

Testing 6PPD-quinone on the Snoqualmie Reservation

Quality Assurance Project Plan

Ву

Environmental and Natural Resources Department of the Snoqualmie Indian Tribe

For the

Water Quality Program

Washington State Department of Ecology Olympia, Washington

July 2024, Publication 24-10-049

Publication Information

This document is available on the Department of Ecology's website at: https://apps.ecology.wa.gov/publications/summarypages/2410049.html

Cover photo credit

• Snoqualmie Indian Tribe

Contact Information

Water Quality Program

Headquarters Office P.O. Box 47600 Olympia, WA 98504-7600 Phone: 564-669-4582

Website¹: Washington State Department of Ecology

ADA Accessibility

The Department of Ecology is committed to providing people with disabilities access to information and services by meeting or exceeding the requirements of the Americans with Disabilities Act (ADA), Section 504 and 508 of the Rehabilitation Act, and Washington State Policy #188.

To request an ADA accommodation, contact Ecology by phone at 360-407-6600 or email at Madison.Bristol@ecy.wa.gov. For Washington Relay Service or TTY call 711 or 877-833-6341. Visit Ecology's website for more information.

¹ www.ecology.wa.gov/contact

Department of Ecology's Regional Offices

Map of Counties Served

Southwest Region 360-407-6300

Northwest Region 206-594-0000

Central Region 509-575-2490 Eastern Region 509-329-3400

Region	Counties served	Mailing Address	Phone
Southwest	Clallam, Clark, Cowlitz, Grays Harbor, Jefferson, Mason, Lewis, Pacific, Pierce, Skamania, Thurston, Wahkiakum	PO Box 47775 Olympia, WA 98504	360-407-6300
Northwest	Island, King, Kitsap, San Juan, Skagit, Snohomish, Whatcom	PO Box 330316 Shoreline, WA 98133	206-594-0000
Central	Benton, Chelan, Douglas, Kittitas, Klickitat, Okanogan, Yakima	1250 W Alder St Union Gap, WA 98903	509-575-2490
Eastern	Adams, Asotin, Columbia, Ferry, Franklin, Garfield, Grant, Lincoln, Pend Oreille, Spokane, Stevens, Walla Walla, Whitman	4601 N Monroe Spokane, WA 99205	509-329-3400
Headquarters	Across Washington	PO Box 47600 Olympia, WA 98504	360-407-6000

Testing 6PPD-quinone on the Snoqualmie Reservation

Quality Assurance Project Plan

Water Quality Program
Washington State Department of Ecology
Olympia, WA

July 2024 | Publication 24-10-049

Prepared for Ecology in support of 6PPD research by Environmental and Natural Resources Department of the Snoqualmie Indian Tribe

Submitted by:

Kelsey Payne

Kelsey Payne

Water Quality Manager

Environmental and Natural Resources Department

Snoqualmie Indian Tribe

Shoquanine maian mise		
Approved by: DocuSigned by:		
Madison Rose Bristol	Date:	7/25/2024
Washirigte特型管控artment of Ecology		
Project Manager/6PPD Stormwater		
Madison Rose Bristol		
Signed by:		
Leslie Connelly	Date: _	7/24/2024
Washington Department of Ecology	1	
Water Quality Program Strategic Pla	anning Mar	nager
Leslie Connelly		
DocuSigned by:		
Chris Dudenhoeffer	Date:	7/24/2024
Washington State Department of Ed	cology	
Water Quality Program Quality Assu		rdinator
Chris Dudenhoeffer		
DocuSigned by:		
Cindy Spiry	Date:	7/24/2024
Snoqualmie Indian Tribe		
Environmental and Natural Resource	es Departn	nent Director
Cindy Spiry	•	
DocuSigned by:		
Kelsey Payne	Date:	7/24/2024
Snoqualmie Indian Tribe		
Water Quality Manger		

