

Green River Fish Habitat Analysis Using the Instream Flow Incremental Methodology

IFIM Technical Bulletin

Department of Ecology

Green River Fish Habitat Analysis Using the Instream Flow Incremental Methodology

by Brad Caldwell Stephen Hirschey

Water Resources Program
Department of Ecology
Mail Stop PV-11
Olympia, Washington 98504

July, 1989

IFIM Technical Bulletin

TABLE OF CONTENTS

		<u>Page</u>
A D C T	ΓRACT	
	FACE	
	OF FIGURES.	
	OF TABLES	
	OF ACRONYMS	
LIST	OF ACKON I WIS	XI
I.	PROJECT BACKGROUND	1
	Study Objectives	1
	Ecology's Instream Resource Protection Program	1
	Participants	
	River Description	1
	Hydrology	
	History and Water Rights	
	Operation of HAH Dam	7
II.	METHODS OF STUDY	9
	Description of the Instrument Flory Insummental Methodelessy	0
	Description of the Instream Flow Incremental Methodology	
	Interagency Participation in Scope-of-Work	
	Study Site and Transect Selection	
	Site Descriptions and Conditions During Measurements	
	Kent Site	
	Nealy Bridge Site	
	Car Body Site	
	Flaming Geyser Site	
	Hosey Site	
III.	HYDRAULIC MODEL	19
	Calibration Philosophy	19
	Indicators of Model Accuracy	19
	Options in IFG4 Model	20
	Site Specific Calibration	20
	Kent Site	20
	Nealy Bridge Site	
	Car Body Site	
	Flaming Geyser Site	
	Hosey Site	22
	Transect Weighting	23
	Agency and Tribal Approval of the Hydraulic Model	23

TABLE OF CONTENTS (Continued)

IV.	HABITAT-USE CURVES	24
	Selection and Verification of Habitat-Use Curves	24
	Agency and Tribal Approval of Habitat-Use Curves	
V.	FISH SPECIES AND OPTIONS USED IN HABTAT PROGRAM	25
	Fish Species Used in HABTAT	25
	Options Used in HABTAT	
VI.	RESULTS	26
	WUA-vsFlow Curves	26
	Summary and Comparison of Flows Which Provide Peak Habitat	26
VII.	RECOMMENDATION FOR USE OF WUA RESULTS TO SET MINIMUM FLOWS	29
APPE	ENDICES:	
	A WUA-VSFLOW GRAPHS	30
	Area vs. Discharge at Kent site	
	Steelhead habitat at Kent site	
	Chinook salmon habitat at Kent site	
	Coho salmon habitat at Kent site	
	Chum salmon habitat at Kent site	35
	Area vs. Discharge at Nealy Bridge site	
	Steelhead habitat at Nealy Bridge site	
	Chinook salmon habitat at Nealy Bridge site	
	Coho salmon habitat at Nealy Bridge site	
	Chum salmon habitat at Nealy Bridge site	40
	Area vs. Discharge at Car Body site	
	Steelhead habitat at Car Body site	
	Chinook salmon habitat at Car Body site	
	Coho salmon habitat at Car Body site	
	Chum salmon habitat at Car Body site	45
	Area vs. Discharge at Flaming Geyser site	
	Steelhead habitat at Flaming Geyser site	
	Chinook salmon habitat at Flaming Geyser site	
	Coho salmon habitat at Flaming Geyser site	
	Chum salmon habitat at Flaming Geyser site	50

TABLE OF CONTENTS (Continued)

Area vs. Discharge at Hosey site	51
Steelhead habitat at Hosey site	52
Chinook salmon habitat at Hosey site	
Coho salmon habitat at Hosey site	54
Chum salmon habitat at Hosey site	
B KENT SITE CALIBRATION INFORMATION	56
B1 IFG4 Input File	57
B2 Summary of Calibration Details	61
B3 Data Changes	62
B4 Velocity Adjustment Factors	63
C NEALY BRIDGE SITE CALIBRATION INFORMATION	64
C1 IFG4 Input File	
C2 Summary of Calibration Details	70
C3 Data Changes	
C4 Velocity Adjustment Factors	72
D CAR BODY SITE CALIBRATION INFORMATION	73
D1 IFG4 Input File	74
D2 Summary of Calibration Details	79
D3 Data Changes	
D4 Velocity Adjustment Factors	81
E FLAMING GEYSER SITE CALIBRATION INFORMATION	
E1 IFG4 Input File	83
E2 Summary of Calibration Details	86
E3 Data Changes	87
E4 Velocity Adjustment Factors	88
F HOSEY SITE CALIBRATION INFORMATION	89
F1 IFG4 Input File for Three-Flow Model	90
F2 IFG4 Input File for One-Flow Model	93
F3 Summary of Calibration Details	95
F4 Data Changes	96
F5 Velocity Adjustment Factors	97
G TRANSECT WEIGHTING	98
H FISH HABITAT USE	100
H1 Snorkel Surveys of Fish Distribution and Habitat Use	101
H2 Fish Periodicity Chart	
H3 Depth and Velocity Histograms of Spawning Salmonids	121
H4 Depth and Velocity Habitat-Use Curves	125
U5 Substrate/Cover Code	1.42

TABLE OF CONTENTS (Continued)

Ι	INFLOWS FOR KENT, NEALY BRIDGE, AND CAR BODY SITES	144
J	LITERATURE CITED.	146
K	ECOLOGY'S MISSION STATEMENT	148

ABSTRACT

A study of the Green River was conducted using the Instream Flow Incremental Methodology. This study provides fish habitat versus flow relationships for use in streamflow management by Ecology. In addition, the study can be used by the Corps of Engineers to examine the downstream effects on fish habitat from increasing water storage behind Howard A. Hanson Dam and the present management of existing storage.

Five study sites, involving a total of 31 transects, represent fish habitat in 40 miles of the Green River. Fish habitat is defined in this study as water depth, velocity, substrate, and cover. Habitat measurements for the computer models were collected at three different flows.

The five site models indicate peak habitat for spawning steelhead at flows ranging from 550 to 700 cfs, spawning chinook 525 to 700 cfs, spawning coho 240 to 375 cfs, spawning chum 260 to 400 cfs, juvenile steelhead 300 to 400 cfs, juvenile chinook and coho 140 to 240 cfs, adult holding chinook 220 to 450 cfs, and adult holding steelhead 300 to 600 cfs.

PREFACE

This publication provides fish habitat versus flow relationships for the Green River. These habitat relationships can be used to help determine how to manage the flow in the river. There is no one flow at which habitat for fish is optimum. The different fish species and lifestages exist simultaneously in the river and each has a different optimum flow requirement. Providing an optimum habitat flow for one lifestage will usually result in habitat loss for another lifestage.

Peak habitat flow does not necessarily equate with peak fish production. Flows higher than peak habitat flows are needed for juvenile fish at certain times of the year to maintain existing production levels.

LIST OF FIGURES

<u>Figure</u>	<u>Pag</u>	<u>e</u>
1.	Exceedence-frequency hydrograph of the Green River at Auburn	4
2.	Exceedence-frequency hydrograph of the Green River at the Purification Plant	5
3.	Configuration of the Duwamish basin prior to 1900 and after 1916	6
4.	Pre- and post-HAH reservoir median flows for the Green River at Auburn	8
5.	Top view looking down on placement of transects and measurement verticals used to define the distribution of aquatic habitat in an IFIM site	0
6.	Green River IFIM sites listing river mile represented, river gradient, site name, river mile location of site, number of transects, and habitat description	3
7.	Site and transect map of Kent and Nealy Bridge sites	4
8.	Site and transect map of Car Body and Flaming Geyser sites	5
9.	Site and transect map of Hosey site	6

LIST OF TABLES

<u>Table</u>		<u>Page</u>
1.	Minimum Instream Flows for the Green River adopted 6/6/80 (Ch. 173-509 WAC)	2
2.	Flows Which Provide Peak Habitat from WUA-vsFlow Results	27
3.	Chapman's Estimated Optimum Flows for the Green River	28

LIST OF ACRONYMS

cfs cubic feet per second COE Corps of Engineers

Ecology Washington Department of Ecology

fps feet per second HAH Howard A. Hanson

HABTAT Computer program that combines IFG4 with habitat-use curves

IFG4 Instream Flow Group's hydraulic model
 IFIM Instream Flow Incremental Methodology
 IRPP Instream Resource Protection Program
 NMFS National Marine Fisheries Service

PHABSIM Physical Habitat Simulation computer model

RM river mile

VAF Velocity Adjustment Factor
WAC Washington Administrative Code
WDF Washington Department of Fisheries
WDW Washington Department of Wildlife

WUA Weighted Usable Area

USFWS U.S. Fish and Wildlife Service

USGS U.S. Geological Survey

I. PROJECT BACKGROUND

Study Objectives

One of the main objectives for this Instream Flow Incremental Methodology (IFIM) study is to provide the Washington Department of Ecology (Ecology) with information to review its Green River minimum instream flows. Additionally, the Corps of Engineers (COE) can use this IFIM study to evaluate present water releases from Howard A. Hanson (HAH) reservoir and alternative flow regimes if HAH reservoir storage is increased.

Ecology's Instream Resource Protection Program

Ecology has conducted IFIM studies since 1983 for setting minimum instream flows through its Instream Resource Protection Program (IRPP). Minimum instream flows for the Green River were set by Ecology under its IRPP in 1980 by regulation (Chapter 173-509 Washington Administrative Code, see Table 1). The minimum instream flows for the Green River were set at 150 cfs for the summer and at 300 cfs for the winter at U.S. Geological Survey (USGS) gage 12106700 near Palmer, and at 300 cfs for the summer and 550 cfs for the winter at gage 12113000 near Auburn.

A study conducted on the Green River (Swift 1979) was an important basis for the minimum instream flows. The USGS methodology used for determining salmon-spawning flows was essentially the same as IFIM except substrate and cover was not included. Other methodologies were used as a basis for salmonid-rearing flows. These methods involved correlations between low, summer flows and adult salmon and steelhead returns. Final minimum flows proposed by the agencies were modified by professional judgment of fish biologists. Ecology's adopted spawning flow of 550 cfs was intended to protect 95 percent of the spawning habitat.

Participants

Project participants included the Washington Department of Fisheries (WDF), Washington Department of Wildlife (WDW), COE, City of Tacoma, Trout Unlimited, Muckleshoot Indian Tribe, National Marine Fisheries Service (NMFS), and U.S. Fish and Wildlife Service (USFWS).

River Description

The Green River begins in the Cascade Mountains near Stampede Pass and flows west through the Snoqualmie National Forest. Thirty miles downstream from its source the river encounters HAH Dam at river mile (RM) 64.5 and then the Tacoma Water Diversion Dam at RM 61. The river continues downstream to the town of Kanasket and the start of the Green River Gorge (RM 58). The 300-foot deep gorge continues for 12 miles to Flaming Geyser State Park (RM 46). Two major tributaries, Newaukum Creek (RM 4.7) and Big Soos Creek (RM 33.7), join the

Table 1. Minimum Instream Flows for the Green River adopted 6/6/80 (Ch. 173-50 WAC).

INSTREAM FLOWS FOR FUTURE WATER RIGHTS IN THE GREEN-DUWAMISH RIVER BASIN

(in Cubic Feet per Second)

Month	Day	Gage 12113000 Normal Year Green River Near Auburn	Gage 12106700 Normal Year Green River Near Palmer	Gage 12106700 Critical Year Green River Near Palmer
Jan.	1	550	300	300
	15	550	300	300
Feb.	1	550	300	300
	15	550	300	300
Mar.	1	550	300	300
	15	550	300	300
Apr.	1	550	300	300
	15	550	300	300
May	1	550	300	300
	15	550	300	300
June	1	550	300	300
	15	550	300	210
July	1	550	300	150
	15	300	150	150
Aug.	1	300	150	150
	15	300	150	150
Sept.	1	300	150	150
	15	300	150	150
Oct.	1	300	190	150
	15	350	240	150
Nov.	1	550	300	190
	15	550	300	240
Dec.	1	550	300	300
	15	550	300	300

For a definition of "critical year" see Ch. 173-509-303 WAC.

Green River upstream of Auburn (RM 32). Here the river turns northward and flows past Kent (RM 26) and Tukwila (RM 14), becoming the Duwamish River at RM 11. The river flows into Elliott Bay on Puget Sound. Tides affect the lower 12 miles of the river.

Hydrology

The Green River has 483 square miles of drainage area fed by snowmelt, rain, and ground water. The median flow at Auburn (USGS gage 12113000 at RM 31.3) ranges from 1900 to 1400 cubic feet per second (cfs) from December through May and is about 300 cfs during August, the normal low flow month (Figure 1). The median flow at the Purification Plant near Palmer (USGS) gage 12106700 at RM 60.3) ranges from 1400 to 800 cfs from December through May, but is only 150 cfs during August (Figure 2). The Purification Plant gage is just downstream from the City of Tacoma's 113 cfs year-round diversion.

Figures 1 and 2 portray the annual exceedence-frequency hydrographs for both gages. The 90-percent-exceedence flow is equaled or exceeded 90 percent of the time. It can also be thought of as a 1-in-10-year low flow. The 50 percent exceedence flow is the median flow and gives the closest approximation to being the "normal" flow. The exceedence hydrographs are based on a 10-day-average flow thus eliminating some of the variation from daily flows.

History and Water Rights

The Green River was radically altered between 1900 and 1916. Once a tributary of the White River (which was a tributary of the Duwamish River), the Green River was diverted to flow directly into Puget Sound (Figure 3). The lowering of Lake Washington and a major flood in 1906 were the primary causes of this diversion. The lower part of the river retained the name Duwamish River.

The City of Tacoma built the Tacoma Water Diversion Dam on the Green River in 1911. The dam, at RM 61, blocks all upstream migration of salmonids. Presently, no spawning occurs upstream of the diversion dam, but juvenile salmonids are outplanted into tributaries upstream of HAH dam. Tacoma diverts 113 cfs or the natural flow, whichever is less, under a vested water claim (water was diverted before the 1917 Water Code). This claim is not subject to Washington State's 1980 minimum instream flows. An adjudication has not been held to determine if the claim is valid.

In 1985, Tacoma was granted a water-right permit by Ecology for an additional 100 cfs. That water right cannot be certified until a second pipeline is built and the water is put to beneficial use. The additional 100 cfs diversion is subject to Washington State's 1980 minimum instream flows for the Green River.

Figure 1. Exceedence-frequency hydrograph of the Green River at Auburn (RM 31.3).

Figure 2. Exceedence-frequency hydrograph of the Green River at the Purification Plant (RM 60.2).

Figure 3. Configuration of the Duwamish basin prior to 1900 and after 1916 (from Grette and Salo, 1986).

Operation of HAH Dam

A second dam, HAH Dam, was built at RM 64.5 by the COE and began filling December 5, 1961. It was authorized by Congress for flood control and conservation storage to augment low summer/fall flows for over 12,000 cfs at Auburn and to provide a minimum flow of 110 cfs with 98 percent reliability. The COE actually releases a minimum flow of 223 cfs to ensure that 110 cfs passes Tacoma's diversion. Overall, the operation of the dam since 1962 has changed flows at Auburn by decreasing high flows in April, May, and June and increasing low flows in July, August, September, and October (Figure 4).

The COE monitors the weather, snowpack, and reservoir inflow to decide whether to start filling the reservoir in April, May, or June to ensure a 110 cfs instream flow. Filling of the reservoir is delayed as late as possible in the spring to allow downstream passage out of HAH reservoir of coho, chinook, and steelhead smolts. But reservoir filling often starts during the peak of smolt outmigration, and the smolts are prevented from migrating to the ocean. However, if reservoir filling is delayed just one week too late, HAH reservoir can run out of water storage before the expected October rain. Flow is then so low with fall chinook spawning is severely disrupted.

Figure 4. Pre-and post-HAH reservoir median flows

for the Green River at Auburn.

II. METHODS OF STUDY

IFIM was selected and used in this study as the best available methodology for predicting how fish habitat is affected by incremental changes in streamflow.

Description of the Instream Flow Incremental Methodology

IFIM, as described by Bovee (1982), was derived by the U.S. Fish and Wildlife Service's Instream Flow Group in the late 1970's. IFIM is a process where certain variables affecting fish habitat are chosen for in-depth analysis. However, the term IFIM is often used when referring to PHABSIM (Physical Habitat Simulation) or IFG4 (hydraulic model). PHABSIM is a collection of computer models in IFIM (Milhous et al 1984). IFG4 is the most commonly used hydraulic model in PHABSIM.

The IFIM process involves several planning steps undertaken with interested groups. First, a "scoping" meeting is held with interested groups to discuss the entire scope-of-work including possible study-site locations. Next, field trips are coordinated with interested groups to select study sites and transect locations. Then field data (water velocities and depths, substrate, and cover) is collected at different flows. The field work should include observations from the study river on the habitat preferred by the fish. A hydraulic model is built and calibrated. The hydraulic model gives a representation of the velocities and depths (associated with substrate and cover) available for fish over a range of flows. Meetings are held with interested groups to reach agreement on the method of calibration of the hydraulic model, the method of transect weighting, and the habitat-use curves to be used with the hydraulic model. Finally, fish biologists from the interested agencies and tribes use professional judgment to interpret the habitat-versus-flow curves to arrive at a flow regime for the fish.

IFG4 uses data from multiple transects to predict the depths and velocities in a river over a range of flows. IFG4 creates a cell for each measured point along the transect or cross section (Figure 5). Each cell is assigned an area, an average water depth, and a velocity associated with a type of substrate and/or cover for a particular flow. Fish habitat is defined in the computer model by the variables of velocity, depth, substrate, and cover.

After the hydraulic model, IFG4, is calibrated, PHABSIM combines IFG4 output with a biological model. The biological model consists of habitat-use curves describing the preference of each fish species for depth, velocity, substrate, and cover. The habitat-use curves for each fish species are defined further for various lifestages, such as adult spawning, juvenile rearing, and adult holding (See Appendix H4).

Figure 5. Top view looking down on placement of transects and measurement verticals used to define the distribution of aquatic habitat in an IFIM site (from Bovee, 1982).

The habitat for each cell on a transect is calculated by multiplying the habitat-preference factor by the area. The habitat preference factor is calculated as in this example. A velocity preference of 1.0 multiplied times a depth preference of 0.9 times a substrate/cover preference of 0.8 equals a preference factor of 0.72 for that cell. This preference factor is multiplied by the number of square feet of area in that cell. All cells for all transects are summed to arrive at the total number of square feet of preferred habitat at a specified flow. The final result is a listing of fish habitat-values called Weighted Useable Area (WUA). WUA is in units of square feet of habitat per 1,000 feet of stream.

WUA is an index of fish habitat. Transforming WUA into a fish population estimate requires assumptions not considered in the PHABSIM model. To use WUA for a fish population estimate requires assumptions such as: 1) the number of fish that would use a square foot of habitat (averages from streams differ naturally by a factor of 200), 2) that no other factors are affecting the population (such as fishing pressure or disease), and that the population of one lifestage does not limit the population of the following lifestage over time (assumes there will always be enough juvenile fish to fully seed all of the adult-fish habitat).

Interagency Participation in Scope-of-Work

A detailed work plan and river segmentation map for an instream flow study on the Green River was presented by Ecology at a COE, WDF, WDW, City of Tacoma, Muckleshoot Indian Tribe, NMFS, USFWS, Trout Unlimited, and others. Participation was sought from these groups by Ecology for an IFIM study of the Green River. Assistance was given by the groups listed above in field work, site and transect selection, hydraulic-model calibration, and selection of habitatuse curves.

Study Site and Transect Selection

Preliminary sites were selected for the IFIM study by reviewing topographic maps, a draft copy of The Status of Anadromous Fishes of the Green/Duwamish River System (Grette and Salo 1986), and A Catalog of Washington Streams and Salmon Utilization, Volume 1, Puget Sound Region (Williams et al 1975). Further site selection was done during two field surveys. A helicopter survey from Kent to HAH dam was made by Brad Hall (COE), Lance Meyer (COE), and Brad Caldwell (Ecology). A survey by boat from Kent on upstream through Flaming Geyser State Park was performed by Jean Caldwell (WDF), Will Sandoval (Muckleshoot Indian Tribe), and Brad Caldwell (Ecology).

Five study sites were selected and all interested state, federal, tribal, municipal, and environmental groups were invited for a ground tour on two separate occasions to ensure agreement on site and transect selection. Approximately 40 miles of the Green River are represented by the five sites. The lower 12 miles of the Green/Duwamish were not included in the study because of tidal influence. The Green River gorge reach, RM 46 through RM 58, also was excluded because of inaccessibility and time constraints.

Figure 6 shows the IFIM sites with the number of river miles the site represents, gradient of the reach, names we gave the sites, approximate river mile locations of each site, number of transects used to represent the habitat, and a short description of the habitat found in each reach. Figures 7, 8, and 9 are site and transect maps of all five sites.

One site, the Hosey site (just downstream from the Tacoma Water Diversion Dam), was not included initially in Ecology's field work plans and its transects are based on preliminary work by the City of Tacoma. The City of Tacoma had hired Hosey and Associates to conduct an IFIM study on this reach. Agency and tribal scoping on transect selection had been completed and the consultant was ready to collect field measurements. Ecology was informed on June 19, 1986 that the IFIM study on this site was cancelled. Although the site wasn't included in Ecology's initial work plan, we decided that the habitat the site represented was important enough to add the site to Ecology's study.

Field Procedures

IFIM measurements were initiated on June 17, 1986 for the five sites:

- 1. Kent.
- 2. Nealy Bridge.
- 3. Car Body.
- 4. Flaming Geyser.
- 5. Hosey.

Measurements of water depth, water velocity, substrate composition, and cover were made along each transect. A temporary gage at each site verified steady streamflow during flow measurement. Water velocity was measured with calibrated Swoffer, Pygmy, and Gurley velocity meters mounted on top-set wading rods. Deep water required the use of a USGS boatmounted apparatus involving a Swoffer velocity meter attached to a 30 lb. weight connected by a cable to a reel mounted on a cross-piece and boom on a boat. The boat was accurately positioned in the river by sliding the boat along a cable marked with beads at five-foot intervals. The beaded cable was strung between fence posts using cable clamps and tension was applied with a winch.

Water-surface elevations and stream-bank profiles were surveyed with a tripod-mounted transit level and stadia rod. Survey points were referenced to an arbitrary, fixed benchmark. Substrate composition and cover were assessed by visually estimating the percent of the two main particle size classes and type of cover according to a scale recommended by WDF and WDW (Appendix H5).

RIVER	GRADIENT	NAME	RIVER	NO. OF TRANSECTS	HABITAT
12:32	90.08	KENT	27,2,30,5	9	WIDE, SLOW, DIKED, SILTED BOTTOM, SOME SPAWNING IN RIFFLES, MOSTLY FOOL-GLIDE.
32-36.7	1.0	NEALY	35	2	WIDE, MEDIUM VELOCITES, OFTEN ONE SIDE DIKED, GRAVEL BOTTOM, EXCELLENT SPAWNING, LONG GLIDES.
36.7-40	0.2	CAR BODY	39.6	1	WIDER, MEDIUM VELOCITES, UNDIKED, LARGE COBBLE BARS, GRAVEL BOTTOM, EXCELLENT SPAWNING, POOL-RIFFLE.
40.46	0.3	FLAMING	40.6, 43.6	9	WIDE-FAST VELOCITIES IN COBBLE GLIDES, NARROW-FAST RIFFLES, MEDIUM VELOCITY GLIDES/POOLS WITH GOOD SPAWMING, GRAVEL/COBBLE.
46.58	1.6	NO SITE			GREEN NIVER GORGE
58.64	0.7	HOSEY	900	9	MARROW CANYON, DEEP POOLS, COBBLE BOTTOM, SOME FAST RIFFLES/CASCADES, SOME GOOD SPANNING.

GREEN RIVER IFIM SITES LISTING RIVER MILES REPRESENTED, GRADIENT, SITE NAME, RIVER MILE LOCATION OF SITES, NUMBER OF TRANSECTS, AND HABITAT DESCRIPTION. Figure 6.

Figure 7. SITE AND TRANSECT MAP OF KENT AND NEALY BRIDGE SITES.

Figure 8. SITE AND TRANSECT MAP OF CAR BODY AND FLAMING GEYSER SITES.

Figure 9. SITE AND TRANSECT MAP OF THE HOSEY SITE.

Site Description and Conditions During Measurements

Kent Site (RM 27.2 and 30.5)

The Kent site represents the river from RM 12 through RM 32. The river gradient in this reach is approximately 0.08 percent, as determined by topographical maps. The river is diked, wide, slow, has a silted bottom, and is mostly pool and glide habitat. Some spawning occurs in the riffles.

Six transects were used to represent the Kent site. Transects 1, 2, and 3 were near RM 27.2 and transects 4, 5, and 6 were near RM 30.5. Transect 1 was a deep pool/glide; transects 2 and 3 were glides; transect 4 was a shallow, fast glide; transect 5 was a deeper glide; and transect 6 was a pool/glide. Field measurements were collected at the Kent site at flows of 262 cfs on 8-8-86, 538 cfs on 6-18-86, and 950 cfs on 11-12-86. The flows were steady during measurement and no significant bed shifts occurred between the low-, medium-, and high-flow measurements on the six transects.

Nealy Bridge Site (RM 35)

The Nealy Bridge site represents the river from RM 32 through 36.7. The gradient in this reach is about 0.1 percent. The Nealy Bridge site is characterized by long glides with gravel and cobble bottom substrate. The river in this reach is wide, with one or both sides diked, and is an excellent salmonid spawning reach.

