# Yakima Regional Wastewater Treatment Plant Class II Inspection, October 5-7, 1992

by Guy Hoyle-Dodson

Washington State Department of Ecology Environmental Investigations and Laboratory Services Program Toxics, Compliance, and Ground Water Investigations Section Olympia, WA 98504-7710

> Water Body No.: WA-37-1040 Segment No.: 18-37-02

# TABLE OF CONTENTS

|                                   | Page |
|-----------------------------------|------|
| ABSTRACT                          | iii  |
| INTRODUCTION                      | 1    |
| SETTING                           | 1    |
| Domestic Wastewater Treatment     |      |
| Industrial Wastewater Treatment   | 5    |
| PROCEDURE                         | 5    |
| QUALITY ASSURANCE\QUALITY CONTROL | 6    |
| Sampling                          |      |
| General Chemistry Analysis        |      |
| Metals Analysis                   |      |
| VOAs, BNAs, and Pesticides/PCBs   |      |
| Bioassays                         |      |
| RESULTS AND DISCUSSION            | 7    |
| Domestic Wastewater Treatment     |      |
| Flow Measurements                 |      |
| NPDES Permit Compliance           |      |
| General Chemistry/Plant Operation |      |
| Sample Splits                     |      |
| Organics/Metals                   |      |
| Bioassays                         |      |
| Sludge                            |      |
| Industrial Wastewater Treatment   |      |
| General Chemistry                 |      |
| Organics/Metals                   |      |
| CONCLUSIONS AND RECOMMENDATIONS   | 23   |
| Domestic Wastewater Treatment     |      |
| Flow Measurement                  |      |
| NPDES Permit Compliance           |      |
| General Chemistry/Plant Operation |      |
| Sample Splits                     |      |
| Organics/Metals                   |      |
| Bioassays                         |      |
| Sludge                            |      |
| DIUUED                            | 44   |

|                                 | Page |
|---------------------------------|------|
| Industrial Wastewater Treatment |      |
| General Chemistry               |      |
| Organics/Metals                 |      |
| REFERENCES                      |      |

### ABSTRACT

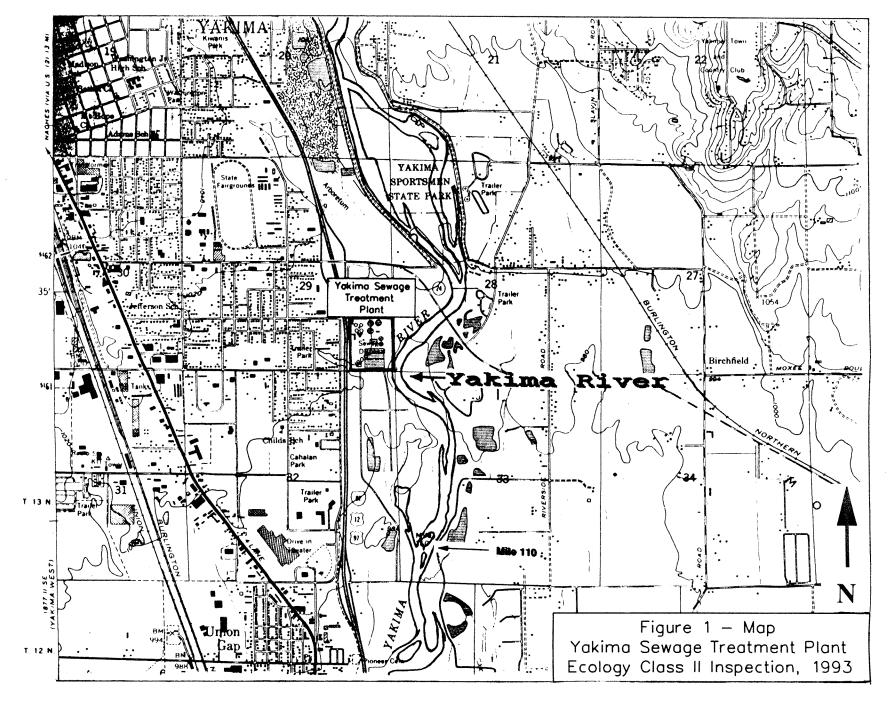
A Class II Inspection was conducted October 5-7, 1992, at the Yakima Regional Wastewater Treatment Plant. The Yakima facility provides secondary treatment of domestic wastewater for the City of Yakima and adjoining urban areas. It also applies untreated wastewater from several food processing plants to sprayfields located along the Yakima River. Inspection data found that Yakima was providing adequate treatment for most pollutants limited by the NPDES permit. Total ammonia and fecal coliform effluent concentrations were of some concern. Influent loading for BOD<sub>5</sub> exceeded monthly average design criteria included in the NPDES permit. Influent flow exceeded 85% of design criteria. Revising plant criteria to reflect recent plant upgrades or submitting a plan and schedule to the Department of Ecology for the maintenance of adequate treatment is recommended. Differences in the influent wastewater quality of the plant's two influent channels were noted and it was suggested that Yakima evaluate the effectiveness of their current practice of sampling only one of those channels for NPDES permit parameters. All effluent organic compound concentrations were within EPA water quality criteria. Effluent concentrations of copper, lead, and silver exceeded EPA chronic water quality criteria for receiving waters. Effluent bioassays provided evidence of toxic effects. The toxicity may have been related to chlorine residual. Sodium adsorption ratio, pH, and coliform concentrations in industrial wastewater were of concern for sprayfield application. inspection identified high fecal coliform counts and small to moderate organic/metal concentrations in the industrial influent.

### INTRODUCTION

A Class II Inspection was conducted at the Yakima Regional Wastewater Treatment Plant on October 5-7, 1992. Guy Hoyle-Dodson and Marc Heffner, environmental engineers for the Washington State Department of Ecology (Ecology) Toxics, Compliance, and Groundwater Investigations Section, conducted the inspection. Phelps Freeborn, permit manager for the Washington State Department of Ecology Central Regional Office, requested the inspection; and provided both assistance during the inspection and information on the STP's treatment and compliance history. Assisting on-site was plant process control supervisor Joe Schnebly. Arnold Swain, swing shift chief operator; Bruce Bates, assistant superintendent; and Chris Waarvic, plant director provided additional information at various stages of the inspection.

The Yakima Regional STP provides secondary treatment of domestic wastewater for the city of Yakima and several adjoining urban areas. Effluent discharges to the Yakima River. The facility also provides sprayfield application for wastewater from several industrial food processing plants. The State of Washington regulates the Yakima STP through NPDES permit WA-002402-3, (expiration date: June 29, 1993).

Ecology conducted the Class II Inspection to identify potential areas of concern and to assist in writing a new permit. Specific objectives include:


- 1. verify compliance with NPDES permit limits,
- 2. characterize wastewater toxicity with chemical scans and bioassays,
- 3. characterize sludge toxicity with chemical scans,
- 4. evaluate treatment plant performance and plant design,
- 5. assess facility loading, and
- 6. assess permittee's self-monitoring through split sample analysis.

### **SETTING**

### **Domestic Wastewater Treatment**

The Yakima Regional Wastewater Treatment Plant is located in Yakima County, Washington, on the east side of the city of Yakima (Figure 1). The facility uses trickling filters followed by an activated sludge process. Sludge is anaerobically digested.

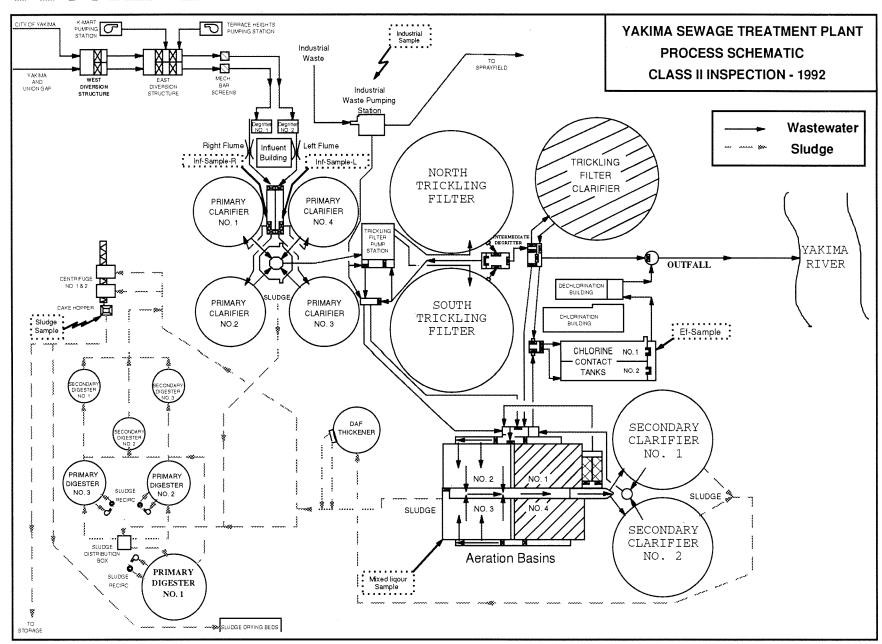
The plant has evolved over 35 years from a simple trickling filter plant serving only the city of Yakima to its present configuration as a regional wastewater treatment facility. In 1983 aeration basins were added to upgrade the facility's activated sludge treatment capacity. The plant also improved its anaerobic sludge digestion system to enhance sludge reduction and disposal. More recently, an odor reduction system was added which includes a plant-wide gas collection system, domes on the trickling filter, and gas treatment towers. During the inspection a new chlorination/dechlorination system was just beginning operation.



Three main domestic influent lines convey wastewater to the plant's influent diversion structure. Only minimal mixing occurs in the diversion structure before the flow is split into two separate channels. Visual inspection indicated that the sewage quality in these two channels differ from one another. During periods of lower flow only one channel may be used.

Each channel includes mechanical bar screens, an aerated degritter, and a Parshall flume (Figure 2). Solids from the degritters are dewatered and trucked to landfills. After the degritters, operators periodically add septage to the eastern channel. Meters in each channel measure instantaneous and totalized flows at the Parshall flumes. The channels are joined at a flow splitter prior to the primary clarifiers, although mixing is minimal. Flow from each side of the flow splitter is directed into one of two pairs of primary clarifiers.

After sedimentation the primary clarifier effluents flow to a common wetwell. Approximately 1 MGD of primary clarifier effluent was pumped directly into the plant's activated sludge aeration basins to optimize aeration basin loading. The balance of the flow is routed to single stage recirculating trickling filters. Two trickling filter towers are operated in parallel.


The trickling filters use a rock medium with a forced air aeration system. The installations are covered by domes for odor control. The odor reduction system collects gases from the domes as well as from several other points throughout the plant. Scrubbing towers treat the gases with NaOH and Cl<sub>2</sub>. Scrubber water overflow is directed back to the headworks. An intermediate degritter follows the trickling filter. This is principally used to remove snails if they become a problem, although few, if any, snails inhabited the trickling filters at the time of the inspection. The degritter returns grit slurry to the headworks. An optional clarifier following the trickling filters was not in use at the time of the inspection.

Flow from the trickling filters is next routed to the activated sludge aeration basins. During the inspection two of the four aeration basins were in use. Aeration is by fine bubble diffusers. In addition to the trickling filter effluent and the primary clarifier effluent diversion, the basins also accept the wastewater from dewatered sludge. Groundwater from beneath the basins was also pumped into the aeration basins. The operator reported that this was done to stabilize the soil beneath the basins.

From the aeration basins, effluent is discharged to two secondary clarifiers. Secondary clarifier effluent is sent to a chlorine contact chamber for disinfection. During the inspection operators controlled chlorination by a flow proportional system. A chlorine delivery system with direct measurement of effluent chlorine concentrations had been installed, but was not functioning during the inspection. Dechlorination with  $SO_2$  is the final step before effluent discharges to the Yakima River via a submerged pipe.

The sludge handling system consisted of: 1) a dissolved air floatation (DAF) thickener, 2) primary and secondary anaerobic digesters, 3) sludge centrifuges, 4) drying beds, and 5) a settling lagoon. Sludge from the primary clarifiers was pumped directly to the primary anaerobic digesters. Secondary clarifier sludge was first concentrated by the DAF thickener,

# FIGURE 2



4

then the thickened sludge was sent to the primary anaerobic digesters. A centrifuge provided final dewatering for most of the treated sludge. Alternatively, a small amount of treated sludge was sent to sludge drying beds. Drivers trucked dried sludge from the centrifuge and drying beds to a storage area. Sludge was eventually applied to agricultural land. A sludge lagoon was filled to capacity and not receiving additional sludge or digester supernatant at the time of the inspection.

### **Industrial Wastewater Treatment**

Industrial influent from a few large food processing plants arrived at the plant in a dedicated sewer. Industrial flow is mostly seasonal with the largest flows from August through October. Del Monte Food Corporation generates approximately 85% of the industrial influent, with Indian Summer-American Foods, Inc. contributing the bulk of the remainder. The latter is a vinegar processor and generally operates year-round. Screens at the industrial plants and a rotating screen at the treatment plant remove large solids from the industrial influent. Wastewater is then pumped without further treatment to sprayfields which lie between the Yakima plant and the Yakima River. Forage crops had been planted, but during the inspection growth appeared to be marginal. Weeds were also a problem.

Operators determined industrial flow rates from sprayfield pump records. Peak season flow was estimated to be 1 MGD. During off seasons (cold weather/winter) the sprayfield is shut down and industrial wastewater is treated along with the domestic wastewater. Such combined treatment at higher industrial flow rates was reported to cause problems with STP operation. Yakima recently initiated ground water monitoring at the sprayfields, but no conclusions on treatment effectiveness have yet been reached.

### **PROCEDURE**

Ecology collected both grab and composite samples at the STP. Influent composite samples were collected from each channel at the flow splitter prior to the primary clarifiers. An effluent composite sample was collected at the end of the chlorine contact chamber. A composite sample was also collected of the industrial wastewater at the wetwell. Ecology Isco composite samplers collected equal volumes of sample every 30 minutes for a 24-hour period. Grab samples were collected from both channels of the influent, from the aeration basins, from the industrial wetwell, and from the chlorine contact chamber discharge. Grab samples were also collected from the groundwater pumped from beneath the aeration basins, the Yakima River, and from a sewer of uncertain origins passing beneath the sprayfields and discharging into the Yakima River. Sample locations are summarized in Appendix A and noted on Figure 2.

Yakima also collected influent and effluent composite samples. Sampling locations generally corresponded to those of Ecology samples. The exception was the influent sample, where Yakima collected only from the right influent channel. Their sample station was very near the Ecology composite sampler in this channel. Sampling periods and volumes replicated Ecology sampling procedures.

Ecology and Yakima samples were split for analysis by both Ecology and Yakima labs. Parameters, samples collected, and schedules are summarized in Appendix B.

Samples for Ecology analysis were placed on ice and delivered to the Ecology Manchester laboratory. Chain-of-custody procedures were observed throughout. Appendix C summarizes analytical procedures and the laboratories performing the analysis.

# QUALITY ASSURANCE\QUALITY CONTROL

## Sampling

Sampling quality assurance included priority pollutant cleaning of sampling equipment. (Appendix D). Sampling in the field followed all protocols for holding times, preservation, and chain-of-custody set forth in the Manchester Laboratory User Manual (Ecology 1991).

## **General Chemistry Analysis**

All holding times were within criteria. Procedural blanks were acceptable. Instrument calibration and standard reference material were within appropriate control limits.

## **Metals Analysis**

All holding times were within criteria. Procedural blanks were generally acceptable except for cadmium in the aqueous samples. Results for cadmium, which were less than 10 times the blank concentration, were qualified to indicate potential contamination from the sample preparation process. The laboratory qualified these parameters with "B."

Instrument calibration, spike recoveries, duplicate spike recoveries, and standard reference material were generally within acceptable control limits. Exceptions were:

- 1) Copper was outside the relative percent difference window for precision. The laboratory qualified copper results "E."
- 2) Thallium is qualified with "J," denoting estimated results because of problems with standard reference material recovery.

# VOAs, BNAs, and Pesticides/PCBs

Holding times were generally within criteria. Method blanks for both water and sludge samples were generally acceptable. Exceptions were VOA compounds detected at concentrations less than five times the method blank concentration and BNA compounds detected at concentrations less than ten times the method blank concentration. The lab qualified these compounds with the "U" qualifier to indicate that these analytes were not detected at a level above the suspected contamination amount.

Initial and continuing calibrations, matrix spikes, and surrogate recoveries were generally within acceptable QC limits. The lab qualified all exceptions exceeding the maximum 30% relative standard deviation (RSD) for initial calibration standards with the "UJ" qualifier. Exceptions exceeding 25% deviation between the initial and continuing calibration standards were also qualified with the "UJ" qualifier.

## Bioassays

Control results and reference toxicant results were within acceptable ranges for all organisms tested. Test environment data were generally within acceptable ranges. Exceptions included:

- 1) The test procedure for *Ceriodaphnia dubia* varied slightly from EPA recommendations in that a 13-ml test solution was used instead of a 15-ml test solution. Since validation criteria were met, this did not affect the outcome of the test.
- 2) Chlorine residual was measured in the sample at a concentration that may have been toxic to aquatic organisms. Chlorine residual measured in the laboratory was 0.31 mg/L. Since chlorine residual is an NPDES permit limited parameter, its effect on bioassays is of some pertinence. Consequently, the inspector did not request sample dechlorination. Since the inspection Whole Effluent Toxicity (WET) guidelines have been changed to call for bioassays to be run on unchlorinated or dechlorinated effluent.

