Segment No: 02-03-02

WA-03-0020

WASHINGTON STATE DEPARTMENT OF ECOLOGY ENVIRONMENTAL INVESTIGATIONS AND LABORATORY SERVICES

MEMORANDUM

TO: Kevin Fitzpatrick

THROUGH: Bill Yake

FROM: Art Johnson 4

SUBJECT: Analysis of Padilla Bay Intertidal Sediments for Cresylic Acid

DATE: January 5, 1989

On September 23, 1988, in response to your request, I conducted a brief survey to assess the possible contamination of Padilla Bay intertidal sediments with cresylic acid (2-methylphenol), the principal ground water contaminant at the Northwest Petrochemical facility on the southwest shore of the bay. Two samples each were collected off Northwest Petrochemical and in the lagoon off the Whitmarsh Landfill, which was known to have received wastes from Northwest Petrochemical (see Figure 1). The landfill samples were also analyzed for PCB's.

At each site, 10 grab samples of the top 2-cm layer of the sediments were collected with a stainless steel spoon, homogenized in a stainless steel beaker, and placed in a priority pollutant-cleaned glass jar with teflon-lined lid (I-CHEM, Hayward, CA). The samples were held on ice until shipped to the Ecology/EPA Manchester Environmental Laboratory on September 26. Spoons and beakers had been cleaned prior to sampling by washing with LiquiNox detergent followed by sequential rinses with deionized water and pesticide-grade acetone, then wrapped in aluminum foil.

The samples were analyzed by Analytical Resources Inc., Seattle. Results are summarized in Table 1. Appendix A contains the complete raw data including analytical methods, supporting quality assurance data, and a review of data quality by Manchester. No significant problems were encountered in the analysis of these samples.

Cresylic acid was not detected in any of the sediment samples; detection limits ranged from 17 to 35 ug/Kg, dry (ppb). PCB's were also not detected in the sediments collected off the landfill (20 ppb detection limits). The detection limits achieved for these compounds are consistent with concentrations reported for Puget Sound sediments in reference areas removed from urban bays (Tetra Tech, 1988).

Kevin Fitzpatrick January 5, 1989 Page 2

As shown in Table 1, two non-target compounds were detected in the acid extractable analysis employed for cresylic acid. Phenol and 4-methylphenol concentrations of 230 ppb and 150 ppb, respectively, were measured in one of the two samples collected off Northwest Petrochemical; 4-methylphenol was also detected in one of the landfill samples (25 ppb). These findings are not indicative of significant sediment contamination. Both compounds are routinely detectable in Puget Sound sediments. 4-methylphenol concentrations up to 290 ppb have been reported for Puget Sound reference areas. The phenol concentration observed off Northwest Petrochemical is moderately elevated above concentrations in Puget Sound reference areas (up to 62 ppb), but does not approach apparent effects thresholds (AET*) values for phenol in Puget Sound sediments which range from 420 to 1,200 ppb (PTI Environmental Services, 1988).

Based on results of this survey, it is unlikely that Padilla Bay nearshore sediments off Northwest Petrochemical or off the Whitmarsh Landfill have been contaminated by cresylic acid.

References:

PTI Environmental Services. 1988 (draft). Sediment Quality Values Refinement: Tasks 3 and 5 -1988 Update and Evaluation of Puget Sound AET. prepared for EPA Region X, Office of Puget Sound, Seattle, WA.

Tetra Tech. 1988. Elliott Bay Action Program: Storm Drain Monitoring Approach. prepared for EPA Region X, Office of Puget Sound, Seattle, WA.

BY:AJ:sk

cc: Terry Stevens, Padilla Bay National Estuarine Research Reserve Don Kane, U.S. Fish and Wildlife Service John Thayer, Skagit County Health Department Mike Foster, City of Anacortes

^{*} An AET is the sediment concentration of a chemical above which a statistically significant biological effect (relative to reference area sediments) is always observed. The biological indicators used in deriving effects thresholds are depressions in benthic infauna, and results of amphipod (Rhepoxynius abronius), oyster larvae (Crassostrea gigas) and Microtox bioassays.

ANACORTES SOUTH QUADRANGLE WASHINGTON

7.5 MINUTE SERIES (TOPOGRAPHIC-BATHYMETRIC)

Data Review

November 2, 1988

Project :

NWRM

Samples:

407072-75

Laboratory:

Analytical Resources Inc. 2047

By:

Stuart Magoon 🎸

Throughs

Roy Araki

PCB Fraction (soil)

Holding Times:

Sample	Date Collect	Date Man Lab Rec'd	Date Cont.Lab Rec'd	Date Extrtd	Date Anlyz	#Days from Collct	#Days from Cntrec
407072	09/23	09/26	10/03	10/10	10/11	18ofNE	8of10
407073	09/23	09/26	10/03	10/10	10/11	18ofNE	8of10
407074	09/23	09/26	10/03	10/10	10/11	18ofNE	8of10
407075	09/23	09/26	10/03	10/10	10/11	18ofNE	8of10

NE = None Established

These samples have met the CLP holding time requirements.

<u>Surrogates</u>: Surrogate recoveries for these samples, matrix spikes, and the method blank are within the CLP recovery limits.

