86-e39

ANDREA BEATTY RINIKER Director

Segment 26-00-02

STATE OF WASHINGTON

DEPARTMENT OF ECOLOGY

Mail Stop PV-11 . Olympia, Washington 98504-8711 . (206) 459-6000

 $\underline{\mathsf{M}} \ \underline{\mathsf{E}} \ \underline{\mathsf{M}} \ \underline{\mathsf{O}} \ \underline{\mathsf{R}} \ \underline{\mathsf{A}} \ \underline{\mathsf{N}} \ \underline{\mathsf{D}} \ \underline{\mathsf{U}} \ \underline{\mathsf{M}}$

June 18, 1986

To: Carl Neuchterlein

Through: Bill Yake ?)

From: Art Johnson and Dale Norton

Subject: Data Report for Samples Collected at Port of Pasco, September 9-10, 1985

INTRODUCTION

Attached are summary and raw data data tables for the water, sediment, and fish samples Dale and I collected with you and Larry Peterson at the Port of Pasco on September 9-10, 1985. The objectives of the survey were to document petroleum contamination, screen for the presence of toxicants other than petroleum, and evaluate the extent of contamination in Juvenile Pond which receives site discharges.

As we discussed earlier, there were several serious problems associated with the analyses done for this survey. These were as follows:

- Holding times were exceeded for volatiles, acid/base-neutrals, and pesticides in water.
- Holding times were exceeded for pesticides/PCBs in all media.
- Blanks for analysis of metals in water were contaminated with copper, zinc, and nickel.
- Two of the three sediment samples collected were discarded before metals analyses were done.

As a result, most of the priority pollutant data are of questionable accuracy. In light of this, our report will be limited to a brief description of the survey, some general observations on the results, and recommendations for follow-up work.

-40238- 3

METHODS

Figures 1 and 2 show where samples were collected at the Port of Pasco and vicinity.

Sediment was collected September 9 near each of the two inlets to Juvenile Pond (No. 8094-96). Samples of the top 2 cm layer were taken by Ponar grab. Replicates were collected at the station near the east inlet. Samples were homogenized by stirring with stainless steel spoons in stainless steel beakers.

Ground water, surface water, and fish tissue samples were collected September 10. Ground water samples were from the monitoring well inside the Columbia Marine Lines office yard - identified as Well No. 1 in Figure 2 of Russell (1973). Sampling was done with a teflon bailer; the well was not purged. The distance from the top of the well casing to the surface of the petroleum overlaying the ground water was 6.5 feet. The petroleum layer was 7.7 inches thick. The water fraction (No. 8087) was retained for analysis except for one sample of petroleum for hydrocarbon matching with other surface water samples. The thickness of the petroleum layer in nearby Well No. 2 (Russell, 1973) was also measured and was 4.8 inches.

Surface water samples were grabs collected at the following locations:

- o Manhole No. 2 (No. 8086).
- o Immediately below the oil/water separator on the east inlet to Juvenile Pond (No. 8088/89).
- West inlet to Juvenile Pond at the first upstream culvert (No. 8090).
- o Inlet structure of the pump station on Juvenile Pond discharging to the Columbia River (No. 8091).

Flows were gaged at the east and west inlets to Juvenile Pond with a Marsh-McBirney magnetic flow meter and top-setting rod. Flow data were not available for the pond discharge to the Columbia River. The pumps are rated at 14,800 gpm and work intermittently off a float switch.

Carp <u>(Cyprinus carpio)</u>, were obtained from Juvenile Pond by electroshocking. Three specimens were taken for muscle tissue analysis (composite sample; No. 8097). The range in total length was 32.5-44.5 cm; weights ranged from 528-1,204 grams.

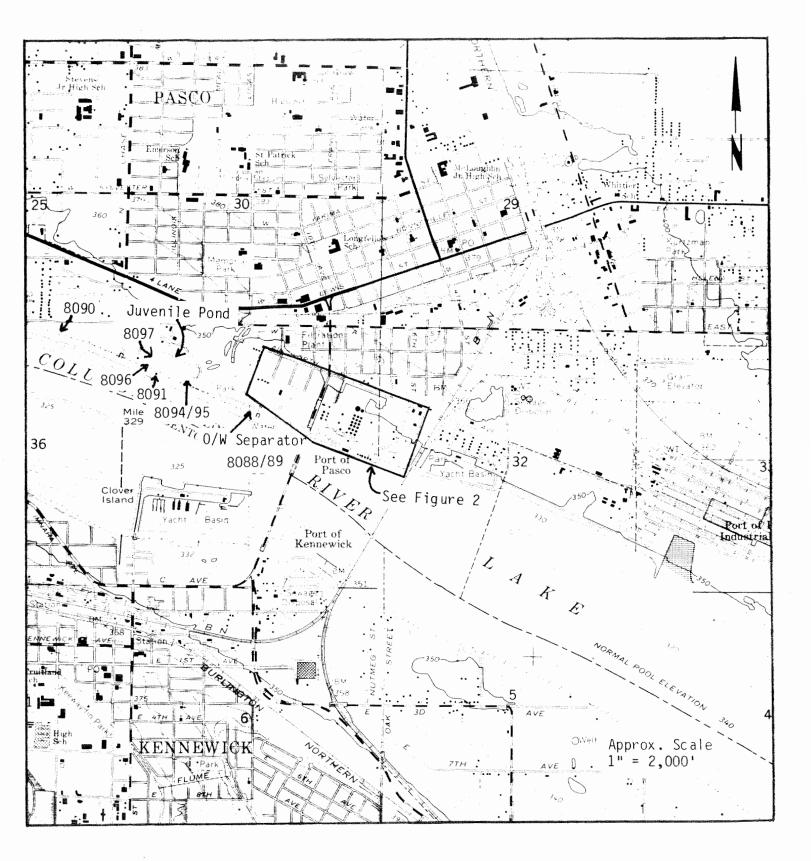


Figure 1. Locations of water, sediment, and fish samples collected by Ecology at Port of Pasco and vicinity on September 9-10, 1985.

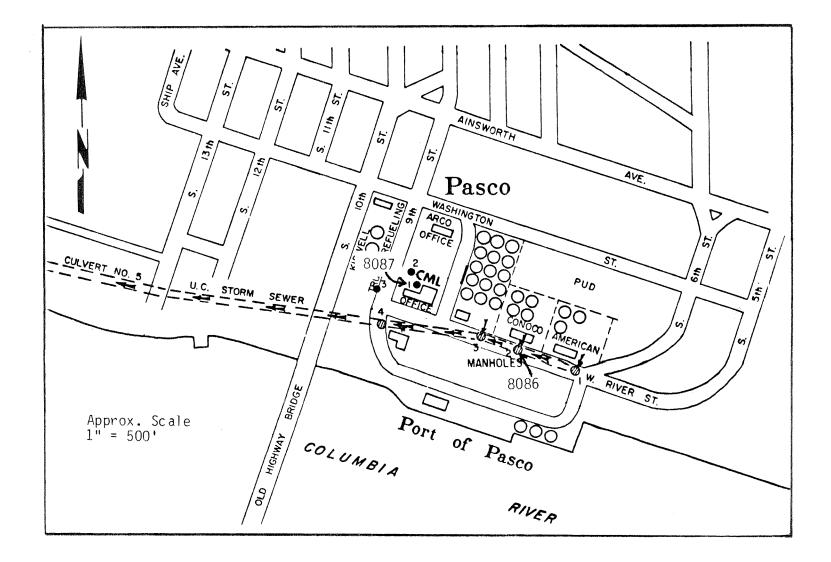


Figure 2. Locations of water samples collected by Ecology at Port of Pasco on September 10, 1985.

Sample bottles for organics and metals were priority pollutant cleaned by I-Chem Research, Inc., Hayward, CA. The teflon bailer, ponar grab, spoons and beakers, and the aluminum foil used to wrap the fish samples were cleaned by rinsing with hydrochloric acid and nanograde acetone. All samples were placed on ice immediately after collection.

Analysis was done by the Ecology/EPA Manchester, WA, Laboratory.

RESULTS

Table 1 summarizes the results of priority pollutant and conventional analyses- note the data qualifiers.

Petroleum contamination of ground water is shown by the aromatic hydrocarbons detected in the water fraction from Well No. 1. Tetra-ethyl lead was also detected. The sampling technique mixed the petroleum layer with the ground water, so these results are indicative of the types of compounds potentially present in the ground water. Pesticides and PCBs were not detected in ground water. The elevated lead, mercury, and arsenic concentrations measured also probably are due to petroleum.