### RESULTS AND DISCUSSION

# **Domestic Wastewater Treatment**

### Flow Measurements

Ecology measured instantaneous flows at the east and west influent channel's Parshall flumes. Typical flows were 7.5 MGD for the west channel and 7.7 MGD for the east channel. Yakima instantaneous flow meter measurements for each channel corresponded fairly well to calculated values, with differences less than 10%.

Yakima's flow totalizer reported the flow rate to be 12.9 MGD for the period from 21:00, October 6, 1992, to 21:00, October 7, 1992. This rate approached the 13.7 MGD monthly average design capacity, but was well below the 22.3 MGD design capacity for peak month average flow (Table 1). Historically, August, not October, is their peak month. The inspection flow and flow for the seven previous 24-hour monitoring periods were each greater than 85% of the design capacity for monthly average flow. Should flows frequently exceed 85% of monthly design capacity, the design capacity should be modified to reflect any plant improvements, or a plan and schedule for continuing adequate treatment capacity should be submitted to Ecology.

 $\infty$ 

Table 3 - Influent NPDES Limits/Inspection Results - Yakima STP, 1992

| \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\                             |                        |                                                    |                                            | Insp                                       | ection Data+                          |                                          |
|--------------------------------------------------------------------|------------------------|----------------------------------------------------|--------------------------------------------|--------------------------------------------|---------------------------------------|------------------------------------------|
|                                                                    |                        |                                                    |                                            | Ecolog<br>Compos                           |                                       | STP<br>Composite                         |
|                                                                    |                        | Location:<br>Type:<br>Date:<br>Time:<br>Lab Log #: | Inf-E-R<br>E-comp<br>10/6-7<br>@<br>418159 | Inf-E-L<br>E-comp<br>10/6-7<br>@<br>418160 | Tot-Inf-E<br>TotalFlow<br>10/6-7<br>@ | Inf-Y<br>Y-comp<br>10/6-7<br>@<br>418161 |
| Parameter                                                          | NPDES<br>Permit Limits |                                                    |                                            |                                            |                                       |                                          |
| Flow Loading (MGD) Monthly Average Monthly Peak Instantaneous Peak | 13.7<br>22.3<br>27     |                                                    |                                            |                                            | 12.9                                  | 12.9                                     |
| BOD5 Loading (mg/L) Average Monthly (lbs/D)                        | 32700                  |                                                    | 310<br>16700                               | 430<br>23100                               | 370<br>39800                          | 430<br>46300 #                           |
| TSS Loading<br>(mg/L)<br>Average Monthly (lbs/I                    | D) 35000               |                                                    | 209<br>11200                               | 247<br>13300                               | 228<br>24500                          | 205<br>22100 #                           |

Total Average of left and right channel concentrations. Instantaneous measurements. found flows approximately equal in each channel.

Inf Influent

E Ecology sample

Y Yakima sample

comp Composite sample

@ Composite sampling time: 08:00-08:00

L Left side of the channel

R Right side of the channel

+ Ecology analytical results

## NPDES Permit Compliance

Effluent inspection results were generally less than weekly and monthly permit limits (Table 2). BOD<sub>5</sub>, TSS, pH, and effluent flow rates were all within the monthly averages imposed by NPDES permit limits.

Calculation of the ammonia limit found the chronic criteria to be limiting (Table 2). The chronic criteria concentration, determined for the edge of the discharge dilution zone, was based on 15% of the river's lowest daily flow during the week of the inspection. Flow in the river varied substantially during the week due to the ending of the irrigation season, ranging from 1383 cfs on October 4 to 975 cfs on October 9. Total ammonia (NH<sub>3</sub>) in the effluent exceeded the calculated NPDES permit chronic limit by 46%. Steps to reduce effluent NH<sub>3</sub> concentrations should be investigated. At the time of the inspection only two of the four aeration basins were in service. Conceivably, putting more aeration basins into service could be a solution.

The Ecology effluent fecal coliform grabs (250#/100mL & 3000#/100mL) exceeded the permit monthly average limit, one by a factor of 10 (Table 2). The highest value also surpassed NPDES permit weekly average limit. The geometric mean of the two Ecology fecal coliform grabs (866#/100mL) exceeded weekly averages. Chlorine residual concentrations showed some variability prior to dechlorination (Table 3). The higher fecal coliform result was associated with the lower chlorine residual prior to dechlorination. Varying degrees of dechlorination were also observed. Ecology results for samples collected after dechlorination ranged from 0.1 to 0.5 mg/L. Fine tuning the new chlorination and dechlorination systems should provide acceptable disinfection and avoid excessive chlorine discharges.

BOD<sub>5</sub> loading was high relative to the monthly average design capacity for prevention of facility overloading included in the permit (Table 1). The Ecology sample BOD<sub>5</sub> influent load (39800 lbs/day) appreciably exceeded the permit design capacity. The Yakima sample BOD<sub>5</sub> results (33400 lbs/day) also slightly exceeded the design capacity. Should BOD<sub>5</sub> loading frequently exceed 85% of design capacity, the design capacity should be modified to reflect any plant improvements, or a plan and schedule for continuing to maintain adequate treatment capacity should be submitted to the Department of Ecology. The Ecology sample TSS influent load (24500 lbs/day) was less than 85% of the NPDES permit design criteria.

## General Chemistry/Plant Operation

General chemistry data are reported in Table 3. Inspection data showed good reductions (>90%) across the STP for TSS,  $BOD_5$ ,  $BOD_{INH}$ , and COD (Table 4). Moderate reductions (>50%) were seen in TOC, total Kjeldahl-N, and total P. Reductions in NH<sub>3</sub>-N were quite modest (< 3mg/L) and corresponding increases in NO<sub>2</sub>+NO<sub>3</sub>-N were also quite small (<0.1 mg/L). The nutrient data and the relatively high effluent NH<sub>3</sub> concentration suggest that there is little nitrification across the plant.

Table 2 - Effluent NPDES Limits/Inspection Results - Yakima STP, 1992

|                        |                         |                                   |                |                | Inspection Da | ata+         |              |              |
|------------------------|-------------------------|-----------------------------------|----------------|----------------|---------------|--------------|--------------|--------------|
|                        |                         |                                   | Ecology        | STP            |               | Grab         |              |              |
|                        |                         | ,                                 | Composite      | Composite      | S             | Samples      |              |              |
| Danasatas              | NPDES                   |                                   | F4 F           |                | FT. 4         | E4 0         | E4 0         | FT. 4        |
| Parameter              | Permit Limits           | Location:                         | Ef-E<br>E-comp | Ef-Y<br>Y-comp | Ef-1          | Ef-2         | Ef-3         | Ef-4         |
|                        |                         | Type:<br>Date:                    | 10/6-7         | 10/6-7         | grab<br>10/6  | grab<br>10/6 | grab<br>10/7 | grab<br>10/7 |
|                        |                         | Time:                             | 0,000          | (              | 1055          | 1525         | 0825         | 1210         |
|                        |                         | Lab Log #:                        | 418166         | 418167         | 418162        | 418163       | 418164       | 418165       |
|                        | Monthly Weekly          |                                   |                |                |               |              |              |              |
|                        | Average Average         |                                   |                |                |               |              |              |              |
| BOD5                   |                         |                                   |                |                |               |              |              |              |
| (mg/L)                 | 30 45<br>4779 7168      |                                   | 13             | 9.3            |               |              |              |              |
| (lbs/D)<br>(% removal) | 4779 7168<br>85         | es turnus Palaris Alentrus (SP)   | 1399<br>96     | 1001<br>97     |               |              |              |              |
| <u>TSS</u>             |                         | t ten turk matuken Represur Unius |                |                |               |              |              |              |
| (mg/L)                 | 30 45                   | getigesky galkeri seno            | 13             | 17             | 12            | 9            |              |              |
| (lbs/D)                | 5250 7875               |                                   | 1399<br>94     | 1829<br>92     | 1291<br>94    | 968<br>97    |              |              |
| (% removal)            | 85                      |                                   | 94             | 92             | 94            | 9/           |              |              |
| Effluent Flow          |                         |                                   |                |                |               |              |              |              |
| (MGD)++                | 22.3                    | ekan din din d                    | 12.9           | 12.9           |               |              |              |              |
| Fecal coliform         |                         |                                   |                |                |               |              |              |              |
| (#/100 mL)             | 200 #/100ml 400 #/100ml |                                   |                |                |               |              | 3000 J       | 250 J        |
| pH (S.U.)              |                         |                                   |                |                |               |              |              |              |
|                        | 6.0 < pH < 9.0          |                                   |                |                | 7.53          | 7.35         |              |              |
| Total Ammonia (mg/L)   | Maximum Value           |                                   |                |                |               |              |              |              |
| (NH3)                  |                         |                                   | 11.9           | 12.0           | 15.2          | 11.8         |              |              |
| (NH3-1                 |                         |                                   | 9.78           | 9.85           | 12.5          | 9.66         |              |              |
| Acute* (NH3)<br>(NH3-1 | 15.32<br>V) 12.59       |                                   |                |                |               |              |              |              |
| Chronic-1** (NH3)      | 6.32                    |                                   |                |                |               |              |              |              |
| (NH3-1                 |                         |                                   |                |                |               |              |              |              |

<sup>\*</sup> Calculated as the EPA one-hour average concentration criteria for ammonia (NH3) in the effluent; Average effluent pH=7.44; Average effluent temp=20.4°C

River pH = 8.25; River temp = 11.6°C; River Background NH3-N = 0.027mg/L.

<sup>\*\*</sup> Total ammonia criteria was calculated as the EPA four-day average concentration in the effluent that meets concentration criteria at edge of dilution zone.

The 1-day weekly low flow was provided from the Bureau of Reclamation guaging stations on the Yakima River during the week 10/4 through 10/10 was 975 cfs;

Ef Effluent

E Ecology sample.

Y Yakima sample.

grab Grab sample.

comp Composite sample.

<sup>@</sup> Composite sampling time: 08:00-08:00.

<sup>+</sup> Ecology analytical results.

<sup>++</sup> Flow rate provided by Yakima STP (12.9 MGD).

| Table 3 – Ecology General Ch                           | nemistry    | Results      | <ul><li>Yakin</li></ul> | na STP, 1            | 1992.             |               |                |             |               |        | Page 1   |               |             |
|--------------------------------------------------------|-------------|--------------|-------------------------|----------------------|-------------------|---------------|----------------|-------------|---------------|--------|----------|---------------|-------------|
| Parameter I Location: Inf-1-R                          | Inf-2-L     | Inf-3-R      | Inf-4-L                 | Inf-E-R              | Inf-E-L           | Inf-Y**       | Ef-1           | Ef-1-A      | Ef-2          | Ef-3   | Ef-4     | Ef-E          | Ef-\        |
| Type: grab                                             | grab        | grab         | grab                    | E-comp               | E-comp            | Y-comp        | grab           | grab        | grab          | grab   | grab     | E-comp        | Y-comp      |
| Date: 10/6                                             | 10/6        | 10/6         | 10/6                    | 10/6-7               | 10/6-7            | 10/6-7        | 10/6           | 10/6        | 10/6          | 10/7   | 10/7     | 10/6-7        | 10/6-       |
| Time: 0919                                             | 0904        | 1430         | 1428                    | 0                    | 0                 | 0             | 1055           | 1245        | 1525          | 0825   | 1210     | 0             | (           |
| Lab Log #: 418155                                      | 418156      | 418157       | 418158                  | 418159               | 418160            | 418161        | 418162         |             | 418163        | 418164 | 418165   | 418166        | 41816       |
| GENERAL CHEMISTRY                                      | <u> </u>    |              |                         |                      |                   |               |                |             |               |        |          |               |             |
| Conductivity (umhos/cm) 495<br>Alkalinity (mg/L CaCO3) | 655         | 2400         | 609                     | 633<br>129           | 531<br>126        | 498<br>130    | 640            |             | 564           |        |          | 594<br>159    | 60:<br>16   |
| Hardness (mg/L CaCO3)                                  |             |              |                         | 87.9                 | 89.5              | 85.9          |                |             |               |        |          | 74.9          | 76.         |
| SOLIDS                                                 |             |              |                         |                      |                   |               |                |             |               |        |          |               |             |
| TS (ma/L)                                              |             |              |                         | 835                  | 775               | 783           | ekonstruit, ke |             |               |        |          | 415           |             |
| TNVS (mg/L)                                            |             |              |                         | 327                  | 240               | 243           |                |             |               |        |          | 234           |             |
| TSS (mg/L) 143<br>TNVSS (mg/L)                         | 233         | 310          | 233                     | 209<br>36            | 247<br>33         | 205<br>29     | 12             |             | 9             |        |          | 13<br>2       | 1           |
| % Solids                                               |             |              |                         | kon delakan Marijika | Yaradadadada (196 |               |                |             |               |        |          |               |             |
| % Volatile Solids(dry)                                 |             |              |                         |                      |                   |               |                |             |               |        |          |               |             |
| OXYGEN DEMAND PARAMETERS                               | S           |              |                         |                      |                   |               |                |             |               |        |          |               |             |
| BOD5 (mg/L)                                            |             |              |                         | 310                  | 430               | 310           |                |             |               |        |          | 13            | 9.          |
| BOD INH (mg/L)                                         |             |              |                         | 290                  | 380               | 300           |                |             |               |        |          | 11            | 6.          |
| BOD35 (mg/L)<br>COD (mg/L)                             |             |              |                         | 631                  | 737               | 615           |                |             |               |        |          | 50<br>64      | 6           |
| TOC (water mg/L) 168                                   | 179         | 211          | 248                     | 238                  | 267               | 238           |                |             | 63.2          |        |          | 110           | 63.         |
| TOC (soil – % solids) NUTRIENTS                        |             |              |                         |                      |                   |               |                |             |               |        |          |               |             |
| Kjeldahl-N (mg/L)                                      |             |              |                         | 25.3                 | 33.8              | 13.7          |                |             |               |        |          | 12.8          | 13,         |
| NH3-N (mg/L)                                           |             |              |                         | 10.2                 | 13.8              | 11.0          | 12.5           |             | 9,66<br>0,089 |        |          | 9.78<br>0.196 | 9.8         |
| NO2+NO3-N (mg/L)<br>Total-P (mg/L)                     |             |              |                         | 0.218<br>4.95        | 0.138<br>5.29     | 0.023<br>4.38 | 0.171<br>2.99  |             | 2.93          |        |          | 2.17          | 0.11<br>2.1 |
| MISCELLANEOUS                                          |             |              |                         |                      |                   |               |                |             |               |        |          |               |             |
| Oil and Grease (mg/L) 26 J                             | 36 J        | 68 J         | 49 J                    |                      |                   |               | 1 J            |             | 1 UJ          |        |          |               |             |
| F-Coliform MF (#/100mL)                                |             |              |                         |                      |                   |               |                |             |               | 3000 J | 250 J    |               |             |
| T-Coliform MF (#/100mL)                                |             |              |                         |                      |                   |               |                |             |               |        |          |               |             |
| SODIUM ADSORPTION RATIO PA                             | KAMETE      | <u> HS</u>   |                         |                      |                   |               |                |             | 5             |        |          |               |             |
| HCO3 (mg/L)<br>Ca (mg/L)                               |             |              |                         |                      |                   |               |                |             |               |        |          |               |             |
| Mg (mg/L)                                              |             |              |                         |                      |                   |               |                |             |               |        |          |               |             |
| Na (mg/L)                                              |             |              |                         |                      |                   |               |                |             |               |        |          |               |             |
| FIELD OBSERVATIONS                                     |             |              |                         |                      |                   |               |                |             |               |        |          |               |             |
| Temperature (°C) 19                                    | 20,5        | 20.5         | 21.6                    |                      |                   |               | 20.2           | 20.3        | 20.5          |        |          |               |             |
| Temp-cooled (°C)*+                                     |             |              |                         | 2.6                  | 2.8               | 10.5          |                |             |               |        |          | 2.9           | 10.         |
| pH 7.21<br>Conductivity (umhos/cm) 405                 | 7.25<br>510 | 7.04<br>1760 | 6.92<br>510             | 7.29<br>425          | 7.18<br>450       | 7.07<br>420   |                | 7.49<br>520 | 7.35<br>480   |        |          | 7.72<br>510   | 7.8<br>51   |
| Chlorine (mg/L)                                        |             |              | 2.0                     |                      |                   | v             | 0.6/0.3*       | 1.0/0.5*    | 0.6/0.1*      | /0.2*  | 0.6/0.1* | ciae dilia    |             |
|                                                        |             |              | _                       |                      |                   |               |                |             |               |        |          |               |             |
| inf Influent                                           |             |              | E                       | Ecology sar          | •                 |               |                |             |               |        |          |               |             |
| EF Effluent                                            |             |              | . Y                     | Yakima san           |                   |               |                |             |               |        |          |               |             |
|                                                        |             |              |                         |                      |                   |               |                |             |               |        |          |               |             |

| L1   | Lindent                                      |
|------|----------------------------------------------|
| grab | Grab sample.                                 |
| comp | Composite sample.                            |
| @    | Composite collection times: 08:00-08:00.     |
| L    | Left side of channel in direction of flow.   |
| R    | Right side of channel in direwction of flow. |
| Α    | Field measurement duplicate                  |

dup duplicate sample
J The associated numerical results is an estimated quantity.

