

Methow River Basin Fish Habitat analysis Using the Instream Flow Incremental Methodology

August 1992 Publication No. 92-82

printed on recycled paper

Department of Ecology

Methow River Basin Fish Habitat Analysis Using the Instream Flow Incremental Methodology

By

Brad Caldwell And Dave Atterson

Water Resources Program Department of Ecology Mail Stop 7600 Olympia, Washington 98504-7600

August, 1992

92-82

TABLE OF CONTENTS

		Page
	TRACT	
	NOWLEDGEMENTS	
	OF FIGURES	
	OF TABLES	
LIST	OF ACRONYMS	xi
1.	PROJECT BACKGROUNDS	1
	Study Objectives	1
	Participants	1
	River Basin Description	1
	Hydrology	
	Hydraulic Continuity Between Ground Water and Surface Water	
	Dry River Reaches During the Fall in Drought Years	9
	Dry Reaches and Icing During Winter In Drought Years	
	Summary of Timing and Location of River Reaches That Go Dry	
	Quantifying Total Irrigation Diversions	
	Relationship of Irrigation Canal Flows to the Methow River	
	Fish Runs, Hatcheries, Fish Management Plans, Spawning Times	14
	History and Status of Fish Production	
	Existing Fish Runs	
	Hatchery Information	
	Natural Summer Steelhead	
	Hatchery Summer Steelhead	
	Spring Chinook	
	Summer Chinook	
	Fall Chinook	
	Sockeye	
	The Methow Subbasin Salmon and Steelhead Production Plan	
	Northwest Power Planning Council Protected Areas	
II.	METHOW STUDY	
	Description of the Instream Flow Incremental Methodology	
	Interagency Participation in Scope-of-Work.	
	Study Site and Transect Selection	
	Field Procedures	
	Site Descriptions and Conditions During Measurements	
	Walsh Site on the Methow River	
	KOA Site on the Methow River	
	Weeman Site on the Methow River	
	Chokecherry Site on the Methow River	
	Twisp River Site	
	Chewuch River Site	
	Early Winters Creek Site	

TABLE OF CONTENTS (Continued)

III.	HYDE	RAULIC MODEL	
	Calibr	ation Philosophy	
		tors of Model Accuracy	
		ns in IFG4 Model	
		pecific Calibration	
		Walsh Site on the Methow River	
		KOA Site on the Methow River	
		Weeman Site on the Methow River	
		Chokecherry Site on the Methow River	
		Twisp River Site	
		Chewuch River Site	
		Early Winters Creek Site	
	Transe	ect Weighting	
	Agenc	ey and Tribal Approval of the Hydraulic Model	
IV.	HABI	TAT-USE MODEL (HABTAT)	
	Ontio	ns Used in HABTAT	38
	-	ion and Approval of Habitat-Use Curves	
V.	RESU	LTS AND DISCUSSION	
	Factor	s to Consider When Developing a Flow Regime	
APPF	INDICE		
	A	WUA-VSFLOW GRAPHS	12
	A		
		Area vs. Discharge on Methow River at the Walsh Site	
		Steelhead Habitat on Methow River at the Walsh Site	
		Chinook Salmon Habitat on Methow River at the Walsh Site	
		Bull Trout Habitat on Methow River at the Walsh Site	
		Area vs. Discharge on Methow river at the KOA Site	
		Steelhead habitat on Methow River at the KOA Site	
		Chinook salmon on the Methow River at the KOA Site	
		Bull trout habitat on the Methow River at the KOA Site	50
		Area vs. Discharge on Methow River at the Weeman Site	
		Steelhead habitat on Methow River at the Weeman Site	
		Chinook salmon habitat on Methow River at the Weeman Site	53
		Bull trout habitat on Methow river at the Weeman Site	
		Area vs. Discharge on Methow River at the Chokeberry Site	55
		Steelhead habitat on Methow River at the Chokeberry Site	
		Chinook salmon habitat on Methow River at the Chokeberry Site	
		Bull trout habitat on Methow river at the Chokeberry Site	

TABLE OF CONTENTS (Continued)

	Area vs. Discharge on Methow River at the Twisp River Site Steelhead habitat on Methow River at the Twisp River Site Chinook salmon habitat on Methow River at the Twisp River Site Bull trout habitat on Methow river at the Twisp River Site	. 60 . 61
	Area vs. Discharge on Methow River at the Chewuch River Site Steelhead habitat on Methow River at the Chewuch River Site Chinook salmon habitat on Methow River at the Chewuch River Site Bull trout habitat on Methow river at the Chewuch River Site	. 64 . 65
	Area vs. Discharge on Methow River at the Early Winters Creek Site Steelhead habitat on Methow River at the Early Winters Creek Site Chinook salmon habitat on Methow River at the Early Winters Creek Site Bull trout habitat on Methow river at the Early Winters Creek Site	. 68 . 69
В	 WALSH SITE CALIBRATION INFORMATION B1 IFG4 Input File B2 Summary of Calibration Details B3 Data Changes B4 Velocity Adjustment Factors 	. 72 . 77 . 78
С	 KOA SITE CALIBRATION INFORMATION. C1 IFG4 Input File	. 81 . 86 . 87
D	 WEEMAN SITE CALIBRATION INFORMATION D1 IFG4 Input File D2 Summary of Calibration Details D3 Data Changes D4 Velocity Adjustment Factors 	. 90 . 97 . 99
E	 CHOKEBERRY SITE CALIBRATION INFORMATION E1 IFG4 Input File E2 Summary of Calibration Details E3 Data Changes E4 Velocity Adjustment Factors 	102 108 109
F	 TWISP RIVER SITE CALIBRATION INFORMATION F1 IFG4 Input File F2 Summary of Calibration Details F3 Data Changes F4 Velocity Adjustment Factors 	112 117 118
G	 CHEWUCH RIVER SITE CALIBRATION INFORMATION G1 IFG4 Input File G2 Summary of Calibration Details G3 Data Changes G4 Velocity Adjustment Factors 	121 126 127

TABLE OF CONTENTS (Continued)

Н	EARLY WINTERS SITE CALIBRATION INFORMATION	
	H1 IFG4 Input File	130
	H2 Summary of Calibration Details	139
	H3 Data Changes	
	H4 Velocity Adjustment Factors	
Ι	TRANSECT WEIGHTING	143
J	FISH HABITAT-USE CURVES AND SUBSTRATE CODE	145
	J1 Depth and velocity habitat-use curves	. 146
	J2 Substrate/cover Code	
K	IRRIGATION CANAL FLOWS AND RIVER FLOWS	156
	K1 Flows measured by Hosey and assoc. in Methow River, 1990	157
	K2 Flows Measured by Ecology in Methow basin in 1991	
	K3 Flows measured by USGS gages in Methow basin, 1991, 1992	
	K4 Flows Measured by Ecology in Methow basin Irrigation ditches in 1991	
	K5 Flow Statistics for Exceedence-Frequency Hydrographs	
Ľ	INSTREAM FLOWS IN THE METHOW RIVER BASIN, CH.173-548 WA	C182
Μ	SNORKELLING OBSERVATIONS OF FISH IN THE METHOW BASIN	188
Ν	LITERATURE CITED	192
0	ECOLOGY'S MISSION STATEMENT	195

ABSTRACT

The Washington State Department of Ecology (Ecology), Water Resources Program studied the relationship between fish habitat and stream flow in the Methow River basin using the Instream Flow Incremental Methodology (IFIM).

Measurement sites included four sites on the Methow River, involving 32 transects, to represent 60 miles of the Methow River. Three study sites, involving 20 transects, were chosen to represent the lower miles of the Twisp River, Chewuch River, and Early Winters Creek.

Fish habitat is defined in this study as water depth, velocity, substrate, and cover. Habitat measurements encompassed three to four different flows for each of the seven study sites.

At the Walsh Site on the Methow River (River Mile (RM) 31.5) the highest quantity of fish habitat occurs at a flow of 1000 cubic feet per second (cfs) for spawning steelhead, at 1050 cfs for spawning chinook, at 1050 cfs for juvenile steelhead rearing, at 600 cfs for juvenile chinook rearing, at 1400 cfs for juvenile bull trout rearing, and at 2000 cfs for adult holding chinook.

At the KOA Site on the Methow River (RM 49) the highest quantity of fish habitat occurs at a flow of 800 cfs for spawning steelhead, at 650 cfs for spawning chinook, at 650 cfs for juvenile steelhead rearing, at 200 cfs for juvenile chinook rearing, at 1000 cfs for juvenile bull trout rearing, and at 1300 cfs for adult holding chinook.

At the Weeman Site on the Methow River (RM 59) the highest quantity of fish habitat occurs at a flow of 650 cfs for spawning steelhead, at 600 cfs for spawning chinook, at 350 cfs for spawning bull trout, at 425 cfs for juvenile steelhead rearing, at 85 cfs for juvenile chinook rearing, at 700 cfs for juvenile bull trout rearing, and at 800 cfs for adult holding chinook.

At the Chokecherry Site on the Methow River (RM 66.5) the highest quantity of fish habitat occurs at a flow of 500 cfs for spawning steelhead, at a flow of 400 cfs for spawning chinook, at 75 cfs for spawning bull trout, at 500 cfs for juvenile steelhead rearing, at 250 cfs for juvenile chinook rearing, at 600 cfs for juvenile bull trout rearing, and at 850 cfs for adult holding chinook.

At the Twisp River (RM 1.8) the highest quantity of fish habitat occurs at a flow of 250 cfs for spawning steelhead, at 150 cfs for spawning chinook, at 50 cfs for spawning bull trout, at 200 cfs for juvenile steelhead rearing, at 80 cfs for juvenile chinook rearing, and at 225 cfs for juvenile bull trout rearing.

At the Chewuch River (RM 1.3) the highest quantity of fish habitat occurs at a flow of 425 cfs for spawning steelhead, at 275 cfs for spawning chinook, at 175 cfs for spawning bull trout, at 400 cfs for juvenile steelhead rearing, at 150 cfs for juvenile chinook rearing, and at 400 cfs for juvenile bull trout rearing.

At Early Winters Creek (RM 1-0) the highest quantity of fish habitat occurs at a flow of 475 cfs for spawning steelhead, at 325 cfs for spawning chinook, at 575+ cfs for spawning bull trout, at 150 cfs for juvenile steelhead rearing, at 50 cfs for juvenile chinook rearing, and at 175 cfs for juvenile bull trout rearing.

Future determination of a satisfactory minimum instream flow for a stream in the Methow River basin will employ choices as to the relative importance of the river reaches, fish species, and lifestages, and the peak weighted-usable- area (WUA) flows listed above. Different fish species and lifestages exist simultaneously in the river and each has a different flow requirement. Providing an optimum flow for one lifestage will usually result in habitat degradation for another lifestage.

In addition, minimum instream flows must include flows necessary for incubation of fish eggs, smolt out-migration, fish passage to spawning grounds, and prevention of stranding of fry and juveniles. Other variables which have to be considered include water temperature, water quality, and sediment load. The flows needed for these variables were not calculated in this study, but must be determined by knowledgable biologists.

No attempt was made in this report to derive a final optimum flow regime for the Methow River since a consensus on the effect of the environmental variables listed above on the river and fishery management objectives is needed from the state and federal resource agencies and the tribes.

ACKNOWLEDGEMENTS

We are very grateful for the enthusiastic, hard field work provided b Ann Butler, Maryrose Livingston, and Steve Hirschey of the Department of Ecology and from Ernie Buchanna of the Okanogan County Public Works Department.

LIST OF FIGURES

Figure	Pa	<u>ge</u>
1.	Exceedence-frequency hydrograph of the Methow River at Pateros	4
2.	Exceedence-frequency hydrograph of the Methow River at Twisp	5
3.	Exceedence-frequency hydrograph of the Methow River at Winthrop	6
4.	Exceedence-frequency hydrograph of the Twisp River	7
5.	Exceedence-frequency hydrograph of the Chewuch River	8
6.	Location of spring chinook redds in the Methow River basin, 1988	18
7.	Location of summer chinook redds in the Methow River basin, 1988	19
8.	Location of sockeye, summer chinook, and fall chinook redds in the Methow River basin, 1987	20
9.	Top view looking down on placement of transects and measurement verticals used to define the distribution of aquatic habitat in an IFIM site	.24
10.	Location of Methow River basin IFIM sites	27
11.	Site map of Walsh and KOA IFIM sites	28
12.	Site map of Weeman and Chokecherry IFIM sites	29
13.	Site map of Twisp and Chewuch IFIM sites	30
14.	Site map of Early Winters IFIM site	31

LIST OF TABLES

<u>Table</u>		Page 1
1.	River Mile Index for the Methow River	2
2.	The 1976 Adopted Minimum Instream Flow for the Methow River basin	40
3.	Flows Which Provide Peak Habitat from WUA-vsFlow Results	41

LIST OF ACRONYMS

Cfs	cubic feet per second
Ecology	Washington Department of Ecology
Fps	feet per second
HABTAT	Computer program that combines
IFG4	with habitat-use curves
IFG4	Instream Flow Group's hydraulic model
IFIM	Instream Flow Incremental Methodology
IRPP	Instream Resources Protection Program
PHABSIM	Physical Habitat Simulation computer model
RM	river mile
VAF	Velocity Adjustment Factor
WAC	Washington Administrative Code
WDF	Washington Department of Fisheries
WDW	Washington Department of Wildlife
WUA	Weighted Usable Area
USFWS	U.S. Fish and Wildlife Service
USGS	U.S. Geological Survey
YIN	Yakima Indian Nation
CCT	Colville Confederated Tribes

PROJECT BACKGROUND

Study Objectives

Since 1983, the Washington State Department of Ecology (Ecology) has conducted Instream Flow Incremental Methodology (IFIM) studies throughout Washington for use in determining minimum instream flows. This study serves two objectives:

- 1. To provide Ecology with instream flow information that can be used to review the minimum instream flows for the Methow basin adopted by Ecology in 1976 (See Appendix Q, and
- 2. To provide Ecology with instream flow information to determine the impact of new water right appropriations on fish habitat.

Participants

Project participants included the Washington State Department of Fisheries (WDF), Washington State Department of Wildlife (WDW), the Yakima Indian Nation (YIN), Colville Confederated Tribes (CCT), Okanogan County, and U.S. Fish and Wildlife Service (USFWS).

River Basin Description

The Methow River is located in north central Washington and drains southward for more than 80 miles through western Okanogan county before emptying into the Columbia River near the town of Pateros. Mean annual runoff per unit of watershed area decreases dramatically from 60 inches at the headwaters (elevation 6000 feet) to only one inch near Pateros (elevation 779 feet; Richardson, 1976).

About 85% of the Methow basin is national forest or wilderness and 15% is under private ownership.

From Pateros to Carlton (River Mile (RM) 0.0 to 27.2) most of the irrigated land is in fruit production. Between Carlton and Twisp (RM 27.2 to 40), land use is half orchards and half field crops. From Twisp to Early Winters Creek (RM 40 to 67.3), most of the irrigated lands are in alfalfa with some grain. See Table 1 for an index to the river miles.

<u>Hydrology</u>

The Methow River is fed by snow melt, rain, and ground water. High flows are mostly snowmelt and occur from mid-April until the end of July with a peak around the first of June. The Methow River experiences low streamflow from the end of August until the end of March. Upstream of Winthrop, low flows during winter can freeze solid down to the river bed in certain reaches, although substantial volumes of water continue to flow down valley underground.

Table 1. River Mile Index for the-Methow River

Methow River	River Mile
Mouth of Methow	0.0
Head of pool from Well's Dam	2.0
USGS gage at Pateros	6.7
Town of Methow	12.4
Gold Creek confluence	21.8
Carlton highway bridge	27.2
Walsh IFIM site	31.5
Twisp highway bridge	39.4
USGS gage at Twisp	40.0
Town of Twisp	40.0
Twisp River confluence	40.2
KOA IFIM site	49.0
Winthrop highway bridge	49.8
USGS gage at Winthrop	49.8
Town of Winthrop	50.0
Chewuch River confluence	50.1
Winthrop National Fish Hatchery	50.4
Wolf Creek confluence	52.8
Weeman IFIM site	59.0
Weeman bridge	59.7
USGS gage near Mazama	63.8
Mazama bridge	65.4
Chokecherry IFIM site	66.5
Early Winters Creek confluence	67.3
Gate Creek Campground	69.8
Lost River confluence	73.0
Robinson Creek confluence	74.0

Flows have been gaged by the United States Geological Survey (USGS) in the Methow basin for the last 33 years at Pateros (RM 6.7), for 43 years ending in 1962 at Twisp (RM 40), for 2 years (1912 and 1972) at Winthrop (RM 49.8), and for 4 years ending in 1979 on the Twisp River (RM 1.6). Sixteen years ago, Milhous, Sorlie, and Richardson (1976) recognized that the streamflow data available for Methow River upstream of Twisp (RM 40) were not adequate for standard statistical measures (means, statistical frequencies).

Ecology and USGS reactivated three gages, and installed two new gages in the basin. Flows have been measured daily by USGS on the Methow River at Pateros (RM 6.7) since April, 1959; at Twisp (RM 40) since April, 1991; at Winthrop (RM 49.8) since November, 1989; near Mazama (RM 63.8) since April, 1991; on the Twisp River (RM 1.6) since October, 1989; and on the Chewuch River since November 1991.

The hydrographs in figures 1 to 5 portray the exceedence-frequencies for 10- day intervals for USGS gages with adequate data. The plotted numbers are in tables in Appendix K5. Unfortunately, not enough data yet exists to synthesize hydrographs with any degree of reliability for Early Winters Creek or for the Methow River at Mazama.

The 50-percent-exceedence flow is the median flow and gives the closest approximation to the "normal" expected flow. The 90 percent exceedence flow is equaled or exceeded 90 percent of the time. This can be thought of as a 1- in-10-year low flow. These hydrographs are based on 10-day averages to eliminate some of the variation from using daily flows.

These hydrographs do not include water diverted for irrigation and used consumptively. The consumptive amount of the diversions would have to be added in to arrive at what was the original or natural flow. Most of the diversion quantities are discussed later in this document. Ten of the largest irrigation diversions were built between 1898 to 1914 and pre-date any flow measurements.

Hydraulic Continuity Between Ground Water and Surface Water

The following background information on the relationships between ground water and surface water was added to assist in reviewing the minimum instream flows in the Methow basin. These water relationships are complex because the surface water in the Methow River can disappear and reappear in different reaches as it flows downstream; the ground water can reverse its direction of flow as the water level drops in the Methow River; and it is uncertain as to where all the water goes when the irrigation diversions cease. Surface water measurements and well levels are discussed in the following paragraphs to provide up-to-date information as to how a minimum instream flow at a USGS gage relates to surface water upstream and downstream of the gage.

Sands and gravels deposited by past melted glaciers are the principal Methow Valley aquifer. Along the Methow River and its tributaries, these sands and gravels are so porous and permeable that a high degree of hydraulic continuity is virtually guaranteed as the ground water and surface water exchange rapidly under certain conditions (Peterson and Larson, 1991).

METHOW RIVER NR PATEROS, WASH. GAGE 12449950 AT RM 6.7

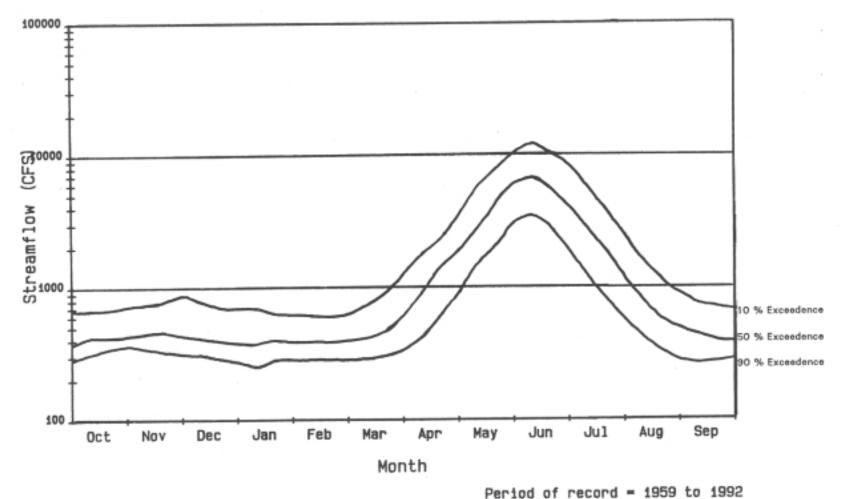
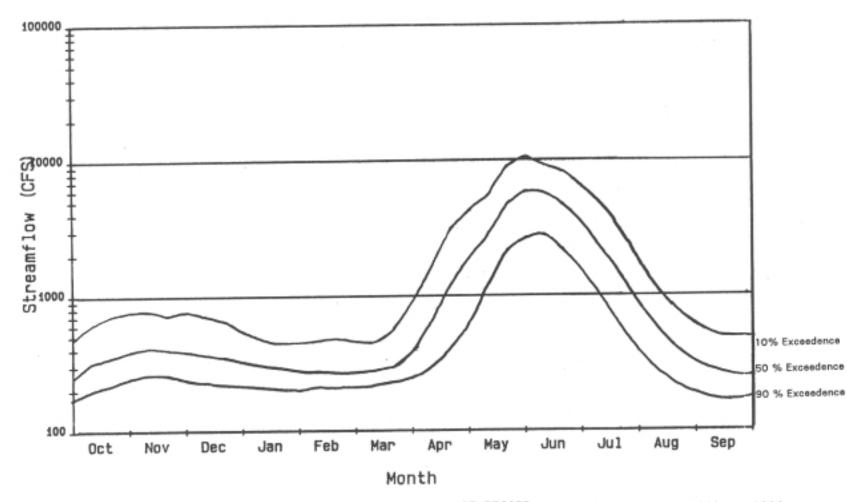
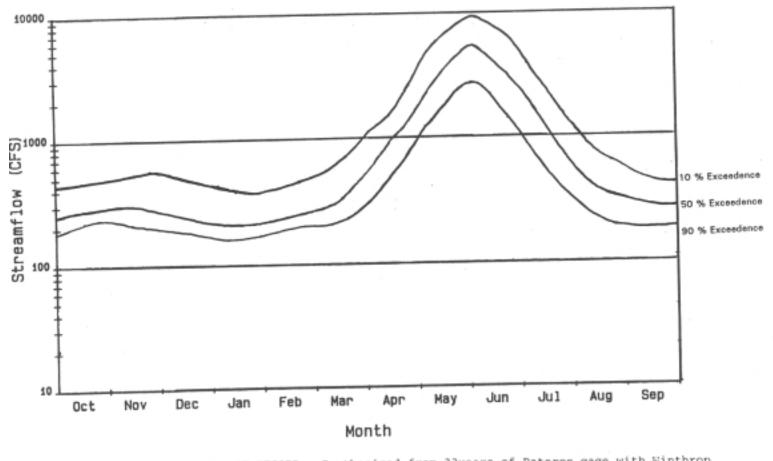



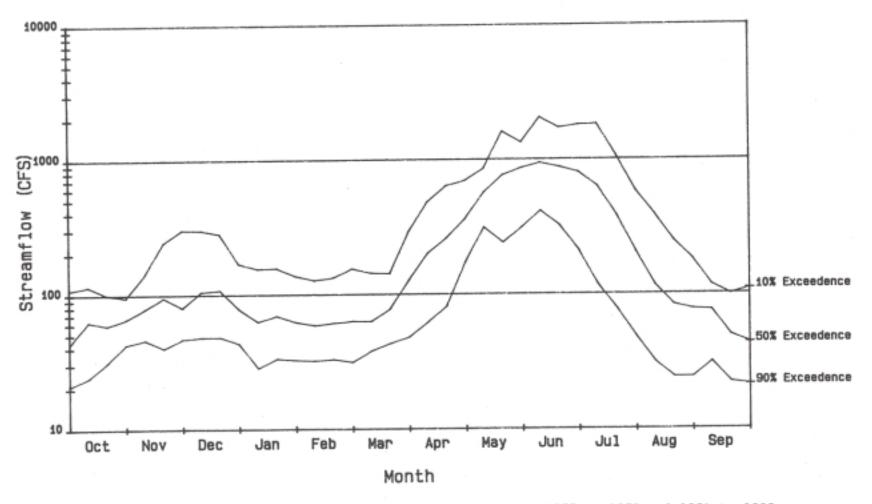
Figure 1. Exceedence-frequency hydrograph of the Nethow River at Pateros.

4

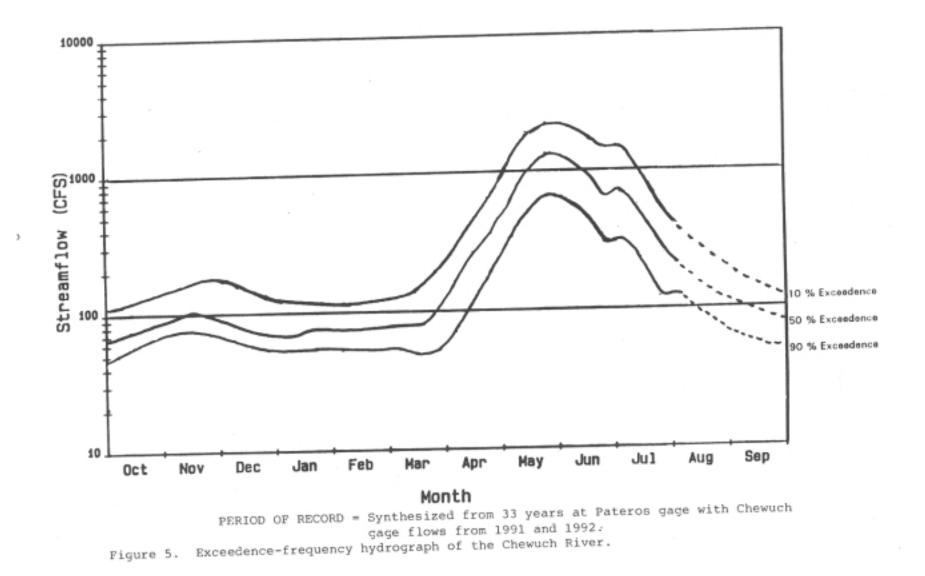


PERIOD OF RECORD = 1919 to 1962 and 1991 to 1992

Figure 2. Exceedence-frequency hydrograph of the Methow River at Twisp.


S

.


PERIOD OF RECORD = Synthesized from 33years of Pateros gage with Winthrop gage flows from 1991. Figure 3. Exceedence-frequency hydrograph of the Methow River at Winthrop.

6

PERIOD OF RECORD = 1975 to 1979 and 1989 to 1992 Figure 4. Exceedence-frequency hydrograph of the Twisp River.

 \neg

Snowmelt in the spring creates high flow levels in the Methow River which causes water levels in wells in the Early Winters area to rise 10 to 25 feet in a one to two week period (colder Associates, 1991).

This high degree of hydraulic continuity is also demonstrated when certain reaches of the mainstem Methow River upstream of the Weeman bridge (RM 59.7) go dry during drought years from August through October and freeze solid from December through February. This is because the upper level of the ground water aquifer is the same as the surface water level in the Methow River. If the water depth of the Methow River is one foot and the ground water aquifer drops one foot due to ',pumping of wells, then the Methow River is dry even though a large quantity of water is flowing downstream through the gravels under the bed of the Methow River.

A significant amount of Methow River surface flow goes into the ground water around the Lost River confluence (RM 73). However, this underground flow is channeled back onto the surface downstream between the Weeman and Winthrop bridges (RM 59.7 to 49.8). On August 25, 1988, the flow in the Methow River was 213 cfs at the Manama bridge (RM 65.4) and 218 cfs at the Winthrop bridge (RM 49.8): an increase of only 5 cfs. But 41 days later, the flow was 13 cfs at the Manama bridge and 190 cfs at the Winthrop bridge: an increase of 177 cfs (Kohn, 1988). This clearly showed how the surface flow at Manama could drop 200 cfs with a corresponding drop of only 28 cfs at Winthrop. ' The ground water at Manama became surface water by the time it reached Winthrop.

Dry River Reaches During the Fall in Drought Years

Identifying specific reaches that go dry is important in establishing minimum instream flows to ensure that fish eggs and juveniles are not dried up unknowingly. Dry reaches have been identified in the Methow Subbasin Plan, the tribal spawning surveys, and by Ecology.

Three reaches of the Methow River where the surface flow dries up during droughts have been identified in the <u>Methow and Okanogan Rivers Subbasin Salmon and Steelhead Production Plan</u> (WDF, YIN, CCT, and WDF, 1989). These dry riverbeds in the Methow Rive total 8 miles and include:

- 1) 1.5 miles from RM 60.7 to 62.2 (in between the Weeman bridge and the Manama bridge),
- 2) 5.5 miles from RM 67.5 to 73.0 (just upstream of Early Winters Creek up to the Lost River confluence),
- 3) 1.0 mile from RM 73.0 to 74.0 (from the confluence of the Lost River to the confluence of Robinson Creek).

Salmon spawning surveys by Kohn in 1987 for the YIN found dry riverbeds occurred in:

- 1) the Lost River from RM 7.1 to 11.7 (Monument Creek to Drake Creek),
- 2) the Twisp River at Poplar Flats campground (RM 23.4),
- 3) the mouth of Wolf Creek.

These reaches that go dry during low flow years in the Methow River basin expand in length during extreme drought years such as in 1987 and 1988. The Methow River was dry October 27, 1987, for 7.5 miles from the Manama bridge up to the Lost River confluence (RM 65.4 to 72.9) (Kohn, 1987). Only a hundred-yard reach below Early Winters Creek confluence had any water. Normally, fall rains cause the river to start rising around mid-October. However, when the Methow was surveyed downstream of the Manama bridge on November 12 Kohn found the river dry until about RM 62.6. In summary, the spawning surveys done in 1987 and 1988 indicted that the total dry reach on the Methow River in 1987 was from RM 62.6 to around RM 77.0 (assuming the four-mile reach upstream of Lost River confluence was dry as found 'in 1988) for a total of 14.4 miles with only a pool at RM 73 (Lost River confluence) and RM 67.3 (Early Winters Creek confluence).

During the drought of 1988 many parts of the Methow River in September went dry from RM 62.7 to RM 77.0 (Kohn, 1988). It is surprising that the Methow River only went dry downstream to RM 62.6 during the extreme droughts in 1987 and 1988 since the Methow River Subbasin Plan stated that the river goes dry down to RM 60.7 during low flow years.

No dry reaches in the Methow River and its tributaries were noted during the same extensive salmon spawning surveys in 1989 through 1991 (Kohn, 1989; Edson, 1990; Langness, 1990; and Meekin, 1991). However, these surveys failed to note the one reach on the Methow River that dried up: RM 69.8 to 68.3 (Gate Creek reach). This reach went dry in 1990 and 1991 contained some of the highest densities of spring Chinook juveniles and redds in the basin (See snorkeling observations in Appendix M). In 1990, Methow River flow measured at six gages from the Lost River confluence down to USGS' gage near Manama by Hosey and Associates showed that only downstream of Gate Creek from RM 69.8 to '68.3 went dry from September 20 until October 5 in 1990. At the same time, flows at RM 63.8 (next to USGS gage) were as high as 34 cfs while the Gate Creek reach was dry. These flows by Hosey and Associates are in Appendix K1. Ecology's flow measurements in 1991 (Appendix K2) and Hosey's data in 1990 found that a reach of about 1.5 miles below Gate Creek was the only reach to go dry in the Methow River in the fall of 1990 and 1991.

The following Ecology and USGS numbers show how the flows upstream and downstream corresponded to the Gate Creek reach flows in the Methow River in 1991:

REACH		SEPTEMBER 26	OCTOBER 23
Lost River confluence Below Gate Creek	RM 73 RM 69.7	60 cfs 5.5 cfs	40 cfs 0 cfs
USGS gage near Manama	RM 63.8	29 cfs	7.1cfs

The flows by Ecology are in Appendix K2 and the flows measured by USGS are in Appendix K3. 'If you assume the flow at the USGS gage near Manama would drop 5.5 cfs when the flow below Gate Creek drops 5.5 cfs, then the USGS gage near Manama would have read about 24 cfs when the Gate Creek reach went dry. This would have occurred on September 30 in 1991.

These Hosey and Ecology flow observations indicate that the Methow River reach downstream of Gate Creek at RM 69.7 will be dry when the USGS gage near Mazama at RM 63.8 reads around 24 to 34 cfs.

Dry Reaches and Icing During Winter in Drought Years

During 1991, the Methow River received no rain from mid-summer until November 12 except for a very light amount on October 14th and 28th. Because of sustained cold temperatures, precipitation fell only as snow after mid-November in the area upstream of Winthrop.

The USGS gage on the Methow River near Mazama at RM 63.8 indicated zero flow for the period from December 12, 1991 until February 15, 1992 (Appendix K3). To investigate whether the river was truly dry as indicated by the gage, we surveyed the Methow River on January 30, 1992. Two to three feet of snow covered the ground upstream of Winthrop. At the gage, we confirmed that the flow was indeed zero but also noted one foot of ice covering the streambed for at least 0.5 miles upstream and downstream. Also, we estimated flows at other locations on January 30, 1992, as follows:

<u>REACH</u>

FLOW

Weeman IFIM site RM 59.0	16 cfs with no ice
Weeman bridge RM 59.7	16 cfs with no ice
USGS gage near Mazama RM 63.8	0 cfs with one foot of ice
Mazama bridge RM 65.4	17 cfs with no ice
Gate Creek reach RM 69.7	0 cfs with ice
Lost River confluence RM 72.9	12 cfs with no ice
Lost River bridge RM 0.5	40 cfs with no ice

Summary of Timing and Location of River Reaches That Go Dry

During drought years, several reaches on the Methow River go dry in September/October and ice over in December/January/February. The reaches go dry in the following order: 1) downstream of Gate Creek (RM 69.7), 2) the Mazama gage reach (RM 63.8), 3) the reach upstream of the Lost River confluence (RM 73.1), and 4) the reach upstream of Gate Creek (RM 70.8).

Quantifying Total Irrigation Diversions

The number of diversions and quantity of water diverted in the Methow basin is not known for certain. However, three estimates of irrigation diversions have been compiled and are similar: 248, 201, and 215 cfs.

The Pacific Northwest River Basin Commission (1977) estimated that in 1971 irrigators diverted 5.8 cfs from Gold and Libby Creeks, an unknown amount from Beaver Creek, 61.5 cfs from four ditches from the Twisp River and from one ditch from the nearby Methow River (around RM 40), 93.8 cfs from six ditches on the Methow River above Winthrop (RM 50), and 87.1 cfs from the Chewuch

River. These diversions from the Methow River and its tributaries total 248.2 cfs.

Willms and Kendra (1990) estimated that recorded surface water rights for diversions from the Methow River along the reach from Pateros to Carlton (RM 0 to 27.2) amount to 67 cfs. Between Carlton and Twisp (RM 27.2 to 40) water rights for diversions total 11 cfs with an additional 60 cfs diverted by the Methow Valley Irrigation District (MVID) from the Methow and Twisp Rivers above Twisp. From Twisp to Winthrop (RM 40 to 50) water rights for irrigation diversions (excluding MVID) amount to 63 cfs. These diversions from the Methow River total 201 cfs.

Larson and Peterson (1991) measured flows in 18 of the largest irrigation ditches in the Methow basin (Appendix K4). These flows were measured downstream of the fish screens and did not include excess ditch water diverted back to the river. These ditches probably contained at least 90\$ of the total quantity of water diverted by irrigation diversions in the Methow River basin. Miscellaneous information gathered on another 26 irrigation diversions in the basin revealed that their total cfs diverted was small compared to the 18 diversions measured in 1991. These measurements revealed that from July through October irrigation diversions from ditches decreased as the river levels decreased except for the MVID canal. Irrigation diversions on August 27-29 were: 68 cfs from the MVID (30 cfs from the Twisp River and 38 cfs from the Methow River at RM 44.8), 12.2 cfs from three ditches on the Twisp River, 44.3 cfs from five ditches on the Methow River from RM 48.3 to 61.4, 75.6 cfs from four ditches on the Chewuch River, and 15.1 cfs from two ditches on Early Winters Creek. Two other ditches were dry. These diversions total 215.2 cfs.

The following list shows how total irrigation diversions in 1991 changed month-by-month in the Methow River basin in the 18 measured ditches:

DATE	TOTAL OF IRRIGATION DIVERSIONS
July 18-19 August 27-29 September 24-27 October 22-24	222 cfs 215 cfs 174 cfs 12 cfs

Relationship of Irrigation Canal Flows to the Methow River

These flow relationships are unknown, but the 1991 USGS daily flow measurements and Larson and Peterson ditch measurements give indications. See Appendices K3 and K4 for full dates and flows.

Larson and Peterson (1991) measured 174 cfs in irrigation diversions upstream from the USGS gage on the Methow river at Twisp on September 24-27, 1991. The gage was reading about 272 cfs at this time and slowly, but steadily dropping. According to the exceedence reports presented earlier in this report, 272 cfs was the median flow for that time of year. If all the measured diverted irrigation water was used consumptively, then the historic median flow would

have been 446 cfs (174 plus 272 cfs) at the end of September at Twisp.

The flow at Twisp went from 258 cfs on September 30, 1991, to 325 cfs on October 2, 1991. The flow increased 67 cfs because diversions ended; no rain occurred. The flow did not increase 174 cfs (total of the upstream irrigation diversions). It was most likely that the missing flow went into the streambanks as bank storage. The sudden rise in water level in the river would have caused the river level to be higher than the nearby ground water level in the streambanks. The high degree of hydraulic continuity in the area would allow the river water to rapidly .go into the ground water. Once the bank storage is filled (the ground water level in the streambanks equals the level of the water in the river), then the river flow would begin to steadily drop again if no rain occurred. This bank storage could be verified by monitoring the water level in the wells along the river.

Evidence for reversal of the direction of ground water flow is in a report that investigated ground water in 1989 for a possible hatchery near Winthrop (GeoEngineers, 1990). The well was 650 feet south of the Methow River. The ground water was flowing northeast toward the river. They found near Winthrop that, "Site measurements during September and October, 1989 indicated that the Methow River was gaining water from the aquifer beneath the site. Site measurements during August 1988 indicated that the Methow River was losing water into the aquifer beneath the site." The Methow River flow was still high in August, but dropped to a low level in September and October. With a high river flow and high water level in August the river was flowing into the ground water at Winthrop in a southerly direction, but during the low river flow and low water level in September and October the ground water reversed its direction and flowed northeast .into the Methow river since the ground water level was now higher than river level. This rise in the ground water level can occur very rapidly. Golder Associates (1991) found well levels rose 10 to 25 feet in a one to two week period from an increase in river flow.

At other sites (besides Twisp) in the Methow basin on the same dates (September 30 and October 2) the flow upstream at Winthrop went from 228 to 229 cfs for an increase of 1 cfs. Only six days earlier the Chewuch canals were diverting 64.2 cfs. It is unknown when the canals stopped diverting, except that the canals were all dry on October 22. The highest reading at Winthrop in October before the 22nd was 245 cfs on October 12 which was an increase of 17 cfs. The lack of a large increase in river flow in October is puzzling. Monitoring well levels along the river would provide the answer..

On the same dates (September 30 and October 2) the flow in the Twisp River at the USGS gage went from 37 to 58 cfs for an increase of 21 cfs. Five days earlier the irrigation canals were diverting 37 cfs out of the Twisp River upstream of the gage.

Significantly, when most irrigation diversion ended October 1 upstream of Twisp, a minimum of 39 percent of the previously diverted water showed up immediately at the gage on the Methow at Twisp. In the Twisp River a minimum of 57 percent of previously diverted water showed up immediately at the Twisp River gage.

Fish Runs. Hatcheries. Fish Management Plans and Timing of Spawning

The following background information on fish is provided to assist when interpreting the fish habitat versus flow relationships at the end of this document. This requires knowledge of what and when fish species are present.

Most of the following fish information comes from the Methow and Okanogan Rivers Subbasin Salmon and Steelhead Production Plan done by WDW, WDF, Yakima Indian Nation, and Colville Indian Reservation in 1989. Details on timing and location of spawning salmon are from the spring and summer Chinook spawning ground survey reports done by M. Kohn, S. Edson, T. Meekin, and O. Langness for the Yakima and Colville Indian Reservations from 1987 until 1991. Observations of actual fish use and distribution in 1991 are in Appendix M. History and Status of Fish Production

The natural (not spawned and reared in a hatchery) anadromous fish populations are at depressed levels. The largest of many factors limiting restoration of the salmonid runs is poor fish passage caused by the nine mainstem Columbia River dams the fish have to pass on their way to and returning from the ocean. Fish passage into the Methow River was completely blocked from 1912 until the 1930's by a hydroelectric dam built across the river at Pateros. This dam was removed in the 1930's, but the coho salmon run became extinct and perhaps the other original salmonid runs. Some salmonids were trucked above the dam but it is doubted that any survived. After the dam was removed, hatchery salmonids were planted into the river and strays from downriver entered the river. Over the past decades, many different trap-and-release and hatchery projects have resulted in significant runs of hatchery fish with some restoration of natural runs. In addition, fish runs suffer from miles of the upper Methow River being dewatered naturally and from irrigation withdrawals during the low flow times in the fall and winter.

Existing Fish Runs

The Methow River has anadromous fish runs of summer steelhead, spring Chinook, summer Chinook, fall Chinook, and sockeye salmon. The Methow River has resident fish populations of rainbow, cutthroat, brook, and dolly warden or bull trout along with whitefish, suckers, and squawfish. A recreational fishery exists for summer steelhead, whitefish, and resident rainbow and cutthroat trout. Recreational fishing is closed for salmon, and all dolly warden or bull trout and natural steelhead must be released. The only commercial fishery is a small tribal fishery on steelhead.

Hatchery Information

The Winthrop National Fish Hatchery at Winthrop is operated by the United States Fish and Wildlife Service and raises spring Chinook for stocking the Methow River. An average of 986,187 spring Chinook smolts were planted into the Methow River each year from 1980-1987.

The Wells Salmon and Steelhead Hatchery is at Wells Dam on the Columbia River and has raised summer steelhead and summer Chinook for stocking into the

Methow River since 1967. An average of 370,664 steelhead smolts were stocked each year into the Methow, Twisp, and Chewuch Rivers from 1981-87. Additionally, the hatchery goal is to plant 400,000 summer Chinook subyearlings in the Methow River each year. However, this summer Chinook stocking has only occurred in 1987 when 212,732 were stocked.

Expected Hatchery Development and Production

The Wells Dam Settlement Agreement will try to promote natural spawners by stocking 450,000 spring Chinook smolts each year in acclimation ponds along the Chewuch and Methow Rivers. In addition, 150,000 summer Chinook yearlings and 260,000 subyearlings will be stocked each year into the Methow River.

The Rock Island Settlement Agreement will supplement natural spawners by stocking 100,000 spring Chinook smolts each year in an acclimation pond along the Twisp River and stocking 400,000 summer Chinook yearlings each year into the Methow River. The Methow River subbasin production plan proposes to increase spring Chinook smolt production to 1.4 million per year from the Winthrop National Fish Hatchery.

Natural Summer Steelhead

POPULATION SIZE- The natural summer steelhead run size from 1982-1986 averaged 201 with a sport catch of 103 and a tribal catch of 5 leaving 93 to escape to spawn in the Methow watershed. The natural steelhead run makes up only 3 percent of the total steelhead run in the Methow watershed.

FISH PRODUCTION LIMITATIONS- The lack of natural adults for spawning is caused primarily by over-harvest of adults before they can return to the Methow River and poor fish passage through nine dams on the Columbia River. Significant mortalities are believed to occur from winter icing in the Methow watershed.

MANAGEMENT GOAL- The goal of fish agencies in the Methow watershed for natural steelhead is to maintain genetic integrity and rebuild the natural run of steelhead to achieve a spawning escapement of 3,200 adults. The recent Methow River salmon and steelhead production plan proposes no harvest of natural steelhead, but allows harvest of 10,000 hatchery steelhead along with inventoring and restoring fish habitat.

LIFE HISTORY- Adults enter the Methow River in mid-July with the numbers peaking by mid-September and October. However, during winter the adults will leave the Methow river and return to the warmer Columbia River. The adults will return to Methow River and beginning spawning in the lower mainstem in mid-March and continue through May. Spawning in the upper mainstem and tributaries occurs from April 1 to May 31. The fry emerge in summer with the juveniles rearing from two to three years before outmigration during the spring.

Hatchery Summer Steelhead

POPULATION SIZE- The hatchery summer steelhead run size from 1983-1986 averaged 15,015 with a sport catch of 7,804 and a tribal catch of 388 leaving

6,823 to escape to spawn in the Methow watershed. Hatchery steelhead make up 97 percent of the total steelhead run in Methow watershed.

FISH PRODUCTION LIMITATIONS- The primary limitation to production are the mortalities caused by having to pass upstream and downstream through the nine dams on the Columbia River.

MANAGEMENT GOAL- The goal of the fish agencies is to achieve 10,000 hatchery steelhead for sport and tribal harvest. Since this goal has been met in recent years, enhancement of the hatchery stock is not desired.

LIFE HISTORY- Hatchery steelhead spawn naturally in the lower mainstem from March 1 to May 15, and in the upper mainstem and tributaries from March 15 until May 31. After nearly 14 months of rearing in a hatchery, the smolts are stocked for outmigration beginning around April 20 until mid-May. Almost 10 percent of these hatchery smolts spend an additional year in fresh water before migrating out to salt water.

Spring Chinook

POPULATION SIZE- The natural spring Chinook escapement for spawning in the watershed averaged 2,161 from 1982-1985. No sport or tribal fishing for salmon is allowed in the Methow River. No one knows how many hatchery fish spawn naturally in the Methow River.

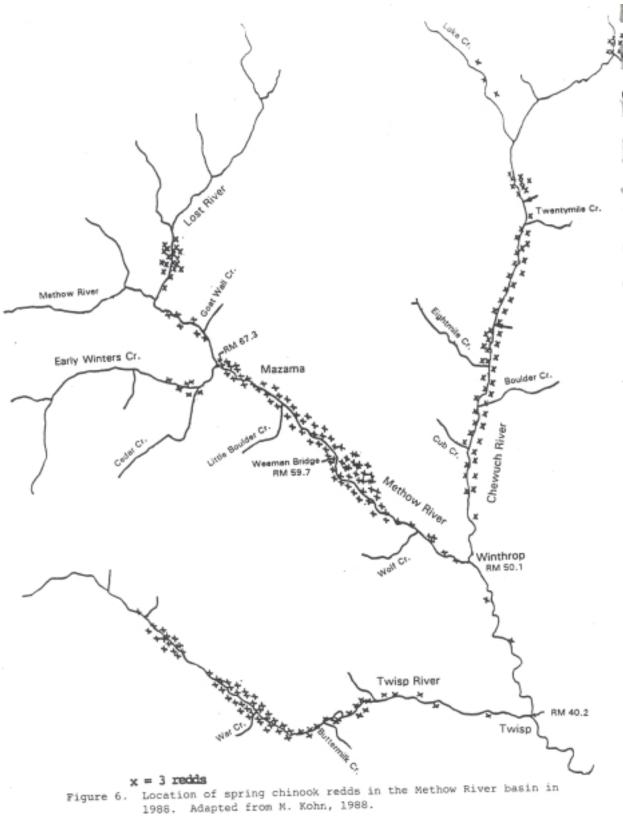
FISH PRODUCTION LIMITATIONS- The greatest limitation is from smolt and adult mortalities due to passing the nine Columbia River dams. Fish losses are also due to 1) unscreened diversion structures, 2) loss of instream flows from irrigation diversions, 3) natural low flows, 4) loss of riparian habitat from streamside development, 5) and possible loss of juvenile fish during winter icing. Dewatering causes fish mortalities in the Methow River from Weeman Bridge on upstream past Mazama, past Early Winters confluence, and even past the Lost River confluence. Dewatering also occurs in the Lost River and the Chewack River.

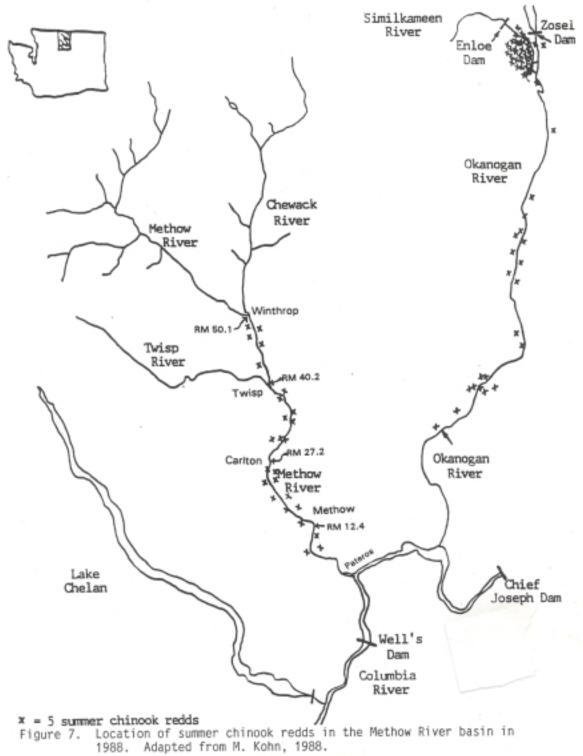
MANAGEMENT GOAL- An escapement goal has not been set, but the goal of the fish agencies is to achieve 2,000 spring Chinook for sport and tribal harvest. A higher priority is to increase the productivity while maintaining the unique biological characteristics of the stock, including the existing balance of spawners in the tributaries.

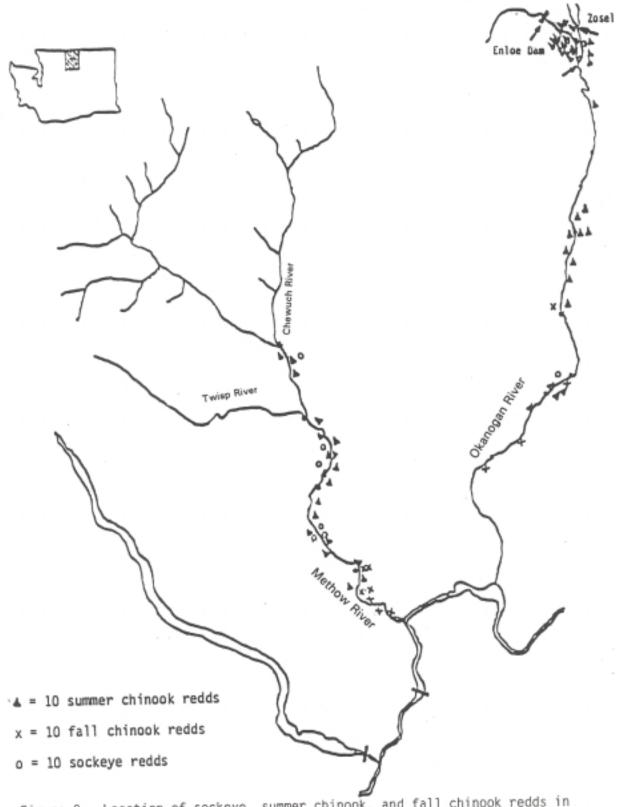
LIFE HISTORY- The adult spring Chinook migrate into the Methow River in May and June. Overall, spawning begins at the end of July, peaks August 20 until September 1, and ends by September 11. In the Methow River in 1987 spawning started August 7, peaked August 28-September 4, and ended September 11. In the Chewuch River spawning in the lower reach started August 18, peaked September 1, and ended September 8. But in the upper Chewuch River spawning peaked August 1. In the Twisp River spawning started late July and peaked August 19-26. In the Lost River spawning peaked August 20-27 and, ended September 3. In Early Winters Creek spawning started in late July, peaked August 9, and ended August 13.

The largest densities of redds occur in the Methow River from Winthrop to Lost River (especially from RM 57.7 until 65.4), the lower Lost River, the middle and upper Twisp River, and the middle and upper Chewuch River (See Figure 6). They have been seen since 1987 spawning in Early Winters Creek, Lake Creek, and Gold Creek. However, the fish and redd counts have dropped dramatically and steadily from 1987 to 1991.. In 1991, no spring Chinook redds were counted in Early Winters Creek, Gold Creek, or Lake Creek and the count of spring Chinook that migrate over Wells Dam (their last dam obstacle) was the lowest on record (since 1967). Almost no spring Chinook spawning occurs in the Methow River downstream of the town of Winthrop.

Juvenile spring Chinook rear for a year in the river. Snorkelling observations by Ecology and Hosey and Assoc. in 1990 and 1991 found high densities of juveniles in the deep pools by the Gate Creek area in the upper Methow. Unfortunately, that reach dried up completely in 1990 and 1991 in October and all juveniles are believed to have been killed in that area. High densities of juvenile spring Chinook were also found by Ecology in 1991 in the large pools fed by springs that emerge one mile downstream of Weeman bridge (Appendix M). These springs and pools remained cold (48 degrees F) and flowing even when the Methow River dropped to a low flow and air temperatures were in the high 90's. We also found high densities of juveniles in 1991 in the lower Twisp River in August, but they were not visible in September. Juvenile salmonids begin disappearing under cobble out of view around mid-September in drainages along the eastern Cascade Mountains.


Summer Chinook


POPULATION SIZE- The natural summer Chinook escapement for spawning in the watershed averaged 674 from 1982-1985. No sport or tribal fishing for salmon is allowed in the Methow River. No one knows how many hatchery ,fish spawn naturally in the Methow River.


FISH PRODUCTION LIMITATIONS- The greatest limitation is from smolt and adult mortalities due to passing the nine Columbia River dams. Fish losses are also due to 1) unscreened diversion structures, 2) loss of instream flows from irrigation diversions, 3) natural low flows, and 4) loss of riparian habitat from streamside development.

MANAGEMENT GOAL- An escapement goal has not been set, but the goal of the fish agencies is to achieve 3,000 summer Chinook for sport and tribal harvest. A higher priority is to increase the productivity while maintaining the unique biological characteristics of the stock, including the existing balance of spawners in the tributaries.

LIFE HISTORY- The adult summer Chinook migrate into the Methow River in late August. Spawning usually begins September 16, peaks October 13-20, and is complete by October 31. Chinook that spawn after October 31 are considered to be fall Chinook. No summer Chinook spawning occurs in the tributaries. Summer Chinook spawn in the Methow River from Winthrop downstream to just below Methow (See Figures 7 and 8). Emergence timing is unknown, but is likely January until April. Juveniles may rear from a few months to a year before migrating out.

Fall Chinook

POPULATION SIZE- The fall chinook escapement for spawning in the watershed is unknown A redd count in 1987 found 160 redds on November 13. Fall chinook counts It Wells Dam (the nearest dam on the Columbia River downstream from the Methow River) have increased from 477 in 1980 to 2,822 in 1987. This increase in fall chinook at Wells Dam may be from increased straying from the increased production in the Hanford Reach on the Columbia River or from the same improved river conditions that helped the Hanford Reach fish. No sport or tribal fishing for salmon is allowed in the Methow River.

FISH PRODUCTION LIMITATIONS- The greatest limitation is from smolt and adult mortalities due to passing the nine Columbia River dams.

MANAGEMENT GOAL- There is. no management plan for this run due to a lack of information.

LIFE HISTORY- Little is known of the life history of fall chinook in the Methow River. The adult fall chinook migrate into the Methow River in late October. Spawning begins November 1, peaks from November 7-13, and ends at an unknown time. No fall chinook spawning occurs in the tributaries (See Figure 8). In 1988, fall chinook spawned in the lower 5 miles of the Methow River from the town of Methow downstream to the mouth of the Methow River, but in later years have spawned up to RM 10.4. Emergence in unknown, but fall chinook in other watersheds usually emerge in early spring and migrate out in 90 days',

Sockeye

I POPULATION SIZE- The sockeye escapement for spawning in the watershed is unknown. A redd count in 1987 found a total of 56 redds.

FISH PRODUCTION LIMITATIONS- The greatest limitation is from smolt and adult mortalities due to passing the nine Columbia River dams.

MANAGEMT GOAL- There is no management plan for this run due to a lack of informal ion.

LIFE HISTORY- Little is known of the life history of sockeye in the Methow River. The adult sockeye migrate into the Methow River in early September. The spawning reaches are about the same as summer chinook with redds found only in the mainstem Methow River downstream from Winthrop, at Twisp, and downstream to Gold Creek (See Figure 8). Some, have spawned in the Twisp River, some were seen spawning just upstream of Winthrop in 1990, and Ecology found six spawning one mile downstream of Weeman bridge in September, 1991. Spawning begins in early September, peaking in mid-September in the upper reach and peaking in the first week in October in the middle reach. Fry emergence and juvenile rearing areas and timing is unknown.

The Methow Subbasin Salmon and Steelhead Production Plan

The following goals and proposals are in the final 1990 proposal plan given to the Northwest Power Planning Council. These goals are from the WDF, WDW, Yakima Indian Reservation, and the Colville Indian Reservation. The Council will decide whether to fund the proposals in 1992.

<u>Methow Summer Steelhead</u>- The goal is for a harvest of no natural steelhead but allows a harvest of 10,000 hatchery steelhead. The plan proposes to supplement natural production using natural brood stock for their hatchery programs. Unscreened diversions should be inventoried and corrected with screens. Water temperatures and riparian zones should be measured. Improve water quality and stream habitat by seeking legislation to eliminate additional water withdrawals and replace existing withdrawals.

<u>Methow Spring Chinook</u>- The goal is to provide a harvest of 2,000 spring chinook. The plan proposes that unscreened diversions should be inventoried and corrected with screens. Water temperatures and riparian zones should be measured. Improve water quality and stream habitat by seeking legislation to eliminate additional water withdrawals and replace existing withdrawals. Increase streamflows in fall and winter by converting to sprinkler irrigation, lining earthen ditches, and converting from surface water ditches to wells for irrigation conveyance. Build ten groundwater spawning channels in the upper Methow River. Use natural broodstock to supplement natural production and construct the hatcheries in the Rock Island and Wells Dam settlement agreements to grow 550,000 smolts. Improve survival at the Winthrop National Fish Hatchery and increase production to 1.4 million smolts.

<u>Methow Summer Chinook</u>- The goal is to provide a harvest of 3,000 fish. The plan proposes to improve water quality by reducing sedimentation. Inventory and correct unscreened diversions and diversion structures that are causing mortalities. Supplement natural production with 400,000 yearlings and 400,000 fingerlings as per the Rock Island and Wells Dam settlement agreements.

Northwest Power Planning Council Protected Areas

The Northwest Power Planning Council (NWPPC) has the Methow River basin designated as an area to be protected from future hydroelectric development. This designation is used to protect streams used by anadromous fish and to protect high quality habitat in streams used by resident fish and wildlife. Any hydroelectric power generated by a new facility in the Methow basin would be unable to sell its power to Bonneville Power Authority and the NWPPC would argue that no new facility should be licensed by Federal Energy Regulatory Commission.

II. METHODS OF STUDY

IFIM was selected by the local, state, and federal agencies and the tribes for this study as the best available methodology for predicting how fish habitat responds to incremental changes in streamflow.

Description of the Instream Flow Incremental Methodology

IFIM, as described by Bovee (1982),was developed by the U.S. Fish and Wildlife Service's Instream Flow Group in the late 1970's. Their main achievement was advancing the state-of-the-art in calculating fish- habitat-versus-flow relationships for multiple flows. Previous methods often used only a single transect to describe depths and velocities along a cross section of a river and lacked the ability to extrapolate the results to higher or lower flows of interest.

PHABSIM (Physical Habitat Simulation) is a collection of computer models used in IFIM (Milhous et al, 1989). The most commonly used hydraulic model in PHABSIM is IFG4. IFG4 uses multiple transects to predict the depths and velocities in a river over a range of flows (Figure S). IFG4 creates a cell for each measured point along the transect or cross section. Each cell has an average water depth and water velocity associated with a type of substrate or cover for a particular flow. The cell's area is measured in square feet. Fish habitat is defined in the computer model by the variables of velocity, depth, substrate, and/or cover. These are important habitat variables that can be measured, quantified, and predicted.

The IFIM is used nationwide and is accepted by most resource managers as the best available tool for determining fish habitat versus flow relationships. However, the methodology only uses four variables in hydraulic simulation, and at certain flows, such as extreme low flows, other variables such as fish passage, food supply (aquatic insects), competition between fish species, and predation (birds, larger fish, etc.) may be of overriding importance. The IFIM approach encompasses more than just the PHABSIM model, it includes reviewing water quality, sediment, channel stability, temperature, hydrology, and other variables that affect a river's fish production. These additional variables are not analyzed in this report.

After the hydraulic model (IFG4) is calibrated and run, a computer model called HABTAT combines IFG4 output with a biological model. The biological model is composed of fish preference curves describing the preference each fish species has for each of the four variables (depth, velocity, substrate, and cover). The fish species are defined further by particular lifestages: adult spawning, juvenile rearing, and adult holding.

Weighted Usable Area (WUA) is an index of fish habitat. The preference factor for each variable at a cell is multiplied by the other variables to arrive at a composite, weighted preference factor for that cell. For example, a velocity preference of 1.0 multiplied by a depth preference of 0.9 multiplied by a substrate preference of 0.8 equals a composite-preference factor of 0.72 for that cell. This composite-preference factor is multiplied by the number of square feet of area in that cell. This gives the number of square feet of habitat in that cell. A summation of all the transects' cell areas gives the total number of square feet of preferred habitat at a specified flow. This total square feet of habitat is normalized to 1,000 feet of stream. The final model result is a listing of fish habitat values called WUA in units of square feet per 1,000 feet of stream. WUA is listed with its corresponding flow or discharge in cfs.

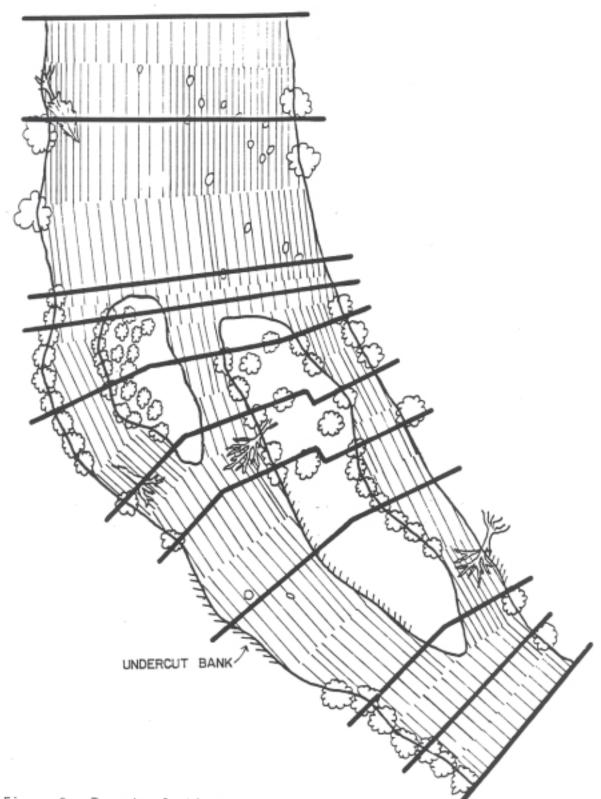


Figure 9. Top view looking down on placement of transects and measurement verticals used to define the distribution of aquatic habitat in an IFIM site (from Bovee, 1982).

