92-e33 WA-22-4010

WEYERHAEUSER PAPER COMPANY (Cosmopolis Plant) May, 1991 Class II Inspection

by Steven Golding and Marc Heffner

Washington State Department of Ecology Environmental Investigations and Laboratory Services Toxics, Compliance and Ground Water Investigations Section 7171 Cleanwater Lane, Building #8 Olympia, WA 98504-7710

> Water Body No. WA-22-4010 Segment No. 10-22-12

> > October 1992

TABLE OF CONTENTS

Pa	ge
ABSTRACT	iii
INTRODUCTION	1
SETTING	1
PROCEDURES	3
DOX Analysis	9 9 10 10 10 10 10 10
RESULTS AND DISCUSSION Split Sample Results Effluent and Runoff Flow General Chemistry Results/NPDES Permit Limits Comparison Fecal Coliform Results/NPDES Permit Limits Comparison Priority Pollutants (VOA, BNA, Pesticide/PCB, and Metals Scans) Guaiacols/Catechols & Resin Acids-Fatty/Acids Dioxin/Furan Bioassays Ditches General Chemistry Priority Pollutants (VOA, BNA, Pesticide/PCB, and Metals Scans) Bioassays Sediment General Chemistry Priority Pollutants (VOA, BNA, Pesticide/PCB, and Metals Scans) Bioassays Summary Sediment General Chemistry Priority Pollutants (VOA, BNA, Pesticide/PCB, and Metals Scans) Dioxin/Furan	11 11 11 11 11 11 11 11 11 11 12 22 25 25 25 25 25 25 25 30 30 30 30 30 30

TABLE OF CONTENTS (Continued)

Page

RECOMMENDATIONS AND CONCLUSIONS	33
Split Sample Results	
Effluent and Runoff	
Flow	
General Chemistry Results/NPDES Permit Limits Comparison	34
Fecal Coliform Results/NPDES Permit Limits Comparison	34
Priority Pollutants (VOA, BNA, Pesticide/PCB and Metals Scans) 3	
Guaiacols, Catechols & Resin Acids-Fatty Acids	34
Dioxin/Furan	35
Bioassays	
Ditches	
Sediment	35
REFERENCES	37
APPENDICES	39

-

ABSTRACT

A Class II inspection was conducted at the Weyerhaeuser Paper Company Plant in Cosmopolis on May 28-31, 1991. The effluent from the 001 outfall met NPDES permit limits although the Ecology analytical result for BOD (qualified as estimated) was slightly greater than the monthly limit. No dioxin (2,3,7,8-TCDD) was detected in the effluent. Dissolved organic halides (DOX) was found in concentrations above the monthly maximum permit limit, effective 1995. Bioassay organism sensitivity to effluent and runoff samples was variable. Outfall 001 effluent showed toxic effects at various levels to fathead minnow, echinoderm, and bivalve larvae.

The effluent from outfall 002 met all NPDES permit limits. Samples collected from runoff near the production facilities and from ditches draining the area near the lagoons were of generally acceptable water quality.

Sediments from Grays Harbor contained dioxins and furans in low concentrations, and organics and metals in concentrations below criteria. *Rhepoxinius*, echinoderm embryo, and Microtox bioassays revealed toxic effects from Sediment-1 (near the outfall). The echinoderm embryo test also demonstrated some toxic effects from Sediment-3 (the background sample).

INTRODUCTION

A Class II inspection was conducted at the Weyerhaeuser Paper Company Cosmopolis Plant (Weyco) on May 28-31, 1991. Conducting the inspection were Rebecca Inmann and Marc Heffner of the Ecology Toxics, Compliance, and Ground Water Investigations Section and Don Kjosness, Arlene Army, and Marc Crooks of the Ecology Industrial Section. Bill Weaver represented Weyco and assisted during the inspection. Also, sediments were collected in Grays Harbor near the plant outfall on June 4, 1991. Bernie Strong and Marc Heffner of Ecology collected the sediment samples.

Weyco operates a bleached sulfite pulp mill in Cosmopolis. The plant discharges into Grays Harbor Estuary and the Chehalis River, Water Body No. WA-22-4010, Segment No. 10-22-12. Plant discharge is limited by NPDES permit WA-000080-9. The inspection focused on the wastewater treatment system, and water quality in ditches near the production area and ditches near the final settling ponds. Receiving water sediments were also collected. Specific objectives included:

- 1. Verify NPDES permit self monitoring.
- 2. Assess secondary wastewater treatment plant loading.
- 3. Assess effluent toxicity with bioassays and pollutant scans.
- 4. Assess dissolved organic halides (DOX) and dioxin concentrations in the wastewater treatment system and bleach plant effluent.
- 5. Assess water quality in ditches with chemical analyses and bioassays.
- 6. Assess impacts to receiving water sediments with chemical analyses and bioassays.

SETTING

The Weyco NPDES permit limits the combined load from two discharges; 001 and 002 (Figure 1). The 001 discharge is the principal discharge. The 001 treatment facilities include secondary treatment (aerated bioponds and secondary clarifiers) at the pulp mill site and settling ponds located approximately five miles away along the shore of Grays Harbor. Approximately 4 million gallons/day (MGD) is sent to the secondary treatment facility while the balance of the 001 flow (approximately 25-28 MGD) is sent along with the secondary effluent to a series of four settling ponds. During the inspection only Pond A and a small portion of Pond D were in use. The portion of Pond D in use was a diked-in area from which the pond discharges into the outfall line. The outfall line extends to a diffuser located in the old south channel of the harbor. Ponds B, C, and most of D were removed from regular service, serving only as emergency holding capacity.

Figure 1 – Sampling Locations – Weyerhaeuser (Cosmopolis), May 1991.

Discharge 002, also referred to as the sweet sewer, presently discharges site runoff, filter plant backwash, and flow from a neighboring truckwash. The sweet sewer is an open waterway with two surface aerators stationed in the pool just upstream of a dam over which the discharge falls (Figures 2 and 3). The 002 discharge is estimated to be approximately 4-5 MGD.

Runoff from the mill site is also discharged from a pipe at the end of a ditch referred to as the "woodyard riverside drain" (Figure 3). The ditch was tidally influenced during the inspection, with tidal flow coming into the ditch at high tide.

The settling pond area is located adjacent to tidally influenced Grays Harbor. In addition to the settling ponds, there are two diked areas to which solids accumulating in the settling ponds have historically been pumped (Figure 4). There is a potential for leaching from the unlined spoils area near the settling ponds to nearby ditches. Citizen's complaints were received that frogs were absent in the ditches and that the ditches might be toxic. Prior to this inspection, a salmonid bioassay on a sample from the Highway 105 drainage ditch revealed acute toxicity (Kjosness, 1992).

Pulp mill operation during the inspection included some difficulty in the bleach plant area. During the inspection composite sampling period (May 29 - 0800 to May 30 - 0800), the bleach plant was down for approximately seven hours. Waste characteristics of the biopond influent are considerably different (weaker) during down periods. The bleach plant was also down from approximately 0830 to 1800 on May 30 forcing one de-aeration tank effluent (DAef) sample to be eliminated and a bleach plant grab composite sample to be sampled as a grab sample instead.

PROCEDURES

Ecology collected composite and grab samples of biopond influent, 001 effluent, and 002 effluent. Ecology Isco composite samplers were set up to collect equal volumes of sample every 30 minutes for 24 hours. Grab samples were also collected at several other locations including the bleach plant effluent, the de-aeration tank effluent, runoff at the "riverside woodyard drain," and the ditches near the final settling ponds. Sampling locations are summarized in Table 1 and Figures 1, 2, 3, and 4.

Weyco also collected an effluent composite sample. The sampler was set to collect equal volumes of sample every 12 minutes for 24 hours. Selected samples were split (composite samples) or taken in pairs (grab samples) for Ecology and Weyco laboratory analysis. Samples collected, sampling times and parameters analyzed are summarized in Appendix A.

Sediment samples were collected from Grays Harbor by Ecology with a 0.1 m^2 van Veen grab sampler at three stations; one at a background site approximately 1200 feet NE of the diffuser (Sed-3), one within 50 feet west of the diffuser (Sed-1), and one approximately 300 feet west of the diffuser near the edge of the dilution zone (Sed-2 - Figure 1). At each station, the top

Figure 3 – Outfall 002 and Woodyard Riverside Drain Locations (Figure provided by Weyerhaeuser) – Weyerhaeuser (Cosmopolis), May 1991.

Figure 4 – Ditch Sample Locations – Weyerhaeuser (Cosmopolis), May 1991.

Table 1.Sampling Station Descriptions - Weyerhaeuser (Cosmopolis), May 1991.

Influent (Inf)

Influent to the bioponds. The sample was collected from the influent tap at the sampling gallery next to the biopond lab building. The composite sample was collected from a priority pollutant cleaned stainless steel bucket placed under the tap and allowed to overflow at a rate to prevent solids from settling.

Bleach Plant Effluent (Blch)

Bleach plant effluent prior to mixing with the secondary effluent in the de-aeration tank. the sample was collected on the ground floor of the pulp building from a line tap. The tap was allowed to run for approximately ten minutes to purge the line before sampling.

De-aeration Tank Effluent (DAef)

Effluent from the de-aeration tank. The bleach plant effluent plus the secondary effluent. The sample was taken from a line tap prior to the flow entering the wet well to be pumped to the ponds.

001

The 001 effluent. Samples collected from the lower walkway downstream of the screen in Pond 4. The composite sample intakes were positioned approximately four feet below the water surface (pond approximately 12 feet deep).

002

The 002 effluent, also called the sweetwater sewer. The samples were taken on the downstream side of the floating bridge, approximately 10 feet upstream of the dam. The composite sampler intakes were positioned approximately one and one-half feet below the water surface.

Runoff

Runoff from the ditch referred to as the "woodyard riverside drain." The sample was collected from the downstream side of the culvert pipe between the 002 discharge and the river. Sample was collected at low flow while culvert was free flowing.

Ditch-1

Sample taken from BC creek between the road and railroad (Figure 4). Sample was taken as the flow entered the south end of the culvert pipe. The sample was collected at low tide while the flow was towards Grays Harbor.

Ditch-2

Sample taken from the ditch across the dirt access road just to the SW of the dike separating the two solids ponds (Figure 4).

Ditch-3

Sample taken from the ditch along Highway 105. Sample taken just to the east of the dirt access road running to the west of the solids pond (Figure 4).

Ditch-4

Sample taken from the ditch along Highway 105. Sample taken approximately 0.15 mile west of the ditch-3 sample at the pull off area (Figure 4).

Sed-1

Sample collected approximately 50 feet to the west of the two markers marking the diffuser area (Figure 1). Position was approximately half-way between the markers on the north-south axis. Sample was just to the west of the dip near the diffuser in 10 feet of water.

Sed-2

Sample collected approximately 100 yards to sea from the diffuser markers in 9.5 feet of water (Figure 1).

Sed-3

Sample collected approximately 400 yards NE of the diffuser markers in the south channel. Location was approximately 75 yards N of channel marker #2. Sample was collected in 11 feet of water (Figure 1).

two centimeters of sample from successive grab samples were collected. A VOA bottle was filled from the first grab while the remainder of the sample was put in a prepared stainless steel bucket. When the bucket was full, the contents of the bucket were homogenized by manual mixing, then put in appropriate containers for analysis. At stations Sed-1 and Sed-3, two additional grabs were taken, homogenized, and put in the appropriate containers for BNA, Pesticide/PCB, dioxin, and metals analysis. Sampling times and parameters analyzed appear in Appendix A.

Samples for Ecology analysis were placed on ice and delivered to the Ecology Manchester Laboratory. Analytical procedures and the laboratories doing the analysis are summarized in Appendix B.

QUALITY ASSURANCE/QUALITY CONTROL (QA/QC)

Sampling

Sampling quality assurance/quality control steps for water samples included special cleaning of the sampling equipment (Appendix C). Also, a field transfer/equipment blank was collected (Appendix C). Bottles for samples requiring dioxin analysis were rinsed with sample prior to filling.

For sediment samples, sampling quality assurance/quality control steps included collecting only sediment not in direct contact with the sampler and pre-inspection special cleaning of equipment that would touch the samples (Appendix C).

Chain-of-custody procedures were followed to assure the security of the samples (Huntamer and Hyre, 1991).

General Chemistry Analysis, Plant Samples

Color results are flagged with a J qualifier (indicating an estimated value) because no date of analysis, calibration or standardization curves were provided. BOD results are flagged with a J qualifier because seed correction was very significant. COD results are flagged with a J qualifier because there is no calibration or standardization provided to validate the results. The ammonia result for sample no. 228241 is flagged with a J qualifier because of poor peak shape. Oil and grease results are flagged with a J qualifier because there was no information concerning date of analysis. Analysis for other parameters was acceptable, and results can be used without qualifiers.

General Chemistry Analysis, Ditch Samples

Efficiency of the Cd coil dropped off after the samples had been run but before the $NO_2 + NO_3 - N$ and final standards had been run. For this reason the $NO_2 - NO_3 - N$ results are flagged with a J qualifier, although the data are most likely correct. Sample no. 228252 was re-run after the problem was corrected, and the result can be used without a qualifier. Analysis for other parameters was acceptable, and results can be used without qualifiers.

General Chemistry Analysis, Sediment Samples

Analysis was acceptable and the results can be used without qualifiers.

DOX Analysis

Carbon blanks were below maximum criteria. Specified holding time before analysis was exceeded, but qualifiers have not been added. Although the percent breakthrough was not evaluated, it is unlikely that significant breakthrough occurred. The DOX data can be used without qualifiers.

VOA, BNA, and Pesticide/PCB Priority Pollutant Organics Analysis

Holding times, method blanks, matrix spikes, and surrogate recoveries for VOA, BNA, organochlorine pesticides and PCB's met standards for data use without qualification.

Metals Analysis

Holding times, method blanks, and matrix spike/spike duplicate data met Ecology standards for data use without qualification. Antimony (90 ug/L) and zinc (20 ug/L) were detected in the transfer blank.

Guaiacols/Catechols Analysis

Holding times and method blank data were acceptable. Surrogate recoveries ranged from 19% to 195%. Matrix spike recoveries ranged from 79% to 106%. No surrogate or matrix spike recovery limits have been set for this method. The results can be used without qualifiers.

Resin Acids/Fatty Acids Analysis

Surrogate recoveries ranged from 78% to 143%. Matrix spike recoveries ranged from 21% to 148%. No surrogate or matrix spike recovery limits have been established for this method. The results can be used without qualifiers.

Dioxin/Furan Analysis

All samples were extracted and analyzed within the specified holding times. No target analytes were detected in any of the method blanks. The continuing calibration standards were within the relative standard deviation limits. Internal standard recoveries are all above the lower limit. The results can be used without qualifiers.

RESULTS AND DISCUSSION

Split Sample Results

Ecology composite samples were split for Ecology and Weyco laboratory analysis, but as a result of miscommunication, Ecology did not receive a split sample from the Weyco 001 composite sampler. Sample split results compare well with the exception of BOD₅ and fecal coliforms for outfall 001 (Table 2). Ecology BOD₅ results are higher than Weyco results but are estimates, so a comparison is inconclusive. Fecal coliform results are compared in a separate section.

Effluent and Runoff

<u>Flow</u>

The 001 discharge flow rate was measured by Weyco. Flow rate was found to average 32.22 MGD from 0800 May 29 to 0800 May 30. Ecology was unable to verify the effluent flow at 001 which is measured in submerged pipes leading from pond 1 to pond 4. Weyerhaeuser should provide calibration records and manufacturer's recommendations for frequency of calibration for the 001 in-line meters.

Weyerhaeuser does not measure the 002 flow, but estimated the range as 4 - 5 MGD. The absence of a flow measuring device for the 002 discharge prevents accurate determination of the discharged BOD₅ load required by the current permit. A flow measurement device should be installed and maintained if the discharge is used.

General Chemistry Results/NPDES Permit Limits Comparison

Most permit parameters were within limits during the inspection (Table 3). BOD₅ and TSS from outfall 001 were within permit requirements. The pH was within the required range. Ecology BOD₅, COD, and TOC are consistent with expected results for influent, outfall 001, and outfall 002 (Table 4).

Two organic compounds have permit limits for the 001 discharge. The limits for dioxin (2,3,7,8-TCDD) will become effective in 1994 and the limits for DOX will become effective in 1995. Although no (2,3,7,8-TCDD) was detected in the 001 effluent, the 2 pg/L detection limit can be compared with the permit limit: At a flow rate of 32.22 MGD (during the inspection), 2 pg/L corresponds to 5 X 10^{-7} lbs/day 2,3,7,8-TCDD generated (daily average). This is below the permit limit of 6.1 X 10^{-7} lbs/day daily maximum (monthly basis). During the inspection, the total DOX discharged (2500 lbs/day) and the amount discharged per air dried ton of pulp production (7.0 lbs/ADT) exceeded the 1995 permitted monthly maximum (1850 lbs/day; 3.9 lbs/ADT) for outfall 001. While DOX samples were grab samples, permit limits for DOX are based on composite samples.

			Locatn: Date:	001 5/29	002 5/2 9	
Production (air-dried metric tons/day)*	<u>Sample</u> Weyco	Laboratory		325		
Flow (MGD)	Weyco			32.22		
BOD5 (mg/L)	Weyco Ecology	Weyco Weyco		45 65	1 3	
	Ecology	Ecology		99 J	10J	
TSS (mg/L)	Weyco Ecology Ecology	Weyco Weyco Ecology		32 34 39	6 7 9	
рН	Weyco Ecology	Weyco Ecology		5.2 - 5.6 5.6	6.9 6.9	
Alkalinity (mg/L)	Ecology Ecology	Weyco Ecology		104 62		
Fecal coliform (#/100mL)	Weyco Ecology	Weyco Ecology	MF: MF/MPN: MF/MPN:	0 2,500,000/14 540,000/62	5 10/49 10/20	
Oil and Grease (mg/L)	Ecology Ecology	Weyco Ecology		<1J; 2.4J	<1 <1J; <1J	
Rainbow Trout Bioassay (65% effl.)	Weyco Ecology	Weyco Ecology		80% survival 100% survival		
DOX (mg/L)	Ecology Ecology	Weyco Ecology		14;13 8.9; 9.7	0.069 1.3; 23	
Copper (ug/L)	Ecology Ecology	Weyco Ecology		9 <25	<5 <25	

Table 2 – Weyerhaeuser, Ecology Sample Comparison– Weyerhaeuser (Cosmopolis), May 1991.

* Average production for the month of May = 325 air dried metric tons/day

J indicates an estimated value.

	NPDES	Limits	Inspection Results			
<u>Outfall 001</u> Parameter	Monthly average	Daily maximum	Laboratory	/		
BOD5 (lbs/day)	24,537	45,391 *	Ecology Weyco	26,600 J 17,500		
TSS (lbs/day)	36,094	66,993	Ecology Weyco	10,500 9,100		
Fecal Coliform (#/100ml)	5,000	20,000	Ecology Weyco	MF: 2,500,000; 540,000 MPN: 14; 62 0		
рН	5.0 to 9.0 (cont	inuous)	Ecology Weyco	5.6 6.05		
Flow (MGD)				32.22**		
Production (monthly average)	-			325 ADMT/day 358 ADT/day		
Dioxin (2,3,7,8-TCDD) +		6.1X10^-7 lbs/day		<5X10^-7 lbs/day		
DOX ++	3.9 lbs/ADT 1850 lbs/day	-	Ecology Weyco	7.0 lbs/ADT+++ 2500 lbs/day+++ 10.1 lbs/day+++ 3630 lbs/day+++		
Copper (ug/L)			Ecology Weyco	<25 9		

Table 3 - NPDES Permit Limits and Inspection Results - Weyco (Cos) - May 1991.