UJ The analyte was not detected at or above the reported estimated result.

\* Pre-dechlorination/Post-dechlorination

Yakima collected sample from right channel.

\*+ Refrigerated sample.

|                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | neral Chemi       | -             |           |        |              |              | 1           |               |                 | D:           | Page 2  |                    |             |
|--------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|---------------|-----------|--------|--------------|--------------|-------------|---------------|-----------------|--------------|---------|--------------------|-------------|
| Parameter II                         | Location:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Ef-GC             | Aer-Mix-1     | Aer-Mix-2 | Sludge | I-Ef-1       | I-Ef-2       | I-Ef-3      | I-Ef-4        |                 | River 1      | River 2 | Ground             | AgOu        |
|                                      | Type:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | grab-comp         | grab          | grab      | grab   | grab         | grab         | grab        | grab          | E-comp          | grab         | grab    | grab               | gral        |
|                                      | Date:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10/6              | 10/6          | 10/6      | 10/6   | 10/6         | 10/6         | 10/7        | 10/7          | 10/6-7          | 10/6         | 10/6    | 10/6               | 10/         |
|                                      | Time:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | AM&PM             | 1105          | 1600      | 1325   | 0955         | 1500         | 0900        | 1155          | @               | 1050         | 1050    | 1612               | 111         |
|                                      | Lab Log #:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 418168            | 418169        | 418170    | 418171 | 418172       | 418173       | 418174      | 418175        | 418176          | 418177       | 418178  | 418179             | 41818       |
| GENERAL CH                           | <u>IEMISTRY</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |               |           |        |              |              |             |               |                 |              |         |                    |             |
| Conductivity (um                     | hos/cm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 591               |               |           |        | 236          | 275          |             |               | 261             | 137          |         |                    | 16          |
| Alkalinity (mg/L 0<br>Hardness (mg/L |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 159               |               |           |        |              |              |             |               | 1U<br>61.3      | 62.8<br>58.3 |         |                    |             |
| SOLIDS                               | oacos)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                   |               |           |        |              |              |             |               | 01.3            | 56.5         |         |                    |             |
| S (mg/L)                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |               |           |        |              |              |             |               | 2790            |              |         |                    |             |
| 「NVS (mg/L)                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |               |           |        |              |              |             |               | 121             |              |         |                    |             |
| rss (mg/Ľ)                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   | 2270          | 2360      |        | 447          | 700          |             |               | 227             |              |         | d document distrib |             |
| 'NVSS (mg/L)                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   | 345           | 340       |        |              |              |             |               | 10              |              |         |                    |             |
| 6 Solids                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |               |           | 23.6   |              |              |             |               |                 |              |         |                    |             |
| 6 Volatile Solids                    | ` ''                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                   |               |           | 67.2   |              |              |             |               |                 |              |         |                    |             |
| DXYGEN DEN                           | MAND PARA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | AMETERS           |               |           |        |              |              |             |               |                 |              |         |                    |             |
| BOD5 (mg/L)<br>BOD INH (mg/L)        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |               |           |        |              |              |             |               | > 700<br>> 700  |              |         |                    |             |
| 3OD 1NH (119/L)<br>3OD35 (mg/L)      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |               |           |        |              |              |             |               | <i>&gt;1</i> 00 |              |         |                    |             |
| COD (mg/L)                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |               |           |        |              |              |             |               | 3720            |              |         |                    | 4 1,499,000 |
| OC (water mg/L                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |               |           |        | 1360         | 1680         |             |               | 1370            |              |         | 61.6               | 1           |
| OC (soil – % so                      | lids)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                   |               |           | 2.1    |              |              |             |               |                 |              |         |                    |             |
| NUTRIENTS                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |               |           |        |              |              |             |               |                 |              |         |                    |             |
| (jeldahl-N (mg/l                     | -)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                   |               |           |        |              |              |             |               | 12.4<br>0.183   | 0.027        | 0.020   | 0.004              | 0.5         |
| NH3-N (mg/L)<br>NO2+NO3-N (mg        | ~# A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                   |               |           |        |              |              |             |               | 0.183           | 0.027        | 0.020   | 0.234<br>1.8       | 0.5<br>0.1  |
| rotal-P (mg/L)                       | g/L)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                   |               |           |        |              |              |             |               | 0.933           |              |         | 0.217              | 0.1         |
| MISCELLANE                           | OUS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                   |               |           |        |              |              |             |               |                 |              |         |                    |             |
| Oil and Grease (                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |               |           |        | 3 J          | 8 J          |             |               |                 |              |         |                    |             |
| -Coliform MF (#                      | #/100mL)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                   |               |           |        |              |              | 190000 J    | 220000 P      |                 |              |         |                    |             |
| 「–Coliform MF (#                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |               |           |        |              |              | > 400000    | > 400000      |                 |              |         |                    |             |
| SODIUM ADS                           | ORPTION F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | RATIO PARAM       | <u>IETERS</u> |           |        |              |              |             |               |                 |              |         |                    |             |
| 1CO3 (mg/L)                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |               |           |        | 1 U          | 1 U          |             |               |                 |              |         |                    |             |
| Ca (mg/L)                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |               |           |        | 17.2         | 16.0         |             |               |                 |              |         |                    |             |
| /lg (mg/L)<br>Na (mg/L)              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |               |           |        | 4.87<br>12.9 | 4.78<br>18.0 |             |               |                 |              |         |                    |             |
| FIELD OBSEF                          | SMOLEVA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                   |               |           |        | . 12.5       | 16.0         |             |               |                 |              |         |                    |             |
| Temperature (°C                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   | 20.9          |           |        | 18.8         | 21.3         |             |               |                 | 11.6         | 11.6    | 17.4               | 16          |
| Temp-cooled (°C                      | Control of the contro |                   | -5.5          |           |        |              |              |             |               | 2.8             |              |         |                    |             |
| эн -                                 | eri<br>Branskar barrankaria                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                   | 7.21          |           |        | 4.98         | 4.55         |             |               | 5.07            | 8.25         | 8.25    | 6.71               | 6.          |
| Conductivity (um                     | hos/cm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                   | 480           |           |        | 210          | 230          |             |               | 242             | 125          | 125     |                    | 1           |
| Chlorine (mg/L)                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.6/*             |               |           |        |              |              | ≤0.1        |               |                 |              |         |                    |             |
|                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |               |           |        |              |              |             |               |                 |              |         |                    |             |
| gr-comp/GC                           | Grab-con                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | •                 |               |           |        | River        | Receiving    |             |               |                 |              |         |                    |             |
|                                      | I Industrial                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                   |               |           |        | Ground       |              |             |               | eath aeratior   |              |         |                    |             |
| Aer-Mix                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | asin Mixed Liquo  | or            |           |        | AgOut        |              |             |               | from sprayfi    |              |         |                    |             |
| Sludg                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | sludge extract    |               |           |        | J            |              |             | erical result | s is an estim   | ated quant   | ty.     |                    |             |
| *                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | lorination/Post-d | echlorination |           |        | P            | Greater tha  |             |               | _               |              |         |                    |             |
| *+                                   | <ul> <li>Refrigerat</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ed sample         |               |           |        | U            | The analyt   | e was not o | detected at   | or above the    | reported a   | mount.  |                    |             |
|                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |               |           |        |              |              |             |               |                 |              |         |                    |             |
|                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |               |           |        |              |              |             |               |                 |              |         |                    |             |
|                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |               |           |        |              |              |             |               |                 |              |         |                    |             |

13

Table 4 - Ecology General Chemistry Results Percent Reduced - Yakima STP, 1992. Parameter Location: Inf-E-R Inf-E-L Tot-Inf-E Ef-E Ecology Inf-Y Ef-Y Yakima Type: E-comp E-comp E-comp E-comp Percent Y-comp Y-comp Percent Date: 10/6-7 10/6-7 10/6-7 10/6-7 Reduced 10/6-7 10/6-7 Reduced Time: @ @ @ Lab Log #: 418159 418160 418166 418161 418167 **GENERAL CHEMISTRY** Alkalinity (mg/L CaCO3) 129 126 128 159 -25% 130 160 -23% SOLIDS TSS (mg/L) 209 247 228 13 94% 205 17 92% **OXYGEN DEMAND PARAMETERS** BOD5 (mg/L) 310 430 370 13 96% 310 9.3 97% BOD INH (mg/L) 290 11 97% 380 335 300 6.9 98% COD (mg/L) 631 737 684 64 91% 615 64 90% TOC (mg/L) 238 267 253 110 56% 238 63.3 73% **NUTRIENTS** Kjeldahl-N (mg/L) 25.3 33.8 29.6 12.8 57% 13.7 13.4 2% NH3-N (mg/L) NO2+NO3-N (mg/L) 10.2 13.8 9.78 10% 12 19% 11 9.85 0.218 0.138 0.178 0.196 -10% 0.023 0.113 -391% Total-P (mg/L) 4.95 5.29 5.12 2.17 58% 4.38 2.11 52% TIN(mg/L) 10.4 13.9 12.2 10.0 18% 11.02 9.96 10%

Inf Influent

EF Effluent

E Ecology samples

Y Yakima samples.

L Left side of the influent channel

R Right side of the influent channel

<sup>\*</sup> Average of left and right channel concentrations.

Average is based on approximately equal flows in the two channels.

comp Composite sample

<sup>@</sup> Composite sampling time: 8:00 AM - 8:00 AM

TIN Total inorganic nitrogen (TIN = NH3-N + NO2-N + NO3-N)

There appear to be tangible differences in general chemistry concentrations between the left and right influent channels (Table 3). Visual inspection found differences both in color and occasional oil and grease sheens. Composites detected greater BOD<sub>5</sub>, BOD<sub>INH</sub>, COD, TOC, and TSS concentrations in the left channel than in the right. Conversely composite results for dissolved solids and conductivity in the right channel appreciably exceeded that in the left. Grab samples collected from the two channels at approximately the same time also found variability. During the inspection, Yakima personnel collected samples where the channels were interconnected but mixing appeared minimal. The Yakima sampling was primarily from the right channel and the data generated was quite similar to the Ecology right channel data. Yakima should determine whether the two channels are routinely different enough to necessitate sampling both channels to accurately determine influent loading.

# Sample Splits

Ecology analysis of sample splits found a fairly reasonable match between Ecology and Yakima influent and effluent composite samples (Table 3). Exceptions were somewhat lower values for several Yakima oxygen demand parameter samples and a much lower value for the Yakima Kjeldahl-N influent sample. Of note was the observation that Yakima composite sample temperatures were generally seven to eight degrees centigrade higher than Ecology samples. It is unclear how long the Yakima samples sat in the lab prior to measuring the temperature. Yakima should assure that samples were being properly cooled during collection.

Comparison of Ecology's and Yakima's laboratories analysis of split samples produced mixed results (Table 5). Fecal coliform comparisons showed the greatest difference between analyses. Ecology's values for one effluent grab was nearly a factor of 100 times greater than Yakima's, while another effluent grab was only marginally greater. Both sets of industrial fecal coliform analyses were uniformly high. Yakima does possess laboratory accreditation from the Department of Ecology laboratory accreditation program, but this discrepancy may indicate problems. Yakima should review their fecal coliform protocol to assess test performance. It is suggested that they contact Ecology's laboratory accreditation program if assistance is needed.

Yakima's TSS results were slightly lower than Ecology's results. The most marked differential was the industrial effluent composite sample (I-Ef-E) where Yakima's results (627 mg/L) greatly exceeded Ecology's results (227 mg/L). The results of the Inf-E-L sample were also notably different.

BOD<sub>5</sub> and NH<sub>3</sub>-N comparisons found Ecology's values slightly lower than Yakima's values (Table 5). Correlation between sets of data was very good (0.89 and 0.99, respectively). Linear regression analysis between six pairs for BOD<sub>5</sub> and four pairs for NH<sub>3</sub>-N corroborated that Ecology's values were consistently lower. The actual difference between each pair of data appeared marginal.

The two chlorine residual splits analyzed found some variation between Ecology and Yakima results.

| Parameter       | Location:                                            | Inf-E-R      | Inf-E-L | Inf-Y**    | Ef-3    | Ef-4                        | Ef-E   | Ef-Y   | I-Ef-3                               | I-Ef-4        | I-Ef-E |
|-----------------|------------------------------------------------------|--------------|---------|------------|---------|-----------------------------|--------|--------|--------------------------------------|---------------|--------|
|                 | Type:                                                | E-comp       | E-comp  | Y-comp     | grab    | grab                        | E-comp | Y-comp | grab                                 | grab          | E-comp |
|                 | Date:                                                | 10/6-7       | 10/6-7  | 10/6-7     | 10/6    | 10/6                        | 10/6-7 | 10/6-7 | 10/7                                 | 10/7          | 10/6-7 |
|                 | Time:                                                |              | @       |            | 0825    | 1210                        |        | @      | 0900                                 | 1155          |        |
|                 | Lab Log #:                                           | 418159       | 418160  | 418161     | 418164  | 418165                      | 418166 | 418167 | 418174                               | 418175        | 418176 |
|                 | Laboratory                                           |              |         |            |         |                             |        |        |                                      |               |        |
| TSS (mg/L)      | Ecology                                              | 209          | 247     | 205        |         |                             | 13     | 17     |                                      |               | 227    |
|                 | Yakima Δ                                             | 220          | 116     | 172        |         |                             | 10     | 11     |                                      |               | 627    |
| BOD5 (mg/L)     | Ecology                                              | 310          | 430     | 310        |         |                             | 13     | 9.3    |                                      |               | >700   |
|                 | Yakima 🛽                                             | 360          | 465     | 371        |         |                             | 12     | 10     |                                      |               | 2155   |
| NH3-N (mg/L)    | Ecology                                              | 10.2         | 13.8    | 11         |         |                             | 9.78   | 9.85   |                                      |               | 0.183  |
|                 | Yakima 🛽                                             | 13.4         | 15.7    | -          |         |                             | 13     | -      |                                      |               | 1.23   |
| -Coliform MF    | Ecology                                              |              |         |            | 3000 J  | 250 J                       |        |        | 190000 J                             | 220000 P      |        |
| #/100ml)        | Yakima                                               |              |         |            | 36      | 100                         |        |        | TNTC                                 | TNTC          |        |
| Γ-Coliform MF   | Ecology                                              |              |         |            |         |                             |        |        | >400000                              | >400000       |        |
| #/100ml)        | Yakima                                               |              |         |            |         |                             |        |        | TNTC                                 | TNTC          |        |
| Chlorine (mg/L) | Ecology                                              |              |         |            | 0.2*    | 0.6*                        |        |        | ≤0.1                                 |               |        |
|                 | Yakima                                               |              |         |            | 0.51*   | 0.51*                       |        |        |                                      |               |        |
|                 |                                                      |              |         |            |         |                             |        |        |                                      |               |        |
|                 | na unsure how long comp<br>our composite. Collection |              |         | efigerator |         | uent samples.<br>P effluent |        |        | ogy sample<br>na sample              |               |        |
| J The a         | analyte was positively ider                          | itified, but |         |            | Comp Ec | ology composite             | sample | l Indu | strial influent to sp                | orayfields    |        |
|                 | ssociated value is an estir<br>Numerous To Count     | nate.        |         |            |         | ıb sample<br>mposite sample |        |        | dechlorination<br>ole collected from | right channel |        |

## Organics/Metals

Organic and metals data are summarized in Tables 6 and 7 (compounds detected) and in Appendix E (all compounds). Organic analysis revealed a small number of detected VOA and BNA compounds in the effluent, although none exceeded EPA water quality criteria (Table 6-EPA, 1986). Several pesticides were also detected in the municipal effluent, but these too were less than the EPA water quality acute and chronic criteria. A fair number of compounds were detected in the influent, the largest concentration being methylene chloride. Analysis of influent VOAs, BNAs, pesticides, and PCBs found several that exceeded EPA water quality chronic criteria; but all were subsequently reduced to below criteria across the STP.

Priority pollutant metals analysis identified concentrations of copper, lead, and silver in the effluent that surpassed EPA water quality chronic criteria (Table 7 - EPA, 1986). None exceeded acute criteria. The comparisons are between the effluent concentrations and the EPA water quality criteria and do not consider any mixing with the receiving water that may occur.

## **Bioassays**

Daphnia pulex and rainbow trout results exhibited no acute toxicity (Table 8). Microtox results indicated some effects with an estimated  $EC_{50}$  of 48% effluent concentration.

Chronic effects were noted in both chronic tests. Based on statistical analysis Fathead minnow results for survival displayed no chronic effects (LOEC > 100%). A 75% survival rate at 100% effluent concentration would suggest some caution in interpreting this result. A chronic effect at the high concentration was observed for the growth test. Fathead Minnow growth in the 100% effluent was 50% of the control and had an NOEC at 50% of effluent concentration. The Ceriodaphnia dubia survival test produced an NOEC of 25% effluent concentration. The NOEC for Ceriodaphnia dubia reproduction was less than 6.25% of effluent concentration. This data suggests that the effluent exhibits chronic toxicity.

