A SUMMARY OF PRIORITY POLLUTANT DATA
FOR POINT SOURCES AND SEDIMENT IN INNER COMMENCEMENT BAY:
A PRELIMINARY ASSESSMENT OF DATA AND CONSIDERATIONS FOR FUTURE WORK.
by
Art Johnson, Bill Yake, and Dale Norton

The authors are grateful to Carol Perez for typing the text and numerous data tables.

TABLE OF CONTENTS

Page
Table of Contents i
List of Figures iij
List of Tables iv
Introduction 1
Sampling and Andiytical Methods 1
Part 1. Hylebos Waterway 3
Part 2. City Waterway 17
Part 3. Blair Naterway 23
Part 4. Sitcum Waterway 33
Part b. Milwaukee, Puyallup, St. Paul, Middle Waterway and 41 S.W. Shore Commencement Bay
Part G. Summary 55
Figures 63
Tables 87
Figure
Number

Title	Page
Hylebos Waterway: Point Source Samples.	63
Hylebos Waterway: Surface Water vs. Bottom Water Concentrations of Metals.	64
Hylebos Waterway: Concentrations of Copper and Arsenic in Surface Waters and Bottom Waters, June 3, 1980.	65
Hylebos Waterway: Concentrations of Chlorinated Ethylenes and Chloroform in Surface Waters, June 3, 1980.	66
Hylebos Waterway: Sediment Samples.	67
Hylebos Waterway: Selected PAH Compounds in Subtidal Sediments.	68
Hylebos Waterway: Concentrations of Selected Metals in Subtidal Sediments.	69
City Waterway: Point Source Samples.	70
City Waterway: Sediment Samples.	71
City Waterway: Concentrations of Metals in Subtidal Sediments.	72
City Waterway: Sum of Selected PAH Compounds in Subtidal sediments.	73
Blair Waterway: Point Source Samples.	74
Blair Waterway: Sediment Samples.	75
Blair Waterway: Concentrations of Selected Metals in Subtidal Sediments.	76
Blair Waterway: Selected PAH Compounds in Subtidal Sediments.	77
Sitcum Waterway: Point Source Samples.	78
Sitcum Waterway: Sediment Samples.	79
Sitcum Waterway: Concentrations of Arsenic, Copper, Lead, and Zinc in Surface Sediments.	30
Puyallup, St. Paul, and Middle Waterways: Point Source Samples.	81
Puyallup River: Point Source Samples.	82
S.W. Shore Commencement Bay: Point Source Samples.	83
Milwaukee, Puyallup, St. Paul, and Middle Waterways: Sediment Samples.	84
Puyallup River: Sediment Samples.	85

S.W. Shore Commencement Bay: Sediment Samples.

LIST OF TABLES

Table Number	Title	Page
1	Hylebos Waterway: Metals Concentrations in Point Source Discharges (ug/L total metal).	87
2	Hylebos Waterway: Metals Loads (pounds/day).	88
3	Hylebos Waterway: Relative Metals Contributions from Major Point Source Discharges.	89
4 a	Hylebos Waterway: Organic Priority Pollutant Concentrations in North Shore Discharges, including Hylebos Creek (ug/L).	90
4 b	Hylebos Waterway: Organic Priority Pollutant Concentrations in South Shore Discharges - Kaiser Ditch and Pennwalt (ug/L).	91
4 c	Hylebos Waterway: Organic Priority Pollutant Concentrations in South Shore Discharges - U.S. Gypsum to Hooker (ug/L).	92
5	Hylebos Waterway: Organic Priority Pollutant Loads Based on WDOE Data Collected September 1979 - April 1982 (pounds/day).	93
6	Hylebos Waterway: Relative Organic Priority Pollutant Contributions from Major Point Source Discharges.	94
7	Hylebos Waterway: Sediment Sites.	95
8	Hylebos Waterway: Intertidal (and source-related) Surface Sediment Priority Pollutant Concentrations ($\mathrm{mg} / \mathrm{Kg}$, dry weight).	96
9a,b, c	Hylebos Waterway: Subtidal Surface Sediment Priority Pollutant Concentrations ($\mathrm{mq} / \mathrm{Kq}$, dry weiqht).	97-99
10	Summary of Hylebos Sediment Priority Pollutant Data (mg/Kg, dry weight).	100
11	City Waterway: Metals Concentrations in Point Source Discharges (ug/L total metal).	101
12	City Waterway: Metals Loads (pounds/day).	102
13	City Waterway: Organic Priority Pollutant. Concentrations in Point Source Discharges (ug/L).	103
14	City Waterway: Organic Priority Pollutant Loads (pounds/day).	104
15	City Waterway: Sediment Sites.	105
16	City Waterway: Sediment Priority Pollutant Concentrations (mg/Kg, dry weight).	106
17	Summary of City Waterway Sediment Priority Pollutant Data ($\mathrm{mg} / \mathrm{Kg}$, dry weight).	107

Table
Number
Title
Blair Waterway: Metals Concentrations in Point Source Dis-
\quad charges (ug/L total metal).
Blair Waterway: Metals Loads (pounds/day).109
Blair Waterway: Organic Priority Pollutant Concentrations in 110
Point Source Discharges (ug/L).
Blair Waterway: Priority Pollutants in Discharges to the Lincoln
Blair Waterway: Organic Priority Pollutant Loads (pounds/day).
Blair Waterway: Sediment Sites.
Blair Waterway: Intertidal (and source-related) Surface Sediment Priority Pollutant Concentrations ($\mathrm{mg} / \mathrm{Kg}$, dry weight).
Blair Waterway: Subtidal Surface Sediment Priority Pollutant

18
Title Page108charges (ug/L total metal).

Avenue Drainages (ug/L). Avenue Drainages (ug/L).Blair Waterway: Sediment Sites.113114Concentrations (mg/Kg, dry weight).
Summary of Blair Waterway Sediment Priority Pollutant Data ($\mathrm{mg} / \mathrm{Kg}$, dry weight).
Sitcum Waterway: Metals and Organic Priority Pollutants in Point Source Discharges (ug/L, total metal).
Sitcum Waterway: Metals and Organic Priority Pollutant Loads (pounds/day).
sitcum Waterway: sediment sites.119
Sitcum Waterway: Sediment Priority Pollutant Concentrations
$(\mathrm{mg} / \mathrm{Kg}$, dry weight $)$.
Summary of Sitcum Waterway Sediment Priority Pollutant Data ($\mathrm{mg} / \mathrm{Kg}$, dry weight).
Metals Concentrations in Discharges to the Puyallup River, St. Paul and Middle Waterways and S.W. Commencement Bay (ug/L, total metal).
Metal Loads to the Puyallup River, St. Paul and Middle Waterways and S.W. Commencement Bay (pounds/day).
Organic Priority Pollutant Concentrations in Discharges to St. Paul and Middle Waterways and S.W. Commencement Bay (ug/L).
Organic Priority Pollutant Loads to St. Paul and Middle Waterways and S.W. Commencement Bay (pounds/day).

Table
Number Title Page
36 Organic Priority Pollutant Concentrations in the Puyallup River 126 and Associated Discharges (ug/L).

Organic Priority Pollutant Loads to the Puyallup River from the Central STP and Cleveland Street Pump Station (pounds/day).

Sediment Sites: Milwaukee, Puyallup, St. Paul, and Middle Materways and Ruston Shorclinc.

39 Sediment Data: Milwaukee, Puyallup, St. Paul, and Middle Waterways and Ruston Shoreline (mg/Kg, dry weight).

Summary of WDOE Data Collected September 1979 to April 1982 on Metals Loads to Commencement Bay and Adjacent Waterways (pounds/day).

Detection Frequency (DF) of Organic Priority Pollutants in WDOE and EPA Samples from Point Surce Discharyes lu Commencemenl Bay and Adjacent Waterways, September 1979 to April 1982.

Summary of WDOE Data Collected September 1979 to April 1982 on Organic Priority Pollutant Loads to Commencement Bay and Adjacent Waterways (pounds/day).

Summary of Maximum and Median Concentrations of Selected Priority Pollutants in Subtidal Surface Sediments from Commencment Bay Waterways (mg/Kg, dry weight).

This is a collection of data summaries on priority pollutants in point-source discharges and surface sediments in Commencement Bay waterways and the 01d TacomaRuston shoreline. They were compiled during 1983 by the WDOE Water Quality Investigations Section to assist in planning work for the Commencement Bay nearshore/ tideflats investigations (Superfund). Most of these data were collected between 1979 and 1982 and reported by WDOE, EPA, NOAA, and Battelle. Also included were unpublished data from WDOE point-source sampling and a series of sediment collections made by EPA and WDOE. Water column data were reviewed for these summaries, but not tabulated. Data on sediments deeper than the limit for dredging (taken to be 60 feet) and biological data were not, in general, reviewed. Data on organic compounds not classified as priority pollutants were also nol reviewed.

The data were summarized by waterway in the six parts listed below. Each was originally issued separately as the data were compiled and reviewed.* In the interest of putting together a useful package in a timely fashion, an outline format was used.

Part 1.	Hylebos Waterway	Apri1 1983
Part 2.	City Waterway	May 1983
Part 3.	Blair Waterway	July 1983
Part 4.	sitcum waterway	July 1983
Part 5.	Milwaukee, Puyallup, St. Paul, Middle Waterways and S.W. Shore Commenceme	October 1983
Part 6.	Bay Summary	December 1983

SAMPLING AND ANALYTICAL METHODS

Ihe results presented here are from studies conducted by a number of investigators and should be compared with caution because of the variable collection, extraction, and analytical methods employed. Even a casual review of the data will reveal that detection limits vary between laboratories and that certain compounds are regularly reported in some studies and rarely reported in others. The importance of consistent sampling techniques and analytical methods in future Commencement Bay investigations cannot be over-emphasized.

The methods employed in obtaining most of the data compiled here are described in the reports cited. The WDOE point source data on discharges other than ASARCO, St. Regis, Tacoma Central STP, U.S. Oil, Reichhold, Pennwalt, Sound Refining, and Hooker/ Occidental (which are documented in WDOE "Class II" reports) and the data on sediment samples collected by EPA and WDOE on 5/13/81, 7/31/81, and 8/03-04/81 are being repurled for the first time. The procedures used in obtaining these new data are briefly described below.

[^0]The WDOE point-source samples were collected in one-gallon glass jars (base/neutrals, acid extractables, pesticides, and PCBs), 40 mL screw-top glass vials with teflon septa (volatiles), and 2-1/2 or 5-gallon polyethylene cubitainers (metals and conventional water quality parameters*). Sample bottles were cleaned according to EPA priority pollutant protocol. Laboratory and field blanks were analyzed with the point-source samples to check for sample contamination. All samples were composites, typically collected over a 2-6 hour period. Rising tides precluded long compositing periods at a number of discharges. Flows were measured with a magnetic flowmeter or bucket and stopwatch.

Analysis was done at several different laboratories. Organics analysis was done by EPA contract laboratories. Trace metals were analyzed at the WDOE Tumwater laboratory. Joe Blazevich, EPA Region X laboratory at Manchester, reviewed the organic priority pollutant data reported by the contract laboratories.

The intertidal sediment samples taken by WDOE on 7/30-31/81 were collected by hand using a stainless steel "cookie cutter" measuring 9 cm in diameter and 2.5 cm deep. Several samples were taken in a transect along the lower beach, usually below or near a point-source discharge, and pooled. After mixing with a glass or stainless steel rod, subsamples were placed in glass (organics analysis) or plastic (metals analysis) containers and analyzed as described above. A third portion of the sample was sent to the EPA Newport laboratory for amphipod bioassay. (The results of bioassay tests are reported by R.C. Swartz in the Marine Pollution Bulletin Vol. 13, No. 10, pp. 359-364, 1982.)

The subtidal sediments collected by EPA and WDOE on $5 / 13 / 81$ and 8/03-04/81 were taken with a Van Veen grab modified with rubber flaps to reduce loss of surface fines during retrieval. Subsamples of the top 2 cm were taken by core and analyzed as described above, except that a few samples were analyzed by the EPA Newport laboratory for a limited number of priority pollutants only.

[^1]PART 1. HYLEBOS WATERWAY

PART 1. HYLEBOS WATERWAY
(4/83; revised $1 / 84$)
Refer to Data in:

General Observations

1. Subtidal surface sediments (generally from the dredged portion of the waterway) display more chemical homogeniety than intertidal or sourcerelated sediments. For many priority pollutants, it appears that there is a continuity of concentrations (gradients) in the medium-distance scale (tenths of miles to several miles). The nature of concentrations in sediments has been described as "patchy". This may be largely a function of sampling locations being too rar apart lo delecl yrddients, and analytical methods which vary between laboratories and from year to year in the same laboratory.
2. Riley (reference 10) proposed a method for determining annual loads to Hylebos sediments. Because of sediment disturbances from dredging, the sedimentation rate used was that measured in a core from Commencement Bay close to, but outside, Hylebos Waterway. This rate may be different from that in the waterway. Based on Riley's method, the following loads have been estimated; they are compared with pointsource loads lu the waterway documented by WDOE surveys:

Pollutant	Load to Sediment		Pt. Source Loads Mcasurcd by WDOE\qquad (lbs/day)		Ratio of Dry Weather Loads To Sediment Loads
			Wet Weather	Dry Weather	
PAH	15.4	. 093		. 27	2.9
PCBs	0.41	. 0025			0
HCBD	U.10	. 0006		. 026	43
$B(a) P$	1.4	. 0086			0
As	100	. 61	16	5.2	3.5
Cd	1.7	. 010	1.1	1.1	110
Cu	272	1.6	2.0	1.6	1.0
Hg	0.7	. 004	. 07	. 007	1.8
Pb	232	1.4	1.2	. 17	. 12
Zn	320	1.9	9.6	. 98	. 51

Performing an overall mass balance on priority pollutants would require estimating all sinks (primarily sedimentation and advection) and sources (point, atmospheric, and incoming tidal waters from Commencement Bay). Il is nul curremlly possible to obtain reasonable estimates for advection, atmospheric input, and loads from incoming tidal waters. Thus it is not possible to accurately estimate how much of the total load to the Hylebos has been accounted for in the source sampling. Because of the wide variance in ratios between documented source loads and accumulation rates in the sediments, it appears likely that significant sources of specific priority pollutants have not yet been identified.

HYLEBOS WATERWAY

3. EPA amphipod bioassays conducted by Swartz (reference 11) indicate zones of high mortality are associated with sediments near Hooker (Occidental), Sound Refining, Pennwalt, Kaiser Ditch, and Hylebos Creek. Similar bioassays done at the University of Washington (reference 9) suggest that anoxia. particle size, and other factors (in the absence of toxics) may influence mortality in this test. Therefore, it is not clear what the relation is between amphipod mortality and toxicants in waterway sediment.

Chapman's (reference 1) NOAA-sponsored assessment of sediment toxicity in Puget Sound, using both lethal and sublethal bioassays, ranked Hylebos sediments, along with those in Blair, as the third most toxic of the sites studied. (City Waterway and Elliot Bay near Denny Way CSO ranked first and second.) Additional in-depth study was recommended for Hylebos Waterway.

General Considerations for Future Work

1. To adequately estimate quantities, sources, and sinks of "toxic" chemicals in the Hylebos, it will be necessary to perform improved mass balances for these compounds. While this will probably involve obtaining improved estimates of sedimentation rates, the primary missing information is quantification of the flux of these chemicals between Hylebos Waterway and Commencement Bay. Both hydraulic exchange and suspended solids transport need to be quantified.
2. There is a need for criteria which establish what amounts of contaminants in sediment represent a hazard to marine life and public health.

Metals - Ubservations

1. EPA and WDOE point-source data show the highest concentrations of As, Cr , and IIg were in seeps and drains at the Pennwalt facility. The maximum concentrations measured were $12,000 \mu \mathrm{~g} / \mathrm{L}$ As, $1,870 \mu \mathrm{~g} / \mathrm{L} \mathrm{Cr}$, and $16.2 \mu \mathrm{~g} / \mathrm{L} \mathrm{Hg}$. Samples from four seeps at other points along the Hylebos shoreline, including one at Hooker (Occidental), also had elevated concentrations of various metals.
2. High metals concentrations are apparently not characteristic of NPDESpermitted effluents from Pennwalt, Hooker (Occidental), or Sound Refining.
3. MeLals ludds calculated for most discharges were much less than one pound per day. The largest loads were from Hooker (Occidental) and Pennwalt effluents and in Hylebos Creek and Kaiser Ditch--largely by virtue of the volume of these discharges rather than metals concentrations. The maximum load measured was $30.5 \mathrm{lbs} /$ day Ni in the Hooker (Occidental) effluent.
4. Based on comparisons with accumulation rates of metals in Hylebos sediments, source loads documented by WDOE studies appear to account for a substantial portion of the total load for certain metals (Cd, possibly As), while they appear to account for only a fraction of the loads for other metals ($\mathrm{Cu}, \mathrm{\Gamma b}, \mathrm{Zn}$).
5. Log sort yards which have used ASARCO slag for ballast are potential significant sources of $A s$, Cu, $7 n$ and other metals to the Hylebos. These loads have not been quantified. Most yards have agreed to comply with a WDOE request to use other materials for ballast.
6. There are no metals data on runoff or nearshore sediment from General Metals.
7. EPA data (reference 12) showed Hylebos bottom waters had higher Pb, $\mathrm{Cd}, \mathrm{Cu}, \mathrm{Se}, \mathrm{Cr}$, and Ni concentrations than surface waters. The reverse was true for $A s, Z n$, and $M n$. There is some evidence that $C u$ and As concentrations in the surface waters increase toward the head of the waterway. Surface sediment concentrations show a similar pattern:
$\mathrm{As}, \mathrm{Cd}, \mathrm{Cr}, \mathrm{Cu}, \mathrm{Hg}$, and Zn concentrations display gradients with concentrations highest near the head of the waterway. lowest near the mouth.
8. Some data show water column concentrations of $C u$ are above EPA criteria for protection of marine life (references 3, 4, 12, and 13). Substantial point-source Cu loads have not been found. Copper concentrations measured in seawater at "control" sites (Clam Bay) have also exceeded [PA criteria. These are total rather than dissolved concentrations. Oyster larvae bioassays run by Joe Cummins at the EPA Manchester laboratory (references 3 and 4) have not shown Hylebos waters to he acutely toxic.
9. EPA water samples (reference 12 and 13) taken along the Pennwalt shoreline below the seeps and drains mentioned above, had $\mathrm{As}, \mathrm{Hg}, \mathrm{Pb}$, and Zn concentrations above EPA criteria.
10. No core data exist for metals in Hylebos sediments. This is required to determine depositional history of metals.

Metals - Considerations for Future Work

1. Quantify metals loads from \log sort yards which have used ASARCO slag for ballast.
2. Sample runoff and nearshore sediment at General Metals.
3. The WDOE Southwest Regional Office should pursue the metals issue with Pennwalt.

Refer to Data in:
4. Obtain better data on Cu in the water column and assess the applicability of the EPA criteria.
5. Determine stratification of metals in undisturbed sediment cores to provide depositinnal history of metals. This and other information should be used to improve estimates of sedimentation rates along the length of the Hylebos Waterway.
6. Investigate the use of metals ratios in sediments as a possible tool in identifying sources.

Volatiles - Observations

1. Chloroform, trichloroethylene, tetrachloroethylene, and 1,2-trans-

Fiqure 4 dichloroethylene were the major organic priority pollutants isolated in EPA water column samples (reference 12). Concentrations were highest off Hooker (Occidental) and decreased toward the head of the waterway. Surface waters contained larger concentrations of volatiles than bottom waters. EPA aquatic life criteria were not exceeded; EPA human health criteria (cancer risk) for seafood consumption from these waters were sometimes exceeded. Battelle water samples collected by Riley (reference 10) for NOAA also showed 1,1,1-trichloroethane at relatively high concentrations near Hooker (Occidental).
2. Volatiles have been detected in intertidal sediments close to sources. They generally were not found in subtidal sediments; trace amounts of rhlnrofnrm were detected in only 2 of 20 samples and trichloroethylene in 1 of 20 samples.
3. Based on WDOE measurements, the major organic priority pollutant loads to Hylebos Waterway are volatiles from Hooker (Occidental) and Pennwalt. The following loads and relative contributions to the total waterway load were measured: bromoform $19.8 \mathrm{lbs} /$ day (Pennwalt effluent $=94 \%$); chloroform 9.3 1bs/day (Hooker groundwater $=67 \%$); trichloroethylene $2.4 \mathrm{lbs} /$ day (Hooker groundwater $=92 \%$); tetrachloroethylene $1.0 \mathrm{lb} /$ day (Hooker groundwater $=52 \%$, Hooker effluent $=47 \%$); and chlorodibromomethane $0.75 \mathrm{lb} /$ day (Pennwalt effluent $=83 \%$).
4. Hooker (Occidental) appeared to be the major source of chloroform and the chlorinated ethylenes.
5. Pennwalt appeared to be the major source of bromoform. Bromoform was present mainly in Pennwalt effluent, possibly due to discharge from the chlorine stripper. Bromoform has been detected throughout the waterway but in concentrations much lower than the volatiles mentioned above (reference 10). Peak concentrations of 2 to $4 \mu \mathrm{~g} / \mathrm{L}$ were detected near Pennwalt (references 3 and 10).
6. Based on EPA and WDOE surveys, discharges other than Hooker (Occidental) and Pennwalt are probably not significant sources of halogenated organic priority pollutants.

HYLEBOS WATERWAY

Volatiles - Considerations for Future Work

1. Develop criteria for chloroform in marine water.
2. Pursue groundwater, surface water, effluent, and sediment monitoring at Hooker (Occidental) for 1,2-trans-dichloroethylene.
3. Because there are a variety of volatiles and other organic pollutants in Hooker's (Occidental) groundwater and effluent, an effort to assess the combined effects of these compounds should be undertaken. Bioassays of groundwater, effluent, nearshore sediment, and receiving waters should be conducted to determine the hazard to marine life. Specific consideration should be given to tests which estimate the potential mutagenic and carcinogenic characteristics of these discharges and immediate receiving environment media.
4. Because substantial bromoform loads from Pennwalt may coincide with operational changes. additional sampling may be warranted to determine if this load is continuous. Additional immediate receiving water sampling for volatiles, including bromoform, near Pennwalt may also be warranted.

Base/Neutrals - Observations

1. Base/neutral compounds have been detected infrequently in most discharges to Hylebos Waterway. The greatest variety of compounds and highest concentrations were in seeps from Pennwalt and Hooker (Orcidental), Kaiser Ditch, and in one of three samples from Morningside drain. With the exception of Pennwalt, concentrations measured for individual base/neutrals have been $20 \mu \mathrm{~g} / \mathrm{L}$ or less.

A major constituent in Pennwalt seeps is hexachloroethane--concentrations ranged from 21.3 to $478 \mu \mathrm{~g} / \mathrm{L}$ in the four samples taken. Chlorinated benzenes, including hexachlorobenzene (HCB) were primarily associated with Hooker discharges and the single Morningside drain sample mentioned above. A trace of HCB was detected in Sound Refining's process effluent.

Hexachlorobutadiene (HCBD) has been detected only in the abovementioned seeps and in the Hooker (Occidental) process effluent. As much as $9 \mu \mathrm{~g} / \mathrm{L}$ was measured in Pennwalt seeps. The Hooker (Occidental) effluent had . $2 \mu \mathrm{~g} / \mathrm{L}$.
2. Riley (reference 10) measured up to $18 \mathrm{ng} / \mathrm{L}$ (pptr) of HCBD and $252 \mathrm{ng} / \mathrm{L}$ of trichlorobutadienes (not EPA priority pollutants) in the Hylebos water column. The HCBD concentrations did not exceed EPA criteria. Suspended matter samples contained up to $6256 \mu \mathrm{~g} / \mathrm{Kg}$ (dry) total chlorinated butadienes. Further examination of these compounds with respect to impacts to pelagic organisms and human health effects was recommended.

HYLEBOS WATERWAY

Refer to Data in:

Table 8
Table 9
Table 10

Table 4b
Table 8
been detected frequenty. A sed ment sample from the mouth of the than other Hylebos sediment samples. Settling basins at Kaiser Aluminum are the probable source of these compounds.
5. PAH concentrations in water have generally been below detection limits.
6. A range of PAH compounds has been detected in waterway suspended matter (reference 10) and sediment.
7. Concentrations of PAH in Hylebos surface sediments appear to be hiqher at the head of the waterway, decreasing toward the mouth. There are also indications that 4 - and 5 -ring PAH compounds are comparatively higher at the head of the waterway, while 2- and 3 -ring PAH are more prevalent near the mouth.
8. Substantial concentrations of unidentified chlorinated organics occur in the Hooker (Occidental) effluent (reference 16). Pentachloropropene, a mutagen, may be one of the unknowns (reference 17).
9. One Morningside drain water sample contained 4-bromophenylether, nitrobenzene, 2-chloronaphthalene, and dichlorobenzene--all at low concentrations. The first three compounds have not been detected in other discharges to the waterway.

Base/Neutrals - Considerations for Future Work

1. Testing procedures, standards, and criteria for chlorinated propenes and chlorinated butadienes are needed.
2. Monitoring at Hooker (Occidental) should be modified to include quantification of concentrations and loads for hexachlorobenzene, chlorinated butadienes, and chlorinated propenes (groundwater, effluent, sediments, water column).
3. PAH compounds in Kaiser Ditch need further study. Information is required on the longitudinal and vertical distribution of PAH in the sediment, partitioning of PAH between water and suspended matter, PAH loading to Hylebos Waterway, and fate of PAH after entering the waterway. Bioassays of Kaiser Ditch water, suspended matter, sediment, and PAH extracted from these media should be undertaken and should assess mutagenicity and carcinogenicity as well as acute toxicity.
4. In general, the low PAH loading from identified sources and ubiquitous nature of potential sources indicate that it may be difficult to identify and quantify PAH loads from other sources. The "spill task" outlined in the Superfund cooperative agreement may provide some additional information on PAH sources.

PCBs - Observations

1. Riley (reference 10) detected polychlorinated biphenyls (PCBs) in water column samples in the waterway. C1]-biphenyls ranged from $.022-.316 \mu \mathrm{~g} / \mathrm{L} ; \mathrm{Cl}_{2}$-biphenyls ranged from . 001 - . $268 \mu \mathrm{q} / \mathrm{L}$; and $\mathrm{Cl}_{3}-\mathrm{Cl} 5$-biphenyls ranged from $<.001-.025 \mu \mathrm{~g} / \mathrm{L}$. Up to $4,950 \mu \mathrm{~g} / \mathrm{Kg}$ (dry) $\mathrm{Cl}_{1}-\mathrm{Cl}_{3}$-biphenyls were measured in suspended matter.
2. The EPA criteria document indicates that acute toxicity to marine life only occurs at PCB concentrations above $10 \mu \mathrm{~g} / \mathrm{L}$. PCB concentrations measured by Riley exceed EPA's 24 -hour criterion ($0.3 \mu \mathrm{a} / \mathrm{L}$) for protection ot marine organisms against chronic eftects. Riley also recommended further examination of PCBs with respect to human health effects and impacts on pelagic organisms.
3. PCBs are detected in Hylebos sediments at concentrations ranging up to $1.5 \mathrm{mg} / \mathrm{Kg}$ dry weight. No clear pattern of distribution is discernible from the available sediment data.
4. Although Riley's work suggests PCBs are currently entering the waterway, sources have not been identified.

PCBs - Considerations for Future Work

1. The issue of historical versus ongoing sources should be addressed, and the need for further investigation assessed.

Acid Extractables - Observations

1. Only about half the point-source samples collected in Hylebos Waterway have been analyzed for acid extractables.
2. The largest phenol concentration measured in Hylebos discharges was $190 \mu \mathrm{~g} / \mathrm{L}$ in the Lincoln Avenue drain. Low concentrations of chlorinated phenols were also detected in Sound Refining effluent, Morningside drain, Kaiser Ditch, and Pennwalt discharges.
3. Acid extractables have not been detected in the few water column samples analyzed for these compounds (references 3 and 4).
4. Traces of phenol and pentachlorophenol have been detected in a few Hylebos sediment samples.

