JOHN SPELLMAN Governor

WA-25-5010 WA-CR-1010

STATE OF WASHINGTON

DEPARTMENT OF ECOLOGY

7272 Cleanwater Lane, LU-11 • Olympia, Washington 98504 • (206) 753-2353

MEMORANDUM August 16, 1984

To:

Jon Neel, District Engineer, Southwest Regional Office WDOE

From:

Lynn Singleton, Water Quality Investigations Section

Subject: Weyerhaeuser - Longview Ditches Water Quality Survey

INTRODUCTION

This report is the second of two concerning the water quality of the Longview ditches, Consolidated Diking District No. 1. The first report, Singleton and Bailey (1983), discussed water quality conditions, sources, and flow direction in several of the ditches during a January 25 and 26, 1983 survey. This report predominantly addresses November 15, 1983 conditions in Ditch 3 during wet-weather conditions. The survey was conducted by Lynn Singleton and Gary Bailey of the Intensive Surveys Unit. A concomitant survey of the Weyerhaeuser discharges is presented in a separate memorandum (Yake, 1984).

METHODS

Surface water grab samples were collected on November 15, 1983 at six stations: 6, 5, 9, 8, Wa. St., and Douglas St. Sediment samples were collected at separate sites: 7S, 10S, and 12S, with an Eckman grab. Station locations are shown in Figure 1, and descriptions are presented in Table 1. Station designations follow the conventions established in Singleton and Bailey (1983) for all previously sampled locations. Selected data (Yake, 1984) have also been included and follow the previously noted conventions.

Memo to Jon Neel Weyerheauser - Longview Ditches Water Quality Survey August 16, 1984 Page Two

Temperature measurements and dissolved oxygen (Winkler method) samples were obtained in the field. Water samples were collected for all or some combination of the following analyses at each site:

На total phosphorus mercury turbidity orthophosphate-phosphorus arsenic specific conductivity color selenium fecal coliform bacteria tannin and lignin silver ammonia-nitrogen recoverable phenolics beryllium nitrate-nitrogen recoverable oil and grease thallium nitrite-nitrogen copper acid/base-neutral zinc chemical oxygen demand organic compounds biochemical oxygen demand nickel total solids chromium total non-vol. solids cadmium total suspended solids lead total non-vol. susp. solids antimony

Sediment samples were collected and analyzed for acid/base-neutral organic compounds. Metals, organic water, and sediment analyses were performed by the U.S. EPA Region X laboratory at Manchester, WA, whereas the WDOE Olympia Environmental Laboratory performed all other analyses.

Discharge measurements were made by either wading or from a boat with a Marsh-McBirney flow meter and a top-setting rod.

RESULTS AND DISCUSSION

As noted previously (Singleton and Bailey, 1983), the direction of flow in the ditches is related to which pump stations are operational at a given time, the conditions of the ditches, and hydraulic load from a specific area. Due to the variability of the controlling factors, flow direction is not constant or predictable. Flow directions present during the November 15, 1983 survey (Figure 1) were different than had been observed previously. Therefore, the "Flow System" designation and discussion in Singleton and Bailey (1983) may not apply here; however, the format is the same.

Flow System I. - This system had not changed from the earlier work. Water in Ditch No. 3, east of the Oregon Way pump station, flowed in a westerly direction to the pump station and was discharged to the Columbia River. Direction in this system will always be the same unless the Oregon Way pump station stopped after a large pumpdown. Filling from other sources could then temporarily reverse the flow.

Three stations (6, 5, and 9) were sampled in this system.

Memo to Jon Neel Weyerheauser - Longview Ditches Water Quality Survey August 16, 1984 Page Three

Station 6 represents background conditions in the ditch. In general, groundwater, surface runoff, urban stormwater, and a permitted NPDES discharge (American Cyanamid) all contribute to the upstream ditch waters. Singleton and Bailey (1983) should be consulted if a more detailed discussion of upstream inputs is needed.

Station 6 water quality data are presented in Table 2. Conditions during the wet-weather survey where 0.28 inch of rain fell (Yake, 1984) were somewhat poorer than the conditions observed during the drier January 26, 1983 survey. Turbidity, COD, and total suspended solids were double, and the dissolved oxygen concentration (2.8 mg/L) was about one-half the previously observed levels. Nutrients, oil and greases, and specific conductance levels were similar.

Station 5, the pipe coming from the International Paper Company pond, was discharging a relatively small amount. Inspection of the IPCO pond outlet revealed the pond was not draining to Ditch No. 3.

This observation verified speculation by Singleton and Bailey (1983) that the pipe also received water from other sources. The sample results indicated the colored, turbid discharge was a few degrees warmer than background conditions, and had a high COD, all of which could be indicative of urban runoff.

Water quality at station 9, the farthest downstream sampled point in Flow System I, appeared to have changed somewhat from upstream conditions. Turbidity, color, solids, and COD were all lower than the upstream site. Ammonia and conductivity were slightly higher. The decline in turbidity, solids, and COD suggests some settling may have occurred between sites; however, dilution with less turbid and colored waters may have also been important. This would explain a decrease in the turbidity, solids, COD, and color as well as account for increases in the conductivity and ammonia.

A few priority pollutants (Table 3) were found in low concentrations at all stations in Flow System I. The detection limits for the priority pollutant analyses for water and sediment samples are given in Appendix I. It should be noted that detection limits for the water samples were the same for each station. Sediment detection limits were much higher in general and varied by station depending on the interferences present. All tentatively identified compounds found during this survey (stations 6, 5, 9, 7S, 10S, and 12S) are reported in Table 4. Any of these compounds also occurring at stations 7, 10, or 12 (Yake, 1984) are also reported. Yake (1984) should be consulted for a complete list of compounds tentatively identified during his work.

