Publication No. 74-e24

WA-23-1100

•	•		
•	ANIN	N	
15	1 ACT .	·N	
HFR.	MIT		
71.	-R	_	

TO Gerry Calkins

EROM Dan Glantz

SUB ECT Pe Ell STP Efficiency Study

State of Washington Department of Ecology

June 5, 1974

On April 3, 1974, the writer conducted a routine efficiency study at the Pe Ell Sewage Treatment Plant. Composite sampling commenced at 0930 and continued on the half hour thru 1600. Six grabs for coliform samples were made during this period.

The Pe Ell plant is quite new, it has been in operation for two years. Normally it is adequate; however, occasionally, during extensive rainy periods, the clarifier becomes overloaded and must be bypassed. My visit was on a cool, clear day, but there had been heavy rain for several days prior to this. Considerable infiltration into the old sewer system was still evidenced by the heavy flow, but not enough to require bypass at this time.

Field data and laboratory results show good reductions and treatment results. The grounds are fenced and well maintained and the appearance of the office and laboratory indicate a good housekeeping program is being followed. Except when there is an infiltration problem created by the antiquated sewer lines, Pe Ell's system appears to be performing as designed and is adequately serving the small community.

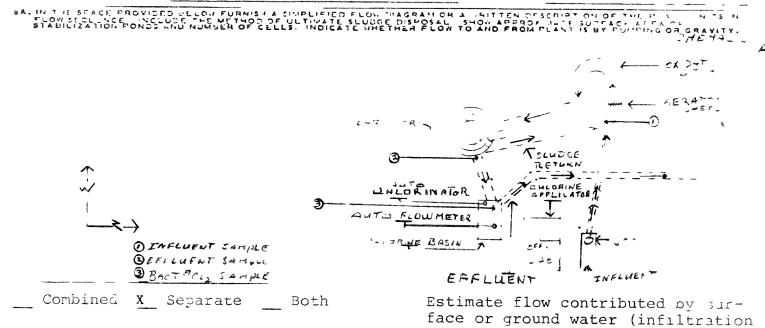
DG: JMH

STP Survey Report Form

Efficiency Study

City Pe Ell	Plant Type <u>Second</u>	ary Pop.	. Served	De	sign 5	500
Receiving Water Che	ehalis River	Perennia	al <u>X</u>]		apacity	
Date <u>4/3/74</u> Sur	vey Period_0930-	1600	Survey Pe	ersonnel D. G	lantz	1939 - De angele an
Comp. Sampling Fre	quency_1/2 hr.	Sampli	ing Alequo	ot 1000 ml (ad	j to flow)	
Weather Conditions	(24 hr) <u>clear-coo</u>	1Are fa	acilities	provided for	complet	te by-
pass of raw sewage	?Yes _X	_No/Freque	ency of by	pass	an a	and a sub-sub-sub-sub-sub-sub-sub-sub-sub-sub-
Reason for bypass_		Is byp	ass chlor	inated?	Yes	No
Was DOE Notified?_	Discharg	e - Interm	ittent	Contin	uous	2011-0124/1124-05-001100-01-02-04
	Plant	Operation				
Total flow 316,00	00 GPD	How meas	sured Re	cording flowment	ter	1993 STADLOG & MT STATE OF ST
Maximum flow_330,00	00	Time of	Max. 10	30	an a	neura a cupa parte da cupa da c
Minimum flow_310,00	00	Time of	Min. 14	00 & 1530		ality of the same states of the same states and the same states are states and the same states are states are s
Pre Cl ₂ <u>None</u>	#/day	Post Cl ₂	<u> </u>		#/	'day
	niala	Deguite				
	<u>rield</u> Influ	Results		DEEL		
Determinations			Modian	Effl May Min		Modian
	Max. Mill.	Mean	Median	Max. Min.	Mean	and the second s
morr 90	12 0 10 0		11.0	12.0 10.0		1 10.01
Temp °C pH (Units)	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		$\frac{11.0}{6.55}$	$\begin{array}{c} 12.0 \ 10.0 \\ 6.8 \ 6.2 \end{array}$		<u>10.0</u> 6.6