Drainage water upstream of the site of petroleum contamination, represented by the sample at Manhole No. 2, had no reported petroleum compounds, other organic priority pollutants, or cyanide. Metals concentrations appeared low, but the copper, zinc, and nickel data suffer from blank contamination. Manchester has had a long-standing quality assurance problem for these metals.

The drainage downstream of the industrial park immediately below the oil/water separator was reported to have traces of petroleum (toluene, ethlybenzene, xylenes), chlorinated solvents (1,1-dichloroethane, 1,1,1-trichlorethane, tetrachloroethene), and the fumigant 1,2-dichloropropane. 1,2-dichloropropane is a constituent of Telone II (D-D soil fumigant), one of the pesticides handled by Columbia Marine Lines. EPA has a draft recommended maximum contaminant level (RMCL) of 6 μ g/L for 1,2-dichloropropane in ground water. Results from analysis of replicable samples taken at this location were in good agreement for the above compounds.

Tetrachloroethene and ethylbenzene were reported present at their detection limit in the west inlet to Juvenile Pond. Although a slight petroleum sheen was observed on the surface of Juvenile Pond, only tetrachloroethene was detected in the pond discharge to the Columbia River.

None of the concentrations reported for the above compounds in surface waters exceeded EPA water quality criteria. However, actual concentrations may have been underestimated because holding times were exceeded. Chlorinated pesticides, PCBs, and cyanide analysis of surface waters revealed no additional compounds. Given the problems that exist with the metals analysis, there was no evidence of unusually high concentrations.

Toluene, xylenes, trichloroethene, 2-hexanone and 4-methyl-2-pentanone were present at or near their detection limits in sediment from the east end of Juvenile Pond. 2-hexanone and 4-methyl-2-pentanone are ketones. Hexadecanoic acid (a natural compound) and sulfur were also tentatively identified. Trichloroethene, tetrachloroethene, and pentachlorophenol were reported in sediment from the west end of Juvenile Pond. Pentachlorophenol is not often detected in sediment, apparently due to its solubility and relative rapid degradation. The estimated concentration of 860 ug/Kg in the west end sample appears high. Metals concentrations in the west end sediment are not unusual. Based on visual observations, the sediments did not appear to be contaminated with petroleum.

The acid/base-neutrals analysis of carp muscle did not detect any compounds. The detection limits achieved for acid/base-neutrals in both fish and sediment were high. Substantial contamination would have had to be present to be detected.

Pesticides/PCB analysis of carp muscle detected P,P'-DDE at 35 ug/kg and PCB-1254 at 300 ug/kg. FDA action levels for these compunds are 5,000 ug/kg (wet) t-DDT (DDT+DDE+DDD) and 2,000 ug/kg (wet) PCBs. Cadmium, lead, and mercury concentrations in carp muscle were also well below the FDA action levels of 500 ug/kg for cadmium, 7,000 ug/kg for lead, and 1,000 ug/kg for mercury.

The hydrocarbon matching (see attachments) of the petroleum and water from Well No. 2 and each of the surface water samples indicated the petroleum was a mixture of hydrocarbons from different sources. The level of contamination in the surface waters was not sufficient to determine if a match existed.

Analysis of the Juvenile Pond discharge to the Columbia River (see attachments) to determine compliance with state water quality standards showed that temperature, dissolved oxygen, pH, and turbidity were within Class AA standards. Bacterial contamination was indicated by counts of 440 and 340 colonies/100 mL. A high level of nitrate, 13.0 mg/L, was measured.

RECOMMENDATIONS

The substantial pool of petroleum overlying the ground water at the Port of Pasco appeared to be causing only trace contamination of downstream surface waters. There is, of course, a clear and long-standing need to recover the spilled product. Based on the abundant population of carp and suckers in Juvenile Pond, there was no obvious evidence of an acute toxicity problem.

Two potential problem chemicals, 1,2-dichloropropane and pentachlorophenol, were identified. Because of the questionable accuracy of the water analyses, water from the east and west inlets to Juvenile Pond should be resampled and analyzed for volatiles and acid/base-neutrals. The extent of pentachlorophenol contamination in Juvenile Pond sediments should be evaluated through collection of several additional samples for acid compounds.

REFERENCES

Russell, R.H. 1973 Geo-hydrologic evaluation of Pacific Inland Navigation Company tank farm oil spill problem, Port of Pasco, Washington, Washington State Department of Ecology

AJ:av OP1/86/060316A

Attachments

Table 1. Results of Ecology/EPA Manchester Laboratory Analyses of Port of Pasco Samples Collected by WQIS and ERO on September 9-10, 1985 (Note data qualifiers)

Matrix			. WA	TER		· · · ·		SEDIMENT		TISSUE
Sample Location Sample Number	Sewer at Manhole No. 2 #8086	Well No. 2 at Columbia Marine Lines #8087	0	below /W rator #8089	West Inlet to Juvenile Pond #8090	Juvenile Pond Discharge to Columbia R. #8091	of Ju	t End Venile ond #8095	West End of Juvenile Pond #8096	Carp Muscle #8097
flow (cfs) temp. (°C) pB specific cond. (umhos/cm) tot. hardness (mg/L) tot. susp. solids (mg/L) oil & grease (mg/l) % solids % ash	16.2 6.5 606 - 5 1 U -	2,120 180 130	0.37 16.2 6.5 675 - 11 1.4 -	672 - 4 1.1 -	9.3 17.1 6.4 684 - 7 1 U -	17,4 6,7 713 280 7 2,1 -	- - - - - - - - - - - - - - - - - - -	- - - 0.2 31 93	- - - - - - 0.2 2 91	
Volatiles (ppb) 1,1-dichloroethane 1,1,1-trichloroethane 1,2-dichloropropane tetrachloroethene toluene ethylbenzene total xylenes methylethylbenzene + isomers trimethylbenzene + isomers methylpropylbenzene + isomers dimethylethylbenzene + isomers tetramethylbenzene + isomers 2-bexanone 4-methyl-2-pentanone tricbloroethene	5 U+ 5 U+ 5 U+ 5 U+ 5 U+ 5 U+ 5 U+ 5 U+ NI + NI + NI + NI + 10 U+ 10 U+ 5 U+	2,500 U+ 2,500 U+ 2,500 U+ 2,500 U+ 19,000 + 23,000 + 370,000 + 250,000 + 420,000 + 140,000 + 140,000 + 130,000 + 66,000 + 5,000 U+ 5,000 U+ 2,500 U+	2.5 J+ 27 + 39 + 11 + 1 J+ 1 J+ 16 + NI + NI + NI + NI + 10 U+ 10 U+ 5 U+	2.7 J+ 31 + 47 + 13 + 1 J+ 1 J+ 13 + NI + NI + NI + NI + 10 U+ 10 U+ 5 U+	5 U+ 5 U+ 5 U+ 1 UJ+ 5 U+ 1 J+ 5 U+ NI + NI + NI + NI + NI + 10 U+ 10 U+ 5 U+	5 U+ 5 U+ 5 U+ 3.7 UJ+ 5 U+ 5 U+ 5 U+ NI + NI + NI + NI + 10 U+ 10 U+ 5 U+	35 U 35 U 35 U 35 U 35 U 1 J 35 U 5 J NI NI NI NI NI 70 U 70 U 35 U	38 U 38 U 38 U 38 U 38 U 38 U 38 U 38 U	43 U 43 U 43 U 5.7 J 43 U 43 U 43 U 43 U NI NI NI NI NI NI NI 86 U 86 U 86 U 3 UJ	-
Acid/Base-Neutrals (ppb) naphthalene 2-methylnaphthalene 2,3-dimethylnaphthalene acenaphthene phenanthrene 2,5-dimethylphenanthrene 2-methylanthracene tetraeththyl lead pentachlorophenol hexadecanoic acid sulfur	2 U+ 2 U+ NI + 2 U+ 2 U+ 2 U+ NI + NI + 2 U+ NI + NI + NI +	28,000 + 35,000 + 6,900 J+ 300 J+ 1,500 J+ 1,500 J+ 3,700 J+ 3,700 J+ 3,000 U+ NI + NI + NI +	2 U+ 2 U+ NI + 2 U+ 2 U+ NI + NI + 2 U+ NI + 2 U+ NI + NI + NI +	2 U+ 2 U+ NI + 2 U+ 2 U+ NI + NI + NI + 2 U+ NI + NI + NI +	2 U+ 2 U+ NI + 2 U+ 2 U+ NI + NI + NI + 2 U+ NI + NI + NI + NI +	2 U+ 2 U+ NI + 2 U+ 2 U+ NI + NI + NI + 2 U+ NI + NI + NI + NI +	1,400 U 1,400 U NI 1,400 U 1,400 U NI NI 1,400 U 1,400 U 1,400 U 1,30,000 J 36,000 J	1,400 U 1,400 U NI 1,400 U 1,400 U NI NI NI 1,400 U present NI	1,600 U 1,600 U NI 1,600 U 1,600 U NI NI NI 860 J NI NI NI	400 U 400 U NI 400 U 400 U NI NI NI 400 U NI NI
Pesticides/PCBs (ppb) P,P'-DDE PCB-1254	0.002 U+ 0.04 U+	0.002 U+ 0.04 U+	0.002 U+ 0.04 U+	0.002 U+ 0.04_ U+	0.002 U+ 0.04 U+	0.002 ป+ 0.04 ป+	5 U+ 60 U+	5 U+ 60 U+	5 U+ 50 U+	35 + 300 +
Metals (ppb) copper zinc nickel chromium cadmium lead mercury arsenic	68 * 21 * 24 * 1 U 0.1 U 13 0.05 U 4	68 * 6 * 5 * 1 U 0.I U 246 0.90 107	66 * 50 * 38 * 1 U 0.1 U 0.1 U 0.05 U 8	60 * 47 * 1 U* 15 0.1 U 1 U 0.05 U 2	68 * 11 * 30 * 1 U 0.1 U 1 U 0.05 U 8	45 * 15 * 10 * 1 U 0.1 U 6 U 0.05 U 8	NA NA NA NA NA NA NA	NA NA NA NA NA NA NA	89,400 88,300 28,000 190 50,400 8 4,100	- - 3 U 162 30
Miscellaneous (ppb) cyanide	ົ້ 5 ປ	220	5 U	5 U	5 U	5 V	- ·	. –		-

