Publication No. 73-e49

ECR FORMATON _____ R ACTION _____ RMIT _____ HER _____

WA-30-1010

TO:	John Hodgson
FROM:	Ron Devitt Rcd
SUBJECT:	Goldendale STP

February 27, 1973

DATE

Hans Cregg and I conducted an efficiency survey of Goldendale sewage treatment plant. In addition, the primary clarifier effluent was composited. Samples for coliform were taken in the receiving water.

Paul Halm seems to be a conscientious operator. Housekeeping was neat and he is knowledgeable about his plant. He was elected Operator of the Year of the Yakima Region of PNPCA in 1968.

The facilities do have a number of shortcomings. The primary problem is flooding and overflow due to hydraulic overloading. The influent line reduces from 15" to 12" in the head works. There is a 12" outfall line. When influent flow through the 15" line exceeds what can be discharged, the whole system backs up and floods the primary clarifier and head works.

Part of the hydraulic loading could be eliminated by disconnecting the roof rainspouts from the domestic system, but the primary source of overloading is due to infiltration.

Chlorination of bypassed sewage occurs only by mixing with the effluent. The Little Klickitat flows to the Big Klickitat which is the source of water for the City of Klickitat. Mr. Halm notifies that city and DOE when bypassing occurs.

Prior to our survey, grit had been flushed to the river. I believe he didn't realize this was an unacceptable method, and grit will be disposed of on land from now on.

The minimum chlorine contact time was 4 minutes at .7 MGD, although coliform results do not reflect this. There must be short circuiting, as higher values would be expected. There are no means of returning sludge from the chlorine contact chamber to the treatment system. Gas bubbles rising from the length of the chamber indicate that the tank was anaerobic on the bottom.

Immature insects were being carried over the weir to the outfall. The same sort of insects were observed floating in slack pools downstream of the outfall.

Memo to John Hodgson February 27, 1973 Page 2

The bottom sweep arms on the secondary clarifier were not functioning so sludge draw off was less than ideal. Repairs are scheduled for the future.

There are mercury seals on the trickling filters.

It had snowed the night before, and rained in the afternoon. This probably is the reason for the low DOB (48 ppm) on the influent. The overall efficiency would be better during dry weather flow.

In summary, the operator seems knowledgeable and conscientious but the system he is working with is inadequate.

RD:bj

(EFFICIENCY STUDY)

City Goldendale	Plant Type <u>T</u>	<u>.Filter</u> Pop Ser	oulation	<u>3100</u> Desi Capa	gn 1.2 MGD
E living Water	ittle Klickitat Riv			•	•
					n Devitt, Hans Cregg
Comp. Sampling Frequ	<u>ency 30 min.</u>	Weather Co (last 48 h		Snow, overcas	st, rain
Sampling Alequot <u>M(</u>	<u>GD x 200</u> 0° ml.				
		PLANT OPERATI			
Total Flow .226 MGE)	How	Measured_	Flow meter and	d integrator
Max. (Flow) .76 Pre Cl ₂	Time of Max	1315	Min	.65 Time	of Min. 0815 & 1545
Pre C1 ₂	∦/day -	Post Cl ₂	32	_#/day	
		FIELD RESULT	rs		
	Influe	nt		Effluent	
Determinations	Max. Min. Me	an Median	Max.	Min. Mean	Median
Temp. °C 16	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	9 10	9	6 8	8
F 16 Conductivity 16				7.0 7.1	7.1
(umhos/cm) Settleable 2	360 210 29	0 300	350	225 290	300
Solids	10 8	9	.1	Nil <.1	
	• 1	8 - 1999 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 19 19			
	LABORATORY	RESULTS ON CO	DMPOSITE I	N PPM	
	Influent	Effluer	nt	% Reductio	m
Laboratory Number		lst Clar. 2	2nd Clar.	Total	
5-Day BOD COD	50	48	19	62	
T.S.	233 350	247	70 208	<u> </u>	
T.N.V.S.	172	134	137	20	
T.S.S.	104	49	24 i	76	
N.V.S.S.	9	18	4	56	-
pH Conductivity	7.3	7.2	7.3 380		
Turbidity	55	35	20		

