BASIC WATER MONITORING PROGRAM FISH TISSUE AND SEDIMENT SAMPLING FOR 1984

bу

Bradley S. Hopkins Dale K. Clark Environmental Biologists

> Mike Schlender Margaret Stinson Chemists

> > November 1985

Washington State Department of Ecology Water Quality Investigations Section Olympia WA

TABLE OF CONTENTS

	Page
LIST OF FIGURES	ii
LIST OF TABLES	iii
ABSTRACT	iv
INTRODUCTION	1
MATERIALS AND METHODS General Sample Collection Sample Handling Laboratory Procedures Quality Assurance	1 1 3 6 7 9
RESULTS AND DISCUSSION	9
EVALUATION BY CLASS OF COMPOUNDS Dichlorodiphenyl trichloroethane (DDT) Hexachlorocyclohexane (alpha-BHC) Polychlorinated biphenyl (quantified as Aroclor 1260) Pentachlorophenol (PCP) Metals Priority Pollutants (sediment)	16 16 17 17 17 18 18
REVIEW OF PERTINENT ORGANIC COMPOUNDS Dichlorodiphenyl trichloroethane (DDT) Hexachlorocyclohexane (alpha-BHC) Polychlorinated biphenyl (PCB) Pentachlorophenol (PCP)	19 19 20 20 20
INDIVIDUAL SITE EVALUATION Wenatchee River at Wenatchee Lake Chelan Okanogan River below Malott Columbia River at Northport Yakima River below Kiona Yakima River at Birchfield Drain Skagit River below Mount Vernon Green/Duwamish River above Allentown Palouse River at Hooper Walla Walla River below Warm Springs	21 21 21 21 21 22 22 22 22 22
RECOMMENDATIONS	22
REFERENCES	25
APPENDIX I	27
APPENDIX II	35
APPENDIX III	39

LIST OF FIGURES

Figure Number	<u>Title</u>	Page
1	Sample locations for the 1984 BWMP sampling program in Washing-ton State.	2
2	Organizational chart for the 1984 BWMP sampling program in Washington State.	5
3	Total DDT (t-DDT = DDT + DDD + DDE) levels in predator species as part of the 1984 BWMP sampling program in Washington State.	13
4	Total DDT (t-DDT = DDT + DDD + DDE) levels in grazer species as part of the 1984 BWMP sampling program in Washington State.	13
5	Polychlorinated biphenyl (PCB) mixture quantified as Aroclor 1260 in predator species as part of the 1984 BWMP sampling program in Washington State.	14
6	Polychlorinated biphenyl (PCB) mixture quantified as Aroclor 1260 in grazer species as part of the 1984 BWMP sampling program in Washington State.	14
7	Hexachlorocyclohexane (alpha-BHC) levels in predator species as part of the 1984 BWMP sampling program in Washington State.	15
8	Hexachlorocyclohexane (alpha-BHC) levels in grazer species as part of the 1984 BWMP sampling program in Washington State.	15

LIST OF TABLES

Number	<u>Title</u>	Page
1	BWMP parameters analyzed for during the 1984 BWMP sampling program in Washington State.	4
2	Results of fish tissue analysis as part of the 1984 BWMP sampling program in Washington State (ug/Kg wet weight).	11
3	Pesticide, PCB (ug/Kg dry weight), and metals results (mg/Kg dry weight) on sediment collected as part of the 1984 BWMP sampling program in Washington State.	12
4	Compounds analyzed for but not detected in sediment and fish tissue samples collected during the 1984 BWMP sampling program in Washington State.	12
5	Lipid-weight based results for t-DDT and PCB mixture on fish tissue samples collected as part of the 1984 BWMP sampling program in Washington State (ug/Kg lipid).	10
6	Total organic carbon and particle size analysis on sediment collected as part of the 1984 BWMP sampling program in Washington State.	16
7	Top five t-DDT concentrations found in edible fish tissue as part of the 1984 BWMP sampling program in Washington State.	16
8	Top five t-DDT concentrations found in sediment collected as part of the 1984 BWMP sampling program in Washington State.	17
9	Acid/base-neutral results (ug/Kg dry weight) in sediment collected as part of the 1984 BWMP sampling program in Washington State.	18

ABSTRACT

During 1984 the Washington State Department of Ecology collected fish and sediment samples at ten locations in Washington as part of its Basic Water Monitoring Program (BWMP). Fish tissue samples were analyzed for BWMP parameters which included organic pesticides, PCBs, and heavy metals. Sediments were analyzed for priority pollutants excluding volatile organics. The analytical results for each sampling site exhibited a distinctive array of pollutants, usually at low concentrations. Elevated levels of DDT and its metabolites were generally observed in river systems in the central region of the state. The highest level of pollutants was observed at Northport on the Columbia River. At this site, heavy metals in edible fish tissue approached an unofficial Federal Drug Administration (FDA) guideline. The 1984 results and data from the 1978-1983 period of record were also used to make recommendations for future BWMP surveys.

INTRODUCTION

As part of its Basic Water Monitoring Program (BWMP), the Washington State Department of Ecology (Ecology) each year since 1978 has collected fish at selected sites throughout the state. Fish tissues are analyzed to obtain information on the incidence and distribution of metals and synthetic organic compounds in the aquatic environment. Fish not only provide a direct measurement of biologically available pollutants, but also provide a time-averaged indication of this availability. The data collected is used to identify potential problem areas requiring further investigation. In addition, the data will be used along with other information to evaluate long-term water quality changes on a statewide basis.

The 1984 BWMP effort was the first year that stream sediments were sampled at each station where fish were collected. This part of the program was made possible by a grant from the Environmental Protection Agency (EPA) Region X, Seattle, Washington.

BWMP data collected during 1984 are presented in this report. Also included for reference are the BWMP data for the 1978 - 1983 period of record (Appendix I). Recommendations concerning the future of the BWMP program in Washington State are made based on the information for these two periods of record.

MATERIALS AND METHODS

General

Twelve stations were selected for sampling in 1984 based on an assessment of the 1983 BWMP results (Hopkins, 1984) and a review of Ecology program needs:

Ecology Station Number
45A070
47A070
49A070
61A070
34A070
32A070
37A090
37A195
37A060
09A060
21A080
41A070

The survey team was not able to capture any fish at two sites (*) because of high/low flow, inaccessibilty, or other conditions. An attempt was made to substitute the Deschutes and Satsop Rivers later in the year, but high flows precluded this effort. The locations of the ten stations where fish were obtained are shown in Figure 1. Detailed station descriptions are given in Appendix II.

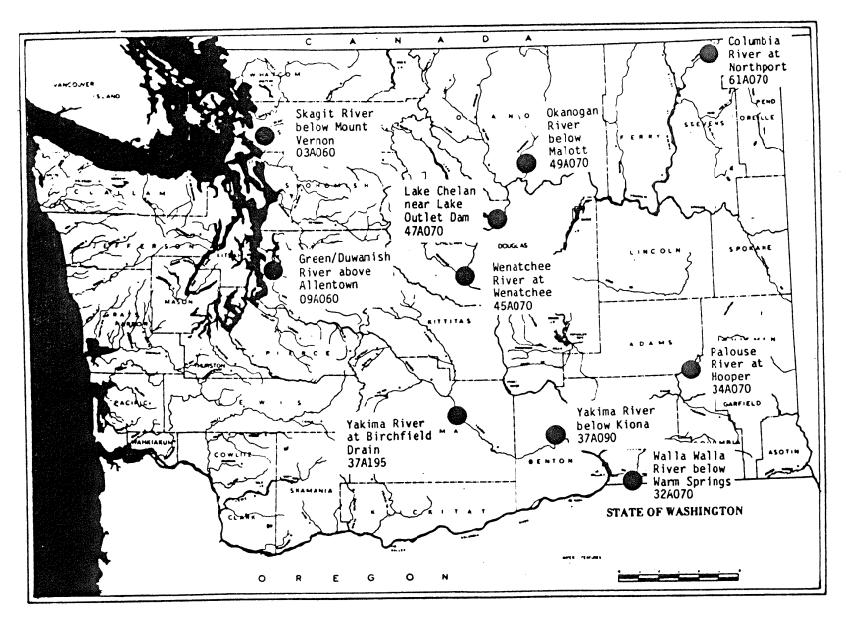


Figure 1. Sample locations for the 1984 BWMP sampling program in Washington State.

At each station an attempt was made to collect species of fish representing two trophic levels, a grazer and higher order predator. The same species were collected at each location when possible to provide comparability. Six species were collected overall:

Bridgelip sucker (Catostomus columbianus) - grazer
Longnose sucker (Catostomus catostomus) - grazer
Mountain sucker (Catostomus platyrhynchus) - grazer
Mountain whitefish (Prosopium williamsoni) - predator
Northern squawfish (Ptychocheilus oregonensis) - predator
Largemouth bass (Micropterus salmoides) - predator

Bridgelip suckers and northern squawfish were the predominant species collected. A salmonid (trout) would have been preferred as the predatory species, but none was captured.

In conjunction with the fish sampling, bottom sediments were collected from the stream channel at each station. Sample collection and handling procedures used during the survey are summarized in Figure 2.

Three tissue types from each fish composite; liver, gill, and edible fillet (fillet with skin intact) were isolated and analyzed for BWMP parameters (Table 1). Liver analyses are considered to be a good indicator of the condition of the fish. Edible fillet results can be related to FDA action levels for human health. Gill tissue (metals only) was analyzed for comparison with historical data.

Where possible, bottom sediments were collected (five sites) near each fish collection station and composited into a single sample for analysis. The sediment samples were analyzed for BWMP parameters (Table 1). Total organic carbon and grain size distribution also were measured.

Detailed information on sample collection, handling, and analytical procedures is considered particularly important when reviewing the findings of investigations which address metals and synthetic organic pollutants. For this reason, detailed descriptions of the methods employed during this effort are given in the sections that follow.

Sample Collection

The primary collection method used to obtain fish samples throughout this program was electroshocking; however, hook-and-line was used whenever the sample area was not conducive to electrofishing.

The electroshocking equipment included a Model SR-16 Smith-Root electroshocking-equipped jet sled and a Type VII Smith-Root backpack unit. Upon reaching the sample location, the electroshocker was adjusted to the proper voltage for the water conditions, and sampling commenced. Once stunned, the fish were dip-netted and placed in a stainless steel live tank when shocking from the boat, or a water-filled plastic bucket when backpack shocking. After a sufficient number of specimens were collected or a predetermined time limit elapsed, sampling was terminated.

Table 1. BWMP parameters analyzed for during the 1984 BWMP sampling program in Washington State.

