# ALUMINUM COMPANY OF AMERICA (WENATCHEE) DECEMBER 1992 CLASS II INSPECTION by Steven Golding Washington State Department of Ecology Environmental Investigations and Laboratory Services Program Toxics, Compliance and Ground Water Investigations Section Olympia, Washington 98504-7710 Water Body No. WA-CR-1040 Segment No. 26-00-03 # TABLE OF CONTENTS | | <u>Page</u> | |-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------| | ABSTRACT | ii | | INTRODUCTION | 1 | | PROCEDURES | 1 | | QUALITY ASSURANCE/QUALITY CONTROL (QA/QC) Sampling | 5 | | RESULTS AND DISCUSSION Flow Measurements STP Outfall 001 NPDES Permit Compliance/General Chemistry STP Outfall 001 Split Sample Results STP Outfall 001 Laboratory Audit Priority Pollutant Scans STP Outfall 001 Bioassays | 6<br>6<br>6<br>11<br>11<br>12<br>12<br>12 | | RECOMMENDATIONS AND CONCLUSIONS Flow NPDES Permit Compliance/General Chemistry Split Sample Results Priority Pollutant Scans Bioassays | . 17<br>17<br>. 17<br>. 17 | | REFERENCES | 19 | #### **ABSTRACT** A Class II Inspection was conducted at the Aluminum Company of America Wenatchee Works (ALCOA) December 1-3, 1992. The sanitary sewage treatment plant (STP) was performing well during the inspection. The STP effluent met permit limits for BOD<sub>5</sub>, TSS, fecal coliform, and pH. The 001 discharge (stormwater, non-contact cooling water, and sanitary effluent) was also well within NPDES permit limits. Few organic pollutants were detected in either the STP effluent or the combined 001 outfall. With the exception of acetone, used for laboratory cleaning, all VOA and BNA organic compounds found were in concentrations less than 10 ug/L. Two PAH's were found in the 001 effluent at estimated concentrations of 0.03 ug/L or below. Of the five PP metals found in the 001 effluent, lead (in one of four samples) and cadmium exceeded EPA chronic freshwater water quality criteria and zinc exceeded acute and chronic criteria. Bioassays for *Daphnia magna*, *Ceriodaphnia dubia*, fathead minnow, and rainbow trout showed no adverse effects. The need for a review of ALCOA STP influent sampling; TSS, fluoride, and aluminum analysis; and mercury and nickel sampling and analysis are indicated. #### **INTRODUCTION** An unannounced Class II Inspection was conducted at the Aluminum Company of America Wenatchee Works (ALCOA) December 1-3, 1992. Conducting the unannounced inspection from the Washington State Department of Ecology (Ecology) were Eric Oie of the Industrial Section and Steven Golding of the Toxics, Compliance and Ground Water Investigations Section. Assisting from ALCOA were J.A. Thompson (Northwest Environmental Manager), Cordell Newby (Environmental Technician), Steve Sparman, and Jeff Cockrum. The Ecology Industrial Section requested the inspection. The ALCOA primary aluminum smelter is located approximately 10 miles southeast of Wenatchee on the west bank of the Columbia River, 1.8 miles upstream from Rock Island Dam (Figure 1). Associated facilities consist of five pot lines, an anode baking furnace, and casting facilities. The pot lines contain 774 center-worked pre-bake reduction cells. On-site wells supply potable water. All other water needs (non-contact cooling water and boiler makeup water) are supplied by withdrawal of water from the Columbia River. Stormwater and non-contact cooling water are discharged through Outfall 001. All sanitary wastewater is treated by an extended aeration sewage treatment plant (STP). A redundant extended aeration treatment unit was not in use at the time of the inspection. Plant operation is switched as needed to provide for maintenance. The STP effluent is discharged through Outfall 001 with the stormwater and non-contact cooling water to the Columbia River (Figure 2). The current National Discharge Elimination System (NPDES) permit (WA-000068-0) was issued August 23, 1990, and expires August 23, 1995. Objectives of the inspection included: - 1. verify NPDES permit self monitoring, - 2. assess STP effluent and Outfall 001 discharge compliance with NPDES permit limits, and - 3. assess Outfall 001 discharge toxicity with priority pollutant scans and bioassays. ## **PROCEDURES** Ecology collected composite samples at the STP influent (Inf-ES), STP effluent (Eff-ES), and 001 outfall. Ecology Isco composite samplers were set up to collect equal volumes of sample every 30 minutes for 24 hours. Samples of 001 effluent taken at two times comprised the grab-composite sample for bioassay tests. Intake water, 001 effluent, STP influent, and STP effluent grab samples were also taken. Sampler configurations and locations are summarized in Figure 2 and Table 1. Figure 1 - Location Map - ALCOA (Wenatchee), December 1992. ## Table 1 - Sampling Station Descriptions - ALCOA (Wenatchee), December 1992. # Ecology grab water intake samples (Inf-EW) The samples were collected in the pump house from a tap downstream of the intake pump. ## Ecology STP influent sample (Inf-S, Inf-ES) The grab and composite samples were collected from a comminutor from which the influent flows into the aeration basin. The composite sampler intake was positioned between the inlet and outlet of the comminutor in a well-mixed area. The intake was secured in place on the bottom of the comminutor, as required by the shallow depth of flow. ## ALCOA STP influent sample (Inf-AS) The composite sampler intake was placed on the bottom of the comminutor. ## Ecology STP aeration basin sample (Aer) Grab samples were collected from the central walkway in a well mixed portion of the basin. ## Ecology STP effluent sample (Eff-ES) The grab and composite samples were collected in front of the outfall pipe in the chlorination basin. The composite sampler intake was suspended inside the basin above the bottom of basin in a highly mixed area. # ALCOA STP effluent sample (Eff-AS) The composite sample was collected with a submersible pump in a manhole in a well mixed region, before chlorination. Grab samples were collected at the outlet of the chlorination basin. # Ecology 001 effluent sample (001-E) Composite sampler intake centered in front of outfall pipe downstream from effluent weir. ## ALCOA 001 effluent sample (001-A) Composite sampler intake at outfall pipe. ALCOA also collected STP influent, STP effluent, and 001 composite samples. The ALCOA STP influent sampler was set to collect equal volumes of sample every 10 minutes for 24 hours. The ALCOA 001 sampler was set to collect equal volumes of sample every two minutes for 24 hours. The ALCOA STP effluent sampler was set to collect flow-proportioned samples. All composite samples were split for both Ecology and ALCOA laboratory analysis. The sampling schedule, parameters analyzed, and sample splits are included in Appendix A. Ecology analytical methods and laboratories performing the analyses are summarized in Appendix B. ## QUALITY ASSURANCE/QUALITY CONTROL (QA/QC) # Sampling Ecology quality assurance procedures for sampling included special cleaning of the sampling equipment prior to the inspection to prevent sample contamination (Appendix C). Chain of custody procedures were followed to assure the security of the samples (Huntamer and Hyre, 1991). #### **Analyses** Most Ecology laboratory data met Ecology QA/QC guidelines and are considered to be reliable. Those data that did not meet the guidelines are appropriately qualified on the data tables. Comments on specific tests are included in the following paragraphs. General chemistry results were acceptable other than as qualified. VOA results were acceptable other than as qualified for methylene chloride and acetone. Methylene chloride was detected in the VOA method blank and in several samples at less than five times the amount detected in the method blank. Likely due to laboratory contamination, the methylene chloride sample results appear with the qualifier "U" to indicate that this analyte was not detected at a level above the suspected laboratory contamination. The percent difference between the initial and continuing calibration standards were within the maximum 25%, with the exception of acetone. Positive results for acetone have been qualified with a "J" (estimated value), and non-detected results have been qualified with a "UJ" (estimated detection limit). BNA's, Pesticides/PCB's, and Polynuclear Aromatic Hydrocarbons method blanks and surrogate recoveries were reasonable, acceptable, and within QC limits. The procedural blanks associated with the metals samples showed analytically significant levels of zinc and cadmium. Zinc concentrations above 62 ug/L (within a factor of ten of the concentration found in the procedural blank) are qualified with a "B" (significant blank contamination). Cadmium results are estimated due to problems with other QA tests. All spike recoveries were within acceptance limits with the exception of cadmium. The QA discrepancies with cadmium are the result of low level contamination during the digestion procedure. The lab has been investigating the source of this contamination. The cadmium results are qualified as estimates ("J"). #### RESULTS AND DISCUSSION #### Flow Measurements ## **STP** ALCOA measures effluent STP flow with a rectangular weir in the chlorine contact basin. The weir was not readily accessible to Ecology for verification of flow measurements. #### Outfall 001 ALCOA flow measurements for the 001 outfall were used to calculate the loading of permitted parameters in lbs/day. Flow is measured at a rectangular weir just upstream of the 001 outfall pipe. An Ecology instantaneous water depth measurement at the weir was 2.5 inches. With a measured weir width of 10' 5 1/16", the corresponding flow was determined to be 2.13 MGD. The ALCOA staff gauge indicated 2.5 inches of depth with a corresponding flow from the ALCOA conversion chart of 2.15 MGD. ALCOA and Ecology flow measurements thus were in agreement. The ALCOA continuous flow meter indicated 2.36 MGD, within 10% of the Ecology flow. ## NPDES Permit Compliance/General Chemistry #### STP The STP was performing well during the inspection. The conventional parameters of 5-day biochemical oxygen demand (BOD<sub>5</sub>), total suspended solids (TSS), and fecal coliform indicate a high quality effluent (Table 2). The effluent met NPDES permit limits for BOD<sub>5</sub>, TSS, total chlorine residual, fecal coliform, and pH (Table 