Page two

Goldendale

BACTERIOLOGICAL RESULTS

Total ecal ppm (efter secs) # 73-598 0830 <1,000 <400 .1 .5 73-599 1300 2,800 <200 .1 .5 73-600 1515 2,900 <400 .1 .75 73-601 River Upstream 400 <40 NA NA 73-602 River Downstream <100 <40 NA NA	LAB #	SAMPLING TIME	COLONIES/10(5 (MF)		3 min. Residual
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					and the second s	
73-555 1300 2,800 <200			<1,000		.1	.5
73-601 River Upstream 400 <40				<200		
73-601 River Upstream 400 <40				< 400	.1	.75
	1 73-601	River Upstream		10		
				<40	NA	NA
nts:	73-602	River Downstream		<40	NA	
	73-602	River Downstream		<40	NA	
	73-602	River Downstream		<40	NA	
	73-602	River Downstream		<40	NA	
	73-602	River Downstream		<40	NA	

City of Goldendale

Goldendale, Washington 98620

Year 1970 Total ra in fall 19.5" +snowfall last h days 193,600,000 Total Flow 193,600,000 MG Nat. Gas used 3,957,000 cu.ft. Aprox. cost Oper. \$15,292.00 Sludge Gas Gen. 8,479,000 cu.ft.

Year 1971 Total rainfall 17.1" Approx. cost of operation \$11,692.00 Total Flow in MG 185,520,000 Ave. Daily flow of .507 MGD Nat. Gas used 4,313,000 cu.ft. Sludge Gas Generated 10,405,000

Year 1972 Total rainfall 18.9" Lowest Temps. recorded here Feb. 2, 72 40 and -12 Dec. 13,72 These readings were taken between 7 and 8 AM. Pounds Chlorine used 11,372 Cost\$1696.51 4,713,000 cu.ft. Cost \$404.58 Nat. Gas Sludge Gas Gen. 9,586,000cu.ft. Electricity used analyzing 263,160 KWH Cost 1,922.60 Total Flow 197,568,000 MG Ave. daily flow of .539 MGD Approx. hrs. labor 3029 Approx. Wages 11,207.68 Repairs Aprox. \$153.69 Paint & Lube Approx.\$170.10 Misc. Approx. \$30.40 Chemicals approx. \$ 245.03 Postage Approx. \$1.55 Total Approx. Cost of Operation for the Year \$ 17,666.75 \$6,459.07 Approx. cost of repair, Chemicals, Chlorine, Electricity, Nat.Gas, Oil & Grease. Of the \$6,000.00 There was \$1470.59 for up Dating the Laboratory.