Memo to Jon Neel Weyerheauser - Longview Ditches Water Quality Survey August 16, 1984 Page Four

Flow System II. - Flow conditions present in this system were as explained previously in Singleton and Bailey (1983). The flow direction is easterly from about 26th Street to Oregon Way. Although not observed, flow direction would reverse when the Oregon Way pump station was not operating.

The area receives drainage from the residential lands to the north and the Weyerhaeuser Company to the south. The ditch walks performed for the previous work indicate the Weyerhaeuser pond is the only point source present; however, effluent from the Weyerhaeuser east oil-water separator, located just west of 26th Street, could potentially enter this system.

The instantaneous pond discharge was measured at 1.2 MGD during the survey (Yake, 1984). The downstream flow at station 8 was 17.3 MGD. This resulted in a dilution ratio of 13.5:1. Table 5 details loads for selected parameters.

Pond effluent, station 7, was similar to the previous sample in that it was highly colored, turbid, and had a large potential for oxygen consumption (Table 2). Notable differences in color were visually apparent above and below the entry of the discharge. Results for the fecal coliform bacteria, oil and grease, and nutrient concentrations were different from the previous work. Fecal coliform (890 org/100 mLs) were about three times higher and accounted for 91 percent of the downstream load (Table 5); whereas oil levels were considerably lower, 3 versus 130 mg/L. An oil sheen below the discharge was not present during this survey. The ammonia and total phosphorus concentrations had increased, but were still below a level of concern.

The effluent dissolved oxygen concentration (2.1 mg/L) cannot be compared to the January 25-26, 1983 data because the excessive color and turbidity interfered with the Winkler determination. As before, BOD and COD concentrations were the highest observed during the survey and represented 19 and 36 percent of the downstream load, respectively. Copper and lead concentrations in the effluent exceeded the maximum allowable, and zinc exceeded the average allowable receiving water concentrations (Table 2). The criteria violations assume a hardness of 80 mg/L CaCO3 (Singleton and Bailey, 1983).

Priority pollutant analyses of the pond effluent (Table 3) indicated the presence of a few compounds. Only the thalate esters exceeded the chronic standard (Federal Register, 1980). Thalate esters are very ubiquitous and because the detected quantity was so low, very near the criterion, it was not noted in previous work. The sediment sample (7S) indicated much higher concentrations for the compounds detected. Criteria for allowable concentrations in sediment are not available; therefore, levels have been compared to water criteria. In general, fewer priority pollutant compounds were found and concentrations tended

Memo to Jon Neel Weyerheauser - Longview Ditches Water Quality Survey August 16, 1984 Page Five

to be slightly lower than levels observed previously (Singleton and Bailey, 1983). Naphthalene was above the chronic toxicity criterion; however, the acute toxicity level would be exceeded if the naphthalene base compounds (Table 4) are considered also. Acenaphthalene also exceeded the chronic concentration.

Water quality at the downstream station (8) was poor. The highly colored, turbid ditch had a dissolved oxygen of 0.1 mg/L, a BOD_5 of 24 mg/L, and a COD of 81 mg/L. Station 8 had the highest solids concentration found in a ditch sample. Zinc and lead both exceeded the allowable average and copper exceeded the maximum allowed concentration. All of these were noted as important constituents in the pond discharge. Table 5 indicates 12 to 91 percent of the pollutant load at station 8 is attributable to the pond inputs.

The conductivity data may suggest other sources upstream from the pond are contributing to the ditch load. The walking survey of the ditch performed for the earlier work (Singleton and Bailey, 1983) indicated the next westerly point source is the Weyerhaeuser east oil-water separator. The proximity of the oil-water separator implies that Ditch No. 3 could flow in an easterly direction given the Oregon Way pump station is operating. This would help explain higher conductance at Station 8 if the conductivity of the east oil-water separator (614 umhos/cm) and the background conductance (251 umhos/cm) in this segment of Ditch No. 3, represented by the WA Street station are considered.

Flow System III. - Flow System III. is not clearly defined, and differs from the System III. of Singleton and Bailey (1983). The system present during this survey was bordered by 26th Street on the east and included all of Ditch 3 and any adjoining waters to the west (Figure 1). On the day of the survey, water moved westerly from 26th Street to a point near where Ditch No. 1 intersects Ditch No. 3. Waters to the west moved easterly and converged with the westerly waters at the Ditch No. 1 intersection. The combined waters then flowed north into Ditch No. 1, through the residential district, and ultimately through the main pump station to Coal Creek Slough. This flow pattern probably occurred because the Industrial Way pump station was not operating and the connection with the Reynolds pump station (via Ditch No. 14) was blocked for a road construction project.

Several point-source discharges exist in this system; however, the two NPDES-permitted Weyerhaeuser oil-water separators were the focus of this work. Singleton and Bailey (1983) provide a discussion of cyanide and metals contamination in this area of Ditch No. 3.

Memo to Jon Neel Weyerheauser - Longview Ditches Water Quality Survey August 16, 1984 Page Six

The Weyerhaeuser east and west separators, discharge numbers 004 and 003, respectively, are permitted to discharge "uncontaminated stormwater runoff." The Weyerhaeuser NPDES permit application indicates dust control runoff and and vehicle washwater either occasionally or routinely enter the 004 discharge in addition to stormwater. Yake (1984) indicated one bypass enters the drainage system, and Neel and Bailey (1984) found that steam-cleaning runoff did also. Data from these two discharges, 004 and 003, were presented by Yake (1984) and have also been presented and discussed here. Ditch waters were evaluated at two stations; Douglas Street and Washington Street. Flow System III. has been divided into two subsystems--III.a. where flow is westerly, and III.b. where flow is easterly.