3). TSS percent removal for the 24-hour composite sample was 79% compared with a permitted minimum 30-day average removal of 85%. There are indications that percent removal was higher than the 79% calculated with the 43 mg/L influent concentration from Inf-ES. Influent TSS concentrations varied considerably, with most of the Ecology and all of the ALCOA analyses yielding an influent TSS concentration of greater than 43 mg/L (Table 4). The Ecology analysis of the ALCOA Inf-AS sample (74 mg/L) results in a TSS removal of 88%. Table 2 - Ecology General Chemistry Results - ALCOA (Wenatchee), December 1992. | Parameter GENERAL CHE | Location: Type: Date: Time: Lab Log #: | Inf-EW<br>grab<br>12/2<br>1420<br>498206 | Inf-S1<br>grab<br>12/2<br>1030<br>498207 | Inf-S2<br>grab<br>12/2<br>1430<br>498208 | Inf-ES<br>E-comp<br>12/2-3<br>0800-0800<br>498209 | Inf-AS<br>A-comp<br>12/2-3<br>0800-0800<br>498210 | Aer-1<br>grab<br>12/2<br>1040<br>498211 | Aer-2<br>grab<br>12/2<br>1440<br>498212 | Eff-S1<br>grab<br>12/2<br>1100<br>498213 | Eff-S2<br>grab<br>12/2<br>1510<br>498214 | Eff-ES<br>E-comp<br>12/2-3<br>0800-0800<br>498215 | Eff-AS<br>A-comp<br>12/2-3<br>0800-0800<br>498216 | Eff-S3<br>grab<br>12/3<br>0800<br>498217 | Eff-S4<br>grab<br>12/3<br>1300<br>498218 | |-------------------------------------------------------------------------------|-------------------------------------------------|------------------------------------------|------------------------------------------|------------------------------------------|---------------------------------------------------|---------------------------------------------------|-----------------------------------------|-----------------------------------------|------------------------------------------|------------------------------------------|---------------------------------------------------|---------------------------------------------------|------------------------------------------|------------------------------------------| | Conductivity (um<br>Alkalinity (mg/L)<br>Sulfate (mg/L)<br>Hardness (mg/L | nhos/cm)<br>CaCO3)<br>CaCO3) | 139<br>61.5<br>64.4 | 497 | 503 | 400<br>161<br>113 | 421<br>173<br>113 | | | 340 | 353 | 353<br>69.7<br>108 | 354<br>70.5<br>111 | | | | Fluoride (total m<br>TS (mg/L)<br>TNVS (mg/L)<br>TSS (mg/L) | g/L) | 0.12<br>126<br>78<br>3 | 61 | 29 | 298<br>171<br>43 | 572<br>269<br>74 | 3900 | 3950 | :::: <b>7</b> ::: | 9 | 296<br>200<br>9 | 359<br>93<br>11 | | | | TNVSS (mg/L) BOD5 (mg/L) COD (mg/L) TOC (water mg/l) NH3-N (mg/L) | L) | ₹. | 34.7 | 40.5 | 8<br>59<br>56<br>28.9 | 1U<br>95<br>87<br>41.7 | 1000 | 1050 | 10.7 | 5.7 | 1U<br>4<br>10U<br>6.0 | 1U<br>3<br>10U<br>5.2 | | | | NO2+NO3-N (mg/L) NO2+NO3-N (m Total-P (mg/L) Oil and Grease ( F-Coliform MF ( | mg/L) | | 8.5<br>0.45<br>4.9 | 13<br>0,41<br>3.3 | 7.7<br>0.57<br>3.4 | 8.6<br>0.47<br>3.4 | | | 0.01U<br>9.8<br>1.4 | 0.02<br>11<br>2.4 | 0.11<br>11<br>2.0 | 0.04<br>12<br>1.9 | | | | Cyanide (wk & di<br>FIELD OBSERV,<br>Temperature (C)<br>Temp-cooled (C | is-mg/L)<br>ATIONS | | 16,8 | 18.4 | 75 | | | | 14.0 | 13.9 | | | 14.2 | 1U<br>16.5 | | pH<br>Total Residual C<br>Sulfide (mg/L) | * ar ar ar ar al la rian anabrillur d'ar a du l | | 7.9 | 8.1 | 7.5<br>8.4 | 8.5 | | | 7.6 | 7.0<br>0.5 | 6.3<br>7.8 | 7.8 | 7.7<br>0.8 | 7.2<br>1.0 | Table 2 - (cont'd) - ALCOA (Wenatchee), December 1992. | Parameter | Location:<br>Type:<br>Date:<br>Time: | 001-1<br>grab<br>12/2<br>o930 | 001-2<br>grab<br>12/2<br>1330 | 001-E<br>E-comp<br>12/2-3<br>0800-0800 | 001-ED<br>E-comp<br>12/2-3<br>0800-0800 | 001-A<br>A-comp<br>12/2-3<br>0700-0700 | 001-GC<br>grab-comp<br>12/2 | |--------------------|--------------------------------------|-------------------------------|-------------------------------|----------------------------------------|-----------------------------------------|----------------------------------------|-----------------------------| | | Lab Log #: | 498219 | 498220 | 498221 | 498222 | 498223 | 498224 | | GENERAL CHEM | | | | | | | | | Conductivity (um | hos/cm) | | | 157 | | 156 | 154 | | Alkalinity (mg/L C | aCO3) | | | 65.9 | | 65.6 | 65.8 | | Sulfate (mg/L) | | | | 10.3 | | 10.2 | 10.3 | | Hardness (mg/L ( | CaCO3) | | | 70.9 | | 70.9 | | | Fluoride (total mg | 1/L) | 0.17 | 0.20 | 0.18 | | 0.19 | | | TS (mg/L) | | | | 139 | 122 | 124 | | | TNVS (mg/L) | | | | 83 | 57 | 67 | | | TSS (mg/L) | | 2 | 2 | :::::::::::::::::::::::::::::::::::::: | 2 | 3 | | | TNVSS (mg/L) | | | | 1 | 2 | 1 | | | BOD5 (mg/L) | | | | | | | | | COD (mg/L) | | | | | | | | | TOC (water mg/L | ) | | | | | | | | NH3-N (mg/L) | | | | 0.02 | 0.02 | 0.01U | | | NO2+NO3-N (mg | J/L) | | | 0.43 | 0.48 | 0,46 | | | Total-P (mg/L) | | | | 0.097 | 0.074 | 0.066 | | | Oil and Grease (r | | 103 | 1UJ | | | | | | F-Coliform MF (# | | | | | | | | | Cyanide (wk & dis | | 0.002U | 0.002U | 0.002U | | 0.002U | | | FIELD OBSERVA | TIONS | | | | | | | | Temperature (C) | | 12.9 | 14.0 | | | | | | Temp-cooled (C) | | | | 4.2 | | | | | рH | | 7.6 | 8.1 | 8.0 | | 8.3 | | | Total Residual Cl | nlorine (mg/L) | ≤0.1 | <0.1 | | | | | | Sulfide (mg/L) | | <0.1 | <0.1 | <0.1 | | <0.1 | | Inf - influent Aer - aeration basin Eff - effluent grab - grab sample comp - composite sample GC - grab-composite sample E – sample collected by Ecology A – sample collected by ALCOA grab – grab sample comp – composite sample W – plant intake water S – sanitary wastewater 001 – combined plant effluent D – duplicate taken from Ecology composite sampler <sup>\* -</sup> equal volumes collected on 12/2 at 0930 and 1330 U - The analyte was not detected at or above the reported result. Table 3 – NPDES Permit Limits and Inspection Results – ALCOA (Wenatchee) – December 1992. | | NPDES | <u>Limits</u> | Ecology Insp | pection Results | |-----------------|-------------|----------------------------------------|------------------------|-----------------| | | Monthly | Daily | Composite | Grab | | Parameter | Average | Maximum | Samples | Samples | | Outfall 001 | | | | | | TSS | 100 lbs/day | 500 lbs/day | 18.4 lb/day | | | Fluoride | 25 lbs/day | 150 lbs/day | 3.32 lb/day | | | Aluminum | 15 lbs/day | 46 lbs/day | 1.11 lb/day (est.) | | | Free Cyanide | | ************************************** | 0.037 lb/day | | | Benzo(a)Pyrene+ | + | + | <0.0007 lb/day | | | Oil and Grease | 50 lbs/day | 250 lbs/day | <18.4 lb/day (est.) | | | pH | 6.0 | ) to 9.0 (continuous) | | 7.6; 8.1 | | Temperature | +<br> | + | 19 | 2.9 C; 14.0 C | | Flow* | + | + | 2.21 MGD | | | Production | + | + ( | 667 tons/day aluminum' | • | <sup>\* 24</sup> hour effluent flow for 001 was measured by ALCOA. <sup>+</sup> There are no permit limitations for these parameters but monitoring is required. | | NPDES | Limits | Ecology Insp | ection Results | |--------------------|-----------------|-----------------|--------------------|----------------| | | 30-day | 7-day | Composite | Grab | | | Average | Maximum | Samples | Samples | | STP Discharge | | | | | | BOD5 | 25.0 mg/L | 45.0 mg/L | 4 mg/L | | | | 19.0 lbs/day | 34.0 lbs/day | 1.7 lbs/day | | | | 85% removal | | 93% removal | | | TSS | 30.0 mg/L | 45.0 mg/L | 9 mg/L | | | 133 | 22.0 lbs/day | 34.0 lbs/day | 3.8 lbs/day | | | | 85% removal | 54.0 105/day | 79% removal+ | | | | 05% removal | | 7570 Temovar | | | Total Chlorine Res | sidual 0.5 mg | g/L to 2.0 mg/L | 0.5; 0.8; 1.0 mg/L | | | Fecal Coliform | 200/100mL | 400/100mL | 2; 1U /100 mL | | | рН | 6.0 to 9.0 at a | all times | 7.6; 7.0; 7.7;7.2 | | | Flow** | | | 51,150 gp | d | <sup>\*</sup>Ecology analysis of Ecology samples - The result from the 24-hour composite or grab sample exceeded the 30 day, 7 day, or daily limit. <sup>\*\*</sup> monthly average for December 1992. <sup>\*\*24-</sup>hour effluent flow for the STP was measured by ALCOA. <sup>+</sup>TSS removal using ALCOA sampler data was 89%. U - The analyte was not detected at or above the reported result. Table 4 - Split Sample Results Comparison - ALCOA (Wenatchee), December 1992. | | Location:<br>Type:<br>Date:<br>Time:<br>Lab Log #:<br>Sampled by: | Inf-S1<br>grab<br>12/2<br>1030<br>498207 | Inf-S2<br>grab<br>12/2<br>1430<br>498208 | Inf-ES<br>E-comp<br>12/2-3<br>0800-0800<br>498209<br>Ecology | Inf-AS<br>A-comp<br>12/2-3<br>0800-0800<br>498210<br>ALCOA | Eff-S1<br>grab<br>12/2<br>1100<br>498213 | Eff-S2<br>grab<br>12/2<br>1510<br>498214 | Eff-ES<br>E-comp<br>12/2-3<br>0800-0800<br>498215<br>Ecology | Eff-AS<br>A-comp<br>12/2-3<br>0800-0800<br>498216<br>ALCOA | Eff-S3<br>grab<br>12/3<br>0800<br>498217 | Eff-S4<br>grab<br>12/3<br>1300<br>498218 | 001-1<br>grab<br>12/2<br>0930<br>498219 | 001-2<br>grab<br>12/2<br>1330<br>498220 | 001-E<br>E-comp<br>12/2-3<br>0800-0800<br>498221<br>Ecology | 001-A<br>A-comp<br>12/2-3<br>0700-0700<br>498223<br>ALCOA | |--------------------|-------------------------------------------------------------------|------------------------------------------|------------------------------------------|--------------------------------------------------------------|------------------------------------------------------------|------------------------------------------|------------------------------------------|--------------------------------------------------------------|------------------------------------------------------------|------------------------------------------|------------------------------------------|-----------------------------------------|-----------------------------------------|-------------------------------------------------------------|-----------------------------------------------------------| | Parameter Ana | lysis by: | | | | | | | | | | | | | | | | Fluoride (mg/L) | Ecology<br>ALCOA | | | | | | | | | | | 0.17<br>0.05 | 0.20<br>0.06 | 0.18<br>0.06 | 0.19<br>0.06 | | TSS (mg/L) | Ecology<br>ALCOA | 61 | 29<br>64 | 43<br>81 | 74<br>69 | .7<br>7 | 9<br>8 | 9<br>12 | 11<br>9 | | | 2<br>1 | 2<br>0 | 1<br>1 | 3<br>0 | | BOD5 (mg/L) | Ecology<br>ALCOA | | | 59<br>60 | 95<br>91 | | | 4<br><1 | 3<br>4 | | | | | | | | Free Cyanide (mg/L | )<br>Ecology<br>ALCOA | | | | | | | | | | | <0.002<br><0.003 | <0.002<br><0.003 | <0.002<br><0.003 | <0.002<br><0.003 | | Benzo(a)Pyrene (ug | /L)<br>Ecology<br>ALCOA | | | | | | | | | | | | | <0.04<br><1 | <0.04<br><1 | | Oil and Grease (mg | /L)<br>Ecology<br>ALCOA | | | | | | | | | | | 1UJ<br>0 | 1UJ<br>0 | | 0.7 | | Fecal Coliform MF | #/100mL)<br>Ecology<br>ALCOA | | | | | | | | | 2<br><2.2 | <1<br><2.2 | | | | | | Aluminum (mg/L) | Ecology<br>ALCOA | | | 0.40<br>0.38 | | | | 0.20<br>0.18 | | | | 0.05P<br>0.05 | 0.07P<br>0.03 | 0.06P<br>0.03 | 0.05P<br>0.03 | <sup>\*</sup> grabs collected for analysis by both Ecology and ALCOA E - Ecology sample A - ALCOA sample Inf - influent Eff - effluent S - sanitary wastewater treatment grab - grab sample 001 - combined cooling water and sanitary wastewater effluent comp - composite sample UJ – The analyte was not detected at or above the reported estimated result. P – The analyte was detected above the instrument detection limit but below the established minimum quantitation limit. Indicators that the plant was operating well within design constraints were effluent BOD<sub>5</sub> (4 mg/L; 1.7 lb/day), TSS (9 mg/L; 3.8 lb/day) compared with permitted BOD<sub>5</sub> (25 mg/L; 19.0 lb/day monthly average) and TSS (30 mg/L; 22.0 lb/day monthly average). A comparison of ammonia and nitrate-nitrite concentrations in influent versus effluent indicate that the STP was achieving substantial nitrification at the time of the inspection (Table 2). $NH_3$ -N concentrations of approximately 8 mg/L in the influent were reduced to approximately 0.1 mg/L in the effluent, while $NO_2 + NO_3$ -N concentrations increased from approximately 0.6 mg/L in the influent to approximately 11 mg/L in the effluent. #### Outfall 001 Discharges through Outfall 001 met all permit requirements during the inspection (Table 3). Discharges of TSS, fluoride, aluminum, and oil & grease were substantially below permitted concentrations. Free cyanide and benzo(a)pyrene, for which monitoring is required by permit, were below detection limits. The pH measured was well within the range of the permit. ## **Split Sample Results** Samples were split to determine the comparability of Ecology and permittee laboratory results and sampling methods (Table 4). Field temperature measurements found the Ecology composite samples to be slightly warmer than the desired 4°C (Table 2). The ALCOA 001 composite sample is ordinarily refrigerated. To accommodate the larger sample sizes needed for the inspection, the ALCOA sample was unrefrigerated in an unheated shed. The outdoor air temperature was below freezing throughout the sampling period. ALCOA should check their composite sample temperatures monthly to assure the samples are properly cooled. ## **STP** Comparisons of samples from the same waste stream obtained by ALCOA and Ecology give an indication of whether the sampling method provides representative results. The analyses of influent BOD<sub>5</sub> indicate consistently higher BOD<sub>5</sub> in the ALCOA sample. TOC analyses support this. Sources of the increased BOD<sub>5</sub> should be considered. Sampling equipment and containers should be checked for attached growth. Comparing the results of two laboratories' analyses of the same sample gives an indication of the differences between laboratory procedures. TSS analyses showed a disparity between Ecology and ALCOA results. ALCOA analyses resulted in approximately two times the TSS concentrations determined by Ecology for two out of three influent samples compared. The analyses for the third sample varied only 7%. Ecology TSS analyses varied considerably between influent samples. ALCOA analyses between influent samples were more consistent. Effluent TSS analyses by Ecology and ALCOA were in close agreement, yielding results within 4 mg/L. Ecology and ALCOA analyses for all BOD<sub>5</sub> influent and effluent samples were in very close agreement, within 4 mg/L. ## Outfall 001 There was little difference between Ecology and ALCOA grab and composite samples of the 001 effluent. All four 001 effluent samples agreed closely for all parameters analyzed (Table 4). ALCOA TSS results were in close agreement with Ecology results, within 3 mg/L. A comparison of the results of the two laboratory's analyses of the same samples shows that ALCOA fluoride results were one third of Ecology results. ALCOA aluminum results were consistently lower than Ecology's results. Benzo(a)pyrene was undetected by ALCOA and Ecology, but ALCOA's detection limit was 25 times higher than Ecology's. ALCOA used GCMS as required by Ecology while Ecology used the more sensitive but less accurate HPLC method (Oie, 1993). Free cyanide, oil & grease, and fecal coliform results agreed closely. ## **Laboratory Audit** The ALCOA laboratory was audited by Ecology's Quality Assurance Section, and was accredited by Ecology on October 8, 1992. #### **Priority Pollutant Scans** #### STP Few organic compounds were detected by the priority pollutant scans (Table 5). Most organic compounds detected in the STP effluent were at concentrations less than 10 ug/L. The exception was acetone, with influent concentrations up to 58 ug/L (est.). Acetone is used for sampling apparatus cleaning and in the laboratory, often causing low level sample contamination. Chloroform, bromodichloromethane, and toluene were the only VOA compounds other than acetone detected in the STP effluent. Di-n-butyl phthalate was the only BNA compound detected in the STP effluent. All of these organic compounds, other than acetone, were found in concentrations below 10 ug/L. All STP influent and effluent organic compound concentrations were below acute and chronic EPA fresh water quality criteria (EPA, 1986). A complete list of parameters analyzed and analytical results is included in Appendix D. A number of Tentatively Identified Compounds (TICs) were found in the STP influent samples in concentrations up to 720 ug/L (est.). Four unknown TICs were found in STP effluent samples in concentrations up to 7 ug/L (est.) Appendix E summarizes TICs found. Results Table 5 - Comparison of Organic Compounds and Metals Detected in Effluent to Toxicity Criteria - ALCOA (Wenatchee), December 1992. | | Location:<br>Type: | Inf-S1<br>grab | Inf-S2<br>grab | Eff-S1<br>grab | Eff-S2<br>grab | 001–1<br>grab | 001-2<br>grab | E | EPA Wate | r Quality C | Oriteria Summa | ry** | |--------|-----------------------------------------------------------------------|---------------------------------------------------|------------------------|---------------------------|---------------------------------------------------|--------------------------------------------------|--------------------------------------------------|---|----------------------------|----------------------|----------------------------|------| | | Date:<br>Time:<br>Lab Log#: | 12/2<br>1030<br>498207 | 12/2<br>1430<br>498208 | 12/2<br>1100<br>498213 | 12/2<br>1510<br>498214 | 12/2<br>0930<br>498219 | 12/2<br>1330<br>498220 | | Acute<br>Fresh | | nronic<br>Fresh | | | (Group | VOA Compounds | ug/L | ug/L | ug/L | ug/L | ug/L | ug/L | | (ug/L) | | (ug/L) | | | a<br>a | Acetone<br>Chloroform<br>Bromodichloromethane<br>Toluene | 52 | J 58 | J 27<br>7.0<br>1.7<br>1.1 | J 19 J<br>6.2<br>1.5<br>1.2 U | 8.6 J<br>1.0 U<br>1.0 U<br>1.0 U | 11 J<br>1.0 U<br>1.0 U<br>1.0 U | | 28,900<br>11,000<br>17,500 | | 1,240 * | | | | | Inf-ES<br>E-comp<br>12/2-3<br>0800-0800<br>498209 | | | Eff-ES<br>E-comp<br>12/2-3<br>0800-0800<br>498215 | 001-E<br>E-comp<br>12/2-3<br>0800-0800<br>498221 | 001-A<br>A-comp<br>12/2-3<br>0700-0700<br>498223 | | | | | | | (Group | BNA Compounds | ug/L | | | ug/L | ug/L | ug/L | | | | | | | , | Phenol 1,4-Dichlorobenzene Benzyl Alcohol 4-Methylphenol Benzoic Acid | 1.0<br>1.2<br>5.2<br>9.9<br>21 | J | | | | | | 10,200<br>1,120 | *<br>*(h) | 2,560 *<br>763 *(h) | | | i | Diethyl Phthalate Di-n-Butyl Phthalate Bis(2-Ethylhexyl)Pthalate | 2.9<br>2.5<br>2.1 | | | 1.2 | 1,1 | | | 940<br>940<br>940 | *(i)<br>*(i)<br>*(i) | 3 *(i)<br>3 *(i)<br>3 *(i) | | #### PAH's | Fluoranthene | 0.03 J | 0.70 U 3.980 * | |--------------|--------|----------------| | Pyrene | 0.01 | 0.01 U | | | | | #### Pesticide/PCB Compounds (none detected) Table 5 – (cont'd) – ALCOA (Wenatchee), December 1992. | Location: | Inf-EW | InfE-S<br>E-comp | Eff-ES | 001-1 | 001-2 | 001-E<br>E-comp | 001-ED | EPA Water Quality Criteria Summary | |--------------------------------------|--------------------------------|-------------------------------|-----------------------------------------|--------------------------------|--------------------------------|-------------------------------|-----------------------------------------|------------------------------------| | Type:<br>Date:<br>Time:<br>Lab Log#: | grab<br>12/2<br>1420<br>498206 | 12/2-3<br>0800-0800<br>498209 | E-comp<br>12/2-3<br>0800-0800<br>498215 | grab<br>12/2<br>0930<br>498219 | grab<br>12/2<br>1330<br>498220 | 12/2-3<br>0800-0800<br>498221 | E-comp<br>12/2-3<br>0800-0800<br>498222 | Acute Chronic<br>Fresh Fresh | | Metals++ | ug/L (ug/L) (ug/L) | | Aluminum (total) | 49 | P 401 | 203 | 54 P | 67 P | 60 P | 65 P | 750 87 | | Arsenic | 1,5 | U 1.7 P | 2.4 P | 1.5 U | 1.5 U | 1.5 U | 1.5 U | | | Pentavalent | | | | | | | | 850 * 48 * | | Trivalent | | | | | | | | 360 190 | | Cadmium | 1.07 | J 0.6 J | 1.14 J | 0.86 J | 0.76 J | 1.25 J | 1.45 J | 2.6 + 0.9 + | | Chromium | 5.0 | U 11 P | <u> </u> | • | | | | | | Hexavalent | | | | | | | | 16 11 | | Trivalent | | | | | | | | 1,297 + 155 + | | Copper | 3.0 | U 21 | 18 | 4.6 P | 4.9 P | 4.4 P | 4.3 P | 13 + 9 + | | Lead | 206 | PJ 6.3 J | 2.5 PJ | 11.7 J | 1.2 PJ | 1.0 U | J 2.2 PJ | 52 + 2.0 + | | Mercury (total) | 0.050 | U 0.20 P | 0.16 P | 0.050 U | 0.050 U | 0.050 U | 0.050 U | 2.4 0.012 | | Silver | 0.50 | U 2.2 | 0.64 P | 0.50 U | 0.50 U | 0.50 U | 0.50 U | 2.2 + 0.12 | | Zinc | 7.5 | PB 72.1 | 138 | 34 B | 17 PB | 96.5 | 42.3 B | 87 + 78 + | 1NOTE: SOME INDIVIDUAL COMPOUND CRITERIA OR LOELS MAY NOT AGREE WITH GROUP CRITERIA OR LOELS. REFER TO APPROPRIATE EPA DOCUMENT ON AMBIENT WATER QUALITY CRITERIA FOR FULL DISCUSSION. - U The analyte was not detected at or above the reported result. - UJ The analyte was not detected at or above the reported estimated result. - J The analyte was positively identified. The associated numerical result is an estimate. - B Analyte was found in the analytical method blank, indicating the sample may have been contaminated. - P The analyte was detected above the instrument detection limit but below the established minimum quantitation limit. - \* Insufficient data to develop criteria. Value presented is the LOEL Lowest Observed Effect Level. - Hardness