U = Not detected at detection limit shown J = Estimated concentration + = Holding time exceeded in analysis - = Analysis not requested * = Blank contamination NI = Not identified NA = Not analyzed (lab lost sample)

AV/OP1/86/060316

	state of		helin	Antre	art	-			,		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
* *	 State Of Washington Department of Boology 	OLYM		TRONME	NTAL L	ABORAT	ORY		GE		
		friel		DATA SUI	MMARY			2 	Art	Johns	507
	DATE COLLECTED 9/9-				COLLE	CTED BY_	_AJ/	DN			
ſ		8086	8087	8088	8089	8090	8891	8091	8092	8893	8094
	Station:	Manhok	W.I	Separt.	Rep	West Drain	Pord Discha.	Pond Discha	Blank	Blank	EndRu
	pH (units)		7.1	,	7.4	7.9	7.8				
ľ	Turbidity (NTU)						1				
	Sp. Conductivity (umhosycm)	606	2120	675	672	684	713				
	COD										
	BOD (5 day)										
	Fecal Coliform (Col./I00 ml)						440*	340*			
	NO3-N						13.0				
	NO2-N						<.01				
	NH3-N						.88				
	T.Kjeldahl-N										
	O-P04-P						.06				
	Total PhosP						.10				
	Total Solids - 90										33
	Total Non Vol. Solids 73 ash										93
i	Total Suspended Solids	5	180	11	4	7	7				
	Total Non Vol. Sus. Solids										
	Total Hardness "Call,						280				
	D.O (mall; field)						10.5				
	16 11 H.C						10.3				
	pH (units field)						6.7				
	11 11 -11						6.7				
	temperature (1: 1)	rld)					17.4				

NOTE: All results are in mg/L(ppm) unless otherwise specified. ND is "None Detected"

بالربيا ويعتمه والعصابة الماليونية

"<" is "Less Than" and ">" is "Greater Than"

+ Many background organisms ECY 040-2-32 Rev. 9/81

REVIEWED BY

بالمستدعة السعانية العرابي تعمقه بمحادثة بتربق وحروروا المسادير والردار الر

SUMMARIZED B Dam Carly DATE 10/24/85 DATE

C

.

State of
Washington
Department
of Ecology

OLYMPIA ENVIRONMENTAL LABORATORY

DATA SUMMARY

PAGE 2 OF 2

ORIGINAL TO: LAB FILES

COPJES TO: Art Johnson

.....

o Industrial Park SOURCEL

DATE COLLECTED	10/85			COLLE	CTED BY.	A	TDN_	 ······	
1		1	8097	8098					
Station:	8095 Rep E.End	W.End Jul-Par	JUV. Pond	well					
pH (units)									
Turbidity (NTU)									
Sp. Conductivity (umhosycm)									
COD									
BOD (5 day)									
Fecal Coliform (Col./I00 ml)								i	
NO3-N									
NO2-N									
NH3-N									
T.Kjeldahl-N									
O-P04-P									
Total PhosP									
Total Solids - 7	31	29	22						
Total Non Vol. Solids 78 ash	93	91							
Total Suspended Solids									
Total Non Vol. Sus. Solids									

and the second second second second

NOTE: All results are in mg/L(ppm) unless otherwise specified. ND is "None Detected"

"<" is "Less Than" and ">" is "Greater Than"

÷

ECY 040-2-32 Rev. 9/81

and the second constraints

SUMMARIZED BY Jam CILLy DATE 10/24/85 DATE REVIEWED BY

A REAL PROPERTY AND

ANDREA BEATTY RINIKER Director

STATE OF WASHINGTON DEPARTMENT OF ECOLOGY

Mail Stop PV-11 • Olympia, Washington 98504-8711 • (206) 459-6000

MEMORANDUM February 21, 1986

TO: Art Johnson

Dick Huntamer, Chemist FROM:

Organic Analyses of Pasco Industrial SUBJECT: Park Samples, Pasco, Washington

Twelve samples, collected on September 9-10, 1985, were received at the Manchester Environmental Laboratory on September 11, 1985, for analyses. The results of the volatile organic analyses on the three soil samples which had to be re-extracted due to poor surrogate recoveries are attached.

Lab Number

378086	Manhole # 2	Water
378087	Well # 🖁	Water
378088	Ind. Park Drain O/W Separator	Water
378089	Ind. Park Replicate	Water
378090	West Drain to Juvenile Pond	Water
378091	Pond Discharge to Columbia River	Water
378092	Transfer Blank	Water
378093	Transport Blank	Water
378094	Juvenile Pond East End	Soil
378095	Juvenile Pond East End	Soil
378096	Juvenile Pond West End	Soil
379097	Juvenile Pond	Fish Tissue
378098	Well #	
	7	

DH/cm Attachment

er de la companya de	VC	⊶ سا(لد						
ROJECT CODE 6000 = - 412									
RAJECT Hasso Inclusto Park	COMPILED E	BY:	SV	ICK_		DA'	TE:	17-6	-85
ABORATORY Manchester	REVIEWED H	BY:	\underline{Q}	M	3		TE:	17-6	1-85
						, , , , , , , , , , , , , , , , , , , 			
SAMPLE # :	37- 50% «	37- 5087	37- 8298	37- 5289	37- 80%	5091	37- 8892	37- 5093	
UNITS :	NG/Q -							E	
% SOLIDS :	1-1	_			-				
Date Analyzed :	"645				12/2/55				
1. chloromethane	10ut	7005	Ru	10 u	Ru	10 u	10	10 4	•
2. bromomethane		5004			•				
3. vinyl chloride									
4. chloroethane			5	¥	4	\downarrow	Ŧ	t	
5. methylene chloride	ZeSUS		1,745	2,2UJ-	1.345	10145	6.545	1.20	
6. acetone	3.3UJ	1.3E4 UJ	3.745	3.545	6.745	5,445	10 W	4.145	
7. carbon disulfide	54	ILU.	54	5.	54	54	<u>5u</u>	54	
8. 1,1-dichloroethene		_		b					
9. 1,1-dichloroethane			2.5J	2.75			ļ		
10a trans-1,2-dichloroethene			54	54					
10b cis-1,2-dichloroethene									
11. chloroform									
12. 1,2-dichloroethane	+	t	L b		×	4	F	V	
13. 2-butanone	4,345	5.0F9 US	4.445	5.0UT	3845	4.045	4.045	4,245	
14. 1,1,1-trichloroethane	54	I Û U	27.	31	54	54	54	54	
15. carbon tetrachloride	4	b	5n	54	1 to	6	4	+	
16. vinyl acetate	104	5100 i	100	104	10 y	10 4	104	Ky	
17. bromodichloromethane	5u	2500 u	54	54	54	54	54	54	
18. 1,1,2,2-tetrachloroethane			4	17				1/	
19. 1,2-dichloropropane			39	47					
20. trans-1,3-dichloropropene	4	$\overline{\mathbf{A}}$	54	54	\downarrow	\mathbf{F}	1 +	P	

.

