93-623

PORT OF WILLAPA PRETREATMENT FACILITY CITY OF RAYMOND WASTEWATER TREATMENT PLANT SEPTEMBER AND DECEMBER 1992 CLASS II INSPECTION

by Steven Golding

Washington State Department of Ecology Environmental Investigations and Laboratory Services Toxics, Compliance and Ground Water Investigations Section Olympia, Washington 98504-7710

> Water Body No. WA-24-2020 Segment No. 10-24-03

TABLE OF CONTENTS

<u>P</u>	'age
ABSTRACT	iv
INTRODUCTION Port of Willapa Harbor City of Raymond	1
SETTING Port of Willapa Harbor Pretreatment Facility City of Raymond WTP	1
PART I: PORT OF WILLAPA HARBOR PRETREATMENT FACILITY	7
PROCEDURES Dry weather inspection Wet weather inspection	7
QUALITY ASSURANCE/QUALITY CONTROL (QA/QC) Dry Weather Data Wet Weather Data	9
RESULTS AND DISCUSSION Flow Measurements State Waste Discharge Permit Compliance/General Chemistry Dry Weather Inspection Wet Weather Inspection Discussion Split Sample Results Dry Weather Inspection Wet Weather Inspection Laboratory Procedures\Accreditation PTF Operation Priority Pollutant Scans Dry Weather Inspection Wet Weather Inspection Wet Weather Inspection Wet Weather Inspection	10 11 15 15 17 17 17 19 22 22 22
Sludge Priority Pollutant Organics	25

TABLE OF CONTENTS (Continued)

	Page
PART II: CITY OF RAYMOND WASTEWATER TREATMENT PLANT	29
PROCEDURES	29
Dry Weather and Wet Weather Inspections	
QUALITY ASSURANCE/QUALITY CONTROL (QA/QC)	29
RESULTS AND DISCUSSION	29
Flow Measurements	29
NPDES Permit Compliance/General Chemistry	31
Dry Weather Inspection	
Wet Weather Inspection	
Fecal Coliform Counts/Chlorination	
Split Sample Results	
Dry Weather Inspection	
Wet Weather Inspection	
Laboratory Accreditation	
WTP Operation, Loading, and Capacity	
Priority Pollutant Scans	
Dry Weather Inspection	
Wet Weather Inspection	
Bioassays	
Dry Weather Inspection	
Wet Weather Inspection	
Sludge	
6	
RECOMMENDATIONS AND CONCLUSIONS	45
Port of Willapa Harbor Pretreatment Facility	
Flow	
State Waste Discharge Permit Application/PTF Operation	
Split Samples	
Laboratory Procedures	
Priority Pollutant Scans	
Dry Weather Inspection	
Wet Weather Inspection	
Sludge	
——————— — сентиничения полительно выселения и при выправния в при выселения в при выселения в при выселения в	a n 🗆 🕶 🗲

TABLE OF CONTENTS (Continued)

ity of Raymond Wastewater Treatment Plant	d n 9
Flow Measurements	
NPDES Permit Compliance/General Chemistry	h • •
Dry Weather Inspection	
Wet Weather Inspection	
Fecal Coliform Counts/Chlorination	
Split Sample Results	
WTP Operation, Loading, and Capacity	
Priority Pollutant Scans	
Dry Weather Inspection	
Wet Weather Inspection	
Bioassays	
Dry Weather Inspection	
Wet Weather Inspection	
Sludge	
Oluce and the contract of the	

ABSTRACT

Class II Inspections were conducted at the City of Raymond (Raymond) wastewater treatment plant (WTP) in September (dry weather) and December 1992 (wet weather). Each inspection included the Port of Willapa Harbor (Port) pretreatment facility (PTF) which is a significant contributor to the WTP. For the PTF, effluent BOD₅ was 360 mg/L during the dry weather inspection, higher than the permitted daily average of 300 mg/L. TSS was 1640 mg/L, over five times the permitted daily average. Nitrification was not taking place and effluent ammonia concentrations were high. During the wet weather inspection, PTF discharge flow was 66,290 gpd, 23% above the 54,000 gpd permitted daily average. The 24-hour composite BOD₅ was 900 mg/L, three times the permitted daily average of 300 mg/L. Oil and grease concentrations were more than ten times the design limits but within permit limits. Chromium was found in the PTF sludge at a high concentration (4480 mg/Kg-dw). Chloroform and 1,1,1-trichloroethane were volatile organic compounds found in the PTF effluent.

The Raymond WTP performed well during the dry weather inspection. The effluent was well within NPDES permit limits for BOD₅, TSS, and pH. BOD₅ removal was 94%. Substantial nitrification was occurring. The WTP removed over 95% TSS during both dry weather and wet weather. During dry weather conditions, the Port PTF contributes up to one fifth of the flow of the Raymond WTP. During wet weather, the PTF was contributing only 5% of the Raymond WTP flow. The PTF effluent BOD₅ concentration was 900 mg/L, three times the permit limit. The PTF effluent was responsible for 41 mg/L BOD₅ of the Raymond influent BOD₅. The WTP did not provide effective removal of organics during the wet weather inspection. Only 30% of BOD₅ was removed; 85% removal is required by permit. The wet weather effluent BOD₅ concentration of 50 mg/L exceeded the permitted weekly average of 45 mg/L. The effluent BOD₅ load of 530 lb/day was approximately double the 270 lbs/day permitted weekly average. Nitrification did not take place during the wet weather inspection. Chromium was found in high concentrations in the WTP influent, but was undetected in the effluent. Due to discrepancies in laboratory results, acceleration of Raymond's lab accreditation process is recommended.

INTRODUCTION

Class II Inspections were conducted at the City of Raymond (Raymond) wastewater treatment plant (WTP) in September (dry weather) and December 1992 (wet weather). Each inspection included the Port of Willapa Harbor (Port) pretreatment facility (PTF) which is a significant contributor to the WTP. Conducting the inspection were Rebecca Inman and Steven Golding of the Department of Ecology Environmental Investigations and Laboratory Services Program (EILS). Joe Crafton (PTF Supervisor) and Steve Porter (Plant Operator) represented the Port. Ron Hebish (Plant Operator) and Mike Freeman (Backup Operator) represented Raymond. Gordon Sargent (Plant Manager) represented Protan. All assisted during the inspection.

The inspection had the following objectives:

Port of Willapa Harbor

- 1. Measure flows and determine influent concentrations to the PTF.
- 2. Determine effluent concentrations and efficiency of the PTF.
- 3 Evaluate the effect of the PTF discharge on the efficiency of the Raymond WTP during dry weather and wet weather conditions

City of Raymond

- 1. Verify NPDES permit self monitoring.
- 2. Assess wastewater treatment plant loading and capacity during dry weather and wet weather conditions.
- 3. Evaluate the effect of the PTF discharge on the efficiency of the Raymond WTP.
- 4. Assess wastewater toxicity with priority pollutant scans and effluent bioassays.

SETTING

Port of Willapa Harbor Pretreatment Facility

The Port operates an industrial pretreatment facility located south of the Willapa River along US Highway 101 near the City of Raymond (Figure 1). The facility was constructed in 1990-91 to reduce BOD and solids contributed to the Raymond sewer system from industries at the Port. The PTF consists of a dissolved air flotation unit (DAF) with polymer addition to remove solids, followed by an activated sludge sequencing batch reactor (SBR - Figure 2).

Figure 1 – Location Map – City of Raymond WTP, Port of Willapa Harbor PTF September, December 1992.

* See Table 1 for sampling description

Sludge is dried on a belt filter press and used by dairy farmers, mixing the sludge with manure and spreading it on pastures

The Port applied for a state waste discharge permit December 3, 1990, for industrial discharges to a POTW. The Port's application was in effect during the inspections and until the June 14, 1993, effective date of the permit.

At the time of the September Ecology inspection, the PTF treated a high BOD, high TSS waste from a shellfish processing operation (Protan) and an eel-skinning operation (Oh Yang). Oh Yang, which was a relatively small contributor of BOD₅ and flow, has since shut down operations and vacated the site (Porter, 1993). As reflected in the permit application, a maximum of 54,000 gallons/day of wastewater can be treated and discharged to the City's wastewater treatment plant.

Prior to construction of the Port PTF, Protan's wastewater was discharged directly to Raymond. Raymond treatment plant operators had reported that at times slug loads from the Port had impacted dissolved oxygen levels at the WTP. Solids from the Port influent had also reportedly created problems by settling out in the City sewer system. The PTF was constructed to reduce the impacts of Port industrial loadings to the Raymond WTP.

City of Raymond WTP

The Raymond WTP, located on the North side of the Willapa River (Figure 1), serves the City and the Port PTF. The WTP also receives leachate from the Rainbow Valley landfill by tank truck. The WTP was constructed in 1983-84 to replace an existing stabilization pond. An upgrade of the WTP to increase organic capacity was completed in July, 1990. Surface aerators were replaced with fine-bubble diffusers suspended from floating air laterals in each of the aerated lagoons (Figure 3).

All influent to the WTP is pumped and discharged intermittently through two force mains. The remainder of the headworks consists of a bar screen, a Parshall flume, and an influent splitter box. Wastewater flows through two parallel trains of three aerated lagoons each, then through polishing ponds (west and east lagoons) and a dechlorination basin. Raymond plans to remove sludge from the polishing ponds on an intermittent basis. No sludge has been removed since the lagoons were constructed. To meet permit requirements for dechlorination, there are plans to add SO₂ injection equipment to provide for dechlorination

After completion of the upgrade there remain concerns about actual hydraulic loading compared with the design capacity of the facility. Infiltration and inflow have been major problems for the operation of the WTP. The City has successfully eliminated a large portion of I & I into the collection system in accordance with a permit condition (Ragsdale and Bollinger, 1991). Ecology Order No. DE 93WQ-S328 issued February 4, 1993, includes an amended schedule for side sewer replacement.

Because I & I have historically resulted in large flows to the WTP during the wet season, the inspections were conducted during periods of both dry weather and wet weather. The dry weather study was conducted September 28-30, 1992. The 7-day and 30-day rainfalls prior to September 28 were 2.00 inches and 2.98 inches. The wet weather study was conducted December 14-16. The 7-day and 30-day rainfalls prior to December 14 were 2.87 inches and 9.17 inches. This compares with a historical average November and December rainfall for the Raymond NOAA station of 12.1 inches (1980-91)

The City of Raymond's discharge is regulated under NPDES permit No. WA-002332-9, modified in February 1993. The permit expires in December 1993. The provisional permit, with a term of 18 months, was issued in accordance with the Washington State Criteria for Sewage Works Design. Provisional permits are issued for new technologies for a 12 to 18 month period, during which the actual capacity and performance are established. Full-term permit limits and conditions are then established accordingly.

PART I

CLASS II INSPECTION PORT OF WILLAPA HARBOR PRETREATMENT FACILITY

PROCEDURES

Class II Inspection sampling included Ecology grab and composite samples. Ecology Isco compositors were set up to collect effluent samples during the dry weather inspection and influent and effluent samples during the wet weather inspection. Sampler configurations and locations are summarized in Figure 2 and Table 1. The influent sampler collected equal volumes of sample every 30 minutes for 24 hours. The effluent samplers collected a sample during each decant cycle of the PTF. The compositor bottles were iced to keep samples cooled.

Dry weather inspection

The Protan and Oh Yang effluents formed the PTF influent during the September dry weather inspection. Ecology collected two grab samples of Oh Yang effluent and one grab sample of Protan effluent. Effluent grabs from the SBR were collected from a tap in the discharge line. An Isco sampler was set up to be actuated by a float switch installed two feet from the bottom of the SBR surge tank. The sampler collected one gallon of sample for each decant cycle of the SBR for the 24 hour period from 1300, September 29 to 1300, September 30. During this time there were three decants cycles on September 29 at 1700, on the night of September 29, and on September 30 at 1200.

The PTF was not in operation from September 27, prior to the investigation, until 1300 September 29. A sludge pump belt had broken and the plant was unable to waste solids. A decant cycle was automatically actuated by a high float on September 29 at 0700 but an effluent sample was not collected because the sludge pump was out of operation and sludge had built up in the aerobic holding tank.

The Port collected a composite sample of SBR effluent, sampling continuously during the decant at 1200 on September 30. The sample was kept refrigerated. Protan collected a composite sample of equal volumes of sample every 30 minutes from 1530, September 29 to 0850, September 30. The compositor was iced during the inspection.

The Ecology composite effluent sample was split for analysis by the Ecology and PTF laboratories. Results from samples collected by Port personnel were compared with samples collected by Ecology. Samples collected, sampling times, and parameters analyzed are summarized in Appendix A. Ecology analytical methods and laboratories performing the analyses are summarized in Appendix B.

Table 1 - Sampling Station Descriptions - Port of Willapa Harbor PTF, September and December 1992.

Port of Willapa Harbor Pretreatment Facility

Ecology Influent Samples (InfW-1, InfW-2)

Grab samples of all influent to the pretreatment facility from manhole upstream of wetwell. Wastewater from the western-most Oh Yang facility bypasses the manhole, but the facility was not in operation. (September sampling only)

Ecology and Protan Samples (InfW-P1, InfW-P2, InfW-PE, InfW-PP)

Grab and composite samples of Protan wastewater from tap into outflow line outside of Protan building. (For December sampling when Protan was the only contributor, InfW-P represents all influent to the pretreatment facility.)

InfW-0

Grab samples of Oh Yang wastewater from mixing tank in front of Oh Yang building. (September sampling only. Oh Yang contributed no flow in December.)

Aeration (Aer)

Samples were collected from the SBR walkway with the sample container on a long pole to permit sampling in a well-mixed zone.

Ecology effluent composite samples (EffW-E)

Composite samples were collected from the decant tank. The intake was positioned two feet above the bottom. A float switch was positioned two feet above the decant tank bottom to trigger one sample with each decant.

Ecology effluent grab samples (EffW-G, EffW-1, EffW-2)

Grab samples were collected from a tap into the effluent line from the decant tank.

Port of Willapa Harbor effluent composite samples (EffW-W)

Continuous samples were collected from the effluent line. The sampler was operating throughout each decant cycle sampled.

Sludge

Sludge from the PTF belt filter press was collected as sludge was extruded from the press.

Wet weather inspection

The Protan effluent was the PTF influent during the December wet weather inspection. The Oh Yang plant was not operating. Effluent grabs from the Port SBR were collected from a tap in the discharge line. An Isco compositor was set up to be triggered by a float switch in the SBR effluent surge tank, as in the dry weather inspection. Three one gallon samples were composited from the float-switched Isco: from December 15 at 1200, December 15 at 2100, and December 16 at 0600.

The Port also collected a composite sample of SBR effluent, sampling continuously during the three decants that Ecology sampled. The sample was kept refrigerated.

Protan personnel indicated that the effluent stream is highly variable from process to process, making grab samples of the Protan effluent not representative of the whole effluent. To better characterize the effluent, an Isco compositor was set up by Ecology for the wet weather inspection, to sample Protan effluent every 30 minutes from a tap into the discharge line. The composite sampler collected sample from December 15 at 0800 to December 16 at 0800. Two grab samples of Protan effluent were also taken. Protan collected a composite sample during the inspection. The compositor bottle was iced during the inspection.

The Ecology composite effluent sample was split for analysis by the Ecology and PTF laboratories. Results from samples collected by Port personnel were compared with samples collected by Ecology. Samples collected, sampling times, and parameters analyzed during the wet weather inspection are summarized in Appendix C. Ecology analytical methods and laboratories performing the analyses are summarized in Appendix B.

QUALITY ASSURANCE/QUALITY CONTROL (QA/QC)

Ecology quality assurance procedures for sampling included special cleaning of the sampling equipment prior to the inspection to prevent sample contamination by the equipment (Appendix D). Chain-of-custody procedures were followed to assure the security of the samples (Huntamer and Hyre, 1991).

Dry Weather Data

Most Ecology laboratory data for samples collected in September dry weather conditions met Ecology QA/QC guidelines and are considered to be reliable. Those data that did not meet the guidelines are appropriately qualified on the data tables.

Priority pollutant organics surrogate recoveries and matrix spike data are reasonable and acceptable within quality control limits. Di-n-butylphthalate was detected in the method blank; results for this analyte were changed to qualifier U to indicate these analytes were not detected at a level above the contamination. The data generated for metals analysis of water samples can be used without qualification. For the sludge sample, chromium, lead, and

silver failed the serial dilution test and are qualified with an E - reported result is an estimate because of the presence of interference. Antimony is qualified with an N because of low recovery in the corresponding quality control standard.

Wet Weather Data

Most Ecology laboratory data for samples collected in December wet weather conditions met Ecology QA/QC guidelines and are considered to be reliable. Those data that did not meet the guidelines are appropriately qualified on the data tables.

Surrogate recoveries and matrix spike data for priority pollutant organics are reasonable and acceptable within quality control limits. Methylene chloride was detected in the method blank; results for this analyte were changed to qualifier U to indicate these analytes were not detected at a level above the contamination.

Metals holding times were met. Instrument calibration, procedural blanks, and spiked sample analyses were acceptable. Viscosity problems were noted in the analysis of the influent sample. In addition, due to a laboratory accident, the duplicate spike was lost for the graphite furnace analysis. Graphite furnace and mercury data are flagged with N or J depending on the severity of the interference or problem.

RESULTS AND DISCUSSION

Flow Measurements

Influent flow to the PTF was measured by an ultrasonic in line meter which did not lend itself to verification by Ecology. Effluent flow from Protan was also measured with an in line meter. Oh Yang did not have an effluent flow meter. Meter readings for water use were used to represent Oh Yang flow.

A flow comparison for the month of March 1993 was made by Port personnel between the PTF influent meter and Protan effluent meter. To arrive at Protan's flow contribution, both the belt filter press wash water (which was included in the PTF flow meter reading) and the Oh Yang contribution to the PTF are subtracted from the PTF monthly flow. This is then compared with flow measured by the Protan effluent meter for the month of March:

1,089,700	PTF influent meter total
- 431,000	belt filter press wash water
- 10,900	Oh Yang influent (water meter reading)
647,800	Contribution from Protan for March 1993
676,700	Protan meter reading for March 1993

Both determinations of Protan's flow agreed closely. The PTF influent meter reading for Protan's flow for the month was within 4% of that measured by Protan.

Before May 1, 1993, the influent meter read the sum of influent and belt filter press wash water. As of May 1, the influent meter no longer includes belt filter press wash water (Porter, 1993). Meter readings for PTF water use should be added to the influent meter readings to obtain a representation of effluent flow. The Port expects to install an effluent flow meter during the summer of 1993.

State Waste Discharge Permit Compliance/General Chemistry

Dry Weather Inspection

During the dry weather inspection Protan, the principle contributor to the PTF, was operating in limited production. Flow for the 24-hour period of the dry weather inspection was 24,300 gpd, less than half the permitted 54,000 gpd.

The Oh Yang effluent to the PTF was a high strength waste (approx. 1800 mg/L TSS; approx. 2200 mg/L COD). Flow, based on Oh Yang water meter readings, was 6,500 gpd, less than one third of Protan's flow.

The influent to the PTF varied considerably in strength during both dry weather and wet weather inspections. Dry weather grabs for influent TSS ranged from 440 mg/L to 4100 mg/L (est.). COD ranged from 1000 mg/L to 6260 mg/L (Table 2).

At the time of the inspections, no permit had been issued for the Port PTF, but a December 3, 1990, application for a permit was in effect. The limits in the application remained in effect until the permit became effective June 14, 1993. Both the application and the permit require that the effluent meet an average BOD₅ of 300 mg/L, 300 mg/L TSS, 200 mg/L NO₃-N, and 10 mg/L NH₃-N. A 5 mg/L limit for oil and grease was requested in the application. The oil and grease limit was set at 100 mg/L by the permit. The temperature limit was set at 0-70°F, as requested in the permit application (Table 3).

From the Ecology 24-hour effluent composite sample during dry weather, BOD₅ was 360 mg/L, in excess of the limit established in the permit. TSS was 1640 mg/L, over five times the limit. The NO₂ + NO₃ - N concentration was 1.19 mg/L, well below the limit. The NH₃-N concentration was 219 mg/L, over twenty times the limit. Oil and grease concentrations approximated permit application limits, and were well below the limits of the permit during the dry weather survey. Effluent temperature exceeded permit application and permit limits during the dry weather inspection.

Table 2 - General Chemistry Results - Port of Willapa Harbor, September 1992.

Parameter	Location: Type; Date: Time: Lab Log #:	infW-1 grab 9/29 1500 408230	InfW-2 grab 9/30 1210 408231	InfW-PE grab 9/29 1335 408233	InfW-O1 grab 9/29 1405 408235	InfW-O2 grab 9/30 1150 408236	InfW-PP comp 9/29-9/30 1530-0850 408237
GENERAL CHEMISTRY		******					
Conductivity (umhos/cm) pH (SU)		9640	5990	8940	9260	5700	11900
Alkalinity (mg/L CaCO3)		1520	329	840	540	1060	1110
Hardness (mg/L CaCO3)		2943	2542	2418	4520	3561	2829
TS (mg/L)				12070	9160	6190	9870
TNVS (mg/L)				6360	4420	3240	6720
TSS (mg/L)		4100J	440	36601	1650J	1900	1660
TNVSS (mg/L) % Solids	0.80.000.000.000.00			1320J	325J	850	660
% Volatile Solids							
BOD5 (mg/L)							
COD (mg/L)		6260	1000	7320	0000	4770	1980
TOC (water mg/L)	5050051666666666666666666	2220	754	7320 1 930	2600 1450	1770	3480
TOC (soil mg/L)				1900	1430	739	1290
NH3-N(mg/L)							
NO2+NO3-N(mg/L)		10500109009090918188100			340001800198686		
Total-P(mg/L)							
Oil and Grease (mg/L)		46	28J	117	56	93	
FIELD OBSERVATIONS				118201201201414844	nalestaten en en e	Name (Name of State o	5143154133156555555444
Temp(C)		23.5	15.0	23.6	15.3	15.3	6.7
pH(S.U.)		7,69	8.27	6.49	6.9	8.5	7.04
Conductivity(umhos/cm)				>1000	>1000	200000000000000000000000000000000000000	000000000000000000000000000000000000000

InfW – Ecology sample of PTF effluent (influent to the PTF).

InfW-O – Ecology sample of Oh Yang effluent (influent to the PTF).

InfW-PE – Ecology sample of Protan effluent
grab – grab sample
comp – composite sample
PP – Protan sample
E – Ecology sample

J - The analyte was positively identified. The associated numerical result is an estimate.

Table 2 - (cont'd) - Port of Willapa Harbor, September 1992.

Parameter II	Locatn: Type: Date: Time: Lab Log #:	AerW-1 grab 9/30 0715 408238	AerW-2 grab 9/30 1350 408239	EffW-1 grab 9/29 7A 408240	EffW-2 grab 9/30 1240 408241	EffW-E E-comp 9/29-9/30 1300-1300 408242	EffW-W W-comp 9/29-9/30 1100-1300 408243	EffW-G grab 9/30 1235 408245	EffW-GD grab 9/30 1235 408246	Sludge grab 9/30 0700 408244
GENERAL CHEMISTRY			***************************************	~					100210	100217
Conductivity (umhos/cm) pH (SU)				12400	10500	11800	10600	11500		
Alkalinity (mg/L CaCO3) Hardness (mg/L CaCO3)				766 2740	700 2226	1200 3155	674 2324	739 2473		7.2
TS (mg/L) TNVS (mg/L)		20190 11660	18370			8290	6170	6990	7100	
TSS (mg/L) TNVSS (mg/L) % Solids		11000	10690	67	119	6530 1640 800	5110 84 53	5690 93 47	5720 68J 11J	16.6
% Volatile Solids		501000000000000000000000000000000000000	000000000000000000000000000000000000000	000100100000000000000000000000000000000	20120225122525253			M 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		8.8
BOD5 (mg/L) COD (mg/L)						360		310		•.•
TOC (water mg/L)	9090666666666	Edador kopo kopanska posta	Matation accessors	856 547	259	1130	248	624		
TOC (soil mg/L)				0 47	235	590	246	354	361	44800
NH3-N(mg/L)						219	199	202	200	44600
NO2+NO3-N(mg/L) Total-P(mg/L)						1.19	1.15	2.60	2.53	0.0000000000000000000000000000000000000
Oil and Grease (mg/L)				1	6J	78.6	4.77	5.84	6.33	
FIELD OBSERVATIONS Temp(C) pH(S.U.) Conductivity(umhos/cm)		27.6 7.64		4	25.1 7.89	10.3 8.1	20,0 7,91			

grab – grab sample comp – composite sample E – Ecology sample

InfW-P- Protan effluent composite sample
AerW - Ecology aeration basin sample
EffW-1,2,E - Ecology sample of Port of Willapa effluent
EffW-W - Port sample of Port effluent
G - grab composite sample
GD - duplicate grab composite sample
Sludge - sludge from the Port belt filter press

J - The analyte was positively identified. The associated numerical result is an estimate.

Table 3 – State Waste Discharge Permit Limits and Inspection Results – Port of Willapa Harbor, 1992

Dry Weather - September 1992

	State Waste Discharge Limits* Inspection Results						
Parameter	Monthly Average	Daily Average**	Composite Grab Samples Samples				
Flow (gpd)		54,000	24,300				
BOD5 (mg/L)		300	360				
TSS (mg/L)		300	1640				
Oil and Grease (mg/L))	100	4; 6 (est.)				
NH3-N (mg/L)		10	219				
NO3-N (mg/L)		200	1,19***				
Temperature(C)	100 70 70 00 00 00 00 70 70 70 70 70 70 7	(70F)21.1	25.1				
pH		6.0 - 9.0	7.9				

Wet Weather - December 1992

	State Waste	Inspectio	n Results		
	•		Permit		
	Monthly	Daily	Application	Composite	Grab
Parameter	Average	Average**	Limits+	Samples	Samples
Flow (gpd)		54,000	54,000	66,	290
BOD5 (mg/L)		300	300	900	
TSS (mg/L)		300	300	•	
Oil and Grease (mg/L)		100	5	6	5 (est.), 60 (est.)
NH3-N (mg/L)		10	10	150	
NO3-N (mg/L)		200	200	0.16***	
Temperature (C)		(70F)21.1	(70F)21.1		22.2: 19.8
рН		6.0 - 9.0			7.4; 7.2

^{*} These permit limits are effective June 14 1993

⁺ The limits of the permit application were effective at the time of the inspections

^{**} maximum of allowable range

^{* * *} NO2 + NO3

Wet Weather Inspection

Protan was operating in full production during the wet weather inspection. Influent and effluent parameters are shown in Table 4. Flow during the inspection was 66,290 gpd, 23% above the 54,000 gpd established in the permit (Table 3). From the Ecology 24-hour effluent composite sample, BOD₅ was 900 mg/L, three times the permitted daily average. The Manchester laboratory was unable to determine effluent TSS because the effluent sample was viscous, possibly the result of flocculent addition by the Port. The concentration of NO₂ + NO₃-N was 0.16 mg/L, less than one hundredth of the permitted NO₃-N concentration (200 mg/L). NH₃-N was 150 mg/L, 15 times the permitted daily average. Oil and grease concentrations (65 mg/L est., 60 mg/L est.) were considerably greater than the limits of the permit application but were within the limits of the permit issued June 14, 1993. Effluent temperature approximated permit limits during the wet weather inspection.

