SONOCO PRODUCTS COMPANY (SUMNER MILL) JUNE 2-3, 1992 CLASS II INSPECTION

by Steven Golding

Washington State Department of Ecology
Environmental Investigations and Laboratory Services Program
Toxics, Compliance and Ground Water Investigations Section
Olympia, WA 98504-7710

Water Body No. WA-10-1030 Segment No. 05-10-05

TABLE OF CONTENTS

<u>Page</u>	2
ABSTRACT i	i
INTRODUCTION	
SETTING	į
PROCEDURES	ļ
QUALITY ASSURANCE/QUALITY CONTROL (QA/QC)	ļ
RESULTS AND DISCUSSION	
Flow Measurements	
Split Sample Comparison 10 Priority Pollutant Scans 12	
Bioassays)
Sediments	
RECOMMENDATIONS AND CONCLUSIONS	
Flow	
Split Sample Comparison	7
Priority Pollutant Scans	
Bioassays	
REFERENCES)

ABSTRACT

A Class II Inspection was conducted at the Sonoco Products Mill (Sumner, Washington) on June 2-3, 1992. All permit parameters were well within limits during the inspection. The effluent met permit limits for BOD₅, TSS, and pH. Nitrogen and phosphorus concentrations in the effluent were limiting to further biological treatment. Sonoco effluent fecal coliform counts were relatively high (2400 - 8000/100mL), but the impact to the White River is relatively small. Most Sonoco and Ecology sample splits and analyses compared well. The exception was the Sonoco analysis of the Sonoco effluent BOD, sample, which was approximately half of three other effluent BOD₅ results. A number of priority pollutant and other organic compounds were detected. Other than acetone, a likely contaminant associated with sampling equipment, no VOAs were found in the effluent. Four BNA's were found in the effluent, all in concentrations below U.S. Environmental Protection Agency (EPA) water quality criteria for receiving waters. No pesticides were detected. All nine priority pollutant metals detected in the samples collected were found in concentrations less than one-third of EPA acute and chronic fresh water quality criteria. Five acute and one chronic bioassay test(s) showed no toxicity, while a second chronic test showed toxicity at 25% effluent concentration. An attempt to sample sediments was unsuccessful. The river bed appeared to be scoured.

INTRODUCTION

A Class II Inspection was conducted at the Sonoco Products Company Mill in Sumner on June 2-3, 1992. Conducting the inspection were Rebecca Inman and Steven Golding from the Washington State Department of Ecology (Ecology) Toxics, Compliance, and Ground Water Investigations Section and Don Nelson of the Ecology Industrial Section. Ken Turner, Sr. Environmental Engineer, and Forrest Ballard, Shift Supervisor, represented Sonoco and assisted during the inspection. Also, sediment collection was attempted in the White River near the mill outfall on June 3, 1992. Marc Heffner and Guy Hoyle-Dodson of Ecology carried out the effort.

Objectives of the Inspection

The inspection focused on the wastewater treatment system. An attempt was also made to collect receiving water sediments. Specific objectives included:

- 1. Assess WTP effluent compliance with NPDES permit limits;
- 2. verify NPDES permit self monitoring, split samples with the permittee to determine the comparability of sampling methods and laboratory results;
- 3. conduct priority pollutant scans on WTP influent and effluent to identify organic chemicals and metals:
- 4. assess effluent toxicity with bioassays and pollutant scans; and
- 5. assess impacts to receiving water sediments with chemical analyses and bioassays.

SETTING

Located in Sumner (Figure 1), the Sonoco mill re-pulps recycled cardboard and newspaper with a hydropulper to produce a daily average of 100.4 tons of unbleached paperboard. This paperboard is used for the production of liner board and core tubing.

Process wastewater is treated at the onsite wastewater treatment plant (WTP) (Figure 2). The extended aeration activated sludge WTP includes a primary clarifier, an aeration basin, and a secondary clarifier. Flow is measured by a continuous recorder/totalizer unit at a Parshall flume located downstream of the secondary clarifier. The effluent is not chlorinated. Discharge to the White River is limited by NPDES permit WA-000088-4, modified May 15, 1991. Settled solids are recycled to the mill process stream. Screenings are put in a dumpster for disposal. All sanitary sewage generated from the plant site enters the city of Sumner sewage system for treatment.

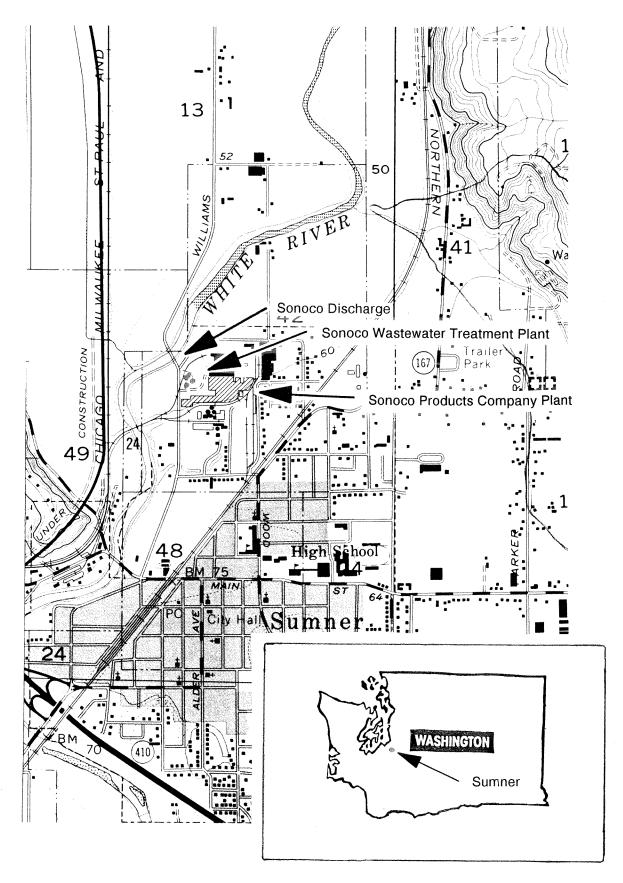


Figure 1 - Location Map - Sonoco, June 1992.

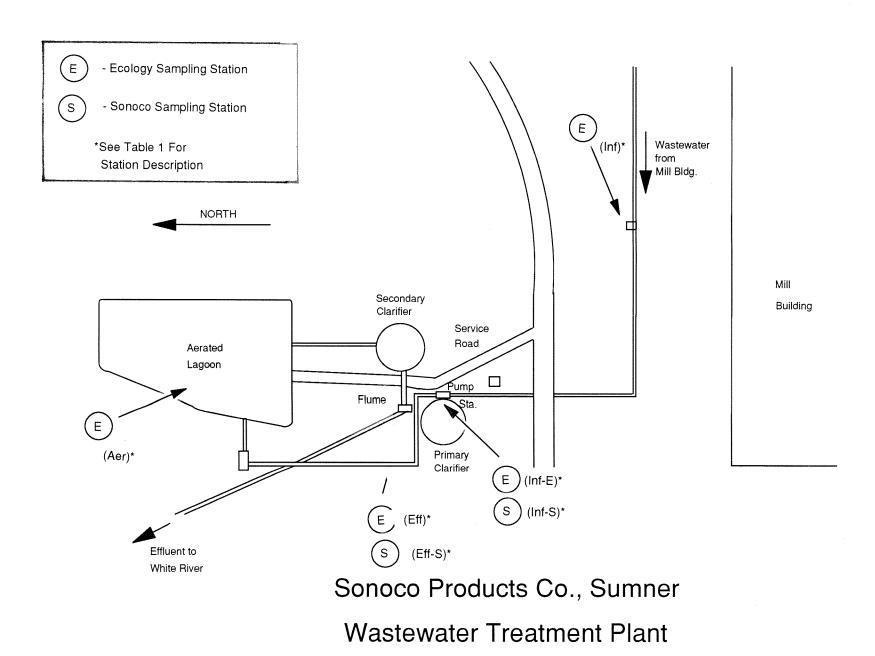


Figure 2 - Flow Schematic - Sonoco, June 1992.

PROCEDURES

Ecology collected composite and grab samples of WTP influent, aeration basin mixed liquor, and WTP effluent. In addition, an attempt was made to collect sediments near the WTP outfall in the White River.

Class II Inspection sampling included Ecology grab and composite samples. An effluent grab composite sample, consisting of two subsamples, was collected by Ecology for bioassay testing. Ecology Isco composite samplers were set up to collect equal volumes of sample every 30 minutes for 24 hours. Sampling locations are summarized in Table 1 and Figure 2. Sonoco also collected composite influent samples, which are not required by permit and were not refrigerated, and effluent samples, which were refrigerated.

All composite samples were split for both Ecology and Sonoco laboratory analysis. All samples for Ecology analysis were kept on ice and delivered to Manchester laboratory on June 3 and 4, 1992, following chain-of-custody procedures. Samples collected, sampling times, and parameters analyzed are summarized in Appendix A. A summary of analytical methods, references, and the laboratory conducting the analysis is given in Appendix B.

