CITY OF ORTING CLASS II INSPECTION August 19-20, 1991 by Marc Heffner Washington State Department of Ecology Environmental Investigations and Laboratory Services Program Toxics, Compliance, and Ground Water Investigations Section Olympia, Washington 98504-7710 > Segment No:05-10-09 Water Body No:WA-10-1065 ### **ABSTRACT** A Class II Inspection was conducted at the City of Orting Sewage Treatment Plant (STP) on August 19 and 20, 1991. Treatment and flow measurement were acceptable during the inspection. The plant effluent was within NPDES permit limits, although influent BOD_5 loading was approaching plant design capacity. The plant design capacity included in the permit appeared to be acceptable based on evaluation of plant capacity using inspection data. #### INTRODUCTION A Class II Inspection was conducted at the City of Orting Sewage Treatment Plant (STP) on August 19 and 20, 1991. Conducting the inspection were Rebecca Inman and Marc Heffner of the Washington State Department of Ecology (Ecology) Toxics, Compliance, and Ground Water Investigations Section. Clay Watkins, the treatment plant operator and Superintendent of Utilities, represented Orting and provided assistance on site. Kathy Cupps of the Ecology Southwest Regional Office, requested the inspection. The City of Orting operates an aerated lagoon wastewater treatment facility discharging into the Carbon River. The wastewater treatment system was constructed in 1972. Upgrade and rehabilitation of existing facilities was recently completed: Ecology completed its final construction inspection in April 1991. The wastewater treatment plant includes a two cell aerated lagoon with chlorination prior to a final polishing pond (Figure 1). Ecology issued a new NPDES permit (#WA-002030-3) in January 1991. The permit expires in January 1994. Population projections included in a draft sewer plan/plant expansion report predict Orting will experience a fourfold population increase over the next decade (Parametrix, 1991). Questions about existing plant capacity and future needs have arisen. Specific objectives of the inspection included: - 1. verify NPDES permit self monitoring; - 2. assess wastewater treatment plant loading and capacity; and - 3. assess wastewater toxicity with priority pollutant scans and effluent bioassays. #### **PROCEDURES** Ecology collected grab and composite samples from several stations at the plant. Composite samples of the influent, aerated lagoon effluent, and final effluent (effluent) were collected. Ecology Isco® composite samplers were used to collect equal volumes of sample every 30 minutes for 24 hours. Sampler configurations and locations are summarized in Figure 1 and Appendix A. Also, a grab composite sample of effluent was collected for bioassay analysis. Sampling quality assurance/quality control (QA/QC) steps included priority pollutant cleaning the samplers prior to the inspection (Appendix A) and maintaining field chain of custody tracking on all samples. Orting also collected influent and effluent composite samples. Orting samplers collected equal volumes of sample every 30 minutes (influent) or 15 minutes (effluent) for 24 hours. Ecology and Orting samples were split for analysis by both the Ecology and Orting labs. Orting contracts BOD₅, TSS, and fecal coliform laboratory work to the Sumner STP Laboratory. Samples collected, sampling times, and parameters analyzed are summarized in Appendix B. Figure 1. Flow Schematic - Orting, August 1991. - ECOLOGY & ORTING SAMPLING STATION - - ECOLOGY SAMPLING STATION - * SEE APPENDIX A FOR STATION DESCRIPTION Samples for Ecology analysis were placed on ice and delivered to the Ecology Manchester Laboratory. Analytical procedures and the laboratories performing the analysis are summarized in Appendix C. #### RESULTS AND DISCUSSION #### Flow Measurements The Orting nine-inch Parshall flume was inspected and flume configuration was verified to be acceptable. Ecology made two instantaneous flow measurements for comparison with Orting flow meter measurements. Ecology and plant flow meter measurements agreed on both occasions; flow rates were 0.30 and 0.27 MGD. The Orting flow meter appeared to be accurate. # Quality Assurance/Quality Control (QA/QC) Most Ecology laboratory data met Ecology QA/QC guidelines and are considered to be reliable. Those data that did not meet the guidelines are appropriately qualified on the data tables. Results of samples submitted as blind duplicates for Ecology Laboratory analysis were acceptable. The results are included in parenthesis in Table 1 and Appendix E. # General Chemistry/NPDES Permit Compliance BOD₅, TSS, and nutrient (NH₃-N, NO₂+NO₃-N, and Total-P) data indicate Orting STP influent is fairly typical domestic wastewater (Table 1). The plant provided BOD₅ and TSS treatment while NH₃-N and Total-P passed through the system largely untreated. The polishing pond provided adequate dechlorination; chlorine concentrations were below Ecology detection limits (<0.1 mg/L) in both effluent grab samples collected. Some bacterial regrowth appeared to occur in the polishing pond (inlet fecal coliform concentration <3/100 mL; outlet fecal coliform concentration 43-63/100 mL). TSS concentrations decreased through the chlorination/polishing pond system from 14-24 mg/L to 4-10 mg/L. Inspection data were within weekly and monthly NPDES permit limits (Table 2). Ecology analysis of the Ecology composite sample found the influent BOD₅ load to be 97 percent of design capacity. Ecology analytical problems with the Ecology influent composite sample prevented comparison with the TSS design capacity. The influent grab sample data suggest the TSS concentration was likely similar to the BOD₅ concentration (Table 1). Thus, the TSS loading was likely approaching design capacity. Increasing plant capacity is discussed in an engineering report prepared for Orting by Parametrix (1991). Table 1 – Ecology Laboratory General Chemistry Results – Orting, August 1991. | Location: | Inf-1 | Inf-2 | Inf-Eco | Inf-Ort | AB Ef-1 | AB Ef-2 | AB Ef-Eco | Cl2-1 | Cl2-2 | Ef-1 | Ef-2 | Ef-3 | Ef-Eco | Ef-GC | Ef-Ort | |-------------------------|--------|--------|-----------|-----------|---------|---------|-------------|--------|--------|--------|----------|--------|-----------|-----------|-----------| | Type: | grab | grab | E-comp | O-comp | grab | grab | E-comp | grab | grab | grab | grab | grab | E-comp | grab-comp | O-comp | | Date: | 8/19 | 8/19 | 8/19-20 | 8/19-20 | 8/19 | 8/19 | 8/19-20 | 8/19 | 8/19 | 8/19 | 8/19 | 8/20 | 8/19-20 | 8/19 | 8/19-20 | | Time: | 0955 | 1345 | 0810-0810 | 0800-0800 | 1025 | 1405 | 0900-0900 | 1035 | 1430 | 1110 | 1450 | 0825 | 0810-0810 | ** | 0800-0800 | | Lab Log#; | 348080 | 348081 | 348082 | 348083 | 348084 | 348085 | 348086 | 348087 | 348088 | 348089 | 348090 | 348096 | 348091 | 348092 | 348093 | | N. C. William Co. | | | | | | | (348095) | | | | (348094) | | | | | | LABORATORY