Distribution List

Snoqualmie Tribal Council Snoqualmie Indian Tribe PO BOX 969 Snoqualmie WA 98065

Cindy Spiry

Snoqualmie Indian Tribe

Environmental and Natural Resources

Department Director

PO BOX 969

Snoqualmie WA 98065

Kelsey Payne

Snoqualmie Indian Tribe Water Quality Manger

PO BOX 969

Snoqualmie WA 98065

Jennifer Hartke

Snoqualmie Indian Tribe

Water Quality Program Assistant

PO BOX 969

Snoqualmie WA 98065

Madison Rose Bristol

Washington Department of Ecology

Water Quality Program

PO Box 47600

Olympia, WA 98504-7600

Leslie Connelly

Washington Department of Ecology

Water Quality Program

PO Box 47600

Olympia, WA 98504-7600

Nancy Rosenbower

Washington Department of Ecology

Manchester Environmental Laboratory

7411 Beach Drive East

Port Orchard, WA 98366

Chris Dudenhoeffer

Washington Department of Ecology

Water

Water Quality Program

PO Box 47600

Olympia, WA 98504-7600

Table of Contents

Distribution List	3
List of Figures and Tables	5
Figures	5
Tables	5
Background	6
Project and Task Description	7
Organization and Schedule	8
Experimental Design	11
Sampling Methods	14
Quality Control Requirements	15
Data Management	15
Audits and Reports	15
Data Quality Assessment	16
Budget	17
Appendix A. Documentation provided by Manchester Environmental Lab	19
Appendix B. Glossary, Acronyms, and Abbreviations	24
Glossary	24
Acronyms and Abbreviations	24

List of Figures and Tables

Figures

Figure 1. Map of ENR Department sampling sites. Sites marked 319 will be sampled for	6PPD-q.
	13
Figure 2. Chain of custody form provided by MEL with matrix and source codes	20
Figure 3. Pre-sampling notification form provided by MEL, to be emailed to Nancy Rose	nbower
before sampling begins	21
Figure 4. Sample container request form	22
Figure 5. Laboratory analytical methods for 6PPD-q	23
Tables	
Table 1. Schedule of activities	9
Table 2. Determination of rain events for 6PPD-q sampling	12
Table 3. Budget by item description	
Table 4. Budget by task	

Background

6PPD-quinone (6PPD-q) is a newly identified stormwater contaminant. 6PPD-q is a transformation product of 6PPD in vehicle tires, and 6PPD-q has been identified as the second most toxic chemical to aquatic organisms. 6PPD-q is acutely toxic to coho salmon, causing mortality at concentrations less than 0.10 micrograms per liter, and is also acutely toxic or potentially causes sublethal effects in other salmonids.

The Snoqualmie River Watershed supports all five species of anadromous salmon, rainbow trout and brook trout which have been shown to be especially impacted by 6PPD-q. Other aquatic species of concern to the Snoqualmie Tribe include brook lamprey, freshwater mussels, amphibians, and benthic invertebrates. Much is still unknown about the fate and transport of 6PPD-q, including impacts to food webs and human health. Learning more about 6PPD-q is essential to ensure water quality and protection of cultural resources and will be of benefit to the Snoqualmie Indian Tribe in protecting tribal sovereign and inherent rights.

In October of 2006 the Snoqualmie Indian Tribe was awarded an initial reservation of 56 acres within the 6,000-acre Kimball/Coal Creek drainage basin located in the Snoqualmie Watershed. The Tribe continues to add other parcels into trust which contain streams and wetlands and connect to the Snoqualmie River. A large portion of the initial Reservation has been developed into the Snoqualmie Casino. The Snoqualmie Casino site is surrounded by steep slopes on the western, eastern, and northern edges which frame the streams and wetlands on the Reservation. Runoff from impervious surfaces on the Reservation is the main cause of surface water pollution.

Other research studies have shown a direct connection between road density and traffic to 6PPD-q mortalities. We currently estimate that 4,100 vehicles cross the Reservation every day and expect that will increase to an average of 4,268 vehicles once the new hotel opens. These estimates are determined from information related to the number of visitors who engage in gaming, dining, and entertainment activities as well as staff team members attending for work. This is ultimately an underestimation of vehicle traffic because it does not include deliveries, shuttles for drop-off, or traffic related to the construction of the new hotel.

Project and Task Description

The Snoqualmie Tribe's Environmental and Natural Resources Department is tasked with monitoring the streams and wetlands on Tribal lands to ensure that water quality standards are met. This Quality Assurance Project Plan describes how we will add 6PPD-q sampling to the Tribe's established Nonpoint Source Pollution Monitoring Project. This will advance the Tribe's understanding of 6PPD-q concentrations in stormwater and waterways on the Snoqualmie Reservation, across storms and seasons.

The Tribe's Nonpoint Source Pollution Monitoring Project was created in 2008 has been collecting twice annual data on stormwater to inform water quality decisions. Eight (8) sampling sites were strategically chosen to assess water quality on the reservation. This project will modify the established experimental design for 6PPD-q collection.

This study will advance understanding of baseline 6PPD-q concentrations on the Reservation. We will also gather and describe land use and best management practices (BMP) characteristics. This could help assess and/or validate the effectiveness of BMPS in mitigating 6PPD-q pollution.

A subset of these sample sites will be used to better understand how land use features like parking lots, roads, and upstream development impact 6PPD-q concentrations. Another subset will help determine if the floating treatment wetlands in the stormwater pond, installed in the fall of 2023, help reduce 6PPD-q. Finally, samples will assess the effectiveness of vegetated swales in the parking lot of the Snoqualmie Casino. Though the swales do not include bioretention soil media, swales like these are common BMPs alongside roadways throughout Washington and understanding their effectiveness will aid in 6PPD-q management.