Interagency Participation in Scope-of-Work

On February 7, 1991, representatives from Okanogan County, the Yakima and Colville tribes, and the Departments of Ecology and Wildlife met to discuss what studies would be needed to review Ecology's 1977 Methow basin plan. Those present at the Yakima Indian Nation council chambers in Toppenish were: Mary Meloy (Okanogan County), Gerritt Rosenthal (Sweet-Edwards consultant representing Okanogan County), Jack Fiander (Yakima Nation), Lynn Hatcher (Yakima Nation), David Lind (Yakima Nation), Mike Kohn (Yakima Nation), Olaf Langness (Colville Tribe), Hal Beecher (Wildlife), Darlene Frye (Ecology), Art Larson (Ecology), and Brad Caldwell (Ecology).

Everyone present agreed that an IFIM study was needed for the purpose of reviewing the minimum instream flows in the Methow basin. They also agreed that an IFIM scoping meeting on picking IFIM measurement sites should be held immediately at the end of the meeting.

Those present at the technical IFIM scoping meeting later in the day (everyone was invited from the earlier meeting) discussed their knowledge about fish habitat, fish distribution, and flows in the Methow basin. Those with technical knowledge included Gerritt Rosenthal, Olaf Langness, Hal Beecher, and Mike Kohn.

Brad Caldwell agreed that he would seek out those throughout the agencies, tribes, and consultants who could provide additional technical expertise on fish habitat, fish distribution, and flows in the Methow basin. On February 27 and 28, 1991, he met and discussed these subjects with Jim Mullen (USFWS), Ken Williams (WDW), Bob Steele (WDW), Bill Zook (WDF), Charles Gowan (Harza Inc.), Richard Grost (Harza Inc.), Max Judd, and Lee Bernheisel. On March 14, 1991, he met with Mike Kohn (YIN) and Larry Wasserman (YIN). On March 27, 1991, Mike Kohn (YIN) accompanied him throughout the Methow basin pointing out specific chinook salmon spawning areas, the river reaches he has seen dry up, and problem areas for upriver migration. The YIN has done detailed spawning ground surveys in the Methow basin for the last five years.

Okanogan County Public Works Department volunteered Ernie Buchanan from their office to be a member of the IFIM field crew. Additionally, Ecology's Brad Caldwell, Dave Catterson, Ann Butler, Maryrose Livingston, and Steve Hirschey were on the field crew. Site and Transect Selection

Preliminary study sites were selected for the IFIM study by reviewing topographic maps. Actual site selection was done during field visits.

At the February 7, 1991, scoping meeting the rationale for these sites was to break the rivers into reaches based on significant changes in flow, critical spawning and rearing areas for fish, and areas where intense water diversions may or are occurring. We also wanted sites whose hydrology we could relate to Ecology's existing four control points on the Methow River and our three control points on the Chewack River, Twisp River, and Early Winters Creek.

These criteria overlapped well, and we picked the following seven reaches for IFIM sites for Ecology to measure in 1991:

- 1) The Methow River from Carlton upriver to the town of Twisp. This is represented by the Walsh site at RM 31.5.
- 2) The Methow River from the Diversion Bridge upriver to Winthrop. This is represented by the KOA site at RM 49.0.
- 3) The Methow River from Winthrop upriver to the Weeman Bridge. This is represented by the Weeman site at RM 59.0.
- 4) The Methow River from Weeman Bridge upriver to Early Winters Creek. This is represented by the Chokecherry site. at RM 66.5.
- The lower reach of the Chewuch River. This is represented by the Chewuch site at RM 1.3.
- 6) The lower reach of the Twisp River. This is represented by the Twisp site at RM 1.8.
- The lower reach of Early Winters Creek.
 This is represented by the Early Winters site at RM 1.0.

The IFIM sites are located on a basin-wide map in Figure 10. Individual IFIM site locations on maps in Figures 11 to 14.

Brad Caldwell (Ecology) arranged two tours of the Methow Basin to get technical approval of the sites and transects to be used in the IFIM study. The state and federal agencies, the tribes, Okanogan County, and other interested people were invited.

On March 29, 1991, he led a tour with Art Larson (Ecology), Jim Peterson (Ecology), Hal Beecher (Wildlife), and Olaf Langness (Colville Tribe). They all agreed that the sites and transects would adequately represent fish habitat in the seven reaches listed previously.

On April 4, 1991, he led a second tour of the Methow basin with Bill Zook (Fisheries), Larry Wasserman (Yakima Nation), Paul Waller (Okanogan County Public Works), Frank Gaffney (Northwest Renewable Resource Center), John Hayes (developer), Mike Fort (head of Groundwater Management Committee). Those with technical expertise on fish agreed that the sites and transects would adequately represent fish habitat in the seven reaches listed previously.

For background information at both of these tours, Brad Caldwell handed out a packet of information containing a work plan with the measurement dates and people needed to collect the data, maps from the Yakima tribe's Methow basin salmon surveys showing critical spawning areas, a Bureau of Reclamation list of major diversion canals and the flows diverted, and a hydrograph of the Methow River at Twisp to show the expected pattern and quantity of flow in-the river. Additionally, he explained in detail what information an IFIM study would provide: fish habitat versus flow relationships for each lifestage and species for each river reach selected.

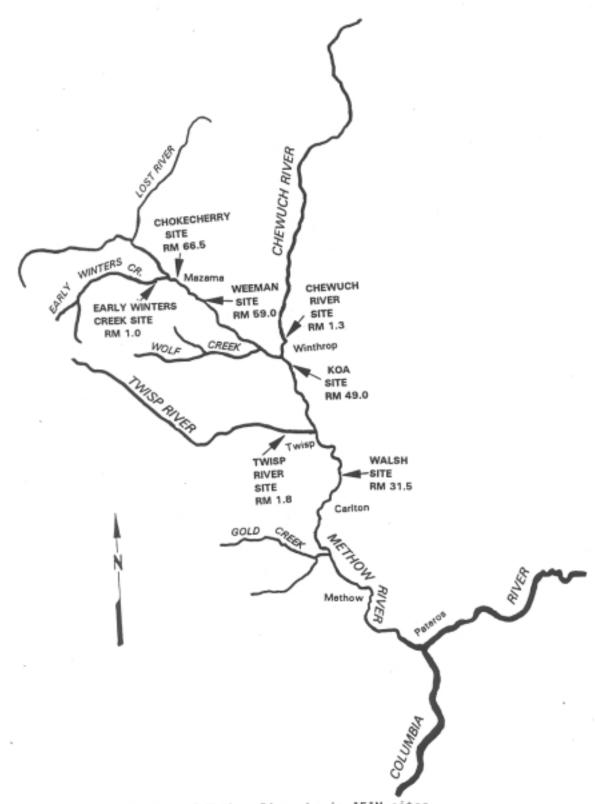


Figure 10. Location of Methow River basin IFIM sites.

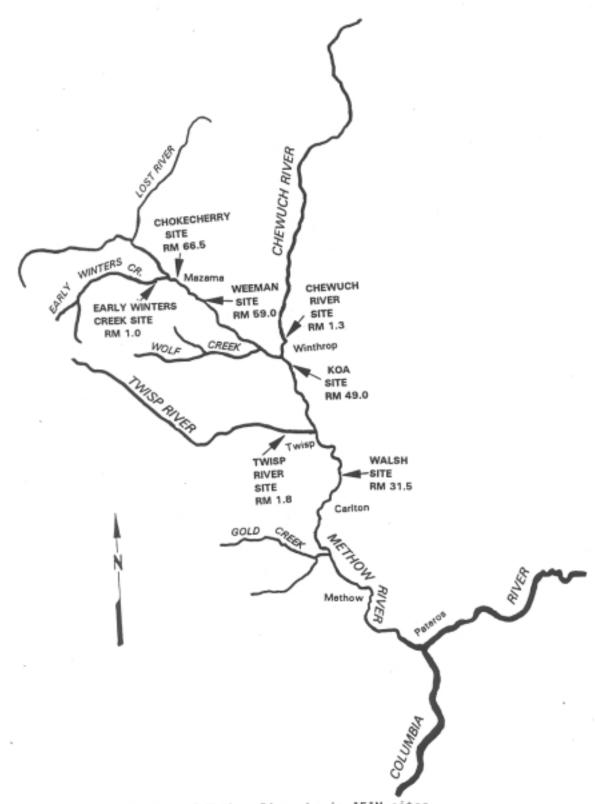
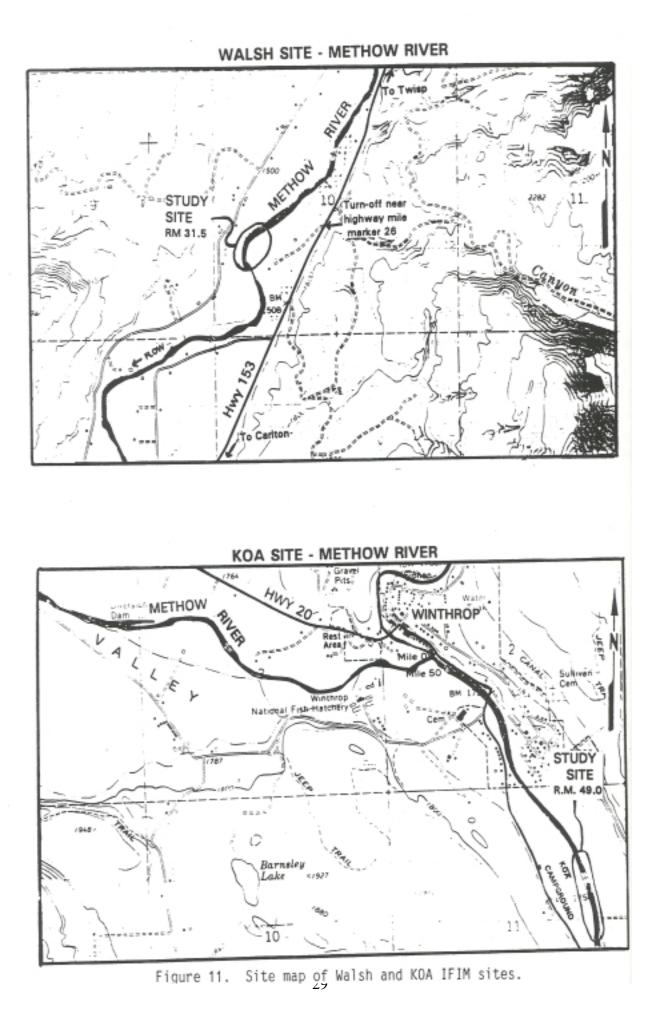
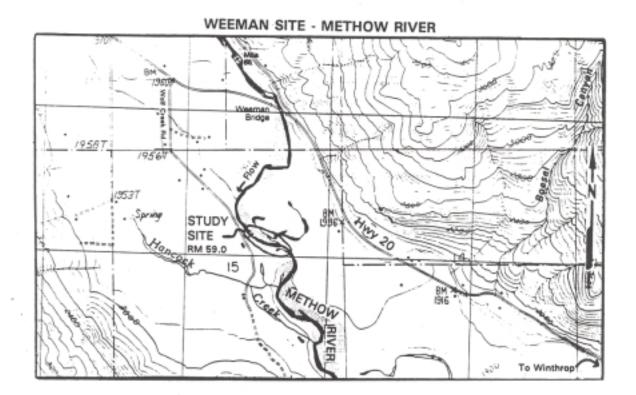
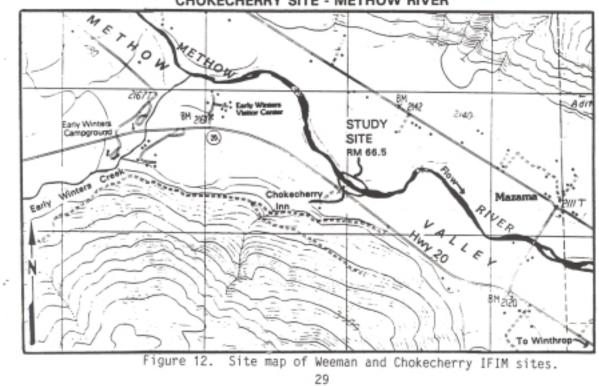





Figure 10. Location of Methow River basin IFIM sites.



CHOKECHERRY SITE - METHOW RIVER

TWISP RIVER SITE

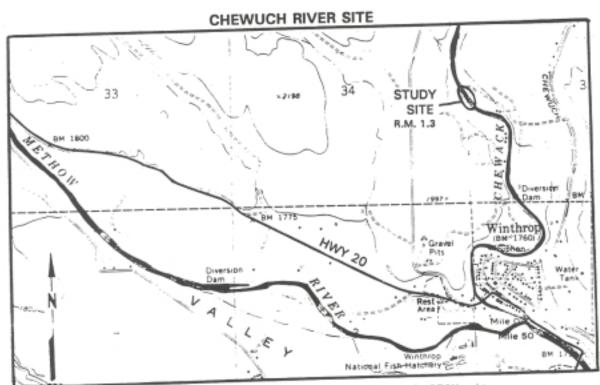


Figure 13. Site map of Twisp and Chewuch IFIM sites.

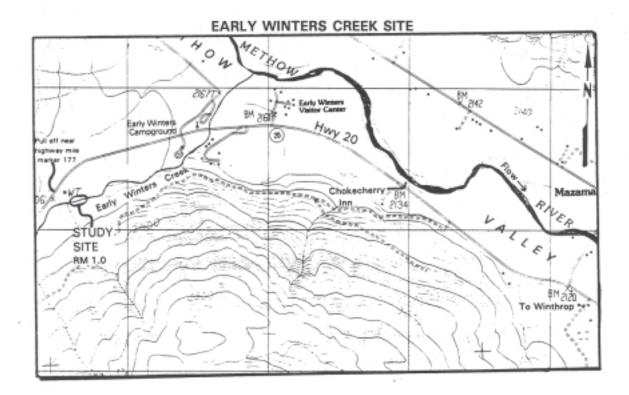


Figure 14. Site map of Early Winters IFIM site.

Field Procedures

IFIM measurements were collected in July, August, and September at the seven IFIM sites. The field work was delayed until almost August due to high sustained flows in the river. After the river began to drop at the end of July, we were able to collect field measurements over an excellent range of flows for calibrating the hydraulic computer models. We measured three different flows on the Methow River at the Walsh (RM 31.5) and KOA (RM 49) IFIM sites, but were able to gather an additional fourth flow at each of the other IFIM sites: Weeman (RM 59), Chokecherry (66.5), Chewuch River (RM 1.3), Twisp River (RM 1.8), and Early Winters Creek (RM 1.0).

Measurements of water depth, water velocity, substrate composition, and cover were made at various intervals along each transect. A temporary gage at each site was used to verify that streamflow at each transect remained steady during measurement. Transects were marked using fence posts and or survey hubs and flagging. Water velocity was measured using standard USGS methods with a calibrated Swoffer velocity meter mounted on a top-set wading rod.

Water-surface elevations and stream-bank profiles were surveyed with a survey level and stadia rod. These points were referenced to an arbitrary, fixed benchmark. Substrate composition and cover were assessed by visually estimating the percent of the two main particle size classes and type of cover according to a scale recommended by WDF and WDW (Appendix J2). Any reference to a right or left bank in this report is determined by looking downstream.

Additionally, snorkel surveys of all the IFIM sites were conducted in August and September for presence of fish species, relative fish densities, and habitat use. All IFIM sites were videotaped at all flows except for the first measured flow.

Site Descriptions and Conditions During Measurement

Walsh Site on the Methow River

The Walsh site at RM 31.5 at a medium-low flow of 600 cfs has a wetted width of about 158 feet. Most of the habitat is glide/riffle with some deep pools over a substrate of mostly small and large cobble with large boulders in some of the riffles. Eight transects were measured at flows of 1437 cfs on 8-0191, 589 cfs on 8-28-91, and 311 cfs on 9-24-91. The three flows were well spaced for calibrating the hydraulic model. The flows were steady during measurement. No observable bed shifts occurred between flow measurements on the eight transects. KOA Site on the Methow River

The KOA site at RM 49.0 at a medium-low flow of 450 cfs has a wetted width of about 144 feet. Most of the habitat is. glide/riffle with no pools over a substrate of mostly gravel and cobble. Eight transects were measured at flows of 1135 cfs on 8-02-91, 457 cfs on 8-29-91, and 229 cfs on 9-25-91. The three flows were well spaced for calibrating the hydraulic model. The flows were steady during measurement. No observable bed shifts occurred between flow measurements on the eight transects.

Weeman Site on the Methow River

The Weeman site at RM 49.0 at a medium-low flow of 240 cfs has a wetted width of about 111 feet. Most of the habitat is glide/riffle with a small amount of pool habitat over a substrate of mostly gravel and cobble. Small side channels are present with several fairly constant springs flowing into the Methow River. Eight transects were measured at flows of 658 cfs on 8-03-91, 380 cfs on 8-16-91, 238 cfs on 8-27-91, and 79 cfs on 9-26-91. The four flows were well spaced for calibrating the hydraulic model. The flows were steady during measurement. No observable bed shifts occurred between flow measurements on the eight transects.

Chokecherry Site on the Methow River

The Chokecherry site at RM 66.5 at a medium-low flow of 210 cfs has a wetted width of about 121 feet. Most of the habitat is glide/riffle with little pool habitat over a substrate of mostly gravel and cobble. Eight transects were measured at flows of 640 cfs on 8-04-91, 349 cfs on 8-16-91, 207 cfs on 8-2791, and 41 cfs on 9-26-91. The four flows were well spaced for calibrating the hydraulic model. The flows were steady during measurement. No observable bed shifts occurred between flow measurements on the eight transects.

Twisp River Site

The Twisp River site at RM 1.8 at a medium-low flow of 90 cfs has a wetted width of about 58 feet. Most of the habitat is cascade/riffle with no pool habitat over a substrate of mostly cobble and boulder. Eight transects were measured at flows of 308 cfs on 8-05-91, 166 cfs on 8-17-91, 90 cfs on 8-2991, and 35 cfs on 9-25-91. The four flows were well spaced for calibrating the hydraulic model. The flows were steady during measurement. No observable bed shifts occurred between flow measurements on the eight transects.

Chewuch River Site

The Chewuch River site at RM 1.8 at a medium-low flow of 120 cfs has a wetted width of about 85 feet. Most of the habitat is a fast glide/riffle with almost no pool habitat over a substrate of exposed bedrock with large cobble and small boulders. Seven transects were measured at flows of 290 cfs on 731-91, 236 cfs on 8-15-91, 121 cfs on 8-26-91, and 60 cfs on 9-23-91. The four flows were well spaced for calibrating the hydraulic model. The flows were steady during measurement. No observable bed shifts occurred between flow measurements on the seven transects.

Early Winters Creek Site

The Early Winters site at RM 1.0 at a medium-low flow of 80 cfs has a wetted width of about 52 feet. Most of the habitat is cascade with small pools over a substrate of mostly large cobble and boulder. One of the transects has 5 channels. Six transects were measured at flows of 227 cfs on 8-05-91, 132 cfs on 8-17-91, 78 cfs on 8-30-91, and 37 cfs on 9-27-91. The four flows were well spaced for calibrating the hydraulic model. The flows were steady during measurement. No observable bed shifts occurred between flow measurements on the six transects.

III. Hydraulic Model

Calibration Philosophy

Calibration of the hydraulic model involved checking the velocities and depths predicted by the model against velocities and depths measured in the field. This included examining indicators of the model's accuracy such as mean error and Velocity Adjustment Factor (VAF).

The calibration philosophy was to change data or to manipulate data using a computer calibration option only when doing so would improve the model's ability to extrapolate without reducing the accuracy of predicted depths and velocities at the measured calibration flows. Calibration of the IFG4 model was done cell by cell for each transect to decide whether the predicted cell velocities adequately represented measured velocities. Generally, if the predicted cell velocity at the calibration flow was within 0.2 feet per second (fps) of the measured cell velocity, the predicted velocity was considered

adequate. Any change to a calibration velocity was limited to a change of 0.2 fps. The 0.2 fps was thought to be reasonable considering the normal range of velocity measurement error. All cell velocities were reviewed at the highest and lowest extrapolated flows to ensure that extreme cell velocities were not predicted.

Indicators of Model Accuracy

Two indicators of the IFG4 model's accuracy in predicting depths and velocities are the mean error and the Velocity Adjustment Factor (VAF). See Appendices B to H for mean errors and VAFS for each transect.

The mean error is the ratio of the calculated discharge (from depths and velocities at the measured flows) to the predicted discharge (from depth and velocity regressions). As a rule of thumb, the mean error for the calculated discharge should be less than 10 percent.

The Velocity Adjustment Factor (VAF) for a three-flow IFG4 hydraulic model indicates whether the flow predicted from the velocity/discharge regressions matches the- flow predicted from the stage/discharge regressions. The velocities predicted from the velocity/discharge regressions for a transect are all multiplied by the same VAF to achieve the flow predicted from the stage/discharge regression. Calculating and comparing the flows predicted from two different regressions gives an indication as to whether or not some of the model's assumptions are being met.

A range in the VAF value of 0.9 to 1.1 is considered good, 0.85 to 0.9 and 1.1 to 1.15 fair, 0.8 to 0.85 and 1.15 to 1.20 marginal, and less than 0.8 and more than 1.2 poor (Milhous, et al., 1984). The standard extrapolation range is 0.4 times the low calibration flow and 2.5 times the high calibration flow. The extrapolation range of the model is usually limited when two or more transects have VAFs which fall below 0.8 or above 1.2.

The VAFs for the one-flow IFG4 model do not have the same meaning as the three-flow IFG4 model. In a one-flow model the cell velocities are predicted from Manning's equation. All velocities on a transect are multiplied by the same VAF to achieve the flow predicted from the stage/discharge regression. The VAF range listed above does not apply to one-flow model VAFs. Instead of predicting velocities from a velocity/discharge regression (three-flow IFG4), the velocities are predicted from Manning's equation using a constant roughness factor (N). The bottom roughness factor is highest at low flow and becomes progressively lower as flow increases. Because the N value calculated by the computer is constant, the N value used to predict higher flow velocities is usually too high. The VAF corrects this problem by changing the velocities predicted to arrive at the flow on the stage/discharge regression. The VAF will be nearly one at the measured flow, usually less than one at lower flows, and more than one at higher flows.

Normal empirical values for bottom roughness do not apply to these Manning's Ns. These Ns are used only for calibrating velocities in the IFG4 hydraulic model.

Options in IFG4 Model

Several options are available in the IFG4 hydraulic model (see Milhous et al, 1989). Ecology's standard method is to set all the options to zero except for option 8 which is set at 2, and option 13 to 1 to get a summary of the velocity adjustment factors. The standard options were used for all models except for the KOA and Chewuch sites where option 22 was set at 1 to allow the model to run even though one cell had a regression slope greater than 3. The cell in each model correctly predicted velocities even though it was a steep regression.

Site Specific Calibration

Walsh Site on the Methow River

A three-flow IFG4 model was run for this site. The IFG4 input file, a summary of the calibration details, data changes, and the VAFS are included as Appendix B. The mean errors of the stage/discharge regressions range from 0.92 to 7.49 percent, all less than the 10 percent rule of thumb. Overall, the IFG4 model. is adequate for the standard extrapolation range of 124 to 3590 cfs.

KOA Site on the Methow River

A three-flow IFG4 model was run for this site. The IFG4 input file, a summary of the calibration details, data changes, and VAFS are in Appendix C. The mean errors of the stage/discharge relationships range from 0.29 to 4.33 percent. The model is adequate for the standard extrapolation range of 92 to 2838 cfs.

Weeman Site on the Methow River

A four-flow IFG4 model was run for this site. The IFG4 input file, a summary of calibration details, and VAFS are in Appendix D. The mean errors of the stage/discharge relationships range from 1.07 to 5.06 percent and are all less than the 10 percent guideline. The model is adequate for the standard extrapolation range of 45 to 1300 cfs.

A separate three-flow model was run for a side channel on the right side of transects 1 to 4. The side channel was fed by river flow. The side channel's mean errors were high, but insignificant and no calibration was needed. The E errors were from 0.1 to 0.4 cfs in predicting total flow. The measured flows ranged from 0.3 to 4.9 cfs. A small error at such small flows creates a large percentage error that is not significant.

A spring-fed side channel ran along the left side of transects 3 to 8, but it was not included since its flow was essentially constant even as the river dropped from 658 to 79 cfs.

Chokecherry Site on the Methow River

A four-flow IFG4 model was run for this site. The IFG4 input file, a summary of calibration details, and VAFS are in Appendix E. The mean errors of the stage/discharge relationship range from 1.06 to 8.91 percent and all are .less than the 10 percent guideline. The model is adequate for the standard extrapolation range of 16 to 1600 cfs.

Twisp River Site

A four-flow IFG4 model was run for this site. The IFG4 input file, a summary of calibration details, and VAFS are in Appendix F. The mean errors of the stage/discharge relationships range from 2.15 to 7.64 percent and all are less than the 10 percent guideline. The model is adequate for the standard extrapolation range of 13 to 750 cfs.

Chewuch River Site

A four-flow IFG4 model was run for this site. The IFG4 input file, a summary of calibration details, and VAFS are in Appendix G. The mean errors of the stage/discharge relationships range from 1.27 to 9.50 percent and all are less than the 10 percent guideline. The model is adequate for the standard extrapolation range of 25 to 725 cfs.

Early Winters Creek Site

A four-flow IFG4 model was run for this site for transects 3 to 7. The IFG4 input file, a summary of calibration details, and VAFS are in Appendix H. The mean errors of the stage/discharge relationships range from 2.39 to 10.88.

Transect 8 consisted of 5 channels. Channels 1 and 4 were run as four-flow IFG4 models. Channel 3 was run as a three-flow IFG4 model. Channels 2 and 5 were run as one-flow IFG4 models using the highest flow depths and velocities with four stage/discharges.

The overall model is adequate for the standard extrapolation range of 15 to 575 cfs.

Transect Weighting

Appendix I lists the percent weighting each transect received relative to the whole site. Transect weighting is determined one of two ways; either the model automatically determines weighting for each transect by using the distance between the transects or transect weight is set to predetermined levels by specifying distances between transects (this is composite weighing). Composite weighing is done when the transects are located far apart and the distances between the transects would create incorrect weighing, or the researcher wants to increase the weight of a particular type of fish habitat

for that site. Transect weighting for the Methow basin IFIM sites was done using distances between transects, with only a few transects requiring composite weighting because of an unusually large spread between transects that would have given one transect far too much weight.

Agency and Tribal Approval of the Hydraulic Model

A meeting was held May 1, 1992 by Ecology to discuss and achieve a consensus on the adequacy of the Methow basin hydraulic models. Those in attendance were Dale Bambrick (YIN), Hal Beecher (WDW), and Brad Caldwell (Ecology). Also invited to the meeting were the WDF, USFWS, NMFS, and Jon Hansen (CCT). Consensus was achieved that the hydraulic models were calibrated adequately. Agreement was reached that there was no problem using a normal extrapolation range of 0.4 times the low calibration flow and 2.5 times the high calibration flow. Attendees also agreed to natural transect weighting with some composite weighting for the sites.

IV. HABITAT-USE MODEL (HABTAT)

Options Used in HABTAT

The HABTAT program combines the depths and velocities predicted from the IFG4 hydraulic model with the depths, velocities, cover, and substrate preferences from the habitat-use curves. The HABTAT program calculates WUA for each flow modeled. The IOC options used in HABTAT were 10000001010000.

Selection and Approval of Habitat-Use Curves Used in HABTAT

A meeting was held May 1, 1992 by Ecology to discuss and achieve a consensus on the habitat-use curves to be used with the hydraulic models. Those in attendance were Dale Bambrick (YIN), Hal Beecher (WDW), and Brad Caldwell (Ecology). Also invited to the meeting were the WDF, USFWS, NMFS, and Jon Hansen (CCT).

Consensus was achieved to use WDF's and Ecology's standard set of river and stream curves for Chinook salmon and WDW's standard curves for steelhead and bull trout (See Appendix J1). The Chinook curves matched closely the preference curves created by M. Stempel in 1984 from Yakima River spring Chinook since his data was given heavy weighting when the standard set of river curves were created. The trout curves were recently modified by Hal Beecher (WDW) using data from nearby basins.

For the Methow River sites, Walsh and KOA, habitat-use river curves were run for steelhead (spawning and juvenile), Chinook (spawning, rearing, and holding), and bull trout (rearing).

For the Methow River sites, Weeman and Chokecherry, habitat-use river curves were run for steelhead (spawning and juvenile), Chinook (spawning, rearing, and holding), and bull trout (spawning and rearing).

For the Chewuch, Twisp, and Early Winters Creek sites habitat-use stream curves were run for steelhead (spawning and rearing), Chinook (spawning and rearing), and bull trout (spawning and rearing).

The depth and velocity habitat-use curves and the substrate/cover codes used are in Appendices J1 and J2, respectively.

V. RESULTS AND DISCUSSION

The habitat versus flow results are presented in Appendix A. The figures are grouped by site: first the Walsh site, then the KOA site, Weeman site, Chokecherry site, Twisp River site, Chewuch River site, and finally the Early Winters Creek site. The figures are ordered by area, and then by fish species: steelhead, Chinook, and bull trout.

The flows that provide peak habitat values for each lifestage at each IFIM site are given in Table 2.

Each IFIM site and the corresponding minimum instream flow established by Ecology in 1976 is given in Table 3.

Factors To Consider When Developing A Flow Regime

Determining a minimum instream flow for a river or stream in the Methow basin requires more thought than choosing the peak WUA flow for one lifestage of one species at one reach from the IFIM study. For multiple lifestages existing simultaneously in a river, there is no one flow that will provide an optimum flow for all lifestages and species. Setting a minimum instream flow for a river or stream in the basin requires ranking the importance of each fish species and lifestage. This ranking requires a consensus on long-range management plans for the fishery resources from the state and federal natural resource agencies, and the Colville and Yakima Indian Nations.

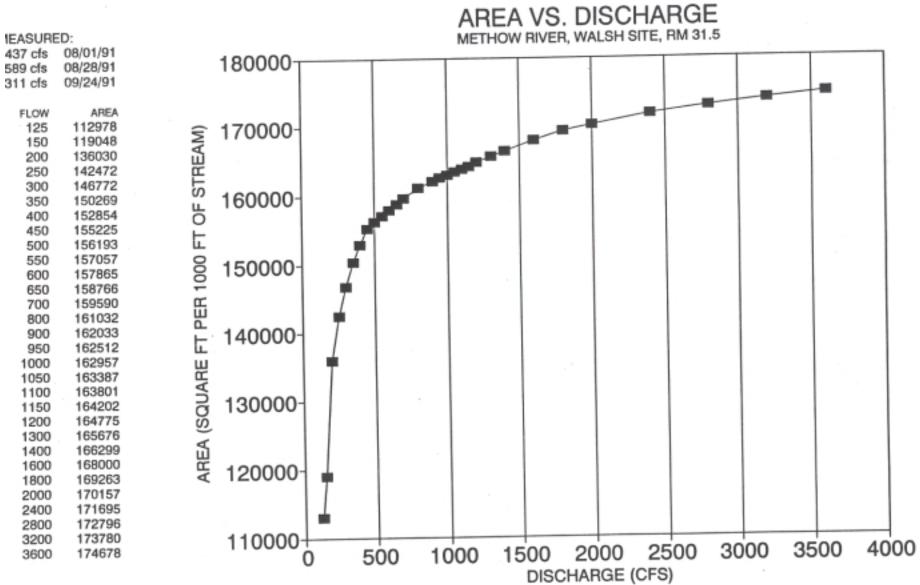
In addition, minimum instream flows must include flows necessary for incubation of fish eggs, smolt out-migration, fish passage to spawning grounds, and prevention of stranding of fry and juveniles. These are variables not measured in an IFIM study. These variables require using your best professional judgement. Other variables which have to be considered include water temperature, water quality, and sediment load.

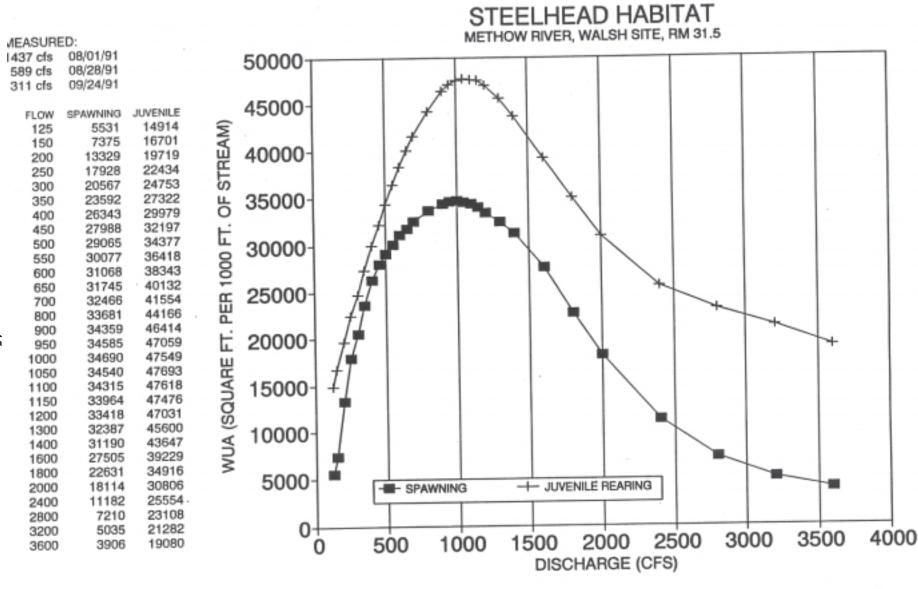
Table 2. The 1976 Adopted Minimum Instream Flows for the Methow River Basin.

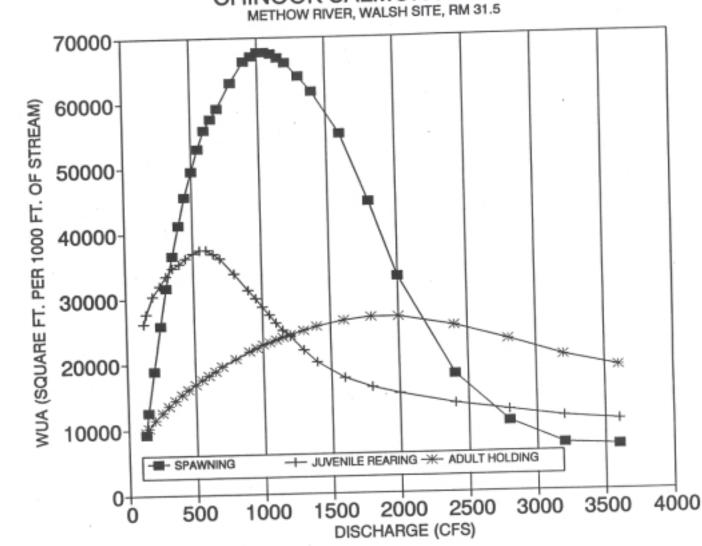
Base Flows for Methow River (from WAC.173-148) All figures in cfs

	LOWER METHOW (Pateros to Twisp) Gauge at RM 40.0	MIDDLE METHOW (Twisp to Winthrop) Little Boulder Cr.)	UPPER METHOW (Winthrop to Little Boulder Cr.) Gauge at RM 50.2	METHOW HEADWATERS (All above mouth Measured at RM 65.3	EARLY WINTERS CR. Measured near	CHEWACK RIVER Gauge at RM 8.7	TWISP RIVER Gauge at RM 6.7
DATE	050	202	400	10	40	50	04
Jan. 1	350	260	120	42	10	56	34
Jan. 15	350	260	120	42	10	56	34
Feb. 1	350	260	120	42	10	56	34
Feb. 15	350	260	120	42	10	56	34
Mar. 1	350	260	120	42	10	56	34
Mar. 15	350	260	120	42	10	56	34
Apr. 1	590	430	199	64	14	90	60
Apr. 15	860	650	300	90	23	140	100
May1	1300	1000	480	130	32	215	170
May 15	1940	1500	690	430	108	290	300
June 1	2220	1500	790	1160	290	320	440
June 15	2220	1500	790	1160	290	320	440
July 1	2150	1500	694	500	125	292	390
July Is	800	500	240	180	45	110	130
Aug.1	480	325	153	75	20	70	58
Aug. 15	300	220	100	32	8	47	27
Sep. 1	300	220	100	32	8	47	27
Sep. 15	300	220	100	32	8	47	27
Oct. 1	360	260	122	45	11	56	35
Oct. 15	425	320	150	60	15	68	45
Nov. 1	425	320	150	60	15	68	45
Nov. 15	425	320	150	60	15	68	45
Dec. 1	390	290	135	51	12	62	39
Dec. 15	350	260	120	42	10	56	34
Represented in this study by	Walsh Site RM 31.5	KOA Site RM 49.0	Weeman Site - RM 59.0		Early Winters Cr. Site - RM 1.0	Chewuch River Site - RM 1.3	Twisp River Site - RM 1.8

Table 3. Flows that provide maximum habitat from WUA vs. Flow results.

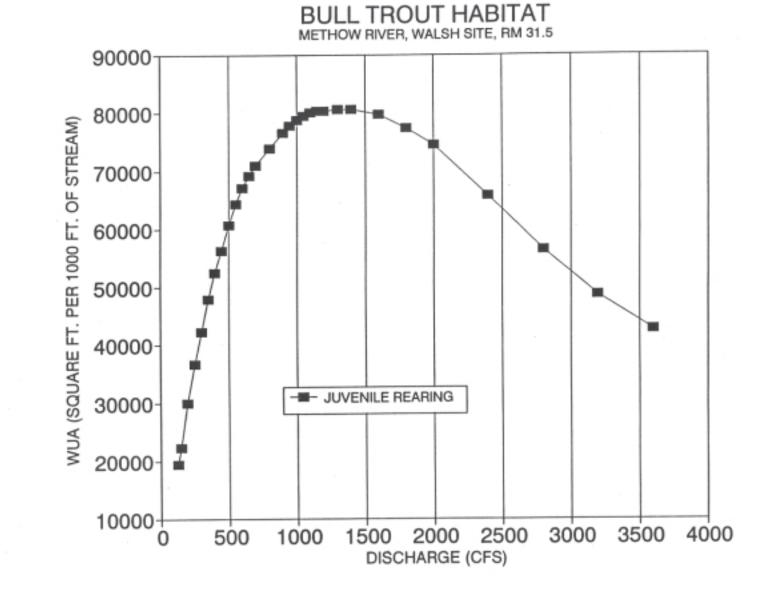

Flow in cfs

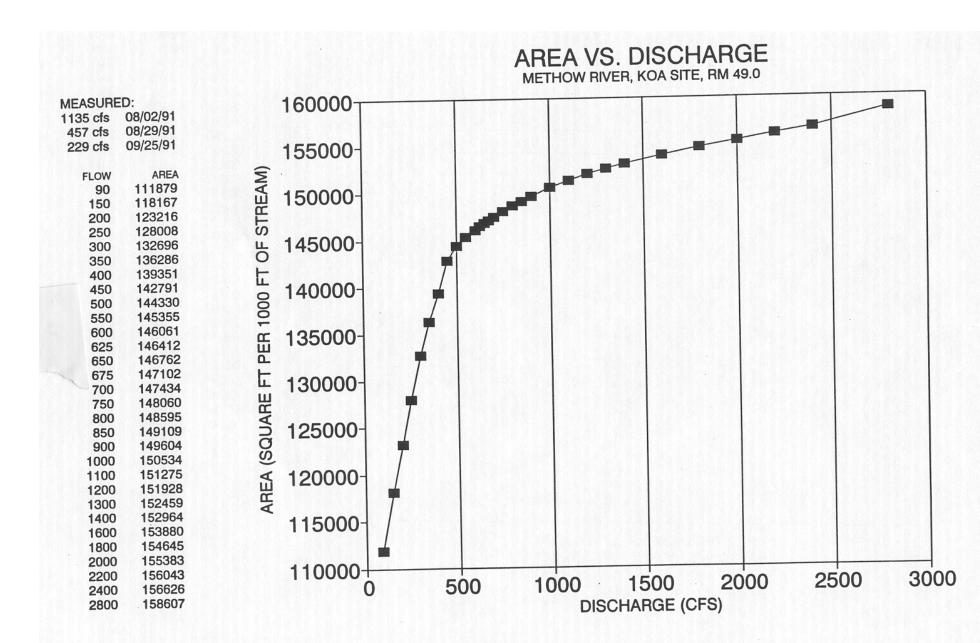

SITE	STEEI	LHEAD	BULL TROUT		CHINOOK SALMON		
	SPAWNING	JUVENILE REARING	SPAWNING	JUVENILE REARING	SPAWNING	JUVENIL REARING	ADULT HOLDING
WALSH	1000	1050	*	1400	1050	600	2000
(RM 31.5)							
KOA	800	650	*	1000	650	200	1300
(RM 49)							
WEEMAN (RM	650	425	350	700	600	85	800
59)							
CHOCKECHERRY	500	500	75	600	400	250	850
(RM 66.5)							
TWISP RIVER	250	200	50	225	150	80	**
(RM 1.8)							
CHEWUCH	425	400	175	400	275	150	**
RIVER (RM 1.3)							
EARLY WINTERS	475	150	575+	175	325	50	**
CREEK (RM 1.0)							

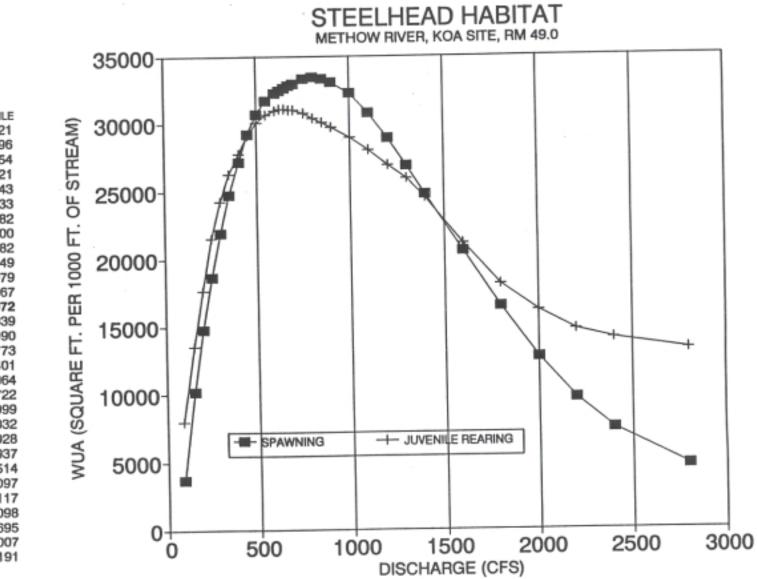

* Bull Trout are not likely to spawn this low in the river system. **Chinook adults are not likely to hold in the smaller tributary streams.

Appendix A

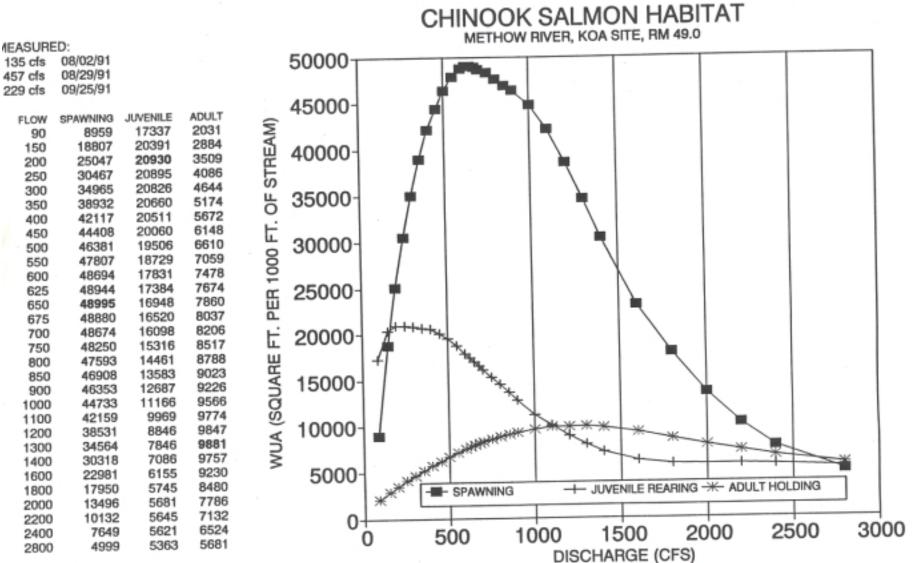
WUA VS FLOW GRAPHS

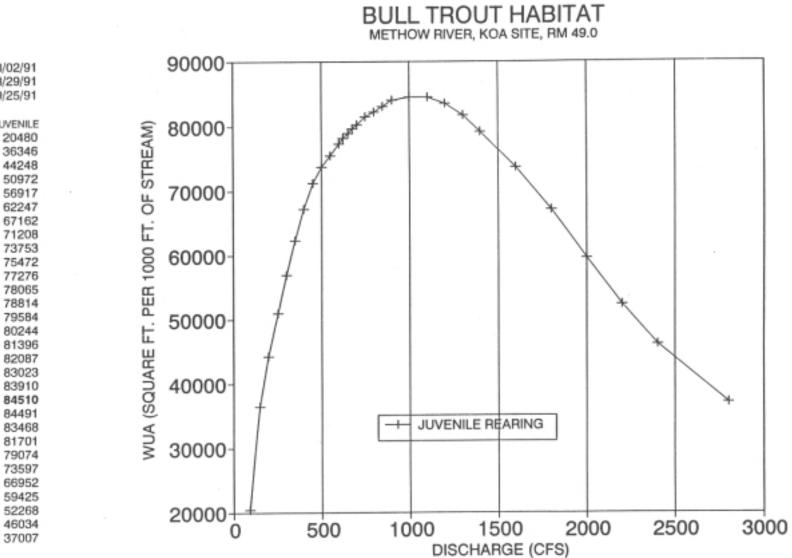


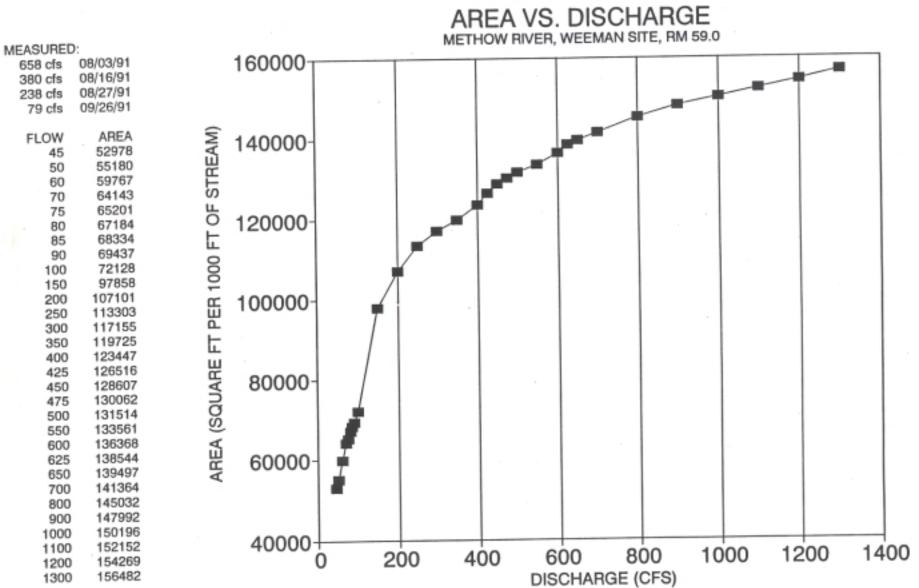


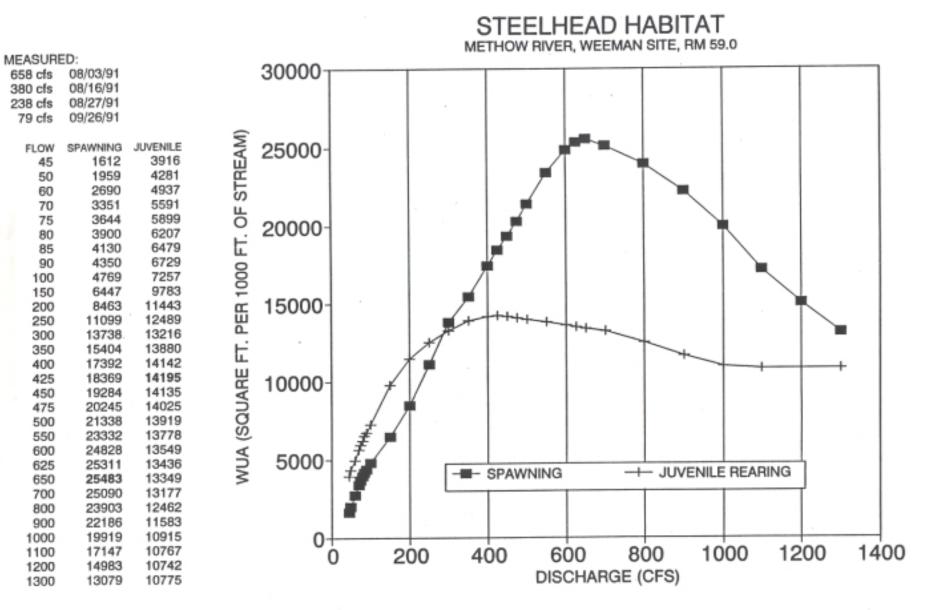

CHINOOK SALMON HABITAT

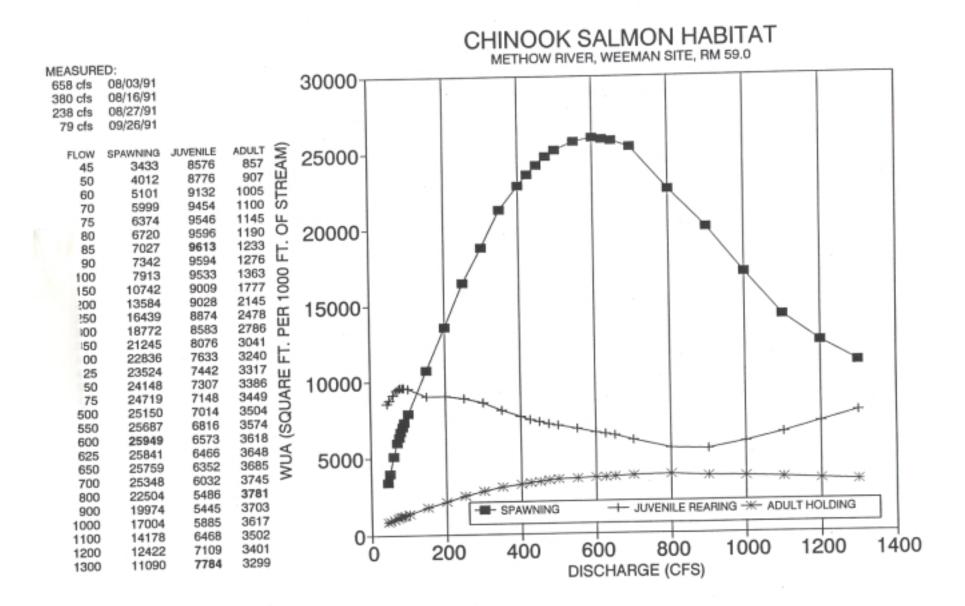
MEASURED: 1437 cf 08/01/91 589 cfs 08/28/91 311 cfs 09/24/91

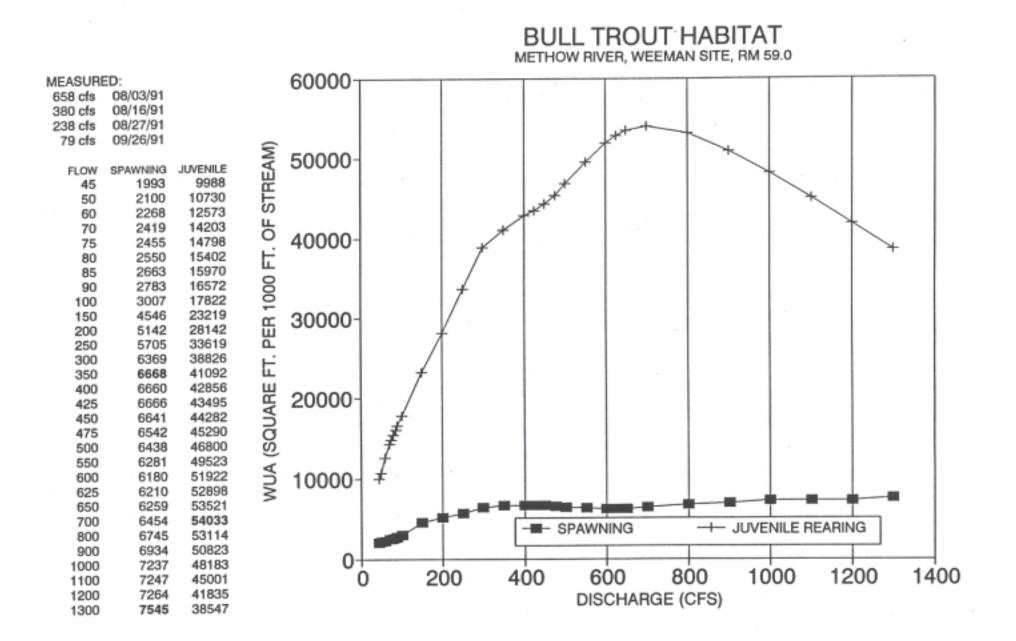


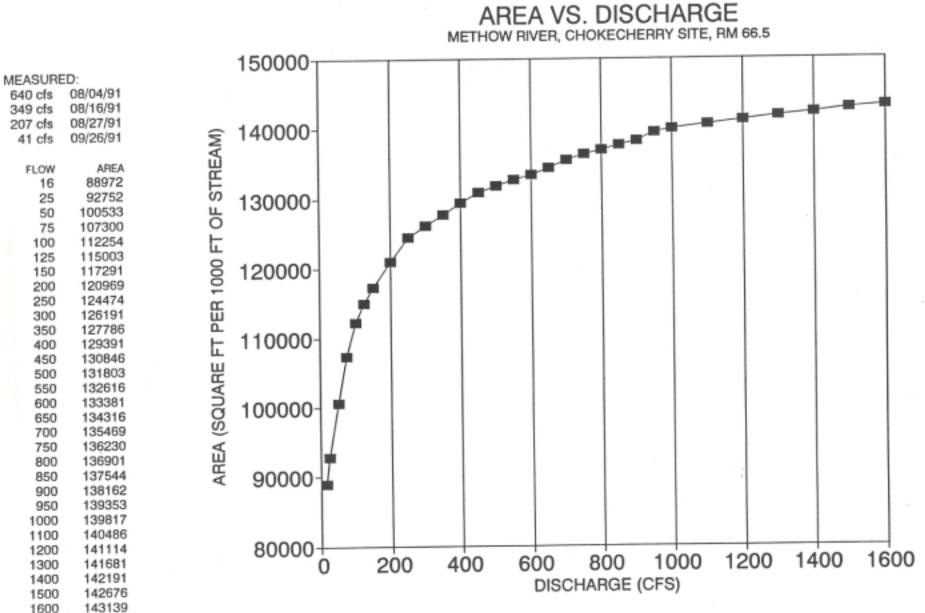

MEASURE 1437 cfs 589 cfs 311 cfs	D: 08/01/91 08/28/91 09/24/91
FLOW 125 150 200 250 300 350 400 450 550 600 650 700 800 900 950 1000 1050 1100 1150 1200 1300 1400 1600 1800 2000 2400	JUVENILE 19386 22402 30055 36670 42205 47784 52507 56148 60679 64257 67068 69136 70920 73915 76494 77788 78819 79483 79975 80256 80301 80523 80542 79768 77439 74513 65716
2800 3200 3600	56318 48562 42518

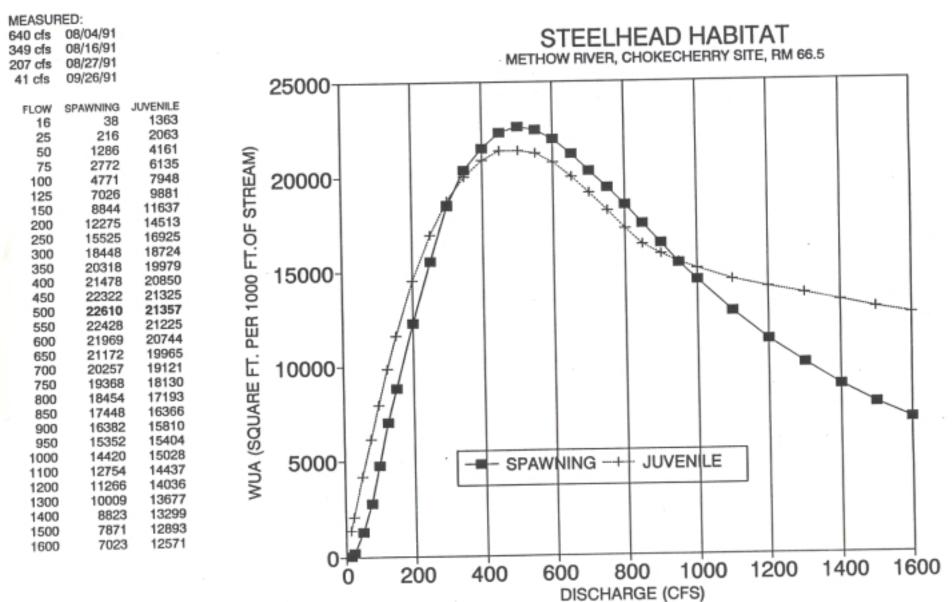


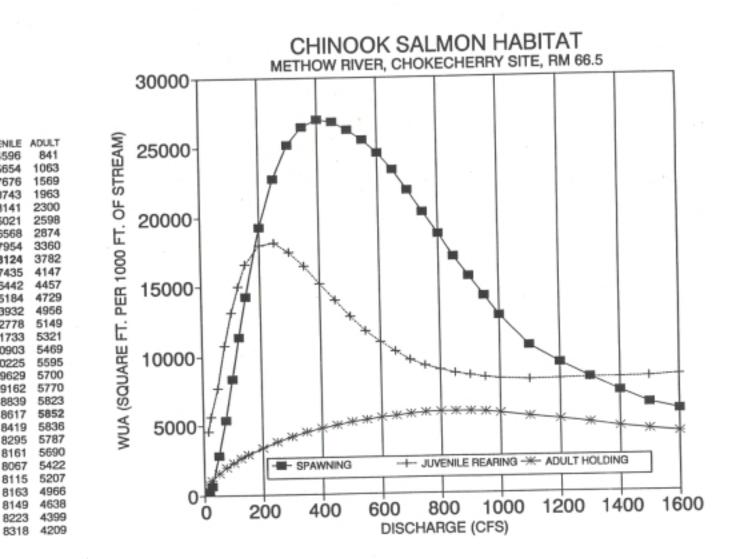

MEASURE		
1135 cfs		
457 cfs	08/29/91	
229 cfs	09/25/91	
FLOW	SPAWNING	JUVENIL 792
90	3655	
150	10155	1349
200	14761	1765
250	18648	2152
300	21941	2424
350	24754	2633
400	27207	2778
450	29221	2910
500	30709	3008
550	31692	3064
600	32253	3097
625	32461	3106
650	32628	3107
675	32778	3103
700	32952	3099
750	33286	3077
800	33397	3040
850	33319	3006
900	33075	2972
1000	32278	2899
1100	30757	2803
1200	28912	2692
1300	26886	2593
1400	24785	245
1600	20533	210
1800	16410	181
2000	12631	
2200	9633	
2400	7402	
2800	4680	
2000		



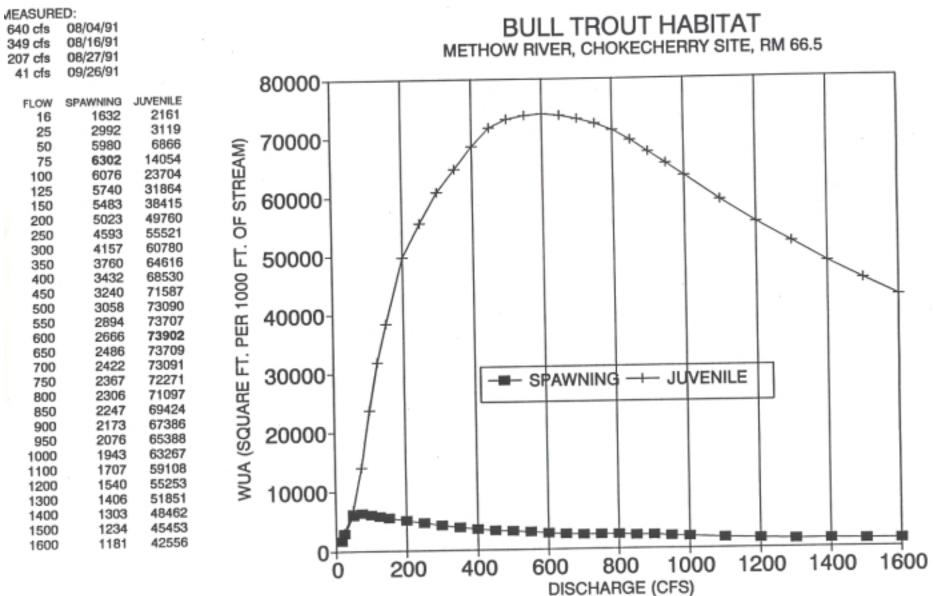


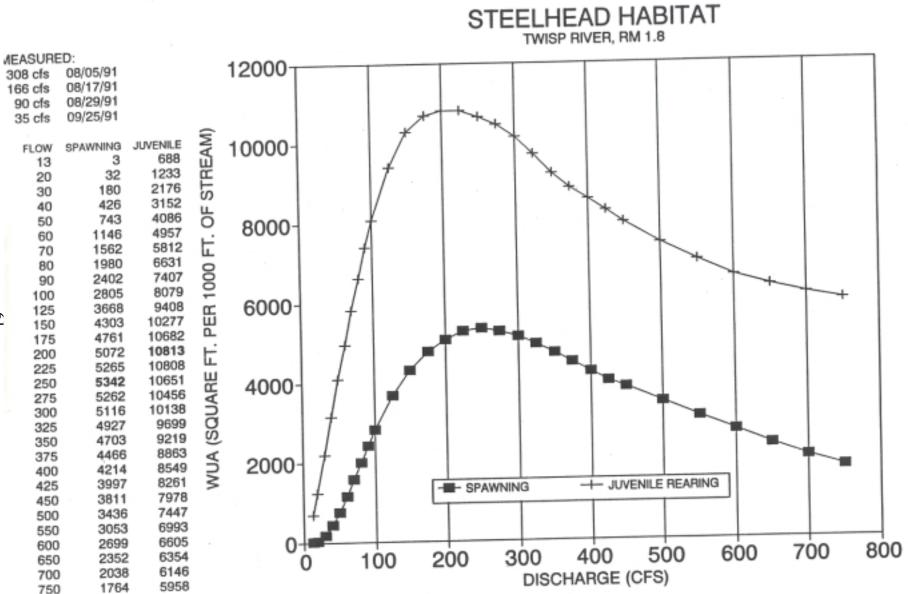

MEASURED: 1135 cfs 08/02/91 457 cfs 08/29/91 229 cfs 09/25/91 FLOW JUVENILE 90 20480