pH (Units) Conductivity (µmhos/cm ²)	and the second				-	Compared and the second second second second second
pH (Units) Conductivity	6.8 6.3	4.1	6.55	6.8 6.2	TR	6.6
pH (Units) Conductivity (µmhos/cm ²) Settleable	6.8 6.3 225 160		6.55 175 4.0	6.8 6.2 210 125		6.6 155
pH (Units) Conductivity (µmhos/cm ²) Settleable	6.8 6.3 225 160 5.0 3.5		6.55 175 4.0	6.8 6.2 210 125	TR	6.6 155
pH (Units) Conductivity (µmhos/cm ²) Settleable	6.8 6.3 225 160 5.0 3.5 Laboratory Res	ults on Cc	6.55 175 4.0	6.8 6.2 210 125 TR ND	TR	6.6 155
pH (Units) Conductivity (µmhos/cm ²) Settleable Solids (mls/1) Laboratory No. 5-Day BOD ppm	6.8 6.3 225 160 5.0 3.5 Laboratory Res Influent <u>1022</u> 43	ults on Co Efflue 23 < 6	6.55 175 4.0	6.8 6.2 210 125 TR ND % Reducti 86%	TR	6.6 155
<pre>pH (Units) Conductivity (µmhos/cm²) Settleable Solids (mls/1) Laboratory No. 5-Day BOD ppm COD ppm T.S. ppm</pre>	6.8 6.3 225 160 5.0 3.5 Laboratory Res Influent <u>1022</u> 43 43 146	ults on Co Efflue 23 < 6 16 112	6.55 175 4.0	6.8 6.2 210 125 TR ND % Reducti 86% 63% 23%	TR	6.6 155
<pre>pH (Units) Conductivity (µmhos/cm²) Settleable Solids (mls/1) Laboratory No. 5-Day BOD ppm COD ppm T.S. ppm T.N.V.S. ppm T.S.S. ppm</pre>	6.8 6.3 225 160 5.0 3.5 Laboratory Res Influent 1022 43 43 146 89 23	ults on Co Efflue 23 < 6 16 112 71 ND	6.55 175 4.0	6.8 6.2 210 125 TR ND % Reducti 86% 63% 23% 20% 100%	TR	6.6 155
<pre>pH (Units) Conductivity (µmhos/cm²) Settleable Solids (mls/1) Laboratory No. 5-Day BOD ppm COD ppm T.S. ppm T.N.V.S. ppm T.S.S. ppm N.V.S.S. ppm pH (Units)</pre>	6.8 6.3 225 160 5.0 3.5 Laboratory Res Influent 1022 43 43 146 89	ults on Co Efflue 23 < 6 16 112 71	6.55 175 4.0	6.8 6.2 210 125 TR ND % Reducti 86% 63% 23% 20%	TR	6.6 155
<pre>pH (Units) Conductivity (µmhos/cm²) Settleable Solids (mls/1) Laboratory No. 5-Day BOD ppm COD ppm T.S. ppm T.S. ppm T.N.V.S. ppm T.S.S. ppm N.V.S.S. ppm</pre>	6.8 6.3 225 160 5.0 3.5 Laboratory Res Influent 1022 43 43 146 89 23 ND	ults on Co Efflue 23 < 6 16 112 71 ND ND	6.55 175 4.0	6.8 6.2 210 125 TR ND % Reducti 86% 63% 23% 20% 100%	TR	6.6 155

Bacterioiod	ncal	- R - SU	123
the second se			


Lab No.	Sampling Time	Total	lonies/100 m. Fecal Coliform	l (MF) Fecal Strep	Cl ₂ Residual
24	1000	600	< 10		.3
25	1100	600	Est, 10		.3
26	1200	Est. 60	< <u></u>		.5
27	1300	< 20	< 10		.5
28		< 20	< 10		.5

Additional Laboratory Results

NO3-N ppm -	3.80	
NO2-N ppm -	ND	
NH3-N ppm -	0.75	
T. Kjeldahl-N ppm -	0.8	
O-PO4-P ppm -	0.08	
T-PO4-P ppm -	0.40	

Operator's Name

Phone No.

	50,000/100,000	XMGD
<u>Plant Loading In</u>	nformation	
Annual average daily flow rate(mgd)	Peak flow rate(mgd)	
Dry 162,000 GPD	Dry 115,000 GPD	
.ct 250,000 GPD	Wet 310,000 GPD	