Flow System III.a. - Flow from the east oil-water separator was measured at 0.26 MGD (Yake, 1984). This equates to a dilution ratio of 16.5:1 in Ditch No. 3.

The quality of the east oil-water separator (station 10) effluent was different in several aspects from the previous sample. Solids-related parameters were lower as were the oils and greases and phenolics. Fecal coliform concentrations (1400 org/100 mL) were about twice the previous sample. Nitrogen forms, conductance, and metals were also higher. The effluent was highly colored during this and the previous survey.

Increases in the nitrogen species and conductance were probably due to the discharge of hogged fuel boiler scrubber water (Yake, 1984). Increases in conductance are not noteworthy; however, the effluent loads (Table 6) of nitrite (concentrations of 8.4 mg/L-N) and ammonia (6.9 mg/L-N) are of concern. No criterion exists for nitrite-nitrogen, probably because it is rarely found in the aquatic environment; however, data indicate a concentration of 0.06 mg/L NO2-N or less should be protective of salmonid fishes (U.S. EPA, 1976).

Conversion of nitrite to nitrate is a biological-mediated process which can occur relatively quickly in aerobic environments. Nitrite can be converted to ammonia, the more reduced form, in an anaerobic environment. This could occur in the ditches and would add to the in-stream ammonia and un-ionized ammonia levels.

Un-ionized ammonia toxicity in freshwater has been well documented, and the present criteria are for maximum allowable and average concentrations are based on pH and temperature. The appropriate criteria for conditions during the survey are 0.025 mg/L-N and 0.005 mg/L-N, respectively (Federal Register, 1984). The un-ionized ammonia concentration of the effluent was 0.019 mg/L.

Memo to Jon Neel Weyerheauser - Longview Ditches Water Quality Survey August 16, 1984 Page Seven

The BOD and COD concentrations in the discharge were similar to levels observed in the previous study; whereas, the dissolved oxygen concentration (1.5 mg/L) was lower. In combination, the BOD and NOD loads and low oxygen concentration in the discharge represent a significant problem for the system.

The metals, copper and zinc, both exceeded the maximum allowable, and lead exceeded the allowable average concentration (Table 2).

Priority pollutant analyses were conducted on both effluent and Ditch No. 3 sediments (collected from the entry point of the east oil-water separator). Pentachlorophenol (Table 3) was the only compound found in the water which exceeded the established chronic toxicity criterion (Federal Register, 1980). Analyses of the sediments indicated fluoroanthene, naphthalene, and di-n-butyl phthalate all exceeded the acute freshwater criteria for water and phenol exceeded the chronic criterion (Federal Register, 1980).

In general, compounds found in the water were found in the sediment sample. Yake (1984) normalized water concentrations with suspended solids and found good correspondence between effluent and sediment concentrations. Yake (1984) should be consulted for further discussion. This is not surprising in light of the affinity most organic pollutants have for non-aqueous environments; i.e., sediments. See U.S.EPA (1982) for a literature review and discussion of organic affinities (partition coefficients).

The lack of sediment criteria for the priority pollutants makes evaluation of potential impacts very difficult. The concentrations of organic compounds (Tables 3 and 4) in and at the east oil-water separator discharge are noteworthy. More compounds in higher concentrations were present at the site than at any other site sampled in this survey.

The differences in the effluent quality between the January 26, 1983 and the November 15, 1983 samples may be due to the variable nature of the discharge (see Yake, 1984); however, the sampling locations were not exactly the same. Yake (1984) was able to sample the discharge directly prior to its entering Ditch No. 3, whereas the Singleton and Bailey (1983) sample was taken immediately outside the oil boom in the ditch. The ditch collection was necessary because a sample obtained through approximately 1 cm of floating oil scum would have severely biased the results. Data collected in January 1983 indicate that the ditch waters were diluting the east oil-water separator effluent with the exception of most nitrogen species and possibly cadmium. Therefore, the January sample probably underestimates effluent concentrations. The ditch waters were the diluent for most parameters during the November 15 survey also.

Memo to Jon Neel Weyerheauser - Longview Ditches Water Quality Survey August 16, 1984 Page Eight

Water quality at the Douglas Street station (Table 2), downstream of the east oil-water separator, could be characterized as violating the Class A standards for dissolved oxygen and fecal coliform bacteria; having elevated nitrogen concentrations which violate the nitrite salmonid guideline; and violating the maximum allowable copper and the average allowable zinc and lead criteria. Every one of the problems is potentially exacerbated by the east oil-water separator discharge located upstream. Table 6 provides the loads at Douglas Street and indicates that from 10 to 95 percent of the loads are attributable to the east oil-water separator.

Flow System III.b. - Water movement at the Washington Street station was found to be slightly eastward. Dissolved oxygen levels were the highest observed (7.0 mg/L) anywhere in Ditch No. 3; however, they were below the Class A standards (8.0 mg/L). Bacteria also exceeded its standard, and copper and lead exceeded the applicable criteria (Table 2). Although cyanide was not analyzed, previous data from potential upstream sources to the west (Singleton and Bailey, 1983) indicate it was very likely present.

Station 12, the west oil-water separator, is downflow of Washington Street. It has the cleaner discharge of the two oil-water separators (Table 2) and does not appear to receive the same type of process-related wastewaters (Yake, 1984). In general, some metals exceeded the criteria, and the fecal coliform levels were in excess of the Class A standard. Table 7 shows the loads: from the west oil-water separator; at Washington Street upstream; the percentage of downstream load; and the predicted downstream concentrations. A poor effluent dilution ratio (2:1) caused the percent increase in the downstream load to be substantial. Load increases ranged from <12 to 130 percent with zinc, fecal coliform bacteria, and lead showing the greatest increased loads. The effluent further aggravates the instream criteria and standards violations.