-

· · · ·	".	VOI	ATII	ES	(Conti	inued)						
PROJE	TT Pasco Inclusto Fack	ca	MPIL	ED	BY:	$\leq V$	Kaple		DA	TE:	12-4-	-85
	ATORY Manchester						J.B.			.TE:	12-4	1-85
							27	7	2-			ı
	SAMPLE # :		37 409	Z	37- 5887	375	37- 5589	50-1C	37- 5£91	37- 5092	37- 4293	
	UNITS :		1.9	2							Þ	-
21.	trichloroethene		5	n	25000	54	54	<u>54</u>	54	5u	54	
22.	dibromochloromethane											+-
23.	1,1,2-trichloroethane											
24.	benzene											
25.	cis-1,3-dichloropropene		$ $ \downarrow	7	T		4	+	↓ ↓	7	↓ ↓	
<u>26.</u>	2-chloroethylvinyl ether		10	c	Secu	Ku	Ku	104	Xu	104	10.4	
<u>27.</u>	bromoform		5	i1	25tin	54	54	Sy	54	54	50	
28.	2-hexanone		11	и	Scalu	1C 4	16 5	1Cu	10:1	104	10.	
29.	4-methyl-2-pentanone		1	7	4	L t	+	+	b	$\downarrow \downarrow$	6	
30.	tetrachloroethene		5	Ц	25001	J. 11	13	145	3.745	2115	1.45	
<u>31.</u>	toluene				109E4	15	15	54	<u>5</u> u	54	54	
32.	chlorobenzene				7500L	54	Зų	4				
33.	ethylbenzene				203E4	15	15	1J				
<u>34</u> .	styrene				75000	54	54	54	Ī			
35.	total xylenes			7	3.7ES	16	13	1 +	\downarrow	+	1.5	

Value If the result is a value greater than or equal to the detection limit, report the value.

- U Indicates compound was analyzed for but not detected. Report the minimum detection limit for the sample with the U (e.g.10U) based on necessary concentration dilution actions (This is not necessarily the instrument detection limit). The footnotes should read U: Compound was analyzed for for but not detected. The number is the minimum attainable detection limit for the sample.
- J Indicates an estimated value. The flag is used either when estimating a concentration for tentatively identified compounds where a 1:1 response is assumed or when the mass spectral data indicates the presence of a compound that meets the identification criteria but the result is less than the specified detection limit but greater than zero. (e.g. 10J)
- B This flag is used when the analyte is found in the blank as well as a sample. It indicates possible/probable blank contamination and warns the data user to take appropriate action.

TENTAT	IVELY IDENTIFIED COMPOUNDS
NEET: Pasco Irclust. Rek	CUMPILED BY: SURCE DATE: 12-4-85 REVIEWED BY: MIS DATE: 12-4-85
Values	are estimated ug/l.
ACTION: VOA SAMPLE = :	$\frac{37-}{3052} \frac{37-}{5687} \frac{37-}{5288} \frac{37-}{5059} \frac{37-}{5090} \frac{37-}{5091} \frac{37-}{5092} \frac{37-}{5293}$
CAS # MAINE Methyl Ethyl Benzenet 150 mers	-2.5
Trimethylbenzene d isomers Methylpropylbenzene	- 4.1E5
t isomers Dimethyl ethyl benzene	-1.4ES $$
<u>+ isomers</u> Tetramethyl benzene + isomers	- 6.6E4
•	
•	

.

. -

STATE OF WASHINGTON

DEPARTMENT OF ECOLOGY

Mail Stop PV-11 • Olympia, Washington 98504-8711 • (206) 459-6000

<u>M</u> <u>E</u> <u>M</u> <u>O</u> <u>R</u> <u>A</u> <u>N</u> <u>D</u> <u>U</u> <u>M</u>

December 24, 1985

TO: Art Johnson

ANDREA BEATTY RINIKER Director

FROM: Dick Huntamer, Chemist

SUBJECT: Organic Analyses of Pasco Industrial Park Samples, Pasco, Washington

Twelve samples, collected on September 9-10, 1985, were received at the Manchester Environmental Laboratory on September 11, 1985, for analyses. The results of the acid/base-neutral analyses on the water and tissue samples are attached. The three soil samples had to be re-extracted due to poor surrogate recoveries.

The results of the analyses are attached.

Lab Number

378086	Manhole $\# \lambda$	Water
378087	Well #	Water
378088	Ind. Park Drain O/W Separator	Water
378089	" Replicate "	Water
378090	West Drain to Juvenile Pond	Water
378091	Pond Discharge to Columbia River	Water
378092	Transfer Blank	Water
378093	Transport Blank	Water
378094	Juvenile Pond East End	Soil
378095	Juvenile Pond East End	Soil
378096	Juvenile Pond West End	Soil
378097	Juvenile Pond	Fish Tissue
378098	Well #	

DH/cm Attachment

PROJECT Pasco IndustrialPark compiled by: <u>MBlauvich</u> DATE: 12-24-85 LABORATORY <u>Manchester</u> REVIEWED BY: <u>CERE</u> DATE: 12-24-85

SAMPLE # :	378081	378087	378088	378(189)	378090	378191	378092	378093	378097
UNITS :	nall							->	ug Ry *
% SOLIDS :	0'	-	_	-		-			
Date Extracted/Date Analyzed	10-10-5	11-11-85	10-11-85	10-10-85	10-10-35	10-10-55	10-10-55	11-26-85	10-2-85
1. N-Nitrosodimethylamine	-		-		\frown		<u> </u>	-	-
2. Aniline	-	-	-		-	-		-	-
3. Phenol	24	3000 M	211	24	211	ZM	24	24	400m
 bis(2-Chloroethyl) ether 	1								
5. 2-Chlorophenol									
6. 1,3-Dichlorobenzene									
7. 1,4-Dichlorobenzene									
8. 1,2-Dichlorobenzene									
9. Benzyl Alcohol									
10. 2-Methylphenol									
11. bis (2-Chloroisopropyl) ether									
12. Hexachloroethane							_		
13. 4-Methylphenol								_	
14. N-Nitroso-di-n-Propylamine									<u></u>
15. Nitrobenzene									
16. Isophorone									
17. 2-Nitrophenol									
18. 2,4-Dimethylphenol									
19. bis(-2-Chloroethoxy) methane	V	$ $ \vee	$ $ \vee	Ø	$\sqrt{}$	$ \forall$	\vee	V	\checkmark

Park PROJECT LABORATORY Manchister

In Blarench DATE: 12-24-85 COMPILED BY:_ OFR DATE: 12-24-85 REVIEWED BY:

SAMPLE # :	378086	3780.87	3780.88	378089	375090	378091	378092	378093	378097
UNITS :	ur/2							\rightarrow	11g/Kg
20. 2,4-Dichlorophenol	21	3000 M	21	24	24	211	211	21	400 U
21. 1,2,4-Trichorobenzene				<u> </u>		<u> </u>			
22. Benzoic Acid	<u> </u>								
23. Naphthalene		28,000			<u> </u>		<u> </u>	<u> </u>	
24. 4-Chloroaniline		3000 U			<u> </u>	<u> </u>		<u></u>	
25. Hexachlorobutadiene				<u> </u>		<u> </u>			
26. 4-Chloro-3-methylphenol		\mathbf{V}					<u> </u>	<u> </u>	
27. 2-Methylnaphthalene		35,000	2						
28. Hexachlorocyclopentadiene		3000							
29. 2,4,6-Trichlorophenol		<u> </u>				<u> </u>			<u></u>
30. 2,4,5-Trichlorophenol				<u></u>		<u></u>			++
31. 2-Chloronaphthalene		· .							<u></u>
32. 3-Nitroaniline			<u></u>	_		<u> </u>			
33. Acenaphthylene							<u> </u>		
34. Dimethyl phthalate								_	<u> </u>
35. 2,6-Dinitrotoluene		\downarrow \checkmark				_			
36. Acenaphthene		3000			_	<u> </u>			
37. 2,4-Dinitrophenol		30001							
38. Dibenzofuran									
39. 4-Nitrophenol		∕ \ \	$ $ \vee		\downarrow \downarrow	V	$\downarrow \downarrow$	$ \psi\rangle$	