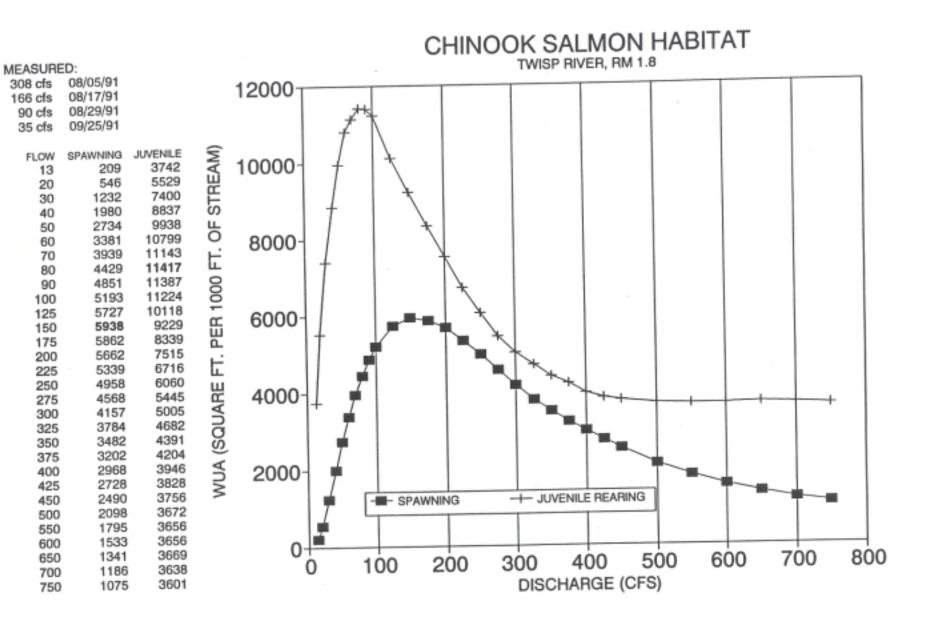


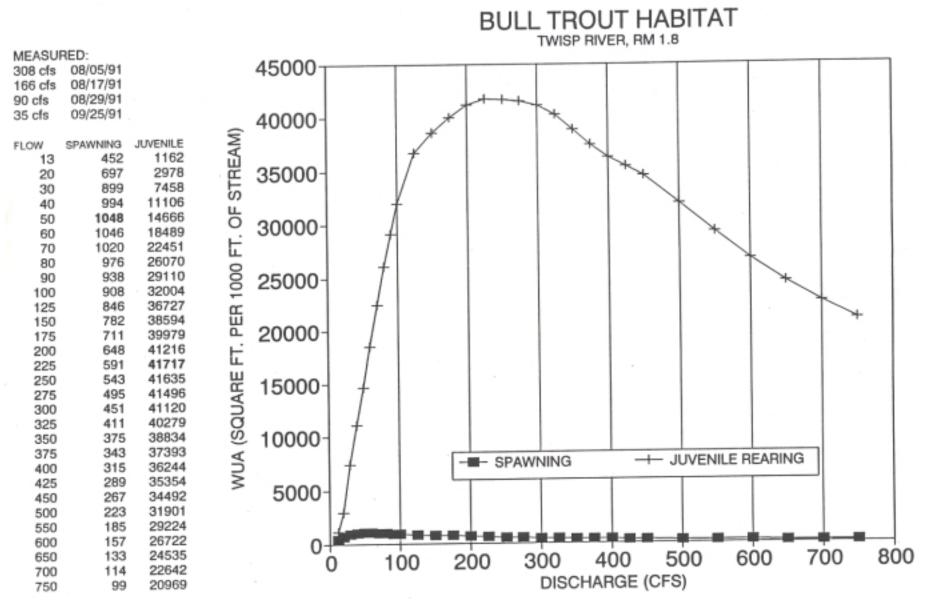


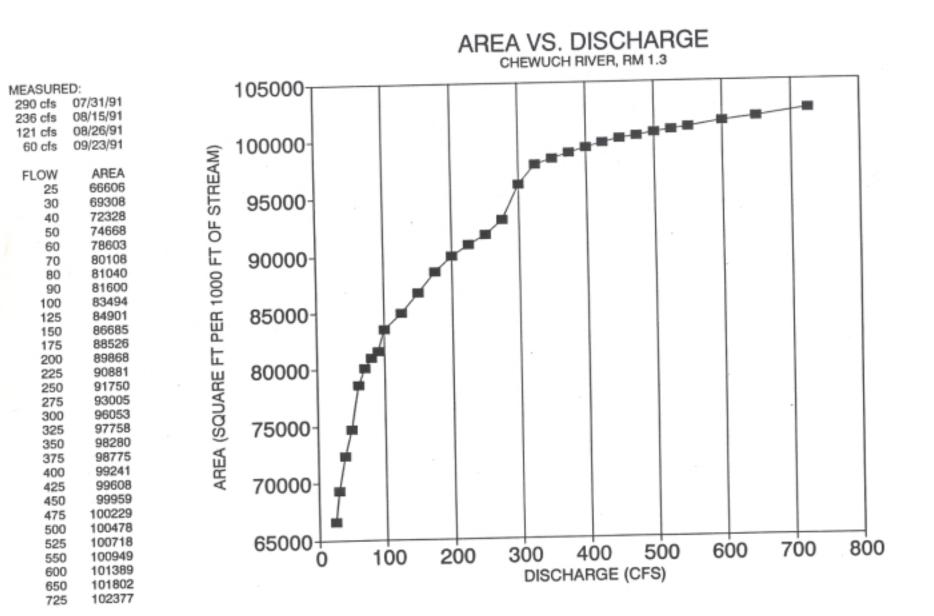
FLOW

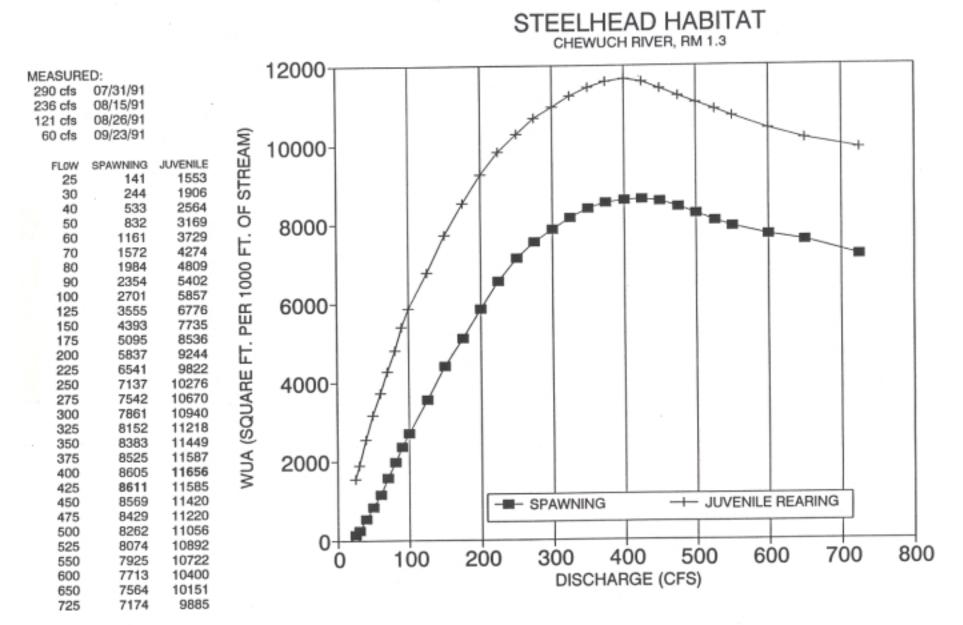


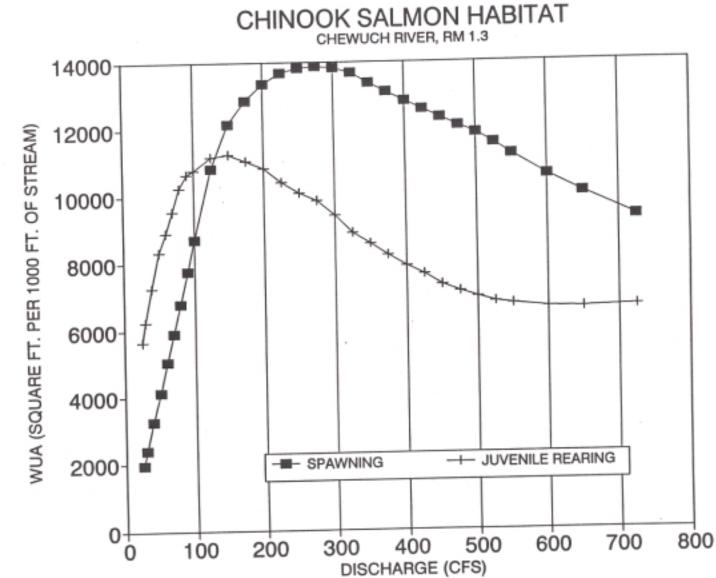

MEASURED: 08/04/91 08/16/91 08/27/91 09/26/91

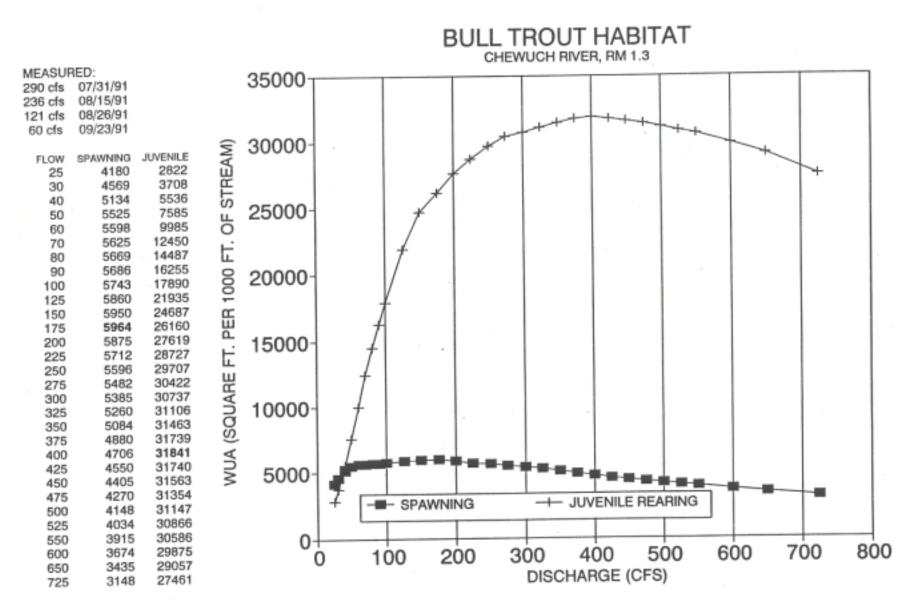

FLOW

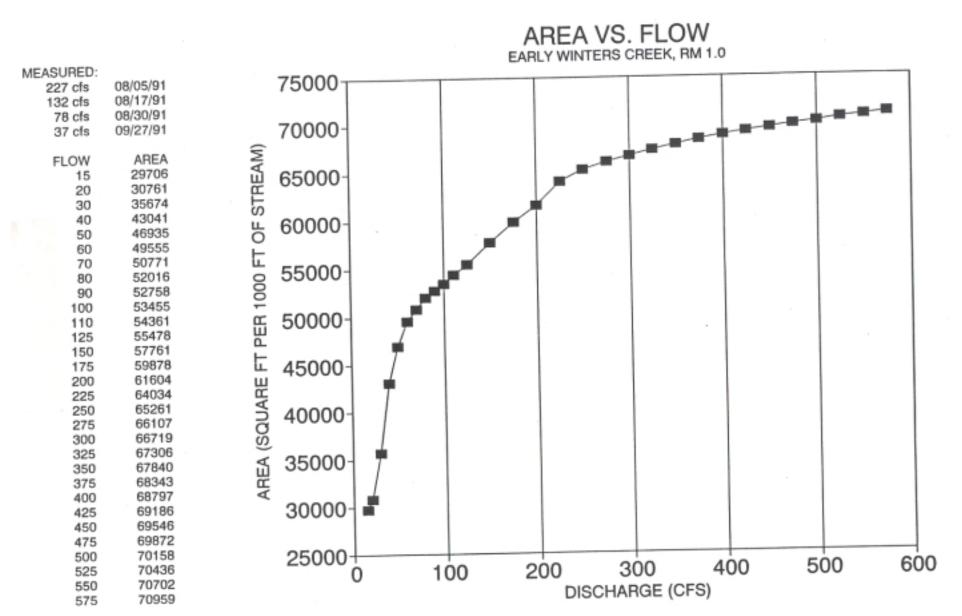

SPAWNING

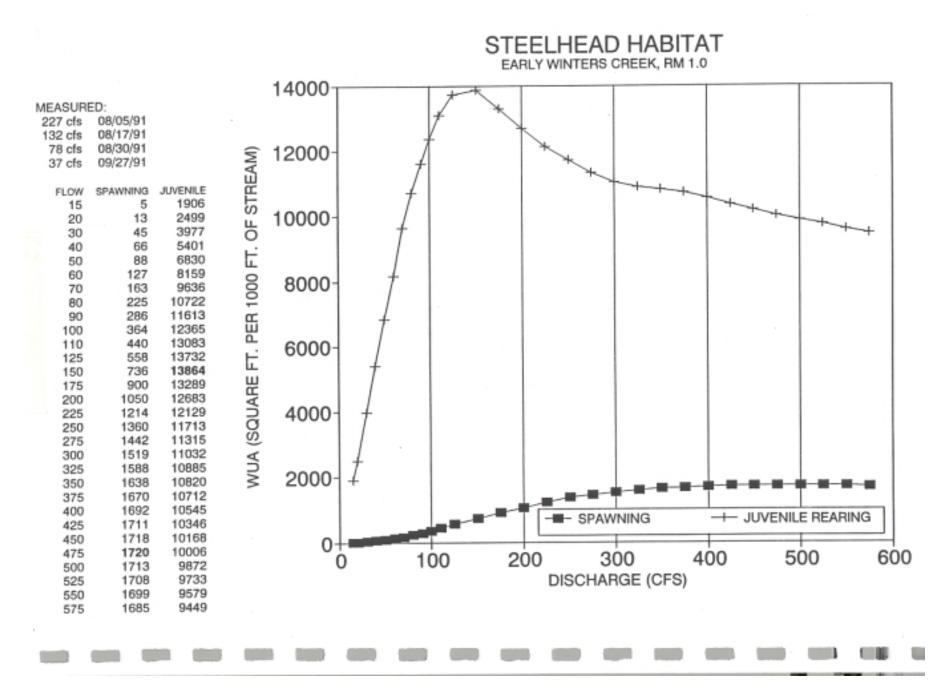

JUVENILE ADULT

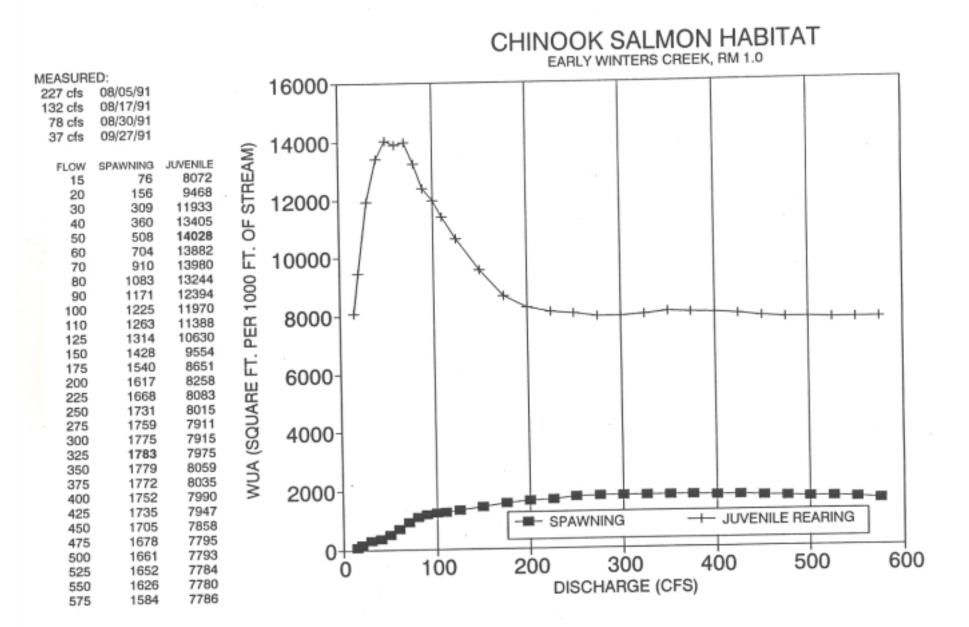


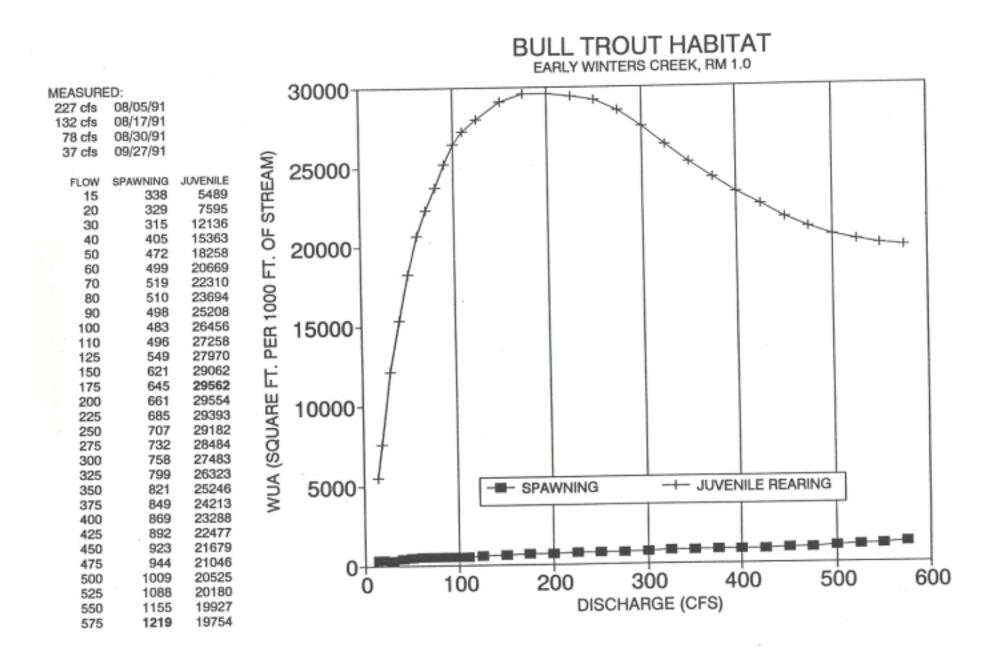









MEASURED: 290 cfs 07/31/91 08/15/91 236 cfs 08/26/91 121 cfs 09/23/91 60 cfs SPAWNING FLOW


JUVENILE

APPENDIX b

WALSH SITE CALIBRATION INFORMATION

Appendix B1 IFG4 Input File, Walsh Site

METHOW RIVER - WALSH SITE - River Mile 31.5, WRIA 48 Measured on 8/1/91- 1437 cfs, 8/28- 589 cfs, 9/24- 311 cfs

I0C 0000002000000000000000 OARD3590.0 QARD1437.0 **QARD 589.0** QARD 311.0 **QARD 124.0 XSEC 1.0** 88.80 .00250 0.0.50 94.4 14.0 93.9 15.0 93.8 20.0 94.0 1.0-13.0100.5 0.0 96.0 10.0 1.0 25.0 93.7 30.0 93.2 35.0 93.1 40.0 92.7 45.0 92.6 50.0 92.5 1.0 55.0 91.8 60.0 91.3 65.0 91.5 70.0 91.4 75.0 92.2 80.0 91.9 1.0 85.0 91.7 91.4 95.0 91.3100.0 91.0105.0 91.4110.0 91.6 90.0 1.0115.0 91.6120.0 92.0125.0 92.1130.0 92.0135.0 92.5140.0 92.1 1.0146.5 91.4151.5 91.7156.5 92.1161.5 91.9166.5 91.7171.5 91.3 1.0176.5 90.0181.5 89.8186.5 89.1191.5 89.4196.5 89.6201.5 88.8 1.0206.5 89.7211.5 89.8216.5 90.1221.5 90.2226.5 91.7231.5 93.0 1.0233.293.85236.196.48245.1100.5NS 1.0 .80 .80 67.60 67.60 67.60 67.60 NS 1.0 67.60 87.50 87.50 87.80 87.80 86.50 NS 86.50 86.50 87.60 86.50 1.0 86.50 86.60 NS 1.0 87.50 68.60 68.60 68.60 87.80 86.60 NS 1.0 87.60 87.60 87.70 87.70 87.70 87.70 NS 1.0 87.80 87.70 87.90 87.70 87.70 87.80 NS 1.0 87.80 87.80 87.80 87.80 87.90 87.80 NS 1.0 87.80 87.80 87.90 87.90 88.90 88.90 NS 1.0 88.90 .80 .80 CALI 1.0 93.85 1437.00 **VEL1** 1.0 0.00 0.00 1.27 .73 2.65 2.07 2.81 VELI 1.0 2.63 4.03 1.53 2.96 3.07 3.41 1.76 3.17 3.66 1.30 2.50 3.39 VEL1 1.0 1.46 1.71 1.14 2.39 2.81 1.81 3.07 .08 1.97 .44 1.12 1.38 VELI 1.0 3.40 4.78 3.52 4.49 4.98 5.02 5.90 5.08 3.80 4.05 3.04 .24 VEL1 1.0 CAL2 1.0 92.87 589.00 VEL2 1.0 .48 .53 .76 VEL2 1.0 1.17 2.00 1.39 .21 1.51 2.12 1.72 1.25 2.83 .22 1.46 1.65 VEL2 1.0 .17 .44 .69 ..86 .70 .19 .65 .18 .24 .50 .17 .45 VEL2 1.0 1.48 3.10 3.12 2.16 3.19 3.60 4.55 3.75 2.94 .32 1.54 0.00 VEL2 1.0 CAL3 1.0 92.44 311.00 VEL3 1.0 .20 0.00 VEL3 1.0 .45 1.19 1.03 .49 1.06 .63 .54 .72 2.23 .08 2.02 1.35 VEL3 1.0 .50 .57 .50 - .01 .52 .39 .35 .61 1.01 .23 VEL3 1.0 1.26 1.68 1.80 1.42 1.40 1.27 2.10 2.98 1.64 .74 .37 **VEL3** 1.0 XSEC 2.0 194.0 .50 88.80 .00250 2.0-12.0100.5 0.097.08 10.094.58 13.594.39 15.0 94.2 20.0 94.1 2.0 25.0 93.8 30.0 93.5 35.0 93.4 40.0 93.2 45.0 93.0 50.0 92.8 2.0 55.0 92.4 60.0 91.8 65.0 91.4 70.0 91.1 75.0 90.6 80.0 89.7 2.0 85.0 89.3 90.0 89.0 95.0 88.6100.0 88.5105.0 88.4110.0 87.5 2.0115.0 87.7120.0 87.8125.0 87.3130.0 87.6135.0 88.0140.0 87.8 2.0146.5 87.8151.5 88.7156.5 89.0161.5 90.5166.5 92.2168.894.39

Appendix Bl - IFG4 Input File, Walsh Site (continued)

2.0173	.595.081	82.510).5				
NS	2.0	.80	.80	77.90	76.60	76.60	65.70
NS	2.0	65.70	65.70	65.70	65.70	65.70	65.70
NS	2.0	65.70	65.70	65.70	65.80	65.70	65.80
NS	2.0	65.80	65.80	67.60	76.60	76.60	79.80
NS	2.0	79.70		88.90	88.90	88.90	88.90
NS	2.0	88.90		88.90	88.90		88.90
NS	2.0	.80	.80				
CAL1	2.0		1437.00				
VELI	2.0			0.00.	58 1.21 1.5	57 1.72 1.8	35 1.98 2.05
VELI		97 2.03	2.20 2.15	5 2.06 1.0	55 1.72 1.3	37 1.43 1.5	51 1.49 1.62
VELI							0.00 0.00
VEL1	2.0						
CAL2	2.0	93.31	589.00				
VEL2	2.0				.52 .47	7.68	
VEL2	2.0 .7	0.77	.87 .5	9 1.12	.95 1.45	1.51 1.61	1.78 1.88 1.84
VEL2						.92 .56	
VEL2	2.0						
CAL3	2.0	92.75	311.00				
VEL3	2.0						
VEL3		00 .24	.29 .3	9.37.5	4 .53 .69	.87 1.06	5 .94 1.19
VEL3					3 .57 .42		
VEL3	2.0						
XSEC	3.0	113.0.	50 88.	80 .002	250		
	3.0 -18					4.47 20.	0 93.1 25.0 92.8
	3.0 3	0.0 92.5	35.0 92	.0 40.0	91.5 45.0	91.5 50.	0 91.5 55.0 91.2
					91.0 75.0		0 90.9 85.0 90.7
							86.9115.0 86.1
	3.0120	0.0 85.0	125.0 83	.0130.0	84.6135.0	85.5140.0	86.8146.5 89.3
	3.0151	.5 90.4	156.5 93	.2160.39	4.47162.4	97.18171.	4100.5
NS	3.0	.80	78.50	78.50	76.80	46.80	46.80
NS	3.0	64.70	65.60	65.60	76.70	76.70	76.60
NS	3.0	65.80	65.80	65.90	65.90	65.70	65.60
NS	3.0	65.70	76.60	76.60	76.60	76.60	76.60
NS	3.0	76.60	76.60	88.90	88.90	88.90	88.90
NS	3.0	88.90	88.90	88.90	.80	.80	
CAU	3.0	94.47	1437.00				
VELI	3.0			.32 .3	87 1.01 1.	33 1.87 1	.96 2.45 2.52
VEL1	3.0 2.5	4 2.79	3.05 3.08	3.29 3.4	49 3.57 3.	44 3.37 3	.26 3.41 3.54
VELI	3.0 3.6	4 2.05	1.49 .73	.75 .3	.15	.21	
CAL2	3.0	93.34	589.00				
VEL2	3.0			0.00 0.	00 .31	.45 .72	.71 .90 .91
VEL2	3.0 .9	8 1.13	1.31 1.44	1.45 1.	36 1.37 1	.63 1.91 2	2.08 2.28 2.36
VEL2	3.0 2.0	6 1.08	.55 .18	.03	.2020 -	.36	
CAL3	3.0	92.78	311.00)			
VEL3	3.0					.25 .41 .4	
VEL3						1.16 1.59	1.54 1.41
VEL3	3.0 .9	95.65	.12 .12	1909	01		
XSEC	4.0		.50 90				
							94.9 25.0 94.8
							94.2 55.0 93.9
	4.0 60	.0 93.2	65.0 93.	8 70.0	93.7 75.0	93.1 80.0	92.9 85.0 92.6

4.0 90.0 92.4 95.0 92.2100.0 91.9105.0 91.1110.0 90.3115.0 89.4 4.0120.0 88.6125.0 87.0130.0 86.2135.0 86.7140.0 87.7146.5 91.2 4.0151.5 91.9156.5 94.2161.596.36164.597.91175.0103.2

NS	4.0 .80	.80	87.50	56.70	56.70	56.80
NS	4.0 56.70	56.80	65.60	65.70	86.90	65.70
NS	4.0 79.80	65.60	65.70	56.70	65.60	56.70
NS	4.0 65.70	56.70				76.70
NS	4.0 79.70	79.70	79.60	79.60	87.90	87.90
NS	4.0 87.90	87.90	87.90	.80	.80	
CAL1	4.0 96.36	1437.00				
VELI	4.0		.16 .94	4 1.20 1	.65 1.99 2	2.16 2.00 2.27
VEL1	4.01.416 2.22	2 1.95 2.0	8 2.63 3.1	6 3.09 3	.64 3.49	3.33 3.43 2.97
VEL1	4.0 2.88 1.98	3 2.04 2.6	61 2.76 1.8	1 .50	.54 0.00	
CAL2	4.0 95.18	589.0	00			
VEL2	4.0	0.00	.16 .28 .5	50.69.	83 .98 1	1.10
VEL2	4.0 .98 .28	1.22.80	1.14 1.30	1.36 1.9	92 1.67 1	1.90 1.93 2.10
VEL2	4.0 1.85 1.82	1.56 1.8	0 1.36 .38	.12 0.0	00	
CAL3	4.0 94.58	311.0	0			
VEL3	4.0		0.00 .17	.34 .34	.47 .3	5
VEL3	4.0 .62 .90	.65 .85	.92 .79	1.05 .94	1.00 .9	8 1.41 1.53
VEL3	4.0 1.33 1.08	1.26 .98	.66 .26	0.00		
XSEC	5.0 203.	0.50 91	.60 .002	250		
	5.0-17.0103.	2 0.098.2	1 7.096.45	5 10.0	95.7 15.0	95.0 20.0 94.7
	5.0 25.0 94.	5 30.0 94	.4 35.0 94	.1 40.0 9	94.2 45.0	94.0 50.0 93.8
	5.0 55.0 93.	8 60.0 93	.8 65.0 93	.7 70.0 9	93.5 75.0	93.4 80.0 93.1
	5.0 85.0 92.	8 90.0 92	.6 95.0 92	.5100.0	92.6105.	0 93.0110.0 93.1
	5.0115.0 93.	2120.0 93.	0125.0 9	2.6130.0	92.4135	5.0 92.0140.0 91.6
	5.0146.5 91.	8151.5 91.	7156.5 9	1.9161.5	92.5166	5.5 93.3171.5 95.0
	5.0176.5 96.					
NS	5.0 .80	.80	72.70	72.70	87.70	65.70
NS	5.0 56.60					
NS	5.0 56.60	56.70	65.60	65.60	65.70	65.80
NS	5.0 65.70		65.60	86.90	87.80	87.80
NS	5.0 86.70	65.70	65.70	65.80	56.80	65.70
NS	5.0 87.90				76.60	87.80
NS	5.0 87.70	88.90	.80			
CAL1	5.0 96.45	1437.00				
VELI	5.0	.55	.86 2.42	2.83 2.6	0 2.22 2.	95 2.87 3.07
VELI	5.0 3.17 3.26	2.71 3.45	3.23 3.53	3.33 2.8	38 2.50 2.	51 3.77 2.96
VEL1	5.0 3.04 2.84	2.84 3.00	2.72 2.90	3.12 2.8	9 3.07 2.	78 1.11 1.26
VELI	5.0 0.00					
CAL2	5.0 95.23	3 589.00				
VEL2	5.0		0.00	.65 1.	13 .99	1.46 1.91 1.81
VEL2	5.0 1.91 1.94	2.11 1.9	9 2.09 2.46	5 2.43 2.	26 2.64	2.51 2.30 2.06
VEL2						.64 .20 0.00
VEL2	5.0					
CAL1	5.0 94.61	311.00)			
VEL3	5.0			.31 1.0	9.64	.78 .87 1.06
VEL3		1.06 1.0	7 1.67 1.78			2.38 2.21 1.91
VEL3	5.0 1.25 1.25					
VEL3	5.0					
XSEC	6.0 176.0	.50 9	1.60 .00	250		

Appendix B1 - IFG4 Input File, Walsh Site (continued)

6.0 -7.0103.2 0.0100.0 1.896.59 5.0 94.6 10.0 94.3 15.0 93.6 6.0 20.0 93.3 25.0 93.4 30.0 93.2 35.0 93.4 40.0 93.6 45.0 93.5 6.0 50.0 93.5 55.0 93.4 60.0 93.5 65.0 93.4 70.0 93.5 75.0 93.5 6.0 80.0 93.4 85.0 93.6 90.0 93.5 95.0 93.7100.0 93.8105.0 93.8 6.0110.0 93.7115.0 93.9120.0 93.9125.0 94.2130.0 94.3135.0 94.4 6.0140.0 94.6146.5 94.2151.5 93.9156.5 93.5161.5 92.4164.0 91.9 6.0166.5 91.7169.0 91.6171.5 92.3176.5 94.6181.596.59186.0100.0 6.0192.0103.2 NS .80 6.0 .80 .10 87.70 87.70 87.50 NS 6.0 76.60 65.70 65.70 76.60 76.60 65.70 NS 65.70 65.50 65.50 6.0 65.70 65.70 65.50 NS 6.0 65.50 65.50 65.50 76.50 76.50 67.60 NS 6.0 67.60 87.50 76.50 56.50 56.50 76.50 NS 76.50 76.50 6.0 65.50 76.50 76.50 76.50 NS 6.0 76.50 .78.60 88.90 87.70 87.70 .80 NS 6.0 .80 CAL1 96.59 1437.00 6.0 VELI 1.29 1.51 1.49 2.29 2.40 2.89 2.96 3.15 2.69 6.0 VELI 6.0 3.85 4.07 3.93 4.09 3.98 3.72 3.90 3.98 3.56 3.78 3.20 3.25 6.0 2.96 2.73 3.09 3.02 3.29 2.96 3.02 2.66 2.77 2.72 2.20 2.20 VEL1 VEL1 6.0 1.96 1.57 .83 .14 CAL2 6.0 95.37 589.00 VEL2 6.0 .21 .62 .14 1.58 1.53 1.71 2.20 1.71 1.70 VEL2 6.0 .17 2.59 3.05 3.12 3.24 3.17 2.86 2.97 2.56 2.70 2.42 2.24 VEL2 6.0 2.08 1.36 2.04 2.06 1.93 1.96 1.75 1.44 1.24 1.41 1.22 1.82 VEL2 6.0 .89 1.35 .50 .14 CAL3 6.0 94.80 311.00 VEL3 6.0 .10 .22 1.20 .34 1.26 1.20 1.14 1.52 1.47 VEL3 6.0 1.72 1.95 2.36 2.61 2.49 2.31 2.56 2.26 2.18 2.08 2.03 1.60 VEL3 6.0 1.50 .67 1.32 1.33 1.30 1.05 1.46 .93 .43 .00 .94 1.26 VEL3 6.0 1.67 1.97 1.75 .91 XSEC 7.0 221.0.50 91.00 .00250 7.0-10.0102.3 0.098.48 2.095.85 5.0 93.3 10.0 93.1 15.0 91.5 7.0 20.0 91.0 25.0 91.7 30.0 91.9 35.0 92.0 40.0 92.5 45.0 92.8 7.0 50.0 92.8 55.0 93.7 60.0 93.1 65.0 93.2 70.0 93.2 75.0 93.3 7.0 0.0 93.5 85.0 93.6 90.0 93.5 95.0 93.5100.0 93.6105.0 93.6 7.0110.0 93.8115.0 93.6120.0 93.4125.0 93.4130.0 93.2135.0 93.0 7.0140.0 93.0146.5 92.8151.5 92.6156.5 93.2159.895.85162.598.18 7.0170.0102.3 NS .80 .80 87.90 87.90 87.90 7.0 .80 7.0 87.90 65.70 65.70 56.60 NS 76.60 76.60 NS 7.0 56.70 56.60 56.50 56.60 45.60 67.70 NS 7.0 67.80 67.50 67.50 65.70 65.60 56.60 NS 7.0 56.70 64.60 52.60 52.70 65.70 65.70 NS 7.0 65.60 87.70 87.70 65.60 87.70 .80 NS 7.0 .80 CAU 7.0 95.85 1437.00 VEL1 7.0 1.80 2.32 2.56 4.02 4.76 5.41 4.67 4.90 5.30 VEL1 7.0 4.86 4.67 4.53 4.83 3.81 3.22 3.40 3.00 2.94 3.36 2.83 2.91 VEL1 7.0 2.57 2.69 2.32 2.52 2.27 2.43 2.32 2.28 1.69 0.00 VEL1 7.0 CAL2 .7-0 94.65 589.00

VEL2 7.0 55 1.30 1.80 3.39 3.98 4.63 4.03 4.09 3.11 VEL2 7.0 2.87 2.97 2.90 2.21 2.08 1.68 1.62 1.52 1.31 1.25 1.03 .76 VEL2 7.0 .79 .92 .78 .86 .84 1.09 1.32 .92 .55 0.00 VEL2 7.0 CAL3 7.0 94.10 311.00 VEL3 7.0 .21 .51 1.45 2.69 3.14 3.68 3.23 2.78 2.51 VEL3 7.0 2.12 1.88 1.74 1.41 1.43 1.04 1.31 1.33 .63 .62 .74 .94 VEL3 7.0 .77 .52 .26 .33 .30 .23 .31 .33 .23 0.00 VEL3 7.0 XSEC 8.0 93.50 .00250 261.0 .50 8.0 - 4.0102.3 0.0100.5 3.396.41 10.0 95.2 20.0 93.9 30.0 93.5 8.0 40.0 93.6 50.0 93.6 60.0 93.7 65.0 93.8 70.0 93.8 75.0 93.9 8.0 80.0 93.7 85.0 93.9 90.0 94.0 95.0 94.0100.0 94.2110.0 94.3 8.0120.0 94.4130.0 94.7140.0 94.8151.5 95.2161.5 95.0171.6 95.3 8.0181.5 94.8191.5 95.2197.8 96.4203.097.98212.0102.3 NS 8.0 .80 .80 .10 82.80 68.80 65.70 NS 8.0 65.60 65.80 65.70 56.70 56.70 56.70 NS 8.0 56.60 65.70 56.80 56.60 65.80 65.70 NS 8.0 65.60 56.80 65.60 65.60 65.60 65.60 76.80 87.80 87.80 .80 .80 NS 8.0 CAL1 8.0 96.41 437.00 VELI 1.70 2.98 4.06 4.92 4.86 5.12 5.35 4.97 5.02 8.0 VELI 8.0 4.69 5.47 5.07 5.10 4.42 4.15 4.15 3.98 3.57 2.70 2.57 2.72 VELI 8.0 2.81 1.37 589.00 CAL2 8.0 95.54 VEL2 8.0 .50 1.72 3.00 2.89 3.78 4.12 3.92 3.52 3.55 8.0 3.23 3.27 3.35 3.52 2.69 3.07 2.54 2.56 1.74 .20 1.71 1.23 VEL2 VEL2 8.0 1.08 .11 CAL3 8.0 95.12 311.00 VEL3 8.0 1.34 1.12 2.91 3.23 2.40 2.95 2.80 2.91 VEL3 8.0 2.92 3.11 2.92 2.47 2.25 2.07 1.68 .59 .49 .20 0.00 VEL3 8.0 .29 .20 ENDJ

Appendix Bl - IFG4 Input File, Walsh Site (continued)

Transe	ct Numb	er							
	1	2	3	4	5	6	-	7	8
Discha	rge								
	1605	1181	1592	1499	1483	3 1494	149	97	1562
	614	653	613	649	582	2 588	55	57	621
	295	343	309	360	308	8 313	28	33	323
Stage									
U	93.85	94.39	94.47	96.36	96.4	5 96.5	9 95.	85	96.41
	92.87	93.31	93.34	95-18	95.2	23 95.3	7 94.	.65	95.54
	92.44	92.75	92.78	94.58	94.6	61 94.8	0 94.	10	95.12
								-	
Plottin	g Stage								
	5.05	5.59	5.67	5.66	4.85	4.99	4.85	2.9	1
	4.07	4.51	4.54	4.48	3.63	3.77	3.65	2.0	
	3.64	3.95	3.98	3.88	3.01	3.20	3.10	1.6	
	5.01	5.70	2.70	2.00	5.01	5.20	2.110	1.0	-
Ratio c	of measur	red versu	s predict	ed disch	arge				
	0.966	0.958	0.982	0.989	0.99	0.98	7 0.9	84	0.991
	1.105	1.120	1.051	1.031	1.01	4 1.03	6 1.0	46	1.023
	0.936	0.932	0.969	0.982	0.99	0.97	8 0.9	72	0.986
Mean e	error of s	tage/disc	harge re	lationshi	p for ca	lculated	Q		
	6.60	7.49	3.30	2.00	0.92	2.35	3.00	1.4	.9
Mean e	error of s	tage/disc	harge rel	lationshi	p for gi	ven Q			
	4.98	2.36	3.00	2.42	1.65	3.19	3.46	1.5	8
Stage/c	lischarge	e relation	ship (S v	s Q) S=A	4*Q**I	B+SZF			
A=0.1					5261	0.6148	0.6671	0	.1874
B = 0.1					3040	0.2860	0.2707).3725
SZF= 8					91.60	91.60	90.10		93.50
<u> </u>				21.0 2		/1.00	2011	-	
Beta co	oefficien	t log/log	discharg	e/stage r	elations	ship			
	5.07	3.49	4.60	3.76	3.29	3.50	3.69	2.6	8
	2.07	2		2.70	2/	2.20	2.07		-

METHOW RIVER - WALSH SITE Calibration Information for Calculated Discharge

TRANSECT	VERTIC	AL VEL	CHANGE
1	10	3	0.00 to 0.20
1	18	3	0.43 to 0.63
1	36	3	0.03 to 0.23
1	42	1	5.22 to 5.02
1	42	3	1.07 to 1.27
2	11	3	0.00 to 0.20
2	34	3	0.05 to 0.25
2	35	3	0.01 to 0.21
4	9	3	0. 14 to 0.34
5	7	3	0.11 to 0.31
5	34	3	0. 10 to 0.30
6	5	3	0.02 to 0.22
6	7	3	0. 14 to 0.34
6	33	3	0.23 to 0.43
6	34	3	0.23 to 0.00
6	35	1	2.40 to 2.20
6	35	3	0.74 to 0.94
6	36	3	1.06 to 1.26
6	37	3	1.47 to 1.67
6	38	3	1.77 to 1.97
6	39	3	1.55 to 1.75
7	29	3	0. 10 to 0.30
7	30	3	0.03 to 0.23
7	31	3	0.11 to 0.31
7	32	3	0. 13 to 0.33
7	33	3	0.03 to 0.23
8	20	1	4.18 to 3.98
8	20	3	0.39 to 0.59
8	22	3	0.00 to 0.20
8	25	3	0.09 to 0.29
8	26	3	0.00 to 0.20

Appendix B3 - Data Changes for Calibration, Walsh Site

	oeny majasiment	i actoris, 11
Transect	Discharge	VAF
1.00	3590.0	0.938
1.00	1437.0	1.022
1.00	589.0	1.024
1.00	311.0	1.006
1.00	124.0	0.960
2.00	3590.0	0.777
2.00	1437.0	0.990
2.00	589.0	1.046
2.00	311.0	0.989
2.00	124.0	0.833
3.00	3590.0	0.927
3.00	1437.0	0.994
3.00	589.0	1.006
3.00	311.0	1.005
3.00	124.0	1.106
4.00	3590.0	0.872
4.00	1437.0	1.000
4.00	589.0	1.024
4.00	311.0	0.984
4.00	124.0	0.860
5.00	3590.0	0.945
5.00	1437.0	0.996
5.00	589.0	1.005
5.00	311.0	0.997
5.00	124.0	0.977
6.00	3590.0	1.014
6.00	1437.0	1.002
6.00	589.0	0.988
6.00	311.0	1.019
6.00	124.0	1.233
7.00	3590.0	0.883
7.00	1437.0	0.992
7.00	589.0	1.014
7.00	311.0	0.994
7.00	124.0	0.930
8.00	3590.0	0.855
8.00	1437.0	0.992
8.00	589.0	1.018
8.00	311.0	1.005
8.00	124.0	0.941

Appendix B4 Velocity Adjustment Factors, Walsh Site

APPENDIX C

KOA SITE CALIBRATION INFORMATION

METHOW RIVER KOA SITE at river mile 49.0 WRIA 48 measured on 8/2/1991-1135 cfs, 8/29-457 cfs, 9/25-229 cfs 10C 000000200000000000000 QARD 92.0 OARD 229.0 QARD 457.0 QARD 1135.0 QARD 2838.0 XSEC 1.0 0.0 .50 92.50 .00250 1.0 -7.0101.8 0.097.85 3.396.09 5.0 93.4 10.0 93.4 15.0 93.1 1.0 20.0 92.5 25.0 92.6 30.0 92.8 35.0 92.9 40.0 92.9 45.0 93.0 1.0 50.0 93.0 55.0 93.3 60.0 93.3 65.0 93.6 70.0 93.7 75.0 93.9 1.0 80.0 94.0 85.0 94.2 90.0 94.4 95.0 94.7100.0 94.7105.0 94.6 1.0110.0 94.7115.0 94.7120.0 94.9125.0 94.9130.0 94.9135.0 95. 1 1.0140.0 95.1146.5 95.0151.5 95.2156.5 95.2161.5 95.3165.096.09 1.0168.396.45175.3101.8 NS 1.0 .80 .80 .10 78.60 68.60 87.70 NS 1.0 87.70 87.50 67.80 67.80 78.60 76.50 NS 1.0 76.50 57.60 75.50 65.50 87.50 75.60 78.60 68.60 NS 1.0 76.60 76.70 86.50 78.70 1.0 87.60 67.60 76.60 68.50 NS 76.60 76.60 NS 1.0 87.50 87.50 87.70 87.70 87.50 87.70 NS .80 1.0 .80 1.0 96.09 1135.00 CAL1 VEL1 1.0 1.49 2.97 3.37 3.20 5.03 5.43 5.14 5.16 5.20 VELI 1.0 4.83 4.42 4.41 4.49 3.04 3.49 2.88 2.75 2.70 2.07 2.22 2.32 VEL1 1.0 2.02 1.95 2.05 1.72 1.71 1.75 1.67 1.53 1.67 1.41 1.41 VELI 1.0 CAL2 1.0 95.25 457.00 VEL2 1.0 .98 2.05 2.54 2.01 3.00 3.01 3.02 2.74 2.63 VEL2 $1.0\ 2.22\ 2.56\ 3.00\ 2.59\ 1.89\ 1.76\ 1.34\ 1.52\ 1.56\ 1.35\ 1.13\quad .98$ VEL2 1.0 .90 .67 .41 .38 .52 .36 .53 0.00 VEL2 1.0 CAL 1.0 94.72 229.00 VEL3 .81 1.57 1.65 1.95 1.85 2.40 2.17 2.43 1.90 1.0 VEL3 1.0 1.89 2.00 2.19 1.41 1.30 1.05 .72 .31 .33 0.00 0.00 VEL3 1.0 0.00 0.00 0.00 VEL3 1.0 XSEC 2.0 470.0 .50 93.10 .00250 2.0 -5.0101.8 0.098.95 3.596.73 5.0 95.9 10.0 95.5 15.0 93.8 2.0 20.0 93.8 25.0 93.1 30.0 93.2 35.0 93.2 40.0 93.3 45.0 93.5 2.0 50.0 93.8 55.0 93.8 60.0 94.1 65.0 94.1 70.0 94.4 75.0 94.5 80.0 94.5 85.0 94.7 90.0 94.9 95.0 95.0100.0 95.1105.0 95.2 2.0 2.0110.0 95.0115.0 95.7120.0 95.3125.0 95.5130.0 95.5135.0 95.7 2.0140.0 95.7146.5 95.8151.5 96.6151.796.73164.499.65169.4101.8 NS 2.0 .80 .80 78.70 87.80 87.70 87.70 NS 2.0 87.70 76.80 76.80 76.80 76.80 76.70 NS 2.0 76.70 76.70 67.70 67.70 76.70 76.70 76.80 NS 2.0 67.70 76.80 67.70 76.80 76.80 NS 2.0 76.80 76.80 76.80 67.70 67.70 76.80 NS 2.0 76.70 67.70 62.60 62.60 .80 .80 CAL1 2.0 96.73 1135.00

VELI 2.00.00 1.20 2.25 4.26 4.98 4.33 4.88 4.39 4.96 **VEL**1 2.0 4.86 4.13 3.70 3.68 3.47 3.28 2.91 2.79 2.52 2.77 2.42 2.84 **VEL1** 2.0 2.67 2.38 2.31 2.04 1.61 1.32 1.31 .78 0.00 CAL2 2.0 95.82 457.00 VEL2 2.0 0.00 1.42 2.72 3.41 3.09 3.37 2.76 3.19 VEL2 2.0 3.41 2.75 2.69 2.45 2.38 2.32 1.28 1.36 1.18 1.13 1.29 .95 VEL2 2.0 .65 .80 .87 .61 .24 0.00 0.00 CAL3 2.0 95.24 229.00 VEL3 2.0 2.06 2.76 2.54 3.37 2.96 2.98 2.46 VEL3 2.0 2.14 2.04 1.79 1.43 1.30 .80 .68 .44 .24 0.00 .36 0.00 VEL3 2.0 .33 XSEC 3.0 352.0 .50 95.20 .00250 3.0 -6.098.75 0.098.75 3.697.89 5.0 96.4 10.0 95.6 15.0 95.3 3.0 20.0 95.2 25.0 95.8 30.0 96.2 35.0 96.0 40.0 96.2 45.0 96.3 3.0 50.0 96.2 55.0 96.1 60.0 96.2 65.0 96.2 70.0 96.0 75.0 96.0 3.0 80.0 95.7 85.0 95.5 90.0 95.5 95.0 95.7100.0 95.6105.0 95.5 3.0110.0 95.6115.0 95.5120.0 95.4125.0 95.4130.0 95.5135.0 95.6 3.0140.0 95.7146.5 95.8151.5 95.8156.5 96.3161.5 96.6166.5 96.9 3.0168.097.89168.798.35178.7101.8 NS 3.0 .80 .80 .80 87.60 87.80 .50 NS 3.0 76.70 76.70 65.70 65.70 65.60 65.60 NS 3.0 67.70 67.70 65.60 65.60 78.80 76.80 NS 3.0 76.80 76.80 76.70 76.70 76.80 76.80 NS 3.0 76.70 76.60 76.70 76.80 67.70 67.80 NS 3.0 67.70 67.80 76.60 78.70 87.60 87.70 NS 3.0 .30 .80 .80 CAU 3.0 97.89 1135.00 **VEL1 3.0** 1.13 .97 .43 3.00 3.24 3.39 3.31 2.90 3.19 VELI 3.0 3.07 2.63 3.25 3.42 3.48 4.01 4.05 3.71 4.10 4.43 4.28 3.94 VEL1 3.0 3.77 3.89 3.51 3.70 3,40 3.73 3.60 3.58 3.00 3.15 3.14 1.07 **VEL1 3.0** CAL2 3.0 97.14 457.00 **VEL2 3.0** .74 .81 1.53 2.19 1.97 1.84 1.57 1.63 1.74 VEL2 3.0 1.80 2.09 2.17 2.58 2.36 2.70 2.23 2.80 1.99 3.11 3.18 2.62 VEL2 3.0 2.31 2.59 3.05 2.56 2.45 2.51 2.76 2.51 2.48 .56 1.13 .18 VEL2 3.0 CAL3 3.0 96.73 229.00 VEL3 3.0 .19 .32 .98 .62 .77 .95 .80 1.90 VEL3 3.0 1.65 1.62 1.53 1.46 2.26 1.87 1.71 2.20 1.04 2.21 2.90 2.26 VEL3 3.0 2.53 2.13 2.43 2.11 2.15 1.68 2.23 1.93 1.16 .20 0.00 VEL3 3.0 XSEC 4.0 498.0.50 93.70 .00250 4.0 -8.0104.8 0.098.24 3.596.45 5.0 96.0 10.0 94.5 15.0 94.0 4.0 20.0 94.0 25.0 94.0 30.0 93.9 35.0 93.7 40.0 93.7 45.0 93.7 4.0 50.0 93.9 55.0 93.9 60.0 94.0 65.0 94.3 70.0 94.3 75.0 94.4 4.0 80.0 94.3 85.0 94.5 90.0 94.3 95.0 94.4100.0 94.5105.0 94.6 4.0110.0 94.4115.0 94.5120.0 94.4125.0 94.7130.0 94.6135.0 94.7 4.0140.0 94.7146.5 94.6151.5 94.4156.5 94.5161.5 94.6166.5 94.8 4.0172.997.84186.9104.8 NS 4.0 .80 .80 87.60 87.60 87.60 87.60 NS 4.0 78.50 65.70 65.70 86.50 76.60 76.60 NS 4.0 76.50 76.50 76.60 76.70 76.50 76.50

Appendix C1 - IFG4 Input File, KOA Site (continued)

Appendix Cl - IFG4 Input File, KOA Site (continued)

NS 4.0 75.60 75.60 78.60 57.50 67.50 67.50 NS 4.0 67.60 67.50 67.50 68.50 68.50 68.50 NS 4.0 68.50 78.60 78.60 76.60 78.60 78.60 4.0 NS .10 .80 CAL1 4.0 96.45 1135.00 VELI 4.0 .47 1.76 3.76 4.03 3.89 4.77 5.01 4.29 4.54 VEL1 4.0 4.60 3.74 4.53 3.97 3.97 3.63 3.28 3.75 3.15 2.58 3.39 3.02 VELI 4.0 2.33 2.67 2.43 2.38 2.62 2.42 2.58 2.38 2.02 2.10 2.04 1.38 VEL1 4.0 CAL2 4.0 95.65 457.00 VEL2 4.0 1.00 2.33 2.91 3.03 3.43 2.82 2.82 2.90 VEL2 4.0 3.24 3.35 2.85 2.85 2.16 2.15 2.26 1.96 1.96 1.88 1.91 1.79 VEL2 4.0 1.82 1.37 1.14 1.17 1.21 1.00 .95 .99 .97 .66 .81 .14 VEL2 4.0 CAL3 4.0 95.26 229.00 VEL3 4.0 .74 1.75 2.35 2.11 2.37 2.32 2.06 2.36 VEL3 4.0 2.27 2.19 1.76 1.97 1.70 1.54 1.56 1.52 1.43 1.52 .83 1.45 VEL3 4.0 .99 1.08 .69 .81 .77 .26 .58 .51 .57 .30 .35 .05 VEL3 4.0 XSEC 5.0 253.0 .50 93.70 .00250 5.0 -7.0104.8 0.099.64 3.396.85 5.0 95.2 10.0 94.2 1.0 94.0 5.0 20.0 93.5 25.0 93.1 30.0 92.7 32.5 92.3 35.0 92.2 37.5 92.3 5.0 40.0 92.4 42.5 92.7 45.0 92.8 50.0 93.2 55.0 93.5 60.0 93.8 5.0 65.0 94.0 70.0 94.0 75.0 94.1 80.0 94.3 85.0 94.4 90.0 94.5 5.0 95.0 94.6100.0 94.7105.0 94.6110.0 94.9115.0 95.0120.0 95.2 5.0125.0.95.4130.0 95.5135.0 95.6140.0 95.6146.5 95.8151.5 96.1 5.0152.796.85155.598.24190.5104.8 .80 NS 5.0 .80 87.80 87.80 87.60 87.60 NS 5.0 87.60 87.80 87.80 87.80 87.60 67.60 NS 5.0 67.60 67.60 87.60 76.50 76.50 75.70 75.70 75.70 NS 5.0 75.70 85.60 68.60 86.60 NS 86.50 78.60 5.0 86.60 86.50 78.60 78.60 NS 5.0 78.60 78.60 78.60 78.60 78.60 78.60 NS 5.0 78.60 .80 .80 CAU 5.0 96.85 1135.00 **VEL1 5.0** .66 1.47 2.69 2.97 3.67 3.78 4.13 4.19 3.90 VEL1 5.0 3.58 4.14 4.14 3.85 4.16 3.86 3.60 3.04 2.90 2.87 3.00 2.19 VELI 5.0 2.52 2.62 2.30 1.89 2.37 2.30 2.27 1.96 1.48 1.97 1.73 .69 **VEL1 5.0** CAL2 5.0 457.00 96.01 VEL2 5.0 0.00 .69 1.49 1.75 1.87 2.25 2.93 2.32 2.40 VEL2 5.0 2.65 2.37 2.31 2.28 2.07 2.31 2.25 1.38 1.71 1.85 1.60 1.44 VEL2 5.0 1.25 1.44 1.29 .94 1.10 .48 .62 .54 .50 .51 .47 VEL2 5.0 CAL3 5.0 95.52 229.00 VEL3 5.0 0.00 .74 .71 1.04 1.50 1.58 1.75 1.54 1.51 VEL3 5.0 1.64 1.41 1.66 1.45 1.20 1.37 1.17 1.14 1.29 .64 .97 .96 VEL3 5.0 .61 .89 .37 .30 .38 0.00 0.00 VEL3 5.0 93.70 .00250 XSEC 6.0 290.0 .50 6.0 -9.0104.8 0.098.74 2.0 97.1 3.0 94.0 5.0 93.5 10.0 92.8 6.0 12.5 92.8 15.0 92.8 17.5 93.1 20.0 93.2 22.5 93.1 25.0 93.1

Appendix Cl - IFG4 Input File, KOA Site (continued)

6.0 27.5 92.9 30.0 92. 9 35.0 93.7 40.0 92.8 45.0 92.9 50.0 93.3 6.0 55.0 93.5 60.0 93. 5 65.0 93.6 70.0 93.8 75.0 94.2 80.0 94.1 6.0 85.0 94.3 90.0 94 .4 95.0 940100.0 94.8105.0 95.0110.0 95.4 6.0115.0 95.8120.0 95.9125.0 96.3130.0 97.0130.2 97.1136.197.94 6.0150.1104.8 NS 6.0 .80 .80 78.70 78.70 78.70 87.70 NS 6.0 87.60 87.70 87.80 87.80 87.80 87.80 NS 6.0 87.80 87.80 87.80 87.80 87.80 87.80 86.70 67.70 NS 6.0 87.60 87.60 86.70 67.70 NS 6.0 68.60 68.60 68.60 68.60 67.70 76.70 NS 6.0 78.60 78.60 76.70 72.70 72.70 .80 NS 6.0 .80 CAL1 6.0 97.10 1135.00 VEL1 6.0 .20 .65 2.72 3.32 3.07 3.19 3.35 3.39 3.02 VELI 6.0 3.65 3.78 3.87 3.83 3.87 4.20 3.95 4.43 4.04 3.30 3.19 2.51 VEL1 6.0 2.80 1.84 2.27 2.02 1.47 1.62 1.56 1.13 .51 0.00 VEL1 6.0 CAL2 6.0 96.20 457.00 VEL2 6.0 0.00 .36 .95 1.60 1.85 1.57 1.94 1.42 1.66 VEL2 6.0 1.72 1.89 1.98 2.04 2.12 2.20 2.51 2.57 2.06 1.81 1.73 1.71 VEL2 6.0 1.36 .82 1.14 .95 .85 .32 .28 0.00 **VEL2 6.0** CAL3 6.0 95.64 229.00 VEL3 6.0 .18 .19 .66 .91 .73 1.00 .89 1.09 .90 VEL3 6.0 1.24 1.27 1.18 1.37 1.13 1.58 1.68 1.59 1.29 1.15 1.26 1.18 VEL3 6.0 .54 .51 .51 .50 .27 0.00 VEL3 6.0 XSEC 7.0 231.0 .50 90.10 .00250 7.0 -5.0100.0 0.0 97.0 3.893.62 5.0 93.4 10.0 92.0 15.0 91.4 7.0 20.0 90.9 25.0 90.8 30.0 90.6 35.0 90.8 40.0 90.5 45.0 90.1 7.0 50.0 90.1 55.0 90.1 60.0 90.1 65.0 90.2 70.0 90.5 75.0 90.4 7.0 80.0 90.3 85.0 90.7 90.0 90.9 95.0 91.1100.0 91.7105.0 91.5 7.0110.0 92.7115.0 92.9120.0 93.1125.0 93.4128.093.62138.8 95.5 7.0163.8100.0 NS 7.0 87.70 .80 .80 78.60 87.60 78.60 87.80 78.80 87.60 NS 7.0 87.80 78.70 87.60 NS 7.0 87.60 87.70 76.80 76.70 76.80 76.80 NS 7.0 87.60 76.60 68.70 78.70 76.60 67.70 NS 7.0 87.80 87.70 87.70 87.60 78.70 .80 7.0 NS .80 CAL1 7.0 93.62 1135.00 **VEL1 7.0** 1.01 1.05 2.20 2.14 3.79 4.47 5.04 4.53 4.44 VEL1 7.0 4.89 5.30 5.39 5.45 5.34 3.83 2.65 2.87 1.58 2.33 2.25 1.94 VEL1 7.0 1.96 1.40 .44 .14 CAL2 7.0 92.60 457.00 VEL2 7.0 0.00 .79 1.15 2.08 2.21 3.34 2.88 3.27 VEL2 7.0 2.46 3.64 3.31 3.83 3.69 2.19 1.53 1.03 .71 .74 .62 .38 VEL2 7.0 0.00 CAL3 7.0 92.06 229.00 VEL3 7.0 0.00 .20 1.01 .79 1.71 2.21 1.79 VEL3 7.0 1.67 1.74 3.12 1.92 2.82 1.37 1.15 .60 .55 .42 .32 0.00 **VEL3 7.0**

Appendix C1 - IFG4 Input File, KOA Site (continued)

XSEC		.50 92.50 .		04 1 10 0 02	2 15 0 02 5
		0.0 97.1 .19		94.1 10.0 93	
		25.0 92.5 30.0		92.8 40.0 92	
		55.0 92.7 60.0			
		85.0 93.0 90.0			
	0.0110.000000	2115.0 93.3120			
		2145.0 94.3150).0 94.4155.0	94.7160.0 94	4.8165.095.46
	8.0168.2 94.9	9175.2100.0			
NS	8.0 .80	.80 .	10 76.80	86.70 87.	60
NS	8.0 76.70	87.60 87.	70 78.70	67.70 76.	70
NS	8.0 76.80	76.70 76.	70 76.70	67.70 67.	70
NS	8.0 67.70			67.80 67.	80
NS		67.70 67.		67.70 68.	
NS		76.70 76.	70 67.80	67.80 27.	80
NS	8.0 .80	.80			
CALl	8.0 95.46	1135.00			
VELI	8.0	1.53 2.6	5 2.44 2.84 3	3.65 3*82 3.61	3.27 3.29
VELI	8.0 3.58 3.65	3.63 3.48 2.9	1 3.43 3.17	2.89 2.94 3.26	2.84 3.22
VEL1	8.0 3.78 2.70	3.53 2.97 2.7	0 2.60 2.97	2.47 2.10 1.58	.45
VELI	8.0				
CAL2	8.0 94.66	457.00			
VEL2	8.0	.52 1.0	1 .90 1.82	2.43 1.87 2.21	2.12 1.85
VEL2	8.0 2.40 2.39	2.27 2.43 1.9	9 2.25 2.44	1.95 2.39 1.98	3 1.83 1.84
VEL2	8.0 2.09 1.92	2.03 1.67 1.32	2 .95 .58	0.00 0.00 0.00)
VEL2	8.0				
CAL3	8.0 94.25	229.00			
VEL3	8.0	0.00 .6	.81 1.46	1.75 1.63 1.64	1.76 1.46
VEL3	8.0 1.78 1.62	1.65 1.64 1.69	9 1.88 1.85	1.66 1.85 1.64	1.00 .98
VEL3	8.0 1.12 1.02	.84 .57 .3	0.00 0.00		
VEL3	8.0				
ENDJ					