Chlorine residual was detected in the effluent sample collected for bioassays. At the laboratory, chlorine residual was detected at 0.31 mg/L. These concentrations could produce adverse effects in toxicity tests prior to test initiation. Revised Ecology policy now requires that bioassay samples are collected either before chlorination or after dechlorination. (Ecology, 1993)

### Sludge

Sludge results were compared to the EPA National Sewage Sludge Survey to learn if the Yakima sludge contained priority pollutant concentrations noticeably higher than national averages (Table 9-EPA, 1990). Only arsenic (43.7 mg/Kg-dry) exceeded one standard deviation from the geometric mean of all STPs in the survey. Copper, lead, and zinc exceeded the geometric mean, but were all within one standard deviation. All other metals were less than the geometric mean.

| Location:                               | Inf-1-R       | Inf-2-L       | Inf-3-R       | Inf-4-L      | Inf-E        | -R       | Inf-E-L        | Ef-1          | Ef-2           | Ef-E             | Sludg            | e I-Ef-1                                    | I-Ef-2            | I-Ef-E         | EPA              | Water                                   | Quality        |
|-----------------------------------------|---------------|---------------|---------------|--------------|--------------|----------|----------------|---------------|----------------|------------------|------------------|---------------------------------------------|-------------------|----------------|------------------|-----------------------------------------|----------------|
| Type:                                   | grab          | grab          | grab          | grab         | E-cor        | np       | E-comp         | grab          | grab           | E-comp           | gra              |                                             | grab              | E-comp         | I                |                                         | mmary**        |
| Date:                                   | 10/6          | 10/6          | 10/6          | 10/6         | 10/6         |          | 10/6–7         | 10/6          | 10/6           | 10/6–7           | 10/              | •                                           | 10/6              | 10/6–7         | Acute            |                                         | Chronic        |
| Time:                                   | 0919          | 0904          | 1430          | 1428         |              | @        | @              | 1055          | 1525           | @                | 132              | 5 0955                                      | 1500              | @              | Fresh            |                                         | Fresh          |
| Lab Log#:                               | 418155        | 418156        | 418157        | 418158       | 4181         | _        | 418160         | 418162        | 418163         | 418166           | 41817            |                                             | 418173            | 418176         |                  |                                         |                |
| /OA Compounds                           | (µg/L)        | (µg/L)        | (μg/L)        | (µg/L)       |              |          |                | (µg/L)        | (µg/L)         |                  | (μg/Kg-dry       |                                             | (μg/L)            |                | (µg/L)           |                                         | (µg/L)         |
| Methylene Chloride                      | 61            | 110           | 113           | 105          |              |          |                | 73            | 31             |                  | 6400             | 409                                         | 406               |                | 11,000           | *(a)                                    |                |
| cetone                                  | 24 J          | 46 J          | 67 J          | 68 J         |              |          |                | 6.7 J         | 100 U          |                  | 2000             |                                             | 44 J              |                |                  |                                         |                |
| arbon Disulfide                         | 10 U          | 13            | 14            | 10           |              |          |                | 10 U          | 10 U<br>10 U   |                  | 1000 l           |                                             | 38<br>4 J         |                | 00 000           |                                         | 4 0 4 0        |
| hloroform                               | 5.6 J<br>10 U | 6.4 J<br>10 U | 8.8 U<br>10 U | 13<br>2.4 J  |              |          |                | 10 U<br>10 U  | 10 U           |                  | 1000 J<br>1000 l |                                             | 4 J<br>10 U       |                | 28,900<br>35,200 | *                                       | 1,240          |
| arbon Tetrachloride<br>etrachloroethene | 10 U          | 10 U          | 2.9 J         | 5.3 J        |              |          |                | 10 U          | 10 U           |                  | 1000 t           |                                             | 10 U              |                | 5,280            | •                                       | 840            |
| thylbenzene                             | 10 U          | 10 U          | 2.9 U         | 2 J          |              |          |                | 10 U          | 10 U           |                  | 1000 l           |                                             | 10 U              |                | 32,000           | *:::::::::::::::::::::::::::::::::::::: | 340            |
| otal Xylenes                            | 10 U          | 10 Ü          | 9 Ü           | 3.5 J        |              |          |                | 10 U          | 10 U           |                  | 1000 l           |                                             | 10 Ü              |                | <b>02,000</b>    |                                         |                |
| NA Compounds                            |               |               |               |              | (µg          | /L)      | (µg/L)         |               |                | (µg/L)           | (µg/Kg–dry       | r)                                          |                   | (µg/L)         | (µg/L)           |                                         | (μg/L)         |
| Phenol                                  |               |               |               |              | 10           | U        | 10 U           |               |                | 10 U             | 3700 .           | <b>V</b> isitalaide anta                    |                   | 10 J           | 10,200           | *                                       | 2,560          |
| ,4-Dichlorobenzene                      |               |               |               |              | 2.2          | J        | 0.8 J          |               |                | 0.5 J            | 8000             | j                                           |                   | 10 J           | 1,120            | *(h)                                    | 763            |
| ,2-Dichlorobenzene                      |               |               |               |              | 1.6          |          | 10 U           |               |                | 10 U             | 8000 l           | Jana sa |                   | 10 U           | 1,120            | *(h)                                    | 763            |
| i–Methylphenol                          |               |               |               |              | 10           |          | 20             |               |                | 10 U             | 2200             | ]                                           |                   | 10 J           |                  |                                         |                |
| Naphthalene                             |               |               |               |              | 1.1          |          | 1.2 J          |               |                | 10 U             | 8000 (           |                                             |                   | 10 U           | 2,300            | *                                       | 620            |
| I–Chloroaniline<br>I–Methylnaphthalene  |               |               |               |              | 1.4<br>0.8   |          | 1.4 J<br>0.5 J |               |                | 20 U<br>10 UJ    | 1900 J<br>8000 l |                                             |                   | 20 J<br>10 U   |                  |                                         |                |
| iethyl Phthalate                        |               |               |               |              | 6.2          |          | 7.8 J          |               |                | 0.3 J            | 8000 l           |                                             |                   | 10 U           | 940              | *(i)                                    | 3              |
| N-Nitrosodiphenylamine                  |               |               |               |              | 18           | e distri | 48             |               |                | 10 U             | 1700             | _                                           |                   | 0,8 J          | 5,850            | *(k)                                    |                |
| Phenanthrene                            |               |               |               |              | 10           | U        | 10 U           |               |                | 10 U             | 270              |                                             |                   | 10 U           |                  | (4)                                     |                |
| Di-n-Butyl Phthalate                    |               |               |               |              | 10           | U        | 43 U           |               |                | 82 U             | 27000            |                                             |                   | 10 U           | 940              | *(i)                                    | 3              |
| Butylbenzyl Phthalate                   |               |               |               |              | 15           |          | 18             |               |                | 8.5 U            | 2000             | J                                           |                   | 6.3 J          | 940              | *(i)                                    | 3              |
| 3is(2-Ethylhexyl)Phthalate              |               |               |               |              | 29           |          | 31             |               |                | 10 U             | 17000            |                                             |                   | 21             | 940              | *(i)                                    | 3              |
| Di-n-Octyl Phthalate                    |               |               |               |              |              | J        | 3.4 J          |               |                | 10 U             | 8000 l           | J                                           |                   | 1 U            | 940              | *(i)                                    | 3              |
| ndeno(1,2,3-cd)Pyrene                   |               |               |               |              | 10           | U        | 0.3 J          |               |                | 10 U             | 8000 l           | James Cont                                  |                   | 10 U           |                  |                                         |                |
| Pesticide/PCB Compound                  | <u>ds</u>     |               |               |              | ( <i>µ</i> g | /L)      | (µg/L)         |               |                | (µg/L)           | (µg/Kg-dry       | <b>'</b> )                                  |                   | (µg/L)         | (μg/L)           |                                         | (µg/L)         |
| eta-BHC                                 |               |               |               |              | 0.04         |          | 0.05           |               |                | 0.02             | 0.17             |                                             |                   | 0,01 U         | 100              | *(q)                                    |                |
| jamma-BHC (Lindane)                     |               |               |               |              | 0.03         |          | 0.06           |               |                | 0.01             | 0.01 (           |                                             |                   | 0.01 U         | 2.0              |                                         | 0.08           |
| I,4'-DDD                                |               |               |               |              | 0.01         |          | 0.01           |               |                | 0.01 U           | 0.01 (           |                                             |                   | 0.01 U         | 0.6              |                                         | 0.001          |
| 1,4'-DDE                                |               |               |               |              | 0.01         |          | 0.02           |               |                | 0.01 U           | 0.01             |                                             |                   | 0.01 U         | 1,050            | *                                       | 0.001          |
| I,4'–DDT<br>Endosulfan I                |               |               |               |              | 0.03         |          | 0.03<br>0.01   |               |                | 0.01 U<br>0.01 U | 0.01 U<br>0.01 U |                                             |                   | 0.01 U<br>0.05 | 1.1<br>0.22      |                                         | 0,001<br>0.056 |
| Endosulfan II                           |               |               |               |              | 0.02         |          | 0.01           |               |                | 0.01 U           | 0.01 (           |                                             | gegaa (jervener). | 0.03           | 0.22             | `'                                      | 0.056          |
| Endosulfan Sulfate                      |               |               |               |              | 0.01         |          | 0.01 U         |               |                | 0.01             | 0.01 l           |                                             |                   | 0.17           | 0.22             |                                         | 0.056          |
| J The associated num                    | erical result | is an estim   | ated quanti   | ty.          |              |          | L Lef          | t side of cha | annel in direc | tion of flow.    | @ (              | Composite co                                | ollection ti      | mes: 08:00-    | -08:00.          |                                         |                |
| U The analyte was not                   | detected at   | or above th   | ne reported i | esult.       |              |          | R Rig          | ht side of cl | hannel in dir  | ection of flow.  | a -              | Total Halome                                | ethanes           |                |                  |                                         |                |
| UJ The analyte was not                  | detected at   | or above th   | ne reported e | estimated re | esult.       |          | l Ind          | ustrial disch | narge to spra  | vfield           | h -              | Total Dichlor                               | obenzene          | s              |                  |                                         |                |
| Inf Influent                            |               |               | ,             |              |              | Shir     |                | ntrifuge sluc | •              | ,                |                  | Total Phthala                               |                   |                |                  |                                         |                |
| EF Effluent                             |               |               |               |              |              |          | _              | nposite san   | -              |                  |                  | Total Nitrosa                               |                   |                |                  |                                         |                |
|                                         | . 1 . 20      |               |               |              |              |          | •              | •             | •              |                  |                  |                                             | milles            |                |                  |                                         |                |
| * Insufficient data to d                | ,             |               | presented is  | tne          |              |          |                | •             | er: Yakima R   | ver.             | •                | Total BHCs                                  |                   |                |                  |                                         |                |
| LOEL - Lowest obse                      | rvable Effec  | t Level.      |               |              |              | g        | •              | ıb sample.    |                |                  |                  | Endosulfan                                  |                   |                |                  |                                         |                |
| ** From EPA, 1986                       |               |               |               |              |              |          | E Ecc          | ology sampl   | e              |                  | u f              | DDT plus me                                 | tabolites         |                |                  |                                         |                |

below the established minimum quantitation limit. U The analyte was not detected at or above the reported result.

\*\* From EPA, 1986

\* Insufficient data to develop criteria. Value presented is the LOEL – Lowest Observed Effect Level.

+ Hardness dependent criteria (75 mg/L used).

| Location:<br>Type:                                                                                                                                       | Inf-E-R<br>E-comp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Inf-E-L<br>E-comp                                              | Ef-E<br>E-comp             | Sludge<br>grab       | I-Ef-E<br>E-comp    | River 1<br>grab |                                    | 1                                        | /ater Qua<br>s Summa                | •                                                |                          |
|----------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|----------------------------|----------------------|---------------------|-----------------|------------------------------------|------------------------------------------|-------------------------------------|--------------------------------------------------|--------------------------|
| Date:                                                                                                                                                    | 10/6–7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10/6–7                                                         | 10/6–7                     | 10/6                 | 10/ <del>6-</del> 7 | 10/6            |                                    | Acute                                    | C                                   | hronic                                           |                          |
| Time:                                                                                                                                                    | @                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | @                                                              | @                          | 1325                 | @                   | 1050            |                                    | Fresh                                    |                                     | Fresh                                            |                          |
| Lab Log#:                                                                                                                                                | 418159                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 418160                                                         | 418166                     | 418171               | 418176              | 418177          |                                    |                                          |                                     |                                                  |                          |
| Total Recoverable Metals                                                                                                                                 | <u>(</u> μg/L)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (µg/L)                                                         | (μg/L)                     | (mg/Kg-dry)          | (μg/L)              | (µg/L)          |                                    | (µg/L)                                   |                                     | (ug/L)                                           |                          |
| Hardness = 75                                                                                                                                            | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                |                            |                      |                     |                 |                                    | 1                                        |                                     |                                                  |                          |
| Arsenic                                                                                                                                                  | 2.4 P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.7 P                                                          | 1.6 P                      | 43.7                 | 1.5 U               | 1,5 U           |                                    |                                          |                                     |                                                  |                          |
| Pentavalent                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                |                            |                      |                     |                 |                                    | 850                                      |                                     | 48 #                                             |                          |
| Trivalent                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                |                            |                      |                     |                 |                                    | 360                                      | #                                   | 190 #                                            |                          |
| Beryllium                                                                                                                                                | 1 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1 U                                                            | 1 U                        | 0.14 P               | 1 U                 | 1 U             |                                    | 130                                      |                                     | 5.3 *                                            |                          |
| Dadmium                                                                                                                                                  | 1.92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.81 B                                                         | 0.14 PB                    | 6.18                 | 0.61 B              |                 |                                    | 2.8                                      | <b>*</b>                            | 0.9 +                                            |                          |
| Chromium                                                                                                                                                 | 5 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5.1 P                                                          | 11 P                       | 33.9                 | 5 U                 | 5 U             |                                    |                                          |                                     |                                                  |                          |
| Hexavalent                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                |                            |                      |                     |                 |                                    | 16                                       |                                     | 11                                               |                          |
| Trivalent                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                |                            | Milition application |                     |                 |                                    | 1,372                                    |                                     | 164                                              |                          |
| Copper                                                                                                                                                   | 87.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 82.9                                                           | 11                         | 851 E                | 51.8                | 3 U<br>1 U      |                                    | 14<br>57                                 |                                     | 9 +                                              |                          |
| ead                                                                                                                                                      | 25.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 18.6                                                           | 3.3 P<br>0.1 U             | 142 N                | 4.1 P               | 0.1 U           |                                    | 1                                        | +                                   | 2.2 +<br>0.012                                   |                          |
| Mercury                                                                                                                                                  | 0.1 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.8                                                            | 10 U                       | 3.12<br>19.9         | 0.1 U<br>10 U       | 10 U            |                                    | 2.4<br>1,112                             |                                     | 124 +                                            |                          |
| Nickel                                                                                                                                                   | 10 U<br>50 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 10 U<br>2 U                                                    | 50 U                       | 3.55                 | 50 U                | 50 U            |                                    | 260                                      | T<br>Stantoner et de                | 35                                               |                          |
| Selenium                                                                                                                                                 | omentalionaer.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                | 0.96 P                     | 32.8 N               | 0.5 U               | 0.5 U           |                                    | 2.5                                      |                                     | 0.12                                             |                          |
| Silver                                                                                                                                                   | 4<br>227                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 7.25<br>204                                                    | 51.9 U                     | 3∠.8 N<br>1290       | 110 U               | 0.5 U<br>12 P   |                                    | 92                                       |                                     | 83 +                                             |                          |
| Zinc                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                |                            | 1290                 | 110 0               | 14 5            |                                    | · <b>I</b>                               | .▼                                  | 00 T                                             |                          |
| B Analyte was found in the the sample may have be E Reported result is an est N For metals analytes the within control limits. P The analyte was detecte | en contamination in the contaminate because spike sample d above the contamination in the con | ated.<br>se of the prese<br>recovery is no<br>detection limit, | ince of interference<br>ot | <b>3.</b>            |                     |                 | Inf<br>EF<br>L<br>R<br>I<br>Sludge | Right side<br>Industrial o<br>Centrifuge | of channe<br>discharge<br>sludge ex | in direction of flow.<br>I in direction of flow. | Exceeds Chronic criteria |
| below the established m                                                                                                                                  | inimum quan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | titation limit.                                                |                            |                      |                     |                 | comp                               | Composite                                | e samples.                          | www.                                             |                          |
| II The analyte was not dete                                                                                                                              | acted at ar ab                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | save the report                                                | ad recult                  |                      |                     |                 | arah                               | Grah came                                | nle                                 |                                                  |                          |

grab Grab sample.

E Ecology sample.

@ Composite collection times: 08:00-08:00.

River Receiving water: Yakima River.