Discussion

The data indicate that the PTF is capable of removing suspended solids at removal efficiencies of 95% or better (approximately 2000 mg/L influent, 100 mg/L effluent). The PTF showed a capability of removing 88% BOD₅ (for wet weather 24-hour influent and effluent data), although effluent BOD₅ concentrations (900 mg/L) exceeded permit limits by a factor of three. It is likely that much of the removal of BOD₅ accompanied solids removal.

The plant relies on the addition of polymers for solids removal. Because this process dominates the removal mechanisms of the PTF, the degree of effectiveness of the plant's biological removal mechanisms can be obscured. Beyond the BOD₅ that can be removed with the settling of solids by flocculent addition, much of the BOD₅ appears to be soluble and depends for any further removal on biological treatment within the PTF. The plant is designed for biological treatment including nitrification.

An estimate of the percentage of BOD₅ removal other than by solids removal can be made by comparing influent with effluent total volatile dissolved solids (TVDS). Wet weather suspended solids data are not available because it was determined that the samples could not be analyzed. Comparing Protan dry weather influent TVDS with effluent TVDS results in a PTF removal efficiency of 55% to 71% for dissolved organics.

The Port PTF consists of a single sequential batch reactor (SBR). During the decant cycle, effluent is draining from one end of the aeration basin as influent continues to enter the other end. Port personnel assert that there is little interchange between influent and effluent, but the configuration may at times be a limiting factor to effluent quality.

PTF loadings have at times been intermittent because of interruptions in raw material supplies to Protan. There have been periods with little or no organic loading to the PTF. A viable culture of microorganisms should be maintained in order to provide biological

16

Table 4 - General Chemistry Results - Port of Willapa Harbor, December 1992.

Parameter	Location: Type: Date: Time: Lab Log #:	InfW-P1 grab 12/15 1320 518230	InfW-P2 grab 12/15 1550 518231	InfW-PE comp 12/15-16 0800-0800 518232	InfW-PP comp 12/15-16 0930-1100 518233	EffW-1 grab 12/15 1220 518249	EffW-2 grab 12/16 0610 518250	EffW-E comp 12/15-16 0800-0800 518251	EffW-ED comp 12/15-16 0800-0800 518252	EffW-W comp 12/15-16 0800-0800 518253	Sludge grab 12/15 1300 518254
GENERAL CHEMISTRY											
Conductivity (umhos/em) pH (SU)		42700	7200	19500	25300	14900	16700	16000		16400	7.0
Alkalinity (mg/L CaCO3)		606	999	1320	1820	875	899	901		959	£,U
Hardness (mg/L CaCO3)	914 400 40 44 40 40 40 40 41 41 41 41 41 41 41 41 41 41 41 41 41	12300	1490	6970	9370	4220	5190		800008000800000000	4980	
TS (mg/L)		32000	15700	20700	25400			10900	10900	11400	
TNVS (mg/L)		27300	3630	12100	16500	a saa aa a		8620	8740	9090	
TSS (mg/L) TNVSS (mg/L)		720 370	X X	X X		X	375	X		X	
% Solids		9.0	·	•				x		х	15,2
% Volatile Solids				::n:::::::::::::::::::::::::::::::::::	988168888888888888	#19853#5555555555		8018081000010000108118	5581100001000010000000		66.5 dry
BOD5 (mg/L)				7370	7990			900		1110	00.0 417
COD (mg/L)		4700	26000	12000	12000	2200	3000	3500		2500	
TOC (water mg/L)		866	4830	2530	2720	476	619	702	658	654	
TOC (sail mg/L)											32 dry
NH3-N(mg/L)				64	67			150	150	0.0000000000000000000000000000000000000	
NO2+NO3-N(mg/L) Total-P(mg/L)				0.67 1,8	0.41 26		-	0.16		0.14	
Oil and Grease (mg/L)		34J	172J	1.8	20	65J	60J	13	14	22	
FIELD OBSERVATIONS		940 2000-2000-200	1720 010100101010101000		100001010011000111000110001		000	5000000000000000000000	500000000000000000000000000000000000000	\$\$00\$ 0\$ 000000000000000	001064400000000000000000000000000000000
Temp (C)		12.0	10.2			22,2	19.8			98.000.000.000	
Temp-cooled (C)				1.9	3.6			3.7		9,1	
рН (Ś.U.)		9.0	7.8	8,5	8.8	7.4	7.2	7.8		7.7	d de la companya de l
Conductivity (umhos/cm))	>20000	9640	17190	>20000	13600	14850	14730		14940	
Chlorine (total - mg/L)											

InfW-P - Influent from Protan
EffW - Port of Willapa effluent
grab - grab sample
comp - composite sample

E - Ecology sample
PP - Protan sample
D - duplicate sample
Sludge - sludge from the Port belt filter press

X - lab unable to complete analyses

treatment when loading occurs. Protan reports that production is expected to be almost continuous in the future (Sargent, 1992).

Effluent NH_3 -N concentrations were high (219 mg/L; 150 mg/L) while $NO_2 + NO_3$ - N concentrations were low (1.19 mg/L; 0.16 mg/L) during both inspections. This indicates that nitrification was not occurring in the PTF.

High BOD₅ concentrations in the Port effluent and the resulting high BOD₅/TKN (total Kjeldahl nitrogen) ratio suggest the nitrifier population level is generally low (WPCF, 1983). The SBR size and sludge wasting rates suggest a short sludge retention time (SRT - data to calculate the SRT were not collected during the inspection). A short SRT would prevent the buildup of an adequate population of nitrifying bacteria. Metals concentrations, alkalinity, and pH as measured in the PTF effluent should not be limiting to nitrification (EPA, 1975).

Split Sample Results

Dry Weather Inspection

Ecology and the Port split samples from the Port effluent compositor (Table 5). The temperature of the Port composite sample was 20.0°C, compared with 4°C required for sample preservation. Because the Port's compositor had only sampled one decant during the dry weather inspection and the SBR's decant cycle had just ended when samples were split, the sample had little time to cool in the Port's sample refrigerator.

The Port effluent TSS concentration (150 mg/L) was almost twice the Ecology analysis (84 mg/L). Attention should be paid to TSS testing during the Port's laboratory performance evaluation. The Port COD analysis yielded 51 mg/L, one fifth of the Ecology analysis (248 mg/L). The Port performs its own COD analysis. It was found after the dry weather inspection that the Port COD analyzer had been malfunctioning. Samples were also split from the Ecology effluent compositor but written records containing the results were not kept by the Port.

Protan's composite effluent sample was also split. Protan TSS result (1162 mg/L) was considerably lower than Ecology's analysis of the same sample (1660 mg/L). Protan and Ecology analyses of BOD₅ were close, within 7%.

Protan does not ordinarily control temperature on effluent samples. In September and December they iced their samples only at the recommendation of Ecology personnel. It is recommended that Protan ice all composite samples being collected.

Wet Weather Inspection

Ecology and the Port split samples from the Port effluent compositor (Table 5). Ecology analyses showed the Port effluent COD sample (2500 mg/L) 29% lower than the Ecology

Table 5 - Split Sample Results Comparison - Port of Willapa Harbor, 1992.

Dry Weather - September 1992

<u>Parameter</u> <u>Analy</u>	Location: Type: Date: Time: Lab Log #: Sampled by:		InfW-PP comp 9/29-9/30 1530-0850 408237	EffW-E E-comp 9/29-9/30 1300-1300 408242 Ecology	EffW-W W-comp 9/30-9/30 1100-0100 408243 Port	EffW-G grab-comp 9/30 1235 408245 Ecology
	ology Port Protan		1660 1162	1640	84 150	93
COD (mg/L)	ology Port		3480	1130	248 51	624
	ology Protan		1980 1840	360		310
Wet	Weather – December 19	92				
	Location: Type: Date: Time: Lab Log #: Sampled by:	InfW-PE comp 12/15-16 0800-0800 518233 Ecology	InfW-PP comp 12/15-16 0930-1100 518233 Protan	EffW–E E–comp 12/15–16 0800–0800 518251 Ecology	EffW-W W-comp 12/15-16 0800-0800 518253 Port	
Parameter Analys	sis by:					
TSS (mg/L)	ology Port	×	x	x	x	
F	rotan	2900	7500		800	
COD (mg/L) Ec	ology Port	12000	12000	3500	2500 3130	
	ology Protan	7370 4000	7990 5700			
EffW – effluer P – influer	nt to the Willapa Harbor PTF nt from the Willapa Harbor PTF nt to the PTF from Protan able to complete analyses	W -	Ecology sample Port of Willapa Harb Protan sample of inf	oor sample fluent from Protan	G – grab sam	ple

18

effluent COD sample (3500 mg/L). The Port effluent BOD₅ sample (1100 mg/L) was 22% higher than the Ecology effluent BOD₅ sample. The Port composite sampler employs a peristaltic pump which delivers a continuous sample throughout each decant. The low velocity of fluid in the intake hose can allow solids to settle out of the sample instead of being collected. It is recommended that a composite sampler with higher uptake velocities be used.

The Port COD results (3130 mg/L) were within 25% of Ecology's analysis (2500 mg/L). Wet weather TSS results could not be compared because the Manchester Lab was unable to perform TSS analyses. Samples were also split from the Ecology effluent compositor but written records of the results were not kept by the Port.

Splits were also made of the Ecology and Protan composite samples of Protan effluent. The Ecology analyses found the BOD₅ results for the sample collected by Protan to be within 8% of the sample collected by Ecology sample. Protan analyses were consistently lower than Ecology analyses, however. The Protan analysis of the Ecology effluent was 46% lower and the Protan analysis of the Protan effluent was 29% lower than Ecology's analysis. It is recommended that Protan review its sampling, preservation, and shipping procedures, as well as any other possible causes of low laboratory results.

Laboratory Procedures\Accreditation

Laboratory record keeping and calculations were in need of improvement. Difficulties were encountered in obtaining records. Care is needed in assuring the operating condition of laboratory instruments and in delineating units of analysis.

The Port's laboratory did not analyze for all permit parameters. The lab was not accredited by the Department of Ecology. The lab must be accredited or an accredited lab must be used to analyze permit limited parameters by July 1, 1994.

PTF Operation

The flow rate of influent to the PTF varied widely within the course of one day. This is evident in the circular flow chart for the wet weather inspection, a time of high production by Protan (Figure 4). Large variations in flow are often experienced by the PTF.

Plant performance varied considerably throughout the day during the dry weather inspection, with effluent TSS varying from 67 mg/L and 119 mg/L for two daytime grabs to 1640 mg/L for a 24-hour composite that included a nighttime decant. Effluent COD's ranged from 259 mg/L for the grabs to 1130 mg/L for the composite sample. The high TSS concentration in the composite sample and BOD₅ (360 mg/L) higher than the effluent limit, indicate that the nighttime decant was a slug of poorly treated wastewater.

Figure 4 - Circular Flow Chart, Wet weather - Port of Willapa Harbor, December 1992.

It has been reported that the PTF operates less efficiently at night when it is left unattended (Crafton, 1992; Hebish, 1992). Protan operates around the clock, and large slugs of wastewater from Protan to the Port PTF have been reported at night (Crafton, 1992). Also, flocculent addition and SBR operation are not adjusted to changing conditions when the plant is unattended.

The Port reports that since the inspection Protan has been regulating their discharge for more steady releases and that the two PTF operators are available to work an extended work schedule to operate the plant from 5 AM to 11:30 PM during periods when solids are high and belt filter press operation is required to waste solids (Porter, 1993)

Although large variations in influent flow and strength contribute to difficulties in operation of the PTF, a means is available for leveling the influent load. Protan has 40,000 gallons of wastewater storage capacity and is therefore able to reduce variations in flow. Also, Protan should ensure that it does not discharge at a rate to cause the PTF to exceed the 54,000 gpd permitted. Cooperative efforts to control the discharge of wastewater from Protan to the Port PTF are important in maintaining efficient PTF performance.

During the wet weather inspection, with Protan in full production, influent BOD₅ was much higher (7370 mg/L) than the Protan influent during the dry weather inspection (1980 mg/L BOD₅). Even so, the PTF reduced TSS at removal efficiencies of 95% or better during both the dry weather and wet weather inspections, and BOD₅ at efficiencies of 88% or better during the wet weather inspection. (Overall BOD₅ removal efficiency was only 82% during the dry weather inspection, but this was when a slug load of high-BOD effluent was released from the PTF at night.)

However, even with these removal efficiencies, the 24-hour composite BOD₅ was 900 mg/L, three times the permitted daily average of 300 mg/L. For the conditions of the wet weather inspection, a BOD₅ removal efficiency of approximately 97% would have been needed in order to meet the effluent limit of 300 mg/L BOD₅. It is uncertain from the limited data of the wet and dry weather inspections whether this degree of removal can be obtained. It is clear that the PTF would need to be operated within its design hydraulic loading. The PTF was hydraulically overloaded during the wet weather inspection, discharging a flow of 66,290 gpd, 23% above the 54,000 gpd design flow and permitted discharge. Optimal use of flocculent and attention to biological treatment processes of the PTF could also be expected to bring about improved removal efficiencies. If these measures do not result in effluent BOD₅ concentrations within the 300 mg/L limit, reduced influent loadings or plant expansion would be necessary to meet existing permit limits.

Priority Pollutant Scans

Dry Weather Inspection

A number of priority pollutants were detected in the samples of PTF influent and effluent collected (Table 6). Methylene chloride and acetone were found in small quantities in the influent and acetone was found in the effluent. As both compounds are used for laboratory cleaning of sampling apparatus, their concentration is not likely representative.

Of the seven other VOA compounds found in the PTF influent or effluent, all were found at low concentrations with the exception of 1,1,1 - Trichloroethane. It was found in concentrations of 15 μ g/L and 2.5 μ g/L in two influent grab samples and in concentrations of 790 μ g/L and 1200 μ g/L in two effluent grabs. These concentrations are well below EPA water quality criteria (Table 6). Although the PTF provides pretreatment, discharging to a municipal sewage treatment plant, effluent concentrations from the PTF were compared with EPA water quality criteria as an indicator of potential impact.

Five BNA compounds were found in the PTF effluent. Phenol, 2-nitrophenol, and 4-Nitrophenol were found in concentrations well below EPA water quality criteria. 4-methylphenol and benzoic acid were found in concentrations well below all LC₅₀'s for a number of fish species (Verschueren, 1983). No pesticide/PCB compounds were found in the PTF effluent.

Four metals were detected in the PTF effluent. Arsenic and zinc were found in concentrations below EPA water quality criteria. Chromium was found in concentrations lower than fresh water criteria for the trivalent form but higher than criteria for the hexavalent form. Copper was found in concentrations lower than fresh water criteria but higher than acute marine criteria.

Complete priority pollutant scan results for the Port PTF, dry weather inspection, with detection limits, are included in Appendix E.

Tentatively Identified Compounds (TICs) in the PTF influent during the dry weather inspection included methanethiol, thiobismethane, and several unknowns, at or below concentrations of 1027 μ g/L (est.) Thiobismethane, dimethyldisulfide, and a number of unknowns were tentatively identified in the PTF effluent in concentrations up to 1190 μ g/L (est.) Carboxylic acid, butanoic acid, benzenepropanoic acid, sterol isomer, and a number of unknowns were tentatively identified in the composite effluent sample. TICs are summarized in Appendix F

Wet Weather Inspection

Priority pollutant organics scans yielded similar results for the PTF during the wet weather inspection as compared with the dry weather inspection. Somewhat fewer VOAs and BNAs

Table 6 - Comparison of Detected Compounds and Metals to Toxicity Criteria - Port of Willapa Harbor, September 1992.

	Location: Type:		W−2 EffW−1 grab grab	EffW-2 grab	Sludge grab		EPA Water Qu	ality Criteria Summa	ur v
	Date: Time: Lab Log#:	9/29 1500 1	9/30 9/29 1210 1700 3231 408240	9/30 1240 408241	9/30 9/30 0700 408244	Acute Fresh	Chronic Fresh	Acute Marine	Chronic Marine
(Group)1	VOA Compounds	ug/L ı	ug/L ug/L		ug/Kg-dw	(ug/L)	(ug/L)	(ug/L)	(ug/L)
a	Methylene Chloride Acetone	2.2 33	2.0 U 2.0 U 12 UJ 17 UJ	20 U 57	15 910	11,000	*(a)	12,000	*(a) 6,400 *(a)
а	1,1-Dichloroethane	1.0 U	1.0 U 0.8 J 36 8.5	10 U 8.1 J	6.4 U 55	28,900			
	1,2-Dichloroethane	1.0 U	1.0 U 1.5	10 U	6.4 U	118,000	. ,		*(a) 6,400 *(a) *
С	2-Butanone (MEK) 1,1,1+Trichloroethane	38 15	5.0 U 8.6 2.5 790	50 U 1200	160 6.4 U	18,000	*160	31,200	X# CMartaeraceareareareareareareareareareareareareare
а	Bromodichloromethane	2.3	3.9 1.0 U	10 U	6.4 U	11,000	*(a)	12,000	*(a) 6,400 *(a)
	Toluene	40	10 U 6.5	10 U	6.4 U	17,500		6,300	* 5,000 *
	Location:		EffW-G		Sludge		EPA Water Qu	ality Criteria Summa	ıry
	Type: Date:		grab 9/30		grab 9/30	Acute	Chronic	Acute	Chronic
	Time: Lab Log#:		1235 408245		0700 408244	Fresh	Fresh	Marine	Marine
(Group)¹	BNA Compounds		408245 ug/L		ug/Kg–dw	(ug/L)	(ug/L)	(ug/L)	(ug/L)
(Group).	Phenol		79		350 U	10,200	* 2,560	* 5.800	: ₩:3::::::::::::::::::::::::::::::::::
	4-Methylphenol Isophorone		56 2 U		180 U	117.000			
1	2-Nitrophenol		5.6 J		880 U	117,000 230	*(l) 150	12,900 *(l) 4,850	000000000000000000000000000000000000000
1	Benzoic Acid 4-Nitrophenol		130 J 5,7 J		1800 UJ 880 U	230			***
n	Phenanthrene		2 U		90 J	230	*(l) 150	*(l) 4,850 300	*(l) *(n)
n n	Fluoranthene Pyrene		2 U 2 U		71 J 97 J	3,980	*	40 300	* 16 * *(n)
1	Bis(2-Ethylhexyl)Phthalate		2 U		2700			*(i) 2.944	*(i) 3.4 *(i)
ı	Di-n-Octyl Phthalate		2 U		76 J	940	*(i) 3	*(i) 2.944	*(i) 3.4 *(i)
(Group) ¹	Pesticide/PCB Compounds		ug/L		ug/Kg-dw	(ug/L)	(ug/L)	(ug/L)	(ug/L)
			· ·			(0)	(-3)	(~3)	(dg/L)

InfW-1,2, - Ecology grab samples of Port influent
EffW-1,2,G - Ecology grab sample of Port effluent
Sludge - Sludge from the Port belt filter press

- detected analyte

a Total Halomethanes
c Total Trichloroethanes
l Total Nitrophenols
n Total Polynuclear Aromatic Hydrocarbons
l Total Phthalate Esters
u DDT plus metabolites

Table 6 - (cont'd) - Port of Willapa Harbor, September 1992.

Location: Type:	Location: EffW–1 Sludge Type: grab grab				EPA Water Quality Criteria Summary				
Date: Time: Lab Log#:	9/29 1700 408240	9/30 0700 408244	Acute Fresh	Chronic Fresh	Acute Marine	Chronic Marine			
Metals	ug/L	mg/Kg-dr	(ug/L)	(ug/L)	(ug/L)	(ug/L)			
Antimony Arsenic Pentavalent Trivalent	90 U 9.3 N	35 P 23 P	9,000 * 850 * 360	1,600 * 48 * 190	2,319 * 69	13 * 36			
Cadmium	2.0 U	1.9 P	31.8 +	4.9 +	43	9.3			
Chromium Hexavalent Trivalent Copper	22	4480 99.8 E	16 7,942 + 102 +	11 947 + 58 +	1,100 10,300 * 2.9	50			
Lead Mercury	1.0 U	5.57 E	867 +	33.8 +	140	5.6			
Nickel Selenium Zinc	0.050 UN 10 U 2 UJ 11 P	0.039 PN 12 P 1.4 173	2.4 6.820 + 260 564 +	0.012 758 + 35 511 +	2.1 75 410 95	0.025 8.3 54 86			

INOTE: SOME INDIVIDUAL COMPOUND CRITERIA OR LOELS MAY NOT AGREE WITH GROUP CRITERIA OR LOELS. REFER TO APPROPRIATE EPA DOCUMENT ON AMBIENT WATER QUALITY CRITERIA FOR FULL DISCUSSION. U The analyte was not detected at or above the reported result is an estimate. UJ The analyte was not detected at or above the reported estimated result. N The spike sample recovery is not within control limits. P The analyte was detected above the instrument detection limit but below the established minimum quantitation limit. E Reported result is an estimate because of the presence of interference. Insufficient data to develop criteria. Value presented is the LOEL – Lowest Observed Effect Level. + Hardness dependent criteria (640 md/L user).

Hardness dependent criteria (640 mg/L used).

- detected analyte

were detected during the wet weather inspection and some concentrations were lower (Table 7). The VOA found in the highest concentration, 4-methylphenol increased in effluent concentrations from $66 \mu g/L$ during the dry weather inspection to $300 \mu g/L$ during the wet weather inspection, still well below the LC_{50} 's for all species of fish reported by Verschueren (1983).

While no pesticide/PCB compounds were found during the dry weather inspection, four were found in the effluent during the wet weather inspection. Alpha-BHC and beta-BHC were found in concentrations below EPA water quality criteria. 4,4'-DDE and Endrin were found in concentrations higher than EPA chronic freshwater and chronic marine criteria.

More priority pollutant metals were found during the wet weather inspection, and in higher concentrations than during the dry weather inspection. Arsenic, cadmium, copper, mercury, silver, and zinc were above at least some of the EPA water quality criteria. Lead and selenium were found in concentrations below all criteria. Chromium was not found during the wet weather inspection, suggesting that Oh Yang was the source of the chromium. Oh Yang was not operating during the wet-weather inspection and has since shut down operations and vacated the site.

The appearance of pesticides and increased metals in the PTF effluent in December may be due to Protan's having switched sources of shell between the two inspections, from shrimp during the dry weather inspection in September, to crab during the wet weather inspection.

Complete priority pollutant scan results for the Port PTF, wet weather inspection, with detection limits, are included in Appendix G.

Several TICs, in concentrations below 200 μ g/L, were found in the two volatile organics effluent grab samples. Forms of butanoic acid, pentanoic acid, decanoic acid, and unknown compounds were found in the semivolatile fraction at concentrations of up to 40,000 μ g/L (est.) in the influent to the PTF. Forms of butanoic acid, pentanoic acid, and propanoic acid were found in the PTF effluent in concentrations up to 2500 μ g/L (est.). TICs found are summarized in Appendix H.

Sludge

Priority Pollutant Organics

Priority pollutant scans of the sludge samples were performed for the dry weather inspection only (Table 6). Effluent pesticides/PCBs and metals data indicate higher concentrations during the wet weather inspection than during the dry weather inspection, suggesting that the sludge produced during the wet weather inspection may have had higher concentrations of these than from the sludge samples collected.

		Location; Type:	EffW-1 grab			•	2	4	1			
				EffW-2 grab	EffR-1 grab	EffR-2 grab		EPA Water Quality Criteria Summary				
(Group		Date: Time: Lab Log#:	12/15 1220 518249	12/16 0610 518250	12/15 0920 518242	12/15 1415 518243		Acute Fresh	Chronic Fresh	Acute Marine	Chronic Marine	
			ug/L	ug/L	ug/L	ug/L		(ug/L)	(ug/L)	(ug/L)	(ug/L)	
	Acetone Chloroform		10 U 3 J	61 4 J	9 J 10 U	26 10 U		28,900 *	1,240 *	12.000 *(a)	6,400 *(a)	
	2-Butanone (MEK) Toluene		10 U 1 J	4 N 1 J	10 U	10 l 10 l		17,500 *		6,300 *	5,000 *	
		Location:									÷	
			EffW-E comp				EF	EPA Water Quality Criteria Summary				
26	Date: Time: Lab Log#:		12/15–16 0800–0800 518251		12/15-16 0800-0800 518244			Acute Fresh	Chronic Fresh	Acute Marine	Chronic Marine	
	BNA Compounds			ug/L	ug/L			(ug/L)	(ug/L)	(ug/L)	(ug/L)	
	Phenoi 4-Methylphenol			22 300	1 U 1 U			10,200 *	2,560 *	5,800 *		
	Benzoic Acid			110 J	25 U							
	Pesticide/PCB Com	pounds		ug/L	ug/L			(ug/L)	.(ug/L)	(ug/L)	(ug/L)	
	alpha-BHC beta-BHC			0.037 N 0.16 D	0.006 U			100 *(q) 100 *(q)		0,34 *(q) 0,34 *(q)		
	gamma-BHC (Linda 4,4'-DDE	ine)		0.004 U 0.086 D	0.004 U			2.0 1,050 *	0.08 0.001 (u)	0.16 14 *	0.001 (u)	
	Endrin Metals	Hardness = 335		0.007 J	0.01 U			0.18 (t)	0.0023 (t)	0.037 (t)	0.0023 (t)	
	Arsenic	riaiuness = 350		ug/L	ug/L 5.8 J		1000/4000000000000000000000000000000000	1000 to construction (1880 to 1880 to				
	Pentavalent Trivalent			102 14	1 0.0 0			850 * 360	48 *	2,319 *	13 *	
	Cadmium Copper			6.45 140	0.13 P			15,3 +	190 2.9 +	69 43	36 9.3	
	Lead Mercury		20 2 7 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1.4 J	8.6 J		200000000000000000000000000000000000000	55 + 380 +	33 + 14.8 +	2.9 140	5.6	
	Selenium Silver			0.16 J 51 N	Section 1000000000000000000000000000000000000			2.4 260	0,012 35	2.1 410	0.025 54	
	Zinc			2.4 160	0,50 U 32			32.5 + 326 +	0.12 295 +	2.3 95	86	
	INOTE: COME IND	NUDIAL COMPO	IND ODITEDI					•				

INOTE: SOME INDIVIDUAL COMPOUND CRITERIA OR LOELS MAY NOT AGREE WITH GROUP CRITERIA OR LOELS. REFER TO APPROPRIATE EPA DOCUMENT ON AMBIENT WATER QUALITY CRITERIA FOR FULL DISCUSSION.

