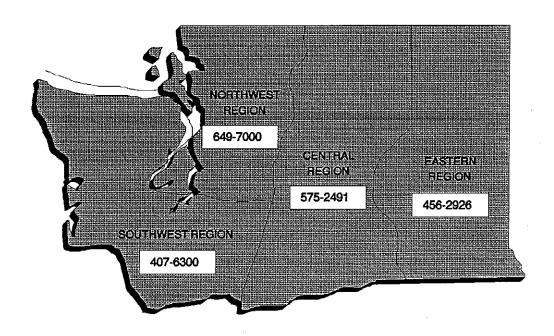
SOUTH FORK PALOUSE RIVER TOTAL MAXIMUM DAILY LOAD OF AMMONIA

by Gregory J. Pelletier


Washington State Department of Ecology
Environmental Investigations and Laboratory Services Program
Watershed Assessments Section
Olympia, Washington 98504-7710

Waterbody Numbers WA-34-1020 WA-34-1025

June 1993

For additional copies of this report, contact:

Department of Ecology
Publications
P.O. Box 47600
Olympia, WA 98504-7600
Telephone: (360) 407-7472

The Department of Ecology is an equal opportunity agency and does not discriminate on the basis of race, creed, color, disability, age, religion, national origin, sex, marital status, disabled veteran's status, Vietnam Era veteran's status, or sexual orientation.

For more information or if you have special accommodation needs, please contact Barbara Tovrea at (206) 407-6696. Ecology Headquarters telecommunications device for the deaf (TDD) number is (206) 407-6006. Ecology Regional Office TDD numbers are as follows:

SWRO (TDD) (360) 407-6306 NWRO (TDD) (206) 649-4259 CRO (TDD) (509) 454-7673 ERO (TDD) (509) 458-2055

TABLE OF CONTENTS

LIST OF FIGURES	ii
LIST OF TABLES	iii
LIST OF APPENDICES	iv
ACKNOWLEDGEMENTS	v
ABSTRACT	
.0 INTRODUCTION	1
2.0 METHODS 2.1 Intensive Surveys During 1991	3
2.2 Historical Data Analysis	4
3.0 RESULTS AND DISCUSSION 3.1 Seasonal and Annual Water Quality Trends at SFPR RM 22.2	4 4
3.1.1 Ammonia Concentrations	4
3.1.2 Ammonia Criteria Excursions	
3.1.4 Dissolved Oxygen and Nutrients	8
3.2 Ammonia TMDL	12
3.2.1 Duration and Frequency of Design Flows 3.2.2 River and POTW Flows	
3.2.3 Mixing Zone Considerations	22
3.2.4 Critical Conditions for Temperature and pH	23
3.2.5 Instream Nitrification and Background/Nonpoint Sources	2.3 28
3.2.7 Monte Carlo Simulation of Ammonia	
3.2.8 Analysis of Dissolved Oxygen Sag	
3.2.9 Effect of Proposed Diversion of Pullman POTW Effluent	42
.0 CONCLUSIONS AND RECOMMENDATIONS	43
0 DEEEDENCES	47

LIST OF FIGURES

Figure 3. Ammonia concentrations in the South Fork Palouse River (34B110) as percent of the chronic and acute toxicity criteria. Values greater than 100 percent exceed criteria Figure 4. Monthly variation in exceedance of ammonia criteria at Ecology station 34B110, 1970-92. Values greater than 100 percent exceed criteria Figure 5. Monthly temperature and pH at Station 34B110, 1970-92 Figure 6. Monthly and annual variation in dissolved inorganic N (nitrite, nitrate, and ammonia as N) at Ecology Station 34B110, 1970-92 Figure 7. Monthly and annual variation in soluble reactive P at Ecology station 34B110, 1970-92 Figure 8. Monthly dissolved oxygen concentration and saturation at Ecology Station 34B110, 1970-92 Figure 9. Distribution of monthly mean flows in the South Fork Palouse River at USGS station 133480 (RM 22.2) from 1970-81 Figure 10. Trends in annual low flows of South Fork Palouse River and Missouri Flat Creek Figure 11. Flow balance from Paradise Cr at Stateline to S.F. Palouse RM 8.6 below Fourmile Cr. Dashed line is surface water Figure 12. Summary of Pullman POTW effluent flow and quality for 1989m 1990, and 1991 Figure 13. Estimated monthly fraction of POTW effluent in S.F. Palouse River Mile 14 for existing median and design river flows Figure 14. Chronic total ammonia criteria in Paradise Creek and SFPR. Vertical ranges are means +/- standard deviations Figure 15. Profiles of total ammonia in Paradise Creek and SFPR during Ecology 1991 surveys. Vertical ranges are means +/- std deviation Figure 16. Comparison of Pullman POTW effluent ammonia during 1991 with proposed semi-annual permit limits for monthly average and daily maximum Figure 17. Critical DO concentrations below Moscow, Pullman, and Albion POTWs for various effluent BOD5 concentrations, April-October critical	Figure 1.	Study area map showing locations of sampling stations	2
Figure 3. Ammonia concentrations in the South Fork Palouse River (34B110) as percent of the chronic and acute toxicity criteria. Values greater than 100 percent exceed criteria Figure 4. Monthly variation in exceedance of ammonia criteria at Ecology station 34B110, 1970-92. Values greater than 100 percent exceed criteria Monthly temperature and pH at Station 34B110, 1970-92 Figure 6. Monthly and annual variation in dissolved inorganic N (nitrite, nitrate, and ammonia as N) at Ecology Station 34B110, 1970-92 Figure 7. Monthly and annual variation in soluble reactive P at Ecology station 34B110, 1970-92 Figure 8. Monthly dissolved oxygen concentration and saturation at Ecology Station 34B110, 1970-92 Figure 9. Distribution of monthly mean flows in the South Fork Palouse River at USGS station 133480 (RM 22.2) from 1970-81 Figure 10. Trends in annual low flows of South Fork Palouse River and Missouri Flat Creek Figure 11. Flow balance from Paradise Cr at Stateline to S.F. Palouse RM 8.6 below Fourmile Cr. Dashed line is surface water Figure 12. Summary of Pullman POTW effluent flow and quality for 1989m 1990, and 1991 Figure 13. Estimated monthly fraction of POTW effluent in S.F. Palouse River Mile 14 for existing median and design river flows Figure 14. Chronic total ammonia criteria in Paradise Creek and SFPR Vertical ranges are means +/- standard deviations Figure 15. Profiles of total ammonia in Paradise Creek and SFPR during Ecology 1991 surveys. Vertical ranges are means +/- std deviation Figure 16. Comparison of Pullman POTW effluent ammonia during 1991 with proposed semi-annual permit limits for monthly average and daily maximum Figure 17. Critical DO concentrations below Moscow, Pullman, and Albion POTWs for various effluent BOD5 concentrations, April-October critical	Figure 2.	Monthly and annual variation in ammonia at Ecology Station 34B110,	5
Figure 4. Monthly variation in exceedance of ammonia criteria at Ecology station 34B110, 1970-92. Values greater than 100 percent exceed criteria. Figure 5. Monthly temperature and pH at Station 34B110, 1970-92. Monthly and annual variation in dissolved inorganic N (nitrite, nitrate, and ammonia as N) at Ecology Station 34B110, 1970-92. Figure 7. Monthly and annual variation in soluble reactive P at Ecology station 34B110, 1970-92. Figure 8. Monthly dissolved oxygen concentration and saturation at Ecology Station 34B110, 1970-92. Figure 9. Distribution of monthly mean flows in the South Fork Palouse River at USGS station 133480 (RM 22.2) from 1970-81. Figure 10. Trends in annual low flows of South Fork Palouse River and Missouri Flat Creek. Figure 11. Flow balance from Paradise Cr at Stateline to S.F. Palouse RM 8.6 below Fourmile Cr. Dashed line is surface water. Figure 12. Summary of Pullman POTW effluent flow and quality for 1989m 1990, and 1991. Estimated monthly fraction of POTW effluent in S.F. Palouse River Mile 14 for existing median and design river flows. Figure 14. Chronic total ammonia criteria in Paradise Creek and SFPR. Vertical ranges are means +/- standard deviations. Figure 15. Profiles of total ammonia in Paradise Creek and SFPR during Ecology 1991 surveys. Vertical ranges are means +/- std deviation . Comparison of Pullman POTW effluent ammonia during 1991 with proposed semi-annual permit limits for monthly average and daily maximum . Figure 17. Critical DO concentrations below Moscow, Pullman, and Albion POTWs for various effluent BOD5 concentrations, April-October critical	Figure 3.	Ammonia concentrations in the South Fork Palouse River (34B110) as percent of the chronic and acute toxicity criteria. Values greater than 100	6
Figure 6. Monthly and annual variation in dissolved inorganic N (nitrite, nitrate, and ammonia as N) at Ecology Station 34B110, 1970-92 Figure 7. Monthly and annual variation in soluble reactive P at Ecology station 34B110, 1970-92 Figure 8. Monthly dissolved oxygen concentration and saturation at Ecology Station 34B110, 1970-92 Figure 9. Distribution of monthly mean flows in the South Fork Palouse River at USGS station 133480 (RM 22.2) from 1970-81 Figure 10. Trends in annual low flows of South Fork Palouse River and Missouri Flat Creek Figure 11. Flow balance from Paradise Cr at Stateline to S. F. Palouse RM 8.6 below Fourmile Cr. Dashed line is surface water Figure 12. Summary of Pullman POTW effluent flow and quality for 1989m 1990, and 1991 Figure 13. Estimated monthly fraction of POTW effluent in S. F. Palouse River Mile 14 for existing median and design river flows Figure 14. Chronic total ammonia criteria in Paradise Creek and SFPR. Vertical ranges are means +/- standard deviations Figure 15. Profiles of total ammonia in Paradise Creek and SFPR during Ecology 1991 surveys. Vertical ranges are means +/- std deviation Figure 16. Comparison of Pullman POTW effluent ammonia during 1991 with proposed semi-annual permit limits for monthly average and daily maximum Figure 17. Critical DO concentrations below Moscow, Pullman, and Albion POTWs for various effluent BOD5 concentrations, April-October critical	Figure 4.		7
ammonia as N) at Ecology Station 34B110, 1970-92 Figure 7. Monthly and annual variation in soluble reactive P at Ecology station 34B110, 1970-92 Figure 8. Monthly dissolved oxygen concentration and saturation at Ecology Station 34B110, 1970-92 Figure 9. Distribution of monthly mean flows in the South Fork Palouse River at USGS station 133480 (RM 22.2) from 1970-81 Figure 10. Trends in annual low flows of South Fork Palouse River and Missouri Flat Creek Figure 11. Flow balance from Paradise Cr at Stateline to S. F. Palouse RM 8.6 below Fourmile Cr. Dashed line is surface water Figure 12. Summary of Pullman POTW effluent flow and quality for 1989m 1990, and 1991 Figure 13. Estimated monthly fraction of POTW effluent in S. F. Palouse River Mile 14 for existing median and design river flows Figure 14. Chronic total ammonia criteria in Paradise Creek and SFPR. Vertical ranges are means +/- standard deviations Figure 15. Profiles of total ammonia in Paradise Creek and SFPR during Ecology 1991 surveys. Vertical ranges are means +/- std deviation Figure 16. Comparison of Pullman POTW effluent ammonia during 1991 with proposed semi-annual permit limits for monthly average and daily maximum Figure 17. Critical DO concentrations below Moscow, Pullman, and Albion POTWs for various effluent BOD5 concentrations, April-October critical	Figure 5.	Monthly temperature and pH at Station 34B110, 1970-92	9
Figure 7. Monthly and annual variation in soluble reactive P at Ecology station 34B110, 1970-92 Figure 8. Monthly dissolved oxygen concentration and saturation at Ecology Station 34B110, 1970-92 Figure 9. Distribution of monthly mean flows in the South Fork Palouse River at USGS station 133480 (RM 22.2) from 1970-81 Figure 10. Trends in annual low flows of South Fork Palouse River and Missouri Flat Creek Figure 11. Flow balance from Paradise Cr at Stateline to S.F. Palouse RM 8.6 below Fourmile Cr. Dashed line is surface water Figure 12. Summary of Pullman POTW effluent flow and quality for 1989m 1990, and 1991 Figure 13. Estimated monthly fraction of POTW effluent in S.F. Palouse River Mile 14 for existing median and design river flows Figure 14. Chronic total ammonia criteria in Paradise Creek and SFPR. Vertical ranges are means +/- standard deviations Figure 15. Profiles of total ammonia in Paradise Creek and SFPR during Ecology 1991 surveys. Vertical ranges are means +/- std deviation Figure 16. Comparison of Pullman POTW effluent ammonia during 1991 with proposed semi-annual permit limits for monthly average and daily maximum Figure 17. Critical DO concentrations below Moscow, Pullman, and Albion POTWs for various effluent BOD5 concentrations, April-October critical	Figure 6.	Monthly and annual variation in dissolved inorganic N (nitrite, nitrate, and ammonia as N) at Ecology Station 34B110, 1970-92	10
Figure 8. Monthly dissolved oxygen concentration and saturation at Ecology Station 34B110, 1970-92 Figure 9. Distribution of monthly mean flows in the South Fork Palouse River at USGS station 133480 (RM 22.2) from 1970-81 Figure 10. Trends in annual low flows of South Fork Palouse River and Missouri Flat Creek. Figure 11. Flow balance from Paradise Cr at Stateline to S. F. Palouse RM 8.6 below Fourmile Cr. Dashed line is surface water Figure 12. Summary of Pullman POTW effluent flow and quality for 1989m 1990, and 1991 Figure 13. Estimated monthly fraction of POTW effluent in S. F. Palouse River Mile 14 for existing median and design river flows Figure 14. Chronic total ammonia criteria in Paradise Creek and SFPR Vertical ranges are means +/- standard deviations Figure 15. Profiles of total ammonia in Paradise Creek and SFPR during Ecology 1991 surveys. Vertical ranges are means +/- std deviation Figure 16. Comparison of Pullman POTW effluent ammonia during 1991 with proposed semi-annual permit limits for monthly average and daily maximum Figure 17. Critical DO concentrations below Moscow, Pullman, and Albion POTWs for various effluent BOD5 concentrations, April-October critical	Figure 7.		11
Figure 9. Distribution of monthly mean flows in the South Fork Palouse River at USGS station 133480 (RM 22.2) from 1970-81	Figure 8.	Monthly dissolved oxygen concentration and saturation at Ecology Station	
Figure 10. Trends in annual low flows of South Fork Palouse River and Missouri Flat Creek. Figure 11. Flow balance from Paradise Cr at Stateline to S. F. Palouse RM 8.6 below Fourmile Cr. Dashed line is surface water Figure 12. Summary of Pullman POTW effluent flow and quality for 1989m 1990, and 1991 Figure 13. Estimated monthly fraction of POTW effluent in S. F. Palouse River Mile 14 for existing median and design river flows Chronic total ammonia criteria in Paradise Creek and SFPR. Vertical ranges are means +/- standard deviations Figure 15. Profiles of total ammonia in Paradise Creek and SFPR during Ecology 1991 surveys. Vertical ranges are means +/- std deviation Figure 16. Comparison of Pullman POTW effluent ammonia during 1991 with proposed semi-annual permit limits for monthly average and daily maximum Figure 17. Critical DO concentrations below Moscow, Pullman, and Albion POTWs for various effluent BOD5 concentrations, April-October critical	Figure 9.	Distribution of monthly mean flows in the South Fork Palouse River at	16
Figure 11. Flow balance from Paradise Cr at Stateline to S. F. Palouse RM 8.6 below Fourmile Cr. Dashed line is surface water Summary of Pullman POTW effluent flow and quality for 1989m 1990, and 1991 Figure 13. Estimated monthly fraction of POTW effluent in S. F. Palouse River Mile 14 for existing median and design river flows Chronic total ammonia criteria in Paradise Creek and SFPR Vertical ranges are means +/- standard deviations Figure 15. Profiles of total ammonia in Paradise Creek and SFPR during Ecology 1991 surveys. Vertical ranges are means +/- std deviation Figure 16. Comparison of Pullman POTW effluent ammonia during 1991 with proposed semi-annual permit limits for monthly average and daily maximum Figure 17. Critical DO concentrations below Moscow, Pullman, and Albion POTWs for various effluent BOD5 concentrations, April-October critical	Figure 10.	Trends in annual low flows of South Fork Palouse River and Missouri	17
Figure 12 Summary of Pullman POTW effluent flow and quality for 1989m 1990, and 1991	Figure 11.	Flow balance from Paradise Cr at Stateline to S.F. Palouse RM 8.6 below	18
Figure 13. Estimated monthly fraction of POTW effluent in S.F. Palouse River Mile 14 for existing median and design river flows Chronic total ammonia criteria in Paradise Creek and SFPR. Vertical ranges are means +/- standard deviations Profiles of total ammonia in Paradise Creek and SFPR during Ecology 1991 surveys. Vertical ranges are means +/- std deviation Figure 16. Comparison of Pullman POTW effluent ammonia during 1991 with proposed semi-annual permit limits for monthly average and daily maximum Critical DO concentrations below Moscow, Pullman, and Albion POTWs for various effluent BOD5 concentrations, April-October critical	Figure 12.	Summary of Pullman POTW effluent flow and quality for 1989m 1990,	
Figure 14 Chronic total ammonia criteria in Paradise Creek and SFPR. Vertical ranges are means +/- standard deviations Figure 15 Profiles of total ammonia in Paradise Creek and SFPR during Ecology 1991 surveys. Vertical ranges are means +/- std deviation Comparison of Pullman POTW effluent ammonia during 1991 with proposed semi-annual permit limits for monthly average and daily maximum Critical DO concentrations below Moscow, Pullman, and Albion POTWs for various effluent BOD5 concentrations, April-October critical	Figure 13.	Estimated monthly fraction of POTW effluent in S.F. Palouse River Mile	20
Profiles of total ammonia in Paradise Creek and SFPR during Ecology 1991 surveys. Vertical ranges are means +/- std deviation. Figure 16. Comparison of Pullman POTW effluent ammonia during 1991 with proposed semi-annual permit limits for monthly average and daily maximum. Figure 17. Critical DO concentrations below Moscow, Pullman, and Albion POTWs for various effluent BOD5 concentrations, April-October critical	Figure 14.	Chronic total ammonia criteria in Paradise Creek and SFPR. Vertical	25
Figure 16 Comparison of Pullman POTW effluent ammonia during 1991 with proposed semi-annual permit limits for monthly average and daily maximum. Figure 17 Critical DO concentrations below Moscow, Pullman, and Albion POTWs for various effluent BOD5 concentrations, April-October critical	Figure 15.		27
Figure 17. Critical DO concentrations below Moscow, Pullman, and Albion POTWs for various effluent BOD5 concentrations, April-October critical	Figure 16.	Comparison of Pullman POTW effluent ammonia during 1991 with proposed semi-annual permit limits for monthly average and daily	36
	Figure 17.	Critical DO concentrations below Moscow, Pullman, and Albion POTWs	41

LIST OF TABLES

Table 1.	Return periods for equivalent annual probability of meeting water quality	
	standards for various permit intervals	14
Table 2.	Summary of critical flows for the ammonia TMDL	21
Table 3.	Design conditions of temperature and pH	24
Table 4.	Summary of flows and ammonia concentrations for headwaters, nonpoint	
	sources, and point sources during 1991 Ecology surveys	29
Table 5.	Selection of semi-annual permit periods for load optimization	34

LIST OF APPENDICES

- Results of field and lab measurements during 1991 intensive surveys Α.
- Ambient monitoring data from Ecology station 34B110 B.
- Ambient monitoring data from Ecology supplemental stations during water year 1992 Pullman POTW monitoring data from the S.F. Palouse River Summary of Pullman POTW effluent quality during 1989-91 C.
- \mathbf{D}_{\bullet}
- Ė.
- Detailed calculation of ammonia WLAs and permit limits
 Derivation of permit limits by Monte Carlo simulation F.
- G.
- Dissolved Oxygen Analysis $\mathbf{H}_{\cdot \cdot}$

ACKNOWLEDGEMENTS

The field work for this project was designed and conducted by Joe Joy, with the assistance of Rob Plotnikoff, Norm Glenn, and Paul Pickett. Many valuable comments were received after thorough review by Will Kendra, Bill Yake, Don Nichols, and Steve Butkus. Final report preparation was done by Barbara Tovrea.

ABSTRACT

Un-ionized ammonia concentrations in the South Fork Palouse River (SFPR) at Pullman often exceed state water quality standards. Effluent from publicly-owned treatment works (POTWs) from the cities of Moscow and Pullman comprises most of the river flow during July-November of a typical year and during any month of the year for design low flows. The Albion POTW makes up a relatively small fraction of the total river flow. Ecology ambient monitoring station 34B110 was recommended for developing design conditions for temperature and pH in combination with data collected by Pullman POTW upstream and downstream from the POTW outfall, and by Ecology during water year 1992 in Paradise Creek at the state line. Semi-annual total ammonia criteria for Paradise Creek at the state line were proposed based on design conditions for temperature and pH, and regressions with Ecology station 34B110.

Total maximum daily loads (TMDLs) for ammonia were established for critical points in the SFPR. Waste load allocations (WLAs) for POTWs, load allocations (LAs) for nonpoint sources, and a margin of safety were factored into the analysis. Semi-annual and monthly periods for permitting were evaluated. Exemptions from mixing zone size limits were also considered. Four alternatives were considered for evaluating TMDLs: monthly and semi-annual limits, each with and without mixing zone size restrictions. Semi-annual limits were recommended instead of monthly limits for administrative simplicity. An engineering analysis of the treatment process is recommended to determine feasibility of operational changes or improvements required to meet the proposed ammonia limits. Comparison of proposed limits with 1991 data from Pullman POTW suggests that the proposed limits could be achieved. Permit limits for effluent ammonia for the Albion POTW may be unnecessary during February and March, but may be required during April and May.

1.0 INTRODUCTION

The South Fork of the Palouse River (SFPR) at Pullman drains approximately 130 square miles around Pullman, Washington and Moscow, Idaho (Figure 1). The area is dominated by grain fields and pastures. The major land use is farming with the principal crops of wheat, peas, and lentils. Residential, commercial, and industrial developments are clustered around the two towns. Populations in both towns vary seasonally due to the presence of University of Idaho and Washington State University campuses. The town of Albion is located approximately seven river miles (RM) downstream from Pullman.

The SFPR has often been rated as having the worst water quality in the state, based on Ecology ambient monitoring data collected in Pullman (Singleton, 1980; Moore, 1984; Thielen, 1986). Past investigations by Ecology have identified several point and nonpoint source problems in the SFPR basin (Bernhardt and Yake, 1978; Yake, 1981; Joy, 1987). The SFPR is designated Class A under Chapter 173-201A WAC, and is regulated to meet or exceed requirements for: water supply (domestic, industrial, agricultural); stock watering; salmonid and other fish migration, rearing, spawning, and harvesting; wildlife habitat; and primary contact recreation, sport fishing, boating, and aesthetic enjoyment. The SFPR is currently listed as not attaining swimmable/fishable goals (section 304(1)(1)(A)(ii) of the federal Clean Water Act) and consistently exceeds state standards for fecal coliform. Joy (1987) noted verdant and widespread growths of attached algae, weeds, mosses, and periphyton attributed to abundant nutrients. Summer temperatures frequently exceed, and diel dissolved oxygen concentrations frequently are less than, Class A standards.

Three publicly-owned treatment works (POTWs) discharge wastewater to the SFPR: Albion POTW at RM 14.1; Pullman POTW at RM 21.3; and Moscow POTW to creek mile (CM) 6.9 of Paradise Creek. The Moscow POTW discharge is located in Idaho approximately 0.5 miles from the state line. During periods of low flow, the Moscow POTW comprises nearly the entire flow of Paradise Creek and the SFPR until confluence with the Pullman POTW discharge. POTW flows have the potential to account for most of the total river flow during any month of the year.

The Moscow POTW provides secondary treatment with trickling filters. The Pullman POTW provides secondary treatment with seasonal nitrification. Maximum monthly design flows for Moscow and Pullman POTWs are 3.5 and 4.3 million gallons per day (mgd), respectively. The Albion POTW discharges from a facultative lagoon to the SFPR only during the months of February through May with a design flow of 0.12 mgd.

Effluent flows reported by Moscow POTW prior to 1992 did not account for diversion of approximately 72 million gallons of effluent for irrigation and 0.22 mgd recycled to the primary clarifier. The current NPDES permit for Moscow POTW requires reporting of actual flows to Paradise Creek.

The city of Pullman is considering diversion of a portion of effluent flows during April through October. Seasonal diversion of Pullman POTW effluent of approximately 126 million gallons has been proposed (Don Nichols, Ecology ERO, personal communication).

The objectives of the present study are to:

- determine the loading capacity of the SFPR to discharges of ammonia for protection of aquatic life criteria for un-ionized ammonia (WAC 173-201; EPA, 1986);
- examine the sensitivity of dissolved oxygen concentrations to ammonia and biochemical oxygen demand (BOD) loads from POTWs;
- recommend total maximum daily loads (TMDLs), waste load allocations (WLAs), and load allocations (LAs) consistent with Ecology's guidance on TMDLs (Ecology, 1991).

The Pullman POTW discharge is the only National Pollutant Discharge Elimination System (NPDES) permit in the SFPR basin that contains limits on effluent ammonia. The Pullman POTW currently has the following effluent ammonia limits: no limitation from December through March; 5 mg/L as N during April and November; and 1 mg/L as N from May through October. The current permit limits are interim limits until adoption of a TMDL and WLA.

2.0 METHODS

2.1 Intensive Surveys During 1991

Ecology conducted intensive surveys in July and October 1991 of water quality and flow profiles between Paradise Creek near the state line (CM 6.4) and SFPR RM 8.9 below the Albion POTW. The intensive surveys coincided with Class II inspections of the Pullman POTW and Albion POTW (Glenn, 1992). Surface water grab samples were collected at stations shown in Figure 1. Intensive survey station SF2 is at the same location as Ecology ambient station 34B110.

Field analyses included: temperature by probe and mercury thermometer; dissolved oxygen by modified Winkler titration; and pH and specific conductance by probe (APHA et al., 1989). Stream discharge was measured at selected sites using either a magnetic or propeller flow meter.

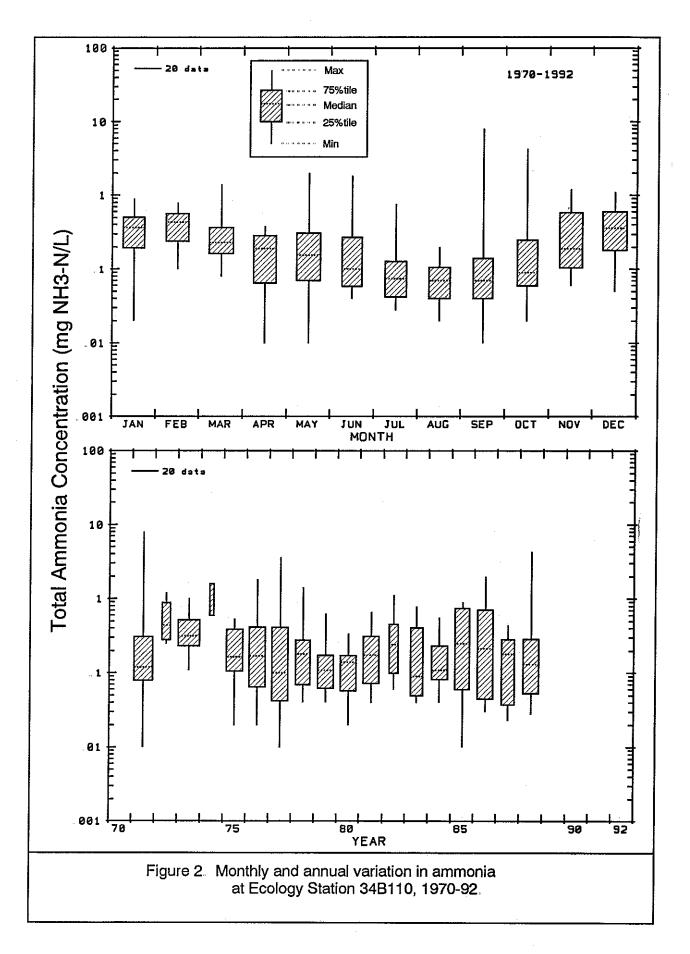
Grab samples collected for laboratory analyses were stored in the dark on ice and received via air freight or hand delivery by the Ecology/USEPA Manchester Environmental Laboratory within 24 hours of collection. All analyses were performed using approved procedures (EPA, 1983; APHA et al., 1989). All field and lab measurements are presented in Appendix A.

2.2 Historical Data Analysis

Ecology has collected monthly water quality data in the SFPR at Pullman (Ecology station 34B110 at RM 22.2) since 1970 (Appendix B). Ecology also collected monthly data during water year 1992 from Paradise Creek at the state line and other stations in the SFPR basin (Appendix C; Hallock, 1993). Ecology data were examined to describe seasonal and annual trends in water quality. The USGS has recorded daily discharge in the SFPR at Pullman (RM 22.2) and in Missouri Flat Creek between 1933 and 1981. Ecology water quality data and USGS flow data were used to compute design conditions for TMDL modeling. Historical water quality data and USGS flow data were analyzed using the statistical software package WQHYDRO (Aroner, 1991) and SYSTAT® (SYSTAT, 1990).

The Pullman POTW has also collected water quality data (temperature, pH, dissolved oxygen, and ammonia) from the SFPR immediately upstream and downstream from the POTW outfall (RM 21.3) at approximately weekly intervals since May 1990 as part of its NPDES requirements (Appendix D). These data were used to evaluate mixing zone criteria for ammonia.

3.0 RESULTS AND DISCUSSION


3.1 Seasonal and Annual Water Quality Trends at SFPR RM 22.2

3.1.1 Ammonia Concentrations

Ammonia concentrations vary seasonally (Figure 2). Lowest values occur during warmer summer months. The seasonal pattern may be influenced by seasonal changes in loading and instream nitrification as temperatures change. Annual concentrations are relatively constant from year to year. Monthly and annual median ammonia concentrations typically range between 0.1 and 0.5 mg/L as N, but individual observations frequently exceed 1 mg/L as N.

3.1.2 Ammonia Criteria Excursions

Ammonia concentrations at SFPR RM 22.2 (Ecology ambient station 34B110) have shown repeated excursions above chronic criteria between 1970 and the present (Figure 3). Most excursions occur during summer months, but some were observed in all months except January, February, and March (Figure 4). The Pullman POTW monitoring data showed ammonia criteria excursions during seven months of the year upstream from the POTW outfall and six months of the year downstream between 1990 and 1992.

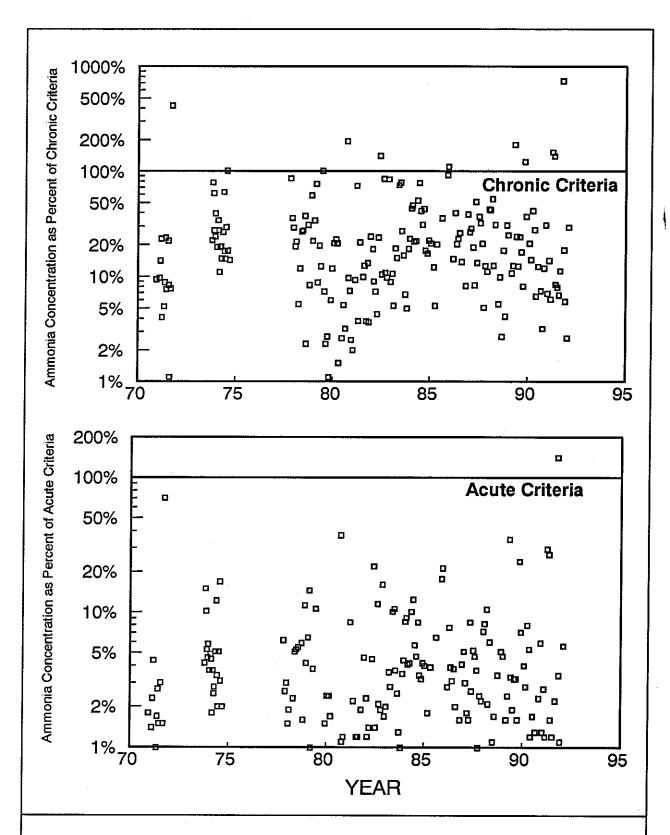
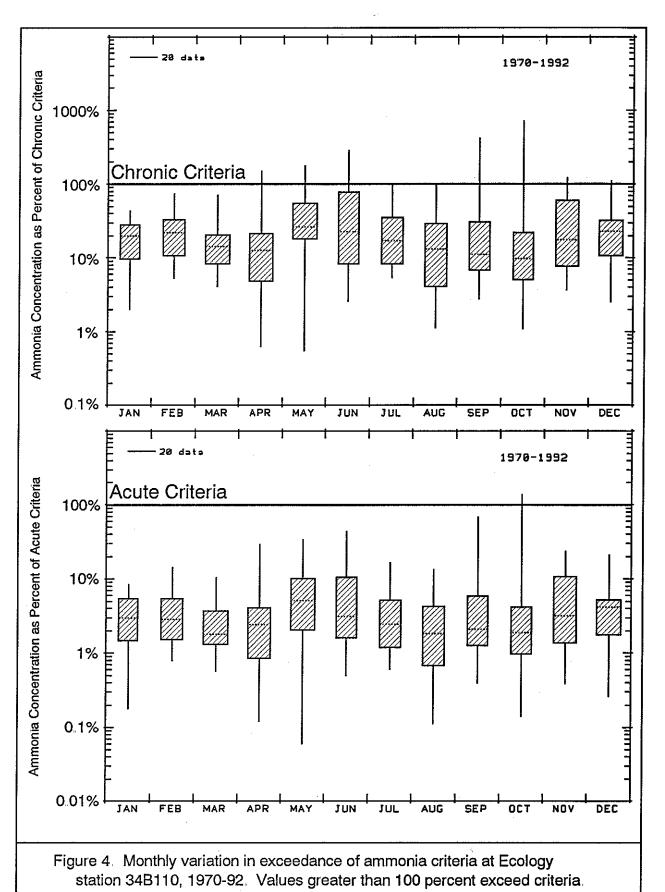
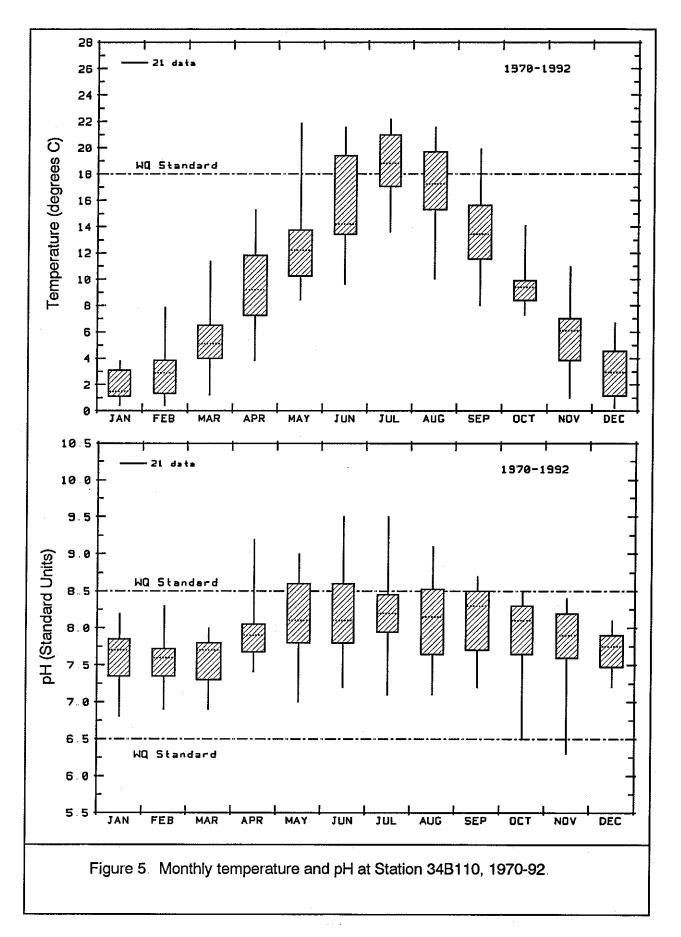



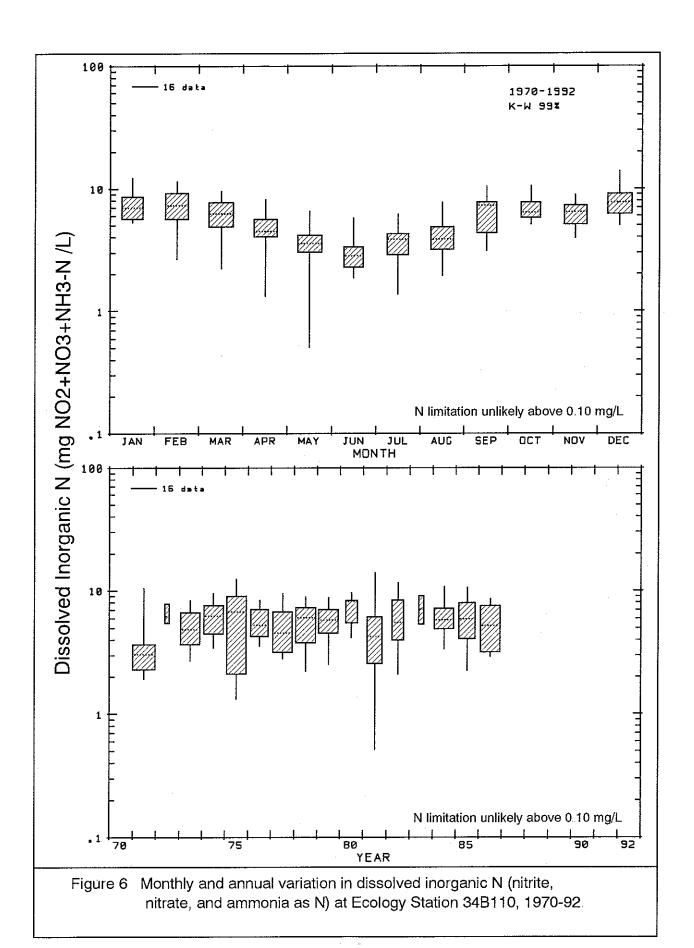
Figure 3. Ammonia concentrations in the South Fork Palouse River (34B110) as percent of the chronic and acute toxicity criteria. Values greater than 100 percent exceed criteria.