Table 8
Table 9
Table 10

Table 4

Table 4

Table 8
Table 9
Table 10

Refer to Data in:

Acid Extractables - Considerations for Future Work

1. Investigate source(s) of phenol in Lincoln Avenue drain.
2. Available data indicate phenolics are probably not a significant problem in Hylebos Waterway.

Pesticides - Observations

1. Although documented source loads for pesticides are generally very

Table 4
low, the following sources have been identified: Pennwalt (seeps and Table 5 drains) - DDT and metabolites, aldrin, BHC; Hooker (seep near old solvent plant) - DDT and metabolites; Lincoln Avenue drain - α-BHC.
2. Pesticides have generally not been detected in Hylebos water column samples.
3. The following pesticides have been detected with some regularity in subtidal Hylebos sediments: DDT and metabolites, aldrin, and $\alpha-$ BHC. Les Williams (Tetra Tech, Bellevue) has pointed out that aldrin levels in Hylebos sediments may represent a hazard to marine life. OA/QC for these data have not been re-examined.
4. Sediment concentrations of aldrin appear to be higher near the mouth of the waterway; data for $\alpha-B H C$ and DDT are not adequate to determine distribution patterns although two source-related sediment samples near Pennwalt had relatively high DDT concentrations.

Pesticides - Considerations for Future Work

1. Efforts should be made to curtail discharge of DDT from the Pennwalt property.
2. QA/QC for the data on aldrin in sediment should be re-examined.

Addendum

The table below contains data on Hylebos Waterway sediment samples overlooked in preparing the data summary for Part 1. The detection of aldrin in these samples is noteworthy. Samples 1302 and 1303 are subsamples of the grabs for which EPA-Newport laboratory analyses are reported in Table 9b. Concentrations are $\mathrm{mg} / \mathrm{Kg}$, dry.

Addendum - continued.


```
-- - Not detected.
    a = Not detected, but detection limits high.
    T = Trace amount.
```


HYLEBOS WATERWAY

REFERENCES

1. Chapman, P.M., et al., 1982. Survey of Biological Effects upon Puget Sound Biota. I. Broad-scale Toxicity Survey. NOAA Technical Memorandum OffPA-25.
2. Gahler, A.R., et al., 1982. Chemical Contaminants in Edible, Non-salmonid Fish and Crabs from Commencement Bay, Washington. EPA-901/9-82-093.
3. Johnson, A. and S. Prescott, 1982. Receiving Environment Survey in Hylebos Waterway at the Pennwalt Corporation Factlity, Tacoma, Washington, June 2, 1981. WDOE memorandum to Frank Monahan, March 15, 1982.
4. Johnson Λ. and S. Prescott, 1982. Receiving Environment Survey in Hylebos Waterway at the Sound Refining Facility, Tacoma, Washington, June 30, 1981. WDOE memorandum to Fred Fenske, April 21, 1982.
5. Malins, D.C., et al., 1980. Chemical Contaminants and Biological Abnormalities in CentraT and Southern Puget Sound. NOAA Technical Memorandum. OMPA-2.
6. Malins, D.C., et al., I982. Chemical Contaminants and Abnormalities in rish and Invertebrates from Puget Sound. NOAA Technical Memorandum OMPA-19.
7. NOAA, 1981. Unpub1. data. Concentrations of Aromatic llydrocarbons and Metals found in Sediments from Central Puget Sound.
8. Norton, D.E., 1983. Sound Refining Company Class II Inspection, June 30 July 1, 1981. WDOE memorandum to Fred Fenske, January 17, 1983.
9. Pierson, K.B., et al., 1983. Biological Testing of Solid Phase and Suspended Phase Dredge Material from Commencement Bay, Tacoma, Washington. Fish. Res. Inst., Univ. Hash., Seattle.
10. Riley, R.G., et al., 1981. Oryanic Pullulanls in Walerways Aujacenl lu Commencement Bay (Puget Sound). NOAA Technical Memorandum. OMPA-12.
11. Swartz, R.C., et al., 1982. Sediment Toxicity and the Distribution of Amphipods in Commencement Bay, Washington, USA. Mar. Pollut. Bull. 13(10): 359-364.
12. USEPAa, 1980. Commencement Bay/Port of Tacoma Field Survey - June 3, 1980.
13. USEPAb, 1980. Commencement Bay Waterways Survey - September 23-24, 1980.
14. USEPAC, 1982. UnpubT. sediment data. Letter from D.W. Schults, USEPA Marine Science Center, Newport, Oregon, to Art Johnson, $H D O E$.
15. Walker Hells, Inc., 1980. Groundwater Quality and Corrective-Action Concerns at the Tacoma, Washington plant. Prepared for Hooker Chemicals and Plastics Corp., Tacoma, Washington.

Hylebos Waterway - References
Page Two
16. Yake, B., 1980. Hooker Chemical Corp., Tacoma, Class II Inspection. WDOE memorandum to Frank Monahan, June 4, 1980.
17. Yake, B., 1982a. Pennwalt Corporation Class II Survey, June 2-3, 1981. WDOE memorandum to Frank Monahan, March 9, 1982.
13. Yake, B., 1982b. Increasing Interest in Pentachloropropene. WDOE memorandum to Jim Krull, April 8, 1982.

PART 2. CITY WATERWAY

This page is purposely blank for duplex printing

PART 2. CITY WATERWAY

(5/83)

General Observations

Refer to Data in:

1. Relatively few samples have been collected in City Waterway. There is a lack of data on concentrations of priority pollutants in subsurface sediments and limited water column data.
2. Review of the data available on Commencement Bay sediments suggests City Waterway has relatively high concentrations of $\mathrm{Pb}, \mathrm{Cd}, \mathrm{PAH}, \mathrm{PAE}$ (phthalate acid esters), DUI, and PCB.
3. Chapman's toxicity survey (reference 1) of Puget Sound sediments ranked City Waterway as the second most toxic site tested.

General Considerations for Future Work

1. At present, there is insufficient data to compare rates of accumulation of metals and organics in the sediment with source loadings. As noted for Hylebos Waterway, major missing pieces of information include the sedimentation rate and the flux of chemicals between City Waterway and Commencement Bay. Most storm drains to the waterway have not been sampled. As hluse datd become avallable, an effort should be made to calculate a mass balance for contaminants of concern in the waterway.

Metals - Observations

1. The 15 th Street storm drain had the highest metals concentrations

Tahle 11 among the four point sources sampled. Only one sample has been collected from this discharge.
2. The largest metal loads measured were $32 \mathrm{lbs} /$ day $\mathrm{Pb} ; 16 \mathrm{lbs} /$ day Zn ; and $5.3 \mathrm{lbs} / \mathrm{day}$ Cu from the west drain at the head of City Waterway (Nalley Valley).
3. Water column samples collected by Dames and Moore (reference 2) in October and December of 1980 indicated City Waterway had higher Cu and Zn concentrations than other waterways. Surface waters had higher concentrations than mid-depth or bottom waters. The highest Cu concentration measured, $9 \mu \mathrm{~g} / \mathrm{L}$, was intermediate between EPA's 24 -hour average criterion of $4 \mu \mathrm{~g} / \mathrm{L}$ and not-to-exceed criterion of $23 \mu \mathrm{~g} / \mathrm{L}$.
4. Sediment metal concentrations were highest in the inner portion of the waterway and declined near the waterway's entrance. High concentrations or Pb and Cd were ubserved.

Metals - Considerations for Future Work

1. More point source, water column, and bottom sediment data need to be collected. Field observations indicate the quantity and quality of

Refer to Data in:
water in drains to the waterway are highly variable. This should be taken into account during sampling. Sediment samples should include cores to determine vertical stratification of metals.
2. It should be determined if metals are reaching the waterway due to ongoing or past practices at American Plating Company, Fick Foundry, and Martinac Shipbuilding Corporation.

Organics - Observations

1. The few organic priority pollutants detected in discharges to City Waterway were largely restricted to the west drain at the head of the waterway (1 of 2 samples only) and the 15 th Street drain. Chloroform, naphthalene, and cyanide were present in both discharges. The west drain also contained butylbenzyl phthalate, toluene, and traces of trichloroethylene and tetrachloroethylene. Phenol was found in the 15th Street drain. All concentrations were less than $10 \mu \mathrm{~d} / \mathrm{L}$.
2. Organic priority pollutant loads calculated from WODE data are small.
3. No data quantifying organic pollutant concentrations in water column samples from the waterway are available. Dames and Moore (reference 2) was unable to detect PCBs in 3 water samples $(0.2 \mu \mathrm{~g} / \mathrm{L}$ detection 1 imit).
4. Volatiles were not detected in the three sediment samples that have been analyzed for these constituents.
5. Relatively high concentrations of $P A H, P A E$, and $P C B$ have been measured in some waterway sediments. PAH and PCB were highest at NOAA station 5-09031 north of the 11 th Street bridge.
6. The WDOE Southwest Regional Office has found that groundwater beneath tank rarms on the east shore of the waterway is grossly contaminated with petroleum. Petroleum can be seen seeping into the waterway along the tank farm shoreline. A sample of groundwater from a monitoring well at "D" Street collected May 18, 1982 contained the following concentrations of aromatic hydrocarbons:
$\left.\begin{array}{lcc} & \begin{array}{c}\text { "Water Fraction" } \\ \text { (EPA \#23543) }\end{array} & \end{array} \begin{array}{l}\text { "0il Fraction" } \\ \text { (EPA \#23544) }\end{array}\right]$
n.d. = none detected
(Large numbers of substituted benzene and naphthalene compounds detected in both fractions but not quantified.)
7. A high concentration of HCBD, $236 \mathrm{mg} / \mathrm{Kg}$ (dry) has been reported by
the EPA Newport laboratory in a sediment sample taken at the mouth of
the waterway.
Organics - Considerations for Future Hork
8. As noted for metals, more point-source and sediment data are needed.
Water column data are particularly sparse.
9. It should be determined if petroleum in the groundwater beneath City

Watcrway tank farms has contaminated the waterway. If possible, the
load of PAH and related compounds to the waterway in seepage from this
source should be estimated.

A high concentration of HCBD, . $236 \mathrm{mg} / \mathrm{Kg}$ (dry) has been reported by the EPA Newport laboratory in a sediment sample taken at the mouth of

Organics - Considerations for Future Hork

1. As noted for metals, more point-source and sediment data are needed. water column data are particularly sparse.
2. It should be determined if petroleum in the groundwater beneath City Waterway tank farms has contaminated the waterway. If possible, the source should be estimated.

REFERENCES

1. Chapman, P.M., et al., 1982. Survey of Biological Effects of Toxicants upon Puget Sound Biota. I. Broad-scale Toxicity Survey. NOAA Technical Memorandum OMPA-25.
2. Dames and Moore, 1981. Commencement Bay Studies, Volume V, Water Quality. For U.S. Army Corps of Engineers, Seattle uistrict.
3. Malins, D.C., et al., 1980. Chemical Contaminants and Biological Abnormalities in Central and Southern Puget Sound. NOAA Technical Memorandum DMPA-2.
4. Malins, D.C., et al., 1982. Chemical Contaminants and Abnormalities in Fish and Invertebrates from Puget Sound. NOAA Technical Memorandum OMPA-19.
5. NOAA, 1981. Unpubl. data. Concentrations of Aromatic Hydrocarbons and Metals found in Sediments from Central Puget Sound.
6. USEPA, 1982. Unpubl. sediment data. Letter from D.W. Schults, USEPA Marine Science Center, Newport, Oregon, to Art Johnson, ADOE.

PART 3. BLAIR WATERWAY

PART 3. BLAIR WATERWAY
(7/83)

Abstract

Refer to Data in:

General Observations

1. A preliminary comparison of Blair Waterway sediment priority pollutant data with the data available on sediment in other Commencement Bay waterways indicates Blair is substantially less contaminated than Hylebos, City, or Sitcum waterways. Nevertheless, as noted in Part 1, Chapman (reference 3) ranked Blair Waterway along with Hylebos Waterway as the third most toxic site tested in Puget sound (behind city Waterway and Elliot Bay near the Denny Way CSO). Blair was included among those areas recommended for additional in-depth study.

General Considerations For Future Work

1. A substantial body of data exists on contaminants in water, suspended matter, sediment, and point-source discharges in Blair Waterway. Among the major missing pieces of information are the sedimentation rate, depositional history of metals in the sediment, and flux of contaminants between the waterway and Commencement Bay.
2. Four sites in B1air Waterway worthy of rur ther examination as polential sources or "hot spots" for metallic and/or organic priority pollutants are: Murray Pacific and West Coast Orient (Portac) log sort yards (metals); Lincoln Avenue south drain (metals and organics); north shoreline between 11 th Street and Lincoln Avenue (volatiles); and sediment near 11 th Street bridge (polyaromatic hydrocarbons).

Metals - Observations

1. Extremely high concentrations of $A s, C u, P D, S D$, and $Z n$ have been measured in runoff from the Murray Pacific log sort yard. The source of these metals is thought to be ASARCO slag used as ballast. Runoff from the other sort yard on Blair, West Coast Orient (Portac), has not been sampled. This yard also used ASARCO slag. Log sort yards in the Tacoma tideflats area recently agreed to comply with a request from WDOE to use other materials for ballast.
2. Lincoln Avenue drain on Blair's south shore (and adjacent to Murray Pacific) had an arsenic concentration of $850 \mu \mathrm{q} / \mathrm{L}$ in a sample collected during wet-weather conditions (3/28/82). Dry-weather arsenic concentrations were much lower.
3. Other discharges where elevated metals concentrations have been ob-

Table 18 served are two seeps at the mouth of the waterway near the Zidell shipyard.
4. The largest metals loads to Blair Waterway measured during NDOE surveys were from the south shore Lincoln Avenue drain -- 19, 3.8, 2.2, and 1.1 pounds per day of $\mathrm{As}, \mathrm{Zn}, \mathrm{Pb}$, and Cu , respectively. Metals loads from log sort yards have not been quantified.
5. Dames \& Moore and EPA (references 4, 11) water column data for Blair Waterway show metals were generally within EPA criteria for the protection of marine life, except Cu and Se in the EPA samples which exceeded maximum recommended values. Samples from the EPA control station at Browns Point also exceeded the Cu and Se criteria.
6. Metals concentrations in Blair surface sediments are not high relative to other waterways (i.e., Sitcum, City, and Hylebos).
7. There is a peak in metals concentrations in subtidal sediments in the central part of Blair Waterway. The south shore Lincoln Avenue discharge and runoff from the Murray Pacific yard are possible sources. Lincoln Avenue drain has high metals concentrations in sediments at Milwaukee Street and at the drain's mouth on the waterway south shore.
8. Amphipod bioassays conducted by Swartz (reference 10) showed lowest survival in samples ur sedimenl rrum he central part of the waterway. This pattern was not observed in two other sediment bioassay investigations (references 3,8).

Metals - Considerations for Future Work

1. Metals loads from the two sort yards on Blair Waterway should be quantified. The relationship between metals in sort yard runoff and waterway sediments should be assessed.
2. Metals in the Lincoln Avenue south drain also appear to be a problem warranting further study.
3. Data on metals stratification in Blair Haterway sediments should be obtained from core samples.

Volatiles - Observations

1. Detection of volatiles in point-source discharges to Blair Waterway has been largely restricted to the north and south Lincoln Avenue drains. Detection frequencies have been highest in the south drain. Seven compounds (chloroform, 1,1-dichloroethane, 1,2-dichloroethane, 1,2-trans-dichloroethylene, 1,1,1-trichloroethane, trichloroethylene, and tetrachloroethylene) have been detected in two or more of the four samples collected by EPA and WDOE from in the south drain. Concentrations were generally less than $10 \mu \mathrm{~g} / \mathrm{L}$.

Refer to
Data in:
Table 21
(references 1, 2, 14, 15), the two major MPDES dischargers to Blair Waterway (Reichhold Chemicals and U.S. 0il) are not significant sources of volatiles. However, a number of volatiles have been detected in the Reichhold storm drain system. With sufficient runoff, this drain overflows into the Lincoln Avenue north drain. Spills at the Lillyblad plant, a solvent recycler, have been documented by WDOE inspectors as a source of volatiles to Lincoln Avenue south drain.
3. The largest point-source loads measured for individual volatile compounds were about $0.1 \mathrm{lb} /$ day.
4. EPA (reference 11) has collected grab samples of surface and bottom waters from eight sites in Blair Waterway. Most samples did not contain detectable concentrations of volatiles. Chlorodibromomethane, 1,1,1trichloroethane, trichloroethylene, and methylene chloride were detected at $1 \mu \mathrm{~g} / \mathrm{L}$ or less in two or three of these samples, depending on the compound in question.
5. Riley (reference 9), using more sensitive methods, was able to quantify a number of volatiles (methylene chloride, haloforms, chlorinated ethanes, chlorinated ethylenes, benzene, and toluene) in surface waters at four sites along Blair's north shore between 11th Street and Lincoln Avenue. The compound present in the largest concentrations, up to $33.5 \mathrm{ng} / \mathrm{L}$, was 1,1,1-trichloroethane.
6. Volatiles concentrations were not in excess of EPA criteria for protection of marine life in the above-mentioned water column samples.
7. Both the EPA and Riley surveys indicate Blair Waterway has lower concentrations of volatiles in the water column than Hylebos llaterway.
8. Volatiles have not been detected in Blair Waterway sediment. A sample from within the Lincoln Avenue north drain had $.006 \mathrm{mg} / \mathrm{Kg}$ toluene and $.003 \mathrm{mg} / \mathrm{Kg} 1,1$-dichloroethane.

Volatiles - Considerations for Future Work

1. In light of the relatively large concentrations of volatiles measured by Riley, a survey of volatiles in seeps and drains on Blair's north shore between Lincoln Avenue and lith Street should be conducted. Additional samples for volatiles analysis should also be collected from the Lincoln Avenue south shore drain.

BLAIR WATERWAY

Refer to Data in:

Base/Neutrals and PCBs - Observations

1. The highest detection frequencies for base/neutral compounds in dis-

Table 20 charges to Blair !laterway have been in samples from the Lincoln Avenue south drain. 1,2-dichlorobenzene was the only compound routinely detected (three of four samples). All concentrations measured have been less than $10 \mu \mathrm{~g} / \mathrm{L}$. PCBs have not been detected in point-source samples.
2. As was the case for volatiles, HDOE-measured loads of base/neutrals to

Table 22 the waterway have been small (i.e., $0.1 \mathrm{lb} /$ day or less for individual compounds).
3. EPA (reference 11) did not detect base/neutrals or PCBs in water column samples.
4. Riley (reference 3) measured the following concentration ranges for selected base/neutrals and PCBs in the water column:

C73-butadiene-1	$<2-124 \mathrm{ng} / \mathrm{L}$ (pptr)
Cl_{3}-butadiene-2	<2-54"
hexachlorobutadiene	<1 - 4 "
Cl1-biphenyls	34-154"
$\mathrm{Cl}_{2}{ }^{-\prime}$	<3-106"
C73-"	$<1-24$ "
C14-"	$<1-1$ "
$\mathrm{Cl}_{5}{ }^{-\prime}$	<1- <2"
Total $\mathrm{Cl}_{1}-\mathrm{Cl} 5$-biphenyls	34-212

Hexachlorobutadiene (HCBD) did not exceed the $32 \mu \mathrm{~g} / \mathrm{L}$ EPA considers acutely toxic to marine life; EPA has no chronic HCBD criteria. All of the total selected chlorinated biphenyl concentrations measured exceeded EPA's suygested $0.030 \mu \mathrm{y} / \mathrm{L} 24$-hour averdye crilerid recoinmended as protective of marine life. There are no criteria for the lower chlorinated butadienes. PAH were not measured in Riley's water samples.
5. Riley (reference 9) also measured the following concentration ranges for selected base/neutral compounds and PCBs in suspended matter:

C13-butadiene-1	$<70-$	295	$\mu \mathrm{g} / \mathrm{Kq}, \mathrm{dry}$
Cl_{3}-butadiene-2	10 -	186	
nexachlorobutadiene	<1 -	21	
Cl_{1}-biphenyl	<6-	61	"
$\mathrm{Cl}_{2-}{ }^{-1}$	$<3-$	253	"
$\mathrm{Cl}_{3}{ }^{\prime \prime}$	4	133	"
$\mathrm{Cl}_{4}{ }^{-\prime}$	<2-	494	"
$\mathrm{Cl}_{5}{ }^{-\prime}$	<1 -	152	"
Total $\mathrm{Cl}_{1}-\mathrm{Cl}_{5}$ biphenyls	6 -	779	"
Total polyaromatic hydrocarbons*	2,637 -	,207	"

6. The concentrations of HCBD and chlorinated biphenyls measured by Riley in Blair suspended matter are similar to concentrations in the Blair subtidal sediments.
7. EPA and WDOE surveys have not detected butadienes or chlorinated biphenyls in point-source discharges. Naphthalene and fluorene are the only polyaromatic hydrocarbons that have been detected -- although infrequently.
8. Blair sediment concentrations of HCBD are low relative to Hylebos Waterway.
9. PAH concentrations in sediment are lowest in the first mile of Blair Waterway (as measured from the head) and increase substantially seaward of this point. Whether this indicates the location of predominant sources or is related to the relatively recent (1964-1966) excavation of the inner waterway is not known.
10. Riley (reterence 9) found extremely high concentrations of naphthalenes ($2.4 \mathrm{mg} / \mathrm{Kg}$ naphthalene, $3.4 \mathrm{mg} / \mathrm{Kg}$ 2-methyl naphthalene) in a sediment core near the 11 th Street bridge. Recent analyses done by Laucks Testing Laboratories for the Fort of Tacoma (unpublished data) confirm that high PAH concentrations exist in sediments from this part of Blair Waterway. In general, however, PAH concentrations are lower in Blair than in other waterways such as Hylebos and City.
11. A large concentration of bis(2-ethylhexyl) phthalate, $22.0 \mathrm{mg} / \mathrm{Kg}$ dry, was reported in a sediment sample at the mouth of the Lincoln Avenue south drain.

Base/Neulrdis din PCBs - Considerdions for Fulure Work

1. In light of the substantial concentrations of chlorinated butadienes and chlorinated biphenyls measured in the water column, additional work should be aimed at determing the sources, fate, and effects of these compounds in Blair Waterway.
2. Based on available data, the Lincoln Avenue south drain is the only point-source discharge where additional monitoring for base/neutrals appears warranted.

Acid Extractables - Observations

1. Detection of acid extractables in discharges to Blair has been limited to the detection of pentachlorophenol in the north and south Lincoln Avenue drains.

Refer to Data in:

Table 21 phenols in the Lincoln Avenue north drain. Phenol, 2-chlorophenol, 2,4-dichlorophenol, 2,4,6-trichlorophenol, and pentachlorophenol have been identified in this effluent (reference 14).
3. Acid extractables have not been detected in Blair Waterway sediments.

Table 24
Table 25

Acid Extractables - Considerations for Future Work

1. The Lincoln Avenue north drain is the only point-source discharge where additional monitoring for acid extractables appears warranted.

Pesticides - Observations

1. Detection of pesticides in discharges to Blair has been limited to traces of aldrin and $\alpha-B H C$ in one sample from the Lincoln Avenue south drain. Aldrin was not confirmed by GC/MS.
2. Riley (reference 9) did not detect pesticides in water column suspended matler.
3. NOAA measured DDT compounds at low concentrations in sediment samples from the two sites sampled in Blair. DDT was not at detectable levels

Table 20 Table 21

Table 24
Table 25

Pesticides - Considerations for Future Work

1. Pesticides do not appear to be a problem in Blair Waterway.

REFERENCES

1. Bernhardt, J., 1982a. Assessment of Surface Water Ouality in the Vicinity of Reichhold Chemicals, Inc., Tacoma, Washington, WDOE memorandum to Frank Monahan.
2. Bernhardt, J., 1982b. U.S. Oil and Refining Company Receiving Water Survey, May 5, 1981. HDOE memorandum to Fred Fenske.
3. Chapman, P.M., et a7., 1982. Survey of Biological Effects of Toxicants upon Puget Sound Biota. I. Broad-scale Toxicity Survey. NOAA Tech. Memo. OMPA-25.
4. Dames \& Moore, 1981. Commencement Bay Studies, Volume V, Water Ouality. for U.S. Army Corps of Engineers.
5. Malins, D.C., et al., 1980. Chemical Contaminants and Biological Abnormalities in Central and Southern Puget Sound. NOAA Tech. Memo. DMPA-19.
6. Malins. D.C., et al.. 1982. Chemical Contaminants and Abnormalities in Fish and Invertebrates from Puget Sound. NOAA Tech. Memo. OMPA-19.
7. NOAA, 1981. Unpubl. data. Concentrations of Aromatic Hydrocarbons and Metals found in Sediments from Central Puget Sound.
8. Pierson, K.B., et al., 1982. Biological Testing of Solid Phase and Suspended Phase Dredged Material from Commencement Bay, Tacoma, Washington. Fisheries Research Institute, Univ. Wash., Seattle.
Q. Riley, R.G., pt al , 1981 nrganic Pollutants in Materways Adjacent to Commencement Bay (Puget Sound). NOAA Tech. Memo. OMPA-12.
9. Swartz, R.C., et al., 1982. Sediment Toxicity and the Distribution of Amphipods in Commencement Bay, Hashington, USA. Marine Pollution Bulletin 13(10):359-364.
10. USEPAa, 1980. Commencement Bay/Port of Tacoma Field Survey - June 3, 1980.
11. USEPAb, 1980. Commencement Bay Waterways Survey - September 23-24, 1980.
12. USEPAc, 1982. Unpubl. sediment data. Letter from D.W. Schults, USEPA Marine Science Center, Newport, Oregon, to Art Johnson, WDOE.
13. Yake, B., 1987. Reichhold Chemicals Inc., Class II Inspection: 4/21/81. YDOE memorandum to Frank Monahan.
14. Yake, B., 1981. U.S. Dil and Refining Co., Class II Inspection of May 5 and 6, 1981. WDOE memorandum to Fred Fenske.

This page is purposely blank for duplex printing

PART 4. SITC.IM WATFRWAY

This page is purposely blank for duplex printing

PART 4. SITCUM WATERWAY
(7/38)

General Observations

1. The major concern in Sitcum Waterway is high metals concentrations in the sediments. In spite of reported high concentrations, bioassays on Sitcum subtidal sediments by EPA, NOAA, and the University of Nashington Fisheries Research Institute (references 1, 6, 7) have not shown acutely toxic effects. EPA has tested some intertidal sediments that elicited toxic responses (reference 7).
2. Sitcum Waterway water column samples have not been analyzed for organic priority pollutants. This is a substantial data gap.
3. Organic priority pollutants have not been measured in large concentrations in most samples of water and sediment. Limited data suggest further sampling for organics is warranted at four sites. These sites are identified below.

Metals - Observations

1. Only one sample from each of the two drains discharging to Sitcum Walerway has been andlyzed for metals -- neither had high metals concentrations. As, Cu, Pb, and Zn were higher in the drain in the north corner of the waterway than in the south corner drain. Cu, Pb, and Zn in the north drain were above EPA chronic criteria for protection of marine life.
2. Metals loads for the north corner drain were two orders of maanitude higher than the south drain. The maximum load measured for an individual metal was only $.70 \mathrm{lb} /$ day (Zn).
3. Water column data on metals are limited to a sample collected by Dames \& Moore (reference 2) in October 1980. Cu and Zn were measured at 3 and $10 \mu \mathrm{~g} / \mathrm{L}$, respectively, while $\mathrm{As}, \mathrm{Cd}, \mathrm{Cr}$, and Pb were below detection limits. No metal exceeded EPA criteria.
4. Sitcum sediments are higher in $\mathrm{As}, \mathrm{Cu}, \mathrm{Pb}$, and Zn than sediments in other Commencement Bay waterways. With the exception of As, the above same metals are roughly twice as high in sediments from the north side of the waterway than those from the south side. High Cu concentrations in sediment have also been reported in two samples off the south shoreline near the waterway entrance.
5. The highest concentrations of Cu, Pb, and Zn reported for Sitcum sediments were in an intertidal sample near the mouth of the north corner drain. 7,000, 19,000, and $3,200 \mathrm{mg} / \mathrm{Kg}$ (dry) of Cu, Pb, and Zn , respectively, were measured.
6. The source(s) of the metals in Sitcum sediments has not been identified. ASARCO slag used as rip-rap along the south shore and alumina and lead/zinc/copper concentrates unloaded at Pier 7 on the north side of the waterway are possible sources. Three samples of ore have been analyzed by WDOE as shown below. Metals concentrations differ widely among the samples. Sample \#2 matches some of the Sitcum sediment data fairly well.