Pesticides (sed. and fish tissue)	Base/Neutrals (sediment)
aldrin	acenaphthene
dieldrin	benzidine
chlordane	1,2,4-trichlorobenzene
methoxychlor	hexachlorobenzene
DDT forms	fluoranthene
al pha-BIIC	isophorone
PCB	naphthalene
PCP	2-chloronaphthalene
1 01	bis(2-ethylhexyl) phthalate
Metals	butylbenzyl phthalate
arsenic	di-n-octyl phthalate
cadmium	benzo(a)anthracene
	benzo(a)pyrene
copper chromium	benzo(k)fluoranthene
	chrysene
mercury lead	acenaphthylene
	phenanthrene
zinc	hexachloroethane
Asid Compounds (sodiment)	bis(2-chloroethyl) ether
Acid Compounds (sediment)	1,2-dichlorobenzene
2,4,6-trichlorophenol	1,3-dichlorobenzene
p-chloro-m-cresol	
2-chlorophenol	1,4-dichlorobenzene
2,4-dichlorophenol	3,3'-dichlorobenzidine
2,4-dimethylphenol	2,4-dinitrotoluene
2-nitrophenol	2,6-dinitrotoluene
4-nitrophenol	1,2-diphenylhydrazine (as azobenzene)
2,4-dinitrophenol	pyrene
4,6-dinitro-o-cresol	3,4-benzofluoranthene
pentachlorophenol	anthracene
	benzo(ghi)perylene
Non-Priority Pollutants (sediment)	fluorene
benzoic acid	4-chlorophenyl phenyl ether
4-methylphenol	4-bromophenyl phenyl ether
2-methylphenol	phenol
2,4,5-trichlorophenol	bis(2-chloroisopropyl) ether
aniline	bis(2-chloroethyxy) methane
benzyl alcohol	hexachlorobutadiene
4-chloroaniline	hexachlorocyclopentadiene
dibenzofuran	nitrobenzene
2-nitroaniline	N-nitrosodiphenylamine
3-nitroaniline	N-nitrosodi-n-propylamine
4-nitroaniline	di-n-butyl phthalate
acetone	dimethyl phthalate
2-but anone	dibenzo(a,h)anthracene
carbon disulfide	ideno(1,2,3-cd)pyrene
2-hex anone	
4-methyl 1-2-pentanone	
2-methylnpahthalene	
styrene	
vinyl acetate	
alpha-xylene	
total xylenes	
COULT AFICHES	

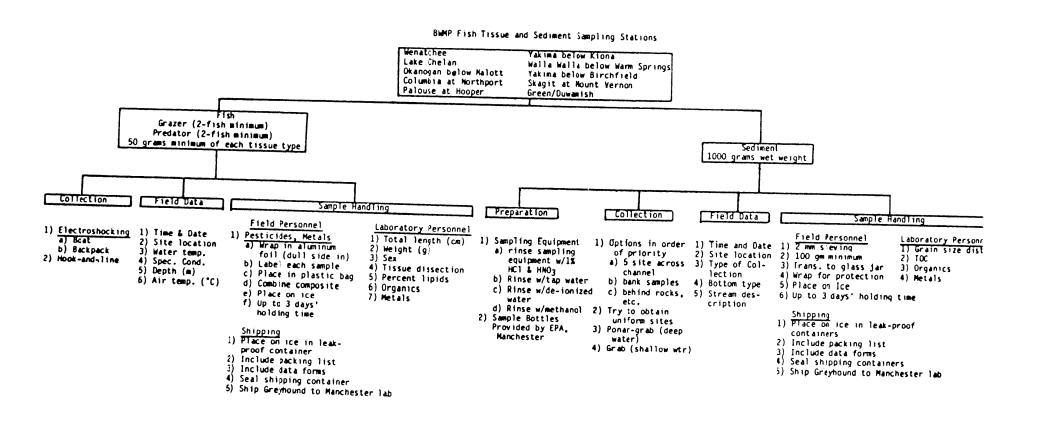


Figure 2. Organizational chart for the 1984 BWMP sampling program in Washington State.

If electroshocking did not result in successful capture of a target group (primarily predators), the hook-and-line method was used. A variety of both natural baits and artificial lures provided minimal success. Samples collected using this method were handled the same as if electroshocked.

Sediment samples were collected with a six-inch ponar grab, prepared as outlined in Figure 2 under "sediment preparation." The samples were collected downstream from the fish tissue collection site, whenever possible, and before electrofishing commenced.

Sample Handling

Field Personnel

Upon completion of sample collection, the fish were immobilized with a blow from a blunt object. The specimens were then composited by species, wrapped in aluminum foil (dull side in), and placed in a plastic bag. All packaged samples were tagged and placed on ice. The samples were then shipped to the laboratory for further preparation and analyses.

Upon collection with the ponar, the sediment samples were run through a 2 mm stainless steel seive into a stainless steel beaker to remove gravel and larger sized particles, both items previously washed following the same method used on the ponar grab. The sample was allowed to settle before most of the supernatant was poured off. The remaining supernatant and sediment was poured into glass containers suitable for organic analysis. The containers were labeled, packaged, and placed on ice. The containers were combined with the fish tissue samples and shipped to the Manchester laboratory.

Laboratory Personnel

Upon arrival, the biological information on total length (cm), weight (g), and sex was recorded for each fish. The fish were then dissected into composites of liver, gill, and fillet tissues. Utensils used for dissecting were first washed with phosphate-free detergent (Liqui-Nox), and double-rinsed with both tap water and de-ionized water. They were then acid-rinsed with a 10 percent HCl solution and again with de-ionized water. This procedure was followed by double-rinsing with acetone and methylene chloride. The utensils were then dried in a 105°C oven for 10 minutes before use.

All samples were handled with solvent-cleaned Viton gloves and dissected on solvent-cleaned aluminum foil. Upon completion of dissection, the tissue composites were placed in commercially prepared, organic-free glass jars and frozen pending analysis. Prior to analysis, each composite tissue sample was thawed and ground using either a Waring blender or a Hobart commercial meat grinder, depending on the size of the sample. The grinding equipment was solvent-cleaned before use and between samples.

Upon arrival at the laboratory, sediments samples were stored at 4°C and protected from light until extraction could be performed.

Laboratory Procedures

Fish Tissue

The method used for the quantification of polychlorinated biphenyls (PCBs), chlorinated pesticides, and pentachlorophenol (PCP) in biological tissues involved liquid extraction, Florisil column chromatography, and gas chromatographic electron capture (GC/EC) analysis.

PCBs, Chlorinated Pesticides, PCP

For liquid extraction, a 20 gm sub-sample of tissue homogenate was added (with the appropriate surrogate internal standard compounds when required) to a 200 mL centrifuge tube containing 80 mL of acetone. The tissue was ground with a Brinkmann Polytron tissue homogenator for three minutes or until the acetone fully saturated the tissue. The homogenate was centrifuged for two minutes at 1500 rev/min to allow the finely divided tissue to separate from the acetone supernatant. The supernatant was then decanted through a Whatman #1 filter paper into a 500 mL flask. The filtration/extraction process was repeated twice and the resulting extracts combined. The acetone tissue extract was then concentrated in a steam bath until a visible wateracetone phase separation occurred (usually 5 to 15 mL residual volume). Next, the extracted solvent was exchanged to petroleum ether (30 to 60 ppb range) and dried with anhydrous sodium sulfate (heated overnight at 450°C). The dried extract was transferred to a 500 mL Kudera-Danish (K-D) concentrator flask, and the volume was reduced to approximately 10 mL.

For the chromatography procedures, the extract was applied to the bed of a 10.2 cm x 2.0 cm Florisil (EPA Research Triangle Park) column, capped at either end with 1.5 cm of anhydrous sodium sulfate. Next, the compounds of interest were eluted with a combined solvent of 50 percent petroleum ether/50 percent diethyl ether. The flask was then fitted with a three-ball cylinder condensing column, and the extracted volume was reduced to approximately 10 mL in a steam bath. The petroleum ether extract was exchanged to iso-octane and adjusted to a final volume of 10 mL for subsequent gas chromatographic analysis.

PCBs (only)

To remove DDT analog interferences for the quantification of PCBs, a portion of the extract was subjected to dehydrochlorination. The dehydrochlorination forms the olefins of bis(phenyl)chloroethane pesticides; e.g., converts p,p'-DDT, o,p'-DDT, p,p'-DDD to p,p'-DDE, allowing a "window" in the gas chromatogram for PCB confirmation and quantitation. The procedure which is outlined in Manual of Analytical Methods for the Analysis of Pesticides in Humans and Environmental Samples (EPA, 1980b) involves alkali treatment with 2 percent KOH on a steam bath for approximately 30 minutes. Subsequent extraction with 1:1 ethanol-water + iso-octane yields the converted olefin products for GC/EC analysis. PCB components ranging from 21 to 60 percent chlorine were found to be stable to the dehydrochlorination procedure.

PCP (only)

A portion of the organic extract after initial extraction was retained for PCP analysis. The extract was then exchanged to diethyl-ether (ethanol-free). Methyl esterification of the PCP was accomplished using EPA method 615.(10.2.2) (EPA, 1980b). The extract was exchanged to iso-octane and column chromatographed with 5 mL of iso-octane on a 5.0 x 0.5 cm Florisil micro column. The iso-octane elutent was then concentrated to 1.0 mL and analyzed by GC/EC.

Metals

For the metals arsenic, cadmium, chromium, copper, lead, and zinc, approximately 3 gm of sample were placed in a 150 mL beaker. After the addition of 5 mL concentrated HNO3, the sample was covered with a watch glass and heated on a hotplate until the tissue liquified. Three mL 30 percent H $_2$ O2 were added and the sample refluxed until orange fumes were no longer produced. In cases where quantities of fats remained in the digested sample, a few drops of H $_2$ SO4 were added and the sample was further refluxed until orange fumes were no longer produced. After digestion was complete, 2 mL each concentrated HNO3 and 30 percent H $_2$ O2 were added, and the volume was brought to 100 mL with dejonized water.

Analysis was accomplished using a computer-assisted Perkin Elmer 5000 Atomic Absorption Spectrophotometer, analyzing copper, zinc, and chromium using the flame; and arsenic, cadmium, and lead using the graphite-furnace mode.

The procedure for mercury was different from the other metals. Approximately 5 gm of sample were weighed into a clean BOD bottle. Five mL each of concentrated HNO3 and H2SO4 were added, and the samples were placed in a 90°C water bath for a few minutes until the tissue liquified. After cooling, 0.1 gm each of KMnO4 and K2S2O8 were added, and the samples stoppered and heated in a 90°C water bath for 30 minutes. Additional KMnO4 and K2S2O8 were added and the sample reheated if the KMnO4 color cleared during the initial digestion process. After cooling, the samples were brought to an approximate volume of 120 mL with de-ionized water. Samples were analyzed on a Perkin Elmer 403 Atomic Absorption Spectrophotometer using the cold vapor method. For analysis, 5 mL of NaCL hydroxalamine hydrochloride were added and swirled until the purple color disappeared. Five mL stannous sulfate were added, and nitrogen gas was bubbled through the sample. Peaks proportional to the mercury content in the vapor were recorded using a chart recorder, and mercury concentration calculated using a standard curve (EPA, 1982).

Sediments

Grain-size analysis was performed to estimate percent fractions of gravel (>2 mm), sand (<2 mm to 62 um), silt (62 to 4 um), and clay (<4 um). An approximate 50 gm wet-weight sample was wet-seived through 2 mm and 62 micron screens. Material retained on the screens was dried (80°C for 24 hours) and weighed to give total sample contributions for gravel and sand, respectively. Material washed into the pan was transferred to a one-liter graduated cylinder, and distilled water was added to bring the total volume to one liter. The graduated cylinder was stoppered and mixed by inverting it for one minute and then

allowing it to stand for 20 seconds. A 25 mL sample was pipetted from 20 cm depth for silt plus clay, and after two hours, three minutes, at the 10 cm depth for clay. Contents of the pipettes were dried (80°C for 24 hours) and the residue was weighed. Weight of residue times 50 was used to calculate total weight of silt and clay in sample. Percent contribution of each fraction was based on the aggregate weight of all fractions.

The total organic carbon (TOC) procedure involved drying approximately 10 gms of the sediment at 70°C. The dry sample was then screened through a 10-mesh sieve and ground to 100-mesh. An 0.5 gm sub-sample of this dried, ground sediment was weighed in a TOC boat. The boat was placed in a desiccator containing concentrated HCl for 48 hours. The sediment was then placed in a 70°C oven for at least one hour prior to ignition. After drying, the boat containing the treated sediment was inserted into the combustion zone of a Lindberg Tube furnace. The furnace was held at 900 to 1000°C. Oxygen was used as the sweep gas, and a trap containing ascarite and silica gel was at the end of the train. The sample was allowed to burn for at least two minutes, and the gases were collected. The trap was weighed before and after ignition of the sediment. The weight gain is CO2. This CO2 measurement was used to calculate the percent TOC in the sediment.

Pesticides, PCBs, base/neutrals, and acid extractable compounds were measured using EPA methods 608 (Pesticides and PCBs) and 625 (Base/Neutrals and Acids) (Federal Register, 1984a).

For the metals analysis (arsenic, cadmium, chromium, copper, lead, and zinc), approximately 25 gm of sample were dried in a 205°C oven for 24 hours. The sample was then seived and 1 gm was weighed out for digestion. The digestion and other analytical procedures were the same as for the fish tissue. The overall procedure for mercury was the same as described for fish tissue.

Quality Assurance

Quality assurance included replicate samples collected in the field; and replicate sub-samples, surrogate pesticide addition, duplicates and sample spikes in the laboratory. The results for surrogate, spikes, and duplicate recoveries can be found in Appendix II.

RESULTS AND DISCUSSION

Within the guidelines set down in the BWMP program, the data collected are intended to provide an overview of environmental quality in river systems throughout the State of Washington. It is not the goal of this program to identify specific sources of pollution, but to point out possible problem areas that should be investigated more intensively. The historical BWMP data are attached to this report (Appendix I), but are not compared with the 1984 findings because different sampling, handling, and detection limits were used from year to year. This historic data in itself should not be used for individual site comparisons, but could have limited use as a verifying tool for the current effort.