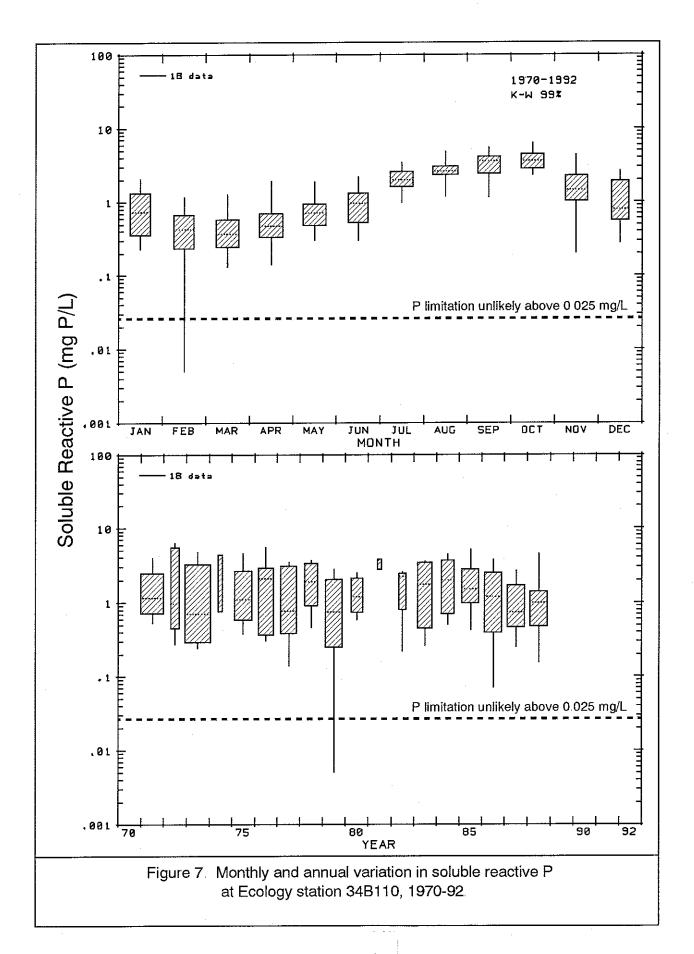
3.1.3 Temperature and pH

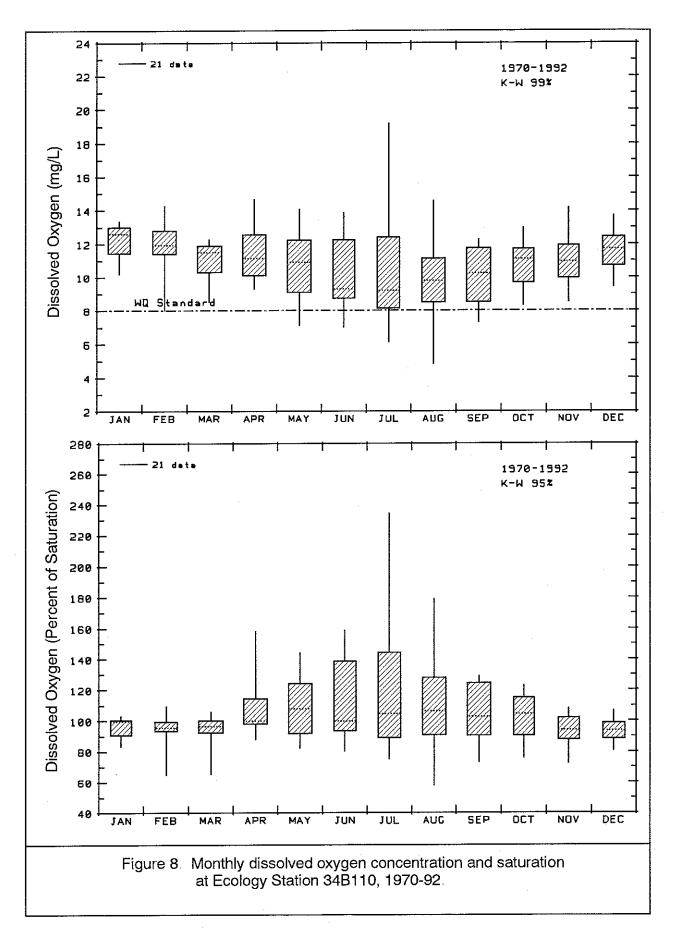
Total ammonia in water contains two components: ionized (NH₄⁺) and un-ionized (NH₃). Ammonia toxicity is caused by the un-ionized fraction present in water, which is a function of temperature and pH. Seasonal patterns in temperature and pH result in seasonally changing criteria for total ammonia. The un-ionized fraction of ammonia increases as temperature and pH increase.

Figure 5 presents seasonal trends in temperature and pH. Temperatures peak in July in excess of the Class A criterion of 18°C. Summer pH also exceeds the Class A criterion. Seasonal increases in pH are probably caused by photosynthesis of algae and macrophytes in the river.


3.1.4 Dissolved Oxygen and Nutrients


Although the major focus of this analysis is ammonia, other parameters are related to ammonia. Dissolved oxygen is related to ammonia because of the demand for oxygen by nitrification. Nutrient concentrations are also relevant because algal productivity influences dissolved oxygen levels. Monthly ambient monitoring data at SFPR RM 22.2 shows nutrient concentrations typically 10 to 100 times greater than levels which might limit algal growth (Figures 6 and 7; assuming algal growth limitation by nutrients does not occur above 0.10 mg/L of nitrate, nitrite, plus ammonia N and 0.025 mg/L of soluble reactive P).


Dissolved oxygen measurements at SFPR RM 22.2 show occasional excursions below the Class A standard of 8 mg/L during May through September (Figure 8). However, the ambient monitoring data probably do not represent potential minimum concentrations which would occur before sunrise or at critical locations below POTWs. The intensive surveys during July and October 1991 (Appendix A) probably are more representative of minimum concentrations at critical locations and times of day. Diel minimum dissolved oxygen of less than 8 mg/L was consistently found at most stations. Lowest dissolved oxygen concentrations were found in Paradise Creek at the state line. Monthly sampling at the state line during water year 1992 shows a median daytime dissolved oxygen of less than 4 mg/L (Appendix C; Hallock, 1993).


3.2 Ammonia TMDL

The following sections present the procedures and design conditions used for evaluating ammonia TMDLs. The order of presentation is: 1) design river and POTW flows; 2) mixing zone temperature and pH; and 3) models for accounting for in-stream nitrification and background/nonpoint sources. Then, the TMDL, WLAs and LAs for total ammonia are developed.

3.2.1 Duration and Frequency of Design Flows

Permit limits and WLAs have been traditionally based on a single critical period when the assimilative capacity of a waterbody is lowest. The 7-day-10-year low flow (7Q10) is stipulated by Ecology for such annual limits for most pollutants (Ecology, 1985; Chapter 173-201A WAC). However, Ecology guidance recommends the 30-day-10-year low flow (30Q10) for annual ammonia limits for facilities designed to remove ammonia (Ecology, 1987). Permit limits derived using the annual 7Q10 or 30Q10 are intended to apply during all months of the year even though those flows may only occur during summer months (EPA, 1988).

Ecology policy encourages use of seasonal permit limits for ammonia (Ecology, 1987). TMDLs and WLAs were evaluated for monthly and semi-annual periods. Annual design conditions were not evaluated because they would require overly restrictive permit limits. Seasonal WLAs and permit limits allow greater use of the loading capacity of a receiving water. However, design conditions for seasonal permit limits must be chosen to ensure that the allowable frequency of exceeding aquatic life criteria is not exceeded. For example, if the same return period (e.g., 10 year return period for 30Q10) is used for design conditions for annual, semi-annual, and monthly limits, then the semi-annual limits would be twice as likely to exceed criteria, and monthly limits would be about seven times more risky compared with annual limits (EPA, 1984). Table 1 presents annual and seasonal return periods for design conditions that have equivalent probability of annually exceeding criteria. Semi-annual and monthly design flows would require 20 and 114 year return periods, respectively, to maintain the same annual risk of exceeding criteria as the traditional 7Q10 or 3QQ10 annual design flow.

In consideration of EPA guidance and criteria (EPA, 1986; EPA, 1984) and Ecology policy (Ecology, 1987), seasonal design conditions were selected to maintain the same annual risk as an annual 30Q10. Therefore, the seasonal design flows selected for evaluation of ammonia TMDLs for the SFPR are:

- 30-day-20-year low flows (30Q20) for semi-annual periods;
- 30-day-114-year low flows (30Q114) for monthly periods.

The periods chosen for semi-annual limits are April-October and November-March. These periods were chosen in consideration of seasonal changes in POTW flows, river flows, and aquatic life criteria for ammonia. The selected semi-annual periods maintain the same annual risk as annual permits and also maximize allowable POTW loading to most efficiently utilize loading capacity of the river. The method used to select semi-annual periods is presented in a later section since it requires evaluation of monthly WLAs.

Table 1. Return periods for equivalent annual probability of meeting water quality standards for various permit intervals.

Y = Return Period (1) (Years)

	Number of Seasons	P = Annual Failure Probability
Permit Interval	N	P = 10% = 1/10 years
Monthly Seasonal	12 4	114.4 38.5
Semiannual Annual	2	19.5 10.0
		•

1) $Y = \{ 1 - (1 - P)^{(1/N)} \} ^{(-1)}$

3.2.2 River and POTW Flows

The distribution of monthly mean flows in the SFPR at RM 22.2 is presented in Figure 9. Monthly mean flows range from greater than 100 cubic feet per second (cfs) during February-March to less than 10 cfs during July-November. Low flows in the SFPR show an increasing trend during the period of 1960-80 (Figure 10), possibly because of increasing Moscow POTW flows during this period. The last 10 years of the period of record (1971-81) were selected for computing design flow statistics because of the observed increase in low flows.

The intensive surveys of July and October 1991 were used to check the surface water flow balance for the SFPR basin from Paradise Creek at the state line to SFPR RM 8.9 (Figure 11). In general, the sum of measured surface flow sources (Paradise CM 6.4, Airport CM 0.0, SFPR RM 23.6, Missouri Flat CM 0.0, Pullman POTW, and Albion POTW) adequately account for the observed profiles of flows throughout the river segment.

Pullman POTW effluent flows for 1989-91 are shown in Figure 12 and Appendix E with temperature, ammonia concentrations, and ammonia variability. Effluent flows vary seasonally with minimum flows in June-July and maximum flows during January-March. The maximum monthly average POTW flows are approaching 85% of the design flow of 4.3 mgd. Summer average design flows are often exceeded during dry-weather months of September and October.

The distribution of monthly flows during 1989-91 was used to estimate critical seasonal flows for the Moscow and Pullman POTWs by scaling the design flows (3.5 mgd for Moscow and 4.3 mgd for Pullman POTW) proportional to the 1989-91 monthly average flows. This was accomplished by the following procedure:

- Step 1: 1989-91 averages were calculated for each month for each POTW.
- Step 2: the maximum monthly average POTW flow for the 1989-91 period was found for each POTW.
- Step 3: the ratio of each monthly average to the maximum monthly average during 1989-91 was calculated for each POTW.
- Step 4: the monthly ratios from step 3 were multiplied by the design flows (3.5 mgd for Moscow and 4.3 mgd for Pullman POTW) to estimate the distribution of monthly average flows when the highest monthly average POTW flow reaches the design flow.

The fraction of POTW effluent expected in the SFPR at critical POTW flows is shown in Figure 13. The combination of critical flows from the Moscow POTW and Pullman POTW are estimated to comprise the majority of the river flow during July-November of a typical year and during any month of the year for low river flows. Albion POTW makes up a relatively small portion of the low river flows. Critical river and POTW flows are summarized in Table 2. Critical conditions for TMDL modeling were assumed to be represented by a combination of low

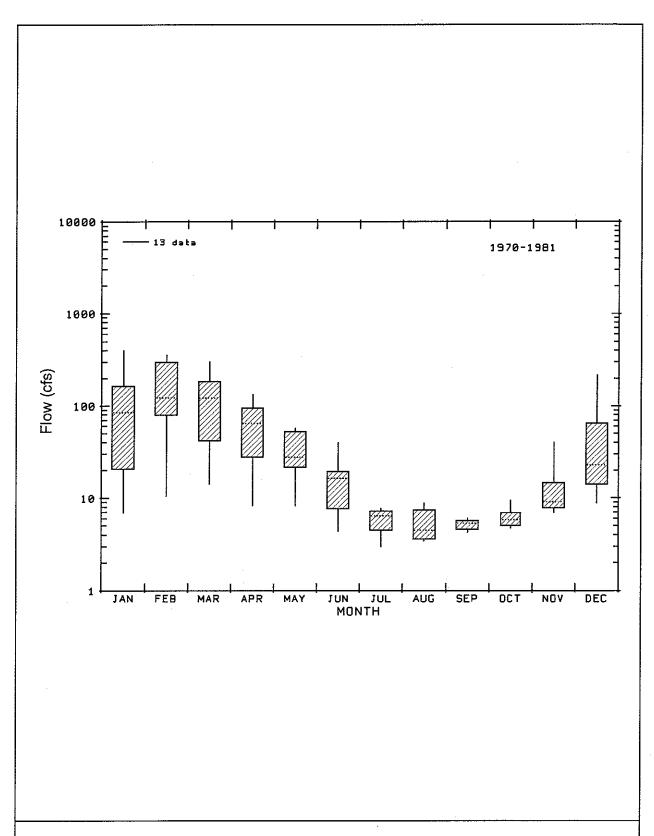


Figure 9 Distribution of monthly mean flows in the South Fork Palouse River at USGS station 133480 (RM 22.2) from 1970-81

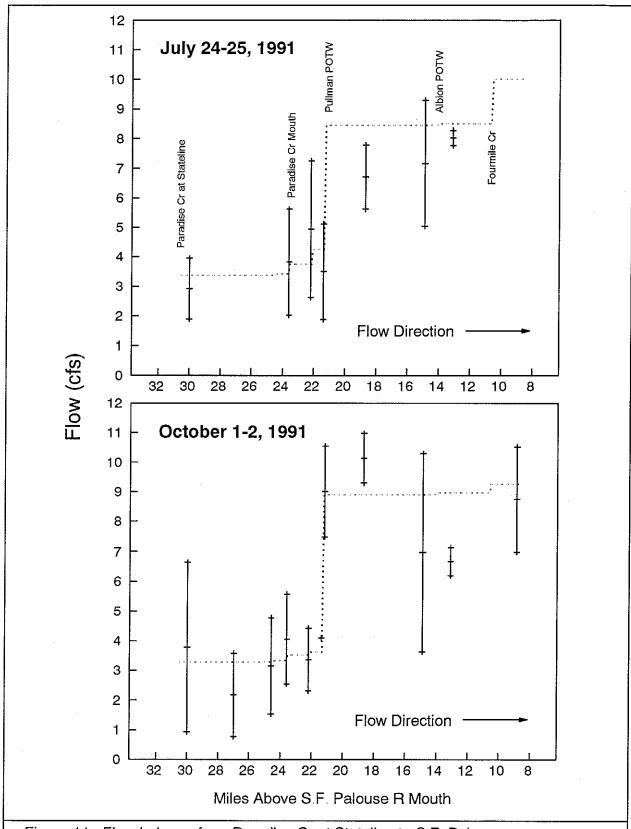


Figure 11 Flow balance from Paradise Cr at Stateline to S.F. Palouse RM 8.6 below Fourmile Cr Dashed line is surface water flow balance. Vertical ranges are mean +/- standard deviation of observed flows.

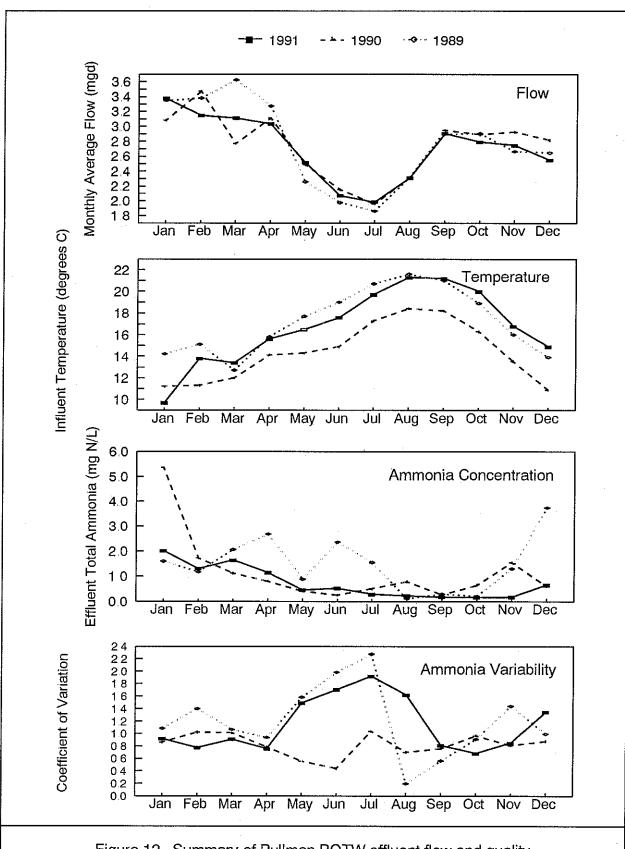


Figure 12. Summary of Pullman POTW effluent flow and quality for 1989, 1990, and 1991.

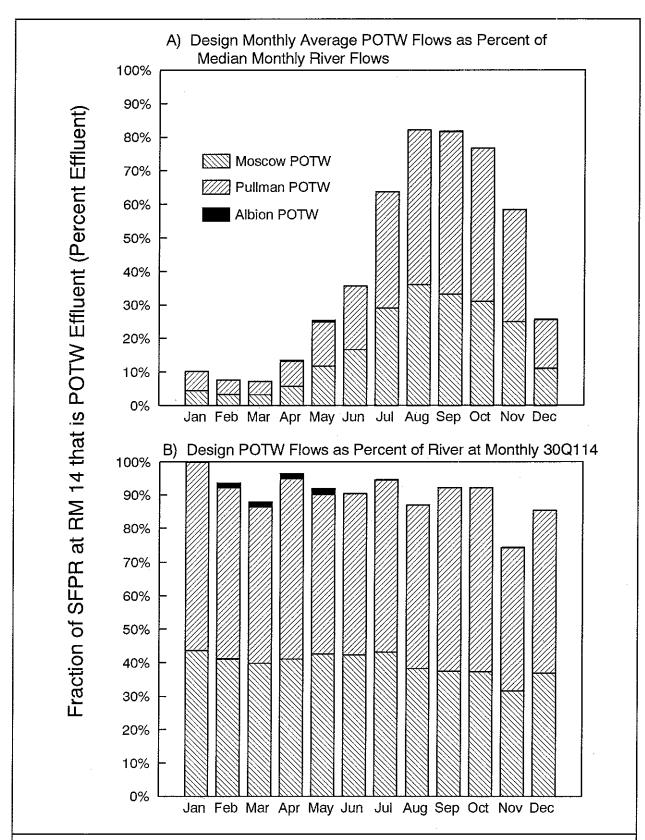


Figure 13. Estimated monthly fraction of POTW effluent in S.F.

Palouse River Mile 14 for existing median and design river flows

|--|

	======	====		=====	====:	=====	=====	=====	=====	====	=====	======	========	======
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	0ct	Nov	Dec	Apr-Oct N	ov-Mar
	<					-	Month Limi	•				><	Semi-ann Limits	
		:====			JZ 200:		====	====		====	=====		=======================================	======
BACKGROUND/NONPOINT SOURCES														
Paradise Cr at Stateline (1)	5.03	5.36	5.42	4.74	4.24	2.60	2.16	2.56	3.67	3.86	515	4.,99	379	6.43
S.F. Palouse R above Paradise Cr (2)	0.00	062	1.24	0.31	062	0.62	0.31	0.93	062	0.62	187	062	065	1.09
Missouri Flat Cr (2)	0.00	0.20	040	010	0.,20	020	0.10	030	020	020	060	020	021	035
POINT SOURCES														
Moscow POTW (3)	503	536	5.42	4.74	424	2.60	216	2.56	295	3.79	402	3.95	3.,79	402
Pullman POTW (3)	652	6.,65	6.32	626	4.83	4,12	3.,86	4.62	5.,82	571	5.55	533	582	555
Albion POTW (4)		019	019	0.19	019								019	019

¹⁾ Paradise Cr at Stateline estimated by sum of natural flow above Moscow POTW with design flow from Moscow POTW...

Monthly flows from Moscow POTW were estimated as design flow scaled by distribution of monthly flows during 1989-91. Critical semi-annual POTW flows were estimated as maximum monthly average for each season...

Natural Paradise Creek flows above Moscow POTW were estimated as difference between USGS station 13348000 and sum of flows from SF Palouse above Paradise Creek, and existing (1989-91) Moscow POTW flows...

Flows from Moscow POTW to Paradise Creek during 1989-91 were estimated from NPDES DMR data after subracting 0.22 mgd for recycle to the primary clarifier, and 72 million gallons for irrigation during June-September each year...

- 2) Missouri Flat Cr estimated by Log-Pearson Type 3 analysis of USGS 13348500. South Fork Palouse above Paradise Cr and Fourmile Cr were estimated by scaling USGS 13348500 statistics proportional to drainage areas (drainage areas of S.F. Palouse above Paradise Cr, Missouri Flat Cr, and Fourmile Cr are 84, 27, and 72 square miles, respectively).
- 3) Pullman POTW flows estimated based on design flow of 4.3 mgd scaled monthly proportional to 1989-91 monthly average flows (see text). Critical semi-annual flows were assumed equal to maximum monthly average during critical portions of each period.
- 4) Discharge permitted during February 1 through May 31 only. Design flow = 0.12 mgd (0.19 cfs).

flows from natural sources and high POTW flows calculated as described above. This combination provides a reasonably conservative estimate of conditions when effluent dilution will be lowest.

3.2.3 Mixing Zone Considerations

Ecology uses WAC 173-201A-100 to define mixing zones for NPDES discharges. This regulation recognizes separate chronic and acute points of compliance.

In no case shall the zone of chronic criteria violation in rivers be greater than the most restrictive combination of the following:

- shall not utilize more than 25% of the river design flow or occupy greater than 25% of the width of the channel;
- shall not extend in the downstream direction more than 300 feet plus the depth of water over the diffuser;
- shall not extend upstream more than 100 feet.

In no case shall the acute criteria violation in rivers be greater than the most restrictive of the following:

- shall not utilize more than 2.5% of the river design flow;
- shall extend no more than 10% of the distance from the edge of the outfall structure to the upstream and downstream boundaries of an authorized mixing zone;
- shall not occupy more than 25% of the width of the waterbody.

Exemptions from the maximum size limits of mixing zones are allowed under some circumstances under WAC 173-201A-100(12). The volume of water in the effluent may provide a greater benefit to the existing or characteristic uses of the river due to flow augmentation than the benefit of removing POTW discharges, if such removal is the remaining feasible option for complying with mixing zone size limits. Since POTW discharges comprise the majority of low flow in the SFPR, removal of POTW flows would substantially reduce instream flows, especially during summer months (Figure 13). Therefore, to the extent that it is desirable to maintain existing low flows, the POTW discharges should be considered for possible exemption of mixing zone size limits under WAC 173-201A-100(12).

3.2.4 Critical Conditions for Temperature and pH

Ecology station 34B110 at SFPR RM 22.2 provides the only long-term record of pH and temperature in the river basin (Figure 5). Data from 1971 to the present time were used to determine design conditions for TMDL modeling. The monthly 90th percentiles of temperature and pH were selected for design conditions for monthly permits (Table 3).

Design conditions for semi-annual periods were selected from critical portions of the permitting periods. Critical periods were selected based on occurrence of lowest monthly average flows during the 1971-81 period. For the April-October permit period, critical low flows occurred only during the months of July-October. For the November-March permit period, critical low flows only occurred in November. The 90th percentiles of temperature and pH during critical portions of semi-annual permit periods were selected as design conditions for semi-annual permits (Table 3).

The Pullman POTW has been collecting SFPR pH and temperature data upstream and downstream from the POTW outfall at approximately weekly intervals since May 1990 (Appendix D). These data show consistently higher temperature and lower pH in the downstream station relative to upstream. The same trend was observed during July and October 1991 intensive surveys. Ammonia criteria are expected to be less restrictive immediately downstream from major POTW inputs due to the influence of POTW effluent on ambient temperature and pH (Figure 14). The Pullman POTW monitoring of pH and temperature upstream and downstream from the effluent discharge was used to calculate regression equations (significant at the 95% confidence level) to predict downstream conditions as a function of upstream conditions. The Pullman mixing zone regression equations were used to adjust the 90th percentiles from Ecology station 34B110 to estimate design conditions for the mixing zone of the Pullman and Albion POTWs in the SFPR (Table 3).

Ecology ambient monitoring data during water year 1992 included monthly sampling of Paradise Creek at the state line and station 34B110 (SFPR at Pullman). Temperature and pH were found to be significantly higher and lower, respectively, in Paradise Creek at the state line compared with station 34B110. Regression equations (significant at the 95% confidence level) were developed relating Paradise Creek conditions at the state line with station 34B110. The design conditions from the longer record at station 34B110 were adjusted by the regression equations to predict design conditions in Paradise Creek at the state line (Table 3). This method was considered to provide the most representative estimate of critical conditions because of the relatively short record of monitoring in Paradise Creek.

3.2.5 Instream Nitrification and Background/Nonpoint Sources

Ammonia criteria become progressively more restrictive in the river proceeding downstream from the Moscow POTW until the Pullman POTW is reached, at which point criteria become less restrictive again due to reduced pH caused by the POTW effluent (Figure 14). At the same time, ammonia concentrations in the water column decrease dramatically proceeding downstream

Table 3. Design conditions of temperature and pH.

	<pre>< Ecology Ambient -> Station 34B110</pre>		< Pullmar Mixing (2)	Zone	< Paradise Creek> at State Line (3)			
	Temperature (deg C)	pH (S.U)	Temperature (deg C)	pH (s.U)	Temperature (deg C)	pH (S.U)		
=======								
Jan	3.64	8.12	6.29	7.69	9.86	7.44		
Feb	6.86	8.03	9.28	7.64	12.23	7.41		
Mar	9.10	7.90	11.36	7.56	13.89	7.38		
Apr	14.00	8.80	15.92	8.12	17.50	7.61		
May	18.60	8.90	20.20	8.18	20.90	7.64		
Jun	20.70	9.14	22.15	8.34	22.45	7.70		
Jul	21.57	8.69	22.96	8.05	23.09	7.59		
Aug	21.40	8.70	22.80	8.06	22.97	7.59		
Sep	16.30	8.60	18.06	8.00	19.20	7., 56		
Oct	13.70	8.50	15.64	7.93	17.28	7.54		
Nov	8.76	8.24	11.05	7.77	13.64	7.47		
Dec	5.80	8.01	8, 30	7.63	11.45	7.41		
Apr-Oct	20.46	8.60	21.93	8.00	22.27	7.56		
Nov-Mar	8.76	8.24	11.05	7.77	13.64	7.47		

 90%tiles of ambient monitoring data. For semi-annual periods, 90%tiles of critical portions of each season were used, where critical portions were defined by occurrence of low flows.

```
2) Based on regression of downstream versus upstream
  temperature and pH from Pullman WTP data (1990-92) applied to
  Ecology station 34B110 values:
    Mixing Zone Temperature (deg C) = 2.904 + 0.9297 * [34B110 Temperature (deg C)]
        (P<0.05; Std Err of Estimate = 2.04 deg C)
    Mixing Zone pH (S.U.) = 2.592 + 0.6284 * [34B110 pH (S.U.)]
        (P<0.05; Std Err of Estimate = 0.21 S.U.)</pre>
```

3) Regression of Paradise Creek at Stateline (PCSL) versus Ecology Station 34B110 for water year 1992 monthly monitoring data

PCSL Temperature (deg C) = 7.171 + 0.7381 * [34B110 Temperature (deg C)]

(P<0.05; Std Err of Estimate = 1.87 deg C)

PCSL pH (S.U.) = 5.305 + 0.2624 * [34B110 pH (S.U.)]

(P<0.05; Std Err of Estimate = 0.14 S.U.)

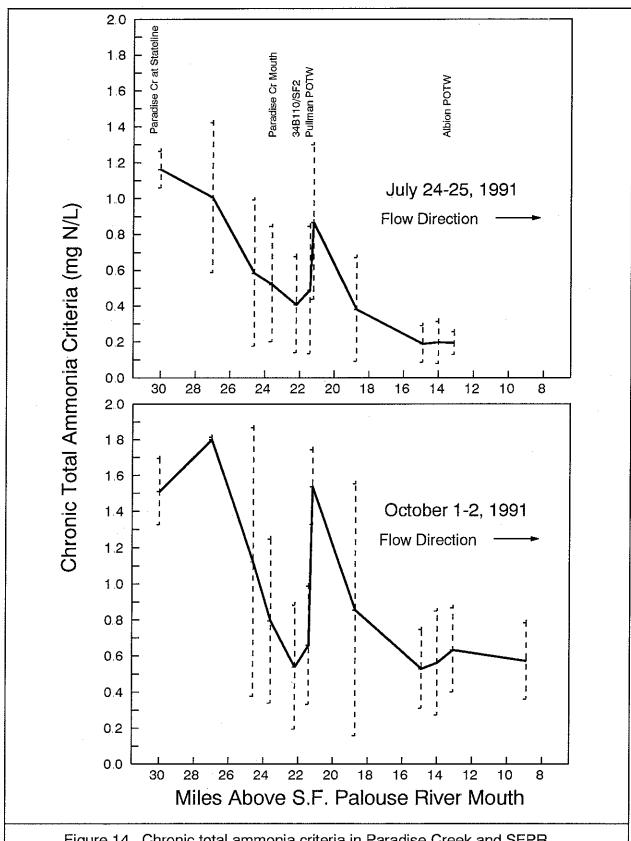


Figure 14 Chronic total ammonia criteria in Paradise Creek and SFPR Vertical ranges are means +/- standard deviations.

from the Moscow POTW (Figure 15). Ammonia concentrations decrease much faster than criteria due to rapid instream nitrification. Therefore, the loading capacity of the river may be safely characterized by criteria at three critical points: Paradise Creek at the state line; SFPR in the Pullman POTW mixing zone; and SFPR in the Albion POTW mixing zone. However, instream nitrification must be accounted for between these points to realistically estimate the ammonia concentrations immediately upstream from Pullman and Albion POTWs for alternative loadings from point and nonpoint sources. WLAs for Pullman and Albion POTWs depend on three major factors: aquatic life criteria in the mixing zone, concentrations immediately upstream, and allowable dilution flows based on WAC 173-201A.

Dissolved oxygen concentrations are affected by instream nitrification as well as oxidation of carbonaceous biochemical oxygen demand (CBOD), photosynthesis, and respiration. The relationship between dissolved oxygen and other parameters is discussed in a later section.

The decrease in ammonia concentration in the water column occurs through the process of nitrification, which is the oxidation of ammonia to nitrite and nitrate by *Nitrosomonas* and *Nitrobacter* bacteria, respectively (EPA, 1985). This reaction is commonly described as a first-order process:

$$C = C_0 e^{-Kt}$$

where C is the ammonia concentration at any given point (mg/L as N), C₀ is the starting ammonia concentration (mg/L as N), K is the first-order rate constant (day⁻¹) at ambient temperature, t is the travel time (days) from the starting point to the downstream point of interest, and e is the base of natural logarithms. Travel time is estimated as the distance travelled by a parcel of water divided by river velocity.

The first-order nitrification rate constant is usually considered to be dependant on temperature. The relationship between the rate constant and temperature is described by:

$$K = K_{20} * 1.08^{(1-20)}$$

where K_{20} is the rate constant at 20 degrees C (days⁻¹), and T is ambient temperature (degrees C)

The first-order rate constant for nitrification was determined by linear regression (significant at the 95% confidence level) of the natural logarithm of ammonia concentrations versus travel time downstream in Paradise Creek from the state line to CM 0 (Figure 15). In addition to the July and October 1991 sampling, monthly monitoring data during water year 1992 were also used to estimate nitrification rate constants. The data from 1991 and water year 1992 were pooled to estimate an overall nitrification rate constant (K_{20}) of 8.2 ± 5.8 day⁻¹ at 20 degrees C (mean \pm standard deviation). The lowest 10th percentile was used for a design condition. Assuming a log-normal distribution, the lowest 10th percentile nitrification rate constant (K_{20}) was found to be 3.0 day⁻¹ at 20 degrees C.

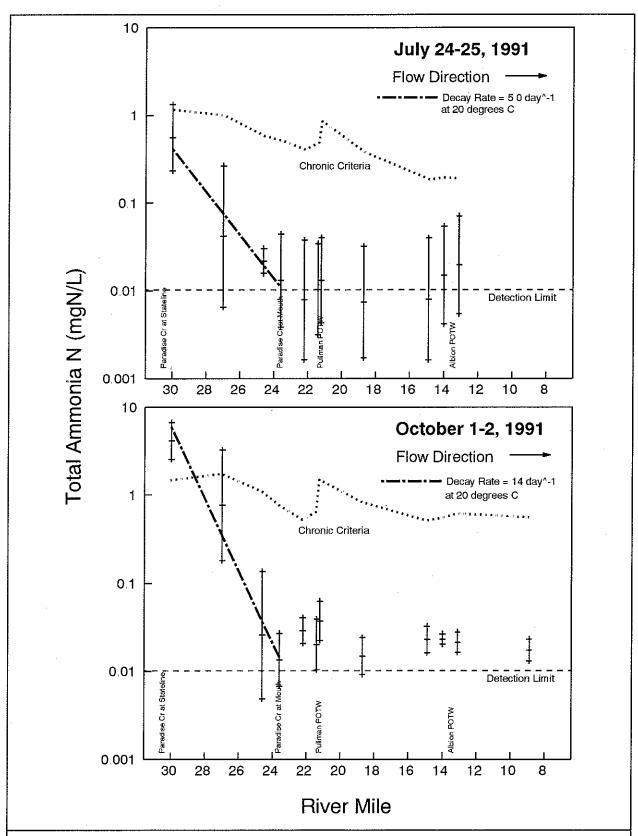


Figure 15. Profiles of total ammonia in Paradise Creek and SFPR during Ecology 1991 surveys Vertical ranges are means +/- std deviation.

The rapid rate of instream nitrification mitigates cumulative impacts of the POTW discharges. Ammonia concentrations were found to decrease to near background levels between Moscow and Pullman POTWs even though concentrations started at or above aquatic life criteria at the Moscow POTW (Figure 15). The WLA for the Pullman POTW is not greatly affected by loading from Moscow POTW if ammonia criteria are met in Paradise Creek at the state line. The WLA for Pullman POTW is based on the assumption that Paradise Creek meets criteria at the state line based on temperature and pH in Table 3. The Moscow POTW does not currently contain effluent limits on ammonia even though ammonia standards are currently exceeded in Paradise Creek in Washington. USEPA Region 10 and the state of Idaho are responsible for bringing conditions in Paradise Creek into compliance with WAC 173-201A at the state line.

USEPA Region X is presently evaluating WLAs for Idaho discharges. The temperature and pH values listed in Table 3 (either monthly or semi-annual) are recommended to establish criteria for total ammonia in Paradise Creek at the state line for the Idaho WLAs as well as immediately downstream from Pullman and Albion POTWs. Critical conditions of temperature and pH for Paradise Creek at the state line, as well as the corresponding criteria for total ammonia are as follows:

Period	Temperature	pН	Chronic Criterion	Acute Criterion
	(°C)	(s.u.)	4-day average Total Ammonia (mg/L as N)	1-hour average Total Ammonia (mg/L as N)
April-October	22.3	7.56	1.1	9.4
November-March	13.6	7.47	1.8	13.

Nonpoint sources of ammonia from various tributaries were found to be relatively dilute compared with POTW effluent (Table 4). For the purpose of TMDL modeling, nonpoint sources were included by assuming that instream nitrification could reduce water column ammonia to no less than 0.05 mg/L as N, which is the flow-weighted average concentration at SFPR RM 23.6, Airport Creek, and Missouri Flat Creek (Table 4). Joy (1987) reported a similar nonpoint source ammonia concentration during September 16-17, 1986.

3.2.6 TMDL, WLAs, and LAs for Total Ammonia

Monthly and semi-annual periods for permitting were evaluated. Exemption from mixing zone width or flow limits was also considered. Alternative allocation schemes were based on changing mixing zone requirements. Four alternatives were considered for evaluating TMDLs as follows:

• Application of the mixing zone rule limiting available dilution flows to 25% of upstream flows for chronic and 2.5% for acute:

Table 4. Summary of flows and ammonia concentrations for headwaters, nonpoint sources, and point sources during 1991 Ecology surveys.

***************	********			**********	. 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	========
	< Ju	ily 24-25,	1991>	< Oct	ober 1-2,	1991>
	Flow (cfs)	Total Ammonia (mg/L as N)	Total Ammonia (lbs/d as N)	Flow (cfs)	Total Ammonia (mg/L as N)	Total Ammonia (lbs/d as N)
	********		======================================	=========		******
HEADWATERS Paradise CM 6.4 SFPR RM 23.6	3.37 0.32	0614 0015	11.2 0.026	3.29 0.18	4.257 0.012	75.5 0.012
NONPOINT SOURCES Airport Creek Missouri Flat Creek	0.05 0.5	0.048 0.020	0013 0054	0.05	0.013 0.022	0004 0012
POINT SOURCES Pullman WTP Albion WTP	4,21 0.06	0.020 1170	0454 0379	5.28 0.06	0.087 1170	2.4 7 8 0.379

- <u>Alternative 1A</u>: Monthly design conditions with maximum mixing zone size of 25% and 2.5% of river design flow for chronic and acute, respectively;
- <u>Alternative 1B</u>: Semi-annual design conditions with maximum mixing zone size of 25% and 2.5% of river design flow for chronic and acute criteria, respectively;
- Exemption from mixing zone rules for maximum width or percentage of river flow available for dilution:
 - <u>Alternative 2A</u>: Monthly design conditions with maximum mixing zone size of 100% of river design flow for chronic and acute.
 - <u>Alternative 2B</u>: Semi-annual design conditions with maximum mixing zone size of 100% of river design flow for chronic and acute;

The method used to determine WLAs for Pullman and Albion POTWs was as follows for each alternative:

- Step 1: Select design condition temperature and pH at Ecology station 34B110 (Table 3). 90th percentiles of either monthly or semi-annual periods were used. For semi-annual periods, the critical period during each season was restricted to the period of occurrence of low natural flows for estimating 90th percentiles. For the April-October season, the critical period only occurred during July-October. For the November-March season, lowest flows occurred in November. [Example: for the April-October season, the 90th percentile temperature and pH (from July-October) were 20.46 degrees C and 8.60 standard units].
- Step 2: Calculate POTW mixing zone temperature, pH, and ammonia criteria from regression of Pullman POTW downstream versus upstream values applied to temperature and pH from Step 1 (Table 3). Also use regression of Paradise Creek at state line versus Ecology station 34B110 to estimate temperature and pH for Paradise Creek at state line from values in Step 1. [Example: for the Pullman POTW mixing zone during the April-October season, critical temperature = (20.46)(.9297)+2.904 = 21.93 degrees C, and critical pH = (8.60)(.6284)+2.592 = 8.00 standard units].
- Step 3: Estimate monthly and semi-annual POTW design flows for Pullman and Albion POTWs (Table 2). Monthly design flows at Pullman were estimated based on design maximum monthly flow (4.3 mgd) scaled monthly proportional to 1989-91 monthly averages. Semi-annual flows for Pullman POTW were estimated as the maximum monthly estimate during critical periods of each semi-annual season. Albion POTW design flow for February-May was assumed to be 0.12 mgd. [Example: for the Pullman POTW during the April-October season, the maximum monthly POTW flow during July-October is predicted to be 5.82 cfs].

- Step 4: Estimate the monthly and semi-annual river flow balance. Flows from background/nonpoint sources and from POTWs were assumed to represent all flows in the system and be at design flows in Table 2. SFPR flow upstream from the Pullman POTW was estimated as the sum of flows from Paradise Creek at the state line, SFPR above Paradise Creek, and Missouri Flat Creek. SFPR flow above Albion POTW was estimated as sum of SFPR flow upstream from Pullman POTW plus Pullman POTW flow. [Example: for the Pullman POTW during the April-October season, the critical flow upstream from the POTW is estimated as the sum of Paradise Creek at the state line (3.79 cfs), SFPR above Paradise Creek (0.65 cfs), and Missouri Flat Creek (0.21 cfs), which equals 4.65 cfs].
- Step 5: Estimate the instream nitrification rate. A first-order nitrification rate constant $(K_{20}; day^{-1})$ of 3.0 day⁻¹ was assumed at 20°C based on the 10th percentile of 1991-92 data. Monthly and semi-annual nitrification rates $(K; day^{-1})$ were adjusted to design ambient temperature from Table 3. [Example: for the April-October season, the nitrification rate between Paradise Creek at the state line and the SFPR at the Pullman POTW is $(3.0)(1.08^{[20.46-20]}) = 3.1 \text{ day}^{-1}$ at ambient temperature of 20.46 degrees C].
- Step 6: Calculate design ammonia concentrations immediately upstream from Pullman and Albion POTWs (Cup). For Pullman POTW, assume that Paradise Creek at the state line begins at the chronic criterion value from temperature and pH in Step 2 (Table 3), then use the first-order decay equation to estimate the concentration above Pullman assuming instream concentrations cannot decrease to less than 0.05 mg/L as N. For Albion POTW, assume that Pullman discharges at the WLA (calculated in following step), then use first-order decay equation to calculate concentration above Albion POTW. Exponential equations relating velocities in stream reaches to flow at SFPR RM 22.2 were calibrated from July and October 1991 measurements and exponents from McCutcheon (1989). Velocities equations are as follows: between Paradise Creek at the state line and Pullman POTW, velocity (ft/sec) = 0.325 [Flow at SFPR RM 22.2 (cfs)]^{0.4}; between Pullman and Albion POTW, velocity (ft/sec) = 0.330 [Flow at SFPR RM 22.2 (cfs)]^{0.4}. [Example: for the Pullman POTW during the April-October season, the ammonia concentration upstream = $(1.1)(e^{-[(3.1)(.901)]}) = 0.067$ mg/L as N for an initial concentration of 1.1 mg/L as N at the state line, nitrification rate of 3.1 day-1, and travel time of 0.901 days at ambient velocity of 0.59 ft/sec].
- <u>Step 7</u>: Calculate TMDL of ammonia for the SFPR at Pullman and Albion from the mass balance equation:

$$TMDL = ALC * (Q_{up} + Q_{potw})$$

where ALC is the aquatic life criteria for total ammonia (mg/L as N), Q_{up} is the upstream river flow from Step 4, and Q_{potw} is the critical POTW flow. [Example: for the Pullman POTW during the April-October season, the chronic ALC is 0.67 mg/L as N, Q_{up} is 4.65

cfs, and Q_{potw} is 5.82 cfs. Therefore the TMDL is (0.67)(4.65 + 5.82) multiplied by a conversion factor of 5.3936, which equals 37.8 lbs/day as N].

