DATE

Publication No. 73-e36

UNEOR ACTION _____ PERMIT _____ OTHER _____

WA-59-1010

 TO
 Dan Neal, Ron Pine, Ron Devitt

 FROM:
 Hans Cregg

 SUBJECT:
 Chewelah STP (LACORA)

On May 17, 1973, an efficiency study was conducted on the Chewelah sewage treatment lagoon. The system consists of two influent lagoons which are operated in parallel and an effluent lagoon. The wastewater upon leaving the secondary lagoon is chlorinated and discharged into the Colville River. All three lagoons exhibited a thriving insect population and vigorous algae growth.

These factors may have influenced the effluent BOD and solids values. Total and fecal coliforms are exceeding state standards by a substantial margin.

HC:bjj

Attachments

July 2, 1973

STP SURVEY REPORT FORM

(EFFICIENCY STUDY)

Cicy_Chewelah	Plant Type	Lagoon Populatio	on <u>1600</u> Design <u>3000</u>				
N		Served	Capacity				
Receiving Water 0	olville River	Engine	er_W.A. Thompson				
Date5/17/73	Survey Perio	od <u>8 hours</u> s	Survey Personnel_ Hans Cregg &				
Comp. Sampling Free	uency hourly	Weather Condition	ons clear and warm	ong			
		(last 48 hours)					
Sampling <u>Alequot</u>	<u>l,000 mls,</u>						
	· ·	PLANT OPERATION					
Total Flow 241.00	0 gal/dav	How Money	ad Parchall fluma				
	<u>o guillad</u>	now neasur					
Max. (Flow)	Time of Max	Min	Time of <u>Min</u>	Time of Min			
Pre Cla	∉/ day	Post Cl. 15	#/day				
ha	ngung ang ang ang ang ang ang ang ang ang a	2					
	na na hann an h						
		FIELD RESULTS					
	Influ	ent	Effluent				
Determinations	Max. Min. M	lean Median Max	Min Moon Modian				
Tomp °C			Tim. Mean Median	-			
pH	7 5 7 1	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	20.4 21.2 21.1				
Conductivity	<u> </u>	1.5 1.2 8.6	8.4 8.4				
(umhos/cm)							
Settleable	Monomous and a summary and a	P.					
Solids	4.0 4.0	4.0 4.0 <.1	<u><.1</u> <.1 <.1				
1929-1929-1929-1929-1929-1929-1929-1929							
•	LABORATOR	Y RESULTS ON COMPOSIT	E IN PPM				
Laboratory Number	Influent	Effluent	% Reduction				
Laboratory Munder	73-1856	73-1857		1			
5-Day BOD	100	1 73-1857					
COD	204	40					
T.S.	470	254					
T.N.V.S.	259	226					
T.S.S.	124	18	15 85	1			
N.V.S.S.	13	10	02				
рН	7.5		<i>JL</i>	l .			
Conductivity	760			i			
Turbidity	1 40		77.				
an a	LU.		()	f			

Chewelah Làgoon

BACTERIOLOGICAL RESULTS

Na25203 added to sample before sample ATRXXX was taken. MAX.

LAB #	SAMPLING TIME	COLONIES/100 MLS (MF)		<u>С1</u> ррп	Residual (after secs)
73-1858	1100	<200	<80	.4	15
73-1859	1400	<200	<80	.4	15
73-1860	1600	<200 <80		.4	15
		· ·			
. 1999 - Contraction of the state of the sta				1. Quantum di San Marine and Anna and Anna di San Angelana di	
]	5. • • • • • • • • • • • • • • • • • • •			J

perator's Name	Ray W. Meyer	Phone #	
mments:		ĸŎĸĸŎĸŎĸŎĸŎĸĸŎĸĸŎĸĸŎĸĸŎĸĸŎĸŎŎĸŎŎĸŎŎĸŎŎĸ	
	аналана ала ал са	₩~~₽~₩₽₩₽₩₽₩₽₽₽₩₩₽₩₽₩₽₩₽₩₽₩₽₩₽₩₽₩₽₩₽₩₽₩	
######################################	՟՟ՠ՟ֈ֎ՠՠ՟֍ՠՠՠ֎ՠ֎ՠ֎ՠՠՠՠՠՠՠՠՠՠՠՠՠՠՠՠՠՠՠՠՠՠ	ᡏᡣᡆᠮᢁᡮ᠊ ᢦᠮᢄᢛ ᠐᠃ᡛ᠃᠆ᡮᡊᠣᡇᡏᠮᡂᡦᠬᡄ [᠊] ᢦᡩᡊᡂᢂᡐᡕᡱᡟᠥᡕᡱᡂᢂᠹᡡᡆ᠋᠋᠋ᡢᡎᡄᡦᡣᢣᡊᠯᡊᡘᠯᡊᡀᡊᡊᠧᡊᠥᡘᢞ᠂ᡊᢩᠲᡅᡅᡘᡡᠰᡘᡢᠹᡨᡮᡢᡊᠧᡆᡮ᠂ᡏ	
Metaplication and water and an	ᢁᡥᡟᡛᡘᡟᡛᡄ᠄ᢤᠺ᠋ᠬᠧᡗᡎᠬ᠕ᡷᠶᠬ᠖ᡡᡊ᠔ᡷ᠇ᡊᡄᢏᡘᡟ᠅ᡠᡊᡚᡅᡘᢓᢛᡍᡍᢛ᠅᠃᠘ᡐᡳ᠕ᡔᢕᡳ᠕ᡔ᠆ᠿ᠈ᡆ		₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩

STATE OF WASHINGTON DEPARTMENT OF ECOLOGY

WATER QUALITY LABORATORY

ORIGINAL TO:				
H. CRC64	•	6		
COPIES TO:				
			•	
				•
	Ĩ	Ĩ		Ĵ
LAB FILES	ě	ľ	Č	Č
	0	۴	6	°

STORET

			DATA	SUMMA	RY				LAB FI	LES
source Chewelah	STP	-				Colle	ected By	Marting		
Date Collected 5-17-7	3	-				Goal	Pro./O	bj	3.2.2	3
Log Number: 73-	1856	52	1 58	59	60	T			nonman nga watatanasa-manasasa	STOR
Station:	INF	EFF	1100	1400	1600	 _				
pH	7.5	8-8								0040
Turbidity (JTU)	40	10	ļ							0007
Conductivity (umhos/cm)@25C	760	550								0009
COD	204	78								0034
BOD (5 day)	100	240		,						0031
Total Coliform (Col./100m1)			1200	(200	(200					3150
Fecal Coliform (Col./100m1)			680	680	<u> </u>					3161
NO3-N (Filtered)										00620
NO2-N (Filtered)	 									0061
NH3-N (Unfiltered)										00610
T. Kjeldahl-N (Unfiltered)			ļ	·				{	******	0062
0-PO4-P (Filtered)		 		-					·····	0067
Total PhosP (Unfiltered)				-		·				0066
Total Solids	470	354		-		·				00500
Total Non Vol. Solids	159	226								
Total Suspended Solids	124	18	· ·				 			00530
Total Sus. Non Vol. Solids	13	<u> </u>		-						
		 	·	-						
		<u></u> -	ļ	-						
			[]							

Note: All results are in PPM unless otherwise specified. ND is "None Detected" Convert those marked with a * to PPB (PPM X 10³) prior to entry into STORET

Summary By_

Stephen D. Roll

Date 6-1-13