## Table 8 - Effluent Bioassay Results - Yakima STP, 1992.

NOTE: all tests were run on the effluent (Ef-GC sample) - lab log # 418168

## Daphnia pulex - 48 hour survival test

(Daphnia pulex)

| Sample                                                                                            | #<br>Tested *                          | Percent<br>Survival                  |
|---------------------------------------------------------------------------------------------------|----------------------------------------|--------------------------------------|
| Control<br>6.25 % Effluent<br>12.5 % Effluent<br>25 % Effluent<br>50 % Effluent<br>100 % Effluent | 20<br>20<br>20<br>20<br>20<br>20<br>20 | 100<br>100<br>95<br>100<br>100<br>95 |

Acute LC50 = >100 % effluent LOEC = >100 % effluent

# <u>Ceriodaphnia dubia - 7 day survival and reproduction test</u> (Ceriodaphnia dubia)

| Sample          | #<br>Tested | Percent<br>Survival | Mean # Young per<br>Original Female |
|-----------------|-------------|---------------------|-------------------------------------|
| Control         | 10          | 90                  | 14.2                                |
| 6.25 % Effluent | 10          | 80                  | 7.1                                 |
| 12.5 % Effluent | 10          | 80                  | 6.9                                 |
| 25 % Effluent   | 10          | 80                  | 7.9                                 |
| 50 % Effluent   | 10          | 40                  | 3.9                                 |
| 100 % Effluent  | 10          | 0                   | 0                                   |

Survival NOEC = 25 % effluent LOEC = 50 % effluent Reproduction NOEC < 6.25 % effluent

# Fathead Minnow - 7 day survival and growth test (Pimephales promelas)

|                 | #        | Percent                       | Average Dry Weight          |
|-----------------|----------|-------------------------------|-----------------------------|
| Sample          | Tested * | Survival                      | per Fish (mg)               |
| Control         | 40       | 92.5                          | 0.32                        |
| 6.25 % Effluent | 40       | 87.5                          | 0.40                        |
| 12.5 % Effluent | 40       | 100.0                         | 0.36                        |
| 25 % Effluent   | 40       | 95.0                          | 0.37                        |
| 50 % Effluent   | 40       | 90.0                          | 0.29                        |
| 100 % Effluent  | 40       | 75.0                          | 0.16                        |
|                 | NOEC     | Survival<br>= >100 % effluent | Growth NOEC = 50 % effluent |
|                 | LC50     | = >100 % effluent             | LOEC = 100 % effluent       |

<sup>\*</sup> four replicates of 10 organisms

## Rainbow Trout - 96 hour survival test

(Oncorhynchus mykiss)

### **Microtox**

| Sample                   | #<br>Tested | Percent<br>Survival | Time       | EC50<br>(%effluent)                                            |
|--------------------------|-------------|---------------------|------------|----------------------------------------------------------------|
| Control<br>100% Effluent | 30<br>30    | 100<br>100          | 15 minutes | >45<br>(EC50 = 48% – extrapolated from<br>test concentrations) |

NOEC - no observable effects concentration LOEC - lowest observable effects concentration LC50 - lethal concentration for 50% of the organisms EC50 - effect concentration for 50% of the organisms

<sup>\* 4</sup> replicates of 5 organisms

Table 9 – Comparison of Compounds Detected in Digested Sludge with the National Sewage Sludge Survey\* – Yakima, 1993

|                                |                                                                     |                | Dat         | a from EPA Slud | _         |          |
|--------------------------------|---------------------------------------------------------------------|----------------|-------------|-----------------|-----------|----------|
|                                |                                                                     |                |             | (EPA, 1         |           |          |
| Parameter                      | Location:                                                           | Sludge         | Geometric   | Geometric       | Number of | Percent  |
|                                | Type:<br>Lab Log #                                                  | grab<br>418171 | Mean **     | Mean + 1 S.D.   | Samples   | Detected |
|                                | Lab Log "                                                           | (mg/Kg-dry)    | (mg/Kg-dry) | (mg/Kg-dry)     |           | %        |
| VOA COMPOUNDS                  |                                                                     |                |             |                 |           |          |
|                                | (VOA compound<br>by the NSSS we<br>detected in the                  | ere not        |             |                 |           |          |
| BNA COMPOUNDS                  |                                                                     |                |             |                 |           |          |
| Bis(2–ethylhexyl)<br>Phthalate |                                                                     | 17             | 74.7        | 673             | 200       | 62       |
| Pesticide/PCB                  |                                                                     |                |             |                 |           | :        |
|                                | (Pesticide/PCB<br>evaluated by th<br>were not detect<br>the sludge) | e NSSS         |             |                 |           |          |
| METALS                         |                                                                     |                |             |                 |           |          |
| Arsenic                        |                                                                     | 43.7           | 9.93        | 28.7            | 199       | 80       |
| Beryllium                      |                                                                     | 0.14 P         | 0.37        | 0.71            | 199       | 23       |
| Cadmium                        |                                                                     | 6.18           | 6.9         | 18.7            | 198       | 69       |
| Chromium                       |                                                                     | 33.9           | 118.6       | 458             | 199       | 91       |
| Copper                         |                                                                     | 851 E          | 741.0       | 1703            | 199       | 100      |
| Lead                           |                                                                     | 142 N          | 134.0       | 332             | 199       | 80       |
| Mercury                        |                                                                     | 3.12           | 5.22        | 20.8            | 199       | 63       |
| Nickel                         |                                                                     | 19.9           | 42.7        | 137.5           | 199       | 66       |
| Selenium                       |                                                                     | 3.55           | 5.16        | 12.5            | 199       | 65       |
| Zinc                           |                                                                     | 1290           | 1202        | 2756            | 199       | 100      |

<sup>\*</sup> Geometric mean and variance are exponential conversions of arithmetic mean and variance for log-normal distributions and were derived utilizing the Method of Maximum Likelihood.

J Result is an estimate.

<sup>\*\*</sup> In general, concentrations are a weighted combination of flow rate group estimates.

<sup>##</sup> Weighted combination of only two flow groups: flow  $\geq$  100 MGD and 10 < flow < +100 MGD.

<sup>++</sup> Estimate from one flow group: 1<flow<10

Several organic compounds were also detected in the sludge (Table 6). Of these only bis(2-ethylhexyl)phthalate was evaluated in the sludge survey. The concentration in the Yakima sludge was less than the geometric mean from the national sludge survey.

Land application of sludge should be evaluated based on guidelines and limits included in the EPA sludge regulations (EPA, 1993).

### **Industrial Wastewater Treatment**

# **General Chemistry**

The industrial effluent was typical of food processing wastewater (Table 3). The concentration of BOD<sub>5</sub> was high (Ecology result >700mg/L), TSS concentration was moderate, and nutrient concentrations were low. During the inspection crop growth on the sprayfield was sparse. The sprayfield operator reported the area had recently been tilled and reseeded. Establishing and maintaining a good stand of cover in the sprayfields has proven elusive. Also weeds are a frequent problem.

Inspection water quality data are compared to several guidelines pertaining to the use of wastewater for irrigation (Table 10 - Metcalf & Eddy, 1991). Adjusted Sodium Adsorption Ratio (adj $R_{Na}$ ) calculations suggest moderate impact on water infiltration rates in sprayfield soils may occur due to wastewater application. Salinity in the industrial wastewater as calculated from conductivity was expected to have no impact in terms of crop water availability. The pH of the wastewater (4.55 - 4.98) was below the range for normal crop growth. Total nitrogen (Kjeldahl-N + NO<sub>2</sub>-N + NO<sub>3</sub>-N) concentrations were in the range that may cause slight to moderate inhibition of crop growth. Yakima should investigate the industrial wastewater to determine if the wastewater quality is suitable for the spray program being used.

High fecal (190000-220000 #/100ml) and total coliform (>400000 #/100ml) counts were detected in the industrial wastewater (Table 3). These levels could pose problems as a source of ground water contamination and as inadvertent runoff into the Yakima River. Monitoring by Yakima to determine typical coliform concentrations being sent to the sprayfield is recommended. The data generated should be compared to any applicable guidelines for land application of wastewater.

Of note, was an old concrete sewer pipe, approximately 36 inches in diameter, running beneath the sprayfield and emptying directly into the Yakima River. A pool of water from the pipe had collected in a small basin just adjacent to the River. Mats of bacterial growth and various other organisms were found in the water and on surrounding rocks. TOC concentration exceeded 130 mg/L (AgOut sample - Table 3). Although the actual source of this wastestream was unknown, the operator indicated it originates beyond the sprayfield boundaries. Any breaks in the pipe under the sprayfield could act as a direct conduit of land applied industrial wastewater into the Yakima River. The pipe should be investigated, the water quality characterized, and appropriated action taken.

|                                  |                                                                                                |                    | Degree o        | of Restrictions            | on Use   |                                             |
|----------------------------------|------------------------------------------------------------------------------------------------|--------------------|-----------------|----------------------------|----------|---------------------------------------------|
| Potential Irrigation Problems    |                                                                                                | Units              | None            | Slight to<br>Moderate      | Severe   | Yakima Sprayfield<br>Industrial Wastewater* |
| Salinity<br>ECw                  | (affects crop water availability)                                                              | dS/m or mmho/cm    | <0.7            | 0.7-3.0                    | >3.0     | 0.26□                                       |
| Permeability<br>Range:           | (affects infiltration rate of water into<br>soil. Evaluate using ECw & adj RN<br>adjRNa = <0.3 |                    | <b>v</b> = ≥0.7 | 0.7-0.2                    | <0.2     | adjRNa: 0.282                               |
|                                  |                                                                                                |                    |                 |                            |          | ECw = 0.26                                  |
| Micellaneous<br>Nitrogen (<br>pH |                                                                                                | s)<br>mg/L<br>mg/L | <5<br>N         | 5-30<br>ormal range 6.5-8. | >30<br>4 | ECw = 0.26<br>12.5<br>4.6;5.0 Δ             |

adjRNa Adjusted Sodium Adsorption Ratio

## Organics/Metals

A number of VOAs, BNAs, and PCBs/Pesticides were detected in the industrial wastewater prior to sprayfield application (Table 6). Four (butylbenzyl phthalate, bis(2-ethylhexyl)phthalate, endosulfan II, and endosulfan sulfate) exceeded EPA water quality chronic criteria (EPA, 1986). Although concentrations exceeded chronic criteria for receiving waters, the effluent is land applied to sprayfields so these criteria are not directly applicable. Methylene chloride was found at the highest concentration (406 & 409  $\mu$ g/L).

Only three metals were detected in the industrial effluent (Table 7). The cadmium concentration was less than both acute and chronic receiving water criteria. Copper exceeded both acute and chronic EPA water quality criteria. Lead exceeded the chronic criteria. Several metal detection limits were above either chronic or acute criteria. Although some concentrations exceeded acute or chronic criteria for receiving waters, the effluent is land applied to sprayfields so these criteria are not directly applicable.

## CONCLUSIONS AND RECOMMENDATIONS

### **Domestic Wastewater Treatment**

### Flow Measurement

Ecology's instantaneous flow measurements matched well with Yakima metering devices. The flow rate during the inspection exceeded 85% of permit design capacity for monthly average flow included in the NPDES permit. Should flows frequently exceed 85% of monthly design capacity, the design capacity should be modified to reflect any plant improvements, or a plan and schedule for continuing adequate treatment capacity should be submitted to Ecology.

# **NPDES Permit Compliance**

Most parameters were within NPDES permit effluent limits and influent loading criteria. Exceptions included:

- Effluent total ammonia results exceeded the calculated NPDES permit chronic monthly limit. It is recommended that steps be taken to improve nitrification in the aeration basins.
- Ecology fecal coliform grab sample results exceeded the NPDES permit monthly average limit. A new chlorination system had been installed, but was not fully operational at the time of the inspection. The new system could be fine tuned to provide lower counts.
- Influent BOD<sub>5</sub> loading exceeded the average monthly design capacity included in the NPDES permit. Should BOD<sub>5</sub> loading frequently exceed 85% of design capacity, the

design capacity should be modified to reflect any plant improvements, or a plan and schedule for continuing to maintain adequate treatment capacity should be submitted to Ecology.

# General Chemistry/Plant Operation

BOD<sub>5</sub> and TSS removal through the plant was greater than 90%. Effluent NH<sub>3</sub>-N concentrations suggest little nitrification was occurring across the plant.

Ecology composite samples found differences in influent quality between two influent channels. Yakima should conduct a survey of the quality in both channels to determine if differences occur frequently enough to require routine composite sampling in both channels.

# Sample Splits

Ecology laboratory analysis found a reasonable correspondence between Ecology's and Yakima's samples. Yakima should routinely (at least weekly) check composite sample temperatures to assure that they are adequately cooled during collection.

Comparisons between the two laboratories' analyses of split samples found some differences in fecal coliform, TSS, and NH<sub>3</sub> results. It is suggested that Yakima review their fecal coliform testing protocol. If necessary, they could seek assistance from Ecology's Laboratory Accreditation Section.

## Organics/Metals

Several organic compounds were detected in both the influent and effluent. All effluent concentrations were less than EPA water quality criteria (EPA, 1986). Three metals detected in the effluent (Cu, Pb, and Ag) did exceed the EPA water quality chronic criteria. Dilution in an allowed mixing zone could reduce the concentrations below the water quality criteria. Monitoring of these metals should be continued.

### **Bioassays**

Fathead minnow (growth NOEC = 50% effluent) and *Ceriodaphnia dubia* (survival NOEC = 25% effluent and reproduction NOEC < 6.25%) bioassays provided evidence of chronic effects. Ecology also observed some effects in the Microtox bioassays (EC<sub>50</sub> = 48%). The toxicity may have been caused by chlorine residual in the sample during the analysis.

### Sludge

Comparison to the EPA National Sewage Sludge Survey found most organic and metals detected in the Yakima sludge at concentrations less than the survey's geometric mean plus one standard deviation. The exception was arsenic which exceeded one standard deviation from the mean.

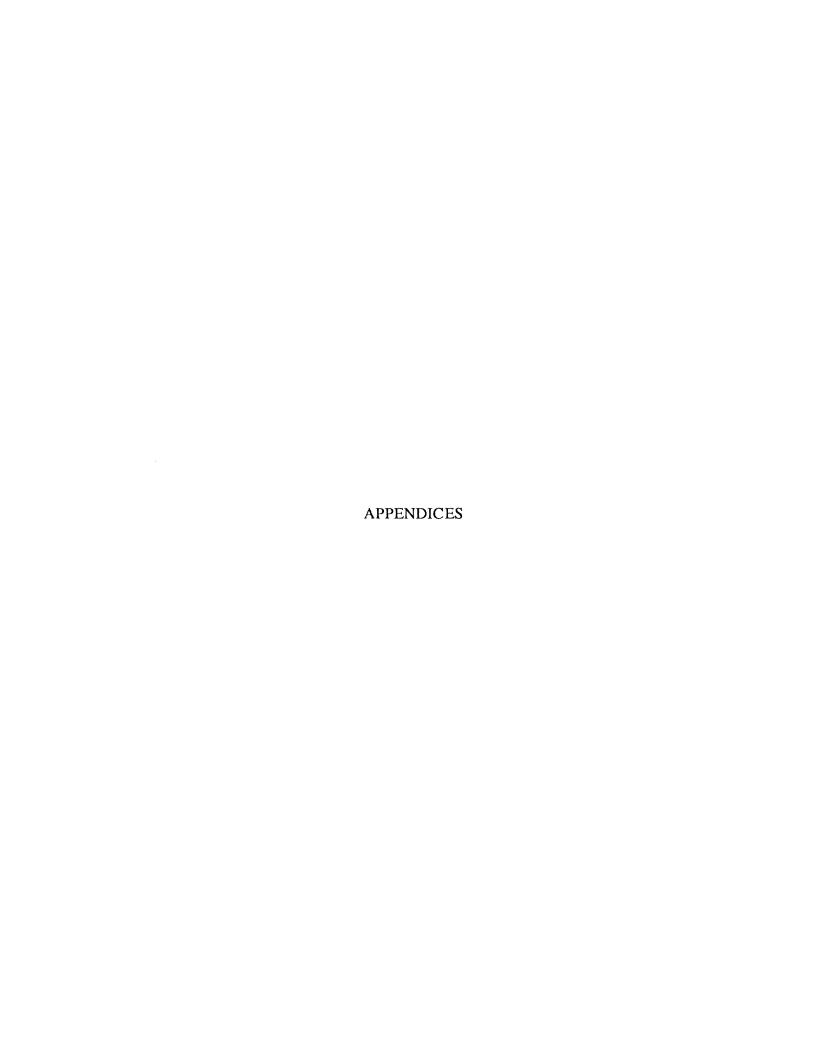
Sludge use or disposal should be evaluated based on the guidelines and limits included in the EPA sludge regulations (EPA, 1993).

### **Industrial Wastewater Treatment**

# General Chemistry

The industrial effluent was fairly typical of food processing wastewater. The portion of the sprayfield observed had sparse ground cover. Comparison of inspection data to guidelines for the use of wastewater for irrigation (Metcalf & Eddy, 1991) suggest the Adjusted Sodium Adsorption Ratio, pH, and the total-N concentrations may inhibit normal plant growth to some degree. Yakima should further investigate the quality of the industrial wastewater to determine if it is suitable for the spray program being used.

High fecal and total coliform counts were found in the industrial wastewater. Monitoring and comparison to any applicable land application of wastewater guidelines and regulations are recommended.


The pipe running beneath the sprayfield should be investigated for infiltration from the sprayfield, its water quality characterized, and appropriate action taken if problems are identified.

# Organics/Metals

Ecology detected a number of organics in the industrial wastewater and several exceeded the EPA's chronic water quality criteria, although for sprayfield application these criteria do not strictly apply. Copper exceeded the EPA's acute and chronic water quality criteria. Lead exceeded the chronic criteria. An investigation of the need to remove these compounds prior to irrigation should be considered.