<u>Matrix Spike & Matrix Spike Duplicate:</u> Matrix spike/spike duplicate recoveries and precision data are acceptable and within CLP limits.

<u>Sample Data</u> This PCB data package is acceptable.

ACID Fraction (soil)

Holding Times:

Sample	Date Collect	Date Man Lab Rec'd	Date Cont.Lab VTSR	Date Extrtd	Date Anlyz	#Days from Collct	†Days from VSTR
407072	09/23	09/26	10/03	10/04	10/17	12of NE	1of10
407073	09/23	09/26	10/03	10/04	10/17	12of ME	1of10
407074	09/23	09/26	10/03	10/04	10/17	12of NE	1of10
407075	09/23	09/26	10/03	10/04	10/17	12of NE	10f10

VTSR = Validated Time of Sample Receipt. NE = None Established.

ARI has met their contract required holding times. There is no established CLP holding time criteria for extraction within a given time from sample collection for soils. Twelve days between collection and extraction is a reasonable amount of time.

<u>Surrogates</u>: Surrogate recoveries for these samples, matrix spikes, and the method blank are within the CLP recovery limits.

<u>Matrix Spike & Matrix Spike Duplicate:</u> Recoveries of all spiking compounds in the spike duplicate were slightly high. These values are still reasonable; no corrective action necessary.

<u>Sample Data</u> These samples were high in moisture content, therefore, detection limits are higher than requested because calculations are preformed on the dry weight of sample extracted. This data is acceptable.

Table 1. Results of analysis of Padilla Bay intertidal sediments collected off Northwest Petrochemical and off Whitmarsh Landfill, September 23, 1988 (µg/Kg, dry; ppb).

Location	Off Northwest	Petrochemical	Off Whitm	narsh Landfill
	Below North	At Old	NW Corner	
Sampling Site	Texas Road	Wood Dock	of Lagoon	Lagoon Outlet
Ecology Sample Number (40-)	7075	7074	7072	7073
Percent Solids:	36.8	36.8	39.8	32.7
Acid Compounds:				
phenol	230	35U	20U	17U
2-chlorophenol	18U	35U	20U	17U
2-methylphenol*	18U	35U	20U	17U
4-methylphenol	150	35U	20U	25
2-nitrophenol	90U	180U	100U	80U
2,4-dimethylphenol	40U	70U	40U	30U
benzoic acid	180U	350U	200U	170U
2,4-dichlorophenol	54U	106U	61U	50U
4-chloro-3-methylphenol	40U	70U	40U	30U
2,4,6-trichlorophenol	90U	180U	100U	80U
2,4,5-trichlorophenol	90U	180U	100U	80U
2,4-dinitrophenol	180U	350U	200U	170U
4-nitrophenol	90U	180U	100U	108
4,6-dinitro-2-methylphenol	180U	350U	200U	170U
pentachlorophenol	90U	180U	100U	80U
Acid Surrogate Recoveries:				
d5-phenol	81.8%	73.8%	84.4%	91.1%
2-fluorophenol	71.2%	93.6%	120%	115%
2,4,6-tribromophenol	121%	103%	104%	121%
Polychlorinated Biphenyls:				
PCB-1016/1242	NA	NA	20U	20 U
PCB-1248	NA	NA	20U	20U
PCB-1254	NA	NA	20U	20 U
PCB-1260	NA	NA	20 U	20U
PCB Surrogate Recoveries:				
dibutylchlorendate			106%	95%

U = compound was analyzed for but not detected at the given detection limit

NA = not analyzed

^{* =} cresylic acid

Analytical Chemists & Consultants

333 Ninth Ave. North Seattle, Wa 98109-5187 (206)621-6490

26 October 1988

Roy Araki Washington Dept. of Ecology Manchester Laboratory 7411 Beach Drive East Port Orchard, WA 98366

RE: ARI Project No. 02047

Dear Roy:

Please find enclosed the results of various analyses as part of the above referenced project.

If you need additional information or have further questions, please feel free to call any time.

Sincerely,

ANALYTICAL RESOURCES, INC.

METHOD 8080 ANALYSIS

DATA REPORT

ANALYTICAL RESOURCES INCORPORATED

Analytical Chemists & Consultants

333 Ninth Ave. North Seattle, Wa 98109-5187 (206) 621-6490

PROJECT: NW Petro

Date Received: 10/03/88

Matrix: Soil

GPC Cleanup: NO

Alumina Cleanup: YES

ARI Job No.: 2047

QC Report: 2047-WD0E

Data Release Authorized_

Reported in ppb (µg/Kg)

DATA PREPARED: MACE-M.L. (10/19/88)

OLICHT +	METHOD DI ANY	407070		·
	METHOD BLANK		407073	407073MS*
ARI #	2047 MB	2047 A	2047 B	2074 BMS
Date Extracted		10/10/88	10/10/88	10/10/88
Date Analyzed		10/11/88	10/11/88	10/11/88
Dry Weight Analyzed		5.82 g	4.80 g	5.85 q
Dilution	1:1	1:1	1:1	1:1
1016/1242	20 U	20 U	20 U	
1248		20 U	20 U	20 U
1254	20 U	20 U	20 U	20 U
1260	20 U	20 U	20 U	20 U
DBC Surrogate %	85 %	106%	95 %	98%
_				
CLIENT #	407073 MSD*			
ARI #	2047 BMSD			
Date Extracted	10/10/88			
Date Analyzed	10/11/88			
Dry Weight Analyzed	6.42 g			
Dilution	1:1			
_				
1016/1242	-			
1248[20 U			
1254	20 U		***************************************	
1260	20 U			
DBC Surrogate 🛪	86%			-
_		<u></u>		

DATA QUALIFIERS

- U Indicates compound was analyzed for but not detected at the given detection limit.
- * MATRIX SPIKE/MATRIX SPIKE DUPLICATE

PCB MATRIX SPIKE/MATRIX SPIKE DUPLICATE RECOVERY

ANALYTICAL RESOURCES, INC.

