Publication No. 73-e44

State of Washington Department of Ecology

WA-08-1110

John Glynn

FROM	Ron Devitt							
SUBJECT _	Cedar Hills Landfill, Mason Creek and							
Issaquah Creek Surveys								
DATE	<u>January 10</u> , 1973							

Introduction

This memo is to document survey medifications and field observations made on December 5, 1972; and to the mediate from \log analyses conducted on the samples collected.

Survey Modifications

- 1. We decided to discontinue any sampling of Issaquah Creek until it can be demonstrated that the leachate from Cedar Hills landfill is affecting Mason Creek.
- 2. We added sampling sites to better characterize the leachate and the effects of natural purification and dilution before entering Mason Creek.
- 3. Flow determinations are to be made in an attempt to determine how much of the combined leachate and tributary does not flow to Mason Creek above ground. As described in a memo of November 29, a portion of this flow goes underground before assumed entry to ground water and/or Mason Creek. Gurley meter readings above and below the pool should give us the quantity lost to ground water.
- 4. Dye is to be added at the pool where the flow goes underground at the earliest convenience to pinpoint the location of entry to Kason Creek. This will not be possible until the flow reduces enough to quit flowing above ground.
- 5. Anchors were put out at stations 4 and 5 to detect differences in biological colonization above and below the confluence of the combined leachate and tributary to Mason Creek.

The growth media consists of two different materials. A wood lattice was used specifically for insect habitat. An asbestos growth plate was used in hopes of quantitatively evaluating the colonization of the "slime mold" that is expected to be evident in the spring.

6. The "spring" (station #1) should be channelled and funneled to facilitate sampling.

Memo to John Glynn January 10, 1973 Page 2

Field Observations

- Station #1 The spring below the landfill was very similar to the condition
 observed on 10-31-72; but because of previous rains, the flow was
 greater. The whole area stunk; Sphaerotilus was abundant. Temp. =
 9°C. Time 1040 hours.
- Station #1A This new station was established about 10 yards downstream from the emergence of the spring. The ditch above was frozen over in spots but the flow through the "creek" was greater than last time. There was no upstream sample taken since all flow in the creek at this point is leachate, surface runoff, and drainage from the fill area. The temperature upstream of the "spring" was 6°; downstream 10 yards (station #1A) the temperature was 7°C. Irridescent sheens were present in low velocity areas. Time - 1050 hours.

We met Bill Moore and Lárry Southwick of Moore, Wallace, and Kennedy (consulting Engineering firm) and Walt Kenny, landfill project supervisor. They were making observations in the general area. We inspected the manhole near the conifer and leachate pond. The flow was very low. The odor was gross.

Station #9 (below powerline) - Flow had increased slightly over last observation. Sphaerotilus like growth was developing. Oil like sheen was present in slack flow areas, there was no odor present, however.

We returned toward Issaquah and took Coalfield-Issaquah Road to the Mason Creek area. The sign "Freeguard" which I have referred to before is southwest of mail box 5417. After consulting the owner of a nearby residence, we obtained permission to drive through the locked gate. We obtained the combination to the gate (9020).

- Station #5 (downstream bridge in Mason Creek) Temp. = 4^oC. Time 1250 hours.
- Station #4 (Mason Creek control; upstream bridge) Time 1305 hours. No visual difference was obvious between stations 4 and 5. Artificial substrate were situated in similar locations at both stations, above and below the surface flow from the tributary and leachate.

The pool area from which there was no above ground flow to Mason Creek on 10-31-72, had an overflow at least equal to what was flowing underground before. This situation made the use of dye to determine subsurface routing impossible.

Station #3A - Samples were taken about 10 yards upstream of the confluence of Mason Creek. The flow at this point consists of the combined leachate and ground water (#1 and 1B) and the flow from station #2. The total volume is less than the combined flows because of the underground flow from the upstream pool. Memo to John Glynn January 10, 1973 Page 3

Station #1B - Another new station situated downstream of 1A. We arrived there by following a trail from the right perimeter of the clearing at the gun club. There were fresh footprints in the snow and evidently Food, Chemical and Research Laboratories, Inc. uses this location as a sampling point. There was a red and white #3 attached to a nearby tree. Temp. = 2°C.