### REFERENCES

- APHA, AWWA, WPCF, 1992. <u>Standard Methods for the Examination of Water and Wastewater</u>, 17th edition. American Public Health Association, Washington, DC.
- Ecology, 1991. <u>Manchester Environmental Laboratory Users Manual, Third Revision</u>. Washington State Department of Ecology, 1991.
- Ecology, 1993. Whole Effluent Toxicity Testing and Limits. Washington State Department of Ecology, 1993.
- EPA, 1986. Quality Criteria for Water. EPA 440/5-86-001.
- EPA, 1989. Short-term Methods for Estimating the Chronic Toxicity of Effluents and Receiving Waters to Freshwater Organisms, 2nd edition. U.S. Environmental Protection Agency, Cincinnati, OH, EPA/600/4-89/001.
- EPA, 1991. Methods for Measuring the Acute Toxicity of Effluents and Receiving waters to freshwater and Marine Organisms. Weber, C.I. (ed.), U.S. Environmental Protection Agency, Environmental Monitoring Systems Laboratory, Cincinnati, OH, 4th Edition, EPA/600/4-90/027.
- EPA, 1993. <u>Standards for the Use or Disposal of Sewage Sludge</u>. Environmental Protection Agency, Federal Register 40 CFR Part 257 *et al.*, 1993
- Metcalf and Eddy, 1991. <u>Wastewater Engineering Treatment Disposal Reuse</u>, Third Edition. McGraw-Hill, New York.



# Appendix A - Sampling Stations Descriptions - Yakima STP, 1992

| Inf-R   | Influent in right channel looking downstream (West side) - Ecology grab collected at the flow splitter upstream of the primary clarifiers.         |
|---------|----------------------------------------------------------------------------------------------------------------------------------------------------|
| Inf-L   | Influent in left channel looking downstream (East side) - Ecology grab collected at the flow splitter upstream of the primary clarifiers.          |
| Inf-E-R | Influent wastewater in the right channel (West side) - Ecology composite collected at the flow splitter upstream of the primary clarifiers.        |
| Inf-E-L | Influent wastewater in the left channel (East side) - Ecology composite collected at the flow splitter upstream of the primary clarifiers.         |
| Inf-Y   | Influent wastestream in the right channel (West side) - Yakima composite sample collected at the flow splitter upstream of the primary clarifiers. |
| Ef      | Effluent from the end of chlorine contact chamber - Ecology collected grab just before weir overflow.                                              |
| Ef-E    | Effluent out of chlorine contact chamber - Ecology composite collected before the weir overflow.                                                   |
| Ef-Y    | Effluent out of chlorine contact chamber - Yakima composite collected before the weir overflow.                                                    |
| Ef-GC   | Effluent from the end of the chlorine contact chamber - Ecology grab-composite collected in the AM and PM from just before the weir overflow.      |
| Aer-Mix | Mixed liquor from the aeration basins - Ecology collected grabs.                                                                                   |
| Sludge  | Sludge from digester system - Ecology collected grab from truck just after the centrifuge.                                                         |
| I-Ef    | Industrial wastewater - Ecology collected grabs from the wetwell just after screening of influent.                                                 |
| I-Ef-E  | Industrial wastewater - Ecology collected composites from wetwell just after screening of influent.                                                |
| River-1 | Yakima River water - Ecology collected grabs from the bank of the Yakima River at the outflow. (Lat/Long: 46°34′40″/120°27′53″)                    |
| River-2 | Yakima River water - Ecology collected grabs from the bank of the Yakima River downstream from the outfall. (Lat/Long: 46°34′47″/120°27′42″)       |
| Ground  | Ground water pumped from beneath aeration basins - Ecology collected one grab sample.                                                              |

Wastewater from storm pipe under sprayfield - Ecology collected grab from outflow pond.

AgOut

|                                                                  | 3 - Samplin                       |                                      |                                         |                      |                                       |                                 |                                        |                                      |                                |                                        |                                |                              |                              | Page 1                       |                                         |                         |
|------------------------------------------------------------------|-----------------------------------|--------------------------------------|-----------------------------------------|----------------------|---------------------------------------|---------------------------------|----------------------------------------|--------------------------------------|--------------------------------|----------------------------------------|--------------------------------|------------------------------|------------------------------|------------------------------|-----------------------------------------|-------------------------|
| Parameter                                                        |                                   | Location:<br>Type:<br>Date:<br>Time: | grab<br>10/6<br>0919                    | grab<br>10/6<br>0904 | Inf-3-R<br>grab<br>10/6<br>1430       | Inf-4-L<br>grab<br>10/6<br>1428 | Inf-E-R<br>E-comp<br>10/6-7<br>@       | Inf-E-L<br>E-comp<br>10/6-7<br>@     | Inf-Y<br>Y-comp<br>10/6-7<br>@ | Ef-1<br>grab<br>10/6<br>1055           | Ef-1-A<br>grab<br>10/6<br>1245 | Ef-2<br>grab<br>10/6<br>1525 | Ef-3<br>grab<br>10/7<br>0825 | Ef-4<br>grab<br>10/7<br>1210 | Ef-E<br>E-comp<br>10/6-7<br>@           | Ef-\<br>Y-comp<br>10/6- |
| SENERAL CHE                                                      | MISTRY                            | Lab Log #:                           | 410100                                  | 418130               | 418157                                | 418158                          | 418159                                 | 418160                               | 418101                         | 418162                                 |                                | 418163                       | 418164                       | 418165                       | 418166                                  | 41816                   |
| Conductivity  Alkalinity                                         | <u>-MISTRI</u>                    |                                      | ======================================= | E                    | E                                     | E                               | E<br>E                                 | E .                                  | E<br>E                         | E                                      |                                | E                            |                              |                              | E<br>E                                  |                         |
| lardness<br>OLIDS 4                                              |                                   |                                      |                                         |                      |                                       |                                 | E .                                    | E.                                   | E                              |                                        | iner vez                       |                              |                              |                              | <b></b>                                 |                         |
| S<br>NVS<br>SS                                                   |                                   |                                      |                                         |                      |                                       |                                 | E<br>E                                 | E<br>E                               | 54                             |                                        |                                |                              |                              |                              | E E                                     |                         |
| SS<br>NVSS<br>Solids                                             |                                   |                                      | C                                       | <b>5</b> :           | <b>E</b>                              | Ε                               | EY<br>E                                | EY<br>E                              | EY                             |                                        |                                |                              |                              |                              | EY<br>E                                 | E                       |
| Volatile Solids                                                  | AND PARAMET                       | ERS                                  |                                         |                      |                                       |                                 |                                        |                                      |                                |                                        |                                |                              |                              |                              |                                         |                         |
| OD5<br>OD INH                                                    |                                   |                                      |                                         |                      |                                       |                                 | EY<br>E                                | EY<br>E                              | EY<br>E                        |                                        |                                |                              |                              |                              | EY<br>E                                 | E                       |
| OD35<br>OD                                                       |                                   |                                      |                                         |                      |                                       |                                 | E                                      | E                                    | É                              |                                        |                                |                              |                              |                              | E<br>E                                  |                         |
| DC (water)<br>DC (soil/sed)<br>UTRIENTS                          |                                   |                                      | <del>-</del>                            |                      | ing specifi                           | E                               | -                                      |                                      | gangaga <b>F</b>               | :::::::::::::::::::::::::::::::::::::: |                                | antinga <b>S</b> a           |                              |                              | 21.45 co. 5.5                           |                         |
| otal Persulfate N<br>H3-N<br>O2+NO3-N                            |                                   |                                      |                                         |                      |                                       |                                 | EY<br>E<br>E<br>E                      | EY<br>E<br>E                         | EY<br>E<br>E                   | E<br>E                                 |                                | E<br>E                       |                              |                              | E<br>EY<br>E<br>E                       | Goddie<br>1918 bil      |
| otal-P<br>IISCELLANEC<br>il and Grease (wa                       | DUS<br>ater)                      |                                      | E                                       | E                    | E                                     | E.                              |                                        | E                                    |                                | E<br>E                                 |                                | E<br>E                       |                              |                              |                                         |                         |
| -Coliform MF<br>-Coliform MF<br>PRGANICS                         |                                   |                                      |                                         | samo Roos            |                                       |                                 |                                        |                                      |                                |                                        |                                |                              | EY                           | ΕY                           |                                         |                         |
| OC (water)<br>OC (soil/sed)<br>NA (water)                        |                                   |                                      | unggara <b>s</b><br>Kababata            | over e <b>F</b> e    | <b>.</b>                              | E                               | :::::::::::::::::::::::::::::::::::::: | Havadia Jaa<br>Harai Laad <b>E</b> a |                                | :::::::::::::::::::::::::::::::::::::: |                                | na na projekti.<br>Projekti  |                              |                              | debejorbild<br>Same                     |                         |
| NAs (soil/sed)<br>est/PCB (water)<br>est/PCB (soil/sed<br>IETALS |                                   |                                      |                                         |                      |                                       |                                 | E                                      | E                                    |                                |                                        |                                |                              |                              |                              |                                         |                         |
| P Metals (water) P Metals (soil/sec                              | •                                 |                                      |                                         |                      |                                       |                                 | <b>.</b>                               | E                                    |                                |                                        |                                |                              |                              |                              | inelio#                                 |                         |
| AR PARAMET                                                       | ERS                               |                                      |                                         |                      |                                       |                                 |                                        |                                      |                                |                                        |                                |                              |                              |                              |                                         |                         |
| A<br>g                                                           |                                   |                                      |                                         |                      |                                       |                                 |                                        |                                      |                                |                                        |                                |                              |                              |                              |                                         |                         |
| la<br>BIOASSAYS<br>almonid (acute 1)                             | 00%)                              |                                      |                                         |                      |                                       |                                 |                                        |                                      |                                |                                        |                                |                              |                              |                              |                                         |                         |
| licrotox (acute)<br>aphnia pulex (ac                             | ute)                              |                                      |                                         |                      |                                       |                                 |                                        |                                      |                                |                                        |                                |                              |                              |                              |                                         |                         |
| eriodaphnia (chro<br>athead Minno                                | w (chronic)                       |                                      |                                         |                      |                                       |                                 |                                        |                                      |                                |                                        |                                |                              |                              |                              |                                         |                         |
| IELD OBSERVAT<br>emperature<br>H                                 | <u>ions</u>                       |                                      | 6<br>E                                  | E.                   |                                       | E<br>E                          | E                                      | E<br>E                               | Ē                              | <b>E</b>                               | E<br>E                         | E                            | E<br>EY                      | EY                           | E<br>E                                  |                         |
| Conductivity<br>Chlorine                                         | San Australia de la monto         |                                      | generalis.                              | , and E              | , , , , , , , , , , , , , , , , , , , | Ē                               |                                        |                                      | Ē                              |                                        | Ē                              | E<br>E                       | E                            | E7<br>E                      | E .                                     |                         |
|                                                                  | Ecology sample/a                  |                                      | Inf                                     | Influent             |                                       |                                 |                                        |                                      |                                |                                        |                                |                              |                              |                              | *************************************** |                         |
| grab                                                             | Yakima sample/ar<br>Grab Sample   | •                                    | Ef<br>R                                 |                      | ent channel                           |                                 |                                        |                                      |                                |                                        |                                |                              |                              |                              |                                         |                         |
| comp<br>A                                                        | Composite Sampl<br>Duplicate grab | e                                    | L<br>@                                  | Left influer         |                                       | eriod: 08:00-0                  |                                        |                                      |                                |                                        |                                |                              |                              |                              |                                         |                         |

| Appendix B – San<br>Parameter II                |                                                  |                          | Aer-Mix |                 |                                | Nd                                       |                | 1 54 4                                   | ) [72                             |                | 1 Ft 6                         | 1 1772 4                                 | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | - n                                          |                   | Page 2                          |           |                   |                               |
|-------------------------------------------------|--------------------------------------------------|--------------------------|---------|-----------------|--------------------------------|------------------------------------------|----------------|------------------------------------------|-----------------------------------|----------------|--------------------------------|------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|-------------------|---------------------------------|-----------|-------------------|-------------------------------|
| Falametel II                                    | Locatn:<br>Type:<br>Date:<br>Time:<br>Lab Log #: | ab-comp<br>10/6<br>AM&PM | gr      | ab<br>0/6<br>05 | grab<br>10/6<br>1600<br>418170 | Sludge<br>grab<br>10/6<br>1325<br>418171 |                | I-Ef-1<br>grab<br>10/6<br>0955<br>418172 | I-Ef-<br>gra<br>10<br>150<br>4181 | ab<br>/6<br>)0 | I-Ef-3<br>grab<br>10/6<br>0900 | I-Ef-4<br>grab<br>10/6<br>1155<br>418175 | I-Ef-I<br>E-comp<br>10/6-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | o gra<br>7 10<br>0 10                        | ab<br>//6<br>50   | River 2<br>grab<br>10/6<br>1050 | 1         | rab<br>0/6<br>612 | AgOut<br>grab<br>10/6<br>1115 |
| GENERAL CHEMISTRY                               | Lau Lug m.                                       | 410106                   | 4101    | os              | 410170                         | 410171                                   |                | 410172                                   | 4101                              | / <b>3</b> 4   | 18174                          | 418175                                   | 418170                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3 4181                                       | 11                | 418178                          | 418       | 179               | 418180                        |
| Conductivity                                    |                                                  | Ę                        |         |                 |                                |                                          |                | E                                        |                                   | Ε              |                                |                                          | gorsagur ad                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                              | E<br>E            |                                 |           |                   | i e E                         |
| Alkalinity<br>Hardness                          |                                                  | E<br>E                   |         |                 |                                |                                          |                |                                          |                                   |                |                                |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Eriore (university).<br>Eriore (university). | E<br>E            |                                 |           |                   |                               |
| SOLIDS 4<br>TS                                  |                                                  |                          |         |                 |                                |                                          |                |                                          |                                   |                |                                |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                              | el Maria          |                                 |           |                   |                               |
| TNVS                                            |                                                  |                          |         |                 |                                |                                          |                |                                          |                                   |                |                                |                                          | nie saudoviji                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                              |                   |                                 |           |                   |                               |
| TSS<br>TNVSS                                    |                                                  |                          |         | E<br>E          | E                              |                                          |                | E                                        |                                   | E              |                                |                                          | n 44466<br>njarah                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <u>Y</u>                                     |                   |                                 |           | E                 | E                             |
| % Solids                                        |                                                  |                          |         |                 | <b>L</b>                       | E<br>E                                   |                |                                          |                                   |                |                                |                                          | i<br>Secondaria de la Secondaria de la Secondari                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                              |                   |                                 |           |                   |                               |
| % Volatile Solids OXYGEN DEMAND PAR             | AMFTFRS                                          |                          |         |                 |                                | E                                        |                |                                          |                                   |                |                                |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                              |                   |                                 |           |                   |                               |
| BOD5                                            |                                                  |                          |         |                 |                                |                                          |                |                                          |                                   |                |                                |                                          | er er e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Y                                            |                   |                                 |           |                   |                               |
| BOD INH<br>BOD35                                |                                                  |                          |         |                 |                                |                                          |                |                                          |                                   |                |                                |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                              |                   |                                 |           |                   |                               |
| COD                                             |                                                  |                          |         |                 |                                |                                          |                |                                          |                                   | _              |                                |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                              |                   |                                 |           |                   |                               |
| TOC (water) TOC (soil/sed) NUTRIENTS            |                                                  |                          |         |                 |                                | E                                        |                | E.,                                      |                                   | <b>:</b>       |                                |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                              |                   |                                 |           | E                 |                               |
| Total Persulfate N<br>NH3-N                     |                                                  |                          |         |                 |                                |                                          |                |                                          |                                   |                |                                |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                              | F                 |                                 |           | stalis            | E                             |
| NO2+NO3-N                                       |                                                  |                          |         |                 |                                |                                          |                |                                          |                                   |                |                                |                                          | e<br>Distribution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Y<br>Eranana<br>E                            | ille.<br>Sudaysus | E<br>Serves de COS              |           | E                 | E<br>E                        |
| Total-P MISCELLANEOUS Oil and Grease (water)    |                                                  |                          |         |                 |                                |                                          |                |                                          |                                   | _              |                                |                                          | e intigrati Lii                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <b>E</b>                                     |                   |                                 |           | E                 | E<br>E                        |
| F-Coliform MF                                   |                                                  |                          |         |                 |                                |                                          |                | E                                        |                                   | E              | ΕY                             | EY                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                              |                   |                                 |           |                   |                               |
| T-Coliform MF ORGANICS                          |                                                  |                          |         |                 |                                |                                          |                |                                          |                                   |                | E                              | E                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                              |                   |                                 |           |                   |                               |
| VOC (water)<br>VOC (soil/sed)                   |                                                  |                          |         |                 |                                | E                                        |                | E                                        |                                   | E              |                                |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                              |                   |                                 |           |                   |                               |
| BNA (water)                                     |                                                  |                          |         |                 |                                |                                          |                |                                          |                                   |                |                                |                                          | i de la granda de l<br>La granda de la granda d | Europa                                       |                   |                                 |           |                   |                               |
| BNAs (soil/sed)<br>Pest/PCB (water)             |                                                  |                          |         |                 |                                | E                                        |                |                                          |                                   |                |                                |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                              |                   |                                 |           |                   |                               |
| Pest/PCB (soil/sed) METALS                      |                                                  |                          |         |                 |                                | E                                        |                |                                          |                                   |                |                                |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Podalovacy is                                |                   |                                 |           |                   |                               |
| PP Metals (water) PP Metals (soil/sed)          |                                                  |                          |         |                 |                                | E                                        |                |                                          |                                   |                |                                |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                              | E                 |                                 |           |                   |                               |
| SAR PARAMETERS<br>HGO3                          |                                                  |                          |         |                 |                                |                                          |                | E                                        |                                   | E              |                                |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                              |                   |                                 |           |                   |                               |
| CA<br>Mg                                        |                                                  |                          |         |                 |                                |                                          |                | E<br>E                                   |                                   | E              |                                |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                              |                   |                                 |           |                   |                               |
| Na                                              |                                                  |                          |         |                 |                                |                                          |                | E                                        |                                   | E              |                                |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                              |                   |                                 |           |                   | videlis (V                    |
| BIOASSAYS<br>Salmonid (acute 100%)              |                                                  |                          |         |                 |                                |                                          |                |                                          |                                   |                |                                |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                              |                   |                                 |           |                   |                               |
| Microtox (acute)                                |                                                  | iliados de E             |         |                 |                                |                                          |                |                                          |                                   |                |                                |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                              |                   |                                 |           |                   |                               |
| Daphnia pulex (acute)<br>Ceriodaphnia (chronic) |                                                  | E<br>E                   |         |                 |                                |                                          |                |                                          |                                   |                |                                |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                              |                   |                                 |           |                   |                               |
| Fathead Minnow (chronic FIELD OBSERVATIONS      | ;)                                               | E                        |         |                 |                                |                                          |                |                                          |                                   |                |                                |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                              |                   |                                 |           |                   |                               |
| Temperature                                     |                                                  |                          |         |                 |                                |                                          |                | E                                        |                                   | E<br>E         | <b></b>                        | E                                        | gg vlog som ol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                              | E                 | usunggas s <b>E</b>             |           | E                 | Е                             |
| pH<br>Conductivity<br>Chlorine                  |                                                  |                          |         |                 |                                |                                          |                | - E                                      |                                   | E<br>E         | EY<br>E<br>E                   | EY<br>E                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Environation<br>Postentiere                  | E<br>E<br>E       |                                 |           | E<br>E<br>E       | E<br>E                        |
| gr-comp Grab-com                                | posite                                           |                          |         |                 |                                | F                                        | Ecolo          | ogy sampl                                | e/analysi                         |                |                                |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Compos                                       | ite col           | lection per                     | ind. us.u | 008.00            |                               |
| Inf Influent<br>Ef Effluent                     |                                                  |                          |         |                 |                                | Y<br>River                               | Yakir<br>Yakir | ma sample<br>ma River                    | /analysis                         |                |                                |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 25111900                                     | 001               |                                 | 4. 00.0   | - 00.00           | •                             |
| Aer-Mix Aeration B<br>Sludge Centrifuge         |                                                  |                          |         |                 |                                |                                          |                |                                          |                                   |                |                                | o Yakima R<br>on basins.                 | ver                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                              |                   |                                 |           |                   |                               |