The results for chlorinated pesticides, PCB mixture (quantified as 1260), and metals analysis of the fish tissue and sediment can be found in Tables 2 and 3, respectively. Substances analyzed for but not detected at the given detection limits can be found on Table 4. Lipid-weight normalized data for t-DDT (DDE + DDD + DDT) and PCB mixture in the fish tissue can be found on Table 5. It is thought that lipid-normalized values provide a more accurate picture of the actual availability of liphophilic substance than do wet-weight values. Lipid-normalizing standardizes the amount of a liphophilic compound (ug/kg wet weight) per unit of lipid. Therefore, the lipid-normalized values should be considered when comparison among stations is attempted. The results for t-DDT, PCBs, and hexachlorocyclohexane are also presented in graphic form in Figures 3 through 8.

Table 5. Lipid-weight based results for t-DDT and PCB mixture on fish tissue sample collected as part of the 1984 BWMP sampling program in Washington State (ug/Kg lipid).

Location	Organism	Tissue Type	t-DDT Forms	PCB Mixture	Percent Lipids
Wenatchee	Bridgelip sucker Mountain whitefish	Edible Edible	150,000 18,900	20 , 500 600	0.2 7.4
Chelan	Bridgelip sucker Squawfish	Edible Edible	400,000 100,000	19,700 3,700	0.3 1.1
Okanogan	Bridgelip sucker Bridgelip sucker Largemouth bass	Edible Liver Edible	118,500 64,900 42,800	900 500	2.7 23.1 4.2
Columbia River	Bridgelip sucker Replicate	Edible Edible	2,500 7,300	3,700 3,500	2.6 2.6
Palouse River	Longnose sucker Northern squawfish	Edible Edible	5,200 12,700		2.5 1.1
Walla Walla	Mountain sucker	Edible	40,000		0.7
Yakima River below Kiona	Bridgelip sucker Bridgelip sucker Northern squawfish	Edible Liver Edible	76,900 63,300 91,700	4,600 3,800 5,000	2.6 23.7 2.4
Yakima River at Birchfield Drain	Bridgelip sucker Replicate Northern squawfish Mountain whitefish Mountain whitefish	Edible Edible Edible Edible Liver	43,800 25,000 128,600 70,000 21,700	7,400 2,000 5,700 4,800 1,600	1.3 2.6 2.1 2.0 8.3
Skagit	Bridgelip sucker Mountain whitefish	Edible Edible	26,700 2,800	6,000 1,100	0.6 2.6
Green	Bridgelip sucker Northern squawfish Northern squawfish	Edible Edible Liver	62,500 35,700 14,000	17,500 21,100 7,100	2.4 2.8 10.7

^{-- =} Wet weight results given as "less than" values.

Table 2. Results of fish tissue analysis as part of the 1984 BWMP sampling program in Washington State (ug/Kg wet weight).

	13.30 13.3	2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2	2	25.25.25.25.25.25.25.25.25.25.25.25.25.2	2	F P P : 35 34 : 36 3	210		0051 0051 00 0051 00 0051 00 0051 00 0051 00 0051	1200 1200 1400 920	¥ ~= ≈≃	25 25	5 33 .8	200 100 100 100 100 100 100 100 100 100	81.29	1000 AUG	000000000000000000000000000000000000000	z:22:	85°58 88°88	100 mm
9/0//4		21.75 21.50 21.50 21.50 21.50 21.50 21.50 21.50 21.50 21.50 21.50 21.50 21.50 21.50	~~~~			RP 8P : 35 34 : 35 3		•	051 0051 0051	000 P1 000 000 000 000 000 000 000 000 0	~= 22	22 22 ;	33 .7			Rake	000000	.:22:	ê 588 E ~6E	B SE
47/17/4 2 47/17/4 3 47/17/4 3		21.75 21						•	0 16 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	80 00 00 00 00 00 00 00 00 00 00 00 00 0	: : 22 :	2	:			A PER	0000	25:	88 88	BOL
##/51/6 ##/51/6 ##		22.77 22.77 22.59 20.92 20.93	A A A A A A A A A A A A A A A A A A A	and the same and t		· , · · · ·			014	000	2= ;	*	:	E		100	000	:		
##/5//4 ## ##		22.72 22.72 22.73 22.55 22.55 22.55 22.55 22.55 23.55							98.1		:	:	:			ŝ	35	<u>.</u>	38 38	B
PA/21/8 PA/21/8 PA/21/8		20. 92 20. 92 20. 93 20. 93 20							0051 0051	:				3		: ;			. 8	004.15
10/11/6 10/11/6 10/11/6		20. 92 20. 92 20. 92 31. 93 31. 93 31. 94 31. 95 31. 95 31. 95 31. 95				; ;			8 8	20021	_:	2 5	я.	E :		3 :	3 . 5	. : .	170	21.700
MOSSIVE MOSSIV		23.75 23.75 23.75 20.92 3.99 21.50 21.50 3.76 3.76 3.76 3.76			: : : : : : : : : : : : : : : : : : : :	: ``			٤	3	2	2		3,8		3 3	88	, £	8	18,100
8/11/84 8 8/11/84 8/11/84 84/11/84 84/11/84 84/11/84		20.77 8.96 2 20.92 3.93 3.93 3.92 3.09 3.76 1.76			: :	, ,		2.2	38	8 2 3 3	-~	= =		: දි		:8	802	· 2	. 8 :	906,02
4/17/4 4/17/4 4/17/4 4/17/4 4/17/4 4/17/4	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	23.77 8.99 2 20.92 31.50 10.81 9.21 9.21 9.21 10.99 1.76			: :				:		•	: :				GBG			88	16,900
1/2/24 1/2/44 1/2/44 1/2/44 1/2/44		20.92 20.93 20.50 20.50 9.21 9.21 9.21 9.21 18.95 17.09			:		73500	. 6 6) (00.01/ (00.01/	13.00	۲.	32	:.	\$3		88			88	11,200
4/21/64 14/21/8 14/21/8 15/21/8 16/21/8 16/21/8 16/21/8		28.57 28.57 9.21 9.21 21.09 3.76 11.70			:			2		1800	-:	25	•	E :		3 : ³			: 3	35,280
M/21/8		21.50 10.61 26.57 9.21 21.09 3.76 18.95	:		:					3		!		,	•	3 :				000
40/11/8 41/21/8 44/21/8 44/21/8 44/21/8 44/21/8		26.57 9.21 21.09 3.76 1.70	:	:	:	; <u>2</u> 2	: :::::::::::::::::::::::::::::::::::	. 22		3 2	, =	23	~ ~	585		8 6 8		7 I R	BE	BBS EFS
M11/04		28.57 9.21 21.09 3.76 11.70			:				; ;	9	=	8	~	38		5 5	1800		B	88
M1/21/8			•	:		22		2.2	:=	230	z	8	- :	88		38	005	•	80.5	3 8
M/21/8	4 : :					. 2. . a:	2:			95	7.8	33	28	٤:		8:5	00 ; 00 10 ; 00	ጃ : •	3:2	8
M/21/8				1	R	≓ c			? ?		1	٤	.3	88		33	530		දී :	3 • :
M/21/8	: :			2.2	22	22	~~ 	22	23	33	:4	ğ	13	:8		. 8 : 8	8		8:	8 X
M/21/4			:	::	:	•	:	:	:		. 9	<u>.</u>	: ≉	8		8	1300		Ş :	2. 8.
M121/M	:	24.01 6.59	6:	21.2 18.8 21.7	R.3	22 3 2	3 2	\$2	2 8	22	2:	īğ	12	:8		:8 :8:	200		8	
14/01/2		21.45	: 2	: '	٠.				1300	: .		200	32	88		888	100 m		000 1000 1000 1000 1000 1000 1000 1000	
Value Biver 9/14/54 Bridgelip suctor	61115	19.81); **	~•			8	E			ئات - ا	027	3.5	දීපරි		888	888		388	
Value Brer 9/14/84 Bridgelip sucher at Brichfield October Brichfield Committee Committ		6.0	; ;					•		:	<u> </u>		•	÷	•	8	8 : 8 2 : 3		: : 8 :	
Or and	•	23	: ::2	22.8 21.6	•			23			~~	*=	٠.	888		888	888		825	
1/4/W			2:					\$3 _2			•=	28	~~	3 3 5		285	0.00		836	
Morthern squadish			2.1				250	6000	73007	_	7 45	2 8	1:	8 : 5		3 ; 3	B): ≈		: 8	
Regentain whitefish	is Edibie	20.97	2.0	•	37		•	~ 3	ì		~-	# N				₹ ₽	2.00 2.00 2.00 2.00			
Sagit River Will'84 Bridgelip sucher	•	23.55	9.0	0.2	•			. xx	: 22	: : 33 94 :		×3	閺	888		888	0000	ន្ទ : ឧរ	ភូ <u>ក</u> ្ខង៖	3 2 2 2 8 8 8 8
below Rewalt Vernon Opadad Rewaltain whitefilk		S.53 S.53 S.53	: 🖫 :	7.5.0 2.5.0 2.5.0 2.5.0 3.5.0 4.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5	: =3						*"	z š				8 : 8	æ :≅:	•	8:s	
Grant Dangiton 9/19/84 Bridgelip sucker	•			. ž,			. 22			. 88	•	•	•	;		3 25	2200 7100 1500		<u>8</u> 555	
above Allantown OMOSO Marthers squamfilm			2.8		碧:			021 091	91.0	98			国			\$BB	001 E	~ !	388	
11119	61111	١,	1	21.2	1 -	detect	=	etect le	1 16 1.		-		\ ,							

Table 3. Pesticide, PCB (ug/Kg dry weight), and metals results (mg/Kg dry weight) on sediment collected as part of the 1984 BWMP sampling program in Washington State.

Location	p.p' DDT	p.p' DDE	p,p'	Alpha	PCB 1260	As	Cd	Cu	Cr	Нд	Ρù	Zn
Wenatchee River at Wenatchee Lake Chelan near Lake Outlet Dam Walla Walla River below Warm Springs Okanogan River below Malott Yakima River below Kiona Yakima River at Birchfield Drain Skagit River below Mount Vernon Green/Duwamish above Allentown Columbia River at Northport Palouse River at Hooper	1u 10 1u 17 35 1u 1u 1u 1u	7 32 1u 18 51 5 2 3 1u	1u 53 1u 21 23 1u 1u 1u 1u	1u 13 1u 2 1u 1u 1u 1u 2 5	10u 10u 10u 10u 10u 10u 10u 10u 10u	0.8 1.7 1.7 15.5 2.8 1.0 4.4 3.3 18.8 1.2	0.4 1.6 0.7 2.0 1.4 0.6 0.5 1.1 13.4 0.6	19.7 19.3 11.7 60.7 35.8 16.7 16.1 19.1 171.3	20.5 6.6 <0.1 <0.1 <0.1 0.6 15.8 15.7 5.4 <0.1	<0.008 0.02 <0.007 0.024 0.038 0.018 <0.006 0.02 0.196 <0.007	<0.1 13.3 <0.1 0.8 4.2 0.7 <0.1 <0.1 0.1 189.0 <0.1	42. 124 60. 68. 82. 54. 37. 63. 158 47.