PROJECT: NW Petro

QC REPORT NO: 2047-WDOE

MATRIX: Soil

Dry Weight Analyzed: 4.80 g

Conc/Dilution: 1:1

CLIENT SAMPLE NO: 407073

ARI LAB ID: 2047 B

Date Received: 10/03/88 Date Analyzed: 10/11/88

	ONC. SPIKE	SAMPLE	MS	8	MSD	*	
COMPOUND AD	DED (μg/Kg)	RESULT	CONC.	REC.	CONC.	REC.	RPD
Aroclor 1242	208	0	168	81	177	85	4.8

DATA RELEASE AUTHORIZED:

COMMENTS:

DATA PREPARED: MACE - M.L. (10/19/88)

Analytical Chemists & Consultants

333 Ninth Ave. North Seattle, Wa 98109-5187 (206) 621-6490

ORGANICS ANALYSIS DATA SHEET - METHOD 8270

Lab Sample ID:

2047MB

Sample Matrix:

Soil/Sediments

Hum M. Robe

QC Report No: 2047 - WD0E

Project: NW Petro

Sample No: Method Blank

Date Received: 10/03/88

Date Release Authorized: _

Report Prepared: 10/18/88 MAC: A

Dry weight extracted (gm): 100.00

Percent Solids: NR

Percent Moisture: NR

pH: NR

Conc/Dilution Factor: 1 to 1

Total Dilution: 1 to 1
Final volume: Im! 8m

Date Extracted: 10/04/88
Date Analyzed: 10/17/88

GPC Clean-up: No

<u>CAS Number</u>		μg/Kg
108-95-2	Phenol	100
95-57-8	2-Chlorophenol	10 U
95-48-7	2-Methylphenol	10 U
106-44-5	4-Methylphenol	10 U
88-75-5	2-Nitrophenol	50 U
105-67-9	2,4-Dimethylphenol	20 U
65-85-0	Benzoic Acid	100 U
120-83-2	2,4-Dichlorophenol	30 U

CAS Number		μg/Kg
59-50-7	4-Chloro-3-Methylphenol	20 U
88-06-2	2,4,6-Trichlorophenol	50 U
95-95-4	2,4,5-Trichlorophenol	50 U
51-28-5	2,4-Dinitrophenol	100 U
100-02-7	4-Nitrophenol	50 U
534-52-1	4,6-Dinitro-2-Methylphenol	100 U
87-86-5	Pentachlorophenol	50 U

*Acid surrogate recoveries

d5-Phenol	92.1%
2-Fluorophenol	50.4%
2,4,6-Tribromophenol	98.4%

Yalue	If the result is a value greater than or equal to the detection limit, report the value.	В	This flag is used when the analyte is found in the blank as well as a sample. Indicates possible/probable blank contamination.
U	Indicates compound was analyzed for but not		, , , , , , , , , , , , , , , , , , , ,
	detected at the given detection limit.	K	This flag is used when quantitated value falls above the limit of the calibration
J	Indicates an estimated value when result is less than specified detection limit.		curve and dilution should be run.
NR	Analysis not required	М	indicates an estimated value of analyte found and confirmed by analyst but with low spectral match parameters.

Analytical Chemists &

333 Ninth Ave. North Seattle, Wa 98109-5187 (206) 621-6490

Consultants

Sum N. Rober Date Release Authorized: __

ORGANICS ANALYSIS DATA SHEET - METHOD 8270

2047A

Soil/Sediments

Date Extracted: 10/04/88

Date Analyzed: 10/17/88

Report Prepared: 10/18/88 MAC: A

Lab Sample ID:

Sample Matrix:

Dry weight extracted (gm): 49.18

Percent Solids: 32.74% Percent Moisture: 67.26%

Sample No: 407072

Project Name: NW Petro

Date Received: 10/03/88

QC Report No: 2047 - WD0E

pH: 6.83

Conc/Dilution Factor: 1 to 1 Total Dilution: 1 to 1 Final volume : I'm! Sur

CAS Number		μ g/ Kg
108-95-2	Phenol	20 U
95-57-8	2-Chlorophenol	20 U
95-48-7	2-Methylphenol	20 U
106-44-5	4-Methylphenol	20 U
88-75-5	2-Nitrophenol	100 U
105-67-9	2,4-Dimethylphenol	40 U
65-85-0	Benzoic Acid	200 U
120-83-2	2,4-Dichlorophenol	61 U