The flow direction present in System III. during this survey is significant for several reasons:

- 1. A large number of industries discharge to Ditch No. 3.
- 2. Dilution in the ditch is at times very poor.
- 3. Water quality is at times very poor, with potentially elevated cyanides, metals, organics, and bacteria levels.
- 4. Children have ready access to the ditches in the residential area to the north.

Table 8 lists the available data and mean concentrations for selected parameters found in the Weyerhaeuser discharges to Ditch No. 3.

Memo to Jon Neel Weyerheauser - Longview Ditches Water Quality Survey August 16, 1984 Page Nine

SUMMARY

- o The pipe draining the IPCO pond also receives inputs from one or more sources.
- o Flow direction in the ditches is unpredictable, and the residential areas to the north of Ditch No. 3 receive drainage from the major industrial sources along Ditch No. 3.
- o Water quality conditions in Ditch No. 3 are poor in the area of the three Weyerhaeuser permitted discharges. Dissolved oxygen is low; zinc, copper, lead, fecal coliforms, solids, turbidity, and color all exceed acceptable levels in the ditches and are all significantly loaded by the discharges.
- Effluent quality from each of the Weyerhaeuser discharges is variable. The east oil-water separator and the pond discharges had the poorest quality of the three; however, loading from all is significant due to poor dilution ratios (16.5:1 to 2:1) and high concentrations. The dilution each may receive is also quite variable and depends on flow magnitude and direction in the ditch system. Process-related discharges to the east oil-water separator drainage had a marked effect on its effluent quality and the quality of the receiving water.
- o Priority pollutant data indicate the east oil-water separator has the highest water and sediment concentrations of the three Weyerhaeuser discharges to Ditch No. 3. Process-related wastewaters may be one likely source of the contamination. The pond discharge had the second highest levels, and the west oil-water seaprator the third.
- o The occurrence of large oil discharges is probably in part related to intermittent maintenance of the oil containment systems.

RECOMMENDATIONS

- 1. Treatment of the Weyerhaeuser wastewaters influent to Ditch No. 3 is needed and would improve existing conditions. As a minimum, process-related wastewaters should be removed from the stormwater drainage system.
- 2. Installation of a flapper gate on Ditch No. 1 at the entrance to Ditch No. 3 would prevent poorly diluted industrial wastewaters from occasionally flowing through residential areas to the north.

LRS:cp

LITERATURE CITED

- Federal Register, 1980. Vol. 45, No. 231. pages 79318 79379.
- Federal Register, 1984. Vol. 49, No. 2. page 4551.
- Merck and Co., 1983. The Merck Index. 10th ed. 1463 pp.
- Neel, J. and G. Bailey, 1984. Weyerhaeuser inspection report dated April 10, 1984.
- Singleton, L. and G. Bailey, 1983. Longview Diking District Study. December 1, 1983. Memorandum to Jon Neel. WDOE. 24 pp.
- U.S. EPA, 1976. Quality Criteria for Water. 256 pp.
- U.S. EPA, 1982. Water Quality Assessment: A Screening Procedure for Toxic and Conventinal Pollutants Part 1. EPA 600/6-82-004a. 570 pp.
- Yake, B., 1983. Weyerhaeuser wood products (Longview) Class II inspection and associated stormwater sampling surveys (March 29, April 19-20, and November 15, 1983. Memorandum to Jon Neel. May 1, 1984. WDOE.

SAMPLING LOCATIONS ON LONGVIEW DITCHES'. MAP MODIFIED FROM CONSOLIDATED DIKING IMPROVEMENT DISTRICT NO. 1, 1982. Figure

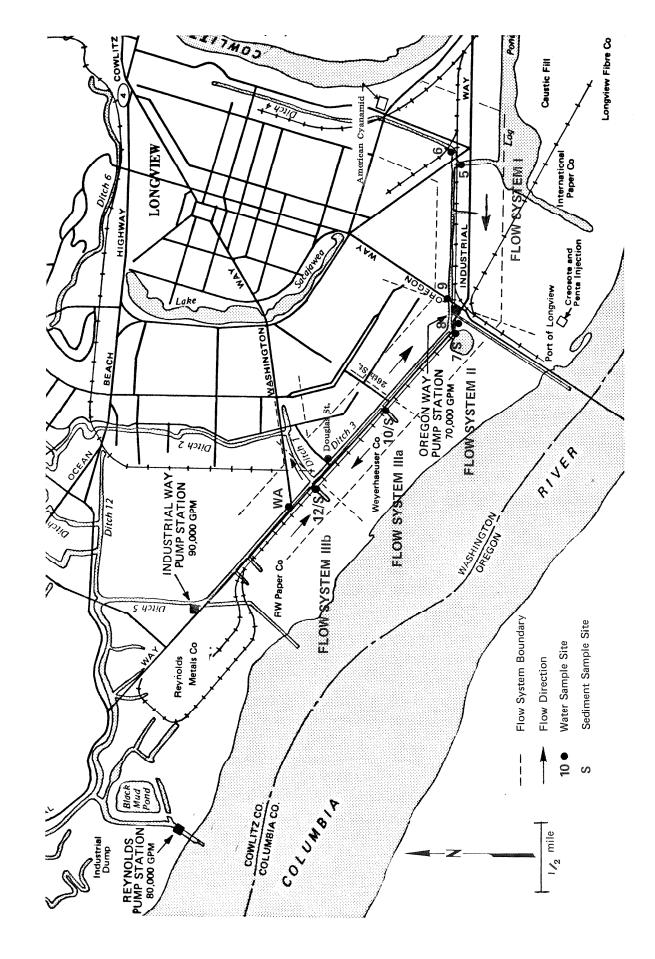


Table 1. Sampling sites for Longview ditches (November 15, 1983). Selected stations from Yake (1984) are also described. It should be noted that these flow systems were present at the time of sampling, but are subject to change.

