD NEAR GRANDVIEW, WA        |  |  |  |  |
| 13334000               | GRANDE RONDE RIVER AT ZINDEL, WA                  |  |  |  |  |
| 13334300               | SNAKE RIVER NEAR ANATONE, WA                      |  |  |  |  |
| 13351000               | PALOUSE RIVER AT HOOPER, WA                       |  |  |  |  |

| <b>USGS Station ID</b> | Location Description                              |
|------------------------|---------------------------------------------------|
| 14144700               | COLUMBIA RIVER AT VANCOUVER, WA                   |
| 14144805               | FLUSHING CHANNEL AT VANCOUVER LK AT VANCOUVER, WA |
| 14211920               | BURNT BRIDGE CR AT VANCOUVER LK NR VANCOUVER, WA  |
| 14211925               | VANCOUVER LAKE SITE 2 NEAR VANCOUVER, WA          |
| 14211930               | VANCOUVER LAKE SITE 3 NEAR VANCOUVER, WA          |
| 14211935               | VANCOUVER LAKE SITE 4 NEAR VANCOUVER, WA          |
| 14211940               | VANCOUVER LAKE SITE 1 NEAR VANCOUVER, WA          |
| 14211949               | VANCOUVER LAKE SITE 5 NEAR VANCOUVER, WA          |
| 14211955               | LAKE RIVER AT FELIDA, WA                          |
| 14213050               | SALMON CREEK AT LAKE RIVER NR VANCOUVER           |
| 14216000               | LEWIS RIVER ABOVE MUDDY RIVER NEAR COUGAR, WA     |
| 14216500               | MUDDY RIVER BELOW CLEAR CREEK NEAR COUGAR, WA     |
| 14224570               | LAKE LOUISE OUTLET NEAR PARADISE, WA              |
| 14224590               | SNOW LAKE NEAR PACKWOOD, WA                       |
| 14240525               | NF TOUTLE RIVER BELOW SRS NEAR KID VALLEY, WA     |
| 14241500               | SOUTH FORK TOUTLE RIVER AT TOUTLE, WA             |
| 14242580               | TOUTLE RIVER AT TOWER ROAD NEAR SILVER LAKE, WA   |
| 14243000               | COWLITZ RIVER AT CASTLE ROCK, WA                  |
| 453604122060000        | FRANZ LAKE SLOUGH ENTRANCE, COLUMBIA RIVER, WA    |
| 454705122451400        | CAMPBELL SLOUGH, RIDGEFIELD NWR, ROTH UNIT, WA    |
| 460939123201600        | BIRNIE SLOUGH, WHITE'S ISLAND, COLUMBIA RIVER, WA |
| 461802124024400        | COLUMBIA R AT PORT OF ILWACO MARINA AT ILWACO, WA |
| 471142122094701        | EPILIMNION-LAKE TAPPS NR BONNEY LAKE, WA SITE 2   |
| 471142122094702        | HYPOLIMNION-LAKE TAPPS NR BONNEY LAKE, WA SITE 2  |
| 471223122091201        | EPILIMNION-LAKE TAPPS NR BONNEY LAKE, WA SITE 6   |
| 471223122091202        | HYPOLIMNION-LAKE TAPPS NR BONNEY LAKE, WA SITE 6  |
| 471241122084401        | EPILIMNION-LAKE TAPPS NR BONNEY LAKE, WA SITE 7   |
| 471241122084402        | HYPOLIMNION-LAKE TAPPS NR BONNEY LAKE, WA SITE 7  |
| 471324122093901        | EPILIMNION-LAKE TAPPS NR SUMNER, WA SITE 5        |
| 471324122093902        | HYPOLIMNION-LAKE TAPPS NR SUMNER, WA SITE 5       |
| 471358122085201        | EPILIMNION-LAKE TAPPS NR SUMNER, WA SITE 3        |
| 471358122085202        | HYPOLIMNION-LAKE TAPPS NR SUMNER, WA SITE 3       |
| 471405122093301        | EPILIMNION-LAKE TAPPS NR SUMNER, WA SITE 4        |
| 471405122093302        | HYPOLIMNION-LAKE TAPPS NR SUMNER, WA SITE 4       |
| 471418122121101        | EPILIMNION-LAKE TAPPS NR SUMNER, WA SITE 1        |
| 471418122121102        | HYPOLIMNION-LAKE TAPPS NR SUMNER, WA SITE 1       |
| 471423122115001        | EPILIMNION-LAKE TAPPS NR SUMNER, WA SITE 8        |
| 471423122115002        | HYPOLIMNION-LAKE TAPPS NR SUMNER, WA SITE 8       |
| 471456122110801        | EPILIMNION-LAKE TAPPS NR SUMNER, WA SITE 9        |
| 471456122110802        | HYPOLIMNION-LAKE TAPPS NR SUMNER, WA SITE 9       |
| 475004117453000        | LK SPOKANE NR LK SPOKANE CAMPGROUND               |
| 480333123503210        | LAKE CRESCENT STATION LS04                        |

| <b>USGS Station ID</b> | Location Description                               |
|------------------------|----------------------------------------------------|
| 480508123455710        | LAKE CRESCENT STATION LS02                         |
| 481903122301001        | SKAGIT DELTA (SITE 3)                              |
| 481915122225501        | WHILEY SLOUGH                                      |
| 481917122293901        | SKAGIT DELTA (SITE 1)                              |
| 481958122294301        | SKAGIT DELTA (SITE 2)                              |
| 482027122262401        | HALL SLOUGH                                        |
| 482106122283401        | SKAGIT DELTA (SITE 5)                              |
| 482109122282501        | SKAGIT DELTA (CRAFT ISLAND)                        |
| 482125122293501        | SKAGIT DELTA (OLD DIST)                            |
| 482132122283401        | SKAGIT DELTA (NEW DIST MID)                        |
| 482136122282601        | SKAGIT DELTA (NF AT NEW DIST)                      |
| 482510117393701        | BAYLEY LAKE (LITTLE PEND OREILLE NWR) NR ADDY, WA  |
| 485631117431010        | FRANKLIN D ROOSEVELT LAKE DEADMANS EDDY RADB-DGT   |
| 485632117430810        | FRANKLIN D ROOSEVELT LAKE DEADMANS EDDY RAD7-DGT   |
| 485646117430210        | FRANKLIN D ROOSEVEL LAKE DEADMANS EDDY (UPSTRM-DGT |

# **Other Data Sources**

- University of Washington Applied Physicals Laboratory (UW/APL), Northwest Association of Networked Ocean Observing Systems (NANOOS), and Washington Ocean Acidification Center (WOAC) cruise data. Submitted to Ecology June 30, 2016. [9]
- Washington State Lakes Environmental Data Database. Washington State Department of Ecology.<sup>23</sup> Accessed February 2020. [9]

<sup>&</sup>lt;sup>23</sup> https://apps.ecology.wa.gov/coastalatlas/tools/LakeDetail.aspx

# **Narrative Data and Information**

Ecology considered all narrative data and information that were submitted during the public call-for-data periods in development of the 2018 WQA. Policy 1-11, Chapter 1, section "1E. Data and Information Submittals" states that information and data provided in the narrative submittal must meet the following two conditions:

- 1. Documentation of a designated use impairment in the waterbody, AND
- 2. Documentation that impairment of the existing or designated use is related to the environmental alteration on that same waterbody segment or grid.

Any numeric water quality data associated with the specific study being considered that was already in EIM or the federal Water Quality Portal would have been accessed directly, regardless of whether or not the narrative submittal met the above two conditions.

The "Ocean Acidification" and "Microplastics" sections below contain Ecology's evaluation and use determinations for data and information submitted on these topics. The "Other Narrative Data and Information" section details all other technical reports, studies, and other information considered in development of the WQA.

# **Ocean Acidification**

During the public call-for-data, Ecology received two submittals related to ocean acidification (OA):

- 1. Correspondence from Valdivia, Center for Biological Diversity (CBD) to Lizon, Department of Ecology, 6/24/2016. The CBD letter provides two types of information relevant to ocean acidification to be considered for the Water Quality Assessment:
  - Information on the affects that ocean acidification is having on marine life, and
  - Specific requests for ten waterbody locations to be listed as threatened or impaired under its 303(d) list
- 2. Joint correspondence from Alin, et al, NOAA/PMEL and UW to Kleinknecht and Lizon, Department of Ecology, 6/30/2016. The NOAA/UW letter provides three type of information relevant to impacts to aquatic life uses in Washington coastal waters:
  - Two files containing pH measurements from multiple research surveys spanning 2007 to 2014.
  - Information on data that can be used to estimate pH values for a large number of additional data sets containing surface carbon dioxide data.
  - Information on biological impacts on pteropods related to Washington State's pH narrative biological quality criteria.

Both the CBD and NOAA/UW submittals have overlapping OA information and data sources provided for Ecology to consider for use in the WQA. Therefore, we reviewed the types of

information provided as a whole to determine if the information meets Ecology's credible data requirements to be considered for listing in the Assessment. We reviewed the data and information from both CBD and NOAA/UW based on five types of data submittals:

- 1. Narrative information submittals to determine if the data credibility requirements are met
- 2. pH data to determine if standards were met
- 3. Surface seawater CO<sub>2</sub> data and proposed methodology to estimate in-situ pH values
- Pteropod and aragonite saturation data to determine if aquatic life are impacted by low pH
- 5. Analysis of pH and surface seawater CO<sub>2</sub> data from ten mooring buoy locations to determine if listing requirements were met based on a combination of narrative information and numeric data

Each of the sections below provide Ecology's review and determinations of whether the information and data submittals for ocean acidification can be used for Assessment.

# **Narrative Information**

#### Submittal

The CBD correspondence presents information and studies supporting concerns that ocean acidification is impacting Washington's coastal and estuarine waters and that its negative effects will only grow more severe with business as usual greenhouse emission scenarios.

#### **Ecology Determination**

We do not dispute CBD's overall concerns about ocean acidification and climate change. In fact, our state has embraced efforts to cut greenhouse gas emissions. Washington's Governor Jay Inslee is a national leader in efforts to cut greenhouse gas emissions to prevent climate change. Governor Inslee and the Washington Legislature have adopted a variety of laws, programs, and initiatives designed to reduce greenhouse gas emissions.

Most recently, the Washington legislature passed a comprehensive climate law called the Climate Commitment Act that was signed the Governor on May 17, 2021. The Climate Commitment Act establishes a "cap and invest" program that sets a limit on the amount of greenhouse gases that can be emitted in Washington (the cap) and then auctions off allowances for companies and facilities that emit greenhouse gases until that cap is reached.

Further, Washington recognizes that vehicle emissions are Washington's largest contributor to greenhouse gases and has taken numerous actions to curb emissions, including:

• Under regulations adopted in 2021 per the Clean Car Law, vehicles manufactured after 2005 must meet strict emission standards to be registered, leased, rented, licensed, or sold in Washington.

- In 2020 Governor Inslee signed the Zero Emissions Vehicle (ZEV) standard and Ecology will complete rulemaking for the new regulations by the end of 2021. The ZEV standard requires automakers to deliver a certain number of zero emission vehicles each year, and earn credits based on the number of vehicles produced and delivered for sale.
- In 2021, Governor Inslee signed the Clean Fuel Standard, which will require fuel suppliers to reduce the carbon intensity of their fuels 20% by 2038. The standard is expected to reduce statewide greenhouse gas emissions by 1.8 million metric tons of carbon dioxide equivalent by 2030.

Ecology has and will continue to be a leader in carrying out efforts to curb greenhouse gas emissions in order to address climate change and ocean acidification issues. To get more information on what the department is doing to address greenhouse gas emissions, go to: Reducing greenhouse gases - Washington State Department of Ecology<sup>24</sup>.

#### Submittal

CBD provided information to emphasize that ocean acidification already affects marine life, including assertions that:

- Ocean acidification reduces calcium carbonate saturation
- Washington's coastal and estuarine waters are affected by ocean acidification
- Empirical and field studies show that marine calcifiers are highly vulnerable
- Shellfish fisheries in Washington State are already harmed by ocean acidification
- Ocean acidification affects crucial zooplankton groups such as pteropods
- Ocean acidification affects a variety of other marine organisms
- Local stressors magnify anthropogenic ocean acidification
- Ocean acidification is a multi-stressor problem that can be partially addressed locally

# **Ecology Determination**

We appreciate the concerns expressed by CBD with regard to ocean acidification and potential effects on aquatic life, and the dedication CBD has in its campaign to combat effects from ocean acidification. Likewise, Washington takes the issue of ocean acidification very seriously. Understanding the effects of ocean acidification is an evolving science. The state continues to work along with California, Oregon, federal agencies, and academic institutions to identify science and data gaps in understanding ocean acidification and what steps the state can take to curb effects from ocean acidification at the regional and local level.

Washington was one of the first states to take a leadership role in addressing ocean acidification, when then Governor Gregoire convened a Blue Ribbon Panel (Panel) on Ocean Acidification in February 2012. The Panel, which included scientific experts, relevant

<sup>&</sup>lt;sup>24</sup> https://ecology.wa.gov/Air-Climate/Climate-change/Greenhouse-gases/Reducing-greenhouse-gases

agencies, and stakeholders, developed <u>recommendations</u><sup>25</sup> on understanding, monitoring, adapting, and mitigating ocean acidification in Puget Sound and Washington waters. Five years later, the <u>Marine Resources Advisory Council (MRAC)</u><sup>26</sup> convened Washington's leading ocean acidification experts to evaluate progress, next steps, and potential revisions to the recommended actions identified in 2012. The <u>2017 Addendum</u><sup>27</sup> updates the comprehensive strategy based on emerging science, management practices, and the new global network of partners working on this challenge.

The Blue Ribbon Panel recommendations have been embraced and enhanced by similar, more recent efforts to understand and curb effects from ocean acidification due to human sources. To get more information on what the department is doing to address climate change, go to Ecology website<sup>28</sup>.

# **Numeric Data**

## pH values from research surveys

#### NOAA/PMEL-led West Coast Ocean Acidification cruise data

#### Submittal

Data were collected by National Ocean and Atmosphere Administration's Pacific Marine Laboratory (NOAA/PMEL) West Coast Ocean Acidification cruises. Cruises spanned the Pacific Coast from British Columbia, Canada to the southern Baja California Penninsula, Mexico in 2007, 2011, 2012, 2013. Samples were collected at 129 unique monitoring stations. Parameters reported include temperature, salinity, nutrients, dissolved oxygen, various dissolved inorganic carbon species, and different forms of measured or calculated pH.

#### **Ecology Determination**

None of the 129 monitoring locations are located within Washington State waters. Ecology's authority to make water quality determinations for purposes of the Water Quality Assessment is limited to Waters of the State, which extends three miles off of the Pacific Coast shoreline, as consistent with the provisions in the federal Clean Water Act Section 502. All of the submitted monitoring locations were greater than 10 miles off of the Pacific Coast shoreline, well outside Washington's jurisdiction for Clean Water Act actions. Our Credible Data Act requires that data used for the WQA is representative of the conditions of the waterbody we are making a water quality determination. This is to ensure that we are accurately characterizing ambient water quality conditions when we are making regulatory determinations under the Clean Water Act.

For Ecology to use these data, we would need to have data or information to support that aquatic life conditions at locations greater than 10 miles offshore are representative to

<sup>&</sup>lt;sup>25</sup> https://apps.ecology.wa.gov/publications/documents/1201015.pdf

<sup>&</sup>lt;sup>26</sup> http://oainwa.org/mrac/

<sup>&</sup>lt;sup>27</sup> http://oainwa.org/assets/docs/2017\_Addendum\_BRP\_Report\_fullreport.pdf

<sup>&</sup>lt;sup>28</sup> https://ecology.wa.gov/Air-Climate/Climate-change

those nearshore Waters of the State. In this case, we do not have former information to accurately apply these data within Waters of the State. Utilizing data collected well offshore to represent near shore conditions would not accurately represent water conditions, as it would not take into account local point and non-point source pollution sources or coastal currents/upwelling. As a result, none of these data could be used for purposes of the Assessment.

UW/APL, NANOOS, WOAC Puget Sound, Strait of Juan de Fuca, and coastal cruise data

## Submittal

Data were collected jointly by University of Washington Applied Physicals Laboratory (UW/APL), Northwest Association of Networked Ocean Observing Systems (NANOOS), and Washington Ocean Acidification Center (WOAC) cruises. Cruises spanned Puget Sound, the Strait of Juan de Fuca, and off the coast of Washington's northwest peninsula in 2008-2014. Samples were collected at 61 unique monitoring stations. Parameters reported include temperature, salinity, nutrients, dissolved oxygen, various dissolved inorganic carbon species, and different forms of measured or calculated pH.

## **Ecology Determination**

Of the 3,944 data points submitted, 1,764 had pH records collected within Washington State waters. These data are summarized below in Table 5 and were incorporated into the WQA. Ecology's review of pH data found that no sample exceeded the lower range of Washington's marine pH criteria for protection of aquatic life (7.0–8.5 pH). However, it is worth nothing **two samples exceeded the upper range of the pH criteria**.

- Station P3 recorded an instantaneous maximum pH value of 8.556 in 2014. This monitoring station corresponds with Assessment Unit (AU) 48122B4A8\_01\_01, which is currently proposed as Category 5 due to several exceedances of the upper range of the pH criteria based on Ecology long-term marine monitoring data.
- Station P1 recorded an instantaneous maximum pH value of 8.541 in 2014. This monitoring station corresponds with Assessment Unit (AU) 48122A2B9\_01\_01, which is currently proposed as Category 2 due to exceedances of the upper range of the pH criteria based on Ecology long-term marine monitoring data. However, there were not enough exceedances across multiple years to support a Category 5 listings based on our Policy 1-11 methodology.

The UW/APL pH data appear to support these two category determinations for exceeding the upper range of pH criteria. All other pH records fell within the pH range protective of Aquatic Life. All data collected outside of State waters were not used for the WQA because 1) Ecology does not have jurisdiction of waters outside of the state; and 2) there is no information to support these offshore monitoring locations are representative of nearshore Waters of the State. See Ecology Determination in NOAA/PMEL cruise data section above

for more information on how data collected outside State Waters are not appropriate for the WQA.

| Station | Assessment Unit | Sample | Minimum | Maximum |
|---------|-----------------|--------|---------|---------|
|         |                 | Count  | (pH)    | (pH)    |
| P1      | 48122A3B0_01_01 | 28     | 7.519   | *8.541  |
| P10     | 47122I7A1_01_01 | 36     | 7.707   | 8.167   |
| P11     | 47123D1H3_01_01 | 41     | 7.355   | 8.264   |
| P12     | 47123E1C0_01_01 | 56     | 7.335   | 8.332   |
| P122    | 48124E6H8_01_01 | 12     | 7.632   | 7.938   |
| P123    | 48124D4J2_01_01 | 42     | 7.605   | 8.166   |
| P128    | 48124D2F6_01_01 | 23     | 7.643   | 7.903   |
| P13     | 47123F0E0_01_01 | 49     | 7.423   | 8.308   |
| P131    | 48124C0J9_01_01 | 18     | 7.542   | 7.892   |
| P132    | 48123C9H8_01_01 | 52     | 7.652   | 8.093   |
| P133    | 48123C7E2_01_01 | 16     | 7.649   | 8.008   |
| P136    | 48123C4C7_01_01 | 43     | 7.674   | 8.089   |
| P14     | 47122G9A3_01_01 | 56     | 7.469   | 8.277   |
| P15     | 47122G8G5_01_01 | 48     | 7.408   | 8.298   |
| P16     | 47122G7J6_01_01 | 44     | 7.526   | 8.284   |
| P17     | 47122H7D6_01_01 | 44     | 7.603   | 8.3     |
| P18     | 48122A6D1_01_01 | 47     | 7.744   | 8.023   |
| P19     | 48122A6J2_01_01 | 47     | 7.738   | 8.05    |
| P2      | 48122B3D9_01_01 | 14     | 7.529   | 8.338   |
| P20     | 48122B6E8_01_01 | 41     | 7.572   | 8.002   |
| P21     | 48122B8I4_01_01 | 59     | 7.691   | 8.098   |
| P22     | 48123C0H1_01_01 | 66     | 7.65    | 8.024   |
| P23     | 48123C2E2_01_01 | 23     | 7.682   | 7.915   |
| P24     | 48123D1D2_01_01 | 29     | 7.689   | 7.942   |
| P25     | 48123D0J0_01_01 | 24     | 7.724   | 7.897   |
| P26     | 48122D7H1_01_01 | 27     | 7.589   | 7.934   |
| P27     | 47122I4B5_01_01 | 51     | 7.676   | 8.194   |
| P28     | 47122H4A5_01_01 | 51     | 7.645   | 8.217   |
| P29     | 47122F4F4_01_01 | 38     | 7.317   | 8.128   |
| P3      | 48122B4A8_01_01 | 32     | 7.58    | *8.556  |
| P30     | 47122E4F0_01_01 | 38     | 7.522   | 8.212   |
| P31     | 47122D3J5_01_01 | 40     | 7.57    | 8.121   |
| P32     | 47122D4D4_01_01 | 36     | 7.533   | 8.217   |
| P33     | 47122D4C9_01_01 | 32     | 7.536   | 8.376   |
| P34     | 47122C5I3 01 01 | 5      | 7.815   | 7.83    |

**Table 5** Summary of UW/APL pH records collected in Washington State waters.

| Station | Assessment Unit | Sample | Minimum | Maximum |
|---------|-----------------|--------|---------|---------|
|         |                 | Count  | (pH)    | (pH)    |
| P35     | 47122B6I3_01_01 | 34     | 7.489   | 8.155   |
| P36     | 47122B7G8_01_01 | 28     | 7.69    | 8.138   |
| P37     | 47122C8G5_01_01 | 20     | 7.563   | 8.173   |
| P38     | 47122C7H0_01_01 | 36     | 7.515   | 8.422   |
| P39     | 47122E5B2_01_01 | 20     | 7.609   | 8.009   |
| P4      | 48122C5E5_01_01 | 31     | 7.581   | 8.433   |
| P401    | 47123E0J5_01_01 | 54     | 7.296   | 8.321   |
| P402    | 47123D0F2_01_01 | 24     | 7.266   | 8.321   |
| P403    | 47122G8J6_01_01 | 9      | 7.568   | 7.846   |
| P404    | 47123B0D1_01_01 | 4      | 7.606   | 7.671   |
| Р5      | 471221316_01_01 | 34     | 7.615   | 8.465   |
| P500    | 47122G3A6_01_01 | 10     | 7.73    | 8.088   |
| P6      | 47122J4C6_01_01 | 12     | 7.859   | 8.296   |
| P7      | 47122J6I1_01_01 | 46     | 7.737   | 8.038   |
| P8      | 47122I6J0_01_01 | 54     | 7.664   | 8.186   |
| Р9      | 47122I6D6_01_01 | 40     | 7.71    | 8.136   |

\*exceedances of the marine pH criteria of 7.0 - 8.5.

#### Surface seawater CO<sub>2</sub> data to estimate pH

#### Moored time-series carbon dioxide observations

#### Submittal

Time-series data of surface seawater carbon dioxide levels ( $pCO_2$  or  $fCO_2$ ) and other physical and chemical parameters collected from NOAA moorings as part of their Ocean Carbon Data Systems (OCADS) project are available on the OCADS website. Data submitters provide an equation for estimating total alkalinity using salinity measurements, based on a Fassbender and others research publication in review at time of data submittal. Theoretically,  $pCO_2/fCO_2$ , estimated alkalinity, temperature, and pressure data can be used to estimate pH. Four moorings were submitted for consideration:

- La Push 47.97°N, 124.95°W
- Cape Elizabeth 47.35°N, 124.73°W
- Twanoh 47.37°N, 123.01°W
- Dabob 47.80°N, 122.80°W

#### **Ecology Determination**

Staff determined that these data are not appropriate for the WQA.

First, it is worth noting that the La Push and Cape Elizabeth moorings are well outside Washington State waters and are thus not suitable for use in Washington's WQA (see

<u>Ecology Determination</u> to NOAA/PMEL data section above). Therefore, only the Twanoh and Dabob data would be considered for the WQA.

Second, Ecology does not have approved numeric criteria for determining impairment to aquatic life utilizing surface water  $pCO_2$  measurements. Ecology also does not have an established method for the conversion of salinity measurements to total alkalinity (TA) or conversion of  $pCO_2$  to infer pH for purposes of the WQA. While the submittal provided a theoretical method for estimating alkalinity based on  $CO_2$ , then estimating pH based on  $CO_2$  estimates, there are multiple concerns with this method.

- The Fassbender and others publication referenced was in review at time of submittal and not provided with the data submittal. Our Credible Data Act deems data credible when it is considered "generally acceptable in the scientific community as appropriate for use in assessing the conditions of the water." While Ecology staff located what appears to be the final publication by searching academic journals, it is unclear what changes may have been made to methods or calculations in the review process, as the version of the publication used to support the methods presented in the submittal was not provided.
- Based on what is presumed the final publication, the data used to develop the TA/salinity relationship were collected solely in Washington's offshore coastal waters However, the Twanoh and Dabob buoys are located in nearshore bays of Puget Sound. The environmental conditions influencing water chemistry differ drastically between offshore Pacific Coast waters and inland Puget Sound waters, meaning the relationship developed by Fassbender and others is very likely not representative of these two monitoring locations. The authors themselves cite several studies indicating that carbonate chemistry can be unique to specific regions, vary seasonally and interannually, and be influenced by local landuses and climates. Further the authors go so far to say "...this poses challenges for the empirical TA-S approach in nearshore environments". This information supports that this relationship is not suitable for use these monitoring locations.

Third, under the circumstances that the proposed methodology was appropriate for the WQA, the Twanoh mooring does not have available salinity measurements within the data window and thus total alkalinity could not be estimated under the methods provided. The Dabob mooring had few salinity measurements available, with many measurements outside the salinity range appropriate for the equation provided (25-30 ppt), meaning most available measurements would not be estimating TA with the proposed equation. It is also worth noting that the data submitters later in their submittal highlight that Dabob and Twanoh OA moorings had no temperature or salinity data to calculate pH (See Section Ten mooring buoys: Dabob OA mooring). This questions the purpose of including this monitoring location in this section of the data submittal.

Due to data credibility concerns with extrapolating offshore data to represent nearshore Waters of the State and lack of well-established methodology for estimating pH in Washington State waters, these data are not appropriate for the WQA.

#### Surface seawater carbon dioxide observations from ships

#### Submittal

Data consists of surface ocean *f*CO<sub>2</sub> levels, salinity, and other chemical and physical parameters collected from various research vessel cruises around the world, stored in the Surface Ocean CO<sub>2</sub> Atlas. Data are collected by several different organizations, including NOAA/PMEL Carbon Group cruises spanning 2009-2011. Data submitters suggest that Ecology follow the recommended calculations to estimate total alkalinity and pH.

#### **Ecology Determination**

Staff determined that these data are not appropriate for use in the WQA. Our Credible Data act requires we use data representative of water quality conditions and methods generally acceptable in the scientific community. See <u>Ecology Determination</u> on Moored time-series carbon dioxide observations above for a more detailed explanation of how these data do not meet credible data requirements.

Additionally, our Policy 1-11 details that third part data submittals should include documentation from the original data submitter indicating that the required QA objectives were met. This requirement is to ensure that we are using appropriately quality assured and controlled water quality samples when the data submitter is a different organization than the data collector. The only information provided with this data submittal was a link to the general database website. No quality assurance information or documents, such as a quality assurance project plan (QAPP) or field/laboratory calibration records, were provided.

#### **Pteropod Data**

#### WCOA Cruises

#### Submittal

Data consists of pteropod shell damage characterization and calculated aragonite saturation based on samples collected from 2011 and 2013 NOAA/PMEL cruises of Pacific Coast waters. Pteropod samples were collected from 17 stations in 2011 and 19 stations in 2013. Organisms were washed with distilled water, dehydrated, plasma etched for removal of organics, then analyzed for shell dissolution severity using a scanning electron microscope (SEM). The percentage of organisms with Type II and Type III damage (more severe shell dissolution) and depth integrated abundance of organisms was summarized by year and sampling station, along with the average aragonite saturation state at that station.

#### **Ecology Determination**

None of the pteropod monitoring locations are located within Washington State waters. All data collected outside of State waters were not used for the WQA because 1) Ecology does

not have jurisdiction of waters outside of the state; and 2) there is no information to support these offshore monitoring locations are representative of nearshore Waters of the State. See <u>Ecology Determination</u> in NOAA/PMEL cruise data section above for more information on how data collected outside State Waters are not appropriate for the WQA.

#### WOAC and NANOOS Cruises

#### Submittal

Data consists of pteropod shell damage characterization and calculated aragonite saturation based on samples collected from a 2014 WOAC and NANOOS cruise of Puget Sound. Between 2 to 3 pteropod sampling events occurred at 7 stations between July and October 2014. Organisms were processed using the method outlined in the submittal, with the exception of using 1% KOH to remove organic matter, rather than plasma etching. The percentage of organisms with Type II and Type III damage (more severe shell dissolution) and depth integrated abundance of organisms was summarized for each sample, along with the average aragonite saturation state at that station.

#### **Ecology Determination**

Data are summarized below in Table 6. The percentage of organisms with Type II-III shell damage ranged from 22% to 100% at sampling sites, while aragonite saturation ranged from 0.48 to 1.26. It should be noted that Ecology currently does not have numeric criteria for aragonite saturation or an approved standard methodology for analyzing marine biological organism data for purposes of the WQA. While data demonstrate a range of severity in pteropod shell damage, there are no reference conditions or sites with which to compare these data. Without reference conditions, it is unclear whether or not these data represent the natural conditions of aquatic life in Washington's waters. Additionally, the three samples are not likely to capture the potential variability in pteropod shell development. Ecology recognizes the relationships between pH, aragonite saturation, and pteropod shell dissolution as documented by Bednarsek and others (2012, 2014). However, there is not sufficient data collected in Washington's waters for purposes of the WQA at this time. These types of data could likely be utilized in future WQAs, if paired with a robust statistical analysis including reference sites, which could then be used to document clear impacts to aquatic life uses in Washington waters.

| STATION | SAMPLES | D MIN (%) | D MAX (%) | ΩMIN | Ω ΜΑΧ |
|---------|---------|-----------|-----------|------|-------|
| P12     | 3       | 68        | 100       | 0.51 | 0.62  |
| P22     | 2       | 35        | 70        | 0.84 | 1.00  |
| P28     | 3       | 84        | 100       | 0.86 | 1.02  |
| P38     | 3       | 22        | 100       | 0.96 | 1.28  |
| P4      | 3       | 39        | 78        | 0.62 | 0.68  |
| P402    | 2       | 62        | 81        | 0.48 | 0.70  |

**Table 6** Summary of WOCA pteropod Type II+III shell damage (D) data and average water column average aragonite saturation ( $\Omega$ ) data by sampling station

| STATION | SAMPLES | D MIN (%) | D MAX (%) | Ω ΜΙΝ | Ω ΜΑΧ |
|---------|---------|-----------|-----------|-------|-------|
| P8      | 2       | 38        | 80        | 0.95  | 1.26  |

# Mooring buoy data submitted by CBD

Ecology analyzed each of the ten waterbody locations that CBD provided data and information to support their request that these waterbodies be included on the 303(d) List as Category 5 waters.

## Tatoosh Island (48.3933°N, 124.7384°W)

#### Submittal

Coastal waters around Tatoosh Island should be listed as impaired with respect to ocean acidification because the rate of pH decline is higher than natural fluctuating conditions with a human caused variation of more than 0.2 pH units (standard deviation criteria). The data clearly shows that it violates water quality standards based on the Washington methodology. It also violates the antidegradation and aquatic life standard. In addition, pH decline over the year has impacted the benthic community.

#### **Ecology Determination**

No action. The monitoring site where the Wootton study was conducted is located within the boundaries of the Makah Indian reservation. The monitoring site is not subject to Washington State's authority because it is located within a tribal boundary. Tribes have independent authority for setting water quality standards and implementing regulations for waters on reservation lands under the Clean Water Act.

The monitoring site where the Wootton study was conducted is located within the boundaries of the Makah Indian reservation and is unique in that it is where oceanic waters mix with outgoing water from the Strait of Juan de Fuca. Data and information from the Wootton et al, 2008 study were previously considered by Ecology during the Assessment listing process that resulted in the EPA-approved 2010 Marine Water Quality Assessment. Ecology reviewed the Wooten (2008) study to determine if the pH and biology data collected as part of the study could be used as a basis for listing on Category 5 in the 2010 Marine Assessment. While the Wootten study may be valid for Tatoosh Island, a spatial extrapolation of long-term trends from the study area to a larger regional change would exhibit high uncertainty since the data are from only one sampling location. Also, the study does not provide conclusive evidence that the cause of the pH change is due to human sources. For instance, the change could be caused by natural sources related to inputs from river discharges, long-shore shelf transport and planktonic specifies composition (i.e., the pH changes could be related to changes in physical conditions due to the location and changes in the patterns of primary productivity and species composition).

The dataset was also reviewed by Ecology's marine monitoring unit as part of the 2010 Water Quality Assessment. This dataset does not provide any pH data showing impairments of Washington waters, nor does it provide conclusive evidence that Washington's coastal aquatic life in the natural environment are being impaired by ocean acidification. Therefore, the dataset does not provide a basis for waterbody listings in Category 5 for violations of either pH or narrative standards for aquatic life. In summary, this study does not provide any pH data showing impairments of Washington waters, nor does it provide conclusive evidence that Washington's coastal aquatic life in the natural environment are being impaired by ocean acidification. Therefore, the study does not provide a basis for waterbody listings in Category 5 for violations of either pH or narrative standards for aquatic life.

## Cape Elizabeth OA mooring (47.35°N, 124.73°W)

#### Submittal

Coastal waters around Cape Elizabeth mooring should be listed as threatened with respect to ocean acidification because the average rate of pH decline is higher than natural fluctuating conditions with a human caused variation of about 0.183 pH units. It is likely that these waters will surpass the 0.2 pH change standard before the next assessment. The average (± standard deviation) sea surface pH at the Cape Elizabeth mooring was 8.153±0.08 units significantly (p<0.001) lower than preindustrial levels of 8.339±0.14 units. Since preindustrial time pH has declined 0.183 units at this site which is higher than the global average of 0.1 units.

#### **Ecology Determination:**

A response to the applicability of the Cape Elizabeth OA mooring data in the WQA is provided earlier in document (See <u>Ecology Determination</u> Moored time-series carbon dioxide observations). Due to data credibility concerns with extrapolating offshore data to represent nearshore Waters of the State and lack of established methodology for estimating pH in Puget Sound waters, these data are not appropriate for the WQA.

Further, even if the mooring were within the jurisdiction of state waters, CBD misinterprets the sea surface pH measurements at the Cape Elizabeth mooring by stating that the human caused variation of 0.2 units within the acceptable range of 7.0 – 8.5 units are being violated. These CBD inferences are based on numerous assumptions that are neither scientific nor credible for determining that the 0.2 unit pH variation is being violated based on current pH data at the mooring site. A comparison of estimated pre-industrial pH values based on assumed temporal trends to estimated current pH values is not a analysis properly vetted by the scientific community and would not meet our Credible Data Act requirements for the WQA.

# La Push OA mooring (47.97°N, -124.95°W)

#### Submittal

Coastal waters around La Push mooring should be listed as impaired with respect to ocean acidification because the rate of pH decline is higher than natural fluctuating conditions with a human caused variation of more than 0.2 pH units (standard deviation criteria). This violates

the Washington State water quality standard for pH. The average (± standard deviation) sea surface pH at La Push OA mooring over the past ten years was 8.181±0.09 units significantly lower (p<0.001) than preindustrial levels of 8.389±0.185 units (Fig. 10). Since preindustrial time pH has declined 0.207 units at this site which is higher than the global average of 0.1 units.

#### **Ecology Determination**

A response to the applicability of the La Push OA mooring data in the WQA is provided earlier in document (See <u>Ecology Determination</u> for Moored time-series carbon dioxide observations). Due to data credibility concerns with extrapolating offshore data to represent nearshore Waters of the State and lack of established methodology for estimating pH in Puget Sound waters, these data are not appropriate for the WQA.

Further, even if the mooring were within the jurisdiction of state waters, CBD inferences are based on numerous assumptions that are neither scientific nor credible for determining that the 0.2 unit pH variation is being violated based on current salinity and pCO<sub>2</sub> data at the mooring site. CBD misinterprets the sea surface pH measurements at the La Push mooring by stating that the human caused variation of 0.2 units within the acceptable range of 7.0 - 8.5 units are being violated. CBD asserts that "the average (± standard deviation) sea surface pH at the Cape Elizabeth mooring was  $8.153\pm0.08$  units significantly (p<0.001) lower than preindustrial levels of  $8.339\pm0.14$  units. Since preindustrial time pH has declined 0.183 units at this site which is higher than the global average of 0.1 units." A comparison of estimated pre-industrial pH values based on assumed temporal trends to estimated current pH values is not a analysis properly vetted by the scientific community and would not meet our Credible Data Act requirements for the WQA.

# Dabob OA mooring (47.97°N, -124.95°W)

#### Submittal

The lack of salinity and temperature at this station inhibits calculating pH from  $pCO_2$  data. However, Washington may have other sources, including the state water quality monitoring stations and the shellfish hatchery that could be analyzed. Nonetheless, it is important to highlight that  $pCO_2$  in this station can reach levels well above 500 ppm which represents relative low pH. Salinity, temperature, and pH data from this mooring is not available.

#### **Ecology Determination**

No action. The request to list this buoy site for ocean acidification is based on  $pCO_2$  data from this station, which can reach levels well above 500 ppm. The submitter asserts that these levels would correlate with relatively low pH. Ecology determined that using  $pCO_2$ data trends alone are not appropriate for the WQA. Ecology does not have approved numeric criteria for determining impairment to aquatic life utilizing surface water  $pCO_2$ measurements. For assessment of waters under Washington's narrative water quality criteria, Ecology must have information that clearly documents the connection between sources, causes, and effects on designated uses in order to meet credible data requirements in Washington. While Ecology understands the chemical equilibrium between  $pCO_2$  and pH in aquatic systems, there are no additional information or data paired with the CO<sub>2</sub> data to suggest aquatic life is impaired in Dabob Bay and that elevated CO<sub>2</sub> is either directly or indirectly impacting that use. Due to lack of established criteria and lack of information supporting impacts under Ecology's narrative criteria, it was determined that these  $pCO_2$  data are not appropriate for use in the WQA. (Note: This monitoring location was also included in the submittal from NOAA/U)

## Twanoh (NANOOS ORCA buoy at Twanoh (47.37°N, 123.01°W)

#### Submittal

The lack of salinity and temperature at this station inhibits calculating pH from pCO2 data. However, Washington may have other sources, including the state water quality monitoring and the shellfish hatchery, for such data in this area that it should analyze. Nonetheless, it is important to highlight that pCO2 in this station can reach levels well above 500 ppm which represents relative low pH. Salinity, temperature, and pH data from this mooring is not available.

#### **Ecology Determination**

No action. The request to list this buoy site for ocean acidification is based on  $pCO_2$  data from this station, which can reach levels well above 500 ppm. The submitter asserts that these levels would correlate with relatively low pH. Ecology determined that using  $pCO_2$ data trends alone are not appropriate for the WQA. Ecology does not have approved numeric criteria for determining impairment to aquatic life utilizing surface water  $pCO_2$ measurements. For assessment of waters under Washington's narrative water quality criteria, Ecology must have information that clearly documents the connection between sources, causes, and effects on designated uses in order to meet credible data requirements in Washington. While Ecology understands the chemical equilibrium between  $pCO_2$  and pHin aquatic systems, there are no additional information or data paired with the  $CO_2$  data to suggest aquatic life is impaired in Dabob Bay and that elevated  $CO_2$  is either directly or indirectly impacting that use. Due to lack of established criteria and lack of information supporting impacts under Ecology's narrative criteria, it was determined that these  $pCO_2$ data are not appropriate for use in the WQA. (Note: This monitoring location was also included in the submittal from NOAA/U.)

# Taylor Shellfish Farm (Dabob Bay, 47.8199°N, -122.8215°W)

#### Submittal

Although we only obtained 60-day worth of data, these include 41,062 pH measurements. Approximately 37% of data points were below 7.8 pH units between February and April 2016 (Fig. 14), a pH value that is harmful to the growth of oyster larvae and pteropods (see above). This clearly violates the antidegradation and aquatic life standard.

#### **Ecology Determination**

No action. Upon review of the data, Ecology determined there is not sufficient information provided with the data to demonstrate that quality assurance practices appropriate for the WQA were used. Per Policy 1-11, data submittals must include "documentation addressing the accuracy and completeness of the information submitted" and "documentation from the original data submitter indicating that the required QA objectives were met". The data submitter provided only a link to a .csv file stored on dropbox.com containing pH values and date/time of collection. There is no information documenting the method by which data were collected, whether a quality assurance project plan exists for these data, or whether any data collection or quality control procedures were followed.

However, even if data were deemed appropriate for the WQA, Ecology does not agree with the assertion that there was nonattainment of Washington's aquatic life standard. It appears from our review that all pH monitoring data were within the acceptable range of 7.0 to 8.5 units based on application of Policy 1-11, and there was no accompanying analysis demonstrating that there was a human-caused variation within the range of less than 0.2 units. It does not appear that any biology data was collected as part of this monitoring site that supports the statements that a pH of less than 7.8 represents harm to oyster larvae and pteropods in Dabob Bay, and would lead to conclusions the use is being impaired at this site. CBD did cite laboratory studies suggesting negative impacts to calcifying organisms and highlighted the need for further research on the impacts of ocean acidification to aquatic life under field conditions. Since this information was for discussion purposes, and the study did not report any observed impairments to aquatic life in the field, it is not appropriate to use in assessing the narrative standards for aquatic life. In summary, due to lack of quality assurance documentation and lack of information supporting impacts under Ecology's narrative criteria requirements, it was determined that these pH data are not appropriate for use in the WQA.

#### Dockton Park Station (Outer Quartermaster Harbor, 47.371618° N, -122.454097°W)

#### Submittal

Waters around Dockton Park in the Outer Quartermaster Harbor should be designed as impaired due to ocean acidification because in ~47% of 194,283 measurements (from 2009 to 2016) pH have fallen below a threshold that is considered harmful for marine organisms such as oysters and pteropods (Fig 15). Washington's listing policy states that waters should be placed on the impaired waters list when a minimum of three excursions exist from all data considered and at least ten percent of values in a given year do not meet the criterion. (WA-001399-40). This also clearly violates the antidegradation and aquatic life standard. The average pH from 2009 to 2016 was 7.83  $\pm$  0.32 ( $\pm$  standard deviation) with approximately 47% of measurements (92,253 out of 194,283) were below 7.8 units. The average aragonite saturation state during the same period was 1.36  $\pm$  0.78 with 60% of estimates were below 1.3. Studies have demonstrated that organisms such as oysters and pteropods in water conditions below these thresholds show signs of negative impacts from ocean acidification.

#### **Ecology Determination**

No action. Upon review of this submittal, there is not sufficient information provided with the data to demonstrate that quality assurance practices appropriate for the WQA were used. Per Policy 1-11, data submittals must include "documentation addressing the accuracy and completeness of the information submitted" and "documentation from the original data submitter indicating that the required QA objectives were met". For example, King County's Marine Monitoring website indicates that all pH data records should be paired with a quality control descriptor, which was missing from this submittal. Upon review of the data, we note that pH values ranged from 3.59 to 8.76, which is a highly unrealistic range for pH in a heavily studied marine environment. This calls into question quality assurance concerns that are not adequately addressed by the third party submittal.

Additionally, there is no presentation of biological data collected at this location that supports the statements that the presented aragonite saturation levels at this location are impacting oysters or pteropods in Quartermaster Harbor. It was determined that these data are not appropriate for use in the WQA due to: lack of quality assurance documentation, discrepancies between data provided and data represented in figures, lack of established aragonite criteria, and lack of information supporting impacts under Ecology's narrative criteria.

# **Quarter Master Yacht Club**

#### Submittal

Waters around Quarter Master Yacht Club should be designed as impaired due to ocean acidification because in ~14% of 122,277 measurements (from 2009 to 2016), pH was below 7.8 unit, a critical threshold that is considered harmful for marine organisms such as oysters and pteropods (Fig 16). Washington's listing policy states that waters should be placed on the impaired waters list when a minimum of three excursions exist from all data considered and at least ten percent of values in a given year do not meet the criterion. (WA-001399-40). This clearly violates the antidegradation and aquatic life standard. The average pH from 2009 to 2016 was  $8.15 \pm 0.29$  ( $\pm$  standard deviation) with approximately 14% of measurements (16,685 out of 122,277) were below 7.8 units (Fig. 16). The average aragonite saturation state during the same period was  $2.63 \pm 1.42$  with 23% of estimates below 1.3. Studies have demonstrated that organisms such as oysters and pteropods in water conditions below these thresholds show signs of negative impacts from ocean acidification

#### **Ecology Determination**

No action. Upon review of this submittal, there is not sufficient information provided with the data to demonstrate that quality assurance practices appropriate for the WQA were used. Per Policy 1-11, data submittals must include "documentation addressing the

accuracy and completeness of the information submitted" and "documentation from the original data submitter indicating that the required QA objectives were met". For example, King County's Marine Monitoring website indicates that all pH data records should be paired with a quality control descriptor, which was missing from this submittal.

Additionally, the data provided were the exact same data as those provided from the Dockton Park monitoring station listed above, which calls into question whether the data provided are actually the data presented in Figure 16 of the submittal.

Nonetheless, pH values in data provided ranged from 3.59 to 8.76, which is a highly unrealistic range for pH in a heavily studied marine environment. This calls into question quality assurance concerns that are not adequately addressed by the third party submittal. There is also no presentation of biological data collected at this location that supports the statements that the presented aragonite saturation levels at this location are impacting oysters or pteropods in Quartermaster Harbor.

It was determined that these data are not appropriate for use in the WQA due to: lack of a quality assurance documentation, discrepancies between data provided and data represented in figures, lack of established aragonite criteria, and lack of information supporting impacts under Ecology's narrative criteria.

#### **Point Williams**

#### Submittal

Waters around Point Williams should be designed as impaired due to ocean acidification because in ~49% of 20,247pH measurements (from 2009 to 2016) have fallen below a threshold that is considered harmful for marine organisms such as oysters and pteropods (Fig 17). Washington's listing policy states that waters should be placed on the impaired waters list when a minimum of three excursions exist from all data considered and at least ten percent of values in a given year do not meet the criterion (WA-001399-40). Water quality in this site clearly violates the numerical and antidegradation standard for pH and aquatic life standard. The average pH from 2009 to 2016 was 7.89  $\pm$  0.25 ( $\pm$  standard deviation) with approximately 49% of measurements (9,825 out of 20,247) were below 7.8 units. The average aragonite saturation state during the same period was 1.58  $\pm$  1.24 with 60% of estimates were below 1.3. Studies have demonstrated that organisms such as oysters and pteropods in water conditions below these thresholds show signs of negative impacts from ocean acidification.

#### **Ecology Determination**

No action. Upon review of this submittal, there is not sufficient information provided with the data to demonstrate that quality assurance practices appropriate for the WQA were used. Per Policy 1-11, data submittals must include "documentation addressing the accuracy and completeness of the information submitted" and "documentation from the original data submitter indicating that the required QA objectives were met". For example,

King County's Marine Monitoring website indicates that all pH data records should be paired with a quality control descriptor, which was missing from this submittal.

Additionally, the data provided were the exact same data as those provided from the Dockton Park monitoring station listed above, which calls into question whether the data provided are actually the data presented in Figure 17. Nonetheless, pH values in data provided ranged from 3.59 to 8.76, which is a highly unrealistic range for pH in a heavily studied marine environment. This calls into question quality assurance concerns that are not adequately addressed by the third party submittal. Additionally, there is no presentation of biological data collected at this location that supports the statements that the presented aragonite saturation levels at this location are impacting oysters or pteropods in Point Williams.

In summary, it was determined that these data are not appropriate for use in the WQA due to: lack of quality assurance documentation, discrepancies between data provided and data represented in figures, lack of established aragonite criteria, and lack of information supporting impacts under Ecology's narrative criteria.

# Seattle Aquarium

## Submittal

Waters around the Seattle Aquarium should be designated as impaired due to ocean acidification because in ~49% of 275,747 measurements (from 2009 to 2016), pH has fallen below a threshold that is considered harmful for marine organisms such as oysters and pteropods (Fig 18). Washington's listing policy states that waters should be placed on the impaired waters list when a minimum of three excursions exist from all data considered and at least ten percent of values in a given year do not meet the criterion (WA-001399-40). This also clearly violates the aquatic, numerical and antidegradation standards. The average pH from 2009 to 2016 at 1 m of depth was 7.77  $\pm$  0.29 ( $\pm$  standard deviation) with approximately 49% of measurements (135,025 out of 275,747) were below 7.8 units. The average aragonite saturation state during the same period was 1.10  $\pm$  0.53 with 72% of estimates were below 1.3. Studies have demonstrated that organisms such as oysters and pteropods in water conditions below these thresholds show signs of negative impacts from ocean acidification.

#### **Ecology Determination**

No action. Upon review of this submittal, there is not sufficient information provided with the data to demonstrate that quality assurance practices appropriate for the WQA were used. Per Policy 1-11, data submittals must include "documentation addressing the accuracy and completeness of the information submitted" and "documentation from the original data submitter indicating that the required QA objectives were met". For example, King County's Marine Monitoring website indicates that all pH data records should be paired with a quality control descriptor, which was missing from this submittal.
Additionally, the data provided were the exact same data as those provided from the Dockton Park monitoring station listed above, which calls into question whether the data provided are actually the data presented in Figure 18. Nonetheless, pH values in data provided ranged from 3.59 to 8.76, which is a highly unrealistic range for pH in a heavily studied marine environment. This calls into question quality assurance concerns that are not adequately addressed by the third party submittal. Additionally, there is no presentation of biological data collected at this location that supports the statements that the presented aragonite saturation levels at this location are impacting oysters or pteropods in Elliott Bay.

In summary, it was determined that these data are not appropriate for use in the WQA due to: lack of quality assurance documentation, discrepancies between data provided and data represented in figures, lack of established aragonite criteria, and lack of information supporting impacts under Ecology's narrative criteria.

## Listing Determination for Ocean Acidification

Upon review of information and data submitted to support listing based on ocean acidification, Ecology did not find any basis for listing waterbody segments in Category 5, as noted in the determinations above.

Ecology has determined that Washington's Puget Sound waters should continue to be listed in Category 2 (waters of concern) for potential impacts to fish and shellfish habitat from human activities, including conditions that makes the waters more vulnerable, such as climate change, urbanization, and ocean acidification. Listing ID #36169 is based on narrative criteria (WAC 173-201A-260(2)) intended to protect existing and designated uses and is intended to be representative of the full extent of Puget Sound. Category 2 is the appropriate category because it applies when some credible data create concerns of possible impact to designated uses, but fall short of demonstrating that there is a persistent problem. Category 2 listings are intended to help Ecology and the public be aware of, track, and investigate these water quality concerns.

# **Microplastics**

Microplastics are generally defined as plastic debris less than 5 mm in length. While microplastics are found in many cosmetic supplies and clothing, they can also be sourced from the breakdown of larger plastic materials. Common pathways for microplastics to enter our environment include littering, ineffective solid waste management practices, wastewater treatment plants, wind, and even some fishing activates (EPA, 2016). Field surveys have found microplastics in surface waters all over the world (Thompson et al., 2009). However, their impacts on the environment is still an emerging field of study.

### **Data and Supporting Studies Considered**

As part of our Water Quality Assessment, Ecology reviewed microplastic data and supporting studies submitted by the Center for Biological Diversity on June 30, 2016 during the Call for Data period to evaluate the potential impacts of microplastics on Washington's surface waters. The following section details Ecology's evaluation and response to the data and information submittal.

### Sound Experience Microplastic Citizen Science Program

Data collected by the Sound Experience Microplastic Citizen Science Program (SEMCSP) at several locations in Puget Sound in 2012 and 2013 wanted to document microplastic concentrations. Samples were collected during multiple cruises using manta nets equipped with 0.33mm plankton net in the upper 0.2m of the water column. Samples were then rinsed over 5 mm and 0.33mm sieves. Methods and data were summarized in an undergraduate research thesis at the University of Washington, Tacoma (Reetz, 2014). However, the study states that no quality assurance or quality control methods were in places for sample collection or lab processing. Additionally, the data records from SEMCSP did not correspond with the data presented in the study results section. For these reasons, this information would not meet Washington's Credible Data Act requirements (RCW 90.48.585) and was not further considered.