GPC Clean-up: No

CAS Number		μg/Kg
59-50-7	4-Chloro-3-Methylphenol	40 U
88-06-2	2,4,6-Trichlorophenol	100 U
95-95-4	2,4,5-Trichlorophenol	100 U
51-28-5	2,4-Dinitrophenol	200 U
100-02-7	4-Nitrophenol	100 U
534-52-1	4,6-Dinitro-2-Methylphenol	200 U
87-86-5	Pentachlorophenol	100 U

*Acid surrogate recoveries

d5-Phenol	84.4%
2-Fluorophenol	120%
2,4,6-Tribromophenol	104%

Yalue	If the result is a value greater than or equal to the detection limit, report the value.	В	This flag is used when the analyte is found in the blank as well as a sample. Indicates possible/probable blank contamination.
U	Indicates compound was analyzed for but not		
	detected at the given detection limit.	K	This flag is used when quantitated value falls above the limit of the calibration
J	Indicates an estimated value when result is less than specified detection limit.		curve and dilution should be run.
		М	Indicates an estimated value of analyte
NR	Analysis not required		found and confirmed by analyst but with low spectral match parameters.

Analytical Chemists & Consultants

333 Ninth Ave. North Seattle, Wa 98109-5187 (206) 621-6490

ORGANICS ANALYSIS DATA SHEET - METHOD 8270

Lab Sample ID:

2047B

Sample Matrix:

Soi1/Sediments

QC Report No: 2047 - WD0E

Project Name: NW Petro

Sample No: 407073

Date Received: 10/03/88

Date Release Authorized: _

Report Prepared: 10/18/88 MAC: A

Dry weight extracted (gm): 59.69

Percent Solids: 39.78% Percent Moisture: 60.22%

pH: 6.33

Date Extracted: 10/04/88 Date Analyzed: 10/17/88

GPC Clean-up: No

Conc/Dilution Factor: 1 to 1

Total Dilution: 1 to 1 Final volume I'm I &n

CAS Number µg/Kg

108-95-2	Phenol	170
95-57-8	2-Chlorophenol	170
95-48-7	2-Methylphenol	17 U
106-44-5	4-Methylphenol	25
88-75-5	2-Nitrophenol	80 U
105-67-9	2,4-Dimethylphenol	30 U
65-85-0	Benzoic Acid	170 U
120-83-2	2,4-Dichlorophenol	50 U

CAS Number		μg/Kg
59-50-7	4-Chloro-3-Methylphenol	30 U
88-06-2	2,4,6-Trichlorophenol	80 U
95-95-4	2,4,5-Trichlorophenol	80 U
51-28-5	2,4-Dinitrophenol	170 U
100-02-7	4-Nitrophenol	80 U
534-52-1	4,6-Dinitro-2-Methylphenol	170 U
87-86-5	Pentachlorophenol	80 U

*Acid surrogate recoveries

d5-Phenol	91.1%
2-Fluorophenol	115%
2,4,6-Tribromophenol	121%

Yalue	If the result is a value greater than or equal to the detection limit, report the value.	В	This flag is used when the analyte is found in the blank as well as a sample. Indicates possible/probable blank contamination.
U	Indicates compound was analyzed for but not		
	detected at the given detection limit.	K	This flag is used when quantitated value
	•		falls above the limit of the calibration
J	Indicates an estimated value when result		curve and dilution should be run.
	is less than specified detection limit.		
	· ·	М	Indicates an estimated value of analyte
NR	Analysis not required		found and confirmed by analyst but with low spectral match parameters.

Analytical Chemists &

Consultants

333 Ninth Ave. North Seattle, Wa 98109-5187 (206) 621-6490

ORGANICS ANALYSIS DATA SHEET - METHOD 8270

Lab Sample ID:

2047C

Sample Matrix:

Soil/Sediments

Project Name: NW Petro

Date Received: 10/03/88

Dry weight extracted (gm): 28.29

Percent Solids: 36.56% Percent Moisture: 63.44%

Sample No: 407074

QC Report No: 2047 - WD0E

pH: 6.93

Conc/Dilution Factor: 1 to 1

Total Dilution: 1 to 1 Final Volume: Imi Km

Date Release Authorized: Report Prepared: 10/18/88 MAC: A

> Date Extracted: 10/04/88 Date Analyzed: 10/17/88

GPC Clean-up: No

CAS Number		μg/Kg
108-95-2	Phenol	35 U
95-57-8	2-Chlorophenol	35 U
95-48-7	2-Methylphenol	35 U
106-44-5	4-Methylphenol	35 U
88-75-5	2-Nitrophenol	180 U
105-67-9	2,4-Dimethylphenol	70 U
65-85-0	Benzoic Acid	350 U
120-83-2	2,4-Dichlorophenol	106 U

	9 (
CAS Number		μg/Kg
59-50-7	4-Chloro-3-Methylphenol	70 U
88-06-2	2,4,6-Trichlorophenol	180 U
95-95-4	2,4,5-Trichlorophenol	180 U
51-28-5	2,4-Dinitrophenol	350 U
100-02-7	4-Nitrophenol	180 U
534-52-1	4,6-Dinitro-2-Methylphenol	350 U
87-86-5	Pentachlorophenol	180 U

*Acid surrogate recoveries

d5-Phenol	73.8%
2-Fluorophenol	93.6%
2,4,6-Tribromophenol	103%

Value	If the result is a value greater than or equal to the detection limit, report the value.	В	This flag is used when the analyte is found in the blank as well as a sample. Indicates possible/probable blank contamination.
U	Indicates compound was analyzed for but not		` .
	detected at the given detection limit.	K	This flag is used when quantitated value
			falls above the limit of the calibration
J	Indicates an estimated value when result		curve and dilution should be run.
	is less than specified detection limit.		
	·	Μ	Indicates an estimated value of analyte
NR	Analysis not required		found and confirmed by analyst but
			with low spectral match parameters.