ACID/BASE/NEUTRAL COMPOUNDS

n Blaunch PROJECT Pascolndustrial Park DATE: 12-24-85 COMPILED: LABORATORY Manchester DATE: 12-24-8 REVIEWED BY:

SAMPLE # :	37808	123	78187	378	0383	78089	378	090	378()9	13	78092	378093	378097
UNITS :	49/1	l										\rightarrow	ng/Kg
40. 2,4-Dinitrotoluene	24		3000M	2	N	211	2	и	21	<u> </u>	ZM	24	40011
41. Fluorene		_						+					
42. Diethyl phthalate							ļ						
43. N-Nitrosodiphenylamine (1)				ļ									
44. 4-Chlorophenyl phenyl ether										_			
45. 4,6 Dinitro-2-methylphenol				<u> </u>			_						
46. 4-Bromophenyl phenyl ether	_									·			+
47. Hexachlorobenzene													+
48. Pentachlorophenol			V										
49. Phenanthrene			1500.	1									
50. Anthracene			30102	1	_								
51. Di-n-Butyl phthalate													
52. Fluoranthene	1	V	V		$\underline{\mathbb{V}}$	V			V	/	V		/. V
53. Benzidine		,	_			~			-	-			
54. Pyrene	31	1	3000	u o)M	211		2M	2	M	2M	121	400,0
55. Butyl benzyl phthalate					1_	<u> </u>					<u>_</u>		
56. Benzo(a)anthracene													
57. 3,3'-Dichlorobenzidine					_						 		
58. Chrysene								$\underline{\mathbb{V}}$		\underline{V}	$ \Psi $	V	V
59. bis(2-Ethylhexyl)phthalate		/	$ \vee$		V	V	/8	Ύ B	161	<u>311</u>	3 B.	14B	13,000 B

なない やいれたび やいちん あんだん 酸酸化 マスロ

COMPILED BY LABORATORY YY REVIEWED BY:

DATE: 12-24-85 DATE: 12-24-85

	SAMPLE # :	3780	86	37X	87	378	188	3780	89	3780	190	378	191	378	092	378	093	378	197
	UNITS :	ngi	ß	~													\geq	n	Ka
60.	Di-n-octyl phthalate	121	4_	300	0,n	2	и	2	4	2	И	2	И	2	4	2	4	40	ion
61.	Benzo(b)fluoranthene		Ĺ				1						1		, 				\square
62.	Benso(k)fluoranthene	ļ					<u> </u>												
63.	Benzo(a)pyrene																		
64.	Indeno(1,2,3-cd)pyrene																		
65.	Dibenz(a,h)anthracene																		
66.	Benzo(g,h,i)perylene		/		\checkmark	V	/	Y	/	V	(/.	\ \	V_{-}	X	/	$ \downarrow$	

- Value If the result is a value greater than or equal to the detection limit, report the value.
- U Indicates compound was analyzed for but not detected. Report the minimum detection limit for the sample with the U (e.g.10U) based on necessary concentration dilution actions (This is not necessarily the instrument detection limit). The footnotes should read U: Compound was analyzed for for but not detected. The number is the minimum attainable detection limit for the sample.
- J Indicates an estimated value. The flag is used either when estimating a concentration for tentatively identified compounds where a 1:1 response is assumed or when the mass spectral data indicates the presence of a compound that meets the identification criteria but the result is less than the specified detection limit but greater than zero. (e.g. 10J)
- B This flag is used when the analyte is found in the blank as well as a sample. It indicates possible/probable blank contamination and warms the data user to take appropriate action.

TENTATIVELY IDENTIFIED COMPOUNDS

wtrid Pask CUMPILED UY: AmBlaunch PROJECT: Vasa-DATE: 12-24-85 REVIEWED BY: LABORATORY: Marchester DATE: 12-24-

	-	1							······································	
NBA FRACTION:	SAMPLE # :	378086	378087	378088	378689	378090	378091	378092	378093	3780917
CAS #	МАНЕ	0/2	413	0 /	07	0/2	0/8		0	37
78 100-2	tetraethyllead	ND	570 J ng/l	ND	ND	ND	ND	ND	ND	ND
581	naphthalene 2,3-dimethyl	Í	6900J Ug/l							
613	anthragene 2-methyl-		3700 J Mg/2							
3674 466-6	phenanthenene, 2,5-dimethyl-	\bigvee	1500 F Mg/R						\bigvee	
5.	·									
÷ 6.										
<i>7</i> .				÷						
8.										
9.										
10.			•							

. -

ANDREA BEATTY RINIKER Director

.

STATE OF WASHINGTON

DEPARTMENT OF ECOLOGY

Mail Stop PV-11 • Olympia, Washington 98504-8711 • (206) 459-6000

M E M O R A N D U M February 21, 1986

TO: Art Johnson

FROM: Dick Huntamer, Chemist

SUBJECT: Organic Analyses of Pasco Industrial Park Samples, Pasco, Washington

Twelve samples, collected on September 9-10, 1985, were received at the Manchester Environmental Laboratory on September 11, 1985, for analyses. The results of the volatile organic analyses on the three soil samples which had to be re-extracted due to poor surrogate recoveries are attached.

Lab Number

378086	Manhole # 🎝	Water
378087	Well # 🛔	Water
378088	Ind. Park Drain O/W Separator	Water
378089	Ind. Park Replicate	Water
378090	West Drain to Juvenile Pond	Water
378091	Pond Discharge to Columbia River	Water
378092	Transfer Blank	Water
378093	Transport Blank	Water
378094	Juvenile Pond East End	Soil
378095	Juvenile Pond East End	Soil
378096	Juvenile Pond West End	Soil
379097	Juvenile Pond	Fish Tissue
378098	Well #	

DH/cm Attachment VOLATILES

• •

PROJECT CODE WOOE- 412							
PROJECT Pasco Inclusto Pack	COMPILED	BY:	5V	Pope	 DATE:	2-2	10-84
LABORATORY Manchester Lab	REVIEWED	BY:	4 -	2.570	 DATE:	2.20	1.96
			27		 		y
SAMPLE # :	37 - 6094	31- 8095	8096				
	nah.		P				

4-+		10-11	10011	14-14-			 +		
	UNITS :	wyką		P					
	% SOLIDS :	35.2	31.5	29-0					
	Date Analyzed :	1-16-86							
1.	chloromethane	70 m	Tou	Hou					
2.	bromomethane								
3.	vinyl chloride			<u> </u>					
4.	chloroethane		1	-					
5.	methylene chloride	1145	1145	1445		+	 		
6.	acetone	380 UÍ	170UJ	Ba					
_7	carbon disulfide	35 u	384	43n					
_8	1,1-dichloroethene	ļ							
_9	1,1-dichloroethane		<u> </u>				 		
<u>10a</u>	trans-1,2-dichloroethene		ļ						
<u>10Ъ</u>	cis-1,2-dichloroethene	ļ					 		
<u>11.</u>	chloroform			ļ			 		
12.	1,2-dichloroethane	T P	+	+			 		
<u>13.</u>	2-butanone	18845	13045	96UJ			 		
14.	1,1,1-trichloroethane	35 n	38 U	434			 		
15.	carbon tetrachloride	H	F	Þ					
16.	vinyl acetate	70 u	76 u	864	ļ				
<u>17.</u>	bromodichloromethane	354	384	434			 		
18.	1,1,2,2-tetrachloroethane	<u> </u>		<u> </u>					ļ
19.	1,2-dichloropropane								
20.	trans-1,3-dichloropropene		4						

-		VOLATILES (Contínuea)	
PROJE	IT Pasco Inclust. Pack	COMPILED BY: 5 V 1220	DATE: 2-20-56
LABOR	ATORY Manchester Lab	REVIEWED BY: J. T. E. H.	DATE: 2-20 56
	SAMPLE # :	37- 37- 37- 5094 5095 5096	
	UNITS :	ug/kg	
21.	trichloroethene	35 y 4445 3 uJ	
22.	dibromochloromethane	384 434	+
23.	1,1,2-trichloroethane		
24.	benzene		
25.	cis-1,3-dichloropropene	+ + +	
26.	2-chloroethylvinyl ether	Nu Tou Hou	
27.	bromoform	35 4 35 43 43 u	
28.	2-hexanone	20m 100 86m	
29.	4-methyl-2-pentanone	t 59 t	
30.	tetrachloroethene	354 384 5.75	
31.	toluene	1J 43u	
32.	chlorobenzene	354	
33.	ethylbenzene		
34.	styrene		
35.	total xylenes	55 + +	

Value If the result is a value greater than or equal to the detection limit, report the value.