Seven transects were used to represent the Nealy Bridge site. Transects 1, 2, and 3 were downstream of Nealy Bridge (RM 35) and transects 4 through 7 were upstream of the bridge. Transect 1 was a fast chute; transects 2 and 3 were shallow glide/riffles; transect 4 was a shallow riffle; transect 5 was a glide; transect 6 was a deeper glide; and transect 7 was a narrow, fast glide with a gravel bar. Field measurements were collected at the Nealy Bridge site at flows of 238 cfs on 8-7-86, 425 cfs on 6-17-86, and 887 cfs on 11-11-86. The flows were steady during measurement and no significant bed shifts occurred between the low-, medium-, and high-flow measurements on the seven transects.

Car Body Site (RM 39.6)

The Car Body site represents the river from RM 36.7 through 40. The gradient is about 0.2 percent. The Car Body site is characterized by large cobble-bars, gravel/cobble substrate, and is an excellent salmonid spawning reach. The river is undiked, wider than the other reaches, and has more pool/riffle sequences.

Seven transects were used to represent the Car Body site. The transects were centered around RM 39.6 Transect 1 was a shallow glide; transect 2 was a fast riffle with a large, calm backwater on the right bank; transect 3 was a shallow glide; transect 4 was a deep glide; transect 5 was a deep, fast glide; and transect 6 was a glide. Transects 4 through 6 had a large cobble bar on the

right side. Transect 7 had a split channel, with a fast chute on the right side and a riffle on the left. The left side of transect 7 was dry at the two lower measured flows. Field measurements were collected at flows of 234 cfs on 8-5-86, 410 cfs on 6-20-86, and 1048 cfs on 11-14-86. The flows were steady during measurement and no significant bed shifts occurred between the low, medium-, and high-flow measurements on the seven transects.

Flaming Geyser Site (RM 40.6 and 43.6)

The Flaming Geyser site represents the river from RM 40 through 46. The river gradient is about 0.3 percent. The Flaming Geyser site is a sequence of fast glides; wide, fast riffles; and glide/pools with high-quality gravel/cobble substrate for spawning salmonids.

Five transects were used to represent the Flaming Geyser site. Transects 1 and 2 were at RM 40.6 and transects 3, 4, and 5 were at RM 43.6. Transects 1 and 2 were shallow, fast riffles; transect 3 was a fast chute; and transects 4 and 5 were glides. Field measurements were collected at flows of 220 cfs on 8-6-86, 301 cfs on 6-24-86, and 966 cfs on 11-10-86. The flows were steady during measurement, and no significant bed shifts occurred between the low-, medium-, and high-flow measurements on the five transects.

Hosey Site (RM 60.6)

The Hosey site represents the Green River from RM 58 through RM 64. The river gradient in this reach is about 0.7 percent. The Hosey site is generally a narrow canyon with deep pools and cobble bottoms. Fast riffles and cascades are in this reach. Salmonid spawning occurs in the few riffles and tails of the pools.

Six transects were used to represent the Hosey site. The transects were centered around RM 60.6. Transect 1 was a wide riffle, transects 2 and 3 were deep pools, transect 4 was a cascade, transect 5 was a shallow glide, and transect 6 was a pool/glide. Field measurements were collected at flows of 140 cfs on 8-4-86, 194 cfs on 6-25-86, and 768 cfs on 11-13-86. The flows were steady during measurement and no significant bed shifts occurred between the low-, medium-, and high-flow measurements on the six transects.

HAH flow releases were held steady all summer and fall and then were increased quickly to high flow in November. A higher medium flow could have been measured before 6-25-86, but Ecology was not notified that the City of Tacoma was dropping this study site until 6-19-86.

Only the water surface elevation was measured on transect 4 during high flow measurement. Measurement of water depths and velocities at this transect was judged to be too dangerous due to high velocities in the rapids.

III. HYDRAULIC MODEL

Calibration Philosophy

Calibration of the hydraulic model involves checking the velocities and depths predicted by the model against velocities and depths measured in the field. This includes examining indicators of the model's accuracy such as mean error and Velocity Adjustment Factor (VAF). Velocities and depths predicted at very high and low flows are examined to determine if they are within an acceptable range.

Calibration of the IFG4 model is done cell by cell for each transect to decide whether the accuracy of the predicted cell velocities is adequate. Generally, if the predicted cell velocity at the calibration flow is within 0.2 feet per second (fps) of the measured cell velocity, the predicted velocity is considered adequate. The calibration philosophy is to change data or use a computer calibration option only when doing so would improve the model's ability to extrapolate without significantly changing the accuracy of depths and velocities predicted at the measured flows. Change to a calibration velocity is limited to 0.2 fps. The 0.2 fps limit is reasonable considering the normal range of velocity measurement error. All cell velocities are reviewed at the highest and lowest extrapolated flows to ensure that extreme cell velocities are not predicted.

Indicators of Model Accuracy

Two indicators of the IFG4 model's accuracy in predicting depths and velocities are mean error and the VAF.

The mean error is the average of the ratio of the measured discharges to the predicted discharges for one transect. As a rule of thumb, the mean error should be less than 10 percent.

The VAF for a three-flow IFG4 model indicates whether the flow predicted from the velocity/discharge regressions matches the flow predicted from the stage/discharge regression. This is done for each transect. The velocities predicted from the velocity/discharge regressions for a transect are all multiplied by the same VAF to match the flow predicted from the stage/discharge regression. This comparison of flows predicted from two different methods gives an indication as to whether or not the model's assumptions of linear relationships between velocity and flow and stage and flow are valid. A VAF of 1.0 means both methods are predicting the same discharge.

A VAF in the range 0.9 to 1.1 is considered good, 0.85 to 0.9 and 1.1 to 1.15 fair, 0.8 to 0.85 and 1.15 to 1.20 marginal, and less than 0.8 and more than 1.2 poor (Milhous et al 1984). The extrapolation range of the model is usually limited when two or more transects have VAFs which fall below 0.8 or above 1.2. Model results are generally considered accurate for extrapolating to a 0.4 times the lowest measured flow and 2.5 times the highest measured flow (Milhous et al 1984).

The VAFs for the one-flow IFG4 model do not have the same meaning as with the three-flow UFG4 model. (All sites used a three-flow model, but the Hosey site required the additional use of a one-flow model just for transect four.) The VAF range listed above does not apply to one-flow model VAFs. Instead of predicting velocities from a velocity/discharge regression (three-flow IFG4), the velocities are predicted from Manning's equation using a constant roughness factor (N). The bottom roughness factor is highest at low flow and becomes progressively lower as flow increases. Since the N value calculated by the computer is constant, the N value used to predict velocities at a flow higher than the measured flow is usually too high. The VAF corrects this problem by changing the predicted velocities to achieve the flow predicted from the stage/discharge regression. The VAF in the one-flow model will be nearly one at the measured flow and usually less than one at lower flows and more than one at higher flows.

Normal empirical values for bottom roughness do not apply to these Manning's Ns. These Ns are used only for calibrating the velocities in the IFG4 hydraulic model.

Options in IFG4 Model

Several options are available in the IFG4 hydraulic model (see Milhous et al 1984). The standard method is to set all the options to zero except for option eight which is set at two. The only nonstandard option used in our hydraulic models was option 14 set at three. This was only done for the Kent site.

Site Specific Calibration

The extrapolation ranges of the Green River IFG4 models were held to within the standard range of 0.4 times the lowest measured flow to 2.5 times the highest measured flow. The depths, velocities, VAFS, and mean errors were found to be acceptable within the standard range for all models.

Kent Site Calibration

A three-flow IFG4 model was run for this site using the standard options except option 14 was set at three, the upper BMAX limit option. A BMAX of 1.3 was found by trial and error to improve velocity prediction at high flows without significantly affecting the measured velocities. Option 14 set at three meant the beta coefficients on all velocity/discharge regressions were limited to the specified maximum. BMAX cannot be used on a single transect and must be applied to all transects in the model. Limiting the slope of the velocity/discharge regression improved the extrapolation range of the model, but not at the expense of the accuracy of predicted velocities at the measured flows. Each individual cell velocity on each transect was reviewed after application of the BMAX to determine if any significant changes occurred.

The IFG4 input file, a summary of the calibration details, data changes, a table showing which velocities on each transect were affected by the BMAX option, and the VAFS are included as Appendix B.

The mean errors of the stage/discharge regressions range from 0.26 to 5.77 percent. All are less than the 10 percent calibration guideline mentioned previously.

At 100 cfs the worst VAF is 0.84, and at 2500 cfs the worst VAF is 0.93. The velocity and depth predictions are adequate for the extrapolation range of 100 to 2500 cfs.

Nealy Bridge Site Calibration

A three-flow IFG4 model was run for this site using the standard options.

The IFG4 input file, a summary of the calibration details, data changes, and VAFS are included as Appendix C.

The mean errors of the stage/discharge regressions range from 0.81 to 9.32 percent. All are less than the 10 percent error guideline.

The worst VAFs are 1.12 at 100 cfs and 0.92 at 2000 cfs. The velocity and depth predictions are adequate for the extrapolation range of 100 to 2000 cfs and could possibly be extended higher and lower if necessary.

Car Body Site Calibration

A three-flow IFG4 model was run for this site using the standard options.

The IFG4 input file, a summary of the calibration details, data changes, and VAFS are included as Appendix D.

The mean errors of the stage/discharge regressions range from 0.53 to 5.18 percent. All are less than the 10 percent error guideline.

Two cells had Manning's Ns specified by us. The Ns calculated by the model were too low and causing predicted velocities to be too high. N's were corrected by trial and error with repeated computer runs to achieve correct velocities.

The worse VAFs on transects 1 through 6 are 0.84 at 100 cfs and 0.84 at 2500 cfs. Transect 7 has a VAF of 0.74 for 100 cfs and 0.76 for 2500 cfs. The velocity and depth predictions are adequate for extrapolation from 100 to 2500 cfs.

Flaming Geyser Site Calibration

A three-flow IFG4 model was made for this site using the standard options.

The IFG4 input file, a summary of calibration details, data changes, and VAFS are in Appendix E.

The mean errors of the stage/discharge relationships range from 0.29 to 4.0 percent and are less than the 10 percent error guideline.

The worst VAFs are 0.89 at 80 cfs and 0.95 at 2000 cfs. The IFG4 hydraulic model velocity and depth predictions are adequate for the extrapolation range of 80 to 2500 cfs.

When measured velocities were changed for calibration, a limit of 0.2 fps was used, except on transect 3 where a 0.6 fps velocity was changed to 2.6 fps at high flow. Cell velocities adjacent to this vertical were on the order of 2.5 to 3 fps at the measured flow. This data-point anomaly was due to velocity-meter placement in a small standing wave. The resultant steep velocity/discharge regression slope in this cell caused all other cells to have significantly lowered predicted velocities. This one data point was modified to improve the accuracy of all the other predicted cell velocities.

Hosey Site Calibration

A three-flow IFG4 model was run for this site using the standard options for transects 1, 2, 3, 5, and 6.

A one-flow IFG4 model was also run for this site using the standard options with the medium flow velocity measurements for transect 4. Transect 4 could not be measured at high flow because of dangerously high velocities on the transect.

The IFG4 input files, summaries of the calibration details, data changes, and VAFS are included as Appendix F.

The mean errors of the stage/discharge relationships range from 0.27 to 5.86 percent. All were within the 10 percent error guideline.

The worse VAFs for the three-flow model were 0.74 for 60 cfs and 0.82 for 2000 cfs.

The input file for the one-flow model has a duplicate transect labeled 4.5. Because the one-flow model requires more than one transect to calculate habitat, a duplicate transect was necessary, but the duplicate receives no weighting in the model.

One Manning's N was specified in the one-flow model.

The velocity and depth predictions are adequate for an extrapolation range of 60 to 2000 cfs.

Transect Weighting

Appendix G lists the percent weighting each transect received relative to the whole site. The model automatically determines weighting for each transect by using the distance between the transects. Transect weight can be set to pre-determined levels by specifying distances between the transects (this is composite weighting). Sometimes composite weighting is done when the transects are physically far apart and the distances between the transects would create incorrect weighting. Some sites received composite weighting while other sites received a combination of actual distances between transects and composite weighting.

Agency and Tribal Approval of the Hydraulic Model

A meeting was held March 7, 1988 by Ecology to judge the adequacy of the Green River hydraulic models. Those in attendance were Hal Beecher (WDW), Paul Hickey and Jean Caldwell (Muckleshoot Indian Tribe), Ken Bruya (WDF), and Steve Hirschey and Brad Caldwell (Ecology). All agreed that the Green River hydraulic models were calibrated adequately, and that the normal extrapolation range of 0.4 times the low measured flow and 2.5 times the high measured flow was appropriate. Attendees also agreed that transect weighting, using a combination of the distances between transects and composite weighting, was appropriate.

IV. HABITAT-USE CURVES

Selection and Verification of Habitat-Use Curves

IFIM requires a biological model of water depths, velocities, substrate, and cover preferred by fish be compared against the same variables predicted by the IFG4 hydraulic model. This biological model is described as habitat-use curves.

Habitat-use curves for salmon were selected from WDF's and Ecology's standard set of "river" curves (Caldwell and Caldwell, 1987, unpublished). Habitat-use curves for trout were from WDW (Hal Beecher, 1987).

Verification of the habitat-use curves was done by observing fish species in the Green River. Snorkel surveys were done at all sites on species of fish present, fish distribution, and abundance (Appendix H1). A periodicity chart is included in Appendix H2 to show which months each fish species and lifestage is present. Field observations of depths and velocities used by spawning chinook and spawning steelhead were collected and summarized into histograms. (Appendix H3).

Agency and Tribal Approval of Habitat-Use Curves

A meeting was held March 7, 1988 by Ecology to get agreement on the habitat-use curves to be used in the Green River IFIM model. The meeting was attended by Hal Beecher (WDW), Paul Hickey and Jean Caldwell (Muckleshoot Indian Tribe), Ken Bruya (WDF), and Steve Hirschey and Brad Caldwell (Ecology).

Standard WDF salmon "river" curves were chosen by the above group except for changing the depth curve to unlimited depth for adult, holding chinook; juvenile chinook; and juvenile coho. These lifestages were observed to utilize deep pools throughout the Green River. The standard trout curves were also chosen. These habitat-use curves are in Appendix H4. The substrate/cover code was chosen with cover use by juvenile salmon included (Appendix H5).

V. FISH SPECIES AND OPTIONS USED IN HABITAT PROGRAM

Fish Species Used in HABTAT

The HABTAT program combines the depths and velocities predicted from the IFG4 hydraulic model with the depths and velocities from the habitat-use curves. The program calculates WUA (fish habitat) versus flow relationships.

Habitat-use curves were run for steelhead trout, and chinook, coho, and chum salmon because these are the predominant species in the river. Pink and sockeye salmon were not included because their numbers are few.

Options Used in HABTAT

There are several options available in the HABTAT program. The standard method was used with options 1, 8, and 10 set at one with all other options set at zero (Milhous et al 1984).

VI. RESULTS

WUA-vs.-Flow Curves

The WUA (Fish habitat)-versus-flow results are presented in Appendix A. The figures are grouped by site; downstream site first (Kent) followed by the next upstream site (Nealy Bridge), etc. Each group of figures is arranged by area, and then by species: steelhead, chinook, coho, chum.

The area-versus-flow graphs indicate that most sites have flat, rectangular channel cross sections. The average wetted widths at 500 cfs are 124 feet at the Kent site, 155 feet at the Nealy Bridge site, 124 feet at the Car Body site, 128 feet at the Flaming Geyser site, and 93 feet at the Hosey site. The Kent and Nealy Bridge sites have little loss of wetted width until the flow drops below 200 cfs.

All of the sites, except the Hosey site, have higher quantities of spawning habitat than rearing habitat. Spawning habitat is limited in the Hosey site by the large amount of deep pools with bedrock and boulder substrate.

The WUA curves are bell-shaped at all sites except the Car Body site. At the Car Body site the habitat curves have two peaks instead of one. The first peak indicates at what flow velocities and depths are optimum in the low-flow channel. The second peak indicates at what flow velocities and depths are optimum over the wide cobble bars which are normally dry except during high flow. This double hump is typical of rivers with large, exposed gravel/cobble bars.

Summary and Comparison of Flows Which Provide Peak Habitat

Table 2 lists the peaks from the WUA (fish habitat) curves from Ecology's study sites. Many of the peak habitat flows are quite similar throughout the river.

Table 3 lists Chapman's (1984) optimum flows for the Green River based on his two-flow IFIM study. The details of his study were not available for a complete comparison, however, his results at river miles 30 and 43 agree well with our results.

Table 2. Flows Which Provide Peak Habitat from WUA-vs.-Flow Results.

Peak WUA Flow in cfs

		Steelhead		Chine	ook	Chinook and Coho	Coho	Chum
Sites	Spawning	Holding	<u>Juveniles</u>	Spawning	Holding	<u>Juveniles</u>	Spawning	Spawning
<u>Kent</u> (RM 27.2, 30.5) represents 20 miles (12-32)	700	600	400	600	450	240	300	260
Nealy Bridge (RM 35) represents 4.7 miles (32-36.7)	600	425	400	675	450	220	375	400
<u>Car Body</u> (RM 39.6) represents 3.3 miles (36.7-40)	550	350	350	600	240	140	240	350
Flaming Geyser (40.6, 43.6) represents 6 miles (40-46)	600	300	400	700	240	180	280	350
<u>Hosey</u> (60.6) represents 6 miles (58-64)	650	600	300	525	220	170	300	260

Table 3. Chapman's Estimated Optimum Flows for the Green River (Chapman, 1984).

Optimum Flows in cfs

Study Reach (RM)	Rearing	Salmon Spawning	Steelhead Spawning
21	500	400	500
30	300	600	600
43	300	500	500
60	180	1700	1700

VII. RECOMMENDATION FOR USE OF WUA RESULTS TO SET MINIMUM FLOWS

Determining a minimum instream flow for a river requires more thought than choosing the peak WUA flows from an IFIM study. Setting a minimum instream flow for the Green River requires ranking the importance of each river reach, fish species, and lifestage. This ranking requires a consensus on long-range management plans for the fishery resource from several state and federal natural-resource agencies and the Muckleshoot Indian Tribe.

In addition, a minimum instream flow must include flows necessary for incubation of fish eggs, smolt out-migration, fish passage to spawning grounds, and prevention of stranding of fry and juveniles. Other variables which have to be considered include water temperature, water quality, sediment load, and added flows from tributaries and ground water. Significant inflows to the Green River occur from Big Soos Creek, Newaukem Creek, and ground water (Appendix I).

A flow which provides peak habitat for fish may not necessarily provide optimum fish production. At low flows other hard-to-quantify variables not included in this study may be of overriding importance for fish production. Flows higher than peak habitat flows may be needed to provide: (1) water velocity sufficient for downstream transportation of aquatic insect drift needed for food; and (2) more water depth for less competition between fish species, less predation by birds and larger fish, less poaching by humans, and less 4-wheel drive vehicle crossings over spawning salmon and steelhead nests.

Appendix A

WUA VS FLOW GRAPHS

Appendix B

KENT SITE CALIBRATION INFORMATION

Appendix B1 IFG4 Input File Kent Site

• • • • • • • • • • • • • • • • • • • •							
Green R	iver at 1	Kent	Split s	ite, Lower at	RM 27.2, Up	per at RM 30	0.5
Q/DATE	E MEAS	SURED 950	0 cfs on 11-12				
IOC			00000300000				
BMAX	1.3						
QARD		00					
QARD		62					
QARD		38					
QARD		50					
QARD	250						
XSEC			.001.00	85.10			
	1.0	-5.0 97.4	0.0 93.4	3.0 91.9	5.0 90.7	10.0 88.6	15.0 87.0
	1.0	20.0 86.6	25.0 86.2	30.0 86.0	35.0 85.7	40.0 85.4	45.0 85.3
	1.0	47.5 85.1	50.0 85.3	52.5 85.3	55.0 85.3	57.5 85.4	60.0 85.4
	1.0	65.0 85.8	70.0 86.0	75.0 86.7	80.0 87.4	85.0 88.4	90.0 89.0
	1.0	95.0 89.5	100.0 90.0	105.0 90.2	108.4 91.7	110.0 93.0	114.0 94.9
	1.0	124.0101.3					
NS	1.0	0.0 0.8	0.0 0.8	0.0 0.8	0.0 0.8	0.0 11.5	0.0 26.6
NS	1.0	0.0 26.5	0.0 26.6	0.0 26.6	0.0 16.6	0.0 13.5	0.0 13.8
NS	1.0	0.0 13.8	0.0 15.8	0.0 15.8	0.0 15.7	0.0 16.6	0.0 61.6
NS	1.0	0.0 65.8	0.0 65.9	0.0 56.7	0.0 56.7	0.0 36.8	0.0 61.5
NS	1.0	0.0 61.5	0.0 16.7	0.0 15.8	0.0 0.8	0.0 0.8	0.0 0.8
NS	1.0	0.0 0.8	0.0	0.0	0.0	0.0	0.0
CAL1	1.0	91.66	950.00				
VEL1	1.0		0.2	0.4 1.4	2.2 2.1	2.4 2.4	2.6 2.7
VEL1	1.0	2.8 3.0	2.6 2.6	2.7 2.7	2.5 2.4	2.0 1.7	1.1 1.2
VEL1	1.0	0.7 0.6	0.3				
CAL2	1.0	91.02	538.00				
VEL2	1.0		0.0	0.3 0.9	1.3 1.3	1.3 1.7	1.7 1.6
VEL2	1.0	1.8 1.9	1.8 1.9	1.8 1.8	1.6 1.3	1.3 0.9	0.7 0.6
VEL2	1.0	0.6 0.0	0.0				
CAL3	1.0	90.50	262.00				
VEL3	1.0			0.3 0.5	0.6 0.6	0.9 0.9	0.8 0.9
VEL3	1.0	0.9 1.0	1.0 1.2	1.0 0.9	0.8 0.6	0.6 0.4	0.2 0.1
VEL3	1.0	0.0 0.0	0.0				
XSEC	2.0	160.000	01.00 86.	.30			
	2.0	-5.0 97.8	0.0 93.3	2.0 92.9	5.0 90.4	10.0 88.5	15.0 87.5
	2.0	20.0 87.8	25.0 87.7	30.0 87.7	35.0 87.6	40.0 87.4	45.0 87.4
	2.0	50.0 87.3	55.0 87.3	57.5 87.3	60.0 87.3	62.5 87.4	65.0 87.4
	2.0	67.5 87.5	70.0 87.6	72.5 87.6	75.0 87.4	77.5 87.4	80.0 87.2
	2.0	82.5 87.1	85.0 86.9	90.0 86.5	95.0 86.3	100.0 86.5	105.0 87.1
	2.0	110.0 88.0	115.0 89.3	120.3 93.5	121.3 95.2	126.3100.2	
NS	2.0	0.00 0.8	0.0 88.5	0.0 88.5	0.0 88.5	0.0 88.5	0.0 11.5
NS	2.0	0.0 22.5	0.0 23.9	0.0 23.9	0.0 23.9	0.0 25.9	0.0 25.9
NS	2.0	0.0 23.9	0.0 42.7	0.0 42.7	0.0 63.6	0.0 63.6	0.0 53.8
NS	2.0	0.0 56.8	0.0 56.8	0.0 54.9	0.0 54.9	0.0 56.9	0.0 56.9
NS	2.0	0.0 55.5	0.0 62.6	0.0 26.6	0.0 26.5	0.0 62.8	0.0 68.9
NS	2.0	0.0 68.9	0.0 68.9	0.0 0.8	0.0 0.8	0.0 0.8	0.0
CAL1	2.0	91.70	950.00				