Analytical Chemists & Consultants

333 Ninth Ave. North Seattle, Wa 98109-5187 (206) 621-6490

50IL SEMIYOLATILE MATRIX SPIKE/MATRIX SPIKE DUPLICATE RECOVERY

ARI Job No: 2047

Client: WD0E Project: NW Petro

Sample No: 407074

COMPOUND	SPIKE ADDED (µg/Kg)	SAMPLE CONCENTRATION (µg/Kg)	MS CONCENTRATION (µg/Kg)	MS % REC	QC LIMITS REC
Phenol	7100	0.0	4800	67.6	26-90
2-Chlorophenol	7100	0.0	5600	78.9	25-102
4-Chloro-3-Methylphenol	7100	0.0	5700	80.3	26-103
4-Nitrophenol	7100	0.0	7000	98.6	11-114
Pentachlorophenol	7100	0.0	6600	93.0	17-109

	SPIKE ADDED	MSD CONCENTRATION	MSD %	**	(C MITS
COMPOUND	(μg/Kg)	(μg/Kg)		RPD	RPD	REC
Phenol	7100	6600	* 93.0	-32	35	26-90
2-Chlorophenol	7100	7700	×108	-31	50	25-102
4-Chloro-3-Methylphenol	7100	7800	* 110	-31	33	26-103
4-Nitrophenol	7100	9700	*137	-33	50	11-114
Pentachlorophenol	7100	8100	*114	-20	47	17-109

RPD: 0 out of 5 outside limits Spike Recovery: Sout of 10 outside limits

Asterisked values outside QC Limits

Comments: 28.03 gram dry weight sample size.

FORM III SV-2

10-11-99 al

Analytical Chemists & Consultants

333 Ninth Ave. North Seattle, Wa 98109-5187 (206) 621-6490

ORGANICS ANALYSIS DATA SHEET - METHOD 8270

Lab Sample ID:

Sample Matrix:

2047CMS

Soil/Sediments

Sample No: 407074 MS QC Report No: 2047 - WD0E

Project Name: NW Petro Date Received: 10/03/88

Date Release Authorized:

Report Prepared: 10/18/88 MAC: A

Dry weight extracted (gm): 27.47

Percent Solids: 36.56% Percent Moisture: 63.44%

Date Extracted: 10/04/88 Date Analyzed: 10/17/88

GPC Clean-up: No

pH: 6.93 Conc/Dilution Factor: 1 to 1

Total Dilution: 1 to 1 Final volumes Im! In

CAS Number		μg/Kg
108-95-2	Phenol	-
95-57-8	2-Chlorophenol	
95-48-7	2-Methylphenol	36 U
106-44-5	4-Methylphenol	36 U
88-75-5	2-Nitrophenol	180 U
105-67-9	2,4-Dimethylphenol	70 U
65-85-0	Benzoic Acid	360 U
120-83-2	2.4-Dichlorophenol	109 U

CAS Number		μg/Kg
59-50-7	4-Chloro-3-Methylphenol	-
88-06-2	2,4,6-Trichlorophenol	180 U
95-95-4	2,4,5-Trichlorophenol	180 U
51-28-5	2,4-Dinitrophenol	360 U
100-02-7	4-Nitrophenol	180 U
534-52-1	4,6-Dinitro-2-Methylphenol	360 U
87-86-5	Pentachlorophenol	-

*Acid surrogate recoveries

nord sail ogato i coordi to	<u> </u>
d5-Phenol	70.0%
2-Fluorophenol	71.4%
2,4,6-Tribromophenol	92.5%

Value	If the result is a value greater than or equal to the detection limit, report the value.	В	This flag is used when the analyte is found in the blank as well as a sample. Indicates possible/probable blank contamination.
U	Indicates compound was analyzed for but not		
	detected at the given detection limit.	K	This flag is used when quantitated value falls above the limit of the calibration
J	Indicates an estimated value when result is less than specified detection limit.		curve and dilution should be run.
		Μ	Indicates an estimated value of analyte
NR	Analysis not required		found and confirmed by analyst but with low spectral match parameters.