- U Indicates compound was analyzed for but not detected. Report the minimum detection limit for the sample with the U (e.g.10U) based on necessary concentration dilution actions (This is not necessarily the instrument detection limit). The footnotes should read U: Compound was analyzed for for but not detected. The number is the minimum attainable detection limit for the sample.
- J Indicates an estimated value. The flag is used either when estimating a concentration for tentatively identified compounds where a 1:1 response is assumed or when the mass spectral data indicates the presence of a compound that meets the identification criteria but the result is less than the specified detection limit but greater than zero. (e.g. 10J)
- B This flag is used when the analyte is found in the blank as well as a sample. It indicates possible/probable blank contamination and warns the data user to take appropriate action.

TENTA	TIVELY	LUENT	IFIED C	UMPOURE	15	~		
DECT: Pasco Inclust-Par CORATORY: Manchester Lab	E CUMP REVIE	(LED 61	(: <u>5</u>	Vo Pop	e A	UATE: DATE:	2-2	<u>286</u> c-56
							1	
ACTION: VOA SAMPLE :	31- 5094	37- 8095	37- 5096					
CAS # MARE								
None								
					5			
							. 3 	
•	· · ·							
· · · ·							-	
· · · · · · · · · · · · · · · · · · ·			;					

.

ANDREA BEATTY RINEER Director

STATE OF WASHINGTON

DEPARTMENT OF ECOLOGY

Mail Stop PV-11 . Olympia Washington 98504-8711 . (206) 459-6000

 $\frac{M E M O R A N D U M}{March 26, 1986}$

TO: Art Johnson

FROM: Dick Huntamer, Chemist

SUBJECT: Organic Analyses of Pasco Industrial Park Soil Samples, Pasco, Washington

Three soil samples, collected on September 9-10, 1985, were received at the Manchester Environmental Laboratory on September 11, 1985; re-extracted January 3, 1986 and analyzed February 5-7, 1986 for acid base-neutral organic analysis. Since the work on these samples was cancelled due to holding times, this data is provided for your information.

The results of the analyses are attached.

Lab Number					
378094	Juvenile	Pond	East	End	
378095	Juvenile	Pond	East	End	Replicate
378096	Juvenile	Pond	West	End	

Attachment DH/cm

PROJECT Part and Park COMPILED BY: MBlagenich DATE: 3-23-86 Marchinter Reviewed BY: DOH DATE: 3-24-86

					T		T	T
	1.	378095	378 096			 		
UNITS :	49/12					 		
% SOLIDS :			29,0			 		
Date Extracted/Date Analyzed	1-3-86	1-7-86						
1. N-Nitrosodimethylamine	_	_						
	~	_						
2. Aniline)/loit.	Nipa	1/20					
3. Phenol	17004	19004	16004			 		
 bis(2-Chloroethyl) ether 						 		
5. 2-Chlorophenol	ļ	ļ				 		
6. 1,3-Dichlorobenzene						 		
7. 1,4-Dichlorobenzene						 		
8. 1,2-Dichlorobenzene						 		
9. Benzyl Alcohol		ļļ.	<u></u>			 		
10. 2-Methylphenol								
11. bis (2-Chloroisopropyl) ether						 		
12. Hexachloroethane	<u> </u>		<u> </u>					
13. 4-Methylphenol		<u></u>	<u> </u>	<u> </u>		 		
14. N-Nitroso-di-n-Propylamine	<u> </u>	<u></u>				 		
15. Nitrobenzene	<u> </u>	<u> </u>	<u> </u>	_		 	 	
16. Isophorone	<u> </u>					 [
17. 2-Nitrophenol			<u> </u>					
18. 2,4-Dimethylphenol			+					
19. bis(-2-Chloroethoxy) methane	\bigvee	$ \downarrow \rangle$	V					

PROJECT Pascula Jank LABORATORY Ma

RUmence COMPILED BY:___ DATE: 3-23-86 REVIEWED BY: DATE: 3 - 24 -86

SAMPLE # :	3780943780 953	37×096	
UNITS :	ug/Kg	>	
20. 2,4-Dichlorophenol	1400 1 1400 h	600m	
21. 1,2,4-Trichorobenzene			
22. Benzoic Acid			
23. Naphthalene			
24. 4-Chloroaniline			
25. Hexachlorobutadiene			
26. 4-Chloro-3-methylphenol			
27. 2-Methylnaphthalene			
28. Hexachlorocyclopentadiene			
29. 2,4,6-Trichlorophenol			
30. 2,4,5-Trichlorophenol			
31. 2-Chloronaphthalene			
32. 3-Nitroaniline			
33. Acenaphthylene			
34. Dimethyl phthalate			
35. 2,6-Dinitrotoluene			
36. Acenaphthene			
37. 2,4-Dinitrophenol			
38. Dibenzofuran			
39. 4-Nitrophenol	VV	V	

ACID/BASE/NEUTRAL COMPOUNDS

PROJECT Pasco lude Pask LABORATORY (chales

Blound COMPILED: REVIEWED BY: DON

DATE: 3-23-86 DATE: 3-24 - 86

SAMPLE # :	378094378095378096
UNITS :	ug/kg ->
40. 2,4-Dinitrotoluene	1400m 1400m 1600m
41. Fluorene	
42. Diethyl phthalate	
43. N-Nitrosodiphenylamine (1)	
44. 4-Chlorophenyl phenyl ether	
45. 4,6 Dinitro-2-methylphenol	
46. 4-Bromophenyl phenyl ether	
47. Hexachlorobenzene	
48. Pentachlorophenol	(8103)
49. Phenanthrene	160021
50. Anthracene	
51. Di-n-Butyl phthalate	
52. Fluoranthene	
53. Benzidine	
54. Pyrene	1400 m 1400 m 160 m
55. Butyl benzyl phthalate	HOOTA
56. Benzo(a)anthracene	1400 M
57. 3,3'-Dichlorobenzidine	
58. Chrysene	
59. bis(2-Ethylhexyl)phthalate	27 april 1300054

ACID/BASE/NEUTRAL COMPOUNDS

Paper and PROJECT COMPILED BY: DATE: DATE : REVIEWED BY: LABORATORY 378094378095 378096 SAMPLE # :

	UNITS :	ug/k	15				R				
60.	Di-n-octyl phthalate	1400	IM	14001	4	16001	0				
61.	Benzo(b)fluoranthene							A			
62.	Benso(k)fluoranthene										
63.	Benzo(a)pyrene										
64.	Indeno(1,2,3-cd)pyrene										
65.	Dibenz(a,h)anthracene										
66.	Benzo(g,h,i)perylene	\forall		V.		\bigvee					

- Value If the result is a value greater than or equal to the detection limit, report the value.
- U Indicates compound was analyzed for but not detected. Report the minimum detection limit for the sample with the U (e.g.10U) based on necessary concentration dilution actions (This is not necessarily the instrument detection limit). The footnotes should read U: Compound was analyzed for for but not detected. The number is the minimum attainable detection limit for the sample.
- J Indicates an estimated value. The flag is used either when estimating a concentration for tentatively identified compounds where a 1:1 response is assumed or when the mass spectral data indicates the presence of a compound that meets the identification criteria but the result is less than the specified detection limit but greater than zero. (e.g. 10J)
- B This flag is used when the analyte is found in the blank as well as a sample. It indicates possible/probable blank contamination and warns the data user to take appropriate action.

TENTA	TIVELY IDENTIF	TED COMPOUNDS	•	•
PROJECT: Pasco and Pack	COMPILED bY:	An Blegenich	DATE:	3-23-86
LABORATORY: Manchester	REVIEWED BY:	DOFF	DATE:	3-24-80

NBA				T	1		1]
FRACTION: SAMPLE # :	378094	518095	37 8096						
CAS # NAME	211	12	0/7						
10544 July	1300007	- present	ND						
	36000J Mg/Ky	ND	\downarrow						
3.	. () . ()								
4.									
5.			• .			•			
• 6.				-					
<i>i</i> .									
8.									
9.								×	
10.	•								

.