### Gilman unpublished thesis

Ecology reviewed results from Gilman (2014), which quantified mean microplastic concentrations on twelve beach sites spanning Budd, Eld, and Totten Inlets in 2013. For each location, one sample event occurred along the high-tide mark following the highest high tide event of the year. The study found the presence of microplastics on the shores of all three inlets, with Budd Inlet containing microplastic concentrations two orders of magnitude larger than Eld and Totten Inlets. However, it is currently unclear how reported concentrations of microplastics along these beaches may "adversely affect characteristic water uses, cause acute or chronic conditions to the most sensitive biota dependent upon those waters, or adversely affect public health", as defined in WAC 173-201A-260(2)(a). While the submitters presented a study of sediment cores from Hawaii beaches found that adding plastic can significantly alter soil permeability and temperature conduction (Carson et al., 2011), it not clear how plastic concentrations on the beaches in Carson and others' study compare to those on Washington's

beaches in Gilman's study. The direct link between these physical changes and potential impacts to organisms in Washington's waters is also uncertain. Additionally, the visible presence of microplastics on beaches does not suggest an impairment to aesthetic uses as defined in WA 173-201A-260(2)(b). Therefore, due to the lack of a coherent connection between environmental alteration and a documented designated use impairment, these data do not meet our criteria for listing under our narrative standards.

#### Davis and Murphy study (2015)

Ecology reviewed results and supporting data from Davis III and Murphy (2015), which summarized results of anthropogenic debris on 37 beaches in Washington State collected 2008 to 2011 and surface water debris collected from Salish Sea to Skagway, Alaska in 2011. The study found considerably higher concentrations of anthropogenic marine debris on beaches in Washington than those reported in beaches outside of Washington State and the United States. The authors also concluded that plastic on Washington's beaches is largely sourced from surface water. While the presence of microplastics in Puget Sound's urbanized areas and Washington beaches is clear, we currently do not have enough information to determine how current levels of microplastics may "adversely affect characteristic water uses, cause acute or chronic conditions to the most sensitive biota dependent upon those waters, or adversely affect public health", as defined in WAC 173-201A-260(2)(a), or impact Washington's aquatic organisms. Due to the lack of a coherent connection between environmental alteration and a documented designated use impairment, these data do not meet our criteria for listing under our narrative standards.

#### Adventurers and Scientists for Conservation Global Microplastics Initiative

Data collected by Adventurers and Scientists for Conservation (ASC) Global Microplastics Initiative in multiple fresh waters and marine waters were also considered for the assessment. All grab samples were collected in one liter bottles by citizen scientist volunteers. Data collected in Washington's waters 2014-2015 ranged from 0 to 32 microplastics/L. Based on current research, it's unclear whether the levels reported can impact local aquatic life. Data submitters cited a study by Lonnstead and Eklov (2016) which found impacts to development, growth, and behaviors of European Perch exposed to varying levels of microplastics. However, European Perch are not resident species in Washington's marine waters. Also, the difference in impacts to fish between the control group and the average microplastic concentration group (10 microplastics/L) were not statistically significant for nearly all factors analyzed. Most impacts were noted in the high exposure group (80 microplastics/L). No waterbodies provided in the ASC dataset had levels above the 80 microplastics/L threshold. Therefore, it is not clear whether microplastic concentrations ASC documented in Washington State are causing impacts to aquatic life. These data do not meet Ecology's criteria for listing under our narrative standards.

## **Determination of listing for Microplastics**

Ecology recognizes the presence of microplastics in Washington's surface waters. However, at this time there is not sufficient research directly correlating levels of microplastics in our waters to impacts to aquatic life or public health. Ecology is committed to continue researching microplastics and their potential role in our WQA. Our future research plans include but are not limited to:

- Tracking development of water quality standards for microplastics
- Identifying standardized sampling methods, laboratory methods, and quality control procedures microplastics as they become available
- Locating microplastics data that meets credible data requirements
- Tracking research demonstrating the impacts of microplastic levels of public health and/or organisms relevant to Washington's surface waters

### References

Carson, H. S., Colbert, S. L., Kaylor, M. J., & McDermid, K. J. (2011). Small plastic debris changes water movement and heat transfer through beach sediments. *Marine Pollution Bulletin*, *62*(8), 1708–1713. <u>http://doi.org/10.1016/j.marpolbul.2011.05.032</u> [11]

Davis, W., & Murphy, A. G. (2015). Plastic in surface waters of the Inside Passage and beaches of the Salish Sea in Washington State. *Marine Pollution Bulletin*, *97*(1-2), 169–177. <u>http://doi.org/10.1016/j.marpolbul.2015.06.019</u>[11]

Environmental Protection Agency. (2016). State of the Science White Paper: A Summary of Literature on the Chemical Toxicity of Plastics Pollution to Aquatic Life and Aquatic Dependent Wildlife. *EPA-82-R-16-009*. [11]

Gilman, N. E. (2013). Examining spatial concentrations of marine micro-plastics on shorelines in south Puget Sound, Washington. *Unpublished Thesis*. [11]

Lonnstedt, O. M., & Eklov, P. (2016). Environmentally relevant concentrations of microplastic particles influence larval fish ecology. *Science*, *352*(6290), 1213 – 1216. <u>http://doi.org/10.1126/science.aad8828</u> [11]

Reetz, L. R. (2014). Characterizing microplastics of surface waters in the Puget Sound, WA. *Unpublished Undergraduate Research.* [11]

Thompson, R.C., Moore, C.J., vom Saal, F.S. & Swan, S.H. (2009). Plastics, the environment and human health: current consensus and future trends. *Philosophical Transactions of the Royal Society B, 364*(1526.: 2153-2166. <u>http://doig.org/10.1098/rstb.2009.0053</u> [11]

# **Other Narrative Submittals**

In addition to the ocean acidification and microplastics submittals described above, other studies and information submitted for consideration under the narrative water quality standards were reviewed to determine if they meet narrative listing requirements in Policy 1-11, Chapter 1.

## Narrative Submittals Used in the WQA

The following is a list of narrative submittals that were determined to meet credible data statutes and Policy 1-11 listing requirements and were included in the WQA.

It is important to note that if a narrative submittal was considered for use in the WQA and numeric data associated with the narrative submittal has already resulted in a listing based on the numeric data, then the numeric listing will prevail as the primary reason for the listing (in other words, we would not create an additional listing based on narrative criteria). It is also important to note that any numeric water quality data associated with, or related to, a specific study that was already in EIM or the federal Water Quality Portal would have been accessed and analyzed directly, regardless of whether or not the narrative submittal was used.

The following submittals were used in the WQA:

Albertson, Skip, Environmental Assessment Program, Memo to Mike Herold, Water Quality Program. 2011. 303(d) Natural Condition Calls for Temperature in Washington State Waters. Memo dated April 5, 2011. [2, 10]

#### **Ecology Notes**

This memo from Ecology Environmental Assessment Program Marine Monitoring Unit staff details regions of Puget Sound were exceedances of the temperature numeric criteria could not be entirely attributed to natural conditions. Methodology for how this information was incorporated in the 2018 WQA is included in the Supplemental Methodology section of this document.

Carey, A.J., L.A. Niewolny, J.A. Lanksbury, and J.E. West. 2014. Toxic Contaminants in Dungeness crab (Metacarcinus magister) and Spot Prawn (Pandalusplatyceros) from Puget Sound, Washington, USA. Washington Department of Fish and Wildlife; WDFW Report Number FPT 14-06. Olympia, Washington. 121pp.<sup>29</sup> [9]

#### **Ecology Notes**

This study was included in the 2018 WQA under the EIM Study ID C1200226. Data included toxics in shellfish tissue data from 2011-2012.

Clark Regional Wastewater District, Discovery Clean Water Alliance, and City of Vancouver. Review of Water Quality Documentation Provided by Ecology for 303(d) listings #49044 and

<sup>&</sup>lt;sup>29</sup> https://wdfw.wa.gov/publications/01608

#49047 for Dissolved Oxygen in the Columbia River. Request for Listing Reassessment Based on Additional Information. Letter dated October 15, 2018. [11]

#### Ecology Notes

This letter contained detailed analysis describing data applicability and quality assurance concerns with a Columbia River dataset that was used in the previous WQA. Ecology staff reviewed the analysis and met with the data collector to discuss concerns. Ecology decided to remove the dataset from the WQA process based on the analysis and discussions with data submitter.

Clark Regional Wastewater District, Discovery Clean Water Alliance, and City of Vancouver. Request to Update Columbia River Dissolved Oxygen Listings #49044 and #49047. Letter dated November 1, 2019. [11]

#### Ecology Notes

This letter documents requests to include EIM Study ID's DCWA2018-CRMonit and DCWA2019-CRMonit in the 2018 WQA. These studies contain dissolved oxygen verification monitoring data collected between 2018-2019 to update Listing IDs 49044 and 49047, which were 303(d) listed last cycle based on data that does not meet our quality assurance requirements (See Clark Regional Water District letter above). The data submitters coordinated with Ecology early in the WQA process to design a monitoring program that would comprehensively capture ambient dissolved oxygen conditions at specific sections of the Columbia River. While the data collected is outside the data window for the 2018 WQA (2006-2017), Ecology granted the use of these data, paired with the analysis documented in the Clark Regional Wastewater Direct letter formerly mentioned, to update the erroneous 303(d) lists based on questionable data.

Lanksbury, J.A., A.J. Carey, L.A. Niewolny, and West, J.E. 2013. Mussel Watch Pilot Expansion 2012/2013: a study of toxic contaminants in blue mussels (Mytilus trossulus) from Puget Sound Washington, USA. Washington Department of Fish and Wildlife. 55pp.<sup>30</sup> [9]

#### **Ecology Notes**

This study was included in the 2018 WQ Assessment under the EIM Study ID WDFW 11-1916.

Marshalonis, D. and Larson, C. 2018. Flow Pulses and Fine Sediments Degrade Stream Macroinvertebrate Communities in King County, Washington, USA. Ecological Indicators, 93: <u>365-378.</u><sup>31</sup> [1]

<sup>&</sup>lt;sup>30</sup> http://wdfw.wa.gov/publications/01597/

<sup>&</sup>lt;sup>31</sup> https://doi.org/10.1016/j.ecolind.2018.04.060

**Ecology Notes** 

This study identified flow alterations, fine sediment, and habitat degradation as the main sources causing macroinvertebrate community impairments in the Big Soos Creek watershed. The study was completed by Washington Department of Ecology and Environmental Protection Agency scientists, as part of the TMDL development process.

Tanner, D.Q., Bragg, H.M., and Johnston, M.W., U.S. Geological Survey Open-File Report 2012-1256: Total dissolved gas and water temperature in the lower Columbia River, Oregon and Washington, water year 2012-Quality-assurance data and comparison to water-quality standards (2013).<sup>32</sup> [9]

#### **Ecology Notes**

Data from the USGS Columbia River monitoring locations associated with this study were included in the 2018 WQA. 303(d) listings on the Washington side of the Columbia are in Category 4A because total dissolved gas and temperature TMDLs exist for the Columbia River. Read the <u>TMDL for Temperature in the Columbia and Lower Snake Rivers</u><sup>33</sup> and <u>TMDL for the Lower Columbia River Total Dissolved Gas.</u><sup>34</sup>

U.S. Geological Survey. NASQAN National Stream Quality Accounting Network – Data Portal.<sup>35</sup> [9]

#### **Ecology Notes**

This data was accessed through the federal water quality portal. See StudyID: National Water Quality Assessment Program (NAWQA) in the <u>Water Quality Portal</u> section of this document.

Washington State Department of Ecology. 2004. Sediment Quality Assessment of Puget Sound's Hood Canal Region. Publication No. 10-03-0006.<sup>36</sup> [2, 9]

#### Ecology Notes

This report is associated with EIM Study ID PSAMP\_SP. Data is from 1997-2014 and contains both sediment chemical and bioassay data.

Washington State Department of Ecology. 2011. Control of Toxic Chemicals in Puget Sound: Assessment of Selected Toxic Chemicals in the Puget Sound Basin, 2007-2011. Publication No. 11-03-055.<sup>37</sup> [2,3,9]

<sup>&</sup>lt;sup>32</sup> https://pubs.usgs.gov/of/2012/1256/pdf/ofr20121256.pdf

<sup>&</sup>lt;sup>33</sup> https://www.epa.gov/sites/production/files/2020-05/documents/r10-tmdl-columbia-snake-temperature-final-05182020-web.pdf

<sup>&</sup>lt;sup>34</sup> https://apps.ecology.wa.gov/publications/SummaryPages/0203004.html

<sup>35</sup> https://nrtwq.usgs.gov/nwqn/#/

<sup>&</sup>lt;sup>36</sup> https://apps.ecology.wa.gov/publications/publications/1003006.pdf

<sup>&</sup>lt;sup>37</sup> https://apps.ecology.wa.gov/publications/publications/1103055.pdf

**Ecology Notes** 

This report is a synthesis of all 3 phases of the Puget Sound Toxics Loading Assessment (PSTLA) program which existed from 2007-2011. Projects where data were collected/created were only included in Phase 3. Other studies were not included in the assessment because they didn't meet data requirements.

Washington State Department of Ecology. 2011. Control of Toxic Chemicals in Puget Sound: Characterization of Toxic Chemicals in Puget Sound and Major Tributaries. Publication No. 11-03-008.<sup>38</sup> [2,3,9]

**Ecology Notes** 

Data collected under this study were included in the 2018 WQA under the EIM Study ID RCOO0010.

Washington State Department of Ecology. 2018. Crystal Creek Multi-Parameter Total Maximum Daily Load: Water Quality Effectiveness Monitoring Report. Publication No. 18-10-007.<sup>39</sup> [2, 3, 4]

#### **Ecology Notes**

This study found chlorine and ammonia levels in Crystal Creek have dropped below water quality standards due to the decommissioning of the Roslyn POTW in 2005, which was the only source of these pollutants identified by the TMDL. Study findings were used as a justification to remove 303(d) listings for ammonia and chlorine on Crystal Creek. Data collected as part of this study were included in the 2018 WQA under EIM Study ID JCRE0001.

Washington State Department of Ecology. 2014. Myron Lake (Yakima County) Verification Monitoring. Publication No. 14-03-032.<sup>40</sup> [2, 3, 4]

#### Ecology Notes

This study found implementation of a siphon in hypolimnion of the lake has reduced ammonia concentrations in all thermo-layers well-below the chronic criteria during the critical period of late summer and after autumnal turnovers. Study was provided with a delisting justification memo from Eastern Regional Office TMDL staff to support removing Myron lake off the 303(d) for ammonia.

Washington State Department of Ecology. 2016. Okanogan River Tributaries pH 303(d) Listing Verification Study. Publication No 16-03-036.<sup>41</sup> [2, 3]

**Ecology Notes** 

<sup>&</sup>lt;sup>38</sup> https://apps.ecology.wa.gov/publications/publications/1103008.pdf

<sup>&</sup>lt;sup>39</sup> https://apps.ecology.wa.gov/publications/documents/1810007.pdf

<sup>&</sup>lt;sup>40</sup> https://apps.ecology.wa.gov/publications/SummaryPages/1403032.html

<sup>&</sup>lt;sup>41</sup> https://apps.ecology.wa.gov/publications/documents/1603036.pdf

This verification monitoring and modeling study found pH in the Okanogan River Basin was often naturally higher than pH criteria, due to high alkalinity levels driven by carbonate geology. Study also found biological activity, natural or human-influenced, has minimal impact on pH and dissolved oxygen levels in the basin. Study findings were used to justify removal of several 303(d) listings for pH and dissolved oxygen in the Okanogan River Basin.

Washington State Department of Ecology. 2019. Puget Sound Nutrient Source Reduction <u>Project. Volume 1: Model Updates and Bounding Scenarios. Publication No. 19-03-001.</u><sup>42</sup> [2, 3, 4]

#### **Ecology Notes**

This document details information background, methods, and results of the most recent runs of Ecology's Salish Sea Model. Methodology for how this information was incorporated in the can be found the Supplemental Methodologies section of this document.

Washington State Department of Ecology. 2010. Sediment Quality Assessment of the Hood Canal Region of Puget Sound: Spatial/Temporal Sediment Monitoring Element of the Puget Sound Assessment and Monitoring Program. Publication No. 10-03-005.<sup>43</sup> [2,3]

**Ecology Notes** 

This study was from the same data set as the study above (Ecology Publication #10-03-006). Data is associated with EIM Study ID PSAMP\_SP.

Washington State Department of Ecology. 2011. South Puget Sound Dissolved Oxygen Study: Interim Nutrient Load Summary for 2006-2007. Publication No. 11-03-001.<sup>44</sup> [2,3]

**Ecology Notes** 

There are over 500 listings from numerous water quality studies related to the Salish Sea Dissolved Oxygen Model, the South Puget Sound Dissolved Oxygen Study, and other studies related to The Puget Sound Nutrient Reduction Project. Ambient monitoring data collected as part of this study for ammonia, dissolved oxygen, temperature, and pH were used in the WQA in accordance with Policy 1-11 (StudyID MROB0004). See <u>Puget Sound Reduction</u> <u>Project webpage</u><sup>45</sup>

Washington State Department of Ecology. 2008. South Puget Sound Dissolved Oxygen Study: Key Findings on Nitrogen Sources from the Data Report. Publication No. 08-10-099.<sup>46</sup> [2,3]

<sup>&</sup>lt;sup>42</sup> https://apps.ecology.wa.gov/publications/documents/1903001.pdf

<sup>43</sup> https://apps.ecology.wa.gov/publications/publications/1003005.pdf

<sup>&</sup>lt;sup>44</sup> https://apps.ecology.wa.gov/publications/publications/1103001.pdf

<sup>&</sup>lt;sup>45</sup> https://ecology.wa.gov/Water-Shorelines/Puget-Sound/Helping-Puget-Sound/Reducing-Puget-Soundnutrients/Puget-Sound-Nutrient-Reduction-Project

<sup>&</sup>lt;sup>46</sup> https://apps.ecology.wa.gov/publications/publications/0810099.pdf

**Ecology Notes** 

This is a fact sheet associated with the South Puget Sound Dissolved Oxygen Study listed above (StudyID MROB0004).

Washington State Department of Ecology. 2014. South Puget Sound Dissolved Oxygen Study: Water Quality Model Calibration and Scenarios. Publication No. 14-03-004.<sup>47</sup> [2,3]

**Ecology Notes** 

Ambient monitoring data collected as part of this study for ammonia, dissolved oxygen, temperature, and pH were used in the WQA in accordance with Policy 1-11 (StudyID MROB0004).

Washington State Department of Ecology. 2011. Toxics in Surface Runoff to Puget Sound Phase 3 Data and Load Estimates. Publication No. 11-03-010.<sup>48</sup> [2,3,9]

**Ecology Notes** 

Data collected under this study were included in the 2018 WQA under the EIM Study ID PSTox001.

Washington Department of Fish and Wildlife. English Sole Species Monitored: Toxic Contaminants in Puget Sound Fish and Shellfish.<sup>49</sup> [9, 11]

**Ecology Notes** 

This submittal is a website that provides information on their salmon monitoring program Data from this program (2007-2017 data) was included in the 2018 WQ Assessment under the EIM Study ID WDFW\_TBiOS\_EngSole.

Washington Department of Fish and Wildlife. Salmon Species Monitored: Toxic Contaminants in Puget Sound Fish and Shellfish.<sup>50</sup> [9, 11]

**Ecology Notes** 

This submittal is a website that provides information on their salmon monitoring program. For the 2018 WQ Assessment, Resident Blackmouth Chinook Salmon data collected 2016-2017 by WDFW was used. See EIM Study ID: WDFW\_TBIOS\_Chinook.

Washington State Department of Health. 2021. Fish Consumption Advisories in Washington State. Accessed online as of 2/28/2021.<sup>51</sup> [11]

Ecology Notes

In accordance with our Policy 1-11 methodology for assessing the human health criteria harvesting use, Ecology reviewed Washington State Department of Health fish consumption

<sup>&</sup>lt;sup>47</sup> https://apps.ecology.wa.gov/publications/publications/1403004.pdf

<sup>&</sup>lt;sup>48</sup> https://apps.ecology.wa.gov/publications/publications/1103010.pdf

<sup>&</sup>lt;sup>49</sup> https://wdfw.wa.gov/species-habitats/science/marine-toxics/species-monitored

<sup>&</sup>lt;sup>50</sup> https://wdfw.wa.gov/species-habitats/science/marine-toxics/species-monitored

<sup>&</sup>lt;sup>51</sup> https://www.doh.wa.gov/CommunityandEnvironment/Food/Fish/Advisories

advisories for any information documenting impairments of the fish/shellfish harvesting uses. Review the advisories and the accompanying data resulted in placing four sections of the Spokane River and one section of Lake Spokane on the 303(d) for Polybrominated Diphenyl Ethers (PBDEs). Methodology for how this information was incorporated in the 2018 WQA is included in the section Supplemental Methodology section of this document.

## Narrative Submittals Not Used in the WQA

Ecology's review of narrative submittals identified numerous submittals that were determined to not meet the listing requirements for WQA purposes because, for one or more reasons, the submittal did not meet credible data requirements described in statutes (RCW 90.48.570-590) and WQP Policy 1-11, Chapter 1: *Washington's Water Quality Assessment Listing Methodology to Meet Clean Water Act Requirements* and Chapter 2: *Ensuring Credible Data for Water Quality Management*.

It is important to note that submittals that were not used to make a listing based on narrative criteria may have numeric data associated with the submittal. If numeric water quality data associated with, or related to, the study was already in EIM or the federal Water Quality Portal, it would have been accessed directly, regardless of whether or not the narrative submittal was used.

The following tables provide a list of submittals, including ocean acidification and microplastics submittals, that were determined to not meet the listing requirements for use for the WQA, along with the reason for not being used:

<u>Table 7:</u> Studies where location was not within, near or representative of Washington waters and/or study includes organisms not found in Washington waters (examples: study located in another state or country, study uses species not found in Washington, study is on a global scale).

Table 8: Studies where the study intent does not demonstrate designated use impairment to ambient water conditions (examples: aquatic population comparison studies, wildlife health studies, lab studies).

<u>Table 9:</u> Modeled results not appropriate for determining whether water quality standards in Washington are being met in specific waters (Note: any numeric data on specific waterbody segments associated with the model would be used if accessible in EIM or federal WQ portal).

Table 10: Submittals from third parties that did not include documentation addressing the accuracy and completeness of the information submitted to Ecology, and/or study methods and data were not documented or readily available (examples: news articles, fact sheets, websites).

Table 11: Study submittals that fell outside the WQA cycle window of 2006 – 2017.

Table 12: Data associated with a submittal was considered for listing, but did not show exceedances of the standards, or did not meet data or quality assurance requirements in accordance with credible data statutes and policies (examples: quality assurance of data not provided, study does not validate exceedance of numeric or violation of narrative standards).

Table 13: Study submittals that are not a water quality study, and are not related to determining ambient water conditions (examples: vessel traffic study, fish growth comparisons, species descriptions, efficacy of research methods, endangered species declarations).

**Table 7**. Studies where location was not within, near or representative of Washington waters and/or study includes organisms not found in Washington waters

| Narrative Data Submittal                                                                                                                                                                                                                                                                                   | Reasons(s) for not using Submittal                                                                                                                                      |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| NMFS, Lower Columbia River Conservation and<br>Recovery Plan for Oregon Populations of Salmon<br>and Steelhead (2010)<br><u>https://www.fisheries.noaa.gov/resource/documen</u><br><u>t/recovery-plan-lower-columbia-river-coho-salmon-<br/>lower-columbia-river-chinook</u>                               | Focus of website, in Oregon, is unrelated to<br>determining water quality or ambient<br>conditions of specific waterbodies in<br>Washington.                            |
| Incardona, J. et al. 2015. Very low embryonic crude<br>oil exposures cause lasting cardiac defects in<br>salmon and herring. Scientific Reports. 5:13499.<br>DOI: 10.1038/srep13499.<br><u>https://ui.adsabs.harvard.edu/abs/2015NatSR513</u><br><u>499I/abstract</u>                                      | This study was not specific to Washington<br>waters. It reviews data and information<br>from the Exxon Valdez oil spill and long term<br>effects on salmon and herring. |
| Graham and Brun, Determining Lamprey Species<br>Composition, Larval Distribution, and Adult<br>Abundance in the Deschutes River, Oregon,<br>Subbasin (2007);NMFS, Columbia River Estuary<br>Recovery Plan Module for Salmon and Steelhead<br>(2011)<br><u>https://www.osti.gov/biblio/897845</u>           | Focus of study, in Oregon, is unrelated to<br>determining water quality or ambient<br>conditions of specific waterbodies in<br>Washington.                              |
| NMFS, Conservation and Recovery Plan for Oregon<br>Steelhead Populations in the Middle Columbia River<br>Steelhead Distinct Population Segment (2009)<br><u>https://www.fisheries.noaa.gov/resource/documen</u><br><u>t/recovery-plan-middle-columbia-river-steelhead-<br/>distinct-population-segment</u> | Focus of the plan, in Oregon, is unrelated to<br>determining water quality or ambient<br>conditions of specific waterbodies in<br>Washington.                           |

| Narrative Data Submittal                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Reasons(s) for not using Submittal                                                                                                                                                                                                                                                                               |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| COSEWIC. 2008. COSEWIC assessment and update<br>status report on the Killer Whale Orcinus orca,<br>Southern Resident population, Northern Resident<br>population, West Coast Transient population,<br>Offshore population and Northwest Atlantic /<br>Eastern Arctic population, in Canada.<br><u>https://www.canada.ca/en/environment-climate-<br/>change/services/species-risk-public-<br/>registry/cosewic-assessments-status-reports/killer-<br/>whale-2008.html</u> | This report from Canada is not specific to<br>Washington waters.                                                                                                                                                                                                                                                 |
| Garrett, C., and Ross, P.S. 2010. Recovering resident<br>killer whales: A guide to contaminant sources,<br>mitigation, and regulations in British Columbia. Can.<br>Tech. Rep. Fish. Aquat. Sci. 2894: xiii + 224 p.<br><u>https://www.arlis.org/docs/vol1/D/690987332.pdf</u>                                                                                                                                                                                           | This report from Canada is not specific to<br>Washington waters. Intent of the study was<br>not to demonstrate ambient water<br>conditions at specific locations in<br>Washington. This study looks at the source,<br>transport and fate features of contaminants<br>in the British Columbia marine environment. |
| Alonso, M. et al. 2014. Anthropogenic (PBDE) and<br>naturally-produced (MeO-PBDE) brominated<br>compounds in cetaceans — A review. Science of<br>The Total Environment. Volume 481, 15 May 2014,<br>Pages 619-634.<br><u>https://www.sciencedirect.com/science/article/abs</u><br>/pii/S0048969714001843                                                                                                                                                                 | This is a global comparison study that<br>focuses on brominated compounds in<br>cetaceans. Focus of study was unrelated to<br>determining water quality or ambient<br>conditions of specific waterbodies in<br>Washington.                                                                                       |
| U.S.G.S., Woods Hole Coastal and Marine Science<br>Center, Didemnum vexillum, Triangle, Umpqua<br>River mouth, Oregon, Images<br><u>https://www.usgs.gov/centers/whcmsc</u>                                                                                                                                                                                                                                                                                              | The reference to the Oregon coast is outside<br>of Washington waters. Focus of website is<br>unrelated to determining water quality or<br>ambient conditions of specific waterbodies.                                                                                                                            |
| Brette, F. et al. 2016. A Novel Cardiotoxic<br>Mechanism for a Pervasive Global Pollutant.<br>Scientific Reports. 7:41476. DOI:<br>10.1038/srep41476.<br><u>https://www.nature.com/articles/srep41476</u>                                                                                                                                                                                                                                                                | This global study based on the Deepwater<br>Horizon disaster in the Gulf of Mexico is not<br>specific to Washington waters. Focus of<br>study was unrelated to determining water<br>quality or ambient conditions of specific<br>waterbodies.                                                                    |
| Kidd, K. et al. 2007. Collapse of a fish population<br>after exposure to a synthetic estrogen. PNAS. May<br>22, 2007. vol. 104 No. 21, 8897–8901.<br>https://www.pnas.org/content/104/21/8897                                                                                                                                                                                                                                                                            | This study was located off of northwestern<br>Ontario, Canada in the Experimental Lakes<br>Area, and is not specific to Washington<br>waters.                                                                                                                                                                    |

| Narrative Data Submittal                                                                                                                                                                                                                                                                                                                                                | Reasons(s) for not using Submittal                                                                                                                                                                                                                            |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| U.S.G.S., Woods Hole Coastal and Marine Science<br>Center, Didemnum vexillum - Oregon Coast<br>Occurrences and Images<br><u>https://www.usgs.gov/centers/whcmsc</u>                                                                                                                                                                                                     | The reference to the Oregon coast is outside<br>of Washington waters. Focus of website is<br>unrelated to determining water quality or<br>ambient conditions of specific waterbodies.                                                                         |
| National Ocean and Atmosphere Administration's<br>Pacific Marine Laboratory (NOAA/PMEL) West<br>Coast Ocean Acidification monitoring pH data<br>values from research surveys, submitted via<br>6/30/2016 correspondence to Ecology. Submittal<br>includes pH data collected on NOAA/PMEL-led<br>West Coast Ocean Acidification cruises in 2007,<br>2011, 2012 and 2013. | None of the 129 monitoring locations were<br>located within Washington State waters. All<br>monitoring locations were several miles off<br>the Pacific Coast, spanning from British<br>Columbia, Canada to the southern Baja<br>California Peninsula, Mexico. |
| National Ocean and Atmosphere Administration's<br>Pacific Marine Laboratory (NOAA/PMEL) West<br>Coast Ocean Acidification (WCOA) cruise,<br>information on biological impacts on pteropods on<br>the WOAC cruises, 2011 and 2013, submitted via<br>6/30/2016 correspondence to Ecology.                                                                                 | None of the pteropod monitoring locations<br>from this submittal were located within<br>Washington State waters. All monitoring<br>locations were several miles off the Pacific<br>Coast.                                                                     |
| Center for Biological Diversity, data and information<br>submittal to list Tatoosh Island (48.3933°N,<br>124.7384°W) as impaired for ocean acidification,<br>submitted via 6/24/2016 correspondence to<br>Ecology.                                                                                                                                                      | The monitoring site where the Wootton<br>study was conducted is located within the<br>boundaries of the Makah Indian reservation.<br>The monitoring site is not subject to<br>Washington State's authority because it is<br>located within a tribal boundary. |
| Center for Biological Diversity, data and information<br>submittal to list Cape Elizabeth OA mooring<br>(47.35°N, 124.73°W) as impaired for ocean<br>acidification, submitted via 6/24/2016<br>correspondence to Ecology.                                                                                                                                               | The Cape Elizabeth station is a NOAA<br>National Data Buoy Center Buoy off the<br>Washington coast. This mooring location is<br>located 45 nautical miles northwest of<br>Aberdeen, Washington and is well outside<br>of Washington coastal waters.           |
| Center for Biological Diversity, data and information<br>submittal to list La Push OA mooring (47.97ºN, -<br>124.95ºW) as impaired for ocean acidification,<br>submitted via 6/24/2016 correspondence to<br>Ecology.                                                                                                                                                    | The La Push station is a permanent ocean<br>observing array off the outer coast of<br>Washington near La Push. The La Push OA<br>mooring location is well outside of<br>Washington coastal waters.                                                            |

**Table 8**. Studies where the study intent does not demonstrate designated use impairment to ambient water conditions at specific locations in Washington; study does not document that impairment of the existing or designated use is related to the environmental alteration on that same waterbody segment or grid.

| Narrative Data Submittal                                                                                                                                                                                                                                                                                                                                          | Reasons(s) for not using Submittal                                                                                                                                                                                                                                                                                      |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Columbia Basin Bulletin, Study Details Toxic<br>Accumulation in Puget Sound Seabirds Eating Fish,<br>Including Columbia Chinook (Oct. 31, 2014) citing<br>study by Northwest Fisheries Science Center<br><u>https://www.cbbulletin.com/study-details-toxic-</u><br><u>accumulation-in-puget-sound-seabirds-eating-fish-</u><br><u>including-columbia-chinook/</u> | The article is on comparison of seabirds that<br>consume fish on the outer Washington coast<br>compared with seabirds nesting in Puget<br>Sound.                                                                                                                                                                        |
| Ecology, A Toxics-Focused Biological Observing<br>System for Puget Sound; Developed by the<br>Washington Department of Fish and Wildlife and<br>NOAA Fisheries for the Puget Sound Partnership<br>(Jan. 2010)<br><u>https://apps.ecology.wa.gov/publications/publicati</u><br><u>ons/1010004.pdf</u>                                                              | This study looks at biologically-based<br>monitoring as an important component of<br>efforts to protect estuaries from toxic<br>chemicals.                                                                                                                                                                              |
| Ecology, Control of Toxic Chemicals in Puget Sound<br>Phase 2: Sediment Flux/Puget Sound Sediments<br>Bioaccumulation Model – Derived Concentrations<br>for Toxics Final Summary Technical Report (May<br>2009)<br><u>https://apps.ecology.wa.gov/publications/publicati</u><br><u>ons/0909069.pdf</u>                                                            | The goal of the project was to inform a source control strategy to reduce the loading of toxics into Puget Sound.                                                                                                                                                                                                       |
| Ecology, Phase 1: Initial Estimate of Toxic Chemical<br>Loadings to Puget Sound (Oct. 2007)<br><u>https://apps.ecology.wa.gov/publications/publicati</u><br><u>ons/0710079.pdf</u>                                                                                                                                                                                | This effort was initiated by a team of toxic<br>contamination experts from various<br>governmental entities around Puget Sound<br>to assess toxic contaminant loading to Puget<br>Sound so that agencies can select how and<br>where to target toxics reduction efforts to<br>provide the most benefit for Puget Sound. |

| Narrative Data Submittal                                                                                                                                                                                                                                                                                                                                                                              | Reasons(s) for not using Submittal                                                                                                                                                                                                                                                                                   |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Ecology, Persistent Organic Pollutants in Marine<br>Plankton from Puget Sound (March 2011)<br><u>https://apps.ecology.wa.gov/publications/publicati</u><br><u>ons/1110002.pdf</u>                                                                                                                                                                                                                     | This project was designed to evaluate the<br>extent and magnitude of Persistent Organic<br>Pollutant (POP) exposure in organisms that<br>occupy the lowest trophic levels in the<br>pelagic ecosystem of Puget Sound, and to<br>gain a better understanding of the pathways<br>of contaminants within this food web. |
| O'Neill, S., et. al. 2015. Toxic contaminants in<br>juvenile Chinook salmon (Oncorhynchus<br>tshawytscha) migrating through estuary, nearshore<br>and offshore habitats of Puget Sound. Washington<br>Department of Fish and Wildlife, Report FPT 16-02.<br><u>https://wdfw.wa.gov/publications/01796</u>                                                                                             | The study addresses the general hypothesis<br>that chemicals released into Puget Sound<br>from human activities and development<br>reduces the health and productivity of<br>salmon and their food supply. Data<br>associated with this study was considered<br>for use in the WQA.                                  |
| Ecology, Control of Toxic Chemicals in Puget Sound<br>Evaluation of Loading of Toxic Chemicals to Puget<br>Sound by Direct Groundwater Discharge (April<br>2011)<br><u>https://apps.ecology.wa.gov/publications/publicati</u><br><u>ons/1103023.pdf</u>                                                                                                                                               | This project relates to work done from 2010-<br>2011, when the Washington State<br>Department of Ecology developed<br>quantitative estimates of the annual toxic<br>chemical load delivered to Puget Sound by<br>direct groundwater discharge.                                                                       |
| Puget Sound Ecosystem Monitoring Program Toxics<br>Work Group. 2017. 2016 Salish Sea Toxics<br>Monitoring Review: A Selection of Research. C.A.<br>James, J. Lanksbury, D. Lester, S. O'Neill, T. Roberts,<br>C. Sullivan, J. West, eds. Puget Sound Ecosystem<br>Monitoring Program. Tacoma, WA.<br><u>https://pspwa.app.box.com/s/0luxyi979sz3d9cx900</u><br><u>vlr4ot6axqwk8/file/391719053529</u> | This work group review provided a summary of toxics research in the Salish Sea.                                                                                                                                                                                                                                      |

| Narrative Data Submittal                                                                                                                                                                                                                                | Reasons(s) for not using Submittal                                                                                                                                                                                                                                                                                                                                                                                      |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| USFWS, Impacts of Stormwater Runoff on Coho<br>Salmon in Restored Urban Streams (2007)<br><u>https://your.kingcounty.gov/dnrp/library/water-and-land/science/seminars/October-2007/Pre-Spawn-Mortality-of-Coho-Salmon-in-Restored-Urban-Streams.pdf</u> | This study focused on impacts to coho salmon in restored urban streams.                                                                                                                                                                                                                                                                                                                                                 |
| USFWS, Information Sheet, Summary of Kootenai<br>River White Sturgeon Studies Upper Columbia Fish<br>and Wildlife Office (2007/2008)<br><u>https://www.fws.gov/idaho/promo.cfm?id=177175</u><br>835                                                     | The studies focus specifically on white<br>sturgeon, and evaluate potential effects to<br>the fish from chlorine and copper in the<br>Kootenai and Columbia Rivers, as well as<br>three herbicides proposed for control of<br>Eurasian watermilfoil in the Kootenai River.                                                                                                                                              |
| NMFS, Landscape Ecotoxicology of Coho Salmon<br>Spawner Mortality in Urban Streams (Aug. 17,<br>2011)<br><u>https://www.fws.gov/wafwo/documents/PR_Lands</u><br><u>capeEcotoxofCohoSalmonSpawner.pdf</u>                                                | This study found that spawner mortality was<br>most closely and positively correlated with<br>the relative proportion of local roads,<br>impervious surfaces, and commercial<br>property within a basin.                                                                                                                                                                                                                |
| Ecology, Relationships Between Sediment Quality,<br>Dissolved Oxygen, and Benthic Invertebrates in<br>Hood Canal (Dec. 2007)<br><u>https://apps.ecology.wa.gov/publications/documen</u><br><u>ts/0703048.pdf</u>                                        | Any D.O. and sediment data in EIM was<br>considered and used for the WQA. As part of<br>the Hood Canal Dissolved Oxygen Program,<br>scientists analyzed data from Hood Canal<br>studies conducted from 1932 to 2005. These<br>data were examined to evaluate their<br>relationship to each other and to respond to<br>the question "How do low dissolved oxygen<br>levels affect the benthic infauna in Hood<br>Canal?" |

| Narrative Data Submittal                                                                                                                                                                                                                                                     | Reasons(s) for not using Submittal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Ecology, Relationships between the Composition of<br>the Benthos and Sediment and Water Quality<br>Parameters in Hood Canal Task IV – Hood Canal<br>Dissolved Oxygen Program (Dec. 2007)<br><u>https://apps.ecology.wa.gov/publications/documen</u><br><u>ts/0703040.pdf</u> | Any D.O. and sediment data in EIM was considered and used for the WQA.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Ecology, Chemical Contamination and Toxicity in<br>Sediments from Hood Canal, WA (1952 – 2005)<br><u>https://apps.ecology.wa.gov/publications/documen</u><br><u>ts/1003006.pdf</u>                                                                                           | Any D.O. and sediment data in EIM was<br>considered and used for the WQA. This<br>document is a summary for scientists of the<br>findings of the study "Relationships between<br>the Composition of the Benthos and<br>Sediment and Water Quality Parameters in<br>Hood Canal". Analysis of Hood Canal data<br>collected from 1932 to 2005 revealed that<br>sediment texture was the most important<br>factor controlling invertebrate community<br>composition, followed by dissolved oxygen,<br>organic carbon content of the sediments,<br>and station depth. |
| Ecology, Relationships between Dissolved Oxygen<br>Levels and Benthos in Hood Canal<br><u>https://apps.ecology.wa.gov/publications/documen</u><br><u>ts/0703040.pdf</u>                                                                                                      | Any D.O. and sediment data in EIM was<br>considered and used for the WQA. This<br>document is a summary for the general<br>public of the findings of the study<br>"Relationships between the Composition of<br>the Benthos and Sediment and Water<br>Quality Parameters in Hood Canal". Steps<br>were taken in this report to develop initial<br>critical dissolved oxygen thresholds used to<br>determine when benthic infauna are at risk.                                                                                                                     |

| Narrative Data Submittal                                                                                                                                                                                                                                                                                                                                                                                                               | Reasons(s) for not using Submittal                                                                                                                                                                                                                                                                                   |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| NMFS, Recurrent Die-Offs of Adult Coho Salmon<br>Returning to Spawn in Puget Sound Lowland Urban<br>Streams (Dec. 14, 2011)<br><u>https://journals.plos.org/plosone/article?id=10.137</u><br><u>1/journal.pone.0028013</u>                                                                                                                                                                                                             | Several Seattle-area streams in Puget Sound<br>were the focus of habitat restoration<br>projects in the 1990s. Post-project<br>effectiveness monitoring surveys revealed<br>anomalous behaviors among adult coho<br>salmon returning to spawn in restored<br>reaches.                                                |
| O'Neill, S.M., A.J. Carey, J.A. Lanksbury, L.A.<br>Niewolny, G.M. Ylitalo, L.L. Johnson, J.E. West.<br>2015. Toxic contaminants in juvenile Chinook<br>salmon (Oncorhynchus tshawytscha) migrating<br>through estuary, nearshore and offshore habitats of<br>Puget Sound. Washington Department of Fish and<br>Wildlife; WDFW Report Number FPT 16-02.<br>Olympia, Washington. 132pp.<br><u>https://wdfw.wa.gov/publications/01796</u> | This study was designed to provide a<br>synoptic WQA of contaminant exposure for<br>major populations of juvenile Chinook<br>salmon from Puget Sound as the fish<br>migrate from their freshwater to marine<br>habitats.                                                                                             |
| West, J.E., J.A. Lanksbury, and S.M. O'Neill. 2011.<br>Control of Toxic Chemicals in Puget Sound Phase 3:<br>Persistent Organic Pollutants in Marine Plankton<br>from Puget Sound. Washington Department of Fish<br>and Wildlife. Olympia, Washington. 70pp<br><u>https://wdfw.wa.gov/publications/01363</u>                                                                                                                           | This project was designed to evaluate the<br>extent and magnitude of Persistent Organic<br>Pollutant (POP) exposure in organisms that<br>occupy the lowest trophic levels in the<br>pelagic ecosystem of Puget Sound, and to<br>gain a better understanding of the pathways<br>of contaminants within this food web. |
| O'Neill, S.M. and J.E. West. 2007. Persistent<br>Bioaccumulative Toxics in the Food Web. Pages<br>140-148; 151-156 in Puget Sound Action Team,<br>editors. 2007 Puget Sound Update: Ninth Report of<br>the Puget Sound Assessment and Monitoring<br>Program. Washington Department of Fish and<br>Wildlife; Publication Number PSAT 07-02. Olympia,<br>Washington. 276pp.<br>https://wdfw.wa.gov/publications/01038                    | This is a summary technical report of the<br>conditions of Puget Sounds as measured by<br>ongoing monitoring and research activities<br>of the Puget Sound Assessment and<br>Monitoring Program (PSAMP).                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                      |

| Narrative Data Submittal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Reasons(s) for not using Submittal                                                                                                                                                                                                                                                                                                                                                             |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| West, J.E., and S.M. O'Neill. 2007. Thirty years of<br>persistent bioaccumulative toxics in Puget Sound:<br>time trends of PCBs and PBDE flame retardants in<br>three fish species. 2007 Research in the Georgia<br>Basin and Puget Sound Conference. Puget Sound<br>Action Team. Vancouver, B.C. Washington<br>Department of Fish and Wildlife, Olympia,<br>Washington<br><u>https://wdfw.wa.gov/publications/01038</u>                                                                                                                | This report was put together In order to<br>better understand the fate and transport of<br>PCBs in the Puget Sound ecosystem, and to<br>assess the recent trends this project<br>observed PSAMP monitoring within a larger<br>historical context. Combined and analyzed<br>PSAMP monitoring data with a number of<br>previously published studies and<br>unpublished data dating back to 1975. |
| O'Neill, S.M., G.M. Ylitalo, J.E. West., J. Bolton, C.A.<br>Sloan, and M.M. Krahn. 2006. Regional patterns of<br>persistent organic pollutants in five Pacific salmon<br>species (Oncorhynchus spp.) and their contributions<br>to contaminant levels in northern and southern<br>resident killer whales (Orcinus orca). Presentation<br>at 2006 Southern Resident Killer Whale Symposium.<br>Seattle, Washington. Washington Department of<br>Fish and Wildlife, Olympia, Washington.<br><u>https://wdfw.wa.gov/publications/01034</u> | The main objective of this study was to<br>determine if Pacific salmon had species<br>specific regional body burdens of<br>contaminants that could differentially affect<br>contaminant levels is northern and southern<br>residents.                                                                                                                                                          |
| Meador, J. 2013. Perspective: Do chemically<br>contaminated river estuaries in Puget Sound<br>(Washington, USA) affect the survival rate of<br>hatchery-reared Chinook salmon? Can. J. Fish.<br>Aquat. Sci. 71: 162–180 (2014)<br>dx.doi.org/10.1139/cjfas-2013-0130.<br>https://cdnsciencepub.com/doi/10.1139/cjfas-<br>2013-0130                                                                                                                                                                                                      | This was a comparative study of hatchery-<br>reared, ocean-type juvenile Chinook salmon<br>with coho salmon from the same hatcheries.                                                                                                                                                                                                                                                          |

| Narrative Data Submittal                                                                                                                                                                                                                                                                                          | Reasons(s) for not using Submittal                                                                                                                                                                                                                                                                                                                                      |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Meador, J., A. Yeh, G. Young, and E. Gallagher.<br>2016. Contaminants of emerging concern in a large<br>temperate estuary. Environ Pollut. 2016 June; 213:<br>254–267. doi:10.1016/j.envpol.2016.01.088.<br><u>https://www.sciencedirect.com/science/article/abs</u><br>/pii/S0269749116300884                    | This study focused on studying<br>contaminants of emerging concern (CECs) in<br>effluent from two wastewater treatment<br>plants and whole-body juvenile Chinook<br>salmon (Oncorhynchus tshawytscha) and<br>Pacific staghorn sculpin (Leptocottus<br>armatus) in estuaries receiving effluent, to<br>gain information on detection of CECs.                            |
| Meador, J, A. Yeh, and E. Gallagher. 2018. Adverse<br>metabolic effects in fish exposed to contaminants<br>of emerging concern in the field and laboratory.<br>Environmental Pollution, Volume 236, May 2018,<br>Pages 850-861.<br><u>https://pubmed.ncbi.nlm.nih.gov/29471284/</u>                               | This study focused on studying<br>contaminants of emerging concern (CECs) in<br>effluent from two wastewater treatment<br>plants and whole-body juvenile Chinook<br>salmon (Oncorhynchus tshawytscha) and<br>Pacific staghorn sculpin (Leptocottus<br>armatus) in estuaries receiving effluent, to<br>gain information on detection of CECs.                            |
| Gockel, C. and T. Mongillo. 2013. Potential Effects<br>of PBDEs on Puget Sound and Southern Resident<br>Killer Whales: A Report on the Technical<br>Workgroups and Policy Forum.<br><u>https://www.eopugetsound.org/sites/default/files/</u><br><u>features/resources/PBDEs_Puget_Sound_Report.pd</u><br><u>f</u> | In coordination with NMFS, EPA Region 10's<br>Office of Water and Watersheds hosted a<br>series of technical workgroups during spring<br>2013 to study potential effects of PBDEs on<br>Puget Sound and Southern Resident Killer<br>Whales.                                                                                                                             |
| NOAA Fisheries. 2014. Southern Resident Killer<br>Whales: 10 Years of Research and Conservation.<br><u>https://www.noaa.gov/media-release/noaa-</u><br><u>fisheries-10-year-study-highlights-threats-to-</u><br><u>southern-resident-killer-whales</u>                                                            | NOAA Fisheries used new findings to<br>increase protections for killer whales. These<br>include developing new rules for boat<br>operations in the vicinity of the whales,<br>evaluating how fishing and habitat loss<br>affects whales through changes in prey<br>abundance, and developing proactive plans<br>to protect whales in the event of a major oil<br>spill. |

| Narrative Data Submittal                                     | Reasons(s) for not using Submittal                                                       |
|--------------------------------------------------------------|------------------------------------------------------------------------------------------|
| NMFS, PBDEs and Killer Whales in Puget Sound (July 23, 2013) | The report is on the pathways and effects of PBDEs on Killer Whales in Puget Sound.      |
| https://www.eopugetsound.org/articles/report-                |                                                                                          |
| potential-effects-pbdes-puget-sound-and-southern-            |                                                                                          |
| <u>resident-killer-whales</u>                                |                                                                                          |
| EPA, Potential Effects of PBDEs on Puget Sound and           | In coordination with NMFS, EPA Region 10's                                               |
| Southern Resident Killer Whales: A Report on the             | Office of Water and Watersheds hosted a                                                  |
| Technical Workgroups and Policy Forum (July 24, 2013)        | series of technical workgroups during spring 2013 to study potential effects of PBDEs on |
| https://www.eopugetsound.org/articles/report-                | Puget Sound and Southern Resident Killer                                                 |
| potential-effects-pbdes-puget-sound-and-southern-            | whales.                                                                                  |
| resident-killer-whales                                       |                                                                                          |
| NMFS, Puget Sound Ecosystem Monitoring Program               | The objective of this report is to collate and                                           |
| (PSEMP) Puget Sound Marine Waters: 2013                      | distribute the valuable physical,                                                        |
| Overview (2013)                                              | chemical, and biological information                                                     |
| https://repository.library.noaa.gov/view/noaa/280            | obtained from various marine monitoring                                                  |
| <u>38</u>                                                    | and observing programs in Fuger Sound.                                                   |
| NMFS, Puget Sound Ecosystem Monitoring Program               | The report reveals patterns and trends in                                                |
| (PSEMP) Puget Sound Marine Waters: 2011                      | numerous environmental parameters,                                                       |
| Overview (2011)                                              | including plankton, water quality, climate,                                              |
| https://www.psp.wa.gov/downloads/psemp/PSmar                 | and marine life.                                                                         |
| inewaters 2011 overview.pdf                                  |                                                                                          |
| Puget Sound Ecosystem Monitoring Program,                    | In this project, PSEMP aimed to use a risk-                                              |
| Monitoring Priorities and Gaps: Puget Sound                  | based approach to identify those CECs which                                              |
| Ecosystem Monitoring Program Toxics Workgroup                | might be most likely to harm fish and other                                              |
| (Jan. 15, 2014)                                              | aquatic species.                                                                         |
| https://pspwa.app.box.com/s/0luxyi979sz3d9cx90o              |                                                                                          |
| vlr4ot6axqwk8/file/425859476728                              |                                                                                          |

| Narrative Data Submittal                                                                                                                                                                                                                                                                                                                                                                                          | Reasons(s) for not using Submittal                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Rayne, S. et al. 2004. PBDEs, PBBs, and PCNs in<br>Three Communities of Free-Ranging Killer Whales<br>(Orcinus orca) from the Northeastern Pacific Ocean.<br>Environ. Sci. Technol. 2004, 38, 4293-4299.<br><u>https://www.zoology.ubc.ca/~barrett/documents/P</u><br><u>BDEsPBBsandPCNsEnviron.Sci.Technol2004_000.pd</u><br><u>f</u>                                                                            | Polybrominated diphenyl ethers (PBDEs),<br>polybrominated biphenyls (PBBs), and<br>polychlorinated naphthalenes (PCNs) were<br>quantified in blubber biopsy samples<br>collected from free-ranging male and female<br>killer whales (Orcinus orca) belonging to<br>three distinct communities (southern<br>residents, northern residents, and<br>transients) from the northeastern Pacific<br>Ocean.                                                                                        |
| Ecology and King County, 2011. Control of Toxic<br>Chemicals in Puget Sound: Assessment of Selected<br>Toxic Chemicals in the Puget Sound Basin, 2007-<br>2011. Washington State Department of Ecology,<br>Olympia, WA and King County Department of<br>Natural Resources, Seattle, WA. Ecology Publication<br>No. 11-03-055.<br><u>https://apps.ecology.wa.gov/publications/documen</u><br><u>ts/1103055.pdf</u> | The study included an assessment of major<br>delivery pathways such as surface water<br>runoff, groundwater, publicly owned<br>treatment works (POTWs), and direct air<br>deposition. An assessment of the relative<br>hazards posed by target chemicals was also<br>performed. Any water quality data<br>associated with the study that is in EIM or<br>the federal Water Quality Portal would be<br>used in the assessment of data.                                                       |
| Johnson, L. et al. 2008. The Effects of Polycyclic<br>Aromatic Hydrocarbons in Fish from Puget Sound,<br>Washington. The Toxicology of Fishes, Chapter 22,<br>878 – 912.<br><u>https://www.researchgate.net/publication/279723</u><br>988 The Effects of Polycyclic Aromatic Hydrocar<br>bons in Fish from Puget Sound Washington                                                                                 | This article reviewed field and laboratory<br>data on flatfish in Puget Sound that indicate<br>that exposure to PAHs is associated with<br>increases in disease and alterations in<br>growth and reproductive function that could<br>potentially reduce the productivity of fish<br>subpopulations residing at contaminated<br>sites. Any water quality data associated with<br>the study that is in EIM or the federal Water<br>Quality Portal would be used in the<br>assessment of data. |