	L WATER POLLUTI TMENT PLANT	OPERATION AND OPERATION AND OPERATION AND OPERATION AND	NISTRATION	NCE	FORM APPROVED BUDGET BUREAU NO. 42-
CHECK ONE		TE OF AUDIT	~7	PLANT DES	CRIPTION CODE (For Official Only)
TISTANDIT T'RE-A	AUDIT	1-50-	(3		~
		A. GENERAL I	and the second		deline at a
1. PROJECT (State, Number)			SCOPE OF PROJ	ECT (new plant, ad	utions, etc.)
2. PLANT LOFATION (CITY, COUNT		Kitri-	IDENTIFICATION	N OF AREAS SEN 1	0
			LATION	I	
3A. FRACTION OF AREA POPUL SERVED (%)	ATION 30.	PLANT DESIGN (PO)	MACON Equivalen	D BC. SERVEL	BY PLANT (domestic)
	à	A. TYPE, OF COLL	ECTION EXETEN		
······································					LU BY SURFACE ON GROUND
			WATER (infil	tration, mgd)	LO BY SURFACE ON GROUND
5.YEAR COMMUNITY BEGAN SEW		1)			
TREATMENT		64. SEWER_	YEAR PRESENT	SYSTEM PLACED	SC. ANDILLARY HOR
• 11		1942		711	2-64
	<u>, </u>		78. APPROXIMA	TÉ AREA LEFT FO	R EXPANSION (acres)
7A. SIZE OF PLANT SITE POCIES,	,			16	. ,
8A. IN THE SPACE PROVIDED B FLOW SEQUENCE, INCLUDE STABILIZATION PONDS AND	FLOW FURNISH A	SIMPLIFIED FLOW D	AGPAM OR A WE	RITTEN DESCRIPT	ION OF THE PLANT UNITS IN
		Je -	<i>.</i>	6 1	
comminitian	digesto	it z		ly 1.	, ,
BB. NOTE ANY SIGNIFICANT OF		Filt S	, NO. S	Lyper it	171 Marine (1)
	UNIQUE PROCESS	Filt S)		171 Man (1/2)
BB. NOTE ANY SIGNIFICANT OF	UNIQUE PROCESS	Filt S)		171 Man (1)
BB. NOTE ANY SIGNIFICANT OF	UNIQUE PROCESS	Filt S)		171 - Angin (1)
A. NAME OF STREAM	NIQUE PROCESS	9. RECEIVI	REGULATED		171 - Angin (1)
A. NAME OF STREAM	ERMITTENT	9. RECEIVI	REGULATED	INTER COAST	IPI - MARINE CHU STATE INTRASTATE AL
A. NAME OF STREAM A. NAME OF STREAM A. NAME OF STREAM PEPENNIAL INT B. 14. ANNUAL AVERAGE DAILY F	ERMITTENT	9. RECEIVI 7. NATURAL DRMANCE AND PLAY 16NPEAN FL	REGULATED	INTER COAST ORMATION	171 - Angin (1)
A. NAME OF STREAM	ERMITTENT	9. RECEIVI	REGULATED	INTER COAST ORMATION	IPI - MARINE CHU STATE INTRASTATE AL
A. NAME OF STREAM A. NAME OF STREAM 96. STREAM FLOW IS PEPENNIAL 1A. ANNUAL AVERAGE DAILY F (#30)	CURRENT PERFO	9. RECEIVI	REGULATED T LOADING INF OW RATE (mad) WET (EATH	ORMATION	IT - ME MALE (MSU)
A. NAME OF STREAM A. NAME OF STREAM A. NAME OF STREAM PEPENNIAL INT B. 14. ANNUAL AVERAGE DAILY F	CURRENT PERFO	9. RECEIVI	REGULATED T LOADING INF OW RATE (mad) WET (EATH	ORMATION	IT - ME MALE (MSU)
A. NAME OF STREAM A. NAME OF STREAM Depennial PEPENNIAL INT B. 1A. ANNUAL AVERACE DAILY F (DSC) 2. AVERAGE SOD OF RAWSEWA	ERMITTENT CURRENT PERFO FLOH RATE	9. RECEIVI 9. RECEIVI 7. 7. 7. 7. 7. 7. 7. 7. 7. 7.	REGULATED T LOADING INF OW RATE (mgd) WET (EATH 4 3. AVERAGE SE	ORMATION IC. MINIMU ER TTLEASSE SOLID	STATE INTRASTATE AL MELOW RATE (Mgd) S OF FAM SEMA ST MINDLE C (m1/1)
A. NAME OF STREAM A. NAME OF STREAM 96. STREAM FLOW IS PEPENNIAL 1A. ANNUAL AVERAGE DAILY F (#30)	ERMITTENT CURRENT PERFO FLOH RATE	9. RECEIVI 9. RECEIVI 7. 7. 7. 7. 7. 7. 7. 7. 7. 7.	REGULATED T LOADING INF OW RATE (mgd) WET (EATH 4 3. AVERAGE SE	ORMATION IC. MINIMU ER TTLEASSE SOLID	STATE INTRASTATE AL MELOW RATE (MSd) S OF FAM SEMASE (MSd)
A. NAME OF STREAM A. NAME OF STREAM Depennial PEPENNIAL INT B. 1A. ANNUAL AVERACE DAILY F (DSC) 2. AVERAGE SOD OF RAWSEWA	ERMITTENT CURRENT PERFO FLOH RATE	9. RECEIVI 9. RECEIVI 7. 7. 7. 7. 7. 7. 7. 7. 7. 7.	REGULATED T LOADING INF OW RATE (mgd) WET (EATH 4 3. AVERAGE SE	ORMATION IC. MINIMU ER TTLEASSE SOLID	THE AND
A. NAME OF STREAM A. NAME OF STREAM Depennial PEPENNIAL 1. ANNUAL AVERACE DAILY F (DSC) 2. AVERAGE SOD OF RAWSEWA 4. AVENAGE SUSPENDED SOLIC	CURRENT PEAFC	9. RECEIVI 9. RECEIVI 7. 7. 7. 7. 7. 7. 7. 7. 7. 7.	REGULATED REGULATED IT LOADING INF DW RATE (mgd) WET (EATH 3. AVERAGE SE 5. AVERAGE CO PLANT BEDUCT	INTER DRMATION J.C. MINIMU ER TTLEASLE SOLID DLIFORM DENSIT (STATE INTRASTATE AL MELOW RATE (MSU) SOF FAN SENAGE (MSU) OF HAN SENAGE (MU)
A. NAME OF STREAM A. NAME OF STREAM Depennial PEPENNIAL INT B. 1A. ANNUAL AVERACE DAILY F (DSC) 2. AVERAGE SOD OF RAWSEWA	CURRENT PEAFC	9. RECEIVI 9. RECEIVI 7. 7. 7. 7. 7. 7. 7. 7. 7. 7.	REGULATED REGULATED IT LOADING INF DW RATE (mcd) WET (EATH 4 3. AVERAGE SE 5. AVERAGE CO	INTER DRMATION J.C. MINIMU ER TTLEASLE SOLID DLIFORM DENSIT (STATE INTRASTATE AL MELOW RATE (Mgd) S OF FAM SEMA ST (Mg/)