# Apendix C - Analytic Procedures and Laboratories, Yakima, 1992.

| Parameter IV             | MANCHESTER_METHODS         | Lab Used                      |
|--------------------------|----------------------------|-------------------------------|
| GENERAL CHEMISTRY        |                            |                               |
| Conductivity (umhos/cm)  | EPA, Revised 1983: 120.1   | Ecology                       |
| Alkalinity (mg/L CaCO3)  | EPA, Revised 1983: 310.1   | Ecology                       |
| Hardness (mg/L CaCO3)    | EPA, Revised 1983: 130.2   | Ecology                       |
| SOLIDS                   | 2.71, 11011000 1000. 100.2 | <b>_</b> ,                    |
| TS (mg/L)                | EPA, Revised 1983: 160.3   | Ecology                       |
| TNVS (mg/L)              | EPA, Revised 1983: 160.3   | Ecology                       |
| TSS (mg/L)               | EPA, Revised 1983: 160.2   | Ecology                       |
| TNVSS (mg/L)             | EPA, Revised 1983: 160.2   | Ecology                       |
| % Solids                 | APHA, 1989: 2540G.         | Water Management Laboratories |
| % Volatile Solids(wet)   | EPA, Revised 1983: 160.4   | Water Management Laboratories |
| OXYGEN DEMAND PARAMETER  |                            | <b>3</b>                      |
| BOD5 (mg/L)              | EPA, Revised 1983: 405.1   | Water Management Laboratories |
| BOD INH (mg/L)           | EPA, Revised 1983: 405.1   | Water Management Laboratories |
| BOD35 (mg/L)             | EPA, Revised 1983: 405.1   | Water Management Laboratories |
| COD (mg/L)               | EPA, Revised 1983: 410.1   | Water Management Laboratories |
| TOC (water mg/L)         | EPA, Revised 1983: 415.1   | Water Management Laboratories |
| TOC (soil)               | EPA, Revised 1983: 415.1   | Water Management Laboratories |
| NUTRIENTS                | •                          | 3                             |
| Kjeldahl-N               | EPA, Revised 1983: 351.3   | Water Management Laboratories |
| NH3-N (mg/L)             | EPA, Revised 1983: 350.1   | Ecology                       |
| NO2+NO3-N (mg/L)         | EPA, Revised 1983: 353.2   | Ecology                       |
| Total-P (mg/L)           | EPA, Revised 1983: 365.3   | Ecology                       |
| MISCELLANEOUS            |                            | •                             |
| Oil and Grease (mg/L)    | EPA, Revised 1983: 413.1   | Ecology                       |
| F-Coliform MF (#/100mL)  | APHA, 1989: 9222D.         | Ecology                       |
| T-Coliform MF (#/100mL)  | APHA, 1989: 9222B.         | Ecology                       |
| ORGANICS                 |                            |                               |
| VOC (water-ug/L)         | EPA, 1986: 8260            | Sound Analytical Services     |
| VOC (soil-ug/kg)         | EPA, 1986: 8240            | Sound Analytical Services     |
| BNAs (water-ug/L)        | EPA, 1986: 8270            | Sound Analytical Services     |
| BNAs (soil-ug/kg)        | EPA, 1986: 8270            | Sound Analytical Services     |
| Pest/PCB (water-ug/L)    | EPA, 1986: 8080            | Sound Analytical Services     |
| Pest/PCB (soil-ug/kg)    | EPA, 1986: 8080            | Sound Analytical Services     |
| METALS                   |                            |                               |
| PP Metals (water)        | EPA, Revised 1983: 200-299 | Ecology                       |
| PP Metals (soil/sed)     | EPA, Revised 1983; 200-299 | Ecology                       |
| SAR PARAMETERS           |                            |                               |
| HCO3 (mg/L)              | EPA, Revised 1983: 120.1   | Ecology                       |
| Ca (mg/L)                | EPA, Revised 1983: 200-299 | Ecology                       |
| Mg (mg/L)                | EPA, Revised 1983: 200-299 | Ecology                       |
| Na (mg/L)                | EPA, Revised 1983: 200-299 | Ecology                       |
| BIOASSAYS                |                            |                               |
| Salmonid (acute 100%)    | Ecology, 1981.             | Parametrix, Inc.              |
| Microtox (acute)         | Beckman, 1982              | Parametrix, Inc.              |
| Daphnia sp. (acute)      | ASTM, 1986                 | Parametrix, Inc.              |
| Ceriodaphnia (chronic)   | EPA 1989: 1002.0           | Parametrix, Inc.              |
| Fathead Minnow (chronic) | EPA 1989: 1000.0           | Parametrix, Inc.              |
|                          |                            |                               |

### METHOD BIBLIOGRAPHY

APHA-AWWA-WPCF, 1989. Standard Methods for the Exanination of Water and Wastewater, 17th Edition.

ASTM, 1986: E1193. Standard Guide for Conducting Life Cycle Toxicity Tests with Daphnia magna. In: Annual Book of ASTM Standards, Water and Environmental Technology. American Society for Testing and Materials, Philadelphia, Pa.

Beckman Instruments, Inc., 1982. Microtox System Operating Manual.

Ecology, 1981. Static Acute Fish Toxicity Test, WDOE 80–12, revised July 1981.

EPA, Revised 1983. Methods for Chemical Analysis of Water and Wastes, EPA-600/4-79–020 (Rev. March, 1983).

EPA, 1986: SW846. Test Methods for Evaluating Solid Waste Physical/Chemical Methods, SW-846, 3rd. ed.,November, 1986.

EPA, 1989. Short-term Methods for Estimating the Chronic Toxicity of Effluents and Receiving waters to Freshwater Organisms. Second edition. EPA/600/4-89/100.

# Appendix D - Priority Pollutant Cleaning Procedures - Yakima, 1992.

# PRIORITY POLLUTANT SAMPLING EQUIPMENT CLEANING PROCEDURES

- 1. wash with laboratory detergent,
- 2. rinse several times with tap water,
- 3. rinse with 10% HNO<sub>3</sub> solution,
- 4. rinse three (3) times with distilled/deionized water,
- 5. rinse with high purity methylene chloride,
- 6. rinse with high purity acetone, and
- 7. allow to dry and seal with aluminum foil.

|                            |         |         |         |         | can Results – Yakima ST                                      |        |             |        |        | Page 1. |
|----------------------------|---------|---------|---------|---------|--------------------------------------------------------------|--------|-------------|--------|--------|---------|
|                            | Inf-1-R | Inf-2-L | Inf-3-R | Inf-4-L | Ef-1                                                         | Ef-2   | Sludge      | I-Ef-1 | I-Ef-2 |         |
| Type:                      | grab    | grab    | grab    | grab    | grab                                                         | grab   | grab        | grab   | grab   |         |
| Date:                      | 10/6    | 10/6    | 10/6    | 10/6    | 10/6                                                         | 10/6   | 10/6        | 10/6   | 10/6   |         |
| Time:                      | 0919    | 0904    | 1430    | 1428    | 1055                                                         | 1525   | 1325        | 0955   | 1500   |         |
| Lab Log#:                  | 418155  | 418156  | 418157  | 418158  | 418162                                                       | 418163 | 418171      | 418172 | 418173 |         |
| VOA Compounds              | (μg/L)  | (µg/L)  | (µg/L)  | (µg/L)  | (µg/L)                                                       | (µg/L) | (µg/Kg–dry) | (μg/L) | (µg/L) |         |
| Chloromethane              | 20 U                                                         | 20 U   | 2000 U      | 20 U   | 20 U   |         |
| Bromomethane               | 20 U                                                         | 20 U   | 2000 U      | 20 U   | 20 U   |         |
| Vinyl Chloride             | 20 U                                                         | 20 U   | 2000 U      | 20 U   | 20 U   |         |
| Chloroethane               | 20 U                                                         | 20 U   | 2000 U      | 20 U   | 20 U   | •       |
| Methylene Chloride         | 61      | 110     | 113     | 105     | 73                                                           | 31     | 6400        | 409    | 406    |         |
| Acetone                    | 24 J    | 46 J    | 67 J    | 68 J    | 6.7 J                                                        | 100 U  | 2000 J      | 42 J   | 44 J   |         |
| Carbon Disulfide           | 10 U    | 13      | 14      | 10      | 10 U                                                         | 10 U   | 1000 U      | 37     | 38     |         |
| 1,1-Dichloroethene         | 10 U                                                         | 10 U   | 1000 U      | 10 U   | 10 U   |         |
| 1,1-Dichloroethane         | 10 U    | 10 U    | 10 U    | 10 U    | 10 ∪                                                         | 10 U   | 1000 U      | 10 U   | 10 U   |         |
| 1,2-Dichloroethene (total) | 10 U                                                         | 10 U   | 1000 U      | 10 U   | 10 U   | -       |
| Chloroform                 | 5.6 J   | 6.4 J   | 8.8 U   | 13      | 10 U                                                         | 10 U   | 1000 J      | 5.2 J  | 4 J    |         |
| 1,2-Dichloroethane         | 10 U                                                         | 10 U   | 1000 U      | 10 U   | 10 U   | -       |
| 2-Butanone (MEK)           | 50 U                                                         | 50 U   | 5000 U      | 50 U   | 12 J   |         |
| 1,1,1-Trichloroethane      | 10 U                                                         | 10 U   | 1000 U      | 10 U   | 10 U   | -       |
| Carbon Tetrachloride       | 10 U    | 10 U    | 10 U    | 2.4 J   | 10 U                                                         | 10 U   | 1000 U      | 10 U   | 10 U   |         |
| Vinyl Acetate              | 50 U                                                         | 50 U   | 5000 U      | 50 U   | 50 U   |         |
| Bromodichloromethane       | 10 U                                                         | 10 U   | 1000 U      | 10 U   | 10 U   |         |
| 1,2-Dichloropropane        | 10 U                                                         | 10 U   | 1000 U      | 10 U   | 10 U   |         |
| cis-1,3-Dichloropropene    | 10 U                                                         | 10 U   | 1000 U      | 10 U   | 10 U   |         |
| Trichloroethene            | 10 U                                                         | 10 U   | 1000 U      | 10 U   | 10 U   |         |
| Dibromochloromethane       | 10 U                                                         | 10 U   | 1000 U      | 10 U   | 10 U   |         |
| 1,1,2-Trichloroethane      | 10 U                                                         | 10 U   | 1000 U      | 10 U   | 10 U   |         |
| Benzene                    | 10 U                                                         | 10 U   | 1000 U      | 10 U   | 10 U   |         |
| trans-1,3-Dichloropropene  | 10 U                                                         | 10 U   | 1000 U      | 10 U   | 10 U   |         |
| Bromoform                  | 10 U    | 10 U    | 10 U    | 10 U    | escilo de del del del de | 10 U   | 1000 U      | 10 U   | 10 U   |         |
| 4-Methyl-2-Pentanone       | 50 U                                                         | 50 U   | 5000 U      | 50 U   | 50 U   |         |
| 2-Hexanone                 | 10 U                                                         | 10 U   | 1000 U      | 10 U   | 10 U   |         |
| Tetrachloroethene          | 10 U    | 10 U    | 2.9 J   | 5.3 J   | 10 U                                                         | 10 U   | 1000 U      | 10 U   | 10 U   |         |
| 1,1,2,2-Tetrachloroethane  | 10 U                                                         | 10 U   | 1000 U      | 10 U   | 10 U   |         |
| Toluene                    | 10 U                                                         | 10 U   | 1000 U      | 10 U   | 10 U   |         |
| Chlorobenzene              | 10 U                                                         | 10 U   | 1000 U      | 10 U   | 10 U   |         |
| Ethylbenzene               | 10 U    | 10 U    | 2.7 U   | 2 J     | 10 U                                                         | 10 U   | 1000 U      | 10 U   | 10 U   |         |
| Styrene                    | 10 U    | 10 U    | 10 U    | 10 U    | 10 ∪                                                         | 10 U   | 1000 U      | 10 U   | 10 U   |         |
| Total Xylenes              | 10 U    | 10 U    | 9 U     | 3.5 J   | 10 U                                                         | 10 U   | 1000 U      | 10 U   | 10 U   |         |

U The analyte was not detected at or above the reported result.
J The analyte was positively identified. The associated numerical result is an estimate.
Sludge Centrifuge sludge extract
Inf Influent
EF Effluent

grab Grab sample.

L Left side of channel in direction of flow.