7. No core data are avaliable on the vertical stratification of metals in Sitcum sediments.

Metals - Considerations for Future Work

1. The source(s) of metals in Sitcum sediments, whether historical or ongoing, should be identified.
2. Sediment cores should be taken to determine metals stratification.
3. The materials handling procedures used at Pier 7 should be reviewed with the aim of reducing the spillage to the waterway that has been observed by WDOE inspectors.
4. Water column samples should be taken.

Volatiles - Observations

1. Of the two major point-source discharges to Sitcum Waterway, only the

Table 27 north corner drain has had detectable concentrations of volatiles. Chloroform, l,l,l-trichloroethane, and tetrachloroethylene were detected in each of the two samples collected. 1,l,l-trichloroethane
was present in the largest concentrations, 34 and $42 \mu \mathrm{~g} / \mathrm{L}$. Trichloroethylene and 1,1,2,2-tetrachloroethylene were detected in the first of these two samples. Detection limits were an order of magnitude higher for the second sample.
2. The higher of the two loads measured for 1,1,1-trichloroethane was . 25 1b/day.
3. Water column samples from Sitcum Waterway have not been analyzed for volatiles.
4. Volatiles have not been detected in intertidal or subtidal sediments collected within the waterway.
5. A sediment sample collected by the Port of Tacoma (unpublished data) just outside the waterway entrance on February 26, 1981 and analyzed by Laucks Testing Laboratories, had $87 \mathrm{mg} / \mathrm{Kg}$ chloroform, $1.2 \mathrm{mg} / \mathrm{Kg}$ xylene, $1.5 \mathrm{mg} / \mathrm{Kg}$ dichlorobromomethane, and $210 \mathrm{mg} / \mathrm{Ka}$ toluene (dryweight basis). The sample was a composite of the top four feet of a sediment core. Coordinates for the sample site are approximately $47^{\circ} 16^{\prime} 20^{\prime \prime} \times 122^{\circ} 25^{\prime} 14^{\prime \prime}$, based on the sketch accompanying the raw data. Ihese high concentrations of volatiles are unique among the analyses done to date on Commencement Bay sediments.

Volatiles - Considerations for Future Work

1. With the excention of the north rorner drain, volatiles have not heen shown to be a problem in Sitcum Waterway. Additional sediment samples (cores) should be collected outside the waterway entrance in the vicinity of the Port of Tacoma sample mentioned above to verify those measurements. The north corner drain should continue to be monitored for volatiles and efforts made to identify the source(s) of these compounds.
2. Water column samples should be taken.

Base/Neutrals - Observations

1. Base/neutral compounds have not been detected in either of the two drains to Sitcum Waterway.
2. No data are available on base/neutrals in the water column of Sitcum Waterway.
3. Concentrations of hexachlorobutadiene in Sitcum sediments are low relative to findings for Hylebos, Blair, and City waterways sediments.

SITCUM WATERWAY

4. One sediment sample near the mouth of Sitcum Waterway (station STS-9,
Figure 17) had extremely high concentrations of PAH. Benzo (a) pyrene
was the compound present in the highest concentrations, $230 \mathrm{mg} / \mathrm{Kq}$.
These are the highest PAH concentrations so far reported for Commence-
ment Bay sediments.
5. The concentration of PAH in the majority of Sitcum sediment samples are not elevated relative to sediment in other Commencement Bay waterways.

Base/Neutrals - Considerations for Future Work

1. Sediments at station STS-9 should be sampled to verify this site as a PAf "hot spot" and determine the horizontal and vertical extent of contamination.
2. Water column samples are needed.

Acid Extractables - Observations

1. Phenol and pentachlorophenol are the only acid extractable compounds that have been detected in point-source discharges to Sitcum Waterway. Less than $10 \mathrm{\mu g} / \mathrm{L}$ of each was measured in one of the two north corner drain samples.
2. Groundwater beneath phenolic waste ponds on Georgia Pacific property (formerly Pacific Resins and Chemicals) is contaminated with phenols. This material has been removed through a WDOE enforcement action. A two-year groundwater monitoring program has been initiated. This site, Certain-Teed, and other small industries within the Sitcum drainage basin are possible sources of phenols to the waterway.
3. No water column data are avallable on acid extractables.
4. Acid extractables have not often been detected in Sitcum sediments. Phenol and pentachlorophenol have been found in small concentrations in two and three samples, respectively, of the 10 samples that have been analyzed for this fraction. One subtidal sample (station STS-3, Figure 17) contained 2-chlorophenol. p-chloro-m-cresol. and 4-nitrophenol. 4-nitrophenol was present in large concentrations -- 2.3 $\mathrm{mg} / \mathrm{Kg}$. Phenol and pentachlorophenol were detected in an intertidal sample near the north corner drain.

Acid Extractables - Considerations for Future Work

1. Additional samples should be collected at station STS-3 and analyzed for acid extractables.
2. Because of the existence of sources of phenolic compounds within the Sitcum north corner drainage basin, this drain should continue to be monitored for these compounds.
3. Water column samples should be analyzed for acid extractables.

Pesticides and PCBs - Observations

1. Neither pesticides nor PCBS have been detected in discharges from the two Sitcum Waterway drains.
2. Dames \& Moore (reference 2) could not detect PCBs in the single water sample they analyzed from the waterway ($0.2 \mu \mathrm{~g} / \mathrm{L}$ detection limit).
3. No data are available on pesticides in the water column.
4. The Dames \& Moore water column sample mentioned above did not contain detectable concentrations of PCBS ($0.2 \mu \mathrm{~g} / \mathrm{L}$ detection limit).
5. High concentrations of pesticides and PCBs have not been observed in Sitcum sediments.

REFERENCES

1. Chapman, P.M., et al., 1982. Survey of Biological Effects of Toxicants upon Puget Sound Biota. I. Broad-scale Toxicity Survey. NOAA Tech. Memo. OMPA-25.
2. Dames \& Moore, 1981. Commencement Bay Studies, Volume V, Water Quality. For U.S. Army Corps of Engineers, Seattle District.
3. Malins, D.C., et al., 1980. Chemical Contaminants and Biological Abnormalities in Central and Southern Puget Sound. NOAA Tech. Memo. DMPA-2.
4. Malins, D.C., et al., 1982. Chemical Contaminants and Abnormalities in Fish and Invertebrates from Puget Sound. NOAA Tech. Memo. OMPA-19.
5. NOAA, 1987. Unpubl. data. Concentrations of Aromatic Hydrocarbons and Metals found in Sediments from Central Puget Sound.
6. Pierson, K.B., et al., 1982. Biological Testing of Solid Phase and Suspended Phase Dredged Material from Commencement Bay, Tacoma, Washington. Fisheries Research Institute, Univ. Wash., Seattle.
7. Swartz, R.C., et al., 1982. Sediment Toxicity and the Distribution of Amphipods in Commencement Bay, Hashington, USA. Marine Pollution Bulletin 13(10):359-364.
8. USEPAc, 1982. Unpubl. sediment data. Letter from D.W. Schults, USEPA Marine Science Center, Newport, Oregon, to Art Johnson, WDOE.

PART 5. MILWAUKEE. PUYALLUP. ST. PAUL. MIDDLE WATERWAYS AND S.W. SHORE COMMENCEMENT BAY

MILWAUKEE WATERWAY

(10/83)
Refer to Data in:
Observations

1. There are no known discharges to Milwaukee Waterway.
2. Water column data are limited to one sample each from the inner and outer waterway collected in October 1980 by Dames \& Moore (reference 4). Cu was measured at 5 and $8 \mu \mathrm{~g} / \mathrm{L}, \mathrm{Zn}$ at 10 and $31 \mu \mathrm{~g} / \mathrm{L}$. As, Cd , Cr , and PCBs were below detection limits.
3. Only two sediment samples -- one intertidal, the other subtidal --

Table 39 have been collected in the waterway. Neither sample had high metals concentrations. Trace amounts of PAH compounds were the only organic priority pollutants detected in the intertidal sample. The subtidal sample contained $.0059 \mathrm{mg} / \mathrm{Kg}$ hexachlorobenzene, . $0036 \mathrm{mg} / \mathrm{Kg}$ hexachlorobutadiene, up to $1.2 \mathrm{mg} / \mathrm{Kg}$ of individual PAH compounds, . 037 $\mathrm{mg} / \mathrm{Kg}$ عDDT, and $.223 \mathrm{mg} / \mathrm{Kg}$ PCBs. These concentrations are typical of sediments in Commencement Bay waterways other than in the most contaminated areas; i.e., Hylebos and City waterways.

Considerations for Future Work

1. A few more sediment samples, preferably cores, should be collected in Milwaukee Waterway to confirm that it is not a major site of contamination.

Refer to
Data in:

Observations

1. USGS data on the Puyallup River at Puyallup (r.m. 5.7) and WDOE data on the river above the Tacoma Central STP (r.m. 1.7) indicate the river has low background concentrations of metals. Three river water samples have been collected immediately above the STP by WDOE and analyzed for organic priority pollutants. The only compound detected was $8 \mu \mathrm{~g} / \mathrm{L}$ cyanide.
2. The results of WDOE's most recent Class II surveys at the Tacoma Central STP have been reported by Yake (reference 20) who made the following observations:
a. "The wide range of priority pollutants found in Tacoma Central's wastewaters is generally typical of municipal wastewaters. Likewise, the concentrations reported are generally typical. The primary exception to this generalization appears to be the chlorinated phenols which are present in substantially higher concentrations than those observed in wastewaters from other municipalities."
b. "Although metals concentrations at Tacoma Central do not appear to be unusually high when compared to wastewalers frum u lher majur cities throughout the country, they are elevated when compared to sludge concentrations at most other Washington towns and cities. This is particularly true for chromium, cadmium, nickel, and lead. Arsenic is probably also elevated; however, data are not available for arsenic concentrations in other Washington State wastewaters and sludges. Effluent mercury concentrations measured during the low-flow survey are well above EPA receiving water criteria."
c. "Effluent loads for metals and several other priority pollutants (cyantde, tetrachloroethylene, and the chlorinated phenols) were substantially higher during the storm flow sampling period. Elevation of metals in wastewaters during storm flows in cities with combined sewer systems has been previously documented."
d. "Many of the priority pollutants detected were only detected in one or two of the three [sampling] periods. Concentrations often varied substantially from one sampling period to another. Because a large portion of Tacoma's wastewater flow is from industrial sources, the potential for slug loads of specific pollutants from spills, upsets, or batch processes is substantial. A continuing program of wastewater analysis would provide a much more comprehensive and complete knowledge of pollutant concentrations and effluent loadings."
e. "Concentrations of priority pollutants in the effluent are generally low enough that they would not exceed EPA in-stream criteria for the protection of aquatic and marine life after the effluent is fully mixed with the Puyallup River/Estuary. Possible exceptions to this generalization may be mercury, cadmium, and lead. Factors which may hinder ideal dilution include the absence of an effluent diffuser and effluent pooling caused when low river flow and high tidal conditions coincide."
f. "Based on data available, the primary treatment process employed at the Tacoma Central plant does not appear to be very effective in reducing priority pollutant concentrations in the wastewater stream. Available literature suggests that secondary treatment would be much more effective."
3. The Cleveland Street pump station effluent, about $1 / 3$ mile upstream of

Table 32
Table 36

Table 33
Table 37

Table 32
Table 36
6. Riley (reference 14) analyzed samples of water and suspended matter collected in July 1979 from the mouth of the Puyallup Piver. Trichloroethylene and tetrachloroethylene were detected at $<.1 \mathrm{\mu g} / \mathrm{L}$. Chlorodibromomethane and bromoform were tentatively identified at <.l and $<.2 \mu \mathrm{~g} / \mathrm{L}$, respectively. Samples of Puyallup River suspended matter had low concentrations of metals and PAH. Analyses for chlorinated base/neutrals, acid extractables, or pesticides were not done.

1. WDOE receiving environment surveys at the lacoma Central sir (reterence 9) showed that with sufficiently large flood tide and low river flow, slack water conditions occur at the STP outfall site, causing pooling of the effluent. It was estimated that pooling equal or greater in magnitude to that observed during the survey would have been expected to occur on approximately 90 separate occasions during water year 1980 .

Water samples from within this effluent pool were the only river water
Table 36 samples collected during the WDOE surveys in which effluent organic priority pollutants were present at detectable concentrations and oyster larvae (Crassostrea gigas) and daphnid (Daphnia puZex) mortality or abnormality were observed during bioassays.
8. Priority pollutant analysis has been done on four samples of intertidal

Table 39 sediment and two samples of subtidal sediment from the lower Puyallup River. Sedimenl immediately beluw the STP oulfall (staliun PI-2) had high concentrations of toluene and bis(2-ethylhexyl) phthalate, 7.9 and $3.1 \mathrm{mg} / \mathrm{Kg}$, respectively. Sediment from within the old St. Regis bleach crib on the river's south bank had a relative high PAH concentration and was acutely toxic in EPA amphipod bioassays (reference 17). Hexachlorobutadiene has not been detected in Puyallup River sediments.

Considerations for Future Work

1. Concentrations of priority pollutants in the Puyallup River appear to be generally low. In order to accurately estimate priority pollutant loads in the river, extremely sensitive (low detection level) analytical methods would be required for most pollutants.
2. Sediment from the St. Regis bleach plant crib and portions of the Puyallup River reach adjacent to the Tacoma STP outfall are localized areas of concern because of elevated levels of contaminants and toxic effects on bioassay organisms.

Refer to Data in:

Observations

1. The three major discharges to St. Paul Waterway are from the St. Regis paper mill, log sort yard, and sawmill operations. The paper mill effluent is the largest industrial discharge to Commencement Bay.
2. A high concentration of $\mathrm{Hg}, 1.2 \mu \mathrm{~g} / \mathrm{L}$, was measured in the single sample WDOE has collected of the sawmill effluent. With this exceplion, melals cuncenlalions in sawnill dnd loy yard effluenls were low (one sample each).
3. A Cu concentration of $100 \mu \mathrm{~g} / \mathrm{L}$ was measured in the St. Regis paper mill effluent during WDOE's most recent Class II inspection (reference 19). A net load of $30 \mathrm{lbs} /$ day Cu , the largest metals load measured by WDOE for St. Paul Waterway, was calculated for this discharge.
4. Only a few organic priority pollutants, in trace amounts, were detected in the sawmill and log sort yard effluents.
5. $\quad 1800 \mu \mathrm{~g} / \mathrm{L}$ of chloroform was measured in the St. Regis paper mill effluent during the most recent WDOE Class II survey (reference 19). A chloroform load of 480 1bs/day was calculated for this discharge. This is the largest load of an organic priority pollutant known to occur in Commencement Bay.

Receiving water samples (reference 8) collected during the Class II survey showed $420 \mu \mathrm{~g} / \mathrm{L}$ chloroform in surface waters near the outfall and $8.1 \mu \mathrm{~g} / \mathrm{L}$ chloroform in inner St. Paul Waterway. There are no EPA criteria for chloroform in marine waters. Some laboratory experiments (references 10, 16) have demonstrated adverse effects on aquatic organisms at chloroform concentrations as low or lower than $420 \mu \mathrm{~g} / \mathrm{L}$.
6. Oyster larvae (C. gigas) bioassays (references 8 and 19) on the paper mill effluent and receiving waters showed both to be acutely toxic.
7. Three sediment samples have been analyzed from St. Paul Waterway. Metals concentrations were not high relative to other Commencement Bay waterways. High naphthalene concentations (. $72-3.0 \mathrm{mg} / \mathrm{Ka}$) were characteristic of each St. Paul sediment sample. An extremely high phenol concentration of $91 \mathrm{mg} / \mathrm{Kg}$ was measured in the sample collected nearest the St. Regis outfall. $0.84 \mathrm{mg} / \mathrm{Kg}$ pentachlorophenol and traces of 2,4,6-trichlorophenol, chloroform, and toluene were also detected in this sample. Amphipod bioassays (reference 8) on the outfall and innermost waterway sediment samples showed both to be toxic.

ST. PAUL WATERWAY

Refer to
Data in:

Considerations for Future Work

1. The following concerns appear worth additional study:
a. The persistence of chloroform in the waters off St. Regis, and its effect on salmonids and other pelagic organisms.
b. Areal extent and degree of toxicity of sediments adiacent to St. Regis.
c. Verification of high concentrations of phenol and naphthalene in St. Paul Waterway sediments.
d. The quantification and environmental fate of chlorinated resin acids, guaicols, propenes, and other potentially toxic or mutagenic compounds which may be present in the St. Regis effluent.

MIDDLE WATERWAY
(10/83)
Refer to
Data in:

Observations

1. The major discharge to Middle Waterway is the storm drain at the head of the waterway. WDOE has collected only one water sample here. Metals concentrations were low except for $990 \mu \mathrm{~g} / \mathrm{L}$ of Zn . The flow rate from the drain, however, was only 0.01 MGD , resulting in a Zn load to the waterway of .08 1b/day.

Detection limits for the organic priority pollutants analysis of this sample were high. Chloroform and cyanide were measured at <l0 $\mu \mathrm{g} / \mathrm{L}$ and $5 \mu \mathrm{~g} / \mathrm{L}$, respectively.
2. Dames \& Moore (reference 4) was unable to detect $\mathrm{As}, \mathrm{Cu}, \mathrm{Cd}, \mathrm{Cr}, \mathrm{Pb}$, or PCBs in a water column sample collected in October 1980. Zn was measured at $9 \mu \mathrm{~g} / \mathrm{L}$.
3. One intertidal sample and one subtidal sample have been taken of Middle Waterway sediment. A third sample (subtidal) has also been taken outside the waterway entrance. The subtidal sample from within the waterway had high $\mathrm{Cu}, \mathrm{Hg}, \mathrm{Pb}$, and Zn concentrations (486, 2.2, 230 , and $353 \mathrm{mg} / \mathrm{Kg}$, respectively) compared to the data on most other Commencement Bay sediments. High metals concentrations were not reported in the other two samples.
4. Results of organic priority pollutant analyses of Middle Waterway sediments compare closely to the findings discussed earlier in this report for Milwaukee Waterway sediments.

Considerations for Future Work

1. The available data indicate Middle Waterway, like Milwaukee Waterway, is not a major site of contamination for the organic priority pollutants. More data are needed on metals in the sediments and in the drain at the head of the waterway.

Refer to
Observations
Data in:

Data in:

Table 32

Table 39

Table 32

Table 33
5. Although several investigators report metals concentrations for ASARCO receiving waters, a comprehensive study has not been performed.
Tatomer (referencc 18) rcported up to $42.6 \mu \mathrm{~g} / \mathrm{L} \mathrm{Cu}$ in surface water samples collected adjacent to the smelter in 1972. More recently, Battelle researchers (references 6 and 15) measured Cu in surface water samples from seven sites in Commencement Bay along the ASARCO shoreline (sampled August 19, 1982) and two sites in the yacht bas in behind the slag pile (sampled January-September 1982). Copper (total Cu , unfiltered samples) ranged from 0.1 to $7.0 \mu \mathrm{~g} / \mathrm{L}$ in the seven bay samples. Variable concentations of Cu -- some extremely high -- were found within the yacht basin. The results from nine samples are reported; eight from the basin entrance and one at the far end of the basin. Cu concentrations ranged from 3 lo $1200 \mu \mathrm{y} / \mathrm{L}$ d the tilrante. The median Cu concentration was $28 \mu \mathrm{~g} / \mathrm{L} .4 \mu \mathrm{~g} / \mathrm{L}$ Cu was measured in the single sample from within the basin. $\mathrm{Zn}, \mathrm{Cd}, \mathrm{Hg}$, and Ag were one to two orders of magnitude above concentrations measured at the study's control station (Sequim Bay) in the six basin samples analyzed for these metals.

S.W. SHORE COMMENCEMENT BAY

One other source of data on the nearshore receiving waters is from samples taken by Dames \& Moore (reference 4). These data, however, were collected during a strike at ASARCO, so metals loads were at a minimum. A composite of surface, middle, and bottom waters taken in October had $5 \mu \mathrm{~g} / \mathrm{L}$ Cu. A discrete surface sample collected in December had no detectable Cu. As was not detected in the Dames \& Moore samples.

Carpenter (reference 1) conducted a comprenensive survey of As in Puget Sound waters. He found uniform As concentrations everywhere in the Sound except "within a few kilometers of the smelter". Fifty surface water samples north of the smelter in the channel between the mainland and Vashon Island averaged $2.2 \mu \mathrm{~g} / \mathrm{L}$ As compared to 1.5 to 1.7 $\mu \mathrm{g} / \mathrm{L}$ As at stations north of Seattle.
6. Data on metals in ASARCO nearshore sediments are limited to a single

Table 39
WDOE intertidal sample which had high As, Zn, and Cu concentrations -280, 300 , and $900 \mathrm{mg} / \mathrm{Kg}$, respectively.

There are considerable data available on metals in Commencement Bay deepwater sediments, but this is outside the area addressed in this report. Those samples nearest ASARCO were collected at depths of about 60 meters by Crecelius (reference 3) and Malins (references 11, 12). Crecelius analyzed three samples and found 980 to $10,000 \mathrm{mg} / \mathrm{kg}$ As and similar amounts of Sb . He did not analyze for other priority pollutant metals. Malins does not report As data for the NOAA station nearest ASARCO (station number 10-09036). $126 \mathrm{mg} / \mathrm{Kg} \mathrm{Cu}$ and $140 \mathrm{mg} / \mathrm{Kg}$ Zn were measured in samples he collected at this site in 1979.
7. EPA (reference 5) and WDOE (reference 7) analyses on tissue from demersal fish and from mussels indicate specimens collected near ASARCO have higher melals concenlalions than those in other parts of Commencement Bay and Puget Sound.
8. Organic priority pollutant analyses have been conducted on the south outfall only. One sample, a grab, was collected by the WDOE S.W. region on August 15, 1982 and analyzed for base/neutrals at the EPA Manchester laboratory. $7.2 \mu \mathrm{~g} / \mathrm{L}$ bis(2-ethylhexyl) phthalate was detected.
9. The toxicity of the ASARCO receiving environment to marine life has not been closely investigated. Chapman (reterence 2) recently conducted bioassays on two sediment samples collected off the ASARCO facility. His report states that the metals in these samples are "probably refractory and not toxic".

S.W. SHORE COMMENCEMENT BAY

Considerations for Future Work

1. More study is required at ASARCO. The slag processing operation next to the smelter should be included in future survey work. Among the types of studies suggested are:
a. Determine net metals loads for ASARCO discharges.
U. lleasure melals concenlalions in the recetving waters and assess their toxicity.
c. Determine the availability of metals in sediments near ASARCO to marine organisms. Determine if these sediments are toxic.
d. Analyze ASARCO discharges for organic priority pollutants.

MILWAUKEE, PUYALLUP, ST. PAUL, MIDDLE WATERWAYS

AND S.W. SHORE COMMENCEMENT BAY

REFERENCES

1. Carpenter, R., M.L. Peterson, and R.A. Jahnke, 1978. Sources, Sinks and Cycling of Arsenic in the Puget Sound Region. in Estuarine Interactions, M.L. Wiley (ed.), Academic Press. Inc.
2. Chapman, P.M., et al., 1982. Survey of Biological Effects of Toxicants unon Puget Sound Biota. I. Broad Scale Toxicity Survey. NOAA Tech. Memo. OMPA-25.
3. Crecelius, E.A., M.H. Bothner, and R. Carpenter, 1975. Geochemistries of Arsenic, Antimony, Mercury, and Related Elements in Sediments of Puget Sound. In: Environmental Science Technology 9(4):325-333 pp.
4. Dames \& Moore, 1981. Commencement Bay Studies, Volume V, Water Quality. For: U.S. Army Corps of Engineers, Seattle District.
5. Gahler, A.R., et al., 1982. Chemical Contaminants in Edible, Non-salmonid Fish and Crabs from Commencement Bay, Washington. USEPA Region 10.
6. Gurtisen, J., 1982. Memorandum to G. Roesijadi, Battelle Marine Research Laboratory, Sequim, WA.
7. Heffner, M., 1981. ASARCO CTass II Survey - February 24 and 25, 1981. WDOE Memorandum to R. Pierce.
8. Johnson, A. and S. Prescott, 1982a. Receiving Environment Survey at the St. Regis Paper Company, Tacoma, Washington, August 11-12, 1981. WDOE Memorandum to F. Fenske.
9. Johnson A. and S. Prescott, 1982b. Receiving Environment Surveys in the Puyallup River at the Tacoma Central (\#1) Sewage Treatment Plant, Tacoma, Washington, July 28, 1981, August 25-26, 1981, and February 16-17, 1982. WDOE Memorandum to F. Monahan.
10. Loekle, D.M., A.J. Schecter, and J.J. ChrisLian, 1983. Effects of Chloroform, Tetrachloroethylene, and Trichloroethylene on Survival, Growth and Liver of Poecilia sphenops In Bull. Envir. Contam. Toxic. 30, 199-205 pp.
11. Malins, D.C. et al., 1980. Chemical Contaminants and Biological Abnormalities in Central and Southern Puget Sound. NOAA Tech. Memo. OMPA-2.
12. Malins, D.C., et al., 1982. Chemical Contaminants and Abnormalities in Fish and Invertebrates from Puget Sound. NOAA Tech. Memo. OMPA-19.
13. NOAA, 1981. Unpub1. data. Concentrations of Aromatic Hydrocarbons and Metals found in Sediments from Central Puget Sound.
14. Riley, R.E., et al., 1980. Quantification of Pollutants in Suspended Matter and Water from Puget Sound. NOAA Tech. Memo. ERL MESA-49.
15. Roesijadi, G., 1983 (draft). Significance of metal-binding proteins and lysosome-like vesicles in mussels in a metal-contaminated environment: an experimental field study. NOAA Office of Marine Pollution Assessment.
16. Stewart, M.E., et al., 1979. By-products of Oxidative Biocides: Toxicity to Oyster Larvae. In Marine Pollution Bulletin 10: 166-169 pp.
17. Swartz, R.C., et al., 1982. Sediment Toxicity and the Distribution of Amphipods in Commencement Bay, Washington, USA. In Mar. Poll. Bull. 13(10): 359-364 pp.
18. Tatomer, C.J., 1972. Copper in Sea Water in the Seattle-Tacoma Area and in Two Canadian Inlets. M.S., Univ. Wash., Seattle.
19. Yake, B., 1982a. St. Regis Paper Company Class II (Priority Pollutants) Survey, August 11-12, 1981.
20. Yake, B., 1982b. Tacoma Central (\#1) Sewage Treatment Plant Class II (Priority Pollutants) Surveys: August 25-26, 1981 and February 16-17, 1982.

PART 6. SUMMARY

This page is purposely blank for duplex printing

PART 6. SUMMARY

(12/83)

1. Point Source Data

EPA and WDOE data on 60 individual discharges to Commencement Bay have been reviewed. The data base consists of over 100 samples collected between September 1979 and April 1982.

Some of the important limitations inherent in these data may not have been sufficiently emphasized in preceding parts of this report. Although concentrations and flow dala for municipal did industrial discharyes are considered to be reasonably accurate, the data on storm drains and natural drainages are subject to the vagaries of precipitation, upstream uses, and tidal effects. In many cases, only one or two samples have been collected from a given discharge. For many discharges, only dry-weather data are available. In addition, analytical methods for some compounds, PAH for example, have not always been sufficiently sensitive to detect or quantify them in water. In light of these and other considerations, EPA and WDOE are continuing to monitor those discharges where large numbers and/or high concentrations of contaminants have been found. Perhaps the most important caution in interpreting these data is the fact that the relative importance of other sources of contaminants such as aerial fallout, release from sediments, spills, advection, etc., has not been determined. Keeping these limitations in mind, the following obscrvations were made.