Organization and Schedule

The indigenous and inherent sovereign power of the Snoqualmie Indian Tribe is vested in the Snoqualmie Tribal Council. The Snoqualmie Tribal Council has the authority to safeguard and promote the peace, safety, moral, and general welfare of the members of the Tribe by regulating the behavior of all persons within the jurisdiction of the Tribe, and to provide for the enactment and enforcement of the laws of the Tribe. This authority includes the Council's ability to manage, develop, protect, and regulate water, minerals, timber, fish, and wildlife, and other natural resources within the Tribe's jurisdiction.

The Environmental and Natural Resources (ENR) Department is designated as the lead Tribal department for all matters pertaining to the environmental protection of Tribal water resources. The ENR Department has the primary responsibility for project coordination and ensuring that data collection and evaluation meet quality assurance criteria.

The key individuals involved in project implementation are ENR Director Cindy Spiry, ENR Water Quality Program Manager Kelsey Payne, ENR Water Quality Program Assistant Jennifer Hartke, as well as rotating field staff.

The Water Quality Program Manager has a Bachelor of Science degree in Environmental Sciences from Western Washington University and a Master of Science degree from the University of Washington. The Water Quality Manager has completed classwork and on-the-job training in water quality sampling and data collection. She has over seven years of professional experience in the field and has worked for the Snoqualmie Tribe for over three years.

The Water Quality Program Assistant has a Bachelor of Science degree in Environmental Sciences from Western Washington University and previous experience as a hydrologist with US Geological Survey. Training in water quality will be ongoing. The ENR Director will provide information on offsite training, conferences, and classes that are pertinent to water quality.

Table 1. Schedule of activities

Activity	Start Date	Projected Date	Notes
Duningt Managament	Amril 1 2024	of Completion	
Project Management	April 1, 2024	June 30, 2025	
QAPP Approval	May 7, 2024	May 31, 2024	Needs Ecology approval
Field Work	September 2024	March 2025	8 days sampling at 8 sites, for a total of 128 samples. Timing will be limited by rain events.
Laboratory Analysis	Ongoing	March 2025	The Tribe will share with Ecology individual lab reports as they are completed by MEL. Additionally, the Tribe will compile a spreadsheet of lab results with 6PPD-q concentrations in water quality samples.
Progress Report	Ongoing	November 15, 2024	
Spreadsheet of Lab Results	Ongoing	March 30, 2025	
Communications/Final Report	March 2025	June 2025	The final report should include key details including but not limited to: 6PPD-q lab analyses, traffic density of the Snoqualmie Casino parking lot and North Bend Way, upstream development activities, vegetation species in the swale and floating wetlands, and additional characteristics of BMPs.
Field Procedures Report	Ongoing	April 15, 2025	Describes, for each sampling event, relevant field notes on conditions at the location and the sample at the time of collection, sample volume collected, and chain of custody forms.
Presentations	Ongoing	May 14, 2025	Stormwater Work Group 6PPD Subgroup and an additional audience -Affiliated Tribes of Northwest Indians, Northwest Indian Fisheries Coordinated

		Tribal Water Quality Program, or MuniCon

The greatest challenge in keeping to this timeline is the constraints around the timing of sampling during storm events. There will need to be flexibility in the schedule on days when it is raining to be able to achieve sampling goals. If sampling deviates from the specified protocol, we will document the timing of the rain event and conditions of sampling thoroughly for accurate comparisons and result interpretation. Sampling frequency and the number of samples per rain event is determined by the project budget, limiting the number of samples that can be collected. The timeline for the project is limited to funding availability, allowing for only one rainy season (October-April) of data collection before project completion.

Experimental Design

Please reference Figure 1 for sample site locations.

Sample site **A1** is outflow pipe that feeds in the longest stream on the Snoqualmie Reservation. It is at the southern edge of the reservation; this site is an area where the stream is fed through a culvert under North Bend Way. Data collection here is important to identify potential issues of pollution caused from runoff coming from upstream development and North Bend Way.

Sample site **A6** is below where the outflow from the lower detention pond enters stream A. It can show any contributions to water quality from the lower detention pond. The site is right after the stream leaves the Reservation and can show how water quality has changed moving through the Reservation.

Site **B7x** is at the mouth of a culvert, just before Stream B exits the Reservation, and after it has traveled through the Reservation.

Sample site **C8** is located in the southeast corner of the reservation just north of North Bend Way. Like site A1, site C8 is in a stream that flows through a culvert under North Bend Way. This site will help to identify any runoff issues coming from North Bend Way or upstream development. Site C8 is located furthest upstream on Stream B.