QUALITY ASSURANCE/QUALITY CONTROL (QA/QC)

Ecology quality assurance procedures for sampling included special cleaning of the sampling equipment prior to the inspection to prevent sample contamination (Appendix C). Chain of custody procedures were followed to assure the security of samples (Huntamer and Hyre, 1991).

Most Ecology laboratory data met Ecology QA/QC guidelines and are considered to be reliable. Those data that did not meet the guidelines are appropriately qualified on the data tables.

Chemical Oxygen Demand (COD) blanks and standards were within guidelines. Surrogate recoveries for priority pollutant organics analyses were reasonable and acceptable within quality control limits. One compound, 2-butanone, was detected in the method blank; results were qualified with a UJ where they were less than five times the concentration in the method blank. Metals spiked sample and duplicate spiked sample analysis recoveries were within acceptable limits except for aluminum and silver by ICP, and silver by AA. Matrix interferences are suspected for the silver and aluminum sample results and the N qualifier is used for the results of these two metals.

RESULTS AND DISCUSSION

Flow Measurements

Flow is measured with a Parshall flume just downstream of a holding tank. The holding tank receives piped flow from the secondary clarifier. Flow measurements from the flume were used to calculate permitted parameters in lbs/day.

Table 1 - Sampling Station Descriptions - Sonoco, June 1992.

Ecology grab influent samples (Inf)

The samples were collected from a sampling station intercepting the mill wastewater line adjacent to the mill building.

Ecology composite influent sample (Inf-E)

The sample was collected in the WTP influent pump wet well, downstream of the bar screen. The sample intake was placed six feet below the wet well cover, 1½ feet above the floor of the wet well.

Sonoco composite influent sample (Inf-S)

The sample was collected in the WTP influent pump wet well, downstream of the bar screen. The sample intake was suspended in the wet well.

Aerated lagoon (Aer)

Samples were collected from a well mixed portion of the aerated lagoon.

Ecology effluent sampled (Eff)

Grab and composite samples were collected from a 4½ foot deep holding tank upstream of the Parshall flume. Composite samples were collected at mid-depth, near the center of the tank.

Sonoco composite sample (Eff-S)

The sample was collected from the holding tank upstream of the Parshall flume. The sample intake was suspended in the tank.

The three-inch flume was inspected and flume configuration was verified to be acceptable. Ecology made a flow measurement for comparison with Sonoco flow meter measurements by taking readings of water depth twice per minute for ten minutes. The plant flow meter measurement read 26% higher than Ecology's measurement. Water depth oscillated during the measurement period to a degree sufficient to account for the difference in measurements. Individual measurements made by Ecology varied from three to five inches. Plant personnel attribute the cyclic flow to the operation of the pump from the aeration basin.

The uneven flow through the Parshall flume may be the result of a periodic air lock in the submerged outlet weir of the secondary clarifier. The submerged weir was considerably off-level and bent. The unlevel submerged weir may possibly reduce the accuracy of the Sonoco effluent flow meter, as well as reducing clarifier efficiency. The weir should be straightened and leveled to provide for an even contribution of flow around the clarifier.

NPDES Permit Compliance/General Chemistry

The WTP was performing well during the inspection. The conventional parameters of BOD₅, TSS and pH indicate a well treated effluent (Table 2). All permit parameters were well within limits during the inspection (Table 3). BOD₅ was 13% of daily maximum limits and 25% of monthly average limits. TSS was 5% of daily maximum limits and 9% of monthly average limits. Ecology BOD₅, COD, and TOC results are consistent with expected results for influent and effluent (Table 3).

As a general rule, the ratio of BOD_5 to inorganic nitrogen required for biological treatment has been established as 20:1 and BOD_5 to total phosphorus as 100:1 (WPCF, 1977). The WTP influent BOD_5 (632 mg/L) and total inorganic nitrogen (NO₂ + NO₃ + NH₃ - 0.083 mg/L) ratio was 7600:1. The ratio for BOD_5 and phosphorus was 290:1. The ratios for BOD_5 to both inorganic nitrogen and phosphorus indicate the need for the addition of both nutrients to the influent. Sonoco adds urea and phosphorus to the influent downstream of the influent sampling points.

Concentrations of NH₃-N, NO₃-N, and NO₂-N in the effluent were low, indicating that nitrogen may be limiting to BOD reduction even with Sonoco's additions of urea. The ratio of effluent BOD₅ to total inorganic nitrogen was 1700:1. Total persulfate nitrogen was high in the effluent, but is representative of an organic form of nitrogen not available to the biochemical processes of the treatment plant. The ratio for effluent BOD₅ to phosphorus was 140:1. Nutrient concentrations should be evaluated if plant upsets occur or improved effluent quality becomes necessary. Before increasing nutrient additions, consideration should be given to effluent ammonia or nutrient concentrations with respect to aquatic life criteria or future nutrient criteria.

Fecal coliform counts for effluent samples ranged from 2400 to 8000/100mL. Washington water quality standards specify a geometric mean value of 100 colonies/100mL for the receiving water (Ecology, 1992a). The White River at Sumner has had fecal coliform counts in excess of fecal

Table 2 – General Chemistry Results – Sonoco, June 1992.

Parameter	Location: Type: Date: Time: Lab Log #:	Trns Blnk grab 6/2 1100 238080	Inf-1 grab 6/2 1050 238081	Inf-2 grab 6/2 1420 238082	Inf-3 grab 6/3 1300 238095	Inf-E E-comp 6/2-3 1100 238083	Inf-S S-comp 6/2-3 1115 238084	Aer-1 grab 6/2 1110 238085	Aer-2 grab 6/2 1500 238086	Eff-1 grab 6/2 1120 238087	Eff-2 grab 6/2 1445 238088	Eff-3 grab 6/2 1305 238096
GENERAL CHEMISTRY Conductivity (umhos/cm) Alkalinity (mg/L CaCO3) Hardness (mg/L CaCO3) Color Grain Size (% phi size)			1410	1360		1470 618 296 175E*	1460J			1560	1540	
TS (mg/L) TNVS (mg/L) TSS (mg/L) TNVSS (mg/L) % Solids						2150 963 500 90	3300 1570 1980 780	1280 333	1300 350			
% Volatile Solids BOD5 (mg/L) COD (mg/L) TOC (water mg/L) Total Persulfate N(TPN) (mg/L)					632 1500 454 0.058						
NH3-N (mg/L) NO2+NO3-N (mg/L) Total-P (mg/L) Oil and Grease (mg/L) F-Coliform MF (#/100mL)						0.054 0.029 2.18				2 4300	2 2400	
F-Coliform MPN (#/100m Cyanide total (ug/L) Cyanide (wk & dis ug/L) Phenolics Total(water-mg FIELD OBSERVATIONS	n Musukkantibuun lukkasniska		36 2	42 2	0.189**					8000 26 2	5000 26 2	0.0174**
Temperature (C) Temp-cooled (C) pH Conductivity (umhos/cm)			27.5 7.8 1280	26.4 7.7 590		8.6 7.8	17.3 7.6 1250	23.5 8.0 510	24.7 8.1 1325	22.9 8.1 750	24.5 8.3 1335	

Trns Blk - transfer blank
Inf - influent to the WTP
Aer - aeration basin
Eff - effluent
grab - grab sample
comp - composite sample
C - composite sample
E - sample collected by Ecology
S - sample collected by Sonoco

E* - estimated result

** Phenolics were sampled as grabs because insufficient sample was available from composite samplers.

Table 2 – (cont'd) – Sonoco, June 1992.

Parameter II	Locatn: Type: Date: Time:	Eff-E E-comp 6/2-3 1015	Eff-S S-comp 6/2-3 1040	Eff-GC grab-comp 6/2 1140	Percent Reduction
	Lab Log #:	238089	238090	238091	Inf to Eff
GENERAL CHEMI					
Conductivity (umhe		1530		1550	-4
Alkalinity (mg/L Ca		747		761	-21
Hardness (mg/L Ca		321		328	-8
Color		400		i pia a anti-	ar store to retarda are tables.
Grain Size (% phi	size)				
TS (mg/L)	/	1320			39
TNVS (mg/L)		867			10
TSS (mg/L)		46			91
TNVSS (mg/L)		8			91
% Solids		ere nou no post pre di Auroro			in visit in directional disense Fulletti
% Volatile Solids					
BOD5 (mg/L)		86	83		86
COD (mg/L)		360			76
TOC (water mg/L)		132	121		71
Total Persulfate No	TPN) (mg/L)	1.32			-2176
NH3-N (mg/L)	and was a second	0.051			6
NO2+NO3-N (mg/	L)	0.01U			
Total-P (mg/L)	,	0.601			72
Oil and Grease (mg	g/L)				
F-Coliform MF (#/	100mL)				
F-Coliform MPN (#	#/100mL)				
Cyanide total (ug/L	_)				
Cyanide (wk & dis	ug/L)				
Phenolics Total(wa	ater-mg/L)				
FIELD OBSERVAT	IONS				
Temperature (C)					
Temp-cooled (C)		8.7	9.7		
рН		8.2	8.3		
Conductivity (umh	os/cm)	1370	1120		

Table 3 – NPDES Permit Limits and Inspection Results – Sonoco, June 1992.