Metals concentrations in most discharges were not large. In general, higher concentrations appeared to be associated with wet weather rather than dry weather. Especially high metals concentrations were found in seeps to Hylebos Waterway, Pennwalt seeps and drains, log sort yard runoff, the Lincoln Avenue south drain to Blair Waterway, the 15th Street storm drain to City Waterway, and ASARCO's south and middle outfalls.

Metals loads representative of dry weather have been calculated from the WDOE data and summarized in Table 40^{\star}. The largest total loads were rur As, Cu , and $\mathrm{Zn}--390,313$, and 220 pounds/day, respectively. ASARCO discharges contributed most of the loads for these metals (64 percent to 95 percent depending on the metal in question) as well as 80 percent of the total Cd load of 12 pounds/day. The St. Regis paper mill effluent was only 10 percent of the overall Cu load, but constituted the largest load of Cu to an individual waterway (St. Paul) by a substantial margin. The largest Cr and Ni loads, 16 and 31 pounds/day, respectively, were to Hylebos Waterway and accounted for 66 percent and 76 percent of the total. Hooker (Occidental) was the major source of Cr and Ni loads. The Tacoma Central STP was the major Hg source based on its load of .087 pound/day. It also contributed 36 percent and 21 percent of the total Pb and Zn loads. The remaining waterways (Blair, Sitcum, St. Paul, Middle, Milwaukee, and City) as well as the 01d Tacoma storm drain and Ruston STP had small metals loads.

[^2]Relatively few organic priority pollutants were detected in most discharges, as shown in Table 47. Overall detection frequencies for the major compound groups, in descending order of frequency were volatiles > acid extractables $>$ base/neutrals > pesticides > PCBs. Cyanide, an inorganic compound, was routinely detected (i.e., 64 percent of samples). The individual compounds most frequently detected were chloroform (54 percent), trichloroethylene (37 percent), tetrachloroethylene (31 percent), phenol (26 percent), naphthalene (24 percent), chlorodibromomethane (20 percent), bis(2-ethylhexyl) phthalate (20 percent), pentachlorophenol (19 percent), and anthracene/ phenanthrene (18 percent). Interlaboratory differences in detection limits make it difficult to determine if organics concentrations tended to be higher in wet weather, as was noted for metals.

Most of the sampling effort has been concentrated on Hylebos Waterway discharges. The greatest variety of compounds was detected here. Chemicals such as trichlorofluoromethane, bromoform, carbon tetrachloride, chloroethane, 1,1-dichloroethylene, several PAH, hexachlorobutadiene, 2chloronaphthalene, nitrobenzene, 4-bromophenylether, and aldrin were detected only in Hylebos discharges. Detection of pesticides was largely restricted to Pennwalt and Hooker (Occidental) discharges to the Hylebos.

Only a few additional compounds were detected outside Hylebos Waterway or at greater frequencies. For example, the highest detection frequency and widest array of phenolic compounds were found in the Tacoma Central STP effluent. Chlorobenzene and 1,2-dichloroethane were detected only in Blair Waterway. PCBs were not detected in any of the EPA or UDOE Commencement Bay noint-source samples.

Table 42 summarizes the WDOE data on organic priority pollutants loads. Loads greater than one pound/day were calculated for chloroform (492 pounds), bromoform (19.8 pounds), phenol (4.9 pounds), trichloroethylene (3.8 pounds), bis(2-ethylhexyl) phthalate (3.4 pounds), naphthalene (2.1 pounds), dichlorobromomethane (1.9 pounds), butylbenzyl phthalate (1.9 pounds), tetrachloroethylene (1.7 pounds), di-n-octyl phthalate (1.4 pounds), toluene (1.1 pounds), and 2-chlorophenol (1.1 pounds). A cyanide load of 3.1 pounds/day was also calculated.

The total calculated load for many compounds was contributed entirely by discharges to Hylebos Waterway. The total chloroform, dichlorobromomethane, and toluene loads were overwhelmingly due to the St. Regis effluent (St. Paul Waterway). Effluents from the Tacoma Central and Ruston STPs contributed most of the dichlorobenzenes and phthalates loads, with the former contributing 96 to 100 percent of the loads for five of the six phenols detected. Pentachlorophenol loads came primarily from the north Lincoln Avenue drain into Blair Waterway. For some compounds of concern in Commencement Bay such as PAH and hexachlorobutadiene, extremely low loads were measured. As mentioned above, PCBs were not detected in point sources.

2. Water Column Data

The data available from EPA, Battelle, Dames \& Moore, and WDOE surveys suggest that, outside the immediate vicinity of discharges, the waters of Commencement Bay and adjacent waterways do not have especially high metals concentrations. Most metals measurements have been at levels not considered harmful to aquatic life. However, the receiving waters near ASARCO, Pennwalt, Tacoma Central STP, and log sort yards on Blair and Hylebos waterways have a potential for adverse effects on marine life because of elevated metals, especially arsenic, copper, zinc, lead, mercury, and cadmium. There are data indicating copper may be al levets harmful lo marine life in Hylebos Waterway.

Most of the water column data on organic priority pollutants are from Blair and Hylebos waterways. Concentrations of PCBs, chlorinated butadienes, chlorinated ethylenes, and haloforms are higher here than reported for most other marine waters. PCBs exceed certain of the EPA criteria for protection of marine life. No PCB sources have been identified. Low concentrations of hexachlorobutadiene have been measured in Hooker and Pennwalt discharges. Hooker (Occidental) is the major known source of chloroform and chlorinated ethylenes to Hylebos Waterway. Hennwalt is the major known bromoform source. Blair water column data suggest an as yet unidentified source of volatiles may exist somewhere along the middle of the north shorclinc.

Organic priority pollutant concentrations in the water column are also of potential concern in St. Paul Waterway off St. Regis (chloroform) and in the Puyallup River at the Central STP outfall (a variety of compounds).

3. Sediment Data

Priority pollutant data from 115 samples of surface sediment collected by NOAA, Battelle, EPA, and WDOE in Cumlmemelliml Bay walerways ard the Ruston shoreline were reviewed. Most samples were from Hylebos, Blair, and Sitcum waterways -- 46, 26 , and 14 samples, respectively.

The subtidal sediment data have been summarized in Table 43 by showing maximum and median pollutant concentrations.

As is now well known, Sitcum Waterway sediments have the highest concentrations of $\mathrm{As}, \mathrm{Cu}, \mathrm{Pb}$, and Zn ; the latter three metals possibly derived from spilled ore. Sediment(s) in City and Hylebos waterways have the second and third highest levels of metals in sediment. Horizontal gradients in metal concentrations are evident in Hylebos, Blair, Sitcum, and City waterways. There are no core data for metals.

Volatiles generally were not detected in subtidal sediment except for trace amounts in a few Hylebos and St. Paul waterways samples. Sediment-associated volatiles have been detected most frequently in the Hylebos intertidal zone -- 6 of 13 samples had one or more compound(s) detected. Each of these 6 samples was either a Pennwalt- or Hooker (Occidental)-related sediment.

Acid extractables, like volatiles, were rarely detected in most waterway sediments. Three sediment samples adjacent to St. Regis had phenol concentrations of $1.2,7.6$, and $91 \mathrm{mg} / \mathrm{Kg}$. Chlorinated phenols have been detected in two samples -- one near the St. Regis outfall and one in Sitcum Waterway. $2.3 \mathrm{mg} / \mathrm{Kg}$ of $4-n i t r o p h e n o l$ was also detected in the Sitcum sample.

DDT and metabolites are the only pesticides routinely detected in most waterways. Especially high concentrations -- up to $3.6 \mathrm{mg} / \mathrm{Kg}$ عDDT -occur in Pennwalt intertidal sediments. Pennwalt seeps and drains constitute the major known discharge of ODT compounds to Commencement Bay.

With the exception of trace amounts in a single Sitcum sediment sample, aldrin has been detected only in Hylebos Waterway sediments and deepwater sediments on the northeast side of Commencement Bay between the Hylebos and Browns Point. The highest concentrations are off Hooker (Occidental). Aldrin has been detected in one discharge -- the east sewer at Pennwalt.

The predominant organic priority pollutants in Commencement Bay waterways sediment are the base/neutrals hexachlorobenzene (HCB), hexachlorobutadiene ($H C B D$), $\mathrm{P} \wedge H$, and phthalates, and PCBs. Up to $1.3 \mathrm{mg} / \mathrm{Kg} \mathrm{HCB}, 3.3 \mathrm{mg} / \mathrm{Kq}$ HCBD, and $1.7 \mathrm{mg} / \mathrm{Kg}$ PCBs have been measured in Hylebos surface sediments. The median concentrations of HCB and HCBD in Hylebos subtidal sediment are an order of magnitude above the medians for other waterways. PAH and phthalates appear to be highest in City Waterway.

A gradient of decreasing PAH in surface subtidal sediments moving from the head of Hylebos Waterway toward its mouth was observed and may be partly associated with Kaiser Aluminum sludge beds on upper Kaiser ditch. In contrast, PAH in Blair Waterway sediments are lowest in the innermost waterway; both high and low concentrations are reported from samples seaward of Lincoln Avenue. A source material for PAH has not been found in Blair. There are not sufficient data on City Waterway sediments to determine if a PAH concentration gradient exists.

No gradients in HCB, HCBD, or PCB concentrations were apparent in the subtidal surface sediment data on the Hylebos or other waterways. Variations in the detection limits achieved by different laboratories make identification of gradients difficult. The highest HCB and HCBD concentrations are near Hooker (Occidental). Seven Hylebos sediment samples have had high PCB concentrations, around $1 \mathrm{mg} / \mathrm{Kg}$, but these were collected at stations scattered throughout the waterway.

Core data on Hylebos sediment show up to $77 \mathrm{mg} / \mathrm{Kg}$ chlorinated butadienes, 7 $\mathrm{mg} / \mathrm{Kg}$ PCBs, and $105 \mathrm{mg} / \mathrm{Kg}$ aromatic hydrocarbons in subsurface layers. The lower chlorinated butadienes (tri, tetra, penta) have been found at higher concentrations than hexachlorobutadiene in both surface and subsurface sediment samples. EPA does not include the lower chlorinated butadienes among the priority pollutants.

4. Major Considerations for Future Work

For each of the Commencement Bay waterways previously discussed in Parts 1 - 5 of this report, an attempt was made to point out data gaps and survey needs. The following considerations were among the most important of these:
a. Develop sediment criteria for protection of marine life.
b. Mass balance conlaminanls uf cuncern in Hypebus, Blair, and Cily waterways.
c. Collect more water column data in Sitcum, St. Paul, and City waterways.
d. Collect more sediment data, including cores, in Sitcum, Milwaukee, St. Paul, Middle, and City waterways.
e. Conduct receiving environment surveys at Hooker (Occidental), ASARCO, and St. Regis -- include objectives outlined in Parts 1 and 5.
f. Re-examine data on aldrin in Hylebos and nearby Commencement Bay sediments.
g. Identify the source(s) of elevated volatiles found in the Blair water column.
h. Measure metals concentrations and loads to waterways from log sort yards where ASARCO slag was used for ballast.
i. Evaluate the Kaiser ditch system as a source of PAH to Hylebos Waterway.
j. Determine the significance to pelagic marine life of observed levels uf halufurms, chlorinaled aliphalics, chlorinaled buladienes, dnd polychlorinated biphenyls in the Blair and Hylebos water columns.
k. Analyze sediment, water, and biota for potentially toxic chemicals not included among EPA's priority pollutants.

This page is purposely blank for duplex printing

Figure 1. Hylebos Haterway: point source samples.

Figure 7. Hylebos Waterway: Concentrations of selected metals in subtidal sediments.

Figure 10. City Waterway: Concentrations of metals in subtidal sediments.

Figure 12. Blair Watemay: point source samples.

Figure 13. Blair Waterway: sediment samples.

Figure 16. Sitcum Waterway: point source samples.

Figure 17. Sitcum Waterway: sediment samples.

Figure 18. Sitcum Waterway: Concentrations of arsenic, copper, lead, and zinc in surface sediments ($\mathrm{mg} / \mathrm{Kg}$, dry).

Figure 19a. Puyallup, St. Paul, and Middle Waterways: Point Source Samples.

Figure 19b. Puyallup River: Point Source Samples.

Figure 19c. S.W. Shore Commencement Bay: Point Source Samples.

Figure 20a. Milwaukee, Puyallup, St. Paul, and Middle Waterways: Sediment Samples.

Figure 20b. Puyallup River: Sediment Samples.

Figure 20c. S.W. Shore Commencement Bay: Sediment Samples.

Table 1. Metals Concentrations in Point Source Discharges ($\mu \mathrm{q} / \mathrm{L}$ total metal)

Discharge	Date Samped	Tire sampled	$\begin{aligned} & \text { In- } \\ & \text { vesti- } \\ & \text { ntor } \end{aligned}$	Sumple 1.	$\begin{aligned} & \text { sta- } \\ & \text { tion } \\ & \text { No. } \end{aligned}$	$\begin{aligned} & \text { Flow } \\ & (\operatorname{MoD}) \end{aligned}$	15	Cd	Cr	cu	19	Ni	Pb	Sb	$7 n$
Surface Runoff West of 11 th Street	9/23:40	0253	Efs	33200	1		16	. 7	3	17	. 14	25	30	<2	100
Sumpers Sunff cast of lith strent	9/23/30	0915	EP:	33201	2		92	. 3	\checkmark	37	07	23	23	<?	150
5omuderinimy															
West Drain	$9 / 21 / 80$ $6 / 30 / 81$	1230	EPA	33319	3		74	3^{5}	2	14	. 21	22	10	<2	<20
Orain $=004$	6/30/31	1015-1420	boce		4	. 071	-10	$\stackrel{3}{<2}$	<10	27	. 313	- 80	4		< 72
${ }_{\text {Findal }}$ Effluent	6/3/80	1600	EPA	22307	5	(.072)	${ }_{3}{ }^{16}$	<2	<10	<16	. 42	<50 17	4	2	72 90
	6/30/81	0945-1420	WOLE		"	. 0529	22	<2	<10	3	. 50	-50	-1	2	40
Orain 003	6/30/51		WDOE		6	. 001	37	<2	<10	10	. 54	< 50			175
West Drain opposite Lincoln Avenue	4/28/82	1410-1615	W00		7	. 060	89	<2	-10	<10	. 26	<20	<20		< 5
Seepaçe opposite Lincoln Avenue	9/23/80	0935	EPA	38202	8		262	34	115	1,240	1.4	435	1,720	<2	11.800
East Drain opposite Lincoln Avenue	4/28/82	1335-1550	W00:		9	. 050	12	<2	<10	<10	$<.2$	<20	<70		15
Morningside Orain	9/23/80	0930	EPA	38300	10		14	. 7	4	15	. 07	17	24	<2	200
	8/17/81	1130-1410	WDCE			(.13)	7	<5	<10	20	. 24	-10	40		170
1	3/29/82	1125-1540	WDCE		${ }^{\prime}$. 78	20	<2	<10	10	$<.2$	<20	<20		100
${ }_{3}^{\prime \prime}$		1350	EPA	22313	11		51	. 1	1	6	2.0	15	10	2	45
u	8/17/81 $3 / 29 / 82$	1240-1430	WDOE			4.05	<5	<5	<10	<10	$<.2$	$\checkmark 10$	< 50		10
	3/29/82	1200-1600	koot		"	31.74	36	<2	<10	<10	. 23	<20	<20		29
Kaiser Ditch	6/3/80	1545	EPA	22306	12	(1.5)	18	. 2	2	23	1.7	12	13		25
* .	$9 / 93 / 80$ $9 / 23 / 80$	10558	EPA	33203	"		65	3.2	10	64	. 21	86	20	<4	100
*	8/17/81	1100-7415	WOOE		"	2.81	12 <5	-4	1	15	. 21	8	30	<2	60
*	3/29/82	1215-1520	YOOE		"	1.81	88	<5	<10	${ }_{30}$. 53	$\begin{aligned} & <10 \\ & 80 \end{aligned}$	<50 70		-5 55
Pernwalt															
East Property Line Bitch	9/23/80	1153	EPA	32210	13		545	$<.2$	24	19	. 91	12	10	3	30
	$6 / 2 / 81$	1115-1455	WDOE			. 0014	470	0.5	400	37	. 98	112	50		40
East seep	$6 / 3 / 80$ $9 / 23 / 80$	$\begin{aligned} & 1150 \\ & 1118 \end{aligned}$	EPA	22305 38207	${ }_{7}^{14}$	(.002)	180	1.6	464	45	11.7	100	35	56	35
cors	61/3/81	${ }_{1118}^{1108}$	${ }_{\text {cpa }}$	38207	"		62 36	$\stackrel{-2}{ }$	700 1,070	11	3.6 3.0	12	43 81	7	230
Hest Seep	9/23/80	1138	EPA	38209	15	. 0014	5,505	- $¢$	1,070	31	16.0 16.2	197	67 105	62	49 80
	$6 / 2 / 81$	1020-1515	WDOE		,	(.001)	5,009	1.9	1,530	90	3.4	92	95	62	80 400
Eust Sewer	$6 / 2 / 31$ $6 / 3 / 80$	1015-1525	W00E		16	. 0289	1,920	1.1	7	18	. 6	<3	5		<20
\%est Sewer	$6 / 3 / 80$ $6 / 3 / 81$	1140	EPA	22303	17	(.003)	7.500	. 5	3	50	1.1	93	12	127	60
	$6 / 3 / 81$ $6 / 3 / 80$	$1000-1600$ 11250	WPOE	22302	18	(13) 0074	12.000	3.3	7 9	29 74 74	.29	5 35	8 13 13	2	20 30
	6/2-3/81	1230-1230	HGEE		-	12.4	60	10.4	9	79	. 3	15	32	2	30
Seep near U.S. Gypsum	9/23/80	1150	EPA	38310	19		2,100	<. 2	230	1,637	. 35	179	920	515	17,200
3. 5. Sipsua Heated Discharge	9/29/00	1115	EPA	38307	20		30	. 8	<1	6	. 21	7	4	<2	60
Lincoln Avenue Drain	4/28/82	1410-1630	HDOE		21	. 029	37	<2	<10	<10	<. 2	<20	<20		21
Euffelin Cooling Water	6/3/80	1530	EPA	22301	22	(.007)	15	. 1	1	6	. 38	13	13	2	20
Seep near Muffelin	9/23/80	1110	EPA	38302	23		112	. 5	320	341	. 63	179	70	7	1,350
Orainage apposite Sound Pefining	9/23/80	1100	EPA	38305	24		130	. 4	210	372	1.6	179	130	20	1,780
Drainage zr East and llin strest tridge	4/28/32	1300-1635	Whos		25	040	31	- 2	-10	20	. 75	20	e		77
Hooser															
Final Effluent	$6 / 3 / 80$	1000	EPA	22390				3.3			. 38				
Effluent Plume	$9 / 25-26 / 79$ $9 / 23 / 80$	$1160-1100$ 1065	WPOF			15.5	-30		130	5	. 38	250	219	$\stackrel{2}{20}$	16
Seep near olut solvent Plant	9/23/00	1065 1015	${ }_{\text {EPA }}$	30304	27		106	1.1	1	5	. 14	15	68	9	- 20
				30303	2		105	1.2	320	533	5.3	373	630	6	1,550

() Estimated

Table 2. Hylebos Waterway: Metals loads Based on WDOE Data Collected September 1979April 1982 (pounds/day).

Discharge	Date Sampled	As	cd	Cr	Cu	Ho	Ni	Pb	2 n
Sound Refining:									
kest Drain Orain $=0,4$ Prowes: Efiluent orain ous	$\begin{aligned} & 6 / 30 / 81 \\ & 5 / 30-7 / 1 / 81 \\ & 6 / 30-71 / 81 \\ & 6 / 30 / 31 \end{aligned}$		$.0018$.016 .0013 .00008	$000 ?$ 0000! .0002		.00001 .00007	$\begin{aligned} & .0023 \\ & .009 \\ & .001 \end{aligned}$
West Drain opposite Lincoln Avenue	4/28/82	. 045	\cdots	--	--	. 0001	--	\cdots	---
East Crain opposite Lincoln Avenue	4/28/82	. 0050	--	--	--	--	--	--	. 0063
Morningside Drain	$\begin{aligned} & 8 / 17 / 81 \\ & 3 / 29 / 82 \end{aligned}$	$\begin{aligned} & (.0076) \\ & .13 \end{aligned}$	--		$\begin{aligned} & (.022) \\ & .065 \end{aligned}$	(.0003)	--	(.043)	$\begin{aligned} & (.18) \\ & .65 \end{aligned}$
$\underset{1}{ } \mathrm{Hy}$ lebos Creek	$\begin{aligned} & 8 / 17 / 81 \\ & 3 / 29 / 82 \end{aligned}$	9.5	--		\cdots	$.061$	***	--	$\begin{aligned} & .34 \\ & 7.7 \end{aligned}$
Kaiser Ditch	$\begin{aligned} & 8 / 17 / 8 i \\ & 3 / 29 / 82 \end{aligned}$	$\overline{7.3}$	--	---	$.85$	$\begin{aligned} & .0056 \\ & .0080 \end{aligned}$	1.2	$\overline{1.1}$	$\overline{63}$
Pennyalt:									
East Property Line Ditch East Seep Hest Seep East Sever hest bewer Process Effluent	$\begin{aligned} & 6 / 2 / 61 \\ & 6 / 2 / 81 \\ & 6 / 2 / 81 \\ & 6 / 2 / 81 \\ & 6 / 2 / 81 \\ & 6 / 2-3 / 81 \end{aligned}$.0055 .0004 $(.042)$.45 .74 3.9	.00001 .00001 $(.00002)$.0003 1.1	$\begin{aligned} & .0047 \\ & .0218 \\ & (.013) \\ & .0017 \\ & .0004 \\ & 0.10 \end{aligned}$	$\begin{aligned} & .0004 \\ & .0002 \\ & .0008) \\ & .0043 \\ & .0018 \\ & i .5 \end{aligned}$.00001 .0001 $(.00003)$.0001 .00002 0	$\begin{aligned} & .0013 \\ & .0017 \\ & (.0007) \\ & .0004 \\ & .75 \end{aligned}$.0006 .0010 $(.0008)$.0014 .0005 .12	$\begin{aligned} & .0005 \\ & .0005 \\ & (.0033) \\ & . .0012 \\ & .40 \end{aligned}$
Lincoln Avenue Drain	4/28/82	. 0089	--	--	--	-	-..	--	. 0051
Drsinage at [ast and fith Street Dr illye Hooker:	4/20/82	. 010	--	--	.0460	. Uu03	--	--	. 026
Process Effiuent ${ }^{\text { }}$	9/25-26/79	--	-	15	Neg. ${ }^{2}$	--	30.5	Neg.	Neg.
Sum of loads to Hylebos waterway ${ }_{2}^{3}$ Sum of loads to Mylebos Waterway		5.2	$\begin{aligned} & 1.1 \\ & 1.1 \end{aligned}$	16 16	$\begin{aligned} & 1.6 \\ & 2.0 \end{aligned}$	$\begin{aligned} & .0070 \\ & .070 \end{aligned}$	$\begin{aligned} & 31 \\ & 32 \end{aligned}$	$\begin{aligned} & 17 \\ & 1.2 \end{aligned}$	$\begin{array}{r} .98 \\ 9.6 \end{array}$

() = Calculated using an estimated flow
ilet load; corrected for anount of constituent present in saltwater intake
${ }^{2}$ Negative load; i.e. less metal in final effluent than saltwater intake
${ }^{3}$ Ca?culated using August data for Morningside Drain, Hylebos Creek, and Kaiser Ditch

Table 3. Hylebos Waterway: Relative Metals Contributions from Major Point Source Discharges.

Metal	Major Discharge	Load (pounds/day)
Nickel	Hooker process effluent Kaiser Ditch (3/29/82) Pennwalt process effluent	$\begin{aligned} & 30.5^{*} \\ & 1.2 \\ & .75 \end{aligned}$
Chromium	Hooker process effluent Pennwàlt process effluent	$\begin{aligned} & 16 \\ & .10 \end{aligned}$
Arsenic	HyTebos Creek (3/29/82) Pennwalt process effluent Kaiser Ditch (3/29/82) Pennwalt west sewer Pennwalt east sewer Morningside drain (3/29/82)	$\begin{aligned} & 9.5 \\ & 3.9 \\ & 1.3 \\ & .74 \\ & .46 \\ & .13 \end{aligned}$
Zinc	Hylebos Creek (3/29/82) Kaiser Ditch (3/29/82) Morningside drain (3/2y/82) Pennwalt process effluent Hylebos Creek (8/17/81) Morningside drain (8/17/81)	$\begin{array}{r} 7.7 \\ .83 \\ .65 \\ .40 \\ .34 \\ (.18) \end{array}$
Copper	Pennwalt process effluent Kaiser Ditch (3/29/82)	$\begin{aligned} & 1.5 \\ & .15 \end{aligned}$
Cadmium	Pennwalt process effiuent	1.1
Lead	Kaiser Ditch (3/29/82) Pennwalt process effluent	$\begin{aligned} & 1.1 \\ & .12 \end{aligned}$
Mercury	Hyledos Creek (3/29/82) Kaiser Ditch (3/29/82) Kaiser Ditch (8/17/81)	$\begin{aligned} & .061 \\ & .0080 \\ & .0056 \end{aligned}$
* = Based on single set of analyses by Can-Test. Possible anomnly; should be verified by resampling. () = Based on estimated flow.		

[^3]

[^4]Table 4c. Hylebos Waterway: Organic Priority Pollutant Concentrations in South Shore Discharges - U.S. Gypsum to Hooker (ug/L).