Station #2 - Temperature = 2°C. Time - 1415 hours.

Discussion

Additional stations (1A and 1B) located downstream of station #1, before confluence with the flow from station #2, indicate that some of the parameters suggested 10-31-72 are more useful than others for detecting the presence of leachate. There appears to be chemicar, physical, and/or biological reaction/ reactions which decrease the concentrations of various parameters as the leachate travels away from the fill. Comparing 1A to 1B, note the decline in conductivity, BOD, nitrogen, iron, magnesium, calcium, hardness, T. carbon, T. I. carbon, and T. O. carbon. Chloride values remained the same. The pH change between stations 1A and 1B from 6.8 to 7.5 is strange. Additional sampling is required to explain this. None of these values indicated a detectable water quality change at station #3A.

The parameters listed above were significantly higher at station #9 than at stations where the effects of the leachate were not observed. The sphaerotilus like growth developing was another (visual) indication that the leachate was affecting this drainage. The values are also higher at this station than last sampling (10-31-72).

Summary

- 1. The most useful parameters for tracing the leachate appear to be: COD, conductivity, chlorides, calcium, iron, magnesium, hardness, total carbon, T. inorganic carbon, and T. organic carbon.
- 2. These values excepting chlorides decrease between stations 1A and 1B.
- 3. These parameters failed to demonstrate an effect at station 3A.
- 4. Increased runoff has increased above ground flow to cause direct discharge to Mason Creek.
- 5. The effect on Mason Creek was not demonstrated.
- 6. Station #9 is being affected by the leachate more than the first (control) survey in October.