		Calibra			ER - KOA for Calcul		charge
Transect Nu	ımber						
1	2	3	4	5	6	7	8
Discharge							
1141	1054	1093	1146	1160	1177	1106	1080
420	420	474	453	461	453	425	428
217	233	236	235	224	219	194	232
Stage							
96.09	96.73	97.89	96.45	5 96.85	5 97.10	93.62	95.46
95.25	95.82	97.14	95.65				
94.72	95.24	96.73	95.26				
Plotting S	tage						
3.59	3.63	2.69	2.75	3.15	3.40	3.52	2.96
2.75	2.72	1.94	1.95	2.31	2.50	2.50	2.16
2.73	2.12	1.53	1.56	1.82	1.94	1.96	1.75
2.22	2.17	1.55	1.50	1.02	1.74	1.70	1.75
Ratio of me	asured-vers	sus predic	ted disch	arge			
1.023	1.030	-	0.991	0	3 1.010	0.983	1.002
0.949	0.938	1.034				1.041	0.996
1.029	1.036	0.981				0.977	
Mean error	of stage/dis	scharge re	lationshi	n for cal	\mathbf{O} bated		
3.48	4.33	2.23	1.05	0.29	1.52	2.68	0.30
5.40	7.55	2.23	1.05	0.27	1.52	2.00	0.50
Mean error	of stage/dis	scharge re	lationshi	o for give	en 0		
0.98	-	0.77	2.66	0.21	1.44	1.13	2.18
Stage/discha	arge relatio	nshin (S s	r = 0	*∩**B.	±\$7F		
A = 0.4736	0	- ·	-	0.2984	0.3226	0.3287	0.2714
B = 0.2887				0.3339	0.3336	0.3379	0.3422
SZF = 92.5	93.10	95.20	93.70	93.70	93.70	90.10	92.50
521 - 72.5	75.10)5.20	<i>JJ</i> .70	<i>JJ</i> .70	<i>JJ.1</i> 0	70.10	12.30
Beta coeffic	eient log/log	g discharg	ge/stage re	elationsh	ip		
3.46		2.71	2.79	2.99	3.00	2.96	2.92

Appendix C2 - Summary of Calibration Details, KOA Site

Appendix	C3 - I	Data Cha	nges for	Calibration,	KOA Site
				,	

TRANSECT	VERTICAL	VEL	CHANGE
1	24	3	0.03 TO 0.00
1	31	2	0. 16 TO 0.36
2	23	3	0. 16 TO 0.36
2	24	3	0.05 TO 0.00
2	25	3	0. 13 TO 0.33
3	34	1	3.15 TO 2.95
3	34	2	0.56 TO 0.76
5	34	2	0.31 TO 0.51
5	35	2	0.27 TO 0.47
7	9	1	4.47 TO 4.27
7	9	3	0.59 TO 0.79

Transect	Discharge	VAF
1.00	92.0	0.934
1.00	229.0	0.996
1.00	457.0	1.017
1.00	1135.0	0.988
1.00	2838.0	0.898
2.00	92.0	0.895
2.00	229.0	0.996
2.00	457.0	1.031
2.00	1135.0	0.975
2.00	2838.0	0.813
3.00	92.0	1.050
3.00	229.0	1.004
3.00	457.0	1.004
3.00	1135.0	1.000
3.00	2838.0	0.942
4.00	92.0	1.014
4.00	229.0	1.000
4.00	457.0	1.004
4.00	1135.0	0.999
4.00	2838.0	0.948
5.00	92.0	0.910
5.00	229.0	0.991
5.00	457.0	1.019
5.00	1135.0	0.989
5.00	2838.0	0.865
6.00	92.0	0.955
6.00	229.0	0.997
6.00	457.0	1.011
6.00	1135.0	0.994
6.00	2838.0	0.922
7.00	92.0	0.932
7.00	229.0	0.993
7.00	457.0	1.018
7.00	1135.0	0.990
7.00	2838.0	0.888
8.00	92.0	0.953
8.00	229.0	0.992
8.00	457.0	1.010
8.00	1135.0	0.992
8.00	2838.0	0.922

Appendix C4 Velocity Adjustment Factors, KOA Site

APPENDIX D

WEMAN SITE CALIBRATION INFORMATION

Appendix Dl - IFG4 Input Files, Weeman Site

METHOW RIVER - WEEMAN SITE at river mile 59.0 WRIA 48 measured on 8/3/91 - 658 cfs, 8/16 - 380 cfs, 8/27 - 238 cfs, 9/26-79 cfs 00000020000100000000 IOC OARD 45.0 QARD 80.0 OARD 250.0 QARD 400.0 QARD 650.0 QARD 1300.0 XSEC 0.0.50 91.10 .00250 1.0 1.0-99.0100.7 -3.5100.7 0.0 97.5 5.594.897.5 94.2 10.0 93.1 1.0 12.5 92.4 15.0 92.0 17.5 91.2 20.0 91.0 22.5 91.1 25.0 91.0 1.0 27.5 91.1 30.0 91.3 32.5 91.5 35.0 91.6 40.0 92.2 45.0 92.5 1.0 50.0 92.9 55.0 93.1 60.0 93.3 65.0 93.4 70.0 93.5 75.0 93.7 1.0 80.0 93.9 85.0 94.0 90.0 94.2 95.0 94.3100.0 94.4105.0 94.4 1.0110.0 94.5115.0 94.6120.0 94.4125.0 94.4130.0 94.7135.0 94.7 1.0140.0 94.8146.5 94.8169.2 96.5269.2 96.5 NS 1.0 .80 .80 52.70 87.60 87.60 76.80 NS 1.0 76.80 76.80 76.80 76.70 67.70 65.70 65.70 NS 1.0 65.60 65.60 65.70 65.80 65.80 NS 65.70 65.70 65.60 65.70 65.80 76.60 1.0 NS 76.80 76.80 76.80 76.80 76.80 76.80 1.0 NS 76.70 76.60 66.90 66.90-65.80 0.1 76.50 1.0 NS 1.0 65.80 56.80 22.90 26.50 CAL1 94.89 658.00 1.0 VELI 1.0 .11 2.52 2.63 3.25 4.97 5.16 5.60 5.07 VELI 1.0 4.68 4.51 4.20 4.09 3.69 3.05 3.18 2.93 3.20 2.75 2.73 2.28 VELI 1.0 2.40 1.83 1.29 1.28 .41 .64 .30 .26 0.00 .20 .72 0.00 VEL1 1.0 0.00 0.00 CAL2 1.0 94.34 .380.00 VEL2 .37 1.27 1.62 3.07 4.09 4.46 4.80 4.65 1.0 VEL2 1.0 4.18 3.81 3.61 3.33 2.78 2.32 2.19 1.98 2.24 1.98 1.60 1.28 VEL2 1.0 1.26 .73 0.00 0.00 VEL2 1.0 CAL3 1.0 93.84 238.00 VEL3 .74 1.69 2.20 3.04 4.22 4.47 3.77 1.0 VEL3 1.0 3.19 3.33 3.32 2.68 2.28 1.45 1.34 .99 .83 .77 .70 0.00 VEL3 1.0 0.00 VEL3 1.0 79.00 CAL4 93.11 1.0 VEL4 1.0 1.10 1.57 1.90 2.02 1.73 VEIA 1.0 1.78 1.98 1.62 1.63 1.04 .44 .33 VEIA 1.0 VEIA 1.0 2.0 328.0 .50 92.20 .00250 XSEC 2.0-50.0 97.4 0.097.25 3.895.54 5.0 94.0 10.0 92.3 12.5 92.2 2.0 15.0 92.2 17.5 92.2 20.0 92.2 22.5 92.5 25.0 92.8 27.5 93.1 2.0 30.0 93.3 32.5 93.6 35.0 93.8 37.5 93.8 40.0 93.9 45.0 93.9 2.0 50.0 93.9 55.0 93.8 60.0 93.7 65.0 93.7 70.0 94.0 75.0 94.0 2.0 80.0 94.2 85.0 94.5 90.0 94.6 95.0 94.5100.0 94.3105.0 94.2 2.0110.0 93.9115.0 93.5117.5 93.2120.0 93.1122.5 93.2125.0 93.4 2.0130.0 94.3135.0 95.1152.7 97.3202.7 97.3252.7 97.4

Appendix D1 -	IFG4 Ir	nput Files, Wee	eman Site (con	tinued)f				
NS	2.0	.80	.80	.10	72.70	76.90	76.90	
NS	2.0	76.90	77.90	77.90	77.90	77.90	77.90	
NS	2.0	77.90	77.90	77.90	77.90	77.90	77.90	
NS	2.0	77.90	77.90	77.90	.77.90	77.90	77.90	
NS	2.0	77.90	77.90	77.90	77.90	77.90	77.90	
NS	2.0	77.90	77.90	77.90	77.90	77.90	77.90	
NS	2.0	77.90	77.90	77.90	72.30	62.50	62.50	
CAL1	2.0	95.54	658.00					
VEL1	2.0		.19	1.38 3.54	3.48 4.56	3.86 4.02	4.39 3.95	
VEL1	2.0	4.51 3.60	4.18 3.65	4.08 3.04	3.66 3.05	3.44 2.76	2.97 3.44	
VEL1	2.0	2.98 2.82	2.49 1.77	2.12 1.71	2.18 1.95	1.90 2.00	1.82 1.67	
VEL1	2.0	.96 .72			2110 1170	1.90 2.00	1102 1107	
CAL2	2.0	95.04	380.00					
VEL2	2.0	22.01	200.00	1.75 2.70	3.11 2.86	3.08 3.51	3.04 3.20	
VEL2	2.0	3.01 3.61	3.17 2.73	3.28 2.85	2.96 3.08	3.32 2.31	3.10 2.52	
VEL2	2.0	1.76 1.65	1.57.73	1.23.92	1.18 1.48	1.07 1.48	1.39 1.45	
VEL2	2.0	1.51.	1.57 .75	1.25 .72	1.10 1.10	1.07 1.10	1.57 1.15	
CAL3	2.0	94.66	238.00					
VEL3	2.0	74.00	230.00	1.20 2.43	3.15 3.18	3.38 3.24	3.36 3.96	
VEL3	2.0	3.22 2.83	2.85 3.00	2.87 3.00	2.18 2.90	2.36 2.47	2.08 2.39	
VEL3	2.0	1.85.82	.75.40	2.07 3.00	.34 .90	1.17 1.41	1.36 1.20	
VEL3	2.0	.78	.75.40	2.05 .52	.54.90	1.1/ 1.41	1.30 1.20	
CA14	2.0	.78 94.03	79.00					
VEL4	2.0	94.05	79.00	.80 2.89	2.63 2.83	2.73 2.19	1.76 2.63 E"f	
VEL4 VELA	2.0	1.21 1.35	1.00 1.44	.80 2.89	2.03 2.83 1.14 1.42	1.89 1.15	.88 .60 lyf	
VELA VEL4	2.0	0.00	1.00 1.44	.45	.20.17	.28 .19	.31 0.00	
VEL4	2.0	0.00		.45	.20.17	.20.19	.51 0.00	
VELA	20							
VELA	2.0	230.0	50.03.00.00	0250				
VELA XSEC	2.0 3.0	239.0	.50 93.90 .00		09.0 5	2 5 0 6 5	~"	60 0 06 1
	3.0	3.0 0.0	0 98.6 20.0 98.	.0 40.0		2.5 96.5	55.0 96.5	60.0 96.4
	3.0 3.0	3.0 0.0 65.0 95.7	0 98.6 20.0 98. 70.0 95.5	.0 40.0 75.0 95.0	80.0 94.9	85.0 94.6		60.0 96.4
	3.0 3.0 3.0	3.0 0.0 65.0 95.7 95.0 94.2100	0 98.6 20.0 98. 70.0 95.5 0.0 93.9105.0 9	.0 40.0 75.0 95.0 93.9110.0 93.9	80.0 94.9 115.0 93.9120.0	85.0 94.6 0 94.1 9'1	55.0 96.5	60.0 96.4
	3.0 3.0 3.0 3.012	3.0 0.0 65.0 95.7 95.0 94.2100 5.0 94.9130.0	0 98.6 20.0 98. 70.0 95.5 0.0 93.9105.0 9 94.8135.0 95.2	.0 40.0 75.0 95.0 93.9110.0 93.9 140.0 95.6145	80.0 94.9	85.0 94.6 0 94.1 9'1	55.0 96.5	60.0 96.4
XSEC	3.0 3.0 3.012 3.018	3.0 0.0 65.0 95.7 95.0 94.2100 5.0 94.9130.0 7.0 97.5212.4	0 98.6 20.0 98. 70.0 95.5 0.0 93.9105.0 9 94.8135.0 95.2 98.0237.4100.0	.0 40.0 75.0 95.0 93.9110.0 93.9 2140.0 95.6145 0	80.0 94.9 115.0 93.9120. .0 96.3150.0 96	85.0 94.6 0 94.1 9'1 5.5	55.0 96.5 90.0 94.4 ;,,	60.0 96.4
XSEC NS	3.0 3.0 3.012 3.018 3.0	3.0 0.0 65.0 95.7 95.0 94.2100 5.0 94.9130.0 7.0 97.5212.4 52.80	0 98.6 20.0 98. 70.0 95.5 0.0 93.9105.0 9 94.8135.0 95.2 98.0237.4100.0 65.60	.0 40.0 75.0 95.0 93.9110.0 93.9 1140.0 95.6145 0 65.50	80.0 94.9 115.0 93.9120. 0 96.3150.0 96 65.70	85.0 94.6 0 94.1 9'1 5.5 65.70	55.0 96.5 90.0 94.4 ;,, 76.60	60.0 96.4
XSEC NS NS	3.0 3.0 3.012 3.018 3.0 3.0 3.0	3.0 0.0 65.0 95.7 95.0 94.2100 5.0 94.9130.0 7.0 97.5212.4 52.80 76.60	0 98.6 20.0 98. 70.0 95.5 0.0 93.9105.0 9 94.8135.0 95.2 98.0237.4100.0 65.60 76.60	.0 40.0 75.0 95.0 93.9110.0 93.9 2140.0 95.6145 0 65.50 76.60	80.0 94.9 115.0 93.9120. .0 96.3150.0 96 65.70 65.50	85.0 94.6 0 94.1 9'1 6.5 65.70 65.50	55.0 96.5 90.0 94.4 ;,, 76.60 75.50	60.0 96.4
XSEC NS NS NS	3.0 3.0 3.012 3.018 3.0 3.0 3.0 3.0	3.0 0.0 65.0 95.7 95.0 94.2100 5.0 94.9130.0 7.0 97.5212.4 52.80 76.60 76.70	0 98.6 20.0 98. 70.0 95.5 0.0 93.9105.0 9 94.8135.0 95.2 98.0237.4100.0 65.60 76.60 78.60	.0 40.0 75.0 95.0 93.9110.0 93.9 2140.0 95.6145 0 65.50 76.60 87.60	80.0 94.9 115.0 93.9120. 0 96.3150.0 96 65.70 65.50 87.60	85.0 94.6 0 94.1 9'1 6.5 65.70 65.50 76.80	55.0 96.5 90.0 94.4 ;,, 76.60 75.50 76.70	60.0 96.4
XSEC NS NS NS NS	3.0 3.0 3.012 3.018 3.0 3.0 3.0 3.0 3.0	3.0 0.0 65.0 95.7 95.0 94.2100 5.0 94.9130.0 7.0 97.5212.4 52.80 76.60 76.70 78.50	0 98.6 20.0 98. 70.0 95.5 0.0 93.9105.0 9 94.8135.0 95.2 98.0237.4100.0 65.60 76.60 78.60 78.60 78.50	.0 40.0 75.0 95.0 93.9110.0 93.9 2140.0 95.6145 0 65.50 76.60	80.0 94.9 115.0 93.9120. .0 96.3150.0 96 65.70 65.50	85.0 94.6 0 94.1 9'1 6.5 65.70 65.50	55.0 96.5 90.0 94.4 ;,, 76.60 75.50	60.0 96.4
XSEC NS NS NS NS NS	3.0 3.0 3.012 3.012 3.018 3.0 3.0 3.0 3.0 3.0 3.0	3.0 0.0 65.0 95.7 95.0 94.2100 5.0 94.9130.0 7.0 97.5212.4 52.80 76.60 76.70 78.50 .80	0 98.6 20.0 98. 70.0 95.5 0.0 93.9105.0 9 94.8135.0 95.2 98.0237.4100.0 65.60 76.60 78.60 78.50 .80	.0 40.0 75.0 95.0 93.9110.0 93.9 2140.0 95.6145 0 65.50 76.60 87.60	80.0 94.9 115.0 93.9120. 0 96.3150.0 96 65.70 65.50 87.60	85.0 94.6 0 94.1 9'1 6.5 65.70 65.50 76.80	55.0 96.5 90.0 94.4 ;,, 76.60 75.50 76.70	60.0 96.4
XSEC NS NS NS NS CAL1	3.0 3.0 3.012 3.012 3.018 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	3.0 0.0 65.0 95.7 95.0 94.2100 5.0 94.9130.0 7.0 97.5212.4 52.80 76.60 76.70 78.50	0 98.6 20.0 98. 70.0 95.5 0.0 93.9105.0 9 94.8135.0 95.2 98.0237.4100.0 65.60 76.60 78.60 78.60 78.50	0 40.0 75.0 95.0 93.9110.0 93.9 1140.0 95.6145 0 65.50 76.60 87.60 78.50	80.0 94.9 115.0 93.9120. 0 96.3150.0 96 65.70 65.50 87.60 78.50	85.0 94.6 0 94.1 9'1 5.5 65.70 65.50 76.80 78.50	55.0 96.5 90.0 94.4 ;,, 76.60 75.50 76.70 78.50	60.0 96.4
XSEC NS NS NS NS CAL1 VEL1	3.0 3.0 3.012 3.012 3.018 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	3.0 0.0 65.0 95.7 95.0 94.2100 5.0 94.9130.0 7.0 97.5212.4 52.80 76.60 76.70 78.50 .80 96.52	0 98.6 20.0 98. 70.0 95.5 0.0 93.9105.0 9 94.8135.0 95.2 98.0237.4100.0 65.60 76.60 78.60 78.50 .80 658.00	.0 40.0 75.0 95.0 93.9110.0 93.9 1140.0 95.6145 0 65.50 76.60 87.60 78.50 .16	80.0 94.9 115.0 93.9120. 0 96.3150.0 96 65.70 65.50 87.60 78.50 1.08 1.65	85.0 94.6 0 94.1 9'1 5.5 65.70 65.50 76.80 78.50 2.94 4.15	55.0 96.5 90.0 94.4 ;,, 76.60 75.50 76.70 78.50 3.83 4.87	60.0 96.4
XSEC NS NS NS NS CAL1 VEL1 VEL1	3.0 3.0 3.012 3.012 3.018 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	3.0 0.0 65.0 95.7 95.0 94.2100 5.0 94.9130.0 7.0 97.5212.4 52.80 76.60 76.70 78.50 .80	0 98.6 20.0 98. 70.0 95.5 0.0 93.9105.0 9 94.8135.0 95.2 98.0237.4100.0 65.60 76.60 78.60 78.50 .80	0 40.0 75.0 95.0 93.9110.0 93.9 1140.0 95.6145 0 65.50 76.60 87.60 78.50	80.0 94.9 115.0 93.9120. 0 96.3150.0 96 65.70 65.50 87.60 78.50	85.0 94.6 0 94.1 9'1 5.5 65.70 65.50 76.80 78.50	55.0 96.5 90.0 94.4 ;,, 76.60 75.50 76.70 78.50	60.0 96.4
XSEC NS NS NS NS CAL1 VEL1 VEL1 VEL1	$\begin{array}{c} 3.0\\ 3.0\\ 3.0\\ 3.012\\ 3.018\\ 3.0\\ 3.0\\ 3.0\\ 3.0\\ 3.0\\ 3.0\\ 3.0\\ 3.0$	3.0 0.0 65.0 95.7 95.0 94.2100 5.0 94.9130.0 7.0 97.5212.4 52.80 76.60 76.70 78.50 .80 96.52 5.02 5.21	0 98.6 20.0 98. 70.0 95.5 0.0 93.9105.0 9 94.8135.0 95.2 98.0237.4100.0 65.60 76.60 78.60 78.50 .80 658.00 4.99 5.67	.0 40.0 75.0 95.0 93.9110.0 93.9 1140.0 95.6145 0 65.50 76.60 87.60 78.50 .16	80.0 94.9 115.0 93.9120. 0 96.3150.0 96 65.70 65.50 87.60 78.50 1.08 1.65	85.0 94.6 0 94.1 9'1 5.5 65.70 65.50 76.80 78.50 2.94 4.15	55.0 96.5 90.0 94.4 ;,, 76.60 75.50 76.70 78.50 3.83 4.87	60.0 96.4
XSEC NS NS NS NS CAL1 VEL1 VEL1 VEL1 VEL1 CAL2	$\begin{array}{c} 3.0\\ 3.0\\ 3.0\\ 3.012\\ 3.018\\ 3.0\\ 3.0\\ 3.0\\ 3.0\\ 3.0\\ 3.0\\ 3.0\\ 3.0$	3.0 0.0 65.0 95.7 95.0 94.2100 5.0 94.9130.0 7.0 97.5212.4 52.80 76.60 76.70 78.50 .80 96.52	0 98.6 20.0 98. 70.0 95.5 0.0 93.9105.0 9 94.8135.0 95.2 98.0237.4100.0 65.60 76.60 78.60 78.50 .80 658.00	.0 40.0 75.0 95.0 93.9110.0 93.9 1140.0 95.6145 0 65.50 76.60 87.60 78.50 .16	80.0 94.9 115.0 93.9120. 0 96.3150.0 96 65.70 65.50 87.60 78.50 1.08 1.65 4.98 4.02	85.0 94.6 0 94.1 9'1 5.5 65.70 65.50 76.80 78.50 2.94 4.15 2.58 1.21	55.0 96.5 90.0 94.4 ;,, 76.60 75.50 76.70 78.50 3.83 4.87 .66	60.0 96.4
XSEC NS NS NS NS CAL1 VEL1 VEL1 VEL1 VEL1 CAL2 VEL2	$\begin{array}{c} 3.0\\ 3.0\\ 3.0\\ 3.012\\ 3.018\\ 3.0\\ 3.0\\ 3.0\\ 3.0\\ 3.0\\ 3.0\\ 3.0\\ 3.0$	3.0 0.0 65.0 95.7 95.0 94.2100 5.0 94.9130.0 7.0 97.5212.4 52.80 76.60 76.70 78.50 .80 96.52 5.02 5.21 96.21	0 98.6 20.0 98. 70.0 95.5 0.0 93.9105.0 9 94.8135.0 95.2 98.0237.4100.0 65.60 76.60 78.60 78.50 .80 658.00 4.99 5.67 380.00	.0 40.0 75.0 95.0 93.9110.0 93.9 1140.0 95.6145 0 65.50 76.60 87.60 78.50 .16 5.40 4.98	80.0 94.9 115.0 93.9120. 0 96.3150.0 96 65.70 65.50 87.60 78.50 1.08 1.65 4.98 4.02 .58 1.28	85.0 94.6 0 94.1 9'1 5.5 65.70 65.50 76.80 78.50 2.94 4.15 2.58 1.21 1.27 2.78	55.0 96.5 90.0 94.4 ;,, 76.60 75.50 76.70 78.50 3.83 4.87 .66 2.98 3.56	60.0 96.4
XSEC NS NS NS NS CAL1 VEL1 VEL1 VEL1 VEL1 CAL2 VEL2 VEL2	$\begin{array}{c} 3.0\\ 3.0\\ 3.0\\ 3.012\\ 3.018\\ 3.0\\ 3.0\\ 3.0\\ 3.0\\ 3.0\\ 3.0\\ 3.0\\ 3.0$	3.0 0.0 65.0 95.7 95.0 94.2100 5.0 94.9130.0 7.0 97.5212.4 52.80 76.60 76.70 78.50 .80 96.52 5.02 5.21	0 98.6 20.0 98. 70.0 95.5 0.0 93.9105.0 9 94.8135.0 95.2 98.0237.4100.0 65.60 76.60 78.60 78.50 .80 658.00 4.99 5.67	.0 40.0 75.0 95.0 93.9110.0 93.9 1140.0 95.6145 0 65.50 76.60 87.60 78.50 .16	80.0 94.9 115.0 93.9120. 0 96.3150.0 96 65.70 65.50 87.60 78.50 1.08 1.65 4.98 4.02	85.0 94.6 0 94.1 9'1 5.5 65.70 65.50 76.80 78.50 2.94 4.15 2.58 1.21	55.0 96.5 90.0 94.4 ;,, 76.60 75.50 76.70 78.50 3.83 4.87 .66	60.0 96.4
XSEC NS NS NS NS CAL1 VEL1 VEL1 VEL1 VEL1 CAL2 VEL2 VEL2 VEL2 VEL2	$\begin{array}{c} 3.0\\ 3.0\\ 3.0\\ 3.012\\ 3.018\\ 3.0\\ 3.0\\ 3.0\\ 3.0\\ 3.0\\ 3.0\\ 3.0\\ 3.0$	3.0 0.0 65.0 95.7 95.0 94.2100 5.0 94.9130.0 7.0 97.5212.4 52.80 76.60 76.70 78.50 .80 96.52 5.02 5.21 96.21 4.16 3.95	0 98.6 20.0 98. 70.0 95.5 0.0 93.9105.0 9 94.8135.0 95.2 98.0237.4100.0 65.60 76.60 78.60 78.50 .80 658.00 4.99 5.67 380.00 3.96 4.26	.0 40.0 75.0 95.0 93.9110.0 93.9 1140.0 95.6145 0 65.50 76.60 87.60 78.50 .16 5.40 4.98	80.0 94.9 115.0 93.9120. 0 96.3150.0 96 65.70 65.50 87.60 78.50 1.08 1.65 4.98 4.02 .58 1.28	85.0 94.6 0 94.1 9'1 5.5 65.70 65.50 76.80 78.50 2.94 4.15 2.58 1.21 1.27 2.78	55.0 96.5 90.0 94.4 ;,, 76.60 75.50 76.70 78.50 3.83 4.87 .66 2.98 3.56	60.0 96.4
XSEC NS NS NS NS CAL1 VEL1 VEL1 VEL1 VEL1 VEL1 VEL2 VEL2 VEL2 VEL2 VEL2 VEL2 CAL3	$\begin{array}{c} 3.0\\ 3.0\\ 3.0\\ 3.012\\ 3.018\\ 3.0\\ 3.0\\ 3.0\\ 3.0\\ 3.0\\ 3.0\\ 3.0\\ 3.0$	3.0 0.0 65.0 95.7 95.0 94.2100 5.0 94.9130.0 7.0 97.5212.4 52.80 76.60 76.70 78.50 .80 96.52 5.02 5.21 96.21	0 98.6 20.0 98. 70.0 95.5 0.0 93.9105.0 9 94.8135.0 95.2 98.0237.4100.0 65.60 76.60 78.60 78.50 .80 658.00 4.99 5.67 380.00	.0 40.0 75.0 95.0 93.9110.0 93.9 1140.0 95.6145 0 65.50 76.60 87.60 78.50 .16 5.40 4.98	80.0 94.9 115.0 93.9120. 0 96.3150.0 96 65.70 65.50 87.60 78.50 1.08 1.65 4.98 4.02 .58 1.28 3.41 2.58	85.0 94.6 0 94.1 9'1 5.5 65.70 65.50 76.80 78.50 2.94 4.15 2.58 1.21 1.27 2.78 1.76 .72	55.0 96.5 90.0 94.4 ;,, 76.60 75.50 76.70 78.50 3.83 4.87 .66 2.98 3.56 0.00	60.0 96.4
XSEC NS NS NS NS CAL1 VEL1 VEL1 VEL1 VEL1 VEL1 VEL2 VEL2 VEL2 VEL2 VEL2 VEL2 VEL2 VEL2	$\begin{array}{c} 3.0\\ 3.0\\ 3.0\\ 3.012\\ 3.018\\ 3.0\\ 3.0\\ 3.0\\ 3.0\\ 3.0\\ 3.0\\ 3.0\\ 3.0$	3.0 0.0 65.0 95.7 95.0 94.2100 5.0 94.9130.0 7.0 97.5212.4 52.80 76.60 76.70 78.50 .80 96.52 5.02 5.21 96.21 4.16 3.95 95.89	0 98.6 20.0 98. 70.0 95.5 0.0 93.9105.0 9 94.8135.0 95.2 98.0237.4100.0 65.60 76.60 78.60 78.50 .80 658.00 4.99 5.67 380.00 3.96 4.26 238.00	.0 40.0 75.0 95.0 93.9110.0 93.9 1140.0 95.6145 0 65.50 76.60 87.60 78.50 .16 5.40 4.98 4.48 3.76	80.0 94.9 115.0 93.9120. 0 96.3150.0 96 65.70 65.50 87.60 78.50 1.08 1.65 4.98 4.02 .58 1.28 3.41 2.58 0.00 .81	85.0 94.6 0 94.1 9'1 5.5 65.70 65.50 76.80 78.50 2.94 4.15 2.58 1.21 1.27 2.78 1.76 .72 1.24 1.15	55.0 96.5 90.0 94.4 ;,, 76.60 75.50 76.70 78.50 3.83 4.87 .66 2.98 3.56	60.0 96.4
NS NS NS NS CAL1 VEL1 VEL1 VEL1 VEL1 VEL2 VEL2 VEL2 VEL2 VEL2 VEL2 VEL2 VEL2	$\begin{array}{c} 3.0\\ 3.0\\ 3.0\\ 3.012\\ 3.018\\ 3.0\\ 3.0\\ 3.0\\ 3.0\\ 3.0\\ 3.0\\ 3.0\\ 3.0$	3.0 0.0 65.0 95.7 95.0 94.2100 5.0 94.9130.0 7.0 97.5212.4 52.80 76.60 76.70 78.50 .80 96.52 5.02 5.21 96.21 4.16 3.95	0 98.6 20.0 98. 70.0 95.5 0.0 93.9105.0 9 94.8135.0 95.2 98.0237.4100.0 65.60 76.60 78.60 78.50 .80 658.00 4.99 5.67 380.00 3.96 4.26	.0 40.0 75.0 95.0 93.9110.0 93.9 1140.0 95.6145 0 65.50 76.60 87.60 78.50 .16 5.40 4.98	80.0 94.9 115.0 93.9120. 0 96.3150.0 96 65.70 65.50 87.60 78.50 1.08 1.65 4.98 4.02 .58 1.28 3.41 2.58	85.0 94.6 0 94.1 9'1 5.5 65.70 65.50 76.80 78.50 2.94 4.15 2.58 1.21 1.27 2.78 1.76 .72	55.0 96.5 90.0 94.4 ;,, 76.60 75.50 76.70 78.50 3.83 4.87 .66 2.98 3.56 0.00	60.0 96.4
NS NS NS NS CAL1 VEL1 VEL1 VEL1 VEL1 VEL1 VEL2 VEL2 VEL2 VEL2 VEL2 VEL2 VEL2 VEL2	$\begin{array}{c} 3.0\\ 3.0\\ 3.0\\ 3.012\\ 3.018\\ 3.0\\ 3.0\\ 3.0\\ 3.0\\ 3.0\\ 3.0\\ 3.0\\ 3.0$	3.0 0.0 65.0 95.7 95.0 94.2100 5.0 94.9130.0 7.0 97.5212.4 52.80 76.60 76.70 78.50 .80 96.52 5.02 5.21 96.21 4.16 3.95 95.89 2.45 2.85	0 98.6 20.0 98. 70.0 95.5 0.0 93.9105.0 9 94.8135.0 95.2 98.0237.4100.0 65.60 76.60 78.60 78.50 .80 658.00 4.99 5.67 380.00 3.96 4.26 238.00 3.22 2.92	.0 40.0 75.0 95.0 93.9110.0 93.9 1140.0 95.6145 0 65.50 76.60 87.60 78.50 .16 5.40 4.98 4.48 3.76	80.0 94.9 115.0 93.9120. 0 96.3150.0 96 65.70 65.50 87.60 78.50 1.08 1.65 4.98 4.02 .58 1.28 3.41 2.58 0.00 .81	85.0 94.6 0 94.1 9'1 5.5 65.70 65.50 76.80 78.50 2.94 4.15 2.58 1.21 1.27 2.78 1.76 .72 1.24 1.15	55.0 96.5 90.0 94.4 ;,, 76.60 75.50 76.70 78.50 3.83 4.87 .66 2.98 3.56 0.00	60.0 96.4
NS NS NS NS CAL1 VEL1 VEL1 VEL1 VEL1 VEL2 VEL2 VEL2 VEL2 VEL2 VEL2 VEL2 VEL2	$\begin{array}{c} 3.0\\ 3.0\\ 3.0\\ 3.012\\ 3.018\\ 3.0\\ 3.0\\ 3.0\\ 3.0\\ 3.0\\ 3.0\\ 3.0\\ 3.0$	3.0 0.0 65.0 95.7 95.0 94.2100 5.0 94.9130.0 7.0 97.5212.4 52.80 76.60 76.70 78.50 .80 96.52 5.02 5.21 96.21 4.16 3.95 95.89	0 98.6 20.0 98. 70.0 95.5 0.0 93.9105.0 9 94.8135.0 95.2 98.0237.4100.0 65.60 76.60 78.60 78.50 .80 658.00 4.99 5.67 380.00 3.96 4.26 238.00	.0 40.0 75.0 95.0 93.9110.0 93.9 1140.0 95.6145 0 65.50 76.60 87.60 78.50 .16 5.40 4.98 4.48 3.76	80.0 94.9 115.0 93.9120. 0 96.3150.0 96 65.70 65.50 87.60 78.50 1.08 1.65 4.98 4.02 .58 1.28 3.41 2.58 0.00 .81	85.0 94.6 0 94.1 9'1 5.5 65.70 65.50 76.80 78.50 2.94 4.15 2.58 1.21 1.27 2.78 1.76 .72 1.24 1.15	55.0 96.5 90.0 94.4 ;,, 76.60 75.50 76.70 78.50 3.83 4.87 .66 2.98 3.56 0.00	60.0 96.4

Appendix I	D1 - IFG4 Input Files, Weeman Site (continued)
VEL4	3.0 1.48 1.49 1.74 1.65 1.52 1.76 1.33 .57 .33
VEL4	3.0
XSEC	4.0 235.0 .50 91.70 .00250
	4.0-99.0 95.8 0.0 96.0 10.0 94.4 20.6 94.2 25.0 93.7 30.0 93.7
	4.0 35.0 93.3 40.0 93.3 45.0 93.2 50.0 93.1 55.0 93.1 60.0 93.1
	4.0 65.0 93.0 70.0 93.0 75.0 93.1 80.0 93.0 85.0 92.9 90.0 93.2
	4.0 95.0 92.9100.0 92.7105.0 92.6110.0 92.5112.5 92.3115.0 92.2
	4.0117.5 91.9120.0 91.912.2.5 91.7125.0 92.1127.5 92.1130.0 91.9
	4.0135.0 92.4140.0 92.4145.0 92.7150.0 93.1155.0 93.3160.0 93.5
	4.0165.0 93.2170.0 93.1175.0 93.3178.9 94.2187.0 95.4262.0 95.4
NS	4.0 26.50 26.50 67.70 76.50 76.50 76.50
NS NS	4.0 87.50 87.50 87.50 87.50 67.50 67.50
NS	4.0 67.50 67.70 67.70 67.70 67.70 67.70
NS NS	4.0 65.80 65.60 65.50 65.50 65.50 65.50 4.0 65.50 76.60 67.60 67.60 87.60 78.60
NS	4.0 78.50 78.50 76.60 78.80 78.70 78.70
NS	4.0 78.50 76.60 76.60 67.60 .80 .80
CAL1	4.0 94.15 658.00
VEL1	4.0 1.01 1.14 2.37 2.20 2.45 3.49 2.74 2.73
VEL1	4.0 2.83 4.02 2.81 2.11 2.77 2.51 3.26 4.24 4.19 4.81 5.03 4.89
VEL1	4.0 4.33 5.25 5.36 4.83 4.66 4.64 5.14 5.44 3.40 1.95 3.57 2.97
VEL1	4.0 2.75 2.53 1.55
CAL2	4.0 93.76 380.00
VEL2	4.0 0.00 .98 1.09 1.23 2.11 2.40 2.45
VEL2	4.0 2.29 2.26 2.65 2.07 1.80 1.55 2.37 3.22 2.59 3.03 4.08 3.82
VEL2	4.0 4.33 5.25 5.36 4.83 4.66 4.64 5.14 5.44 3.40 1.95 3.57 2.97
VEL2	4.0 1.87 2.00 1.26
CAL3 VEL3	4.0 93.44 238.00 4.0 .44 .56 1.02 .95 1.26 1.54
VEL3	4.0 2.24 1.58 .90 1.44 1.07 2.51 3.01 3.14 3.71 3.50 4.88 4.49
VEL3	4.0 4.13 4.35 4.39 3.39 5.03 3.75 4.28 3.83 1.81 .69.82 .57
VEL3	4.0 1.62 1.17 0.00
CAL4	4.0 92.91 79.00
VEL4	4.0
VEL4	4.0 0.00 0.00 .61 1.66 2.11 1.65 2.15 2.56
VEL4	4.0 2.75 3.36 3.14 3.35 2.63 2.18 2.44 .86 .50
VELA	4.0
XSEC	5.0 207.0 .50 91.70 .00250
	5.0 -60.0 95.5 0.0 95.5 10.0 95.6 20.0 94.3 20.2 94.6 25.0 94.2
	5.0 30.0 94.0 35.0 94.0 40.0 93.9 45.0 93.9 50.0 93.8 60.0 93.5 5.0 70.0 93.5 80.0 93.5 90.0 93.6100.0 93.6110.0 93.5120.0 93.3
	5.0130.0 93.1135.0 92.6140.0 91.1142.5 90.8145.0 90.4147.5 90.4
	5.0150.0 90.2152.5 90.3155.0 90.3157.5 90.5160.0 90.6162.5 90.9
	5.0165.3 92.3167.9 94.6172.5 96.8178.5 99.8
NS	5.0 .80 62.50 67.70 67.70 67.70 76.70
NS	5.0 76.70 76.60 76.60 76.70 76.70 76.70
NS	5.0 76.70 76.70 76.60 76.60 76.60 76.60
NS	5.0 67.70 67.70 76.80 76.80 76.90 77.90
NS	5.0 77.90 77.90 77.90 76.90 .50
NS	5.0 . 50 .50 .80 .80
CAL1	5.0 94.56 658.00
VEL1	5.0 .39. 98 1.09 1.28 1.47 1.80 1.58

VEL1	5.0 2.18 2.55 2.53 2.28 2.47 2.42 2.78 2.40 2.86 3.42 3.90 4.14		
VEL1	5.0 4.40 4.44 4.91 4.26 4.54 1.65 .05		
CAL2	5.0 94.22 380.00		
VEL2	5.0 .34 .72 .47 .76 .70		
VEL2 .	5 .0 1.50 1.36 1.53 1.70 1.90 2.14 2.03 1.79 2.04 2.87 3.12 3.29		
VEL2	5.0 3.62 3.60 4.02 4.06 3.49 .71 .03		
CAL3	5.0 93.92 238.00		
VEL3	5.0 0.00 0.00		
VEL3	5.0 .58 .67 .75 .97 .89 1.25 1.24 1.38 1.41 2.21 2.39 2.75		
VEL3	5.0 2.46 2.87 2.97 2.88 2.60 .57 0.00		
VEL4	5.0		
VEL4	5.0 0.00 0.00 0.20 .55 .77 1.45		
VEL4	5.0 1.43 1.53 1.64 1.65 1.03 .41 0.00		
XSEC	6.0 98.0 .50 92.0000250		
Able	6.0-60.095.59-40.095.99-20.096.69 0.096.49 10.095.99 20.095.39		
	6.0 32.094.98 35.0 94.8 40.0 94.7 45.0 94.5 50.0 94.3 55.0 94.1		
	6.0 60.0 93.9 65.0 93.7 70.0 93.5 75.0 93.4 80.0 93.3 85.0 93.4		
	6.0 90.0 93.1 95.0 93.3100.0 93.2105.0 93.1110.0 93.0115.0 92.9		
	6.0120.0 92.8125.0 93.0130.0 93.0135.0 93.0140.0 93.1145.0 92.7		
NC	6.0150.0 92.3155.0 92.2160.0 92.0165.0 92.4170.0 95.0176.096.49	(7.70	(7 70
NS	6.0 22.50 67.70 67.70 67.70 6.0 67.70 67.70 67.70 67.70	67.70	67.70
NS	6.0 67.70 67.60 67.60 6.0 67.70 76.00 76.00	67.60	67.60
NS	6.0 67.70 76.70 76.80 76.80 6.0 76.70 76.80 76.80 76.80	76.80	76.70
NS	6.0 76.70 76.90 76.90 6.0 77.00 77.00 70.90	76.90	78.90
NS	6.0 77.90 77.90 78.80 6.0 70.00 77.90 78.80	78.80	78.80
NS CAL 1	6.0 78.90 77.90 77.90 77.90 6.0 04.09 (59.00)	.10	.80
CAL1	6.0 94.98 658.00		
VEL1	6.0 .14 .34 1.40 1.38 2.00		
VEL1	6.0 2.07 1.97 2.49 2.90 2.05 3.04 3.22 3.04 3.13 3.20 3.33 2.86		
VEL1	6.0 3.02 3.35 3.05 2.97 3.18 3.22 3.57 3.44 3.30 3.43 i.4		
CAL2	6.0 94.55 380.00		
VEL2	6.0 0.00 .42 .72		
VEL2	6.0 1.13 1.27 1.48 1.80 1.96 2.04 2.41 2.39 2.29 2.53 2.28 2.47		
VEL2	6.0 1.89 2.32 2.09 2.10 2.17 2.25 2.66 2.36 2.74 2.55		
CAL3	6.0 94.21 238.00		
VEL3	6.0 0.00		
VEL3	6.0 .63 1.05 1.33 1.24 1.77 1.12 1.77 1.62 2.06 2.04 2.09		
VEL3	6.0 1.71 1.66 1.78 1.50 2.04 2.06 1.97 2.23 2.28 2.69		
CAL4	6.0 93.53 79.00		
VEL4	6.0		
VELA	6.0 0.00 0.00 .22 .56 .34 .85 .64 .60 .59 .79		
VEL4	6.0 .57 .77 .78 .49 .45 1.46 1.70 1.81 2.11 2.55		
XSEC	7.0 247.0 .50 92.00 .00250		
	7.0-40.097.19-20.097.39 0.096.69 10.096.19 20.095.69 29.195.24		
	7.0 30.095.14 35.0 95.3 40.0 94.9 45.0 94.8 50.0 94.5 55.0 94.4		
	7.0 60.0 94.2 65.0 93.8 70.0 93.5 75.0 93.2 80.0 93.0 85.0 92.4		
	7.0 90.0 92.4 92.5 92.0 95.0 92.3 97.5 92.3100.0 92.4102.5 92.3		
	7.0105.0 92.2107.5 92.0110.0 91.8112.5 91.9115.0 92.0117.5 91.7		
	7.0120.0 91.5122.5 91.2125.0 91.6127.5 91.6130.0 92.3135.0 93.2		
	7.0140.0 94.2142.395.24147.299.49151.2101.7		
NS	7.0 .80 67.50 67.50 67.50 67.50 67.70		

Appendix D1 - IFG4 Input Files, Weeman Site (continued)

NS	7.0	67.70	76.70	76.80	76.90	76.90	76.90			
NS	7.0	76.90	76.80	76.80	78.70	78.70	77.90			
NS	7.0	77.90	77.90	77.90	77.90	77.90	77.90			
NS	7.0	77.90	77.90	77.90	77.90	77.90	87.90			
NS	7.0	87.90	87.80	78.70	77.90	78.80	78.80			
NS	7.0	78.80	78.70	.80	.80					
CAL1	7.0	95.24	658.00							
VEL1	7.0				0.00	.08 .58	.82 1.89			
VEL1	7.0	2.13 2.27	2.60 2.77	3.75 4.24	4.58 5.10	4.10 3.40	4.09 5.26			
VEL1	7.0	4.27 3.38	3.90 4.11	4.04 3.18	2.31 1.88	1.62 1.34	1.27.99			
VEL1	7.0	.17								
CAL2	7.0	94.77	380.00							
VEL2	7.0	211.77	200.00				0.00 .68			
VEL2	7.0	.82 1.30	1.97 2.14	2.49 3.01	2.20 3.10	2.42 2.43	2.37 2.55			
VEL2	7.0	2.75 2.46	2.24 2.18	2.11 1.72	.41 .23	.80.57	.91.60			
VEL2	7.0	.21	2.24 2.10	2.11 1.72	.41.23	.00.57	.91.00			
CAL3	7.0	94.39	238.00							
VEL3	7.0	24.39	238.00							
VEL3 VEL3	7.0	.33 .60	1.01 1.16	1.67 1.83	1.92 2.24	1.95 1.81	1.47 1.74			
VEL3 VEL3	7.0	2.07 1.86	1.99 1.76	1.36 1.33	.91.60	.88 .47	.99.70			
			1.99 1.70	1.30 1.33	.91.00	.00 .47	.99.70			
VEL3	7.0	0.00	70.00							
CAL4	7.0	93.78	79.00							
VELA	7.0		0.00.00	40.02	1.06.1.07	00 1 05	00.01			
VEL4	7.0	01.07	0.00.23	.49 .93	1.06 1.07	.90 1.05	.89 .81			
VELA	7.0	.91 .87	1.12 1.02	.67 .66	.31 .29	.39 .36	.77 .36			
VELA	7.0									
XSEC	8.0	238.0	.50 92.20 .00							
	8.0-30.098.79 0.098.69 10.098.49 20.098.19 30.097.59 40.096.59									
	8.0 47.595.99 50.0 95.955.0 95.8 60.0 95.6 65.0 95.6 70.0 95.5									
					8.0 75.0 95.5 80.0 95.4 85.0 95.3 90.0 95.1 95.0 94.9100.0 94.9					
	8.0 75.0 9	95.5 80.0 95.4 8								
	8.0 75.0 9 8.0105.0	95.5 80.0 95.4 8 94.7110.0 94.6	115.0 94.4120.	0 94.0125.0 93	.4127.5 93.1					
	8.0 75.0 9 8.0105.0 8.0130.0	95.5 80.0 95.4 8 94.7110.0 94.6 93.3132.5 93.2	115.0 94.4120. 135.0 93.0137.	0 94.0125.0 93 5 92.7140.0 92	.4127.5 93.1 .8142.5 92.2					
	8.0 75.0 9 8.0105.0 8.0130.0 8.0145.0	95.5 80.0 95.4 8 94.7110.0 94.6 93.3132.5 93.2 93.0147.5 93.3	115.0 94.4120. 135.0 93.0137. 150.0 93.6152.	0 94.0125.0 93 5 92.7140.0 92	.4127.5 93.1 .8142.5 92.2					
	8.0 75.0 9 8.0105.0 8.0130.0 8.0145.0 8.0160.3	95.5 80.0 95.4 8 94.7110.0 94.6 93.3132.5 93.2 93.0147.5 93.3 97.9165.3101.7	115.0 94.4120. 135.0 93.0137. 150.0 93.6152. 7	0 94.0125.0 93 5 92.7140.0 92 5 94.4155.0 95	.4127.5 93.1 .8142.5 92.2 .2157.3 96.0					
NS	8.0 75.0 9 8.0105.0 8.0130.0 8.0145.0 8.0160.3 8.0	95.5 80.0 95.4 8 94.7110.0 94.6 93.3132.5 93.2 93.0147.5 93.3 97.9165.3101.7 27.50	115.0 94.4120. 135.0 93.0137. 150.0 93.6152. 7 27.50	0 94.0125.0 93 5 92.7140.0 92 5 94.4155.0 95 27.50	.4127.5 93.1 .8142.5 92.2 .2157.3 96.0 27.50	27.50	76.70			
NS	8.0 75.0 9 8.0105.0 8.0130.0 8.0145.0 8.0160.3 8.0 8.0	95.5 80.0 95.4 8 94.7110.0 94.6 93.3132.5 93.2 93.0147.5 93.3 97.9165.3101.7 27.50 76.70	115.0 94.4120. 135.0 93.0137. 150.0 93.6152. 7 27.50 76.70	0 94.0125.0 93 5 92.7140.0 92 5 94.4155.0 95 27.50 75.70	.4127.5 93.1 .8142.5 92.2 .2157.3 96.0 27.50 76.80	76.70	76.70			
NS NS	8.0 75.0 9 8.0105.0 8.0130.0 8.0145.0 8.0160.3 8.0 8.0 8.0 8.0	95.5 80.0 95.4 8 94.7110.0 94.6 93.3132.5 93.2 93.0147.5 93.3 97.9165.3101.7 27.50 76.70 65.70	115.0 94.4120. 135.0 93.0137. 150.0 93.6152. 7 27.50 76.70 65.70	0 94.0125.0 93 5 92.7140.0 92 5 94.4155.0 95 27.50 75.70 76.80	.4127.5 93.1 .8142.5 92.2 .2157.3 96.0 27.50 76.80 76.80	76.70 76.70	76.70 87.60			
NS	8.0 75.0 9 8.0105.0 8.0130.0 8.0145.0 8.0160.3 8.0 8.0	95.5 80.0 95.4 8 94.7110.0 94.6 93.3132.5 93.2 93.0147.5 93.3 97.9165.3101.7 27.50 76.70	115.0 94.4120. 135.0 93.0137. 150.0 93.6152. 7 27.50 76.70	0 94.0125.0 93 5 92.7140.0 92 5 94.4155.0 95 27.50 75.70	.4127.5 93.1 .8142.5 92.2 .2157.3 96.0 27.50 76.80	76.70	76.70			
NS NS NS NS	8.0 75.0 9 8.0105.0 8.0130.0 8.0145.0 8.0160.3 8.0 8.0 8.0 8.0 8.0 8.0 8.0	95.5 80.0 95.4 8 94.7110.0 94.6 93.3132.5 93.2 93.0147.5 93.3 97.9165.3101.7 27.50 76.70 65.70 76.80 76.90	115.0 94.4120. 135.0 93.0137. 150.0 93.6152. 7 27.50 76.70 65.70 76.80 76.90	0 94.0125.0 93 5 92.7140.0 92 5 94.4155.0 95 27.50 75.70 76.80	.4127.5 93.1 .8142.5 92.2 .2157.3 96.0 27.50 76.80 76.80 76.60 87.60	76.70 76.70 76.80 87.60	76.70 87.60 76.80 87.60			
NS NS NS NS NS	8.0 75.0 9 8.0105.0 8.0130.0 8.0145.0 8.0160.3 8.0 8.0 8.0 8.0	95.5 80.0 95.4 8 94.7110.0 94.6 93.3132.5 93.2 93.0147.5 93.3 97.9165.3101.7 27.50 76.70 65.70 76.80	115.0 94.4120. 135.0 93.0137. 150.0 93.6152. 7 27.50 76.70 65.70 76.80	0 94.0125.0 93 5 92.7140.0 92 5 94.4155.0 95 27.50 75.70 76.80 76.70	.4127.5 93.1 .8142.5 92.2 .2157.3 96.0 27.50 76.80 76.80 76.60	76.70 76.70 76.80	76.70 87.60 76.80			
NS NS NS NS	8.0 75.0 9 8.0105.0 8.0130.0 8.0145.0 8.0160.3 8.0 8.0 8.0 8.0 8.0 8.0 8.0	95.5 80.0 95.4 8 94.7110.0 94.6 93.3132.5 93.2 93.0147.5 93.3 97.9165.3101.7 27.50 76.70 65.70 76.80 76.90	115.0 94.4120. 135.0 93.0137. 150.0 93.6152. 7 27.50 76.70 65.70 76.80 76.90	0 94.0125.0 93 5 92.7140.0 92 5 94.4155.0 95 27.50 75.70 76.80 76.70 87.60	.4127.5 93.1 .8142.5 92.2 .2157.3 96.0 27.50 76.80 76.80 76.60 87.60	76.70 76.70 76.80 87.60	76.70 87.60 76.80 87.60			
NS NS NS NS NS	8.0 75.0 9 8.0105.0 8.0130.0 8.0145.0 8.0160.3 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0	95.5 80.0 95.4 8 94.7110.0 94.6 93.3132.5 93.2 93.0147.5 93.3 97.9165.3101.7 27.50 76.70 65.70 76.80 76.90 87.70	115.0 94.4120. 135.0 93.0137. 150.0 93.6152. 7 27.50 76.70 65.70 76.80 76.90 87.70	0 94.0125.0 93 5 92.7140.0 92 5 94.4155.0 95 27.50 75.70 76.80 76.70 87.60	.4127.5 93.1 .8142.5 92.2 .2157.3 96.0 27.50 76.80 76.80 76.60 87.60	76.70 76.70 76.80 87.60	76.70 87.60 76.80 87.60			
NS NS NS NS NS	8.0 75.0 9 8.0105.0 8.0130.0 8.0145.0 8.0160.3 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0	95.5 80.0 95.4 8 94.7110.0 94.6 93.3132.5 93.2 93.0147.5 93.3 97.9165.3101.7 27.50 76.70 65.70 76.80 76.90 87.70 88.90	115.0 94.4120. 135.0 93.0137. 150.0 93.6152. 7 27.50 76.70 65.70 76.80 76.90 87.70 88.90	0 94.0125.0 93 5 92.7140.0 92 5 94.4155.0 95 27.50 75.70 76.80 76.70 87.60	.4127.5 93.1 .8142.5 92.2 .2157.3 96.0 27.50 76.80 76.80 76.60 87.60	76.70 76.70 76.80 87.60	76.70 87.60 76.80 87.60			
NS NS NS NS NS CAL1	8.0 75.0 9 8.0105.0 8.0130.0 8.0145.0 8.0160.3 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0	95.5 80.0 95.4 8 94.7110.0 94.6 93.3132.5 93.2 93.0147.5 93.3 97.9165.3101.7 27.50 76.70 65.70 76.80 76.90 87.70 88.90	115.0 94.4120. 135.0 93.0137. 150.0 93.6152. 7 27.50 76.70 65.70 76.80 76.90 87.70 88.90	0 94.0125.0 93 5 92.7140.0 92 5 94.4155.0 95 27.50 75.70 76.80 76.70 87.60	.4127.5 93.1 .8142.5 92.2 .2157.3 96.0 27.50 76.80 76.60 87.60 87.60 87.80	76.70 76.70 76.80 87.60 87.90	76.70 87.60 76.80 87.60 87.90			
NS NS NS NS NS CAL1 VEL1	8.0 75.0 9 8.0105.0 8.0130.0 8.0145.0 8.0160.3 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0	95.5 80.0 95.4 8 94.7110.0 94.6 93.3132.5 93.2 93.0147.5 93.3 97.9165.3101.7 27.50 76.70 65.70 76.80 76.90 87.70 88.90 95.99	115.0 94.4120. 135.0 93.0137. 150.0 93.6152. 7 27.50 76.70 65.70 76.80 76.90 87.70 88.90 658.00	0 94.0125.0 93 5 92.7140.0 92 5 94.4155.0 95 27.50 75.70 76.80 76.70 87.60 87.60	.4127.5 93.1 .8142.5 92.2 .2157.3 96.0 27.50 76.80 76.60 87.60 87.60 87.80	76.70 76.70 76.80 87.60 87.90	76.70 87.60 76.80 87.60 87.90			
NS NS NS NS NS CAL1 VEL1 VEL1	8.0 75.0 9 8.0105.0 8.0130.0 8.0145.0 8.0160.3 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0	95.5 80.0 95.4 8 94.7110.0 94.6 93.3132.5 93.2 93.0147.5 93.3 97.9165.3101.7 27.50 76.70 65.70 76.80 76.90 87.70 88.90 95.99 1.88 1.26	115.0 94.4120. 135.0 93.0137. 150.0 93.6152. 7 27.50 76.70 65.70 76.80 76.90 87.70 88.90 658.00 2.42 2.51	0 94.0125.0 93 5 92.7140.0 92 5 94.4155.0 95 27.50 75.70 76.80 76.70 87.60 87.60 2.82 2.89	.4127.5 93.1 .8142.5 92.2 .2157.3 96.0 27.50 76.80 76.80 76.60 87.60 87.60 87.80	76.70 76.70 76.80 87.60 87.90 0.00 .53 4.97 4.26	76.70 87.60 76.80 87.60 87.90 .43 .26 5.69 6.62			
NS NS NS NS CAL1 VEL1 VEL1 VEL1	8.0 75.0 9 8.0105.0 8.0130.0 8.0145.0 8.0160.3 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0	95.5 80.0 95.4 8 94.7110.0 94.6 93.3132.5 93.2 93.0147.5 93.3 97.9165.3101.7 27.50 76.70 65.70 76.80 76.90 87.70 88.90 95.99 1.88 1.26	115.0 94.4120. 135.0 93.0137. 150.0 93.6152. 7 27.50 76.70 65.70 76.80 76.90 87.70 88.90 658.00 2.42 2.51	0 94.0125.0 93 5 92.7140.0 92 5 94.4155.0 95 27.50 75.70 76.80 76.70 87.60 87.60 2.82 2.89	.4127.5 93.1 .8142.5 92.2 .2157.3 96.0 27.50 76.80 76.80 76.60 87.60 87.60 87.80	76.70 76.70 76.80 87.60 87.90 0.00 .53 4.97 4.26	76.70 87.60 76.80 87.60 87.90 .43 .26 5.69 6.62			
NS NS NS NS CAL1 VEL1 VEL1 VEL1 VEL1	$\begin{array}{c} 8.0\ 75.0\ 9\\ 8.0105.0\\ 8.0130.0\\ 8.0145.0\\ 8.0160.3\\ 8.0\\ 8.0\\ 8.0\\ 8.0\\ 8.0\\ 8.0\\ 8.0\\ 8.0$	95.5 80.0 95.4 8 94.7110.0 94.6 93.3132.5 93.2 93.0147.5 93.3 97.9165.3101.7 27.50 76.70 65.70 76.80 76.90 87.70 88.90 95.99 1.88 1.26 5.92 6.71	115.0 94.4120. 135.0 93.0137. 150.0 93.6152. 7 27.50 76.70 65.70 76.80 76.90 87.70 88.90 658.00 2.42 2.51 6.42 5.13	0 94.0125.0 93 5 92.7140.0 92 5 94.4155.0 95 27.50 75.70 76.80 76.70 87.60 87.60 2.82 2.89	.4127.5 93.1 .8142.5 92.2 .2157.3 96.0 27.50 76.80 76.80 76.60 87.60 87.60 87.80	76.70 76.70 76.80 87.60 87.90 0.00 .53 4.97 4.26	76.70 87.60 76.80 87.60 87.90 .43 .26 5.69 6.62			
NS NS NS NS CAL1 VEL1 VEL1 VEL1 VEL1 VEL1 CAL2 VELZ	8.0 75.0 9 8.0105.0 8.0130.0 8.0145.0 8.0160.3 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0	95.5 80.0 95.4 8 94.7110.0 94.6 93.3132.5 93.2 93.0147.5 93.3 97.9165.3101.7 27.50 76.70 65.70 76.80 76.90 87.70 88.90 95.99 1.88 1.26 5.92 6.71	115.0 94.4120. 135.0 93.0137. 150.0 93.6152. 7 27.50 76.70 65.70 76.80 76.90 87.70 88.90 658.00 2.42 2.51 6.42 5.13 380.00	0 94.0125.0 93 5 92.7140.0 92 5 94.4155.0 95 27.50 75.70 76.80 76.70 87.60 87.60 87.60 2.82 2.89 5.53 3.61	.4127.5 93.1 .8142.5 92.2 .2157.3 96.0 27.50 76.80 76.80 76.60 87.60 87.60 87.80	76.70 76.70 76.80 87.60 87.90 0.00 .53 4.97 4.26	76.70 87.60 76.80 87.60 87.90 .43 .26 5.69 6.62 .18			
NS NS NS NS CAL1 VEL1 VEL1 VEL1 VEL1 VEL1 CAL2	$\begin{array}{c} 8.0\ 75.0\ 9\\ 8.0105.0\\ 8.0130.0\\ 8.0145.0\\ 8.0160.3\\ 8.0\\ 8.0\\ 8.0\\ 8.0\\ 8.0\\ 8.0\\ 8.0\\ 8.0$	95.5 80.0 95.4 8 94.7110.0 94.6 93.3132.5 93.2 93.0147.5 93.3 97.9165.3101.7 27.50 76.70 65.70 76.80 76.90 87.70 88.90 95.99 1.88 1.26 5.92 6.71	115.0 94.4120. 135.0 93.0137. 150.0 93.6152. 7 27.50 76.70 65.70 76.80 76.90 87.70 88.90 658.00 2.42 2.51 6.42 5.13 380.00 .79 1.22	0 94.0125.0 93 5 92.7140.0 92 5 94.4155.0 95 27.50 75.70 76.80 76.70 87.60 87.60 2.82 2.89 5.53 3.61	.4127.5 93.1 .8142.5 92.2 .2157.3 96.0 27.50 76.80 76.60 87.60 87.60 87.80 0.00 3.58 4.04 4.75 2.79 2.64 3.52	76.70 76.70 76.80 87.60 87.90 0.00 .53 4.97 4.26 1.79 .63	76.70 87.60 76.80 87.60 87.90 .43 .26 5.69 6.62 .18			
NS NS NS NS CAL1 VEL1 VEL1 VEL1 VEL1 VEL1 CAL2 VEL2 VEL2 VEL2	$\begin{array}{c} 8.0\ 75.0\ 9\\ 8.0105.0\\ 8.0130.0\\ 8.0145.0\\ 8.0160.3\\ 8.0\\ 8.0\\ 8.0\\ 8.0\\ 8.0\\ 8.0\\ 8.0\\ 8.0$	95.5 80.0 95.4 8 94.7110.0 94.6 93.3132.5 93.2 93.0147.5 93.3 97.9165.3101.7 27.50 76.70 65.70 76.80 76.90 87.70 88.90 95.99 1.88 1.26 5.92 6.71 95.46	115.0 94.4120. 135.0 93.0137. 150.0 93.6152. 7 27.50 76.70 65.70 76.80 76.90 87.70 88.90 658.00 2.42 2.51 6.42 5.13 380.00	0 94.0125.0 93 5 92.7140.0 92 5 94.4155.0 95 27.50 75.70 76.80 76.70 87.60 87.60 87.60 2.82 2.89 5.53 3.61	.4127.5 93.1 .8142.5 92.2 .2157.3 96.0 27.50 76.80 76.80 76.60 87.60 87.80 0.00 3.58 4.04 4.75 2.79	76.70 76.70 76.80 87.60 87.90 0.00 .53 4.97 4.26 1.79 .63	76.70 87.60 76.80 87.60 87.90 .43 .26 5.69 6.62 .18			
NS NS NS NS CAL1 VEL1 VEL1 VEL1 VEL1 VEL1 CAL2 VEL2 VEL2	$\begin{array}{c} 8.0\ 75.0\ 9\\ 8.0105.0\\ 8.0130.0\\ 8.0145.0\\ 8.0160.3\\ 8.0\\ 8.0\\ 8.0\\ 8.0\\ 8.0\\ 8.0\\ 8.0\\ 8.0$	95.5 80.0 95.4 8 94.7110.0 94.6 93.3132.5 93.2 93.0147.5 93.3 97.9165.3101.7 27.50 76.70 65.70 76.80 76.90 87.70 88.90 95.99 1.88 1.26 5.92 6.71 95.46	115.0 94.4120. 135.0 93.0137. 150.0 93.6152. 7 27.50 76.70 65.70 76.80 76.90 87.70 88.90 658.00 2.42 2.51 6.42 5.13 380.00 .79 1.22	0 94.0125.0 93 5 92.7140.0 92 5 94.4155.0 95 27.50 75.70 76.80 76.70 87.60 87.60 2.82 2.89 5.53 3.61	.4127.5 93.1 .8142.5 92.2 .2157.3 96.0 27.50 76.80 76.60 87.60 87.60 87.80 0.00 3.58 4.04 4.75 2.79 2.64 3.52	76.70 76.70 76.80 87.60 87.90 0.00 .53 4.97 4.26 1.79 .63	76.70 87.60 76.80 87.60 87.90 .43 .26 5.69 6.62 .18			