| Narrative Data Submittal                                                                                                                                                                                                                                                                                                                                                                                                                                   | Reasons(s) for not using Submittal                                                                                                                                                                                                                                                                 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Scholtz NL, Myers MS, McCarthy SG, Labenia JS,<br>McIntyre JK, et al. (2011) Recurrent Die-Offs of<br>Adult Coho Salmon Returning to Spawn in Puget<br>Sound Lowland Urban Streams. PLoS ONE 6(12):<br>e28013. doi:10.1371/journal.pone.0028013<br><u>https://journals.plos.org/plosone/article?id=10.137</u><br><u>1/journal.pone.0028013</u>                                                                                                             | This study focused on restoration projects in<br>urban watersheds to improve salmon<br>abundance and survival, and their successes<br>or challenges. It does not in fact<br>demonstrate impaired watersheds but looks<br>at improvements based on restoration, and<br>challenges that are present. |
| McIntyre, J. et al. 2012. Low-level copper exposures<br>increase visibility and vulnerability of juvenile coho<br>salmon to cutthroat trout predators. Ecological<br>Applications, 22(5), 2012, pp. 1460–1471.<br><u>https://pubmed.ncbi.nlm.nih.gov/22908706/</u>                                                                                                                                                                                         | This is a laboratory study that involved<br>capturing wild salmon and exposing them to<br>elevated copper, then observing effects.                                                                                                                                                                 |
| Sloan, C. et al. 2009. Polybrominated Diphenyl<br>Ethers in Outmigrant Juvenile Chinook Salmon from<br>the Lower Columbia River and Estuary and Puget<br>Sound, Washington. Arch Environ Contam Toxicol<br>(2010) 58:403–414. DOI 10.1007/s00244-009-9391-<br>y.<br><u>https://link.springer.com/article/10.1007/s00244-<br/>009-9391-y</u>                                                                                                                | This article presents the concentrations of<br>PBDEs measured in gutted bodies and<br>stomach contents of outmigrant juvenile<br>Chinook salmon.                                                                                                                                                   |
| Cullon, D. et al. 2009. PERSISTENT ORGANIC<br>POLLUTANTS IN CHINOOK SALMON<br>(ONCORHYNCHUS TSHAWYTSCHA): IMPLICATIONS<br>FOR RESIDENT KILLER WHALES OF BRITISH<br>COLUMBIA AND ADJACENT WATERS. Environmental<br>Toxicology and Chemistry, Vol. 28, No. 1, pp. 148–<br>161, 2009.<br><u>https://www.waterboards.ca.gov/waterrights/wate</u><br><u>r issues/programs/bay_delta/deltaflow/docs/exhib</u><br><u>its/sfwc/spprt_docs/sfwc_exh3_cullon.pdf</u> | This is a study focused on the relationship of<br>chinook salmon POP levels to those in killer<br>whales who prey on them.                                                                                                                                                                         |

| Narrative Data Submittal                                                                                                                                                                                                                                                                                                                                                                                                | Reasons(s) for not using Submittal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Krahn, et al. 2007. Persistent organic pollutants and<br>stable isotopes in biopsy samples (2004/2006) from<br>Southern Resident killer whales. Marine Pollution<br>Bulletin 54 (2007) 1903–1911.<br><u>https://pubmed.ncbi.nlm.nih.gov/17931664/</u>                                                                                                                                                                   | Intent of the study was not to demonstrate<br>ambient water conditions at specific<br>locations in Washington in Washington;<br>study does not document that impairment<br>of the existing or designated use is related<br>to the environmental alteration on that<br>same waterbody segment or grid. This<br>study, using blubber/epidermis biopsy<br>samples, contributes contemporary<br>information about potential factors (i.e.,<br>levels of pollutants or changes in diet) that<br>could adversely affect Southern Residents. |
| Cullon, D.L., M.B. Yunker, C. Alleyne, N.J.<br>Dangerfield, S. O'Neill, M.J. Whiticar, and P.S. Ross.<br>2009. Persistent organic pollutants (POPs) in<br>Chinook salmon (Oncorhynchus tshawytscha):<br>Implications for resident killer whales of British<br>Columbia and adjacent waters. Environ. Toxicol.<br>Chem. 28:148-161.<br><u>https://setac.onlinelibrary.wiley.com/doi/full/10.18</u><br><u>97/08-125.1</u> | The study measured persistent organic<br>pollutant (POP) concentrations in chinook<br>salmon ( <i>Oncorhynchus tshawytscha</i> ) in<br>order to characterize dietary exposure in the<br>highly contaminated, salmon-eating<br>northeastern Pacific resident killer whales.                                                                                                                                                                                                                                                            |
| Johnson, L.L., D.P. Lomax, M.S. Myers, O.P. Olson,<br>S.Y. Sol, S.M. O'Neill, J.E. West, and T. K. Collier.<br>2008. Xenoestrogen exposure and effects in English<br>sole (Parophrys vetulus) from Puget Sound, WA.<br>Aquatic Toxicology 88(1):29-38.<br><u>https://wdfw.wa.gov/publications/01042</u>                                                                                                                 | In 1997-2001, as part of the Washington<br>State's Puget Sound Assessment and<br>Monitoring Program, this study surveyed<br>English sole from a number of sites for<br>evidence of xenoestrogen exposure, using<br>vitellogenin production in males as an<br>indicator.                                                                                                                                                                                                                                                               |
| USFWS, Migratory Birds and Contaminants along<br>the Lower Columbia River Estuary<br><u>https://www.fws.gov/oregonfwo/Contaminants/Fie</u><br><u>IdStudies/BaldEagle/LCR-BaldEagleFactSheet.pdf</u>                                                                                                                                                                                                                     | This is a fact sheet on bald eagles in the<br>lower Columbia River and indications that<br>they have rebounded since the 1970s.                                                                                                                                                                                                                                                                                                                                                                                                       |

| Narrative Data Submittal                                                                                                                                                                                                                                                                                                                                 | Reasons(s) for not using Submittal                                                                                                                                                                                                                                                                                                                                                                                                            |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| USFWS, FY13 - Environmental Contaminants<br>Program Off-Refuge Investigations Sub-Activity WA<br>- Investigation of Contaminants in Feeds and Fish at<br>FWS Pacific Region National Fish Hatcheries and the<br>Ramifications to Human and Ecological Health (Aug.<br>2012)<br><u>https://www.fws.gov/wafwo/pdf/fish feed final</u><br><u>report.pdf</u> | For this project, returning adult salmon and<br>steelhead were sampled at three National<br>Fish Hatcheries for contaminants. The levels<br>of the contaminants varied by fish species<br>and could be a result of migration route,<br>diet, taxa-specific physiology and age at<br>return. Feeds were collected throughout the<br>rearing period for each species sampled and<br>analyzed for the same contaminants as<br>those in the fish. |
| NMFS, Chemical Contaminants, Pathogen Exposure<br>and General Health Status of Live and Beach-Cast<br>Washington Sea Otters (Enhydra lutris kenyoni)<br>(Feb. 2009)<br><u>https://www.fws.gov/wafwo/pdf/ONMS_Final Sea</u><br><u>Otter Report.pdf</u>                                                                                                    | Analyses of blood and liver samples from<br>live captured sea otters and liver samples<br>from beach-cast sea otter carcasses off the<br>remote Washington coast indicate relatively<br>low exposure to contaminants, but suggest<br>that even at the low levels measured,<br>exposure may be indicated by biomarker<br>response.                                                                                                             |
| USGS, Assessment of Contaminant Exposure and<br>Effects on Ospreys Nesting along the Lower<br>Duwamish River, Washington, 2006–07 (2009)<br><u>https://www.fws.gov/wafwo/pdf/Final Report</u><br><u>2009_1255.pdf</u>                                                                                                                                    | This study assessed contaminant exposure effect on ospreys nesting.                                                                                                                                                                                                                                                                                                                                                                           |
| USGS, Assessing reproductive and endocrine<br>parameters in male largescale suckers (Catostomus<br>macrocheilus) along a contaminant gradient in the<br>lower Columbia River, USA (2014)<br><u>https://www.sciencedirect.com/science/article/abs</u><br>/pii/S0048969713011352                                                                           | This study evaluated the effects of<br>contaminants on osprey (Pandion haliaetus)<br>nesting along the lower Duwamish River<br>(LDR), Washington, and used the upper<br>reach of the Willamette River (WR), Oregon,<br>as a reference site. Further investigations<br>are necessary to determine the key factors<br>driving the observed cellular differences and<br>to assess the biological significance of these<br>determinations.        |

| Narrative Data Submittal                                                                                                                                                                                                                                                                           | Reasons(s) for not using Submittal                                                                                                                                                                                                                                                         |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| USGS, Contaminants of legacy and emerging<br>concern in largescale suckers ( <i>Catostomus</i><br><i>macrocheilus</i> ) and the foodweb in the lower<br>Columbia River, Oregon and Washington, USA<br>(2014)<br><u>https://www.sciencedirect.com/science/article/abs</u><br>/pii/S0048969713004336 | This study investigated occurrence,<br>transport pathways, and effects of<br>polybrominated diphenyl ether (PBDE)<br>flame retardants and other endocrine<br>disrupting chemicals (EDCs) in aquatic media<br>and the food web in the lower Columbia<br>River.                              |
| USGS, Health status of Largescale Sucker<br>( <i>Catostomus macrocheilus</i> ) collected along an<br>organic contaminant gradient in the lower<br>Columbia River, Oregon and Washington, USA<br>(2014)<br><u>https://www.sciencedirect.com/science/article/abs</u><br>/pii/S0048969713008966       | For this study the health of Largescale<br>Sucker (Catostomus macrocheilus) in the<br>lower Columbia River (USA) was evaluated<br>using morphometric and histopathological<br>approaches, and its association with organic<br>contaminants accumulated in liver was<br>evaluated in males. |
| C Benson, A. J. New Zealand mudsnail sightings<br>distribution (2014)<br><u>https://www.fws.gov/columbiariver/publications/2</u><br>014 NZMS progress report.pdf                                                                                                                                   | The Columbia River Fisheries Program Office<br>has been intermittently monitoring the New<br>Zealand mudsnail at six lower Columbia<br>River Basin National Fish Hatcheries since<br>2006.                                                                                                 |
| NMFS, 10 Years of Research & Conservation:<br>Southern Resident Killer Whales (June 2014)<br><u>https://www.noaa.gov/media-release/noaa-fisheries-10-year-study-highlights-threats-to-southern-resident-killer-whales</u>                                                                          | This paper is a culmination of research into recovery of the killer whale populations and steps that need to be taken.                                                                                                                                                                     |
| NMFS, Recovery Plan for Southern Resident Killer<br>Whales (Orcinus orca) (Jan. 17, 2008)<br><u>https://www.fisheries.noaa.gov/resource/documen</u><br><u>t/recovery-plan-southern-resident-killer-whales-<br/>orcinus-orca</u>                                                                    | This paper is a recovery plan for the killer<br>whale populations and steps that need to be<br>taken.                                                                                                                                                                                      |

| Narrative Data Submittal                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Reasons(s) for not using Submittal                                                                                                                                                                                                                                                                              |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| EPA, Recommendations on a Monitoring Scheme<br>for Polybrominated Diphenyl Ethers (PBDEs) in<br>Puget Sound<br><u>https://www.eopugetsound.org/sites/default/files/</u><br><u>PBDE Recommendations.pdf</u>                                                                                                                                                                                                                                                               | EPA provides forward thinking<br>recommendations for monitoring PBDEs in<br>Puget Sound.                                                                                                                                                                                                                        |
| Lanksbury, J.A., and B. Lubliner. 2015. Quality<br>Assurance Project Plan for Status and Trends<br>Monitoring of Marine Nearshore Mussels for the<br>Regional Stormwater Monitoring Program and<br>Pierce County. Washington Department of Fish and<br>Wildlife; WDFW Publication Number FPT 15-04.<br>Olympia, Washington. 76pp.<br><u>https://wdfw.wa.gov/publications/01760</u>                                                                                       | The QAPP submittal does not represent<br>study results that demonstrate ambient<br>water conditions at specific locations in<br>Washington; we do note that WDFW<br>submitted all relevant tissue data associated<br>with their studies to Ecology for<br>consideration in the technical assessment of<br>data. |
| O'Neill, S.M., J.E. West, L.L. Johnson, J.A. Lanksbury,<br>L.A. Niewolny, and A.J. Carey. 2013. Quality<br>Assurance Project Plan: Toxic Contaminants in<br>Outmigrating Juvenile Chinook Salmon<br>(Oncorhynchus tshawytscha) From River Mouths<br>and Nearshore Saltwater Habitats of Puget Sound.<br>Washington Department of Fish and Wildlife;<br>WDFW Publication Number FPT 14-07. Olympia,<br>Washington. 51pp.<br><u>https://wdfw.wa.gov/publications/01609</u> | The QAPP submittal does not represent<br>study results that demonstrate ambient<br>water conditions at specific locations in<br>Washington; we do note that WDFW<br>submitted all relevant tissue data associated<br>with their studies to Ecology for<br>consideration in the technical assessment of<br>data. |
| West, J.E., J.A. Lanksbury, L.A. Niewolny, and A.J.<br>Carey. 2013. Quality Assurance Project Plan:<br>Effectiveness Monitoring for a Creosote-piling<br>Removal Project: Embryos of Pacific Herring (Clupea<br>pallasi) as Sentinels for the Presence of Polycyclic<br>Aromatic Hydrocarbons (PAHs). Washington<br>Department of Fish and Wildlife; WDFW Publication<br>Number FPT 13-11. Olympia, Washington. 38pp.<br><u>https://wdfw.wa.gov/publications/01598</u>   | The QAPP submittal does not represent<br>study results that demonstrate ambient<br>water conditions at specific locations in<br>Washington; we do note that WDFW<br>submitted all relevant tissue data associated<br>with their studies to Ecology for<br>consideration in the technical assessment of<br>data. |

| Narrative Data Submittal                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Reasons(s) for not using Submittal                                                                                                                                                                                                                                                                              |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Lanksbury, J.A., J.E. West, and L.A. Niewolny. 2012.<br>Quality Assurance Project Plan: Mussel Watch Pilot<br>Expansion Project. Washington Department of Fish<br>and Wildlife; WDFW Publication Number FPT 13-08.<br>Olympia, Washington. 80pp.<br><u>https://wdfw.wa.gov/publications/01596</u>                                                                                                                                                                             | The QAPP submittal does not represent<br>study results that demonstrate ambient<br>water conditions at specific locations in<br>Washington; we do note that WDFW<br>submitted all relevant tissue data associated<br>with their studies to Ecology for<br>consideration in the technical assessment of<br>data. |
| West, J.E., L.A. Niewolny, S.R. Quinnell, and J.A.<br>Lanksbury. 2012. Quality Assurance Project Plan:<br>Toxic Contaminants in Dungeness crab (Cancer<br>magister) and Spot Prawn (Pandalus platyceros)<br>from Puget Sound, Washington, USA. Washington<br>Department of Fish and Wildlife; WDFW Publication<br>Number FPT 13-10. Olympia, Washington. 88pp.<br><u>https://wdfw.wa.gov/publications/01436</u>                                                               | The QAPP submittal does not represent<br>study results that demonstrate ambient<br>water conditions at specific locations in<br>Washington; we do note that WDFW<br>submitted all relevant tissue data associated<br>with their studies to Ecology for<br>consideration in the technical assessment of<br>data. |
| West, J.E., J.A. Lanksbury, S. Jeffries, and M. Lance.<br>2009. Quality Assurance Project Plan: Persistent<br>organic pollutants in three guilds of pelagic marine<br>A Toxics-focused Biological Observation Program<br>for the Salish Sea species from the Puget Sound.<br>Washington Department of Fish and Wildlife;<br>WDFW Publication Number 09-10-099. Olympia,<br>Washington. 35pp<br><u>https://wdfw.wa.gov/publications/01130</u>                                  | The QAPP submittal does not represent<br>study results that demonstrate ambient<br>water conditions at specific locations in<br>Washington; we do note that WDFW<br>submitted all relevant tissue data associated<br>with their studies to Ecology for<br>consideration in the technical assessment of<br>data. |
| Moser, M.L., M.S. Myers, J.E. West, S.M. O'Neill,<br>and B.J. Burke. 2013. English Sole Spawning<br>Migration and Evidence for Feeding Site Fidelity in<br>Puget Sound, U.S.A., with Implications for<br>Contaminant Exposure. Northwest Science. 87 (4),<br>317-325.<br><u>https://bioone.org/journals/northwest-<br/>science/volume-87/issue-4/046.087.0403/English-<br/>Sole-Spawning-Migration-and-Evidence-for-<br/>Feeding-Site-Fidelity/10.3955/046.087.0403.short</u> | This study used acoustic telemetry to assess<br>the potential for contaminant exposure<br>during spawning migrations and to track the<br>localized movements of adult English sole in<br>the vicinity of Eagle Harbor.                                                                                          |

| Narrative Data Submittal                                                                                                                                                                                                                                                                                                                                                                                                               | Reasons(s) for not using Submittal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Pacific Herring Biomass of spawning Pacific herring,<br>Washington Department of Fish & Wildlife.pdf<br><u>https://www.pugetsoundinfo.wa.gov/ProgressMea</u><br><u>sure/Detail/36/VitalSigns</u>                                                                                                                                                                                                                                       | This study is on herring biomass.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| West, J. E., S.M. O'Neill, G.M. Ylitalo, J.P. Incardona,<br>D.C.Doty, and M.E. Dutch. 2014. An evaluation of<br>background levels and sources of polycyclic<br>aromatic hydrocarbons in naturally spawned<br>embryos of Pacific herring (Clupea pallasii) from<br>Puget Sound, Washington, USA. Science of the Total<br>Environment 499: 114-124<br><u>https://www.sciencedirect.com/science/article/abs</u><br>/pii/S0048969714012212 | This study compared concentrations of<br>polycyclic aromatic hydrocarbons, or PAHs,<br>in naturally spawned herring embryos from<br>five spawning areas across Puget Sound.                                                                                                                                                                                                                                                                                                                                        |
| Ecology, Sensitivity to Eutrophication of the<br>Southern Puget Sound Basin (2001)<br><u>https://apps.ecology.wa.gov/publications/documen</u><br><u>ts/0203059.pdf</u>                                                                                                                                                                                                                                                                 | This paper summarized three years of<br>PSAMP data for mercury and PCBs in<br>quillback rockfish; compared muscle tissue<br>concentrations of these contaminants for<br>three locations in Puget sound, assessed the<br>importance of fish age, size, lipid content<br>and location, and described these<br>relationships using linear regression models.<br>Any water quality data associated with the<br>study that is in EIM or the federal Water<br>Quality Portal would be used in the<br>assessment of data. |
| U.S. Fish and Wildlife Service, Best Management<br>Practices to Minimize Adverse Effects to Pacific<br>Lamprey (Entosphenus tridentatus) (2010)<br><u>https://www.blm.gov/sites/blm.gov/files/policies/I</u><br><u>B-OR-2010-041 att.pdf</u>                                                                                                                                                                                           | The purpose of this document is to provide<br>information on Best Management Practices<br>for Pacific lamprey that can be incorporated<br>into any stream disturbing activity on lands<br>managed by the Forest Service and Bureau<br>of Land Management within the Columbia<br>River basin.                                                                                                                                                                                                                       |

| Narrative Data Submittal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Reasons(s) for not using Submittal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Ecology, Perfluorinated Compounds in Washington<br>Rivers and Lakes (Aug. 2010)<br><u>https://apps.ecology.wa.gov/publications/documen</u><br><u>ts/1003034.pdf</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | T he study represents an exploratory effort<br>seeking information on 13 perfluorinated<br>compounds (PFCs) statewide in surface<br>waters, wastewater treatment plant<br>effluents, and fish tissues. Generally<br>speaking, total PFC concentrations in all<br>matrices recorded as part of the study were<br>within or below the range of values<br>recorded at other United States locations.                                                                                                                                                            |
| Puget Sound Ecosystem Monitoring Program,<br>Indicators of Biological Exposure and Effects of<br>Chemicals of Emerging Concern (Jan. 31, 2013)<br><u>https://www.eopugetsound.org/articles/2013-<br/>puget-sound-marine-waters-overview</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | This project notes that Contaminants of<br>Emerging Concern (CECs) cover a wide range<br>of man-made chemicals such as<br>pharmaceuticals, personal care products,<br>plasticizes, and automotive fluids. Regional<br>monitoring has clearly indicated that many<br>(perhaps thousands) of these compounds<br>make their way into the Salish Sea and other<br>regional waters, such as the Columbia River.<br>As of yet, there has been no regional<br>evaluation of which of those might be most<br>important in terms of their potential to<br>cause harm. |
| NMFS, 5-Year Review: Summary & Evaluation of<br>Lower Columbia River Chinook, Columbia River<br>Chum, Lower Columbia River Coho, and Lower<br>Columbia River Steelhead (2011) <a documen"="" href="https://www.fisheries.noaa.gov/resource/documen&lt;/a&gt;&lt;br/&gt;t/2016-5-year-review-summary-evaluation-lower-&lt;br/&gt;columbia-river-chinook-salmonNMFS, 5-Year Review: Summary &amp; Evaluation of&lt;br/&gt;Middle Columbia River Steelhead (2011)&lt;a href=" https:="" resource="" www.fisheries.noaa.gov="">https://www.fisheries.noaa.gov/resource/documen</a><br>t/2016-5-year-review-summary-evaluation-lower-<br>columbia-river-chinook-salmon <a href="https://www.fisheries.noaa.gov/resource/document/">https://www.fisheries.noaa.gov/resource/document/</a><br>t/2016-5-year-review-summary-evaluation-middle- | This document describes the results of the<br>agency's five year status review for ESA-<br>listed lower Columbia River salmon and<br>steelhead species.<br>This document describes the results of the<br>review of the ESA-listed Middle Columbia<br>River (MCR) steelhead. Any water quality<br>data associated with the study that is in EIM                                                                                                                                                                                                               |
| <u>columbia-river-steelhead</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | or the federal Water Quality Portal would be used in the assessment of data.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |

| Narrative Data Submittal                                                                                                                                                                                                                                                                                                                 | Reasons(s) for not using Submittal                                                                                                                                                                                                                                                                                                                                                                                              |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| EPA, Ecological Condition of the Columbia River<br>Estuary EPA 910-R-07-004 (Dec. 2007)<br><u>https://archive.epa.gov/emap/archive-</u><br><u>emap/web/pdf/columbia.pdf</u>                                                                                                                                                              | This project was designed to evaluate the<br>overall condition of the Columbia River<br>estuary. Any water quality data associated<br>with the study that is in EIM or the federal<br>Water Quality Portal would be used in the<br>assessment of data.                                                                                                                                                                          |
| Lyndal Johnson et al., (2013): Persistent Organic<br>Pollutants in Juvenile Chinook Salmon in the<br>Columbia River Basin: Implications for Stock<br>Recovery, Transactions of the American Fisheries<br>Society, 142:1, 21-40;131<br><u>https://apps.ecology.wa.gov/publications/publicati</u><br><u>ons/1103024.pdf</u>                | In this study concentrations of persistent<br>organic pollutants were measured in<br>juvenile Chinook Salmon from various<br>Columbia River stocks and life history types<br>to evaluate the potential for adverse effects<br>in these threatened and endangered fish.<br>Any water quality data associated with the<br>study that is in EIM or the federal Water<br>Quality Portal would be used in the<br>assessment of data. |
| Lower Columbia Estuary Partnership, Lower<br>Columbia River Ecosystem Monitoring Project<br>Annual Report for Year 6 (September 2009 to<br>November 2010) (2011)<br><u>https://www.estuarypartnership.org/resource/action-effectiveness-monitoring-columbia-river-<br/>estuary-habitat-restoration-program-annual-0</u>                  | This report describes Ecosystem Monitoring<br>Project accomplishments for the reported<br>period of this on-going project. Any water<br>quality data associated with the study that is<br>in EIM or the federal Water Quality Portal<br>would be used in the assessment of data.                                                                                                                                                |
| Lower Columbia Estuary Partnership, Lower<br>Columbia River Ecosystem Monitoring Project<br>Annual Report for Year 5 (September 2008 to<br>November 2009) (2010)<br><u>https://www.estuarypartnership.org/resource/acti</u><br><u>on-effectiveness-monitoring-columbia-river-</u><br><u>estuary-habitat-restoration-program-annual-1</u> | This report describes Ecosystem Monitoring<br>Project accomplishments for the reported<br>period of this on-going project. Any water<br>quality data associated with the study that is<br>in EIM or the federal Water Quality Portal<br>would be used in the assessment of data.                                                                                                                                                |

| Narrative Data Submittal                                                                                                                                                                                                                                                                                                              | Reasons(s) for not using Submittal                                                                                                                                                                                                                                               |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Lower Columbia Estuary Partnership, Lower<br>Columbia River Ecosystem Monitoring Project<br>Annual Report for Year 4 (September 1, 2007 to<br>August 31, 2008) (2009)<br><u>https://www.estuarypartnership.org/resource/low</u><br><u>er-columbia-river-ecosystem-monitoring-project-<br/>annual-report-year-4-september-1-2007</u>   | This report describes Ecosystem Monitoring<br>Project accomplishments for the reported<br>period of this on-going project. Any water<br>quality data associated with the study that is<br>in EIM or the federal Water Quality Portal<br>would be used in the assessment of data. |
| Lower Columbia Estuary Partnership, Lower<br>Columbia River Ecosystem Monitoring Project<br>Annual Report for Year 3B (September 1, 2006 to<br>August 31, 2007) (2008)<br><u>https://www.estuarypartnership.org/resource/low</u><br><u>er-columbia-river-ecosystem-monitoring-project-<br/>annual-report-year-3b-september-1-2006</u> | This report describes Ecosystem Monitoring<br>Project accomplishments for the reported<br>period of this on-going project. Any water<br>quality data associated with the study that is<br>in EIM or the federal Water Quality Portal<br>would be used in the assessment of data. |
| Lower Columbia Estuary Partnership, Lower<br>Columbia River Ecosystem Monitoring Project<br>Annual Report for Year 7 (September 1, 2010 to<br>December 31, 2011) (2012)<br><u>https://www.estuarypartnership.org/resource/action-effectiveness-monitoring-columbia-river-estuary-habitat-restoration-program-annual</u>               | This report describes Ecosystem Monitoring<br>Project accomplishments for the reported<br>period of this on-going project. Any water<br>quality data associated with the study that is<br>in EIM or the federal Water Quality Portal<br>would be used in the assessment of data. |
| Lower Columbia Estuary Partnership, Lower<br>Columbia River Ecosystem Monitoring Project<br>Annual Report for Year 8 (October 1, 2011 to<br>September 30, 2012) (2013)<br><u>https://www.estuarypartnership.org/resource/low</u><br><u>er-columbia-river-ecosystem-monitoring-program-<br/>annual-report-year-8-october-1-2011</u>    | This report describes Ecosystem Monitoring<br>Project accomplishments for the reported<br>period of this on-going project. Any water<br>quality data associated with the study that is<br>in EIM or the federal Water Quality Portal<br>would be used in the assessment of data. |

| Narrative Data Submittal                                                                                                                                                                                                                                                                          | Reasons(s) for not using Submittal                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| USGS, Foodweb transfer, sediment transport, and<br>biological impacts of emerging and legacy organic<br>contaminants in the lower Columbia River, Oregon<br>and Washington, USA: USGS Contaminants and<br>Habitat (ConHab) Project (2014)<br><u>https://pubs.er.usgs.gov/publication/70047331</u> | This interdisciplinary study investigated<br>transport pathways, chemical fates and<br>effects of polybrominated diphenyl ether<br>(PBDE)flame retardants and other endocrine<br>disrupting chemicals (EDCs) in water,<br>sediments, and the foodweb in the lower<br>Columbia River, Oregon and Washington.<br>Any water quality data associated with the<br>study that is in EIM or the federal Water<br>Quality Portal would be used in the<br>assessment of data. |
| USGS, Spatial and temporal trends in occurrence of<br>emerging and legacy contaminants in the Lower<br>Columbia River 2008–2010 (2014)<br><u>https://pubs.er.usgs.gov/publication/70103270</u>                                                                                                    | In this study an 86-mile stretch of the river<br>was sampled over a 3 year period in order to<br>determine the spatial and temporal trends<br>in the occurrence and concentration of<br>water-borne organic contaminants. Any<br>water quality data associated with the study<br>that is in EIM or the federal Water Quality<br>Portal would be used in the assessment of<br>data.                                                                                   |
| USGS, Correlation of gene expression and<br>contaminant concentrations in wild largescale<br>suckers: A field-based study (2014)<br><u>https://pubs.er.usgs.gov/publication/70058854</u>                                                                                                          | This project developed a custom microarray<br>for largescale suckers (Catostomus<br>macrocheilus) and used it to investigate the<br>molecular effects of contaminant exposure<br>on wild fish in the Columbia River.                                                                                                                                                                                                                                                 |
| USGS, A survey of benthic sediment contaminants<br>in reaches of the Columbia River Estuary based on<br>channel sedimentation characteristics (2014)<br><u>https://pubs.er.usgs.gov/publication/70101339</u>                                                                                      | The study goal was to characterize sediment<br>contaminant detections and concentrations<br>in reaches of the Columbia River Estuary<br>that were concurrently being sampled to<br>assess contaminants in water, invertebrates,<br>fish, and osprey (Pandion haliaetus) eggs.<br>Any water quality data associated with the<br>study that is in EIM or the federal Water<br>Quality Portal would be used in the<br>assessment of data.                               |

| Narrative Data Submittal                                                                                                                                                                                                                              | Reasons(s) for not using Submittal                                                                                                                                                                                                                                                                                                                                                                   |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Henny et al., Wastewater dilution index partially<br>explains observed polybrominated diphenyl ether<br>flame retardant concentrations in osprey eggs from<br>Columbia River Basin, 2008–2009 (2011)<br>https://pubs.er.usgs.gov/publication/70004671 | This study used the volume of Wastewater<br>Treatment Plant (WWTP) discharge, a<br>known source of PBDEs, as a measure of<br>human activity at a location, and combined<br>with river flow (both converted to millions<br>of gallons/day) created a novel approach (an<br>approximate Dilution Index) to relate<br>waterborne contaminants to levels of these<br>contaminants that reach avian eggs. |

**Table 9**. Modeled results not appropriate for determining whether water quality standards in

 Washington are being met in specific waters

| Narrative Data Submittal                                                                                                                                                                                                                                                                                                                                                                               | Reasons(s) for not using Submittal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Mongillo T., E.E. Holmes, D.P. Noren, G.R.<br>VanBlaricom, A.E. Punt, S.M. O'Neill, G.M. Ylitalo ,<br>M.B. Hanson, and P.S. Ross. 2012. Predicted<br>polybrominated diphenyl ether (PBDE) and<br>polychlorinated biphenyl (PCB) accumulation in<br>Southern Resident killer whales. Mar. Ecol. Progress<br>Ser. 453:263-277.<br><u>http://www.int-</u><br><u>res.com/abstracts/meps/v453/p263-277/</u> | An individual-based modeling approach was<br>used to predict the accumulation of sum<br>PBDEs (ΣPBDEs) and sum PCBs (ΣPCBs) in<br>specific individuals in the SRKW population.<br>Modeled results are not appropriate to<br>determine that standards in Washington are<br>being met at specific waters.                                                                                                                                                                                                                  |
| Ecology, Estimating Loads of Nutrients, Bacteria, DO<br>and TSS from 71 Watersheds Tributary to South<br>Puget Sound (2001)<br><u>https://apps.ecology.wa.gov/publications/documen</u><br><u>ts/0203021.pdf</u>                                                                                                                                                                                        | The primary goals of this study were to (1)<br>assess the hydrodynamics and current water<br>quality status of the South Puget Sound<br>basin, and (2) develop computer models to<br>simulate existing and future conditions in<br>order to explore the links between loads<br>and water quality at a finer resolution than<br>is possible with the most extensive data<br>collection programs. Modeled results are<br>not appropriate to determine that standards<br>in Washington are being met at specific<br>waters. |
| Ecology, Control of Toxic Chemicals in Puget Sound<br>Phase 2: Development of Simple Numerical Models,<br>the long-term fate and bioaccumulation of<br>polychlorinated biphenyls in Puget Sound (April<br>2009)<br><u>https://apps.ecology.wa.gov/publications/publicati</u><br><u>ons/0903015.pdf</u>                                                                                                 | This study developed computer prediction<br>tools to predict the concentration of PCBs in<br>water, sediment, and biota of Puget Sound.<br>Modeled results are not appropriate to<br>determine that standards in Washington are<br>being met at specific waters. Intent of the<br>study was not to demonstrate ambient<br>water conditions at specific locations.                                                                                                                                                        |
| Narrative Data Submittal                                                                                                                                                                                                                                                                                                                                                                                                                       | Reasons(s) for not using Submittal                                                                                                                                                                                                                                                                                             |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Spromberg, J. and N. Scholz. 2011. Estimating the<br>Future Decline of Wild Coho Salmon Populations<br>Resulting from Early Spawner Die-Offs in Urbanizing<br>Watersheds of the Pacific Northwest, USA.<br>Integrated Environmental Assessment and<br>Management, 9999, 2011.<br><u>http://wildfishconservancy.org/what-we-<br/>do/science/research-and-monitoring/ongoing-<br/>projects/SprombergScholzIEAM2011prespawnmort</u><br>incoho.pdf | This study modeled the potential<br>consequence of current and future<br>urbanization on wild coho salmon in urban<br>streams in Puget Sound. Intent of the study<br>was not to demonstrate ambient water<br>conditions at specific locations.                                                                                 |
| Alava, J. et al. 2012. Habitat-Based PCB<br>Environmental Quality Criteria for the Protection of<br>Endangered Killer Whales (Orcinus orca).<br>Environmental Science and Technology 2012, 46,<br>12655–12663.<br><u>https://pubs.acs.org/doi/10.1021/es303062q</u>                                                                                                                                                                            | This study modeled PCB concentrations in<br>killer whales and concludes that the uptake<br>of PCBs by killer whales is through dietary<br>consumption. Intent of the study was not to<br>demonstrate ambient water conditions at<br>specific locations.                                                                        |
| Hickie, B. et al. Killer Whales (Orcinus orca) Face<br>Protracted Health Risks Associated with Lifetime<br>Exposure to PCBs. Environ. Sci. Technol. 2007, 41,<br>6613-6619.<br><u>https://pubmed.ncbi.nlm.nih.gov/17948816/</u>                                                                                                                                                                                                                | This study modeled the lifetime exposure of<br>killer whales to PCBs. Modeled results are<br>not appropriate to determine that standards<br>in Washington are being met at specific<br>waters. Focus of study was unrelated to<br>determining water quality or ambient<br>conditions of specific waterbodies in<br>Washington. |

**Table 10**. Submittals from third parties that did not include documentation addressing theaccuracy and completeness of the information submitted to Ecology, and/or study methods anddata were not documented or readily available

| Narrative Data Submittal                                                                                                                                                                                                                                                                                                                                                                                         | Reasons(s) for not using Submittal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| NOAA Fisheries Northwest Fisheries Science Center,<br>Habitat Quality, Toxics, and Salmon in the Lower<br>Columbia Estuary: Multi-Year Coordinated Fish, Fish<br>Prey, Habitat and Water Quality Data Collection<br>under the Ecosystem Monitoring Project (Oct. 23,<br>2012)<br><u>https://www.estuarypartnership.org/sites/default/f</u><br><u>iles/resource_files/Johnson</u><br><u>EMPSWG_2012_Oct28.pdf</u> | This is a PowerPoint presentation given at<br>the Lower Columbia Estuary Partnership<br>Science Workgroup meeting. Submittal did<br>not include documentation addressing the<br>accuracy and completeness of the<br>information submitted to Ecology, and study<br>methods & data not documented or readily<br>available.                                                                                                                                                                                                                                                                                                   |
| Curtis Roegner, NOAA Fisheries, Oxygen-depleted<br>water in the Columbia River estuary; Observations<br>and consequences (April 23, 2013)<br><u>https://www.estuarypartnership.org/sites/default/f</u><br><u>iles/resource_files/Roegner_LCREP_2013_DO.pdf</u>                                                                                                                                                   | This is a PowerPoint presentation given at a<br>NOAA Fisheries Estuary Partnership Science<br>Work shop.Submittal did not include<br>documentation addressing the accuracy and<br>completeness of the information submitted<br>to Ecology, and study methods & data not<br>documented or readily available.                                                                                                                                                                                                                                                                                                                 |
| U.S. Fish and Wildlife Service, Environmental<br>Conservation Online System, Listing and<br>Occurrences for Washington<br><u>https://www.fws.gov/southeast/conservation-tools/environmental-conservation-online-system/</u>                                                                                                                                                                                      | This submittal is an online link to the<br>Environmental Conservation online System<br>(ECOS) which is a gateway web site that<br>provides access to data systems in the U.S.<br>Fish and Wildlife Service (Service) and other<br>government data sources. Submittal did not<br>include documentation addressing the<br>accuracy and completeness of the<br>information submitted to Ecology, and study<br>methods & data not documented or readily<br>available. Any water quality data associated<br>with the submittal that is in EIM or the<br>federal Water Quality Portal would be used<br>in the assessment of data. |
| Fish and Wildlife Service, Environmental<br>Conservation Online System, Species ad hoc Search<br>[Species proposed for listing]<br>https://ecos.fws.gov/ecp0/reports/ad-hoc-species-<br>report?status=P&header=Species+Proposed+for+Li<br>sting&fleadreg=on&fstatus=on&finvpop=on                                                                                                                                | This submittal is an online link to the<br>Environmental Conservation online System<br>(ECOS) which is a gateway web site that<br>provides access to data systems in the U.S.<br>Fish and Wildlife Service (Service) and other<br>government data sources.                                                                                                                                                                                                                                                                                                                                                                  |

| Narrative Data Submittal                                                                                                                                                                                                                                                                                                                                                               | Reasons(s) for not using Submittal                                                                                                                                                                                                                                                                                                                                                                                                                              |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| U.S. Fish and Wildlife Service, Environmental<br>Conservation Online System, Candidate Species<br>Report<br><u>https://ecos.fws.gov/ecp/species-reports</u>                                                                                                                                                                                                                            | This submittal is an online link to the<br>Environmental Conservation online System<br>(ECOS) which is a gateway web site that<br>provides access to data systems in the U.S.<br>Fish and Wildlife Service (Service) and other<br>government data sources. Submittal did not<br>include documentation Any water quality<br>data associated with the submittal that is in<br>EIM or the federal Water Quality Portal<br>would be used in the assessment of data. |
| U.S. Fish and Wildlife Service, Environmental<br>Conservation Online System, Species Profile,<br>Oregon spotted frog;<br><u>https://www.fws.gov/oregonfwo/articles.cfm?id=1</u><br><u>49489458</u>                                                                                                                                                                                     | This submittal is an online link to the<br>Environmental Conservation online System<br>(ECOS) which is a gateway web site that<br>provides access to data systems in the U.S.<br>Fish and Wildlife Service (Service) and other<br>government data sources. Any water quality<br>data associated with the submittal that is in<br>EIM or the federal Water Quality Portal<br>would be used in the assessment of data.                                            |
| USFWS, Trace Elements and Oil-Related<br>Contaminants in Sediment, Bivalves, and Eelgrass<br>from Padilla and Fidalgo Bays, Skagit County,<br>Washington                                                                                                                                                                                                                               | Unable to locate study.                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| USFWS, Environmental Contaminants Program On-<br>Refuge Clean-up Investigations Sub-Activity WA-<br>Preliminary Assessment to Determine Superfund<br>Site Impacts on the Ridgefield National Wildlife<br>Refuge (June 27, 2000)<br><u>https://www.fws.gov/wafwo/contaminants_new.ht</u><br><u>ml</u>                                                                                   | The link to this study goes to a USFWS<br>website. The actual study could not be<br>found on USFWS website. Submittal did not<br>include documentation addressing the<br>accuracy and completeness of the<br>information submitted to Ecology, and study<br>methods & data not documented or readily<br>available.                                                                                                                                              |
| O'Neill, S.M., et al. 2004. Concentrations of<br>polybrominated diphenyl ethers (PBDEs) in fish<br>from Puget Sound, WA, USA. Poster presentation:<br>SETAC World Congress and 25th Annual Meeting in<br>North America Society of Environmental Toxicology<br>and Chemistry. Department of Fish and Wildlife.<br>Olympia, Washington.<br><u>https://wdfw.wa.gov/publications/01033</u> | Submittal was a poster and did not include<br>documentation addressing the accuracy and<br>completeness of the information submitted<br>to Ecology, and study methods & data not<br>documented or readily available.                                                                                                                                                                                                                                            |

| Narrative Data Submittal                              | Reasons(s) for not using Submittal            |
|-------------------------------------------------------|-----------------------------------------------|
| Arkoosh, M., J. Dietrich, G.M. Ylitalo, L.J. Johnson, | Unable to locate study. From title, this      |
| and S.M. O'Neill. 2013. Polybrominated diphenyl       | appears to paper look at PBDEs in             |
| ethers (PBDEs) and Chinook salmon health. U.S.        | comparison to Chinook salmon health.          |
| Department of Commerce. National Oceanic and          | Submittal did not include documentation       |
| Atmospheric Association, National Marine Fisheries    | addressing the accuracy and completeness      |
| Service, Northwest Fisheries Science Center,          | of the information submitted to Ecology,      |
| Newport, Oregon. 49 pp. plus Appendices.              | and study methods & data not documented       |
|                                                       | or readily available.                         |
| Submttal not on WDFW website.                         |                                               |
| O'Neill S.M., C.F. Bravo and T.K. Collier. (2008)     | Unable to locate this study on WDFW           |
| Environmental Indicators for the Puget Sound          | website. From title, this summary report is   |
| Partnership: A Regional Effort to Select Provisional  | intended to select provisional indicators for |
| Indicators (Phase 1) Summary Report. Northwest        | Puget Sound. It is not an ambient             |
| Fisheries Science Center, Seattle Washington. 64      | monitoring study. Submittal did not include   |
| pp.                                                   | documentation addressing the accuracy and     |
| https://www.academia.edu/1272967/Environment          | completeness of the information submitted     |
| al indicators for the puget sound partnership a       | to Ecology, and study methods & data not      |
| regional effort to select provisional indicators      | documented or readily available.              |
| Phase 1                                               |                                               |

| Narrative Data Submittal                                                                                                                                                                                                                                                                                                                        | Reasons(s) for not using Submittal                                                                                                                                                                                      |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Gregory J. Fuhrer, Dwight Q. Tanner, Jennifer L.<br>Morace, Stuart W. McKenzie, and Kenneth A.<br>Skach, USGS Water-Resources Investigations Report<br>95-4294: Water Quality of the Lower Columbia<br>River Basin: Analysis of Current and Historical                                                                                          | Study submitted is more than 20 years old<br>and falls outside of the WQA cycle window<br>of 2006 – 2017.<br>Note: more recent quality data has been                                                                    |
| https://pubs.usgs.gov/wri/1995/4294/report.pdf                                                                                                                                                                                                                                                                                                  | collected on the Columbia River.                                                                                                                                                                                        |
| U.S.G.S. NASQAN National Stream Quality<br>Accounting Network, Monitoring the Water Quality<br>of the Nation's Large Rivers, Columbia River<br>NASQAN Program, Fact Sheet FS-004-98 (regarding                                                                                                                                                  | Study submitted is more than 20 years old<br>and falls outside of the WQA cycle window<br>of 2006 – 2017.                                                                                                               |
| contamination in tissues of mink and river otter,<br>and eggs of the bald eagle)<br><u>https://pubs.usgs.gov/fs/1998/0004/report.pdf</u>                                                                                                                                                                                                        | Note: more recent quality data has been collected on the Columbia River.                                                                                                                                                |
| Dungeness Crab Species Monitored: Toxic<br>Contaminants in Puget Sound Fish and Shellfish<br>_Washington Department of Fish & Wildlife.pdf                                                                                                                                                                                                      | Study submitted falls outside of the WQA<br>cycle window of 2006 – 2017. In a 2001<br>focus study, the Fish Component monitored<br>for the presence and severity of toxic                                               |
| https://wdfw.wa.gov/species-<br>habitats/science/marine-toxics                                                                                                                                                                                                                                                                                  | contaminants in this species at a limited number of sites in Puget Sound.                                                                                                                                               |
| Lower Columbia River Bi-State Program,<br>Reconnaissance Survey of the Lower Columbia<br>River, Laboratory Data Report, Vol. 2: Sediment<br>Inorganic Data, Sediment Conventional Data (Jan.<br>1992)<br><u>https://www.estuarypartnership.org/sites/default/f</u><br><u>iles/resource_files/TC8526_06_reconsurvey2_ld_v</u><br><u>ol_2.pdf</u> | Study submitted is more than 20 years old<br>and falls outside of the WQA cycle window<br>of 2006 – 2017. No sample location<br>information provided with laboratory<br>samples, so data could not be<br>georeferenced. |
| Lower Columbia River Bi-State Program,<br>Reconnaissance Survey of the Lower Columbia<br>River, Laboratory Data Report, Vol. 4: Tissue Data,<br>Excluding Dioxins and Furans (1992)<br><u>https://www.estuarypartnership.org/sites/default/f</u><br><u>iles/resource_files/TC8526_06_reconsurvey2_ld_v_ol_4.pdf</u>                             | Study submitted is more than 20 years old<br>and falls outside of the WQA cycle window<br>of 2006 – 2017. No sample location<br>information provided with laboratory<br>samples, so data could not be<br>georeferenced. |