	NPD	ES Limits	Inspection	n Results
Parameter	Monthly Average	Daily Maximum	Composite Samples	Grab Samples
BOD5	348 lbs/day	673 lbs/day	86 mg/L 142 lbs/day	
TSS	486 lbs/day	957 lbs/day	46 mg/L 76 lbs/day	
рН	5.	0 to 9.0		8.1; 8.3
Flow	***		198,10	0 gpd *
Production			110.8 to	ns/day**

^{*} flow corrected to 24-hours as recorded from Sonoco flow meter from 1000, 6-2-92 to 1015, 6-3-92

^{**} total production reported by Sonoco for 6–2–92

coliform standards (Ecology, 1992b). From the period 1978 - 1991 the standard of 100 colonies/100mL (geometric mean) has been exceeded for March, June, July, and November data at river mile 0.7, which is downstream of the Sonoco discharge. Single samples collected in six of eleven months in 1991 exceeded 100 fecal coliforms/100mL (Ecology, 1993).

Assuming a maximum size mixing zone of 25% of stream flow, in accordance with the water quality standards, Sonoco contributed 5 colonies/100mL at the edge of the mixing zone during average river flow (1 colony/100mL after complete mixing with the river). A plant discharge rate equal to that at the time of the inspection (a period of full production) was also assumed. For a 25% mixing zone and 7-day 10-year low flow conditions (433 cfs - Pelletier, 1992), the Sonoco contribution to fecal coliform counts on the River at low flow is 14/100mL (3/100mL after complete mixing). This is a relatively small but significant contribution to the fecal coliform concentration in the receiving water.

Fecal coliform concentrations of between 1800/100mL and 50000/100mL were found in a previous study of Sonoco effluent, suggesting that at times Sonoco contributes a higher number of fecal coliform to the White River (Pelletier, 1992). The study found between 47% and 100% *Klebsiella*. Although *Klebsiella* have been considered benign, they may in some cases be pathogenic. Some forms of *Klebsiella* found in wood wastes are identical to those which cause pneumonia in humans (Vasconcelos, 1993).

Split Sample Comparison

Ecology composite samples were split for Ecology and Sonoco analysis. Inf-S, the Sonoco influent composite sample, was unrefrigerated. For this reason Ecology analyzed Inf-S for conductivity and solids parameters only. Because only a small amount of Eff-S (the Sonoco effluent composite sample) was available, Ecology analyzed Eff-S for BOD₅ and total organic carbon (TOC) only.

Most sample splits compare well (Table 4). Three of four BOD₅ analyses by Sonoco and Ecology compare closely. The Sonoco analysis of the Sonoco effluent sample was the exception, yielding a BOD₅ result approximately half of the other three results (Table 4). Since Ecology analyses of Sonoco and Ecology samples were in good agreement, the analysis of the Sonoco effluent sample and not the sample itself appears to be responsible for the variance.

Though a composite influent sample is not required by permit, Ecology analyses resulted in 1980 mg/L TSS for the Sonoco sample (Inf-S), compared with 500 mg/L TSS for the Ecology sample (Inf-E). Other solids results showed similar differences between the two samples (Table 2). The difference may be a result of nonrepresentative sampling at the Sonoco influent sample point or of biological growth in the unrefrigerated sample collection container. Effluent TSS samples collected by Sonoco and Ecology compare closely.

The Sonoco laboratory was audited by Ecology's Quality Assurance Section on July 28, 1992, and accredited by Ecology on September 13, 1992.

Table 4 - Split Sample Results Comparison - Sonoco, June 1992.

	Location: Type: Date: Time: Lab Log #:	Inf-E E-comp 6/2-3 1100 238083	Inf-S S-comp 6/2-3 1115 238084	Eff-E E-comp 6/2-3 1015 238089	Eff-S S-comp 6/2-3 1040 238090	Eff Eff-grab 6/2
	Sampled by:	Ecology	Sonoco	Ecology	Sonoco	
Parameter						
	Analysis by:					
BOD5 (mg/L)						
	Ecology	632	*	86	83	
	Sonoco	590	*	73	39	
TSS (mg/L)						
and the state of the second state of the second state of the second seco	Ecology	500	1980	46		
	Sonoco	492	*	44	53	
pH kristan pikot kating di						
Fitaliya Digagar kemiliki dalahil	Ecology					8.12: 8.27

^{*} Sonoco analyzes influent composite sample for pH only. Because the sample is unrefrigerated, Ecology did not analyze for BOD.

Priority Pollutant Scans

Six VOA organics were detected in the influent samples collected (Table 5). The compounds detected in the highest concentrations in the influent were acetone (81- 130 μ g/L), and toluene (3.2- 9.3 μ g/L). The compound 2-Butanone was detected at 24 μ g/L but the analyte was also detected in the method blank. Acetone was the only VOA organic detected in the effluent (37-21 μ g/L). Acetone was used for laboratory cleaning of beakers used for VOA sampling and is not likely representative of the influent.

Ten BNA organics were detected in the influent samples collected. Of the compounds detected in the influent sample, benzoic acid was found in the highest concentration (200 μ g/L).

Four BNA compounds were detected in the effluent. Of these, benzoic acid was found in the highest concentration ($12 \mu g/L$). Bis(2-ethylhexyl)phthalate in the effluent was found at 83% of the EPA chronic fresh water quality criteria, but less than 1% of EPA acute fresh water quality criteria (Table 5 - EPA, 1986). All other organics detected in the effluent were well below EPA water quality criteria. No pesticides were detected in the influent or effluent samples.

All of the nine priority pollutant metals detected in the effluent samples collected were found in concentrations less than one-third of EPA acute and chronic fresh water quality criteria (Table 5 - EPA, 1986). A complete list of parameters analyzed and analytical results is included in Appendix D.

A number of Tentatively Identified Compounds (TICs) were found in the influent samples at concentrations up to 470 μ g/L (est.). TICs were found in the effluent samples at concentrations of up to 460 μ g/L (est.). Appendix E summarizes TICs found.

Bioassays

Most acute and chronic bioassays of Sonoco effluent showed no adverse effects (Table 6). The fathead minnow growth test (a chronic bioassay) was the exception. The test showed a 12.5% No Observable Effects Concentration (NOEC), corresponding to a 25% Lowest Observable Effects Concentration (LOEC).

Sediments

An attempt was made to collect sediments 20 feet upstream of the diffuser, 50 feet upstream, and just downstream of the diffuser. No sediments were recovered. The swift river current appears to have scoured the river bed of sediments. Since the inspection, a diver hired by Sonoco to inspect the diffuser was also unable to collect sediment samples (Nelson, 1993).

Table 5 - VOA, BNA, Pesticide/PCB and Metals Scan Results - Sonoco, June 1992.

	Location: Type:	Inf-1 grab	Inf-2 grab	Eff-1 grab	Eff-2 grab	EPA W	ater C	⊋uality	y Criteria Sı	ummary
	Date: Time:	ັ6/2 1050	6/2 1420	6/2 1120	6/2 1445		cute resh		Chronic Fresh	
	Lab Log#: VOA Compounds	238081 23 ug/L	38082 ug/L	238087 ug/L	238088 ug/L	· (u	g/L)		(ug/L)	
	Acetone Carbon Disulfide	81++ 1.0 U	1.0	37++ J 1.0	21++ U 1.0					
	2-Butanone (MEK)	13 UJ	24	B 5.0	U 5.0	: i [[[[[[]]]]] [[]] [[]] [[]] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [[]				
	1,1,1-Trichloroethane	2.7	3.5	1.0	U 1.0	U 18,	,000	*(c)		
	Toluene	3.2	9.3	1.0	U 1.0	U 17,	,500	*		
	1,1,2-Trichloro-1,2,2-Trifluoroethane (Freon 113)	2.0	2.0	U 2.0	U 2.0	U				
	Location:	_	Inf-E	_ Eff-E		EPA W	ater C	⊋uality	y Criteria Sı	ummary
	Type: Date:		comp 6/2-3	E-comp 6/2-3		Δ.	cute		Chronic	
	Date. Time:	1000-		1000-1000			resh		Fresh	
	Lab Log#:		38083	238089		''	0011		110011	
	BNA Compounds		ug/L	ug/L		(u	g/L)		(ug/L)	
	Phenology suggestions and an acceptance of the control of the cont	lan pilandal (ladi) (lad	31	A CONTRACTOR OF THE CONTRACTOR	U	######################################	,200	*	2,560	*
	Benzyl Alcohol		11	J 5	U					
	4-Methylphenol		15	J 1	U					
	Isophorone			J 1.7	J	117,	,000	*		
•	Benzoic Acid		200	12						
	Naphthalene		3.7	J 1	U	2,	,300	*	620	*
	Diethyl Phthalate	-iv-landod 1 5	22	FF 3.2.25 3 1 0	U		940	*(i)	3	.*(i)
	Pentachlorophenol		20				20	**	13	**
	Di-n-Butyl Phthalate		12	1 10 1 L C C C C C C C C C C C C C C C C C C	Ų			*(i)	3	*(i)
	Butylbenzyl Phthalate Bis(2-Ethylhexyl)Phthalate		4.8 17	2.5	U		940 940	*(i) *(i)	3	*(i) *(i)
	Dis(2-Littylinexyt)/ Hithalate		17	2.5			340	(1)	3	(1)
	Pesticide/PCB Compounds		ug/L	ug/L						
	(none detected)									
				• •	amination fron					
	Inf – influent to the WTP			cleaning of sa	mpling equipn	nent				
	Eff - effluent									
	grab - grab sample		U -	Indicates the	analyte was no	t detected at				
	E - sample collected by Ecology			or above the r	eported result.					
	. , , , , ,				•	e for a detected analyte.				
						so found in the analytical method				
					•	may have been contaminated.				
					,	of detected at or above				
			00 –		analyte was no					

the reported estimated result.