Outfall 002 Parameter	Monthly average	Daily maximum		Inspection results
BOD5 (lbs/day)		500	Ecology Weyco	375*** 110***
Fecal Coliform (#/100ml)	5,000	20,000	Ecology Weyco	MF: 10; 10 MPN: 49; 20 5
рН	5.0 to 9.0 (cont	linuous)	Ecology Weyco	6.9; 6.9 (grabs) 6.9
Oil and Grease (mg/l)	10	15	Ecology Weyco	<1 J; <2.4 J <1
Copper (ug/L)			Ecology Weyco	<25 <5
Flow (MGD)				4.5 (Weyco estimate)

- * When the Chehalis River flow is less than 2000 cfs, the maximum daily BOD is reduced to 3500. River flow upstream at Montesano ranged from 2790 cfs (May 29) to 3040 cfs (May 30) during the survey (USGS data).
- ** Plant flow measured by Weyerhaeuser.
- *** Based on Weyerhaeuser estimated flow of 4-5MGD
 - + Permit limits become effective in 1994. Annual avg. TCDD permit limit = 3.7 X10^-7 lbs/day.
- ++ Permit limits become effective in 1995. Annual avg. AOX permit limit = 3.0 lbs/ADT of bleached pulp. ADT = Avg. Daily Tons of Production
- +++ daily average
- ADMT Air Dried Metric Tons of production
- ADT Air Dried Tons of production
 - J indicates an estimated value for a detected analyte.

Table 4 - General Chemistry Results - Weyerhaeuser (Cosmopolis), May 1991.

Parameter	Location: Type: Date: Time: Lab Log#:	Trns Blk grab 5/28 1345 228230	Inf–1 grab 5/29 1205 228231	Inf-2 grab 5/29 1120 228232	Inf-C comp 5/29-30 0800-0800 228233	Blch-1 grab 5/29 1240 228234	Blch–2 grab 5/31 1105 28235&6	DAef-1 grab 5/29 1220 228237	001-1 grab 5/29 1040 228239	001-2 grab 5/29 1430 228240	001–C comp 5/29–30 0800–0800 228241	001–GC gr–comp 5/29 * 228242
GENERAL CHEMISTRY Conductivity (umhos/cm) Alkalinity (mg/L CaCO3) Hardness (mg/L CaCO3) Color TS (mg/L) TNVS (mg/L) TSS (mg/L) TNVSS (mg/L)					10200** 502 4280J 1800J 12200 6640 44 1		13				18200** 61.9 313 700J 1750 1170 39 6	1900 59.7 294
% Solids % Volatile Solids BOD5 (mg/L) COD (mg/L) TOC (mg/L) TOC (% dry wt) NH3-N (mg/L) NO2+NO3-N (mg/L)					REJ 6700J 1880		81 129	J			99J 500J 196 0,3J 0.027	
Phosphorous – Total (mg/ Oil and Grease (mg/L) F-Coliform MF (#/100 mL) F-Coliform MPN (#/100 m % Klebsiella (KES) ORGANICS DOX (mg/L)			8.2	6.9		48	22	<10 <10 ***	<1J 2500000 14 98 8.9	2.4J 540000 62 75 9.7	1.5	
Phenolics Total(water-mg	/L)	<0.01			<0.1		0.029				<0.5	
Temp (C) Temp cooled (C) pH (S.U.) Conductivity (umhos/cm) Sulfide (mg/L) Chlorine (total – mg/L)			38.2 6 7000 ++ ++	37.2 6.6 6700 ++ ++	4.5 5.6 7700	30.1 3 1200 <0.1 5.5	32.3 2.8 1400 3.5	26.8 3.7 2300 <0.1 1.5	25.8 5.6 1900 <0.1 <0.1	+++ 2000 <0.1 <0.1	5.1 5.9 1900	
Trns Blk – transfer blank Inf – influent to the biopor C – composite sample col		*			oles consist vo grab subsar	nples	**		/ conductivi n expected		nation	
by Ecology GC – grab composite sam grab – grab sample		J	indicates a for a detec				***	no growth color of sa	mple interfe	ered with te	əst	
comp – composite sample Blch – bleach plant efflue DAef – de–aeration tank e 001 – the 001 effluent	nt	REJ	indicates r because al unrepresei	nalyst used	an			meter mal	•			

Table 4 - (cont'd) - Weyerhaeuser (Cosmopolis), May 1991.

Parameter	Locatn: Type: Date: Time: Lab Log#:	002-1 grab 5/29 1145 228244	002-2 grab 5/29 1545 228245	002-C comp 5/29-30 0800-0800 228246	002–GC gr–comp 5/29 * 228247	Runoff grab 5/29 0935 228248	Ditch–1 grab 5/28 1020 228249	Ditch-2 grab 5/28 1105 228250	Ditch-3 grab 5/28 1130 228251	Ditch-4 grab 5/28 1150 228252	Sed-1 grab 6/04 1235-1255 238261	Sed-2 grab 6/04 1340-1400 238262	Sed-3 grab 6/04 1400-1500 238263
GENERAL CHEMISTRY Conductivity (umhos/cm) Alkalinity (mg/L CaCO3) Hardness (mg/L CaCO3) Color TS (mg/L) TNVS (mg/L)				17200** 29.3 54.2 30J 132 92	91 26.2 36.6	21000** 47.3 426 100J 2460 2070	7760 44.8 762 180 4660 4020	4830 293 636 1200 3090 2550	2930 25,8 244 450 1600 1360	1820 21.8 156 650 1110 909			
TSS (mg/Ľ) TNVSS (mg/Ľ) % Solids				- 9 7		48 34	19 13	111 49	14 8	27 14	50	68	63
% Volatile Solids BOD5 (mg/L) COD (mg/L)				10J 83J		<10J 83J	350	190	<10	250	8.5	4.0	4.3
TOC (mg/L) TOC (% dry wt) NH3–N (mg/L)				5.01 0.016		18.4	26.3 1.1	74.3	24.8	35.1 0.092	2.2	0.61	1.1
NO2+NO3-N (mg/L) Phosphorous - Total (mg/ Oil and Grease (mg/L)	/L)	مەرىكە تەرەپىيە 1J>	<1J	<0.01J 0.07		0.012J 0.19 <1	0.076J 0.15	0.39J 1.6	0.062J 0.12	0.29 0.14			
F-Coliform MF (#/100 mL F-Coliform MPN (#/100 m % Klebsiella (KES)		10 49 0	10 20 38			3700	1000	2300	<10	10			
ORGANICS DOX (ug/L) Phenolics Total(water-mc	1/L)	1.3	23	<0.01		0.014J							
FIELD OBSERVATIONS Temp (C)		13.4	13.8			13.5	14.3	16.3	14.0	12.1			
Temp cooled (C) pH (S.U.) Conductivity (umhos/cm)		6.9 163	6.9 200	2.3 7.1 115		6.6 4000	6.5 7100	6.6 5600	6.0 2800	5.7 1600			
Sulfide (mg/L) Chlorine (total – mg/L)		<0.1 <0.1	<0.1 <0.1	113		<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1			

002 – the 002 effluent Runoff – runoff from the "woodyard riverside drain" ditch Ditch – sampling locations from ditches near ponds B, C, and D Sed – sediment sampling locations near the 001 outfall

Low nitrogen concentrations in the 001 discharge may be limiting to any biological treatment beyond that currently achieved, though this may not be a concern at present. As a general rule, the ratio of BOD₅ to nitrogen required for biological treatment has been estimated as 20:1 (and 100:1 for BOD₅ to phosphorous - WPCF, 1977). The 001 effluent BOD₅ (99 mg/L est.) and total inorganic nitrogen (NO₂+NO₃+NH₃-0.33 mg/L est.) ratio was 300:1, high in relationship to typical ratios (Table 4).

General chemistry data found 002 to be a fairly clean discharge (Table 4). BOD₅ (10 mg/L est.), TSS (9 mg/L), Fecal coliform (10/100mL - MF) and nutrients (0.07 mg/L or less) concentrations were all low. Measurements for all permitted parameters, BOD₅, fecal coliform, pH, and oil and grease, were well within permit requirements (Table 3). DOX concentrations from discharge 002 varied considerably between the two grab samples 002-1 (1.3 ug/L) and 002-2 (23 ug/L). The cause of the large variation is not known. Some follow-up DOX monitoring at 002 is suggested.

Runoff characteristics were similar to 002 with somewhat higher TSS (48 mg/L), fecal coliform (3700/100mL), and phosphorous concentrations (0.19 mg/L).

Fecal Coliform Results/NPDES Permit Limits Comparison

The Weyco fecal coliform permit limits were developed to protect commercial shellfish production. The Washington State Department of Health (Health) tests the waters of Grays Harbor for compliance with Water Quality Standards for Surface Waters of the State of Washington fecal coliform criteria (EPA, 1992). Health uses the most probable number (MPN) test. Several Health studies in the early 1980s indicated that Weyco effluent contributed to high fecal coliform counts which resulted in the temporary closure of areas to commercial shellfish production (Lilja, 1992).

Ecology fecal coliform counts using the MPN test (14; 62/100mL) for 001 effluent were well within the permit limits. Ecology membrane filter method (MF) counts (2,500,000; 540,000/100mL) greatly exceeded permit limits. This difference can be accounted for by the presence of an organism or organisms which appear in the MF test as large numbers of colonies, but that apparently do not produce gas in the MPN test for fecal coliform. Some *Klebsiella* do not produce gas in the MPN test (APHA, AWWA, and WPCF, 1989). The large percentage of *Klebsiella* (98% and 75%) found in the two Ecology grab samples from 001 suggest that *Klebsiella* may be responsible. It is also possible that the unknown organism may be a non-*Klebsiella* species growing in the final settling ponds (Van Donsel, 1992).

The dissimilarity between Ecology MF results in outfall 001 (2,500,000; 540,000/100mL) and Weyco MF results (0/100mL) can be accounted for by a disparity in laboratory procedures. Water Management Laboratories, performing Ecology fecal coliform analysis, counted all blue colonies of bacteria. Water Management Laboratories performed no verification tests, as none are required by <u>Standard Methods</u> (APHA, AWWA, and WPCF, 1989). Weyco, using <u>Standard Methods</u> Methods quality control procedures for fecal coliform analyses to verify results, has found in

the past that there are many false positives from the 001 outfall. Weyco contends that with experience they can differentiate under the microscope those colonies that will verify from those that will not. Weyco only counts those colonies they predict will verify, actually verifying that individual colonies are fecal coliform only when the counts approach the permitted count. Weyco reports that these verifications always confirm the visual identifications (Benn, 1992). While Weyco has stated that it has eliminated false positives, there has been no evidence concerning the more important issue of the extent of false negatives.

The practice of reporting unverified tests as verified tests based on experience in visual evaluation of organisms does not meet APHA protocol. Of additional concern is the difference between MF and MPN results, suggesting that there are about 10,000 background blue colonies per true fecal coliform colony. The large background of blue colonies would create difficulties in preparing proper dilutions for visual verification of counts at permit limits. The use of the MPN test overcomes these problems. Consistent with the Department of Health use of the MPN test to determine fecal coliform counts in Grays Harbor, it is recommended that Weyco use the MPN test to determine fecal coliform counts.

No *Klebsiella* were found in the DAef sample compared to the high counts in the 001 effluent sample. This observation suggests the high counts may be the result of a resident population in the settling ponds rather than high concentrations sent to the ponds.

Priority Pollutants (VOA, BNA, Pesticide/PCB, and Metals Scans)

Several VOA organics were detected in the samples collected (Table 5). The compounds detected in the highest concentrations in the influent were acetone (12,000 - 35,000 ug/L) and 2-butanone (MEK) (1,600 - 2000 ug/L). In 001 effluent, acetone was below detection (<110 ug/L est.) and the concentration of 2-butanone (MEK) was estimated slightly below accurate quantitation limits (estimated concentration 20 - 21 ug/L).

Chloroform (590 - 600 ug/L) and acetone (340 - 400 ug/L) were the organics found in highest concentration in bleach plant effluent. The 001 effluent chloroform concentration (430 ug/L) was only slightly lower than the bleach plant concentration. Of the few organics in the 002 effluent, chloroform (9.6 - 10 ug/L) was found in the highest concentration.

There were few VOA organics in runoff, and all were at low concentrations. Only toluene (35 ug/L) was found at a concentration greater than 1 ug/L.

Organics in effluents 001 and 002, and in runoff were well below toxicity criteria (Table 6, EPA 1986). Chloroform in 001 was 34% of the chronic freshwater criteria, the highest of organic compounds relative to criteria.

BNA compounds were found in low concentrations (Table 6). 4-Methylphenol (34 ug/L) was at the highest concentration in the 001 effluent. Bis(2-Ethylhexyl)phthalate from 002 (2.2 ug/L

Table 5 - VOA, BNA, Pesticide/PCB Compounds, Metals Detected - Weyerhaeuser (Cos), May, 1991.

Lab Log#:	228230	1205 228231	1120 228232	1240 228234	1105 228235	1040 228239
	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
	11	12000	35000	340	400	
		7.2 1600	2000	590	600	430 20 J
		2.9	J	9.7 J	10 J	5.3 J 3.6 J
Location: Type: Date: Time: Lab Log#:	Trns Blk grab 5/28 1345 228230	Inf-C comp 5/29-30 0800-0800 228233			Blch–2 grab 5/31 1105 228236	001–C comp 5/29–30 0800–0800 228241
	ug/L	ug/L			ug/L	ug/L
		26				3.1 J 34
		16			2.7 N	
					9.5 J	6.4
ate						
lds						
Location: Type: Date: Time: Lab Log#:	Trns Blk grab 5/28 1345 228230	Inf–C comp 5/29–30 0800–0800 228233				001–C comp 5/29–30 0800–0800 228241
	ug/L	ug/L				ug/L
	90					120 7
		35				-
	20	12	тв			7 29 1
	Type: Date: Time: Lab Log#: Location: Type: Date: Time:	tte	11 12000 7.2 1600 2.9 2.9 Location: Trns Blk Inf-C Type: grab comp Date: 5/28 5/29-30 Location: 1345 0800-0800 Lab Log#: 228233 ug/L ug/L ug/L ug/L ug/L 26 16 16 16 16 16 2.6 16 16 16 2.6 2.6 2.6 tte 2.6 2.6 2.6 ttg 3.5 2.2 2.2 ug/L ug/L 2.6 2.6 ttg 2.6 2.2 2.2 ttg 3.5 3.5 3.5	11 12000 35000 7.2 1600 2000 2.9 J 2.9 J 2.9 J Location: Trns Blk Inf-C Type: grab comp Date: 5/28 5/29-30 Time: 1345 0800-0800 Lab Log#: 228230 228233 ug/L ug/L 26 16 16 16 4.5 NJ 2.6 J 1 tte 2.6 J 1 Location: Trns Blk Inf-C Type: grab comp Date: 5/28 5/29-30 Time: 1345 0800-0800 Lab Log#: 228230 228233 ug/L ug/L 90 35 35	11 12000 35000 340 7,2 2000 590 1600 2000 9.7 J 2.9 J 2.9 J 9.7 J Location: Trms Bik Inf-C Type: grab 5/29-30 Time: 1345 0800-0800 Lab Log#: 228230 228233 ug/L ug/L 26 16 16 16 18 16 16 19 2.6 J 1 10 2.6 J 1 11 10/4 10/4 2.6 J 1 1 10 2.6 J 1 11 2.6 J 1 10 2.6 J 1 10 2.6 J 1 10 2.26 J 1 11 10/4 10/4 1 10 10/2 10/2 1 10 10/2 10/2 10/2 10 10/2 10/2 10/2 10 35 10/2 <	11 12000 35000 340 400 72 590 600 1600 2000 9.7 J 10 J 2.9 J 9.7 J 10 J J Location: Trne Blk Inf-C Blch-2 Type: grab 5/31 5/31 Time: 5/34 5 0800-0800 5/31 10 J Lab Log#: 228230 228233 228236 228236 ug/L ug/L ug/L ug/L 26 18 2.6 J 18 2.7 N 4.5 NJ 9.5 J 9.5 J 2.6 J 10 2.6 J 2.6 J 2.6 J 10 2.6 J 2.6 J 2.6 J 2.6 J 2.8 J 2.6 J 2.6 J 10 2.8 J 2.8 J 2.8 J 10 2.8 J 2.8 J 2.8 J 11 2.8 J 2.8 J 2.8 J 11 1.45 NJ 9.0 J 2.8 J 12 2.2 J 2.2 J 2.8 J 12 1345

Inf – influent to the bioponds Blch – bleach plant effluent C – composite sample collected by Ecology

002 - the 002 effluent Ditch – ditch sample Sediment – sediment sample

NJ indicates their is evidence the analyte is present. The numerical result is an estimate.
TB analyte was also found in the field transfer blank indicating the sample may have been contaminated.

Table 5 - (cont'd) - Weyerhaeuser (Cosmopolis), May 1991.

	Location: Type: Date: Time: Lab Log#:	001–2 grab 5/29 1430 228240	002-1 grab 5/29 1545 228244	002–2 grab 5/29 1545 228245	Runoff grab 5/30 935 228248
VOA Compounds		ug/L	ug/L	ug/L	ug/L
Acetone 1,1–Dichloroethane Chloroform 2–Butanone (MEK) 1,1,1–Trichloroethane Bromodichloromethane		430 21 J	10	9.6	0.8 J 0.7 J 0.7 NJ
2-Hexanone Toluene		5.6 J 3.6 J	1.9 J	1.7 J	35
	Location: Type: Date: Time: Lab Log#:		002–C comp 5/29–30 0800–0800 228246		Runoff grab 5/30 0935 228248
BNA Compounds			ug/L		ug/L
Phenol 4-Methylphenol Benzoic Acid 2,4-Dichlorophenol Naphthalene 2-Methylnaphthalene 2,4,6-Trichlorophenol Acenaphthylene Acenaphthene Dibenzofuran Fluorene Phenanthrene Anthracene					
Di-n-Butyl Phthalate Fluoranthene Pyrene			0.4 J		0.7 J
Benzo(a)Anthracene Bis(2-Ethylhexyl)Phthalate Chrysene Benzo(k)Fluoranthene Benzo(a)Pyrene Indeno(1,2,3-cd)Pyrene Benzo(g,h,i)Perylene			2.2 J		0.8 J
Pesticide/PCB Compounds (none detected)					
	Location: Type: Date: Time: Lab Log#:		002–C comp 5/29–30 0800–0800 228246		Runoff grab 5/30 0935 228248
Metals			ug/L		ug/L
Antimony Beryllium Cadmium Chromium Copper Lead Mercury Nickel Silver Zinc					25 TB

Table 5 - (cont'd) - Weyerhaeuser (Cosmopolis), May 1991.