Appendix B1 IFG4 Input File Kent Site Continued

VEL1	2.0		0.3	0.9	1.6	1.8 1.9	9 2.2	2.3	2.5	2.7	
VEL1	2.0	2.9 3.0	2.9 3.1	3.0	3.0	2.9 3.	1 3.3	3.8	3.4	3.2	
VEL1	2.0	3.0 2.8	2.1 1.3	0.5	0.1	0.1 0.4	4				
CAL2	2.0	91.02	538.00								
VEL2	2.0		0.0	0.6	0.9	1.0 1.0	0 1.4	1.4	1.5	1.6	
VEL2	2.0	1.8 2.0	2.1 2.1			2.4 2.3					
VEL2	2.0	1.9 2.1	1.6 1.2			0.1 0.0		2.7	2.0	2.0	
CAL3	2.0	90.49	262.00	0.7	U.T (J.1 U.	U				
VEL3	2.0	30.43	0.0	0.5	05 (0.5 0.3	8 1.1	1.1	1.2	1.2	
	2.0	1.4 1.5	1.4 1.6			1.3 1.0			1.0		
VEL3								2 1.1	1.0	0.9	
VEL3	2.0	0.8 0.3	0.3 0.2		0.4 (0.3 0.2	2				
XSEC	3.0	170.0001.			02.0	10.0	01.5	20.0	01.2	25.0	00.5
	3.0	-30.0 96.5	0.0 94.5		93.0	19.0		20.0			
	3.0	30.0 90.0	35.0 90.5		90.2	45.0		50.0			88.5
	3.0	60.0 87.7	65.0 86.8		86.1		85.5		85.4		85.5
	3.0	82.5 85.7	85.0 85.7		86.0		86.2	92.5			86.6
	3.0	97.5 87.0	100.0 87.2							115.0	88.9
	3.0	120.0 89.2	125.0 91.0								
NS	3.0	0.0 0.8	0.0 0.8	0.0	0.8	0.0	43.6	0.0	43.6	0.0	43.6
NS	3.0	0.0 13.9	0.0 41.5	0.0	41.8	0.0	22.5	0.0	22.5	0.0	22.5
NS	3.0	0.0 23.7	0.0 23.8	0.0	23.9	0.0	23.9	0.0	23.9	0.0	25.6
NS	3.0	0.0 25.6	0.0 56.6	0.0	56.6	0.0	56.6	0.0	56.6	0.0	56.6
NS	3.0	0.0 56.7	0.0 56.7	0.0	56.7	0.0	52.9	0.0	52.9	0.0	36.9
NS	3.0	0.0 54.8	0.0 88.5	0.0	88.5	0.0	0.8	0.0	0.8	0.0	
CAL1	3.0	91.72	950.00								
VEL1	3.0		0.0	0.0	0.4	1.2	1.9	1.4	1.3	1.7	1.6
VEL1	3.0	2.0 1.9	2.2 2.6	2.7		3.0		3.3		3.6	
VEL1	3.0	3.8 3.7	4.2 4.1	2.8		1.7					
CAL2	3.0	91.04	538.00								
VEL2	3.0	, , , ,			0.0	0.3	0.4	0.4	0.4	0.7	0.7
VEL2	3.0	0.9 1.0	1.2 1.3	1.5		2.0		2.5		2.7	
VEL2	3.0	2.8 3.4	3.4 3.9	3.3		2.1		2.0	2.0	2.,	2.,
CAL3	3.0	90.53	262.00	3.3	2.1	2.1	0.0				
VEL3	3.0	70.55	202.00				0.0	0.0	0.3	0.3	0.2
VEL3	3.0	0.2 0.3	0.6 0.9	1 3	1.3	17	1.5	1.8		1.7	
VEL3	3.0	1.7 1.8	2.6 2.5		1.4	1.7	1.0	1.0	1./	1.7	2.1
XSEC	4.0	170.0001.			1.4		1.0				
ASEC	4.0	-30.0107.8	0.0 99.9		100.2	5.0	06.0	10.0	04.0	15.0	04.0
		20.0 94.9						10.0			
	4.0		25.0 95.1		95.1		95.1			00.0	95.2
	4.0	70.0 95.2	80.0 95.29							150.0	94.9
	4.0	125.0 94.8	130.0 94.8							150.0	94.8
	4.0	160.0 94.6	170.0 94.7				,			0.0	
NS	4.0	0.0 0.8	0.0 88.5		88.5		82.9		82.5		65.6
NS	4.0	0.0 65.5	0.0 65.6		65.5		56.6		56.6		65.5
NS	4.0	0.0 65.5	0.0 56.8		65.6		65.6		65.6		65.7
NS	4.0	0.0 65.8	0.0 65.9		75.6		67.7		65.7		56.7
	4.0	0.0 65.5	0.0 85.8	0.0	88.5	0.0	88.5	0.0	0.8	0.0	
CAL1	4.0	97.45	950.00								

Appendix B1 IFG4 Input File Kent Site Continued VEL1 4.0 0.6 1.6 2.2 2.2 2.4 2.5 2.2 2.3 2.2 VEL1 4.0 2.4 2.4 2.5 2.6 2.4 2.6 2.0 2.5 2.5 2.2 2.6 2.2 VEL1 4.0 2.5 1.4 0.1 CAL₂ 96.97 538.00 4.0 VEL2 4.0 0.4 0.8 1.3 1.4 1.7 1.6 1.5 1.6 1.6 VEL2 4.0 1.5 2.0 1.6 1.6 1.8 1.5 1.5 1.8 1.7 1.4 1.5 1.7 VEL2 4.0 1.5 1.1 00 CAL3 4.0 96.57 262.00 VEL3 1.1 1.3 4.0 0.0 0.5 1.0 1.3 1.0 1.2 1.2 VEL2 4.0 1.1 0.9 1.1 1.0 1.0 1.0 1.1 1.0 1.1 1.2 1.2 1.1 VEL2 4.0 1.0 0.3 170.0000.50 **XSEC** 94.60 5.0 5.0 -35.0109.5 0.0100.5 10.0 99.0 12.5 95.5 15.0 95.4 5.0 99.3 5.0 20.0 95.0 25.0 94.6 30.0 94.4 35.0 94.4 40.0 94.4 45.0 94.3 5.0 50.0 94.1 55.0 93.9 60.0 93.6 65.0 93.3 70.0 92.8 75.0 92.1 5.0 80.0 91.4 85.0 91.1 90.0 91.1 92.5 90.9 95.0 90.8 97.5 90.5 100.0 90.2 102.5 90.0 5.0 105.0 90.0 110.0 90.7 115.0 93.4120.0 96.4 5.0 123.6 98.5 125.6 99.7 139.6 106.9 NS 5.0 0.0 0.8 0.0 0.8 0.0 0.8 0.0 0.1 0.0 16.8 0.0 16.8 0.0 26.5 NS 5.0 0.0 27.8 0.0 27.8 0.0 27.8 0.0 26.6 0.0 26.6 NS 5.0 0.0 26.5 0.0 26.5 0.0 26.5 0.0 26.5 0.0 61.5 0.0 61.5 0.0 16.9 0.0 61.9 NS 5.0 0.0 16.8 0.0 61.6 0.0 61.7 0.0 61.9 NS 5.0 0.0 61.9 0.0 61.9 0.0 61.9 0.0 88.5 0.0 88.5 0.0 88.5 NS 5.0 0.0 0.2 0.0 0.8 0.0 0.8 0.0 0.0 0.0 CAL1 5.0 97.66 950.00 VEL1 5.0 0.9 0.9 1.2 1.0 1.4 1.6 1.5 1.7 VEL1 1.9 2.1 5.0 1.7 1.4 1.9 2.0 2.1 2.1 2.2 2.4 2.3 2.4 VEL1 5.0 2.4 2.0 0.9 0.3 2.3 2.4 CAL₂ 5.0 97.13 538.00 VEL2 5.0 0.5 0.7 0.8 0.8 1.0 0.8 1.2 1.0 1.1 1.5 VEL2 5.0 1.1 1.0 1.3 1.4 1.5 1.4 1.5 1.5 1.6 1.6 VEL2 1.6 1.6 1.6 0.9 5.0 0.5 0.1 CAL3 96.57 262.00 5.0 0.6 0.6 VEL3 5.0 0.3 0.4 0.4 0.4 0.4 0.4 VEL3 5.0 0.6 0.6 0.6 0.8 0.6 0.7 0.7 0.8 0.9 0.8 0.8 0.8 VEL3 0.8 0.9 0.9 0.5 5.0 0.2 0.0 **XSEC** 6.0 340.0000.00 94.60 -50.0 109.6 -30.0 99.9 0.0 99.3 1.0 98.9 5.0 96.6 10.0 96.5 6.0 15.0 96.2 20.0 95.9 25.0 95.5 30.0 95.0 35.0 94.3 40.0 93.3 6.0 52.5 90.7 6.0 45.0 92.3 50.0 91.2 55.0 90.4 57.5 89.9 60.0 89.7 62.5 88.5 77.5 87.9 80.0 88.7 6.0 70.0 87.7 72.5 87.2 75.0 87.6 95.0 94.2 6.0 85.0 90.0 90.0 91.7 100.0 97.0 102.0 98.8104.0 100.1 119.0 107.4 6.0 NS 0.0 0.8 0.0 0.8 0.0 16.9 6.0 0.0 0.8 0.0 0.8 0.0 65.6 NS 6.0 0.0 64.6 0.0 56.6 0.0 46.6 0.0 63.5 0.0 16.6 0.0 16.7

0.0 26.6

0.0 26.9

0.0 88.5

0.0 26.8

0.0 26.9

0.0

0.8

0.0 26.9 0.0 78.8

0.0

0.8

0.0 62.5

0.0 26.9

0.0 88.5

NS

NS

NS

6.0

6.0

6.0

0.0 27.7

0.0 26.9

0.0 78.5

0.0 62.5

0.0 26.9

0.0 87.7

Appendix B1 IFG4 Input File Kent Site Continued

NS CAL1	6.0 6.0	0.0 0.8 97.68	0.0 950.00	0.0	0.0	0.0	0.0
VEL1	6.0			0.6 0.9	1.0 1.2	1.2 1.5	1.7 1.9
VEL1	6.0	1.9 1.9	1.9 2.0	2.0 1.8	1.8 1.9	1.9 2.2	2.2 2.0
VEL1	6.0	2.1 2.1	0.8 0.9				
CAL2	6.0	97.16	538.00				
VEL2	6.0			0.3 0.1	0.2 0.6	0.6 0.7	0.8 1.0
VEL2	6.0	1.1 1.2	1.2 1.2	1.3 1.3	1.2 1.2	1.1 1.2	1.3 1.2
VEL2	6.0	1.2 1.2	0.9 0.0				
CAL3	6.0	96.61	262.00				
VEL3	6.0			0.0 0.0	0.0 0.3	0.2 0.3	04 0.5
VEL3	6.0	0.4 0.6	0.6 0.6	0.6 0.7	0.6 0.6	0.6 0.6	0.7 0.7
VEL3	6.0	0.6 0.6	0.6				
ENDJ							

Appendix B2 Summary of Calibration Details Kent Site

Kent Site Calibration Information for Calculated Discharges

Transect Number					
1	2	3	4	5	6
Discharge					
989	972	944	922	940	929
547	576	554	493	552	507
251	275	299	260	254	232
Stage					
91.66	91.70	91.72	97.45	97.66	97.68
91.02	91.02	91.04	96.97	97.13	97.16
90.50	90.49	90.53	96.57	96.57	96.61
Plotting Stage					
6.56	5.40	5.42	2.85	3.06	3.08
5.92	4.72	4.74	2.37	2.53	2.56
5.40	4.19	4.23	1.97	1.97	2.01
			1.77	1.77	2.01
Ratio of measured	versus predi	icted discharge			
0.96	0.96	0.97	1.00	1.00	1.00
1.09	1.10	1.06	1.00	1.02	1.00
0.96	0.95	0.97	1.00	0.99	1.00
Mean error of stag	e/discharge	relationship for calcula	ted Q		
5.77	6.43	3.89	0.26	1.40	0.23
Mean error of stag	e/discharge	relationship for given (Q		
4.88	5.05	5.62	3.30	0.54	0.46
Stage/discharge re	lationship	(S vs Q)	S=A*Q**B+	SZF	
A = 2.446	1.334	1.223	0.388	0.304	0.375
B = .1422	.2019	.2165	.2919	.3363	.3082
SZF= 85.1	86.3	86.3	94.6	94.6	94.6
			71.0	71.0	71.0
B coefficient log/le	og discharge	stage relationship			
7.03	4.95	4.62	3.43	2.97	3.24

Appendix B3 Data Changes Kent Site

BMAX of 1.3

Verticals affected by an upper BMAX of 1.3

Transect 1	Vertical	24 = 1.8340
Transect 2	Vertical	26 = 1.8264
Transect 2	Vertical	27 = 1.5893
Transect 2	Vertical	28 = 1.5450
Transect 3	Vertical	7 = 2.5902
Transect 3	Vertical	8 = 2.9113
Transect 3	Vertical	9 = 2.3407
Transect 3	Vertical	11 = 1.5030
Transect 3	Vertical	12 = 1.8115
Transect 3	Vertical	13 = 2.0106
Transect 3	Vertical	14 = 1.6117
Transect 5	Vertical	30 = 2.0634
Transect 6	Vertical	6 = 3.6297
Transect 6	Vertical	7 = 2.6587

Appendix B4 Velocity Adjustment Factors Kent Site

Transect	Flow	VAF
1.00	1.00.0	.962
1.00	262.0	.988
1.00	538.0	.998
1.00	950.0	1.000
1.00	2500.0	.988
2.00	100.0	.840
2.00	262.0	.992
2.00	538.0	1.018
2.00	950.0	1.007
2.00	2500.0	.938
3.00	100.0	.892
3.00	262.0	.977
3.00	538.0	1.017
3.00	950.0	1.031
3.00	2500.0	.984
4.00	100.0	1.017
4.00	262.0	1.002
4.00	538.0	1.000
4.00	950.0	1.000
4.00	2500.0	.998
5.00	100.0	.954
5.00	262.0	.997
5.00	538.0	1.007
5.00	950.0	.998
5.00	2500.0	.953
6.00	100.0	.920
6.00	262.0	.992
6.00	538.0	1.009
6.00	950.0	.998
6.00	2500.0	.932

Appendix C

NEALY BRIDGE SITE CALIBRATION INFORMATION

Appendix C1 IFG4 Input File Nealy Bridge Site

Green River at Nealy Bridge RM 35.0 Q/DATE MEASURED 887 cfs on 11-11-86, 425 on 06-17-86, 238 on 08-07-86 IOC 00000020000000000 **QARD** 100.0 **QARD** 238.0 **QARD** 425.0 OARD 887.0 QARD 2000.0 **XSEC** 1.0 0.0000.50 86.10 1.0 -5.0 98.2 0.0 93.2 5.0 91.2 10.0 88.7 12.5 88.5 15.0 88.6 1.0 17.5 88.6 20.0 88.7 22.5 88.5 25.0 87.8 27.5 87.3 30.0 87.0 1.0 32.5 87.1 35.0 87.1 40.0 86.9 42.5 86.8 45.0 86.8 47.5 86.7 1.0 50.0 86.6 52.5 86.8 55.0 86.7 60.0 86.3 62.5 86.2 65.0 86.1 67.5 86.3 70.0 86.6 72.5 87.2 75.0 87.6 80.0 88.8 82.5 89.1 1.0 85.0 89.8 87.5 89.9 90.0 90.5 100.0 91.4 150.0 94.0 200.0 91.5 1.0 1.0 228.0 93.4 258.0 94.7 NS 0.0 0.8 0.0 45.8 0.0 45.8 0.0 45.8 0.0 54.8 0.0 54.8 1.0 NS 1.0 0.0 54.9 0.0 56.9 0.0 56.9 0.0 56.9 0.0 64.8 0.0 64.6 NS 1.0 0.0 56.6 0.0 65.7 0.0 63.7 0.0 63.7 0.0 64.6 0.0 64.6 NS 0.0 64.6 0.0 64.6 0.0 64.5 0.0 64.5 0.0 46.6 1.0 0.0 64.6 NS 1.0 0.0 46.6 0.0 46.6 0.0 64.5 0.0 65.5 0.0 46.9 0.0 46.9 0.0 56.8 NS 0.0 46.9 0.0 46.9 0.0 46.9 0.0 64.6 0.0 0.8 1.0 NS 1.0 0.0 56.8 0.0 56.8 0.00.0 0.0 0.0 CAL1 1.0 90.46 887.00 VEL1 1.9 2.6 3.1 3.5 2.8 1.9 2.1 2.0 1.0 1.4 VEL1 1.0 2.3 2.9 4.6 5.0 5.1 5.3 4.0 4.8 4.9 4.9 4.6 4.6 2.2 2.0 VEL1 1.0 4.4 4.6 4.6 3.7 0.9 0.7 VEL1 1.0 CAL₂ 1.0 89.78 425.00 VEL2 1.0 1.5 1.6 1.9 1.9 2.4 2.1 1.6 1.1 1.1 VEL2 1.0 1.8 1.8 2.7 3.0 3.2 2.7 2.7 3.1 3.1 3.0 2.9 2.8 VEL2 1.0 2.8 2.6 2.2 2.0 1.0 0.7 0.0 VEL2 1.0 CAL3 1.0 89.17 239.00 VEL3 1.0 1.0 1.1 1.1 1.1 1.3 1.3 1.0 0.7 0.6 VEL3 1.3 2.1 2.2 2.2 2.1 2.4 1.0 0.8 1.3 2.3 1.8 2.3 2.2 VEL3 1.0 2.1 2.2 1.2 0.7 1.9 1.6 VEL3 1.0 **XSEC** 298.0000.50 2.0 89.20 2.0 -7.0 97.3 0.0 94.7 2.0 93.7 4.0 92.0 5.0 91.0 10.0 89.2 20.0 89.7 30.0 90.3 35.0 90.6 40.0 90.8 2.0 15.0 89.7 25.0 90.0 2.0 50.0 91.1 60.0 91.5 70.0 91.5 80.0 91.4 90.0 91.3 100.0 91.2 2.0 110.0 91.2 120.0 91.1 130.0 91.0 140.0 91.0 150.0 90.9 160.0 90.5 170.0 90.6 180.0 90.8 200.0 91.6 2.0 190.0 91.3 205.0 91.3 210.0 91.4 2.0 215.0 93.4 217.0 95.4 219.0 97.4 NS 2.0 0.0 0.8 0.0 0.8 0.0 88.5 0.0 88.5 0.0 53.6 0.0 0.8 NS 2.0 0.0 65.6 0.0 56.8 0.0 4.7 0.0 5.7 0.0 46.6 0.0 45.8 NS 2.0 0.026.60.0 56.9 0.0 54.5 0.0 46.7 0.046.8 0.0 45.8

Appendix C1 IFG4 Input File Nealy Bridge Site Continued

NS	2.0	0.0 46.9	0.0 56.9	0.0 56.9	0.0 56.9	0.0 56.9	0.0 56.9
NS	2.0	00 56.9	0.0 56.9	0.0 0.2	0.0 0.2	0.0 0.2	0.0 0.2
NS	2.0	0.0 0.8	0.0 0.8	0.0 0.8	0.0	0.0	0.0
CAL1	2.0	92.53	887.00	07.20	20 40	25 22	24 21
VEL1	2.0	22.22	22.20	0.7 3.8	2.9 4.0	3.5 3.3	3.4 3.1
VEL1	2.0	2.3 2.3	2.3 2.8	2.8 2.6	3.0 3.1	3.0 3.0	3.5 2.9
VEL1	2.0	2.7 2.8	2.1 1.2	0.3 0.1			
CAL2	2.0	92.08	425.00	0.4.07	27.20	24 22	20 17
VEL2	2.0	11 10	1 4 1 5	0.4 2.7	2.7 2.8	2.4 2.3	2.0 1.7
VEL2	2.0	1.1 1.0	1.4 1.5	1.3 1.6	1.6 2.0	2.0 2.0	2.3 2.3
VEL2	2.0	2.4 2.1	1.7 0.8	0.4 0.5			
CAL3	2.0	91.72	239.00	0.0 1.0	25.22	10 16	1.2 0.0
VEL3	2.0	05 15	16 17	0.0 1.8	2.5 2.3	1.9 1.6	1.2 0.9
VEL3	2.0	0.5 1.5	1.6 1.7	0.7 1.2	1.5 1.5	1.6 1.7	1.8 1.7
VEL3	2.0	2.2 1.7	0.9 0.0	0.2 0.3			
XSEC	3.0	250.0000.3			7.5.00.0	100001	150015
	3.0	-5.0 97.3	0.0 95.0	5.0 90.4	7.5 90.0	10.0 90.4	15.0 91.7
	3.0	20.0 91.9	25.0 91.9	30.0 91.8	35.0 91.8	40.0 91.7	45.0 91.5
	3.0	50.0 91.4	55.0 91.5	60.0 91.4	65.0 91.3		75.0 91.0
	3.0	80.0 91.0	85.0 91.0	90.0 91.0	95.0 91.0	100.0 91.0	
	3.0	110.0 90.9 1		120.0 90.9	125.0 90.8	130.0 90.7	
	3.0	140.0 90.7	145.0 90.6	150.0 90.6	155.0 90.6	160.0 90.6	
	3.0	170.0 90.4	175.0 90.5	180.0 90.6	185.0 90.9	190.0 91.2	195.0 91.7
NG	3.0	200.0 92.5	203.0 92.9	209.0 95.1	211.0 97.2	0.0 51.0	00.45.6
NS	3.0	0.0 0.8	0.0 88.5	0.0 0.2	0.0 0.2	0.0 51.8	0.0 45.6
NS	3.0	0.0 46.7	0.0 45.8	0.0 54.6	0.0 45.5	01.0 45.6	0.0 45.6
NS	3.0	0.0 45.7	0.0 45.7	0.0 45.6	0.0 46.6	0.0 56.8	0.0 56.6
NS	3.0	0.0 46.7	0.0 45.7	0.0 46.6	0.0 46.7	0.0 46.7	0.0 46.7
NS	3.0	0.0 46.7	0.0 46.7	0.0 46.5	0.0 54.6	0.0 56.6	0.0 54.7
NS	3.0	0.0 45.6	0.0 45.7	0.0 45.5	0.0 54.6	0.0 45.8	0.0 45.7
NS	3.0	0.0 45.8	0.0 54.6	0.0 45.7	0.0 54.7	0.0 42.7	0.0 22.5
NS	3.0	0.0 0.2	0.0 0.2	0.0 0.8	0.0 0.8	0.0	0.0
CAL1	3.0	92.95	887.00	10.10	17 15	1 . 1 .	22 27
VEL1	3.0	26.20	0.3 0.1	1.9 1.8	1.7 1.5	1.5 1.6	2.3 2.7
VEL1	3.0	2.6 2.8	2.5 2.7	2.7 2.5	2.4 2.8	2.6 2.9	2.6 2.7
VEL1	3.0	3.0 2.6	2.9 2.7	2.8 2.7	2.5 2.6	2.4 2.6	2.4 24
VEL1	3.0	2.6 2.4	2.1 1.0	0.6 0.0	0.0		
CAL2	3.0	92.35	425.00	10.07	0.0.1.2	12 14	1 6 1 7
VEL2	3.0	1 6 1 0	0.5 0.4	1.0 0.7	0.9 1.2	1.3 1.4	
VEL2	3.0	1.6 1.8	1.7 1.6	1.7 1.9	1.9 2.0	1.9 1.8	1.9 1.7
VEL2	3.0	1.6 1.9	1.6 1.9	1.7 1.6	1.6 1.5	1.7 1.6	1.6 1.8
VEL2	3.0	1.7 1.7	1.5 1.0	0.8 0.4			
CAL3	3.0	92.17	239.0	0.5.00	0.0.00	0.7.00	10 12
VEL3	3.0	12 12	.05 .05	0.5 0.0	0.8 0.8	0.7 0.9	1.0 1.2
VEL3	3.0	1.2 1.2	1.3 1.4	1.4 1.3	1.3 1.4	1.6 1.1	1.3 1.3
VEL3	3.0	1.3 1.4	1.2 1.2	1.4 1.3	1.3 1.0	1.2 1.3	1.0 1.2
VEL3	3.0	1.2 1.4	0.9 0.7	0.6 0.3			
XSEC	4.0	298.0000.5	0 83.	.00			

Appendix C1 IFG4 Input File Nealy Bridge Site Continued

	4.0	-10.0 95.3	0.0 89.4	2.0 88.4	5.0 86.9	10.0 86.5	15.0 86.5
	4.0	2.0 86.6	25.0 86.6	30.0 86.4	35.0 861.3	40.0 86.3	45.0 86.4
	4.0	50.0 86.5	55.0 86.6	60.0 86.5	65.0 86.6	70.0 86.6	75.0 86.6
	4.0	80.0 86.6	85.0 86.5	90.0 86.2	95.0 85.8		105.0 85.4
	4.0	110.0 85.0	115.0 84.6	120.0 83.9	125.0 83.6		135.0 83.7
	4.0	140.0 87.0	143.0 88.5	145.0 89.4	165.0 93.8	195.0 93.8	
NS	4.0	0.022.5	0.0 22.5	0.0 0.2	0.022.5	0.0 32.8	0.0 42.6
NS	4.0	0.0 54.5	0.0 45.8	0.0 45.8	0.0 45.8	0.0 45.8	0.045.8
NS	4.0	0.0 45.8	0.0 45.8	0.0 45.8	0.0 45.8	0.0 45.8	0.0 45.8
NS	4.0	0.0 45.8	0.0 54.6	0.0 52.8	0.0 52.8	0.0 32.6	
NS	4.0	0.0 42.8	0.0 42.8	0.0 42.8	0.0 37.8	0.0 32.0	
NS	4.0	0.0 88.5	0.0 88.5	0.0 0.8	0.0 0.8	0.0 0.8	0.0
CAL1	4.0	88.46	887.00				
VEL1	4.0		0.5	1.2 1.5	1.9 3.1	3.7 3.5	3.6 3.8
VEL1	4.0	3.3 3.1	3.5 3.0	3.4 3.5	3.3 3.4	2.9 3.4	3.4 3.7
VEL1	4.0	3.8 3.4	3.0 1.5	0.3 0.1	0.0		
CAL2	4.0	87.62	425.00	0.5 0.1	0.0		
		87.02		1616	1 4 2 2	2 6 2 0	2120
VEL2	4.0		0.6	1.6 1.6	1.4 2.2	2.6 2.9	
VEL2	4.0	2.4 2.1	2.4 1.9	2.1 1.7	1.9 1.6	1.4 1.6	1.7 2.0
VEL2	4.0	2.2 2.2	2.4 1.3	0.8 0.6	0.0		
CAL3	4.0	87.26	239.00				
VEL3	4.0		0.5	1.3 1.3	1.3 1.5	1.8 2.3	2.8 2.3
VEL3	4.0	2.3 2.0	2.1 1.4	1.7 1.3	1.2 1.0	0.9 0.8	
						0.9 0.8	0.8 1.0
VEL3	4.0	1.3 1.5	1.3 1.0	0.4 0.4	0.0		
XSEC	5.0	446.000					
	5.0	-10.0 96.4	0.0 90.4	2.0 89.5	5.0 88.5	10.0 87.5	15.0 87.4
	5.0	20.0 87.5	25.0 87.5	30.0 87.5	35.0 87.5	40.0 87.5	45.0 87.4
	5.0	50.0 87.4	55.0 87.3	60.0 87.2	65.0 87.0	70.0 87.0	
	5.0	80.0 86.8	85.0 86.7	90.0 86.7	95.0 86.6		105.0 86.3
			115.0 86.1				
	5.0	110.0 86.3		120.0 86.1	125.0 86.1		135.0 85.6
	5.0	140.0 85.6	145.0 86.2	150.0 88.9	154.0 91.5		179.0 96.2
NS	5.0	0.0 0.8	0.0 0.8	0.0 0.8	0.0 0.2	0.0 56.6	0.0 56.7
NS	5.0	0.0 43.9	0.0 43.8	0.0 43.8	0.0 54.6	0.0 54.6	0.0 54.5
NS	5.0	0.0 54.6	0.0 54.6	0.0 54.7	0.0 54.6	0.0 54.7	0.0 54.7
NS	5.0	0.0 54.7	0.0 54.9	0.0 56.9	0.0 56.8	0.0 56.8	
NS	5.0	0.0 87.8	0.0 88.5	0.0 88.5	0.0 88.5	0.0 0.8	
				0.0 88.3	0.0 88.3	0.0 0.8	0.0 0.8
CAL1	5.0	89.11	887.00				
VEL1	5.0		0.3	0.6 1.5	2.0 2.3	2.4 2.2	
VEL1	5.0	2.8 2.8	2.9 2.9	3.0 3.0	3.3 3.5	3.3 3.2	3.2 3.1
VEL1	5.0	3.2 3.1	2.9 2.7	2.6 2.3	1.3 1.2	0.0	
CAL2	5.0	88.62	425.00				
VEL2	5.0	00.02	0.2	0.8 0.7	1.3 1.3	1.4 1.6	1.5 1.7
		1 (1 0					
VEL2	5.0	1.6 1.9	1.8 1.7	2.1 2.0	2.3 2.0	2.0 2.3	2.1 2.3
VEL2	5.0	2.1 1.8	2.0 2.0	1.9 1.7	0.5 0.0		
CAL3	5.0	88.13	239.00				
VEL3							
V LLJ	5.0		0.0	0.5 0.3	$0.9 \ 0.7$	0.8 0.7	$0.8 \ 0.9$
VEL3	5.0 5.0	1.1 1.1	0.0 1.3 1.4	0.5 0.3 1.2 1.5	0.9 0.7 1.5 1.7	0.8 0.7 1.8 1.8	