<u>Step 8</u>: Calculate the load allocation (LA) for upstream background/nonpoint sources from the mass balance:

$$LA = Q_{up} * C_{up}$$

[Example: for the Pullman POTW during the April-October season, the LA for upstream sources is (4.65 cfs)(0.067 mg/L as N)(5.3936) = 1.7 lbs/day as N].

• <u>Step 9</u>: Calculate WLAs for Pullman and Albion POTWs from a simple mass balance equation:

WLA = ALC * [(
$$f*Q_{up} + Q_{potw}$$
)/ Q_{potw}] - [C_{up} * ($f*Q_{up}$ / Q_{potw})]

where f is the fraction of upstream flow allowed for the mixing zone (25% and 2.5% for chronic and acute for Alternatives 1A and 1B; 100% for Alternatives 2A and 2B). [Example: for the Pullman POTW during the April-October season and Alternative 2B: ALC = 0.67 mg/L as N, f = 0.25, $Q_{up} = 4.65$ cfs, $Q_{potw} = 5.82$ cfs, and $C_{up} = 0.067$ mg/L as N. Therefore, the WLA = (0.67)[(0.25*4.65+5.82)/5.82]-[0.067*(0.25*4.65/5.82)] = 0.79 mg/L as N. The mass loading for the WLA is calculated by multiplying the WLA concentration (0.79 mg/L as N) by the critical POTW flow (5.82 cfs) and the conversion factor of 5.3936 to obtain (0.79)(5.82)(5.3936) = 24.8 lbs/day as N].

• Step 10: Calculate water quality-based permit limits from the WLAs incorporating effluent variability using the method of EPA (1991a). The effluent coefficient of variation (CV) for ammonia was assumed to be 0.6; 20 samples per month were assumed for Pullman POTW and 4 per month for Albion; Z-statistic for long-term average and daily maximum permit limits was 2.326 (99%tile); and Z-statistic for monthly average permit limits was 1.645 (95%tile). [Example: for the Pullman POTW during the April-October season, following calculation procedures of EPA 1991a (detailed in Appendix F-2), the permit limits for total ammonia were found to be a daily maximum of 1.9 mg/L as N and monthly average of 0.76 mg/L as N. These concentration limits correspond to mass load limits of a daily maximum of 60 lbs/day as N and a monthly average of 24 lbs/day as N for the critical POTW flow of 5.82 cfs].

The detailed intermediate calculations for the four alternatives are presented in Appendix F. A summary of the ammonia TMDLs, background LAs, POTW WLAs, and proposed permit limits for alternative permit scenarios is presented in Appendix F-4. A margin of safety, which is required for assigning WLAs and LAs in a TMDL (EPA, 1991b), was incorporated through conservative assumptions.

Semi-annual permit limits for the Pullman and Albion POTW, assuming mixing zone width and flow restrictions are enforced, are as follows [Alternative 1B effluent ammonia limits in terms of total ammonia as N; permitted loads were calculated using design flows for Pullman (5.82 cfs for April-October and 5.55 cfs for November-March) and Albion (0.12 mgd) POTWs]:

	Apr	-Oct	Nov-Mar								
	mg/L	lbs/day	y mg/L lbs/day								
Pullman POTW Total Ammonia-N											
Daily Max	1.9	60.	4.8	144.							
Monthly Avg	0.76	24.	1.9	<i>5</i> 7.							
4	Albion POT	W Total Am	monia-N								
Daily Max	12.	12.	23.	23.							
Monthly Avg	5.9	5.9	11.,	11							

Semi-annual permit limits for the Pullman and Albion POTWs, assuming exemption from mixing zone width and flow restrictions, are as follows (Alternative 2B effluent ammonia limits in terms of total ammonia as N):

	Apı	-Oct	Nov-Mar								
	mg/L	lbs/day	mg/L lbs/d								
Pullman POTW Total Ammonia-N											
Daily Max	2.8	88.	7.2	215.							
Monthly Avg	1.1	35.	2.9	85.							
	Albion POT	W Total Am	monia-N								
Daily Max	84.	84.	155.	155.							
Monthly Avg	42.	42.	77 .	7 8.							

The method used to select the optimal semi-annual periods depends on results of monthly WLAs as described in EPA, 1984 (Table 5) The method begins by determining monthly WLAs using appropriate monthly design conditions. The 12 months of the year are divided into two contiguous groups so that the sum of the minimum monthly WLA times the number of days in each group is maximized. The optimal semi-annual periods are found by systematic trials of selected groups of months. To start the process, the year is divided into two groups: the month with the lowest WLA (period 1); and the other 11 months (period 2) Next, the minimum WLA from periods 1 and 2 are multiplied by the number of days in each period and these products

Table 5 Selection of semi-annual permit periods for load optimization.

Month		Alt 1A Pullman Ammonia Ionthly Avg mgN/L	Limit		Alt 1A Pullman Ammonia Monthly Load #N/day		
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec	4 22 4 30 4.09 4.05 3 12 2 67 2.50 2.98 3 76 3 69 3 58 3 45	21 21 22 088 060 037 064 065 10 13 20 22			74.0 75.4 75.1 29.7 15.6 8.2 13.4 16.2 31.4 40.0 59.8 63.3		
Dry/Wet Season Periods		Min Monthly Avg During Season	Days in Season	Time-wtd Effluent Ammonia Limit	Min Monthly Avg During Season	Days in Season	Time-wtd Effluent Ammonia Load
		mg/L	days	mg/L	#/day	days	#/day
Jul Aug-Jun		0.28 0.37	31 334	0 36 mg/L	13.35 8 24	31 334	8 7 #/day
Jun-Jul Aug-May		0.28 0.6	61 304	0 55 mg/L	13.35 15.62	61 304	15 2 #/day
Jun-Aug Sep-May		0.28 0 6	92 273	0.52 mg/L	13.35 15.62	92 273	15.0 #/day
May-Aug Sep-Apr		0.28 0.88	123 242	0 68 mg/L	13.35 29.74	123 242	24 2 #/day
Apr-Aug Sep-Mar		0 28 1	153 212	0 70 mg/L	13.35 31.38	153 212	23 8 #/day
Apr-Sep Oct-Mar		0 28 1 3	183 182	0.79 mg/L	13 35 40 03	183 182	26.7 #/day
OPTIMAL Apr-Oct PERIOD: Nov-Mar		0.28 2	214 151	0,99 mg/L	13.35 59.75	214 151	32.5 #/day
Apr-Nov Dec-Mar		0.28 2 1	244 121	0 88 mg/L	13 35 63 34	244 121	29 9 #/day
Apr-Dec Jan-Mar		0.28 2.1	275 90	0 73 mg/L	13.35 73.95	274 91	28 5 #/day

are added together to estimate the time-weighted annual average POTW load. For the next iteration the contiguous month with the next highest WLA is added to period 1 and deleted from period 2 and the time-weighted annual load is recalculated. This step is repeated until the periods which provide the maximum annual load are found. The optimal semi-annual periods were found to be April-October and November-March using this procedure. Semi-annual permit periods are recommended over monthly periods for administrative simplicity and because both schemes require similar levels of treatment throughout the year.

Alternatives 2A and 2B are provided to show the maximum loading which could be allowed if the POTWs are exempted from mixing zone size restrictions. In general, this exemption allows for some increased loading. The Water Quality Program will need to decide if the exemption for mixing zone size is appropriate for these facilities. If no exemption is allowed, then results for either Alternative 1A or 1B can be used depending on whether semi-annual or monthly average limits are required.

Pullman POTW WLAs and permit limits for all alternatives were found to be more restrictive than the existing permit. Permit limits will be required during all months to meet the proposed WLAs. Proposed semi-annual permit limits for monthly average and daily maximum ammonia were compared with Pullman POTW data from 1991 (Figure 16). Proposed permit limits under Alternative 2B would have been met during 1991, with the exception of monthly average during April 1991 and daily maximum during May and June 1991. The more restrictive limits of Alternative 1B were also met for 10 of 12 months and 5 of 12 months, respectively, for monthly average and daily maximum limits. An engineering analysis of the treatment process would need to be conducted to determine feasibility of operational changes or improvements required to meet the proposed limits. However, the comparison with 1991 data suggests that the proposed limits could be achieved.

WLAs for Albion POTW are generally much less restrictive than for Pullman POTW because of greater dilution. Glenn (1992) reported effluent total ammonia of 1.2 mg/L as N in July 1991. This observation suggests that values as high as 16 mg/L as N could be expected if effluent ammonia has a CV of 0.6 (EPA, 1991). Therefore, ammonia limits may be required if the Albion POTW is not exempted from mixing zone width and flow limits.

The WLAs for Pullman and Albion would probably not be reduced significantly if nonpoint sources are reduced (e.g., through use of best management practices or changes in land use). Nonpoint sources make up a relatively minor portion of the TMDL. Reductions of nonpoint loading sources would protect water quality more, but such reductions would probably mainly be achieved during seasons that are not critical for consideration of WLAs. Application of mixing zone size limits provides a reserve for water quality protection since the sum of WLAs and LAs is less than the loading capacity.

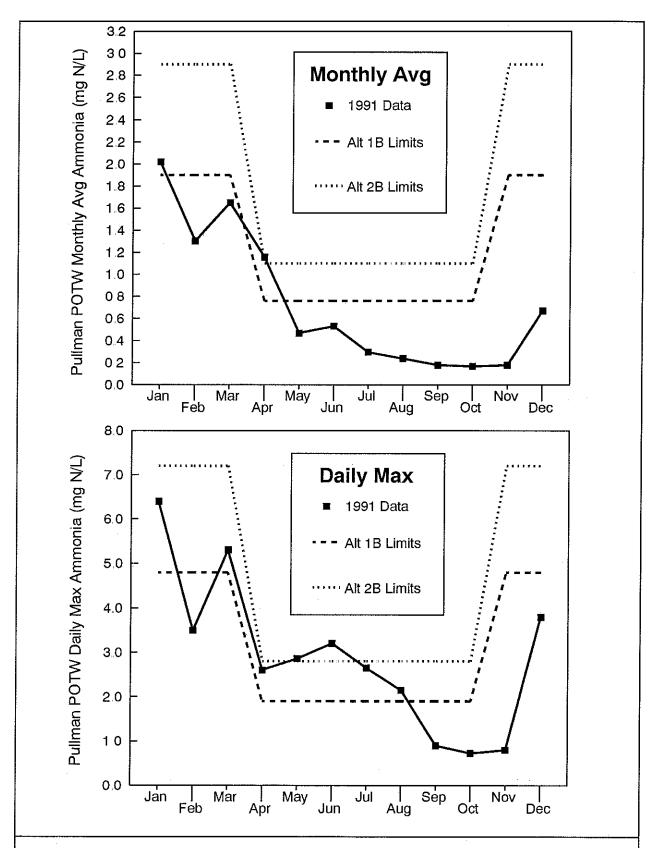


Figure 16. Comparison of Pullman POTW effluent ammonia during 1991 with proposed semi-annual permit limits for monthly average and daily maximum

3.2.7 Monte Carlo Simulation of Ammonia

Monte Carlo simulation was used to combine the water quality model and permit limit calculations with statistically described inputs. The purpose of Monte Carlo simulation of Pullman and Albion POTW permit limits was to examine whether design conditions assumed in the preceding analysis were too conservative compared with frequency requirements of the water quality criteria. The major advantages of Monte Carlo simulation for derivation of permit limits are (EPA, 1992):

- It can directly estimate the permit limits that correspond to the allowable frequency and duration requirements of the water quality criteria.
- It can be used with the same steady state water quality model that is used for the point-estimate method (section 3.2.6).
- It can incorporate the cross-correlation and interaction of model variables such as river flow and temperature.

Using this technique, probability density functions are assigned to each term in the water quality model reflecting the variability in that characteristic. Then, with synthetic sampling, values are randomly chosen from the distributions of each term. These values are inserted into the model, and a prediction is calculated. After this is repeated a large number of times, a distribution of predicted values results, which reflects the combined uncertainties of all model variables. A detailed description of the steps used in Monte Carlo simulation for estimating ammonia limits for Pullman and Albion POTWs is presented in Appendix G.

Results of Monte Carlo simulation yielded similar permit limits compared with the point-estimate method. Permit limits based on Monte Carlo simulation are as follows:

	Apr-Oct	Nov-Mar
Pullman POTW	Total Ammonia-	N (mg/L as N)
Daily Max	2.1	4.7
Monthly Avg	0.83	1.9
Albion POTW	Total Ammonia-N	N (mg/L as N)
Daily Max	12.	28.
Monthly Avg	6.2	14.

This result suggests that the design conditions assumed in section 3.2.6 are reasonable and not overly conservative for protection of water quality criteria. Results using the point-estimate method of section 3.2.6 are recommended for establishing permit limits.

3.2.8 Analysis of Dissolved Oxygen Sag

A Streeter-Phelps model was used to estimate the dissolved oxygen concentration at critical points below the Moscow, Pullman, and Albion POTWs. This approach accounts for the demand for oxygen from carbonaceous BOD (CBOD), nitrogenous BOD (NBOD) from nitrification of ammonia, the deficit from photosynthesis and respiration by algae and plants, and reaeration. NBOD from organic forms of nitrogen were considered to be negligible because of the relatively slow rates of hydrolysis of organic N compared with more rapid CBOD decay and nitrification rates. The dissolved oxygen model used in this report is more complex than the DOSAG spreadsheet used by Ecology permit writers (Ecology, 1992) because it accounts for diel changes, photosynthesis, and respiration.

The diel average and minimum dissolved oxygen concentrations below a POTW are described by the following equations in relationship with the saturation concentration (calculated by APHA et al., 1989 equation and EPA 1985 equation for elevation adjustment), daily average deficit below saturation at the point of critical sag, and diel range of dissolved oxygen:

$$c_{avg} = c_s - D_c$$

$$c_{min} = c_s - D_c - \Delta_c/2$$

$$c_s = \exp \left[-139.34411 + (1.575701 * 10^5/T_k) - (6.642308 * 10^7/T_k^2) + (1.2438 * 10^{10}/T_k^3) - (8.621949 * 10^{11}/T_k^4) \right] * [1 - 0.0000355 E]$$

where:

 c_{avg} = diel average dissolved oxygen (mg/L)

 c_{min} = diel minimum dissolved oxygen (mg/L)

 c_s = saturation concentration at ambient temperature (mg/L)

D_c = diel average dissolved oxygen deficit (mg/L)

 Δ_c = diel range of dissolved oxygen (mg/L)

T_k = temperature (degrees Kelvin)

E = elevation (2300 feet above sea level)

The equations for the dissolved oxygen deficit (D_c), which is the diel average suppression below the saturation concentration, is as follows (Thomann and Mueller, 1987):

$$\begin{split} D_c &= D_0 \exp[-K_a t_c] & \text{(initial deficit)} \\ &+ [K_d/(K_a - K_d)][\exp(-K_r t_c) - \exp(-K_a t_c)] \ L_0 & \text{(ultimate CBOD)} \\ &+ [K_n/(K_a - K_n)][\exp(-K_n t_c) - \exp(-K_a t_c)] \ L_0^N & \text{(NBOD)} \\ &- [1 - \exp(-K_a t_c)] \ (p_a/K_a) & \text{(photosynthesis)} \end{split}$$

$$+ [1 - \exp(-K_a t_c)] (R/K_a)$$
 (respiration)
 $K_d = [10.3 \text{ Q}^{-0.49}] * 1.047^{(I-20)}$ (CBOD decay rate)
 $K_a = 7776 * U * S * 0.8882 * 1.024^{(I-20)}$ (reaeration rate)
 $K_n = 3.0 * 1.08^{(I-20)}$ (nitrification rate)

where:

 D_0 = initial deficit (mg/L)

 L_0 = initial ultimate CBOD concentration (mg/L)

 L_0^N = initial NBOD concentration (mg/L; 4.57 times ammonia-N)

K_a = reaeration rate (day⁻¹ base e; Tsivoglou-Wallace equation, EPA, 1985)
 K_d = CBOD decay rate (day⁻¹ base e; Wright-McDonnell equation, EPA, 1985)

K_n = nitrification rate (day⁻¹ base e; measured)
 p_a = gross photosynthesis (mg/L-day; measured)
 R = gross respiration (mg/L-day; measured)

t_c = travel time to critical sag (days)

Q = flow (cfs)

T = temperature (degrees C)
U = stream velocity (ft/sec)
S = channel slope (ft/ft).

The travel time to the critical location of minimal dissolved oxygen (t_c) below each POTW was estimated using the following equation (Thomann and Mueller, 1987):

$$t_c = [1/(K_a-K_d)] \ Ln \ \{(K_a/K_d)[1 - D_0(K_a-K_d)/(K_dL_0)]\}.$$

The gross photosynthesis and respiration rates were estimated from measurements of the diel range of dissolved oxygen concentrations (Δ_e ; mg/L) during July and October 1991 surveys as follows (Thomann and Mueller, 1987):

$$p_a = 3.2 \Delta_c$$

$$R = 0.25 p_{a}$$

The model parameters and results for alternative concentrations of CBOD and NBOD in POTW effluent are presented in Appendix H. The accuracy of the model was tested by comparison of predictions with observations during July and October 1991 surveys. The model was found to predict daily average and minimum dissolved oxygen at the point of critical sag with an approximate standard deviation of 0.7 mg/L (root mean squared error of observed versus predicted values). The location of the lowest dissolved oxygen was predicted with an accuracy of about one mile below Moscow and Pullman POTWs.

The sensitivity of dissolved oxygen in the river was examined for effluent 5-day CBOD (CBOD₅) in the range of 0 to 45 mg/L and ammonia decreasing from proposed limits in section 3.2.6 (ultimate CBOD was estimated from CBOD5 by assuming a constant ratio of 1.47; EPA, 1985). This analysis showed that further reductions in ammonia below the recommended limits in section 3.2.6 will provide only minor increases in dissolved oxygen. Assuming that ammonia is reduced to the proposed limits, dissolved oxygen would be most sensitive to reductions in CBOD concentrations. Figure 17 shows the sensitivity of dissolved oxygen to various concentrations of effluent CBOD at critical points below Moscow, Pullman, and Albion POTW for critical conditions during the April through October season.

The Class A standard for dissolved oxygen of 8 mg/L is probably not attainable during critical conditions in the SFPR and Paradise Creek. High temperatures in summer result in diel average saturation concentrations that are approximately 8 mg/L at critical conditions. Therefore, a relatively small amount of diel range and deficit could drive concentrations below the standard. Since normal diel ranges of 1 mg/L or greater should be expected in any natural stream (EPA, 1980), the Class A standard would probably be violated even if all POTW loads are eliminated. Reductions in nutrient loads would reduce but not eliminate diel fluctuations in dissolved oxygen. If stream temperatures can be reduced during summer (e.g., through riparian management to increase shading), then dissolved oxygen concentrations may also increase. For example, if the Class A temperature criterion of 18 degrees is attained during summer, the saturation concentration of dissolved oxygen would be 8.7 mg/L (after accounting for Pullman elevation of 2300 feet above sea level). Therefore, the daily average deficit and half the diel range combined must be less than 0.7 mg/L, which is unlikely, to attain the Class A standard for dissolved oxygen at 18 degrees C.

Achievable targets for dissolved oxygen during the April-October and November-March periods were estimated from the Streeter-Phelps model assuming that POTW effluent from Moscow and Pullman is limited to 10 mg/L of CBOD₅ year-round. Even if effluent CBOD₅ is limited to 10 mg/L and ammonia is limited to meet aquatic life criteria, the Class A standard of 8 mg/L as an instantaneous minimum would not be attainable under critical conditions for most of the year. The targets for attainable dissolved oxygen are as follows for Paradise Creek and the SFPR if POTWs are allowed to discharge with reduced BOD and ammonia limits:

	Lowest 24-hour Average	Instantaneous Minimum
April-October	5 mg/L	4 mg/L
November-March	8 mg/L	6 mg/L

The target for lowest 24-hour average represents the lowest daily average that is likely at the critical conditions for each season. Seasonal average concentrations would be higher than the lowest 24-hour average because the critical conditions would probably only occur for a short period of time at most.

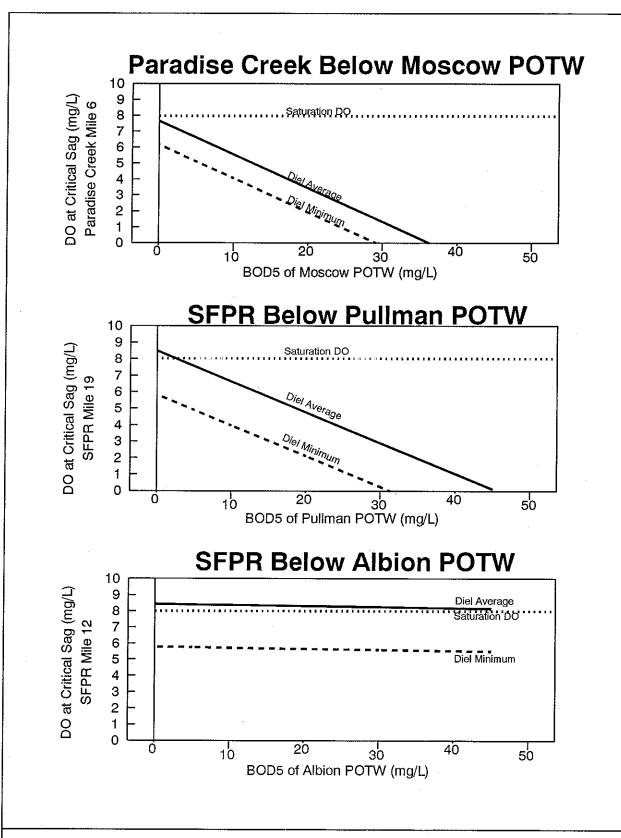


Figure 17. Critical DO concentrations below Moscow, Pullman, and Albion POTWs for various effluent BOD5 concentrations, April-October critical conditions. Effluent ammonia was assumed at proposed limits to meet un-ionized criteria.

Effluent from the Pullman POTW currently discharges 5-day BOD at less than 10 mg/L during the summer even though the NPDES permit allows up to 45 mg/L. Moscow POTW had effluent 5-day BOD of about 20 mg/L during 1991 surveys. If a nitrification unit process is added to the Moscow POTW, it is possible that lower effluent CBOD could also be expected. Existing BOD limits in the Albion POTW permit are adequate to meet the proposed targets for dissolved oxygen (Figure 17). EPA (1980) suggests that CBOD₅ limits for POTWs as low as 10 mg/L can be justified by the type of modeling analysis presented in this section.

3.2.9 Effect of Proposed Diversion of Pullman POTW Effluent

The city of Pullman has proposed to irrigate a city park and a new golf course with wastewater from the Pullman POTW. Approximately 128 million gallons of wastewater would be diverted for irrigation during the April through October period (Don Nichols, Ecology Eastern Regional Office, personal communication). A peak daily rate of diversion is estimated to be 1.5 mgd. For the purpose of estimating the effect of the proposed diversion of wastewater on permit limits, WLAs for ammonia were recalculated assuming Pullman POTW flows would be reduced by 1.5 mgd through the April through October period. This analysis represents a first approximation of the maximum benefit of the proposed diversion on ammonia limits. A more refined analysis could be conducted if monthly diversion rates could be accurately estimated.

A comparison of critical POTW flows and monthly ammonia WLAs for the discharge to the SFPR during the April through October period is as follows (ammonia WLAs with effluent diversion were calculated using the method presented in section 3.2.6; monthly POTW flows without diversion are from Table 2 after converting from cfs to mgd; WLAs without diversion are from Appendix F-4 for Alternative 1A):

	With	out Dive	rsion	Diversion of 1.5 mgd							
	Flow mgd	WLA mg/L	WLA lbs/d	Flow mgd	WLA mg/L	WLA lbs/d					
Apr	4.05	0.88	30.	2.55	0.93	20.					
May	3.12	0.60	16.	1.62	0.70	9.5					
Jun	2.66	0.37	8.2	1.16	0.45	4.4					
Jul	2.49	0.64	13.	0.99	0.76	6.3					
Aug	2.99	0.65	16.	1.49	0.76	9.4					
Sep	3.76	1.0	31.	2.26	1.1	21.					
Oct	3.69 1.3 40.		40.	2.19	1.5	27.					

This analysis shows that the proposed diversion will probably have a minimal effect on permit limits for ammonia concentration. A similar analysis for dissolved oxygen showed that the proposed diversion would also have a minimal effect on permit limits for BOD concentration. WLA concentrations at rates of diversion exceeding 1.5 mgd were calculated and found to be insensitive to the amount of diversion until nearly complete diversion. Effluent loading of ammonia and BOD to the SFPR would be substantially less depending on the amount of diversion.

4.0 CONCLUSIONS AND RECOMMENDATIONS

- Un-ionized ammonia concentrations at Ecology station 34B110 often exceed chronic aquatic life criteria. Most excursions occur during summer months, but January through March were the only months without excursions
- Ammonia concentrations in excess of chronic criteria were observed in Paradise Creek near the state line during October 1991. The cause of excessive ammonia concentrations during Ecology surveys appears to be the Moscow POTW.
- Dissolved oxygen measurements at Ecology station 34B110 show occasional excursions below the Class A standard of 8 mg/L during May through September. However, the ambient monitoring data probably do not represent potential minimum concentrations which would occur before sunrise or at critical locations below POTWs. The intensive surveys during July and October 1991 probably are more representative of minimum concentrations at critical locations and times of day. Diel minimum dissolved oxygen of less than 8 mg/L was consistently found at most stations. Lowest dissolved oxygen concentrations were found in Paradise Creek at the state line. Monthly sampling of Paradise Creek at the state line during water year 1992 shows sub-standard dissolved oxygen throughout the year.
- River flows recommended for semi-annual and monthly steady-state modeling were 30-day-20-year and 30-day-114-year low flows, respectively. These design flows are equivalent to annual critical conditions required under WAC 173-201A.
- Effluent from Moscow and Pullman POTWs comprises most of the river flow during July-November of a typical year and during any month of the year for design low flows. The Albion POTW only discharges during February through May and makes up a relatively small fraction of the total river flow.
- Temperature and pH at Ecology station 34B110 are recommended for developing design conditions in combination with monitoring data collected by Pullman POTW upstream and downstream from the POTW outfall and by Ecology during water year 1992 in Paradise Creek at the state line. Weekly monitoring of upstream and downstream temperature and pH by Pullman POTW shows consistently higher temperature and lower pH downstream from the outfall. Paradise Creek at the state line shows a similar pattern compared with Ecology station 34B110. The design conditions of temperature and pH

in the two POTW mixing zones and in Paradise Creek at the state line were estimated by applying regression equations to 90th percentiles of data at station 34B110. For semi-annual permit periods, 90th percentiles were developed from critical portions of each season, which were defined as months shown to exhibit critical low flows.

• Critical conditions of temperature and pH for Paradise Creek at the state line, as well as ammonia criteria, are proposed as follows (criteria in terms of total ammonia as N):

Period	Temperature	pН	Chronic Criterion	Acute Criterion			
	(deg C)	(s.u.)	4-day average Total Ammonia (mg/L as N)	1-hour average Total Ammonia (mg/L as N)			
April-October	22.3	7.56	1.1	9.4			
November-March	13.6	7.47	1.8	13.			

- USEPA Region X, in consultation with Idaho Division of Environmental Quality, should establish WLAs and LAs in Idaho to meet the ammonia and dissolved oxygen criteria for Paradise Creek at the state line.
- Rapid instream nitrification was observed during 1991 intensive surveys and in ambient monitoring data collected during water year 1992. The nitrification rate was estimated assuming first-order kinetics. A 10th percentile nitrification rate constant of 3.0 day⁻¹ at 20°C was used for steady-state modeling to develop WLAs. Ammonia concentrations were found to decrease to near background levels between POTW discharges.
- Nonpoint sources of ammonia were found to be relatively dilute compared with point sources. Nonpoint and background sources were included by assuming instream concentrations cannot decrease to less than 0.05 mg/L as N based on intensive survey data from 1991 and 1986.
- A margin of safety, which is required for any TMDL, was incorporated by the use of conservative design assumptions.
- Semi-annual and monthly periods for permitting were evaluated. Exemptions from
 mixing zone flow limits were also considered. Four alternatives were considered for
 evaluating TMDLs: monthly and semi-annual limits each with and without mixing zone
 flow restrictions. Semi-annual limits are recommended instead of monthly limits for
 administrative simplicity.
- Semi-annual permit limits for the Pullman and Albion POTWs, assuming mixing zone size restrictions are enforced and Washington State standards are met in Paradise Creek at the state line, are as follows (Alternative 1B effluent ammonia limits in terms of total ammonia as N):

	Apr	-Oct	Nov	-Mar							
	mg/L	lbs/day	s/day mg/L lbs/e								
Pullman POTW Total Ammonia-N											
Daily Max	1.9	60.	4.8	144.							
Monthly Avg	0.76	0.76 24.		57.							
	Albion POT	W Total Am	monia-N								
Daily Max	12.	12.	23.	23.							
Monthly Avg	5.9	5.9	11.	11.							

• Semi-annual permit limits for the Pullman and Albion POTWs, assuming standards are met at the state line and POTWs are exempted from mixing zone flow restrictions, are as follows (Alternative 2B effluent ammonia limits in terms of total ammonia as N):

	Apr	-Oct	Nov	-Mar							
	mg/L	lbs/day	os/day mg/L lbs/o								
Pullman POTW Total Ammonia-N											
Daily Max	2.8	88.	7.2	215.							
Monthly Avg	1.1	35.	2.9	85.							
	Albion POT	W Total Am	monia-N								
Daily Max	84.	84.	155.	155.							
Monthly Avg	42.	42.	77 .	78							

- Pullman POTW WLAs and permit limits for all alternatives were found to be more restrictive than the existing permit. Permit limits will be required during all months for the Pullman POTW to meet WLAs for ammonia. An engineering analysis of the treatment process is recommended to determine feasibility of operational changes or improvements required to meet the proposed ammonia limits. Comparison of proposed limits with 1991 data suggests that the proposed limits could be achieved.
- Monthly permit limits may be specified for Pullman POTW if preferred (Alternatives 1A or 2A). Use of monthly limits may allow greater utilization of available loading capacity. However, monthly limits are more restrictive than semi-annual limits during some months. Monthly permits are generally more difficult to track and do not necessarily provide more protection of water quality criteria than semi-annual limits.

- Permit limits for ammonia for the Albion POTW may be required. An effluent monitoring program is recommended to define effluent concentrations of ammonia and determine whether there is a reasonable potential to exceed WLAs presented in this report.
- The Class A standard for dissolved oxygen of 8 mg/L is probably not attainable during critical conditions in the SFPR and Paradise Creek. High temperatures in summer result in dissolved oxygen saturation of only 8 mg/L at critical conditions. Therefore, a relatively small amount of BOD load or diel fluctuation could drive concentrations below the standard. If stream temperatures can be reduced during summer (e.g., through riparian management to increase shading), then dissolved oxygen concentrations may also increase.
- Achievable targets for dissolved oxygen during the April-October and November-March periods were estimated from a steady-state model assuming that POTW effluent from Moscow and Pullman is limited to 10 mg/L of CBOD5 year-round. Even if effluent CBOD5 is limited to 10 mg/L and ammonia is limited to meet aquatic life criteria, the Class A standard of 8 mg/L as an instantaneous minimum would not be attainable under critical conditions for most of the year. A special condition for dissolved oxygen may need to be adopted in WAC 173-201A for Paradise Creek and the SFPR if POTWs are allowed to continue discharging effluent. The targets for attainable dissolved oxygen are as follows for Paradise Creek and the SFPR if POTWs are allowed to discharge with reduced BOD and ammonia limits:

	Lowest 24-hour Average	Instantaneous Minimum
April-October	5 mg/L	4 mg/L
November-March	8 mg/L	6 mg/L

- Effluent limits for CBOD₅ of 10 mg/L are proposed for the Moscow and Pullman POTWs to meet realistic targets for dissolved oxygen in Paradise Creek and the SFPR Existing limits for Albion POTW are adequate to meet the dissolved oxygen targets.
- The proposed diversion of effluent from the Pullman POTW for irrigation of a city park and a new golf course was found to have a minimal effect on permit limits for ammonia. A sensitivity analysis of ammonia WLAs for various amounts of diversion showed that permit limits would not be greatly affected until nearly total diversion during the April through October season.

5.0 REFERENCES

- APHA, et al., 1989. Standard methods for the examination of water and wastewater. 17th edition. American Public Health Association, American Water Works Association, and Water Pollution Control Federation. Washington D.C.
- Aroner, E.R., 1992. WQHYDRO: Water quality/hydrology graphics/analysis system. Interim guidance users's manual documentation. Portland, OR.
- Bernhardt, J., and B. Yake. 1978. Memo to Claude Sappington October 11, 1978: Water Quality Violation at Palouse Producers, Inc. Washington State Department of Ecology. Water Quality Investigations Section. Olympia, WA.
- Ecology, 1985. Criteria for sewage works design. Washington State Department of Ecology. DOE 78-5. Revised October 1985.
- ----, 1987. Water Quality Technical Guidance Manual. Guidelines: Effluent Ammonia Limitation. Washington State Department of Ecology. Water Quality Program. Program Manager Approval September, 1987.
- ----, 1991. Guidance for determination and allocation of total maximum daily loads (TMDL) in Washington State. Washington State Department of Ecology. Watershed Assessments Section. Olympia, WA.
- ----, 1992. Water Quality Program Permit Writer's Manual. Washington State Department of Ecology. Water Quality Program. Olympia, WA.
- EPA, 1980. Simplified analytical method for determining NPDES effluent limitations for POTWs discharging to low-flow streams. U.S. Environmental Protection Agency. Office of Water Regulations and Standards. Washington D.C.
- ----, 1983. Methods for chemical analysis of water and wastes. U.S. Environmental Protection Agency. EPA 600/4-79-020.
- ----, 1984. Technical guidance manual for performing waste load allocations, book IX, innovative waste load allocations. December 1984 Draft. U.S. Environmental Protection Agency. Office of Water Regulations and Standards. Washington D.C.
- ----, 1985. Rates, constants, and kinetics formulations in surface water quality modeling (second edition). U.S. Environmental Protection Agency. EPA/600/3-85/040.
- ----, 1986. Quality criteria for water, 1986. U.S. Environmental Protection Agency. EPA 440/5-86-001.

REFERENCES (Continued)

- EPA, 1988. Technical guidance on supplementary stream design conditions for steady state modeling. U.S. Environmental Protection Agency. Office of Water. Washington, D.C.
- ----, 1991a. Technical support document for water quality-based toxics control. U.S. Environmental Protection Agency. EPA/505/2-90-001.
- -----, 1991b. Guidance for water quality-based decisions: the TMDL process. U.S. Environmental Protection Agency Office of Water Regulations and Standards. EPA 440/4-91-001.
- Glenn, N. 1992. South Fork Palouse River Basin Class II Inspections at Pullman and Albion July 23-25 and October 1-3, 1991. Washington State Department of Ecology. Watershed Assessment Section. Olympia, WA.
- Haan, C.T. 1977. Statistical methods in hydrology. Iowa State University Press. Ames, Iowa.
- Hallock, D. 1993. South Fork Palouse River: Analysis of Ambient Monitoring Data. Draft Final Report. Washington State Department of Ecology. Environmental Investigations and Laboratory Services Program. Olympia, WA.
- Joy, J. 1987. A water quality assessment and receiving water survey of the South Fork Palouse River at Pullman, September 1986. Washington State Department of Ecology. Water Quality Investigations Section. Olympia, WA.
- Krull, Jim. 1992. Memo to Water Quality Regional Supervisors, Dick Burkhalter, and Permit Managers. June 10, 1992. Subject: Dilution Zone Approach. Washington State Department of Ecology. Olympia, WA.
- McCutcheon, S.C. 1989. Water Quality Modeling. Volume I. Transport and Surface Exchange in Rivers. CRC Press. Boca Raton, FL.
- Moore, A. 1984. 1984 water quality index. Washington State Department of Ecology. Water Quality Planning Section. Olympia, WA.
- Nathan, R.J. and J.T. McMahon. 1990. Practical aspects of low-flow frequency analysis. Water Resources Research. Vol. 26, No. 9, pp. 2135-2141.
- Singleton, L. 1980. Analysis of state waterway segments: water quality index (WQI) analyses. Washington State Department of Ecology. Water Quality Investigations Section Memorandum. February 11, 1980. Olympia, WA.

REFERENCES (Continued)

- SYSTAT, 1990. SYSTAT® Version 5.0. SYSTAT, Inc. Evanston, IL.
- Thielen, J. 1986. 1986 water segment analysis using the water quality index of the USEPA, Region 10. Washington State Department of Ecology. Water Quality Investigations Section. Olympia, WA.
- Thomann, R.V. and J.A. Mueller. 1987. Principles of surface water quality modeling and control. Harper and Row, Publishers, Inc. New York, NY.
- Yake, B. 1981. Memo to Files February 19, 1981: Permit Conditions for Ammonia, Pullman STP- A prototype for allocating ammonia using ambient monitoring data. Washington State Department of Ecology Water Quality Investigations Section. Olympia, WA.