dependent criteria (70 mg/L used). - a Total Halomethanes - h Total Dichlorobenzenes - i Total Phthalate Esters - ++ total recoverable unless otherwise specified 001 - combined cooling water and sanitary wastewater effluent of ALCOA priority pollutant organic scans appear in Appendix F. Detection limits were higher than Ecology's and no compounds were found. No pesticide/PCB compounds were found in the STP influent or effluent. Nine priority pollutant metals were detected in the STP influent. Aluminum was found at the highest concentration (401 ug/L). Aluminum in the STP effluent was found at a concentration of 203 ug/L. Aluminum, cadmium, lead, mercury, and silver were found in the STP effluent in concentrations greater than EPA water quality chronic fresh water criteria (EPA, 1986; 1988). Copper and zinc were found in concentrations greater than acute and chronic criteria. # Outfall 001 Acetone was the only VOA compound detected in the 001 effluent (Table 5). Di-n-butyl phthalate (1.1 ug/L), the only BNA compound detected, was found in concentrations less than acute and chronic EPA fresh water quality criteria. Two PAH's were found in the 001 effluent. Fluoranthene (0.03 ug/L est.) was five orders of magnitude less than acute EPA freshwater criteria. Pyrene was found at a concentration of 0.01 ug/L. No VOA TICs were found in the 001 effluent. A number of unknown BNA TICs in concentrations up to 8 ug/L were found (Appendix E). No pesticide/PCB compounds were found in the 001 effluent. Five priority pollutant metals were detected in the 001 effluent. Aluminum and copper were found in concentrations less than acute and chronic EPA fresh water criteria. The estimated cadmium concentration for the composite sample was less than the acute criterion but 39% greater than the chronic criterion. Lead was detected in a concentration five times above the EPA chronic criterion in one grab sample, but below the chronic criterion in two other samples. Zinc concentrations in the composite sample were 11% and 24% greater than the acute and chronic EPA freshwater criteria, respectively. A comparison was made between Ecology and ALCOA metals analyses of the same samples (Appendix G). Although there was generally good agreement, ALCOA detected mercury and nickel in samples in which Ecology did not. ALCOA detected mercury concentrations several times higher than Ecology's detection limits. ALCOA total nickel concentrations were also several times greater than Ecology's total recoverable nickel detection limits. Also, Ecology detected aluminum in the 001 discharge at concentrations approximately twice those reported by ALCOA. ## **Bioassays** The bioassays for *Daphnia magna*, *Ceriodaphnia dubia*, fathead minnow, and rainbow trout showed no adverse effects (Table 6). Table 6 - Effluent Bioassay Results - ALCOA (Wenatchee), December 1992. ## Daphnia magna - 48-hour survival test (Daphnia magna) Sample No. 498224 Percent Sample Concentration # Tested\* Survival 0 % effluent 100 6.25 % effluent 20 12.5 % effluent 20 100 25 % effluent 20 95 50 % effluent 20 85 100 % effluent 20 85 > NOEC = 100% effluent LC50>100% effluent #### Ceriodaphnia dubia - survival/reproduction test (Ceriodaphnia dubia) Sample No. 498224 Sample # Young Percent Produced/Adult Survival #Tested\* Concentration 10 70 Control 0.7 6.25 % 10 8.5 90 12.5 % 80 10 12.0 25 % 10 6.8 100 50 % 10 7.2 80 100 % 9 18.9 78 Reproduction Sulpho NOEC = 100 % Effluent NC Survival NOEC = 100 % effluent LC50 > 100 % effluent #### Fathead Minnow larval - survival and growth test (Pimephales promelas) Sample No. 498224 | Sample | 110. 430224 | | | | |--------------------------------|-------------|--------------|--------------|--| | Sample | | Percent | Average Dry | | | Concentration | # Tested* | Survival | Weight (mg) | | | | | | | | | Control | 35 | 85.7 | 0.58 | | | 6.25 % Effluent | 35 | 100.0 | 0.65 | | | 12.5 % Effluent | 35 | 97.1 | 0.71 | | | 25 % Effluent | 35 | 97.1 | 0.71 | | | 50 % Effluent | 35 | 94.3 | 0.68 | | | 100 % Effluent | 35 | 100.0 | 0.63 | | | 25 % Effluent<br>50 % Effluent | 35<br>35 | 97.1<br>94.3 | 0.71<br>0.68 | | Survival NOEC = 100 % effluent LC50 > 100 % effluent Growth NOEC = 100 % effluent #### Rainbow Trout - 96 hour survival test (Oncorhynchus mykiss) Sample No. 498224 | Sample No. 49 | 8224 | | |----------------|------------|------------| | Sample | Number | Percent | | Concentration | Tested* | Survival | | Control | 30 | 100 | | 100 % Effluent | 30 | 100 | | | NOEC = 100 | % effluent | LC50 > 100 % effluent <sup>\*</sup> four replicates per concentration, five organisms per replicate <sup>\*</sup> ten replicates per concentration, one organism per replicate <sup>\*</sup> five replicates per concentration, seven organisms per replicate <sup>\*</sup> three replicates per concentration, ten organisms per replicate #### RECOMMENDATIONS AND CONCLUSIONS #### Flow The STP effluent weir was not readily accessible to Ecology for verification of flow measurements. ALCOA measured flow at Outfall 001 with a flow meter based on depth at a rectangular weir. The instantaneous flow meter measurement was within 10% of an Ecology instantaneous flow measurement. # NPDES Permit Compliance/General Chemistry The STP was performing well during the inspection. The effluent met NPDES permit limits. BOD<sub>5</sub> removal was 93%. TSS removal, while uncertain, appears to have been approximately 85%. The STP was achieving substantial nitrification. Discharges through Outfall 001 met all permit requirements during the inspection. # **Split Sample Results** Representative temperatures of ALCOA composite samples could not be determined. ALCOA should check their composite sample temperatures monthly to assure the samples are properly cooled. The ALCOA STP influent sample BOD<sub>5</sub> was higher than the Ecology sample BOD<sub>5</sub>. • Sources of the increased BOD<sub>5</sub> should be considered, including the possibility of attached growth on sampling equipment and containers. The results of Ecology and ALCOA STP influent sample analyses varied considerably. • Particular attention should be paid to TSS during the next QA performance evaluation. Closeness in agreement between results of Outfall 001 samples shows that there was no discernible sampling error. ALCOA fluoride and aluminum results were consistently less than Ecology results. ALCOA fluoride analysis procedures should be checked. Analytical procedures for aluminum should be reviewed. ## **Priority Pollutant Scans** Few organic compounds were detected in the STP influent or effluent. All STP influent and effluent organic compounds for which there were criteria were found in concentrations below EPA fresh water quality criteria. Eight PP metals were detected in the STP effluent. Aluminum was found in the highest concentration (203 ug/L). Aluminum and six other metals were found in the STP effluent in concentrations greater than acute or chronic EPA fresh water criteria. Di-n-butyl pthalate and acetone were detected in the 001 effluent. Two PAH's, fluoranthene and pyrene, were also found in low concentrations. Five priority pollutant metals were detected in the 001 effluent. Aluminum and copper were in concentrations below EPA fresh water quality criteria. Cadmium concentrations were greater than EPA chronic criterion but less than acute criterion. With the exception of one grab sample, lead concentrations were below chronic and acute criteria. Zinc concentrations from the composite sample were above acute and chronic criteria. ALCOA detected mercury in samples in which the metals were undetected by Ecology at several times lower detection limits. ALCOA detected total nickel in the 001 effluent at two to five times the Ecology total recoverable nickel detection limit. • Sampling and analysis techniques for mercury and nickel should be reviewed by ALCOA. ## **Bioassays** All four bioassays for *Daphnia magna*, *Ceriodaphnia dubia*, fathead minnow, and rainbow trout showed no adverse effects. #### REFERENCES - EPA, 1986. Quality Criteria for Water, EPA 440/5-86-001. United States Environmental Protection Agency. - EPA, 1988. <u>Ambient Water Quality Criteria for Aluminum</u>. United States Environmental Protection Agency. - Huntamer, D. and Hyre, J., 1991. <u>Ecology Laboratory User's Manual</u>. Washington State Department of Ecology, Olympia, WA. - Oie, E., 1993. Personal Communication. Washington State Department of Ecology, Central Programs, Industrial Section, Olympia, Washington. **APPENDICES** # Appendix A - Sampling Schedule - ALCOA (Wenatchee), December 1992. | Parameter | Location:<br>Type:<br>Date:<br>Time:<br>Lab Log #: | Inf-EW<br>grab<br>12/2<br>1420<br>498206 | Inf-S1<br>grab<br>12/2<br>1030<br>498207 | Inf-S2<br>grab<br>12/2<br>1430<br>498208 | Inf-ES<br>E-comp<br>12/2-3<br>0800-0800<br>498209 | Inf-AS<br>A-comp<br>12/2-3<br>0800-0800<br>498210 | grab | Aer-2<br>grab<br>12/2<br>1440<br>498212 | Eff-S1<br>grab<br>12/2<br>1100<br>498213 | Eff-S2<br>grab<br>12/2<br>1510<br>498214 | Eff-ES<br>E-comp<br>12/2-3<br>0800-0800<br>498215 | Eff-AS<br>A-comp<br>12/2-3<br>0800-0800<br>498216 | Eff-S3<br>grab<br>12/3<br>0800<br>498217 | Eff-S4<br>grab<br>12/3<br>1300<br>498218 | |----------------------------------|----------------------------------------------------|------------------------------------------|------------------------------------------|------------------------------------------|---------------------------------------------------|---------------------------------------------------|-------------|-----------------------------------------|------------------------------------------|------------------------------------------|---------------------------------------------------|---------------------------------------------------|------------------------------------------|------------------------------------------| | GENERAL CHE Conductivity | MISTRY | sia can En | <b>E</b> | E | un ente E | E | | | <b>E</b> | <b>E</b> | | garangan <b>E</b> n | | -<br> | | Alkalinity<br>Sulfate | | Е | | | E | | | | | | Ε | E | | | | Hardness<br>Fluoride | | E | | | E | E | | | | | Ē | E | | | | TS<br>TNVS | | E<br>E<br>E | | | E<br>E | E<br>E | | | | | E<br>E | E<br>E | | | | TSS | | e a grand <b>E</b> di | E | EA | EA | EA | E | E | EA | EA | EA | EA | | | | TNVSS<br>BOD5 | | E | | | E<br>EA | E<br>EA | | E | | | E<br>EA | E<br>EA | | | | COD<br>TOC (water) | | | E | E | E<br>E | E<br>E | | | Е | Е | E<br>E | E<br>E | | | | NH3-N<br>NO2+NO3-N | | | E<br>E<br>E | E<br>E | E<br>8 | E<br><b>F</b> actorial and <b>F</b> | | | E<br>E | E | E<br>E | <b>E</b><br>:::::::::::::::::::::::::::::::::::: | | | | Total-P<br>Oil and Grease ( | watar) | | Ē | Ē | Ē | E<br>E | | | E<br>E | E<br>E | Ē | Ē | | | | F-Coliform MF | | | | | | | | | | | | | EA | EA | | Cyanide (wk & d<br>ORGANICS | 18) | | | | | | | | | | | | | | | VOC (water)<br>BNAs (water) | | | E | E | EA | | | | E | E | EA | | | | | Pest/PCB (water<br>PAH (water) | ) | | | | ĒA | | | | | | | | | | | METÀLS<br>PP Metals (wate | ስ | Е | | | EA | | | | | | EA | | | | | Aluminum | <b>)</b> | Ě | | | EA | | | | | | EA<br>EA | | | | | BIOASSAYS<br>Salmonid (acute | | | | | | | | | | | | | | | | Daphnia magna<br>Ceriodaphnia (c | | | | | | | | | | | | | | | | Fathead Minnov | (chronic) | | | | | | | | | | | | | | | Temperature<br>Temp-cooled | | | E | E | _ | _ | | | E | E | | <u>.