Location: Type: Date: Time: Lab Log#:	Ditch-1 grab 5/28 1020 228249	Ditch–2 grab 5/28 1105 228250	Ditch-3 grab 5/28 1130 228251	Ditch-4 grab 5/28 1150 228252	Sed-1 grab 6/4 1235-1255 238261	Sed-2 grab 6/4 1340-1400 238262	Sed–3 grab 6/4 1440–1500 238263
VOA Compounds	ug/L	ug/L	ug/L	ug/L	ug/Kg	ug/Kg	ug/Kg
Acetone 1,1-Dichloroethane Chloroform 2-Butanone (MEK) 1,1,1-Trichloroethane Bromodichloromethane 2-Hexanone		5.2 J			17	J 8.6	J 8.8 J
Toluene		95					
Location: Type: Date: Time: Lab Log#:	Ditch–1 grab 5/28 1020 228249	Ditch-2 grab 5/28 1105 228250	Ditch–3 grab 5/28 1130 228251	Ditch–4 grab 5/28 1150 228252	Sed–1 grab 6/4 1235–1255 238261	Sed-2 grab 6/4 1340-1400 238262	Sed–3 grab 6/4 1440–1500 238263
BNA Compounds	ug/L	ug/L	ug/L	ug/L	ug/Kg	ug/Kg	ug/Kg
Phenol 4-Methylphenol Benzoic Acid 2.4-Dichlorophenol					130	34	NJ 32 J
Naphthalene 2-Methylnaphthalene 2,4,6-Trichlorophenol					38 12		
Acenaphthylene Acenaphthene Dibenzofuran Fluorene Phenanthrene					7.2 56 32 34	J 41 J 28 J 36	կ Մ Մ
Anthracene Di-n-Butyl Phthalate Fluoranthene					150 31 210	170 J 30 170	21 J J 20 J
Pyrene Benzo(a)Anthracene Bis(2–Ethylhexyl)Phthalate					150 42	130	20 J
Chrysene Benzo(k)Fluoranthene Benzo(a)Pyrene Indeno(1,2,3-cd)Pyrene Benzo(g,h,i)Perylene					32 38 18	J 59 NJ 32 15	J
Pesticide/PCB Compounds (none detected)							
Location: Type: Date: Time: Lab Log#:	Ditch–1 grab 5/28 1020 228249	Ditch–2 grab 5/28 1105 228250	Ditch–3 grab 5/28 1130 228251	Ditch-4 grab 5/28 1150 228252	Sed-1 grab 6/4 1235-1255 238261	Sed-2 grab 6/4 1340-1400 238262	Sed–3 grab 6/4 1440–1500 238263
Metals	ug/L	ug/L	ug/L	ug/L	ug/Kg	ug/Kg	ug/Kg
Antimony Beryllium Cadmium Chromium Copper Lead Moreney		25			2.8 36 41 14	0.35 2.1 32 16 10	0.35 2.0 31 18 8.8
Mercury Nickel Silver Zinc	9 27 TB	6 64 TB	22 TB	8 45 Ti	0.21 31 4.8 B 73	32 TB 67	27 TB 66 TI

Table 6 - Comparison of Plant Sample Priority Pollutant Data to Toxicity Criteria - Weyerhaeuser (Cosmopolis), May 1991.

	Location: Type: Date: Time:	001–1 grab 5/29 1040	001–2 grab 5/29 1430	002–1 grab 5/29 1145	002–2 grab 5/29 1545	Runoff grab 5/29 0935	EPA Wat	er Quality Criteria	Summary (EPA, 1	986)
	Lab Log#:	228239	228240	228244	228245	228248	Acute Fresh	Chronic Fresh	Acute Marine	Chronic Marine
VOA Compounds		ug/L	ug/L	ug/L	ug/L	ug/L	(ug/L)	(ug/L)	(ug/L)	(ug/L)
1,1-Dichloroethane Chloroform 2-Butanone (MEK) 1,1,1-Trichloroethane Bromodichloromethan		5 U 430 20 J 5 U 5.3 J	5 U 430 21 J 5 U 5.6 J	1 U 10 7.5 U 1 U 1.9 J	1 U 9.6 7.5 U 1 U 1.7 J	0.8 J 0.7 J 7.5 U 0.7 NJ 1 U	28,900 * 11,000 *(a)	1,240 *	12,000 *(a)	
Toluene	e	3.6 J	3.6 J	1.9 J 1 U	1.7 J 1 U	35	11,000 *(a) 17,500 *		12,000 *(a) 6,300 *	6,400 *(a) 5,000 *
	Location: Type: Date: Time: Lab Log#:	001–C comp 5/29–30 0800–0800 228241		002–C comp 5/29–30 0800–0800 228246		Runoff grab 5/29 0935 228248	EPA Wate Acute	er Quality Criteria - Chronic	Summary (EPA, 1 Acute	986) Chronic
BNA Compounds		ug/L	· · · · · · · · · · · · · · · · · · ·	ug/L		ug/L	Fresh (ug/L)	Fresh (ug/L)	Marine (ug/L)	Marine (ug/L)

Lab Log]#:228241	228246	228248	Acute	Chronic	Acute	Chronic
BNA Compounds	ug/L	ug/L	ug/L	Fresh (ug/L)	Fresh (ug/L)	Marine (ug/L)	Marine (ug/L)
Phenol 4-Methylphenol 2,4-Dichlorophenol Naphthalene 2,4,6-Trichlorophenol	3.1 J 34 2.3 J 1 J 6.4	2 U 1 U 3 U 1 U 5 U	2 U 1 U 3 U 1 U 5 U	10,200 * 2,020 * 2,300 *	2,560 * 365 * 620 * 970 *	5,800 * 2,350 *	
Di-n-Butyl Phthalate	1 U	0.4 J	1 U	940 *(i)	3 *(i)	2.944 *(i)	3.4 *(i)
Pyrene Bis(2–Ethylhexyl)Phthalate	1 U 1 U	1 U 2.2 J	0.7 J 0.8 J	940 *(i)	3 *(i)	2.944 *(i)	3.4 *(i)
Pesticide/PCB Compounds (none detected)							
Metals							
Antimony Nickel Zinc	120 7 29	60 U 5 U 20 U	60 U 5 U 25	9,000 * 842 + 69 +	1,600 * 94 + 63 +	75 95	8.3 86

NOTE: SOME INDIVIDUAL COMPOUND CRITERIA OR LOELS MAY NOT AGREE WITH GROUP CRITERIA OR LOELS. REFER TO APPROPRIATE EPA DOCUMENT ON AMBIENT WATER QUALITY CRITERIA FOR FULL DISCUSSION.

001-1 - 001 effluent grab sample 1

- 001-2 001 effluent grab sample 2
- 001-C 001 effluent Ecology composite sample 002-1 - 002 effluent grab sample 1
- 002-2 002 effluent grab sample 2

- 002-C 002 effluent Ecology composite sample Runoff runoff from woodyard riverside drain
- U indicates the analyte was not detected at the given detection limit.
- J indicates an estimated value for a
- detected analyte.
- NJ indicates there is evidence the analyte is present The numerical result is an estimate.

*insufficient data to develop criteria -Lowest Observed Effect Level (LOEL) presented +calculation based on hardness (54 mg/L) as CaCO3 for outfall 002. Criteria for outfall 001 and runoff would be somewhat higher. (a) Total Halomethanes (i) Total Phthalate Esters

est.) was the only BNA compound found in concentrations approaching EPA criteria (73% of the chronic freshwater criteria and 65% of the chronic marine criteria - EPA, 1986).

No Pesticide/PCB compounds were detected.

Copper, nickel, silver and zinc were detected in the influent (Table 6). All metals in the effluent were less than EPA criteria (EPA, 1986). Nickel in outfall 001 (7 ug/L) was 84% of the chronic marine criteria. Antimony found in outfall 001 (120 ug/L) was in a concentration well below EPA criteria. The detection of antimony in 001 may be in error as antimony was found in the transfer blank at a concentration of 90 ug/L. Zinc concentrations from outfall 001 and runoff were a small fraction of the chronic marine criteria. Copper and cadmium criteria were below detection limits. Freshwater metals criteria were based on 100 mg/L hardness as CaCO₃. The greater hardness of 001 (313 mg/L) and runoff samples (426 mg/L) would correspond to higher criteria levels than those listed in Table 6.

Complete priority pollutant scan results with detection limits are included in Appendix D - VOA's, Appendix E - BNA's, Appendix F - Pesticides/PCB's, and Appendix G - metals.

Several TICs were found in 001 at concentrations less than 190 ug/L est. No TICs were identified in the 002 effluent or runoff. Appendix H summarizes TICs found.

Guaiacols/Catechols & Resin Acids-Fatty/Acids

The guaiacol/catechol scan found several compounds present (Table 7). In the influent, guaiacol (2-methoxyphenol), (145 ug/L), was present in the highest concentration. In the 001 effluent, the phenolic compound 4-methylphenol (45 ug/L est.) was the compound found in the highest concentration. All other target compounds were found at concentrations of 8 ug/L or less.

Eleven resin acid/fatty acid compounds were found in the influent at concentrations ranging from 57 ug/L to 1700 ug/L. Concentrations in the effluent were reduced, apparently a result of secondary treatment. The highest concentration in the 001 effluent was Dehydroabietic acid (43 ug/L). This concentration is well below salmonid LC_{50} data (500 - 1760 ug/L) for dehydroabietic acid (Verschueren, 1983).

In 002 effluent, guaiacol/catechol compounds were not detected. Only two resin acid/-fatty acid compounds were detected at estimated concentrations of 0.2 ug/L.

Dioxin/Furan

Dioxins were not detected in the 001 or 002 effluent (Table 8). Total TCDDs were the only dioxin compounds detected in the bleach plant effluent (6 pg/L).

TCDFs (total) were the only furans detected (Bleach plant (22 pg/L); Outfall 001 (15 pg/L); Outfall 002 (5.2 pg/L)).

Table 7 – Resin Acid/Fatty Acid and Guaiacol/Catechol Scan Results – Weyco (Cos), May 1991.

Location: Type: Date: Time:	Inf–C comp 5/29–30 800–800		001–C comp 5/29–30 0800–0800		002–C comp 5/29–30 0800–0800	
Lab Log#:	228233		228241		228246	
GUAIACOLS/CATECHOLS	ug/L		ug/L		ug/L	
4-Chloro-3-Methylphenol	0.4	U	0.4	U	0.6	U
Pentachlorophenol		U		U	2	U
2,4,6-Trichlorophenol	0.8		0.8	U	1	U
2-Nitrophenol	0.4		0.4		0.6	
Guaiacol (2-methoxyphenol)	145	J	2	ويحتقق والمتعادية	0.6	
2-Methylphenol	6		0.8	U	1	U
o-Chlorophenol	0.8		0.8		1	U
2,4,5-Trichlorophenol	0.8		0.8		1	U
4-Allylguaiacol (eugenol) 4-Propenylguaiacol	18 10	and a contract	0.5	and the second se	!	U
4-Nitrophenol	0.8		0.8	U	1	U U
2,4–Dimethylphenol	0.8 0.8		0.8	J U		U
4–Methylphenol	8	0	45	J	1	U
Phenol	17	J		J	4	U
2,4-Dichlorophenol	3	ັງ	3	Ĵ		Ŭ
2,3,6-Trichlorophenol	7	-	8	•		υ
Tetrachloroguaiacol		U	2	U	'	U
Tri-CI-tri-MeO-benzene	0.8	903090000		Ŭ	- 1	U
Tetrachlorocatechol		Ū		Ū	2	Ŭ
4-Chlorocatechol	0.4			Ū	0.6	-
4,5-Dichloroguaiacol		J	2	J		Ū
Trichlorosyringol	0.8		0.8	U	1	Ū
4,5,6-Trichloroguaiacol	0.8		2	J		U
4,5-Dichlorocatechol	0.8	100000000000		U	1	U
a-Terpeneol	0.8		1	J	1	U
2,3,4–Trichlorophenol	0.8		0.8	U	1	Ū
4-Chloroguaiacol	0.4	U	0.5	U	0.6	U
5,6-Dichlorovanillin	2	U	0.7	J	2	U
6-Chlorovanillin	0.8	U	2	J	1	U
3,4,5–Trichlorocatechol	2	U	0.4	J	2	U
3,4,5-Trichloroguaiacol	0.8	U	0.8	U	1	U
RESIN ACIDS/FATTY ACIDS						
Linoleic acid	320		3	U	5	U
Palmitoleic acid	35	U	3	U	5	U
Decanoic Acid, Hexa-	970		5	U	5	U
Oleic acid	230		3	U	5	U
Octadecanoic acid	340			U	5	U
Retene	35	U	3	U	5	U
Pimaric acid	35	U	3	U	5	U
Sandaracopimaric acid	57		0.9	J	5	U
Isopimaric acid	92		1	J	0.2	J
Palustric acid	35	U	3	U	5	U
Eicosatrienoic acid						
Dehydroabietic acid	1700		43		0.2	
Abietic acid	66		0,5			U
Neoabietic Acid	35			U		U
9,10-Dichlorosteric acid	29	J		U	<u> </u>	U
14-Chlorodehydroabietic	72		8			U
12-Chlorodehydroabietic	160		19			U
Dichlorodehydroabietic Acid	35	U	3	U	5	U

 $U_{\rm }$ indicates compound was analyzed but not detected at the given detection limit J_indicates an estimated value when result is less than specified detection limit

Inf-C - the composite influent sample 001-C - the 001 composite sample 002-C - the 002 composite sample

Location: Type: Date: Time: Lab Log#:	Trns Blk grab 5/28 1345 228230	Inf-C comp 5/29-30 0800-0800 228233	Blch-2 grab 5/31 1105 228236	001–C comp 5/29–30 0800–0800 228241	002–C comp 5/29–30 0800–0800 228246	Sed-1 grab 6/4 1235-1255 238261	Sed-2 grab 6/4 1340-1400 238262	Sed-3 grab 6/4 1440-1500 238263
	(pg/L)	(pg/L)	(pg/L)	(pg/L)	(pg/L)	(pg/g)	(pg/g)	(pg/g)
Furans								
TCDFs (total)	1.8 U	7.7 U	22	15	5.2	7.7	5.7	7.0
2,3,7,8-TCDF	1.8 U	1.8 U	5.2 U	3.7 U	2.1 U	2.6	3.5	1.4
PeCDFs (total)	1.5 U	1.6 U	14 U	8.6 U	8.5 U	1.5 U	0.9 U	1.4 1.8 U
1,2,3,7,8-PeCDF	1.5 U	0.8 U	1.6 U	0.25 U	1 U	0.17 U	0.9 U 0.23 U	0.19 U
2,3,4,7,8-PeCDF	1.5 U	1.6 U	1.8 U	1.8 U	2 U	0.17 U	0.23 U 0.37 U	
HxCDFs (total)	4.3 U	5.9 U	5.4 U	9.4 U	11 U	7,5 U	4.3 U	0.34 U
1,2,3,4,7,8-HxCDF	0.91 U	0,7 U	0.58 U	1.1 U	0.85 U	0.34 U		4.9 U
1,2,3,6,7,8-HxCDF	1.2 U	0.56 U	0.56 U	1.1 U	0.85 U 1 U	0,13 U	0.12 U	0.22 U
1,2,3,7,8,9-HxCDF	1.7 U	1.1 U	1.1 U	1.1 U 2 U	1.6 U		0.09 U	0.25 U
2,3,4,6,7,8-HxCDF	3.6 U	4.3 U	4.2 U	4.9 U	5.4 U	0.12 U 0.89 U	0.1 U	0.41 U
HpCDFs (total)	1.9 U	2.8 U	3.7 U	4,9 U 10 U	8.7 U		0.77 U	0.82 U
1,2,3,4,6,7,8-HpCDF	1.4 U	2.2 U	2.6 U	3.6 U	3.9 U	12 U	4.5 U	7.2 U
1,2,3,4,7,8,9-HpCDF	1.9 U	1.6 U	1.5 U	1.5 U		2.4 U	1.6 U	3.1 U
OCDF	8.4 U	7.3 U	2.3 U	4.6 U	3.5 U	0.19 U	0.12 U	0.14 U
		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	2.3 0	4.8 U	6.6 U	7.2 U	4.9 U	6 U
Dioxins								
TCDDs (Total)	1.5 U	5.8 U (6	2 U	2.1 U	0.88 U	1.2	1.3
2,3,7,8-TCDD	1.5 U	2.1 U	2,5 U	2 U	2.1 U	0.88 U	0.93 U	0.96 U
PeCDDs (total)	1.2 U	1.3 U	2.7 U	1.4 U	1.4 U	2.8 U	1.9 U	0.96 U 3.8 U
1,2,3,7,8-PeCDD	1.2 U	1.3 U	2.7 U	1.4 U	1.4 U	0.45 U	0.65 U	
HxCDDs (total)	3 U	2.8 U	2.4 U	1.5 U	1.4 U 3 U	0.43 U	4.4 U	0.79 U
1,2,3,4,7,8-HxCDD	2.4 U	0.7 U	1.8 U	1.0 U	1.6 U	0.93 U 0.41 U	4.4 U L 1.2 U	14
1,2,3,6,7,8-HxCDD	3 U	2.7 U	1.6 U	1.1 U	2.9 U	0.41 U 0.9 U	1.2 U 1.2 U	0.84 U
1,2,3,7,8,9-HxCDD	2.6 U	0.87 U	2.4 U	1,5 U	1.7 U	0.83 U	1.2 U 1.1 U	1.2 U
HpCDDs (total)	4.7 U	11 U	3.7 U	10 U	13 U	17		1.2 U
1,2,3,4,6,7,8-HpCDD	4.7 U	11 U	3.7 U	10 U	6.7 U	6,8	24	26
OCDD	16 U	67 U	22 U	70 U	40 U	46	8.6 60	12 71
indicates compound was analy for but not detected at the given detection limit.	yzed	Inf -	– transfer blank – influent to the bic –composite sample	ponds collected by Ecolog	001	– Bleach plant effi – the 001 effluent		

Table 8 - Dioxin/Furan Results - Weyerhaeuser (Cosmopolis), May 1991.

Sed - Sediment sampling locations near the outfall

-composite sample collected by Ecology

Bioassays

Bioassay organism sensitivity to Weyco samples was variable (Table 9). Outfall 001 effluent showed the most acute and chronic toxicity to invertebrates, with relatively little toxicity to fish. Outfall 002 effluent revealed no toxicity. Runoff showed toxicity to Microtox.

Rainbow trout and *Daphnia magna* survival tests revealed no acute toxicity in the 001 effluent, 002 effluent, or runoff samples.

Fathead minnow survival was reduced by exposure to 100% effluent (71.4% survival), but growth was not significantly affected. The Microtox tests indicated toxicity for outfall 001 effluent (EC_{50} : 35.9% effluent concentration) and runoff (at EC_{50} : 46.8% sample concentration).

The echinoderm sperm cell and bivalve larvae survival and development tests for outfall 001 effluent were most sensitive. The echinoderm sperm cell test indicated considerable toxicity in the 001 effluent (NOEC: 5%). The bivalve larvae survival and development test found no acute toxicity in the 001 effluent, but considerable effect on development. The chronic toxicity NOEC was 1% and EC₅₀ was 2.08%.

