Publication No. 74-e53

1ECK. IFORMATON _____ DR ACTION ______ ERMIT _____ THER _____

WA-07-1160

 John Glynn

 FROM:
 Pat Lee

 SUBJECT:
 Survey @ Monroe Reformatory

 DATE:
 April 25, 1974

An efficiency study was conducted at the Monroe Reformatory on March 5, 1974. The influent and effluent were composited proportionate to flow for seven hours. The Laboratory and field results are summarized on the accompanying STP survey report form. The operator, Wilbur (not Orville) Weir was very knowledgeable of how his plant should work but wasn't, due to a faulty design. The plant was designed to have 2 cells in series, one anaerobic, the other aerobic. Unfortunately, the effluent from the anaerobic cell operates on an overflow basis thereby allowing scum to escape to the 2nd cell and not building up in the first cell. With no scum blanket, it is very hard to achieve anaerobic conditions. Mr. Weir said they were even aerating the first cell before he started work there. Mr. Weir also stated he was having problems with the large amounts of undigested food coming through the lagoon system.

PL:bjj

Attachment

STP Survey Report Form

Monroe	Effici	ency Stud	Y			
City_ReformatoryP	lant Type_2-cell	lagoon Pop	. Served_	1,000 De	esign	-
Receiving Water Sky	komish River	Perenni	al <u>X</u>	Intermittent	apacity	
Date <u>3-5-74</u> Surv	ey Period 0900-	1600	Survey P	ersonnel <u>Pa</u>	t Lee	
Comp. Sampling Freq	uency_half hour	Sampl	ing Alequ	ot <u>(flow in g</u>	pm) (5)	
Weather Conditions	(24 hr) <u>clear-hai</u>	l Are f	acilities	provided for	complet	e by-
pass of raw sewage?	X Yes	_No/Frequ	ency of by	ypass none		
Reason for bypass		Is by	pass chlo:	rinated?	Yes _	X No
Was DOE Notified?	Discharg	e - Inter	mittent	Contin	uous	(
	Plant	Operation				
Total flow <u>68,200</u>	gallons/7 hrs	How mea	sured <u>Tot</u>	alizer		
Maximum flow .29 mg	d	Time of	Max. 130	0 (right after	lunch)	
Minimum flow .09 mg	<u> </u>	Time of	Min. <u>150</u>	0		
Pre Cl ₂ 0	#/day	Post Cl	2	7	#/	'day
	Field	Results				
	Influ	ent		Effl	uent	
8 Determinations	Max. Min.	Mean	Median	Max. Min.	Mean	Median
Temp °C pH (Units) Conductivity (µmhos/cm ²) Settleable Solids (mls/1)	24.6 19.6 10.0 7.0 1000 250 16 4	7.1	21.5 7.4 <u>360</u> 7.0	6.2 4.1 7.2 6.9 400 250 Tr. Tr.	Tr.	5.2 6.9 300 Tr.
	Laboratory Res	ults on Co	omposites			
	Influent	Efflue	ent	% Reducti	.on	
Laboratory No.	74-693	74-69	4			
5-Day BOD ppm COD ppm T.S. ppm T.N.V.S. ppm T.S.S. ppm N.V.S.S. ppm pH (Units) Conductivity (µmhos/cm ²) Turbidity(JTU's)	300 530 696 212 248 16 8.8 410 85	<u>7.</u> 3	9 2 4 8 r.	83 71 56 77 100		

Laboratory Bacteriological Results

Lab No.	Sampling Time	Co Total Coliform	lonies/100 m Fecal Coliform	nl (MF) Fecal Strep	Cl ₂ Residual
74-695	0930	240	< 10	Not Reported	>1.0
74-696	1030	220	< 10	Not Reported	>1.0
74-697	1130	620	< 10	Not Reported	>1.0
74-698	1330	550	< 10	Not Reported	1.0
74-699	1430	820	< 10	Not Reported	1.0
74-700	1530	680	<u> </u>	Not Reported	1.0

Additional Laboratory Results

NO ₃ -N ppm - Not Reported	
NO ₂ -N ppm - Not Reported	
NH ₃ -N ppm - 10.8	
T. Kjeldahl-N ppm - 14.3	
O-PO4-P ppm - Not Reported	
T-PO ₄ -P ppm -	

Operator's Name Wilbur Weir Phone No. 794-8077 Ext. 246

Furnish a flow diagram with sequence and relative size and points of chlorination.