- detected analyte

The analyte was not detected at or above the reported result.

The analyte was positively identified. The associated numerical result is an estimate.

The spike sample recovery is not within control limits.

The analyte was detected above the instrument detection limit but below the established minimum quantitation limit, insufficient data to develop criteria. Value presented is the LOEL – Lowest Observed Effect Level.

The result is obtained from a dilution of the original extract.

⁺ Hardness dependent criteria (335 mg/L used).

a Total Halomethanes q Total BHCs

[†] Endrin u DDT plus metabolites

Besides methylene chloride and acetone, compounds used in cleaning sampling apparatus, eight priority pollutant organic compounds were detected. Bis(2-ethylhexyl)phthalate (2700 μ g/Kg-dw) was found in the sludge in the highest concentration. It was not found in the PTF effluent. The other priority pollutant organic compounds found in the sludge were found in concentrations of less than 100 μ g/Kg-dw.

A single pesticide/PCB compound was found in the sludge: 4,4'-DDE (16 μ g/Kg).

TICs in the sludge were methanethiol, thiobismethane, dimethyldisulfide, at concentrations up to 2200 μ g/Kg-dw (est.). Several unknowns were detected at lower concentrations. TICs are summarized in Appendix F.

Metals

Ten priority pollutant metals were detected in the sludge sample. Chromium was found in the highest concentration (4480 mg/Kg-dw). Besides zinc (173 mg/Kg-dw) and copper (99.8 mg/Kg-dw), the other metals were detected at concentrations of 35 mg/Kg-dw or less. Although the sludge produced by the PTF is not sewage sludge, as a point of comparison, the chromium concentration from the Port PTF (4480 mg/Kg-dw) was 49% higher than the ceiling concentration for land application from Standards for the Use or Disposal of Sewage Sludge; Final Rules (EPA, 1993).

Complete priority pollutant scan results for Port PTF sludge are included in Appendix E.

Conclusions and recommendations for this facility are addressed at the end of the next section

PART II

CLASS II INSPECTION CITY OF RAYMOND WASTEWATER TREATMENT PLANT

PROCEDURES

Dry Weather and Wet Weather Inspections

Sampling procedures were the same for the Raymond WTP dry weather and wet weather inspections. Class II Inspection sampling included Ecology grab and composite samples. An effluent grab composite sample consisting of two subsamples was collected by Ecology for bioassay testing. An Ecology Isco compositor actuated by a Sigma bubbler flow meter was set up to take flow-proportioned influent samples. Another Ecology Isco compositor was set up to collect effluent samples with equal volumes of sample collected every 30 minutes for 24 hours (0900 to 0900). The compositors were iced to keep samples cooled. Sample configurations and locations are summarized in Table 8 and Figure 3 (p. 5).

Raymond WTP personnel collected influent and effluent composite samples. The Raymond influent composite sample was flow-proportioned to the flow of pump station 11, which pumps most of Raymond's influent including that from the Port PTF. The sampler intake was positioned where all influent can be sampled. The Raymond effluent composite sampler was set up to collect samples at the outflow box just downstream of the dechlorination basin above the bottom of the basin.

All composite samples were split for analysis by both the Ecology and WTP laboratories. Samples collected, sampling times, and parameters analyzed for the dry weather inspection are summarized in Appendix I, and for the wet weather inspection, in Appendix I. Ecology analytical methods and laboratories performing the analyses are summarized in Appendix B.

QUALITY ASSURANCE/QUALITY CONTROL (QA/QC)

QA/QC considerations for the Raymond wet weather and dry weather are the same as those for the Port PTF, described previously

RESULTS AND DISCUSSION

Flow Measurements

Raymond effluent flow measurements were used to calculate permitted parameters in lbs/day. The Parshall flume was inspected and flume configuration was verified to be acceptable. Ecology made an instantaneous measurement for comparison with the flow meter measurement. Ecology and plant flow meter measurements agreed within 3%, within the measurement accuracy of the Ecology flow measurement.

Table 8 - Sampling Station Descriptions - City of Raymond WTP, September and December 1992

City of Raymond

Ecology influent samples (InfR)

The grab and composite samples were collected downstream of the Parshall flume, upstream of plant return flow. The composite sample intake was kept one half inch above the channel.

City of Raymond Composite influent sample (InfR-R)

The composite samples were collected in the channel just upstream of the Parshall flume. The sample intake was located in an open vertical pipe several inches off the bottom of the channel.

Ecology effluent samples (EffR-1, EffR-2, EffR-E, EffR-ED, EffR-GC)

The grab, grab-composite, and composite samples were collected at the outflow box just downstream of the dechlorination basin. The sample intake was weighted so as to maintain a position several inches below the surface of the effluent.

City of Raymond effluent samples (EffR-R)

The grab and composite samples were collected at the outflow box just downstream of the dechlorination basin above the bottom.

The Raymond influent Parshall flume was not checked by Ecology The varying flow resulting from influent delivered by the pump stations did not lend itself to verification.

NPDES Permit Compliance/General Chemistry

Dry Weather Inspection

The WTP was performing well during the dry weather inspection. The conventional parameters of BOD₅, TSS and pH indicate an adequately treated effluent (Table 9). The effluent was well within National Pollutant Discharge Elimination System (NPDES) permit limits for 5-day biochemical oxygen demand (BOD₅), total suspended solids (TSS) and pH (Table 10).

The dry weather inspection TSS influent (820 mg/L; 2,544 lb/day) to the WTP is in excess of the 220 mg/L typical of domestic wastewaters (Metcalf and Eddy, 1991) and of the maximum design criteria included in the permit (1,780 lbs/day; Table 10). The high influent TSS concentration is likely the result of contributions from the Port PTF. The 24-hour composite PTF effluent sample during the dry weather inspection found 1640 mg/L TSS.

The warm, sunny weather appears to have stimulated photosynthesis. The presence of algae was evidenced by the green color of the aerated lagoons and dechlorination basin as well as the moderately high pH of the effluent. While algae may be responsible for a portion of the BOD₅ and TSS in the WTP effluent, effluent BOD₅ and TSS remained low.

A comparison of influent and effluent ammonia and nitrate-nitrite concentrations indicate that the WTP was achieving substantial nitrification of the relatively high levels of ammonia in the influent. Ammonia concentrations of approximately 58 mg/L in the influent were reduced to approximately 5.5 mg/L in the effluent, while NO₂ + NO₃ - N concentrations increased from approximately 0.04 mg/L in the influent to 30 mg/L in the effluent. Alkalinity was present in sufficient concentration in the effluent (81.1 mg/L) so as not to limit nitrification. Total-P decreased from approximately 28 mg/L in the influent to approximately 10 mg/L in the effluent. All field conductivity measurements were off-scale, greater than 1000 umhos/cm. A new conductivity meter with a higher measurement range was used for the wet weather inspection

Wet Weather Inspection

Flow rate as measured from the Raymond effluent flow meter during the wet weather inspection was 1.27 MGD, as compared with 0.37 MGD during the dry weather inspection. An increase in I & I in the Raymond sewer system accounts for the increased flow. The dilution resulting from I & I also accounts, at least in part, for the lower influent BOD₅ and TSS concentrations during the wet weather inspection. The influent BOD₅ concentration during wet weather was 148 mg/L as compared with 280 mg/L during dry weather. The

Table 9 - General Chemistry Results - City of Raymond WTP, September 1992.

Parameter GENERAL CHE	Location: Type: Date: Time: Lab Log #:	infR-1 grab 9/29 1000 408260	InfR-2 grab 9/29 1540 408261	InfR-E comp 9/29-30 0900-0900 408262	InfR-R comp 9/29-30 0900-0900 408263	Leach grab 9/29 1010 408270	EffR-1 grab 9/29 1045 408264	EffR-2 grab 9/29 1600 408265	EffR-E comp 9/29-30 0900-0900 408266	EffR-ED comp 9/29-30 0900-0900 408269	EffR-GC grab-comp 9/29 * 408268	EffR-R comp 9/29-30 0900-0900 408267
Conductivity (un Alkalinity (mg/L Hardness (mg/L TS (mg/L) TNVS (mg/L)	nhos/cm) GaCO3)	3580	4180	8070 503 1731 5830 4380	7130 372 1325 4940 3860		3100	3100	3120 81.1 633 2150	2150	3110 82.8 653	2950 82.4 648 2280
TSS (mg/L)		560J	500J	820	1420	17	22	26	1620 33	1570 32	28	1670 36
TNVSS (mg/L) BOD5 (mg/L) COD (mg/L) TOC (water mg/ TOC (soil/sed)	r)	603 249	582 145	440 280 705 226	560 147 621 184	72	64 41.1	82.8 38.7	10 17 81.2 36.4	32 14 33,9	28	30 12 15 86.8 34.5
NH3-N (mg/L)				58.0	47.6				5.51	5.32		5,39
NO2+NO3-N (n Total-P (mg/L) Oil and Grease F-Collform MF (FIELD OBSERV	- (mg/L) #/100mL)	36	39J	0,043 28.2	0,048 33,5		2 1100	2 390	29,5 10,2	28,6 9,42		32.0 9.06
Temperature (C)	18.1	19.6				15.6	17.4				
Temp-cooled (0 pH Conductivity (ur Chlorine (mg/L) Sulfide (mg/L)		7.8 >1000	7.8 >1000	7.3 7.8	4.4 7.6	10.4 7.7 >1000	8,1 >1000 <0.1	8.5	3.6 8.3			3.8 8.1

grab composite sample collected as two equal volumes at 1130 and 1545 on 9/29.

InfR - City of Raymond influent
E - Ecology sample
ED - Ecology duplicate sample
Leach - Landfill leachate influent
R - City of Raymond sample
EffR - City of Raymond effluent

J - The associated numerical result is an estimated quantity.

grab – grab sample comp – composite sample G – grab–composite sample

Table 10 - NPDES Permit Limits and Inspection Results - City of Raymond, 1992.

Dry Weather - September 1992

	NPD	ES Limits	Inspection Results		
Parameter	Monthly Average	Weekly Average	Composite Samples	Grab Samples	
BOD5 mg/L lbs/day	30 180	45 270	17 53		
TSS mg/L lbs/day	75 450	110 660	33 102		
Fecal coliform /100mL	200	400		1100; 390	
pH S U	6.0	-90		8 1; 8 5	
Chlorine mg/L lb/day	0.06 0.36	0 15 (daily max) 0 90 (daily max)		<0.1	
Flow* gpd	1,500,000		372 0	00	
Influent BOD5* lbs/day	1 780		869		
Influent TSS* Ibs/day	1,780		2,544		

Wet Weather - December 1992

•	NPC	DES Limits	Inspection Results		
Parameter	Monthly Average	Weekly Average	Composite Samples	Grab Samples	
BOD5 mg/L lbs/day	30 180	45 270	50 530		
TSS mg/L lbs/day	75 450	110 660	3 32		
Fecal coliform /100mL	200	400		280; 260	
pH S.U	6(o – 9.0		77;78	
Chlorine mg/L lb/day	0 06 0 36	0.15 (daily max) 0 90 (daily max)		<0 1	
Flow* gpd	1,500,000		1,270 (000	
Influent BOD5* lbs/day	1,780		1,568		
Influent TSS* lbs/day	1 780		1,642		

^{*}Design Criteria: Average for the maximum month

influent TSS concentration during wet weather was 155 mg/L as compared with 820 mg/L during the dry weather inspection (Table 11).

The WTP was not providing effective removal of organics during the wet weather inspection. During wet weather, only 30% of BOD₅ was removed as compared with 94% removal during the dry weather inspection and 85% removal required by permit. The wet weather effluent BOD₅ concentration of 50 mg/L compares with a permitted monthly average of 30 mg/L and a permitted weekly average of 45 mg/L (Table 10). The effluent BOD₅ of 530 lb/day is approximately double the 270 lbs/day permitted weekly average.

While during both dry and wet weather inspections TSS was removed at 96% or higher efficiency, TSS concentrations were lower during wet weather conditions (3 mg/L) than during dry weather conditions (33 mg/L). Lower TSS influent concentrations during the wet weather inspection (155 mg/L) than during the dry weather inspection (820 mg/L) and a reduction in algae growth in the aerobic lagoons in December appear to account for the low TSS levels.

The high effluent BOD₅ (50 mg/L) relative to the TSS (3 mg/L) in the WTP effluent suggests that much of the BOD₅ was in a soluble form. The PTF, with only 55% to 71% dry weather removal efficiency for dissolved solids, appears to have been a significant source of dissolved organics to the WTP.

A comparison of influent and effluent ammonia and nitrate + nitrite concentrations during the wet weather inspection indicate that the WTP was not achieving much nitrification. This is likely the result of lower temperatures and shorter detention times in the aerated lagoons. Ammonia concentrations of approximately 17 mg/L in the influent compare with concentrations of approximately 15 mg/L in the effluent. NO₂ + NO₃ - N concentrations increased only a small amount from approximately 0.4 mg/L in the influent to 3.2 mg/L in the effluent. Alkalinity in the effluent (157 mg/L) was not limiting to nitrification. Total-P decreased from approximately 6.6 mg/L in the influent to approximately 3.0 mg/L in the effluent.

Fecal Coliform Counts/Chlorination

Fecal coliform counts were made both for dry weather and wet weather inspections. A fecal coliform count for dry weather (1100/100mL) was in excess of weekly and monthly permit limits. The other dry weather (390/100mL) and wet weather (280/100mL; 260/100mL) counts were greater than the monthly permit limit (Table 10).

Ecology field tests for chlorine were made during the dry weather and wet weather inspections. All tests showed less than the 0.1 mg/L detection limit of the test for both final effluent and effluent from the chlorine contact basin. Raymond tests grab samples for 7 AM September 30, 1992, indicated a chlorine residual of 0.0 mg/L in the final effluent and a chlorine residual of 0.10 mg/L for the chlorine contact basin effluent as the effluent enters

Table 11 - General Chemistry Results - City of Raymond WTP, December 1992.

Parameter GENERAL CHEM	Location: Type: Date: Time: Lab Log #:	InfR-1 grab 12/15 830 518238	InfR-2 grab 12/15 1350 518239	InfR-E comp 12/15-16 0820-0820 518240	InfR-R comp 12/15-16 0800-0800 518241	EffR-1 grab 12/15 0920 518242	EffR-2 grab 12/15 1415 518243	EffR-E comp 12/15-16 0800-0800 518244	EffR-ED comp 12/15-16 0800-0800 518245	EffR-GC grab-comp 12/15 0920 518247	EffR-R comp 12/15-16 0800-0800 518246	
Conductivity (um	hos/cm)	820	4190	1860	1380	2090	2130	2140	GAGGGAAAAAAAA	2110	2120	terrespondential
Alkalinity (mg/L 0				178	156			157		156	155	
Hardness (mg/L) TS (mg/L)	CaCO3)			420	327			337	80 80 80	332	336	
TNVS (mg/L)				1220 781	1300 6 57			1230 1040	1260		1250	
TSS (mg/L)		89	360	155	340	8	5	3	1020 3	11	1030 12	
TNVSS (mg/L)				27	40			3	1Ŭ	450100000000000	3	00.0000040000000000
BOD5 (mg/L)				148	254			50			45	
COD (mg/L) TOC (water mg/L	1	36.5	186	460 68,4	580 89.5	20.6	21.9	110 23.9	04.0		75	
TOC (soil/sed)	,		100	00.4	05.5	20.0	21.9	23.8	24.0		22.4	
NH3-N (mg/L)				17	12			15	15	•	15	
NO2+NO3+N (mg	J/L)			0.43	0.34			3,2	3,3		3.2	2010011010101010111101 20100110101010101
Total-P (mg/L) Oil and Grease (i	nall V	10J	29J	6,6	10	6.1		3,0	3,0		3.1	
F-Coliform MF (#	/100mL)		200			2J 280	3J 260					
FIELD OBSERVA	ATIONS					200	200					
Temperature (C)		11.6	12.7			5.9	6.7					
Temp-cooled (C) pH	"+	7.4	7.4	2.4	2.8			1.5			2.3	
Conductivity (um	hos/cm)	7.4 741	4070	7,3 1845	8.8 1396	7.7 2170	7.8 2140	8.2			8.9	
Chlorine (mg/L)	505.51.5217 €				1000	∠1.70 <0.1	4140	2210			2200	
Sulfide (mg/L)						4011						

^{*} grab composite sample collected as two equal volumes at 0920 12/15 and 1010 12/16.

InfR - City of Raymond influent
E - Ecology sample
ED - Ecology duplicate sample
R - City of Raymond sample
EffR - City of Raymond effluent

grab - grab sample comp - composite sample GC - grab composite sample

the dechlorination basin. Raymond tests for December 16, 1992, indicated a chlorine residual of 0.04 mg/L in the final effluent and 0.06 mg/L in the chlorine contact basin. All chlorine concentrations measured were less than the permit limit of 0.06 mg/L maximum monthly average. The monthly average of 0.36 lb/day (0.034 mg/L at 1.27 MGD) was slightly exceeded during the wet weather inspection, but the daily maximum of 0.90 lb/day was not approached.

Adequate chlorine should be added to maintain fecal coliform counts below permitted limits. The narrow margin to which fecal coliform counts can be maintained while not exceeding chlorine concentration, and the limited effectiveness of the existing dechlorination basin limits support the need for the installation of dechlorination equipment, as specified in the permit.

Split Sample Results

Dry Weather Inspection

For influent TSS and BOD₅, there was a considerable but inconsistent variability both in sampling and analyses of dry weather Ecology and Raymond samples (Table 12). Less variability was found in effluent samples than in influent samples, indicating that the source of variability may have been the uneven distribution of large particles in the influent.

Ecology and Raymond sampling and analyses all resulted in similar results for effluent TSS, NH₃/NH₄, and total P: within 5 mg/L for TSS, within 0.5 mg/L for NH₃/NH₄, and within 1.2 mg/L for total P. BOD₅ analyses for effluent were more variable. Samples collected by Ecology and Raymond were in close agreement for NO₂ + NO₃ (within 17%). However NO₂ + NO₃ analyses by Ecology and Raymond varied considerably, with Raymond reporting results consistently more than double the Ecology results.

Wet Weather Inspection

During the wet weather inspection, Ecology and Raymond analyses of all influent BOD₅ and TSS samples resulted in differences of up to 32%. This was likely due to the presence of large particles of solids in the influent (Table 12).

Results from influent samples collected by Raymond resulted in TSS and BOD₅ concentrations consistently from 50% to 100% higher than results from Ecology samples. The difference is likely the result of differences in intake location, accounting for different concentrations of solid collected.

During both inspections, Raymond BOD₅ analyses for eight of eight samples were significantly greater than Ecology analyses of the same samples at the 95% confidence level. It is recommended that Raymond evaluate its BOD₅ test procedures.

3/

Table 12 - Split Sample Results Comparison - City of Raymond, 1992.

Dry Weather - September 1992

		Location: Type: Date: Time: Lab Log #: Sampled by:	InfR-E comp 9/29-30 0900-0900 408262 Ecology	InfR-R comp 9/29-30 0900-0900 408263 Raymond	EffR-E comp 9/29-30 0900-0900 408266 Ecology	EffR-R comp 9/29-30 0900-0900 408267 Raymond
<u>Parameter</u>	Analysis by:					
TSS (mg/L)	Ecology Raymond		820 1571	1420 397	33 33	36 31
BOD5 (mg/L)	Ecology Raymond		280 465	147 300	17 26	15 23
NH3-N (mg/L) NH4-N (mg/L)	Ecology Raymond		58.0 68.1 (87.5)*	47.6 30.3 (39)*	5.51 5.83 (7.5)*	5.39 5.83 (7.5)*
NO2 + NO3–N (mg/L) NO2–N (mg/L) NO3–N (mg/L)	Ecology Raymond Raymond		0.043 0.24 (0.8)* 0	0.07 (0.24)* 0	29.5 69 (228)* 18 (80)*	32.0 57 (187)* 19 (85)*
Total÷P (mg/L)	Ecology Raymond		28.2 85	62	10.2 10	9.06 9
	Wet Weather	- December 1992	2			
		Location: Type: Date: Time: Lab Log #: Sampled by:	InfR-E comp 12/15-16 0820-0820 518240 Ecology	InfR–R comp 12/15–16 0800–0800 518241 Raymond	EffR-E comp 12/15-16 0800-0800 518244 Ecology	EffR-R comp 12/15-16 0800-0800 518246 Raymond
Parameter	Analysis by:					
TSS (mg/L)	Ecology Raymond		155 157	340 401	3 8	12 13
BOD5 (mg/L)	Ecology Raymond		148 195	254 298	50 72	45 76
InfR–R - EffR–E -	 Raymond sample 	f Raymond influent of Raymond influent of Raymond effluent of Raymond effluent	comp – composite s	ample		

^{*} Numbers in parenthesis are the values reported by the City of Raymond in terms of compound molecular weight.

Laboratory Accreditation

The City of Raymond WTP laboratory is not accredited. Accreditation will be required by the Department of Ecology, or an accredited lab must be used for permit limited parameters by July 1, 1994. Accreditation is dependent on results of a laboratory audit conducted by Ecology. In light of discrepancies revealed through split sample analyses, it is recommended that accreditation efforts be accelerated.

WTP Operation, Loading, and Capacity

The WTP was performing well during dry weather conditions although influent TSS (2,544 lb/day) exceeded the TSS design capacity of 1,780 lb/day (Table 10). All aerated lagoons were in operation but the third stage lagoons were not being aerated.

During the wet weather inspection the plant exceeded permitted weekly effluent concentration limits for BOD₅ slightly. On a weight basis, however, effluent BOD₅ (530 lb/day) exceeded the permitted monthly average (180 lb/day) by 194% and the permitted weekly average (270 lb/day) by 96%.

Ecology samples indicate that during the wet weather inspection the plant was within design loading criteria. Ecology influent samples for TSS (155 mg/L) and BOD₅ (148 mg/L) correspond to a WTP loading of 1,642 lb/day TSS and 1,568 lb/day BOD₅ at a flow rate of 1.27 MGD. WTP design loadings are 1,780 lb/day for both TSS and BOD₅ at a maximum flow rate of 1.50 MGD. Design performance was for 87% BOD₅ reduction across the aerated lagoons based on influent loading of 1780 lb/day BOD₅ (Gray and Osborne, 1990). Therefore, it appears that the WTP was operating within its design limits but was not meeting its design performance.

Samples collected by Raymond samplers resulted in higher TSS and BOD₅ concentrations than did Ecology's. Influent TSS of 340 mg/L and BOD₅ of 254 mg/L corresponded to a WTP loading of 3,601 lb/day and 2,690 lb/day, which would indicate that the WTP was operating considerably above design loading. The Ecology influent sampler intake was located so that it was in still water when influent was not being pumped to the WTP. However, the sampler was set up with flow-proportioned actuation so that samples would be taken only when there was flow on influent. The Raymond influent sampler may have been located too close to the channel bottom, where solids settle. This could explain Raymond's high influent concentrations.

Several factors support the assessment that the Raymond wet weather inspection influent sample was not representative. Medium concentration untreated domestic wastewater is typically 220 mg/L (Metcalf and Eddy, 1991). With the large amounts of I & I, Raymond influent would be expected to be lower. Raymond self reporting data for 1991 and 1992 consistently show BOD₅ concentrations below 200 mg/L, often below 100 mg/L for similar

WTP flows. Also, the Raymond wet weather influent sample BOD₅ is higher than the Raymond dry weather influent sample, contrary to what would be expected.

While the Port PTF can contribute as much as one fifth of the Raymond WTP influent flow during dry weather, wet weather impacts of the PTF on Raymond WTP influent is not as large. A mass balance shows that for a WTP influent BOD₅ concentration of 254 mg/L at 1.27 MGD, with the Port PTF effluent at 66,290 gpd and 900 mg/L BOD₅, the PTF's contribution of BOD₅ to the Raymond WTP influent would be 36 mg/L. This leaves the concentration of the Raymond WTP influent, other than the portion contributed by the Port PTF, as 218 mg/L, higher than can be reasonably accounted for by the City's contribution of domestic waste diluted by I & I. By contrast, a mass balance on the Ecology sample, with a BOD₅ of 148, results in a contribution to the Raymond influent by the PTF of 41 mg/L BOD₅, with the remaining portion of influent contributing 107 mg/L BOD₅, a more expected result during wet weather when I & I is high.

In summary, it appears that while loading was below design loading during the wet weather inspection, the Raymond WTP did not perform according to design. For these calculations influent conditions during the inspection were assumed to be representative although the aerated lagoons had a longer than one day hydraulic detention time (approximately nine days) during the wet weather inspection. Because the loadings determined by Ecology were close to the design loading of the WTP, within 12%, it is possible that the WTP received higher than design loading. In either case, measures should be continued to reduce I &I, as required by permit, and to improve plant performance so that permit limitations can be met

There are indications of possible problems in plant design and operation. WTP design was based on a completely mixed initial cell followed by partially mixed cells (Gray and Osborne, 1990). Observations of plant operation indicate that the "Biolac" surface aeration system does not provide completely suspended conditions as were intended. The WTP operator reports solids settling throughout the cells except for the fraction of the lagoon area directly beneath the air diffusers (Hebish, 1992). The assumption of a completely mixed initial cell may not be realistic.

Hydraulic detention time through the six aerated lagoons was approximately 31 days during the dry weather inspection and nine days during the wet weather inspection. Nine days is a relatively short detention time so that mixing and aeration should be evaluated to provide for adequate treatment with design loading conditions.

Priority Pollutant Scans

Dry Weather Inspection

A number of organic priority pollutants were detected in the Raymond WTP samples collected (Table 13) With the exception of acetone and benzoic acid, the ten priority pollutant organics collected in influent samples during the dry weather inspection found at

Table 13 - Comparison of Detected Compounds and Metals to Toxicity Criteria - City of Raymond, September 1992.