Ditches

General Chemistry

Higher alkalinity (293 mg/L), TSS (111 mg/L), TOC (74.3 mg/L), NH₃-N (12 mg/L), and total P (1.6 mg/L) were found in the Ditch-2 sample than in the other three ditches (Table 4). The Ditch-2 sample was collected near the dike surrounding the solids holding/disposal lagoon (Figure 4, Table 1). Results from the other three ditch sample sites were generally uniform. Fecal coliform in Ditch-1 (1000/100mL) and Ditch-2 (2300/100mL) were fairly high with the MF test.

Priority Pollutants (VOA, BNA, Pesticide/PCB, and Metals Scans)

The only organic compounds detected in the ditch samples were 2-butanone(MEK - estimated concentration 5.2 ug/L) and toluene (95 ug/L) in Ditch-2 (Table 10). These concentrations were well within EPA water quality criteria (EPA, 1986). Toluene was also found in the runoff sample at the plant site. Chromium was found only in Ditch-2. The total chromium concentration (25 ug/L) in Ditch-2 exceeded the acute fresh and chronic fresh criteria for hexavalent chromium, but was considerably below criteria for trivalent chromium. Nickel was found in ditch 1, 2, and 4 samples (6-9 ug/L), at concentration (9 ug/L) was the only one exceeding the criteria concentration (8.3 ug/L). Zinc was found in all four ditches at concentrations less than EPA water quality criteria.

Table 9 – Effluent Bioassay Results – Weyerhaeuser (Cosmopolis)

<u>Microtox</u>		EC50 (% ef	fluent)
Sample	Sample No.	5 minutes	15 minutes
001GC	228242	31	35.9
002GC	228247	а	а
Runoff	228248	59.3	46.8
Ditch 1	228249	a	а
Ditch 2	228250	53.6	50.9
Ditch 3	228251	a	a
Ditch 4	228252	>100	>100

a Statistical analysis resulted in a large number of negative gammas. Negative gammas are interpreted as a lack of toxicity.

Daphnia magna - 48-hour survival test (Daphnia magna)

Sample	Sample No.*	# Tested **	Percent Survival	
001GC	228242	19	95	
002GC	228247	20	100	
Runoff	228248	20	100	
Ditch 1	228249	21	100	
Ditch 2	228250	20	100	
Ditch 3	228251	20	100	
Ditch 4	228252	20	100	

* 100% concentration

** 4 replicates of 5 organisms

Table 9 - (cont'd) - Weyerhaeuser (Cosmopolis), May 1991.

Pacific o	yster <i>(Crassostrea giga</i>	s)	
Sample 228242 - 0	01GC		
	% Abnormal	% Mortal	ity
Sample Conc.*	or Dead	Actual	Adjusted * *
20 % Effluent	99.7	19.2	18.7
10 % Effluent	99.4	5.6	5.0
5 % Effluent	95.2	6.2	5.6
2 % Effluent	46.4	11.5	11.0
1 % Effluent	10.9	1.5	0.9
0.5 % Effluent	1.6	1.5	0.9
0.1 % Effluent	-5.4	-5.0	-5.6
0.02 % Effluent	3.7	4.1	3.5
Control	1.0	0.6	
	Chronic		Acute
	NOEC = 1.0 % effluen	t LC50	= >20 % effluent
	LOEC = 2.0% effluent	• • • • •	C = 20 % effluent
	EC50 = 2.08% effluen	t LOEC	C = >20 % effluent

Bivalve Larvae - 48 hour survival and development test

* 3 replicates per test concentration, average initial count of 113 embryos per replicate.

** corrected for control response using Abbott's formula.

Echinoderm Sperm Cell Toxicity Test

(Strongylocentrotus purpuratus) Sample 228242 - 001GC

		% Unferti	lized Eggs	
Sample	Salinity Control	*	Effluent **	
Concentration	Actual	Adjusted	Actual	Adjusted***
40 % Effluent	25.2	3.7	98.8	98.4
20% Effluent	20.6	-2.2	83.2	77.7
10 % Effluent	22.6	0.4	33.2	11.3
5 % Effluent	22.9	0.8	27.6	3.8
2 % Effluent	23.0	0.9	25.8	1.5
1 % Effluent	23.8	1.9	21.1	-4.8
0.5 % Effluent	25.1	3.6	23.6	-1.5
Seawater control	22.3		24.7	

EC50 = 15.1 % effluent NOEC = 5 % effluent LOEC = 10 % effluent

***corrected for control

Abbott's formula.

response using

average of 2 replicates - 156 to 188 * organisms counted per replicate ** average of 4 replicates - 143 to 198 organisms counted per replicate

Salinity adjusted with filtered Yaquina Bay water.

Table 9 - (cont'd) - Weyerhaeuser (Cosmopolis), May 1991.

Percent Av	verage Growth per
Survival	Fish (mg)
71.4	0.30
97.5	0.33
97.6	0.35
90.0	0.40
100	0.39
100	0.38
97.5	0.30
100	0.33
Acute	Chronic
NOEC = 50 % effluent LOEC = 100 % effluent LC50 = >100 % effluent	NOEC = 100 % effluent
	Survival 71.4 97.5 97.6 90.0 100 100 97.5 100 Acute NOEC = 50 % effluent LOEC = 100 % effluent

Fathead Minnow - 7 day survival and growth test

* four replicates of 10 organisms

Rainbow Trout - 96 hour survival test (Oncorhynchus mykiss)

Sample	Sample No.	% Effluent	# Tested	Percent Survival
	Control		30	100
001GC	8242	65	30	100
001GC	8242	100	30	100
002GC	8247	100	30	100
Runoff	8248	100	30	100

	NOEC - no observable effects concentration
L	OEC – lowest observable effects concentration
LC5	0 – lethal concentration for 50% of the organisms
EC5	0 - effect concentration for 50% of the organisms

Location: Type:	Ditch-1 grab	Ditch–2 grab	Ditch-3 grab	Ditch-4 grab	EP	A Water Quality C	riteria Summary	
Date: Time: Lab Log#:	5/28 1020 228249	5/28 1105 228250	5/28 1130 228251	5/28 1150 228252	Acute Fresh	Chronic Fresh	Acute Marine	Chronic Marine
VOA Compounds	ug/L	ug/L	ug/L	ug/L	(ug/L)	(ug/L)	(ug/L)	(ug/L)
2–Butanone (MEK) Toluene	7.5 U 1 U	5.2 J 95	7.5 U 1 U	7.5 U 1 U	17,500 *		6,300 *	5,000 *
BNA Compounds (none detected)								
Pesticide/PCB Compounds (none detected)								
Metals								
Chromium hexavalent trivalent	10 U	25	10 U 5 U	10 U	16 3064 +	11 365 + 283 +	1,100 10,300 *	50 8.3
Nickel Zinc	9 27	6 64	5 U 22	8 45	2,549 + 211 +	283 + 191 +	75 95	8.3 86
	IJ				*insufficient data t Lowest Observed +calculation based	Effect Level (LOEI) presented)

Table 10 – Comparison of Ditch Data to Toxicity Criteria – Weyerhaeuser (Cosmopolis), May 1991.

29

Bioassays

The Microtox test showed no toxicity in three of the four ditch samples (Table 9). The sample from Ditch-2 had an EC_{50} of 53.6 after 5 minutes, and 50.9 after 15 minutes. The *Daphnia* magna survival test showed no toxicity for any of the ditch samples.

Summary

Water quality based on the ditch stations sampled was generally acceptable. Pollutant constituents in the ditch samples were generally lower than those from outfall 001. Priority pollutants were below water quality criteria, and little toxicity was evident. Microtox and *Daphnia magna* bioassays showed no toxicity with the exception of some Microtox toxicity in Ditch-2.

Sediment

General Chemistry

Sed-2 (edge of dilution zone) and Sed-3 (background) general chemistry results were similar. Sediments 2 and 3 ranges were from 63 - 68% solids, 4.0 - 4.3% volatile solids and 0.61 - 1.1% TOC (Table 4). Grain size analysis results were primarily sand (71 - 79%) with some silt (15-20 % - Table 11). Sed-1, collected near the outfall had higher TOC (2.2%) and volatile solids (8.5%). The grain size distribution was more even, indicating a higher silt content than Sed-2 and Sed-3 (Table 11).

Priority Pollutants (VOA, BNA, Pesticide/PCB, and Metals Scans)

Most of the priority pollutant organics detected in sediment samples were PAH's (Table 12). Concentrations in Sed-1 and Sed-2 were roughly similar while Sed-3 concentrations were less than quantitation limits or less than detection limits. No compounds exceeded Department of Ecology Marine Sediment Quality Standards (Ecology, 1991).

Nine metals were found in the sediment samples, all in concentrations less than established criteria (Ecology, 1991).

Dioxin/Furan

TCDFs (total: 5.7 - 7.7 pg/g) and 2,3,7,8-TCDF (1.4 - 3.5 pg/g) were detected in all three sediment samples (Table 8). Total TCDDs (<0.88 - 1.3 pg/g) and four dioxin compounds (not including 2,3,7,8-TCDD) were detected. Comparable concentrations of the compounds detected were found in all three sediment samples.

A.

	Sed-2	Sed-1	Station:
grab	grab	grab	Type:
6/4	6/4	6/4	Date:
1440-1500	1340-1400	1235-1255	Time:
238263	238262	238261	Lab Log#:
(%)	(%)	(%)	Grain Size Analysis*
			Gravel
0	0	21	>4750
1	11	4	4750-2000
1	1	25	
			Sand
2	2	2	2000-850
6	7	3	850-425
24	35	11	425-250
33	31	8	250-106
4	3	1	106-75
2	1	1	75-62.5
71	79	26	
			<u>Silt</u>
5	5	7	62.5-31.2
7 5	5	14	31.2-15.6
5	5 3	9	15.6-7.8
3	<u> 2 </u> 15	5	7.8-3.9
20	15	35	
			Clay
2	2	4	3.9-1.9
1	1	3	1.9-0.9
5	2	7	0.9-0.4
0	0	0	<0.4
8	5	14	
63	68	50	% Solids
4.3	4.0	8.5	% Volatile Solids
1.1	0.61		% TOC (dry wt. basis

Table 11 – Sediment Grain Size Analysis and General Chemistry Results Weyerhaeuser (Cosmopolis), May 1991.

* Grain sizes are in microns.

Sed-1 - near outfall Sed-2 - edge of dilution zone Sed-3 - background

Location - Type: Date: Time: Lab Log#:	Dry Weight Basis						Organics Data Normalized to TOC						Criteria*	
	Sed-1 grab 6/4 1235-1255 238261	1340	Sed-2 grab 6/4 0-1400 238262		Sed-3 grab 6/4 0-1500 238263		Sed-1 grab 6/4 1235-1255 238261		Sed-2 grab 6/4 1340-1400 238262	1	Sed-3 grab 6/4 440-1500 238263	_	Dry Wt. Basis	TOC Basis
VOA Compounds	ug/Kg		ug/Kg		ug/Kg		mg/Kg		mg/Kg		mg/Kg		(ug/Kg)	(mg/Kg)
Acetone	17	J	8,6	J	8.8	J								
BNA Compounds														
4-Methylphenol	130		34	NJ	32	J							670	
LPAH (total)	260	J	307	J	31	J	11.8	J	50.3	J	2.82	J		370
Napthalene	38	J	26	J	10	J	1.7	J		J	0.91	J		99
2-Methylnapthalene	12	J	12	J	15	U	0.55	J	2	J	1.4	J		38
Acenaphthylene	7.2		3.9	NJ	15	υ	0.33	J	0.64	NJ	1.4	J		66
Acenaphthene	56		41	J	15	Ū	2.6		6.7	J	1.4	J		16
Dibenzofuran	32	J	28	J	15	U	1.5	J	4.6	J	1.4	J		15
Fluorene	34	J	36	J	15	U	1.6	J	5.9	J	1.4	J		23
Phenanthrene	150		170		21	J	6,8		28		1.9	J		100
Anthracene	31	J	30	J	15	U	1,4	J	4,9	J	1.4	U		220
HPAH (total)	490		517		40	J	22.3		84.8	J	3.6	J		
Fluoranthene	210	-	170	•	20	Ĵ	9.6	-	28	-	1.8	Ĵ		160
Pyrene	150		130		20	Ĵ	6.8		21.3		1.8	J		1000
Benzo(a)Anthracene		NJ	50	.1	15	Ŭ	1.9	N.		J	1.4	Ū		110
Chrysene	32			Ĵ	15	Ū	1.5		7.5	Ĵ	1,4	Ū.		110
Benzo(k)Fluoranthene	38			Ĵ	15	Ŭ	1.7		9.7	Ĵ	1.4	Ŭ		
Benzo(a)Pyrene	18		32		15	Ŭ	0.82			Ĵ	1.4	Ŭ		99
Ideno(1,2,3-cd)Pyrene	17			NJ	15	Ŭ	0.02		2.5	ŇJ	1.4	Ŭ	040000000000000000000000000000000000000	34
Benzo(g,h,i)Perylene		Ŭ		NJ	15		0.77			NJ	1.4			31
Pesticide/PCB Compounds (none detected)													Dry Wt. Basis	3
Metals	mg/Kg		mg/Kg		mg/Kg								mg/Kg	
Ber y llium	0.25	U	0.35		0.35									
Cadmium	2.8		2.1		2.0								5.1	
Chromium	36		32		31								260	
Copper	41		16		18								390	
Lead	14		10		8.8								450	
Mercury	0.21		0.1	U	0.1	U							0.41	
Nickel	31		32		27	-								
Silver	4.8		0.99	U	0,99	U							6,1	
Zinc	73		67		66								410	

Table 12 – Comparison of Sediment Sample Data to Toxicity Criteria – Weyerhaeuser (Cosmopolis), May 1991.

U - indicates the analyte was not detected at the given detection limit.

J - indicates an estimated value for a detected analyte.

NJ – indicates there is evidence the analyte is present. The numerical result is an estimate.

*Department of Ecology Marine Sediment Quality Standards

- Sed-1 Sediment sample collected approximately 50 feet west of the diffuser area.
- Sed-2 Sediment sample collected approximately 100 yards to sea from the diffuser markers.
- Sed-3 Sediment sample collected approximately 400 yards NE of the diffuser markers.

LPAH – sum of Low Molecular Weight Polynuclear Aromatic Hydrocarbons

HPAH – sum of High Molecular Weight Polynuclear Aromatic Hydrocarbons
These results can be compared with those of a previous sediment survey at the Weyco outfall on May 23, 1988 (Johnson, 1989). An analysis of the sediments revealed no total TCDDs, 25 pg/g HpCDDs (total), 11 pg/g 1,2,3,4,6,7,8-HpCDD, and 120 pg/g OCDD (total). No furans were detected. The Johnson dioxin results were similar to the Class II sediment results.

The most toxic congeners -- 2,3,7,8 substituted tetra- and pentachlorinated -- were not detected except for a trace amount of 2,3,7,8-TCDF. The higher chlorinated dioxin and furan compounds detected are not extremely toxic (Schoof, *et al.*, 1990). Although there are no applicable guidelines for dioxins or furans, a comparison with sediment data from other stations in Grays Harbor (Word and Ward, 1989) shows that the concentrations in the sediment samples are low.

<u>Bioassays</u>

The Sed-1 sample, collected near the outfall, was fairly toxic to *Rhepoxinius abronius* (75% mortality), echinoderm embryos (91.3% mortality, 100% abnormal or dead), and Microtox (EC_{50} 76% extract - Table 13). *Rhepoxinius abronius* mortality in Sed-2 and Sed-3 was less than 25%, thus would not be classified as demonstrating that the sediments have an adverse effect on biological resources based on Sediment Management Standards (173-204-320(3)(a) - Ecology, 1991). Sediment 3 had a minimal effect on Microtox ($EC_{50} > 100\%$ extract), and some effect on echinoderm embryos (28.8% mortality, 42.1% abnormal or dead). Sediment 2 had minimal effects on both Microtox and echinoderm embryos. It is unclear if the observed greater mortality in the Sed-1 sample was related to its different physical composition, evident from the grain size analysis, or chemical pollutants.

RECOMMENDATIONS AND CONCLUSIONS

Split Sample Results

Weyco sampling and laboratory analysis appeared acceptable during the inspection with the exception of BOD_5 and 001 fecal coliform. Ecology BOD_5 results are higher than Weyco results but are estimates, so a comparison is inconclusive.

Effluent and Runoff

<u>Flow</u>

Flows could not be verified during the inspection. 001 flow was measured by Weyco with in-line meters and 002 flow was estimated. Weyco flows were used for this report.

o Weyerhaeuser should provide calibration records and manufacturer's recommendations for frequency of calibration for the 001 in-line meters.

• A flow measuring device for 002 should be installed to provide accurate measures of flow from the discharge.

General Chemistry Results/NPDES Permit Limits Comparison

The plant met all NPDES permit limits during the inspection with the exception of the estimated Ecology BOD_5 and possible high fecal coliform counts. Proper fecal coliform testing is recommended (see Fecal Coliform Results, below).

Low nitrogen concentrations in the 001 effluent suggest nitrogen may be limiting to any BOD reduction beyond that currently achieved. This may not be a concern at present since the discharge met permit limits. Attention to nitrogen concentrations may be necessary in the future to maintain acceptable effluent quality.

Dioxin (2,3,7,8-TCDD) was not detected in outfall 001. The detection limit corresponded to a daily average below the scheduled daily maximum permit limit (monthly basis).

DOX grab sample results were greater than proposed permit limits for composite samples. Variable DOX concentrations were also detected in the 002 discharge.

o It is recommended that Weyerhaeuser check DOX concentrations in the 002 discharge to verify discharge concentrations.

Fecal Coliform Results/NPDES Permit Limits Comparison

Fecal coliform counts for 001 effluent were well within the permit limits with the most probable number (MPN) test (14; 62/100mL), but greatly exceeded permit limits with the membrane filter (MF) method (2,500,000; 540,000/100mL). *Klebsiella*, present in large numbers, may be responsible. The Weyco practice of visual evaluation of colonies indicating positive with the initial MF test to determine if they are true fecal coliforms is unacceptable.

o Consistent with the Department of Health use of the MPN test to determine fecal coliform counts in Grays Harbor, it is recommended that Weyco use the MPN test to determine fecal coliform counts.

Priority Pollutants (VOA, BNA, Pesticide/PCB and Metals Scans)

All VOA and BNA compounds and metals detected from outfalls 001, 002, and runoff were at concentrations less than EPA water quality toxicity criteria.

Guaiacols, Catechols & Resin Acids-Fatty Acids

Several guaiacol/catechol compounds were found in the influent and effluent samples. A number of resin acid/fatty acid compounds were found in the influent, with considerably lower

concentrations in the secondary (001) effluent. Effluent concentration for compounds in both groups were fairly low (less than 50 ug/L).

Dioxin/Furan

No dioxins were detected in the 001 and 002 effluent. TCDFs (total) were the only furans detected in the 001 and 002 effluent.