									Hooker		
						Shore					Seep
	Seep	U. 5.				Drainage	Drainarge				near
	near	Gypsum	Lincoln	Buffelin	Seep	opposite	at S. End				O1d
	4.5.	Heated	Avenue	cooring	near	soung	ten st.			E.ftruent	Solvent.
Cisharge	Gysum	Sischarge	Drain	witer	Puffelin	fosining	Eridge	Proces	Effluent	Plume	Plant
Date Sampled	9,33/6	9/23/60	4/21/32	$6 / 3 / 60$	$9 / 23 / 80$	9/23,80	$4 / 2082$	ETJM	9/25-25/79	912370	9/23/30
Tine Sampled	1150	1115	1470-1630	1530	1110	1100	1300-1635	1040	1100-1100	1045	1015
investiqator	EPA	EPA	WICE	EPA	EPA	EPA	WDOE	EPA	WDOE	EPA	EPA
Somple liumber	33310	39307	10.90	22301	30306	36305	j0401	22300		90304	30303
Station Number	19	20	21	22	23	24	25		6	26	27.
Flow (mgo)			. 029	(.007)			. 040	(15)	15.50		
Volatiles											
chloroform	--	8.4	<10	--	--	--	a	17	11	9.3	950
dichlorobromonethane	--	--	a	--	--	*-	a	1.1	--	--	3.6
chlorodibromomethane	--	--	a	--	--	--	a	2.2	1	--	7.6
hroroform	--	--	a	--	-	--	a	1.7	9	--	--
chloroethane	--	--	a	--	--	-*	a	--	--	--	5
1,2-dichloroethane	--	--	a	--	--	--	a	--	--	--	35
1, $\hat{2}$-trans-dichloroethylene	--	--	a	--	3.7	--	a	--	--	3.8	130
1,1-dichloroe thy Tene	--	--	a	--	--	\cdots	a	--	--	--	5
1,1,1-trichloroethane	--	\cdots	a	--	--	-- .	\%	--	-	--	2
trichloroethylene	--	T	a	--	2.7	--	a	\cdots	--	3.4	57
Lebrablumuediy	--	--	${ }^{\circ}$	--	--	--	c	3.0	4	2.8	240
1,1,2,2-tetrachloroethane	-*	-."	a	-*	--	-*	\cdots	--	--	--	1400
toluene	--	--	a	--	--	--	a	-	-	--	--
Base/Heutrals											
naphthatons	1.3	--	2	--	--	--	*	-			6.6
anthracene/phenanthrene	. 64	--	a	--	--	--	a	--	--	--	T
fluorene	. 62	--	a	--	\cdots	--	a	--	--	--	--
pyrene	--	--	a	--	23	--	ま	--	--	--	10
chrysene/benzo(a)anthracene	--	--	a	--	--	--	a	--	--	-	1
fluoranthene	--	--	a	--	--	--	a	--	--	T	7.3
hexachioreethane	--	--	a	--	--	--	3	-- .	--	--	3.4
hexachlorobutadiene	--	--	a	-..	--	--	a	--	. 2	---	1.9
1,2-dichlorobenzene	--	--	a	--	---	--	a	--	--	--	T
1,3-dichlorobenzene	--	--	a	-	--	--	,	--	--	--	T
1,4-dichlorobenzene	--	--	a	--	--	--	a	--	-	\cdots	
b,, 4 -tricniorovenzene	--	--	a	--	--	--	${ }^{\text {a }}$	--	-	--	6.9
hexachlorobenzene	--	--	a	--	--	--	a	1	. 3	--	T
2-chloronaphthalene	--	--	a	--	--	--	a	--	--	--	4.5
bis(2-ethylhexyl) phthaiate			a				a		-		20
di-n-butyl phthalate			a				a		-"'m)
Acid Extractables											
phenol			<10				a				1
pentachlorophenot			190				a				--
Pesticides											
a-BHC			. 130				--				--
4, 4^{\prime} - DDT			--				--				. 181
4, 4' - DDE			--				--				. 110
4, 4'-000			--				--				. 086
fliscellaneous											
cyanide			5				8				

$\begin{aligned}() & =\text { Estimated } \\ - & =\text { Hot detected }\end{aligned}$
$\bar{a}=$ Not detected , mot detected, but detection 1 imit high relative to other analyses
$T=$ Trace; value is greater than the limit of detection but less than the limit of quantification (i ug/L in most cases)

Thet lood: correeted for ancount of constituert oresent in al tewater influent

[^5]Table 6. Hylebos Waterway: Relative Orgaric Priority Poliutant Contributions from Major Point Source

Chemical	Total Load to Hylebos Waterway (pounds/day)	Major Sources	Individual Load (pounds/day)	Percent of Total Load	Detection Frequency
Bromoform	19.8	Pennwalt process effluent	18.6	34	2/2
		Hooken process effiluent	1.2	6	2/2
Chloroform	9.3	Hooken grourdwater	6.2	67	
		Hooken process effluent	1.3	14	2/2
		Pennwalt process effluent	. 71	7.5	$2 / 2$
		Pennwalt east sewe"	. 65	7	1/1
		Kaisem ditch (8/17!81)	. 28	3	4/5
		Pennwalt east seep	.15	1.5	$3 / 3$
Trichloroethylene	2.4	Hooker groundwater	2.2	32	
		Kaise ditch (8/17/81)	.12	5	3/5
		Hylebos Creek (8/17/81)	. 068	2.8	1/3
Tetrachloroethylere	1.0	Hooken groundwater	. 54	52	
		Hooker process effluent	. 49	47	$2 / 2$
Chlorodibromomethane	. 75	Pennwalt process effluent	. 62	83	2/2
		Hooker process effluent	. 13	17	$2 / 2$
1,2-trans-dichloroethylene	. 38	Hooker groundwater	. 27	70	
		Hylebos Creek (8/17/81)	.10	26	1/3
		Kaiser ditch	. 014	3.6	1/2
Toluene	. 23	Pennwalt process effluent	. 23	100	1/1
Phenol	.20	Kaiser ditch (8/17/81)	. 20	100	1/2
Trichlorofluoromethane	.12	Pennwalt process effluent	.12	100	1/2
1,1,2,2-tetrachloroethane	.12	Kaiser ditch (8/17,81)	.12	100	1/5

${ }^{\dagger}$ Fraction of total number of EPA and WDOE samples in which the chemical was detected (Tables 1a-1c).

Table 7 . Hipmos nutpray: Scoment sites.

Station Code	Original Agency Code	Collector	Analysis By	Lecation thas	Latitude 47°	$\begin{gathered} \text { Longitude } \\ 122^{\circ} \end{gathered}$	$\begin{gathered} \text { Date } \\ \text { Conceted } \end{gathered}$
* HI I-1	1-20	EPA/DOE ${ }^{\text {a }}$	EPA/DOE ${ }_{\text {b }}$	Hylebos haterway at Hylobos Creek			
+HS-1	58	EPAC	EPA-COn ${ }^{\text {d }}$	Hyletos waterway off Hylebos Creek	$15^{\prime} .42^{\prime \prime}$		$7 / 31 / 81$ $8 / 04 / 81$
His-2	A-10	CPA_{f}	EPA-iter ${ }^{\text {e }}$	mylews waterny upper turning basm	$15^{\prime} 46^{\prime \prime}$	${ }^{21} 1^{\prime}{ }^{\prime} 35^{\prime \prime}$	8/04/81
4s-3	1	3%	Stik	Unaer tuming basm. bipmos buteway	$15^{\prime \prime}$	31 45 *	19,0
13-:	53	Em	cmacor	Hyles materwy of kapor otton, m-commel	19, $3^{\prime \prime}$	21 59"	4,0431
13-5	54	En	EPA-Con	Hyletos haterway at hatser Ditch	$15^{\prime} 55^{\prime \prime}$	$22^{\prime} 0{ }^{\prime \prime}$	3/04/2
HI-2	1-13	EFA/DOE	EPa/DoE	Hylebos katerway at Kaiser Diteh	$15^{\prime} 55^{\prime \prime}$	22. $02^{\prime \prime}$	7/31/81
HI-3		nor	epayose	Dennuate, cast property ifire duais	10. $03^{\prime \prime}$	22. $15^{\prime \prime}$	\%/02/8)
H1-4		DOE	EPA/DOE	Permualt, east seep	$16^{\prime} 09^{\prime \prime}$	22.17"	6/02/81
H1-5		DOE	EPA/DOE	Penmalt, west seep	$16^{\prime} 05^{\prime \prime}$	22. 19 "	6/02/81
H5-6	52	EPA	EPN/COn	Hylebos Waterway at Penmalt south drain	$16^{\prime} 06^{\prime \prime}$	22' $18^{\prime \prime}$	8/04/81
H5-7	2	Biva	BNW	Lower turning basin, north side of channel	$16^{\prime} 09{ }^{\prime \prime}$	22'14"	1980
HI-6		DOE	EPA/DOE	Penwalt, east sewer	$16^{\circ} 06^{\prime \prime}$	22' $19^{\prime \prime}$	6/02/81
HI-7		DOE ${ }^{\text {a }}$	EPA/OOE	Pennwalt, west sewer	16. $07{ }^{\prime \prime}$	$22^{\prime} 2{ }^{\prime \prime}$	6/02/81
HS-8	1-09027	NOAA ${ }^{9}$	HOAA	Hyiebos baterway, lower turning bas in	$16^{\prime} 10^{\prime \prime}$	$22^{1} 19^{\prime \prime}$	-979
HS-8	1-09027	NCAA	NOAA	Hylebos Waterway, lower turning bas in	$16^{\circ} 10^{\prime \prime}$	22' 19"	6/05/80
H5-8	1-09027	NOAA	NOAA	Hylebos Naterway, lower turning basin	$16^{\prime} 70^{\prime \prime}$	22: $19^{\prime \prime}$	3/05/81
HS-9	H_{48}	EPA	EPA-New	Hylebos baterway, lower turning basin	16. $12^{\prime \prime}$	22' $19^{\prime \prime}$	5/12/31
$\mathrm{HSS-10}$ $\mathrm{HI}-8$	48	EPA/DOE	EPA/DOE	Hylebos Waterway off Pemwalt mid-channel	$16^{\prime} 11^{\prime \prime}$	$22^{\prime} 20^{\prime \prime}$	8/04/31
$\mathrm{HI-8}$ HS -11		DOE	EPA/DOE	Pennwalt, near main effluent	15'10"	22. $25^{\prime \prime}$	6/02/81
HS-1?	46	EPA	EPA-COn	Hylebos Waterway at north end of Pennwalt	$16^{\prime} 12^{\prime \prime}$	$22^{\prime} 26^{\prime \prime}$	8/04/81
HS-13	3	BRW	EPA-Con	Hylebos M, off M. end of Penmwalt mid-channel	$16^{\prime \prime} 13^{\prime \prime}$	22' $25^{\prime \prime}$	8/04/81
HS-19	$\wedge 9$	EPA	ETA-HCw	Central Hylebos wh, S. side of chamel	$16^{\prime} 12$ "	22' $27^{\prime \prime}$	1980
HS-15	45	EPA	EPA-Con	Hylebos Waterway at hr hinh avenue	16. $23^{\prime \prime}$	22' $44^{\prime \prime}$	5/13/81
HI-3	1-22	EPA	EPA-Con	Hylebos Waterway at Lincoln Ave. Ne side	$16^{\circ} 27^{\prime \prime}$	22'46"	8/04/81
HS-15		DOE	EPA/DOE	Hypebos aterway at Lincoln Mvenue crain Sound Refining, east end	16° 16° $15^{\prime \prime}$	22'49"	7/31/81
H5-17	40	EPR	EPA-Con	Hylebos Waterway near Sound Refinery nild-channel	16. $16^{\prime \prime}$	23, $22^{\prime \prime}$	$6 / 30 / 81$ $8 / 04 / 81$
HS-18		00 F	fPA/ROF	Sound Rofining, noar procoss offluent outfall	16. $33^{\prime \prime}$	23. 05 "	$6 / 04 / 81$ $0,30 / 8 i$
	38	EPA	EPA-Con	Hylebos Waterway off Sound nefinery, Sh side	16. 32 "	$23^{\prime} 08^{\prime \prime}$	8/04/81
$\mathrm{HS}-20$ HS 20	37 39	EPA	EPA-Con	Hylebos taterway off Sound Refinery, mid-channel	$16^{\prime} 33^{\prime \prime}$	$23^{\circ} 07^{\prime \prime}$	8/04/81
$\mathrm{HS}-21$ $\mathrm{HS}-22$	39	EFA	EPA-COR	Hylebos Waterway at Sound kefinery	$16^{\circ} 34^{\prime \prime}$	$23^{\prime} 07^{\prime \prime}$	8/04/81
$\mathrm{HS-22}$ $\mathrm{HS}-23$.		${ }^{\text {DOE }}$	EPA/DOE	Sound Refining, west end	16. $34^{\prime \prime}$	$23^{1} 10^{18}$	6/30/81
${ }_{\text {HS-23. }}$	${ }_{4}^{\text {A-8 }}$	EPA	EPA-New	Hylebos Waterway near 11 th Avenue	15'36"	23' $22^{\text {k }}$	5/13/81
$H 5-24$ $45-25$	4 32	EPA	BNS EPA-Con	Hylebos liaterway, north side subtiod flat	16. $33^{\prime \prime}$	23' $22^{\prime \prime}$	1980
HS-20	2-09028	EPA NCAA	EPA-COn MOAA	Hylebos Wh off PRI Wh dock, mid-channel	$16^{\prime} 45^{\prime \prime}$	23. 55"	8/04/81
HS-26	2-09023	MOAA	NOAA	Rylebos Waterway, east 11 th St. Bridge Hylebos Waterway, east 11 h St. Bridge	16. $44^{\prime \prime}$	23' $49^{\prime \prime}$	1979
45-26	2-09028	MOAA	MOAA	Hylebos Waterway, east flth St. Bridge	$16^{\circ} 6^{\prime} 44^{\prime \prime}$	23: $49^{\prime \prime}$	- 6/05/80
Hi 10	124.	CFA	EPA-ilew	hylebos waterway, east Ifth St. Bridge	16. 16. 6	23' $3^{\prime}{ }^{\prime \prime} 49^{\prime \prime}$	3/05/81
HI-10	1-24	EPA	EPA-Con	Hylebos Waterway opposite Navy dock	$16^{\prime} 47^{\prime \prime}$		7/31/31
45-27	5	BHW	BNW	Lower Hylebos Waterway, south side	$16^{\prime} 43^{\prime \prime}$		7/31/81
41-7?	5-17	EPADOE	EPA/DOE	Hylebos Waterway at Hooker seep	$16^{\prime} 43^{\prime \prime}$		1980 $7131 / 81$
M5-28	31	EPA/DOE	EPA/DOE	Hylebos Waterway at Hooker dock Mo. 2	$16^{1} 46^{\prime \prime}$		8/04/81
H5-29	${ }_{1-15}$	$\mathrm{FPG}_{\text {PP }}$	EPACOM	Hylobos wh off Hookir dock Ho. 2 , mid-chommel	$10^{\circ} 48^{\circ}$	$24.01 \cdot$	$8 / 44 / 81$
$11-12$ $H 5$	$1-15$	EPa/00e	EPA/DOE	Hylebos Waterway opposite Mooker outfall	$16^{\prime} 53^{\prime \prime}$	24. $03{ }^{\prime \prime}$	7/31/81
HS. 30	${ }^{6}$	${ }_{\text {BRA }}$	BPPM	Lower Hylebos Waterway, 5 . side of chanel	$16^{\prime} 51^{\prime \prime}$	$24^{\prime} 10^{\prime \prime}$	1980
HS-31	28	EPA	EPA-Con	Hylebos wh off Hooker dock Ho. 1, mid-chamel	$16^{\prime} 55^{\prime \prime}$	$24^{*} 13^{\prime \prime}$	8/04/81
4 HS 32	27	EPA/DOE	EPA/DOE	Hylebos Waterway off marina, mid-channel	$16^{\prime} 58^{\prime \prime}$	$24^{*} 18^{\prime \prime}$	8/03/81
¢¢-3才	$\stackrel{24}{1-23}$	EPPA ${ }^{\text {en }}$	EPA/DOE	Entrance of hylebos Waterway, Sid side	$17^{1} 03^{\prime \prime}$	2吅 $29^{\prime \prime}$	8/03/81
H:- ${ }^{\text {P }}$	1-23	EPA	EPA-Con	Entrance to Hylebos Waterway, ME shore	17'13"	$24^{\prime} 36^{\prime \prime}$	7/31/81

a USEPA (Schwartz), WDOE (JohnsOn)
buspa - contract laboratory (organics), H0UE - Tumiator laboratory (metals)
cusepa (Schwartz)
${ }^{d}$ USEPA contract iaboratory
e USEPA - Newport laboratory
fattelle (Riley, et at.) for NOAM, OMPA-12
${ }^{\text {MoAA (malins, et at.) DiPA-2, etc. }}$
*HS = \&ylebos, Subtidal
thI = Hylebos, Intertidal

Table 8. Hylebos Whtemay: Intertidal (and source-related surfact sodiment priority pollutat Concentrations (my/kg dry weight).

.. = Nat detected
$a=$ Not detected, but detection levels ton high to be useful
$T=$ Trace amounts
[] = What acid digestion (0.1 II nitric acid $4 / 5 \mathrm{~g}$. wet sedment)
= All dita represent samples obtained from the top $2-5 \mathrm{~cm}$. of sediment

Table ge. Hylebos Hatemay: Subtidal Surface ${ }^{\ddagger}$ Sediment Priority Pollutant Concentrations (am/Kg dry weight).

Station code	His-7	HS 2	HS-3	HS-4	$1 \mathrm{C}-5$	115-6	HS\%		1 SO 3		H5-9	HS-10	HS-11
Agency Resmonsible for Analysis	EPA-Con	EPA-itevi	6NH	EPA-Con	EPA-Con	Efa-Con	8\%		NOAA		EPA-Hew	EPA/DOE	EPA-Con
Original ngency Code	58	A-10		53	54				-09027		$\mathrm{H}-1$		
Hiles from Head of Waterway	. 05	. 10	. 26	47	. 49	. 78	. 78		84		. 86	. 87	. 94
Year Collected	1981	1931	1984	1951	1481	1451	1989	19/9	1480	1381	1981	1981	1981
Persent Solus	56.5	37		43.0	35.1	8.9			27.7	36		38°	42.5
Ketais													
As	[0]	102		[42]	[0.1]	[56]			112	170	203	110	[31]
Cd	[0.42]	2.7		[<0.23]	[<0.28]	[<1, 1]		(9.61)	3.0	1.2	3.2	1.6	[-24.24
Cr	[5.8]	30.9		[6.3]	[5.0]	[<11]		47.6	52	59	40.1	32	[5.9]
Cu	[19]	173		[<11]	[<14]	[<56]		259	227	200	211	190	[18.1]
Hg	[<.04]			[<.05]	[<.06]	$[0.22]$		0.79	1.2	0.22		. 47	[<.05]
Ni	[13]			[13]	[18]	[-15]		(64.4)				35	[9.4]
Pb	[37]	123		[79]	[64]	[<45]		154	164	170	197	160	[164]
2 n	[73]	259		[3500]	[116]	[84]		324	404	320	334	270	[134]
Voiztiles													
chloroform	--			--	--	--						-	-
dichlorobrommethane	--			--	--	--						--	--
chlorodibromomethane	--			--	--	--						-*	--
broino form	--			*-	-	--						--	-
I, i, i-trichloroethane	--			-	-"	--						--	--
trichloroethylene	--			--	-"	-							--
tetrachloroethylene	--			--	---	--						--	-
toluene	--			--	--	--						--	--
Easefieutrals													
hexachloroethane	a			a	a	a						-	a
1,2,4-trichiorobenaene	a			-	-	a							a
hexachlorobenzene	a	I		a	a	a		. 02	. 05	. 03	--	--	a
hexachiorobutadiene	a	--	--	a	a	a	. 022	. 09	. 085	. 095	--	--	a
naphthalene	a	. 093	. 035	a	a	a	. 200	. 10	. 085	. 12	. 044	--	a
aceraphthene	a			*	a	a		. 04	. 02	. 033		--	a
acenaphthalene	a			a	a	a		\cdots	. 013			--	a
anthracene/phenanthrene	a	. 489	. 989	a	a	a	1.406	. 60	. 21	1.44	. 343	T	a
fluorene	a	. 045	. 072	,	a	a	. 218	. 04	. 035	. 095	. 034	--	a
pyrare	a	3.55*	6.102	D	0	a	2.772	1.6	1.1	3.8	4.05*	Y	a
chrysene? benzo (a) anthracene	D	1.32	5.972	0	D	D	5.597	4.0	3.1	4.9	2.07	. 79	D
fluranthene	a		1.640	U	0	a	1.409	1.1	1.0	2.8		1	a
dibenzo(a, h)anthracene	D			a	a	a						-	a
benzo(a) pyrene	a		5.467	D	D	a	1.149	. 50	. 52	. 87		. 68	a
benzo(k)fluoranthenel	a			D	0	a		2.9	2.0	3.9		1	a
3,4-benzofluoranthene	a			a	a	a						--	-
ideno(1,2,3-cd) ${ }^{\text {a }}$ (arene	a			a	a	a		. 43	. 26	. 33		--	a
diethyl phthalate	a	, 092		a	a	a						\cdots	a
bis(2-ethylhexyl) phthalate	a	1.72		*	a	a					1.76	\cdots	a
butylberzyl phthalate	a	--		a	a	a					. 36	\cdots	a
Acid Extractables													
phenol	a			a	a	à						-	${ }^{\text {a }}$
pentachlorophenol	a			a	a	a						\cdots	a
Pesticides and PCBs													
aldrin	--			--	--	--		--	I	I		-"	--
c- - Bre	--			--	--	--						-	-*
8-8hC	--			--	-	--						--	\cdots
y-BEC (Lindane)	--			--	--	--		-	--	I		--	--
4,4 - con	--	\cdots		--	-	\cdots		. 05	. 031	I	\cdots	-	--
4, 4, -DCE	--	-224		-	--	--		. 01	. 030	I	\cdots	-	-
4,4 -CDT total nor forms	--	. 645		--	--	--		. 07	. 018	I	--	--	--
total DOT forms	--	. 869		-	--	--		. 16	. 035	I	--	--	--
?C3-1248	--	--		--	--	--					-	--	--
PCB-1254	--	T		--	--	--					. 39	--	--
DCE-1260	--	--		--	--	-					--	--	--
total PCBS	--	T	. 018	--	--	--	. 203	1.15	. 98	1	. 39	53	-*

- = Hot detected
a - Mot cesected, but detection levels too high to be useful
0 = Detected uespite poar detection limits; not quantified
I = thot detemined due to interference
() = Eecause it appears that these data may be anomolous, they were not used for graphical or statistical interpretation * = Pyrene + fluoranthene

Y = Traonomot
$[$] Beak acid digestion (0.1 is nitric ucid whet wems of sediment)
= Ait data represent sampes outa ined from the top $z-5$ cam of sedinent

Table gh. Hylehos Wateray: Subtidal Surface ${ }^{+}$Sedmens Friority follutant Concentrations (molky dry weight) - continued.

Station Code	TIG-T?	H5-13	HS-14	H5-15	16-16	Tis-17	11518	HS-19	115-20	IIS-2]	115-22	16-23	HS-24	HS-25
Agency Responsible for Analysis	EPA-Con	6NW	EPA-H0w	EPA-COn	EPA/DOE	[PA-Con	framote	EPri-Con	EPA-Con	EPA-Con	EPA/DOE	EPA-New	Bild	EPA-Con
Original Agency Code	47	3	A-9	45		40		38	37	39		A-8		
Miles froat head of Waterway	. 94	. 95	1.23	1.32	1.51	1.54	1.60	1.61	1.62	1.63	1.68	1.82	1.90	2.17
Yoar Collected	1981	10\%	1951	1991	1981	1981	1991	1981	1091	1081	1991	1091	1080	1091
Percent sulids	40.3		48	48	41	47.3	53	56.5	48.8	50.8	53	60		60
Metals														
As	[39]		120	[13]	57		40	[8.5].	[15]	[31]	48	37		[7]
Cu	[<124]		1.1	[.27]	0.99	$[<.21]$	0.73	$[<.18]$	$[<.20]$	[.37]	0:77	0.38		[<.16]
$\mathrm{Cr}^{\text {r }}$	[12]		29.0	[4.4]	24	[4.2]	19	[3.0]	[5.3]	[6.3]	23	20.0		(<1.6)
Cu	[83]		179	[<10]	210	[5.3]	130	[<9]	[17]	[49]	130	53		[17]
Hg_{4}	[<.05]			[<.04]	0.38	[<.04]	0.33	[<.04]		[<.04]	0.26			[<.03]
Hi pb	[20]			[<8]	20	[<8.5]	18	$[<7]$	[15]	$[<8]$	17			[<7]
Pb	[152]		197	[48]	23	[93]	11	[21]	[120]	[59]	22	41		[43]
Zn	[220]		202	[77]	170	[89]	220	[71]	[90]	[89]	140	150		[98]
Volatiles														
chlordform	--			--	\cdots	--	--	--	--	--	T			-
dichlorobrorone thane	--			--	--	--	--	--			1			
chlorodibromomethane	--			--	--	--	-	--	--					
bramofora	--			--	-	--	--	--	\ldots	--	--			
1,1,1-trichloroethare	--			--	-.	-..	--					
trichloroethylene	--			-.	...	-	--	--	-.	--	Y			\cdots
tetrachloroethylene	--			--		--	--	-	-	--	γ			--
toluene	--			--	T	--	r	--	--	--	I			--
Base/Neutrals														
hexachloroethane	a			a	--	a	--	3	à	a	--			a
1,2,4-trichlorobenzene	a			a	--	a	--	a	a	a	--			a
hexachior ubehmelle	${ }^{\text {d }}$. 105	a	1	a	--	a	a	a	T	. 052		$\stackrel{\text { a }}{ }$
texachlorobutadiene	a	S.001	--	a	T	a	-	a	з	a	T		<. 001	a
naphthalene	a	. 284	. 096	a	T	a	--	a	a	a	. 23	. 084	. 116	a
acenaphthene	a			a	--	a	--	,	a	a	T			a
acenaphthalene ${ }^{\text {anthracene/phenanthrene }}$	a			a	--	a	--	a	a	a	--			a
anthracene/phenanthrene fluorene	a	2.658	. 285	a	1.2	a	. 68	a	a	a	. 76	. 183	. 388	a
pyrene	a	3.578	2.28*	a	1.4	a	1.1	a	a	a	1.4	. 027	. 087	a
chrysene/										a	1.4			${ }^{\text {a }}$
benzo(a)anthracene	a	5.794	1.57	a	2.2	a	2.3	0	a	\dot{a}	1.5	. 51	. 739	a
fiuorantherte ${ }^{\text {dibenzo(a, }}$ anthracene	$\stackrel{a}{a}$	4.724		\cdots	16	a	1.-9	0	*	$\stackrel{*}{2}$	1.7		. 775	$\stackrel{\square}{0}$
benzo(a)pyrene	a	1.454		a	1.3	a	.-99	a	a	$\stackrel{\text { a }}{ }$	-68			a
benzo(k)fluoranthene/	a			a	1.3	a	. 99	a	a	a	. 68		. 147	à
3,4-bemzofluoranthene	a		-	a	1.4	a	1.4	®	a	a	. 94			a
benzo(9, , i) perylene	a			a	i^{34}	a	. 32	a	a	a	i^{24}			a
1deno(1, $2,3-\mathrm{ca}) \mathrm{pyrena}$ diethyl phthalate	a			a	T	a	. 24	a	a	a	T			a
bis(2-ethylhexy) phthalate	a		i. 44	a	T	${ }^{\text {a }}$	--	a	a	${ }_{\text {a }}$	--	--		¢
butylbenzyl phthalate	a		---	a	\cdots	a	--	a	${ }^{\text {a }}$	à	. 62	.30		$\stackrel{\square}{\text { a }}$
Acio Extractablos														
phienal	a			a	1	a	I	à	a	a	T			a
pentachlorophenol	a			a	--	a	--	a	a	a	-			a
Pesticides and PCBs														
aldrin	. 02			.05?	--	--	--	. 034	--	. 057	--			. 03
a-BHC	-			. 025	--	-..	.-	. 034	--	. 063				\cdots
8 -84C (indane)	--			--	--	--	--	--	--	--	--			
4 - 4 4'-DDD (Lindane)	--			--	--	\cdots	--	-.	--	. 04	---			--
4.4'-00E	--		--	\cdots	--	--	--	--	-	--	--	--		--
4,4 - 2 ,	--		. 332	--	-.	--'	---	--	-'	--		-		-
total ODT forms	--		. 382	--	--	--	--	--	--	--				
PCE-1248	--		--	--	--	--	--	--	--	--				
PCE-1254	--		1.224	--	--	--	--	--	--	-.				
PCB-1260	0.54		--	. 40	. 27	--	. 34	1.7	-	--				
total PCBs	0.64	.100	1.224	. 40	. 27	--	. 34	1.7	--	--	. 34	--	. 154	$.107$

-. - Hot detected
$a=$ Mat detected, but detection levels too high to be usaful
$0=$ getected despite poor detection limits; not quantified
I = Mot determined due to interference
() = Because it appears that these data may be anomblous, they were not used for graphical or statistical interpretation
$T=$ Trace amount
[] = Wat arid digaction (0.1 N nitric acit w/5 wet orams of intimme)
= fll dita represerit samples whined from the top 25 cm . of sednent

Station Cus	115-26			$\mathrm{HS}-\mathrm{Cl}$ BNH	HS-28	115-29	16-30	ns-31	115-32	H5-33
Agency Respmosible		NOLA			EPA/DOE	EPA-Con	B4.4	EPA-Con	EPMDOE	ERADOE
for anulys is Origimal igoncy code		-09028								
Miles fron head of Waterway		2.22		2.32	2.42	2.13	2.53	2.59	2.68	2.88
Year Collected	1979	1980	1981	1980	1931	1987	1980	1581	1981	1981
Percont solids		56	55		5	43.6		57. 5	60	55
Betals										
As		39	31		47	[10]		[5.9]	27	33
cd	(6.8)	1.21	-38		0.85	[<2]		[<-17]	i48	0.64
Cr	33.5	19.8	32		20	[<2]		[?.4]	11	16
Cu	84.8	86.0	88		99	[34]		[8.7 .7$]$	55	87
H_{3}	. 428	0.25	0.28		0.26	[<.05]		[<.04]	. 27	0.19
Ni	(41.9)				23	[<9]		[<7.0]	17	15
Pb	111	102	77		110	[67[[35]	47	66
$2 n$	134	120	93		140	[99]		[56]	58	120
Volatiles										
chlorotorn					--	T		--	--	-
dichlorobronome thare					--	-.		--	--	--
chlorodibromome thane					--	--		--	--	--
bromoform					--	--		--	--	--
1,1,1-trichloroethane					--	--		--	--	--
trichloraethylene					--	--		--	-	--
tetrachloroethylene					--	--		--	--	--
toluone					--	--		--	--	--
Base/Neutrals										
hexachloroethane					--	a		a	-"	--
1,2,4-trichlorobenzene					--	a		a	--	--
hexachlorobenzene	(.06)	1.3	. 15		-	a		a	----	--
hexachlorcbutadiene	(.002)	3.3	. 56	. 007	--	a	. 69	a	--	--
naphthalene	(2.6)	. 21	. 23	. 48	--	a	. 547	a	-	--
acenaphthene	(.31)	. 069.	. 052		--	a		a	--	T
acenaphthalene	(.28)	. 090			--	a		a	--	--
anthracene/phenanthrese	(8.0)	. 36	. 64	1.482	. 42	a	2.686	a	T	1.4
fluorene	(.82)	. 096	. 084	. 172	\cdots	a	. 482	a	-	1
pyrene	(6.7)	1.3	. 87	3.412	T	a	. 074	a	T	1.1
chrysenef benzo(a)anthracere	(6.2)	1.9	. 85	1.906	. 60	a	1.269	a	T	1.0
fluoranthene	(6.4)	1.0	. 75	1.490	. 68	a	. 060	a	--	1.3
dibenzo(a,h)anthracenc berizo(a)pyrene	(1.7)	. 26	. 19	1.683	. 63	a	. 251	a	--	1.0
benzo(k)fluoranthene/	(11.0)	. 64	. 71		T	a		a	T	1.2
3,4-benzofluoranthene	(1.0)	. 64	. 1		T	a		a	I	1.2
benzo($9, h, i)$ perylene					--	a		a	--	T
idenol $1.2 .3-$ cdlayrene	(1.1)	. 12	. 076		--	a		$\stackrel{\text { a }}{\text { a }}$	--	T
bis(2-ethylhexyl) phthalate					. 42	a		a	T	. 54
butylbenzyl phthalate					--	a		a	--	--
Acid Extractables										
phenol					--	a		a	-*	--
pentachlorophenol					--	a		3	--	--
Pesticides and PCBS										
aldrin	---	1	1		. 82	--		--	. 17	. 43
व-EHC					--	--		. 043	--	--
B-EHC					--	+-		--	--	-.
Y-BHC (Lindare)	-	I	I		--	--		--	--	--
4,4,-000	. 010	I	I		--	-*		--	--	--
4, 4'-ODE	. 0002	I			--	--		-- .	--	--
4.c'-nnt	ก03	I	!		--	-		-	--	--
total DOT forms	. 015	1	I		--	--		--	--	--
PCB-1248					--	--		--	-"	--
PCB-1254					--	--		--	--	--
PCB-1260					--	--		--	--	--
total PCEs	1.15	I	1	1.683	--	--	1.057	--	--	--

-- = Not detected
a $=$ Not detected, but detection levels too hioh to be useful
$0=$ Detected despite poor detection limits; not quantified
1 = Not determined due to interference
() = Because it appears that these data may be anomolous, they were not used for graphical or statistical interpretation
= Pyren + fluoranthene
T = Trace amount
[] Went acid digestion (9.1 N nitric acid $0 / 5$ wet grams of sediment)

Tatie 10. Sumary of Hylebos Sediment Priority Pollutants Data (ma/ki dry weight).