Analytical Chemists & Consultants

333 Ninth Ave. North Seattle, Wa 98109-5187 (206) 621-6490

Sample No: 407074 MSD

QC Report No: 2047 - WDOE Project Name: NW Petro

Date Received: 10/03/88

Date Release Authorized: Man VI. Cofee

ORGANICS ANALYSIS DATA SHEET - METHOD 8270

2047CMSD

Soil/Sediments

Date Extracted: 10/04/88

Report Prepared: 10/18/88 MAC: A

Lab Sample ID:

Sample Matrix:

8/88 MACA Dry weight extracted (gm): 28.58

Percent Solids: 36.56% Percent Moisture: 63.44%

Date Analyzed: 10/17/88 pH: 6.93 GPC Clean-up: No Conc/D1lution Factor: 1 to 1

Total Dilution: 1 to 1
Final volume: 1 m

un/Kn

CAS Number		μg/Kg
108-95-2	Phenol	-
95-57-8	2-Chlorophenol	-
95-48-7	2-Methylphenol	35 U
106-44-5	4-Methylphenol	35 U
88-75-5	2-Nitrophenol	170 U
105-67-9	2,4-Dimethylphenol	70 U
65-85-0	Benzoic Acid	350 U
120-83-2	2,4-Dichlorophenol	105 U

<u>CAS Number</u>		μg/Kg
59-50-7	4-Chloro-3-Methylphenol	
88-06-2	2,4,6-Trichlorophenol	170 U
95-95-4	2,4,5-Trichlorophenol	170 U
51-28-5	2,4-Dinitrophenol	350 U
100-02-7	4-Nitrophenol	170 U \$
534-52-1	4,6-Dinitro-2-Methylphenol	350 U
87-86-5	Pentachlorophenol	

*Acid surrogate recoveries

d5-Phenol	92.7% 十
2-Fluorophenol	98.0%
2,4,6-Tribromophenol	119%

Yalue	If the result is a value greater than or equal to the detection limit, report the value.	В	This flag is used when the analyte is found in the blank as well as a sample. Indicates possible/probable blank contamination.
U	Indicates compound was analyzed for but not		· · · · · ·
	detected at the given detection limit.	K	This flag is used when quantitated value falls above the limit of the calibration
J	Indicates an estimated value when result is less than specified detection limit.		curve and dilution should be run.
		М	Indicates an estimated value of analyte
NR	Analysis not required		found and confirmed by analyst but with low spectral match parameters.

Analytical Chemists & Consultants

333 Ninth Ave. North Seattle, Wa 98109-5187 (206) 621-6490

ORGANICS ANALYSIS DATA SHEET - METHOD 8270

Lab Sample ID:

2047D

Sample Matrix:

Soil/Sediments

QC Report No: 2047 - WD0E

Project Name: NW Petro

Sample No: 407075

Date Received: 10/03/88

Date Release Authorized: _

Report Prepared: 10/18/88 MAC: A

Dry weight extracted (gm): 55.48

Percent Solids: 36.81% Percent Moisture: 63.19%

Date Extracted: 10/04/88

Date Analyzed: 10/17/88

GPC Clean-up: No

pH: 7.06

Conc/Dilution Factor: 1 to 1

Total Dilution: 1 to 1

CAS	kh	ım	hor
LAN	NI	ım	ner

CAS Number		μg/Kg
108-95-2	Phenol	230
95-57-8	2-Chlorophenol	18 U
95-48-7	2-Methylphenol	18 U
106-44-5	4-Methylphenol	150
88-75-5	2-Nitrophenol	90 U
105-67-9	2,4-Dimethylphenol	40 U
65-85-0	Benzoic Acid	180 U
120-83-2	2,4-Dichlorophenol	54 U

CAS Number		μg/Kg
59-50-7	4-Chloro-3-Methylphenol	40 U
88-06-2	2,4,6-Trichlorophenol	90 U
95-95-4	2,4,5-Trichlorophenol	90 U
51-28-5	2,4-Dinitrophenol	180 U
100-02-7	4-Nitrophenol	90 U
534-52-1	4,6-Dinitro-2-Methylphenol	180 U
87-86-5	Pentachlorophenol	90 U

*Acid surrogate recoveries

d5-Phenol	81.8%
2-Fluorophenol	71.2%
2,4,6-Tribromophenol	121%

Value	If the result is a value greater than or equal to the detection limit, report the value.	В	This flag is used when the analyte is found in the blank as well as a sample. Indicates possible/probable blank contamination.
U	Indicates compound was analyzed for but not		
	detected at the given detection limit.	K	This flag is used when quantitated value falls above the limit of the calibration
J	Indicates an estimated value when result is less than specified detection limit.		curve and dilution should be run.
		М	Indicates an estimated value of analyte
NR	Analysis not required		found and confirmed by analyst but with low spectral match parameters.