Site **P1** is in the Casino's main retention pond. Comparing data from this site with data from Stream A both above and below the point that the pond flows into the stream helps to identify if and how the pond is contributing to water quality in the stream. This site will help to determine if the floating treatment wetlands in the stormwater pond reduce 6PPD-q.

Sample site **CB1** (collection basin), is a storm drain in the casino parking lot. This is the storm drain in the parking lot above the employee parking lot just to the east of the driveway up the hill. This site can help determine the quality of the stormwater before entering the remainder of the system that eventually flows into the streams.

Sample site **PLC** (parking lot collector) is the stormwater feature that collects and filters the stormwater off the employee parking lot on the north end of the reservation through an LID (bioswale) design. This site helps assess how effective the bioswale feature is at filtering runoff before entering the natural system.

Sample site **BAS** (basket) is a rock gabion feature that slows and may provide some filtering of water drained from P1. Water flows out of the pond into the basket and down into the natural stream. Sampling here helps assess how well the pond is being filtered. This site will help to determine if the floating treatment wetlands in the stormwater pond reduce 6PPD-q.

Samples will be collected according to established methods and accompanied with a chain of custody form to Manchester Environmental Laboratory to be analyzed for 6PPD-q. Rainfall data will be checked after sampling and recorded in the notes section of the chain of custody form. Our storm criteria for 6PPD-q sampling is described below (Table 2).

Table 2. Determination of rain events for 6PPD-q sampling

Rain Event Considerations	Quantitative
Minimum Amount of Rainfall	> 0.2 inches, no maximum
Rainfall Duration	1 hour minimum
Sampling Period	One sample at the beginning of storm event (within 4 hours) and following sample (within 4 hours of initial sample).

Sampling design was used based on previous sampling locations from the Snoqualmie Indian Tribe Water Quality Program QAPP. They were chosen to highlight water quality issues surrounding the stormwater pond and direct parking lot runoff, and to study the effects of BMP stormwater runoff treatment systems such as the lower parking lot bioswales. The number of samples chosen for each site was selected to increase the chance of finding 6PPD in stormwater, while remaining within budget constraints.

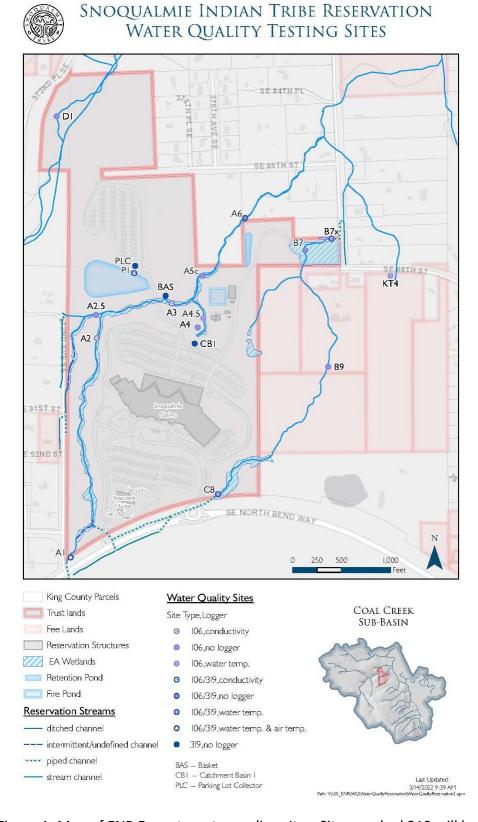


Figure 1. Map of ENR Department sampling sites. Sites marked 319 will be sampled for 6PPD-q.

Sampling Methods

We will use standardized sampling procedures, equipment and analytical methodologies to ensure quality comparable data. We will ensure that all supplies and consumables are stocked and in working condition.

Manchester Environmental Laboratory (MEL), Department of Ecology's accredited laboratory, will provide sample bottles. Each month, ENR staff will work with MEL staff to create a work order with the expected number of samples. Sixteen (16) samples will be collected for each rain event, two samples for each site. The first sample will be taken within four hours of the start of a rain event and the second sample will be taken within 4 hours from the start of the first sample. The work orders can be changed or cancelled depending on the weather conditions. After the work order is created, sample bottles can either be delivered by mail or picked up from MEL's storage locker in Tukwila, at least one day before sampling.

ENR staff will monitor weather conditions often and collect samples within 4 hours of the start of a rain event. Staff will notify the lab as soon as possible once a sample day is chosen to give them time to prepare and receive samples.

Before leaving for the field, ensure all materials have been assembled for sampling. Needed is a large cooler, ice to keep the samples cool, double bagged sampling bottles, backpack, bottle labels, pens, hammer, and a hand towel. Fill out the chain of custody form and as many of the bottle labels as you can, but do not adhere to the sample bottles yet. Samplers will wear powder free nitrile gloves and take samples using a sampling pole.