	·	Location: Type:	InfR-1 grab	InfR-2 grab	EffR-1 grab	EffR-2 grab		EPA Water	r Quality Criter	ıa Summary**	r
		Date: Time:	9/29 1000	9/29 1540	9/29 1045	9/29 1600	Acut Fres		ronic Fresh	Acute Marine	Chronic Marine
(Group)¹	VOA Compounds	Lab Log#:	408 260 ug/L	408261 ug/L	408264 ug/ L	408265 ug/L	(ug/l	-) (ug/ L)	(ug/L)	(ug/L)
a	Methylene Chloride Acetone		2.0 U 49	2.0 U	5.2 11	2.0 U 7.7	11,00	0 *(a)		12,000 *(a)	6,400 *(a)
a	Chloroform 2-Butanone (MEK)		5.2 8.5	8.6 5.0 U	0,9 J 5.0 U	0.9 J 5.0 U	28,90	0 *	1,240 *	12,000 *(a)	6,400 *(a)
	Benzene Toluene Total Xylenes	838888330000000000000000000000000000000	1.8 6.0	0.9 J 3.5	1.0 U 1.0 U	1.0 U 1.0 U	5,30 17,50			5,100 * 6,300 *	700 * 5,000 *
	rotai Ayleties		3.3	1.3 J	2.0 U	2.0 U					
		Location: Type: Date:	InfR-E comp 9/29-30		EffR-E comp 9/29-30						
		Time: Lab Log#:	900-900 408262	0:	900-0900 408266						
	BNA Compounds		ug/L		ug/L		(ug/l	L) (ug/L)	(ug/L)	(ug/L)
40	Phenol Benzyl Alcohol 4-Methylphenol Benzoic Acid		4.6 5.1 21 110 J		2 U 5 U 1 U 10 U	ſ	10,20	o * :	2,560 *	5,800 *	
	Pesticide/PCB Compou		or effluent								
	<u>Metals</u>	Hardness =	640								
	Arsenic Pentavalent Trivalent Chromium		2.6 PN		1,6 PI 5,0 U	1	85 36	50 * 60	48 * 190	2,319 * 69	13 * 36
	Hexavalent Trivalent		3200	ļ.	3.0 0			6 2 +	11 947 +	1,100 10,300 *	50
	Copper Lead Mercury Silver		158 36.2 0.18 PN 0.77 P		7,2 P 5,5 0,050 U 0,50 U		10 86 2	12 + 17 +	58 + 33.8 + 0.012	2.9 140 2.1	5.6 0.02 5
	Zinc		269		21			.9 + 64 +	0.12 511 +	2.3 95	86
	U = The analyte was n J = The analyte was p UJ = The analyte was n	ot detected at or all ositively identified.	The associated	numerical res	ult is an estim	ate.		ar	nalyte detected		
	N – The spike sample P – The analyte was d below the establis	recovery is not with etected above the hed minimum quar	nin control limits instrument detec ntitation limit.	i. ction limit but				sho +- Har a- Tota	ifficient data to wn is the LOEI dness depend al Halomethan A. 1986.	_ – Lowest Ob: ent criteria (64	served Effect Level
	'NOTE: SOME INDIVID REFER TO APPROPRIA	OUAL COMPOUND ATE EPA DOCUME	CRITERIA OR I	LOELS MAY NO IT WATER QU	OT AGREE W ALITY CRITE	ITH GROUP CRITE RIA FOR FULL DIS	ERIA OR LOELS. CUSSION.	Inf – Influ	ient sample ient sample		

low concentrations (less than 21 μ g/L). Benzoic acid was found in the influent at concentrations of 110 μ g/L (est.).

Three priority pollutant organics were found in the Raymond effluent. Methylene chloride and acetone are used for laboratory cleaning of sampling apparatus and are not likely representative of the effluent. Chloroform $(0.9 \mu g/L \text{ est.})$ was found in concentrations three orders of magnitude below EPA water quality criteria.

No pesticide/PCB compounds were detected in the Raymond effluent during the dry weather inspection.

Seven priority pollutant metals were detected in the Raymond influent during the dry weather inspection. Of these, four were detected in the Port PTF effluent, but generally at lower concentrations than in the Raymond influent. Chromium $(3,230 \,\mu\text{g/L})$ was found in high concentrations in the Raymond influent, and in considerably lower concentrations in the Port PTF influent and effluent. Chromium was found in the Port PTF sludge at a high concentration $(4,480 \,\text{mg/kg-dw})$ during the dry-weather inspection.

Four priority pollutant metals were detected in the Raymond effluent. All were below EPA water quality criteria with the exception of copper (7.2 μ g/L est.) which exceeded EPA acute marine criteria (2.9 μ g/L).

Complete priority pollutant scan results for the Raymond WTP, dry weather inspection, with detection limits, are included in Appendix K.

The TICs in the Raymond WTP influent are mostly those in the Port PTF effluent. Thiobismethane and methanethiol were tentatively identified in concentrations of less than $10~\mu g/L$. Alkyl benzene isomer was also found (6 $\mu g/L$ est.) Hexanoic acid, carboxylic acid, benzenepropanoic acid, hexadecanoic acid, and octadecanoic acid, and sterol isomer were found at concentrations of up to 830 $\mu g/L$ (est.) Unknowns were also found at concentrations up to 2100 $\mu g/L$ (est.) TICs in the effluent included siloxan isomer, known and unknown alcohols, hexadeconoic acid, and sterol isomer, all at concentrations of less than 45 $\mu g/L$. TICs are summarized in Appendix F

Wet Weather Inspection

With the exception of acetone, no organic priority pollutants were detected in the samples from the Raymond WTP collected during the wet weather inspection (Table 7, p. 26).

Two pesticide/PCB compounds were detected in the Raymond effluent during the wet weather inspection. Alpha-BHC (0.006 μ g/L est.) and gamma-BHC (0.006 μ g/L) were both detected at concentrations well below EPA water quality criteria. Alpha-BHC was also found in the Port PTF effluent (0.037 μ g/L est.) at approximately six times the Raymond effluent concentration.

Five priority pollutant metals were detected in the Raymond effluent during the wet weather inspection. Arsenic, cadmium, and zinc were found in concentrations below EPA water quality criteria. Copper (7.7 μ g/L est.) was above acute marine water quality criteria (2.9 μ g/L). Lead (8.6 μ g/L est.) was above chronic marine water quality criteria (5.6 μ g/L). Of these metals, all were detected in the Port PTF wet weather effluent. Arsenic, cadmium and copper were found in the PTF effluent in concentrations of over ten times the Raymond WTP effluent, while zinc was found at five times and lead at six times the concentration found in the Raymond effluent.

Complete priority pollutant scan results for the Raymond WTP, wet weather inspection, with detection limits, are included in Appendix L.

The TICs found in the Raymond WTP effluent during the wet weather inspection were benzo(g)pteridine-2,4(1H,3H) and a number of unknown hydrocarbons and unknowns, all at estimated concentrations below $10 \mu g/L$. TICs are summarized in Appendix H.

Bioassays

Dry Weather Inspection

Bioassay organism sensitivity to dry weather Raymond effluent was variable (Table 14). The effluent showed no toxicity to Microtox or rainbow Trout. Fathead minnow larvae showed no acute toxicity. There was impairment of growth, with a no observable effect concentration (NOEC) of 50% effluent. *Ceriodaphnia dubia* showed both acute and chronic toxicity with 0% survival at 100% effluent and an NOEC of 6.25% effluent.

Chlorine residual may have been responsible for the toxic effects observed. The effluent for bioassay testing was not dechlorinated. Chlorine residual was found to be 0.02 mg/L when the effluent arrived in the laboratory. It is uncertain whether this concentration would have been maintained until the test organisms were exposed. Sample preparation for testing (dilutions, warming, equilibration) combined with the components of the sample which may react with chlorine could tend to reduce residual chlorine. A concentration of 0.02 mg/L is known to have negative effects on biota (Stinson, 1992).

Wet Weather Inspection

There was little toxicity shown in the wet weather bioassays (Table 15). The effluent showed no toxicity to Microtox, no acute or chronic toxicity to Ceriodaphnia dubia, no toxicity to rainbow trout, and no acute toxicity to fathead minnow larvae. There was some chronic toxicity to fathead minnow larvae, with an NOEC of 50%. The effluent was dechlorinated for the wet weather bioassay tests.

Table 14 - Effluent Bioassay Results, Dry Weather - City of Raymond, September 1992.

<u>Microtox</u>	EC50 (% Efflu	C50 (% Effluent)					
Sample	Sample No.	5 minutes	15 minutes				
Control		a	а				
EffR-GC	408268	а	а				

Statistical analysis resulted in a large number of negative gammas. Negative gammas are interpreted as a lack of toxicity.

Ceriodaphnia dubia - survival/reproduction test (Ceriodaphnia dubia)

408268

Sample Conc.	# Tested	# Young Produced	Percent Survival	
Control	10	171	90	
6.25 %	10	168	100	
12.5 %	10	121	80	
25 %	10	117	80	
50 %	10	32	90	
100 %	10	0	0	

NOEC for Reproduction = 6.25% Effluent

NOEC for Survival = 50% Effluent

LC50 = 51.6% effluent

Fathead Minnow larval - survival and growth test (Pimephales promelas) Sample No. 408268

- ••••		Percent	Average Dry	
Sample Conc.	# Tested*	Survival	Weight (mg)	
Control	30	90.0	0.32	
6.25 % Effluent	30	96.7	0.40	
12.5 % Effluent	30	93.3	036	
25 % Effluent	30	96.7	033	
50 % Effluent	30	1000	0.31	
100 % Effluent	30	633	0.33	

NOEC for Weight = 100%

NOEC for Survival = 100 % effluent

LC50 > 100 % effluent

* five replicates per concentration, seven organisms per replicate

Rainbow Trout - 96 hour survival test

(Oncorhynchus mykiss)

Sample No. 408268

Sample Conc.	Number Tested*	Percent Survival	
Control	30	100	
100 % Effluent	30	100	

NOEC for Survival = 100 % effluent

LC50 > 100 % effluent

three replicates per concentration, ten organisms per replicate

Table 15 - Effluent Bioassay Results, Wet Weather - City of Raymond, December 1992

<u>Microtox</u>	EC50 (% Efflu	EC50 (% Effluent)						
Sample	Sample No.	5 minutes	15 minutes					
Control		а	a					
EffR-GC	518247	a	a					

Statistical analysis resulted in a large number of negative gammas. Negative gammas are interpreted as a lack of toxicity.

Ceriodaphnia dubia - survival/reproduction test

(Ceriodaphnia dubia) Sample No. 518247

Sample Conc.	# Tested	# Young Produced	Percent Survival	
Control	10	2.7	90	
6.25 %	10	26.0	100	
12.5 %	10	25.3	90	
25 %	10	24.5	100	
50 %	10	27.9	100	
100 %	10	23.7	100	

NOEC for Reproduction = 100 % Effluent

NOEC for Survival = 100 % Effluent

LC50 > 100 %

Fathead Minnow larval - survival and growth test

(Pimephales promelas)

Sample No. 518247

		Percent	Mean Individual
Sample Conc.	# Tested*	Survival	Biomass (mg)
Control	35	971	0.64
6.25 % Effluent	35	971	0.66
12.5 % Effluent	35	100.0	0.66
25 % Effluent	35	100.0	0.63
50 % Effluent	35	97.1	0 58
100 % Effluent	35	91.4	0.50

NOEC for Biomass = 50 %

NOEC for Survival = 100 % effluent

LC50 > 100 % effluent

* five replicates per concentration, seven organisms per replicate

Rainbow Trout - 96 hour survival test

(Oncorhynchus mykiss)

Sample No. 518247

Sample Conc.	Number Tested*	Percent Survival	
Control	30	100	
100 % Effluent	30	100	

NOEC for Survival = 100 % effluent

LC50 > 100 % effluent

^{*} three replicates per concentration, ten organisms per replicate

Sludge

Sludge was not sampled, as no sludge has been disposed since the lagoons were constructed. Sludge accumulation and sludge quality monitoring requirements are included in the permit.

RECOMMENDATIONS AND CONCLUSIONS

Port of Willapa Harbor Pretreatment Facility

Flow

The PTF in line meter did not lend itself to verification by Ecology. A flow comparison with Protan by Port personnel for the month of March 1993 indicated agreement within 4%.

State Waste Discharge Permit Application/PTF Operation

The PTF effluent exceeded both the permit application BOD₅ concentration and state waste discharge permit limits during both inspections. Dry weather inspection TSS and wet weather inspection BOD₅ exceeded limits by several times.

During the wet weather inspection, PTF discharge flow was 66,290 gpd, 23% above the 54,000 gpd daily average of the permit application while effluent BOD₅ was three times the concentration of the permit application.

• Contributors to the PTF should be required to limit their flow so that the PTF can operate within all permit limits or the PTF expanded and limits appropriately adjusted.

With a high BOD₅ influent such as that during the wet weather inspection, it is uncertain whether the treatment efficiency required to attain permit limits can be reached. Proper plant operation, with operators on duty during peak periods, attention to biological treatment processes, leveling of influent flows, and adherence to design hydraulic detention time all would contribute to treatment efficiency.

• If high strength influent at the permitted discharge rate continues to cause the PTF to exceed permit limits, influent loadings should be decreased so that permit limits will be met.

Because the plant relies on the addition of polymers for solids removal, there has been a tendency to overlook the efficiency of biological removal processes in the PTF.

• Methods of improving the effectiveness of the PTF's biological processes through plant operations should be explored and instituted.

• Influent loading to the PTF should be managed, with coordination between Port personnel and contributors to the PTF waste stream.

During nighttime hours, the plant is left unattended while fluctuating influent loading continues. It has been reported that large slugs of influent from Protan occur at night and that the PTF operates less efficiently at night when it is left unattended. The high TSS concentration in the dry weather inspection composite sample and BOD₅ concentration higher than the effluent limit, indicate that the nighttime decant during the dry weather inspection consisted of a slug of poorly treated wastewater.

• The PTF should be staffed adequately so as to respond to varying influent loadings in order to remain in compliance with its state waste discharge permit.

Effluent NH_3 -N concentrations were high and $NO_2 + NO_3$ -N concentrations were low during both inspections, indicating that nitrification was not taking place.

• NH₃-N removal mechanisms should be considered and measures should be taken to meet NH₃-N effluent limits

Large variations in influent flow and strength throughout the day contribute to difficulties in operation of the PTF.

PTF loading has at times been intermittent because of interruptions in raw materials supplies to Protan. There have been with little or no organic loading to the PTF. It is reported that loading will be nearly continuous in the future.

• A viable culture of microorganisms should be maintained during low load periods in order to provide biological treatment when loading occurs.

Split Samples

The Port effluent TSS concentration (150 mg/L) was almost twice the Ecology analysis (84 mg/L).

• Attention should be paid to TSS testing during the Port's laboratory performance evaluation

Protan's analysis of BOD₅ consistently yielded lower results than did Ecology's analyses.

• It is recommended that Protan review its sampling, preservation, and shipping procedures, as well as any other possible causes of low laboratory results.

Protan does not ordinarily control temperature on effluent samples.

• To preserve samples, it is recommended that Protan ice all samples as they are being composited and shipped.

<u>Laboratory Procedures</u>

 Laboratory record keeping should be improved. Care is needed in assuring the operating condition of laboratory instruments and in delineating units of analysis.

Priority Pollutant Scans

Dry Weather Inspection

All VOA and BNA compounds found were in low concentrations. No pesticide/PCB compounds were found during the dry weather inspection.

Four metals were detected in the PTF effluent. Chromium was found in concentrations lower than criteria for the trivalent form but higher than criteria for the hexavalent form. Copper was found in concentrations lower than acute fresh water criteria but higher than chronic fresh and acute marine criteria.

Wet Weather Inspection

Priority pollutant organics scans yielded similar results for the PTF during the wet weather inspection as compared with the dry weather inspection. All priority pollutants found were in low concentrations.

Four pesticide/PCB compounds were found in the effluent during the wet weather inspection. 4,4'-DDE and endrin were found in concentrations higher than EPA chronic freshwater and chronic marine criteria.

More priority pollutant metals were found during the wet weather inspection, and in higher concentrations than during the dry weather inspection. Arsenic, cadmium, copper, mercury, silver, and zinc were above at least some of the EPA water quality criteria. Lead and selenium were found in concentrations below all criteria. No chromium was found in the PTF wet weather sample, suggesting that the source of chromium was Oh Yang was not operating in December and has since shut down and vacated the site.

Sludge

Priority pollutant scans of sludge samples were performed for the dry weather inspection only.

Eight priority pollutant organic compounds were detected. Bis(2-ethylhexyl)phthalate (2700 μ g/Kg) was found in the sludge in the highest concentration. It was not found in the

PTF effluent. Methylene chloride and acetone, which are used for sampling apparatus cleaning and in the laboratory, often causing low level contamination, were also found. The single pesticide found in the sludge was 4.4'-DDE $(16 \mu g/Kg)$.

Ten priority pollutant metals were detected in the sludge sample. Chromium was found in the highest concentration (4480 mg/Kg-dw), 49% higher than the ceiling concentration from the EPA Standards for the Use or Disposal of Sewage Sludge.

• The sludge should be monitored for chromium.

City of Raymond Wastewater Treatment Plant

Flow Measurements

The effluent Parshall flume was inspected and flume configuration was verified to be acceptable. An Ecology instantaneous measurement agreed with the plant flow meter within 3%.

NPDES Permit Compliance/General Chemistry

Dry Weather Inspection

The WTP was performing well during the dry weather inspection. The effluent was well within NPDES permit limits for BOD₅, TSS and pH

The dry weather inspection high influent TSS (820 mg/L) is likely the result of contributions from the Port PTF. The 24-hour composite PTF effluent sample during the dry weather inspection found 1640 mg/L TSS.

The WTP was achieving substantial nitrification of the relatively high levels of ammonia in the influent. Total-P decreased from approximately 28 mg/L in the influent to approximately 10 mg/L in the effluent.

Wet Weather Inspection

The Raymond effluent flow meter measured 1.27 MGD, as compared with 0.37 MGD during the dry weather inspection. An increase in I & I in the Raymond sewer system is responsible for the increased flow.

The WTP was not providing effective removal of organics during the wet weather inspection. During wet weather, only 30% of BOD₅ was removed as compared with 94% removal during the dry weather inspection and 85% removal required by permit. Consistent influent loading during the nine day or longer detention time of the aerated lagoons is assumed in calculating % removal. The wet weather effluent BOD₅ exceeded monthly (by 20 mg/L) and

weekly (by 5 mg/L) limits. The effluent BOD₅ was approximately double the 270 lbs/day permitted weekly average.

TSS removal efficiencies were 96% or higher during both inspections. TSS concentrations in the effluent were low during the wet weather inspection.

The WTP was not achieving nitrification during the wet weather inspection. Alkalinity in the effluent was not limiting to nitrification. Total-P decreased from approximately 6.6 mg/L in the influent to approximately 3.0 mg/L in the effluent.

Fecal Coliform Counts/Chlorination

Fecal coliform counts were generally high (1100/100mL; 390/100mL; 280/100mL; 260/100mL). Chlorine residuals in the effluent were low (<0.01 mg/L and 0.04 mg/L). The narrow margin between adequate chlorine dosage to kill pathogens as indicated by fecal coliform count and the dosage to maintain a chlorine residual below the permit limit supports the need for improved dechlorination.

- Adequate chlorine should be added to maintain a chlorine residual from the chlorine tank and to maintain fecal coliform counts below permitted limits.
- Dechlorination equipment should be installed as specified in the permit.

Split Sample Results

There was large variability both in sampling and analyses for dry weather influent TSS and BOD₅ collected and analyzed by Ecology and Raymond samples. One source of variability may have been the uneven distribution of large particles in the influent.

Ecology and Raymond sampling and analyses all resulted in similar results for effluent TSS, NH_3/NH_4-N , and Total P. NO_2+NO_3-N analyses differed considerably.

During the wet weather inspection, Ecology and Raymond analyses of all influent BOD_5 and TSS samples resulted in differences of up to 32%.

Results from wet weather influent samples collected by Raymond resulted in TSS and BOD₅ concentrations consistently from 50% to 100% higher than results from Ecology samples. The difference is likely the result of differences in intake location.

During both inspections, Raymond BOD₅ analyses for eight of eight samples were significantly greater than Ecology analyses of the same samples at the 95% confidence level.

• It is recommended that Raymond evaluate its BOD₅ test procedures.

• In light of the discrepancies revealed through split sample analyses, it is recommended that laboratory accreditation efforts be accelerated.

WTP Operation, Loading, and Capacity

The WTP was performing well during dry weather conditions, with effluent meeting all permit limits.

During the wet weather inspection, the plant exceeded monthly and weekly limits for effluent BOD₅ concentration. On an effluent loading basis, effluent BOD₅ (530 lb/day) exceeded the permitted monthly average by 194% and the permitted weekly average by 96%.

Ecology samples indicate that during the wet weather inspection the plant was slightly below design loading criteria for TSS, BOD₅, and flow but was performing inadequately. Raymond samples resulted in higher TSS and BOD₅ concentrations than did Ecology's, which would indicate that the plant was receiving higher than design loads of TSS and BOD₅. There are indications that the Ecology sample is more representative than the Raymond sample. Based on the Ecology influent composite sample, it appears that the Raymond WTP was below design loading during the wet weather inspection.

Wet weather impacts of the PTF on Raymond WTP influent concentrations were calculated. A mass balance shows that for the conditions of the wet weather inspection, the contribution of the PTF to the Raymond WTP influent was 28% of the total BOD₅ load, or 41 mg/L.

- Measures should be continued to reduce I & I so that permit limitations can be met.
- Measures should be taken to reduce PTF effluent BOD₅ loadings to those within permit limits.

There are indications of possible problems in plant design and operation. WTP design was based on a completely mixed initial cell followed by partially mixed cells (Gray and Osborne, 1990). If poor wet weather performance continues, the WTP may need to be modified. Observations of plant operation indicate that the "Biolac" surface aeration system does not provide completely suspended conditions as it was intended.

Hydraulic detention time through the six aerated lagoons was approximately 31 days during the dry weather inspection and nine days during the wet weather inspection. Nine days is a relatively short detention time.

• Mixing and aeration should be evaluated, as well as verification of plant capacity as required by the permit.

Priority Pollutant Scans

Dry Weather Inspection

A number of organic priority pollutants were detected in the Raymond WTP samples collected. Other than benzoic acid (110 μ g/L est.), the ten priority pollutant organics collected in influent samples during the dry weather inspection were found at low concentrations. Acetone was also found, but is used for sampling apparatus cleaning and in the laboratory, often causing low level contamination.

Of organic priority pollutants detected in the effluent, only chloroform was unequivocally not an artifact of sampling or laboratory contamination. It was present at a concentration three orders of magnitude below EPA water quality criteria (0.9 μ g/L est.). No pesticide/PCB compounds were detected in the Raymond effluent during the dry weather inspection.

Seven priority pollutant metals were detected in the Raymond influent during the dry weather inspection. Of these, four were detected in the Port PTF effluent, but generally at lower concentrations than in the Raymond influent.

Four priority pollutant metals were detected in the Raymond effluent. All were below EPA water quality criteria with the exception of copper (7.2 μ g/L est.) exceeded EPA acute marine criteria (2.9 μ g/L).

Wet Weather Inspection

With the exception of acetone, no organic priority pollutants were detected in the samples from the Raymond WTP collected during the wet weather inspection.

Two pesticides were detected in the Raymond effluent during the wet weather inspection, alpha-BHC and gamma-BHC, both at concentrations well below EPA water quality criteria.

Five priority pollutant metals were detected in the Raymond effluent during the wet weather inspection. Arsenic, cadmium, and zinc were found in concentrations below EPA water quality criteria. Copper (7.7 μ g/L est.) was above acute marine water quality criteria (2.9 μ g/L). Lead (8.6 μ g/L est.) was above chronic marine water quality criteria (5.6 μ g/L). Of these metals, all were detected in the Port PTF wet weather effluent.

Bioassays

Dry Weather Inspection

Bioassay organism sensitivity to dry weather Raymond effluent was variable (Table 14). The effluent showed no toxicity to Microtox or rainbow trout. Fathead minnow larvae showed no acute toxicity. There was impairment of growth, with a no observable effect concentration (NOEC) of 50% effluent. *Ceriodaphnia dubia* showed both acute and chronic toxicity with 0% survival at 100% effluent and an NOEC of 6.25% effluent.

Chlorine residual may have contributed to the toxic effects observed. The effluent for bioassay testing was not dechlorinated. Chlorine residual was found to be 0.02 mg/L when the effluent arrived in the laboratory

Wet Weather Inspection

There was little toxicity shown in the wet weather bioassays (Table 15). The effluent showed no toxicity to Microtox, no acute or chronic toxicity to Ceriodaphnia dubia, no toxicity to rainbow trout, and no acute toxicity to fathead minnow larvae. There was some chronic toxicity in fathead minnow larvae, with an NOEC of 50%. The effluent was dechlorinated for the wet weather bioassay tests.

Sludge

Sludge was not sampled as no sludge has been disposed since the lagoons were constructed. Chromium found in the WTP influent and the high concentrations of chromium found in the Port PTF sludge suggest the possibility of high chromium concentrations in the Raymond WTP sludge.

• Sludge accumulation and sludge quality monitoring requirements specified in the permit should be followed. Particular attention should be paid to chromium results.