Appendix C1 IFG4 Input File Nealy Bridge Site Continued

XSEC 6.0 204.0000.50 86.50 6.0 -10.0 97.5 0.0 91.4 2.0 89.1 5.0 88.1 10.0 87.5 15.0 87.0 6.0 20.0 87.0 25.0 86.7 30.0 86.6 35.0 86.7 40.0 86.6 45.0 86.6 6.0 50.0 86.6 55.0 86.6 60.0 86.5 65.0 86.6 70.0 86.6 75.0 86.7 6.0 80.0 87.0 85.0 87.3 90.0 87.5 95.0 87.7 100.0 87.8 105.0 87.8 6.0 110.0 88.0 115.0 88.0 120.0 88.2 125.0 88.0 130.0 88.0 135.0 87.9 6.0 140.0 87.7 145.0 87.3 150.0 89.4 152.0 90.7 172.0 97.2 NS 6.0 0.0 0.8 0.0 0.8 0.0 0.2 0.0 0.2 0.0 0.2 0.0 45.6 NS 6.0 0.0 47.6 0.0 45.5 0.0 46.6 0.0 45.8 0.0 45.5 0.0 54.6 NS 6.0 0.0 47.6 0.0 45.5 0.0 54.6 0.0 45.8 0.0 45.5 0.0 54.6 NS 6.0 0.0 45.6 0.0 45.6 0.0 45.6 0.0 45.5 0.0 54.6 NS 6.0 0.0 45.6 0.0 45.6 0.0 45.5 0.0 54.6 NS 6.0 0.0 45.6 0.0 45.5 0.0 45.6 0.0 45.8 0.0 45.7 0.0 45.5 NS 6.0 0.0 45.7 0.0 45.5 0.0 56.7 0.0 45.8 0.0 45.7 0.0 45.5 NS 6.0 0.0 45.7 0.0 56.7 0.0 88.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	VEL3	5.0	1.6 1.6 1.5	1.6 1.3 1.0	0.4 0.0		
6.0							
6.0 20.0 87.0 25.0 86.7 30.0 86.6 35.0 86.7 40.0 86.6 45.0 86.6 6.0 50.0 86.6 55.0 86.6 60.0 86.5 65.0 86.6 70.0 86.6 75.0 86.7 6.0 80.0 87.0 85.0 87.3 90.0 87.5 95.0 87.7 100.0 87.8 105.0 87.8 6.0 110.0 88.0 115.0 88.0 120.0 88.2 125.0 88.0 130.0 88.0 135.0 87.9 6.0 140.0 87.7 145.0 87.3 150.0 89.4 152.0 90.7 172.0 97.2 NS 6.0 0.0 0.8 0.0 0.8 0.0 0.2 0.0 0.2 0.0 0.2 0.0 45.6 NS 6.0 0.0 54.8 0.0 54.8 0.0 46.6 0.0 45.6 0.0 45.5 0.0 46.6 NS 6.0 0.0 47.6 0.0 45.5 0.0 54.6 0.0 45.8 0.0 45.5 0.0 54.6 NS 6.0 0.0 45.6 0.0 45.8 0.0 45.6 0.0 45.8 0.0 45.5 0.0 54.6 NS 6.0 0.0 45.6 0.0 45.8 0.0 45.6 0.0 45.8 0.0 45.5 0.0 54.6 NS 6.0 0.0 45.6 0.0 45.5 0.0 54.6 NS 6.0 0.0 45.6 0.0 45.5 0.0 56.7 0.0 45.8 0.0 45.7 0.0 45.5 NS 6.0 0.0 45.7 0.0 56.7 0.0 88.5 0.0 88.5 0.0 0.0 45.7 0.0 45.5 NS 6.0 0.0 45.7 0.0 56.7 0.0 88.5 0.0 88.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0			-10.0 97.5 0.0 93	1.4 2.0 89.1	5.0 88.1	10.0 87.5	15.0 87.0
6.0 80.0 87.0 85.0 87.3 90.0 87.5 95.0 87.7 100.0 87.8 105.0 87.8 6.0 110.0 88.0 115.0 88.0 120.0 88.2 125.0 88.0 130.0 88.0 135.0 87.9 88.0 140.0 87.7 145.0 87.3 150.0 89.4 152.0 90.7 172.0 97.2 88.0 130.0 88.0 135.0 87.9 88.0 140.0 87.7 145.0 87.3 150.0 89.4 152.0 90.7 172.0 97.2 88.0 130.0 88.0 135.0 87.9 88.0 140.0 87.7 145.0 87.3 150.0 89.4 152.0 90.7 172.0 97.2 89.0 88.0 130.0 88.0 135.0 87.9 89.3 150.0 89.4 152.0 90.7 172.0 97.2 89.0 88.0 130.0 88.0 135.0 87.9 89.3 150.0 89.4 152.0 90.7 172.0 97.2 89.0 145.0 150.0 1		6.0	20.0 87.0 25.0 86	5.7 30.0 86.6	35.0 86.7	40.0 86.6	45.0 86.6
6.0 110.0 88.0 115.0 88.0 120.0 88.2 125.0 88.0 130.0 88.0 135.0 87.9 6.0 140.0 87.7 145.0 87.3 150.0 89.4 152.0 90.7 172.0 97.2 NS 6.0 0.0 0.8 0.0 0.8 0.0 0.2 0.0 0.2 0.0 0.2 0.0 0.2 0.0 45.6 NS 6.0 0.0 47.6 0.0 45.5 0.0 54.6 0.0 45.8 0.0 45.5 0.0 46.6 NS 6.0 0.0 45.6 0.0 45.8 0.0 45.6 0.0 45.8 0.0 45.5 0.0 54.6 NS 6.0 0.0 45.6 0.0 45.8 0.0 45.6 0.0 45.8 0.0 45.5 NS 6.0 0.0 54.8 0.0 45.5 0.0 56.7 0.0 45.8 0.0 45.7 0.0 45.5 NS 6.0 0.0 45.7 0.0 56.7 0.0 88.5 0.0 88.5 0.0 0.0 45.7 0.0 45.5 NS 6.0 0.0 45.7 0.0 56.7 0.0 88.5 0.0 88.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0		6.0	50.0 86.6 55.0 86	6.6 60.0 86.5	65.0 86.6	70.0 86.6	75.0 86.7
MS 6.0 140.0 87.7 145.0 87.3 150.0 89.4 152.0 90.7 172.0 97.2 NS 6.0 0.0 0.8 0.0 0.8 0.0 0.2 0.0 0.2 0.0 0.2 0.0 0.2 0.0 45.6 NS 6.0 0.0 54.8 0.0 54.8 0.0 46.6 0.0 45.6 0.0 45.5 0.0 46.6 NS 6.0 0.0 47.6 0.0 45.5 0.0 54.6 0.0 45.8 0.0 45.5 0.0 54.6 NS 6.0 0.0 45.6 0.0 45.8 0.0 45.6 0.0 4.6 0.0 35.8 0.0 34.6 NS 6.0 0.0 54.8 0.0 45.5 0.0 56.7 0.0 45.8 0.0 45.7 0.0 45.5 NS 6.0 0.0 45.7 0.0 56.7 0.0 88.5 0.0 0.8 0.0 NS 6.0 0.0 45.7 0.0 56.7 0.0 88.5 0.0 88.5 0.0 0.8 0.0 CAL1 6.0 89.36 887.00 887.00 3.0 3.1 3.5 3.5 3.3 3.4 VEL1 6.0 3.7 3.8 3.8 4.1 4.2 3.8 3.5 3.7 3.4 3.5 2.6 2.1 VEL1 6.0 2.3 2.1 <t< td=""><td></td><td>6.0</td><td>80.0 87.0 85.0 87</td><td>7.3 90.0 87.5</td><td>95.0 87.7</td><td>100.0 87.8</td><td>105.0 87.8</td></t<>		6.0	80.0 87.0 85.0 87	7.3 90.0 87.5	95.0 87.7	100.0 87.8	105.0 87.8
NS 6.0 0.0 0.8 0.0 0.8 0.0 0.2 0.0 0.2 0.0 0.2 0.0 45.6 NS 6.0 0.0 47.6 0.0 45.5 0.0 46.6 NS 6.0 0.0 45.6 0.0 45.5 0.0 45.6 NS 6.0 0.0 45.6 0.0 45.8 0.0 45.6 0.0 45.5 0.0 54.6 NS 6.0 0.0 45.6 0.0 45.8 0.0 45.6 0.0 45.8 0.0 45.6 NS 6.0 0.0 45.8 0.0 45.5 0.0 54.6 NS 6.0 0.0 54.8 0.0 45.5 0.0 56.7 0.0 45.8 0.0 45.7 0.0 45.5 NS 6.0 0.0 45.7 0.0 56.7 0.0 88.5 0.0 88.5 0.0 0.0 0.0 45.7 0.0 45.5 NS 6.0 0.0 45.7 0.0 56.7 0.0 88.5 0.0 88.5 0.0 0.0 0.0 0.0 VEL1 6.0 89.36 887.00 VEL1 6.0 0.5 1.6 2.2 3.0 3.1 3.5 3.5 3.3 3.4 VEL1 6.0 2.3 2.1 1.9 1.4 0.8 0.7 0.6 0.5		6.0	110.0 88.0 115.0 88	8.0 120.0 88.2	125.0 88.0	130.0 88.0	135.0 87.9
NS 6.0 0.0 54.8 0.0 54.8 0.0 46.6 0.0 45.6 0.0 45.5 0.0 46.6 NS 6.0 0.0 47.6 0.0 45.5 0.0 54.6 0.0 45.8 0.0 45.5 0.0 54.6 NS 6.0 0.0 45.6 0.0 45.8 0.0 45.6 0.0 4.6 0.0 35.8 0.0 34.6 NS 6.0 0.0 54.8 0.0 45.5 0.0 56.7 0.0 45.8 0.0 45.7 0.0 45.5 NS 6.0 0.0 45.7 0.0 56.7 0.0 88.5 0.0 0.0 0.0 0.0 45.7 0.0 56.7 0.0 88.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0		6.0	140.0 87.7 145.0 87	7.3 150.0 89.4	152.0 90.7	172.0 97.2	
NS 6.0 0.0 47.6 0.0 45.5 0.0 54.6 0.0 45.8 0.0 45.5 0.0 54.6 NS 6.0 0.0 45.6 0.0 45.8 0.0 45.6 0.0 4.6 0.0 35.8 0.0 34.6 NS 6.0 0.0 54.8 0.0 45.5 0.0 56.7 0.0 45.8 0.0 45.7 0.0 45.5 NS 6.0 0.0 45.7 0.0 56.7 0.0 88.5 0.0 88.5 0.0 0.0 0.0 0.0 VEL1 6.0 89.36 887.00 VEL1 6.0 3.7 3.8 3.8 4.1 4.2 3.8 3.5 3.7 3.4 3.5 2.6 2.1 VEL1 6.0 2.3 2.1 1.9 1.4 0.8 0.7 0.6 0.5	NS	6.0	0.0 0.8 0.0 0	0.8 0.0 0.2	0.0 0.2	0.0 0.2	0.0 45.6
NS 6.0 0.0 45.6 0.0 45.8 0.0 45.6 0.0 4.6 0.0 35.8 0.0 34.6 NS 6.0 0.0 54.8 0.0 45.5 0.0 56.7 0.0 45.8 0.0 45.7 0.0 45.5 NS 6.0 0.0 45.7 0.0 56.7 0.0 88.5 0.0 88.5 0.0 0.0 0.0 0.0 VEL1 6.0 89.36 887.00 VEL1 6.0 3.7 3.8 3.8 4.1 4.2 3.8 3.5 3.7 3.4 3.5 2.6 2.1 VEL1 6.0 2.3 2.1 1.9 1.4 0.8 0.7 0.6 0.5		6.0	0.0 54.8 0.0 54	4.8 0.0 46.6			0.0 46.6
NS 6.0 0.0 54.8 0.0 45.5 0.0 56.7 0.0 45.8 0.0 45.7 0.0 45.5 NS 6.0 0.0 45.7 0.0 56.7 0.0 88.5 0.0 88.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	NS	6.0	0.0 47.6 0.0 45	5.5 0.0 54.6	0.0 45.8	0.0 45.5	0.0 54.6
NS 6.0 0.0 45.7 0.0 56.7 0.0 88.5 0.0 88.5 0.0 0.8 0.0 CAL1 6.0 89.36 887.00 VEL1 6.0 0.5 1.6 2.2 3.0 3.1 3.5 3.5 3.3 3.4 VEL1 6.0 3.7 3.8 3.8 4.1 4.2 3.8 3.5 3.7 3.4 3.5 2.6 2.1 VEL1 6.0 2.3 2.1 1.9 1.4 0.8 0.7 0.6 0.5		6.0	0.0 45.6 0.0 45	5.8 0.0 45.6	0.0 4.6	0.0 35.8	0.0 34.6
CAL1 6.0 89.36 887.00 VEL1 6.0 0.5 1.6 2.2 3.0 3.1 3.5 3.5 3.3 3.4 VEL1 6.0 3.7 3.8 3.8 4.1 4.2 3.8 3.5 3.7 3.4 3.5 2.6 2.1 VEL1 6.0 2.3 2.1 1.9 1.4 0.8 0.7 0.6 0.5		6.0	0.0 54.8 0.0 45	5.5 0.0 56.7	0.0 45.8	0.0 45.7	0.0 45.5
VEL1 6.0 0.5 1.6 2.2 3.0 3.1 3.5 3.5 3.3 3.4 VEL1 6.0 3.7 3.8 3.8 4.1 4.2 3.8 3.5 3.7 3.4 3.5 2.6 2.1 VEL1 6.0 2.3 2.1 1.9 1.4 0.8 0.7 0.6 0.5					0.0 88.5	0.0 0.8	0.0
VEL1 6.0 3.7 3.8 3.8 4.1 4.2 3.8 3.5 3.7 3.4 3.5 2.6 2.1 VEL1 6.0 2.3 2.1 1.9 1.4 0.8 0.7 0.6 0.5							
VEL1 6.0 2.3 2.1 1.9 1.4 0.8 0.7 0.6 0.5							3.3 3.4
						3.4 3.5	2.6 2.1
CAL2 6.0 88.71 425.00					0.6 0.5		
							2.3 2.4
						2.3 2.4	1.7 1.5
VEL2 6.0 1.2 1.1 0.8 0.6 0.2 0.0 0.0 0.0					0.0 0.0		
CAL3 6.0 88.35 239.0							
							1.8 1.9
						1.4 1.3	1.0 0.8
VEL3 6.0 0.5 0.7 0.7 0.3 0.3 0.2 0.0 0.0					0.0 0.0		
XSEC 7.0 290.0000.50 86.50	XSEC				7 0 00 0	10.0.07.6	15.0.07.0
7.0 -10.0 97.8 0.0 90.6 1.0 90.3 5.0 88.0 10.0 87.6 15.0 87.3							
7.0 20.0 87.3 25.0 87.2 30.0 87.0 32.5 87.0 35.0 86.9 37.5 86.9							
							52.5 86.5
7.0 75.0 87.3 80.0 87.8 85.0 88.3 90.0 88.7 95.0 88.8 100.0 89.4							
7.0 105.0 89.5 110.0 89.5 115.0 89.6 120.0 88.7 125.0 88.4 130.0 88.1 7.0 135.0 88.3 140.0 88.3 144.7 90.3 151.0 91.6 171.0 91.7 200.0 97.9							
7.0 135.0 88.3 140.0 88.3 144.7 90.3 151.0 91.6 171.0 91.7 200.0 97.9 7.0 215.0 97.9				5.5 144.7 90.5	131.0 91.0	1/1.0 91./	200.0 97.9
	NC			00 00	0.024.8	0 0 24 9	0.0 36.6
							0.0 36.0
							0.0 46.7
							0.0 56.9
							0.0 56.8
							0.0 56.8
							0.0 30.8
NS 7.0 0.0 0.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0							
CAL1 7.0 89.55 887.00					0.0	0.0	0.0
					4.0 45	4.3 46	4.4 4.2
VEL1 7.0 2.2 0.2				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		3.0	

Appendix C1 IFG4 Input File Nealy Bridge Site Continued

CAL2	7.0	88.87	425.00				
VEL2	7.0		1.5	30. 2.7	2.8 2.5	2.8 3.0	3.0 3.6
VEL2	7.0	3.5 3.6	3.8 3.8	3.5 3.7	3.8 3.4	3.4 3.2	2.8 1.9
VEL2	7.0	1.2 0.8	0.3 0.2	0.0		0.0	0.4 0.9
VEL2	7.0	0.8 0.8					
CAL3	7.0	88.47	239.00				
VEL3	7.0		0.7	1.7 2.1	2.5 2.1	1.7 1.9	1.9 1.9
VEL3	7.0	2.3 3.2	3.2 3.2	2.9 3.2	2.8 29	2.6 2.1	1.9 1.4
VEL3	7.0	0.8 0.3	0.2				0.3 0.6
VEL3	7.0	0.6 0.3					
ENDJ							

Appendix C2 Summary of Calibration Details Nealy Bridge Site

Nealy Bridge Calibration Information for Calculated Discharges

Transect Num						
1	2	3	4	5	6	7
Discharge						
891	919	845	912	848	875427	917
432	455	393	420	431	245	418
237	252	242	222	230		243
Stage						
90.46	92.53	92.95	88.46	89.11	89.36	89.55
89.78	92.08	92.35	87.62	88.62	88.71	88.87
89.17	91.72	92.17	87.26	88.13	88.35	88.47
Plotting Stage	2					
4.36	3.33	2.55	5.46	3.51	2.86	3.05
3.68	2.88	1.95	4.62	3.02	2.21	2.37
3.07	2.52	1.77	4.26	2.53	1.85	1.97
Ratio of meas	sured versus pre	dicted discharge	;			
1.03	1.01	0.98	0.96	1.03	1.00	1.00
0.94	0.98	1.10	1.12	0.95	1.02	0.99
1.03	1.01	0.93	0.93	1.02	0.99	1.01
Mean error of	stage/discharge	e relationship for	r calculated Q			
3.86	1.29	6.25	7.41	3.48	1.57	.81
Mean error of	stage/discharge	e relationship for	r given Q			
4.57	2.35	9.32	6.22	5.99	1.77	0.93
Stage/dischar	ge relationship	(S vs Q) S=	A*Q**B+SZF			
A = .7239	.7666	.3287	1.580	.6456	.2778	.3251
B = .2655	.2156	.3029	.1809	.2521	.3437	.3284
SZF = 86.1	.89.2	90.4	83.0	85.6	86.5	86.5
B coefficient	log/log discharg	ge/stage relations	ship			
3.77	4.64	3.30	5.53	3.97	2.91	3.04

Appendix C3 Data Changes Nealy Bridge Site

Transect 1	Vertical	15	VEL1	Changed 4.8 to 4.6
Transect 1	Vertical	15	VEL3	Changed 1.1 to 1.3
Transect 1	Vertical	29	VEL3	Changed 1.1 to 1.3
Transect 1	Vertical	30	VEL2	Changed 0.6 to 0.7
Transect 2	Vertical	12	VEL1	Changed 3.3 to 3.1
Transect 2	Vertical	12	VEL3	Changed 0.7 to 0.9
Transect 2	Vertical	17	VEL1	Changed 3.3 to 3.1
Transect 2	Vertical	17	VEL3	Changed 0.5 to 0.7
Transect 2	Vertical	28	VEL3	Changed 0.1 to 0.0
Transect 3	Vertical	3	VEL3	Changed 0.0 to .05
Transect 3	Vertical	4	VEL3	Changed 0.0 to .05
Transect 3	Vertical	5	VEL3	Changed 0.3 to 0.5
Transect 3	Vertical	6	VEL3	Changed 0.2 to 0.0
Transect 4	Vertical	24	VEL3	Changed 0.8 to 1.0
Transect 4	Vertical	25	VEL3	Changed 1.1 to 1.3
Transect 5	Vertical	10	VEL3	Changed 0.5 to 0.7
Transect 7	Vertical	24	VEL3	Changed 1.2 to 1.4
Transect 7	Vertical	25	VEL3	Changed 0.6 to 0.8
Transect 7	Vertical	38	VEL1	Changed 0.0 to 0.2

Appendix C4 Velocity Adjustment Factors Nealy Bridge

Transect	Flow	VAF
1.00	1.00	1.034
1.00	239.0	1.006
1.00	425.0	1.000
1.00	887.0	1.000
1.00	2000.0	1.000
2.00	100.0	1.073
2.00	239.0	.997
2.00	425.0	.988
2.00	887.0	1.009
2.00	2000.0	1.042
3.00	100.0	1.058
3.00	239.0	1.009
3.00	425.0	.996
3.00	887.0	.993
3.00	2000.0	.998
4.00	100.0	1.124
4.00	239.0	1.011
4.00	425.0	.991
4.00	887.0	1.003
4.00	2000.0	1.030
5.00	100.0	.984
5.00	239.0	.974
5.00	425.0	.981
5.00	887.0	.997
5.00	2000.0	1.013
6.00	100.0	.988
6.00	239.0	.990
6.00	425.0	.993
6.00	887.0	.997
6.00	2000.0	.993
7.00	100.0	.956
7.00	239.0	.996
7.00	425.0	1.010
7.00	887.0	.998
7.00	2000.0	.923

Appendix D

CAR BODY SITE CALIBRATION INFORMATION

Appendix D1 IFG4 Input file Car Body Site.