At each site, be careful not to disturb the substrate. Pour water into the bottle leaving no headspace. At site A1, sample directly out of the culvert, at site CB1 remove the grate using the hammer to access the water. Record the sampling time on the labels, dry the bottles with the hand towel, and adhere labels to each sampling bottle. Either fill out the times on the chain of custody form during sampling or take pictures of labels to fill out later. Cool samples on ice as soon as they are collected. Use plastic bags to double bag the sample bottles so melted ice doesn't dilute and contaminate the samples, especially on hot days.

After all samples have been loaded, finish filling out the chain of custody form and deliver samples and form to MEL's locker in Tukwila as soon as possible. Retain a copy of the chain of custody form for the Tribe's records. Adhere chain of custody seals to the cooler to for MEL staff to remove on arrival.

Washington Department of Ecology's Manchester Environmental Laboratory provides accurate, credible, and defensible analyses using the latest accredited methods. The lab will provide a report detailing the findings after analyzing the samples. MEL will dispose of samples following Washington Department of Ecology standards.

Quality Control Requirements

Sample bottles for tire contaminants are amber glass to avoid photodegradation. 6PPD-q also attaches easily to many plastics, so glass bottles are recommended to minimize the loss of 6PPD-q. The bottles are extra clean but not treated. There are no storage requirements for unfilled bottles except keeping the lid on to prevent contamination. Minimal headspace should be left to prevent 6PPD and 6PPD-q oxygenation reactions. Sample water must be kept cool at 6°C +/- 2°C. The sample hold time is 14 days, deliver to the lab as soon as possible. If issues arise and the quality of sampling or laboratory analysis is suspected, the results of sampling may be removed from the dataset.

Data Management

The Tribe will retain one copy of the chain of custody form for their records. This will have information on sample date, sample times, field crew, locations. Information about the rain event will be recorded in the notes section of the form. All chain of custody forms will be scanned in and stored on the ENR server for records retention.

After analysis MEL will produce a report consisting of a case narrative, analytical results, applicable quality control summary reports, and chain of custody. Data from this report will be entered into EPA's Water Quality Exchange (WQX) database. This data is co-owned by the Tribe.

Audits and Reports

There will be regular review of all data collection, equipment, and data management techniques to ensure the data is collected conscientiously and carefully. Project supervisors have the authority to institute any necessary changes to bring the program into compliance. The progress report due on November 15, 2025 will describe success in meeting the project planning milestones, and alternative plans as needed.

The Tribe will produce a final report describing the results of this study and will present results to relevant audiences (Tribal Council, Ecology). The final report should include key details including but not limited to: 6PPD-q lab analyses, traffic density of the Snoqualmie Casino parking lot and North Bend Way, upstream development activities, vegetation species in the swale and floating wetlands, and additional characteristics of BMPs. The Tribe will produce a presentation to the Stormwater Work Group 6PPD Subgroup and an additional audience of their choice. Options for the additional audience include but are not limited to: Affiliated Tribes of Northwest Indians, Northwest Indian Fisheries Coordinated Tribal Water Quality Program, or MuniCon.

Data Quality Assessment

The lab report will be reviewed at time of delivery. It will be reviewed before submitting to WQX, validated data will be periodically reviewed as it is entered. Any outliers and anomalies will be evaluated to ensure a data entry error has not occurred.

Department of Ecology team experts will assist with data analysis and statistics. The final report will include discussion of any data quality problems. Peer-reviewed literature will be requested on an as-needed basis.