REFERENCES

- Crafton, J., 1992. Personal communication. Port of Willapa Harbor, Raymond, Washington.
- Ecology, 1985. Criteria for Sewage Works Design.
- EPA, 1975. Process Design Manual for Nitrogen Control. U.S. Environmental Protection Agency.
- EPA, 1986. Quality Criteria for Water, EPA 440/5-86-001. U.S. Environmental Protection Agency.
- EPA, 1993. Standards for the Use of Disposal of Sewage Sludge; Final Rules. 40 CFR Part 257 et al. February 19, 1993.
- Gray and Osborne Inc., Consulting Engineers, 1990 <u>City of Raymond and Port of Willapa Harbor Pre-Design Report; Industrial Wastewater Treatment Facilities</u>. Seattle, WA, June 1990.
- Hebish, R., 1992. Personal communication. City of Raymond, Raymond, Washington.
- Huntamer, D. and Hyre, J., 1991 <u>Ecology Laboratory User's Manual</u> Washington State Department of Ecology, Olympia, WA
- Metcalf and Eddy, 1991. Wastewater Engineering Treatment Disposal Reuse.
- Porter, S., 1993. Personal communication. Port of Willapa Harbor, Raymond, Washington.
- Ragsdale, D., EPA-WOO, and Bollinger, A., 1991. Inspection Report, City of Raymond WWTP, NPDES Permit No. WA 002332-9. Washington State Department of Ecology, Financial Asst. Program, September 12, 1991.
- Sargent, G., 1992. Personal communication. Protan Inc., Raymond, Washington.
- Schenck, N., 1993. Personal communication. Southwest Regional Office, Washington State Department of Ecology, Olympia, WA.
- Stinson, M., 1992. Data Review. Washington State Department of Ecology, Manchester, Washington.
- Verschueren, K., 1983 <u>Handbook of Environmental Data on Organic Chemicals</u>, Second Edition

- Water Pollution Control Federation, 1983. <u>Nutrient Control</u> Manual of Practice FD-7, Facilities Design.
- Water Pollution Control Federation, 1990. Operation of Municipal Wastewater Treatment Plants. Manual of Practice 11, Vol. 2.

the form of the first teaching defined by the contract of the first of the form of the form of the form of the first of the form of the first of the er en eur en en el kriset modium lan met en Develophilippet et me

Appendix A - Sampling Schedule - Port of Willapa Harbor, September 1992.

Parameter	Location: Type: Date: Time: Lab Log #:	InfW-1 grab 9/29 1500 408230	InfW-2 grab 9/30 1210 408231	InfW-PE grab 9/29 1335 408233	InfW-O1 grab 9/29 1405 408235	InfW-O2 grab 9/30 1150 408236	InfW-PP comp 9/29-9/30 1530-0850 408237
GENERAL CHEMISTRY Conductivity	930308033333339	:		1181868 (B.S.)	3855555E8	50000000000000000000000000000000000000	
рH					<u>-</u> -	E	Ε
Alkalinity Hardness		Ę	E E	E E	Ę	E E	Ē
TS		-	_	E	E E E	E	E E E
TNVS		www.com		E		Ē	Ē
TNVSS		E	E	E	E .	E	EP E
% Solids							
% Volatile Solids BOD5						er e	EP
COD		E	Ε	. Е	Ε	E	E
TOC (water) TOC (soil)		E	E	E	E	E	E
NH3-N							
NO2+NO3-N Total-P		xxxx xx 2 xx 0 0 0 0 0 0 0 0 0 0 0 0 0 0	9449949499999999999	100000000000000000000000000000000000000			188801400000000000000000000000000000000
Oil and Grease		Е	E	Ę	E	Е	4
FIELD OBSERVATIONS				3683683888388	00.000000000000000000000000000000000000		
Temp pH		E .	E	E E E	E E E	E	E
Conductivity		00000000000000000000000000000000000000		Ë	Ë	(1000) 1000 1000 (10 0)	:::::::::::::::::::::::::::::::::::::
D.O Chlorine							

InfW – Ecology sample of Port influent
InfW-O – Ecology sample of Oh Yang effluent
InfW-PE – Ecology sample of Protan effluent
grab – grab sample
comp – composite sample
PP – Protan sample
PE – Ecology sample of Protan effluent

E – Ecology analysis W – Port analysis P – Protan analysis

Appendix A - (cont'd) - Port of Willapa Harbor, September 1992.

Parameter II	Locatn: Type; Date; Time: Lab Log #:	AerW-1 grab 9/30 0715 408238	AerW-2 grab 9/30 1350 408239	EffW-1 grab 9/29 7A 408240	EffW-2 grab 9/30 1240 408241	EffW-E E-comp 9/29-9/30 1300-1300 408242	W-comp 9/29-9/30 1100-1300	EffW-G grab 9/30 1235 408245	EffW-GD grab 9/30 1235 408246	Sludge grab 9/30 0700 408244	
GENERAL CHEMIST	'RY				· · · · · · · · · · · · · · · · · · ·	*	*****				
Conductivity pH Alkalinity Hardness				E E E	E E E	E		E E		E	
TS TNVS		E	E	h-	_	Ē	Ē	Ē	Е		
TSS TNVSS % Solids % Volatile Solids		E	E	E	E	E EW E	E EW E	E E	E	Ē	
BOD5						E		E		=	
COD				E	E	ΕŴ	EW	Ē			
TOC (water) TOC (soil) NH3-N NO2+NO3-N Total-P				E	E	E E E	E E E	Ē.	E E	E	
Oil and Grease				_		E	E	E	E		
FIELD OBSERVATION Temp pH Conductivity D.O Chlorine	ns	E E		E	E E	E	Ē Ē				

InfW-P- Protan effluent composite sample
AerW - Ecology aeration basin sample
EffW-1,2,E - Ecology sample of Port effluent
EffW-W - Port sample of Port effluent
GC - grab composite sample
GCD - duplicate grab composite sample
Sludge - sludge from the Port belt filter press

E – Ecology analysis W – Port of Willapa Harbor analysis P – Protan analysis

Appendix B - Ecology Analytical Methods - Port of Willapa/Raymond, 1992.

		September Inspection	December Inspection
Laboratory Analysis	Method used for Ecology Analysis	Laboratory Perfo	rming Analysis
Conductivity pH Alkalinity Hardness TS TNVS TSS TNVSS % Solids % Volatile Solids BOD5 COD TOC (water) TOC (soil/sed) NH3-N NO2+NO3-N Total-P Oil and Grease (water) F-Coliform MF VOC (water) VOC (soil/sed) BNAs (soil/sed) BNAs (soil/sed) Pest/PCB (water) Pest/PCB (soil/sed) PP Metals Salmonid (acute 100%) Microtox (acute)	EPA, Revised 1983: 120.1 EPA, Revised 1983: 150.1 EPA, Revised 1983: 310.1 EPA, Revised 1983: 310.1 EPA, Revised 1983: 310.2 EPA, Revised 1983: 130.2 EPA, Revised 1983: 160.3 EPA, Revised 1983: 106.3 EPA, Revised 1983: 160.2 EPA, Revised 1983: 160.2 EPA, Revised 1983: 160.4 EPA, Revised 1983: 405.1 EPA, Revised 1983: 410.1 EPA, Revised 1983: 415.1 EPA, Revised 1983: 415.1 EPA, Revised 1983: 350.1 EPA, Revised 1983: 350.1 EPA, Revised 1983: 353.2 EPA, Revised 1983: 365.3 EPA, Revised 1983: 413.1 APHA, 1989: 9222D. EPA, 1986: 8240 EPA, 1986: 8270 EPA, 1986: 8270 EPA, 1986: 8080 EPA, Revised 1983: 200-299 Ecology, 1981. Beckman, 1982	Ecology Machester Laboratory Water Management Laboratories Ecology Machester Laboratory Analytical Resources Inc. Ecology Machester Laboratory Parametrix Parametrix	Ecology Manchester Laboratory Laucks Testing Laboratories
Ceriodaphnia (chronic) Fathead Minnow (chronic)	EPA 1989: 1002.0 EPA 1989b	Parametrix Parametrix	Ecology Manchester Laboratory Ecology Manchester Laboratory

APHA-AWWA-WPCF, 1989. Standard Methods for the Examination of Water and Wastewater, 17th Edition.

Beckman Instruments, Inc., 1982. Microtox System Operating Manual.

Ecology, 1981. Static Acute Fish Toxicity Test, WDOE 80–12, revised July 1981.

EPA, Revised 1983. Methods for Chemical Analysis of Water and Wastes, EPA–600/4–79–020 (Rev. March, 1983).

EPA, 1986: SW846. Test Methods for Evaluating Solid Waste Physical/Chemical Methods, SW–846, 3rd. ed., November, 1986. EPA, 1988. Short-term Methods for Estimating the Chronic Toxicity of Effluents and Receiving waters to Marine and Estuarine

EPA, 1989. Short-term Methods for Estimating the Chronic Toxicity of Effluents and Receiving waters to Freshwater Organisms.

Second edition. EPA/600/4-89/100.

EPA, 1989b. Short-term Methods for Estimating the Chronic Toxicity of Effluents and Receiving Waters to Freshwater Organisms. Second edition. EPA/600/4–79–020

Appendix C - Sampling Schedule - Port of Willapa Harbor, December 1992.

Parameter	Location: Type: Date: Time: Lab Log #:	InfW-P1 grab 12/15 1320 518230	InfW-P2 grab 12/15 1550 518231	InfW-PE comp 12/15-16 0800-0800 518232	InfW-PP comp 12/15-16 0930-1100 518233	EffW-1 grab 12/15 1220 518249	EffW-2 grab 12/16 0610 518250	EffW-E comp 12/15-16 0800-0800 518251	EffW-ED comp 12/15-16 0800-0800 518252	EffW-W comp 12/15-16 0800-0800 518253	Sludge grab 12/15 1300 518254	
GENERAL CHEMISTRY						· · · · · · · · · · · · · · · · · · ·		-			-	
Conductivity pH Alkalinity Hardness		E E	ш ши	E E E	E E E	E E E	B	田 田		E	E	
TS		Ē	Ē	E	Ē	L-	_	Ę	E	E		
TNVS		E	Ε	E	Ē			Ē	E	Ē		
TSS TNVSS % Solids % Volatile Solids		E	E	EP E		E	E	EW E		EW E	E	
BOD5				EP	EΡ			E.		E	E	
COD		E	Е	Ε	E	E	Ε	ΕŴ		ΕŴ		
TOC TOC NH3-N NO2+NO3-N		E	E	E E E	E E E	E	Е	E E	E E E	E	E	
Total-P				Ē	Ē			Ē	Ē	Ē		
Oil and Grease FIELD OBSERVATIONS		E	Ε			E	E			_		
Temp (C) Temp-cooled (C) pH (S.U.)		E E	∄ E	E E	E E	E 6	E	E E		E =		
Conductivity (umhos/cm Chlorine (total – mg/L))	E	E	E	E	. E	Ē	Ē		Ē		

InfW-P - influent from Protan EffW - Port of Willapa effluent grab - grab sample comp - composite sample

E - Ecology sample
PP - Protan sample
D - duplicate sample
Sludge - sludge from the Port belt filter press

E – Ecology analysis W – Port of Willapa Harbor analysis P – Protan analysis

Appendix D

Priority Pollutant Cleaning Procedures Port of Willapa Harbor PTF, City of Raymond WTP September, December 1992.

PRIORITY POLLUTANT SAMPLING EQUIPMENT CLEANING PROCEDURES

- Wash with laboratory detergent
- Rinse several times with tap water 2.
- Rinse with 10% HNO3 solution 3.
- Rinse three (3) times with distilled/deionized water 4.
- Rinse with high purity methylene chloride
- Rinse with high purity acetone
 Allow to dry and seal with aluminum foil

Appendix E - VOA, BNA, Pesticide/PCB and Metals Scan Results - Port of Willapa Harbor, September 1992.

·	VOA Compounds	Location: Type: Date: Time: Lab Log#:	InfW-1 grab 9/29 1500 408230	InfW-2 grab 9/30 1210 408231	EffW-1 grab 9/29 1700 408240	EffW-2 grab 9/30 1240 408241	Sludge grab 9/30 0700 408244	
(Group)¹	·		ug/L	ug/L	ug/L	ug/L	ug/Kg-dr	
а	Chloromethane		2.0 U	2.0 U	2.0 U	20 U		
а	Bromomethane Vinvl Chloride		2.0 U	2.0 U	2,0 U	20 U		
	Chloroethane		2.0 U 2.0 U	2.0 U 2.0 Ü	2.0 U 2.0 U	20 U	Contraction of the Contraction o	
a	Methylene Chloride	Г	2.2	2.0 U	2.0 U	20 U 20 U		7
	Acetone	-	33	12 UJ	17 UJ	57	910	4
	Carbon Disulfide	<u> </u>	1.0 U	1.0 U	1.0 U	10 U		J
b	1,1-Dichloroethene		+ 1.0 U	1.0 U	1.0 U	10 U		
h	1,1+Dichtoroethane 1,2-Dichtoroethene (total)		1.0 U	1.0 U	0,8 J	10 U	Market Committee	a Total Halomethanes
a	Chlorotorm		1.0 U 37	1.0 U	1.0 U 8.5	10 U 8.1 J		b Total Dichloroethenes
	1,2-Dichloroethane	L	1.0 U	1.0 U	1.5	8.1 J 10 U		c Total Trichloroethanes d Total Dichloropropanes
	2-Butanone (MEK)		38	5.0 U	8.6	50 U		e Total Dichloropropenes
C	1,1,1-Trichloroethane		15	2,5	790	1200	6.4 U	
a	Carbon Tetrachloride		1.0 U	1,0 U	1.0 U	10 U		g Total Chlorinated Benzenes
a	Vinyl Acetate Bromodichloromethane		1.0 U 2.3	1.0 U 3.9	1.0 U	10 U		(excluding Dichlorobenzenes)
d	1,2-Dichloropropane	٠ ــــ	1.0 U	1.0 U	1.0 U 1.0 U	10 U 10 U		ı Total Chloroalkyl Ethers
e	cis-1,3-Dichloropropene		1.0 U	1.0 U	1.0 U	10 U		
	Trichloroethene		1.0 U	1.0 Ū	1,0 Ū	10 U		
а	Dibromochloromethane		1.0 U	1,0 U	1,0 U	10 U		
С	1,1,2–Trichloroethane Benzene		1.0 U	1.0 U	1.0 U	10 U	-,, -	
е	trans-1,3-Dichloropropene		1.0 U 1.0 U	1.0 U	1.0 U	10 U		
i	2-Chloroethylvinyl Ether	3486000000000000000	1.0 U	1.0 U 1.0 U	1.0 U	10 U 10 U		
a	Bromoform		1.0 U	1.0 U	1.0 U	10 U		
	4-Methyl-2-Pentanone (MIB	K)	5,0 Ū	5.0 Ü	5.0 U	50 U	v.v.v.v.v.v.v.v.v.v.v.v.v.v.v.v.v.v.v.	
	2-Hexanone	····	5.0 U	5.0 U	5.0 U	50 U		
	Tetrachloroethene		1.0 U	1.0 U	1.0 U	10 U		
1	1,1,2,2–Tetrachloroethane Toluene	SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS	1.0 U	1.0 U	1.0 U	10 U	, -	
g	Chlorobenzene	L.	40 1.0 U	1,0 U 1,0 U	6.5 1.0 U	10 U 10 U		
Ü	Ethylbenzene		1.0 U	1.0 U	1.0 U	10 U		
	Styrene	**************************************	1.0 Ü	1.0 Ü	1.0 Ü	10 U		
	Total Xylenes		2.0 U	2.0 U	2.0 ↓	20 U		
a	Trichlorofluoromethane	National and Committee of the Committee	2.0 U	2.0 U	2.0 U	20 U		
	1,1,2-Trichloro-1,2,2-Triffuc	roethane (Fre	2.0 U	2.0 U	2.0 U	20 U	13 U	

infW-1,2 - Ecology sample of Port influent EffW-1,2 - Ecology sample of Port effluent Sludge - sludge from the Port belt filter press

the state of the s

U - The analyte was not detected at or above the reported result.
 J - The analyte was positively identified. The associated numerical result is an estimate.
 UJ - The analyte was not detected at or above the reported estimated result.

Appendix E - (cont'd) - Port of Willapa Harbor, September 1992.

		Location:	EffW-G	Sludge	
		Type: Date:	grab-comp	grab	
		Time:	9/30 1235	9/30 0700	
	L	Lab Log#:	408245	408244	
(Group)1	BNA Compounds		ug/L	ug/Kg-dr	
	Phenoi		79	350 U	
I	Bis(2-Chloroethyl)Ether		<u>2 U</u>	180 U	
	2-Chlorophenol		2 U	180 U	
h	1,3-Dichlorobenzene		2 U	180 Ü	
h	1,4-Dichlorobenzene		2 U	180 U	
h	Benzyl Alcohol 1,2-Dichlorobenzene	01000000000000000000000000000000000000	10 U	880 U	
"	2-Methylphenol		2 U	180 U	
1	2,2'-Oxybis(1-Chloropropane)	a .	2 U 2 U	180 U	
•	4-Methylphenol		66	180 U 180 U	Tailou
k	N-Nitroso-di-n-Propylamine		2 U	180 U	g Total Chlorinated Benzenes (excluding Dichlorobenzenes)
	Hexachloroethane		4 U	350 U	h Total Dichlorobenzenes
	Nitrobenzene		2 U	180 U	: Total Phthalate Esters
	Isophorone		2 U	[120 J	Total Chloroalkyl Ethers
I	2-Nitrophenol		5.6 J	880 U	k Total Nitrosamines
	2,4-Dimethylphenol		4 0	350 U	l Total Nitrophenols
	Benzoic Acid		130 J	1800 UJ	m Total Chlorinated Naphthalenes
i	Bis(2–Chloroethoxy)Methane 2.4–Dichlorophenol	50000000000000000000000000000000000000	2 U	180 U	n Total Polynuclear Aromatic Hydrocarbons
g	1,2,4-Trichlorobenzene		6 U	530 U	
n	Naphthalene		2 U 2 U	180 U	
	4-Chloroaniline		∠ U 6 U	180 U 530 U	
	Hexachlorobutadiene		4 U	350 U	
	4-Chloro-3-Methylphenol		4 U	350 U	
	2-Methylnaphthalene		2 U	180 U	
	Hexachlorocyclopentadiene		10 UJ	880 U	
	2.4,6-Trichlorophenol		10 U	880 U	
	2,4,5-Trichlorophenol	-	10 U	880 U	
m	2-Chloronaphthalene 2-Nitroaniline		2 U	180 U	
1	Dimethyl Phthalate	:	10 U	880 U	
'n	Acenaphthylene		2 U 2 U	180 U	
••	3-Nitroaniline		2 U 10 U	180 U	
n	Acenaphthene		2 U	880 U 180 U	
1	2,4-Dinitrophenol		20 U	180 U 1800 U	
1	4-Nitrophenol		5.7 J	880 U	
	-			000	

EffWG - Ecology grab sample of Port effluent Sludge - Sludge from the Port belt filter press

U - The analyte was not detected at or above the reported result.
 J - The analyte was positively identified. The associated numerical result is an estimate.
 UJ - The analyte was not detected at or above the reported estimated result.

Appendix E - (cont'd) - Port of Willapa Harbor, September 1992.

	L	ocation: Type: Date:	EffW-GC grab 9/30	Sludge grab 9/30	
1	La BNA Compounds	Time: lb Log#:	1235 408245 ug/L	9730 9700 408244 ug/Kg-dr	
0 0 1	Dibenzofuran 2.4-Dinitrotoluene 2.6-Dinitrotoluene Diethyl Phthalate 4-Chlorophenyl Phenylether		2 U 10 UJ 10 U 2 U	180 U 880 U 880 U 180 U	
n n	Fluorene 4-Nitroaniline		2 U 2 U 10 U	180 U 180 U 880 U o	
l k p	4.6-Dinitro-2-Methylphenol N-Nitrosodiphenylamine 4-Bromophenyl Phenylether		20 U 2 U 2 U	1800 U 180 U	Total Chlorinated Benzenes (excluding Dichlorobenzenes) Total Phthalate Esters Total Nitrosamines
g n	Hexachlorobenzene Pentachlorophenol Phenanthrene		2 U 10 U 2 U	180 U 1 880 U n	Total Nitrophenols Total Polynuclear Aromatic Hydrocarbons
n i	Carbazole Anthracene Di-n-Butyl Phthalate		2 U 2 U 2 U 2 U	180 U	Total Dinitrotoluenes Total Haloethers
n n	Fluoranthene Pyrene		2 U 2 U	140 U 71 J 97 J	
n	Butylbenzyl Phthalate 3,3'-Dichlorobenzidine Benzo(a)Anthracene Bis(2-Ethylhexyl)Phthalate		2 U 10 U 2 U	180 U 880 U 180 U	
n I	Chrysene Di-n-Octyl Phthalate		2 U 2 U 2 U	2700 180 U 76 J	
n n n n	Benzo(b)Fluoranthene Benzo(k)Fluoranthene Benzo(a)Pyrene Indeno(1,2,3-cd)Pyrene		2 U 2 U 2 U 2 U 2 UJ	180 U 180 U 180 U 180 UJ	
n n	Dibenzo(a,h)Anthracene Benzo(g,h,i)Perylene		2 U 2 UJ	180 U 180 UJ	

EffWG - Ecology grab sample of Port effluent Sludge - Sludge from the Port belt filter press

U - The analyte was not detected at or above the reported result.
 J - The analyte was positively identified. The associated numerical result is an estimate.
 UJ - The analyte was not detected at or above the reported estimated result.

	Appendix E -Port of N	Willapa Harbor, Se Location: Type: Date: Time: Lab Log#:	ptember 1992. EffW-G grab 9/30 1235 408245 ug/L		Sludge grab 9/30 0700 408244 ug/Kg-dr							
(Group)¹			,		~5g ~.							
q	alpha_BHC		0.05		9.0	U				80,868,80a850,865,650	(0)00000000000000000000000000000000000	81882754888888466
q	beta-BHC delta-BHC		0.05	100000000000000000000000000000000000000		୍ଧ						
q	gamma–BHC (Lindane)		0.05			U						
ч r	Heptachlor		0.05	_	5.6				on a contract of the second of	achasanta attitakan	AACATOOTOOTOO	090000000000000000000000000000000000000
•	Aldrin		0.05 0.05	_	5.6							
r	Heptachlor Epoxide		0.05	_	5.6	R Sales	090000000000000000000000000000000000000	6ataesassassassassas v	000000000000000000000000000000000000000	enner och och better		
8	Endosulfan i		0.05			Ü						
	Dieldrin		0.10	A Commence of the		ŭ	a	Total BHCs				
u	4,4'-DDE		0.10	Ü	16	2.5.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2		Heptachlor	(8)(100)(8)(100)(8)			
†	Endrin		0.10	_	12	U		Endosulfan				
S	Endosulfan II		0.10			Ų	t	Endrin				
u S	4,4'-DDD Endosulfan Sulfate		0.10			U		DDT plus me				
u	4.4'-DDT		0.10		(1900)	U		Total Chlord				
-	Methoxychlor		0:10 0:50			U	w	Total Arocio	s (PCBs)			
ţ	Endrin Ketone		0.30			Ü						
V	alpha-Chlordane		0.05	_	5.6	_						
V	gamma-Chlordane		0,05	u		Ŭ		escare de la Massacció	007000000000000000000000000000000000000	S2880M288M288	9909969969	501000000000000000000000000000000000000
	Toxaphene		5.0	U	560	U						
W	Aroclor–1016		1.0	0000000000	120	U						
W	Aroclor-1221 Aroclor-1248		2.0		480	_	020.000.000.0000.0000.0000.0000.000	000000000000000000000000000000000000000			380,80,81,00,00,0	50000000000000000000000000000000000000
	Aroclor-1248 Aroclor-1254		1.0		120		•					
	Aroclor=1260	16:15:0:16:0:6:4:0:1.0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0	1,0 1,0	_	120	_						
w	Arocior-1232		1.U 1.0	0000000000	120 360	100 CONTRACTOR (1)						
t	Endrin Aldehyde		0.10	0.500,000,000	100000100000000000000000000000000000000	U						

EffWG - Ecology grab sample of Port effluent Sludge - Sludge from the Port belt filter press

 $[\]begin{array}{ll} U = & The \ analyte \ was \ not \ detected \ at \ or \ above \ the \ reported \ result. \\ R = & The \ data \ are \ unusable \ tor \ all \ purposes. \end{array}$

Appendix E - Port of Willapa Harbor, September 1992.

Metals	EffW-G grab 9/30 1235 408245 ug/L		Sludge grab 9/30 0700 408244 mg/Kg-dr	
Antimony Atsenic Pentavalent Trivalent	9.3	(2002)200000000000000000000000000000000	35 23	
Beryllium	1.0		0.50	U
Cadmium	2.0		1.9	P ·
Chromium Hexavalent Trivalent	146		4480	
Copper Lead	1.0		99.8	1
Mercury	0.050		5.57 0.039	
Nickel Selenium Silver Thallium Zinc	10 2 0.50	U UJ U UN	12 1,4 1,5 0.25 173	P UN

U - The analyte was not detected at or above the reported result.
 N - The spike sample recovery is not within control limits.
 UJ - The analyte was not detected at or above the reported estimated result.
 P - The analyte was detected above the instrument detection limit but below the established minimum quantitation limit.
 E - Reported result is an estimate because of the presence of interference.

EffW-G - Ecology grab sample of Port effluent Sludge - Sludge from the Port belt filter press

Appendix F - VOA and BNA Scan Tentatively Identified Compounds (TICs) -Port of Willapa Harbor PTF and City of Raymond WTP, September 1992.

TIC data are presented on the laboratory report sheets that follow Fractions are identified as VOA or ABN (BNA). Locations corresponding to the Lab Log# (called Sample No. on the laboratory report sheet) and data qualifiers are summarized on this page. If sheets are not included for a station, no TICs were detected.

Port of Willapa Harbor Pretreatment Facility

Location: Type:	InfW-1 grab	lnfW-2 grab	EffW-1 grab	EffW-2 grab	Sludge grab	EffW-G grab-comp
Date:	9/29	9/30	9/29	9/30	9/30	9/30
Time:	1500	1210	1700	1240	0700	1235
Lab Log #:	408230	408231	408240	408241	408244	408245

City of Raymond Wastewater Treatment Plant

Location:	InfR-1	InfR-2	InfR-E	EffR-1	EffR-2	EffR-E
Type:	grab	grab	comp	grab	grab	comp
Date:	9/29	9/29	9/29-30	9/29	9/29	9/29-30
Time:	1000	1540	0900-0900	1045	1600	0900-0900
Lab Log #:	408260	408261	408262	408264	408265	408266

NJ - indicates there is evidence the analyte is present The associated numerical value is an estimate

Inf - influent

Eff - effluent

grab – grab sample comp – composite sample

G - grab composite sample

Sludge - sludge sample
W - Ecology sample from Port PTF

R - Ecology sample from Raymond WTP

Analytical Chemists & Consultants

333 Ninth Ave. North Seattle, WA 98109-5187 (206) 621-6490 (206) 621-7523 (FAX)

ORGANIC ANALYSIS DATA SHEET - Tentatively Identified Compounds

Sample No:

408230

Lab ID: B879AR Matrix: Water

QC Report No: B879 - WDOE

Project No: Port Raymond

VTSR: 10/02/92

Data Release Authorized: Lamb.