Appendix D1	- IFG4 Input Files, Weeman	Site (continued)
VEL3	8.0	
VEL3	8.0 0.00 .58 1.68 2.28 2.98	2.76 2.18 4.17
VEL3	8.0 4.19 4.58 4.19 3.85 3.87 3.25 3.03 1.44 .76	0.00
VEL3	8.0	
CAL4	8.0 94.22 79.00	
VEL4	8.0	
VELA	8.0	.54 2.03 1.97
VELA	8.0 2.99 3.23 2.42 2.49 2.88 2.28 .94 .30	
VELA	8.0	
ENDJ		

METHOW R	IVER - WEEMAN SITE (RM 59) SIDECHANNEL, RIGHT SIDE				
Measured 5.4	cfs 8/3/91, 0.8 on 8/16, 0.3 on 8/27, 0.01 on 9/26				
10C	000000200000000000000000000000000000000				
QARD	0.13				
QARD	0.25				
QARD	0.63				
QARD	5.4				
QARD	16.5				
XSEC	1.0 0.0 .50 95.40 .00250				
	1.0-10.097.49 0.096.99 2.596.58 5.0 95.9 7.0 95.4 9.0 95.4				
	1.0 11.0 95.5 13.0 95.5 15.0 95.5 17.0 95.7 19.0 95.8 21.0 95.8 F;"				
	1.0 23.0 95.9 25.0 95.9 27.0 96.0 29.0 96.2 31.0 96.1 33.0 95.9				
	1.0 34.2 96.6 35.6 96.8 45.6 96.8				
NS	1.0 .80 .80 .80 22.90 32.80 32.70				
NS	1.0 32.70 32.60 23.60 23.60 23.70 23.90 i				
NS	1.0 23.90 23.90 23.90 22.90 22.90.22.90				
NS	1.0 .80 .80 .80				
CAL1	1.0 96.58 5.40				
VEL1	1.0 0.00 .27 .18 .27 .33 .32 .34 .26 .26				
VEL1	1.0 .24 .11 .01 0.00 0.00 0.00 b				
CAL2	1.0 96.30 0.80				
VEL2	1.0 .02 .09 .08 .07 .13 .15 .11 .15 .10				
VEL2	$1.0 \ .05 \ 0.00 \ 0.00 \ 0.00 \ 0.00 \ 0.00$				
CAL3	1.0 96.23 0.30				
VEL3	1.0 .01 .01 .03 .03 .05 .03 .03 .02 .02				
VEL3	1.0 .02 .01 0.00 0.00				
XSEC	2.0 241.0 .50 96.10 .00250				
	2.0 - 25.097.99 0.097.79 5.297.24 6.0 96.7 7.0 97.1 8.0 96.9				
	2.0 9.0 96.8 10.0 96.5 10.5 96.4 11.0 96.3 11.5 96.2 12.0 96.2				
	2.0 12.5 96.1 13.0 96.2 14.0 96.4 15.0 96.7 16.0 97.1 16.3 97.2				
	2.0 17.7 97.7 37.7 99.5				
NS	2.0 54.50 54.50 43.80 43.80 43.80 54.60				
NS	2.0 33.90 43.80 43.70 33.90 34.80 23.70				
NS	2.0 23.70 22.90 22.90 22.90 22.90 22.90				
NS	2.0 12.80 12.80				
CAL1	2.0 97.24 5.40				
VEL1	2.0 0.00 .33 .77 .97 1.16 1.53 1.76 1.89 1.62				
VEL1	2.0 1.35 1.07 .26 .05 0.00				

CAL2 2.0 96.99 0.80 VEL2 2.0 0.00 0.00 .20 .51 .01 .63 2.0 0.00 .05 0.00 0.00 VEL2 CAL3 2.0 96.90 0.30 VEL3 2.0 .01 .32 .24 .23 .29 .42 VEL3 2.0 .36 .19 .05 0.00 3.0 132.0 .50 96.70 .00250 XSEC 3.0 -1.099.49 0.098.29 1.797.57 2.0 97.2 3.0 97.0 4.0 97.1 3.0 5.0 97.0 6.0 97.0 7.0 97.0 8.0 96.9 9.0 96.8 10.0 96.7 3.0 11.0 96.7 12.0 96.7 13.0 96.8 14.0 96.9 15.0 97.1 16.0 97.2 3.0 17.0 97.5 18.0 97.4 19.0 97.4 20.0 97.3 21.0 97.2 22.0 97.2 3.0 23.0 97.3 24.0 97.5 24.2 97.6 27.7 99.6 3.0.80 .80 65.60 65.60 55.90 55.90 NS NS 3.0 54.80 54.70 65.60 65.60 65.60 65.60 NS 3.0 65.60 65.80 65.70 65.70 65.70 54.60 NS 3.0 44.90 44.90 45.90 .50 22.90 22.90 NS 3.0 22.90 .80 .80 .80 CAL1 3.0 97.57 5.40 VEL1 3.0 0.00 .09 .35 .52 .69 .69 .83 .76 .71 VEL1 3.0 .48 .35 .22 .41 .37 .04 .56 .31 .27 .35 .18 .06 VEL1 3.0 0.00 0.00 CAL2 3.0 97.40 0.80 VEL2 3.0 0.00 0.00 0.00 .12 .12 .11 .20 .16 0.00 VEL2 3.0 .18 .19 .13 .14 0.00 0.00 0.00 0.00 VEL2 3.0 0.00 3.0 97.33 0.30 CAL3 VEL3 3.0 0.00.01 .03 .03 .03 .03 .03 .03 VEL3 3.0 .03 .02 .02 .02 .02 .01 .03 0.00 VEL3 3.0.03 XSEC 4.0 227.0 .50 98.70 .00250 4.0-10.0101.0 0.0101.0 4.9 99.6 5.0 99.5 6.0 99.4 7.0 99.1 4.0 8.0 98.9 9.0 99.0 10.0 98.7 11.0 98.8 12.0 98.9 13.0 98.9 4.0 14.0 99.1 15.0 99.2 16.0 99.1 17.0 99.3 18.0 99.2 19.0 99.1 4.0 20.0 99.1 21.0 99.1 22.0 99.4 23.0 99.5 23.4 99.6 24.9 99.9 4.0 31.9101.0 NS 4.0.80.8045.7045.7045.7076.80 NS 4.0 76.80 67.80 67.80 76.80 76.80 66.90 4.0 66.90 66.90 66.90 66.90 66.90 67.90 NS NS 4.0 65.60 76.60 76.70 76.70 76.70 76.50 NS 4.0 76.50 4.0 99.56 5.40 CALL VEL1 4.0 0.00 .01 .37 .91 1.02 .93 1.04 .85 .59 VEL1 4.0 .52 .62 .44 .26 .12 .20 .30 .32 0.00 0.00 VEL1 4.0 CAL2 4.0 99.31 0.80 VEL2 4.0 0.00 .16 .21 .23 .30 .18 .02 VEL2 4.0 0.00 .35 .03 0.00 .02 0.00 .05 .39 VEL2 4.0 CAL3 4.0 99.16 0.30 VEL3 4.0 0.00 .01 0.00 .03 .01 .01 VEL3 4.0 0.00.01 .10 .68 VEL3 4.0 ENDJ

Appendix D1 - IFG4 Input Files, Weeman Site (continued)

Appendix D2 - Summary of Calibration Details, Weeman Site

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
7990836977706868Stage94.8995.5496.5294.1594.5694.9895.2495.9994.3495.0496.2193.7694.2294.5594.7795.4693.8494.6695.8993.4493.9294.2194.3995.0693.1194.0395.3692.9193.3493.5393.7894.22Plotting Stage3.793.342.622.452.862.983.243.793.242.842.312.062.522.552.773.262.742.461.991.742.222.212.392.86
Stage 94.89 95.54 96.52 94.15 94.56 94.98 95.24 95.99 94.34 95.04 96.21 93.76 94.22 94.55 94.77 95.46 93.84 94.66 95.89 93.44 93.92 94.21 94.39 95.06 93.11 94.03 95.36 92.91 93.34 93.53 93.78 94.22 Plotting Stage 3.79 3.34 2.62 2.45 2.86 2.98 3.24 3.79 3.24 2.84 2.31 2.06 2.52 2.55 2.77 3.26 2.74 2.46 1.99 1.74 2.22 2.21 2.39 2.86
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
94.3495.0496.2193.7694.2294.5594.7795.4693.8494.6695.8993.4493.9294.2194.3995.0693.1194.0395.3692.9193.3493.5393.7894.22Plotting Stage3.793.342.622.452.862.983.243.793.242.842.312.062.522.552.773.262.742.461.991.742.222.212.392.86
93.8494.6695.8993.4493.9294.2194.3995.0693.1194.0395.3692.9193.3493.5393.7894.22Plotting Stage3.793.342.622.452.862.983.243.793.242.842.312.062.522.552.773.262.742.461.991.742.222.212.392.86
93.1194.0395.3692.9193.3493.5393.7894.22Plotting Stage3.793.342.622.452.862.983.243.793.242.842.312.062.522.552.773.262.742.461.991.742.222.212.392.86
Plotting Stage3.793.342.622.452.862.983.243.793.242.842.312.062.522.552.773.262.742.461.991.742.222.212.392.86
3.793.342.622.452.862.983.243.793.242.842.312.062.522.552.773.262.742.461.991.742.222.212.392.86
3.793.342.622.452.862.983.243.793.242.842.312.062.522.552.773.262.742.461.991.742.222.212.392.86
2.74 2.46 1.99 1.74 2.22 2.21 2.39 2.86
2.01 1.83 1.46 1.21 1.64 1.53 1.78 2.02
Ratio of measured versus predicted discharge
0.963 0.970 1.017 .0.990 0.997 1.033 1.076 1.013
1.002 0.984 1.002 0.945 1.017 0.967 0.9091.007 '
1.077 1.090 0.965 1.107 0.982 0.988 0.995 0.968
0.962 0.961 1.016 0.965 1.004 1.013 1.028 1.013
Mean error of stage/discharge relationship for calculated
3.78 4.25 1.78 5.03 1.07 2.26 5.06 1.62
Mean error of stage/discharge relationship for given
2.75 2.06 2.91 1.19 2.79 2.88 2.142.67
Stage/discharge relationship (S vs Q) S=A*Q**B+SZF
A= 0.4746 0.4178 0.3223 0.5325 0.4313 0.5828 0.6101
0.5472
B = 0.2975 0.2843 0.3096 0.2594 0.2985 0.2658 0.2847
0.2955
SZF= 92.20 93.90 91.70 91.70 92.00 92.00 92.20
91.1
Beta coefficient log/log discharge/stage relationship
3.38 3.36 3.51 3.23 3.86 3.35 3.76 3.51

METHOW RIVER - WEEMAN SITE Calibration Information for Calculated Discharge

Transect Number	1	2	3	4
Discharge				
	4.87 1.28	6.44 0.52	4.77 0.74	4.96 0.62
	0.32	0.71	0.14	0.05
Stage				
	96.58 96.30 96.23	97.24 96.99 96.90	97.57 97.40 97.33	99.56 99.31 99.16
Plotting Stage				
	1.18 0.90 0.83	1.14 0.89 0.80	0.87 0.70 0.63	0.86 0.61 0.46
Ratio of measured	versus predicte	d discharge		
	0.898 1.592 0.699	1.202 0.542 1.530	0.899 1.384 0.803	0.865 1.380 0.838
Mean error of stag	e/discharge rela	tionship for calcul	ated Q	
	30.53	45.38	21.15	20.83
Mean error of stag	e/discharge rela	tionship for given	Q	
	12.63	4.65	1.59	14.76
Stage/discharge re	lationship (S vs	Q) S=A*Q**B+S	ZF	
A=	0.9286	0.8945	0.7432	0.6791
B =	0.1416	0.1444	0.9444	0.1352
SZF=	95.40	96.10	96.70	98.70
Beta coefficient lo	g/log discharge/	stage relationship		
	7.06	6.92	10.59	7.40

METHOW RIVER - WEEMAN SITE (Side Channel) Calibration Information for Calculated Discharge

Appendix D2 - Summary of Calibration Details, Weeman Site (continued)

TRANSECT	VERTICA	VEL	CHANGE
	L		
1	7	4	0.15 TO 0.00
1	19	4	0.13 TO 0.33
1	23	3	0.50 TO 0.70
2	31	4	0.00 TO 0.20
2	36	4	0.04 TO 0.00
3	9	4	0.10 TO 0.30
4	16	4	0.05 TO 0.00
4	17	4	0.03 TO 0.00
4	32	4	0.66 TO 0.86
4	36	1	3.17 TO 2.97
4	36	2	0.41 TO 0.61
4	36	3	0.37 TO 0.57
5	11	1	0.21 TO 0.00
5	12	3	0.22 TO 0.00
5	20	4	0.00 TO 0.20
5	21	4	0.23 TO 0.00
5	22	4	0.35 TO 0.55
5	26	4	1.73 TO 1.53
5	27	4	1.84 TO 1.64
5	28	4	1.85 TO 1.65
6	11	2	0.22 TO 0.42
6	12	2	0.52 TO 0.72
6	13	3	0.11 TO 0.00
6	29	4	0.25 TO 0.45
8	15	1	2.62 TO 2.42
8	15	2	0.59 TO 0.79
8	16	1	2.71 TO 2.51
8	16	2	1.02 TO 1.22
8	32	4	0.10 TO 0.30
8	34	4	0.03 TO 0.00
			~~

Appendix D3 Data Changes for Calibration, Weeman Site

Transect	Discharge	VAF
1.00	45.0	0.887
1.00	80.0	0.957
1.00	250.0	1.046
1.00	400.0	1.040
1.00	650.0	0.957
1.00	1300.0	0.787
2.00	45.0	0.937
2.00	45.0	1.017
2.00	250.0	1.017
2.00	400.0	1.010
2.00	650.0	0.982
2.00	1300.0	0.982
3.00	45.0	0.918
	43.0 80.0	
3.00		0.998
3.00	250.0	1.008
3.00	400.0	1.005
3.00	650.0	0.994
3.00	1300.0	0.958
4.00	45.0	0.914
4.00	80.0	0.999
4.00	250.0	1.038
4.00	400.0	1.016
4.00	650.0	0.970
4.00	1300.0	0.843
5.00	45.0	0.792
5.00	80.0	0.918
5.00	250.0	1.045
5.00	400.0	1.019
5.00	650.0	0.950
5.00	1300.0	0.786
6.00	45.0	0.961
6.00	80.0	1.011
6.00	250.0	1.034
6.00	400.0	1.009
6.00	650.0	0.959
6.00	1300.0	0.844
7.00	45.0	0.962
7.00	80.0	0.994
7.00	250.0	1.021
7.00	400.0	1.015
7.00	650.0	0.992
7.00	1300.0	0.935
8.00	45.0	0.927
8.00	80.0	0.990
8.00	250.0	1.041
8.00	400.0	1.021
8.00	650.0	0.959
8.00	1300.0	0.812

Appendix D4 – Velocity Adjustment Factors, Weeman Site

APPENDIX E

CHOKECHERRY SITE CALIBRATION INFORMATION

	l on 8/4/2 00 6.0 0.0 00.0 50.0 50.0 50.0	1991-640 ct 000002000	fs, 8/16-3	349 cfs, 8 00000	at river mil /27-207 cfs			
					0.0 95.0 25			
					0.0 93.6 55			
					0.0 93.0 85			
					10.0 93.01			
			0 93.413	5.0 93.5	40.0 94.21	43.7 95.01	52.897.95	
2.0	1.0352			••••	-			
NS	1.0	66.90	.80	28.80	78.90	78.80	78.90	
NS	1.0	78.70	78.80	78.70	78.60	78.60		
NS	1.0	76.70	78.80		76.80	7660		
NS	1.0	78.80		78.70	78.80	77.90		
NS NS	1.0	78.80	78.80	78.80	78.80	78.80	.80	
NS CAL1	1.0 1.0	.80 94.94 64	0.00					
VEL1	1.0	94.94 04	0.00	8/ /	2 2.57 2.90	0 2 50 3 21	1 2 08 1 3	24
VEL1 VEL1		8034037	5 2 0 1 /		5.35 4.57			
VEL1 VEL1		96 2.38 2.2		+.30 4.91	5.55 4.57	2.52 5.5	9 3.74 2.0	62
CAL2	1.0 2.2		349.00					
VEL2	1.0	71.17	517.00	1	.03 1.66 1.3	3530528	2 2 74	
VEL2		1 3.03 2.87	2.68 4.0		83 2.88 3.3			
VEL2		4 1.84 1.88						
CAL3	1.0 94.	21 2	07.00					
VEL3	1.0			0.	00 93 .90	0 1.70 1.98	2.18	
VEL3	1.0 1.5	9 2.07 1.75	1.99 3.8	4 3.55 3.	98 2.81 .87	2.82 2.01	1.72	
VEL3	1.0 1.7	9 1.44 .94						
CAL4	1.0	93.47 4	1.00					
VEL4	1.0							
VEL4	1.0		.87 2.18	3 2.50 2.0	7 2.21 1.90	.60 1.42 1	.43 .73	
VEL4	1.0.7 5							
XSEC	2.0	293.0		94.		00250		
).0 97.1 35.			
					0.0 96.1 65.			
).0 95.7 95.			
					20.0 95.81			
					50.0 96.11 80.0 94.81			
					5229.7100.3		90.0 94.3	
NS	2.0195	.090.8190.		.80	77.90	, 76.80	76.80	76.80
NS	2.0	.80 76.60		.60 5.60	78.70	76.80	78.70	87.80
NS	2.0	78.90		7.70	88.90	78.80	87.80	77.90
NS	2.0	87.90		.70 5.70	76.60	77.90	87.80	76.80
NS	2.0	78.80		7.60	87.70	78.70	78.80	78.80

Appendix E1 - IFG4 Input File, Chokecherry Site (continued)

NS	2.0 78.80	77.90	77.90	77.90	78.70	78.90
NS CAL 1	2.0 78.90	78.90	.80	.80		
CAL1	2.0 97.31	640.00	(5 2 20 2 4 6 2	70 4 20 2 52		
VEL1		0.00.401.471.0				
VEL1	2.0 3.47 2.71 4.16 4.1					
VEL1	2.0 2.85 3.14 2.31 3.	15 2.92 2.69 1.9	94 1.48 . 54 .	49 .13 1.01		
VEL1	2.0.72	240.00				
CAL2	2.0 97.14	349.00	1 00 1 66 0 16	0 0 70 2 10		
VEL2	2.0		1.92 1.66 2.18			
VEL2	2.0 2.16 2.71 3.13 3. 2.0 1.96 2.36 1.22 2.					
VEL2 VEL2	2.0 1.96 2.56 1.22 2.	52 2.15 2.05 .15	0.05 .04 .21	.20 .31		
CAL3	2.0 .27 2.0 96.82 207	00				
VEL3	2.0 90.82 207		2 1.59 1.86 1.3	8 2 20 2 37		
VEL3		.52 07 3.35 3.12 1.84				
VEL3 VEL3	2.0 1.96 1.99 .40 1					
VEL3 VEL3	2.0 1.90 1.99 .40 1	.72 1.40 2.04 1.0	4 .05 .05 0	.5 0.00 0.00		
CAL4	2.0 96.48 41	00				
VEL4	2.0	00	0.00 .42 .1	3 1 01 1 40		
VEL4		21 2.52 1.11 .19				
VEL4	2.0 .30 .51 .15 .4		100 1110 102	100 170		
VEL4	2.0					
XSEC		94.30 .00250				
	3.0 -8.099.27 0.096.0	67 10.096.35 15.0	95.6 20.0 94	4.7 25.0 95.1		
	3.0 30.0 94.7 35.0 94	.5 40.0 94.9 45.0	94.4 50.0 9	4.3 55.0 94.6		
	3.0 60.0 94.3 65.0 94	.4 70.0 94.5 75.0	94.4 80.0 9	4.4 85.0 94.4		
	3.0 90.0 94.5 95.0 94	.4100.0 94.6105	.0 94.6110.0 94	4.8115.0 94.7		
	3.0120.0 94.9125.0 9	4.7130.0 94.713	5.0 94.5140.0 9	95.0145.0 94.9		
	3.0150.0 94.7155.0 9	5.6158.496.3516	51.796.87164.7	99.87		
NS	3.0 .80	.80	87.60	87.70	78.80	78.70
NS	3.0 76.70	76.70	87.70	76.70	76.70	78.80
NS	3.0 87.60	77.90	76.70	76.70	76.70	76.60
NS	3.0 76.80	87.60	76.60	76.70	77.90	78.80
NS	3.0 78.90 2.0 76.70	77.90	76.70	78.70	77.90	77.90
NS CAL 1	3.0 76.70	77.90	45.80	12.50	.80	
CAL1	3.0 96.35	640.00	0 2 50 2 10 2 6	2 01 1 67		
VEL1 VEL1	3.0 3.0 2.51 2.42 2.43 2.	16 1.31 2.02 2.49 54 2 72 1 01 2 51				
VEL1 VEL1	3.0 2.68 2.86 2.44 2.			0 2.90 2.28		
CAL2	3.0 2.08 2.80 2.44 2. 3.0 95.98	349.00				
VEL2		00 1.13 2.32 1.82	2 1 75 2 50 1 79	9 2 00 1 62		
VEL2	3.0 1.82 2.07 2.33 2.					
VEL2	3.0 2.17 1.77 2.07 1.			0 2.01 1.70		
CAL3	3.0 95.71	207.00				
VEL3		.00 1.11 1.65 1.2	1 1.40 2.04 1.9	8 1.51 1.18		
VEL3	3.0 1.27 1.66 1.54 1.					
VEL3	3.0 1.93 1.27 1.54 1.	06 .90 .60 .7	4 0.00			
CAL4	3.0 96.48	41.00				
VEL4	3.0	.25 .49 .57 .49	9 1.06 .42 .81 .	35		
VEL4	3.0 .85 .62 .85 .71	.38 .09 .30 .76	5 .15 .52 .40 .	84		
VEL4	3.0 .51 .39 .25 .50					
XSEC	4.0 176.0.5) 94.5	0 .0025	0		

Appendix E1 - IFG4 Input File, Chokecherry Site (continued

			10 505 04 15 0				
			12.595.24 15.0		0 97.0 25.0	96.3 95.3 5	0.0
			40.0 95.5 45.0	95.3 55.0			
			70.0 94.8 75.0		0 94.4 85.0 9		
			97.5 94.2100.0		5 94.0105.0		
			7112.5 93.6115.0		5 93.3120.0		
	4.0122.5 9	3.1125.0 93.	1127.5 93.0130.0	93.6132.	5 93.8135.0	94.2	
	4.0137.295	5.24141.497.	77148.4101.2				
	4.0	.80	.80	87.50	87.50	87.70	87.70
NS	4.0	87.70	87.70	87.70	87.70	87.70	87.70
NS	4.0	87.50	87.50	86.50	86.50	86.50	86.50
NS	4.0	86.50	87.50	87.50	87.50	87.50	87.50
NS	4.0	87.50	87.36	87.60	87.60	87.60	87.60
NS	4.0	87.60	87.60	87.60	87.60	87.60	87.60
NS	4.0	.10	.80	.80			
CAL1	4.0	96.67	640.00				
VEL1	4.0		.54 .44 .3	36 1.43 1.50	1.56 2.21		
VEL1	4.0 2.60 2.	58 2.62 2.23	2.81 2.82 2.56 2.7				
VEL1			3.35 3.11 3.95 2.0				
VELI	4.0						
CAL2	4.0	96.20	349.00				
VEL2	4.0	, o . 2 o		33 .74 1.00	79135		
VEL2		79 1 60 1 38	1.58 2.09 1.82 1.9				
VEL2			2.07 2.51 2.79 1.0				
VEL2	4.0 2.20 2.	20 2.51 2.70	2.07 2.51 2.79 1.0	00 1.02 2.34	1.50 .70		
CAL3	4.0	95.88	207.00				
		15.00	207.00			0.00.76	
\mathbf{V} H I \mathbf{A}					00.1	0 00 56	
VEL3	4.0	1 20 06 82	1 33 1 25 1 26 1 2	26 1 06 1 73		9.00.56	
VEL3	4.0.90.80		1.33 1.25 1.26 1.2			9.00.56	
VEL3 VEL3	4.0 .90 .80 4.0 1.76 1.		1.33 1.25 1.26 1.2 1.54 1.88 2.15 1.2			9.00.56	
VEL3 VEL3 VEL3	4.0 .90 .80 4.0 1.76 1. 4.0	75 1.65 2.16	1.54 1.88 2.15 1.3			9 .00.56	
VEL3 VEL3 VEL3 CAL4	4.0 .90 .80 4.0 1.76 1. 4.0 4.0			34 1.53 1.79		9.00.56	
VEL3 VEL3 VEL3 CAL4 VEL4	4.0 .90 .80 4.0 1.76 1. 4.0 4.0 4.0	75 1.65 2.16 95.24	1.54 1.88 2.15 1.3 41.00	34 1.53 1.79 0.00		9.00.56	
VEL3 VEL3 VEL3 CAL4 VEL4 VELA	4.0 .90 .80 4.0 1.76 1. 4.0 4.0 4.0 4.0 4.0 0.00 0.	75 1.65 2.16 95.24 00 .00.11 .22	1.54 1.88 2.15 1.3 41.00 2 .36 .37 .35 .34 .4	0.00 3.44 .42		9 .00.56	
VEL3 VEL3 VEL3 CAL4 VEL4 VEL4 VELA	4.0 .90 .80 4.0 1.76 1. 4.0 4.0 4.0 4.0 0.00 0. 4.0 .52	75 1.65 2.16 95.24 00 .00.11 .22	1.54 1.88 2.15 1.3 41.00	0.00 3.44 .42		9 .00.56	
VEL3 VEL3 VEL3 CAL4 VEL4 VELA VELA VELA	4.0 .90 .80 4.0 1.76 1. 4.0 4.0 4.0 4.0 0.00 0. 4.0 .52 . 4.0	75 1.65 2.16 95.24 00 .00.11 .22 57 .54 .75 .5	1.54 1.88 2.15 1.3 41.00 2 .36 .37 .35 .34 .4 1 .54 .70 .35 .67 .0	0.00 3 .44 .42 64 .06 0.00	.72	9.00.56	
VEL3 VEL3 VEL3 CAL4 VEL4 VEL4 VELA	4.0 .90 .80 4.0 1.76 1. 4.0 4.0 4.0 4.0 4.0 0.00 0. 4.0 .52 4.0 5.0	75 1.65 2.16 95.24 00 .00.11 .22 57 .54 .75 .5 158.0 .50	1.54 1.88 2.15 1.3 41.00 2 .36 .37 .35 .34 .4 1 .54 .70 .35 .67 .0 94.50	0.00 0.00 0.44 0.42 04 0.00 0.00250)	9.00.56	
VEL3 VEL3 VEL3 CAL4 VEL4 VELA VELA VELA	4.0 .90 .80 4.0 1.76 1. 4.0 4.0 4.0 4.0 0.00 0. 4.0 .52 . 4.0 5.0 5.0 -7.010	75 1.65 2.16 95.24 00 .00.11 .22 57 .54 .75 .5 158.0 .50 1.2 0.099.77	1.54 1.88 2.15 1.3 41.00 2 .36 .37 .35 .34 .4 1 .54 .70 .35 .67 .0 94.50 16.2 96.9 20.0 96	0.00 0.00 0.3 .44 .42 0.00 0.00250 0.5 25.0 96.3) 30.0 95.7	9.00.56	
VEL3 VEL3 VEL3 CAL4 VEL4 VELA VELA VELA	4.0 .90 .80 4.0 1.76 1. 4.0 4.0 4.0 4.0 0.00 0. 4.0 .52 4.0 5.0 5.0 -7.010 5.0 35.0 95	75 1.65 2.16 95.24 00 .00.11 .22 57 .54 .75 .5 158.0 .50 1.2 0.099.77 5.6 40.0 95.6	1.54 1.88 2.15 1.3 41.00 2 .36 .37 .35 .34 .4 1 .54 .70 .35 .67 .0 94.50 16.2 96.9 20.0 96 45.0 95.1 50.0 95	0.00 0.00 0.3 .44 .42 0.00250 0.5 25.0 96.3 0.2 55.0 95.1	0.72) 30.0 95.7 60.0 95.2	9.00.56	
VEL3 VEL3 VEL3 CAL4 VEL4 VELA VELA VELA	4.0 .90 .80 4.0 1.76 1. 4.0 4.0 4.0 4.0 0.00 0. 4.0 .52 . 4.0 5.0 5.0 -7.010 5.0 35.0 92 5.0 65.0 94	75 1.65 2.16 95.24 00 .00.11 .22 57 .54 .75 .5 158.0 .50 1.2 0.099.77 5.6 40.0 95.6 4.9 70.0 94.9	1.54 1.88 2.15 1.3 41.00 2 .36 .37 .35 .34 .4 1 .54 .70 .35 .67 .0 94.50 16.2 96.9 20.0 96 45.0 95.1 50.0 95 75.0 95.0 80.0 95	0.00 0.00 0.44 .42 0.00 0.00250 0.5 25.0 96.3 0.2 55.0 95.1 0.0 85.0 94.9) 30.0 95.7 60.0 95.2 90.0 94.9		
VEL3 VEL3 VEL3 CAL4 VEL4 VELA VELA VELA	4.0 .90 .80 4.0 1.76 1. 4.0 4.0 4.0 4.0 0.00 0. 4.0 .52 5.0 5.0 5.0 -7.010 5.0 35.0 92 5.0 65.0 94 5.0 92.5 94	75 1.65 2.16 95.24 00 .00.11 .22 57 .54 .75 .5 158.0 .50 1.2 0.099.77 5.6 40.0 95.6 4.9 70.0 94.9 4.9 95.0 94.9	1.54 1.88 2.15 1.3 41.00 2 .36 .37 .35 .34 .4 1 .54 .70 .35 .67 .0 94.50 16.2 96.9 20.0 96 45.0 95.1 50.0 95 75.0 95.0 80.0 95 97.5 94.9100.0 95	0.00 0.00 0.44 .42 0.00 0.0025(0.5 25.0 96.3 0.2 55.0 95.1 0.0 85.0 94.9 5.0102.5 94.9) 30.0 95.7 60.0 95.2 90.0 94.9 9105.0 94.8		
VEL3 VEL3 VEL3 CAL4 VEL4 VELA VELA VELA	4.0 .90 .80 4.0 1.76 1. 4.0 4.0 4.0 4.0 0.00 0. 4.0 .52 . 4.0 5.0 5.0 -7.010 5.0 35.0 94 5.0 65.0 94 5.0 92.5 94 5.0107.5 9	75 1.65 2.16 95.24 00 .00.11 .22 57 .54 .75 .5 158.0 .50 1.2 0.099.77 5.6 40.0 95.6 4.9 70.0 94.9 4.9 95.0 94.9 4.8110.0 94.	1.54 1.88 2.15 1.3 41.00 2 .36 .37 .35 .34 .4 1 .54 .70 .35 .67 .0 94.50 16.2 96.9 20.0 96 45.0 95.1 50.0 95 75.0 95.0 80.0 95 97.5 94.9100.0 95 8112.5 94.7115.0	0.00 0.00 0.44 .42 0.00 0.0025(0.5 25.0 96.3 0.2 55.0 95.1 0.0 85.0 94.9 5.0102.5 94. 94.8117.5 9) 30.0 95.7 60.0 95.2 90.0 94.9 9105.0 94.8 14.8120.0 94		
VEL3 VEL3 VEL3 CAL4 VEL4 VELA VELA VELA	4.0 .90 .80 4.0 1.76 1. 4.0 4.0 4.0 4.0 0.00 0. 4.0 .52 . 4.0 5.0 5.0 -7.010 5.0 35.0 94 5.0 65.0 94 5.0 92.5 94 5.0107.5 9 5.0122.5 9	75 1.65 2.16 95.24 00 .00.11 .22 57 .54 .75 .5 158.0 .50 1.2 0.099.77 5.6 40.0 95.6 4.9 70.0 94.9 4.9 95.0 94.9 4.8110.0 94. 4.5125.0 94.	1.54 1.88 2.15 1.3 41.00 2 .36 .37 .35 .34 .4 1 .54 .70 .35 .67 .0 94.50 16.2 96.9 20.0 96 45.0 95.1 50.0 95 75.0 95.0 80.0 95 97.5 94.9100.0 9: 8112.5 94.7115.0 5127.5 94.6130.0	0.00 0.00 0.44 .42 0.00 0.0025(0.5 25.0 96.3 0.2 55.0 95.1 0.0 85.0 94.9 5.0102.5 94. 94.8117.5 9) 30.0 95.7 60.0 95.2 90.0 94.9 9105.0 94.8 14.8120.0 94		
VEL3 VEL3 VEL3 CAL4 VEL4 VEL4 VELA VELA XSEC	4.0 .90 .80 4.0 1.76 1. 4.0 4.0 4.0 4.0 0.00 0. 4.0 .52 . 4.0 5.0 5.0 -7.010 5.0 35.0 92 5.0 65.0 92 5.0 107.5 9 5.0122.5 9 5.0137.190	75 1.65 2.16 95.24 00 .00.11 .22 57 .54 .75 .5 158.0 .50 1.2 0.099.77 5.6 40.0 95.6 4.9 70.0 94.9 4.9 95.0 94.9 4.8110.0 94. 4.5125.0 94. 5.92142.999.	1.54 1.88 2.15 1.3 41.00 2.36 .37 .35 .34 .4 1 .54 .70 .35 .67 .0 94.50 16.2 96.9 20.0 96 45.0 95.1 50.0 95 97.5 94.9100.0 95 8112.5 94.7115.0 5127.5 94.6130.0 27146.9101.2	0.00 0.00 0.44 .42 0.4 .06 0.00 0.00250 0.5 25.0 96.3 0.2 55.0 95.1 0.0 85.0 94.9 5.0102.5 94 94.8117.5 9 94.8132.513	0.72 30.0 95.7 60.0 95.2 90.0 94.9 9105.0 94.8 4.8120.0 94 35.0 95.6	.6	07.50
VEL3 VEL3 VEL3 CAL4 VEL4 VEL4 VELA VELA XSEC	4.0 .90 .80 4.0 1.76 1. 4.0 4.0 4.0 4.0 0.00 0. 4.0 .52 . 4.0 5.0 5.0 -7.010 5.0 35.0 92 5.0 65.0 92 5.0 107.5 9 5.0122.5 9 5.0137.190 5.0	75 1.65 2.16 95.24 00 .00.11 .22 57 .54 .75 .5 158.0 .50 1.2 0.099.77 5.6 40.0 95.6 4.9 70.0 94.9 4.9 95.0 94.9 4.8110.0 94. 4.5125.0 94. 5.92142.999. .80	1.54 1.88 2.15 1.3 41.00 2.36 .37 .35 .34 .4 1 .54 .70 .35 .67 .0 94.50 16.2 96.9 20.0 96 45.0 95.1 50.0 95 97.5 94.9100.0 95 8112.5 94.7115.0 5127.5 94.6130.0 27146.9101.2 22.90	0.00 0.00 0.44 .42 0.00 0.00250 0.5 25.0 96.3 0.2 55.0 95.1 0.0 85.0 94.9 5.0102.5 94 94.8117.5 9 94.8132.512 22.90	0.72 30.0 95.7 60.0 95.2 90.0 94.9 9105.0 94.8 4.8120.0 94 35.0 95.6 22.90	.6 87.50	87.50
VEL3 VEL3 VEL3 CAL4 VEL4 VELA VELA VELA XSEC NS NS	4.0 .90 .80 4.0 1.76 1. 4.0 4.0 4.0 4.0 4.0 0.00 0. 4.0 .52 . 4.0 5.0 5.0 -7.010 5.0 35.0 92 5.0 65.0 94 5.0 92.5 94 5.0122.5 9 5.0137.190 5.0 5.0	75 1.65 2.16 95.24 00 .00.11 .22 57 .54 .75 .5 158.0 .50 1.2 0.099.77 5.6 40.0 95.6 4.9 70.0 94.9 4.9 95.0 94.9 4.8110.0 94. 4.5125.0 94. 5.92142.999. .80 87.50	1.54 1.88 2.15 1.3 41.00 2.36 .37 .35 .34 .4 1 .54 .70 .35 .67 .0 94.50 16.2 96.9 20.0 96 45.0 95.1 50.0 95 75.0 95.0 80.0 95 97.5 94.9100.0 95 8112.5 94.7115.0 5127.5 94.6130.0 27146.9101.2 22.90 86.50	0.00 0.00 0.44 .42 0.00 0.00250 0.5 25.0 96.3 0.2 55.0 95.1 0.0 85.0 94.9 5.0102.5 94 94.8117.5 9 94.8132.512 22.90 86.50	9.72 30.0 95.7 60.0 95.2 90.0 94.9 9105.0 94.8 4.8120.0 94 35.0 95.6 22.90 86.70	.6 87.50 78.70	78.70
VEL3 VEL3 CAL4 VEL4 VEL4 VELA VELA VELA XSEC NS NS NS	4.0 .90 .80 4.0 1.76 1. 4.0 4.0 4.0 4.0 4.0 0.00 0. 4.0 .52 . 4.0 5.0 5.0 -7.010 5.0 35.0 92 5.0 65.0 94 5.0 92.5 94 5.0107.5 9 5.0137.196 5.0 5.0 5.0	75 1.65 2.16 95.24 00 .00.11 .22 57 .54 .75 .5 158.0 .50 1.2 0.099.77 5.6 40.0 95.6 4.9 70.0 94.9 4.9 95.0 94.9 4.8110.0 94. 4.5125.0 94. 5.92142.999. .80 87.50 78.70	1.54 1.88 2.15 1.3 41.00 2 .36 .37 .35 .34 .4 1 .54 .70 .35 .67 .0 94.50 16.2 96.9 20.0 96 45.0 95.1 50.0 95 97.5 94.9100.0 95 8112.5 94.7115.0 5127.5 94.6130.0 27146.9101.2 22.90 86.50 78.70	0.00 0.00 0.44 .42 0.00 0.00250 0.5 25.0 96.3 0.2 55.0 95.1 0.0 85.0 94.9 5.0102.5 94. 94.8117.5 9 94.812.51 22.90 86.50 68.50) 30.0 95.7 60.0 95.2 90.0 94.9 9105.0 94.8 94.8120.0 94 35.0 95.6 22.90 86.70 76.50	.6 87.50 78.70 76.50	78.70 76.50
VEL3 VEL3 CAL4 VEL4 VEL4 VELA VELA VELA XSEC NS NS NS NS NS	4.0 .90 .80 4.0 1.76 1. 4.0 4.0 4.0 4.0 4.0 4.0 5.0 5.0 -7.010 5.0 65.0 92 5.0 65.0 92 5.0 107.5 9 5.0137.196 5.0 5.0 5.0 5.0 5.0	75 1.65 2.16 95.24 00 .00.11 .22 57 .54 .75 .5 158.0 .50 1.2 0.099.77 5.6 40.0 95.6 4.9 70.0 94.9 4.9 95.0 94.9 4.8110.0 94. 4.5125.0 94. 5.92142.999. .80 87.50 78.70 76.50	1.54 1.88 2.15 1.3 41.00 2 .36 .37 .35 .34 .4 1 .54 .70 .35 .67 .0 94.50 16.2 96.9 20.0 96 45.0 95.1 50.0 95 75.0 95.0 80.0 95 97.5 94.9100.0 95 8112.5 94.7115.0 5127.5 94.6130.0 27146.9101.2 22.90 86.50 78.70 76.60	0.00 0.00 0.44 .42 0.00 0.0025(0.5 25.0 96.3 0.2 55.0 95.1 0.0 85.0 94.9 5.0102.5 94. 94.8117.5 9 94.8132.51 22.90 86.50 68.50 76.50) 30.0 95.7 60.0 95.2 90.0 94.9 9105.0 94.8 94.8120.0 94 35.0 95.6 22.90 86.70 76.50 76.50	.6 87.50 78.70 76.50 76.60	78.70 76.50 76.70
VEL3 VEL3 VEL3 CAL4 VEL4 VELA VELA VELA XSEC NS NS NS NS NS NS NS	4.0 .90 .80 4.0 1.76 1. 4.0 4.0 4.0 4.0 4.0 4.0 0.00 0. 4.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5	75 1.65 2.16 95.24 00 .00.11 .22 57 .54 .75 .5 158.0 .50 1.2 0.099.77 5.6 40.0 95.6 4.9 70.0 94.9 4.9 95.0 94.9 4.8110.0 94. 4.5125.0 94. 5.92142.999. .80 87.50 78.70 76.50 78.70	1.54 1.88 2.15 1.3 41.00 2 .36 .37 .35 .34 .4 1 .54 .70 .35 .67 .0 94.50 16.2 96.9 20.0 96 45.0 95.1 50.0 95 75.0 95.0 80.0 95 97.5 94.9100.0 95 8112.5 94.7115.0 5127.5 94.6130.0 27146.9101.2 22.90 86.50 78.70 76.60 78.70	0.00 0.00 0.44 .42 0.00 0.0025(0.5 25.0 96.3 0.2 55.0 95.1 0.0 85.0 94.9 0.0102.5 94. 94.8117.5 9 94.8132.51 22.90 86.50 68.50 76.50 78.70	9.72 30.0 95.7 60.0 95.2 90.0 94.9 9105.0 94.8 94.8120.0 94 35.0 95.6 22.90 86.70 76.50 76.50 78.60	.6 87.50 78.70 76.50 76.60 78.50	78.70 76.50 76.70 78.50
VEL3 VEL3 VEL4 VEL4 VELA VELA VELA XSEC NS NS NS NS NS NS NS NS NS	$\begin{array}{c} 4.0 & .90 & .80 \\ 4.0 & 1.76 & 1. \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 0.00 & 0. \\ 4.0 \\ 5.0 \\$	75 1.65 2.16 95.24 00 .00.11 .22 57 .54 .75 .5 158.0 .50 1.2 0.099.77 5.6 40.0 95.6 4.9 70.0 94.9 4.9 95.0 94.9 4.8110.0 94. 4.5125.0 94. 5.92142.999. .80 87.50 78.70 76.50 78.70 78.50	1.54 1.88 2.15 1.3 41.00 2 .36 .37 .35 .34 .4 1 .54 .70 .35 .67 .0 94.50 16.2 96.9 20.0 96 45.0 95.1 50.0 95 75.0 95.0 80.0 95 97.5 94.9100.0 92 8112.5 94.7115.0 5127.5 94.6130.0 27146.9101.2 22.90 86.50 78.70 76.60 78.70 78.50	0.00 0.00 0.44 .42 0.00 0.0025(0.5 25.0 96.3 0.2 55.0 95.1 0.0 85.0 94.9 0.0102.5 94. 94.8117.5 9 94.8132.51 22.90 86.50 68.50 76.50 78.70 78.50) 30.0 95.7 60.0 95.2 90.0 94.9 9105.0 94.8 94.8120.0 94 35.0 95.6 22.90 86.70 76.50 76.50	.6 87.50 78.70 76.50 76.60	78.70 76.50 76.70
VEL3 VEL3 CAL4 VEL4 VELA VELA VELA XSEC NS NS NS NS NS NS NS NS NS NS NS	$\begin{array}{c} 4.0 & .90 & .80 \\ 4.0 & 1.76 & 1. \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 0.00 & 0. \\ 4.0 \\ 5.0 \\$	75 1.65 2.16 95.24 00 .00.11 .22 57 .54 .75 .5 158.0 .50 1.2 0.099.77 5.6 40.0 95.6 4.9 70.0 94.9 4.9 95.0 94.9 4.9 95.0 94.9 4.8110.0 94. 4.5125.0 94. 6.92142.999. .80 87.50 78.70 76.50 78.70 78.50 .10	1.54 1.88 2.15 1.3 41.00 2 .36 .37 .35 .34 .4 1 .54 .70 .35 .67 .0 94.50 16.2 96.9 20.0 96 45.0 95.1 50.0 95 97.5 94.9100.0 95 8112.5 94.7115.0 5127.5 94.6130.0 27146.9101.2 22.90 86.50 78.70 76.60 78.70 78.50 .80	0.00 0.00 0.44 .42 0.00 0.0025(0.5 25.0 96.3 0.2 55.0 95.1 0.0 85.0 94.9 0.0102.5 94. 94.8117.5 9 94.8132.51 22.90 86.50 68.50 76.50 78.70	9.72 30.0 95.7 60.0 95.2 90.0 94.9 9105.0 94.8 94.8120.0 94 35.0 95.6 22.90 86.70 76.50 76.50 78.60	.6 87.50 78.70 76.50 76.60 78.50	78.70 76.50 76.70 78.50
VEL3 VEL3 CAL4 VEL4 VELA VELA VELA VELA XSEC NS NS NS NS NS NS NS NS NS NS NS NS NS	$\begin{array}{c} 4.0 & .90 & .80 \\ 4.0 & 1.76 & 1. \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 0.00 & 0. \\ 4.0 \\ 5.0 \\$	75 1.65 2.16 95.24 00 .00.11 .22 57 .54 .75 .5 158.0 .50 1.2 0.099.77 5.6 40.0 95.6 4.9 70.0 94.9 4.9 95.0 94.9 4.9 95.0 94.9 4.8110.0 94. 4.5125.0 94. 5.92142.999. .80 87.50 78.70 76.50 78.70 78.50 .10 96.92	1.54 1.88 2.15 1.3 41.00 2 .36 .37 .35 .34 .4 1 .54 .70 .35 .67 .0 94.50 16.2 96.9 20.0 96 45.0 95.1 50.0 95 97.5 94.9100.0 93 8112.5 94.7115.0 5127.5 94.6130.0 27146.9101.2 22.90 86.50 78.70 76.60 78.70 78.50 .80 640.00	0.00 0.00 0.44 .42 0.00 0.00250 0.5 25.0 96.3 0.2 55.0 95.1 0.0 85.0 94.9 0.0102.5 94 94.8117.5 9 94.8132.51 22.90 86.50 68.50 76.50 78.70 78.50 .80	9.72 30.0 95.7 60.0 95.2 90.0 94.9 9105.0 94.8 94.8120.0 94 35.0 95.6 22.90 86.70 76.50 76.50 78.60 78.50	.6 87.50 78.70 76.50 76.60 78.50	78.70 76.50 76.70 78.50
VEL3 VEL3 VEL3 CAL4 VEL4 VELA VELA VELA XSEC NS NS NS NS NS NS NS NS NS NS NS NS NS	$\begin{array}{c} 4.0 & .90 & .80 \\ 4.0 & 1.76 & 1. \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 0.00 & 0. \\ 4.0 \\ 5.0 \\$	75 1.65 2.16 95.24 00 .00.11 .22 57 .54 .75 .5 158.0 .50 1.2 0.099.77 5.6 40.0 95.6 4.9 70.0 94.9 4.9 95.0 94.9 4.9 95.0 94.9 4.8110.0 94. 4.5125.0 94. 5.92142.999. .80 87.50 78.70 76.50 78.70 78.50 .10 96.92 0.00	$\begin{array}{c} 1.54 \ 1.88 \ 2.15 \ 1.3 \\ 41.00 \\ 2.36 \ .37 \ .35 \ .34 \ .4 \\ 1.54 \ .70 \ .35 \ .67 \ .6 \\ 94.50 \\ 16.2 \ 96.9 \ 20.0 \ 96 \\ 94.50 \ 95.1 \ 50.0 \ 95 \\ 97.5 \ 94.9100.0 \ 95 \\ 97.5 \ 94.9100.0 \ 95 \\ 97.5 \ 94.9100.0 \ 95 \\ 8112.5 \ 94.7115.0 \\ 5127.5 \ 94.6130.0 \\ 27146.9101.2 \\ 22.90 \\ 86.50 \\ 78.70 \\ 76.60 \\ 78.70 \\ 76.60 \\ 78.70 \\ 78.50 \\ .80 \\ 640.00 \\ 0 \ .41 \ .10 \ 2.08 \ 2.1 \\ \end{array}$	0.00 0.00 0.44 .42 0.00 0.00250 0.5 25.0 96.3 0.2 55.0 95.1 0.0 85.0 94.9 0.0102.5 94 94.8117.5 9 94.8132.513 22.90 86.50 68.50 76.50 78.70 78.50 .80 63 2.68 2.82	9.72 30.0 95.7 60.0 95.2 90.0 94.9 9105.0 94.8 94.8120.0 94 35.0 95.6 22.90 86.70 76.50 76.50 78.60 78.50 23.04 2.90	.6 87.50 78.70 76.50 76.60 78.50	78.70 76.50 76.70 78.50
VEL3 VEL3 CAL4 VEL4 VELA VELA VELA VELA XSEC NS NS NS NS NS NS NS NS NS NS NS NS NS	$\begin{array}{c} 4.0 & .90 & .80 \\ 4.0 & 1.76 & 1. \\ 4.0 \\ 4.0 \\ 4.0 \\ 4.0 \\ 0.00 & 0. \\ 4.0 \\ 5.0 \\$	75 1.65 2.16 95.24 00 .00.11 .22 57 .54 .75 .5 158.0 .50 1.2 0.099.77 5.6 40.0 95.6 4.9 70.0 94.9 4.9 95.0 94.9 4.9 95.0 94.9 4.8110.0 94. 4.5125.0 94. 5.92142.999. .80 87.50 78.70 76.50 78.70 78.50 .10 96.92 0.00	1.54 1.88 2.15 1.3 41.00 2 .36 .37 .35 .34 .4 1 .54 .70 .35 .67 .0 94.50 16.2 96.9 20.0 96 45.0 95.1 50.0 95 97.5 94.9100.0 93 8112.5 94.7115.0 5127.5 94.6130.0 27146.9101.2 22.90 86.50 78.70 76.60 78.70 78.50 .80 640.00	0.00 0.00 0.44 .42 0.00 0.00250 0.5 25.0 96.3 0.2 55.0 95.1 0.0 85.0 94.9 0.0102.5 94 94.8117.5 9 94.8132.513 22.90 86.50 68.50 76.50 78.70 78.50 .80 63 2.68 2.82	9.72 30.0 95.7 60.0 95.2 90.0 94.9 9105.0 94.8 94.8120.0 94 35.0 95.6 22.90 86.70 76.50 76.50 78.60 78.50 23.04 2.90	.6 87.50 78.70 76.50 76.60 78.50	78.70 76.50 76.70 78.50

	Appendi	x EI - IFG4	4 Input File, C	hokecherry Si	te (continued)			
	VEL1	50332	3 63 3 17 3 75	3 27 3 13 88	2.09 1.86 1.95	83 1 20		
	VEL1 VEL1	5.0 5.52	5.05 5.47 5.25	5.27 5.15 .88	2.09 1.80 1.95	.03 1.29		
	CAL2	5.0	96.50	349.00				
	VEL2	5.0 5.0	90.50		00 .07 1.41	1.66 2.12 2.30	2 4 4 2 0 7	
	VEL2 VEL2		- 1 - 1 - 80		3 2.31 2.76 2.50		2.44 2.07	
	VEL2 VEL2				2.62 2.20 1.63			
	VEL2 VEL2	5.0 2.47	2.00 5.00 2.88	2.46 5.15 .57	2.02 2.20 1.03	1.10.75		
	CAL3	5.0 5.0	96.14	207.00				
	VEL3	5.0 5.0	90.14	207.00	01.02	1.26 1.48 1.76 2	24 2 01	
	VEL3		2 2 4 2 0 6 1 00	2 24 1 97 2 0	.01 .92 7 2.16 2.21 1.93			
	VEL3 VEL3				.53 1.83 1.48 1			
	VEL3 VEL3	5.0 2.13	2.08 2.29 2.30	2.20 2.90 .24	.55 1.65 1.46 1	.03 .42		
	CAM	5.0 5.0	95.50	41.00				
	VEM	5.0 5.0	95.50	41.00		4	54 .68 .97 1.15	
	VEM		45 .49 .43 1.58	2 1 04 74 1 21				, 35 1.30 1.41
	VELA VEM		43 .49 .43 1.36 1.19 .86 1.74 1				.05 1.	55 1.50 1.41
	VEM	5.01.55	1.19.00 1.74 1		24 1.01 .00			
	XSEC	5.0 6.0	189.0 .50	94.5	0.00250)		
	ASEC				96.6 15.0 95.2			
) 94.8 45.0 95.0			
					5 95.0 70.0 94.9			
					5 94.3 85.0 94.3			
					5 93.8100.0 93.			
					10.6100.3111.6			
NS		6.0	.80	.80	27.60	27.90	78.80	71.90
NS		6.0	.00 71.90	.80 76.90	78.90	78.90	78.90	76.90
NS		6.0	56.60	76.70 56.70	56.70	56.50	56.60	65.60
NS		6.0	57.50	57.50	57.50	56.50	56.50	57.60
NS		6.0	78.60	78.50	87.60	87.70	87.70	87.70
NS		6.0	87.80	87.80	88.90	.80	.80	07.70
CAL	1	6.0	97.25	640.00	00.70	.00	.00	
CITL	VEL1	6.0	<i>J</i> 1.25		1 31 1 29 1 13	1.88 1.79 2.35 2	97	
	VEL1		30368341		4.02 4.40 4.27		.,,,	
	VEL1		3.47 1.76 2.26			5.111 1.50		
	CAL2	6.0 96.66		1.71 1.22 .10				
	VEL2	6.0		.22 .45 .44	.72 .94 1.27	1.66 1.75		
	VEL2				3.65 3.99 3.18			
	VEL2		.64 1.38 1.07					
	CAL3		6.33 207.00					
	VEL3	6.0		09 .31 29	.47 .79 .78	1.08 1.32		
	VEL3	6.01.56 1	.82 2.38 2.44	2.37 2.57 3.03	3 3.33 3.11 2.86	5 3.25 3.06		
	VEL3	6.02.42	1.08 .71 .32	.05 -2128 (0.00			
	CAM	6.0 95	5.66 41.00					
	VEL4	6.0	0.0	0 0.00 0.00 0.	00 0.00 0.00 .23	3 0.00		
	VEL4	6.0 .42	.69 .77 .68 1.0	0.76 1.11 1.5	3 1.41 1.18 1.42	2 1.17		
	VEL4	6.0 1.16	.26 .12 .01 .01	-01 0.00				
	XSEC	7.0 12	5.0.50 94.50	.00250				
		7.0 -1.01	01.2 0.099.77	7.197.35 10.0	96.7 15.0 96.5	20.0 96.3		
		7.0 25.0	96.6 30.0 96.0	5 35.0 96.5 40	.0 96.6 45.0 96.	2 50.0 96.5		
		7.0 55.0	95.9 60.0 96.	3 65.0 95.8 70	.0 95.9 75.0 95.	.8 80.0 95.8		
		7.0 82.5	95.7 85.0 95.4	4 87.5 95.4 90	.0 95.3 92.5 95.	2 95.0 95.1		
		7.0 97.5	95.1100.0 95.	0102.5 94.710	5.0 94.5107.5 9	4.3110.0 94.1		

7.0112.5 94.0115.0 95.2117.5 95.5120.0 95.4122.5 95.9125.0 96.8 7.0126.397.35127.699.97128.6101.2

	7.0126.397.	35127.699.971	28.6101.2				
NS	7.0	12.50	12.50	22.90	22.90	57.60	75.90
NS	7.0	78.80	77.90	77.90	77.90	77.90	77.90
NS	7.0	78.60	78.60	78.60	67.60	67.60	79.60
NS	7.0	78.70	78.70	77.90	75.50	75.05	57.70
NS	7.0	65.70	65.70	65.70	65.70	87.70	87.70
NS	7.0	88.90	88.90	88.90	88.90	88.90	88.90
NS	7.0	.30	.80	.80			
CAL1	7.0	97.35	640.00				
VEL1	7.0	.47 1.5	3 1.18 1.82 2.4	6 2.86 3.89 2	.79 2.69		
VEL1	7.0 2.69 3.4	0 2.94 3.80 3.2	0 3.99 3.61 3.8	30 4.19 4.16 4	.22 4.21		
VEL1	7.0 4.11 4.7	0 4.47 4.68 5.0	9 4.90 4.75 5.4	1 3.99 2.63 2	.85 .86		
VEL1	7.0						
CAL2	7.0 96.89	349.00					
VEL2	7.0	0.00 .4	9 .76 .68 .9	0 1.01 2.23 1	.51 2.61		
VEL2	7.0 2.03 3.0	1 2.01 2.23 2.4	3 3.12 2.95 2.9	5 3.47 2.92 3	.30 3.58		
VEL2	7.0 3.39 3.8	8 3.56 4.06 3.6	7 3.03 3.86 2.7	.33 3.14 1	.83 0.00		
VEL2	7.0						
CAL3	7.0 96.58	207.00					
VEL3	7.0	0.00	.40 0.00 0.00	50 1.21 1.36	1.35		
VEL3	7.0 1.51 2.1	6 2.12 1.09 1.7	6 2.11 2.14 2.4	3 2.47 2.76 1	.92 3.31		
VEL3	7.0 3.09 3.8	0 3.36 4.08 3.8	6 3.36 3.48 1.8	88 0.53 1.13 1	.89		
VEL3	7.0						
CAL4	7.0 95.7	6 41.00					
VEL4	7.0						
VEL4	7.0	.95 .77 .2		.72 .71 .55 .	.76		
VEL4		3 2.38 1.81 2.6	0 1.57 .89 .39	.20 .80			
VEL4	7.0						
XSEC		191.0 .50	96.50	.00250			
			98.45 10.0 98				
			.0 96.5 40.0 9				
			.0 96.7 70.0 9				
			.0 97.0100.0 9				
			5.0 97.1130.0				
			2.598.45161.9				
NS		21.50		22.90	22.90	45.80	67.70
NS		87.60		78.80	78.80	87.70	87.70
NS		87.80		87.60	78.70	78.70	78.70
NS		78.80		77.90	76.80	76.80	76.70
NS		67.70		87.60	87.70	87.70	77.90
NS		76.80		66.90	22.90	22.90	
CAL1		98.45	640.00				
VEL1	8.0		.69 1.88 3.2				
VEL1			4 3.29 2.77 3.6		.15 3.52		
VEL1			6 1.33 .99 .2	2			
CAL2	0.0		49.00	0 1 07 0 46 0	00.0.10		
VEL2	8.0		5 .45 1.21 2.1				
VEL2			0 2.29 2.10 2.7	7 2.56 3.03 2			
VEL2		1 2.49 1.18 .8	5 .49				
CAL3	8.0 97.8		0 20 1 20 2 1	1 1 00 2 01 1	21.2.02		
VEL3	8.0		8 .20 1.20 2.1	1 1.07 2.01 1	.21 2.02		

Appendix E1 - IFG4 Input File, Chokecherry Site (continued)

 VEL3
 8.0 2.29 2.05 2.12 2.59 2.12 2.62 2.23 2.62 1.51 1.92 2.02 2.49

 VEL3
 8.0 2.32 2.25 2.72 1.31 .52

 CAL4
 8.0 97.35 41.00

 VELA
 8.0 0.00.22 .60 .15 .88 1.00 .38

 VELA
 8.0 .83 1.18 .50 1.42 1.31 1.13 .78 1.22 1.31 .59 0.00 1.03

 VELA
 8.0 1.03 0.00 .49 0.00

 ENDJ
 ENDJ

Appendix E2 - Summary of Calibration Details, Chokecherry Site

Transect Nun	nber						
1	2	3	4	5	6	7	8
Discharge							
621	556	555	630	586	622	645	616
371	326	338	338	365	333	340	368
220	191	199	195	221	212	224	232
50	58	34	37	53	42	42	45
Stage							
94.94	97.31	96.35	96.67	96.92	97.25	97.35	98.45
94.49	97.14	95.98	96.20	96.50	96.66	96.89	98.12
94.21	96.82	95.71	95.88	96.14	96.33	96.58	97.85
93.47	96.48	95.12	95.24	95.50	95.66	95.76	97.35
Plotting Stag	e						
2.44	3.01	2.05	2.17	2.42	2.75	2.85	1.95
1.99	2.84	1.68	1.70	2.00	2.16	2.39	1.62
1.71-	2.52	1.41	1.38	1.64	1.83	2.08	1.35
0.97	2.18	0.82	0.74	1.00	1.16	1.26	0.85
Ratio of mea	sured versu	us predicted	d discharge	e			
1.002	1.027	0.929	0.986	0.965	0.910	1.020	0.931
1.046	0.890	1.049	1.010	1.011	1.046	0.967	1.004
0.940	1.165	1.063	1.011	1.050	1.124	1.010	1.130
1.014	0.939	0.965	0.993	0.977	0.935	1.003	0.946
Mean error o	f stage/dise	charge rela	tionship fo	r calculate	d 0		
3.09	8.91	5.45	1.06	2.95	8.06	1.67	6.25
Mean error o	f stage/dise	charge rela	tionship fo	r given Q			
2.65	14.59	0.37	1.06	3.17	8.04	2.41	3.18
Stage/dischar	ge relation	ship (S vs	Q) S=A*Q	**B+SZF			
A= 0.2327	0.1182	0.2614	0.1891	0.2305	0.3472	0.4110	0.2533
B = 0.3655	0.1486	0.3220	0.3770	0.3669	0.3171	0.3002	0.3142
SZF= 92.5	94.30	94.30	94.50	94.50	94.50	94.50	96.50
	4 1 /1	1. 1	(
Beta coeffici		-	-	-	2.15	2.22	2 10
2.74	6.73	3.10	2.65	2.73	3.15	3.33	3.18