APPENDIX A

Results of field and lab measurements during 1991 intensive surveys

																									_
Nitrite N	mgN/L	66666666666666666666666666666666666666	666666 6666666666666666666666666666666	66666666666666666666666666666666666666				666666 6666666					666666				666666				666666		666666		666666
urb- Total idity Suspended Solids	mg/L	666666 6666666	666666 666666 6666666	866666 866666 866666	666666 666666	666666	666666 666666	666666 666666	666666	6666666	888888	999999	666666	888888	999999	666666 666666	666666	888888	666666 666666	999999	566666 5666666	666666	666666 666666	666666	666666 666666
Turb- idity 8	UFN	666666 666666 666666	666666 666666 666666	666666	6666666	666666	666666	666666	666666	866666	888888	999999	999999	999999	666666	666666	999999	888888	666666	686666	666666	666666	666666	999999	66666666666666666666666666666666666666
Total Organic Carbon	mg/L	666666 6666666	666666 6666666666666666666666666666666	666666			,, 0, 0, 1	666666	66666	565666 6666666666666666666666666666666						666666			666666		666666		666666 666666	999999	666666 6666666666666666666666666666666
Soluble Reactive P	mgP/L	566666 6666666666666666666666666666666	666666 6666666666666666666666666666666	66666666666666666666666666666666666666	666666 6666666666666666666666666666666	888888	666666	8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	888888	888888	999999	666666 6666666	666666 6666666	666666	888888	999999	666666	666666	686666	666666	686666	666666	666666	666666	666666
Alka- linity	mg/L mgCaCO3/I	301 294 233	209 212 177	178 169 131 159	149 175 164	155	169	129	130	132	174	172 176	174 999999	168	167	998999 169	172	888888	172	174	176	170	173	169	177 999999 177
hloride	mg/L mg	21.5 20.9 14.8	14.3 38 14.5	66.9 54.4 47.7 81.1	48 56.9 93.2	72.4	75,2 999999	9.85 0.85	9.15	8.93 8.93 8.93	93,4 53,6	59,2 65	46.6 999999	59.3	4 4 4	51.7	34.8	666666	35.1	34.5	98888	39.8	83.9 6.7	4.6	46.3 999999 1.04
Fecal Chloride Coliform	u/100m	220 280 000	1500 770 6200	98 190 190 190 190 190			500 500 999999 8		340		640	3900 1300					<u>8</u>		8 6		3 098 88888	240	5 E	825	999999 8 210
Total P	mgP/L cfu/100m	0.490 0.523 0.445	0.255 0.208 0.186	2.780 1.980 2.340 2.850		999999 2.590		· ·	0.146			2.190 1,500				_			1.620		_	1.810	1.740	1.680	1,700
Nitrite+ Nitrate N	mgN/L	1,140 0.993 1,110	1,480 1,230 0,970	8.210 5.750 8.400 10.300	4,350 8,360 8,630	11,200	7.750	0.197	0.074	0.083	3.760	6.170 4.550	3,930	6.270	7.100	6,570	5,780	888888	4.560	3,940	3.750	6.240	3.720 7.810	6.370	6.380 4.380
	mgN/L	0.025 0.041 0.079	0.037 0.019 0.005		0.005 0.018 0.025		0.026		0.022			0.005													9999999 0.038
Total N Ammonia N	mgN/L	1,420	1,760 1,640 1.600	10,800 7,110 10,700 11,700			8,630 999999	0.471	0,465	0.534	0.0	6.890 5.270					6,130				4.300		4.730	6,810	4.940
Diss. Oxygen	mg/L	7.80 6.70 999999	6.35 9.85 99999	2.70 5.10 4.60 9.70	999999 7.70 13.70	5.25	10.20 6.75	6.00	7.00	999999	12.25	10.00	13.10 4.80	9.90 8.80	11.05	8,60	11,85	4.35	9.50	11.30	7.10	8.50	6.09	8,20	5.00
pH Conduc- tivity	s.u. umhos/or	630 670 550	480 550 425	620 620 630 630 670	525 650 730	999999 665	670 999999	3 5	305	305	575	920	545 999999	960	550	540	220	666666	230	500	500	570	530	590	999999 530
Ŧ.	S,U.	7.81 7.85 7.55	7.84 8.12 7.48	6.85 7.32 7.08 7.48 8.09	7.54 8.04 8.89	8.21 8.21	8.93 7.94	7.61	7.85	7.72	8.73	8.23	7.86	8,14	8.27	7.43	8.45 8.94	7.91	8.72	8,93	8.50	8.56	8.32 8.32 8.32	8.60	8,46 8,46 8,43
Temp- erature	deg.C	13.9 16.1	18.4 22.5 18.6	19.6 19.3 19.3	20,5 19,8 23,9	20.6 20.6 20.8	2.00 c	21.7	44.00	27.25	25.6	20.3 21.5	26.9 20.4	19.9 4.09	26.1	20.3	23.1	22.4	23.9	27.7	222.4	23.9	22.6	24.4	23.6 23.6 23.6
Mean Depth	# # #	666666 6666666666666666666666666666666	666666 666666	0.59 0.59 0.69 999999	666666 666666	9999999	0.46	0.22	0.38	0.26	0.32	0.48	0.37	0.49	999999	999999	0.8	666666	999999	0.66	0.65	888888	666666	0.68	999999
Top Width	#	666666 666666 6666666	666666 6666666 66666666666666666666666	3.9 4.4 999999 999999	66666666666666666666666666666666666666	999999 9999999	7.8	. 4	600000	5. LD C	9 00	14.4	14,5 999999	15.3	666666	666666	19.1 19.2	666666	666666	32 33	31.4	666666	696666	13.4	999999 17.1
X-Section Ārea	ff"2	666666 6666666	666666 6666666666666666666666666666666	1.95 2.32 3.02 999999 999999		99999999999999999999999999999999999999			1.13	1.32	1.94	2.05 8.05		7,47	686666	666666	15.26 16.5		988888	21.08	20.37	666666	666666	9.06	999999 6.4
Velocity X-Section Area	fps	666666 666666	6666666 666666666666666666666666666666	1.05 1.15 1.35 999999	666666 666666	999999 999999 0.84	0.71	0.11	0.13	0.53	.54	2, 0 8, 4,	0.5 999999	0.72	666666	999999	6.4.0 6.4.3	666666	999999	0.41	0.28	666666	999999	0.86	999999
Flow	gls	0.05 999999 999999	<u>^</u> ~ ~ ~	2.04 2.66 4.06 999999 999999	66666666666666666666666666666666666666	989888 989888 8 05	2.54 999999 5.87	0.1	0.15	0.7	2.89	. 4.	2.73	5,36	666666	988888	7.84	688888	999999	8.67	5.66	686666	686666	7.8	899999 8.3
Date		24-Jul-91 24-Jul-91 25-Jul-91	24-Jul-91 24-Jul-91 25-Jul-91			25-Jul-91 (25-Jul-91 (24-Jul-91		24-Jul-91		25-Jul-91	24-Jul-91	24-Jul-91		25-Jul-91			24-Jul-91 24-Jul-91			24-Jul-91		24-Jul-91		24-Jul-91 24-Jul-91	
Time		06:04 AM 01:32 PM 01:23 PM	09:24 AM 03:10 PM 11:36 AM	07:06 AM 12:45 PM 12:58 PM 07:40 AM 01:10 PM	12:48 PM 07:54 AM 01:22 PM	06:22 AM 12:38 PM 08:16 AM	02:02 PM 06:08 AM	08:23 AM	02:09 PM	12:28 PM	03:02 PM	10:00 AM	03:36 FM 05:56 AM	11:20 AM 10:21 AM	04:02 PM	10:38 AM	10:58 AM 04:31 PM	05:35 AM	11.21 AM	04:56 PM	09:47 AM	11:33 AM	09:21 AM	12:00 PM 05:45 PM	05:09 AM 09:00 AM
River Mile	miles	0.00	0.00	0,0,0,0 44444		0 0 0				23.6		7 E :						18.7				0.4.5			E 6
Station River ID Mile		APC APC APC	MFC3 MFC3 MFC3	55555	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2 <u>5</u> 5	7 7 8 7 7 8 7 7 8	<u> </u>	e E	o o o	SF2	n en e	2 G	ი გე	SF4	SF4	ន កូត	SF5	S 5	SF6	S.F.	SF.7	SF.	8 8 8 8 8 8 8	878 878
Water Body		Airport Cr Airport Cr Airport Cr	Missouri Flat Cr Missouri Flat Cr Missouri Flat Cr	Paradise Cr Paradise Cr Paradise Cr Paradise Cr Paradise Cr	Paradise Cr Paradise Cr Paradise Cr	Paradise Cr Paradise Cr Paradise Cr	Paradise Cr Paradise Cr Paradise Cr	Palouse	Palouse	S.F. Palouse B.	Palouse	Palouse	Palouse Palouse	S.F. Palouse R S.F. Palouse R	Palouse	Palouse	Palouse Palouse	Palouse	Palouse	S.F. Palouse R	Palouse	Palouse	Palouse	S.F. Palouse R	S.F. Palouse R S.F. Palouse R

Water Body	Station River ID Mile	River Time Mile		Date F	Flow	Velocity X-Section Area		Top Neith C	Mean Depth e	Temp- erature	pH Con	Conduo- tivity Ox	Diss. Tot Oxygen	Total N Ammonia N		Nitrite+ Nitrate N	Total P	Fecal Chloride Coliform	oride	Alka- linity P	Soluble Readive O	Total Organio Carbon	Turb- idity Su	Total Suspended Solids	Nitrite N
	-	miles		# !! !! !!	afs	sdj	ft^2	¥	¥	deg.C	s.u. umh	hos/cr	mg/L m	mgN/L mc	mgN/L m	mgN/L	mgP/L du	cfu/100m	mg/L mgC	mgCaCO3/I	mgP/L	mg/L	UTN	mg/L	mgN/L
Airport Cr Airport Cr Airport Cr	APC APC APC	0.0 08:35 A 0.0 02:54 P 0.0 01:19 P	AM 01-0a-91 PM 01-0a-81 PM 02-0a-81		6 666666 6 666666	3 66666 666666 666666	36 666666 66666666666666666666666666666	66 666666 66 666666	566666 666666 666666	7.1 10.3 8.4	8.12 8.01 8.03	740 99 755 680 99	999999 1 8.95 1	1,090 0 1,230 0 1,030 0	0.012 0 0.017 0 0.010 0	0.715 0.728 9 0.697	0.139 399999 91 0.274	9999999 4	24.7 34.9 9	326 899889 998999	666666	6 666666 6 666666 6 666666	666666 666666 666666	2 999999 3	666666 666666 666666
Missouri Flat Cr Missouri Flat Cr Missouri Flat Cr	MFC3 MFC3	0.0 09:45 A 0.0 03:50 F 0.0 12:07 F	AM 01-Oct-91 PM 01-Oct-91 PM 02-Oct-91		0.09	0.04 0.04 999999	2.17 2.49 999699 96	5 6 999999 99	0.43 0.42 989999	11.6 13.4 11.6	7.86 8.00 7.97	620 750 530	6.50 0 8.40 1 7.50 0		0.029 0 0.027 0 0.010 0	0.539 0.803 0.376	0.780 0.461 90 0.269	250 999999 590	42.8 96 9 18.9 9	233 999999 999999	999999 999999 999999	3.23 g 8.32	999999 999999 3.1	999999 0	666666 666666 666666666666666666666666
Paradise Cr.	2	6.4 07:30 AM 6.4 02:13 PM 6.4 01:03 PM 3.4 08:03 AM 3.4 05:45 AM 3.4 12:52 PM 1.0 02:46 PM 1.0 02:46 PM 1.0 05:57 AM 1.0 05:57 AM 0.0 03:30 PM 0.0 03:30 PM 0.0 03:30 PM 0.0 03:30 PM			0.65 6.2 6.2 3.65 999999 999999 4.3 999999 6.2 6.2	0.08 0.38 0.38 0.05 999999 0.15 999999 0.35 999999 0.35 0.74 0.74 0.74 0.73		11.7 12.5 12.5 15.2 15.2 15.2 15.2 19.9999 99 9.5 6.6 6.4 6.4 6.4 99999 98	0.73 1.31 0.94 0.94 0.78 1.35 999999 0.57 999999 0.57 0.64 0.64 0.77	15.4 18.3 18.0 14.5 13.2 13.2 13.2 13.2 13.2 13.2 13.2 13.2		780 840 730 830 830 830 810 880 880 989999 680 999999 899999 899999	1.30 1.70 1.50 1.10 1.10 1.10 1.10 1.10 1.10 1.1					120 9999999 460 140 999999 999999 999999 150 150 63 999999 999999 999999 999999 999999 9999		193 999999 150 160 999999 999999 999999 9999999999999			9999999 44.2 9999999 9999999 9999999 9999999 999999		0.629 999999 0.435 999999 0.447 0.015 999999 999999 999999 999999 0.010
S. S		23.6 03.27 23.6 03.27 22.2 03.24 22.2 03.24 22.2 12.35 23.4 10.30 23.4 10.30 23.5 12.2 03.25 23.6 12.2 03.25 23.7 11.25 23.7 11.25 23.7 11.25 23.7 11.25 24.8 11.25 25.8 12.2 03.24 25.8 11.25 25.9 12.2 03.24 25.9 12.2 03.2 03.24 25.9 12.2 03.2 03.24 25.9 12.2 03.24 25.9 12.2 03.24 25.9 12.2 03.2 03.2 03.2 03.2 03.2 03.2 03.2 0	AM 02-04-91 AM 03-04-91			0.10 0.11 1.72 1.72 1.72 1.02 0.03 999999 999999 0.04 0.04 0.04 0.04 0.04		- 4 5 7 6 6 6 6 6 8 8 8 4 4 5 8 6 6 7 6 8 8 8 7 4 8 8 8 8 8 8	0.33 999999 0.37 0.38 0.38 0.38 0.38 999999 999999 0.97 0.97 0.97 0.97 0.97	6.5 1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	6.07 7.94 98 8.07 8.07 8.07 8.07 8.07 9.08 9.0	470 470 499999 470 540 540 740 740 740 740 740 740 740 740 740 7	9.70 1 2 8 8 9 8 9 8 9 8 9 8 9 9 9 9 9 9 9 9 9	9.6359 99999 999999 9999999 9999999 9999999 9999	989898 99 99 99 99 99 99 99 99 99 99 99		0.11.28 999999 9 999999 9 999999 9 999999 9 999999	999999 96 9999999 96 999999		186 161 188 168 168 168 168 168 168 168	90090999999999999999999999999999999999	9999999 9999999 9999999 9999999 999999	99999999999999999999999999999999999999	9999999 9999999 99999999 99999999 999999	9999999 9999999 9999999 9999999 9999999
Palouse Palouse Palouse	ក្លស ភូមិ ភូមិ	0720 0930 0552	W W W W		#	įį	999999 9 11.12 999999 9	22.8 999999 99 22.8 999999 99	0.49 999999 999999	12.5	8.21 9 8.14 39999 99	99999 980 98999	8.95 98 9.25 98			12.000 999999 999999	3.380 9.380 9.380	120 120 99999 9	9999999 63.8 9999999	999999 162 999999	666666 6666666 66666666666666666666666	4.73 4.73 999999	999999 999999 999999	999999 999999 999999	696666 6966666 69666666666666666666666

APPENDIX B

Ambient monitoring data from Ecology station 34B110

Appendix B: Water quality data from Ecology station 34B110. Missing data are reported as "999999" For results at the detection limit, the values reported are half the detection limit

	ts at the d								T		h 1/2	B.Handan	C1	5.4.
Temp-			рH		Total		Soluble	Hard-		Fecal	Nitrate	Nitrite	Flow	Date
erature	uctivity	Oxygen			Ammonia	a P	Reactive	ness	idity	Coliform	+Nitrite	as N		
				Solids	as N		P				as N			
	(um/cm							(mg/L		(CFU				
(deg C)	@25C)	(mg/L)	(s.u.)	(mg/L)	(mgN/L)	(mgP/L)	(mgP/L)	CaCO3)	(NTU)	/100mL)	(mgN/L)	(mgN/L)	(cfs)	
													-	
2	999999	12.1	77	999999	0.19	1 14	0.36	999999	160	1200	11.27	999999	999999	701209
3.6		10.2	72	999999	999999	3 55		999999	370	1200	999999	999999	999999	710126
				999999				999999	25	999999	3.31	999999	999999	710209
0.4		12.4	75		0,2	1 23	1.19							
3.3		11 6	76	999999	0 28	0 38	0 54		65	999999	2.37	999999	999999	710223
2.5	356	12.3	7.8	999999	0 39	0.93	0 58	999999	65	999999	2.5	999999	999999	710309
4	211	117	7.6	999999	80.0	1.1	1 03	999999	170	999999	2.13	999999	999999	710323
96	255	99	7.7	999999	999999	2.23	1.95	999999	35	999999	2.64	999999	999999	710406
88	284	102	78	999999	0.01	0.88	0.7	999999	25	999999	3 94	999999	999999	710420
14.2	269	85	78	999999	0.08	0 81	0.89	999999	25	999999	3.13	999999	999999	710504
8.4	300	108	79	999999	0.12	0.91	0.81	999999	25	999999	2 215	999999	999999	710518
				999999			2.2	999999	680	999999	4 33	999999	999999	710602
9.6	243	8.4	73		0.43	2 41								
13	305	8.9	79	999999	0.1	0 93	0.53	999999	210	999999	2 24	999999	999999	710615
13 6	395	83	8	999999	999999	1 86	1.59	999999	15	999999	2 86	999999	9	710706
21 5	674	61	8.1	999999	0.12	2 83	2.69	999999	15	999999	1 98	999999	6	710720
20 4	680	48	7.5	999999	0.1	2 96	2 56	999999	45	999999	1 83	999999	6	710803
15	700	77	7.1	999999	0.02	2 98	281	999999	10	999999	3.42	999999	4	710817
11.7	597	73	7.7	999999	0 14	1.95	1 14	999999	10	999999	3.45	999999	6	710907
8	640	82	76	999999	8	4.1	3.99	999999	8	999999	2.54	999999	5	710921
				999999									5	731017
8.6	500	8.7	8		0.25	5.5	52	140	7	999999	999999	999999		
9 4	670	11 7	85	999999	0,29	65	6.4	120	5	999999	999999	999999	5	731029
5	330	8.5	76	999999	1.2	47	0.52	92	360	999999	999999	999999	52	731113
18	480	11.1	79	999999	0,4	1.5	1.4	120	22	999999	999999	999999	25	731127
25	300	117	77	999999	0 48	0 76	0.54	90	45	999999	999999	999999	93	731211
5.3	200	94	75	999999	0 77	0 68	0.27	65	200	900	999999	999999	293	731218
999999	380	105	7.5	999999	0.31	0 65	0.6	110	15	999999	999999	999999	66	740108
	230	11 9	77	999999	0.39	0.55	0 48	76	40	490	999999	999999	215	740122
1											999999	999999		740205
0.9	180	12.8	75	999999	0.7	0.6	0,26	64	75	400			373	
12	150	13	76	999999	0 56	0.55	0.3	66	100	1200	999999	999999	200	740220
2.6	200	119	76	999999	0.22	0 78	0 24	71	130	820	999999	999999	262	740305
4.3	220	11.7	78	999999	0.32	0,48	0 28	68	39	900	999999	999999	165	740319
38	210	12	74	999999	0.38	1.2	0.25	42	200	840	999999	999999	289	740402
75	240	10.8	77	999999	0.28	0 56	0.4	72	20	560	999999	999999	93	740416
136	300	89	8	999999	0 29	0.66	0.53	83	16	450	999999	999999	44	740507
10 4	400	9.1	7.8	999999	1	18	0.9	98	40	999999	999999	999999	48	740521
13 1	360	86	7.8	999999	0 27	11	0,82	100	12	1100	999999	999999	22	740604
20.2	430	7	8	999999	0 11	15	1.4	999999	11	1600	999999	999999	15	740619
16.5	480	8	79	999999	0.34	2	2	130	17	520	999999	999999	10	740709
17.1	660	69	8 1	999999	0 76	3.3	33	140	4	1100	999999	999999	5	740723
16.2	770	6.4	8 1	999999	0.14	33	33	160	6	320	999999	999999	5	740806
13.5	790	7.9	82	999999	999999	33	32	160	6	150	999999	999999	5	740820
14 6	710	7.5	82	999999	999999	5	42	150	10	300	999999	999999	5	740904
														740917
199	740	8.1		999999	0.13	5	48	150	11	130	999999		6	
	999999			999999	1.6	52		999999	84	3520	4.6	999999		771026
7	230	999999		999999	0.68	1.5	1	999999	240	3400		999999		771129
02	250	999999	7.2	999999	0.6	1 03	0.77	999999	210	360	7.25	999999	21	771220
1.5	255	13	6.8	999999	0 39	0.71	0.56	999999	120	120	79	999999	46	780124
2.2	210	129	7		0.43	0 56	0 39		185	450		999999	68	780214
11 4	250	102	72		0.1	0.58	0 38		78	260	4.9	999999		780328
14	275	9.5	8	999999	0.13	0.87		999999	43	423		999999		780425
														780523
116	275	10.5	82		0.19	0.72	0.68		70	6300	3			
142	400	9.1	8	999999	0.3	12	11		70	10	24	999999		780620
188	550	9	8 4	999999	0 13	36		999999	40	2100	38	999999		780725
14 4	450	10 1	8 1	14	0 02	24	2.2	999999	85	5400		999999	-7	780822
13 1	520	10 1	8.4	5	0 14	47	4.6	999999	6	1900	78	999999	5	780926
97	600	11	8.2	1000	0 06	39	26	999999	8	1100		999999	7	781024
77	560	103	8.1	85	0 54	28	11	999999	70	675	5.6		10	781129
										525				781220
1	530	12.3	78	1600	0.38	32	27	999999	15		6.4		8	
0.4	540	999999	78	71	0.6	2.7	2.1		999999	220		999999	8	790125
1.8	295	12	83	82	0.47	0.52		999999	120	420	9	999999	76	790222
5 7	250	123	73	1580	0 17	0 44	0 35	999999	25	540	43	999999	81	790320
11 6	400	99	79	122	0 26	0 58	0.37	999999	39	2300	32	999999	79	790425
186	480	71	7	48	0.17	0.97		999999	39	4200	4 4		24	790522
142	505	93	72	18	18	999999		999999	80	3200		999999	13	790619
17	999999	92	7.1	7	0 11	0 12		999999	60	3200	37		5	790724
15 4	840	98	7.3	24	0 04	0.44		999999	5	3150		999999		790828
12.2	700	97	7.7	24	0.05	57		999999	15	900		999999		790925
9.5	600	11 2	7.4	9	0 02	3.3	29	999999	10	650	78	999999	8	791023

Appendix B: Water quality data from Ecology station 34B110. Missing data are reported as "999999" For results at the detection limit, the values reported are half the detection limit.

-			mit, the va										9 ≥1	
Temp-	Cond-	Diss	рН	Total		Total				Fecal	Nitrate	Nitrite	Flow	Date
erature	uctivity	Oxygen			Ammonia	ı P	Reactive	ness	iaity	Coliform	+Nitrite	as N		
	f f			Solids	as N		P	/ A		/OFILI	as N			
	(um/cm			,				(mg/L		(CFU		t 1171		
(deg C)	@25C)	(mg/L)	(s.u.)	(mg/L)	(mgN/L)	(mgP/L)	(mgP/L)	CaCO3)	(NIU)	/100mL)	(mgN/L)	(mgN/L)	(cfs)	
										700			_	70440
24	543	12.8	7.2	120	0 12	15				720	66	999999	8	791127
52	485	11.8	7.4	20	0.23	2.2		999999		275	9	999999	16	791218
18	400	12.9	73	18	0 42	0 97	0 87			180	12	999999	31	800122
66	190	116	72	180	0,43	0.65	0.41	999999	205	156	8.6	999999	76	800227
5.1	310	11	69	27	0.4	0.68	0.5	999999	160	675	6.9	999999	41	800325
12.4	330	102	79	13	0 02	0.15	0.14	999999	85	1080	1.3	999999	22	800422
12	270	91	73	120	0.01	0.82	0.39	999999	175	790	3	999999	44	800529
13.7	290	9.2	7.8	130	0 04	11	0.77			6700	18	999999	12	800624
21.5	570	8	7.6	12	0 06	32	31	999999		950	1.3	999999	6	800722
10	600	9.8	77	22	0.06	36	32			450	7 76	999999	5	800826
10	600	10.4	77	15	36	3.6	14	999999		475	0 53	999999	6	800923
								999999				999999	5	
98	636	99	73	19	0 18	3.5	3.5			320	9.18			801021
6.1	470	109	76	30	0 14	15	0.2	999999		850	8.805	999999	8	801118
3.4	500	106	72	17	0 05	2	999999	999999	60	450	6 14	999999	8	801216
34	440	11	7	12	0 04	16	1.3	999999	. 75	710	5.23	999999	10	810120
5 4	240	10.3	69	49	0.18	0.17	999999	999999		875	6.45	999999	90	810223
59	360	10.1	73	15	1.4	1.3	1.3	999999		1050	7 025	999999	20	810324
94	310	93	76	12	0 07	0.59	0 53	999999	40	780	4.225	999999	34	810421
12.8	300	96	72	44	0 38	0.46	0.46	999999	70	675	3.17	999999	28	810526
17.2	490	89	75	14	0.15	1.9	1.9	999999	150	1100	4 025	999999	5	810721
16.6	500	88	72	100	0.2	999999	2.45	999999	60	750	4.225	999999	3	810818
87	550	10	7.2	11	0 07	3.9	37	999999	35	870	7.57	999999	5	810922
88	575	9.6	7.5	311	0.25	999999	35	999999	30	230	63	999999	5	811020
64	610	99	72	10	0.07	35	3.2	999999	8	480	7	999999	7	811111
5.7	370	108	8	30	0 28	0.4	999999	999999	130	1500	4.7	999999	18	811208
1.5	230	11 9	74	600	0 37	999999	0.26	999999	260	720	9.125	999999	744	820126
32	160	8	74	2900	0 18	0 03	0.005	999999	980	4600	7.15	999999	750	820215
5	204	10.2	77	170	0 14	0.27	0 25	999999	180	220	5.025	999999	260	820315
. 9	235	12	7.9	28	0 06	999999	0 23	999999	33	390	4 25	999999	90	820419
98	321	12.6	8.6	9	0.07	0.52	0.42	999999	8	110	4 05	999999	400	820510
18	318	139	95	8	016	05	05	999999	7	370	3.05	999999	260	820606
20.5	560	13 2	82	4	0 05	18	17	999999	5	680	2.75	999999	6	820711
21.6	580	14 6	9 1	8	90.0	2.3	22	999999	6	160	3.125	999999	4	820817
- 13	505	119	85	41	0 04	2	19	999999	11	250	3 05	999999	9	820914
73	520	13	81	8	0 09	2.8	2.8	999999	6	3500	4 95	999999	7	821019
5	525	12	8.2	4	0 63	26	21	999999	6	3700	42	999999	10	821116
24	420	13.5	7.9	14	0 13	12	1	999999	23	100	76	999999	20	821228
36	310	12.6	78	120	0.18	0 15	999999	999999	410	1200	6.8	999999	42	830125
7.9	241	105	76	79	0.1	0 06	999999	999999	100	300	7.35	999999		830222
9.1	252	103	8	16	0.21	0.33	999999	999999	31	999999	6.05	999999	68	830322
15.3	330	147	92	11	0 02	0.5	0.58	999999	12	150	5.05	999999	33	830419
21 9	350	11.7	86	7	0 14	0.75		999999	8	370		999999		830524
21 6	390	11.9	8.6	8	0 15	1.3		999999	7	1400		999999		830628
												999999		830719
22 2	455	13.1	8.6	4	0 05	18		999999	2	630				
179	490	87	8	10	0 14	26		999999	16	2900		999999		830823
152	580	12	86	29	0.02	27		999999	62	17000		999999		830927
9.6	485	12	78	4	0 08	28		999999	7	600		999999		831025
35	435	131	82	9	0 14	1.1	1.1		21	440		999999	16	831129
04	415	13 7	79	32	0 34	0 76	0.74		28	180		999999		831220
0 4	288	13.4	7.9	14	0 66		999999	999999	22	910		999999		840117
32	330	123	8	61	0.57		999999	999999	89	580		999999		840207
52	270	118	79	98	03	0.12	999999	999999	110	190	6.35	999999	62	840306
6.8	210	113	79	140	0.3	0.1		999999	180	290	5.525	999999	140	840410
12.6	317	123	9	90	0.07	0.24	999999	999999	67	460	4.5	999999	32	840508
17 7	321	137	9.1	14	0 09		999999	999999	13	250		999999		840612
21 4	435	19.2	9.5	28	0 04		999999		11	220		999999		840710
184	535	13	8.7	10	0 06	29		999999	. 8	950		999999		840814
136	535	11.9	8.5	8	0 16	42		999999	9	9900		999999		840911
141	600	11.5	84	13	0.08	4	3.7			1200		999999		841009
									11					
8.2	392	9.9	8	21	0.19		999999	999999	37	3100		999999		841113
2	275	12	79	130	0.32		999999	999999	350	980		999999		841211
1.2	440	13	78	5	0 36	1.4	1.4		11	220		999999		850115
41	232	121	75	100		999999	0.22	999999	200	260		999999		850312
7 4	190	11	7.6	370	0.1		999999	999999	260	150		999999		850402
11 4	270	12	8.6	11	0.06	0.38	999999	999999	9	200	4.1	999999		850507
188	372	86	82	16	999999			999999	18	1200	999999			850611
158	540	11 1	86	16	0.1	3	26	999999	999999	610	5.41	999999	4	850813

Appendix B: Water quality data from Ecology station 34B110. Missing data are reported as "999999". For results at the detection limit, the values reported are half the detection limit.

	For results											N Da	k Pro-re-		
	Temp-	Cond-	Diss	рН		Total	Total		Hard-	Turb-	Fecal	Nitrate	Nitrite	Flow	Date
İ	erature	uctivity	Oxygen			Ammonia	L P	Reactive	ness	idity	Coliform	+Nitrite	as N		
					Solids	as N		Р	<i>t</i>		/AEU	as N			
		(um/cm							(mg/L		(CFU				
Į	(deg C)	@25C)	(mg/L)	(s.u.)	(mg/L)	(mgN/L)	(mgP/L)	(mgP/L)	CaCO3)	(NIU)	/100mL)	(mgN/L)	(mgN/L)	(cfs)	
	111	320	86	7.8	999999	999999	999999	999999	999999	999999	5600	999999	999999	14	850917
	8	320	83	79	42	999999	999999	999999	999999	999999	2600	999999	999999	15	851022
	1	510	142	84	8	0.46	23	2.3	999999	999999	210	7 705	999999	8	851119
	07	525	137	8,1	10	1.1	2.5	2.2	999999	999999	2600	5 905	999999	10	851210
	13	295	12	999999	35	0.53	0.39	0.39	999999	999999	22000	4.805	999999	36	860114
	1.6	323	12.8	77	999999	999999	999999	999999	999999	999999	560	999999	999999	37	860211
				79	48		0.26	0 26	999999	999999	330	5.32	999999	110	860311
	81	230	11.4			0.2									
	8.7	320	109	8.2	14	0 29	09	0.47	999999	12	360	3.75	999999	33	860415
	12.5	350	13 7	8.8	999999	0 04	1.1	11	999999	7	540	0 47	999999	19	860513
	20	395	127	87	999999	0 04	17	14	999999	5	200	2 88	999999	8	860610
	188	540	10.2	84	9	0 09	22	2.1	999999	4	999999	4 16	999999	5	860708
	19.1	600	9	81	999999	0.09	1	2.4	999999	999999	4500	2.14	999999	4	860812
	16	580	9.3	8	999999	999999	999999	34	999999	15	1400	999999	999999	5	860909
	83	498	112	81	20	999999	999999	36	999999	17	900	999999	999999	10	861021
	7	585	11.5	8.2	4	0 06	999999	3.5	999999	4	590	6.74		6	861104
	12	487	126	7.2	15	0 79	999999	999999	999999	16	260	13.15	999999	15	861209
															870113
	12	490	132	81	7	0 26	1.3	999999	999999	6	2500	8.19	999999	10	
	4.3	303	11 4	72	80	0 56	0 47	0.5	999999	30	520	11 09	999999	46	870210
	6.5	265	10.5	7 1	60	0 36	0 55	0 56	999999	999999	3300	4.52	999999	48	870317
	112	372	12.7	79	9	0.11	0.86	0.85	999999	11	700	5 43	999999	16	870414
	173	440	11	86	25	0.13	14	1.9	999999	22	999999	1.97	999999	11	870505
	138	400	126	86	15	0.04	1.1	999999	999999	9	1700	999999	999999	9	870602
	195	490	11 8	8.5	9	0 1	0.72	2	999999	4	4500	6.16	999999	6	870707
	19	540	10	8.4	16	0 11	2.9	27	999999	5	5000	3.9	999999	5	870804
	16	620	11.6	8.5	8	0 07	3 4	36	999999	999999	1500	999999	999999	6	870908
	11.2	562	8.7	78	7	0 08	4.6	37	999999	3	3300	999999	999999	11	871006
	11	560	108	82	3	0.09	4.6	4.5	999999	4	1100	999999	999999	7	871103
	41	443	112	79	17	0 16	999999	999999	999999	14	490	999999	999999	12	871208
	09	500	13 1	76	11	0 89	1 4	1.2	999999	10	740	999999	999999	11	880112
	11	445	143	78	21	0 75	1.3	1.05	999999	16	180	999999	999999	14	880202
	58	383	11 5	7.9	47	0 76	0.86	0 88	999999	37	890	999999	999999	18	880308
	44	281	127	7.6	94	0 25	0.52	0 42	999999	32	490	999999	999999	59	880405
	94	352	122	8	21	0.35	1.1	0.96	999999	13	3500	999999	999999	18	880503
	13.3	395	10.3	81	31	999999	999999	12	999999	12	700	999999	999999	16	880607
	148	390	8 4	8	16	0 06	1	1.8	999999	11	2600	999999	999999	8	880705
		720	125	84	9	0.04	32	2.98	999999	6	1300	999999	999999	5	880802
	166											999999	999999		
	13 2	600	123	85	3	0.01	35	36	999999	2	870			7	880913
	136	530	11 7	8.3	1	0.1	3.5	52	999999	3	330	53	0 11	. 7	881004
	6	370	11 7	7.8	6	0.07	25	21	999999	4	410	7	0 07	10	881107
	43	415	104	76	5	0.6	2.4	22	999999	7	2000	85	0.16	12	881206
	1.9	510	124	8 1	57	0.24	1.9	1.9	999999	. 24	3700	57	0.04	12	890103
	999999	433	119	74	9	0.8	0.94	0 07	999999	9	30000	10	0.01	9	890207
	12	182	85	75	680	0.22	0.005	0.13	999999	110	999999	8.4	0.03	300	890307
	5.4	213	11 6	78	40	0.21	0 44		999999	22	300	72	0 06		890404
	12	330	11 1	8	4	2	0.77		999999	5	180	4.6	0 18		890502
			92				1.32		999999	4.2	8200	3 29	0 06	9	890606
	206	403		8.5	6	0 06									
	182	560	13	8.6	12	0 03	2 47		999999	59	1800	5.69	0 05	. 5	890705
	20.4	645	11.3	85	4	0 06	2 56		999999	27	3700	3.5	0 06	2	890808
	15.5	510	11.7	87	13	0 04	2 43		999999	5 4	1900	4 81	0 06	9	890905
	10	560	129	85	8	0.03	3 69	3 71	999999	27	350	5 57	0.01	12	891003
	6.9	340	10.2	8 1	22	1.14	1.23	1 18	999999	19	650	4 03	80.0	19	891107
	67	270	98	8	210	0.43	999999	0.61		70	1400	5.44	0.09	56	891205
	38	233	107	7.4	999999	999999	0.33		999999	300	360	11	0 04	130	900109
	15	462	127	7.7	. 25	0 42	0.8		999999	21	140	8.36	0 12		900206
	48	326	11.9	78	32	0 24	0.52		999999	24	170	7 45	0 07	11	900306
													0 18		900403
	12.7	340	12.7	84	9	0.19	0 63	0 68	999999	12	200	5 13			
	9.1	319	108	82	31	02	0 58		999999	17	710	3 38	0 09	21	900508
	13.5	228	93	78	102	0.1	0 13		999999	48	620	2 14	0 04	37	900605
	199	525	10 1	8 4	12	0.04	0 98		999999	5 1	4700	4 23	0.03	6	900710
	19 4	600	107	8.6	999999	999999	1.89	1.82	999999	67	1700	2 88	999999	3	900807
	163	648	107	8.4	9	0.03	28	26	999999	38	1500	7.24	0.04	7	900904
	86	650	11 3	82	7	0.023	36		999999	3.2	5600	10.6	0.026	4	901009
	42	402	11	79	33	0.020	1.17	1.01		45.5	970	4 61	0.1	21	901106
	35	465	11.1	79	15	0 44	0.89		999999	19	680	6.07	0.09		901204
													0.03		910108
	1.6	497	12.8	77	8	0.14	1 41	1	999999	6	6700	6.22			
	3.4	188	11 4	77	1050	0.282	1 36		999999	330	830	5.84	0.039		910205
	36	212	11 6	77	560	0 12	0 23	U 1/	999999	195	300	7 59	0 02	210	910305

Appendix B: Water quality data from Ecology station 34B110. Missing data are reported as "999999" For results at the detection limit, the values reported are half the detection limit.

1 Ol Leagir	s at the u	CICCUOII IIII	iit, tilo ve	ilues rept	or to a are r	icai tito at								
Temp-	Cond-	Diss	pН	Total	Total	Total	Soluble	Hard-	Turb-	Fecal	Nitrate	Nitrite	Flow	Date
erature	uctivity	Oxygen		Susp	Ammonia	P	Reactive	ness	idity	Coliform	+Nitrite	as N		
	•			Solids	as N		Р				as N			
	(um/cm							(mg/L		(CFU				
(deg C)	@25C)	(mg/L)	(s.u.)	(mg/L)	(mgN/L)	(mgP/L)	(mgP/L)	CaCO3)	(NTU)	/100mL)	(mgN/L)	(mgN/L)	(cfs)	
10.4	340	125	88	25	0 299	0 626	0.473	999999	13	500	3.986	0.124	26	910402
124	380	14.1	89	9	0 224	0 822	0.959	999999	5.5	999999	3.42	0.174	17	910507
141	340	10.3	82	44	0.059	0 425	0 493	999999	24	380	2.84	0.049	18	910604
185	458	10	8 4	12	0,028	1.082	0.967	999999	81	570	2.901	0 034	6	910709
21 4	501	9.1	82	14	0.03	1 32	1 18	999999	72	4100	2.98	0 024	3	910806
148	720	112	8.4	4	0.051	2 37	2 38	999999	25	1900	7 58	0 018	5	910903
85	645	105	83	9	4.24	5.25	4.55	999999	6.2	650	3 06	0 076	999999	911008
6.2	388	92	78	27	0 292	1 55	1.49	999999	20	2900	3 58	0.087	999999	911105
38	435	115	77	12	0.115	1 32	1.14	999999	10	1500	8 42	0.059	999999	911203
2.8	455	129	82	6	0.02	1.31	0.232	999999	7	180	5 43	0.005	999999	920107
29	394	119	78	20	0.499	0.861	0.772	999999	25	999999	6.82	0.154	999999	920204
7:4	372	10.3	78	999999	999999	999999	999999	999999	999999	999999	999999	999999	999999	920303

APPENDIX C

Ambient monitoring data from Ecology supplemental stations during water year 1992