RESULT | S | | | | | | | | | | | | | | | | Conductivity (umhos/cm | 632 | 620 | 569 | 455 | 557 | 563 | 578(580) | | | 576 | 576 | | 572 | 536 | 561 | | Alkalinity (mg/L CaCO3) | | | 234 | | | | 239(238) | | | | | | 229 | 229 | | | Hardness (mg/L CaCO3) | | | 155 | | | | 114(121) | | | | | | 122 | 124 | | | TS (mg/L) | | | 578 | | | | 373 | | | | | | 345 | | | | TNVS (mg/L) | | | 239 | | | | 252 | | | | | | 245 | | | | TSS (mg/L) | 262 | 189 | ++ | 119 | 14 | 15 | 24(23) | | | 6 | 6 | | 4 | 7 | 10 | | TNVSS (mg/L) | | | 35 | | | | 8 | | | | | | 4 | | | | BOD5 (mg/L) | | | 189 | 65 | | | 18(18) | | | | | | 18 | | 18 | | CBOD5 (mg/L) | | | | | | | 16 | | | | | | 10 | | | | COD (mg/L) | 500 | 440 | 350 | 130 | 73 | 74 | 83(76) | | | 58 | 57 | | 57 | | 54 | | TOC (mg/L) | 82.6 | 84.5 | 52.6 | 39.0 | 27.8 | 28.5 | 29.8(25.1) | | | 19.8 | 19.6 | | 21.9 | | 20.7 | | NH3-N (mg/L) | | | 16.2 | 12.3 | | | 20.2(20.6) | | | | | | 18.9 | | 18.1 | | NO2+NO3-N (mg/L) | | | <0.02 | 0.04 | | | <0.02(0.04) | | | | | | 0.11 | | 0.65 | | Total P (mg/L) | | | 5,39 | 3.04 | | | 5.09(5,39) | | | | | | 4,82 | | 4,88 | | F-Coliform (#/100 mL) | | | | | | | | <3 | <3 | 63 | 43(51) | 51 | | | | | FIELD OBSERVATIONS | | | | | | | | | | | | | | | | | Temperature (C) | 18.1 | 19.0 | | | 23.5 | 25.0 | | | | 24.4 | 26.1 | | | | | | Temp - cooled (C)* | | | 4.8 | 16.6 | | | 7.9 | | | | | | 6.4 | | 18.6 | | pH (S.U.) | 7.4 | 7.2 | 7.3 | 7.5 | 7.6 | 8.3 | 8.0 | | | 7.5 | 7.7 | | 7.7 | | 7.9 | | Conductivity (umhos/cm | 655 | 627 | 515 | 437 | 540 | 584 | 578 | | | 597 | 600 | | 551 | | 554 | | Chlorine (mg/L) | | | | | | | | | | | | | | | | | Free | | | | | | | | 1.0 | <0.1 | <0.1 | <0.1 | | | | | | Total | | | | | | | | 1.0 | 0.5 | <0.1 | <0.1 | | | | | ^{*} temperature of composite sample at the end of the sampling period E-comp composite sample collected by Ecology O-comp composite sample collected by Orting Inf influent sample AB Ef aerated lagoon effluent Cl2 chlorine contact chamber effluent Ef plant effluent ^{**} equal volumes collected at 1110 and 1450 on 8/19 ⁺⁺ lab error ⁽⁾ duplicate sample analytical result Table 2 - NPDES Permit/Sample Split Comparison - Orting, August 1991. | | | | | | Inspection | on Data | | | |---|--------------------|-------------------|---------------------|----------------------|---------------------|----------------------|---------------------|----------------------| | | NPDES Pern | | Ecology C | omposite | Orting Co | | Grab Sa | ımples | | Parameter | Monthly
Average | Weekly
Average | Ecology
Analysis | Orting
Analysis** | Ecology
Analysis | Orting
Analysis** | Ecology
Analysis | Orting
Analysis** | | Influent BOD5
(mg/L)
(lbs/D) | 600* | | 189
583 | 140
432 | 65
201 | 142
438 | | | | Effluent BOD5
(mg/L)
(lbs/D)
(% removal) | 30
90
85 | 45
135 | 18
56
90 | 10
31
93 | 18
56
72 | 9
28
94 | | | | Influent TSS
(mg/L)
(lbs/D) | 600*
| | ++ | 130
401 | 119
367 | 160
494 | | | | Effluent TSS
(mg/L)
(lbs/D)
(% removal) | 75
330 | 110
495 | 4
12 | 7
22
95 | 10
31
92 | 5
15
97 | | | | Fecal coliform
(#/100 mL) | 200 | 400 | | | | | 51
63; 43(51) | 28 | | pH (S.U.) | not outside ran | ge 6.0 - 9.0 | | | | | 7.5; 7.7 | | | Chlorine (mg/L) | no detectable | e residual | | | | | <0.1; <0.1 | | | Toxics | no toxics in tox | ic amounts | + | | | | | | | Flow (MGD) [^] | 0.75 | | 0.37 | 0.37 | 0.37 | 0.37 | | | | NH3-N (mg/L)
Influent
Effluent | | | 16.2
18.9 | 19.2
25.2 | 12.3
18.1 | 21.6
24.0 | | | | N02+NO3-N (mg/L)
Influent
Effluent | | | <0.02
0.11 | 0.0
0.0 | 0.04
0.65 | 0.0
0.4 | | | design criteria from NPDES Permit Orting BOD5, TSS, and fecal coliform analysis done by Sumner STP [^] measured by Orting flow meter no priority pollutants exceeded toxicity criteria (Table 3) and no toxicity was observed in the effluent bioassays (Table 4) ⁺⁺ lab error ⁽⁾ duplicate sample analytical result Field temperature measurement of the Ecology and Orting composite samples found the Ecology samples to be slightly warmer than the desired 4°C (Table 1). The hot weather during the inspection made cooling samples difficult. The Orting composite samples were 16.6°C and 18.6°C. Orting should improve their method of cooling composite samples during collection. Ecology laboratory analysis of split samples found significant differences between the Ecology and Orting influent samples (Table 2). Ecology data show the Ecology influent composite sample to be stronger sewage than the Orting influent composite sample. Influent grab sample concentrations more closely approximated the Ecology composite sample concentrations than the Orting composite sample concentrations. A possible cause for the discrepancy is the positioning of the sampler intakes. The Orting influent composite sample intake was laid on the channel floor downstream of the comminutor. Laying the sampler intake on the channel floor may cause variability due to solids accumulation near the intake. The Ecology intake was suspended above the floor, in the deeper section of the channel near the headworks box outlet. Suspending the sampler intake should help avoid solids accumulation near the intake. Also, the Ecology intake was inspected several times during the inspection and cleared of rags. Extreme influent concentration variability is frequently reported by Orting. The August 1991 plant monitoring (DMR) influent data ranged from a low of BOD₅ (75 mg/L); TSS (54 mg/L); and flow (0.34 MGD) on 8/13; to a high of BOD₅ (757 mg/L); TSS (694 mg/L); and flow (0.36 MGD) on August 15. The operator reported he switched to the Ecology sample intake configuration after the inspection. Should highly variable influent strength persist after improving sampler intake configuration, further investigation to determine the cause is suggested. The Ecology and Orting effluent composite samples were similar. Comparison of Ecology and Orting analytical results of split samples was acceptable for effluent BOD₅, effluent TSS, fecal coliform, and NO₂+NO₃-N tests (Note: Orting contracts BOD₅, TSS, and fecal coliform analysis to the Sumner STP Laboratory). The Orting NH₃-N results were consistently greater than the Ecology results, but comparisons appear acceptable with the exception of the Orting sample influent result. Orting analysis of the two influent samples found similar BOD₅ and TSS concentrations. Ecology analysis found the Ecology sample to be much stronger than the Orting sample. BOD₅, COD, TOC, NH₃-N, and Total-P all indicated a weaker Orting sample. The cause of the differences in Ecology and Orting analytical results from the two influent composite samples is unclear. #### **Priority Pollutants** Few organic priority pollutants were detected in the samples collected (Table 3). None were detected in the effluent sample. Acetone and methylene chloride were detected in the aerated lagoon effluent at concentrations greater than $100~\mu g/L$ in the morning sample and between 20 and 85 $\mu g/L$ in the afternoon sample. The concentrations are likely a carryover from the composite sampler cleaning procedures (collection of grab samples from the desired aerated lagoon location required pumping the grab samples with the compositor). Several tentatively identified compounds were also detected (Appendix D). Tentatively identified compounds in the effluent were at low concentrations, ranging from an estimated 10-18 $\mu g/L$. Table 3 – VOA, BNA, Pesticide/PCB and Metals Detected – Orting, August 1991. | | | Location: | Inf-1 | Inf-2 | AB Ef-1 | AB Ef-2 | Ef- | | Ef-2 | | EPA Water Qual | ity Cri | teria Summary** | |----------------------|--------------------------------|--------------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|----------------------------|--------------|--------------------------------|----------|----------------|----------|------------------| | | | Type:
Date:
Time:
Lab Log#: | grab
8/19
0955
348080 | grab
8/19
1345
348081 | grab
8/19
1025
348084 | grab
8/19
1405
348085 | gra
8/1
111
34808 | 9
0 | grab
8/19
1450
348090 | | Acute
Fresh | | Chronic
Fresh | | | VOA Compounds | | ug/L | ug/L | ug/L | ug/L | ug/ | L | ug/L | | ug/L | | ug/L | | (Group) ¹ | Methylene Chloride | | 2 | U 2 | U 110 | 26 | | 2 U | 2 | 11 | 11,000 | *(2) | | | a
a | Chloroform | | | | | | | 2 U | 2 | | 28,900 | | 1,240 * | | | Acetone
Toluene | | 15
4 | | | | | 8 U
2 U | 10
2 | | 17,500 | * | | | | | Location: | | Inf-Eco | | AB Ef-Eco | (AB Ef-Ecc | | Ef-Eco | | | | NEW | | | | Type:
Date: | | E-comp
8/19-20 | | E-comp
8/19-20 | (E-comp
(8/19-20 | | E-comp
8/19-20 | | | | | | | | Date:
Time: | | 0810-0810 | | 0900-0900 | (8/19-20 | , | 8/19-20 | | | | | | | | Lab Log#: | | 348082 | | 348086 | (348095 | , | 348091 | | | | | | | BNA Compounds | | | ug/L | | ug/L | ug/ | L | ug/L | | | | | | i | Bis(2-Ethylhexyl)Phthalate | | | 6 | J | 4 | U | | 4 | U | 940 | *(i) | 3 *(i) | | | 4-Methylphenol | | | 21 | | | U | | 6 | | | | | | | Benzyl Alcohol
Benzoic Acid | | | 5
46 | | | U
U | | 3
7 | U | | | | | | Pesticide/PCB Compounds | | | | | | | | | | | | | | q | gamma-BHC (Lindane) | | | 0.035 | J | 0.050 | UJ | | 0.050 | UJ | 2.0 | | 80.0 | | | Metals - total recoverable | | | | | | | | | | | | | | | Antimony | | | 30 | | 30 | | 0 U) | 35 | | 9,000 | * | 1,600 * | | | Arsenic | | | 2.6 | P | 2.2 | P (2. | 2 P) | 2.1 | Ρ | 850 | | 48 * | | | Pentavalent
Trivalent | | | | | | | | | | 360 | | 190 | | | Cadmium | | | 0.25 | | 0.10 | , | 0 U) | 0.10 | | 4.9 | | 1.3 + | | | Copper | | | 36.9 | | 3.9 | , | 9 P) | 3.2 | | 21 | | 14 + | | | Lead | | | 6,93 | _ | 1.0 | | 3 P) | 1.2 | | 105 | | 4.1 + | | | Nickel
Zinc | | | 2.6
73.6 | ۲ | 1.9
9.3 | | 0 P)
2 P) | 2.3
8.0 | | 1,678
138 | | 187 +
125 + | | | ZIIIU | | | 73.5 | | 9.3 | г (9. | 4 F) | 6.0 | <u> </u> | 135 | T | 145 + | INOTE: SOME INDIVIDUAL COMPOUND CRITERIA OR LOELS MAY NOT AGREE WITH GROUP CRITERIA OR LOELS. REFER TO APPROPRIATE EPA DOCUMENT ON AMBIENT WATER QUALITY CRITERIA FOR FULL DISCUSSION. - U The analyte was not detected at or above the reported result. - UJ The analyte was not detected at or above the reported estimated result. - J The analyte was positively identified. The associated numerical result is an estimate. - B Analyte was found in the analytical method blank, indicating the sample may have been contaminated. - P The analyte was detected above the instrumentation detection limit but below the established minimum quantitation limit. - E The concentration of this analyte exceeded the calibration range, and a dilution should be performed. - * Insufficient data to develop criteria. Value presented is the LOEL Lowest Observed Effect Level. - () Duplicate sample analytical result. - + Hardness dependent criteria (122 mg/L used). - a Total Halomethanes - i Total Phthalate Esters - q Total BHCs - ** EPA, 1986. - Inf influent sample AB Ef aerated lagoon effluent Ef plant effluent Several priority pollutant metals were also detected in the samples collected (Table 3). Effluent concentrations were all less than freshwater acute and chronic toxicity criteria (EPA, 1986). A complete listing of priority pollutant analytes and detection limits is presented in Appendix E. #### **Bioassays** Results of the rainbow trout and *Daphnia magna* bioassays indicated no effluent toxicity (Table 4). The chronic portion of the *Daphnia magna* test found increased reproduction as the percentage of effluent in the test increased, suggesting the effluent provided nutritional enhancement for the test organisms. #### **Plant Capacity** Plant capacity was estimated using the Ecology (1985) and Metcalf and Eddy (1991) aerated lagoon equations. The two equations are quite similar, with slightly different reaction coefficient (K-rate) temperature corrections. The system of estimation used in this report considered the aerated lagoon to be a single cell with a uniform K-rate. Sample collection to calculate an inspection K-rate was made at the inlet and outlet of the aerated lagoon. The aerated lagoon outlet BOD₅ and the final effluent BOD₅ as measured by Ecology were equal (Table 1), so final effluent BOD₅ concentrations were used for calculations. The original design (Parametrix, 1990) considered the lagoon to be a two cell system with a higher K-rate in the more heavily aerated first two sections and a lower K-rate in the larger facultative section (Figure 1). A sample was not collected between the heavily aerated and facultative portions of the aerated lagoon, so the two K-rates for the original design method could not be calculated from inspection data. After
calculating the K-rates using inspection data, the inspection K-rates were used to calculate K-rates for wet weather conditions (Table 5). Winter wet weather conditions present difficult treatment conditions due to shorter detention times and lower K-rates. Direct calculation of coefficients from DMR data was not attempted due to the variability of reported influent data. Because of the low influent BOD₅ concentration of the Orting Sample-Ecology Laboratory data, results from calculations with these data are considered least reliable. At design flow (0.75 MGD), design BOD₅ loading (600 lbs/D), and design temperature (13°C) the temperature corrected inspection K-rates predict an effluent BOD₅ concentration in the 20-30 mg/L range. The calculations suggest the design capacity is appropriate for the system of operation during the inspection. Plant operation was not thoroughly evaluated to determine if it was optimal during the inspection. August 1991 DMR data indicate aerated lagoon dissolved oxygen concentrations ranged from 2 to 5 mg/L, suggesting oxygen was not limiting in the system. Average influent temperature on the April 1991 DMR was 11°C, less than the design temperature of 13°C. As expected, slightly higher effluent concentrations were predicted at 11°C than at 13°C (Table 5). Routine monitoring of the aerated lagoon effluent temperature is suggested to document the actual temperature. Table 4 - Effluent Bioassay Results - Orting, August 1991. NOTE: All bioassays were run with the effluent grab composite sample (Ef-GC; Lab Log # 348092) # <u>Daphnia magna - 7 day survival and reproduction test</u> (Daphnia magna) | Sample | #