 $u \, = \,$ analyzed for but not detected at detection limit shown. < = less than

Table 4. Compounds analyzed for but not detected in sediment and fish tissue samples collected during the 1984 BWMP sampling program in Washington State.

and the second s	Detection Limit Wet-Weight Basis		Detection Limit Wet-Weight Basis
Parameter	(ug/Kg)	Parameter	(ug/Kg)
Pesticides (sed. and fish	tissue)	Base/Neutrals (sediment)	
aldrin	1.0	ac en aphthene	5
dieldrin	1.0	benzidine	50
chlordane	1.0	1,2,4-trichlorobenzene	10
methoxychlor	1.0	hexachlorobenzene	10
		hexachloroethane	10
Acid Compounds (sediment)		bis(2-chloroethyl) ether	10
2.4.6-trichlorophenol	10	1,2-dichlorobenzene	10
p-chloro-m-cresol	10	1.3-dichlorobenzene	10
2-chlorophenol	10	1.4-dichlorobenzene	10
2.4-dichlorophenol	10	3,3'-dichlorobenzidine	20
2.4-dimethylphenol	10	2,4-dinitrotoluene	10
2-nitrophenol	10	2,6-dinitrotoluene	10
4-nitrophenol	20	1,2-diphenylhydrazine	10
2.4-dinitrophenol	25	(as azobenzene)	
4.6-dinitro-o-cresol	25	3,4-benzofluoranthene	50
pentachlorophenol	20	anthracene	5
,		benzo(ghi)perylene	10
Non-Priority Pollutants (sediment)	fluorene	10
benzoic acid	10	4-chlorophenyl phenyl ether	10
4-methylphenol	10	4-bromophenyl phenyl ether	10
2.4.5-trichlorophenol	10	bis(2-chloroisopropyl) ether	10
aniline	10	bis(2-chloroethyxy) methane	10
benzyl alcohol	10	hexachlorobutadiene	10
4-chloroaniline	20	hexachlorocyclopentadiene	10
dibenzofuran	25	nitrobenzene	10
2-nitroaniline	10	N-nitrosodiphenylamine	20
3-nitroaniline	10	N-nitrosodi-n-propylamine	20
4-nitroaniline	10	di-n-butyl phthalate	5
acetone	variable	dimethyl phthalate	10
2-but anone	variable	dibenzo(a,h)anthracene	10
carbon disulfide	variable	ideno(1,2,3-cd)pyrene	10
2-hex anone	variable	2-chloronaphthalene	10
4-methyl 1-2-pentanone	variable		
styrene	variable		
vinyl acetate	variable		
alpha-xylene	variable		
total xylenes	variable		

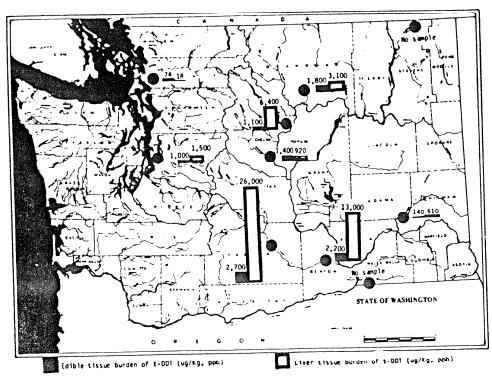


Figure 3. Total DDT (t-DDT = DDT + DDD + DDE) levels in predator species as part of the 1984 BWMP sampling program in Washington State (wet weight).

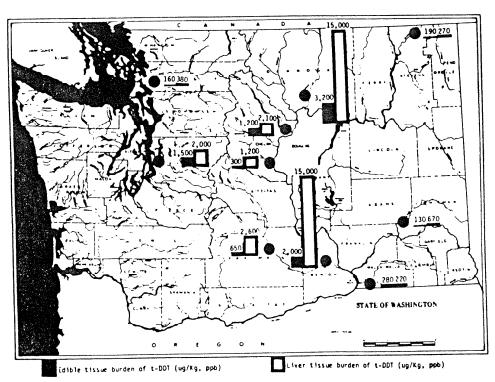


Figure 4. Total DDT (t-DDT = DDT + DDD + DDE) levels in grazer species as part of the 1984 BWMP sampling program in Washington State (wet weight).

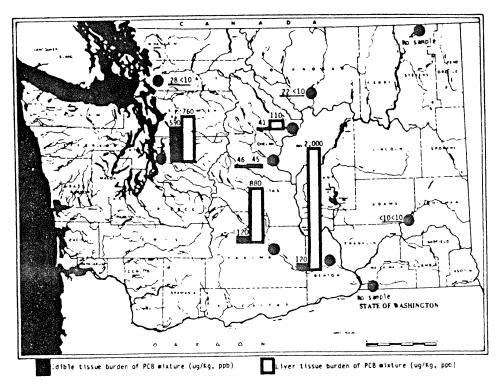


Figure 5. Polychlorinated biphenyl (PCB) mixture quantified as Aroclor 1260 in predator species as part of the 1984 BWMP sampling program in Washington State (wet weight).

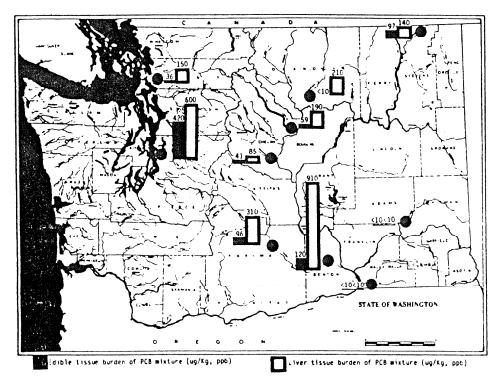


Figure 6. Polychlorinated biphenyl (PCB) mixture quantified as Aroclor 1260 in grazer species as part of the 1984 BWMP sampling program in Washington State (wet weight).

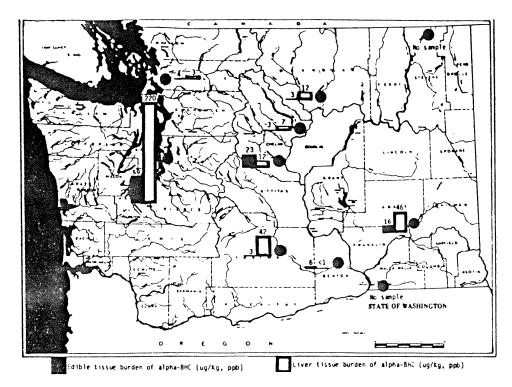


Figure 7. Hexachlorocyclohexane (alpha-BHC) levels in predator species as part of the 1984 BWMP sampling program in Washington State (wet weight).

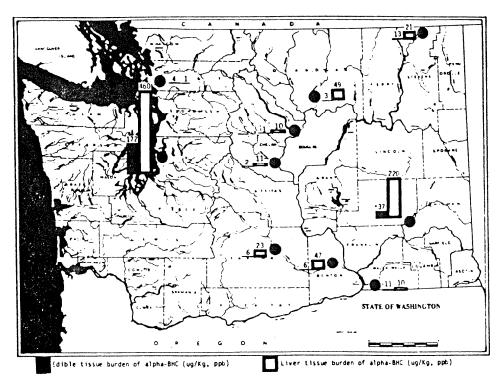


Figure 8. Hexachlorocyclohexane (alpha-BHC) levels in grazer species as part of the 1984 BWMP sampling program in Washington State (wet weight).

TOC and particle size analysis results used in sediment normalization are presented in Table 6.

Table 6. Total organic carbon and particle size analysis on sediment collected as part of the 1984 BWMP sampling program in Washington State.

			Percent Pa	rticle Size	
Location	Percent TOC	Gravel 22 mm	Sand 2mm - ≤62um		Clay <4um
Wenatchee River at Wenatchee	0.5	0.02	97.21	0.92	1.84
Lake Chelan near Lake Outlet Dam	0.8	0.01	9 6.72	0	3.29
Okanogan River below Malott	0.9	0	37.81	55.80	6.38
Columbia River at Northport	0.1	0	96.28	3.72	0
Palouse River at Hooper	1.1	0	82.21	14.24	3.56
Walla Walla River below Warm Springs	0.4	0.05	93.01	5.95	0.99
Yakima River below Kiona	1.7	0	43.12	37.91	18.96
Yakima River at Birchfield Drain	1.2	0	95.38	2.77	1.85
Skagit River below Mount Vernon	1.0	1.03	98.08	0	0.88
Green/Duwamish above Allentown	0.3	0.03	98.90	0	1.10

EVALUATION BY CLASS OF COMPOUNDS

Dichlorodiphenyl trichloroethane (DDT)

The top five t-DDT concentrations found in edible fish tissue in the 1984 BWMP samples are presented in Table 7 as wet-weight values and on a lipid-normalized basis.

Table 7. Top five t-DDT concentrations found in edible fish tissue as part of the 1984 BWMP sampling program in Washington State.

Sample Site	Species	Wet- Weight Value (ug/Kg)	Sample Site	Species	Lipid- Nor- malized Value (ug/Kg lipid)
1. Okanogan	Bridgelip sucker	3,200	Chelan	Bridgelip sucker	400,000
2. Yakima B	Northern squawfish	2,700	Wenatchee	Bridgelip sucker	150,000
3. Yakima K	Northern squawfish	2,200	Yakima B	Northern squawfish	128,600
4. Yakima K	Bridgelip sucker	2,000	Okanogan	Bridgelip sucker	118,500
5. Okanogan	Largemouth bass	1,800	Chelan	Northern squawfish	100,000

Of the top five wet-weight values, both the Okanogan River and Yakima River at Birchfield samples (3,200 ug/Kg and 2,700 ug/Kg, respectively) approach the FDA limit of 5,000 ug/Kg in tissue for human consumption. In this study, 11 of 19 edible tissue samples (58 percent) collected exceeded the National Academy of Science (NAS) limit of 1,000 ug/Kg. This percentage, however, is not strictly comparable because the NAS recommended level is based on whole-fish values and WDOE values reflect edible tissue only.

The top five sediment t-DDT values on a dry-weight basis and TOC-normalized values can be found in Table 8.

Table 8. Top five t-DDT concentrations found in sediment collected as part of the 1984 BWMP sampling program in Washington State.

Sample Site	Dry- Weight t-DDT (ug/Kg)	Sample Site	TOC-Normalized Value (ug/Kg TOC)
1. Yakima Kiona 2. Lake Chelan 3. Okanogan 4. Palouse 5. Wenatchee	109 95 56 8 7	 Chelan Yakima Kiona Okanogan Wenatchee Green 	11,875 6,412 6,222 1,400 1,000

As with the DDT levels in fish tissue, it is considered that a normalized value, in this case TOC corrected, allows a more accurate comparison to be made among sediment samples collected at different locations. The sediment sample collected at Lake Chelan (11,875 ug/Kg TOC) showed a TOC-normalized value almost double that of second-ranked Yakima River at Kiona (6,412 ug/Kg TOC).

Hexachlorocyclohexane (alpha-BHC)

The 1984 BWMP program's edible tissue concentrations for alpha-BHC were all generally low except for a sample collected on the Green/Duwamish River (172 ug/Kg) which exceeded the NAS recommended level of 100 ug/Kg. The sediment data showed low levels at all sample sites.

Polychlorinated biphenyl (quantified as Aroclor 1260)

PCBs like alpha-BHC concentrations in edible fish tissue were low except for the samples collected on the Green/Duwamish River which had a sample value over (590 ug/Kg) and one approaching (420 ug/Kg) the NAS recommended level of 500 ug/Kg. The sediment samples, however, showed no values above detection limits.

Pentachlorophenol (PCP)

PCP values were low, with some samples approaching the method detection limits.

Metals

Guidelines for metals concentrations in fish tissue generally are unestablished. The FDA, however, has established an action level for mercury in edible fish tissue (FDA, 1982) which is 1,000 ug/Kg wet weight. The FDA has also set unofficial guidelines in other food types for cadmium and lead, these being 500 and 7000 ug/Kg wet weight, respectively (Johnson, 1985). The EPA also has a mercury standard that the total body burden in any aquatic organism should not exceed 0.5 mg/Kg wet weight to protect fish and predatory aquatic organisms (EPA, 1973). Using these standards for comparison, three BWMP sample sites approach or exceed the lead and mercury standards. The mean value for lead found in edible fish tissue samples collected at Columbia River at Northport is 6,400 ug/Kg (average of replicates) or over 90 percent of the recommended concentration. The Yakima River at Birchfield drain and the Green/Duwamish above Allentown had mercury levels in edible tissue of 780 ug/Kg and 530 ug/Kg, respectively, which are more than one-half the FDA guideline values and exceed the EPA recommended value.

Metals concentrations found in freshwater sediment, like fish tissue, have no established criteria. This is probably due in part to the different geochemical makeup which tends to be regional- if not site-specific. In Washington, approximately 1,900 stream sediment samples derived from different rock strata have been analyzed for zinc, lead, and copper. The mean values are 82 mg/Kg for zinc, <25 for lead, and 37 for copper (Moen, 1969). Using these values as a rough baseline for comparison with the BWMP sediment samples, the Columbia River at Northport appears to have elevated levels. Zinc, lead, and copper concentrations were found to be 1580, 189, and 171.3 mg/Kg, respectively.

Other metals found in BWMP sediment samples that showed possible signs of slight-to-moderate enrichment were arsenic and mercury. Those stations involved were the Okanogan River below Malott and the Columbia River at Northport. The remaining sediment sample results seem to be typical of those found in granitic rocks.