Green River at Car Body Site RM 39.6 Q/DATE MEASURED 1048 cfs on 11-14-86, 410 on 06-20-86, 234 on 08-05-86 OC 000000200000000000 **QARD** 100.0 **QARD** 234.0 **QARD** 410.0 OARD 1048.0 2500.0 **QARD XSEC** 1.0 0.0000.50 83.40 1.0 -50.0 92.9 -2.0 90.9 0.0 90.9 20.0 91.1 30.0 90.0 35.0 88.0 1.0 40.0 88.0 45.0 87.6 50.0 87.5 55.0 87.3 60.0 87.3 65.0 87.2 85.0 87.1 1.0 70.0 87.0 90.0 87.1 95.0 87.3 75.0 87.0 80.0 87.0 1.0 100.0 87.2 105.0 87.0 80.0 87.0 85.0 87.1 90.0 87.1 95.0 87.3 130.0 85.8 132.5 85.6 1.0 135.0 85.1 137.5 84.6 140.0 84.1 142.5 83.4 145.0 83.4 147.5 83.8 153.5 85.2 155.0 87.9 1.0 150.0 84.5 152.5 85.0 1.0 157.0 87.9 160.0 91.7 162.0 94.8 NS 0.0 0.8 0.0 0.8 0.0 36.7 0.0 36.7 0.8 56.7 1.0 0.0 0.8 NS 1.0 0.075.7 0.0 75.7 0.0 56.7 0.0 46.7 0.0 46.7 0.0 45.5 NS 1.0 0.0 45.5 0.046.7 0.0 65.5 0.0 65.5 0.0 65.5 0.0 46.7 0.0 56.6 NS 1.0 0.0 56.7 0.0 56.6 0.0 56.7 0.0 56.6 0.0 65.5 NS 1.0 0.0 65.5 0.065.6 0.0 65.7 0.0 65.7 0.0 65.7 0.0 65.7 NS 0.065.7 0.065.7 0.0 65.7 0.0 65.7 1.0 0.0 65.7 0.7 0.1 NS 1.0 0.0 0.8 0.0 0.8 0.0 0.8 0.0 0.0 0.0 CAL1 1.0 89.05 1048.00 VEL1 0.0 1.5 2.4 2.7 3.1 3.3 3.0 1.0 VEL1 1.0 3.2 3.2 3.4 3.8 3.8 3.9 3.8 3.7 3.6 4.0 4.0 4.7 VEL1 1.0 4.3 4.6 4.6 4.4 3.8 4.4 4.3 4.4 4.4 2.8 3.0 0.0 VEL1 1.0 CAL2 1.0 88.03 410.00 VEL2 1.0 0.6 1.0 1.5 1.5 1.8 VEL2 1.0 1.8 1.8 2.1 2.1 1.8 1.8 1.8 2.2 2.1 2.2 2.3 2.2 VEL2 1.0 2.5 2.7 2.9 3.2 3.0 3.1 3.3 3.4 3.5 2.2 1.9 VEL2 1.0 CAL3 1.0 87.60 234.00 0.0 0.6 VEL3 1.0 0.7 1.0 VEL3 0.8 0.9 1.0 1.1 0.7 1.0 1.2 1.0 1.0 0.9 1.3 1.3 1.3 VEL3 1.0 1.8 1.9 2.2 2.4 2.8 2.7 2.7 3.1 2.6 1.9 VEL3 1.0 **XSEC** 2.0 260.0000.50 84.00 2.0 0.0 90.4 11.0 89.7 15.0 89.1 20.0 88.6 25.0 88.2 30.0 88.1 2.0 35.0 87.0 40.0 86.2 45.0 86.0 50.0 85.9 55.0 85.9 60.0 85.8 2.0 65.0 85.5 70.0 85.5 75.0 85.6 80.0 85.4 85.0 85.7 90.0 86.1 2.0 95.0 86.5 100.0 87.4 105.0 87.8 110.0 88.2 115.0 89.2 120.0 89.6 2.0 125.0 89.1 130.0 88.4 135.0 87.4 140.0 86.7 145.0 86.2 150.0 85.8 2.0 155.0 85.6 160.0 85.1 165.0 84.5 170.0 84.0 175.0 84.2 180.0 84.5 2.0 185.0 85.2 190.0 85.4 195.0 86.1 200.0 86.8 205.0 87.4 207.0 89.2 2.0 209.0 91.8 212.7 92.1 NS 2.0 0.0 0.8 0.0 0.8 0.0 56.8 0.0 56.8 0.0 56.8 0.0 56.8

Appendix D1 IFG4 Input File Car Body Site Continued

NS	2.0	0.0 56.6	0.0 24.7	0.0 62.5	0.0 62.6	0.0 62.7	0.0 62.7
NS	2.0	0.0 62.5	0.0 62.8	0.0 62.8	0.0 67.7	0.0 65.5	0.0 65.7
NS	2.0	0.0 67.7	0.0 67.9	0.0 99.5	0.0 44.5	0.0 42.5	0.0 42.5
NS	2.0	0.0 36.9	0.0 36.9	0.0 21.5	0.0 21.5	0.0 11.5	0.0 11.5
NS	2.0	0.0 11.5	0.0 11.5	0.0 16.8	0.0 61.7	0.0 61.7	0.0 61.7
NS	2.0	0.0 61.9	0.0 61.9	0.0 61.9	0.0 61.9	0.0 71.8	0.0 0.8
NS	2.0	0.0 0.8	0.0 0.8	0.0	0.0	0.0	0.0
CAL1	2.0	89.22	0148.00				
VEL1	2.0		0.0 0.9	1.8 1.5	2.4 2.7	3.2 3.5	4.2 3.8
VEL1	2.0	4.6 5.8	5.9 6.6	5.3 5.0	4.0 3.6	2.8 2.6	
VEL1	2.0	0.0 0.0	0.0 0.2	0.0 0.1	0.0 0.1	0.0 0.0	0.1 0.0
VEL1	2.0	0.0 0.0	0.1 0.0	0.0			
CAL2	2.0	88.23	410.00				
VEL2	2.0			0.0	0.9 1.7	1.9 2.0	2.6 2.6
VEL2	2.0	2.8 3.2	2.9 3.1	3.5 3.0	2.4 1.9	1.4	
VEL2	2.0	2.0 0.2	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0
VEL2	2.0	0.0 0.0	0.0 0.0	0.0	0.0 0.0	0.0 0.0	0.0 0.0
CAL3	2.0	87.88	234.00	0.0			
VEL3	2.0	07.00	234.00		0.5 1.1	1.4 1.6	2.1 2.4
VEL3	2.0	2.1 2.4	2.2 2.1	2.0 1.3	1.6 0.8	0.0	2.1 2.4
VEL3	2.0	2.1 2.4	$0.0 \ 0.0$		0.0 0.0	0.0 0.0	0.0 0.0
VEL3	2.0	0.0 0.0	0.0 0.0	0.0	0.0 0.0	0.0 0.0	0.0 0.0
XSEC	3.0	270.000		9.50			
ASEC	3.0	0.0 98.2	5.0 90.9	10.0 89.9	15.0 89.8	20.0.80.6	25.0 89.7
						50.0 89.0	
	3.0	30.0 89.8	35.0 89.6	40.0 89.5	45.0 89.8		
	3.0	60.0 89.8	65.0 89.9	70.0 90.1	75.0 90.2	80.0 90.5	
	3.0	90.0 91.1	95.0 91.4	100.0 91.6	105.0 91.8		115.0 92.2
	3.0	120.0 92.2	125.0 92.6	130.0 92.6	140.0 93.0	160.0 92.6	180.0 93.0
NG	3.0	200.0 93.0	250.0 93.0	300.0 92.9	354.0 92.5	0.0.465	0.057.0
NS	3.0	0.0 42.5	0.0 46.5	0.0 56.6	0.0 46.5	0.0 46.5	0.0 57.8
NS	3.0	0.0 57.8	0.0 57.8	0.0 57.8	0.0 65.5	0.0 56.8	0.0 56.8
NS	3.0	0.0 52.9	0.0 52.9	0.0 52.9	0.0 52.9	0.0 62.8	0.0 62.8
NS	3.0	0.0 52.9	0.0 52.9	0.0 45.8	0.0 45.8	0.0 45.8	0.0 45.8
NS	3.0	0.0 45.8	0.0 45.8	0.0 45.8	0.0 45.8	0.0 45.8	0.0 45.8
NS	3.0	0.0 45.8	0.0 65.8	0.0 65.8	0.0 65.8	0.0	0.0
CAL1	3.0	92.73	1048.00				
VEL1	3.0	2.8	3.6 4.0				
VEL1	3.0	4.2 3.9	3.7 3.3	3.2 2.8	2.8 2.4	2.1 1.9	1.3 1.6
VEL1	3.0	1.4 0.0	0.0				
CAL2	3.0	91.97	410.00				
VEL2	3.0	1.0	2.2 2.2	2.3 2.2	2.1 2.4	2.5 2.3	2.8 2.5
VEL2	3.0	2.5 2.5	2.1 1.8	1.8 1.5	1.5 1.2	0.7 0.0	
VEL2	3.0						
CAL3	3.0	91.57	234.00				
VEL3	3.0	0.5	1.6 1.3	1.8 1.7	1.6 1.8	2.0 2.1	2.0 2.1
VEL3	3.0	1.8 1.8		1.2 1.0			
VEL3	3.0						
XSEC	4.0	238.000	0.50 89	9.50			

Appendix D1 IFG4 Input File Car Body Site Continued

	4.0	0.0 101.4	3.0 99.4	5.0 91.6	10.0 90.1	15.0 89.5	20.0 89.1
	4.0	25.0 89.0	30.0 88.6	32.5 88.5	35.0 88.2	37.5 88.2	40.0 88.2
	4.0	42.5 88.3	45.0 88.5	50.0 88.7	55.0 89.0	60.0 89.4	65.0 89.8
	4.0	70.0 90.2	75.0 90.4	80.0 90.6	85.0 90.9	90.0 91.1	95.0 91.5
	4.0	100.0 91.5	105.0 91.6	110.0 91.7	115.0 92.0	120.0 92.2	125.0 92.7
	4.0	130.0 92.7	135.0 92.9	140.0 93.0	145.0 93.1	147.0 93.2	160.0 93.4
	4.0	200.0 94.0	250.0 93.2	99.0 93.4			
NS	4.0	0.0 0.8	0.0 0.8	0.0 22.5	0.0 42.5	0.0 52.5	0.0 52.5
NS	4.0	0.0 52.5	0.0 52.5	0.0 52.5	0.0 52.5	0.0 52.5	0.0 52.5
NS	4.0	0.0 62.5	0.0 62.5	0.0 72.5	0.0 72.5	0.0 62.5	0.0 62.5
NS	4.0	0.0 62.5	0.0 62.5	0.0 52.5	0.0 52.5	0.0 42.5	0.0 42.5
NS	4.0	0.0 64.5	0.0 61.7	0.0 62.8	0.0 62.8	0.0 62.8	0.0 62.8
NS	4.0	0.0 62.8	0.0 62.8	0.0 62.8	0.0 62.8	0.0 62.8	0.0 42.8
NS	4.0	0.0 52.8	0.0 52.8	0.0 52.8	0.0	0.0	0.0
CAL1	4.0	93.27	1048.00	0.0022.0		0.0	0.0
VEL1	4.0	>0.2.	1.9	2.6 3.0	3.1 3.2	3.2 3.2	3.5 3.5
VEL1	4.0	3.7 3.5	3.2 3.0	3.2 2.6	2.5 2.8	2.4 2.4	2.1 1.9
VEL1	4.0	2.1 1.8	1.8 1.6	1.5 1.0	0.9 0.8	0.5 0.0	0.0
VEL1	4.0	2.1 1.0	1.0 1.0	1.5 1.0	0.7 0.0	0.5 0.0	0.0
CAL2	4.0	92.29	410.00				
VEL2	4.0	72.27	0.4	1.3 1.4	2.0 2.1	2.2 1.8	2.1 2.0
VEL2	4.0	2.1 2.2	1.9 1.8	1.8 1.6	1.5 1.5	1.4 1.6	1.5 1.2
VEL2 VEL2	4.0	1.2 1.0	0.7 0.0	0.0	1.5 1.5	1.4 1.0	1.5 1.2
VEL2	4.0	1.2 1.0	0.7 0.0	0.0			
CAL3	4.0	91.78	234.00				
VEL3	4.0	91.70	0.3	0.9 1.2	1.1 1.2	1.3 1.3	1.4 1.2
VEL3	4.0	1.4 1.4	1.4 1.2	1.2 1.0	0.9 1.0	0.9 0.8	0.8 0.4
		0.3 0.3		1.2 1.0	0.9 1.0	0.9 0.8	0.8 0.4
VEL3	4.0	0.5 0.5	0.0				
VEL3	4.0	221 000	0.50 90	2.50			
XSEC	5.0	321.000		9.50	10 0 02 2	15 0 01 7	20.0.00.5
	5.0	-3.0 99.4	0.0 96.0	5.0 95.4	10.0 92.3		20.0 90.5
	5.0	25.0 89.6	30.0 88.8	35.0 88.4	37.5 88.0		42.5 87.3
	5.0	45.0 86.9	47.5 86.7	50.0 86.6	52.5 86.8	55.0 7.1	57.5 87.7
	5.0	60.0 88.0	65.0 88.5	70.0 89.1	75.0 89.4		85.0 90.4
	5.0	90.0 91.0	95.0 91.6	100.0 92.0	105.0 92.3	110.0 92.6	115.0 93.2
NG	5.0	120.0 93.4	140.0 94.6	160.0 95.3	180.0 95.2	210.0 95.4	0.0.25.6
NS	5.0	0.0 22.5	0.0 22.5	0.0 22.5	0.0 65.7	0.0 65.7	0.0 25.6
NS	5.0	0.0 74.5	0.0 76.5	0.0 76.5	0.0 76.5	0.0 76.5	0.0 64.5
NS	5.0	0.0 26.6	0.0 54.6	0.0 52.6	0.0 42.8	0.0 42.8	0.0 26.6
NS	5.0	0.0 62.6	0.0 76.5	0.0 76.5	0.0 62.6	0.0 75.6	0.0 62.5
NS	5.0	0.0 46.5	0.0 57.5	0.0 57.6	0.0 57.6	0.0 57.6	0.0 75.8
NS	5.0	0.0 75.6	0.0 74.5	0.0 74.5	0.0 46.6	0.0 54.5	0.0
CAL1	5.0	93.39	1048.00				
VEL1	5.0		0.1	1.1 2.3	4.0 4.4	4.9 4.6	3.9 3.6
VEL1	5.0	3.5 3.4	3.4 3.1	2.6 2.8	2.9 2.5	2.2 1.9	1.5 0.9
VEL1	5.0	0.7 0.4	0.3 0.1	0.0 0.0			
CAL2	5.0	92.36	410.00				
VEL2	5.0		0.0	0.3 0.6	1.6 1.8	3.2 3.0	3.1 2.6

Appendix D1 IFG4 Input File Car Body Site Continued

VEL2	5.0	2.1 2.0	1.8 2.0	1.5 1.7	1.5 1.1	0.8 0.3	0.3 0.2
VEL2	5.0	0.1 0.0	0.0 0.0				
CAL3	5.0	91.79	234.00				
VEL3	5.0			0.0 0.0	0.0 1.1	1.8 1.4	1.9 1.9
VEL3	5.0	2.2 1.6	1.3 1.2	1.4 1.2	1.5 1.1	0.5 0.2	0.1 0.0
VEL3	5.0	0.0 0.1					
XSEC	6.0	412.000	0.50 91	1.00			
	6.0	-20.0 98.8	0.0 96.1	10.0 95.6	20.0 96.0	30.0 96.5	40.0 96.8
	6.0	50.0 96.8	60.0 96.3	70.0 95.8	80.0 94.9	85.0 94.5	90.0 93.8
	6.0	95.0 93.3	100.0 92.5	110.0 91.3	112.5 91.0	115.0 91.0	117.5 91.0
	6.0	120.0 91.2	122.5 91.5	125.0 91.6	130.0 92.0	135.0 92.0	140.0 91.9
	6.0	145.0 91.9	150.0 91.9	155.0 92.0	160.0 92.0	165.0 92.0	170.0 92.1
	6.0	175.0 92.0	180.0 92.0	185.0 92.3	190.0 92.2	195.0 92.3	200.0 92.1
	6.0	205.0 92.1	210.0 92.3	215.0 93.1	218.0 94.6	221.0 96.9	226.0 97.5
	6.0	236.0 97.6					
NS	6.0	0.0 0.8	0.0 0.8	0.0 22.5	0.0 34.6	0.0 34.6	0.0 34.6
NS	6.0	0.0 34.6	0.0 34.6	0.0 34.6	0.0 34.6	0.0 45.7	0.0 45.7
NS	6.0	0.0 56.5	0.0 56.6	0.0 54.5	0.0 62.8	0.0 62.8	0.0 62.8
NS	6.0	0.0 62.8	0.0 62.8	0.0 52.8	0.0 52.8	0.0 62.8	0.0 62.8
NS	6.0	0.0 57.5	0.0 57.5	0.0 76.7	0.0 76.7	0.0 76.7	0.0 67.8
NS	6.0	0.0 76.7	0.0 67.5	0.0 65.5	0.0 65.5	0.0 65.5	0.0 65.5
NS	6.0	0.0 65.5	0.0 65.5	0.0 62.8	0.0 46.8	0.0 0.8	0.0 0.8
NS	6.0	0.0 0.8	0.0	0.0	0.0	0.0	0.0
CAL1	6.0	94.61	1048.00				
VEL1	6.0						0.1 1.2
VEL1	6.0	2.0 2.6	3.3 3.4	4.0 3.8	3.6 3.5	3.7 3.7	3.9 3.6
VEL1	6.0	3.8 3.8	3.2 3.5	3.4 2.8	3.3 3.0	2.8 2.3	2.3 2.3
VEL1	6.0	1.9 2.1	0.5				
CAL2	6.0	93.69	410.00				
VEL2	6.0						
VEL2	6.0	0.9 1.3	2.4 2.4	2.5 2.9	2.6 2.7	2.3 2.8	2.9 2.4
VEL2	6.0	2.6 2.2	2.3 1.9	1.8 2.0	1.8 1.4	1.6 1.4	1.1 1.0
VEL2	6.0	1.1 1.0	0.1				
CAL3	6.0	93.27	234.00				
VEL3	6.0						
VEL3	6.0	1.1	1.6 1.9	1.7 1.8	1.8 1.9	1.7 1.8	2.0 1.7
VEL3	6.0	1.9 1.6	1.4 1.4	1.3 1.2	1.2 0.9	0.8 0.8	0.8 0.7
VEL3	6.0	0.7 0.5	0.1				
XSEC	7.0	128.000	0.50 91	1.00			
	7.0	-20.0 97.8	0.0 97.3	5.0 96.3	10.0 95.3	15.0 95.3	20.0 95.2
	7.0	25.0 94.6	30.0 94.5	35.0 94.1	40.0 93.7	45.0 93.6	50.0 93.7
	7.0	55.0 93.7	60.0 93.5	65.0 93.5	70.0 93.4	75.0 93.6	80.0 94.1
	7.0	90.0 95.6	100.0 95.3	110.0 94.8	115.0 94.3	120.0 93.7	125.0 93.3
	7.0		135.0 92.5	140.0 92.2	145.0 92.0	150.0 91.8	
	7.0	160.0 91.3	162.5 91.3	165.0 91.1	167.5 90.8	170.0 90.8	172.5 90.5
	7.0	175.0 90.4	177.5 90.5	180.0 90.4	182.5 90.3	185.0 90.3	187.5 90.2
	7.0	190.0 90.2	192.5 91.2	195.0 91.6	200.5 96.2	206.0 96.4	
NS	7.0	0.0 22.5	0.0 26.8	0.0 65.5	0.0 64.8	0.0 64.8	0.0 64.8

Appendix D1 IFG4 Input File Car Body Site Continued

NS	7.0	0.0 64.8	0.0 64.8	0.0 64.8	0.0 64.8	0.0 64.8	0.0 74.6
NS	7.0	0.0 74.6	0.0 74.6	0.0 74.6	0.0 56.8	0.0 56.8	0.0 56.8
NS	7.0	0.0 64.9	0.0 22.5	0.0 26.9	0.0 26.9	0.0 26.9	0.0 22.5
NS	7.0	0.0 22.5	0.0 12.5	0.0 26.7	0.0 26.6	0.0 26.6	0.0 64.7
NS	7.0	0.0 74.6	0.0 74.6	0.0 74.6	0.0 74.6	0.0 64.8	0.0 64.8
NS	7.0	0.0 64.8	0.0 64.8	0.0 65.7	0.0 65.7	0.0 65.7	0.0 65.7
NS	7.0	0.0 65.7	0.0 65.7	0.0 65.7	0.0 66.5	0.0 0.8	0.0 0.8
CAL1	7.0	94.74	1048.00				
VEL1	7.0				0.0 0.7	1.1 2.1	2.1 2.8
VEL1	7.0	2.8 3.3	3.0 2.9	2.5 2.2		0.0	0.0 0.3
VEL1	7.0	0.3 0.7	1.9 3.8	4.4 5.8	5.1 5.6	5.3 5.1	5.5 5.8
VEL1	7.0	5.8 6.3	5.8 6.0	5.7 4.1	3.2 2.4	2.2	
CAL2	7.0	93.78	410.00				
VEL2	7.0					0.00	0.2 0.0
VEL2	7.0	0.4 0.5	0.6 0.7	0.5			
VEL2	7.0	0.1 0.2	0.1 1.0	1.9 2.2	2.0 2.8	2.8 2.7	3.6 3.6
VEL2	7.0	3.4 3.5	3.1 3.1	3.4 3.3	2.8 2.3	1.4	
CAL3	7.0	93.39	234.00				
VEL3	7.0						
VEL3	7.0						0.0
VEL3	7.0	0.0 0.0	0.2 0.0	0.0 0.9.	1.1 1.3	1.6 2.5	2.0 2.9
VEL3	7.0	2.8 3.0	3.1 3.0	2.9 2.9	2.6 2.3	0.9	
ENDJ							

Appendix D2 Summary of Calibration Details Car Body Site

Car Body Site Calibration Information for Calculated Discharges

Transect Number	2	3	4	5	6	7
Discharge						
1093 422 236	1052 397 235	989 389 234	1031 424 221	1039 427 249	988 405 211	1142 403 251
Stage						
89.05 88.03 87.60	89.22 88.23 87.88	92.73 91.97 91.57	93.27 92.29 91.78	93.39 92.36 91.79	94.61 93.69 93.27	94.74 93.78 93.39
Plotting Stage						
5.65 4.63 4.20	5.22 4.23 3.88	3.23 2.47 2.07	3.77 2.79 2.28	3.89 2.86 2.29	3.61 2.69 2.27	3.74 2.78 2.39
Ratio of measured	versus prec	licted discharge				
0.98 1.05 0.97	0.98 1.06 0.96	1.02 0.96 1.03	0.99 1.02 0.99	1.02 0.96 1.02	0.98 1.06 0.96	1.01 0.98 1.02
Mean error of stage	e/discharge	relationship for o	calculated Q			
3.34	3.59	2.87	1.50	2.64	3.79	1.59
Mean error of stage	e/discharge	relationship for §	given Q			
2.90	5.18	1.52	1.81	3.02	0.53	2.34
Stage/discharge rel	lationship	(S vs Q) S=A	^*Q**B+SZF			
A = 1.434 B = 0.195 SZF = 83.4	1.282 0.201 84.0	0.389 0.307 89.5	0.387 0.327 89.5	0.301 0.368 89.5	0.443 0.303 91.0	0.473 0.293 91.0
B coefficient log/lo	og discharg	e/stage relationsh	iip			
5.12	4.97	3.25	3.05	2.72	3.30	3.40

Appendix D3 Data Changes Car Body Site

Transect 1	Vertical 8	VEL2	Changed	0.4	to	0.6
Transect 1	Vertical 10	VEL3	Changed	0.4	to	0.6
Transect 1	Specified Mannings	N of 0.8 at Vertical 6				
Transect 1	Specified Mannings	N of 0.7 at Vertical 36	5			
Transect 3	Vertical 2	VEL3	Changed	0.3	to	0.5
Transect 3	Vertical 22	VEL2	Changed	0.2	to	0.0
Transect 4	Vertical 28	VEL2	Changed	0.2	to	0.0
Transect 5	Vertical 6	VEL2	Changed	0.2	to	0.6
Transect 5	Vertical 7	VEL3	Changed	0.2	to	0.0
Transect 7	Vertical 12	VEL2	Changed	0.2	to	0.0
Transect 7	Vertical 28	VEL3	Changed	0.1	to	0.0
Transect 7	Vertical 29	VEL3	Changed	0.2	to	0.0
Transect 7	Vertical 30	VEL3	Changed	0.7	to	0.9

Appendix D4 Velocity Adjustment Factors Car Body Site

Flow	VAF
100.0	.844
234.0	.991
410.0	1.015
1048.0	.983
2500.0	.904
100.0	.942
234.0	.951
410.0	.962
1048.0	.974
2500.0	.996
100.0	.985
234.0	.999
410.0	1.006
1048.0	.994
2500.0	.843
100.0	.939
234.0	.996
410.0	1.012
1048.0	.990
2500.0	.863
100.0	.819
234.0	.954
410.0	1.010
1048.0	.998
2500.0	.838
100.0	1.052
234.0	1.005
410.0	.996
1048.0	1.003
2500.0	1.020
100.0	.735
234.0	.926
410.0	1.020
1048.0	.995
2500.0	.761
	100.0 234.0 410.0 1048.0 2500.0 100.0 234.0 410.0 1048.0 2500.0 100.0 234.0 410.0 1048.0 2500.0 100.0 234.0 410.0 1048.0 2500.0 100.0 234.0 410.0 1048.0 2500.0 100.0 234.0 410.0 1048.0 2500.0 100.0 234.0 410.0 1048.0 2500.0 100.0 234.0 410.0 1048.0 2500.0