Tested | Percent
Survival | Mean # Young per
Original Female | |-----------------|-------------|--|---| | Control | 10 | 100 | 12.1 | | 6.25 % Effluent | 10 | 70 | 23.6 | | 12.5 % Effluent | 10 | 100 | 24.3 | | 25 % Effluent | 10 | 90 | 26.7 | | 50 % Effluent | 10 | 100 | 29.6 | | 100 % Effluent | 10 | 100 | 37.2 | | | | Acute
= >100 % effluent
= 100 % effluent | <u>Chronic</u>
NOEC = 100 % effluent | #### Rainbow Trout - 96 hour survival test (Oncorhynchus mykiss) | Sample | #
Tested | Percent
Survival | |---------------|-------------|---------------------| | Control | 25 | 100 | | 100% Effluent | 25 | 100 | NOEC - no observable effects concentration LOEC - lowest observable effects concentration LC50 - lethal concentration for 50% of the organisms EC50 - effect concentration for 50% of the organisms Table 5 - Plant Capacity Estimates - Orting, August 1991. #### Capacity Estimates based on Ecology Criteria for Sewage Works Design (Ecology, 1985) S/S0 = 1/(1+2.3(K1)t) $K1 = K20(1.047^{(T-20)})$ - S effluent BOD5 (mg/L) - S0 influent BOD5 (mg/L) - K1 reaction coefficient for given temperature (day^-1) - K20 reaction coefficient at 20 degrees C (day^-1: typical value = 0.20) - t aerated lagoon detention time (days) - Q flow (MGD) - V volume (MG) - T lagoon water temperature (C) | Sampler/
Lab | S
(mg/L) | S0
(mg/L) | K1
(day -1) | K20
(day -1) | (C) | t
(days) | Q
(MGD) | (MG) | |-----------------|----------------------|---------------|----------------|-----------------|--------------|--------------|----------------|------| | Inspection cor | | K1 and K20 | calculated b | ased on inspec | tion conditi | ons | | | | | | | | | | | | | | Eco/Eco | 18 | 189 | 0.29 | 0.24 | 24 | 14.1 | 0.37 | 5.2 | | Eco/Ort | 10 | 140 | 0.40 | 0.33 | 24 | 14.1 | 0.37 | 5.2 | | Ort/Eco | 18 | 65 | 0.08 | 0.07 | 24 | 14.1 | 0.37 | 5.2 | | Ort/Ort | 9 | 142 | 0.46 | 0.38 | 24 | 14.1 | 0.37 | 5.2 | | Wet weather o | onditions | | | lculated using | | | | | | | | | | mperature. De | | | | ent | | | | load cquivar | one to mopoc | tion conditions | (| oud addum | | | | Eco/Eco | 25 | 95 | 0.18 | 0.24 | 13 | 6.9 | 0.75 | 5.2 | | Eco/Ort | 14 | 70 | 0.24 | 0.33 | 13 | 6.9 | 0.75 | 5.2 | | Ort/Eco | 18 | 33 | 0.05 | 0.07 | 13 | 6.9 | 0.75 | 5.2 | | Ort/Ort | 13 | 71 | 0.28 | 0.38 | 13 | 6.9 | 0.75 | 5.2 | | Wet weather o | conditions | effluent cond | centration ca | lculated using | a K1 calcul | ated with th | e inspection | K20 | | 110111041101 | Jonaniono | | | mperature. De | | | | | | | | load assume | ed. | • | - | _ | | | | F- (F- | 0.5 | 00 | 0.40 | 0.04 | 13 | 6.9 | 0.75 | 5.2 | | Eco/Eco | 25 | 96 | 0.18 | 0.24 | | | 0.75
0.75 | | | Eco/Ort | 20 | 96 | 0.24 | 0.33 | 13 | 6.9 | | 5.2 | | Ort/Eco | 54 | 96 | 0.05 | 0.07 | 13 | 6.9 | 0.75 | 5.2 | | Ort/Ort | 18 | 96 | 0.28 | 0.38 | 13 | 6.9 | 0.75 | 5.2 | | Wet weather of | conditions | effluent cond | centration ca | alculated using | a K1 calcu | ated with th | ne inspection | K20 | | | | and 4/91 ave | erage influer | it temperature. | Design flo | w and desig | gn influent B0 | DD5 | | | | load assume | ed. | • | | | | | | Eco/Eco | 27 | 96 | 0.16 | 0.24 | 11 | 6.9 | 0.75 | 5.2 | | Eco/Cct | 21 | 96 | 0.10 | 0.33 | 11 | 6.9 | 0.75 | 5.2 | | Ort/Eco | 56 | 96 | 0.22 | 0.07 | 11 | 6.9 | 0.75 | 5.2 | | Ort/Ort | 19 | 96 | 0.04 | 0.38 | 11 | 6.9 | 0.75 | 5.2 | | ONION | 19 | 30 | 0.23 | 0.55 | 1.1 | 0.5 | 0.70 | ٠.٤ | Table 5 - (cont'd) - Orting, August 1991. #### Capacity Estimates based on Metcalf and Eddy (1991) S/S0 = 1/(1+(K)t) $K = K20(1.06^{T-20})$ - S effluent BOD5 (mg/L) S0 influent BOD5 (mg/L) K reaction coefficient for given temperature (day^-1) K20 reaction coefficient at 20 degrees C (day^-1: typical value = 0.25-1.0) - t aerated lagoon detention time (days) - Q flow (MGD) - V volume (MG) T temperature (C) | Sampler/
Lab | S
(mg/L) | S0
(mg/L) | K
(day -1) | K20
(day -1) | (C) | t
(days) | Q
(MGD) | (MG) | |---|-------------|---------------|---------------|------------------|--------------|---------------|---------------|------| | Inspection cor | nditions | K and K20 c | alculated ba | sed on inspect | ion conditio | ons | | | | | | | | • | | | | | | Eco/Eco | 18 | 189 | 0.68 | 0.51 | 25 | 14.1 | 0.37 | 5.2 | | Eco/Ort | 10 | 140 | 0.93 | 0.69 | 25 | 14.1 | 0.37 | 5.2 | | Ort/Eco | 18 | 65 | 0.19 | 0.14 | 25 | 14.1 | 0.37 | 5.2 | | Ort/Ort | 9 | 142 | 1.05 | 0.79 | 25 | 14.1 | 0.37 | 5.2 | | Wet weather o | conditions | | | alculated using | | | | | | | | | | mperature. De | | | | ent | | | | load equival | ent to inspec | ction conditions | s (I/I BOD5 | load assume | ed = 0). | | | Eco/Eco | 28 | 95 | 0.34 | 0.51 | 13 | 6.9 | 0.75 | 5.2 | | Eco/Ort | 17 | 70 | 0.46 | 0.69 | 13 | 6.9 | 0.75 | 5.2 | | Ort/Eco | 20 | 33 | 0.09 | 0.14 | 13 | 6.9 | 0.75 | 5.2 | | Ort/Ort | 15 | 71 | 0.52 | 0.79 | 13 | 6.9 | 0.75 | 5.2 | | Wet weather of | conditions | effluent cond | centration ca | alculated using | a K calcula | ited with the | inspection K | (20 | | | | | ~ | mperature. De | sign flow a | nd design in | fluent BOD5 | | | | | load assume | ed. | | | | | | | Eco/Eco | 29 | 96 | 0.34 | 0.51 | 13 | 6.9 | 0.75 | 5.2 | | Eco/Ort | 23 | 96 | 0.46 | 0.69 | 13 | 6.9 | 0.75 | 5.2 | | Ort/Eco | 58 | 96 | 0.09 | 0.14 | 13 | 6.9 | 0.75 | 5.2 | | Ort/Ort | 21 | 96 | 0.52 | 0.79 | 13 | 6.9 | 0.75 | 5.2 | | Wet weather o | conditions | effluent cond | centration ca | alculated using | a K calcula | ited with the | inspection K | (20 | | *************************************** | | and 4/91 ave | erage influer | nt temperature. | Design flo | w and desig | n influent BC | DD5 | | | | load assume | ed. | | | | | | | Eco/Eco | 31 | 96 | 0.30 | 0.51 | 11 | 6.9 | 0.75 | 5.2 | | Eco/Ort | 25 | 96 | 0.41 | 0.69 | 11 | 6.9 | 0.75 | 5.2 | | Ort/Eco | 61 | 96 | 0.08 | 0.14 | 11 | 6.9 | 0.75 | 5.2 | | Ort/Ort | 23 | 96 | 0.47 | 0.79 | 11 | 6.9 | 0.75 | 5.2 | Using the Metcalf and Eddy (1991) temperature correction formula, the K-rates used in the initial design calculations (Parametrix, 1990) were corrected to inspection temperatures (Table 6). Calculations with the temperature corrected design K-rates were made to predict inspection effluent concentrations. Measured effluent BOD₅ concentrations ranged from 10-18 mg/L while predicted concentrations range from 3-4 mg/L. Again, operation was not evaluated to determine if it was optimal. However, the calculations suggest the original design equations may predict somewhat better effluent quality than the plant produces. #### RECOMMENDATIONS AND CONCLUSIONS Treatment and flow measurement were acceptable during the inspection. The plant effluent was within NPDES permit limits. Ecology data indicate the influent BOD₅ load