Analytical Chemists & Consultants

333 Ninth Ave. North Seattle, Wa 98109-5187 (206) 621-6490

SOIL SEMIVOLATILE SURROGATE RECOVERY

ARI Job No: 2047 Client: WD0E Level: Low Project: NW Petro

Sample ID (NBZ) (FBP) (TPH) (PHL) (2FP) (TBP) OUT Method Blank NR NR NR NR 92.1 50.4 98.4 NR 0 407072 NR NR NR NR 84.4 120 104 NR 0 407073 NR NR NR NR 91.1 115 121 NR 0 407074 NR NR NR NR 78.8 93.6 103 NR 0 407074MS NR NR NR NR 70.0 71.4 92.5 NR 0 407074MSD NR NR NR 92.7 98.0 119 NR 0 407075 NR NR NR 81.8 71.2 121 NR 0 407075 NR NR NR 81.8 71.2 121 NR 0	Client	\$1	\$2	\$3	\$4	\$5	\$6	Other	TOT
Method Blank NR NR NR 92.1 50.4 98.4 NR 0 407072 NR NR NR NR 84.4 120 104 NR 0 407073 NR NR NR NR NR 91.1 115 121 NR 0 407074 NR NR NR NR 78.8 93.6 103 NR 0 407074MS NR NR NR NR 70.0 71.4 92.5 NR 0 407075 NR NR NR NR 91.8 71.2 121 NR 0		(NBZ)	(FBP)	(TPH)	(PHL)	(2FP)	(TBP)		OUT
407073	Method Blank		NR	NR	92.1	50.4	98.4	NR	0
407074	407072	NR	NR	NR	84.4	120	104	NR	0
407074	407073	NR	. NR	NR	91.1	115	121	NR	0
407074MSD NR NR NR NR 92.7 98.0 119 NR 0 407075 NR NR NR NR 81.8 71.2 121 NR 0	407074	NR	NR	NR	78.8	93.6	103	NR	0
407075 NR NR NR 81.8 71.2 121 NR 0	407074MS	NR	NR	NR	70.0	71.4	92.5	NR	0
	407074MSD	NR	NR	NR	92.7	98.0		NR	0
	407075	NR	NR	NR	81.8	71.2	121	NR	0
								<u> </u>	
				1					
	:							-	
									2.0
									1
		`							
									
							<u> </u>		
						†		<u> </u>	1
		 	 	 	 	1		1	
		 	1	 	 		 	†	

	QC LIMITS
S1 (NBZ)=Nitrobenzene-d5	(23-120)
S2 (FBP)=2-Fluorobiphenyl	(30-115)
S3 (TPH)=Terphenyl-d14	(18-137)
S4 (PHL)=Phenol-d6	(24-113)
S5 (2FP)=2-Fluorophenol	(25-121)
S6 (TBP)=2,4,6-Tribromophenol	(19-122)

Asterisked values outside QC Limits

n.1918pm

Analytical Chemists & Consultants

333 Ninth Ave. North Seattle, Wa 98109-5187 (206) 621-6490

SEMIYOLATILE METHOD BLANK SUMMARY

ARI Job No: 2047 Client: WD0E

Project: NW Petro

Lab Sample ID: 2047MB

Extraction: Sono Matrix: Soil Date Extracted: 10/04/88 Level: Low Date Analyzed: 10/17/88 Instrument ID: FINN II Time Analyzed: 10:35

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, MS, MSD:

Client	Lab	Lab	Time
Sample ID	Sample ID	File ID	Analyzed
407072	20474A	F22047A	11:24
407073	2047B	F22047B	12:12
407074	2047C	F22047C	13:02
407074MS	2047CMS	F22047CMS	13:53
407074MSD	2047CMSD	F22047CMSD	14:41
407075	2047D	F22047D	15:49

	···		

Comments:

Analytical Chemists & Consultants

333 Ninth Ave. North Seattle, Wa 98109-5187 (206) 621-6490

SEMIVOLATILE ORGANIC GC/MS TUNING AND MASS CALIBRATION - DECAFLUOROTRIPHENYLPHOSPHINE (DFTPP)

Lab File ID: F2501017B

Instrument ID: FINN II

Matrix: Soil Level: Low Client: WDOE

DFTPP Injection Date: 10/17/88 DFTPP Injection Time: 08:53

m/e Ion Abundance Criteria		% Relative Abundance		
<u>51</u>	30.0-60.0% of mass 198	52.6		
68	Less than 2.0% of mass 69	0.0	(0.0)1	
69	Mass 69 relative abundance	44.8	10.071	
70	Less than 2.0% of mass 69	0.0	(0.0)1	
127	40.0-60.0% of mass 198	53.2	(0.0)1	
197	Less than 1.0% of mass 198	0.0		
198	Base peak, 100% relative abundance	100	······································	
199	5.0-9.0% of mass 198	6.2		
275	10.0-30.0% of mass 198	26.9		
365	Greater than 1.00% of mass 198	1.4		
441	Present, but less than mass 443	10.3		
442	Greater than 40.0% of mass 198	75.6		
443	17.0-23.0% of mass 442	14.3	(18.9)2	

1-Value is % mass 69

2-Value is % mass 442

THIS TUNE APPLIES TO THE FOLLOWING SAMPLES, MS, MSD, BLANKS, AND STANDARDS:

Client	ARI	Lab	Date	Time
Sample ID	Sample ID	File ID	Analyzed	
***	50ng Call STD	F2501017B	10/17/88	
Method Blank	2047MB	F22047MB	10/17/88	
407072	20474A	F22047A	10/17/88	
407073	2047B	F22047B	10/17/88	
407074	2047C	F22047C	10/17/88	
407074MS	2047CMS	F22047CMS	10/17/88	
407074MSD	2047CMSD	F22047CMSD	10/17/88	
407075	2047D	F22047D	10/17/88	15:49

Analytical Chemists & Consultants

333 Ninth Ave. North Seattle, Wa 98109-5187 (206) 621-6490

Continuing Calibration Check Semivolatile HSL Compounds (Page 1)