Report Prepared: 10/26/92 MAC:E bda

	CAS			Scan	Estimated	
	Number	Compound Name	Fraction	Number		
I.	Adilibe,]		(μg/L)	
		UNKNOWN (bp m/e 44)	VOA	205	110 NJ	K
2 -	74-93-1	METHANETHIOL (bp m/e 47)	VOA	231	62	
3 -		UNKNOWN (bp m/e 45)	VOA	249	77	
- 4	75-18-3	THIOBISMETHANE (bp m/e 62)	VOA	323	98	
- 5		UNKNOWN (bp m/e 126)	VOA	1027	60 V	1
1 ****						
5 7						
' 8 -						
9 -						
10 <u>-</u>						
_					·	
11						1
12						1
13						1
14						1
15						1
16				 		1
17						1
18		· · · · · · · · · · · · · · · · · · ·				1
19						1
20]						1
21				 		1
22					 	1
23						┨
24				 		┪
25 Î				<u> </u>		┨
26					 	┨
27						┨
28					<u> </u>	-
29						-
30						j

Analytical Chemists & Consultants

333 Ninth Ave. North Seattle, WA 98109-5187 (206) 621-6490 (206) 621-7523 (FAX)

ORGANIC ANALYSIS DATA SHEET - Tentatively Identified Compounds

Sample No:

408231

Lab ID: B879B

Matrix: Water

QC Report No: B879 - WDOE

Project No: Port Raymond

VTSR: 10/02/92

Data Release Authorized: Dm

Report Prepared: 10/20/92 MAC:E bda

Number Compound Name Fraction Number Concentration (µg/L)	CAS			Scan	Estimated	
UNKNOWN (bp m/e 58)		Compound Name	Fraction	Number	Concentration	
2 75-18-3 THIOBISMETHANE (bp m/e 62) VOA 325 52 3 3 - UNKNOWN (bp m/e 44) VOA 735 12 3 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5					(μg/L)	
75-18-3 THIOBISMETHANE (bp m/e 62) VOA 325 52	1	UNKNOWN (bp m/e 58)			169 NZ	KF
4 5 6 7 8 9 9 10 11 12 12 13 14 15 15 16 17 18	2 75-18-3	THIOBISMETHANE (bp m/e 62)			52	•
5 6 7 8 9 9 10 11 12 12 13 14 15 15 16 17 18	3 -	UNKNOWN (bp m/e 44)	VOA	735	12 J U	
6	4					
7 8 9 10 11 12 13 14 15 16	5					
8 9 10 11 12 13 14 15 16 17 18						
9	·					
10						
11 12 13 14 15 16 17 18						
12						
13						
14 15 16 17 18						
15						
16 17 18						
17						
18						

20						
21						
22		·				
23						
24 25						
26			-			
27						
28						
29					<u> </u>	
30						

Analytical Chemists & Consultants

333 Ninth Ave. North Seattle, WA 98109-5187 (206) 621-6490 (206) 621-7523 (FAX)

ORGANIC ANALYSIS DATA SHEET - Tentatively Identified Compounds

Sample No:

408240

Lab ID: B879C Matrix: Water

QC Report No: B879 - WDOE

Project No: Port Raymond

VTSR: 10/02/92

Data Release Authorized:

Report Prepared: 10/20/92 MAC:E bda

	CAS I			Scan	Estimat		1
	Number	Compound Name	Fraction	Number	Concentr		1
	113.1.201	- 1		·	(μg/L].
1	75-18-3	THIOBISMETHANE (bp m/e 62)	VOA	326	28 ≬	N	K
2	624-92-0	DIMETHYLDISULFIDE (bp m/e 94)	VOA	682	230]
3	-	UNKNOWN HYDROCARBON (bp m/e 57)	VOA	1057	32 /		
4	-	UNKNOWN HYDROCARBON (bp m/e 57)	VOA	1071	12]
5	-	UNKNOWN HYDROCARBON (bp m/e 43)	VOA	1114	38	$\perp \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \!$	
6	44	UNKNOWN HYDROCARBON (bp m/e 57)	VOA	1123	33 .		1
7		UNKNOWN HYDROCARBON (bp m/e 57)	VOA	1144	56 4		1
8		UNKNOWN HYDROCARBON (bp m/e 57)	VOA	1152	69	\perp	1
9	-	UNKNOWN HYDROCARBON (bp m/e 57)	VOA	1180	19	1	╛
10	_	UNKNOWN HYDROCARBON (bp m/e 57)	VOA	1190	63 1	<u> </u>	1
11]
12]
13]
14]
15]
16]
17]
18]
19							J
20							
21	<u> </u>]
22							
23	-]
24							7
25							1
	<u></u>						1
26 27				<u> </u>			1
			1	 			1
28				 			1
29							1
30	•			<u> </u>			

Analytical Chemists & Consultants

333 Ninth Ave. North Seattle, WA 98109-5187 (206) 621-6490 (206) 621-7523 (FAX)

ORGANIC ANALYSIS DATA SHEET - Tentatively Identified Compounds

Sample No:

408240 Dilution

Lab ID: B879CR

Matrix: Water

QC Report No: B879 - WDOE

Project No: Port Raymond

VTSR: 10/02/92

Data Release Authorized: Dr. Settler Report Prepared: 10/26/92 MAC:E bda

CAS			Scan	Estimated
Number	Compound Name	Fraction	Number	Concentration
				(μg/L)
- .	UNKNOWN HYDROCARBON (bp m/e 57)	VOA	1056	86 J N T
	UNKNOWN HYDROCARBON (bp m/e 43)	VOA	1113	110.
-	UNKNOWN HYDROCARBON (bp m/e 57)	VOA	1121	78 J
	UNKNOWN HYDROCARBON (bp m/e 57)	VOA	1142	150
-	UNKNOWN HYDROCARBON (bp m/e 57)	VOA	1150	200 J
-	UNKNOWN HYDROCARBON (bp m/e 57)	VOA	1177	57
-	UNKNOWN HYDROCARBON (bp m/e 57)	VOA	1187	250 JJ V
<u></u> _				
0				
1				
· 2				
3				
4				
5		-		
ŏ				
7				
8		_		
°		_		
				
0				
.1		- 		
2				
23		_	 	
24		-	<u> </u>	
25				
26			<u> </u>	
27				
28				
×9				
30		!	1	<u> </u>

Analytical Chemists & Consultants

333 Ninth Ave. North Seattle, WA 98109-5187 (206) 621-6490 (206) 621-7523 (FAX)

ORGANIC ANALYSIS DATA SHEET - Tentatively Identified Compounds

Sample No:

408241

Lab ID: B879D Matrix: Water QC Report No: B879 - WDOE

Project No: Port Raymond

VTSR: 10/02/92

Data Release Authorized:

Report Prepared: 10/26/92 MAC E bda

CAS			Scan	Estimated	
Number	Compound Name	Fraction	Number	Concentration (µg/L)	
1 -	UNKNOWN HYDROCARBON (bp m/e 57)	VOA	1056	501 NZ	KF
2 -	UNKNOWN HYDROCARBON (bp m/e 57)	VOA	1142	59 📗	
3 -	UNKNOWN HYDROCARBON (bp m/e 57)	VOA	1150	62 J	
4 -	UNKNOWN HYDROCARBON (bp m/e 57)	VOA	1189	98 J V	
5 .					
6					
7 .					
8		<u> </u>			
9					
10				·	
11					
12					
13					
14					
15					
16					
17			•		
18					
19					
20					
21					
22			<u>.</u>		
23			ļ		
24					
25		ļ			
26					
27					
28					
29					
30			·		

Analytical Chemists & Consultants

333 Ninth Ave. North Seattle, WA 98109-5187 (206) 621-6490 (206) 621-7523 (FAX)

ORGANIC ANALYSIS DATA SHEET - Tentatively Identified Compounds

Sample No: 408245

Lab ID: B879IDL Matrix: Waters

Data Release Authorized: Dam B Atta

Report: 10/28/92-MAC:ctr

QC Report No: B879 - WDOE Project No: Port Raymond

	CAS			Scan	Estimated	1
	Number	Compound Name	Fraction	Number	Conc	
					(μg/L)	
1		Unknown Carboxylic Acid (bp m/e 43)	ABN	251	240 J W	3
2	-	Unknown Carboxylic Acid (bp m/e 43)	ABN	305	230	
}	*	Unknown Carboxylic Acid/coelute (bp m/e 60)	ABN	365	650 J	
	-	C6.H8.N2 Isomer (bp m/e 108)	ABN	384	90 J	
i		Butanoic Acid Isomer (bp m/e 60)	ABN	451	450	
,	-	Unknown Butanoic Acid (bp m/e 74)	ABN	470	610.	
	- 1	Unknown Carboxylic Acid (bp m/e 60)	ABN	500	360 J	
	- 1	C7.H16.O3 isomer (bp m/e 59)	ABN	525	470	
	20324-32-7	2-Propanol, 1-(2-Methoxy-1-Methylethoxy)- (bp m/e 59)	ABN	532	790	
0	-	Unknown Alcohol (bp m/e 59)	ABN	550	1310	
1	-	Unknown (bp m/e 41)	ABN	560	270	
2	-	Unknown (bp m/e 75)	ABN	572	80 .	
3	- 1	Unknown Hydrocarbon (bp m/e 55)	ABN	745	30 .	٦
4	-	Unknown Hydrocarbon (bp m/e 57)	ABN	764	72	٦
5	-	C13.H28 isomer (bp m/e 57)	ABN	781	32	٦
6	-	Unknown Hydrocarbon (bp m/e 57)	ABN	847	29 .	٦
7	-	Unknown (bp m/e 91)	ABN	876	300	
8	501-52-0	Benzenepropanoic Acid (bp m/e 91)	ABN	964	490	٦
9	-	Unknown (bp m/e 79)	ABN	1094	56	1
)	-	Sterol isomer (bp m/e 43)	ABN	2171	59 I V	٦
]						٦
2						7
3						٦
4						٦
5						┪
5					 	٦
7						٦
3						1
?			 			٦
Ó					· · · · · · · · · · · · · · · · · · ·	1

Analytical Chemists & Consultants

333 Ninth Ave. North Seattle, WA 98109-5187 (206) 621-6490 (206) 621-7523 (FAX)

ORGANIC ANALYSIS DATA SHEET - Tentatively Identified Compounds

Sample No:

Lab ID: B879L

408244

QC Report No: B879 - WDOE

Project No: Port Raymond

VTSR: 10/02/92

Data Release Authorized: __

Matrix: Soils/Sediments

Prepared: 10/27/92 MAC:E bda

	CAS			Scan	Estimated	
	Number	Compound Name	Fraction	Number	Concentration	
					(μg/Kg)	l
1	74-93-1	METHANETHIOL (bp m/e 47)	VOA	282	340 / N J	
2	75-18-3	THIOBISMETHANE (bp m/e 47)	VOA	375	140 🕽	l
3	624-92-0	DIMETHYLDISULFIDE (bp m/e 94)	VOA	743	2200]
4	-	UNKNOWN HYDROCARBON (bp m/e 43)	VOA	1215	45 J	l
5	- ,	UNKNOWN (bp m/e 55)	VOA	1232	45	
6	.,	UNKNOWN (bp m/e 41)	VOA	1239	34 J	
7	-	UNKNOWN HYDROCARBON (bp m/e 43)	VOA	1249	68 J	ļ
8	19	UNKNOWN HYDROCARBON (bp m/e 43)	VOA	1259	130	l
9	-	UNKNOWN HYDROCARBON (bp m/e 57)	VOA	1270	200 J J	l
10	-	UNKNOWN (bp m/e 41)	VOA	1281	70 U	l
11						
12						1
13				-		
14		·				
15						
16						
17						
18						١
19						
20						
21					·	١
22				**********		
23						ı
24						
25						ı
26						
27		ALTERNATION OF THE PROPERTY OF				
28	 		1			
29				····		
30						

Analytical Chemists & Consultants

333 Ninth Ave. North Seattle, WA 98109-5187 (206) 621-6490 (206) 621-7523 (FAX)

ORGANIC ANALYSIS DATA SHEET - Tentatively Identified Compounds

Sample No: 408244

Lab ID: B879L

Matrix: Soil/Sediments

QC Report No: 8879 - WDOE Project No: Port Raymond Date Received: 10/02/92

Data Release Authorized: Om Setto

Report: 10/29/92 MAC:ctr

	CAS			Scan	Estimated	1
	Number	Compound Name	Fraction	Number	Concentration	
					(μg/Kg)	
1		Unknown Hydrocarbon (bp m/e 57)	ABN	847	6600/	KE
2	-	Unknown Hydrocarbon (bp m/e 57)	ABN	1259	5300.] "
3	-	Alkyl Decanoic Acid isomer (bp m/e 43)	ABN	1330	17000	
4	-	Alkyl Decanoic Acid isomer (bp m/e 43)	ABN	1383	24000	
5	-	Alkyl Decanoic Acid isomer (bp m/e 43)	ABN	1405	8400.	
6	-	Alkyl Decanoic Acid isomer (bp m/e 55)	ABN	1470	100000	1
7	41	Alkyl Decanoic Acid isomer (bp m/e 73)	ABN	1510	95000	
8	-	Alkyl Decanoic Acid isomer (bp m/e 43)	ABN	1533	3400.	1
9	-	Unknown (bp m/e 55)	ABN	1548	3700	
10	-	Alkyl Decanoic Acid isomer (bp m/e 43)	ABN	1556	4700.	
11	.=	Alkyl Decanoic Acid isomer (bp m/e 43)	ABN	1644	130000	[
12	-	Unknown (bp m/e 55)	ABN	1744	58000	
13	-	Unknown Carboxylic Acid (bp m/e 55)	ABN	1757	25000	
14	112-85-6	Docosanoic Acid (bp m/e 43)	ABN	1875	12000	
15	-	Unknown (bp m/e 55)	ABN	1980	5800	
16	-	Unknown Hydrocarbon (bp m/e 69)	ABN	2020	16000 X	
17	-	Sterol isomer (bp m/e 215)	ABN	2158	37000.	
18	-	Sterol isomer (bp m/e 43)	ABN	2193	140000	
19	-	Sterol isomer (bp m/e 69)	ABN	2202	7400	
20	-	Sterol isomer (bp m/e 124)	ABN	2239	6100.	
21						
22		,				!
23						
24						
25 ["]						

Analytical Chemists & Consultants

333 Ninth Ave. North Seattle, WA 98109-5187 (206) 621-6490 (206) 621-7523 (FAX)

ORGANIC ANALYSIS DATA SHEET - Tentatively Identified Compounds

Sample No:

408260

Lab ID: B879ER Matrix: Water

QC Report No: B879 - WDOE

Project No: Port Raymond

VTSR: 10/02/92

Data Release Authorized: <u>Man B.</u>

Report Prepared: 10/20/92 MAC:E bda

	CAS			Scan	Estimated	
	Number	Compound Name	Fraction	Number	1	
					(μg/L)	ر ا
1	-	UNKNOWN (bp m/e 45)	VOA	251	117 45	KF
2	-	UNKNOWN (bp m/e 45)	VOA	288	7	
3	75-18-3	THIOBISMETHANE (bp m/e 62)	VOA	324	63	
4	-	UNKNOWN (bp m/e 68)	VOA	1029	12 J]
5	-	ALKYL BENZENE ISOMER (bp m/e 119)	VOA	1036	64 4	1
6			<u></u>			
7			<u> </u>			
8						1
9						1
10						
11						Į
12						Į.
13						
14						
15						
16						
17						
18						
19						
20						
21						
22						
23						
24]
25]
26						
27					·	
28						
29						
30						

Analytical Chemists & Consultants

333 Ninth Ave. North Seattle, WA 98109-5187 (206) 621-6490 (206) 621-7523 (FAX)

ORGANIC ANALYSIS DATA SHEET - Tentatively Identified Compounds

Sample No:

408261

Lab ID: B879F

Matrix: Water

QC Report No: 8879 - WDOE

Project No: Port Raymond

VTSR: 10/02/92

Data Release Authorized: Jan Soldie Report Prepared: 10/20/92 MAC:E bda

	CAS			Scan	Estimated	
	Number	Compound Name	Fraction	Number	Concentration	
1					(μg/L)	
1	74-93-1	METHANETHIOL (bp m/e 47)	VOA	233	94 NZ	KÝ
2	-	UNKNOWN (bp m/e 45)	VOA	252	12.	
3	75-18-3	THIOBISMETHANE (bp m/e 62)	VOA	326	64	
4	-	ALKYL CYCLOHEXENE ISOMER (bp m/e 68)	VOA	1030	51 🗸	
5						
6						
7			<u> </u>			
8						
9						
10						
11			<u> </u>			
12						
13						
14				· · · · · · · · · · · · · · · · · · ·		
15				<u> </u>		
16						
17						
18						
19						
20			ļ			
21				<u></u>		
22						
23			<u> </u>			
24			_			
25			_			
26						
27			<u> </u>	·		
28						
29	-					
30						

Analytical Chemists & Consultants

333 Ninth Ave. North Seattle, WA 98109-5187 (206) 621-6490 (206) 621-7523 (FAX)

ORGANIC ANALYSIS DATA SHEET - Tentatively Identified Compounds

Sample No:

408264

Lab ID: B879G

Matrix: Water

QC Report No: B879 - WDOE

Project No: Port Raymond

VTSR: 10/02/92

Data Release Authorized: Park Tallander Report Prepared: 10/26/92 MAC:E bda

CAS			Scan	Estimated
Number	Compound Name	Fraction	Number	Concentration
				(μg/L)
1 -	SILOXANE ISOMER (bp m/e 73)	VOA	181	32 / NI
2 -	UNKNOWN (bp m/e 60)	VOA	231	60
3 -	SILOXANE ISOMER (bp m/e 89)	VOA	337	13 🕽
1066-40-6	TRIMETHYLSILANOL (bp m/e 75)	VOA	353	6.
5	UNKNOWN (bp m/e 46)	VOA	385	28 🗸
-	SILOXANE ISOMER (bp m/e 207)	VOA	671	67
7 -	SILOXANE ISOMER (bp m/e 281)	VOA	879	88
3 -	SILOXANE ISOMER (bp m/e 73)	VOA	1052	60
· -	SILOXANE ISOMER (bp m/e 73)	VOA	1182	16 .
10 -	UNKNOWN (bp m/e 60)	VOA	273	18 J
1				
2				
13				
14				
15				
6				
7				
8			<u> </u>	
				
9				
20				
21		- -		
22	· · · · · · · · · · · · · · · · · · ·			
23				
24				
25				
26				
27				
28				
29				
30				

Analytical Chemists & Consultants

333 Ninth Ave. North Seattle, WA 98109-5187 (206) 621-6490 (206) 621-7523 (FAX)

ORGANIC ANALYSIS DATA SHEET - Tentatively Identified Compounds

Sample No:

408265

Lab ID: B879H

Matrix: Water

QC Report No: B879 - WDOE

Project No: Port Raymond

VTSR: 10/02/92

Data Release Authorized:

Report Prepared: 10/20/92 MAC:E bda

C	CAS			Scan	Estimated	1
N	lumber	Compound Name	Fraction	Number	Concentration	١
	l			•	(μg/L)	ļ
1	-	UNKNOWN (bp m/e 61)	VOA	184	41 / NS]۱
2 -	. •	UNKNOWN (bp m/e 60)	VOA	236	5]
3	-	SILOXANE ISOMER (bp m/e 89)	VOA	339	22]
, –	1066-40-6	TRIMETHYLSILANOL (bp m/e 75)	VOA	356	8.]
, –	-	UNKNOWN (bp m/e 46)	VOA	388	34	
·	-	UNKNOWN (bp m/e 93)	.VOA	278	19.]
, –	-	SILOXANE ISOMER (bp m/e 207)	VOA	674	250	
}	-	SILOXANE ISOMER (bp m/e 281)	VOA	882	· 310 J]
·	-	SILOXANE ISOMER (bp m/e 73)	VOA	1055	200 J]
ο –	-	SILOXANE ISOMER (bp m/e 73)	VOA	1184	53 🗸 🖠]
11 🗂]
12 _]
13 -						7
14 —						1
15 -						1
6						1
17						1
8 _						1
9 -						1
20 [—]				····		1
21 -	·····					1
22 -						1
 23						1
<u>2</u> 4 –						1
 5						1
- 26						1
27						1
28		```				1
<u></u>						1
30 -						1

Analytical Chemists & Consultants

333 Ninth Ave. North Seattle, WA 98109-5187 (206) 621-6490 (206) 621-7523 (FAX)

ORGANIC ANALYSIS DATA SHEET - Tentatively Identified Compounds

Sample No: 408262

Lab ID: B879JDL Matrix: Waters

Data Release Authorized: Danis Color

Report: 10/28/92-MAC:ctr

QC Report No: B879 - WDOE Project No: Port Raymond

	CAS			\$can	Estimated
	Number	Compound Name	Fraction	Number	Conc.
	Ì				(μg/L)
1	142-62-1	Hexanoic Acid (bp m/e 60)	ABN	298	65 J NS
2	-	Unknown (bp m/e 60)	ABN	390	48 1
3		Unknown Carboxylic Acid (bp m/e 74)	ABN	416	90 J
ļ	-	Unknown Carboxylic Acid (bp m/e 60)	ABN	433	37 .
5		Unknown Alcohol (bp m/e 59)	ABN	510	45 📗
5	•	Unknown Alcohol (bp m/e 59)	ABN	515	45
,	-	Unknown Alcohol (bp m/e 59)	ABN	532	73
3	40	C10.H18.O isomer (bp m/e 59)	ABN	750	76
)	-	Unknown Acid (bp m/e 91)	ABN	860	170 🕽 🖊
0	501-52-0	Benzenepropanoic Acid (bp m/e 91)	ABN	935	180 /
1	-	Unknown (bp m/e 107)	ABN	1140	77 0
2	2091-29-4	9-Hexadecanoic Acid (bp m/e 55)	ABN	1454	16 4
3	57-10-3	Hexadecanoic Acid (bp m/e 73)	ABN	1488	350 J
4	506-12-7	Heptadecanoic Acid (bp m/e 43)	ABN	1544	12 🕽
5	-	Unknown Hydrocarbon (bp m/e 55)	ABN	1617	2100 3
6	57-11-4	Octadecanoic Acid (bp m/e 60)	ABN	1632	830 J/
7		Unknown (bp m/e 55)	ABN	1732	71
8		Unknown Carboxylic Acid/coelute (bp m/e 43)	ABN	1746	50 1
9	-	Steroi isomer (bp m/e 43)	ABN	2152	190 J
0	-	Sterol isomer (bp m/e 43)	ABN	2174	480 JV
1					
2					
3					
4					
5					
6					
7					
8			.		
9					
o i					

Analytical Chemists & Consultants

333 Ninth Ave. North Seattle, WA 98109-5187 (206) 621-6490 (206) 621-7523 (FAX)

ORGANIC ANALYSIS DATA SHEET - Tentatively Identified Compounds

Sample No: 408266

Lab ID: B879K Matrix: Waters

Data Release Authorized: Comb. Latter

Report: 10/28/92-MAC:ctr

QC Report No: B879 - WDOE Project No: Port Raymond

	CAS			Scan	Estimated]
	Number	Compound Name	Fraction	Number	Conc.	
	. (4	·			(μg/ <u>L</u>)	J,
-	-	Siloxane isomer (bp m/e 113)	ABN	357	44 N] k
	-	Unknown Alcohol (bp m/e 59)	ABN	511	14.0	
-	-	Unknown (bp m/e 45)	ABN	515	4.	
-	-	Unknown Alcohol (bp m/e 59)	ABN	525	26 J	_
-	-	Unknown (bp m/e 45)	ABN	531	5.	4
-	-	Unknown (bp m/e 43)	ABN	551	5.	-
-	-	Unknown (bp m/e 143)	ABN	668	20	4
-	-	Unknown (bp m/e 157)	ABN	694	12	4
-	-	(2-Butoxyethoxy)-Ethanol isomer (bp m/e 45)	ABN	749	35 /	-
0	-	Unknown (bp m/e 66)	ABN	894	97	4
1 -	-	Unknown (bp m/e 157)	ABN	910	11	1
2 -	124-17-4	Ethanol, 2-(2-Butoxyethoxy)-, Acetate (bp m/e 43)	ABN	945	6	-
_ 3	-	Unknown (bp m/e 176)	ABN	1012	7.	4
4		Unknown (bp m/e 45)	ABN	1073	64	4
5		Unknown (bp m/e 69)	ABN	1109	13.	4
6	-	Unknown (bp m/e 59)	ABN	1326	16.	4
7	57-10-3	Hexadecanoic Acid/coelute (bp m/e 43)	ABN	1467	5.	4
8 -	-	Unknown (bp m/e 41)	ABN	1595	11)	4
9 -	78-51-3	Ethanol, 2-Butoxy-, Phosphate (3:1) (bp m/e 45)	ABN	1778	5.	4
0]	•	Sterol isomer (bp m/e 43)	ABN	2171	61 V	-
1	· ·					1
2 3						
4]
→ 5	. <u> </u>					4
δ.						
7						1
8						1
9						
ָ סג						

Analytical Chemists & Consultants

333 Ninth Ave. North Seattle, WA 98109-5187 (206) 621-6490 (206) 621-7523 (FAX)

ORGANIC ANALYSIS DATA SHEET - Tentatively Identified Compounds

Sample No: 408266 Re-extraction

Lab ID: B879KRE

Matrix: Waters

Data Release Authorized: Report: 10/28/92-MAC:ctr

QC Report No: B879 - WDOE Project No: Port Raymond

·	CAS			Scan	Estimate	d
	Number	Compound Name	Fraction	Number	Conc	
	ranibei				(μg/L)	
	<u>.</u>	Unknown (bp m/e 78)	ABN	358		15
	-	Unknown (bp m/e 78)	ABN	362	13 🗸	1
	20324-32-7	2-Propanol, 1-(2-Methoxy-1-Methylethoxy)- (bp m/e 59)	ABN	510	11.	
	13429-07-7	2-Propanol, 1-(2-Methoxypropoxy)- (bp m/e 59)	ABN	525	23 J	
	-	Unknown (bp m/e 45)	ABN	550	5 J	
		Unknown (bp m/e 143)	ABN	668	17	
		Unknown (bp m/e 157)	ABN	693	9.	
	112-34-5	Ethanol, 2-(2-Butoxyethoxy)- (bp m/e 45)	ABN	749	33	
		Unknown (bp m/e 66)	ABN	894	6.	
0		Unknown (bp m/e 157)	ABN	915	11 0	
1	124-17-4	Ethanol, 2-(2-Butoxyethoxy)-, Acetate (bp m/e 43)	ABN	944	5.	
2		Unknown (bp m/e 57)	ABN	960	5.	
3		Unknown (bp m/e 176)	ABN	1016	6.	
4		Unknown (bp m/e 69)	ABN	1113	15	
5		Unknown (bp m/e 59)	ABN	1327	17	I
6		Alkyl Decanoic Acid isomer (bp m/e 43)	ABN	1466	7.	
7	-	Unknown (bp m/e 45)	ABN	1542	6.	
8		Unknown (bp m/e 41)	ABN	1595	7.	\prod
9	-	Sterol isomer (bp m/e 43)	ABN	2170	10	
Ó		Sterol isomer (bp m/e 55)	ABN	2238	9.1	V
1						
2						
3						
4						
5						
6						
7						
8						
9	-					
7 0			1			

Appendix G - VOA, BNA, Pesticide/PCB and Metals Scan Results - Port of Willapa Harbor, December 1992.