METHOW RIVER - CHOKECHERRY SITE Calibration Information for Calculated Discharge

			GILLIGE
TRANSEC	TVERTICAL	VEL	CHANGE
1	7	1	2.77 TO 2.57
2	6	3	0.32 TO 0.52
2	25	4	0.10 TO 0.30
4	10	3	0.16 TO 0.00
4	15	4	0.12 TO 0.00
4	17	4	0.02 TO 0.22
4	29	4	0.71 TO 0.51
4	30	4	0.74 TO 0.54
4	31	4	0.90 TO 0.70
4	32	4	0.55 TO 0.35
7	8	1	0.10 TO 0.00
7	9	3	0.30 TO 0.50
7	28	4	2.01 TO 1.81
7	29	4	2.80 TO 2.60
7	30	4	1.77 TO 1.57
7	33	3	0.33 TO 0.53
7	33	4	0.00 TO 0.20
8	15	4	0.30 TO 0.50
8	23	4	0.11 TO 0.00
8	30	3	0.29 TO 0.49

—		
Transect	DischargeVAF	
1.00	1600.0	0.916
1.00	640.0	0.995
1.00	349.0	1.010
1.00	207.0	1.014
1.00	41.0	0.998
1.00	16.0	0.982
2.00	1600.0	0.926
2.00	640.0	0.998
2.00	349.0	1.013
2.00	207.0	1.014
2.00	41.0	1.018
2.00	16.0	1.073
3.00	1600.0	0.992
3.00	640.0	1.003
3.00	349.0	0.999
3.00	207.0	0.994
3.00	41.0	0.999
3.00	16.0	1:156
4.00	1600.0	0.826
4.00	640.0	0.960
4.00	349.0	1.010
4.00	207.0	1.026
4.00	41.0	0.936
4.00	16.0	0.803
5.00	1600.0	0.996
5.00	640.0	1.005
5.00	349.0	1.000
5.00	207.0	0.993
5.00	41.0	1.020
5.00	16.0	1.104
6.00	1600.0	0.859
6.00	640.0	0.989
6.00	349.0	1.017
6.00	207.0	1.017
6.00	41.0	0.937
6.00	160	0.861
7.00	1600.0	0.811
7.00	640.0	0.967
7.00	349.0	1.027
7.00	207.0	1.063
7.00	41.0	0.963
7.00	16.0	0.769
8.00	1600.0	1.002
8.00	640.0	1.018
8.00	349.0	0.999
8.00	207.0	0.975
8.00	41.0	0.912
8.00	16.0	0.913

APPENDIX F

TWISP RIVER SITE CALIBRATION INFORMATION

measured on 8/5/91 - 300 cfs, 8/17 - 163 cfs, 8/29 - 92 cfs, 9/25-33 cfs IOC 0000000200000000000000000000000000000			er mile 1.8 - WI					
QARD 13.0 QARD 30.0 QARD 90.0 QARD 175.0 QARD 750.0 XSEC 1.0 0.0.5.0 91.75 .00250 1.0 1.0.50.099.60 0.0.7.66 10.193.93 12.592.88 15.092.52 17.592.46 1.0 20.092.49 22.5 92.5 25.092.33 30.092.08 32.592.52 1.0 55.092.46 67.592.16 70.092.25 80.092.31 85.092.55 1.0 05.092.98100.033.93107.794.36147.7101.9 87.80 87.80 87.80 NS 1.0 87.70 87.70 87.70 87.70 87.70 NS 1.0 87.60 87.80 87.80 78.70 87.80 NS 1.0 87.60 87.70 87.70 87.80 87.80 NS 1.0 87.60 87.70 87.80 88.0 86.70 CALI 10 93.93 30.00 92.92 23.259.2.1 2.61.41.32 2.92 43.43.40.2.94 VEL1 1.0.2.80.1.89.2.251.44					92 cfs, 9/25- 33 o	efs		
QARD 30.0 QARD 175.0 QARD 300.0 QARD 300.0 QARD 300.0 SEC 1.0 0.0.50 91.75 .00250 1.0-50.099.66 0.097.66 1.0.93.91 2.59.2.52 17.59.2.46 1.0 30.00.02.05 37.59.1.89 40.091.75 42.591.86 45.092.04 2.592.15 5.002.05 5.002.25 60.092.61 5.292.12 5.10 5.002.25 5.002.25 50.092.36 5.292.12 5.10 9.0002.61 5.592.16 50.092.36 5.592.15 5.10 9.0002.61 57.592.36 50.092.36 5.592.15 50.092.56 50.092.56 50.092.56 50.092.56 50.092.56 50.292.32 1.0 65.092.46 67.70 67.70 87.80 87.80 87.80 87.80 87.80 87.80 87.80 87.80 87.80 87.80 87.80 87.80 87.80 87.80 88.10 85.70 88.0 86.70 88.1 1.0 87.60 28.90 .80 80 CAL1 1.0 93.93 30.00 VEL1			020000000000000000000000000000000000000	00000				
QARD 90.0 QARD 175.0 QARD 300.0 QARD 750.0 XSEC 1.0 0.0.50 91.75 .00250 1.0-50.099.66 0.097.66 10.193.93 12.592.88 15.092.52 17.592.46 1.0 20.092.49 22.592.5 25.092.93 27.592.3 30.092.08 32.592.52 1.0 50.092.98 10.754.2591.48 45.092.04 57.592.32 1.0 65.092.44 67.592.16 70.092.58 60.092.35 62.592.32 1.0 60.509.24 67.70 67.70 67.70 87.80	-							
QARD 175.0 QARD 300.0 QARD 750.0 XSEC 1.0 0.0.50 91.75 .00250 1.0.50.099.66 0.097.66 10.193.93 12.592.88 15.092.52 17.592.46 1.0.50.092.66 0.097.66 10.92.02 37.592.35 60.092.35 62.592.47 55.092.02 57.592.35 60.092.35 62.592.47 1.0 0.50.092.16 55.092.02 37.592.35 60.092.35 62.592.32 7.0 7.70 87.80 87.80 NS 1.0 87.60 87.70 87.70 87.70 87.70 87.70 87.70 87.70 87.70 87.70 87.70 87.70 87.80 87.80 NS 1.0 87.60 87.60 87.60 87.70								
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	-							
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	-							
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	-							
1.0-50.099.66 0.097.66 10.193.93 12.592.88 15.092.52 17.592.46 1.0 0.092.49 22.592.52 10.92.092.37 592.33 0.092.08 32.592.52 1.0 50.092.05 37.591.88 40.091.75 42.592.34 10.95.092.05 10.90.092.61 52.992.32 1.0 65.092.46 67.592.17 55.092.02 57.592.35 60.092.31 85.092.55 10.90.092.61 67.70 67.70 67.70 87.80 87			0.0.50	01.75	00050			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	XSEC					17 500 46		
1.0 35.092.05 37.591.89 40.091.75 42.591.86 45.0 92.0 47.592.84 1.0 50.092.16 52.592.17 55.092.02 57.592.35 60.092.35 62.592.32 1.0 65.092.46 67.592.16 70.092.34 75.092.52 80.092.53 18.5092.55 1.0 90.092.61.95.092.98100.093.93107.794.36147.7101.9 NS 1.0 .80 77.0 87.70 87.70 87.70 NS 1.0 87.70 87.70 87.70 87.70 87.70 NS 1.0 87.60 87.80 87.80 87.80 87.80 NS 1.0 87.60 87.80 87.80 87.70 87.70 87.70 NS 1.0 87.80 87.80 87.80 88.70 88.70 87.70 NS 1.0 87.60 88.60 67.70 86.80 86.70 NS 1.0 87.60 88.90 .80 .80 CALI 1.0 93.93 300.00 VEL1 1.02.801.89 .25 1.44 1.23 2.71 .97 .44 3.40 2.94 VEL1 1.02.801.89 .25 1.16 .97 .44 3.40 2.94 VEL2 1.00 0.00 1.17 1.25 1.28 1.59 1.44 1.32 1.32 2.06 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
$\begin{array}{c c c c c c c c c c c c c c c c c c c $								
$\begin{array}{c c c c c c c c c c c c c c c c c c c $								
$\begin{array}{c c c c c c c c c c c c c c c c c c c $								
$\begin{array}{c c c c c c c c c c c c c c c c c c c $								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	NG						(7.70)	(7.70)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								
$\begin{array}{c c c c c c c c c c c c c c c c c c c $								86.70
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					28.90	.80	.80	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					07 2 00 2 22 2 5	0 2 16		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						J 2.94		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$.17			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					50 1 44 1 32 1 34	2 2 06		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						5 1.69		
VEL3 1.0 .05 .86 .98 .81 1.02 .56 .68 .89 1.56 VEL3 1.0 1.49 .55 .55 1.38 1.22 1.67 1.47 .13 CAL4 1.0 93.12 33.00 .00 .29 .09 .34 .28 0.00 .18 .32 .72 VEL4 1.0 .61 .20 .07 .54 .12 .68 .63 .51 .21 1.10 VEL4 1.0 .64 .48 .51 .59 .63 1.66 .61 XSEC 2.0 151.0 .50 9.09 .04 .31 .593 .39 20.092.92 22.592.23 2.0 2.0 0.001.01 14.494.35 15.0 94.3 17.593 .39 20.092.92 22.592.87 2.0 2.0 0.001.01 14.494.35 15.0 92.4 52.092.86 75 92.4 2.0 0.001.02 .25 92.7 60.092.93 62.5 92.4 65.0 <t< td=""><td></td><td></td><td></td><td></td><td>29</td><td></td><td></td><td></td></t<>					29			
VEL3 1.0 1.49 .55 .55 1.38 1.25 1.16 .97 .57 1.04 .68 .30 1.72 VEL3 1.01.28 1.72 1.48 1.34 1.22 1.67 1.47 .13 CAL4 1.0 93.12 33.00 VELA 1.0 0.00 .29 .09 .34 .28 0.00 .18 .32 .72 VEL4 1.0 .61 .20 .07 .54 .12 .68 .63 .51 .25 .15 .21 1.10 VEL4 1.0 .64 .48 .51 .59 .63 1.66 1.61 XSEC 2.0 151.0 .50 91.90 .00250 2.0 0.0101.0 14.494.35 15.0 94.3 17.593.39 20.092.92 22.592.23 2.0 25.092.87 27.592.57 30.091.96 32.592.12 35.091.88 37.5 92.4 2.0 40.092.23 42.592.13 45.092.08 47.592.47 50.0 92.4 52.592.87 2.0 55.092.86 57.5 92.7 60.092.93 62.5 92.4 65.0 93.2 67.5 93.4 2.0 70.0 94.0 72.5 93.9 75.0 94.1 78.394.35 88.095.66123.0101.7 NS 2.0 80 87.90 87.90 87.90 NS 2.0 86.80 87.70 86.70 87.90 87.70 NS 2.0 86.80					2 56 68 89	1 56		
VEL3 1.01.28 1.72 1.48 1.34 1.22 1.67 1.47 .13 CAL4 1.0 93.12 33.00 VELA 1.0 0.00 .29 .09 .34 .28 0.00 .18 .32 .72 VEL4 1.0 .61 .20 .07 .54 .12 .68 .63 .51 .25 .15 .21 1.10 VEL4 1.0 .64 .48 .51 .59 .63 1.66 1.61 XSEC 2.0 151.0 .50 91.90 .00250 2.0 0.0101.0 14.494.35 15.0 94.3 17.593.39 20.092.92 22.592.23 2.0 25.092.87 27.592.57 30.091.96 32.592.12 35.091.88 37.5 92.4 2.0 40.092.23 42.592.13 45.092.08 47.592.47 50.0 92.4 52.592.87 2.0 55.092.86 57.5 92.7 60.092.93 62.5 92.4 65.0 93.2 67.5 93.4 2.0 70.0 94.0 72.5 93.9 75.0 94.1 78.394.35 88.095.66123.0101.7 NS 2.0 87.80 87.90 87.90 87.90 NS 2.0 86.80 87.70 86.70 87.90 87.70 NS 2.0 86.80 87.70 86.70 87.70 86.70 87.70 NS 2.0 76.80 76.70 87.70 86.70 87.70 86.70 87.70 NS 2.0 86.80 87.70 86.70 87.70 86.70 87.70 87.70 86.70								
CAL4 1.0 93.12 33.00 VELA 1.0 0.00 .29 .09 .34 .28 0.00 .18 .32 .72 VEL4 1.0 .61 .20 .07 .54 .12 .68 .63 .51 .25 .15 .21 1.10 VEL4 1.0 .64 .48 .51 .59 .63 1.66 1.61 XSEC 2.0 151.0 .50 91.90 .00250 2.0 2.0 0.0101.0 14.494.35 15.0 94.3 17.593.39 20.092.92 22.592.23 2.0 25.092.87 27.592.57 30.091.96 32.592.12 35.091.88 37.5 92.4 2.0 40.092.23 42.592.13 45.092.08 47.592.47 50.0 92.4 52.592.87 2.0 55.092.86 57.5 92.7 60.092.93 62.5 92.4 65.0 93.2 67.5 93.4 2.0 70.0 94.0 72.5 93.9 75.0 94.1 78.394.35 88.095.66123.0101.7						1.72		
VELA 1.0 0.00 .29 .09 .34 .28 0.00 .18 .32 .72 VEL4 1.0 .61 .20 .07 .54 .12 .68 .63 .51 .25 .15 .21 1.10 VEL4 1.0 .64 .48 .51 .59 .63 1.66 1.61 XSEC 2.0 151.0 .50 91.90 .00250 2.0 2.0 0.0101.0 14.494.35 15.0 94.3 17.593.39 20.092.92 22.592.23 2.0 25.092.87 27.592.57 30.091.96 32.592.12 35.091.88 37.5 92.4 2.0 40.092.23 42.592.13 45.092.08 47.592.47 50.0 92.4 52.592.87 2.0 70.0 94.0 72.5 93.9 75.0 94.1 78.394.35 88.095.66123.0101.7 NS 2.0 .80 87.90 87.90 87.90 87.90 87.90 NS 2.0 86.80 87.80 87.80 86.70 87.90 87.70					5			
VEL4 1.0 .61 .20 .07 .54 .12 .68 .63 .51 .25 .15 .21 1.10 VEL4 1.0 .64 .48 .51 .59 .63 1.66 1.61 XSEC 2.0 151.0 .50 91.90 .00250 2.0 2.0 0.0101.0 14.494.35 15.0 94.3 17.593.39 20.092.92 22.592.23 2.0 2.0 25.092.87 27.592.57 30.091.96 32.592.12 35.091.88 37.5 92.4 2.0 40.092.23 42.592.13 45.092.08 47.592.47 50.0 92.4 52.592.87 2.0 55.092.86 57.5 92.7 60.092.93 62.5 92.4 65.0 93.2 67.5 93.4 2.0 70.0 94.0 72.5 93.9 75.0 94.1 78.0 87.90 87.90 87.90 87.90 87.90 87.90 87.90 87.90 87.90 87.90 87.70 86.70 87.70 86.70 87.70 86.70 87.70 87.70 8					28.0.00 18 32	72		
VEL4 1.0 .64 .48 .51 .59 .63 1.66 1.61 XSEC 2.0 151.0 .50 91.90 .00250 2.0 0.0101.0 14.494.35 15.0 94.3 17.593.39 20.092.92 22.592.23 2.0 25.092.87 27.592.57 30.091.96 32.592.12 35.091.88 37.5 92.4 2.0 40.092.23 42.592.13 45.092.08 47.592.47 50.0 92.4 52.592.87 2.0 55.092.86 57.5 92.7 60.092.93 62.5 92.4 65.0 93.2 67.5 93.4 2.0 70.0 94.0 72.5 93.9 75.0 94.1 78.394.35 88.095.66123.0101.7 NS 2.0 .80 87.90 87.90 87.90 87.90 87.90 NS 2.0 .80 87.80 87.80 86.70 87.90 87.70 NS 2.0 86.80 86.70 87.70 86.70 87.70 86.70 87.70 NS 2.0 76.80 76.70 87.								
XSEC 2.0 151.0 .50 91.90 .00250 2.0 0.0101.0 14.494.35 15.0 94.3 17.593.39 20.092.92 22.592.23 2.0 25.092.87 27.592.57 30.091.96 32.592.12 35.091.88 37.5 92.4 2.0 40.092.23 42.592.13 45.092.08 47.592.47 50.0 92.4 52.592.87 2.0 55.092.86 57.5 92.7 60.092.93 62.5 92.4 65.0 93.2 67.5 93.4 2.0 70.0 94.0 72.5 93.9 75.0 94.1 78.394.35 88.095.66123.0101.7 NS 2.0 80 87.90 87.90 87.90 87.90 87.90 87.90 NS 2.0 87.80 87.80 87.80 86.70 87.90 87.90 NS 2.0 86.80 86.80 87.70 86.70 86.70 87.70 NS 2.0 76.80 76.70 87.70 86.70 86.70 87.70 NS 2.0 87.70 87.80 87.90 87.90 87.90 87.90 NS 2.0 76.80 76.70 87.70 87.70 76.80 76.80 NS 2.0 87.70 87.80 87.90 87.90 87.90 .80 NS 2.0 87.70 87.80 87.90 87.90 87.90 .80 NS 2.0 87.70 87.80 87.90 87.90 87.90 87.90 NS 2.0 87.70 87.80 87.90 87.90 87.90 87.90 NS 2.0 87.70 87.80 87.90 87.90 87.90 87.90 87.90 NS 2.0 87.70 87.80 87.90 87.90 87.90 87.90 87.90 NS 2.0 94.35 300.00 VEL1 2.0 0.00 1.00 2.45 2.42 2.89 3.93 3.17 4.19 4.72 4.47								
2.0 0.0101.0 14.494.35 15.0 94.3 17.593.39 20.092.92 22.592.23 2.0 25.092.87 27.592.57 30.091.96 32.592.12 35.091.88 37.5 92.4 2.0 40.092.23 42.592.13 45.092.08 47.592.47 50.0 92.4 52.592.87 2.0 55.092.86 57.5 92.7 60.092.93 62.5 92.4 65.0 93.2 67.5 93.4 2.0 70.0 94.0 72.5 93.9 75.0 94.1 78.394.35 88.095.66123.0101.7 NS 2.0 .80 87.90 87.90 87.90 87.90 87.90 NS 2.0 .80 87.80 87.80 86.70 87.90 87.70 NS 2.0 87.80 87.70 86.70 87.70 87.70 NS 2.0 86.80 86.70 87.90 87.70 86.70 87.70 NS 2.0 76.80 76.70 87.70 86.70 86.70 86.70 86.80 80 80 80								
2.0 25.092.87 27.592.57 30.091.96 32.592.12 35.091.88 37.5 92.4 2.0 40.092.23 42.592.13 45.092.08 47.592.47 50.0 92.4 52.592.87 2.0 55.092.86 57.5 92.7 60.092.93 62.5 92.4 65.0 93.2 67.5 93.4 2.0 70.0 94.0 72.5 93.9 75.0 94.1 78.394.35 88.095.66123.0101.7 NS 2.0 80 87.90 87.90 87.90 87.90 NS 2.0 87.80 87.80 86.70 87.90 87.70 NS 2.0 86.80 87.70 86.70 87.90 87.70 NS 2.0 87.80 87.80 86.70 87.90 87.70 NS 2.0 87.80 87.70 86.70 87.70 87.70 NS 2.0 87.80 87.90 87.70 86.70 87.70 NS 2.0 86.80 87.70 86.70 87.70 87.70 NS 2.0 76.80 76.70 87.70 87.70 86.70 87.70 NS 2.0 87.70 87.70 87.70 86.70 86.70 87.70 NS 2.0 94.35 300.00 87.90 87.90 .80					3.39 20.092.92 2	2.592.23		
2.0 55.092.86 57.5 92.7 60.092.93 62.5 92.4 65.0 93.2 67.5 93.4 2.0 70.0 94.0 72.5 93.9 75.0 94.1 78.394.35 88.095.66123.0101.7 NS 2.0 .80 87.90 87.90 87.90 87.90 87.90 NS 2.0 87.80 87.80 86.70 87.90 87.70 NS 2.0 86.80 867.70 86.70 87.70 86.70 NS 2.0 86.80 87.70 86.70 86.70 87.70 NS 2.0 76.80 76.70 87.70 86.70 86.70 87.70 NS 2.0 87.70 87.70 87.70 86.70 87.70 87.70 NS 2.0 76.80 76.70 87.70 87.90 87.90 .80 .80 CAL1 2.0 94.35 300.00 .80 .80 .80 .80 VEL1 2.0 0.00 1.00 2.45 2.42 2.89 3.93 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
2.0 70.0 94.0 72.5 93.9 75.0 94.1 78.394.35 88.095.66123.0101.7 NS 2.0 .80 87.90 87.90 87.90 87.90 NS 2.0 87.80 87.80 86.70 87.90 87.70 NS 2.0 86.80 87.70 86.70 86.70 87.70 NS 2.0 86.80 87.70 86.70 86.70 87.70 NS 2.0 76.80 76.70 87.70 86.70 86.70 87.70 NS 2.0 94.35 300.00 87.90 87.90 .80 .80 VEL1 2.0 0.00 1.00 2.45 2.42 2.89 3.93 3.17 4.19 4.72 4.47 .447		2.0 40.092.	23 42.592.13 4	5.092.08 47.5	92.47 50.0 92.4	52.592.87		
NS 2.0 .80 87.90 87.90 87.90 87.90 87.90 NS 2.0 87.80 87.80 87.80 86.70 87.90 87.70 NS 2.0 86.80 87.70 86.70 87.90 87.70 NS 2.0 76.80 76.70 87.70 86.70 86.70 87.70 NS 2.0 76.80 76.70 87.70 87.70 76.80 76.80 NS 2.0 87.70 87.80 87.90 87.90 .80 .80 CAL1 2.0 94.35 300.00 .80 .80 .80 VEL1 2.0 0.00 1.00 2.45 2.42 2.89 3.93 3.17 4.19 4.72 4.47 .417 .417 .417		2.0 55.092.	86 57.5 92.7 60	0.092.93 62.5	92.4 65.0 93.2 6	7.5 93.4		
NS 2.0 87.80 87.80 87.80 86.70 87.90 87.70 NS 2.0 86.80 86.80 87.70 86.70 86.70 87.70 NS 2.0 76.80 76.70 87.70 87.70 76.80 76.80 NS 2.0 87.70 87.80 87.90 87.90 .80 .80 NS 2.0 94.35 300.00 .80 .80 .80 VEL1 2.0 0.00 1.00 2.45 2.42 2.89 3.93 3.17 4.19 4.72 4.47 .417 .417		2.0 70.0 94	.0 72.5 93.9 75.	.0 94.1 78.394	4.35 88.095.6612	23.0101.7		
NS 2.0 86.80 86.80 87.70 86.70 86.70 87.70 NS 2.0 76.80 76.70 87.70 87.70 76.80 76.80 NS 2.0 87.70 87.80 87.90 87.90 .80 .80 CAL1 2.0 94.35 300.00 .80 .80 .80 VEL1 2.0 0.00 1.00 2.45 2.42 2.89 3.93 3.17 4.19 4.72 4.47 .81 .81	NS	2.0	.80	87.90	87.90	87.90	87.90	87.90
NS 2.0 76.80 76.70 87.70 87.70 76.80 76.80 NS 2.0 87.70 87.80 87.90 87.90 87.90 .80 .80 CAL1 2.0 94.35 300.00 .80 .80 .80 VEL1 2.0 0.00 1.00 2.45 2.42 2.89 3.93 3.17 4.19 4.72 4.47 .80 .80	NS	2.0	87.80	87.80	87.80	86.70	87.90	87.70
NS 2.0 87.70 87.80 87.90 87.90 .80 .80 CAL1 2.0 94.35 300.00 .80 .80 .80 VEL1 2.0 0.00 1.00 2.45 2.42 2.89 3.93 3.17 4.19 4.72 4.47 .80 .80	NS	2.0	86.80	86.80	87.70	86.70	86.70	87.70
CAL12.094.35300.00VEL12.00.00 1.00 2.45 2.42 2.89 3.93 3.17 4.19 4.72 4.47		2.0	76.80	76.70	87.70	87.70	76.80	76.80
VEL1 2.0 0.00 1.00 2.45 2.42 2.89 3.93 3.17 4.19 4.72 4.47	NS	2.0	87.70	87.80	87.90	87.90	.80	.80
			94.35	300.00				
VEL1 2.0 5.45 3.71 3.69 3.76 3.25 3.21 3.13 2.54 2.78 1.75 1.60 .89								
	VEL1	2.0 5.45 3.7	71 3.69 3.76 3.2	25 3.21 3.13 2	2.54 2.78 1.75 1.0	60 .89		

VEL1 CAL2 VEL2 VEL2 VEL2 CAL3 VEL3	2.0 .71 .3 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0	1 0.000					
VEL3 VEL3	2.0						
VEL3	2.0						
CAL4	2.0	93.26	33.00				
VEL4	2.0			0.20.47 1.13 1.2	29 1.37 1.56		
VEL4		5.34 1.21 0.00	.38 0.00 .22	.47		(0.00
VELA XSEC	2.0 3.0	219.0.50	95.60	.00250			
ABLC				.00250 96.0 12.5 96.5 1	5.0 95.7		
				96.0 27.5 95.7 3			
	3.0 32.5 95	.8 35.0 96.0 37	.5 95.8 40.0	95.8 42.5 96.3 4	5.0 96.7		
				96.5 57.5 96.8 6			
			.0 96.7 80.0	96.9 85.0 96.1 8	37.897.42		
NS	3.0 89.099. 3.0	76114.0103.3 .80	80	.80	87.60	87.60	87.50
NS	3.0 3.0	.80 87.80	.80 87.80	.80 87.70	87.60 87.70	87.00 87.70	87.30 87.70
NS	3.0	87.90	97.90	86.50	87.70	87.70	87.80
NS	3.0	87.80	87.70	87.60	87.70	87.70	87.70
NS	3.0	87.70	87.70	87.70	87.70	87.70	.10
NS	3.0	.80	.80				
CAL1	3.0	97.42	300.00				
VEL1	3.0			5.86 1.13 4.60 3			
VEL1				1.50 4.13 3.84 4	.11 3.95		
VEL1		03 1.46 3.26 2.3	30				
CAL2 VEL2	3.0 97.1 3.0		2 2 06 2 72	4.55 .53 4.15 3.	70 2 15		
VEL2 VEL2.				.18 3.15 2.62 2.			
VEL2. VEL2		29 .85 1.66 1.8			77 5.75		
CAL3	3.0 96.8						
VEL3	3.0		7 3.12 3.22 2	.98 .56 4.00 2.2	4 2.15		
VEL3	3.0 2.62 3.2	25 2.06 .32 1.23	3.71	.75 2.20 1.23	2.00		
VEL3		40 .66 .20 .66					
CAL4		46 33.00	1.52	0 (1 00			
VEL4	3.0	1.1.60	1.62	2.61.82	50	.07 2.45	.99 1.51
VEL4 VEL4	3.0 .27 2.81 3.0 .69 0.20		.19 .20.09	.46 1.00	.52	.55	.52 .43
XSEC	4.0	92.0.50	93.20	.00250			
ADLC				94.7 15.0 94.0 2	20.0 93.9		
				93.7 35.0 93.7			
	4.0 40.09	4.042.5 94.0 4	5.0 93.8 47.5	93.8 50.0 93.3	52.5 93.3		
	4.0 55.09	3.357.5 93.3 6	0.0 93.7 62.5	93.3 65.0 93.4	67.5 93.5		
				93.4 80.0 94.2 8	82.5 94.4		
NG		5.3387.297.09		07.00	04 50	- < 00	07 0
NS NS	4.0	.80 76.80	.80 76.00	87.80 76.70	86.70 87.70	76.80	87.60 87.60
NS NS	4.0 4.0	76.80 87.80	76.90 76.60	76.70 86.70	87.70 87.80	87.60 78.70	87.60 78.70
C V L	4.0	07.00	/0.00	00.70	07.00	/0./0	/0./0

NS	4.0	76.80	86.60	87.80	87.80	87.70	78.70
NS	4.0	87.90	87.80		78.70	78.70	76.70
NS	4.0	.10	.80	.80	10110	10110	,
CAL1	4.0	95.33					
VELI	4.0	.78 2		4.07 2.88 2.57	7 3.13 3.99		
VEL1		74 2.99 2.67 2					
VEL1	4.0 2.44	2.27 2.87 2.17	2.05 1.31				
CAL2	4.0 9	5.12 162.70					
VEL2	4.0	.37 1	.03 1.18 1.77	3.12 2.19 2.01	1 1.89 2.51		
VEL2	4.0 2.18 1	.74 2.32 1.77 1	.32 1.96 2.08	3 2.02 .97 .94	4 1.40 1.67		
VEL2	4.0 2.03 1	.84 1.91 1.69 1	.51 .90				
CAL3	4.0 94	.73 91.90					
VEL3	4.0	0.00 .:	55 1.33 1.53 1	1.76 1.71 1.71	.82 .96		
VEL3	4.0 1.08 1	.21 1.21 1.19 .8	36 1.40 1.34 1	1.14 .53 .21	1.02 .90		
VEL3		.45 1.14 1.36 1					
CAL4	4.0	94.38	33.00				
VEL4	4.0				1.28 1.31 .87.8	30	
VEL4		3 .53 .69 .29 1.0		6.13 1.20 .53			
VEL4		3 .35 .67 .480		00250	`		
XSEC	5.0	79.0.50	93.30		-		
		9.59 0.097.09 8 4.0 30.0 94.0 3					
		4.0 30.0 94.0 3 3.8 45.0 93.9 4					
		3.5 60.0 93.6 6					
		4.4 73.295.79			10.0 20.0		
NS		.80	.80	88.90	87.80	87.80	87.80
NS	5.0	87.80	87.60	86.60	86.60	87.60	87.60
NS	5.0	86.70	86'.80	86.90	86.90	87.90	87.90
NS	5.0	87.90	87.90	87.90	87.90	87.90	87.90
NS	5.0	87.90	87.90	.80	.80		
CALL	5.0	95.79	300.00				
VEL1		1:15 2					
VEL1		.10 2.45 1.88	.64 4.16 2.25	2.47 2.50 1.68	3 .12 .35		
VEL1	5.0 0.00	05 49	162 70				
CAL2 VEL2	5.0 5.0	95.48	162.70	2.57 2.47 2.70	211291		
VEL2 VEL2		.18 1.64 .86					
VEL2 VEL2	5.001	.10 1.04 .00	.22 2.17 2.37	1.07 1.72 1.50	.15 .15		
CAL3		.02 91.90					
VEL3	5.0		58 1.28 1.30 1	1.52 2.21 2.53	1.23 2.46		
VEL3		.83 1.69 .91 .2	28 1.43 2.00	1.47 1.16 .88	.09		
VEL3	5.0 0.00						
CAL4	5.0 94	.6 33.00					
VEL4	5.0			94 1.13 1.96 .			
VEL4	5.0 2.84 1	.70 1.36 0.00 .0	01 .42 2.29 .	46 1.36 .98 .	01		
VEL4	5.0						
XSEC		3.0 .50 93.30			4 10 5 6 4 6		
		00.1 0.097.49					
		94.7 17.5 94.5 2 3.9 32.5 93.4 3					
		3.9 32.5 93.4 3 3.7 47.5 93.9 5					
		5.6 62.396.24 (51.595.0		
	0.0 00.0 /	2.0 02.370.24		0102.7			

NS	6.0	.80	.80	87.80	87.80	87.80	87.80
NS	6.0	87.80	87.70	87.70	86.50	86.50	87.80
NS	6.0	87.80	87.70	87.70	87.70	87.80	87.80
NS	6.0	87.80	87.90	87.90	87.90	87.90	87.90
NS	6.0	87.90	87.90	.80	.80	07.90	07.20
CALL		96.24		.00	.00		
-	6.0		300.00	0 70 2 27 2 00	2 20 4 01		
VEL1	6.0			2.78 3.37 3.89			
VEL1		29 3.62 3.06 1		3.68 1.89 2.11	.96 .05		
VEL1~	6.0 0.00						
CAL2	6.0	95.88	162.70				
VEL2	6.0		.64 .11 1.62 2	2.43 2.65 2.67 2	2.82 3.42		
VEL2	6.0 3.462.4	45 3.09 2.01 1	.01 1.34 2.21	.27 1.45 1.27	.62 .07		
VEL2	6.0.01						
CAL3	6.0	95.41	91.90				
VEL3		1.16 1.25 1.4	2 1.66 1.99 2.7	3			
VEL3				.21 .13 .38 0.0	0		
VEL3	6.0	27 2:00 1:20:) 0 1.10 .) <u>2</u> .) 3	.21 .10 .50 0.0	•		
CAL4	6.0	94.96	33.00				
VEL4	6.0			0.391.051.5	6 1 70		
VEL4 VEL4			4 .91 .590		01.79		
		52 1.30 .40 .4	4 .91 .390	1 0.00 .04			
VEL4	6.0	000 50	04.70	00250			
XSEC		120.0.50	94.70	.00250	2 5 0 4 0		
				5.4 10.0 95.1 12			
				95.0 25.0 95.0			
				95.4 40.0 95.2			
				96.5 55.0 96.5			
	7.0 60.0 9	6.6 62.5 96.7	64.897.01 66.9	97.39 71.9102.	9		
NS	7.0	.80	.80	87.70	87.70	87.60	87.60
NS	7.0	87.60	87.70	87.80	87.70	87.90	87.60
NS	7.0	87.80	87:60	87.90	87.90	87.80	87.90
NS	7.0	87.80	87.70	87.60	87.70	87.80	87.70
NS	7.0	87.80	82.80	82.80	.80	.80	
CAL1	97.01	300.00					
VEL1	7.0		3.58 3.63 3.55 3	3.67 3.02 4.56 3	3.17 4.32		
VEL1		035.02 4.39 3	3.28 4.23 4.47	2.79 1.43 1.14	.96 .05		
VELI	7.010 0.0						
CAL2	7.0 96.70						
VEL2	7.0		2 43 3 11 2 87	2.38 3.01 3.98	1 17 3 57		
VEL2				.20 1.54 .53			
VEL2 VEL2	7.0 2.55 5.	00 4.54 5.75	2.07 2.30 2.39	.20 1.34 .33	.50 0.00		
CAL3	7.0 96.2	27 91.90					
				1 70 0 65 2 00	42 2 52		
VEL3 VEL3	7.0			1.72 2.65 3.28	.42 2.55		
		05 1.92 2.40	1.89 1.02 1.39	25 0.00			
VEL3	7.0	0.0000					
CAL4		86 33.00		1 47 1 40 1 00	10.74		
VEL4	7.0	1 22 1 24		1.47 1.49 1.90	.19./4		
VEL4		1.33 1.24 .67	1.48 .79 0.00				
VEL4	7.0			_			
XSEC			99.00 .0025	•			
				99.9 17.5 99.4			
	8.0 22.5 9	9.3 25.0 99.6	27.5 99.2 30.0	99.2 32.5 99.2	2 35.0 99.2		
	8.0 37.5 9	9.2 40.0 99.0	42.5 99.2 45.0	99.1 47.5 99.1	50.0 99.2		

	8.0 52.5 99	.2 55.0 99.3	57.5 99.4 60.0	99.4 62.5 99.3	3 65.0 99.0		
	8.0 67.5 99	.3 70.0 99.4 '	72.5 99.9 75.0	99.9 77.5101.0	0 79.3100.9		
	8.0 83.710	1.8 87.2102.9					
NS	8.0	.80	.80	.80	78.70	78.70	76.70
NS	8.0	78.80	87.80	78.80	87.80	87.80	87.80
NS	8.0	87.60	87:80	87.60	78.80	78.70	78.90
NS	8.0	76.80	76.80	87.90	87.90	78.80	76.70
NS	8.0	78.70	87.80	87.80	78.70	78.70	.80
NS	8.0	.80	.80				
CAL1	8.0	100.92	300.00				
VEL1	8.0	.60	.98 3.31 4.26	2.98 3.12 3.87	3.32 3.36		
VEL1	8.0 2.79 3.1	9 3.39 2.49 3	.67 3.35 3.45	3.50 4.15 3.28	3.64 2.51		
VEL1	8.0 2.57 2.0	.73 .45					
CAL2	8.0	100.63	162.70				
VEL2	8.0	.27	.65 2.18 2.36	1.72 2.48 2.89	.28 2.53		
VEL2	8.0 1.60 2.3	34 2.72 1.76 2	.94 2.42 2.33	2.47 2.35 2.47	2.22 1.41		
VEL2	8.0 165 1.5	5 0.00 .28					
CAL3	8.0 100.24	4 91.90					
VEL3	8.0	0.00	.26 1.76 2.52	1.53 2.09 2.61	.20 1.90		
VEL3	8.0 2.03 2.1	1 1.78 1.47 2	.29 1.57 1.83	2.68 2.04 1.79	1.30 1.37		
VEL3	8.0 1.03 .9	03 0.00 0.00					
CAL4	8.0 99.8	33.00					
VEL4	8.0		0.00 .65 .75	.75 1.46 1.70) .19 .34		
VELA	8.0 1.06 .7	3 2.04 1.19 1	.49 .00 1.50	1.42 .77 .33	8 .83 .55		
VELA	8.0 .93 1.0	05 0.00					
ENDJ							

Appendix F2 - Summary of Calibration Details, Twisp River Site

Transect Number									
1	2	3	4	5	6	7	8		
Discharge									
C	292	309	313	303	290	313	298	293	
	162	138	186	174	173	174	182	157	
	94	89	91	83	93	92	91	92	
	32	31	22	29	41	36	34	32	
Stage									
U	93.93	94.35	97.42	95.33	95.79	96.24	97.01	100.92	
	93.69	93.94	97.14	95.12	95.48	95.88	96.70	100.63	
	93.41	93.64	96.83	94.73	95.02	95.41	96.27	100.24	
	93.12	93.26	96.46	94.38	94.64	94.96	95.86	99.89	
Plotting Stage	;								
0 0	2.18	2.45	1.82	2.13	2.49	2.94	2.31	1.92	
	1.94	2.04	1.54	1.92	2.18	2.58	2.00	1.63	
	1.66	1.74	1.23	1.53	1.72	2.11	1.57	1.24	
	1.37	1.36	.0.86	1.18	1.34	1.66	1.16	0.89	
Ratio of meas	ured versus	predicted di	scharge						
	0.991	1.020	0.947	1.062	1.041	1.035	1.011	1.051	
	0.946	0.920	1.015	0.909	0.931	0.932	0.969	0.887	
	1.131	1.093	1.095	1.042	1.039	1.048	1.032	1.107	
	0.943	0.974	0.951	0.994	0.992	0.989	0.989	0.968	
Mean error of	stage/discl	narge relation	ship for ca	alculated	0				
	6.05	5.46	5.25	5.11	3.97	4.08	2.15	7.64	
Mean error of	stage/discl	narge relation	ship for gi	ven Q					
	4.97	4.37	3.72	8.75	8.22	6.18	6.34	6.57	
Stage/discharg	ge relations	hip (S vs Q)	S=A*O**	B+SZF					
A= 0.6434	0.5512	0.3510	0.4895		97 0.6	322	0.3758	0.2516	
B=0.2146	0.2610	.2837	0.2601	0.32	.49 0.2	691	0.3193	0.3610	
SZF= 91.7	91.90	95.60	93.20) 93.	.30 93	3.30	94.70	99.00	
								-	
Beta coefficie	nt log/log c	lischarge/stag	ge relations	ship					
	4.66	3.83	3.52	3.84	3.08	3.72	3.13	2.77	
	-	-		-					

TWISP RIVER SITE

Calibration Information for Calculated Discharge

TRANSECT		VEL	CHANGE
1	23	4	0.01 TO 0.21
1	23	3	0.10 TO 0.30
2	6	3	0.16 TO 0.36
2	6	4	0.00 TO 0.20
2 3 3 3	17	3	0.08 TO 0.00
3	10	4	2.65 TO 2.45
3	14	4	3.01 TO 2.81
3	15	4	1.80 TO 1.60
3 3	17	1	4.75 TO 4.55
3	17	4	0.26 TO 0.46
3	21	4	0.35 TO 0.55
3	26	3	0.20 TO 0.40
3	26	4	0.00 TO 0.20
3	28	3	0.00 TO 0.20
3	28	4	0.00 TO 0.20
4	4	2	0.17 TO 0.37
4	8	4	0.23 TO 0.00
4	13	4	0.23 TO 0.43
5	11	1	4.36 TO 4.16
5	11	3	1.03 OT 1.23
5	11	4	0.14 TO 0.00
6	5	1	2.54 TO 2.34
6	5	2	0.44 TO 0.64
6	5	4	0.00 TO 0.20
6	8	4	0.08 TO 0.00
7	16	4	0.47 TO 0.67
7	19	3	1.19 TO 1.39
7	22	1	0.33 TO 0.53
8	12	4	0.14 TO 0.34
8	12	4	0.08 TO 0.00
0	10	4	0.08 10 0.00

Transect	Discharge	VAF
1.00	13.0	1.017
1.00	33.0	1.010
1.00	92.0	1.043
1.00	163.0	1.039
1.00	300.0	0.999
1.00	750.0	0.848
2.00	13.0	0.849
2.00	33.0	0.924
2.00	92.0	0.990
2.00	163.0	1.013
2.00	300.0	1.007
2.00	750.0	0.916
3.00	13.0	0.790
3.00	33.0	0.927
3.00	92.0	1.003
3.00	163.0	1.022
3.00	300.0	1.016
3.00	750.0	0.929
4.00	13.0	0.884
4.00	33.0	0.930
4.00	92.0	0.985
4.00	163.0	1.005
4.00	300.0	1.013
4.00	750.0	0.988
5.00	13.0	0.917
5.00	33.0	0.966
5.00	92.0	1.016
5.00	163.0	1.017
5.00	300.0	0.972
5.00	750.0	0.827
6.00	13.0	1.069
6.00	33.0	0.986
6.00	92.0	0.999
6.00	163.0	1.014
6.00	300.0	1.002
6.00	750.0	0.858
7.00	13.0	0.939
7.00	33.0	0.988
7.00	92.0	1.022
7.00	163.0	1.020
7.00	300.0	0.994
7.00	750.0	0.858
8.00	13.0	0.966
8.00	33.0	0.981
8.00	92.0	1.001
8.00	163.0	1.006
8.00	300.0	0.998
8.00	750.0	0.947

Appendix F4 - Velocity Adjustment Factors, Twisp River Site

APPENDIX G

CHEWUCH RIVER SITE CALIBRATION INFORMATION

Appendix G1 - IFG4 Input File, Chewuch River Site

			t river mile 1.3		WRIA 121 cfs, 9/23-			
	[0c		020000000000		121 013, 7/23-	00 013		
	QARD	25.0	02000000000000	00000				
	QARD	60.0						
	QARD	125.0						
	QARD	250.0						
	QARD	300.0						
	QARD	725.0						
	XSEC	1.0	0.0.50	89.70	.00250			
1	ASEC				.00230 2.4 17.0 91.7 2	10016		
					91.5 41.0 91.7 2			
					0.7 65.0 90.5			
					39.9 77.0 89.8			
					0.7 89.0 89:9			
						92.0 90.7		
r	NS	1.0 95.0 90	.80	.80	27.90	27.90	72.70	76.60
	NS	1.0	.80 76.80	.00 67.60	76.80	65.50	67.70	86.90
	NS	1.0	76.80	67.70	67.90	67.90	65.60	65.90
	NS	1.0	65.80	76.70	76.90	65.60	69.90	99.90
	NS	1.0	99.90	99.90	99.90	99.90	99.90	96.80
	NS	1.0	27.60	29.60	92.90	97.70	<i>99.9</i> 0	90.00
	CAL1	1.0	92.81	290.00	12.90)1.10		
	VEL1	1.0			.49 1.17 .89	21 1 45		
	VEL1				.18 2.91 3.17 3			
	VEL1		5 3.41 2.57 2.		.10 2.91 5.17 5	.05 5.05		
	CAL2		62 236.00	07.07.07				
	VEL2	1.0 22.		13 44 21	.34 1.10 .65	33 1 19		
	VEL2				.37 2.91 3.02 3			
	VEL2		9 2.74 2.24 1.					
	CAL3	1.0 92.2			75 0.00			
	VEL3	1.0		.17 .22 .10	.66 .46 .32	277		
	VEL3				.90 2.32 2.47 2			
	VEL3		1.98 1.58 1.					
	CAL4	1.0 91.9						
	VEL4	1.0		0.00.07.0	8 0.00 0.00 .2	22.30		
	VEL4		33.45.641.0	0 .80 .84 1.2	3 1.35 1.66 1.5	55 1.53		
1	VELA	1.0 1.69 1.4	2 1.39 .93 .9	95 .29 .10 0.0	0 0.00			
2	XSEC	2.0	71.0.50	89.70	.00250			
		2.0-15.098.	32 0.093.62 6.	092.93 10.0 9	2.6 14.0 92.1 1	8.0 92.0		
		2.0 22.0 91	.7 26.0 91.8 30	0.0 91.6 34.0 9	1.4 38.0 91.3	42.0 91.9		
		2.0 46.0 91	.9 50.0 92.2 54	4.0 92.0 58.0 9	2.0 62.0 92.1	66.0 91.6		
		2.0 70.0 90	.9 74.0 90.8 78	3.0 90.5 82.0 9	0.9 86.0 90.2	89.0 89.9		
		2.0 92.0 89	.9 95.0 89.3 98	3.0 89.4101.0 8	89.6104.0 90.4	107.0 91.5		
		2.0110.0 92	2.4111.292.931	13.993.82119	.096.62121.09	8.32		
]	NS	2.0	.80	.80	28.60	28.60	65.60	
]	NS	2.0	86.70	67.70	78.70	67.60	67.80	
]	NS	2.0	87.60	87.70	67.60	87.70	76.80	
	NS	2.0	62.70	26.80	78.60	87.60	76.70	
	NS	2.0	67.70	67.70	67.70	76.80	65.70	
	NS	2.0	65.60	28.50	28.50	28.50	28.50	
(CAL1	2.0	92.93	290.00				

VEL1	2.0	10 2	7 20 1 20 2 2	6 7 45 1 95 1 7	74 1 92					
	2.0			26 2.45 1.85 1.2						
VEL1 VEL1		4 1.13 0.00 .7 7 2.81 2.99 1.4		3 1.38 1.63 1.9	90 2.10					
CAL2		8 236.00	+2 .40 0.00							
VEL2	2.0 92.7		10 25 1 30 1	.93 .88 1.50	08 2 21					
VEL2 VEL2										
VEL2 VEL2	2.0 1.54 1.52 .43 .02 .11 0.00 .27 .23 1.00 1.27 1.53 2.01 2.0 2.59 2.94 2.62 3.15 1.47 .27									
CAD	2.0 2.39 2.94 2.02 3.13 1.47 .27 2.0 92.36 121.00									
VEL3		.37 .58 1.53 .2	7 1 55							
VEL3				40.58.94 1.33						
VEL3		1 1.73 2.60 1.0		10 10019 1 1100						
CAL4	2.0 92.0									
VEL4	2.0		.01 .14 .43	1.19 .49 1.20						
VEL4	2.0 1.64			2 .21 .46 .60						
VEL4		0 1.26 .50 .12								
XSEC		. 50 091								
	3.0-20.098.	32-15.097.62	0.093.92 3.0 9	3.4 7.0 92.6 1	1.0 92.4					
	3.0 15.0 92	.2 19.0 91.7 2	3.0 91.7 27.0 9	91.8 31.0 92.1	35.0 91.8					
	3.0 39.0 91	.5 43.0 91.5 47	7.0 91.9 51.0 9	91.7 55.0 91.5 5	59.0 91.7					
	3.0 63.0 91	.7 67.0 91.9 69	9.0 91.3 71.0 9	91.7 73.0 91.6	75.0 91.4					
	3.0 77.0 91	.5 79.0 91.5 8	1.0 91.3 83.0 9	91.2 85.0 91.3 8	89.0 91.6					
3.0 93.0	91.6 97.0 91.	8101.0 92.110	4.793.37							
NS	3.0	.80	.80	.80	26.80	76.90	67.80			
NS	3.0	76.80	86.70	86.70	68.90	68.90	96.70			
NS	3.0	69.60	69.60	98.60	98.80	96.60	96.60			
NS	3.0	98.60	89.80	97.70	98.70	97.70	97.60			
NS	3.0	97.70	97.70	96.70	96.70	98.80	98.80			
NS	3.0	96.70	96.70	96.60	26.90	.80				
CAL1	• •	3.0		290.00						
VEL1	3.0			.93 1.09 1.55 1						
VEL1				.06 1.58 1.53 1	./1 1.9/					
VEL1		7 2.59 2.59 2.0	07 2.13 1.94 1	.48 1.06						
CAL2	3.0 93.1 3.0		10 92 1 17	01 1 76 2 01 1	60 1 20					
VEL2 VEL2				.91 1.76 2.01 1 .49 1.39 1.18 1						
VEL2 VEL2		9 2.13 2.95 3.			.30 1.70					
CAL3		1 121.00	12 1.00 2.10 1	.44 .95						
VEL3	3.0 <i>92.9</i> 3.0		00 32 67	.61 .98 1.35 1	64 91					
VEL3				.01 .98 1.55 1 .27 1.31 1.27 1						
VEL3		1 1.56 2.26 1.0			.10 1.40					
CAL4	3.0 92.6		55 1.01 2.20 1	.10 .09						
VE14	3.0	, 00.00	0.00 .52 .4	48 .19 .51 .73	3 .52					
VEL4		6 .60 .29 .4		71 .79 1.05 .39						
VEL4		0 1.57 1.34 1.0								
XSEC	4.0 99.	0.5091.20.00	0250							
	4.0-90.0 98.	3 -8.0 98.3 0.0	95.1 2.8 93.6	6.0 92.4 9.0	92.1					
	4.0 12.0 92.	1 15.0 91.8 18	.0 92.1 21.0 9	2.2 24.0 91.7 2	7.0 91.8					
	4.0 30.0 92.	1 33.0 91.5 36	.0 91.6 39.0 9	1.5 42.0 91.4 4	5.0 91.6					
				1.7 60.0 92.1 6						
				2.1 78.0 92.3 8						
			0.0 92.8 93.0 9	2.8 96.2 93.6 9	9.4 95.0					
	4.0102.497.	22								

Appendix G1 - IFG4 Input File, Chewuch River Site (continued)

NS	4.0	.80	.80	.80	26.70	26.70	62.60			
NS	4.0	62.60	96.80	96.70	96.80	96.70	96.80			
NS	4.0	96.90	96.70	96.80	99.90	99.90	99.90			
NS	4.0	96.70	96.70	96.80	99.90	99.90	99.90			
NS	4.0	99.90	99.90	96.70	99.90	99.90	99.90			
NS	4.0	99.90	99.90	99.90	99.90	96.90	96.90			
NS	4.0	99.90								
CAL1	4.0	93.64	290.00							
VEL1	4.0			1.37 1.82 1.7	5 1.57 2.10					
VEL1		48 2.56 2.15	2.24 1.62 1.88							
VEL1			1.32 1.46 1.87							
VEL1	4.0	22 1.09 2.00	1.52 1.10 1.07	1.10 1.10 .0.						
CAL2		18 236.00								
VEL2	4.0 93.48 236.00 4.0 .26 .69 1.06 .77 1.29 1.17 1.20 1.59									
VEL2 VEL2		73 1 06 1 85	.19 1.17 1.95							
VEL2 VEL2			1.12 .71 1.16		1.03 1.62					
	4.0 1.30 1.	08 1.00 1.39	1.12 ./1 1.10	.34 .00 .40						
VEL2		11 121.00								
CAL3	4.0 93.	11 121.00		76 01 00	0 1 00 1 20					
VEL3	4.0	10 1 60 1 74	.21 .62 .63							
VEL3			.16 1.19 1.70		/ 1.59 1.01					
VEL3		/0 .9/ ./3	.72 .18 .72	.18 .44 14						
VEL3	4.0									
CAL4	4.0 92.8	60.00								
VEL4	4.0 .05 .30 .44 .59 .63 .75 .75 .87									
VELA	4.0 1.19 .92 1.03 1.23 1.14 .97 1.23 1.32 .90 .47 .65 .64									
VEL4	4.0 .29 .27 .37 .31 .12 .10 .04									
VELA	4.0									
XSEC	5.0	101.0.50		250						
	5.0-80.010	0.8 -9.0100.8	8-2.09.8 0.0	96.9 14.993.	74 16.0 93.5					
	5.0 19.0 9	3.4 22.0 93.3	25.0 92.9 28.	0 92.7 31.0 92	2.5 34.0 91.8					
	5.0 37.0 9	2.0 40.0 92.2	43.0 92.4 46.0) 92.4 49.0 92	.3 52.0 92.3					
	5.0 55.0 9	2.2 58.0 92.5	61.0 92.7 64.0	91.6 67.0 91	.8 70.0 92.3					
	5.0 73.0 9	2.2 76.0 92.3	79.0 92.3 82.0	91.9 85.0 92	.2 88.0 92.7					
	5.0 91.0 9	2.6 94.0 92.2	97.0 92.6100.	0 93.0103.0 9	3.3106.193.74					
	5.0110.7 9	6.0114.7 99.	6							
NS	5.0	.80	.80	28.50	28.50	76.60	76.60			
NS	5.0	76.80	89.50	56.70	69.70	99.90	96.60			
NS	5.0	96.50	99.90	99.90	96.80	96.70	96.74			
NS	5.0	96.80	96.90	99.90	96.80	96.70	99.90			
NS	5.0	96.80	99.90	99.90	96.60	97.60	97.60			
NS	5.0	96.80	99.90	99.90	99.90	99.90	99.90			
NS	5.0	.80	99.90							
CAL1	5.0	93.74	290.00							
VEL1	5.0			3.13 3.99 3.8	2 3.50 2.28					
VEL1		10 3.00 2.61	3.13 2.61 2.39							
VEL1			1.75 1.17 .48							
VEL1	5.0									
CAL2	5.0	93.61 236	.00							
VEL2	5.0	20.01 200		1 2.69 1.89 1.6	55 3.64 2.98					
VEL2										
VEL2			1.08 1.34 .62							
VEL2 5	.0	0,1,10,1,79	1.00 1.54 .02)11.2	~					
, LL2 J	.0									

Appendix G1 - IFG4 Input File, Chewuch River Site (continued)

CAL3	5.0 93.	33 121.00				
VEL3	5.0		.71 2.26 2.70	3.10 2.46		
VEL3	5.0 2.56 .71 1.96 1.79	2.61 2.13 1.86	1.61 1.01 1.19	0 1.51 2.51		
VEL3	5.0 2.05 .57 1.16 1.35	1.10 .60 .70 1	1.10 .80			
VEL3	5.0					
CAL4	5.0 93.01	60.00				
VELA	5.0		0.0003			
VEL4	5.0 1.96 2.91 2.16			.44 1.85		
VEL4	5.0 2.08 .62 .19 .96	.70 1.60 .38	.19 .10			
VELA	5.0					
XSEC	6.0 122.0 .50	92.50	.00250			
	6.0-75.0101.1 -5.0101					
	6.0 30.0 92.8 34.0 92.9					
	6.0 52.092.8 55.0 92.8					
	6.0 70.0 93.0 73.0 93.0 6.0 90.0 94.2 93.594.2					
	6.0113.594.28118.4 9		.0 95.8100.0 5	5.8110.0 95.8		
'NS	6.0 .80	.80	24.70	82.50	87.50	82.50
NS	6.0 87.50	87.50	78.70	78.70	78.80	78.80
NS	6.0 78.50	78.50	78.70	78.80	97.60	79.60
NS	6.0 79.80	79.80	76.80	78.70	78.70	78.80
NS	6.0 78.80	78.80	78.80	78.90	79.60	79.60
NS	6.0 79.60	.80	.80			
CAL1	6.0 94.28	290.00				
VEL1	6.0 .16	.09 1.39 2.31	3.38 3.42 4.5	5 4.87		
VEL1	6.0 4.99 5.24 5.08 5.24	4 5.49 3.82 4.75	3.73 3.92 1.1	5.27		
VEL1		0.00 .03				
CAL2	6.0 94.15	236.00				
VEL2	6.0	.22 .07 1.47				
VEL2	6.0 5.17 4.57 4.21 4.90		4.12 3.03 .3	2.17		
VEL2		0.00 0.00				
CAM	6.0 93.89 121.00		2 20 1 04 2 4	6 2 5 2 1 6 4		
VEL3 VEL3	6.0 6.0 4.48 4.21 2.95 3.58	$0.00 \ .01 \ .76$				
VEL3 VEL3	6.0	5 2.05 4.15 2.95	2.14 1.10 .5	0		
CAL4	6.0 93.64	60.00				
VEL4	6.0		1.11 1.23 1.8	7 1.66 2.07		
VEL4	6.0 2.16 2.32 1.28 2.13					
VEL4	6.0					
XSEC	7.0 127.0.50	92.90	.0025	0		
	7.0-80.0101.5 -5.0101	.5 0.0 99.7 23.09	95.61 26.0 95.	.1 29.0 95.4		
	7.0 32.0 94.6 35.0 94.3	3 38.0 94.1 41.0	93.8 44.0 93.	8 47.0 93.4		
	7.0 50.0 93.7 53.0 93.9	9 56.0 93.8 59.0	93.7 62.0 93.	5 64.0 93.0		
	7.0 66.0 93.1 68.0 93.0					
	7.0 79.0 93.8 82.0 94.3					
	7.0 97.0 95.3100.0 95.					
NC	7.0127.0 95.4129.0 95					00.00
NS NS	7.0 .80	.80	.80	87.70	98.70	98.80
NS NS	7.099.507.087.70	98.90 87.70	99.90 97.60	98.80 78.50	98.90 78.50	98.50 99.50
NS NS	7.0 87.70 7.0 99.50	87.70 99.50	97.60 99.50	78.50 97.90	78.50 98.90	99.30 98.80
NS	7.0 99.30 7.0 78.70	78.70	99.30 78.70	78.50	98.90 78.50	98.80 78.50
110		, 0.70	10.10	10.50	,0.50	10.50

Appendix G1 - IFG4 Input File, Chewuch River Site (continued)

NS	7.0	78.50	7.850	78.50	78.50	78.50	97.50
NS	7.0	97.50	97.50	97.50	99.00	99.00	99.00
CAL1	7.0	95.61	290.00				
VEL1	7.0		.45 1.45 1.93	2.62 2.82 1.88	3 2.66 2.67		
VELI	7.0 2.76	5 3.11 3.85 2.88	2.87 2.09 2.51	3.07 2.77 2.70	0 1.97 2.76		
VEL1	7.0 1.86	5 2.26 1.73 1.51	1.03 .27 0.00	0.00 0.0	0		
VEL1	7.0 0.00	.22 0.00					
CAL2	7.0 9	95.43 2.36					
VEL2	7.0		.41 1.28 1.61	2.39 2.36 1.82	2 2.36 2.13		
VEL2	7.0 2.78	3.03 3.03 2.69	1.45 2.23 2.13	2.57 2.49 2.24	1.63 2.20		
VEL2	7.0 1.73	3 1.81 1.27 1.14	.51 .21 0.00				
VEL2	7.0 0.00	0.00 0.00 0.00					
CAL3	7.0	95.10 121.00	1				
VEL3	7.0		.67	1.59 1.47 1.4	9 1.23 1.73		
VEL3	7.0 1.69	2.19 2.97 2.08	1.38 1.27 1.60	2.39 1.80 1.90) 1.19 1.94		
VEL3	7.0 1.15	5 1.52 .80					
VEL3	7.0						
CAL4	7.0	94.75 60.0)				
VEL4	7.0		0.00	.62 .65 .90	.94 .99		
VEL4	7.0 .88	1.75 1.41 1.36	1.19 .45 1.29 1	.56 1.21 1.35	.68 1.32		
VEL4	7.0 .77	.63 .22					
VEL4	7.0						
ENDJ							

CHEWUCH RIVER SITE Calibration Information for Calculated Discharge

Transect Number	r							
1	2	3	4	5	6	7		
Discharge								
275	284	275	273	288	297	281		
232	224	238	184	222	248	215		
135	121	137	114	127	138	129		
68	57	63	61	61	63	61		
Stage								
92.81	92.93	93.37	93.64	93.74	94.28	95.61		
92.62	92.78	93.19	93.48	93.61	94.15	95.43		
92.25	92.36	92.91	93.11	93.33	93.89	95.10		
91.92	92.09	92.67	92.82	93.01	93.64	94.75		
Plotting Stage								
3.11	3.23	2.17	2.44	2.14	1.78	2.71		
2.92	3.08	1.99	2.28	2.01	1.65	2.53		
2.55	2.66	1.71	1.91	1.73	1.39	2.20		
2.22	2.39	1.47	1.62	1.41	1.14	1.85		
Ratio of measure	d versus pred	icted dischar	rge					
0.946	0.973	0.900	1.064	1.016	0.950	0.986		
1.037	0.982	1.083	0.908	0.990	1.036	0.996		
1.067	1.127	1.116	1.047	0.984	1.051	1.039		
0.956	0.929	0.919	0.989	1.010	0.967	0.980		
Mean error of sta	ige/discharge	relationship	for calculated	1 Q				
5.05	5.87	9.50	5.43	1.27	4.27	1.91		
Mean error of sta			for given Q					
3.42	4.68 5	5.70. 3.03	2.96	1.96	2.84	2.84		
Stage/discharge relationship (S vs Q) S=A*Q**B+SZF								
A= 0.8034	0.1073	0.4864	0.4945	0.4665	0.3478	0.6597		
B = 0.2386	0.1941	0.2613	0.2876	0.2698	0.2482	0.2500		
SZF= 89.7	89.70	91.20	91.20	91.60	92.50	92.90		
Beta coefficient l	0 0	0 0	1					
4.19	5.15	3.83	3.48	3.71	3.52	4.00		

TRANSECT	VERTICAL	VEL	CHANGE
2	21	4	0.30 TO 0.50
	7	1	1.75 TO 1.55
5	7	2	0.31 TO 0.51
5	7	3	0. 10 TO 0.30
5	8	2	3.33 TO 3.13
5	8	3	0.51 TO 0.71
5	11	2	3.70 TO 3.50
5	11	4	0.54 TO 0.74
5	16	4	0.21 TO 0.00
5	17	4	0.31 TO 0.51
5	34	3	0.15 TO 0.00
5	35	2	0.20 TO 0.00
7	28	3	0.14 TO 0.00