</u> | E | E | | pН | | | E | E | E<br>E | E<br>E | | | E | E | E<br>E | <b>E</b><br>E | E | E | | Chlorine<br>Sulfide | | | | elangua eternetaka | | | | | | | | | E<br>monomento estenda | <b>E</b><br>Sassutententis | | | | | | | | | | | | | | | | | | | | E- | Ecology an | alvsis | | Inf – | influent | | | | comp – | composite s | ample | | | | | | ALCOA and | | | Aer –<br>Eff – | aeration ba | ısin | | | GĊ – | grab-compo | site sample | | | | | | | | | E-comp -<br>A-comp - | composite | sample col | llected by Ec<br>llected by AL | ology<br>.COA | S -<br>001 - | sanitary was<br>combined p | tewater<br>ant effluent | | | | | | | | | grab - | grap comp | voice sailip | 10 | | D - | duplicate sa | mpie | | # Appendix A - (cont'd) - ALCOA (Wenatchee), December 1992. | Parameter | Location: Type: Date: Time: Lab Log #: | 001-1<br>grab<br>12/2<br>0930<br>498219 | 001-2<br>grab<br>12/2<br>1330<br>498220 | 001-E<br>E-comp<br>12/2-3<br>0800-0800<br>498221 | 001-ED<br>E-comp<br>12/2-3<br>0800-0800<br>498222 | 001-A<br>A-comp<br>12/2-3<br>0700-0700<br>498223 | 001-GC<br>grab-comp<br>12/2<br>*<br>498224 | |-------------------|----------------------------------------|-----------------------------------------|-----------------------------------------|--------------------------------------------------|---------------------------------------------------|--------------------------------------------------|--------------------------------------------| | GENERAL CHEM | ISTRY | | | _ | | _ | | | Conductivity | | | | E | | E | <u> </u> | | Alkalinity | | | | E<br>E<br>E | | E<br>E<br>E | E<br>E | | Sulfate | | | | <b>E</b> | | E | E | | Hardness | | | | | | E | | | Fluoride | | EA | EA | EA | | EA | | | TS | | | | Ε | E<br>E | E | | | TNVS | | | | Ε | Е | Ε | | | TSS | | EA | EA | EA. | E | EA. | | | TNVSS | | | | E | E | Ε | | | BOD5 | | | | | | | | | COD | | | | | | | | | TOC (water) | | | | | Е | | | | NH3-N | | | | E | E | E | | | NO2+NO3-N | | | | E<br>E | Ē | E<br><b>E</b> | | | Total-P | | | | Ē | Ē | Ē | | | Oil and Grease (w | rater) | EA | EA | | <b>.</b> | Ā | | | F-Coliform MF | ***** | | | | | | | | Cyanide (wk & dis | 1 | EA | EA | EA | | EA | | | ORGANICS | 7 | h/1 | I | <u> </u> | | LA | | | VOC (water) | | <b>E</b> | E | | | | | | BNAs (water) | | <b>-</b> | - | EA | | | | | Pest/PCB (water) | | | | CA. | | | | | PAH (water) | | | | EA | | EA | | | METALS | | | | EA | | EA | | | PP Metals (water) | | EA | EA | ĒΑ | Е | EA | | | Aluminum | | EA<br>EA | EA | EA<br>EA | E<br>Janeario <b>E</b> ri | EA<br>EA | | | | | EA. | EA | EA | | EA | | | BIOASSAYS | 000/3 | | | | | | | | Salmonid (acute 1 | | | | | | | E | | Daphnia magna (a | | | | | | | E<br>E<br>E | | Ceriodaphnia (chr | | | | | | | E | | Fathead Minnow ( | | | | | | | E | | FIELD OBSERVA | HONS | | | | | | | | Temperature | | | | | | | | | Temp-cooled | | | | E<br>E | E<br>E | E<br>E | | | pН | | E | E | E | E | Ε | | | Chlorine | | E | E | | | | | | Sulfide | | e e Est | E | E | <b>E</b> | elda espekiel <b>E</b> l | | | | | | | | | | | <sup>\* -</sup> equal volumes collected on 12/2 at 0930 and 1330 ## Appendix B – Ecology Analytical Methods – ALCOA (Wenatchee), December 1992. | | Method Used for | Laboratory | |--------------------------|-------------------------------|-----------------------------------| | Laboratory Analysis | Ecology Analysis | Performing Analysis | | | | | | Conductivity | EPA, Revised 1983: 120.1 | Ecology Manchester Laboratory | | Alkalinity | EPA, Revised 1983: 310.1 | Ecology Manchester Laboratory | | Sulfate | EPA, Revised 1991: 300.0 | Ecology Manchester Laboratory | | Hardness | EPA, Revised 1983: 130.2 | Ecology Manchester Laboratory | | Fluoride | EPA, Revised 1983: 340.3 | Ecology Manchester Laboratory | | TS | EPA, Revised 1983: 160.3 | Ecology Manchester Laboratory | | TNVS | EPA, Revised 1983: 160.3 | Ecology Manchester Laboratory | | TSS | EPA, Revised 1983: 160.2 | Ecology Manchester Laboratory | | TNVSS | EPA, Revised 1983: 160.2 | Ecology Manchester Laboratory | | BOD5 | EPA, Revised 1983: 405.1 | Ecology Manchester Laboratory | | COD | EPA, Revised 1983: 410.1 | Laucks Testing Laboratories | | TOC (water) | EPA, Revised 1983: 415.1 | Ecology Manchester Laboratory | | NH3-N | EPA, Revised 1983: 350.1 | Laucks Testing Laboratories | | NO2+NO3-N | EPA, Revised 1983: 353.2 | Laucks Testing Laboratories | | Total-P | EPA, Revised 1983: 365.3 | Laucks Testing Laboratories | | Oil and Grease (water) | EPA, Revised 1983: 413.1 | Ecology Manchester Laboratory | | F-Coliform MF | APHA, 1992: 9222D. | Ecology Manchester Laboratory | | Cyanide (wk & dis) | APHA, 1992: 4500-CNI. | Ecology Manchester Laboratory | | VOC (water) | EPA, 1986: 8260 | Analytical Resources Incorporated | | BNAs (water) | EPA, 1986: 8270 | Analytical Resources Incorporated | | Pest/PCB (water) | EPA, 1986: 8080 | Analytical Resources Incorporated | | PAH (water) | EPA, 1986: 8310 | Analytical Resources Incorporated | | PP Metals (water) | EPA, Revised 1983: 200-299 | Ecology Manchester Laboratory | | Aluminum (total) | EPA, Revised 1983: 200.7/6010 | Ecology Manchester Laboratory | | Salmonid (acute 100%) | Ecology, 1991. | Ecology Manchester Laboratory | | Daphnia magna (acute) | EPA 1985 | Ecology Manchester Laboratory | | Ceriodaphnia (chronic) | EPA 1989: 1002.0 | Ecology Manchester Laboratory | | Fathead Minnow (chronic) | EPA 1989 | Ecology Manchester Laboratory | #### METHOD BIBLIOGRAPHY - APHA-AWWA-WPCF, 1992. Standard Methods for the Examination of Water and Wastewater, - Ecology, 1991. Static Acute Fish Toxicity Test, WDOE 80–12, revised Sept. 1991. EPA, 1983. Methods for Chemical Analysis of Water and Wastes, EPA–600/4–79–020 - (Rev. March 1983). - EPA, 1985. Methods for Measuring the Acute Toxicity of Effluents to Freshwater and Marine Organisms. EPA 600/4-85/013. EPA, 1986: SW846. Test Methods for Evaluating Solid Waste Physical/Chemical Methods, - SW-846, 3rd. ed., November, 1986. EPA, 1989. Short-term Methods for Estimating the Chronic Toxicity of Effluents and - Receiving Waters to Freshwater Organisms. EPA, 1991. Pfaff, J.D., C.A. Brockhoff & J.W. O'Dell. The Determination of Inorganic Anions - in Water by Ion Chromatography. Appendix C - Priority Pollutant Cleaning Procedures - ALCOA (Wenatchee), December 1991. # PRIORITY POLLUTANT SAMPLING EQUIPMENT CLEANING PROCEDURES - 1. Wash with laboratory detergent - 2. Rinse several times with tap water - 3. Rinse with 10% HNO3 solution - 4. Rinse three (3) times with distilled/deionized water - 5. Rinse with high purity methylene chloride - 6. Rinse with high purity acetone - 7. Allow to dry and seal with aluminum foil # Appendix D - VOA, BNA, PAH, Pesticide/PCB and Metals Scan Results - ALCOA (Wenatchee), December 1992. | | Location:<br>Type:<br>Date:<br>Time:<br>Lab Log#:<br>VOA Compounds | Inf-S1<br>grab<br>12/2<br>1030<br>498207 | Inf-S2<br>grab<br>12/2<br>1430<br>498208 | | Eff-S1<br>grab<br>12/2<br>1100<br>498213 | Eff-S2<br>grab<br>12/2<br>1510<br>498214 | | 001-1<br>grab<br>12/2<br>0930<br>498219 | 001-2<br>grab<br>12/2<br>1330<br>498220 | | |--------|--------------------------------------------------------------------|------------------------------------------|------------------------------------------|------------|------------------------------------------|------------------------------------------|---|-----------------------------------------|-----------------------------------------|------------------------------------------------------------------------------------| | (Gro | | | | | | | | | | | | à | Chloromethane | 2.0 U | 2.0 U | | 2.0 U | 2.0 U | | 2.0 U | 2.0 U | | | а | Bromomethane | 2.0 U | 2.0 U | | 2.0 U | 2.0 U | | 2.0 U | 2.0 U | | | | Vinyl Chloride | 2.0 U | 2.0 U | | 2.0 U | 2.0 U | | 2.0 U | 2.0 U | | | | Chloroethane | 2.0 U | 2.0 U | | 2.0 U | 2.0 U | | 2.0 U | 2.0 U | | | а | Methylene Chloride | 2.0 U | 2.0 U | _ | 2.8 U | 3.2 U | _ | 2.5 U | 3.0 U | | | | Acetone | 52 J | 58 J | | 27 J | 19 J | | 8.6 J | 11 J | | | | Carbon Disulfide | 1.0 U | 1.0 U | | 1.0 U | 1.0 U | | 1.0 U | 1.0 U | | | b | 1,1-Dichloroethene | 1.0 U | 1.0 U | | 1.0 U | 1.0 U | | 1.0 U | 1.0 U | | | | 1,1-Dichloroethane | 1.0 U | 1.0 U | | 1.0 U | 1.0 U | | 1.0 U | 1.0 U | | | b | trans-1,2-Dichloroethene | 1.0 U | 1.0 U | | 1.0 U | 1.0 U | | 1.0 U | 1.0 U | | | b | cis-1,2-Dichloroethene | 1.0 U | 1.0 U | | 1.0 U | 1.0 U | | 1.0 U | 1.0 U | | | а | Chloroform | 1.0 U | 1.0 U | <u>L</u> | 7.0 | 6.2 | | 1.0 U | 1.0 U | | | | 1,2-Dichloroethane | 1.0 U | 1.0 U | | 1.0 U | 1.0 U | | 1.0 U | 1.0 U | | | | 2-Butanone (MEK) | 5.0 U | 5.0 U | | 5.0 U | 5.0 U | | 5.0 U | 5.0 U | | | C | 1,1,1-Trichloroethane<br>Carbon Tetrachloride | 1.0 U<br>1.0 U | 1.0 U<br>1.0 U | | 1.0 U<br>1.0 U | 1.0 U<br>1.0 U | | 1.0 U<br>1.0 U | 1.0 U | | | а | Vinyl Acetate | 1.0 U | 1.0 U | | 1.0 U | 1.0 U | | 1.0 U | 1.0 U<br>1.0 U | | | | Bromodichloromethane | 1.0 U | 1.0 U | <u></u> | 1.7 | 1.0 0 | 7 | 1.0 U | 1.0 U | | | a | | | 1.0 U | <u>_</u> _ | 1.7<br>1.0 U | 1.0 U | J | | | | | d | 1,2-Dichloropropane<br>cis-1,3-Dichloropropene | 1.0 U<br>1.0 U | 1.0 U | | 1.0 U | 1,0 U<br>1,0 U | | 1.0 U<br>1,0 U | 1.0 U<br>1.0 U | | | е | Trichloroethene | 1.0 U | 1.0 U | | 1.0 U | 1.0 U | | 1.0 U | 1.0 U | | | а | Dibromochloromethane | 1.0 U | 1.0 U | | 1.0 U | 1.0 U | | 1.0 U | 1.0 U | | | a<br>C | 