į.

.

andrea beatty Rinker Director

STATE OF WASHINGTON

DEPARTMENT OF ECOLOGY

Mail Stop PV-11 • Olympia, Washington 98504-8711 • (2016) 450-6000

MEMORANDUM March 31, 1986

TO: Art Johnson

FROM: Bob Carrell, Chemist

SUBJECT: Pasco Industrial Park Pesticides and PCB's

Eleven samples, collected on September 9-11, 1985, were received at the Manchester Environmental Laboratory on September 12, 1985 for pesticides and PCB's analyses. None of the samples displayed pesticides or PCB's at or above the detection limits of the test.

The results of the analyses are attached.

Lab Number

378086	Industrial Park drain at manhole #1
378087	Well Number
378088	Industrial Park drain at O/W separator
378089	Industrial Park drain at O/W separator (replicate)
378090	West drain to "Juvenile Pond"
378091	Pond discharge to Columbia River
378092	Transfer blank
378093	Transport blank
378094	"Juvenile Pond" east end
378095	"Juvenile Pond" east end (replicate)
378096	"Juvenile Pond" west end

BC/cm

Attachment

Pasco Industrial Park

	378086 ug/L	378087 ug/L	378088 ug/L	378089 ug/L	378090 ug/L	378091 ug/L	378092 ug/L	378093 ug/L	378094 ug/L	378095 ug/L	378096 ug/L	Blank
aldrin dieldrin chlordane 4,4'-DDT 4,4'-DDE 4,4'-DDD endosulfan I endosulfan II endosulfan sulfate endrin endrin aldehyde heptachlor heptachlor eBHC A BHC B Lindane BHC D	.002u	0.10u	.002u	.002u	.002u	.002u	.002u	.002u	5u	5u	5u	ND
PCB 1242 PCB 1254 PCB 1221 PCB 1232 PCB 1248 PCB 1260 PCB 1016 toxaphene	.040u	V 2.5u V 7.5u	V .040u V .12u	V .040u V 0.12u	.040u .040u v .12u	.040u ↓ ↓ ↓ ↓ ↓	.040u	60u .12u	60u 180u	60u 180u	60u 180u	
O,P,DDE I.S. %	99		91	95	101	110	111	114	119	112	109	:

and a state of the second s

.

State of Washington Department of Ecology		ENVIRONMENTAL LABORATORY DATA SUMMARY METALS							PAGE OF 6 ORIGINAL TO: LAB FILES COPIES TO: A, Johnson			
		Instrial		-		M NUMBE		412				
DATE COLLECTED	9-9,11-9					TED BY	<u>A.</u>	Johnson				
Sample (Log) Numbe	r Units	Standard Deviation ±%	8086 Manholi	378087 Uuu 11	378088 0-W	8089	37, 8090 West	378091 Pond	378093 Transport			
Station:			#2	#	Separat.		Drain	Discharge	Blank			
Cu	Jugle		68	68	66	60	68	45	5			
•	10					 						
Zn	ugle		21	6	50	47	11	15	14			
-	10											
Fe												
Ni	male		24	5	38	1	30	10	33			
	101											
(Cr)	110/1		41	<1	<1	15	<1	<1	<1			
<u> </u>	10'				<u> </u>							
(Cd)			20.1	20.1	<d.1< td=""><td><0.1</td><td><0.1</td><td>20.1</td><td>٢٥.١</td><td></td></d.1<>	<0.1	<0.1	20.1	٢٥.١			
	Jug/L				<u> </u>							
Pb	mall		13	246	<1	1	<1	6	<1	L		
	par le			10			<u> `'</u>		+ ·/			
Mn		<u> </u>			<u> </u>		+					
1711 f					<u> </u>			+				
						+	+					
90						 	+					
			L			L	<u> </u>	<u> </u>	<u> </u>			

NOTE: Dissolved Metals: Those that will pass through a 0.45 μ membrane filter Suspended Metals: Those retained by a 0.45 μ membrane filter Total Metals: Those found in the unfiltered, rigorously acid digested sample ma/l = ppm = μ_0/ml mg/kg = ppm - μ_0/mm

 $mg/L= ppm = \mu g/ml$ $\mu g/L= ppb = ng/ml$

mg/kg = ppm - µg/gm µg/kg = ppb = ng/gm

" < " is "less than" and " > ' is "greater than"

REVIEWED BY Jam Concy DATE 3-5-86

ECY 040-2-32 (a) Rev. 8/81

State of Washington Department of Ecology		ENVIRONMENTAL LABORATORY DATA SUMMARY METALS							PAGE 2 OF 6 ORIGINAL TO: LAB FILES COPIES TO: A, Johnson				
SOURCE Pasco				-	PROGRA	M NUMBE		412					
DATE COLLECTED	-9,11-8	85 REC	CEIVED 9-	11-85		TED BY _		D. Joh	nson				
Sample (Log) Number	Units	Standard Deviation ±%	37 8087		PB 37.11								
Station:		± %	Duplicate		Procedur	Procedure Blank							
Cu	ugle		47		۲۱	<1							
	0												
Zn	ugle		4		<1	6							
	0												
Fe													
Ni	ng/L		6		<1	<1							
	0												
(Cr)	ug/L		<1		<1	<1							
	0												
Cd			20.1		<0.1	<0.1							
	0												
(Pb)	male		255		<1	<۱							
	0												
Mn													
					-								
		1	I	L		L	L		1	L			

NOTE: Dissolved Metals: Those that will pass through a 0.45 μ membrane filter Suspended Metals: Those retained by a 0.45 μ membrane filter Total Metals: Those found in the unfiltered, rigorously acid digested sample

mg/L= ppm = µg/ml µg/L= ppb = ng/ml

mg/kg = ppm - µg/gm µg/kg = ppb = ng/gm

SUMMARIZED BY

" < " is "less than" and " > " is "greater than"

REVIEWED BY Jam Conly DATE 3-5-86

ECY 040-2-32 (a) Rev. 8/81

S.	 Washington Department of Ecology 		ENV	IRONMH DA'I	ORIG	ORIGINAL TO. LAB FILES COPIES TO: A. Johnson						
	SOURCE Pasco						AM NUMB			12		
	DATE COLLECTED 9	-9,11-,8	S RECE	IVED 4-			TED BY					-
a February and Frank Strategy of the Annual Annu	Sample (Log) Number	Units	Standard Deviation ±%	37 8086 Manhule	37 8087 Well	(J - G)	378089	37 8090 West Drain	37 8091 Poac Discharge	37 8093	art	
	Station:			±2	*	Sport.	1	1				
	Hg	ug/L		<u> </u>	0.90	50.05	40.05	20,05	0.05	<0.05		· · · ·
	(As)	ng /L		4	107	8	2	8	8	<۱		
	Se							,				
	Ва											
						<u> </u>						
	Ag											
	Na										 	
	к											
	Ca											
						, , , , , , , , , , , , , , , , , , ,				+		
	NOTE: Dissolved Me Suspended M Total Metals: mg/L= ppm = mg/kg = ppm µg/L= ppb = µg/kg = ppb =	etals: T T µcg/ml = µcg/gm ng/ml	hose that wil hose retained hose found in	d by a 0.49 n the unfil	5 μ memb tered, rigo	orane filter prously act		sample	than'' D.	<u> </u>	5-56	
	ECY 040-2-32 (c) Rev. 8/81				RE	VIEWEDI	sr Ja	m Cin	by D	ате 🏒	6/86	

State of Washington Department of Ecology		ENV	IRONMEN DATA		ORIGINAL TO: LAB FILES COPIES TO: A. Johnson						
SOURCERasco	Ind	ustrial	Park		AM NUMB		412				
DATE COLLECTED 9	-9,11-85				CTED BY	<u>ĭ</u> .	J. John	tion			
Sample (Log) Number	Units	Standard Deviation ±%	37 ₈₀₈₇ Duplicate		PB37.12						
Station:		_ //	Puplican	Blank	Procedure Black						
Hg											
As	ugl		108	۲۱	<1						
	0										
Se											
Ba											
Ag											
Na											
								/			
К											
Ca											
NOTE: Dissolved Met Suspended M Total Metals:	etals: Th Th	nose retained	<i>4</i> / by a 0.45	h a 0.45 μ memb 4 membrane filter red, rigorously ac		sample					