Bioassays

No acute toxicity was found for rainbow trout, *Daphnia magna*, and Pacific oyster larvae tests in the 001 effluent. Some acute toxicity was found for fathead minnow and Microtox in the test in the 001 effluent. Chronic toxic effects were found in tests with echinoderm sperm cell and Pacific oyster larvae in the 001 effluent. No chronic effects were found with the fathead minnow. The echinoderm and bivalve larvae tests were most sensitive.

Outfall 002 effluent showed no toxicity. Runoff showed toxicity to Microtox.

Ditches

The ditch-2 sample was collected near the solids holding/disposal lagoon. Higher concentrations of several general chemistry parameters were found at the Ditch-2 station than in the other three ditch samples. Also, the only organic compounds, two VOA compounds found in concentrations less than EPA water quality criteria were found in the Ditch-2 sample.

Sediment

Physical characteristics of the Sed-1 sample (near outfall) were somewhat different than those of the Sed-2 (edge of dilution zone) and Sed-3 (background) samples. BNA scans found higher concentrations of several compounds, mostly PAH's, in the Sed-1 and Sed-2 samples than in the Sed-3 sample. All BNA compounds detected were less than sediment standards.

A few dioxin/furan compounds were detected in the sediments. The concentrations were low. 2,3,7,8 TCDD was not detected in the sediments.

Toxicity was found in Sed-1 by the amphipod, Microtox, and echinoderm embryo bioassays. Some toxicity was also noted in the Sed-3 sample with the Microtox and echinoderm embryo bioassays. It is unclear if the toxicity observed in Sed-1 was due to chemical contaminants or the high silt content of the sample.

Table 13 – Sediment Bioassay Results – Weyerhaeuser (Cosmopolis), May 1991.

	EC50 (% extract)	
Sample	Sample No.	15 minutes
Sed-1	238261	76
Sed-2	238262	а
Sed-3	238263	>100

Microtox Sediment Toxicity Test

a Statistical analysis resulted in a large number of negative gammas. Negative gammas are interpreted as a lack of toxicity.

Echinoderm Embryo Sediment Test (Strongylocentrotus purpuratus)

			% abnormal/	Percent
Sample	Sample No.	% abnormal	dead*	mortality*
	Seawater control	13.1	15.6	3.2
	Yaquina Bay control	6.2	9.5	3.8
Sed-1	238261	100	100	91.3
Sed-2	238262	9.3	12.1	2.8
Sed-3	238263	18.1	42.1	28.8

* Based on an average initial count of 200 embryos per 10 ml subsample. 5 replicates (subsamples) per sample.

Marine Amphipod Sediment Test

(Rhepoxinius abronius)

Sample	Sample No.	No. Tested*	% Survival
	Control	100	100
Sed-1	238261	100	25
Sed-2	238262	100	93
Sed-3	238263	100	83

*5 replicates of 20 organisms each per treatment.

Sed-1	- Sediment sample collected approximately 50 feet west of the diffuser area.
Sed-2	- Sediment sample collected approximately 100 yards to sea from the diffuser markers.
Sed-3	- Sediment sample collected approximately 400 yards NE of the diffuser markers.

REFERENCES

- APHA, AWWA, WPCF, 1989. Standard Methods for the Examination of Water and Wastewater, 17th edition.
- Benn, Kent, 1992. Weyerhaeuser, Cosmopolis, laboratory, personal communication.
- Ecology, 1991. Marine Sediment Quality Standards, in Summary of Criteria and Guidelines for Contaminated Freshwater Sediments.
- EPA, 1992. 1992 Statewide Water Quality Assessment 305(B) Report, Water Quality Standards for Surface Waters of the State of Washington
- EPA, 1986. Quality Criteria for Water, EPA 440/5-86-001.
- Huntamer, D. and J. Hyre, 1991. <u>Manchester Environmental Laboratory; Laboratory Users</u> <u>Manual.</u>
- Johnson, A. and R. Coots, 1989. Survey of Chemical Contaminants in the Bottom Sediments of Grays Harbor Estuary.
- Kjosness, D., 1992. Washington State Department of Ecology, Central Programs, Industrial Section, Olympia, Washington, personal communication.
- Lilja, J., 1992. Washington State Department of Health, Office of Shellfish Programs, Tumwater, Washington, personal communication.
- Schoof, R., R. Pastorok, and L. Yost, 1990. Assessment of Human Health Risks for Ocean Disposal of Grays Harbor Sediment, for the U.S. Army Corps of Engineers Seattle District, and the U.S. Environmental Protection Agency, Region 10.
- Van Donsel, D., 1992. Washington State Department of Ecology, Quality Assurance/Quality Control Coordination, Manchester, Washington, personal communication.
- Verschueren, K., 1983. Handbook of Environmental Data on Organic Chemicals, second edition.
- Water Pollution Control Federation and the American Society of Civil Engineers, 1977. Wastewater Treatment Plant Design.
- Word, J., and J. Ward, 1989. Results of Toxicological and Chemical Evaluations of Sediments Collected from Grays Harbor, Washington, for the U.S. Army Corps of Engineers Seattle District.

APPENDICES

Inf-2 Inf-C Blch-1 Blch-2 DAef-1 001-1 001-2 001-C Parameter Quantity Location: Trns Blk Inf-1 Type: grab grab grab comp grab grab grab grab grab comp Date: 5/28 5/29 5/29 5/29-30 5/29 5/29 5/29 5/29 5/29 5/29-30 0800-0800 1040 1430 0800-0800 Time: 1345 1205 1120 1240 1105 1220 228232 228233 228234 28235&6 228239 228240 228241 Lab Log #: 228230 228231 228237 **GENERAL CHEMISTRY** шшшш Ε Conductivity Alkalinity EW Hardness E E E E E Color SOLIDS 4 Ε TSS % Solids % Volatile Solids E E E EW E E BOD5 EE COD TOC (water) TOC (soil) E E NH3-N NO2+NO3-N Phosphorous - Total E Oil and Grease F-Coliform MF E E E Ε E EW F-Coliform MPN Е Ē % Klebsiella (KES) Е Ε Grain Size ORGANICS EE E E E E EW DOX E Ε VOA (water) Ε Ε Ε VOA (soil) Ε Е Е Е BNAs (water) BNAs (soil) Pest/PCB (water) Ε Ε E Pest/PCB (soil) E Resin/Fatty Acids (water) E Е Guaiacols (water) E E E E Е Phenolics Total(water) Dioxin/Furans Е METALS Ε Ε Ε **PP** Metals BIOASSAYS Salmonid (acute) 100% Salmonid (acute) 65% Microtox (acute) Daphnia (acute) Fathead Minnow (chronic) Bivalve Larvae Echinoderm sperm cell Rhepoxinius (solid acute) Microtox (solid acute) FIELD OBSERVATIONS шшш EEE EEE E E E EW EE Temp шшшшш E E pH Conductivity EE Ε E Sulfide Е E Chlorine Е - Analysis by Ecology Trans Blk --transfer blank Bich -bleach plant effluent GC -grab composite sample 002 -the 002 effluent W - Analysis by Weyco -influent to the bioponds DAef -de-aeration tank effluent Inf C -composite sample 001 -the 001 effluent Sed -sediment sample

Appendix A – Sampling Schedule – Weyerhaeuser (Cosmopolis), May 1991.

CENERAL CHEMISTRY E	Parameter	Locatn: Type: Date: Time: ab Log #:	001-GC gr-comp 5/29 * 228242	001–Wey comp 5/29–30 00–0800	002-1 grab 5/29 1145 228244	002-2 grab 5/29 1545 228245	002–C comp 5/29–30 0800–0800 228246	002–GC gr–comp 5/29 * 228247	Runoff grab 5/29 0935 228248	Ditch-1 grab 5/28 1020 228249	Ditch-2 grab 5/28 1105 228250	Ditch-3 grab 5/28 1130 228251	Ditch-4 grab 5/28 1150 228252	Sed-1 grab 6/04 1235-1255 238261	Sed-2 grab 6/04 1340-1400 238262	Sed-3 grab 6/04 1400-1500 238263
Hardness E<		MISTRY														
Hardness E<			Ē				E	E	E	E	E	Ē	E			
Color E <td></td> <td></td> <td>E C</td> <td></td> <td></td> <td></td> <td>E</td> <td>E</td> <td>E</td> <td>E</td> <td></td> <td>C.</td> <td>E C</td> <td></td> <td></td> <td></td>			E C				E	E	E	E		C.	E C			
SOLIDS 4 W W W YS W** W E <			5					<u> </u>								
TSS W** W W W E <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>Ē</td> <td></td> <td></td> <td>Ē</td> <td>Ē</td> <td>Ē</td> <td>Ē</td> <td></td> <td></td> <td></td>							Ē			Ē	Ē	Ē	Ē			
94 Volatile Solids W** W E <td></td> <td></td> <td></td> <td>W**</td> <td>w</td> <td></td> <td>Ŵ</td> <td></td> <td>899999999999997788 1</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>				W**	w		Ŵ		899999999999997788 1							
BODS W** W E <td>% Solids</td> <td></td> <td>E</td> <td>E</td> <td>E</td>	% Solids													E	E	E
IDC (water) E <th< td=""><td></td><td>s</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>E</td><td>E</td><td>E</td></th<>		s												E	E	E
IDC (water) E <th< td=""><td></td><td></td><td></td><td>W**</td><td>W</td><td></td><td>E</td><td></td><td>E</td><td>_</td><td>_</td><td></td><td>_</td><td></td><td></td><td></td></th<>				W**	W		E		E	_	_		_			
TOC (soil) E							E		E	Ē	E	E	E			
NH3-N' E <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>E</td> <td></td> <td>F</td> <td>E.</td> <td>E</td> <td>.</td> <td>E</td> <td>-</td> <td>-</td> <td>E</td>							E		F	E.	E	.	E	-	-	E
NO2+NO3-N E E E E E E E E Diand Grease EW E <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>E</td> <td></td> <td>E</td> <td>E</td> <td>E</td> <td>c</td> <td>E</td> <td>E</td> <td>E</td> <td>E</td>							E		E	E	E	c	E	E	E	E
Phosphorous - Total E E E E E E E P-Collform MFN E							Ę		F	F	E F	Ē	F			
Oil and Grease EW E		Total					Ē		Ē		Ē	Ē	Ē			recesses des publicado de consecto de c
F-Collform MF EW E					EW	E										
% Klebsiella (KES) E E ORGANICS EW E <td< td=""><td>F-Coliform MF</td><td></td><td></td><td></td><td>EW</td><td>Е</td><td></td><td></td><td></td><td>E</td><td>E</td><td>E</td><td>E</td><td></td><td></td><td></td></td<>	F-Coliform MF				EW	Е				E	E	E	E			
Grain Size EW E <th< td=""><td></td><td></td><td></td><td></td><td>Е</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>					Е											
DRGANICS EW EW E		ES)			E	E								_	_	-
DOX EW E														E	E	E
VOA (vater) E <th< td=""><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>						-										
VCA (soil) ' BNAs (water) BNAs (water) BNAs (water) Pest/PCB (water) Resin/Fatty Acids (water) Besin/Fatty Acids (water) B						E			5	F	E	c	F			
BNAs (water) E <t< td=""><td></td><td></td><td></td><td></td><td>-</td><td>5</td><td></td><td></td><td>F</td><td>-</td><td>-</td><td>-</td><td>–</td><td>F</td><td>F</td><td>Е</td></t<>					-	5			F	-	-	-	–	F	F	Е
BNAs (soil) E <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>F</td><td></td><td>F</td><td>F</td><td>E</td><td>E</td><td>E</td><td>-</td><td>-</td><td>-</td></td<>							F		F	F	E	E	E	-	-	-
Pest/PCB (water) E E E E E E E E E E E E E E E E E E E							-		-		-	-		E	E	E
Pest/PCB (soil) E		r)								tik getekken E rr	E	dadaa da E r				
Guaiacols (water) E														E	E	E
Phenolics Total(water) E E E Dioxin/Furans E E E E E E E PP Metals E E E E E E E E BIOASSAYS E E E E E E E E E Salmonid (acute) 100% E E E E E E E E Salmonid (acute) 65% E E E E E E E E Daphnia (acute) E E E E E E E E Salmonid (acute) 65% E E E E E E E Daphnia (acute) E E E E E E Salmonid (acute) E E E E E E Bivalve Larvae E E E E E E Bivalve Larvae E E E E E E Bivalve Larvae E E E E E E PH E E E E E E E							E									
Dioxin/Furans E E E E E E METALS PP Metals BIOASSAYS Salmonid (acute) 100% E E E E E E BIOASSAYS Salmonid (acute) 05% E E E E E E E Salmonid (acute) 05% E E E E E E E Daphnia (acute) E E E E E E Daphnia (acute) E E E E E E Bivalve Larvae E E E E E E Echinoderm sperm cell E E E E E Rhepoxinius (solid acute) E E E E E FIELD OBSERVATIONS E E E E E Conductivity E E E E E Sulfide E E E E E Conductivity E E E E E Sulfide E E E E E Conductivity E E E E E																
METALS PP Metals E E E E E E E E E Salmonid (acute) 100% E		(water)					E		E					_	-	_
PP Metals E E E E E E E E E E E Salmonid (acute) 100% E							E.							E	E	Е
BIOASSAYS Salmonid (acute) 100% E Salmonid (acute) 65% E Salmonid (acute) 65% E Daphnia (acute) E E Daphnia (acute) E E E E E E E E E E E E E E E E E E E							_		E	E	E	=	F	E	F	E
Salmonid (acute) 100% E E E Salmonid (acute) 65% E Microtox (acute) E<							F			–	.		.	-		
Salmonid (acute) 65% E Microtox (acute) E E E E E E E E Daphnia (acute) E E E E E E E Stathead Minnow (chronic E Bivalve Larvae E Echinoderm sperm cell E Rhepoxinius (solid acute) Microtox (solid acute) FIELD OBSERVATIONS Temp E E E E E E E E pH E E E E E E E E conductivity E E E E E E E Sulfide E E E E E E E Sulfide E E E E E E E E Sulfide E E E E E E E E E E E E Sulfide E E E E E E E E E E E E E E E E E E E		100%	F					F	F							
Fathead Minnow (chronic E Bivalve Larvae E Bivalve Larvae E Echinoderm sperm cell E Rhepoxinius (solid acute) E Microtox (solid acute) E FIELD OBSERVATIONS E Temp E PH E Conductivity E E E Sulfide E Chlorine E			Ĕ					-	-							
Fathead Minnow (chronic E Bivalve Larvae E Bivalve Larvae E Echinoderm sperm cell E Rhepoxinius (solid acute) E Microtox (solid acute) E FIELD OBSERVATIONS E Temp E PH E Conductivity E E E Sulfide E Chlorine E			Ē					E	E	E	E	E	E			
Bivalve Larvae E Echinoderm sperm cell E Rhepoxinius (solid acute) Microtox (solid acute) FIELD OBSERVATIONS Temp E E E E E E E E pH E E E E E E E Conductivity E E E E E E E Sulfide E E E E E E Sulfide E E E E E E E Chlorine E E	Daphnia (acute)		E					E	E	E	E	e de la consecte e la consecte de la	E			
Echinoderm sperm cell E		v (chronic	ΕΕ													
Bit Provinius (solid acute) E			E											_	_	
Microtox (solid acute) FIELD OBSERVATIONS Temp pH E Conductivity E Sulfide Chlorine E E E E E E E E E E E E E			E												Ę	Ĕ
TIELD OBSERVATIONS Temp E E E E E E E E pH E E E E E E E Conductivity E E E E E E E Sulfide E E E E E E E Chlorine E E																E
Temp E E E E E E E E pH E E E E E E E Conductivity E E E E E E Sulfide E E E E E E Chlorine E E E E E														E Alto have been been well been a	E	E
Sulfide E E E E Chlorine E E E E		AHONO			F	F	F		F	F	F	F	F			
Sulfide E E E E E E E E E E E E E E E E E E E	nH				F	Ē	L F		Ē	Ë	Ē	Ē	Ē			
Sulfide E E E E E E E E Chlorine E E E E E					E	Ē	Ē		Ē	Ē	Ē	Ē	e se se se E			
Chlorine E E					Ē	Ē	-		_	E	E	Е	E			
	Chlorine				E	E										
												. .				
* - Grab composite samples consist of ** - Weyco analysis only. Sample discarded			* -						** -				discarded	1		

equal volumes of two grab subsamples.

before split was made.

Appendix B – Ecology Analytical Methods – Weyerhaeuser (Cosmopolis), May 1991.

Laboratory Analysis	Method Used for Ecology Analysis	Laboratory Performing Analysis
	······	
GENERAL CHEMISTRY		
Conductivity	EPA, 1983: 120.1	Ecology
Alkalinity	EPA, 1983: 310.1	Ecology
Hardness Color	EPA, 1983: 130.2	Ecology
SOLIDS 4	EPA, 1983: 110.1	Amtest
TSS	EPA, 1983: 160	Ecology
% Solids	EPA, 1983: 160.2	Ecology
% Volatile Solids	APHA, 1989: 2540G	Ecology
BOD5	EPA, 1983: 160.4 EPA, 1983: 405.1	Ecology
COD	EPA, 1983: 410.1	Amtest
TOC (water)	EPA, 1983: 415.1	Amtest
TOC (soil)	EPA, 1983: 415.1	Ecology Amtest
NH3-N	EPA, 1983: 350.1	Amtest
NO2+NO3-N	EPA, 1983: 353.2	Amtest
Phosphorous - Total	EPA, 1983: 365.1	Amtest
Oil and Grease	EPA, 1983: 413.1	Amtest
F-Coliform MF	APHA, 1989: 9222D	Water Management Labs
F-Coliform MPN	APHA, 1989: 9221C	Water Management Labs
% Klebsiella (KES)	APHA, 1989: 9222F	Water Management Labs
Grain Size	Tetra Tech, 1986	Soil Technology
ORGANICS		Confidential
DOX	EPA, 1986: 9020	Ecology
VOA (water)	EPA, 1984: 624	Analytical Resources Inc
VOA (soil)	EPA, 1986: 8260	Analytical Resources Inc
BNAs (water)	EPA, 1984: 625	Analytical Resources Inc
BNAs (soil)	EPA, 1986: 8270	Analytical Resources Inc
Pest/PCB (water)	EPA, 1984: 608	Analytical Resources Inc
Pest/PCB (soil)	EPA, 1986: 8080	Analytical Resources Inc
Phenolics Total(water)	EPA, 1983: 420.2	Amtest
Dioxin/Furans	EPA, 1989 :1613	Enseco
METALS		
PP Metals	EPA, 1979: 200	Sound Analytical Services
BIOASSAYS		2
Salmonid (acute) 100%	WDOE, 1981	Ecology
Salmonid (acute) 65%	WDOE, 1981	Ecology
Microtox (acute)	Beckman, 1982	Ecology
Daphnia (acute)	EPA, 1987	Ecology
Fathead Minnow (chronic)	EPA, 1989	Ecology
Bivalve Larvae	ASTM, 1989: E724-89	NW Aquatic Sci
Echinoderm sperm cell	Dinnel,1987	NW Aquatic Sci
Echinoderm embryo	ASTM, 1991: E 724-89	NW Aquatic Sci
Rhepoxinius (solid acute)	ASTM,1990: E1367-90	NW Aquatic Sci
Microtox (solid acute)	Tetra Tech, 1986.	Ecology

 FIELD OBSERVATIONS

 Temp

 pH
 APHA, 1989: 4500-H+ B.