Station	Location
	Flow System I.
6	Upflow side (east) of California Way before International Paper Company (IPCO) log pond discharge in Ditch No. 3.
5	IPCO log pond discharge pipe where it enters Ditch No. 3.
9	Ditch No. 3, at the east side of Oregon Way, upstream from the pump station.
	Flow System II.
7	Weyerhaeuser discharge 002, the pond
7\$	Sediment sample from Ditch No. 3 adjacent to the Weyerhaeuser pond discharge plume.
8	Ditch No. 3 between Weyerhaeuser pond discharge and Oregon Way pump station.
	Flow System III.a.
10	Weyerhaeuser discharge 004, east oil-water separator (near 26th Street).
105	Ditch No. 3 sediment sample taken in the east oil-water separator plume.
Douglas Street	Ditch No. 3 at the west side of Douglas Street.
	Flow System III.b.
12	Weyerhaeuser discharge 003, west oil-water separator.
12S	Ditch No. 3 sediment sample taken in the west oil-water separator plume.
Washing- ton St.	Ditch No. 3 on the east side of Washington Street.

Table 2. Conventional pollutants and metals results for water samples from Longview Ditch No. 3, November 15, 1983. Units are in mg/L unless otherwise noted.

	FTo	ow System	1.	Flow Sy	stem II.	Flow Syst		Flow Sys	tem III.b.
Station	6	5	. 9	8	7*	10*	Doug. St.	12*	WA St.
Station Type**	D	Р	D	D	Р	<u>P</u>	D	Р	D
Flow (MGD) pH (S.U.) Temperature (°C) Dissolved Oxygen Turbidity (NTU) Color (P.U.) Sp. cond. (umhos/cm) COD BOD5 Fecal coliform (col/100 mL) NO3-N NO2-N NH3-N	6.5 10.8 2.8† 160 230 143 50 0.07 <0.01 0.20	6.8 12.7 2.7† 260 580 258 180 0.08 0.02 0.08	6.5 11.3 2.8† 110 160 167 35 0.11 <0.01 0.38 0.03	17.3 6.5 10.5 0.1† 260 360 279 81 24 67f 0.20 0.1 0.59 0.07	1.2 6.3 9.8c 2.1†,d 820 1200 117 420 68 890e,† <0.05 <0.05 0.25	0.26 7.0 14.8d 1.5†,d 180 710 614 300 70 1400† 1.0 8.4 6.9 0.05	4.3 6.7 11.6 3.2† 48 180 260 42 11 510 0.35 0.55 0.70	0.25 6.8 12.2d 4.8†,d 28 110 211 35 6 800e,† 0.54 <0.01 0.12 <0.01	0.5 6.7 11.0 7.0† 36 170 251 35 11 490† 1.8 0.04 0.30 0.06
T-PO4-P 0-PO4-P Total solids Total non-vol. solids Total susp. solids Total non-vol. susp. solids Tannin & lignin (as Tan.) Phenolics Oil & grease	i 230 160 90 70 4	i 390 240 120 90 16 <1	i 200 150 69 53 3	i 360 260 160 110 7 0.14	700 400 440 260 0.082 3.0d	620 390 110 52 0.033 3.5 ^d	210 150 29 21 2 0.019	170 120 15 10 0.015 2.5d	i 200 150 19 15 2 0.028
Metals - Total Recoverable (Copper Zinc Nickel Chromium Cadmium Lead Antimony Mercury Arsenic Selenium Silver Beryllium Thallium	ug/L)		·	41 ^m 113 ^k 3 9 <0.1 30 ^k <1 1.32 <1 0.2 <0.5 <1	78m 228k 30 22 0.3 51m <1 <0.055 5m 1 <0.2 0.6 <1	58m 274m 9 8 <0.1 34k <1 0.11 1k 1 <0.2 <0.5 <1	26 ^m 62 ^k 3 4 <0.1 20 ^k <1 0.44 <1 <1 <0.2 <0.5 <1	25 ^m 87k 7 5 <0.1 23k <1 <0.055 <1 <0.2 <0.5	31 ^m 33 <1 4 <0.1 22 ^k <1 0.11 <1 <1 <0.2 <0.5 <1

^{*}Source: Yake, 1984. **D = Ditch sample; P = Point-source sample.

d = mean

t = exceeds Class A standards

e = geometric mean
f = estimate

i = interferance

k = exceeds average allowable criterion (hardness = 80 mg/L)

m = exceeds maximum allowable criterion (hardness = 80 mg/L)

Table 3. Priority pollutant results from Longview Ditch No. 3 water and sediment samples, November 15, 1983.