Priority Pollutants (sediment)

The acid/base neutral results from sediment collected during the 1984 BWMP sampling program are presented in Table 9. Most of the levels were below or

Table 9. Acid/base-neutral results (ug/Kg dry weight) in sediment collected as part of the 1984 BWMP sampling program in Washington State.

	Wenatchee River at Wenatchee	Lake Chelan near Lake Outlet Dam	Okanogan River below Malott	Columbia River at Northport	Palouse River at Hooper	Walla Walla River below Warm Springs	Yakima River below Kiona	Yakima River at Birchfield Drain	Skagit River below Mount Vernon	Green/ Duwamish aboye Allentown
fluoranthene	5u	5u	9	73	5u	5u	15	5m	5u	10
1 sophorone	10u	10u	10u	10u	10u	10u	15	10u	10u	10
naphthalene	10u	16	10u	32	10u	10u	15	10u	10u	10u
bis(2-ethylhexyl)phthalate	5u	16 82	40	61	33	58	53	42	20	10m
butylbenzyl phthalate	5ս	5ս	5u	38	5u	5u	5u	5u	20 5u	37
di-n-octyl phthalate	5u	5u	Su	5u	5u	5u	5u	Su Su	7U	5u
diethyl phthalate	10u	10u	10u	10u	10u	10u	10m	10u	10u	5u
benzo(a)-anthracene	5u	34	5u	30	5u	5u	5u	5u	5u	10u
benzo(a)pyrene	10u	10u	10u	24	10u	10u	10u	10u	10u	5u
benzo(k)fluoranthene	50u	50m	50u	50m	50u	50u	50u	50u	50u	10u
Chrysene	5u	47	5.6	30	5u	5u	13	5u	5u	50u
acenaphthylene	10u	10u	10u	15	10u	10u	10u	10u	10u	.5u
phenanthrene	5u	50	13	120	5u	5u	25	17	5u	10u
pyrene	5u	59	11	50	5u	5u	16	Su Su	5u	5u 5m
phenol	10u	10u	10u	10u	10u	10u	100	104	10u	om 10u
2-methylphenol	10u	10u	10u	10u	10u	10u	810	10u	10u	10u
2-methylnaphthalene	10u	10u	10u	15	10u	10u	10m	10u	10u	10u

u = Analyzed for but not detected at detection limit shown.

m * Estimated concentration.

near detection limits, the exception being levels detected on samples collected at the Yakima River at Kiona and the Columbia River at Northport. The Kiona sample showed elevated levels of phenol and 2-methyl phenol. The Northport sample stands out in the frequency in which acid/base neutral compounds were detected.

REVIEW OF PERTINENT ORGANIC COMPOUNDS

The following descriptions are provided to give the reader some basic background information on the use and regulations established for selected compounds.

Dichlorodiphenyl trichloroethane (DDT)

DDT is a lipophilic (lipid-soluble), persistent pesticide that in its pure state is virtually insoluble in water--0.00001% (White-Stevens, 1971). Like other organochlorine insecticides, DDT is classified as a neuropoison. DDT was once the most commonly used chlorinated hydrocarbon insecticide, with total world production being estimated in excess of 2 million tons (Edwards, 1973). Being first synthesized as early as 1874, it was not used as an insecticide until its patent in 1942. From the mid 1940s to the late 1960s, DDT was used in wide application to forests, agricultural lands, and aquatic environments. The once heavily applied insecticide, however, fell into disfavor when studies began to show possible evidence of biomagnification in natural food chains. This combined with its toxic effect on non-target organisms led to the EPA restriction of DDT use in the United States in 1972. This restriction limits DDT applications only to emergency situations.

In the aquatic environment, DDT tends to be associated with the clay size fraction in the sediment and the lipid fraction of the biota. Aquatic organisms contact DDT in their ambient environment and associated food. The amount of DDT that the organism assimilates into total body burden from these sources is dependent on many variables that include, but are not limited to total body lipid level, age, water quality, sex, and season of year. Once incorporated into the body, DDT quickly becomes associated with lipids. The lipids of the organism act as a pseudo-detoxicant system by removing the DDT or metabolites from circulation within the body. With continued exposure, the total body burden of DDT stored in these lipids may continue to increase. It is this possible continued increase that lends itself to the concept of biomagnification. However, in recent years the concept of biomagnification has fallen into disfavor due in part to recent studies that fail to confirm previous findings.

The NAS used research, that indicated increased body burden of DDT as one moves up the food chain, as a basis for its recommendation that residues of DDT and its metabolites should not exceed a concentration of 1,000 ug/Kg wet weight in whole fish to protect predatory fish and wildlife (EPA, 1973). The FDA has also set a concentration limit of 5,000 ug/Kg wet weight in fish tissue for human consumption (Johnson, 1985). DDT and its metabolites (DDE and DDD) are listed as EPA priority pollutants.

Hexachlorocyclohexane (alpha-BHC)

Hexachlorocyclohexane is an organochlorine insecticide that is synthesized by reacting chlorine with benzene in the presence of ultraviolet light. It was produced and marketed under trade names of BHC, benzene hexachloride, and 666. Technical-grade BHC consists of five isomers found in the following range: alpha-isomer - 50 to 70%; beta-isomer - 6 to 8%; gamma-isomer - 10 to 20% (Lindane); delta-isomer - 3 to 4%; epsilon-isomer - trace amounts (EPA, 1980a). Of these five, Lindane is the isomer that possesses insecticidal properties. As BHC use increased, it was determined that a concentrated form of Lindane was more effective as an insecticide than technical-grade BHC. This combined with the fact that the alpha-isomer is persistent in the environment and toxic to non-target organisms has led to the almost exclusive use of concentrated gamma-isomer.

The Food and Agriculture Organization/World Health Organization (FAO/WHO) allowable daily intake (ADI) for BHC is 1 ug/Kg/day for each kilogram of a person's total body weight. The NAS has established a level of 100 ug/Kg as their respective guideline (EPA 1973). EPA lists hexachlorocyclohexane as a priority pollutant.

Polychlorinated biphenyl (PCB)

Polychlorinated biphenyls (PCBs) are synthesized by complete or partial chlorination of the biphenyl molecule. The resulting molecule is reasonably heat-stable with a high dielectric constant. The primary uses of these products were in transformers, capacitors, hydraulic systems, and heat-transfer sinks. In the United States, the largest producer of PCBs was the Monsanto Company which produced PCBs under the trade name of Aroclor.

The Aroclor products are designated by a numbering code which reflects the number of carbons in the parent compound and the percentage by weight of chlorine. For example, Aroclor 1254 would contain a biphenyl as its parent compound and 54 percent chlorine by weight. The production of PCBs was voluntarily stopped in the United States in 1971 except for use in closed electrical systems. Due to the fact that PCBs exhibit lipophilic and hydrophobic properties in aqueous environments, they ultimately accumulate in the lipid of biota.

The revised edition of Water Quality Criteria recommends that, for the protection of predatory fish and wildlife, residues of PCB should not exceed 0.5 ug/g or 500 ug/Kg in whole fish (EPA, 1972). The FDA uses the limit of 2000 ug/Kg as its action level in edible fish tissue (Federal Register, 1984). PCBs are included in the EPA's priority pollutant list.

Pentachlorophenol (PCP)

PCP is a multi-purpose chemical that is used as a fungicide, algicide, bactericide, herbicide, and an insecticide. Its primary application is as a preservative in wood products. PCP is produced by the chlorination of a phenol molecule and is only slightly soluble in water; 14 mg/L at 20°C (Weast,

1975). It is believed that PCPs are excreted rapidly by fish, with half-lives in tissue being less than 24 hours (Lech, et al., 1978). PCP can enter the aquatic environment via the manufacturing and wood-preserving sites as well as leachate from treated wood products. Pentachlorophenol is listed on the EPA priority pollutant list and was banned from sale to the public in 1984.

INDIVIDUAL SITE EVALUATION

The following individual site evaluations are based on information obtained from the 1984 BWMP fish tissue and sediment sampling program. These evaluations should be used to provide insight into possible areas of concern but are based on a limited number of samples.

Wenatchee River at Wenatchee

Levels of arsenic, zinc, and DDT could be possible problem pollutants at this location. The fish tissue result for arsenic and zinc on a wet-weight basis were some of the highest found during the 1984 sampling.

The t-DDT concentration found in edible tissue samples (Bridgelip sucker) collected at this site ranked second highest on a lipid-normalized basis.

Lake Chelan

The pollutant of concern appears to be high levels of DDT. Lake Chelan has a substantially elevated availability of DDT based on the lipid weighted values for edible tissue. The TOC-corrected t-DDT sediment values also reflected the possibility of this elevated level.

Okanogan River below Malott

The results generated at this station appear to indicate elevated forms of DDT. On a wet-weight basis, bridgelip suckers collected in the river rank the highest found during the 1984 sampling. The lipid corrected value also shows this trend, but to a lesser extent. Sediment t-DDT results based on dry weight and TOC corrected both show Okanogan samples as having a moderately elevated level.

Columbia River at Northport

The primary concern at this location is elevated concentrations of several metals (lead, cadmium, copper, zinc). The edible fish tissue collected contained an average lead level of over 90 percent of the FDA unofficial guidelines for other food types. Sediment results also show possibly elevated metals and possible acid/base neutral problems.

Yakima River below Kiona

The Yakima River below Kiona shows possible signs of problems related to PCB and DDT forms. Liver tissue samples taken from both the predator and grazer

species collected at this site showed the highest level of PCBs found in the 1984 sampling. The DDT problem is apparent from the high levels found in both the sediment and edible tissue sample. The sediment also shows elevated levels of phenol and 2-methyl phenol.

Yakima River at Birchfield Drain

The Yakima River at Birchfield Drain appears to have high levels of DDT forms and mercury. Edible tissue from Northern squawfish collected at this site showed the highest mercury value found during the 1984 sampling. DDT levels on a wet-weight basis and on a lipid-normalized basis appear to be moderate to elevated.

Skagit River below Mount Vernon

The only area of possible concern at this location is the level of pentachlorophenol in tissue samples from Bridgelip suckers. This level does not seem excessive on its own, but when compared to other levels found during 1984, it may indicate a problem.

Green/Duwamish above Allentown

The major areas of concern for this sample location are hexachlorocyclohexane (BHC), PCBs, and mercury. The BHC level found in edible tissue exceeds the NAS recommended level. The PCB level was the highest found in edible tissue during 1984. Mercury levels, though not the highest found in the state during 1984, appear to be elevated.

Palouse River at Hooper

For those parameters analyzed for during the 1984 BWMP sampling program, the Palouse River at Hooper appears to have no elevated concentrations.

Walla Walla River below Warm Springs

Like the Palouse River at Hooper, the Walla Walla River below Warm Springs has no elevated concentrations for those parameters analyzed.

RECOMMENDATIONS

1. Sampling time should be coordinated to the extent possible to increase the likelihood of collecting samples before spawning occurs. This would help minimize the effect of lipid fluctuation in the aquatic biota due to spawning, which has a direct effect on the levels of pesticides, PCBs, and other lipophilic compounds stored within the organism. In practice, however, this may be impractical due to inconsistencies among the life cycles of the projected sample species. Therefore, a compromise must be

reached between ability to obtain samples and sexual maturation differences among sample species. Taking these variables into consideration, May and June are the best months to sample, with July and August also being acceptable.

- 2. Guidelines are needed which identify concentrations worthy of additional investigation, one possibility being a percentile comparison of existing levels to those found to date in the BWMP program. For example, if one level exceeds a predetermined percentile, it could be flagged for appropriate action. The 50th percentile could be labeled elevated and warrant re-sampling. The 75th percentile could be moderate and signal an alert to the Ecology regional office. Samples that exceed the 95th percentile could denote an extreme level and justify, upon verification, a more in-depth investigation.
- 3. Sample site(s) with elevated levels should be sampled for three consecutive years to help establish ranges of data and confirm findings.
- 4. Effort should be made to establish uniform collection and analysis techniques that will allow year-to-year comparisons.
- 5. Data generated on lipophilic compounds should be presented both as wetweight values and lipid-corrected. Lipid-weight values are known to substantially decrease variability between individuals and to facilitate cross-station comparisons. Wet-weight values should not be eliminated because there are limitations inherent to lipid-weight values; the most evident being the lack of criteria.
- 6. Gill tissue analysis should be eliminated due to lack of established quidelines and minimal sample weight per individual.
- 7. The sampling program should be expanded to facilitate a broader coverage of the state on a year-to-year basis.
- 8. Saltwater stations should be added with a goal toward expansion as the opportunity presents itself.
- 9. In consideration of the lack of sediment criteria, sediment sampling should be used as a preliminary indicator of a possible problem area and be replaced by an alternate method if values warrant a more intensive investigation. A second year of sediment sampling is needed to adequately evaluate the utility of using this approach for environmental monitoring in streams.
- 10. Four of the stations sampled during 1984 should be sampled again in 1985: Columbia River at Northport, Wenatchee River at Wenatchee, Okanogan River below Malott, and Green/Duwamish River above Allentown. These stations exhibited elevated levels of pollutants and require confirmation.