Table 5 - (cont'd) - Sonoco, June 1992.

	Location: Type:		Inf-E E-comp	Eff E-cor		EPA Water	Qua	ılity Criteria Sun	nmary
	Date:		6/2-3	6/2		Acute		Chronic	
	Time:		1000-1000	1000-10	00	Fresh		Fresh	
	Lab Log#:		238083	2380					
Metals (total)	Hardness =	320	ug/L	uç	/L	(ug/L)		(ug/L)	
Aluminum			5310	N 10	30 N	Terre en andre de la Carlo de la composition della composition del			
Antimony			30	U '	30 U	9,000	*	1,600 *	
Arsenic			4.1	P .	.4 P	기업 가는 사람들이 살아 있다면 살아 있다면 하지 않는데 하다 없는데 없다.			
Pentavalent			المراجعة المراجعة المراجعة المراجعة	rialis de la constitución de la con ·		850	*	48 *	t
Trivalent						360		190	
Beryllium			1.0	U	.0 U	130	*	5.3 *	ł .
Cadmium			1.09	0.	34 P] (14.6 1.4 1.	+	2.8 +	+ :::::
Chromium			6.3	P .	.0 U	[[보통하다 이 기가 없는 수 있는 [[보통하다 말했다] 중인 시대 [[보다 모다]			
Hexavalent						1884;		114	
Trivalent						4,502		537 +	۲
Copper			35.8		.9 P	53	+	32 +	٠
Lead			18.0		.6 P	359	+	14.0 +	٠
Mercury			0.28	P 0.0	34 P	7 (4		0.012	
Nickel			11	P	11 P	3,794	+	422 +	.
Selenium			2.0	U :	.0 P	260		35	
Zinc			270	70	.3	314	+	284 +	٠

1NOTE: SOME INDIVIDUAL COMPOUND CRITERIA OR LOELS MAY NOT AGREE WITH GROUP CRITERIA OR LOELS. REFER TO APPROPRIATE EPA DOCUMENT ON AMBIENT WATER QUALITY CRITERIA FOR FULL DISCUSSION.

P - indicates the analyte was detected above the instrument detection limit but below the established minimum quantitation limit.

U - Indicates the analyte was not detected at or above the reported result.

N - indicates the spike sample recovery is not within control limits.

Inf - influent to the WTP Eff - effluent

comp - composite sample E - sample collected by Ecology

Insufficient data to develop criteria. Value presented is the LOEL – Lowest Observed Effect Level. Hardness dependent criteria (320 mg/L used).

Total Trichloroethanes

Total Phthalate Esters

Table 6 - Effluent Bioassay Results - Sonoco, June 1992.

Ceriodaphnia dubia - chronic survival and reproduction (Ceriodaphnia dubia)

	Sample No.	238091		<u>.</u> .	
Sample Concentra	tion	# Tested	Avg # Young Per Adult	Percent Survival	
0	% effluent	10	9.0	80	
6.25	% effluent	8	53.8	100	
12.5	% effluent	8	55.8	100	
25	% effluent	10	50.3	90	
50	% effluent	10	48.5	100	
100	% effluent	10	14.4	80	
		Chro	nic	Acute	
		NOE	C = 100% effluent	NOEC = 100% ef	fluent

<u>Daphnia magna – 48-hour survival test</u> (Daphnia magna)

Sample No. 238091

	Sample No.	230091	
Sample Concentra	tion	# Tested	Percent Survival
0	% effluent	20	100
6.25	% effluent	20	100
12.5	% effluent	20	100
25	% effluent	20	100
50	% effluent	20	100
100	% effluent	20	100

NOEC = 100% effluent LC50>100%

LC50>100%

Fathead larval survival and growth test (Pimephales promelas)

Sample No. 238091

	Jampie N), <u>2</u> 00031	
Sample Concentra	tion	Avg. Weight	Percent Survival
Concentra	tion	Avg. weight	Survivai
0	% effluent	0.47	100
	% effluent	0.51	97
12.5	% effluent	0.45	100
25	% effluent	0.33	94
50	% effluent	0.18	92
100	% effluent	0.23	92
		Chronic	Acuto

 $\begin{tabular}{lll} \hline Chronic & Acute \\ \hline NOEC = 12.5\% & effluent \\ LOEC = 25\% & effluent \\ \hline \end{tabular} & C50>100\% \\ \hline \end{tabular}$

Table 6 - (cont'd) - Sonoco, June 1992.

Fathead minnow acute test

(Pimephales promelas)

Sample No. 238091

Sample Concentration	#Tested	% Survival
•		400
0	20	100
12.5	20	100
25	20	95
50	20	95
100	20	95

NOEC = 100% effluent LC50>100%

Rainbow Trout - 96-hour survival test (Oncorhynchus mykiss)

Sample No. 238091

Sample Concentration	# Tested	% Survival
0 % effluent	30	100
65 % effluent	30	100

NOEC - no observable effects concentration

LC50 - lethal concentration for 50% of the organisms

LOEC - lowest observable effects concentration

RECOMMENDATIONS AND CONCLUSIONS

Flow

Water depth in the Parshall flume oscillated considerably. The operation of the pump from the aeration basin may be responsible for the oscillation. A cyclic air lock in the submerged outlet weir of the secondary clarifier, which is bent and considerably off-level may be responsible. A submerged weir which is not level may reduce effluent flow meter accuracy as well as reducing clarifier efficiency.

• The submerged weir should be made straight and level to provide for an even contribution of flow around the clarifier.

NPDES Permit Compliance/General Chemistry

All permit parameters were well within limits during the inspection. Although Sonoco adds urea and phosphorus to the influent, low nitrogen and phosphorus concentrations in the effluent may indicate that nutrients are limiting to further BOD reduction.

• Low nitrogen and phosphorus concentrations may not be a concern at present since the discharge met permit limits. Nutrient concentrations should be evaluated if plant upsets occur or improved effluent quality becomes necessary. Before increasing additions of nutrients, consideration should be given to effluent ammonia or nutrient concentrations with respect to water quality criteria.

Although fecal coliform counts in the Sonoco effluent were high, Sonoco's contribution of fecal coliform to the White River was relatively small during the inspection. Previous data indicates that Sonoco's contribution may be higher at times, however.