 Conductivity
 APHA, 1989: 2510 B.

 Sulfide
 APHA, 1989: 4500-S2 D.

 Chlorine
 APHA, 1989:4500-CL G.

APHA-AWWA-WPCF, 1989. Standard Methods for the Examination of Water and Wastewater, 17th ed.

ASTM, 1989. Standard Practice for Conducting Static Acute Toxicity Tests with Larvae of Four Species of Bivalve Mollusks. pp. 368–384. In: Annual Book of ASTM Standards, Water and Environmental Technology, Vol. 11.04. American Society for Testing and Materials, Philadelphia Pa.

ASTM, 1990. Guideline for Conducting Sediment Toxicity Tests of Estuarine and Marine Invertebrates. In: Annual Book of ASTM Standards, Water and Environmental Technology. American Society for Testing and Materials, Philadelphia, Pa.

Beckman Instruments, Inc., 1982. Microtox System Operating Manual.

Dinnel, P.A., et.al, 1987. Improved Methodology for a Sea Urchin Sperm Cell Bioassay for Marine Waters. Arch. Environ. Contam. Toxicol., 16,23-32.

Ecology, 1981. Static Acute Fish Toxicity Test, DOE 80-12, revised July, 1981. EPA, 1983. Methods for Chemical Analysis of Water and Wastes,

EPA-600/4-79-020.

EPA, 1984. 40 CFR Part 136, October 26, 1984.

EPA, 1985a. Methods for Measuring the Acute Toxicity of Effluents to Freshwater and Marine Organisms. EPA/600/4-85/013.

EPA, 1985b. Short-term Methods for Estimating the Chronic Toxicity of Effluents and Receiving Waters to Freshwater Organisms. EPA/600/4-85/014.

EPA, 1986. Test Methods for Evaluating Solid Waste Physical/Chemical Methods, SW-846, 3rd ed., November, 1986.

EPA, 1987. A Short-Term Chronic Toxicity Test Using Daphnia magna. EPA/600/D-87/080.

EPA, 1989. Short-term Methods for Estimating the Chronic Toxicity of Effluents and Receiving Waters to Freshwater Organisms. Second edition. EPA/600/4-89/001.

NCASI, 1986a. Procedures for Analysis of Resin and Fatty Acids in Pulp Mill Effluents. Tech. Bull. no. 501. National Council of Paper Industry for Air and Stream Improvement Inc., New York, NY.

NCASI, 1986b. Methods for the Analysis of Chlorinated Phenolics in Pulp Industry Wastewater, Tech. Bull. no. 498. National Council of Paper Industry for Air and Stream Improvement Inc., New York, NY.

Tetra Tech, 1986. Recommended Protocols for Measuring Selected Environmental Variables in Puget Sound, Prepared for Puget Sound Estuary Program.

Tetra Tech, 1991. Echinoderm Embryo Sediment Bioassay. Recommended Protocols for Conducting Bioassays on Puget Sound Sediments. Prepared for Puget Sound Estuary Program.

Appendix C - Priority Pollutant Cleaning and Field Transfer Blank Procedures - Weyerhaeuser (Cosmopolis), May 1991.

PRIORITY POLLUTANT SAMPLING EQUIPMENT CLEANING PROCEDURES

- 1. Wash with laboratory detergent
- 2. Rinse several times with tap water
- 3. Rinse with 10% HNO3 solution
- 4. Rinse three (3) times with distilled/deionized water
- 5. Rinse with high purity methylene chloride
- 6. Rinse with high purity acetone
- 7. Allow to dry and seal with aluminum foil

FIELD TRANSFER BLANK PROCEDURE

- 1. Pour organic free water directly into appropriate bottles for parameters to be analyzed from grab samples (VOA).
- 2. Run approximately 1L of organic free water through a compositor and discard.
- 3. Run approximately 6L of organic free water through the same compositor and put the water into appropriate bottles for parameters to be analyzed from composite samples (BNA, Pesticide/PCB, resin acids, guaiacols, dioxins, phenolics, and metals).

	Location: Type: Date: Time:	Trns Blk grab 5/28 1345		Inf–1 grab 5/29 1205		Inf–2 grab 5/29 1120		Inf–C comp 5/29–30 0800–0800	Blch–1 grab 5/29 1240		Blch–2 grab 5/31 1105	DAef–1 grab 5/29 1220
VOA Compounds	Lab Log#: _	228230 ug/L		228231 ug/L		228232 ug/L		228233 ug/L	228234 ug/L		228235&6 ug/L	228237 ug/L
Chloromethane		2	n	9	U	100	11		10	an se	10 U	
Bromomethane			Ŭ		Ŭ	100			10		10 U	
Vinyl Chloride			Ũ		ັບ	150			10		10 U	
Chloroethane		3	Ŭ	Š	Ŭ	150			10		10 Ŭ	
Methylene Chloride			ŨJ	6	ŨJ	220			10		10 U	
Acetone	Γ	11		12000		35000		7	340		400	
Carbon Disulfide	L	2	U	2	U	100	U	4	5	U	5 U	
1,1-Dichloroethene		1	U	1	U	50	U		5	U	5 U	
1,1-Dichloroethane		1		1	U	50	U			U	5 U	
1,2-Dichloroethene (total)		1	U	1	υ	50	U			.00000000000		
trans-1,2-dichloroethene									5	U	5 U	
cis-1,2-dichloroethene									5	U	5 U	
Chloroform		1	U	7.2		50	U		590		600	
1,2-Dichloroethane		2	U	2	U		U		5	U	5 U '	
2-Butanone (MEK)		7,5	U	1600		2000		٦	25	U	25 U	
1,1,1-Trichloroethane		1	U	1	υ	50	U		5	U	5 U	
Carbon Tetrachloride		2	U	2	U	100	U		5	U	5 U	
Vinyl Acetate		2	U		U	100	U		5	U	5 U	
Bromodichloromethane		1	U	1	υ	50	U		9.7	J	10 J	
1,2-Dichloropropane		1	υ	1	U	50	U		5	U	5 U	
trans-1,3-Dichloropropen	е	2	U	2	U	100	U		5	U	5 U	
Trichloroethene			U	1	U	50	U		5	U	5 U	
Dibromochloromethane		1	U	1	U	50	U		5	U	5 U	
1,1,2-Trichloroethane		1	Ŭ	1	U	50	υ		5	U	5 U	
Benzene		1	U	1	U	50	U		5	U	5 U	
cis-1,3-Dichloropropene		1	U	1	U	50	U		5	U	5 U	
2-Chloroethylvinyl Ether		2	U	2	U	100	υ		5	U	5 U	
Bromoform		3	U	3	U	150	U			U	5 U	
4-Methyl-2-Pentanone (N	(IBK)	2	U	2	U	100	U		25	U	25 U	
2-Hexanone	,	2	U	2.9	J	100	U		25		25 U	
Tetrachloroethene		1	υ	1	U	 50	υ			U	5 U	
1,1,2,2-Tetrachloroethane	1	2	U	2	U	100	U		5	υ	5 U	
Toluene		1	U		U	50	U		5	U	5 U	
Chlorobenzene		1	U	1	U	50	U		5	U	5 U	
Ethylbenzene		1	U	1	U	50	U		5	U	5 U	
Styrene		1	Ū	1	U	50				U	5 U	
Total Xylenes		2	U	2	U	100	U		10	U	10 U	
Trichlorofluoromethane			Ū		U	100			10	U	10 U	
1,1,2-Trichloro-1,2,2-Tri-	•	2			Ū	100			10		10 U	
fluoroethane (Freon 113)		69999999999997697769										

Appendix D - VOA Scan Results - Weyerhaeuser (Cosmopolis), May 1991.

fluoroethane (Freon 113)

- U indicates compound was analyzed for but
- not detected at the given detection limit. J indicates an estimated value for a detected analyte.
- NJ indicates there is evidence the analyte is present The numerical result is an estimate.
- UJ the analyte was not detected at or above the reported estimated result.

Trns Blk - transfer blank

- Inf influent to the bioponds C composite sample collected by Ecology Blch bleach plant effluent
- Bich bleach plant effluent Ditch ditch sample DAef de-aeration tank effluent Sed sediment sample
- 001-1 the 001 effluent
- GC grab-composite sample Runoff runoff from woodyard riverside drain

VOA Compounds	Location: Type: Date: Time: Lab Log#:	001–1 grab 5/29 1040 228239 ug/L	001-2 grab 5/29 1430 228240 ug/L	001–C comp 5/29–30 0800–0800 228241 ug/L	001–GC gr–comp 5/29 228242 ug/L	002–1 grab 5/29 1145 228244 ug/L	002–2 grab 5/29 1545 228245 ug/L	002–C comp 5/29–30 0800–0800 228246 ug/L	002–GC gr–comp 5/29 228247 ug/L	Runoff grab 5/29 0935 228248 ug/L
VOA Compoundo		-	-	ugre	49.2	-	-		ugre	-
Chloromethane		25 U	25 U			5 U	5 U			5 U
Bromomethane		15 U	15 U			3 U	3 U			3 U
Vinyl Chloride		15 U	15 U			3 U	3 U			3 U
Chloroethane		15 U	15 U			3 U	3 U			3 U
Methylene Chloride		40 UJ 110 UJ	20 UJ 70 UJ			5 UJ 8 UJ	5 UJ 10 UJ			5 UJ 20 UJ
Acetone		110 UJ 10 U	10 U			8 UJ 2 U	10 UJ 2 U			20 UJ 2 U
Carbon Disulfide		10 U 10 U	10 U			2 U 2 U	2 U 2 U			2 U 2 U
1,1-Dichloroethane		5 U	5 U			2 U 1 U	2 U 1 U			0.8 J
1,2-Dichloroethene (total	n		5 U			l u	- -			0.0 J
trans-1,2-dichloroethene		5 U	5 U			1 U	1 U			1 U
cis-1,2-dichloroethene	2	5 U	5 U			1 Ŭ	1 U			1 U
Chloroform	F	430	430	7		10 1	9.6	7		0.7 J
1,2-Dichloroethane	L.	5 U	5 U	l		10	1 U	-		1 U
2-Butanone (MEK)	Г	20 J	21 J	7		7.5 U	7.5 U			7.5 U
1,1,1-Trichloroethane	<u></u>	5 U	5 U			1 U	1 U			0.7 NJ
Carbon Tetrachloride		5 U	5 U			1 U	1 U			<u> </u>
Vinyl Acetate		5 U	5 U			1 U	1 U			1 U
Bromodichloromethane		5.3 J	5.6 J	7		1.9 J	1.7 J	7		1 U
1,2-Dichloropropane		5 U '	5 U			10	1 U			1 U
trans-1,3-Dichloroprope	ne	5 U	5 U			1 U	1 U			1 U
Trichloroethene		5 U	5 U			1 U	1 U			1 U
Dibromochloromethane		5 U	5 U			1 U	1 U			1 U
1,1,2-Trichloroethane		5 U	5 U			1 U	1 U			1 U
Benzene		5 U	5 U			1 U	1 U			1 U
cis-1,3-Dichloropropene		5 U	5 U			1 U	1 U			1 U
2-Chloroethylvinyl Ether		5 U	5 U			1 U	1 U			1 0
Bromoform		5 U 10 U	5 U 10 U			1 U 2 U	1 U			1 U 2 U
4-Methyl-2-Pentanone (2-Hexanone	MIBK)	10 U 20 U	10 U 20 U			2 U 4 U	2 U 4 U			2 U 4 U
Tetrachloroethene		20 U 5 U	20 U			4 U 1 U	4 U 1 U			4 U 1 U
1,1,2,2-Tetrachloroethan	A	5 U	5 U			1 U	1 0			1 U
Toluene	ю. Г	3.6 J	3.6 J			1 U	1 U			35
Chlorobenzene		5 U	<u> </u>			1 U	1 U			1 U
Ethylbenzene		5 U	5 U			1 U	1 U			1 U
Styrene		5 U	5 U			1 U	1 U			1 U
Total Xylenes		10 U	10 U			2 Ū	2 Ū			2 Ū
Trichlorofluoromethane		5 U	5 U			1 U	1 U			1 U
1,1,2-Trichloro-1,2,2-Tr	I–	25 U	25 U			5 U	5 U			5 U
fluoroethane (Freon 11:										

fluoroethane (Freon 113)

VOA Compounds	Location: Type: Date: Time: Lab Log#:	Ditch-1 grab 5/28 1020 228249 ug/L		Ditch-2 grab 5/28 1105 228250 ug/L		Ditch-3 grab 5/28 1130 228251 ug/L		Ditch-4 grab 5/28 1150 228252 ug/L		Sed-1 grab 6/4 1235-1255 238261 ug/Kg	9 1340–1 238		-Sed gra 6/ 1440–150 23826 ug/K	.b /4 00 33
VOA Compounds		uyr		uy/L		ugri		ugir		uy/Ny *	ug	*	ugin	*
Chloromethane			U		U		U	5		2.8		2.3 U		5 U
Bromomethane			υ		U		υ	3		2,8		2,3 U		5 U
Vinyl Chloride			U		U		U	3		4.2		3.4 U		8 U
Chloroethane			U			3		3		4.2		3.4 U		8 U
Methylene Chloride		5	UJ		UJ	5			UJ		UJ	8 U		4 UJ
Acetone			UJ	24			UJ		UJ	17		8.6 J	1	8 J
Carbon Disulfide		2	U		U		U	2		2.8		2.3 U		5 U
1,1-Dichloroethene		2	U	2	U	2	U	2	U	1.4	U	1.1 U	1,	3 U
1,1-Dichloroethane		1	U	1	U	1	U	1	U	1.4	U	1,1 U	1.	3 U
1,2-Dichloroethene (total)										1.4	U	1.1 U	1.	3 U
trans-1,2-dichloroethene		1	U	1	U	1	U	1	U					
cis-1,2-dichloroethene		1	U	1	U	1	υ	1	U					
Chloroform		1	U	1	U	1	U	1	U	1.4	U	1.1 U	1.	3 U
1,2-Dichloroethane		1	υ	1	U	1	U	1	U	2.8	U	2.3 U	2.	5 U
2-Butanone (MEK)		7.5	υΓ	5.2	J	7.5	U	7.5	U	10.6	U	8.6 U	9.	5 U
1,1,1–Trichloroethane		1	U	1	U	1	U	1	U	1.4	U	1.1 U	1.	3 U
Carbon Tetrachloride		1	U	1	U	1	U	1	U	2.8	U	2.3 U	2.	5 U
Vinyl Acetate		1	U	1	υ	1	υ	1	U	2.8	U	2.3 U	2.	5 U
Bromodichloromethane		1	U	1	υ	1	U	1	U	1.4	U	1.1 U	1.	3 U
1,2-Dichloropropane		1	U	1	υ	1	U	1	U	1.4	U	1.1 U	1,	3 U
trans-1,3-Dichloropropene	э	1	υ	1	U	1	U	1	U	2.8	U	2.3 U	2.	5 U
Trichloroethene		1	U	1	U	1	U	1	U	1.4	U	1.1 U	1.	3 U
Dibromochloromethane		1	Ŭ	1	Ū	1			Ū	1.4	ŭ	1.1 U	1.	3 U
1,1,2-Trichloroethane		1	Ū	1	ũ	1	Ū	1	Ū	1.4	Ŭ	1.1 U		3 U
Benzene		i	Ū		Ū	•	៍បិ		-	1.4	+	1.1 U		3 U
cis-1,3-Dichloropropene		i	ັບ	Í	00770000000		Ū	1	2.5.00000	1,4	9. T. M. H.	1.1 U		3 U
2-Chloroethylvinyl Ether			Ŭ		Ū		Ū.	1		2.8		2.3 U		5 U
Bromoform		1	Ū	1	U	1	U	1	Ū	4.2		3.4 U		8 U
4-Methyl-2-Pentanone (M	IBK)	2	Ŭ	2	Ū	2		2			Ū	2.3 U		5 U
2-Hexanone			Ū		Ū		Ū	4		2.8		2.3 U		.5 U
Tetrachloroethene			Ū		Ū	in in the second se				1.4		1.1 U		3 U
1,1,2,2-Tetrachloroethane			บ		Ū		Ū	1		2.8		2,3 U		5 U
Toluene		1		95	- 1	1	200 Tester	1	07000000	1.4		1.1 U		3 U
Chlorobenzene		1	υĽ	1	<u> </u>	, 1	Ŭ		Ŭ	1.4		1.1 U		3 U
Ethylbenzene			υ	1	Ŭ	1	Ŭ		Ŭ	1.4		1.1 U		.3 U
Styrene			Ŭ	1	Ŭ	1	Ŭ		Ŭ	1.4		1.1 U		.3 U
Total Xylenes			U		U	-	U	2	-	2.8		2.3 U		5 U
Trichlorofluoromethane			ບ		υ			2		2.8		2.3 U 2.3 U		5 U
1,1,2-Trichloro-1,2,2-Tri-			U		U		ີບ	5		2.8		2.3 U 2.3 U		50 50
fluoroethane (Freon 113)		Ð	U	c	U	c	U	9	J	4.8	•	2.0 0	4	5 0

* Dry weight basis

Appendix E – BNA Scan Results – Weyerhaeuser (Cosmopolis), May 1991.