- III e			1135	1045	1030	100	1040	1,00	200	1055	100	1145 1045		1945	150	1140	1205	1155	1135	1420	1205	1220	1250 1150		1220	1120	1115	1130	108	1145	1055	1150	1220	1120		1150	1105	1050	115	0110	1130	1040	1110	1130	1105	
Date			911008	911105	911203	920107	920204	920303	920407	920602	920707	920804 920909		911008	911105	911203	920107	920204	920303	920505	920602	920707	920804 920909		911008	911105	911203	920107	920303	920407	920505	920702	920804	920909		911008	911105	911203	920107	920204	920303	920505	920602	920707	920904	
Flow	(cfs)		666666	666666	666666	666666	56666	86666	000000	666666	666666	666666		555555	666666	666666	666666	666666	666666	566666	666666	666666	666666 666666		586666	666666	666666	556666	666666	666666	666666	999999	566666	666666	٠	666666	666666	686656	58688	000000	000000	556666	666666	666666	666666	
Nitrite as N	(mgN/L)		0.076	0.087	0.059	0.005	170	0 0	0.023	0.041	0,014	0.014		0.874	0.141	0.326	0.372	0.295	0.212	0.496	0,589	0.743	0.839		0.093	0.015	0.022	0.003	0.015	0.005	0.005	0.005	0.005	0.005		0.098	0,196	0.188	0.01	0,380	0.37	0,163	0.072	0.005	0.003	
Nitrate +Nitrite as N	(mgN/L)		3.06	3.58	8.42	5,43	20.00	1.04 1.04	2 6	4.82	2.67	3.94 5.16		9.49	2.99	12.2	9.4	8,39	20 00 20 00 20 00 20 00	9 6	7.92	7.97	5,55 9,85		0.838	1.6	5.72	2, 4, 2, 4,	4.71	1.97	0.298	0.012	0.005	0.005		3.18	6.79	유 (10 to 12	φ. C. ±	5 2	5.55	5,42	5.18	85.7 88.7	
Fecal Coliform (CFU	/100mL)		650	2900	1500	180	696	5 6	240	1000	1100	430 220		440	280	80	QI	686666	ည္က ဇ	57	4100	1300	470 140		120	1300	= 8	666666	69	110	2500	12 22 23	1900	6 0		5100	25000	<u>4</u> ;	2L 0000	668888	3 ==	110	360	220 0.55	5 8	
Turbidity	(UTV)		6.2	50	우 :	~ ⊒	S =	4	ာ မာ ကြော	(Q)	5,5	2.23		9	31.5	Ξ	2 !	ដ	2 c	2 (4)	œ —	ب 5	6.3 7.4		4,	14.5	4 5	298	27	ର ;	4. 4. 1~	3.6	/ i	1,7		4.7	23.5	மை	ט ט) (C	o 0	1.7	6.5	n e	o o i ci	
Hardness (mg/L	CaCO3)		666666	666666	888888	666666	000000	000000	686666	666666	666666	666666 666666		666666	666666	666666	666666	555556	555555	666666	686666	866666	666666		666666	666666	66666	565556	666666	868888	868888	666666	666666	665666		666666	866866	999999	88888	000000	566666	666666	666666	865556	666666	
- m m	(mgP/L)		4.55	-149	1.14	0.232	0.488	1 30	98	i.78	1,62	0.806	٠	4.36	1.07	2.67	2.94	2.07	- c 2 E	<u>ရ</u>	2.45	2.78	0.845 0.846		7.12	1.16	0.37	0.136	0.123	0.099	0.73	0.417	0.562	0.208		4.07	2.58	2.01	6 2	2 2	9	2.44	2.22	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	0.751	
is in the SFPR basin Total Soluble P Reactive	(mgP/L)		5.25	1.55	32	.3	55.0	1.46	4.	1.8	1.54	1.79 3.14		4.54	1.5	2.96	3.18	23.5	ò. "	3,38	3.28	3,14	2.0.4 1.1		9,94	1.4	5.0 2.48	0.201	0.225	0.186	0.356	0.442	0.622	0.196	ern):	3,99	2.68	ار ا	7.7	8 8	23	2.44	2.68	, i.c	3.1	
at four station Total Ammonia as N	(mgN/L)		4.24	0.292	0.115	70.0 0.00 0.00 0.00	0.343	0.023	0.059	0.027	0.043	0.027	oany):	5,33	1.61	Ö	1.75	, i	2.42	4,4	2.33	1.91	3.49	Road):	79.7	0,123	0.045	0.058	0.03	0.029	0.054	0.036	0.026	0.027	v Best Western):	4.67	50.	1.26	0.00	1.07	0.23	0.094	0.029	0.028 0.028	0.037	
ter year 1992 a Total Suspended / Solids	(mg/L)		σ	27	<u> </u>	o 6	3 6	0	Ω	φ	6 3	တတ	rtilizer com	4	63	4	on 6	3 8	3 5	유	5	8 7	Б	and Sand F	c)	25	D Q	့ မွ	34	32	÷ 6	9	4 (2	Road, below	φ	æ .	4.6	νę	S ro	, es	63	() •	dr (2	o (v	
uring water year 1992 pH Total Suspended Solids	(s.u.)	Flat Creek):	8.3	7.8	7.7	N 6	8,	69.55	8,3	8.6	8.2	69.89 69.89	Wilber-Ellis fe	7.2	7.6	7.2	7.5	, r	÷ 10	7.5	9.7	9 4	7.5	Busby) Road	8.3	6,7	p. 6	- 6: 6: K	7.7	80 G	9 0 10	8.6	0) 4 0	n	on (Busby) f	8.3	7.8	9 c	V &	6.7	8.4	8.4	80 c	ο e ν 4	8.2	
f monitoning d Chemical Oxygen Demand	(mg/L)	and Missouri	533333	999999	999999	000000	666666	666666	886666	666666	888888	888888 888888	ö	666666	666666	66666	88888	55555	000000	666666	686666	666666	666666	-	666666	666666	000000	666666	666666	666666	55555	666666	666666	n n n n n	under Johns	666666	666666	666666	000000	66666	666666	666666	666666	888888	888888	
Diss. Oxygen Saturation	(% sat)	Iman POTW	96.3	80	93.8		93,2	137.2	109.1	133	101.8 8.10.1	140.5	Creek near border (at culvert at upstream end	5.5	50.2	35,55	2.63 8.63	61.6	52.4	38.9	45.3	32.3	23.3	(just past intersection of Johnson	102.5	85.5		96.3	92.2	108	108.2	101.9	168.4	\$	creek crosses	93.4	80.5	5 C	93.8	89,68	119.5	13.1	106.7	93.8 102.8	98.6	
cology's mor Dissolved Oxygen S	(mg/L)	ı (above Pul	10.5	O) ;	τ, ξ	2 5	10.3	15.8	10,3	11.7	တင့	12,3	order (at cu	0.5	, 5, 5,	۲.0 د د		φ α Φ -	- cu	e, 4	4,0	.γ. ⊿ 20 0	20.0	y (just past	11.3	10.7	2 6	12.3	10.4	12.8	9	9.2	4 0 6	<u>.</u>	uth (where c	10.2	- 0	5.01 E.01 R.01	5.1	9.0	13.6	10.5	Q 0	o co	6.7	
data from Ec Cond- C uctivity (um/cm	@25C)	e at Pullmar	645	388	5 5 12 13	394	372	425	418	493	484	2/0 260	Creek near b	795	308	280	590	200	920	610	548	202	730	e near Busby	37.1	311	280	83	303	796 267	330	400	276	- - -	Creek at Mouth (where	700	655	0 0 0 0 0	285	465	605	220	515 C	066666	620	
ater quality of Temp- erature	(deg C)	, SF Palous	8.5	O C	n a	a o	7.4	6.2	14.6	17.9	0 0 0 0 0	13.2	Paradise	16.8	8 0 !	10.3	n c		12.2	18	19.4	5 C 4. 4	19.2), SF Palouse	89	o o Ci +		1.7	9,6	π ο ο	5 5 5	16.7	0 0 9 9	2), Paradise (8,4	(Q) •	1. D 4	4.6	8.7	6.6	<u>ත්</u> ස	17.8 8.71	17.6	5	
Appendix C. Water quality data from Ecology's monthly ambient monitoring River Temp- Cond- Dissolved Diss. Chemical Mile erature uctivity Cxygen Cxygen Cxygen (um/cm Saturation Demand		Station 34B110, SF Palouse at Pullman (above Pullman POTW	22.2	27.62	2, 50 20 20 20 20 20 20 20 20 20 20 20 20 20	22.2	22.2	22.2	22.2	22:2	22.2	25 ZZ 25 ZZ 26 ZZ 27 ZZ	Station 34C100,	5.8		ສວ ດ ສວ ດ	ໝູ່ ໝູ່ ໝູ່ ໝູ່	ວ່ແ	. R. R.	5.8	rci i	ກ ທ່າດ ໝົວ		Station 34B140,	25.8	25.8	25.8	25.8	25.8	5, K	25.8	25.8	25.8 25.8 8.9		Station 34C060, Paradise	0.1	0 0	- -	0 0	0.1	0.1	0.1	0 0	- -	0.1	

APPENDIX D

Pullman POTW monitoring data of the S.F. Palouse River

Zhh	CHUIX D.	1 (1)111	IAII VVIT IIIU	illoring data	nom ale o.i .	i aiouse i	NVGI.			
			UPSTREAM	STATION:			DOWNSTR	EAM STATIC	DN:	
			Temp-	Dissolved		Total	Temp-	Dissolved		Total
Yr	Mo Day	Time	erature	Oxygen	pН	NH3-N	erature	Oxygen	рH	NH3-N
	,		(deg C)	(mg/L)	(S.Ü.)	(mgN/L)	(deg C)	(mg/L)	(S.U.)	(mgN/L)
	***				3			\		
90	5 21	930	12.5		7.0	0.25	145		6.9	0.43
90	5 21	1500	18.5		7.7	0.23	19.0		7.4	0.32
90	5 29	900	14.2		6.9	0.28	14.5		6.8	0.28
90	5 29	1500	151		7 3	0.82	15.2		7.1	0.73
90	6 6	915	16.0		67	0.25	15.5		68	0.25
90	6 6	1530	16.3		70	0.25	18.5		6.9	0.32
90	6 14	1000 1500	14.5 18.0		7 1 7 1	0.17 0.17	15.5 18.0		7.2 7.1	0.15 0.13
90 90	6 14 6 18	1000	17.2		7.0	0.17	18.0		6.9	0.13
90	6 18	1500	22.8		7.3	0.13	22.0		7.2	0.11
90	6 26	1045	21.5		75	0.13	21.7		7.4	0.17
90	6 26	1500	14.8		79	0.11	24.5		77	0.23
90	7 6	1030	18.0		7.6	0 28	18.8		73	0.85
90	7 5	1500	21 1		8.1	0.15	21.9		78	0 75
90	7 12	1000	18.0	7.2	7.3	0 46	18.3	8.8	72	0.25
90	7 16	1100	1.6.8	9.0	7.3	0 46	18.9	10.1	7.3	1.05
90	7 16	1430	20.9	9.4	76	0.25	20.8	10.1	73	0.25
90	7 20	1000	15.6	8.8	8.2	0.23	17.6 22.0	10.6	8.0 7.5	0.34 0.30
90 90	7 20 7 24	1500 1245	20.8 18.7	11.6 7.7	7 6 7 4	0.51 1.53	20.0	13.6 10.0	7.5 7.4	0.30
90	7 24	1500	20.0	10.2	7.4	0.30	21.1	10.5	7.5	048
90	7 28	950	18.1	8.3	7 6 7 6	0 13	203	9 1	7.4	0.17
90	7 28	1440	23.5	11.6	7.9	0 28	24.0	11.7	76	0.15
90	8 1	1100	20.0	7.1	7.4	0.32	22.0	10.3	73	0.28
90	8 1	1515	24.0	10.6	8.2	0.32	24.1	11.0	7.6	0.28
90	8 5	1000	18.8	8.0	7.8	0.08	21.0	8.9	7.5	80.0
90	8 5	1430	24.0	13.0	8 4	0.15	25.0	13.1	8.1	0.13
90	8 9	1045	20.9	8.7	77	0.21	22.0	9.7	7.3	0.30
90	8 9	1515	23.0	11.4	8 1	0.06	22.6	9.2	74	0.11
90 90	8 13 8 13	1100 1430	20.3 24.0	9 2 10.5	7.7 8.3	0 19 0 17	22 2 24.5	10.8 12.8	7.5 7.8	0.23 0.25
90		1030	17.2	10.3	7.6	0 09	20.5	10.0	7.8 7.2	0.23
90	8 17		18.5	12.2	7.9	0.09	21.5	11 2	7.3	0.61
90	8 21		16.2	8.9	7.4	0.32	18.3	8.8	7.1	0.39
90		1430	19.0	11.0	78	0.17	20.0	10.9		0.82
90	8 25	1030	16.0	7.9	79	0.21	19.0	7.4		0.32
90	8 25		19.0	12 7	8.4	0.30	20.7	11.0	7 8	0.61
90	8 29		17.2	13.0	8.4	0.21	21.0	11.2	7.7	0.59
90	8 29		20.8	16.6	9.0	0.21	22.1	12.5	8.4 7.8	0 43
90		1100	16.1	12.3	8.4	0.36	20.3			0.43
90		1430 1015	19.9 17.8	8.6 11.0	8.4 8.2	0.06 0.21	22.0 21.2	13.8 10.4	8.4 7.8	0.21 0.28
90 90	96		17.8 22.5	14.2	8.7	0.17	23.5	12.0	7o 82	0.28
90	9 10		19.0	8.0	8.2	0.32	21.1	10.8	7.8	0.32
90	9 10		21 9	14.6	88	0.11	23.8	12.0	8.0	0.15
90	9 14		12.8	83	88	0.05	15.9	8.0	8.4	0.05
90	9 14	1445	17 0	13 2	8.6	0 05	21 2	10.6	8 3	0.05
90	9 18		14.7	7.0	8.4	0 05	19.0	9.5	7.6	0.05
90	9 18		17.3	13.9	8.6	0.05	20 9	10.9	7.6	0 05
90	9 22		13.8	94	8.0	0 05	19.8	9.0	7.6	0.05
90	9 22		16.8	13.6	8.6	0.05	21.2	10.9	7.6	0.05
90	9 26		15.1 17.0	8.7	8.0	0.05	19.9	8.6 10.3	7.6 7.7	0.05
90	9 26	1430	17.0	12.4	8.5	0.11	20.5	102	7.7	0.10

App	end	IX D:	Pullm	nan WTP moi	nitoring data	rrom the S.F.	raiouse F	niver.		··········	. 1
				UPSTREAM	STATION:			DOWNSTR	EAM STATIO	N:	
				Temp-	Dissolved		Total	Temp-	Dissolved		Total
Yr	Мо	Dav	Time	erature	Oxygen	pН	NH3-N	erature	Oxygen	pН	NH3-N
		•		(deg C)	(mg/L)	(S.U.)	(mgN/L)	(deg C)	(mg/L)	(S.U.)	(mgN/L)
90	9		1040	12 4	9.2	8.0	0.05	18 7	9.5	7.4	0.05
90			1500	15 9	15 0	8.8	0.05	20.7	10.8	7.6	0.05
90			1100	17.9	10.4	8.1	0.05	17.4	8.8	7.8	0.05
90			1500	15.1	13.2	8.4	0.15	19.0	10.3	. 7.5	0.05
	10		1045	6.5	12.3	8.2	0.05	13.9	10.1	7.6 7.8	0.32 0.33
90			1500	9.7	14.8	8.6	0.05 0.05	15.5 14.8	11.4 8.4	76 76	0.33
90			1030	9.8 11.2	9.0 12.6	77 82	0.05	15.4	9.6	70 74	0.40
90			1445 1015	9.7	9.5	7.6	0.35	13.4	8.4	7.2	0.22
90 90		16 16	1430	11.0	11.9	7.8	0.33	15.0	9.2	7.2	0.54
90			1000	6.1	10.1	8.3	0.05	11.5	9 2	7.6	0 05
90			1400	8.3	12.5	8.4	0 11	13.2	102	7.6	0 12
90			1020	7.5	9.7	7.6	0 16	12.8	8.6	7.4	0.20
90		24	1445	10.0	9.9	7.7	0.20	14.0	9.2	7.3	0 56
	10		1045	13.2	88	7.6	0.05	18.3	8.0	7.4	0.05
	10		1405	13.7	10.6	7.9	0.05	19.8	9.4	7.4	0.05
90	11	1	1030	80	9.6	7.6	0.34	11.5	8 3	70	0.38
90	11	1	1445	8.2	90	7.7	0.05	11.5	8.2	72	0 93
	11	5	1030	6.4	10.8	8.2	0 25	9.5	9.1	7.7	0 65
	11		1430	6.8	10.2	78	0.24	9.2	9.5	7.4	1 20
90			1015	8.9	96	7.6	0.05	12.5	8.2	7.3	0 18
90			1430	90	9.4	8.2	0.11	12.3	8 1	7.5	1 70
90	11		1030	8.5	9.2	79	0.05	13.1	77	7.3	0.44
90			1430	90	9.0	8.2	0.14 0.55	12.6 11.6	8.0 8.9	. 75 73	2.40 0.30
90	11	17	1125	5 8 6.5	11 5 11.3	7 8 7 8	0.55	11.0	8.8	73 72	1.40
90 90		17 21	1455 1000	4.0	10.2	7.6 7.6	0.74	78	9.8	7.4	0.44
90		21	1440	5.0	10.2	7.6	0.31	6.8	9.7	7.2	0.28
90		25	1045	8.7	10.0	7.3	0.25	9.0	9.2	7.2	0.19
90	11	25	1400	7.8	9.7	7.2	0.26	83	9.5	7.0	0.26
90	11	29	1030	4.0	11.0	7.6	0.40	7.5	9.4	7.3	0.23
	11		1430	4.8	10.5	7.8	0.26	74	9.1	7.4	1.30
90			1030	2.9	12.2	7.7	0.37	6.5	10.6	76	0.26
	12	3	1445	3.8	11.2	7.7	0.42	6.9	10.2	76	1.22
90	12	7	1030	2.0	11.6	7.8	0.48	60	10.0	7.5	0.24
	12		1430	3.1	11.0	7.7	0.65	6.0	9.6	73	1.54
	12		1045	4.2	10.7	7.6	0.39	5.5	10.3	7.4	0.29
	12		1445	4.5	10.8	7.7	0.31	5.1	10.7	7.4	0.54
	12		1030	1.4	11.9	7.8	0.95	5.9	9.5	7.5	0.59
			1345	1.8	12.6	7.8	0.63	5.2	9.4	7.6	0.53
			1215	0.5	13.0	7.8	1.02	3.8 3.1	11.0 10.8	7.5 7.8	0.73 1.10
			1500	0.4 EDOZENI	12.1	8.1	1.01	3.1 4.7	10.5	78 73	0.84
				FROZEN FROZEN				3.9	11.1	75 75	0.79
			1000	0.7	11.2	7.5	0.29	4.0	10.2	7.4	0.24
			1425	0.7	11.6	7.4	0.40	3.5	10.1	7.2	0.23
	12			FROZEN	110	<i>1</i> . ₹	0.40	3.1	11.2	7.4	0.20
	12			FROZEN		-		3.3	11.1	7.6	0.42
91	1		1020	10	12.3	76	0 18	3.2	11.0	7.6	0.14
91	. 1		1500	09	11.9	8.0	0 32	3.1	11.0	7.6	0.68
91	1		1015	18	12.4	76	0 31	4.0	11.1	7.4	0.43
91	1		1500	22	12.3	8 0	0 30	4.0	11.0	7.8	0.65
91	1	12	1040	12	12.2	7.6	0 86	1 8	11.8	7.5	0.80

App	Jenu	Xυ.	Fulli	Tall VV IF IIIU	nitoring data	TOTAL LITE S.1	, i alouse i	uvei.			
				UPSTREAM	STATION:			DOWNSTR	EAM STATIO	ON:	
				T	Disabled		Tatal	Tomn	Dispolued		Total
\ \/-	Ma	Dav.	Tima	Temp- erature	Dissolved	ъЫ	Total NH3-N	Temp- erature	Dissolved Oxygen	рH	Total NH3-N
YI	IVIO	Day	Time	(deg C)	Oxygen (mg/L)	pH (S.U.)	(mgN/L)	(deg C)	(mg/L)	(S.U.)	(mgN/L)
				(ueg c)	(1119/12)	(0.0.)	(mgiv/L)	(ucg c)	(1119/2)	(0.0.)	(mgrv/L)
91	1	12	1515	03	12.2	7.3	0.50	0.6	12.0	72	0.59
91	1		1020	0.8	13.4	7.4	0.24	09	13.0	76	0.36
91	1		1445	1.5	12.7	7.4	0.19	19	12.6	7.2	0.36
91	1	20	1015	0.1	13.4	7.5	0.31	12	12.6	7 4	0 28
91	1		1245	0.9	13.2	7.3	0.27	19	126	7.4	0 24
91	1		1000	1.0	12.6	7.7	0.80	28	12.0	7.3	0 61
91	1	24	1500	1.5	12.9	7.7	0.68	3 0 3 3	12 2 11 5	7.6 7.4	0.66 0.93
91	1	28	1030	1.0 1.2	12.7 11.5	7.7 7.7	1.10 0.90	3.1	11.2	7. 4 7.5	1 75
91 91	1 2	28 1	1430 1020	2.5	12.3	7.7	1.10	5.0	11.0	7.5 7.5	0.76
91	2	1	1500	3.0	11.0	7.8	1.28	5.2	10.4	7.8	2.20
91	2		1020	31	12.6	7.2	0.28	3.7	12.0	7.1	0.26
91	2		1315	4.7	11.6	7.1	0.24	4.5	11.5	7.3	0.26
91	2		1110	3 9	12.8	7.3	0.41	51	11.8	7.5	0.44
91	2	9	1315	5.1	12.4	70	0.27	59	11.8	7.3	0.34
91	2	13	1015	5.0	12.0	76	0.35	60	11.1	7.5	0.28
91			1500	4.9	10.8	7.5	0 41	6.4	10.7	7.5	0.73
91			1045	3.8	12.3	7.5	0 32	5.3	11.7	7.6	0.27
91		17	1410	5.8	12.3	7.4	0.30	6.2	11.6	7.2	0.32
91		21	1030	6.0	11.8	7.6	0.23	6.5 8.0	11.2 10.4	7.6 7.6	0.22 0.27
91		21 25	1500 1100	73 5.3	10.6 12.5	7 4 7 2	0.27 0.51	60	11.8	7.6 7.2	0.49
91 91	2		1450	7.0	11.6	7	0.48	80	11.1	74	0.79
91	3	1	1030	5.1	11:6	7.5 7.5	0.58	60	10.8	7.2	0.50
91	3	i	1515	6.0	10.6	7.9	0.85	6.3	10.8	7.9	1.30
91	3		1045	3.0	12.8	7.2	0.27	3.1	12.2	7.2	0.28
91	3	5	1300	4.1	122	7.5	0.23	4.1	11.8	7.4	0.40
91	3		1045	5.2	12.0	7.8	0.28	5.8	11.5	7.5	0.24
91	3		1415	6.3	11.6	7.5	0.19	6.3	11.2	7.4	0.18
91			1000	4.1	11 8	74	0.31	4.9	11.4	7.4	0.26
91			1445	5.8	11.4	73	0.20	6.0	11.3	7.2	0.37
91			1045	6.1	11.6	7 6	0.18	6.5	11.5	7.8	0.15
91			1450	8.8	108	77 76	0.05	8.9	10.7 11.0	7.8 7.6	0.05 0.05
91			1030 1500	9.0 8.0	10.8 10.9	76 77	0.15 0.12	6.3 8.1	10.6	7.6 7.6	0.03
91 91			1030	4.5	12.2	7.7	0.12	5.5	11.4	7.6	0.59
91			1300	5.8	11.8	78	0.05	6.1	116	7.6	1.22
91			1030	5.5	13.0	80	0.34	6.8	12.0	7.8	0.32
91			1500	86	12.1	8.1	0.18	9.0	11.8	8.0	0.72
91	4	2	1020	10.5	12.6	8.0	0.33	11.8	11.9	7.4	031
91	4		1500		13.2	8.6	0.19	12.0	12.8	8.3	085
91	4		1115	7.9	12.4	7.7	0.14	9.0	11.8	7.4	0.18
91	4		1450	108	12.1	8.0	0.12	11.2	11.8	7.7	0 23
91			1030	4.2	11.8	7.5	0.35	5.6	11.2	72	0 30
91			1515	6.0	11 1	7.6	0.28 0.13	7 0 11.1	11.2 12.8	7.4 8.0	0 58 0.12
91 91			1130 1440	10.3 12.9	13 3 13 6	8.4 8.8	0.13	13.7	12.8	8.5	0.12
91			1230	11.4	14.2	8.4	0.41	12.9	14.2	8.0	0.00
91			1520	14.5	13.4	8.8	0.39	14.8	13.4	8.6	0.23
91			1015	12.9	12.0	8.4	0.38	14.0	11.7	7.9	0.41
91			1315	17.2	13.1	8.8	0.14	17.6	13.0	8.6	0.72
91	4	26	1040	9.5	13.2	8 1	0.19	11.1	12.6	7.8	0.16
91	4	26	1440	11.5	12.9	8.3	0 05	12.8	13 0	8.2	0.81

App	endix D	: Pulln	nan WTP moi	nitoring data	from the S.F.	Palouse F	River.			 1
			UPSTREAM	STATION:			DOWNSTR	EAM STATIO	ON:	
			Temp-	Dissolved		Total	Temp-	Dissolved		Total
Yr	Mo Da	/ Time	•	Oxygen	pН	NH3-N	erature	Oxygen	pН	NH3-N
		•	(deg C)	(mg/L)	(S.Ü.)	(mgN/L)	(deg C)	(mg/L)	(S.U.)	(mgN/L)
						0.40	44.0	40.4	7 7	0.00
91	4 30		99	13.7	8.1	0.42	11 8	12.1	7.7	0.25 0.93
91	4 30		13.8	13.4	8.6	0.11	14 8 13 9	14.0 13.1	8.4 8.2	0.93
91	5 4		13.6	14.7 15.6	8.4 8.9	0.41 0.39	15.6	15.1	8.6	0.13
91 91	5 4 5 8			8.9	7.8	0.64	11.5	8.7	7.4	0.45
91	5 8		13.0	8.6	7.3	0.58	11.7	8.5	7.2	0.54
91	5 12			11.8	8.0	0.33	13.7	11.6	7.8	0.15
91	5 12		13.3	11.2	8.2	0.26	14.8	10.6	8.0	005
91	5 16			10.2	7.7	0.05	14.9	10.4	7.8	0.05
91	5 16		17 1	12.8	8.6	0.05	17.3	13.4	8.4	0.05
91	5 20		11.1	10.4	7.5	0.13	11.6	9.7	7.6	0.12
91	5 20		15.0	10.0	7.5	0.11	14.8	8.5	7.5	0.05
91	5 24		13.8	9.5	7.6	0.05	14.0	9.4 9.2	7.6 7.9	0.05 0.49
91	5 24		162	8.9	8.0	0.12 0.11	16.7 13.3	9.2 8.5	7.9 7.2	0.49
91	5 28		12.5 16.2	90 86	7.0 7.4	0.11	16.2	8.5	7.4	0.16
91 91	5 28 6 1			10.2	7.9	0.12	15.9	10.0	7.8	0.18
91	6 1		19.0	. 9.6	8.2	0.05	18.6	9.6	7.9	0.05
91	6 5			8.8	7.5	0.13	14 0	8.7	7.5	005
91	6 5		13.1	9.1	8.0	0.05	13.8	8.5	76	0.76
91	6 9		14.5	8.9	7.9	0.05	15.4	9.0	7 7	0.05
91	6 9		18.8	8.8	7.9	0.05	17 8	8.9	7.5	005
91	6 13			9.2	7.6	0.05	14.0	9 0	7.4	0.05
91	6 13		14.0	9.1	7.9	0.05	14 9	9.0	77	0.05
91	6 17		14.1	9.8	7.9	0.05	154	9.6	78 70	0.05 0.27
91	6 17		18.0	9.4	8. 1 7.6	0 10 0 30	19 0 14 2	9.6 8.5	7.8 7.4	0.27
91	6 21 6 21	1100 1500	13.6 16.0	8.9 8.3	7.0 7.7	0.30	16.2	8.3	7.6	0.24
91 91	6 21 6 25		16.9	8.7	7.8	0.11	17.5	8.5	76	0.11
91	6 25		20.0		8.0	0.16	20.0	8.5	7.7	080
91	6 29		17.5	7.6	7.8	0.12	18.3	8.3	7.7	005
91	6 29		16.9	7.4	77	0.05	17.1	8.1	7.7	005
91		1130	21.4	95	78	0.05	12.9	9.4	7.4	0.05
91	7 3		21.6	8.6	7.8	0.05	16.9	9.4	7.4	1.55
91	7 7	1145		110	7.9	0.05	20 6	13.5	7.8	0.05
91		1500	23.4	11.6	8.0	0.05	195	14.4	7.8	0.05
91	7 11		19.1	11.1	8.2	0.11	20.5	12.4	7.8	0.14 0.15
91	7 11		23.3	12.4	8.2	0.05	23 8	13.0 11.0	8.0 7.7	015
91	7 15		18 9	10.3 12.4	7.8 8.1	0.05 0.15	20.3 21.9	11.8	77 76	0.05
91 91	7 15	1445 1040	21.8 17.1	10.0	7.6	0.15	19.1	10.9	74	0.05
91	7 19		22.5	12.2	7.9	0.05	23.0	13.4	7.7	0.05
91	7 23			9.7	8.0	0.05	22.0	11.1	8.0	005
91	7 23		25.9	11.4	7.9	0.05	25.2	12.2	7.7	005
91	7 27		18.3	10.4	7.9	0.05	21.0	11.0	7.8	0.05
91	7 27	1315	21.6	10.7	8.0	0.05	23.0	11.8	7.7	0.05
91	7 31		19.5	9.5	7.8	0.05	21.5	10.2	7.6	0.05
91	7 31		24.1	12.2	8.0	0 05	24.8	11.7	7.6	0.05
91	8 4			9.7	7.9	0 14	21.8	10.0	7.7	0.05
91	8 4		24 5	11.4	8.1	0.05	25.1	11.2 8.5	7 6 7 1	0.19 0.05
91	8 8	1000 1500		8.0 10.4	7 5 8 0	0.05 0.05	21.5 25.0	10.8	7 7	0.05
91 91		1110	24 Z 16 4	9.6	7.9	0 05	19.9	9.9	74	0.05
91	0 12		10 7	0.0	, ,		,			

Appendix D: Pullman WTP monitoring data from the S.F. Palouse River.

_\bh	ienaix D.	ruiiii	an wir moi	nitoring data	Hom the S.i.	r alouse i	11761.			
			UPSTREAM	STATION:			DOWNSTR	EAM STATIO	ON:	
			Temp-	Dissolved		Total	Temp-	Dissolved		Total
Yr	Mo Day	Time	erature	Oxygen	pН	NH3-N	erature	Oxygen	pН	NH3-N
			(deg C)	(mg/L)	(S.U.)	(mgN/L)	(deg C)	(mg/L)	(S.U.)	(mgN/L)
91	8 12	1500	19.3	11.2	8.2	005	22.0	11 2	76	0.05
91	8 16	1000	18.1	7.6	7.6	0.15	18.0	78	7.2	0.05
91	8 16	1330	20.9	11.8	81	005	21.1	107	7.2	0.05
91	8 20	1050	19.1	8 7	8.0	0 13	21.8	9.7	76	0.11
91	8 20	1515	23.5	10.4	8.3	0 05	24.1	10.6	7.8	0.05
91	8 24	1100	16.9	9.7	8.0	0 11 0.26	18.4 21.7	9.1 10.6	7.2 7.6	0.11 0.20
91	8 24 8 28	1350 1100	19.4 16.8	10.7 8.8	8.0 7.8	0.28	20.0	9.2	72	0.20
91 91	8 28	1500	18.5	10.7	8.2	0.15	21.0	10.1	77	0.11
91	9 1	1140	16.0	9.3	78	0.27	19.2	8.7	75	0.05
91	9 1	1515	13.9	11.5	8.0	0.20	20.3	10.6	72	0.25
91	9 5	1045	13.5	5.5	8.0	0.05	20.0	8.7	7.5	0.17
91		1515	19 5	11.4	8.1	0.05	22 2	9.6	7.7	1.22
91	9 9	1045	13 0	10.0	8.0	0.12	179	9.1	7 6 7 7	0.13 0.05
91	9 9	1500	15.8 13.9	11.1 8.7	8 3 7.9	0.05 0.11	19.0 18 1	9.9 7.4	7 7 7 6	0.05
91 91	9 13 9 13	1045 1445	15.9	11.3	8.1	0.05	19.1	9.6	73	0.13
91	9 17	1100	13.0	103	8.0	0.05	18.0	9.3	73	0.11
91	9 17	1430	16.1	11.6	8.1	0.05	20.0	11.0	73	005
91	9 21	915	11.0	89	8.0	0.05	15.5	8.4	7 4	0.05
91	9 21	1330	14.1	83	8.1	005	18.0	10.1	7.5	0.05
91	9 25	1100	11.8	10.2	7.6	0.05	17.5	8.9	7.5	0.05
91	9 25	1430	14.8	12.0	8.3	0.05	19.5	10.4 8.9	7 6 7.5	0.05 0.05
91 91		1115 1430	12.5 14.3	10.2 11.0	8.0 8.4	0.11 0.05	17.7 19.0	9.4	7.5 7.6	0.03
91		1100	9.9	9.2	8.0	0.03	16.0	8.3	7.5	0 05
		1500	12.1	12.4	8.2	0.05	17.0	10.4	7.5	0.05
91	10 7	1000	76	9.5	77	2 31	14.9	78	6.9	1.00
91	10 7	1300	9.3	10.2	7.6	2 59	16.1	8.6	7.1	0.98
91	10 11	915	8.5	8.7	78	1 59	15.9	7.3	7.3	0 66
91	10 11	1500	11 2	12.4	7.9	1 52	16.1	9.8 8.3	7.1 7.3	0.76 0.15
	10 15		8 7 11.5	9.0 12.6	78 79	0.29 0.21	15.5 16.7	10.2	7.3 6.9	0.13
	10 15 10 19		8.0	103	7 9 7 9	0.21	14.6	8.7	7.5	0.11
	10 19		12.1	126	7.8	0.19	16.8	9.9	7.5	0.05
	10 23	900	6.1	86	77	0.16	14.0	68	7.4	0.12
	10 23		7.7	10.6	8.0	0.05	12.5	8.8	7.6	0.05
	10 27		6.0	9.7	7.4	0 63	10.6	8.2	6.8	0.39
	10 27		6.1	8.8	7.5	0.84	10.0	7.9	6.9	0.60
	10 31	900	3.5	9.2	7.8	1.13	9.9	7.8 7.9	7.5 7.6	0.50 0.60
	10 31 11 4	1445 1045	5.1 4.0	87 94	7.9 7.8	0.57 0.54	9.1 10.0	7.9 8.2	7.8 7.3	0.00
		1500	5.4	9.4	7.8 7.8	0.28	8.9	8.8	7.6	0.30
	11 8	910	7.5	8 9	7.6	0.28	11.8	7.5	7.2	0.14
		1440	8.1	97	7.6	0.46	12.2	8.3	7.1	0.20
	11 12	1015	8.9	8.4	7.7	0.27	12.3	72	7.3	0.14
		1430	9.8	8.8	8.0	0.19	13.0	8.0	7.8	0.19
		1016	3.5	10.0	7.9	0.15	10.0	83	7.0	0.05
		1400	4.0	9,6 12,1	8.0 7.6	0.14 0.46	10.0 8.1	8.1 10.2	7.7 7.2	0.13 0.25
	11 20 11 20		57 65	10.9	7.6 7.6	1.30	80	8.8	7.2 7.5	0.25
	11 24		4.0	11.0	7.5 7.5	0.60	6.8	10.0	7.0	025
	11 24		4.0	8.2	7.2	0.34	7.0	8.0	7.4	0.33

Appendix D: Pullman WTP monitoring data from the S.F. Palouse River.

Appendix D. F	ullman with mo	THOTHIY data	ion the Sa .	i diouse i	HVCI.			
	LIDOTDEAL	A STATION:			DOM/NSTRI	EAM STATION	M·	
	UPSTREAM	VISTATION.			DOWNSHI		٧.	
	Tomn	Dissolved		Total	Temp-	Dissolved		Total
V. Ma Day Ti	Temp- ime erature	Oxygen	pН	NH3-N	erature	Oxygen	рН	NH3-N
Yr Mo Day Ti			(S.U.)	(mgN/L)	(deg C)	(mg/L)	(S.U.)	(mgN/L)
	(deg C)	(mg/L)	(3.0.)	(mgiv/L)	(deg C)	(IIIg/L)	(0.0.)	(mgrv,c)
04 44 00 46	015 0.7	12.3	7.8	0.16	3.3	11.2	7.4	0 15
	015 2.7	13.1	7.6 7.4	0.10	3.9	11.4	7 . 7	0.21
	230 2.9		7.4 7.8	0.33	6.1	11.4	7.6	0.33
	100 3.1	13.4	7.8 7.8	0.12	61	6.9	7.5 7.5	0.47
	510 4.0	8.7	7.0 7.7	0.15	71	9.0	7.4	0.56
	045 6.0	11.2	7.7 7.6	0.90	7.4	7.9	7.2	0.90
	445 6.1	7.3 10.8	7.7 7.7	0.60	5.2	12.0	7.4	0.46
	030 2.6		7.7 7.6	0.30	5.0	9.5	7.2	0.25
	500 2.9	9.6	7.6 7.4	0.17	5.0	8.5	6.9	0.45
	000 1.0	9.9	7 4 7 5	0.36	5.5	7.7	6.9	0.90
	315 0.0	7.8	7 5 7 5	0.60	5.0	8.6	7.2	0.59
	030 2.0	9.5		0.88	6.0	9:8	76	0.52
	500 2.3	12.4	79 80	0.58	5.0	9.2	7	0.32
	015 1.5	10.2	80		5.0	8.1	71	0.29
91 12 22 14		8.7	76 75	0 41	4 9	9.5	7.1	0.23
	045 1.0	12.7	7.5	0 11	3.9	9.5 8.8	7.2	0.11
	500 2.0	91	7.6	0.15		11.7	7.5	0.15
	050 2.0	13.6	7.3	0.05	4.5	10.6	78 78	0.05
	445 3.0	10.6	8.0	0 05	5.0	10.5	76 76	0.05
	000 0.9	11.6	7.9	0.05	3.0	9.2	7.0 7.4	0.03
	445 1.5	10.0	7.4	0.05	3.1	103	7.4 7.5	0.44
	015 1.8	11.2	8.0	0.05	4.0	89	7.8 7.8	0.03
	500 2.0	9.5	8.1	0.05	3.8 4.0	8.9	7.5	0.70
	015 1.0	91	7.4	0.05 0.05	3.0	7.2	7.2	0.23
	445 1.8	8.9	7.6 7.6	0.03	6.1	8.0	7.1	0.29
	010 2.0	9 6 12.2	7.8 8.0	0.30	61	9.8	7.8	0.41
	445 3.0° 010 0.0	8.9	7.2	0.13	4.0	74	7.1	0.10
		8.0	7.9	0.13	4.5	7.3	7.5	0.05
	430 1 0		7. 3 7.4	0.13	3.0	8.7	7.2	0.22
	040 11	10.4	7.4 7.5	0.39	3.0	8.6	7.4	0.36
	500 1.8	9.7	7.5 7.5	0.33	4.0	8.6	72	0.18
	015 2.0	12.6 13.8	7.5 7.6	0.23	4.0	10.5	76	0.59
92 1 27 15			7.6 7.5	0.23	5.2	8.6	74	0.20
92 1 31 10		10.4		0.15	5 1	9.0	7.1	0.64
92 1 31 15		9.7	7.2 7.6		5.1 4.1	9.0 9.4	71	0.56
92 2 4 10		10.8 9.7	7 6 7 5	0.87	5.0	9.4 8.7	76	1.35
92 2 4 14			7 5 7 2	0.34	4.9	9.3	7.0 7.1	0.31
92 2 8 10		10.6	7 Z 7 1	0.50	5.1	88	7.0	0.35
92 2 8 14		8.6 10.4	71	0.50	6.2	8.7	6.9	0.53
92 2 12 10		10.4	7 3 8 0	0.78	8.0	9.4	7.7	0.54
92 2 12 15			72	0.88	5.5	9.4	7.0	0.39
92 2 16 10		9.6		0.05	6.9		7.0	0.05
92 2 16 13		9.5	7.4 7.9	0.05	4.5	92	7.3	0.20
92 2 20 10		11.0	7.2 7.1	0.25	4.5	96 94	7.2	0.16
92 2 20 14		10.6	7.1		5.1	9.4 8.3	7.2	0.14
92 2 24 10		9.0	7.4 7.9	0 14 0.10	5.1 5.8	8.1	7.6	0.14
92 2 24 15		8.1	7.8 7.6	0.10	7.0	89	7.0	0.25
92 2 28 10		10.0	7.6 7.4	0.28	7.0	8.7	7.0	0.52
92 2 28 14	430 6.9	9.2	7.4	U23	1.2	0.1	7.0	0.02

APPENDIX E

Summary of Pullman POTW effluent quality during 1989-1991

Appendix E: Pullman WTP effluent ammonia concentrations during 1989-91.

