Publication No. 73-e81

WA-CR-1028

Mike Palko

FROM <u>Ron Pine</u>

<u>Wallula, Washington</u>

July 19, 1973

A study was conducted on May 15, 1973, in the Columbia River to determine if the diffuser outfall from the subject industry is adequate to comply with the dilution zone policy of the Department of Ecology. A schematic of the study area and its relationship with the main Columbia River are shown in Figure 1. The analytical results of the field samples are presented in Table 1.

A Hydrolab II unit was used to make all field determinations. The dissolved oxygen probe was calibrated using the alkaline-acide modification of the Winkler Method immediately prior to the survey and three times during the field sampling. The average deviation of the Hydrolab from the Winkler test was + 0.6 mg/l. The minimum deviation was + 0.3 mg/l and the maximum was + 0.8 mg/l.

The temperature probe of the Hydrolab was calibrated at the Olympia Laboratory before and after the survey. The calibration indicated a deviation on the probe of less than 0.5 C. Water temperatures were 19.5 C at all stations and at all depths. This would appear to be an anomaly. However, the temperature of the effluent prior to discharge was 28.9 C which would probably not be a sufficient differential, with good diffusion, to measure a ΔT in the receiving water at the stations sampled.

The pH varied between 8.1 and 8.4 with the highest values noted at the control station. Conductivity ranged between 230 and 310 μ mohs.

There did not appear to be any violations of state water quality standards in the dilution zone during this study. Color values were higher in the dilution zone area than at the control station but were not aesthetically dispeasing.

REP:bjj

Attachments

State of Washington Department of Ecology

<u>S</u>	tation	Time PDT	D.O. mg/l	PBI mg/l	Total Solids ml/l	Color Units	Max. Depth in Feet
١	A 1/ B c	1116 1125	11.4 11.8 11.4	130 120 77	204 	82 76 59	7
2	A B C	1150 1155	11.8 11.6 11.6	240 220 28	225 	122 115 34	8
3	A B C	1226 1235	11.8 12.0 12.4	335 100 180	 	155 65 99	10
4	A B C	1250 1310	11.6 12.0 12.4	260 175 63	231	130 96 46.	10
5	A B C	1319 1330	11.8 11.8 12.1	90 36 110		65 42 76	12
6	A B C	1341 1350	12.5 11.6 11.8	59 ND 150	182 201	44 44 90	11
7	A B C	1402 1409	12.5 11.6 12.2	150 170 30		97 98 40	10
8	A B C	1420 1423	11.8 12.0 11.8	165 180 195		97 102 163	8
9	A B C	1439 1450	11.6 11.8 11.2	350 300 310		153 148 102	9
10	A B C	1500 1510	12.2 12.2 11.8	180 130 150		82 94 110	10
ontrol	A B C	1520	12.2 12.2 11.4	ND 32	159	26 27	14

Table 1. Analytical Results From Samples Collected in the Columbia River near the Outfall Diffuser from Boise Cascade Papers, Wallula, Washington, May 15, 1973.

 $\frac{1}{B} =$ A = One foot below surface B = Mid depth

C = Bottom

Figure I. AREA MAP AND SCHEMATIC OF DILLUTION ZONE FOR BOISE CASCADE PAPERS, WALLULA, WASHINGTON, AND FOR DIFFUSER OUTFALL STUDY, MAY 15, 1973.

STATE OF WASHINGTON DEPARTMENT OF ECOLOGY

WATER QUALITY LABORATORY

DATA SUMMARY

C	R	I	G	I	N	A	L	,	Т	0	•				
	6	ę.	•	Ę	6	Ŗ	1	~	6	0	•	0	ø	e	0
С	C	P	I	E	S		T	0	•						
	0	ø	6	6	٠	6	٠	ø	0		¢	ø	۵	ø	
٥		6	0	¢	٥	8	e	•	0	e	•		9	ø	0
8	Å	'n	e	ŕ	ŕ	ŕ	ŕ	ŝ	٠	0	6	0	e	e	\$
0 1	•	ŝ	0	9	e	¢	یہ د 9	\$	0	0	6	e	e	•	0

Source BUISE CASCALE @ WALLVLA

Collected By $R_{1}P_{2} \neq D_{1}A_{2}$

Date Collected 5-15-23

Goal, Pro./Obj._____

Log No.	Station	PBI	COLOR	<u>T.S.</u>	<u>ell</u>	Lob MG	STATION	PBI	Color	<u>T.S.</u>	+ pH
73-1808	CONT A	ND	26	159	8.5	73-1829	<u>78</u>	170	98	-	8.6
09	<u>" B</u>	32	27	-9	8.0	30	70	30	40		8.7
10	<u>(A</u>	130	82	204	8.3	31	8 A	165	97		8.7
[(13	120	76		8.5	32	8B	180	102		86
. ().	16	77	59		8.6	33	80	195	163	******	8.5
	2A	240	122	225	8.4	34	<u>9 A</u>	350	153		18.3
14	<u> 13</u>	220	115		<u> </u>	35	9 B	300	148		8.3
15	26	28	:34		8.6	36	90	310	102	~	8.4
16	<u>3 A</u>	335	155		8.2	30	10 A	180	82		8.4
17	<u>3 B</u>	100	65		8.6	28	<u>10 B</u>	130	14	~~	8.4
18	30	180	99		8.5	39	10 C	150	110	~	18.5
19	<u>.4</u> A	260	130	231	8.4	wegenalisterationspectrum	e uitazimzenanezkindarzinen e			-	_
20	<u> 43</u>	175	96		8.5						.
2 (<u>4c</u>	63	46		8.6		-				_
22	<u>5 A</u>	90	65		9.6	augederste bekangen affektive bekanden	engen-engelannend Williamsteinnen er		P		
23	<u>56</u>	36	42		8.7		and the second			-	
<u> </u>	50	110	76		8.5					ļ	
25	<u>6 A</u>	_59_	44	185	8.2						_
20	<u> </u>	NO	44	200	8.7						
2)	60	150	90		8.6		L	L			
28	7A	150	97	<u>`</u>	8.6						

Note: All results are in PPM unless otherwise specified. ND is "None Detected"

Stephen D. R.M. Date 5-22-23 Summary by_

Walla Walla. MARUTURPOIL フフリレム