Appendix E

FLAMING GEYSER SITE CALIBRATION INFORMATION

Appendix E1 IFG4 Input File Flaming Geyser Site

Green River at Flaming Geyser RM 43.6 Q/DATE MEASURED 966 cfs on 11-10-86, 301 on 06-24-86, 220 on 08-06-86 IOC 000000200000000000 **QARD** 80.0 **QARD** 220. **QARD** 301. OARD 966. QARD 2000. **XSEC** 0.0001.00 1.0 93.20 1.0 -10.0 99.0 0.0 98.8 2.0 98.1 4.0 96.0 5.0 95.1 10.0 94.1 1.0 15.0 94.1 20.0 93.9 25.0 93.7 30.0 93.6 35.0 93.6 40.0 93.3 1.0 45.0 93.4 50.0 93.3 55.0 93.4 60.0 93.4 65.0 93.3 70.0 93.5 75.0 93.2 95.0 93.7 100.0 93.8 1.0 80.0 93.5 85.0 93.6 90.0 93.5 105.0 94.1 110.0 94.2 120.0 94.1 125.0 94.5 130.0 94.8 1.0 115.0 94.2 135.0 94.7 140.0 94.7 145.0 95.0 155.0 95.1 160.0 95.0 1.0 150.0 95.1 1.0 165.0 95.2 170.0 95.3 175.0 95.9 180.0 96.4 185.0 98.3186.0 100.5 0.0 0.8 0.0 0.2 0.0 0.2 NS 0.0 0.8 0.0 0.2 1.0 0.0 41.8 NS 1.0 0.041.8 0.051.8 0.0 56.7 0.0 57.8 0.0 75.5 0.075.6 NS 1.0 0.075.7 0.075.7 0.0 75.7 0.0 75.7 0.0 75.7 0.075.7 NS 0.0 75.7 0.0 75.7 1.0 0.0 72.8 0.073.8 0.0 75.7 0.073.8 NS 1.0 0.073.80.076.9 0.0 76.9 0.0 76.9 0.0 76.8 0.076.8 NS 1.0 0.076.7 0.076.7 0.076.7 0.0 76.5 0.0 76.5 0.076.5 NS 1.0 0.0 55.5 0.0 33.5 0.0 33.5 0.0 0.8 0.0 0.8 0.0 0.8 CAL1 1.0 95.90 966.00 VEL1 0.3 2.1 3.1 4.2 4.8 3.9 3.6 3.2 1.0 VEL1 1.0 3.5 3.5 3.3 3.43 3.7 4.0 3.8 4.0 3.5 3.5 3.1 3.3 3.1 2.9 VEL1 1.0 28 2.2 2.5 2.2 1.5 1.9 2.1 1.2 1.4 0.9 VEL1 1.0 0.7 0.4 CAL₂ 1.0 95.13 301.00 2.2 2.4 VEL2 1.0 0.0 1.4 2.6 2.2 2.6 2.3 VEL2 1.0 2.0 1.9 2.0 2.1 1.8 1.9 2.4 2.1 2.0 2.1 1.6 1.8 VEL2 0.9 0.1 1.0 1.3 1.5 1.5 1.1 0.7 1.0 0.6 0.3 0.0 0.0 VEL2 1.0 CAL3 1.0 95.01 220.00 VEL3 1.0 0.8 1.4 1.4 1.6 2.3 2.1 1.9 VEL3 1.5 0.6 0.7 0.7 0.5 0.9 0.5 0.7 1.0 0.0 VEL3 1.0 **XSEC** 2.0 15.0001.00 93.90 2.0 9.0 96.8 12.5 95.1 15.0 94.7 -10.0 102.7 0.0 100.7 4.0 99.2 2.0 17.5 94.5 20.0 94.5 22.5 94.2 25.0 94.1 27.5 94.3 30.0 94.1 2.0 32.5 94.1 35.0 94.4 40.0 94.4 45.0 94.4 50.0 94.8 55.0 94.8 2.0 60.0 94.7 65.0 95.0 70.0 94.5 75.0 94.4 80.0 94.4 85.0 94.2 2.0 87.5 93.9 90.0 94.2 92.5 94.2 95.0 94.3 97.5 94.5 100.0 94.2 2.0 102.5 94.4 105.0 94.3 110.0 94.1 115.0 94.5 120.0 94.4 125.0 94.7 2.0 130.0 94.8 135.0 95.3 140.0 94.9 145.0 95.1 150.0 95.3 155.0 95.2 2.0 160.0 95.2 170.0 96.0 180.0 96.4 201.0 97.7 205.0 100.6 NS 2.0 0.0 0.8 0.0 0.8 0.0 0.8 0.0 0.2 0.0 0.2 0.0 66.5

Appendix E1 IFG4 Input File Flaming Geyser Site Continued 0.0 65.9 0.0 65.9 0.0 67.8 NS 2.0 0.0 65.9 0.0 65.9 0.0 65.8 NS 2.0 0.0 67.7 0.065.6 0.065.6 0.0 75.7 0.0 57.6 0.0 57.6 NS 2.0 0.0 56.7 0.065.9 0.0 75.5 0.0 75.7 0.0 75.8 0.075.8 NS 2.0 0.075.8 0.065.9 0.0 65.9 0.0 67.8 0.0 67.8 0.065.8 NS 2.0 0.065.8 0.065.9 0.0 66.5 0.0 66.5 0.0 66.5 0.065.9 NS 2.0 0.076.8 0.065.9 0.0 56.9 0.0 53.9 0.0 67.7 0.0 67.7 NS 2.0 0.0 67.7 0.0 56.7 0.0 56.8 0.0 0.8 0.0 0.8 0.0 CAL1 2.0 96.22 966.00 VEL1 2.0 0.5 2.5 3.8 4.4 5.9 3.9 4.8 4.7 4.3 4.9 VEL1 2.0 3.5 3.1 3.8 3.1 3.3 3.1 3.5 3.6 4.2 4.0 VEL1 2.0 5.1 4.9 4.6 3.9 5.3 5.2 4.8 4.7 4.4 3.3 4.4 3.8 2.4 2.7 VEL1 2.0 4.4 3.0 3.5 3.6 0.0 1.0 CAL₂ 2.0 301.00 95.46 VEL2 2.0 0.1 1.9 3.3 4.4 4.3 3.8 4.0 3.5 VEL2 2.0 3.3 3.6 2.2 2.1 0.8 2.2 1.9 1.8 3.3 3.1 2.2 3.1 VEL2 2.0 3.3 3.6 4.1 2.6 3.8 3.0 3.0 2.0 1.3 2.0 1.9 1.9 2.5 1.4 VEL2 2.0 0.9 1.8 1.0 0.7 0.0 CAL3 2.0 95.26 220.00 2.0 3.0 VEL3 2.0 0.0 0.4 4.2 3.5 3.7 3.4 2.8 3.1 VEL3 2.0 3.2 2.9 2.4 1.9 0.7 1.4 2.8 1.6 1.8 3.0 VEL3 2.0 3.1 3.3 2.8 3.3 3.6 3.3 3.5 2.7 1.4 0.9 1.1 0.9 VEL3 2.0 0.5 0.0 0.0 1.6 0.6 92.60 **XSEC** 3.0 15.0001.00 3.0 -25.0 96.6 0.0 96.5 5.0 96.3 10.0 94.4 15.0 94.1 20.0 93.7 3.0 25.0 93.36 30.0 93.3 35.0 93.0 40.0 93.0 45.0 93.4 50.0 92.8 3.0 55.0 93.0 60.0 93.0 65.0 93.7 70.0 93.0 75.0 92.8 80.0 92.6 3.0 105.0 93.7 100.0 93.8 85.0 92.7 90.0 93.2 95.0 93.6 100.0 93.2 3.0 115.0 94.2 120.0 95.3 129.0 95.4 125.0 94.5 NS 3.0 0.0 0.8 0.0 0.8 0.0 0.8 0.0 0.8 0.0 65.6 0.0 65.5 NS 3.0 0.0 65.5 0.065.8 0.0 65.8 0.0 65.8 0.0 86.8 0.0 76.7 NS 3.0 0.076.7 0.076.8 0.086.6 0.086.6 0.0 68.5 0.076.7 NS 3.0 0.076.8 0.076.5 0.0 67.7 0.0 75.8 0.072.9 0.076.8 NS 3.0 0.0 27.8 0.0 0.8 0.0 0.8 0.0 0.8 0.0 0.0 CAL1 3.0 95.29 966.00 VEL1 3.0 0.3 2.0 2.9 3.2 4.2 4.3 6.0 6.1 4.0 VEL1 3.0 4.6 5.8 3.7 7.5 6.5 5.4 5.3 3.6 1.4 0.9 4.1 1.9 EL1 3.0 0.6 CAL₂ 3.0 301.00 94.49 VEL2 0.0 0.9 1.5 2.9 4.4 3.1 3.0 2.6 3.2 VEL2 3.0 3.4 1.5 1.9 3.3 3.4 3.3 3.6 3.3 2.4 0.7 0.3 0.2 VEL2 3.0 0.0 CAL3 3.0 94.35 220.00 VEL3 3.0 0.0 0.4 2.6 2.7 3.3 3.3 1.1 1.4 VEL3 2.7 2.5 3.0 1.8 2.3 1.9 2.6 2.5 2.1 2.3 0.5 0.6 0.7 VEL3 3.0 0.3 10.0000.50 93.40 **XSEC** 4.0 10.0 98.2 4.0 0.0 99.0 13.7 97.0 15.0 96.8 20.0 96.2 25.0 95.7 4.0 30.0 95.3 35.0 95.0 40.0 94.8 45.0 94.8 50.0 94.5 55.0 94.4

Appendix E1 IFG4 Input File Flaming Geyser Site Continued

	4.0 4.0	60.0 94.3 90.0 94.0	65.0 94.3 95.0 93.6	70.0 93.9 100.0 93.7	75.0 94.2 105.0 93.4	110.0 93.4	
	4.0	120.0 93.5	125.0 93.5	130.0 93.8	135.0 93.6	140.0 93.7	145.0 96.4
NG	4.0	146.1 97.0	147.0 97.0	149.0 97.7		155.0 102.6	0.0.60.6
NS NG	4.0	0.0 22.5	0.0 22.5	0.0 22.5	0.0 22.5	0.0 22.5	0.0 68.6
NS NG	4.0	0.0 76.5	0.0 76.6	0.0 68.7	0.0 74.6	0.0 47.5	0.0 75.5
NS NC	4.0 4.0	0.0 74.5 0.0 45.5	0.0 57.6 0.0 76.5	0.0 56.6 0.0 57.6	0.0 75.6	0.0 58.7	0.0 75.6
NS NS	4.0	0.0 43.3	0.0 76.3	0.0 57.6	0.0 57.5 0.0 62.7	0.0 75.6 0.0 62.8	0.0 57.6 0.0 0.2
NS NS	4.0	0.0 74.0	0.0 62.7	0.0 67.6	0.0 62.7	0.0 62.8	0.0 0.2
CAL1	4.0	97.01	966.00	0.0 0.8	0.0 0.8	0.0 0.8	0.0
VEL1	4.0	77.01	0.3	0.4 1.5	2.1 2.7	2.2 1.6	2.3 2.2
VEL1	4.0	2.5 3.3	2.9 3.1	3.4 3.1	3.4 3.3	3.7 3.8	4.4 4.0
VEL1	4.0	4.0 3.5	3.1 2.7	0.9 0.0	3.4 3.3	3.7 3.0	4.4 4.0
CAL2	4.0	95.70	301.00	0.7 0.0			
VEL2	4.0	75.70	301.00		0.2 0.2	0.3 0.6	0.7 1.0
VEL2	4.0	1.0 1.1	1.1 1.4	1.5 1.6	1.6 1.2	1.6 1.6	1.7 2.1
VEL2	4.0	1.7 2.2	2.1 1.3	0.1	1.0 1.2	110 110	11, 2,1
CAL3	4.0	95.51	220.00	-			
VEL3	4.0				0.2 0.3	0.2 0.4	0.5 0.6
VEL3	4.0	0.8 0.9	0.9 1.0	1.2 0.9	1.3 0.9	1.1 1.6	1.9 1.7
VEL3	4.0	1.4 1.3	1.7 1.3	0.4			
XSEC	5.0	60.000	0.50 93	3.40			
	5.0	-25.0 100.9	0.0 98.0	5.0 97.8	10.0 97.4	15.0 96.7	20.0 95.6
	5.0	25.0 95.4	30.0 94.7	35.0 93.6	40.0 93.1	45.0 93.2	50.0 93.3
	5.0	55.0 93.8	60.0 93.6	65.0 93.4	70.0 93.5	75.0 93.6	80.0 93.7
	5.0	85.0 93.8	90.0 93.7	95.0 94.4	100.0 94.8	105.0 95.0	110.0 95.6
	5.0	115.0 95.6	120.0 96.4	125.0 96.1	130.0 96.0	135.0 95.6	140.0 96.6
	5.0	141.2	97.2	145.0 98.1	149.0 99.9	153.0 101.3	
NS	5.0	0.0 0.8	0.0 22.5	0.0 22.5	0.0 22.5	0.0 22.5	0.0 67.7
NS	5.0	0.0 67.8	0.0 67.9	0.0 67.9	0.0 63.9	0.0 63.9	0.0 75.5
NS	5.0	0.0 76.6	0.0 57.6	0.0 56.6	0.0 57.8	0.0 74.5	0.0 58.8
NS	5.0	0.0 58.8	0.0 68.8	0.0 68.6	0.0 68.6	0.0 86.7	0.0 98.7
NS	5.0	0.0 86.7	0.0 68.6	0.0 68.6	0.0 68.6	0.0 68.6	0.0 0.8
NS	5.0	0.0 0.8	0.0 0.8	0.0 0.8	0.0 0.8	0.0	0.0
CAL1	5.0	97.17	966.00	0.2 1.1	1001	10.25	22.25
VEL1	5.0	4.5.4.5	10 11	0.2 1.1	1.0 2.1	1.9 2.5	
VEL1	5.0	4.7 4.7	4.2 4.4	3.8 3.8	3.8 2.8	3.0 2.6	2.2 2.6
VEL1	5.0	2.5 1.3	0.8 1.8	1.6 0.0			
CAL2	5.0	95.80	301.00	0.0	0.0.02	0.0.00	10 17
VEL2	5.0	22 25	27 22	0.0	0.0 0.3		
VEL2	5.0	2.3 2.5	2.7 2.3	2.4 2.1	1.6 1.2	1.3 0.6	0.5 0.0
VEL2	5.0	0.0	220.00	0.0			
CAL3 VEL3	5.0 5.0	95.63	220.00	0.0	0.0 0.2	0.6 1.0	1.1 1.7
VEL3	5.0	1.7 1.6	1.9 2.3	2.1 1.9	1.6 1.0	0.6 1.0	
VEL3	5.0	0.0	1.7 4.3	0.0	1.0 1.0	0.7 0.7	0.5 0.0
ENDJ	5.0	0.0		0.0			
1110							

Appendix E2 Summary of Calibration Details Flaming Geyser Site
Flaming Geyser Site Calibration Information for Calculated Discharges

Transect Numb	er									
1	2	3	4	5						
Discharge										
958	944	894	1044	994						
339	332	320	257	259						
249	234	230	187	202						
249	234	230	107	202						
Stage										
C										
95.90	96.22	95.29	97.01	97.17						
95.13	95.46	94.49	95.70	95.80						
95.01	95.26	94.35	95.51	95.63						
Plotting Stage										
2.70	2.32	2.69	3.61	3.77						
1.93	1.56	1.89	2.30	2.40						
1.81	1.36	1.75	2.11	2.23						
Ratio of measur	red versus predicted discl	narge								
0.99	1.00	0.99	1.00	1.00						
1.05	1.00	1.05	1.02	1.01						
0.96	1.00	0.96	0.98	0.99						
Mean error of s	tage/discharge relationsh	ip for cal	culated Q							
3.48	0.29	3.36	1.59	0.87						
Mean error of s	tage/discharge relationsh	ip for giv	en Q							
2.92	2.75	1.90	2.92	4.02						
Stage/discharge	relationship (S vs Q)	S=A*Q)**B+SZF							
A = .3321	.1693	.2960	.4026	.3816						
B = .3049	.3822	.3243	.3154	.3318						
SZF= 93.2	93.9	92.6	93.4	93.4						
B coefficient lo	g/log discharge/stage rela	ationship								
	6 - 9 5- , 00m 5 1010	Р								
3.28	2.62	3.08	3.17	3.01						

Appendix E3 Data Changes Flaming Geyser Site

Transect 1	Vertical 33	VEL2	Changed	0.4 to 0.6
Transect 1	Vertical 35	VEL2	Changed	0.1 to 0.0
Transect 1	Vertical 36	VEL2	Changed	0.1 to 0.0
Transect 2	Vertical 40	VEL3	Changed	0.2 to 0.0
Transect 2	Vertical 41	VEL2	Changed	0.8 to 1.0
Transect 2	Vertical 42	VEL3	Changed	0.4 to 0.6
Transect 3	Vertical 5	VEL2	Changed	0.1 to 0.0
Transect 3	Vertical 16	VEL3	Changed	0.6 to 2.6
Transect 5	Vertical 24	VEL2	Changed	0.2 to 0.0

Appendix E4 Velocity Adjustment Factors Flaming Geyser Site

Transect	Flow	VAF
1.00	80.0	.978
1.00	220.0	1.005
1.00	301.0	1.008
1.00	966.0	.998
1.00	2000.0	.976
2.00	80.0	1.003
2.00	220.0	1.006
2.00	301.0	1.003
2.00	966.0	.998
2.00	2000.0	.950
3.00	80.0	1.009
3.00	220.0	1.004
3.00	301.0	1.004
3.00	966.0	.999
3.00	2000.0	.982
4.00	80.0	.968
4.00	220.0	1.002
4.00	301.0	1.011
4.00	966.0	1.001
4.00	2000.0	.946
5.00	80.0	.893
5.00	220.0	.989
5.00	301.0	1.005
5.00	966.0	.997
5.00	2000.0	.973

Appendix F

HOSEY SITE CALIBRATION INFORMATION

Appendix F1 IFG4 Input File for Three-Flow Model Hosey site

Green River at Hosey Site RM 60.6 Q/DATE MEASURED 768 cfs on 11-13-86, 194 on 06-25-86, 140 on 08-04-86 IOC 000000200000000000 **QARD** 60.0 **QARD** 140.0 **QARD** 194.0 OARD 768.0 QARD 2000.0 **XSEC** 0.0000.40 93.10 1.0 1.0 -10.0 104.8 0.0 101.8 2.5 96.8 5.0 96.9 10.0 94.9 15.0 94.2 1.0 20.0 94.0 25.0 94.1 30.0 94.2 35.0 94.3 40.0 94.9 45.0 95.2 1.0 50.0 95.4 60.0 95.3 65.0 95.4 70.0 95.4 75.0 95.3 55.0 95.2 1.0 80.0 95.2 85.0 95.0 90.0 94.7 100.0 94.6 105.0 94.4 95.0 94.8 110.0 94.5 115.0 94.4 125.0 93.5 130.0 93.1 135.0 93.6 1.0 120.0 93.8 140.0 93.8 145.0 93.7 150.0 94.3 155.0 95.9 158.0 97.0 160.0 97.9 1.0 1.0 162.0 99.2 0.0 0.8 NS 0.0 0.8 0.0 0.8 0.0 0.8 0.0 42.6 0.0 65.5 1.0 NS 1.0 0.0 65.5 0.0 64.6 0.0 64.6 0.0 46.6 0.0 54.5 0.0 46.5 NS 1.0 0.0 45.5 0.0 45.7 0.0 55.5 0.0 75.5 0.0 45.5 0.0 64.5 0.0 65.9 0.0 65.9 NS 1.0 0.0 56.5 0.0 65.7 0.0 56.6 0.0 56.8 NS 1.0 0.076.60.0 56.5 0.056.60.0 76.5 0.0 56.5 0.0 65.5 NS 1.0 0.065.5 0.0 0.8 0.0 0.8 0.0 45.7 0.088.5 0.0 0.8 NS 1.0 0.0 0.8 0.00.00.0 0.0 0.0 CAL1 1.0 96.88 768.00 VEL1 0.2 1.4 2.9 3.8 3.5 3.6 3.6 3.4 1.0 VEL1 1.0 2.8 2.3 2.1 2.2 1.4 1.4 1.6 2.6 3.0 3.4 3.6 3.8 1.9 1.1 VEL1 1.0 3.5 3.8 3.9 4.3 0.1 0.2 0.3 0.0 VEL1 1.0 CAL₂ 1.0 95.86 194.00 2.0 1.9 VEL2 1.0 0.4 1.7 2.0 1.5 1.6 1.5 1.2 1.0 VEL2 1.0 0.9 1.2 1.8 1.7 0.9 1.1 1.3 1.2 1.2 1.5 VEL2 0.1 0.0 1.0 1.2 1.3 1.3 1.0 0.3 0.0 0.1 VEL2 1.0 CAL3 1.0 95.61 140.00 VEL3 1.0 0.5 1.5 2.6 2.7 2.1 2.4 1.8 1.6 VEL3 0.8 0.0 0.8 0.4 0.5 0.9 0.8 1.1 1.0 0.5 0.6 1.3 0.9 VEL3 1.0 1.1 0.9 0.8 1.0 0.0 0.0 0.0 0.4 0.0 VEL3 1.0 **XSEC** 2.0 29.4000.40 93.10 2.0 -7.0 101.2 -6.0 100.3 0.0 97.3 2.5 95.6 5.0 95.7 7.5 95.5 2.0 20.0 90.4 30.0 89.3 35.0 89.1 10.0 93.4 15.0 91.7 25.0 89.7 2.0 40.0 88.6 45.0 88.5 47.5 88.1 50.0 88.1 52.5 88.3 55.0 88.4 2.0 75.0 90.0 80.0 90.8 57.5 88.7 60.0 88.8 65.0 88.7 70.0 89.1 2.0 85.0 92.2 90.0 93.9 96.0 97.2 100.3 97.5105.0 100.5 95.0 95.7 NS 2.0 0.0 0.8 0.0 0.8 0.0 0.8 0.0 22.5 0.0 88.5 0.0 88.5 NS 2.0 0.0 22.5 0.0 26.6 0.0 62.8 0.0 62.6 0.0 62.6 0.0 78.5 NS 2.0 0.0 76.5 0.086.6 0.0 75.6 0.0 76.5 0.0 57.6 0.0 57.6 NS 2.0 0.0 57.6 0.0 57.6 0.078.50.0 27.6 0.0 24.7 0.0 21.9

Appendix F1 IFG4 Input File for Three-Flow Model Hosey Site Continued

NS	2.0	0.0 82.5	0.0 0.8	0.0 0.8	0.0 0.8	0.0 0.8	0.0 0.8
CAL1	2.0	97.21	768.00				
VEL1	2.0		0.0	0.0 0.1	0.3 0.8	1.4 0.9	1.0 2.2
VEL1	2.0	2.4 1.4	1.4 0.9	1.2 0.8	0.8 0.9	0.8 0.5	0.5 0.3
VEL1	2.0	0.1 0.1	0.1				
CAL2	2.0	95.86	194.00				
VEL2	2.0		0.0	0.0 0.0	0.1 0.2	0.2 0.3	0.2 0.3
VEL2	2.0	0.3 0.5	0.5 0.7	0.5 0.7	0.7 0.6	0.2 0.4	0.3 0.1
VEL2	2.0	0.0 0.2					
CAL3	2.0	95.71	140.00				
VEL3	2.0		0.0	0.0	0.0 0.1	0.6 0.2	0.1 0.6
VEL3	2.0	0.0 0.3	0.2 0.4	0.4 0.6	0.7 0.5	0.4 0.3	0.3 0.1
VEL3	2.0	0.1 0.1	0.2 0	01.	<i>317</i> 312	01. 010	0.0
XSEC	3.0	29.400	1.00 93	3.10			
11020	3.0	-7.0 102.1	0.0 99.3	10.0 97.4	15.0 95.9	20.0 95.8	22.5 95.1
	3.0	25.0 94.5	27.5 94.0	30.0 93.2	32.5 92.6	35.0 92.7	
	3.0	42.5 92.1	45.0 91.9	50.0 91.5	52.5 91.2	55.0 90.9	60.0 90.7
	3.0	62.5 90.5	65.0 90.3	67.5 90.4	70.0 90.2	72.5 90.0	75.0 89.8
	3.0	77.5 89.7	80.0 89.3	82.5 93.4	85.0 94.7	90.0 95.7	95.0 96.5
	3.0	98.0 98.4	108.0 98.5	110.0 99.2	03.0 74.7	70.0 75.1	75.0 70.5
NS	3.0	0.0 0.8	0.0 0.8	0.0 0.8	0.0 99.5	0.0 99.5	0.0 99.5
NS	3.0	0.0 99.5	0.0 99.5	0.0 99.5	0.0 52.6	0.0 52.6	0.0 52.6
NS	3.0	0.0 47.7	0.0 74.5	0.0 67.7	0.0 52.0	0.0 32.8	0.0 32.0
NS	3.0	0.0 47.7	0.0 74.3	0.0 82.7	0.0 82.6	0.0 82.5	0.0 75.6
NS	3.0	0.0 32.7	0.0 32.3	0.0 99.5	0.0 82.0	0.0 82.5	0.0 75.0
NS	3.0	0.0 73.0	0.0 73.7	0.0 99.3	0.0 99.3	0.0 99.3	0.0 99.3
CAL1	3.0	97.31	768.00	0.0 0.00	0.0	0.0	0.0
VEL1	3.0	91.31	0.9	1.1 1.7	1.5 1.6	1.7 1.9	1.9 2.0
VEL1	3.0	2.0 2.0	2.0 2.1	2.0 2.1	2.1 2.1	2.1 2.1	2.0 2.1
VEL1	3.0	2.3 2.4	2.0 2.1 2.2	0.9 0.0	2.1 2.1	2.1 2.1	2.0 2.1
CAL2	3.0	95.88	194.00	0.9 0.0			
VEL2	3.0	93.00	0.0	0.0 0.3	0.4 0.4	0.6 0.5	0.5 0.6
VEL2 VEL2	3.0	0.6 0.7	0.7 0.6	0.6 0.7	0.4 0.4 0.7	0.0 0.3	0.5 0.0
VEL2 VEL2	3.0	0.0 0.7	0.7 0.0	0.0 0.7	0.7 0.7	0.7 0.8	0.5 0.7
CAL3	3.0	95.74	140.00	0.0			
VEL3	3.0	93.74	140.00	0.0 0.4	0.4 0.3	0.5 0.5	06.06
VEL3	3.0	0.6 0.5	0.5 0.6	0.0 0.4 0.5	0.4 0.3	0.5 0.5	0.6 0.6 0.5 0.4
VEL3		0.6 0.5	0.5 0.6	0.5 0.5	0.5 0.5	0.5 0.5	0.5 0.4
	3.0						
XSEC	5.0	11.760		3.20	25012	5 0 01 7	7.5.01.5
	5.0	-1.0 103.6	0.0 93.2	1.0 91.5	2.5 91.2	5.0 91.7	
	5.0	10.0 91.6	12.5 91.7	15.0 91.8	17.5 91.3	20.0 91.5	
	5.0	25.0 91.1	27.5 90.6	30.0 90.1	32.5 90.4	35.0 90.2	
	5.0	40.0 90.4	42.5 90.5	45.0 90.3	47.5 90.1		52.5 89.8
	5.0	55.0 89.5	57.5 89.4	60.0 89.2	62.5 89.2		57.5 89.1
	5.0	70.0 88.9	72.5 88.3	75.0 88.5	77.5 88.3		82.5 88.2
	5.0	85.0 88.3	87.5 89.2	90.0 89.6	92.5 90.8	95.0 91.8	100.0 94.0
NC	5.0	105.0 96.8	110.0 99.0	0.0.00.7	0.0.00.7	0.000.7	0.000.7
NS	5.0	0.0 99.5	0.0 99.5	0.0 88.5	0.0 88.5	0.0 88.5	0.0 88.5