Station Station Type*** Base/Neutral Compounds Acenaphthene Acenaphthalene Acenaphthalene Anthacene	. A. O	5 5		*	7* 75	*01	105	12*	125	Water Cri	teria**
Base/Neutral Compounds Acenaphthene Naphthalene Acenaphthalene		×.	л О Ж	٦,	S.	, G ≅	P, W P, S	₽,₹	P,W P,S	Acute Chronic	Chronic
Acenaphthene Naphthalene Acenaphthalene Anthracene		,									
Naphthalene Acenaphthalene Anthracene	<0.05	90.0>	<0.05		640d	<0.1	p066	0.03		1,700	į
Acenaphthalene Anthracene		90.0	0.03	0.17	790e	1.1	53,000f	0.04	4,000f	2,300	620
Anthracene	<0.0>		<0.04	<0.08		0.9	31,000	0.03	1,700		ŧ I
						0.13	11,000		1,000	:	i
Fluorene				0.12	610	0.23	5,400	0.07	800	ì	ŧ
Phenanthrene		0.17	90.0>	0.39	1,900	1.4	73,000	0.07	8,700	;	ŧ
Fluoranthene	0.19	0.14	90.0		650	1.3	69,000f	90.0	11,000f	3,980	i i
Benzo(a)anthracene						0.4	4,400			:	\$ \$
Chrysene	<0.2	<0.2				0.44	7,200		1,400	;	:
Pyrene	0.22	0.14	0.07	0.17	650	1,3	000,69	0.05	6,300	:	8
Benzo(a)pyrene						1.0	2,100			;	1
Benzo(k)fluoranthene +						1.7	6,200			i	1 8
3,4-benzofluoranthene										;	!
Benzo(g,h,i)perylene						3.6				1	!
Ideno(1,2,3-cd)pyrene						4.9				1	:
1,2-dichlorobenzene	<0.05		>0.06							i	8
Isophorone		90.0>								117,000	!
Di-n-butyl phthalate			-				<2,000	0.05		940	ĸ
Bis-2-ethylhexyl phthalate				4.7f		21f		1.5		940	က
Butylbenzyl phthalate								<0.0>		940	က
Acid Compounds											
2-chlorophenol		<0.2									
2,4-dichlorophenol		<0.2									
4,6-dinitro-o-cresol		1.8									
Pentachlorophenol		0.4		<0°8		20					
Phenol		1.3		2		11	8,200 ^e		3,400e	10,200	2,560

*Source: Yake, 1984.

**Federal Register, 1980.

***D = Ditch; P = Point source; W - Water, units in ug/L; S = sediment, units in ug/Kg d.w.

< = Detected, but below quantification levels.

d = Exceeds algal inhibition level.

e = Exceeds chronic toxicity criterion.

f = Exceeds acute toxicity criterion.

Table 4. Estimated tentatively identified compounds from Longview Ditch No. 3 water and sediment samples, November 15, 1983.

Flow System Station Station Type**	0,W	J. 2	9 M, U	7,4 P, W	111. 75 P,S	111.a 10* 10S P,W P,S	12* P,W	111.b. 125 P, S	Compound Association***
Compound 4-(1,1,3,3-tetramethylbutyl)phenol Hexadecanoic acid	1.8 28	о·	4.6			A	,	м	detertent palm oi -wax
4-ethyl-phenol Benzenepropanoic acid 3,4,5-trimethyl-2-cyclopenten-1-one		65 9 .4		14		7	m		phenols-toxic
Tetradecanoic acid 2,5-dimethylbenzenebutanoic acid			1.6			120			animal fats
3,7,7-trimethyl-bicyclo(4.1.0)hept-2-ene 2,7,10-trimethyldodecane					3,700 22,000				turpentine
1,8-dimethyl-naphthalene 3,6,6-trimethyl-bicyclo(3.1.1)hept-2-ene				140	17,000		500	18,000	turnentine
1-methyl-3-(1-methyl-ethyl)benzene 1-methyl-naphthalene				0		32 11,	11,000 9,300	10,000	solvent
l-1-biphenyl Biphenylene						20,	000		heat transfer agent-toxic
1-naphthalene-carboxaldehyde						21,	000		
dibenzoturan 9H-fluoren-9-one	,					34,	34,000 35.000		
9-methylene-9H-fluorene	,						300		
benzo(c)-cinnoline 4H-cyclopenta-(DEP) phenanthrene						70,	70,000		
1-phenyl-naphthalene						13,	13,000		
benzo(g,h,i)-fluoranthene						26,	000		
יוו-סבוולט סר - מוורווו מרכוו- / -סווכ			1			0	0,000		

*Source: Yake, 1984. **D = ditch; P = point source; W = water sample, units in ug/L; S = sediment sample, units in ug/Kg d.w. ***Merck and Co., 1983.

Table 5. Selected loadings (lbs/day) from the Weyerhaeuser pond discharge (002) and the percentage of the downstream load it comprised at station 8, November 15, 1983.

	Load	S	Percent of Downstream Load
Station	7 (pond) (Q = 1.2 MGD)	8 (ditch) (Q = 17.3 MGD)	
Parameter			
BOD ₅ COD TSS Fecal Coliform	651 4,203 4,404 4.0 x 10 ¹⁰ org/day	3,443 11,619 22,952 4.4 x 10 ¹⁰ org/day	19 36 19 91
Metals (total rec Copper Zinc Arsenic Lead	overable) 0.78 2.28 0.05 0.51	5.88 16.21 <0.14 4.3	13 14 <35 12

Table 6. Weyerhaeuser east oil-water separator loads; downstream ditch load, and percentage of the downstream load attributable to the 004 discharge (station 10) on November 15, 1983. Loads are in lbs/day except where noted.