1,1,2-Trichloroethane | 1.0 U | 1.0 U | | 1.0 U | 1.0 U | | 1.0 U | 1.0 U | | | Ü | Benzene | 1.0 U | 1.0 U | | 1.0 U | 1.0 U | | 1.0 U | 1.0 U | | | е | trans-1,3-Dichloropropene | 1.0 U | 1.0 Ŭ | | 1.0 U | 1.0 Ŭ | | 1.0 U | 1.0 U | | | i | 2-Chloroethylvinylether | 1.0 U | 1.0 Ū | | 1,0 U | 1.0 Ŭ | | 1.0 U | 1.0 U | | | á | Bromoform | 1.0 U | 1.0 U | | 1.0 U | 1.0 U | | 1.0 Ū | 1.0 U | | | | 4-Methyl-2-Pentanone (MIB | 5,0 U | 5.0 U | | 5.0 U | 5.0 U | | 5.0 U | 5.0 U | | | | 2-Hexanone | 5.0 U | 5.0 U | | 5.0 U | 5.0 U | | 5.0 U | 5.0 U | | | | Tetrachloroethene | 1.0 U | 1.0 U | | 1.0 U | 1.0 U | | 1.0 U | 1.0 U | | | f | 1,1,2,2-Tetrachloroethane | 1.0 U | 1.0 U | | 1.0 U | 1.0 U | | 1.0 U | 1.0 U | | | | Toluene | 1.0 U | 1.0 U | | 1.1 | 1.2 U | | 1.0 U | 1.0 U | | | g | Chlorobenzene | 1.0 U | 1.0 U | | 1.0 U | ี 1.0 U | | 1.0 U | 1.0 U | | | | Ethylbenzene | 1.0 U | 1.0 U | | 1.0 U | 1.0 U | | 1.0 U | 1.0 U | | | | Styrene | 1.0 U | 1.0 U | | 1.0 U | 1.0 U | | 1,0 U | 1.0 U | installander der west af Stallen Route einst webstalt af ar west stell 600 3000 in | | | Total Xylenes | 2.0 U | 2.0 U | | 2.0 U | 2.0 U | | 2.0 U | 2.0 U | • | | а | Trichlorofluoromethane | 2.0 U | 2.0 U | | 2.0 U | 2.0 U | | 2.0 U | 2.0 U | | | | 1,1,2-Trichloro-1,2,2-Trifluo | 2.0 U | 2,0 U | | 2.0 U | 2.0 ∪ | | 2.0 U | 2.0 U | | # Appendix D (cont'd) - ALCOA (Wenatchee), December 1992. | | | , | Inf-ES<br>E-comp<br>12/2-3<br>0800-0800 | | Eff-ES<br>E-comp<br>12/2-3<br>0800-0800 | 00 | 001-E<br>E-comp<br>12/2-3<br>00-0800 | | |--------|----------------------------------------------------|---|-----------------------------------------|---|-----------------------------------------|----|--------------------------------------|--| | | | • | 498209 | , | 498215 | 08 | 498221 | | | (0 | BNA Compounds | | ug/L | | ug/L | | ug/L | | | (Gro | pup)<br>Phenol | | [ 1.0 J ] | | 2 U | | | | | ; | Bis(2-Chloroethyl)Ether | | 1.0 3 | | 2 U | | 2 U<br>1 U | | | j | 2-Chlorophenol | | 1 0 | | 1 0 | | 1 0 | | | h | 1,3-Dichlorobenzene | | i Ŭ | | iŬ | | ίŬ | | | h | 1,4-Dichlorobenzene | | 1.2 | | 1 U | | 1 U | | | | Benzyl Alcohol | | 5.2 | | 5 U | | 5 U | | | h | 1,2-Dichlorobenzene | | 10 | | 1 U | | 1 U | | | | 2–Methylphenol | | 1 U | | 1 U | | 1 U | | | | 2,2-Oxybis(1-Chloropropane) | | 1 U | | 1 U | | 1 U | | | | 4-Methylphenol | | 9.9 | | 1 U | | 1 U | | | k | N-Nitroso-di-n-Propylamine<br>Hexachloroethane | | 1 U<br>2 U | | 1 U<br>2 U | | 1 U<br>2 U | | | | Nitrobenzene | | 2 U<br>1 U | | 2 U<br>1 U | | 2 U<br>1 U | | | | Isophorone | | 1 U | | 1 0 | | 1 U | | | ı | 2-Nitrophenol | | 5 U | | 5 Ū<br>2 Ū | | 5 U | | | | 2,4-Dimethylphenol | | Ž Ū | | | | 2 U | | | | Benzoic Acid | | 21 | | 10 U | | 10 U | | | j | Bis(2-Chloroethoxy)Methane | | 1 U | | 1 U | | 1 U | | | | 2,4-Dichlorophenol 1,2,4-Trichlorobenzene | | 3 U<br>1 U | | 3 U<br>1 U | | 3 U<br>1 U | | | g | Naphthalene | | 1 0 | | 1 U | | 1 U | | | " | 4-Chloroaniline | | 3 U | | 3 U | | 3 U | | | | Hexachlorobutadiene | | 2 U | | 2 U | | 2 U | | | | 4-Chloro-3-Methylphenol | | 2 U | | 2 U | | 2 U | | | | 2-Methylnaphthalene | | 1 U | | 1 U | | 1 U | | | | Hexachlorocyclopentadiene<br>2,4,6-Trichlorophenol | | 5 Ü<br>5 U<br>5 U | | 5 U<br>5 U | | 5 U<br>5 U | | | | 2,4,5-Trichlorophenol | | 5 U | | 5 U | | 5 Ū<br>5 U | | | m | 2-Chloronaphthalene | | 1 Ü | | 1 U | | 1 U | | | | 2-Nitroaniline | | 5 U | | 5 U | | 5 U | | | l<br>_ | Dimethyl Phthalate<br>Acenaphthylene | | 1 U | | 1 U | | 1 U | | | n | 3-Nitroaniline | | 1 U<br>5 U | | 1 U<br>5 U | | 1 U<br>5 U | | | n | Acenaphthene | | ĭŬ | | ίΰ | | 1 U | | | Ī | 2,4-Dinitrophenol | | 10 U | | 10 Ü | | 10 U | | | I | 4-Nitrophenol | | 5 U | | 5 U | | 5 U | | | | Dibenzofuran | | 1 U | | 1 U | | 1 U | | | 0 | 2,6-Dinitrotoluene<br>2,4-Dinitrotoluene | | 5 U<br>5 U | | 5 U<br>5 U | | 5 U<br>5 U | | | 1 | Diethyl Phthalate | | 2.9 | | 5 U<br>1 U | | 5 U | | | p | 4–Chlorophenyl Phenylether | | 2.9<br>1 U | | 1 U | | 1 U | | | n | Fluorene | | 1 U | | 1 0 | | 1 U | | | | 4-Nitroaniline | | 5 U | | 5 U | | 5 U | | | 1 | 4,6-Dinitro-2-Methylphenol | | 10 Ü | | 10 U | | 10 U | | | k | N-Nitrosodiphenylamine | | 1 0 | | 1 U | | 1 U | | | p<br>g | 4-Bromophenyl Phenylether<br>Hexachlorobenzene | | 1 U<br>1 U | | 1 Ŭ<br>1 U | | 1 U<br>1 U | | | Э | 1 TO A CONTROL OF CHILD IN | | , 0 | | 1 0 | | 1 0 | | # Appendix D – (cont'd) – ALCOA (Wenatchee), December 1992. | (Gro | BNA Compounds (cont'd) | | | E-<br>1<br>0800 | nf-E<br>-com<br>12/2-<br>-080<br>9820<br>ug/ | p<br>3<br>0<br>9 | | | | | 080 | 4982 | np<br>:-3 | | | | | 001-E<br>E-comp<br>12/2-3<br>0800-0800<br>49822<br>ug/l | | | | | |-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|--|--|-----------------|----------------------------------------------|----------------------------------------|---|--|--|--|-----|------|------------------|------------------|--|--|--|---------------------------------------------------------|-----------------------|--------------------------|-------------------------------------------------|------------------| | n<br>n<br>l | Pentachlorophenol Phenanthrene Carbazole Anthracene Di-n-Butyl Phthalate Fluoranthene | | | | 2. | 1 U | 1 | | | | | | | U<br>U<br>U | | | | 1. | Ū<br>U | | | | | n<br>I<br>n<br>I<br>n | Pyrene Butylbenzyl Phthalate 3,3'-Dichlorobenzidine Benzo(a)Anthracene Bis(2-Ethylhexyl)Phthalate Chrysene Di-n-Octyl Phthalate | | | | 2. | 1 U<br>1 U<br>5 U<br>1 U<br>1 U<br>1 U | | | | | | | 1<br>5<br>1<br>1 | U<br>U<br>U | | | | | U<br>U<br>U<br>U<br>U | | | | | n<br>n<br>n<br>n<br>n | Benzo(b) Fluoranthene<br>Benzo(k) Fluoranthene<br>Benzo(a) Pyrene<br>Indeno(1,2,3-cd) Pyrene<br>Dibenzo(a,h) Anthracene<br>Benzo(g,h,i) Perylene | | | | | 1 U<br>1 U<br>1 U<br>1 U<br>1 U<br>1 U | | | | | | | 1<br>1<br>1 | U<br>U<br>U<br>U | | | | | Ü<br>U<br>U | | | | | | PAH's | | | | | | | | | | | | | | | | | 001-E<br>E-comp<br>12/2-3<br>0800-0800<br>49822<br>ug/l | ;<br>; | A-0<br>12<br>0700-<br>49 | 01-A<br>comp<br>2/2-3<br>-0700<br>98223<br>ug/L | | | | Naphthalene<br>Acenaphthylene<br>Acenaphthene<br>Fluorene<br>Phenanthrene<br>Anthracene | | | | | | | | | | | | | | | | | 0.50<br>0.70<br>1.00<br>0.09<br>0.04<br>0.04 | U<br>U<br>U<br>U | | 0.50<br>0.70<br>1.00<br>0.05<br>0.04<br>0.04 | บ<br>บ<br>บ | | | Fluoranthene Pyrene Benzo(a)Anthracene Chrysene Benzo(b)Fluoranthene | | | | | | | | | | | | | | | | | 0.00<br>0.00<br>0.00<br>0.00<br>0.00 | J<br>U | | 0.70<br>0.01<br>0.03<br>0.03<br>0.04 | U<br>U<br>U<br>U | | | Benzo(k)Fluoranthene<br>Benzo(a)Pyrene<br>Dibenz(a,h)Anthracene<br>Benzo(ghi)Perylene<br>Ideno(1,2,3-cd)Pyrene | | | | | | | | | | | | | | | | | 0.02<br>0.04<br>0.05<br>0.02<br>0.03 | U<br>U | | 0.02<br>0.04<br>0.05<br>0.02<br>0.03 | U<br>U<br>U | # Appendix D (cont'd) – ALCOA (Wenatchee), December 1992. | | E-<br>1<br>0800- | nf-ES<br>comp<br>2/2-3<br>-0800<br>98209<br>ug/L | | | | | | | | | | | | | | |-----------------------|-------------------------------------------------------------------------|--------------------------------------------------|-------------|--|--|--|--|--|--|--|--|--|--|--|--| | (Gro | | ug/ L | | | | | | | | | | | | | | | q<br>q<br>q<br>q<br>q | alpha-BHC<br>beta-BHC<br>delta-BHC<br>gamma-BHC (Lindane)<br>Heptachlor | 0.05<br>0.05<br>0.05<br>0.05<br>0.05 | U<br>U<br>U | | | | | | | | | | | | | | r | Aldrin<br>Heptachlor Epoxide | 0.05<br>0.05 | U | | | | | | | | | | | | | | S | Endosulfan I<br>Dieldrin | 0,05<br>0.10 | U | | | | | | | | | | | | | | u | 4,4'-DDE | 0.10 | U | | | | | | | | | | | | | | τ | Endrin<br>Endosulfan II | 0.10 | | | | | | | | | | | | | | | s<br>u | 4,4'-DDD | 0.10<br>0.10 | | | | | | | | | | | | | | | s | Endosulfan Sulfate | 0.10 | | | | | | | | | | | | | | | ü | 4.4'-DDT | 0.10 | | | | | | | | | | | | | | | | Methoxychlor | 0.50 | | | | | | | | | | | | | | | t | Endrin Ketone | 0.10 | U | | | | | | | | | | | | | | t | Endrin Aldehyde | 0.10 | | | | | | | | | | | | | | | V | gamma-Chlordane | 0.05 | | | | | | | | | | | | | | | ٧ | alpha-Chlordane<br>Toxaphene | 0.05 | | | | | | | | | | | | | | | w | Aroclor-1242/1016 | 5.00<br>1.00 | | | | | | | | | | | | | | | W | Aroclor-1248 | 1.00 | | | | | | | | | | | | | | | W | Aroclor-1254 | 1.00 | | | | | | | | | | | | | | | w | Aroclor-1260 | 1.00 | | | | | | | | | | | | | | | w | Aroclor-1221 | 2.00 | | | | | | | | | | | | | | | w | Aroclor-1232 | 1.00 | U | | | | | | | | | | | | | # Appendix D - (cont'd) - ALCOA (Wenatchee), December 1992. | Metals** | Inf-EW<br>grab<br>12/2<br>1420<br>498206<br>ug/L | Inf-ES<br>E-comp<br>12/2-3<br>0800-0800<br>498209<br>ug/L | | Eff-ES<br>E-comp<br>12/2-3<br>0800-0800<br>498215<br>ug/L | 001-1<br>grab<br>12/2<br>0930<br>498219<br>ug/L | 001-2<br>grab<br>12/2<br>1330<br>498220<br>ug/L | 001-E<br>E-comp<br>12/2-3<br>0800-0800<br>498221<br>ug/L | 001-ED<br>E-comp<br>12/2-3<br>1010<br>498222<br>ug/L | 001-A<br>A-comp<br>12/2-3<br>0700-0700<br>498223<br>ug/L | |------------------|--------------------------------------------------|-----------------------------------------------------------|---|-----------------------------------------------------------|-------------------------------------------------|-------------------------------------------------|----------------------------------------------------------|------------------------------------------------------|----------------------------------------------------------| | Aluminum (total) | 49 P | 401 | ] | 203 | 54 P | 67 P | 60 P | 65 F | 50 P | | Antimony | 30 U | 30 U | | 30 U | 30 U | 30 U | 30 U | 30 t | J 30 U | | Arsenic | 1.5 U | 1.7 P | | 2,4 P | 1.5 U | 1.5 U | 1.5 U | 1.5 U | J 1.5 U | | Beryllium | 1.0 U | 1.0 U | | 1.0 U | 1.0 U | 1.0 U | 1.0 U | 1.0 L | J 1.0 U | | Cadmium | 1.07 J | 0.60 J | 1 | 1.14 J | 0.86 J | 0.76 J | 1.25 J | 1.45 J | 0.99 J | | Chromium | 5.0 U | 11 P | 1 | 5.0 U | 5.0 U | 5.0 U | 5.0 U | 5.0 L | J 5.0 U | | Copper | 3,0 U | 21 | | 18 | 4.6 P | 4.9 P | 4.4 P | 4.3 F | 4.4 P | | Lead | 2.6 PJ | 6.3 J | | 2.5 PJ | 11.7 J | 1,2 P | J 1.0 U | J 2.2 F | 7 1.0 UJ | | Mercury (total) | 0.050 U | 0.20 P | | 0.16 P | 0.050 U | 0.050 U | 0.05 U | 0.050 L | 0.050 U | | Nickel | 10 U | 10 U | | 10 U | 10 U | 10 U | 10 U | 10 l | J 10 U | | Selenium | 2.0 U | 2.0 U | • | 2.0 U | 2.0 U | 2.0 U | 2.0 U | 2.0 l | J 2.0 U | | Silver | 0.50 U | 2.2 | 1 | 0.64 P | 0.50 U | 0.50 U | 0.50 U | 0.50 L | J 0.50 U | | Thallium | 2.5 U | 2.5 U | | 2.5 U | 2.5 U | 