Table 11. Study submittals that fell outside the WQA cycle window of 2006 – 2017

| Narrative Data Submittal                                                                                                                                                                                                                                                                               | Reasons(s) for not using Submittal                                                                                                                                                                                      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Lower Columbia River Bi-State Program,<br>Reconnaissance Survey of the Lower Columbia<br>River, Section 2.1 Reconnaissance Survey. Task 6<br>Vol. 3 (1992)<br><u>https://www.estuarypartnership.org/sites/default/f</u><br><u>iles/resource_files/TC8526_06_reconsurvey2_le_v_ol_3.pdf</u>             | Study submitted is more than 20 years old<br>and falls outside of the WQA cycle window<br>of 2006 – 2017. No sample location<br>information provided with laboratory<br>samples, so data could not be<br>georeferenced. |
| Lower Columbia River Bi-State Program,<br>Reconnaissance Survey of the Lower Columbia<br>River, Section 2.1 Reconnaissance Survey. Lab Data<br>Report Vol. 3<br><u>https://www.estuarypartnership.org/sites/default/f</u><br><u>iles/resource_files/TC8526_06_reconsurvey2_ld_v_ol_3.pdf</u>           | Study submitted is more than 20 years old<br>and falls outside of the WQA cycle window<br>of 2006 – 2017. No sample location<br>information provided with laboratory<br>samples, so data could not be<br>georeferenced. |
| Lower Columbia River Bi-State Program,<br>Reconnaissance Survey of the Lower Columbia<br>River, Section 2.1 Reconnaissance Survey. Lab Data<br>Report Vol. 6<br><u>https://www.estuarypartnership.org/sites/default/f</u><br><u>iles/resource_files/TC8526_06_reconsurvey2_ld_v</u><br><u>ol_6.pdf</u> | Study submitted is more than 20 years old<br>and falls outside of the WQA cycle window<br>of 2006 – 2017. No sample location<br>information provided with laboratory<br>samples, so data could not be<br>georeferenced. |
| Lower Columbia River Bi-State Program,<br>Reconnaissance Survey of the Lower Columbia<br>River, Section 2.1 Reconnaissance Survey. Lab Data<br>Report Vol. 5<br><u>https://www.estuarypartnership.org/sites/default/f</u><br><u>iles/resource_files/TC8526_06_reconsurvey2_1d_v</u><br><u>ol_5.pdf</u> | Study submitted is more than 20 years old<br>and falls outside of the WQA cycle window<br>of 2006 – 2017. No sample location<br>information provided with laboratory<br>samples, so data could not be<br>georeferenced. |
| Lower Columbia River Bi-State Program,<br>Reconnaissance Survey of the Lower Columbia<br>River, Section 2.1 Reconnaissance Survey. Lab Data<br>Report Vol. 7<br><u>https://www.estuarypartnership.org/sites/default/f</u><br><u>iles/resource_files/TC8526_06_reconsurvey2_1d_v</u><br><u>ol_7.pdf</u> | Study submitted is more than 20 years old<br>and falls outside of the WQA cycle window<br>of 2006 – 2017. No sample location<br>information provided with laboratory<br>samples, so data could not be<br>georeferenced. |

| Narrative Data Submittal                                                                                                                                                                                                                                                                                                                                                                                              | Reasons(s) for not using Submittal                                                                                                                                                                                                                                                                                                                                |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| USFWS, Environmental Contaminants in Great Blue<br>Herons (Ardea Herodias) from the Lower Columbia<br>River and Willamette Rivers, Oregon and<br>Washington, USA (1999)<br><u>https://setac.onlinelibrary.wiley.com/doi/full/10.10</u><br>02/etc.5620181222                                                                                                                                                           | Study submitted is more than 20 years old<br>and falls outside of the WQA cycle window<br>of 2006 – 2017. This study does not focus on<br>ambient water quality conditions of<br>Washington waters. The project collected<br>great blue heron ( <i>Ardea herodias</i> ) eggs and<br>prey from six colonies in Oregon and<br>Washington, USA, during 1994 to 1995. |
| USFWS, Organochlorine Contaminants in Double-<br>Crested Cormorants from Lewis and Clark national<br>Wildlife Refuge in the Columbia River Estuary (Oct.<br>18, 1999)<br><u>https://pubs.er.usgs.gov/publication/70188686</u>                                                                                                                                                                                         | Study submitted is more than 20 years old<br>and falls outside of the WQA cycle window<br>of 2006 – 2017. This study does not focus on<br>ambient water quality conditions in<br>Washington.                                                                                                                                                                      |
| Charles Henny, Robert Grove, Olaf R Hedstrom,<br>National Biological Service, Forest and Rangeland<br>Ecosystem Science Center, Northwest Research<br>Station, A Field Evaluation of Mink and River Otter<br>on the Lower Columbia River and the Influence of<br>Environmental Contaminants (Feb. 12, 1996)<br><u>https://www.estuarypartnership.org/sites/default/f</u><br><u>iles/resource_files/Sec_3_3_3a.pdf</u> | Study submitted is more than 20 years old<br>and falls outside of the WQA cycle window<br>of 2006 – 2017. Intent of the study was not<br>to demonstrate ambient water conditions at<br>specific locations in Washington.                                                                                                                                          |
| Ecology, Hood Canal Marine Sediments Data<br>Summaries, Findings, Publications<br><u>https://apps.ecology.wa.gov/publications/publicati</u><br><u>ons/1003006.pdf</u>                                                                                                                                                                                                                                                 | Summary fact sheet submitted falls outside<br>of the WQA cycle window of 2006 – 2017.<br>All available sediment data from related<br>Ecology studies was considered for listing.                                                                                                                                                                                  |
| Ecology, South Puget Sound Water Quality Study<br>Phase 1 (Oct. 2002)<br><u>https://apps.ecology.wa.gov/publications/publicati</u><br><u>ons/0203021.pdf</u>                                                                                                                                                                                                                                                          | Data from South Puget Sound Water Quality<br>Study Phase 1 falls outside of the WQA cycle<br>window of 2006 – 2017. More recent data<br>from this long term study was used in the<br>current assessment.                                                                                                                                                          |
| O'Neill, S.M., and J.E. West. 2009. Marine<br>distribution, life history traits and the accumulation<br>of polychlorinated biphenyls (PCBs) in Chinook<br>salmon (Oncorhynchus tshawytscha) from Puget<br>Sound, Washington. Transactions of the American<br>Fisheries Society 138:616-632.<br><u>https://wdfw.wa.gov/publications/01030</u>                                                                          | This paper was based on data that were<br>collected 1992-1996, clearly outside the<br>data window for the 2018 WQ Assessment.<br>Data from WDFW PSAMP database used in<br>previous assessments.                                                                                                                                                                   |

| Narrative Data Submittal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Reasons(s) for not using Submittal                                                                                                                                                                                            |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| O'Neill, S.M., J.E. West, and J.C. Hoeman. 1998.<br>Spatial trends in the concentration of<br>polychlorinated biphenyls (PCBs) in chinook<br>(Oncorhynchus tshawytscha) and coho salmon (O.<br>kisutch) in Puget Sound and factors affecting PCB<br>accumulation: results from the Puget Sound<br>Ambient Monitoring Program. Pages 312-328 in R.<br>Strickland, editor. Puget Sound Research 1998<br>Conference Proceedings. Puget Sound Water<br>Quality Action Team. Washington Department of<br>Fish and Wildlife. Olympia, Washington. 17pp.<br><u>https://wdfw.wa.gov/publications/01031</u> | The data from these studies are well over 20<br>years old and fall outside of the data<br>window for WQA. This study does not focus<br>on ambient water quality conditions of<br>Washington waters.                           |
| West, J.E., and S.M. O'Neill. 1998. Persistent<br>pollutants and factors affecting their accumulation<br>in rockfishes (Sebastes spp.) from Puget Sound,<br>Washington. Pages 336-345 in R. Strickland, editor.<br>Puget Sound Research 1998 Conference<br>Proceedings. Puget Sound Water Quality Action<br>Team. Washington Department of Fish and Wildlife.<br>Olympia, Washington. 11pp.<br><u>https://wdfw.wa.gov/publications/01037</u>                                                                                                                                                       | The data from these studies are well over 20<br>years old and fall outside of the data<br>window for this WQA. This study does not<br>focus on ambient water quality conditions<br>of Washington waters.                      |
| O'Neill, S.M., and J.E. West. 2001. Exposure of<br>Pacific herring (Clupea pallasi) to persistent organic<br>pollutants in Puget Sound and the Georgia Basin.<br>Puget Sound Research 2001 Conference<br>Proceedings. Puget Sound Water Quality Action<br>Team. Washington Department of Fish and Wildlife.<br>Olympia, Washington. 6pp.<br><u>https://wdfw.wa.gov/publications/01028</u>                                                                                                                                                                                                          | The data from these studies are well over 20<br>years old and fall outside of the data<br>window for this WQA. Focus of study was<br>unrelated to determining water quality or<br>ambient conditions of specific waterbodies. |
| West J.E., S.M. O'Neill, G.R. Lippert and S.R.<br>Quinnell. 2002. Toxic contaminants in marine and<br>anadromous fish from Puget Sound, Washington:<br>Results from the Puget Sound Ambient Monitoring<br>Program Fish Component, 1989-1999. pp. 56 +<br>appendices, Washington Department of Fish and<br>Wildlife, Olympia, WA.<br><u>https://wdfw.wa.gov/publications/01026</u>                                                                                                                                                                                                                  | The data from these studies are well over 20<br>years old and fall outside of the data<br>window for this WQA. Focus of study was<br>unrelated to determining water quality or<br>ambient conditions of specific waterbodies. |

| Narrative Data Submittal                                                                                                                                                                                                                                                                                                                                                                                                       | Reasons(s) for not using Submittal                                                                                                                                                                                            |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| O'Neill, S.M., G.M. Ylitalo, M. Krahn, J.E. West, J.<br>Bolton, and D. Brown. 2005. Elevated levels of<br>persistent organic pollutants in Puget Sound versus<br>other freeranging populations of Pacific salmon: the<br>importance of residency in Puget Sound. Abstract<br>of presentation at 2005 Puget Sound Georgia Basin<br>Research Conference. Seattle, Washington.                                                    | The data from these studies are well over 20<br>years old and fall outside of the data<br>window for this WQA. Focus of study was<br>unrelated to determining water quality or<br>ambient conditions of specific waterbodies. |
| Submittal not on WDFW Website.                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                               |
| O'Neill, S.M., and J.E. West. 2002. Contaminants in<br>Fish. Pages 66-77 in Puget Sound Water Quality<br>Action Team, editors. 2002 Puget Sound Update:<br>Eighth Report of the Puget Sound Ambient<br>Monitoring Program. Olympia, Washington. 156pp.<br><u>https://wdfw.wa.gov/publications/01029</u>                                                                                                                        | The data from these studies are well over 20<br>years old and fall outside of the data<br>window for this WQA. Focus of study was<br>unrelated to determining water quality or<br>ambient conditions of specific waterbodies. |
| West, J.E., S.M. O'Neill, G.R. Lippert, and S.R.<br>Quinnell. 2001. Toxic contaminants in marine and<br>anadromous fishes from Puget Sound, Washington:<br>Results of the Puget Sound Ambient Monitoring<br>Program Fish Component, 1989-1999. Washington<br>Department of Fish and Wildlife. Olympia,<br>Washington. 311pp.<br><u>http://wdfw.wa.gov/publications/01026</u>                                                   | The data from these studies are well over 20<br>years old and fall outside of the data<br>window for this WQA. Focus of study was<br>unrelated to determining water quality or<br>ambient conditions of specific waterbodies. |
| West, J.E., S.M. O'Neill, D. Lomax, and L. Johnson.<br>2001. Implications for reproductive health in<br>quillback rockfish (Sebastes maliger) from Puget<br>Sound exposed to polychlorinated biphenyls. Puget<br>Sound Research 2001 Conference Proceedings.<br>Puget Sound Water Quality Action Team.<br>Washington Department of Fish and Wildlife.<br>Olympia, Washington.<br><u>https://wdfw.wa.gov/publications/01041</u> | The data from these studies are well over 20<br>years old and fall outside of the data<br>window for this WQA. Focus of study was<br>unrelated to determining water quality or<br>ambient conditions of specific waterbodies. |
| O'Neill, S.M., and J.E. West. 2000. Toxic<br>Contaminants in Fish. Pages 56-64 in Puget Sound<br>Water Quality Action Team, editors. 2000 Puget<br>Sound Update: Seventh Report of the Puget Sound<br>Ambient Monitoring Program. Washington<br>Department of Fish and Wildlife. Olympia,<br>Washington. 133pp.<br><u>https://wdfw.wa.gov/publications/01027</u>                                                               | The data from these studies are well over 20<br>years old and fall outside of the data<br>window for this WQA. Focus of study was<br>unrelated to determining water quality or<br>ambient conditions of specific waterbodies. |

| Narrative Data Submittal                                                                                                                                                                                                                                                                                                                                                                                                      | Reasons(s) for not using Submittal                                                                                                                                                                                                                                                                                                           |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| West, J. E. 1997. Protection and restoration of<br>marine life in the inland waters of Washington<br>State. Puget Sound/Georgia Basin Environmental<br>Report Series: Number 6. Puget Sound Water<br>Quality Action Team. Washington Department of<br>Fish and Wildlife. Olympia, Washington. 154pp.<br><u>http://wdfw.wa.gov/publications/01035</u>                                                                          | The data from these studies are well over 20<br>years old and fall outside of the data<br>window for this WQA. Focus of study was<br>unrelated to determining water quality or<br>ambient conditions of specific waterbodies.                                                                                                                |
| O'Neill, S.M., J.E. West, and S.R. Quinnell. 1995.<br>Contaminant monitoring in fish: overview of the<br>Puget Sound Ambient Monitoring Program Fish<br>Task. Pages 35-50 in E. Robichaud, editor. Puget<br>Sound Research 1995 Conference Proceedings.<br>Puget Sound Water Quality Authority. Washington<br>Department of Fish and Wildlife. Olympia,<br>Washington. 18pp.<br><u>https://wdfw.wa.gov/publications/01032</u> | The data from these studies are well over 20<br>years old and fall outside of the data<br>window for this WQA. Focus of study was<br>unrelated to determining water quality or<br>ambient conditions of specific waterbodies.                                                                                                                |
| Olson, O.P., L. Johnson, G. Ylitalo, C. Rice, J. Cordell,<br>T.K. Collier, and J. Steger. 2008. Fish habitat use and<br>chemical contaminant exposure at restoration sites<br>in Commencement Bay, Washington. U.S. Dept.<br>Commer., NOAA Tech. Memo. NMFS-NWFSC-88,<br>117 p.<br><u>https://www.webapps.nwfsc.noaa.gov/assets/25/6</u><br>07 04162008 152110 CommencementBayTM88Fi<br>nal.pdf                               | The data from these studies are well over 20<br>years old and fall outside of the data<br>window for this WQA. Focus of study was<br>unrelated to determining water quality or<br>ambient conditions of specific waterbodies.                                                                                                                |
| Ross, p. et al. 2000. High PCB Concentrations in<br>Free Ranging Pacific Killer Whales, Orcinus orca:<br>Effects of Age, Sex and Dietary Preference. Marine<br>Pollution Bulletin Vol. 40, No. 6, pp. 504±515, 2000.<br><u>https://www.sciencedirect.com/science/article/abs</u><br>/pii/S0025326X99002337                                                                                                                    | The data from this study was over 20 years<br>old and fall outside of the data window for<br>this WQA. Blubber biopsies were collected<br>in British Columbia for the purpose of<br>comparing different whale populations.<br>Intent of the study was not to demonstrate<br>ambient water conditions at specific<br>locations in Washington. |
| USFWS, Environmental Contaminants in Bald Eagles<br>Nesting in Hood Canal, Washington, 1992-1997<br>(July 29, 2000)<br><u>https://ecos.fws.gov/ServCat/DownloadFile/21677</u><br><u>?Reference=23158</u>                                                                                                                                                                                                                      | The data from these studies are well over 20<br>years old and fall outside of the data<br>window for this WQA. Focus of study was<br>unrelated to determining water quality or<br>ambient conditions of specific waterbodies.                                                                                                                |

| Narrative Data Submittal                                                                                                                                                                                                                                                                                                                                                            | Reasons(s) for not using Submittal                                                                                                                                                                                                                                                 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Ecology, The Influence of Sediment Quality and<br>Dissolved Oxygen on Benthic Invertebrate<br>Communities in Hood Canal (2008)<br><u>https://apps.ecology.wa.gov/publications/publicati</u><br><u>ons/0703047.pdf</u>                                                                                                                                                               | The data from these studies fall outside of<br>the data window for this WQA. Focus of<br>study was unrelated to determining water<br>quality or ambient conditions of specific<br>waterbodies. Any D.O. and sediment data in<br>EIM was considered and used for the<br>assessment. |
| Ecology, Sediment Quality In Hood Canal (2005)<br>https://apps.ecology.wa.gov/publications/documen<br>ts/1003006.pdf                                                                                                                                                                                                                                                                | The data from these studies fall outside of<br>the data window for this WQA. Focus of<br>study was unrelated to determining water<br>quality or ambient conditions of specific<br>waterbodies. Any D.O. and sediment data in<br>EIM was considered and used for the<br>assessment. |
| Ecology, Benthic Infaunal Community Structure in<br>Hood Canal in Relation to Sediment and Water<br>Quality Variables (2005)<br><u>https://apps.ecology.wa.gov/publications/documen</u><br><u>ts/0703047.pdf</u>                                                                                                                                                                    | The data from these studies fall outside of<br>the data window for this WQA. Focus of<br>study was unrelated to determining water<br>quality or ambient conditions of specific<br>waterbodies.                                                                                     |
| Lower Columbia River Bi-State Program,<br>Contaminant Ecology of Fish and Wildlife of the<br>Lower Columbia River, Summary and Integration<br>(April 1996)<br><u>https://www.estuarypartnership.org/sites/default/f</u><br><u>iles/resource_files/Sec_3_3_1b.pdf</u>                                                                                                                | Study submitted is more than 20 years old<br>and falls outside of the WQA cycle window<br>of 2006 – 2017. Intent of the study was not<br>to demonstrate ambient water conditions at<br>specific locations.                                                                         |
| Columbia Basin Fish and Wildlife Authority,<br>Contamination Ecology of Selected Fish and Wildlife<br>of the Lower Columbia River, A Report to the Bi-<br>State Water Quality Program (April 23, 1996)<br><u>https://www.estuarypartnership.org/sites/default/f</u><br><u>iles/resource_files/LCRBiStateFWS3.3.1a_CBFWA</u><br><u>WILD_ContamEcolSelectedFish%26WildinLCR96.pdf</u> | Study submitted is more than 20 years old<br>and falls outside of the WQA cycle window<br>of 2006 – 2017. Intent of the study was not<br>to demonstrate ambient water conditions at<br>specific locations.                                                                         |
| Columbia River Estuary Study Taskforce, Historic<br>Habitats of the Lower Columbia River (Oct. 1995)<br><u>https://www.estuarypartnership.org/sites/default/f</u><br><u>iles/resource_files/LCRBiStateFWS3.5.5b_Graves_H</u><br><u>istoricHabitatsofTheLCR95.PDF</u>                                                                                                                | Study submitted is more than 20 years old<br>and falls outside of the WQA cycle window<br>of 2006 – 2017.<br>Intent of the study was not to demonstrate<br>ambient water conditions at specific<br>locations.                                                                      |

| Narrative Data Submittal                                                                                                                                                                                                                                                                                                         | Reasons(s) for not using Submittal                                                                                                                                                                         |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Lower Columbia River Bi-State Program,<br>Reconnaissance Survey of the Lower Columbia<br>River; Task 2 Summary Report: Inventory and<br>Characterization of Pollutants (June 26, 1992)<br><u>https://www.estuarypartnership.org/sites/default/f</u><br><u>iles/resource_files/TC8526_02_reconsurvey1_2_tas</u><br><u>k2b.pdf</u> | Study submitted is more than 20 years old<br>and falls outside of the WQA cycle window<br>of 2006 – 2017. Intent of the study was not<br>to demonstrate ambient water conditions at<br>specific locations. |
| Washington State Department of Health, Health<br>Analysis of Chemical Contaminants in Lower<br>Columbia River Fish (May 1996)<br><u>https://www.estuarypartnership.org/sites/default/f</u><br><u>iles/resource_files/Additions_A_health_analysis.pd</u><br><u>f</u>                                                              | Study submitted is more than 20 years old<br>and falls outside of the WQA cycle window<br>of 2006 – 2017. Intent of the study was not<br>to demonstrate ambient water conditions at<br>specific locations. |
| Lower Columbia River Bi-State Program,<br>Reconnaissance Survey of the Lower Columbia<br>River, Task 6: Reconnaissance Report (May 17,<br>1992)<br><u>https://www.estuarypartnership.org/sites/default/f</u><br><u>iles/resource_files/TC8526_06_reconsurvey2_le_v_ol_1.pdf</u>                                                  | Study submitted is more than 20 years old<br>and falls outside of the WQA cycle window<br>of 2006 – 2017. Intent of the study was not<br>to demonstrate ambient water conditions at<br>specific locations. |
| Lower Columbia River Bi-State Program, Assessing<br>Human Risks from Chemically Contaminated Fish in<br>the Lower Columbia River: Risk Assessment (May 1,<br>1996)<br><u>https://www.estuarypartnership.org/sites/default/f</u><br><u>iles/resource_files/TC9968_05_sec4_ld.pdf</u>                                              | Study submitted is more than 20 years old<br>and falls outside of the WQA cycle window<br>of 2006 – 2017. Intent of the study was not<br>to demonstrate ambient water conditions at<br>specific locations. |
| Lower Columbia River Bi-State Program, Assessing<br>Health of Fish Species and Fish Communities in the<br>Lower Columbia River (Jan. 29, 1996)<br><u>https://www.estuarypartnership.org/sites/default/f</u><br><u>iles/resource_files/Sec_3_3_2b.pdf</u>                                                                         | Study submitted is more than 20 years old<br>and falls outside of the WQA cycle window<br>of 2006 – 2017. Intent of the study was not<br>to demonstrate ambient water conditions at<br>specific locations. |
| Lower Columbia River Bi-State Program,<br>Reconnaissance Survey of the Lower Columbia<br>River, Task 1: Final Summary Report (April 29, 1992)<br><u>https://www.estuarypartnership.org/sites/default/f</u><br><u>iles/resource_files/TC8526_01_reconsurvey1_1_tas</u><br><u>k1d.pdf</u>                                          | Study submitted is more than 20 years old<br>and falls outside of the WQA cycle window<br>of 2006 – 2017. Intent of the study was not<br>to demonstrate ambient water conditions at<br>specific locations. |

| Narrative Data Submittal                                                                                                                                                                                                                                                                                                            | Reasons(s) for not using Submittal                                                                                                                                                                         |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| U.S. Fish and Wildlife Service, Interim report:<br>Environmental contaminants in bald eagles nesting<br>along the lower Columbia River (Feb. 9, 1996)<br><u>https://www.estuarypartnership.org/sites/default/f</u><br><u>iles/resource_files/Sec_3_3_4a.pdf</u>                                                                     | Study submitted is more than 20 years old<br>and falls outside of the WQA cycle window<br>of 2006 – 2017. Intent of the study was not<br>to demonstrate ambient water conditions at<br>specific locations. |
| Lower Columbia River Bi-State Program, The Health<br>of the River 1990-1996, Integrated Technical Report<br>(May 20, 1996)<br><u>https://www.estuarypartnership.org/sites/default/f</u><br><u>iles/resource files/Additions D 1996 health of th</u><br><u>e river integrated report.pdf</u>                                         | Study submitted is more than 20 years old<br>and falls outside of the WQA cycle window<br>of 2006 – 2017. Intent of the study was not<br>to demonstrate ambient water conditions at<br>specific locations. |
| Lower Columbia Estuary Partnership, Lower<br>Columbia River Ecosystem Monitoring Project<br>Annual Report for Year 2 (September 1, 2004 to<br>August 31, 2005) (2006)<br><u>https://www.estuarypartnership.org/resource/low</u><br><u>er-columbia-river-ecosystem-monitoring-project-<br/>annual-report-year-2-september-1-2004</u> | Study submitted falls outside of the WQA<br>cycle window of 2006 – 2017.<br>Intent of the study was not to demonstrate<br>ambient water conditions at specific<br>locations.                               |
| Lower Columbia Estuary Partnership, Lower<br>Columbia River Ecosystem Monitoring Project<br>Annual Report for Year 3 (September 1, 2005 to<br>August 31, 2006) (2007)<br><u>https://www.estuarypartnership.org/sites/default/f</u><br><u>iles/resource_files/Year 3 Ecosystem Monitoring</u><br><u>Project Annual Report.pdf</u>    | Study submitted falls outside of the WQA<br>cycle window of 2006 – 2017.<br>Intent of the study was not to demonstrate<br>ambient water conditions at specific<br>locations.                               |
| Tom Rosetta and David Borys, Oregon DEQ,<br>Identification of Sources of Pollutants to the Lower<br>Columbia River Basin (June 1996)<br><u>https://www.estuarypartnership.org/sites/default/f</u><br><u>iles/resource files/Additions C id of pollutant so</u><br><u>urces.pdf</u>                                                  | Study submitted falls outside of the WQA<br>cycle window of 2006 – 2017.<br>Intent of the study was not to demonstrate<br>ambient water conditions at specific<br>locations.                               |
| USF&WS, Changes in Productivity and<br>Environmental Contaminants in Bald Eagles nesting<br>Along the Lower Columbia River (Aug. 12, 1999)<br><u>https://www.fws.gov/oregonfwo/Contaminants/Fie</u><br><u>IdStudies/BaldEagle/LCR-BaldEagleFinalReport.pdf</u>                                                                      | Study submitted falls outside of the WQA<br>cycle window of 2006 – 2017.<br>Intent of the study was not to demonstrate<br>ambient water conditions at specific<br>locations.                               |

| Narrative Data Submittal                                                                                                                                                                                                                                                                                                                                                                                                                   | Reasons(s) for not using Submittal                                                                                                                                                                                                                                                                                   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| USFWS, Effects of Nutrient Enrichment on<br>Wetlands at Conboy Lake National Wildlife Refuge<br>(2002)<br><u>https://www.fws.gov/oregonfwo/documents/Scien</u><br><u>tificReports/ConboyLakeNutrient.pdf</u>                                                                                                                                                                                                                               | Study submitted falls outside of the WQA<br>cycle window of 2006 – 2017.<br>Intent of the study was not to demonstrate<br>ambient water conditions at specific<br>locations in Washington.                                                                                                                           |
| West, J.E., and S.M. O'Neill. 1995. Accumulation of<br>mercury and polychlorinated biphenyls in quillback<br>rockfish (Sebastes maliger) from Puget Sound<br>Washington. Pages 666-677 in E. Robichaud, editor.<br>Puget Sound Research 1995 Conference<br>Proceedings. Puget Sound Water Quality Authority.<br>Washington Department of Fish and Wildlife.<br>Olympia, Washington. 14pp.<br><u>https://wdfw.wa.gov/publications/01036</u> | Data submitted falls outside of the WQA<br>cycle window of 2006 – 2017.<br>Intent of the study was not to demonstrate<br>ambient water conditions at specific<br>locations in Washington. Modeled results<br>are not appropriate to determine that<br>standards in Washington are being met at<br>specific waters.   |
| West, J.E., R.M. Buckley, and D.C. Doty. 1994.<br>Ecology and habitat use of juvenile rockfishes<br>(Sebastes spp.) associated with artificial reefs in<br>Puget Sound, Washington. Bulletin of Marine<br>Science 55(2-3):344-350.<br><u>https://www.ingentaconnect.com/content/umrsm</u><br><u>as/bullmar/1994/0000055/f0020002/art00008</u>                                                                                              | Study submitted falls outside of the WQA<br>cycle window of 2006 – 2017.<br>Modeled results are not appropriate to<br>determine that standards in Washington are<br>being met at specific waters. Focus of study<br>was unrelated to determining water quality<br>or ambient conditions of specific<br>waterbodies.  |
| Ralph Elston, Ph.D. AquaTechnics, Pathways and<br>Management of Marine Nonindigenous Species in<br>the Shared Waters of British Columbia and<br>Washington (January 1997)<br><u>https://www.amazon.co.uk/Pathways-</u><br><u>management-nonindigenous-Washington-</u><br><u>environmental/dp/B0006FANVK</u>                                                                                                                                | The data from these studies are well over 20<br>years old and fall outside of the data<br>window for this WQA.Submittal did not<br>include documentation addressing the<br>accuracy and completeness of the<br>information submitted to Ecology, and study<br>methods & data not documented or readily<br>available. |
| Bigg, M., I. MacAskie, and G. Ellis. 1976. Abundance<br>and movements of killer whales off eastern and<br>southern Vancouver Island with comments on<br>management. Ecological Reserves Collection,<br>Government of British Columbia, Ref. No. 336.<br><i>Unable to locate study</i> .                                                                                                                                                    | This study was 45 years old and falls outside<br>of the data window for this WQA.<br>This study was not specific to Washington<br>waters. Focus of study was unrelated to<br>determining water quality or ambient<br>conditions of specific waterbodies in<br>Washington.                                            |

| Narrative Data Submittal                                                                                                                                                                                                                                                                                                                                                                                               | Reasons(s) for not using Submittal                                                                                                                                                                                                                                                   |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Grant, S.C.H. and P.S. Ross. 2002. Southern resident<br>killer whales at risk: Toxic chemicals in the British<br>Columbia and Washington environment. Can. Tech.<br>Rep. Fish. Aquat. Sci. 2412: xii + 111 p.<br><u>https://www.researchgate.net/publication/237636</u><br><u>125 Southern Resident Killer Whales at Risk To</u><br><u>xic Chemicals in the British Columbia and Wash</u><br><u>ington Environment</u> | This submittal falls outside of the data<br>window for this WQA. Intent of the study<br>was not to demonstrate ambient water<br>conditions at specific locations in<br>Washington.                                                                                                   |
| Stehr, C. et al. 2000. Exposure of juvenile chinook<br>and chum salmon to chemical contaminants in the<br>Hylebos Waterway of Commencement Bay,<br>Tacoma, Washington. Journal of Aquatic Ecosystem<br>Stress and Recovery 7: 215–227, 2000.<br><u>https://link.springer.com/article/10.1023/A:100990</u><br>5322386                                                                                                   | The data from the study fall outside of the<br>data window for this WQA. Further, data<br>from these studies would not have been<br>considered in the 2018 WQ Assessment<br>because the tissue samples would not have<br>met Policy 1-11 requirements.                               |
| Johnson, L. et al. 2006. Contaminant exposure in<br>outmigrant juvenile salmon from Pacific Northwest<br>estuaries of the United States. Environ Monit<br>Assess DOI 10.1007/s10661-006-9216-7.<br><u>https://pubmed.ncbi.nlm.nih.gov/16957861/</u>                                                                                                                                                                    | The data from these studies (collected 1996-<br>2001) fall outside of the data window for<br>this WQA. Further, data from these studies<br>would not have been considered in the 2018<br>WQ Assessment because the tissue samples<br>would not have met Policy 1-11<br>requirements. |
| Lower Columbia Estuary Partnership, Lower<br>Columbia River and Estuary Ecosystem Monitoring;<br>Water Quality and Salmon Sampling Report (2007)<br><u>https://www.estuarypartnership.org/resource/low</u><br><u>er-columbia-river-and-estuary-ecosystem-</u><br><u>monitoring-water-quality-and-salmon-sampling</u>                                                                                                   | The data from these studies (collected 1996-<br>2001) fall outside of the data window for<br>this WQA. Further, data from these studies<br>would not have been considered in the 2018<br>WQ Assessment because the tissue samples<br>would not have met Policy 1-11<br>requirements. |

**Table 12**. Data associated with a submittal was considered for listing, but did not show exceedances of the standards, or did not meet data or quality assurance requirements in accordance with credible data statutes and policies

| Narrative Data Submittal                                                                                                                                                                                                                                                                                                                                      | Reasons(s) for not using Submittal                                                                                                                                                                                                                                                                                                                                                                                                  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Pacific Herring Species Monitored: Toxic<br>Contaminants in Puget Sound Fish and Shellfish<br>_Washington Department of Fish & Wildlife.pdf<br><u>https://wdfw.wa.gov/species-</u><br><u>habitats/science/marine-toxics/species-monitored</u>                                                                                                                 | This submittal is a website that provides<br>information on their pacific herring<br>monitoring program. Focus of website is on<br>WDFW's monitoring program, and not on<br>determining water quality or ambient<br>conditions of specific waterbodies.<br>Associated data was considered but not<br>used in the 2018 WQ Assessment because<br>fish were analyzed as whole body, which is<br>not considered edible fin-fish tissue. |
| Ecology, Persistent Bioaccumulative and Toxic<br>Contaminants in Pelagic Marine Fish Species from<br>Puget Sound (March 2011)<br><u>https://apps.ecology.wa.gov/publications/publicati</u><br><u>ons/1110003.pdf</u>                                                                                                                                          | Data associated with this summary<br>submittal was considered but not used in<br>the 2018 WQ Assessment because the<br>tissue data did not meet Policy 1-11<br>requirements. Fish were analyzed as whole<br>body, including stomach contents and bile,<br>which are not considered edible tissue<br>types.                                                                                                                          |
| West, J.E., J.A. Lanksbury, S.M. O'Neill, and A.<br>Marshall. 2011. Control of Toxic Chemicals in Puget<br>Sound Phase 3: Persistent Bioaccumulative and<br>Toxic Contaminants in Pelagic Marine Fish Species<br>from Puget Sound. Washington Department of Fish<br>and Wildlife. Olympia, Washington. 70pp.<br><u>https://wdfw.wa.gov/publications/01362</u> | Data from this study, associated with Phase<br>3 Puget Sound Toxics Loading Assessment,<br>was considered but not used in the 2018<br>WQ Assessment because the tissue data did<br>not meet Policy 1-11 requirements. Fish<br>tissue type was whole body and whole body<br>tissue is not considered an edible tissue type<br>per Assessment Policy 1-11.                                                                            |
| Lower Columbia Estuary Partnership, Juvenile<br>Salmon Ecology in Tidal Freshwater Wetlands of the<br>Lower Columbia River Estuary: Synthesis of the<br>Ecosystem Monitoring Program, 2005–2010 (2013)<br>https://www.estuarypartnership.org/resource/juve<br>nile-salmon-ecology-tidal-freshwater-wetlands-<br>lower-columbia-river-estuary-synthesis        | Intent of the study was not to demonstrate<br>ambient water conditions at specific<br>locations. Any water quality data associated<br>with the study that is in EIM or the federal<br>Water Quality Portal would be used in the<br>assessment of data.                                                                                                                                                                              |

| Narrative Data Submittal                                                                                                                                                                                                                                                                                                                                                                                    | Reasons(s) for not using Submittal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Lanksbury, J.A., L.A. Niewolny, A.J. Carey, and J.E.<br>West. 2014. Toxic Contaminants in Puget Sound's<br>Nearshore Biota: A Large-Scale Synoptic Survey<br>Using Transplanted Mussels (Mytilus trossulus).<br>Washington Department of Fish and Wildlife;<br>WDFW Report Number FPT 14-08. Olympia,<br>Washington. 177pp.<br><u>https://wdfw.wa.gov/publications/01643</u>                                | This study focused on toxic contaminants<br>generated primarily from terrestrial sources,<br>and conveyed to Puget Sound nearshore<br>habitats via stormwater and other hydraulic<br>watershed processes. Intent of the study<br>was not to demonstrate ambient water<br>conditions at specific locations. Tissue data<br>associated with the study were considered<br>but could not be used because data were<br>reported in dry weight and thus are not<br>useable for the assessment because other<br>ancillary data (percent moisture) is needed<br>to calculate a wet weight for comparison to<br>the TEC thresholds. |
| Lanksbury, J.A. and J.E. West. 2012. 2011/2012<br>Mussel Watch Phase 1: Sampling Summary and<br>Progress Report. Washington Department of Fish<br>and Wildlife. Olympia, Washington. 75pp.<br><u>http://wdfw.wa.gov/publications/01381/</u>                                                                                                                                                                 | Tissue data associated with the study could<br>not be used because it appears that data<br>were reported in dry weight and thus are<br>not useable for the assessment because<br>other ancillary data (percent moisture) is<br>needed to calculate a wet weight for<br>comparison to the TEC thresholds. Listings<br>from previous cycles based on Mussel<br>Watch data were still carried forward.                                                                                                                                                                                                                        |
| Lanksbury, J.A., J.E. West, K. Herrmann, A.<br>Hennings, K. Litle, and A. Johnson. 2010.<br>Washington State <b>2009/10</b> Mussel Watch Pilot<br>Project: A Collaboration between National, State<br>and Local Partners. Olympia, WA. Puget Sound<br>Partnership, 283pp.<br><u>https://wdfw.wa.gov/publications/01127</u>                                                                                  | Tissue data associated with the study could<br>not be used because it appears that data<br>were reported in dry weight and thus are<br>not useable for the assessment because<br>other ancillary data (percent moisture) is<br>needed to calculate a wet weight for<br>comparison to the TEC thresholds. Listings<br>from previous cycles based on Mussel<br>Watch data were still carried forward.                                                                                                                                                                                                                        |
| West, J.E., S.M. O'Neill, and G.M. Ylitalo. 2008.<br>Spatial extent, magnitude, and patterns of<br>persistent organochlorine pollutants in <b>Pacific</b><br><b>herring</b> (Clupea pallasi) populations in the Puget<br>Sound (USA) and the Georgia Basin (Canada).<br>Science of the Total Environment 394:369-378.<br><u>https://www.sciencedirect.com/science/article/abs</u><br>/pii/S004896970701340X | Tissue data associated with the study could<br>not be used because fish were analyzed as<br>whole body, which is not considered edible<br>fin-fish tissue in accordance with Policy 1-<br>11.                                                                                                                                                                                                                                                                                                                                                                                                                              |

| Narrative Data Submittal                                                                                                                                                                                                                                                                                                                                                                                                                                     | Reasons(s) for not using Submittal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Ecology, Toxic Contaminants in Harbor Seal (Phoca vitulina) Pups from Puget Sound (March 2011)<br>https://apps.ecology.wa.gov/publications/publicati<br>ons/1110001.pdf                                                                                                                                                                                                                                                                                      | Data from the harbor seal pups was<br>considered but not used in the 2018<br>Assessment in accordance with Policy 1-11<br>because harbor seals are not considered an<br>edible species in Washington waterbodies.                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Washington Department of Fish and Wildlife. 2011.<br>Toxic Contaminants in Harbor Seal (Phoca vitulina)<br>Pups from Puget Sound. Ecology Publication<br>Number 11-10-001.<br><u>https://apps.ecology.wa.gov/publications/documen</u><br><u>ts/1110001.pdf</u>                                                                                                                                                                                               | Data from the harbor seal pups was<br>considered but not used in the 2018<br>Assessment in accordance with Policy 1-11<br>because harbor seals are not considered an<br>edible species in Washington waterbodies.                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Sound Experience Microplastic Citizen Science<br>Program (SEMCSP) data and results, collected using<br>methods summarized in an undergraduate research<br>thesis at the University of Washington, Tacoma<br>(Reetz, 2014). Submittal by Center for Biological<br>Diversity via 6/30/2016 correspondence to Ecology.<br>Reetz, L. R. (2014). Characterizing microplastics of<br>surface waters in the Puget Sound, WA.<br>Unpublished Undergraduate Research. | The submitter requests listing South Puget<br>Sound, East of Anderson Island for<br>microplastics based on the undergraduate<br>research report (Reetz, 2014) and the<br>accompanying data from SEMCSP. The study<br>states that no quality assurance or quality<br>control methods were in places for sample<br>collection or lab processing. Additionally,<br>the data records from SEMCSP did not<br>correspond with the data presented in the<br>study results section. For these reasons, this<br>information would not meet Washington's<br>Credible Data Act requirements (RCW<br>90.48.580) and was not further considered. |
| Gilman, N. E. (2013). Examining spatial<br>concentrations of marine micro-plastics on<br>shorelines in south Puget Sound, Washington.<br><i>Unpublished Thesis</i> . Submittal by Center for<br>Biological Diversity via 6/30/2016 correspondence<br>to Ecology.                                                                                                                                                                                             | This submittal did not meet listing<br>requirements in Policy 1-11 for assessment<br>of waters under Washington's narrative<br>water quality criteria. The study would need<br>to provide information that clearly<br>documents the connection between<br>sources, causes, and effects on designated<br>uses in order to meet credible data<br>requirements in Washington.                                                                                                                                                                                                                                                          |

| Narrative Data Submittal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Reasons(s) for not using Submittal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Davis, W., & Murphy, A. G. (2015). Plastic in surface<br>waters of the Inside Passage and beaches of the<br>Salish Sea in Washington State. <i>Marine Pollution<br/>Bulletin</i> , <i>97</i> (1-2), 169–177. Submittal by Center for<br>Biological Diversity via 6/30/2016 correspondence<br>to Ecology.<br><u>http://doi.org/10.1016/j.marpolbul.2015.06.019</u>                                                                                                                                                                                                                                                                           | This submittal did not meet listing<br>requirements in Policy 1-11 for assessment<br>of waters under Washington's narrative<br>water quality criteria. The study would need<br>to provide information that clearly<br>documents the connection between<br>sources, causes, and effects on designated<br>uses in order to meet credible data<br>requirements in Washington.                                                                                                                                                                                                                                                                                                                                                     |
| Adventurers and Scientists for Conservation (ASC)<br>Global Microplastics Initiative data. Submittal by<br>Center for Biological Diversity via 6/30/2016<br>correspondence to Ecology. Data submitters cited a<br>study by Lonnstead and Eklov (2016) which found<br>impacts to development, growth, and behaviors of<br>European Perch exposed to varying levels of<br>microplastics.<br>Lonnstedt, O. M., & Eklov, P. (2016).<br>Environmentally relevant concentrations of<br>microplastic particles influence larval fish ecology.<br><i>Science</i> , <i>352</i> (6290), 1213 – 1216.<br><u>http://doi.org/10.1126/science.aad8828</u> | Data collected in Washington's waters from<br>2014-2015 ranged from 0 to 32<br>microplastics/L. Based on current research,<br>it's unclear whether the levels reported can<br>impact local aquatic life. Due to lack of<br>established criteria and lack of information<br>supporting impacts to organisms in<br>Washington's marine waters, there is not<br>sufficient evidence to list this waterbody<br>under Ecology's narrative criteria.                                                                                                                                                                                                                                                                                 |
| National Ocean and Atmosphere Administration's<br>Pacific Marine Laboratory (NOAA/PMEL) West<br>Coast Ocean Acidification monitoring surface<br>seawater CO <sub>2</sub> data sets from which pH can be<br>calculated, links to download data submitted via<br>6/30/2016 correspondence to Ecology.                                                                                                                                                                                                                                                                                                                                         | After reviewing the $pCO_2$ data sets, Ecology<br>determined that these data are not<br>appropriate for use in the WQA. Ecology<br>does not have approved numeric criteria for<br>determining impairment to aquatic life<br>utilizing surface water $pCO_2$ measurements.<br>Additionally, Ecology does not have an<br>established method for the conversion of<br>salinity measurements to total alkalinity or<br>conversion of $pCO_2$ to infer pH for purposes<br>of the WQA. Due to lack of established<br>criteria, appropriate methodology, and lack<br>of information supporting impacts under<br>Ecology's narrative criteria, it was<br>determined that these $pCO_2$ data are not<br>appropriate for use in the WQA. |

| Narrative Data Submittal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Reasons(s) for not using Submittal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| National Ocean and Atmosphere Administration's<br>Pacific Marine Laboratory (NOAA/PMEL) West<br>Coast Ocean Acidification (WCOA) cruise,<br>information on biological impacts on pteropods on<br>the WOAC and NANOOS cruises, 2014, submitted<br>via 6/30/2016 correspondence to Ecology. Data<br>consists of pteropod shell damage characterization<br>and calculated aragonite saturation based on<br>samples collected from a 2014 WOAC and NANOOS<br>cruise of Puget Sound. Ecology reviewed the<br>pteropod data. | Ecology currently does not have numeric<br>criteria for aragonite saturation or an<br>approved standard methodology for<br>analyzing marine biological organism data<br>for purposes of the WQA. While data<br>demonstrate a range of severity in pteropod<br>shell damage, there are no reference<br>conditions or sites with which to compare<br>these data. Without reference conditions, it<br>is unclear whether these data represent the<br>natural conditions of aquatic life in<br>Washington's waters. Additionally, the few<br>samples collected are not likely to capture<br>the potential variability in pteropod shell<br>development. Ecology recognizes the<br>relationships between pH, aragonite<br>saturation, and pteropod shell dissolution as<br>documented by Bednarsek and others<br>(2012, 2014). However, there is not<br>sufficient data collected in Washington's<br>waters for purposes of listing under our<br>narrative criteria at this time. |
| Center for Biological Diversity, data and information<br>submittal to list Dabob OA mooring (47.97ºN, -<br>124.95ºW) as impaired for ocean acidification,<br>submitted via 6/24/2016 correspondence to<br>Ecology.                                                                                                                                                                                                                                                                                                     | The request to list this buoy site for ocean<br>acidification is based on $pCO_2$ data from this<br>station. The submitter asserts that these<br>levels would correlate with relatively low<br>pH. Ecology determined that using $pCO_2$<br>data trends alone are not appropriate for<br>the WQA. Ecology does not have approved<br>numeric criteria for determining impairment<br>to aquatic life utilizing surface water $pCO_2$<br>measurements. Due to lack of established<br>criteria and lack of information supporting<br>impacts under Ecology's narrative criteria, it<br>was determined that these $pCO_2$ data are<br>not appropriate for use in the WQA.                                                                                                                                                                                                                                                                                                         |

| Narrative Data Submittal                                                                                                                                                                                                                                                                                                                                                                                                                     | Reasons(s) for not using Submittal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Center for Biological Diversity, data and information<br>submittal to list Twanoh (NANOOS ORCA buoy at<br>Twanoh (47.37°N, 123.01°W) as impaired for ocean<br>acidification, submitted via 6/24/2016<br>correspondence to Ecology.                                                                                                                                                                                                           | The request to list this buoy site for ocean<br>acidification is based on $pCO_2$ data from this<br>station, which can reach levels well above<br>500 ppm. The submitter asserts that these<br>levels would correlate with relatively low<br>pH. Ecology determined that using $pCO_2$<br>data trends alone are not appropriate for<br>the WQA. Due to lack of established criteria<br>and lack of information supporting impacts<br>under Ecology's narrative criteria, it was<br>determined that these $pCO_2$ data are not<br>appropriate for use in the WQA.                                                                                                                                                                                               |
| Center for Biological Diversity, pH data and<br>information submittal to list Taylor Shellfish Farm<br>(Dabob Bay, 47.8199ºN, -122.8215ºW) as impaired<br>for ocean acidification, submitted via 6/24/2016<br>correspondence to Ecology.                                                                                                                                                                                                     | Upon review of this third party submittal,<br>there is not sufficient information provided<br>with the data to demonstrate that quality<br>assurance practices appropriate for the<br>WQA were used. Also, It appears from our<br>review that all pH monitoring data were<br>within the acceptable range of 7.0 to 8.5<br>units based on application of Policy 1-11,<br>and there was no accompanying analysis<br>demonstrating that there was a human-<br>caused variation within the range of less<br>than 0.2 units. Due to lack of quality<br>assurance documentation and lack of<br>information supporting impacts under<br>Ecology's narrative criteria requirements, it<br>was determined that these pH data are not<br>appropriate for use in the WQA. |
| Center for Biological Diversity, data and information<br>submittal to list Dockton Park Station (Outer<br>Quartermaster Harbor, 47.371618 <sup>o</sup> N, -<br>122.454097 <sup>o</sup> W) as impaired for ocean acidification,<br>submitted via 6/24/2016 correspondence to<br>Ecology. The outer Quartermaster Harbor mooring<br>system is located in Dockton Park and it is part of<br>the King County four active water quality stations. | Upon review of this third party submittal,<br>there is not sufficient information provided<br>with the data to demonstrate that quality<br>assurance practices appropriate for the<br>WQA were used. It was determined that<br>these data are not appropriate for use in the<br>WQA due to: lack of quality assurance<br>documentation, discrepancies between data<br>provided and data represented in figures,<br>lack of established aragonite criteria, and<br>lack of information supporting impacts<br>under Ecology's narrative criteria.                                                                                                                                                                                                                |

| Narrative Data Submittal                                                                                                                                                                                                                                                                                | Reasons(s) for not using Submittal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Center for Biological Diversity, data and information<br>submittal to list Quarter Master Yacht Club as<br>impaired for ocean acidification, submitted via<br>6/24/2016 correspondence to Ecology. The inner<br>Quartermaster Harbor mooring system is located at<br>the Quartermaster Yacht Club.      | Upon review of this third party submittal,<br>there is not sufficient information provided<br>with the data to demonstrate that quality<br>assurance practices appropriate for the<br>WQA were used. It was determined that<br>these data are not appropriate for use in the<br>WQA due to: lack of a quality assurance<br>documentation, discrepancies between data<br>provided and data represented in figures,<br>lack of established aragonite criteria, and<br>lack of information supporting impacts<br>under Ecology's narrative criteria.              |
| Center for Biological Diversity, data and information<br>submittal to list Point Williams as impaired for<br>ocean acidification, submitted via 6/24/2016<br>correspondence to Ecology. The mooring system<br>located in Central Puget Sound off of Point Williams<br>is deployed from an oceanic buoy. | Upon review of this third party submittal,<br>there is not sufficient information provided<br>with the data to demonstrate that quality<br>assurance practices appropriate for the<br>WQA were used. In summary, it was<br>determined that these data are not<br>appropriate for use in the WQA due to: lack<br>of quality assurance documentation,<br>discrepancies between data provided and<br>data represented in figures, lack of<br>established aragonite criteria, and lack of<br>information supporting impacts under<br>Ecology's narrative criteria. |
| Center for Biological Diversity, data and information<br>submittal to list Seattle Aquarium as impaired for<br>ocean acidification, submitted via 6/24/2016<br>correspondence to Ecology. The Elliott Bay mooring<br>system is located at, and is a joint project with, the<br>Seattle Aquarium.        | Upon review of this third party submittal,<br>there is not sufficient information provided<br>with the data to demonstrate that quality<br>assurance practices appropriate for the<br>WQA were used. In summary, it was<br>determined that these data are not<br>appropriate for use in the WQA due to: lack<br>of quality assurance documentation,<br>discrepancies between data provided and<br>data represented in figures, lack of<br>established aragonite criteria, and lack of<br>information supporting impacts under<br>Ecology's narrative criteria. |