	Loa	ads	Percent of Downstream Load
Station	<pre>10 (east oil- water separator) (Q = 1.2 MGD)</pre>	Douglas Street ditch (Q = 17.3 MGD)	
<u>Parameter</u>			
NH3-N NO2-N NO3-N Fecal Coliform (org/day)	15.0 18.2 2.2 1.4 x 1010	25.1 19.7 12.6 8.3 x 10 ¹⁰	60 92 18 17
BOD ₅ COD TSS	152 651 238	395 1,506 1,040	38 43 23
Metals (total rec			
Copper Zinc Lead Mercury	0.13 0.59 0.074 9.5 x 10-4	0.93 2.22 0.72 <19.7 x 10-4	13 27 10 <48

Weyerhaeuser west oil-water separator loads (003); upstream ditch load; percentage of downstream load; and predicted downstream concentration on November 15, 1983. Loads are in pounds/day. Table 7.

		.oads	Percent	Predicted
Station	Washington Street (Q = 0.5 MGD)	12 (west oil- water separator) (Q = 0.25 MGD)	Increase in Downstream load	Downstream Concentration (mg/L)
BOD ₅	46	13	27	9.4
COD	146	73	50	35
TSS	79	31	39	17.6
Fecal coliforms (org/day)	9.3×10^9	7.6×10^9	82	600 (org/100 mL) ^C
NH3-N	1.25	0.25	20	0.24
NO2-N	0.17	<0.02	<12	<0.03
N03-N	7.5	1.1	15	1.4
Metals (total reco	overable)			
Copper	0.13	0.05	38	0.029b
Zinc	0.14	0.18	130	0.051a
Lead	0.092	0.048	52	0.022a

a = exceeds average allowable concentration hardness = 80 mg/L b = exceeds minimum allowable concentration hardness = 80 mg/L c = Class A standard violation

Table 8. Compiled data and mears for Weyerhaeuser discharges influent to Ditch No. 3, Longview, Washington. Units in mg/L urless otherwise noted.

The same of the sa		P	puc		H	ast Oil-Wa	ter Separat	0.0	Mac	F Oil War	Tor Congrator	50
Parameter	1/26a	3/590	11/15b	Mean	1/26*a	3/290	11/156	Mean	1/26a	3/290	11/150	Mean
Color (P.U.)	1	520	1200	860	1		710	440			110	
Turbidity (NTI)	1100	110	820	1010	710		0 0		0	!	677	1
(DIE) (DIE) (ULL	1000	7 1 1 1	070	OTOT	074		180	400	220	;	28	120
200	0/6	01/	440	2/0	290		110	350	130	1	15	7.3
0.0	*	!	2.1	!	3,1		1.5	2.3	6.7	:	α	o C
000	450	460	420	440	510		300	420	190		2 4	0,01
BODs	1	130	68	00	: 1		222	2 1	2	ı I))	011
Fecal Coliform	320)	890	530C	200	t	0,0	7/	1 0	i	9 0	1 1
(col/100 ml)	9			-000	0.60		7400	950×	390	1	800	2095
(C		,		,		1					
(3.0.5)	2.0	7.0	٥.	1	6.4		7.0	:	6.7	6,8	6.8	1
Ulls & Greases	130		m	45	9		3,5	α	. 1	14	, c	a
Phenolics	0.185	!		0,13	0.069	0.15	0.033	0.084	0.034		0.0	200
Flow	See Yake	ake (1984)) for discus	sion)				0.0	670.0
As (ug/L)	8	2,9		17	! !	:	,	Î	!		,	
(d (na/1)	<>	Ľ		/ 6/	c		,	•			7 !	
(1/65) 50	, -	o (÷ , , ,	7 :	:	T.0>	7	Q	:	<0.1	ς>
(1/hn) 10	07	ן עב		14	01>	!	က	\$	<10	!	2	8
(nd·F)	09	22	78	73	20	;	28	33	20	1	25	22
Po (ug/L)	<20	න	51	. <40	<20	!	34	4 56	<20	1 1	23	<22
Ni (uq/L)	<20	~	30	<17	<20		o	77	367		1 0	1,1
7n (110/1)	1 20	124	0000	, ,	7 1	1		±1/	720	:	_	4T4
(1/da) (1/da) (1/da)	770	±0,4	272	101	ner	:	5/4	212	130	!	87	108
la/kn) fu	1		<0.05	:	8 8		0,11	i	1	8	<0.055	ŧ
And the second s												

*Sample diluted by ditch water **Interference

aSource: Singleton and Bailey, 1983 bSource: Yake, 1984 GGeometric mean

APPENDIX I.

Appendix I Detection Limits and results for Longview Ditch samples November, 19,1983. BASE/NEUTRAL COMPOUNDS

PRO	JECT: Longview Ditches	COMPILED E	3Y:		DATE:
LABO	DRATORY:	REVIEWED E	BY:		DATE:
The state of the s	Station	6	ls	9.	75 105 125
	UNITS :	ug/L	***************************************	->	uglkg >
	L0Q :				;
1.	acenaphthene	0.06	10.06 m	(0.06,2)	(40) (990) 80m
2.	benzidine	0.3,	1	> .	10,000 50,000 4,000
3.	1,2,4-trichlorobenzene	0,2,	400	->	400 m 2,000 m 160m
4.	hexachlorobenzene	0.2 1	Saggiore de la compansión de la compansi	->	400 m 2,000 m 160 m
5.	hexachloroethane	0.2n	**************************************	->	400m 2,000m 160m
· 6 •	bis(2-chloroethyl) ether	0.062	**************************************	->	200m 4000m 80m
7.	2-chloronapthalene	0.062	ent all minimum construction and the second	>	200 m 1,000 m 80 m
8.	1,2-dichlorobenzene	(0.06 m)	0.06	0.06m	200m 1,000m 80m
9.	1,3-dichlorobenzene	0.06m	***************************************	->	200 m 1,000 m 80 m
10.	1,4-dichlorobenzene	0.06 pm	Management	_3	200 1,000 80 w
11.	3,3'-dichlorobenzidine	0.3,,,	•	>	1000m 5000m 400 m
12.	2,4-dinitrotoluene	6.3m	Manufacture and the second	->	1,000, 5.000, 400m
13.	2,6-dinitrotoluene	0.3m		حر ٠٠٠	1,000 5,000 400 m
14.	1,2-diphenylhydrazine (as/aZobenzene)	0.04 n	Management of the Continues of the Conti		120m 600m 50m
15.	fluroanthene	0.19	0.14	(0.06)	(650) (69,000 (1,000)
16.	4-chlorophenyl phenyl ether	n 0.2m		->	400 2,000 160 n

m = detection limit
m = detected but not quantified

= Quantified at or above the detection limit

NO = Not determined

BASE/NEUTRAL COMPOUNDS (continued)