REFERENCES

- Edwards, C.A. (ed), 1973. Persistent Pesticides in the Environment, 2nd Ed. CRC Press, Cleveland OH. 170 pp.
- EPA, 1973. Water Quality Criteria 1972. EPA R. 3.73.033 March 1973.
- EPA, 1980a. Ambient Water Quality Criteria for Hexachlorocyclohexane (BHC). EPA-440/5-80-054.
- EPA, 1980b. Manual of Analytical Methods for the Analysis of Pesticides in Humans and Environmental Samples. EPA-600/8-80-038. June 1980.
- EPA, 1982. Methods for Chemical Analysis of Water and Wastes. EPA-600/4-79-020, June 1982.
- Food and Drug Administration, 1982. Action levels for poisonous or deleterious substances in human food and animal feed. September 1982.
- Federal Register, 1984a. Vol. 49, No. 20a, October 26, 1984.
- Federal Register, 1984b. Vol. 49, No. 100, May 22, 1984. Rules and Regulations.
- Forstner, U., G.T.W. Wittman (ed), 1981. Metal Pollution in the Aquatic Environment. 2nd Ed. Springer-Verlag, Berlin, Heidelberg. New York NY 486 pp.
- Hopkins, B.S., 1984. "Proposed 1984 BWMP fish tissue sampling sites, June 4, 1984. Inter-agency memorandum to John Bernhardt, WDOE.
- Johnson, L., 1985. Food and Drug Administration, Seattle, WA. personal communication.
- Lech, J.J., et al., 1978. Studies on the uptake, disposition and metabolism of pentachlorophenol and pentachloroanisole in rainbow trout (Salmo gairdneri). In: K.R. Rau (ed.) Pentachlorophenol: Chemistry Pharmacology and Environmental Toxicology. Plenum Press, New York NY. 107 pp.
- Moen, W.S., 1969. Analysis of Stream Sediment Samples in Washington for Copper, Molybdenum, Lead, and Zinc. Open-File Rept., Wash. St. Dept. Nat. Res.
- Phillips, D.J.H. (ed.), 1980. Quantitative Aquatic Biological Indicators: Their Use to Monitor Trace Metal and Organochlorine Pollution. Applied Science, Pollution Monitoring Series 1980. 488 pp.
- Weast, R.C. (ed.), 1975. <u>Handbook of Chemistry and Physics</u>. 5th Ed. CRC Press, Cleveland OH
- White-Stevens, R. (ed), 1971. <u>Pesticides in the Environment</u>, Vol 1, Part 1. Marcel Dekker, Inc., New York NY

APPENDIX I

Results of swe fish and Shellfish Tissue Analysis - ket Weight Basis (uq/kg.w.w.)

Location & Station No.	Collection Date	Organisa	Tissue	Percent Lipids	Percent Solids	chlaro- shenol	Al pha	Campa	Methoxy- chlor	7221 1232 1242 1248	254	1260	PCBS	λs	ш	(r	Cu	Н	PL	χn
FRESHIATER																				
Skagit River at Mt. Vernon 03/060	8/30/82 8/30/82 8/30/82	Bridgelip Sucker Bridgelip Sucker Mountain Whitefish	Whole 6111 Whole		21[22.9] 28 28[26.1]		3 7	<1 (1	<10 <10		47 36	<10 <10	4) 38	48 60 50	80 60 20	1,000 700 900	1,700 1,200 1500	115 15 33	620 610 610	25,500 13,300 27,000
Skagit River at Concrete 04A060	8/23/83 8/23/83 8/23/83 8/23/83 8/23/83 8/23/83 8/23/83 8/23/83	Bridgelip Sucker Bridgelip Sucker Bridgelip Sucker Bridgelip Sucker Mountain Whitefish Mountain Whitefish Mountain Whitefish Mountain Whitefish	Edible Viscera Moole Gill Edible Viscera Moole Gill	.4 1.5 .8 3.9 9.1 5.3	22.1 24.0 22.7 16.1 28.0 33.5 29.4 222		<1 2 <1.4 6.3 8.6 6.9	a a a a a	(1) (1) (1) (1) (1) (1)		11 <10 <11 38 <10 <31	<10 <10 <10 <10 <10 <10 <10	11 <10 <11 38 <10 <31	60 30	40 50	520	1,500	12 59	440 530	16,000 22,000
Snohomish River at Snohomish 07 A090	8/30/82 8/30/82 8/30/82 8/30/82	Bridgelip Sucker Bridgelip Sucker Morthern Squarfish Morthern Squarfish	Whole Gill Whole Gill		29[22.6] 23 26[27.4] 27		<1 5	(1 (1	<10 <10		240 320 	<10 <10	320	44 8 18 28	40 20 40 60	7,000 200 1,400 1,300	1,900 1,400 1,300 1,700	33 33 50 43	760 620 400 380	19,500 12,100 28,000 30,900
Cedar River near Landsburg 08C110	8/25/83 8/25/83	Rainbow Trout Rainbow Trout	≅hole 6111	5.7	24.6 21.1		1.9	<1 	<1		12	<10		20	80 .		1,370		170	23,900
Green/Duramish R. # Allentow 09A060	8/24/83 8/24/83	Bridgelip Sucker Bridgelip Sucker	Mhole 6111	5.3	24.0 26.9		20	<1 - ; ; -	<1			<10	1,600 	90	30	520	1,400		800	14,000
Pujallup River at Puyallup 10A070	8/29/80	Largescale Sucker	Mole	5 3.9	25 31	<20	4.6 <0.1	0.6 <0.1	<0.5 <0.1				160							
	9/02/81	Largescale Sucker Cutthroat Trout	Edible	4.2	21.8		1.9	٠	·		<10 <10	<10 <10	<10 <10							·
Nylebos Creex at Fife 106060	8/24/83 8/24/83 8/24/83 8/24/83	Cutthroat Trout Cutthroat Trout Cutthroat Trout Cutthroat Trout	Viscera Mhole Gill Gill	6 3.6	21.4 21.7 242 247		4.0 2.4	<1	1		<10	<10	(10	120 350	10 20	250 360	640 890	34 36	460 690	15,200 26,700
Risqually River at Hisqually 11A070		Mountain Whitefish Mountain Whitefish Bridgelip Sucker Bridgelip Sucker	Mhole 6111 Mhole 6111		25[34.0] 34 26[30.1] 29		15	(d)	<10		<10 <10	<10 <10	<10 <10	42 22 4 2	<20 20 60 40	100 1,100 800 700	,200 ,500 ,700 ,300	75 40 93 40	1,140 690 510 430	17,600 25,400 27,800 18,500
Chanalis River at Porter 23A070	9/18/79 9/18/79	Coast Range Sculpin Pea Chub	Whole Whole	2 6	26 31	• • • •	0.7	<0.1 <0.1	<10				31 390		120	500	1,300	<25 23	1,700	23,000
	9/29/80 9/29/80	freshwater Mussels Squawfish	Mhole Whole	0.4	16 23		<0.1 0.6	<0.1 <0.5	<0.1 <0.5				130 28		80 75	300 280	1,800	120	1,400	17,000
	9/02/81 9/02/81	Largescale Sucker Squawfish	Whole Whole	3.1 2.9	31 33	<20 <20	<0.1 <0.1	<0.1	<0.1 <0.1				75 	,	160	1.740	1,800	<26	2,400	26, 000
Coulity River at Kelso 268070	8/30/79 8/30/79	Coast Range Sculpin Largescale Sucker	Whole Whole	3 0.4	25 19		0.1 4.5	<0.1 <0.1	<1 <1 <0.5				210 ක0		82	300	1,150	(27	1,770	17,200
	9/30/80	Largescale Sucker	Mhole	9	29	50	<0.1		<0.1				100							
	9/02/81	Largescale Sucker Squarfish	Whole	6.2	<u>.</u> 25		1.6	<0.5	<0.5				76 100		170 150	580 740	1,200	75 32	2,540 1,570	22,000 20,000
Smake River at Bumbank 33A050	9/18/80 9/18/80 8/20/81	Largescale Sucker Squawfish	Whole	7 6.8	26 35	< 20 < 20	2.8 <0.1 <0.1		<0.5 <0.1 <0.1				120 81							
	8/20/81	Largescale Sucker	Whole	5.8	33				<0.1				<0.1 <0.1							
Palouse River at Hooper 34A070	9/27/78 9/27/78	Largescale Sucker Largescale Sucker	Whole Liver	0.9 1	(27) (25)	2.9	7	<1	<0.1 <10		<10	<10	<10	58	40	500	1,200	40	470	20,600
	9/14/82 9/14/82 9/14/82 9/14/82	Bridgelip Sucker Bridgelip Sucker Morthern Squawfish Morthern Squawfish	Whole Gill Whole Gill	1.7	26[28.5 22 29[27.6 28	J 27	490	41	<10		<10 	<10	<10	50 64 64	40 <20 40 	100 700 100	1,400 1,900 1,700	13 195 73	620 420 660 1,540	30,200 22,700 20,400 29,200
Columnia River at Vernita 36 AO 70	9/17/80 9/17/80	Squawfish Largescale Sucker	Whole Whole	5 7	30 28	•	3.1	<0.5	<0.5 <0.5				120	960	310	620	1,900	31	2,600	56,600
20.20.0	8/20/81 8/20/81	Squawfish Largescale Sucker	⊌hole Whole	2.5 2.3	33 30	<20 <20	<0.1 <0.1	<0.1	<0.1 <0.1		336	<10	50 336							
	9/01/83 9/01/83 9/01/83 9/01/83	Bridgelip Sucker Bridgelip Sucker Mountain Witefish Mountain Whitefish	Whole Gill Whole Gill	1.9 13.8	23.6 22.1 36.5 33 ²		5.5 59	<1	<1		338	<10	138	10 20	75 126	127 <16	737 685	8 20	1,030	17,700 21,300