Appendix G3 - Data Changes for Calibration, Chewuch River Site

rippendin O i	veroency maja	stillent i det
Transect	Discharge	VAF
1.00	25.0	0.964
1.00	60.0	0.985
1.00	125.0	1.003
1.00	300.	1.001
1.00	725.0	0.921
2.00	25.0	0.916
2.00	60.0	1.007
2.00	125.0	1.017
2.00	225.0	1.004
2.00	325.0	0.970
2.00	725.0	0.805
3.00	25.0	0.860
3.00	60.0	0.948
3.00	125.0	0.997
3.00	225.0	1.008
3.00	300.0	1.002
3.00	725.0	0.928
4.00	25.0	0.923
4.00	60.0	1.011
4.00	125.0	1.042
4.00	225.0	1.024
4.00	300.0	0.997
4.00	725.0	0.830
5.00	25.0	0.963
5.00	60.0	1.001
5.00	125.0	1.025
5.00	225.0	1.015
5.00	300.0	0.996
5.00	725.0	0.846
6.00	25.0	1.049
6.00	60.0	1.009
6.00	70.0	1.006
6.00	125.0	1.004
6.00	225.0	1.003
6.00	300.0	1.001
6.00	725.0	0.971
7.00	25.0	0.977
7.00	60.0	0.998
7.00	125.0	1.012
7.00	225.0	1.002
7.00	300.0	0.989
7.00	725.0	0.888

Appendix G4	Velocity Adjustment Factors, Chew	uch River Site
-------------	-----------------------------------	----------------

APPENDIX H

EARLY WINTERS SITE CALIBRATION INFORMATION

EARLY WINTERS CREEK at river mile 1.0 measured on 8/5/91- 227 cfs, 8/17- 132 cfs, 8/30- 78 cfs, 9/27- 37 cfs IOC 00000020000000000000 OARD 15.0 OARD 40.0 OARD 80.0 QARD 125.0 QARD 225.0 QARD 575.0 XSEC 3.0 0.0 .75 91.60 .00250 3.0-10.0 99.7 0.0 96.6 2.1 94.6 5.0 93.5 7.5 93.8 10.0 94.0 3.0 12.5 92.4 15.0 93.4 17.5 92.1 20.0 92.8 22.5 92.7.25.0 92.6 3.0 27.5 92.7 30.0 92.6 32.5 92.2 35.0 92.1 37.5 92.5 40.0 91.6 3.0 42.5 92.1 45.0 93.7 47.5 94.8 50.0 94.8 52.5 94.4 55.0 94.5 3.0 56.3 94.6 59.8 98.3 69.8 99.7 NS .80 88.90 87.70 87.60 87.80 88.90 3.0 88.90 88.90 NS 3.0 88.90 88.90 87.90 76.90 NS 3.0 87.80 87.80 88.90 88.90 88.90 88.90 NS 3.0 88.90 88.90 88.90 82.70 82.80 82.80 NS 3.0 88.90 .80 .80 CAL1 3.0 94.69 227.00 1.45 .20 3.27 1.00 3.87 2.78 3.76 1.93 1.22 VEL1 3.0 VEL1 3.0 .61 3.56 3.44 1.52 .72 2.28 5.20 .44 0.00 0.00 **VEL1** 3.0 CAL2 3.0 94.52 132.00 VEL2 3.0 .63 .36 .39 1.08 3.64 2.46 3.24 1.90 1.20 VEL2 3.0 .46 4.45 2.86 .46 .28 1.11 1.67 .51 0.00 -.01 VEL2 3.0 CAL3 3.09 4.20 78.00 VEL3 3.0 -.20.62 .39 .11 1.91 1.59 2.12 1.22.66 VEL3 3.0 1.51 2.60 .88 .15 .25 .98 1.89 1.08 VEL3 3.0 CAL4 3.0 93.71 37.00 VEL4 3.0 0.00 .12 .60 1.72 1.38.67 1.00 VEL4 3.0 1.83 1.15 .26 .50 1.81 -.14 0.00 VEL4 3.0 XSEC 4.0 45.0 .50 93.20 .00250 4.0-12.0 96.7 0.0 94.9 2.5 94.6 5.0 94.8 7.5 94.9 10.0 94.9 4.0 12.5 94.2 15.0 94.4 17.5 93.4 20.0 93.6 22.5 93.5 25.0 93.2 4.0 27.5 93.3 30.0 93.8 32.5 94.0 35.0 93.7 37.5 93.6 40.0 93.3 4.0 42.5 93.3 45.0 93.4 47.5 93.6 50.0 95.5 52.5 95.4 55.0 95.8 4.0 57.3 95.7 65.0 99.3 75.0101.6 NS 4.0 .80 .10 27.70 27.70 68.70 78.80 NS 4.0 82.80 88.90 88.90 88.90 88.90 88.90 NS 4.0 88.90 88.90 88.90 88.90 88.90 88.90 NS 88.90 87.80 87.90 88.90 4.0 88.90 87.80 NS 78.70 .80 4.0 .80 CAL1 4.0 95.74 227.00 .45 .08 2.44 1.94 .99 2.51 3.43 5.57 4.12 1.74 VEL1 4.0 VEL1 4.0 1.36 1.99 2.35 5.23 4.89 2.85 2.01 1.84 .37 1.12 .65 VEL1 4.0 CAL2 4.0 95.41 132.00

VEL2 $0.00 \quad .13 \; 1.34 \; 1.70 \quad .60 \; 237 \; 2.72 \; 4.83 \; 4.10 \; .34$ 4.0 VEL2 4.0 .33 1.55 1.12 3.92 4.88 3.48 1.53 2.15 .23 .47 VEL2 4.0 CAL3 4.0 95.12 78.00 .18 .06 .95 1.25 .12 1.62 1.69 4.68 3.43 .36 VEL3 4.0 VEL3 4.0 .27 .66 .54 3.29 3.24 2.19 1.83 1.44 .33 .18 VEL3 4.0 CAL4 4.0 94.65 37.00 VEL4 4.0. 06 .18 .48 .90 2.62 2.54 .46 VEL4 4.0 .64 .30 2.61 2.11 3.29 .95 1.31 .16 VEL4 4.0 XSEC 5.0 44.0 .50 93.60 .00250 5.0 -4.0101.6 -1.5 97.5 0.0 96.4 2.5 94.8 5.0 94.7 7.5 94.8 5.0 10.0 94.6 12.5 94.8 15.0 95.6 17.5 94.3 20.0 94.1 22.5 93.5 5.0 25.0 93.5 27.5 93.2 30.0 94.0 32.5 93.4 35.0 94.2 37.5 94.7 5.0 40.0 94.5 42.5 94.8 45.0 95.2 47.5 95.5 50.0 95.6 52.5 95.8 5.0 54.2 96.4 62.6101.4 NS .80 82.80 5.0 .10 .10 82.80 78.70 NS 5.0 78.80 87.80 88.90 88.90 88.90 88.90 NS 5.0 88.90 88.90 88.90 88.90 88.90 88.90 NS 5.0 82.80 82.80 82.80 28.80 78.70 78.70 NS 5.0 78.80 .80 CAL1 5.0 96.40 227.00 .50 1.53 1.50 1.46 4.32 4.01 1.79 2.87 3.40 VEL1 5.0 VEL1 5.0 4.72 2.44 3.58 1.42 2.38 1.83 .60 .03 -.03 -.16 0.00 0.00 VEL1 5.0 CAL2 5.0 96.11 132.00 VEL2 5.0 .60 1.50 1.53 1.57 2.72 2.96 .33 2.94 2.26 VEL2 5.0 3.70 .38 3.05 1.15 2.09 2.02 .53 0.00 -.03 -.01 0.00 .01 VEL2 5.0 CAM 5.0 95.83 78.00 VEL3 5.0 .26 .96 1.30 1.09 1.92 2.84 .55 1.94 1.95 VEL3 5.0 3.07 1.01 2.06 .99 1.72 1.58 1.39 0.00 .12 0.00 0.00 VEL3 5.0 CAL4 5.0 95.41 37.00 VEL4 5.0 0.00 .41 .45 .89 .13 .70 1.01 VEL4 5.0 1.92 .17 1.26 .68 .36 .53 .50 0.00 0.00 VEL4 5.0 XSEC 6.0 29.0 50 93.60 .00250 6.0-10.0100.9 0.0 98.0 1.1 96.6 2.5 96.4 5.0 96.1 7.5 95.8 6.0 10.0 95.5 12.5 95.6 15.0 94.3 17.5 94.3 20.0 94.2 22.5 93.9 6.0 25.0 93.5 27.5 93.9 30.0 93.4 32.5 94.2 35.0 94.6 37.5 93.6 6.0 40.0 95.6 42.5 95.6 43.8 96.6 48.4 98.7 58.4101.6 NS 6.0 .80 .30 82.80 28.60 23.60 78.70 NS 6.0 87.80 87.80 88.90 88.90 82.90 88.90 NS 88.90 88.90 88.90 88.90 82.90 82.90 6.0 NS 82.90 82.90 82.90 .80 6.0 .80 CAL1 96.56 227.00 6.0 VEL1 .09 .04 .38 1.18 2.17 3.88 3.55 4.35 3.36 6.0 VEL1 6.0 3.46 4.15 3.90 3.73 2.72 1.27 .25 -.08 CAL2 6.0 96.22 132.00 $0.00\ .26\ .76\ 1.32\ 3.02\ 2.92\ 3\ .12\ 2.55$ VEL2 6.0

Appendix H1 - IFG4 Input Files, Early Winters Creek Site (continued)

Appendix H1 - IFG4 Input Files, Early Winters Creek Site (continued)

VEL2	6.0 1.94 3.44 2.29 3.04 2.29 .78 .18
CAL3	6.0 95.92 78.00
VEL3	6.0 .04 .56 .92 .29 .42 1.32 1.25
VEL3	6.0 2.79 2.97 1.52 2.37 1.87 .24
CAL4	6.0 95.44 37.00
VEL4	6.0 .50 .36 1.17
VEL4	6.0 .33 1.64 1.06 1.11 1.13 .45
XSEC	7.0 51.0 .50 93.90 .00250
	7.0 -8.0101.6 0.0 98.5 2.5 97.0 5.0 96.6 7.5 95.4 10.0 95.1
	7.0 12.5 95.2 15.0 95.2 17.5 94.1 20.0 93.9 22.5 94.1 25.0 94.3
	7.0 27.5 94.3 30.0 94.5 32.5 94.8 35.0 94.6 37.5 95.1 40.0 95.5
	7.0 42.5 96.6 44.5100.4 45.5101.6
NS	7.0 .80 .30 88.90 88.90 78.70 87.80
NS	7.0 87.70 88.90 88.90 88.90 88.90 88.90
NS	7.0 88.90 88.90 88.90 88.90 82.80 82.80
NS	7.0 88.90 .30 .80
CAL1	7.0 96.80 227.00
VEL1	7.0 .37 2.04 3.61 2.43 4.02 4.05 2.71 3.16 2.35
VEL1	7.0 2.65 4.19 5.13 3.13 .65 .84 .83
CAL2	7.0 96.43 132.00
VEL2	7.0 2.20 2.90 3.09 2.76 3.31 2.85 1.96 3.03
VEL2	7.0 2.07 2.02 2.44 1.76 .18 .31
CAL3	7.0 96.09 78.00
VEL3	7.0 1.49 .96 2.33 1.85 1.56 3.31 2.73 1.10
VEL3	7.0 1.57 .54 1.62 1.34 0.00 0.00
CAL4	7.0 95.61 37.00
VELA	7.0 .88 1.20 1.89 1.29 1.78 2.68 3.28
VEL4	7.0 2.03 2.12 1.43 .52 0.00
ENDJ	

EARLY WINTERS CREEK - T8 CHANNEL 1 measured on 8/5/91 - 104.5 cfs, 8/17 - 54.5 cfs, 8/30 - 32 cfs, 9/27 -9.5 cfs

IOC 0000002000000000000000 QARD 4.0 QARD 10.0 QARD 33.0 QARD 52.0 QARD 104.0 QARD 285.0 XSEC 81.0 0.0 .50 93.62 .00250 81.0-10.0101.0 0.096.62 3.2 95.5 5.0 96.0 6.0 94.8 7.0 95.0 81.0 8.0 95.2 9.0 95.1 10.0 95.0 12.0 94.8 14.0 94.3 16.0 94.3 81.0 17.0 93.5 18.0 93.5 19.0 93.7 20.0 93.4 21.0 92.3 22.0 92.4 81.0 24.0 92.2 25.0 92.5 26.0 93.8 27.0 94.2 29.0 94.5 31.0 94.9 81.0 33.0 94.3 35.0 94.2 37.0 94.2 39.0 94.2 41.0 95.0 43.0 95.1 81.0 43.5 95.5 50.295.52 60.297.12 80 88 90 88 90 82 90 22 90 NC 00 Q1 A

IND .	81.0	.80	.80	00.90	00.90	82.90	22.90
NS	81.0	22.90	22.90	22.90	22.90	27.70	72.90

Appendix H1 - IFG4 Input Files, Early Winters Creek Site (continued)

NG	01.0	72 00	07.00	00.00	00.00	70 70	
NS	81.0	72.90	87.80	88.90	88.90	78.70	78.70
NS	81.0	87.80	88.90	88.90	88.90	88.90	88.90
NS	81.0	78.70	87.80	77.90	87.80	87.90	87.90
NS	81.0	87.70	75.50	.80			
CAL1	81.0	95.50	104.50				
VEL1	81.0						3 .28 .18
VEL1					3.20 3.21	3.32 4.8	3 2.52 3.34
VEL1		.06 .34 .		0.00 0.00			
CAL2	81.0	95.30	54.50				
VEL2	81.0						.17 0.00
VEL2		.00 .10 2.			1.91 2.11	2.09 3.20) .91 1.85
VEL2	81.01	.35.47 .	02 .04 0.	.00 0.00			
CAD	81.0	95.10	32.00				
VEL3	81.0					0.00 .0	07.02.01
VEL3	81.00	0.00 0.00 1	.65 1.58	1.42 1.61	1.27 1.34	4 1.73 2.2	21.35
VEL3	81.0	.40 .20	.02 0.00				
CAL4	81.0	94.74	9.50				
VEL4	81.0.0	01.01					
VELA	81.00	0.00 0.00	.39 .61	.71 .71	.48 .34 1	.03 .85	.04
VELA	81.0	.06 0.00 0	0.00 0.00				
XSEC	82.0	50.0	.50 93	.62 .0	0250		
	82.0-1	0.0101.0	0.096.62	3.2 95.5 5	5.0 96.0 6	5.0 94.8 7	.0 95.0
	82.08	.0 95.2 9.	0 95.1 10.	.0 95.0 12	2.0 94.8 1	4.0 94.3	16.0 94.3
	82.01	7.0 93.5 1	8.0 93.5	19.0 93.7	20.0 93.4	4 2 1.0 92	2.3 22.0 92.4
	82.0 2	4.0 92.2 2	25.0 92.5	26.0 93.8	27.0 94.2	2 29.0 94	.5 31.0 94.9
	82.03	3.0 94.3 3	5.0 94.2	37.0 94.2	39.0 94.1	2 41.0 95	.0 43.0 95.1
	82.04	3.5 95.5 5	0.295.52	60.297.1	2		
NS	82.0	.80	.80	88.90	88.90	82.90	22.90
NS	82.0	22.90	22.90	22.90	22.90	27.70	72.90
NS	82.0	72.90	87.80	88.90	88.90	78.70	78.70
NS	82.0	87.80	88.90	88.90	88.90	88.90	88.90
NS	82.0		87.80			87.90	87.90
NS	82.0	87.70	75.50	.80			
CAL1	82.0		104.50				
VEL1	82.0			01 0.00 0	.00 0.00	0.00 .18	.28 .18
VEL1	82.0	02.123.3					2.52 3.34
VEL1		.06 34 .1					
CAL2	82.0	95.30	54.50				
VEL2	82.0			0.00 0.00	0.00 0.00	0.00.0	6 .17 0.00
VEL2		.00 .10 2					0.91 1.85
VEL2		1.35 .47					
CAL3	82.0	95.10	32.00				
VEL3	82.0					0.00.0	7 .02 .01
VEL3		0.00 0.00 1	.65 1.58	1.42 1.61	1.27 1.34		
VEL3		.40 .20	.02 0.00		112/ 110		1.00
CAL4	82.0	94.74	9.50				
VEL4	82.0	· ··· ·	2.00			.01.	01
VELA		0.00 0.00	.39 .61	71.71.4	8.34 1.0		-
VEL4		.06 0.00 (
ENDJ							

Appendix H1 - IFG4 Input Files, Early Winters Creek Site (continued)

EARLY WINTERS CREEK - T8 CHANNEL 2 measured, on 8/5/91 - 16 cfs, 8/17 - 6.7 cfs, 8/30 - 4.1 cfs, 9/27 - 0.5 cfs IOC 000000200000000000000 QARD 0.8 OARD 4.2 QARD 6.4 QARD 15.7 QARD 49.3 XSEC 82 .0 0.0 .50 97.00 .00250 82.0-10.098.36 0.0 98.0 .998.17 1.0 98.1 3.0 98.0 5.0 97.9 82.0 7.0 97.9 9.0 97.8 11.0 98.1 13.0 98.1 15.0 98.0 17.0 97.7 82.0 18.0 97.7 19.0 97.5 20.0 97.2 21.0 97.1 22.0 97.0 23.0 97.2 82.0 24.0 97.4 25.0 97.8 26.0 98.0 27.0 98.0 27.798.17 29.698.36 82.0 34.698.76 NS 13.70 13.70 13.70 82.0 21:50 21.50 13.70 NS 82.0 13.70 13.70 13.70 .30 .30 .30 NS 82.0 62.90 62.90 62.70 62.70 62.60 26.60 NS 82.0 13.70 13.70 13.80 13.80 13.80 20.50 NS 82.0 20.50 CAL1 82.0 98.17 16.00 16.0 VEL1 82.0 .50 1.13 1.51 1.56 1.42 .22.75 VEL1 82.0 .59 1.00 1.48 1.88 2.46 2.12 1.47 1.82 1.08.21 VEL1 82.0 CAL2 82.0 97.96 6.70 6.7 VEL2 82.0 VEL2 82.0 VEL2 82.0 CAM 82.0 97.80 4.10 4.1 VEL3 82.0 VEL3 82.0 VEL3 82.0 CAL4 82.0 97.52 .50 .5 VEL4 82.0 VEL4 82.0 VEL4 82.0 XSEC 83.0 50.0.50 97.00 .00250 83.0-10.098.36 0.0 98.0 .998.17 1.0 98.1 3.0 98.0 5.0 97.9 83.0 7.0 97.9 9.0 97.8 11.0 98.1 13.0 98.1 15.0 98.0 17.0 97.7 83.0 18.0 97.7 19.0 97.5 20.0 97.2 21.0 97.1 22.0 97.0 23.0 97.2 83.0 24.0 97.4 25.0 97.8 26.0 98.0 27.0 98.0 27.798.17 29..698.36 83.0 34.698.76 NS 83.0 21.50 21.50 13.70 13.70 13.70 13.70 .30 NS 83.0 13.70 13.70 13.70 .30 .30 NS 83.0 62.90 62.90 62.70 62.70 62.60 26.60 NS 83.0 13.70 13.70 13.80 13.80 13.80 20.50 NS 83.0 20.50 CAL1 83.0 98.17 16.00 16.0 VEL1 83.0 .50 1.13 1.51 1.56 1.42 .22 .75 VEL1 83.0 .59 1.00 1.48 1.88 2.46 2.12 - 1.47 1.82 1.08.21 VEL1 83.0 CAL2 83.0 97.96 6.70 6.7

VEL2 83.0 Appendix H1 - IFG4 Input File, Early Winters Creek Site, (continued) VEL2 83.0 VEL2 83.0 CAM 83.0 97.80 4.10 4.1 VEL3 83.0 VEL3 83.0 VEL3 83.0 CAL4 83.0 97.52 .50 .5 VEL4 83.0 83.0 VEL4 VEL4 83.0 ENDJ EARLY WINTERS CREEK - T8 CHANNEL 3 measured on 8/5/91 - 16.8 cfs, 8/17 - 9.1 cfs, 8/30 - 2.9 cfs, 9/27 -0.01 cfs IOC 000000200000000000000 OARD 0.2 QARD 3.0 QARD 8.3 QARD 16.5 QARD 44.6 XSEC 83.0 0.0.50 98.21 .00250 83.0 -5.098.76 0.099.36 4.098.73 5.0 98.5 7.0 98.2 9.0 98.0 83.0 11.0 97.3 13.0 97.4 15.0 98.3 17.0 98.518.898.73 19.998.86 83.0 24.998.56 NS 83.0 12.50 12.50 13.80 13.80 13.80 13.70 NS 83.0 13.70 13.70 13.70 13.80 13.90 12.50 NS 83.0 12.50 CAL1 83.0 98.73 16.80 VEL1 1.65 2.49 2.34 2.77 .09 1.57.03 83.0 VEL1 83.0 CAL2 83.0 98.60 9.10 VEL2 83.0 .50 1.54 .50 2.34 .07 1.65 0.00 VEL2 83.0 CAL3 83.0 98.50 2.90 1.04 .29 1.21.-.25 .32 VEL3 83.0 **VEL3 83.0** XSEC 84.0 98.21 .00250 50.0.50 84.0 - 5.098.76 0.099.36 4.098.73 5.0 98.5 7.0 98.2 9.0 98.0 84.0 11.0 97.3 13.0 97.4 15.0 98.3 17.0 98.5 18.898.73 19.998.86 84.0 24.998.56 NS 84.0 12.50 12.50 13.80 13.80 13.80 13.70 13.80 NS 84.0 13.70 13.70 13.70 13.90 12.5-0 NS 84.0 12.50 CAL1 84.0 98.73 16.80 VEL1 84.0 1.65 2.49 2.34 2.77 .09 1.57.03 VEL1 84.0 CAL2 84.0 98.60 9.10

Appendix H1 - IFG4 Input Files, Early Winters Creek Site (continued)

VEL2 84.0 .50 1.54 .50 2.34.07 1.65 0.00 VEL2 84.0 CAM 84:0 98.50 2.90 VEL3 84.0 1.04 .29 1.21 -.25 .32 VEL3 84.0 ENDJ EARLY WINTERS CREEK - T8 CHANNEL 4 Measured on 8/5 - 50.9 cfs, 8/17-37.8 cfs, 8/30-20.1 cfs, 9/27-8 cfs. IOC 00000020000000000000

OARD 3.0 QARD 7.0 QARD 21.0 OARD 40.0 OARD 51.0 OARD 98.0 XSEC 84.0 95.66 .00250 0.0.50 84.0-10.097.96 0.097..66 4.696.69 6.0 96.3 8.0 96.1 10.0 96.3 84.0 12.0 96.1 14.0 95.6 16.0 95.1 18.0 94.7 20.0 94.9 22.0 95.0 84.0 24.0 94.9 26.0 95.5 28.0 96.1 30.0 96.6 32.0 96.6 34.0 96.1 84.0 35.396.69 36.498.86 NS 12.50 12.50 13.60 40.70 65.80 67.60 84.0 NS 84.0 76.70 72.70 72.80 72.80 72.80 73.80 NS 78.80 78.80 72.80 32.80 32.80 84.0 32.80 .30 32.80 NS 84.0 CAL1 84.0 96.69 50.90 VEL1 84.0 .25 2.72 .29 1.34 1.50 2.43 2.59 2.71 2.53 VEL1 84.0 1.57 .41 .11 .05 0.00 .17 CAL2 84.0 96.63 37.80 VEL2 84.0 1.05 1.58 1.40 1.30 1.38 1.98 2.01 1.90 1.57 84.0 .90 .46 .08 0.00 0.00 -.49 VEL2 20.10 CAL3 84.0 96.55 VEL3 84.0 .89 1.98 1.22 .62 .75 1.25 .47 1.20 1.08 VEL3 84.0.72.170.00-.21 CAL4 84.0 96.37 8.00 **VELA 84.0** 1.93 .20 .13 .29 .51 .64 .41 .55 VELA 84.0.33 0.00 0.00 XSEC 85.0 50.0 .50 95.66 .00250 85.0-10.097.96 0.097.66 4.696.69 6.0 96.3 8:0 96.1 10.0 96.3 85.0 12.0 96.1 14.0 95.6 16.0 95.1 18.0 94.7 20.0 94.9 22.0 95.0 85.0-24.0 94.9 26.0 95.5 28.0 96.1 30.0 96.6 32.0 96.6 34.0 96.1 85.0 35.396.69 36.498.86 NS 85.0 12.50 12.50 13.60 40.70 65.80 67.60 NS 85.0 76.70 73.80 72.70 72.80 72.80 72.80 NS 85.0 78.80 78.80 72.80 32.80 32.80 32.80 NS 85.0 32.80 .30 CAL1 85.0 96.69 50.90 VEL1 85.0 .25 2.72 .29 1.34 1.50 2.43 2.59 2.71 2.53 VEL1 85.0 1.57 .41 .11 .05 0.00 .17 CAL2 85.0 96.63 37.80

Appendix H1 - IFG4 Input Files, Early Winters Creek Site (continued)

 $1.05\; 1.58\; 1.40\; 1.30\; 1.38\; 1.98\; 2.01\; 1.90\; 1.57$ VEL2 85.0 VEL2 85.0 .90 .46 .08 0.00 0.00 -.49 CAL3 85.0 96.55 20.10 VEL3 85.0. 89 1.98 1.22 .62 .75 1.25 .47 1.20 1.08 VEL3 85.0.72.170.00 -.21 CAL4 85.0 96.37 8.00 VEL4 85.0 1.93 .20 .13 .29 .51 .64 .41 .55 VEL4 85.0 .33 0.00 0.00 ENDJ EARLY WINTERS CREEK - T8 CHANNEL 5

		ERS CRE						
	ed on 8/					25.1 cfs,	9/27 - 13	cfs
IOC		000000	0200000	0000000	00			
QARD								
QARD								
QARD								
QARD								
QARD	45.0							
QARD	75.0							
XSEC	85.0	0.0.5			0250			
		396.23 0.0						
		.0 94.6. 6.						
					14.0 95.	3 15.0 95	.4 16.096.	23
	85.01	6.796.23 1	6.897.86	5				
NS	85.0	.30	.30	23.80	22.90	22.90	22.90	
NS	85.0	23.80	37.70	37.60	73.60	78.60	73.60	
NS	85.0	72.60	.30	.30	.30	.30	.30	
NS	85.0	.30	.30					
CAL1	85.0	96.23	45.10.	45.10				
VEL1	85.0			0.00 .05	.37 1.84 2	2.36 3.50	4.44 3.18	
VEL1		.78 1.70 .		.05				
CAL2	85.0	96.06	36.10	36.10				
VEL2	85.0							
VEL2	85.0							
CAM	85.0	95.90	25.10	25.10				
VEL3	85.0							
VEL3	85.0							
CAL4	85.0	95.64	13.00	13.00				
VEL4	85.0							
VEL4	85.0							
XSEC	86.0	50.0.5			0250			
		396.23 0.0						
		.0 94.6 6.0						
					14.0 95.	3 15.0 95	.4 16.096.	23
		6.796.23 1						
NS	86.0	.30	.30	23.80	22.90	22.90	22.90	
NS	86.0	23.80	37.70	37.60	73.60	78.60	.73.60	
NS	86.0	72.60	.30	.30	.30	.30	.30	
NS	86.0	.30	.30					

Appendix Hl - IFG4 Input Files, Early Winters Creek Site (continued)

96.23 45.10 45.10 CAL1 86.0 VEL1 86.0 0.00 0.00 0.00 .05 .37 1.84 2.36 3.50 4.44 3.18 VEL1 86.0 2.78 1.70 .41 .10 .05 CAL2 86.0 96.06 36.10 36.10 VEL2 86.0 VEL2 86.0 CAL3 86.0 95.90 25.10 25.10 VEL3 86.0 VEL3 86.0 CAL4 86.0 95.64 13.00 13.00 VELA 86.0 VEL4 86.0 ENDJ

Appendix H2 - Summary of Calibration Details, Early Winters Creek Site

Transect Number				
3	4	5	6	7
Discharge	•	C	0	
189	233	209	227	219
126	159	137	142	136
69	101	98	77	77
33	52	32	28	54
Stage				
94.69	95.74	96.40	96.56	96.80
94.52	95.41	96.11	96.22	96.43
94.20	95.12	95.83	95.92	96.09
93.71	94.65	95.41	95.44	95.61
Plotting Stage				
3.09	2.54	2.80	2.96	2.90
2.92	2.21	2.51	2.62	2.53
2.60	1.92	2.23	2.32	2.19
2.11	1.45	1.81	1.84	1.71
Datio of measured		d disalaanaa		
Ratio of measured	-	-	0.077	1 109
1.117	1.021	0.941	0.977	1.108
0.955	1.014	0.981	1.049	0.987
0.878	0.940	1.170	0.976	0.819
1.068	1.028	0.926	1.000	1.116
Mean error of stage	e/discharge rela	tionship for cal	culated O	
8.85	3.12	7.69	2.39	10.88
Mean error of stage	e/discharge rela	tionship for giv	ren Q	
12.04	6.32	5.17	5.36	4.39
Stand diashanaa nal	otionalin (S. wa	O) C A*O**D	- CZE	
Stage/discharge rel $A = 0.9754$	1 '		+32f 0.867	0 2072
	0.3389	0.7933		0.3972 0.3761
	0.3709	0.2333.	.2251	
SZF= 91.60	93.20	93.60	93.60	93.90
Beta coefficient log	z/log discharge	/stage relationsh	nip	
4.45	2.70	4.29	4.44	2.66
	2.70	/		2.00

EARLY WINTERS CREEK SITE Calibration Information for Calculated Discharge

Transect Numbe				
8-1	8-2	8-3	8-4	8-5
Discharge				
97.3	14.6	16.2	50.2	44.2
56.7	6.7	8.9	36.3	36.1
31.2	4.1	3.1	19.7	25.1
9.8	0.5	8.1	13.0	
Stage				
95.50	98.17	98.73	96.69	96.23
95.30	97.96	98.60	96.63	96.06
95.10	97.80	98.50	96.55	95.90
94.70	97.52	96.37	95.64	
Plotting Stage				
1.88	1.17	0.52	1.03	1.47
1.68	0.96	0.39	0.97	1.30
1.48	0.80	0.29	0.89	1.14
1.12	0.52	0.71	0.88	
	1 1'			
Ratio of measur	-	-	1.070	0.050
1.030	0.918	0.933	1.069	0.956
0.990	0.958	1.147	1.035	1.054
0.952	1.249	0.935	0.855	1.009
1.025	0.910	1.058	0.983	
Mean error ofsta	age/dischargere	lationship for c	alculatedQ	
2.98	10.78	9.01	8.05	3.10
Mean error of st	tage/discharger	elationshin for	given ()	
4.82	9.82	11.01	7.82	2.48
Stage/discharge	1 '	-		
A= 0.6706	0.6008	0.1882	0.4672	0.3052
B= 0.2269	0.2409	0.3562	02053	0.4101
SZF= 93.62	97.00	98.21	95.66	94.76
Betacoefficient	log/logdischarg	ge/stagerelation	ship	
4.41	4.15	2.81	4.87	2.44

EARLY WINTERS CREEK SITE (Transect 8 Channels) Calibration Information for Calculated Discharge

Appendix H2 - Summary of Calibration Details, Early Winters Creek Site (cont.)

TRANSECT	VERTICAL	VEL	CHANGE
3	8	1	4.07 TO3.87
3	8	4	0.40 TO 0.60
3	15	3	0.68 TO 0.88
3	15	4	0.22 TO 0.00
4	8	4	0.28 TO 0.48
4	15	3	0.34 TO 0.54
4	15	4	0.16 TO 0.00
5	5	3	0.76 TO 0.96
6	11	4	0.15 TO 0.00
6	13	4	0.13TO 0.33
7	6	1	3.81 TO 3.61
7	6	3	0.76 TO 0.96
7	9	1	4.25 TO 4.05
7	9	4	1.09 TO 1.29
7	15	1	5.33 TO 5.13
7	15	4	1.23 TO 1.43
8-1	24	4	0.13 TO 0.00
8-3	4	1	0.30 TO 0.50
8-3	6	4	0.09 TO 0.29
8-4	6	4	0.00 TO 0.20
8-4	7	4	0.07 TO 0.13
	-	-	

Appendix H3 - Data Changes for Calibration, Early Winters Creek Site

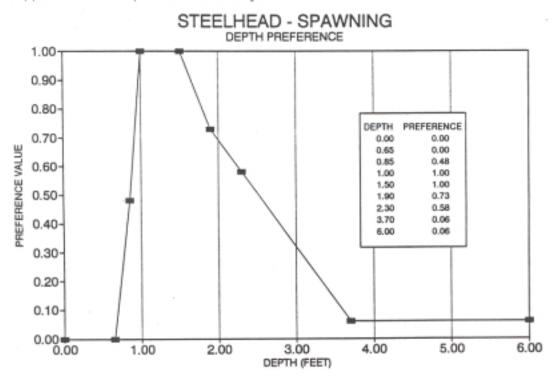
Transect	Discharge	VAF
3.00	15.0	1.011
3.00	40.0	0.989
3.00	80.0	1.028
3.00	125.0	1.029
3.00	225.0	0.988
3.00	575.0	0.805
4.00	15.0	0.913
4.00	40.0	1.007
4.00	80.0	1.033
4.00	125.0	1.029
4.00	225.0	0.982
4.00.	575.0	0.809
5.00	15.0	0.902
5.00	40.0	0.998
5.00	80.0	0.991
5.00	125.0	1.011
5.00	225.0	1.026
5.00	575.0	1.012
6.00	15.0	0.857
6.00	40.0	0.995
6.00	80.0	1.033
6.00	125.0	1.040
6.00	225.0	1.014
6.00	575.0	0.882
7.00	15.0	0.967
7.00	40.0	1.046
7.00	80.0	1.059
7.00	125.0	1.042
7.00	225.0	0.979
7.00	575.0	0.798

Appendix H4 - Velocity Adjustment Factors, Early Winters Creek Site	Appendix H4 -	Velocity	Adjustment F	Factors, Early	Winters	Creek Site
---	---------------	----------	---------------------	----------------	---------	------------

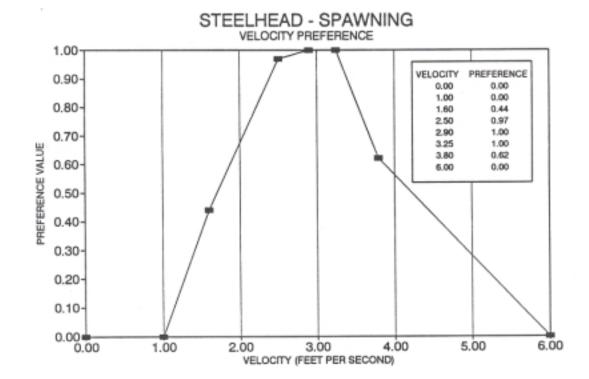
APPENDIX I

TRANSECT WEIGHTING

Appendix I Transect Weighting .

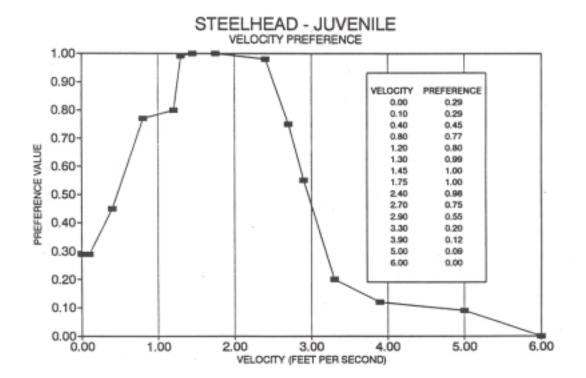

Transect Weighting as a Percent of the Total Site

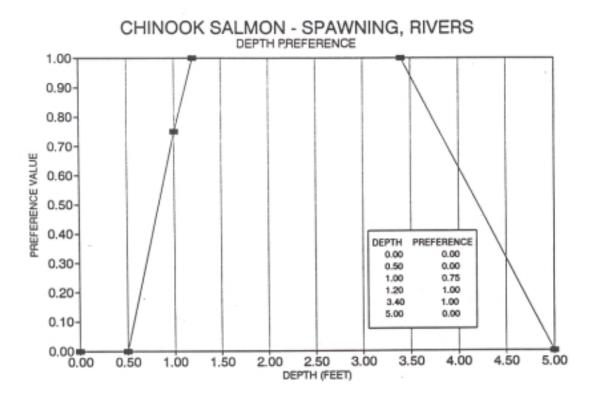
<u>Site</u>	1	2	3	4	5	6	7	8
Walsh	7.2	11.5	10.6	14.0	14.1	14.8	18.0	9.7
KOA	9.3	16.2	16.8	14.8	10.7	10.3	13.3	8.7
Weeman	10.3	17.8	14.9	13.9	9.6	10.8	15.2	7.5
Chokecherry	10.8	19.0	14.7	12.3	12.8	11.6	11.7	7.0
Twisp	6.5	15.9	13.4	7.3	8.7	10.5	21.5	16.3
Chewuch	5.5	15.3	17.5	15.5	17.2	19.2	9.8	
Early Winters			17.0	16.7	18.4	20.1	12.8	15.0

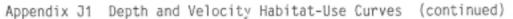

Transect Number

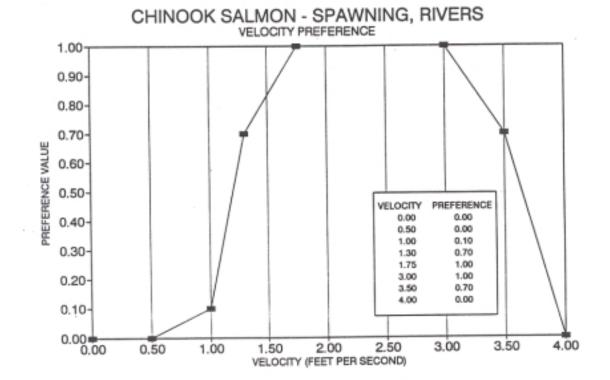

APPENDIX J

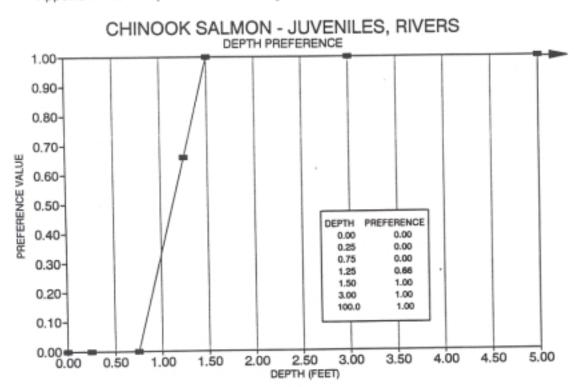
FISH HABITAT-USE CURVES AND SUBSTRATE CODE

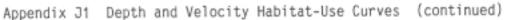


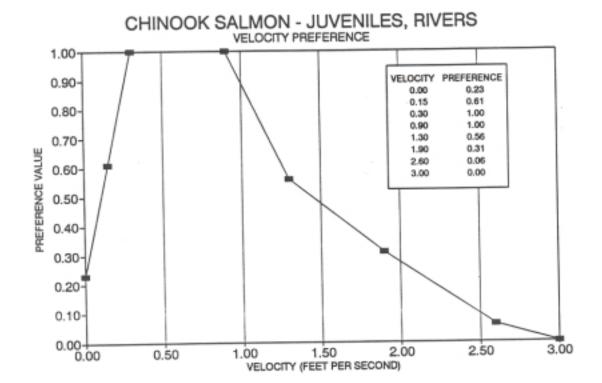


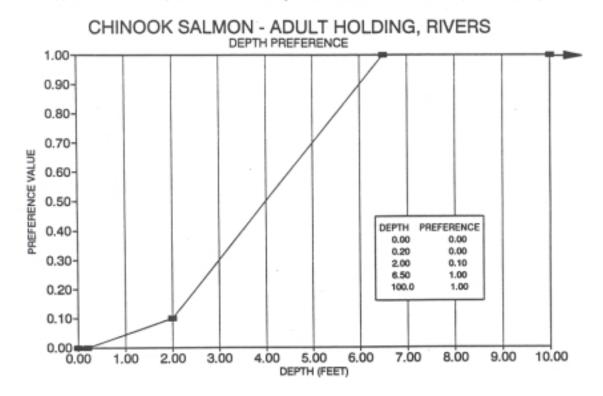


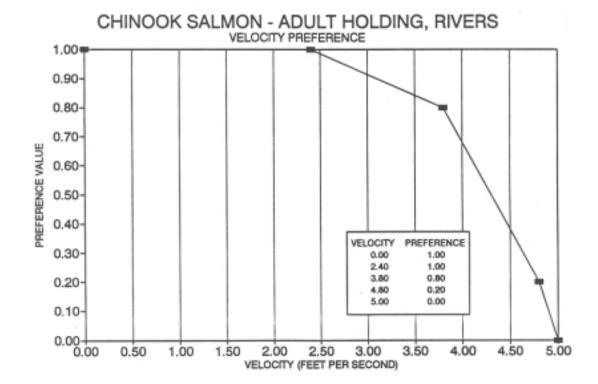


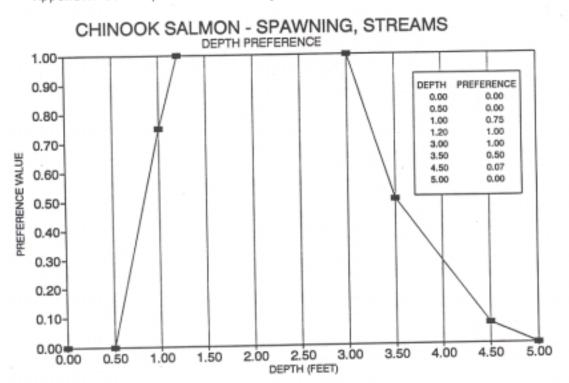


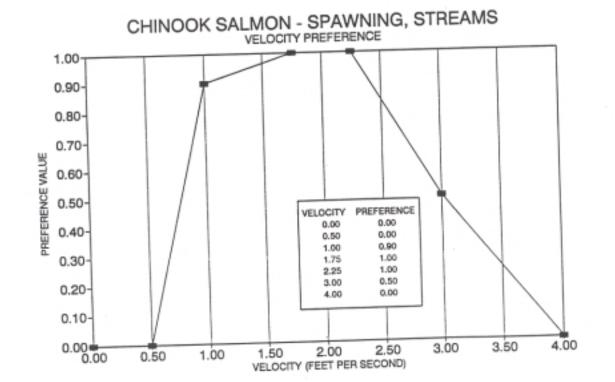


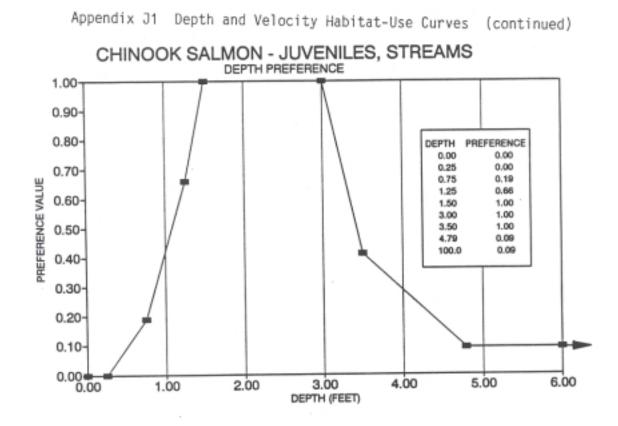


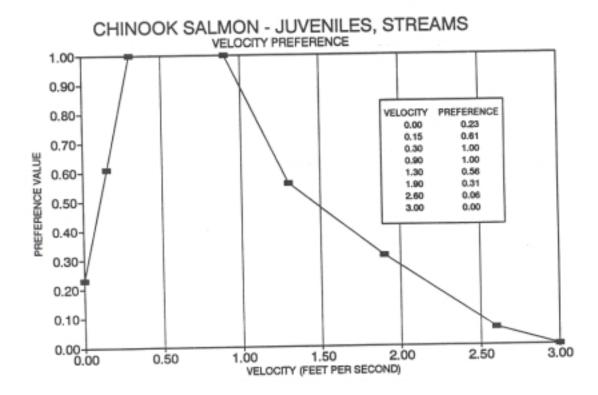


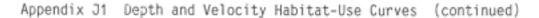


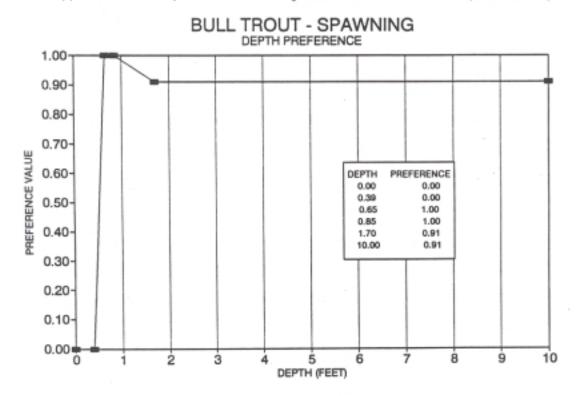


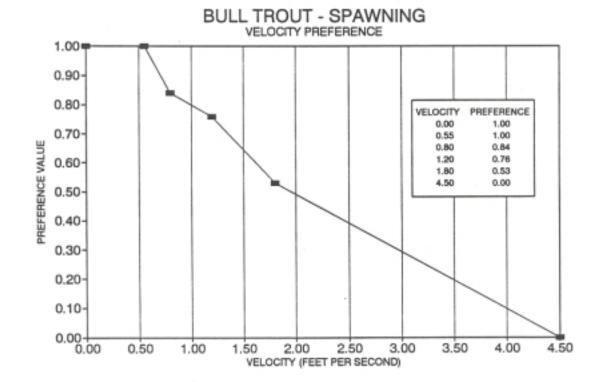


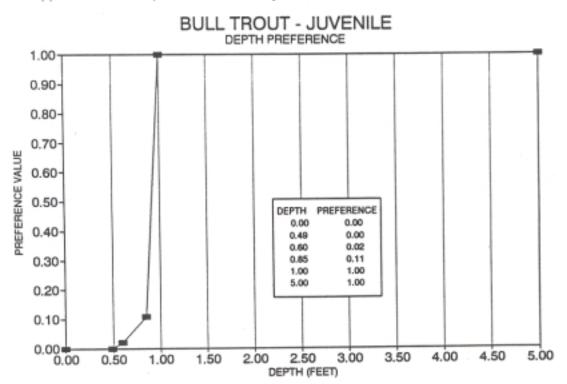


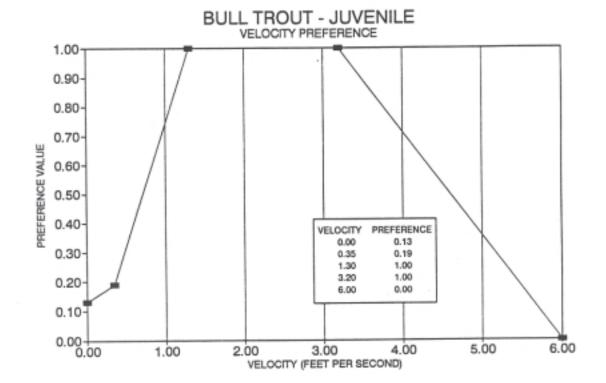












Appendix JS Substrate/Cover Code

DEPARTMENT OF FISHERIES & WILDLIFE INSTREAM FLOW STUDIES SUBSTRATE AND COVER CODE APPLICATION 11/23/87

The three-digit code used describes the dominant substrate (the first number), the subdominant substrate (the second number), and the percent of <u>only</u> the dominant substrate (the third number). The percent of the subdominant substrate can be determined by subtraction. Dominant substrate is determined by the largest quantity of a certain substrate, not be the size of the substrate. The sum of the percent dominant and the percent subdominant will total 100 percent. The coding will not allow the dominant percent to be less than 50 percent, or greater than 90 percent. All other preference values are determined by using weighted averages. The value of the dominant substrate is multiplied by the percent of the dominant substrate, and the product is added to the product of the subdominant substrate times the percent of subdominant substrate. The sum of all the codes observed times their preference value will be a value between 0.0 and 1.0. The coding should also give a preference value of zero for the entire substrate observation when the code is class zero, one, or two, and is 50 percent of more of the observation. Where there is a situation where addition of two values could equal more than 1.0, the value will default the 1.0. Overhanging vegetation should be counted as cover if it is within 3 to 4 feet of the water surface. Cover values should be incorporated with the substrate values for both salmon and steelhead juvenile life stages and for chinook and steelhead adult holding.

	SALMON		STEELHEAD & TROUT				
CODE <u>Substate</u> Size in inches	Juvenile Rearing	Spawning	Adult Holding	Steelhead	Trout	Juvenile & Adult	Steelhead Adult
0 Detritus	.1	0	.1	0	0	.1	.1
1 Silt, Clay	.1	0	.1	0	0	.1	.1
2 Sand	.1	0	.1	0	0	.1	.1
3 Small Gravel .1-0.5	.1	.3	.1	.5	1	.1	.1
4. Medium Gravel .5-1.5	.3	1	.3	1.0	1	.3	.3
5 Large Gravel 1.5-3.0	.3	1	.3	1.0	1	.3	.3
6 Small Cobble 3.0-6.0	.5	1	.3	1.0	.5	.5	.3
7 Large Cobble 6.0-12.0	.7	.3	.3	3	0	.7	.3
8 Boulder	1.0	0	1.0	0	0	1.0	1.0
9 Bedrock	.3	0	.3	0	0	.3	.3
0.1 Undercut Bank	1.0	0	1.0	0	0	1.0	1.0
0.2 Overhanging Vegetation	1.0	0	1.0	0	0	1.0	1.0
0.3 Root Wad	1.0	0	1.0	0	0	1.0	1.0
0.4 Log Jam	1.0	0	1.0	0	0	1.0	1.0
0.5 Log Instream	.8	0	.8	0	0	.8	.3
0.6 Submerged Vegetation	1.0	0	.8	0	0	1.0	.8
0.8 Grass/Bushes Up on Bank	.1	0	.1	0	0	.1	.1
0.9 Fine Organic Substrate	.1	0	.1	0	0	.1	.1

LIFE STAGE AND VALUE OF SUBSTRATE

(* 0.6 for chinook Spawing can be used, depending on river size)

APPENDIX K

IRRIGATION CANAL FLOWS AND RIVER FLOWS

Appendix K1 Flows Measured	d by Hosey	and Assoc.	in Methow	River in 1990.	
PET LL	PROJECT:				DATE:
	JOB #:			CHKD. BY:	DATE:
CLIENT:				PAGE:	OF
SUBJECT:					

Appendix K1 Flows Measured by Hosey and Assoc. in Methow River in 1990 (continued)

		Methow A	Above Lost	Methow F	R. Below	Methow R. Above		
Month	Day	Gage1 River RM 73.1			st R. RM 72.9	Gage 3 Gate Cr. RM 708		
WIOHT	Day	Staff	Q1	Staff	Q2	Staff	Q3	
Jul	20-Jul	2.90	111	2.86	370	2.80	335	
541	20 Jul 21-Jul	2.90	111	2.00	570	2.00	555	
	27-Jul	2.62	72	2.68	300	2.66	2.80	
Aug	3-Aug	2.37	44	2.29	177	2.00	2.00	
1145	4-Aug	2.37		2.2	1,,	2.24	152	
	7-Aug	2.29	36	2.19	151	2.10	121	
	10-Aug	2.20	28	2.10	1.31	1.98	98	
	15-Aug	2.06	18	2.00	110	1.87	80	
	17-Aug	2.12	22	1.95	100	1.79	68	
	18-Aug							
	19-Aug			2.07	124			
	20-Aug					1.90	84	
	22-Aug	2.60	69	2.40	207	2.36	183	
	24-Aug	2.37	44	2.17	147	2.09	119	
	25-Aug							
	27-Aug	2.26	33					
	28-Aug							
	29-Aug							
	30-Aug			2.00	110	1.86	78	
Sep	4-Sep	2.12	22	1.92	94	1.71	58	
	5-Sep							
	6-Sep							
	7-Sep							
	8-Sep							
	11-Sep	2.07	15	1.77	69	1.47	33	
	12-Sep			1.74	65	1.45	32	
	13-Sep							
	14-Sep							
	15-Sep	1.96	12	1.70	59	1.36	25	
	16-Sep							
	17-Sep					1.34	24	
	18-Sep			1.67	55			
	19-Sep							
	20-Sep	1.92	10	1.63	50	1.28	20	
	21-Sep			· •		1.17	14	
	22-Sep							
	23-Sep	1.85	7	1.57	43	1.14	13	
	24-Sep			1.56	42	1.10	11	
	25-Sep	1.85	7	1.57	43	1.10	11	
	27-Sep	1.82	5	1.53	39	0.97	7	
Oct	1-Oct							
	2-Oct	1.82	5	1.48	34	0.77	3	
	3-Oct							
	4-Oct	2.44	51	1.97	104	1.72	59	
	5-Oct	2.42	49	195	100	1.71	58	
	6-Oct							
	7-Oct							

Early Winters Staff Gauge Data. !!!PRELIMINARY!!! 13NOV90 1990

		Methow Al	Methow Above Lost		. Below	Methow R. Above		
Month	Day	Gage1 River RM 73.1		Gage2 Los	st R. RM 72.9	Gage 3 G	ate Cr. RM 708	
		Staff	Q1	Staff	Q2	Staff	Q3	
	8-Oct							
	9-Oct	2.19	27	1.73	64	1.42	29	
	12-Oct	2.19	27	1.72	62	1.40	28	
	16-Oct	2.19	27	1.68	57	1.36	25	
	22-Oct							
	31-Oct	2.37	44	1.84	81	1.58	43	
Nov	9-Nov	2.85	103	2.27	171	1.97	96	

Appendix K1 Flows Measured by Hosey and Assoc. in Methow River in 1990 (continued)

		Mathow P	alow	1990 Methow R.	Palow	Mathow	D. Dalow Mazama
M 41	Day	Methow Below Gage4 Gate c. RM 69.3				Methow R. Below Mazama	
Month				Gage7 Early Winters RM66.8		Gage 6 Rm 63.8 same as USG	
		Staff	Q1	Staff	Q2	Staff	Q3
Jul	20-Jul	3.60	335				
	21-Jul			2.41	450	3.10	495
	27-Jul	3.42	251	2.30	400	2.98	424
Aug	3-Aug			1.86	234	259	233
	4-Aug	3.09	133				
	7-Aug	3.00	109	1.67	1.78		
	10-Aug	2.87	79	1.50	136	2.30	129
	15-Aug	2.75	56	1.40	114	2.22	106
	17-Aug	2.77	60	1.32	98	2.17	93
	18-Aug			1.66	176		
	19-Aug	2.86	77				
	20-Aug						
	22-Aug	3.22	174	1.95	264	2.70	281
	24-Aug	2.98	104	1.65	173	2.46	182
	25-Aug					2.44	175
	27-Aug						
	28-Aug						
	29-Aug						
	30-Aug	2.79	63	1.50	1.36		
Sep	4-Sep	2.61	35	1.30	95	2.14	85
	5-Sep	2.59	33				
	6-Sep	2.52	25				
	7-Sep	2.49	22	1.18	74	2.06	67
	8-Sep			1.17	73		
	11-Sep	2.35	11	1.05	55	1.95	45
	12-Sep						
	13-Sep	2.24	5	1.02	51		
	14-Sep			1.00	49		
	15-Sep	2.18	3	0.91	38	1.84	28
	16-Sep	2.23	5	0.92	40		
	17-Sep	2.17	3				
	18-Sep	2.05	1	0.88	35		
	19-Sep						
	20-Sep	1.74	0	0.84	31	1.67	10
	21-Sep	1.04	0	0.82	30		
	22-Sep						
	23-Sep	0.29	0	0.80	28	1.71	13
	24-Sep	0.11	0			1	
	25-Sep	-0.14	0	0.79	27	1.68	11
	27-Sep	-0.84	0	0.76	24	1.65	9
Oct	1-Oct					1.58	4
	2-Oct	-2.34	0	0.70	20	1.59	5
	3-Oct		~	0.71	21	>	-
	4-Oct	-2.76	0	1.01	50	1.88	34
	5-Oct	2.485	21	1.01	61	1.95	45
	6-Oct	2.32	9		~1	1.70	
	7-Oct	2.32	7	1		1	

Early Winters Staff Gauge Data. !!!PRELIMINARY!!! 13NOV90 1990

Appendix K1 Flows Measured by Hosey and Assoc. in Methow River in 1990 (continued)

				1990			
		Early Win				Gage 9	
Month	Day	Gage8 Creek RM 1.2		MetBr		EWDIV Lower Diversion	
		Staff	Q8	Staff	QMetbr	Staff	QEWdiv
Jul	20-Jul						
	21-Jul						
	27-Jul			20.80	STAGE		STAGE
Aug	3-Aug			21.15	vs. Q		vs. Q
	4-Aug				RELATION	SHIP	RELATIONS
	7-Aug			21.40	NOT		NOT
	10-Aug			21.60	YET		YET
	15-Aug			21.60	COMPLETE	ED	COMPLETED
	17-Aug			21.60			
	18-Aug						
	19-Aug						
	20-Aug						
	22-Aug			21.37			
	24-Aug			21.95			
	25-Aug						
	27-Aug						
	28-Aug	1.56	60				
	29-Aug						
	30-Aug						
Sep	4-Sep	1.47	47				
	5-Sep						
	6-Sep						
	7-Sep	1.40	39	21.75		1.03	
	8-Sep	1.37	35	21.90		0.97	
	11-Sep						
	12-Sep						
	13-Sep						
	14-Sep	1.35	33				
	15-Sep	1.32	30				
	16-Sep						
	17-Sep						
	18-Sep						
	19-Sep						
	20-Sep	1.29	28	22.05		0.99	
	21-Sep						
	22-Sep						
	23-Sep	1.27	26	22.00		0.93	
	24-Sep						
	25-Sep	1.27	26	22.10			
	27-Sep	1.25	24	22.16			
Oct	1-Oct						
	2-Oct	1.22	22	22.20			
	3-Oct						
	4-Oct	1.60	66	21.83			
	5-Oct	1.65	75	21.90			
	6-Oct						
	7-Oct						

Early Winters Staff Gauge Data. !!!PRELIMINARY!!! 13NOV90 1990

		Early Wir	iters			Gage 9	
Month	Day	Gage8 Creek RM 1.2		MetBr		EWDIV Lower Diversion	
		Staff	Q8	Staff	QMetbr	Staff	QEWdiv
	8-Oct						
	9-Oct	1.45	44	21.90			
	12-Oct	1.44	43	21.90			
	16-Oct	1.42	41	21.90			
	22-Oct						
	31-Oct	1.58	63				
Nov	9-Nov	2.15	218				

Appendix K2 Flows Measured by Ecology in Methow Basin in 1991

Miscellaneous measurements of discharge in the Methow River basin during 1991. Original notes are on file in the WRIA 48 folders of the Water Resources Program Library. IFIM site measurements made by Brad Caldwell and crew, others by Art Larson

Walsh IFIM site at Methow River Mile 31.5					
Date	Time	Discharge (cfs)			
08/01/91	1700	1437			
08/28/91	1000	589			
09/24/91	1500	311			

KOA IFIM site at Methow River mile 49.0					
Date	Time	Discharge (cfs)			
08/02/91	1300	1135			
08/29/91	1000	457			
09/25/91	1100	229			

Weeman	Weeman IFIM site at Methow River mile 59.0					
Date	Time	Discharge (cfs)				
08/03/91	1300	658				
08/16/91	1100	380				
08/27/91	1600	238				
09/26/91	1100	79				

Chokecherry IFIM site at Methow River mile 66.5					
Date	Time	Discharge (cfs)			
08/04/91	1000	640			
08/16/91	1600	349			
08/27/91	1000	207			
09/26/91	1400	41			

Methow River above Early Winter cr. at Methow River mile 67.5					
Date	Time	Discharge (cfs)			
08/27/91	1330	122			
09/26/91	1550	11			
10/23/91	1245	2.1			

Appendix K2 Flows Measured by Ecology in Methow Basin in 1991 (continued)

Methow River below Gate Creek at Methow River mile 69.7					
Date	Time	Discharge (cfs)			
08/27/91	1100	117			
09/26/91	1445	5.5			
10/23/91	1200	dry			

Methow Riv	er below Lost River at Methow Ri	ver mile 72.9
Date	Time	Discharge (cfs)
08/27/91	1000	149
09/26/91	1410	45
10/23/91	1045	20

Twisp River near Highway bridge at Twisp River mile 0.3					
DateTimeDischarge (cfs)					
08/29/91	1345	85			

Twisp IFIM site at Twisp River mile 1.8					
Date	Time	Discharge (cfs)			
08/05/91	0900	308			
08/17/91	0900	166			
08/29/91	1200	90			
09/25/91	1500	35			

Twisp River below Buttermilk Cr. at Twisp River mile 11.8								
Date	Time	Discharge (cfs)						
08/29/91	0945	111						
09/25/91	1030	52						

Appendix K2 Flows Measured by Ecology in Methow Basin in 1991 (continued)

Chewack River at Highway bridge at Chewack River mile 0.2									
Date	Time	Discharge (cfs)							
08/28/91	1050	115							

Chewack IFIM site at Chewack River mile 1.3								
Date	Time	Discharge (cfs)						
07/31/91	1500	290						
08/15/91	1600	236						
08/26/91	1500	121						
09/23/91	1600	60						

Chewack River near MacPherson bridge at Chewack River mile 7.9								
DateTimeDischarge (cfs)								
0/4/25/91	1130	445						

Early Winters Creek below bridge at Creek mile 0.2								
Date	Time	Discharge (cfs)						
07/18/91	1245	565*						
08/27/91	1230	74						
09/26/91	1640	23						
10/23/91	1200	19						

Appendix K2 Flows Measured by Ecology in Methow Basin in 1991 (continued)

*USGS measurement at staff = 7.93

Early Winters IFIM site at Early Winters Creek mile 1.0								
Date	Time	Discharge (cfs)						
08/05/91	1600	227						
08/17/91	1300	132						
08/30/91	1000	78						
09/27/91	1000	37						

Lost River at bridg at Lost River mile 0.5									
Date	Time	Discharge (cfs)							
04/25/91	1630	494*							
07/18/91	1100	565*							
08/27/91	0900	116							
09/26/91	1330	60							
10/23/91	1000	40							

*AT STAFF = 1.75 FT

*USGS measurement

Appendix K3	Flows Measure	i by USG	S in Methow	in	1991	and	1992
-------------	---------------	----------	-------------	----	------	-----	------