						
		Monthly	Number of	Monthly	Monthly	Monthly
	Monthly	Average	Effluent	Average	Std Dev	CV
	•	Influent	Ammonia	Effluent	Effluent	Effluent
	Average			Ammonia	Ammonia	Ammonia
* 4 (1)	Flow	Temp	Samples	Ammonia	Ammonia	Ammonia
Month	((d = = 0)		/mah!/L\	/maN/L)	
	(mgd)	(deg C)		(mgN/L)	(mgN/L)	
JAN-91	3.38	9.7	31	2.02	1.86	0.920
FEB	3.15	13.8	28	1.30	1.01	0.776
MAR	3.11	13.4	31	165	1,50	0.910
APR	3.04	156	30	1.16	0,88	0.758
MAY	2.52	16.5	31	0.47	0.70	1491
JUN	2.07	17.6	30	0.53	0.91	1705
JUL	1.99	19.7	31	0.30	0.57	1920
AUG	2.31	21.3	31	0.24	0.39	1.621
SEP	2.91	21.2	30	0.18	0.14	0.812
		20.0	31	0.17	0.12	0,685
OCT	2.79		30	0.17	0.15	0.849
NOV	2.75	16.8	31	0.18	0.13	1,343
DEC	2.55	14.9	31	0.67	0.90	1,040
JAN-90	3.08	11.2	31	5.36	4.61	0.861
FEB	3.48	11.3	28	1.73	1.77	1.022
MAR	2.77	12.0	31	1.12	1.13	1.010
APR	3.11	14.1	30	0.80	0,63	0.786
MAY	2.49	14.3	31	0.41	023	0.556
JUN	2.15	14.9	30	0.26	0.11	0.443
JUL	1.96	17.3	31	0.51	0.53	1.039
AUG	2.31	18.4	31	0.79	0.55	0.700
SEP	2 95	18.2	30	0.27	0.21	0.756
OCT	2.89	16.3	31	0.65	0.63	0.967
NOV	2.93	13.5	30	1.55	1.26	0.811
DEC	2.82	10.9	31	0.60	0.53	0877
			_		4 == 4	4 004
JAN-89	3,35	14.2	7	1.60	1.74	1084
FEB	3,38	15.1	7	1.17	1.64	1.399
MAR	3,63	12.7	8	2.06	2.20	1.064
APR	3.27	15.8	26	2.67	2.50	0.937
MAY	2.26	17.7	31	0.89	1.41	1581
JUN	1.98	19.0	30	2.36	467	1.980
JUL	186	20.7	31	1.55	3,52	2.274
AUG	2.32	21.6	31	0.12	0.02	0.197
SEP	2.90	21.0	30	0,29	0.17	0.564
OCT	2.91	18.9	31	0.22	0,20	0.910
NOV	2.66	16.0	29	130	1.87	1.437
DEC	2.65	13.9	31	3.74	3.72	0.994
DEO	۵					

APPENDIX F

Detailed calculations of WLAs and permit limits for Pullman and Albion POTWs

	A: Monthly Permit Limits									B: Semi-A Limits				
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Apr-Oct	
INPUT FOR ECOLOGY STATION 34B110 DATA					F=======							=======================================		********
i. Sample Ambient Temperature (seasonal 90%tile)	3.64	6.86	9.10	14.00	18.60	20.70	21.57	21.40	16.30	13.70	8.76	5.80	20.46	8.70
2. Sample Ambient pH (seasonai 90%tile)	8.12	8,03	7.90	6.80	8.90	9.14	8.69	8.70	8,60	8.50	8.24	8.01	8.60	6.2
INPUT FOR ADJUSTMENT OF ECOLOGY STATION 34B110 DATA TO PRED	ICT PULLMAN WTI	MIXING Z	ONE CRITE	RIA										
i. Regression estimate of Mixing Zone Temperature (deg C)	6.29	9.28	11.36	15,92	20.20	22.15	22,96	22.80	18.06	15.64	11.05	8.30	21.93	11.0
2. Mixing Zone pH by Regression (S.U.)	7.69	7.64	7.56	8.12	8.16	8.34	8.05	8.06	8.00	7.93	7.77	7.63	8.00	7.7
3. Acute TCAP (Salmonids present- 20; absent- 25)	20	20	20	20	20	20	20	20	20	20	20	20	20	20
4. Chronic TCAP (Salmonids present- 15; absent- 20)	15	15	15	15	15	15	15	15	15	15	15	15	15	1:
OUTPUT FOR CRITERIA AT PULLMAN WTP MIXING ZONE														
i. Intermediate Calculations:														
Acute FT Chronic FT FPH RATIO	2.58 2.58 1.21 16	2,10 2,10 1,26 18	1,82 1,82 1,36 20	1.33 1.41 1.00 16	1.00 1.41 1.00 16	1.00 1.41 1.00 16	1.00 1.41 1.00 16	1.00 1.41 1.00 16	1.14 1.41 1.00 16	1,35 1,41 1,03 16	1.86 1.86 1.14 16	2.24 2.24 1.28 18	1.00 1.41 1.00 16	1.80 1.80 1.14
pKa Fraction Of Total Ammonia Present As Un-Ionized	9.86 0.68%	9.75 0.76%	9,68 0,74%	9.53 3.74%	9.39 5,61%	9.33 9.14%	9.31 5,26%	9.31 5.28%	9.46 3.30%	9.54 2.41%	9.69 1.18%	9.79 0.68%	9.34 4.33%	9.69 1.18%
Un-ionized Ammonia Criteria: Acute (1-hour) Un-ionized Ammonia Criterion (ug N/L) Chronic (4-day) Un-ionized Ammonia Criterion (ug N/L)	68.7 13.1	80.7 14.2	86.7 13.6	161,2 29,1	213.7 29.1	213,7 29,1	213.7 29,1	213.7 29.1	186.4 29.0	152.9 28.1	100.9 19.4	74.6 12.9	213.1 29,0	100.1 19.
Total Ammonia Criteria: Acute Total Ammonia Criterion (ug N/L) Chronic Total Ammonia Criterion (ug N/L)	10,076 1,923	10,631 1,865	11,701 1,829	4,310 778	3,680 501	2,339 318	4,060 553	4,048 551	5,647 879	6,355 1,169	8,575 1,649	10,926 1,882	4,919 670	8,57 1,64
INPUT FOR ADJUSTMENT OF ECOLOGY STATION 34B110 DATA TO PRED	ICT PARADISE CR	AT STATE	LINE											
i. Paradise Cr Stateline Temperature by Regression (deg C)	9.86	12.23	13,89	17.50	20.90	22.45	23.09	22.97	19.20	17,28	13.64	11.45	22.27	13,6
2. Paradise Cr Stateline pH by Regression (S.U.)	7.44	7.41	7.35	7.61	7.64	7.70	7.59	7.59	7,56	7.54	7,47	7.41	7.56	7.4
0. Acute TCAP (Salmonids present- 20; absent- 25)	20	20	20	20	20	50	20	20	20	20	20	20	20	20
4. Chronic TCAP (Salmonids present- 15; absent- 20)	15	15	15	15	15	15	15	15	15	15	15	15	15	1
OUTPUT FOR CRITERIA AT PARADISE OR AT STATE LINE														
i. Intermediate Calculations:														
Acute FT Chronic FT FPH RATIO pKa Fraction Of Total Ammonia Present As Un-ionized	2.01 2.01 1.54 23 9.73 0.50%	1.71 1.71 1.58 24 9.65 0.57%	1.53 1.53 1.64 25 9.60 0.60%	1.19 1.41 1.29 18 9.48 1.34%	1.00 1.41 1.26 17 9.37 1.82%	1.00 1.41 1.20 16 9.32 2.34%	1.00 1.41 1.32 19 9.30 1.88%	1.00 1.41 1.32 19 9.31 1.87%	1.06 1.41 1.35 20 9,43 1.35%	1.21 1.41 1.39 20 9.49 1.10%	1.55 1.55 1.49 22 9.61 0.72%	1.80 1.80 1.59 24 9.68 0.53%	1.00 1.41 1.35 20 9.33 1.68%	1,5 1,5 1,4 2; 9,6 0,729
Un-ionized Ammonia Criteria: Acute (1-hour) Un-ionized Ammonia Criterion (ug N/L) Chronic (4-day) Un-ionized Ammonia Criterion (ug N/L)	69.0 9.2	79.2 10.3	85.3 10.7	139,6 19.9	169.6 21.1	178.4 24.3	161.6 18.6	162.0 18.7	149.7 17.6	127.8 16.6	92.7 12.9	74.6 9.7	158.1 17.6	92. ⁻ 12.
3. Total Ammonia Criteria; Acute Total Ammonia Criterion (ug N/L) Chronic Total Ammonia Criterion (ug N/L)	13,804 1,850	13,913 1,819	14,290 1,791	10,411 1,484	9,323 1,162	7,624 1,038	8,616 992	8,662 1,001	11,111 1,309	11,591 1,505	12,900 1,796	14,084 1,824	9,422 1,050	12,90 1,79

Appendix F.2: Alternatives 1A (monthly) and 1B (semi-annual) WLAs and permit limits for ammonia discharge from Pullman WTP and Albion WTP. Mixing zones were based on 25% and 2.5% of flow for chronic and acute criteria.

	A: Monthly Permit Limits												B: Semi- Limits	
	Jan	Feb	Mar	Арг	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Apr-Oct	Nov-M
ONTHLY TMDL/WLA GENERAL INPUT ASSUMPTIONS		*****		========	:222===em:		*********	=========	:===== =		:======	=======================================	######################################	======
Monthly Design Flows (cfs);														
Paradise Creek at Stateline	5.03	5.36	5.42	4,74	4.24	2.60	2.16	2.56	3,67	3.86	5.15	4.00	0.70	
SF Palouse R above Paradise Creek	0.00	0.62	1.24	0.31	0.62	0.62	0.31	0.93	0.62	0.62	1.87	4.99 0.62	3.79	6.
Missouri Flat Cr	0.00	0.20	0.40	0.10	0.20	0.20	0.10	0.30	0.20	0.62	0.60	0.62	0.65	Č
S.F. Palouse immediately above Pullman WTP	5.03	6.18	7.06	5.15	5.07	3.42	2.57	3.80	4.50	4.68	7.62	5.81	0.21 4.65	7
Pullman WTP Semi-annual Design Flows (cfs)												_,_,		
Fullifian Wife Semi-affidal Design Flows (CIS)	6.52	6.65	6.32	6.26	4.83	4.12	3.86	4.62	5.82	5.71	5.55	5,33	5.82	;
Albion WTP Design Flows (cfs)		0.19	0.19	0.19	0.19								0.19	
In-stream nitrification rates:														
Nitrification rate at 20 deg C (day^-1)	3.0	3.0	3.0	3.0	3,0	3.0	3,0	3.0	3.0	3.0	3.0	3.0	3.0	
Temperature for Correction of Rate (deg C)	3.6	6.9	9.1	14.0	18.6	20.7	21.6	21.4	16.3	13.7	8.8	5.8	20.5	
Nitrification rate at ambient temperature (day^-1)	0.8	1.1	1.3	1.9	2.6	3.1	3.3	3.3	2.2	1.8	1,2	1.0	3.1	
n-stream Percent Reduction in Total Ammonia														
Estimated Flow at SFPR RM 22.2 (cfs)	5.0	6.0	6.7	5.0	4.9	3.2	2.5	3.5	4.3	4,5	7.0	5.6	4.4	
Velocity, Paradise Cr state line to Pullman POTW (fps)	0.620	0.665	0.694	0.621	0.612	0.519	0.467	0.536	0.582	0.592	0.709	0.648	0.590	C
Velocity from Pullman to Albion POTW (fps)	0.630	0.675	0.705	0.631	0.621	0.527	0.474	0.544	0.591	0.601	0.720	0.658	0.599	ì
Travel time Paradise Cr state line to Pullman POTW (days)	0.857	0.800	0.766	0.856	0.869	1.024	1,139	0.992	0.913	0.898	0.750	0.821	0.901	,
Travel time from Pullman to Albion POTW (days)	0,699	0.652	0.625	0.698	0.708	0.835	0.928	0.808	0.744	0.732	0.611	0.669	0.734	(
Ammonia Reduction Between Stateline and Pullman WTP	51%	58%	62%	80%	90%	96%	98%	96%	87%	80%	61%	56%	94%	,
Ammonia Reduction Between Pullman WTP and Albion WTP	44%	50%	55%	73%	85%	93%	95%	93%	81%	74%	53%	48%	89%	

					A	: Monthly Pe	ermit Limits						B: Semi- Limits	
	Jan	Feb	Mar	Арг	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Apr-Oct	Nov-N
PUT ASSUMPTIONS FOR PULLMAN WTP WLAS/PERMIT LIMITS			*********					.========		.82222999	.========	:20000000000	=======	
Aquatic Life Criteria at Pullman WTP (Total Ammonia mg/L as N)														
Acute (one-hour) Criteria	10.08	10.63	11.70	4,31	3.68	2.34	4.06	4.05	5.65	6.35	8.57	10.93	4.92	8
Chronic (n-day) Criteria	1.92	1.86	1.83	0.78	0.50	0.32	0.55	0.55	88.0	1.17	1.65	1.88	0.67	•
Receiving Water Concentration Upstream from Pullman WTP														
Upstream Concentration for Acute Condition	0,90	0.77	0.67	0.30	0.12	0.05	0.05	0.05	0.17	0.29	0.71	0.81	0.07	
Upstream Concentration for Chronic Condition	0.90	0.77	0,67	0.30	0.12	0.05	0.05	0.05	0.17	0.29	0.71	0.81	0.07	(
Dilution Factors (1/{Effluent Volume Fraction})														
Fraction of River Flow to Allow for Acute Dilution Factor	2.5%	2.5%	2.5%	2.5%	2.5%	2.5%	2.5%	2.5%	2.5%	2.5%	2.5%	2.5%	2.5%	2
Fraction of River Flow to Allow for Chronic Dilution Factor Acute Receiving Water Dilution Factor	25%	25%	25%	25%	25%	25%	25%	25%	25%	25%	25%	25%	25%	
Chronic Receiving Water Dilution Factor	1.02 1.19	1.02 1.23	1.03 1.28	1.02 1.21	1.03 1.26	1.02 1.21	1.02 1.17	1.02 1.21	1.02 1.19	1.02 1.21	1.03 1.34	1.03 1.27	1.02 1.20	
Coefficient of Variation for Effluent Concentration	0.6	0,6	0.6	0.6	0.6	0.6	0,6	0.6	0.6	0.6	0.6	0.6	0.6	
Number of days (n1) for chronic average	30	30	30	30	30	30	30	30	30	30	30	30	30	
Number of samples (n2) per month to base permit on	20	20	20	20	20	20	20	20	20	20	20	20	20	
As and PERMIT LIMITS FOR PULLMAN WTP Statistics														
TA Derivation (99%tile)	2,326	2.326	2.326	2.326	2.326	2.326	2,326	2.326	2.326	2.326	2.326	0.000	0.000	
Dally Maximum Permit Limit (99%tile)	2.326	2.326	2.326	2.326	2.326	2.326	2.326	2.326	2.326	2.326	2.326	2.326 2.326	2.326 2.326	:
Monthly Average Permit Limit (95%tile)	1.645	1.645	1.645	1.645	1.645	1.645	1.645	1.645	1.645	1.645	1.645	1,645	1.645	
alculated Waste Load Allocations (Wt_A's)														
Acute (one-hour) WLA	10.25	10.86	12.01	4.39	3.77	2.39	4.13	4.13	5.75	6.48	8.84	11.20	5.02	
Chronic (n1-day) WLA	2.12	2,12	2.15	88,0	0.60	0.37	0.64	0.65	1.02	1.35	1.97	2.17	0.79	
ack-Calculation of Long Term Averages (LTA's)														
Gigma (same for acute and chronic)	0.555	0,555	0.555	0.555	0.555	0.655	0.555	0.555	0.555	0.555	0.555	0.555	0.555	
Au for Acute WLA	1.038	1.095	1.196	0.190	0.038	-0.420	0.128	0.128	0.460	0.579	0.890	1.126	0.323	
Vu-n1 for Chronic WLA Vu for Chronic WLA	0.497	0.497	0.512	-0.387	-0.762	-1.237	-0.706	-0.679	-0.239	0.045	0.425	0.522	-0.490	
LTA for Acute (one-hour) WLA	0.350 3.29	0.349 3.49	0.365 3.86	-0.535 1.41	-0.910	-1.385	-0.854	-0.826	-0.386	-0.103	0.277	0.375	-0,637	
LTA for Chronic (n1-day) WLA	1.65	1.65	1.68	0.68	1.21 0.47	0.77 0.29	1,32 0,50	1.33 0.51	1.85 0.79	2.08	2.84	3.60	1.61	
Most Limiting LTA (minimum of acute and chronic)	1.65	1.65	1.68	0.68	0.47	0.29	0.50	0.51	0.78	1.05 1.05	1,54 1,54	1.70 1.70	0.62 0.62	
erivation of Permit Limits From Limiting LTA														
lu for daily maximum permit limit	0.350	0.349	0.365	-0.535	-0.910	-1.385	-0.854	-0.826	-0.386	-0.103	0.277	0.375	-0.637	
fu-n2 for monthly average permit limit	0.494	0.494	0.509	-0.390	-0.765	-1.240	-0.709	-0.681	-0.242	0.042	0.422	0.519	-0.493	
Sigma^2-n for monthly avg permit limit	0.018	0.018	0.018	0.018	0.018	0.018	0.018	0.018	0.018	0.018	0.018	0.018	0.018	
Daily Maximum Permit Limit	5.15	5.15	5.23	2.13	1.46	0.91	1,55	1.59	2.47	3.28	4.79	5.28	1.92	
fonthly Average Permit Limit	2.04	2.04	2.07	0.84	0.58	0.36	0.61	0.63	0.98	1.30	1.90	2.09	0.76	

					A:	Monthly Perr	nit Limits						B: Semi- Limits	
	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Apr-Oct	
	***********	=======			=======		========		.=======				=========	-=====
NPUT ASSUMPTIONS FOR ALBION WTP WLAS/PERMIT LIMITS														
i . Water Quality Standards/Criteria (Concentration)														
Acute (one-hour) Criteria Chronic (n-day) Criteria		10,63	11.70	4.31	3.68								4.92	8.
		1.86	1.83	0.78	0.50								0.67	1
Upstream Receiving Water Concentration														
Upstream Concentration for Acute Condition Upstream Concentration for Chronic Condition		0.73	0.62	0.17	0.05								0.05	0
opstream concentration for Chronic Condition		0.73	0.62	0.17	0.05								0.05	0
Dilution Factors (1/{Effluent Volume Fraction})														
Fraction of River Flow to Allow for Acute Dilution Factor		2.5%	2.5%	2.5%	2.5%								2.5%	2.5
Fraction of River Flow to Allow for Chronic Dilution Factor Acute Receiving Water Dilution Factor		25%	25%	25%	25%								25%	2
Chronic Receiving Water Dilution Factor	ė.	2.728 18.28	2.802 19.02	2.537 16.37	2.332 14.32								2.410	2.8
		, 5.25	10.02	10.01	17.02								15.10	19.
. Coefficient of Variation for Effluent Concentration		0.6	0.6	0,6	0.6								0.6	
i. Number of days (n1) for chronic average		30	30	30	30								30	
. Number of samples (n2) per month to base permit on		4	4	4	4								4	
WLAs and PERMIT LIMITS FOR ALBION WTP														
. Z Statistics														
LTA Derivation (99%tile)		2.326	2.326	2.326	2.326								2,326	2.3
Daily Maximum Permit Limit (99%tille) Monthly Average Permit Limit (95%tille)		2.326	2.326	2.326	2.326								2,326	2.3
MONUNA Average Fernit Emitt (453/Mile)		1.645	1.645	1.645	1.645								1.645	1.6
2. Calculated Waste Load Allocations (WLA's)														
Acute (one-hour) WLA		27.74	31.67	10.67	8,51								11.78	22.
Chronic (n1-day) WLA		21.48	23.65	10.14	6,45								9.40	20.
Back-Calculation of Long Term Averages (LTA's)														
Sigma (same for acute and chronic)		0.555	0.555	0,555	0.555								0.555	0,5
Mu for Acute WLA		2.033	2.166	1.078	0.851								1,177	1.8
Mu-n1 for Chronic WLA Mu for Chronic WLA		2.813	2.909	2.062	1.610								1.987	2.7
LTA for Acute (one-hour) WLA		2.666 8.91	2.761 10.17	1.915 3.43	1.463 2.73								1.839	2.6
LTA for Chronic (n1-day) WLA		16.76	18.45	7.91	5.04								3.78	7.
Most Limiting LTA (minimum of acute and chronic)		8.91	10.17	3.43	2.73								7.34 3,78	16. 7.
. Derivation of Permit Limits From Limiting LTA														• • •
Mu for daily maximum permit limit		2.033	2.166	1.078	0.851									
Mu-n2 for monthly average permit limit		2.144	2.100	1.189	0.962								1.177 1.287	1.8
Sigma^2-n for monthly avg permit limit		0.086	0.086	0.086	0,086								0.086	1,9 0.0
Daily Maximum Permit Limit		27.74	31.67	10.67	8.51								11.8	23
Monthly Average Permit Limit		13.83	15.79	5.32	4.24								5.9	1:

Appendix F.3: Alternatives 2A (monthly) and 2B (semi-annual) WLAs and permit limits for ammonia discharge from Pullman WTP and Albion WTP. Mixing zones were based on 100% of flow for chronic and acute criteria.

		A: Monthly Permit Limits							Limits					
	Jan	۲́eb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Apr-Nov	Dec-Mar
	=======================================	:======						:=======	:=======	.========	.=======	:=========		
MONTHLY TMDL/WLA GENERAL INPUT ASSUMPTIONS ·														
. Monthly Design Flows (cfs):														
Paradise Creek at Stateline	5.03	5.36	5.42	4.74	4.24	2.60	0.40	0.50						
SF Palouse R above Paradise Creek	0.00	0.62	1.24	0.31	0.62		2.16	2.56	3,67	3.86	5.15	4.99	3.79	6.43
Missouri Flat Cr	0.00	0.02	0.40	0.10		0.62	0.31	0.93	0.62	0.62	1.87	0.62	0.65	1.08
S.F. Palouse immediately above Pullman WTP	5.03	6.18	7.06		0.20	0.20	0.10	0.30	0.20	0.20	0,60	0.20	0.21	0.35
out the allocations above the allinear verifications and the allocations are all the allinear the allinear the allinear the allocations are all the allinear the	5.03	6.18	7.06	5.15	5.07	3.42	2.57	3.80	4.50	4.68	7.62	5.81	4.65	7.87
. Pullman WTP Semi-annual Design Flows (cfs)	6.52	6.65	6.32	6.26	4,83	4.12	3.86	4.62	5.82	5.71	5.55	5.33	5.82	5.55
. Albion WTP Design Flows (cfs)		0.19	0.19	0.19	0.19								0.19	0.19
. In-stream nitrification rates:													5.10	0.10
Nitriflication rate at 20 deg C (day^-1)														
Temperature for Correction of Rate (deg C)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0
Nitrification rate at ambient temperature (day^-1)	3.6	6.9	9.1	14,0	18.6	20.7	21.6	21.4	16.3	13.7	8.8	5.8	20.5	8.8
with trate at ambient temperature (day*-1)	0.8	1.1	1.3	1,9	2.6	3.1	3.3	3.3	2.2	1.8	1.2	1.0	3.1	1.2
. In-stream Percent Reduction in Total Ammonia														
Estimated Flow at SFPR RM 22.2 (cfs)	5.0	6,0	6.7	5.0	4.9	0.0								
Velocity, Paradise Cr state line to Pullman POTW (fps)	0.620	0.665	0.694	0.621	0.612	3.2	2.5	3,5	4,3	4.5	7.0	5.6	4.4	7,5
Velocity from Pullman to Albion POTW (fps)	0.630	0.675	0.705	0.631		0.519	0.467	0.536	0.582	0.592	0.709	0.648	0.590	0.728
Travel time Paradise Cr state line to Pullman POTW (days)	0.857				0.621	0.527	0.474	0.544	0.591	0.601	0.720	0.658	0.599	0.740
Travel time from Pullman to Albion POTW (days)	0.857	0.800 0.652	0.766	0.856	0.869	1.024	1.139	0.992	0.913	0.898	0.750	0.821	0.901	0.730
Ammonia Reduction Between Stateline and Pullman WTP			0.625	0.698	0.708	0.835	0.928	0.808	0.744	0.732	0.611	0.669	0.734	0,595
Ammonia Reduction Between Pullman WTP and Albion WTP	51% 44%	58%	62%	80%	90%	96%	98%	96%	87%	80%	61%	56%	94%	60%
Supposed to agree to be taken to all the transfer of the	44%	50%	55%	73%	85%	93%	95%	93%	81%	74%	53%	48%	89%	52%

					A	: Monthly Pe	ermit Limits						B: Semi- Limits	
	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Apr-Oct	
**************************************		:======		.======	***********	=======			========		**********	.========	========	=====
. Aquatic Life Criteria at Pullman WTP (Total Ammonia mg/L as N)														
Acute (one-hour) Criteria Chronic (n-day) Criteria	10.08 1.92	10.63 1.86	11.70 1.83	4.31 0.78	3.68 0.50	2.34 0.32	4,06 0.55	4.05 0.55	5.65 0.88	6.35	8.57	10.93	4.92	,
Receiving Water Concentration Upstream from Pullman WTP				0.75	0.00	0.02	0.55	0.00	0.85	1.17	1,65	1.88	0.67	
Upstream Concentration for Acute Condition	0.90	0.77	0.67	0.30	0.12	0.05	0.05	0.05	0.17	0,29	0.71	0.81	0.07	
Upstream Concentration for Chronic Condition	0.90	0.77	0.67	0.30	0.12	0.05	0.05	0.05	0.17	0.29	0.71	0.81	0.07	
Dilution Factors (1/[Effluent Volume Fraction])														
Fraction of River Flow to Allow for Acute Dilution Factor Fraction of River Flow to Allow for Chronic Dilution Factor	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100.0%	10
Acute Receiving Water Dilution Factor	100% 1.77	100% 1.93	100% 2.12	100% 1,82	100%	100%	100%	100%	100%	100%	100%	100%	100%	1
Chronic Receiving Water Dilution Factor	1.77	1.93	2.12	1.82	2.05 2.05	1.83 1.83	1.67 1.67	1.82 1.82	1.77 1.77	1.82 1.82	2.37 2.37	2.09 2.09	1.80 1.80	
Coefficient of Variation for Effluent Concentration	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0,6	0.6	0.6	0.6	0.6	0.6	
Number of days (n1) for chronic average	30	30	30	30	30	30	30	30	30	30	30	30	30	
Number of samples (n2) per month to base permit on	20	20	20	20	20	20	20	20	20	20	20	20	20	
VLAs and PERMIT LIMITS FOR PULLMAN WTP														
. Z Statistics														
LTA Derivation (99%tile)	2.326	2.326	2.326	2.326	2.326	2.326	2.326	2.326	2,326	2.326	2,326	2.326	2.326	2
Daily Maximum Permit Limit (99%tile) Monthly Average Permit Limit (95%tile)	2.326 1.645	2.32 6 1.645	2:326 1.645	2.326 1.645	2.326 1.645	2.326 1.645	2.326 1.645	2.326 1.645	2.326 1.645	2.326 1.645	2.326 1.645	2.326 1.645	2.326 1.645	2
Calculated Waste Load Allocations (WLA's)								1.040	1,040	7.045	1.045	1.040	1,045	
Acute (one-hour) WLA	17.15	19.80	24.01	7.60	7.42	4.24	6,73	7.34	9,88	11.32	19.39	21.95	8.80	
Chronic (n1-day) WLA	2.71	2.88	3.12	1.17	0.90	0.54	0.89	0.96	1.43	1.89	2.94	3.05	1.15	1
Back-Calculation of Long Term Averages (LTA's)														
Sigma (same for acute and chronic) Mu for Acute WLA	0.555 1.552	0.555	0.555	0.555	0.555	0.555	0,555	0.555	0.555	0.555	0.555	0.555	0,555	. (
Mu-n1 for Chronic WLA	0.743	1,696 0,805	1.889 0.883	0.739 -0.098	0.714 ~0.354	0.154 -0.868	0.617 -0.374	0.703 -0.292	1.000	1.137	1.675	1.799	0.885	1
Mu for Chronic WLA	0.595	0.657	0.736	-0.036	-0.502	-1.016	-0.521	-0.292 -0.439	0.100 -0.048	0.381 0.233	0.825 0.678	0.861 0.713	-0.113	0
LTA for Acute (one-hour) WLA	5.51	6.36	7.71	2.44	2.38	1.36	2.16	2.36	3.17	3.64	6.22	7.05	-0,261 2,82	C
LTA for Chronic (n1-day) WLA	2.12	2.25	2.43	0.91	0.71	0.42	0.69	0.75	1.11	1.47	2.30	2.38	0.90	
Most Limiting LTA (minimum of acute and chronic)	2.12	2.25	2.43	0.91	0.71	0.42	0.69	0.75	1.11	1.47	2.30	2.38	0.90	
Derivation of Permit Limits From Limiting LTA Mu for daily maximum permit limit	0.505	0.0==		A										
Mu-n2 for monthly average permit limit	0.595 0.740	0.657 0.802	0.736 0.881	-0.246 -0.101	-0.502 -0.357	-1.016	-0.521	-0.439	-0.048	0.233	0.678	0.713	-0.261	(
Sigma^2-n for monthly avg permit limit	0.018	0.802	0.881	0.018	0.018	-0.871 0.018	-0.377 0.018	-0.294 0.018	0.097 0.018	0.378 0.018	0.822 0.018	0.858 0,018	-0.116 0.018	(
Daily Maximum Permit Limit	6.59	7.01	7.58	2.84	2.20	1.32	2,16	2.34	3.46	4.58	7.15	7.41	2.80	
Monthly Average Permit Limit	2.61	2.78	3.00	1.13	0.87	0.52	0.85	0.93	1.37					

					A:	Monthly Peri	mit Limits						B: Semi-, Limits	
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Apr-Oct	Nov-I
NPUT ASSUMPTIONS FOR ALBION WTP WLAS/PERMIT LIMITS	~=========		========	*****	=======================================	*======			=======================================				.=======	195822
. Water Quality Standards/Criteria (Concentration)														
Acute (one-hour) Criteria		10.63	11.70	4.31	3.68								4.92	
Chronic (n-day) Criteria		1,86	1.83	0.78	0.50								4.92 0.67	
Upstream Receiving Water Concentration										•				
Upstream Concentration for Acute Condition		0.93	0.83	0.21	0.08								0.07	
Upstream Concentration for Chronic Condition		0.93	0.83	0.21	80.0								0.07	
Dilution Factors (1/{Effluent Volume Fraction})														
Fraction of River Flow to Allow for Acute Dilution Factor		100%	100%	100%	100%								400.00/	
Fraction of River Flow to Allow for Chronic Dilution Factor		100%	100%	100%	100%								100,0% 100%	10
Acute Receiving Water Dilution Factor Chronic Receiving Water Dilution Factor		70.133	73.091	62.476	54.286								57.383	73
Official reserving Water Dilution Factor		70.13	73.09	62.48	54.29								57.38	7
Coefficient of Variation for Effluent Concentration		0,6	0.6	0.6	0.6								0.6	
Number of days (n1) for chronic average		30	30	. 30	30								30	
Number of samples (n2) per month to base permit on		4	4	4	4								4	
/LAs and PERMIT LIMITS FOR ALBION WTP														
. Z Statistics														
LTA Derivation (99%tile)		2.326	2.326	2.326	2.326									_
Dally Maximum Permit Limit (99%tile)		2.326	2.326	2.326	2.326								2,326 2,326	2
Monthly Average Permit Limit (95%tile)		1.645	1.645	1.645	1.645								1.645	1
Calculated Waste Load Allocations (WLA's)														
Acute (one-hour) WLA		681.56	795.74	256,17	195.66								070.67	
Chronic (n1-day) WŁA		66.74	74.24	35,52	23.10								278,27 34,43	57 6
Back-Calculation of Long Term Averages (LTA's)	•													
Sigma (same for acute and chronic)		0.555	0.555	0.555	0.555									_
Multor Acute WLA		5.235	5.389	4.256	3.987								0.555 4.339	5
Mu-n1 for Chronic WLA Mu for Chronic WLA		3.947	4.053	3.316	2.886							*	3.285	3
LTA for Acute (one-hour) WLA		3.799	3.905	3.168	2.738								3.137	3
LTA for Chronic (n1-day) WLA		218.84 52.08	255.50 57.93	82.25 27.72	62.82								89.35	18
Most Limiting LTA (minimum of acute and chronic)		52.08	57.93 57.93	27.72	18.03 18.03								26.86 26.86	4
Derivation of Permit Limits From Limiting LTA													20.50	4
Mu for daily maximum permit limit		3.799	0.005	0.400										
Mu-n2 for monthly average permit limit		3.799	3.905 4.016	3.168 3.279	2.738 2.849								3.137	3
Sigma^2-n for monthly avg permit limit		0.086	0.086	0.086	0.086								3.248 0.086	3
Daily Maximum Permit Limit		162.19	180.41	86.32	56.14									
Monthly Average Permit Limit		80.85	89.93										83.7	1
menna, meneger, within billing		80,83	89,93	43.03	27.99								41.7	

							A:	Monthly Perm	it Limits						B: Semi	i-Annual nits
			Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Apr-Oct	Nov-M
	=== == == == == == == == == == == == == ==										.== ======	*********				*>=====
TERNATIVE 1A an	d 1B: MIXING ZONE MAX OF 25	% and 2.5% of UPSTREAM	FLOW FOR CHE	RONIC AND A	CUTE.											
PULLMAN POTW	TMDL: Nonpoint/Background LA:	lbs/day NH3-N	119.8 24.5	129.1	132.1	47.9	26.7	13.0	19.2	25.0	48.9	65.6	117.1	113.1	37.8	11
	POTW WLA:	.	74.6	25.6 76.1	25.7 73.4	8.4 29.6	3.2 15.7	0.9 8.3	0.7 13.3	1.0 16.3	4.2 31.9	7.4 41.5	29.1 59.0	25.4 62.5	1.7 24.8	3
	Reserve Unallocated Load:		20,8	27,4	33.0	9,9	7.9	3.7	5.2	7.7	12.8	16,6	29.0	25.2	11.3	ž
	POTW WLA:	mg/L NH3-N	2.1	2.1	2.2	88.0	0.60	0.37	0.64	0.65	1.0	1.3	2.0	2.2	0.79	
	PERMIT LIMITS:															
	Daily Max:	mg/L NH3-N	5.2	5.2	5.2	2,1	1.5	0.91	1.5	1.6	2.5	3,3	4.8	5,3	1.9	
	Monthly Avg:	::	2.0	2.0	2.1	0.84	0.58	0.36	0.61	0.63	89,0	1.3	1.9	2.1	0.76	
	Daily Max: Monthly Avg:	lbs/dav NH3-N	181 72	185 73	178 71	72 28	38 15	20 8	32 13	40 16	77	101	143	152	60	
	·				• •	e.u	10		(3	16	31	40	57	60	24	
LBION POTW	TMDL:	lbs/day NH3-N		131.0	133.9	48.7	27.2								38.5	13
	Nonpoint/Background LA; POTW WLA:			50.5 27.8	44.7 31.7	10.4 10.7	2.9 8.5								2.8 11.8	
	Reserve Unallocated Load:			52.7	57.5	27.6	15.8								23.9	;
	POTW WLA:	mg/L NH3-N		28	32	11	8.5								12	
	PERMIT LIMITS:															
	Daily Max: Monthly Avg;	mg/L NH3-N		28 14	32 16	11 5.3	8.5 4.2								12 5.9	
	Daily Max: Monthly Avg;	lbs/day NH3-N		28 14	32 16	11 5.3	8.5 4.2								12 5.9	
TERNATIVE 2A an	d 2B: MIXING ZONE MAX OF 10	0% of UPSTREAM FLOW F	OR CHRONIC AN	ND ACUTE,												
ULLMAN POTW	TMDL:	lbs/day NH3-N	119.8	129,1	132.1	47.9	26.7	13.0	19.2	25.0	48.9	65.6	117.1	113.1	37.8	_
	Nonpoint/Background LA: POTW WLA:	H H	24.5 95.4	25.6 103.5	25.7 106.4	8,4 39,5	3.2	0.9	0.7	1.0	4.2	7.4	29.1	25.4	1.7	1
	Reserve Unallocated Load:	N .	0.0	0.0	0.0	0.0	23.6 0.0	12.0 0.0	18.5 0.0	24.0 0.0	44.7 0.0	58.1 0.0	68.0 0.0	87.7 0.0	36.1 0.0	1
	POTW WLA:	mg/L NH3-N	2.7	2.9	3.1	1.2	0.90	0.54	0.89	1.0	1.4	1.9	2.9	3.0	1.2	
	PERMIT LIMITS:															
	Daily Max:	mg/L, NH3-N	6.6	7.0	7.6	2,8	2.2	1.3	2.2	2.3	3.5					
	Monthly Avg:		2.6	2.8	3.0	1.1	0.87	0.52	0.85	0.93	1.4	4.6 1.8	7.2 2.8	7.4 2.9	2.8 1.1	
	Daily Max:	lbs/day NH3-N	232	251	259	96	57	29	45	58	109	141	214	213	88	
	Monthly Avg:		92	100	103	38	23	12	18	23	43	56	85	84	35	
LBION POTW	TMDL:	Ibs/day NH3-N		131.0	133.9	48.7	27.2									
	Nonpoint/Background LA: POTW WLA:	,,		64.1	59.6	13.1	4,1								38,5 4.0	1
	Reserve Unallocated Load:	4		66.8 0.0	74.3 0.0	35.6 0.0	23.1 0.0								34,5 0.0	
	POTW WLA:	mg/L NH3-N		67	74	36	23									
	PERMIT LIMITS:	-		••											34	
	Daily Max:	ma/LNILla N		***		*-										
	Monthly Avg;	mg/L NH3-N ::		162 81	180 90	86 43	56 28								84 42	
	Daily Max:	lbs/day NH3-N		162	181	86	56								84 .	
	Monthly Avg:			81	90	43	28								84 . 42 ·	

APPENDIX G

Derivation of Permit Limits by Monte Carlo Simulation

Monte Carlo simulation was used to combine the water quality model and permit limit calculations with statistically described inputs. The major advantages of Monte Carlo simulation for derivation of permit limits are (EPA, 1992):

- It can directly estimate the permit limits that correspond to the allowable frequency and duration requirements of the water quality criteria.
- It can be used with the same steady state water quality model that is used for the point estimate method.
- It can incorporate the cross-correlation and interaction of model variables such as river flow and temperature.

Using this technique, probability density functions are assigned to each term in the water quality model reflecting the variability in that characteristic. Then, with synthetic sampling, values are randomly chosen from the distributions of each term. These values are inserted into the model, and a prediction is calculated. After this is repeated a large number of times, a distribution of predicted values results, which reflects the combined uncertainties of all model variables.

The following steps describe the Monte Carlo procedure used to estimate water quality-based permit limits for total ammonia:

Step 1: Estimate 30-day seasonal low flow for USGS gaging stations for each Monte Carlo iteration. Weibull distributions of annual 30-day low flows for USGS stations 13348000 and 13348500 were estimated. The lowest 30-day low flows for each year of 1971-81 were calculated and the Weibull distribution was fit using WQHYDRO (Aroner, 1992). The Weibull distribution was found to closely represent low-flow frequencies in the SFPR and Missouri Flat Creek, and is the most widely used distribution for low-flow frequency analysis (Nathan and McMahon, 1990). The following parameters describe the low flow distributions using the notation of Haan (1977) for flows in cfs:

Weibull Parameter	Apr-Oct	Nov-Mar
USGS S	Station 13348000, 1	971-81
Alpha	2.8922	0.7435
Beta	4.4580	11.910
Epsilon	1.6170	6.7620
USGS S	Station 13348500, 1	971-81
Alpha	3.6000	0.9052
Beta	0.3190	1.9986
Epsilon	0.1268	0.2880

Step 2: Estimate river flows for each iteration immediately above Pullman POTW as sum of natural flows of Paradise Creek excluding Moscow POTW, design discharge from Moscow POTW, natural flow from SFPR above Paradise Creek, and Missouri Flat Creek. River flow immediately above Albion POTW was estimated by also adding design flow from Pullman POTW. POTW design flows were estimated as highest monthly averages for the season of interest when the POTW reaches the design capacity maximum monthly flow. The distribution of monthly average POTW flows for the 1989-91 period was scaled proportionally to the ratio of:

(maximum monthly design flow) / (maximum monthly 1989-91 flow)

to estimate seasonal design flows when the POTWs are at maximum monthly design flows. The resulting seasonal design flows for Moscow, Pullman, and Albion POTWs are as follows:

POTW	Apr-Oct	Nov-Mar			
POT	TW Design Flows (cfs)				
Moscow	4.80	5.42			
Pullman	6.26	6.65			
Albion	0.19	0.19			

Natural river flows from Paradise Creek (i.e. excluding Moscow POTW) were estimated as the SFPR flows at USGS 13348000 less SFPR flows from above Paradise Creek and current Moscow POTW flows. SFPR flows from above Paradise creek were estimated as Missouri Flat Creek flows at USGS 13348500 multiplied by the ratio of drainage areas of SFPR above Paradise Creek and Missouri Flat Creek. Flows at the USGS stations were randomly selected from the Weibull distributions for Monte Carlo simulation estimates of flows above the POTWs.

Step 3: Estimate temperature and pH distributions at Ecology station 34B110. Distributions of temperature and pH for permitting periods were estimated from critical periods within each permitting period. Critical periods were selected based on occurrence of lowest monthly average flows during the 1971-81 period. For the April-October permit period, critical low flows occurred only during the months of July-October. For the November-March permit period, critical low flows occurred during November. A log-normal distribution was assumed for temperature and normal for pH. Means and standard deviations of critical temperature and pH were found to be as follows:

Parameter	Apr-Oct	Nov-Mar				
Te	C)					
Mean	14.82	5.61				
Std Dev	4.28	2.50				
pH (standard units)						
Mean	8.10	7.81				
Std Dev	0.50	0.52				

Temperature and pH distributions were found to be independent of flow for the critical periods, with the exception of July-October temperature. A regression analysis of July-October temperature versus flow was used to estimate temperatures for the April-October permit period:

Step 4: Estimate mixing zone temperature and pH for each iteration by regression analysis of Pullman POTW upstream and downstream data. The regression equation was applied to temperature and pH at Ecology station 34B110 to estimate mixing zone temperature and pH. The regression equations for temperature and pH are:

Step 5: Estimate temperature and pH of Paradise Creek at the state line for each iteration by regression analysis of monthly monitoring data during water year 1992 (unpublished Ecology ambient monitoring data). The following regression equations were obtained:

Temperature of Paradise Cr at State Line (deg C) =
$$7.171 + 0.7381 * [34B110 \text{ Temperature (deg C)}]$$

Std Dev = 1.87 deg C
 $r^2 = 0.85$

pH of Paradise Cr at State Line (s.u.) =
$$5.305 + 0.2624 * [34B110 \text{ pH (s.u.)}]$$

Std Dev = 0.14
 $r^2 = 0.28$

- Step 6: Acute and chronic aquatic life criteria for total ammonia were calculated for each iteration from randomly selected temperature and pH estimates from Steps 4 and 5. Results of Step 4 were used to estimate criteria for Pullman and Albion POTW mixing zones. Results of Step 5 were used to estimate criteria for Paradise Creek at the state line.
- Step 7: Estimate instream nitrification rates for each iteration. The nitrification rates were randomly selected from a log-normal distribution with mean of 8.15 day¹ and standard deviation of 5.76 day¹ (base e) at 20 degrees C based on monitoring data during water year 1992. Nitrification rates (K) at ambient temperature (T) were estimated from rates at 20 degrees C (K₂₀) by the equation:

$$K = K_{20} * 1.08^{(1-20)}$$

Step 8: Estimate ammonia concentrations immediately upstream from Pullman POTW and Albion POTW for each iteration. For Pullman POTW, Paradise Creek at the state line was assumed to begin at the chronic criterion calculated in Step 6. Then nitrification rates from Step 7 were used in a first-order decay equation to estimate the concentration above Pullman POTW assuming a minimum concentration of 0.05 mg/L as N. For Albion POTW, Pullman POTW was assumed to discharge at the WLA (calculated in the following step), then the first-order decay equation was used to calculate concentration above Albion also assuming a minimum concentration of 0.05 mg/L as N. The first-order decay equation used to account for nitrification was:

$$C_{up} = C_0 * exp(-Kt)$$

where C_{up} is the ammonia concentration immediately above Pullman or Albion POTW, C_0 is the chronic criterion for Pullman POTW or the mixed river concentration below Pullman (at Pullman's WLA) for the Albion POTW, K is the nitrification rate from Step 6, t is travel time from C_0 to C_{up} (0.89 days from Paradise Creek at state line to Pullman POTW; 0.69 days from Pullman POTW to Albion POTW).