Split Sample Comparison

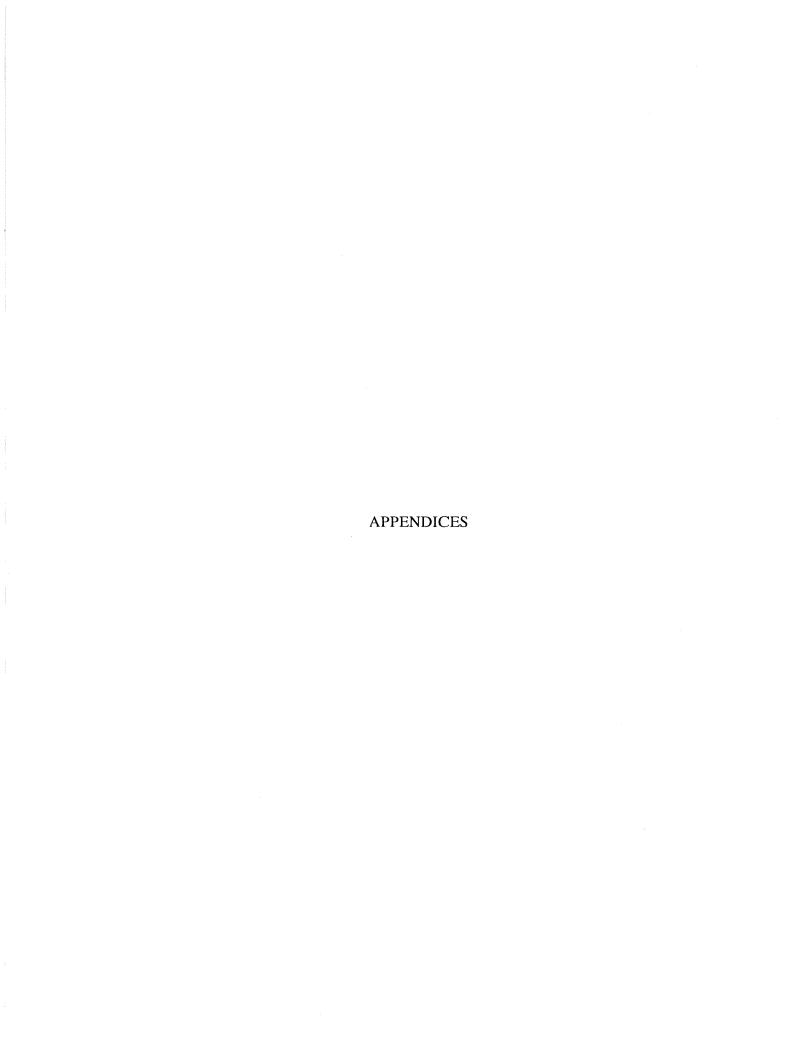
Most sample splits compared well. The Sonoco analyses of the Sonoco effluent BOD₅ sample was the exception with a result approximately half of that of the other effluent BOD₅ results.

Although a composite influent sample is not required by permit, a large difference in influent samples collected by Sonoco and Ecology may be a result of nonrepresentative sampling at the Sonoco influent sample point and/or growth in the unrefrigerated sample collection container.

Priority Pollutant Scans

All VOA and BNA compounds and metals detected in the effluent were at concentrations less than EPA acute and chronic fresh water quality toxicity criteria.

Bioassays


Most acute and chronic bioassays of Sonoco effluent showed no adverse effects. The fathead minnow growth test (a chronic bioassay) was the exception with reductions in growth rate at 25% effluent.

Sediments

An unsuccessful attempt was made to collect sediments. The swift river current appears to have scoured the river bed of sediments.

REFERENCES

- Ecology, 1992a. <u>Water Quality Standards for Surface Waters of the State of Washington</u>, Chapter 173-201A WAC.
- Ecology, 1992b. <u>1992 Statewide Water Quality Assessment 305(B) Report,</u> Appendix E, Section 303d list.
- Ecology, 1993. Ambient Water Quality Monitoring data base, Ambient Monitoring Section, Olympia, WA.
- EPA, 1986. Quality Criteria for Water, EPA 440/5-86-001. United States Environmental Protection Agency.
- Huntamer, D. and Hyre, J., 1991. <u>Ecology Laboratory User's Manual</u>. Washington State Department of Ecology, Olympia, WA.
- Nelson, D., 1993. Personal communication. Washington State Department of Ecology, Industrial Section.
- Pelletier, G.J., 1992. <u>Total Maximum Daily Load for Biochemical Oxygen Demand, Ammonia and Chlorine</u>, Draft. Washington State Department of Ecology, Olympia, WA.
- Vasconcelos, J., 1993. Personal communication. United States Environmental Protection Agency, Manchester Environmental Laboratory, Microbiology, Manchester, WA.
- Water Pollution Control Federation and the American Society of Civil Engineers, 1977. Wastewater Treatment Design.

Appendix A - Sampling Schedule - Sonoco, June 1992.

Parameter	Location: Type: Date: Time: Lab Log #:	Trns Blnk grab 6/2	Inf-1 grab 6/2	Inf-2 grab 6/2	Inf-E E-comp 6/2-3	Inf-S S-comp 6/2-3	Aer-1 grab 6/2	Aer-2 grab 6/2	Eff-1 grab 6/2	Eff-2 grab 6/2	
GENERAL CHEMISTRY Conductivity Alkalinity Hardness Color TS	Lab Log #.		E			E E E			E		
TNVS TSS TNVSS BOD5 COD TOC (water) Total Persulfate N					ES ES ES	E E	E	E E			
NH3-N NO2+NO3-N Total-P Oil and Grease (water) F-Coliform MF F-Coliform MPN					E E E E E				E E E		
Cyanide (total) Cyanide (wk & dis) Cyanide (wk & dis soil/sed ORGANICS VOC (water) VOC (soil/sed) BNAs (water)	d)		E E	E E	E				E E	E / E /	
BNAs (water) BNAs (soil/sed) Pest/PCB (water) Pest/PCB (soil/sed) Phenolics Total(water) METALS PP Metals (water)					Ē E						
PP Metals (soil/sed) Aluminum BIOASSAYS Salmonid (acute 65%) Daphnia magna (acute) Ceriodaphnia (chronic)					E						
Fathead Minnow (acute) Fathead Minnow (chronic Hyallela (solid acute) Microtox (solid acute) FIELD OBSERVATIONS Temperature								4944 (494) 4944 (494) 2002 (494)		din Fundiya d Fugarita	
	- composite s			E E	E E		E.			E E E	
E- S- grab-	 composite si Ecology ana Sonoco anal grab sample composite si 	lysis ysis	by Sonoco	Trr	Inf – Aer – Eff –	influent	posite sample goon sample ank				

Appendix A – (cont'd) – Sonoco, June 1992.

Parameter II	Locatn: Type: Date: Time: Lab Log #:	Eff-E E-comp 6/2-3	Eff-S S-comp 6/2-3	Eff-GC grab-comp 6/2
GENERAL CHEMIS				
Conductivity		9939 J. J. J. J. E 693		rengaler et all E at
Alkalinity		OFFI		E
Hardness				, E
Color		E		
		Ē		
TSS		S		
TNVSS		Ε		
BOD5		ES	ES	
COD		E		
TOC (water) Total Persulfate N		Ë E	E	
NH3-N		Ē		
NO2+NO3-N		Ē		
Total-P		E		
Oil and Grease (wa	ter)			
F-Coliform MF F-Coliform MPN				
Cyanide (total)				
Cyanide (wk & dis)				
Cyanide (wk & dis s	soil/sed)			
ORGANICS				
VOC (water)				
VOC (soil/sed)		_		
BNAs (water) BNAs (soil/sed)		E 51.		
Pest/PCB (water)		DOM: VE		
Pest/PCB (soil/sed)				
Phenolics Total(wa		E		
METALS				
PP Metals (water)	distriction desired	E.		
PP Metals (soil/sed Aluminum				
BIOASSAYS		hatti ya atti <mark>k</mark> idi.		
Salmonid (acute 65	5%)			Е
Daphnia magna (ad				
Ceriodaphnia (chro				1888 - E Z
Fathead Minnow (a Fathead Minnow (c				Ē
Hyallela (solid acut				
Microtox (solid acut				
FIELD OBSERVAT				
Temperature		arabon võganis	. Orașii (Ze	
Temp-cooled*+		5 E	E E	
pH Conductivity			본	
Chlorine		L	_	
Sulfide				

Appendix B - Ecology Analytical Methods - Sonoco, June 1992.

Lab Used

	Method Used for	Laboratory Performing
Laboratory Analysis	Ecology Analysis	Analysis
Conductivity	EPA, Revised 1983: 120.1	Ecology Manchester Laboratory
Alkalinity	EPA, Revised 1983: 310.1	Ecology Manchester Laboratory
Hardness	EPA, Revised 1983: 130.2	Ecology Manchester Laboratory
Color	EPA, Revised 1983: 110.1	Ecology Manchester Laboratory
TS	EPA, Revised 1983: 160.3	Ecology Manchester Laboratory
TNVS	EPA, Revised 1983: 106.3	Ecology Manchester Laboratory
TSS	EPA, Revised 1983: 160.2	Ecology Manchester Laboratory
TNVSS	EPA, Revised 1983: 106.2	Ecology Manchester Laboratory
BOD5	EPA, Revised 1983: 405.1	Ecology Manchester Laboratory
COD	EPA, Revised 1983: 410.1	Ecology Manchester Laboratory
TOC (water)	EPA, Revised 1983: 415.1	Ecology Manchester Laboratory
Total Persulfate N	EPA, Revised 1983: 351.3	Ecology Manchester Laboratory
NH3-N	EPA, Revised 1983: 350.1	Ecology Manchester Laboratory
NO2+NO3-N	EPA, Revised 1983: 353.2	Ecology Manchester Laboratory
Total-P	EPA, Revised 1983: 365.3	Ecology Manchester Laboratory
Oil and Grease (water)	EPA, Revised 1983: 413.1	Ecology Manchester Laboratory
F-Coliform MF	APHA, 1989: 9222D.	Ecology Manchester Laboratory
F-Coliform MPN	APHA, 1989: 9221C.	Ecology Manchester Laboratory
Cyanide (total)	EPA, Revised 1983: 335.2	Ecology Manchester Laboratory
Cyanide (wk & dis)	APHA, 1989: 4500-CNI.	Ecology Manchester Laboratory
VOC (water)	EPA, 1988; 8260	Ecology Manchester Laboratory
BNAs (water)	EPA, 1986: 8270	Analytical Resources Inc.
Pest/PCB (water)	EPA, 1986: 8080	Analytical Resources Inc.
Phenolics Total(water)	EPA, Revised 1983: 420.2	Ecology Manchester Laboratory
PP Metals (water)	EPA, Revised 1983: 200-299	Ecology Manchester Laboratory
Total aluminum	EPA, Revised 1983: 200.7/6010	Ecology Manchester Laboratory
Salmonid (acute 65%)	Ecology, 1991.	Ecology Manchester Laboratory
Daphnia magna (acute)	EPA 1991	Ecology Manchester Laboratory
Ceriodaphnia (chronic)	EPA 1989: 1002.0	Ecology Manchester Laboratory
Fathead Minnow (acute)	EPA 1991	Ecology Manchester Laboratory
Fathead Minnow (chronic)	EPA 1989: 1000.0	Ecology Manchester Laboratory