7A. COES PLANT HAVE BUNG CT POWLR GENERATOR / FOR MAJON PUMPING FACILITIEST (X yes 78. ADEQUATE ACARD S75TEM FOR POWER OF EQUIPMENT FAILURES? X YES [NO 8. ARE CHLORINATION FACILITIES PROVIDED? IF YES, ANSWER BA THRU G IF YES, IS CHLORINATION CONTINUOUS? IS YES IN THE NO. EXPLAIN REASON FOR INTERMITTENT CHLORINATION I NO 50 YES NO 8A PURPOSE OF CHLORINATION (ininfection) BB. TYPE OF CHLORINATOR FIPRNAA 11/2/10/12 ł. BC. POINT OF APPLICATION OF CHIORINE 8D. CAN BYPASSED SEWAGE BE CHLORINATED? K an e---. NO NO YES BE. AVERAGE FEED RATE OF CHLORINE (10/day) SF. CHLORINE RESIDUAL IN EFFLUENT Nº 23 PPM AT END OF MINUTES 8G. MINIMUM SUPPLY OF CHLORINE STORED ON PREMISES (16))-11-15 9. ARE FACILITIES PROVIDED FOR COMPLETE BYPASS OF RAW SEWAGE? T.YES IF YES, ANSWER A THRU & BELOW, ANSWER H IN EITHER CASE. ои Г 9C. REASON FOR BYPASSING 98. AVERAGE DURATION (hours) SA. FREQUENCY (times monthly) D. ESTIMATED FLOW RATE DURING DESTE - 10001111 98. DOES SEWAGE OVERFLOW IN DRY WEATHER? WITHIN HYDRAULIC CAPACITY OF PLANT YES NO NO DEVOND HYDRAULIC CAPACITY OF PLANT BY SF. TYPE OF DIVERSION STRUCTURE SG. AGENCIES NOTIFIED OF BYPASS ACTIC SH. DO OPERATORS HAVE OPTION TO BYPASS INDIVIDUAL PLANT UNITS? (If no; has this caused any operational proplems?) PUMP Ø YES P FRIMARY Down - NO 104. ARE BACK FLOW DEVICES PROVIDED AT ALL CONNECTIONS TO CITY WATER SUPPLY? (II no, explain) T YES X NO 100. CHECK TYPE OF BACK FLOW PREVENTION DEVICE PRESSURE OPERATED PHYSICAL DISCONNECT OTHER(specify) DOUBLE CHECK VALVE 11. USES OF TREATMENT PLANT EFFLUENT VONE 12. USES OF RECEIVING STREAM WITHIN 10 MILES OF OUTFALL 13. HAVE THERE BEEN ANY ODOR COMPLAINTS BEYOND PROPERTY! (II YES PNO 14. OBSERVED APPEARANCE AND CONDITION OF EFFLIDENT. RECEIVING STREAM. OF ORXINAGE WAY SAME HYPE OF ALM SECTS IN Che Chemica Could be Jeen Pricinalle on in port.

FWPCA-12 (Rev. 4-68) (Page 2)