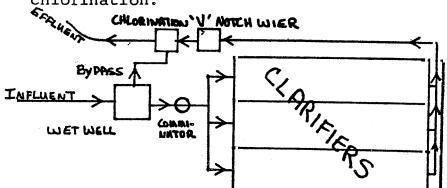
Comminiutor Comminiutor MECHANICAL BAR SCREEN SCREEN SCREEN	2.5 ARRES
Type of Collection	System
Combined Separate X Both	Estimate flow contributed by sur- face or ground water (infiltration)
	Nil MGD
Plant Loading Info	rmation
Annual average daily flow rate(mgd)	Peak flow rate(mgd)
Dry110,000	Dry190,000
Wet190,000	Wet380,000
COMMENTS:	

STP Survey Report Form

Efficiency Study

City <u>Monroe</u> F	lant Type <u>prima</u>	ry Pop.	Served	2700	Design Capacity	.6 MGD			
Receiving Water <u>Skykomish River</u> Perennial <u>X</u> Intermittent									
Date <u>17 Nov. 75</u> Survey Period <u>0930 - 1600</u> Survey Personnel <u>Allen Moore</u> Comp. Sampling Frequency <u>Hourly</u> Sampling Alequot <u>1000 ml ^x <u>flow</u> peak flow</u>									
Comp. Sampling Free	uency Hourly	Sampli	ng Alequo	t <u>1000 ml x</u>	peak flo	W			
Weather Conditions	(24 hr) frost-lit	tle snow ^{Are} fa	cilities	provided f	or compl	lete by-			
pass of raw sewage?	Υ <u></u> Υes	_No/Freque	ency of by	pass <u>Every</u>	normal ra	ainfall			
Reason for bypass_r	ain-storm sewers	Is byp	ass chlor	inated?	X_Yes	No			
Was DOE Notified?	Discharg	e - Interm	ittent	Cont	inuous_				
	Plant	<u>Operation</u>							
Total flow 95,66	7 gal	How meas	ured 90°	V-notch - ma	anual				
Maximum flow .41	9 MGD	Time of	Max. 1110						
Minimum flow28	6 MGD	Time of	Min. 1400	- 1600		the overlap of the state of the			
Pre Cl ₂	#/day	Post Cl ₂			14	#/day			
	Field	Results							
				_					
	Influ	ent		Ef	fluent				
Determinations	Max. Min.	Mean	Median			n Median			
Temp °C	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		14.0	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	- 4	<u>13.5</u> 6.6			
pH (Units) Conductivity	625 400		537	475 35		450			
(µmhos/cm ²) Settleable	14.0 5.0	8.3	6.0	1 .3	.8				
Solids (mls/l)	14.0 0.0	0.0	0.0						
Laboratory Results on Composites									
	Laboratory Res	ults on Co	mposites						
	<u>Laboratory Res</u> Influent	ults on Co Efflue		۲ Reduc	tion	lbs/day			
Laboratory No.			nt	\$	tion	X			
5-Day BOD ppm	Influent 	Efflue 12	ent 30	% Reduction 33%		1bs/day 			
5-Day BOD ppm COD ppm T.S. ppm	Influent 75-5329 180 380 380	Efflue <u>75-53</u> 12 <u>26</u> 29	ent 30 0 0 0	% Reduction 33% 31% 24%		X			
5-Day BOD ppm COD ppm T.S. ppm T.N.V.S. ppm T.S.S. ppm	Influent <u>75-5329</u> <u>180</u> <u>380</u> <u>380</u> <u>160</u> <u>100</u>	Efflue 	ent 30 0 0 0 2	% Reduction 33% 31%		X			
5-Day BOD ppm COD ppm T.S. ppm T.N.V.S. ppm T.S.S. ppm N.V.S.S. ppm pH (Units)	Influent <u>75-5329</u> <u>180</u> <u>380</u> <u>380</u> <u>160</u>	Efflue 	ent 30 0 0 0 0	% Reduction 33% 31% 24% 19%		328			
5-Day BOD ppm COD ppm T.S. ppm T.N.V.S. ppm T.S.S. ppm N.V.S.S. ppm	Influent 75-5329 180 380 380 160 100 18	Efflue 75-53 12 26 29 13 7 2 36	ent <u>30</u> 0 0 0 0 2 4 7.1	% Reduction 33% 31% 24% 19%		328			