ARI Job Number: 2047 Instrument: FINN II

Clinet: WD0E

Project: NW Petro

Minimum RF(avg) for SPCC is 0.050

Calibration Date: 10/17/88

Time: 0853 hrs

Laboratory ID: F2501017B

Initial Calibration Date: 09/22/88

Maximum %D for CCC is 25%

Compound	RF Avg	RF50	%D	CCC	SPCC
Phenol	1.245	1.176	5.5	*	
bis(-2-Chloroethyl)Ether	1.156	1.074	7.1		
2-Chlorophenol	1.093	1.031	5.7		
1,3-Dichlorobenzene	1.144	1.215	-6.2		
1,4-Dichlorobenzene	1.199	1.267	-5.7	*	
Benzyl Alcohol	0.785	0.766	2.4		
1,2-Dichlorobenzene	1.141	1.163	-1.9		
2-Methylphenol	1.052	1.000	4.9		
bis(2-chloroisopropyl)Ether	1.459	1.250	14.3		
4-Methylphenol	1.087	1.066	1.9		
N-Nitroso-Di-n-Propylamine	0.741	0.760	-2.6		**
Hexachloroethane	0.508	0.526	-3.5		
Nitrobenzene	0.285	0.395	-38.6		
Isophorone	0.597	0,584	2.2		
2-Nitrophenol	0.168	0.152	9.5	*	
2,4-Dimethylphenol	0.259	0.249	3.9		
Benzofc Acid	0.107	0.140	-30.8		
bis(-2-Chloroethoxy)Methane	0.388	0.356	8.2		2.0
2,4-Dichlorophenol	0.216	0.204	5.6	*	
1,2,4-Trichlorobenzene	0.290	0.314	-8.3		
Naphthalene	0.755	0.839	-11,1		
4-Chloroaniline	0.257	0.322	-25.3		
Hexachlorobutadiene	0.152	0.185	-21.7	*	
4-Chloro-3-Methylphenol	0.215	0.206	4.2	*	
2-Methylnaphthalene	0.725	0.583	19.6		
Hexachlorocyclopentadiene	0.361	0.352	2.5		**
2,4,6-Trichlorophenol	0.407	0.353	13.3	*	
2,4,5-Trichlorophenol	0.285	0.295	-3.5		
2-Chloronaphthalene	1.090	1.059	2.8		
2-Nitroaniline	0.290	0.289	0.3		
Dimethyl Phthalate	1.202	0.995	17.2		
Acenaphthylene	1.627	1.619	0.5		
3-Nitroaniline	0.284	0.275	3.2		

Analytical Chemists & Consultants

333 Ninth Ave. North Seattle, Wa 98109-5187 (206) 621-6490

Continuing Calibration Check Semivolatile HSL Compounds (Page 2)

ARI Job Number: 2047 Instrument ID: FINN II

Client: WD0E

Project: NW Petro

Calibration Date: 10/17/88

Time: 0853 hrs

Laboratory ID: F2501017B

Initial Calibration Date: 09/22/88

Minimum RF(ava) for SPCC is 0.050

Maximum	ዋቦ	for	$\gamma\gamma\gamma$	10	259
THAX IIIIIIII	A.I.I	1111	1.1.1.	15	Z : 3 & .

Minimum RF(avg) for SPCC is 0.050			Maximum X	D for CCC 1:	r CCC 1s 25%		
				CCC	SPCC		
Compound	RF Avg	RF50	%D				
Acenaphthene	0.948	0.970	-2.3	*			
2,4-Dinitrophenol	0.160	0.103	35.6		**		
4-Nitrophenol	0.233	0.174	25.3		**		
Dibenzofuran	1.760	1.816	-3.2				
2,4-Dinitrotoluene	0.240	0.206	14.2				
2,6-Dinitrotoluene	0,256	0.264	-3.1				
Diethylphthalate	1.136	1.092	3.9				
4-Chlorophenyl-phenylether	0.648	0.704	-8.6				
Fluorene	1.066	1.115	-4.6				
4-Nitroaniline	0.235	0.243	-3.4				
4,6-Dinitro-2-Methylphenol	0.105	0.071	32.4				
N-Nitrosodiphenylamine	0.541	0.548	-1.3	*			
4-Bromophenyl-phenylether	0.222	0.209	5.9				
Hexachlorobenzene	0.238	0.242	-1.7				
Pentachlorophenol	0.142	0.118	16.9	*			
Phenanthrene	0.876	0.770	12.1		بر		
Anthracene	0.738	0.733	0.7				
Di-N-Butylphthalate	1.134	1.193	-5.2				
Fluoranthene	0.854	0.929	-8.8	*			
Pyrene	1.175	1.009	14.1				
Butylbenzylphthalate	0.777	0.592	23.8				
3,3'-Dichlorobenzidine	0.137	0.153	-11.7				
Benzo(a)Anthracene	1.087	1.059	2.6				
bis(2-Ethylhexyl)Phthalate	1.038	1.026	1.2				
Chrysene	1.021	1.001	2.0				
Di-n-Octyl Phthalate	2.204	1.871	15.1	*			
Benzo(b)Fluoranthene	1,352	1.356	-0.3				
Benzo(k)Fluoranthene	1.381	1.459	-5.6				
Benzo(a)Pyrene	1.273	1.375	-8.0	*			
Indeno(1,2,3-cd)Pyrene	1.101	1.122	-1.9				
Dibenz(a,h)Anthracene	1.163	1.155	0.7				
Benzo(g,h,i)Perylene	1.179	1.070	9.2				