STATION NUMBER 12447383 METHOW RIVER ABOVE GOAT CR NEAR MAZAMA, WA RM 63.8 SOURCE AGENCY USGS DISCHARGE, CUBIC FEET PER SECOND, YEAR MARCH 1991 TO FEBRUARY 1992 DAILY MEAN VALUES

DAY	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	JAN	FEB
1			985	2870	3330	677	170	22	5.1	18	e.00	e.00
2			1060	3160	3450	673	156	20	3.8	7.0	e.00	e.00
3			1180	3030	4170	631	142	18	3.6	4.6	e.00	e.00
4			1260	2580	4150	629	132	17	2.7	4.3	e.00	e.00
5			1380	2310	3470	633	125	17	3.6	4.7	e.00	e.00
57			1450	2470	2870	596	120	15	4.7	7.5	e.00	e.00
7			1480	2660	2370	646	115	14	3.3	5.8	e.00	e.00
8			1490	2830	2270	595	111	13	3.4	5.0	.00	e.00
9			1410	3010	2340	572	104	12	5.6	5.0	e.00	.00
10			1310	3410	2420	534	96	11	3.7	7.2	e.00	.00
11			1420	3750	2350	468	88	9.7	5.4	6.6	e.00	.00
12			1780	3320	2220	424	80	8.5	50	.00	.00	.00
13			2020	2620	2370	396	75	7.9	36	.00	.00	.00
14			2110	2150	2100	361	74	10	22	e.00	e.00	.00
15			2070	1860	1740	346	67	12	16	e.00	e.00	7.6
16			2070	1770	1560	336	61	12	18	e.00	e.00	.02
17			2220	1650	1420	346	56	11	18	e.00	.00	4.9
18			3500	1660	1290	345	51	7.5	14	e.00	.00	96
19			4940	1860	1240	326	46	6.8	14	e.00	e.00	136
20		785	5450	2570	1190	300	43	6.2	15	e.00	e.00	78
21		1000	5460	3440	1190	282	40	6.0	15	.00	.00	69
22		1370	4690	3350	1250	259	-30	7.6	19	.00	.00	34
23		1580	3930	3270	1280	239	34	7.1	13	.00	.00	2.8
24		1630	3360	3170	1330	222	30	6.9	8.4	.00	.00	2.3
25		1510	2860	3230	1400	199	29	6.1	7.8	e.00	e.00	2.6
26		1350	2410	3380	1180	180	29	5.8	7.1	.00	e.00	3.5
27		1200	2150	3380	1020	181	27	6.5	7.9	.00	e.00	5.3
28		1080	2140	3460	934	180	26	11	11	e.00	.00	8.7
29		1000	2420	4220	881	177	25	6.0	5.4	e.00	.00	14
30		961	2710	3830	788	180	24	7.3	6.5	e.00	e.00	
31			2630		711	174		7.0		e.00	e.00	
MEAN			2430	2876	1945	391	73.8	10.6	11.6	2.44	.000	16.0
MAX			5460	4220	4170	677	170	22	50	18	.00	136
MIN			985	1650	711	174	24	5.8	2.7	.00	.00	.00

STATION NUMBER 12448500 METHOW RIVER AT WINTHROP, WASH. BM 49.8 SOURCE AGENCY USGS DISCHARGE, CUBIC FEET PER SECOND, YEAR MARCH 1991 TO FEBRUARY 1992 DAILY MEAN VALUES

DAY	MAR	APR	MAY	JUN	JUL	AUS	SEP	OCT	NOV	DEC	JAN	FEB
10745	540	590	1690	5410	5600	1090	444	227	236	228	223	234
	535	692	1780	5960	5450	1060	428	229	236	236	223	227
	540	720	1920	5930	6120	1010	406	226	233	232	221	226
	529	759	2000	5140	6180	973	388	225	231	226	220	225
	501	667	2150	4570	5290	966	373	230	235	229	212	220
6	490	947	2280	4870	4500	928	360	234	236	240	214	219
7	480	904	2340	5060	3780	1000	348	232	236	234	189	220
8	474	861	2400	5200	3510	969	341	229	236	233	203	233
9	468	843	2300	5490	3490	916	335	225	236	233	218	225
10	467	807	2160	6100	3560	886	323	229	234	229	224	226
11	461	773	2340	6570	3480	876	314	241	236	227	218	229
12	455	761	2900	6090	3210	854	305	245	273	233	212	230
13	443	781	•3400	4980	3330	846	292	242	292	225	214	236
14	438	840	•3450	4120	3060	790	291	241	269	215	209	243
15	433	903	•3500	3590	2630	750	284	239	254	204	211	279
16	430	930	<pre>a3600 a3700 a5000 a8000 a9400</pre>	3440	2430	710	276	236	253	212	211	282
17	421	957		3230	2280	698	271	236	258	215	195	268
18	424	1020		3110	2040	703	269	239	252	223	203	267
19	435	1130		3280	1920	674	260	243	253	222	214	261
20	458	1330		4570	1820	635	250	243	271	214	213	259
21	468	1640	9560	6400	1760	605	247	241	259	214	211	264
22	477	2130	8610	6230	1790	572	246	239	239	217	206	267
23	480	2480	7420	6160	1770	544	244	239	241	217	213	267
24	478	2600	6580	5900	1800	524	240	246	239	217	211	266
25	477	2450	5770	5840	1960	494	236	248	239	217	211	266
26 27 28 29 30 31	466 462 463 466 478 516	2190 2010 1880 1730 1670	4820 4290 4190 4580 5110 4990	5970 5860 5700 6650 6490	1750 1550 1440 1360 1250 1150	468 455 467 459 464 457	236 231 229 229 228	244 241 228 225 231 237	237 236 233 235 213	217 220 218 225 223 223	211 213 217 217 220 230	271 282 290 302
MEAN	473	1274	4265	5264	2944	737	297	236	244	223	213	251
MAX	540	2600	9560	6650	6180	1090	444	248	292	240	230	302
MIN	421	590	1690	3110	1150	455	228	225	213	204	189	219

Appendix K3 Flows Measured by USGS in Methow Basin in 1991 and 1992 (continued)

STATION NUMBER 12448998 TWISP RIVER NEAR TWISP, WASH. RM 1.6 SOURCE AGENCY USES DISCHARGE, CUBIC FEET PER SECOND, YEAR MARCH 1991 TO FEBRUARY 1992 DAILY MEAN VALUES

DAY	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	JAN	758
1	183	182	485	1240	1410	289	85	48	52	70	e55	e64
2	184	206	506	1360	1470	297	82	58	62	55	+65	+62
12740	185	212	637	1360	1760	277	80	58	52 52 52 52 52 52	52	+54	e62
4	187	227	570	1160	1760	267	74	58 58	52	52 52	+64 +53	62
5	184	261	625	1040	1470	267	69	58	52	52	e53	61
6789	103	277	664	1140	1250	254	65	67	67	52	+52	60
7	178	274	670	1290	1050	275	61	57	57 56 55 55	52	e51	59 58
	173	267 263	67.3	1320	1010	248	63	56	5.6	62	+51	58
10	172	263	636	1360	1040	235	61	56	55	53	e51	58
	172	255	585	1440	1060	229	61	55		54	e50	58
11	169	249	603 736	1570	1060	207 187	58 55	55 53	55	53	e49	58
12 13 14 15	166	245	869	1120	\$80 1040	170	53	52	77	54	e45 e41	20
1.5	161	249	979	927	954	163	53	50	69	e52	#44	59
17	156	260	982	035	804	155	53	50	63	e50	+47	72
16	155	282	991	799	731	148	53	50	60	449	e49	72
37	155	294	1060	777	668	148	51	63	60	+60	e50	66 65
18	151	307	2160 3200	807	601	151	47	53	60	+52	e52	65
3.9	151	334	3200	815	583	1.47	42	62	60	+60	+64	65
20	155	385	2860	1500	563	138	42	52	61	e52	e55	62
21	155	485	2600	2060	551	132	42	52	62	e54	e54	64
22 23 24 25	185	619	2180 3860	1620	579	124	40	52 52 52 52	56 52	+64	•55	64 64
2.3	155	720	3860	1510	569	116	40	52	52	e54	e58	64
24	155	768	1560	1460	584	111	40	52	55	+54	e60	64
25	155	720	1310	1430	609	104	39	52	55	e51	e57	64
26	155	659	1120	1430	532	97	39	52 52 52	55	e54	e56	64
27 28	155	607	3000	1350	462	91	30	52	55	e55	e57	65
28	155	560	984	1330	419	90	38	52	54	+63	*58	68
29 30	155	521	1070	1680	300	89	30	48	53	e53	e61	73
30	156	489	1110	1570	349	89	37	48	58	+54	e63	
31	165		1110		309	85		51		e56	e65	
MEAN	164	301	1171	1291	859	174	53.2	53.0	57.5	53.4	53.4	63.1
MUAX	187	768	3500	2060	1760	297	86	58	77	70	65	73
MIN	151	182	485	777	309	85	37	48	52	49	41	58
		STATION	MINING 12	49500	STREET DIV	TD AT THE	150 MA 0	N 40 57	NIDOF AGEN	ADV USOS		

STATION NUMBER 12449500 HETHOW RIVER AT TWISP, WA RM 40 SOURCE AGENCY USGS DISCHARGE, CUBIC FEET PER SECOND, YEAR MARCH 1991 TO FEBRUARY 1992 DAILY MEAN VALUES APR MAY JUN JUL AUG SEP OCT NOV DEC

DAY	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	JAN	FEB
1			2200	6790	7200	1440	525	289	318	299	277	303
23			2280	7420	7040	1410	505	325	312	315	277	297
3			2480	7430	7790	1340	486	323	307	302	277	290
4			2600	6570	7950	1300	463	323	306	297	277	268
5			2800	5910	6870	1290	440	326	312	301	265	282
6			2960	6280	5970	1240	421	327	316	318	269	276
7			3040	6620	5100	1330	409	321	313	306	243	277
8			3120	6740	4770	1280	405	315	313	306	261	289
9			2990	6990	4750	1210	395	312	318	305	274	281
10		1060	2780	7590	4830	1160	381	308	314	302	282	282
11		1010	2940	8150	4770	1140	368	316	319	303	274	284
12		994	3610	7620	4400	1110	357	322	364	311	261	288
13		1010	4200	6430	4590	1080	346	319	402	291	265	298
14		1090	4450	5440	4270	1000	345	315	370	272	259	309
15		1170	4460	4750	3650	942	337	315	345	256	266	369
16 17		1200	4480	4540	3360	896	330	313	349	259	267	349 334
17		1240	4730	4290	3130	873	322	322	352	267	237	334
18		1310	7560	4140	2800	877	314	322	342	282	245	333
19		1440	10800	4370	2640	843	301	324	343	280	270	320
20		1670	11800	6090	2500	785	293	330	372	268	266	322
21		2060	11900	8420	2420	746	287	329	353	277	263	330
22		2680	10700	7960	2480	700	284	330	321	278	253	325
23		3200	9180	7760	2440	665	284	330	320	276	264	323 324
24		3370	8180	7480	2490	636	281	334	324	281	268	324
25		3210	7310	7370	2660	603	273	334	320	284	264	329
26 27		2910	6290	7510	2400	569	270	329	317 317	278	263	337
27		2660	5680	7350	2120	549	264	325	317	277	268	349
28		2470	5500	7140	1950	\$58	264	311	308	273	275	362
29		2280	5940	8260	1840	547	269	293	308	279	280	383
30		2170	6440	8070	1680	553	250	299	278	282	264	
30 31			6330		1530	540		320		277	293	
MEAN			5475	6716	3948	942	349	319	328	287	267	315
MAX			11900	8420	7950	1440	525	334	402	318	293	383
MEN			2200	4140	1530	540	258	289	278	256	237	276

Appendix K3 Flows Measured in Methow Basin in 1991 and 1992 (continued)

STATION NUMBER 12449950 METHOW RIVER NR PATEROS, WASH. RM 6.7 SOURCE AGENCY US6S DISCHARGE, CUBIC FEET PER SECOND, YEAR MARCH 1991 TO FEBRUARY 1992 DAILY MEAN VALUES

DAY	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	JAN	FEB
1	741	741	2270	6790	7490	1620	636	336	368	323	322	340
ź	760	853	2330	7390	7110	1570	620	372	361	349	321	346
2	766	945	2480	7520	7730	1500	596	377	356	352	323	337
- A	777	945 987	2610	6810	8180	1440	571	377	365	346	327	334 329
4 5	758	1080	2760	6120	7170	1420	543	377	365	342	319	
6	723	1230	2940	6260	6350	1400	626	377	360	351	314	322 319
5	723	1240	3030	6690	5540	1460	510	376	363	356	283	319
a	699	1190	3130	6810	5080	1450	497	371	359	348	292	327
9	692	1160	3070	7000	4990	1360	494	368	359	346 346	363	325
10	692	1130	2880	7470	5030	1310	481	364	359	340		
	681	1080	2920	8130	5050	1290	470	365	357	343	331	325 327
12	673	1050	3400	7920	4680	1250	455	360	366	352	313	327
13	661	1050	4110	6780	4760	1230	444	368	413	344	306	335
14	650	1100	4440	5620	4600	1170	433	364	419	324	308	341
11 12 13 14	642	1200	4540	5100	3980	1100	431	364	396	314	304	375
16	635	1240	4580	4770	3650	1040	422	359	387	370	311	413
17	627	1270	4740	4550	3440	1000	411	360	403	418	296	395
10	620	1320	7360	4310	3110	991	401	364	385	453	281	385
18	621	1420	11400	4430	2890	975	395	364	386	423	300	380
20	649	1610	12700	5820	2740	921	387	364	401	361	311	366
21	656	1930	13000	8930	2620	872	381	363	406	333	308	375
21	665	2460	11800	8250	2650	831	378	364	361	321	301	378
23	674	3050	9950	6130	2610	766	378	364	358	321	299	369
2.3	681	3310	8640	8130 7720	2630	754	379	371	366	321	309	368
24	679	3270	7680	7520	2800	724	371	377	366	325	309	368
			6700	7600	2650	695	364	374	364	325	309	369
26	674	3020 2770	6040	7550	2360	665	359	371	367	324	312	374
27	662	2590	5780	7300	2170	658	365	365	361	321	328	384
28	656	2690	6030	8190	2030	657	358	349	357	320	325	396
26 27 28 29 30 31	655 663	2290	6520	8310	1900	655	351	344	341	327	325	
. 30	686	2290	6510		1730	648		356		327	327	
	0.00									346	313	356
MEAN	682	1667	5688	6866	4185	1079	447	366	373	453	353	413
MAX	682 777	3310	13000	8930	8180	1620	636	377	419 341	314	281	319
MIN	620	741	2270	4310	1730	648	351	336	541	314	201	219

Appendix K4 Flows Measured by Ecology in Methow Basin Irrigation Ditches in 1991

Miscellaneous measurements of irrigation canal discharge during the 1991 irrigation season. Measurements by Art Larson and Jim Peterson. Original note son file in the WRIA 48 Folders of the Water Resources Program Library

MVID Methow River canal (below fish screen) Diversion from left bank at Methow River mile 44.8					
Date	Time	Staff (ft.) Rt/Lt	Discharge (CFS)		
05/14/91	1550		36		
07/19/91	0947		38		
08/28/91	1600	0.65/0.68	38		
09/25/91	1415	0.60/0.64	36		
10/22/91	1200		dry		

Barclay canal – Methow River (below fish screen) Diversion from left bank at Methow River mile 48.3					
Date	Time	Staff (ft.) Rt/Lt	Discharge (CFS)		
05/21/91	1630		12		
07/19/91	1030		18		
08/28/91	1530		15		
09/25/91	1500		8.8		
10/22/91	1000		dry		

Foghorn canal – Methow River (below fish screen at hatchery) Diversion from right bank at Methow River mile 51.5					
Date	Time	Staff (ft.) Rt/Lt	Discharge (CFS)		
05/14/91	1205		14		
07/18/91	1610		15		
08/28/91	1500		13		
09/24/91	1330		10		
10/23/91	1500		2.85		

Rockview (heath) canal – Methow River (below fish screen) Divesion from left bank at Methow River mile 59.6					
Date	Time	Staff (ft.) Rt/Lt	Discharge (CFS)		
07/18/91	1436		39		
08/28/91	1300		13		
09/24/91	1245		4.2		
10/23/91	1400		2.4		

McKinney Mt. ditch – Methow River Diversion from right bank at Methow River mile 60.7					
Date	Time	Staff (ft.) Rt/Lt	Discharge (CFS)		
04/26/91	1000		4.8		
05/15/91	1640		5.7		
07/18/91	1355		2.4		
08/27/91	1630		3.2		
09.27/91	0900		0.8		

Kumm-Holloway ditch – Methow River (below fish screen Diversion from right bank at Methow River mile 61.4						
Date	DateTimeStaff (ft.) Rt/LtDischarge (CFS)					
04/26/91	1100		1.9			
07/18/91	1317		0.6			
08/27/91	1600		0.1			
09/27/91			dry			

Airey ditch – Twisp River (below fish screen) Diversion from righ bank at Twisp River mile 0.4					
DateTimeStaff (ft.) Rt/LtDischarge (CFS)					
08/29/91	1300		1.8		
10/21/91 1500 dry					

MVID Twisp River canal (below fish screen) Diversion from right bank at Twisp River mile 4.0					
Date	Time	Staff (ft.) Rt/Lt	Discharge (CFS)		
05/14/91	1730	0.51	30		
07/19/91	0824		22		
08/29/91	1200	0.48/0.53	30		
09/25/91	1330	0.47/0.53	29		
10/24/91	1000		dry		

Brown-Gilliham dtich – Twisp River (below fish screen) Diversion from left bank at Twisp River mile 4.6						
DateTimeStaff (ft.) Rt/LtDischarge (CFS)						
08/29/91	1130		dry			
09/25/91	09/25/91 1300 dry					

Twisp Powers canal – Twisp River (below fish screen) Diversion from left bank at Twisp River mile 7.0						
Date	DateTimeStaff (ft.) Rt/LtDischarge (CFS)					
08/29/91	1035		9.3			
09/25/91	1145		7.9			
10/24/91	1100		dry			

Ray Libby ditch – Twisp River (below fish screen) Diversion from left bank at Twisp River mile 11.6						
Date	DateTimeStaff (ft.) Rt/LtDischarge (CFS)					
08/29/91	0900		1.1			
09/25/91	1015		0.06			
10/24/91	1130		dry			

Fulton canal – Chewack River (below fish screen) Diversion from right bank at Chewack River mile 0.9				
Date	Time	Staff (ft.) Rt/Lt	Discharge (CFS)	
04/25/91	1315		20	
05/14/91	1050		27	
07/18/91	1630		24	
08/28/91	1200		23	
09/24/91	1115		17	
10/22/91	0900		dry	

Chewack canal – Chewack River (below fish screen) Diversion from left bank at Chewack River mile 8.1				
Date	Time	Staff (ft.) Rt/Lt	Discharge (CFS)	
04/25/91	0935		17	
05/14/91	0830		30	
07/18/91	1654		29	
08/28/91	1000		26	
09/24/91	1030		25	
10/22/91	1000		dry	

Skyline canal – Chewack River (below fish screen and return) Diversion from right bank at Chewack River mile 8.9					
DateTimeStaff (ft.) Rt/LtDischarge (CFS)					
05/14/91	0915		22		
07/18/91	1730		17		
08/28/91	0920		20		
09/24/91	1000		15		
10/22/91	1030		dry		

Eightmile ditch – Chewack River (below fish screen) Diversion from right bank of Eightmile Creek at road bridge near Chewack River mile 11.5				
DateTimeStaff (ft.) Rt/LtDischarge (CFS)				
08/28/91	0845		6.6	
09/24/91	0845		7.2	
11/22/91	1100		dry	

Early Winters canal – Early Winters Creek (below fish screen) Diversion from right bank at Early Winters Creek mile 0.6					
DateTimeStaff (ft.) Rt/LtDischarge (CFS)					
05/15/91	1245		14		
07/18/91	1230		15		
08/27/91	1530	1.08	14		
09/27/91	0945	1.07	13		
10/23/91	1330	0.97	7		

Willis ditch – Early Winters Creek (below fish screen) Diversion from left bank at Early Winters Creek mile 1.0					
DateTimeStaff (ft.) Rt/LtDischarge (CFS)					
05/21/91	1400		dry		
07/18/91	1200		2.4		
08/27/91	1420		1.1		
09/27/91	1030		0.2		
10.23/91	1145		0.1		

	Wolf Creek ditch – Wolf Creek (no fish screen) Diversion from left bank at Wolf Creek mile 1.2				
Date	Time	Staff (ft.) Rt/Lt	Discharge (CFS)		
08/28/91			dry		
09/24/91			dry		
	evidence of early season use of canal				

Appendix K5 Flow Statistics for Exceedence-Frequency Hydrographs. Chewuch statistics are 10-day averages synthesized from USGS Pateros gage on Methow River and 1991 and 1992 USGS data from Chewuch River gage.

PATER	ROS		CHEWUCH				
1.0%	50%	90%	CONVERSION	10%	50%	90%	
706.4	375.7	248.7	0.182	128.6	68.4	45.3	JAN. 1-10
637.0	404.5	288.4	0.194	123.6	78.5	55.9	11-20
630.3	390.2	285.1	0.193	121.6	75.3	55.0	21-31
622.1	385.9	284.5	0.193	120.1	74.5	54.9	FEB. 1-10
605.6	390.3	285.2	0.194	117.5	75.7	55.3	11-20
633.8	404.4	284.4	0.193	122.3	78.0	54.9	21-29
745.9	412.3	290.9	0.186	138.7	76.7	54.1	MAR. 1-10
918.4	469.4	307.0	0.145	133.2	68.1	44.5	11-20
1266.4	616.4	342.2	0.150	190.0	92.5	51.3	21-31
1810.2	897.8	419.4	0.164	296.9	147.2	68.8	APR. 1-10
2295.1	1415.8	618.7	0.184	422.3	260.5.	113.8	11-20
3548.7	1866.5	927.0	0.194	688.4	362.1	179.8	21-30
5817.0	2800.6	1489.2	0.228	1326.3	638.5	339.5	MAY 1-10
7864.0	4257.8	2052.0	0.250	1966.0	1064.5	513.0	11-20
	6149.4	3116.3	0.212	2198.5	1303.7	660.7	21-31
	6772.4	3518.8	0.172	2108.5	1164.9	605.2	JUN. 1-10
	5569.9	2872.2	0.180	1909.7	1002.6	517.0	11-20
8455.8	4022.4	1894.8	0.160	1352.9	643.6	303.2	21-30
5676.2	2756.6	1196.9	0.284	1612.0	782.9	339.9	JUL. 1-10
3792.4	1835.5	810.2	0.298	1130.1	547.0	241.4	11-20
2382.9	1154.6	560.0	0.211	502.8	243.6	118.2	21-31
1559.6	772.8	413.7	0.304	474.1	234.9	125.8	AUG. 1-10
1113.5	568.5	326.0	NO	0.0	0.0	0.0	11-20
891.3	483.4	276.0	DATA	0.0	0.0	0.0	21-31
740.7	435.7	263.0	FOR	0.0	0.0	0.0	SEP. 1-10
707.0	389.8	270.8	1992	0.0	0.0	0.0	11-20
675.1	381.2	288.9	& 1991	0.0	0.0	0.0	21-30
678.8	428.7	315.6	0.162	110.0	69.4	51.1	OCT. 1-10
687.0	427.8	342.1	0.181	124.3	77.4	61.9	11-20
730.5	435.1	364.2	0.200	146.1	87.0	72.8	21-31
761.6	457.6	343.6	0.209	159.2	95.6	71.8	NOV. 1-10
791.6	462.4	329.7	0.226	178.9	104.5	74.5	11-20
885.2	430.9	310.2	0.208	184.1	89.6	64.5	21-30
797.5	412.4	310.2	0.222	177.0	91.6	68.9	DEC. 1-10
698.6	393.1	290.6	0.175	122.3	68.8	50.9	11-20
708.4	385.5	278.0	0.205	145.2	79.0	57.0	21-31

Appendix K5 Flow Statistics For Exceedence-Frequency Hydrographs. Methow River at Winthrop statistics are 10-day averages synthesized from USGS PATERO.gage and 1991 USGS gage data from Winthrop gage.

PATERO	DS			WI	NTHROP		
1.0%	50%	90%	CONVERSION	10%	50%	90%	
706.4	375.7	248.7	0.600	423.8	225.4	149.2	JAN. 1-10
637.0	404.5	288.4	0.598	380.9	241.9	172.5	11-20
630.3	390.2	285.1	0.604	380.7	235.7	172.2	21-31
622.1	385.9	284.5	0.633	393.8	244.3	180.1	FEB. 1-10
605.6	390.3	285.2	0.707	428.2	275.9	201.6	11-20
633.8	404.4	284.4	0.707	448.1	285.9	201.1	21-29
745.9	412.3	290.9	0.686	511.7	282.8	199.6	MAR. 1-10
918.4	469.4	307.0	0.681	625.4	319.7	209.1	11-20
1266.4	616.4	342.2	0.712	901.7	438.9	243.6	21-31
1810.2	897.8	419.4	0.762	1379.4	684.1	319.6	APR. 1-10
2295.1	1415.8	618.7	0.760	1744.3	1076.0	470.2	11-20
3548.7	1866.5	927.0	0.768	_2725.4	1433.5	711.9	21-30
5817.0	2800.6	1489.2	0.764	4444.2	2139.7	1137.7	MAY 1-10
7864.0	4257.8	2052.0	0.760	5976.6	3235.9	1559.5	11-20
10370.1	6149.4	3116.3	0.743	_7705.0	4569.0	2315.4	21-31
12258.5	6772.4	3518.8	0.776	9512.6	5255.4	2730.6	JUN. 1-10
10609.3	5569.9	2872.2	0.738	7829.7	4110.6	2119.7	11-20
8455.8	4022.4	1894.8	0.762	6_443.3	306_5.1	1443.8	21-30
5676.2	2756.6	1196.9	0.726	4120.9	2001.3	868.9	JUL. 1-10
3792.4	1835.5	810.2	0.671	2544.7	1231.6	543.6	11-20
2382.9	1154.6	560.0	0.671	1598.9	774.7	375.8	21-31
1559.6	772.8	413.7	0.674	1051.2	520.9	278.8	AUG. 1-10
1113.5	568.5	326.0	0.688	766.1	391.1	224.3	11-20
891.3	483.4	276.0	0.694	618.6	335.5	191.5	21-31
740.7	435.7	263.0	0.684	506.6	298.0	179.9	SEP. 1-10
707.0	389.8	270.8	0.662	468.0	258.0	179.3	11-20
675.1	381.2	288.9	0.644	434.8	245.5	186.1	21-30
678.8	428.7	315.6	0.619	420.2	265.4	195.4	OCT. 1-10
687.0	427.8	342.1	0.661	454.1	282.8	226.1	11-20
730.5	435.1	364.2	0.654	477.7	284.6	238.2	21-31
761.6	457.6	343.6	0.654	498.1	299.3	224.7	NOV. 1-10
791.6	462.4	329.7	0.668	528.8	308.9	220.2	11-20
885.2	430.9	310.2	0.647	572.7	278.8	200.7	21-30
797.5	412.4	310.2	0.671	535.1	276.7	208.1	DEC. 1-10
698.6	393.1	290.6	0.599	418.5	235.5	174.1	11-20
708.4	385.5	278.0	0.679	481.0	261.8	188.8	21-31

FLOWS IN CFS ARE FOR 10, 50, 90 t EXCEEDENCE - (Log Pearson) Statistics for streamflow data METHOW RIVER NR PATEROS, WASH. Station ID code: 12449950

		10%	50%	90%
January	1-10	706.4	375.7	248.7
2	11-20	637.0	404.5	288.4
	21-31	630.3	390.2	285.1
February	1-10	622.1	385.9	284.5
	11-20	605.6	390.3	285.2
	21-29	633.8	404.4	284.4
March	1-10	745.9	412.3	290.9
March	11-20	918.4	469.4	307.0
	21-31	1266.4	616.4	342.2
April	1-10	1810.2	897.8	419.4
	11-20	2295.1	1415.8	618.7
	21-30	3548.7	1866.5	927.0
May	1-10	5817.0	2800.6	1489.2
Widy	11-20	7864.0	4257.8	2052.0
	21-31	10370.1	6149.4	3116.3
	21 51	10370.1	011).1	5110.5
June	1-10	12258.5	6772.4	3518.8
	11-20	10609.3	5569.9	2872.2
	21-30	8455.8	4022.4	1894.8
July	1-10	5676.2	2756.6	1196.9
July	11-20	3792.4	1835.5	810.2
	21-31	2382.9	1154.6	560.0
		20020	110.110	20010
August	1-10	1559.6	772.8	413.7
	11-20	1113.5	568.5	326.0
	21-31	891.3	483.4	276.0
September	1-10	740.7	435.7	263.0
Beptember	11-20	707.0	389.8	270.8
	21-30	675.1	381.2	288.9
October	1-10	678.8	428.7	315.6
	11-20	687.0	427.8	342.1
	21-31	730.5	435.1	364.2
November	1-10	761.6	457.6	343.6
	11-20	791.6	462.4	329.7
	21-30	885.2	430.9	310.2
December	1-10	797.5	412.4	310.2
	11-20	698.6	393.1	290.6
	21-31	708.4	385.5	278.0

Period of Record = 1959 to 1992

FLOWS IN CFS ARE FOR 10, 50,. 90 % EXCEEDENCE - (Log Pearson) Statistics for streamflow data METHOW RIVER AT TWISP, WA Station ID code: 12449500

January	1-10 11-20 21-31	10% 473.9 447.6 454.1	50% 307.7 289.4 278.5	90% 213.5 207.5 200.4
February	1-10	471.5	279.0	214.1
	11-20	485.1	270.6	209.0
	21-29	457.6	273.1	210.4
March	1-10	456.5	282.6	215.4
	11-20	565.6	300.8	228.4
	21-31	909.0	394.7	247.2
April	1-10	1647.1	647.8	296.5
	11-20	3113.2	1191.8	407.4
	21-30	4369.7	1936.4	625.0
May	1-10	5433.4	2818.7	1217.7
	11-20	9137.0	4727.9	2182.0
	21-31	10709.6	6013.8	2718.9
June	1-10	9313.7	5825.5	2879.0
	11-20	8300.6	4802.2	2221.4
	21-30	6542.9	3457.7	1522.1
July	1-10	4706.4	2226.2	965.3
	11-20	3113.4	1416.8	580.5
	21-31	1721.2	843.8	377.5
August	1-10	1066.2	548.5	274.9
	11-20	769.3	397.0	215.8
	21-31	619.1	314.5	185.7
September	1-10	507.3	280.1	170.1
	11-20	495.6	255.5	167.0
	21-30	490.6	252.3	176.3
October	1-10	622.2	323.8	204.5
	11-20	722.2	351.4	220.8
	21-31	773.3	393.6	250.4
November	1-10	781.3	418.0	265.2
	11-20	713.6	403.7	263.8
	21-30	774.3	379.9	242.2
December	1-10	716.7	363.0	228.9
	11-20	654.0	353.5	223.6
	21-31	554.4	325.3	218.6

Period of Record = 1919 to 1992

FLOWS IN CFS ARE FOR 10, 50, 90 % EXCEEDENCE - (Log Pearson) Statistics for streamflow data TWISP RIVER NEAR TWISP, WASH. Station ID code: 12448998

January	1-10 11-20 21-31	10% 156.1 157.7 137.7	50% 63.0 69.6 62.5	90% 28.5 33.5 32.6
February	1-10	127.8	59.1	32.3
	11-20	133.7	61.3	33.0
	21-29	155.9	63.3	31.5
March	1-10	144.7	63.0	38.1
	11-20	143.1	77.8	43.3
	21-31	291.9	127.4	48.1
April	1-10	483.0	200.9	61.9
	11-20	637.1	260.5	81.3
	21-30	696.5	362.1	172.6
May	1-10	852.2	567.6	313.6
	11-20	1610.6	762.3	240.7
	21-31	1334.3	861.9	311.7
June	1-10	2050.6	939.8	414.2
	11-20	1716.4	875.2	321.9
	21-30	1799.4	801.2	211.2
July	1-10	1826.5	630.6	117.3
	11-20	1064.1	383.0	77.1
	21-31	584.6	206.7	48.1
August	1-10	390.3	116.5	31.2
	11-20	248.7	82.6	24.0
	21-31	181.4	76.6	24.0
September	1-10	116.4	75.3	31.2
	11-20	99.0	49.1	22.0
	21-30	109.4	43.4	21.2
October	1-10	116.2	63.3	24.4
	11-20	100.4	59.4	31.6
	21-31	95.8	66.1	42.9
November	1-10	142.0	78.9	46.3
	11-20	244.9	95.5	40.1
	21-30	305.3	80.4	46.9
December	1-10	302.9	105.7	48.4
	11-20	284.4	108.6	48.5
	21-31	170.4	78.4	43.4

Period of Record = 1975 to 1992

APPENDIX L

INSTREAM FLOWS IN THE METHOW RIVER BASIN, CH. 173-548 WAC

Chapter 173-548 WAC WATER RESOURCES PROGRAM IN THE METHOW RIVER **BASIN, WRIA 48**

WAC	
173-548-010	General provision.
173-548-020	Establishment of base flows.
173-548-030	Future allocations-Reservation of surface water for beneficial uses.
173-548-040	Priority of future water rights during times of water shortage.
173-548-050	Streams and lakes closed to further consumptive appropriations.
173-548-060	Ground water.
173-548-070	Effect on prior rights.
173-548-080	Enforcement.
173-548-090	Appeals.
173-548-100	Regulation review.

WAC 173-548-010 General provision. These rules, including any subsequent additions and amendments, apply to waters within and contributing to the Methow River basin, WRIA 48 (see WAC 173-500-040). Chapter 173-500 WAC, the general rules of the department of ecology for the implementation of the comprehensive water resources program, applies to this chapter 173-548 WAC. [Order DE 76-37, § 173-548-010, filed 12/28/76.]

WAC 173-548-020 Establishment of base flows. (1) Base flows are established for stream management units with monitoring to take place at certain control points as follows:

STREAM MANAGEMENT UNIT INFORMATION

Stream Management Unit Name, Control Station Name and Number	Control Station Location by River Mile, Section, Township, Range	Affected Stream Reach (includes tributaries)
Lower Methow Methow R. nr. Pateros (12,4499.50)	6.7 20–30–23E	Methow River confluence with Wells Pool to confluence with Twisp River.
Middle Methow Methow R. nr. Twisp (12.4495.00)	40.0 17-33-22E	Methow River from confluence with Twisp River to confluence with Chewack River.
Upper Methow Methow R. nr. Winthrop (12.4473.89)	50.2 2-34-21 E	Methow River from confluence with Chewack River to confluence with Little Boulder Creek and including Little Boulder Creek.

Stream Management Unit Name, Control Station Name and Number	Location by River Mile, Section, Township, Range	Reach (includes tributaries)		
Methow Headwaters Methow R. at Little Boulder Cr. (12.4473.83)	65.3 25-36-19E	Methow River from confluence with Little Boulder Creek to headwaters.		
Early Winters Crock Early Winters Cr. near Mazama	27-36-19E	Early Winters Creek from confluence with Methow River to headwaters.		
Chewack River Chewack R. nr. Boulder Creek (12.4475.00)	8.7 35-36-21E	Chewsek River confluence with Methow River to headwaters.		
Twisp River Twisp R. nr. Twisp (12,4489.98)	0.3 7-33-22E	Twisp River from confluence with Mothow River to headwaters.		

Affected Stream

Stream Management Control Station

(2) Base flows established for the stream management units in WAC 173-548-020(1) are as follows:

Base Flows in the Methow River (All Figures in Cubic Feet Per Second)

[CODIFICATION NOTE: The graphic presentation of this table has been varied slightly in order that it would fall within the printing specification for the Washington Administrative Code. The following table was too wide to be accommodated in the width of the WAC column. The table as codified has been divided into two tables with Part 1 covering the Lower Methow, Middle Methow and Upper Methow and with Part 2 covering the Methow Headwaters, Early Winters Creek, Chewack River and Twisp River.]

PART 1

Month	Day	Lower Methow (12.4499.50)	Middle Methow (12.4495.00)	Upper Methow (12.4473.89)			
Jan.	1	350	260	120			
	15	350	260	120			
Feb.	1	350	260	120			
	15	350	360	120			
Mar.	1	350	260	120			
	15	350	260	120			
Apr.	1	590	430	199			
rape.	15	860	650	300			
May	1	1,300	1,000	480			
	15	1,940	1,500	690			

PART I

		Lower Methow	Middle Methow	Upper Methow
Month	Day	(12.4499.50)	(12.4495.00)	(12.4473.89
Jun.	1	2.220	1,500	790
	15	2.220	1,500	790
Jul.	1	2,150	1,500	694
	15	800	500	240
Aug.	1	480	325	153
	15	300	220	100
Sep.	1	300	220	100
,	15	300	220	100
Oct.	1	360	260	122
	15	425	320	150
Nov.	1	425	320	150
	15	425	320	150
Dec.	1	390	290	135
	15	350	260	120

Month	Day	Methow Headwaters (12.4473.83)	Early Winters Creek	Chewack River (12.4475.00)	Twisp River (12.4489.98)
Jan.	1	42	10	56	34
	15	42	10	56	34
Feb.	1	42	10	56	34
	15	42	10	56	34
Mar.	1	42	10	56	34
	15	42	10	56	34
Apr.	1	64	14	90	60
	15	90	23	140	100
May	1	130	32	215	170
	15	430	108	290	300
Jun.	1	1,160	290	320	440
	15	1,160	290	320	440
Jul.	1	500	125	292	390
	15	180	45	110	130
Aug.	1	75	20	70	58
	15	32	8	47	27
Sep.	1	32	8	47	27
	15	32	8	47	27
Oct.	1	45	11	56	35
	15	60	15	68	45
Nov.	1	60	15	68	45
	15	60	15	68	45
Dec.	1	51	12	62	39
	15	42	10	56	34

(3) Base flow hydrographs, as represented in Figure 1 in the document entitled "water resources management program, Methow River basin" dated 1976, shall be used for definition of base flows on those days not specifically identified in WAC 173-548-020(2) and 173-548-030.

(4) All rights hereafter established shall be subject to the base flows established in WAC 173-548-020(1) through (3), except as provided under WAC 173-548-030 herein.

(5) Future appropriations of water which would conflict with base flows shall be authorized, by the director, only in those situations when it is clear that overriding considerations of the public interest will be served. [Order DE 76-37, § 173-548-020, filed 12/28/76.] WAC 173-548-030 Future allocations—Reservation of surface water for beneficial uses. (1) The department determines that there are surface waters available for appropriation from the stream management units specified in the amount specified in cubic feet per second (cfs) during the time specified as follows:

(a) Maximum surface water available for future allocation from the indicated reach is as follows:

Month	Lower	Middle Methow	Upper Methow	Methow Head- waters	Early Winters Crock	Chewack River	Twisp River
Oct.	95	50	44	15	19	09	14
New.	116	101	46	06	21	10	15
Dec.	112	99	44	17	26	10	15
Jan.	50	36	26	08	19	03	09
Feb.	51	37	29	09	19	04	10
Mar.	147	139	80	38	19	24	18
Apr.	565	590	273	336	35	118	148
May	2.922	2,927	784	412	403	809	703
Jun.	3,116	2,853	1.017	1,249	294	1,292	890
Jul.	965	877	583	608	189		298
Aug.	214	192	203	109	94	70	70
Sep.	62	55	76	33	47	23	26

All figures in cubic feet per second.

(b) The control station for each reach is defined in WAC 173-548-020.

(c) The appropriation limit is set forth to be an amount equal to the one in two year natural reach discharge on a monthly basis for all management reaches except Early Winters Creek. The appropriation limit for Early Winters Creek is set forth to be an amount equal to the estimated natural mean monthly streamflow for that stream.

(2) The amounts of water referred to in WAC 173-548-030(1) above are allocated for beneficial uses in the future as follows:

 (a) Allocation of surface waters by use category (April through September);

Use Description	Apr.	May	Jun.	Jul.	Aug.	Sep.		
Lower Methow								
Single Domestic and Stock Use	2.0	2.0	2.0	2.0	2.0	2.0		
Base Flow	860	1,940	2,220	800	300	300		
Public Water Supply. Irrigation, and Other Uses	Remaining waters up to the appropriation limit set forth in WAC 173-548-030 (1)(c)							
Middle Methow								
Single Domestic and Stock Use	2.0	2.0	2.0	2.0	2.0	2.0		
Base Flow	650	1,500	1,500	500	220	220		
Public Water Supply, Irrigation, and Other Uses	Remaining waters up to the appropriation limit set forth in WAC 173-548-030 (1)(c)							
Upper Methow								
Single Domestic and Stock Use	2.0	2.0	2.0	2.0	2.0	2.0		
Base Flow	300	690	790	240	100	100		
Public Water Supply, Irrigation, and Other Uses	Remaining waters up to the appropriation limit set forth in WAC 173-548-030 (1)(c)							

(11/19/91)

Use Description	Apr.	May	Jun.	Jul.	Aug.	Sep.		
Methow Headwaters								
Single Domestic and Stock Use	2.0	2.0	2.0	2.0	2.0	2.0		
Base Flow	90	430	1,160	180	32	32		
Public Water Supply, Irrigation, and Other Uses	approp	Remaining waters up to the appropriation limit set forth in WAC 173-548-030 (1)(c)						
Early Winters Creek								
Single Domestic and Stock Use	2.0	2.0	2.0	2.0	2.0	2.0		
Base Flow	23	108	290	45	8.0	11.0		
Public Water Supply, Irrigation, and Other Uses	Remaining waters up to the appropriation limit set forth in WAC 173-548-030 (1)(c)							
Chewack River								
Single Domestic and Stock Use	2.0	2.0	2.0	2.0	2.0	2.0		
Base Flow	140	290	320	110	47	47		
Public Water Supply, Irrigation, and Other Uses	Remaining waters up to the appropriation limit set forth in WAC 173-548-030 (1)(c)							
Twisp River								
Single Domestic and and Stock Use	2.0	2.0	2.0	2.0	2.0	2.0		
Base Flow	100	300	440	130	27	27		
Public Water Supply, Irrigation, and Other Uses	approp	Remaining waters up to the appropriation limit set forth in WAC 173-548-030 (1)(c)						
All figures in cubic fee	t per se	cond						

All figures in cubic feet per second

(b) Allocation of surface waters by use category (October through March):

Use Description	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	
Lower Methow							
Single Domestic and Stock Use	2.0	2.0	2.0	2.0	2.0	2.0	
Base Flow	425	425	350	350	350	350	
Public Water Supply, Irrigation, and Other Uses	Remaining waters up to the appropriation limit set forth in WAC 173-548-030 (1)(c)						
Middle Methow							
Single Domestic and Stock Use	2.0	2.0	2.0	2.0	2.0	2.0	
Base Flow	320	320	260	260	260	260	
Public Water Supply, Irrigation, and Other Uses	Remaining waters up to the appropriation limit set forth in WAC 173-548-030 (1)(c)						
Upper Methow							
Single Domestic and Stock Use	2.0	2.0	2.0	2.0	2.0	2.0	
Base Flow	150	150	120	120	120	120	
Public Water Supply, Irrigation, and Other Uses	Remaining waters up to the appropriation limit set forth in WAC 173-548-030 (1)(c)						

(11/19/91)

Use Description	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.		
Methow Headwaters								
Single Domestic and Stock Use	2.0	2.0	2.0	2.0	2.0	2.0		
Base Flow	60	60	42	42	42	42		
Public Water Supply, Irrigation, and Other Uses	Remaining waters up to the appropriation limit set forth in WAC 173-548-030 (1)(c)							
Early Winters Creek								
Single Domestic and Stock Use	2:0	2.0	2.0	2.0	2.0	2.0		
Base Flow	15	15	10	10	10	10		
Public Water Supply, Irrigation, and Other Uses	Romaining waters up to the appropriation limit set forth in WAC 173-548-030 (1)(c)							
Chewack River								
Single Domestic and Stock Use	2.0	2.0	2.0	2.0	2.0	2.0		
Base Flow	68	68	56	56	56	56		
Public Water Supply, Irrigation, and Other Uses	Remaining waters up to the appropriation limit set forth in WAC 173-548-030 (1)(c)							
Twisp River								
Single Domestic and Stock Use	2.0	2.0	2.0	2.0	2.0	2.0		
Base Flow	45	45	34	34	34	34		
Public Water Supply, Irrigation, and Other Uses	approp	Remaining waters up to the appropriation limit set forth in WAC 173-548-030 (1)(c)						
All figures in cubic fee	t per se	cond.						

All figures in cubic feet per second.

(c) Allocations presented in this section do not limit the utilization of waters stored for later release, provided such storage does not infringe upon existing rights or base flow and is duly permitted under RCW 90.03.290 and 90.03.350.

(d) As the amount of water allocated for each category of use approaches the amount available for future allocation set forth in WAC 173-548-030(1), the department shall review the program to determine whether there is a need for program revision. [Order DE 76-37, § 173-548-030, filed 12/28/76.]

WAC 173-548-040 Priority of future water rights during times of water shortage. (1) As between rights established in the future pertaining to waters allocated in WAC 173-548-030 (2)(a) and (b), all rights subject to this program shall be regulated in descending order of use category priority regardless of the date of the priority of right.

(2) As between rights established in the future within a single use category allocation of WAC 173-548-030, the date of priority shall control with an earlier dated right being superior to those rights with later dates. [Order DE 76-37, § 173-548-040, filed 12/28/76.]

WAC 173-548-050 Streams and lakes closed to further consumptive appropriations. The department,

[Ch. 173-548 WAC-p 3]

. . .

having determined based on existing information that there are no waters available for further appropriation through the establishment of rights to use water consumptively, closes the streams and lakes listed in (a) and (b), and ground water hydraulically connected with these surface waters to further consumptive appropriation[.] This includes rights to use water consumptively established through permit procedures and ground water withdrawals otherwise exempted from permit under RCW 90.44.050. Specific situations in which well construction may be approved are identified.

No wells shall be constructed for any purposes, including those exempt from permitting under RCW 90-.44.050, unless one or more of the following conditions have been met and construction of the well has been approved in writing by the department prior to the beginning of well construction:

(1) The proponent has a valid water right permit recognized by the department. For an existing community domestic use, a water right permit must be held by a purveyor of an approved system. (For the purposes of this chapter, an approved water system is one in compliance with the state drinking water regulations, chapter 246-290 WAC and the state surface and ground water codes, chapters 90.03 and 90.44 RCW); or

(2) The proponent has obtained a valid state surface or ground water right through a transfer approved by the department under the statutory authority of chapter 90.03 or 90.44 RCW; or

(3) The proponent is replacing or modifying an existing well developed under the exemption from permit clause of RCW 90.44.050 and this has been approved in writing by the department; or,

(4) If the ground water being sought for withdrawal has been determined by the department not to be hydraulically connected with surface waters listed as closed, the department may approve a withdrawal. When insufficient evidence is available to the department to make a determination that ground and surface waters are not hydraulically connected, the department shall not approve the withdrawal of ground water unless the person proposing to withdraw the ground water provides additional information sufficient for the department to determine that hydraulic continuity does not exist and that water is available.

(a) STREAM CLOSURES

The following streams are closed all year, including all ground waters hydraulically connected to these streams.

Stream Name	
(Includes Tributaries)	
Wolf Creek	
Bear Creek	
(Davis Lake)	
Thompson Creek	
Beaver Creek	
Alder Creek	
Benson Creek	
Tesas Creek	
Libby Creek	
Cow Creek	
Gold Creek	
McFarland Creek	

[Ch. 173-548 WAC-p 4]

Stream N	ame
(Includes	Tributaries)

Squaw Creek Black Canyon Creek French Creek

(b) LAKE CLOSURES

Name

The following lakes are closed all year, including all ground waters hydraulically connected to these lakes:

Location

Vanie	Docation	_
Alta Lake	3 mi. SW of Pateros	
Black Lake	25 mi. N of Winthrop	
Black Pine Lake	9 mi. SW of Twisp	
Crater Lake	10 mi. W of Carlton	
Davis Lake	Bear Creek Drainage	
Eagle Lake	11 mi. SW of Carlton	
French Creek	Sec.28, T.31N., R.23E.	
Libby Lake	10 mi. W of Carlton	
Louis Lake	20 mi. W of Winthrop	
Middle Oval Lake	16 mi. W of Carlton	
North Lake	20 mi. W of Winthrop	
Patterson Lake	Sec.8, T.34N., R.21E.	
Pearrygin Lake	Sec.36, T.35N., R.21E.	
Slate Lake	14 mi. W of Winthrop	
Sunrise Lake	16 mi. W of Methow	
Upper Eagle Lake	12 mi. W of Carlton	
West Oval Lake	16 mi. W of Carlton	

[Statutory Authority: Chapters 34.05, 90.54, 18.104, 90.03 and 90.44 RCW. 91-23-093 (Order 91-27), § 173-548-050, filed 11/19/91, effective 12/20/91; Order DE 76-37, § 173-548-050, filed 12/28/76.]

WAC 173-548-060 Ground water. If it is determined that a future development of ground water measurably affects surface waters subject to the provisions of chapter 173-548 WAC, then rights to said ground water shall be subject to the same conditions as affected surface waters. [Order DE 76-37, § 173-548-060, filed 12/28/76.]

WAC 173-548-070 Effect on prior rights. Nothing in this chapter shall be construed to lessen, enlarge, or modify existing rights acquired by appropriation or otherwise, and legally vested prior to the effective date of this chapter. [Order DE 76-37, § 173-548-070, filed 12/28/76.]

WAC 173-548-080 Enforcement. In enforcement of this chapter, the department of ecology may impose such sanctions as are appropriate under authorities vested in it, including but not limited to the issuance of regulatory orders under RCW 43.27A.190 and civil penalties under RCW 90.03.600. [Statutory Authority: Chapters 43-.27A, 90.22 and 90.54 RCW. 88-13-037 (Order 88-11), § 173-548-080, filed 6/9/88.]

WAC 173-548-090 Appeals. All final written decisions of the department of ecology pertaining to permits, regulatory orders, and related decisions made pursuant

(11/19/91)

to this chapter shall be subject to review by the pollution control hearings board in accordance with chapter 43-.21B RCW. [Statutory Authority: Chapters 43.27A, 90-.22 and 90.54 RCW. 88-13-037 (Order 88-11), § 173-548-090, filed 6/9/88.]

WAC 173-548-100 Regulation review. The department of ecology shall initiate a review of the rules established in this chapter whenever new information, changing conditions, or statutory modifications make it necessary to consider revisions. [Statutory Authority: Chapters 43.27A, 90.22 and 90.54 RCW. 88-13-037 (Order 88-11), § 173-548-100, filed 6/9/88.]

01/18/90

[Ch. 173-548 WAC-p 5]

APPENDIX M

SNORKELLING OBSERVATIONS OF FISH IN THE METHOW BASIN

Appendix M Snorkelling Observations of Fish in the Methow Basin

The IFIM sites and other selected sites were surveyed by Brad Caldwell and Dave Catterson snorkelling on August 18, 1991, and by Caldwell and Catterson with Hal Beecher on September 16 and 17, 1991. The purpose was to gather some general observations on the existing fish distribution and abundance at the IFIM sites.

Snorkelling Observations on August 18. 1991

Methow River - Walsh Site - RM 31.5 - We surveyed from transect 6 to 1 (858 feet) and saw 30 suckers (6-8 lbs.), 1 juvenile rainbow trout (3 in.), 8 rainbow trout (8-17 in.), and many whitefish (10-15 in.). No salmon seen.

Methow River.- Deep hole where side road meets Methow River about 1 mile downstream of the town of Twisp - about RM 39 - We surveyed the deep pool and found 12 suckers (6-8 lbs.), 1 juvenile chinook (4in.), 2 bright adult chinook (20-25 lbs.), 4 rainbow trout (8-12 in.), and 20 whitefish (10-17 in.).

Methow River - KOA Site - RM 49 - We surveyed 1122 feet (transect 3 to 200 feet downstream of corner logjam) and found 7 chinook juveniles (3.5 in.), 4 rainbow trout (12 in.), 2 cutthroat trout (12-13.in.), and 64 whitefish (7 to 24 in.). No suckers, adult salmon or steelhead, nor bull trout were seen. The water temperature was 57 degrees F at 1:30 PM.

Methow River - Weeman Site - RM 59 - From Weeman bridge down to transect 8 (3696 feet) we saw 12 chinook juveniles, 4 rainbow trout (6-8 in.), and 3 whitefish. The water temperature was 58 degrees F at 4 PM in the mainstem Methow River.

In the spring-fed side channel along transects 3-7 (787 feet long) on the Weeman site we found 69 brook trout (6-13 in.) and 132 chinook juveniles (3.5 in.). The water temperature was 51 degrees F at 4 PM in the side channel.

In the mainstem Methow River at the Weeman site from transect 7 down to transect 1 (1354 feet) we found 4 brook trout (10-11 in.), 82 chinook juveniles (3.5 in.), 1 adult chinook (20 lbs.), 5 rainbow trout (6-7 in.), and 2 whitefish.

Methow River - Chokecherry Site - RM 66.5 - We surveyed from transect 7 to 2 (870 feet) and found 32 chinook juveniles (3.5 in.) and 1 whitefish (10 in.). No adult chinook, steelhead, bull trout, brook trout, or cutthroat trout were seen. Water temperature was 57 degrees F at 6 PM.

Twisp River - RM 1.8 - We surveyed from transect 7 to 1 (784 feet) and found 36 chinook juveniles (3.5-4 in.), 40 rainbow trout (6-12 in.), and 3 whitefish (6-7 in.). Water temperature was 58 degrees F at 12 PM.

Chewuch River - RM 1.3 - We surveyed from transect 7 to 1 (697 feet) and found 40 chinook juveniles, 8 rainbow trout (6-11 in.), and 1 whitefish (6 in.). Water temperature was 65 degrees F at 2:30 PM.

Early Winters Creek - RM 1.0 - We surveyed from transect 8 to 3 (269 feet) and found 33 chinook juveniles (3.5-5 in.) and 12 rainbows (4-15 in.). The water temperature was 54 degrees F at 6:30 PM.

Snorkelling Observations on September 16 and 17, 1991

Methow River - Walsh Site - RM 31.5 - We surveyed from transect 8 to 1 (1340 feet) and found 30 suckers (8-10 lbs.), 1 juvenile chinook (4 in.), 5 bright and 1 dark adult chinook (7-30 lbs.), 2 rainbow trout (15-17 in.), and 75 whitefish (5-24 in.). Water temperature was 55 degrees F at RM 49 at 2 PM.

Methow River - Deep hole where side road meets Methow River about 1 mile downstream of the town of Twisp - about RM 39 - We surveyed the deep pool and found 2 adult sockeye, 30 bright adult chinook (15-35 lbs.), 5 rainbow trout (6-12 in.), 2 adult steelhead (12 lbs), 1 bull trout (10 in.), 1 cutthroat trout (10 in.), and 40 adult whitefish. Water temperature was 55 degrees F at RM 49 at 2 PM.

Methow River - KOA Site - RM 49 - We surveyed from transect 8 down to corner logjam (2837 feet) and found 1 chinook juvenile (5 in.), 18 bright adult chinook (15-30 lbs.), 2 rainbow trout (8-17 in.), 1 steelhead (12 lbs.), 2

bull trout (16-17 in.), 3 cutthroat trout (10-16 in.), and 100 whitefish (6-20 in.). The water temperature was 55 degres F at 2 PM.

Methow River - Weeman Site - RM 59 - We surveyed from the spring-fed side channel along transects 3-7 (787 feet long) and found 60 brook trout (3-13

in.) and 150 chinook juveniles (3-5 in.). Water temperature was 48 degrees F.

In the maninstem Methow River at the Weeman site we surveyed from transect 7 down to transect 1 (1354 feet) we found 2 brook trout (6-8 in.), 44 chinook juveniles (3-5 in.), 1 adult chinook (20 lbs.), 3 rainbow trout (8-15 in.), and 36 adult whitefish. Just 100 feet downstream of transect 1 were 14 spawning chinook. While at the same spawning area one week later (September 26) we videotaped 6 sockeye spawning in the same area. No other spawning surveys have ever recorded sockeye spawning this far upstream in the Methow River and tribal spawning surveys in 1991 did not find any sockeye in the Methow basin.

The water temperature on September 26 was 58 degrees F at 1 PM at the Chokecherry Site but was 52 degrees F at the same time 7.5 miles downstream. This was due to large inflow of 48 degrees F ground water mixing with the 58 degrees F surface water by the time the surface water reached the Weeman Site.

Methow River - Chokecherry Site - RM 66.5 - We surveyed from transect 8 to 1 (1353 feet) and found no fish. Water temperature was 54 degrees F at 2 PM. In an isolated side channel just upstream of transect 8 we saw 15 chinook juveniles and 3 rainbow trout. Methow River - Gate Creek Campground - RM 69.8 - We surveyed 300 feet and found 75 chinook juveniles (3-5 in.), 1 dead adult chinook (8 lbs.), and 2 rainbow trout (9-10 in.). On a spot survey a month later Art Larson found that the 8-foot deep pools had dried up completely. Twisp River - RM 1.8 - We surveyed from transect 8 to 1 (1163 feet) and found no chinook juveniles, 3 rainbow trout (3-10 in.), and 2 whitefish (14 in.). Water temperature was 55 degrees F at 11:30 AM.

Chewuch River - RM 1.3 - We surveyed from transect 7 to 1 (697 feet) and found 3 chinook juveniles (3-5 in.), 4 rainbow trout (3-8 in.), and 2 whitefish (3-9 in.). Water temperature was 56 degrees F at 1 PM.

Early Winters Creek - RM 1.0 - We surveyed from transect 8 to 3 (269 feet) and found 30 chinook juveniles (3-5 in.) and 20 rainbow trout (2-8 in.), and 2 bull trout juveniles (2.5-6).

APPENDIX N

LITERATURE CITED

Appendix N Literature Cited

LITERATURE CITED

Bovee, K.D., 1982. A Guide to Stream Habitat Analysis Using the Instream Flow Incremental Methodology. Instream Flow Paper 12. U.S. Fish and Wildlife Service, Fort Collins, Colorado. FWS/OBS-82/26.

J. Caldwell, K. Bruya, and B. Caldwell, 1990. Documentation and Rationale for Preference Curves for IFIM Studies. Habitat Management, Washington Department of Fisheries, Tumwater, Washington.

Edson, S.A., 1990. Spring Chinook Spawning Ground Surveys of the Methow River Basin. Yakima Indian Nation, Fisheries Resource Management, Toppenish, Washington.

GeoEngineers, 1990. Report of Phase 3 Hydrogeologic Services, Proposed Spring Chinook Satellite Facility, Winthrop, Washington. Prepared for Douglas County Public Utility District. Golder Associates, 1991. Ground-Water Modeling of the Upper Methow Valley. A report to the Early Winters Resort Project.

Kohn, M.S., 1987. Spring and Summer Chinook Spawning Ground Surveys, Methow and Okanogan River Basins. Yakima Indian Nation, Fisheries Resource Management, Toppenish, Washington.

Kohn, M.S., 1988. Spring and Summer Chinook Spawning Ground Surveys, Methow and Okanogan River Basins. Yakima Indian Nation, Fisheries Resource Management, Toppenish, Washington.

Kohn, M.S., 1989. Spring and Summer Chinook Spawning Ground Surveys, Wenatchee, Methow and Okanogan River Basins. Yakima Indian Nation, Fisheries Resource Management, Toppenish, Washington.

Langness, O.P., 1991. Summer Chinook Salmon Spawning Ground Surveys of the Methow and Okanogan River Basins in 1990. Confederated Tribes of the Colville Reservation, Fish and Wildlife Department, Nespelem, Washington.

Meekin, T.,1991., Spring Chinook Spawning Ground Surveys of the Methow River Basin. Yakima Indian Nation, Fisheries Resource Management, Toppenish, Washington.

Milhous, R.T., G. Sorlie, and D. Richardson, 1976. The Water Resources of the Methow Basin. Office Report No. 56, Department of Ecology, Olympia, Washington.

Milhous, R.T., M.A. Updike, and D.M. Schneider, 1989. Physical Habitat Simulation System Reference Manual - Version II. Instream Flow Information Paper No. 26, U.S. Fish and Wildlife Service, Biological Report 89(16), Fort Collins, Colorado. Appendix N Literature Cited (continued)

Pacific Northwest River Basin Commission, 1977. The Methow River Basin Level B Study of the Water and Related Land Resources, April, 1977. Vancouver, Washington.

Peterson, J.J., and A.C. Larson, 1991. Beaver Creek, Methow River Closed Tributary Report. Water Resources, Department of Ecology, Olympia, Washington.

Richardson, D., 1976. Natural Monthly Streamflow in the Methow Basin. Office Report No. 46, Department of Ecology, Olympia, Washington.

Stempel, J.H., 1984. Development of Fish Preference Curves for Spring Chinook and Rainbow Trout in the Yakima River Basin. U.S. Fish and Wildlife Service, Ecological Services, Moses Lake, Washington.

Washington Department of Wildlife, Yakima Indian Nation, Colville Indian Reservation, and Washington Department of Fisheries, 1989. Methow and

Okanogan Rivers Subbasin Salmon and Steelhead Production Plan. Columbia Basin System Planning, Northwest Power Planning Council, Portland, Oregon.

Willms. R., and W. Kendra, 1990. Methow River Water Quality Survey and Assessment of Compliance with Water Quality Standards. Environmental Investigations and Laboratory Services Program, Washington Department of Ecology, Olympia, Washington.

APPENDIX O

ECOLOGY'S MISSION STATEMENT

OUR MISSION WASHINGTON STATE DEPARTMENT OF ECOLOGY

To accomplish this mission, Ecology will:

- Recognize its most valuable asset is its dedicated and committed employees and it will provide necessary support, training and professional development.
- Promote prevention and conservation as the most effective ways to preserve our natural resources and protect the environment.
- Enforce environmental laws and regulations in a fair and firm manner.
- Provide public education programs to promote wise use of our natural resources and encourage environmental protection.

Bress for the Access Base

The mission of the Department of Ecology is to protect, preserve and enhance Washington's environment and promote the wise management of our air, land and water for the benefit of current and future generations.

- Offer information, technical and financial assistance to help the public, governments, businesses and industries comply with environmental laws and regulations.
- Promote the recognition that compliance with environmental laws and regulations is compatible with a sound economy.

- Promote meaningful public involvement in the development of rules. regulations and new initiatives.
- Provide leadership in addressing emerging problems and strive to bring public agencies and diverse interest groups together to address environmental issues.
- Use an integrated approach to resolve environmental issues.
- Place special emphasis on educating and working with youth to create a strong environmental ethic.
- Help state agencies set an example in environmental protection.
- Work with the executive and legislative branches to promote sound environmental policy.