**Table 13**. Study submittals that are not a water quality study, and are not related to determining ambient water conditions of specific waterbodies in Washington

| Narrative Data Submittal                                                                                                                                                                                                                                                                                                                                | Reasons(s) for not using Submittal                                                                                                                                                            |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Hood, E. 2005. Are EDCs Blurring Issues of Gender?<br>Environmental Health Perspectives. VOLUME 113  <br>NUMBER 10   October 2005: 671 – 677.<br>Unable to locate study online.                                                                                                                                                                         | This article is on adverse human health<br>effects of exposure to endocrine-disrupting<br>chemicals.                                                                                          |
| Lower Columbia Estuary Partnership, Historical<br>Habitat Change in the Lower Columbia River, 1870 -<br>2010 (2012)<br><u>https://www.estuarypartnership.org/sites/default/f</u><br><u>iles/resource_files/Lower Columbia Estuary</u><br><u>Historical Landcover Change final_2013_small.pdf</u>                                                        | This is a spatial analysis of long term land<br>cover change for the lower Columbia River<br>estuary and its floodplain by comparing GIS<br>representations of late 1800's maps.              |
| U.S. Fish and Wildlife Service, Species Assessment<br>and Listing Priority Assignment Form: Rana pretiosa<br>(May 9, 2011)<br><u>https://www.fs.fed.us/r6/sfpnw/issssp/documents/<br/>planning-docs/cp-fws-candidate-ha-rana-pretiosa-<br/>2011-05.pdf</u>                                                                                              | This online page provides a species<br>assessment and listing priority assignment<br>for the Oregon spotted frog.                                                                             |
| NMFS, Endangered and Threatened Wildlife and<br>Plants: Threatened Status for Southern Distinct<br>Population Segment of North American Green<br>Sturgeon (April 7, 2006)<br><u>https://www.fisheries.noaa.gov/action/critical-habitat-designation-southern-distinct-population-segment-north-american-green</u>                                        | This is an online page describing NOOA<br>Fisheries action to conserve the threatened<br>Southern Distinct Population Segment of<br>North American green sturgeon.                            |
| NMFS, Endangered and Threatened Wildlife and<br>Plants; Adding Four Marine Taxa to the List of<br>Endangered and Threatened Wildlife, Final Rule<br>(April 4, 2007)<br><u>https://www.federalregister.gov/documents/2007/</u> 04/04/E7-6188/endangered-and-threatened-<br>wildlife-and-plants-adding-four-marine-taxa-to-the-<br>list-of-endangered-and | This is a federal register notice for a final<br>rule where the U.S. Fish and Wildlife Service<br>(Service), are adding four marine taxa to the<br>List of Endangered and Threatened Wildlife |

| Narrative Data Submittal                                                                                                                                                                                                                                                                                                                                                                                                          | Reasons(s) for not using Submittal                                                                                                                                                                                                                                                            |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| NMFS, Endangered and Threatened Wildlife and<br>Plants; Marine and Anadromous Taxa: Additions,<br>Removal, Updates, and Corrections to the List of<br>Endangered and Threatened Wildlife (July 24, 2014)<br><u>https://www.federalregister.gov/documents/2014/</u><br>07/23/2014-16756/endangered-and-threatened-<br>wildlife-and-plants-marine-and-anadromous-taxa-<br>additions-removal-updates                                 | This is a federal register notice for a final<br>rule where the U.S. Fish and Wildlife Service<br>(Service), are adding several marine taxa,<br>removing one species, and revising the<br>entries of many more in accordance with<br>the Endangered Species Act of 1973, as<br>amended (Act). |
| O'Neill, S. M., G.M. Ylitalo, and J.E. West. 2014.<br>Energy content of Pacific salmon as prey of<br>northern and southern resident killer whales.<br>Endangered Species Research 25(2): 265-281.<br><u>http://www.int-</u><br><u>res.com/abstracts/esr/v25/n3/p265-281/</u>                                                                                                                                                      | This study analyzed proximate composition<br>and calculated caloric content of Pacific<br>salmon to evaluate the importance of<br>salmon species, population, body size, and<br>lipid levels in determining their energy<br>content as prey for killer whales.                                |
| West J.E., T.E. Helser, and S.M. O'Neill. 2014.<br>Variation in quillback rockfish (Sebastes maliger)<br>growth patterns from oceanic to inland waters of<br>the Salish Sea. Bulletin of Marine Science. 90 (2):<br>747-761.<br><u>https://www.ingentaconnect.com/content/umrsm</u><br><u>as/bullmar/2014/0000090/0000003/art00001</u>                                                                                            | This study compared patterns of growth<br>variation in quillback rockfish from four<br>regions across the Salish Sea.                                                                                                                                                                         |
| da Silva, D.A.M., J. Buzitis, W.L. Reichert, J.E. West,<br>S.M. O'Neill, L.L. Johnson, T.K. Collier, and G.M.<br>Ylitalo. 2013. Endocrine disrupting chemicals in fish<br>bile: A rapid method of analysis and field validation<br>using English sole (Parophrys ventulus) from Puget<br>Sound, WA, USA. Chemosphere 92(11): 1550-1556.<br>https://www.sciencedirect.com/science/article/abs<br>/pii/S0045653513006255?via%3Dihub | This study describes a recently developed<br>and rapid method to measure bisphenol A<br>(BPA), 17β-estradiol (E2) and 17α-<br>ethynylestradiol (EE2) in bile of fish using<br>enzymatic hydrolysis.                                                                                           |
| James, C.A., J. Kershner, J. Samhouri, S.M. O'Neill,<br>and P.S. Levin. 2012. A methodology for<br>evaluating and ranking water quantity indicators in<br>support of ecosystem-based management.<br>Environmental Management 49:703-19.<br><u>https://link.springer.com/article/10.1007/s00267-<br/>012-9808-7</u>                                                                                                                | This paper describes an indicator evaluation<br>and selection process designed to support<br>the Ecosystem-based Management<br>approach in Puget Sound.                                                                                                                                       |

| Narrative Data Submittal                                                                                                                                                                                                                                                                                                                                                                                                         | Reasons(s) for not using Submittal                                                                                                                                                                                                                                                  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Lanksbury, J.A. and J.E. West. 2011. Blue Mussels as<br>Indicators of Stormwater Pollution in Nearshore<br>Marine Habitats in Puget Sound: Proposed Revised<br>Statement of Hypothesis. Washington Department<br>of Fish and Wildlife. Olympia, Washington. 28pp.<br><u>https://wdfw.wa.gov/publications/01366</u>                                                                                                               | This report summarizes the feasibility of<br>applying a probabilistic random sampling<br>design for monitoring the status and trends<br>of toxic contaminants in blue mussels.                                                                                                      |
| Johnson, L., C. Bravo, S.M. O'Neill, J.E. West, M.S.<br>Myers, G. Ylitalo, N. Scholz, and T. Collier. 2010. A<br>Toxics-Focused Biological Observing System for<br>Puget Sound (Developed by the Washington<br>Department of Fish and Wildlife and NOAA<br>Fisheries for the Puget Sound Partnership).<br>Washington Department of Ecology Publication<br>#10-10-04. 30pp.<br><u>https://wdfw.wa.gov/publications/01129</u>      | This concept paper provides a general<br>description of the Toxics-Focused Biological<br>Observing System.                                                                                                                                                                          |
| Moser, M.L., M.S. Myers, B.J. Burke, and S.M.<br>O'Neill. 2005. Effects of surgically-implanted<br>transmitters on survival and feeding behavior of<br>adult English sole. Pages 269-274 in M. T. Lembo<br>and G. Marmulla, editors. Aquatic telemetry:<br>advances and applications. Proceedings of the Fifth<br>Conference on Telemetry held in Europe.<br>FAO/COISPA, Ustica, Italy<br>https://wdfw.wa.gov/publications/01043 | A laboratory study was conducted to assess<br>the feasibility of surgically implanting<br>Acoustic telemetry transmitters for long-<br>term monitoring of adult English sole.                                                                                                       |
| Judd, N., S.M. O'Neill and D.A. Kalman. 2003. Are<br>seafood PCB data sufficient to assess health risk for<br>high seafood consumption groups? Human and<br>Ecological Risk Assessment. 9:691-707.<br><u>https://www.tandfonline.com/doi/abs/10.1080/71</u><br><u>3609962</u>                                                                                                                                                    | This study looked at possible health risks<br>from seafood PCB exposure for the Tulalip<br>and Squaxin Island tribes.                                                                                                                                                               |
| West, J.E., S.M. O'Neill, and D.C. Doty. 2002.<br>Polycyclic Aromatic Hydrocarbons in Dungeness<br>crabs. Page 62 in Puget Sound Water Quality Action<br>Team, editors. 2002 Puget Sound Update: Eighth<br>Report of the Puget Sound Ambient Monitoring<br>Program. Washington Department of Fish and<br>Wildlife. Olympia, Washington. 156pp.<br>https://wdfw.wa.gov/publications/01029                                         | The goals of this pilot project were to<br>determine whether crabs are sufficiently<br>exposed to toxics (as measured by tissue<br>burdens) to warrant their use as a<br>monitoring species, especially for natural<br>resource damage assessments in the event<br>of an oil spill. |

| Narrative Data Submittal                                                                                                                                                                                                                                                                                                               | Reasons(s) for not using Submittal                                                                                                                                                                                                                                                                                                       |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Rockfish Species Monitored_Toxic Contaminants in<br>Puget Sound Fish and Shellfish_Washington<br>Department of Fish & Wildlife.pdf                                                                                                                                                                                                     | This submittal is a website that provides an identification guide for rockfish.                                                                                                                                                                                                                                                          |
| https://wdfw.wa.gov/species-<br>habitats/science/marine-toxics                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                          |
| Staghorn Sculpin Species Monitored: Toxic<br>Contaminants in Puget Sound Fish and Shellfish<br>_Washington Department of Fish & Wildlife.pdf                                                                                                                                                                                           | This submittal is a website that provides an identification guide for staghorn sculpin.                                                                                                                                                                                                                                                  |
| https://wdfw.wa.gov/species-<br>habitats/science/marine-toxics                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                          |
| Pullin, A. & Knight, T. 2009. "Doing more good than<br>harm – Building an evidence-base for conservation<br>and environmental management". Biological<br>Conservation 142 (2009) 931-934.                                                                                                                                              | Paper on Building an evidence-base for<br>conservation and environmental<br>management. This paper provides tips on<br>conducting a literature search.                                                                                                                                                                                   |
| https://www.sciencedirect.com/science/article/abs/pii/S0006320709000421                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                          |
| Liberati, A. et.al. 2009. The PRISMA statement for<br>reporting systematic reviews and meta-analyses of<br>studies that evaluate health care interventions:<br>explanation and elaboration. Journal of Clinical<br>Epidemiology 62 (2009)<br><u>https://journals.plos.org/plosmedicine/article?id=1</u><br>0.1371/journal.pmed.1000100 | Journal article on reporting systematic<br>reviews and meta-analyses of studies that<br>evaluate health care interventions:<br>explanation and elaboration.                                                                                                                                                                              |
| Dehart, M. Fish Passage Center. 2016.<br>Memorandum on "The effect of water temperature<br>on steelhead upstream passage". October 31, 2016.<br><i>Memorandum is not available online.</i>                                                                                                                                             | This memo focuses on observing the timing<br>of salmonids in the Columbia River passing<br>over Bonneville Dam when temperatures<br>are above 18°C, and summarized observed<br>effects. Any relevant data showing<br>excursions of temperature criteria found in<br>EIM or the federal Water Quality Portal<br>were included in the WQA. |

| Narrative Data Submittal                                                                                                                                                                                                                                                                                                                                                                                            | Reasons(s) for not using Submittal                                                                                                                                                                                           |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Pullin, A. and Stewart, G. 2006. "Guidelines for<br>Systematic Review in Conservation and<br>Environmental Management". Conservation Biology<br>Volume 20, No. 6, 1647–1656.                                                                                                                                                                                                                                        | Paper on Guidelines for Systematic Review<br>in Conservation and Environmental<br>Management.                                                                                                                                |
| https://www.researchgate.net/publication/661813<br>8 Guidelines for Systematic Review in Environm<br>ental Management                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                              |
| Center for Reviews and Dissemination, University of<br>York. 2009. CRD's guidance for undertaking reviews<br>in health care. ISBN 978-1-900640-47-3. January<br>2009.<br><u>https://www.york.ac.uk/media/crd/Systematic Rev</u><br><u>iews.pdf</u>                                                                                                                                                                  | Guidance for undertaking reviews in health care.                                                                                                                                                                             |
| Matkin, C. O, M. J. Moore, and F.M.D. Gulland.<br>2017. Review of Recent Research on Southern<br>Resident Killer Whales (SRKW) to Detect Evidence<br>of Poor Body Condition in the Population.<br>Independent Science Panel Report to the SeaDoc<br>Society. 3 pp. + Appendices. DOI<br>10.1575/1912/8803<br><u>https://georgiastrait.org/wp-<br/>content/uploads/2018/02/review-of-recent-<br/>research-on.pdf</u> | This review found that poor body condition<br>is associated with loss of fetuses, calves and<br>adults. The causes of this are complex, and<br>analysis is further compounded by<br>stochastic events such as vessel strike. |
| James, C. et. al. 2015. Contaminants of Emerging<br>Concern: A Prioritization Framework for Monitoring<br>in Puget Sound. Puget Sound Ecosystem Monitoring<br>Program Toxics Workgroup. January 2015.<br><u>https://www.eopugetsound.org/sites/default/files/</u><br><u>features/resources/CEC Prioritization White Pape</u><br><u>r 2015-02-28.pdf</u>                                                             | The purpose of this document is to define a<br>process to identify a priority group of<br>Contaminants of Emerging Concern (CEC)<br>for marine and freshwater monitoring<br>programs in the Pacific Northwest.               |
| O'Neill, S., G. Ylitalo, and J. West. 2014. Energy<br>content of Pacific salmon as prey of northern and<br>southern resident killer whales. Endangered Species<br>Research. Vol. 25: 265–281, 2014.<br><u>https://www.int-</u><br><u>res.com/abstracts/esr/v25/n3/p265-281/</u>                                                                                                                                     | Study of relationship of salmon to killer<br>whales. No data was provided to show<br>causal relationship with waterbody.                                                                                                     |

| Narrative Data Submittal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Reasons(s) for not using Submittal                                                                                                                                                                                                                                |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Mongillo, T. M., G. M. Ylitalo, L. D. Rhodes, S. M.<br>O'Neill, D. P. Noren, and M. B. Hanson. 2016.<br>Exposure to a mixture of toxic chemicals:<br>Implications for the health of endangered Southern<br>Resident killer whales. U.S. Dept. Commer., NOAA<br>Tech. Memo. NMFSNWFSC-135, 107 p.<br>doi:10.7289/V5/TM-NWFSC-135.<br>https://www.webapps.nwfsc.noaa.gov/assets/25/8<br>314 11302016 111957 TechMemo135.pdf?utm s<br>ource=Copy+of+August+Orca+News+-<br>+8.29.2016&utm_campaign=2017.1.17+-<br>+SRKW+Petition&utm_medium=email | The primary objectives of this study was to<br>review the contaminants that may pose a<br>risk to the Southern Resident killer whales<br>and to discuss the health implications of<br>exposure to these contaminants.                                             |
| Puget Sound Institute. 2018. New Puget Sound<br>Herring Research. February 5, 2018.<br><u>https://www.pugetsoundinstitute.org/2018/02/ne</u><br><u>w-puget-sound-herring-research/</u>                                                                                                                                                                                                                                                                                                                                                        | This write-up focuses on the many<br>hypothesized causes of herring declines, to<br>try to pinpoint the primary cause or,<br>therefore, the best management or policy<br>actions for recovery.                                                                    |
| Lundin, J. et al. 2016. Modulation in Persistent<br>Organic Pollutant Concertation and Profile by Prey<br>Availability and Reproductive Status in Southern<br>Resident Killer Whale Scat Samples. Environmental<br>Science and Technology. May 2016, 50, 12, 6506 –<br>6516.<br><u>https://pubs.acs.org/doi/full/10.1021/acs.est.6b00</u><br>825                                                                                                                                                                                              | This study broadens the understanding of<br>persistent organic pollutants in the<br>endangered Southern Resident killer whale<br>population by addressing modulation by<br>prey availability and reproductive status,<br>along with endocrine disrupting effects. |
| Spromberg, J. et al. 2016. Coho salmon spawner<br>mortality in western US urban watersheds:<br>bioinfiltration prevents lethal storm water impacts.<br>Journal of Applied Ecology 2016, 53, 398–407. doi:<br>10.1111/1365-2664.12534.<br><u>https://waterquality.fisheries.org/wp-<br/>content/uploads/2016/07/Spromberg et al-2016-<br/>Journal of Applied Ecology.pdf</u>                                                                                                                                                                   | Study on spawning mortality from urban<br>stormwater found that mixtures of metals<br>and petroleum hydrocarbons – conventional<br>toxic constituents in urban storm water –<br>are not sufficient to cause the spawner<br>mortality syndrome.                    |

| Narrative Data Submittal                                                                                                                                                                                                                                                                                                                                 | Reasons(s) for not using Submittal                                                                                                                                                                                                                                                                                                                        |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Peck, K. et al. 2010. DEVELOPMENT OF AN ENZYME-<br>LINKED IMMUNOSORBENT ASSAY FOR<br>QUANTIFYING VITELLOGENIN IN PACIFIC SALMON<br>AND ASSESSMENT OF FIELD EXPOSURE TO<br>ENVIRONMENTAL ESTROGENS. Environmental<br>Toxicology and Chemistry, Vol. 30, No. 2, pp. 477–<br>486, 2011.<br>https://setac.onlinelibrary.wiley.com/toc/1552861<br>8/2011/30/2 | A competitive enzyme-linked<br>immunosorbent assay was developed to<br>quantitate vitellogenin (VTG) in plasma and<br>serum of coho (Oncorhynchus kisutch) and<br>chinook (O. tshawytscha) salmon.<br>Identification of proper techniques for<br>preserving VTG integrity in plasma and<br>serum samples showed that VTG from both<br>species was robust. |
| Fisheries and Oceans Canada. 2008. Recovery<br>Strategy for the Northern and Southern Resident<br>Killer Whales (Orcinus orca) in Canada. Species at<br>Risk Act Recovery Strategy Series, Fisheries &<br>Oceans Canada, Ottawa, ix + 81 pp.<br><u>https://www.cbc.ca/bc/news/bc-081009-killer-<br/>whale-recovery-strategy.pdf</u>                      | This paper outlines recovery strategies for<br>the Northern and Southern resident killer<br>whales in Canada. This recovery strategy<br>focuses on numerous performance<br>measures to reach objectives. It is focused<br>on the overall improvement of recovering<br>the species.                                                                        |
| Aquatic Bioinvasion Research & Policy Institute,<br>Portland State University, An assessment of marine<br>biofouling introductions to the Puget Sound region<br>of Washington State (May 2014)<br><u>https://wdfw.wa.gov/sites/default/files/publication</u><br><u>s/01654/wdfw01654.pdf</u>                                                             | This study focuses on biofouling that may be<br>introduced by vessel traffic in various areas<br>of Puget Sound, and looks at laws and<br>regulations to protect from biofouling.                                                                                                                                                                         |
| U.S.G.S., NAS - Nonindigenous Aquatic Species,<br>Species Lists by State, Washington Query<br><u>https://nas.er.usgs.gov/queries/StateSearch.aspx</u>                                                                                                                                                                                                    | USGS provides a list of nonindigenous<br>aquatic species by state. A website<br>disclaimer states that "the data represented<br>on this site vary in accuracy, scale,<br>completeness, extent of coverage and<br>origin. It is the user's responsibility to use<br>these data consistent with their intended<br>purpose and within stated limitations."   |
| Ecology, Control of Toxic Chemicals in Puget Sound,<br>Phase 3: Study of Atmospheric Deposition of Air<br>Toxics to the Surface of Puget Sound (Sept. 2003)<br><u>https://apps.ecology.wa.gov/publications/summary</u><br><u>pages/1002012.html</u>                                                                                                      | This study provided revisions to prior<br>estimates or first reported atmospheric<br>deposition fluxes of polycyclic aromatic<br>hydrocarbons (PAHs), polybrominated<br>diphenyl ethers (PBDEs), and select trace<br>elements for Puget Sound.                                                                                                            |

| Narrative Data Submittal                                                                                                                                                                                                                                         | Reasons(s) for not using Submittal                                                                                                                                                                                                                                                                                                                                                        |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Ecology, Summary Technical Report Control of Toxic<br>Chemicals in Puget Sound Phase 3: Loadings from<br>POTW Discharge of Treated Wastewater (Dec.<br>2010)<br><u>https://apps.ecology.wa.gov/publications/summary</u><br><u>pages/1010057.html</u>             | The project team's purpose was to improve<br>the estimates of toxic chemical loadings to<br>Puget Sound by targeted assessment of<br>National Pollutant Discharge Elimination<br>System (NPDES) permitted publicly owned<br>treatment works (POTWs).                                                                                                                                      |
| Ecology, Control of Toxic Chemicals in Puget Sound<br>Phase 3: Primary Sources of Selected Toxic<br>Chemicals and Quantities Released in the Puget<br>Sound Basin(Nov. 2011)<br><u>https://apps.ecology.wa.gov/publications/documen</u><br><u>ts/1103024.pdf</u> | The overall goal of the project (Primary<br>Sources) is to balance the chemical loading<br>data generated from the Puget Sound Toxics<br>Loading Analysis (PSTLA) with information<br>on chemical releases in order for the<br>Washington State Department of Ecology,<br>the Puget Sound Partnership, and others to<br>develop and implement a toxics reduction<br>and control strategy. |
| Ecology, Estuarine Flow in the South Basin of Puget<br>Sound and its Effects on Near-Bottom Dissolved<br>Oxygen (Oct. 2007)<br><u>https://apps.ecology.wa.gov/publications/publicati</u><br><u>ons/0703033.pdf</u>                                               | The south basin of Puget Sound is a complex<br>and interconnected system of straits, open<br>reaches, and fjord-like bays. South-basin<br>waters exchange with main-basin Puget<br>Sound waters over a sill (shallow area) and<br>through the Tacoma Narrows. The study<br>concluded that the estuarine flow pattern is<br>controlled by variations in the wind.                          |
| Puget Sound Partnership, Aquatic Invasive Species<br>Guidebook (July 2009)<br><u>https://www.psp.wa.gov/downloads/ANS/NewANS</u><br><u>Guide.pdf</u>                                                                                                             | This guide was developed to help people<br>identify and report nonnative aquatic<br>species that are considered invasive.                                                                                                                                                                                                                                                                 |
| Puget Sound Partnership, Marine Invasive Species<br>Identification Guide (June 2009)<br><u>https://www.psp.wa.gov/downloads/ANS/MISM_O</u><br><u>nline.pdf</u>                                                                                                   | This Guide identifies invasive marine plants with specific details on identifying them.                                                                                                                                                                                                                                                                                                   |

| Narrative Data Submittal                                                                                                                                                                                                                                                                                                                                                                                                 | Reasons(s) for not using Submittal                                                                                                                                                                                                                                             |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| NMFS, Endangered and Threatened Species;<br>Designation of Critical Habitat for Southern<br>Resident Killer Whale, Final Rule (Nov. 29, 2006)<br><u>https://www.fisheries.noaa.gov/action/critical-habitat-southern-resident-killer-</u><br><u>whale#:~:text=In%20November%202006%20we%2</u><br><u>Oissued%20a%20final%20rule,habitat%20for%20th</u><br><u>e%20Southern%20Resident%20killer%20whale%20</u><br><u>DPS</u> | In November 2006 NMFS issued a final rule<br>designating approximately 2,560 square<br>miles (6,630 square km) of inland waters of<br>Washington State as critical habitat for the<br>Southern Resident killer whale.                                                          |
| NMFS, Southern Resident Killer Whale Critical<br>Habitat<br><u>https://www.fisheries.noaa.gov/west-</u><br><u>coast/endangered-species-conservation/critical-</u><br><u>habitat-southern-resident-killer-whales</u>                                                                                                                                                                                                      | Southern Resident killer whale critical<br>habitat data (2006) can be downloaded as a<br>shapefile, viewed interactively in the<br>Protected Resources App, or accessed<br>through a map service (REST URL).                                                                   |
| NMFS, Southern Resident Killer Whales (Orcinus<br>orca) 5-Year Review: Summary and Evaluation (Jan.<br>2011)<br>https://www.fisheries.noaa.gov/resource/documen<br>t/southern-resident-killer-whales-orcinus-orca-5-<br>year-review-summary-and-evaluation                                                                                                                                                               | The Endangered Species Act of 1973 (ESA)<br>requires completion of periodic reviews of<br>species that are listed as threatened or<br>endangered to ensure that the listing of<br>these species remains accurate.                                                              |
| NMFS, Endangered and Threatened Wildlife and<br>Plants: Endangered Status for Southern Resident<br>Killer Whales, Final Rule (Nov. 18, 2005)<br><u>https://www.federalregister.gov/documents/2019/</u> 04/15/2019-06917/endangered-and-threatened-<br>wildlife-and-plants-endangered-status-of-the-gulf-<br>of-mexico-brydes-whale                                                                                       | The Southern Resident Population was listed<br>as endangered in 2005 under the<br>Endangered Species Act and are considered<br>depleted under the Marine Mammal<br>Protection Act.                                                                                             |
| NMFS, Recovery Plan for Southern Resident Killer<br>Whales (Orcinus orca) Jan. 18, 2008)<br>https://www.fisheries.noaa.gov/resource/documen<br>t/recovery-plan-southern-resident-killer-whales-<br>orcinus-orca                                                                                                                                                                                                          | This plan identifies a range of actions that<br>will contribute to recovery of Southern<br>Resident killer whales. Many of these<br>actions will have a direct effect on killer<br>whale habitat, but they will also help restore<br>and improve a range of habitats, species. |

| Narrative Data Submittal                                                                                                                                                                                                                                                                        | Reasons(s) for not using Submittal                                                                                                                                                                                                                                                                                                                                                                                            |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| USFWS, Draft Hazardous Materials and<br>Environmental Assessment Report, Destruction<br>Island, Washington (Jan. 2000)<br><u>https://www.fws.gov/pacific/planning/draft/docs/</u><br><u>WA/waislands/waislandsupdate2.pdf</u>                                                                   | The planning team and Service staff used<br>input from the public, various organizations,<br>other agencies, and affected Tribes to<br>formulate the following issues that are the<br>most significant to the Refuges. These issues<br>will provide the basis for drafting<br>management objectives and strategies for<br>public review.                                                                                      |
| USFWS, News Release: Oregon Spotted Frog to be<br>Protected under the Endangered Species Act<br>Oregon and Washington populations will be listed<br>as threatened (Aug. 28, 2014)<br><u>https://www.fws.gov/wafwo/species/osf/NR reop</u><br><u>en2 CHcom final 8 sept 2014.pdf</u>             | The U.S. Fish and Wildlife Service<br>announced its decision to extend protection<br>to the Oregon spotted frog (Rana pretiosa)<br>as a threatened species under the<br>Endangered Species Act.                                                                                                                                                                                                                               |
| USFWS, Environmental Contaminants Program Off-<br>Refuge Investigations Trumpeter Swan Lead Shot<br>Poisoning Investigation in Northwest Washington<br>and Southwest British Columbia (June 2009)<br><u>https://www.fws.gov/wafwo/pdf/EC_TRUSLead</u><br><u>Shot Poisoning Final Report.pdf</u> | Trumpeter (Cygnus buccinator) and tundra<br>swan (Cygnus columbianus) populations<br>wintering in northwest Washington State<br>and on the Sumas Prairie, British Columbia,<br>from 1999-2008, lost over 2,574 members,<br>the majority (62%, 1,586) were confirmed as<br>lead poisoned caused by the ingestion of<br>lead pellets. In 2001, an international effort<br>was initiated to locate the source(s) of the<br>lead. |
| USFWS, Sea Otter (Enhydra lutris kenyoni)<br>Washington Stock (Aug. 2008)<br><u>https://www.fws.gov/wafwo/pdf/WA NSO</u><br><u>SAR_Aug2008_final.pdf</u>                                                                                                                                        | The WDFW finalized their sea otter recovery<br>plan in 2004. This stock is not classified as<br>strategic because the population is growing<br>and is not listed as "depleted" under the<br>MMPA or "threatened" or "endangered"<br>under the Endangered Species Act of 1973.                                                                                                                                                 |
| NMFS, Behavioral impairment and increased<br>predation mortality in cutthroat trout exposed to<br>carbaryl (Jan. 11, 2011)<br><u>https://www.fws.gov/wafwo/documents/PR_Beha</u><br><u>vioralimpairment_Increasedpredationcutthroattrou</u><br><u>texposedcarbaryl.pdf</u>                      | This study showed that the olfactory system<br>of trout is unresponsive to carbaryl, and that<br>trout do not avoid seawater containing the<br>pesticide at environmentally representative<br>concentrations.                                                                                                                                                                                                                 |

| Narrative Data Submittal                                                                                                                                                                                        | Reasons(s) for not using Submittal                                                                                                                                                                                                                                                                                                                                                                 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| USGS, Chemical contaminants in fish feeds used in<br>federal salmonid hatcheries in the USA (Jan. 12,<br>2007)<br><u>https://www.fws.gov/wafwo/pdf/maule et al 2007</u><br><u>contam in fish food final.pdf</u> | Recent studies have demonstrated that fish<br>feeds contain significant concentrations of<br>contaminants, many of which can<br>bioaccumulate and bioconcentrate in fish.<br>Organochlorine (OC) contaminants are<br>present in the fish oils and fish meals used<br>in feed manufacture, and some researchers<br>speculate that all fish feeds contain<br>measurable levels of some contaminants. |
| Washington Herp Atlas, Pacific Giant Salamander<br>https://wdfw.wa.gov/publications/02135                                                                                                                       | The Washington Herp Atlas link to each<br>species account and to photos of each<br>species, photos showing the key features for<br>species identification and dot distribution<br>maps.                                                                                                                                                                                                            |
| Washington Herp Atlas, Cope's Giant Salamander<br>https://wdfw.wa.gov/publications/02135                                                                                                                        | The Washington Herp Atlas link to each<br>species account and to photos of each<br>species, photos showing the key features for<br>species identification and dot distribution<br>maps.                                                                                                                                                                                                            |
| Washington Herp Atlas, Cascade Torrent<br>Salamander<br><u>https://wdfw.wa.gov/publications/02135</u>                                                                                                           | The Washington Herp Atlas link to each<br>species account and to photos of each<br>species, photos showing the key features for<br>species identification and dot distribution<br>maps.                                                                                                                                                                                                            |
| Washington Herp Atlas, Columbia Torrent<br>Salamander<br><u>https://wdfw.wa.gov/publications/02135</u>                                                                                                          | The Washington Herp Atlas link to each<br>species account and to photos of each<br>species, photos showing the key features for<br>species identification and dot distribution<br>maps.                                                                                                                                                                                                            |
| Washington Herp Atlas, Olympic Torrent<br>Salamander<br><u>https://wdfw.wa.gov/publications/02135</u>                                                                                                           | The Washington Herp Atlas link to each<br>species account and to photos of each<br>species, photos showing the key features for<br>species identification and dot distribution<br>maps.                                                                                                                                                                                                            |

## **TMDL and Alternative Pollution Control Projects**

## **303(d) List TMDL Prioritization**

The Department of Ecology has identified priorities that the agency will use to determine new Total Maximum Daily Load (TMDL) work. The criteria for establishing TMDL priorities are identified on page 30 of Chapter 1 of the Water Quality Assessment Policy 1-11. Those criteria are:

- Criteria to prioritize TMDLs as higher priority include the following:
- Severity of the pollution problem
- Risks to public health
- Risks to threatened and endangered species
- Vulnerability of water bodies to degradation
- Waterbodies where a new or more stringent permit limit is needed for point sources
- Local support and interest in a watershed

This prioritization process resulted in rankings for TMDL development assigned to all 303(d) listed (Category 5) waters. Waters were assigned either a high", "medium", or "low" ranking, based on their TMDL prioritization status. These priorities were uploaded with our full WQA package into EPA's ATTAINS database to satisfy this requirement under the Clean Water Act.

The Department of Ecology has committed resources to completing the following TMDLs and since we have resources committed to these, they are identified as **high priority** TMDLs:

- Lower White River pH TMDL
- Budd Inlet Dissolved Oxygen TMDL
- Drayton Harbor Bacteria TMDL
- Whatcom Creek Bacteria TMDL

Additionally, the Department of Ecology has committed resources to complete the following TMDLs but expect completion beyond the 2022 WQ-27 timeframe so these will be ranked **medium priority**:

- Soos Temperature and Dissolved Oxygen TMDL
- Soos Fine Sediment TMDL
- Wide Hollow Creek Multiparameter TMDL

In addition, the agency has also prioritized and is committing resources to develop alternative cleanup efforts (straight to implementation (STI) projects and alternative restoration plans/TMDL Alternatives) however we ranked these alternatives **low priority** for TMDL development:

- Puget Sound Nutrient Source Reduction Project
- Sammamish River Temperature and Dissolved Oxygen Alternative Restoration Plan

- French Creek Temperature and Dissolved Oxygen Alternative Restoration Plan
- East Fork Lewis River Alternative Restoration Plan
- Burnt Bridge Creek Alternative Restoration Plan
- Hangman Creek Watershed DO/pH Alternative Restoration Plan
- Alkali Flat Creek STI
- Almota and Little Almota Creek STI
- Spring Flat Creek STI

The Department of Ecology coordinates its TMDL work among two different environmental programs and each year the Agency goes through a detailed process to identify new TMDLs and assign resources to that work. The outcome of that process takes a year and is dependent on the availability of scientific resources to assign to new TMDLs.

Each year in the fall, the water quality program holds an annual public TMDL prioritization webinar to solicit feedback from the public on our proposed water cleanup work for the next fiscal year. After this webinar, the regions decide on priorities to propose to the water quality program management team (PMT). Late in the calendar year, the regions propose new water cleanup projects to water quality PMT and the management team decides whether or not these priorities move forward as is or need to be reconsidered for the future. Once approval is given by water quality PMT, the projects proceed by being proposed to the Environmental Assessment Program. The Environmental Assessment Program then looks at their available resources and determines whether or not they have the capacity to proceed with proposed new TMDL projects as well as continue the carryover work as these projects take multiple years to complete. The Environmental Assessment Program brings the list of ongoing and newly proposed water cleanup projects back to Water Quality Program management team to discuss the projects that may or may not move forward for the following fiscal year. That meeting usually takes place in early June so the Environmental Assessment Program can start their work July 1, the start of the fiscal year. Those large complex projects such as TMDLs require extended scoping which takes a full fiscal year and starts July 1 and ends June 30 of the following year. Once we have scientific resources dedicated and assigned to a TMDL project then that becomes a high priority TMDL project.
(mid/late) Projects (TMDLs and other EAP project requests) approved to move forward by WQ PMT are presented/submitted to EAP

EAP evaluation of project list submitted to them starts

-Extended Scoping starts for Extended Project Planning (EPP) projects that WQ PMT decided would move forward -WQP/EAP prioritize project list (Eastside/Westside/HQ individually prioritize with appropriate WQ Unit Sups and EAP Management

-EAP Carryover estimates

EAP preliminary work plan decisions distributed with resource estimates

EAP and WQ meet to discuss draft work plan

New Fiscal Year project list is finalized

New Fiscal Year begins

WQ and EAP staff create extended scoping documents for projects that require EPP (EAP/WQ review scope options) and submit for peer review

early-Extended scoping document review w/comments (WQP staff-TMDL Unit Sups), then appropriate project specific staff address the comments and make changes to scoping document as needed

mid-Extended scoping review w/comments (EAP staff), then appropriate project specific staff address the comments and make changes to scoping document as needed late-WQP Section managers write memo summarizing how the scoping comments were dealt with. THESE MEMOS ARE BROUGHT TO FALL A-TEAM MEETING FOR DISCUSSION PRE-WQP SOIREE

-Fall A-Team meeting to compare and discuss memos and peer review comments on the extended project plans -Final EPP project scopes completed

-TMDL PRIORITIZATION PUBLIC WEBINAR

-Prep for Soiree, prepare Project proposal presentations for all EAP project requests that your section will be requesting. This includes: The EPP that was just reviewed, new EPP that you want to work on, all new EAP project requests that your section has

WQP Section managers present all EAP project proposals at WQP Soiree-WQP PMT. At Soiree there will be further discussion and possible additional assignments to better scope projects that are not ready to go to EAP. GOAL-manage the number of projects we submit to EAP and have all projects be critical for Business Plan work.

Gather/synthesize feedback from Soiree to bring back to WQP PMT in early January

) <sup>January</sup> February

March

May June

August

September

O<sub>ctober</sub>

November

D<sub>ecember</sub>

### Figure 1. Annual internal Ecology process for water quality improvement projects

In addition, the Department of Ecology relies on the work of the State Forest and Fish Program for implementing best management practices on forest land. For that reason, waterbodies covered under the State Forest and Fish program are prioritized as low for the development of TMDLS and that is because we have a state program in place making sure best management practices get implemented on the ground.

Forest Practices Activities Under state law, landowners must conduct forest practices activities in a manner that supports the attainment of water quality standards. In 2000, Washington adopted revised forest practices rules that identify stream buffers and other management prescriptions expected to meet water quality standards. The state Forest Practices Board tests the forestry rules through a formal adaptive management program, which has the goal of identifying and expediently revising any forestry rules that do not support the attainment of water quality standards. Washington established the Clean Water Act Assurances as a formal agreement in the 1999 Forests and Fish Report in recognition of the improvements to the rules and commitments made. Under the Clean Water Act Assurances TMDL development is a low priority in watersheds where forestry is the primary land use, although Ecology may assign a higher TMDL development priority to forested watersheds with a broader mixture of land uses. Ecology's agreement to rely on the forest practices rules in lieu of developing separate TMDL load allocations or implementation requirements is conditioned upon maintaining an effective adaptive management program. Something like: Ecology actively participates in the adaptive management program and monitors its effectiveness by evaluating progress towards achieving a series of water quality related milestones. Additionally, Ecology periodically evaluates compliance with individual stipulations contained within the Clean Water Act Assurances, in order to determine if a continuation of the Assurances remains warranted. In addition to participation in the Adaptive Management Program, Ecology conducts field reviews of Forest Practices activities

# **TMDL Projects**

The following citations are Total Maximum Daily Load reports supporting 4A category determinations:

Washington State Department of Ecology. 1993. Ballinger Lake Total Phosphorus Total Maximum Daily Load – Water Quality Improvement Report. Publication No. 93-10-202. https://fortress.wa.gov/ecy/publications/SummaryPages/9310202.html. [2, 3, 4]

Washington State Department of Ecology. 2008. Bear – Evans Watershed Fecal Coliform Bacteria Total Maximum Daily Load – Water Quality Improvement Report. Publication No. 08-10-026. <u>https://fortress.wa.gov/ecy/publications/SummaryPages/0810026.html.</u> [2, 3, 4]

Washington State Department of Ecology. 2008. Bear – Evans Watershed Temperature and Dissolved Oxygen Total Maximum Daily Load – Water Quality Improvement Report.

Publication No. 08-10-058.

https://fortress.wa.gov/ecy/publications/SummaryPages/0810058.html. [2, 3, 4]

Washington State Department of Ecology. 1997. Campbell Lake Total Phosphorus Total Maximum Daily Load – Water Quality Improvement Report. Publication No. 97-10-201. https://fortress.wa.gov/ecy/publications/SummaryPages/9710201.html. [2, 3, 4]

Washington State Department of Ecology. 2014. Clarks Creek Watershed Dissolved Oxygen and Sediment Total Maximum Daily Load – Water Quality Improvement Report. Publication No. 14-10-030. <u>https://fortress.wa.gov/ecy/publications/SummaryPages/1410030.html.</u> [2, 3, 4]

Washington State Department of Ecology. 2007. Clarks Creek Watershed Fecal Coliform Bacteria Total Maximum Daily Load – Water Quality Improvement Report. Publication No. 07-10-110. <u>https://fortress.wa.gov/ecy/publications/SummaryPages/0710110.html.</u> [2, 3, 4]

Washington State Department of Ecology. 2009. Total Maximum Daily Loading (TMDL) to Limit Discharges of 2,3,7,8 TCDD (Dioxin) to the Columbia River Basin. Publication No. 09-10-058. <u>https://fortress.wa.gov/ecy/publications/SummaryPages/0910058.html.</u> [2, 3, 4]

Washington State Department of Ecology. 2005. Colville National Forest Temperature, Bacteria, pH and Dissolved Oxygen Total Maximum Daily Load (Water Cleanup Plan) Submittal Report. Publication No. 05-10-047.

https://fortress.wa.gov/ecy/publications/SummaryPages/0510047.html. [2, 3, 4]

Washington State Department of Ecology. 2003. Colville River Dissolved Oxygen Total Maximum Daily Load – Submittal Report Amended. Publication No. 03-10-029. <u>https://fortress.wa.gov/ecy/publications/SummaryPages/0310029.html.</u> [2, 3, 4]

Washington State Department of Ecology. 2003. Colville River Watershed Bacteria Total Maximum Daily Load – Submittal Report Amended. Publication No. 03-10-030. <u>https://fortress.wa.gov/ecy/publications/SummaryPages/0310030.html.</u> [2, 3, 4]

Washington State Department of Ecology. 2004. Cottage Lake Total Phosphorus Total Maximum Daily Load – Water Quality Improvement Report. Publication No. 03-10-085. https://fortress.wa.gov/ecy/publications/SummaryPages/0310085.html. [2, 3, 4]

Washington State Department of Ecology. 1993. Crystal Creek Multi-Parameter Total Maximum Daily Load–Water Quality Improvement Report. Publication No. 93-10-212. https://apps.ecology.wa.gov/publications/documents/9310212.pdf. [2, 3, 4]

Washington State Department of Ecology. 2015. Deschutes River, Percival Creek and Budd Inlet Tributaries Multi-Parameter Total Maximum Daily Load–Water Quality Improvement Report. Publication No. 15-10-012. <u>https://apps.ecology.wa.gov/publications/documents/1510012.pdf</u>. [2, 3, 4] Washington State Department of Ecology. 1993. Dragoon Creek Multi-Parameter Total Maximum Daily Load–Water Quality Improvement Report. Publication No. 93-10-209. https://apps.ecology.wa.gov/publications/documents/9310209.pdf. [2, 3, 4]

Washington State Department of Ecology. 2004. Water Cleanup Plan for Bacteria in Dungeness Bay Total Maximum Daily Load (TMDL) Submittal Report. Publication No. 04-10-026. <u>https://fortress.wa.gov/ecy/publications/SummaryPages/0410026.html.</u> [2, 3, 4]

Washington State Department of Ecology. 1992. Duwamish Waterway Ammonia-N Total Maximum Daily Load–Water Quality Improvement Report. Publication No. 92-10-204. https://apps.ecology.wa.gov/publications/documents/9210204.pdf. [2, 3, 4]

Washington State Department of Ecology. 1997. Erie Lake Total Phosphorus Total Maximum Daily Load – Water Quality Improvement Report. Publication No. 97-10-202. <u>https://fortress.wa.gov/ecy/publications/SummaryPages/9710202.html.</u> [2, 3, 4]

Washington State Department of Ecology. 2007. Fauntleroy Creek Fecal Coliform Total Maximum Daily Load–Water Quality Improvement Report. Publication No. 07-10-037. https://apps.ecology.wa.gov/publications/documents/0710037.pdf. [2, 3, 4]

Washington State Department of Ecology. 1993. Fenwick Lake Total Phosphorus Total Maximum Daily Load – Water Quality Improvement Report. Publication No. 93-10-203. https://fortress.wa.gov/ecy/publications/SummaryPages/9310203.html. [2, 3, 4]

Washington State Department of Ecology. 2000. Gibbons Creek Watershed Fecal Coliform Total Maximum Daily Load – Submittal Report. Publication No. 00-10-039. <u>https://fortress.wa.gov/ecy/publications/SummaryPages/0010039.html</u>. [2, 3, 4]

Washington State Department of Ecology. 2001. Granger Drain Fecal Coliform Bacteria Total Maximum Daily Load – Submittal Report. Publication No. 01-10-062. https://fortress.wa.gov/ecy/publications/SummaryPages/0110062.html. [2, 3, 4]

Washington State Department of Ecology. 2001. Grays Harbor/Chehalis Watershed Fecal Coliform Bacteria Total Maximum Daily Load – Submittal Report. Publication No. 01-10-025. https://fortress.wa.gov/ecy/publications/SummaryPages/0110025.html. [2, 3, 4]

Washington State Department of Ecology. 1992. Grays Harbor (Inner) Dioxin Total Maximum Daily Load – Water Quality Improvement Report. Publication No. 92-10-202. https://fortress.wa.gov/ecy/publications/SummaryPages/9210202.html. [2, 3, 4]

Washington State Department of Ecology. 2011. Green River Temperature Total Maximum Daily Load – Water Quality Improvement Report. Publication No. 11-10-046. <u>https://fortress.wa.gov/ecy/publications/SummaryPages/1110046.html.</u> [2, 3, 4]

Washington State Department of Ecology. 2009. Hangman (Latah) Creek Watershed Fecal Coliform, Temperature, and Turbidity Total Maximum Daily Load – Water Quality Improvement

Report. Publication No. 09-10-030. https://fortress.wa.gov/ecy/publications/SummaryPages/0910030.html. [2, 3, 4]

Washington State Department of Ecology. 2006. Henderson Inlet Watershed Fecal Coliform Bacteria, Dissolved Oxygen, pH, and Temperature Total Maximum Daily Load Study. Publication No. 06-03-012. <u>https://fortress.wa.gov/ecy/publications/SummaryPages/0603012.html.</u> [2, 3, 4]

Washington State Department of Ecology. 1999. Inner Bellingham Bay Contaminated Sediments Total Maximum Daily Load – Submittal Report. Publication No. 99-58-WQ. <u>https://fortress.wa.gov/ecy/publications/SummaryPages/9958.html.</u> [2, 3, 4]

Washington State Department of Ecology. 2004. Issaquah Creek Basin Water Cleanup Plan for Fecal Coliform Bacteria Total Maximum Daily Load Submittal Report. Publication No. 04-10-055. https://fortress.wa.gov/ecy/publications/SummaryPages/0410055.html. [2, 3, 4]

Washington State Department of Ecology. 2000. Johnson Creek Watershed Multi-Parameter Total Maximum Daily Load–Submittal Report. Publication No. 00-10-033. <u>https://fortress.wa.gov/ecy/publications/SummaryPages/0010033.html.</u> [2, 3, 4]

Washington State Department of Ecology. 1993. Lake Chelan Total Maximum Daily Loading for Total Phosphorus. TMDL Number: 47-001. Publication No. 93-10-204. <u>https://fortress.wa.gov/ecy/publications/SummaryPages/9310204.html.</u> [2, 3, 4]

Washington State Department of Ecology. 2006. Lake Chelan Watershed DDT and PCB Total Maximum Daily Load–Water Quality Improvement Report. Publication No. 06-10-022. https://fortress.wa.gov/ecy/publications/SummaryPages/0610022.html. [2, 3, 4]

Washington State Department of Ecology. 1993. Lake Sawyer Total Phosphorus Total Maximum Daily Load – Water Quality Improvement Report. Publication No. 93-10-201. <u>https://fortress.wa.gov/ecy/publications/SummaryPages/9310201.html.</u> [2, 3, 4]

Washington State Department of Ecology. 2013. Lake Whatcom Watershed Total Phosphorus and Bacteria Total Maximum Daily Load–Water Quality Improvement Report and Implementation Strategy. Publication No. 13-10-012. https://fortress.wa.gov/ecy/publications/SummaryPages/1310012.html. [2, 3, 4]

Washington State Department of Ecology. 2013. Liberty Bay Watershed Fecal Coliform Bacteria Total Maximum Daily Load TMDL and Water Quality Implementation Plan. Publication No. 13-10-014. <u>https://fortress.wa.gov/ecy/publications/SummaryPages/1310014.html.</u> [2, 3, 4]

Washington State Department of Ecology. 1993. Liberty Lake Total Phosphorus Total Maximum Daily Load – Water Quality Improvement Report. Publication No. 93-10-205. <u>https://fortress.wa.gov/ecy/publications/SummaryPages/9310205.html.</u> [2, 3, 4] Washington State Department of Ecology. 2005. Little Bear Creek Water Cleanup Plan for Fecal Coliform Bacteria: Total Maximum Daily Load - Submittal Report. Publication No. 05-10-034. https://fortress.wa.gov/ecy/publications/SummaryPages/0510034.html. [2, 3, 4]

Washington State Department of Ecology. 2003. Little Klickitat River Watershed Temperature Total Maximum Daily Load Submittal Report. Publication No. 03-10-046. <u>https://fortress.wa.gov/ecy/publications/SummaryPages/0310046.html.</u> [2, 3, 4]

Washington State Department of Ecology. 2020. Little Spokane River Dissolved oxygen, pH, and Total Phosphorus Total Maximum Daily Load - Water Quality Improvement Report. Publication No. 20-10-033. <u>https://fortress.wa.gov/ecy/publications/SummaryPages/2010033.html.</u> [2, 3, 4]

Washington State Department of Ecology. 2012. Little Spokane River Watershed Fecal Coliform Bacteria, Temperature, and Turbidity - Total Maximum Daily Load Water Quality Improvement Report. Publication No. 11-10-075.

https://fortress.wa.gov/ecy/publications/SummaryPages/1110075.html. [2, 3, 4]

Washington State Department of Ecology. 2002. Total Maximum Daily Load for Lower Columbia River Total Dissolved Gas. Publication No. 02-03-004. <u>Total Maximum Daily Load for Lower</u> <u>Columbia River Total Dissolved Gas (wa.gov).</u> [2, 3, 4]

Washington State Department of Ecology. 2002. Water Cleanup Plan for Bacteria in the Lower Dungeness Watershed Total Maximum Daily Load (TMDL) Submittal Report. Publication No. 02-10-015. <u>https://fortress.wa.gov/ecy/publications/SummaryPages/0210015.html.</u> [2, 3, 4]

Washington State Department of Ecology. 2004. Lower Okanogan River Basin DDT and PCBs Total Maximum Daily Load (TMDL): Submittal Report. Publication No. 04-10-043. <u>https://fortress.wa.gov/ecy/publications/SummaryPages/0410043.html.</u> [2, 3, 4]

Washington State Department of Ecology. 2003. Lower Similkameen River Arsenic Total Maximum Daily Load (TMDL): Submittal Report for Joint Issuance. Publication No. 03-10-074. https://fortress.wa.gov/ecy/publications/SummaryPages/0310074.html. [2, 3, 4]

Washington State Department of Ecology. 2000. Lower Skagit River Fecal Coliform Total Maximum Daily Load Submittal Report Water Cleanup Plan. Publication No. 00-10-010. https://fortress.wa.gov/ecy/publications/SummaryPages/0010010.html. [2, 3, 4]

Washington State Department of Ecology. 2008. Lower Skagit River Tributaries Temperature Total Maximum Daily Load Water Quality Improvement Report. Publication No. 08-10-020. <u>https://fortress.wa.gov/ecy/publications/SummaryPages/0810020.html.</u> [2, 3, 4]

Washington State Department of Ecology. 2003. Total Maximum Daily Load for Lower Snake River Total Dissolved Gas. Publication No. 03-03-020. https://fortress.wa.gov/ecy/publications/SummaryPages/0303020.html. [2, 3, 4] Washington State Department of Ecology. 1992. Lower Snohomish River Dioxin Total Maximum Daily Load. Publication No. 92-10-203

https://fortress.wa.gov/ecy/publications/SummaryPages/9210203.html. [2, 3, 4]

Washington State Department of Ecology. 1998. Lower Yakima River Suspended Sediment Total Maximum Daily Load: USEPA Submittal Document. Publication No. 98-10-202. https://fortress.wa.gov/ecy/publications/SummaryPages/9810202.html. [2, 3, 4]

Washington State Department of Ecology. 2020. Mid-Yakima River Basin Bacteria Total Maximum Daily Load: Water Quality Improvement Report. Publication No. 20-10-030. <u>https://fortress.wa.gov/ecy/publications/SummaryPages/2010030.html.</u> [2, 3, 4]

Washington State Department of Ecology. 1993. Mill Creek Ammonia-Nitrogen Total Maximum Daily Load. Publication No. 93-10-211.

https://fortress.wa.gov/ecy/publications/SummaryPages/9310211.html. [2, 3, 4]

Washington State Department of Ecology. 1997. Mill Creek Chlorine Total Maximum Daily Load. Publication No. 97-10-203.

https://fortress.wa.gov/ecy/publications/SummaryPages/9710203.html. [2, 3, 4]

Washington State Department of Ecology. 2007. Mission Creek Watershed DDT Total Maximum Daily Load: Water Quality Improvement Report. Publication No. 07-10-046. https://fortress.wa.gov/ecy/publications/SummaryPages/0710046.html. [2, 3, 4]

Washington State Department of Ecology. 2011. Newaukum Creek Temperature Total Maximum Daily Load Water Quality Improvement Report and Implementation Plan. Publication No. 11-10-047. <u>https://fortress.wa.gov/ecy/publications/SummaryPages/1110047.html.</u> [2, 3, 4]

Washington State Department of Ecology. 2006. Newman Lake Total Phosphorus Total Maximum Daily Load – Water Quality Improvement Report. Publication No. 06-10-045. https://fortress.wa.gov/ecy/publications/SummaryPages/0610045.html. [2, 3, 4]

Washington State Department of Ecology. 2005. Nisqually Watershed Bacteria and Dissolved Oxygen Total Maximum Daily Load (Water Cleanup Plan) Submittal Report. Publication No. 05-10-040. <u>https://fortress.wa.gov/ecy/publications/SummaryPages/0510040.html.</u> [2, 3, 4]

Washington State Department of Ecology. 2000. Nooksack River Watershed Bacteria Total Maximum Daily Load Submittal Report. Publication No. 00-10-036. https://fortress.wa.gov/ecy/publications/SummaryPages/0010036.html. [2, 3, 4]

Washington State Department of Ecology. 2002. North Creek Fecal Coliform Total Maximum Daily Load Submittal Report. Publication No. 02-10-020.

https://fortress.wa.gov/ecy/publications/SummaryPages/0210020.html. [2, 3, 4]

Washington State Department of Ecology. 2015. North Fork Palouse River Dissolved Oxygen and pH Total Maximum Daily Load: Water Quality Improvement Report and Implementation Plan. Publication No. 15-10-029.

https://fortress.wa.gov/ecy/publications/SummaryPages/1510029.html. [2, 3, 4]

Washington State Department of Ecology. 2005. North Fork Palouse River Fecal Coliform Total Maximum Daily Load: Submittal Report. Publication No. 04-10-067. <u>https://fortress.wa.gov/ecy/publications/SummaryPages/0410067.html.</u> [2, 3, 4]

Washington State Department of Ecology. 2011. Oakland Bay, Hammersly Inlet, and Selected Tributaries Fecal Coliform Bacteria Total Maximum Daily Load; Water Quality Improvement Report (WQIR)/Implementation Plan (WQIP). Publication No. 11-10-039. <u>https://fortress.wa.gov/ecy/publications/SummaryPages/1110039.html.</u> [2, 3, 4]

Washington State Department of Ecology. 2020. Padilla Bay Freshwater Tributaries Fecal Coliform Bacteria Total Maximum Daily Load – Water Quality Improvement Report and Implementation Plan. Publication No. 20-10-036.

https://fortress.wa.gov/ecy/publications/SummaryPages/2010036.html. [2, 3, 4]

Washington State Department of Ecology. 2010. Palouse River Fecal Coliform Bacteria Total Maximum Daily Load Water Quality Improvement Report and Implementation Plan. Publication No. 10-10-067. <u>https://fortress.wa.gov/ecy/publications/SummaryPages/1010067.html.</u> [2, 3, 4]

Washington State Department of Ecology. 2013. Palouse River Temperature Total Maximum Daily Load Water Quality Improvement Report and Implementation Plan. Publication No. 13-10-020. <u>https://fortress.wa.gov/ecy/publications/SummaryPages/1310020.html.</u> [2, 3, 4]

Washington State Department of Ecology. 2007. Palouse River Chlorinated Pesticide and PCB Total Maximum Daily Load Water Quality Improvement Report and Implementation Plan. Publication No. 07-03-018.

https://fortress.wa.gov/ecy/publications/SummaryPages/0703018.html. [2, 3, 4]

Washington State Department of Ecology. 1994. Pataha Creek BOD, Ammonia-N, and Chlorine Total Maximum Daily Load. Publication No. 94-10-201. https://fortress.wa.gov/ecy/publications/SummaryPages/9410201.html. [2, 3, 4]

Washington State Department of Ecology. 2011. Pend Oreille River Temperature Total Maximum Daily Load: Water Quality Improvement Report. Publication No. 10-10-065. <u>https://fortress.wa.gov/ecy/publications/SummaryPages/1010065.html.</u> [2, 3, 4]

Washington State Department of Ecology. 2007. Pend Oreille River Total Dissolved Gas Total Maximum Daily Load: Water Quality Improvement Report. Publication No. 07-03-003. <u>https://fortress.wa.gov/ecy/publications/SummaryPages/0703003.html.</u> [2, 3, 4] Washington State Department of Ecology. 2020. Pilchuck River Temperature and Dissolved Oxygen Total Maximum Daily Load - Water Quality Improvement Report and Implementation Plan. Publication No. 20-10-035.

https://fortress.wa.gov/ecy/publications/SummaryPages/2010035.html. [2, 3, 4]

Washington State Department of Ecology. 1993. Pipers Creek Fecal Coliform Bacteria Total Maximum Daily Load. Publication No. 93-10-210. https://fortress.wa.gov/ecy/publications/SummaryPages/9310210.html. [2, 3, 4]

Washington State Department of Ecology. 1994. Puyallup River BOD and Ammonia Total Maximum Daily Load. Publication No. 94-e36.

https://fortress.wa.gov/ecy/publications/SummaryPages/94e36.html. [2, 3, 4]

Washington State Department of Ecology. 2011. Puyallup River Watershed Fecal Coliform Total Maximum Daily Load Water Quality Improvement Report and Implementation Plan. Publication No. 11-10-040. <u>https://fortress.wa.gov/ecy/publications/SummaryPages/1110040.html.</u> [2, 3, 4]

Washington State Department of Ecology. 1998. Quincy NPDES Permit Total Maximum Daily Load for Wasteway DW237 and W645. Publication No. 98-10-201. <u>https://fortress.wa.gov/ecy/publications/SummaryPages/9810201.html.</u> [2, 3, 4]

Washington State Department of Ecology. 2001. Salmon Creek Watershed Bacteria and Turbidity Total Maximum Daily Load Submittal Report. Publication No. 01-10-007. <u>https://fortress.wa.gov/ecy/publications/SummaryPages/0110007.html.</u> [2, 3, 4]

Washington State Department of Ecology. 2011.Salmon Creek Temperature Total Maximum Daily Load Water Quality Improvement Report and Implementation Plan. Publication No. 11-10-044. <u>https://fortress.wa.gov/ecy/publications/SummaryPages/1110044.html.</u> [2, 3, 4]

Washington State Department of Ecology. 2009. Samish Bay Watershed Fecal Coliform Bacteria Total Maximum Daily Load Volume 1 – Water Quality Study Findings. Publication No. 09-10-019. <u>https://fortress.wa.gov/ecy/publications/SummaryPages/0910019.html.</u> [2, 3, 4]

Washington State Department of Ecology. 2009. Samish Bay Watershed Fecal Coliform Bacteria Total Maximum Daily Load Volume 2 – TMDL and Water Quality Implementation Plan. Publication No. 09-10-019.

https://fortress.wa.gov/ecy/publications/SummaryPages/0910019.html. [2, 3, 4]

Washington State Department of Ecology. 2000. Simpson Northwest Timberlands Temperature Total Maximum Daily Load - Submittal Report. Publication No. 00-10-047. <u>https://fortress.wa.gov/ecy/publications/SummaryPages/0010047.html.</u> [2, 3, 4]