considerable infiltration during wet weather This excessive hydraulic overload

STATE OF WASHINGTON DEPARTMENT OF ECOLOGY

WATER QUALITY LABORATORY

ORIGINAL TO: D. GLANTZ
COPIES TO:
• • • • • • • • • • • • • • • •
4 4 4 5 5 5 5 5 5 6 4 4 5
LAB FILES

			DATA	SUMMA	RY				ĹĂ	B FILĖŠ
Source Pe ELL STP		_				Co	llecte	d By	D. GLAN	
Date Collected <u>4-3-20</u>		-				Go	al, Pr	o./Obj	•	
Log Number: 74-	1022	23	24	25	26	27	28	29	, <u> </u>	STORET
Station:	INF	EFC	1000	1100	1200	1300	1400	1500		
рН	6.8	6.8								00403
Turbidity (JTU)	25.	5.		ļ						00070
Conductivity (umhos/cm)@25c	190	160.								00095
COD	43	16		<u> </u>						00340
BOD (5 day)	43	46								00310
Total Coliform (Col./100ml)		-	600	600	E57 60	120	(20			31504
Fecal Coliform (Col./100ml)		-	(10	EST 10	410	410	410			31616
NO3-N (Filtered)	ļ	3.80								00620
NO2-N (Filtered)		ND								00615
NH3-N (Unfiltered)		.75	ļ							00610
<u>T. Kjeldahl-N (Unfiltered)</u>		.8								00625
<u>O-PO4-P (Filtered)</u>	 	.08								00671
Total PhosP (Unfiltered)	 	.40					. <u></u>			00665
Total Solids	146	112								00500
Total Non Vol. Solids	89	21								
Total Suspended Solids	23	NO								00530
Total Sus. Non Vol. Solids	ND	ND								
······										

All results are in PPM unless otherwise specified. ND is "None Detected" Convert those marked with a * to PPB (PPM X 10³) prior to entry into STORET Note:

Summary By Tephen & foll

4/3/74	PE	E.L.	INF	n aansaisen ja ja aasaa ku ka aasaa ku ka aasaa ja a	AUTO	4/3/24	PE	FLL	EF,	E e	
	EMP	PH	COND	55	FLOW	662-	TEMP	PH	Con	55	CULIF
0930 /	12	6.5	175	3.5	30,000 GPS	15" 0.4		6.6	175	0	
	10	6.7	160		320,000	3' 0.3	102	6.6	175		for and the second s
1030 1	19	6.6	200	4.6	330,000	1004	10*	6.4	150	-TR	
1100 1	15	6.6	160		325,000	3' 0.3	10°	6.6	150		diameter.
1130 11	0	6.5	180	3.75	325,000	15 11 0.75	105	6.6	125	TR	
1200 1:		6,6	150		320,000	3' 0.5	128	6,4	150		brown.
	19	6.4	160	4.0		10005	10°	6.7	150	0	
	0 8	6,4	190		320,00	3'0.5	100	6.8	125		Branner
1330 1	0°	6.8	200	4.0		1511 0.3	100	6.7	150	7R	
	05	6.5	200		310,000	·	100-	6.2	160		A TO PARTY OF THE OWNER
	100	6.6	160	5.0	315,00	1510.3	100	6.5	160	TR	
	110	6.6	225		315,000	311.0	100	4.5	210		6
1530 1	112	6.4	115		310,000		112	6.2	160		
1600 /	"/ ⁰	6.3	175		310,000		110	6.6	160		
				Ņ)= 316,000 ³ .						

NORMAN BROWN-OPERATOR PH-291-3792 JERRY NACHT PH-291-3543

STATE OF WASHINGTON DEPARTMENT OF ECOLOGY

WATER QUALITY LABORATORY

A SUMMARY

ORIGINAL TO: G.S.JEANC	
COPIES TO:	
LÅB FILES	

STORET

00403

00070

00095

00340

00310

31504

31616

00620

00615

00610

00625

00671

00665

00500

00530

_			DAT
Source Pe ELL SORT YAR	4	-	
Date Collected 12-10-74		-	
Log Number: 74.	4820	21	
Station:	SORT YARS	SETT. 6 ASIN OVERFLOW	
pH		 	-
Turbidity (JTU)	1,000	350.	-
Conductivity (umhos/cm)@250	4	 	
COD			*****
BOD (5 day)	l		
Total Coliform (Col./100ml)	<u></u>		
Fecal Coliform (Col./100m1)	ļ		
NO3-N (Filtered)	ļ		
NO2-N (Filtered)	ļ		
NH3-N (Unfiltered)			
<u>T. Kjeldahl-N (Unfiltered)</u>	<u> </u>		
0-PO4-P (Filtered)	ļ		
Total PhosP (Unfiltered)	ļ		
Total Solids	1316	461	
Total Non Vol. Solids	1148	382	**************************************
Total Suspended Solids	1148	335	
Total Sus. Non Vol. Solids	996	279	

Collected By <u>S.P. & H.C.</u>

Goal, Pro./Obj._____

All results are in PPM unless otherwise specified. ND is "None Detected" Convert those marked with a * to PPB (PPM X 10³) prior to entry into STORET Note:

Summary By 1 typh P. Roll Date 12-18-74