	(r.)
15. STADILIZATION PONDS A	
A. WELOS CUT AND VEGLIATIVI CHONTH IN PONDS ELIMINATED	U. BANKS AND DIKES MAINTAINED (COSIUN CC.)?
YES NO	YES NO
C. FENCING AND "WARNING - POLLUTED WATER" SIGNS PRESENT AND IN GOOD REPAIR?	D. FREQUENCY OF INSPECTION BY OPERATOR
	l
E. WATER DEPTH (leal)	MEDIUM
F. ADEQUATE CONTROL OF DEPTHY	G. SEEPAGE REPORTED?
YES NO	YES NO
H. ANY REPORTS OF GROUND WATER CONTAMINATION FROM POND	(Il yes, give details)?
YES NO	
$\langle \rangle$	
\sim	X.
I.MOSQUITO BREEDING IF YES, NAME OF SPECIES IF PROBLEM T KNOWN	A CAN SURFACE RUN-OFF ENTER POND?
C. SUPERVISORY S	ERVICES
1. IS A CONSULTING ENGINEER RETAINED OR AVAILABLE FOR CON	SULTATION ON OPERATING AND MAINTENANCE PROBLEMS?
YES 🔲 NO IF YES IS IT ON: 🗌 CONTINUING BA	SIS OR 🕅 UPON REQUEST BASIS
(IF CONTINUING BASIS, WHAT IS THE FREQUENCY OF VISITS:	
2. DO OPERATORS AND OTHER PERSONNEL ROUTINELY ATTEND SHO	ORT COURSES, SCHOOLS OR OTHER TRAINING ACTIVITIES?
X YES NO	
IF YES, CITE COURSE SPONSOR AND DATE OF LAST COURSE A	TTENDED S
IF NO, DO YOU KNOW OF ANY COURSES AVAILABLE TO SERVE	THIS ARPAT
34. ARE ALL EQUIPMENT AND PARTS OF THE PRESENT PLANT STIL	L'IN OPERATION?
(SPRING 197	YES NO (It no, explain)
B. ARE PROCESSING UNITS OPERATING AT DESIGN EFFICIENCYT	YES NO (II no, explain)
Sweep arms on andry	at t
Clautiere broken	Cemb
	MENTPLANT
A. STRUCTURAL TO YES INO (III yes explain) - Unifly When Inifluent 2 / CCHS chill In a DIP Chart 15"	art line reduced and the
happenst 15" a	tt ld +0
B. MECHANICAL YES NO (Il yes Explain)	
2ntorgectarifiers in	cocoparing Ritty vanyous
don't worker.	
C. OPERATIONAL YES NO (11 yes, explain)	
· · · · · · · · · · · · · · · · · · ·	
OF THE PLANT? BETTER GENERIENCE TO BATE WHAT IF ANY CHAN	CES WOULD YOU RECOMMEND TO IMPROYE OPERATION
Malaritian pliminate, min	mouter infilled but means
fight Diand protection	spoutste infillations means
ou clearing chy contract at a	is the first to the first for my
Phone Ilong Allerinator.	
FWPEA-12 (Rev. 4-68) (Page 3)	
	· ·

and opt (H maintai	RATING M ned, check ,	conos nai jeneral item:	a included)	tres [NO NO	REPORTED		YES	j 110		
FREQUENCY	WEATHER	FLOW	SLUDGE HANDLED	CHEMICALS USED	DIGESTER	GRIT HANDLED	ELEC. USED	COST DATA	AIR USED	MAIN- TENANCE	OTHER
DAILY	\checkmark	\succ	0	وسيا	. >		\times		PA.	X	
WEEKLY											
MONTHLY											
ANNUALLY								X			
WHAT PL	ANT AND/O	CK FORM O .OG BOOK R LABORAT	F RECORD E	AR SHEET MENT, GAGE	SEPA		PERATION		ROL CHAR	TS 🔀 GRA	\РнS
8. INDUSTR	IAL WASTES	DISCHARG	ED TO MUN	ICIPAL SYST	EMNA	A. NUMBER	R AND TYP	ES OF INDU	STRIES DIS	CHARGING T	D SYSTEMS
B. POPULA	TION EQUIN	ALENT	D) OF INDU	STRIAL WAS	TES (pe)	C. POPULA	TION EQU	VALENT (S	S) OF INDU	STRIAL WAST	ES (pe)
D. VOLUME	OF INDUST	RIAL WAST	Es (mgd)		······	E. COMPOS	SITION AND	CHARACTE	ERISTICS OF	FINDUSTRIA	L WASTES
	······································			BEEN SOLV		YES	<u>NO (11</u>	yes, how?)		<u></u>	
] NO CHARGED	BASED ON	PRC BOD	DPERTY TAX	сн	ATMENT CO TER USE AS ARGE BASE scale, e(c.)	SESSMENT	СНА	RGE BASE	DON FLOW DS (describe)	
				THE OPERAT		VES PLANT		9)			· · · · · · · · · · · · · · · · · · ·
\sim	RYES F	NO		ONS AVAILA		Y WORK AND	- F	New	ECORD S A	C REPORTS	<u> </u>
			20	2		or Most Recet			on ('F'')		
108 C	TEGORY		NUMBER	TOT	AL MAN-HO PER WEEK	DURS TOT	AL NUMBER	R RANG	E IN YEAR LOYED AT ENT PLAN	OFE	IN YEARS (PERIENC REATMENT
2. OPERAT	ITENDENT	-NICIANS			52.		(177-	<u>}</u>			
4. LABORE 5. PART-1 6. TOTAL	IRS TIME LASOF	IERS	<u> </u>	· · · · · · · · · · · · · · · · · · ·	8					- Styd	: 171