Constituent	intertidal including sourcerelated) Sediments		Subtidai Sediments			Etimed Losd to sedinents (bus/day)
	Minmua	Maximum	Minimum	laximam	Medien	
hetis:						
A	<1	690	27	203	48	0.61
ca	0.2	3.7	0.38	3.2	0.98	0.01
Cr	9	40	11	59	24	0.30
Cu	4.2	1400	53	259	130	1.6
Hig	<0.1	15	0.19	1.2	0.23	. 004
Ni	9.3	86	15	35	18	. 23
Pb	20	6100	11	197	111	1.4
Zn	35	620	58	404	150	1.9
Volatiles						
chioroform	--	2.17	--	T	--	--
dichlorobromomethane	--	7.6	--	--	--	--
chloradibromome thane	--	0.2	-*	--	--	"*
bronoform	--	T	--	--	---	-
1,1,1-trichlorosthame	--	T	--	--	--	--
trichloroethylene	--	T	---	T	--	-
tetrachloroethylene	--	. 74	--	--	--	-
toluene	--	T	---	T	-*	\cdots
Race/Amoutrats						
hexachloroethane	--	2.6	-	--	--	--
1,2,4-trichlorobenzene	--	0.38	--	--	--	--
hexachlorobenzeno	--	0.47	--	1.3	(.06)	(.0008)
hexachlorobutadiene	--	0.71	--	3.3	(.05)	(.0006)
naphthalene	--	0.34	--	- 55	.$_{10}$. 0013
acenaphthene	--	0.97	--	. 069	(.05)	(.0006)
acenaphthalene	\cdots	\cdots	--	. 090	(.05)	(.0005)
anthracene/phenanthrene	--	49	T	2.69	. 62	. 0078
fluorene	--	1.6	--	. 48	(.08)	(.001)
pyrene	--	95	T	6.1	1.3	. 017
chrysene/ benzo(a) anthracene	--	95	T	6.0	2.0	. 025
fluoranthene	--	110	--	4.7	1.0	. 013
dibenzo(a, h)anthracene	---	2.1	--	T	--	-.-
benzo(a)pyrene	--	24	--	5.5	. 68	. 0086
bunzo(l.)fluaranthena! 3, 4-benzof luoranthene	--	3 ?	1	2.3	1.3	. 016
benzo($\mathrm{a}, \mathrm{h}, \mathrm{i}$) perylene	--	4.6	--	. 34	(.1)	(.001)
ideno($1,2,3$-cdipyrene	--	4.8	--	. 43	. 24	. 0030
diethyl phthalate	--	T	--	. 094	. 05	. 0006
bis(2-ethylhexyl) phthalate	--	--	--	1.76	(30	(0038
butylbenzyl phthalate	--	--	--	. 36	(.1)	(.001)
Acid Extractables						
phenol	--	T	--	T	-**	--
pentachlorophenol	--	T	--	-*	--	--
Pesticides and PCBs						
aldrin	--	-95	--	. 82	(.02)	(.0003)
$\alpha-$ BHC	--	T	--	. 063	(.01)	(.0001)
E-64C	--	T	--	--	--	--
Y-BHC (Lindane)	--		--	. 04	--	--000
4, 4^{1} - 000	--	. 57	--	. 05	(.005)	(.00006)
A,9,-DDE	--	-67	--	. 22	(.005)	(.00005)
4, 4'-DDT	--	3.0	--	. 65	(.01)	(.0001)
total Dot fomms	--	3.6	--	. 87	(.015)	(.0002)
PCB-1248 FCB-1254	--	7^{19}	--	--		
PCB-1260	--	-12	--	1.2	$\left(\begin{array}{l}.05) \\ (.1)\end{array}\right.$	(.0005)
total PCos	--	. 98	--	1.7	. 2	. 0025

$-\bar{T}=$ Mone detocted
T = Trace amount
()$=$ Estimatud median

* $=$ Stron acid diuestion abta cnly
+ = Sediment louding estimates baso.f on following assumtions: medion wolues equal mean values. secinintation rate of. 35 gr of dry solids per cor per year, area of llylmbos interway equals
$6 \times 1 \mathrm{~m}^{5} \mathrm{~m}^{2}$
Table 11. City Waterway: Metals Concentrations in Point Source Discharges ($\mu \mathrm{g} / \mathrm{L}$, total metal).

Discharge	Date Sampled	Time Sampled	$\begin{aligned} & \text { Investi- } \\ & \text { gator } \\ & \hline \end{aligned}$	Sample Number	Station No.	$\begin{aligned} & \text { Flow } \\ & \text { (MGD) } \end{aligned}$	As	Cd	Cr	Cu	Hg	Ni	Pb	2 n
Drain at Head of Wheelermosgood	$\begin{aligned} & 7 / 28 / 81 \\ & 3 / 29 / 82 \end{aligned}$	$\begin{aligned} & 0830-200 \\ & 1300-750 \end{aligned}$	WDOE WDOE	$\begin{aligned} & 30113 \\ & 82-1388 \end{aligned}$	$\begin{aligned} & 49 \\ & 49 \end{aligned}$	$\begin{array}{r} .13 \\ .63 \end{array}$	$\begin{aligned} & 20 \\ & 18 \end{aligned}$	$\begin{aligned} & .6 \\ & <2 \end{aligned}$	$\begin{aligned} & 4 \\ & <10 \end{aligned}$	$\begin{aligned} & 40 \\ & 10 \end{aligned}$	$\begin{aligned} & .24 \\ & <.20 \end{aligned}$	$\begin{aligned} & 24 \\ & <20 \end{aligned}$	$\begin{aligned} & 75 \\ & 80 \end{aligned}$	$\begin{aligned} & 40 \\ & 80 \end{aligned}$
East Drain at Head of Waterway	$\begin{aligned} & 7 / 28 / 81 \\ & 2 / 16 / 82 \end{aligned}$	$\begin{aligned} & 0850-7115 \\ & 1420 \mathrm{~m} 1800 \end{aligned}$	$\begin{aligned} & \text { WDOE } \\ & \text { WDOE } \end{aligned}$	$\begin{aligned} & 3043 \\ & 82-624 \end{aligned}$	$\begin{aligned} & 50 \\ & 50 \end{aligned}$	$\begin{aligned} & 2.58 \\ & 10.98 \end{aligned}$	$\begin{aligned} & <1 \\ & 26 \end{aligned}$	$\begin{aligned} & <10 \\ & <5 \end{aligned}$	$\begin{aligned} & <2 \\ & <20 \end{aligned}$	$\begin{aligned} & <1 \\ & 50 \end{aligned}$	$\begin{aligned} & <.20 \\ & <.20 \end{aligned}$	<1	$\begin{aligned} & <100 \\ & 59 \end{aligned}$	$\begin{aligned} & 2 \\ & 80 \end{aligned}$
West Drain at Head of Waterway 11 it \& 11 \& 11	$\begin{aligned} & 7 / 28 / 81 \\ & 2 / 16 / 82 \end{aligned}$	$\begin{aligned} & 0850-1175 \\ & 1435 \cdots 800 \end{aligned}$	$\begin{aligned} & \text { WDOE } \\ & \text { WDOE } \end{aligned}$	$\begin{aligned} & 3045 \\ & 82-627 \end{aligned}$	$\begin{aligned} & 51 \\ & 51 \end{aligned}$	$\begin{aligned} & 1.47 \\ & 10.66 \end{aligned}$	$\begin{aligned} & <1 \\ & 16 \end{aligned}$	$\begin{aligned} & 10 \\ & <5 \end{aligned}$	$\begin{aligned} & <2 \\ & <20 \end{aligned}$	$\begin{aligned} & 6 \\ & 60 \end{aligned}$	$\begin{aligned} & <.20 \\ & <.20 \end{aligned}$	$\begin{aligned} & <1 \\ & 9 \end{aligned}$	$\begin{aligned} & 100 \\ & 360 \end{aligned}$	$\begin{aligned} & 34 \\ & 80 \end{aligned}$
15th Street Drain	4/28/82	1300-1445	WDOE	82-2104	52	.14	150	6	20	420	. 39	<20	650	370

Table 12. City Waterway: Metals Loads (pounds/day).

Discharge	Date Sampled	As	Cd	Cr	Cu	Hg	18	Pb	Zn
Drid in at Head of Wheeler-Osgood	7/28/81	. 020	. 0007	. 0043	. 043	. 0003	. 0026	. 081	. 15
" " " "	3/29/32	. 0014	--	- -	. 053	---	--	. 42	. 42
East Drain at Head of Waterway	7/28/87	--	--	-"	--	- -	---	--	. 26
" 4 " " " ${ }^{\prime}$	2/16/82	2.4	" $=$ "	-"-	4.6	--	--	5.4	7.3
West Drain at Head of Waterway	7/28/87	--	.12	--	. 074	--	--	--	.42
" " " " " ${ }^{\prime \prime}$	2/16/82	1.4	--	--	5.3	--	. 80	32	16
15 th Street Drain	4/28/82	.18	. 007	.023	. 49	. 0005	- -	. 76	. 43

Table 13. City Waterway: Organic Priority Pollutant Concentrations 'n Point Source Discharges ($\mu \mathrm{g} / \mathrm{L}$).

Discharge	Drain at Head of Wheeler-0sgood		$\begin{aligned} & \text { East } \\ & \text { Head of } \end{aligned}$	Drain Naterway	West D Head of	waternay	15th Street Drain
Date Sampled	7/28/81	3/29/82	$7 / 28 / 81$	2/16182	$7 / 28 / 81$	2/16/82	4/28/82
Time Sampled	0830-1200	1300-1530	0850-1115	1420-1800	0850-1115	1435-1800	1300-1445
Investigator	WDOE						
Sample Number	30173	J1343	30175	30441	30117	J0442	J0478
Station Number	49		50		51		52
Flow (MGD)	.13	. 63	2.58	10.98	1.47	10.66	. 14
Volatiles							
chloroform	-"-	a	--	--	4.5	--	<10
trichloroethylene	--	a	T	-"	T	--	a
tetrachloroethy ene	- - -	a	--	-"-	T	"0"	a
toluene	- -	a	--	-"	1	"	a
Base/Neutrals							
naphthalene	--	a	--	--	. 4	--	<10
anthracene/phenanthrene	- -	15	-"'-	-"'	"-	-"-	a
butylbenzyl phthalate	- -	a	- ${ }^{\circ}$	- -	6.1	- -	a
Acid Extractables							
phenot	*-	a	- \times "	"	--	--	<70
Pesticides	m ${ }^{\text {m }}$	-"	--	- $=$	--	- "	-"
Miscellaneous							
cyanide		5		<5		5	5

[^6]Table 14. City Waterwav: Organic Priority Pollutant Loads (pounds/day).

Discharge	Drain at Head of Wheeler-Osgood		East Drain Head of Waternay		West Drain Head of Vatervay		
Date Sampled	7/28/87	3/29/82	7/28/81	2/16/82	7/28/81	2/16/82	4/28/82
Volatiles							
chloroform	--	--	--	--	. 055	--	.0058*
trichloroethylene	--	---	. 017 *	-	.0067*	--	-...-
tetrachloroethylene	- -	--	- --	-"	. $0067 *$	---	--
toluene	--	--	--	--	. 010	--	--
Base/Neutrals							
naphthalene	--	--	---	- -	. $0049 *$	--	. $0058{ }^{*}$
anthracene/phenanthrere	--	. 079	--	-"'	--	---	--.-
butylbenzyl phthalate	--	--	- -	--	. 075	--	- \times "
Acid Extractables							
phenol	--	--	-"	\cdots	-	\cdots	. 0058%
Pesticides	--	-"-	\cdots -	--	--	- --	--"
Miscellaneous							
cyanide		.026		. $23 *$. 44	. 0058

[^7]Table 15. City Waterway: Sediment Sites.

Station Code	Original Agency Code	Collector	Analysis By	Location Name	$\begin{gathered} \text { Latitude } \\ 47^{\circ} \end{gathered}$	Longitude 122°	$\begin{aligned} & \text { Date } \\ & \text { Coblected } \end{aligned}$
*CI-1	I-4	DOE	EPA/DOE ${ }^{\text {d }}$	Head of City Waterway	$14^{\prime} 32^{\prime \prime}$	25^{\prime} 52"	7/30/87
*C-WI- 1	I-5	"	" 1	Head of Wheeler-0sgood	$15^{\prime} 04^{\prime \prime}$	$25^{\prime \prime} 30^{\prime \prime}$	7/30/87
+CS-1	2	EPA	11	Head of City Waterway	$14^{\prime} 32^{\prime \prime}$	$25^{\prime} 57^{\prime \prime}$	8/03/87
CS- 2	CII	1	EPA-New ${ }^{\text {b }}$	City Waterway off Wheeler-0sgood Entrance	$15^{\prime} 06^{\prime \prime}$	$25^{\prime} 54^{\prime \prime}$	5/13/81
+C-WS-1	CI	EPA	EPA-New	Wheeler-osgood	$15^{\prime} 06^{\prime \prime}$	$25^{\prime \prime} 44^{\prime \prime}$	5/73/87
CS -3 11	$\begin{aligned} & 5-09037 \\ & 11 \\ & 11 \end{aligned}$	NOAA 11 $" 1$	NOAA 1	City Waterway North of 17th Street	$\begin{array}{ll} 15^{\prime} & 25^{\prime \prime} \\ 15^{\prime} & 25^{\prime \prime} \\ 15^{\prime} & 25^{\prime \prime} \end{array}$	$\begin{array}{ll} 26^{\prime} & 00^{\prime \prime} \\ 26^{\prime} & 00^{\prime \prime} \\ 26^{\prime} & 00^{\prime \prime} \end{array}$	$\begin{aligned} & 1979 \\ & 1980 \\ & 1987 \end{aligned}$
CS-4	A-I	EPA	EPA-NeW	City Waterway Entrance	$15^{\prime} 41^{\prime \prime}$	$26^{\prime} 10^{\prime \prime}$	5/13/81

aUSEPA - contract Taboratory (organics) WDOE - Tumwater laboratory (metals)
DUSEPA - Newport laboratory
C NOAA (Malins, et al.) CMPA-2, etc. $^{\text {(M. }}$.
*CI-1, C-WI-1 = intertidal samples

+ CS -1, C-WS-1, etc, = subtidal samples
Table 16. City Waterway: Sediment ${ }^{\dagger}$ Priority pollutant Concentrations (mg/Kq dry weight).

[^8]Table 17. Summary of City Waterway Sediment Priority Pollutant Data ($\mathrm{mg} / \mathrm{Kg}$, dry weight).

Constituent	Intertidal sediments		Subtidal Sediments		
	Minimum	Maximum	Minimum	Maximum	Median
Metals*					
As	36	46	18	63	37
${ }^{\text {cd }}$	2.0	3.8	. 28	10.7	4.4
Cr	33	34	13.2	59°	35
Cu	220	320	33	280	190
Hg	. 21	. 35	. 34	1.03	. 80
Ni	36	36	32	33.3	33
Pb	290	600	25	820	225
Zn	270	620	60	742	267
Base/Neutrals					
hexachlorobenzene	--	--	--	. 057	
hexachlorobutadiene	--	--	---	. 236	(.0045)
naphthalene	---	T	--	4.0	. 58
acenaphthene	--	T	. 1	. 71	.17
acenaphthalene	--	T	--	. 31	(.2)
anchractre/phenarnthrene	. 26	1.6	. 192	7.0	1.7
fluorene	--	T	1	. 81	. 24
pyrene	T	2.1	<. 57	10	(2.8)
chrysene/benzo(a)anthraccnc fluoranthene	--	1.3	. 347	8.5	2.3
benzo(a)pyrene	. 25	2.2 1.3	. 65	6.1 2.6	1.8
benzo(k)fluoranthene/			1.1	2.6	1.3
3,4-benzofluoranthene	--	1.1	1.1	6.6	1.3
benzo(g,h,i)perylene	--	T	---	--	
ideno(1,2,3-cd)pyrene	--	T	--	1.3	(35)
dimethyl phthalate	--	--	-..	. 063	(3.5
diethyl phthalate	--	--	--	. 085	--
di-n-butyl phthalate	--	--	T	. 357	. 15
di-iruclyl phthalate	--	--	. 357	1.7	.8
bis(2-ethylhexyl) phthalate	1.4	2.6	. 372	9.6	.
butylbenzl phthalate	--	--	. 155	. 86	. 7
Acid Extractables					
phenol	--	T	--	---	I
Pesticides and PCBS					
4,4'-DDD	--	--	--	. 030	(.025)
4, ${ }^{\prime}$ '-DDE	--	--	--	. 0077	(.0n5)
4,4'-DDT ${ }^{\text {total }}$ DDT forms	--	--	--	. 020	(.07)
total DDT forms PCB-1254	--	--	--	.$^{.077}$	(.046)
PCB-1260	--	-- 06	--	T	
total PCBs	---	. 06	T	. 647	(.3)

[^9]Table 18. Blair Waterway: Metals Concentrations in Point Source Discharges ($\mu \mathrm{g} / \mathrm{L}$, total metal).

Discharge	$\begin{aligned} & \text { Date } \\ & \text { Sampled } \end{aligned}$	$\begin{aligned} & \text { Time } \\ & \text { Sampled } \end{aligned}$	Investigator	$\begin{aligned} & \text { Sample } \\ & \text { Number } \end{aligned}$	Station Number	$\begin{aligned} & \text { FTON } \\ & \text { (MGD) } \end{aligned}$	As	Cd	Cr	Cl_{1}	18	Ni	Pb	Sb	$2 n$
Seepage at Z1dell	9/24/80	1015	EPA	38311	28		66	<. 2	170	337	1.5	193	100	<2	650
Seepage East of Zidell	9/24/80	1040	EPA	38312	29		36	<. 2	58	136	. 63	47	44	<2	220
Surface Drain at Domtar	9/24/80	1100	EPA	38314	30		10	<. 2	3	19	. 23	20	61	5	30
Lincoin Avenue Drain, North Shore	$\begin{aligned} & 6 / 3 / 80 \\ & 9 / 24 / 80 \\ & 4 / 21 / 81 \end{aligned}$	1645 1115 $1210-1415$	EPA EPA LDOE	$\begin{aligned} & 22308 \\ & 38214 \end{aligned}$	31 31 31	. 38	$\begin{aligned} & 190 \\ & 75 \\ & 282 \end{aligned}$	$\begin{aligned} & .6 \\ & <.2 \\ & 13.8 \end{aligned}$	$\begin{aligned} & 4 \\ & 6 \\ & 100 \end{aligned}$	$\begin{aligned} & 85 \\ & 19 \\ & 37 \end{aligned}$.85 .35 .28	$\begin{aligned} & 17 \\ & 21 \\ & 135 \end{aligned}$	$\begin{aligned} & 17 \\ & 25 \\ & 134 \end{aligned}$	$\begin{aligned} & 14 \\ & <2 \end{aligned}$	$\begin{aligned} & 50 \\ & 40 \\ & 228 \end{aligned}$
$\stackrel{\rightharpoonup}{\circ}$	3/29/82	1245-1500	WDOE		31		94	8	10	20	<20	100	170		55
Wapato Creek	$\begin{aligned} & 6 / 3 / 80 \\ & 3 / 29 / 82 \end{aligned}$	$\begin{aligned} & 1405 \\ & 1115-1410 \end{aligned}$	$\begin{aligned} & \text { EPA } \\ & \text { WDOE } \end{aligned}$	22311	$\begin{aligned} & 32 \\ & 32 \end{aligned}$	2,0?	$\begin{aligned} & 3 \\ & 66 \end{aligned}$	$\begin{aligned} & .1 \\ & <2 \end{aligned}$	$\begin{aligned} & 4 \\ & <10 \end{aligned}$	$\begin{aligned} & 8 \\ & 30 \end{aligned}$	$\begin{array}{r} .68 \\ .46 \end{array}$	$\begin{aligned} & 8 \\ & 30 \end{aligned}$	$\begin{aligned} & 12 \\ & <20 \end{aligned}$	2	$\begin{aligned} & 30 \\ & 43 \end{aligned}$
Drain at West Corner, Tirning Basin	$\begin{aligned} & 6 / 3 / 80 \\ & 8 / 17 / 81 \\ & 3 / 29 / 82 \end{aligned}$	$\begin{aligned} & 1415 \\ & 1130-1400 \\ & 1210-1420 \end{aligned}$	$\begin{aligned} & \text { EPA } \\ & \text { VDOE } \\ & \text { VDOE } \end{aligned}$	22310	$\begin{aligned} & 33 \\ & 33 \\ & 33 \end{aligned}$	$\begin{gathered} .51 \\ 3.13 \end{gathered}$	$\begin{aligned} & 6 \\ & 100 \\ & 12 \end{aligned}$	$\begin{aligned} & .3 \\ & <5 \\ & <2 \end{aligned}$	$\begin{aligned} & 4 \\ & <10 \\ & <10 \end{aligned}$	$\begin{aligned} & 35 \\ & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & .68 \\ & .32 \\ & <.20 \end{aligned}$	38 <10 <20	$\begin{aligned} & 10 \\ & <50 \\ & <20 \end{aligned}$	2	$\begin{aligned} & 60 \\ & 15 \\ & 80 \end{aligned}$
Murray Pacific Drainage	9/24/80	1145	EPA	38318	34		66,000	3.2	12	496	.49	221	640	189	1,780
${ }_{\text {Lincoin }}$ Avenue Drain, South Shore	$\begin{aligned} & 6 / 3 / 80 \\ & 9 / 24 / 30 \end{aligned}$	11440	EPA	$\begin{aligned} & 22309 \\ & 38317 \end{aligned}$	35 35		75 60	$\begin{aligned} & .2 \\ & <.2 \end{aligned}$	43 12	21 14	.45 .21	22 12	35 8	$\begin{aligned} & 8 \\ & <2 \end{aligned}$	85 40
"	5/5/81	1100-1400	YDOE		35	. 90	46	<5	<10	7	<2	<50	<14		50
"	3/29/82	1220-1530	YDOE		35	2.69	850	<2	<10	50	$\checkmark .20$	<20	100		170
Surface Runoff at Stauffer	9/24/80	1115	EPA	38315	36.		36	<. 2	4	19	. 21	43	58	5	70

Table 19. Blair Waterway: Metals Loads Based on WDOE Data Collected April 1981 - March 1982 (pounds/day).

Discharge	Date Sampled	As	Cd	Cr	Cu	Hg	Ni	Pb	Zn
Lincoln Avenue Drain, North Shore	4/21/81	2.1	0.10	0.74	0.27	0.0021	1.0	1.0	1.7
Wapato Creek	3/29/82	1.1	--	--	. 51	. 0078	. 51	--	. 73
Drain at West Corner of Turning Basin	8/17/81	. 13	--	--	. 043	. 0014	--	--	. 064
"	3/29/82	. 31	--	--	. 26	--	--	--	2.1
Lincoln Avenue Drain,	5/5/87	. 35	--	--	. 053	--	--	--	. 38
"	3/29/82	19	--	--	1.1	--	--	2.2	3.8
Sum or luads lo Blair Waterway		4.0	0.1	0.74	0.88	. 017	1.5	1.0	2.9
Sum of loads to Blair Waterway ${ }^{2}$		23	.10	. 74	2.1	. 0093	1.5	3.2	8.3

${ }^{1}$ Calculated using August Turning Basin Drain data and May south Lincoln Drain data (dry weather).
${ }^{2}$ Calculated using March data for Turning Basin and south Lincoln drain (wet weather).
Takle 20. Wa. Waterway: Orgeric Priority Pollutint Concemtrations in Potnt Source Discharges (ug/L).

Table 27. Blair Waterway: Priority Pollutants in Discharges to the Lincoln Avenue Drainages ($\mu \mathrm{g} / \mathrm{L}$).