Laboratory Bacteriological Results


Lab No.	Sampling Time	Col Total	Lonies/100 ml	Cl ₂ Residual		
	TTWE	Coliform	Fecal Coliform	Fecal Strep		
75-160	0938		< 100		0.3	
75-166	1200		< 50		0.3	
75-159	1600		< 100		.75	
	.↓					
	· 🛉 🖡 ·					
. <u></u>	. I I .		۱ <u></u> ۱			

Additional Laboratory Results

_

Furnish a flow diagram with sequence and relative size and points of chlorination.

Operator's Name Mel Morse Phone No. 794-6558

Type of Collection System

X Combined ____ Separate ____ Both

Estimate flow contributed by surface or ground water (infiltration)

MGD

Plant Loading Information

 Annual average daily flow rate(mgd)
 Peak flow rate(mgd)

 Dry______
 Dry______

 Wet______
 .328 (for 17 Nov. 1975 only)

 Wet______
 Wet______

COMMENTS: <u>Sewage bypasses everytime it rains. The pumps will handle up to about .55 to</u>.60

MGD before bypassing starts. Bypassed sewage flows to chlorination chamber then to outfall

MEMORANDUM

January 13, 1976

To: John Glynn

From: Allen Moore

Subject: Monroe STP Efficiency Survey

An efficiency survey was conducted at the Monroe STP on November 17, 1975. The plant was fairly clean although the office area was disorderly. The plant becomes hydraulically overloaded at every rainfall. The flow meter and totalizer appear to read about 43% too low according to numerous checks. For example, the flow meter would indicate .18 MGD while it should be .33 MGD. Mel Morse, the plant operator said that the flow meter had been calibrated recently by a local person although he could not remember the person's name.

The lab data shows poor reductions. Low coliform counts show good disinfection. The amount of time from point of chlorination until effluent discharge to the Skykomish River is thirty minutes. The operator also said that the sludge is never pumped from the clarifier chambers.

AWM:ee

STATE OF WASHINGTON DEPARTMENT OF ECOLOGY

WATER QUALITY LABORATORY

DATA SUMMARY

ORIGINAL TO:								
COPIES TO:								
•••••								
LAB FILES								

Source Monroe STP

Collected	By_	A. Mont
-----------	-----	---------

Date Collected 11-18.75

Log Number: 75	5329	30	31	32	33							
]	woods	Above	been						[
Station:	146	<u></u>	CROK	570	srp						-	
рН	<u>7.3</u>	<u>7.1</u>					ļ		ļ		 	
Turbidity (JTU)	52.	<u>41.</u>							ļ			
Conductivity (umhos/cm)@25c	410.	360.	_				ļ					
COD	380.	260.					ļ					
BOD (5 day)	180.	120.										
Total Coliform (Col./100ml)									. 			
Fecal Coliform (Col./100ml)										· -	- <u></u> -	
NO3-N (Filtered)		50.	1.3	.24	.37			. <u></u>				
NO2-N (Filtered)		ND	ND	ND	ND		ļ	-				
NH3-N (Unfiltered)		13.	.03	ور	ND							
T. Kjeldahl-N (Unfiltered)		27.	.28	. 06	. 08		 					
0-PO4-P (Filtered)		3.8	.04	.02	. 01		l					
Total PhosP (Unfiltered)		6.4	.07	.03	. 04		l					
Total Solids	380.	290.			-							
Total Non Vol. Solids	160.	130.	-									
Total Suspended Solids	100.	72.										
Total Sus. Non Vol. Solids	18.	24										-
							l					
Note: All results are in P	PM unl	ess of	hermis		ified	ND i	e Inon	e Dete	I	L		

Note: All results are in PPM unless otherwise specified. ND is 'None Detected"