FWPCA-12(REV. 4-68)(Page 4)

	L. LAOUAATCAL CO	i k i dis i k	
Enter test codes opposite appropriate items.	If any of the below tests of	are used to monitor industria	1 wastes place an "X" in

addition to the test code. CODES		,	-						
 1 - 7 or more per week 2 - 4, 5 or 6 per week 				- 2 or 3 per m - 1 per month			arterly S ni—Annually	- Annually	
]	1	TECT	ter		SLU		1]
ITEM .	RAW	PRIMARY	LIQUU	FINA	L	RAW	SUPER- NATANT	DIGESTOR	RECEIVING
1. 800									
2. SUSPENDED SOLIDS	b		-	6					
3. SETTLEAGLE SOLIDS	2	2	2-	- 2-					
4. SUSPENDED VOLATILE									
5. DISSOLVED OXYGEN	2	2							
6. TOTAL SOLIDS	3								
7. VOLATILE SOLIDS	1				·				
8. p ^H	2	2	6	22	<u></u>		-	-h	
9. TEMPERATURE	2		.	-				<u> </u>	
10. COLIFORM DENSITY									
11. RESIDUAL CHLORINE	-						,		
12. VOLATILE ACIDS						-			
13. M. B. STABILITY	-								
14. ALKALINITY								-:	
15. GOES ANALI								2	
16.				•					
17.							· ······		
18.			_						
19.	l						l		
	ſ			TENANCE CO			- A	1	TOTAL
YEAR OF OPERATION	SAL ARIES/W	AGES ELEC	TRICITY	CHEMICAL	<u> </u>	AINTENAN			
MOST CURRENT YEAR 19									
PRIOR YEAR 19									
PRIOR YEAR 19	1111 01	- 41	(In «	-7.15		<u></u>	1 1	m	
PRIOR YEAR 19	<u> };2:</u>		1 Pris	(<u>612</u>				ORGANIZATI	<u>3-20</u>
EVALUATION PERF	ORMED BY			TITLE		جور		- ORGANIZA II	
A.J. 1-EUL) # } _ *	···· • • • • • • •	Irl_		$- \downarrow$; 	
								•	
		<u> </u>		T 1 E		1		<u>∩</u> ⊾	DAT
INFORMATION FUR	AUNED BY		TI ۲۱ - ۲۱	TLE 			ORGANIZATI		2*1
Alle fill	<u> </u>		V v				<u> </u>		1
				- +1	1	·			
		1				1			1

G. NOTATIONS BY EVALUATOR 1. ADDITIONAL REMARKS (Il compres roler to a particular item, identify by number) Recommeded to LAND dispose 2. GENERAL COMMENTS ON HOUSEKEEPING AND MAINTENANCE VERY 9000 Paul WAS OPERATOR OF The year - MIKIMA Region PAPCA 1968 3. REQUIREMENTS OF HIGHER AUTHORITY 3A. DOES THE PLANT PROVIDE THE DEGREE OF TREATMENT PRESENTLY REQUIRED BY THE STATE? (If no, explain) YES NO NO 3B. ARE THERE ANY PENDING ACTIONS (enforcement conferences, change in water quality standards, etc.) THAT WOULD REQUIRE UPGRADING OF TREATMENT BY THIS PLANT? YES NO (II yes, explain) ASK NIXON 3C. NUMBER OF STATE INSPECTIONS OF PRESENT PLANT TO DATE. 4. IS ANY FOLLOW-THRU ACTION REQUIRED TO (1) CORRECT DEFICIENCIES IN THE PLANT OR ITS OPERATION OR (2) RESOLVE INDUSTRIAL WASTE PROBLEMS? (II yes, describe required corrective action) YES NO Needs to eliminate infiltration some major mechanical (many digestor) work. otc.