(Group)¹	Location: Type: Date: Time: Lab Log#: VOA Compounds	EffW-1 grab 12/15 1220 518249 ug/L	EffW-2 grab 12/16 0610 518250 ug/L	
a a	Chloromethane Bromomethane Vinyl Chloride Chloroethane	10 U 10 U 10 U 10 U	10 U 10 U 10 U 10 U	
a b	Methylene Chloride Acetone Carbon Disulfide 1,1-Dichtoroethene 1,1-Dichtoroethane	10 U 10 U 10 U 10 U	10 U 61 10 U 10 U	
b a	1,2-Dichloroethene (total) Chloroform 1,2-Dichloroethane 2-Butanone (MEK)	10 U 10 U 3 J 10 U	10 U 10 U 4 J 10 U 4 NJ	
c a a d	1,1,1-Trichloroethane Carbon Tetrachforide Bromodichloromethane 1,2-Dichloropropane	10 U 10 U 10 U 10 U 10 U	10 U 10 U 10 U 10 U 10 U	
e a c	cis-1,3-Dichloropropene Trichloroethene Dibromochloromethane 1,1,2-Trichloroethane Benzene	10 U 10 U 10 U 10 U	10 U 10 U 10 U 10 U	
e a	trans-1,3-Dichloropropene Bromotorm 4-Methyl-2-Pentanone (MIBK) 2-Hexanone	10 U 10 U 10 U 10 U 10 U	10 U 10 U 10 U 10 U	
t g	Tetrachloroethene 1,1,2,2-Tetrachloroethane Toluene Chlorobenzene	10 U 10 U 10 U 1 J 10 U	10 U 10 U 10 U 1 J 10 U	
-	Ethylbenzene Styrene Total Xylenes	10 U 10 U 10 U	10 U 10 U 10 U 10 U	

U - The analyte was not detected at or above the reported result.
 J - The analyte was positively identified. The associated numerical result is an estimate.
 N - The spike sample recovery is not within control limits.

Appendix G - (cont'd) - Port of Willapa Harbor, December 1992.

	Location: Type: Date: Time:	InfW-PE comp 12/15-16 0800-0800	EffW-E comp 12/15-16 0800-0800	
	Lab Log#: BNA Compounds	518232 ug/L	518251	
(Group)1	•	. •	ug/L	
	Phenol Aniline	180 120 U	22 50 UJ	
J	Bis(2-Chloroethyl)Ether	25 U	10 U	
h	2-Chlorophenol 1,3-Dichlorobenzene	25 U 25 U	10 U	
h	1,4-Dichlorobenzene	25 U	10 U 10 U	
	Benzyl Alcohol	25 U	10 U	
h	1,2~Dichlorobenzene	25 U	10 Ū	
	2-Methylphenol	25 U	10 U	
J	Bis(2-Chloroisopropyl)Ether 4-Methylphenol	25 U	ט 10	
k	N-Nitroso-di-n-Propylamine	280 25 U	300 10 U	
	Hexachloroethane	20 U	20 U	
	Nitrobenzene	25 U	10 U	
	Isophorone	25 U	10 U	
ı	2-Nitrophenol	50 U	20 U	
	2,4-Dimethylphenol Benzoic Acid	25 U 92 J	10 U	
1	Bis(2+Chloroethoxy)Methane	92 J 25 U	110 J 10 U	
	2,4-Dichlorophenol	50 Ü	20 U	
g	1,2,4-Trichlorobenzene	25 U	10 U	
n	Naphthalene	25 U	10 U	
	4-Chloroaniline Hexachlorobutadiene	25 U	10 UJ	
	4-Chloro-3-Methylphenol	25 U 50 U	10. U	
	2-Methylnaphthalene	25 U	20 U 10 U	
	Hexachlorocyclopentadiene	50 U	20 U	
	2,4,6-Trichlorophenol	50 U	20 U	
	2,4,5-Trichlorophenol	50 U	20 U	
m	2-Chloronaphthalene 2-Nitroaniline	25 U	10 U	
	Dimethyl Phthalate	50 U 25 U	20 U	
'n	Acenaphthylene	25 U	10 U 10 U	
0	2,6-Dinitrotoluene	50 U	10 G 20 U	
	3-Nitroaniline	120 U	50 U	
n	Acenaphthene	25 U	10 U	
1	2.4-Dinitrophenol	250 U	100 U	
1	4-Nitrophenoi Dibenzoturan	250 U 25 U	100 U	
	-department	20 U	10 U	

U - The analyte was not detected at or above the reported result.
 J - The analyte was positively identified. The associated numerical result is an estimate.

Appendix G - (cont'd) - Port of Willapa Harbor, December 1992.

	Location: Type: Date: Time: Lab Log#:	InfW-PE comp 12/15-16 0800-0800 518232	12 080	EffW-E comp 2/15-16 0-0800 518251															
	BNA Compounds	ug/L		ug/L															
o	2,4-Dinitrotoluene	50		20															
Í	Diethyl Phthalate	25		10 1															
p n	4-Chlorophenyl Phenylether Fluorene	25		10		Materia de caración													
"	4-Nitroaniline	25 50		10 1 20 1															
I	4,6-Dinitro-2-Methylphenol	250		100															
k	N-Nitrosodiphenylamine	25		10				*****************				enterantina	anawana.	arananan ara	tootoooliyyi	ndandangadi	20100000000000	1001010101010111	19100000000
_	1,2-Diphenylhydrazine	50		20															
p g	4-Bromophenyl Phenylether Hexachtorobenzene	50 50		20 20		550,000,000,000,000	-16-at-sansansansa	sociologica (AMA)	MaMasasasas	100000000000000000000000000000000000000	ana arang aran			********					
y	Pentachlorophenol	250		100															
n	Phenanthrene	25		10						80 (80 (80									
n	Anthracene	25		10								ti ittiistitussiggi.	ne no snorense.		Starting taxour	inannannini	505000000	2000000000	.0000000000
	Carbazole Di-n-Butyl Phthalate	25 25		10															
n	Fluoranthene	25 25		10 10		010010010000000000	200043-000-40-00-	-95-255-0000-000-00	000000000000000	earnataintear	500 000000000	oosnoonwow.	65-180-55000	20000000000000	namuunana				
'n	Pyrene	25 25		10	A CONTRACTOR OF THE CONTRACTOR								69406, I)						
Ī	Butylbenzył Phthalate	 25		10	and the second second second								espolitațilă Sectoria						6616679766 661666786
	3,3'-Dichlorobenzidine	250		100	****	060600000000000000000000000000000000000		6980000000000	2001203493934	350000000000000000000000000000000000000		9199999999	\$3000000	1008000F()	15600100000	100000000000000000000000000000000000000	1486613569		936116999999
n	Benzo(a)Anthracene	25		10	U														
n	Chrysene	25		10															
ı	Bis(2-Ethylhexyl)Phthalate	48		10								0000000						0000000	
ı	Di-n-Octyl Phthalate	25		10				Mortusta (6)					Conton.						
n n	Benzo(b)Fluoranthene Benzo(k)Fluoranthene	25 25		10 10	and the state of t		88160080												
n	Benzo(a)Pyrene	25 25		10															
n	Indeno(1,2,3-cd)Pyrene	. 25		10															
n	Dibenzo(a;h)Anthracene	25		10		90000000000000000000000000000000000000	16511856119501	9999 (300, 300)			10000000000000000000000000000000000000	el/ecococcis	\$680,8666	99999988	18800188508	18181818181818	60.0000000000	::::::::::::::::::::::::::::::::::::::	383333333333
n	Benzo(g,h,i)Perylene	25		10															36 (36 (36) 31 (36)

U - The analyte was not detected at or above the reported result.

Appendix G - (cont'd) - Port of Willapa Harbor, December 1992.

	Location: Type: Date: Time:	InfW-PE comp 12/15-16 0800-0800	EffW-E comp 12/15-16 0800-0800	
	Lab Log#:	518232	518251	
	Pesticide/PCB Compounds	ug/L		
(Group)1	- Solidadi Garage	agru	ug/L	
q	alpha-BHC	0.033 N	0.037 N	
q	beta-BHC	0.099 DN	0.16 D	All the Control of th
q	delta-BHC	0.009 U	0.009 U	$160000 \pm 0.0000 + 0.0000 + 0.0000 + 0.0000 + 0.0000 + 0.0000$
q	gamma-BHC (Lindane)	0,004 U	0.004 U	
r	Heptachlor	0.003 U	0.003 U	
	Aldrin	0.004 U	0.004 U	
r	Heptachlor Epoxide	0.083 U	0.083 U	
S	Endosulfan I	0.014 U	0.014 U	
	Dieldrin	0.007 J	0.01 U	
u	4,4'-DDE	0.51 D	0.086 D	
t	Endrin	0.008 NJ	0.007 J	
S	Endosulfan II	0.031	0.004 U	
u	4,4'-DDD	0.017	0.011 U	
s	Endosulfan Sulfate	0.066 U	0.066 U	
u	4,4'-DDT	0:012 UJ	0.012 U	
į	Endrin Aldehyde	0.023 U	0.023 Ü	
٧	Chlordane	0.014 U	0.014 U	
	Toxaphene	0.24 U	0.24 U	
W	Arecier+1016	0.065 U	0.065 U	
W	Aroclor-1221	0.13 U	0,13 U	
W	Aroclor+1232	0.65 U	0.65 U	0.000,000,000,000,000,000,000,000,000,0
W	Aroclor-1242	0.65 U	0.65 U	2002-2004-0-1
w	Aroclor-1248	0.65 U	0.65 U	
W	Aroclor-1254	0,65 U	0.65 U	
W	Aroclar-1260	0.65 U	0.55	

U - The analyte was not detected at or above the reported result.
 J - The analyte was positively identified. The associated numerical result is an estimate.

UJ - The analyte was not detected at or above the reported estimated result.

N - There is evidence the analyte is present in this sample.

D - The result is obtained from a dilution of the original extract.

Appendix G - (cont'd) - Port of Willapa Harbor, December 1992,

	Location: Type: Date: Time: Lab Log#:	InfW-PE comp 12/15-16 0800-0800 518232		EffW-E comp 12/15-16 0800-0800 518251	
<u>Metals</u>		ug/L		ug/L	
Antimony		300	U	150	U
Arsenic		198	N	162	N
Pentavalent Trivalent					
Beryllium		10	u	5.0	U
Cadmium		48.5		6.45	
Chromium		130	Ρ	30	U
Hexavalent Trivalent					
Copper		847		140	
Lead		12	J	1.4	
Mercury		1.06		0.16	
Nickel		100	(Projection)	50	U
Selenium Silver		21,70	N	PROPOS CONTRACTOR (CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONT	N
Thallium		13.9	UN	2,4	9099999999999 0 [694]
Zinc		2120	ON	2.5	UN

- U The analyte was not detected at or above the reported result.
- J The analyte was positively identified. The associated numerical result is an estimate.
- N The spike sample recovery is not within control limits.
- P The analyte was detected above the instrument detection limit but below the established minimum quantitation limit.
- a Total Halomethanes
- b Total Dichloroethenes
- c Total Trichloroethanes
- d Total Dichloropropanes
- e Total Dichloropropenes
- í Total Tetrachloroethanes
- g Total Chlorinated Benzenes (excluding Dichlorobenzenes)
- h Total Dichlorobenzenes
- I Total Phthalate Esters
- i Total Chloroalkyl Ethers
- k Total Nitrosamines
- 1 Total Nitrophenols

- m Total Chlorinated Naphthalenes
- n Total Polynuclear Aromatic Hydrocarbons
- o Total Dinitrotoluenes
- p Total Haloethers
- q Total BHCs
- r Heptachlor
- s Endosulfan
- t Endrin
- u DDT plus metabolites
- v Total Chlordane
- w Total Aroclors (PCBs)

Appendix H - VOA and BNA Scan Tentatively Identified Compounds (TICs) -Port of Willapa Harbor PTF and City of Raymond WTP, December 1992.

TIC data are presented on the laboratory report sheets that follow. Fractions are identified as VOA or ABN (BNA). Locations corresponding to the Lab Log# (called Sample No. on the laboratory report sheet) and data qualifiers are summarized on this page. If sheets are not included for a station, no TICs were detected.

Port of Willapa Harbor Pretreatment Facility

Location:	InfW-PE	EffW~1	FffW-2	FffW-E
Type:	comp	grab	grab	comp
Date:	12/15-16	12/15	12/16	12/15-16
Time:	0800-0800	1220	0610	0800-0800
Lab Log #:	518232	518249	518250	518251

City of Raymond Wastewater Treatment Plant

Location:	EffR-E
Type:	comp
Date:	12/15-16
Time:	0800-0800
Lab Log #:	518244

NJ - indicates there is evidence the analyte is present The associated numerical value is an estimate.

Inf - influent Eff - effluent

Eff - effluent
grab - grab sample
comp - Ecology sample
W - Ecology sample from Port PTF
P - Ecology sample from Protan
R - Ecology sample from Raymond WTP

VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

	DOE	SAMPLE	NO.
15	5182	1 9	

Lab Name: LAUCKS TESTING LABS

Contract:

Lab Code: LAUCKS Case No.:

SAS No.:

SDG No.: 18230

Matrix: (soil/water) WATER

Lab Sample ID: 12795-02

Sample wt/vol: 5.00 (g/ml) ML

Lab File ID: >OL21K

Level: (low/med) LOW

Date Received: 12/17/92

% Maisture: not dec.

Date Analyzed: 12/21/92

GC Column: DB-624 ID: 0.53(mm)

Dilution Factor: 1.0

Soil Extract Volume:

(uL)

Soil Aliquot Volume:

(uL)

CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L

Number TICs found: 7

			•	
CAS NUMBER	: COMPOUND NAME	! RT	EST. CONC.	1 0 1
 1.74931	:=;===================================	1.20	61	IN NJ S
2.115106	IMETHANE, OXYBIS-	; 1.50	1 7	J
3.75183	METHANE, THIOBIS-	1 1.71	: 65	150
4.624920	DISULFIDE, DIMETHYL-	8.41	140	14N
5.1618264	12.4-DITHIAPENTANE	14.95	10	1341
6.3658808	TRISULFIDE, DIMETHYL-	18.37	1 47	ו אלנו
7.1120214	UNDECANE	1 22.68	7	15N V 1
		;		; ' ' !
Ğ				1
		;	1	1
			!	1
12.			ł	;;
13.			!	1
14.		1	!	;;
15.			!	1
16-			;	;;
17.		1	1	1
18.			!	;
19.			;	!
20.			1	!!
21.		1	}	11
		1	ļ	¦
23.		;		11
24.		<u> </u>	1	!
25			!	!
26.		[]		1
27.	1		l	! <u></u> !
28.		1	l	!!
			;	!;
30.			ł	! <u></u> !
			1	!

FORM I VOA-TIC

3/90

1F

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

SAMPLE NO.

Lab Name: LAUCKS TESTING LABS Contract:

518232

Matrix: (soil/water) WATER

Lab Sample ID: 9212795-04

Sample wt/vol: 200

(g/mL) ML

Lab File ID: >LL286::D2

Level: (low/med)

Date Received: 12/17/92

% Moisture: decanted: (Y/N) N

LOW

Date Extracted: 12/21/92

Date Analyzed: 12/28/92

Injection Volume: 2.0 (uL)

Dilution Factor: 5

GPC Cleanup: (Y/N) N

Concentrated Extract Volume:) 1000 (ul)

pH:

Number TICs found: 28

CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L

1		COMPOUND NAME					- -
i	1.	LUNKNOWN BUTANGIC ACID LUNKNOWN	6.80	1	3000	12 114 :	82,
i	2.107926	IBUTANDIC ACID	9.59	' 1	13000	INT 3H	
- 1	4.	TUNKNOWN	10.62		5100	12 9À 1	
ł		BUTANDIC ACID, 2-METHYL-				INJ JK :	
ł	6.109524	PENTANDIC ACID	11.28	1	1700	: J)y :]
i	7.646071	PENTANOIC ACID, 4-METHYL-	13.06		11000	। । जुर्स ।	
1.	8.142621	HEXANDIC ACID	13.19	ŀ	870	ואר אר	ł
i	9.501520	BENZENEPROPANGIC ACID	19.91	1	25000	I JIN I	}
1		IDECANDIC ACID	20.01	ŀ	1900	NE VI	
1	11.5393817	DECANDIC ACID, 2-HYDROXY-	22.39	- 1	500	: ME V:	
1	12.	LUNKNOWN HYDROCARBON	22.56	;	380	ו אלב בו	
1	13.14199156	IBENZENEACETIC ACID. 4-HYDROX	24.40		690	INT IN !	
ţ	14.	TUNKNOWN HYDROCARBON :	25.21	!	740	1 WC T:	
ł	15.	LUNKNOWN	25.47	1	1000	: 1/(L L :	ļ
Į	16.544638	LUNKNOWN HYDROCARBON LUNKNOWN LTETRADECANOIC ACID LPENTADECANOIC ACID	25.80	1	2500	INJIN :	
1	17.1002842	PENTADECANOIC ACID	27.06	- {	840	I NE [I	j
1	20.57103	HEXADECANDIC ACID	28.75	- 1	40000	: J/N :	
	21.506127	HEPTADECANDIC ACID UNKNOWN	29.23	ľ	2500	1 N 7 N 1	
- 1	22.	IUNKNOWN	29.67	ŀ	990	ו אנדבו	ļ
ł	23.	LUNKNOWN	30.91	ł	31000	IJIN !	
ł	24.57114	INCTARECANDIC ACID	31 AB	- 1	7200	I NECNI	
	25.	LUNKNOWN	32.81	1	18000	1J (N 1	
	26.	LUNKNOWN	33.06	í	18000	ואנו	
	27.	LENKNOWN	40.87	Ī	4400	JN	
			40.96	1	3100	i V ji i	\bigvee

1F SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

SAMPLE NO. 518244

Lab Name: LAUCKS TESTING LABS Case No:

Lab Sample ID: 9212795-11

Matrix: (soil/water) WATER

Lab File ID: >LL284::D2

Sample wt/vol: 1000 (g/mL) ML

Date Received: 12/17/92

Level: (low/med) LOW

% Moisture: decanted: (Y/N) N Date Extracted: 12/21/92

Concentrated Extract Volume: 1000 (ul)

Date Analyzed: 12/28/92

Injection Volume: 2.0 (uL)

Dilution Factor: 1

GPC Cleanup: (Y/N) N pH:

Number TICs found: 10

CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L

1	CAS NUMBER	COMPOUND NAME	 -	RT	EST.	CONC.		
¦ =			: =		; =====		; ====;	ش
į	1 -	LUNKNOWN	1	6.00	1	9	1 27 2KM 1	34
•	2.	LUNKNOWN	ŀ	16.91	<u> </u>	2	K[[[]	1
1		LUNKNOWN HYDROCARBON	:	27.60	1	3	J X N	
i			•	33.15	?	3	: XLT:	
i	4.	TUNKNOWN	:		I	Ž	TIN	1
1	5.	IUNKNOWN	i	33.38		0		J
!	6.2962892	(BENZO(G)PTERIDINE-2,4(1H,3H)	i	36.95	:	3	NIJN !	
į	7	LUNKNOWN		37.48	ļ	5	: J 34J :	
,	8.	LUNKNOWN HYDROCARBON	!	40.78	\$ 1	3	I DE I	
			į	43.22	!	5	(T) Jry	1
į	9.	I NIKNOMN	,		,	- -	J 76	V.
1	10.	:UNKNOWN HYDROCARBON	i	43.73	i	3	1 mm	•

1E VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

		1
ŧ		ı
!	518250	
7	210500	•
ı		i
i		1

DOE SAMPLE NO.

Lab Name: LAUCKS TESTING LABS

Contract:

SDG No.: 18230

Matrix: (soil/water) WATER Lab Sample ID: 12795-06

Sample wt/vol: 5.00 (g/ml) ML

Lab File ID: >OL1SM

Level: (low/med) LOW

Date Received: 12/17/92

% Moisture: not dec.

Date Analyzed: 12/18/92

GC Column: DB-624 ID: 0.53(mm)

Dilution Factor: 1.0

Soil Extract Volume:

(uL)

Soil Aliquot Volume:

(uL)

CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L

Number TICs found: 6

CAS NUMBER	COMPOUND NAME	RT I		
======================================	:= ===================================	1.50	11	בא אל ו
2.75183	METHANE, THIOBIS-	1.70	71	I ML:
	DISULFIDE, DIMETHYL-	8.36	170	JN
3.624920	O 4 DITHIADENTANE	14.95	13	派
4.1618264	12,4-DITHIAPENTANE	18.37	21	7
5.3658808	ITRISULFIDE, DIMETHYL-	22.66	26	3 V
6.1120214	UNDECANE	; 44.00 1	20	1 m M M
7. <u></u>		<u>'</u>		-
8. <u></u>				-
7 ·	1			-¦
o		!		<u>'</u>
1		!		•
2. <u></u>				·
3	1			·!
4. <u></u>		i		- <u> </u>
5. <u> </u>			·	-¦ <i>-</i>
6	11			- !
7	!	!!		-!
8.				-!
9.				- !
٥.		;;		- <u> </u>
1.			 	- !
2.			 	_ !
		_		.]
			,	_
5	:	!		_
6.				_
			 	_
é				. !
9		}		_
0.	1	!	` ·	_

FORM I VOA-TIC

3/90

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

SAMPLE NO. 518251

Lab Name: LAUCKS TESTING LABS Case No:

Matrix: (soil/water) WATER

Lab Sample ID: 9212795-07

Sample wt/vol: 500 (g/mL) ML

Lab File ID: >HA054::A4

Level: (low/med) LOW

Date Received: 12/17/92

% Moisture: decanted: (Y/N) N Date Extracted: 12/29/92

Concentrated Extract Volume: 1000 (ul)

Date Analyzed: 01/05/93

Injection Volume: 2.0 (uL)

Dilution Factor: 5

GPC Cleanup: (Y/N) N

ρH:

Number TICs found: 22

CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L

;	CAS NUMBER	COMPOUND NAME		 EST. CONC.	
; : !	1.107926		8.31		INJUN ISA
;	2.503742	BUTANOIC ACID, 3-METHYL-	9.97	1 580	1 JM
į	3.116530	BUTANOIC ACID, 2-METHYL-	10.32	1 550	i iq45
•			11.20		1 QN 1
!		PENTANDIC ACID, 4-METHYL	12.56	1100	1 374 1
;	6.646015	PROPANDIC ACID, 3-(METHYLTHI)	14.88	120	1 Syn 1
,	7.112345	ETHANOL, 2-(2-BUTOXYETHOXY)-	16.17	1 270	N
!	8.13532188	PROPANOIC ACID, 3-(METHYLTHI)	16.78	420	: JAN :
		BENZENEACETIC ACID	17.65	; 78	1 , 341 1
1	10,2613890	IPROPANEDICIC ACID, PHENYL-	17.89	1 200	1 NC VE
		LUNKNOWN	18.30	1 67	12.94-1
į			19.63	1 2500	IN2 IN
į			19.96	1 78	17 3N 1
;			25.18		124 1
į			28.41		1N2-94
i			30.86		17 M !!
į			30.96		1 1 350 1
•			34.00	1 88	1 1/2/1
;			34.93		1 JN 1
		LUNKNOWN	36.68		1 34 1
			37.78		ון אנון
		LUNKNOWN	41.33	1 79	I A OCH IA

Appendix I - Sampling Schedule - City of Raymond WTP, September 1992.

	200100200000	H -	serioso nen	9359350 50 50	202222 000 000 0
EffR~ED comp 9/29-30 0900-0900 408269		шшші	ħ m	៣ព.ពា	
EffR-E comp 9/29-30 0900-0900 408266	ишт	៣៣៥រ	ក ឯយកាកា	65 65 65	шш
EffR-2 grab 9/29 1600 408265	m	ш	шш	ធារា	ш ш
EffR-1 grab 9/29 1045 408264	ш	ш	шш	mm	т тт
Leach grab 9/29 1010 408270		ш	m		шшш
InfR-R comp 9/29-30 0900-0900 408263	шшш	m m tt	n Em m		шш
	шш	m m	1 С М Л	E E E E	шш
InfR-2 grab 9/29 1540 408261	m	ш	щm	Ш	ш шш
InfR-1 grab 9/29 1000 408260	Ш	Ш	шш	Ш	ш шш
Location: Type: Date: Date: Time: Lab Log #:				VATIONS	Col**
Parameter Loc Lab	Conductivity Alkalinity Hardness	SAUT SST SSVAUT	BODS COD TOC (water) TOC (soil)	NH3-N NO2+NO3-N Oil and Grease F-Collion MF FIELD OMSFEWATIONS	Temperature (C) Temp-cooled (C)*+ put Conductivity (umbos/cm) Chlorine (mg/L) Sulfide (mg/L)

InfR – City of Raymond influent E – Ecology sample ED – Ecology duplicate sample Leach – Landfill leachate influent R – City of Raymond sample EffR – City of Raymond effluent

grab – grab sample comp – composite sample GC – grab-composite sample

Appendix I - Sampling Appendix I - (cont'd) - City of Raymond WTP, September 1992.