Budget

Table 3. Budget by item description

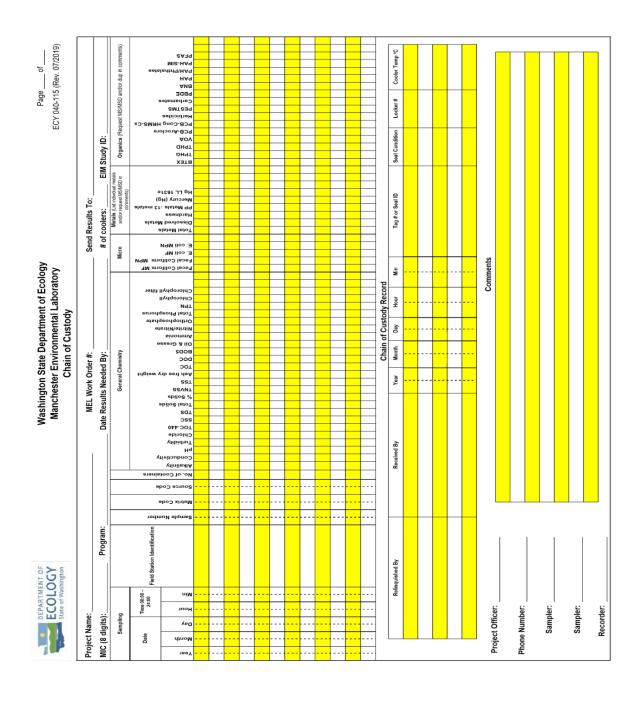
	Computa	ntion	Quantity		
Budget Item Description	\$/Unit	Quantity	Туре	Total Cost	
Personnel					
ENR Director	67.87	40	hours	\$2,714.80	
Water Quality Manager	55.28	160	hours	\$8,844.80	
Water Quality Assistant	27	80	hours	\$2,160.00	
Field Staff	31	80	hours	\$2,480.00	
GIS Manager	53.40	40	hours	\$2,136.00	
		Persor	nnel Subtotal	\$18,335.60	
Fringe					
Fringe benefits calculated @ 35% of salaries and wage (Retirement, Health Care, Annual and Sick Leave, Life Insurance, FICA)	0.35	400	hours	\$6,417.46	
		Fri	nge Subtotal	\$6,417.46	
Travel					
Mileage	0.65	200	miles	\$130.00	
		Tra	avel Subtotal	\$130.00	
Supplies					
Ice and/or ice packs	\$31.25	8 unit		\$250.00	
		Supp	lies Subtotal	\$250.00	
Contractual					
Shipping	\$300	8	N/A	\$2,400.00	
Water quality laboratory analysis	\$700	64	Sample	\$44,800.00	
		Contrac	ctual Subtotal	\$47,200.00	
			Total	\$72,333.06	

Personnel: Time for ENR Director, Cindy Spiry, to administer the funding, set up contracts, etc. Water Quality Manger, Kelsey Payne, would lead sample collection, shipping samples, receiving and interpreting reports, write final deliverable report to submit to Ecology and Tribal Council, and present on findings to Ecology staff and Tribal Council. Also includes time for the new Water

Quality Assistant and one other field staff (likely rotating) to participate in field sampling. The GIS Manager, Andrew McAninch assists with data uploads, quality control, and data storage, management, and analysis.

Fringe: Covers benefits for tribe staff, calculated at 35% of salaries and wage.

Travel: Reimbursement mileage for travel to and from sampling sites and sample drop-off locations.


Supplies: This small sum will cover the cost of cooling samples with ice or ice packs.

Contractual: Includes all costs of contract with Manchester Environmental Lab to analyze and report on 6PPD testing. Shipping to the laboratory is included as a separate line item.

Table 4. Budget by task

Task	Description	Amount
1	Project Management	\$6,650.10
2	QAPP Revision	\$2,238.84
3	Field Work	\$15,247.84
4	Laboratory Analysis	\$47,450
5	Communications	\$746.28
	Total Project Cost	\$72,333.06

Appendix A. Documentation provided by Manchester Environmental Lab

	Matrix Codes		Source Codes		Source Codes
ode	Description	Code	Description	Code	Description
0	Water	00	Unspecified Source	60	Air (General)
0	Soil/Sediment	01	Unknown Liquid Media (Drum/Tank)	61	Ambient Air
0	Tissue	02	Unknown Liquid Media (Spill Area)	62	Source or Effluent Air
0	Oil/Solvent	03	Unknown Liquid Media (Waste Pond)	63	Industrial or Workroom Air
0	Waste				
0	Other (use only if no others apply)	10	Water (General)	70	Tissue (General)
P	Consumer Product	12	Ambient Stream/River	71	Fish Tissue
		13	Lake Reservoir	72	Shellfish Tissue
		14	Estuary/Ocean	73	Bird Tissue
		15	Spring/Seepage	74	Mammal Tissue
		16	Rain	75	Macroinvertebrate
		17	Surface Runoff/Pond (general)	76	Algae
		18	Irrigation Canal/Return Flow	77	Periphyton
				78	Plant/Vegetation
		20	Well (General)		
		21	Well (Industrial/Agricultural)	80	Oil/Solvent (General)
		22	Well (Drinking Water Supply)	81	Oil (Transformer/Capacitor)
		23	Well (Test/Observation)	82	Oil/Solvent (Drum Tank)
		24	Drinking Water Intake	83	Oil/Solvent (Spill Area)
		25	Drinking Water (At Tap)	84	Oil/Solvent (Waste/Pond)
		30	Effluent Wastewater (General)	CP	Consumer Product
		31	Municipal Effluent	PU	Polyurethane Foam (PUF)
		32	Municipal Inplant Waters	FO	Foam
		33	Industrial Surface Runoff/Leachate	PL	Plastic
		34	Industrial Effluent	MT	Metals
		35	Industrial Inplant Waters	FA	Fabric
		36	Industrial Surface Runoff/Pond	PV	PVC
		37	Industrial Waste Pond	GL	Glass
		38	Landfill Runoff/Pond/Leachate	LQ	Liquid
				BA	Batting
		40	Sediment (General)	\mathbf{MI}	Misc.
		42	Bottom Sediment or Deposit	SO	Solids
		44	Sludge (General)	FM	Friction Materials
		45	Sludge (Waste Pond)	PC	Personal Care Products
		46	Sludge (Drum/Tank)		
		48	Soil (General)		
		49	Soil (Spill/Contaminated Area)		
		50	Bore Hole Material		