PROJE	COMF	LITED R	Y:			D	ATE: _	* * * *	
LABOR	RATORY: REV	IEWED B	Y:			D	ATE: _		
		•							
	Status SAMPLE # :	6	5	9	-	75	(0 S	125	
•	UNITS :								
	LOQ :								
17.	4-bromophenyl phenyl ether	0.3m		->		800m	4,000,4	300/1	
18.	bis(2-chloroisopropyl) ether	0.06	Amelika katika katika katika katika mara ya	_>		200 m	1000	80 m	
19.	bis(2-chloroethoxy) methane	0.06	·	-		200,4	1,000,44	80 w	
20.	hexachlorobutadiene	0.2m		→		600 m	Sper	2004	
21.	hexachlorocyclopentadiene	0.6		->		2,000	10,000	800 00	
22.	isophorone	0.06m	0.06	0.06		1004	800m	60m	
23.	napthalene	0.03,	6.06	(0.03)		790	(53,000)	(1,000)	
24.	nitrobenzene	0.4 1		>_		1200	6,000	200	
25.	N-nitrosodimethylamine		Name and Addison			-		mplestalente lans,	
26.	N-nitrosodiphenylamine	0.06 11		->>		200m	1,000	80m	
27.	N-nitrosodi-n-propylamine	0.60		->		2,000	10,000	800m	
28.	bis(2-ethyl hexyl) phthalate	0.06				i	1000	80	
29.	butyl benzyl phthalate	0.2n	-	->		400,	2,000,	1600	
30.	di-n-butyl phthalate	0.04	-	->		100m	2,000,	40~	
31.	di-n-octyl phthalate	0.062		->		160n	800m	60 m	
32.	diethyl phthalate	0.06m	State State of the Control of the Co	>		160m	800m	60m	
33.	dimethyl phthalate	0.060		->		(60m	800 M	600	
34.	benzo(a)anthracene	0.07	0.06	>		200m	4,400)	804	
35.	benzo(a)pyrene	0.2,	***************************************	->		400m	2,100	1600	
<u>36.</u>	3,4-benzofluroanthene	0.2 m		->		400		160m	
37.	benzo(k)fluoranthene	0.24	-	->		400 ~	26,209	160m	
38.	chrysene	0.2 m	(0.5 m	0.2.	1	400,0	(7,200)	(1400)	

BASE/NEUTRAL COMPOUNDS (continued)

PROJ	ECT:	COMPILED BY:	•	DATE:	
LABO	RATORY:	REVIEWED BY:	-	DATE: _	
	Station				
•	SAMPLE # :	6	S 9	75 105	(2.5
	UNITS :				
	LOQ :				
39.	acenaphthylene	(0.04m)	0.04, 0.04	120m 31,000	(00.01)
40.	anthracene	0.06		100 (1,000	(000)
41.	benzo(ghi)perylene	0,42		1,200m 6,000	u 500m
42.	fluorene	0.06	>	(10) (5,400	(800)
43.	phenanthrene	(0.14)	0.17 6.00m	1900 73,000	(8,700)
44.	dibenzo(a,h)anthracene	0.3	>	800m 4,000.	1 300 AL
45.	ideno(1,2,3-cd)pyrene	0.4	>	1200, 6,000,	SOOM
<u>46.</u>	pyrene	6.22	0.14 (0.07)	(650) (67,000	6,360
47.	TCDD	NDI	an an	ND ND	Qu

ACID COMPOUNDS

PROJECT:		COMPILED BY	/:		- D.	ATE:	
LABORATORY:	R	REVIEWED BY:		······································	DA	TE:	
		-					
· SAMPLE #	•	6	S	9	75	105 125	
UNITS	•						
LOQ	•						
1. 2,4,6-trichlore	phenol	0.3~		->	800m	3200m 300m	
2. p-chloro-m-cres	50]	0.2	-	>	400,	3,000m 160m	
3. 2-chlorophenol		0.2	(0.2m)	0.2 1	400,	2,000m 160m	
4. 2,4-dichlorophe	enol	0.24	0.2 m	024	4002	2,000m 160m	
5. 2,4-dimethyl ph	nenol	0.3m		->	1,0 0 0,1	4,000 m 400 m	
6. 2-nitrophenol		6.2 m		>	400m	2000 u 160 u	
7. 4-nitrophenol		س 2	`	->	4,000,	2,000m 1,600m	
8. 2,4-dinitropher	nol	0.5n		->	1,7002	8,500 m 600 m	-
9. 4,6-dinitro-o-	cresol	0.3~	(1.8)	٥.3س	v.008	4,000m 300m	
10. pentachlorophe	nol	0.4 w	(0.4)	0.4~	1,200,	6,000m 500m	ļ
ll. phenol		0.2 m	(1.3)	0.2	400 m	8,200 3400)