Washington State Department of Ecology. 2001. Skokomish River Basin Fecal Coliform Total Maximum Daily Load (Water Cleanup Plan) - Submittal Report. Publication No. 01-10-017. https://fortress.wa.gov/ecy/publications/SummaryPages/0110017.html. [2, 3, 4] Washington State Department of Ecology. 2012. Sinclair and Dyes Inlets Fecal Coliform Bacteria Total Maximum Daily Load TMDL and Water Quality Implementation Plan. Publication No. 11-10-051. <u>https://fortress.wa.gov/ecy/publications/SummaryPages/1110051.html.</u> [2, 3, 4]

Washington State Department of Ecology. 1999. Snohomish River Estuary -- Total Maximum Daily Load Submittal Report. Publication No. 99-57. https://fortress.wa.gov/ecy/publications/SummaryPages/9957.html. [2, 3, 4]

Washington State Department of Ecology. 2000. Snohomish River Tributaries Fecal Coliform Total Maximum Daily Load Submittal Report. Publication No. 00-10-087. <u>https://fortress.wa.gov/ecy/publications/SummaryPages/0010087.html.</u> [2, 3, 4]

Washington State Department of Ecology. 1994. Snoqualmie River Total Maximum Daily Load Study. Ecology Report number 94-71.

https://fortress.wa.gov/ecy/publications/SummaryPages/9471.html. [2, 3, 4]

Washington State Department of Ecology. 2011. Snoqualmie River Basin Temperature Total Maximum Daily Load Water Quality Improvement Report and Implementation Plan. Publication No. 11-10-041. <u>https://fortress.wa.gov/ecy/publications/SummaryPages/1110041.html.</u> [2, 3, 4]

Washington State Department of Ecology. 2020. South Fork Nooksack River Temperature Total Maximum Daily Load – Water Quality Improvement Report and Implementation Plan. Publication No. 20-10-007.

https://fortress.wa.gov/ecy/publications/SummaryPages/2010007.html. [2, 3, 4]

Washington State Department of Ecology. 2009. South Fork Palouse River Fecal Coliform Bacteria Total Maximum Daily Load Water Quality Improvement Report. Publication No. 09-10-060. <u>https://fortress.wa.gov/ecy/publications/SummaryPages/0910060.html.</u> [2, 3, 4]

Washington State Department of Ecology. 2003. South Prairie Creek Bacteria and Temperature Total Maximum Daily Load (Water Cleanup Plan) Submittal Report. Publication No. 03-10-055. <u>https://fortress.wa.gov/ecy/publications/SummaryPages/0310055.html.</u> [2, 3, 4]

Washington State Department of Ecology. 2007. Spokane River and Lake Spokane Dissolved Oxygen Total Maximum Daily Load Water Quality Improvement Report. Publication No. 07-10-073. <u>https://fortress.wa.gov/ecy/publications/SummaryPages/0710073.html.</u> [2, 3, 4]

Washington State Department of Ecology. 1999. Spokane River Dissolved Metals Total Maximum Daily Load: Submittal Report. Publication No. 99-49. https://fortress.wa.gov/ecy/publications/SummaryPages/9949.html. [2, 3, 4]

Washington State Department of Ecology. 2005. Stillaguamish River Watershed Fecal Coliform, Dissolved Oxygen, pH, Mercury, and Arsenic Total Maximum Daily Load (Water Cleanup Plan) Submittal Report. Publication No. 05-10-044.

https://fortress.wa.gov/ecy/publications/SummaryPages/0510044.html. [2, 3, 4]

Washington State Department of Ecology. 2004. Stillaguamish River Watershed Temperature Total Maximum Daily Load Study. Publication No. 04-03-010.

https://fortress.wa.gov/ecy/publications/SummaryPages/0403010.html. [2, 3, 4]

Washington State Department of Ecology. 2006. Stillaguamish River Watershed Temperature Total Maximum Daily Load Water Quality Improvement Report Vol. 2 – Implementation Strategy. Publication No. 06-10-057.

https://fortress.wa.gov/ecy/publications/SummaryPages/0610057.html. [2, 3, 4]

Washington State Department of Ecology. 1996. Water Quality-Based National Primary Discharge Elimination Systems Permit (NPDES) for the city of Sumas as a Total Maximum Daily Load (TMDL) for Sumas River-Biochemical Oxygen Demand, Ammonia-Nitrogen, Chlorine. Publication No. 96-10-201.

https://fortress.wa.gov/ecy/publications/SummaryPages/9610201.html. [2, 3, 4]

Washington State Department of Ecology. 2006. Swamp Creek Fecal Coliform Bacteria Total Maximum Daily Load Water Quality Improvement Report and Implementation Plan. Publication No. 06-10-021. <u>https://fortress.wa.gov/ecy/publications/SummaryPages/0610021.html.</u> [2, 3, 4]

Washington State Department of Ecology. 2001. Teanaway River Temperature Total Maximum Daily Load - Submittal Report. Publication No. 01-10-019.

https://fortress.wa.gov/ecy/publications/SummaryPages/0110019.html. [2, 3, 4]

Washington State Department of Ecology. 2006. Tributaries to Totten, Eld, and Little Skookum Inlets: Fecal Coliform Bacteria and Temperature Total Maximum Daily Load Water Quality Improvement Report. Publication No. 06-10-021.

https://fortress.wa.gov/ecy/publications/SummaryPages/0610021.html. [2, 3, 4]

Washington State Department of Ecology. 2010. Tucannon River and Pataha Creek Temperature Total Maximum Daily Load Water Quality Improvement Report and Implementation Plan. Publication No. 10-10-019.

https://fortress.wa.gov/ecy/publications/SummaryPages/1010019.html. [2, 3, 4]

Washington State Department of Ecology. 2002. Union River Fecal Coliform Total Maximum Daily Load - Submittal Report. Publication No. 02-10-022. https://fortress.wa.gov/ecy/publications/SummaryPages/0210022.html. [2, 3, 4]

Washington State Department of Ecology. 2004. Upper Chehalis River Fecal Coliform Total Maximum Daily Load - Submittal Report. Publication No. 04-10-041. <u>https://fortress.wa.gov/ecy/publications/SummaryPages/0410041.html.</u> [2, 3, 4]

Washington State Department of Ecology. 2000 Upper Chehalis River Basin Dissolved Oxygen Total Maximum Daily Load - Submittal Report. Publication No. 00-10-018. <u>https://fortress.wa.gov/ecy/publications/SummaryPages/0010018.html.</u> [2, 3, 4] Washington State Department of Ecology. 1999. Upper Chehalis River Basin Temperature Total Maximum Daily Load. Publication No 99-52.

https://fortress.wa.gov/ecy/publications/SummaryPages/9952.html. [2, 3, 4]

Washington State Department of Ecology. 2001. Upper Humptulips River Watershed Temperature Total Maximum Daily Load (Water Cleanup Plan) - Submittal Report. Publication No. 01-10-022. <u>https://fortress.wa.gov/ecy/publications/SummaryPages/0110022.html.</u> [2, 3, 4]

Washington State Department of Ecology. 2008. Upper Naches River Watershed Temperature Total Maximum Daily Load: Volume 1. Water Quality Study Findings. Publication No. 08-03-036. <u>https://fortress.wa.gov/ecy/publications/SummaryPages/0803036.html.</u> [2, 3, 4]

Washington State Department of Ecology. 2003. Mt. Baker Snoqualmie National Forest Upper White Watershed Sediment and Temperature Total Maximum Daily Load for Aquatic Habitat: Submittal Report. Publication No. 03-10-032.

https://fortress.wa.gov/ecy/publications/SummaryPages/0310032.html. [2, 3, 4]

Washington State Department of Ecology. 2014. Upper Yakima River Tributaries Temperature Total Maximum Daily Load – Water Quality Improvement Report and Implementation Plan. Publication No. 14-10-037.

https://fortress.wa.gov/ecy/publications/SummaryPages/1410037.html. [2, 3, 4]

Washington State Department of Ecology. 2002. Upper Yakima River Basin Suspended Sediment, Turbidity, and Organochlorine Pesticide Total Maximum Daily Load - Submittal Report. Publication No. 02-10-047.

https://fortress.wa.gov/ecy/publications/SummaryPages/0210047.html. [2, 3, 4]

Washington State Department of Ecology. 2006. Walla Walla River Basin Fecal Coliform Total Maximum Daily Load – Water Quality Improvement Report. Publication No. 06-10-074. <u>https://fortress.wa.gov/ecy/publications/SummaryPages/0610064.html.</u> [2, 3, 4]

Washington State Department of Ecology. 2007. Walla Walla River Basin pH and Dissolved Oxygen Total Maximum Daily Load Study: Water Quality Improvement Report. Publication No. 07-03-010. <u>https://fortress.wa.gov/ecy/publications/SummaryPages/0703010.html.</u> [2, 3, 4]

Washington State Department of Ecology. 2007. Walla Walla River Watershed Temperature Total Maximum Daily Load: Water Quality Improvement Report. Publication No. 07-10-030. <u>https://fortress.wa.gov/ecy/publications/SummaryPages/0710030.html.</u> [2, 3, 4]

Washington State Department of Ecology. 2005. Walla Walla River Chlorinated Pesticides and PCBs Total Maximum Daily Load (Water Cleanup Plan): Submittal Report. Publication No. 05-10-079. <u>https://fortress.wa.gov/ecy/publications/SummaryPages/0510079.html.</u> [2, 3, 4]

Washington State Department of Ecology. 1993. Wapato Lake Total Phosphorus Total Maximum Daily Load – Water Quality Improvement Report. Publication No. 93-10-207. https://fortress.wa.gov/ecy/publications/SummaryPages/9310207.html. [2, 3, 4]

Washington State Department of Ecology. 1993. Weaver Creek BOD and Ammonia-N Total Maximum Daily Load. Publication No. 93-10-206. https://fortress.wa.gov/ecy/publications/SummaryPages/9310206.html. [2, 3, 4]

Washington State Department of Ecology. 2007. Wenatchee River Watershed (WRIA 45) Fecal Coliform Total Maximum Daily Load Water Quality Improvement Report. Publication No. 07-10-009. <u>https://fortress.wa.gov/ecy/publications/SummaryPages/0710009.html.</u> [2, 3, 4]

Washington State Department of Ecology. 2008. Wenatchee River Watershed Dissolved Oxygen and pH Total Maximum Daily Load: Water Quality Improvement Report. Publication No. 08-10-062. <u>https://fortress.wa.gov/ecy/publications/SummaryPages/0810062.html.</u> [2, 3, 4]

Washington State Department of Ecology. 2007. Wenatchee River Watershed Temperature Total Maximum Daily Load: Water Quality Improvement Report. Publication No. 07-10-045. <u>https://fortress.wa.gov/ecy/publications/SummaryPages/0710045.html.</u> [2, 3, 4]

Washington State Department of Ecology. 2011. Whatcom, Squalicum, and Padden Creeks Temperature Total Maximum Daily Load: Water Quality Improvement Report. Publication No. 11-10-019. <u>https://fortress.wa.gov/ecy/publications/SummaryPages/1110019.html.</u> [2, 3, 4]

Washington State Department of Ecology. 1993. Wildcat Creek Ammonia-N, BOD, Chlorine, and Fecal Coliform Total Maximum Daily Load. Publication No 93-10-208. <u>https://fortress.wa.gov/ecy/publications/SummaryPages/9310208.html.</u> [2, 3, 4]

Washington State Department of Ecology. 2006. Willapa River Dissolved Oxygen Total Maximum Daily Load: Water Quality Improvement Report and Implementation Plan. Publication No. 06-10-017.

https://fortress.wa.gov/ecy/publications/SummaryPages/0610017.html. [2, 3, 4]

Washington State Department of Ecology. 2007. Willapa River Fecal Coliform Total Maximum Daily Load: Water Quality Improvement Report. Publication No. 07-03-021. <u>https://fortress.wa.gov/ecy/publications/SummaryPages/0703021.html.</u> [2, 3, 4]

Washington State Department of Ecology. 2005. Willapa River Watershed Temperature Total Maximum Daily Load (Water Cleanup Plan): Submittal Report and Detailed Implementation Plan. Publication No. 05-10-073.

https://fortress.wa.gov/ecy/publications/SummaryPages/0510073.html. [2, 3, 4]

Washington State Department of Ecology. 2005. Wilson Creek Sub-Basin Bacteria Total Maximum Daily Load (Water Cleanup Plan): Submittal Report. Publication No. 05-10-041. https://fortress.wa.gov/ecy/publications/SummaryPages/0510041.html. [2, 3, 4] Washington State Department of Ecology. 2002. Wind River Watershed Temperature Total Maximum Daily Load: Submittal Report. Publication No. 02-10-029. <u>https://fortress.wa.gov/ecy/publications/SummaryPages/0210029.html.</u> [2, 3, 4]

United States Environmental Protection Agency. 2020. Total Maximum Daily Loads (TMDLs) for the Deschutes River and its Tributaries. <u>https://www.epa.gov/sites/production/files/2020-08/documents/tmdl-deschutes-july-31-2020.pdf</u>. [2, 3, 4]

United States Environmental Protection Agency, Region 10. 2020. Total Maximum Daily Load (TMDL) for Temperature in the Columbia and Lower Snake Rivers. <u>https://www.epa.gov/sites/production/files/2020-05/documents/r10-tmdl-columbia-snake-temperature-final-05182020-web.pdf</u>. [4, 7]

# **Alternative Pollution Control Projects 4B Analyses**

# Alpowa Creek – February 2021

The Washington Department of Ecology (Ecology) Integrated Report (IR) proposes to exclude 16 listings for bacteria, dissolved oxygen, pH, and temperature from the 303(d) list and place these water bodies in category 4b of the IR. The specific listings are:

- Bacteria—40556 ,40557, 40558, 45991, and 72288
- dissolved oxygen—47040, 47041 and 47042
- pH—50347 and 50348
- temperature—40536, 40538, 73618, 73625, 73626

These water bodies were in several other categories of the 2012 IR. Water bodies 40557, 40558, 45991, 47041, 47042, and 50348 were listed in Category 4b. Water bodies 40536 and 40538 were in category 2. Water bodies 40556 and 50347 were in category 5. Water bodies 72288, 73616, and 73626 were in category 3. Ecology's basis for excluding these water bodies from the 303(d) list is outlined in this evaluation.

# Identification of Segment and Statement of Problem Causing Impairment

Alpowa Creek is located in Garfield and Asotin Counties in southeastern Washington. It originates from several springs in the forested foothills of the Blue Mountains, travels through a desert canyon, and meets the Snake River near Clarkston, Washington. For generations the Alpowa Creek canyon has been used to range and feed livestock. Wheat and barley are also grown in the watershed. The creek provides significant habitat for the threatened Snake River Steelhead trout.

After years of uncontrolled livestock access to the creek, a large portion of the riparian corridor was in poor condition, and the stream was consistently in violation of the state fecal coliform standard.

Monitoring data for the listed segments was collected from 1999 through 2007. Only 1999 and 2000 data is available for segment 40557, and it is limited. WSU data show that during those two years, segment 40557 showed excursions above the geometric bacteria criterion, but there is no further detail. Information for the other segments is better. The highest fecal coliform count recorded was 1840 fecal coliform units/100 mL on May 27, 2003 between river kilometers 12.7 and 13.9. The lowest dissolved oxygen recorded was 8.8 between river kilometers 18.2 and 20.2. The highest pH recorded was 8.8 between river kilometers 12.7 and 13.9. The temperature impaired segments routinely exceeded the 17.5-degree criterion for spawning, rearing, and migration; and the 13-degree supplemental spawning criterion.

The impairments are the result of a combination of factors. Winter feeding and uncontrolled livestock access to the stream had eliminated much of the vegetation within the stream corridor. This degraded riparian area could not provide shade to the stream, resulting in high

water temperatures. It also allowed manure to run directly into streams. In addition, the uncontrolled stream access allowed cattle to deposit manure directly into the water and to trample stream banks. There is also some evidence that failing septic systems may be contributing to the problem.

Livestock manure is a likely cause of the low dissolved oxygen and pH violations. Manure uses oxygen and lowers pH during decomposition by in-stream bacteria. Nutrients in the manure and from fertilizers stimulate excessive plant growth in the creek. This problem is exacerbated by high stream temperatures and an overabundance of sunlight exposure. Aquatic plants use oxygen for respiration at night and can raise the pH of the water during photosynthesis during the day. Controlling the excessive growth is key to meeting pH and dissolved oxygen criteria and improving the health of the aquatic community.

# Description of Pollution Controls and How They Will Achieve Water Quality Standards

#### Water quality target

The bacteria impaired segments of Alpowa Creek are designated primary contact recreation. Ecology now uses Escherichia coli (E. Coli) as the criteria in this watershed. E. Coli levels must not exceed a geometric mean value of 100 CFU or MPN per 100 mL, with not more than 10 percent of all samples (or a single sample when less than ten sample points exist) exceeding 320 CFU or MPN per 100 mL.

For the dissolved oxygen impaired segments, the standards require that the lowest one-day minimum be no lower than 8.0 mg/L.

For the pH impaired segments, the standard requires the pH to be within the range of 6.5 to 8.5, with a human-caused variation within this range of less than 0.5 units. For the temperature impaired segments, the designated uses are spawning, rearing and migration, and the temperature criterion is 17.5 degrees Centigrade. In addition, listings 40538 and 73618 also have a supplemental spawning criterion of 13 degrees Centigrade from February 15 to June 1.

### Controls that will achieve water quality standards

The Department of Ecology's Eastern Regional Office has established a Livestock and Water Quality program that uses a unique collaborative approach to address livestock-related problems. Instead of using the standard process that starts with a Category 5 listing, establishing a TMDL for the stream, writing an implementation plan, and finally getting to actual implementation, this strategy goes straight to implementation. The strategy is applied in watersheds in which the cause of a water quality impairment is clear.

Ecology encourages implementation of a wide variety of best management practices, however, a primary focus of the program has been to restore degraded riparian corridors and eliminate unlimited animal access to streams.

Healthy riparian areas can improve water quality and stream health in multiple ways, which make them a particularly valuable and cost-effective management practice. Healthy riparian areas:

- Slow bank erosion by holding soil in place during periods of high water.
- Reduce flood damage and sedimentation by slowing runoff and capturing the sediment that would otherwise be carried downstream.
- Help keep water cool and reduce light exposure in summer by shading the stream.
- Improve water quality by capturing sediment, nutrients, pesticides, pathogens, and other pollutants before they reach the stream.
- Enhance summer stream flow by improving water infiltration and storage.
- Create fish and wildlife habitat.
- Limit livestock manure inputs to the creek and riparian areas.

Ecology has a three-step riparian restoration strategy, which allows the department to efficiently apply resources to priority problem areas. The first step is to address the source of degradation-unlimited livestock access to streams and winter feeding operations in close proximity to the riparian corridor. Ecology relies primarily on livestock exclusion, and off-stream water supply to eliminate livestock access to the riparian area. In implementing this BMP, Ecology uses our 319 and centennial clean water grant guidelines, which require a minimum 75, 50 or 35-foot buffer between the livestock fence and the mean ordinary high water mark of the nearest stream bank depending on the type of stream. In many cases, the buffer width may be larger depending on the stream and site conditions.

By first addressing livestock access, Ecology seeks to abate the primary pollution sources livestock in the stream, eroded stream banks, increased runoff, increased sedimentation, and subsequent transport of fecal matter. As vegetation naturally returns in the riparian area, site conditions become stabilized and the pollution sources are dramatically reduced. Also, this approach works to arrest morphological changes to the entire stream that are induced by erosion and sedimentation.

Ecology has spent much of its efforts and resources implementing this first step, in large part, because we have taken a holistic, watershed approach to protecting streams. By first addressing the primary sources of pollution and geomorphic change, Ecology can establish the necessary site conditions for successful restoration. Moreover, Ecology ensures that, first and foremost, the root problems are addressed for *the entire stream*, before resources are focused on site or segment specific restoration.

The second step occurs after a majority of site conditions have been stabilized, and the stream's entire geomorphic integrity is no longer jeopardized by the adjacent management practices. Ecology then conducts a reach by reach assessment to determine the appropriate trees and shrubs to be used for restoration. In some cases, federal programs require

revegetation as part of the cost-share program, and so restoration work occurs simultaneously with livestock exclusion.

The third step is to work with local land owners to promote continuous and proper management of upland grazing lands.

In addition to the Livestock and Water Quality Program, Ecology's Eastern Regional Office has established a similar collaborative approach to address crop production-related problems. Ecology encourages implementation of a wide variety of best management practices, however, a primary focus of effort has been establishing minimum land use setbacks, restoring degraded riparian corridors, and converting conventionally farmed land to conservation tillage practices.

Ecology teams with conservation districts, local governments, and landowners to provide technical assistance and funding for implementation of best management practices.

Ecology uses our regulatory authority as a backstop when collaborative efforts fail. The Water Pollution Control Act (RCW 90.48) gives Ecology the authority to take enforcement actions against nonpoint polluters.

RCW 90.48 makes it unlawful for any person to "cause, permit or suffer to be thrown, run, drained, allowed to seep or otherwise discharged ... any organic or inorganic matter that shall cause or tend to cause pollution of" waters of the state. Any person who violates or creates a substantial potential to violate the provisions of Chapter 90.48 RCW is subject to an enforcement order from Ecology pursuant to RCW 90.48.120. Ecology is authorized to "issue such order or directive as it deems appropriate under the circumstances[.]" In addition to administrative orders, violating Chapter 90.48 RCW may result in injunctions, civil penalties, and notices of violations.

It is worth noting that RCW 90.48.120 gives Ecology the authority to take action in response to nonpoint source pollution, the statute also gives Ecology the authority to take action based on a "substantial potential" to pollute state waters via either a point or nonpoint pollution source. Consequently, Ecology not only has authority to take action following a NPS pollution occurrence (i.e. there was a discharge), but has specific statutory authority to act proactively to prevent NPS pollution from occurring in the first place. Ecology's authority includes the authority to require a nonpoint source polluter to implement specific best management practices (BMPs). Ecology's authority can be used to prevent nonpoint pollution and require BMPs, as necessary.

Ecology has used this regulatory backstop several times since 2016.

The result of these partnerships has been the implementation of best management practices at hundreds of sites across several watersheds where water quality and fish habitat issues exist. By using a collaborative strategy, backed up by enforcement when necessary, Ecology has been able to create relationships and build trust with rural residents while improving water quality. In the upper Alpowa Creek watershed, work with landowners began in 2003. Thirteen miles of riparian buffers were installed. The creek was fenced to protect it from livestock, and offstream water sources were developed. Thousands of native trees and shrubs were planted in the stream corridor to help stabilize banks and shade the stream. These buffers were constructed using Natural Resource Conservation Service standards, which require a minimum width of 35 feet. Many of these buffers were wider than the minimum. For buffers installed with state or federal financial assistance, we require an agreement with the landowner stipulating that the buffer and fence will be maintained for at least 10 years. Ecology has also planted additional native trees and shrubs in the riparian area of the creek in cooperation with the Public Utility district.

Fencing was generally installed adjacent to or upstream of the impaired segments. However, we have also fenced portions of the stream where there are presently no Category 5 listings, but where there was unrestricted cattle access to the stream. Riparian buffers are left to revegetate naturally in those areas in which there is enough live native vegetation left to recover. In all other areas we are installing buffers by planting native plants.

More recently, in the last five years the Pomeroy CD in collaboration with the Palouse CD have utilized salmon recovery funds to establish over 484 Post Assisted Log Structures on Alpowa Creek resulting in increased pooling and floodplain storage to improve temperature and sedimentation concerns on over three miles of Alpowa Creek. To date, several thousand acres of cropland have been converted to direct seed or conservation tillage practices throughout the watershed.

Ecology's Eastern Regional Office is expanding its implementation work to the entire watershed instead of focusing on just upper Alpowa Creek. As of 2018, a significant portion of the upper Watershed had riparian buffers that have been established through use of funds from the Conservation Reserve Enhancement Program, but some of that has since been removed and grazed which will continue to receive focus in the coming years.

Ecology's recent watershed evaluations in 2020 resulted in the program identifying an additional four sites with active water quality concerns. Once prioritization was completed two landowners were sent technical and financial assistance letters from Ecology, and are currently in communication to draft a plan with the Pomeroy CD to protect water quality. These efforts will continue in 2021 to identify and document ongoing sites of concern to further implement new projects in the watershed.

Since the riparian buffers were installed, native vegetation is returning, and water quality monitoring data indicate that the stream is now meeting the state fecal coliform standard during most months. In addition, many landowners have been pleasantly surprised with the on-the-ground results. While they point out that water quality and fish habitat projects create some new management challenges, they have also observed some exciting economic benefits to their operations.

By providing off-stream water in strategic locations, livestock are now better dispersed throughout their range. This has resulted in healthier grasses and better forage. In turn, animals are typically more robust and healthy, and the amount of supplemental feed needed during the year is reduced.

As the amount of fecal coliform delivered to the stream is reduced with healthy riparian corridors providing shade, we expect minimum dissolved oxygen concentrations and pH levels to meet water quality criteria.



Figure 2. Alpowa Creek Status

Description of requirements under which pollution controls will be implemented. It is Ecology's best professional judgement that the pollution controls which have been installed will result in the water quality standards being met. Maintenance of these controls has been ensured through 10-year landowner agreements that were established as part of the funding agreements for these projects. Additionally, Ecology staff will continue to perform watershed evaluations in this watershed to ensure that BMPs stay in place.

## Estimate or Projection of Time When Water Quality Standards Will be Met

It will take time for the riparian corridor to fully recover and for the stream to re-establish its natural geometry. Ecology estimates that the riparian buffers will have grown enough to be fully effective in 10-15 years. With continued project implementation in the upper Alpowa Creek, increased focus in the watershed will help to meet the standards for fecal coliform, dissolved oxygen and pH by 2030. Standards in the lower watershed and the temperature standards for the entire watershed should be met by 2035.

### **Schedule for Implementing Pollution Controls**

As described earlier in this report, Ecology has worked with the conservation district, local governments, and landowners to implement a variety of best management practices in the upper Alpowa Creek watershed. It is our best professional judgment that this work will remedy the pollution problems in the impaired segments. Because it is our intention to restore the entire watershed and to prevent future pollution problems, we will be using monitoring data to track water quality improvements and to identify any new problem areas so they can be addressed. It will be an on-going process to get water bodies into compliance and to keep them in compliance.

Some work remains to be completed in the watershed. Landowners will now focus project implementation in the small tributaries to Alpowa Creek, where livestock still have uncontrolled access. Ecology's Livestock and Water Quality Program will continue to have an on-going presence in the watershed, and will continue working to achieve compliance with state water quality standards.

We will use monitoring data and evidence of additional work completed in this watershed to determine whether these listings will stay in Category 4b in the next Water Quality Assessment.

# Monitoring Plan to Track Effectiveness of Pollution Controls

Monitoring results will be used to establish whether these projects are improving water quality and overall stream health. Monitoring data can also help to identify additional problem areas that should be addressed. Monitoring results will be reported to the public and EPA through Ecology's IR report development process. Ecology is planning on moving forward with an effectiveness monitoring study to cover all the region's 4b starting in 2022.

### **Commitment to Revise Pollution Controls as Necessary**

Ecology will maintain a presence in the Alpowa Creek watershed to ensure that water quality continues to improve. We fully expect the Eastern Regional Office livestock program to achieve compliance with water quality standards. However, if it does not, Ecology will work with the conservation district, local governments, and landowners to determine other controls that could be used to achieve compliance.

# Asotin Creek – December 2020

The Washington Department of Ecology (Ecology) Integrated Report (IR) proposes to exclude 17 temperature listings from the 303(d) list and place these water bodies in category 4b of the IR. The specific listings are:

Temperature—13851, 13852, 13854, 13858, 13860, 13862, 13863, 13985, 13986, 20352, 20354, 22425, 22426, 22427, 22429, 22430, 29321

Ecology's basis for excluding these water bodies from the 303(d) list is outlined in this analysis.

## Identification of Segment and Statement of Problem Causing Impairment

The Asotin Creek watershed is located in the southeast corner of Washington State. The majority of the watershed occurs within Asotin County. Some headwater streams get their start in Garfield County. Asotin Creek drains approximately 208,000 acres. The creek originates in the mixed conifer forests of the Blue Mountains. It cuts through layers of basalt rock and flows through narrow canyons before empting into the Snake River at the town of Asotin, Washington.

The name "Asotin" is derived from the Nez Perce word, Heesut'iin, "Eel Creek" (Hitchman 1985). The Asotin Creek watershed was the center of a fishing village for collecting Pacific lamprey (*Entosphenus tridentatus*), now rarely found in the creek. The watershed is still home to threatened species of fish including Snake River Steelhead as well as Bull Trout and Spring Chinook Salmon.

Asotin Creek has several tributaries, the largest is George Creek. Asotin creek is divided between the North and South Forks in the upper watershed. Other tributaries include Charley Creek, and Lick Creek. The George Creek watershed is approximately 89,000 acres and its major tributaries include Pintler Creek, Kelly Creek, and Rockpile Creek.

The geology of Asotin Creek region is of interest given it results in specific land-use patterns. The watershed consists of layers of basaltic rocks, formed by multiple ancient lava flows. The bedrock has been covered by fine-grained soils that are highly erodible. Folding of the underlying bedrock has resulted in a plateau increased in elevation and tilted to the north and east. The uplifting of the bedrock has caused streams to cut down and form steep and narrow v-shaped canyons.

The Asotin Creek watershed climate varies dramatically between the upper and lower portions of the watershed. Rainfall ranges from more than 45 inches in the higher elevations of the Blue Mountains to 12 inches near the confluence with the Snake River. This substantial variation occurs over approximately 20 miles, a relatively short distance. Ninety percent of the precipitation occurs between September and May with thirty percent of the winter's precipitation falling as snow. Snowfall at elevations less than 1,500 feet seldom lingers beyond three or four weeks, occasionally melting quickly enough to produce severe erosion.

Because of the differences in precipitation and elevation, vegetation also varies greatly in the watershed. Upland vegetation is dominated by mixed conifer forests in the upper watershed. The arid region near the Snake River is a shrub-steppe ecosystem dominated by sage and bunch grass. The stream corridor vegetation occurs in varying successional stages and consists mainly of alder and black cottonwood stands with mixed understory of shrubs. Ponderosa Pine is a dominant evergreen in much of the watershed. In the lower watershed, it typically occurs only in the transition zone between the riparian and upland areas. In the forested areas of the Blue Mountains, it is found throughout the uplands.

Multiple planning efforts have been completed in the Asotin Creek watershed. Most of these have been focused on salmon and steelhead recovery. The plans that have resulted all recognize stream temperature as a critical component of salmonid habitat and identify specific actions necessary to address temperature problems in the watershed. The Asotin Creek Model Watershed Plan proposed three implementation strategies to address the temperature problem:

- Streambank & Shoreline Protection
- Stream Channel Vegetation
- Fencing (Riparian)

The Bonneville Power Administration Sub-Basin Plan's strategies included management practices such as:

- Installing riparian buffers including livestock exclusion and planting
- Upholding existing land-use regulations
- Implementing conservation easements
- Decommissioning/paving roads

The Snake River Salmon Recovery plan identified riparian buffers and planting as primary tools to address temperature problems. The Middle Snake (WRIA 35) Watershed Plan identified stream temperature as a water quality problem and revegetation of stream corridors as a strategy to address it.

Much of the riparian vegetation in the Asotin Creek watershed is healthy compared to many eastern Washington watersheds. This is due to the rural location of the stream, the canyon geography that has prevented crop production along its banks, the public ownership of a significant portion of riparian area, and the extensive work by landowners to improve the riparian condition over the last several years.

However, there are five primary land-uses that cause nonpoint pollution and temperature problems in the Asotin watershed. Ecology's land use evaluation of the watershed has resulted in ranking the impacts causing the violations of temperature standards.

- 1) Livestock Feeding
- 2) Livestock Grazing
- 3) Urbanization
- 4) Forestry
- 5) Crop Production

Livestock Feeding—Winter feeding is a major source of impacts to riparian areas and vegetation on private lands. While many of the feeding areas have been fenced from surface water, much of that fence is too close to the creek to adequately protect surface water. Winter feeding areas continue to damage woody vegetation and prevent sapling recruitment and regeneration.

Livestock Grazing—Grazing activities also impact riparian vegetation, particularly in the upper portions of the watershed. Areas along the streams not ideal for winter feeding are often grazed from spring to fall. This includes some of the private forested areas.

Urbanization—Areas near Asotin are also likely contribute to temperature problems in the creek. Although the area is relatively small compared to the other land uses, the impacts to riparian vegetation are significant. Some homeowners have removed trees and shrubs and have lawns or pasture down to the water's edge. There are properties that own horses on small lots which access surface water and damage riparian vegetation. The city park and the Asotin Elementary school sports fields lack sufficient riparian vegetation.

Forestry—Historic timber harvesting on both public and private lands has removed many of the trees from the riparian zone. This has been particularly true on the Forest Service managed lands. Much of the shade in the upper watershed was lost due to historic logging activities. But, in recent years little logging has occurred in the riparian areas of the watershed. There has also been significant natural vegetation recovery and planting within the Umatilla National Forest.

Crop Production—Only a small portion of the riparian areas in the Asotin watershed are impacted by wheat and barley production. Most areas impacted by crop production occur in the upper Pintler Creek watershed where the streams are intermittent or ephemeral. In those areas, it is common for farming to occur up to streambanks or even through the stream channel.

# Description of Pollution Controls and How They Will Achieve Water Quality Standards

### Water quality target

In the Asotin Creek watershed, the water quality standards designate the following aquatic life beneficial uses:

Char spawning and rearing: This use protects spawning or early juvenile rearing by native char, or use by other species similarly dependent on such cold water. This use also protects summer foraging and migration of native char; and spawning, rearing, and migration by other salmonid species.

Core summer salmonid habitat: This use protects summer season, defined as June 15 through September 15, salmonid spawning or emergence, or adult holding; summer rearing habitat by one or more salmonids; or foraging by adult and sub-adult native char. Other protected uses include spawning outside of the summer season, rearing, and migration by salmonids.

Salmonid spawning, rearing, and migration: This use protects salmon or trout spawning and emergence that only occur outside of the summer season (September 16 – June 14). Other uses include rearing and migration by salmonids.

In some waters, special considerations have been included because they are necessary to protect spawning and incubation of char and salmonid species. Supplemental spawning/incubation criteria have been established for specified time periods to protect these special uses. Based on the beneficial uses, a numeric temperature criteria standard is established.



Figure 3. Asotin Creek Watershed Status

### Controls that will achieve water quality standards

Asotin Creek is a relatively small stream. The bankfull width of the Asotin mainstem is approximately 13 meters (37 feet). The bankfull widths of lower reaches of the North Fork Asotin Creek, the South Fork Asotin Creek, and George Creek vary, but are generally half that width (Stuart, 2012). As would be expected, stream width diminishes significantly in the upper portions of the watershed. Buffer widths must be adequate to shade the stream and protect against other factors influencing temperature.

In order to meet water quality standards, Ecology will work with partners to create 75-footwide well-vegetated buffers on both sides of the stream (150 feet total) within the Asotin watershed for all areas used for livestock feeding, livestock grazing, and crop production. Ecology will focus on perennial reaches where stream flow occurs during the critical temperature period (late spring – early fall). Areas of the upper watershed where streams are intermittent or ephemeral are important for other water quality parameters but will be a lower priority. They will be planted and/or fenced as additional funding allows.

Ecology will implement an additional set of BMPs for properties with livestock. These BMPs use the construction specifications of the Natural Resource Conservation Service Field Office Technical Guide (FOTG). They are:

Livestock Exclusion Fence—A constructed barrier to animals that protects the riparian buffer. The fencing materials and the type and design of fence installed shall be of a high quality and durability. The type and design of fence installed must meet the management objective of excluding cattle from the riparian area. (FOTG Practice Code 382)

Watering Facility—A device to provide an adequate amount and quality of drinking water for livestock. Stock tanks should be installed as far from surface water as possible to protect against contamination of surface water via run-off or ground water connections. (FOTG Practice Code 361)

Stream Crossing—A stabilized area or structure constructed across a stream to provide a travel way for livestock. Stream crossings should be located in areas where the streambed is stable or where grade control can be provided to create a stable condition. (FOTG Practice Code 578)

For forest lands, the Washington State Forest Practices Rules (WAC 222-30) were developed with the expectation that the stream buffers and harvest management prescriptions were stringent enough to meet state water quality standards for temperature. These rules apply to all timber harvest on private lands within Washington. The program has some deficiencies, but provides a framework for bringing the forest practices rules and activities into full compliance with the water quality standards. Some additional discussions with the Department of Natural Resources (DNR) will occur to ensure water quality in Asotin Creek is adequately protected.

Currently, a no-cut buffer is required for fish bearing streams by the Forest Practices Rules. The rules establish a core zone of 30 feet from the stream where no harvest or construction is allowed. An additional 45-foot zone is also protected and no harvest is allowed except when:

- The basal area in the inner zone is greater than 110 square feet per acre and greater than 6 inches diameter. The harvest must leave at least 50 trees per acre including trees that shade the water.
- Thinning, and there are more than 100 trees per acre and the basal area is less than 60 square feet per acre. Still, 100 of the largest trees per acre must be left, including those that shade the stream.

Within the Umatilla National Forest, the Forest Service requires protected areas of 150 or 300 feet for perennial streams depending on the presence or absence of fish, but with exceptions. In addition, they require at least a 50 foot no-cut zone for non-fish-bearing intermittent streams. Some areas in the Umatilla National Forest will require additional planting based on historic harvest practices or natural events. Ecology will work with the Umatilla National Forest to ensure at least 75 feet of protection is required on all fish-bearing streams. In addition, some forest areas are subject to seasonal grazing. In these areas, a minimum of 35 feet of riparian corridor will be fenced to protect understory vegetation and prevent polluted run-off.

In the urbanized portion of the watershed, there are small areas 75-100ft vegetated buffers are not practical. This exception occurs primarily in lower Asotin Creek. Major roads or home locations do not allow for wider buffers. In these locations, Ecology will work to create 35 foot minimum vegetated buffers. Small buffers will be installed in a very small portion of the watershed (less than 2%) and should not affect the ability to meet water quality standards.

A significant amount of riparian planting has been completed in the Asotin watershed. Since 1998, more than 200,000 trees and shrubs have been planted, although more implementation is needed to achieve compliance with Washington's temperature standards.

Best management practice (BMP) implementation can be broken into two broad categories, riparian protection fencing and riparian planting. When fencing is installed to protect the riparian area from livestock, associated BMP, such as off-stream watering and stream crossings may also be necessary. In many cases, stream reaches will need both kinds of implementation. There are also stream reaches in the watershed where no livestock are present but additional planting is needed to adequately shade the stream.

In the last five years, an additional six miles of Asotin Creek was protected, with another five miles of buffer enhanced with plantings of over 13,000 trees in the riparian area. This watershed can be increasingly complex to establish robust buffers due to its arid and rocky conditions. The Asotin County CD continues to focus efforts on enhancement and maintenance in the watershed. Ecology has partnered with the CD on an active grant in the watershed to promote overbank flow and floodplain connection to improve temperature and sedimentation concerns.

This has resulted in installing 116 Beaver Dam Analogs (BDAs) throughout the watershed. The CD has recently submitted an FY22 state 319 water quality grant application to Ecology, which if funded will provide funding to protect and enhance an additional 40,000 stream feet and 20,000 trees to Asotin County watersheds, including Tenmile Creek. This grant would also provide enhanced technical assistance in the watershed to continue to see increased participation in water quality improvement projects.

In addition, farmers in the watershed are adopting direct seed technology, which is the practice of seeding a new crop into the standing stubble of a recently harvested crop without the traditional tillage of the ground. By doing so, soil erosion can be reduced by as much as 95 percent. This significantly reduces the volume of sediment washing into Tenmile Creek. All of these efforts will help address the temperature impairments. In recent years, the Asotin County CD has assisted in converting an additional 3400 acres to direct seed or conservation tillage in the watershed.

Ecology's Livestock and Water Quality Program has focused efforts back into Asotin Creek with recent watershed evaluations in 2020. As a result, the program identified an additional three sites with active water quality concerns. Once prioritization was completed one landowner was sent a technical and financial assistance letter from Ecology, and is currently in communication to draft a plan with the Asotin County CD which was included in their recent FY22 state 319 water quality grant application. These efforts will continue in 2021 to identify and document ongoing sites of concern to further implement new projects in the watershed.

Ecology uses our regulatory authority as a backstop when collaborative efforts fail. The Water Pollution Control Act (RCW 90.48) gives Ecology the authority to take enforcement actions against nonpoint polluters.

RCW 90.48 makes it unlawful for any person to "cause, permit or suffer to be thrown, run, drained, allowed to seep or otherwise discharged ... any organic or inorganic matter that shall cause or tend to cause pollution of" waters of the state. Any person who violates or creates a substantial potential to violate the provisions of Chapter 90.48 RCW is subject to an enforcement order from Ecology pursuant to RCW 90.48.120. Ecology is authorized to "issue such order or directive as it deems appropriate under the circumstances[.]" In addition to administrative orders, violating Chapter 90.48 RCW may result in injunctions, civil penalties, and notices of violations.

It is worth noting that RCW 90.48.120 gives Ecology the authority to take action in response to nonpoint source pollution, the statute also gives Ecology the authority to take action based on a "substantial potential" to pollute state waters via either a point or nonpoint pollution source. Consequently, Ecology not only has authority to take action following a NPS pollution occurrence (i.e. there was a discharge), but has specific statutory authority to act proactively to prevent NPS pollution from occurring in the first place.

Ecology's authority includes the authority to require a nonpoint source polluter to implement specific best management practices (BMPs). Ecology's authority can be used to prevent nonpoint pollution and require BMPs, as necessary.

Ecology has used this regulatory backstop several times since 2016.

# Estimate or Projection of Time When Water Quality Standards Will be Met

It will take time for the riparian corridor to fully recover and for the stream to re-establish its natural geometry. Ecology estimates that the riparian buffers will have grown enough to be fully effective in 10-15 years. While Asotin Creek continues to see projects implemented, increased focus in the watershed will help to meet the temperature standard throughout the entire watershed by 2025.

# **Schedule for Implementing Pollution Controls**

As described earlier in this report, Ecology has worked with the conservation district, local governments, and landowners to implement a variety of best management practices in the Asotin Creek watershed, and landowners are continuing to implement best management practices that protect the stream corridor and improve water quality. It is our best professional judgment that this work will remedy the pollution problems in the impaired segments. Because it is our intention to restore the entire watershed and to prevent future pollution problems, we will be using monitoring data to track water quality improvements and to identify any new problem areas so they can be addressed. It will be an on-going process to get water bodies into compliance and to keep them in compliance.

Ecology's Livestock and Water Quality Program will continue to have an on-going presence in the watershed, and will continue working to achieve compliance with state water quality standards.

# Monitoring Plan to Track effectiveness of Pollution Controls

Monitoring results will be used to establish whether these projects are improving water quality and overall stream health. Monitoring data can also help to identify additional problem areas that should be addressed. Monitoring results will be reported to the public and EPA through Ecology's IR report development process.

It takes time to implement riparian fencing and planting projects and time for planted vegetation to grow. Therefore, it is not necessary to monitor every year. At the same time, it is important to monitor frequently to capture water quality improvements over time as well as account for the annual variability that can result from different weather patterns. Ecology will use a two-year-on and two-year-off monitoring schedule to evaluate the effectiveness of this plan.

## **Commitment to Revise Pollution Controls as Necessary**

Ecology will maintain a presence in the Asotin Creek watershed to ensure that water quality continues to improve. We fully expect the BMPs being implemented will achieve compliance with water quality standards. However, if they do not, Ecology will work with its local partners to determine other controls that could be used to achieve compliance.

# Couse Creek – December 2020

The Washington Department of Ecology (Ecology) Integrated Report (IR) proposes to exclude two listings from the 303(d) list and place these segments into category 4b. The specific listings are:

• Temperature—29318 and 29320

These water bodies were listed in category 4b of the 2012 IR. Ecology's basis for excluding these waterbodies from the 303(d) list is outlined in this evaluation.

# Identification of Segment and Statement of Problem Causing Impairment

Couse Creek is located in Asotin County in southeastern Washington. The creek cuts through a deep canyon on its way to the Snake River. The plateaus above Couse Creek are farmed for wheat and barley, and the canyon is used for range and feeding livestock. Threatened Snake River Steelhead trout still return to Couse Creek each autumn.

Prior to 2001, livestock in the watershed had uncontrolled access to the creek, and were fed at several easy to reach locations along the stream. The riparian corridor was degraded. Trampling and overgrazing had damaged or removed many of the trees and shrubs along the stream corridor. This degraded riparian area could not provide shade to the stream, resulting in high water temperatures.

This is a sparsely populated area. There are no towns in the watershed and no point sources of pollution.

Monitoring data for these two segments was collected by the Washington Department of Fish and Wildlife, and covers the years 2000 through 2002. For segment 29318, data show that the highest daily temperature occurred in 2001. For that year, the 7-day mean of maximum daily temperature was 21.1 degrees Centigrade, and the maximum daily temperature was 23.4 degrees Centigrade from continuous measurements. For segment 29320, the highest temperatures occurred in 2000. For that year, the 7-day mean of maximum daily temperature was 23.3 degrees Centigrade, with a maximum daily temperature of 24.8 degrees Centigrade from continuous measurements.

# Description of Pollution Controls and How They Will Achieve Water Quality Standards

#### Water quality target

The designated uses for the two impaired segments are spawning, rearing and migration, and the temperature criterion is 17.5 degrees Centigrade. In addition, the segments have a supplemental spawning criterion of 13 degrees Centigrade from February 15 to June 1.

#### Controls that will achieve water quality standards

The Department of Ecology's Eastern Regional Office has established a Livestock and Water Quality Program that uses a unique collaborative approach to address livestock-related problems. Instead of using the standard process that starts with a Category 5 listing, establishing a TMDL for the stream, writing an implementation plan, and finally getting to actual implementation, this strategy goes straight to implementation. The strategy is applied in watersheds in which the cause of a water quality impairment is clear.

Ecology encourages implementation of a wide variety of best management practices, however, a primary focus of the program has been to restore degraded riparian corridors and eliminate unlimited animal access to streams. Healthy riparian areas can improve water quality and stream health in multiple ways, which make them a particularly valuable and cost-effective management practice. Healthy riparian areas

- Slow bank erosion by holding soil in place during periods of high water.
- Reduce flood damage and sedimentation by slowing runoff and capturing the sediment that would otherwise be carried downstream.
- Help keep water cool in summer by shading the stream.
- Improve water quality by capturing sediment, nutrients, pesticides, pathogens, and other pollutants before they reach the stream.
- Enhance summer stream flow by improving water infiltration and storage.
- Create fish and wildlife habitat.
- Limit livestock manure inputs to the creek and riparian areas.

Ecology has a three-step riparian restoration strategy, which allows the department to efficiently apply resources to priority problem areas. The first step is to address the source of degradation unlimited livestock access to streams and winter feeding operations in close proximity to the riparian corridor. Ecology relies primarily on livestock exclusion, and off-stream water supply to restrict livestock access to the riparian area. In implementing this BMP, Ecology uses our 319 and centennial clean water grant guidelines, which require a minimum 75, 50 or 35 foot buffer between the livestock fence and the mean ordinary high water mark of the nearest stream bank depending on the type of stream. In many cases, the buffer width may be larger depending on the stream and site conditions.

By first addressing livestock access, Ecology seeks to abate the primary pollution sources livestock in the stream, eroded stream banks, increased runoff, increased sedimentation, and subsequent transport of fecal matter. As vegetation naturally returns in the riparian area, site conditions become stabilized and the pollution sources are dramatically reduced. Also, this approach works to arrest morphological changes to the entire stream that are induced by erosion and sedimentation.

Ecology has spent much of its efforts and resources implementing this first step, in large part, because we have taken a holistic, watershed approach to protecting streams.

By first addressing the primary sources of pollution and geomorphic change, Ecology can establish the necessary site conditions for successful restoration. Moreover, Ecology ensures that, first and foremost, the root problems are addressed for *the entire stream*, before resources are focused on site or segment specific restoration.

The second step occurs after a majority of site conditions have been stabilized, and the stream's entire geomorphic integrity is no longer jeopardized by the adjacent management practices. Ecology then conducts a reach by reach assessment to determine the appropriate trees and shrubs to be used for restoration. In some cases federal programs require revegetation as part of the cost-share program, and so restoration work occurs simultaneously with livestock exclusion.

The third step is to work with local land owners to promote continuous and proper management of upland grazing lands.

In addition to the Livestock and Water Quality Program, Ecology's Eastern Regional Office has established a similar collaborative approach to address crop production-related problems. Ecology encourages implementation of a wide variety of best management practices, however, a primary focus of effort has been establishing minimum land use setbacks, restoring degraded riparian corridors, and converting conventionally farmed land to conservation tillage practices.

Ecology teams with conservation districts, local governments, and landowners to provide technical assistance and funding for implementation of best management practices. Ecology uses our regulatory authority as a backstop when collaborative efforts fail. The Water Pollution Control Act (RCW 90.48) gives Ecology the authority to take enforcement actions against nonpoint polluters.

RCW 90.48 makes it unlawful for any person to "cause, permit or suffer to be thrown, run, drained, allowed to seep or otherwise discharged ... any organic or inorganic matter that shall cause or tend to cause pollution of" waters of the state. Any person who violates or creates a substantial potential to violate the provisions of Chapter 90.48 RCW is subject to an enforcement order from Ecology pursuant to RCW 90.48.120. Ecology is authorized to "issue such order or directive as it deems appropriate under the circumstances[.]" In addition to administrative orders, violating Chapter 90.48 RCW may result in injunctions, civil penalties, and notices of violations.

It is worth noting that RCW 90.48.120 gives Ecology the authority to take action in response to nonpoint source pollution, the statute also gives Ecology the authority to take action based on a "substantial potential" to pollute state waters via either a point or nonpoint pollution source. Consequently, Ecology not only has authority to take action following a NPS pollution occurrence (i.e. there was a discharge), but has specific statutory authority to act proactively to prevent NPS pollution from occurring in the first place.

Ecology's authority includes the authority to require a nonpoint source polluter to implement specific best management practices (BMPs). Ecology's authority can be used to prevent nonpoint pollution and require BMPs, as necessary.

Ecology has used this regulatory backstop several times since 2016.

The result of these partnerships has been the implementation of best management practices at hundreds of sites across several watersheds where water quality and fish habitat issues exist. By using a collaborative strategy, backed up by enforcement when necessary, Ecology has been able to create relationships and build trust with rural residents while improving water quality.

In the Couse Creek watershed, work with landowners began in 2002. Eight miles of riparian buffers were installed. The creek was fenced to protect it from livestock, and off-stream water was provided at several key points. Thousands of native trees and shrubs were planted in the stream corridor. Buffers are constructed using Natural Resource Conservation Service standards, which require a minimum width of 35 feet. For buffers installed with state or federal financial assistance, we require an agreement with the landowner stipulating that the buffer and fence will be maintained for at least 10 years.

In addition, farmers in the watershed are adopting direct seed technology, which is the practice of seeding a new crop into the standing stubble of a recently harvested crop without the traditional tillage of the ground. By doing so, soil erosion can be reduced by as much as 95 percent. This significantly reduces the volume of sediment washing into Couse Creek. All of these efforts will help address the temperature impairments. In the last few years, the Asotin County CD has assisted in converting an additional 652 acres to direct seed or conservation tillage in the watershed.

All of these efforts will help address the temperature impairments. Initial cattle exclusion fencing was generally installed adjacent to or upstream of the impaired segments. However, we have also fenced portions of the stream and tributaries where there are presently no Category 5 listings, but where there was unrestricted cattle access to the stream.

Riparian buffers are left to revegetate naturally in those areas in which there is enough live native vegetation left to recover. In all other areas we are installing buffers by planting native plants. We expect the planting to continue for a few seasons to ensure all buffers are adequate and healthy. As of 2006, all cattle in the watershed have been fenced out of the stream.

In the last five years, an additional thirteen miles of riparian buffer was enhanced with plantings of over 9,000 trees in the riparian area. This watershed can be increasingly complex to establish robust buffers due to its arid and rocky conditions. The Asotin County CD continues to focus efforts on enhancement and maintenance in the watershed. Ecology has partnered with the CD on an active grant in the watershed to promote overbank flow and floodplain connection to improve temperature and sedimentation concerns. This has resulted in installing 46 Beaver Dam Analogs (BDAs) throughout the watershed.

The CD has recently submitted an FY22 state 319 water quality grant application to Ecology, which if funded will provide funding to protect and enhance an additional 40,000 stream feet and 20,000 trees to Asotin County watersheds, including Couse Creek.