was 97 percent of plant design capacity. Increasing plant capacity is discussed in an engineering report prepared for Orting by Parametrix (1991). Ecology analysis found the Ecology and Orting influent composite samples were significantly different. Orting DMR data has shown extreme variability of influent strength. Suspending the influent intake in the deeper part of the channel, and checking the intake several times a day for rags and removing as necessary are recommended. The operator reported he began suspending the intake after the inspection. Should highly variable influent strength persist after improving sampling, further investigation to determine the cause is recommended. Also, Orting composite samples should be properly cooled during collection. Ecology and Orting analysis of the influent composite samples did not compare well. The reason is unclear. Priority pollutants detected in the effluent included only metals at concentrations less than toxicity criteria. No toxicity was observed in the rainbow trout or *Daphnia magna* bioassays. Evaluation of plant capacity using inspection data found the design capacity of 600 lbs/D BOD_5 at a flow rate of 0.75 MGD to be reasonable. Routine monitoring of the aerated lagoon effluent temperature is recommended to establish actual lagoon operating temperatures. Table 6 - Plant Performance Estimates - Orting, August 1991. #### Performance Estimates
based on design K-rates (Parametrix, 1990) S/S0 = 1/(1+(K)t) $K = K20(1.06^{(T-20)})$ - from Metcalf and Eddy (1991) - S effluent BOD5 (mg/L) - S0 influent BOD5 (mg/L) - K reaction coefficient for given temperature (day^-1) design values (Parametrix, 1990): @ 13 C - Stage 1 = 0.98; Stage 2 = 0.24 - K20 reaction coefficient at 20 degrees C (day^-1)t aerated lagoon detention time (days) - Q flow (MGD) - V volume (MG) - T temperature (C) | Sampler/ | s | S0 | K | K20 | Т | t | Q | Λ_ | |----------------|--|--------------|--|----------------|--------------|--------------|--------------|------| | Lab | (mg/L) | (mg/L) | (day -1) | (day -1) | (C) | (days) | (MGD) | (MG) | | | ······································ | | ······································ | | | | | | | Inspection cor | <u>iditions</u> | | | | | | | | | Eco/Eco | 18 | 189 | | | 24 | 14.1 | 0.37 | 5.2 | | Eco/Ort | 10 | 140 | | | 24 | 14.1 | 0.37 | 5.2 | | | | | | | | | | | | K20 calculatio | <u>n</u> | | | initial design | K-rates tak | en from Orti | ng | | | | | plans (Paran | netrix, 1990) | | | | | | | | | | 0.98 | 1.47 | 13 | | | | | | | | 0.24 | 0.36 | 13 | | | | | | | | | | | | | | | Effluent conce | entrations | | | lculated base | | | | | | F00/F00 | | and flow. Te | emperature a | adjusted K-rat | es calculate | ea basea on | design K-rat | es. | | Eco/Eco | 22 | 189 | 1.86 | 1.47 | 24 | 4.1 | 0.37 | 1.5 | | Stage 1 | | | | | | | | _ | | Stage 2 | 4 | 22 | 0.46 | 0.36 | 24 | 10.0 | 0.37 | 3.7 | | Eco/Ort | | | | | | | | | | Stage 1 | 16 | 140 | 1.86 | 1.47 | 24 | 4.1 | 0.37 | 1.5 | | Stage 2 | 3 | 16 | 0.46 | 0.36 | 24 | 10.0 | 0.37 | 3.7 | #### REFERENCES - Ecology. 1985. Criteria for Sewage Works Design. DOE 78-5, Revised October 1985. - EPA. 1986. Quality Criteria for Water. EPA 440/5-86-001. - Metcalf and Eddy. 1991. Wastewater Engineering Treatment Disposal Reuse. Third Edition. - Parametrix, Inc. 1990. <u>City of Orting, Washington Wastewater Treatment Plant Improvements</u>. Received by Ecology January 16, 1990. - ----. 1991. <u>General Sewer Plan/Engineering Report for Sewage Treatment Plant Expansion City of Orting, Washington</u>. September 1991 Draft. Appendix A - Sampling Locations and Cleaning Procedures - Orting, August 1991. #### SAMPLING LOCATIONS #### Influent (Inf) composite sample was collected with the sampler intake suspended in the shallow pit at the outlet end of the headworks basin. Grab samples were taken at the same location. # Aerated lagoon effluent (AB Ef) composite sampler intake was suspended approximately six feet from the side of the lagoon and approximately three feet deep. Intake was suspended above the lagoon bottom in the area identified by the operator as the outlet pipe area. Location was near the eastern vent on the south side of the lagoon. Grab samples were taken by pumping the samples with the compositor pump. Chlorine contact basin effluent (Cl2) samples taken at the effluent end of the chlorine contact basin. #### Effluent (Ef) composite sampler intake was suspended in front of the outlet pipe in the old chlorine contact basin. Grab samples were taken at the same location. ### PRIORITY POLLUTANT SAMPLING EQUIPMENT CLEANING PROCEDURES - 1. Wash with laboratory detergent - 2. Rinse several times with tap water - 3. Rinse with 10% HNO3 solution - 4. Rinse three (3) times with distilled/deionized water - 5. Rinse with high purity methylene chloride - 6. Rinse with high purity acetone - 7. Allow to dry and seal with aluminum foil Appendix B - Sampling Schedule - Orting, August 1991. | | Location:
Type:
Date:
Time:
.ab Log#: | Inf-1
grab
8/19
0955
348080 | Inf-2
grab
8/19
1345
348081 | Inf-Eco
E-comp
8/19-20
0810-0810
348082 | Inf-Ort
O-comp
8/19-20
0800-0800
348083 | AB Ef-1
grab
8/19
1025
348084 | AB Ef-2
grab
8/19
1405
348085 | | Cl2-1
grab
8/19
1035
348087 | CI2-2
grab
8/19
1430
348088 | Ef-1
grab
8/19
1110
348089 | Ef-2
grab
8/19
1450
348090
(348094) | Ef-3
grab
8/20
0825
348096 | Ef-Eco
E-comp
8/19-20
0810-0810
348091 | Ef-GC
grab-comp
8/19
**
348092 | Ef-Ort
O-comp
8/19-20
0800-0800
348093 | |-----------------------|---|---|---|---|---|---|---|-------------------------|---|---|--|--|--|--|--|--| | GENERAL CHE | HETDY | | | | | | | | | | | | | | | | | Conductivity | MISINT | E | E | E | E | Ε | Ε | E (E) | | | Ε | E | | E | E | E | | Alkalinity | | | | E | | | | E (E) | | | | | | Ε | Ε | | | Hardness | | | | | | | | E(E)
E | | | | | | E | E | | | TS
TNVS | | | | E | | | | E | | | | | | E
E | | | | TSS | | E | Ε | ΕO | ΕO | E | E | | | | E | E | | ΕO | E | ΕO | | TNVSS | | _ | _ | Ē | | _ | _ | E (E)
E | | | _ | _ | | Ē | _ | | | BOD5 | | | | ΕO | ΕO | | | E (E) | | | | | | ΕO | | ΕO | | BOD5 | | | | _ | _ | | | _E_ | | | _ | _ | | E | | _ | | OC
OC | | E | E | E | E | E
E | E | E (E)
E (E) | | | E | E | | Ę | | E | | NH3-N | | | L | EO E | EO E | E | | E(E) | | | E | E | | E
EO | | E
EO | | 102+NO3-N | | | | EO | EO | | | F沿 | | | | | | EO | | ΕÖ | | Phosphorous - 1 | otal | | | E | E | | | E (E)
E (E)
E (E) | | | | | | Ē | | Ē | | F-Coliform MF | | | | | | | | ` ' | Ε | E | E | E (E) | ΕO | | | | | DRGANICS | | <u></u> | | | | | | | | | | | | | | | | /OA
3NAs | | E | Ε | _ | | E | E | _ | | | E | E | | | | | | snas
Pest/PCB | | | | E F | | | | E
E | | | | | | E | | | | METALS | | | | _ | | | | E | | | | | | _ | | | | P Metals | | | | Ε | | | | E | | | | | | E | | | | BIOASSAYS | | | | | | | | | | | | | | | | | | Salmonid (acute | | | | | | | | | | | | | | | E
E | | | Daphnia magna | | | | | | | | | | | | | | | E | | | FIELD OBSERV.