Step 9: Estimate acute and chronic WLAs for Pullman POTW and Albion POTW for total ammonia for each iteration. A simple mass balance equation was used:

$$WLA = ALC^*[(f^*Q_{up} + Q_{potw})/Q_{potw}] - [C_{up}^*(f^*Q_{up}/Q_{potw})]$$

where ALC is the aquatic life criterion for total ammonia from Step 6, f is the fraction of upstream flow allowed for the mixing zone (25% for chronic and 2.5% for acute), and Q_{potw} is the POTW design flow from Step 2.

Step 10: Calculate water quality-based permit limits for each iteration from the WLAs incorporating effluent variability using the method of EPA (1991). The effluent coefficient of variation (CV) for ammonia was assumed to be 0.6; 20 samples per month were assumed for Pullman POTW and 4 per month for Albion; 30-day averaging period for chronic; Z-statistic for long-term average and daily maximum permit limits was 2.326 (99%tile); and Z-statistic for monthly average limits was 1.645 (95%tile).

Step 11: Run Monte Carlo simulation for 1000 iterations using @RISK (Palisade Corporation) and Lotus 1-2-3 (Lotus Development Corporation) to obtain distributions of seasonal WLAs and permit limits. The WLAs and permit limits corresponding to an annual excursion frequency of once every three years were selected to meet the frequency requirement of WAC 173-201A-040(3). For semi-annual permits, excursion frequencies of once every six years for each season were assumed to correspond to an annual excursion frequency of once every three years (EPA, 1984). The resulting daily maximum and monthly average permit limits were obtained:

	Apr-Oct	Nov-Mar				
Pullman POTW Total Ammonia-N (mg/L as N						
Daily Max	2.1	4.7				
Monthly Avg	0.83	1.9				
Albion POTW Total Ammonia-N (mg/L as						
Daily Max	12.	28.				
Monthly Avg	6.2	14.				

Appendix H

Dissolved Oxygen Analysis

Appendix H-1 PARADISE CREEK DO PREDICTIONS BELOW STATE LINE

Temperature = 22.27 degrees C

	Stateline NH3	3-N = 1 1 80	DD5 = 45, 30	0, 20, 10, 0	•	
1 EFFLUENT CHARACTERISTICS (Moscow POTW) Discharge (cfs) (max monthly avg April-Oct)	3.79	3.79	3.79	3.79	3.79	3.79
CBOD5 (mg/L) (max weekly avg)	45	30	20	10	5	0
Ammonia (mg/L) (chronic criterion at state line assumed to est max weekly avg)	1.1	1.1	1.1	1.1	1.1 5.027	1.1 5.027
NBOD (mg/L) Dissolved Oxygen (mg/L) (assume at sat'n w/ tomp)	5.027 7.988	5,02 7 7,988	5.027 7.988	5.027 7.988	7.988	7.988
Temperature (deg C) (regression est for 90% tile at stateline)	22.27	22.27	22.27	22.27	22.27	22.27
2 RECEIVING WATER CHARACTERISTICS (Physical data for Paradise Creek to	Critical San)					
Upstream Discharge (cfs) (assume)	0	0	G	0	0	0
Upstream CBOD5 (mg/L) (load=0)	2.0	2.0	2.0	20	20	20
Upstream NBOD (mg/L) (load=0)	0.2 7.983	0.2 7.988	0.2 7.988	0,2 7,988	0.2 7.988	0.2 7.988
Upstream Dissolved Oxygen (mg/L) Upstream Temperature (deg C)	22.27	22.27	22.27	22.27	22.27	22.27
Elevation (ft NGVD)	2300	2300	2300	2300	2300	2300
Downstream Average Channel Slope (fl.ff)	0.00392	0.00392	0.00392	0.00392	0.00392	0.00392
Downstream Average Channel Depth (ft) Downstream Average Channel Velocity (fps)	0.81 0.59	0.81 0.59	0.81 0.59	0.81 0.59	0.61	0.59
						45.00
3. REAERATION RATE (Base e) AT 20 deg C (day'-1)	15.92	15.92	15.92	15.92	15.92	15.92
Reference	Suggest	Suggest Value	Suggest Value	Suggest Value	Suggest Value	Suggest Value
Churchili	Value 9.86	9,86	9.86	9.86	9.66	9.86
O'Connor and Dobbins	13.62	13.62	13.62	13.62	13,62	13.62
Owens	22.33	22.33	22.33	22.33	22.33	22.33
Tsivoglou-Wallace	15.92	15.92	15,92	15.92	15.92	15.92
4. BOD DECAY RATE (Base e) AT 20 deg C (day"-1)	3,33	3,33	3,33	3.33	3.33	3,33
Reference	Suggest	Suggest	Suggest	Suggest	Suggest	Suggest
	Value	Value	Value	Value	Valuo	Value
Wright and McDonnell, 1979	3,33	3,33	3.33	3.33	3.33	3.33
OUTPUT ****** ni noonienee akkuuskkakkakkakkistanien see seenatuu sukkkistakka nydsi see noonnaa	a store outside the	Addabbei na nasa	ппазапа в в айзай	*****	h nin i nin a sa sa sa sa	AAAndtacine
1 INITIAL MIXED RIVER CONDITION						
CBOD5 (mg/L)	45.0	30.0	20.0	10.0	5.0	0.0
NBOD (mg/L)	5.0	5.0	5.0	5.0	5.0	5.0 8.0
Dissolved Oxygen (mg/L) Temperature (deg C)	8.0 22.3	8.0 22.3	8.0 22.3	8.0 22.3	8.0 22.3	22.3
2 TEMPERATURE ADJUSTED RATE CONSTANTS (Base e)			40.00	40.00	16 80	10.00
Reperation (day'-1)	16,80 3,70	16.80 3.70	16.80 3.70	16.80 3.70	3.70	16.80 3.70
BOD Decay (day^-1)	3,70	0.70		4,0	0.70	****
3. CALCULATED INITIAL ULTIMATE CBODU AND TOTAL BODU						
Initial Mixed CBODU (mg/L)	66.2 71.2	44.1 49.1	29.4 34.4	14.7 19.7	74 124	0.0 5.0
Initial Mixed Total BODU (CBODU + NBOD; mg/L)	71,4	40.1	~~~	14.1	· - -	•••
4. INITIAL DISSOLVED OXYGEN DEFICIT						
Saturation Dissolved Oxygen (mg/L)	7.988	7.988	7.988	7,988	7.988	7.988
Initial Deficit (mg/L)	0.00	0.00	0.00	0.00	0.00	0.00
5. TRAVEL TIME TO CRITICAL DO CONCENTRATION (days)	0.12	0.12	0.12	0.12	0.12	0.12
6. DISTANCE TO CRITICAL DO CONCENTRATION (miles)	1 11	1 11	1 11	1 11	1 11	1 11
	10.00	7.00	101	2.83	1 78	0.72
7 CRITICAL DO DEFICIT (mg/L)	10.22	7 06	4,94	2.83		
8. CRITICAL DO CONCENTRATION (mg/L) [negative value indicates DO = 0]	-2.23	0,93	3.04	5.15	6.21	7 27
senn den men sens suda ut kar kir kirkis h en sennes hans sankish dekar kirkish ne en men men men sub k karak katak kar	lýtkák antazoztazeta	nes: doldo ktoktok	k-Aginkad-Frinin s r n mos		*****	kinkela ana andar
Full solution DO deficit (Chapter 6.4.4 of Thomann and Muellor, 1987 eqns a, b, c,	e, and f):					
1 Reaction Rates (same Ka and Kd as above, Kn may be different)						
Ka = reaeration (d^-1 base e at ambient temperature)	16.80	16.80	16.80	16.80	16.80	16.80
Kd = BOD decay (d"-1 base e at ambient temperature)	3.70	3.70	3.70	3.70	3,70	3.70 3.70
Kr = overall BOD loss rate (d^-1 base e at am bient temp)	3.70 3.57	3.70 3.57	3,70 3,57	3.70 3.57	3.70 3.57	3.57
Kn = nitrification (d^-1 base e at ambient temperature) pa = daily averaged gross photosynthesis (mg/L/d)	9.70	9.70	9.70	9.70	9.70	9,70
R = daily averaged gross respiration (mg/L/d)	2.43	2.43	2.43	2.43	2.43	2.43
half of diurnal DO range (mg/L)	1.5	1.5	15	1 5	1 5	15
(a) = initial value of DO deficit (mg/L)	0,000	0.000	0.000	0,000	0.000	0.000
(b) = deficit due to CBOD (mg/L)	9.500	6,334	4.222	2111	1.056	9.000
(c) = deficit due to NBOD (mg/L)	0.704	0.704	0.704	0.704 -0.495	0.704 -0.495	0.704 -0.495
(e) = deficit due to gross photosynthesis (mg/L)	0.495 0.124	-0.495 0.124	0.495 0.124	-0.495 0.124	-0.495 0.124	-0.495 0.124
(f) = deficit due to gross respiration (mg/L)						
0 = a + b + c + e + f = total DO deficit at point of critical sag (mg/L)	9,833	6.666	4 555	2.444	1 388	0.333
DO = DOsat · D = daily avg DO at point of critical sag (mg/L)	-1.845	1 321	3,432	5.544	8,599	7 655
DOmin = DO - (half diurnal range) = diel min DO at point of critical sag (mg/L) (negative values for DO or DOmin indicate DO = 0]	-3.345	-0.179	1.932	4.044	5.099	6 155
Remaining CBOD5 and NBOD above Pullman WTP Travel time from Paradise Criat state line to SFPR RM 21.3 (days)	0.904	0.904	0.904	0.904	0.904	0.904
CBODS remaining at SFPR RM 21.3 above Pullman WTP (mg/L)	1.590	1.060	0.707	0.353	0.177	0.000
NBOD remaining at SFPR RM 21 3 above Pullman WTP (mg/L)	0.199	0.199	0.199	0.199	0.199	0.199
der skranne at enne oktober bekende kom kom ben en en en men det det dekende bedekt de ben en en en en en en b	*****	######################################	n e trat a d : e lek k dele	*******		******

Daily Averaged Gross Photosynthesis and Respiration (pa and R) estimated from Diurnal min/max DO data for Paradise Creek using eqn 6.44 and 6.46 of Thomann and Mueller, 1987:

6,44 and 6,46	of Thomann	and Mueller	1987:				Half Diurnai
Creek Mile	DATE	DOmax	DOmin	Temp	pa	В	Range
O TOOK IMIIO	57112	(mg/L)	(mg/L)	(degC)	(mg/L/d)	(mg/L/d)	(mg/L)
6.4	910724	5.10	270	20.85	7 68	1 92	1 20
6.4	911001	1.70	1.30	16.85	1.28	0.32	0.20
3.4	910724	9.70	4.50	20.9	16,64	4.16	2.60
3.4	911001	4.30	2.70	13.7	5,12	1.28	0.80
3.4	911002	4.00	2.90	125	3,52	0,88	0.55
1.0	910724	13.70	5.25	22,25	27.04	6.76	4,23
1.0	911001	12.50	7.80	13.1	15,04	3.76	2 35
1.0	911002	10.90	7.10	11.8	12.16	3.04	1.90
0.0	910724	10.20	6.75	22.15	11.04	2.76	1.72
0.0	911001	10.40	9.50	12.75	2.88	0.72	0.45
0,0	911002	10.60	9.25	10.85	4.32	1 08	0.67
AVG:					9.70	2.43	1 52

Appendix H-2

S FORK PALOUSE RIVER DO PREDICTIONS BELOW PULLMAN WTP

Temperature = 21.93 degrees C

	Tempe				grees	U
1 EFFLUENT CHARACTERISTICS (Pullman WTP)	Pullman NH3	FN = 76, BC)US = 45, 30	, 20, 10, 0		
Discharge (cfs) (max monthly avg during April-Od)	5.82	5,82	5.82	5.82	5.82	5.82
CBQD5 (mg/L) (max weekly avg)	45	30	20	10	5	0
Ammonta (mg/L) (assume max monthly avg estimates max weekly avg)	0.76	0.76	0.75	0.76	0.76	0.76
NBOD (mg/L)	3,473 8,040	3.473 8.040	3,473 8,040	3.473 8.040	3,473 6,040	3.473 8.040
Dissolved Oxygen (mg/L)	21 93	21.93	21.93	21 93	21.93	21 93
Temperature (deg C)	2.50	21.50	41.00			
2 RECEIVING WATER CHARACTERISTICS (Quality of SFPR above Pullman and		ı SFPR)			_	
Upstream Discharge (cfs)	4.7	4.7	4.7	4.7	4.7	4,7 2,000
Upstream CBOD5 = max of 2 or remaining from decay in Paradise Cr (mg/L)	2,000 0,200	2.000 0.200	2.000 0.200	2.000 0.200	2.000 0.200	0.200
Upstream NBOD = max of 0.2 or remaining from decay in Paradise Cr (mg/L) Upstream Dissolved Oxygen (mg/L) (assume at sat'n w/temp)	8.04	6,04	8.04	8.04	6.04	8.04
Critical Sag Temperature (deg C) (regression est of 90% tile in mixing zone)	21.93	21.93	21.93	21.93	21.93	21.93
Elevation (it NGVD)	2300	2300	2300	2300	2300	2300
Downstream Average Channel Slope (ff/ff)	0.00316	0.00316	0.00316	0.00316	0.00316	0.00316
Downstream Average Channel Depth (1) (Jul&Oct avg of SF2-9)	0,756 0,597	0,756 0.697	0.756 0.597	0. 756 0. 59 7	0.756 0.597	0.756
Downstream Average Channel Velocity (fps) (Jul&Oct avg of SF2-9)	0.597	0.697	0.007	0.007	0.007	0,027
3. REAERATION RATE (Base e) AT 20 deg C (day'-1)	7.82	7.82	7.82	7.62	7.82	7.82
Reference	Suggest	Suggest	Suggest	Suggest	Suggest	Suggest
Horarona	Value	Value	Value	Value	Value	Value
Churchit	11.23	11.23	11.23	11.23	11.23	11.23
O'Connor and Dobbins	15.23	15.23	15.23	15.23	15.23	15,23
Owens	25.64	25.64	25.64	25.64 7.82	25.64 7.82	25.64 7.82
Tsivoglou-Wallace	7.82	7.82	7.82	7.02	7.02	7.02
4. SOD DECAY RATE (Base e) AT 20 deg C (day"-1)	3.25	3.25	3.25	3.26	3.25	3.25
But	Cummont	Cugaget	Suggest	Suggest	Suggest	Suggest
Reference	Suggest Value	Suggest Value	Suggest Value	Value	Value	Value
Wright and McDonnell, 1979	3.25	3.25	3,25	3.25	3.25	3.25
OUTPUT now who were as as a search as a dealer of call of the whole who whole who who can be a complete the open many of the can			faca: c nohobe o e		HINGS SHAPE SHAPE	
1 INITIAL MIXED RIVER CONDITION						
CBODs (mg/L)	25.8	175	120	6.4	3.7	0.9
NBOD (mg/L)	20	20	2.0	2.0	20	20
Dissolved Oxygen (mg/L)	8,0	8.0	8.0	8.0 21.9	8.0 21 9	6.0 21 9
Temperature (deg C)	21.9	21 9	21.9	219	219	219
2 TEMPERATURE ADJUSTED RATE CONSTANTS (Base e)						
Reseration (day'-1)	8,18	8.18	8.18	8,18	81.6	8.18
BOD Decay (day^-1)	3.55	3,55	3.55	3,55	3.55	3.55
- AND AND AND AND AND AND TOTAL BODY						
3. CALCULATED INITIAL ULTIMATE CBODU AND TOTAL BODU Initial Mixed CBODU (mg/L)	37.9	25.7	17.6	9.4	5.4	13
initial Mixed Total BODU (CBODU + NBOD, mg/L)	39.9	277	19.6	11.5	74	3.3
4. INITIAL DISSOLVED OXYGEN DEFICIT						
Saturation Dissolved Oxygen (mg/L)	6,040	8.040	8.040 0.00	8,040 0.00	8.040 0.00	8,040 0,00
Initial Deficit (mg/L)	0.00	0.00	0.00	0.00	0.00	0,00
5 TRAVEL TIME TO CRITICAL DO CONCENTRATION (days)	0.18	0.18	0.18	0.16	0.18	0.18
	1 76	1 76	1 76	1 76	1 76	1 75
6 DISTANCE TO CRITICAL DO CONCENTRATION (miles)	1 70	170	. , ,	1,0	1,0	.,,,
7. CRITICAL DO DEFICIT (mg/L)	9.14	6.35	4.49	262	1.69	0.76
a CRITICAL DO CONCENTRATION (mg/L) inegative value indicates DO = 0]	1 10	1.69	3.55	5.42	6.35	7.28
tarian cuba ta anica annesa masa masa masa na sa an ang mitak makaharik manaharik mana dika an inika an inika a		e trible about the code o	ot obobe sebses	N	range (i) to be a se o se	
Full solution DO deticit (Chapter 6.4.4 of Thomann and Mueller 1987 eqns a, b, c.	e and ŋ:					
t Reaction Rates (same Ka and Kd as above, Kn may be different)						
Ka = reaeration (d^-1 base e at ambient temperature)	8.18	8,18	8.18	8.18	8.18	8.18
Kd = BOD decay (d"-1 base e at ambient temperature)	3.55	3.55	3,85	3.55	3.55	3,56
Kr = overall BOD loss rate (d^-1 base e at ambient temp)	3,55	3,55	3.55 3.48	3.55	3.55 3.48	3.55 3.48
Kn = nitritication (d*-1 base e at ambient temperature)	3.48 17.03	3.48 17.03	17.03	3.48 17.03	17.03	17.03
pa = daily averaged gross photosynthesis (mg/L/d) R = daily averaged gross respiration (mg/L/d)	4.26	4.26	4.26	4.26	4.26	4.26
half of diurnal DO range (mg/L)	2.66	2.66	2.66	266	2.66	2.66
						0.000
(a) = initial value of DO deficit (mg/L)	0,000 8,681	0,000 5,888	9,000 4,025	0.000 2.163	0.000 1.232	0.000 0.301
(b) = deficit due to CBOD (mg/L) (c) = deficit due to MBOD (mg/L)	8,681 0,454	5.888 0.454	4.025 0.454	0.454	0.454	0.454
(c) = deficit due to NBOD (mg/L) (e) = deficit due to gross photosynthesis (mg/L)	-1.605	-1.605	-1.606	-1,605	-1.605	-1.606
(e) = deficit due to gross procueyranesis (mg/L) (f) = deficit due to gross respiration (mg/L)	0.401	0.401	0,401	0.401	0.401	0.401
D = a+b+c+e+f = total DO defloit at point of critical sag (mg/L)	7.932	5.138	3.276	1,414	0.482	-0.449
D = a+b+c+e+t = (otal DO denot at point of chical sag (mg/c)	7004					
DO = DOsat D = daily avg DO at point of critical sag (mg/L)	0.109	2.902	4.764 2.104	6,626 3,966	7.559 4.898	6,469 5,629
DOmin = DO · (half diurnal range) = diet min DO at point of critical sag (mg/L) Inequative values for DO or DOmin indicate DO = 0]	-2.551	0.242	≥ 104	3.906	4.096	J,023
		*				
Remaining CBOD5 and NBOD above Albion WTP	0.737	0.737	0.737	0.737	0.737	0.737
Travel time from SFPR RM 21.3 to 14.1 (days) CBOD5 remaining at SFPR RM 14.1 above Albion WTP (mg/L)	1.880	1.275	0.737	0,737	0.737	0.765
NBOD remaining at SFPR RM 21 3 above Albion WTP (mg/L)	0,156	0.155	0.155	0.155	0.155	0.155
зегерия в при	igig globylopiganic olic acceroto		icaconcerebble a	reparatabases:	inenenti::cc#A¥	nn a Call C I C Be paper

Daily Averaged Gross Photosynthesis and Respiration (pa and R) estimated from Diumei in In/max DO data for S Fork Palouse River using eqn 6.44 and 6.46 of Thomann and Mueller 1997;

AVG:

Half Diurnal Range (mg/L) DATE DOmax (mg/L) DOmin (mg/L) River Mile pa (mg/L/d) (mg/L/ci) 14.24 26.56 20.96 31.84 19.2 16 16.16 12.16 16.16 9.26 31.68 9.92 9.6 15.68 6.08 2.23 4.15 3.26 4.98 3.00 2.50 2.53 1.90 2.53 1.45 4.95 1.55 1.50 2.45 0.96 12.25 13.10 11.05 14.30 11.30 11.00 10.05 12.65 12.75 9.50 15.10 11.80 11.80 10.10 7 90 4.60 4.50 4.35 5.30 6.00 5.00 9.05 7.70 6.70 8.20 7.40 8.10 6.90 8.20 3.56 6.64 7.96 4.6 4.04 4.04 4.04 2.32 7.92 2.48 2.4 3.92 1.52 910724 910724 910724 910724 910724 910724 910724 911001 911001 911001 911001 911001 911001 911001 22.2 21.4 21.2 18.7 14.9 14.0 13.1 22.2 21.4 21.2 18.7 14.9 14.0 13.1 89 17 03 2.66