The Couse Creek watershed continues to recover. Since 2006, many riparian areas have been placed into the Conservation Reserve Enhancement Program, which requires maintenance of riparian plantings. Ecology has completed additional planting to increase riparian vegetation. In addition, Ecology has been encouraging landowners to implement direct seed technology through the use of state Centennial and federal 319 grant funds; and Bonneville Power Administration Direct Seed Cost-share.

Changes to the watershed are obvious. Trees and shrubs are now growing in the riparian area, and the channel is more defined and stable, with more consistent surface flow. There are Steelhead trout in the creek. Landowners are noticing the changes, too. One Couse Creek landowner told Ecology, "Since we implemented these projects we have stands of grass I have never seen before. The stream corridor looks healthier than it did three years ago."



Figure 4. Tenmile and Couse Creek Watershed Status
## Description of requirements under which pollution controls will be implemented

It is Ecology's best professional judgment that the pollution controls that have been installed will result in the water quality standards being met. Maintenance of these controls has been ensured through 10-year landowner agreements that were established as part of the funding agreements for these projects. Additionally, Ecology staff will continue to perform watershed evaluations in this watershed to ensure that BMPs stay in place.

## Estimate or Projection of Time When Water Quality Standards Will be Met

It will take time for the riparian corridor to fully recover and for the stream to re-establish its natural geometry. Ecology estimates that the riparian buffers will have grown enough to be fully effective in 10-15 years. While Couse Creek continues to see projects implemented, increased focus in the watershed will help to meet the temperature standard throughout the entire watershed by 2025.

# **Schedule for Implementing Pollution Controls**

As described earlier in this report, Ecology has worked with the conservation district, local governments, and landowners to implement a variety of best management practices in the Couse Creek watershed. It is our best professional judgment that this work will remedy the pollution problems in the impaired segments. Because it is our intention to restore the entire watershed and to prevent future pollution problems, we will be using monitoring data to track water quality improvements and to identify any new problem areas so they can be addressed. It will be an on-going process to get water bodies into compliance and to keep them in compliance.

Ecology's Livestock and Water Quality Program will continue to have an on-going presence in the watershed, and will continue working to achieve compliance with state water quality standards.

### Monitoring Plan to Track Effectiveness of Pollution Controls

Monitoring results will be used to establish whether these projects are improving water quality and overall stream health. Monitoring data can also help to identify additional problem areas that should be addressed. Monitoring results will be reported to the public and EPA through Ecology's IR report development process. Ecology is planning on moving forward with an effectiveness monitoring study to cover all the region's 4b starting in 2022.

# **Commitment to Revise Pollution Controls as Necessary**

Ecology will maintain a presence in the Couse Creek watershed to ensure that water quality continues to improve. We fully expect the Eastern Regional Office livestock and water quality program to achieve compliance with water quality standards. However, if it does not, Ecology will work with the conservation district, local governments, and landowners to determine other controls that could be used to achieve compliance.

# Deadman and Meadow Creeks – December 2020

The Washington Department of Ecology (Ecology) Integrated Report (IR) proposes to exclude the following listings in Deadman and Meadow Creeks from the 303(d) list and place these segments into category 4b of the IR:

- seven listings (18827, 18828, 18829, 18830, 18831, 18832, and 40534) for temperature
- six listings (40553, 40554, 40555, 45999, 46000, and 72286) for bacteria
- three listings (47172, 47173, and 47174) for dissolved oxygen
- four listings (50438, 50473, 50474, 50475) for pH

These segments were in various categories of the 2012 IR. Listings 18827, 18828, 40534, 40554, and 40555 were in category 4b. Listings 18829, 40553, 40555, 50438, 50475, 18830, 18831, 46000, 47172, 47173, 50473, and 50475 were in category 5. Listing 18832 was in category 1. Listing 45999 was in category 2. Listing 72286 was in category 3.

Ecology's basis for excluding these waterbodies from the 303(d) list is outlined in this evaluation.

# Identification of Segment and Statement of Problem Causing Impairment

Deadman and Meadow Creek are located in Garfield County in southeastern Washington. Both flow roughly east to west through rolling hills before their confluences meet at the Snake River. This is arid country, with rainfall in some areas averaging as little as 11 inches annually.

Historically, the surrounding hills were covered in bunchgrass and sage, and the meandering creek provided habitat for Steelhead trout. Approximately half the watershed today is used for non-irrigated crops such as wheat and barley, primarily in the high areas of the watershed. The other half, primarily the bottomlands near streams, provides range for livestock. From November through March, cattle are typically fed along the valley floor, which serves as a refuge from the region's harsh winter weather.

This is a sparsely populated area. There are no towns in the watershed and no point sources of pollution. The few farmhouses are widely dispersed in the watershed, and there is no evidence that septic systems are contributing pollution to streams.

Data for all pollutants and segments was collected by Washington State University (WSU) and the Washington Department of Fish and Wildlife (WDFW) between 2000 and 2007. WSU's data showed excursions above the criteria for both temperature and fecal coliform. Data collected by the Washington Department of Fish and Wildlife shows that the highest daily temperatures occurred in 2001. For segment 18827, data show a 7-day mean of maximum daily temperature of 24.3 degrees Centigrade, with a maximum daily temperature of 25.6 degrees Centigrade from continuous measurements. For segment 18828, data show a 7-day mean of maximum daily temperature of 20.7 degrees Centigrade, with a maximum daily temperature of 21.8 degrees Centigrade from continuous measurements. Dissolved oxygen data show consistent excursions below the criteria. pH data show both high and low pH excursions. The impairments are the result of a combination of factors. Winter feeding and uncontrolled livestock access to the stream had eliminated much of the vegetation within the stream corridor. This degraded riparian area could not provide shade to the stream, resulting in high water temperatures. It also allowed manure to run directly into streams. In addition, the uncontrolled stream access allowed cattle to deposit manure directly into the water and to trample stream banks. The creek was shallow, wide, and muddy in many areas due to cattle trampling, and provided little habitat for Steelhead trout.

# Description of Pollution Controls and How They Will Achieve Water Quality Standards

#### Water Quality Target

The designated uses for the temperature impaired segments are spawning, rearing and migration, and the temperature criterion is 17.5 degrees Centigrade, year-round. Segments 18827 and 18829 also have a supplemental spawning criterion of 13 degrees Centigrade from February 15 to June 1.

The designated use for the bacteria impaired segments is primary contact recreation. Ecology now uses Escherichia coli (E. Coli) as the criteria in this watershed. E. Coli levels must not exceed a geometric mean value of 100 CFU or MPN per 100 mL, with not more than 10 percent of all samples (or a single sample when less than ten sample points exist) exceeding 320 CFU or MPN per 100 mL.

For the dissolved oxygen impaired segments, the standards require that the lowest one-day minimum be no lower than 8.0 mg/L.

For the pH impaired segments, the standard requires the pH to be within the range of 6.5 to 8.5, with a human-caused variation within this range of less than 0.5 units.

#### Controls that will achieve water quality standards

The Department of Ecology's Eastern Regional Office has established a Livestock and Water Quality Program that uses a unique collaborative approach to address livestock-related problems. Instead of using the standard process that starts with a Category 5 listing, establishing a TMDL for the stream, writing an implementation plan, and finally getting to actual implementation, this strategy goes straight to implementation. The strategy is applied in watersheds in which the cause of a water quality impairment is clear.

Ecology encourages implementation of a wide variety of best management practices, however, a primary focus of the program has been to restore degraded riparian corridors and eliminate unlimited animal access to streams. Healthy riparian areas can improve water quality and stream health in multiple ways, which make them a particularly valuable and cost-effective management practice. Healthy riparian areas:

- Slow bank erosion by holding soil in place during periods of high water.
- Reduce flood damage and sedimentation by slowing runoff and capturing the sediment that would otherwise be carried downstream.
- Help keep water cool in summer by shading the stream.
- Improve water quality by capturing sediment, nutrients, pesticides, pathogens, and other pollutants before they reach the stream.
- Enhance summer stream flow by improving water infiltration and storage.
- Create fish and wildlife habitat.
- Limit livestock manure inputs to the creek and riparian areas.

Ecology has a three-step riparian restoration strategy, which allows the department to efficiently apply resources to priority problem areas. The first step is to address the source of degradation  $\Box$  unlimited livestock access to streams and winterfeeding operations in close proximity to the riparian corridor. Ecology relies primarily on livestock exclusion, and off-stream water supply to restrict livestock access to the riparian area. In implementing this BMP, Ecology uses our 319 and centennial clean water grant guidelines, which require a minimum 75, 50 or 35-foot buffer between the livestock fence and the mean ordinary high water mark of the nearest stream bank depending on the type of stream. In many cases, the buffer width may be larger depending on the stream and site conditions.

By first addressing livestock access, Ecology seeks to abate the primary pollution sources livestock in the stream, eroded streambanks, increased runoff, increased sedimentation, and subsequent transport of fecal matter. As vegetation naturally returns in the riparian area, site conditions become stabilized and the pollution sources are dramatically reduced. Also, this approach works to arrest morphological changes to the entire stream that are induced by erosion and sedimentation.

Ecology has spent much of its efforts and resources implementing this first step, in large part, because we have taken a holistic, watershed approach to protecting streams. By first addressing the primary sources of pollution and geomorphic change, Ecology can establish the necessary site conditions for successful restoration. Moreover, Ecology ensures that, first and foremost, the root problems are addressed for *the entire stream*, before resources are focused on site or segment specific restoration.

The second step occurs after a majority of site conditions have been stabilized, and the stream's entire geomorphic integrity is no longer jeopardized by the adjacent management practices. Ecology then conducts a reach by reach assessment to determine the appropriate trees and shrubs to be used for restoration. In some cases, federal programs require revegetation as part of the cost-share program, and so restoration work occurs simultaneously with livestock exclusion.

The third step is to work with local land owners to promote continuous and proper management of upland grazing lands.

In addition to the Livestock and Water Quality Program, Ecology's Eastern Regional Office has established a similar collaborative approach to address crop production-related problems. Ecology encourages implementation of a wide variety of best management practices, however, a primary focus of effort has been establishing minimum land use setbacks, restoring degraded riparian corridors, and converting conventionally farmed land to conservation tillage practices.

Ecology teams with conservation districts, local governments, and landowners to provide technical assistance and funding for implementation of best management practices. Ecology uses our regulatory authority as a backstop when collaborative efforts fail. The Water Pollution Control Act (RCW 90.48) gives Ecology the authority to take enforcement actions against nonpoint polluters.

RCW 90.48 makes it unlawful for any person to "cause, permit or suffer to be thrown, run, drained, allowed to seep or otherwise discharged ... any organic or inorganic matter that shall cause or tend to cause pollution of" waters of the state. Any person who violates or creates a substantial potential to violate the provisions of Chapter 90.48 RCW is subject to an enforcement order from Ecology pursuant to RCW 90.48.120. Ecology is authorized to "issue such order or directive as it deems appropriate under the circumstances[.]" In addition to administrative orders, violating Chapter 90.48 RCW may result in injunctions, civil penalties, and notices of violations.

It is worth noting that RCW 90.48.120 gives Ecology the authority to take action in response to nonpoint source pollution, the statute also gives Ecology the authority to take action based on a "substantial potential" to pollute state waters via either a point or nonpoint pollution source. Consequently, Ecology not only has authority to take action following a NPS pollution occurrence (i.e. there was a discharge), but has specific statutory authority to act proactively to prevent NPS pollution from occurring in the first place. Ecology's authority includes the authority to require a nonpoint source polluter to implement specific best management practices (BMPs). Ecology's authority can be used to prevent nonpoint pollution and require BMPs, as necessary.

Ecology has used this regulatory backstop several times since 2016.

The result of these partnerships has been the implementation of best management practices at hundreds of sites across several watersheds where water quality and fish habitat issues exist. By using a collaborative strategy, backed up by enforcement when necessary, Ecology has been able to create relationships and build trust with rural residents while improving water quality.

In the Deadman Creek watershed, work with landowners began in 2002. Twenty-nine miles of riparian buffers were installed prior to 2014. In spring of 2014, ¾ mile of new cattle exclusion fence was installed in Meadow Creek and ¼ mile in Deadman Creek. The creek was fenced to protect it from livestock, and several off-stream watering facilities were installed. Feeding locations were moved away from the stream to prevent polluted runoff. Trees and shrubs were planted to stabilize banks, shade the stream, and provide wildlife habitat. Buffers are

Publication 22-10-018 Page 185 2018 WQA Data Citations & Sources August 2022 constructed using Natural Resource Conservation Service standards, which require a minimum width of 35 feet. For buffers installed with state or federal financial assistance, we require an agreement with the landowner stipulating that the buffer and fence will be maintained for at least 10 years.

Fencing was generally installed adjacent to or upstream of the impaired segments. However, we are also fencing portions of the stream where there are presently no Category 5 listings, but where there is unrestricted cattle access to the stream. Riparian buffers are left to revegetate naturally in those areas in which there is enough live native vegetation left to recover. In all other areas we are installing buffers by planting native plants. By 2008, 80 percent of the cattle had been fenced out of the stream.

More recently, over the last 5 years the Pomeroy CD has added an additional 1.6 miles of livestock exclusion fencing on lower Deadman Creek with planting to help with revegetation. An additional site near the conjunction of the North and South Fork Deadman provided additional off-stream watering. In partnership with Ecology, the CD installed off-stream watering for a heavily polluted site on North Deadman Creek which will soon be under a CREP contract with another 2.5 miles of livestock exclusion fencing being added in 2021.

In Meadow Creek the Pomeroy CD has recently worked with two separate landowners to install open bottom culverts to access winter feeding grounds and prevent livestock crossing through surface water. In partnership with Ecology, the CD installed another mile of livestock exclusion fencing along Meadow Creek as well as a small spring-fed tributary. A major recent effort seen in this watershed has been the addition of both Beaver Dam Analogs (BDAs) as well as beaver re-location to assist with increasing annual water flows and promote floodplain storage for water temperatures and sedimentation. Both Deadman and Meadow Creek watersheds have seen a large increase of cropland shifting into direct seed or conservation tillage practices with increased technical assistance from the Pomeroy CD.

Most BMPs remain in good shape, although there was some backsliding prior to Ecology's 2013 re-assessment of the watershed. There had been gates and stream crossings left open and a few sections of fence that had not been completed. These are fixed now. Ecology has collected data that indicates an improving trend in the watershed, but there are data gaps so it is inconclusive, and the water is not yet meeting standards.

Ecology's Livestock and Water Quality Program has focused efforts back into Deadman and Meadow Creeks with recent watershed evaluations in 2020. As a result, the program identified an additional eighteen sites with active water quality concerns. Once prioritization was completed one landowner was sent a technical and financial assistance letter from Ecology, and is currently in communication to draft a plan with the Pomeroy CD. These efforts will continue in 2021 to identify and document ongoing sites of concern to further implement new projects in the watershed.



Figure 5. Deadman/Meadow Creek Watershed Status

Description of requirements under which pollution controls will be implemented It is Ecology's best professional judgment that the pollution controls that have been installed will result in the water quality standards being met. Maintenance of these controls has been ensured through 10-year landowner agreements that were established as part of the funding agreements for these projects. Additionally, Ecology staff will continue to perform watershed evaluations in this watershed to ensure that BMPs stay in place.

# Estimate or Projection of Time When Water Quality Standards Will be Met

It will take time for the riparian corridor to fully recover and for the stream to re-establish its natural geometry. Ecology estimates that the riparian buffers will have grown enough to be fully effective in 10-15 years. While Deadman and Meadow Creek continue to see projects implemented, increased focus in the watershed will help to meet temperature, fecal coliform, dissolved oxygen, and pH standards by 2035.

# **Schedule for Implementing Pollution Controls**

As described earlier in this report, Ecology has worked with the conservation district, local governments, and landowners to implement a variety of best management practices in the Deadman and Meadow Creeks watershed. It is our best professional judgment that this work will remedy the pollution problems in the impaired segments. Because it is our intention to restore the entire watershed and to prevent future pollution problems, we will be using monitoring data to track water quality improvements and to identify any new problem areas so they can be addressed. It will be an on-going process to get water bodies into compliance and to keep them in compliance.

A few sites where cattle are adversely affecting water quality remain in the watershed, and Ecology's Livestock and Water Quality Program will continue working with landowners to address these problem areas.

In addition, farmers throughout the watershed are adopting conservation tillage practices that reduce soil erosion and keep sediment out of the stream. These practices also improve rain and snowmelt infiltration and reduce the change of damaging spring floods. A new challenge in the watershed is a noxious weed called False Indigo. As cattle are excluded from the stream corridor, this aggressive invader moves in. The Pomeroy Conservation District has a grant from the Department of Ecology to remove the weed and plant native trees and shrubs in its place. Ecology's livestock and water quality program will continue to have an on-going presence in the watershed, and will continue working to achieve compliance with state water quality standards.

# Monitoring Plan to Track Effectiveness of Pollution Controls

Monitoring results will be used to establish whether these projects are improving water quality and overall stream health. Monitoring data can also help to identify additional problem areas that should be addressed. Monitoring results will be reported to the public and EPA through Ecology's IR report development process. Ecology is planning on moving forward with an effectiveness monitoring study to cover all the region's 4b starting in 2022.

# **Commitment to Revise Pollution Controls as Necessary**

Ecology will maintain a presence in the Deadman Creek watershed to ensure that water quality continues to improve. We fully expect the Eastern Regional Office Livestock and Water Quality Program to achieve compliance with water quality standards. However, if it does not, Ecology will work with the conservation district, local governments, and landowners to determine other controls that could be used to achieve compliance.

# Tenmile Creek – December 2020

The Washington Department of Ecology (Ecology) Integrated Report (IR) proposes to exclude six listings from the 303(d) list and place these segments into category 4b. The specific listings are:

- Temperature—18835, 18836, 20355, 20356, 29317
- Bacteria—72313

The temperature impaired water bodies were listed in category 4b and the bacteria impaired water body was listed in category 3 of the 2012 IR. Ecology's basis for excluding these waterbodies from the 303(d) list is outlined in this evaluation.

## Identification of Segment and Statement of Problem Causing Impairment

Tenmile Creek is located in Asotin County in southeastern Washington. Mill Creek is a tributary of Tenmile Creek. Tenmile Creek drops 2000 feet from the fringes of the Blue Mountains to the Snake River. The canyon created by the creek provides habitat for a variety of wildlife including deer, elk, coyote, and many species of birds. Even cougar are known to frequent the area. Tenmile Creek is also home to threatened Snake River Steelhead trout.

The Tenmile Creek canyon is important range for cattle. It also provides an excellent location for winter feeding. Feeding at the canyon's base protects livestock from harsh winter weather. However, a century of these activities left the stream corridor in poor condition. Many of the trees were damaged or removed, and stream banks were trampled and overgrazed. Winter feeding and uncontrolled livestock access to the stream had eliminated much of the vegetation within the stream corridor. This degraded riparian area could not provide shade to the stream, resulting in high water temperatures.

This is a sparsely populated area. There are no towns in the watershed and no point sources of pollution.

Monitoring data for the temperature impaired segments was collected by the Washington Department of Fish and Wildlife, and covers the years 2000 through 2002. For segment 18835, the highest daily temperature occurred in 2001. Data show a 7-day mean of maximum daily temperature of 22.8 degrees Centigrade, with a maximum daily temperature of 23.8 degrees Centigrade from continuous measurements. For segment 18836, the highest daily temperature of 202. Data show a 7-day mean of maximum daily temperature of 17.9 degrees centigrade, with a maximum daily temperature of 20.1 degrees Centigrade from continuous measurements. For segment 20.1 degrees Centigrade from continuous measurements. For segment 20355, data show a 7-day mean of maximum daily temperature of 24.2 degrees Centigrade, with a maximum daily temperature of 25.3 degrees Centigrade from continuous measurements. For segment 20356, data show a 7-day mean of maximum daily temperature of 25.5 degrees Centigrade, with a maximum daily temperature of 26.2 degrees centigrade from continuous measurements. For segment 20356, data show a 7-day mean of maximum daily temperature of 25.5 degrees centigrade, with a maximum daily temperature of 26.2 degrees centigrade from continuous measurements.

For segment 29317, data show a 7-day mean of maximum daily temperature of 20.4 degrees Centigrade, with a maximum daily temperature of 21.6 degrees Centigrade from continuous measurements.

Monitoring data for the bacteria impaired segment was collected in water years 2005, 2006, and 2007. In 2005 3 of 6 samples (50%) showed an excursion of the % criterion for the waterbody, and the geometric mean of 165.7 exceeded the geometric mean criterion. In 2006, 3 of 13 samples (23%) showed an excursion of the % criterion for the waterbody, and the geometric mean of 57 did not exceed the geometric mean criterion. In 2007, 1 of 6 samples (17%) showed an excursion of the % criterion for the waterbody, and the geometric mean criterion for the waterbody, and the geometric mean criterion for the waterbody.

# Description of Pollution Controls and How They Will Achieve Water Quality Standards

#### Water Quality Target

The designated uses for listings 18835, 18836, and 20355 are spawning, rearing and migration, and the temperature criterion is 17.5 degrees Centigrade, with a supplemental spawning criterion of 13 degrees Centigrade from February 15 to June 1.

The designated use for listings 20356 and 29317 is core salmonid habitat, and the temperature criterion is 16 degrees Centigrade, with a supplemental spawning criterion of 13 degrees Centigrade from February 15 to June 15.

The designated use for listing 72313 is primary contact recreation. Ecology now uses Escherichia coli (E. Coli) as the criteria in this watershed. E. Coli levels must not exceed a geometric mean value of 100 CFU or MPN per 100 mL, with not more than 10 percent of all samples (or a single sample when less than ten sample points exist) exceeding 320 CFU or MPN per 100 mL.

#### Controls that will achieve water quality standards

The Department of Ecology's Eastern Regional Office has established a Livestock and Water Quality Program that uses a unique collaborative approach to address livestock-related problems. Instead of using the standard process that starts with a Category 5 listing, establishing a TMDL for the stream, writing an implementation plan, and finally getting to actual implementation, this strategy goes straight to implementation. The strategy is applied in watersheds in which the cause of a water quality impairment is clear.

Ecology encourages implementation of a wide variety of best management practices, however, a primary focus of the program has been to restore degraded riparian corridors and eliminate unlimited animal access to streams. Healthy riparian areas can improve water quality and stream health in multiple ways, which make them a particularly valuable and cost-effective management practice. Healthy riparian areas:

- Slow bank erosion by holding soil in place during periods of high water.
- Reduce flood damage and sedimentation by slowing runoff and capturing the sediment that would otherwise be carried downstream.
- Help keep water cool in summer by shading the stream.
- Improve water quality by capturing sediment, nutrients, pesticides, pathogens, and other pollutants before they reach the stream.
- Enhance summer stream flow by improving water infiltration and storage.
- Create fish and wildlife habitat.
- Limit livestock manure inputs to the creek and riparian areas.

Ecology has a three-step riparian restoration strategy, which allows the department to efficiently apply resources to priority problem areas. The first step is to address the source of degradation – unlimited livestock access to streams and winterfeeding operations in close proximity to the riparian corridor. Ecology relies primarily on livestock exclusion, and off-stream water supply to restrict livestock access to the riparian area. In implementing this BMP, Ecology uses our 319 and centennial clean water grant guidelines, which require a minimum 75, 50 or 35-foot buffer between the livestock fence and the mean ordinary high water mark of the nearest stream bank depending on the type of stream. In many cases, the buffer width may be larger depending on the stream and site conditions.

By first addressing livestock access, Ecology seeks to abate the primary pollution sources livestock in the stream, eroded streambanks, increased runoff, increased sedimentation, and subsequent transport of fecal matter. As vegetation naturally returns in the riparian area, site conditions become stabilized and the pollution sources are dramatically reduced. Also, this approach works to arrest morphological changes to the entire stream that are induced by erosion and sedimentation.

Ecology has spent much of its efforts and resources implementing this first step, in large part, because we have taken a holistic, watershed approach to protecting streams. By first addressing the primary sources of pollution and geomorphic change, Ecology can establish the necessary site conditions for successful restoration. Moreover, Ecology ensures that, first and foremost, the root problems are addressed for *the entire stream*, before resources are focused on site or segment specific restoration.

The second step occurs after a majority of site conditions have been stabilized, and the stream's entire geomorphic integrity is no longer jeopardized by the adjacent management practices. Ecology then conducts a reach by reach assessment to determine the appropriate trees and shrubs to be used for restoration. In some cases, federal programs require revegetation as part of the cost-share program, and so restoration work occurs simultaneously with livestock exclusion.

The third step is to work with local land owners to promote continuous and proper management of upland grazing lands.

In addition to the Livestock and Water Quality Program, Ecology's Eastern Regional Office has established a similar collaborative approach to address crop production-related problems. Ecology encourages implementation of a wide variety of best management practices, however, a primary focus of effort has been establishing minimum land use setbacks, restoring degraded riparian corridors, and converting conventionally farmed land to conservation tillage practices.

Ecology teams with conservation districts, local governments, and landowners to provide technical assistance and funding for implementation of best management practices. Ecology uses our regulatory authority as a backstop when collaborative efforts fail. The Water Pollution Control Act (RCW 90.48) gives Ecology the authority to take enforcement actions against nonpoint polluters.

RCW 90.48 makes it unlawful for any person to "cause, permit or suffer to be thrown, run, drained, allowed to seep or otherwise discharged ... any organic or inorganic matter that shall cause or tend to cause pollution of" waters of the state. Any person who violates or creates a substantial potential to violate the provisions of Chapter 90.48 RCW is subject to an enforcement order from Ecology pursuant to RCW 90.48.120. Ecology is authorized to "issue such order or directive as it deems appropriate under the circumstances[.]" In addition to administrative orders, violating Chapter 90.48 RCW may result in injunctions, civil penalties, and notices of violations.

It is worth noting that RCW 90.48.120 gives Ecology the authority to take action in response to nonpoint source pollution, the statute also gives Ecology the authority to take action based on a "substantial potential" to pollute state waters via either a point or nonpoint pollution source. Consequently, Ecology not only has authority to take action following a NPS pollution occurrence (i.e. there was a discharge), but has specific statutory authority to act proactively to prevent NPS pollution from occurring in the first place. Ecology's authority includes the authority to require a nonpoint source polluter to implement specific best management practices (BMPs). Ecology's authority can be used to prevent nonpoint pollution and require BMPs, as necessary.

Ecology has used this regulatory backstop several times since 2016.

The result of these partnerships has been the implementation of best management practices at hundreds of sites across several watersheds where water quality and fish habitat issues exist. By using a collaborative strategy, backed up by enforcement when necessary, Ecology has been able to create relationships and build trust with rural residents while improving water quality.

In the Tenmile Creek watershed, work with landowners began in 2002. As of 2014, twelve miles of riparian buffers were installed. The creek was fenced to protect it from livestock, and thousands of native trees and shrubs were planted in the stream corridor. Buffers are constructed using Natural Resource Conservation Service standards, which require a minimum width of 35 feet. For buffers installed with state or federal financial assistance, we require an agreement with the landowner stipulating that the buffer and fence will be maintained for at least 10 years.

Initial cattle exclusion fencing was generally installed adjacent to or upstream of the impaired segments. However, we have also fenced portions of the stream where there are presently no Category 5 listings, but where there was unrestricted cattle access to the stream. Riparian buffers are left to revegetate naturally in those areas in which there is enough live native vegetation left to recover. In all other areas we are installing buffers by planting native plants. At this time, most of the upstream riparian areas have been restored. Planting is continuing where buffers need additional plants.

In addition, farmers in the watershed are adopting direct seed technology, which is the practice of seeding a new crop into the standing stubble of a recently harvested crop without the traditional tillage of the ground. By doing so, soil erosion can be reduced by as much as 95 percent. This significantly reduces the volume of sediment washing into Tenmile Creek. All of these efforts will help address the temperature impairments. In the last few years, the Asotin County CD has assisted in converting an additional 500 acres to direct seed or conservation tillage in the watershed.

Since 2008, Ecology has completed a large project that includes installation of a Conservation Reserve Enhancement Program buffer and moving a feeding operation further upland with a 75-foot setback. A large proportion of the riparian work in the watershed was funded with federal cost-share funds, which require landowner maintenance. Projects funded with state dollars have 10-year landowner agreements requiring maintenance.

In the last five years, an additional mile of Tenmile Creek was protected, with another thirteen miles of buffer enhanced with plantings of over 8,000 trees in the riparian area. This watershed can be increasingly complex to establish robust buffers due to its arid and rocky conditions. The Asotin County CD continues to focus efforts on enhancement and maintenance in the watershed. Ecology has partnered with the CD on an active grant in the watershed to promote overbank flow and floodplain connection to improve temperature and sedimentation concerns. This has resulted in installing 53 Beaver Dam Analogs (BDAs) throughout the watershed. The CD has recently submitted an FY22 state 319 water quality grant application to Ecology, which if funded will provide funding to protect and enhance an additional 40,000 stream feet and 20,000 trees to Asotin County watersheds, including Tenmile Creek.

The Tenmile and Mill Creek watershed continues to recover. Each year, the benefits to water quality and fish habitat are more dramatic. Native cottonwood, alder, and willow trees are quickly returning to the stream banks. Grasses along the stream are healthier and more deeply rooted. Additionally, manure and exposed soil are no longer visible near the creek. Steelhead trout are returning to the creek to spawn in greater numbers than have been recorded in several decades.

Description of requirements under which pollution controls will be implemented It is Ecology's best professional judgement that the pollution controls that have been installed will result in the water quality standards being met. Maintenance of these controls has been ensured through 10-year landowner agreements that were established as part of the funding agreements for these projects. Additionally, Ecology staff will continue to perform watershed evaluations in this watershed to ensure that BMPs stay in place.

# Estimate or Projection of Time When Water Quality Standards Will be Met

It will take time for the riparian corridor to fully recover and for the stream to re-establish its natural geometry. Ecology estimates that the riparian buffers will have grown enough to be fully effective in 10-15 years. While Tenmile Creek continues to see projects implemented, increased focus in the watershed will help to meet the temperature standard throughout the entire watershed by 2025.

## **Schedule for Implementing Pollution Controls**

As described earlier in this report, Ecology has worked with the conservation district, local governments, and landowners to implement a variety of best management practices in the Tenmile Creek watershed, and landowners are continuing to implement best management practices that protect the stream corridor and improve water quality. It is our best professional judgment that this work will remedy the pollution problems in the impaired segments. Because it is our intention to restore the entire watershed and to prevent future pollution problems, we will be using monitoring data to track water quality improvements and to identify any new problem areas so they can be addressed. It will be an on-going process to get water bodies into compliance and to keep them in compliance.

Ecology's Livestock and Water Quality Program will continue to have an on-going presence in the watershed, and will continue working to achieve compliance with state water quality standards.

# Monitoring Plan to Track Effectiveness of Pollution Controls

Monitoring results will be used to establish whether these projects are improving water quality and overall stream health. Monitoring data can also help to identify additional problem areas that should be addressed. Monitoring results will be reported to the public and EPA through Ecology's IR report development process. Ecology is planning on moving forward with an effectiveness monitoring study to cover all the region's 4b starting in 2022.

### **Commitment to Revise Pollution Controls as Necessary**

Ecology will maintain a presence in the Tenmile Creek watershed to ensure that water quality continues to improve. We fully expect the Eastern Regional Office livestock and water quality program to achieve compliance with water quality standards. However, if it does not, Ecology will work with the conservation district, local governments, and landowners to determine other controls that could be used to achieve compliance.

# Steptoe Creek – December 2020

The Washington Department of Ecology (Ecology) Integrated Report (IR) proposes to exclude eight listings from the 303(d) list and place these segments into category 4b. The specific listings are:

- Temperature 72995, 18833, 18834, 73628
- Bacteria 46705, 77228, 45337
- pH 50351

Ecology's basis for excluding these waterbodies from the 303(d) list is outlined in this evaluation.

### Identification of Segment and Statement of Problem Causing Impairment

Steptoe Creek is a small tributary in the Snake River watershed (WRIA 35), located in the southeast corner of Washington State. Steptoe Creek drains 14,000 acres of primarily agricultural lands. Steptoe Creek watershed is comprised of two creeks, Steptoe Creek and Stuart Creek. These combine to form Steptoe Creek mainstem at stream mile 2.5 upstream from the mouth. Both are perennial spring fed streams that provide habitat for ESA listed Snake River Steelhead Trout.

Many of the stream reaches in the Steptoe Creek watershed have been subjected to more than a century of livestock grazing and feeding impacts. Streams lack sufficient riparian protection from livestock grazing. Reaches subject to winter feeding activities often have significantly reduced populations of trees and shrubs and lack adequate herbaceous ground cover. Portions of riparian areas that are not subject to feeding also show signs of overgrazing from range cattle. These signs include bare soils, compaction, erosion, cattle trailing, low tree and shrub species diversity, wide and shallow stream morphology, and a lack of young age-class woody species.

Much of the upper watershed is under crop production and it is common to produce crops to the edge of eroding streambanks. Ephemeral stream channels are typically farmed and subject to significant annual gully formation in conventional tillage systems. It is estimated that more than 60% of the crop ground is in a conventional tillage cropping system. Conventional tillage is usually defined as a Soil Tillage Intensity Rating (STIR) of more than 30. STIR is a system of estimating how much the soil is disturbed in order to seed crops. Conventional tillage systems are higher disturbance systems that typically reduce infiltration and cause more erosion.

While land area is split equally in the watershed between the two primary land uses, areas adjacent to perennial stream flow are dominated by livestock production. Nearly 80% of these riparian areas are currently grazed. This is a sparsely populated area. There are no towns in the watershed and no point sources of pollution.

In 2006 and 2007, the Department of Ecology performed extensive water quality monitoring in the Snake River area. Water quality was monitored at three locations in Steptoe Creek for multiple parameters including temperature, fecal coliform bacteria, dissolved oxygen, pH, and turbidity.

Publication 22-10-018 Page 195 2018 WQA Data Citations & Sources August 2022 There had been little change in land-use since from when the data was collected until restoration actions began in 2016. We can conclude the data from that time was representative of the condition up to 2016. In addition to fecal coliform exceedances, the 2006-2007 data shows some low dissolved oxygen, high pH, and turbidity increases between the middle watershed and lower watershed. Future effectiveness monitoring is warranted in the Steptoe Creek watershed and plans are discussed in this document.

# Description of Pollution Controls and How They Will Achieve Water Quality Standards

#### Water Quality Target

The designated use for listings 72995, 18833, 18834, and 73628 are spawning, rearing and migration, and the temperature criterion is 17.5 degrees Centigrade.

The designated use for listing 46705, 77228, and 45337 is primary contact recreation. Ecology now uses Escherichia coli (E. Coli) as the criteria in this watershed. E. Coli levels must not exceed a geometric mean value of 100 CFU or MPN per 100 mL, with not more than 10 percent of all samples (or a single sample when less than ten sample points exist) exceeding 320 CFU or MPN per 100 mL.

The designated use for listing 50351 is spawning, rearing and migration, and the pH criterion is within the range of 6.5 to 8.5 with a human-caused variation within the above range of less than 0.5 units.



Figure 6. Steptoe Watershed Status

#### Controls that will achieve water quality standards

The Department of Ecology's Eastern Regional Office has established a Livestock and Water Quality Program that uses a unique collaborative approach to address livestock-related problems. Instead of using the standard process that starts with a Category 5 listing, establishing a TMDL for the stream, writing an implementation plan, and finally getting to actual implementation, this strategy goes straight to implementation. The strategy is applied in watersheds in which the cause of a water quality impairment is clear.

Ecology encourages implementation of a wide variety of best management practices, however, a primary focus of the program has been to restore degraded riparian corridors and eliminate unlimited animal access to streams. Healthy riparian areas can improve water quality and stream health in multiple ways, which make them a particularly valuable and cost-effective management practice. Healthy riparian areas:

- Slow bank erosion by holding soil in place during periods of high water.
- Reduce flood damage and sedimentation by slowing runoff and capturing the sediment that would otherwise be carried downstream.
- Help keep water cool in summer by shading the stream.
- Improve water quality by capturing sediment, nutrients, pesticides, pathogens, and other pollutants before they reach the stream.
- Enhance summer stream flow by improving water infiltration and storage.
- Create fish and wildlife habitat.
- Limit livestock manure inputs to the creek and riparian areas.

Ecology has a three-step riparian restoration strategy, which allows the department to efficiently apply resources to priority problem areas. The first step is to address the source of degradation – unlimited livestock access to streams and winterfeeding operations in close proximity to the riparian corridor. Ecology relies primarily on livestock exclusion, and off-stream water supply to restrict livestock access to the riparian area. In implementing this BMP, Ecology uses NRCS riparian buffer standards, which require a minimum 35-foot buffer between the livestock fence and the mean ordinary high water mark of the nearest stream bank. In many cases, the buffer width may be larger depending on the stream and site conditions.

By first addressing livestock access, Ecology seeks to abate the primary pollution sources livestock in the stream, eroded streambanks, increased runoff, increased sedimentation, and subsequent transport of fecal matter. As vegetation naturally returns in the riparian area, site conditions become stabilized and the pollution sources are dramatically reduced. Also, this approach works to arrest morphological changes to the entire stream that are induced by erosion and sedimentation.

Ecology has spent much of its efforts and resources implementing this first step, in large part, because we have taken a holistic, watershed approach to protecting streams. By first addressing the primary sources of pollution and geomorphic change, Ecology can establish the necessary site

conditions for successful restoration. Moreover, Ecology ensures that, first and foremost, the root problems are addressed for *the entire stream*, before resources are focused on site or segment specific restoration.

The second step occurs after a majority of site conditions have been stabilized, and the stream's entire geomorphic integrity is no longer jeopardized by the adjacent management practices.

Ecology then conducts a reach by reach assessment to determine the appropriate trees and shrubs to be used for restoration. In some cases, federal programs require revegetation as part of the cost-share program, and so restoration work occurs simultaneously with livestock exclusion. The third step is to work with local land owners to promote continuous and proper management of upland grazing lands.

In addition to the Livestock and Water Quality Program, Ecology's Eastern Regional Office has established a similar collaborative approach to address crop production-related problems. Ecology encourages implementation of a wide variety of best management practices, however, a primary focus of effort has been establishing minimum land use setbacks, restoring degraded riparian corridors, and converting conventionally farmed land to conservation tillage practices.

Ecology teams with conservation districts, local governments, and landowners to provide technical assistance and funding for implementation of best management practices. Ecology uses our regulatory authority as a backstop when collaborative efforts fail. The Water Pollution Control Act (RCW 90.48) gives Ecology the authority to take enforcement actions against nonpoint polluters.

RCW 90.48 makes it unlawful for any person to "cause, permit or suffer to be thrown, run, drained, allowed to seep or otherwise discharged ... any organic or inorganic matter that shall cause or tend to cause pollution of" waters of the state. Any person who violates or creates a substantial potential to violate the provisions of Chapter 90.48 RCW is subject to an enforcement order from Ecology pursuant to RCW 90.48.120. Ecology is authorized to "issue such order or directive as it deems appropriate under the circumstances[.]" In addition to administrative orders, violating Chapter 90.48 RCW may result in injunctions, civil penalties, and notices of violations.

It is worth noting that RCW 90.48.120 gives Ecology the authority to take action in response to nonpoint source pollution, the statute also gives Ecology the authority to take action based on a "substantial potential" to pollute state waters via either a point or nonpoint pollution source. Consequently, Ecology not only has authority to take action following a NPS pollution occurrence (i.e. there was a discharge), but has specific statutory authority to act proactively to prevent NPS pollution from occurring in the first place. Ecology's authority includes the authority to require a nonpoint source polluter to implement specific best management practices (BMPs). Ecology's authority can be used to prevent nonpoint pollution and require BMPs, as necessary.

Ecology has used this regulatory backstop several times since 2016.

The result of these partnerships has been the implementation of best management practices at hundreds of sites where water quality and fish habitat issues exist. By using a collaborative strategy, backed up by enforcement when necessary, Ecology has been able to create relationships and build trust with rural residents while improving water quality. In the Steptoe Creek watershed, work with landowners largely begun in 2016. The Snake River Salmon Recovery Board partnered with the Palouse Conservation District to replace a perched culvert at river mile 0.5 that blocked upstream migration of ESA listed Snake River Steelhead Trout.

Most of the 0.5 miles of Steptoe Creek upstream from the mouth to the existing barrier had historically been the site of a livestock confinement area. The entire confinement area was located in the floodplain, the limited livestock fencing on site was located within 20 feet of the stream and livestock had access to surface water in some of this area. A major effort took place in 2018 – 2020 at this site that, relocated feeding areas and holding corrals off the creek, installed 5,000 feet of livestock exclusion fencing, and planted 12 acres of riparian buffer. 61 instream post assisted log structures (PALS) were installed along 2,200 feet of Steptoe Creek directly upstream of this site over the summer of 2020.

Approx. 4 miles up from the mouth of Steptoe Creek is another large livestock operation that Ecology staff had been attempting to work with since 2002. Ecology issued an Administrative Order for this site in December 2018. Since the Order issuance, 1.7 miles of exclusion fencing and several off-stream watering facilities have been installed. Two additional off-stream watering facilities, another 0.75 miles of exclusion fencing, one livestock crossing, a corral relocation, and 13.5 acres of riparian restoration are planned for implementation on this site in 2021 and 2022.

Riparian buffers and livestock BMPs are constructed using NRCS standards, which require a minimum width of 35 feet. For buffers installed with state or federal financial assistance, we require a 50' minimum buffer along Steptoe Creek, and an agreement with the landowner stipulating that the buffer and livestock BMPs will be maintained for at least 10 years.

Initial cattle exclusion fencing was generally installed adjacent to the impaired segments. However, we have also fenced portions of the stream where there are presently no Category 5 listings, but where there was unrestricted cattle access to the stream. Riparian buffers are left to revegetate naturally in those areas in which there is enough live native vegetation left to recover. In all other areas we are installing buffers by planting native plants. Planting is continuing where buffers need additional plants.

In addition, farmers in the upper watershed are adopting direct seed technology, which is the practice of seeding a new crop into the standing stubble of a recently harvested crop without the conventional tillage of the ground. By doing so, soil erosion can be reduced by as much as 95 percent. This significantly reduces the volume of sediment washing into Steptoe Creek. The Palouse Conservation District has been the recipient of several direct seed cost-share program Ecology grants that have made it easier for farmers to transition from conventional tillage to conservation tillage practices.

For crop production areas in the upper watershed, vegetated buffer width may be adjusted based on the upland STIR and whether or not seasonal flow occurs during or near the critical temperature period. For long term intermittent and perennial stream reaches with a STIR greater than 30, no buffer should be less than 75 feet wide. In tillage areas, no buffer should be less than 35 feet wide regardless of flow and STIR.

The Steptoe Creek watershed continues to recover. Each year, the benefits to water quality and fish habitat are more dramatic. Native cottonwood, alder, and willow trees are quickly returning to the stream banks. Grasses along the stream are healthier and more deeply rooted. Additionally, manure and exposed soil are becoming less common near the creek.

Description of requirements under which pollution controls will be implemented It is Ecology's best professional judgment that the pollution controls that have been installed and planned will result in the water quality standards being met. Maintenance of the installed controls have been ensured through 10-year landowner agreements that were established as part of the funding agreements for these projects. Additionally, Ecology staff will continue to perform watershed evaluations in this watershed to ensure that BMPs stay in place.

## Estimate or Projection of Time When Water Quality Standards Will be Met

It will take time for the riparian corridor to fully recover, and for the recently installed and planned future plantings to mature. Ecology estimates that the riparian buffers will have grown enough to be fully effective in 10-15 years, so Steptoe Creek will be meeting the standards for fecal coliform, temperature, and pH by 2031-2036.

### **Schedule for Implementing Pollution Controls**

As described earlier in this report, Ecology has worked with the conservation district, local governments, and landowners to implement a variety of best management practices in the Steptoe Creek watershed, and landowners are continuing to implement best management practices that protect the stream corridor and improve water quality. It is our best professional judgment that this work will remedy the pollution problems in the impaired segments. Because it is our intention to restore the entire watershed and to prevent future pollution problems, we will be using monitoring data to track water quality improvements and to identify any new problem areas so they can be addressed. It will be an on-going process to get water bodies into compliance and to keep them in compliance.

Ecology's Livestock and Water Quality Program will continue to have an on-going presence in the watershed, and will continue working to achieve compliance with state water quality standards.

### Monitoring Plan to Track Effectiveness of Pollution Controls

The Palouse Conservation District (PCD) is taking the lead on future effectiveness monitoring in the Steptoe Creek watershed. PCD recently submitted an FY22 state 319 water quality grant application to Ecology, which if funded will include a robust monitoring effort to begin December

2021. Proposed water quality monitoring will be conducted at three locations along Steptoe Creek in conjunction with livestock exclusion, riparian restoration, and in-stream structure installation throughout Steptoe Canyon.

These sites will be instrumented with pressure sensors and monumented reference points to gauge stage height, providing a 15-minute water level dataset. Rating curves for Steptoe Creek will be developed using continuous stage height measurements in combination with routine and storm event discharge measurements over three years. In addition to discharge, grab samples and water quality readings from a YSI ProDSS will be collected monthly and during storm events providing data on fecal coliform bacteria, inorganic nitrogen, phosphorus, suspended sediment concentrations (SSC), pH, dissolved oxygen, electric conductivity, turbidity, and temperature. Concentrations of fecal coliform bacteria, nitrate/nitrate/ammonia, total phosphorus, orthophosphate, and SSC will be flow weighted and annual pollutant loads will be calculated for each location.

### **Commitment to Revise Pollution Controls as Necessary**

Ecology will maintain a presence in the Steptoe Creek watershed to ensure that water quality continues to improve. We fully expect the Eastern Regional Office Livestock and Water Quality Program to achieve compliance with water quality standards. However, if it does not, Ecology will work with the conservation district, local governments, and landowners to determine other controls that could be used to achieve compliance.

# Entiat River – February 2021

The Washington Department of Ecology (Ecology) Integrated Report (IR) proposes to exclude two temperature listings (3731 and 73057), from the 303(d) list and place these water bodies in category 4b of the IR. Ecology's basis for excluding these water bodies from the 303(d) list is outlined in this analysis.

## Identification of Segment and Statement of Problem Causing Impairment

These segments are located just above the mouth of the Entiat River, which empties into the Columbia River. The most likely causes of the temperature impairment are the loss of riparian vegetation and changes to the channel width-to-depth ratio caused by sedimentation from roads, timber harvest, and agricultural practices.

# Description of Pollution Controls and How They Will Achieve Water Quality Standards

The Entiat Watershed Planning Group produced the Coordinated Resource Management Plan in 1999. This plan evaluated the watershed's condition and made recommendations designed to protect water quality and threatened and endangered fish. The sources of temperature impairment in the Entiat River are identified in the plan as:

- Reduced riparian shade resulting from removal of riparian vegetation and stream widening.
- Timber harvest and roads on Forest Service land in the upper basin also contribute to loss of riparian shade and degraded channel conditions.

The plan made several recommendations to help cool the water.

- Work with landowners to maintain and enhance riparian vegetation and wetlands, and implement streambank planting.
- Continue to work with NRCS on conserving water used for irrigation.
- Continue compliance with the forest practices rules, which protect riparian areas and allow for their re-establishment.
- Promote incentives for landowners to restrict unlimited access to streams by livestock.

The plan also included a recommendation to further plan under the Watershed Planning Act to evaluate base flow needs and establish minimum in-stream flows. The subsequent WRIA 46 Entiat Watershed Management Plan, which incorporated the findings of the Coordinated Resource Management Plan and recommended establishment of instream flows, was adopted unanimously by the Chelan County Board of Commissioners on September 13, 2004. The instream flow recommendations were codified as Chapter 173- 546 of the Washington Administrative Code.

Land ownership in the basin is approximately 85% federal, which is primarily in the upper basin, 6% state, and 9% private. The upper watershed is in Wenatchee National Forest. Between the forest boundary, at river mile 26 and river mile 11.7, the land use is primarily rural residential,

either year round or seasonal, with a few dispersed pasture areas. Below river mile 11.5, the use is predominantly pear and apple orchards with some rural residential use.

The watershed planning committee performed an aerial remote sensing survey and used the Stream Network Temperature Model (SNTEMP) to identify problem areas in the river and to test different scenarios of best management practices implementation. The model was used to evaluate the effects of three alternative actions, singly and in combination. The three are:

- 1. Increase in stream flow,
- 2. System wide increase in riparian shade, and
- 3. Reduction in channel width in the lower river.

Increases to streamflow were evaluated because a larger mass of water would take longer to warm. Increased shade was evaluated because it would reduce the amount and intensity of solar radiation reaching the water, thus reducing the water temperature. In the Entiat River watershed, numerous forest fires, combined with flood control measures in the lower 15 river miles, have significantly reduced the overall amount and quality of riparian vegetation along the river. The Entiat Watershed Planning Unit has recommended actions that would increase the riparian vegetation within the watershed, as well as reduce the threat of future forest fires that would threaten both the existing and proposed improved riparian vegetation. Decreased channel width was evaluated because it is expected that the channel will return to a more normal geomorphology once functioning riparian areas are re-established.

Based on the results of the model simulations performed with SNTEMP, the following recommendations were made:

- SNTEMP predicted reductions in water temperatures for all three alternative actions, suggesting that implementation of any of the three actions would help reduce water temperatures to some extent.
- Of the feasible alternatives, SNTEMP predicted the largest reductions in water temperatures when riparian shade was increased by 50% (Alternative Action 3). Therefore, an aggressive approach to increasing the current riparian shade conditions throughout the watershed should be undertaken to address high water temperatures.
- In addition, if Entiat Watershed Planning Unit resources are available, decreases to channel width in the lower 10 RMs in conjunction with changes in shade should also be considered (Alternative Action 4).
- A 10% change in streamflow is not likely to significantly affect water temperature.

As identified in the watershed plan and in the SNTEMP analysis of the Entiat River, the most effective best management practices to address the temperature listing are revegetating riparian areas, preventing further riparian vegetation removal, and restoring channel geomorphology and width-to-depth ratios.

Wenatchee National Forest has an approved TMDL, prepared by the Department of Ecology, which specifies areas throughout the forest where riparian shade must be maintained or

Publication 22-10-018 Page 204 re-established. The Forest Service is also required to comply with state water quality standards. Implementation of the TMDL should restore 85% of the watershed to a fully functioning riparian condition and help re-establish the original channel geomorphology. Management of state and privately owned lands in the watershed must comply with the state forest practices rules, which are designed to achieve compliance with the state water quality standards and the Clean Water Act. For the remainder of the watershed, the 9% that is privately owned and not used for forestry, the watershed plan recommends re-establishing and maintaining riparian vegetation along at least 50% of the stream. The area is subject to wildfires, which make it unlikely that a higher percentage of riparian vegetation could be continuously maintained. This percentage is similar to that prescribed in the eastside section of the state forest practices rules.

Implementation of the Wenatchee National Forest TMDL, combined with required compliance with the state forest rules and the riparian restoration strategy for the remainder of the land in the watershed is expected to restore riparian areas in the watershed to a fully functioning condition. This will result in compliance with the state water quality standards either by cooling the river to or below the numeric criterion or by achieving the Entiat River's natural condition.

Several enforceable pollution controls will assure implementation of the watershed plan.

- The Forest Service land is subject to the Wenatchee National Forest TMDL.
- The remainder of the watershed is subject to the state forest practices rules for forestry land uses.
- The agricultural and residential uses in the lower watershed are subject to the Chelan County Shoreline Master Program and critical areas ordinance, both of which are designed to minimize or eliminate impacts to riparian vegetation due to development activities on private lands.
- The Entiat Water Resources Management Program has been codified as Chapter 173- 546 of the Washington Administrative Code. This rule establishes enforceable minimum instream flow requirements for the upper and lower Entiat River and the Mad River, a tributary of the Entiat.

State and local agencies are working together to restore Entiat riparian areas. The following projects were completed prior to 2008.

- The Department of Fish and Wildlife completed the Wilson side channel reconnection project in 2004. This project consisted of placing a diversion pipe in the Entiat River that provides an estimated 10 cubic feet per second of flow through 1,000 feet of rehabilitated side channel. The side channel was restored using large woody debris, boulders, and riparian plantings. The project is located at river mile 6.7.
- The Department of Fish and Wildlife completed an off channel habitat project in 2004. This project deepened a .3-acre spring-fed pond and installed rootwads to provide habitat and cover for juvenile fish. The pond's outlet stream was cleared and deepened, and several large woody debris structures were installed along the Entiat River just upstream and downstream of the stream outlet. The project is located at river mile 6.2.