Temp | AHONS | E | E | Е | _ | _ | _ | _ | | | _ | = | | = | | _ | | oH
OH | | Ē | Ē | Ē | E | E
E | E
E | E
E | | | E | E
E | | E
E | | E | | Conductivity | | Ē | Ē | Ē | Ē | E | E | Ē | | | Ē | E | | E | | Ē | | Chlorine | | | | | | | | | E | E | Ē | Ē | | $\overline{}$ | | _ | | | | | | | | | | | | | | | | | | | equal volumes collected at 1110 and 1450 on 8/19 () duplicate sample analytical result E-comp composite sample collected by Ecology composite sample collected by Orting E Ecology laboratory analysis O orting laboratory analysis Inf influent sample AB Ef aerated lagoon effluent Cl2 chlorine contact chamber effluent Ef plant effluent Appendix C - Ecology Analytical Methods and Laboratories Used - Orting, August 1991. | <u>Parameter</u> | Method | Laboratory | |-------------------------|-------------------|-------------------------------------| | Conductivity | EPA, 1979: 120.1 | Manchester | | Alkalinity | EPA, 1979: 310.1 | Manchester | | Hardness | EPA, 1979: 130.2 | Manchester | | TS | EPA, 1979: 160.3 | Manchester | | TNVS | EPA, 1979: 160.3 | Manchester | | TSS | EPA, 1979: 160.2 | Manchester | | TNVSS | EPA, 1979: 160.2 | Manchester | | BOD5 | EPA, 1979: 405.1 | Water Management Laboratories, Inc. | | COD | EPA, 1979: 410.1 | Sound Analytical Services, Inc. | | TOC (water) | EPA, 1979: 415.1 | Manchester | | NH3-N | EPA, 1979: 350.1 | Sound Analytical Services, Inc. | | NO2+NO3-N | EPA, 1979: 353.2 | Sound Analytical Services, Inc. | | Phosphorous - Total | EPA, 1979: 365.3 | Sound Analytical Services, Inc. | | F-Coliform MF | APHA, 1989: 9222D | Manchester | | VOA (water) | EPA, 1984: 624 | Weyerhaeuser | | BNAs (water) | EPA, 1984: 625 | Weyerhaeuser | | Pest/PCB (water) | EPA, 1984: 608 | Weyerhaeuser | | PP Metals | EPA, 1979: 4.1.1 | Manchester* | | Salmonid (acute 100%) | Ecology, 1981 | Manchester | | Daphnia magna (chronic) | EPA, 1987 | Manchester | ^{*} Hg analysis done by Water Management Laboratories, Inc. APHA, 1989. Standard Methods for the Examination of Water and Wastewater, APHA-AWWA-WPCF, 17th ed. Ecology, 1981. Static Acute Fish Toxicity Test, DOE 80-12, revised July 1981. EPA, 1979. Methods for Chemical Analysis of Water and Wastes, EPA-600/4-79-020 (Rev. March, 1983). EPA, 1984. 40 CFR Part 136, October 26, 1984. EPA, 1987. A Short-Term Chronic Toxicity Test Using Daphnia magna, EPA/600/D-87/080. ## Appendix D - Tentatively Identified Compounds - Orting, August 1991. #### **Ecology Influent Sample** Location: Inf-Eco Type: E-comp Date: 8/19-20 Time: 0810-0810 Lab Log#: 348082 # SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS Lab Name: WEYERHAEUSER Method: 8270 SDG No.: 76526 Lab Code: WEYER Case No.: 06532 SAS No.: Lab Sample ID: 76532 Matrix: (soil/water) WATER (low/med) Lab File ID: Date Received: BN0903G 348082 Sample wt/vol: 1000 Lab File ID. 08/22/91 % Moisture: not dec. Level: Date Extracted: 08/26/91 Extraction: (SepF/Cont/Sonc) LOW CONT Date Analyzed: 09/04/91 GPC Cleanup: (Y/N) N (g/mL) ML dec. pH: Dilution Factor: 1.0 Number TICs found: 20 CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L | | CAS NUMBER | COMPOUND NAME | RT | EST. CONC. | Q | | |---|---------------|--------------------------------|---------|------------|--------|-----| | ١ | CAS NUMBER | | ======= | | ===== | | | | 1. | UNKNOWN | 6.05 | 43 | JX 115 | 344 | | | 2. 10482-56-1 | 3-CYCLOHEXENE-1-METHANOL, .A | 11.87 | 120 | JX ; | | | | 3.
5635-50-7 | PHENOL, 4,4'-(1,2-DIETHYL-1, | 15.59 | 79 | JХ | | | | 4. 112-53-8 | 1-DODECANOL | 16.80 | 19 | JХ | | | | 5. 90-43-7 | [1,1'-BIPHENYL]-2-OL | 17.59 | 66 | JX | | | 1 | 6. 120-40-1 | DODECANAMIDE, N, N-BIS (2-HYDR | 18.40 | 76 | JX | | | | 7. | UNKNOWN | 19.94 | 26 | JX | | | - | 8. 544-63-8 | TETRADECANOIC ACID | 21.30 | 160 | JX | | | | 9. 629-76-5 | 1-PENTADECANOL | 21.40 | 33 | JX | | | | 10. | UNKNOWN | 22.57 | 66 | JX \ | | | | 11. | UNKNOWN | 22.75 | 32 | JX | | | | 12. 2091-29-4 | 9-HEXADECENOIC ACID | 23.74 | 89 | σx | | | | 13. 57-10-3 | HEXADECANOIC ACID | 24.19 | 1900 | JX | | | | 14. | UNKNOWN | 25.14 | 27 | JX | | | | 15. | UNKNOWN | 26.37 | 4500 | JX | | | | 16. | UNKNOWN | 26.62 | 1900 | JX | | | | 17. | UNKNOWN | 27.12 | 61 | JX | | | | 18. | UNKNOWN | 33.36 | 94 | JХ | | | | 19. | UNKNOWN | 35.94 | 71 | JX ; | | | | 20. | UNKNOWN | 36.32 | 83 | JX 🐈 | | | | 20. | | | | | | | | | | | | | | #### Appendix D - (cont'd) - Orting, August 1991. #### **Ecology Aerated Lagoon Effluent Sample** Location: AB Ef-1 Type: grab Type: grab Date: 8/19 Time: 1025 Lab Log#: 348084 # VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS 348084 Lab Name: WEYERHAEUSER Contract: 046-5751 Lab Code: <u>WEYER</u> Case No.: <u>06532</u> SAS No.: _____ SDG No.: <u>348080</u> Lab Sample ID: 76528 Matrix: (soil/water) WATER B5704_____ Sample wt/vol: 5.0 (g/mL) ML Lab File ID: Date Received: 08/22/91 Level: (low/med) LOW___ Date Analyzed: 08/26/91 % Moisture: not dec. ____ Dilution Factor: 1.0 CAP___ Column (pack/cap) CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L Number TICs found: 9 | CAS NUMBER | COMPOUND NAME | RT
====== | EST. CONC. | Q
===== | |--|--|---|--|----------------------------------| | 1. 541059 2. 111842 3. 13475815 4. 15869893 5. 5911046 6. 7045672 7. 871830 8. 5911046 9. 489203 | Cyclotrisiloxane, hexamethyl
Nonane
Hexane, 2,2,3,3-tetramethyl-
Octane, 2,5-dimethyl-
Nonane, 3-methyl-
Cyclohexane, 2-ethyl-1,3-dim
Nonane, 2-methyl-
Nonane, 3-methyl-
Cyclopentane, 1,2-dimethyl-3 | 17.75
22.19
23.27
23.70
24.24
24.72
26.01
26.39
26.76 | 110
21
5.0
12
49
60
270
110
47 | BJ
JJ
JJ
JJ
JJ
JJ | ### Appendix D - (cont'd) - Orting, August 1991. Lab Name: WEYERHAEUSER % Moisture: not dec. #### **Ecology Aerated Lagoon Effluent Sample** Location: AB Ef-Eco Type: E-comp Date: 8/19-20 Time: 0900-0900 Lab Log#: 348086 #### SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS Method: 8270 348086 Case No.: 06532 SAS No.: SDG No.: 76526 Lab Code: WEYER Lab Sample ID: 76533 Matrix: (soil/water) WATER Lab File ID: BN0903H Sample wt/vol: 1000 (g/mL) ML Date Received: 08/22/91 Level: (low/med) LOW Date Extracted: 08/26/91 Date Analyzed: 09/04/91 (SepF/Cont/Sonc) CONT Extraction: Dilution Factor: 1.0 pH: GPC Cleanup: (Y/N) N CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L Number TICs found: dec. | CAS NUMBER | COMPOUND NAME | RT
====== | EST. CONC. | Q
===== | | |--|--|--------------|---|----------------|--| | 1. 20324-32-7
2.
3. 13429-07-7
4. 5635-50-7
5. 2091-29-4
6. 57-10-3
7. | 2-PROPANOL, 1-(2-METHOXY-1-M
UNKNOWN
2-PROPANOL, 1-(2-METHOXYPROP
PHENOL, 4,4'-(1,2-DIETHYL-1,
9-HEXADECENOIC ACID
HEXADECANOIC ACID
UNKNOWN | 8.00
8.28 | 11
15
16
38
28
63
170 | JX JX JX JX JX | | #### Appendix D - (cont'd) - Orting, August 1991. #### **Ecology Plant Effluent Sample** Location: Ef-Eco Type: E-comp Date: 8/19-20 Time: 0810-0810 Lab Log#: 348091 #### SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS Lab Name: WEYERHAEUSER Method: 8270 348091 Lab Code: WEYER Case No.: 06532 SAS No.: SDG No.: 76526 Matrix: (soil/water) WATER Lab Sample ID: 76534 Sample wt/vol: 1000 (q/mL) ML Lab File ID: BN0903I Level: (low/med) LOW Date Received: 08/22/91 % Moisture: not dec. Date Extracted: 08/26/91 Extraction: (SepF/Cont/Sonc) CONT Date Analyzed: 09/04/91 GPC Cleanup: (Y/N) N pH: dec. Dilution Factor: 1.0 Number TICs found: CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L | CAS NUMBER | COMPOUND NAME | RT
====== | EST. CONC. | Q
===== | |--|--|--------------|----------------------------------|---| | 1. 20324-32-7
2.
3. 13429-07-7
4.