Discharge	North Lincoln Drain to Blair		South Lincoln Drain to Blair	
	-		U.S. Oil Effluent 5/5/81	Sewer Discharge to Lincoln Drain Downstream of U.S. Oil Outfall
	Reichhold Storm Drain			
	Effluent			
Date Sampled	4/21-22/81	3/29/82		5/5/81
Time Sampled	1415-1415	1230-1600	1020-1600	1215-1545
Flow (MGD)	no discharge	0.045	. 238	. 577
Hetals				
As	<5	7	616	<16
Cd	12	<5	<2	<2
Cr	130	<10	45	10
Cu	36	10	10	5
Hg	. 4	0.76	.43	$<.2$
Ni	86	80	<10	<10
Po		150	15	<14
Zn	85	200	125	70
* 10	1,800			
Volatiles				
chloroform	2	-"	~-	3.9
chloroethylene	161	--	--	--
1,1-dichloroethane	--	--	-- .	2.0
1,2-trans-dichloroethylene	--	T	--	1.1
1,1,1-trichloroethane	8	T	--	6.0
trichloroethylene	232	66	--	--
tetrechloroethylene	422	- -	--	2.2
toluene	3	--	--	1.1
dich?orofluoromethane	T	--	--	\cdots
trichlorofluoromethane	320	10	\%	-*
Basc/Heucrals				
1,4-dichlorobenzene	--		--	0.9
naphthalene	--*		--	9.7
Acta Extractaules				
phenol	28	220	--	--
2-chlorophenol	68	30	--	--
2,4-dichlorophenol	25	T	--	-
2,4,6-trichlorophenol	15	T	-	3.0
pentachlorophenol	182	26	--	3.0
*4-chlorophenol	T	--		
*2,3,4,6-tetrachlorophenol	T	--		
*2,4-bis(1,1-dimethyl ethyl) phenol	--	--		
*3-(1,1-dimethyl ethyl) phenol	T	--		
Pesticides				
aldrin	---		--	. 4** *
$a-B H C$	--		--	- ${ }^{* *}$
Miscel7aneous				
cyanide	$\begin{aligned} & 65 \\ & 6: 19.7 \end{aligned}$		--	--
*formaldehyde	$.6 ; 19.7$	$38 \mathrm{mg} / \mathrm{L}$		
.- = not detected $T=$ Trace; value is greater than the limit of detection but less than the limit of quantification * $=$ not a priority pollutant $*^{*}=$ value not confirmed by mass spectrophotometer				

Discharge Date Sampled	Lincoln Avenue Drain, North Shore $4 / 21 / 87$	$\frac{\text { Wapeto Creek }}{3 / 28 / 82}$	Drain at West Corner of Turning Basin		Lincoln Avenue Drain, South Shore		$\begin{aligned} & \text { Sum of } \\ & \text { Loads } \\ & \text { to Blair } \\ & \text { Waterway } \end{aligned}$
Volat les							
chloroform	--	.084*	--	--"	. 0098	--	. 094
1, T-dichloroethane	-"-	-	-*	--	. 0083	--	. 0083
1,2otrans-dichloroethyTene	. 059	-"-	-"'	.73*	. 0053	--	. 064
1,1,1-trichloroethane	. 022	-	"om	--	. 018	. $77 *$. 040
toluene	. 022	\cdots	-"	--	--.	--	. 022
Base/Neutrals							
napthalene	-"	---	, 6013		---	--	.0073
fluorene	--	--	mo.	--	--	. 17%	- ...
1,2-dichlorobenzene	-	\cdots	-"	- -	. 041	$.17 \%$. 041
T,4-dichlorobenzene	--	- -	--	. 012	---	. 012
Acid Extractables							
pentachlorophenol	.27	--	--	- - -	. 029	.17*	. 30
Pesticides							
aldrin	--	--	--	--	. $0038 *$	--	$.0038$
$\alpha-\mathrm{BHC}$	--	--	--	-->	.038*	--	$.038$
Miscellaneous							
cyanide	--	.13	--	.21		. 22	. 13

[^10]Table 23. Blair Watervay: Seciment Sites.

Station Code	Origina Agency Code	Ccllector	Analysis By	Location Name	$\begin{gathered} \text { Latitude } \\ 47^{\circ} \\ \hline \end{gathered}$	$\begin{gathered} \text { Longitude } \\ 122^{\circ} \end{gathered}$	$\begin{gathered} \text { Date } \\ \text { Collected } \end{gathered}$
*BS-1	A-7	EFA ${ }^{\text {a }}$	EPA-New ${ }^{\text {b }}$	Blair Naterway at turning basin	15^{\prime} 23"	$22^{\prime} 43^{\prime \prime}$	5/13/81
BS-2	10	Brw	BNW	Blair Waterway at turning basin	75' $25^{\prime \prime}$	$22^{\prime} 49^{\prime \prime}$	1980
BS-3	14-09040	NCAA ${ }^{\text {d }}$	NOAA	Blair Vaterway	$15^{\prime} 45^{\prime \prime}$	$23^{\prime} 10^{\prime \prime}$	1979
BS-3	14-09040	NCAA	NOAA	Blair Naterway	$15^{\prime} 45^{\prime \prime}$	$23^{\prime 1} 10^{\prime \prime}$	1980
- BS-4	17	EFA/DOE ${ }^{\text {e }}$	EPA/DOE	Blair Naterway near L'ncoln Avenue	$75^{\prime} 50^{\prime \prime}$	$23^{\prime} 22^{\prime \prime}$	8/03/81
BS-5	A-6	EFA	EPA-New	Blair Haterway near L"ncoln Avenue	$15^{\prime} 54^{\prime \prime}$	23' $25^{\prime \prime}$	5/13/81
+BI-6		DCE	EPA/DOE	Blair Naterway at Lincoln Drain, south shore	$75^{\prime} 54^{\prime \prime}$	$23^{\prime} 30^{\prime \prime}$	5/05/8i
BI-6	I-12	DCE	EPA-Con ${ }^{\text {g }}$	Blair Waterway at Lincoin Drain, south shore	15'54"	$23^{\prime} 33^{\prime \prime}$	7/30/87
LB-SW-1		DCE	DOE	Lincon Avenue Drain at U,S, Oil Outfall	75'39'	$23^{\prime} 49$ "	5/05/81
LB-SW-2		DCE	DOE	Lincoln Avenue Drain near Milwaukee Road	75' $22^{\prime \prime}$	24'13"	5/05/81
LB-NE-1		DCE	EPA	Lincoli Drain N side of B7air	$76^{\prime} 00^{\prime \prime}$	$23^{\prime} 24^{\prime \prime}$	$4 / 21 / 81$
LB-NE-1	1-14	DCE	EPA-Con	Lincoln Drain N side of Blair	$76^{\prime} 00^{\prime \prime}$	$23^{\prime} 27^{\prime \prime}$	7/30/81
BI-7		DCE	EPA	Blair Vaterway at Lincoln Drain, north shore	$15^{\prime} 59^{\prime \prime}$	$21^{\prime 2} 25^{\prime \prime}$	4/21/81
BI-7	1-13	DCE	EPA-COn	Blair Naterway at Lincoln Drain, north shore	$75^{\prime} 59^{\prime \prime}$	$23^{\prime} 25^{\prime \prime}$	7/30/81
BS-8	9	BAW	BNW	Blair Naterway near Lincoln Avenue	$75^{\prime} 58^{\prime \prime}$	$23^{\prime} 25^{\prime \prime}$	1980
BI-9		- DCE	EPA/DOE	Blair Vaterway at Stauffer Chemical	$75^{\prime} 57^{\prime \prime}$	$23^{\prime} 33^{\prime \prime}$	9/14/81
BS-10	16	EPA	EPA-COn	Blair Waterway between 11 th St. \& Lircoln Avenue	$16^{\prime} 06^{\prime \prime}$	231401	3/03/81
BS-11	15	EPA	EPA-COn	Blair Waterway between 11 th St. \& Lincoln Avenue	16'04'	$23^{\prime} 43^{\prime \prime}$	8/03/87
BS-12	L-1	EPA	EPA-New	Blair Waterway east of 71 th Street	16'11"	$23^{\prime} 25^{\prime \prime}$	5/12/8]
BS-13	8	BN	BNW	Blair Waterway west of 11 th Street	$16^{\prime} 26^{\prime \prime}$	劫11"	1980
BS-14	3-09029	NCAA	NOAA	Blair Vaterway, east 71 th St. Bridge	$16^{\prime} 32^{\prime \prime}$	24'24"	1979
BS - 14	3-09029	NCAA	NOAA	Blair Waterway, east 17 th St. Bridge	$16^{\prime} 32^{\prime \prime}$	24' $24^{\prime \prime}$	1981
BS-15	12	EPA	EPA.Con	Blair Waterway mid-chennel off second slip	$16^{\prime} 32$ "	$24^{\prime} 28^{\prime \prime}$	8/03/81
BS-16	10	EPAYDOE	EPA/DOE	Blair Vaterway near ertrance	$16^{\prime} 43^{\prime \prime}$	$24^{\prime} 39^{\prime \prime}$	8/03/81
BS-17	9	EPA/DOE	EPA/DJE	Blair Uaterway at entrance	$16^{\prime} 47^{\prime \prime}$	$24^{\prime} 45^{\prime \prime}$	8/03/81
BS-18	A-5	EPA	EPA-New	Blair Waterway at entrance	$16^{\prime} 47^{\prime \prime}$	24'47'	5/13/81

aUSEPA (Schwartz) bUSEPA - Newport laboratory ${ }^{\text {c }}$ Battelle NW (Riley, et az. $)$ for NOAA, OMPA-12
${ }^{\text {dNOAA (Malins, et } a Z \text {.) OMPA-2, etc. }}$ NOAA (Malins, et az.) OMPA-2, etc.
eUSEPA (Schwartz), WDOE (Johnson)
fUSEPA - contract laboratory (organics), WDOE - Tumwater laboratory (metals)
gUSEPA - contract laboratory
MBS = Blair, Subtidal
$+B I=$ Elair. Intertidal
fUSEPA - contract laboratory (organics), WDOE - Tumwater laboratory (metals)
gUSEPA - contract laboratory
rBS = Blair, Subtidal
$+B I=$ Elair. Intertidal
fUSEPA - contract laboratory (organics), WDOE - Tumwater laboratory (metals)
gUSEPA - contract laboratory
rBS = Blair, Subtidal
$+B I=$ Elair. Intertidal
Table 24. Blair Waterway: Intertidal (and source-related. Surface Sediment Priority Pollutant Concentrations (mg/kg dry weight).

[^11]

dem	BS-1	BS-2	ES		BS-4	BS-5	85-8	BS-10	BS-11	ES-12	35.13			515		Es-7	T5-4
\because O.	EPA-New	BN\%	1:OAR	NOAA	EPA/DOE	EPA-few	BNW	EPA-Con	EPA-COn	EPA-New	3 NW	NOAA	NOAA	4pacon	EPajose	Efincos	EPratin
ats ats code	A-7	10	14-09040	14-05040	17				15	L-1				12			
Abs, fro fed of mi.	-14	188 1980	1979 1979	193 980	193 1981	199 1981	1.07	1.29 1981	1.30 1981	1.50 1981	$\begin{array}{r} 1.85 \\ 1980 \\ \hline \end{array}$	$\begin{array}{r} 2.66 \\ 1979 \\ \hline \end{array}$	$\begin{array}{r} 2.06 \\ \hline 1981 \\ \hline \end{array}$	$\begin{array}{r} ? .03 \\ 1631 \\ \hline \end{array}$	$\begin{array}{r} 2.33 \\ 1981 \end{array}$		$\begin{array}{r} 2.47 \\ 1981 \\ \hline \end{array}$
2ercert Solios	74.9		56	51.7	49	50.4		56.3	49.4	50.6		59	47	8.5	58	65	69
"etas								[14.0]	[75.0]	77			60	[3.5]	28	28	24
C	13		(6.02)	40.4	. 45	. 34		[<.2]	[<.2]	. 36		(5.45)	8.10	[.2]	. 48	. 34	. 26
Cid	10.2.		29.5	17.6	18	22.6		[25.0]	[3.60]	28		27.9	29	\%.]	12	8.8	14.3
6	13		69.9	52.6	82	72		[44.0]	[49.0]	106		59.0	74	(1)]	65	38	37
\cdots			. 157	<,07i	. 16			[<.04]	$[<.04]$. 132	. 26	-.34]	. 14	-1	
\therefore			22.4		15			[9.2]	[18.0]			21.1		$6]$	12	11	
0	6		49	62.9	65	69		[23.0]	[39.0]	74		42.5	49	[3.0]	¢	25	19
\therefore	28		92.2	87.0	96	132		[50.0]	[83]	132		75.4	93	[13.0]	72	45	50
ciosies					-			--	"-								
21s: -5als										--		. 003	. 0023		--	-	
\% \because ¢ arobenzene	--	--	. 002	. 0022	-"	. 228	--	a	a	--	--	. 006	. 0041	a	--	-"	
- \quad - \quad cone	-	. 026	. 060	. 032	-m	T	. 154	a	a	. 050	2.434	. 140	. 140	:	-	-	. 313
$\therefore \quad \therefore$ thene			. 010	. 0066°	--			a	a			. 090	. 028	:	**	- "	
\therefore athatene			. 001	. 0044	-"			a	a			. 030	. 023		-"	"	
a \%ramere/phenanthrene	--	. 213	. 17	. 16	T	. 147	. 874	a	a	. 39	. 295	. 80	. 38		T	"**	. 557
- \because ers	--	. 019	. 007	. 020	\cdots	. 022	. 111	a	a	. 078	. 098	. 080	. 042		-	"-	. 261
a, me	. $048{ }^{*}$. 228	. 190	. 230	T	. 540^{*}	. 553	a	a	. 860 *	. 231	- 8.0	. 460	,	--	-	2.500^{n}
c...sana/benzo(a)anthracene	. 029	. 493	. 44	. 69	\cdots	. 515	1.60	a	a	. 582	. 403	1.46	. 53		--	--	. 643
\because - aneme		. 363	. 230	. 240	T		1.15	a	a		. 036	. 900	. 370	"	\cdots		
5\% 20 : a/rene $^{\text {a }}$. 147	. 060	. 110	-..		. 159	a	a		. 525	. 190	. 150	*	-	"*	
Luz - fluorantrae/			. 250	. 360	T			a	a			. 720	. 550	*	--	**	
		. 081	. 100	, 300	--		. 278				. 221	. 220	. 098				
			. 070	, 070	--			a	a			. 130	. 064	4	~"	-*	
a che snthalate	. 092				\cdots	~"		a	a	"*				\%	\cdots	-	-"'0
z C-smy hexyl) shthalate	. 290				. 38	1.725		a	a	1.07				3	. 48	T	. 678
L.: 1 (onz) phthalate	--				--	. 180		${ }^{\text {a }}$	a	. 079				*	-"'	" "	
c.-A.sty) phthalate	. 091				-"	$\square_{T} 107$		a	a	" $\times 09$				a	"'*	" ${ }^{\text {+ }}$. 110
a rach inthalita	--				-*	$\stackrel{\text { - }}{ }$		a	a	7^{1009}				3	-	"-"	
c:mesty phthalate	-*				-*	-"		a									
ME Eroctobles					\cdots			a	a					\cdots	--	"-	
is \% : and PCBS																	
¢, ricrane				.00011	--	--		\cdots	-"	--		.006	. 0011^{\prime}	-	-	"**	
G, $\because 1-2$	-"-		. 0002	. 0029	\cdots	--		-..	\ldots	-.		. 001	. 00002	-.	--"		--
-	--.		. 002	. 0023	--	--		--	m*	--		. 003	. 0016	- -	--		--
$\because 2 \mathrm{COT}$ forms	-		. 0053	. 0093	-	\cdots	.	-"	"-	--		. 0134	. 0033	--	"	\cdots	--
F-10:	--				"-'	T		--	--	--				**	-	-	--
$0 \cdot 1: 3$	T				-	--		--	--	"'*					-"	-	--
こte: pCes	T	. 025	. 035	. 059	. 03	T	. 128	-"	-*	--	. 021	. 0223	. 0541	"	--		--

* : Pirene + fluoranthene $\begin{aligned} T & =\text { Trace amount } \\ - & =\text { ist detected }\end{aligned}$

Table 26. Summary of Blair Waterway Sediment Priority Pollutant Data (mg/Kg dry weight).

Constituent	Intertidal (including sourcerelated) Sediments		Subtidal Sediments		
	Minimum	Maximum	Minimum	Maximum	Median
Metals*					
As	<5	890	11	77	53
Cd	. 3	6.3	<. 10	. 66	. 34
Cr	12	150	8.8	29.5	18
Cu	22	850	13	106	70
Hg	<. 1	. 43	$<.077$. 26	. 16
Ni	11	89	11	22.4	15
PD	21	340	6	74	49
Zn	68	740	28	132	87
Volatiles					
toluene	--	. 006	--	---	--
1,1-dichloroethane	--	. 003	--	--	-.-
Base/Neutrals					
1,2-dichlorobenzene	--	. 12	--	--	--
1,4-dich7arobenzene	--	. 04	--	--	--
hexachlorobenzene	--	--	--	. 003	(.0025)
hexachlorobutadiene	--	--	---	. 228	(.003)
naphthatene	---	. 049	--	2.434	. 055
acenaphthene	--	--	--	. 090	(.02)
acenaphthalene	--	,	--	. 030	(.004)
anthracene/phenanthrene	--	. 39	--	. 874	. 2
fluorene	--	--	--	. 111	. 05
pyrene	--	. 49	---	. 870	. 23
chrysene/benzo(a)anthracene	--	. 73	--	1.6	. 47
fluoranthene	--	. 65	--	1.15	. 24
benzo(a) pyrene		. 098	--	. 525	.13
benzo(k)fluoranthene/ 3,4-benzo fluoranthene	--	. 65	---	. 72	. 45
perviene	--	--	--	. 30	. 15
ideno(1,2,3-cd)pyrene	--	. 049	--	. 18	. 07
diethyl phthalate	---	1.9	--	. 092	--
bis(2-ethylhexyl) phthalate	--	22	T	1.725	. 48
butylbenzyl phthalate	--	2.5	--	. 18	
di-n-butyl phthalate	--	--	--	. 11	---
dimethyl phthalate	--	--	--	. 009	---
di-n-octyl phthalate	---	1.6	--	.246	--
Pesticides and PCBs					
$\alpha-\mathrm{chlordane}$	--	-	--	. 003	. 00017
$\alpha-$ BHC	--	T	--	-..	--
$\gamma-\mathrm{BHC}$ (Lindane)	--	. 0066	--	--	---
4, 4^{1} - - DDD	--	--	--	. 006	. 0017
4, 4^{1} '-DDE	--	--	--	. 0029	. 0007
4,4'-DDT	--	--	--	. 003	. 0025
total DDT forms	--	--	--	. 0134	. 0075
PCB-1242	--	--	--	T	. 0
PCB-1248 total PCBs	--	. 74	--	T	
total PCBs	--	. 74	--	. 128	(.02)

Table 27. Sitcum Waterway: Metal and Organic Priority Pollutants in Point Source Discharges (ug/1).

Discharge	North Corn	ner Drain	South Co	mer Drain
Date Sampled	7/28/81	3/29/82	7/28/81	3/29/82
Time Sampled	0850-1040	1230-1600	0910-7100	1240-1600
Investigator	WDOE	WDOE	WDOE	WDOE
Sample Number	30108	J1344	30109	11345
I.D. Number		7		38
Flow (MGD)	(.15)	. 72	(.020)	. 086
Metals				
As		100		10
Cd		$\bigcirc 2$		<2
Cr		<10		<10
Cu		30		<10
Hg		<. 20		<. 20
Ni		<20		<20
Pb		70		20
Zn		180		39
Volatiles				
chloroform	3.8	<10	--	---
dichiorobromomethane	---	d	--	--
chlorodibromomethane	--	a	--	--
trichlorofluoromethane	--	a	--	--
1,1,1-trichloroethane	31	12		
trichloroethylene	11	a	--	---
tetrachloroethylene	8.4	<10	--	--
1,1,2,2-tetrachloroethane	2.2	a	--	--
toluene	--	a	--	--
Base/Neutrals	--	--	--	--
Acid Extractables				
phenol	--	<10	--	--
pentachlorphenol	--	<10	--	--
Pesticides and PCBs	--	--	--	---
Miscellaneous				
cyanide		5		5

```
( ) = Estimated
-- = Not detected
    a = Not detected, but detection limit high relative to othor analyocs
```

Table 23. Sitcum Waterway: Metal and Organic Prioriby Pollutant Loads Based on WDOE Data Collected July 1981 and March 1982 (pounds/day).

Discharge	North Corner Drain		South Corner Drain	
Date Sampled	7/28/81	3/29/82	1/28/81	3/29/82
Metals				
As		. 60		. 007
Cd		--		--
Cr		--		--
Cu		. 13		--
Hg		--		--
Ni		--		--
Pb		. 42		. 014
Zn		1.1		. 028
Volatiles				
chloroform	(.0048)	. 030	--	---
dichlorobromomethane	---	--	--	--
chlorodibromomethane	--	--	--	---
trichlorofluoromethane	--	--	---	--
1,1,1-trichloroethane	(.043)	. 25	--	--
trichloroethylene	(.014)	--	--	--
tetrachloroethylene	(.011)	.030*	--	--
1,1,2,2-tetrachloroethane	(.0028)	--	--	--
toluene	--	---	--	--
Base/Neutrals	--	--	--	--
Acid Extractables				
phenol	---	. $030 *$	--	---
pentarhlornohennl	--	. 030 *	--	--
Pesticides and PCBS	--	---	--	--
Miscellaneous				
cyanide		. 030		. 0036

$\begin{aligned}() & =\text { Calculated using an estimated flow } \\ - & =\text { Not detected } \\ & =\text { Calculated using } 1 / 2 \text { quantification limit }\end{aligned}$
Table 29. Sitcum Wazerway: Sediment Sites.

Station Code	Original Agency Code	Collector	Analysis By	Location Name	Latitude $\left(47^{\circ}\right)$	Longitude (122°)	$\begin{aligned} & \text { Date } \\ & \text { collected } \\ & \hline \end{aligned}$
STI- 1	1-9	DOE	EPA/DOE	North Corner Sitcum Waterway	15'58"	24'38"	7/31/81
STI-2	I-10	DOE		South " "	$15^{\prime} 54^{\prime \prime}$	$24^{\prime} 45^{\prime \prime}$	7/31/81
STI-3	I-11	DOE	IT	South Side Sitcum Waterway Entrance	$16^{\prime} 14^{\prime \prime}$	$25^{\prime} 07^{\prime \prime}$	7/31/81
STS-1	15-09043	NOAA	NOAA	Head of Sitcum Waterway, Middle	$15^{\prime} 58^{\prime \prime}$	$24^{\prime} 43^{\prime \prime}$	1980
STS-2	8	EPA	EPA/DOE	" " " " , North Side	16' $30^{\prime \prime}$	$24^{\prime} 42^{\prime \prime}$	8/03/81
STS-3	7			, South Side	15'58"	$24^{\prime \prime} 4{ }^{\prime \prime}$	8/03/81
STS-4	SI	EPA	EPA-New	" " " " , North Side	$15^{\prime} 59^{\prime \prime}$	$24^{\prime} 43^{\prime \prime}$	5/12/81
STS- 5	6	EPA	EPA/DOE	Middle of Sitcum Waterway, North Side	16' $35^{\prime \prime}$	$24^{\prime} 501$	8/03/81
STS-6	5	EPA	EPA/DOE	" " " " , South Side	$16^{\prime} 34^{\prime \prime}$	$24^{\prime} 55^{\prime \prime}$	8/03/81
STS-7	4-09030	NOAA	NOAA	Inside Sitsum Waterway Entrance, Middle	$16^{\prime} 13^{\prime \prime}$	$25^{\prime} 02^{\prime \prime}$	1979;1981
STS-8	4	EPA	EPA/DOE	" " " " North Side	16'16"	25 02"	8/03/81
STS-9	3	EPA	EPA/DOE	" " " South Side	16'14"	25'06"	8/03/81
STS-10	A-4	EPA	EPA-New	At Sitcum Naterway Entrance	16'17"	$25^{\prime} 06^{\prime \prime}$	5/13/81

Table 30. Sitcum Waterway: Sediment Priority Pollutant Concentrations (mg/Ka, dry veight).

Station Code	STI-1	Intertidal		STS-1	STS-2	STS-3	STS-4	STS-5	$\frac{\text { Subtidal }}{\text { STS-6 }}$	STS-7			STS-9	STS-10
		STI-2	STI-3											
Agency Responsible	EPA/DOE	EPA/coe	EPA/DOE	noas	EPA/DOE	EPA/DOE	E'A-New	EPh/DOE	EPA/DOE			EPA/DOE	EPA/DOE	EPA-New
Original Agency Code	I-9	1-10	1-11	15-09043	8	7	Si	6		4-0		¢		A-4
Miles from Head of Wateruay	. 01	. 02	. 40	. 04	. 05	. 05	. 18	. 20	. 20			. 45	. 45	. 51
Year collected	1981	1981	1981	1980	1981	1981	1981	1981	1981	1979	1981	1981	1981	1981
Percent Solids	61	74	73	49.5	54	52	54.0	58	70	56	56	¢5	72	61.0
Metals														
As	90	140	40	444	200	160	238	170	180	472	89	f5	23	57
cd	6.8	1.6	. 37	6.5	6.7	4.4	6.9	7.0	1.8	(16.2)	1.8	$\therefore 3$	1.6	1.6
Cr	41	13	13	32.7	22	35	21.4	15	8.8	58.7	37	15	14	17.5
Cu	7000	310	110	764	740	360	537	680	340	1602	240	210	2100	139
Hg	. 17	. 11	- 1	. 10	. 79	. 34		. 63	. 34	. 492	. 26	. 27	. 23	
Ni	51	22	11		20	21		16	9.8	36.1		16	13	
Pb	1900	490	68	416	450	320	737	820	430	793	340	620	210	251
Sb	5.6	4.1	3.8		6.2	5.6		$7 . ?$	4.5	(338)		i. 0	5.0	
Zn	3200	670	130	1100	1100	500	1190	1300	570	1720	330	;00	610	295
Volasiles	--	--	--	--	--	--		--	--			-"	--	
Base,Neutrals														
hexachlorobenzene	--	--	--	. 0083	--	--	--	--	--	. 002	. 0029	--	--	--
hexachlorobutadiene	--	--	--	. 004	--	--	--70	--	--	. 002	. 0022	--	\cdots	--
naphthalene	-*	--	--	. 48	--	\uparrow	. 170	--	-"	. 17	. 410	--	. 23	T
acenaphthene	--	--	--	. 150	--	--		T	--	. 10	. 059	--	3.0	
acenaphthylene	-"	--	-	. 074	--	--		--	--	. 02		--		
anthracene/phenanthrent	--	--	T	. 352	. 24	. 56	. 363	. 64	. 24	. 49	. 64		19	. 205
fluorene	--	--	--	. 14	\cdots	--	. 371	,	--	. 080	. 093	-	6	. 025
pyrene	1.1	T	. 5	. 94	T	. 5	2.090*	1.5	T	. 32	. 99		38	1.041*
chrysene/benzo(a) anthracene	. 99	T	--	1.1	T	. 27	. 175	--	. 3	. 39	. 62	. 30	77	. 456
fluoranthene	1.1	T	T	1.1	. 24	. 56		1.0	. 34	. 38	. 83	. 28	27	
benzo(a) pyrene	1.1	. 25	T	. 20	. 3	--		1.?	. 3	. 070	. 19	. 38	230	
benzo (k) fluoranthene/	1.2	T	T	.530**	T	T		1.3	14	.20**		. 42	94	
benzo ($\mathrm{g}, \mathrm{h}, \mathrm{i}$) perylene		--	--		--	--		T	--			-	15	
ideno($1,2,3$-cd) pyrene	T	--	--	. 11	--	---		T	--	. 060		-	11	
dimethyl phthalate	--	--	--		--	--	. 009	--	--			..-	-.	--
diethyl phthalate	--	-"	--		--	--								. 093
di-n-octyl phthalate	--	--	--		--	--	T	--	---			--	--	. 417.
di-n-butyl phthalate	--	--	--		--	--								. 164
butylbenzy phthalate	--	--	--		--	--	. 379	--	--			\cdots	--	. 080
bis(2-ethylhexyl) phthilate	. 62	--	T		. 28	. 28	1.07	. 2	. 26			. 26	--	. 620
Acid Extractabes														
phenol	. 27	I	$7 \times$	--	--	. 38		-	--			--	--	
2-chlorophenol		--	--	--	-"	-33		--	--			-"		
pentachlorophenol	T	--	--	--	--	T		--	--			.-	-"	
p-chioro-m-cresol	--	--	-"	--	--	. 4		--	--			-		
4 -nitropheno	--	--	--	"-"	--	2.3		--	--			--	--	
Pesticides and PCBS														
aldrin	--	--	--	-"-	--	--		--	--	. 002	--	--	--	
- ${ }^{-B H C C}$ (Lindane)	--	--	--	. 00038	--	---				---	--	-		
4,4'-DDD	--	--	--	. 0073	--	--	--	--	--	. 0009	. 0032	--	--	--
	--	--	--	. 0038	--	--	--	--	--	. 0006	--	--		--
4,4'-DDT total DDT forms	--	\cdots	--	. 0066	-*	--	-	--	--	. 0003	. 0023	--	--	--
${ }_{\text {PCB-1260 }}^{\text {total }}$ DDT forms	--	--	--	. 023	--	--	--	--	--	. 016	. 0059	\cdots	--	--
total PCBs	. 09	. 04	**	. 21	. 06	. 06	--	. 03	--	--	. 10	.-	. 12	--

Table 31. Sumary of Sitcum Waterway Data (mg/Kg dry weight).