S FORK PALOUSE RIVER DO PREDICTIONS BELOW ALBION WTP

Temperature = 22.27 degrees C
Albion WTP NH3-N = 6.9, BODS = 45, 30, 20, 10, 0

	Albion WTP I	NH3-N = 5.9	BOD5 = 45	, 30, 20, 10,	0	
1 EFFLUENT CHARACTERISTICS (Albion WTP)	0.19	0.19	0.19	0.19	0.19	0.19
Discharge (cfs) (max monthly avg during April-May) CBOD5 (mgA.) (max weekty avg)	0.19 45	30	20	10	5.75	0.10
Ammonia (mg/L) (assume max monthly avg estimates max weekly avg)	5.9	5.9	5.9	5.9	5.9	5.9
NBOD (mg/L)	26,963	26.963	26,963	26,963	26.963	26,963
Dissolved Oxygen (mg/L)	8.040 21.93	8.040 21 93	8.040 21.93	8.040 21 93	8.040 21 93	8.040 21 93
Temperature (deg C)	21.93	21 93	21.93	21 93	21 93	£133
2 RECEIVING WATER CHARACTERISTICS (Quality of SFPR above Pullman and	j physical data i	n SFPR)				
Upstream Discharge (cfs)	10.52	10.52	10.52	10.52	10.52	10.52
Upstream CBOD6 = max of 2 or remaining from decay below Pullman (mg/L)	2.000	2,000	2.000	2,000	2000	2.000 0.200
Upstream NBOD = max of 0.2 of remaining from decay below Pulman (mg/L)	0,200	0.200 8.04	0.200 8.04	0.200 8.04	0.200 8.04	0.200 8.04
Upstream Dissolved Oxyges (mg/L) (assume at sal'n w/ temp)	6.04 21.93	21.93	21,93	21.93	21.93	21.93
Cattical Sag Temperature (deg C) (regression est of 90% lie in mixing zone) Elevation (if NGVD)	2300	2300	2300	2300	2300	2300
Downstream Average Channel Slope (ft/ft)	0.00316	0.00316	0.00316	0.00316	0.00316	0.00316
Downstream Average Channel Depth (fl) (Jul&Oct avg of SF2-9)	0.756	0,756	0.756	0.756	0.756	0.756
Downstream Average Channel Velocity (fps) (Jul&Oct avg of SF2-9)	0.597	0.597	0.597	0.597	0.597	0.597
3. REAERATION RATE (Base e) AT 20 deg C (day*-1)	7.82	782	782	7.82	7.82	7.82
3 ACACHATION HATE (base b) At 20 day of loay of						
Reference	Suggest	Suggest	Suggest	Suggest	Suggest	Suggest
	Value	Value	Value	Value	Value	Value
Churchill	11.23 15.23	11.23 15.23	11.23 15,23	11.23 15.23	11.23 15.23	11.23 15.23
O'Connor and Dobbins Owens	25.64	25.64	25.64	25,64	25.64	25.64
Tsivoglou-Wallace	7.82	7.82	7.82	7.62	7.82	7.82
(Shogad Franco						
4. BOD DECAY RATE (Base e) AT 20 deg C (day*-1)	3.22	3.22	3,22	3.22	3.22	3.22
8 detence	Suggest	Suggest	Suggest	Suggest	Suggest	Suggest
Historice	Value	Value	Value	Value	Value	Value
Wright and McDonnell, 1979	3.22	3.22	3.22	3.22	3.22	3.22
		nonencipic produk				
ONLEAL Juoge signic operatore septimines. Activis construction of the paper of Language species of contract contracts of the contract of the c	n nie nik nik neen zo z z z z z z z z z	. nononcipi prome	mantazar izziri		111111111111111111111111111111111111111	
1 INITIAL MIXED RIVER CONDITION						
CBODS (mg/L)	26	25	23	2.1	2.1	2.0
NBOD (mg/L)	0.7	0.7	0.7	0.7	0.7	0.7
Dissolved Oxygen (mg/L)	8.0	8.0	8.0	8.0	8,0	8.0
Temperature (deg C)	21 9	21 9	21.9	21 9	21 9	21 9
2 TEMPERATURE ADJUSTED RATE CONSTANTS (Base e)						
Reaeration (day'-1)	8.18	8.18	8.18	6.16	8.18	8,18
8OD Decay (day^-1)	3.52	3,52	3.52	3.52	3,52	3.52
3. CALCULATED INITIAL ULTIMATE CBODU AND TOTAL BODU		3.7	3.4	3.1	3.0	2.9
Initial Mixed CBODU (mg/L)	4.1					3.6
Initial Mixed CBODU (mg/L) Initial Mixed Total BODU (CBODU + NBOD, mg/L)	4.1 4.7	4.3	4.1	3.8	3.7	3.6
Initial Mixed Total BODU (CBODU + NBOD, mg/L)						3.6
Initial Mixed Total BODU (CBODU + NBOD, mg/L) 4. INITIAL DISSOLVED OXYGEN DEFICIT		4.3 9.040	4.1 8.040	3.8 8.040	3.7 8.040	8.040
Initial Mixed Total BODU (CBODU + NBOD, mg/L)	4.7	4.3	4.1	3.8	3.7	
Initial Mixed Total BODU (CBODU + NBOD, mg/L) 4. INITIAL DISSOLVED OXYGEN DEFICIT Saturation Dissolved Oxygen (mg/L) Initial Delict (mg/L)	4.7 8.040 0.00	9,040 0,00	4.1 8.040 0,00	3.8 6.040 0.00	8.040 0.00	8.040 0.00
Initial Mixed Total BODU (CBODU + NBOD, mg/L) 4. INITIAL DISSOLVED OXYGEN DEFICIT Saturation Dissolved Oxygen (mg/L)	4.7 8.040	4.3 9.040	4.1 8.040	3.8 8.040	3.7 8.040	8.040
Initial Mixed Total BODU (CBODU + NBOD, mg/L) 4. INITIAL DISSOLVED OXYGEN DEFICIT Saturation Dissolved Oxygen (mg/L) Initial Delict (mg/L) 5. TRAVEL TIME TO CRITICAL DO CONCENTRATION (days)	4.7 8.040 0.00	9,040 0,00	4.1 8.040 0,00	3.8 6.040 0.00	8.040 0.00	8.040 0.00
Initial Mixed Total BODU (CBODU + NBOD, mg/L) 4. INITIAL DISSOLVED OXYGEN DEFICIT Saturation Dissolved Oxygen (mg/L) Initial Delict (mg/L) 5. TRAVEL TIME TO CRITICAL DO CONCENTRATION (days) 6. DISTANCE TO CRITICAL DO CONCENTRATION (miles)	4.7 8.040 0.00 0.18 1.77	9,040 0,00 0,18 1,77	6.040 0.00 0.18 1.77	8.040 0.00 0.18	8.040 0.00 0.18 1.77	8.040 0.00 0.18 1.77
Initial Mixed Total BODU (CBODU + NBOD, mg/L) 4. INITIAL DISSOLVED OXYGEN DEFICIT Saturation Dissolved Oxygen (mg/L) Initial Delict (mg/L) 5. TRAVEL TIME TO CRITICAL DO CONCENTRATION (days)	8.040 0.00 0.18	9.040 0.00 0.18	8.040 0.00 0.18	8.040 0.00 0.18	8.040 0.00 0.19	8.040 0.00 0.18
Initial Mixed Total BODU (CBOOU + NBOD, mg/L) 4. INITIAL DISSOLVED OXYGEN DEFICIT Saturation Dissolved Oxygen (mg/L) Initial Delet (mg/L) 5. TRAVEL TIME TO CRITICAL DO CONCENTRATION (days) 6. DISTANCE TO CRITICAL DO CONCENTRATION (miles) 7. CRITICAL DO DEFICIT (mg/L)	4.7 8.040 0.00 0.18 1.77	9,040 0,00 0,18 1,77	6.040 0.00 0.18 1.77	8.040 0.00 0.18	8.040 0.00 0.18 1.77	8.040 0.00 0.18 1.77
Initial Mixed Total BODU (CBOOU + NBOD, mg/L) 4. INITIAL DISSOLVED OXYGEN DEFICIT Saturation Dissolved Oxygen (mg/L) Initial Delet (mg/L) 5. TRAVEL TIME TO CRITICAL DO CONCENTRATION (days) 6. DISTANCE TO CRITICAL DO CONCENTRATION (miles) 7. CRITICAL DO DEFICIT (mg/L) 8. CRITICAL DO CONCENTRATION (mg/L) (negative value indicates DO = 0)	4.7 8.040 0.00 0.18 1.77 1.08	9.040 0.00 0.18 1.77 0.99 7.05	4.1 8.040 0.00 0.18 1.77 0.93	3.8 6.040 0.00 0.18 1.77 0.87	3.7 8.040 0.00 0.18 1.77 0.84	8.040 0.00 0.18 1.77 0.81
Initial Mixed Total BODU (CBOOU + NBOD, mg/L) 4. INITIAL DISSOLVED OXYGEN DEFICIT Saturation Dissolved Oxygen (mg/L) Initial Delet (mg/L) 5. TRAVEL TIME TO CRITICAL DO CONCENTRATION (days) 6. DISTANCE TO CRITICAL DO CONCENTRATION (miles) 7. CRITICAL DO DEFICIT (mg/L)	4.7 8.040 0.00 0.18 1.77 1.08	9.040 0.00 0.18 1.77 0.99 7.05	4.1 8.040 0.00 0.18 1.77 0.93	3.8 6.040 0.00 0.18 1.77 0.87	3.7 8.040 0.00 0.18 1.77 0.84	8.040 0.00 0.18 1.77 0.81
Initial Mixed Total BODU (CBOOU + NBOD, mg/L) 4. INITIAL DISSOLVED OXYGEN DEFICIT Saturation Dissolved Oxygen (mg/L) Initial Delet (mg/L) 5. TRAVEL TIME TO CRITICAL DO CONCENTRATION (days) 6. DISTANCE TO CRITICAL DO CONCENTRATION (miles) 7. CRITICAL DO DEFICIT (mg/L) 8. CRITICAL DO CONCENTRATION (mg/L) (negative value indicates DO = 0)	4.7 8.040 0.00 0.18 1.77 1.08	9.040 0.00 0.18 1.77 0.99 7.05	4.1 8.040 0.00 0.18 1.77 0.93	3.8 6.040 0.00 0.18 1.77 0.87	3.7 8.040 0.00 0.18 1.77 0.84	8.040 0.00 0.18 1.77 0.81
Initial Mixed Total BODU (CBOOU + NBOD, mg/L) 4. INITIAL DISSOLVED OXYGEN DEFICIT Saturation Dissolved Oxygen (mg/L) Initial Deficit (mg/L) 5. TRAVEL TIME TO CRITICAL DO CONCENTRATION (days) 6. DISTANCE TO CRITICAL DO CONCENTRATION (miles) 7. CRITICAL DO DEFICIT (mg/L) 8. CRITICAL DO CONCENTRATION (mg/L) (negative value indicates DO = 0)	4.7 8.040 0.00 0.18 1.77 1.08 6.96	9.040 0.00 0.18 1.77 0.99 7.05	4.1 8.040 0.00 0.18 1.77 0.93	3.8 6.040 0.00 0.18 1.77 0.87	3.7 8.040 0.00 0.18 1.77 0.84	8.040 0.00 0.18 1.77 0.81
Initial Mixed Total BODU (CBOOU + NBOD, mg/L) 4. INITIAL DISSOLVED OXYGEN DEFICIT Saturation Dissolved Oxygen (mg/L) Initial Deficit (mg/L) 5. TRAVEL TIME TO CRITICAL DO CONCENTRATION (days) 6. DISTANCE TO CRITICAL DO CONCENTRATION (miles) 7. CRITICAL DO DEFICIT (mg/L) 8. CRITICAL DO CONCENTRATION (mg/L) [negative value indicates DO = 0] Full solution DO deficit (Chapter 6.4.4 of Thomann and Mueller 1997 eqns a, b, c	4.7 8.040 0.00 0.18 1.77 1.08 6.96	9.040 0.00 0.18 1.77 0.99 7.05	4.1 8.040 0.00 0.18 1.77 0.93	3.8 6.040 0.00 0.18 1.77 0.87	3.7 8.040 0.00 0.18 1.77 0.84	8.040 0.00 0.18 1.77 0.81
Initial Mixed Total BODU (CBOOU + NBOD, mg/L) 4. INITIAL DISSOLVED OXYGEN DEFICIT Saturation Dissolved Oxygen (mg/L) Initial Deficit (mg/L) 5. TRAVEL TIME TO CRITICAL DO CONCENTRATION (days) 6. DISTANCE TO CRITICAL DO CONCENTRATION (miles) 7. CRITICAL DO DEFICIT (mg/L) 8. CRITICAL DO CONCENTRATION (mg/L) (negative value indicates DO = 0) Full solution DO deficit (Chapter 6.4.4 of Thomann and Mueller 1997 eqns a, b, c 1. Reaction Rates (same Ka and Kd as above, Kn may be different)	4.7 8.040 0.00 0.18 1.77 1.08 6.96	4.3 8.040 0.00 0.18 1.77 0.99 7.05	4.1 a.040 0,00 0.1a 1.77 0.93 7.11	8.040 0.00 0.18 1.77 0.07	3.7 8.040 0.00 0.19 177 0.84 7.20	6.040 0.00 0.18 1.77 0.81 7.23
Initial Mixed Total BODU (CBODU + NBOD, mg/L) 4. INITIAL DISSOLVED OXYGEN DEFICIT Saturation Dissolved Oxygen (mg/L) Initial Deficit (mg/L) 5. TRAVEL TIME TO CRITICAL DO CONCENTRATION (days) 6. DISTANCE TO CRITICAL DO CONCENTRATION (miles) 7. CRITICAL DO DEFICIT (mg/L) 8. CRITICAL DO CONCENTRATION (mg/L) [negative value indicates DO = 0] Full solution DO deficit (Chapter 6.4.4 of Thomann and Mueller 1997 eqns.a, b, c 1. Reaction Rates (same Kta and Kd as above, Kn may be different) Ka = meatration (ff*-1 base e at ambient temperature)	4.7 8.040 0.00 0.18 1 77 1.09 6.96	4.3 9.040 0.00 0.18 1.77 0.99 7.05	4.1 8.040 0,00 0.18 1.77 0.93 7.11	3.8 8.040 0.00 0.18 1.77 0.67 7.17	3.7 8.040 0.00 0.18 177 0.84 7.20	8.040 0.00 0.18 1.77 0.81 7.23
Initial Mixed Total BODU (CBOOU + NBOD, mg/L) 4. INITIAL DISSOLVED OXYGEN DEFICIT Saturation Dissolved Oxygen (mg/L) Initial Deficit (mg/L) 5. TRAVEL TIME TO CRITICAL DO CONCENTRATION (days) 6. DISTANCE TO CRITICAL DO CONCENTRATION (miles) 7. CRITICAL DO DEFICIT (mg/L) 8. CRITICAL DO CONCENTRATION (mg/L) (negative value indicates DO = 0) Full solution DO deficit (Chapter 6.4.4 of Thomans and Mueller 1997 eqns a, b, c 1. Reaction Rates (same Ka and Kd as above, Kn may be different) Ka = reaeration (d*-1 base e at ambient temperature) Kd = BOD decay (d*-1 base e at ambient temperature) Kd = BOD decay (d*-1 base e at ambient temperature)	4.7 8.040 0.00 0.18 1 77 1.08 6.96 e, and ħ:	4.3 8.040 0.00 0.18 1.77 0.99 7.05	4.1 a.040 0.00 0.18 1.77 0.93 7.11	8.6 6.040 0.00 0.18 1.77 0.97 7.17	3.7 8.040 0.00 0.18 1.77 0.84 7.20	8.040 0.00 0.18 1 77 0.81 7 23
Initial Mixed Total BODU (CBODU + NBOD, mg/L) 4. INITIAL DISSOLVED OXYGEN DEFICIT Saturation Dissolved Oxygen (mg/L) Initial Deficit (mg/L) 5. TRAVEL TIME TO CRITICAL DO CONCENTRATION (days) 6. DISTANCE TO CRITICAL DO CONCENTRATION (miles) 7. CRITICAL DO DEFICIT (mg/L) 8. CRITICAL DO CONCENTRATION (mg/L) [negative value indicates DO = 0] Full solution DO deficit (Chapter 6.4.4 of Thomann and Mueller 1997 eqns a, b, c 1. Reaction Rates (same Ka and Kd as above, Kn may be different) Ka = reaeration (d*-1 base e at ambient temperature) Kf = 000 decay (d*-1 base e at ambient temperature) Kf = 000 decay (d*-1 base e at ambient temperature) Kf = 0000 decay (d*-1 base e at ambient temperature)	4.7 8.040 0.00 0.18 1 77 1.08 6.96 e, and f):	4.3 9.040 0.00 0.18 1.77 0.99 7.05	4.1 8.040 0,00 0.18 1.77 0.93 7.11	3.8 8.040 0.00 0.18 1.77 0.67 7.17	3.7 8.040 0.00 0.18 177 0.84 7.20	8.040 0.00 0.18 1 77 0.81 7.23 8.18 3.52 3.52
Initial Mixed Total BODU (CBOOU + NBOD, mg/L) 4. INITIAL DISSOLVED OXYGEN DEFICIT Saturation Dissolved Oxygen (mg/L) Initial Deficit (mg/L) 5. TRAVEL TIME TO CRITICAL DO CONCENTRATION (miles) 7. CRITICAL DO DEFICIT (mg/L) 8. CRITICAL DO CONCENTRATION (mg/L) (negative value indicates DO = 0) Full solution DO deficit (Chapter 6.4.4 of Thomann and Mueller 1997 eqns a, b, c 1. Reaction Rates (same Ka and Kd as above, Kn may be different) Ka = reaeration (m²-1 base e at ambient temperature) Kf = 800 decay (m²-1 base e at ambient temperature) Kf = coveral 800 boss rate (m²-1 base e at ambient temperature) Kn = nutrication (m²-1 base e at ambient temperature) Kn = nutrication (m²-1 base e at ambient temperature) Kn = nutrication (m²-1 base e at ambient temperature)	4.7 8.040 0.00 0.18 1 77 1.03 6.96 e, and ħ: 8.18 3.52 3.52 3.48	4.3 9.040 0.00 0.18 1 77 0.39 7.05 8.18 9.52 3.52 3.49	4.1 8.040 0.00 0.18 1 77 0.93 7 11 4.18 3.52 3.52	8.6 8.040 0.00 0.18 1.77 0.97 7.17 8.18 3.52 3.52	3.7 8.040 0.00 0.18 1.77 0.84 7.20 8.18 3.62 3.62	8.040 0.00 0.18 1 77 0.81 7 23
Initial Mixed Total BODU (CBOOU + NBOD, mg/L) 4. INITIAL DISSOLVED OXYGEN DEFICIT Saturation Dissolved Oxygen (mg/L) Initial Delict (mg/L) 5. TRAVEL TIME TO CRITICAL DO CONCENTRATION (days) 6. DISTANCE TO CRITICAL DO CONCENTRATION (miles) 7. CRITICAL DO DEFICIT (mg/L) 8. CRITICAL DO CONCENTRATION (mg/L) [negative value indicates DO = 0] Full solution DO delicit (Chapter 6.4.4 of Thomana and Mueller 1997 eqns a, b, c 1. Reaction Rates (same Ka and Kd as above, Kn may be different) Ka = reaeration (d*-1 base e at ambient temperature) Kd = BOD decay (d*-1 base e) at ambient temperature) Kn = overall BOD loss rate (d*-1 base e) at ambient temperature) Kn = overall BOD loss rate (d*-1 base e) at ambient temperature) Kn = nitification (d*-1 base e) at ambient temperature) Nn = nitification (d*-1 base e) at ambient temperature) Nn = nitification (d*-1 base e) at ambient temperature) Nn = nitification (d*-1 base e) at ambient temperature) Nn = nitification (d*-1 base e) at ambient temperature) Nn = nitification (d*-1 base e) at ambient temperature)	4.7 8.040 0.00 0.18 1 77 1.08 6.96 e, and f):	4.3 8.040 0.00 0.18 1.77 0.99 7.05 8.18 3.52 3.42 3.40 17.03 4.26	4.1 8.040 0.00 0.18 1 77 0.93 7 11 8.18 9.52 3.52 3.48 17.03 4.28	8.040 0.00 0.18 1.77 0.97 7.17 8.18 3.82 3.52 3.48 17.03 4.26	8.040 0.00 0.19 1 77 0.84 7.20 8.18 3.52 3.62 3.45 17.03 4.28	8.040 0.00 0.18 1 77 0.81 7.23 8.18 3.52 3.52 3.52 3.48 17.03 4.28
Initial Mixed Total BODU (CBOOU + NBOD, mg/L) 4. INITIAL DISSOLVED OXYGEN DEFICIT Saturation Dissolved Oxygen (mg/L) Initial Deficit (mg/L) 5. TRAVEL TIME TO CRITICAL DO CONCENTRATION (miles) 7. CRITICAL DO DEFICIT (mg/L) 8. CRITICAL DO CONCENTRATION (mg/L) (negative value indicates DO = 0) Full solution DO deficit (Chapter 6.4.4 of Thomann and Mueller 1997 eqns a, b, c 1. Reaction Rates (same Ka and Kd as above, Kn may be different) Ka = reaeration (m²-1 base e at ambient temperature) Kf = 800 decay (m²-1 base e at ambient temperature) Kf = coveral 800 boss rate (m²-1 base e at ambient temperature) Kn = nutrication (m²-1 base e at ambient temperature) Kn = nutrication (m²-1 base e at ambient temperature) Kn = nutrication (m²-1 base e at ambient temperature)	4.7 8.040 0.00 0.18 1 77 1.08 6.96 e, and f): 8.18 3.62 3.52 3.49 17.03	4.3 9.040 0.00 0.18 1.77 0.99 7.05 8.18 3.62 3.52 3.49 17.03	4.1 8.040 0.00 0.18 1 77 0.93 7 11 8.10 3.52 3.52 3.48 17.03	3.8 6.040 0.00 0.18 1.77 0.67 7.17 8.18 3.52 3.52 3.52 3.48 17.03	3.7 8.040 0.00 0.18 1 77 0.84 7.20 8.18 3.52 3.62 3.62 3.40	8.040 0.00 0.18 1.77 0.81 7.23 8.18 3.52 3.52 3.52 3.48 17.03
Initial Mixed Total BODU (CBODU + NBOD, mg/L) 4. INITIAL DISSOLVED OXYGEN DEFICIT Saturation Dissolved Oxygen (mg/L) Initial Deficit (mg/L) 5. TRAVEL TIME TO CRITICAL DO CONCENTRATION (days) 6. DISTANCE YO CRITICAL DO CONCENTRATION (miles) 7. CRITICAL DO DEFICIT (mg/L) 8. CRITICAL DO CONCENTRATION (mg/L) (negative value indicates DO = 0) Full solution DO deficit (Chapter 6.4.4 of Thomann and Mueller 1997 eqns a, b, c 1. Reaction Rates (same Ka and Kd as above, Kin may be different) Ka = reseration (u**-1 base e at ambient lemperature) Ki = SOD decay (u**-1 base e at ambient lemperature) Ki = overall BOD base rate (u**-1 base e at ambient temp) Ki = nutrication (u**-1 base e at ambient temperature) pa = daily averaged gross protocynthesis (mg/L/d) R = daily averaged gross respiration (mg/L/d) halt of diurnal DO range (mg/L)	4.7 8.040 0.00 0,18 1 77 1.08 6.96 e, and f): 8.18 3.52 3.52 3.52 3.40 17.03 4.26 2.66	4.3 8.040 0.00 0.18 1 77 0.99 7.05 8.18 3.82 3.42 3.42 17.03 4.26 2.86	4.1 8.040 0.00 0.18 1 77 0.93 7 11 4.18 3.52 3.52 3.42 3.42 4.22 2.66	8.040 0.00 0.18 1 77 0.97 7 17 8.18 3.82 3.52 3.428 17.03 4.26 2.68	3.7 8.040 0.00 0.19 1 77 0.84 7.20 8.18 3.62 3.62 3.62 3.42 4.28 2.66	8.040 0.00 0.18 1 77 0.81 7.23 8.18 3.52 3.52 3.52 3.48 17.03 4.28 2.66
Initial Mixed Total BODU (CBOOU + NBOD, mg/L) 4. INITIAL DISSOLVED OXYGEN DEFICIT Saturation Dissolved Oxygen (mg/L) Initial Deficit (mg/L) 5. TRAVEL TIME TO CRITICAL DO CONCENTRATION (days) 6. DISTANCE TO CRITICAL DO CONCENTRATION (miles) 7. CRITICAL DO DEFICIT (mg/L) 8. CRITICAL DO CONCENTRATION (mg/L) [negative value indicates DO = 0] Full solution DO deficit (Chapter 6.4.4 of Thomann and Mueller 1997 eqns a, b, c 1. Reaction Rates (same Ka and Kd as above, Kn may be different) Ka = reaeration (d*-1 base e at ambient temperature) Kf = 000 beasy (d*-1 base e at ambient temperature) Kf = overall BOD bess rate (d*-1 base e at ambient temperature) pa = daily averaged gross photosynthesis (mg/L/d) R = daily averaged gross photosynthesis (mg/L/d) that of distrate DO range (mg/L) (a) • Initial value of DO deficit (mg/L)	4.7 8.040 0.00 0.18 1 777 1.03 6.96 e, and \$\$; 4.18 3.52 3.52 3.52 3.426 9.7.03 4.266 0.000	4.3 8.040 0.00 0.18 1 77 0.99 7.05 8.18 3.52 3.52 3.49 17.03 4.26 2.86 0.000	4.1 8.040 0,00 0.18 1 77 0.93 7 11 8.18 9.52 9.52 9.52 3.48 17.03 4.28 2.66 0.000	8.040 0.00 0.18 1 77 0.97 7 17 8.18 3.52 3.52 3.48 17.03 4.26 2.66	8.040 0.00 0.18 1 77 0.84 7.20 8.18 3.52 3.62 3.62 3.49 17.03 4.26 2.66 0.000	8.040 0.00 0.18 1 77 0.81 7 23 8.18 3.52 3.52 3.52 3.49 17.03 4.28 2.66 0.000
Initial Mixed Total BODU (CBODU + NBOD, mg/L) 4. INITIAL DISSOLVED OXYGEN DEFICIT Saturation Dissolved Oxygen (mg/L) Initial Deficit (mg/L) 5. TRAVEL TIME TO CRITICAL DO CONCENTRATION (days) 6. DISTANCE TO CRITICAL DO CONCENTRATION (miles) 7. CRITICAL DO DEFICIT (mg/L) 8. CRITICAL DO CONCENTRATION (mg/L) (negative value indicates DO = 0) Full solution DO deficit (Chapter 6.4.4 of Thomann and Mueller 1997 eqns a, b, c 1. Reception Raises (same Ka and Kd as above, Kn may be different) Ka = reaeration (d*-1 base e at ambient temperature) Kd = 800 decay (d*-1 base e at ambient temperature) Kf = overall BOD base rate (d*-1 base e at ambient temperature) Nn = ntillacion (d*-1 base e at ambient temperature) pa = daily averaged gross photosynthesis (mg/L/d) R = daily averaged gross respiration (mg/L/d) that of diurnal DO range (mg/L) (a) = initial value of DO defict (mg/L) (b) = deficit due to CBOD (mg/L)	4.7 8.040 0.00 0.18 1 77 1.08 6.96 e, and f): 8.18 3.52 3.52 3.40 17.03 4.26 2.66 0.000	4.3 8.040 0.00 0.18 1 77 0.99 7.05 8.18 3.82 3.42 3.42 17.03 4.26 2.86	4.1 8.040 0.00 0.18 1 77 0.93 7 11 4.18 3.52 3.52 3.42 3.42 4.22 2.66	8.040 0.00 0.18 1 77 0.97 7 17 8.18 3.82 3.52 3.428 17.03 4.26 2.68	3.7 8.040 0.00 0.19 1 77 0.84 7.20 8.18 3.62 3.62 3.62 3.42 4.28 2.66	8.040 0.00 0.18 1 77 0.81 7.23 8.18 3.52 3.52 3.52 3.48 17.03 4.28 2.66
Initial Mixed Total BODU (CBOOU + NBOD, mg/L) 4. INITIAL DISSOLVED OXYGEN DEFICIT Saturation Dissolved Oxygen (mg/L) Initial Deficit (mg/L) 5. TRAVEL TIME TO CRITICAL DO CONCENTRATION (days) 6. DISTANCE TO CRITICAL DO CONCENTRATION (miles) 7. CRITICAL DO DEFICIT (mg/L) 8. CRITICAL DO CONCENTRATION (mg/L) (negative value indicates DO = 0) Full solution DO deficit (Chapter 6.4.4 of Thomann and Mueller 1997 eqns a, b, c 1. Reaction Rates (same Ka and Kd as above, Kn may be different) Ka = reaeration (a*-1 base e at ambient temperature) Ka = 800 decay (a*-1 base e at ambient temperature) Ka = overall 800 boss rate (a*-1 base e) at ambient temperature) pa = daily averaged gross resolventhesis (mg/L/d) R = daily averaged gross respiration (mg/L/d) that of during DO range (mg/L) (a) = initial value of DO deficit (mg/L) (b) = deficit due to ROOD (mg/L) (c) = deficit due to ROOD (mg/L) (c) = deficit due to ROOD (mg/L)	4.7 8.040 0.00 0.18 1 777 1.03 6.96 e, and \$\$; 4.18 3.52 3.52 3.52 3.426 9.7.03 4.266 0.000	4.3 8.040 0.00 0.18 1 77 0.99 7.05 8.18 3.82 3.42 17.03 4.26 2.86 0.000 0.836	4.1 8.040 0.00 0.18 1 77 0.93 7 11 3.52 3.52 3.46 17.03 4.22 2.66 0.000 0.776	8.6 0.040 0.00 0.18 1.77 0.67 7.17 3.18 3.18 3.48 17.03 4.26 2.06 2.06 0.000 0.717	3.7 8.040 0.00 0.18 1 77 0.84 7 20 8.18 3.52 3.52 3.52 3.42 2.66 0.000 0.667 0.152	8.18 3.52 3.52 3.49 17.00 8.18 3.52 3.52 3.52 3.52 3.52 3.52 3.52 3.52
Initial Mixed Total BODU (CBODU + NBOD, mg/L) 4. INITIAL DISSOLVED OXYGEN DEFICIT Saturation Dissolved Oxygen (mg/L) Initial Delicit (mg/L) 5. TRAVEL TIME TO CRITICAL DO CONCENTRATION (days) 6. DISTANCE TO CRITICAL DO CONCENTRATION (miles) 7. CRITICAL DO DEFICIT (mg/L) 8. CRITICAL DO CONCENTRATION (mg/L) (mg/L) (mg/L) 18. CRITICAL DO CONCENTRATION (mg/L) (mg/L) (mg/L) 19. Reaction Rales (same Ka and Kd as above, Kn may be different) 19. Call Reaction Rales (same Ka and Kd as above, Kn may be different) 19. Call Reaction Rales (same Ka and Kd as above, Kn may be different) 19. Call BOD becay (0°-1 base e at ambient temperature) 19. Call BOD becay (0°-1 base e at ambient temperature) 19. Call averaged gross photosynthesis (mg/L/d) 19. Call averaged gross respiration (mg/L) 10. Initial value of DO deficit (mg/L) 10. deficit due to C80O (mg/L) 10. deficit due to NBOD (mg/L) 10. deficit due to Ossop photosynthesis (mg/L)	4.7 8.040 0.00 0.18 1 777 1.03 6.96 e, and f): 8.18 3.52 3.52 3.52 3.426 17.03 4.26 0.000 0.925	4.3 8.040 0.00 0.18 1 77 0.99 7.05 8.18 3.52 3.52 3.49 17.03 4.26 2.86	4.1 8.040 0,00 0.18 1 77 0.93 7 11 8.18 3.52 9.52 3.42 2.66 0.000 0.776 0.152	8.040 0.00 0.18 1 77 0.87 7 17 8.18 3.52 3.52 3.42 8 17.03 4.26 2.68 0.000 0.717 0.152	3.7 8.040 0.00 0.18 1 77 0.84 7.20 8.18 3.52 3.62 3.42 2.66 0.000 0.687 0.152	8.18 9.18 9.18 9.18 9.18 9.18 9.18 9.52 9.52 9.49 9.17 9.00 9.00 9.00 9.00 9.00 9.00 9.00 9.0
Initial Mixed Total BODU (CBODU + NBOD, mg/L) 4. INITIAL DISSOLVED OXYGEN DEFICIT Saturation Dissolved Oxygen (mg/L) Initial Delicit (mg/L) 5. TRAVEL TIME TO CRITICAL DO CONCENTRATION (days) 6. DISTANCE TO CRITICAL DO CONCENTRATION (miles) 7. CRITICAL DO DEFICIT (mg/L) 8. CRITICAL DO CONCENTRATION (mg/L) (mg/L) (mg/L) 8. CRITICAL DO CONCENTRATION (mg/L) (mg/L) (mg/L) 9. CRITICAL DO CONCENTRATION (mg/L) (mg/L) (mg/L) 1. Reaction Rates (same Ka and Kd as above, Kn may be different) 1. Reaction Rates (same Ka and Kd as above, Kn may be different) 1. Reaction Rates (same Ka and Kd as above, Kn may be different) 1. Reaction Rates (same Ka and Kd as above, Kn may be different) 1. Reaction Rates (same Ka and Kd as above, Kn may be different) 1. Reaction Rates (same Ka and Kd as above, Kn may be different) 1. Reaction Rates (same Ka and Kd as above, Kn may be different) 1. Reaction Rates (same Ka and Kd as above, Kn may be different) 1. Reaction Rates (same Ka and Kd as above, Kn may be different) 1. Reaction Rates (same Ka and Kd as above, Kn may be different) 1. Reaction Rates (same Ka and Kd as above, Kn may be different) 1. Reaction Rates (same Ka and Kd as above, Kn may be different) 1. Reaction Rates (same Ka and Kd as above, Kn may be different) 1. Reaction Rates (same Ka and Kd as above, Kn may be different) 1. Reaction Rates (same Ka and Kd as above, Kn may be different) 1. Reaction Rates (same Ka and Kd as above, Kn may be different) 1. Reaction Rates (same Ka and Kd as above, Kn may be different) 1. Reaction Rates (same Ka and Kd as above, Kn may be different) 1. Reaction Rates (same Ka and Kd as above, Kn may be different) 1. Reaction Rates (same Ka and Kd as above, Kn may be different) 1. Reaction Rates (same Ka and Kd as above, Kn may be different) 1. Reaction Rates (same Ka and Kd as above, Kn may be different) 1. Reaction Rates (same Ka and Kd as above, Kn may be different) 1. Reaction Rates (same Ka and Kd as above, Kn may be different) 1. Reaction Rates (same Ka and Kd	4.7 8.040 0.00 0.18 1 77 1.08 6.96 6, and \$\(\bar{1} \); 4.18 3.52 3.49 17.03 4.26 2.66 0.000 0.925 0.1508 0.402	4.3 8.040 0.00 0.18 1 77 0.99 7 05 8.18 3.82 3.49 17.03 4.26 2.86 0.00 0.836 0.182 1.502 1.502 0.006 0.402	4.1 8.040 0.00 0.18 1 77 0.93 7 11 8.18 3.52 3.48 17.03 4.23 2.66 0.000 0.776 0.152 -1.600 0.402	3.6 6.040 0.00 0.18 1.77 0.97 7.17 7.17 3.152 3.52 3.48 17.03 4.26 2.66 0.000 0.717 0.152 1.603 0.402	3.7 8.040 0.00 0.18 1 77 0.84 7 20 8.18 3.52 3.52 3.52 3.52 2.65 0.00 0.697 0.152 0.402	8.040 0.00 0.18 1 77 0.81 7 23 8.18 3.52 3.52 3.52 3.48 17.03 4.28 2.68 0.000 0.658 0.152 -1.600 0.402
Initial Mixed Total BODU (CBODU + NBOD, mg/L) 4. INITIAL DISSOLVED OXYGEN DEFICIT Saturation Dissolved Oxygen (mg/L) Initial Delicit (mg/L) 5. TRAVEL TIME TO CRITICAL DO CONCENTRATION (days) 6. DISTANCE TO CRITICAL DO CONCENTRATION (miles) 7. CRITICAL DO DEFICIT (mg/L) 8. CRITICAL DO CONCENTRATION (mg/L) (mg/L) (mg/L) 18. CRITICAL DO CONCENTRATION (mg/L) (mg/L) (mg/L) 19. Reaction Rales (same Ka and Kd as above, Kn may be different) 19. Call Reaction Rales (same Ka and Kd as above, Kn may be different) 19. Call Reaction Rales (same Ka and Kd as above, Kn may be different) 19. Call BOD becay (0°-1 base e at ambient temperature) 19. Call BOD becay (0°-1 base e at ambient temperature) 19. Call averaged gross photosynthesis (mg/L/d) 19. Call averaged gross respiration (mg/L) 10. Initial value of DO deficit (mg/L) 10. deficit due to C80O (mg/L) 10. deficit due to NBOD (mg/L) 10. deficit due to Ossop photosynthesis (mg/L)	4.7 8.040 0.00 0.18 1 77 1.08 6.96 e, and \$\(\eta \): 8.18 3.52 3.52 3.52 3.40 17.03 4.26 2.66 0.000 0.925 0.1502	4.3 8.040 0.00 0.18 1 77 0.99 7.05 8.18 3.52 3.52 3.52 3.52 2.85	4.1 8.040 0.00 0.18 1 77 0.93 7 11 8.10 3.52	3.6 6.040 0.00 0.18 1.77 0.97 7.17 7.17 3.152 3.42 3.52 3.48 17.03 4.26 2.66 0.000 0.717 0.152 1.608	3.7 8.040 0.00 0.18 1 77 0.84 7 20 8.18 3.52 3.52 3.52 3.42 2.66 0.000 0.667 0.152	8.18 3.52 3.52 3.49 17.00 8.18 3.52 3.52 3.52 3.52 3.52 3.52 3.52 3.52
Initial Mixed Total BODU (CBODU + NBOD, mg/L) 4. INITIAL DISSOLVED OXYGEN DEFICIT Saturation Dissolved Oxygen (mg/L) Initial Delict (mg/L) 5. TRAVEL TIME TO CRITICAL DO CONCENTRATION (days) 6. DISTANCE TO CRITICAL DO CONCENTRATION (miles) 7. CRITICAL DO DEFICIT (mg/L) 8. CRITICAL DO CONCENTRATION (mg/L) [negative value indicates DO = 0] Full solution DO delicit (Chapter 6.4.4 of Thomann and Mueller 1997 eqns.a, b, c 1. Reaction Rates (same Ka and Kd as above, Kn may be different) Ka = neaeration (gf-1 base e at ambient temperature) Kd = BOD decay (gf-1 base e at ambient temperature) Kd = Oxen 18 BOD boss rate (gf-1 base e at ambient temperature) pa = daily averaged gross photosynthesis (mg/L/d) R = daily averaged gross respiration (mg/L/d) tatt of durinal DO tange (mg/L) (a) = initial value of DO deficit (mg/L) (b) = deficit due to CBOD (mg/L) (c) = deficit due to NBOD (mg/L) (d) = deficit due to GROD (mg/L) (e) = deficit due to gross respiration (mg/L) (f) = (deficit due to gross respiration (mg/L) (f) = (deficit due to gross respiration (mg/L) (g) = deficit due to gross respiration (mg/L)	4.7 8.040 0.00 0.18 1 77 1.08 6.96 6, and \$\(\bar{1} \); 4.18 3.52 3.49 17.03 4.26 2.66 0.000 0.925 0.1508 0.402	4.3 8.040 0.00 0.18 1 77 0.99 7 05 8.18 3.82 3.49 17.03 4.26 2.86 0.00 0.836 0.182 1.502 1.502 0.006 0.402	4.1 8.040 0.00 0.18 1 77 0.93 7 11 8.18 3.52 3.48 17.03 4.23 2.66 0.000 0.776 0.152 -1.600 0.402	3.6 6.040 0.00 0.18 1.77 0.97 7.17 7.17 3.152 3.42 2.66 0.000 0.717 0.152 1.603 0.402	3.7 8.040 0.00 0.18 1 77 0.84 7 20 8.18 3.52 3.52 3.52 3.52 2.65 0.00 0.697 0.152 0.402	8.040 0.00 0.18 1 77 0.81 7 23 8.18 3.52 3.52 3.52 3.48 17.03 4.28 2.68 0.000 0.658 0.152 -1.600 0.402
Initial Mixed Total BODU (CBOOU + NBOD, mg/L) 4 INITIAL DISSOLVED OXYGEN DEFICIT Saturation Dissolved Oxygen (mg/L) Initial Deficit (mg/L) 5 TRAVEL TIME TO CRITICAL DO CONCENTRATION (days) 6 DISTANCE YO CRITICAL DO CONCENTRATION (miles) 7 CRITICAL DO DEFICIT (mg/L) 8 CRITICAL DO CONCENTRATION (mg/L) (negative value indicates DO = 0] Full solution DO deficit (Chapter 6.4.4 of Thomann and Mueller 1997 eqns a, b, c 1 Reaction Rates (same Ka and Kd as above, Kn may be different) Ka = reaeration (if*-1 base e at ambient temperature) Kf = SOD decay (if*-1 base e at ambient temperature) Kf = overall BOD loss rate (if*-1 base e at ambient temperature) Full solution (if*-1 base e at ambient temperature) Full solution (if*-1 base e at ambient temperature) Full solution (if*-1 base e at ambient temperature) Kf = overall BOD loss rate (if*-1 base e at ambient temperature) Full solution (if*-1 b	4.7 8.040 0.00 0.18 1 77 1.08 6.96 6, and ħ: 8.18 3.52 3.49 17.03 4.26 2.66 0.000 0.925 0.1500 0.402	4.3 8.040 0.00 0.18 1 77 0.99 7 05 8.18 3.52 3.49 17.03 4.26 2.86 0.000 0.636 0.152 1.520 0.402	4.1 8.040 0.00 0.18 1 77 0.93 7 11 8.18 3.52	8.6 8.040 0.00 0.18 1.77 0.97 7.17 8.18 3.52 3.52 3.48 17.03 4.26 2.66 0.000 0.717 0.1502 0.402	3.7 8.040 0.00 0.18 1 77 0.84 7 20 8.19 3.52 3.52 3.52 3.52 3.62 0.00 0.667 0.152 0.402	8,18 3,52 3,52 3,52 3,52 3,52 3,52 17,03 1,23 2,66 0,000 0,650 0,402
Initial Mixed Total BODU (CBODU + NBOD, mg/L) 4. INITIAL DISSOLVED OXYGEN DEFICIT Saturation Dissolved Oxygen (mg/L) Initial Delict (mg/L) 5. TRAVEL TIME TO CRITICAL DO CONCENTRATION (days) 6. DISTANCE TO CRITICAL DO CONCENTRATION (miles) 7. CRITICAL DO DEFICIT (mg/L) 8. CRITICAL DO CONCENTRATION (mg/L) [negative value indicates DO = 0] Full solution DO delicit (Chapter 6.4.4 of Thomann and Mueller 1997 eqns.a, b, c 1. Reaction Rates (same Ka and Kd as above, Kn may be different) Ka = neaeration (gf-1 base e at ambient temperature) Kd = BOD decay (gf-1 base e at ambient temperature) Kd = Oxen 18 BOD boss rate (gf-1 base e at ambient temperature) pa = daily averaged gross photosynthesis (mg/L/d) R = daily averaged gross respiration (mg/L/d) tatt of durinal DO tange (mg/L) (a) = initial value of DO deficit (mg/L) (b) = deficit due to CBOD (mg/L) (c) = deficit due to NBOD (mg/L) (d) = deficit due to GROD (mg/L) (e) = deficit due to gross respiration (mg/L) (f) = (deficit due to gross respiration (mg/L) (f) = (deficit due to gross respiration (mg/L) (g) = deficit due to gross respiration (mg/L)	4.7 8.040 0.00 0.18 1 77 1.03 6.96 8, and n: 8,18 3.52 3.52 3.52 3.52 2.66 0.000 0.925 0.152 -1.508 0.402 -0.126 8.169	4.3 8.040 0.00 0.18 1 77 0.99 7 05 8.18 9.62 3.42 0.20 2.86 0.000 0.83 4.26 2.86 0.000 0.152 1.600 0.402 0.4	4.1 8.040 0.00 0.18 1 77 0.93 7 11 8.18 9.52 9.52 9.52 3.428 2.66 0.000 0.778 0.152 -1.600 0.402	8.040 0.00 0.18 1 77 0.97 7 17 8.18 3.52 3.52 3.428 17.03 4.266 2.66 0.000 0.717 1.152 1.600 0.402	3.7 8.040 0.00 0.18 1 77 0.84 7 20 8.18 3.62 3.62 3.62 3.62 3.62 3.62 3.62 3.62	8.18 8.18 8.18 8.52 3.52 3.52 3.62 3.62 0.60 0.658 0.188 0.188 0.188 0.188 0.188
Initial Mixed Total BODU (CBODU + NBOD, mg/L) 4. INITIAL DISSOLVED OXYGEN DEFICIT Saturation Dissolved Oxygen (mg/L) Initial Delict (mg/L) 5. TRAVEL TIME TO CRITICAL DO CONCENTRATION (days) 6. DISTANCE TO CRITICAL DO CONCENTRATION (miles) 7. CRITICAL DO DEFICIT (mg/L) 8. CRITICAL DO CONCENTRATION (mg/L) (negative value indicates DO = 0] Full solution DO delicit (Chapter 6.4.4 of Thomann and Mueller 1997 eqns a, b, c 1. Reaction Rates (same Ka and Kd as above, Kn may be different) Ka = rearration (d*-1 base e at ambient temperature) Kd = BOD decay (d*-1 base e at ambient temperature) Kr = overall BOD loss rate (d*-1 base e at ambient temperature) Kn = nitification (d*-1 base e at ambient temperature) R = daily averaged gross respiration (mg/L/d) R = daily averaged gross respiration (mg/L/d) (a) = initial value of DO delicit (mg/L) (b) = delicit due to CBOD (mg/L) (c) = delicit due to GBOD (mg/L) (d) = celicit due to gross respiration (mg/L) D = a+b+c+e+f = total DO deficit at point of critical sag (mg/L) DOMIn = DO - (haiff diffurnal range) = delict min DO at point of critical sag (mg/L) [negstive values for DO of DOmin indicate DO = 0]	4.7 8.040 0.00 0.18 1 77 1.03 6.96 8, and n: 8,18 3.52 3.52 3.52 3.52 2.66 0.000 0.925 0.152 -1.508 0.402 -0.126 8.169	4.3 8.040 0.00 0.18 1 77 0.99 7 05 8.18 9.62 3.42 0.20 2.86 0.000 0.83 4.26 2.86 0.000 0.152 1.600 0.402 0.4	4.1 8.040 0.00 0.18 1 77 0.93 7 11 8.18 9.52 9.52 9.52 3.428 2.66 0.000 0.778 0.152 -1.600 0.402	8.040 0.00 0.18 1 77 0.97 7 17 8.18 3.52 3.52 3.428 17.03 4.266 2.66 0.000 0.717 1.152 1.600 0.402	3.7 8.040 0.00 0.18 1 77 0.84 7 20 8.18 3.62 3.62 3.62 3.62 3.62 3.62 3.62 3.62	8.18 8.18 8.18 8.52 3.52 3.52 3.62 3.62 0.60 0.658 0.188 0.188 0.188 0.188 0.188
Initial Mixed Total BODU (CBOOU + NBOD, mg/L) 4. INITIAL DISSOLVED OXYGEN DEFICIT Saturation Dissolved Oxygen (mg/L) Initial Deficit (mg/L) 5. TRAVEL TIME TO CRITICAL DO CONCENTRATION (days) 6. DISTANCE YO CRITICAL DO CONCENTRATION (miles) 7. CRITICAL DO DEFICIT (mg/L) 8. CRITICAL DO CONCENTRATION (mg/L) (negative value indicates DO = 0] Full solution DO deficit (Chapter 6.4.4 of Thomann and Mueller 1997 eqns a, b, c 1. Reaction Rates (same Ks and Kd as above, Kn may be different) Ks = neaeration (ut*-1 base e at ambient lemperature) Ks = source at the second of the second properature of the second pro	4.7 8.040 0.00 0.18 1 77 1.08 6.96 e, and f): 8.18 3.62 3.52 3.49 17.03 4.26 2.66 0.000 0.925 0.150 0.402 0.126 6.169 8.509	4.3 8.040 0.00 0.18 1 77 0.99 7 05 8.18 3.82 3.52 3.49 17.03 4.26 2.86 0.000 0.436 0.152 1.600 0.402 0.217 8.256 5.598	4.1 8.040 0.00 0.18 1 77 0.93 7 11 8.18 3.62 9.52 9.52 3.428 2.66 0.000 0.776 0.152 -1.600 0.402	8.040 0.00 0.18 1 77 0.97 7 17 8.18 3.52 3.52 3.52 3.428 17.03 4.26 2.68 0.000 0.717 0.152 1.603 0.402	3.7 8.040 0.00 0.18 1 77 0.84 7 20 8.18 3.62 3.62 3.62 3.62 3.62 3.62 3.62 3.62	8.18 3.52 3.52 3.48 17.0 681 7.23
Initial Mixed Total BODU (CBODU + NBOD, mg/L) 4. INITIAL DISSOLVED OXYGEN DEFICIT Saturation Dissolved Oxygen (mg/L) Initial Delict (mg/L) 5. TRAVEL TIME TO CRITICAL DO CONCENTRATION (days) 6. DISTANCE TO CRITICAL DO CONCENTRATION (miles) 7. CRITICAL DO DEFICIT (mg/L) 8. CRITICAL DO CONCENTRATION (mg/L) (negative value indicates DO = 0] Full solution DO delicit (Chapter 6.4.4 of Thomann and Mueller 1997 eqns a, b, c 1. Reaction Rates (same Ka and Kd as above, Kn may be different) Ka = reservation (d*-1 base e at ambient temperature) Kd = BOD decay (d*-1 base e at ambient temperature) Kf = overall BOD loss rate (d*-1 base o at ambient temperature) Kn = ovinall BOD loss rate (d*-1 base o at ambient temperature) Nn = ntiffication (d*-1 base e at ambient temperature) Pa = daily averaged gross respiration (mg/L/d) R = daily averaged gross respiration (mg/L/d) (a) = initial value of DO defict (mg/L) (b) = defict due to NBOD (mg/L) (c) = delict due to NBOD (mg/L) D = abi-ci-ef = total DO defict at point of critical sag (mg/L) DO = DOsat* - D = daily avg DO at point of critical sag (mg/L) [negative values for DO or DOmin indicate DO = 0] Remaining CBODS and NBOD above Albion WTP Travel time from 5FPR RM 21.3 to 14.1 (days)	4.7 8.040 0.00 0.18 1 777 1.03 6.96 e, and f): 8.18 3.52 3.52 3.52 3.52 3.426 0.703 4.26 0.152 -1.608 0.402 -0.126 6.169 6.509	4.3 8.040 0.00 0.18 1 77 0.99 7 05 8.18 9.62 3.42 0.20 2.86 0.000 0.83 4.26 2.86 0.000 0.152 1.600 0.402 0.4	4.1 8.040 0.00 0.18 1 77 0.93 7 11 8.18 9.52 9.52 9.52 3.428 2.66 0.000 0.778 0.152 -1.600 0.402	8.040 0.00 0.18 1 77 0.97 7 17 8.18 3.52 3.52 3.428 17.03 4.266 2.66 0.000 0.717 1.152 1.600 0.402	3.7 8.040 0.00 0.18 1 77 0.84 7 20 8.18 3.62 3.62 3.62 3.62 3.62 3.62 3.62 3.62	8.18 8.18 8.18 8.52 3.52 3.52 3.62 3.62 0.60 0.658 0.188 0.188 0.188 0.188 0.188
Initial Mixed Total BODU (CBOOU + NBOD, mg/L) 4. INITIAL DISSOLVED OXYGEN DEFICIT Saturation Dissolved Oxygen (mg/L) Initial Deficit (mg/L) 5. TRAVEL TIME TO CRITICAL DO CONCENTRATION (days) 6. DISTANCE YO CRITICAL DO CONCENTRATION (miles) 7. CRITICAL DO DEFICIT (mg/L) 8. CRITICAL DO CONCENTRATION (mg/L) (negative value indicates DO = 0] Full solution DO deficit (Chapter 6.4.4 of Thomann and Mueller 1997 eqns a, b, c 1. Reaction Rates (same Ka and Kd as above, Kn may be different) Ka = nearration (u"-1 base e at ambient lemperature) Ki = BOD decay (u"-1 base e at ambient lemperature) Ki = overall BOD boss rate (u"-1 base e at ambient lemperature) Fin = nitification (u"-1 base e at ambient lemperature) pa = daily averaged gross prictosynthesis (mg/L) pa = daily averaged gross respiration (mg/L) tatt of diurnal DO range (mg/L) (a) = initial value of DO defict (mg/L) (b) = defict due to CBOD (mg/L) (c) = defict due to ORDO (mg/L) (d) = defict due to ORDO (mg/L) DO = DOsat - D = daily avg DO at point of critical sag (mg/L) DO = DOsat - D = daily avg DO at point of critical sag (mg/L) DO = DOsat - D = daily avg DO at point of critical sag (mg/L) Remaining CBODs and NBOD above Albion WTP Travel time from SFPR RM 21.3 to 14.1 (days) CBODs remaining at SFPR RM 21.3 to 14.1 (days) CBODs remaining at SFPR RM 21.3 to 14.1 (days)	4.7 8.040 0.00 0.18 1 77 1.08 6.96 e, and f): 8.18 3.62 3.52 3.49 17.03 4.26 2.66 0.000 0.925 0.150 0.402 0.126 6.169 8.509	4.3 9.040 0.00 0.18 1 77 0.99 7.05 8.18 3.52 3.52 3.49 17.03 4.26 0.000 0.836 0.402 0.152 -1.608 0.402 0.217 0.259 5.598	4.1 8.040 0,00 0.18 1 77 0.93 7 11 8.18 3.52 9.52 3.42 2.66 0.000 0.776 0.152 -1.608 0.402 -0.277 8.317 8.367	8.640 0.000 0.18 1 77 0.97 7 17 7 17 8.18 3.52 3.52 3.42 8 17.03 4.26 2.66 0.000 0.717 0.152 1.608 0.402 0.336 8.376 6.716	3.7 8.040 0.00 0.18 1 77 0.84 7 20 8.18 3.52 3.62 3.62 3.49 17.03 4.26 0.000 0.667 0.152 -1.608 0.402 -0.368 8.408 5.745	8.19 8.19 3.52 3.52 3.49 17.03 4.23 2.49 17.03 4.23 2.49 17.03 4.23 2.49 17.03 4.23 2.49 17.03 4.23 2.49 17.03 4.23 2.40 17.03 4.23 2.40 17.03
Initial Mixed Total BODU (CBOOU + NBOD, mg/L) 4. INITIAL DISSOLVED OXYGEN DEFICIT Saturation Dissolved Oxygen (mg/L) Initial Deficit (mg/L) 5. TRAVEL TIME TO CRITICAL DO CONCENTRATION (days) 6. DISTANCE YO CRITICAL DO CONCENTRATION (miles) 7. CRITICAL DO DEFICIT (mg/L) 8. CRITICAL DO CONCENTRATION (mg/L) (negative value indicates DO = 0) Full solution DO deficit (Chapter 6.4.4 of Thomann and Mueller 1997 eqns a, b, c 1. Reaction Rates (same Ka and Kd as above, Kin may be different) Ka = reseration (u**-1 base e at ambient temperature) Ki = BOD decay (u**-1 base e at ambient temperature) Ki = overall BOD boss rate (u**-1 base e at ambient temperature) Fin = nutrication (u**-1 base e at ambient temperature) pa = daily averaged gross priodoxynthesis (mg/L) pa = daily averaged gross priodoxynthesis (mg/L) (a) = initial value of DO deficit (mg/L) (b) = deficit due to OBOD (mg/L) (c) = deficit due to OBOD (mg/L) (d) = deficit due to OBOD (mg/L) (e) = deficit due to OBOD (mg/L) DO = DOsat - D = daily avg DO at point of critical sag (mg/L) DO = DOsat - D = daily avg DO at point of critical sag (mg/L) (negative values for DO or DOmin indicale DO = 0] Remaining CBODS and NBOD above Albion WTP Travel time from SFPR RM 21.3 to 14.1 (days) CBODS remaining at SFPR RM 21.3 above Albion WTP (mg/L) NBOD remaining at SFPR RM 21.3 above Albion WTP (mg/L)	4.7 8.040 0.00 0.18 1 77 1.08 6.96 e, and f): 8.18 3.62 3.52 3.49 17.03 4.26 2.66 0.000 0.925 0.152 0.152 0.163 6.509	4.3 8.040 0.00 0.18 1 77 0.99 7.05 3.82 3.82 3.52 3.40 17.03 4.28 2.86 0.000 0.836 0.152 1.600 0.402 	4.1 8.040 0.00 0.18 1 77 0.93 7 11 3.52 3.52 3.42	8.040 0.00 0.16 1 77 0.67 7 17 7 17 8.16 3.52 3.52 3.52 3.52 3.42 2.66 0.000 0.717 0.152 1.603 0.402 0.366 0.402 0.376 5.716	3.7 8.040 0.00 0.18 1 77 0.84 7.20 8.18 3.52 3.62 3.40 17.03 4.26 2.56 0.000 0.687 0.152 -0.383 8.406 5.745	8.040 0.00 0.18 1 77 0.81 1 7 23 8.18 3.52 3.52 3.48 17.03 4.28 2.68 0.000 0.658 0.152 -1.608 0.402 0.402 0.402 0.737 0.737 0.147 0.052

Daily pa and R estimated from Diumai mis/max DO data for S Fork Palouse River using eqn 6.44 and 6.46 of Thomann and Mueller 1997:

1 6.44 and 6.46	of Thomann	and Mueller	1987:			Hall
						Diurnal
River Mile	DATE	DOmax	DOmin	pa	R	Range
		(mg/L)	(mg/L)	(mg/L/d)	(mg/L/d)	(mg/L)
22.2	910724	12.26	7 80	14.24	3.56	2.226
21.4	910724	13.10	4,80	26.56	6.64	4.15
21.2	910724	11.05	4.50	20.96	5.24	3,275
18.7	910724	14.30	4,35	31.84	7.96	4.975
14.9	910724	11.30	5.30	19.2	4.6	3
14.0	910724	11.00	6.00	16	4	2.5
13.1	910724	10,06	5,00	16.16	4.04	2,525
22.2	911001	12.85	9.05	12.16	3.04	1.9
21.4	911001	1275	7.70	16,16	4.04	2,525
21.2	911001	9.60	6.70	9.26	232	1,45
16.7	911001	15.10	6.20	31.68	7.92	4.95
14.9	911001	10.50	7.40	9,92	2.48	1.55
14.0	911001	11.10	8.10	9.6	2.4	1.5
13.1	911001	11.60	6.90	15.68	3.92	245
8.9	911001	10.10	8.20	6.08	1.52	0.95
AVG:				17.03	4.26	2.88