5. 57-10-3
6. | 2-PROPANOL, 1-(2-METHOXY-1-M
UNKNOWN
2-PROPANOL, 1-(2-METHOXYPROP
UNKNOWN
HEXADECANOIC ACID
UNKNOWN | 8.00 | 10
14
13
10
12
18 | JX L | Appendix E - VOA, BNA, Pesticide/PCB and Metals Scan Results - Orting, August 1991. | (0) | VOA Compounds | Location:
Type:
Date:
Time:
Lab Log#: | Inf-1
grab
8/19
0955
348080
ug/L | Inf-2
grab
8/19
1345
348081
ug/L | AB Ef–1
grab
8/19
1025
348084
ug/L | AB Ef-2
grab
8/19
1405
348085
ug/L | Ef-1
grab
8/19
1110
348089
ug/L | Ef-2
grab
8/19
1450
348090
ug/L | |----------|---------------------------------------|---|---|---|---|---|--|--| | (Group)1 | | | | | | | | | | а | Chloromethane | | 4 U | 4 U | 4 U | 4 U | 4 U | 4 U | | а | Bromomethane | *** | 2 U | 2 U | 2 U | 2 U | 2 U | 2 U | | . a | Methylene Chloride | | 2 U | 2 U | 110 | 26 | 2 U | 2 U | | а | Chloroform
Carbon Tetrachloride | | 1 J | 3 J | 2 U | 2 U | 2 U | 2 U | | a | | | 2 U | 2 U | 2 U | 2 U | 2 U | 2 U | | а | Bromodichloromethane | | 1 U
2 U | 1 U | 1 U | 1 U | 1 U | 1 U | | а | Dibromochloromethane
Bromoform | | | 2 U | 2 U | 2 U | 2 U | 2 U | | а | | | 1 U | 1 U | 1 U | 1 U | 1 U | 1 U | | | Chloroethane | | 4 U | 4 U | 4 U | 4 U | 4 U | 4 U | | | Vinyl Chloride | | 3 U
2 U | 3 U | 3 U | 3 U | 3 U | 3 U | | | 1,1-Dichloroethane 1,2-Dichloroethane | | | 2 U
2 U | 2 U | 2 U | 2 U | 2 U | | | 1,1-Dichloroethene | | | | 2 U
3 U | 2 U
3 U | 2 U
3 U | 2 U | | b
b | 1,2-Dichloroethene (total) | | 3 U
2 U | | C | 1,1,1-Trichloroethane | | 2 U | 2 U
2 U | | | | | | C | 1,1,1–111chloroethane | | 2 U | 2 U | 2 U
2 U | 2 U
2 U | 2 U
2 U | 2 U
2 U | | C | Trichloroethene | | 2 U | 2 U | 2 U | | | 2 U | | f | 1,1,2,2-Tetrachloroethane | | 2 U | 2 U | 2 U | 2 U
2 U | 2 U
2 U | | | | Tetrachloroethene | | 2 U | 2 U | | 2 U
2 U | 2 U | 2 U
2 U | | d | 1,2-Dichloropropane | | 2 U | 2 U | 2 U
2 U | 2 U | 2 U | | | u
e | cis-1,3-Dichloropropene | | 2 U | 2 U | 2 U | 2 U | 2 U | 2 U
2 U | | e | trans-1,3-Dichloropropene | | 1 U | 1 U | 1 U | 2 U
1 U | 2 U | 2 U | | e | Acetone | *** | 15 UJ | 30 UJ | 200 E | 81 J | 8 U | 10 UJ | | | 2-Butanone (MEK) | | 3 U | 30 U | 200 E | 3 U | 3 U | 3 U | | | 4-Methyl-2-Pentanone (MIE | × | 2 U | 2 U | | 2 U | 2 U | 2 U | | | 2-Hexanone | 21() | 4 U | 4 U | 2 U
4 U | 2 U | 2 U
4 U | 2 U
4 U | | | Vinyl Acetate | | 2 U | 2 U | 4 U | 4 U
2 U | 2 U | 4 U | | | Carbon Disulfide | | 3 U | 2 U | 2 U | 2 U | 2 U | 2 U | | | Benzene | | 2 U | 2 U | 2 U | 3 U | 2 U | 2 U | | | Toluene | *** | 2 U
4 J | 2 U | 2 U | 2 U | 2 U | 2 U | | | Ethylbenzene | | 3 U | 3 J | 2 U | 2 U | 2 U
3 U | 2 U
3 U | | | Styrene | | 2 U | 2 U | 2 U | 2 U | 3 U | 2 U | | | Total Xylenes | | 2 U | 2 U | 2 U | 2 U | 2 U | 2 U | | g | Chlorobenzene | | 3 U | 3 U | 3 U | 3 U | 3 U | 3 U | | A | OHIOTODOHEGIE | | 3 0 | 3 0 | 3 0 | 3 0 | 3 0 | 3 0 | # Appendix E (cont'd) - Orting, August 1991. | | | Location:
Type:
Date:
Time:
Lab Log#: | Inf-Eco
E-comp
8/19-20
0810-0810
348082 | AB Ef-Eco
E-comp
8/19-20
0900-0900
348086 | Ef-Eco
E-comp
8/19-20
0810-0810
348091 | | |----------|--|---|---|---|--|--| | (Group)1 | BNA Compounds | | ug/L | ug/L | ug/L | | | | Hexachloroethane | | 3 U | 3 U | | | | | Hexachlorobutadiene | | 2 U | 2 U | | | | | Hexachlorocyclopentadiene | | 2 U
5 U | 2 U
5 U | | | | ļ | Bis(2-Chloroethyl)Ether
Bis(2-Chloroisopropyl)Ether | | 5 U
5 U | 5 U | | | | ļ | Bis(2-Chloroethoxy)Methane | | 3 U | 3 U | | | | J
K | N-Nitroso-di-n-Propylamine | | 3 U | 3 U
4 U | | | | k | N-Nitrosodiphenylamine | J | 4 Ŭ | 4 U | | | | ^ | Isophorone | | 3 Ü | 3 U | | | | n | Naphthalene | | Ž Ŭ | 7 Ŭ | | | | •• | 2-Methylnaphthalene | | 9 U | 9 U | | | | n | Acenaphthylene | | 9 Ü | 9 U | | | | n | Acenaphthene | | 9 U | 9 Ū | | | | n | Fluorene | | 7 U | 7 U | 7 U | | | n | Phenanthrene | | 4 U | 4 U | | | | n | Anthracene | | 4 U | 4 U | | | | n | Fluoranthene | | 4 U | 4 U | | | | n | Pyrene | | 4 U | 4 U |
| | | n | Benzo(a)Anthracene | | 4 U | 4 U | | | | n | Chrysene | | 4 U | 4 U | | | | n | Benzo(b)Fluoranthene | | 4 U | 4 U | | | | n | Benzo(k)Fluoranthene | | 5 U | 5 U | | | | n | Benzo(a)Pyrene | | 4 U | 4 U | | | | n | Indeno(1,2,3-cd)Pyrene | | 8 U
7 U | 8 U | | | | n | Dibenzo(a,h)Anthracene | | | 7 U
8 U | | | | n
L | Benzo(g,h,i)Perylene | | 8 U
6 U | | | | | h
h | 1,2-Dichlorobenzene 1,3-Dichlorobenzene | | 8 U | 6 U
8 U | | | | h | 1.4-Dichlorobenzene | | 5 U | 5 U | | | | g | 1,2,4-Dichlorobenzene | | 7 U | 3 U | | | | g | Hexachlorobenzene | | , , , , , , , , , , , , , , , , , , , | , , , , , , , , , , , , , , , , , , , | | | | m | 2-Chloronaphthalene | | 11 Ŭ | 11 Ŭ | | | | | Dimethyl Phthalate | | 17 Ŭ | 17 U | | | | i | Diethyl Phthalate | | żŪ | 7 Ū | | | | i | Di-n-Butyl Phthalate | | 4 Ū | 4 Ū | | | | i | Butylbenzyl Phthalate | | 6 U | 6 U | 6 U | | | issee | Bis(2-Ethylhexyl)Phthalate | | 6 J | 4 U | 4 U | | | 1 | Di-n-Octyl Phthalate | | 4 U | 4 U | | | | | Nitrobenzene | | 3 U | 3 U | | | | 0 | 2,4-Dinitrotoluene | | 3 U | 3 U | | | | 0 | 2,6-Dinitrotoluene | | 2 U | 2 U | | | | | 3,3'-Dichlorobenzidine | | 10 UJ | 10 U | | | | | Phenol | | 5 U | 5 U | | | | | 2-Methylphenol | | 4 U | 4 U | | | | | 4-Methylphenol | **** | 21 | 6 U | | | | í | 2,4-Dimethylphenol | | 4 U | 4 U | | | | i | 2-Nitrophenol | | 5 U | 5 U | | | | ı | 4-Nitrophenol | | 13 U | 13 U | 13 U | | # Appendix E (cont'd) - Orting, August 1991. | (Group)¹ | | Location:
Type:
Date:
Time:
Lab Log#: | Inf-Eco
E-comp
8/19-20
0810-0810
348082
ug/L | | AB Ef-Eco
E-comp
8/19-20