٢

											ordane			0.01	0.0	P.P	0.0	p, v -	DOT Forms	chioro- benzene
coults of bank fish and Shell	fish Tissue And	alysis - hat weight bar	sis (ug/s	.y					Alpha-	Lamma -	nonaction	trans- nonachlor	0.p'-	p.p'- DDE	DDD	000	100	001	·	
ZOILS OF DAY 112					Percent Sulids	Aldrin	Dieldrin	Endrin	. c1s	trans									580	int.
Crastina has	Collection Date	Organism	Tissue	Cipiui		-					<0.5	6.6	(0.5	460	<0.5 <0.5	76 170	<23°	40 57	900	Int.
ocation & Station No.					28	(0.5	<0.1	<0.1 <0.1	6.0 21	(0.5).2	₹0.5	₹0.5	<0.5	670	<0.1	110	(0.1	47	1,760	
RESHLATER	9/16/80	Shallmouth Bass	whole whole	3 7	29	<0.5	<0.1	0.7	93	5.1	32	9.8 <1	<0.1	1,100 2,100	<0.1	390	<0.1	590	1.080	
rakima River at Kiona 37A090	9/16/80	Bridgells Sucker	whole	7.4	37	<0.1 <0.1	48 76	0.5	230					2,040	· (1	290	<1	360	2.710	
	B/ 20/81	Squawfisi Largescale Sucker	uno) s	13	45	· (1		<1	<1	<1	<1	(1	4	1,020	<1	190	<1	220	1,430	(1
	9/16/82	Bridgelip Sucker	whole Gill	[8.6]	2 /[30.0] 20		a	<1	<1	<1	(1	<1	••					25.4	1,798	<1
Yakima River 10 miles pelow Kiona	9/16/82	Bridgelip Sucker	mole	[8.1]	37(32.8) (25)	1				<1	<1	<1	<1	1.268	<1	176	<1	391	2,989	<1
37 A090)	9/16/82 9/16/82	Mountain Whiter isi	Gill	10.4	28.5	<1	<1	<1	<1		a	<1	<1	2,365	<1	233	<1	29.7	.,,,,,	
	9/01/83	Bridgelip Sucker Bridgelip Sucker	uno le Gill		20.2 30.5	<1	<1	<1	<1	<1						280	٠٠٠٠.	669	2,796	(1 (1
	9/01/83 9/01/63	Channel Catfish Channel Catfish	whole Gill	-	22.3					<1	4	()	(1 (1	1,847 6,728	<1	2.05 858	69 (1 (1)	1,009 780	9,796 5,071	λi.
	9/01/83		Earble	4.5 ي	22.1 31.7	<1 <1	<1 <1	લ	<1 <1	$\frac{\alpha}{\alpha}$	<1 <1	ä	<1	3,431		110		235	814	<1
Talima River Delow	9/02/83 9/02/83	Bridgelip Sucker Bridgelip Sucker	Altes	ra 6.4	25.2	<1	C)		(1	<1	<1	(1	<1 <1	469 932	(1 (1	244	d d	570 314	1.746	41
Birchfield Drain	9/02/83 9/02/83	Bridge In Sucker	Gill	e 11.2	21.1 31.6	<1 (1	<1 <1	<u> </u>	ä	<u>d</u>	<1 <1	CI CI	ći.	578	<1	141		131	2,540	<1
	9/02/81	Mountain Whitefish Mountain Whitefish	¥150	ra 3.3	33.4 32	ći	4	<1		a	<1	<1	<1	2,15	7 (1	252	`'			
	9/02/83 9/02/83	Mountain Whiterish	6111		26.3 27.1	<1	41	<1	<1	•				 296		52	<1	61	409	<1
	9/02/83 9/02/83	Morthern Squawfish		-	26.2				<1	()	a	<1		480	<1	10	4	72	559	e)
wenatch		Aridoelio Sucker	wnol Gill	e	(25)	.7] (1	. u	<1	<1	<1	<1	<1	(1	400					4,470	
arnot chee River at meller	9/15/82	Bridgelip Sucker	n wnol	e	32(27	.1] (1	14						٠٠٠٠	3,2	00 (1	85		418		
452070	9/15/82 9/15/82	Mountain Whitefis				.0] (1		<1	41	<1		41	<1	1,3	80 <1	10	4 (1	46	1,530	, ``
Contact Dams	9/15/52	Bridgelip Sucker	Wha Gil	1	20	2) (1	<1	<1	a	<1	<1	``				1 19	13 (1	113	779	1 0
Lave Chelan Gutlet Dams 47:070	9/15/32 9/15/82	Northern Squawfis Northern Squawfis	n who		(25)	-		/1	<1	<1	Q.	(1	<1 <1	2.7	79 <	i 1,	.211 9		4,19 1,83	
	9/15/82		Ear	ple 4.8	22.6 23. 4	<1 (1	<1 <1	41	d	<1 <1	D.	a	<1		189 (•			460	4
	g/ 29/83 g/ 29/83	Bridgelip Sucker Bridgelip Sucker	• • •	cera 2.0 ole 3.9	22.8 14.8	<1	<1	(1	(1	<1	<1	Cl.	() ()	1.2	709 (2	1 2	8 <	4	1,82	7 (1 16 (1
	8/29/83 8/29/83	Bridgelip Sucker Bridgelip Sucker	Fa	ible 6.9	32.1	<1	(1 (1	<1 <1	d d	d	41	(1 (1	ζ.		3 39	:1 7	,			
	8/29/83 8/29/83	Squartish Squartish	v t	scera 1.8 ole 6.6	30.	(1		<1	(1					1 1.	399	() 2	41	1 144		
	9/29/83 9/29/83	Squawfish Squawfish	Ğı	11					a a	(1		d .				c: I	115	1 54	811	<1
		Beingelip Sucker	r Hr	iole 2.1	25.	C-		41	O	<1	<1	<1	•					0.5 (0	. 140	Int.
Okanugan River at Okanog 49A090	an 8/25/83 8/25/83	Bridgelip Sucker	r ish ∺i	101e 8.3	26.	•					5.5	10						(0.5 (0 (0.5 (0		Int.
	8/29/83	Mountain Whiter		nole 4	26	<(.5 (0.1	<0.).5 (0.5	0.9					1.3		.1 35	<20
Spokane River at Rivers	9/23/80	Squawfish Suck		hole 0.	4 21		0.5 0.3	1.1		., <		7.1 4.3		co.1 3				<0.1 6.		
State Para		Co. sellah		nule 12			0.1 2.1 0.1 1.9	<0	, ;	.8 5	.8 3.1	(1			0	41	ci -	<1 <1		
54 × 1 20	8/ (4/81 8/ (4/81	Language Such	KC1 .	note 5.	•	(22.1) <		<1	(1 <	1 (1			a	20	(1	<1	a c	1 12	0 <1
	9/13/8		er i	6111	()	[25.7]		<1	(1	1 <1	<1		•				<1 B		
	9/:3/B. 9/:3/8	2 Bridge in Squar	f 15D	unote Li GIII		3)	•				a q	41			44 60	ci ci	37 <1	d 3	10 60 63 49) (1
	9/13/8	2 Northern 34444		raiple3 4	.0		0 0	()		i ·	ä g	41			49	<1	<26	•		, α
	8/31/8 8/31/6		ter	visceral 8 unole5 5	.4 2	3.3	$\frac{a}{a}$	<	1	•		<1		· 1	44	cl cl	<1 <1	ii ·	io y	5
	8/31/8 8/31/8	Bridge 11p Suci	KET	6111	1.6		a a		•	()	d d	Q Q			56	ä	<1	4 .	() 5	
	8/ 11/ 6 8/ 31/ 6 8/ 31/	si Bountain White	ef 150 ef 150	Viscof4	1 1 · ·	11.3				(i	a a								` .	,2 {
	6/31/	83 Mountain White	ef ish	G111		12.0 ²					a a	(1 (1		G G	8.2 11	<1	सं	a	(1)	11 (
	8/31/	Luninuse Such	er		5.8	22.3		L	1	à	ä a	(1								
ti i i i a Birer al	9/01/ 9/01/	83 tongrose Such	out	Eastle	3.5	[21.1] [21.1]									16	41	4	<1	<1	16 <
River Alle 87.4	9/ 01/ 5/ 01/	/ cebenal Its	gg t	6111		/1.3		 1	<1	()	<1 <1	<1								
	9/01.	/83 Longnose Suc	ker	wnole wnole	3.2	(21.3)	•			•										
Spokane River at Hiver Mile 86.8	1/01	/83 Lungnuse Suc	-																	

Results of Butt Fish and Shellfish Tissue Analysis - Het Weight Basis

Location & Station Mo.	Collection Data	Organism	Tissu	fercen e lipids		Penta- chloro- phenol		HC Garrena	Methoxy- chlor	7777	Arochloi	rs (PCBs)		Tota					tals		
FRESHMATER						piterior	- nipita	U.S. ST.	Chior	1551 1535	1242	1748 1	254 126	O PCBs	Xs	Cd.	Cr.	ξu	На	Ръ	Zn
Yakima River at Kiona 37 A090	9/16/30 9/16/30	Smallmouth Bass Bridgelip Sucker	Whole Whole	3	28 29		3.7 3.4	0.3° 0.6	<0.5 <0.5					50 120		110 55	260 270	940 1,200	<29 <27	1,260 660	20,700 14,300
	8/20/81 8/20/41	Squamfish Largescale Sucker	Whole Whole	7.4 13	37 45	< 20	<0.1	<0.1	(0.1					160				-,	••		14,300
Fakima River 10 miles below Kiona 37 A0901	9/16/82 9/16/82 9/16/82	Bridgelip Sucker Bridgelip Sucker Mountain Whitefish	Whole G111	(8.6) (3.1)	27[30.0] 20 37[32.8]	2.8	6	(1)	<0.1 <10				0 <10		38 28	80 <20	500 <100	1,900 1,500	95 36	\$70 \$20	25,400 15,900
	9/16/62	Hountein Whitefish		(4.1)	(25)	2.7	•	<1	<10			()	.0 <10	<10	32 34	60 20	600 100	1,100	· 23	480 750	21,200 16,700
	9/01/83 9/01/83 9/01/83 9/01/83	Bridgelip Sucker Bridgelip Sucker Channel Catfish Channel Catfish	Whole Gill Whole	10.4 14.6	28.5 20.2 30.5		,	a a	a a			34 74		346 746	<20	10	110	870	20	510	16,400
Takina River below	9/02/83	Bridgelip Sucker	G111	- : ;	22.3			· · · · ·					• • • • •		(20	10	200	740	16	630	19,300
Birchfield Drain	9/02/83 9/02/83 9/02/83 9/02/83	Bridgelip Sucker Bridgelip Sucker Bridgelip Sucker Mountain Whitefish		4 6.4 5.1 11.2	22.1 31.7 25.2 21.1 31.6		3.9 14 7.2	a a a	a a a			29 1, 60	250 <100 6 <89	606	20	10	50	1,300	13	570	16,000
	9/02/83 9/02/83 9/02/83 9/02/83	Mountain Whitefish Mountain Whitefish Mountain Whitefish	Viscer Whole Gill	9.1	33.4 32 26.3		22 15	<u>d</u>	d d			29 16	7 <10	128 297 168	40	10	•	1 100			
	9/02/8)	Northern Squawfish Northern Squawfish	Whole Gill	0.8	27.1 26.2		5.5	<1	a			51	0 <10	510	40	10	90 110	1,100	74 191	690 770	23,000
menationee River at Wenatchee 452070	9/15/82	Bridgelip Sucker Bridgelip Sucker	Whole Gill		22[21.7]	1.5	4	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	<10			٠٠٠٠	0 (10	<10	62	160	300	1,600	- 23 -	1,040	30,000
	9/15/82 9/15/82	Mountain Whitefish Mountain Whitefish	Whole Eill		(25) 32(27.1] (25)	1.9	10	G.	<10			q	0 <10	<10	28 50 116	140 140 100	100 2,000 100	1,300 1,300 1,300	ins. 23 Ins.	1,360 1,090 1,220	29,900 25,900 27,900
Lake Chelan Outlet Dam 47AO70	9/15/82 9/15/82 9/15/82 9/15/82	Bridgelip Sucker Bridgelip Sucker Northern Squawfish Northern Squawfish	Whole Gill Whole Gill		22[26.0] 20 24[25.2] (25)	2.6 2.5	7 5	41	<10 <10			(1)		<10 <10	62 46 32	160 80 80	300 < 200 100	1,300 1,000 1,900	30 3 10	950 1,140 530	30,400 15,400 32,100
e e	W 29/83 W 29/83	Bridgelip Sucker Bridgelip Sucker	Edible Viscera	4.8	22.6 23.4		4.5	ci ci	41			29	<10	29	80	180	100	2,000	ins.	1,420	32,700
	8/29/83 8/29/83 8/29/83	Bridgelip Sucker Bridgelip Sucker Squawfish	Whole Gill Edible	3.9	22.8 14.8 32.1		3.9 4.3	d d	d d			13. 61	<10	131	<10	60	320	1,400	2	890	16,000
	8/29/83 8/29/83 8/29/83	Squawfish Squawfish Squawfish	Viscera Whole Gill		26.0 30.3 [26.0]		6.7 <1 <5	d	(1 (1 (1			114 38 92	<10 <10 <10	114 38 92							
Okanogan River at Okanogan 49A090	8/29/83 8/29/83	Bridgelip Sucker	Whole	2.1	26.7		5.3	a	a	• • • • • •	• • • • •	 58:	<10	583		90	- 50 	1,400	10	730	35,000
	8/29/83 8/29/83	Bridgelig Sucker Mountain Whitefish Mountain Whitefish	G111 Mhole G111	8.3	25.0- 30.1 26.5		34	a	d			122		122	5 0 <10	50 100	100 120	1,100	5 27	710 1,160	19,000 28,000
pokane River at Riverside State Park 542120	9/20/80 9/20/80	Squawfish Largescale Sucker	Whole Whole	4 0.4	26 21		1.6	0.3	<0.5 <0.5					1,200		300	220	1,020	<22	1,400	24,000
2410	8/04/81 8/04/81	Squawfish Largescale Sucker	Who le	12 5.2	34 31	140 <20	<0.1 <0.1	<0.1	<0.1 <0.1					230 160 160		380	540	1,600	<23	3,600	\$4,000
	9/13/82 9/13/82	Bridgelip Sucker Bridgelip Sucker	¥hole G111	[.61]	22[22.1]	8.9	7	<1	<10			200	300	500	46	260	500	1.400	20	1,720	47,700
	9/11/82 9/11/82	Northern Squawfish Northern Squawfish	Mhole Gill	[1.7]	(25) 26[25,7] (25)	3.2	3	a ·	<10			1,4		2,300	60 56 70	120 220 840	100 500 100	1,600 1,500 1,400	8 58 Ins.	1,670 740 1,100	60,400 27,000 27,900
	8/31/83 8/31/83 8/31/83	Bridgelip Sucker Bridgelip Sucker Bridgelip Sucker	Edible3 Viscera4 Whole5	4.0 8.4 5.3	21.4 27.6 23.3		25	<1	d d			369 1,4	64 <10	369 1,464						.,	.,,
	8/31/8 3 IV 11/83	Bridgelip Sucker Mountain Whitefish	G111	5.5 8.6	20.3				<1 <1			697		697	20	160	180	940	13	1,860	30,100
	8/31/83 8/31/83 8/31/83	Mountair Whitefish Mountair Whitefish Mountain Whitefish	Ylscera	9.3	41.5 37.3 32.02		59	<1	G G			276 474 273	€10	276 424 273							
Pokane River at River Hile 87.4		Longnose Sucker		2.5	21.1		1.7			· • • • • • • •		93			<20	310	120	1,100	15	1,200	28,800
	9/01/83	Longnose Sucker Cutthroat Trout Cutthroat Trout	whole Edible Gill	5.8	22.3 {21.1} {21.1}				λi			36	<10 <10	93 36	150 <20 <20	316 1,150	164 66 73	1,280 4,980 1,060	13	2,190 680 1,990	77,100 60,400 195,300
lokane River at	9/01/83	Longnuse Sucker Langnose Sucker.	Whole		21.3 (21.3)		5	<1	<u>a</u>			270	<10	270	130	429		7,590	 6	1,320	61,600