APHA-AWWA-WPCF, 1989. Standard Methods for the Exanination of Water and Wastewater, 17th Edition.
Ecology, 1991. Static Acute Fish Toxicity Test, WDOE 80-12, revised Sept. 1991.
EPA, 1983. Methods for Chemical Analysis of Water and Wastes, EPA-600/4-79-020 (Revised March, 1983).
EPA, 1988. Short-term Methods for Estimating the Chronic Toxicity of Effluents and Receiving waters to Marine and Estuarine Organisms, First edition. EPA/600/4-89/028.
EPA, 1989. Short-term Methods for Estimating the Chronic Toxicity of Effluents and Receiving waters to Freshwater Organisms. Second edition. EPA/600/4-89/100.
EPA, 1986: SW846. Test Methods for Evaluating Solid Waste Physical/Chemical Methods, SW-846, 3rd. ed., November, 1986.
EPA, 1991. Methods for Measuring the Acute Toxicity of Effluents and Receiving Waters to Freshwater and Marine Organisms. EPA/600/4-90/027.

Appendix C - Priority Pollutant Cleaning and Field Transfer Blank Procedures - Sonoco, Sumner.

PRIORITY POLLUTANT SAMPLING EQUIPMENT CLEANING PROCEDURES

- 1. Wash with laboratory detergent;
- 2. Rinse several times with tap water;
- 3. Rinse with 10% HNO₃ solution;
- 4. Rinse three (3) times with distilled/deionized water;
- 5. Rinse with high purity methylene chloride;
- 6. Rinse with high purity acetone; and
- 7. Allow to dry and seal with aluminum foil.

FIELD TRANSFER BLANK PROCEDURE

- 1. Pour organic free water directly into appropriate bottles for parameters to be analyzed from grab samples (VOA).
- 2. Run approximately 1L of organic free water through a compositor and discard.
- 3. Run approximately 6L of organic free water through the same compositor and put the water into appropriate bottles for parameters to be analyzed from composite samples (BNA, Pesticide/PCB, resin acids, guaiacols, dioxins, phenolics, and metals).

Appendix D - VOA, BNA, Pesticide/PCB and Metals Scan Results - Sonoco, June 1992.

Date: Time: 1 Lab Log#: 238	rab grab 6/2 6/2 100 1050	Inf-2 grab 6/2 1420 238082 ug/L	Inf-E E-comp 6/2-3 1000-1000 238083 ug/L	Eff-E E-comp 6/2-3 1000-1000 238089 ug/L	Eff-1 grab 6/2 1120 238087 ug/L	Eff-2 grab 6/2 1445 238088 ug/L	
Chloromethane	2.0	U 2.0	uu seed assagaee oo		2.0 U	2.0 U	
Bromomethane					2.0 U	2.0 U	
Vinyl Chloride	2.0				2.0 U	2.0 U	
Chloroethane	2.0				2.0 U	2.0 U	
Methylene Chloride	2.0		<u>U</u>		2.0 U	2.0 U	_
Acetone	81	130			37	21	
Carbon Disulfide	1.0				1.0 U	1.0 U	
1,1-Dichloroethene	1,0				1.0 U	1.0 U	
1,1-Dichloroethane	1.0				1.0 U	1.0 U	
trans-1,2-Dichloroethene	1.0				1.0 U	1.0 U	
cis-1,2-Dichloroethene	1.0				1.0 U	1.0 U	
Chloroform					1.0 U 1.0 U	1.0 U 1.0 U	
1,2-Dichloroethane	1.0						
2-Butanone (MEK)		UJ 24	8		5.0 U	5,0 U	
1,1,1-Trichloroethane	2.7				1.0 U	1.0 U	
Carbon Tetrachloride	1.0				1.0 U	1.0 U 1.0 U	
Vinyl Acetate	1.0				1.0 U 1.0 U		
Bromodichloromethane	1.0 1.0				1.0 U	1.0 U 1.0 U	
1,2-Dichloropropane cis-1,3-Dichloropropene	1.0				1.0 U	1.0 U	
Trichloroethene	1.0				1.0 U	1.0 U	
Dibromochloromethane	1.0				1.0 U	1.0 U	
1,1,2-Trichloroethane	1.0				1.0 U	1.0 U	
Benzene	1.0				1.0 U	1.0 U	
trans-1,3-Dichloropropene	1.0 1.0				1.0 U	1.0 U	
2-Chloroethylvinyl Ether					1.0 U	1.0 U	
Bromoform	1.0				1.0 U	1.0 U	
4-Methyl-2-Pentanone (MIBK)	5.0				5.0 U	5.0 U	
2-Hexanone	5.0	U 5.0	Ū		5.0 U	5.0 U	
Tetrachloroethene	1.0	U 1.0	U		1.0 U	1.0 U	
1,1,2,2-Tetrachloroethane	1.0	U 1.0	U		1.0 U	1.0 U	
Toluene	3.2	9.3			1.0 U	1.0 U	
Chlorobenzene	1.0	U 1.0	ਹ_'		1.0 U	1.0 U	
Ethylbenzene	1.0		U		1.0 U	1.0 U	
Styrene	1.0				1.0 U	1.0 U	
Total Xylenes	2.0		U		2.0 U	2.0 U	
Trichlorofluoromethane	2.0				2.0 U	2,0 U	
1,1,2-Trichloro-1,2,2-Trifluoroethane (Freon 1	13) 2.0	2.0	U		2.0 U	2.0 U	

Trns Blk - transfer blank

Inf - influent to the WTP

Eff - effluent

grab - grab sample
C - composite sample
E - sample collected by Ecology

U - Indicates compound was analyzed for but not detected at the given detection limit.
 J - Indicates an estimated value for a detected analyte.
 UJ - Indicates the analyte was not detected at or above the reported estimated result.

B – Indicates the analyte was also found in the analytical method blank indicating the sample may have been contaminated.

Appendix D - (cont'd) - Sonoco, June 1992.

Location: Type: Date: Time: Lab Log#:	Trns Blnk grab 6/2 1100 238080	Inf-1 grab 6/2 1050 238081	Inf-2 grab 6/2 1420 238082	Inf-E E-comp 6/2-3 1000-1000 238083	Eff-E E-comp 6/2-3 1000-1000 238089	Eff-1 grab 6/2 1120 238087	Eff-2 grab 6/2 1445 238088	
BNA Compounds	238080 ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	
Phenol Bis(2-Chloroethyl)Ether 2-Chlorophenol 1,3-Dichlorobenzene 1,4-Dichlorobenzene				4 l 4 l	J 1 U J 1 U J 1 U			
Benzyl Alcohol 1,2-Dichlorobenzene 2-Methylphenol 2,2-Oxybis(1-Chloropropane)				4 l 4 l	7 1 U U 1 U U 1 U			
4–Methylphenol N–Nitroso-di-n–Propylamine Hexachloroethane Nitrobenzene				15 d 4 l 8 l 4 l	J 1 U J 2 U			
Isophorone 2-Nitrophenol 2,4-Dimethylphenol Benzoic Acid				3.0 c 20 t 8 t 200	J ' 5 U	1		
Bis(2–Chloroethoxy)Methane 2,4–Dichlorophenol 1,2,4–Trichlorobenzene				4 L 12 L 4 L		J		
Naphthalene 4-Chloroaniline Hexachlorobutadiene 4-Chloro-3-Methylphenol								
2-Methylnaphthalene Hexachlorocyclopentadiene 2,4,6-Trichlorophenol 2,4,5-Trichlorophenol				4 1 20 1 20 1 20 1	J 1 U J 5 U			
2-Chloronaphthalene 2-Nitroaniline Dimethyl Phthalate Acenaphthylene					U 1 U U 5 U U 1 U			
Acenaphinyene 3-Nitroaniline Acenaphthene 2,4-Dinitrophenol				20 4 40	J 5 U J 1 U			

Trns Blk – transfer blank
Inf – influent to the WTP
Eff – effluent
grab – grab sample
C – composite sample
E – sample collected by Ecology
S – sample collected by Sonoco

U - Indicates compound was analyzed for but not detected at the given detection limit.
 J - Indicates an estimated value for a detected analyte.