Parameter	Location: Type: Date: Time: Lab Log #:	EffR-GC grab-comp 9/29 *	EffR-R comp 9/29-30 0900-0900 408267	
GENERAL CHEMIS		400200	40020/	
Conductivity		.	<u></u>	28881888 SSC S
Alkalinity Hardness		E E	H H H H H	
TS	383331333333333	686 688 683 885 <u>68</u> 5	· · · · · · · · · · · · · · · · · · ·	
TNVS			E	
TSS		Е	ER	
TNVSS			E	
BOD5			E <u>R</u>	
COD TOC (water)			E E	
TOC (water)			-	
NH3-N			ER	
NO2+NO3-N	58858888888888888888	etamenamenamen		000000000000000000000000000000000000000
Total-P	20 (3) (4) (4) (4) (4) (4) (4)	500, 858, 558, 858, 659	ĒŔ	
Oil and Grease				0140801000100010001000 01408010081000100010000
F-Coliform MF	000000000000000000000000000000000000000	000000000000000000000000000000000000000		
FIELD OBSERVAT	IONS			
Temperature (C)				
Temp-cooled (C)*-	F		E	
pH Conduction (cont.)	60		E	
Conductivity (umbo Chlorine (mg/L))Stem)			
Sulfide (mg/L)				

E

^{*} grab composite sample collected as two equal volumes at 0920 12/15 and 1010 12/16.

Appendix J - Sampling Schedule - City of Raymond, December 1992.

Parameter	Location: Type: Date: Time: Lab Log #:	InfR-1 grab 12/15 830 518238	InfR-2 grab 12/15 1350 518239	InfR-E comp 12/15-16 0820-0820 518240	InfR-R comp 12/15-16 0800-0800 518241	EffR-1 grab 12/15 0920 518242	EffR-2 grab 12/15 1415 518243	EffR-E comp 12/15-16 0800-0800 518244	EffR-ED comp 12/15-16 0800-0800 518245
GENERAL CHEM							0.02.10	010244	010270
Conductivity Alkalinity Hardness TS		E	E			E	E		
TNVS				. 6	E				E
TSS		E	Е	ER	ER	Е	E	ER	E E
TNVSS BOD5 COD TOC (water) TOC (soil/sed)		E	E	E ER E E	ER ER E	E	E	ER ER E	E
NH3-N				Е	E			Е	Е
NO2+NO3-N Total-P Oil and Grease F-Coliform MF (#		E	E	E	E E	E E	E E	E	E E
FIELD OBSERVA Temperature Temp-cooled	TIONS	E	E	- E	E	E	E	E	
pH Gonductivity (uml Chlorine (mg/L) Sulfide (mg/L)	nos/cm)	E E	E E	E E	E	EEE	E E	E 5	

InfR - City of Raymond influent
E - Ecology sample
ED - Ecology duplicate sample
R - City of Raymond sample
EffR - City of Raymond effluent

grab - grab sample comp - composite sample GC - grab composite sample

Parameter GENERAL CHEMIS	Location: Type: Date: Time: Lab Log #:	EffR-GC grab-comp 12/15 * 518247	EffR-R comp 12/15-16 0800-0800 518246	
Conductivity		.		
Alkalinity Hardness		6 6 6	HEE E	
TS		: ::::::::::::::::::::::::::::::::::::	E	
TNVS			E	
TSS		E	ER	
TNVSS BOD5			E ER	
COD				
TOC (water)			Ē	98993999999999
TOC (soil/sed)			_	
NH3-N NO2+NO3-N	000000000000000000000000000000000000000	Militaria Maria manganan kalendara	E	
Total=P			E	
Oil and Grease				
F-Coliform MF (#/1		000000000000000000000000000000000000000	40000000000000000000000000000000000000	100100100000000000000000000000000000000
FIELD OBSERVATI Temperature	ONS			
Temp-cooled	51845151345518455184551845518	000000000000000000000000000000000000000		(2) (2) (2) (2) (2) (2) (2) (2) (2) (2)
рH			EEE	
Conductivity (umho	s/cm)		E	
Chlorine (mg/L) Sulfide (mg/L)				PARCES ASSOCIAÇÃO (1000 (100 (100)

^{*} grab composite sample collected as two equal volumes at 0920 12/15 and 1010 12/16.

Appendix K - VOA, BNA, Pesticide/PCB and Metals Scan Results - City of Raymond, September 1992.

	VOA Compounds	Location: Type: Date: Time: Lab Log#:	InfR-i grab 9/29 1000 408260 ug/L	InfR-2 grab 9/29 1540 408261 ug/L	EffR-1 grab 9/29 1045 408264	EffR-2 grab 9/29 1600 408265	
(Group) ¹	1086g-14-10-10-10-10-10-10-10-10-10-10-10-10-10-		•	•			
a	Chloromethane Bromomethane		2.0 U	2.0 U	2.0 U	2.0 ℓ	
а	Vinyl Chloride		2,0 U	2.0 U	2,0 U	2.0 (
	Chloroethane		2.0 U 2.0 U	2.0 U 2.0 U	2.0 U	2.0 (
а	Methylene Chloride	*	2.0 U	2.0 U I	2.0 U 5.2	2.0 l 2.0 l	
	Acetone	1	49	17	11	7.7	· ·
	Garbon Disulfide		1.0 U	1.0 U	1.0 U	2.0 l	47
b	1,1-Dichloroethene		1.0 U	1.0 U	1.0 Ū	1.0	10010000000000000000000000000000000000
	1,1-Dichloroethane		1.0 U	1.0 U	1.0 U	1.0 l	
b	1,2-Dichloroethene (total)		1,0 U	1.0 U	1.0 U	1.0	
а	Chloroform	[5.2	8.6	0.9 J	0.9	
	1,2-Dichloroethane	Allana an	1.0 U	1.0 U	1.0 U	1.0	
С	2-Butanone (MEK) 1,1,1-Trichloroethane		8:5	5.0 U	5.0 U	5.0 l	
a	Carbon Tetrachloride		1,0 U 1,0 U	1.0 U	1.0 U	1.0 (
u .	Vinyl Acetate		1.0 U	1,0 U 1,0 U	1.0 U 1.0 U	1.0 l	
а	Bromodichloromethane		1.0 U	1.0 U	1.0 U	1.0 U 1.0 U	
ď	1,2-Dichloropropane		1.0 U	1.0 U	1.0 U	1.0 (
е	crs-1,3-Dichloropropene		1.0 U	1.0 U	1.0 U	1.0 (
	Trichloroethene		1.0 U	1.0 Ū	1.0 Ū	1.0	
а	Dibromochloromethane		1.0 U	1,0 U	1.0 U	1.0	
C	1,1,2-Trichloroethane		1.0 U	1.0 U	1.0 U	1.0 l	J
	Benzene	[1.8	0.9 J	1.0 U	1.0 l	
e	trans-1,3-Dichloropropene		1.0 U	1.0 U	1.0 U	1.0 l	
a a	2-Chloroethylvinyl Ether Bromoform		1.0 U	1.0 U	1.0 U	1.0	
a	4-Methyl-2-Pentanone (MIBK)		1.0 U 5.0 U	1.0 U	1.0 U	1,0 1	
	2-Hexanone		5.0 U	5.0 U 5.0 U	5.0 U	5.0	
	Tetrachloroethene		1.0 U	1.0 U	5.0 U 1.0 U	5.0 l 1.0 l	
f	1,1,2,2-Tetrachloroethane		1.0 U	1.0 U	1.0 U	1.0 (
	Toluene		6.0	3.5	1.0 U	1.0 (
g	Chlorobenzene	i i	1.0 U	1.0 U	1.0 U	1.0 1	
	Ethylbenzene		1.0 U	1.0 U	1.0 U	1.0 (
	Styrene		1,0 U	1.0 U	1.0 U	ا 1.0	
	Total Xvlenes	[3.3	1.3 J	2.0 U	2.0	J
а	Trichlorofluoromethane	- 	2.0 U	2.0 U	2.0 U	2.0 (
	1,1,2-Trichloro-1,2,2-Trifluoroethane (-reon 113)	2.0 U	2.0 U	2.0 U	2.0 l	1

InfR – City of Raymond influent EffR – City of Raymond effluent grab – grab sample

U - The analyte was not detected at or above the reported result.
 J - The analyte was positively identified. The associated numerical result is an estimate.

	•	InfR-E	EffR-E	
		comp	comp	
		9/29-30	9/29-30	
		0900-0900	0900-0900	
	BNA Compounds	408262 ug/L	408266	
(Group) ¹	211/1 Compounds	ug/∟	ug/L	
` ''	Phenol	4.6	2 U	
1	Bis(2-Chloroethyl)Ether	2 U	1 U	
•	2-Chlorophenol	2 U	1 U	
h	1,3-Dichlorobenzene	2 U	1 U	
h	1,4-Dichlorobenzene	2 U	1 U	
	Benzyl Alcohol	5.1	5 U	
h	1,2-Dichlorobenzene	2 U	1 U	
	2-Methylphenol	2 U	1 U	
1	2,2'-Oxybis(1-Chloropropane)	2 U	. U	
-	4-Methylphenol	21	1 Ü	
k	N-Nitroso-di-n-Propylamine	2 U	1 U	
	Hexachloroethane	4 U	, U	
	Nitrobenzene	2 U	1 U	
	Isophorone	2 U	1 U	
1	2-Nitrophenol	10 U	5 U	
	2,4-Dimethylphenol	4 Ū	ž Ú	
	Benzoic Acid	110 J	10 UJ	
1	Bis(2-Chloroethoxy)Methane	2 U	i U	
-	2,4-Dichlorophenol	6 U	3 U	
g	1,2,4-Trichlorobenzene	2 U	ĪŪ	
· n	Naphthalene	2 U	1 Ū	
	4-Chloroaniline	6 U	3 Ū	
	Hexachlorobutadiene	4 Ü	2 U	
	4-Chloro-3-Methylphenol	4 U	2 U	
	2-Methylnaphthalene	2 U	1 U	
	Hexachlorocyclopentadiene	10 U	5 U	
	2,4,6-Trichlorophenol	10 U	5 U	
	2,4,5-Trichlorophenol	10 U	5 U	
m	2-Chloronaphthalene	2 U	1 Ū	
	2-Nitroaniline	10 U	5 U	
1	Dimethyl Phthalate	2 U	1 🖰	
n	Acenaphthylene	2 U	1 U	
	3-Nitroaniline	10 U	5 ป	
n	Acenaphthene	2 U	1 U	
i	2,4-Dinitrophenol	20 U	10 U	
l	4-Nitrophenol	10 U	. 5 U	

InfR - City of Raymond influent

EffR - City of Raymond effluent

comp - composite sample

U – The analyte was not detected at or above the reported result.
 J – The analyte was positively identified. The associated numerical result is an estimate.
 UJ – The analyte was not detected at or above the reported estimated result.

		InfR-E comp 9/29-30 0900-0900 408262	EffR-E comp 9/29-30 0900-0900	
(Group) ¹	BNA Compounds	408262 ug/L	408266 ug/L	
	Dibenzoturan	2 U	1 0	
О	2,4-Dinitrotoluene	10 UJ	5 U	
0	2,6-Dinitrotoluene	10 U	5 U	
1	Diethyl Phthalate	4.1	1 U	
þ	4-Chlorophenyl Phenylether	2 U	i U	
n	Fluorene 4–Nitroaniline	2 U	iU	
1	4-Nttoarmille 4,6-Dinitro-2-Methylphenol	10 U	5 U	
k	N-Nitrosodiphenylamine	20 U 2 U	10 U	
p	4-Bromophenyl Phenylether	2 U	1 U 1 U	
g	Hexachlorobenzene	2 U	1 U	
Ū	Pentachlorophenol	10 U	5 U	
n	Phenanthrene	2 U	1 U	
	Carbazole	2 U	1 U	
n	Anthracene	2 U	1 U	
I	Di-n-Butyl Phthalate	2 U	1 U	
n	Fluoranthene	2 U	1 U	•
n	Pyrene	2 U	1 U	
	Butylbenzyl Phthalate 3.3'-Dichlorobenzidine	2 U	1 U	
n	8enzo(a)Anthracene	10 U	5 U	
"	Bis(2-Ethylhexyl)Phthalate	2 U	1 U	
n.	Chrysene	2 U	0.6 J 1 U	
ï	Di-n-Octyl Phthalate	2 U	1 U	
n	Benzo(b)Fluoranthene	2 U	, U	
n	Benzo(k)Fluoranthene	 2 U	1 UJ	
n	Benzo(a)Pyrene	 2 U	1 U	
n	Indeno(1,2,3-cd)Pyrene	2 UJ	1 ŪJ	
n	Dibenzo(a,h)Anthracene	2 U	1 U	
n	Benzo(g,h,i)Perylene	2 UJ	i UJ	

InfR - City of Raymond influent EffR - City of Raymond effluent comp - composite sample

U = The analyte was not detected at or above the reported result.
 J = The analyte was positively identified. The associated numerical result is an estimate.
 UJ = The analyte was not detected at or above the reported estimated result.

(Group)¹	Pesticide/PCB Compounds	InfR-E comp 9/29-30 0900-0900 408262 ug/L	EffR-E comp 9/29-30 0900-0900 408266 ug/L	
q	alpha–BHC	0.05 U	0.05	
q	beta-BHC	0.05 U	0.05	
q	delta-BHC	0.05 U	0.05	19 M 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
q	gamma-BHC (Lindane)	0,05 U	0.05	3 Normal Section (Compared Compared Compar
r	Heptachlor	0.05 U	0.05	
	Aldrin	0.05 U	0.05	
r	Heptachlor Epoxide	0.05 U	0.05	U
s	Endosulfan I	0.05 U	0.05	U
	Dieldrin	0.10 U	0,10	U
u	4,4'-DDE	0.10 U	0.10	Ú
t	Endrin	0.10 U	0.10	U
S	Endosulfan II	0.10 U	0.10	U
u	4,4'-DDD	0.10 U	0.10	U
S	Endosulfan Sulfate	0.10 U	0,10	U
u	4,4'-DDT	0.10 U	0.10	U
	Methoxychlor	0.50 U	0.50	U
ţ	Endrin Ketone	0.10 U	0.10	
V	alpha-Chlordane	0.05 U	0.05	U
٧	gamma-Chlordane	0,05 U	0.05	
	Toxaphene	5.0 U	5.0	
w	Aroclor-1016	1.0 U	1.0	
w	Aroclor-1221	2.0 U	2.0	
	Aroclor-1248	1.0 U	1.0	
	Aroclor-1254 Aroclor-1260	1.0 U	1.0	
147	Arocior–1260 Arocior–1232	1,0 U	1,0	
W t	Endrin Aldehyde	1.0 U	1.0	
·	тити читендис	0.10 U	0.10	U

InfR - City of Raymond influent EffR - City of Raymond effluent comp - composite sample

U - The analyte was not detected at or above the reported result.

EffR-E	InfR-È
comp	comp
9/29-30	9/29-30
0900-0900	0900-0900
408266	408262
uafl	

Metals

Antimony	30	U	30 t	
Arsenic	2.6	PN	1.6 F	সমা
Pentavalent Trivalent				
Beryllium	1.0	U	1.0 L	ı
Cadmium	2.0	U	2.0	
Chromium	3230		5.0 L	
Hexavalent				
Trivatent				
Copper Lead	158		7.2 P	•
	36.2		5.5	
Mercury	0.18	PN	0.050 L	JN'
Nickei	10	U	. 10 L	10000
Selenium	2.0	UJ	2,0 L	J.J
Silver	0.77	P	0.50 L)
Thallium	2.5	UN	2.5 L	JN
Zinc	269		21	

InfR - City of Raymond influent

EffR - City of Raymond effluent

comp - composite sample

U - The analyte was not detected at or above the reported result.
 N - The spike sample recovery is not within control limits.
 UJ - The analyte was not detected at or above the reported estimated result.
 P - The analyte was detected above the instrument detection limit but below the established minimum quantitation limit.

- a Total Halomethanes b Total Dichloroethenes c Total Trichloroethanes d Total Dichloropropanes e Total Dichloropropenes f Total Tetrachloroethanes g Total Chlorinated Benzenes (excluding Dichlorobenzenes) h Total Dichlorobenzenes Total Phthalate Esters 1 Total Chloroalkyl Ethers k Total Nitrosamines i Total Nitrophenois
- m Total Chlorinated Naphthalenes
- n Total Polynuclear Aromatic Hydrocarbons
- o Total Dinitrotoluenes
- p Total Haloethers
- Total BHCs
- r Heptachlor s Endosulfan
- Endrin
- u DDT plus metabolites
- Total Chlordane
- w Total Aroclors (PCBs)

Appendix L - VOA, BNA, Pesticide/PCB and Metals Scan Results - City of Raymond, December 1992.

	Location: Type:	EffR–1 grab	EffR-2 grab
	Date: Time:	12/15 0920	12/15
	Lab Log#:	518242	1415 518243
(Group)¹	VOA Compounds	ug/L	ug/L
ä	Chloromethane	10 U	10 U
a	Bromomethane	10 U	10 U
	Vinyl Chloride Chloroethane	10 U	10 U
а	Methylene Chloride	10 U 10 U	10 U
-	Acetone	9]	10 U
	Carbon Disulfide	10 U	10 U
b	1,1-Dichloroethene	10 U	10 Ū
L	1,1-Dichloroethane	10 U	10 U
b a	1,2-Dichloroethene (total) Chloroform	10 U	10 U
•	1,2-Dichloroethane	10 U 10 U	10 U 10 U
	2÷Butanone (MEK)	10 U	10 U
c	1,1,1-Trichloroethane	10 U	10 U
a	Carbon Tetrachloride	10 U	10 U
a. d	Bromodichloromethane 1,2-Dichloropropane	10 U	10 U
e	cis-1,3-Dichloropropene	10 U 10 U	10 U 10 U
	Trichloroethene	10 U	10 U
а	Dibromochloromethane	10 Ü	10 Ü
C	1,1;2-Trichloroethane	10 U	10 U
	Benzene	10 U	10 U
e a	trans-1,3-Dichloropropene Bromoform	10 U 10 U	10 U
2000 0000 0000	4-Methyl-2-Pentanone (M(BK)	10 U	10 U 10 U
	2-Hexanone	10 U	10 U
	Tetrachloroethene	10 U	10 U
f	1,1,2,2-Tetrachloroethane	10 U	10 U
g	Toluene Chlorobenzene	-10 U	10 U
ъ	Ethylbenzene	10 U 10 U	10 U 10 U
	Styrene	10 U	10 U
	Total Xylenes	10 U	10 Ū

EffR - City of Raymond effluent

grab - grab sample

U - The analyte was not detected at or above the reported result.
 J - The analyte was positively identified. The associated numerical result is an estimate.

		Location: Type: Date:	EffR-E comp 12/15-16	
(Group)¹	BNA Compounds	Time: Lab Log#:	0800-0800 518244 ug/L	
1	Phenol Aniline Bis(2-Chloroethyl)Ether 2-Chlorophenol		1 U 5 U 1 U	
h h	1,3-Dichlorobenzene 1,4-Dichlorobenzene		1 U 1 U 1 U	
h J	Benzyl Alcohol 1,2-Dichlorobenzene 2-Methylphenol Bis(2-Chloroisopropyl)Ether		1 U 1 U 1 U	
k	4-Methylphenol N-Nitroso-di-n-Propylamine		1 U 1 U	
ı	Hexachloroethane Nitrobenzene Isophorone 2-Nitrophenol		2: U 1: U 1: U 2: U	
50000000000000000000000000000000000000	2,4-Dimethylphenol Benzoic Acid		i U 25 U	
j g n	Bis(2-Chloroethoxy)Methane 2,4-Dichlorophenol 1,2,4-Trichlorobenzene Naphthalene		1 U 2 U 1 U 1 U	
281/886/88688688689	4-Chloroaniline Hexachlorobutadiene 4-Chloro-3-Methylphenoi	101303333333333333333333333333333333333	í U 1 U	
	2-Methylnaphthaiene Hexachlorocyclopentadiene 2,4,6-Trichlorophenol		2 U 1 U 2 U 2 U	
m	2,4,5–Trichlorophenol 2–Chloronaphthalene 2–Nitroaniline		2 U 1 U	
1 n o	Dimethyl Phthalate Acenaphthylene 2,6-Dinitrotoluene 3-Nitroaniline		2 U 1 U 1 U 2 U	
n	Acenaphthene 2,4-Dinitrophenol		5 U 1 U	
i	4-Nitrophenol Dibenzoturan		10 U 10 U 1 U	

U - The analyte was not detected at or above the reported result.

EffR- City of Raymond effluent comp - composite sample

	Location: Type: Date: Time: Lab Log#:	EffR-E comp 12/15-16 0800-0800 518244	
/Onem\1	BNA Compounds	ug/L	
(Group)¹ o	2,4-Dinitrotoluene	_	
ı	Diethyl Phthalate		U U
p	4-Chlorophenyl Phenylether		U
'n	Fluorene	***************************************	Ü
	4-Nitroaniline		U
l l	4,6-Dinitro-2-Methylphenol	10	
k	N-Nitrosodiphenylamine 1,2-Diphenylhydrazine		U
р	4-Bromophenyl Phenylether		U U
ġ	Hexachlorobenzene	2	
	Pentachiorophenol		
n	Phenanthrene	1	######################################
n	Anthracene Carbazole		U
i	Di-n-Butyl Phthalate		U
n	Fluoranthene		U
n	Pyrene		Ŭ
1	Butylbenzyl Phthalate		Ű
	3,3'-Dichlorobenzidine	10	
n n	Benzo(a)Anthracene Chrysene		U
in in the second	Bis(2-Ethylhexyl)Phthalate	2000 C 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	U
j	Di-n-Octyl Phthalate		Ü
n	Benzo(b)Fluoranthene		U
n	Benzo(k)Fluoranthene	1	Ü
n	Benzo(a)Pyrene		U
n b	Indeno(1,2,3-cd)Pyrene Dibenzo(a,h)Anthracene	University of the Contract of	U
n	Benzo(g,h,i)Perylene	KENNYA NYA MPARAMBANA NYA MPANDAMBANA AMIN'NY NYA MPANDRA NY INDRA DIA MPANDRA NY ARA-DAMBANA AMIN'NY INDRA D	U m
1011.1000.0000.0000.0000.000	₩	1	U

U - The analyte was not detected at or above the reported result.

EffR- City of Raymond effluent comp - composite sample

Location:

	Туре: Date:	comp 12/15–16	•
	Time: Lab Log#:	0800-0800 518244	
(a)	Pesticide/PCB Compounds	ug/L	
(Group)¹	32 <u>62-623 (September 1988) </u>		
g o	alpha-BHC beta-BHC	0.006	
q q	delta-BHC	0.006	10000010000100000100000000000000000000
q	gamma–BHC (Lindane)	0.009 0.006	U
r	Heptachlor	0.003	
	Aldrin	0.006	
	Heptachlor Epoxide	0.083	
8	Endosulfan I	0.014	U
	Dieldrin	0.01	U
u	4,4'-DDE	0.004	
T O	Endrin Endosulfan II	0.01	
s u	4;4'-DDD	0.004	
	Endosulfan Sulfate	0.011 0.066	dia transferencia de la composição de la c
ŭ	4,4'-DDT	0.000	
i	Endrin Aldehyde	0.023	
V	Chlordane	0.014	
	Toxaphene	0.24	
w	Aroclor+1016	0,065	U
W	Aroclor=1221	0.13	
W	Aroclor=1232	0.65	
W	Aroclor-1242 Aroclor-1248	0.65	
w w	Aroclor-1248 Aroclor-1254	0.65	
w	Aroclor=1254 Aroclor=1260	0.65	
		0,65	U

EffR-E

EffR- City of Raymond effluent comp - composite sample

U - The analyte was not detected at or above the reported result.

N - There is evidence the analyte is present in this sample.

Location:

Metals ug/L Antimony 30 U Arsenic 5.8 J Pentavalent 5.8 J Trivalent 1.0 U Cadmium 0.13 P Chromium 5.0 U Hexavalent 7.7 P Lead 8.6 J Mercury 0.050 UJ Nickel 10 U Selentim 2.0 UN Silver 0.50 U Thallium 2.5 UN Zinc 32		Type: Date: Time: Lab Log#:	comp 12/15-16 0800-0800 518244			
Arsenic 5.8 J Pentavalent Trivalent Beryllium 1.0 U Cadmium 0.13 P Chromium 5.0 U Hexavalent Trivalent Trivalent Copper Lead 8.6 J Mercury 0.050 UJ Nickel 10 U Selenium 2.0 UN Silver 0.50 U Thallium 2.5 UN	Metals		ug/L			
Bervillium	Arsenic Pentavalent]	000 000 000 000 000 000 000 000 000 00
Cadmium 0.13 P Chromium 5.0 U Hexavalent 5.0 U Trivalent 7.7 P Lead 8.6 J Mercury 0.050 UJ Nickel 10 U Selenium 2.0 UN Silver 0.50 U Thallium 2.5 UN			1.0	U		
Chromium 5.0 U Hexavalent 7.7 P Copper 7.7 P Lead 8.6 J Mercury 0.050 UJ Nickel 10 U Selenium 2.0 UN Silver 0.50 U Thallium 2.5 UN					7	
Lead 8.6 J Mercury 0.050 UJ Nickel 10 U Selenium 2.0 UN Silver 0.50 U Thallium 2.5 UN	Hexavalent				_	00000000000
Lead 8.6 J Mercury 0.050 UJ Nickel 10 U Selenium 2.0 UN Silver 0.50 U Thallium 2.5 UN	Copper		77	P	7	83
Mercury 0.050 UJ Nickel 10 U Selenium 2.0 UN Silver 0.50 U Thallium 2.5 UN					+	
Nickel 10 U Selenium 2.0 UN Silver 0.50 U Thallium 2.5 UN		4				
2.5 014	Selenium Silver		10 2.0 0,50	U UN U		
				UN	3	

- U The analyte was not detected at or above the reported result.
- J The analyte was positively identified. The associated numerical result is an estimate.
- UJ The analyte was not detected at or above the reported estimated result.
- N The spike sample recovery is not within control limits.
- P The analyte was detected above the instrument detection limit but below the established minimum quantitation limit.
- a Total Halomethanes
- b Total Dichloroethenes
- c Total Trichloroethanes
- d Total Dichloropropanes
- e Total Dichloropropenes
- f Total Tetrachloroethanes
- g Total Chlorinated Benzenes (excluding Dichlorobenzenes)
- h Total Dichlorobenzenes
- I Total Phthalate Esters
- 1 Total Chloroalkyl Ethers
- k Total Nitrosamines
- I Total Nitrophenols

- m Total Chlorinated Naphthalenes
- Total Polynuclear Aromatic Hydrocarbons
- o Total Dinitrotoluenes
- p Total Haloethers
- q Total BHCs
- r Heptachlor
- s Endosulfan
- i Endrin

EffB-E

- u DDT plus metabolites
- v Total Chlordane
- w Total Aroclors (PCBs)