Appendix F1 IFG4 Input File for Three-Flow Model Hosey Site Continued

NS	5.0	0.0 88.5	0.0 88.5	0.0 88.5	0.0 87.5	0.0 84.6	0.0 88.5
NS	5.0	0.0 88.5	0.0 99.5	0.0 86.6	0.0 76.5	0.0 76.7	0.0 76.8
NS	5.0	0.0 67.6	0.0 65.9	0.0 54.7	0.0 54.7	0.0 54.7	0.0 56.5
NS	5.0	0.0 57.6	0.0 76.7	0.0 76.7	0.0 78.8	0.0 78.8	0.0 67.5
NS	5.0	0.0 67.5	0.078.8	0.0 78.5	0.0 78.5	0.0 87.8	0.0 87.8
NS	5.0	0.0 87.8	0.0 83.8	0.0 82.8	0.0 828	0.0 86.5	0.0 86.5
NS	5.0	0.0 86.6	0.0 0.8	0.0	0.0	0.0	0.0
CAL1	5.0	93.28	768.00				
VEL1	5.0		3.3 1.4	0.3 0.3	0.6 0.3	0.8 4.3	2.5 4.8
VEL1	5.0	2.0 4.7	4.1 4.4	3.7 4.2	4.6 4.1	3.4 2.3	1.0 0.9
VEL1	5.0	0.3 0.7	2.1 3.4	3.7 3.9	3.4 3.5	3.7 3.7	4.2 3.3
VEL1	5.0	1.9 0.9	0.7 0.3	0.3			
CAL2	5.0	91.88	194.00				
VEL2	5.0		0.3 0.4	0.1 0.1	0.1 0.7	0.5 0.0	0.2 0.6
VEL2	5.0	1.0 0.4	0.8 1.3	2.2 1.8	1.6 1.4	1.5 2.2	2.2 2.2
VEL2	5.0	1.9 1.3	0.6 0.6	0.9 1.2	1.7 1.5	1.8 2.0	2.0 1.1
VEL2	5.0	0.9 0.3	0.2 0.2	0.1	1.7 1.5	1.0 2.0	2.0 1.1
CAL3	5.0	91.64	140.00	0.1			
VEL3	5.0	71.04	1.0 1.0	1.0	0.0	0.0	0.0
VEL3	5.0	0.7 0.5	0.6 1.0	1.5 0.9	1.1 0.8	0.8 1.3	1.4 1.6
VEL3	5.0	1.6 0.9	0.0 1.0	0.6 1.1	1.1 0.8	1.2 1.2	1.4 1.0
		0.6 0.3	0.7 0.0	0.0 1.1	1.2 1.3	1.2 1.2	1.5 1.2
VEL3	5.0			20			
XSEC	6.0	29.4000		3.20	5 0 02 1	7 5 92 2	10 0 02 4
	6.0	-1.0 103.6	0.0 91.9	0.1 83.2	5.0 83.1		10.0 83.4
	6.0	12.5 83.6	15.0 84.1	17.5 84.8	20.0 85.7	22.5 86.3	25.0 86.9
	6.0	27.5 87.9	30.0 88.2	32.5 88.7	35.0 89.4	37.5 89.4	40.0 89.5
	6.0	42.5 89.9	45.0 90.0	47.5 89.8	50.0 89.7	52.5 89.9	55.0 90.4
	6.0	57.5 91.4	60.0 91.9	65.0 93.6	67.5 93.4	70.0 93.5	80.0 96.0
	6.0	87.5 98.9					
NS	6.0	0.0 99.5	0.0 99.5	0.0 26.8	0.0 62.6	0.0 62.5	0.0 62.8
NS	6.0	0.0 62.8	0.0 62.7	0.0 63.7	0.0 63.6	0.0 64.5	0.0 46.5
NS	6.0	0.0 46.6	0.0 46.6	0.0 46.7	0.0 46.9	0.0 54.9	0.0 54.9
NS	6.0	0.0 46.8	0.0 46.6	0.0 46.5	0.0 36.5	0.0 36.6	0.0 99.5
NS	6.0	0.0 99.5	0.0 99.5	0.0 99.5	0.3 99.5	0.0 99.5	0.0 0.8
NS	6.0	0.0 0.8	0.0	0.0	0.0	0.0	0.0
CAL1	6.0	93.54	768.00				
VEL1	6.0		2.1 2.2	2.1 2.2	2.2 2.2	2.3 2.0	1.9 1.9
VEL1	6.0	1.9 2.0	2.2 2.1	2.2 2.5	2.6 2.4	2.4 2.2	2.0 2.2
VEL1	6.0	2.2 3.9	2.2	0.0			
CAL2	6.0	91.98	194.00				
VEL2	6.0	71.70	0.3 0.4	0.8 0.7	0.7 0.8	0.8 0.8	0.8 0.7
VEL2	6.0	0.7 0.8	0.7 1.0	1.0 1.2	1.1 1.3	1.2 1.0	1.2 1.2
VEL2	6.0	1.3 0.0	0.7 1.0	1.0 1.2	1.1 1.5	1.2 1.0	1.2 1.2
CAL3	6.0	91.69	140.00				
VEL3	6.0	21.03	0.3 0.4	0.4 0.5	0.4 0.5	0.4 0.4	0.4 0.4
VEL3	6.0	0.4 0.4	0.5 0.4	0.4 0.3	0.4 0.3	0.4 0.4 0.7	0.4 0.4 0.9
			0.5 0.0	0.0 1.0	0.5 1.0	U.7 U./	0.0 0.9
VEL3	6.0	0.9					
ENDJ							

Appendix F2 IFG4 Input File for One-flow Model Hosey Site

Green River at Hosey Site Transect 4 RM 60.6 Q/date measured 190 cfs on 06-25-86 IOC 0000000200000000000 **QARD** 60. **QARD** 140. **QARD** 190. OARD 768. QARD 2000. **XSEC** 4.0 0.0001.00 89.50 4.0 0.0 96.7 5.0 94.2 10.0 92.9 15.0 92.6 20.0 91.7 25.0 91.5 4.0 30.0 91.3 35.0 89.5 40.0 89.8 45.0 89.9 50.0 89.8 55.0 90.6 4.0 57.5 90.2 60.0 90.2 65.0 90.3 67.5 91.0 70.0 91.3 62.5 90.8 4.0 82.5 90.6 85.0 91.0 72.5 90.8 75.0 90.3 77.5 90.5 80.0 90.4 4.0 90.0 90.8 95.0 90.5 105.0 91.0 110.0 91.8 120.0 93.1 100.0 90.8 131.0 93.8 140.0 97.4 145.0 102.4 4.0 NS 4.0 0.0 0.8 0.0 0.8 0.0 82.9 0.0 82.9. 0.0 82.9 0.0 82.9 NS 4.0 0.087.9 0.088.5 0.0 88.5 0.0 88.5 0.0 88.5 0.0 88.5 NS 4.0 0.088.5 0.088.5 0.088.5 0.0 88.5 0.0 88.5 0.0 88.5 NS 4.0 0.0 88.5 0.0 88.5 0.0 88.5 0.0 88.5 0.0 88.5 0.088.5 0.0 88.5 0.0 88.5 NS 4.0 0.0 88.5 0.0 88.5 0.0 88.5 0.088.5 NS 4.0 0.088.50.0 0.8 0.0 0.8 0.0 0.0 0.0 CAL1 4.0 92.54 762.00 762.00 VEL1 4.0 VEL1 4.0 VEL1 4.0 CAL₂ 4.0 91.70 190.00 171.00 0.0 0.3 1.0 1.6 VEL2 4.0 1.4 2.1 2.5 1.8 VEL2 4.0 2.8 1.1 2.0 28 4.4 1.2 0.7 4.0 2.4 0.6 1.6 2.1 VEL2 4.0 1.3 1.1 0.5 1.5 CAL3 4.0 91.59 144.00 160.00 VEL3 4.0 VEL3 4.0 4.0 VEL3 **XSEC** 4.5 10.0000.50 89.50 4.5 0.0 96.7 5.0 94.2 10.0 92.9 15.0 92.6 20.0 91.7 25.0 91.5 4.5 50.0 89.8 55.0 90.6 30.0 91.3 35.0 89.5 40.0 89.8 45.0 89.9 4.5 57.5 90.2 62.5 90.8 65.0 90.3 67.5 91.0 70.0 91.3 60.0 90.2 4.5 72.5 90.8 77.5 90.5 80.0 90.4 82.5 90.6 85.0 91.0 75.0 90.3 90.0 90.8 95.0 90.5 105.0 91.0 110.0 91.8 120.0 93.1 4.5 100.0 90.8 4.5 131.0 93.8 140.0 97.4 145.0 102.4 NS 4.5 0.0 82.9 0.0 0.8 0.0 0.8 0.0 82.9 0.0 82.9 0.0 82.9 NS 4.5 0.087.9 0.088.50.088.50.088.50.0 88.5 0.0 88.5 NS 4.5 0.088.5 0.088.5 0.0 88.5 0.0 88.5 0.0 88.5 0.0 88.5 0.088.5NS 4.5 0.088.5 0.0 88.5 0.0 88.5 0.0 88.5 0.088.5NS 4.5 0.088.5 0.0 88.5 0.0 88.5 0.0 88.5 0.0 88.5 0.088.5 NS 4.5 0.088.5 0.0 0.8 0.0 0.8 0.0 0.0 0.0 CAL1 4.5 92.54 762.00 762.00 VEL1 4.5

Appendix F2 IFG4 Input File for One-Flow Model Hosey Site

VEL1	4.5							
VEL1	4.5							
CAL2	4.5	91.70	190.00	171.00				
VEL2	4.5			0.0 0.3	1.0 1.6	1.4	2.1	2.5 1.8
VEL2	4.5	2.8 1.1	2.0 28	4.4 1.2	0.7 4.5	2.4	0.6	1.6 2.1
VEL2	4.5	1.3 1.1	0.5 1.5					
CAL3	4.5	91.59	144.00	160.00				
VEL3	4.5							
VEL3	4.5							
VEL3	4.5							
ENDJ								

Appendix F3 Summary of Calibration Details Hosey Site

Hosey Site Calibration Information for Calculated Discharges

Transect Number 1	2	3	4 *	5	6
Discharge					
843 200 154	612 169 147	757 170 131	762 171 160	812 219 143	813 208 126
Stage					
96.88 95.86 95.61	97.21 95.86 95.71	97.31 95.88 95.74	92.54 91.70 91.59	93.28 91.88 91.64	93.54 91.98 91.69
Plotting Stage					
3.78 2.76 2.51	4.11 2.76 2.61	4.12 2.78 2;64	3.04 2.20 2.09	5.08 3.68 3.44	5.34 3.78 3.49
Ratio of measured v	versus predic	ted discharge			
1.02 0.92 1.06	1.00 0.98 1.09	1.00 1.04 0.97	1.00 0.92 1.07	0.99 1.08 0.94	0.98 1.09 0.93
Mean error of stage	/discharge re	lationship for cal	culated Q		
5.44	1.43	2.46	5.51	4.83	5.86
Mean error of stage	/discharge re	lationship for giv	ven Q		
2.79	4.35	5.08	1.85	1.23	0.27
Stage/discharge rela	ationship (S	S vs Q) S=A*Q)**B+SZF		
A = .7818 B = .2346 SZF= 93.1	.5461 .3147 93.1	.6983 .2709 93.1	.6570 .2312 89.5	1.075 .2313 88.2	1.100 .2351 88.2
B coefficient log/lo	g discharge/s	tage relationship			
4.26	3.18	3.69	4.35	4.32	4.24

^{*}Transect Four was run as a one-flow model.

Appendix F4 Data Changes Hosey Site

Transect 1	Vertical 14	VEL3	Changed	0.2 to 0.0
Transect 2	Vertical 13	VEL3	Changed	0.1 to 0.0
Transect 5	Vertical 10	VEL2	Changed	0.1 to 0.0
Transect 5	Vertical 12	VEL2	Changed	0.4 to 0.6
Transect 5	Vertical 14	VEL3	Changed	0.3 to 0.5
Transect 6	Vertical 26	VEL2	Changed	0.2 to 0.0
Transect 6	Vertical 28	Specified Ma	nnings N of 0.3	

Appendix F5 Velocity Adjustment Factors Hosey Site

Transect	Flow	VAF
1.00	60.0	.939
1.00	140.0	.949
1.00	194.0	.953
1.00	768.0	.995
1.00	2000.0	1.018
2.00	60.0	.790
2.00	140.0	.971
2.00	194.0	1.017
2.00	768.0	1.004
2.00	2000.0	.821
3.00	60.0	.960
3.00	140.0	.999
3.00	194.0	1.005
3.00	768.0	.998
3.00	2000.0	.978
4.00	60.0	.822 *
4.00	140.0	1.000 *
4.00	194.0	1.096 *
4.00	768.0	1.744 *
4.00	2000.0	2.556 *
5.00	60.0	.735
5.00	140.0	.980
5.00	194.0	1.020
5.00	768.0	1.008
5.00	2000.0	.857
6.00	60.0	1.011
6.00	140.0	1.006
6.00	194.0	1.007
6.00	768.0	1.003
6.00	2000.0	.989

 $[\]ensuremath{^{*}}$ A one-flow IFG4 model was used for transect 4.

Appendix G

TRANSECT WEIGHTING

Appendix G TRANSECT WEIGHTING

Transect weight as a percent of each site.

Site	1	2	3	4	5	6	7
Kent	15.84	16.85	16.85	16.85	16.85	16.85	
Nealy Bridge	8.34	15.34	15.34	20.82	18.19	13.82	8.11
Car Body	7.89	16.26	15.59	17.15	22.49	16.57	3.92
Flaming Geyser	15.00	15.00	10.00	30.00	30.00		
Hosey	10.00	25.00	25.00	15.00	10.00	15.00	

Appendix H

FISH HABITAT USE

ECOLOGY SNORKELING OBSERVATIONS

RIVER: Green River DATE: April 23, 1986

DISCHARGE OF RIVER: 895 cfs at Purification Plant gage

1280 cfs at Auburn gage

REACH OF RIVER SURVEYED: at RM 60.9, 100 ft. downstream of footbridge

VISIBILITY: 8-10 ft.

SPAWNING STEELHEAD OBSERVATIONS

Depth	Velocity	Substrate
3.7 ft. 3.5 ft.	2.07 fps 3.4 fps	large gravel 60%, small cobble 40% large gravel 50%, small cobble 30%, and large cobble 20%

GENERAL COMMENTS: The redds were in the center of the channel. Though there were many redds we saw active fish on only two redds.

OBSERVATIONS BY: Brad Caldwell and Jim Farley (WDF)

ECOLOGY SNORKELING OBSERVATIONS

RIVER: Green River DATE: May 9, 1986

DISCHARGE OF RIVER: 450 cfs at Purification Plant gage

833 cfs at Auburn gage

REACH OF RIVER SNORKELED: RM 60.3 to 60.9. Snorkeled from the footbridge just below diversion (RM 60.9) to the pipe bridge upstream of the control station (RM 60.3). The COE had reduced the river flow to 450 cfs about a week ago. No redds were observed in the 3 to 15 foot depths. Redds were observed at three sites: just below the footbridge, at gravel bar on roadside; ¾ of the way down from the footbridge to the pipe bridge (below largest tributary on north side); and immediately underneath and slightly downstream from the pipe bridge. Two redds were observed on the north edge of the river on transect two. Six dark steelhead were near two large, fresh redds at the footbridge spawning bar.

VISIBILITY: 15 feet

SPECIES OBSERVED	NUMBER OBSERVED
Steelhead adults (by foot bridge) 6
Steelhead adults (dark, by pipeb	ridge) 20
Whitefish (12-15 in.)	12
Trout juvenile (5 in.)	1

SPAWNING STEELHEAD OBSERVATIONS

Depth	Velocity	Substrate
1.6 ft.	4.02 fps	small cobble 60%, large gravel 40%
2.0 ft.	3.32 fps	small cobble 50%, large gravel 50%
2.0 ft.	2.59 fps	small cobble 50%, large gravel 50%
2.6 ft.	1.97 fps	large gravel 60%, small cobble 40%
1.8 ft.	2.40 fps	large gravel 70%, small cobble 30%

GENERAL COMMENTS: Good-quality spawning gravel was observed in the pools, but there was no evidence of the dark, brown algae having been being disturbed by fish. Heavy concentrations of caddis larvae were observed at densities of 12 to 25 per square foot on cobble and bedrock in water 1 to 3 feet deep by the pipebridge. Steelhead redds on the gravel bar 100 yards upstream of the pipe bridge had only 1 to 3 inches of water at 450 cfs. These fresh redds were probably created last week while the flow was 2000 cfs. Because of spring reservoir filling, the steelhead redds at this bar probably have chronic dewatering problems.

OBSERVATIONS BY: Brad Caldwell

ECOLOGY SNORKELING OBSERVATIONS

RIVER: Green River DATE: August 12, 1986

DISCHARGE OF RIVER: 197 cfs at Purification Plant gage

403 cfs at Auburn gage

REACH OF RIVER SNORKELED: RM 60.6 to 60.9, the Hosey Site. We snorkeled from just below the footbridge (RM 60.9) downstream to transect 4 (FM 60.6).

VISIBILITY: 10 ft.

SPECIES OBSERVED	NUMBER OBSERVED
Steelhead adults (15-20 lbs.)	2 (1 was dark)
Sockeye adults (8-10 lbs.)	6 (dark red)
Sockeye adult (dead)	1
Trout (10-12 in.)	3
Trout juvenile (6-7 in.)	8
Trout juvenile (3-4 in.)	12
Whitefish (1 lb.)	18

GENERAL COMMENTS: The sockeye were spawning in a pool just below the riffles below transects 5 and 6. The redds were in 8 to 10 feet of water and the substrate was small cobble with a small amount of large gravel and large cobble. The sockeye were apparently the same as were observed here on August 5, 1986.

REACH OF RIVER SNORKELED: RM 38.9 to 39.9 at the Car Body site. Snorkeled from upstream end of the Car Body site (RM 39.9) to one mile downstream.

VISIBILITY: 6-8 ft.

SPECIES OBSERVED	NUMBER OBSERVE
Suckers (8 lbs.)	50
Whitefish (1 lb.)	10
Coho juveniles (2.5-4 in.)	80
Chinook juveniles (5-6 in.)	25
Trout juveniles (2.5-6)	100

GENERAL COMMENTS: The thousands of chinook juveniles seen last week were gone. There were about the same number of coho juveniles and trout juveniles as seen last month. Last month 95% of the all the salmonid juveniles observed were chinook. The car body was gone and a freshet occurred two days ago.

ECOLOGY SNORKELING OBSERVATIONS

RIVER: Green River DATE: October 10, 1986

DISCHARGE OF RIVER: 228 cfs at Purification Plant gage

352 cfs at Auburn gage

REACH OF RIVER SNORKELED: RM 27.2 to 27.8 at downstream Kent site. We snorkeled from 0.5 mile upstream of transect 3 Kent site (RM 27.8) downstream to transect 1 (RM 27.2).

VISIBILITY: 50 feet

SPECIES OBSERVED	NUMBER OBSERVED
Coho adults (6-12 lbs.)	10
Chinook adults (15-20 lbs.)	4
Whitefish	20
Trout juveniles (5-6 in.)	6
Steelhead adult (7 lbs.)	1

GENERAL COMMENTS: most of the fish were observed in the pool upstream of transect 3.

REACH OF RIVER SNORKELED: RM 32.7 to 33.7. We started at Highway 18 bridge (RM 33.7) and went downstream for 1 mile.

SPECIES OBSERVED	NUMBER OBSERVED
Coho adults (1/2 were dark)	2000
Chinook adults	500
Chinook adults (dead)	5
Chinook juveniles (5-6 in.)	50
Trout juveniles (4-5 in.)	40
Whitefish (10-15 in.)	80
Suckers (large)	20

GENERAL COMMENTS: Many redds were observed in 6 to 10 feet of water with substrate of small cobble and large gravel. Many redds were also observed in 1.5 to 2 feet of water with substrate of small cobble and large gravel. Not many chinook were on the redds. The peak spawning time for chinook was over.

ECOLOGY SNORKELING OBSERVATIONS

RIVER: Green River DATE: October 14, 1986

DISCHARGE OF RIVER: 208 cfs at Purification Plant gage

340 cfs at Auburn gage

REACH OF RIVER SNORKELED: RM 60.3, transect 1, at the Hosey site.

VISIBILITY: 8 feet

SPAWNING CHINOOK OBSERVATIONS

Depth	Velocity	Substrate
1.4 ft.	2.4 fps	small cobble 70%, large gravel 30%
1.7 ft.	1.82 fps	small cobble 70%, large gravel 30%
1.0 ft.	2.92 fps	small cobble 80%, large gravel 20%

GENERAL COMMENTS: The spawning observations were taken at 35 and 120 feet downstream of transect 1 on active redds. Twenty to 30 chinook were observed over the spawning bar. Parts of the cobble bar were exposed in the center of the channel.

REACH OF RIVER SNORKELED: RM 60.4 at the gravel bar 100 yards upstream of the pipe bridge and 100 yards downstream of transect 2 of the Hosey site.

SPAWNING CHINOOK OBSERVATIONS

Depth	Velocity	Substrate
2.3 ft.	1.26 fps	small cobble 50%, large gravel 50%
1.5 ft.	1.09 fps	large cobble 50%, large gravel 50%
1.2 ft.	0.45 fps	large cobble 50%, large gravel 50%

GENERAL COMMENTS: Twenty feet of the channel against the south shore of the gravel bar where steelhead spawned last May was out of the water.

REACH OF RIVER SNORKELED: RM 60.6. This was 100 feet upstream of transect 4 at the head of the cascade. The chinook were actively spawning on two redds.

SPAWNING CHINOOK OBSERVATIONS

Depth	Velocity	Substrate
1.9 ft.	1.24 fps	small cobble 60%, boulder 40%
1.6 ft.	1.75 fps	large gravel 40%, small cobble, 30%,
		boulder 30%

SPECIES OBSERVED	NUMBER OBSERVED
Trout juveniles (6 in.)	18
Trout adult (12 in.)	1
Whitefish	12

ECOLOGY SNORKELING OBSERVATIONS ON GREEN RIVER, OCT. 14, 1988 Continued

REACH OF RIVER SNORKELED: RM 60.8, transect 5 at the Hosey site.

SPAWNING CHINOOK OBSERVATIONS

Depth	Velocity	Substrate
1.0 ft.	2.27 fps	small cobble 60%, large gravel 40%
1.1 ft.	2.91 fps	large cobble 40%, small cobble 30%
		large gravel 30%

GENERAL COMMENTS: Chinook redds were in the center of the channel. Redds were observed in six feet of water downstream of transect five, but could not be measured.

REACH OF RIVER SNORKELED: RM 60.8, transect 6 at the Hosey site.

SPAWNING CHINOOK OBSERVATIONS

Depth	Velocity	Substrate
1.9 ft.	1.48 fps	large cobble 40%, small cobble 40%,
		large gravel 20%
1.4 ft.	1.71 fps	small cobble 50%, large 50%

GENERAL COMMENTS: There were fresh redds, but we did not see fish on the redds. The redds were in the center of the channel.

SPECIES OBSERVED Chinook adults Chinook adults (dead)	NUMBER OBSERVED 20 3
Chinook adults (dead) Whitefish	3 6
Trout juveniles (6 in.)	10

GENERAL COMMENTS: These fish were observed in the pool upstream of transect six.

ECOLOGY SNORKELING OBSERVATIONS ON THE GREEN RIVER OCT. 14, 1988 Continued

REACH OF RIVER SNORKELED: At RM 35.5. Just upstream of transect 7 at the Nealy bridge site is a 40 yard long riffle on the right side of the river looking downstream.