Appendix D – (cont'd) – Sonoco, June 1992.

BNA Compounds	Location: Type: Date: Time: Lab Log#:	Trns Blnk grab 6/2 1100 238080 ug/L	Inf-1 grab 6/2 1050 238081 ug/L	inf-2 grab 6/2 1420 238082 ug/L	Inf-E E-comp 6/2-3 1000-1000 238083 ug/L	Eff-E E-comp 6/2-3 1000-1000 238089 ug/L	Eff-1 grab 6/2 1120 238087 ug/L	Eff-2 grab 6/2 1445 238088 ug/L	
4-Nitrophenol					20				
Dibenzofuran 2,6-Dinitrotoluene					4 20				
2,4-Dinitrotoluene					20				
Diethyl Phthalate					22	1 0			
4-Chlorophenyl Phe	nylether				4				
Fluorene					4	U 1 U			
4-Nitroaniline					20	U 5 U			
4,6-Dinitro-2-Methy					40	U 10 U			
N-Nitrosodiphenylar					4				
4-Bromophenyl Phe	nylether				4				
Hexachlorobenzene					4				
Pentachlorophenol Phenanthrene						U 0.9 J	J		
Carbazole						Ŭ 1 Ŭ			
Anthracene					4				
Di-n-Butyl Phthalate	•				. 12	1 U			
Fluoranthene					4				
Pyrene Butylbenzyl Phthalat					4.8				
3,3'-Dichlorobenzidi					20				
Benzo(a)Anthracene					4				
Bis(2-Ethylhexyl)Pht					17	2.5	1		
Chrysene					4		1		
Di-n-Octyl Phthalate Benzo(b)Fluoranther					4 4				
Benzo(k)Fluoranthen						U 1 U			
Benzo(a)Pyrene	ARCHEROLANES PARTE				4	U 1 U			
Indeno(1,2,3-cd)Pyre						U 1 U			
Dibenzo(a,h)Anthrac						U 1 U			
Benzo(g,h,i)Perylene					4	U 1 U			

Appendix D - (cont'd) - Sonoco, June 1992.

Location:	Trns Bink	Inf-1	Inf–2	Inf-E	Eff-E	E	ff-1	Eff-2	
Type:	grab	grab	grab	E-comp	E-comp	Ç	grab	grab	
Date:	6/2	6/2	6/2	6/2-3	6/2-3		6/2	6/2	
Time:	1100	1050	1420	1000-1000	1000-1000		120	1445	
Lab Log#;	238080	238081	238082	238083	238089		8087	238088	
Pesticide/PCB Compounds	ug/L	ug/L	ug/L	ug/L	ug/L	Į	ug/L	ug/L	
alpha-BHC				0.10					
beta-BHC				0.05					
delta-BHC				0.60					
gamma-BHC (Lindane)				0.09					
Heptachlor				0.05					
Aldrin				0.05					
Heptachlor Epoxide				0.05					
Endosulfan I				0.05					
Dieldrin				0.10					
4,4'-DDE				0.10					
Endrin				0.10					
Endosulfan II				0.10					
4,4'-DDD				0.10					
Endosulfan Sulfate				0.10					
4,4'-DDT				0.10					
Methoxychlor				0.50					
Endrin Ketone				0.10					
Endrin Aldehyde				0.10					
gamma-Chlordane				0.05					
alpha-Chlordane				80.0	U 0.05	U			
Toxaphene				5.0					
Aroclor-1242/1016				1.0	U 1.0	U			
Aroclor-1248				1.0	U 1.0	U			
Aroclor-1254				1.0	U 1.0	U			
Aroclor-1221				2.0	U 2.0	U			
Aroclor-1232				1.0	U 1.0	U			
Aroclor-1260				1.0	U 1.0	U			

Trns Blk – transfer blank Inf – influent to the WTP Eff – effluent

grab - grab sample
comp - composite sample
E - sample collected by Ecology
S - sample collected by Sonoco

U - Indicates compound was analyzed for but not detected at the given detection limit.

Appendix D - (cont'd) - Sonoco, June 1992.

Metals	Hardness =	320	Trns Blnk grab 6/2 1100 238080 ug/L		Inf-1 grab 6/2 1050 238081 ug/L	Inf-2 grab 6/2 1420 238082 ug/L	Inf-E E-comp 6/2-3 1000-1000 238083 ug/L	1	Eff-E E-comp 6/2-3 000-1000 238089 ug/L		Eff-1 grab 6/2 1120 238087 ug/L	Eff-2 grab 6/2 1445 238088 ug/L	
Aluminum			20	UN			5310	N I	1080 N				
Antimony			30	U			30	U	30 U				
Arsenic Pentavalent Trivalent			1.5	U			4.1	P	4.4 P	3			
Beryllium			1.0	U			1.0	U	1.0 U				
Cadmium			0.10	U			1.09		0.34 P				
Chromium Hexavalent Trivalent			5,0	U			6.3	Р	5.0 U				
Copper			3.0	U			35.8		7.9 P				
Lead			1.0	U			18.0		4.6 P				
Mercury			0.050	U			0.28	Р	0.084 P				
Nickel			10	U			11	P	11 P				
Selenium			2.0				2.0		5.0 P				
Silver			0.50				0.50		0.50 U				
Thallium			2.5				2.5		2.5 U				
Zinc			4.0	U			270		76.3				

Trns Blk - transfer blank

Inf - influent to the WTP

Eff - effluent

grab - grab sample
C - composite sample
E - sample collected by Ecology
S - sample collected by Sonoco

U - Indicates the analyte was not detected at or above the reported result.

UJ - Indicates the analyte was not detected at or above the reported estimated result.

N - Indicates the spike sample recovery is not within control limits.

P - Indicates the analyte was detected above the instrument detection limit.

Appendix E – VOA and BNA Scan Tentatively Identified Compounds (TICs) – Sonoco, June 1992.

TIC data are presented on the laboratory report sheets that follow. Locations corresponding to the Lab Log# (appearing as sample number on the laboratory report sheets) and data qualifiers are summarized on this page.

Location:	Inf-1	Inf-2	Eff-1	Eff-2	Inf-E	Eff-E
Type:	grab	grab	grab	grab	E-comp	E-comp
Date:	6/2	6/2	6/2	6/2	6/2-3	6/2-3
Time:	1050	1420	1120	1445	1000-1000	1000-1000
Lab Log#:	238081	238082	238087	238088	238083	238089

E - Ecology composite sample

Inf - influent

Eff - final effluent

J - indicates an estimated value for a detected analyte.

Analytical Chemists & Consultants

333 Ninth Ave. North Seattle, WA 98109-5187 (206) 621-6490 (206) 621-7523 (FAX)

ORGANIC ANALYSIS DATA SHEET - Tentatively Identified Compounds

Sample No: 238081

Lab ID: A848C

Matrix: Waters

CAS

2

3

4

5

Number

Data Release Authorized: Jan 17 Idea

Prepared 06/24/92 - MAC:B sdrd

QC Report No: A848 - WDOE Project No: Sonoco Date Received: 06/04/92

Scan **Estimated** Compound Name Fraction Number Concentration $(\mu g/L)$ UNKNOWN (bp m/e 45) VOA 414 6 J UNK Hydrocarbon (bp m/e 43) 1624 61 Alkylbenzene isomer (C10.H14) 1652 7 J Alkylbenzene isomer (C10.H14) 1692 6 J Alkylbenzene isomer (C10.H14) 1702 6 J Alkylbenzene isomer (C10.H14) 1750 8 J Alkylbenzene isomer (C10.H14) 1758 11 J

Analytical Chemists & Consultants

333 Ninth Ave. North Seattle, WA 98109-5187 (206) 621-6490 (206) 621-7523 (FAX)

ORGANIC ANALYSIS DATA SHEET - Tentatively Identified Compounds

Sample No: 238082

Lab ID: A848D Matrix: Waters

Data Release Authorized:

Prepared 06/24/92 - MAC:B sdrd

QC Report No: A84	18 - WDOE
Project No: So	noco
Date Received:	06/04/92

	CAS			Scan	Estimated
	Number	Compound Name	Fraction	Number	Concentration
					(μg/L)
1	-	UNKNOWN (bp m/e 45)	VOA	413	iiJ
2	-	UNK Hydrocarbon (bp m/e 43)	•	685	11 J
3	-	UNK Hydrocarbon (bp m/e 43)	•	1626	9.J
4	•	Alkylbenzene isomer (C]0.H14)	*	1654	6 J
5	-	Alkylbenzene isomer (C10.H14)	•	1703	7 J
6	-	UNK Hydrocarbon (bp m/e 43)	*	1754	11 J
7	-	Alkylbenzene isomer (C10.H14)	•	1759	10 J
8	-	Dihydro-methyl-indene isomer	•	1832	5 J
9					
10					
11					
12					
13					
14					
15					
16					
17					
18					
19					
20					
21					
22					
23					
24					
25					
26					
27					
28					
29					
30					