	Location: Type: Date: Time: Lab Log#:	Trns Blk grab 5/28 1345 228230	Inf–1 grab 5/29 1205 228231	Inf–2 grab 5/29 1120 228232	Inf–C comp 5/29–30 0800–0800 228233	Blch–1 grab 5/29 1240 228234	Blch–2 grab 5/31 1105 228235&6	DAef-1 grab 5/29 1220 228237
BNA Compounds		ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
Phenol Bis(2–Chloroethyl)Ether 2–Chlorophenol 1,3–Dichlorobenzene 1,4–Dichlorobenzene Benzyl Alcohol 1,2–Dichlorobenzene 2–Methylphenol		2 U 1 U 1 U 1 U 1 U 5 U 1 U			26 1 U 1 U 1 U 1 U 5 U 1 U 1 U]	2 U 1 U 1 U 1 U 1 U 5 U 1 U	
Bis(2-Chloroisopropyl)E 4-Methylphenol N-Nitroso-di-n-Propyla Hexachloroethane Nitrobenzene Isophorone 2-Nitrophenol		1 U 1 U 2 U 1 U 1 U 1 U 5 U			1 U 1 U 2 U 1 U 1 U 1 U 5 U		1 U 1 U 2 U 1 U 1 U 5 U	
2,4-Dimethylphenol Benzoic Acid		2 U 10 UJ 1 U			2 U 16]	2 U 10 UJ	
Bis(2-Chloroethoxy)Meth 2,4-Dichlorophenol 1,2,4-Trichlorobenzene Naphthalene 4-Chloroaniline	lane	3 U 1 U 1 U 3 UJ			1 U 3 U 1 U 1 U 3 UJ		1 U 2.7 NJ 1 U 1 U 3 UJ]
Hexachlorobutadiene 4–Chloro–3–Methylphen 2–Methylnaphthalene Hexachlorocyclopentadi 2,4,6–Trichlorophenol		2 U 2 U 1 U 5 U 5 U			2 U 2 U 1 U 5 U	1	2 U 2 U 1 U 5 U 9.5 J	1
2,4,5–Trichlorophenol 2–Chloronaphthalene 2–Nitroaniline Dimethyl Phthalate Acenaphthylene		5 Ū 1 U 5 UJ 1 U 1 U			5 U 1 U 5 UJ 1 U 1 U	J	1 U 5 UJ 5 UJ 1 U 1 U	J
3–Nitroaniline Acenaphthene 2,4–Dinitrophenol 4–Nitrophenol		5 UJ 1 U 10 U 5 UJ			5 ŪJ 1 U 10 U 5 UJ		5 UJ 1 U 10 U 5 UJ	
Dibenzofuran 2,4-Dinitrotoluene 2,6-Dinitrotoluene Diethyl Phthalate 4-Chlorophenyl Phenyle	ther	1 U 5 U 5 U 1 U 1 U			1 U 5 U 5 U 1 U 1 U		1 U 5 U 5 U 1 U 1 U	
Fluorene 4–Nitroaniline 4,6–Dinitro–2–Methylphe N–Nitrosodiphenylamine		1 U 5 UJ 10 U 1 U			1 U 5 UJ 10 U 1 U		1 U 5 UJ 10 U 1 U	
C – com by E	ent to the biop posite sample cology ch plant efflue	collected	GC – Runoff –	the 002 effluent grab-composite runoff from woo riverside drain ditch sample	e sample J – dyard UJ –	at the given det indicates an est the analyte was above the ropor indicates there	alyte was not detect ection limit. imated value for a do not detected at or ted estimated result. is evidence the analy umerical result is an	etected analyte. /te is

BNA Compounds	001–1 grab 5/29 1040 228239 ug/L	001-2 grab 5/29 1430 228240 ug/L	001–C comp 5/29–30 0800–0800 228241 ug/L	001–GC gr–comp 5/29 228242 ug/L	002–1 grab 5/29 1145 228244 ug/L	002–2 grab 5/29 1545 228245 ug/L	002–C comp 5/29–30 0800–0800 228246 ug/L	002–GC gr–comp 5/29 228247 ug/L	Runoff grab 5/29 0935 228248 ug/L
Phenol Bis(2-Chloroethyl)Ether 2-Chlorophenol 1,3-Dichlorobenzene 1,4-Dichlorobenzene			3.1 J 1 U 1 U 1 U 1 U 1 U]			2 U 1 U 1 U 1 U 1 U 1 U		2 U 1 U 1 U 1 U 1 U 1 U
Benzyl Alcohol 1,2–Dichlorobenzene 2–Methylphenol Bis(2–Chloroisopropyl)Ether 4–Methylphenol N–Nitroso-di–n–Propylamine			5 U 1 U 1 U 1 U 1 U 34 1 U]			5 U 1 U 1 U 1 U 1 U 1 U		5 U 1 U 1 U 1 U 1 U 1 U 1 U
Hexachloroethane Nitrobenzene Isophorone 2-Nitrophenol 2,4-Dimethylphenol			2 U 1 U 1 U 5 U 2 U 10 UJ				2 U 1 U 1 U 5 U 2 U 10 UJ		2 U 1 U 1 U 5 U 2 U 10 UJ
Benzoic Acid Bis(2-Chloroethoxy)Methane 2,4-Dichlorophenol 1,2,4-Trichlorobenzene Naphthalene 4. Chevanzilling			1 U 2.3 J 1 U 1 U 1 J 3 UJ]			1 U 3 U 1 U 1 U 1 U 3 UJ		10 03 1 U 3 U 1 U 1 U 3 UJ
4–Chloroaniline Hexachlorobutadiene 4–Chloro–3–Methylphenol 2–Methylnaphthalene Hexachorocyclopentadiene			2 U 2 U 1 U 5 U	_			2 U 2 U 1 U 5 U		2 U 2 U 1 U 5 U
2,4,6-Trichlorophenol 2,4,5-Trichlorophenol 2-Chloronaphthalene 2-Nitroaniline Dimethyl Phthalate Acenaphthylene			6.4 5 U 1 U 5 UJ 1 U 1 U	_]			5 U 5 U 1 U 5 UJ 1 U 1 U		5 U 5 U 1 U 5 UJ 1 U 1 U
3-Nitroaniline Acenaphthene 2,4-Dinitrophenol 4-Nitrophenol Dibenzofuran			5 UJ 1 U 10 U 5 UJ 1 U				5 UJ 1 U 10 U 5 UJ 1 U		5 UJ 1 U 10 U 5 UJ 1 U
2,4-Dinitrotoluene 2,6-Dinitrotoluene Diethyl Phthalate 4-Chlorophenyl Phenylether Fluorene			5 U 5 U 1 U 1 U 1 U				5 U 5 U 1 U 1 U 1 U		5 U 5 U 1 U 1 U 1 U
4–Nitroaniline 4,6–Dinitro–2–Methylphenol N–Nitrosodiphenylamine			5 UJ 10 U 1 U				5 UJ 10 U 1 U		5 UJ 10 U 1 U

BNA Compounds	Ditch-1 grab 5/28 1020 228249 ug/L	Ditch-2 grab 5/28 1105 228250 ug/L	Ditch-3 grab 5/28 1130 228251 ug/L	Ditch-4 grab 5/28 1150 228252 ug/L	Sed-1 grab 6/4 1235-1255 238261 ug/Kg	Sed-2 grab 6/4 1340-1400 238262 ug/Kg	Sed-3 grab 6/4 1440-1500 238263 ug/Kg
Phenol	2 U	2 U	2 U	2 U	35 U	27 U	29 U
Bis(2–Chloroethyl)Ether	1 U	1 U	1 U	1 U	17 U	14 U	15 U
2-Chlorophenol	1 U	1 U	1 U	1 U	17 U	14 U	15 U
1,3-Dichlorobenzene	1 U 1 U	1 U	1 U	1 U	17 U	14 U	15 U
1,4–Dichlorobenzene Benzyl Alcohol	1 U 5 U	1 U 5 U	1 U 5 U	1 U 5 U	17 U 87 U	14 U 68 U	15 U 73 U
1,2-Dichlorobenzene	3 U 1 U	3 U 1 U	5 U 1 U	ວບ 1 U	87 U 17 U	14 U	73 U 15 U
2-Methylphenol	1 Ŭ	1 0	ίŬ	i U	17 U	14 U	15 U
Bis(2–Chloroisopropyl)Ether	ίŬ	ίŬ	1 Ŭ	ίŬ	17 Ŭ	14 Ŭ	15 U
4-Methylphenol	1 Ū	1 Ū	1 Ū	1 U	130	34 NJ	32 J
N-Nitroso-di-n-Propylamine	1 Ū	1 Ū	1 Ū	1 Ū	17 U	14 U	15 U
Hexachloroethane	2 U	2 U	2 U	2 U	35 U	27 U	29 U
Nitrobenzene	1 U	1 U	1 U	1 U	17 U	14 U	15 U
Isophorone	1 U	1 U	1 U	1 U	17 U	14 U	15 U
2-Nitrophenol	5 U 2 U	5 U	5 U	5 U	87 U	68 U	73 U
2,4-Dimethylphenol		2 U	2 U	2 U	35 U	27 U	29 U
Benzoic Acid	10 UJ	10 UJ	10 UJ	10 UJ	170 U	140 U	150 U
Bis(2-Chloroethoxy)Methane	1 U	1 U	1 U	1 U	17 U	14 U	15 U
2,4-Dichlorophenol	3 U	3 U	3 U	3 U	52 U	41 U	44 U
1,2,4-Trichlorobenzene	1 U	1 U	1 U	1 U	17 U	14 U	15 U
Naphthalene	1 U	1 U	1 U	1 U	38 J	26 J	10 J
4–Chloroaniline	3 UJ	3 UJ	3 UJ	3 UJ	52 U	41 U	44 U
Hexachlorobutadiene	2 U	2 U	2 U	2 U	35 U -		29 U
4–Chloro–3–Methylphenol	2 U	2 U	2 U	2 U	35 U	27 U	29 U
2–Methylnaphthalene	1 U	1 U	1 U	1 U	12 J	12 J	ີ 15 U
Hexachlorocyclopentadiene	5 U	5 U	5 U	5 U	87 U	68 U	- 73 U
2,4,6-Trichlorophenol	5 U	5 U	5 U	5 U	87 U	68 U	73 U
2,4,5-Trichlorophenol	5 U	5 U	5 U	5 U	87 U	68 U	73 U
2-Chloronaphthalene	1 U	1 U	1 U	1 U	17 U	14 U	15 U
2-Nitroaniline Dimethyl Phthalate	5 UJ 1 U	5 UJ 1 U	5 UJ 1 U	5 UJ 1 U	87 U	68 U 14 U	73 U
Acenaphthylene	1 U	1 U	1 U		17 U	14 U 3.9 NJ	15 U
3-Nitroaniline	5 UJ	5 UJ	1 U 5 UJ	1 U 5 UJ	7.2 J 87 U	3.9 NJ 68 U] 15 U 73 U
Acenaphthene	1 U	1 U	1 U	1 U	56 J	41 J	,30 ∏ 15 U
2,4-Dinitrophenol	10 U	10 U	10 U	10 U	170 0	140 U	150 U
4-Nitrophenol	5 UJ	5 UJ	5 UJ	5 UJ	87 UJ	68 UJ	73 UJ
Dibenzofuran	1 U	1 U	1 U	1 U	32 J	28 J	า 15 U
2,4-Dinitrotoluene	5 Ū	5 Ū	5 Ū	5 Ū	87 0	-1 68 U	- 73 U
2,6–Dinitrotoluene	5 U	5 U	5 U	5 U	87 U	68 U	73 U
Diethyl Phthalate	1 U	1 U	1 U	1 U	17 U	14 U	15 U
4-Chlorophenyl Phenylether	1 U	1 U	1 U	1 U	17 U	14 U	15 U
Fluorene	1 U	1 U	1 U	1 U	34 J	36 J	15 U
4-Nitroaniline	5 UJ	5 UJ	5 UJ	5 UJ	87 U	68 U	- 73 U
4,6-Dinitro-2-Methylphenol	10 U 1 U	10 U 1 U	10 U 1 U	10 U 1 U	170 U	140 U	150 U
N-Nitrosodiphenylamine	I U	ιυ	1 U	1 0	17 U	14 U	15 U

* Dry weight basis

BNA Compounds	Location: Type: Date: Time: Lab Log#:	Trns Blk grab 5/28 1345 228230 ug/L	Inf-1 grab 5/29 1205 228231 ug/L	Inf-2 grab 5/29 1120 228232 ug/L	Inf-C comp 5/29-30 0800-0800 228233 ug/L	Bich–1 grab 5/29 1240 228234 ug/L	Blch-2 grab 5/31 1105 228235&6 ug/L	DAef-1 grab 5/29 1220 228237 ug/L
= / · · · = - · · · · · · · · · · ·		- 3	~g/m		49. L	49.2	49/L	49/L
4-Bromophenyl Phenyle	ther	1 U			1	U	1 U	
Hexachlorobenzene		1 U			1	U	1 U	
Pentachlorophenol		5 U			5	U	5 U	
Phenanthrene		1 U			2.6	<u>J</u>	1 U	
Anthracene		1 U			1	U	1 U	
Di-n-Butyl Phthalate		1 U			1	U	1 U	
Fluoranthene		1 U			1	U	1 U	
Pyrene		1 U				U	1 U	
Butylbenzyl Phthalate		1 U				U	1 U	
3,3'-Dichlorobenzidine		5 UJ				01	5 UJ	
Benzo(a)Anthracene		1 U			1		1 U	
Bis(2-Ethylhexyl)Phthala	te	1 U			1		1 U	
Chrysene		1 U			1	U	1 U	
Di-n-Octyl Phthalate		1 U			1	U	1 U	
Benzo(b)Fluoranthene		1 U				U	1 U	
Benzo(k)Fluoranthene		1 U			1		1 U	
Benzo(a)Pyrene		1 U			1		1 U	
Indeno(1,2,3-cd)Pyrene		1 U			1		1 U	
Dibenzo(a,h)Anthracene		1 U				U	1 U	
Benzo(g,h,i)Perylene		1 U			1	U	1 U	

	001–1 grab 5/29 1040 228239	001–2 grab 5/29 1430 228240	001–C comp 5/29–30 0800–0800 228241	001–GC gr–comp 5/29 228242	002–1 grab 5/29 1145 228244	002–2 grab 5/29 1545 228245	002-C comp 5/29-30 0800-0800 228246	002–GC gr–comp 5/29 228247	Runoff grab 5/29 0935 228248
BNA Compounds	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
4–Bromophenyl Phenylether Hexachlorobenzene Pentachlorophenol			1 U 1 U 5 U				1 U 1 U 5 U		1 U 1 U 5 U
Phenanthrene Anthracene Di-n-Butyl Phthalate Fluoranthene			1 U 1 U 1 U 1 U				1 U 1 U 0.4 J 1 U]	1 U 1 U 1 U 1 U
Pyrene			1 U				1 U		0.7 J
Butylbenzyl Phthalate 3,3'-Dichlorobenzidine Benzo(a)Anthracene Bis(2-Ethylhexyl)Phthalate Chrysene			1 U 5 UJ 1 U 1 U 1 U				1 U 5 UJ 1 U 2.2 J 1 U]	5 UJ 1 U 0.8 J 1 U
Di-n-Octyl Phthalate Benzo(b)Fluoranthene			1 U 1 U				1 U 1 U		1 U 1 U
Benzo(k)Fluoranthene Benzo(a)Pyrene Indeno(1,2,3-cd)Pyrene Dibenzo(a,h)Anthracene Benzo(g,h,i)Perylene			1 U 1 U 1 U 1 U 1 U 1 U				1 U 1 U 1 U 1 U 1 U 1 U		1 U 1 U 1 U 1 U 1 U 1 U

	Ditch-1 grab 5/28 1020 228249	Ditch-2 grab 5/28 1105 228250	Ditch-3 grab 5/28 1130 228251	Ditch-4 grab 5/28 1150 228252	Sed-1 grab 6/4 1235-1255 238261	Sed-2 grab 6/4 1340-1400 238262	Sed-3 grab 6/4 1440-1500 238263
BNA Compounds	ug/L	ug/L	ug/L	ug/L	ug/Kg*	ug/Kg*	ug/Kg*
4-Bromophenyl Phenylether	1 U	1 U	1 U	1 U	17 U	14 U	15 U
Hexachlorobenzene	1 U	1 U	1 U	1 U	17 U	14 U	15 U
Pentachlorophenol	5 U	5 U	5 U	5 U	87 UJ	68 UJ	73 UJ
Phenanthrene	1 U	1 U	1 U	1 U	150	170	21 J
Anthracene	1 U	1 U	1 U	1 U	31 J	30 J	15 U
Di-n-Butyl Phthalate	1 U	1 U	1 U	1 U	17 U	14 U	15 U
Fluoranthene	1 U	1 U	1 U	1 U	210	170	20 J
Pyrene	1 U	1 U	1 U	1 U	150	130	20 J
Butylbenzyl Phthalate	1 U	1 U	1 U	1 U	17 U	14 U	15 U
3,3'-Dichlorobenzidine	5 UJ	5 UJ	5 UJ	5 UJ	87 U	68 U	73 U
Benzo(a)Anthracene	1 U	1 U	1 U	1 U	42 NJ	50 J] 15 U
Bis(2-Ethylhexyl)Phthalate	1 U	1 U	1 U	1 U	17 U	14 U	15 ປ
Chrysene	1 U	1 U	1 U	1 U	32 J	46 J	15 U
Di-n-Octyl Phthalate	1 U	1 U	1 U	1 U	17 U	14 U	15 U
Benzo(b)Fluoranthene	1 U	1 U	1 U	1 U			15 U
Benzo(k)Fluoranthene	1 U	1 U	1 U	1 U	38 J	59 J	ີ 15 ປ
Benzo(a)Pyrene	1 U	1 U	1 U	1 U	18 NJ	32 J	15 U
Indeno(1,2,3-cd)Pyrene	1 U	1 U	1 U	1 U	17 U	15 NJ	15 U
Dibenzo(a,h)Anthracene	1 U	1 U	1 U	1 U	17 U	14 U	15 U
Benzo(g,h,i)Perylene	1 U	1 U	1 U	1 U	17 U	15 NJ	15 U

* Dry weight basis

Appendix F – Pesticide/PCB Scan Results – Weyerhaeuser (Cosmop	oolis). Ma'	v 1991.
--	-------------	---------

Location: Type: Date: Time: Lab Log#:	Trns Blk grab 5/28 1345 228230	Inf–C comp 5/29–30 0800–0800 228233	001–C comp 5/29–30 0800–0800 228241	002-C comp 5/29-30 0800-0800 228246	Runoff grab 5/30 0935 228248	Ditch–1 grab 5/28 1020 228249	Ditch–2 grab 5/28 1105 228250	Ditch–3 grab 5/28 1130 228251	Ditch–4 grab 5/28 1150 228252
Pesticide/PCB Compounds	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
alpha-BHC beta-BHC delta-BHC gamma-BHC (Lindane) Heptachlor Aldrin Heptachlor Epoxide Endosulfan I Dieldrin 4,4'-DDE Endrin Endosulfan II 4,4'-DDD Endosulfan Sulfate 4,4'-DDT Methoxychlor Endrin Ketone	0.04 U 0.04 U 0.06 U 0.04 U 0.04 U 0.04 U 0.04 U 0.04 U 0.04 U 0.08 U	1.5 3 0.2 0.04 0.04 0.04 0.04 0.1 0.08 0.08 0.08 0.08 0.08 0.08	U 0.04 U 0.04 U 0.06 U 0.04 U 0.04 U 0.04 U 0.04 U 0.04 U 0.08 U 0.16	U 0.04 U 0.04 U 0.04 U 0.04 U 0.04 U 0.04 U 0.04 U 0.04 U 0.08 U 0.08 U 0.08 U 0.08 U 0.08 U 0.08 U 0.08 U 0.08 U 0.16	U 0.04 U 0.04 U 0.06 U 0.04 U 0.04 U 0.04 U 0.04 U 0.04 U 0.08 U 0.08 U 0.08 U 0.08 U 0.08 U 0.08	U 0.04 U 0.04 U 0.06 U 0.04 U 0.04 U 0.04 U 0.04 U 0.04 U 0.08 U 0.08 U 0.08 U 0.08 U 0.08 U 0.08 U 0.08 U 0.08 U 0.08 U 0.16	U 0.04 U 0.04 U 0.06 U 0.04 U 0.04 U 0.04 U 0.04 U 0.04 U 0.08 U 0.16	U 0.04 U 0.04 U 0.06 U 0.04 U 0.04 U 0.04 U 0.04 U 0.04 U 0.08 U 0.08 U 0.08 U 0.08 U 0.08 U 0.08 U 0.08 U 0.08 U 0.16	U 0.04 U U 0.04 U U 0.06 U U 0.04 U U 0.04 U U 0.04 U U 0.04 U U 0.04 U U 0.04 U U 0.08 U
alpha-Chlordane gamma-Chlordane	0.06 U 0.06 U	0.06 0.06	U 0.06 U 0.06	U 0.06 U 0.06	U 0.06 U 0.06	U 0.06 U 0.06	U 0.06 U 0.06	U 0.06 U 0.06	U 0.06 U U 0.06 U
Toxaphene Aroclor-1221 Aroclor-1232	6 U 0.8 U 0.8 U	6 0.8 0.8	U 0.8	U 0.8	U 6 U 0.8 U 0.8	U 0.8	U 0.8	U 0.8	U 0.8 U
Aroclor-1242/1016 Aroclor-1248 Aroclor-1254	0.8 U 0.8 U 0.8 U 0.8 U	0.8	U 0.8 U 0.8	U 0.8 U 0.8	U 0.8 U 0.8 U 0.8	U 0.8 U 0.8	U 0.8 U 0.8	U 0.8 U 0.8	U 0.8 U U 0.8 U
Aroclor-1260	0.8 U	0.8			U 0.8				

Trns Blk – transfer blank Inf – influent to the bioponds C – composite sample collected by Ecology 001 – the 001 effluent

002 – the 002 effluent Runoff – runoff from woodyard riverside drain Ditch – ditch sample Sed – sediment sample

U The analyte was not detected at or above the reported result.