DATA REPORT FORM

Location: Cedar Hills - Landfill Leachate

pH 6.6 6.8 7.5 7.5 7.4 6.7 6.8 6.8 Turbidity 20 20 20 1 3 5 5 6 COD 62 520 450 8 8 110 NH3-N ND 1.7 4.62 10 ND ND ND ND T Kjeldah1-N ND 2.2 1.8 ND ND .04 .04 ND T Kjeldah1-N (filtered) ND 2.6 1.8 0.2 ND .04 .04 ND Iron 18 60 24 <0.1 <0.1 0.4 0.3 3.6 Magnesium 8.2 28 24 2.7 2.3 2.8 2.5 9.0 Calcium 40 116 106 2.9 2.8 3.0 2.7 31 Hardness 130 400 360 18 15 17 16 110 Sulfates ND ND 3 6 5		Station							
Turbidity 20 20 20 1 3 5 5 6 COD 62 520 450 8 8 110 NH3-N ND 1.7 4.6 D ND ND ND T Kjeldahl-N ND 2.2 1.8 ND .04 .04 ND T Kjeldahl-N (filtered) ND 2.6 1.8 0.2 ND .04 .04 ND Iron 18 60 24 <0.1		1	1A	1B	2	3A	4 .	5	9
COD 62 520 450 8 8 110 NH3-N ND 1.7 1.6 ND ND ND ND ND ND I Kjeldahl-N ND 2.2 1.8 ND ND .04 .04 ND T Kjeldahl-N (filtered) ND 2.6 1.8 0.2 ND .04 .04 ND Iron 18 60 24 <0.1	рН	6.6	6.8	7.5	7.5	7.4	6.7	6.8	<u>6.8</u>
NH3-N ND 1.7 1.66 10 ND ND ND ND T Kjeldahl-N ND 2.2 1.8 ND .04 .04 ND T Kjeldahl-N ND 2.6 1.8 0.2 ND .04 .04 ND T Kjeldahl-N (filtered) ND 2.6 1.8 0.2 ND .04 .04 ND Iron 18 60 24 <0.1	Turbidity	20	20	20	1	3	5	5	6
I Kjeldahl-N ND 2.2 1.8 ND ND .04 .04 ND T Kjeldahl-N (filtered) ND 2.6 1.8 0.2 ND .04 .04 ND Iron 18 60 24 <0.1	COD	62 -	520	450	8	8			110
T Kjeldahl-N (filtered) ND 2.6 1.8 0.2 ND .04 .04 ND Iron 18 60 24 <0.1	NH3-N	ND	1.7	<u>A. 6</u> 2	10	ND	ND	ND	ND
Iron 18 60 24 <0.1 0.1 0.4 0.3 3.6 Magnesium 8.2 28 24 2.7 2.3 2.8 2.5 9.0 Calcium 40 116 106 2.9 2.8 3.0 2.7 31 Hardness 130 400 360 18 15 17 16 110 Sulfates ND ND ND 3 6 5 6 3 Conductivity 410 890 850 75 65 82 85 240 T. Carbon 71 250 210 11 11 18.5 17.5 60.5 T. I. Carbon 37 66 45 4 6 7 _5	<u>T Kjeldahl-N</u>	ND	2.2	1.8	ND	<u>ND</u>	.04	.04	ND
Magnesium 8.2 28 24 2.7 2.3 2.8 2.5 9.0 Calcium 40 116 106 2.9 2.8 3.0 2.7 31 Hardness 130 400 360 18 15 17 16 110 Sulfates ND ND ND 3 6 5 6 3 Chlorides 32 77 77 29 25 27 27 38 Conductivity 410 890 850 75 65 82 85 240 T. Carbon 71 250 210 11 11 18.5 17.5 60.5 T. I. Carbon 37 66 45 4 6 7 _5	T Kjeldahl-N (filter	ed) ND	2.6	1.8	0.2	ND	.04	.04	ND
Calcium 40 116 106 2.9 2.8 3.0 2.7 31 Hardness 130 400 360 18 15 17 16 110 Sulfates ND ND ND 3 6 5 _6 _3 Chlorides 32 77 77 29 25 27 27 38 Conductivity 410 890 850 75 _65 _82 _85 240 T. Carbon 71 250 210 11 _11 18.5 17.5 60.5 T. I. Carbon 37 66 45 _4 4 6 7 _5	Iron	18	60	24	<0.1	<0.1	0.4	<u>0.3</u>	3.6
Hardness 130 400 360 18 15 17 16 110 Sulfates ND ND ND ND 3 6 5 6 .3 Chlorides 32 77 77 29 25 27 27 38 Conductivity 410 890 850 75 65 82 85 240 T. Carbon 71 250 210 11 11 18.5 17.5 60.5 T. I. Carbon 37 66 45 4 6 7 _5	Magnesium	8.2	28	<u>24</u>	2.7	.2.3	2.8	2.5	9.0
Sulfates ND ND	Calcium	40	116	106	2.9	2.8	3.0	2.7	31
Chlorides 32 77 77 29 25 27 27 38 Conductivity 410 890 850 75 65 82 85 240 T. Carbon 71 250 210 11 11 18.5 17.5 60.5 T. I. Carbon 37 66 45 4 4 6 7 _5	Hardness	130	400	360	18	15	17	16	110
Conductivity 410 890 850 75 65 82 85 240 T. Carbon 71 250 210 11 11 18.5 17.5 60.5 T. I. Carbon 37 66 45 4 4 6 7 _5	Sulfates	ND	ND	ND	_3	6	5	_6	3
T. Carbon 71 250 210 11 11 18.5 17.5 60.5 T. I. Carbon 37 66 45 4 6 7 5	Chlorides	32	77	77	<u>_2</u> 9	<u> </u>	27	27	38
T. I. Carbon 37 66 45 4 6 7 5	Conduct ivity	410	890	850	75	<u> 6</u> 5	<u>_8</u> 2	<u> 8</u> 5	240
	T. Carbon	71	250	210	11	<u> </u>	<u>18.</u> 5	17.5	60.5
T. O. Carbon 34 184 165 7 7 12.5 10.5 45.5	T. I. Carbon	37	66	45	_4	4	6	7	_5
	T. O. Carbon	34	184	165	7	7	12.5	10.5	45.5
				an version of the second at the second					
								an - Marco and a successive de Constant de	****

Conductivity = µmhos/cm @ 25⁰C Turbidity = JTU Remaining in ppm