- Chelan County Public Works, with the cooperation of several other agencies, replaced the Stormy Creek culvert in 2004 with a pre-cast concrete bridge. The slope in the area was regarded from 6% to 4%, spawning gravel was placed in the creek, and riparian vegetation was planted. Approximately ½ mile of fish habitat was reopened.
- The Cascadia Conservation District re-vegetated an estimated 1.3 acres of riparian vegetation between river mile 3.2 and 3.8 in 2005 and 2006. In 2007, an additional 1.1 acres were re-vegetated at several locations in the drainage.
   Three surface water diversions were converted to groundwater wells for four irrigators in the basin. Wells were installed at river miles 4.0 and 6.3.
- The Bridge-to-Bridge, Phase 1 project consisted of the installation of a rock crossvane, side-channel habitat improvements, irrigation intake and outfall improvements, and riparian restoration. A rock crossvane was constructed to convey water into the Chelan County PUD irrigation side-channel, canal and intake pipe. The rock crossvane and the eleven rootwads were constructed to increase pool habitat and instream complexity. The rehabilitated side-channel had three boulder clusters and two log structures (constructed from 4 logs) installed to increase complexity and off-channel habitat. The slide-gate to the irrigation intake was replaced to allow year round watering of the 1000 feet of irrigation canal. The irrigation outfall structure had an additional flashboard installed and two rock step-pools installed to assist in fish passage. This project was designed by the NRCS and installed by the Cascadia Conservation District in fall of 2006 at river mile 3.2.
- The Milne Project, located between river mile 2.8 and river mile 3.2, consisted of the installation of 13 logs with rootwads, six boulder barbs, six boulder clusters, and an irrigation diversion barb with sluice gate. Riparian planting along the access areas was also completed. The structures were installed in September 2007 with funds from the Salmon Recovery Funding Board and US Bureau of Reclamation.
- The Hanan-Detwiler rock crossvane and large woody debris were installed at rivermile 5.1 with funding from the Salmon Recovery Funding Board and US Bureau of Reclamation. The rock crossvane will serve to convey water into the HananDetwiler irrigation system and provide pool habitat. The two log structures each consisted of two logs with rootwads installed into the banks to provide fish habitat and a source of gravel through scouring. The project was completed in October 2007.

The following projects were completed after 2008.

- The Roaring Creek Flow Enhancement and Barrier Removal project removed two surface water diversions from Roaring Creek between RM 0.85 and RM 1.3. This project was completed in 2010.
   The 2010 Lower Entiat Riparian Restoration Project restored 4.3 acres (.65 miles) of riparian habitat directly adjacent the Entiat River.
- The 2011 Entiat Riparian Project restored 4.2 acres of riparian habitat directly adjacent the Entiat River, by installing native riparian trees, shrubs, and native grasses (5 of 5 sites), livestock exclusion fencing (1 of 5 sites) and temporary irrigation systems (3 of 5 sites), and controlling of noxious weeds at all five sites. The Roaring Creek Flow Enhancement and Barrier Removal project removed two surface water diversions from Roaring Creek between RM 0.85 and RM 1.3. This project was completed in 2010.

- The 2010 Lower Entiat Riparian Restoration Project restored 4.3 acres (.65 miles) of riparian habitat directly adjacent the Entiat River.
- The 2011 Entiat Riparian Project restored 4.2 acres of riparian habitat directly adjacent the Entiat River, by installing native riparian trees, shrubs, and native grasses (5 of 5 sites), livestock exclusion fencing (1 of 5 sites) and temporary irrigation systems (3 of 5 sites), and controlling of noxious weeds at all five sites. 2014 WQA—4B Analysis for Entiat River Page 5.
- The Entiat RM 21.5 LWD and Riparian Restoration project established woody riparian vegetation at the site by combining the installation of 14 large woody debris (LWD) structures along 645 feet of existing bank with an accompanying 100-foot wide, approximately 1.9 acre, riparian planting area behind it. This project was completed in 2010.
- The 2010 Surface Water to Wells Conversion project replaced a 1.5 cfs surface water diversion for the Gaines Ditch in the lower Entiat River with four irrigation wells. Replacing the surface water diversion avoids fish entrainment and mortality, as well as providing water savings through higher delivery efficiencies. The conversion also keeps surface water in stream during low flow, peak irrigation use periods in late summer and fall.
- The 2012 Tyee Ranch project installed 4.5 acres of riparian plantings, placement of engineered log jams and other large woody debris (LWD) structures, an excavated reconnection to floodplain and abandoned side channels.
- In 2014 five salmon habitat restoration projects were completed in the lower seven miles of the Entiat River. Three project sponsors were involved in the 2014 Entiat River habitat project implementation; Yakama Nation (YN) with a project at (RM 2.3-3.3), Chelan County Natural Resource Department (CCNRD) with two projects (RM 1.65 and RM 4.0-4.3), and Cascadia Conservation District (CCD) with two projects (RM 0.8-2.3 and RM 6.7-7.8). Project elements include habitat logs and boulder clusters placed along the channel margins, improvements to existing side channel areas, two engineered log jams near the upstream end of two side channels to provide habitat and help direct flow into the side channels, and the creation of two new off channel alcoves, for high flow refuge.
- In 2017 several habitat projects were completed. The Yakama Nation, in collaboration with the US Forest Service Entiat Ranger District, enhanced side-channel connections and added engineered log structures along two areas of the Upper Middle Entiat. These projects offer more habitat for endangered salmon species. The Chelan Douglas Land Trust (CDLT) purchased 26 acres of property for protection which included approximately 4,425 feet of critical riverbank. The Cascade Columbia Fisheries Enhancement Group (CCFEG), a local non-profit organization which works to restore native fish habitat, removed two fish passage barriers along Stormy Creek, opening up about three miles of salmon habitat. The Fisheries Enhancement Group partnered with the US Fish and Wildlife Service to complete the work.

# Estimate or Projection of Time When Water Quality Standards Will be Met

Because it will take time to complete restoration projects and for new vegetation to grow, we estimate that compliance with the temperature standard will be achieved in 2028.

# **Schedule for Implementing Pollution Controls**

As described earlier in this report, the Entiat River Planning Unit has already begun implementing restoration projects, and continues to work with other agencies to design projects, obtain funding, and complete the actual restoration work. There is a good record of on-going implementation, and we expect this to continue.

# Monitoring Plan to Track Effectiveness of Pollution Controls

The Entiat River is monitored by one of Ecology's long term monitoring stations so there will be direct information available to determine whether implementation activities are making a difference.

# **Commitment to Revise Pollution Controls as Necessary**

Ecology will continue to work with the Entiat River Planning Unit to ensure that implementation continues and that water quality in the Entiat River continues to improve. We fully expect the program to achieve compliance with water quality standards. However, if it does not, Ecology will work with the planning unit to determine other controls that could be used to achieve compliance.

# Yellowjacket Creek – February 2021

The Washington Department of Ecology (Ecology) Integrated Report (IR) proposes to exclude three listings (19866, 19868, 19869) for temperature on Yellowjacket Creek from the 303(d) list and placed these water bodies in category 4b of the IR. Listing 19866 was listed in category 5 of the 2008 IR. Listings 19868 and 19869 were in category 4b. Ecology's basis for excluding these water bodies from the 303(d) list is outlined in this evaluation

## Identification of Segment and Statement of Problem Causing Impairment

Yellowjacket Creek is one of eight subwatersheds within the Lower Cispus River watershed. The 15.5-mile creek flows northerly from its headwaters at 4,276 feet above mean sea level to its confluence (1,259 feet above mean seal level) with the Cispus River at river mile 17.2. The mean stream gradient is 3.7%, calculated from digitized 7.5- minute topographic maps.

Table 14 below summarizes the monitoring network for the watershed. Since 2016, several sites were added to the temperature monitoring network:

- Resumed monitoring in Pumice Creek in 2017,
- Resumed monitoring at Pinto Creek at the mouth of Yellowjacket Creek in 2017,
- New site added at Badger Creek at the 2810-041 Road in 2019,
- New site added at Yellowjacket Creek at RM 11 in 2019,
- New site added at Veta Creek at the Yellowjacket confluence at the 28 road in 2019,
- New site added at High Bridge Creek at the 29 road in 2019,
- New site added at Galena Creek in 2019, and
- New site added at Lambert Creek in 2019

The Forest Service plans to continue monitoring at all current sites as part of the ongoing commitment to monitor and improve water quality in the Yellowjacket Creek subwatershed.

Most monitored tributaries of Yellowjacket Creek did not exceed 16°C in the years monitored. Veta Creek had a short window of exceedance in 2020. Pumice Creek exceed 16°C in two of the twelve years it was monitored, and McCoy Creek had one exceedance in ten years of monitoring. Exceedances in lower Yellowjacket Creek were measured at the confluence of the Cispus River (fifteen of twenty years monitored), and upstream of the McCoy Creek confluence (four of eighteen years monitored). Exceedances were not observed in Yellowjacket at river mile 11, although this site has only two years of monitoring data. All sites on the Cispus River have numerous exceedances. Monitoring data show that exceedances are most common in broad alluvial channels that have been incised and widened from past and continuing land use practices. **Table 14**. Temperature summaries at monitoring sites in Yellowjacket Creek, tributaries, and the

 Cispus River

| Stream<br>Name   | Monitoring<br>Location                         | Maximum<br>7-day<br>average<br>temperatur<br>e in 2020<br>(°C) | Years<br>monitored                                   | Years<br>temperature<br>exceeded<br>maximum 7-day<br>average of 16 °C<br>(# and years) | Highest<br>maximum 7-<br>day average<br>temperature<br>(°C) |
|------------------|------------------------------------------------|----------------------------------------------------------------|------------------------------------------------------|----------------------------------------------------------------------------------------|-------------------------------------------------------------|
| Pumice<br>Creek  | At confluence<br>with Pinto<br>Creek           | 14.0                                                           | 12<br>2001-2005,<br>2007,<br>2009-2010,<br>2017-2020 | 2<br>2001 and 2009                                                                     | 16.6 (2009)                                                 |
| Pinto<br>Creek   | At confluence<br>with<br>Yellowjacket<br>Creek | 13.5                                                           | 5<br>2001-2003,<br>2019-2020                         | 0                                                                                      | 15.2 (2001)                                                 |
| Pinto<br>Creek   | At 2800-144<br>Road                            | n/a                                                            | 1<br>2001                                            | 0                                                                                      | 12.1 (2001)                                                 |
| Badger<br>Creek  | At mouth                                       | n/a                                                            | 1<br>2001                                            | 0                                                                                      | 12.0 (2001)                                                 |
| Badger<br>Creek  | At 2810-041<br>Road                            | 11.8                                                           | 1<br>2020                                            | 0                                                                                      | 11.8 (2020)                                                 |
| Veta Creek       | At confluence<br>with<br>Yellowjacket<br>Creek | 16.4                                                           | 2<br>2019, 2020                                      | 1<br>2020                                                                              | 16.4 (2020)                                                 |
| Galena<br>Creek  | Near<br>Yellowjacket<br>Confluence             | 13.7                                                           | 2<br>2019-2020                                       | 0                                                                                      | 13.7 (2020)                                                 |
| Lambert<br>Creek | At 29 Road                                     | 10.8                                                           | 2<br>2019-2020                                       | 0                                                                                      | 10.9 (2019)                                                 |

| Stream<br>Name            | Monitoring<br>Location                         | Maximum<br>7-day<br>average<br>temperatur<br>e in 2020<br>(°C) | Years<br>monitored                                         | Years<br>temperature<br>exceeded<br>maximum 7-day<br>average of 16 °C<br>(# and years) | Highest<br>maximum 7-<br>day average<br>temperature<br>(°C) |
|---------------------------|------------------------------------------------|----------------------------------------------------------------|------------------------------------------------------------|----------------------------------------------------------------------------------------|-------------------------------------------------------------|
| High<br>Bridge<br>Creek   | At 29 Road                                     | 12.8                                                           | 2<br>2019-2020                                             | 0                                                                                      | 12.8 (2020)                                                 |
| McCoy<br>Creek            | At Confluence<br>with<br>Yellowjacket<br>Creek | 15.1                                                           | 10<br>2001, 2009-<br>2014, 2017-<br>2020                   | 1<br>2009                                                                              | 16.6 (2009)                                                 |
| Yellowjack<br>et<br>Creek | Above McCoy<br>Creek                           | 15.3                                                           | 18<br>2001, 2003-<br>2010, 2012-<br>2020                   | 4<br>2004, 2006,<br>2009, 2015                                                         | 17.3 (2015)                                                 |
| Yellowjack<br>et Creek    | At confluence<br>with Cispus<br>River          | 18.3                                                           | 21<br>1996, 1999-<br>2017, 2020                            | 15<br>2000-2003, 2005-<br>2007, 2009,<br>2012-2017, 2020                               | 20.9 (2015)                                                 |
| Yellowjack<br>et Creek    | River Mile 11                                  | 11.2                                                           | 2<br>2019, 2020                                            | 0                                                                                      | 11.6 (2019)                                                 |
| Cispus<br>River           | Above North<br>Fork Cispus<br>River            | 13.9                                                           | 18<br>1994, 2000,<br>2003-2011,<br>2013-2016,<br>2018-2020 | 3<br>2005, 2009, 2015                                                                  | 17.1 (2015)                                                 |
| Cispus<br>River           | Above<br>Yellowjacket<br>Creek                 | 16.2                                                           | 9<br>2000, 2011-<br>2015, 2017-<br>2018, 2020              | 6<br>2013-2015, 2017-<br>2018, 2020                                                    | 18.4 (2015)                                                 |

| Stream<br>Name  | Monitoring<br>Location                         | Maximum<br>7-day<br>average<br>temperatur<br>e in 2020<br>(°C) | Years<br>monitored                            | Years<br>temperature<br>exceeded<br>maximum 7-day<br>average of 16 °C<br>(# and years) | Highest<br>maximum 7-<br>day average<br>temperature<br>(°C) |
|-----------------|------------------------------------------------|----------------------------------------------------------------|-----------------------------------------------|----------------------------------------------------------------------------------------|-------------------------------------------------------------|
| Cispus<br>River | Below<br>Greenhorn<br>Creek                    | 17.5                                                           | 16<br>2000, 2003-<br>2005, 2007,<br>2009-2020 | 14<br>2003- 2005,<br>2007, 2009-2010,<br>2012-2015, 2017-<br>2020                      | 20.0 (2015)                                                 |
| Cispus<br>River | Below Iron<br>Creek (at<br>Forest<br>boundary) | 17.5                                                           | 21<br>1999-2020                               | 19<br>2000-2007, 2009-<br>2010, 2012-2020                                              | 19.9 (2015)                                                 |

\*Site added since 2014.



**Figure 7**. Yellowjacket Creek, McCoy Creek, and Camp Creek-Cispus River subwatersheds, temperature monitoring sites, and 305(b) status

# Description of Pollution Controls and How They Will Achieve Water Quality Standards

The designated use for the temperature impaired segments of Yellowjacket Creek is core summer salmonid habitat, and the temperature criterion is 16 degrees centigrade, year round. In addition, the segments have a supplemental spawning criterion of 13 degrees centigrade from February 15 to June 15.

Most riparian areas in the watershed will be restored by passive restoration, which means letting the areas recover on their own. This process can take 100 years or more. In addition, the Forest Service has implemented some active riparian restoration projects, which generally involve thinning riparian stands to encourage the remaining trees to grow faster and therefore provide more shade sooner. Stream temperatures in the smaller tributaries in the upper watershed should improve within the next five to ten years as vegetation grows and streambank stability increases (barring any additional natural disturbances or extreme climatic trends). Stream temperatures in the Iowest reaches of the Yellowjacket Creek watershed will take longer to show improvement because the stream has widened and shallowed from excessive sediment inputs. In this area, lowered stream temperatures will depend as much on the stream recovering its natural geometry and stability as on restoring riparian shade.

Work that the Forest Service has done and plans to do to address road related sediment problems will also help to solve the temperature impairments in Yellowjacket Creek. The stream has widened and shallowed because of human caused sedimentation, and as roads are repaired, decommissioned, and routinely maintained, the sediment load to streams will decrease.

However, stream recovery takes time even when sediment delivery is decreased. Streams may take a decade or more to move past excessive sediment loads, and the amount of time this takes depends on the magnitude of flow events that occur. Consequently, stream widths may narrow temporarily and then widen again after a flow event that is large enough to move some of the excessive sediment load stored within the streams. As channel stability improves through time, other restoration treatments, such as placement of large wood in the channel, will become more viable.

It is anticipated that with the completion of identified high priority work, episodic inputs of accelerated sediment from roads, undersized or aging culverts, and bank instability will be decreased from the channel condition imprints observed historically. The overall effectiveness of these treatments should become evident by increased watershed stability in response to future flood events. Monitoring of BMP effectiveness and periodic aerial photo interpretation would help define recovery trends and timeframes.

Again, implementation of projects to improve temperature on the Forest fall into three primary categories: 1) Road treatments, 2) Riparian Reserve enhancement, and 3) stream restoration. Treatment types, and the objectives these projects fulfil to restore watershed processes to improve temperature are shown in Table 15.

| Treatment Type | Definition and objectives                                                                                             |
|----------------|-----------------------------------------------------------------------------------------------------------------------|
| Decommission   | Road decommissioning includes activities that stabilize and restore uneeded roads to a more natural state to mitigate |
|                | hydrologic risk and reduce erosion and sedimentation.                                                                 |
|                | Decommissioning treatments can include all of the following                                                           |

Table 15. Treatment types, and objectives and definitions of treatments

| Treatment Type                    | Definition and objectives                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                   | techniques; revegetation, installation of waterbars, removal of<br>culverts and road fill, removal of unstable road shoulders, full<br>road prism obliteration and restoration of natural slope. Type<br>and scale of treatment is dependent on site-specific<br>considerations. Decommissioned roads will not be used in the<br>future and are left in a state where erosion and sedimentation<br>risk is eliminated.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Culvert<br>upgrades/replacements  | Replacement of culvert crossings to facilitate aquatic organism<br>passage and improve hydraulic function to restore processes<br>that improve temperature. Culvert replacements reduce the<br>risk of crossing failure and the episodic input of sediment<br>associated with these failures.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Reconstruction/maintenance        | Road reconstruction and maintenance involves the<br>improvement of existing roads to improve safety, service and<br>environmental standards. Practices include refurbishing ditches<br>and other drainage structures, rebuilding inlets and outlets,<br>shaping road surface to drain properly, slope and fill<br>stabilization, and improvement of surfacing.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Close/hydrologic<br>stabilization | Hydrologic stabilization is a technique to store and stabilize<br>roads to avoid, minimize, or mitigate adverse effects to water<br>quality, aquatic habitat, and riparian resources. Hydrologically<br>stabilized roads minimize erosion and hydrologic connectivity<br>between the road and stream system. Practices include, but are<br>not limited to, removal of culverts and fill presenting an<br>unacceptable risk of failure or flow diversion, and suitable<br>measures to ensure the road surface will intercept, collect, and<br>remove water from the road surface in a manner that reduces<br>concentrated flow in ditches, culverts, and over fill slopes and<br>road surfaces without frequent maintenance. Roads that are<br>hydrologically stabilized would remain as part of the FS road<br>system; therefore the intent is to retain the integrity of the<br>roadway to the extent practicable, and measures would be<br>implemented to reduce sediment delivery from the road<br>surface road fills to reduce the risk of crossing failure and<br>stream diversion. |
| Riparian Reserve<br>Enhancement   | Vegetation treatment objectives for Riparian Reserves as<br>defined in the Northwest Forest Plan are to accelerate the<br>development of late successional stand characteristics which in<br>the long-term, will provide shade to perennial streams. Actions<br>include thinning densely stocked young stands to reduce                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |

| Treatment Type     | Definition and objectives                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                    | competition during the early stages of growth and addressing<br>stands that were identified in a shade model as lacking effective<br>shade to perennial streams.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Stream Restoration | Restoration of hydrologic, floodplain, and riparian function<br>through placement of in-stream large wood structures to scour<br>pools, sort gravels, support floodplain forest succession, re-<br>engage relict side channels, and provide shade. Large wood<br>structures are generally positioned to encourage development<br>of a multi-thread channel network, providing side channel and<br>off-channel habitat throughout a range of flows to encourage<br>sustenance of summer low-flows and encourage Riparian<br>Reserve development. Projects also include planting of adapted<br>native trees and shrubs to accelerate riparian restoration.<br>Wood for projects is generally acquired through harvest of<br>upland stands, and trees from the adjacent Riparian Reserve. |

Projects completed in the Yellowjacket subwatershed that contribute toward improving the functions that will eventually lower stream temperature are shown in Table 16. There were no projects completed in the McCoy Creek subwatershed in this timeframe.

| Project Type       | Total           | Location and year                         |
|--------------------|-----------------|-------------------------------------------|
| Culvert upgrades   | 5 crossings     | Forest Road (FR) 2800-000 at MP 9.1, 2017 |
|                    |                 | FR 2809-000 at MP 0.1, 2017               |
|                    |                 | FR 2800-000 at MP 7.8, 2018               |
|                    |                 | FR 2810-000 at MP 1.3, 2019               |
|                    |                 | FR 2810-000 at MP 1.9, 2019               |
|                    |                 |                                           |
| Road               | 0.5 miles       | FR 7700-239, 2016                         |
| Decommission       |                 |                                           |
| Road               | 31.7 miles      | FR 7700-000 23 miles 2019                 |
| reconstruction and |                 | FR 7605-000 9.7 miles 2019                |
| maintenance        |                 |                                           |
| Riparian Reserve   | 2015 9.8 acres  | Pinto Creek-2015, 2016                    |
| Enhancement        | 2016 18.6       | Veta Creek-2015                           |
|                    | 2017 18.5 acres | Yellowjacket Creek 2017, 2019, 2020       |
|                    | 2019 5 acres    |                                           |
|                    | 2020 13.3 acres |                                           |

**Table 16**. Projects completed in the Yellowjacket subwatershed since 2014
| Project Type | Total              | Location and year |
|--------------|--------------------|-------------------|
| Yellowjacket | 6 large wood       | 2020              |
| Stream       | installed at the   |                   |
| Restoration  | mouth of           |                   |
|              | Yellowjacket Creek |                   |

#### Watershed Condition Framework

The Forest Service developed and began implementing the Watershed Condition Framework (WCF) in 2011 to provide a consistent, comparable, and credible process for improving the health of watersheds on national forests and grasslands. The WCF forms the basis for the management of aquatic resources on the Forest and includes 6-steps: a) classification of watershed condition at the subwatershed scale; b) prioritization of watersheds for restoration; c) development of Watershed Restoration Action Plans (WRAP) for Priority Watersheds; d) implementation of the integrated restoration projects defined in those plans; e) tracking of restoration accomplishments; and f) monitoring and verification. Additional details are available in the Watershed Condition Framework document (USDA Forest Service, 2011a. Watershed Condition Framework RS-977. Washington, DC. 24 pp.) and Watershed Condition Classification (WCC) Technical Guide (USDA Forest Service, 2011b. Watershed Condition Technical Guide. FS-978. Washington, DC. 41 pp.).

The Forest is in the process of designating the Yellowjacket subwatershed as a priority watershed under step c of the WCF, based on water quality concerns, and the strong focus of ongoing and planned aquatic and riparian restoration in the subwatershed. The WRAP for the Yellowjacket subwatershed is under development with a final draft anticipated in early 2021. The WRAP for the Yellowjacket subwatershed classifies watershed condition, and presents essential projects the Forest and partners will complete over the next five years. Upon completion of these essential projects, the FS anticipates that overall watershed condition will be improved in the Yellowjacket subwatershed, and that the functional processes that will eventually improve temperatures in Yellowjacket Creek have been restored, or are on a trajectory toward restoration.

Designation of the Yellowjacket subwatershed as a priority is in alignment with the Yellowjacket Restoration project, and will position the Forest to leverage funds from multiple sources to ensure aquatic restoration projects are implemented.

#### Vegetation Management Project Planning

The Gifford-Pinchot National Forest has developed a 10-year vegetation management plan that identifies planning areas across the Forest where vegetation restoration projects will be planned and implemented. The Yellowjacket subwatershed is within the current planning area for the Yellowjacket Restoration project. The project is currently under pre-NEPA analysis, with a final NEPA decision planned for early 2022, with implementation following over the next five to ten years. Most planned projects in the Yellowjacket subwatershed are identified in this report are part of this larger planning effort.

Including these aquatic restoration projects as part of the larger Yellowjacket project planning process will open funding opportunities and ensure that projects are completed in a timely fashion.

#### **Roads Analysis**

The Forest completed a Forest-wide Travel Analysis Report in 2015 (USDA Forest Service. 2015. Travel analysis report Gifford Pinchot National Forest. Vancouver, WA. 47 p.) under the Travel Management Rule (36 CFR 212) resulting in a prioritization of roads on national forest lands that addresses access and environmental risk, including water quality, setting the stage for further reductions in road miles and targeted improvement in the remaining road system. This report provides a recommendation for management for all roads under the Forest's jurisdiction.

This broad-scale Forest-level analysis will be applied at the project scale to inform road treatments in the Yellowjacket project. Additional analysis tools are useful to along with the Geomorphic Analysis and Inventory Project\_Lite (GRAIP\_Lite) (Nelson, N. Luce, C. and T Black. 2019. GRAIP\_Lite: A system for road impact assessment. USDA Forest Service Rocky Mountain Research Station, Boise Aquatic Sciences Lab. 145 p) GRAIP\_Lite is a system of spatial analysis tools developed by the Forest Service Rocky Mountain Research Station that models road-related sediment impacts to stream habitats. This model in combination with field reconnaissance will be used in the Yellowjacket project planning process to determine areas where roads present a higher risk to the stream system, and prioritizing roads for restoration or remediation efforts.

#### Climate Vulnerability Analysis and Climate Resiliency

The Gifford Pinchot National Forest completed a climate change vulnerability assessment in October 2019 (Hudec, J.L. Halofsky, J.E., Peterson, D.L., and Ho, J.J., eds. 2019. Climate change vulnerability and adaptation in southwest Washington. Gen. Tech. Rep. PNW-GTR-977. Portland, OR: U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station. 249 p.) With respect to maintenance and enhancement of the functions that improve temperature, this analysis focused on potential thermal impacts to anadromous fish species, emphasizing the need to build aquatic habitat resiliency and connectivity. Key themes include:

- Strategic prioritization or restoration of natural thermal, hydrologic, and wood regimes;
- Management of fluvial connectivity and assisted migration;
- Maintain and diversify aquatic monitoring programs

The Forest is working toward these goals and focusing efforts to build resiliency in watersheds where aquatic function has been compromised through past land use practices. Essential projects in the Yellowjacket Creek WRAP focus on building resiliency, particularly in reaches of Yellowjacket Creek that have been incised and widened where temperature is elevated.

#### Estimate or Projection of Time When Water Quality Standards Will be Met

Waters in Yellowjacket Creek will continue to violate temperature standards until excess sediment has worked its way out of the system and streams have recovered their natural geometry and the riparian areas have recovered.

Given the time it takes for natural systems to recover, Ecology estimates that it will take 40 years for Yellowjacket Creek to meet the temperature standard.

#### **Schedule for Implementing Pollution Controls**

Projects planned in the Yellowjacket subwatershed over the next five years are shown in Table 17. With the exception of the Yellowjacket stream restoration, projects are in the pre-NEPA planning phase and are subject to change based on the results of the NEPA analysis.

| Project Name                   | Description                                                 |
|--------------------------------|-------------------------------------------------------------|
| Road Reconstruction            | 40-50 miles of treatment anticipated                        |
| Motorized trail reconstruction | Approximately 10 miles of motorized trails treated          |
| Culvert Replacements           | 3 fish aquatic organism passage improvement projects:       |
|                                | Veta Creek (FR 7713-000),                                   |
|                                | High Bridge Creek (FR 2900-000)                             |
|                                | Badger Creek (FR 2810-041)                                  |
|                                | 1 culvert replacement for hydraulic upgrade on Yellowjacket |
|                                | Creek at FR 2810-041                                        |
| Road Hydrologic stabilization  | Approximately 15 miles of road treated                      |
| Unauthorized road closures     | Full removal of unauthorized roads in the Pumice and Pinto  |
|                                | Creeks headwaters                                           |
| Riparian Reserve Enhancement   | Approximately 50 acres of Riparian Reserve enhancement      |
|                                | throughout riparian areas in the Yellowjacket subwatershed  |
| *Yellowjacket Creek Stream     | Installation of large woody debris, side channel            |
| Restoration RM 1-6             | reconnection, and riparian enhancement in Yellowjacket      |
|                                | Creek from the 28 Road to the McCoy Creek confluence        |
|                                | Improve hydrologic function in Yellowjacket Creek and       |
|                                | promote deep pool formation, side channel and floodplain    |
|                                | connectivity, and old forest characteristics in Riparian    |
|                                | Reserves adjacent to Yellowjacket Creek.                    |
| Pinto Creek Stream Restoration | Improve hydrologic function in Pinto Creek through          |
|                                | installation of large woody debris to promote deep pool     |
|                                | formation, side channel and floodplain connectivity, and    |
|                                | promote old forest characteristics in Riparian Reserves     |
|                                | adjacent to Pinto Creek.                                    |

 Table 17. Projects planned in the Yellowjacket subwatershed through 2025

\*Yellowjacket Creek Stream Restoration-The Yellowjacket Stream Restoration is the largest planned active restoration project, with the potential to deliver direct benefits to stream temperature in Yellowjacket Creek. The Forest is partnering with is Cowlitz Tribe and multiple funding agencies to complete the project over the next four years.Temperature exceedances in lower Yellowjacket Creek are a direct effect of diminished aquatic function. Past land use practices have resulted in an incised and widened channel with areas of channel instability, few stable wood accumulations, rapid bank erosion and lateral channel adjustment, and isolated floodplain terraces. The channel habitat is dominated by low gradient riffle and pool sequence with abundant cobble (mean D50 ranging from 137-232 mm). Large wood is sparse throughout the first 1.7 miles of Yellowjacket Creek, averaging 11 pieces of large wood>24 in diameter per mile. The Yellowjacket Restoration project includes restoration of instream and off channel habitats to enhance natural geomorphic and hydrologic processes through installation of large wood. Most of the restoration reach will result in no less than two active channels, more than doubling the channel length and available edge habitat to improve riparian function and decrease stream temperature. The placement of large wood in Yellowjacket will be such that they enhance flow deflection into side and distributary channels, with some minor excavation at the inlets to introduce perennial flow. Log jams will also encourage pool formation and enhance water storage and hyporheic exchange, which will improve stream temperatures. Approximately 36 large engineered log jams will be installed in Yellowjacket Creek on approximately six miles of stream. Project implementation began in 2020, with phased work continuing for the next four years.

#### Monitoring Plan to Track Effectiveness of Pollution Controls

As detailed above the Forest Service monitor temperatures at multiple locations. They plan to continue monitoring at all current sites as part of the ongoing commitment to monitor and improve water quality in the Yellowjacket Creek subwatershed.

#### **Commitment to Revise Pollution Controls as Necessary**

The Gifford Pinchot National Forest is required under the Forest Plan for the forest, as amended by the Northwest forest Plan (NWFP), to adjust and adapt activities if monitoring demonstrates that goals and objectives of the plan are not being met. In addition, an interagency aquatic monitoring effort, Aquatic-Riparian Effectiveness Monitoring Protocol (AREMP) has been in place since the inception of the NWFP with requirements to evaluate the effectiveness of the NWFP aquatic conservation strategy, and address watershed condition trends across the NWFP area. The outcomes of AREMP will be critical in determining whether implementation is working and if additional management practices will be needed.

Ecology expects that implementation activities completed and planned in the Yellowjacket watershed will achieve compliance with state water quality standards. However, if they do not, Ecology will work with the Forest Service to determine other controls that could be used to achieve compliance.

# Kitsap County Pollution Identification and Correction (PIC) Program – February 2021

The Washington Department of Ecology (Ecology) Integrated Report (IR) proposes to exclude the following listings for fecal coliform from the 303(d) list and place these water bodies in category 4b of the IR. Ecology's basis for excluding these waterbodies from the 303(d) list is outlined in this evaluation.

Bacteria—7652, 10370, 10371, 10375, 10376, 10387, 23695, 74746, 7633, 74656, 7643, 53094, 53113, 53110, 53117, 38667, 43034, 53101, 53091, 36197, 53106, 38524, 53108, 74678, 38528, 53109, 7645, 7646, 7647, 52902, 60190, 38833, 53096, 38863, 53100, 74639, 38816, 53097, 74792, 74793, 53116, 7636, 7640, 7641, 7643, 10387, 53095, 53149, 53150, 53187 and 53188.

Kitsap County segments proposed for category 1 that were previously in category 4b include:

- 7651-Martha-John Creek
- 7637-Dogfish Creek
- 10389-Purdy Creek
- 38460-Boyce Creek
- 38616-Gorst Creek

#### Identification of Segment and Statement of Problem Causing Impairment

These creeks are located in various parts of Kitsap County. The fecal coliform pollution in these streams was identified by Kitsap County through its on-going monitoring program. The primary sources of bacteria pollution in Kitsap County are:

- Failing septic and sewer systems
- Faulty stormwater systems
- Pet and livestock waste
- Runoff from farms

# Description of Pollution Controls and How They Will Achieve Water Quality Standards

In the early 1990s, Kitsap County agencies faced several difficult issues:

- The Public Health District sought more permanent funding to deal with shellfish closures, failing septic systems, and other water quality problems.
- The Department of Public Works needed to develop a stormwater management program in response to the U.S. Environmental Protection Agency's National Pollutant Discharge Elimination System Permit Program.
- The conservation district needed to respond to 1989 legislative approval to seek a fee to fund programs for landowner assistance.
- The Department of Community Development sought more permanent funding for state mandated watershed planning efforts.

A group of County Managers and Commissioners with a long range vision for water quality began working together to design a coordinated interagency partnership to meet multiple needs in the county. In October 1993, after two years of planning and public process, the Kitsap County Board of Commissioners adopted Ordinance 156-1993, establishing the Kitsap County Surface and Stormwater Management Program (KCSSWM), now renamed Clean Water Kitsap. The goals of the program are to:

- Protect public health and natural resources.
- Minimize institutional costs.
- Meet state and federal regulatory requirements.
- Provide a permanent funding source to address nonpoint source pollution.

Kitsap Public Health is the primary agency responsible for monitoring, identifying, and prioritizing nonpoint fecal pollution correction programs in Kitsap County. In response to the fecal pollution problem, Kitsap Public Health developed a Pollution Identification and Correction (PIC) program, an Onsite Sewage System (OSS) Monitoring and Maintenance program, and a Water Protection Complaint Response program. The PIC program receives a significant portion of its funding from the Clean Water Kitsap Program. SSWM fees are assessed on properties in the unincorporated area of Kitsap County. Fees appear on annual property tax billings.

Kitsap Public Health's PIC program, OSS Monitoring and Maintenance program and Complaint response program utilize existing local regulations and authority to address FC pollution sources and enforce correction when necessary. These programs incorporate a strong educational element to prevent future fecal pollution.

The Kitsap Public Health District has monitored major streams and marine waters for FC on a routine basis since 1996. This extensive monitoring program has resulted in the listing of many Kitsap County marine and freshwater bodies for fecal coliform pollution on Washington State's 303(d) List of impaired or threatened waters. During the 2013 water year, both stream and marine stations were typically sampled once each month.

Fewer samples may be collected at a monitoring station due to lack of flow during the dry season, hazardous weather conditions, equipment failures, or other circumstances.

The PIC Program uses water quality monitoring data to identify priority water bodies for cleanup. The primary focus of the monitoring program is to assess long-term pollution trends associated with human sewage and animal waste from nonpoint sources. Health District staff sample water quality monthly at approximately 95 stations on 54 streams and 67 marine stations. Field equipment measures turbidity, dissolved oxygen, pH, and temperature. Fecal coliform samples are analyzed by an Ecology accredited laboratory. Data are used to identify areas in need of pollution control and to evaluate the effectiveness of the correction program.

Clean up projects are designed to address the causes and sources of bacterial water pollution in specific geographic areas that the trend monitoring program has identified. SSWM provides funding for PIC projects. The goal of each PIC project is to:

- Protect public health.
- Protect shellfish resources.
- Preserve, protect, and restore surface water quality.

The best management practices (BMPs) being used to improve water quality include a requirement to properly operate and maintain on-site systems in the watershed. Kitsap Public Health District is actively engaged in on-site system education, dye testing of suspect systems, and enforcement of the Kitsap County Board of Health Ordinance 2008- 11, On-Site Sewage System and General Sewage Sanitation Regulations, which requires proper design, installation, repair, operation and maintenance of on-site septic systems. In addition, the Kitsap Conservation District assists small farm owners and owners of livestock to implement BMPs for animal waste management and farm pollution control. The conservation district's role is as a non-regulatory agency. When a regulatory approach is needed, the Health District enforces the Solid Waste Regulations (KCBOH 2004-2).

Several enforceable pollution controls will assure that compliance with water quality standards is achieved.

- Kitsap County Ordinance 156-1993, establishing the Surface and Stormwater Management Program, now known as Clean Water Kitsap, which created an on-going, stable source of funding.
- Kitsap County Board of Health Ordinance 2008-11, On-Site Sewage System and General Sewage Sanitation Regulations, which requires proper design, installation, repair, operation and maintenance of on-site septic systems.
- Kitsap County Board of Health Ordinance 2004-2, Solid Waste Regulations, which regulate handling and disposal of animal manure and pet waste; animal waste violations are enforced by the Health District under this ordinance.
- RCW 90.72, Shellfish Protection Districts.

#### Estimate or Projection of Time When Water Quality Standards Will be Met

All waters in Kitsap County are subject to one of the following standards for bacteria. The countywide monitoring program compares monitoring data with the appropriate standard to determine whether the water body is on an improving trend and whether it has achieved compliance with standards. Primary Contact Recreation Bacteria Criteria in Fresh Water **Table 18**. Primary contact recreation bacteria criteria in fresh water

| Bacterial                                 | Criteria                                                                                                                                                                                                                                                                                                                       |
|-------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Indicator                                 |                                                                                                                                                                                                                                                                                                                                |
| E. Coli                                   | E. coli organism levels within an averaging period must not exceed a geometric mean value of 100 CFU or MPN per 100 mL, with not more than 10 percent of all samples (or any single sample when less than ten sample points exist) obtained within the averaging period exceeding 320 CFU or MPN per 100 mL.                   |
| Fecal coliform<br>(expires<br>12/31/2020) | Fecal coliform organism levels within an averaging period must not<br>exceed a geometric mean value of 100 CFU or MPN per 100 mL, with<br>not more than 10 percent of all samples (or any single sample when less<br>than ten sample points exist) obtained within an averaging period<br>exceeding 200 CFU or MPN per 100 mL. |

#### Marine

Table 19. Primary contact recreation bacteria criteria in marine water

| Bacterial                  | Criteria                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Indicator                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Fecal Coliform<br>bacteria | Fecal coliform organ-ism levels are used to protect shellfish harvesting.<br>Criteria are ex-pressed as colony forming units (CFU) or most probable<br>number (MPN). Fecal coliform must not exceed a geometric mean value<br>of 14 CFU or MPN per 100 mL, and not have more than 10 percent of all<br>samples (or any single sample when less than ten sample points exist)<br>obtained for calculating the geometric mean value exceeding 43 CFU or<br>MPN per 100 mL. |

Ecology expects that most of the water bodies covered by Kitsap County's PIC program will achieve compliance with bacteria standards by 2025. However, it should be noted that bacteria problems are likely to re-occur as septic systems age and properties change hands, so it should not be considered a failing of the PIC program if some waters move into category 1, and then occasionally move back into category 4b. In fact, an issue to remember with nonpoint pollution is that it is not the kind of thing that can be fixed just once. Instead, it requires continual vigilance, which is just what the PIC program provides.

#### **Schedule for Implementing Pollution Controls**

As described earlier in this report, Kitsap County has already implemented the PIC program and is continuing periodic monitoring, identifying problems, and fixing them. This is an on-going program, exactly what's needed to solve nonpoint pollution problems and to keep them from happening again.

#### Monitoring Plan to Track Effectiveness of Pollution Controls

Kitsap County has a countywide monitoring program. Samples are taken monthly and compared to the bacteria standard. Assessment results are reported to the public and EPA through Kitsap County's website and through Ecology's IR report development process.

#### **Commitment to Revise Pollution Controls as Necessary**

Ecology will continue to work with Kitsap County to ensure that the PIC program continues. We fully expect the program to achieve compliance with bacteria water quality standards throughout the county. However, if it does not, Ecology will work with Kitsap County to determine other controls that could be used to achieve compliance.

### Dissolved Gas (TDG) Impairments Addressed by Federal Energy Regulatory Commission (FERC) licenses – February 2021

The Washington Department of Ecology (Ecology) Integrated Report (IR) proposes to exclude six listings for TDG from the 303(d) list and place these segments into category 4b. The specific listings are:

- 15183, 15184—Spokane River
- 6532- Lewis River, Swift #1 Tailrace
- 6542—Lewis River, Yale Tailrace
- 6533—Swift Creek #2 Power Canal
- 6535— Lewis River, Swift #2 Tailrace

All of the listings were in category 5 of the 2012 IR. Ecology's basis for excluding these waterbodies from the 303(d) list is outlined in this evaluation.

#### Identification of Segment and Statement of Problem Causing Impairment

Segments 15183 and 15184 are located in the Spokane River downstream of Avista's Long Lake Dam. Segment 6532 is located within the bypass channel downstream of Pacificorp's Swift No. 1 Project, 6542 is located downstream of Pacificorp's Yale Project within the tailrace, 6533 is located downstream of PacifiCorp's Swift No. 1 Project within the power canal, and 6535 is located downstream of Cowlitz County Public Utility District (PUD) Swift No. 2 Project within the tailrace, all in the Lewis River. Impairments in these segments are caused by exceedance of Washington's TDG criterion, which requires that TDG shall not exceed 110 percent of saturation at any point of sample collection. The TDG exceedances at these locations are caused by large spills from the dams.

# Description of Pollution Controls and How They Will Achieve Water Quality Standards

Under section 401(a)(1) of the Clean Water Act, the Federal Energy Regulatory Commission may not issue a license for a hydroelectric project unless the state water quality certifying agency has issued a Water Quality Certification (WQC)for the project or has waived certification by failing to act within a reasonable period of time, not to exceed one year. Section 401(d) of the CLEAN WATER ACT provides that state certification shall become a condition of any federal license that authorizes construction or operation of the project.

The FERC license for Long Lake Dam was issued June 18, 2009, and is available here: <u>https://www.ezview.wa.gov/Portals/ 1962/images/FERC%20401s/SpokRvrCleancopyOrder670</u> <u>2FERC2545.pdf</u>

The FERC licenses for the Yale, Swift No. 1, and Swift No. 2 Projects and the WQCs were issued on October 9, 2006 and four amendments were issued on December 21, 2007, January 17, 2008, October 3, 2008, and November 7, 2011. These three Projects are listed as Lewis River

Hydroelectric Projects and individual dams are located below the Lewis River link, and are available here:

## <u>https://ecology.wa.gov/Regulations-Permits/Permits-certifications/401-Water-quality-certification/Certifications-for-hydropower-licenses</u>.

For all three of these FERC licenses, the Department of Ecology has issued a CLEAN WATER ACT 401 WQC that requires compliance with state water quality standards for TDG. The WQC are typically a component of the FERC licenses.

All of the 401 WQCs contain the following requirements: (1) compliance with all state water quality standards approved by the EPA; (2) compliance with sediment quality standards;(3) prohibition of discharge of any solid or liquid waste to the waters of Washington; and (4) reservation of Washington Ecology's authority.

#### Estimate or Projection of Time When Water Quality Standards Will be Met

The Long Lake Project completed structural modifications and designed spillway protocols in 2016 as specified in their approved TDG Water Quality Attainment Plan. Currently, effectiveness monitoring for those modifications and protocols is being conducted. Evaluation of the effectiveness monitoring will be completed by 2023. Therefore, the Long Lake Project should achieve compliance by 2023. Ecology will continue to work with Avista as part of their dam compliance and review TDG spill data collected.

The Lewis River Projects (Yale, Swift No. 1 and Swift No. 2) are currently working on compliance with the TDG standards. A Water Quality Management Plan was approved on March 25, 2013 which included these three Projects. The Swift No. 1 Project spill related TDG Attainment Plan was approved on February 25, 2014. Therefore, Yale and Swift No. 2 Projects should have achieved compliance by March 25, 2023 and Swift No. 1 should have achieved compliance by February 25, 2024. Ecology routinely reviews data related to TDG spills provided by PacifiCorp and Cowlitz County PUD.

#### **Schedule for Implementing Pollution Controls**

Pollution controls are presently in place for all four projects, as required by the FERC licenses.

#### Monitoring Plan to Track Effectiveness of Pollution Controls

The FERC license holders are required to monitor TDG and to implement control and attainment measures. They are also required to develop and implement a TDG attainment plan if monitoring indicates that TDG exceeds 110 percent saturation. Reductions in TDG will improve water quality for aquatic organisms, specifically fish species, inhabiting the project area.

#### **Commitment to Revise Pollution Controls as Necessary**

If gas abatement plans are required, and if monitoring to test the effectiveness of the gas abatement controls implemented through the plans shows that the TDG abatement measures identified in the plans and subsequently employed are not successful in meeting the water quality criterion within the first ten (10) years of discovery of TDG criterion exceedances caused by spill, Ecology will require further activities to meet the water quality criterion. Significant structural or operational revisions that may impose potentially unreasonable costs or create potentially unreasonable societal effects may be evaluated as part of a formal Use Attainability Analysis consistent with the federal and state water quality regulations after the ten-year compliance period has ended.

### Cow Creek – November 2020

Cow Creek flows nearly 50 miles from Sprague Lake in the Northwest Palouse region to the Palouse River in the south. It is an agricultural dominated watershed. Riparian areas were heavily grazed by livestock for more than a century. In the early 2000s, multiple segments of the creek were listed as category 5 for pollutants associated with agricultural run-off. Starting in 2004, Ecology partnered with the Adams Conservation District. For nearly a decade, extensive riparian restoration efforts were undertaken. Over 50 miles of livestock exclusion fencing were installed and thousands of trees and shrubs were planted to revegetate the riparian areas.

Unfortunately, much of the stream is not accessible from county roads. Changes at the Adams CD and the political climate in the watershed made both further implementation efforts and Ecology's ability to ensure on-going livestock exclusion difficult. Ecology is aware of significant backsliding in the watershed and we believe cattle again have access in riparian areas on inaccessible private property. We anticipate these land management changes will result in increases in pollution to the creek. Unfortunately, at this time we have limited access to implement the 4B strategy, document water quality violations, and enforce the Water Pollution Control Act. Therefore, these listings are being moved out of 4B and back to Category 5 this assessment cycle:

- Dissolved oxygen 40643, 40644, 40645, 40646, 40647, 40648, 40649
- Fecal coliform 45969, 45990, 40661, 40662, 40663, 46020
- pH 40652, 40653, 40654, 40655, 40656, 40657
- Temperature 40634, 40635, 40636, 40637, 40638, 40639, 40640

### **Contaminated Sediments – August 2021**

Contaminated sediment sites are regulated under CERCLA or the Model Toxics Control Act Chapter 70.105D RCW (MTCA) and the Sediment Management Standards 173-204 WAC (SMS). The SMS were promulgated under both the Clean Water Act and MTCA and were approved as Water Quality Standards by the EPA in 1991. Washington State's Category 4B listings for sediment meet the EPA's accepted alternatives to a TMDL "other pollution control requirements". Specifically, the Category 4B listings for sediment are sediment cleanup sites that have an approved Record of Decision (for EPA led CERCLA sites) or a Cleanup Action Plan (for state led MTCA sites).

All Cleanup Action Plans must meet the cleanup and source control requirements under CERCLA, MTCA and the SMS. A Cleanup Action Plan describes the selected cleanup method(s) and specifies cleanup standards and other requirements. It is based on information and technical analyses generated during the Remedial Investigation and Feasibility Study and consideration of public comments and community concerns. The cleanup process and Cleanup Action Plans for contaminated sediment sites listed in Category 4B address the six elements required by EPA for a Category 4B designation. This includes:

- Identification of the grid(s) and statement of the problem causing the sediment contamination.
- Description of the remedy/cleanup goals and how they will achieve the Sediment Management Standards.
- A projected timeframe when the Sediment Management Standards will be met.
- Schedule for implementing the remedy based on the Sediment Management Standards requirements.
- Operation and Maintenance plan that includes monitoring to determine effectiveness of the remedy.
- Adaptive management plan to revise the remedy if necessary.

Similar to a Record of Decision, a Cleanup Action Plan describes the selected cleanup method(s) and specifies cleanup standards and other requirements. It includes the technical analyses from the Remedial Investigation and Feasibility Study; and consideration of public comments and community concerns. Specifically, a Cleanup Action Plan includes the following:

- Site description: Includes a legal description of the site and its boundaries as well as the surrounding area.
- Site history: Includes current and historical uses, sources, and activities that may have contributed to the contamination.
- Enforcement history.
- Remedial Investigation and Feasibility Study
  - Details site characteristics and defines the extent and magnitude of contamination at a site.

- Evaluates potential impacts on human health and the environment; and established cleanup criteria.
- Evaluates cleanup alternatives.
- Remedial Design: Includes the development of detailed plans and specifications to carry out the selected method of cleanup.
- Cleanup Construction plan: Includes implementation of the selected cleanup action (i.e., actions taken at a site to eliminate, render less toxic, stabilize, contain, immobilize, isolate, treat, destroy, or remove a hazardous substance). Includes construction activities such as removal of contaminated sediment for off-site treatment or disposal; containing contaminated sediment beneath a cap or barrier; the addition of chemicals or enhancement of the growth of microorganisms that break down contaminants in place, monitored natural attenuation, or enhanced natural recovery.
- Time frame to achieve cleanup goals: Nature and extent of contaminants.
- Cleanup objectives.
- Operation and Maintenance plan: Includes activities conducted at a site after cleanup construction is completed to ensure that the cleanup or containment system is functioning properly.
- Monitoring requirements and protocols: Includes required long term monitoring to determine the immediate and long term effectiveness of the remedy.
- Institutional Controls: Measures taken to limit or prohibit activities that may interfere with the integrity of a cleanup action or that may result in exposure to hazardous substances.
- Five year reviews: A review of post-cleanup conditions and monitoring data that may be required at least every five years to ensure that human health and the environment are being protected.
- Cost: Includes the cost of the remedy and ongoing monitoring and maintenance.
- Funding: Includes how the cleanup will be funded for the long term.
- Public comments, responses to public comments.

CERCLA sediment cleanup sites will not be delisted until Ecology exercises our independent authority under MTCA to confirm that a cleanup site is in compliance with the SMS for all chemicals of concern including all chemicals on the 303(d) list. This could include verification by previous sampling or new confirmational sediment sampling, required or conducted by Ecology, after EPA has determined final compliance with the cleanup goals in the Record of Decision. If Ecology determines that a cleanup site is not in compliance with the SMS for all chemicals of concern, including all chemicals on the 303(d) list, new Category 5 listings will be designated for the exceeded parameters. If the site is determined to be in compliance with the SMS and the 303(d) listed chemicals of concern, the site will be listed in Category 1. To review summaries of Category 4B sediment listings please visit:

- Sediment Cleanups at: <u>https://ecology.wa.gov/Spills-Cleanup/Contamination-</u> <u>cleanup/Sediment-cleanups</u>.
- Ecology's Cleanup and Tank Search website at: <u>https://ecology.wa.gov/Spills-</u> <u>Cleanup/Contamination-cleanup/Cleanup-sites</u>.
- To review the Record of Decision for Category 4B sediment listings please visit the EPA's website at: <u>https://www.epa.gov/aboutepa/epa-washington</u>

The table in Appendix A represents the 2018 list of Category 4B sediment sites, including:

- Assessment Unit and Type
- Parameter Name
- Sediment Cleanup Site Name
- Statute: CERCLA, MTCA, RCRA, RCW 90.48
- Activity: ROD, CAP, CM
- Stage of the cleanup process (Cleanup construction, Operation and Maintenance etc.).
- Cleanup Site and Facility Identifiers (CSID; FSID). CSID is used to find site information.

### Appendix A: 2018 WQA Sediment Category 4B Cleanup Sites

Appendix A is only available on the internet, linked to this report at:

https://apps.ecology.wa.gov/publications/summarypages/2210018.html