Results of Buff Fish and Shellfish Tissue Analysis - Het Height Basis (uq/kg w/. W.)

lesuits of 8x44 Fish and Shel	Collection	nslysis - Wet Weight &		Percent	Percent		04-14-10	Endrin	XTpha-	Game- trani	Tordane Cls- numachlor		o,p'-	₽.₽ [*] - 00€		00, 001 p. p' - 000	0.p'- 001	p.p'- 001	Total DOT Forms	pensene Cujoro- Hexa-
ocation & Station No.	Date	Organism	Tissue	Lipids	Solids	Alarin	Dieldrin	11101												
RESHWATER ettle River at Barstow 60A070	9/13/82 9/13/82	Bridgelip Sucker Mountain Whitefish Mountain Whitefish	Whole Whole 6111		26[23.6] 32[33.7] (25)	d d	(1 (1	۲۶ ۲۱	a a	(1 (1	G G	Q Q	(1 (1	59 67	d d	2? 36	() ()	35 15	57 51	(1
	9/13/82	MODERAL AND																		
AL TWATER								<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	(0.1		
ood Canal at Pulali Point	9/06/79	Bay Mussel	Whole	2	23	<0.1	<0.1	(0.1			.,	a	<1	41	<1	<1	<1	<1		<1
HC BOOS	8/25/80	Bay Hussel	Who le	0.45	9.3	4 1	<1	<1	<1	<1	<1			•		<1		<1	2	<1
	7/28/81	Bay Mussel	Whole	0.65	6.3	<1	<1	<1	(1					:			- (1	- (1		<1
	0/10/80	Bay Mussel	Mhole	0.94	12.7	۲.	<1	<1	<1	<1	<1	<1	``			4.4		1.7	8.5	<1
se Inlet off Herron Island CSED01	8/10/80	-				(1	c1	(1	a	<1	<1	<1		2.4						
	7/29/81	Bay Mussel	Mho i e	0.86	12.3							<1	<1	<1	<1	d	<1			
err Inlet - CRROOL	7/10/80	Bay Mussel	Mho le	1.43	16.1	<1	Q.	<1				- · · · ·	· <1		<1	4	<1	<1		<1
ort Susan at Kayak Point	7/09/80	Bay Mussel	Mole	0.47	12.6	a	<1	<1	a	(1	<1 <1	(1	•	1.2		1.2		1.2	3.6	
Su2001	9/29/81	Bay Mussel	Who le	0.76	11.8	4							•	1.5		2.5	•	2.8	6.8	<1
ommencement Bay -	7/30/81	Bay Mussel	Whole	0.68	8.7	<1	<1	<1	<1	(1			<1	<1	c1	a .	<1	<1	<1	<1
Houth of City Waterway CH8006	12/01/82	Bay Mussel	Whole	0.13	7.0	<u>- (1</u>	<1	<1	(1	<1	<1	<1								

	Collection	0	Tiss.c	Percent Lipids	Percent Solids	Pen.a- chloro- pherol	XI ph a	HC Gampa	Methoxy- chlor	1771		Aroch1:	1748	1254	1760	Total PCBs	λs	Ca	Cr	Eu Eu	Hg Hg	P6	In
ERESHWATER Kettle River at Barstow 604070	9/13/62 9/13/82	Organism Bridgelip Sucker Mountain Whitefish	whole whole		26[23.6] 32[33.7] (25)	2.5 4.1	? 36	ci ci	<10 <10					<10 <10	<10 <10	<10 <10	67 64 56	100 80 40	400 1,100 100	1,200 1,600 800	38 20 lns.	750 620 640	27,100 21,700 34,800
	9/13/82	Mountain Whitefish					:		- -									3,910	480	4,140		310	
SALTWATER HOOD Canal at Pulali Point	9/06/79	Bay Mussel	who le	ž	23		0.9	<0.1 (1	<1 <1	C5	<\$	<5	<5	<5	<5	7.4	600 95	980	92	1,120		160	
нс 8002	8/25/80	Bay Mussel Bay Mussel	wno'e	0.45	9.3 6.3	<1	<1	<1	••	<10	<10	<10	<10	<10	<10		320	770	140	1,300		260	13,400
Case inlet off Herron Island	7/28/81 8/10/80	Bay Mussel	whole	0.94	12.7		\d_1	<1	d	<5 <10	<5 <10	71 <10	<5 <10	61 26	<5 <10	132 26	210 500	450 1,800	91 150	1,600	5	270	15,600
C\$6001	7/29/81	Bay Mussel	Whole whole	0.86	12.3		1.3	- 41		(5	- (:		- (5	· (5	111	111	120	950	130	1,130		210	
Carr Inlet - CRROO1 Port Susan at Kayak Point	7/10/80	Bay Mussel Bay Mussel	whole	0.47	12.6		<1	<1	3	<5	<5	<5	(5	93	<5 <10	93 15	120	450. 400	110 280	760 1.800	6	230 430	16,200
SU2001	9/29/81	Bay Mussel	whole	0.76	11.8 8.7		<1 3,6	- 41 -		<10 <10	<:0	<10 <10	<10 <10	 82	<10	82	500	500	420	4,000	14	3,800	
Commencement Bay - Mouth of City Waterway CMBOO6	7/30/81 12/01/82	Bay Mussel Bay Mussel	whole whole	0.68	7.0	<u>5.1</u>	<1	<u>a</u>	<10					26	<10	<26	350	60	100	1,100	15	<u>750</u>	21,700

Int. - Interference.
Ins. - Insufficient sample for analysis.
() - Percent solids estimated, not measured.
() - Percent solids from pesticides analyses.
- Interference; increased detection limits.

Theorest BiMP sample station, fish collected at nearest accessible point.

2Less than 5 grams of tissue were available for analysis.

Ratule portion . fillet plus skin tissue.

Aviscera portion - head, gills, viscera, ind everything else excluding tissues in 3, above.

Swhole fish • combined ratios of 3 and 4, above, using percent solids data from each.

byiscera portion . same as 4, above, without the head.

Prescent solids from previous gill sample; insufficient sample for analysis.

APPENDIX II

SAMPLE SITE DESCRIPTIONS FOR THE 1984 BWMP FISH TISSUE AND SEDIMENT COLLECTION

Lake Chelan - Near the lake's outlet along both banks.

Columbia River at Northport - From the pool under the Highway 25 bridge to the riffle 1/4 mile upstream.

Okanogan River Below Malott - The slow-moving waters approximately 5 miles downstream from Malott (total sample area approximately 1/4 river mile).

Palouse River at Hooper - Both the upstream and downstream riffles located below Hooper.

Walla Walla River Below Warm Springs - Near the wooden Cummins Road bridge in both the upstream and downstream riffles.

Yakima River Ten Miles Below Kiona - Approximately one mile upstream from Horn Rapids (at the first deep riffle area), extending downstream for about 1/4 mile.

Yakima River at Birchfield Drain - From about 200 feet upstream into the mixing area of the drain and Yakima River downstream to the confluence with the Yakima River.

Skagit River Below Mount Vernon - From about 1/4 mile downstream from Mount Vernon (from the sewage outfall) to the sand bar 400 yards downstream.

Green/Duwamish River Above Allentown - One quarter mile upstream from I-5 bridge along the golf course on the southwest bank.

Wenatchee River at Wenatchee - The first riffle area upstream from the mouth, under the Highway 97 bridge, and downstream approximately 200 yards.

APPENDIX III

ne surrogate pesticide Heptachlor was added to each tissue sample before xtraction. Full recovery of the pesticide reflects a competent extraction f the surrogate only. The recovery data were not used to correct reported alues of other pesticides quantified.

SURROGATE RECOVERY BWMP 1984

	Surrogate
Cample Number	Recovery (percent)
Sample Number	
Reagent Blank	98
37500	97
37501	106 107
37502	98
37503 37504	96
37504 37505	108
37506	97
37507	65
37508	119
37509	104
37510	108
37511	111
37512	84
37513	93
37514	96
37515	102
37516	I 103
37517	103 1
37518 37519	95
37520	111
37521	98
38538	113
38539	96
38540	103
38541	96
38542	96
38543	91
36540	Ţ
36541	I
36548	98 102
36549 36564	93
36554 36555	92
36555 36557	94
36558	102
36563	91
36564	100
36566	126
36567	88

[= interference with quantitation of surrogate.

SELECTED PESTICIDES RECOVERY

Compound*	#38538	39539 u	38538 yj
p,p'-DDT* p,p'-DDE* p,p'-DDD* Endosulfan I Alpha-BHC* Beta-BHC Lindane Delta-BHC Heptachlor PCB 1260	47 ug/Kg 33 ug/Kg 31 ug/Kg 4 ug/Kg 36 ug/Kg	88% 101% 80% 122% 96% 114% 114% 111% 105% 39 ug/Kg	I 103% 80% 125% 96% 113% 113% 109% 76% 33 ug/Kg

^{*}Values presented are collected for amounts present in spiked sample.
I = interference with quantitation of surrogate.

PRECISION OF QUANTIFIED PESTICIDES

Compound	#37504	#37504 Duplicate
p,p'-DDT p,p'-DDE p,p'-DDD Alpha-BHC	64 ug/Kg 92 ug/Kg 40 ug/Kg 10 ug/Kg	57 ug/Kg 48 ug/Kg 16 ug/Kg 2 ug/Kg
Surrogate Recovery	96%	67%

Laucks Testing Laboratories, Inc. 940 South Harney Street. Seattle. Washington 98108 (206) 767-5060

Chemistry Microbiology, and Technical Services

PAGE NO. 2

Dept. of Ecology

LABORATORY NO 87070

APPENDIX

Replicate Quality Control Report

Sample	<u>Analyte</u>	Replicate 1	Replicate 2	Relative <u>Error</u>	Control Limits
6	Total Organic				
7	Carbon Total Organic	0.4	0.3	(0.1)	
	Carbon	1.7	1.5	12.	

A standard reference material with a TOC "true value" of 3.8 - 4.7 was analyzed in duplicate, with results as shown below:

Reference	Total Organic			
Material	Carbon	4.4	4.0	3.8-4.7

() indicates absolute error.