0900-0900
348086
ug/L | | Ef-Eco
E-comp
8/19-20
0810-0810
348091
ug/L | | |------------------------------|-----------------------------|---|---|--------|---|-----|--|------| | 1000 | 2,4-Dinitrophenol | ras Selia Ciè di Sesilian apana basa di basa | 9 | | | U | 9 | U | | 1 | 4,6-Dinitro-2-Methylphenol | | 25 | UJ | 25 | UJ | 25 | UJ | | | 2-Chlorophenol | | 5 | U | 5 | U | 5 | U | | 20 200 2000000 | 2,4-Dichlorophenol | | 2 | U | 2 | U | 2 | U | | | 4-Chloro-3-Methylphenol | | 5 | U | 5 | U | 5 | U | | | 2,4,5-Trichlorophenol | | 4 | U | 4 | U | 4 | U | | | 2,4,6-Trichlorophenol | | 4 | U | 4 | | 4 | | | | Pentachlorophenol | | 4 | | 4 | | 4 | U | | р | 4-Chlorophenyl Phenylether | | 9 | U | 9 | U | 9 | U | | р | 4-Bromophenyl Phenylether | | 6 | U | 6 | U | 6 | U | | | 2-Nitroaniline | | 3 | U | 3 | | 3 | U | | | 3-Nitroaniline | | 5 | U | 5 | U | 5 | U | | | 4-Nitroaniline | | 9 | U | | U | 9 | | | | 4-Chloroaniline | | 4 | Ų | | U | 4 | | | | Benzyl Alcohol Benzoic Acid | | 5 | J | | U | 3 | | | | Dibenzofuran | | 46
8 | J
U | 7 | | 7 | U | | | Dibelizoluran | | 8 | U | 8 | U | 8 | U | | | Pesticide/PCB Compounds | | ug/L | | ug/L | | ug/L | | | | Aldrin | | 0.050 | 111 | 0.050 | 111 | 0.050 | 111 | | | Dieldrin | | 0.10 | | 0.030 | | 0.030 | | | v | alpha-Chlordane | | 0.50 | | 0.50 | | 0.10 | | | v | gamma-Chlordane | | 0.50 | | 0.50 | | 0.50 | | | 8 | Endosulfan I | | 0.050 | | 0.050 | | 0.050 | | | 5 | Endosulfan II | | 0.030 | | 0.030 | | 0.050 | | | 8 | Endosulfan Sulfate | | 0.10 | | 0.10 | | 0.10 | 2.77 | | ř | Endrin | | 0.10 | | 0.10 | | 0.10 | | | ì | Endrin Ketone | | 0.10 | | 0.10 | | 0.10 | | | r | Heptachlor | | 0.050 | | 0.050 | | 0.050 | | | enteriori t imologica | Heptachlor Epoxide | | 0.050 | | 0.050 | | 0.050 | | | q | alpha-BHC | | 0,050 | | 0.050 | | 0,050 | | | q | beta-BHC | | 0,050 | | 0.050 | | 0,050 | | | q | delta-BHC | | 0.050 | | 0,050 | | 0.050 | | | q | gamma-BHC (Lindane) | *** | 0.035 | J | 0.050 | | 0.050 | | | u | 4,4'-DDT | | 0.10 | UJ | 0.10 | UJ | 0.10 | ÚJ | | u | 4,4'-DDE | | 0.10 | UJ | 0.10 | UJ | 0.10 | | | u | 4,4'-DDD | | 0.10 | UJ | 0.10 | UJ | 0.10 | UJ | | | Toxaphene | | 1.0 | UJ | 1.0 | UJ | 1.0 | UJ | | | Methoxychlor | | 0.50 | UJ | 0.50 | UJ | 0.50 | UJ | | w | Aroclor-1016 | | 0.50 | | 0.50 | UJ | 0.50 | UJ | | w | Aroclor-1221 | | 0.50 | | 0.50 | | 0.50 | | | W | Aroclor-1232 | | 0.50 | | 0.50 | | 0,50 | | | W | Aroclor-1242 | | 0.50 | | 0.50 | | 0.50 | | | W | Aroclor-1248 | | 0.50 | | 0,50 | | 0.50 | | | W | Aroclor-1254 | | | UJ | | UJ | 1.0 | UJ | | w | Aroclor-1260 | | 1.0 | UJ | 1.0 | UJ | 1.0 | UJ | #### Appendix E (cont'd) - Orting, August 1991. | | Location:
Type:
Date:
Time:
Lab Log#: | Inf-Eco
E-comp
8/19-20
0810-0810
348082 | | AB Ef-Eco
E-comp
8/19-20
0900-0900
348086 | (E-comp)
(8/19-20)
(0900-0900) | | | Ef-Eco
E-comp
8/19-20
0810-0810
348091 | | |--------------------------|---|---|----|---|--------------------------------------|-------|-----|--|----| | Metals – total recoverab | ole | | | | | | | | | | Antimony | on an inione conside <mark>t * *</mark> | 30 | U | 30 | U | (30 | U) | 35 | Р | | Arsenic | *** | 2.6 | Р | 2.2 | Ρ | (2.2 | | 2.1 | Р | | Pentavalent | | | | | | | | | | | Trivalent | | | | | | | | | | | Beryllium | | 1.0 | U | 1.0 | U | (1.0 | U) | 1.0 | U | | Cadmium | *** | 0.25 | | 0.10 | U | (0.10 | U) | 0.10 | U | | Chromium | | 5.0 | UB | 5.0 | UB | (5.0 | UB) | 5.0 | UB | | Hexavalent | | | | | | | | | | | Trivalent | | | | | | | | | | | Copper | | 36.9 | | 3.9 | | (4.9 | | 3.2 | | | Lead | *** | 6.93 | | 1.0 | | (1.3 | P) | 1.2 | Ρ | | Mercury (total) | | 1 | U | 1 | U | (1 | U) | 1 | U | | Nickel | *** | 2.6 | P | 1.9 | P | (2.0 | P) | 2.3 | Ρ | | Selenium | | 2.0 | U | 2.0 | | (2.0 | | 2.0 | U | | Silver | | 0.50 | | 0.50 | | | | 0.50 | | | Thallium | **** | 2.5 | U | 2.5 | | (2.5 | U) | 2.5 | U | | Zinc | *** | 73.6 | | 9.3 | Ρ | (9.2 | P) | 8.0 | Ρ | 'NOTE: SOME INDIVIDUAL COMPOUND CRITERIA OR LOELS MAY NOT AGREE WITH GROUP CRITERIA OR LOELS. REFER TO APPROPRIATE EPA DOCUMENT ON AMBIENT WATER QUALITY CRITERIA FOR FULL DISCUSSION. Inf influent sample #### AB Ef aerated lagoon effluent - Ef Plant effluent - U The analyte was not detected at or above the reported result. - UJ The analyte was not detected at or above the reported estimated result. - J The analyte was positively identified. The associated numerical result is an estimate. - B Analyte was found in the analytical method blank, indicating the sample may have been contaminated. - N For metals the spike sample recovery was not within control limits - The analyte was detected above the instrumentation detection limit but below the established minimum quantitation limit. - E The concentration of the analyte exceeded the calibration range, and a dilution should be performed. - Analyte detected in one or more samples. - Duplicate sample analytical result. - a Total Halomethanes - Total Dichloroethenes - c Total Trichloroethanes - d Total Dichloropropanes - Total Dichloropropenes - Total Tetrachloroethanes - Total Chlorinated Benzenes (excluding Dichlorobenzenes) - Total Dichlorobenzenes - Total Phthalate Esters - Total Chloroalkyl Ethers - k Total Nitrosamines - I Total Nitrophenols - m Total Chlorinated Naphthalenes - Total Polynuclear Aromatic Hydrocarbons - Total Dinitrotoluenes - Total Haloethers - Total BHCs - Heptachlor - s Endosulfan - t Endrin - u DDT plus metabolites - v Total Chlordane - w Total Aroclors (PCBs)