R Right side of channel in direction of flow.
I Industrial discharge

| Location:                                  | Inf-F-R                                  | Inf-E-L                                    | Ef-E             | Sludge           | I-Ef-E                                      |
|--------------------------------------------|------------------------------------------|--------------------------------------------|------------------|------------------|---------------------------------------------|
| Type:                                      |                                          | E-comp                                     | E-comp           | grab             | E-comp                                      |
| Date:                                      | 10/6-7                                   | 10/6-7                                     | 10/6–7           | 10/6             | 10/6–7                                      |
| Time:                                      |                                          | (0                                         | (0.00            | 1325             | @<br>@                                      |
| Lab Log#:                                  | 418159                                   | 418160                                     | 418166           | 418171           | 418176                                      |
| BNA Compounds                              | (μg/L)                                   | (µg/L)                                     | (μg/L)           | (µg/Kg-dry)      | (μg/L)                                      |
| Phenol                                     | 10 U                                     | 10 U                                       | 10 U             | 3700 J           | 10 J                                        |
| is(2–Chloroethyl)Ether                     | 10 U                                     | 10 U                                       | 10 U             | 8000 U           | 10 U                                        |
| -Chlorophenol                              | 10 U                                     | 10 U                                       | 10 U             | 8000 U           | 10 U                                        |
| ,3-Dichlorobenzene                         | 10 U                                     | 10 U                                       | 10 U             | 8000 U           | 10 U                                        |
| ,4-Dichlorobenzene                         | 2.2 J                                    | 0.8 J                                      | 0.5 J            | 8000 J           | 10 J                                        |
| enzyl Alcohol                              | 20 U                                     | 20 U                                       | 20 U             | 16000 U          | 20 U                                        |
| 2-Dichlorobenzene                          | 1.6 J                                    | 10 U                                       | 10 U             | 8000 U           | 10 U                                        |
| -Methylphenol                              | 10 U                                     | 10 U                                       | 10 U             | 8000 U           | 10 U                                        |
| is(2-Chloroisopropyl)Ether                 | 10 U                                     | 10 U                                       | 10 U             | 8000 U           | 10 U                                        |
| -Methylphenol<br>-Nitroso-di-n-Propylamine | 10 U<br>10 U                             | 20<br>10 U                                 | ] 10 U           | 2200 J           | ] 10 J                                      |
| exachloroethane                            | 10 U                                     | 10 U                                       |                  | 8000 U<br>8000 U | 10 U                                        |
| exacmoroemane<br>itrobenzene               | 10 U                                     | 10 U                                       | 10 0<br>10 0 Usi | 8000 U           | 10 U<br>10 U                                |
| ophorone                                   | 10 U                                     | 10 U                                       | 10 U             | 8000 U           | 10 U                                        |
| -Nitrophenol                               | 10 U                                     | 10 U                                       | 10 U             | 8000 U           | 10 U                                        |
| -Mitophenol<br>,4-Dimethylphenol           | 10 U                                     | 10 U                                       | 10 U             | 8000 U           | 10 U                                        |
| enzoic Acid                                | 50 UJ                                    |                                            |                  | 40000 UJ         |                                             |
| is(2–Chloroethoxy)Methane                  | 10 U                                     | 10 U                                       | 10 U             | 8000 U           | 10 U                                        |
| 4-Dichlorophenol                           | 10 U                                     | 10 U                                       | 10 U             | 8000 U           | 10 U                                        |
| .2,4-Trichlorobenzene                      | 10 U                                     | 10 U                                       | 10 U             | 8000 U           | 10 U                                        |
| aphthalene                                 | na ang ang ang ang ang ang ang ang ang a | 1.2 J                                      | licita di incomi | 8000 U           | io U                                        |
|                                            | 1.4 J                                    | 1.4 J                                      | 20 U             | 1900 J           | ] [20 J]                                    |
| exachlorobutadiene                         | 10 U                                     | 10 U                                       |                  | 8000 U           | 10 U                                        |
| -Chloro-3-Methylphenol                     | 20 Ū                                     | 20 U                                       | 20 U             | 16000 U          | 20 U                                        |
| -Methylnaphthalene                         | 0.8 J                                    | 0.5 J                                      | ]                | 8000 U           | 10 U                                        |
| exachlorocyclopentadiene                   | 10 UJ                                    | and an artist a state of the second of the |                  | 8000 UJ          | 10 UJ                                       |
| 4,6-Trichlorophenol                        | 10 U                                     | 10 U                                       | 10 U             | 8000 U           |                                             |
| 4,5-Trichlorophenol                        | 10 U                                     | 10 Ü                                       | 10 Ü             | 8000 U           | 10 Ü                                        |
| -Chloronaphthalene                         | 10 U                                     | 10 U                                       | 10° U            | 8000 U           | ideninidi);;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; |
| -Nitroaniline                              | 50 U                                     | 50 U                                       | 50 Ü             | 40000 U          | 50 U                                        |
| imethyl Phthalate                          | 10 U                                     | 10 U                                       | 10 U             | 8000 U           |                                             |
| cenaphthylene                              | 10 U                                     | 10 U                                       | 10 U             | 8000 U           | 10 Ü                                        |
| 6-Dinitrotoluene                           | 10 U                                     | 10 U                                       | 10 U             | 8000 U           |                                             |
| -Nitroaniline                              | 50 U                                     | 50 U                                       | 50 U             | 40000 U          | 50 U                                        |
| cenaphthene                                | 10 U                                     | 10 U                                       |                  | 8000 U           |                                             |

Sludge Centrifuge sludge extract

comp Composite samples.

grab Grab sample.

@ Composite collection times: 08:00-08:00.

E Ecology sample.

U The analyte was not detected at or above the reported result.
 J The analyte was positively identified. The associated numerical result is an estimate.

UJ The analyte was not detected at or above the reported estimated result.

Influent Inf

EF Effluent

L Left side of channel in direction of flow.

R Right side of channel in direction of flow.

Industrial discharge

| Location:                          | Inf-E-R                                                       | Inf-E-L      | Ef-E                                                                                                           | Sludge           | I-Ef-E         |
|------------------------------------|---------------------------------------------------------------|--------------|----------------------------------------------------------------------------------------------------------------|------------------|----------------|
| Type:                              | E-comp                                                        | E-comp       | E-comp                                                                                                         | grab             | E-comp         |
| Date:                              | 10/6-7                                                        | 10/6–7       |                                                                                                                | 10/6             | 10/67          |
| Time:                              | @                                                             | @            | @                                                                                                              | 1325             | @              |
| Lab Log#:                          | 418159                                                        | 418160       | -                                                                                                              | 418171           | 418176         |
| BNA Compounds                      | (μg/L)                                                        | (µg/L)       |                                                                                                                | (µg/Kg-dry)      | (μg/L)         |
| 2,4-Dinitrophenol                  | 50 U                                                          | 50 U         | 50 U                                                                                                           | 40000 U          |                |
| I–Nitrophenol                      | 50 U                                                          | 50 U         | 50 U                                                                                                           | 40000 U          | 50 U           |
| Dibenzofuran<br>2,4-Dinitrotoluene | 10 U<br>10 U                                                  | 10 U<br>10 U | 10 U<br>10 U                                                                                                   | 8000 U<br>8000 U | 10 U<br>10 U   |
| niethyl Phthalate                  | 6.2 J                                                         | 7.8 J        | 0.3 J                                                                                                          | 8000 U           |                |
| -Chlorophenyl Phenylether          | 10 U                                                          | 10 U         |                                                                                                                | 8000 U           | 10 U           |
| luorene                            | ere e estado de como entre de 110 a U a                       | 10 U         | 10 U                                                                                                           | 8000 U           |                |
| -Nitroaniline                      | 50 U                                                          | 50 U         | 50 U                                                                                                           | 40000 U          | 50 U           |
| 6-Dinitro-2-Methylphenol           | 50 UJ                                                         |              |                                                                                                                | 40000 UJ         | 50 UJ          |
| -Nitrosodiphenylamine              | 18                                                            | 48           | │ 10 U                                                                                                         | 1700 J           | 0.8 J          |
| -Bromophenyl Phenylether           | 10 U                                                          | 10 U         | aga da de Janesa de la calación de la como de Trabación de la como | 8000 U           | 10 U           |
| exachlorobenzene                   | 10 U                                                          | 10 U         | 10 U                                                                                                           | 8000 U           | 10 U           |
| entachlorophenol                   | 50 U                                                          | 50 U         | 50 U                                                                                                           | 40000 U          | 50 U           |
| henanthrene                        | 10 U                                                          | 10 U         | 10 U                                                                                                           | 270 J            | ] 10 U         |
| nthracene                          | 10 υ                                                          | 10 U         | 10 U                                                                                                           | 8000 U           | [a] 10 U       |
| i-n-Butyl Phthalate                | 10 U                                                          | 43 U         | 82 U                                                                                                           | 27000            | ] 10 U         |
| luoranthene                        | 10 U                                                          | 10 U         |                                                                                                                | 8000 U           | Terroria (10 ¥ |
| yrene                              | 10 U                                                          | 10 U         | 10 U                                                                                                           | 8000 U           | 10 U           |
| utylbenzyl Phthalate               | 15<br>20 U                                                    | 18<br>20 U   | ] 8.5 U                                                                                                        | 2000 J           | 63 J           |
| 3'-Dichlorobenzidine               |                                                               |              | 20 U                                                                                                           | 16000 U          | 20 U           |
| enzo(a)Anthracene<br>hrysene       | 10 U<br>10 U                                                  | 10 U<br>10 U | 10 U<br>10 U                                                                                                   | 8000 U           |                |
| is(2–Ethylhexyl)Phthalate          | 10 U                                                          | 31           |                                                                                                                | 8000 U           | 10 U           |
| i=n=Octyl Phthalate                | 29<br>1 J                                                     | 3.4 J        | 10 U<br>10 U                                                                                                   | 17000<br>8000 U  | 21<br>1 U      |
| enzo(b)Fluoranthene                |                                                               | 10 U         |                                                                                                                | 8000 U           |                |
| enzo(k)Fluoranthene                | 10 Ŭ                                                          | 10 U         | 10 Ú                                                                                                           | 8000 U           | 10 U           |
| enzo(a)Pyrene                      |                                                               | 10 U         | secure expensive a militari disputati <b>10</b> in <b>U</b> lti                                                | 8000 U           |                |
| ideno(1,2,3-cd)Pyrene              | 10 U                                                          | 0.3 J        | ק 10 ∪                                                                                                         | 8000 U           | 10 Ü           |
| ibenzo(a,h)Anthracene              | gapagala askep apakka jile karasti ka <b>10</b> ki <b>U</b> f | 10 U         |                                                                                                                | 8000 U           |                |
| Benzo(g,h,i)Perylene               | 10 U                                                          | 10 U         | 10 U                                                                                                           | 8000 U           | 10 U           |

U The analyte was not detected at or above the reported result.

Sludge Centrifuge sludge extract

grab Grab sample.

Composite collection times: 08:00-08:00.

E Ecology sample.

J The analyte was positively identified. The associated numerical result is an estimate. comp Composite samples.

UJ The analyte was not detected at or above the reported estimated result.

Inf Influent

EF Effluent

Left side of channel in direction of flow.

R Right side of channel in direction of flow.

Industrial discharge

| Location:                        | ······································ | Inf-E-R        | Inf-E-L        | Ef-E           | Sludge           | I-Ef-E                                                                           |
|----------------------------------|----------------------------------------|----------------|----------------|----------------|------------------|----------------------------------------------------------------------------------|
| Type:                            |                                        |                | E-comp         | E-comp         | grab             | E-comp                                                                           |
| Date:                            |                                        | 10/6–7         | 10/6-7         | 10/6-7         | 10/6             | 10/6–7                                                                           |
| Time:                            | @<br>418159                            | @<br>418160    | <b>@</b>       | 1325<br>418171 | (a)              |                                                                                  |
| Lab Log#:                        |                                        |                |                |                | ى<br>418176      |                                                                                  |
| Pesticide/PCB Compounds          | ug/L                                   | (μg/L)         | (μg/L)         | (μg/L)         | (μg/Kg-dry)      | (μg/L)                                                                           |
|                                  |                                        |                |                |                |                  |                                                                                  |
| ldrin                            |                                        | 0.01 U         | 0.01 U         | 0.01 U         | 0.01 U           | 0.01 U                                                                           |
| lpha-BHC                         |                                        | 0.01 U         | 0.01 U         | 0.01 U         | 0.01 U           | 0.01 U                                                                           |
| eta-BHC<br>elta-BHC              |                                        | 0.04<br>0.01 U | 0.05<br>0.01 U | 0.02           | 0.17             | ] 0.01 U                                                                         |
| ella-BHC<br>amma-BHC (Lindane)   |                                        | 0.01 0         | 0.01 0         | 0.01 U<br>0.01 | 0.01 U<br>0.01 U | 0.01 U                                                                           |
| annia-bno (cindane)<br>Chlordane |                                        | 0.03<br>0.1 U  | 0.06<br>0.1 U  | 0.1 U          | 0.01 U           | 0.01 U<br>0.1 U                                                                  |
| 4'-DDD                           |                                        | 0.01 U         | 0.01           | 0.1 U          | 0.1 U            | 0.1 U                                                                            |
| .4'-DDE                          |                                        | 0.01           | 0.01           | 7 0.01 U       | 0.01 U           | 0.01 U                                                                           |
| 4'-DDT                           |                                        | 0.03           | 0.02           | 0.01 U         | 0.01 U           | 0.01 U                                                                           |
| ieldrin                          |                                        | 0.01 U         | 0.01 U         | 0.01 U         | 0.01 U           | 0.01 U                                                                           |
| ndosulfan i                      |                                        | 0.02           | 0.01           | 0.01 U         | 0.01 U           | 0.05                                                                             |
| ndosulfan II                     |                                        | 0,01 U         | 0.02           | 0,01 U         | 0.01 U           | 0.17                                                                             |
| ndosulfan Sulfate                |                                        | 0.01 U         | 0.01 U         | 0.02           | 0.01 U           |                                                                                  |
| ndrin                            |                                        | 0,01 U         | 0.01 U         | 0.01 U         | 0.01 U           | 0.01 U                                                                           |
| ndrin Aldehyde                   |                                        | 0.01 U         | 0.01 U         | 0,01 U         | 0.01 U           | 0.01 U                                                                           |
| eptachlor                        |                                        | 0.01 U         | 0.01 U         | 0.01 U         | 0.01 U           | 0.01 U                                                                           |
| leptachlor Epoxide               |                                        | 0.01 U         | 0.01 U         | 0.01 U         | 0.01 U           | 0.01 U                                                                           |
| ndrin Ketone                     |                                        | 0.01 U         | 0.01 U         | 0.01 U         | 0.01 U           | 0.01 U                                                                           |
| ethoxychlor                      |                                        | 0.02 U         | 0.02 U         | 0.02 U         | 0.02 U           | 0.02 U                                                                           |
| oxaphene                         |                                        | 0.1 U          | 0.1 U          | 0.1 U          | 0,1 U            | 0.1 U                                                                            |
| roclor-1016                      |                                        | 1 U            | _1_U           | 1 U            | 1 U              | 1 U                                                                              |
| roclor-1221                      |                                        | 1 U            | 1 U            | 1 U            | 1 U              | 1 U                                                                              |
| roclor-1232                      |                                        | 1 U            | 1 U            | 1 U            | 1 U              | 1 U                                                                              |
| oclor-1242                       |                                        | 1 U            | 1 U            | 1 U            | 1 U              | 1 U                                                                              |
| roctor-1248                      |                                        | 1 U            | 1 U            | 1 U            | 1 U              |                                                                                  |
| roclor-1254                      |                                        | 1 U            | 1 U            | 1 U            | 1 U              | 1 U                                                                              |
| roclor-1260                      |                                        | 1 U            | 1 U            | 1. U           | 1 U              |                                                                                  |
| Aroclor-1262<br>Aroclor-1268     |                                        | 1 U            | 1 U<br>1 U     | 1 U            | 1 U              | 1 U<br>Sakot construirensken skolosisten aller et "Aptis <b>ü</b> lt sakonaksist |

U The analyte was not detected at or above the reported result.

Sludge Centrifuge sludge extract

comp Composite samples.

grab Grab sample.

E Ecology sample.

Inf Influent

EF Effluent

L Left side of channel in direction of flow.

R Right side of channel in direction of flow.

I Industrial discharge

<sup>@</sup> Composite collection times: 08:00-08:00.

| Appendix E – VOA, BNA, Pesticide/PCB and Metals                                                                                                                                                                                                                                                                                                                                                                                                                       |         | (/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                    |           | Page 5.        |         |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|----------------|---------|
| Location:                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Inf-E-R | Inf-E-L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Ef-E                                                                                                                                                                               | Sludge    | I-Ef-E         | River 1 |
| Type:                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | E-comp  | E-comp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | E-comp                                                                                                                                                                             | grab      | E-comp         | grat    |
| Date:                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10/6-7  | 10/6–7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10/67                                                                                                                                                                              | 10/6      | 10/6-7         | 10/     |
| Time:                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | @       | @                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | @                                                                                                                                                                                  | 1325      | @              | 105     |
| Lab Log#:                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 418159  | 418160                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 418166                                                                                                                                                                             | 418171    | 418176         | 41817   |
| otal Recoverable Metals                                                                                                                                                                                                                                                                                                                                                                                                                                               | (μg/L)  | (μg/L)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (μg/L)                                                                                                                                                                             | mg/Kg-dry | (μg/L)         | (µg/L   |
| Hardness = 75                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         | /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ,                                                                                                                                                                                  | ,         | 00,            | V 3     |
| \rsenic                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.4 P   | 1.7 P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.6 P                                                                                                                                                                              | 43.7      |                | 1.5 U   |
| eryllium                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1 U     | 1 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1 U                                                                                                                                                                                | 0.14 P    | 1 U            | 1 U     |
| Cadmium                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.92    | 0.81 B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.14 PB                                                                                                                                                                            | 6.18      | 0.61 B         | 1       |
| hromium                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5 U     | 5.1 P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 11 P                                                                                                                                                                               | 33.9      | 5 U            | 5 L     |
| Popper                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 87.8    | 82.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 11                                                                                                                                                                                 | 851 E     | 51.8           | ] 3 ∪   |
| ead                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 25.9    | 18.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3.3 P                                                                                                                                                                              | 142 N     | 4.1 P          | ] 1 U   |
| <b>Nercury</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.1 U   | 2.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.1 U                                                                                                                                                                              | 3.12      | 0.1 U          | 0.1 U   |
| lickel                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10 U    | 10 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10 U                                                                                                                                                                               | 19.9      | 10 U           | 10 U    |
| Selenium<br>Silver                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 50 U    | 2 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 50 U                                                                                                                                                                               | 3.55      | 50 U           | 50 U    |
| niver<br>Thallium                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2.5 U   | 7.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.96 P                                                                                                                                                                             | 32.8 N    | 0.5 U          | 0.5 U   |
| Zinc                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2.5 0   | 2.5 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2,5 U<br>51.9 U                                                                                                                                                                    | 1290      | 2.5 U<br>110 Ü | 2.5 U   |
| B Analyte was found in the analytical method blank, indicating the sample may have been contaminated. E Reported result is an estimate because of the presence of inte N For metals analytes the spike sample recovery is not within control limits. P The analyte was detected above the detection limit, but below the established minimum quantitation limit. U The analyte was not detected at or above the reported result. River Receiving water: Yakima River. | s       | R Right single s | e of channel in direction of flow<br>de of channel in direction of flo<br>al discharge<br>ge sludge extract<br>ite samples.<br>mple.<br>ite collection times: 08:00-08:<br>sample. | w.        |                | ı       |