2.5 U | 2.5 U | 2.5 l | J 2.5 U | | Zinc | 7.5 PB | 72.1 | | 138 | 34 B | 17 P | B 96.5 | 42.3 E | 19 PB | | U | The analyte was not detected at or above the reported result. | | | | |-----|----------------------------------------------------------------------------|--------------|----------------------------------|----------------------| | UJ | The analyte was not detected at or above the reported estimated result. | | | | | J | The analyte was positively identified. The associated numerical result is | an estimate | , | - detected analyte | | В | Analyte was found in the analytical method blank, indicating the sample in | may have b | een contaminated. | | | Р | The analyte was detected above the instrument detection limit but below | the establis | hed minimum quantitation limit. | E - Ecology analysis | | | • | | | A - ALCOA analysis | | * * | total recoverable unless otherwise specified | | | Inf - influent | | | · | | | Eff - effluent | | | | | | | | • | Total Halomethanee | | Tatal Objects at all Nambabalana | | | b To<br>c To<br>d To<br>e To<br>f To<br>g To<br>h To<br>i To<br>k To | otal Halomethanes otal Dichloroethenes otal Trichloroethanes otal Trichloroethanes otal Dichloropropanes otal Dichloropropenes otal Dichloropropenes otal Tetrachloroethanes otal Chlorinated Benzenes (excluding Dichlorobenzenes) otal Dichlorobenzenes otal Phthalate Esters otal Chloroalkyl Ethers otal Nitrosamines otal Nitrophenols | m<br>n<br>o<br>p<br>q<br>r<br>s<br>t<br>u<br>v | Total Chlorinated Naphthalenes Total Polynuclear Aromatic Hydrocarbons Total Dinitrotoluenes Total Haloethers Total BHCs Heptachlor Endosulfan Endrin DDT plus metabolites Total Chlordane Total Aroclors (PCBs) | comp -<br>E-comp -<br>A-comp -<br>GC -<br>W -<br>S -<br>001 - | grab composite sample composite sample composite sample collected by Ecology composite sample collected by ALCOA grab-composite sample plant intake water sanitary wastewater combined plant effluent duplicate sample | |----------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| |----------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| # Appendix E – VOA and BNA Scan Tentatively Identified Compounds (TICs)–ALCOA (Wenatchee), December 1992. TIC data are presented on the laboratory report sheets that follow. Fractions are identified as VOA or ABN (BNA). Locations corresponding to the Lab Log # (called Sample No. on the laboratory report sheet) and data qualifiers are summarized on this page. | Location: | Inf-S1 | Inf-S2 | Inf-ES | Eff-S1 | Eff-S2 | Eff-ES | 001-1 | 001-2 | 001-E | |------------|--------|--------|-----------|--------|--------|----------|--------|--------|-----------| | Type: | grab | grab | E-comp | grab | grab | E-comp | grab | grab | E-comp | | Date: | 12/2 | 12/2 | 12/2-3 | 12/2 | 12/2 | 12/2-3 | 12/2 | 12/2 | 12/2-3 | | Time: | 1030 | 1430 | 0800-0800 | 1100 | 1510 | 08000800 | 0930 | 1330 | 0800-0800 | | Lab Log #: | 498207 | 498208 | 498209 | 498213 | 498214 | 498215 | 498219 | 498220 | 498221 | inf - Influent sample E - Ecology sample Eff - Effluent sample A - Alcoa sample grab - grab sample S - STP comp - composite sample 001 - 001 effluent NJ - There is evidence that the analyte is present. The associated numerical result is an estimate. Analytical Chemists & Consultants 333 Ninth Ave. North Seattle, WA 98109-5187 (206) 621-6490 (206) 621-7523 (FAX) # ORGANIC ANALYSIS DATA SHEET - Tentatively Identified Compounds Sample No: 498207 Lab ID: C401F Matrix: Waters Data Release Authorized: \_ Report prepared: 12/15/92 - MAC:C pat QC Report No: C401-WDOE Project No: Alcoa Wenatchee Date Received: 12/04/92 | CAS | | | Scan | Estimated | |-----------------------------------------|-------------------------------------------------|--------------|--------------|--------------------------------------------------| | Number | Compound Name | Fraction | Number | Concentration | | Number | Oompound name | | | (μg/L) | | - | C10.H16 Alkyl Cyclohexene Isomer (bp m/e 68) | VOA | 1118 | (μg/L)<br>14 <b>/ Ν ブ</b> | | | C10.1110 Alkyl Cyclonexene isomer (ap 111/2 00) | | | | | | | <del> </del> | | | | | | | | | | | | 1 | | | | *************************************** | | <u> </u> | <u> </u> | | | | | <u> </u> | | | | | | | | | | | | 1 | | | | • · · · · · · · · · · · · · · · · · · · | | | | <del> </del> | | | | <u> </u> | | 1 | | | | | <u> </u> | | | | | | | | | 3 | | | | | | | | | | | | 5 | | | | | | | | | | | | 7 | | | | | | 3 | | | | | | 9 | | | | | | ) | | | | | | 1 | | | | | | 2 | | | | | | 3 | | 1 | | | | 4 | | | | | | 5 | | | | | | | | | <del> </del> | | | 5 | | | <del> </del> | | | 7 | | + | <del> </del> | | | 8 | | | <del> </del> | | | 9 | | | | | | ω | | | 1 | | Analytical Chemists & Consultants 333 Ninth Ave. North Seattle, WA 98109-5187 (206) 621-6490 (206) 621-7523 (FAX) # ORGANIC ANALYSIS DATA SHEET - Tentatively Identified Compounds Sample No: 498208 Lab ID: C401G Matrix: Waters Report prepared: 12/15/92 - MAC:C pat QC Report No: C401-WDOE Project No: Alcoa Wenatchee Date Received: 12/04/92 | CAS | | | Scan | Estimated | |--------|----------------------------------------------|--------------|--------------------------------------------------|--------------------| | Number | Compound Name | Fraction | Number | | | | | | | (μg/L) | | • | C10.H16 Alkyl Cyclohexene Isomer (bp m/e 68) | VOA | 1118 | (μg/L)<br>77 / N T | | | | | | | | · | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | <del> </del> | | | | 0 | | | | | | ] | | | | | | 2 | | | | | | 3 | | <u> </u> | | | | 4 | | | | | | 5 | | | | | | 6 | | | | | | 7 | | | | | | 8 | | | | | | 9 | | | | | | 0 | | | | | | 1 | | | | | | 22 | | | | | | 3 | | | | | | 24 | | | | | | 25 | | | <u> </u> | | | 6 | | | <del> </del> | | | 0 | | <del> </del> | | <u> </u> | | 27 | | | <u> </u> | | | 28 | | <b> </b> | <b></b> | | | 29 | | | | <u> </u> | Analytical Chemists & Consultants 333 Ninth Ave. North Seattle, WA 98109-5187 (206) 621-6490 (206) 621-7523 (FAX) # ORGANIC ANALYSIS DATA SHEET - Tentatively Identified Compounds Sample No: 498213 Lab ID: C401H Matrix: Waters Data Release Authorized: Report prepared: 12/15/92 - MAC:C pat | CAS | | | Scan | Estimated | |--------|---------------------------------------|----------|--------|---------------| | Number | Compound Name | Fraction | | Concentration | | | | | (μg/L) | | | + | No Unknown peaks > 10% IS peak height | VOA | - | - | | ) | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | 7 | | | | | | 3 | | | | | | · | | | | | | 10 | | | | | | | | | | | | 2 | | | | | | 13 | | | | | | 14 | | | | | | 15 | | | | | | 16 | | | | | | 17 | | | | | | 18 | | | | | | 19 | | | | | | 20 | | | | | | 21 | | | | | | 22 | | | | | | 23 | | | | | | 24 | | | | | | 25 | | | | | | 26 | | | | | | 27 | | | | | | 28 | | | | | | 29 | | | | | | 30 | | | | | Analytical Chemists & Consultants 333 Ninth Ave. North Seattle, WA 98109-5187 (206) 621-6490 (206) 621-7523 (FAX) # ORGANIC ANALYSIS DATA SHEET - Tentatively Identified Compounds Sample No: 498214 Lab ID: C4011 Matrix: Waters Report prepared: 12/15/92 - MAC:C pat | CAS | | | Scan | Estimated | |-------------|---------------------------------------|----------|--------------------------------------------------|---------------| | Number | Compound Name | Fraction | Number | Concentration | | | | | | (μg/L) | | _ | No Unknown peaks > 10% IS peak height | VOA | - | - | | 2 | | | | | | 3 | | | | | | | | | | | | 5 | | | <u> </u> | | | <b>)</b> | | | | | | 7 | | | | | | } | | | | | | ) | | | | | | 10 | | | | | | 11 | | | | | | 2 | | | | | | 13 | | | | | | 14 | | | | | | 15 | | | | | | 16 | | | | | | 7 | | | | | | 18 | | | | | | 19 | | | | | | 20 | | | | | | 21 | | | | | | 22 | | | | | | 23 | | | | | | 23 <u> </u> | | | <u> </u> | | | | | | <del> </del> | | | 25 | | | <del> </del> | | | 26 | | | 1 | | | 27 | | | <del> </del> | <u> </u> | | 28 | | | <del> </del> | 1 | | 29 | | | <b> </b> | - | | 30 | | | 1 | <u> </u> | Analytical Chemists & Consultants 333 Ninth Ave. North Seattle, WA 98109-5187 (206) 621-6490 (206) 621-7523 (FAX) # ORGANIC ANALYSIS DATA SHEET - Tentatively Identified Compounds Sample No: 498219 Lab ID: C401D Matrix: Waters Report prepared: 12/15/92 - MAC:C pat | CAS | | | Scan | Estimated | |--------|---------------------------------------|----------|----------|---------------| | Number | Compound Name | Fraction | Number | Concentration | | | | İ | | (μg/L) | | 1 - | No Unknown peaks > 10% IS peak height | VOA | - | - | | 2 | | | | | | 3 | | | | | | 4 | | | | | | 5 | | | | | | 5 | | | | | | 7 | | | | | | 8 | | | | | | 9 | | | | | | 10 | | | | | | 11 | | | | | | 12 | | | | | | 13 | | | | | | 14 | | | | | | 15 | | | | | | 16 | | | ļ | | | 17 | | | | | | 18 | | | | | | 19 | | | | | | 20 | | | | | | 21 | | | <u> </u> | <u> </u> | | 22 | | | | | | 23 | | | | | | 24 | | | | | | 25 | | | | | | 26 | | | | | | 27 | | | | | | 28 | | | | | | 29 | | | | | | 30 | | | | | Analytical Chemists & Consultants 333 Ninth Ave. North Seattle, WA 98109-5187 (206) 621-6490 (206) 621-7523 (FAX) # ORGANIC ANALYSIS DATA SHEET - Tentatively Identified Compounds Sample No: 498220 Lab ID: C401E Matrix: Waters Report prepared: 12/15/92 - MAC:C pat | CAS | | | Scan | Estimated | |----------|--------------------------------------------|--------------------------------------------------|--------|---------------| | Number | Compound Name | Fraction | Number | Concentration | | ( diribo | - Compositor Compositor | | | (μg/L) | | 1 - | No Unknown peaks > 10% IS peak height | VOA | - | - | | 2 | The drikinewitt peaker to be be delivered. | | | | | 3 | | | | | | 4 | | | | | | 5 | | | | | | 6 | | | , | | | 7 | | | | | | 8 | | | | <u> </u> | | 9 | | <del> </del> | | | | 10 | | | | | | 11 | | | | | | 12 | | | | | | 13 | | | | | | 14 | | | | | | 15 | | | | | | 16 | | | | | | 17 | | | | | | 18 | | | | | | 19 | | | | | | 20 | | | | | | 21 | | | | | | 22 | | | | | | 23 | | | | | | 24 | | | | | | 25 | | | | | | 26 | | | | | | 27 | | | | | | 28 | | | | | | 29 | | | | | | 30 | | | | | Analytical Chemists & Consultants 333 Ninth Ave. North Seattle, WA 98109-5187 (206) 621-6490 (206) 621-7523 (FAX) ## **ORGANIC ANALYSIS DATA SHEET - Tentatively Identified Compounds** Sample No: 498209 Lab ID: C401C Matrix: Waters Report prepared: 12/16/92 - MAC:C pat QC Report No: C401-WDOE Project No: Alcoa Wenatchee Date Received: 12/04/92 | | CAS | | T . | Scan | Estimated | ] | |----|------------|---------------------------------------------|----------|--------|---------------|----| | | Number | Compound Name | Fraction | Number | Concentration | : | | | | · · | | | (μg/L) | | | 1 | - | Unknown (bp m/e 57) | ABN | 466 | 72 J | 1 | | 2 | - | Unknown (bp m/e 68) | * | 627 | 42 J | | | 3 | - | (2-Butoxyethoxy)-ethanol Isomer (bp m/e 45) | • | 818 | 720よんご | KP | | 4 | - | Unknown (bp m/e 58) | • | 1121 | 25 J | | | 5 | - | Unknown (bp m/e 44) | | 1141 | 25 J | | | 6 | - | Unknown (bp m/e 73) | и | 1172 | 43 J | | | 7 | - | Unknown (bp m/e 44) | • | 1310 | 29 J | | | 8 | 544-63-8 | Tetradecanoic acid | * | 1337 | 90 d NJ | KF | | 9 | 36653-82-4 | 1-Hexadecanol | • | 1427 | 30 x NJ | KF | | 10 | 57-10-3 | . Hexadecanoic acid | * | 1492 | 590 J | | | 11 | * | Unknown (bp m/e 69) | • | 1617 | 590 J | | | 12 | - | Octadecanoic acid coelute (bp m/e 57) | • | 1633 | 500 8 NJ | KE | | 13 | - | Unknown (bp m/e 45) | • | 1698 | 32 J | ] | | 14 | - | Unknown (bp m/e 45) | | 1784 | 42 J | | | 15 | - | Unknown (bp m/e 74) | • | 1806 | 68 J | | | 16 | - | Unknown (bp m/e 45) | • | 1863 | 67 J | | | 17 | - | Unknown (bp m/e 45) | • | 2013 | 47 J | | | 18 | • | Unknown (bp m/e 69) | • | 2019 | 160 J | | | 19 | + | Unknown (bp m/e 55) | • | 2200 | 140 J | | | 20 | - | Unknown (bp m/e 57) | • | 2216 | 160 J | | | 21 | - | Sterol Isomer coelute (bp m/e 43) | • | 2232 | 1708 NT | KF | | 22 | | | | | | | | 23 | | | | | | 1 | | 24 | | | | | | | | 25 | | | | | | 1 | | 26 | | | | | | | | 27 | | | | | | | | 28 | | | | | | | | 29 | | | | | | | | 30 | | | | | | | Analytical Chemists & Consultants 333 Ninth Ave. North Seattle, WA 98109-5187 (206) 621-6490 (206) 621-7523 (FAX) # ORGANIC ANALYSIS DATA SHEET - Tentatively Identified Compounds Sample No: 498215 Lab ID: C401A Matrix: Waters Data Release Authorized: Jan 1. John Report prepared: 12/16/92 - MAC:C pat | CAS | | | Scan | Estimated | | |-----------------------------------------|---------------------------------|----------|----------|---------------|--| | Number | Compound Name | Fraction | Number | Concentration | | | | · | | | (μg/L) | | | - | Unknown (bp m/e 59) | ABN | 317 | 2 J | | | - | Unknown (bp m/e 59) | • | 503 | 3 J | | | * | Unknown (bp m/e 45) | • | 515 | 5 J | | | - | Unknown (bp m/e 57) | • | 1784 | 7 J | | | | Unknown hydrocarbon (bp m/e 57) | | 1943 | 3-JB | | | | | | | | | | *************************************** | | | | | | | | | | | | | | | | | | | | | 0 | | | | | | | 1 | | | | | | | 2 | | | | | | | 3 | | | | | | | 4 | | | | | | | 5 | | | | | | | 6 | | | | | | | 7 | | | | | | | 8 | | | | | | | 9 | | | | | | | 0 | | | | | | | 1 | | | | | | | 2 | | | | | | | 3 | | | | | | | 4 | | | | | | | 5 | | | | | | | 6 | | | | | | | 7 | | | | | | | 28 | | | | | | | 9 | | | | | | | 10 | | | <u> </u> | | | Analytical Chemists & Consultants 333 Ninth Ave. North Seattle, WA 98109-5187 (206) 621-6490 (206) 621-7523 (FAX) # **ORGANIC ANALYSIS DATA SHEET - Tentatively Identified Compounds** Sample No: 498221 Lab ID: C401B Matrix: Waters Data Release Authorized: An M. Gefore Report prepared: 12/16/92 - MAC:C pat QC Report No: C401-WDOE Project No: Alcoa Wenatchee Date Received: 12/04/92 | | CAS | | | Scan | Estimated | ] | |----|--------|---------------------------------|----------|--------|---------------|------| | | Number | Compound Name | Fraction | Number | Concentration | | | | | | | | (μg/L) | | | 1 | - | Unknown (bp m/e 57) | ABN | 463 | 8 X N J | KF | | 2 | • | Unknown (bp m/e 69) | и | 1429 | 211 | | | 3 | • | Unknown hydrocarbon (bp m/e 57) | • | 1489 | 2 | ] | | 4 | - | Unknown hydrocarbon (bp m/e 57) | н | 1517 | 4 | | | 5 | + | Unknown (bp m/e 55) | * | 1544 | 5 . | | | 6 | - | Unknown (bp m/e 69) | * | 1554 | 2. | ] | | 7 | - | Unknown hydrocarbon (bp m/e 57) | | 1565 | 2. | | | 8 | - | Unknown (bp m/e 55) | • | 1572 | . 2. | | | 9 | - | Unknown hydrocarbon (bp m/e 57) | • | 1582 | 8. | | | 10 | - | Unknown (bp m/e 69) | • | 1608 | 3. | | | 11 | - | Unknown (bp m/e 69) | | 1621 | 4 | | | 12 | - | Unknown (bp m/e 55) | , | 1635 | 2 | | | 13 | - | Unknown hydrocarbon (bp m/e 57) | * | 1648 | 4 | ] | | 14 | - | Unknown hydrocarbon (bp m/e 57) | • | 1672 | 5 | | | 15 | - | Unknown (bp m/e 69) | - | 1682 | 3 / | | | 16 | - | Unknown (bp m/e 55) | • | 1687 | 5 V | | | 17 | - | Unknown (bp m/e 69) | N. | 1702 | 3. | | | 18 | - | Unknown (bp m/e 55) | - | 1713 | 3. | | | 19 | - | Unknown (bp m/e 69) | * | 1737 | 4 ] 🔻 | | | 20 | | Unknown hydrocarbon (bp m/e 57) | - | 1831 | 2 JB | -KF | | 21 | | Unknown hydrocarbon (bp m/e 57) | | 1943 | 4 JB | - KF | | 22 | | | | | | | | 23 | | | | | | | | 24 | | | | | | | | 25 | | | | | | | | 26 | | | | | | | | 27 | | | | | | | | 28 | | | | | | | | 29 | | | | | | | | 30 | | | | | | | # Appendix F - ALCOA PAH, BNA, and Pesticides/PCB Scan Results - ALCOA, December 1992 2-Nitroaniline Dimethyl Phthalate | Samples Analyzed:<br>001-E (Eco Lab Log# 498221)<br>001-A (Eco Lab Log# 498223) | Samples Analyzed:<br>INF-ES (Eco Lab Log#: 498209)<br>001-E (Eco Lab Log# 498221) | Samples Analyzed:<br>INF-ES (Eco Lab Log# 498209)<br>001-E (Eco Lab Log# 498221) | Samples Analyzed:<br>INF-ES (Eco Lab Log# 498209) | |------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | (ug/L) PAH Compounds | (ug/L)<br>BNA Compounds | (ug/L) BNA Compounds (cont'd) | (ug/L)<br>Pesticides/PCB's | | Naphthalene 1 U Acenaphthylene 1 U Acenaphthene 1 U Fluorene 1 U Phenanthrene 1 U Anthracene 1 U Fluoranthene 1 U Benzo(a)Anthracene 1 U Benzo(b)Fluoranthene 1 U Benzo(k) Fluoranthene 1 U Benzo(a)Pyrene 1 U Indeno(1,2,3-cd)Pyrene 1 U Dibenz(a,h)Anthracene 1 U Benzo(g,h,i)Perylene 1 U | Phenol 10 | 2,6-Dinitrotoluene 10 U 3-Nitroaniline 10 U Acenaphthene 10 U 2,4-Dinitrophenol 10 U 4-Nitrophenol 10 U Dibenzofuran 10 U 2,4-Dinitrotoluene 10 U Diethylphthalate 10 U 4-Chlorophenyl-Phenylether 10 U Fluorene 10 U 4-Nitroaniline 10 U 4-Nitroaniline 10 U N-Nitrosodiphenylamine 10 U N-Nitrosodiphenylamine 10 U Hexachlorobenzene 10 U Hexachlorobenzene 10 U Pentachlorophenol 10 U Phenanthrene 10 U Anthracene 10 U Carbazole 10 U Di-n-Butylphthalate 10 U Fluoranthene 10 U Pyrene 10 U Butylbenzylphthalate 10 U | Aldrin 0.007 U a-BHC 0.050 U b-BHC 0.050 U d-BHC 0.050 U g-BHC(lindane) 0.003 U a-Chlordane 0.500 U g-Chlordane 0.500 U 4,4-DDD 0.100 U 4,4-DDT 0.100 U 4,4-DDT 0.100 U Dieldrin 0.012 U Endosulfan-I 0.050 U Endosulfan Sulfate 0.100 U Endrin Aldehyde 0.100 U Endrin Ketone 0.100 U Heptachlor Epoxide 0.004 U Methoxychlor 0.956 U Toxaphene 1.000 U | 10 U 10 U Benzo(a)anthracene Chrysene Bis(2-ethylhexyl)Phthalate Di-n-Octyl Phthalate Benzo(b)Fluoranthene Benzo(k)Fluoranthene Benzo(a)Pyrene Indeno(1.2,3-cd)Pyrene Dibenzo(a,h)Anthracene Benzo(g,h,i)Perylene 10 U U - The analyte was not detected at or above the reported result. # Appendix G - Comparison of ALCOA Metals Analyses with Ecology Analyses- ALCOA (Wenatchee), December 1992. | Location:<br>Type:<br>Date:<br>Time:<br>Lab Log#:<br>Metals* | 12/2-3 | Inf-ES<br>E-comp<br>12/2-3<br>0800-0800<br>498209<br>ug/L | Eff-ES<br>E-comp<br>12/2-3<br>0800-0800<br>498215<br>ug/L | Eff-ES<br>E-comp<br>12/2-3<br>0800-0800<br>498215<br>ug/L | 001-1<br>grab<br>12/2<br>0930<br>498219<br>ug/L | 001-1<br>grab<br>12/2<br>0930<br>498219<br>ug/L | 001–2<br>grab<br>12/2<br>1330<br>498220<br>ug/L | 001-2<br>grab<br>12/2<br>1330<br>498220<br>ug/L | 001-E<br>E-comp<br>12/2-3<br>0800-0800<br>498221<br>ug/L | 001-E<br>E-comp<br>12/2-3<br>0800-0800<br>498221<br>ug/L | 001-A<br>A-comp<br>12/2-3<br>0700-0700<br>498223<br>ug/L | 001-A<br>A-comp<br>12/2-3<br>0700-0700<br>498223<br>ug/L | |---------------------------------------------------------------------|----------------------|-----------------------------------------------------------|-----------------------------------------------------------|-----------------------------------------------------------|-------------------------------------------------|-------------------------------------------------|-------------------------------------------------|-------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------| | Analysis by: | Ecology | ALCOA | | Aluminum (total)<br>Antimony<br>Arsenic<br>Pentavalent<br>Trivalent | 401<br>30 L<br>1.7 F | | | 180 U 90 U P 2.1 U | | U 90 U | 67<br>30<br>1.5 | U 90 | | U 90 l | | U 90 U | | Barium | | 60 | U | 60 U | | 60 U | | 60 | U | 60 l | J | 60 U | | Beryllium | 1.0 L | 9 | U 1.0 | U 9 U | 1.0 | U 9 U | 1.0 | U 9 | U 1.0 | U 9 I | J 1.0 | U 9 U | | Cadmium | 0.60 J | 0.9 | U 1.14 | J 0.9 U | 0.86 | J 0.9 U | 0.76 | J 0.9 | U 1.25 | J 0.9 t | J 0.99 | J 0.9 U | | Chromium | 11 F | 10.6 | 5.0 | U 1.1 | 5.0 | ับ 0.3 บ | 5.0 | U 0.3 | U 5.0 | U 0.3 ( | J 5.0 | U 0.3 U | | Hexavalent | | | _ | | | | | | | | | | | Trivalent | | | | | | | | | | | | | | Copper | 21 | 16 | 18 | 22 | 4.6 | P 8 | 4.9 | P 5 | U 4.4 | P 5 l | 4.4 | P 5 U | | Lead | 6.3 J | 4 | 2.5 | PJ 4.9 | 11.7 | J 2.8 | 1.2 | PJ 3.1 | 1.0 | UJ 1.3 | 1.0 | UJ 1.2 | | Mercury (total) | 0.20 F | 0.7 | 0.16 | P 1.3 | 0.050 | U 0.5 | 0.050 | U 0,3 | บี 0.05 | U 0.5 | 0.050 | U 1.2 | | Nickel | 10 L | J 29 | 10 | U 17 U | 10 | U 51 | 10 | U 52 | 10 | U 32 | 10 | U 25 | | Selenium | 2.0 L | J 2.5 | <del>U</del> 2.0 | U 2.5 U | 2.0 | U 2.5 U | 2.0 | U 2.5 | Ū 2.0 | U 2.5 ( | J 2.0 | U 2.5 U | | Silver | 2.2 | 0.8 | 0.64 | P 0.4 | 0.50 | U 0.4 U | 0.50 | U 0.4 | U 0.50 | U 4 l | J 0.50 | U 0.4 U | | Thallium | 2.5 L | J 102 | Ū 2.5 | U 102 U | 2.5 | U 102 U | 2.5 | U 102 | U 2.5 | U 102 l | J 2.5 | U 102 U | | Zinc | 72.1 | 76 | 138 | 140 | 34 | B 17 | 17 | PB 16 | 96.5 | 14 | 19 | PB 13 | The analyte was not detected at or above the reported result. E - Ecology analysis A - ALCOA analysis Inf - influent Eff - effluent grab - grab composite sample comp - composite sample E-comp - composite sample collected by Ecology A-comp - composite sample collected by ALCOA S - sanitary wastewater 001 - combined plant effluent UJ The analyte was not detected at or above the reported estimated result. The analyte was positively identified. The associated numerical result is an estimate. Analyte was found in the analytical method blank, indicating the sample may have been contaminated. The analyte was detected above the instrument detection limit but below the established minimum quantitation limit. <sup>-</sup> metal detected Ecology results are total recoverable unless otherwise specified. ALCOA results are total.