Analytical Chemists & Consultants

333 Ninth Ave. North Seattle, WA 98109-5187 (206) 621-6490 (206) 621-7523 (FAX)

ORGANIC ANALYSIS DATA SHEET - Tentatively Identified Compounds

Sample No: 238087

Lab ID: A848E Matrix: Waters

QC Report No: A848 - WDOE Project No: Sonoco Date Received: 06/04/92

CAS Number	Compound Name	Fraction	Scan Number	Estimated Concentration
				(μg/L)
49	No UNKNOWNs > 10% IS peak height	VOA	-	-
	,			
0				
1				
2				
3				
4				
5				
6				
7				
8				
9				
0				
1				
2				
3				
4				
5				
6				
7			No. 10 10 10 10 10 10 10 10 10 10 10 10 10	
8				
9				
ó				

Analytical Chemists & Consultants

333 Ninth Ave. North Seattle, WA 98109-5187 (206) 621-6490 (206) 621-7523 (FAX)

ORGANIC ANALYSIS DATA SHEET - Tentatively Identified Compounds

Sample No: 238088

Lab ID: A848F Matrix: Waters

Data Release Authorized: from M. Taken

Prepared 06/24/92 - MAC:B sdrd

QC Report No: A848 - WDOE Project No: Sonoco

CAS			Scan	Estimated
Number	Compound Name	Fraction	Number	Concentration
				(μg/L)
1	No UNKNOWNs > 10% IS peak height	VOA	-	•
2				
3				·
4				
5				
6				
7				
8				
9				
10				
11				
12				
13				
14				
15				
16				
17				
18				
19				
20				
21				
22				
23				
24				
25				
26				
27				
28				
29				
30				

Analytical Chemists & Consultants

333 Ninth Ave. North Seattle, WA 98109-5187 (206) 621-6490 (206) 621-7523 (FAX)

ORGANIC ANALYSIS DATA SHEET - Tentatively Identified Compounds

Sample No: 238083

Lab ID: A848-A Matrix: Waters

Data Release Authorized: Domis Att

Report prepared: 06/25/92 - MAC: A rpr

QC Report No: A848-WDOE Project No: Sonoco

	CAS			Scan	Estimated
	Number	Compound Name	Fraction	Number	Concentration
		•			(μg/L)
1	-	C6.H120 isomer coelute (bp m/e 45)	ABN	456	120 J
2	149-57-5	Hexanoic Acid, 2-Ethyl	н	701	55 J
3	-	Ethanol.(2-Butoxyethoxy) isomer	*	779	93 J
4	-	Benzaldehyde,Hydroxy-Methoxy isomer		1018	150 J
5	-	Unknown (bp m/e 43)		1027	53 J
6	-	Benzenebutanoic Acid, Dimethyl isomer coelute		1177	53 J
7	615-22-5	Benzothiazole,2-(Methylthio)	н	1224	200 J
8	134-96-3	Benzaldehyde,4-Hydroxy-3,5-Dimethoxy-	"	1271	120 J
9	-	Unknown (bp m/e 151)	•	1289	100 J
10	-	Unknown (bp m/e 55)	*	1645	130 J
11	-	Unknown Hydrocarbon (bp m/e 57)		1686	160 J
12	-	Unknown Hydrocarbon (bp m/e 57)	*	1754	330 J
13	-	Unknown Hydrocarbon (bp m/e 57)	•	1820	410 J
14	+	Unknown Hydrocarbon (bp m/e 57)	*	1883	470 J
15	-	Unknown Hydrocarbon (bp m/e 57)	*	1944	390 J
16	-	Unknown Hydrocarbon (bp m/e 57)	*	2003	270 J
17	-	Unknown Hydrocarbon (bp m/e 57)	*	2059	330 J
18	-	Unknown Hydrocarbon (bp m/e 57)	*	2114	240 J
19	-	Unknown Hydrocarbon (bp m/e 57)	*	2167	150 J
20	-	Unknown Hydrocarbon (bp m/e 57)	•	2218	150 J
21					
22					
23					
24					
25					
26					
27					
28					
29					
30	***************************************				

Analytical Chemists & Consultants

333 Ninth Ave. North Seattle, WA 98109-5187 (206) 621-6490 (206) 621-7523 (FAX)

ORGANIC ANALYSIS DATA SHEET - Tentatively Identified Compounds

Sample No: 238083

Lab ID: A848-A re Matrix: Waters

Data Release Authorized: Dans Latter Report prepared: 06/25/92 - MAC: A rpr QC Report No: A848-WDOE Project No: Sonoco

<u> </u>	CAS			Scan	Estimated
	Number	Compound Name	Fraction	Number	Concentration
					(μg/L)
1	-	Unknown (bp m/e 57)	ABN	412	98 J
2		C6.H12.0 coeluted isomer (bp m/e 45)	•	456	150 J
3	149-57-5	Hexanoic Acid, 2-Ethyl		708	65 J
4	55724-73-7	Butanoic Acid, 4-Butoxy	•	990	51 J
5	-	Benzaldehyde,Hydroxy-Methoxy isomer	*	1017	140 J
6	-	Unknown (bp m/e 43)	*	1025	54 J
7	615-22-5	Benzothiazole,2-(Methylthio)	*	1221	120 J
8	306-08-1	Benzeneacetic Acid, 4-Hydroxy-3-Methoxy-	H	1258	55 J
9	134-96-3	Benzaldehyde, 4-Hydroxy-3,5-Dimethoxy-	*	1269	79 J
10	_	Unknown (bp m/e 151)	#	1287	53 J
11		C20.H34.0 Isomer (bp m/e 55)	*	1601	57 J
12	-	Unknown Hydrocarbon (bp m/e 57)	*	1683	99 J
13	-	Unknown Hydrocarbon (bp m/e 57)	a	1752	210 J
14	-	Unknown Hydrocarbon (bp m/e 57)	*	1818	260 J
15	-	Unknown Hydrocarbon (bp m/e 57)	н	1881	290 J
16	-	Unknown Hydrocarbon (bp m/e 57)	•	1942	220 J
17	-	Unknown Hydrocarbon (bp m/e 57)	•	2000	160 J
18	-	Unknown Hydrocarbon (bp m/e 57)	•	2057	120 J
19	-	Unknown Hydrocarbon (bp m/e 57)		2111	87 J
20	-	Unknown Hydrocarbon (bp m/e 57)	•	2164	54 J
21					
22					
23					
24					
25					
26					
27					
28					
29					
30					

Analytical Chemists & Consultants

333 Ninth Ave. North Seattle, WA 98109-5187 (206) 621-6490 (206) 621-7523 (FAX)

ORGANIC ANALYSIS DATA SHEET - Tentatively Identified Compounds

Sample No: 238089

Lab ID: A848-B re Matrix: Waters QC Report No: A848-WDOE Project No: Sonoco

Data Release Authorized: Dan B. Latter Report prepared: 06/25/92 - MAC: A rpr

			*	·	*
	CAS			Scan	Estimated
	Number	Compound Name	Fraction	Number	
					(μg/L)
1	-	Unknown (bp m/e 59)	ABN	561	26 J
2	-	Dehydromevalonic Lactone/coelute	•	577	. 24 J
3	149-57-5	Hexanoic Acid, 2-Ethyl	•	707	17 J
4		C7.H5.N.S isomer	*	826	32 J
5	20324-33-8	2-Propanol,1-(2-(2-Methoxy-1-Methylethoxy	м	895	24 J
6	20324-33-8	2-Propanol,1-(2-(2-Methoxy-1-Methylethoxy		899	34 J
7	*	Unknown (bp m/e 59)	н	916	32 J
8	-	Unknown (bp m/e 73)	*	919	14 J
9	13343-981	Butane,1-(2-Methoxyethoxy)-	"	995	33 J
10	-	Benzaldehyde,Hydroxy Methoxy isomer	*	1018	16 J
11	-	Unknown (bp m/e 43)	,	1029	72 J
12	615-22-5	Benzothiazole,2-(Methylthio)	"	1226	460 J
13	-	Unknown Hydrocarbon/coelute (bp m/e 57)		1685	27 J
14	-	Unknown Hydrocarbon (bp m/e 57)	*	1753	41 J
15	-	Unknown Hydrocarbon (bp m/e 57)	•	1819	43 J
16	-	Unknown (bp m/e 133)	•	1831	82 J
17	-	Unknown (bp m/e 57)	*	1882	57 J
18	+	Unknown Hydrocarbon (bp m/e 57)	•	1943	44 J
19	-	Unknown Hydrocarbon (bp m/e 57)		2001	35 J
20		Unknown Hydrocarbon (bp m/e 57)		2058	27 J
21					
22					
23					
24					***************************************
25					
26					
27					
28					
29					
30					
			L		