Constituent	$\begin{aligned} & \text { In } \\ & \text { (incluo } \\ & \text { relater } \end{aligned}$	dal source- diments	Subtidal Sediments		
	Minimuin	Maximum	Minimum	Maximum	Median
Metals*					
As	40	140	23	472	170
Cd	. 37	6.8	1.0	7.0	3.8
Cr	13	41	8.8	58.7	27.4
Cu	110	7,000	139	2,100	581
Hg	<0.1	. 17	. 10	. 79	. 34
Ni	11	51	9.8	35.1	16
Pb	68	1,900	210	793	450
Sb	3.8	5.6	4.5	7.2	5.8
Zn	130	3,200	295	1,720	700
Base/Neutrals					
hexachlorobenzene	--	--	--	. 0083	(.003)
hexachlorobutadiene	--	--	--	. 004	(.002)
naphthalene	--	--	--	. 48	(.2)
acenaphthene	--	--	--	3.0	(.1)
acenaphthalene	--	--	--	. 074	(.02)
anthracene/phenanthrene	--	T	T	19	. 49
fluorene	-	--	-	6	. 071
pyrene	T	1.1	T	38	1.0
chrysene/benzo(a)anthracene	--	. 99	--	77	0.39
fluoranthene	T	1.1	. 24	27	0.56
benzo(a)pyrene	1	1.1	--	230	0.30
benzo(k)fluoranthene/ 3,4-benzofluoranthene	T	1.2	T	94	0.85
benzo($\mathrm{g}, \mathrm{h}, \mathrm{i}$) perylene	--	--	--	15	\cdots
ideno(1,2,3-cd)pyrene	--	T	--	11	(.08)
dimethyl phthalate	--	--	--	. 009	--
diethyl phthalate	--	--	--	. 093	--
di-n-octyl phthalate	--	--	--	. 411	--
di-n-butyl phthalate	--	--	--	.164	--
butylbenzyl phthalate	--	--	--	. 080	--
bis(2-ethylhexyl) phthalate	--	. 62	--	1.07	. 27
Acid Extractables					
phenol	--	. 27	--	. 38	--
2-chlorophenol	--	--	--	. 33	--
pentachlorophenol	--	T	--	T	--
p-chloro-m-cresol	--	--.	-	0.4	--
4-nitrophenol	--	--	-	2.3	--
Pesticides and PCBs					
aldrin	--	--	--	. 002	--
y-BHC (Lindane)	--	--	--	. 00038	--
4, 4'-DDD	-	--	--	. 0073	(.003)
4.43-DDE	-	--	-*	. 0038	(.001)
4, 4^{3}-DDT	--	--	--	. 0066	(.002)
total 100 f forms	--	--	--	. 023	(.01)
PCB-1260	--	. 04	-*	-	--
total PCBs	--	. 09	--	. 21	. 06

$T=$ Trace amount
-- = None detected
() = Estimated median

* = Strong acid digestion data only

Table 32. Metals Concentrations in Discharges to the Puyallup River, St. Paul and Middle Waterways and S.W. Commencement Bay ($\mu \mathrm{g} / \mathrm{L}$, total metal).

lusgs masyan station 12101500 (means for period indicated) * = Average April flow 1979-1982
() F Fstimatod
Table 33. Metals Loads to the Puyallup River, St. Paul and Middle Waterways and S.W. Commencement Bay (pounds/day).

Discharge	Datz Sampled	As	Cd	Cr	Cu	Hg	Ni	Pb	Zn
Puyallup River									
Puyallup R. at Puyallup	Jan-May, 1978-1932	29	15	130	170	2	100	140	420
" " " "	July-Nov, 1978-1932	25	6	98	170	. 8	76	150	290
River above Pump Station	2/15/82	--	--	--	2,000	--	--	410	3,600
Cleveland Street Pump Station	2/76/82	14	- -	--	94	--	3.8	85	94
River above STP	7/28/81	250	143	--	140	3.3	--	- -	410
" " "	8/25/81	39	--	--	--		--	--	270
Central STP Effluent	7/28/81	--	(1.4)	(8.7)	(7.7)	-"'	(5.5)	--	(21)
" "	8/25-26/81	1.7	1.4	11	7.3	. 087	8.1	5.4	47
" 11	2/16-17/82	14	0.5	--	30	--.	102	48	78
River Mouth	7/28/81	390	143	--	130	--	--	--	210
11	8/25/81	110	---	--"	200	--	\cdots	--	150
" 1	2/16/82	510	- -	***	2,100	-"	820	470	5,100
St. Paul Waterway									
St. Regis Paper Co. Effluent	8/11-12/81	4.3	-"	5.4	30	- \quad -	--	- - -	14
St. Regis Log Sor: Yard Effluent	9/14/81	. 0039	mom	--	. 019	. 0004	. 027	. 012	. 13
St. Regis Sawmill Effluent	9/14/81	. 0097	. 0079	--	. 0097	. 072	---	. 0019	. 024
$\frac{\text { Middle Waterway }}{\text { Drain at Head of Waterway }}$	4/28/82	.0021	. 0002	--	. 0025	-	--	--	. 080
Southwest Shore Commencement Bay									
"07d Tacoma Storm ${ }_{\text {" }}$ "rain	$9 / 14 / 81$ $4 / 28 / 82$. 017	--. 020	. 027	.-998	$\begin{array}{r} .0023 \\ .0026 \end{array}$	--	--	$. .11$
Ruston STP Effluent	9/74/81	7.3	--	. 40	2.6	. 014	--	. 24	15
" ${ }^{\text {a }}$	4/28/82	(1.0)	(.24)	-.	(2.4)	(.079)	--	--	(12)
ASARCO ${ }^{\text {a }}$									
South Outfall	2/24-25/8	320	9.0	--	238		6.1	5.0	126
Middle Outfall	$2 / 24-25 / 81$	47	.6	--	31		--	2.3	17
North Outfal!	2/24-25/81	. 4	---	. 1	1.9		--	. 2	. 2

[^12]

* = Average April flow 1979-1982
-. . Not detected
$a=$ Hot detected, but detection limit high relative to other analyses
Table 35. Organic Priority Pollutant Loads to St. Paul and Midde Waterways and S.W. Commenconent Bay (pounds/day).

[^13]

() = Estimated
-. = Not detected

Table 37. Organic Priority Pollutants Loads to the Pyyallup River from the Central STP and Cleveland Street Pump Station (pounds/day).

Discharge	Central STP			CTeveland Street Pump Station
Date Sampled	7/28/81	8/25	2/16-17/82	-2/16/82
Volatiles				
chloroform	(2.6)	2.2	4.7	--
dichlorobromomethane	(.45)	---	--	--
1,7-dichloroethane	--	. 15	--	--
1,1,1-trichloroethane	--	.15	. 6	--
trichloroethylene	(.62)	1.4	--	--
tetrachloroethylene	(.37)	. 32	66	--
toluene	(1.4)	--	4.7	--
benzene	(8.9)	--	1.8	--
ethylbenzene	(.28)	--	--	---
Base/Neutrals				
naphthalene	(.35)	. 62	2.9	---
anthracene/phenanthrene	(.10)	--	--	---
7,2-dichlorobenzene	--	. 45	--	1.5
1,3-dichlorobenzene	(.51)	--	--	,
1,4-dichlorobenzene	--	. 77	--	--
bis(2-ethylhexyl) phthalate	(2.4)	3.4	--	--
di-n-octyl phthalate	--	. 29	---	--
butylbenzyl phthalate	(3.0)	--	--	--
Acid Extractables				
phenol	(3.8)	4.7	11	---
2,4-dimethylphenol	(.72)	. 54	--	---
2-chlorophenol	--	1.1	3.4	--
2,4-dichlorophenol	--	. 62	5.0	- -
2,4,6-trichlorophenol	(2.8)	. 73	6.6	--
pentachlorophenol	$(2.8) *$	--	14	--
Pesticides				
\triangle-BHC	--	--	. 060	--
Miscellaneous				
cyanide	--	2.5	51	--

()$=$ Calculated using an estimated flow
.- . Not detected

* $=$ Calculated using $1 / 2$ quantification limit
Table 38. Sediment Sites: Mlwaukee, Puyallup, St. Paul, and Middle Waterways and the Riston Shoreline.

[^14]

[^15]

	lis 10 Hinden 0f＊				$\begin{aligned} & \text { Sitcon } \\ & \text { Whtary } \\ & \text { nt } \end{aligned}$				$\begin{aligned} & w_{i}, 1! \\ & \text { no } \\ & \text { mat } \\ & \vdots \end{aligned}$		$\begin{aligned} & \text { fin } \\ & \text { bumbay } \end{aligned}$		Mante IH	$\begin{aligned} & \text { City } \\ & \text { aterwy } \\ & \text { nin } \end{aligned}$				$\begin{aligned} & \text { Ruriton } \\ & \operatorname{SIP}^{2} \end{aligned}$				Gen!	
吅3：																							
回）：	24137	15	513	3	？／4	50	$3: 3$	100	1／3	3	$1 / 3$	33	1／1 100	2／6	33	1%	\％．	1／2	50			4／76	：
dichersamen	11／3	31	011.	0	$0 / 3$	0	$1 / 3$	33	$0 / 3$	0	1／3	33	a	$0!6$	0	01	\％	1／2	50			14／9	\％
	10，30	3	1%	？	013	c	0.3	－	$0 / 3$	（1）	015	0	a	0.5	0	$0 / 1$	0	$1 / 2$	50			12／70	1
	1／30	3	$0 \cdot 1$.	0	0,3	0	$0: 3$	0	（1／3	1	013	0	a	$0 \cdot 6$	0	$0 / 1$	0	$0 / 1$	0			1／69	1
Hocmerome	7／85	19	0：1：	f	n／？	0	ris	0	$0 / 3$	f	$0 / 3$	0	4	ners．	ก	0／1	0	1！ 1	．			7／6）	11
conor turablama	$5 / 85$	14	$0 \cdot 1$	6	013	0	$0: 3$	0	013	0	$0 / 3$	0	a	0／5	0	$0 / 1$	0	$0 / 1$	0			5：69	7
chnmednme	$5 / 39$	11	0，	－	$0 / 3$	0	0,3	0	$01 / 3$	0	$0 / 3$	0	a	（1／5	0	$0 / 1$	0	011	0			569	7
1，dichlorethan	3／85	8	2／14	14	$0 / 3$	0	1／3	33	$0 / 3$	0	0／3	0	a	$0 / 5$	0	$0 / 1$	0	$0 \cdot 1$	0			6,69	9
1，2－trem－achore	5，36	14	6，16	33	$0 / 3$	0	$0 / 3$	0	0,3	0	$0 / 3$	0	a	0.5	0	017	0	$0 / 1$	0			11／71	15
B，¢－manmety	3	\bigcirc	\％1\％	\％	4	C	\％	\square	4	0	$0 \cdot 3$	O	：	0.6	a	31	\％	1）	0			36	
1，i，buthanuesta，	$8 / 5$	23	$3 / 5$	33	$3:$	5	$2 / 3$	6	a＇	！	013	6	，	0%	3	（1）	\％	d）	0			M／1	2
trichonethye．	12／35	50	$4 / 15$	3	1／3	33	1／3	33	013	0	013	a	a	215	40	$0 / 1$	0	$0 / 1$	0			$26 / 10$	31
tetrambocthere	12／36	33	$2 / 10$	14	$2 / 4$	50	$3 / 3$	130	$0 / 3$	0	$0 / 3$	0	a	$1 / 5$	20	$0 / 1$	0	$2 / 2$	100			$22 / 71$	31
1，1，？，etatachbro－ citane	2136	6	1／14	7	1／3	33	$0 / 3$	0	$0 / 3$	0	1／3	33	a	$0 / 5$	0	$0 / 1$	0	$0 / 1$	0			$5 / 69$	7
lolume	$4 / 35$	11	2／14	14	$0 / 3$	0	$2 / 3$	67	$0 / 3$	0	1／3	33	a	$1 / 5$	20	$0 / 1$	0	1／2	50			11／70	16
botreve	$4 / 36$	\vdots	2／14	14	$0 / 3$	0	$2 / 3$	67	0／3	0	013	0	a	C．／5	0	$0 / 1$	0	$0 / 1$	0			$8 / 69$	12
1，\％dintorouthme	［0，35	0	$2 / 14$	13	0,3	0	$2 / 3$	0	$0 / 3$	0	0，3	0	a	$0 \cdot 5$	0	01.	0	$0 / 1$	0			2／69	3
Eitylumatas	0／35	0	$0 / 19$	0	0／3	0	1／3	33	$0 / 3$	0	$0 / 3$	0	a	015	0	$0 / 1$	0	$0 / 1$	0			1／69	1
Baschoutras																							
nuthtatanc	9／36	25	$2 / 4$	14	$0 / 4$	0	3／3	190	$0 / 3$	0	2／3	67	a	$2 / 6$	33	$0 / 1$	0	1／1	100	c／1	0	$11 / 12$	24
acarom tivene	2135	6	0／1：	0	$0 /:$	0	0,3	0	$0 / 3$	0	013	0	a	0／5	0	$0 / 1$	0	$0 / 1$	0	$0 / 1$	0	$2 / 71$	3
achainthy？	2／36	6	0／14	0	014	0	$0 / 3$	0	$0 / 3$	0	$0 / 3$	0	a	015	0	$0 / 1$	0	（1）	0	$0 / 1$	0	2171	3
	11／36	31	$0 / 1$	o	$0 /$＇	0	1／3	32	0,3	－	0，3	8	${ }^{\circ}$	116	17	$0{ }^{\prime}$		rit	－	9	0	$13 / 76$	19
fincome	5／35	14	1／15	7	$0 / 4$	0	C／3	c	0／3	0	$0 / 3$	0	a	015	0	$0 / 1$	0	$0 / 1$	0	$0 / 1$	0	$6 / 72$	ε
irmor	5／35	1.1	$0 / 14$	0	$0 / 4$	0	$0 / 3$	，	$0 / 3$	0	0／3	0	a	0／5	0	0 O	0	$0 / 1$	0	$0 / 1$	0	$5 / 71$	7
chessondrenzóa） antrecere	7／35	19	$0 / 14$	0	$0 / 5$	0	$0 / 3$	0	$0 / 3$	0	$0 / 3$	0	a	$0 / 5$	0	$0 / 1$	0	$0 / 1$	0	$0 / 1$	0	7／71	10
famimeticne	9／36	25	$0 / 14$	0	0,4	0	0，3	0	$0 / 3$	0	$0 / 3$	0	a	$0 / 5$	0	$0 / 1$	0	$0 / 1$	0	$0 / 1$	0	9／71	13
tenothruzue	1／36	3	$0 / 14$	0	$0 / 4$	0	$0 / 3$	0	013	0	$0 / 3$	0	a	$0 / 5$	0	$0 / 1$	0	$0 / 1$	0	$0 / 1$	0	$1 / 7$	1
tecroblimorathene	1／55	3	0／19	0	016	0	$0 / 3$	0	$0 / 3$	0	0／3	0	a	0／5	0	$0 / 1$	0	$0 / 1$	0	$0 / 1$	0	1／71	1
hevertordetane	6／35	17	1／1：	7	$0 / 4$	0	$0 / 3$	0	$0 / 3$	0	$0 / 3$	0	a	$0 / 5$	0	$0 / 1$	0	$0 / 1$	0	$0 / 1$		$7 / 71$	10
henctilorobutatene	6／36	17	$0 / 14$	0	$0 / 4$	0	$0 / 3$	0	$0 / 3$	0	$0 / 3$	0	a	$0 / 5$	0	$0 / 1$	0	$0 / 1$	0	$0 / 1$	0	$6 / 11$	8
1． 2 －dichlorobenzene	2／36	6	4115	27	$0 / 4$	0	1／3	33	$0 / 3$	0	013	0	a	015	0	$0 / 1$	0	$0 / 1$		0.1	5	7172	10
1．3－dichorobmats	2／35	6	$0 / 14$	0	$0 / 4$	0	1／3	33	0／3	0	$0 / 3$	0	a	$0 / 5$	0	0／1	0	1／1	100	0,1	0	$4 / 71$	5
1，4－dichoratemene	2／36	6	1／14	7	$0 / 4$	0	1／3	33	$0 / 3$	0	$0 / 3$	0	a	$0 / 5$	0	$0 / 1$	0	$0 / 1$	0	c／1	0	471	6
herechtoroberame	5／35	14	1／14	7	$0 / 4$	0	$0 / 3$	0	$0 / 3$	0	$0 / 3$	0	a	$0 / 5$	0	$0 / 1$	0	67	0	$0 / 1$	0	617	8
2－chloromenthatene	1／36	3	$0 / 14$	0	$0 / 4$	0	0／3	0	$0 / 3$	0	$0 / 3$	0	a	$0 / 5$	0	$0 / 1$	0	$0 / 1$	6	$0 / 1$		1／71	1
dincthyl pithalate	1／16	6	$0 / 4$	0	$0 / 4$	0	$0 / 3$	0	$0 / 3$	0	$0 / 3$	0	¢	$0 / 5$	0	$0 / 1$	0	$0 / 1$	0	$0 / 1$	0	$1 / 41$	？
ciethy prindase	2110	13	1／4	23	U／：	0	U／3	0	U13	0	$0 / 3$	0	a	$0 / 5$	0	$0 / 1$	0	0,1	0	$0 / 1$	0	3：41	
diun－tuty pathalete	1／16	6	$0 / 4$	0	$0 / 4$	0	0／3	0	$0 / 3$	0	0／3	0	a	$0 / 5$	0	$0 / 1$	0	$0 / 1$	0	$0 / 1$	0	1／41	2
di－n－acy plathatat	$0 / 15$	0	$0 / 4$	0	$0 / 4$	0	1／3	33	$0 / 3$	0	0／3	0	a	$0 / 5$	0	$0 / 1$	0	1／1	100	$0 / 1$	0	$2 / 41$	5
dutybetis）phtyote	$0 / 16$	0	$0 / 4$	0	0／4	0	1／3	33	$0 / 3$	0	$1 / 3$	33	a	1／5	20	$0 / 1$	0	1／1	100	$0 / 1$	0	4／4i	10
bis（2－ethythexy） phitholate	4／15	¢ 5	$1 / 4$	25	$0 / 4$	0	2／3	67	$0 / 3$	0	$0 / 3$	0	a	$0 / 5$	0	$0 / 1$	0	$0 / 1$	0	$1 / 1$	100	8／41	20
nitrobenene	1／JE	6	0／4	0	014	0	$0 / 3$	0	$0 / 3$	0	0／3	0	a	$0 / 5$	0	$0 / 1$	0	$0 / 1$	0	$0 / 1$	0	1／41	2
4－browphenyl ether	1／16	\bigcirc	0／4	0	014	0	$0 / 2$	0	0／3	0	$0 / 3$	0	a	$0 / 5$	0	$0 / 1$	0	O／1	0	$0 / 1$	0	1／61	$?$
chlorobenzene	$0 / 35$	0	1／14	7	0／4	0	$0 / 3$	0	$0 / 3$	0	0／3	0	a	$0 / 5$	0	$0 / 1$	0	011	0	$0 / 1$	0	1／71	\}

＊Detaction frequency $=$ nuber of sam？es in which a compound is detected ：total nunber of samples analyzed for that compund．
aptection limits hich in simic sample collected．
Note：Analyses embeying poor detection limits not used in this tabulation．
Table A1- continued.

	$\begin{aligned} & \text { Hyletoto } \\ & \text { Waterm } \\ & \text { O5* } \end{aligned}$		$\begin{aligned} & \text { Blat } \\ & \text { UF } \\ & \text { DF } \\ & \hline \end{aligned}$	\%	$\begin{aligned} & \text { Sitc } \\ & \text { Wate } \\ & \text { of } \end{aligned}$	u_{y}	Taco Cent STP DF		Puya Rive Pout DF		St. Fau? vate CF	rway $\%$	Middle Waterway DF \%	$\begin{aligned} & \text { City } \\ & \text { Wate } \\ & \text { DF } \end{aligned}$	rway	$\begin{aligned} & \text { Old } \\ & \text { Tacs } \\ & \text { Ston } \\ & \text { Drai } \\ & \text { OF } \end{aligned}$		$\begin{aligned} & \text { Qust } \\ & s^{-p} \\ & b p^{\circ} \end{aligned}$		$\begin{aligned} & \text { ASfRCO } \\ & \text { South } \\ & \text { Outfell } \\ & \text { DF } \% \end{aligned}$	Overa DF	
Acid Extractables																						
phero:	5/16	31	$0 / 5$	0	1/4	25	3/3	100	$0 / 3$	0	C/3	0	a	1/6	17	$0 / 1$	0	1,2	50		11/43	26
2,4-cimathyl phenol	0/16	0	015	0	$0 / 4$	0	$2 / 3$	67	$0 / 3$	0	C/3	0	a	$0 / 6$	0	$0 / 1$	0	0,1	0		$2 / 42$	5
2-chlorophenol	1/16	6	$0 / 5$	0	0/4	0	2/3	67	$0 / 3$	0	C/3	0	a	0/6	0	$0 / 1$	0	0,7	0		3/42	7
2,4-dichlorophenol	0/16	0	$0 / 5$	0	$0 / 4$	0	$2 / 3$	67	$0 / 3$	0	C/3	0	a	0/6	0	$0 / 1$	0	017	0		2/42	5
2,5,6-trichlorophenol	3/16	19	0/5	0	0/4	0	$2 / 3$	67	$0 / 3$	0	43	0	a	0/6	0	$0 / 1$	0	0,7	'0		5/42	12
pentachloropherol	2/76	13	$3 / 5$	60	1/4	25	$2 / 3$	67	0/3	0	C/3	0	a	0/6	0	$0 / 1$	0	$0,7$.	0		8/42	19
Pesticides and PCBS																						
atchn	1/2?	5	1/7	14.	$0 / 4$	0	0/3	0	0/3	0	C/3	0	a	0,7	0	$0 / 2$	0	$0 / 2$	0		$2 / 53$	4
c-24c	3/22	14	$1 / 7$	14	$0 / 4$	0	$0 / 3$	0	$0 / 3$	0	C/3	0	a	017	0	$0 / 2$	0	0,2	0		$4 / 53$	6
- - $-3+$	$1 / 2$?	5	017	0	$0 / 4$	0	$0 / 3$	0	0/3	0	$0 / 3$	0	a	$0 / 7$	0	$0 / 2$	0	012	0		1/53	2
- -575	1/22	5	0.7	0	014	0	1/3	33	0/3	0	$0 / 3$	0	a	$0 / 7$	0	$0 / 2$	0	0,2	0		2/53	4
- 846	3/22	. 14	017	0	$0 / 4$	0	$0 / 3$	0	$0 / 3$	0	0/3	0	a	$0 / 7$	0	$0 / 2$	0	$1 / 2$	50		$4 / 53$	6
$4,4,-50 T$	$6 / 22$	27	0.7	0	$0 / 4$	0	$0 / 3$	0	$0 / 3$	0	$0 / 3$	0	a	$0 / 7$	0	$0 / 2$	0	$0 / 2$	0		6/53	11
$4,4^{2}-200$	4/22	18	$0 / 7$	0	$0 / 4$	0	$0 / 3$	0	0/3	0	0/3	0	a	$0 / 7$	0	$0 / 2$	0	012	0		4/53	6
4, 4^{\prime}-000	3/22	14	$0 \% 7$	0	0/4	0	$0 / 3$	0	$0 / 3$	0	$0 / 3$	0	a	$0 / 7$	0	$0 / 2$	0	0,2	0		3/53	6
PCES	$0 / 22$	0	$0 / 7$	0	$0 / 4$	0	0/3	0	$0 / 3$	0		0	a	$0 / 7$	0	$0 / 2$	0	0.2	0		0/53	0
Miscellenpous																						
cyanice	8/18	49	$4 / 5$	67	$2 / 2$	100	2/3	67	2/3	67				4/4	100	1/2	50	$2 / 2$	100		25/40	63

[^16]

Mote: Dry-weather data only used where posibic. See parts $3-5$ of tilis regort for details on loading alculations ohere are no major
discherges to hilwake katerway. ho simultangous flow and organic priority pellutant data are avilable for fisapoo effluents.
$\ldots=$ let detected

 ：udian mum Mor 37 ：

	－－－				
	：：：		$\overbrace{0}^{*}$ ．		長
$3 \sin \sin z$	：：		0_{0}^{0}	－．．．．	1－mo 0
	－．．．－	気	¢		
gesg	$\cdots \cdots$	98.	：		
$\therefore=69 \%$ mo	：$: 1$	믕	1：	矛: : :	$:$
	－：		！：：	のィー！！	1：今心
気気	－ー－		ーー－		＋
	－ーツ		－mm	－ーローヅッ	

11：11 i：$\overline{-}$

 ：：：：
 we Thint Fum Mediat．．．

[^0]: *The final versions of these reports supercede Parts 1-6 issued separately, since they contain changes in the original text and/or data.

[^1]: *The data on conventionals are available on request.

[^2]: *Because of its very large flow and low metals concentrations, loads for the Puyallup River were not included in Table 40. These data have been calculated and are in Part 5.

[^3]: (1) Estimated
 a $=$ Not detected, but detection limit high mlative to other analyses
 $T=$ Trace; value is greater than the limit of detection but less than the

[^4]:

[^5]:

[^6]: $T=\begin{aligned} & \text { Trace; value is greater than the limit of detaction but less than the limit of quantification (l ug/L in } \\ & \text { most cases) }\end{aligned}$

[^7]: * = Calculated using 1/2 quantification limit

[^8]: $+=$ All data represent samples obtained from the top $2-5 \mathrm{~cm}$ of sediment

 - $=$ None detected
 * $=$ Pyrene + fluoranthene
 $* *=$ Benzofluoranthenes
 () = Walue questionabie - included, but not used for any calculations

[^9]: T = Trace amount
 I = Insufficient data

 - - = None detected
 () = Estimated median
 * $=$ Strong acid digestion data only

[^10]: Calculated using dry flow (August and May) data only for Turning Bas'n and South Lincoln drains

 * = Calculated using 1/2 quantification linit

[^11]: $\begin{aligned} &+=\text { All data represent samples obtained from the top } 2-5 \mathrm{~cm} \text { of sediment } \\ & {[]=\text { Weak acid digestion }(0.1 \mathrm{~N} \text { nitric acid with } 5 \mathrm{~g} \text {. wet sediment) }}\end{aligned}$
 $a=$ Not detected, but detection levels too high to be usfful
 $T=$ Trace amounts

[^12]: $(\quad)=$ Galculated using an metal loads, influent metals concentrations not measured .- $=$ Load not calculated for "less than" $(<)$ concentrations

[^13]: $\begin{aligned} * & =\text { Calculated using } 1 / 2 \text { quantification limit } \\ -- & =\text { Not detected }\end{aligned}$

[^14]: DUSEPA - contract laboratory (organics), WDOE - Tumwater Taboratory (metals)
 $g_{\text {NOAA (Malins, et }}$ az.), (MPA-2, etc.

[^15]: []* Wiver miles from mouth ${ }^{n+1} \mathrm{HNO}_{3}$ with 5 wet crams sediment)
 T F Trace, value is greater than the limit of cetection but less than the limi: of quantification
 a $=$ Not detected, but detection levels too higr to be useful
 w Pyrene + fluorarthene. $*=$ Pyrene + fluoranthen
 $+=$ Benzofluoranthenes

[^16]: Detection frequency $=$ number of samples in which a compound is detected $\%$ total number of samples analyzed for that compound.
 NOTE: Analyses employing poor detection limits not used in this tabulation,