SPAWNING CHINOOK OBSERVATIONS

Depth	Velocity	Substrate
1.6 ft.	2.96 fps	large gravel 50%, small cobble 40%
2.8 ft.	3.03 fps	small cobble 50%, large gravel 50%
2.0 ft.	3.71 fps	large cobble 50%, large gravel 50%
1.0 ft.	1.74 fps	small cobble 70%, small gravel 30%
1.5 ft.	2.34 fps	small cobble 50%, large gravel 50%
1.3 ft.	3.00 fps	small cobble 50%, large gravel 50%
2.3 ft.	2.93 fps	large gravel 60%, large cobble 40%
2.1 ft.	3.78 fps	small cobble 60%, large gravel 40%
1.7 ft.	2.09 fps	large gravel 70%, small cobble 30%
1.4 ft.	1.75 fps	large cobble 50%, small gravel 30%,
	-	medium gravel 20%

SPECIES OBSERVED	NUMBER OBSERVED
Chinook adults	20
chinook adults (dead)	18
Whitefish	12
Trout juveniles (6 in.)	4
Trout juveniles (4 in.)	10

GENERAL COMMENTS: Upstream from transect 7 there were about 30 continuous redds in the deep, fast water about 4 feet from the bank. From transect 7 to below transect 5 no redds were observed due to slow velocities. Spawning was heavy in the riffle and head of riffle just downstream of transect 5.

REACH OF RIVER SNORKELED: At RM 35.3 at transect 4 of the Nealy Bridge site.

SPECIES OBSERVED	NUMBER OBSERVED
Chinook adults	9
Trout juveniles (4-5 in.)	10

SPAWNING CHINOOK OBSERVATIONS

Depth	Velocity	Substrate
1.4 ft.	1.76 fps	large gravel 80%, small cobble 20%
1.1 ft.	2.14 fps	large gravel 70%, small cobble 30%
1.4 ft.	1.53 fps	large gravel 50%, medium gravel 50%

GENERAL COMMENTS: Actively spawning salmon were on the three redds. There was evidence of mass spawning all the way across the channel with nine adult chinook in the area.

REACH OF RIVER SNORKELED: RM 35.3 to 35.0. We snorkeled the Nealy Bridge site from transect 4 (RM 35.3) down to Nealy bridge (RM 35.0).

SPECIES OBSERVED	NUMBER OBSERVED
Chinook adults	2
Chinook adults (dead)	9
Trout (12 in.)	4
Trout juveniles (6 in.)	10
Sucker adults	50

GENERAL COMMENTS: The chinook were spawning only in the riffles due to low flow and the resulting lack of velocity in the river. The water depth and substrate were adequate for spawning throughout the reach snorkeled but spawning areas were determined by the water velocities.

ECOLOGY SNORKELING OBSERVATIONS

RIVER: Green River DATE: October 18, 1986

DISCHARGE OF RIVER: 183 cfs at Purification Plant gage

292 cfs at Auburn gage

REACH OF RIVER SNORKELED: RM 33.7 to RM 32.7. We snorkeled from the Highway 18 bridge (RM 33.7) downstream for 1 mile.

VISIBILITY: 15 feet

SPECIES OBSERVED	NUMBER OBSERVE	D
Coho adults (dark, holding)	25	
Coho juveniles (5 in.)	2	
Chinook adults spawning	15	
Chinook adults (dead)	30	
Chinook jacks spawning	8	
Trout juveniles (4-7 in.)	70	
Trout (7-12 in.)	6	
Sucker adults	1000	
Whitefish adults	40	
Steelhead adults	1	

GENERAL COMMENTS: Most of the chinook redds were observed at the head of the riffle, just upstream of the clay bluff. The suckers were in the large glide downstream of the bluff. Chinook jacks were on redds in water less than 1 foot deep adjacent to overhanging cover.

ECOLOGY SNORKELING OBSERVATIONS

RIVER: Green River DATE: October 21, 1986

DISCHARGE OF RIVER: 155 cfs at Purification Plant gage

286 cfs at Auburn gage

REACH OF RIVER SURVEYED: RM 35.0 to RM 34.8. We walked from Nealy Bridge (RM 35.0)

downstream to 50 yards upstream of transect 1 (RM 34.8).

VISIBILITY: 15 feet

SPECIES OBSERVED NUMBER OBSERVED

Chinook adults (dead) 34

GENERAL COMMENTS: No active chinook spawning was observed.

REACH OF RIVER SURVEYED: At RM 40.6. We walked transects 1 and 2 of the Flaming Geyser site.

SPECIES OBSERVED NUMBER OBSERVED

Chinook adults (dead) 5

GENERAL COMMENTS: Three redds were observed in the head of the riffle just downstream of transect 1.

REACH OF RIVER SURVEYED: At RM 43.6. We walked transects 3, 4 and 5 of the Flaming Geyser site.

SPECIES OBSERVED NUMBER OBSERVED

Chinook adults (dead) 4

GENERAL COMMENTS: No live chinook were observed. Redds were observed in the riffle at

transect 4.

OBSERVATIONS BY: Stephen Hirschey & Doug Weston (WCC)

ECOLOGY SNORKELING OBSERVATIONS

RIVER: Green River Date: October 24, 1986

DISCHARGE OF RIVER: 133 cfs at Purification Plant gage

234 cfs at Auburn gage

REACH OF RIVER SNORKELED: RM 35.5 to 35.0. We snorkeled the Nealy Bridge site from

upstream of transect 7 (RM 35.5) down to Nealy bridge (RM 35.0).

VISIBILITY: 10-12 feet

SPECIES OBSERVED
Chinook adults
Chinook adults (dead)

NUMBER OBSERVED
3
Chinook adults (dead)
18

COMMENTS: No chinook were actively spawning at the Nealy Bridge site.

REACH OF RIVER SNORKELED: RM 39.5 to 39.0. We snorkeled from transect 2 at the Car Body site (RM 39.5) downstream for 0.5 mile.

VISIBILITY: 10-12 FEET

SPECIES OBSERVED	NUMBER OBSERVED
Chinook adults	3
Chinook adults (dead)	4
Sucker adults	80
Whitefish	40
Trout adults (12 in.)	4
Trout juveniles (4 in.)	30
Trout juveniles (6 in.)	35
Searun Cutthroat trout (2-4 lbs.)	3
Steelhead adult (10 lbs.)	1

OBSERVATIONS BY: Stephen Hirschey & Doug Weston (WCC)

ECOLOGY SNORKELING OBSERVATIONS

RIVER: Green River DATE: November 4, 1986

DISCHARGE OF RIVER: 157 cfs at Purification Plant gage

285 cfs at Auburn gage

REACH OF RIVER SNORKELED: RM 33.1 to RM 32.9. We snorkeled from an area of deep pools (RM 33.1) downstream of the Highway 18 bridge down for 0.2 mile.

VISIBILITY: 10 feet.

SPECIES OBSERVED	NUMBER OBSERVED
Coho adults	55
Coho adults (dead)	6
Trout juveniles (4-6 in.)	7
Whitefish adults	13
Sucker adults	45

GENERAL COMMENTS: The six dead coho were very bright and the mortality was probably not due to spawning. No fish were seen in the riffle. Adult coho were observed under logs and near overhanging vegetation.

REACH OF RIVER SNORKELED: RM 35.4 to 35.0. We snorkeled the Nealy Bridge site from transect 7 (RM 35.4) down to Nealy Bridge (RM 35.0).

VISIBILITY: 10 feet

SPECIES OBSERVED	NUMBER OBSERVED
Pink adult (in spawning colors)	1
Sockeye adult (in spawning cold	ors) 1
Coho adults (dark)	60
Chum adults (dark)	3
Chum adults (dead)	2
Chinook (dead)	3
Whitefish	40
Sucker adults	80
Trout juvenile (6 in.)	1

GENERAL COMMENTS: Many fresh coho test redds were observed between transect 7 and Nealy Bridge. Heavy algae growth over chinook redds seen two weeks ago.

ECOLOGY SNORKELING OBSERVATIONS

RIVER: Green River DATE: December 4, 1986

DISCHARGE OF RIVER: 1590 cfs at Purification Plant gage

2170 cfs at Auburn gage

REACH OF RIVER SURVEYED: Nealy Bridge site

VISIBILITY: poor, water was very turbid

GENERAL COMMENTS: The water was too turbid to observe any fish.

OBSERVATIONS BY: Stephen Hirschey and Jim Farley (WDF)

ECOLOGY SNORKELING OBSERVATIONS

RIVER: Green River DATE: December 12, 1986

DISCHARGE OF RIVER: 510 cfs at Purification Plant gage

970 cfs at Auburn gage

REACH OF RIVER SNORKELED: RM 35.4 to 35.2 and RM 34.9 to 34.4. Snorkeled the Nealy Bridge site from transect 7 (RM 35.4) to transect 4 (RM 35.2), and from transect 3 (RM 34.9) to the large pool downstream of transect one (RM 34.4).

VISIBILITY: 7 feet

SPECIES OBSERVED	NUMBER OBSERVED
Coho adults (dead)	1
Coho adults	2
Chum adults	2
Chum adults (dead)	2
Sucker adult (dead)	1
Sucker adult (dead)	1

GENERAL COMMENTS: No juveniles were seen in any of the rootwads along the bank.

OBSERVATIONS BY: Stephen Hirschey

ECOLOGY SNORKELING OBSERVATIONS

RIVER: Green River DATE: December 18, 1986

DISCHARGE OF RIVER: 431 cfs at Purification Plant gage

793 cfs at Auburn gage

REACH OF RIVER SNORKELED: RM 61.0 to RM 60.3. We snorkeled from the Tacoma Diversion Dam (RM 61.0) to 100 feet downstream of transect one (RM 60.3).

VISIBILITY: 6 feet

SPECIES OBSERVED NUMBER OBSERVED

Coho adults (dark) 4
Sockeye adult (dead) 1

GENERAL COMMENTS: According to Pat at the Headworks, large numbers of red-colored fish had congregated at the diversion within the last week and were also spawning downstream under the pipe bridge at the Headworks. No juvenile salmonids were seen.

ECOLOGY SNORKELING OBSERVATIONS

RIVER: Green River DATE: January 6, 1987

DISCHARGE OF RIVER: 578 cfs at Purification Plant gage

1030 cfs at Auburn gage

REACH OF RIVER SNORKELED: RM 39.9 to 38.6. We snorkeled from transect 7 at the Car Body site (RM 39.9) downstream for 1.3 miles.

VISIBILITY: 8-10 feet

SPECIES OBSERVED	NUMBER OBSERVED
Chum adults (dead)	24
Chum adult	1
Steelhead adult	2
Trout juveniles (4-6 in.)	9
Trout (12 in.)	1
Sucker adults	60
Whitefish	30

REACH OF RIVER SNORKELED: RM 43.8 to RM 43.6. We snorkeled at the Flaming Geyser State Park upstream of our IFIM transects at RM 43.6.

SPECIES OBSERVED	NUMBER OBSERVED
Sockeye adults (spawning color	s) 2
Chum adults	2

GENERAL COMMENTS: No steelhead adults were seen at Flaming Geyser State Park. The hatchery steelhead run had been expected to be present.

ECOLOGY SNORKELING OBSERVATIONS

RIVER: Green River DATE: January 13, 1987

DISCHARGE OF RIVER: 444 at Purification Plant gage

996 cfs at Auburn gage

REACH OF RIVER SNORKELED: RM 32.8 to RM 32.7. We snorkeled from below Soos Creek at RM 32.8 downstream for 0.1 mile.

VISIBILITY: 4 feet

SPECIES OBSERVED NUMBER OBSERVED

Steelhead adult 1

REACH OF RIVER SNORKELED: RM 42.9 to RM 42.8. We snorkeled from an area downstream of the entrance to Flaming Geyser State Park at RM 42.9 downstream for 0.1 mile.

VISIBILITY: 7 to 8 feet

SPECIES OBSERVED NUMBER OBSERVED

Sucker adults 3 Whitefish 4

REACH OF RIVER SNORKELED: RM 43.6 to RM 43.4. We snorkeled starting at the restrooms in Flaming Geyser State Park (RM 43.6) and went downstream to the large bend in the river upstream of the bridge (RM 43.4).

VISIBILITY: 7 to 8 feet

SPECIES OBSERVED NUMBER OBSERVED

Steelhead adults 1
Sucker adults 5
Whitefish 3

ECOLOGY SNORKELING OBSERVATIONS

RIVER: Green River DATE: April 10, 1987

DISCHARGE OF RIVER: 941 cfs at Purification Plant gage

1410 cfs at Auburn gage

REACH OF RIVER SURVEYED: River Mile 35.4 to RM 34.9. We walked the Nealy Bridge area from 100 yards upstream of transect seven (RM 35.4) to transect 3 (RM 34.9).

VISIBILITY: Less than 1 foot

SPECIES OBSERVED NUMBER OBSERVED

Steelhead adult (dead) 1

REACH OF RIVER SNORKELED: RM 43.4 to RM 43.0. Snorkeled from the big bend in the river upstream of Flaming Geyser State Park bridge (RM 43.4) down to the bridge (RM 43.0). The current was fast, about 3.5 fps.

VISIBILITY: 7 feet

SPECIES OBSERVED
Whitefish (12 in.)
Sucker adults
Steelhead adults (8-10 lbs.)

NUMBER OBSERVED
10
10

OBSERVATIONS BY: Stephen Hirschey

ECOLOGY SNORKELING OBSERVATIONS

RIVER: Green River DATE: ; April 18, 1987

DISCHARGE OF RIVER: 1370 cfs at Purification Plant gage

1860 cfs at Auburn gage

REACH OF RIVER SNORKELED: RM 35.4 to RM 34.9. We snorkeled the Nealy Bridge area from

100 yards upstream of Transect 7 (RM 35.4) to Transect 3 (RM 34.9).

VISIBILITY: 1.5 feet

SPECIES OBSERVED NUMBER OBSERVED

Sucker adults (3 lbs.) 4

REACH OF RIVER SNORKELED: RM 43.7 to RM 43.0. We snorkeled from the pool upstream of the flaming geyser (RM 43.7) at Flaming Geyser State Park down to the park's bridge (RM 43.0).

VISIBILITY: 6 feet

SPECIES OBSERVED NUMBER OBSERVED

Suckers (3 lbs.)

Appendix H2. Fish Periodicity Chart (DNR, 1981).

Timing of Freshwater Phases of Anadromous Fish in the Duwamish-Green Basin *

	Fresh Water						Mon	ths					
Species	Life Phase	J	F	М	A	м	J	J	А	S	0	N	п
Summer Steelhead Trout	Upstream Migration		-		and a second		OF REAL PROPERTY.	-	-	-	THE OWNER OF THE OWNER OWNE		
	Spawning		-	-									
	Incubation		-	-	-	-	-				Jan 1		
	Juvenile Rearing**	Name and Address of the Owner, where	-	CONTRACTOR S	-	and the latest designation of the latest des	-	-	NAME OF TAXABLE PARTY.		MINE SERVICE	-	-
	Juv. Outmigration			2000	-	and the last	DECEMBER OF THE PARTY OF THE PA	and the last					
inter	Upstream Migration	Billion	-	CONTRACTOR OF	and the same	PERSONAL PROPERTY.							-
Steelhead Trout	Spawning	2.5	Title Street	Sales Consul	-	Time to the last	and the same of						
	Incubation		Personal Property lies	-	and the latest designation of the latest des	and the same of	NAME OF TAXABLE PARTY.	Name and					
	Juvenile Rearing**	Name and	and the last	THE REAL PROPERTY.	-	nations and		No. of Street, or other Desires	Managara and American				-
	Juv. Outmigration			-	-	Name and Address of		-					
Searun Cutthroat Trout	Upstream Migration	and the last						Name and	ISSUE AND	-			
	Spawning			-	-		11543						
	Incubation			-	-	and the same	-						
	Juvenile Rearing	DANIES CO.	-	-	Name of Street or	-	-	-		-			
	Juv. Outmigration			-	manife trans	-	-	-					
all	Upstream Migration				-		-	raciones and	MINISTER DAY	-		-	
Chinook	Spawning									-	na incinci		
Salmon	Incubation	and in column	-							_			
	Juvenile Rearing	NAME OF TAXABLE PARTY.	-	Ministra de la constante de la	The same of	and the same	-	a Decision of	Name of Street	-		-	ic distri
	Juv. Outmigration				Milano						1		
Coho Salmon	Upstream Migration	NAME OF TAXABLE PARTY.							Operation		ant sales	WWW.	No.
	Spawning	DESCRIPTION OF THE PERSONS ASSESSMENT										-	
	Incubation	200.000	-	and the same of	-								
	Juvenile Rearing	Name and Address	-	NAME OF TAXABLE PARTY.	Name and Address of the Owner, where	Name and Address of the Owner, where	-	COLUMN TWO		_	-	-	
	Juv. Outmigration				1000	TO STATE OF	-	_					
Chum Salmon	Upstream Migration	and the last								-	and the last of	-	
	Spawning											-	
	Incubation	and the same of	The state of the s	and the last of th	and the latest designation of the latest des								
	Juvenile Rearing		parties of	-	rane man	and other state of	-	- 1				\Box	
	Juv. Outmigration		agreement.	Name and Address of the Owner, where the Owner, which is the Owner, where the Owner, which is the Owner, where the Owner, which is the Owner, whic				.					

^{*}Courtesy of Department of Fisheries and Game and Pacific Northwest River Basins Commission

^{**}Normally extends over two-year period

OBSERVATIONS OF DEPTH USED BY SPAWNING STEELHEAD TROUT GREEN RIVER

DATA COLLECTED ON 4-25-86, 5-9-86, & 5-5-88

VELOCITIES MEASURED ARE MEAN COLUMN VELOCITIES DATA COLLECTED ON 5-9-86 & 5-5-88

NUMBER OF OBSERVATIONS

OBSERVATIONS OF DEPTH USED SPAWNING CHINOOK SALMON GREEN RIVER

Appendix H5. Substrate/Cover Code.

DEPARTMENTS OF FISHERIES & WILDLIFE INSTREAM FLOW STUDIES SUBSTRATE AND COVER CODE APPLICATION 11/23/87

The three-digit code used describes the dominant substrate (the first number), the subdominant substrate (the second number), and the percent of only the dominant substrate (the third number). The percent of the subdominant substrate can be determined by subtraction. Dominant substrate is determined by the largest quantity of a certain substrate, not by the size of the substrate. The sum of the percent dominant and the percent subdominant will total 100 percent. The coding will not allow the dominant percent to be less than 50 percent, or greater than 90 percent. All other preference values are determined by using weighted averages. The value of the dominant substrate is multiplied by the percent of the dominant substrate, and the product is added to the product of the subdominant substrate times the percent of subdominant substrate. The sum of all the codes observed times their preference value will be a value between 0.0 and 1.0. The coding should also give a preference value of zero for the entire substrate observation when the code is class zero, one, or two, and is 50 percent or more of the observation. Where there is a situation where addition of two values could equal more than 1.0, the value will default to 1.0. Overhanging vegetation should be counted as cover if it is within 3 to 4 feet of the water surface. Cover values should be incorporated with the substrate values for both salmon and steelhead juvenile life stages and for chinook and steelhead adult holding.

LIFE STAGE AND VALUE OF SUBSTRATE

			SALMON		<u> </u>	STEELHEAL	O & TROUT	
		<u>Juvenile</u>	Spawning	<u>Adult</u>	<u>Spawni</u>		Rearing/	Holding
<u>CODE</u>	<u>Substrate</u>	Rearing		<u>Holding</u>	<u>Steelhead</u>	<u>Trout</u>	Juvenile &	Steelhead
	<u>Size</u>						<u>Adult</u>	<u>Adult</u>
	In Inches							
0 Detritus		.1	0	1	0	0	1	1
1 Silt, Clay		1	0	1	$\overset{\circ}{0}$	ő	.1	1
2 Sand		.1	ő	.1	0	ő	.1	.1
3 Small Gravel	.1-0.5	.1	.3	.1	.5	1	.1	.1
4 Medium Gravel	.5-1.5	.3	1	.3	1.0	1	.3	.3
5 Large Gravel	1.5-3.0	.3	1	.3	1.0	1	.3	.3
6 Small Cobble	3.0-6.0	.5	1	.3	1.0	.5	.5	.3
7 Large Cobble	6.0-12.0	.7	.3 *	.3	.3	0	.7	.3
8 Boulder		1.0	0	1.0	0	0	1.0	1.0
9 Bedrock		.3	0	.3	0	0	.3	.3
0.1 Undercut bank		1.0	0	1.0	0	0	1.0	1.0
0.2 Overhanging Vegetation		1.0	0	1.0	0	0	1.0	1.0
0.3 Root Wad		1.0	0	1.0	0	0	1.0	1.0
0.4 Log Jam		1.0	0	1.0	0	0	1.0	1.0
0.5 Log Instream		.8	0	.8	0	0	.8	.8
0.6 Submerged Vegetation		1.0	0	.8	0	0	1.0	.8
0.8 Grass/Bushes Up on Bank		.1	0	.1	0	0	.1	.1
0.9 Fine Organic Substrate		.1	0	.1	0	0	.1	.1

^{(* 0.6} for chinook spawning can be used, depending on river size)

Appendix I

INFLOWS FOR THE KENT, NEALY BRIDGE, AND CAR BODY SITES

Appendix I. Inflows for the Kent, Nealy Bridge, and Car Body sites (Ten-day, 50% exceedence flows).

Month		Kent Site <u>Inflow in cfs</u>	Nealy Bridge and Car Body Sites <u>Inflow in cfs</u>
January	1-10	767	541
buildury	11-20	718	518
	21-31	746	520
February	1-10	735	511
<i>y</i>	11-20	624	395
	21-28	638	428
March	1-10	555	367
	11-20	500	325
	21-31	431	261
April	1-10	521	365
•	11-20	558	406
	21-30	379	239
May	1-10	271	155
	11-20	303	206
	21-31	286	201
June	1-10	295	220
	11-20	274	207
	21-30	254	197
July	1-10	235	184
	11-20	224	181
	21-31	178	140
August	1-10	158	126
	11-20	161	130
	21-31	158	127
September	1-10	157	126
	11-20	151	118
	21-30	161	129
October	1-10	148	112
	11-20	167	128
	21-31	118	75
November	1-10	148	95
	11-20	289	215
_	21-30	355	226
December	1-10	436	270
	11-20	546	376
	21-31	700	505

These statistics are ten-day averages (Log Pearson) from 1962-1986 from USGS gage data. The Kent site inflow was calculated by subtracting the flows at the Purification Plant gage from the flows at the Auburn gage. The inflows at the Nealy Bridge and Car Body sites were calculated by adding flows at the Purification Plant gage and the Big Soos Creek gage and subtracting this total from the flows at the Auburn gage.

Appendix J

LITERATURE CITED

LITERATURE CITED

Bovee, K.D., 1982. A Guide to Stream Habitat Analysis using the Instream Flow Incremental Methodology. Instream Flow Paper 12. U.S. Fish and Wildlife Service, Fort Collins, Colorado. FWS/OBS-82/26.

Caldwell, B.A., and Caldwell, J., 1987. Documentation and Rationale for Preference Curves used 1983-1987 for IFIM Studies. Habitat Management Division, Washington Department of Fisheries, Olympia, Washington.

Chapman, D.W., 1984. Hydrographs and Instream Flow Requirements for Fish: Green, Cedar and White Rivers. Report to the Muckleshoot Indian Tribe, Auburn, Washington.

Grette, G.B., and Salo, E.O., 1986. The Status of Anadromous Fishes of the Green/Duwamish River System. Final Report to U.S. Army Corps of Engineers by Evans-Hamilto Inc., Seattle, Washington.

Milhous, R.T. et al. 1984. User's Guide to the Physical Habitat Simulation System. Instream Flow Paper 11. U.S. Fish and Wildlife Service, Fort Collins, Colorado. FWS/OBS-81/43 Revised.

Swift III, C.H., 1979. Preferred Stream Discharges for Salmon Spawning and Rearing in Washington. Open-File Report 77-422. U.S. Geological Survey, Tacoma, Washington.

Washington Department of Natural Resources, 1981. Draft Aquatic Land Management Plan for the Duwamish-Green River. Division of Marine Land Management, Olympia, Washington.

Williams, R.W., Laramie, R.M. and Ames, J.J., 1975. A Catalog of Washington Streams and Salmon Utilization. Volume 1, Puget Sound Region. Washington Department of Fisheries, Olympia, Washington.

Appendix K

ECOLOGY'S MISSION STATEMENT

OUR MISSION

WASHINGTON STATE DEPARTMENT OF ECOLOGY

To accomplish this mission, Ecology will:

- Recognize its most valuable asset is its dedicated and committed employees and it will provide necessary support, training and professional development.
- Promote prevention and conservation as the most effective ways to preserve our natural resources and protect the environment.
- Enforce environmental laws and regulations in a fair and firm manner.
- Provide public education programs to promote wise use of our natural resources and encourage environmental protection.

Preventin 100°, he was a Ports

he mission of the Department of Ecology is to protect, preserve and enhance Washington's environment and promote the wise management of our air, land and water for the benefit of current and future generations.

- Offer information, technical and financial assistance to help the public, governments, businesses and industries comply with environmental laws and regulations.
- Promote the recognition that compliance with environmental laws and regulations is compatible with a sound economy.

- Promote meaningful public involvement in the development of rules, regulations and new initiatives.
- Provide leadership in addressing emerging problems and strive to bring public agencies and diverse interest groups together to address environmental issues.
- Use an integrated approach to resolve environmental issues.
- Place special emphasis on educating and working with youth to create a strong environmental ethic.
- Help state agencies set an example in environmental protection.
- Work with the executive and legislative branches to promote sound environmental policy.

Asigned 198