 $mg/L= ppm = \mu g/ml$ mg/kg = ppm = µg/gm μ g/L= ppb = ng/ml

 μ g/kg = ppb = ng/gm

"<" is "less than" and ">"is "greater than" SUMMARIZED BY After DATE 3-5-82 REVIEWED BY PAM Correspondence 3/6/86

ECY 040-2-32 (c) Rev. 8/81

State of Washington Department of Ecology		ENVIRONMENTAL LABORATORY DATA SUMMARY METALS								PAGEOF				
SOURCE Pasco						M NUMBE		412	<u> </u>					
	1-11-8			11-85	COLLEC	TED BY	A. Jol	mson,	U. Nor	tm				
Sample (Log) Number	Units	Standard Deviation $\pm \%$	37 8047		37 8097 Duplicate	37 8097	M							
Station:		∴ 70	Juvenik Pond		mancare	-1.45	of recovery							
Cu														
Zn														
Fe														
Ni														
Cr														
	ug/gm		<i><</i> 0.003		\$0.003									
Pb	ug gm		.162		.139									
Mn														
(Hg) wet wh	ug /gm		0.038		0.039		57.42							

NOTE: Dissolved Metals: Those that will pass through a 0.45 μ membrane filter

Suspended Metals: Those retained by a 0.45 μ membrane filter Total Metals:

Those found in the unfiltered, rigorously acid digested sample

mg/L= ppm = µg/ml µg/L= ppb = ng/ml

 $mg/kg = ppm - \mu g/gm$

SUMMARIZED BY

REVIEWED BY

/ug/kg = ppb = ng/gm Jam Cont. DATE 3-5-81. Dam Cont. DATE 3/6/86

" < " is "less than" and " > ' is "greater than"

ECY 040-2-32 (a) Rev. 8/81

State of Washington Department of Ecology	EN		ENTAL I TA SUM METAI		TORY			U (
SOURCE Pasco Inc			-		M NUMBEI		412		
DATE COLLECTED 9-11-5		EIVED_	<u>ì-11-85</u>	COLLECT	ED BY	A. Jo	huson	, P. No	rton
Sample (Log) Number Units	s Standard Deviation	37 8094	37 8045	378096	378096				
Station:	± %				Puplicate				
(Cu) Dry 107 jug/g	m	*	*	89.4	92.2				
20 Dry wt ug/g	m	*	×	88.3	88.6				
Fe									
Ni									
Cr Dry wt jug g	m	*	*	28.0	27.9				
Co Dry wit jugg	m	*	*	0.19	0.21				
Pb Dry wt ug/g	m	¥	¥	50.4	50.2				
Mn									
As Dry wt ug/g	m	*	*	4.1	12.1				
Ha) we we wy	m	*	¥	0,008	0.006				
NOTE: Dissolved Metals: T Suspended Metals: T Total Metals: mg/L= ppm = µg/m µg/L= ppb = ng/ml	Those retained Those found in	d by a 0.45	μ membra ered, rigori	me filter	ligested sam	nple		.t 	" is "greater th

ECY 040-2-32 (a) Rev. 8/81 SUMMARIZED BY AUGULA DATE 3.5-52 REVIEWED BY Park Could DATE 3/6/89

٢

State of Washington Department of Ecology

OLYMPIA ENVIRONMENTAL LABORATORY

DATA SUMMARY

ORIGINAL TO: LAB FILES

PAGE 2 OF 2

COPIES TO: _____

SOURCE Pasco Indus	trial	Park					•	APT	lanns	
SOURCE 1560 Indus DATE COLLECTED 9/9-						A	NON		••••••	
		1		r	r			T	T	-
Sample (Log) Number 37	8095 Rep	8096 W.End Juir.Per	8011/ Jul	8098 Well						
Station:	E.End	Jul-Per	Pond	1						
pH (units)										
Turbidity (NTU)										
Sp. Conductivity (umhos/cm)										
COD										
BOD (5 day)										
Fecal Coliform (Col./100 ml)										
NO3-N										
NO2-N										
NH3-N										
T.Kjeldahl-N										
O-P04-P										-
Total PhosP										
Total Solids - %	31	29	22							
Total Non Vol. Solids 90 ash	93	91								
Total Suspended Solids									-	
Total Non Vol. Sus. Solids										
Recoverable Oil Gran	0.2%	0.2%								
To Lipids			1.6							
•										

NOTE: All results are in mg/L(ppm) unless otherwise specified. ND is "None Detected"

"<" is "Less Than" and ">" is "Greater Than"

SUMMARIZED BY REVIEWED BY

Am Chily DATE 10/24/85 MILOULOS DATE 1/6/82C

ECY 040-2-32 Rev. 9/81

ANGREA BEATTY RINKER. Director

STATE OF WASHINGTON

DEPARTMENT OF ECOLOGY

Mail Stop PV-11 • Olympia Washington 98504-8711 • (206) 459-6000

MEMORANDUM February 6, 1986

TO: Art Johnson

FROM: Bob Carrell, Chemist

SUBJECT: Pasco Industrial Park Sample #85-378086 Through 88, 85-378090,91 and 98

These water samples were collected on September 10, 1985 and delivered to the Manchester Laboratory on September 11, 1985 with the request for hydrocarbon matching analyses.

Samples 85-378086, 88, 90 and 91 did not display contamination from hydrocarbons and were essentially clean. However, samples #85-378087 and 98 indicated contamination from a wide boiling range hydrocarbon mix. It would appear that this hydrocarbon mixture is associated with gasoline as well as a heavier fraction such as stove oil.

Due to the component similarity of stove oil, #1 diesel oil,kerosene, and some jet fuel types, i.e. JP-5 and JET-A, it is not possible to identify which hydrocarbon mixture these are without samples from possible contaminating sources.

Should you have any question regarding this please call.

Lab Number

378086	Manhole # 🔍	Water
378087	Well #	Water
378088	Ind. Park Drain O/W Separator	Water
378090	West Drain to Juvenile Pond	Water
378091	Pond Discharge to Columbia River	Water
378098	Well # /	

BC/cm

PESTICIDES

, ţ

PROJECT: <u>PASCO INDUSTRIAL</u> PARK	COMPILED	BY:	BOB	KIECK	_ DATE:_	may 28, 1986
PARK						
LABORATORY: MANCHESTER	REVIEWED	BY:	BOB	CARRELL	DATE:	may 29, 1986

				+ 1		.	1		ŧ	t	+	1	1	······
SAMPLE #:		BNG	987	BN	5000	38097	378091 XI	378097						
UNI	ITS :	ug/Kg				75	70	My/Kg Samake						
- 70	} :	BLANK					MATRIX	Sample						
1.	aldrin	ND		ND		72*	80	2.0 pl						
2.	chlordane			1		_								
3.	dieldrin					74	89							
4.	4,4'-DDT					76	93	V						
5.	4,4'-DDE					88	1/2	35						
	4,4'-DDD					63	78	·2u						
7.	-endosulfan I					140	153						2	
8.	-endosulfan II					63	78							
9.	endosulfan sulfate					59	75							
10.	endrin					78	82							
11.	endrin aldehyde					68	75							
12.	heptachlor		1			67	74							
13.	heptachlor epoxide		1			57	72							
14.	-BHC A					74	78							
15.	-внс в					71	82							
16.	Lindane					_	-							
17.	-BHC D		1		1	67	74							
18.	Toxaphene	V		J				90H						

PESTICIDES (continued)

PROJECT: PASSO INDUSTRIAL PARK COMPILED BY: BOB RIECK DATE: MAY 25, 1986 LABORATORY: MANCHESTER REVIEWED BY: BOB CARRELL DATE: MAY 29, 1986

S	SAMPLE	#:	BNG	698	BN 6098	378097 Y	378097 X57	378097				
Ľ	JNITS		Mg	,				 	3			
4		:	BLA	VK	BLANK	MARKE	MATRIX	SAMPLE				
19.	PCB	1016	N	D	ND	NO	+	30 u				
20.	РСВ	1221				. 46	KED					
21.	PCB	1232	ļ				(
22.	PCB-	1242	ļ							 		
23.	PCB-	1248										
24.		1254						300				
25 26.	Meth	1260 hoxychlor				V	$\downarrow V$	30 M				
	0, F	DDE, I.	s.	80%	89%	103%	118%	INTERFE	ENCE			

BC/cm

3-31-86