Figure 2. Chain of custody form provided by MEL with matrix and source codes.

Project Name:						MIC:			Enforcement	t		
Project Manager:												
Program:												
Phone No.:				_	_							
Date results needed by: _				EIM Study ID	(if ava	ilable)			Preliminary	Inve	st	
Requested By:									☐ Special turna	arou	nd	
General Chemistry	W	S	0	Microbiology		w	S	0	Organic Chemistry	w	s	С
Alkalinity				Fecal Coliforms MF 1	MPN				Base/Neutral/Acids (BNA)	П	\neg	Г
Conductivity				E. Coli MF					Polynuclear Aromatics (PAH)	П		Г
Hardness				E. Coli MPN							\neg	
pН				Enterococcus					Volatile Organic Analysis (VOA)			Г
Turbidity									BTEX			Г
☐ Fluoride ☐ Chloride ☐ Sulfate									Pest/PCBs (Organochlorine)			Г
Cyanide Total Dissociable				Metals	W,	Wυ	s	0	Pesticides only (Organochlorine)	П	\neg	Г
Total Solids				Priority Pollutant Metals (12 elements plus Hg)					PCBs only			
Total Nonvolatile Solids (TNVS)				TCLP metals					OP - Pests (Organophosphorous)			
Total Suspended Solids (TSS)				Hardness					Herbicides (Chlorophenoxy)			
Total Nonvolatile Suspended Solids (TNVSS)									Nitrogen Pesticides			
Total Dissolved Solids (TDS)				Mercury (Hg) Regular Low Level					Organochlorine Pesticides by GCMS 8270			
Chlorophyll Filtered in field Filtered at lab				Other: List individual elements below:					PBDEs			
% Solids									Hydrocarbon ID (match to source)			
% Volatile Solids (TVS)									HCID (gas/diesel/oil)	Ш		
Total Organic Carbon									TPH-D _x			
Dissolved Organic Carbon									TPH-G _x			
Biochemical Oxygen Demand (BOD) 5 day									PFAS			
BOD (5 day) –Inhibited												
BOD - Ultimate												
Ammonia								Ш		Щ		
Nitrate-Nitrite								Ш		Ш		
Orthophosphate						_		Ш		Щ		
Total Phosphorous	\square					1		Ш		Ш		\vdash

Figure 3. Pre-sampling notification form provided by MEL, to be emailed to Nancy Rosenbower before sampling begins.

Sample Container Request Form

Please email form to: lwei461@ecy.wa.gov Contact: Leon Weiks, Environmental Specialist 3 Phone: (360) 871-8825 Fax: (360) 871-8850

Please allow about 2 weeks for typical requests; longer for special requests

Requestor:	Project Name:
Phone:	Today's Date:
Location for Delivery:	Date Needed by:

Location for Delivery.									
Index#	Description	Qty.		Index#	Description	Qty.			
1	1 gallon jar WM, CLR (BNA)			22	500mL Nalgene HDPE WM, CLR (General Chem.)				
2	1/2 gallon jar WM, CLR			23	1000mL Nalgene HDPE WM, CLR. (TSS)				
3	1 liter jar WM, CLR (Organics) for HCID only, no preservative			24	1000mL Nalgene HDPE WM, AMB (Chlorophyll)				
4	l liter jar NM, CLR w/ 1:1 HCl 15mL dropper bottle included (Oil & Grease)			25	250mL HDPE NM, AMB (Cyanide)				
7	16 oz short jar WM, CLR			26	125mL Nalgene HDPE WM, CLR w/1:1 hydrochloric acid (TOC/DOC or TP) D Filters and syringe for DOC				
5	8 oz short jar WM, CLR			27	250mL poly WM, CLR (Fecal Coli)				
8	4 oz short jar WM, CLR			28	500mL poly WM, CLR (Multiple Micro Tests)				
34	2 oz short jar WM, CLR			29	250mL poly WM, CLR w'thiosulfate (Fecal Coliform - Chlorinated)				
13	2 oz short jar WM, CLR, w/septum			30	500mL poly WM, CLR w/thiosulfate (Multiple Micro Tests - Chlorinated)				
11	40mL vial AMB w/septum □ pre-preserved with HCl □ dropper bottle of HCl □ ascorbic acid for chlorinated VOA samples			31	8oz plastic jar HDPE (Grain size only)				
14	20mL vial w/acetic acid (Carbamates)			32	1 liter jar WM, CLR w/sulfuric acid (Phenolics)				
39	l liter glass NM, AMB (TPH-D) w/l:1 HCl			33	4oz sterile specimen cup (Micro - sediment)				
15	l liter glass NM, AMB (All other Organics)			35	Soil VOA/BTEX Airtight Sampling Capsules (3 per sample)				
16	500mL HDPE bottle w/5mL 1:1 nitric acid (Metals including standard level mercury)			36	Soil VOA/BTEX Sampling Handle (1 per sampling event) 500mL Teflon NM, CLR (LL Hg ONLY, w/gloves)				
17	l gallon cubitainer LDPE (BOD)			37	SOURL Terion NM, CLR (LL Hg ONLY, wigloves) o Total, Recoverable - no filter, preserved at lab o Dissolved with filter #38, preserved at lab o Field Blank Terion NM w.LL and w/gloves				
19	125mL Nalgene HDPE WM, CLR w/1:1 sulfuric acid (Nutrients or COD)			38	Nalgene Metals Filters 0.45um for either #16 or #37				
20	125mL Nalgene HDPE WM, AMB (filters and syringe also required for orthophosphate)			40	PFAS CapSure Oblong HDPE WM 250mL = 500mL =				
21	125mL Nalgene HDPE NM, CLR (Hardness) w/ 1:1 sulfuric acid Hexachrome request w/o acid			Other Supplies					

All containers for organics are organic free with Teflon lined lids $\mathbf{WM} = \mathrm{Wide}\ \mathrm{Mouth} \qquad \mathbf{NM} = \mathrm{Narrow}\ \mathrm{Mouth} \qquad \mathbf{CLR} = \mathrm{Clear} \qquad \mathbf{AMB} = \mathrm{Amber}$

Alternate Supply Contact: Brodey Ristine - BROS461@ecy.wa.gov

Figure 4. Sample container request form.

Analytical Method Details - Ecology Manchester Environmental Laboratory

			MR		Surr.	DU P RP		Matrix Spike		Blank Spike	
Method	Analyte	MDL	L	Units	%R	D	%R	RPD	%R	RPD	CAS#
Organic s											
in Water EPA1634		0.480	2.00				50-		70-		2754428-
EPA1634	6PPD-quinone 13C6-6PPD- Quinone			ng/L Surrogate	25- 200	40	150	40	130	40	18-5
EPA1634	D5-6PPD- quinone			ng/L	-	-	-	-	-	-	

Figure 5. Laboratory analytical methods for 6PPD-q.

Appendix B. Glossary, Acronyms, and Abbreviations

Glossary

Nonpoint source: Pollution that enters any waters of the state from any dispersed land-based or water-based activities, including but not limited to atmospheric deposition, surface-water runoff from agricultural lands, urban areas, or forest lands, subsurface or underground sources, or discharges from boats or marine vessels not otherwise regulated under the NPDES program. Generally, any unconfined and diffuse source of contamination. Legally, any source of water pollution that does not meet the legal definition of "point source" in section 502(14) of the Clean Water Act.

Point source: Source of pollution that discharges at a specific location from pipes, outfalls, and conveyance channels to a surface water. Examples of point source discharges include municipal wastewater treatment plants, municipal stormwater systems, industrial waste treatment facilities, and construction sites where more than 5 acres of land have been cleared.

Pollution: Contamination or other alteration of the physical, chemical, or biological properties of any waters of the state. This includes change in temperature, taste, color, turbidity, or odor of the waters. It also includes discharge of any liquid, gaseous, solid, radioactive, or other substance into any waters of the state. This definition assumes that these changes will, or are likely to, create a nuisance or render such waters harmful, detrimental, or injurious to (1) public health, safety, or welfare, or (2) domestic, commercial, industrial, agricultural, recreational, or other legitimate beneficial uses, or (3) livestock, wild animals, birds, fish, or other aquatic life.

Stormwater: The portion of precipitation that does not naturally percolate into the ground or evaporate but instead runs off roads, pavement, and roofs during rainfall or snow melt. Stormwater can also come from hard or saturated grass surfaces such as lawns, pastures, playfields, and from gravel roads and parking lots.

Acronyms and Abbreviations

BMP Best management practice

Ecology Washington State Department of Ecology
EPA U.S. Environmental Protection Agency
GIS Geographic Information System software
MEL Manchester Environmental Laboratory

QA Quality assurance QC Quality control

SOP Standard operating procedures