Location: Type: Date: Time: Lab Log#:	Sed-1 grab 6/4 1235-1255 238261		Sed-2 grab 6/4 1340-1400 238262		Sed-3 grab 6/4 1440-1500 238263		_
Pesticide/PCB Compounds	ug/Kg*		ug/Kg*		ug/Kg*		
alpha–BHC beta–BHC delta–BHC gamma–BHC (Lindane) Heptachlor Aldrin Heptachlor Epoxide Endosulfan I Dieldrin 4,4'-DDE Endrin	1 1 1		1 1 1.5 1 1 1 1 1 2 2 2		1	000000000000000000000000000000000000000	
Endosulfan II 4,4'-DDD Endosulfan Sulfate 4,4'-DDT Methoxychlor Endrin Ketone alpha-Chlordane gamma-Chlordane Toxaphene	2 5 4 2 4 3 1.5 1.5				4 2 4 3 1.5		
Aroclor-1221 Aroclor-1232 Aroclor-1242/1016 Aroclor-1248 Aroclor-1254 Aroclor-1260	20 20	บ บ บ บ	20 20 20 20 20	U U	20 20 20	U U	

* Dry weight basis

	Location: Type: Date: Time: Lab Log#:	Trns Blk grab 5/28 1345 228230		Inf-C comp 5/29-30 0800-0800 228233		001–C comp 5/29–30 0800–0800 228241		002-C comp 5/29-30 0800-0800 228246		Runoff grab 5/30 0935 228248		Ditch-1 grab 5/28 1020 228249	Ditch-2 grab 5/28 1105 228250		Ditch-3 grab 5/28 1130 228251		Ditch–4 grab 5/28 1150 228252
Metals		ug/L		ug/L		ug/L		ug/L		ug/L		ug/L	ug/L		ug/L		ug/L
Antimony	Γ	90		60	U	120] 60	U	60	U	60 U	60	U	60	บ	60 U
Arsenic Pentavalent	L	10	U	, 10	U	10	U	, 10	U	10	υ	10 U	10	U	10	U	10 U
Trivalent																	
Beryllium			U		U		U		U	5	U	5 U	5	U	5	U	5 U
Cadmium		5	υ	5	U	5	U	5	U	5	U	5 U	5	U	5	υ	5 U
Chromium Hexavalent Trivalent		10	U	16	U	10	υ	10	U	10	U	10 U	25		10	U	10 U
Copper		25	U	35		25	U	25	U	25	U	25 U	25	U	25	U	25 U
Lead		5	U	5	υ	5	U	5	U	5	U	5 U	5	U	5	U	5 U
Mercury		0.2	υ	0.2	υ	0.2	U	0.2	U	0.2	U	0.2 U	0.2	υ	0.2	U	0.2 U
Nickel		5	U	40		7		5	U	5	U	9	6		5	υſ	8
Selenium		5	U	5	U	5	U	5	U	5	U	5 U	5	U	5	υČ	5 U
Silver		10	U	12		10	U	10	U	10	U	10 U	10	U	10	U	10 U
Thallium		10	U	10	U	10	U	10	U	10	U	10 U	10	U	10	U	10 U
Zinc	Ľ	20		130		29] 20	U	25		27	64		22		45

Appendix G - Metals Scan Results - Weyerhaeuser (Cosmopolis), May 1991.

Trns Blk – transfer blank

002 - the 002 effluent

Runoff – runoff from woodyard riverside drain Ditch – ditch sample Sed – sediment sample

U - The analyte was not detected at or above the reported result.

Inf – influent to the bioponds C – composite sample collected by Ecology 001 – the 001 effluent

	Location: Type: Date: Time: Lab Log#:			Sed-2 grab 6/4 1340-1400 238262		Sed-3 grab 6/4 1440-1500 238263	_	
Metals		mg/Kg*		mg/Kg*		mg/Kg*		
Antimony		0.59	U	0,59	U	0,59	U	
Arsenic		0.49	U	0.49	U	0.49	U	
Pentavalent								
Trivalent								
Beryllium		0.25	U	0.35		0.35		1
Cadmium		2.8		2.1		2.0		
Chromium		36		32		31		
Hexavalent				•				
Trivalent								
Copper		41		16		18]
Lead		14		10		8.8		1
Mercury		0.21		0.1	U	0.1	U	•
Nickel		31		32		27		1
Selenium		2.5	U	2.5	U	2.5	U	
Silver		4.8		0.99	U	0.99	U	
Thallium		0.99	U	0.99	U	0.99	U	
Zinc		73		67		66]
								-

* Dry weight basis

Appendix H – VOA and BNA Scan Tentatively Identified Compounds (TICs) – Weyerhaeuser (Cosmopolis), May 1991

Tic data are presented on the laboratory report sheets that follow. Fractions are identified as VOA or ABN (BNA). Locations corresponding to the Lab Log# (called Sample No. on the laboratory report sheet) and data qualifiers are summarized on this page. If sheets are not included for a station, no TICs were detected.

Location:	Trns Blk	Inf-1	Inf-2	InfC	Blch-1	Blch-2
Type:	grab	grab	grab	comp	grab	grab
Date:	5/28	5/29	5/29	5/29-5/30	5/29	5/31
Time:	1345	1205	1120	0800-0800	1240	1105
Lab Log#:	228230	228231	228232	228233	228234	228235&6

Location:	001-1	001-2	001-C	002-1	002-2	002-C
Туре:	grab	grab	comp	grab	grab	comp
Date:	5/29	5/29	5/29-30	5/29	5/29	5/29-30
Time:	1040	1430	08000800	1145	1545	0800-0800
Lab Log#:	228239	228240	228241	228244	228245	228246

Location:	Runoff	Ditch-1	Ditch-2	Ditch-3	Ditch-4
Type:	grab	grab	grab	grab	grab
Date:	5/29	5/28	5/28	5/28	5/28
Time:	0935	1020	1105	1130	1150
Lab Log#:	228248	228249	228250	228251	228252

NJ – indicates there is evidence the analyte is present. The associated numerical value is an estimate.

- Trns Blk transfer blank
 - Inf influent to the bioponds
 - C composite sample
 - Blch bleach plant effluent
 - 001 the 001 effluent
 - 002 the 002 effluent

Runoff - runoff from woodyard riverside drain

Ditch - ditch sample

Analytical Chemists & Consultants

QC Report No: 8406-WDOE

Project No: Weyerhaeuser

VTSR: 6/3/91

Cosmopolis

333 Ninth Ave. North Seattle, WA 98109-5187 (206) 621-6490 (206) 621-7523 (FAX)

ORGANIC ANALYSIS DATA SHEET - Tentatively Identified Compounds

Sample No:

228230

Lab ID: 8406A Matrix: Water

Data Release Authorized: Dom B. Path

CAS			Scan	Estimated	
Number	Compound Name	Fraction	Number	Concentration	
				(µg/L)	
1 109-99-0	Tetrahydrofuran	VOA	298	(μg/L) 7 μ // Γ	In
2					
3					
4					
5					
6					
7					
8					
8					
10					
11					
12					
13					
14					
15					
16					
17					
18					
19					
20					
21					
22					
23					
24					
25					
26					
27					
28					
29					
30				<u> </u>	

Analytical Chemists & Consultants

333 Ninth Ave. North Seattle, WA 98109-5187 (206) 621-6490 (206) 621-7523 (FAX)

ORGANIC ANALYSIS DATA SHEET - Tentatively Identified Compounds

Sample No:

228231

Lab ID: 8406B Matrix: Water

Data Release Authorized: Jon B. Latta

	CAS			Scan	Estimated	
	Number	Compound Name	Fraction	Number	Concentration	
					(μg/L)	<i>r</i>
1	-	UNKNOWN (bp m/e 45)	VOA	133	96 NJ	Sing
2	7446-09-5	Sulfur Dioxide (ACN) (DOT)	VOA	158	75	
3	79-20-9	Methyl Ester Acetic Acid	VOA	255	440	
4	141-78-6	Ethyl Ester Acetic Acid	VOA	403	10 ,	
5	534-22-5	2-Methylfuran	VOA	430	195	
6	563-80-4	3-Methyl-2-butanone	VOA	504	20)	
7	-	UNKNOWN (bp m/e 96)	VOA	627	35 J	
8	-	Trimethylcyclopentenone Isomer (bp m/e 109)	VOA	911	120 3	
9	-	Trimethylcyclopentenone Isomer (bp m/e 109)	VOA	1022	8 j 🕴	
10						
11						
12						
13						
14						
15						
16						
17						
18						
19						
20						
21						
22			_			
23						
24						
25						
26						
27						
28						
29						
30					<u> </u>	

QC Report No: 8406-WDOE Project No: Weyerhaeuser Cosmopolis VTSR: 6/3/91

Analytical Chemists & Consultants

333 Ninth Ave. North Seattle, WA 98109-5187 (206) 621-6490 (206) 621-7523 (FAX)

ORGANIC ANALYSIS DATA SHEET - Tentatively Identified Compounds

Sample No:

228231 dilution

Lab ID: 8406Bdl Matrix: Water

Data Release Authorized:

QC Report No: 8406-WDOE Project No: Weyerhaeuser Cosmopolis VTSR: 6/3/91

	CAS			Scan	Estimated	
	Number	Compound Name	Fraction	Number	Concentration	
					(μg/L)	
1	79-20-9	Methyl Ester Acetic Acid	VOA	253		5
2	-	UNKNOWN (bp m/e 96)	VOA	627	540	
3						
4						
5						
6						
7						
8						
9						
10						
11						
12						
13						
14						
15						
16						
17						
18						
19						
20						
21						
22 .						
23						
24						
25						
26						
27						
28						
29						
30						

Analytical Chemists & Consultants

333 Ninth Ave. North Seattle, WA 98109-5187 (206) 621-6490 (206) 621-7523 (FAX)

ORGANIC ANALYSIS DATA SHEET - Tentatively Identified Compounds

Sample No:

228232

Lab ID: 8406C Matrix: Water

Data Release Authorized: Dona B. Path

QC Report No: 8406-WDOE Project No: Weyerhaeuser Cosmopolis VTSR: 6/3/91

C	AS			Scan	Estimated
N	umber	Compound Name	Fraction	Number	
					(μg/L)
1	79-20-9	Methyl Ester Acetic Acid	VOA	253	570 5 NJ
2 -	-	C4.H6.O2 lsomer (bp m/e 43)	VOA	383	260 \$
3	-	UNKNOWN (bp m/e 96)	VOA	626	620 🕽 🗸
4					
5					
6	1				
7 -					
8					
9		· .			
10 -					
111 -					
12					
13					
14					
15					
16					
17 -					
18					
19 -					
20					
21					
22					
23					
24					
25					
26					
27					
28					
29					
30 -					

Analytical Chemists & Consultants

QC Report No: 8406-WDOE

Project No: Weyerhaeuser

VTSR: 6/3/91

Cosmopolis

333 Ninth Ave. North Seattle, WA 98109-5187 (206) 621-6490 (206) 621-7523 (FAX)

ORGANIC ANALYSIS DATA SHEET - Tentatively Identified Compounds

Sample No:

228239

Lab ID: 8406Hre Matrix: Water

Data Release Authorized: Dom B.P. 1

Scan Estimated CAS Number Concentration Fraction **Compound Name** Number $(\mu g/L)$ VOA 288 48 4 NS n UNKNOWN (bp m/e 45) _ 1 VOA 322 37 1 Methyl Ester Acetic Acid 79-20-9 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Analytical Chemists & Consultants

QC Report No: 8406-WDOE

Project No: Weyerhaeuser

VTSR: 6/3/91

Cosmopolis

333 Ninth Ave. North Seattle, WA 98109-5187 (206) 621-6490 (206) 621-7523 (FAX)

ORGANIC ANALYSIS DATA SHEET - Tentatively Identified Compounds

Sample No:

228240

Lab ID: 84061 Matrix: Water

Data Release Authorized: Om B. Patha

CAS Scan Estimated Number **Compound Name** Fraction Number Concentration (µg/L) 79-20-9 Methyl Ester Acetic Acid VOA 321 38 \$ NJ for 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Analytical Chemists & Consultants

333 Ninth Ave. North Seattle, WA 98109-5187 (206) 621-6490 (206) 621-7523 (FAX)

ORGANIC ANALYSIS DATA SHEET - Tentatively Identified Compounds

Sample No:

228233

Lab ID: 8406 D Matrix: Water Instrument: FINN2

Scan Estimated CAS Number Concentration Fraction **Compound Name** Number (µg/L) Sin NJ 294 190 1 1-(2-Furanyi)-Ethanone ABN 1192-62-7 1 ABN 375 190. 2-Furancarboxaldehyde, 5-methyl 2 620-02-0 391 Unknown (BP M/E 53) ABN 820 J 3 . Guaiacol Isomer Co-elute (BP M/E 109) ABN 402 370 J 4 ABN 474 300 J Guaiacol Isomer Co-elute (BP M/E 109) 5 -400 Unknown (BP M/E 67) ABN 492 6 ABN 560 280 J Unknown C6.H14.O Isomer (BP M/E 126) 7 -190 1 ABN 578 Unknown (BP M/E 123) 8 -Unknown (BP M/E 126) ABN 616 180 J 9 ABN 1411 440 J Hexadecanoic Acid 57-10-3 10 450 J ABN 1463 Unknown (BP M/E 43) 11 1536 220 3 Unknown (BP M/E 67) ABN 12 -ABN 1631 470 J Unknown (BP M/E 57) 13 _ 1737 270 J 1-Phenenthrenecarboxylic Acid, Octahydro Isomer (BP M/E 239) ABN 14 -Eicosene, (E) Isomer (BP M/E 43) ABN 1759 220 J 15 -1807 ABN 210 J Unknown (BP M/E 43) 16 -ABN 1877 190 J Unknown (BP M/E 43) 17 _ Unknown (BP M/E 43) ABN 1919 280 3 18 -ABN 2071 200 J Unknown (BP M/E 43) 19 Unknown (BP M/E 356) ABN 2193 450 J V 20 -21 22 23 24 25 26 27 28 29 30

QC Report No: 8406-WDOE Project No: Weyerhauser Cosmopolis VTSR: 06/03/91

Analytical Chemists & Consultants

QC Report No: 8406-WDOE Project No: Weyerhauser

Cosmopolis

VTSR: 06/03/91

333 Ninth Ave. North Seattle, WA 98109-5187 (206) 621-6490 (206) 621-7523 (FAX)

ORGANIC ANALYSIS DATA SHEET - Tentatively Identified Compounds

Sample No:

1

2

3

4

5

6

7

8

9

228236

Lab ID: 8406 G Matrix: Water Instrument: FINN2

Data Release Authorized: Report prepared: 06/18/91 MAC:D iv

Estimated Scan CAS Fraction Number Concentration **Compound Name** Number $(\mu g/L)$ 908 ABN 51 NJ Hydroxy-Methoxy Benzaldehyde Isomer (BP M/E 151) -Dichloro-Methoxy-Phenol Isomer (BP M/E 177) ABN 988 120 -Unknown (BP M/E 185) ABN 1055 17. -ABN 1116 15 Unknown (BP M/E 43) -Unknown (BP M/E 199) ABN 1176 4 . -ABN 1337 6 J Unknown (BP M/E 177) -1397 ABN 18 5 Hexadecanoic Acid 57-10-3 Unknown (BP M/E 57) ABN 1449 9 -1490 4 Unknown (BP M/E 55) ABN 1540 12 1 ABN Unknown (BP M/E 43) 10 _ ABN 1626 130 J Unknown (BP M/E 43) 11 -ABN 1698 5 J Unknown (BP M/E 97) 12 -ABN 1756 45 U Unknown (BP M/E 43) 13 -ABN 1862 5 J Unknown (BP M/E 273) 14 -ABN 1877 110 Unknown (BP M/E 83) 15 ABN 2225 24 U Unknown (BP M/E 57) 16 -2247 89 J ABN Unknown (BP M/E 57) 17 _ 18 19 20 21 22 23 24 25 26 27 28 29 30

Sin

Analytical Chemists & Consultants

333 Ninth Ave. North Seattle, WA 98109-5187 (206) 621-6490 (206) 621-7523 (FAX)

ORGANIC ANALYSIS DATA SHEET - Tentatively Identified Compounds

Sample No:

228241

Lab ID: 8406 J Matrix: Water Instrument: FINN2

 QC Report No: 8406-WDOE Project No: Weyerhauser Cosmopolis VTSR: 06/03/91

[CAS			Scan	Estimate	ed	
Number		Compound Name	Fraction	Number	Concentratior		
					(μg/L)		
1	-	Unknown (BP M/E 74)	ABN	227	11,0	A	3M
2	-	Unknown (BP M/E 67)	ABN	260	6.	1	
3	-	Unknown (BP M/E 95)	ABN	273	6)		
4	-	Unknown (BP M/E 45)	ABN	291	17.↓		
5	-	Unknown (BP M/E 74)	ABN	373	8.		
6	142-62-1	Hexanoic Acid	ABN	440	14 4		
7	-	Unknown (BP M/E 60)	ABN	563	14		
8	-	Unknown (BP M/E 60)	ABN	674	8.		
9	-	Unknown (BP M/E 91)	ABN	758	61		
10	-	Unknown (BP M/E 95)	ABN	772	4 J		
11	-	Hydroxy, Methoxy Benzaldehyde Isomer (BP M/E 151)	ABN	905	4 U		
12	-	Unknown (BP M/E 178)	ABN	1211	7.		
13	-	Hexadecanoic Acid Co-Elute	ABN	1393	עוו		
14	-	Unknown (BP M/E 255)	ABN	1460	10 J		
15	-	Unknown (BP M/E 43)	ABN	1537	111		
16	-	Unknown (BP M/E 43)	ABN	1622	190 J		
17		Unknown (BP M/E 69)	ABN	1694	JL 9		
18	-	Unknown (BP M/E 43)	ABN	1751	70 🗸		
19	-	Unknown (BP M/E 57)	ABN	1872	23↓		
20	-	Unknown (BP M/E 57)	ABN	2240	20 🌡	V	
21					1		
22							
23							
24							
25							
26							
27			I	[
28			ŀ				
29							
30			1				